
This book honors J. Michael Dunn, who was a 
preeminent relevance logician. Dunn’s career 
spanned over 50 years and his research results 
had an impact on philosophy, mathematics 
and informatics. Dunn often used algebraic 
techniques in his research into logics such as 
relevance, orthomodular and substructural 
logics. He invented the logic R-mingle and 
the sequent calculus LR+; he proved crucial 
theorems about 2-valued fi rst-order logic and 
non-classical higher-order logics –– among many 
other results.

The papers in this volume touch upon topics 
that Dunn was concerned with. Some authors 
were students or colleagues of Dunn; some 
other authors had not met Dunn in person, 
but share his research interests. None of the 
articles published here have appeared in print 
before; indeed, most of the papers were 
written specifi cally for this collection. The 
diversity of the themes of the articles 
refl ects the scope of Dunn’s own research in 
logic. It will also ensure that anybody with an 
interest in logic –– whether a student, a  logician 
or a scholar in another fi eld –– will fi nd reading 
this book a worthwhile endeavor.

The editor, Katalin Bimbó was the 14th 
Ph.D. student of J. Michael Dunn at Indiana 
University in Bloomington, IN, U.S.A.; currently, 
she is a professor of philosophy at the University 
of Alberta in Canada. 
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PREFACE

J. Michael Dunn was a well-known and highly respected logician, philosopher and
information scientist. Many logicians working in the area of non-classical logics knew
him personally. He was highly regarded both because of his work in logic and of his
role in the academic community. The idea of a collection of papers — like the present
one — emerged soon after Dunn passed away in April 2021. A suggestion by Yale
Weiss that I should edit such a volume led me to take on the task of editing this book.

Dunn’s career spanned more than half a century, and while he was mainly a rel-
evance logician, he also proved results in other areas of logic — often relying on an
algebraic approach to logic. It would be unfeasible to try to sum up, in a short preface,
all the theorems that Dunn proved; but it would be impossible not to mention some of
the most conspicuous discoveries he made.

Dunn wrote his Ph.D. thesis about relevance logics. He algebraized Rt (and Et),
which allowed him to apply techniques and results from universal algebra to relevance
logics. Dunn invented the logic R-mingle (RM) — a semi-relevance logic. RM turned
out to have an elegant algebraic semantics, relying on which Dunn proved a series of
results about RM and its extensions. This led him (with R. K. Meyer) to a proof of
the admissibility of the rule γ in E, R and T. The γ rule can be viewed as a form of
disjunctive syllogism, or detachment for material conditional, and the latter immedi-
ately connects to the cut rule in a sequent calculus for 2-valued logic (such as K1).
Dunn and Meyer gave a proof of the admissibility of the cut rule in K1 using a new
technique inspired by the proof of the admissibility of γ in R. Dunn’s results about
sequent calculuses include the first sequent calculus formulation of Rt

+, the introduc-
tion of structurally free logics (with Meyer), and using sequent calculuses to prove
decidability results for T t

→ and a group of logics near LR (with Bimbó).
Dunn proved results in logic that had expeditious impact on philosophical matters.

In the late 1960s, Dunn and Belnap showed that the substitutional interpretation of
quantifiers in 2-valued logic yields incompleteness in a strong sense. Dunn showed
that quantified orthomodular logic with extensionality collapses into 2-valued logic;
then, he gave a set of criteria for quantified non-classical logics that guaranteed a
similar collapse when (a weak form of) extensionality was added. In a series of papers,
Dunn developed an approach to relevant predication and applied this theory to the
philosophical analysis of various kinds of properties.

RM was the first intensional logic (after normal modal and intuitionistic logic) to
be equipped with a relational semantics. Dunn’s 3-valued relational semantics for
RM did not easily generalize to other logics such as R or T; however, it allowed Dunn
to develop 3-valued models of arithmetic and of type theory. Soon after the introduc-
tion of the Meyer–Routley semantics for relevance logic, Dunn started to expand the
scope of the applicability of relational semantics. This culminated in the formulation
of gaggle theory (i.e., generalized Galois logics), which blossomed into a stream of
papers by Dunn and by other logicians. Dunn also concerned himself with uncovering
the circumstances of the emergence of the three-termed relational semantics, and he
recorded this piece of history in several papers (with Bimbó, and with N. Ferenz).



viii Preface

Orthomodular logic became relevant again with the impending inception of the era
of quantum computers. Dunn showed (with Hagge, Moss and Wang) that the number
of qubits impacts the underlying logic of a quantum computer unlike the number of
bits does that of a digital computer. Dunn, who was the founding dean of the School
of Informatics at Indiana University, approached questions about information (in gen-
eral), and information in practical applications using logic and philosophical ideas.

The goal of this collection isn’t to paint a comprehensive picture of Dunn’s research
in logic. Rather, the volume showcases papers that were either written for this volume
or they were never published before. The authors, who were invited to contribute,
produced papers on a variety of topics; some papers are very directly related to Dunn’s
research interests whereas some others pay homage to Dunn via their approach to a
question in logic. To round out the collection, two papers by Dunn, which have not
appeared in print before, are also included in this volume — together with a list of his
main publications. It is my hope that the variety of topics and styles will make this
volume a valuable read for logicians and scholars with some interest in logic alike.

The title of the book, of course, was chosen to reflect its content. Several papers
deal with relevance logics (fde, R, EQ and others), but not all of them do. Thus, the
second part of the title — “other tools for reasoning” — aims to indicate that the topics
in the collection go beyond relevance logics, and at the same time, it hearkens back
to Dunn’s stance on logic. Some logicians, whether classical or non-classical ones,
vouch for “One true logic” — not always for the same though. Dunn, in contradistinc-
tion to this view, thought that different logics might be useful for disparate purposes.
That is, logics are similar to tools, but their function is specific to reasoning.

The sketches on the cover depict Indiana University landmarks in Bloomington: the
Sample Gates on Kirkwood Avenue and the Bicentennial Carillon in the Arboretum.
Michael Dunn was a professor (later, a professor emeritus) at IU for fifty-two years.

Acknowledgments. First of all, I would like to express my gratitude to Jane Spurr,
Managing Director of College Publications, for allowing me to pursue the project of
editing this volume in the Tributes series.

The collection would not have been possible without the contributions of the au-
thors, whom I would like to thank both for their papers and for their collaboration
during the process of editing. The papers in this volume had been refereed, and I
am thankful to those who acted as a referee for a paper. The referees’ efforts and
comments — undoubtedly — helped the authors to refine their papers.

The book has been typeset using LATEX with a heavy reliance on the fonts and
packages that sprouted from AMSTEX. The latter were developed under the auspices
of the American Mathematical Society; TEX was originally designed by D. Knuth. As
users, we are beholden to the architects of LATEX and its extensions, without which it
would have taken several years to complete this book — if for no other reason, merely
because of the notational intricacies that are inherent in logical writings.

I am grateful for partial funding for some of my work during the editing of this
volume from the Insight Grant #435–2019–0331 awarded by the Social Sciences and
Humanities Research Council of Canada.

Edmonton, May 14th, 2022 KB



DISTRIBUTED RELATION ALGEBRA

Gerard Allwein and William L. Harrison

ABSTRACT. We define some extra relation operators in Relation Algebras and ex-
amine the relationship between Relation Algebras and Relevance Logic. We then
extract binary relations from Kripke models of Relation Algebras and extend those
to Distributed Relation Algebras. The term distributed refers to using a multigraph of
local algebras connected by distributed operators. In the context of Kripke frames for
Relation Algebras, the distribution refers to a multigraph of Stone spaces where each
node is a local Kripke frame. There are then distributed Kripke relations connecting
the local frames. Lastly, we show the relationship between the relation operators and
Kan extensions and lifts from category theory.

Keywords. Distributed logic, Gaggle theory, Kan extensions and lifts, Relation alge-
bra, Relevance logic

1. INTRODUCTION

This paper arose from considering applications of Distributed Logic in Allwein and
Harrison [3] to Field Programmable Gate Arrays (FPGAs). In an FPGA application,
there are several components each with its own notion of internal state. The map be-
tween the logic and FPGA application is intended to be direct. Clearly, a logic aiming
to reflect this must have some notion of component as well. An FPGA device can be
thought of as a sea of small circuits that are corralled by an FPGA application to form
components. Every application will then have a different collection of components.
Therefore, a logic reflecting the component structure must make that structure para-
metric to the logic. In [3], we parameterized Distributed Logic with a graph. Techni-
cally, we used multigraphs of graph theory with own identities: there can be multiple
arcs between two nodes and multiple arcs between two nodes are different arcs; loops
are permitted. The localities represented components and the arcs represented binary
relations. This structure formed a distributed Kripke frame where each locality was a
collection of points or states and the arcs were distributed Kripke relations, i.e., binary
relations between point sets. The logic then introduced distributed modal connectives
interpreted by distributed Kripke models.

We felt that we could use a different representation of FPGA applications by using
a logic of distributed relations directly rather than by interpreting distributed modal
connectives. One option was to formalize relation algebra (RA) as a logic, which we
accomplished in Allwein et al. [4]. In this paper, we ignore the logic and work directly

2020 Mathematics Subject Classification. Primary: 03B47, Secondary: 03G15, 18N10.

Bimbó, Katalin, (ed.), Relevance Logics and other Tools for Reasoning. Essays in Honor of J. Michael
Dunn, (Tributes, vol. 46), College Publications, London, UK, 2022, pp. 1–30.



2 Gerard Allwein and William L. Harrison: Distributed Relation Algebra

with RA. However, the semantics of [4] does not yield a semantics as a collection of
binary relations. This paper does provide such a semantics. We start from Chin and
Tarski [8] and Ng [13]. We have been heavily influenced by Pratt’s Action Logic
[15] and the paper on the origins of the calculus of binary relations Pratt [16]. From
Allwein et al. [1], we knew how to extract a calculus of relations from a three-place
Kripke relation similar to that used in the semantics of Relevance Logic. In Pratt [14],
there is a similar construction, but it leaves out the details. We adopt the distributed
RA of [4], but then supply a new semantics using binary relations.

RA should have some connection with Relevance Logic (Anderson and Belnap
[5]; Routley et al. [17]). The main composition connective is similar to Relevance
Logic’s fusion. The defined operators used some ideas of [15] and the fact that they
can be defined in Relevance Logic from fusion and De Morgan negation. The op-
erators are definable using the monoid of RA and De Morgan negation; the latter is
manufactured from RA’s converse and classical negation. Hence, there is a relation-
ship to Classical Relevance Logic [17]. Were it not for Relevance Logic’s insistence
on a commutative fusion operator (a commutative monoid operator in the algebras),
then the match would have been perfect. We detail the relationship here where con-
verse, as a period-two operator on the Kripke frames, replaces the Routley–Meyer
star operator and we rearrange the semantics so as not to import the commutativity;
Relevance Logic’s semantics builds in the commutativity.

The main issue with RAs is that in general they are not representable. In logic, this
means that their completeness cannot be proved. However, from [1; 14] we can get
representations for simple RAs called simple Boolean monoids. We generate these
using the device used in [1], called Tabularity. This is the same notion as Tabularity in
Freyd and Scedrov [11], whence the name, although we apply it to the three-place re-
lations of Kripke frames. The result yields relations as interpretations of the elements
of an RA.

We first present RA as in [8; 13] (without the induction axiom). After showing a
few properties, we define some extra algebraic operators that are used in the sequel.
Next, the relationship between RA and Relevance Logic is examined. We then show
how to form Kripke models of the algebras in the sense of Kripke models for logics,
where for us the algebras replace the logics. Using [1], we show how to extract binary
relations from the Kripke models and show how to derive the algebraic operators,
now as operators on actual relations. We briefly explain the mechanisms necessary to
distribute RA and how the extraction of binary relations carries over to the distributed
case. This yields typed relations; each relation has a source and target. These form a
category of relations with two forms of composition of relations. We used the notion
of Gaggle Theory from Dunn [9] and Allwein and Dunn [2] to produce intensional nor
and nand operators and show how they integrate with algebras of relations. Finally, we
show how the operators relate to Kan extensions and lifts, and recover the residuation
rules for the relations and their operators as adjoints. The intensional nor and nand
form constructions that resemble Kan extensions and lifts, however the details are a
bit different and do not fit the Kan notions precisely.
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The two forms of composition could have been formalized directly using the de-
vices of enriched category theory; we do not do so here in the interest of brevity. How-
ever, a truly abstract characterization of the two forms, as well as the intensional nor
and nand operations, would use enriched category theory. We expect this will have
utility when discovering and proving properties about FPGA applications. Another
interesting feature of the categorical notion of extensions and lifts is that the operators
need not be defined over the entire distributed relation category. This notion comes
in handy with respect to FPGA applications where sometimes the relations between
components may not be discoverable, say, when what is known as foreign intellectual
property (foreign IP) (components with unknown internal structure) is used. Foreign
IP is used in virtually all FPGA application designs.

2. RELATION ALGEBRA (RA)

We assume the usual Boolean algebra substrate of meet, join, and Boolean nega-
tion, i.e., ∧, ∨, ¬ where the Boolean ∨ symbol will be used in place of RA’s typical
+ symbol (which we reserve for an intensional or as a defined operation), and ∧ is
a defined operation. RA has a composition operator, ◦. To this we add the derived
operators and ; these are the left and right residuals of relational composition,
respectively, and are analogous to Relevance Logic’s entailment connectives. We also
add +, , and for another set of residuated connectives. We use the terms ten-
sor and cotensor to refer to ◦ and + in the algebras. We also use these same terms
in the algebras of sets that we extract from the Kripke Frames. Finally we add the
self-residuated operators intensional nor ↓ and intensional nand ↑.
2.1. Axioms.

Definition 1. The RA axioms are from [8; 13].
M1. (B,∨,¬,⊥,>) is a Boolean algebra
M3. (a◦b)◦ c = a◦ (b◦ c)
M5. a◦1 = a for any a ∈ A
M7. (a◦b)˘ = b˘ ◦a˘

M2. a˘˘ = a for any a ∈ A
M4. (a ∨ b)◦ c = (a◦ c) ∨ (b◦ c)
M6. (a ∨ b)˘ = a˘ ∨ b˘ for any a,b ∈ A
M8. (a˘ ◦¬(a◦b)) ∨ ¬b = ¬b, ∀a,b ∈ A

where ⊥ and > are the bottom and top of the Boolean algebra.

There are two equivalent inequational forms for M8:

M8. ¬(b◦a)◦a˘ ≤ ¬b M8′. a˘ ◦¬(a◦b)≤ ¬b

It is straightforward to check that ◦ is a normal operator.

2.2. Defined Operators. It is well known that ¬(a˘) = (¬a)˘ and so we can elide the
parentheses in the following:

Definition 2. The De Morgan operator ∼ is defined with ∼a = ¬a˘.

It is straightforward to check that∼ is a De Morgan negation on the Boolean lattice
of an RA. There are coentailment, intensional nor, and intensional nand operators.
(We use some abbreviations in the following table such as “l.” for “left,” “r.” for
“right,” “ent.” for “entailment” and “int.” for “intensional” in order to fit the names of
the operators on each line.)
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Definition 3.
Operator Definition Name Operator Definition Name

1 1 identity 0 ¬1 coidentity
a◦b a◦b tensor a+b ∼(∼b◦∼a) cotensor

b a ∼(a◦∼b) l. ent. b a b◦∼a l. coent.
a b ∼(∼b◦a) r. ent. a b ∼a◦b r. coent.
a↓b ∼a◦∼b int. nor a↑b ∼(a◦b) int. nand

TABLE 1. Names of Intensional Operators

The following table shows the distribution properties according to their Gaggle
Operator Type. The proofs are easy.

Operator Type Distribution Property
◦ : (∨,∨) ∨ a◦ (b ∨ c) = (a◦b) ∨ (a◦ c)

(a ∨ b)◦ c = (a◦ c) ∨ (b◦ c)
: (∧,∨) ∧ a (b ∨ c) = (a b) ∧ (a c)

(a ∧ b) c = (a c) ∧ (b c)
: (∨,∧) ∧ a (b ∧ c) = (a b) ∧ (a c)

(a ∨ b) c = (a c) ∧ (b c)
+ : (∧,∧) ∧ a+(b ∧ c) = (a+b) ∧ (a+ c)

(a ∧ b)+ c = (a+ c) ∧ (b+ c)
: (∨,∧) ∨ a (b ∧ c) = (a b) ∨ (a c)

(a ∨ b) c = (a c) ∨ (b c)
: (∧,∨) ∨ a (b ∨ c) = (a b) ∨ (a c)

(a ∧ b) c = (a c) ∨ (b c)
↓ : (∧,∧) ∨ a↓ (b ∧ c) = (a↓b) ∨ (a↓ c)

(a ∧ b)↓ c = (a↓b) ∨ (b↓ c)
↑ : (∨,∨) ∧ a↑ (b ∨ c) = (a↑b) ∧ (a↑ c)

(a ∨ b)↑ c = (a↑b) ∧ (b↑ c)

TABLE 2. Distribution Properties

The left and right arrow operators are always antitone in their source and monotone
in their target. Antitone equates to flipping the lattice connective to its dual and mono-
tone equates to preserving it. The residuation properties also follow directly from the
definitions:

Residuation Property Residuation Property
b≤ a c iff a◦b≤ c iff a≤ c b a c≤ b iff c≤ a+b iff c b≤ a

a↓b≤ c iff c↓a≤ b a≤ b↑ c iff b≤ c↑a

TABLE 3. Residuation Properties
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Unwinding the definitions yields

a b = ¬(a˘ ◦¬b) b a = ¬(¬b◦a˘).

The following are all equivalent to axiom M8:

M′8. a◦ (a b)≤ b M′8′. (b a)◦a≤ b

M′′8. (a ∼b)˘ ≤ b˘ ∼a˘ M′′8′. (∼b a)˘ ≤∼a˘ b˘

M′′′8. b ∼a≤∼b a M′′′8′. ∼b a≤ b ∼a
Theorem 4. The + operator forms a monoid with 0 as its unit.

The following theorem mirrors the rules for ∼ in Gentzen systems for Relevance
Logic:

Theorem 5. a≤ c+∼b iff a◦b≤ c iff b≤∼a+ c.

The proof follows directly from residuation and the definition of +. Also, ◦ distributes
over + just as in Relevance Logic.

Theorem 6. a◦ (b+ c) ≤ (a◦b)+ c.

Remark 7. The operator + could be axiomatized by itself using axioms similar to
those involving ◦. If so, then the above theorem could be taken as an axiom. We do
not do so here but point it out because it features in distributed RAs when we consider
two different forms of composition involving tensor and cotensor.

There are many other properties that mirror ◦ such as

(a b)˘ = b˘ a˘ (a+b)˘ = b˘ +a˘.

2.3. Relation Algebra Frames (RAFs). The Kripke frames for RA are exactly what
one would expect given frames for classical relevance logics except that the Routley–
Meyer (−∗) operator has been replaced by the weaker converse (−˘) operator. That
is, they are collections of points which are maximal filters when the frames arise from
an RA. There is a single three-place relation which is used in evaluating the monoid
operation. Also, there is a set of “zero worlds” (using the terminology of Relevance
Logic) used in evaluating the unit of the monoid.

This paper will assume that an RA frame will be denoted as X = (X ,X ,X), where
X ⊆X×X×X is the three-place relation on worlds and X⊆X is the collection of zero
worlds. The symbol X is overloaded but since the three-place relation is so central
to the frame, the reader is asked to overlook this and accept the simplicity it gives to
the notation. Context will distinguish the two uses of “X .” For X and X, this same
letter in the two different fonts means different things, but both are related to the same
structure.

The following definition is based on [1] where Boolean Monoid Frames are used.
Here, those frames are augmented with a “converse” operator on points.

Definition 8. A relation algebra frame, X = (X ,X ,X), is a structure, where X is a set
of points, X ⊆ X ×X ×X , and X ⊆ X and X 6= /0. The following axioms, also called
frame conditions, apply:
FA1. X 2uvyz iff X 2u(vy)z;1

1X 2 is defined as X 2uvyz iff ∃x(Xuvx and X xyz) and X 2u(vy)z iff ∃w(Xuwz and X vyw).
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FA2. there is some z ∈ X such that X xzx and X zxx;
FA3. for all y ∈ X, (X xyz or X yxz) implies x = z;
FA4. X xyz implies X zy˘x;
FA5. X xyz implies X x˘zy.

These axioms can be augmented with the Tabularity Axiom

FA6. X xyz and X xy′z implies y = y′.

There are, of course, implicit universal quantifications given to the free variables in
the frame conditions.

Lemma 9. X xyz implies X y˘x˘z˘.

The proof follows directly from the Frame Conditions FA4 and FA5. Canonically,
we let x˘ = {a˘ : a ∈ x}, where x is a maximal filter. Given that (a ∨ b)˘ = a˘ ∨ b˘
and that (¬a)˘ = ¬(a˘), then x˘ is also a maximal filter. The consequence is that
a ∈ x˘ iff a˘ ∈ x. Just as in Relevance Logic,

X xyz iff ∀a,b(a ∈ x and b ∈ y implies a◦b ∈ z) and x ∈ X iff 1 ∈ x.

Also as in Relevance Logic, there are the following equivalent definitions of X xyz:

X xyz iff ∀a,b(b a ∈ x and a ∈ y implies b ∈ z)

X xyz iff ∀a,b(a ∈ x and a b ∈ y implies b ∈ z),

where the commutativity of ◦ is not assumed. Just as in Relevance Logic, these defi-
nitions are equivalent because of residuation.

Theorem 10. The modeling conditions FA1, FA2, FA3, FA4, and FA5 hold canonically
in any Stone space arising as a dual space to an RA.

Proof. That the frame conditions FA1, FA2, and FA3 hold is known from classical
Relevance Logic’s algebras (De Morgan monoids) that share the properties of the
operator 1 and of ◦. Axioms FA4 and FA5 hold in the presence of the converse axioms.
We show FA4:

Let X xyz and assume a ∈ z and a ∼b ∈ y˘, then (a ∼b)˘ ∈ y and so b˘
∼a˘ ∈ y. Towards a reductio ad absurdum, let∼b /∈ x, then b∈ x˘ and so b˘ ∈ x. From
X xyz, then ∼a˘ ∈ z. Hence a /∈ z˘˘ and a /∈ z, which is a contradiction. Thus, ∼b ∈ x
and X zy˘x. /

Definition 11. Let A and B be sets in the power set of points of a RAF. The basic
definitions are, where ◦ is composition in the set algebra and the unit of the monoid
is t: t = X, and

z∈ A◦B iff ∃x,y(X xyz and x∈ A and y∈ B), x∈¬A iff x /∈ A, x∈ A˘ iff x˘ ∈ A.

Using these definitions, it is straightforward to show

Lemma 12. (¬A)˘ = ¬(A˘).

Lemma 13. The RA axioms are valid in RAFs.
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Proof. We will only show one example using the set algebra derived from the RAFs
and noting that RA is equationally defined and hence has free algebras. The axioms
M1, M3 through M4 and M5 are shown in [1]. Axiom M2 is straightforward. Axiom
M8 holds because defining the operator (or ) using the same relation as that for
◦ guarantees that the axiom holds.

As an example of the validity of an axiom, let A and B be sets of points of a RAF
and ◦ is the set-theoretic correlate to ◦:

z ∈ (A◦B)˘ iff z˘ ∈ A◦B

iff ∃x,y(X xyz˘ and x ∈ A and y ∈ B)

iff ∃x,y(X y˘x˘z and x ∈ A and y ∈ B)

iff ∃x,y(X y˘x˘z and x˘˘ ∈ A and y˘˘ ∈ B)

iff ∃u,v(X vuz and u˘ ∈ A and v˘ ∈ B)

iff ∃u,v(X vuz and u ∈ A˘ and v ∈ B˘)

iff ∃u,v(X vuz and v ∈ B˘ and u ∈ A˘)

iff z ∈ B˘ ◦A˘ /

A table of intensional operators can be generated by De Morgan negation and ten-
sor. The only condition we take for granted is that of z ∈ A◦B.

Theorem 14. The operators of the table below are all definable in terms of the com-
position operator ◦.

z ∈ A◦B z ∈ A◦B ∃x,y(X xyz and x ∈ A and y ∈ B)
x ∈ ∼(A◦∼B) x ∈ B A ∀y,z(X xyz and y ∈ A implies z ∈ B)
y ∈ ∼(∼B◦A) y ∈ A B ∀x,z(X xyz and x ∈ A implies z ∈ B)
z ∈ ∼(∼B◦∼A) z ∈ A+B ∀x,y(X xyz implies x ∈ A or y ∈ B)
x ∈ B◦∼A x ∈ B A ∃y,z(X xyz and y /∈ A and z ∈ B)
y ∈ ∼A◦B y ∈ A B ∃x,z(X xyz and x /∈ A and z ∈ B)
z ∈ ∼A◦∼B z ∈ A↓B ∃x,y(X xyz and x˘ /∈ A and y˘ /∈ B)
z ∈ ∼(A◦B) z ∈ A↑B ∀x,y(X xyz implies x˘ /∈ B or y˘ /∈ A)

TABLE 4. Intensional Operators of Sets

The first-order logic statements follow directly from the definitions. The definitions
allow us to validate the following residuation conditions:

Theorem 15.
B⊆ A C iff A◦B⊆C iff A⊆C B,

C B⊆ A iff C ⊆ A+B iff A C ⊆ B,

A↓B⊆C iff B↓C ⊆ A,

A⊆ B↑C iff B⊆C ↑A.

Note that if B is the active formula in A ◦B or A+B, then it is on the right and
continues to be on the right in C B and C B (respectively), which is handy for
recalling how the residuation rules work. That determines the direction of the arrows.
Note also that the left and right shifts using ↓ or ↑ are equivalent, i.e., two lefts yield a
right, two rights yield a left.
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Proof. As an example, we show C B ⊆ A implies C ⊆ A+ B. Let C B ⊆ A
and assume (in order) z ∈ C, X xyz, and that y /∈ B. This gives us ∃u,v(X xuv and
u /∈ B and v ∈ C), and by definition, x ∈ C B. Since we assumed y /∈ B, we have
y /∈ B implies x ∈ A, which is x ∈ A or y ∈ B. Since we assumed X xyz, we have
X xyz implies (x ∈ A or y ∈ B). By definition, z ∈ A+B. Thus, C ⊆ A+B. /

The following theorem shows cotensors as monoids in the set algebras. Cotensor
will become another form of composition in the category theory.

Theorem 16. Let f = X−X, then the following formulas are sound:

A+(B+C) = (A+B)+C f +A = A = A+ f .

The formula
A◦ (B+C)⊆ (A◦B)+C

is validated in the set algebras. The proof uses the Frame Condition FA1 similarly
to its use in showing associativity of ◦ in Relevance Logic. However, it also requires
converse given the definition of + on the set algebras. To remove the use of converse
requires a new frame condition:

∃z(X xyz and Xuvz) implies ∃w(Xuwx and Xwyv).

To completely separate ◦ and + requires the use of two Kripke relations rather than
one and is an echo of the approach in Bimbó and Dunn [7], although their work covers
many more cases of operators. Thus:

Theorem 17.
A◦ (B+C)⊆ (A◦B)+C

holds in set algebras when the RAFs are augmented with a new three-place relation
subject to a new frame condition

X xyz and Yuvz implies ∃w(Xuwx and Ywyv).

2.4. Relationship with Relevance Logic. In Relevance Logic (Routley et al. [17]),
there is an axiomatization of a star operator, denoted (−∗). The star operator is used
on worlds to interpret De Morgan negation ∼:

x �∼A iff x∗ 2 A.

In the context of Relevance Logic, worlds canonically are prime filters. It turns out
that ∼x, the De Morgan negation applied pointwise to the elements of the prime filter
x, is a prime ideal because ∼ is order-reversing. The complement of a prime ideal is a
prime filter. Hence canonically,

x∗ =A−∼x,

where A is the carrier set of the De Morgan monoid we started with and where ∼ is
applied pointwise to every element of the filter x. Relevance Logic (without classical
negation) has the following in its modeling axioms:

x∗∗ = x X xyz implies X xz∗y∗.
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This works in the presence of commutativity in the first two positions of X to yield
the set of possibilities for Relevance Logic Frames as

X xyz X yxz X xz∗y∗ X z∗xy∗ X yz∗x∗ X z∗yx∗.

The set of possibilities using the Relational Algebra Frames is

X xyz X zy˘x X x˘zy X z˘xy˘ X yz˘x˘ X y˘x˘z˘.

Theorem 18. The relational formulas X zy∗x and X x∗zy which correspond to the
RAF conditions X zy˘x and X x˘zy are not obtainable from the Relevance Logic frame
conditions.

The (−∗) operator can be added to the logic with the rule

A B implies A∗ B∗

and the evaluation condition
x � A∗ iff x∗ � A.

The rule does not add additional properties to negation not involving (−∗). In Classi-
cal Relevance Logic, any one of ∼, ¬, and (−∗) can be defined from the other two.

Classical Relevance Logic in general conflatesX xyz andX yxz, because its algebras
have the axiom a ◦ b = b ◦ a. This is sometimes built into the other axioms for the
frames and validates the following equality in Classical Relevance Algebra:

a b = b a,

which has the knock on effect of conflating a b with b a. Let us separate these.
In Classical Relevance Algebras one has:

CR1. b ∼a≤∼b a CR2. ∼b a≤ b ∼a

and the following rules from Classical Relevance Logic [17]:

CR3. A B implies A∗ B∗ CR4. B A implies B∗ A∗

Since conditions M′′′8 and M′′′8′ are the same as conditions CR1 and CR2, both
RAs and Classical Relevance Algebras agree on these forms of contraposition. How-
ever, Classical Relevance Logic also conflates and , so in effect Classical Rele-
vance Algebras contain

a ∼b≤ b ∼a.
This, of course, leads to a◦b = b◦a, which is not available in RA. The inequality is
not drivable in RAs either.

3. RELATION ALGEBRA OF SETS

The collection of operators fill out Gaggle Theory in [9; 2] for the relation oper-
ators. Our extraction of an algebra of relations is echoed somewhat in Dunn [10];
however, there entire three-tuples of a three-place relation were used whereas we only
use two-tuples. We extract binary relations from a RAF. The extraction is in prepa-
ration for the distributed RA of the next section. The distributed RAF will then be
dropped out and the relations treated as 1-arrows in a 2-category.

The paper [1] shows how to extract a Boolean monoid of relations. RAs are at least
Boolean monoids. We were able to extract two entailment operators residuated with
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relational composition of binary relations from a Boolean monoid frame. We employ
a similar strategy here for the collection of RA operators. The extracted relations
are either sets or multisets of pairs of points. Without Tabularity, they are generally
multisets of pairs of points; Tabularity forces out duplicate pairs.

3.1. The Extracted Relations. The representation of Boolean monoids in [1] relied
on the dual Stone space and a three-place relation induced by the monoid operator.
Due to the two entailment operators being residuated with the monoid operator, the
same three-place relation can be used to represent the entailment operators. Elements
of an algebra of sets extracted from a frame use Roman upper case letters, i.e., A,B, . . . ,
whereas the relations we extract use Roman upper case letters surrounded by brackets,
i.e., 〈A〉,〈B〉, . . . .
Definition 19. Assume a Boolean monoid frameX = 〈X ,X ,X〉 (just like a RA Frame
without the (−˘) frame conditions). Let A be an element of the set algebra, then

〈A〉 def
= {〈x,z〉 : ∃y(X xyz and y ∈ A)} 〈X〉 def

= {〈x,z〉 : ∃y(X xyz)}.
Notice that the algebra of relations does not have X ×X as the top element for an

ambient set X .

Definition 20. Elements of a Boolean monoid (L,∧,∨,¬,◦) are represented in the
following way with β the representation function:

β (a) def
= {x : x is a maximal filter and a ∈ x}.

From [1, Theorem 3.2.1], we have the following theorem:

Theorem 21. Let X = (X ,X ,X) be a Boolean monoid frame with the additional
Tabularity Axiom

X xyz and X xy′z implies y = y′,
then 〈. . .〉 is a homomorphism from the Boolean monoid of sets to a Boolean monoid
of relations. Specifically,

〈A∪B〉= 〈A〉∪〈B〉 〈X−A〉= 〈X〉−〈A〉 〈A◦B〉= 〈A〉} 〈B〉 〈X〉= {〈x,x〉},
where } is relational composition.

The Tabularity Axiom essentially says that 〈X〉 is the largest relation and that every
〈A〉 can be “tabulated” with a monic pair of functions (cf. [11]).

3.2. Extracted Relation Operators. The extraction is via the three-place accessibil-
ity relation of a frame. We generally assume a RAF, X = (X ,X ,X) with Tabularity
defined as in Section 2.3. A relation then uses the following prescription for A, a
member of the set algebra, P(X), where P(−) is the powerset operator.

Definition 22. 〈x,z〉 ∈ 〈A〉 iff ∃y(X xyz and y ∈ A), 〈A〉˘ = {〈z,x〉 : 〈x,z〉 ∈ 〈A〉},
and ¬〈A〉= X−〈A〉.

In Theorem 21, we already have 〈X−A〉= 〈X〉−〈A〉.
Theorem 23. ¬〈A〉= 〈¬A〉 and 〈A〉˘ = 〈A˘〉.

We proved the first above; the proof of the second is straightforward.
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Corollary 24. ∼〈A〉= 〈∼A〉.
In Theorem 21, we had 〈A◦B〉= 〈A〉} 〈B〉. Using similar proofs and Table 4, we

get the following:

Theorem 25. The operators satisfy the following table:

〈A〉} 〈B〉= 〈A◦B〉 〈A〉⊕〈B〉= 〈A+B〉
〈B〉 〈A〉= 〈B A〉 〈B〉 〈A〉= 〈B A〉
〈A〉 〈B〉= 〈A B〉 〈A〉 〈B〉= 〈A B〉
〈A〉 ↓ 〈B〉= 〈A↓B〉 〈A〉 ↑ 〈B〉= 〈A↑B〉

TABLE 5. Relational Operators Representation

We obtain the following relational forms for the intensional operators.

Theorem 26. The intensional operators follow straightforwardly from their definition
via ◦ and ∼:

〈x,z〉 ∈ 〈A〉 iff ∃y(X xyz and y ∈ A)
〈x,z〉 ∈ 〈A〉} 〈B〉 iff ∃y(〈x,y〉 ∈ 〈A〉 and 〈y,z〉 ∈ 〈B〉)
〈y,z〉 ∈ 〈A〉 〈B〉 iff ∀x(〈x,y〉 ∈ 〈A〉 implies 〈x,z〉 ∈ 〈B〉)
〈y,z〉 ∈ 〈B〉 〈A〉 iff ∀x(〈z,x〉 ∈ 〈A〉 implies 〈y,x〉 ∈ 〈B〉)
〈x,z〉 ∈ 〈A〉⊕〈B〉 iff ∀y(〈x,y〉 ∈ 〈A〉 or 〈y,z〉 ∈ 〈B〉)
〈x,z〉 ∈ 〈A〉 〈B〉 iff ∃y(〈y,x〉 /∈ 〈A〉 and 〈y,z〉 ∈ 〈B〉)
〈x,z〉 ∈ 〈B〉 〈A〉 iff ∃y(〈x,y〉 ∈ 〈B〉 and 〈z,y〉 /∈ 〈A〉)
〈x,z〉 ∈ 〈A〉 ↓ 〈B〉 iff ∃y(〈y,x〉 /∈ 〈A〉 and 〈z,y〉 /∈ 〈B〉)
〈x,z〉 ∈ 〈A〉 ↑ 〈B〉 iff ∀y(〈y,x〉 /∈ 〈B〉 or 〈z,y〉 /∈ 〈A〉)

TABLE 6. Relational Operators

The proofs follow directly from the definitions.

Theorem 27. The intensional relational operators satisfy the distribution and resid-
uation properties of Tables 2 and 3 in this set theoretic form, e.g.,

〈A〉 (〈B〉∩ 〈C〉) = (〈A〉 〈B〉)∩ (〈A〉 〈C〉),
〈C〉 ⊆ 〈A〉⊕〈B〉 iff 〈C〉 〈B〉 ⊆ 〈A〉.

Proof. The proofs follow directly from the definitions. We show an example of the
residuation condition above. Let 〈C〉⊆ 〈A〉⊕〈B〉 and assume 〈x,z〉 ∈ 〈C〉 〈B〉. From
the definition of , for some y, 〈x,y〉 ∈ 〈C〉 and 〈z,y〉 /∈ 〈B〉, and 〈x,y〉 ∈ 〈A〉⊕ 〈B〉.
The definition of⊕ gives us ∀u(〈x,u〉 ∈ 〈A〉 or 〈u,y〉 ∈ 〈B〉). Eliminating the universal
quantifier with z for u yields 〈x,z〉 ∈ 〈A〉 or 〈z,y〉 ∈ 〈B〉. Thus, 〈x,z〉 ∈ 〈A〉.

To go in the other direction, let 〈C〉 ⊆ 〈A〉⊕〈B〉 and assume 〈x,z〉 ∈ 〈C〉. Towards
a reductio ad absurdum, let 〈x,z〉 /∈ 〈A〉⊕ 〈B〉. From the definition of ⊕, we have for
some y, 〈x,y〉 /∈ 〈A〉 and 〈y,z〉 /∈ 〈B〉. Therefore, 〈x,z〉 ∈ 〈C〉 and 〈y,z〉 /∈ 〈B〉. By defi-
nition, 〈x,y〉 ∈ 〈C〉 〈B〉 and hence 〈x,y〉 ∈ 〈A〉, which is a contradiction. Therefore,
〈x,z〉 ∈ 〈A〉⊕〈B〉. /
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The following theorem is a direct consequence of the definitions.

Theorem 28. Tensors and cotensors satisfy the following distribution law:

〈A〉} (〈B〉⊕〈C〉)⊆ (〈A〉} 〈B〉)⊕〈C〉.

3.3. Cotensors as a Monoid of Relations.

Definition 29. 〈 t 〉 def
= {〈x,z〉 : ∃u(X xuz and u ∈X)}, where here t is under interpreta-

tion as a collection of “zero” worlds.

Given the axioms for frames,

∀u ∈ X(X xuz implies x = z) and x = z implies ∃u ∈ X(X xuz).

From this and Tabularity, it is straightforward to see that

〈 t 〉= {〈x,x〉}= IX ,

for IX , the identity relation on X . Hence,

〈 f 〉=∼〈 t 〉= ¬〈 t 〉˘ = ¬〈 t 〉= (X×X)−IX .

Theorem 30. 〈A〉⊕ (〈B〉⊕〈C〉) = (〈A〉⊕〈B〉)⊕〈C〉, 〈 f 〉⊕〈A〉= 〈A〉= 〈A〉⊕〈 f 〉.

4. DISTRIBUTED RELATION ALGEBRA

In [4], we presented a distributed relation logic which used a three-place relation to
interpret the logic. Each local logic (i.e., logic at a locality) has a Boolean base. The
interpretation used typed three-place relations much like those used for Relevance
Logics. The intuitive picture is Figure 1 using the convention in Figure 2:

Local Logic h

Local Logic l

Local Logic k
C hlk B,

A
A hlk◦ B,

C

A hlk C,

B

FIGURE 1. Distributing the Two-Place Connectives

Connective Type h Type l Type k
hlk◦ A B A hlk◦ B
hlk A A hlk C C
hlk C hlk B B C

FIGURE 2. Localities and their Logics
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Each proposition A, B, and C is part of the local logic at a localities h, l, and k, re-
spectively. We use the terminology of type h to talk about a locality h. Note the
positions of the input and output types of each operator shift depending upon the op-
erator. This matches the corresponding position of the formula containing the operator
in the semantic definitions using the interpreting relations. The relation Rhlk means
R⊆ H×L×K for sets of points H,L,K at localities h, l,k, respectively:

(1) z k� A hlk◦ B iff ∃x,y(x h� A and y l� B andRhlkxyz),
(2) y l� A hlk C iff ∀x,z(x h� A andRhlkxyz implies z k�C),

(3) x h�C hlk B iff ∀y,z(Rhlkxyz and y l� B implies z k�C).

In the set algebras, ∈k replaces k�, and similarly, for the rest.

4.1. Distributed Relation Algebra Axioms. The distribution structure is a hyper-
graph of a collection of nodes with certain three-tuples identified as cliques with three
elements, say, hlk.2 The diagram on the right displays a clique as a multigraph. We

h

k

l

FIGURE 3. Three Place
RelationRhlk

need a way of abstracting over cliques in a notationally
convenient way. We use a string such as hlk to refer to
an arbitrary clique. For any one clique hlk, we assume
h refers to a node h and similarly for the rest. When we
wish to restrict reference to a clique such that the clique
has all the same members, we use hhh. If we will also
have to abstract over the members of an arbitrary clique, then we will use the variables
h, l,k to range over an arbitrary clique hlk with the restriction that the variables refer
to pairwise distinct positions in hlk. h,k, l ∈+ hlk denotes this. h can take on any of
the values h, k, and l, and similarly, with l and k, respecting the pairwise distinct
restriction. When abstracting over the clique hhh, the variables h, l, and k are still
respecting the condition of no two referring to the same position in the clique. The
locution A ∈ h means that the formula A is a member of the local logic at node h.

A generic distributed semigroup operator has the typing structure h× l k. Our
version of heterogenous algebras is contained in the following definition.

Definition 31. A distributed RA (DRAlg) contains a distribution structure G of nodes
called types and operators with types in a multiset of cliques C. A type for h is an RA
with carrier set Dh, called the local RA at h. The distributed operators are of the form
hlk◦ : Dh×Dl Dk where we use the indices h, l, and k to index the carrier sets of the
types. The phyla of heterogeneous algebras are the carrier sets. A DRAlg respects the
axioms below on the right. The original axioms from [8; 13] are below on the first
lines and the new typed axioms are on the second lines. For cliques hhh, hlk, hlm,
mno, hno, and lkn in C:

M1 (B,∨,¬,⊥,>) is a Boolean algebra
(Dh,∨,¬,(−˘),⊥h,>h) is a LCAlg for each sort h

2We view three-place relations as arcs in a hypergraph, which connect more than one node — always
three, in our case. Multiple arcs are permitted, so are loops.
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M2 (a◦b)◦ c = a◦ (b◦ c)
(a hlm◦ b)mno◦ c o

= a hno◦ (b lkn◦ c)
M3 (a ∨ b)◦ c = (a◦ c) ∨ (b◦ c)

(a ∨ b) hlk◦ c k
= (a hlk◦ c) ∨ (b hlk◦ c), h, l,k ∈+ hlk

M4 a◦1 = a for any a ∈ A
a hhh◦ 1 h

= a
M5 a˘˘ = a for any a ∈ A

a˘˘ h
= a

M6 (a ∨ b)˘ = a˘ ∨ b˘ for any a,b ∈ A
(a ∨ b)˘ h

= a˘ ∨ b˘
M7 (a◦b)˘ = b˘ ◦a˘, for any a,b ∈ A

(a hlk◦ b)˘ k
= b˘ lhk◦ a˘ h, l,k ∈+ hlk

M8 (a˘ ◦¬(a◦ c)) ∨ ¬c = ¬c for any a,c ∈ A
(a˘ hlk◦ ¬(a hkl◦ c)) ∨ ¬c k

= ¬c h, l,k ∈+ hlk

The notation h, l,k ∈+ hlk ∈ C means that h, l,k refer to members of the set {h,k, l}
and that hlk is a clique in C; h does not need to refer to h, and similarly, for the rest.
(But h, l,k refer to distinct nodes.)

4.2. Derivation of Relational Operators. In Figure 1, each locality could support a
three-place relation such as Ruhv, for sets H, L, K and sets U , V , and Z. Let u ∈U ,
v ∈V and z ∈ Z and define the relations 〈A〉,〈B〉,〈C〉 with

〈A〉 def
= {〈u,v〉 : ∃h ∈ H(Ruhvuhv and h ∈h A)}

〈B〉 def
= {〈v,z〉 : ∃l ∈ L(Rvlzvlz and l ∈l B)}

〈C〉 def
= {〈u,z〉 : ∃k ∈ K(Rukzukz and k ∈k C)}

Consider each oval to be a set of points of a local Kripke frame and let H,L,K be the
sets of points of the local frames at h, l,k, respectively. Similarly, U,V,Z are the sets of
points of the local frames at u,v and z. In the diagram of Figure 4 (below), the cliques
(like Figure 3) have been replaced by triangles.

Assuming the Tabularity Axiom now on three-place typed relations, the sets H, L,
and K recede into the background. We change notation because the angle brackets
are now superfluous. Let T = 〈A〉, S = 〈B〉, and R = 〈C〉. By fiat we define these
relations to be arrows with domain and codomain matching their first and second
positions, respectively. Hence, T : U V , S : V Z, and R : U Z. This yields
the same collection of relation operators but now as arrows in a category of sets shown
in the diagram in Figure 5 below. The puncture marks (from [11]) indicate the
inner triangle and the outer pairs of arrows with common sources and targets do not
commute. It is difficult to put into the diagram, but we assume none of the triangles
constructed from any of the arrows commute, i.e., it is not necessarily the case that
S◦T =R (using categorical composition). In the diagram of Figure 5, one can replace
}, , and with ⊕, , and , respectively, for a different notion of composition
with residuals.
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H U K

V Z

L

〈C〉 hlk 〈B〉,

〈A〉

〈A〉 hlk 〈C〉,

〈B〉

〈A〉
hlk◦ 〈B〉,
〈C〉

FIGURE 4. Diagram
of 3-Place Relations

U

V Z

T R

T R

T }S

S

R S

FIGURE 5. Diagram
of Relation Operators

Definition 32.
〈u,z〉 ∈ T }S iff ∃v ∈V (〈u,v〉 ∈ T and 〈v,z〉 ∈ S)
〈v,z〉 ∈ T R iff ∀u ∈U(〈u,v〉 ∈ T implies 〈u,z〉 ∈ R)
〈u,v〉 ∈ R S iff ∀z ∈ Z(〈v,z〉 ∈ S implies 〈u,z〉 ∈ R)
〈u,z〉 ∈ T ⊕S iff ∀v ∈V (〈u,v〉 ∈ T or 〈v,z〉 ∈ S)
〈v,z〉 ∈ T R iff ∃u ∈U(〈u,v〉 /∈ T and 〈u,z〉 ∈ R)
〈u,v〉 ∈ R S iff ∃z ∈ Z(〈u,z〉 ∈ R and 〈v,z〉 /∈ S)
〈u,z〉 ∈ T ˘ ↓S˘ iff ∃v ∈V (〈v,u〉 /∈ T ˘ and 〈z,v〉 /∈ S˘)

〈u,z〉 ∈ S˘ ↑T ˘ iff ∀v ∈V (〈v,u〉 /∈ T ˘ or 〈z,v〉 /∈ S˘)

TABLE 7. Relational Operators

Note that the relations T ˘ and S˘ used in ↓ and ↑ run in the opposite directions as
T and S used in the rest. This is indicated by the converse accents of T and S, i.e.,
T ˘ and S˘. The use of the same letters in ↓ and ↑ as the other operations requires
the relations to which they refer be turned around. We could have used new letters,
but this would have prevented those arrows from being compared to the arrows in the
previous operators. Hence, we use the converse (−˘) now as an accent. The reader can
either treat the (−˘) as an actual converse operator on the arrow or simply treat it as
an accent symbol. Note also that relational composition is the opposite of categorical
composition, i.e., T }S = S ◦T .

5. KAN EXTENSIONS AND LIFTS

The definition of a right Kan lift (see below) is taken from Street [18] and the
notion of 2-category from Bénabou [6]. The subsequent definitions of Kan extensions
and right Kan lifts are extrapolations. Kan extensions exist in Mac Lane [12] but
for functors and natural transformations; they provide the objects and arrows for the
2-categories in [6].
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We make a subtle point that can be confusing if not brought out. In the extensions
and lifts, we never require the underlying graph of 0-objects and 1-arrows to actually
form a category. For the Kan extensions and lifts, this point is moot because the
underlying graph is a category. However for intensional nor and nand this is not the
case. We only require a graph with 0-arrows (objects) and 1-arrows. The 2-category
has as objects the 1-arrows and as arrows the 2-arrows. We compose 1-arrows, but
do not require any equations for the composition unless they involve 2-arrows. This
does not affect the mathematics. We will use the locution “2-category qua category”
for structure of a 1-graph with a 2-category on top when necessary. To put it another
way, the lifts and extensions are statements about the 2-categories qua categories.

The upper diagrams in the extensions and lifts, e.g., Figure 13, using the diagram-
matic style of [11], do not have their large triangles and the outer pairs of arrows with
common sources and targets commuting (see Figure 5). Putting in the puncture marks
of [11] would make the diagrams even noisier than they are currently, so we elide them
with the understanding they are there. The commuting conditions are actually part of
the lower diagrams on the 2-categories qua categories. This becomes more noticeable
in the diagrams for ↓ and ↑ given the directions of the arrows. This is brought out in
the statements of the lifts and extensions which do not involve commuting diagrams
of the 1-arrows. The commutation stated is for the 2-arrows.

The proofs for the adjunctions were taken from [12] but adapted to our use of 2-
categories qua categories.

5.1. 2-Diagrams. The diagram of right whiskering in Figure 6 comes from the data
for Right Kan Extensions (see below). The objects are 0-cells, the single arrows are
1-cells, and the double arrows are 2-cells. The 2-diagram on the left is equivalent
to the next two diagrams, where ZT is a functor on the 2-category qua category and
merely a mapping on the 1-arrows. Using the notation of 2-categories, ZT σ = σ /T ;
this reads as usual in category theory: first T then σ , or if you like, σ applied to T .

U V Z
T

R

X

S

σ

εR
=

U Z

R

ZT X

ZT S

ZT σ

εR =

U Z

R

ZT S

εR ◦ (ZT σ)

FIGURE 6. Right Whiskering of 2-Diagrams

The diagram is telling us that ZT is a functor on the 2-category qua category, i.e.,
for σ1 : S ⇒X and σ2 : X ⇒Q,

ZT (σ2 ◦σ1) = (ZT σ2)◦ (ZT σ1).

Another right whiskering diagram used by Left Kan Extension with ηR in the opposite
direction of and replacing εR is had by turning all the 2-arrows around, i.e., τ2 : Q⇒
X and τ1 : X ⇒ S, and

ZT (τ1 ◦ τ2) = (ZT τ1)◦ (ZT τ2),
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with the same locution ZT τ = τ /T . Similarly, the diagram of Figure 7 comes from
the data for right Kan lifts. US is a functor on the 2-category qua category and merely
a mapping on the 1-arrows. Using the notation of 2-categories, USσ = S .σ , and this
reads: first σ then S.

U V Z

R

X

T

S
σ

εR
=

U Z

R

USX

UST

USσ

εR =

U Z

R

UST

εR ◦ (USσ)

FIGURE 7. Left Whiskering of 2-Diagrams

The diagram is telling us that US is a functor on the 2-category qua category, i.e.,
for σ1 : T ⇒ X and σ2 : X ⇒Q,

US(σ2 ◦σ1) = (USσ2)◦ (USσ1).

A similar left whiskering diagram, used by left Kan lift with ηR in the opposite direc-
tion of εR and replacing εR, is had by turning all the 2-arrows around, i.e., τ2 : Q⇒X
and τ1 : X ⇒ T , and

US(τ1 ◦ τ2) = (USτ1)◦ (USτ2),

and the locution USτ = S . τ .

5.2. Right and Left Kan Extensions.

Definition 33. Consider the diagrams in Figure 8 and Figure 9 below.

The diagram of Figure 8 is said to exhibit X , denoted RanTR, as a right extension of
R along T when each 2-cell θ : ZT S ⇒R factors as εR ◦ (ZT σ) for a unique 2-cell
σ : S ⇒X . RanTR is a particular choice of right extension ofR along T .

U

V Z

T
R

X = RanT R

ZT X

ZT S

S

εR

θ

σ

FIGURE 8. Right
Kan Extension

U

V Z

T
R

X = LanT R

ZT X

ZT S

S

ηR

θ

τ

FIGURE 9. Left
Kan Extension

The dual diagram of Figure 9 is said to exhibit X , denoted LanTR, as a left exten-
sion ofR along T when each 2-cell θ : R⇒ ZT S factors as (ZT τ)◦ηR for a unique
2-cell τ : X ⇒ S. X is a particular choice of left extension ofR along T .
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The Right Kan Extension defines a universal arrow from a covariant functor to an
object. The Left Kan Extension defines a universal arrow from an object to a covariant
functor.

Definition 34. A universal arrow (i.e., couniversal arrow) from ZT to R is a pair
〈RanTR,εR〉 consisting of an object RanTR : V Z and an arrow εR : ZT (RanTR)
⇒R such that to every pair 〈S,θ〉 with S an object of ZV and θ : ZT S ⇒ R, there
is a unique σ : S ⇒ (RanTR) with θ = εR ◦ (ZT σ) (where ZT σ = σ /T ). In other
words, every arrow θ factors uniquely through the universal arrow εR as in the com-
mutative diagram of Figure 10.

S

RanTR

σ

ZT S

ZT (RanTR) R

θ

εR

ZT σ

FIGURE 10. Universal Arrow from ZT toR

A universal arrow from R to ZT is a pair 〈LanTR,ηR〉 consisting of an object
LanTR : V Z and an arrow ηR : R⇒ ZT (LanTR) such that to every pair 〈S,θ〉
with S an object of ZV and θ : R⇒ ZT S, there is a unique arrow τ : (LanTR)⇒S
with θ = (ZT τ) ◦ηR (where ZT τ = τ / T ). In other words, every arrow θ factors
uniquely through the universal arrow ηR, as in the commutative diagram of Figure 11.

LanTR

S

σ

ZT (LanTR) R

ZT S
θ

ηR

ZT σ

FIGURE 11. Universal Arrow fromR to ZT

This definition sets up the following adjunctions:

Theorem 35.

ϕS,R : ZU (ZT S,R)∼= ZV (S,RanTR) ϕR,S : ZV (LanTR,S)∼= ZU (R,ZT S),

where ZU is a functor that returns the set of all arrows from U to Z and ZV is a functor
that returns all arrows from Z to V .

Proof. We prove the theorem for Right Kan Extensions, the proof for Left Kan Ex-
tensions is dual. We are given a universal arrow 〈G0R,εR〉 (toR from ZT ) for every
objectR∈ ZU ; there is exactly one way to make G0 the object function of a functor G
for which the transformation ε : ZT G IZU (for IZU the identity arrow of the 2-cell
ZU ) will be natural.
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G0R′

G0R

ZT G0R′ R′

ZT G0R R

εR′

ρ

εR

FIGURE 12. Extension of G0 to be a Functor G

We let G0 = RanT and will extend G0 to arrows to achieve

(ρ : R⇒R′) 7 Gρ : G0R′⇒ G0R.
Specifically, for each ρ : R′⇒R, the universality of ε states that there is exactly one
arrow (double dashed) which can make the diagram commute. Choose this arrow as
Gρ : G0R′ G0R; the commutativity states that ε is now natural.

We check that this choice of Gρ makes G a functor. It is obvious that G pre-
serves identity arrows because identity arrows are unique. Next, let ρ1 : P ⇒R′ and
ρ2 : R′ ⇒ R, then we get Gρ1 : GP ⇒ GR′ and Gρ2 : GR′ ⇒ GR. Now choose
µ = ρ2 ◦ρ1 : P ⇒R. There is a unique arrow G0P ⇒G0R, which we designate Gµ ,
that causes the resulting diagram involving εP , εR′ , and εR to commute. However,
Gρ2 ◦Gρ1 also causes the diagram to commute, so Gµ = G(ρ2 ◦ ρ1) = Gρ2 ◦Gρ1.
Thus G is a functor.

The statement that ε is universal means that for each θ : ZT S ⇒R there is exactly
one σ as in the commutative diagram in Figure 10 (above). This states that ψ(σ) =
εR ◦ZT σ defines a bijection

ψS,R : ZV (S,GR) ZU (ZT S,R).
Expanding this out a bit, by virtue of the uniqueness criterion, there is a function
ψ−1 from ZU (ZT S,R) to ZV (S,GR). The universal condition states that ψ−1 is a
function.

To see that ψ−1
S,R is 1–1, select θ ′,θ ∈ ZU (ZT S,R) such that θ ′ 6= θ . Towards a

reductio ad absurdum, assume that ψ−1
S,R(θ) = σ , θ = εR ◦ (ZT σ), ψ−1

S,R(θ ′) = σ ′,
and θ ′ = εR ◦ (ZT σ ′) and that σ = σ ′. From this latter condition, εR ◦ (ZT σ) =
εR ◦ (ZT σ ′), and since the preimages of θ ′ and θ (under ψS,R) must be unique,
θ = θ ′, a contradiction. So ψ−1

S,R is 1–1.
To show that ψ−1

SR is surjective, let σ ∈V Z(S,GR), then ψσ = εR ◦(ZT σ) : ZT S
⇒ R. Therefore, there is a unique σ ′ such that σ ′ ∈ V Z(S,GR) such that ψσ ′ =
εR ◦ZT σ . Since σ ′ is unique, then σ = σ ′.

This bijection is natural in R because ε is natural, and natural in S because ZT is
a functor, hence gives an adjunction 〈ZT ,G,ψ〉. In this case, ε was the unit obtained
from the adjunction 〈ZT ,G,ψ〉. /

For our situation with }, and ⊕, , we use the following definition:

Definition 36. Given an arrow T : U V and an object Z we consider the arrow cate-
gory ZV with the objects being the arrows S,X : V Z and 2-arrows σ : S ⇒X , then
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we define the covariant functors ZT
} ,Z

T
⊕ : ZV ZU and the object maps RanT : ZU

ZV and LanT : ZU ZV ; let P,Q : V Z and Y : U Z, then

ZT
}

def
= λQ . T }Q RanT

def
= λY . T Y

ZT
⊕

def
= λQ . T ⊕Q LanT

def
= λY . T Y,

and 2-arrows are defined by (ν : P ⇒Q) 7 (ZT
} ν : T }P ⇒ T }Q) and

(ν : P ⇒Q) 7 (ZT
⊕ ν : T ⊕P ⇒ T ⊕Q).

Lemma 37. ZT
} ,Z

T
⊕ : ZV ZU are covariant functors, where in the categories ZV

and ZU, the objects are 1-arrows and the arrows are 2-arrows.

Proof. We show the proof for ZT
} , the proof for ZT

⊕ is similar. The proof relies on
the fact that arrows in the 2-category qua category compose. Assume ν : P ⇒Q and
µ : Q⇒N , then ZT

} ν : T }P⇒T }Q and ZT
} µ : T }Q⇒T }N . Hence, (ZT

} µ)◦
(ZT
} ν) = ZT

} (µ ◦ν), where the latter follows from the properties of 2-categories qua
categories from the right whiskering above. Similarly, that ZT

} preserves the identity
arrows (i.e., the equality relation) also follows from right whiskering in the 2-category
qua categories.

For our context, we change notation for the ease of typesetting: ZT
} σ = σ /T and

ZT
⊕ τ = τ /T . That these functors are covariant follows from

P ⊆σ Q
T }P ⊆σ/T T }Q

P ⊆τ Q
T ⊕P ⊆τ/T T ⊕Q

and the definitions of } and ⊕. This says that (σ : P ⇒ Q) 7 (σ /T : T }P ⇒
T }Q) and (τ : P ⇒Q) 7 (τ /T : T ⊕P ⇒ T ⊕Q). /

Theorem 38. For our situation using Definition 36, the following diagram for } and
its dual for ⊕ hold: For all T : U V and R : U Z,

∃ ∀ ∃!

U U U

V Z V Z V Z

S T }S S T }S

X T }X R X T }X R X T }X R

T R

X = T R
T }X εR

T
R

X = T R
T }X

T }S

S

εR

θ
T

R

X = T R
T }X

T }S

S

εR

θ

σ

εR εR

θ

εR

θ
σ /Tσ

FIGURE 13. Right Kan Extension as a Right Residual
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Proof. We show the proof for }; the proof for ⊕ is dual. We first show that σ exists.
Let 〈v,z〉 ∈ S. Towards a reductio ad absurdum, assume 〈v,z〉 /∈ X . In that case,
given X = T R, there must be some u ∈U such that 〈u,v〉 ∈ T and 〈u,z〉 /∈ R.
Since θ : T }S ⇒R and 〈u,z〉 ∈ T }S, then 〈u,z〉 ∈R and we have a contradiction.
Therefore, 〈v,z〉 ∈ T R. Hence, S ⊆ T R and there exists σ such that σ : S ⇒
X . Also, σ is unique since inclusions are unique in set theory.

Next we must show that θ = εR ◦ (σ / T ). Since σ / T : T }S ⇒ T }X and
εR : T }X ⇒R, then εR◦(σ /T ) : T }S ⇒R. Since θ : T }S ⇒R and inclusions
are unique in set theory, θ = εR ◦ (σ /T ). /

Our situation corresponds to the following adjunctions:

ϕS,R : ZU (T }S,R)∼= ZV (S,T R) ϕR,S : ZV (T R,S)∼= ZU (R,T ⊕S).
We have the following logical rules for } where θ = εR ◦ (σ /T ):
T }S ⊆θ R T } (T R)⊆εR R

S ⊆σ T R Right Kan Extension

S ⊆σ T R
T }S ⊆σ/T T } (T R) Monotonicity

The left rule is equivalent to T }S ⊆θ R implies S ⊆σ T R, because the second
premise of the first rule always holds in our situation. This premise holds via one half
of the residuation condition

T R ⊆ι T R
T } (T R)⊆εR R ,

where ι is the equality relation and stands for the identity in the 2-category. In the Kan
extension view, residuation is not available and hence that premise must be explicitly
stated. The other direction is

S ⊆σ T R
T }S ⊆σ/T T } (T R) T } (T R)⊆εR R

T }S ⊆θ R
The extra noise in the right premise of the right Kan extension rule, i.e., T } (T

R) ⊆εR R, is related to the ability for some right Kan extensions to be definable
without necessarily having a pair of adjoint functors. In other words, propositions are
considered universally quantified in logic, where here there is no such quantification.
So this premise must be explicitly stated. The statement of the right Kan extension
says that θ = εR ◦ (σ / T ). This holds for us, because there is only a single subset
relation such that T }S ⊆ R whereas for Kan this must be explicitly declared, i.e.,
that σ is unique and hence εR ◦(σ /T ) is unique which implies that θ = εR ◦(σ /T ).

We have the following logical rules for ⊕ where θ = (τ /T )◦ηR:

R⊆θ T ⊕S R⊆ηR T ⊕ (T R)
T R ⊆τ S Left Kan Extension

T R ⊆τ S
T ⊕ (T R)⊆τ/T T ⊕S Montonicity

with similar justifications as those for }.
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5.3. Right and Left Kan Lifts.

Definition 39. Consider the following diagrams, the Right Kan Lift is from [18]:

U

V Z

T R

S

USX

USTX = RifSR

εR

θσ

FIGURE 14. Right
Kan Lift

U

V Z

T R

S

USX

USTX = LifSR

ηR

θτ

FIGURE 15. Left
Kan Lift

The diagram of Figure 14 is said to exhibit X , denoted RifSR, as a right lifting of R
through S when each 2-cell θ : UST ⇒R factors as εR ◦ (USσ) for a unique 2-cell
σ : T ⇒X . RifSR (for which Street used S tR) is a particular choice of right lift of
R through S .

The dual diagram of Figure 15 is said to exhibit X , denoted LifSR, as a left lifting
ofR through S when each 2-cell θ : R⇒UST factors as (USτ)◦ηR for a unique 2-
cell τ : X ⇒T . We writeX =LifSR for a particular choice of left lift ofR through S.

Just as in Right and Left Kan Extension, the Right Kan Lift defines a universal
arrow from a covariant functor to an object and the Left Kan Lift defines a universal
arrow from an object to a covariant functor.

Definition 40. A universal arrow (i.e., couniversal arrow) from US to R is a pair
〈RifSR,εR〉 consisting of an object RifSR : U V and an arrow εR : US(RifSR)⇒
R such that to every pair 〈T ,θ〉with T and object of VU and θ : UST ⇒R, there is a
unique σ : T ⇒ (RifSR) with θ = (USσ)◦εR (where USσ =S .σ ). In other words,
every arrow θ factors uniquely through the universal arrow εR as in the commutative
diagram of Figure 16 (below).

A universal arrow from R to US is a pair 〈LifSR,ηR〉 consisting of an object
LifSR : U V and an arrow ηR : R⇒US(LifSR) such that to every pair 〈T ,θ〉
with T an object of VU and θ : R⇒UST , there is a unique arrow τ : (LifSR)⇒T
with θ = (USτ) ◦ηR (where USτ = S . τ). In other words, every arrow θ factors
uniquely through the universal arrow ηR as in the commutative diagram of Figure 17.

T

RifSR

σ

UST

US(RifSR) R

θ

εR

USσ

FIGURE 16. Universal
Arrow from US toR

LifSR

T

τ

US(LifSR) R

UST
θ

ηR

USτ

FIGURE 17. Universal
Arrow fromR to US
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Similarly to Kan Extensions, this definition sets up the following adjunctions:

Theorem 41.
ϕT ,R : ZU (UST ,R)∼=VU (T ,RifSR)
ϕR,S : V Z(LifSR,T )∼= ZU (R,UST ),

where ZU is a functor that returns the set of all arrows from U to Z and V Z is a functor
that returns all arrows from Z to V .

The proofs are similar to the adjunction proofs for Kan Extensions. For our situa-
tion with }, and ⊕, , we use the following definition:

Definition 42. Given an arrow S : V Z and an object U we consider the arrow
category VU with objects the arrows T : U V and 2-arrows σ : T ⇒ X , then we
define the covariant functors US

} ,U
S
⊕ : VU ZU and the object maps RifS : ZU VU

and LifS : ZU VU . Let P,Q : U V ; let P,Q : U V and Y : U Z:

US
}

def
= λQ .Q}S RifS

def
= λY . Y S

US
⊕

def
= λQ .Q⊕S LifS

def
= λY . Y S,

and 2-arrows by (ν : P ⇒Q) 7 (US
} ν : P}S ⇒Q}S) and (ν : P ⇒Q) 7

(US
⊕ ν : P⊕S ⇒Q⊕S).

Lemma 43. US
} ,U

S
⊕ : VU ZU are covariant functors where in the categories VU,

and ZU, the objects are 1-arrows and the arrows are 2-arrows.

The proofs are similar to those for Right and Left Kan Extensions. We change
notation — to ease the typesetting — as follows: US

}σ = S .σ and US
⊕ τ = S . τ .

Theorem 44. For our situation using Definition 42, the following diagram for } and
its dual for ⊕ hold: For all S : V Z and R : U Z, and where X = RifSR and its
dual X = LifSR,

∃ ∀ ∃!

U U U

V Z V Z V Z

T T }S T T }S

X X }S R X X }S R X X }S R

T
X

R

S

X }S
εR

T
R

S

T }SX

X }S
εR

θ

T R

S

T }SX

X }S
εR

θσ

εR εR

θ

εR

θ
S .σσ

FIGURE 18. Right Kan Lift as a Left Residual
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The proofs are similar to those for Right and Left Kan Extensions. Our situation
corresponds to the following adjunctions:

ZU (T }S,R)∼=VU (T ,R S) VU (R S,T )∼= ZU (R,T ⊕S).
We have the following logical rules:

T }S ⊆θ R (R S)}S ⊆εR R
T ⊆σ R S Right Kan Lift

T ⊆σ R S
T }S ⊆S.σ (R S)}S Montonicity

The left rule is equivalent to

T }S ⊆θ R implies T ⊆σ R S,
because the second premise of the first rule always holds in our situation. This premise
holds via one half of the residuation condition

R S ⊆ι R S
(R S)}S ⊆εR R ,

where again ι is the equality relation and stands for the identity in the 2-category. The
other direction is

T ⊆σ R S
T }S ⊆S.σ (R S)}S (R S)}S ⊆εR R

T }S ⊆εR◦(S.σ)R
We have the following logical rules for ⊕:

R⊆θ T ⊕S R⊆ηR (R S)⊕S
R S ⊆τ T

R S ⊆τ T
(R S)⊕S ⊆S.τ T ⊕S

Left Kan Lift Montonicity

with similar justifications as those for }.

5.4. Intensional Nor and Nand. We use different left whiskering than the diagram
in Figure 7.

Definition 45.

Z V U

R

X

S˘

T ˘
σ

εR =

Z U

R

ZT X̆

ZT S̆˘

(ZT σ̆)

εR
=

Z U

R

ZT S̆˘

εR ◦ (ZT σ̆)

FIGURE 19. Left Whiskering

where ZT ˘ is a contravariant functor on the 2-category qua category. Note that the 2-
arrow σ is in the opposite direction as its transform ZT ˘σ . Also note that the direction
of the 1-arrows changes from the first diagram to the second and the third. That ZT ˘ is
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a contravariant functor on the 2-category qua category follows from a diagram chase,
i.e., for σ1 : X ⇒ S˘ and σ2 : S˘⇒Q,

ZT ˘(σ2 ◦σ1) = (ZT ˘σ1)◦ (ZT ˘σ2).

Using the notation of 2-categories, ZT ˘σ = T ˘ .σ . A similar left whiskering diagram
is used by Left Lift (see below) with ηR replacing εR, τ replacing σ , and turning all
the 2-arrows around.

Definition 46. Consider the following diagrams:

U

V Z

T ˘

R

X = LLifT ˘R
ZT ˘X

ZT ˘S˘

S˘

εR

θ

σ

FIGURE 20. Left Lift

U

V Z

T ˘

R

X = RLifT ˘R
ZT ˘X

ZT ˘S˘

S˘

ηR

θ

τ

FIGURE 21. Right Lift

The diagram of Figure 20 is said to exhibit X , denoted X = LLifT ˘R, as a left

lift of T ˘ through R when each 2-cell θ : ZT ˘S˘ ⇒R factors as εR ◦ (ZT ˘σ) for a
unique 2-cell σ : X ⇒ S˘. LLifT ˘R is a particular choice of lift of T ˘ alongR.

The dual diagram of Figure 21 is said to exhibitX , denoted RLifT ˘R, as a right lift

of T ˘ alongR when each 2-cell θ : R⇒ ZT ˘S˘ factors as (ZT ˘τ)◦ηR for a unique
2-cell τ : S˘⇒X . RLifT ˘R is a particular choice of lift of T ˘ alongR.

The Left and Right Lifts define universal arrows from and to, respectively, a con-
travariant functor.

Definition 47. A universal arrow (i.e., couniversal arrow) from ZT ˘ to R is a pair
〈LLifT ˘R,εR〉 consisting of an object LLifT ˘R : Z V and an arrow εR : ZT ˘

(LLifT ˘R)⇒R such that to every pair 〈S˘,θ〉 with S˘ an object of V Z and θ : ZT ˘

S˘ ⇒ R, there is a unique σ : (LLifT ˘R)⇒ S˘ with θ = εR ◦ (ZT ˘σ). In other
words, every arrow θ factors uniquely through the universal arrow εR as in the com-
mutative diagram of Figure 22.

S˘

LLifT ˘R

σ

ZT ˘S˘

ZT ˘(LLifT ˘R) R

θ

εR

ZT ˘ σ

FIGURE 22. Universal from ZT ˘ toR
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A universal arrow fromR to ZT ˘ is a pair 〈RLifT ˘R,ηR〉 consisting of an object

RLifT ˘R : Z V and an arrow ηR : R ⇒ ZT ˘(RLifT ˘R) such that to every pair

〈S˘,θ〉 with S˘ an object of V Z and θ : R ⇒ ZT ˘S˘, there is a unique τ : S˘ ⇒
(RLifT ˘R) with θ = (ZT ˘τ) ◦ηR. In other words, every arrow θ factors uniquely
through the universal arrow ηR as in the commutative diagram of Figure 23.

RLifT ˘R

S˘

τ

ZT ˘(RLifT ˘R) R

ZT ˘S˘

ηR

θZT ˘ τ

FIGURE 23. Universal fromR to ZT ˘

This definition sets up the following adjunctions:

Theorem 48. ϕS˘,R : ZU (ZT ˘S˘,R)∼=V Z(LLifT ˘R,S˘) and ϕR,S˘ : ZU (R,ZT ˘S˘)
∼= V Z(S˘,RLifT ˘R), where ZU is a functor that returns the set of all arrows from U
to Z and V Z is a functor that returns all arrows from Z to V .

The proofs for the theorem are similar to that for left and right Kan lifts, respec-
tively, remembering that ZT ˘ is a contravariant functor. This presents no difficulties.

For our situation with ↓ and ↑, we use the following definition:

Definition 49. Given an arrow T ˘ : V U and an object Z we consider the ar-
row category V Z with objects the arrows S˘,X : Z V and 2-arrows σ : S˘ ⇒ X ,
then we define the contravariant functors ZT ˘

↓ ,ZT ˘
↑ : V Z ZU and the object maps

LLifT ˘ : ZU V Z and RLifT ˘ : ZU V Z ; let P,Q : Z V and Y : U Z:

ZT ˘
↓

def
= λQ . T ˘ ↓Q LLifT ˘

def
= λY . Y ↓T ˘,

ZT ˘
↑

def
= λQ .Q↑T ˘ RLifT ˘

def
= λY . T ˘ ↑Y,

and 2-arrows by

(ν : P ⇒Q) 7 (ZT ˘
↓ ν : T ˘ ↓Q⇒ T ˘ ↓P)

(ν : P ⇒Q) 7 (ZT ˘
↑ ν : Q↑T ˘⇒P ↑T ˘).

Lemma 50. ZT ˘
↓ ,ZT ˘

↑ : V Z ZU are contravariant functors where in the categories
V Z and ZU , the objects are 1-arrows and the arrows are 2-arrows.

Proof. We show the proof for ZT ˘
↓ ; the proof for ZT ˘

↑ is similar. The proof relies on
the fact that arrows in the 2-category qua category compose. Assume ν1 : P ⇒Q and
ν2 : Q⇒N , then ZT ˘

↓ ν2 : T ˘ ↓N ⇒ T ˘ ↓Q and ZT ˘
↓ ν1 : T ˘ ↓Q⇒ T ˘ ↓P . Hence,

(ZT ˘
↓ ν1) ◦ (ZT ˘

↓ ν2) = ZT ˘
↓ (ν2 ◦ ν1), where the latter follows from the properties of

2-categories qua categories from the left lift whiskering above. Similarly, that ZT ˘
↓

preserves the identity arrows (i.e., the equality relation) also follows from left lift
whiskering in the 2-category qua category.
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In our context, we change the notation slightly — for ease of typesetting — for
functors ZT ˘

↓ and ZT ˘
↑ , by setting ZT ˘

↓ σ = T ˘ .σ and ZT ˘
↓ τ = T ˘ . τ . These functors

are contravariant functors, which follows from
Q⊆σ P

T ˘ ↓P ⊆T ˘.σ T ˘ ↓Q
Q⊆τ P

T ˘ ↑P ⊆T ˘.τ T ˘ ↑Q ,

and the definition of ↓ and ↑. This says that

(σ : Q⇒P) 7 (T ˘ .σ : T ˘ ↓Q⇒ T ˘ ↓P)
(τ : Q⇒P) 7 (T ˘ . τ : Q↑T ˘⇒P ↑T ˘). /

Theorem 51. For our situation using Definition 49, the following diagram ↓ and its
dual for ↑ hold: For all T ˘ : V U and R : U Z,

∃ ∀ ∃!

U U U

V Z V Z V Z

S˘ T ˘ ↓S˘ S˘ T ˘ ↓S˘

X T ˘ ↓X R X T ˘ ↓X R X T ˘ ↓X R

T ˘ R

X =R↓T ˘
T ˘ ↓X εR

T ˘
R

X =R↓T ˘
T ˘ ↓X

T ˘ ↓S˘

S˘

εR

θ
T ˘

R

X =R↓T ˘
T ˘ ↓X

T ˘ ↓S˘

S˘

εR

θ

σ

εR

θ

εR

θ

εR

T ˘ .σσ

FIGURE 24. ↓ Lift of T ˘ ThroughR

Proof. We show the proof for ↓; the proof for ↑ is dual. We first show that σ exists.
Assume 〈z,v〉 ∈ X , then 〈z,v〉 ∈R↓T ˘ and so there is some u∈U such that 〈u,z〉 /∈R
and 〈v,u〉 /∈ T ˘. From θ : T ˘ ↓S˘⇒R then 〈u,z〉 /∈ T ˘ ↓S˘. Hence, for all v′, 〈v′,u〉 /∈
T ˘ implies 〈z,v′〉 ∈ S˘. Letting v′ = v, we have 〈v,u〉 /∈ T ˘ implies 〈z,v〉 ∈ S˘, and
therefore, 〈z,v〉 ∈ S˘. Hence, R↓T ˘ ⊆ S˘ and there exists σ such that σ : R↓T ˘⇒
S˘. Also, σ is unique since inclusions are unique in set theory.

Next we must show that θ = εR ◦ (T ˘ .σ). Since T ˘ .σ : T ˘ ↓S˘⇒ T ˘ ↓X and
εR : T ˘ ↓X ⇒ R, then εR ◦ (T ˘ . σ) : T ˘ ↓ S˘ ⇒ R. Since θ : T ˘ ↓ S˘ ⇒ R and
inclusions are unique in set theory, θ = εR ◦ (T ˘ .σ). /

Our situation corresponds to the following adjunctions:

ϕS ,̆R : ZU (T ˘↓S ,̆R)∼=V Z(R↓T ,̆S˘) ϕS ,̆R : ZU (R,S˘↑T ˘)∼=V Z(S ,̆T ˘↑R).
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We have the following logical rules for ↓ where θ = εR ◦ (T ˘ .σ):

T ˘ ↓S˘ ⊆θ R T ˘ ↓ (R↓T ˘)⊆εR R
R↓T ˘ ⊆σ S˘

R↓T ˘ ⊆σ S˘
T ˘ ↓S˘ ⊆T ˘.σ T ˘ ↓ (R↓T ˘)

Left ↓ Lift Antitonicity

The left rule is equivalent to

T ˘ ↓S˘ ⊆θ R implies R↓T ˘ ⊆σ S˘,

because the right premise always holds in our situation. This premise holds via one
half of the residuation condition

R↓T ˘ ⊆ι R↓T ˘
T ˘ ↓ (R↓T ˘)⊆εR R ,

where ι is the equality relation and stands for the identity in the 2-category. In the
left ↓ lift view, residuation is not available and hence that premise must be explicitly
stated. The other direction is

R↓T ˘ ⊆σ S˘
T ˘ ↓S˘ ⊆T ˘.σ T ˘ ↓ (R↓T ˘) T ˘ ↓ (R↓T ˘)⊆εR R

T ˘ ↓S˘ ⊆θ R
The following logical rules are for ↑ where θ = (T ˘ . τ)◦ηR:

R⊆θ S˘ ↑T ˘ R⊆ηR (T ˘ ↑R)↑T ˘
S˘ ⊆τ T ˘ ↑R

S˘ ⊆τ T ˘ ↑R
(T ˘ ↑R)↑T ˘ ⊆T ˘.τ S˘ ↑T ˘

Left ↑ Extension Antitonicity

with similar justifications as those for ↓.

6. CONCLUSION

We started with RAs as in [8; 13] and made some definitions for extra operators. We
showed how to evaluate these algebras (construing them as logics) via Kripke frames
using Relevance Logic [5; 17] as a template. The relationship between Relevance
Logic in its classical version (from [17]) was then dissected. We showed how to
retrieve an algebra of relations from the Kripke frames using the Tabularity Axiom.
To get from there to a graph of relations, we recalled some of our previous work in
[4] and showed how that led directly to a collection of 1-arrows where there are two
categorical composition operators, tensor and cotensor. This formed a 2-category with
inclusions as the 2-arrows. By not requiring the 1-category structure, we showed that
intensional nor and nand also could be fit into the framework by treating the 1-arrows
as merely a graph of 1-arrows and the 2-arrows forming a 2-category qua category.

This paper represents the logical evolution of our work in [4]. In that paper, the
semantics relied upon the three-place Kripke relations that we borrowed from Rele-
vance Logic (modulo a few restrictions to prevent commutativity of tensor). However,
having a semantics for a distributed RA that did not use binary relations could be con-
sidered a drawback of that work. We improved on that work in this paper by showing
how it can be done successfully.
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The extensions and lifts were used to neatly characterize the framework from a
categorical perspective. We view the extensions and lifts as prescribing those features
that a realizability interpretation must meet. The extensions and lifts characterize the
relational operators in a partial manner in that all the adjunctions, or residuations if
you like, do need not to exist. This is an important aspect for us, because it allows
the logic to capture a crucial aspect of FPGA applications, namely, that foreign IP’s
as black boxes exist in almost all FPGA applications thus depriving a high assurance
analysis of all the relations governing the operation of the FPGA application.

The intensional nor and nand forced us to consider 2-categories qua categories and
made us realize the Kan extensions and lifts do not rely upon a 1-category, only 1-
arrows. As a consequence, composition was replaced by covariant bifunctors on the
2-category qua category in the case of tensor and cotensor and contravariant bifunctors
in the case of intensional nor and nand.

The Kan extensions and lifts pointed out that a fully abstract algebra of relations
supports two compositions, tensor and cotensor. It is possible to abstract this further
into two different hom functors. The distribution of tensor over cotensor (distribution
not in the sense of distributed algebra) could be formalized by using hom functors
into a double monoidal category. The distribution then takes the form of certain nat-
ural transformations and their rules in the double monoidal category. One can go
further and treat the lifts of intensional nor and nand as functors into that same double
monoidal category. The algebraic relationships among the operators are then realized
by natural transformations and rules on the double monoidal category.
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[7] Bimbó, K. and Dunn, J. M. (2009). Symmetric generalized Galois logics, Logica Univer-
salis 3(1): 125–152.

[8] Chin, L. H. and Tarski, A. (1953). Distributive and modular laws in the arithmetic of
relation algebras, Journal of Symbolic Logic 18(1): 72. (Originally appeared in University
of California Publications in Mathematics, ns. vol. 1, no. 9 (1951), pp. 341–384.).

[9] Dunn, J. M. (1991). Gaggle theory: An abstraction of Galois connections and residua-
tion, with applications to negation, implication, and various logical operators, in J. van
Eijck (ed.), Logics in AI: European Workshop JELIA ’90, number 478 in Lecture Notes in
Computer Science, Springer, Berlin, pp. 31–51.



30 Gerard Allwein and William L. Harrison: Distributed Relation Algebra

[10] Dunn, J. M. (2001). A representation of relation algebras using Routley–Meyer frames,
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FOUR-VALUED SEMANTICS FOR ABSTRACT ARGUMENTATION
FRAMEWORKS USING (EXTENSIONS OF) DUNN–BELNAP

FOUR-VALUED LOGIC

Ofer Arieli

ABSTRACT. Four-valued labelings have been introduced as a more informative sub-
stitute to standard three-valued semantics of abstract argumentation frameworks. In
this paper, we consider some 4-valued semantics for argumentation frameworks and
show how they can be represented by extensions of Dunn–Belnap 4-valued logic and
the corresponding 4-valued bilattice structure that naturally reflects such semantics.

Keywords. Argumentation theory, 4-valued semantics, Paraconsistent reasoning

1. INTRODUCTION

Argumentation is a cognitive process for dealing with conflicting information by
generating and comparing arguments. In the seminal paper of Dung [22] this process
is described by abstract argumentation frameworks (AAF for short), which can be
viewed as directed graphs, where nodes represent arguments and directed edges rep-
resent attacks between the nodes. Given such a graph, a key issue is to determine set(s)
of nodes, the arguments of which can be collectively accepted. Such sets determine
what can be inferred from the AAF.

It is usual to evaluate AAFs in terms of 3-valued labeling functions (Baroni et al.
[6; 7]): an argument can be either accepted (labeled in), rejected (labeled out), or
undecided (labeled undec). However, the following example shows that such a cate-
gorization might be too crude.

Example 1. The following example is a variation of the decision-making problem
presented in Pollock [40]: Suppose that a traveler has some doubts whether to take
an umbrella or sunglasses to her journey. She checks two weather websites, one in-
dicates that the weather in her destination is rainy, while the other one points out that
the weather in the destination is sunny. Assuming that the web-sources are equally
reliable, taking exactly one action (and so avoiding the other) is arbitrary, thus an ir-
rational decision in this case. The traveler still has two further options for making a
choice: she may withhold any action and wait until the weather conditions are clari-
fied, or she may take a more practical decision and take both umbrella and sunglasses.
The latter is a pragmatic approach, accepting contradictory indications whenever this
doesn’t cause any real risk or damage. In other situations, for instance when there are
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conflicting symptoms obliging different medical treatments, it may be more rational
to refrain from irreversible acts and look for further opinions. In both cases, though,
the two neutral options (that is, those that are not biased towards the weather forecast
of a particular website) have totally different consequences, so it is useful to clearly
distinguish between them. This requires two further distinct labels, apart of in and out.

In an attempt to provide more informative and accurate descriptions to situations
like those in Example 1, four-valued labelings were introduced in a number of papers
(see Arieli [3], Bistarelli and Taticchi [13], Jakobovits and Vermeir [35], Riveret et al.
[41]). In what follows we consider and extend some of these approaches, showing that
they can be naturally embedded in (extensions of) the well-known four-valued inter-
pretation of FDE (Anderson and Belnap [1], see also Omori and Wansing [38; 39]),
introduced by J. Michael Dunn [24; 25] and Nuel Belnap [8; 9]. We thus argue that
FDE-based formalisms may serve as a solid platform for representing and reasoning
with argumentation frameworks.

The rest of this paper is organized as follows: in the next section we give some
preliminaries on abstract argumentation frameworks and their semantics. Then, in
Sections 3 and 4, we present some conflict-tolerant and conflict-free approaches (re-
spectively) to 4-valued semantics of argumentation frameworks. In Section 5 we show
how Dunn–Belnap logic and its extensions can be used for representing these seman-
tics. Section 6 is a short conclusion of the paper.

2. ARGUMENTATION FRAMEWORKS AND THEIR SEMANTICS

We start by recalling the basic definitions behind abstract argumentation frame-
works.

Definition 2 (Argumentation framework). An (abstract) argumentation framework
(AAF) [22] is a pairAF = 〈Args,A〉, where Args is a finite set, the elements of which
are called arguments, and A is a relation on Args×Args whose instances are called
attacks. When (a,b) ∈ A we say that a attacks b (or that b is attacked by a).

Given an argumentation framework AF = 〈Args,A〉, the following notations will
be useful in what follows (for an argument a∈Args and a set of arguments E ⊆Args):

• The set of arguments that are attacked by a is: a+ = {b ∈ Args | (a,b) ∈ A}.
• The set of arguments that attack a is: a− = {b ∈ Args | (b,a) ∈ A}.
• The set of argument that are attacked by (respectively, that attack) E is: E+ =⋃

a∈E a+ (respectively, E− =
⋃

a∈E a−).
• The set of arguments that are defended by E is: Def(E) = {a∈Args | a−⊆E+}.
• We say that E is conflict-free, if E ∩E+ = /0.

Thus, a set E ⊆ Args is conflict-free if there are no attacks between arguments in E ,
and an argument a ∈ Args is defended by E if any attacker of a is counter-attacked by
(some argument in) E .

There are two ways of giving semantics to an AAF: by extensions and by labeling.
First, we describe the former.1 The following definition lists some common types of
extensions for an AAF.

1The notion of “extension” is somewhat overloaded in this paper. In the context of logics and their lan-
guages, extensions have their usual meaning of supersets (maybe with further properties like extensions of
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Definition 3 (extension semantics). LetAF = 〈Args,A〉 be an AAF and let E ⊆ Args
be a conflict free set of arguments. We say that E is:

• an admissible set of AF , if E ⊆ Def(E),
• a complete extension of AF , if E = Def(E),
• a grounded extension of AF , if E is a ⊆-minimal extension among the com-

plete extensions of AF ,
• a preferred extension of AF , if E is a ⊆-maximal extension among the com-

plete extension of AF ,
• a stable extension of AF , if E is a complete extension of AF such that E ∪
E+ = Args.

Thus, a conflict-free set is admissible if it defends all of its elements, and an ad-
missible set is complete if it defends only its elements. Also, it is well-known that
the grounded extension of an AAF is unique and that stable extensions do not always
exist for AAFs [22]. A discussion on the relations between these extensions, as well
as definitions of further extensions, can be found in, e.g., [6; 7; 22].

Example 4. Recall Example 1 from the introduction. A corresponding argumentation
framework is presented in Figure 1, abbreviating by r s, u and g the claims that “it is
rainy,” “it is sunny,” “take an umbrella” and “take sunglasses” (respectively).

r s

g u

FIGURE 1. Attack diagram for Examples 1 and 4

The grounded extension in this case is the emptyset, and there are two preferred
extensions, which are also the stable extensions of the framework: {s,g} (it is sunny,
take sunglasses), and {r,u} (it is rainy, take an umbrella).

The other way of giving semantics to argumentation frameworks is by labeling
functions (Caminada [15]; Caminada and Gabbay [16]), assigning a value from {in,out,
undec} to every element in Args. Intuitively, the label of an argument represents its
status: accepted, rejected, or undecided. Given a labeling lab : Args→{in,out,undec},
for every val ∈ {in,out,undec} we denote: Val(lab) = {a ∈ Args | lab(a) = val}, and
associate lab with the triplet 〈In(lab),Out(lab),Undec(lab)〉.

Common types of labeling functions are defined next.

Definition 5 (Labeling semantics). Given an abstract argumentation frameworkAF =
〈Args,A〉, let lab : Args → {in,out,undec} be a total function. For an argument
a ∈ Args, we consider the following rules:

functions to larger domains). In the context of argumentation frameworks, we adopt the standard terminol-
ogy, which regards to extensions as sets of arguments having certain properties, as indicated in Definition 3.
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In1 If lab(a) = in, then there is no b ∈ a− such that lab(b) = in.
In2 If lab(a) = in, then for every b ∈ a− it holds that lab(b) = out.
Out If lab(a) = out, then there exists some b ∈ a− such that lab(b) = in.

Undec If lab(a) = undec, then it is not the case that for every b ∈ a− it holds that
lab(b) = out and does not exist an argument b ∈ a− such that lab(b) = in.

Now, we say that lab (w.r.t. AF) is:
– conflict-free, if it satisfies conditions In1 and Out for every a ∈ Args,
– admissible, if it satisfies conditions In2 and Out for every a ∈ Args,
– complete, if it is admissible and satisfies condition Undec for every a ∈ Args.

Furthermore, if lab is complete (w.r.t. AF), we say that it is:
– grounded, if for no other complete labeling lab′ it holds that In(lab′)( In(lab),
– preferred, if for no other complete labeling lab′ it holds that In(lab)( In(lab′),
– stable, if Undec(lab) = /0.

Works on the relations between Dung-style extensions and value assignments to
arguments may be traced back to Verheij [42]. The following correspondence between
extension semantics and labeling semantics (adjusted to the notations of Definition 5)
is shown in [16].

Proposition 6. Let AF = 〈Args,A〉 be an AAF. If lab is a complete labeling w.r.t.
AF , then In(lab) is a complete extension of AF . Conversely, if E is a complete
extension of AF , then 〈E ,E+,Args\ (E ∪E+)〉 is a complete labeling w.r.t. AF .

Given an argumentation framework AF , Proposition 6 may be shown by using
two mappings. One, L2EAF , from the labelings of AF to the extensions of AF , is
defined by L2EAF (lab) = In(lab), and the other, E2LAF , from the extensions of AF
to the labeling of AF , is defined by E2LAF (E) = 〈E ,E+,Args \ (E ∪ E+)〉. When
the domains and ranges of these functions are restricted to complete extensions and
complete labelings of AF , the functions become bijections and each other’s inverses,
making complete extensions and complete labelings one-to-one related. As a con-
sequence, one concludes that similar relations hold between grounded (respectively,
preferred, stable) labelings and grounded (respectively, preferred, stable) extensions
of AF (see [16]).

3. CONFLICT-TOLERANT SEMANTICS

Let’s reconsider the argumentation framework in Example 4. The fact that every
extension must be conflict-free dictates that one has to make an arbitrary choice be-
tween equally possible situations (rainy or sunny), as implied by the stable/preferred
semantics, or abandon both of them altogether, as reflected by the grounded seman-
tics. However, as we already argued in Example 1, there is another possibility: to
be prepared for both cases. For this, conflict-freeness should be relaxed, and another
label should be introduced. Intuitively, such a fourth label designates a kind of “cau-
tious acceptance” of the arguments to which it is assigned. In our case, this means
that although the conflicting situations may not occur simultaneously, both of them
are still taken into account.

Another motivation for waving the conflict-freeness property (or introducing a
fourth labeling value) is the following.
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Example 7. Consider the attack diagram presented in Figure 2.2 The associated ar-
gumentation framework does not have any stable extension, and the only preferred
extension (which is also the grounded extension) in this case is the emptyset, meaning
that none of the arguments is accepted. As we shall see in what follows, conflict-
tolerant semantics enables (a weaker form of) stable extensions for every AAF, and
the preferred extensions of an AAF according to this semantics are non-empty.

a

b

c

FIGURE 2. Attack diagram for Example 7

For resolving the above issues of conflict-free semantics, we now consider exten-
sion-based and labeling-based counterparts of the formalisms presented in the previ-
ous section. The conflict-free requirement is lifted from the definition of extensions,
and a fourth value is added to the range of the labeling functions. This value (denoted
conf, for “conflicting”) intuitively designates cautious acceptance in the presence of
counter-arguments.

We start with labeling semantics. The following definition is due to [3]:

Definition 8 (p-labeling). Given an abstract argumentation frameworkAF=〈Args,A〉.
A total function lab : Args→{in,out,conf,undec} is called p-admissible3, if for every
a ∈ Args it satisfies the following rules:

pIn If lab(a) = in, then for every b ∈ a− it holds that lab(b) = out.
pOut If lab(a) = out, then there exists some b ∈ a− such that lab(b) ∈ {in,conf}.

pConf If lab(a) = conf, then for every b ∈ a− it holds that lab(b) ∈ {out,conf}
and there exists some b ∈ a− such that lab(b) = conf.

pUndec If lab(a) = undec, then for every b ∈ a− it holds that lab(b)∈{out,undec}.
We say that lab is p-complete, if for every a∈Args it satisfies the following (stronger)
rules:

pIn+ lab(a) = in iff for every b ∈ a− it holds that lab(b) = out.
pOut+ lab(a) = out iff there is some b ∈ a− such that lab(b) ∈ {in,conf}

and there is some b ∈ a− such that lab(b) ∈ {in,undec}.
pConf+ lab(a) = conf iff for every b ∈ a− it holds that lab(b) ∈ {out,conf}

and there exists some b ∈ a− such that lab(b) = conf.
pUndec+ lab(a) = undec iff for every b ∈ a− it holds that lab(b) ∈ {out,undec}

and there exists some b ∈ a− such that lab(b) = undec.

Intuitively, in a four-valued labeling in and conf stand for two levels of accep-
tance. The former represents full acceptance of the underlying argument, while the

2In fact, any diagram with an odd-length cycle is appropriate in this case.
3The prefix “p” stands here and in what follows for “paraconsistent.”
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latter is a more cautious one, based on conflicting claims. Again, for each val ∈
{in,out,conf,undec} we define the set Val(lab) = {a ∈Args | lab(a) = val}. Accord-
ingly, a 4-valued labeling lab is associated with the quadruplet 〈In(lab),Out(lab),
Conf(lab),Undec(lab)〉.
Note 9. It is not difficult to verify that Definition 8 enhances Definition 5: every ad-
missible (respectively, complete) labeling of AF is also a p-admissible (respectively,
p-complete) labeling of AF (but not the other way around).

The other types of labelings in Definition 5 can be extended to 4-valued counter-
parts in a similar way. For instance, a p-stable labeling lab is a p-complete labeling
where Undec(lab) = /0.

Example 10. Consider again the argumentation frameworkAF of our running exam-
ple (see Example 1 and Figure 1). This framework has four p-complete labelings:

1. lab1, in which In(lab1) = Out(lab1) = Conf(lab1) = /0 and Undec(lab1) =
{r,s,u,g},

2. lab2, in which In(lab2) = {r,u}, Out(lab2) = {s,g}, and Conf(lab2) =
Undec(lab2) = /0,

3. lab3, in which In(lab3) = {s,g}, Out(lab3) = {r,u}, and Conf(lab3) =
Undec(lab3) = /0,

4. lab4, in which In(lab4) = Out(lab4) = Undec(lab4) = /0 and Conf(lab4) =
{r,s,u,g}.

The first three labelings correspond to the three extensions discussed in Example 4.
The first labeling is associated with the grounded extension of the framework. It re-
flects a skeptical approach, which in this case means that no action should be taken.
The next two labelings meet the two preferred/stable extensions of the framework.
They reflect a credulous approach in which each labeling corresponds to a different
coherent assumption about the weather conditions in the destination. The fourth label-
ing is a new one, not available in a 3-valued semantics. Intuitively, this is a kind of an
intermediate approach that takes all the weather forecasts into consideration (sunny or
rainy day), and accordingly makes the required decisions. It may be understood as a
“cautious” acceptance of the state of affairs, since eventually one of the forecasts will
turn out to be mistaken.

We turn now to conflict-tolerant extensions. As the next definition indicates, we
just give-up the conflict-freeness requirement in Definition 3.

Definition 11 (p-extensions). Let AF = 〈Args,A〉 be an AAF, and let E ⊆ Args. We
say that E is

• paraconsistently admissible (or: p-admissible) extension forAF , if E ⊆Def(E),
• paraconsistently complete (or: p-complete) extension for AF , if E = Def(E).

Other counterparts of the extensions in Definition 3 can be defined just as in Defi-
nition 11, where the conflict-freeness requirement is omitted. For instance, a p-stable
extension E of AF is a p-complete extension of AF , where E ∪E+ = Args.

Note 12. Clearly, Definition 11 enhances Definition 3: for each type of semantic sem
considered in Definition 3, any sem-extension ofAF is also a p-sem extension ofAF
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(but not the other way around). For instance, the complete extensions in Example 4
are also p-complete extensions of the same framework, but there is another p-complete
extension: {s,g,r,u}.

As in the 3-valued case, it is possible to define bijective mappings from labelings
to extensions and from extensions to labelings. Given an argumentation framework
AF = 〈Args,A〉, we define:

• For every E ⊆ Args and argument a ∈ Args,

pE2LAF (E)(a) =





in if a ∈ E and a 6∈ E+,
conf if a ∈ E and a ∈ E+,
out if a 6∈ E and a ∈ E+,
undef if a 6∈ E and a 6∈ E+.

• For every 4-valued labeling lab on Args,

pL2EAF (lab) = In(lab) ∪ Conf(lab).

The next result, shown in [3], is a counterpart of Proposition 6. Note that for the
4-valued conflict-tolerant case, unlike the 3-valued conflict-free case, this result holds
also for p-admissible extensions, and not only for p-complete extensions.

Proposition 13. Let AF = 〈Args,A〉 be an AAF. Then:
(a) If lab is a p-admissible labeling for AF , then pL2EAF (lab) is a p-admissible

extension of AF . Conversely, if E is a p-admissible extension of AF , then
pE2LAF (E) is a p-admissible labeling for AF .

(b) If lab is a p-complete labeling for AF , then pL2EAF (lab) is a p-complete
extension of AF . Conversely, if E is a p-complete extension of AF , then
pE2LAF (E) is a p-complete labeling for AF .

Moreover, we have that for every p-admissible (respectively, p-complete) labeling lab,

pE2LAF (pL2EAF (lab)) = lab,

and for every p-admissible (respectively, p-complete) extension E ,

pL2EAF (pE2LAF (E)) = E .
Thus, the functions pE2LAF and pL2EAF , restricted to the p-admissible (p-complete)
labelings and the p-admissible (p-complete) extensions of AF , are bijective, and are
each other’s inverse.

Note 14 (conf-free labeling). While conflict-tolerant semantics allows for tolerating
conflicts among accepted arguments, it is obviously desirable to reduce such conflicts
to a minimum. Consider, for instance, the argumentation framework in Figure 3.

a b c

FIGURE 3. Attack diagram for Note 14

This framework has two p-stable extensions (two p-stable labelings): E1 = {a,b,c}
(lab1, where lab1(a)= lab1(b)= lab1(c)= conf) and E2 = {a,c} (lab2, where lab2(a)
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= lab2(c) = in and lab2(b) = out). While E1 and lab1 represent a degenerated inter-
pretation to the situation at hand, according to which all the arguments are conflicting,
the interpretation that is reflected by E2 and lab2 is more faithful to the state of affairs:
the argument that is not attacked (a), as well as the argument (c) that is defends by
the unattacked argument, are accepted, while the argument (b) that is attacked by an
accepted argument is rejected.

Labelings without conf-assignments are called conf-free. In [3] it is shown that if
lab is a conf-free p-admissible (p-complete) labeling ofAF , then pL2EAF (lab) is an
admissible (complete) extension of AF , and conversely: if E is an admissible (com-
plete) extension of AF , then pE2LAF (E) is a conf-free p-admissible (p-complete)
labeling of AF . Moreover, the set of the conf-free p-admissible (p-complete) label-
ings of AF coincides with the set of the admissible (complete) labelings of AF .

The relations between 4-valued labeling, conflict-tolerant extensions, and their
conf-free variations, is summarized in Figure 4.

Extensions Labelings

p-Admissible extension p-Admissible labeling

p-Complete extension p-Complete labeling

Admissible labeling

conf-free p-Admissible labeling

conf-free p-Complete labeling,
Complete labeling

Admissible extension

Complete extension

FIGURE 4. Relations between extension and labeling semantics

Note 15. Conflict-tolerant semantics turns out to be particularly useful in constraint
argumentation frameworks, which are argumentation frameworks augmented with
constraints about the acceptance of the arguments that must be satisfied. In such cases,
the waiving of the conflict-freeness requirement allows to extract p-admissible sets of
arguments that meet the constraints, while for admissible sets of arguments this is not
always possible. We refer to Arieli [2] for more details on this subject.
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4. CONFLICT-FREE 4-VALUED SEMANTICS

In this section we recall some other methods of giving 4-valued semantics to ab-
stract argumentation frameworks, all of them keep the accepted sets of arguments
conflict-free (and, as before, admissible). Again, the motivation for introducing a
fourth value is to have more informative labelings of the arguments, but unlike the ap-
proach described in Section 3, this time the fourth value intuitively represents “don’t
care” situations, i.e., a kind of “unlabeled arguments” that one does not want to con-
sider in computing acceptability. To emphasize the difference in the intuitive meaning
of the fourth value, we denote it in what follows by off (following [41]), instead of
conf. The other labeling notations remain the same, namely, in, out and undec.

Definitions 16–18 describe three approaches of giving 4-valued conflict-free label-
ing semantics to argumentation frameworks. In all these approaches (unlike the one
described in the previous section), accepted arguments are only those that are labeled
in. Since none of the approaches enables attacks on in-labeled arguments by other
in-labeled arguments, these approaches are indeed conflict-free.

The first labeling, due to Jakobovits and Vermeir [35], is based on four possible
acceptance states obtained from the combinations of two basic labels.

Definition 16 (JV labeling). Let AF = 〈Args,A〉 be an AAF, and let ± : Args→
2{+,−} be a function satisfying, for every a ∈ Args, the following conditions:
JV1: if − ∈±(a), there is some b ∈ a− such that + ∈ ±(b),
JV2: if + ∈ ±(a), for every b ∈ a− and for every b ∈ a+, it holds that − ∈±(b).
A JV-labeling for AF is a total function lab : Args→ {in,out,off,undec}, such that
for every a ∈ Args it holds that lab(a) = in iff ±(a) = {+}, lab(a) = out iff ±(a) =
{−}, lab(a) = off iff ±(a) = {−,+}, and lab(a) = undec iff ±(a) = /0.4

The intuition behind JV-labelings is simple: to weaken an argument (i.e., to add
a “−” to its labeling) one needs a reason, i.e., an attack from a supported argument
(one whose labeling contains “+”). This is the first rule. The second rule indicates
that a supported argument weakens the arguments that it attacks, and that one cannot
support an argument unless all of its attackers are weakened. As indicated in [35], the
correspondence to extension semantics is that E is a stable extension of AF iff there
is a JV-labeling lab for AF , for which Undec(lab) = Off(lab) = /0 and In(lab) = E .

The next definition, due to Riveret, Oren and Sartor [41], explicates the idea that
the fourth label corresponds to “don’t care” situations.
Definition 17 (ROS labeling). Let AF = 〈Args,A〉 be an AAF extending AF ′ =
〈Args′,A′〉 (i.e., Args′ ⊆Args andA′ ⊆A). A total function lab : Args→{in,out,off,
undec} is a ROS-labeling, if there is a grounded labeling lab′ : Args′→{in,out,undec}
such that ∀a ∈ Args′, lab(a) = lab′(a), and ∀a ∈ Args\Args′, lab(a) = off.

Thus, the view of ROS-labeling is that off-labeled arguments are “ignored” and
are not evaluated when computing acceptance of arguments. Note that according to
ROS-labeling such computations are restricted to grounded labeling.

4In [35], arguments that are labeled off are intuitively regarded as undecided, and those that are labeled
undec intuitively signify don’t care policy. We keep the labeling in Definition 16 for uniformity with the
other labeling methods.
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In order to relate 4-valued labeling to extensions, Bistarelli and Taticchi introduce
in [13] the following labeling functions:

Definition 18 (BT labeling). Let AF = 〈Args,A〉 be an AAF, and let lab : Args→
{in,out,off,undec}. We say that lab is a:

• conflict-free BT-labeling, if the next conditions are satisfied for every a ∈ Args:
– if lab(a) = in then for every b ∈ a− it holds that lab(b) 6= in
– if lab(a) = out then there is some b ∈ a− such that lab(b) = in

• admissible BT-labeling, if the next conditions are satisfied for every a ∈ Args:
– if lab(a) = in then for every b ∈ a− it holds that lab(b) 6= in
– lab(a) = out iff there is some b ∈ a− such that lab(b) = in

• complete BT-labeling, if the next conditions are satisfied for every a ∈ Args:
– lab(a) = in iff for every b ∈ a− it holds that lab(b) ∈ {out,off}
– lab(a) = out iff there is some b ∈ a− such that lab(b) = in

• grounded BT-labeling, if it is a complete BT-labeling of AF , and there is no
complete BT-labeling lab′ of AF for which In(lab′)( In(lab).

• preferred BT-labeling, if it is an admissible BT-labeling ofAF , and there is no
admissible BT-labeling lab′ of AF for which In(lab)( In(lab′).

• stable BT-labeling, if it is a complete BT-labeling of AF and Undec(lab) = /0.

Note 19 (off-free BT labeling). Just as in the case of conflict-tolerant labeling (see
Note 14), there is a one-to-one correspondence between admissible (respectively, com-
plete, grounded preferred, stable) 4-valued BT-labelings without the fourth value and
the admissible (respectively, complete, grounded preferred, stable) extensions of the
same argumentation framework: As indicated in [13], lab is an off-free admissible
(respectively, complete, grounded preferred, stable) BT-labeling of AF , iff In(lab) is
an admissible (respectively, complete, grounded preferred, stable) extension of AF .
Moreover, as in the conflict-tolerant case, this implies that a complete BT-labeling lab
is grounded (respectively, preferred) in the sense of Definition 5, iff it is off-free and
In(lab) is minimal (respectively, maximal) among the in-assignments of the complete
BT-labelings of AF . Likewise, a complete BT-labeling lab is stable in the sense of
Definition 5, iff it is off-free and Undec(lab) = /0.

The various approaches to 4-valued labeling defined above are based on different
intuitions and are evaluated in different contexts.5 Next, we demonstrate some of these
intuitions.6

Example 20. Consider the following stable tennis-doubles problem, introduced in [35],
and is a variation of the stable marriage problem (SMP, see e.g., Bistarelli and Santini
[11], Iwama and Miyazaki [34]). For the doubles matches of a tennis tournament, the
organizers suggest the following set of possible pairs:

a = (Djokovic , Nadal) b = (Nadal , Federer) c = (Federer , Djokovic)
d = (Djokovic , Thiem) e = (Thiem , Medvedev) f = (Medvedev , Zverev)

5For instance, ROS-labelings may further have a probabilistic distribution to reflect their plausibilities.
6Comparing the conflict-free 4-valued approaches and/or relating them to each other is beyond the scope

of this paper.
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Suppose further that the players express the following preferences for partners:
Nadal prefers Djokovic to Federer, Federer prefers Nadal to Djokovic,
Djokovic prefers Federer to Nadal, Djokovic prefers Federer to Thiem,
Theim prefers Djokovic to Medvedev, Medvedev prefers Thiem to Zverev.

Now, if playeri prefers player j to playerk, then the pair (playeri player j) is an im-
provement of the pair (playeri playerk). In terms of argumentation frameworks, this
may be expressed by an attack of (playeri player j) on (playeri playerk). A solution
to the stable tennis-doubles problem is a choice of an acceptable set (or sets) of so-
called “stable” pairs of players, a set of rejected pairs, and perhaps a set of undecided
pairs. The stable pairs are those whose improvements are all rejected, and the rejected
pairs are those that have an improvement that is not rejected.

The argumentation framework that is associated with the stable tennis-doubles
problem in our case is shown in Figure 5.

a

b

c d e f

FIGURE 5. Attack diagram for Example 20

The unique admissible set in this case is the emptyset, which means that the only
admissible (and so conflict-free) 3-valued labeling for this framework assigns undec
to all the arguments. This means that standard (3-valued) semantics rejects all of the
suggested pairs of players. This happens since the arguments a, b, and c are caught in
a “preference triangle” (recall Example 7), which propagates to the other arguments
(pairs) too, making all of them inadmissible.

Conflict-tolerant semantics does not really help in this case either. Its alternative
solution is also degenerate, cautiously accepting all the arguments (for a reason sim-
ilar to the one described above). JV-labeling, on the other hand, allows for further
solutions, as listed in Table 1. For instance, according to labeling No.3 (respectively,
labeling No.4) in the table, argument f (respectively, e) is accepted.

lab a b c d e f
1 off off off off off off
2 off off off off off out
3 off off off off out in
4 off off off out in out
5 off off off off out undec
6 off off off out undec undec
7 undec undec undec undec undec undec

TABLE 1. The JV-labeling for the framework of Example 20
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ROS-labelings allow for further assignments in this case. For instance, when d
is ignored (and thus omitted from the graph), the graph is split to two subgraphs,
consisting of the arguments {a,b,c} and {e, f}, which yields the ROS-labeling lab,
in which In(lab) = {e}, Out(lab) = { f}, Undec(lab) = {a,b,c} and Off(lab) = {d}.
Similarly, if argument e is ignored, we get a ROS-labeling lab′, in which In(lab′) =
{ f}, Undec(lab′) = {a,b,c,d} and Off(lab′) = {e}. Note that these are also complete
BT-labelings of the framework in this case.

5. REPRESENTATION AND REASONING WITH 4-VALUED LOGICS

It is only natural to represent 4-valued labelings of an argumentation framework
AF = 〈Args,A〉 by formulas in a 4-valued logic. Indeed, for a language L whose
atomic formulas (the elements in Atoms(L)) are associated with the arguments of
the framework (the elements in Args), a labeling function on Args may be viewed as
a 4-valued interpretation on Atoms(L). Thus, once the labeling rules are expressed
by appropriate formulas, the models of the resulting theories will correspond to the
required labeling functions of the framework. This is what we show in this section,
using Dunn-Belnap 4-valued logic and its extension, 4Flex.

5.1. Four-valued FDE and 4Flex. The 4-valued variation of first-degree entailment
(FDE, Anderson and Belnap [1]) was originated in the work of Dunn [23; 24] (see
also [25]) and followed by papers of Belnap [8; 9]), which stimulated a lot of interest
in 4-valued logics and their applications in different contexts (see, e.g., [38; 39]). In
this paper we use an extension of FDE, called 4Flex (Arieli and Avron [4]), consisting
of the basic FDE-connectives {¬,∨,∧}, together with D’Ottaviano and da-Costa’s
implication ⊃ (da Costa [19], D’Ottaviano and da Costa [21]) and the propositional
constant f, representing falsity.7

Given an argumentation frameworkAF = 〈Args,A〉, we consider a languageLArgs,
whose atomic formulas are associated with the elements in Args.8 A (four-valued)
valuation ν for LArgs is a function from the atomic formulas of LArgs to {t, f ,>,⊥}.
These values may be arranged in a lattice structure, in which f is the minimal ele-
ment, t is the maximal one, and the other two values are incomparable intermediate
elements. The corresponding structure FOUR = ({t, f ,>,⊥},≤) is a distributive
lattice with an order reversing involution ¬, for which ¬t = f , ¬ f = t, ¬>=> and
¬⊥=⊥. We shall denote the meet and the join of this lattice by ∧ and ∨, respectively.
An implication operator on FOUR is defined as follows: a⊃ b = t if a ∈ { f ,⊥}, and
a⊃ b = b otherwise. The truth tables of the basic connectives of FOUR are given be-
low. Accordingly, a valuation is extended to complex formulas of the language LArgs

in the obvious way, using the truth tables of the basic lattice connectives given above:
ν(¬ψ) = ¬ν(ψ), ν(ψ ◦φ) = ν(ψ)◦ν(φ) for every ◦ ∈ {∧,∨,⊃}, and ν(f) = f .

7See [4] for a discussion on 4Flex and some of its properties.
8In what follows we freely exchange between an argument and the atomic formula that is associated

with it.
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∨ t f > ⊥
t t t t t
f t f > ⊥
> t > > t
⊥ t ⊥ t ⊥

∧ t f > ⊥
t t f > ⊥
f f f f f
> > f > f
⊥ ⊥ f f ⊥

⊃ t f > ⊥
t t f > ⊥
f t t t t
> t f > ⊥
⊥ t t t t

¬
t f
f t
> >
⊥ ⊥

Definition 21 (Models). We say that a valuation ν satisfies an LArgs-formula ψ , if
ν(ψ) ∈ {t,>}. Thus, t and > are the designated elements of FOUR (i.e., those
that represent true assertions). A valuation that satisfies every formula in a set Γ of
LArgs-formulas is a model of Γ . The set of all the models of Γ is denoted Mod(Γ ).

Note 22. The main motivation of extending 4-valued FDE to 4Flex is due to the
fact that the former lacks an implication connective (namely, one that satisfies the
classical deduction theorem with respect to the corresponding consequence relation;
See [4]). In contrast, it is easy to verify that the implication ⊃ is deductive in 4Flex,
and that is allows for tautological formulas (those that have designated values under
every valuation). Such formulas are not available in 4-valued FDE. (Indeed, every
formula ψ in the language of {¬,∧,∨} has the value ⊥ when all its atomic formulas
are assigned the value ⊥.)

Note 23 (4-valued bilattice). There is at least one other intuitive way of ordering the
elements of FOUR. According to the alternative ordering, denoted here by ≤i, >
is the ≤i-maximal element, ⊥ is the ≤i-minimal one, and the two “classical” values
t and f are intermediate ≤i-incomparable elements. This order intuitively represents
differences in the amount of information that each element exhibits. According to
this view, > represents “over” information (being the least upper bound of t and f )
and ⊥ is associated with lack of information (being the greatest lower bound of t
and f ).9 The simultaneous combination of ≤ and ≤i in one structure forms what is
known as a (four-valued) bilattice ([8; 9], see also Fitting [29; 30], Ginsberg [31] for
overviews on bilattices and their properties), and is a cornerstone of a wealth of works
on four-valued reasoning methods in AI. In particular, the information order captures
the intuition behind the conflict-tolerant labeling described in Section 3, where conf
and undec have the roles of > and ⊥ (respectively).

In [23; 29; 30] it is shown that the four-valued bilattice may be viewed as a self
product of a 2-valued lattice. According to this view, each value is represented by
a pair of 2-valued components (x,y), and the bilattice operators are represented in
terms of the operators of the 2-valued lattice (see [29] for further details). According
to a dual view, the elements of the 4-valued bilattice are represented by elements of
2{0,1}, and so, for example, the ≤i-ordering is expressed by the set-inclusion operator

9Note that all the connectives in 4-valued FDE are ≤i-monotonic (thus, e.g., if ◦ is a binary connective
in 4-valued FDE and a1,a2,b1,b2 ∈ {t, f ,>,⊥} such that a1 ≤i a2 and b1 ≤i b2, then a1 ◦ a2 ≤i b1 ◦
b2). It follows that only ≤i-monotonic functions are expressible in 4-valued FDE. This is not the case
when the implication ⊃ is added to the language, which is another motivation for extending FDE to 4Flex
(cf. Note 22).
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on 2{0,1}.10 Clearly, both methods of representing 4-valued elements by two-valued
components perfectly match the idea behind the JV-labeling in Definition 16.

In the next section we show that the similarities between 4-valued valuations for
giving semantics to 4-valued logics, and 4-valued labeling functions for giving se-
mantics to abstract argumentation frameworks, can be made explicit by corresponding
theories in 4Flex.

5.2. Representation of Admissible and Complete Labelings/Extensions. As al-
ready indicated above, a valuation corresponds to a labeling function and vice-versa,
where the truth value t is associated with the label in, f with out,⊥ with undec, and>
represents the additional fourth label (denoted above by conf or off). We shall denote
by pL2V(lab) the valuation that corresponds to the labeling lab, and by pV2L(ν) the
labeling that corresponds to the valuations ν .

It follows that the different states of argument that are depicted by labeling func-
tions may be represented by corresponding LArgs-formulas, as described in Table 2.
In this table we use two sets of terminologies to represent different intuitions that the
formulas express according to the conflict-tolerant and the conflict-free labelings. In
the table (and in what follows) we denote the formula ψ ⊃ f by not ψ .11

abbreviation formula satisfying
assignments

conflict-tolerant terminology

cautiously-accept(a) a t,>
cautiously-reject(a) ¬a f ,>
conflicting(a) cautiously-accept(a)∧ cautiously-reject(a) >
coherent(a) not conflicting(a) t, f ,⊥
accept(a) cautiously-accept(a)∧ coherent(a) t
reject(a) cautiously-reject(a)∧ coherent(a) f
undecided(a) not (cautiously-accept(a)∨ cautiously-reject(a)) ⊥

conflict-free terminology

potentially-accept(a) a t,>
potentially-reject(a) ¬a f ,>
excluded(a) potentially-accept(a)∧potentially-reject(a) >
included(a) not excluded(a) t, f ,⊥
accept(a) potentially-accept(a)∧ included(a) t
reject(a) potentially-reject(a)∧ included(a) f
undecided(a) not (potentially-accept(a)∨potentially-reject(a)) ⊥

TABLE 2. Expressing different sates of arguments by LArgs-formulas

10In this view, t is represented by {1}, f by {0}, > by {0,1}, and ⊥ by {}. Thus, for instance, t is
<i-smaller than >, since {1} ⊂ {0,1}.

11Thus, e.g., in Table 2, coherent(a), which abbreviates not conflicting(a), stands for the formula
conflicting(a)⊃ f, namely: (a∧¬a)⊃ f.
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Using the formulas in Table 2 it is now easy to express the conditions that define
labeling functions. For instance, the conditions in Definition 8 for the p-admissible
labeling of AF = 〈Args,A〉 may be represented as follows:

pIn(x) : accept(x)⊃∧y∈x− reject(y)
pOut(x) : reject(x)⊃∨y∈x− cautiously-accept(y)
pConf(x) : conflicting(x)⊃

(∧
y∈x−

(
reject(y)∨ conflicting(y)

)
∧∨y∈x− conflicting(y)

)

pUndec(x) : undecided(x)⊃∧y∈x−
(
reject(y)∨undecided(y)

)

The conditions for the p-complete labeling in Definition 8 may be represented in a
similar way. Below, we abbreviate the formula (ψ ⊃ φ)∧ (φ ⊃ ψ) by ψ ↔ φ :

pIn+(x) : accept(x)↔∧
y∈x− reject(y)

pOut+(x) : reject(x)↔
(∨

y∈x− cautiously-accept(y)∧∨y∈x−(accept(y)∨undecided(y))
)

pConf+(x) : conflicting(x)↔
(∧

y∈x−
(
reject(y)∨ conflicting(y)

)
∧∨y∈x− conflicting(y)

)

pUndec+(x) : undecided(x)↔
(∧

y∈x−
(
reject(y)∨undecided(y)

)
∧∨y∈x− undecided(y)

)

Given an argumentation framework AF = 〈Args,A〉, in what follows we denote
by Ψ(a,AF) the formula that is obtained from Ψ(x) by substituting its variable x by
an atom a that is associated with an argument a ∈ Args, and where the elements in
a− (and in a+) are determined by A. For instance, in the argumentation framework
AF of Figure 1 we have that r− = {s}, thus pIn+(r,AF) is the formula accept(r)↔
reject(s).

The following theories may now be used for representing the p-labelings for AF :

pADM(AF) =
⋃

x∈Args

pIn(x,AF) ∪
⋃

x∈Args

pOut(x,AF) ∪
⋃

x∈Args

pConf(x,AF) ∪
⋃

x∈Args

pUndec(x,AF)

pCMP(AF) =
⋃

x∈Args

pIn+(x,AF) ∪
⋃

x∈Args

pOut+(x,AF) ∪
⋃

x∈Args

pConf+(x,AF) ∪
⋃

x∈Args

pUndec+(x,AF)

The next proposition is easily verified (see also [2]).

Proposition 24. Let AF = 〈Args,A〉 be an argumentation framework. Then,
(a) There is a correspondence between the 4-valued models of pADM(AF), the

4-states p-admissible labelings ofAF , and the p-admissible extensions ofAF .
It holds that:

– If ν is a model of pADM(AF) then pV2L(ν) is a p-admissible labeling
of AF and pL2EAF (pV2L(ν)) is a p-admissible extension of AF .

– If lab is a p-admissible labeling of AF then pL2V(lab) is a model of
pADM(AF) and pL2EAF (lab) is a p-admissible extension of AF .

– If E is a p-admissible extension ofAF then pE2LAF (E) is a p-admissible
labeling of AF and pL2V(pE2LAF (E)) is a model of pADM(AF).

(b) There is a correspondence between the 4-valued models of pCMP(AF), the
4-states p-complete labelings of AF , and the p-complete extensions of AF . It
holds that:
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– if ν is a model of pCMP(AF) then pV2L(ν) is a p-complete labeling
of AF and pL2EAF (pV2L(ν)) is a p-complete extension of AF .

– If lab is a p-complete labeling of AF then pL2V(lab) is a model of
pCMP(AF) and pL2EAF (lab) is a p-complete extension of AF .

– If E is a p-complete extension of AF then pE2LAF (E) is a p-complete
labeling of AF and pL2V(pE2LAF (E)) is a model of pCMP(AF).

Example 25. Let AF be the argumentation framework in Example 4, and let ν be a
model of pCMP(AF). If ν(r) = t then since r− = {s}, pIn+(x) dictates that ν(s) = f .
From a similar reason, if ν(r) = f , by pOut+(x), ν(s) = t. Now, pConf+(x) forces
that if ν(r) = > then ν(s) = > as well, and pUndec+(x) forces that if ν(r) = ⊥, so
ν(s)=⊥. Similar considerations determine the possible values of u and g, which yield
the four models of pCMP(AF) shown in Table 3. As indicated in Proposition 24,
these models correspond to the four p-complete labelings of AF (see Example 10)
and the four p-complete extensions of AF .

models p-labelings p-extensions
r s u g r s u g
t f t f in out in out {r,u}
f t f t out in out in {s,g}
> > > > conf conf conf conf {r,s,u,g}
⊥ ⊥ ⊥ ⊥ undec undec undec undec /0

TABLE 3. Models, p-labelings, and p-extensions

Conflict-free 4-valued labelings onto {in,out,off,undec} are represented by the
formulas in Table 2 in a similar way, where this time the truth value > corresponds
to the label off. For instance, the following formulas represent the two conditions in
Definition 16 of JV-labelings:

JV1(x) : potentially-reject(x)⊃∨y∈ x− potentially-accept(y),

JV2(x) : potentially-accept(x)⊃∧ y∈ x+ ∪ x− potentially-reject(y)

Given an argumentation framework AF , let JV1(x,AF) and JV2(x,AF) be the for-
mulas that are obtained from JV1(x) and JV2(x) just as formulas of the formΨ(x,AF)
are obtained from Ψ(x) in the conflict-tolerant case (as described above). Now, con-
sider the following theory:

JV-Lab(AF) =
⋃

x∈Args

JV1(x,AF) ∪
⋃

x∈Args

JV2(x,AF).

Then, we have:
• If ν is a model of JV-Lab(AF) then pV2L(ν) is a JV-labeling of AF .
• If lab is a JV-labeling of AF then pL2V(lab) is a model of JV-Lab(AF).

Representations in 4Flex of BT-labeling functions by formulas expressing the con-
ditions in Definition 18 are very similar to the representations above. We leave this to
the reader.



Ofer Arieli: Four-Valued Semantics for Abstract Argumentation Frameworks 47

5.3. Representation of Other Labelings/Extensions. We now turn to the other la-
beling functions and the corresponding extensions. Given a representation of a com-
plete 4-valued labeling (according to either of the methods described above), repre-
senting the stable labelings (if exist) is rather easy: we just have to make sure that there
are no undec-assignments. For instance, according to the conflict-tolerant approach,
p-stable labelings are obtained by the models of the following theory:

pSTB(AF) = pCMP(AF)∪
{

accept(x)∨ reject(x)∨ conflicting(x) | x ∈ Args
}
.

For standard 2-valued stable labeling one has to strengthen the additional conditions:12

pCMP(AF)∪
{

accept(x)∨ reject(x) | x ∈ Args
}
.

Representation of the grounded and preferred labelings is more tricky in our case,
since their definitions involve minimization and maximization of in-assignments. For
this, we incorporate quantified Boolean formulas (QBFs), and extend the language
with three additional propositional constants t, u and c (in addition to f), representing
the other truth values (and labeling), i.e., for every valuation ν , ν(t) = t, ν(u) = ⊥
and ν(c) =>.13

Quantified Boolean formulas are obtained by extending the underlying proposi-
tional language with universal and existential quantifiers ∀,∃ over propositional vari-
ables. The intuitive meaning of a QBF of the form ∃x∀y ψ , for instance, is that there
exists a truth assignment for the propositional variable (the atomic formula) x such
that for every truth assignment for y, the formula ψ is true. Clearly, every QBF is
associated with a logically equivalent propositional formula.

Definition 26 (Models of QBFs). Let Ψ be a QBF and Γ a set of QBFs.
• An occurrence of x in Ψ is called free, if it is not in the scope of a quantifier Qp,

for Q∈{∀,∃}. We denote byΨ [φ1/x1, . . . ,φn/xn] the simultaneous substitution
of each free occurrence of xi in Ψ by the formula φi, for i=1, . . . ,n.

• The definition of a valuation ν can be extended to QBFs as follows:
– ν(¬ψ) = ¬ν(ψ),
– ν(ψ ◦φ) = ν(ψ)◦ν(φ), where ◦ ∈ {∧,∨,⊃},
– ν(∀x ψ) = ν(ψ[t/x])∧ν(ψ[f/x])∧ν(ψ[c/x])∧ν(ψ[u/x]),
– ν(∃x ψ) = ν(ψ[t/x])∨ν(ψ[f/x])∨ν(ψ[c/x])∨ν(ψ[u/x]).

• Again, we say that a valuation ν is a model of Γ , if ν(Φ) ∈ {t,>} for every
Φ ∈ Γ .

For computing grounded, respectively, preferred labelings, one has to keep only
the complete labelings whose set of in-assignments is minimal, respectively maximal.
For this, we introduce the following QBFs.

Definition 27. Given an abstract argumentation theory AF = 〈Args,A〉 in which
Args = {a1, . . . ,an}, let pCMP(AF) be the theory defined in the previous section

12Since in general stable models may not exist, this theory may not be satisfiable.
13As is shown in Table 2, the propositional constants t, u and c are in fact representable in the language

of {¬,∧,∨,⊃ f}, thus their introduction here is for clarity reasons and not for extending the expressive
power of the language.
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for computing the p-complete extensions ofAF . We denote
∧

ai∈Args pCMP(AF) the
conjunction of the formulas in pCMP(AF). Then,

• Mint(pCMP(AF)) is the following QBF:

∀ x1, . . . ,xn

( ∧

ai∈Args

pCMP(AF)
[
x1/a1, . . . ,xn/an

]
⊃

( ∧

ai∈Args,1≤i≤n

(
accept(xi)⊃ accept(ai)

)
⊃

∧

ai∈Args,1≤i≤n

(
accept(ai)⊃ accept(xi)

)))
.

• Maxt(pCMP(AF)) is the following QBF:

∀ x1, . . . ,xn

( ∧

ai∈Args

pCMP(AF)
[
x1/a1, . . . ,xn/an

]
⊃

( ∧

ai∈Args,1≤i≤n

(
accept(ai)⊃ accept(xi)

)
⊃

∧

ai∈Args,1≤i≤n

(
accept(xi)⊃ accept(ai)

)))
.

Accordingly, we denote:

pGRD(AF) = pCMP(AF) ∪ {Mint(pCMP(AF))},
pPRF(AF) = pCMP(AF) ∪ {Maxt(pCMP(AF))}.

Proposition 28. Let AF = 〈Args,A〉 be an argumentation framework. Then:
(a) If ν is a model of pGRD(AF) (respectively, a model of pPRF(AF)), then pV2L

(ν) is a p-grounded (respectively, p-preferred) labeling of AF , and pL2EAF
(pV2L(ν)) is a p-grounded (respectively, p-preferred) extension of AF .

(b) If lab is a p-grounded (respectively, p-preferred) labeling ofAF , then pL2V(lab)
is a model of pGRD(AF) (respectively, a model of pPRF(AF)), and pL2EAF
(lab) is a p-grounded (respectively, p-preferred) extension of AF .

(c) If E is a p-grounded (respectively, p-preferred) extension ofAF then pE2LAF (E)
is a p-grounded (respectively, p-preferred) labeling of AF , and pL2V(pE2LAF
(E)) is a model of pGRD(AF) (respectively, a model of pPRF(AF)).

Proof. Let ν be a model of pGRD(AF) (respectively, let ν be a model of pPRF(AF)).
In particular, ν satisfies pCMP(AF), thus by Proposition 24, pV2L(ν) is a p-complete
labeling ofAF . Moreover, Mint(pCMP(AF)) (respectively, Maxt(pCMP(AF))) as-
sures that there is no other model µ of pCMP(AF) such that {x | µ(x) = t} ( {x |
ν(x) = t} (respectively, {x | ν(x) = t}( {x | µ(x) = t}). It follows that In(pV2L(ν)) is
⊆-minimal (respectively,⊆-maximal) among the corresponding sets of the p-complete
labelings of AF . Thus, pV2L(ν) is a p-grounded (respectively, p-preferred) labeling
of AF . The proofs of the other claims in the proposition are similar. /

Note 29 (Representation of standard 3-valued semantics of AAFs). Let
∧

ai∈Args SEM
(AF) be the conjunction of the formulas in a theory SEM(AF), and let Min>(SEM
(AF)) be a QBF similar to Mint(pCMP(AF)), except that

∧
ai∈Args SEM(AF) re-

places
∧

ai∈Args pCMP(AF) and every occurrence of accept(·) is replaced by conflic-
ting(·). Then,

CMP(AF) = pCMP(AF) ∪ {Min>(pCMP(AF))}
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represents the conf-free p-complete labelings of AF , which by Note 14 are the (stan-
dard, 3-valued) complete labelings of AF in the sense of Definition 5. Similarly,

GRD(AF) = pGRD(AF) ∪ {Min>(pGRD(AF))}
represents the conf-free p-grounded labeling of AF , which by the same note is the
grounded labeling of AF according to Definition 5. Thus, if ν is the model of
GRD(AF) then pV2L(ν) is the grounded labeling of AF and {a ∈ Args | ν(a) = t}
is the grounded extension of AF .

Using the theory CMP(AF), another representation of the grounded semantics is
obtained by the model of CMP(AF) ∪ {Mint(CMP(AF))}. This immediately fol-
lows from the definition of the grounded extension and the grounded labeling as the⊆-
minimal complete extension and the complete labeling with minimal in-assignments,
respectively.14 Likewise, if ν is a model of

PRF(AF) = pPRF(AF) ∪ {Min>(pPRF(AF))}
then pV2L(ν) is a preferred labeling of AF (again, in the sense of Definition 5) and
{a ∈ Args | ν(a) = t} is a preferred extension of AF . The 3-valued preferred exten-
sions/labelings may also be represented by the models of CMP(AF) ∪ {Maxt(CMP
(AF))}, as follows from their definitions. Also, if ν is a model of

STB(AF) = pSTB(AF) ∪ {Min>(pSTB(AF))}
then pV2L(ν) is a stable labeling ofAF and {a∈Args | ν(a) = t} is a stable extension
of AF . As we have noted previously, stable labelings may also be obtained by the
models of pCMP(AF)∪

{
accept(x)∨ reject(x) | x ∈ Args

}
.

In fact, the combination of formulas in extended FDE and QBFs expressing mini-
mization and maximization requirements allows us to represent other types of standard
3-valued labelings, such as ideal labelings, eager labelings and semi-stable labelings
(see [6; 7]). For instance, lab is a semi-stable labeling of AF , if Undec(lab) is min-
imal in {Undec(l) | l is a complete labeling of AF}. A possible representation of
such a labeling would be by the theory

SSTB(AF) = CMP(AF) ∪ {Min⊥(CMP(AF))}
where Min⊥(CMP(AF)) is a QBF similar to Min>(CMP(AF)), except that every
occurrence of conflicting(·) is replaced by undecided(·).

Different representations of these labelings using QBFs may be found, e.g., in Arieli
and Caminada [5], Diller et al. [20]. A survey on other logical theories for standard,
3-valued semantics of abstract argumentation appears in Besnard et al. [10].

Representations of the conflict-free semantics described in Section 4 are similar to
the representations above of conflict-tolerant semantics. For instance, given a theory
btCMP(AF) for representing the complete BT-labelings ofAF , grounded, preferred,
and stable BT-labelings are represented by respectively adding to btCMP(AF) the

14As shown e.g., in Dunne and Wooldridge [28], and Modgil and Caminada [37], there are simpler
and computationally easier (in fact, polynomial) methods for computing the grounded extension and the
grounded labeling of an AAF. Yet, our purpose in this paper is to show a uniform representation of various
semantics of AAFs in various contexts. In some cases such a uniform representation is more computation-
ally demanding.
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QBFs Mint(btCMP(AF)), Maxt(btCMP(AF)), and the set of formulas {accept(x)∨
reject(x)∨ excluded(x) | x ∈ Args}. In the notations of Definition 17, ROS-labelings
ofAF = 〈Args,A〉 are computed by iterating over the subsets E ⊆ Args, assigning off
to (the atomic variables that are associated with) their elements, and computing the
models of GRD(AF↑E), whereAF↑E is the argumentation frameworkAF , restricted
to the arguments in Args\E .

Note 30. It is usually rather easy to express argumentation dynamics or domain-
specific constraints by the theories described above. For instance, in the tennis-
doubles problem (Example 20), the constraint that Djokovic must play either with
Nadal or with Federer may be enforced by adding the formula accept(a)∨ accept(c)
to the theory.

6. CONCLUSION

In [8] it is claimed that Dunn–Belnap 4-valued logic is useful for representing
monotonic computerized reasoning in the presence of contradictions. In turn, argu-
mentation theory has been used, among others, for modeling non-monotonic reason-
ing for handling conflicts. This paper provides another evidence that, in fact, 4-valued
FDE and its extensions are useful for representing both kinds of reasoning.15

Formal argumentation sometimes involves extra machinery for extending the ex-
pressive power of the frameworks. This includes, among others, additions of pref-
erences among arguments (Kaci et al. [36]) and attacks (Bistarelli and Santini [12]),
enabling of different attack relations (as in abstract dialectical frameworks, ADFs, see
Brewka et al. [14]), incorporation of several interactions between arguments (Cayrol
et al. [17]), and introduction of probabilities (Hunter et al. [33]).16 Clearly, repre-
senting such extended frameworks and reasoning with them call upon corresponding
enhancements of the underlying formal logics.17 This is a subject for future work.
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[22] Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games, Artificial Intelligence
77: 321–357.

[23] Dunn, J. M. (1966). The Algebra of Intensional Logics, PhD thesis, University of Pitts-
burgh. (Published as Logic PhDs, volume 2, College Publications, London, UK, 2019).

[24] Dunn, J. M. (1976). Intuitive semantics for first-degree entailments and ‘coupled trees’,
Philosophical Studies 29: 149–168.

[25] Dunn, J. M. (2000). Partiality and its dual, Studia Logica 66(1): 5–40.
[26] Dunn, J. M. (2010). Contradictory information: Too much of a good thing, Journal of

Philosophical Logic 39(4): 425–452.
[27] Dunn, J. M. and Kiefer, N. M. (2019). Contradictory information: Better than noth-

ing? The paradox of the two firefighters, in C. Başkent and T. M. Ferguson (eds.), Gra-
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ON FORMAL CRITERIA FOR RELEVANCE

Arnon Avron

ABSTRACT. We introduce and investigate the strong variable-sharing property, to-
gether with some other generalizations of this property. Then we show that the rel-
evance logics R and RMI, as well as the multiplicative-additive fragment of Linear
Logic, enjoy all these generalizations.

Keywords. Consequence, Relevance logics, Variable-sharing properties

1. THREE ABSTRACT VARIABLE-SHARING PROPERTIES

When does a given formal propositional logic L deserve to be classified as a rel-
evance logic? In the canonical literature on the subject (like Anderson and Belnap
[1]; Dunn and Restall [11]) we practically find only one clear, universally agreed upon,
formal criterion:

Definition 1. A propositional logic L with an implication → has the variable shar-
ing property (VSP) if Atoms(ϕ)∩Atoms(ψ) 6= /0 whenever `L ϕ → ψ . (Atoms(ϕ)
denotes here the set of atomic formulas, or propositional variables, that occur in ϕ .)

Note 2. Actually, in addition to propositional variables, the atomic formulas of a given
propositional logic might include propositional constants as well. However, I was
unable to find in the literature an answer to the question whether a logic like Rt (the
extension of the relevance logic R with the propositional constant t) has the VSP or
not. (Both Dunn and Bimbó argue in personal communications that this specific logic
does. The main reason is that the standard interpretation of t is as the conjunction of
all logical theorems. Hence, it should be viewed as involving all the variables.) For
simplicity, in this paper we assume therefore that we deal only with logics which have
no propositional constants.

What is the justification of the VSP criterion as given in Definition 1? In particular,
why not to demand instead, e.g., that Atoms(ϕ)∩Atoms(ψ) 6= /0 whenever `L ϕ ∧
ψ , or whenever `L ϕ ∨ψ? The answer relies on the demand (made in passing in
Definition 1) that → is an implication for L. This usually means that it satisfies at
least the following (minimal) condition:

(1) ϕ `L ψ iff `L ϕ → ψ
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The intuition behind the VSP is indeed that ψ may logically follow from ϕ only if
there is some connection between the content of ϕ and the content of ψ . Now the
only way to secure this in an abstract formal propositional logic L is to demand the
following:

Definition 3. A propositional logic L has the abstract variable sharing property
(AVSP) if Atoms(ϕ)∩Atoms(ψ) 6= /0 whenever ϕ `L ψ .

Obviously, the AVSP is equivalent to the standard VSP in case→ satisfies (1), but
it is the AVSP which has the priority.1

The AVSP (on which the usual VSP is based) is a pure condition about `L, the con-
sequence relation of L. Here, however, we face a difficulty: if `L is a consequence
relation according to the following standard meaning of this notion, then it cannot
have the AVSP.

Definition 4. A (Tarskian) consequence relation (tcr) for a language L is a binary
relation ` between theories in L and formulas in L, satisfying the following three
conditions:

[R] Reflexivity: ψ ` ψ (i.e., {ψ} ` ψ).

[M] Monotonicity: If T ` ψ and T ⊆ T ′, then T ′ ` ψ .

[C] Cut (Transitivity) : If T ` ψ and T ′,ψ ` ϕ then T ,T ′ ` ϕ .

Definition 4 immediately implies that if L has any logically valid formula ψ , then
[M] implies that ϕ `L ψ for every ϕ , and so the AVSP fails. It follows that if L is a tcr
for which (1) holds, then it cannot have the VSP. Indeed, [R] and (1) together entail
that `L ϕ → ϕ for every ϕ . Therefore, [M] entails that ψ `L ϕ → ϕ for every ϕ and
ψ . Hence `L ψ → (ϕ → ϕ) for every ϕ and ψ .

How may relevance logics overcome this difficulty, while retaining the VSP with
respect to some connective→ which might deserve to be called an “implication”? A
very reasonable option is to replace (1) by the following weaker condition on→:

(2) ϕ `L ψ iff either `L ϕ → ψ or `L ψ.

Obviously, if→ satisfies (2) in L, and the latter has the VSP with respect to→ then
L satisfies the following general principle, whose formulation is independent of the
availability in L of any special connective.

(3) If ϕ `L ψ then either Atoms(ϕ)∩Atoms(ψ) 6= /0 or `L ψ.

Since we are dealing now with conditions on the consequence relation of L, it seems
unjustified to stick to the case in which there is a single premise. In fact, the following
immediate generalization of (3) to the case in which there is a (finite) set Γ of premises
seems no less intuitive:

(4) If Γ `L ψ then either
⋃
{Atoms(ϕ) | ϕ ∈ Γ }∩Atoms(ψ) 6= /0 or `L ψ.

A further obvious generalization treats cases in which some of the premises are rele-
vant to the conclusion, and some are not.

1Note that the AVSP is applicable also for logics which have no implication, like Rfde, the {¬,∧,∨}-
fragment of the relevance logic R.
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Definition 5 (Avron [7]; Avron et al. [9]). A logic L = 〈L,`L〉 satisfies the basic
relevance criterion if for every two theories T1,T2 and formula ψ , we have:

If T1,T2 `L ψ then either Atoms(T2)∩Atoms(T1∪{ψ}) = /0 or T1 `L ψ,

(where Atoms(T ) =⋃{Atoms(ϕ) | ϕ ∈ T }).

2. THE STRONG VARIABLE-SHARING PROPERTY

Can the basic relevance criterion be reduced to a condition concerning a single
sentence, like the VSP? It can, provided that in addition to an implication connective
→ which satisfies the above-mentioned condition, L also has a conjunction ∧, so that
Γ ,θ ,ϕ `L ψ is equivalent to Γ ,θ ∧ϕ `L ψ . With→ and ∧ at our disposal, the basic
relevance criterion can be reformulated as follows.

Definition 6. A logic L = 〈L,`L〉 has the strong variable sharing property (strong
VSP) with respect to the connectives→ and ∧ if the following condition is satisfied
(where θ ∧ϕ → ψ abbreviates (θ ∧ϕ)→ ψ):
• If `L θ ∧ϕ → ψ , and the sentences θ and ϕ → ψ share no atomic formula,

then `L ϕ → ψ .

Proposition 7. Let L be a finitary logic. Assume that→ and ∧ are binary connectives
of L that satisfy the following conditions:

1. ϕ `L ψ iff `L ϕ → ψ .
2. Γ ,θ ,ϕ `L ψ iff Γ ,θ ∧ϕ `L ψ .

If L has the strong VSP with respect to→ and ∧ then it satisfies the basic relevance
criterion.

Proof. By repeated applications of item 2 we get:2

(?) If ϕ1, . . . ,ϕn `L ψ then ϕ1∧·· ·∧ϕn `L ψ .

Suppose now that T1,T2 `L ψ , and Atoms(T2)∩Atoms(T1 ∪{ψ}) = /0. Since L is
finitary, it follows that there are Γ1 ⊆ T1 and Γ2 ⊆ T2 such that Γ1,Γ2 `L ψ . Let θ
be the conjunction of all the formulas in Γ2 and let ϕ be the conjunction of all the
formulas in Γ1. Then θ ∧ϕ `L ψ . Hence `L θ ∧ϕ → ψ by item 1. Since θ and
ϕ → ψ share no atomic formula, it follows by the strong VSP that `L ϕ → ψ . By the
“if” directions of items 1 and 2 it follows that Γ1 `L ψ , and so T1 `L ψ as well. /

Is the strong VSP really stronger than the VSP? It is, at least under certain rather
weak conditions.

Proposition 8. Let L be a logic in a language which contains→, ∧, and ¬, for which
the following conditions are satisfied:

1. If `L ϕ → ψ and `L ϕ , then `L ψ .
2. `L ϕ → ϕ for every ϕ .

2From item 2 it easily follows that ϕ ∧ (ψ ∧ θ) `L (ϕ ∧ψ)∧ θ and that (ϕ ∧ψ)∧ θ `L ϕ ∧ (ψ ∧ θ).
This allows us to use in the sequel the notation ϕ1 ∧ ·· ·∧ϕn for the conjunction of ϕ1, . . . ,ϕn, since in the
contexts in which we will use this notation, it does not matter how the brackets inside this expression are
put. (Officially, we may take ϕ1 ∧ϕ2 ∧·· ·∧ϕn as a short for ϕ1 ∧ (ϕ2 ∧ (· · ·∧ϕn) . . .).)
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3. If `L ϕ → ψ then `L ϕ ∧θ → ψ .
4. If `L ϕ → ψ then `L ¬ψ →¬ϕ .
5. There is no ϕ such that both `L ϕ and `L ¬ϕ .

If L has the strong VSP with respect to → and ∧ then it also has the VSP with res-
pect to→.

Proof. Suppose `L ϕ → ψ , where ϕ and ψ share no atomic formula. Let p and q be
two distinct variables not occurring in ϕ → ψ . Then `L ϕ ∧ (p→ p)→ ψ by 3, and
so `L (p→ p)→ ψ by strong VSP. By 4, it follows that `L ¬ψ →¬(p→ p), and so
(by 3 again) `L ¬ψ ∧ (q→ q)→¬(p→ p). By another application of strong VSP we
get `L (q→ q)→¬(p→ p), and so `L ¬(p→ p) by 1 and 2. Since `L (p→ p) as
well (by 2), this contradicts 5. /

Example 9. Dunn’s semi-relevance logic RM satisfies all the conditions given in
Proposition 8, and it does not have the VSP. (See [1] or Avron [8].) Hence it does not
have the strong VSP either.3

Example 10. That the conditions about ¬ in Proposition 8 cannot be omitted is
demonstrated by CL+ and J+, the positive fragments (i.e., the {→,∧,∨}-fragments)
of classical logic (CL) and intuitionistic logic (J), respectively. It is well known, e.g.,
that `CL+ ϕ→ ψ only if either `CL+ ψ or ϕ and ψ share a variable. From this (using
that if `CL+ ϕ ∧θ → ψ then `CL+ ϕ → (θ → ψ)) it easily follows that CL+ has the
strong VSP. In contrast, it does not have the VSP, since `CL+ p→ (q→ q). (The
reasoning in the case of J+ is similar.)

It might be worth noting that there is a simpler, but less natural, set of conditions
under which the strong VSP implies VSP.

Proposition 11. Let L be a logic in a language which contains→ and ∧, for which
the following conditions are satisfied:

1. If `L ϕ → ψ then `L ϕ ∧θ → ψ .
2. There is no ψ such that `L θ → ψ for every θ .

If L has the strong VSP with respect to → and ∧ then it also has the VSP with res-
pect to→.

Proof. Suppose `L ϕ → ψ , where ϕ and ψ share no atomic formula. Let p be a
variable not occurring in ϕ → ψ . Then `L ϕ ∧ p→ ψ by 1, and so `L p→ ψ by
strong VSP. Since L is a logic, its consequence relation `L is structural. Therefore,
the facts that `L p→ψ and that p does not occur in ψ imply that `L θ →ψ for every
θ . This contradicts 2. /

3. WHAT IS THE CONSEQUENCE RELATION OF R?

The main goal of this paper is to find out whether relevance logics (and especially
R, the logic taken in [11] as the “paradigm of a relevance logic”) indeed satisfy the
basic relevance criterion. But since this is a criterion about the consequence relation

3RM does have what Dunn has called the “weak relevance principle.” If `RM ϕ→ ψ then either ϕ and
ψ share a variable, or both `RM ¬ϕ and `RM ψ . (See [1, Section 29.4.].)
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of the logics, not just about their sets of theorems, we have first to decide what is
the consequence relation of those relevance logics. Unfortunately, the answer to this
question is rather unclear. As shown in Avron [6], one can find in the relevant literature
(at least) three different plausible candidates. Here they are in the case of R:
`i

R: This is the tcr which results by trying to make → a full relevant implication,
that is, by generalizing (2) to

Γ ,ϕ `L ψ iff either Γ `L ϕ → ψ or Γ `L ψ.

For this we define: T `i
R ψ iff there exist ϕ1,ϕ2, . . . ,ϕn ∈ T such that

`R ϕ1→ (ϕ2→ (· · ·(ϕn→ ψ) · · ·)).
`e

R: This is the relation which results by trying to reduce the multiple-premise case
to the single-premise one by using ∧, the official conjunction of R. For this we
define: T `e

R ψ iff there exist ϕ1, . . . ,ϕn ∈ T such that

`R ϕ1∧·· ·∧ϕn→ ψ

`H
R : This is the natural relation which is induced by the Hilbert-type system HR by

which R is defined in [1] and [11]. In other words, T `H
R ψ iff there is finite list

of formulas such that every element of which is an axiom of HR, or belongs to
T , or is derivable from two previous elements of the list by one of the inference
rules of HR ([MP] for→, or the adjunction rule [Ad] for ∧).

It is rather easy to see that if we take `R to be `i
R, then the basic relevance criterion

for R follows from the VSP (that R is known to enjoy). However, this choice is rather
unnatural (and uninteresting too). Thus the following inferences should intuitively be
valid, but they fail if `R = `i

R.

1. ϕ `R (ϕ ∧θ)∨ (ϕ ∧¬θ)4

2. ϕ,ψ `R ϕ ∧ψ
3. ϕ,ψ,ϕ ∧ψ → θ `R θ
4. ϕ → ψ `R ϕ → (ϕ ∧ψ)

In addition, the failure of the second inference in this list means that [Ad] is taken
in `i

R only as a rule of proof. In view of the extensional nature of ∧, I find it extremely
difficult to justify this limitation.

In contrast to `i
R, the adjunction rule is valid without any limitation for `e

R, and so
is the third inference in the above list. However, the first and forth inferences still fail.
This means that `e

R is not really a tcr, since, e.g., `e
R ϕ → ϕ and ϕ → ϕ,ϕ → ψ `e

R
ϕ → (ϕ ∧ψ), while ϕ → ψ 0e

R ϕ → (ϕ ∧ψ).
This leaves us with `H

R . This choice does not suffer from the drawbacks of the
other two choices. Thus, 1–4 are all valid if we identify (as we do from now on) `R
with `H

R . There is one problem, though. The definition of `H
R depends on the choice of

the system HR which is used for defining R. The next theorem provides an equivalent
definition, which depends only on the set of theorems of R. For its proof we need the
following lemma.

4This is not a valid fde (first-degree entailment). Hence some relevantists might deny that it is intuitively
valid. I strongly believe that it is.
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Lemma 12. Let S be a finite set of propositional variables, and let tS be the conjunc-
tion of all the formulas p→ p, where p ∈ S. Then `R tS→ (ϕ → ϕ) for every ϕ such
that Atoms(ϕ)⊆ S.5

Proof. A straightforward induction on the structure of ϕ . /

Theorem 13. T `R ψ iff there exist ϕ1, . . . ,ϕn ∈ T and a theorem θ of R s.t.

`R ϕ1∧·· ·∧ϕn∧θ → ψ
This θ can be taken as the conjunction of all formulas of the form p→ p, where p is
an atom that occurs in ϕ1∧·· ·∧ϕn→ ψ .6

Proof. The “if” part is easy, and is left to the reader.
For the converse, assume that T `R ψ . Let d = ψ1, . . . ,ψk = ψ be a derivation

in R of ψ from T , and let ϕ1, . . . ,ϕn (n ≤ k) be the elements of T that occur in d.
Without loss in generality, we may assume that the only atoms that occur in d are from
S =Atoms(ϕ1∧·· ·∧ϕn→ψ). (Otherwise, we can simply replace in d other atoms by
atoms from this set and get another derivation in R of ψ from T , which does have the
required property.) Let θ be the conjunction of all formulas of the form p→ p, where
p∈ S. We prove by induction on i that `R ϕ1∧·· ·∧ϕn∧θ →ψi. The case where ψi ∈
T is trivial, while the case where ψi is an axiom of HR easily follows from Lemma 12,
using the implicational axioms of HR. The two induction steps (corresponding to the
two inference rules of HR) are rather easy, using the implication-conjunction fragment
of HR. Details are left for the reader. /

Note 14. Let HR+
b be the Hilbert-type system in the language of {→,∧,∨} which

is obtained from HR by deleting the contraction axiom, the distribution axiom, and
the negation axioms. Let HRb be the Hilbert-type system in the language of {→,
∧,∨,¬} that is obtained from HR+

b by adding as an additional axiom the schema
(ϕ → ψ)→ (¬ψ →¬ϕ). By checking the proof of Theorem 13 (including the proof
of Lemma 12), we see that it applies as is to any logic L which can be axiomatized by
adding axiom schemes in their languages to HR+

b or to HRb.

Corollary 15. Any logic L of the type described in Note 14 (including of course R
itself) which has the strong VSP (as we show later that R does) satisfies the basic
relevance criterion.

Proof. Suppose that T1,T2 `L θ , and Atoms(T2)∩Atoms(T1∪{θ}) = /0. Then there
are ϕ1, . . . ,ϕn ∈ T2, ψ1, . . .ψk ∈ T1 such that ϕ1, . . . ,ϕn,ψ1, . . .ψk `L θ , and {p1, . . . ,
pm}∩{q1, . . . ,ql}= /0, where {p1, . . . , pm}=Atoms({ϕ1, . . . ,ϕn}) and {q1, . . . ,ql}=
Atoms({ψ1, . . .ψk,θ}). Therefore, Theorem 13 and Note 14 imply that `L (ϕ1 ∧
·· ·∧ϕn∧ϕ∗)∧ (ψ1∧ ·· ·∧ψk ∧ψ∗)→ θ , where ϕ∗ = (p1→ p1)∧ ·· ·∧ (pm→ pm),
and ψ∗ = (q1 → q1)∧ ·· · ∧ (ql → ql). Hence the strong VSP of R entails that `L
(ψ1∧·· ·∧ψk ∧ψ∗)→ θ , and so ψ1, . . .ψk `L θ , implying that T1 `L θ . /

5This lemma is implicit in Anderson et al. [2, Section 45.2]. Essentially, it has first been proved by
Ackermann. Later it was reproved in several places, like Dunn’s Ph.D. thesis [10] and Maksimova’s Ph.D.
thesis.

6This is a t-free version of what is called in [11] the “enthymematic deduction theorem,” originally due
to Meyer et al. [12].
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4. SOME IMPORTANT EXAMPLES

4.1. Multiplicative-additive Linear Logic.

Theorem 16. Let LL−ma be the multiplicative-additive fragment of Linear Logic, with-
out the propositional constants. LL−ma has the strong VSP.

Proof. For the proof we need the following fact: If Γ1⇒∆1 and Γ2⇒∆2 are both
non-empty (i.e., they are not the empty sequent ⇒), and `GLL−ma

Γ1,Γ2⇒ ∆1,∆2,
where GLL−ma is the standard Gentzen-type system of LL−ma, then Atoms(Γ1⇒∆1)∩
Atoms(Γ2⇒∆2) 6= /0. (This well-known fact can be proved by a straightforward induc-
tion on the structure of cut-free proofs in GLL−ma. Alternatively, it suffices to note that
from Γ1,Γ2⇒∆1,∆2 one can easily derive in GLL−ma a sequent of the form⇒ϕ → ψ ,
where Atoms(ϕ) = Atoms(Γ1⇒∆1) and Atoms(ψ) = Atoms(Γ2⇒∆2). Hence the
claim follows from the VSP for LL−ma. The letter, in turn, follows from the VSP for R.)

Next we prove by induction on the structure of cut-free proofs in GLL−ma that if
`GLL−ma

ϕ ∧ψ,Γ⇒∆ , where Γ⇒∆ is non-empty, and Atoms(ϕ)∩Atoms(Γ⇒∆) =

/0, then `GLL−ma
ψ,Γ ⇒ ∆ . Since contraction is not among the structural rules of

GLL−ma, the induction is rather easy. The only interesting case is the one in which
the last step in the derivation of ϕ ∧ψ,Γ⇒∆ introduces the indicated ϕ ∧ψ . In gen-
eral, the premise of this step can be in this case either ϕ,Γ⇒∆ or ψ,Γ⇒∆ . However,
the fact mentioned above excludes the first possibility. Hence we get that the given
derivation of ϕ ∧ψ,Γ ⇒∆ includes a derivation of ψ,Γ ⇒∆ .

The rest the proof in now easy. Suppose that `LL−ma
θ ∧ϕ → ψ . This means that

`GLL−ma
⇒θ ∧ϕ → ψ , and so `GLL−ma

θ ∧ϕ⇒ψ . If in addition the sentences θ and
ϕ → ψ share no atomic formula, then the claim that we have just proved entails that
`GLL−ma

ϕ⇒ψ , and so `LL−ma
ϕ → ψ . /

Corollary 17. LL−ma satisfies the basic relevance criterion.

Proof. Immediate from Theorem 16 and Corollary 15. /

4.2. The Relevance Logic R. Since no useful analytic proof system is known for the
whole of R, the proof that it has the strong VSP is far more difficult than in the case
of LL−ma, and uses R’s ternary-relation semantics of R-frames. We assume that the
reader is acquainted with this semantics (as presented, e.g., in [11]). To apply it, we
need first a definition and two easy lemmas.

Definition 18. Let F and G be R-frames. F×G is the ternary frame in which
1. Dom(F×G) = Dom(F)×Dom(G).
2. RF×G(〈a1,b1〉,〈a2,b2〉,〈a3,b3〉) iff RF(a1,a2,a3) and RG(b1,b2,b3).
3. 0F×G = 〈0F ,0G〉.
4. 〈a,b〉∗ = 〈a∗,b∗〉.

Lemma 19. If F and G are R-frames, then so is F×G.

Lemma 20. Let F and G be R-frames, and let v and v∗ be valuations in F and F×G,
respectively. Suppose that ∀a∀b(〈a,b〉 �v∗

F×G p⇔ a �v
F p) for every p ∈ Atoms(ϕ).

Then ∀a∀b(〈a,b〉 �v∗
F×G ϕ ⇔ a �v

F ϕ).
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The proofs of the two lemmas are straightforward (and left for the reader).

Theorem 21. R has the strong VSP (with respect to its connectives→ and ∧).

Proof. Suppose that Atoms(θ)∩Atoms(ϕ → ψ) = /0, while 0R ϕ → ψ . The second
assumption implies that there is an R-frame G, together with a set-up b and a valuation
vG in it, such that b �vG

G ϕ , and b 2vG
G ψ . In addition, the fact that R has the VSP for

→ (which entails that 0R θ → q in case q /∈ Atoms(θ)) implies that there is an R-
frame F , together with a set-up a and a valuation vF in it, such that a �vF

F θ . Define a
valuation v on F×G by

v(〈x,y〉, p) =
{

vF(x, p) if p ∈ Atoms(θ)
vG(y, p) otherwise.

From Lemma 19 and Lemma 20, it follows that F ×G is an R-frame, in which
〈a,b〉 �v

F×G θ ; 〈a,b〉 �v
F×G ϕ; 〈a,b〉 2v

F×G ψ . Hence 〈a,b〉 2v
F×G θ ∧ϕ → ψ . There-

fore, 0R θ ∧ϕ → ψ . /

Note 22. The same proof would work for any other relevance logic L for which
Lemma 19 (with L instead of R) is true.

Corollary 23. R satisfies the basic relevance criterion.

Proof. Immediate from Theorem 21 and Corollary 15. /

4.3. The Purely Relevance Logic RMI. RMI is a logic in the language of R that
was introduced in Avron [3, 4, 5]. (See also Chapter 14 of [9].) Since it is less known
than R and LL, we review here some relevant information about it that can be found
in the above cited sources. First, there are several ways of axiomatizing RMI. The
simplest among them is perhaps the Hilbert-type system HRMI, which is obtained
from the standard axiomatization HR of R by the following three changes:

1. Add the mingle axiom: ϕ → (ϕ → ϕ).
2. Add to the adjunction rule of HR (from ϕ and ψ infer ϕ ∧ψ) a third premise:

R(ϕ,ψ), where the latter is some sentence which says that ϕ and ψ are relevant
to each other. Two such sentences are (ϕ → ϕ)∧ (ψ → ψ) and (ϕ → ϕ)+
(ψ → ψ) (where ϕ +ψ abbreviates ¬ϕ → ψ).

3. Turn the distributivity axiom ϕ∧(ψ∨θ)→ (ϕ∨ψ)∧(ϕ∨θ) of HR into a rule
in which R(ψ,θ) is the single premise.

From the relevance point of view, RMI has some rather appealing properties. (See
Chapters 13–14 in [9], especially Section 14.3). As argued in [6], those properties
make it a prime candidate for being chosen as the most appropriate relevance logic.
Here are some of them.

1. RMI has a very intuitive semantics. In fact, it is strongly sound and complete
for a certain general family of matrices, which is based on the following rather
intuitive ideas.

(i) Propositions are divided into “domains of discourse.”
(ii) The domains are partially ordered according to certain “degrees of pri-

ority” or “degrees of dependency.” This partial order induces a hierar-
chical, tree-like structure, in which the root has the highest “degree of
priority,” and a leaf the lowest one.
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(iii) Each domain has its own truth-values. Usually it has two, correspond-
ing to the classical truth-values, and classical logic is valid within it.
However, domains which are leaves of the tree of domains may be de-
generate, having just one truth-value I, with the intended meaning of
“inconsistent,” or “both true and false.”

(iv) Two propositions are relevant to each other iff their associated domains
are related by the grading relation. Both→ and ∧ produce a false propo-
sition whenever they are applied to propositions which are not relevant
to each other.

2. RMI has the VSP with respect to both→ and ∧.
3. RMI is purely relevant: it has no extensional connectives.
4. Unlike R, E, T and the other main relevance logics, RMI is decidable.
5. RMI has a corresponding cut-free hypersequential Gentzen-type system.

Among the family of matrices for RMI, there is one which is particularly useful,
since RMI is strongly sound and complete relative to it. (See [9].)

Definition 24. The matrix SA for the language {¬,∧,∨,→} is 〈SA,DSA,O〉 where:

1. SA = [0,1]×{ f , t, I1, I2, I3, . . .}.
If v= 〈x,a〉 ∈ SA then x is called the degree of v and is denoted by deg(v), while
a is called the value of v and is denoted by val(v).

2. DSA = [0,1]×{t, I1, I2, I3, . . .}.
3. The operations in O are defined as follows:

Negation: ¬̃〈x, t〉= 〈x, f 〉 ¬̃〈x, f 〉= 〈x, t〉 ¬̃〈x, Ik〉= 〈x, Ik〉
Implication: deg(u→̃v) = min{deg(u),deg(v)}

val(u→̃v) =





Ik u = v and val(u) = Ik

t deg(u)≤ deg(v) and val(u) = f
t deg(v)≤ deg(u) and val(v) = t
f otherwise.

Conjunction and disjunction: Let u� v if either u = v, or dom(u)≤ dom(v)
and val(u) = f , or dom(v)≤ dom(u) and val(v) = t. Then

(i) u∧ v is u if u � v, v if v � u, and 〈inf�{dom(u),dom(v)}, f 〉 otherwise
(i.e., if u and v are not relevant);

(ii) u∨ v is v if u � v, u if v � u, and 〈inf≤{dom(u),dom(v)}, t〉 otherwise
(i.e., if u and v are not relevant).

We can now prove:

Theorem 25. RMI has the strong VSP (with respect to→ and ∧).

Proof. Suppose that Atoms(θ)∩Atoms(ϕ→ψ)= /0, while 0RMI ϕ→ψ . The second
assumption implies that there is a valuation ν in SA such that val(ν(ϕ→ψ))= f . We
define a valuation ν? in SA such that val(ν?(θ ∧ϕ→ ψ)) = f . We let ν?(p) = ν(p)
for each p /∈ Atoms(θ). This insures that ν?(ϕ) = ν(ϕ) and ν?(ψ) = ν(ψ). For
p ∈ Atoms(θ) we define ν?(p) according to the reason why val(ν(ϕ → ψ)) = f .

Let deg(ν(ϕ)) = a, deg(ν(ψ)) = b.
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1. ν(ϕ) and ν(ψ) are irrelevant (i.e., neither ν(ϕ) ≤ ν(ψ) nor ν(ψ) ≤ ν(ϕ)).
In this case, we let ν?(p) = ν(ϕ) for every p ∈ Atoms(θ). This implies that
ν?(θ) ∈ {ν(ϕ),ν(¬ϕ)}, and the same applies to θ ∧ϕ . It follows that ν?(θ ∧
ϕ) and ν?(ψ) are irrelevant too. Hence val(ν?(θ ∧ϕ → ψ)) = f .

2. a > b, and val(ν(ϕ)) = t. In this case, we let ν?(p) = 〈a, I1〉 for every p ∈
Atoms(θ). This implies that ν?(θ ∧ϕ) = ν?(θ) = 〈a, I1〉. Hence, ν?(θ ∧ϕ)
and ν?(ψ) are irrelevant, implying that val(ν?(θ ∧ϕ → ψ)) = f .

3. a = b, val(ν(ϕ)) = t, and val(ν(ψ)) = f . In this case, we again let ν?(p) =
〈a, I1〉 for every p ∈ Atoms(θ), and this implies that ν?(θ ∧ ϕ) = ν?(θ) =
〈a, I1〉. Since in this case ν?(ψ) = 〈a, f 〉, we again get that val(ν?(θ ∧ϕ →
ψ)) = f .

4. a < b and val(ν(ψ)) = f . In this case, we let ν?(p) = ν(ϕ) for every p ∈
Atoms(θ). This implies that ν?(θ) ∈ {ν(ϕ),ν(¬ϕ)}, and the same applies
to θ ∧ϕ . It follows that deg(ν(θ ∧ϕ)) = a, ν?(ψ) = 〈b, f 〉. Since a < b, it
follows that ν?(θ ∧ϕ → ψ) = 〈b, f 〉 too.

It follows that in all the possible cases we get that val(ν?(θ ∧ϕ → ψ)) = f . Hence
0RMI θ ∧ϕ → ψ . /

Now, the variable-sharing property that RMI has with respect to ∧ implies that
Theorem 13 is not valid for it. (But note that the conditions given in Proposition 8 are
satisfied by RMI.) Therefore, here Theorem 25 does not imply that RMI satisfies the
basic relevance criterion. Nevertheless, it does.

Proposition 26 ([9, Prop. 14.57]). RMI satisfies the basic relevance criterion.

Proof. Suppose T1,T2 `RMI ψ , and T2 has no variables in common with T1 ∪{ψ}.
We show that T1 `L ψ . Suppose otherwise. Then, there is a valuation ν in SA which
is a model of T1, but not of ψ . Since T2 has no variable in common with T1∪{ψ}, we
may assume without loss in generality that ν(p) = 〈1, I1〉 for every variable p which
occurs in T2. But then ν(ϕ) = 〈1, I1〉 for every ϕ ∈ T2, and so ν is a model in SA of
T1∪T2, but not of ψ . By the strong soundness and completeness of RMI for SA, this
contradicts our assumption that T1,T2 `RMI ψ . /
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TIME FOR CURRY

Jc Beall and David Ripley

ABSTRACT. Some recent approaches to Curry’s paradox handle it by invoking so-
called non-normal worlds: worlds at which the laws of logic fail. We present a new
version of Curry paradox (a temporal Curry paradox) which seems to push on these
approaches, by parity of reasoning, postulation of non-normal times: times, including
times at the actual world, at which the laws of logic fail.

Keywords. Contraction, Curry’s paradox, Non-normal times, Non-normal worlds,
Temporal Curry paradox

1. INTRODUCTION

This paper presents a new puzzle for certain positions in the theory of truth. The
relevant positions can be stated in a language including a truth predicate T and an
operation p q that takes sentences to names of those sentences; they are positions that
take the T-schema A↔ T (pAq) to hold without restriction, for every sentence A in
the language. As such, they must be based on a nonclassical logic, since paradoxes
that cannot be handled classically will arise. The best-known of these paradoxes is
probably the liar paradox — a sentence that says of itself (only) that it is not true — but
our concern here is not with the liar. Instead, our focus is a variant of Curry’s paradox
[4; 6; 8; 12] — a sentence that says of itself (only) that if it is true, everything is true.

§2 is necessary stage setting; we present the standard version of Curry’s paradox
and the strain of response to it we wish to focus on. This strain of response crucially
invokes non-normal worlds, that is, worlds at which the laws of logic differ from
the laws that actually hold. In §3, we go on to argue that, in light of temporal Curry
paradox (a novel version of Curry paradox that we present here), this strain of response
ought also to accept non-normal times, that is, times at which the laws of logic in the
actual world differ from the laws that hold now. We then consider, in §4, what this
would mean for the theorists in question.

2. THE STATE OF PLAY

2.1. Curry Paradox. The conditional involved in the standard Curry sentence is the
same conditional used in the T-schema, and theorists differ on just how this conditional
ought to behave. For our purposes here, we focus only on detachable conditionals —
conditionals that validate modus ponens. (By “modus ponens” we mean — throughout

2020 Mathematics Subject Classification. Primary: 03B80, Secondary: 03B44.

Bimbó, Katalin, (ed.), Relevance Logics and other Tools for Reasoning. Essays in Honor of J. Michael
Dunn, (Tributes, vol. 46), College Publications, London, UK, 2022, pp. 65–72.
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— only the so-called rule form: that A and A→ B jointly imply B, that is, that the
argument from {A, A→ B} to B is valid.)

By the usual diagonalization methods, there is a sentence C that is equivalent to
T (pCq)→⊥, where → is the (detachable) conditional in the T-schema. Here, take
⊥ to be an “explosive sentence” from which everything follows. (It might be “every-
thing is true,” or some such.) Given these resources, a proof from the T-schema to ⊥
threatens (where↔ is defined via ∧ and→ as usual):

1. T (pCq)↔C T-schema
2. T (pCq)↔ (T (pCq)→⊥) 1, substitution
3. T (pCq)→ (T (pCq)→⊥) 2, ∧-elim
4. T (pCq)→⊥ 3, contraction
5. C 4, substitution
6. T (pCq) 1, 5, modus ponens
7. ⊥ 4, 6, modus ponens

Here, the step from 3 to 4 is justified by contraction: from A→ (A→ B) we can
conclude A→ B.1 Since substituting equivalents, eliminating ∧’s, and modus ponens
all seem like surer steps than contraction, one plausible way to treat this paradox while
retaining the T-schema is to provide a theory of→ on which contraction is not a valid
inference. Such theories have recently been advanced by Beall [1], Brady [3], Field
[5], Priest [11], Sylvan [16], and others.

2.2. Explanation and Truth Conditions for Conditionals. Among these theorists,
some think that contraction’s invalidity is to be explained by →’s truth conditions,
typically because validity and invalidity in general are taken to be matters of truth
conditions. For example, Priest argues that “validity is the relationship of truth-
preservation-in-all-situations” [10, ch. 11], and this thought is also forcefully em-
braced in the work of Routley [15, Appendix I], and also evident in Brady’s work
[3]. While not universally endorsed, the thought is natural and common in philoso-
phy.2 Example: Why is it that (say) A∧B implies B? The answer is that the definition
of implication (validity) is “truth preservation over all conditions,” and the conditions
in which a conjunction is true (i.e., the truth conditions for a conjunction) have it that
A∧B is true just if both A and B are true. The explanation falls out of truth conditions
and their role in validity. Likewise, the explanation for the failure of A∨B’s implying
B invokes the truth conditions for ∨ and the existence of situations in which A∨B is
true and B is not. And the same goes, according to target theorists, for contraction.

Among such theorists, the dominant approach to truth conditions for → invokes
frames involving points (worlds or world-like entities). We consider such an approach
here; and we call the points “worlds” without worrying what they are. As a first
approximation, let a frame be a set W of worlds, and let a model be a frame together
with a relation  between worlds and sentences of our language.  can hold or not

1This use of “contraction” is related to, but importantly distinct from, its use to describe the structural
rule that allows for repeated use of premises. For example, in the above proof, premise 1 is used twice (in
the justifications of steps 2 and 6); this involves appeal to the structural rule, but not to the→-related rule
we call “contraction,” which is involved above only in the step from 3 to 4.

2For example, Beall [1] and Field [5] reject the explanatory role of truth conditions.



Jc Beall and David Ripley: Time for Curry 67

between any world and any (non-logical) atomic sentence, but it is constrained for
compound sentences. On the approach we are considering, it is these constraints that
give sentential connectives their meanings. For example, here are constraints to give
∧, T , and ⊥ their meanings:

w  A∧B iff w  A and w  B

w  T (pAq) iff w  A

w 1⊥, for any w

It is sometimes useful to distinguish extensional connectives from intensional ones.
Extensional connectives don’t look across worlds; whether a sentence built with an
extensional connective is satisfied at a world depends only on what else is satisfied at
that world. Intensional connectives, on the other hand, look across worlds; whether
a sentence built with an intensional connective is satisfied at a world can depend on
what happens at other worlds. ∧, T , and ⊥ are all extensional. Since→ will be used
to express the strong T-schema connection between A and T (pAq), its constraint will
take into account the relation between its antecedent and consequent across worlds,
and so→ is intensional:

w  A→ B iff for all w′ ∈W , either w′ 1 A, or w′  B.

Now we can define validity. An argument from a set of sentences Γ to a set of sen-
tences ∆ is valid (Γ � ∆ ) iff in every model on every frame, at every world w such that
wA for every A∈Γ , wB for some B∈∆ . (This is the general, multiple-conclusion
relation. Restricting to singleton conclusions reduces to the usual single-conclusion
account. The general account is worth having, though nothing we say here hangs on
the generality.)

2.3. Contraction Freedom and Non-normal Worlds. But there is a problem. As
things currently stand, A→ (A→ B) � A→ B. That is, contraction holds. The other
principles used in the problematic Curry argument also hold. So such truth conditions
can’t be the whole story; they would force us to conclude ⊥, and thus every sentence
— naked absurdity.

If it is to be contraction-free,→ must derive its meaning from some constraint that
doesn’t force contraction on it. For ideas as to how this is to be done, we can look
to frames developed for weak relevant and linear logics, in which contraction fails.
Here, the usual way cuts a distinction in W , namely, normal worlds and non-normal
worlds. Thus, we require our frames to be slightly more articulated, specifying a set
W of worlds, and a set N ⊆W of normal worlds. For any normal world w ∈ N, we
constrain as before. But for any non-normal world w∈W \N, we treat→-sentences
differently; for our purposes here, we allow→-sentences to be satisfied or not by non-
normal worlds arbitrarily.3

If this is the only shift we make, however, we lose such important validities as
modus ponens. (There will be non-normal worlds at which A holds, A→ B holds,
and B does not hold, since whether A→ B holds there has nothing to do with where

3There are other options; the important thing for our purposes is the distinction between normal and
non-normal worlds, and that this distinction matters for the constraints on  when it comes to→-sentences.
The details of the constraints (if any) that operate at non-normal worlds are beside the point.
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or whether A or B holds anywhere.) So we must also change our understanding of
validity: the argument from a set of sentences Γ to a set of sentences ∆ is valid (Γ �∆ )
iff in every model on every frame, at every normal world w such that w  A for every
A ∈ Γ , w  B for some B ∈ ∆ . The restriction to normal w in this definition ensures
that, in evaluating validity, we only look at worlds in which the→ is “well-behaved.”
In particular, modus ponens is valid, given this new understanding of validity.

Crucially, however, contraction remains invalid. Although we only look at normal
worlds in checking validity, those normal worlds themselves look at all worlds — nor-
mal and non-normal — in the truth-conditions for→-sentences. As such, it’s possible
for A→ (A→ B) to hold at a normal world without A→ B holding there; this can
happen if there is a (non-normal) world at which A and A→ B both hold, but where B
does not hold. Counterexamples to contraction somewhere thus rely on counterexam-
ples to modus ponens somewhere else; the distinction between normal and non-normal
worlds allows us to keep these somewheres organized, so that the counterexamples
to contraction are sufficient to undermine its validity, while the counterexamples to
modus ponens are not.

Of course, if the invocation of non-normal worlds is meant to explain the failure of
contraction, it is not enough simply to offer this kind of model theory. The explanation
must tell us something about what non-normal worlds are, and why they are related to
→ in the way the model theory takes them to be. Indeed, such a theory is offered by
Priest [9, p. 15]:

The normal worlds are to be thought of as (logically) possible worlds. Non-
normal worlds are to be thought of as (logically) impossible worlds. The
idea that there can be physically impossible worlds, that is, worlds where
the laws of physics are different, is a standard one. Such worlds are still
logically possible. But just as some worlds have laws of physics different
from the actual physical laws, so some worlds have laws of logic different
from the actual logical laws.

Our approach here shall assume that this — allowing for failures of contraction, to be
explained by invoking worlds at which logical laws differ — is broadly the right way
to address Curry’s paradox, and to explore how this approach adapts to a novel version
of Curry paradox with slightly different ingredients.

3. THE MEAT

3.1. Robust Contraction-freedom. First, note that it is not enough just to avoid con-
traction for→. Curry trouble arises if there is any connective⇒meeting the following
three conditions [2; 8; 14]:
→-consequence: From A→ B, we can infer A⇒B.
⇒-modus ponens: From A and A⇒B, we can infer B.
⇒-contraction: From A⇒ (A⇒B), we can infer A⇒B.

In fact, we can replace the first condition,→-consequence, with the condition:
⇒-T-schema: A⇔ T (pAq) is provable.

From →-consequence and the (→-involving) T-schema, ⇒-T-schema follows. And
the Curry proof in §2.1 for → can simply be repeated as is for ⇒ if ⇒-T-schema,
⇒-modus ponens, and⇒-contraction all hold.
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Below, we present a connective that, at least prima facie, seems to satisfy ⇒-T-
schema, ⇒-modus ponens, and ⇒-contraction. We then argue that a friend of non-
normal worlds explanations of the sort mentioned in §2.2 ought to acknowledge non-
normal times to address this threat.

3.2. Temporal Curry. Sentences are not just true at some worlds and false at others;
they can also be true at some times and false at others, even within a single world. To
accommodate this, we follow Kaplan [7] and expand our models. We now take our
models to specify a set W of worlds and a set T of times. As before, we divide W into
the normal worlds N and the others, the non-normal worlds. Now, we can specify truth
conditions for our connectives almost as before. The difference is straightforward:
sentences are not true at worlds, but instead true at world-and-time pairs. For all of
our above connectives, the truth conditions change only slightly: they now carry an
idle time parameter. For example: for any w ∈W and any t ∈ T ,

〈w, t〉  A∧B iff 〈w, t〉  A and 〈w, t〉  B.

The conditional→ is perhaps of more interest, but the same idea applies. For normal
worlds w,

〈w, t〉  A→ B iff for all w′ ∈W , either 〈w′, t〉 1 A, or 〈w′, t〉  B.

As before, at non-normal worlds  is not constrained for→-sentences; here, this lack
of constraint extends to all times.

If this were all there were to temporal models, they would not be very interesting.
They come into their own when we consider connectives that shift the time parame-
ter. By analogy with the “extensional”/“intensional” terminology to describe whether
a connective shifts the world parameter, we can draw a distinction between “extem-
poral” and “intemporal” connectives. All of our old connectives are extemporal, but
intemporal connectives allow us to use the structure that temporal models provide. The
most familiar intemporal connectives are unary connectives, studied by Prior [13], of-
ten written F , G, P, and H. Here, we skip these, to explore the behavior of a binary
intemporal connective, which we write (only for lack of obviously better notation) as
a short map arrow: 7→. Informally, A 7→ B is to be read as something like “whenever
A, B.” This informal reading is evident in the truth-condition (∗):

(∗) 〈w, t〉  A 7→ B iff for all t ′ ∈ T , if 〈w, t ′〉  A, then 〈w, t ′〉  B.

Despite being intemporal, 7→ is extensional, because its range of truth values at a
world w does not depend on any world beyond w.

But now trouble is brewing. Call a world-time pair 〈w, t〉 a normal-world pair just
if w ∈ N. Presumably, we want it to be the case that A 7→ T (pAq) and T (pAq) 7→ A
are logical truths: true at all normal-world pairs. Indeed, as far as we can see, any
motivation for the T-schema’s validity at worlds is equal motivation for its validity at
times. (Just as it’s very difficult to imagine a world at which A holds without T (pAq)
holding and vice versa, so too it’s very difficult for times.) But now the trouble bubbles
to the surface. In particular, notice that, given the truth conditions for 7→, we have both
7→-modus ponens and 7→-contraction. Hence, mixed with 7→-T-schema, we have the
ingredients for explosive Curry (see §3.1). This is a temporal Curry paradox that’s as
explosive as its standard non-temporal relative.



70 Jc Beall and David Ripley: Time for Curry

3.3. The Bite: Non-normal Times. Since this is substantially the same problem as
Curry’s paradox for→, we think it should receive substantially the same solution. In
short, 7→ obeys the truth condition (∗) given in §3.2 at most world-time pairs; however,
there are world-time pairs — call them abnormal — at which 7→ fails to conform to
the given truth conditions. (Perhaps, as with →, the behavior of 7→ is arbitrary at
abnormal pairs.) Such abnormal pairs involve “non-normal times,” times at which
laws of logic fail.

The bite is more than that there be some world-time pair 〈w, t〉 that is abnormal
in having a “non-normal time.” The bite is stronger: every world — and, hence,
every normal world, including this (our actual) one — features in some abnormal
pair. Suppose otherwise, that is, fix a world w and suppose that for all t ∈ T , the
“whenever” connective 7→ obeys the given truth condition at 〈w, t〉. Then we have
Curry trouble at w. Consider a Curry sentence C equivalent to T (pCq) 7→ ⊥. Suppose
〈w, t〉 C. Then for all t ′ ∈ T , if 〈w, t ′〉  T (pCq) then 〈w, t ′〉  ⊥. Since 〈w, t ′〉 1 ⊥
for all t ′, it must be that 〈w, t ′〉1 T (pCq) for all t ′. But then we have a counterexample
at 〈w, t〉 to the 7→-T-schema. This cannot be. Hence, for all t, we have 〈w, t〉 1 C.
If we are to avoid a counterexample to the 7→-T-schema, it must be that for all t,
〈w, t〉 1 T (pCq). But, then, by 7→’s truth conditions, 〈w, t〉  T (pCq) 7→ ⊥ for any t.
So this is impossible too.

The philosophical rub comes out when we consider the actual world. As above,
for any w there must be abnormal pairs 〈w, t〉 at which 7→ does not obey the given
truth conditions. Consider the actual world @, and let the non-normal times be those
times t for which 〈@, t〉 is an abnormal pair. By the argument above, there must be
non-normal times. But this is philosophically awkward. It is much harder to make
satisfying philosophical sense of non-normal times than it is of non-normal worlds.

Non-normal worlds, recall, are worlds where the actual laws of logic do not hold.
Since worlds are unfamiliar and odd sorts of places anyhow, it is not so challenging
to suppose that some of them fail laws of logic in this way. But if abnormal pairs are
pairs where laws of logic do not hold — as they must be — then there must be times
at which laws of logic fail in the actual world. This, we think, is harder to swallow.
There is no modal cushion between us and the failure; it is only a matter of minutes.
(It may be many minutes; maybe all of the failures are tucked away safely in the past,
or far off in the future. But still, they must be there — here! — even if not now.) This
failure is serious. As we saw before, for contraction to fail here, modus ponens must
fail somewhere. Thus, there are times at which modus ponens fails in the actual world.

4. POSSIBLE RESPONSES

Of course, one can simply bite the bullet and admit that there are non-normal times.
Perhaps this is a discovery rather than a reductio. (Certainly, when paradoxes are in
the air, one has been mistaken for the other before.) But if this is the right way to
understand the situation, more needs to be said to assuage the initial awkwardness.
Even those of us who were prepared to go along with non-normal worlds feel some
difficulty allowing for non-normal times. A story about why logical laws might change
over time, analogous to the way they can be taken to change over worlds, would be a
great help to resolve this difficulty.
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Another possibility would be to attack the analogy we have exploited between
worlds and times. For example, perhaps there is some reason why there should be
no extensional intemporal connectives like 7→, despite the presence of intensional ex-
temporal connectives like→. We don’t immediately know what such a reason could
be. However, if there were some reason that anything like 7→ had to be intensional, we
could invalidate contraction at this world by invalidating modus ponens at some other
(presumably non-normal) world. Then there would be no need to invoke non-normal
times to avoid temporal Curry. Again, though, more would need to be said to make
this plausible.

To sum up: if the failure of →-contraction is to be explained by →’s relying on
worlds at which logical laws fail, then the failure of 7→-contraction ought to be ex-
plained by 7→’s relying on times at which logical laws fail. At least prima facie, how-
ever, allowing for actual times at which logical laws fail is quite awkward, more awk-
ward than allowing for non-actual worlds at which logical laws fail. So the advocate
of non-normal worlds must either 1) explain why they do not advocate non-normal
times, or 2) explain why non-normal times are not as awkward as they first appear.
We see no obvious way to do either of these, and so we leave this dilemma, at least
for now, as a dilemma.
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ON CONNEGATION

Alex Belikov, Oleg Grigoriev and Dmitry Zaitsev

ABSTRACT. This paper is devoted to the study of “connegation,” a variant of unary
truth-functional logical operation, combining the properties of conflation and nega-
tion, operations known in bilattice theory. Semantically, connegation is specified
within a four-valued semantic framework, employing a particular structure of gen-
eralized truth values introduced therein. We present a logical system, dCP, deter-
mined by our four-valued structure, whose language is equipped with a unary propo-
sitional connective corresponding to the semantically defined connegation operation.
We present axiomatizations of dCP in the form of Hilbert-style and Gentzen-style
proof-systems and provide corresponding soundness and completeness theorems. A
cut-elimination argument for the Gentzen-style calculus is presented as well.

Keywords. Conflation, Connegation, Embedding results, Generalized truth values,
Gentzen-style calculi, Hilbert-style calculi, Negation

1. INTRODUCTION: MIKE DUNN AND NEGATION

In the mid 1960s, after relevance logic had began to attract more and more scholars,
it had been made clear that the issues concerning relevant entailment and implication
are strongly intertwined with the notion of negation. Mike Dunn was among the first
to develop a framework for an analysis of relevance through a suitable semantics of
negation. In his doctoral thesis Dunn [5], a class of algebraic structures, known as De
Morgan lattices, were first used to semantically model Anderson and Belnap’s logic of
first-degree entailments, cf., e.g., [1, §15]. The approach became popular also because
it received many non-algebraic implementations, e.g., in the form of many-valued,
by Belnap [3; 4], and set-theoretic, by Dunn [6], semantic frameworks. Since then,
philosophically oriented studies of “De Morgan negation” and its relationships with
other kinds of negation-like operators constituted an independent field of research. It
is worth to note that Dunn published on various negations; we mention only a few of
his related publications: Dunn [7; 8; 9], Dunn and Hardegree [12].

The present article is partly motivated by similar issues. We are interested in some
recently discovered negation-like operators that can be defined in the framework of
generalized truth values, yet another, so to speak, independent research area, inspired
by Dunn’s works on “intuitive semantics” of the first-degree entailment logic.

The second source of our motivation lies in a specific view of logic as a “hybrid”
system. That, again, echoes some views of Mike Dunn. As he says in his interview
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of 2015: “I don’t think there will be a single post-non-classical logic. But maybe
there could be something like a Swiss Army Knife of at least a number of logics,
where one could choose which features to use for which purpose. Substructural logics
perhaps form a paradigm here, where one can have various logics depending on what
structural rules one allows, permutation, thinning, contraction, etc. And one might
combine these with various modalities. And I dream of mixing probabilities into
the mix somehow too” (Dunn et al. [11]). In the present article, we literally follow
the same idea, however, without any connections to substructurality, modality and
probability. Negation — that’s our main target. We study two negation-like operators
that, by themselves, can simulate the properties of other logical connectives within the
same logical framework. Isn’t it a Swiss Army Knife Mike Dunn was talking about?

More specifically, we are interested in unary operators introduced by N. Kamide
[15] and P. Ruet [20], that can be seen as four-valued generalizations of Post’s “cyclic”
negation [19]. The key feature of both operations is that their double iterations can
simulate the properties of classical (Boolean) negation. This observation, we guess,
motivated Kamide to name a logical system with the corresponding operation as
“Classical Paraconsistent Logic” CP. An original presentation of CP was given by
Kamide in terms of a Gentzen-style sequent calculus. Later, CP has been provided
with an adequate Hilbert-style formalization by H. Omori and H. Wansing [17]. Due
to the fact that Kamide and Ruet’s operations are perfectly dual to each other, we find it
reasonable to devote the present paper basically to the development of a logical system
containing Ruet’s operation. By doing so, we introduce “Dual Classical Paraconsis-
tent Logic” dCP and prove a bunch of proof-theoretical results about it. Firstly, we
provide a sound and complete Hilbert-style calculus for dCP. Secondly, we present
a sound and complete Gentzen-style calculus for dCP that enjoys the cut-elimination
theorem.

The philosophical aspect of our study, which actually motivated this paper in the
first place, is to propose a reasonable account of the target operations that could unite
them in a single conceptual framework. To this end, we introduce the notion of “con-
negation,” of which Kamide and Ruet’s operations are examples. The notion of con-
negation is motivated by observation that both of these connectives can be thought of
as unary truth-functional operations, combining the semantic conditions of conflation
and negation, operations known in bilattice theory. In this paper, we advocate the po-
sition according to which connegation is an intuitively plausible and philosophically
significant logical notion that reflects some interesting aspects of negativity, thereby
calling for further philosophical and technical explorations.

2. NEGATION, CONFLATION, KAMIDE AND RUET’S OPERATORS

Let us briefly review some basic definitions from bilattice theory that will help us
to form the context of our study and set its main problem. As the reference for bilattice
theory we use Fitting [14].

A bilattice B is a tuple 〈B,≤t ,≤i〉where B is a non-empty set;≤t and≤i are partial
orderings of B such that 〈B,≤t〉 and 〈B,≤i〉 are complete lattices.

Usually, the orderings≤t and≤i are interpreted as “truth” and “information” order-
ings, respectively. Both of them give raise to corresponding meet and join operations.
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We denote the meet and join operations, associated with≤t , as ∩ and ∪, whereas their
counterparts, associated with ≤i, as ⊗ and ⊕, respectively.

A bilattice B has a negation if there is a mapping ¬ satisfying the following prop-
erties, for every x,y ∈ B: (1.1) if x≤t y, then ¬y≤t ¬x; (1.2) if x≤i y, then ¬x≤i ¬y;
(1.3) x = ¬¬x.

A bilattice B has a conflation if there is a mapping − satisfying the following
properties, for every x,y ∈ B: (2.1) if x ≤i y then −y ≤i −x; (2.2) if x ≤t y then
−x≤t −y; (2.3) x =−−x.

If a bilattice B has both operations, they commute if −¬x = ¬−x, for every x ∈ B.
Probably, the best known example is the bilattice FOUR2, which is constituted by

Belnap’s truth values: T (“true and not false”), B (“true and false simultaneously”), N
(“neither true, nor false”), and F (“false and not true”). It is depicted in Figure 1.

≤t

≤i

T

N B

F

≤t

≤i

T

N B

F

FIGURE 1. The behaviour of negation and conflation on bilattice
FOUR2, generated by Belnap’s values.

By analysing the behaviour of negation and conflation on FOUR2, it is possible
to extract matrix definitions of these operations. Let f¬ and f− be truth functions
defined over {T,B,N,F} that correspond to negation and conflation, respectively (see
Figure 2).

x f¬(x) f−(x) f−( f¬(x)) f∼K (x) f∼R (x) f∼i ( f∼i (x)) i ∈ {K,R}
T F T F N B F

B B N N T F N

N N B B F T B

F T F T B N T

FIGURE 2. Unary operations on bilattice FOUR2.

The peculiarity of these functions is that their composition can, in some sense,
“simulate” a function known as (classical) Boolean negation, as Figure 2 shows.

Interestingly, there are some truth functions that can simulate the properties of
Boolean negation not by composition with some other functions, but through their
own iteration. One of such functions was recently introduced by Kamide [15]. In the
context of Belnap’s framework, Kamide’s operation can be represented as f∼K from
Figure 2. Long before Kamide’s work, Ruet introduced an operation which is dual to
f∼K . In the honour of Ruet, we label this operation as f∼R . Its definition is also depicted
in Figure 2.
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It may seem that there is no other connection between these operations, except that
they both can simulate classical negation, however, their crucial relationship is clearly
visible if we graphically represent their definitions on FOUR2, as in Figure 3.
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FIGURE 3. The behaviour of f∼R (the left one) and f∼K (the right
one) on FOUR2.

Both f∼R and f∼K run through different “circles” or “cycles” over the bilattice. In
this sense, they are perfectly dual to each other, because the first goes clockwise and
the second goes counterclockwise. In [20], this observation motivated Ruet to call f∼R
the “quarter turn.”

As we remarked in the introductory section, Kamide introduced the logical system
CP, containing f∼K as the sole unary operation. This logic can be seen as a result of
replacing De Morgan negation (represented here as f¬) of A. Avron’s logic HBe [2]
(or V. M. Popov’s logic Par [18]) with f∼K . The proof-theoretical properties of CP
were thoroughly studied by Kamide himself in [15], and by Omori and Wansing in
[17]. In turn, Ruet was motivated by considerations of the functional completeness of
the logics over FOUR2. In particular, he showed that a set of connectives consisting
of f∼R , f¬, and the conjunction operator (which corresponds to the truth-ordering meet
on FOUR2) forms a functionally complete set of operations. He was not interested,
as is obvious, in the comparison of Kamide’s CP with a kind of a similar logical sys-
tem, containing f∼R instead of f∼K . And, of course, he was not interested in proposing
a way of intuitive justification of these operations. The remaining part of our paper is
intended to fill these gaps.

3. SEMANTIC FRAMEWORK: THE DUAL CLASSICAL PARACONSISTENT LOGIC

In order to put f∼K and f∼R in the unified conceptual framework, we will use the
notion of “connegation,” which is novel to this article. Before moving towards an
explanation of the motivation for the term “connegation,” we want to set out in more
formal detail a version of generalized truth-value semantics for the logic containing
the dual operation. Quite predictably, we denote this logic as dCP where d means
“dual” and the whole name is “Dual Classical Paraconsistent Logic.”

Consider, firstly, a propositional language L, containing ∧, ∨, →, and ∼. The
notion of a formula is defined in a standard manner. The set of all formulae of L and
the set of all propositional variables of L are denoted as F and Var, respectively.

By a positive model is meant a structure M= 〈P(2),v〉 where P(2) = {{t, f},{t},
{ f},∅} and v : Var 7→ P(2). Valuational clauses concerning the positive part of the
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language, that is, the clauses for conjunction, disjunction, and implication, are the
following:
(∧t) t ∈ v(ϕ ∧ψ) ⇔ t ∈ v(ϕ) and t ∈ v(ψ)
(∧ f ) f ∈ v(ϕ ∧ψ) ⇔ f ∈ v(ϕ) or f ∈ v(ψ)
(∨ f ) f ∈ v(ϕ ∨ψ) ⇔ f ∈ v(ϕ) and f ∈ v(ψ)
(∨t) t ∈ v(ϕ ∨ψ) ⇔ t ∈ v(ϕ) or t ∈ v(ψ)
(→t) t ∈ v(ϕ → ψ) ⇔ if t ∈ v(ϕ) then t ∈ v(ψ)
(→ f ) f ∈ v(ϕ → ψ) ⇔ t ∈ v(ϕ) and f ∈ v(ψ)

At this point we interrupt the stream of definitions to consider different options for
the valuational clauses for ∼.

Consider the following set of clauses.
(negt) t ∈ v(∼ϕ) ⇔ f ∈ v(ϕ) (neg f ) f ∈ v(∼ϕ) ⇔ t ∈ v(ϕ)
(cont) t ∈ v(∼ϕ) ⇔ f /∈ v(ϕ) (con f ) f ∈ v(∼ϕ) ⇔ t /∈ v(ϕ)

Clearly, choosing conditions (negt ) and (neg f ), we obtain the characterization of
De Morgan negation, as it appears, for example, in Dunn’s semantics for FDE in his
[10]. Taking into account that Belnap’s truth values can be represented as the elements
of P(2), it is obvious that clauses (negt ) and (neg f ) can be used as an equivalent way
to define function f¬, discussed in the previous section. In turn, choosing (cont )
and (con f ) leads us to a semantic characterization of conflation, which was discussed
earlier in the form of f−.

A natural question arises: Can we use the presented clauses to characterize Kamide’s
and Ruet’s operations? The answer is positive. Were we to admit Kamide’s con-
nective, it would be captured by clauses (negt ) and (con f ). Let us denote a positive
model augmented with them as a CP-model. The same move but in slightly different
notation was actually made by Omori and Wansing in [17], who also observed that
the truth condition of Kamide’s ∼ coincides with the truth condition of negation in
FDE. Finally, in order to characterize Ruet’s operator within the generalized truth-
value semantics, we can use (neg f ) and (cont ). Thus a dCP-model is a positive model
augmented with (neg f ) and (cont ).

We shall define a dCP-consequence relation as follows: Γ �dCP ϕ , if and only if,
for any valuation v, if t ∈ v(γ) (for every γ ∈ Γ ), then t ∈ v(ϕ). We say that a formula
ϕ is dCP-valid, iff t ∈ v(ϕ), for every valuation v in a dCP-model. The notions of
CP-consequence relation and CP-valid formula are defined analogously.

Now it becomes clear that both f∼K and f∼R are of a hybrid nature, they share the
properties of both conflation and negation. f∼K , represented via (negt) and (con f ),
has the truth condition of negation and the falsity condition of conflation; whereas
f∼R , represented via (neg f ) and (cont), has the truth condition of conflation and the
falsity condition of negation. Thus, we find it natural to label a logical connective
characterized by any of these two ways as “connegation” as the derivative from “con-
flation” + “negation.” A more detailed discussion of the notion of “connegation” is
postponed to Section 5.
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4. PROOF-THEORETICAL STUDY OF DUAL CLASSICAL PARACONSISTENT LOGIC

4.1. Hilbert-style Formulation. A lot of interesting proof-theoretical results regard-
ing CP were obtained by Kamide [15], and Omori and Wansing [17]. In what follows,
we establish some proof-theoretical results regarding dCP. We start with its Hilbert-
style formalization.

An axiomatic calculusH for dCP contains the following list of axiomatic schemata
(where ϕ ↔ ψ stands for (ϕ → ψ)∧ (ψ → ϕ)):

(A1) ϕ → (ψ → ϕ)
(A2) (ϕ → (ψ → χ))→ ((ϕ → ψ)→ (ϕ → χ))
(A3) (ϕ ∧ψ)→ ϕ
(A4) (ϕ ∧ψ)→ ψ
(A5) ((χ → ϕ)∧ (χ → ψ))→ (χ → (ϕ ∧ψ))
(A6) ϕ → (ϕ ∨ψ)
(A7) ψ → (ϕ ∨ψ)
(A8) ((ϕ → χ)∧ (ψ → χ))→ ((ϕ ∨ψ)→ χ)
(A9) (∼ϕ ∧∼ψ)↔∼(ϕ ∧ψ)

(A10) (∼ϕ ∨∼ψ)↔∼(ϕ ∨ψ)
(A11) (ϕ ∧∼∼∼ψ)→∼∼∼(ϕ → ψ)
(A12) (∼∼ψ →∼∼ϕ)→ ((∼∼ψ → ϕ)→ ψ)

and the sole rule of inference is modus ponens:

(MP)
ϕ → ψ, ϕ

ψ
.

We use standard definitions of a proof and a proof from hypotheses. We write Γ `H ϕ
to state that there is a proof of ϕ from the set of formulae Γ in H. In the light of
(A1), (A2), (T7) (see Lemma 2 below) and (MP), it is clear that the pure implicative
fragment ofH is classical, and hence, the deduction theorem holds forH.

Theorem 1. If Γ ,ϕ `H ψ , then Γ `H ϕ → ψ .

The following lemma reflects important features of connegations that are intrinsic
to both CP and dCP. Intuitively, the first three formulas can be read as “simulated”
analogues of classical De Morgan and double negation laws.

Lemma 2. The following formulas are provable in dCP:

(T1) ϕ ↔∼∼∼∼ϕ
(T2) (∼∼ϕ ∨∼∼ψ)↔∼∼(ϕ ∧ψ)
(T3) (∼∼ϕ ∧∼∼ψ)↔∼∼(ϕ ∨ψ)
(T4) ϕ ∨ (ϕ → ψ)
(T5) ∼∼ϕ → (ϕ → ψ)
(T6) ϕ ∨∼∼ϕ
(T7) ((ϕ → ψ)→ ϕ)→ ϕ

Proof. The proofs of these formulas are standard, keeping in mind, that ∼∼ behaves
like “classical” negation and the deduction theorem holds. A crucial role is played by
(A12). Thus, we leave the details for an interested reader. /
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We define a set of formulae T to be a theory of a logic L if it is closed under the
derivability relation `L. A theory T is called non-trivial if T 6= F. A theory T is called
prime if it satisfies the following property: if ϕ ∨ψ ∈ T then ϕ ∈ T or ψ ∈ T .

Moving towards the completeness result, we will use the standard version of Lin-
denbaum’s lemma, so we omit its proof.

Lemma 3. If Γ 0H ϕ , then there exists a non-trivial prime dCP-theory Γ ′, such that
Γ ⊆ Γ ′ and Γ ′ 0H ϕ .

We also need two helpful lemmas.

Lemma 4. For every non-trivial prime dCP-theory T , the following property of c-
normality holds: ϕ ∈ T if and only if ∼∼ϕ /∈ T .

Proof. Assume ϕ ∈ T and ∼∼ϕ ∈ T . Then, by (T5), we have that for any formula
ψ it holds that ψ ∈ T , which is a contradiction. Assume that ϕ /∈ T and ∼∼ϕ /∈ T .
Since T is prime, using (T6), we obtain a contradiction again. /

Lemma 5. For every prime dCP-theory T , ϕ → ψ ∈ T iff ϕ /∈ T or ψ ∈ T .

Proof. Assume that ϕ → ψ ∈ T and ϕ ∈ T and ψ /∈ T . Then, by (MP), we have a
contradiction. For the converse, we have two cases. Suppose that ϕ /∈ T and ϕ →
ψ /∈ T . Then, by (T4), we have a contradiction, since T is prime. Now, suppose that
ψ ∈ T and ϕ → ψ /∈ T . Then, using (A1) and (MP), we obtain a contradiction. /

Now, for any non-trivial prime dCP-theory T , let vT be the dCP-canonical valua-
tion, which is defined by means of the following clauses (for any p ∈ Var):

t ∈ vT (p) ⇒ p ∈ T , f ∈ vT (p) ⇒ ∼∼∼ p ∈ T .
Lemma 6. dCP-canonical valuation vT can be extended to an arbitrary formula π .

Proof. By induction on the complexity of a formula π .
The case of π ∈ Var is covered by the definition of vT .
Let π = ∼ϕ . Then t ∈ vT (∼ϕ) implies f /∈ vT (ϕ). By inductive hypothesis we

have ∼∼∼ϕ /∈ T . Using Lemma 4, we have ∼ϕ ∈ T . (The other way around is
identical.) Suppose f ∈ vT (∼ϕ). Then we obtain t ∈ vT (ϕ), from which, using
inductive hypothesis, we have ϕ ∈ T . From this, using (T1), we obtain ∼∼∼∼ϕ ∈
T . (The other way around is identical.)

Let π = ϕ ∧ψ . Then, t ∈ vT (ϕ ∧ψ) iff t ∈ vT (ϕ) and t ∈ vT (ψ) (by the truth
condition of conjunction) iff ϕ ∈ T and ψ ∈ T (by IH) iff ϕ ∧ψ ∈ T (by (A3), (A4),
(A5)). Suppose f ∈ vT (ϕ∧ψ). Then, f ∈ vT (ϕ∧ψ) iff f ∈ vT (ϕ) or f ∈ vT (ψ) (by
the falsity condition of conjunction) iff∼∼∼ϕ ∈ T or∼∼∼ψ ∈ T (by IH) iff∼ϕ /∈
T or ∼ψ /∈ T (by Lemma 4). Then, using (A3), (A4), and (A9), both cases imply
∼(ϕ ∧ψ) /∈ T . Applying Lemma 4, we obtain ∼∼∼(ϕ ∧ψ) ∈ T . The reasoning in
the backward direction is slightly different but simple. We also use Lemma 4, to get
∼(ϕ ∧ψ) /∈ T from ∼∼∼(ϕ ∧ψ) ∈ T , but then, to obtain ∼ϕ /∈ T or ∼ψ /∈ T , we
deduce∼ϕ ∧∼ψ /∈ T using (A9), and∼ϕ,∼ψ `H ∼ϕ ∧∼ψ , which is derivable in
H in the light of (A1) and (A5).

Let π = ϕ ∨ψ . This case is analogous to the previous one; it heavily relies on a
similar use of (A10).
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Let π = ϕ → ψ . In the case of t ∈ vT (ϕ → ψ), we simply use Lemma 5.
Suppose f ∈ vT (ϕ→ ψ). Then, f ∈ vT (ϕ→ ψ) iff t ∈ vT (ϕ) and f ∈ vT (ψ) (by

the falsity condition of implication) iff ϕ ∈T and∼∼∼ψ ∈T (by IH) iff∼∼∼(ϕ→
ψ) ∈ T (by (A11)). /

Now we can prove the completeness theorem.

Theorem 7. If Γ �dCP ϕ then Γ `H ϕ .

Proof. Using Lemma 3 and Lemma 6. /

In turn, the soundness can be proved as usual.

Theorem 8. If Γ `H ϕ then Γ �dCP ϕ .

4.2. Gentzen-style Formulation. Now we turn to the Gentzen-style formalization of
dCP. A sequent calculus G for dCP contains the following set of initial sequents

p⇒ p, ∼ p⇒∼ p,

the following set of structural rules of inference

(W⇒)
Γ ⇒∆

ϕ,Γ ⇒∆
, (⇒W)

Γ ⇒∆
Γ ⇒∆ ,ϕ

, (Cut)
Γ ⇒∆ ,ϕ ϕ,Θ⇒Π

Γ ,Θ⇒∆ ,Π
,

and the following set of logical rules of inference

(⇒∼∼) ϕ,Γ ⇒∆
Γ ⇒∆ ,∼∼ϕ

(∼∼⇒)
Γ ⇒∆ ,ϕ
∼∼ϕ,Γ ⇒∆

(∧⇒)
ϕ,ψ,Γ ⇒∆

ϕ ∧ψ,Γ ⇒∆
(⇒∧) Γ ⇒∆ ,ϕ Γ ⇒∆ ,ψ

Γ ⇒∆ ,ϕ ∧ψ

(∨⇒)
ϕ,Γ ⇒∆ ψ,Γ ⇒∆

ϕ ∨ψ,Γ ⇒∆
(⇒∨) Γ ⇒∆ ,ϕ,ψ

Γ ⇒∆ ,ϕ ∨ψ

(⇒→)
ϕ,Γ ⇒∆ ,ψ

Γ ⇒∆ ,ϕ → ψ
(→⇒)

Γ ⇒∆ ,ϕ ψ,Θ⇒Π
ϕ → ψ,Γ ,Θ⇒∆ ,Π

(∼∧⇒)
∼ϕ,∼ψ,Γ ⇒∆
∼(ϕ ∧ψ),Γ ⇒∆

(⇒∼∧) Γ ⇒∆ ,∼ϕ Γ ⇒∆ ,∼ψ
Γ ⇒∆ ,∼(ϕ ∧ψ)

(∼∨⇒)
∼ϕ,Γ ⇒∆ ∼ψ,Γ ⇒∆

∼(ϕ ∨ψ),Γ ⇒∆
(⇒∼∨) Γ ⇒∆ ,∼ϕ,∼ψ

Γ ⇒∆ ,∼(ϕ ∨ψ)

(∼→⇒)
ϕ,∼∼∼ψ,Γ ⇒∆
∼∼∼(ϕ → ψ),Γ ⇒∆

(⇒∼→)
Γ ⇒∆ ,ϕ Γ ⇒∆ ,∼∼∼ψ

Γ ⇒∆ ,∼∼∼(ϕ → ψ)

We provide the soundness and completeness of G by showing the deductive equiv-
alence of the Hilbert and Gentzen-style formulations of dCP.

Lemma 9. If Γ `H ϕ , then G ` Γ ⇒ϕ .

Proof. By induction on the proof in H. The proof is essentially straightforward, we
have to show that all axioms of H are provable in G, and that modus ponens is deriv-
able in G. We consider only one case as an example.
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ψ⇒ψ
(⇒W )ψ⇒∼∼ψ, ψ

(⇒∼∼)⇒∼∼ψ, ψ,∼∼ψ

ψ⇒ψ
(W⇒)ψ, ϕ⇒ψ
(⇒∼∼)ϕ⇒ψ,∼∼ψ
(→⇒)∼∼ψ → ϕ⇒ψ,∼∼ψ

.

.

.
∼∼ϕ,∼∼ψ → ϕ⇒ψ

(→⇒)∼∼ψ →∼∼ϕ,∼∼ψ → ϕ⇒ψ
(⇒→)

∼∼ψ →∼∼ϕ⇒ (∼∼ψ → ϕ)→ ψ
(⇒→)

⇒(∼∼ψ →∼∼ϕ)→ ((∼∼ψ → ϕ)→ ψ)

.

.

.
∼∼ψ → ϕ⇒ψ,∼∼ψ

ψ⇒ψ
(W⇒) ψ,∼∼ϕ⇒ψ

(⇒∼∼) ∼∼ϕ⇒ψ,∼∼ψ

ϕ⇒ϕ
(⇒W ) ϕ⇒ψ, ϕ

(∼∼⇒) ∼∼ϕ, ϕ⇒ψ
(→⇒) ∼∼ϕ,∼∼ψ → ϕ⇒ψ

(→⇒)∼∼ψ →∼∼ϕ,∼∼ψ → ϕ⇒ψ
(⇒→)∼∼ψ →∼∼ϕ⇒ (∼∼ψ → ϕ)→ ψ

(⇒→)
⇒(∼∼ψ →∼∼ϕ)→ ((∼∼ψ → ϕ)→ ψ)

Other cases are left for the reader. /

In order to prove the converse of Lemma 9, we adopt the technique used in [17,
Proposition 3.14]. First, we define a formula image of a sequent Γ ⇒∆ as follows:

ρ(Γ ⇒∆) :=
∧

Γ →
∨

∆ ,

requiring also that
∧
∅ := (p→ p) and

∨
∅ := (p∧∼∼ p), for some fixed proposi-

tional variable p.

Lemma 10. If G ` Γ ⇒ϕ , then Γ `H ϕ .

Proof. We start by noting that G ` Γ ⇒ϕ iff G ` ∅⇒ρ(Γ ⇒ϕ). Now we have to
show that for every rule of inference in G, having the form

S1, . . . ,Sn

S
,

we can prove that ρ(S1), . . . ,ρ(Sn) �dCP ρ(S). Then, in the light of Theorem 7, this
would imply that ρ(S1), . . . ,ρ(Sn) `H ρ(S).

We consider only a few cases.
Case (⇒∼∧). Assume t ∈ v(ρ(Γ ⇒∼ϕ)), t ∈ v(ρ(Γ ⇒∼ψ)) and t ∈ v(

∧
Γ ).

From the first two assumptions, applying semantic conditions, we obtain the following
equivalences:

t ∈ v(ρ(Γ ⇒∼ϕ)) iff t ∈ v(
∧

Γ →∼ϕ) iff t /∈ v(
∧

Γ ) or f /∈ v(ϕ),

t ∈ v(ρ(Γ ⇒∼ψ)) iff t ∈ v(
∧

Γ →∼ψ) iff t /∈ v(
∧

Γ ) or f /∈ v(ψ).

Finally, using t ∈ v(
∧

Γ ), we have f /∈ v(ϕ) and f /∈ v(ψ), which, by the semantic
conditions of connegation and conjunction, imply that t ∈ v(∼(ϕ ∧ψ)).
Case (⇒∼→). Assume t ∈ v(ρ(Γ ⇒ϕ)), t ∈ v(ρ(Γ ⇒∼∼∼ψ)) and t ∈ v(

∧
Γ ).

Again, the first two assumptions imply the following equivalences:

t ∈ v(ρ(Γ ⇒ϕ)) iff t ∈ v(
∧

Γ → ϕ) iff t /∈ v(
∧

Γ ) or t ∈ v(ϕ),

t ∈ v(ρ(Γ ⇒∼∼∼ψ)) iff t ∈ v(
∧

Γ →∼∼∼ψ) iff t /∈ v(
∧

Γ ) or f ∈ v(ψ).
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Using t ∈ v(
∧

Γ ), we obtain t ∈ v(ϕ) and f ∈ v(ψ). From this, by the semantic
conditions of implication, it follows that f ∈ v(ϕ → ψ). Thus, using the semantic
conditions of connegation, we obtain t ∈ v(∼∼∼(ϕ → ψ)). /

In the light of Lemma 10 and Lemma 9, the following theorems hold.

Theorem 11. G ` Γ ⇒ϕ iff Γ `H ϕ .

Theorem 12. G ` Γ ⇒ϕ iff Γ �dCP ϕ .

4.3. Cut-elimination. To prove the cut-elimination theorem for the Gentzen-style
system of dCP we exploit an embedding technique known from the research area of
multilattices and their logics, see e.g., Kamide and Shramko [16]. One of the specific
points of this method is an expansion of a target language with the additional copies
of the set of propositional variables. In our case we need to enrich the set of atoms of
the language LCL with the set Var∗ = {p∗ : p ∈ Var}. Thus the set of propositional
variables of LCL is Var∪Var∗ while that of LdCP is simply Var.

Now let us define an appropriate mapping from LdCP to LCL.

Definition 13. A mapping f : LdCP 7→ LCL is said to be a translation from LdCP to
LCL if the following equations are satisfied:

1. f (p) = p, f (∼ p) = p∗, for all p ∈ Var,
2. f (ϕ ◦ψ) = f (ϕ)◦ f (ψ), where ◦ ∈ {∧,∨,→},
3. f (∼∼ϕ) = ¬ f (ϕ),
4. f (∼(ϕ ∧ψ)) = f (∼ϕ)∧ f (∼ψ),
5. f (∼(ϕ ∨ψ)) = f (∼ϕ)∨ f (∼ψ),
6. f (∼(ϕ → ψ)) = ¬( f (ϕ)→ f (∼ψ)).

For the purposes of proving the cut-elimination theorem we adopt some standard
cut-free Gentzen calculus GCL for classical logic formulated in the language LCL.
Additionally, we require the cut rule to be admissible in GCL, and in expressions like
Γ ⇒∆ used to represent sequents, letters Γ and ∆ denote sets of formulas.

As usual, f (Γ ) refers to the set { f (ϕ) : ϕ ∈Γ }. We also use the notations `GCL−cut
and `GdCP−cut to indicate the provability relation within the cut-free versions of GCL
and GdCP, correspondingly.

Lemma 14. Let Γ and ∆ be sets of formulas in LdCP and f be the translation specified
in Definition 13. Then,

(1) If `GdCP Γ ⇒∆ , then `GCL f (Γ )⇒ f (∆);
(2) if `GCL−cut f (Γ )⇒ f (∆), then `GdCP−cut Γ ⇒∆ .

Proof. (1) By induction on the length of the proof P of Γ ⇒∆ in GdCP.
The case when Γ⇒∆ is an axiom is clear. Let us consider some cases of applying

propositional connective rules.
Case (⇒∼∼). Assume that Γ ⇒∆ has the form Γ ⇒∆ ′,∼∼ϕ and the last infer-

ence of P is

ϕ,Γ ⇒∆ ′
(⇒∼∼)

Γ ⇒∆ ′,∼∼ϕ
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By induction hypothesis, `GCL f (ϕ), f (Γ )⇒ f (∆), so we just expand its proof
using (⇒¬)

f (ϕ), f (Γ )⇒ f (∆)
(⇒¬)

f (Γ )⇒ f (∆),¬ f (ϕ)

where ¬ f (ϕ) = f (∼∼ϕ) as required.
Case (∼∨⇒). Γ ⇒∆ is of the form ∼(ϕ ∨ψ),Γ ′⇒∆ and the last inference is

∼ϕ,Γ ′⇒∆ ∼ψ,Γ ′⇒∆
(∼∨⇒).∼(ϕ ∨ψ),Γ ′⇒∆

The induction hypothesis provides the proofs of the premises of the following inference:

f (∼ϕ), f (Γ ′)⇒ f (∆) f (∼ψ), f (Γ ′)⇒ f (∆)
(∨⇒),

f (∼ϕ)∨ f (∼ψ), f (Γ ′)⇒ f (∆)

where f (∼ϕ)∨ f (∼(ψ)) = f (∼(ϕ ∨ψ)).
Case (∼→⇒). Γ⇒∆ has the form∼∼∼(ϕ→ψ),Γ ′⇒∆ and the last inference

is of the form

ϕ,∼∼∼ψ,Γ ′⇒∆
(∼→⇒).∼∼∼(ϕ → ψ),Γ ′⇒∆

Taking into account that f (∼∼∼ψ) = ¬ f (∼ψ), we use the known provability of
the sequents on the top of the left-hand side (classically) and the right-hand side (by
induction hypothesis) of the following subprooof:

f (∼ψ), f (Γ ′)⇒ f (∆), f (∼ψ)
(⇒¬)

f (Γ ′)⇒ f (∆), f (∼ψ),¬ f (∼ψ) f (ϕ),¬ f (∼ψ), f (Γ ′)⇒ f (∆)

f (ϕ), f (Γ ′)⇒ f (∆), f (∼ψ)
(⇒→)

f (Γ ′)⇒ f (∆), f (ϕ)→ f (∼ψ)
(¬⇒)

f (Γ ′),¬( f (ϕ)→ f (∼ψ))⇒ f (∆)

Note that the transition to the third line requires the cut rule which is admissible in a
chosen version of GCL. Finally, ¬( f (ϕ)→ f (∼ψ)) = f (∼∼∼(ϕ → ψ)).

Case (⇒∼→). Let Γ ⇒∆ be of the form Γ ⇒∆ ′,∼∼∼(ϕ → ψ) and the last
inference of P be of the form

Γ ⇒∆ ′,ϕ Γ ⇒∆ ′,∼∼∼ψ
(⇒∼→)

Γ ⇒∆ ′,∼∼∼(ϕ → ψ)

Again, using the induction hypothesis to assert the provability of the topmost se-
quent (recall that f (∼∼∼ψ) = ¬ f (∼ψ)), we obtain

f (Γ )⇒ f (∆ ′),¬ f (∼ψ)

f (Γ ), f (∼ψ)⇒ f (∆ ′) f (Γ )⇒ f (∆ ′), f (ϕ)
(→⇒)

f (Γ ), f (ϕ)→ f (∼ψ)⇒ f (∆ ′)
(⇒¬)

f (Γ )⇒ f (∆ ′),¬( f (ϕ)→ f (∼ψ))
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and in the last line ¬( f (ϕ)→ f (∼ψ)) = f (∼∼∼(ϕ → ψ)). Additionally, an appli-
cation of the cut is required to obtain the left-hand side sequent on the second line.
(The details are similar to the previous case and they are omitted here.)

(2) The idea of the proof is the same as above. Suppose that we have already proved
`GCL−cut f (Γ )⇒ f (∆) for some sequent f (Γ )⇒ f (∆). We inspect the last inference
of the proof and activate an induction hypothesis (with respect to the premises of a
rule applied in the inference) to construct a required GdCP−cut proof.

In the axiomatic case, f (Γ )⇒ f (∆) is just p⇒ p or p∗⇒ p∗ for some variable
p∈Var. It is clear that possible pre-images of these sequences are p⇒ p or∼ p⇒∼ p,
which are axioms of GdCP and evidently provable in GdCP−cut. Next consider some
propositional cases.

Case (¬⇒). Let us first assume that a sequent f (Γ )⇒ f (∆) is of the form f (∼∼ϕ),
f (Γ ′)⇒ f (∆) and it is the last one in some GCL−cut proof. Since f (∼∼ϕ)=¬ f (ϕ),
the last rule applied is (¬⇒)

f (Γ ′)⇒ f (∆), f (ϕ)
(¬⇒).¬ f (ϕ), f (Γ ′)⇒ f (∆)

The induction hypothesis provides a GdCP−cut proof of Γ ′⇒∆ ,ϕ . Applying the
rule (∼∼⇒), we obtain Γ ′,∼∼ϕ⇒∆ which is Γ ⇒∆ .

Case (∧⇒). Next assume that f (Γ )⇒ f (∆) is of the form f (Γ ′), f (∼(ϕ ∧ψ))⇒
∆ . Since f (∼(ϕ ∧ψ)) = f (∼ϕ)∧ f (∼ψ), the last inference of the proof is

f (Γ ′), f (∼ϕ), f (∼ψ)⇒ f (∆)
(∧⇒).

f (Γ ′), f (∼ϕ)∧ f (∼ψ)⇒ f (∆)

According to the induction hypothesis, Γ ′,∼ϕ,∼ψ⇒∆ already has a GdCP−cut
proof. Thus we extend it with the inference step

Γ ′,∼ϕ,∼ψ⇒∆
(∼∧⇒).

Γ ′,∼(ϕ ∧ψ)⇒∆

Other cases are similar. /

Theorem 15. Any sequent Γ ⇒∆ provable in GdCP is provable in GdCP− cut.

Proof. Let `GdCP Γ ⇒ ∆ . Then, according to Lemma 14 (1) `GCL f (Γ )⇒ f (∆).
Since cut is redundant in the sequent calculus GCL, `GCL−cut f (Γ )⇒ f (∆). Using
Lemma 14 (2) we conclude that `GdCP−cut Γ ⇒∆ . /

5. AND YET, WHAT IS CONNEGATION?

So far we were concerned with a purely proof-theoretical study of dCP (and partly
CP). Now it is time to put two different connegations represented within these logics
into a more philosophical context.

Following terminology suggested by Belnap [3], we say that “ϕ is at least true”
when t ∈ v(ϕ), and “ϕ is at least false” when f ∈ v(ϕ) (v is not specified; we keep
in mind that v is extended via semantic conditions of either dCP or CP). With this
notation at hand we can rewrite the semantic definition of negation and conflation.

A negation is characterized by means of
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• ¬ϕ is at least true iff ϕ is at least false;
• ¬ϕ is at least false iff ϕ is at least true.

Whereas, a conflation is characterized by means of

• −ϕ is at least true iff ϕ isn’t at least false;
• −ϕ is at least false iff ϕ isn’t at least true.

Broadly understood, a negation is a logical term that captures a phenomenon of
semantic opposition. We use negation to indicate the falsity (or untruth) of a state-
ment;1 that is, to indicate that a certain statement “not-ϕ” is opposed to the statement
ϕ with respect to its semantic values. It is common to say that the negation is an
object-language analogue of the falsity. And the opposition in question reduces to the
relation of contradiction.

In this respect, the notion of conflation has been studied much less than the notion
of negation. But it is clear that conflation has nothing to do with the phenomenon of
semantic opposition. In [13], Melvin Fitting gives the following intuitive interpreta-
tion of conflation operator: “the conflation of a truth value is a new truth value which
counts as evidence for anything that wasn’t counted against originally, and counts as
evidence against anything that wasn’t counted for originally.” Paraphrasing Fitting,
the conflation transforms (or “conflates”) a kind of negative information about a se-
mantic value of a statement into a positive form. This intuition perfectly matches the
semantic clauses above.

As we’ve suggested in the course of the present paper, connegation is of a hybrid
nature, it combines properties of both negation and conflation. There are only two
connegations in the four-valued framework, as the following semantic characterization
shows.

A connegation from CP is characterized by

• ∼ϕ is at least true iff ϕ is at least false;
• ∼ϕ is at least false iff ϕ isn’t at least true.

Whereas, a connegation from dCP is characterised by

• ∼ϕ is at least true iff ϕ isn’t at least false;
• ∼ϕ is at least false iff ϕ is at least true.

It can be questioned whether these connectives appeal to any philosophically sig-
nificant notion, or they are interesting only for purely formal reasons. Whether∼’s de-
serve to be standing in line with such a fundamental notion as negation? The question
appears to be a tricky one, but we feel obligated to present some answer. Evidently,
the notion of connegation bears important and interesting relations to the logics which
are representable within the framework of generalized truth values, but we believe
that this notion is supposed to tell us something interesting about negativity, or at least
some important kinds of negativity. We take it for granted that the role of the term
corresponding to ∼ in a natural language is to form a sentence with a negative shade.

1The difference between falsity and untruth as well as between truth and non-false might be crucial in
different account of negation. Much depends on the relationships between truth and falsity, whether they
exclusive and exhaustive or not.
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However, we stress that despite this and the fact connegations can simulate the classi-
cal negation, we tend to think that connegations themselves can hardly be understood
as pure negation operators.

Here is an interpretation of ∼’s that motivates our position.
The interpretation relies on slightly modified but widespread treatment of truth and

falsity. Now we understand an “at least true” sentence as a sentence that acquires its
truth in virtue of some verification (or proof). In turn, an “at least false” sentence is
now supposed to mean a sentence which is at least false in virtue of some falsification
(or disproof).

Consider the case of ∼ from CP.
Two possible epistemic attitudes naturally arise, namely, a sentence ϕ can be at

least false or at least untrue. These two situations are to be carefully distinguished
because in the former case we are talking about the presence of a falsification (or
disproof) and in the latter we mean only the absence of verification (or proof). What
job ∼ does in these situations? It takes the falsity qua falsification as its primary
meaning. The connegation ∼ indicates that the sentence ∼ϕ is at least true if and
only if ϕ is falsified. However, in a situation when ϕ isn’t at least true, ϕ appears
to merely lack verification. This is not enough for claiming that ∼ϕ is at least true,
because we admit only the presence of a falsification to justify such a claim. The
connegation ∼ does another job here; it indicates merely that a statement about the
falsification of ϕ , i.e., ∼ϕ , is falsified. In sum, ∼ allows one to distinguish between
two different kinds of negative information, that is, the presence of falsification and
the absence of verification.

Now we turn to ∼ from dCP.
In this case, the connegation behaves symmetrically, it covers the remaining epis-

temic attitudes in which a sentence ϕ is at least true or isn’t at least false. But in this
scenario ∼ expresses the failure of falsification. When would we say that the process
of falsification was not successful? The falsity condition of connegation tells us that
the falsification of ∼ϕ breaks down if and only if ϕ is true in virtue of some verifica-
tion. However, the situation of ϕ being at least non-false amounts to the mere absence
of falsification of ϕ . Should we consider that this situation indicates the failure of ϕ’s
falsification? We think we shouldn’t. So ∼ϕ is at least true by default, as reflected in
the truth condition of∼. Summing up, we can say that∼ allows one to distinguish be-
tween two different situations and decide whether a falsification of a sentence breaks
down or not.

Finally, it would not be superfluous to remind ourselves that both connegations
are balanced with respect to their ability to simulate classical negation. It is easy to
observe that double iterations of both ∼’s reflect the key properties of the latter, since
the following formulas are theorems in both CP and dCP.

(∼∼ψ →∼∼ϕ)→ ((∼∼ψ → ϕ)→ ψ) ϕ ↔∼∼∼∼ϕ
(∼∼ϕ ∨∼∼ψ)↔∼∼(ϕ ∧ψ) ∼∼ϕ → (ϕ → ψ)
(∼∼ϕ ∧∼∼ψ)↔∼∼(ϕ ∨ψ) ϕ ∨∼∼ϕ
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6. CONCLUDING REMARKS

We finish this paper by reflecting on possible implications of our study.
One of the interesting aspects of connegations is that they provide a clear route to

contra-classicality. This peculiarity was already observed by Omori and Wansing in
[17], so we will not dwell on this in detail. The only thing we would like to stress
is that, seemingly and quite surprisingly, dCP exhibits more contra-classical features
than CP. It is easy to see by comparing their Hilbert-style axiomatizations. Notice
that both contra-classical formulas

∼(ϕ ∧ψ)→ (∼ϕ ∧∼ψ)(6.1)

(∼ϕ ∨∼ψ)→∼(ϕ ∨ψ)(6.2)

are taken as initial axiomatic schemata of a Hilbert-style calculus of dCP.
Given the following matrices (where the ∗’d values are designated),

ϕ f∼R
∗T B
∗B F

N T

F N

f→ T B N F

T T B N F

B T B N F

N T T T T

F T T T T

f∧ T B N F

T T B N F

B B B N F

N N N N F

F F F F F

f∨ T B N F

T T T T T

B T B B B

N T B N N

F T B N F

it can be shown that (6.1) and (6.2) are invalid. For both cases, ϕ can take the value
B and ψ can take the value N. The remaining axiomatic schemata of H and modus
ponens preserve the validity in the matrices. This fact establishes the independence of
(6.1) and (6.2) in the calculus of dCP.

Moreover, dCP requires taking an awkward contra-classical formula (ϕ∧∼∼∼ψ)
→∼∼∼(ϕ → ψ) as an additional axiom, which is also independent. To show its in-
dependence, the reader can use the following matrices.

ϕ f∼R
∗T B
∗B F

N T

F N

f→ T B N F

T T T N F

B T T N F

N B B B B

F B B B B

f∧ T B N F

T T B N F

B B B F F

N N F N F

F F F F F

f∨ T B N F

T T T T T

B T B T B

N T T N N

F T B N F

In turn, CP can be axiomatized with the two contra-classical axioms ϕ∨∼∼ϕ and
ϕ→ (∼∼ϕ→ψ). Thus, we find it interesting to explore the possible implications of
contra-classicality via connegation.

Last but not least, it seems to us a very tempting prospect to find a way of ob-
taining logical connectives that could in a similar manner simulate the behaviour of
other kinds of negation-like operators, such as relevant, paraconsistent, paracomplete,
and so on.
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each of us was influenced by communication with him both scientifically and humanly.
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MODALITIES IN LATTICE-R

Katalin Bimbó and J. Michael Dunn

ABSTRACT. This paper considers modalities added to the relevance logic LR (lattice-
R), which is R with the distributivity of conjunction and disjunction omitted. First,
the modalities are defined from the Ackermann constants and the lattice connectives.
Then, we introduce modalities as primitives equipped with some fairly usual prop-
erties. We also consider some other logics in the neighborhood. For each logic,
including classical linear logic, we prove decidability. Lincoln, Mitchell, Scedrov,
and Shankar (1992) claimed to have proved classical linear logic undecidable. We
examine their work and find that their paper does not contain a proof of the admissi-
bility of the cut rule, which would be essential for their claims to hold. Furthermore,
according to their interpretation of proofs in linear logic, computations that lead to a
dead-end state are not considered, unlike computations from inaccessible states that
are included. The same problem with the direction of a proof vs the direction of
a computation appears in all other publications that claim undecidability, including
Kanovich (2016).

Keywords. Decidability, Linear logic, Modal logic, Relevance logic, Sequent
calculuses

INTRODUCTION

Modality in reasoning has intrigued thinkers for millennia — at least since the time
of Aristotle. Logically valid reasoning itself is often characterized in modal terms by
saying that a conclusion is true necessarily, provided the premises are true. Thus it
is not by chance that an attempt that aimed at tightening the connections between the
notions of logical consequence and implication led to the invention of modern modal
logics in the work of Clarence I. Lewis.

The logic of entailment, E gives a certain modal character to provable entailments.
A usual definition of “A is necessary” in some relevance logics is by the formula
(A→A)→A. However, there are other ways to think about modality in relevance
logics. In this paper, we look at an alternative definition of necessity and possibility
that involves t and f, then we consider � and ♦ as primitives.

In order to narrow our considerations, we start with the logic called lattice-R, which
is denoted by LR. This logic was derived from the logic of relevant implication R by
omitting the assumption that conjunction and disjunction distribute over each other; it
was created by Meyer [36]. The distributivity principle does not appear to be prob-
lematic from the point of view that motivates the family of relevance logics, hence,
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we might wonder why to consider lattice-R at all. Lattice-R has a straightforward se-
quent calculus formalization that goes back to Meyer’s thesis, and it was hoped way
back in the 1960s, that the decidability of lattice-R would be a stepping stone to the
decidability of R (and that of E, T, etc.). Accordingly, we will explore the question of
decidability in the context of modalities and also for logics neighboring R.

Section 1 introduces lattice-R in the way it was originally defined; then we throw
in some constants. We give a sequent calculus (LLR) and an axiomatic (HLR) formu-
lation.1 Next, in Section 2, we take up the idea of defined modalities within LLRc,
that is, lattice-R with zero-ary constants. Section 3 gives a somewhat detailed proof
that LLRc is decidable. The argument is along the standard Curry–Kripke lines, which
had been successfully applied to some other logics. The next section adds ♦ and �
as new unary connectives to LLRc. We prove that the resulting logic is decidable.
In Section 5, we consider a series of logics obtained by variations on the structural
rules — whether they are absent, modalized or included. Then in Section 6, we give
a direct and quite detailed proof of the decidability of (classical propositional) linear
logic. Finally, in Section 7, we briefly outline the argument in Lincoln et al. [35],
from which they conclude a theorem that conflicts with our decidability result about
linear logic in the previous sections. We pinpoint some gaps in their proof of the cut
elimination theorem, and we conclude with a different interpretation of LCLL proofs,
which dissolves the appearance of a contradiction between our result and those in [35],
Kanovich [28; 27] and Forster and Larchey-Wendling [21].

1. LATTICE-R WITH CONSTANTS

The relevant endeavor can be quickly motivated by the desire to avoid having the-
orems like A→ (B →A), where→ is some sort of implication. Roughly speaking,
B gets into the theorem, although it may be completely unrelated to A. Somewhat
less obviously, ((A → B)→ A)→ A is also an unwelcome theorem. It is easy to
verify that the proof of these formulas in a sequent calculus for classical logic, such
as Gentzen’s LK, requires the use of some of the thinning rules. Well, then it is plain
sailing to drop those rules and to see what results.

The language of LLRc contains a denumerable stock of propositional variables to-
gether with a handful of logical constants.2 The latter category is divided into three
subcategories by the arity of the connectives: 0-ary, 1-ary and 2-ary. The zero-ary con-
nectives are t (“real truth”), f (“real falsity”), T (“triviality”) and F (“absurdity”). The
only unary connective is ∼ (“De Morgan negation”). There are five binary connec-
tives, namely, ∧ (“conjunction”), ∨ (“disjunction”), ◦ (“fusion”), → (“implication”
or “entailment”) and + (“fission”). The set of well-formed formulas is inductively
defined from the base set, which comprises the propositional variables and the four
zero-ary connectives, by the rest of the connectives. A,B,C, . . . are meta-variables
that range over well-formed formulas (wff’s, for short).

1We would like to forewarn the reader that L in LR stands for “lattice” and not for “logistic” as in many
labels for sequent calculuses, including the original LK and LJ (where we italicize L). Then, LLR is a sequent
calculus formulation of LR, and so on.

2As we already hinted at, the superscript c in the label for the system indicates that four zero-ary
constants are included.
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Multisets constitute a datatype between sequences and sets. In a multiset, an ob-
ject may have more than one occurrence, and the number of occurrences matters, but
the order (of listing) of occurrences is unimportant. Here we always deal with fi-
nite multisets, that is, with multisets of finitely many objects, each with finitely many
occurrences; we will simply talk about multisets. α,β ,γ, . . . are meta-variables for
multisets of wff’s including the empty multiset.

Definition 1. The axioms and rules of the sequent calculus LLRc are as follows.

α;F ` β F` A `A id α ` T;β `T

f ` f`
α ` β

α ` f;β
` f

α ` β
α; t ` β

t` ` t ` t

α;A ` β
α;A∧B ` β

∧`1
α;B ` β

α;A∧B ` β
∧`2

α ` A;β α ` B;β
α ` A∧B;β

`∧

α;A ` β α;B ` β
α;A∨B ` β

∨`
α ` A;β

α ` A∨B;β
`∨1

α ` B;β
α ` A∨B;β

`∨2

α ` A;β
α;∼A ` β

∼`
α;A ` β

α ` ∼A;β
`∼

α ` A;β γ;B ` δ
α;γ;A→B ` β ;δ

→`
α;A ` B;β

α ` A→B;β
`→

α;A;B ` β
α;A◦B ` β

◦`
α ` A;β γ ` B;δ

α;γ ` A◦B;β ;δ
`◦

α;A ` β γ;B ` δ
α;γ;A+B ` β ;δ

+`
α ` A;B;β

α ` A+B;β
`+

α;A;A ` β
α;A ` β

W `
α ` A;A;β

α ` A;β
`W

The notion of a proof in LLRc is as usual in sequent calculuses. A is a theorem of
LLRc iff ` A is a provable sequent.

The original lattice-R does not include the constants, that is, it comprises the axiom
(id) and the rules save (t `) and (` f). The last two rules, which are called contrac-
tion, are the only structural rules. Other commonly considered structural rules such as
exchange and associativity are inherent in the datatype in the antecedent and succe-
dent, whereas thinning is discarded both on the left and on the right — except for their
special instances with t and f.

The above sequent calculus is a sensible and well-behaved sequent calculus in light
of the following theorem, which involves the single cut rule.

α ` C;β γ;C ` δ
α;γ ` β ;δ

single cut

Theorem 2. (Cut theorem for LLRc) The cut rule is admissible in LLRc.
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Proof. The cut rule formulated above is a version of the single cut rule. There are
various ways to prove this rule admissible; one of them is by a triple induction on the
degree of the cut formula, on the contraction measure of the cut and on the rank of the
cut. We do not include the details here.3 Here is a sample step, in which the degree of
the cut formula A+B is reduced.

α

...
` A;B;β

α ` A+B;β
γ;A

...
` δ ε;B

...
` η

γ;ε;A+B ` δ ;η
α;γ;ε ` β ;δ ;η

 

α

...
` A;B;β γ;A

...
` δ

α;γ ` B;β ;δ ε;B
...
` η

α;γ;ε ` β ;δ ;η /

The proof of the cut theorem also establishes that the addition of the zero-ary con-
stants (one by one, or all at once) is conservative over the original LR.

Lattice-R can be defined by an axiom system too. We denote the Hilbert-style
system by HLRc. This calculus comprises the axiom schemas (A1)–(A17) and the
rules (R1)–(R3). (Outside parentheses are omitted from wff’s, as before.)

(A1) A→A
(A2) (A→B)→ ((C →A)→ (C → B))
(A3) (A→ (B → C))→ (B → (A→ C))
(A4) (A→ (A→B))→ (A→B)

(A4–5) (A∧B)→A, (A∧B)→B
(A7) ((C →A)∧ (C → B))→ (C → (A∧B))

(A8–9) A→ (A∨B), A→ (B∨A)
(A10) ((A→ C)∧ (B → C))→ ((A∨B)→C)

(A11–2) (∼A→B)→ (∼B→A), A→∼∼A
(A13-4) t, (t→∼f)∧ (f→∼t)

(A15) (F→A)∧ (A→ T)
(A16) ((A◦B)→∼(A→∼B))∧ (∼(A→∼B)→ (A◦B))
(A17) ((A+B)→ (∼A→B))∧ ((∼A→B)→ (A+B))

(R1) A→B and A imply B
(R2) A and B imply A∧B
(R3) ` A implies ` t→A

The notion of a proof is the usual one for axiom systems, and the formulas occur-
ring in a proof are called theorems.

The axiom system HLRc is equivalent to LLRc in the sense that the two calculuses
have the same set of theorems, as we state in the following theorem. (We leave the
proof, which is completely routine, to the reader.)

Theorem 3. A is a theorem of HLRc iff it is a theorem of LLRc.

3Some details of a similar proof may be found in Bimbó [8, §2].
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2. MODALITIES IN LLRc DEFINED FROM t AND f

The symbols ♦ and � usually stand for unary modalities, which are read as “di-
amond” and “box,” or in alethic modal logics, as “possibility” and “necessity.” The
presence of t and f in LRc allows us to define surrogate unary connectives.

Definition 4. �A is t∧A, and ♦A is A∨ f.

Of course, the above definition in itself is nothing more than looking at formulas
with a squint. However, � and ♦ turn out to have certain properties that are remi-
niscent of properties the modalities often have. The notation that we introduced was
intended to prefigure this.

Lemma 5. The formulas in (1)–(4) are theorems of LLRc, and by (5), necessitation is
an admissible rule in LLRc.
(1) �(A→B)→ (�A→�B) (4) (♦A→∼�∼A)∧ (∼�∼A→ ♦A)
(2) �A→A (5) If ` A, then `�A.
(3) �A→��A
Proof. The proofs of the corresponding formulas are straightforward, once the defined
symbols are rewritten with the primitive connectives. For instance, (1) turns into the
formula (t∧ (A→B))→ ((t∧A)→ (t∧B)). (We omit the rest of the details.) /

The formulas in (1)–(3) resemble some well-known axioms from (normal) modal
logics, when � is viewed as �, ∧ as ∧, and→ is taken to be ⊃ (i.e., classical condi-
tional). In particular, (1) looks like (K), (2) looks like (T ) and (3) looks like (4).4 It
may be tempting, at first sight, to conjecture that we have found S4 in LLRc. However,
we should not forget that ∼ is not an orthonegation, and ∧ and ∨ are not related to
each other or to → in the way conjunction and disjunction are linked to ⊃ (and ¬,
orthonegation). We find another logic hidden within LLRc though.

Linear logic, as defined in Girard [23], is sometimes called classical linear logic,
because it shares more features with classical logic than with intuitionist logic.5 We
denote this logic by CLL. Linear logic without the modalities is called multiplicative–
additive linear logic (or MALL). Linear logic was first defined as a one-sided sequent
calculus. However, all fragments of classical linear logic that contain the negation
connective may be defined equivalently as two-sided sequent calculuses.6

Classical linear logic can be (and has been) formulated in various ways, as in Avron
[4] and [44], for instance. For our goals in this paper, it is convenient to rely on a se-
quent calculus formulation. Moreover, we will assume that sequents are defined as
before, that is, they comprise a pair of multisets of wff’s. The language of propo-
sitional CLL contains several connectives, and [23] uses unconventional notation to
denote them. A translation that turns a symbol into a symbol that looks the same in
another language is very manageable; hence, we list Girard’s symbols together with
his names for the connectives, but we immediately give our preferred notation that

4This is not a typo; (4) is the standard label for the characteristic axiom of the system S4.
5See, e.g., Troelstra [44], where intuitionist linear logic is introduced too.
6See Bimbó [9] for a comprehensive treatment of sequent calculuses — including calculuses for classi-

cal linear logic.
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induces an identity translation between languages of logics. (In Sections 6 and 7, we
turn back to using Girard’s notation to facilitate comparisons.)

The zero-ary connectives are 1 (one, t), ⊥ (bottom, f), > (top, T) and 0 (null, F).
The unary connectives are ⊥ (nil, ∼), ! (of course, ♦ or �) and ? (why not, � or ♦).
The binary connectives are & (with, ∧), ⊕ (plus, ∨), ⊗ (times, ◦), ` (par, +) and(
(entail,→).

For the so-called exponentials ( ! and ?), we listed both modalities. The first modal-
ity is motivated by relational semantics, whereas the second one is based on similar-
ities of sequent calculus rules for the punctuation marks and for modalities. For the
sake of translating and comparing sequent calculuses in this paper, we use the second
variant. The issue is that when the Church constants (> and 0) are not definable from
negation using the lattice operations, Kripke’s rules for the modalities (or their adapta-
tions for ! and ?) do not provide both (dual) additivity and (dual) normality for either
of the two monotone operations.

In a two-sided sequent calculus for classical linear logic, which we denote by LCLL,
the connective rules for the connectives that have an alter ego in LLRc are exactly as
in LLRc. (Hence, we do no repeat those rules; rather, we simply assume that LCLL
is formulated with standard vocabulary.) The contraction rules (W `) and (`W ) are
absent from LCLL. However, the rules below allow the introduction of ! and ? on the
right- and left-hand sides of the turnstile, and they recuperate the effect of some of the
contractions and thinnings in a traceable way.

Definition 6. The eight rules that involve the exponential connectives are the fol-
lowing. !α and ?α are multisets in which the main connective of each formula is,
respectively, ! and ?.

α;A ` β
α; !A ` β

! `
!α ` A; ?β

!α ` !A; ?β
` !

!α;A ` ?β
!α; ?A ` ?β

?`
α ` A;β

α ` ?A;β
` ?

α; !A; !A ` β
α; !A ` β

!W `
α ` β

α; !A ` β
!K`

α ` β
α ` ?A;β

` ?K
α ` ?A; ?A;β

α ` ?A ` ?W

If we simply omit the (W `) and (`W ) rules from LLRc, then we obtain LMALL, a
sequent calculus formalization of MALL.

Our goal now is to establish that the defined modalities in LLRc behave sufficiently
similarly to the exponentials (i.e., the modalities) of LCLL. Moreover, the proof of
the next theorem provides a translation of wff’s of CLL into LRc, which is of special
philosophical interest, given that classical linear logic’s constructive character is pri-
marily manifest via the translation of intuitionist logic into CLL. In a similar sense,
LLRc is linear and constructive.

Theorem 7. (From LCLL to LLRc) If A is a theorem of LCLL, then τ(A) is a
theorem of LLRc, where τ is defined inductively by (1)–(6).

(1) τ(p) is p, when p is a propositional variable;
(2) τ(c) is c, where c is a zero-ary constant;

(3–5) τ( !A) is t∧ τ(A); τ( ?A) is τ(A)∨ f; τ(A⊥) is ∼τ(A);
(6) τ(A>B) is τ(A)> τ(B), where > is a binary connective.
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Proof. First, we note that τ is well-defined in the sense that it is applicable to any wff
of LCLL, and it results in a unique wff of LLRc.

The proof is by induction on χ , the height of a proof tree with root `A. We prove
that if α ` β is provable in LCLL, then τ(α) ` τ(β ) is provable in LLRc. (τ is applied
piece-wise to a multiset, and the translation of the empty multiset is itself.)
1. If χ = 1, then the proof is an instance of an axiom. We note that τ is independent
of the location of a formula within a sequent. Therefore, τ(A) ` τ(A) yields B ` B,
where B may be A or may be a different formula than A (if there are occurrences of
! or ? in A). Either way, B ` B is an instance of (id) in LLRc.

If the axiom is one of those that involve a zero-ary constant, then the claim is
obviously true too.
2. If χ > 1, then α ` β is by a rule.
2.1. The non-modal connective rules of LCLL turn into identical rules in LLRc; fur-
thermore, the latter rules are insensitive to the concrete shape of the parametric or
subaltern wff’s.7 As an example, we consider the (`∧) rule. α is α , whereas β is
A∧B;γ . On the left, we have the proof segment in LCLL, on the right, we have the
resulting proof segment in LLRc. The upper sequents are given by the hypotheses of
the induction that we indicate by “i.h.”

α

...
` A;γ α

...
` B;γ

α ` A∧B;γ

i.h. τ(α)

...
` τ(A);τ(γ) τ(α)

...
` τ(B);τ(γ)

τ(α) ` τ(A)∧ τ(B);τ(γ)

By clause (6), τ(A∧B) is τ(A)∧ τ(B). The other cases for the rules for non-modal
connectives has the same general structure, and we omit including their details here.
2.2. The last rule may be a modal connective rule. LCLL has the same pleasing sym-
metry as LK, the original sequent calculus for classical logic has; hence, we consider
in some detail the cases for ( !`) and (` !), but leave the details of the dual cases (i.e.,
of ( ?`) and (` ?)) to the reader.

We have the following subtrees.

γ;A
...
` β

γ; !A ` β

i.h. τ(γ);τ(A)
...
` τ(β )

τ(γ); t∧ τ(A) ` τ(β )

By (3), we know that τ( !A) is t∧ τ(A), as needed.
If the sequent α ` β is !γ ` !A; ?δ by (` !), then we have the following chunks

of proofs.

!γ

...
` A; ?δ

!γ ` !A; ?δ

i.h. τ( !γ)

...
` τ(A);τ( ?δ )

` t
τ( !γ) ` t;τ( ?δ )

τ( !γ) ` t∧ τ(A);τ( ?δ )

The thicker line indicates possibly several applications of rules — depending on the
number of wff’s in !γ and ?δ . For any wff !B in !γ , its translation is t∧ τ(B),
whereas, for any wff ?C in ?δ , its translation is τ(C)∨f. Each t∧τ(B) can be obtained
by (t `) and (∧ `); analogously, τ(C)∨ f may be gotten by (` f) and (`∨). The last
step above is justified by (`∧).

7These terms have their usual meanings following Curry [16].
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2.3. There are four modalized structural rules in LCLL. First of all, the modalized
contraction rules are special instances of their regular counterparts in LLRc. That is,
the claim is obviously true when the last rule is (!W `) or (` ?W ).

If the last rule applied in the LCLL proof is ( !K `), then α is γ; !A, and we have
the following.

γ

...
` β

γ; !A ` β

i.h. τ(γ)

...
` τ(β )

τ(γ); t ` τ(β )
τ(γ); t∧ τ(A) ` τ(β )

The rules applied in LLRc are (t `) and (∧`). The latter rule is applicable with an
arbitrary τ(A), and τ( !A) is t∧ τ(A) by clause (3). /

The theorem provides a way to test wff’s of LCLL for non-provability, because if
their translation is not provable in LLRc, then the starting formula is not provable in
LCLL. Of course, we are using the fact, which is well known to relevance logicians,
that LLR is decidable. We provide some details of the proof for LLRc in Section 3.
Provability is easily decidable if a wff of CLL does not contain occurrences of ! or
?, because LLRWc’s decidability is an immediate consequence of the cut theorem.
(LLRWc is LLRc without the (`W ) or (W `) rules.)

An insight that we attribute to Kripke [30] is that, in relevance logics, a wff has
to be introduced by a connective rule in order to be contracted. Once stated, the
truth of this observation is obvious. However, a profound consequence, as Kripke
realized, is that the contraction rules can be eliminated if operational rules permit
some contraction but require none. Relying on the same observation, the amount of
the permitted contractions in each operational rule may be minimized. The insight
that we attribute to Dunn, is that it is sufficient to allow a formula to be contracted if
it could not have been contracted in the premises.

In order to motivate the introduction of heap numbers (in Definition 8 below), we
illustrate how we use heap numbers extracted from irredundant proofs in one calculus
to bound the number of permitted contractions in another — but related — calculus.8

If we assume the usual definition of a subformula, then we may note the obvious
fact that every formula has at least one subformula, but “often” it has more. Fur-
thermore, if we count distinct occurrences of a subformula separately, then we find
that some formulas have even more subformulas (in the sense of subformula occur-
rences). Then it is obvious that permitting as many contractions on a larger formula
as we performed on some of its proper subformulas will produce at least as many or
more occurrences of subformulas. Let us consider a small proof in [LLRc] (cf. Defi-
nition 11).

[`◦]
A `A B ` B
A,B ` A◦B

A ` A B ` B
A,B ` A◦B [`◦]

A,B ` (A◦B)◦ (A◦B)
A∧B,B ` (A◦B)◦ (A◦B) [∧`]

A∧B ` (A◦B)◦ (A◦B)
t∧ (A∧B) ` (A◦B)◦ (A◦B) [∧`]

[∧`]

[`◦]

8The term “irredundant” is used in its standard sense in relevance logic; see Dunn [18, §3.6].
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This proof is irredundant — with the third application of [`◦] containing contractions
of A and B, and the second application of [∧`] containing a contraction of A∧B.
Each of those formulas are subformulas of !(A∧B) (which translates via τ into t∧
(A∧B)). Thus the heap number of !(A∧B) is at least 3. (We have not generated
all the irredundant proofs here, but having this proof we know that the heap number
cannot be less than 3.) The following proof in [LCLL] uses three contractions as part
of applications of the [ ! `] rule. This proof also happens to be irredundant, however,
that is an accidental feature. In the proof search that uses the heap number as an
upper bound on contractions, we do not require the resulting proof to be irredundant.
Accordingly, applications of the ( ! `) and ( !W `) rules may be separated without loss
of generality.

A `A B ` B
A,B ` A◦B

A ` A B ` B
A,B ` A◦B

A,B,A,B ` (A◦B)◦ (A◦B)
A,B,A,A∧B ` (A◦B)◦ (A◦B)
A,B,A∧B,A∧B ` (A◦B)◦ (A◦B)
A,B,A∧B, !(A∧B) ` (A◦B)◦ (A◦B)
A,B, !(A∧B) ` (A◦B)◦ (A◦B)
A,A∧B, !(A∧B) ` (A◦B)◦ (A◦B)
A, !(A∧B) ` (A◦B)◦ (A◦B)
A∧B, !(A∧B) ` (A◦B)◦ (A◦B)

!(A∧B) ` (A◦B)◦ (A◦B) [ ! `]

[ ! `]

[ ! `]

This time, we only labeled the steps that involve a contraction.
As already hinted at by the illustration, we will rely on the theorem (proved in the

next section) that LLRc is decidable. This result is a small extension of the decidability
of LLR originally proved in [36].9

It may be helpful to note that the decidability proof using a proof-search tree with
the sequent calculus [LLRc] provides all the irredundant proofs of a provable sequent
— unlike the example above where we only presented one irredundant proof.

Now we turn to the definition of heap numbers. Our definition uses the notion of
“ancestors,” which is essentially, Curry’s notion (see [16, p. 199]), with some obvious
modifications that are due to our calculuses being based on multisets. We briefly
explain the notion ancestors in the paragraph after the definition.

9We thank Alasdair Urquhart for calling to our attention (in December 2016) the preprint paper Roorda
[39], which claimed to have proved the decidability of classical linear logic. We did not know of Roorda’s
paper until well after we had our own proof, but his strategy is remarkably similar to ours. He uses the
method of Kripke to construct a finite proof-search tree, but the problem seems to be that there is no
guarantee that his tree will contain a proof of the candidate theorem if there is one. We provide such a
guarantee via our heap number in Definition 8. As Urquhart pointed out to us, Roorda’s proof does not
appear in his subsequent Ph.D. thesis [40]. In fact, on p. 12 of his thesis, he mentions [35] and repeats their
claim that CLL is undecidable. So, he apparently came to consider their proof to be correct and his own
earlier proof to be mistaken.
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Definition 8. (Heap number) Let `A be a provable sequent. The heap number of
B (where B is a subformula ofA) is the maximum of the total number of contractions
on the ancestors of B in any irredundant proof of the sequent.

Given a proof, B may be parametric in an application of a rule, in which case, it
has immediate parametric ancestors in the upper sequent. If B is the principal formula
of a rule then it typically has subalterns in the upper sequent. (Since the calculuses
from which we calculate the heap numbers have no explicit contraction rules, only the
thinning rules have no subalterns in the upper sequent.) We call immediate parametric
ancestors and subalterns immediate ancestors. If contraction is built into a rule, then
the principal formula may encompass contractions of parametric formulas, in which
case all the affected immediate parametric ancestors as well as the subalterns are im-
mediate ancestors of the principal formula. C is an ancestor of B when C is in the
reflexive transitive closure of the immediate ancestor of B relation.

Lemma 9. Let ` A be a provable sequent of LCLL. The heap numbers of the
subformulas of A (obtained from proofs in [LLRc]) are sufficiently large as bounds on
the number of contractions on each formula to construct a proof of ` A in LCLL
(or [[LCLL]]).

Proof. It is sufficient to consider the right-handed sequent calculus for CLL. Hence,
the only contraction rule is (` ?W ). There are two rules (beyond those for zeroary
constants) that can introduce several formulas into the sequent, namely, (` ◦) and
(` ?K). Clearly, a formula introduced by the latter does not need to be considered,
because the rule has no subaltern. (This means that if A∨ f resulted from (` f) in
[LLRc], then ?A can be introduced by (` ?K) in LCLL, if needed.) If the immediate
subformula of the contracted ?Awas introduced by (` ◦), then the proof-search might
have contained contractions on ?A or on its subformulas. Let us assume that n− 1
contractions on ?A are not sufficient for the proof of the sequent in LCLL, and the
proof search in [LLRc] provided a heap number ≤ n− 1. Then there are formulas in
the sequent that cannot be contracted in LCLL, which require at least n contractions
on ?A. However, if a formula cannot be contracted in LCLL, then it remains in the
sequent; hence, the sequent at the beginning of the proof search in [LLRc] contains
any such formula. That is, contractions on those formulas cannot reduce the number
of required contractions on ?A and its subformulas in [LLRc]. /

Theorem 10. Classical linear logic (CLL) is decidable.

Proof. Given a wff A of CLL, τ yields a wff of LLRc. It is decidable whether τ(A) is
a theorem of LLRc; if it is not, thenA is not a theorem of CLL. If τ(A) is a theorem of
CLL, then we can identify all the subformulas of τ(A), which result from the transla-
tion of an exponential subformula; we call them exceptional. The decision procedure
for τ(A) in [LLRc] produces all the irredundant proofs, hence, we can calculate the
heap number for each exceptional formula. Then we search for a proof of τ(A) in a
restricted version of [LLRc] by building a proof search tree in which contractions on
exceptional formulas are limited by their heap number.

The restrictions on the rules of [LLRc] are the following.
1. No contraction is permitted in [` ∧], [∨ `], [∼ `], [` ∼], [◦ `], [`+], [`→].
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2. A contraction is permitted in [∧1 `] and [∧2 `] when A∧B is an exceptional
wff. Dually, a contraction is permitted in [`∨1] and [`∨2], if A∨B is an
exceptional wff.

3. A contraction is permitted in α;γ in [` ◦], [+ `] and [→`] if an exceptional
formula t∧A occurs both in α and γ . Dually, a contraction is permitted in β ;δ
in an application of the same rules if an exceptional formula A∨ f occurs both
in β and δ . (The principal formulas of these rules cannot be contracted.)

The above restrictions match exactly the restricted contraction rules in CLL (see
Definition 6), whereas the heap numbers provide the upper bounds on the number
contractions. Therefore, the proof-search tree is finite. Since LLRc and LCLL coincide
on the exponential-free fragment of CLL, and we allowed heap-number-many contrac-
tions on exceptional formulas, ifA is a theorem of CLL, then the proof-search tree will
contain a proof of τ(A).

Once we have proofs in the proof-search tree for the formulaA, we also check that
any applications of [`∧] and [∨`] with principal formulas that are translations of a
!’d or ?’d formula satisfy the side conditions in Kripke’s rules (i.e., of the (` !) and
( ? `) rules). /

The theorem contradicts Theorem 3.7 in [35], which states the undecidability of
classical linear logic, and Corollaries 5.5 and 5.7 in [28], which state the undecidabil-
ity of two Horn-fragments of linear logic. We believe that those papers do not contain
proofs of the undecidability of CLL, and will provide our argument for this in Sec-
tion 7. We also give another proof of the decidability of CLL below; that proof also
uses in an essential way the Curry–Kripke strategy.

3. LATTICE-R’S DECIDABILITY

This section is a rather detailed presentation of the decidability of LLRc. The de-
cidability of LR was proved by Meyer in 1966 [36]. The addition of the zero-ary
constants is not a huge extension of that result, and it has a certain resemblance to the
extension of the decidability result for R→ proved by Kripke in 1959 [30] to a proof
of the decidability of Rt

→ in Bimbó and Dunn [13].
A core idea is to define a contraction-free sequent calculus that allows the proof of

the same sequents as LLRc does. This sequent calculus must be orderly, that is, the
cut theorem has to hold for it, and cut-free proofs must have the subformula property.
Then, we build a proof-search tree, which can be shown to be finite.

Definition 11. The sequent calculus [LLRc] is defined by the following axioms and
rules. (Sequents are as before, and the bracket notation is explained below. This use
of brackets motivates the label [LLRc] for the calculus.)

α;F ` β F` A `A id α ` T;β `T

f ` f`
α ` β

α ` f;β
`f

α ` β
α; t ` β

t` ` t `t

α;A ` β
[α;A∧B] ` β

[∧`1]
α;B ` β

[α;A∧B] ` β
[∧`2]

α ` A;β α ` B;β
α ` [A∧B;β ]

[`∧]
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α;A ` β α;B ` β
[α;A∨B] ` β

[∨`]
α ` A;β

α ` [A∨B;β ]
[`∨1]

α ` B;β
α ` [A∨B;β ]

[`∨2]

α ` A;β
[α;∼A] ` β

[∼`]
α;A ` β

α ` [∼A;β ]
[`∼]

α;A;B ` β
[α;A◦B] ` β

[◦`]
α ` A;β γ ` B;δ
[α;γ] ` [A◦B;β ;δ ]

[`◦]

α;A ` β γ;B ` δ
[α;γ;A+B] ` [β ;δ ]

[+`]
α ` A;B;β

α ` [A+B;β ]
[`+]

α ` A;β γ;B ` δ
[α;γ;A→B] ` [β ;δ ]

[→`]
α;A ` B;β

α ` [A→B;β ]
[`→]

Bracketing happens in three kinds of situations.
1. A parametric multiset is joined with the principal wff of a rule.
2. Two parametric multisets are joined with the principal wff of a rule.
3. Two parametric multisets are joined (without the addition of the principal wff

of a rule).
Situations of type 1 occur in all the ∧, ∨ and ∼ rules, as well as in [◦`], [`+] and

[`→]. Situations of type 2 and 3 occur in the rules [`◦], [+`] and [→`] — on one
or another side of the turnstile.

Definition 12. The bracketing indicates the following potential contractions — with-
out a total loss of a wff, of course — in the respective multisets. None of the contrac-
tions is mandatory, that is, any rule can be applied without contraction, if desired.

1. The principal wff may be contracted once, if it already occurs in the parametric
multiset.

2. The principal wff may be contracted once or twice, if it already occurs in one
or both parametric multisets, respectively. A parametric wff may be contracted
once, if it occurs in both parametric multisets.

3. A wff may be contracted once, if it already occurs in both parametric multisets.

Theorem 13. (Cut theorem for [LLRc]) The cut rule is admissible in [LLRc].

Proof. The proof can be carried out more or less along similar lines as the proof of
Theorem 2. However, instead of dealing with the contraction rules separately, we
have to verify that all the contractions, which could be carried out in a given proof,
can be carried out in the transformed proof too. As a sample transformation, we give
a transformation where ρ , the rank is minimal and the cut formula is a conjunction.

α

...
` A;β α

...
` B;β

α ` A∧B;β
γ;A

...
` δ

γ;A∧B ` δ
[α;γ] ` [β ;δ ]

 α

...
` A;β γ;A

...
` δ

[α;γ] ` [β ;δ ]
Since A∧B does not occur in β or γ due to the assumption about the rank, any
contraction must be part of the cut. All such contractions can be performed as part of
the cut in the new proof. (We omit the rest of the details.) /
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We state the obvious claim that is a consequence of the fact that any implicit con-
traction in [LLRc] is replicable by explicit contractions in LLRc.

Lemma 14. If A is a theorem of [LLRc], then A is a theorem of LLRc.

Next, we want to make sure that hiding the contractions in the connective rules
does not diminish the capacity of the calculus with respect to proving theorems.

Lemma 15. (Curry’s lemma for [LLRc]) If α ` β has a proof in [LLRc] with
the height of the proof tree being n, and γ ` δ results from α ` β by one or more
applications of the rules (W `) and (`W ), then γ ` δ has a proof in [LLRc], where
the height of the proof tree is not greater than n (i.e., it is ≤ n).

Proof. This is a core lemma for decidability, hence, we give more details here. The
base case concerns proofs of height 1.
1. The axioms (id), (` t) and ( f`) do not have instances to which a contraction rule
could be applied; hence, the claim is true.

If the proof is an instance of (F`), then it can be the case that F is the principal
formula of (W `) or some other wff may have multiple copies in α or in β . However,
a contraction on the left cannot lead to F being dropped altogether on the left-hand
side of the ` . For instance, α ′;F;F;A;A`B;B;β ′ is an instance of the axiom, but so
is α ′;F;A` B;β ′. The case of (`T) is similar, modulo T occurring on the right-hand
side of the ` .
2. The rest of the cases make up the inductive step. There are three kinds of rules in
[LLRc]. First, some rules have no contraction built in. The second group of rules has a
type 1 situation on one side of the ` and no contraction on the other side. Most rules
are like this. Lastly, in three rules, there can be contraction hidden on both sides, one
like type 2, the other like type 3. The concrete shape of the principal formula is really
indifferent in this proof (though it is specific in each rule). Hence, we exemplify each
case by detailing the step for one rule.
2.1. We will scrutinize the rules for the zero-ary constants, since, those rules (or the
constants themselves) are not included in [36]. (We of course know that t does not
cause a problem in [LRt

→], as we had shown in Bimbó and Dunn [12].)
If the constant is a wff that could be contracted, then the application of the rule

may be omitted. Any other contraction must involve parametric formulas, hence, the
new proof is guaranteed to exist by the inductive hypothesis. Here is what happens in
the case of the (`f) rule; the (t`) rule behaves dually. (We only make explicit two
pairs of parametric formulas and we assume that B is not f. However, it should be
clear that having more parametric formulas that could be contracted, or having them
only on one side or having more copies of one particular formula does not change the
general structure of this step in the proof.)

α ′;A;A
...
` B;B;β ′

α ′;A;A ` f;B;B;β ′

i.h. α ′;A
...
` B;β ′

α ′;A ` f;B;β ′

α ′;A;A
...
` f;B;B;β ′

α ′;A;A ` f; f;B;B;β ′
i.h. α ′;A

...
` f;B;β ′

2.2. In this situation, some duplicates of parametric formulas could be contracted, and
additionally, the rule allows the contraction of the principal formula too, provided that
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it already occurred among the parametric formulas. The former sort of contraction
can be dealt with by appeal to the inductive hypothesis, whereas the latter sort of
contraction can result from the application of the same rule (to the new premise). As
an illustration, we consider one of the [`∨] rules; the other rules are similar.

α ′;A;A
...
` B;B;D;C ∨D;β ′

α ′;A;A ` [B;B;C ∨D;C ∨D;β ′]

i.h. α ′;A
...
` B;D;C ∨D;β ′

α ′;A ` [B;C ∨D;C ∨D;β ′]
2.3. The last situation is just a notch more complicated, primarily, due to the need to
keep track of where the wff’s that could be contracted come from. As an illustration,
we choose the [+ `] rule and we will assume that all the contractable formulas have
been made explicit — with distinct letters standing for distinct formulas. (Adding
more wff’s only expands the size of the sequents, but it does not alter the proof step in
a crucial way.) Thus, instead of the bracket notation, we write multisets in the lower
sequents.
γ;A;A+B;C;E ;E

...
` D;δ ε;B;A+B;C

...
` G;G;D;η

γ;ε;A+B;A+B;A+B;C;C;E ;E ` G;G;D;D;δ ;η

i.h. 

γ;A;A+B;C;E
...
` D;δ ε;B;A+B;C

...
` G;D;η

γ;ε;A+B;C;E ` G;D;δ ;η
It is easy to verify that the height of the new proof tree in 2.1.–2.3. is not greater (in

some cases, strictly less) than the height of the original proof tree. /

Cognate sequents are often defined for sequents that comprise a pair of sequences
of formulas. However, the definition straightforwardly transfers to sequents based on
pairs of multisets.

Definition 16. (Cognate sequents) The sequents α ` β and γ ` δ are cognate iff
(1) and (2) hold for any formula A.
(1) A occurs in α iff it occurs in γ . (2) A occurs in β iff it occurs in δ .

The number of occurrences is not mentioned in the definition at all, which reflects
the idea that if we would view sequents as pairs of sets, then cognation means that the
set-view turns the antecedents and succedents, respectively, into the same set.

Lemma 17. (Kripke’s lemma for cognate sequents) A sequence of distinct cog-
nate sequents, in which, if αn ` βn precedes αm ` βm, then the former does not result
by one or more contractions of wff’s in αm ` βm, is finite.

A possibly easier-to-understand phrasing of the lemma is in terms of natural num-
bers. Let a finite fixed set of prime factors be given, let us say, {2,5,13}. Contraction
is the reduction of an exponent by 1, for instance, 26 · 56 · 134 is a contraction of
27 · 56 · 134. Then, a sequence of distinct natural numbers over the set of fixed prime
factors (all with positive integer exponents), in which earlier numbers are not (single
or multiple) contractions of later numbers, is finite.10

10Kripke’s lemma is equivalent to lemmas from other parts of mathematics, e.g., to Dickson’s lemma
in number theory. The truth of none of these equivalent lemmas has been questioned. The connection to
Dickson’s lemma was discovered by Meyer, as noted in [18] and also in its expanded version [20]. (Both



Katalin Bimbó and J. Michael Dunn: Modalities in Lattice-R 103

Proof. We note that Kripke’s lemma is not specific to the language of a logic, that is,
it does not matter what connectives occur in the formulas. The numerical illustration
clearly hints toward this. A proof of Kripke’s lemma may be found in Anderson and
Belnap [2, §13], (and we do not repeat that proof here). /

Another lemma that is general, in the sense that the shape of the components in the
structure is unimportant, is Kőnig’s lemma about trees. Finite branching or finite fork-
ing means that no node has infinitely many children, whereas having finite branches
means that every maximal path is finite.

Lemma 18. (Kőnig’s lemma) A tree with finite branching and with finite branches
is finite.

Proof. A detailed proof of this lemma may be found in Smullyan [41], for example,
and we do not repeat that proof here. /

Now we can put together the latter two lemmas with some facts about [LLRc] to
obtain the decidability of [LLRc], thereby, of LLRc.

Theorem 19. (Decidability for LLRc) The logic LLRc is decidable.

Proof. To start with, we note that each formula in the language of [LLRc] has finitely
many subformulas (under the usual understanding of subformulas), hence, finitely
many proper subformulas. For example, if a sequent is by the (∧`) rule, then there
are only two possible choices as to what the subaltern in the premise could be.

Finiteness obtains in other respects too. Each sequent contains finitely many for-
mulas, each occurring finitely many times. Given a sequent and fixating on a rule
that could have resulted in that sequent, there are finitely many contractions that could
have been part of the application of that rule.

The cut theorem provides the assurance that every theorem has a cut-free proof.
Let us assume that a wffA is given. We construct a proof-search tree to determine if

A is or is not a theorem of [LLRc]. The proof-search tree has two important properties,
namely, it is a finite tree, and if the given formula is a theorem, then the proof-search
tree contains a subtree that is a proof of the formula in the root sequent.

The proof-search tree is built from the bottom to the top by “backward applications
of the rules.” The root of the tree is the sequent ` A. By “backward applications of
rules” we mean the consideration of potential rules (and their premises), the applica-
tions of which could result in the sequent in a given node. We may assume that the
potential premises are arranged into an ordered set of leaves, and on each level we
proceed from left to right — taking a node after another one, and trying to expand
the tree with new nodes (forming a new level in the tree). For a node in the tree, we
consider which rules could have been applied and what the premises would be. We
add all those premises as children of the given node (i.e., as new leaves) to the tree
as long as they do not violate the condition in Kripke’s lemma. Then we move on to
consider the next node.

contain a persuasive visualization of a concrete instance of the lemma; so does [9, §9.1].) See also Riche
and Meyer [38] and Kopylov [29].



104 Katalin Bimbó and J. Michael Dunn: Modalities in Lattice-R

A theorem A has a cut-free proof in [LLRc], hence, the exhaustive search through
all the possible rules and potential premises guarantees that a proof is constructed
within the proof-search tree (if the formula is a theorem). On the other hand, the tree
is finite, because of the already mentioned finiteness properties together with Kripke’s
and Kőnig’s lemmas. Finally, the equivalence of LLRc and [LLRc] with respect to
provable sequents guarantees that no theorems are misclassified as unprovable when
we use [LLRc] in the proof search. /

4. MODALITIES ADDED TO LLRc

Modalities could be added explicitly to LLRc, indeed, �’s addition to LR was con-
sidered in [36]. A way to proceed is to consider some usual rules for �, and their
duals for ♦ together with the connecting rules from Kripke [31], which allow us to
prove versions of the so-called modal De Morgan laws for the two modalities.

Definition 20. The sequent calculus LLR♦� is defined by the axioms and rules of LLRc

and the following rules.
α;A ` β

α;�A ` β
�`

�α ` A;♦β
�α `�A;♦β

`�
�α;A ` ♦β
�α;♦A ` ♦β

♦`
α ` A;β

α ` ♦A;β
`♦

�α (♦α) is a multiset in which the main connective of each formula is � (♦). The
notions of a proof and of a theorem are as for LLRc.

There is an obvious similarity between these rules and the ( ! `), (` !), ( ? `) and
(`?) rules in LCLL (cf. Definition 6). The analogy suggests taking ! to be�, and ? to
be ♦, and this translation is very tempting. However, � and ♦ have deeply engraved
connotations in the presence of ∧ and ∨. Especially, under the alethic reading of the
connectives, it seems plausible that A is necessary and B is necessary exactly when
A∧B is necessary. In LLR♦�, it is not too difficult to prove half of this, namely, the
sequent �(A∧B) `�A∧�B, and dually, the sequent ♦A∨♦B ` ♦(A∨B). More-
over, neither proof requires an application of any structural rule. In other words, if we
were to omit (W `) and (`W ), the sequents would remain provable. We denote by
LLRW the contraction-less sequent calculus derived from LLRc; its modalized version
will be denoted by LLRW♦�.

Of course we know, though we have not yet stated it, that the cut theorem holds
for LLR♦�; moreover, that this logic is decidable too. Nonetheless, after some proof
attempts, one might convince oneself that �A∧�B ` �(A∧B) is not provable not
only in LLRW♦� but in LLR♦� either. The analog sequent !A∧ !B ` !(A∧B) is not
provable in LCLL. This formula provides an example of how the proof of Theorem 10
proceeds. If (t∧A)∧ (t∧B) ` t∧ (A∧B) would not be provable in LLRc, then we
could immediately conclude that !A∧ !B ` !(A∧B) is not provable in CLL. How-
ever, the translation is provable in LLRc, and so a proof search has to be carried out
in [LLRc] taking into account all the constraints from Theorem 10. The proof search
does not produce a proof, therefore, we may conclude that the sequent is not provable
in CLL. We return to the provability of �A∧�B `�(A∧B) in the next section, but
now we turn to what is provable in LLR♦�.

The following four formulas are theorems of LLR♦�, and (R4) is the rule of “neces-
sitation.” (We omit the details of the proofs, which are straightforward.) (A18)–(A21)
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look like the earlier wff’s (1)–(4), in which � and ♦ were defined connectives. By
numbering these formulas and the rule consecutively, we indicate that HLR♦� may be
defined from HLRc by these additions.
(A18) �(A→B)→ (�A→�B) (A20) �A→��A
(A19) �A→A (A21) (♦A→∼�∼A)∧ (∼�∼A→ ♦A)

(R4) ` A implies `�A
The cut theorem is true of LLR♦�, which facilitates the proof of the equivalence of

the sequent and axiomatic formulations as well as the proof of decidability.

Theorem 21. (Cut theorem for LLR♦�) The cut rule is admissible in LLR♦�.

Proof. The proof proceeds as usual. An important observation is that in the transfor-
mations of proofs no other rules are used than those already used. /

The modalities do not appear to be too intricate — even if they do not have all
the usual properties that � and ♦ have in S4. The latter logic (more precisely, the
propositional part of S4) is known to be decidable. Therefore, we may wonder whether
we can adapt and extend the proof of the decidability of LLRc to LLR♦�.

Definition 22. We define the sequent calculus denoted as [LLR♦�] by taking [LLRc],
and by adding the following connective rules for the modalities.

α;A ` β
[α;�A] ` β

[�`]
�α ` A;♦β
�α `�A;♦β

`�
�α;A ` ♦β
�α;♦A ` ♦β

♦`
α ` A;β

α ` [♦A;β ]
[`♦]

We assume some earlier notions and notational conventions in an obvious way.
Two of the rules have no bracketing at all, whereas the two others are of type 1.

Theorem 23. (Cut theorem for [LLR♦�]) The cut theorem is admissible in [LLR♦�].

Proof. The proof proceeds as usual.11 Here is a sample case from the transformation,
where �C is the cut formula. If ρ = 2, then �C could not have been contracted
in [� ` ].

�α

...
` C;♦β

�α `�C;♦β
γ;C

...
` δ

γ;�C ` δ
[�α;γ] ` [♦β ;δ ]

 �α

...
` C;♦β γ;C

...
` δ

[�α;γ] ` [♦β ;δ ]
If the right rank ρr > 1 and all the contractions in the original proof resulted from

the application of the cut, then the above transformation suffices. Otherwise, that is, if
�C, the principal formula of the [� ` ] rule, was contracted as part of the application
of the rule, then we consider the number of occurrences of �C in γ . If there are
several occurrences in γ , then we permute the applications of the cut rule and of the
[� ` ] rule. If there is only one occurrence of �C, then beyond the permutation, we
also include a cut on the subaltern (which is of lower degree than �C). Here are the
resulting chunks of the proof. (n ∈ N and n > 1.)

�α
···
` C;♦β

�α `�C;♦β γ ′;(�C)n;C
...
` δ

[�α;γ ′;(�C)n−1;C] ` [♦β ;δ ]
[�α;γ ′;(�C)n−1] ` [♦β ;δ ]

11Some details of a related proof are given in [8, §2].
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�α

...
` C;♦β

�α

...
` C;♦β

�α `�C;♦β γ ′;�C;C
...
` δ

[�α;γ ′;C] ` [♦β ;δ ]
[�α;γ ′] ` [♦β ;δ ] /

Next, we prove Curry’s lemma, which is sometimes called the height-preserving
admissibility of contraction.

Lemma 24. (Curry’s lemma for [LLR♦�]) If α ` β has a proof in [LLR♦�] with
the height of the proof tree being n, and γ ` δ results from α ` β by one or more
applications of the rules (W `) and (`W ), then γ ` δ has a proof in [LLR♦�], where
the height of the proof tree is not greater than n (i.e., it is ≤ n).

Proof. The proof of this lemma seamlessly incorporates the proof of Lemma 15. We
have four new rules — compared to [LLRc]. Two of those do not permit contractions,
hence, any contractions that could be applied to the lower sequent of those rules are
guaranteed to exist by the hypothesis of the induction. We consider the remaining two
rules, which expand case 2.2.
2.2. If the last rule applied in the given proof is [�` ], then �A may be contracted,
provided that it already occurs in the antecedent, that is, in α . We consider B and C
as other wff’s that potentially could be contracted. The following is an illustration of
a representative case, though concretely, there might be fewer or more formulas that
could be contracted.

α ′;B;B;�A;A
...
` C;C;β ′

[α ′;B;B;�A;�A] ` C;C;β ′

i.h. α ′;B;�A;A
...
` C;β ′

[α ′;B;�A;�A] ` C;β ′

B and C can be contracted above the application of the [� ` ] rule, by the inductive
hypothesis, and α ′;B;�A can be obtained using [� ` ].

If the last rule applied in the proof is [`♦ ], then we have a dual situation. Here is
the given segment, and the new chunk.

α ′;A;A
...
` B;♦B;C;C;β ′

α ′;A;A ` [♦B;♦B;C;C;β ′]

i.h. α ′;A
...
` B;♦B;C;β ′

α ′;A ` [♦B;♦B;C;β ′]

Clearly, the height of the proof tree does not increase in either case. /

Theorem 25. (Decidability for LLR♦�) The logic LLR♦� is decidable.

Proof. The proof of this theorem proceeds like the proof of Theorem 19. We have two
sequent calculuses, [LLR♦�] and LLR♦�, in which the same theorems are provable.
Additionally, we have proved Curry’s lemma for [LLR♦�]. The whole structure of the
proof is the same as before, that is, it is through performing an exhaustive search in a
finite search space. /
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5. LOGICS IN THE NEIGHBORHOOD OF LR♦�

If we keep the four connective rules for ♦ and � fixed, then we may wonder
about the effects of the inclusion of the contraction or the thinning rules, or of their
modalized versions (like those in CLL). In particular, the next proof suggests the
usefulness of the modalized thinning rules with LLR♦�. We labeled the steps where

�K`
A `A
A;�B ` A
�A;�B ` A

B ` B
�A;B ` B �K`

�A;�B ` B
�A;�B ` A∧B
�A;�B `�(A∧B)

�A;�A∧�B `�(A∧B)
�A∧�B;�A∧�B `�(A∧B)

�A∧�B `�(A∧B) W `

FIGURE 1. A proof of the distributivity of � over ∧

structural rules (modalized or plain ones) are applied. The proof sort of “explains”
why the bottom sequent is not provable in LLR♦� or in LCLL (with ! instead of �
in other notation). The logic LLR♦� has no thinning (except for t and f), whereas
LCLL does not have plain contraction. More contemplation of the proof allows us to
conclude that !A⊗ !B ` !(A&B) is provable in LCLL because of ( !K `), hence,
�A◦�B `�(A∧B) is provable in LBCK♦�, for example.

LBCK♦� is LLRW♦� with left and right thinning rules. The letters B, C and K are
motivated by the provability of the principal (simple) type schemas of the combinators
B, C and K in the implicational fragment of LBCK♦�. If we add modalized contraction
rules, then we get LBCK♦�

�♦W , which is also known as affine linear logic, and it had been
proved decidable by Alexei P. Kopylov, in 1995 (see [29]), using normal sequents
and vector games. We give a new proof of the decidability of LBCK♦�

�♦W (which is
conceptually different), in the second half of this section. Our proof shows that the
modalization of the contraction rules does not destroy decidability. (The modalization
of the thinning rules is absolutely unproblematic.)

The converse of the previously considered sequent, !(A&B) ` !A⊗ !B is also
provable in LCLL, because of ( !W `), hence, �(A∧B) ` �A◦�B is provable in
LLR♦�. Thus, some of the prototypical sequents provable in LCLL are the next four
ones (where α a` β indicates that both α ` β and β ` α are provable).

!A⊗ !B a` !(A&B) !( !A& !B) a` !(A&B)
The proof in Figure 1 also shows that the distribution of � over ∧ is provable in

LLR♦�
�♦K , that is, LLR♦� extended with a pair of modalized thinning rules. (We pointed

out on page 104 that the sequent �(A∧B) `�A∧�B is always provable.)
Figure 2 (below) shows seven logics that we consider in varying details. The arrows

indicate that the set of axioms and rules of a logic is a proper subset of the set of axioms
and rules of another one (assuming the identity translation throughout). As a result,
inclusions between sets of theorems of those logics also obtain, and they can be shown
to be proper.
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LK♦�

LLR♦�
�♦K LBCK♦�

�♦W

LLR♦� LCLL LBCK♦�

LLRW♦�

FIGURE 2. Seven logics with modalities

For the sake of clarity, the non-modalized thinning rules are the following rules:
α ` β

α;A ` β
K`

α ` β
α ` A;β

`K

The subscripts �♦K and �♦W in the labels of some logics indicate the addition of a
pair of the modalized structural rules (�K `) and (` ♦K), or (�W `) and (` ♦W ).

Definition 26. The modalized thinning and contraction rules are as follows.
α ` β

α;�A ` β
�K`

α ` β
α ` ♦A;β

`♦K
α;�A;�A ` β

α;�A ` β
�W`

α ` ♦A;♦A;β
α ` ♦A;β

`♦W

First of all, we should note that LK♦� is a baroque logic, because it has duplicate
symbols for two of its connectives, namely, for ∧ and ∨ (or for ◦ and +). The two
pairs of the zero-ary constants also match as T and t, and F and f. Furthermore, they
are definable by the lattice connectives and ∼. Unlike in the six other logics, ∧ and
∨ distribute over each other. In sum, LK♦� is classical logic with � and ♦, which are
S4-type modalities; that is, LK♦� is a notational variant of S4.

Normality means that ♦ preserves F, or dually, T→ �T is a theorem. It is not
difficult to check that if (`K) and (K`) are in one of those logics, then both obtain,
and vice versa. Thus, normality is a feature of modalities already in LBCK♦�. The
modal operators are monotone, and this is their feature in all seven logics. The proof of
additivity of ♦ requires contraction and (modalized) thinning, whereas the normality
of ♦, as we already mentioned, requires thinning. Thus, the modalities have some
S4ish properties — reflected by (A18)–(A21) and (R4) — in all seven logics, but ♦ is
normal and additive, and � has the dual of both properties only in LK♦�.

Propositional S4 is known to be decidable, and this remains true the duplicate sym-
bols notwithstanding. The decidability of LLRW♦� and of LBCK♦� is immediate (be-
cause neither calculus has any contraction rules), and we have shown that LLR♦� is
decidable. Three other logics are left to consider. First, we focus on LLR♦�

�♦K and
LBCK♦�

�♦W , then we turn to LCLL.
The sequent calculus [LLR♦�

�♦K] is an extension of the sequent calculus [LLR♦�] by
the two modalized thinning rules. There is no contraction included in those rules.
The rationale is the same as with the (t `) and (` f) rules, which may be viewed as
special thinning rules. Namely, if the principal formula would be contracted, then an
application of the rule may be simply omitted.

Theorem 27. (Cut theorem for [LLR♦�
�♦K]) The cut rule is admissible in [LLR♦�

�♦K].
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Proof. The proof extends the proof of the cut theorem for [LLR♦�]. We consider one
new case in detail, when ρ = 2 and the right premise is by (�K`) and �C is the cut
formula. The transformation ensures that �C (occurring in the succedent of the left
premise) disappears without an application of the cut rule.

�α

...
` C;♦β

�α `�C;♦β
γ

...
` δ

γ;�C ` δ
[�α;γ] ` [♦β ;δ ]

 

γ

...
` δ

�α;γ ` δ
[�α;γ] ` [♦β ;δ ]

The case, in which the pair of rules is 〈(`♦K),(♦`)〉, is the dual of this.
If the principal formula of the modalized thinning rules does not coincide with the

cut formula, then the cut may be permuted upward without difficulty, because there
are no side conditions on the applicability of the modalized thinning rules. (We omit
the remaining details.) /

The cut theorem ensures the subformula property in cut-free proofs. The following
lemma is preeminent for decidability.

Lemma 28. (Curry’s lemma for [LLR♦�
�♦K]) If α ` β has a proof in [LLR♦�

�♦K]
with the height of the proof tree being n, and γ ` δ results from α ` β by one or more
applications of the rules (W `) and (`W ), then γ ` δ has a proof in [LLR♦�

�♦K], where
the height of the proof tree is not greater than n (i.e., it is ≤ n).

Proof. Once again, we suppose the proof for the logic [LLR♦�]. We have to extend
the inductive step, namely, case 2.2. There are two new rules, and we consider each.
2.2. Let us assume that there are some parametric wff’s,A and B, which have multiple
occurrences that could be contracted, but�C, the principal formula of the (�K`) rule
is not among the contractable formulas. Then we have the following.

α ′;A;A
...
` B;B;B;β ′

α ′;A;A;�C ` B;B;B;β ′

i.h. α ′;A
...
` B;β ′

α ′;A;�C ` B;β ′

It could happen that�C already has some occurrences in the premise. Although the
rule does not have any built-in contraction, the resulting sequent could be contracted.
Here is an example.

α ′;A;A;A;�C;�C
...
` B;B;β ′

α ′;A;A;A;�C;�C;�C ` B;B;β ′
i.h. α ′;A;�C

...
` B;β ′

Dually, we have two possibilities with the (`♦K) rule. (We use two copies of A
and B in these proof segments.)

α ′;A;A
...
` B;B;β ′

α ′;A;A ` ♦C;B;B;β ′

i.h. α ′;A
...
` B;β ′

α ′;A ` ♦C;B;β ′

α ′;A;A
...
` ♦C;B;B;β ′

α ′;A;A ` ♦C;♦C;B;B;β ′
i.h. α ′;A

...
` ♦C;B;β ′

The height of the proof does not increase in any of the cases. /
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Theorem 29. The logic [LLR♦�
�♦K] is decidable.

Proof. The proof proceeds as before, hence, we skip the details here. /

The sequent calculus LBCK♦�
�♦W is defined by adding the modalized contraction

rules to LBCK♦�, and it differs from LK♦�, which has non-modalized contractions.
As we noted, LK♦�’s language could be simplified, however, for our purposes now
it is useful to retain both the extensional (i.e., lattice) connectives and the intensional
(including the modal) connectives.

We have noted also that LK♦� is decidable. In particular, the decidability of LK♦�

can be proved along the lines of the decidability proofs of LLR♦� and LLR♦�
�♦K . The

presence of thinning (modalized or plain) does not constitute a problem at all, because
it does not even require contraction to be built into the thinning rules in the contraction-
free version of the sequent calculus. [LK♦�] is defined as [LLR♦�] with the full left
and right thinning rules added. Definition 8 does not mention (explicitly) a calculus,
hence, we may use the same notion here with the assumption that the heap numbers
for LBCK♦�

�♦W are calculated from the Curry–Kripke decision procedure for LK♦�.

Theorem 30. The logic LBCK♦�
�♦W is decidable.

Proof. Given a wff A, we can determine if the wff is a theorem of LK♦�; if it is not,
thenA is not a theorem of LBCK♦�

�♦W either. On the other hand, we can also determine
if A is a theorem of LBCK♦�; if it is, then it is a theorem of LBCK♦�

�♦W too. We apply
a proof search procedure to the remaining wff’s.

We construct a proof-search tree in LBCK♦�
�♦W taking into account the heap numbers

for the subformulas ofA as upper bounds on the number of applications of the (�W `)
and (`♦W ) rules. The resulting tree will be finite, because there are no other contrac-
tions than those that are instances of the modalized contraction rules, and the number
of their applications is bounded by the heap numbers, which are finite numbers. /

6. THE DECIDABILITY OF LINEAR LOGIC

We have already proved that classical linear logic (CLL) is decidable — as The-
orem 10. CLL has a certain familiarity to many people, and it had been claimed to
be undecidable in [35] (see Theorem 3.7) and in [28] (see Corollaries 5.5 and 5.7)
We think though that those proofs fall short of establishing the undecidability of CLL.
Since the undecidability of CLL is widely believed in the computer science commu-
nity, we give a more direct proof (than the previous proof) for the decidability of CLL.

To make the reading of this proof easier for those in the linear logic community,
we define a sequent calculus, which we call [[[LCLL]]], and we use Girard’s notation.
[[[LCLL]]] is not classical linear logic though. (A careful reader will recognize this logic
as [LLR♦�

�♦K] in non-standard notation.)
The notion of a sequent is as before; a sequent is a pair of multisets of wff’s sepa-

rated by `. We use both single and double bracketing in this calculus for permissible
contractions that are built into the operational rules. For some purposes the single and
the double bracketing might be treated as the same (just blur your vision). But as we
shall explain after we state the rules, the double brackets sometimes mark a crucial
distinction.
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Definition 31. [[[LCLL]]] comprises the following axioms and rules.

α;0 ` β 0` A `A id α ` >;β `>

⊥ ` ⊥`
α ` β

α ` ⊥;β
`⊥

α ` β
α;1 ` β

1` ` 1 `1

α;A ` β
[α;A&B] ` β

[&`1]
α;A ` β

[α;B&A] ` β
[&`2]

α ` A;β α ` B;β
α ` [A&B;β ]

[`&]

α;A ` β α;B ` β
[α;A⊕B] ` β

[⊕`]
α ` A;β

α ` [A⊕B;β ]
[`⊕1]

α ` A;β
α ` [B⊕A;β ]

[`⊕2]

α ` A;β
[α;A⊥] ` β

[⊥`]
α;A ` β

α ` [A⊥;β ]
[`⊥]

α;A;B ` β
[α;A⊗B] ` β

[⊗`]
α ` A;β γ ` B;δ
[[α;γ]] ` [[A⊗B;β ;δ ]]

[[`⊗]]

α;A ` β γ;B ` δ
[[α;γ;A`B]] ` [[β ;δ ]]

[[``]]
α ` A;B;β

α ` [A`B;β ]
[``]

α ` A;β γ;B ` δ
[[α;γ;A( B]] ` [[β ;δ ]]

[[(`]]
α;A ` B;β

α ` [A( B;β ]
[`(]

α;A ` β
[[α; !A]] ` β

[[ ! `]]
!α ` A; ?β

!α ` !A; ?β
` !

!α;A ` ?β
!α; ?A ` ?β

?`
α ` A;β

α ` [[ ?A;β ]]
[[` ?]]

α ` β
α; !A ` β

!K `
α ` β

α ` ?A;β
` ?K

To start with, the brackets (whether single or double) indicate optional contractions
as in Definition 12. Then [[[LCLL]]] is equivalent to [LLR♦�

�♦K]. We may weaken the
logic in two different ways, each time getting CLL. First, we may forget about all the
brackets and add the rules (�W `) and (`♦W ) (with ! for� and ? for ♦). This is the
calculus that we denote by LCLL. Second, we can omit the single brackets and change
the meaning of the double brackets as follows.

2. If !A occurs both in α and γ , then it may be contracted in [[α;γ]]. Dually, if
?A occurs both in β and δ , then it may be contracted in [[β ;δ ]]. The principal
formula cannot be involved in the contraction.

3. In [[ ! `]] and [[` ?]], !A and ?A may be contracted, respectively, if it occurs in
α and β .

Obviously, the scope of [[ ]] could be made narrower in the rules where the main
connective of the principal formula of the rule is binary. We denote the logic obtained
by omitting the single brackets as [[LCLL]].
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Now we prove some useful theorems about the calculus [[LCLL]]. Namely, every
theorem of LCLL is a theorem of [[LCLL]], and every theorem of [[LCLL]] has a cut-free
proof (by Lemma 32). A suitable version of Curry’s lemma (Lemma 33) holds too.

Lemma 32. (Cut theorem for [[LCLL]]) The cut rule is admissible in [[LCLL]].

Proof. The proof is by double induction on the rank of the cut and the degree of the
cut formula. The rank of the cut (ρ) is defined as in Gentzen [22], and the degree of
the cut formula (δ ) is the number of unary and binary logical connectives in the cut
formula. We divide the cases within the induction into four groups, and provide some
representative details.
I. Let δ = 0 and ρ = 2. The cut formula is (1) a propositional variable (e.g., p), (2)
1, (3) ⊥, (4) > or (5) 0. None of these formulas can be thinned into a sequent by the
rules ( !K`) or (` ?K), hence, both premises are by an axiom or by a rule for 1 or ⊥.
There are various ways to count the subcases; either way there are several cases, and
it is straightforward to verify that the cut is directly eliminable. We give two sample
cases here.

` 1
α

...
` β

1;α ` β
α ` β

The proof of the premise of the application of the (1 `) rule is identical to the end
sequent, hence, the cut may be omitted altogether.

α ` β ;>; p p;0;γ ` δ
α;0;γ ` β ;>;δ

The end sequent is an instance of (0 `) and also of (`>), hence, both premises of the
cut (and the cut itself) may be omitted.
II. Let δ = 0 and ρ > 2, in particular, let ρl > 1. We note that the left premise cannot
be the result of an application of the (` !) or ( ? `) rules. Furthermore, if it is by a
rule for ⊥, ⊗, `, (, &, ⊕, 1 or ⊥, then the principal formula cannot be contracted
as part of the application of the cut. It is routine to check that the rule yielding the
left premise and the cut may be permuted, and the contractions included in the given
proof may be carried out after the rules have been swapped.

Let the left premise be by ( ! `). The given and the transformed proof segments are
as follows.

A;α

...
` β ; p

[[ !A;α]] ` β ; p p;γ

...
` δ

[[ !A;α;γ]] ` [[β ;δ ]]
 

A;α

...
` β ; p p;γ

...
` δ

[[A;α;γ]] ` [[β ;δ ]]
[[ !A;α;γ]] ` [[β ;δ ]]

If the application of the [[ ! ` ]] rule involved a contraction of !A, then the same con-
traction may be performed in the transformed proof too. (The case of [[` ? ]] is dually
similar.)

Let the left premise be by [[` ?K]]. The given and the transformed proof segments
are as follows.
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α

...
` β ; p

α ` β ; ?A; p p;γ

...
` δ

[[α;γ]] ` [[β ;δ ; ?A]]  

α

...
` β ; p p;γ

...
` δ

[[α;γ]] ` [[β ;δ ]]
[[α;γ]] ` [[β ;δ ; ?A]]

If ?A was contracted in the given proof as part of the application of the cut rule,
then the last step is omitted from the transformed proof. All other contractions can be
carried out as in the given proof.

[[LCLL]] is fully symmetric — save the( rules, which however, are unproblematic
— when the connectives are dualized. Thus, we leave the details of the ρr > 1 case to
the reader.
III. Let δ > 0 and ρ = 2. We distinguish two groups of subcases, namely, when one
of the premises is by (id) or by an axiom for > or 0, and when the two premises are
by matching rules. The case when a premise is A ` A is immediate. As an example,
we consider 〈(`>), [[ ! ` ]]〉.

α ` β ;>; !A
A;γ

...
` δ

!A;γ ` δ
[[α;γ]] ` [[β ;>;δ ]]

The bottom sequent is an instance of (`>), hence, the proof simplifies to that sequent.
If the principal formulas in the rules in the left and right premises have as their

main connective ⊥, ⊗, ` or (, then the transformed proof contains cuts on proper
subformulas of the principal formula. The principal formula may not be contracted
as part of the application of the cut rule in the given proof. Further, the parametric
formulas are combined in the transformed proof in the same way as in the given proof;
therefore, all the earlier contractions can be carried out. (We omit the details.)

There are four subcases with modalized cut formulas, because such formulas may
be introduced by thinning too. We consider two of these cases, and leave the two
others (which are duals) to the reader.

!α

...
` ?β ;A

!α ` ?β ; !A
A;γ

...
` δ

!A;γ ` δ
[[ !α;γ]] ` [[ ?β ;δ ]]

 !α

...
` ?β ;A A;γ

...
` δ

[[ !α;γ]] ` [[ ?β ;δ ]]

The transformation decreases the degree of the cut formula, and provides a possibility
for the same contractions as before.

α

...
` β

α ` β ; ?A
A; !γ

...
` ?δ

?A; !γ ` ?δ
[[α; !γ]] ` [[β ; ?δ ]]

 
α

...
` β

[[α; !γ]] ` [[β ; ?δ ]]
In the transformed proof, the double brackets simply indicate that the ( !K `) and
(` ?K) steps are applied only to build up the same sequent as the bottom sequent in
the given proof. (The thinning rules do not contain any contraction.) It may be useful
to point out that [[α; !γ]]( α and [[β ; ?δ ]]( β are not possible, hence, we are justified
to start the transformed proof with the premise α ` β .
IV. Let δ > 0 and ρ > 2, in particular, let ρl > 1.
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Most of the subcases in this case are similar to those in II. (We omit the details of
those cases, where the change amounts to replacing p with A.) Now an additional
possibility is that the left premise is by (` !) or ( ? `). The side conditions of the
rules together with ρl > 1 imply that the principal formula of either rule is not the cut
formula. We consider in detail the case when the left premise is by (` !); the other
rule may be dealt with similarly.

If ρr = 1, then the only possibility (beyond an axiom) is that the right premise is
by ( ? `).

!α

...
` ?β ; ?C;A

!α ` ?β ; ?C; !A
C; !γ

...
` ?δ

?C; !γ ` ?δ
[[ !α; !γ]] ` [[ ?β ; ?δ ; !A]]  !α

...
` ?β ; ?C;A

C; !γ

...
` ?δ

?C; !γ ` ?δ
[[ !α; !γ]] ` [[ ?β ; ?δ ;A]]
[[ !α; !γ]] ` [[ ?β ; ?δ ; !A]]

The transformation is justified by a decrease in ρl .
If ρr > 1, then the right premise cannot be by (` !) or ( ? `) due to the shape of the

cut formula and the side conditions in those rules. If the right premise is by a rule for
⊥, ⊗,(, `, 1 or ⊥, then the cut is moved upward and the transformation is justified
by a decrease in ρr.

The remaining possibilities are that the right premise is by [[ ! ` ]], [[` ? ]], ( !K `)
or (` ?K).

!α

...
` ?β ; ?C;A

!α ` ?β ; ?C; !A
?C;B;γ

...
` δ

[[ ?C; !B;γ]] ` δ
[[ !α; !B;γ]] ` [[ ?β ;δ ; !A]]  

!α

...
` ?β ; ?C;A

!α ` ?β ; ?C; !A ?C;B;γ

...
` δ

[[ !α;B;γ]] ` [[ ?β ;δ ; !A]]
[[ !α; !B;γ]] ` [[ ?β ;δ ; !A]]

!α

...
` ?β ; ?C;A

!α ` ?β ; ?C; !A
?C;γ

...
` δ ;B

?C;γ ` [[δ ; ?B]]
[[ !α;γ]] ` [[ ?β ;δ ; !A; ?B]]  

!α

...
` ?β ; ?C;A

!α ` ?β ; ?C; !A ?C;γ

...
` δ ;B

[[ !α;γ]] ` [[ ?β ;δ ; !A;B]]
[[ !α;γ]] ` [[ ?β ;δ ; !A; ?B]]

The transformations are justified by a reduction in ρr. All the earlier contractions
may be carried out in the new proof segments too. The next two cases are justified
similarly.

!α

...
` ?β ; ?C;A

!α ` ?β ; ?C; !A
?C;γ

...
` δ

?C; !B;γ ` δ
[[ !α; !B;γ]] ` [[ ?β ; !A;δ ]]

 

!α

...
` ?β ; ?C;A

!α ` ?β ; ?C; !A ?C;γ

...
` δ

[[ !α;γ]] ` [[ ?β ; !A;δ ]]
[[ !α; !B;γ]] ` [[ ?β ; !A;δ ]]

!α

...
` ?β ; ?C;A

!α ` ?β ; ?C; !A
?C;γ

...
` δ

?C;γ ` δ ; ?B
[[ !α;γ]] ` [[ ?β ;δ ; !A; ?B]]  

!α

...
` ?β ; ?C;A

!α ` ?β ; ?C; !A ?C;γ

...
` δ

[[ !α;γ]] ` [[ ?β ;δ ; !A]]
[[ !α;γ]] ` [[ ?β ;δ ; !A; ?B]]

This completes the proof of the admissibility of the cut rule in [[LCLL]]. /
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Lemma 33. (Curry’s lemma for [[LCLL]]) If α ` β has a proof in [[LCLL]] with
the height of the proof tree being n, and γ ` δ results from α ` β by one or more
applications of the rules ( !W `) and (` ?W ), then γ ` δ has a proof in [[LCLL]],
where the height of the proof tree is not greater than n (i.e., it is ≤ n).

Proof. The proof of this theorem is a straightforward extension of Curry’s lemma
for the multiplicative–exponential fragment of CLL with six cases added. (See Theo-
rem 14 in [8].) Namely, the basis of the induction is expanded to deal with (0 `) and
(`>), plus (& `), (` &), (⊕ `) and (` ⊕) are added to the inductive step. Each of
these is quite routine (and we omit the details).

From another point of view, we can start with the proof of Lemma 28. We consid-
ered (�K `) or (`♦K) there. Here we have to consider what happens if ( !K `) or
(` ?K) are the last rules applied in a proof. We assume that !A, !C, ?B and ?D are
(pairwise) distinct, and that the former two differ from elements of α ′, and the latter
two are not among the elements of β ′. We also assume that three is a representative
number for the general situation (and it also allows us to fit everything on a page).

Let us assume that the last rule is ( !K `). We have the following.

!C; !C; !C;α ′
...
` β ′; ?D; ?D; ?D

!A; !C; !C; !C;α ′ ` β ′; ?D; ?D; ?D

i.h. !C;α ′
...
` β ′; ?D

!A; !C;α ′ ` β ′; ?D
If the thinned in formula is the same as !C, then the application of ( !K `) may be

simply omitted like in

!C; !C; !C;α ′
...
` β ′; ?D; ?D; ?D

!C; !C; !C; !C;α ′ ` β ′; ?D; ?D; ?D
i.h. !C;α ′

...
` β ′; ?D.

The case of (` ?K) is dual to this. Here is what it looks like.

!C; !C; !C;α ′
...
` β ′; ?D; ?D; ?D

!C; !C; !C;α ′ ` β ′; ?D; ?D; ?D; ?B

i.h. !C;α ′
...
` β ′; ?D

!C;α ′ ` β ′; ?D; ?B

!C; !C; !C;α ′
...
` β ′; ?D; ?D; ?D

!C; !C; !C;α ′ ` β ′; ?D; ?D; ?D; ?D
i.h. !C;α ′

...
` β ′; ?D

Next, we note that in the proof of Lemma 24, we can restrict contractions to expo-
nential formulas. Then some of the cases disappear, whereas the others go through as
before. This completes the proof. /

Now we turn to the decidability proof for LCLL.

Theorem 34. Classical linear logic (CLL) is decidable.

Proof. Given a wff A, we narrow down the question whether the wff is a theorem of
LCLL by ensuring that A is not a theorem of LLRW♦�, and it is a theorem of [[[LCLL]]].
(If A is not within that range, then we already know whether it is a theorem of LCLL.
Namely, if A is a theorem of LLRW♦�, then it is a theorem of LCLL, and if A is not
a theorem of [[[LCLL]]], then it is not a theorem of LCLL.) The proof search in [[[LCLL]]]
generates all the irredundant proofs of A. By Definition 8, we calculate the heap
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numbers for the subformulas ofA. Then we start to build a proof-search tree in LCLL.
The root is the sequent ` A, and we expand the tree by scrutinizing each rule that
could result in the sequent in a particular node in the tree. If there is a possibility for
contractions then we add each possibility separately to the tree. However, we limit the
number of contractions on each formula by its heap number. The whole tree is finite
and if A is provable in LCLL, then the search tree will contain a proof. If A is not a
theorem, then we will find this out in finitely many steps, namely, when the (finite)
proof-search tree is completed without containing a proof. /

7. REMARKS ON “DECISION PROBLEMS FOR LINEAR LOGIC”

Lincoln et al. [35] present what they take to be a proof of the undecidability of what
we call “classical linear logic” (CLL) and they call “full propositional linear logic”
(or sometimes just “linear logic”). This paper is highly original and well-motivated,
exploiting the notion of linear logic as a “resource conscious logic.” The proof was
seemingly well-presented, and seemed to have convinced many people that CLL is
undecidable. But only the most naive logician thinks that something is a proof because
it is called a proof. Maybe, someday the dream will be fulfilled that all proofs will be
computer checkable, but for now, and even as proofs get more and more complicated,
we are largely dependent on human intelligence and a mixture of formal language,
natural language, and a sometimes conventional, sometimes creative, hybrid mixture
of the two. Unfortunately, and we are apologetic about this to Lincoln, Mitchell,
Scedrov and Shankar (all fine logicians), but we think that there are some mistakes
in their proof. We shall outline their proof both to help the reader (and ourselves)
understand the virtues of their attempt, and a flaw in the proof.

The rough idea of their proof is to reduce the question of the decidability of CLL to
the problem of the solvability of a question about certain finite automata, which they
introduce and call And-Branching Two-Counter Machines Without Zero-Test (ACM
for short). These are a variant of the more standard And-Branching Two-Counter Ma-
chines With Zero-Test. They ingeniously replace the Zero-Test with something they
call “Forking.” The corresponding question for the former is known to be unsolvable,
and they show that the halting problem for these two is the same. They then go on to
translate the question of the decidability of linear logic into the solvability of ACMs,
and use the fact that ACMs are unsolvable to show that LCLL is undecidable. The
“trick” is the translation between computations in ACMs and proofs in LCLL.

They start by defining (p. 261) a theory to be a finite set of axioms, and they define
an axiom to be “a linear logic sequent of the form `C, p⊥i1 , . . . , p⊥in , where C is a MALL
formula (a linear logic formula without ! or ?) and the remainder of the sequent is made
up of negative literals.”12 They make it clear that the negative literals are allowed to
be absent and that the restrictive form of axioms is due to their wanting to “achieve
strict control over the shape of a proof.”

They define that “a sequent `Γ is provable in T exactly when we are able to derive
`Γ using the standard set of linear logic proof rules, in combination with axioms from

12We use “ ; ” in the sequent calculus LCLL, but in this section we resort to “ , ” for easy comparison
with Lincoln et al. [35]. Incidentally, they use a one-sided sequent calculus, however, in the case of CLL,
this affects only the presentation.
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T .” It is evident from context and from their Appendix B that they assume the cut rule
to be in the “standard set of linear logic proof rules,” just as [23] does. They go on to
Lemma 3.1 that states that cut can be replaced by what they call “directed cut.” They
make it clear that such a derivation would be just like a proof tree in linear logic except
that the leaves can be axioms from T , and not just the usual logical axioms ` pi, p⊥i .
Let us write T `LCLL Γ for ` Γ is provable from the theory T in LCLL. Note that
they explicitly define this notion only for the case of LCLL, not for its multiplicative-
additive fragment MALL. This is important, because later (p. 265) they say: “We
have just shown how a decision problem for MALL with the addition of nonlogical
axioms may be encoded in full propositional linear logic without nonlogical axioms.
Thus the upcoming proof of undecidability of MALL with nonlogical axioms will yield
undecidability for full propositional logic.”

Notice that here they talk about “MALL with the addition of nonlogical axioms,” but
this has not been really defined. They actually defined provability from T in LCLL. We
know this sounds like a picky point, and readily agree that we can make sense of MALL
theories as just the obvious variant of LCLL theories that does not allow applying the
rules for the exponentials. But they misdescribe what they showed. What they in
fact showed was how a decision problem for full propositional linear logic (not just
for the MALL fragment) with the addition of nonlogical axioms may be encoded in
full propositional linear logic without nonlogical axioms. However, they say (p. 260)
that “We now show that if nonlogical (MALL) axioms are added to MALL, the decision
problem becomes recursively unsolvable. We also show that nonlogical MALL axioms
may be encoded in full propositional linear logic without nonlogical axioms, and thus
we hve the result that full propositional linear logic is undecidable.”

Lemmas 3.2 and 3.3 each prove different directions of the following biconditional.
For any finite set of axioms T , T `LCLL Γ iff `LCLL [T ],Γ .

But they also seem to be saying (or tacitly implying) that
T `MALL Γ iff `LCLL [T ],Γ .

To understand these claims we need to understand [T ], which translates a theory
T = {t1, t2, . . . , tk} into a multiset of linear logic formulas ?[t1],?[t2], . . . ,?[tk], where
[ti] is the translation of the axiom ti into a single linear logic formula as follows. If ti
is `C, p⊥i1 , . . . , p⊥in , then [ti] is `C⊥⊗ pi1 ⊗·· ·⊗ pin .

Also, (p. 269) they say: “We give a translation from ACMS to linear logic with
theories and show that our sequent translation of a machine in a particular state is
provable in linear logic if and only if the ACM halts from that state. In fact our transla-
tion uses only MALL formulas and theories, thus with the use of our earlier encoding
Lemma 3.2 and 3.3, we will have our result for propositional linear logic without non-
logical axioms. Since an instantaneous description of an ACM is given by a list of
triples, it is somewhat delicate to state the induction we will use to prove soundness.”

Lincoln et al. use non-deterministic And-Branching Two-Counter Machines With-
out Zero-Test (ACMs). An ACM has a set of states Q, a finite set δ of transitions, and
initial and final states QI and QF .

Depending on the state Qi, the ACM can do various things. Thus, where A and B are
natural numbers in the first and second registers, the rules can add 1 to them, subtract
1 from them (unless they are 0 in which case the rule is not applicable), and move to



118 Katalin Bimbó and J. Michael Dunn: Modalities in Lattice-R

the state Q j. Or the machine can continue computation from two states Q j and Qk,
using as inputs the values A,B in the current state Qi.

Rule Transition Translation
Qi Increment A Q j 〈Qi,A,B〉 7→ 〈Q j,A+1,B〉 ` q⊥i ,(q j⊗a)
Qi Increment B Q j 〈Qi,A,B〉 7→ 〈Q j,A,B+1〉 ` q⊥i ,(q j⊗b)
Qi Decrement A Q j 〈Qi,A+1,B〉 7→ 〈Q j,A,B〉 ` q⊥i ,a

⊥,q j

Qi Decrement B Q j 〈Qi,A,B+1〉 7→ 〈Q j,A,B〉 ` q⊥i ,b
⊥,q j

Qi Fork to Q j and Qk 〈Qi,A,B〉 7→ 〈Q j,A,B〉 and 〈Qk,A,B〉 ` q⊥i ,(q j⊕qk)

An instantaneous description (ID) of an ACM M is a finite tree of ordered triples
〈Qi,A,B〉, where Qi ∈Q (Qi is a state), and A and B are natural numbers. The accept-
ing triple is 〈QF ,0,0〉. An accepting ID is any ID where every leaf of the ID is the
accepting triple. This means that no matter how the computation evolves it ends with
an accepting triple, that is, in an accepting state (which is unique) and the counters
containing 0.13

Given a triple 〈Qi,A,B〉, its translation θ(〈Qi,A,B〉) is ` q⊥i ,(a
⊥)A,(b⊥)B,qF ,

where the superscript A and B indicate the number of a⊥’s and b⊥’s in the sequent.
The translation of an ID comprises the translations of the elements of the ID, that is,
θ(E1,E2, . . . ,Em) = θ(E1),θ(E2), . . . ,θ(Em).

Lincoln et al.’s main result is: “Theorem 3.7. The provability problem for propo-
sitional linear logic is recursively unsolvable.” This is just a different way of saying
that CLL is undecidable. Their proof consists literally of the single statement (p. 275)
“From Lemmas 3.2–3.6 we obtain our main result.” We shall try to construct a proof
using these lemmas, and in the process end up deconstructing their proof.

As already mentioned, the first two of these lemmas can be put together as the two
halves of the next biconditional.
Lemmas 3.2–3.3. For any finite set of axioms T , T `LCLL Γ iff `LCLL [T ],Γ .

And the last two are the two halves of the following biconditional.
Lemmas 3.5–3.6. An ACM M accepts from the triple s iff the sequent θ(s) is provable,
given the theory derived from M.

And the middle lemma is the keystone.
Lemma 3.4. It is undecidable whether an ACM accepts from the triple 〈QI ,A,B〉.

The rough idea would then be to combine these lemmas so that the undecidability
of the ACM accepting from 〈QI ,A,B〉 translates into the undecidability of provability
in LCLL (without axioms).

So let us suppose that we have a method for deciding the provability of theorems
in LCLL. Consider then an arbitrary ACM M, and its theory TM that translates the
instructions of the machine using the table above. Then, as a special case of Lemmas
3.2–3.3 we have:

TM `LCLL Γ iff `LCLL [TM],Γ .

Further, as a special case of Lemmas 3.5–3.6, we have:

13Lincoln et al. defined an accepting ID to be an ID each element of which is an accepting triple. They
should have meant what is in this paragraph unless only one-step trivial computations are permitted.



Katalin Bimbó and J. Michael Dunn: Modalities in Lattice-R 119

An ACM M accepts from 〈QI ,A,B〉 iff the sequent θ(〈QI ,A,B〉) is provable,
given the theory TM .14

What is the sequent θ(〈QI ,A,B〉)? It is ` qI ,(a⊥)A,(b⊥)B,qF . So the problem is to
figure out whether this sequent is provable using the theory TM , i.e., using the sequents
in TM together with applications of the cut rule.

While it is true that using the exponentials LCLL can emulate that a sequent from
TM is not used, used once or used several times in a MALL proof, the exponentials
interact with the MALL vocabulary. In effect, the interaction implies reliance on the
following claim.

TM `MALL Γ iff `LCLL [TM],Γ .

The following is an equivalent claim.

TM `MALL Γ iff TM `LCLL Γ .

From left to right, the claim is obvious and true, but the converse is less than obvi-
ous. The cut rule is not eliminable in the presence of proper axioms (the elements of
TM) — as Lincoln et al. [35] themselves point out on p. 262. Of course, using the cut
rule in a proof is unproblematic in the sense that it is a rule and so the sequent proved
is a theorem, but the cut rule causes problems for the analysis of the proof. Thus, when
we try to prove that TM `LCLL Γ implies TM `MALL Γ , we run into a problem, because
a proof of Γ in LCLL may contain applications of the cut rule too. In other words, if
the cut rule is not eliminable, then it is difficult to contemplate how the right-to-left
conditional could be proved at all.

So far, we assumed that Lemmas 3.5–3.6 concerned provability in MALL. An
alternative reading of the those lemmas is that they permit the use of all the rules
of LCLL, but the occurrences of applications of the cut rule are limited because of
Lemma 3.1, which reads as follows.
Lemma 3.1. (Cut standardization). If there is a proof of ` Γ in theory T , then there
is a directed proof of ` Γ in theory T .

A directed cut is simply an application of the cut rule, in which at least one of the
two premises is an axiom, and the cut formula is C (using the earlier notation). A
directed proof is a derivation with only directed cuts (or no cuts at all). The cut stan-
dardization lemma holds in MALL proofs, and ensures that MALL theories in proofs
in MALL can mimic the consumption of instructions in an ACM.

Before we turn to the discussion of the modeling of ACMs (and Minsky machines),
we illustrate a problem with the proof of the admissibility of the cut rule in Appen-
dix A. In the relevance logic literature, the use of a multi-cut rule is quite common,
because many relevance logics contain a contraction rule (but not a thinning rule). The
multi-cut rule is similar to Gentzen’s mix rule in that it allows cutting out more than
two formulas. On the other hand, these rules are different, because the multi-cut rule
does not require the elimination of all occurrences of the cut formula. Lincoln et al.
[35] opt to use both single cut and multi-cut in their elimination proof, however, the
latter is only applicable to formulas that start with exponentials. In CLL, only certain

14Lemmas 3.5–3.6 do not make explicit the logic in which provability is meant. However, the first
paragraph in §3.5 (p. 269) seems to suggest that it is MALL.
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exponential formulas can be contracted, which explains why multi-cut is introduced
for such formulas.

[35] defines the degree of the cut formula in a fairly standard manner. However,
they also define the degree of a proof as the maximal degree of any cut in the proof or
zero (if there is no cut). Unfortunately, the degree of the proof does not decrease in
every step in the cut elimination proof.15 Their crucial lemma reads as
Lemma A.1 (Reduce one cut). Given a proof of the sequent ` Γ in linear logic which
ends in an application of Cut* of degree d > 0, and where the degree of the proofs
of both hypotheses is less than d, we may construct a proof of ` Γ in linear logic of
degree less than d.

The proof is divided into cases, and in each case a local modification of the proof
is given. The transformations are similar to what is to be expected. However, it is
completely obvious that several of the one-step transformations do not establish the
claim of the lemma.

The following example shows an application of the single cut rule with d = 7. (We
make explicit only the segment of the proof that is problematic.)

` p&( !q⊕ r)
` !(p&( !q⊕ r))

` ?(p⊥⊕ ( ?q⊥& r⊥)), ?q⊥
...
& r⊥,(p&q)⊕ r

` ?(p⊥⊕ ( ?q⊥& r⊥)), p⊥⊕ ( ?q⊥& r⊥),(p&q)⊕ r
` ?(p⊥⊕ ( ?q⊥& r⊥)), ?(p⊥⊕ ( ?q⊥& r⊥)),(p&q)⊕ r

?D

` ?(p⊥⊕ ( ?q⊥& r⊥)),(p&q)⊕ r
?C

` (p&q)⊕ r
cut

The last step in the proof is an application of the cut rule. The cut formula is principal
in both premises of the cut, hence by A.2.5, the cut is moved up by a sequent in the
right premise. This requires that Cut! be applied. However, the cut formula is the
same as before, hence, the degree of the proof is also the same.

Lincoln et al. [35] must have realized that they do not have an inductive proof of
Lemma A.1, because they say on p. 299 that “by induction on the size of proofs, we
can construct the desired proof of degree less than d.” It is possible, perhaps, even
plausible that one can do this. However, they do not give such a proof, indeed, they
do not even define what the size of a proof is. It could be the number of propositional
variables in the proof, the sum of the degrees of all formulas, the height of the proof
tree, to name a few alternatives.

Another problem with the argument for Lemma A.1 is that once the above proof
is transformed (as shown below), it is no longer clear which transformation is to be
applied next. The cut formula is still principal in the left premise, however, it is both
principal and non-principal in the right premise. There is no definition in [35] that
would allow us to determine whether the cut formula in the right premise is principal
or not, which is needed in order to apply (1) or (2) on p. 298. In fact, the situation is
very typical, because principal formulas are (usually) unique in a rule. Then, a cut on

15Lambek [32] was able to prove a cut theorem for his calculuses by induction on one parameter that
he called degree, which is however, not identical to either of the degrees just mentioned. Also, Lambek’s
calculuses do not contain any kind of contraction, which means that the admissibility of the single cut rule
can be proved directly (without mix or multi-cut).
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` p&( !q⊕ r)
` !(p&( !q⊕ r))

` ?(p⊥⊕ ( ?q⊥& r⊥)), ?q⊥
...
& r⊥,(p&q)⊕ r

` ?(p⊥⊕ ( ?q⊥& r⊥)), p⊥⊕ ( ?q⊥& r⊥),(p&q)⊕ r
` ?(p⊥⊕ ( ?q⊥& r⊥)), ?(p⊥⊕ ( ?q⊥& r⊥)),(p&q)⊕ r

?D

` (p&q)⊕ r
cut!

several formulas moved upward in a proof tree will likely come to a sequent in which
the cut formula has both principal and non-principal occurrences. The usual notion
of a principal formula is extended on p. 297. However, that expansion leaves one
occurrence of the cut formula in the right premise of the application of the cut! rule
above as a non-principal occurrence.

Presumably, we should apply the second transformation in A.2.6 now. The trans-
formation yields two cuts in a new proof that have the same degree, and which repeat
a whole branch of the proof tree. This is a point where the informal allusion to the size
of the proofs would need to be made precise, because neither the height of the proof
tree is decreasing nor the number of sequents or cuts does.16

The cut elimination proof would be the basis for the proof that directed cuts suffice.
However, we believe that there is no proof of the admissibility of the cut rule in [35],
hence, there is no proof of Lemma 3.1 and further, of Theorem 3.7 in that paper.

The main problem with the alleged proofs in [35] and [27] (as well as in [21]) goes
beyond what we have outlined so far. The two models, ACMs and Minsky machines,
are very similar; they are both variations on what more simply are called counter
machines. A particularly elegant formulation is termed abacus machines in Boolos
and Jeffrey [15] with reference to Lambek [34].

Counter machines are “full-fledged” models of computation as proved in [15] and
in [34]. However, the abacus machines compute functions, that is, starting with natu-
ral numbers in the counters the machine halts with some content (which may or may
not be all 0’s) in the counters. ACMs and Kanovich’s Minsky machines do not com-
pute any functions, rather, they accept a certain input. Furthermore, both models are
modified to accept by a final state with all the counters empty.

Neither [35] nor [28] ([27]) prove that the machines that they intend to model have
an undecidable halting problem. The undecidability of the halting problem for Minsky
machines with a restricted halting problem was recently proved in [21, §7] via several
reduction steps from the Post correspondence problem.17

One might wonder how the computation of one or another machine is modeled in
propositional logic. There are well-known ways to model primitive recursive func-
tions and computations of a Turing machine in the language of first-order arithmetic.
We have explained at the beginning of this section how [35] intend to model the com-
putations of ACMs; the rest of the authors follow a similar idea. We present in Figure 3

16Sequent calculuses are, perhaps, more difficult to understand than axiomatic systems. This may be
one of the reasons behind [42], which shows that the author does not understand the proof of the cut theorem
in [8]. He also seems to assume that the decision procedure for MELL should generate all the infinitely many
proofs for a provable sequent. Of course, decision procedures, normally, do not yield all possible proofs.

17In all the papers that we mentioned in this paragraph, a proof that matches a computation starts with
the final state. We will refer to the authors of all these papers as the authors, when we talk about this feature
of the machines.
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(below) a small ACM, which differs from the example in [35] in that it accepts an infi-
nite language and it contains three zero-tests. (Their sample machine accepts the finite
language {a0b0 } and contains no zero-tests at all.)

qI q1

q2

q3

qF

a−1

b−1

b = 0

a = 0

b+1

a−1

a = 0

FIGURE 3. The ACM M1

The picture of the ACM employs some notational conventions that are often used
in visualizing finite state automata such as circles for states with the name of the
state inside, and arrows with labeling for the actions of the machine. However, these
similarities are somewhat superficial. The ACM receives input at the arrow pointing
to qI in the form of finitely many counters filled as desired. Then, the machine reads
and occasionally modifies the content of the counters. The arrows labeled with a = 0
and b = 0 represent successful zero-tests. (The diagram hides the implementation of a
zero-test via “and-branching.”) The state q3 is a seemingly spurious state; its function
is simply to ensure that counter a is empty. The machine is so designed that if it
reaches qF , then it is guaranteed that the counters are empty, hence, the role of qF is to
indicate acceptance and halting. It is not difficult to see that M1 accepts the language
{ambn : m> n} (where a and b are placeholders for “first” and “second” counter). This
language is not very complicated, it’s easily seen to be a CFL (context-free language).
Alternatively, the machine can be thought to accept when the characteristic function
of the > relation (on N) evaluates to true.

For example, the full description of the computation of the machine starting with
a3b1 (i.e., 3 in the first counter, and 1 in the second counter) is the following sequence
of triplets.

〈qI ,a3,b1〉,〈q1,a2,b1〉,〈qI ,a2,b0〉,〈q1,a1,b0〉,〈q3,a1,b0〉,〈q3,a0,b0〉,〈qF ,a0,b0〉
The set of instructions for M1 encoded as axioms for a CLL theory is as follows.

Here we make explicit the hidden and-branching, which we use only with the zero
states za and zb.

Axioms for M1:
1. ` q⊥I ,a

⊥,q1 2. ` q⊥1 ,b
⊥,qI 3. ` q⊥3 ,a

⊥,q3 4. ` q⊥2 ,b⊗q2

5. ` q⊥I ,za⊕q2 6. ` q⊥1 ,zb⊕q3 7. ` q⊥3 ,za⊕qF

8. ` z⊥a ,b
⊥,za 9. ` z⊥b ,a

⊥,zb 10. ` z⊥a ,qF ⊕qF 11. ` z⊥b ,qF ⊕qF
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If we construct proofs with cuts, then these axioms cut out their negations from a
sequent. If the proof is cut-free, then the same formulas have to be built-up.

Negations of axioms:
1. qI⊗ (a⊗q⊥1 ) 2. q1⊗ (b⊗q⊥I ) 3. q3⊗ (a⊗q⊥3 ) 4. q2⊗ (b⊥`q⊥2 )

5. qI⊗ (z⊥a &q⊥2 ) 6. q1⊗ (z⊥b &q⊥3 ) 7. q3⊗ (z⊥a &q⊥F )

8. za⊗ (b⊗ z⊥a ) 9. zb⊗ (a⊗ z⊥b ) 10. za⊗ (q⊥F &q⊥F ) 11. zb⊗ (q⊥F &q⊥F )

It is easy to see that ` z⊥a ,(b
⊥)n,qF and ` z⊥b ,(a

⊥)n,qF are provable for any n ∈N.
We will omit these parts of the proof to limit the size of the tree shown. The axioms
that are used in applications of cuts are listed on the left.

`
...

z⊥a ,qF ` q⊥F ,qF

` q⊥3 ,za⊕qF ` z⊥a &q⊥F ,qF

` q⊥3 ,a
⊥,q3 ` q⊥3 ,qF

` q⊥3 ,a
⊥,qF `

...
z⊥b ,a⊥,qF

` q⊥1 ,zb⊕q3 ` z⊥b &q⊥3 ,a
⊥,qF

` q⊥I ,a
⊥,q1 ` q⊥1 ,a

⊥,qF

` q⊥1 ,b
⊥,qI q⊥I ,a⊥,a⊥,qF

` q⊥I ,a
⊥,q1 ` q⊥1 ,a

⊥,a⊥,b⊥,qF

` q⊥I ,a⊥,a⊥,a⊥,b⊥,qF

The proof starts in the final state. It is not accidental, because sequent calculus
proofs are trees in which the root of the tree is the sequent that is proved. Hence, no
tree branch in a proof can split downward.

A cut-free proof for the same sequent is the following. We indicate the negations
of the axioms by their number in the listing above, and we omit the proofs leading to
a zx state from qF together with the horizontal lines. (The two sequents that are not
axioms, but easily provable, are ∗’d.)

∗ ` z⊥a ,qF ` q⊥F ,qF

` q⊥3 ,q3 ` z⊥a &q⊥F ,qF ,10
` a⊥,a ` q⊥3 ,qF ,10,7
` q⊥3 ,q3 ` a⊗q⊥3 ,qF ,10,7
∗ ` z⊥b ,a

⊥,qF ` q⊥3 ,a
⊥,qF ,10,7,3

` q⊥1 ,q1 ` z⊥b &q⊥3 ,a
⊥,qF ,10,7,3,11,9

` a⊥,a ` q⊥1 ,a
⊥,qF ,10,7,3,11,9,6

` q⊥I qI ` a⊗q⊥1 ,a
⊥,a⊥,qF ,10,7,3,11,9,6

` b⊥,b ` q⊥I ,a
⊥,a⊥,qF ,10,7,3,11,9,6,1

` q⊥1 ,q1 ` b⊗q⊥I ,a
⊥,a⊥,b⊥,qF ,10,7,3,11,9,6,1

` a⊥,a ` q⊥1 ,a
⊥,a⊥,a⊥,b⊥,qF ,10,7,3,11,9,6,1,2

` q⊥I ,qI ` a⊗q⊥1 ,a
⊥,a⊥,a⊥,b⊥,qF ,10,7,3,11,9,6,1,2

` q⊥I ,a
⊥,a⊥,a⊥,b⊥,qF ,10,7,3,11,9,6,1,2,1

The traditional claim is that if the proof is turned upside down, then it can be seen
as a modeling of the computation from qI (with 3 in a and 1 in b) to qF . Of course,
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the upside down tree is not a proof in CLL at all. If we try to create an interpretation
from the top of the proof, then it seems that the subproofs in the whole proof tree do
not have an interpretation that is independent from the whole proof tree. Another way
to look at this problem is that unless the proof has a sequent of the form ` q⊥I , . . . ,qF
as its root, it is not a model of (any stage of) a computation of the machine.

To further illustrate the problem, let us assume that we add a new state q4 to M1.
The new state has two outgoing arrows, one pointing to q4 itself with a label b−1, the
other pointing to q3 with a label b = 0. Our new machine M′1 is equivalent in terms
of acceptance to M1. However, there is a proof of the sequent ` q⊥4 ,b

⊥,b⊥,b⊥,qF ,
given its theory. The state q4 — by design — is not accessible from qI , which means
that in M′1 there is no computation that involves q4. But it is true that if we picture
the machine as a special graph (like M1 in Figure 3), then there is a path between
q4 and qF . And starting in state qF , and by performing the inverses of the machine’s
instructions, it is possible to reach state q4 with 3 in the second counter.

[26] and [21] number the final state with 0, which gives the appearance (at first) that
a proof starts at an initial state (q0). The latter paper models computation by getting
from the 0th state (called PC value) to the 1st state.

Kopylov [29] noted that provable sequents (in the normal fragment) of CLL can
be given two computational readings. Similarly, the provable sequents of CLL may
be given two computational interpretations. The emptiness of the counters at halting,
and halting in a unique final state are essential for the construction of sequent calculus
proofs. In other words, proofs starting with ` q⊥F ,qF ’s that contain forking cannot be
replaced by proofs that start from ` q⊥I ,qI (while proving the same sequent). However,
the “non-traditional” interpretation means that there are no zero-tests in the machine
that is modeled, and the decrement and increment instructions are swapped. Accord-
ing to this interpretation, that we think is the correct one, every subtree in a proof
tree is a model of a step in reverse computation; that is, it is a model of “running”
the machine backward. (This also means that the machine may get “stuck” in a state
when the subtraction cannot be performed and there is no branch that takes care of the
counter’s emptiness.) In view of our decidability result, we think that the machines
that emerge from this interpretation — reverse ACMs and reverse Minsky machines,
etc. — do not have an undecidable halting problem. In other words, our decidabil-
ity result supports the conjecture that the halting problem for reverse computation in
ACMs and various counter machines, in general, is decidable.

To summarize, we think that each published “proof,” most prominently, that by
Lincoln et al. [35] and that by Kanovich [27], has gaps in it. Moreover, we think that
there is a real reason to believe that some of those gaps cannot be filled to complete the
proofs of the undecidability of LCLL, because there is a conceptual mismatch between
(forward/normal) computational steps and steps in a sequent calculus proof in LCLL.
Furthermore, our proofs demonstrate that LCLL is decidable.

8. CONCLUSION

This paper scrutinized the issue of modalities in lattice-R. To start with, the Ack-
ermann and Church constants (hence, modalities defined from those constants) do not
interfere with the decidability of lattice-R. The addition of primitive modal operators
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with some usual rules does not lead to undecidability either. If (modalized) versions of
structural rules are added (or omitted) from LLR♦�, then the properties of modalities
vary. Nonetheless, the decidability of the resulting logics — no matter with however
unusual modalities — stays provable. We have also proved that classical propositional
linear logic is decidable, and we have explained where the proofs of earlier undecid-
ability claims in [35], in [28] (also, [27]) and in [21] are lacking.
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AFTERWORD

The first six and a half sections of this paper were written in 2015, and they re-
mained basically the same since then. The last several “fault-finding” pages were
rewritten and expanded several times to appease referees who repeated again and again
that propositional linear logic is well known to be undecidable, and first of all, we
should demonstrate mistakes in published proofs. It should be noted that no referee
— in all those 6–7 years of refereeing — pointed out a mistake in our paper.
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[7] Bimbó, K. (2007). Relevance logics, in D. Jacquette (ed.), Philosophy of Logic, Vol. 5
of Handbook of the Philosophy of Science of Handbook of the Philosophy of Science (D.
Gabbay, P. Thagard and J. Woods, eds.), Elsevier, Amsterdam, pp. 723–789.
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INTENSION, EXTENSION, DISTRIBUTION AND DECIDABILITY

Ross T. Brady

ABSTRACT. The cue for writing this paper is taken from a brief discussion on the
reasons for the undecidability of the sentential relevant logic R with the participants
of “The Third Workshop” at the University of Alberta, the group including Michael
Dunn and the author. We start with the distinction between intension and extension,
raised by the author in the above discussion. This distinction is discussed with refer-
ence to the various systems of relevant logics and classical logic, with a view to yield
appropriate formalizations characterising these concepts. We follow with discussion
on the role of truth in logic, and its application to rules and to Disjunctive Syllo-
gism, in particular. In the light of the above discussions, we consider distribution
in its axiom form, which was raised by Dunn. We conclude with an examination of
the existing proofs of decidability of sentential relevant logics raising the respective
problems for the logic R, and then with an examination of the proof of the undecid-
ability of R, thus rounding out this discussion at “The Third Workshop.”

Keywords. Admissible rules, Decidability, Distribution, Extension, Intension, Mean-
ing and truth, Priming

1. INTRODUCTION

Michael Dunn will be sadly missed, not only for his significant contribution to logic
(especially, relevant logic), informatics and computer science, but also for being a
great friend to many, myself included. I have happy memories of his and Sally’s visits
to Melbourne on so many occasions. His passing has left a great hole in our lives. I am
honoured to contribute to his memorial volume and very grateful that Katalin Bimbó
has taken upon herself to organize it. I apologize in advance for including so much of
my own work in this paper as it covers a variety of topics, which I will be addressing
according to my own views on what logic ought to look like.

This paper is based on a brief discussion at The University of Alberta, Edmonton,
taking place during the “The Third Workshop” on the Routley–Meyer semantics and
its three-place relation R, organized by Katalin Bimbó during 2016. The discussion
was initiated by Guillermo Badia who asked the question of the assembled group as
to why the sentential relevant logic R is undecidable. In response, I started by saying
that it was due to the mixing up of intension and extension and Dunn finished by
saying that distribution was responsible for the undecidability. We will investigate
these issues through a clarification of the respective concepts, in the process referring
to some related work of Michael Dunn. Nevertheless, the author will pursue his own
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ideas, some of which would be at variance with those of Dunn. We initially started on
the same page, focussing on strong relevant logics, but I started to deviate firstly by
raising concerns over the failure of Modus Ponens to preserve truth at a base world of
un-reduced Routley–Meyer semantics and then, more importantly, over the difficulties
in maintaining the relevance condition when the logic R was applied to set theory and
arithmetic. (See Brady [16] on the first point and Brady [20] on the second, with some
examples in §2.)

In §2, we start with the distinction between intension and extension, these concepts
giving rise to the respective formalizations: my logic of meaning containment and
classical logic. We then focus on other logics, attempting to characterize them using
logical concepts. In §3, we explore the concept of truth and its role in logic, in the
context of analyticity and rules, this serving to round out the two key logical concepts
of meaning and truth. Further, we examine the status of the disjunctive syllogism
rule in this context and the classical recapture within the framework of my logic of
meaning containment. In §4, we examine the similar distinction between implication
and entailment, with reference to the intension/extension distinction and to the use
of rules.

In §5, we consider distribution in its axiom and rule forms, evaluating these in the
light of the intension/extension and implication/entailment distinctions. We drop dis-
tribution in both of these forms, whilst maintaining its rule form as an admissible rule.
In §6, we explore the decidability of the various sentential relevant logics looking into
their positive results together with their negative results. The methods used to prove
decidability will include semantic filtration and reductio, normalized natural deduc-
tion and cut-free Gentzenization. We do consider Urquhart’s undecidability proof, but
conclude that the decidability of the logics is unprovable. Finally, in §7, in the light of
all the above discussions, we will gain some insights as to why sentential logics such
as R fail to be decidable, in answer to Guillermo Badia’s question.

2. INTENSION AND EXTENSION

A useful way of starting this discussion is by examining the conceptual distinction
between classes and sets, as set out in Brady [23]. Classes are generated by pred-
icates and are thus intensionally determined in accordance with the meaning of the
generating predicate. Sets are axiomatically introduced in such a way as to represent
collections of individuated objects, this concept originally being expressed by Cantor.
Thus, sets are extensional as they are set up in such a way to provide clarity as to what
objects are in the set and what objects are not. (Note that this would apply just to re-
cursive sets.) This contrasts with classes where the predicate determines what objects
are in the class in accordance with the meaning of the particular predicate. How-
ever, there would be quite some interaction between these two concepts, as occurs in
[23]. Another way of developing classes in conjunction with sets is in the class theory
NBG, with its proper classes extending set theory. We need to be able to apply the
intension/extension distinction to logics themselves and especially their connectives.

We start by characterizing extensional logic as classical logic. This is usually taken
to be clear-cut as truth and falsity are mutually exclusive and exhaustive in line with
objects either being in a set or not in the set. As mentioned above, the application of
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classical logic would thus be restricted to recursive sets. However, we will raise the
issues of the law of excluded middle and disjunctive syllogism in §3, and classical
recapture within the framework of the intensional logic about to be considered.

We next attempt to characterize intensional logic, seen through the axiomatic cap-
turing of each of its connectives. Meaning is the core concept of logic, as all logical
formalization is generally aimed at capturing the meanings of words, especially the
logical words. Admittedly, meaning is harder to capture than the truth and falsity of
classical logic, but I have agonized over many years to achieve the resulting system
MC of meaning containment, with its final axiomatization in §5 below. Nevertheless,
we start by considering the logics DW and DJ, and proceed in stages, much as I did
over the years. We will proceed to extend DJ to DJd of [20] and [23] with the inclu-
sion of its single-premise meta-rule in §3, and finally to the logic MC in §5 with the
removal of distribution. A detailed account of the various connectives can be found
in Brady [26]. Briefly, conjunction and disjunction satisfy their standard introduction
and elimination laws, with distribution to be discussed later. Negation satisfies the
De Morgan properties, making it an incomplete concept as this does not say anything
about its application to atoms or to entailments. One can see in Brady [24] that this
negation has a cancellation feature through the use of metavaluational trees, where
negations are cancelled against each other in pairs. (However, this differs from Rout-
ley and Routley [53, page 205], where single negations are cancelled off against their
unnegated forms.) This negation is also called mirror-image negation in Routley et al.
[52], with the mirror acting as a line of symmetry between the negated and its corre-
sponding unnegated formula. We note that this will not include the law of excluded
middle, A∨∼A (LEM), nor the disjunctive syllogism, ∼A, A∨B⇒B (DS), as both
involve single uncancellable negations and whose main justification is based on clas-
sical truth and falsity, which are mutually inclusive and exhaustive. (See Brady [32]
for a full discussion on the rejection of the LEM and see below in §3 for discussion
of the LEM and the DS.) The entailment→ is interpreted as a meaning containment,
with more on this below and more on entailments in §4.

Looking into these two logics raises the issue of other logics that can also be given
a conceptual characterization, given that logic should primarily be a conceptual study
rather than just a technical study. An obvious example would be intuitionist logic
which is classical logic made disjunctively constructive, as can be seen by its Gentz-
enization, having at most one consequent after the turnstile. However, whilst there is
conceptual and technical interest in constructivity, the problem with intuitionist logic
itself is not only the unjustified persistence of constructivity into applications beyond
the logic itself (which would even apply beyond its mathematics), but also the remain-
ing strength of its implicational laws such as A→ .B→ A, which leads to B→ A, if A
is a theorem. (See §3 below for more on the reach of constructivity through priming.)
In such a case, B→ A fails the relevance condition: if A→ B is a theorem, then A and
B share a sentential variable. This condition is a necessary condition for a good inten-
sional logic, as it establishes some commonality of meaning between the antecedent
A and the consequent B, but it is not sufficient to characterize meanings entirely.

What we need to do is to provide a complete characterization to establish a clear
concept which can then be applied not only to establish a logic but also to apply to its
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non-logical extensions. Indeed, there are problems in the application of logics such
as R, as the relevance condition upon which it is based cannot be maintained in ap-
plication. (See [20, p. 158], for the following examples in set theory and arithmetic:
x = y→ . p↔ p and m = n→ l = l.) The same goes for other strong relevant logics
such as E, T, RW and TW, which are all primarily based on the relevance condition
without an underlying logical concept and are all too strong to characterize intension-
ality by themselves. (See the Appendix for these logics and all other logics mentioned
in this paper.) Nevertheless, as we can see from the research work done on them, they
are all technically interesting and have some degree of intensionality built into them,
depending on their distancing between classical logic and my logic of intensionality,
as specified below over sections §3–5.

So, we are left to consider weaker logics such as DW and DJ for appropriateness
to characterize intensionality, where the meanings of all their connectives are used
to determine the logic. (See the Appendix for axiomatizations of DW and DJ.) We
especially need to determine the role of→ as a connective capturing meaning, being
aware that such a connective applies whether the constituents are true or false, with-
out a presumption of truth for the antecedent. So, a direct analysis of the meanings
of both the antecedent and consequent is required, with an appropriate relationship
between them to reflect consequential certainty achieved through the analysis of the
antecedent. Such a relationship would be meaning containment, with the meaning of
the antecedent containing that of the consequent, used in [20; 23], and supported by a
content semantics with logical contents c(A) and c(B) assigned to formulae A and B
such that c(A→ B) = c(c(A) ⊇ c(B)), where contents c(A) are sets of formulae and
the containment between c(A) and c(B) is set-theoretic. Note that it is often easier to
examine the meaning of the antecedent as an extension of the meaning of the conse-
quent. In particular, the meaning of A∨B is extended to that of A and that of B, in the
respective assessments of A→ A∨B and B→ A∨B. This is the appropriate meaning
concept for a connective, being deeper than just deductive meaning analysis, which
we will consider in the next section, where we will also consider how the intensional
and extensional logics should interact with each other.

We first need to tinker with a few key axioms and rules to determine a suitable logic
of intensionality. We start with the conjunctive syllogism axiom, (A→ B)& (B→
C)→ .A→ C, which when added to DW yields DJ. (Also, see the Appendix for
the bracketing conventions.) It does seem appropriate for content containment to be
transitive, especially, as it is based on set-theoretic containment, which is of course
transitive. Further, we can look at the meaning of A→C as being extended to that of
(A→ B)& (B→C), since the containment of C in A is then extended to that of C in A
via B, assuming transitivity. A possible problem with conjunctive syllogism is that it
is a mild form of contraction in that it is deductively equivalent to A◦B→ A◦ (A◦B),
where fusion ◦ satisfies the two-way rule, A→ .B→ C⇔ A ◦B→ C. Nevertheless,
in [23], it is shown that naive set theory based on the logic DJ can be proved to be
simply consistent, though this fails with the addition of fusion ◦ due to a Curry-type
paradox. It should be said that fusion, in satisfying the above two-way rule, combines
antecedents in a way that does not make much sense when the→ is interpreted as a
meaning containment.
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Further tinkering will still need to be done. This will include the addition of a
single-premise meta-rule, which will be discussed in §3, and the possible addition
of a two-premise meta-rule together with a discussion of distribution, which will oc-
cur in §5.

3. TRUTH, RULES, DISJUNCTIVE SYLLOGISM AND CLASSICAL RECAPTURE

We tend to think of truth and meaning as being the two basic semantic concepts
needed to determine logical systems, but this needs some investigation. We have al-
ready considered information and necessity in Brady [33], with information being the
derivative concept, true content, as argued in Brady [27], and necessity generally re-
lying on quantification over possible worlds in a truth-theoretic semantics, which do
not properly capture the meaning of disjunction as expressed in proof-theory. (On this
last point, see below for further discussion and see Brady [29] for more detail.) So, we
will examine the role of truth to round out our understanding of logical systems. Nev-
ertheless, meaning is the central concept of logic in that all formalizations endeavour
to capture the meanings of words in sentences. Hence, the meanings of connectives in
sentential logic should be captured in all axiomatic systems.

There are two key uses of truth in deductive logic. First, analytic truth is central
to logic as all logical truths are analytic, determined by analysing the meanings of
their logical words. Further, the truths of key logical applications to set theory and
arithmetic, and other mathematical applications as well, are all analytic as they are
deduced from mathematical concepts. Towards the second usage of truth, let us first
consider the definition of a valid deductive argument as an argument that requires its
conclusion to be certain, given its premises, in contrast to the lack of certainty for an
inductive argument, where a high probability of its conclusion suffices for a good in-
ductive argument. This certainty would be determined by meaning analysis which can
either be applied just to the constituents of the conclusion or, more commonly, to the
constituents of the premises, such analysis ensuring the certainty of the conclusion. It
is hard to see how else this certainty could be guaranteed. Valid logical deductions
are often characterized as cases of necessary truth-preservation. However, as above,
necessity is not helpful here because of its usual relationship with possible worlds in
a modal context. (For a discussion of worlds, see below.) Further, the irrelevance of a
certain conclusion from unrelated premises is of no concern here as relevance applies
to the tighter relation between antecedent and consequent of an entailment. Having
certain conclusions make a deductive argument valid does enable one to suppress an-
alytic truths in a deductive argument. That is, A⇒T is deductively equivalent with:
if A,T⇒B then A⇒B, where T is analytic. (Such suppression of analytic truths is
commonly used in practice as we standardly drop off axioms that are used in a deriva-
tion.) Note that this differs from the relevant deduction of Brady [35] and Brady and
Rush [38].

For the second key usage of truth, what we can say for valid deductive arguments
is that truth is preserved from premises to conclusion, truth being assumed for the
premises and carried through to the conclusion. The preservation of truth for the rules
can be seen from the content semantics of DJd in [20] and [23, p. 63]. (We restrict
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ourselves here to sentential systems. However, for predicate systems, the generaliza-
tion rule would need to be restricted in its application for this purpose.) The important
difference between a step in a deductive argument and a formula embedded in such a
step is that there is no provision for a failure to hold in the deductive step, whereas the
appropriate thing to do for an embedded formula is to put its meaning into that posi-
tion, with no concern about whether the embedded formula holds or not. Moreover,
the truth in a deductive step is assumed truth which can even apply when the premise
is false in fact (or even contradictory), but the argument proceeds on the basis of this
assumed truth, determining what would follow if it were true. (A typical example of
this is in the case of fictional novels.) Thus, a formula that is used as a deductive
step is given a positive read, which enables this positive meaning to be applied in the
deductive process in accordance with what it says. So, such a positive read is the sub-
stitute for truth in a deductive argument. This lessens the value of truth in logic to that
of analytic truth, which is in turn determined by meaning. This, we believe, leaves
meaning as the core concept of logic.

These are also uses of truth in standard truth-theoretic semantics, where validity
of a formula requires truth in all interpretations and validity of an argument requires
truth-preservation in all interpretations. However, there are problems with such se-
mantics in that they do not provide a proper interpretation of disjunction in that, due
to its formula-inductive structure, it is given the priming property (if A∨B is true at
a world then either A or B is true at that world, as witnesses for the disjunction in the
inductive process) at variance with its proof-theoretic meaning, with its witness-free
induction on proof steps, as was discussed in [29]. Standardly, in a proof-theoretic
setting, disjunctions are eliminated by assuming each disjunct separately and prov-
ing a common conclusion. There is no need to declare a particular disjunct as being
the case.

Before proceeding further, we clarify the difference between meaning containment
and meaning analysis used to derive conclusions of deductive arguments, expressed
as rules of deduction in formal axiomatization. As discussed in §2, as a connective,
meaning containment must assess the relationship between antecedent and consequent
whether the antecedent is true or false. On the other hand, the meaning analysis used to
validate rules of deduction assumes that the premise is true, including it as a deductive
step together with any appropriate analytic truths that aid the derivation of the conclu-
sion. Both aspects are at variance with meaning containment, where analytic truths are
not always suppressible for a meaning containment to continue to hold. For example,
(A→ A)& (B→C)→ .A & B→ A &C is valid in DJ but B→C→ .A & B→ A &C is
not. On the relationship between entailments and their corresponding rules, see [23,
pp. 29–30], where the case of the formula A&(A→ B)→ B (invalid in DJ) is assessed
in contrast to the rule, A, A→ B⇒B. Here, because A→ B holds, what it says and
means enables it to apply to the other premise A, thus enabling B to be deduced. In
contrast, the two A’s within the antecedent A & (A→ B) do not connect as the second
A is part of a containment statement whilst the first A is on its own.

We add the following single-premise meta-rule MR1 to DJ to obtain the logic DJd

of [20; 23].

MR1 If A⇒B then C∨A⇒C∨B.
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Initially, this was generally introduced into logics weaker than Anderson and Bel-
nap’s system T of ticket entailment to ensure that their reduced modellings preserved
truth at the base world of a Routley–Meyer semantics. (See the Appendix for such
systems.) MR1 is justified using the standard disjunction elimination rule, by first
assuming C and then by assuming A. Indeed, it can be easily seen that MR1 is de-
ductively equivalent to the rule-form of disjunction elimination: if A⇒C and B⇒C
then A∨B⇒C. For those logics which are metacomplete, no new theorems are added
by MR1, as pointed out by Slaney in his [55]. (See Meyer [49], Slaney [54] and [55]
and Brady [28] for an account of metacompleteness.) Nevertheless, I added MR1 so
that any need for it in extensions of the logic can be guaranteed, as any logical rule
persists into every application of the logic. Further, the meta-rule MR1 is very useful
in a variety of applications concerning rules, including the relationship between rules
and their classical ⊃-form.

In order to proceed with the classical recapture, we first examine the rule Disjunc-
tive Syllogism (DS),∼A, A∨B⇒B. As argued above, rules require meaning analysis
to establish their conclusion, either on the assumption of the premises or within the
conclusion itself. If one tries to apply this to the DS, the derivation of B would rely on
the assumption of ∼A, the consequent rejection of A, and priming for A∨B, to allow
the B disjunct to be established as the conclusion. That is, together with priming for
A∨B, A needs to be simply consistent either just applied within itself to A and ∼A or,
more likely, within a broad set of formulae or, indeed, the whole system. However,
these two are truly meta-theoretic properties, as they both concern provability. Thus,
the DS is a metarule in the truly metatheoretic sense of the word, as opposed to the
above meta-rule MR1 which is just a rule directly relating rules. So, unlike the other
familiar rules, it is not derivable by meaning analysis, and thus the paraconsistent lo-
gicians do have a point in not including it in their logics, as with Ex Falso Quodlibet
(EFQ), A,∼A⇒B, which easily follows from the DS. The converse is also provable,
making them deductively equivalent, given priming for the disjunction of the DS.1 Re-
call that Belnap omitted the DS from his relevant logics as it would cause a failure in
the Deduction Theorem through the absence of ∼A & (A∨B)→ B in the logic.2 The
paraconsistentists, however, reject Ex Falso Quodlibet and hence the DS on relevance
grounds.

Classical recapture for DJd needs both the LEM and the DS to apply to formulae of
the system, either partially to some formulae or to all the formulae of the system, as-
suming of course non-triviality of the system, but also with the assumption of priming
for the disjunctions occurring in the LEM and the DS. In order to prove an instance of
the LEM, it must be prime in that it must be derived from one of its disjuncts, given
that the LEM is not a theorem of the logic involved. As above, the disjunction in the
DS must also be prime for it to be justified as holding. This will enable all classical
tautologies expressed in such formulae to be derived using rules of DJd (and later the

1Given priming for A∨B, we prove the DS by applying EFQ to ∼A and A yielding B and hence the DS
follows.

2Belnap made this point regarding the DS in Anderson and Belnap [1, pp. 296–300], the Deduction
Theorem being called the Entailment Theorem.
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system MC of meaning containment).3 Whatever formulae satisfy both the LEM and
the DS will be termed classical formulae. Further, if the LEM holds for each member
of a set of atoms then it will continue to hold for all formulae built from these atoms
using &, ∨ and ∼. Similarly, if the DS, ∼A, A∨B⇒B, holds for each of a set of
atoms A of the DS then it continues to hold for all prime formulae built from these
atoms using &, ∨ and ∼.4 Thus, one only needs to show that the LEM and the DS
hold for atoms. However, we note that these atoms can be replaced by formulae, with
the derived classical formulae built from these formulae in lieu of the atoms.

We next consider the LEM. As argued in Brady [29; 31], logic proceeds through
derivations in proof and is not accurately captured by the standard truth-theoretic se-
mantics, due to disjunction, when understood proof-theoretically, not satisfying the
priming property of truth-theoretic semantics, as was discussed above. The main jus-
tification for the LEM is that sentences are either true or false. However, when truth
is replaced by proof, this would require negation-completeness. However, negation-
incompleteness is ubiquitous as concepts are often not fully specified, which then
leads to the large-scale failure of the LEM. (See [32] for a fuller discussion of the
LEM.)

In the arithmetic papers of Brady, i.e., [25] and [33], each instance of the LEM
is proved via one of its disjuncts using A5 and A6 of the Appendix, whilst the DS is
brought in as an admissible rule once simple consistency of the arithmetic is shown in a
metacomplete system. This mode of classical recapture is ideal for systems in general,
as consistency is more likely to apply generally to the whole system and it is a property
one would expect a worthwhile system to satisfy. (See [31] on this point.) What
we achieve here is the simple consistency of primitive recursive arithmetic in [25]
and subsequently in [33] general recursive arithmetic, these theories being classically
recaptured.

Let us finish by examining when the priming property should hold, as this question
will often arise. Indeed, in §2 above, this question arose for intuitionist logic, which is
conceptually based on constructivity. Here, the priming property would hold for ap-
plications as well as for the logic itself. However, in [32] we argue that priming should
hold for logical theorem instances, with particular reference to the LEM. For DJd and
many logics in its vicinity, priming follows from metacompleteness. (See [49] and
[54; 55] for metacompleteness.) Priming still holds for primitive and general recur-
sive arithmetic, given the form of its axiomatization and the extension of metacom-
pleteness to these arithmetics. (See [25] and [33] on this.) Moreover, priming can fail
for non-logical axioms, especially disjunctive ones. For example, it is perfectly possi-
ble to have disjunctive information, without the disjunction being resolved in favour of
one disjunct or the other. It is this concept that is justifiably captured in proof-theoretic
systems (as opposed to truth-theoretic semantics), each disjunct being assumed for the

3This is proved by using the method of normal forms, where each tautology is shown to be deductively
equivalent to a conjunction of disjunctions each of which includes at least one LEM pair. Use is made of
simple properties of DJd, including the rule-form of distribution, in these derivations. For this to apply
to the system MC of §5 without distribution, we show that its rule-form is an admissible rule in §5. This
would then hold for all metacomplete and prime extensions.

4To achieve this result for the DS, we not only need to use priming for each of its disjunctions but this
also applies for any disjunction or negated conjunction formula occurring in this process.
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purpose of entailing or deriving a common conclusion. Proof-theoretic systems must
apply not only to the logic itself but also to all applications and extensions of the logic,
which would include the above disjunctive information. However, if a rule is only an
admissible one, as with DS above, then it holds for the logic but it needs to be checked
for each and every application and extension of the logic.

4. THE IMPLICATION/ENTAILMENT DISTINCTION

Implication and entailment are traditionally related by defining entailment as nec-
essary implication. This applied initially to classical logic, where material implication
⊃ is taken to be the implication, and where necessity � is added in a classical modal
logic to yield what was called strict implication in the form �(A⊃B) by C. I. Lewis.
(This is set out in Hughes and Cresswell [45] for the Lewis modal logics S1–S5.)
These strict implications were taken to capture entailments from a classical point of
view, as appropriate to the particular modal logic. However, such strict implications
were discredited by Meyer in [48] from a relevance point of view, where he shows,
for example, that any sentence strictly implies a necessary truth. As a result, meaning
connections, essential to a reasonable understanding of entailment are broken down.
Indeed, the breaking down of these meaning connections led Brady to search for an
entailment logic based on meaning rather than a necessitated implication. (See [20]
for the initial work on such a logic.)

Next, let us briefly dwell on these meaning connections between antecedent and
consequent of an entailment. At the connective level, as argued in [33], if the meaning
connections are understood by variable-sharing, as in the relevance condition, then
this, by itself, does not suffice to establish a suitable concept to base a logic on. Note
that strong relevant logics such as R require satisfaction of the rules of Modus Ponens
and Adjunction, together with the use criterion in Fitch-style natural deduction, in
addition to that of the relevance condition, to provide its key characterizing features.
However, it is fair to say that the relevance condition is the major one and that this
would be expected to hold in applications of the logic. As discussed above and in [20]
and [23], we need to move to a logic such as DJd based on meaning containment to
obtain a suitable logic embracing meaning. Although satisfying the relevance condi-
tion, it is a single concept embracing meaning, which is the core semantic concept
to base a logic upon. Furthermore, it is also transitive, which the relevance condition
is not. (Also, see [33] on this point.) We conclude that the connective → of such a
logic as DJd of meaning containment represents a good concept of entailment based
on meaning, though further tightening is needed to produce our final logic MC.

To help characterize implication, we need to examine the other semantic concept,
truth. To get started on this, we did introduce “the two inference concepts” in sec-
tion 17.3 of [26], one of which was, of course, entailment, represented by the con-
nective→. The other concept was that of the primitive rules of inference and derived
rules, linking the premises and conclusion of valid deductive arguments, represented
by the rule ⇒. Such rules preserve truth in sentential logics, as has been discussed
above in §3 and in [26], this preservation being ensured formally in the various se-
mantics by the inclusion of the disjunctive meta-rule MR1, which is given in the ax-
iomatization of DJd. Initially MR1 was introduced in single-premise form in Brady
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[10] to give relevant logics (with distribution) a reduced Routley–Meyer semantics in
which the rules preserved truth at the base world. (See [52], for these semantics.) Fur-
ther, the meta-rule is used to establish truth-preservation in the algebraic-style content
semantics, initially introduced in Brady [11] and Brady [12], subsequently narrowed
down in [20] and [23] to the logic DJd.

With this background, we need to proceed to the determination of implication.
Truth-preservation would certainly be its key property, which would differentiate it
from entailment with its key property based on meaning. There is, of course, classical
material implication, represented by the connective⊃, which is truth-preserving in ac-
cordance with its truth-table. There is also relevant implication, which is understood
as truth-preserving, subject to the relevance constraints of the relevance condition, its
two rules, and the use requirement of its Fitch-style natural deduction system which
rounds out the logic R. (See [1] for these two constraints on the logic R and its
axiomatization.) As argued above, the logic R of relevant implication is not an ap-
propriate logic, mainly due to the difficulty of maintaining the relevance condition in
applications.

Finally, putting other systems such as R aside as they involve a collection of dif-
ferent characterizing features, let us examine the pure truth-preservation of material
implication in classical logic as the obvious contender for a good concept of implica-
tion based on truth. The problem here is that its truth-preservation depends on Boolean
negation. Indeed, it is the classical negation properties of the LEM and the DS (both
applied to the A) that ensure that A⊃B and A⇒ B are deductively equivalent and
A⇒B, of course, preserves truth. (See footnote 5 for “deductive equivalence.”) The
trouble here is that neither the LEM nor the DS are included in the logic DJd as it
is based just on De Morgan negation as a type of cancellation negation. (See above
discussion in §2 and with the detail in Brady [24] on this last point.) So, the rule-form,
A⇒B, is purer as an implicational concept in that it cuts down on extraneous elements
such as negation, but not entirely as it does embody meaning analysis in getting from
A to B. Given the core nature of meaning in deductive logic, this cannot be helped,
as was discussed above. Further, as rules do not yield anything when A is unproven,
they better capture truth-preservation than a connective such as ⊃, which would need
to deal with a false antecedent. Thus, implication and entailment are separately con-
ceptualized, being separately based on the two inferential concepts expressed using
⇒ and →, respectively, in a good meaning-based logic. We should say, however,
that this applies to sentential logics only, which are the focus of this paper, due to the
form of Badia’s original query. At the quantificational level, the generalization rule,
A⇒∀xA, is not an implication and the quantificational meta-rule for ∃ is restricted to
avoid instances of generalization in the application of this meta-rule, in axiomatizing
the quantificational extension of DJd (and also of MC below).

5. DISTRIBUTION

First, we briefly explain why the→-form of distribution, A & (B∨C)→ (A & B)∨
(A &C), fails as a meaning containment. As set out more fully in Brady and Meinan-
der [36], the natural deduction introduction and elimination rules for conjunction and



138 Ross T. Brady: Intension, Extension, Distribution and Decidability

disjunction suffice to establish their respective uniquenesses without the need for dis-
tribution. Once uniqueness is established, such conjunction and disjunction can be
substituted in any context and thus distribution is not used in determining the mean-
ings of conjunction and disjunction within the logic. Therefore, distribution in its
→-form is not a meaning containment and so it is dropped from the logic DJd in
forming our final logic MC of meaning containment, set out in the Appendix below.

We next explain why the →-form of distribution holds in truth-theoretic worlds
semantics. Because of the way truth-theoretic semantics is set up by induction on
formulae, each disjunction in a world requires a witness to establish its truth. Such
a witness for B∨C, together with A, can then be conjoined to form the respective
conjunction A&B or A&C within each world, giving us (A&B)∨(A&C). This shows
the way distribution works, that is, by enabling the respective conjunctions A & B or
A &C to be formed, after assuming A & (B∨C). Note that this form of distribution
is not so easily introduced in natural deduction, as it requires a special rule &∨ to
make it work, over and above the standard introduction and elimination rules for &
and ∨. The problem here is that B and then C are assumed as further hypotheses,
which cannot then be conjoined with the A as it is without such further hypothesis,
making it unconjoinable as the A and the B and C will then be based on different sets
of hypotheses. (See [1, pp. 273–274], regarding the difficulties using the standard
introduction and elimination rules for & and ∨ and the introduction of a special rule,
and also see [10, p. 362], for the distribution rule &∨.)

We now need to apply this in an implicational context, rather than as an entailment.
This leads us to the rule-form of distribution, A & (B∨C)⇒ (A & B)∨ (A &C). Here,
a similar problem exists at the level of rules, as B and then C still need to be assumed,
making them depend on a different assumption from that of A. Indeed, the formation
of conjunctions at the level of rules is borne out by the meta-rule: if A⇒B and A⇒C
then A⇒B&C, which is the conjunctive analogue of the disjunctive meta-rule: if A⇒
C and B⇒C then A∨B⇒C. This conjunctive meta-rule states that conjunctions can be
formed from conjuncts which are subject to the same assumption. (Note that the rule
A,B⇒A & B introduces a conjunction where both conjuncts have no assumptions.)
This is at variance with what is happening in rule-distribution when the B and then the
C has to be assumed, to provide a conjunction with A, which has no assumption.

Further, both the conjunction and disjunction introduction and elimination rules
take the same shapes as for their respective entailments and a similar case can be
made for their uniqueness at the level of rules, expressed as rule-equivalence. For this
reason, we need to also reject the rule-form of distribution.

However, as for the DS, if the disjunction B∨C is prime, then the respective con-
junction A & B or A & C can be obtained for either of the disjuncts B and C of the
premise, yielding A & (B∨C)⇒ (A & B)∨ (A &C) as a metarule in the genuine sense
that it requires a meta-theoretic property for it to hold. Given that DJd, and MC
above, are metacomplete, which yields primeness and simple consistency, the DS and
the rule-form of distribution are admissible rules for the logic and all their metacom-
plete extensions. It is interesting here that Dunn’s quantum logic is set up in rule-form
in his [41], with the consequent omission of the rule-form of distribution. We agree
with this on the grounds that priming fails here, due to electrons having spin up or
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spin down, but neither being measurable in the context of a determined position. This
serves to correct what was argued for in [36], that is, the failure of LEM. The LEM of
course would only follow from one of its disjuncts.

Alternatively, the rule-form of distribution can be shown to hold if the A is an
analytic truth, independently of whether the B∨C is prime or not. Then, since B⇒A
and C⇒A, B⇒A&B and C⇒ A&C, whereupon A& (B∨C)⇒ (A&B)∨ (A&C). A
similar point can be made for the DS, ∼A,A∨B⇒B, if ∼A is an analytic truth. For
then A⇒∼A and B⇒∼A and hence A⇒A&∼A and B⇒B&∼A, yielding B on the
assumption of simple consistency, without the need for A∨B to be prime.

Next, we consider the following two-premise meta-rule MR2 extending the earlier
single-premise meta-rule MR1 of DJd:
MR2 If A,B⇒C then D∨A,D∨B⇒D∨C.
This also relies for its justification on the priming property to apply to its premise
disjunctions D∨A and D∨B, for then either D is provable or both A and B are provable,
giving us D∨C. It too becomes a metarule in the genuine sense that it depends on a
meta-theoretic property and is an admissible rule for the logic and its metacomplete
extensions. MR1 has the advantage that there is no conjunction involved and it is
deductively equivalent to the justifiable rule-form of disjunction elimination. On the
other hand, MR2 is deductively equivalent to the one-premise meta-rule MR1 of DJd,
plus the above rule-form of distribution.5 Note also that neither MR1 nor MR2 will
increase the set of theorems of MC due to the priming property being satisfied for
theorems, also following from the metacompleteness of MC.

In conclusion, whilst the entailment form is to be rejected, this implicational rule-
form of distribution, though not being an integral part of our intensional logic MC,
holds admissibly over MC and any prime extension, such as can be obtained due to
metacompleteness. Note that MR2 does appear in earlier axiomatizations of MC, but
is henceforth removed, as it embraces the rule-form of distribution.

6. DECIDABILITY

We start by examining four styles of decidability proof for various relevant logics:
finite model property, semantic reductio, normalized natural deduction and Gentz-
enization, with a view to determine what limits their respective applications. The first
two are semantic methods, both of which apply to logics with distribution. The lat-
ter two are proof-theoretic, which can apply to logics with or without distribution,
though the removal of distribution creates simplification of the method and possibly
a wider cast of systems to which the method would apply. This examination is done
as an interesting technical exercise, without regard to the need for logics to capture
appropriate concepts.

Maksimova first showed decidability for a relevant logic without the two hypothet-
ical syllogism axioms, A→ B→ .B→C→ .A→C and A→ B→ .C→ A→ .C→ B
in 1969. (See Bimbó and Dunn [8] for the details of this.) Then, Fine [42] showed

5We prove this by showing that (D∨ A) & (D∨ B)⇒D∨ (A & B) is deductively equivalent to A &
(B∨C)⇒ (A & B)∨ (A & C), via Belnap’s form of distribution, A & (B∨C)⇒ (A & B)∨C. Note that
deductive equivalence allows substitutions to be made on formula schemes, as well as applications of the
usual deductive rules.
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decidability for a wide range of relevant logics without these two hypothetical syl-
logism axioms. This includes all the familiar strong relevant logics, including R, E,
T and RW, but without these two hypothetical syllogism axioms, as well as weaker
relevant logics such as B, DW, DJ and DK. He used the finite model property, which
involves looking at the formulae under test in his style of semantics for relevant log-
ics and assessing their validity or otherwise in models that are limited by the atoms
and subformulae occurring in the formula, thus creating a finite model for the formula
under test. However, his semantic postulates for the hypothetical syllogisms do not
permit his finite model procedure to work. (See [42, p. 368], for the details.) Note
that the LEM is included in his basic logic and hence all his logics under considera-
tion. Nevertheless, we assume that the LEM can be removed, where appropriate. Note
also that Fine’s semantics has the advantage of simplifying the semantic postulates for
{→,&}-formulae due to their use of theories, as opposed to the prime theories used
in the Routley–Meyer semantics. As they do not require priming, Fine’s theories re-
late more closely to the proof theory allowing the Routley–Meyer existential semantic
postulates to be replaced in favour of algebraic-style postulates.

Semantic filtration is set out in [21], for the reduced Routley–Meyer semantics,
which follows on from Routley’s three filtration attempts in section 5.9 of [52, pp. 399–
406], though only the second filtration is shown by Brady to work. The reduced se-
mantics is further simplified by Priest and Sylvan [50] and Restall [51]. It is Restall’s
further simplification that we use here. The general method of filtration is to create
suitable finite models which would then be used to establish the finite model prop-
erty. Here, the finite models are restricted by only considering the subformulae of the
formula under test, which is closed under the negation of unnegated formulae. How-
ever, the two complex postulates for the hypothetical syllogism pair are problematic
in that there is difficulty in ensuring that the two z’s are the same in their common
conjunctive antecedent Rabz and Rzcd after the second filtration is applied.6 Without
these two postulates, only a finite number of models of this sort need be so generated,
giving rise to a decidability argument, similar to that of Fine’s for his semantics. This
decidability applies to all familiar relevant logics, but without the pair of hypothetical
syllogisms. However, this method is tedious and decidability is better proved using a
reductio argument, still based on filtration, as given in [21, pp. 15–18]. This reductio
method follows that of [45], used there for modal logics.

A reductio method is also given for contraction-less logics in [21, pp. 19–26]. This
is a direct unfiltered semantic method based on truth-trees, also modelled on [45],
using the reduced Routley–Meyer semantics of [51], as was used above. We start with
the formula under test being assigned false at the base world and work this back to
the atoms in a finite tree structure. As for the tree method, if a contradiction is proven
then the formula cannot be false and must be valid. The contraction-less logics RWd,
TWd, DWd and Bd can be shown to be decidable by this method, with the possible
addition of the LEM or the DS to TWd, DWd and Bd. However, any one of the axioms
incorporating contraction, A10, A15, A16, and A17, when added to TWd, EWd or
RWd, can keep creating new worlds, producing an infinite sequence of worlds, thus

6The semantic postulates for the two hypothetical syllogism axioms are: Rabz&Rzcd⇒∃x∈K.Racx&
Rbxd, Rabz & Rzcd⇒∃x ∈ K.Rbcx & Raxd.
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producing a limitation for this method. The same applies to the addition of either the
LEM or the DS to RWd, and the addition of the E-rule R5 to TWd. (Note that TWd

and TW have the same set of theorems, as do Bd and B, DWd and DW, and RWd and
RW, due to their respective metacompleteness.)

We now move on to proof-theoretic methods, starting with normalized natural de-
duction. As set out in Brady [22] for the logic DW, normalization of Fitch-style
natural deduction eliminates introduction and subsequent elimination rules that apply
to the same connective in the same signed formula. Once normalized, one can show
the usual subformula property which states that only subformulae of the formula un-
der test can occur in its subproofs. The additional special property here is that any
subformula of depth d in the formula under test can only occur in a subproof of depth
d within the overall proof. This is a feature of D-level systems such as DW, DJ and
DK. This puts a finite limit on the depths of subproof together with the formulae that
can occur in them, ensuring the finiteness of the total number of subproofs that can be
created using these subformulae. This ensures that the system is decidable and would
apply to other depth relevant or D-systems. (For depth of subformulae, together with
depth relevance, see Brady [9]. Depth of subproof is given by max(a), where a is the
index set of a formula in the subproof, this maximum being common to all subformu-
lae in the subproof.) However, much of this work on systems other than DW is still to
be done and the removal of distribution would induce a much-needed simplification
of a rather complicated system. (Indeed, it is hoped to use two separate subproofs in
parallel in response to disjunction elimination.) As hypothetical syllogism is not depth
relevant and would fail the above property, this method, as set out, does not extend to
systems such as TW which include it.

Finally, we consider cut-free Gentzenization, which is a popular method for prov-
ing decidability, especially, when distribution is removed. The history of Gentzeniza-
tion of relevant logics goes back to Kripke, who in his [46], Gentzenized the →-
fragment of the logics R and E, R→ and E→, using commas to the left of the turnstile,
these representing nested implications. He then went on to prove decidability by an
intricate argument. Subsequently, Belnap and Wallace in [5] Gentzenized E∼→, us-
ing commas on both sides of the turnstile, also proving its decidability by extending
Kripke’s work. Meyer then Gentzenized the full distribution-less logic LR in his [47]
in similar style. He also went on to prove decidability by extending Kripke’s original
argument. Subsequently, Dunn Gentzenized R+ in 1969, first appearing as an abstract
in his [40] and then in full detail in [1], using two structural connectives, commas and
semicolons, to the left of the turnstile, and a single formula to the right. The comma
represented extensional conjunction & and the semi-colon represented intensional fu-
sion ◦, introduced by Belnap [3] as ∼(A→∼B). However, Dunn, in his thesis [39]
had used fusion satisfying the equivalence A ◦B→ C.↔ A→ .B→ C to introduce
algebraic residuation laws. Indeed, [47] had defined the term fusion using this equiv-
alence. Nevertheless, decidability was not provable for R+, Urquhart [56] and in [2],
showing that it was undecidable, together with E+ and T+. (This is to be discussed
below.)

Somewhat later, Grishin Gentzenized LRWQ, i.e., RW without distribution but
with quantifiers, and used it to prove decidability in his [44]. This was the first known
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proof of decidability for a full quantified logic.7 Then, Belnap [4] and also in [2],
introduced an innovative Gentzenization called display logic, which applied to R, E,
T and other logics, centrally using a method of flipping components of the right-hand
side of the turnstile onto the left so as to leave a single formula on the right. (Com-
ponents can also be flipped from left to right.) Alas, this did not yield decidability.
Then, Brady Gentzenized RW, following the work of Dunn on R+ in [1], and proved
its decidability in [13] following Giambrone [43], who had proved decidability for
RW+ and TW+. This was extended in Brady [14] with the Gentzenization and de-
cidability of the contraction-less logics DW, TW, EW and RWK, which was then
all simplified in his [15]. Subsequently, Brady [18] and [19] set out Gentzenizations
of some quantified relevant logics without distribution, making use of Grishin’s work
in [44]. The logics LBQ, LDWQ, LTWQ◦, LEWQ◦t , LRWQ, LRWKQ and LRQ
were Gentzenized and all these logics except LRQ were shown to be decidable. Then,
in Brady [17], Gentzenizations similar to that of Belnap’s display logic in his [4] were
given for a large range of logics with distribution, excluding E and EW. Here too, no
decidability results were derived.

The general limiting factor in Gentzen systems is intensional contraction, which
can be re-applied unrestrictedly, working one’s way up the Gentzen proof on the an-
tecedent side of sequents, without a complementary introduction rule, such as that for
the axiom A→.A→A of the decidable logic RM, that could be used to put a finite cap
on the number of repetitions of contraction. (Note that A→ .A→ A is inter-derivable
with A◦A→ A.) Such contractions provide elimination of pairs without correspond-
ing introduction, meaning that the fusion involved is not finitely capped, which is what
yields the lack of decidability. Nevertheless, more recent progress has been made in
proving decidability of systems with contraction. Bimbó and Dunn [7] proved de-
cidability for T→ and Bimbó has proved decidability of the intensional fragment of
classical linear logic in [6], both of which have forms of contraction in them.

We finish with undecidability, which is what Badia’s question is related to. This
was proved for the logics R and E by Urquhart in his [56] and reprinted in [2, pp. 348–
374]. Indeed, Urquhart showed that any logic from TW++A& (A→ B)→ B through
to R is undecidable. However, Brady [30] showed that the undecidability of Turing’s
halting problem uses the LEM in its proof, with neither of its disjuncts provable. And
all undecidability arguments stem originally from Turing’s problem by mapping the
halting problem into the various contexts.

Similarly, in Brady and Rush [37], it was shown that Cantor’s Diagonal Argument
uses the LEM, with neither disjuncts provable. The LEM is similarly used in the
proofs of key set-theoretic and semantic paradoxes, viz. Russell’s Paradox and the Liar
Paradox, as was shown in Brady [34]. These are all failures of the priming property,
since the LEM is used without either of its disjuncts being provable. Since the LEM
is not in the logic, the only way it can be proved is through one of its disjuncts, i.e.,
it should be prime. Moreover, given that the LEM only applies to recursive sets, as
stated in §2, it is clear that it should fail in these cases as self-reference occurs in

7A big “thank you” to Alexander Kron and Kosta Došen for making me aware of Grishin’s work, and
Kron for hospitality in Serbia and Montenegro. Grishin’s paper was translated from Russian with financial
help from the School of Humanities of La Trobe University.
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each of them. Further, Brady argued in [31] that, for the metatheory to use the LEM,
decidability of the object logic must have been proved, as the LEM is understood
proof-theoretically in the meta-theory. That is, the LEM would then be interpreted as:
for all A, A is provable or ∼A is provable, or if A is unprovable then ∼A is provable.

We examine the proof of the undecidability of the halting problem, as in Brady
[30]. We quote from pp. 293 and 294, with D(D) being the diagonal machine applied
to itself:

We start by defining the halting set H of pairs (M;x), consisting of a Turing
machine M together with an input x, such that the Turing machine halts on
that input.

This argument has the shape: if MH is a Turing machine that decides the
set H then D(D) halts iff D(D) moves the cursor to the right, that is, D(D)
does not halt. That is, as for Cantor’s diagonal argument, it takes the shape:
A⇒B↔∼B. So, by use of the LEM on B, . . ., this creates the contradiction
B &∼B, that is, that D(D) both halts and does not halt, upon the assumption
that H is decidable. By the classical reductio argument, there is no Turing
machine MH that decides H, and so the halting problem is undecidable.

Note that the LEM is clearly used in deriving B &∼B from B↔∼B as B↔∼B
is deductively equivalent to B∨∼B→ B &∼B. The “classical reductio argument”
requires a derivation of the rule contraposition, if A⇒B &∼B then ∼(B &∼B)⇒
∼A. This is achieved by applying MR1 yielding ∼A∨ A⇒∼A∨ (B &∼B), and
then applying the LEM to A and the DS to B &∼B. Then, by De Morgan and the
LEM, ∼A follows, which states that the halting problem is undecidable. However, by
the argument of [31], the LEM cannot be presupposed here as this would assume the
decidability of the object theory which includes the halting problem, which is what
is at issue. (We assume the DS here, that is the meta-theory is simply consistent,
for the reasons given in [31], and ∼A∨ (B &∼B) is prime, since either ∼A or A is
derivable, assuming the LEM.) With the failure of the LEM, the best we can do is
to say that the decidability is unprovable in the expanded meta-theory, extended to
include the LEM, and the decidability would still be unprovable in the meta-theory
without the LEM. Projecting the halting problem to that of the theorems of R or E,
the same can be said for these as well and thus their decidability would be unprovable,
as a meta-meta-theoretic result, as opposed to their undecidability being provable in
the meta-theory. Note that this serves to correct what was said about undecidability
in [30], which mistakenly focussed on the object theory instead of the meta-theory.
However, what was said in [30] about Cantor’s Diagonal Argument still applies, that
is the countability of the power set of the natural numbers is unprovable, as a meta-
statement, rather than its uncountability being provable in the object theory.

7. CONCLUSION

So, the undecidability of the logics R and E do not matter in the general scheme
of working logics, based upon appropriate concepts. And, undecidability proofs rely
on the LEM which fails for Turing’s halting problem, which then projects generally
to the standard classical undecidability proofs. This failure of the LEM leaves their
decidability or undecidability to be unproven, due to the unavailability of proofs. Nev-
ertheless, we can still assert that such decidability arguments are not possible.
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Getting back to Brady’s and Dunn’s response to Badia’s question, is it the mixing
up of intension and extension, as suggested by Brady, or is it distribution, as suggested
by Dunn, that is the culprit for the undecidability of R? There is certainly a mixing up
of entailment and implication in the formalization of distribution, though implication
is only admissible for weaker (metacomplete) logics, and Dunn did introduce an ex-
tensional structural connective “ , ” as well as the intensional structural connective “ ; ,”
in proving distribution in his Gentzenization of R+ in [40]. The extensional comma
is used to apply the Weakening Rule, (KE `), in the proof of distribution, unavailable
as an intensional rule, as this would introduce irrelevance. However, the mixture of
intension and extension does present problems, as Brady suggests, in particular for
strong systems with distribution, which does require such a mixture for its proof in
Dunn’s R+. The→-form of distribution does introduce a level of intensionality into a
principle which is really an implication represented as an admissible rule for weaker
logics, as argued in §5 above, and further convertible to an extensional principle as
a ⊃-form with an application of MR1 and the LEM. So, it appears that we are both
equally right because our two answers are intertwined.

However, as seen in §6, the decidability of relevant logics is limited by three com-
ponents: full contraction, hypothetical syllogism and distribution. Indeed, the logic
R without any one of these three components is decidable, given Brady’s proof of
decidability of RW in [13], Fine’s proof of the decidability of R without hypothetical
syllogism in [42] and Meyer’s proof of decidability of LR, i.e., R without distribution,
in his [47]. With all three present, problems in establishing a suitable cap on a decision
procedure occur. The problem with full contraction, (A→ .A→ B)→ .A→ B, A15
below, is explained in §6 above for Gentzen systems, which also applies to weaker
forms of contraction. We reiterate here that mingle (A→ .A→ A) mitigates con-
traction and hence one should not be surprised that RM is decidable. Hypothetical
syllogism creates complexity in Fine’s semantics, as well as in the Routley–Meyer
semantics, both of which were explained above in §6. Distribution creates the need
for both intensional and extensional structural connectives in the Gentzen system with
an uncapped intensional contraction, as observed by Dunn in [1].

Nevertheless, as argued above for Brady’s intensional logic MC, the removal of
distribution is quite justified, as it does not follow from the meanings of conjunction
and disjunction. Also, the full form of contraction, is not justified in a logic of meaning
containment as the antecedent A→ .A→ B is virtually meaningless as its conclusion
not only combines the two antecedent A’s but is also self-referring. Indeed, how is it
that the containment of B in A is itself contained in A? The full form of contraction
only makes sense as an implication, as the two A’s of the antecedent can then be com-
bined together as an assumption of truth in a truth-preservation. However, conjunctive
syllogism is a weak form of contraction, represented as A◦B→ A◦ (A◦B) using fu-
sion, but fusion ◦ is an inappropriate combination of premises in a logic of meaning
containment. (See §2 above for some more detail on this.) Nevertheless, it should
just be seen as transitivity of meaning containment. As such, conjunctive syllogism is
more appropriate than hypothetical syllogism, A12 and A13 below, as we see that the
hypothetical syllogisms have too much in the way of deep containment→’s involving
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a new formula C in their consequent for it to be contained in its antecedent A→ B. Hy-
pothetical syllogism would lead to an A for B substitution into any antecedent position
within a context made up of ∼’s and→’s, and similarly, to a B for A substitution into
any such consequent position. (See [23] for these substitutions and [1] for antecedent
and consequent positions.) However, from the point of view of paradox solution using
TJd, as proved in [23], both are these forms of syllogism are present. So, we view
the argument against hypothetical syllogism as somewhat weaker than those against
distribution and full contraction.

So, the upshot here is that the conceptual intensional system MC is where we
should focus our efforts in proving decidability, though unproven at this moment with-
out distribution. However, DJd can be shown to be decidable using semantic methods
and the removal of distribution should be advantageous in proving decidability using
the proof-theoretical method of normalized natural deduction.

Acknowledgments. Thank you to the referee for interesting and worthwhile com-
ments and thank you to the editor for her dedication in providing numerous detailed
and valuable comments. The paper has been considerably enhanced as a result of
their efforts.

8. APPENDIX

We set out the systems of logic mentioned in this paper. This is especially useful
to get an idea of the various tranches of decidable relevant logics, in accordance with
the four methods of determination used in §6. The bracketing follows [1] with dots
representing left brackets and → association to the left. Also, & and ∨ bind tighter
than→.
Primitives: ∼,&,∨,→
Axioms: Rules:
A1. A→ A R1. A, A→ B⇒B
A2. A & B→ A R2. A, B⇒A & B
A3. A & B→ B R3. A→ B,C→ D⇒B→C→ .A→ D
A4. (A→ B)& (A→C)→ .A→ B &C R4. A→∼B⇒B→∼A
A5. A→ A∨B R5. A⇒A→ B→ B
A6. A→ B∨A
A7. (A→C)& (B→C)→ .A∨B→C Meta-rule:
A8. ∼∼A→ A MR1. If A⇒B then C∨A⇒C∨B
A9. A→∼B→ .B→∼A

A10. (A→ B)& (B→C)→ .A→C
A11. A & (B∨C)→ (A & B)∨ (A &C)
A12. A→ B→ .B→C→ .A→C
A13. A→ B→ .C→ A→ .C→ B
A14. A→ .A→ B→ B
A15. (A→ .A→ B)→ .A→ B
A16. A→∼A→∼A
A17. A & (A→ B)→ B
A18. A→ .B→ A
A19. A→ .A→ A
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Systems:
B: Axioms 1–8, 11 + Rules 1–4 E: T + Rule 5

DW: Axioms 1–9, 11 + Rules 1–3 RW: TW + Axiom 14
DJ: Axioms 1–11 + Rules 1–3 RWK: RW + Axiom 18

TW: DW + Axioms 12–13 R: RW + Axiom 15, or T + Axiom 14
TJ: TW + Axiom 10 RM: R + Axiom 19
T: TW + Axioms 15–16 MC: Axioms 1–10 + Rules 1–3 + MR1

EW: TW + Rule 5

The systems with superscript d: Bd, DWd, DJd, TWd, TJd and RWd, are obtained by
adding Meta-Rule 1 to their respective underlying system. (MR1 is derivable in T.)
The distribution-less systems with L (for lattice) in front are obtained by removal of
Axiom 11 from their underlying system. (This is not needed for MC.) The distribu-
tionless quantified systems with Q after them (and no d) are obtained by adding the
following axioms and rules:

Primitives: ∀,∃
a,b,c, . . . range over free variables. x,y,z, . . . range over bound variables. Terms
s, t,u, . . . can be individual constants (when introduced) or free variables.

Quantificational Axioms: Quantificational Rule:
1. ∀xA→ At/x, for any term t 1. Aa/x⇒∀xA, where a is not free in A
2. ∀x(A→ B)→ .A→∀xB
3. At/x→∃xA, for any term t
4. ∀x(A→ B)→ .∃xA→ B
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MOISIL’S MODAL LOGIC AND RELATED SYSTEMS

Sergey Drobyshevich, Sergei Odintsov and Heinrich Wansing

ABSTRACT. In this paper, we outline the contents and present key logics of the 1942
paper by the Romanian logician G. Moisil entitled Modal logic, where Moisil at-
tempted to develop a theory of modal operators of impossibility, contingency, neces-
sity, and possibility based on an algebraically motivated system. Specifically, Moisil
defined what is essentially the logic of lattices with two residuals: one corresponding
to conjunction and a dual one corresponding to disjunction. Despite not having tools
for proving the corresponding completeness result he clearly demonstrated a strong
understanding of the relation between algebra and logic, which was arguably ahead
of his time. Among systems which are closely related to the ones Moisil introduced
in his paper are the bi-intuitionistic logic of C. Rauszer, M. Dummett’s LC, first de-
gree entailment FDE of N. D. Belnap and J. M. Dunn, and H. Leitgeb’s HYPE.

Keywords. Algebraic semantics, Bi-intuitionistic logic, Coimplication, First-degree
entailment, Gödel–Dummett logic, HYPE, Modal logic, Residuation

INTRODUCTION

The paper Modal logic [60] was published by Grigore Constantin Moisil in 1942
and later reprinted in a collection [61] of his papers entitled Essays on non-Chrysip-
pean Logics. In this case, one could read “non-Chrysippean” to simply mean “non-
classical.” Moisil’s goal was to develop an approach to modal logic based on a quite
unique system among the ones that were used as foundations for modal theories at
the time. Moisil himself mentions several directions of development of modal logics,
namely, the strong implication logic by C. I. Lewis [52], the three- and many-valued
logics by Łukasiewicz [53; 54], and the intuitionistic logics of Heyting [40], Kol-
mogorov [48], and Johansson [45]. It seems that, according to Moisil, these logics
should be considered modal, since they differentiate between a proposition and its
double negation, which, according to him, implies that the double negation can be
considered as a modal operator. In fact, we will see later on that one of the modal
operators in Moisil’s modal logic coincides with the intuitionistic double negation.
Some other important logics from the standpoint of modal theory include the logic of
quantum theory by Birkhoff and von Neumann [6], Bochvar’s three-valued logic [7]
constructed to analyze various paradoxes, and Orlov’s compatibility calculus [65].

Moisil’s approach had two major sources of inspiration for [60]. The first was a
recently published paper [64], where Toziro Ogasawara essentially proved that the
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Lindenbaum algebra of intuitionistic propositional logic IPL is a bounded residuated
lattice such that

[ϕ → ψ] = [ψ] : [ϕ] and [¬ϕ] = 0 : [ϕ],
where “:” denotes the residual with respect to the meet operation. The starting point
for Ogasawara was the axiomatization of IPL from Tarski [81], which includes eight
axioms of positive intuitionistic logic together with the formulas ¬ϕ → (ϕ → ψ)
and (ϕ → ¬ϕ)→ ¬ϕ . Note that [64] does not define the Lindenbaum algebra of
IPL explicitly. Instead, Ogasawara first proved that a binary relation ⊂ on the set
of formulas, defined via ϕ ⊂ ψ iff `IPL ϕ → ψ , is a preorder and then introduced
the corresponding equivalence relation (denoted simply with the equality sign) via
ϕ = ψ iff ϕ ⊂ ψ and ψ ⊂ ϕ . The aforementioned result is then formulated in terms
of equivalence classes of this relation. Yet [64] does not establish, for instance, that
this equivalence relation forms a congruence on the algebra of formulas. The second
source of inspiration was the investigation of lattices with residuals by M. Ward [86]
and R. Dilworth [16]. Ward and Dilworth considered not only the residual “:” with
respect to the meet operation (the latter corresponding to conjunction),

c≤ a : b iff cb≤ a,

where≤ is the lattice order, and cb denotes the meet of c and b, but also a dual residual
“−” with respect to the join operation (corresponding to disjunction),

a−b≤ c iff a≤ c+b,

where c+ b is the join of c and b. According to H. B. Curry [15] lattices with resid-
uals were considered much earlier by T. Skolem [79] (without any logical interpreta-
tion). Skolem called algebraic structures of the form 〈L, ·,+, :〉 implicative lattices,
and structures of the form 〈L, ·,+,−〉 subtractive lattices. Curry used the term Skolem
lattice to denote either an implicative or a subtractive lattice, yet he did not consider
lattices with both residuals. Notably, in [60], Moisil did not refer to Skolem’s work.
The central idea of Moisil’s paper [60] was to introduce a logic in a language which
contains logical connectives corresponding to two lattice operations and two residuals,
and then to investigate some modal operators in this system (hence, modal logic). As
usual, conjunction and disjunction correspond to the two lattice operators; connectives
corresponding to their residuals are implication→ and coimplication � (Moisil calls
this connective exception).

This approach essentially implies that Moisil defined a logic via a class of algebras,
which we will call here biresiduated lattices. This is noteworthy, given that at the time
the strong connection between logics and classes of algebras that would eventually
lead to the development of abstract algebraic logic (e.g., Font [33]) had yet to become
an integral part of the field of logic. While Moisil does not establish the completeness
results for his logics, he does show a quite clear understanding of the connection
between his logics and algebras. For instance, at one point he refers to some theses
as stating that a certain operator is an automorphism. That said, he uses biresiduated
lattices explicitly only once at the very end of the paper to establish independence of
some axioms.

Let us give a broad outline of [60]. The paper is written in French and with the use
of bracketless (sometimes known as Polish or Łukasiewicz) notation. (Moisil makes
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it clear at the beginning of the paper that he is familiar with the more common no-
tation by providing a short translation between the two.) It is divided into nineteen
sections distributed between five chapters. The last chapter is untitled and the first
four are called, respectively, general modal logic, special modal logic, some specific
logics and symmetric modal logics. Most sections begin with a list of axioms fol-
lowed by long lists of derivations from these axioms with a heavy emphasis on the
laws of distributivity. There are very few designated theorems; most of those are
either uniqueness theorems (to the effect that taking an axiomatic copy of a certain
connective allows one to prove logical equivalence between the two copies) or normal
form theorems; some important results are formulated in plain text. The last two sec-
tions are dedicated to proving the aforementioned independence of axioms (§18) and
to stating some open problems (§19).

The main goal of this paper is to present some key logics Moisil has introduced
in his paper and to put them into a historical perspective. In doing so we are not
presenting the full scope of results in [60] and postpone the discussion of some aspects
for a future occasion. The logics will be presented both axiomatically and with Kripke-
style semantics. We chose to give a Kripke-style presentation both because it gives us
a more natural connection with known systems and because it allows us to illuminate
some interesting choices Moisil makes. To simplify the exposition, we will adopt a
few conventions. Firstly, all of the presented quotes from [60] are translated, since the
paper is written in French. We also translate bracketless notation into a more common
one. Since Moisil does not introduce any denotations for his logics, all of the ones
presented here are ours. We will present logics as Hilbert-style calculi, even though
Moisil uses a distinct system he calls the calculus of deductive schemes, which consists
of a collection of rules and meta-rules. For instance, aside from the substitution into
formulas, he also has a meta-rule which allows for substitutions into what he calls
admissible rules. Finally, we replace pairs of axioms of the form ϕ → ψ and ψ → ϕ
with a single axiom ϕ ↔ ψ := (ϕ → ψ)∧ (ψ → ϕ) and sometime write rules as
ϕ1, . . . ,ϕn /ψ .

The structure of this paper more or less follows that of [60]. We begin every sec-
tion with a short outline of relevant results presented in [60] followed by our own
additions (mostly in the form of completeness results). Section 1 concerns §§1–2 of
[60, Chapter 1], where Moisil first introduces positive logic and then its conservative
extension with an operator � dual to implication. This logic, which we denote as BiM,
turns out to be a definitional variant of Rauszer’s bi-intuitionistic logic HB [72]. In
Section 2 we cover §§3–5 of [60, Chapter 1], where Moisil introduces four modal op-
erators into BiM: impossibility, contingency, necessity, and possibility. The result of
this addition is his general modal logic. We discuss the connection between Moisil’s
modal operators with the intuitionistic modal operators of Došen [9; 17]. Section 3
is dedicated to special extensions of the positive, intuitionistic, and general modal
logics introduced in §§6–8 of [60, Chapter 2]. These logics turn out to be related to
Dummett’s logic [19] and to linear frames. Among the systems introduced in [60,
Chapter 3] we are particularly interested in the three-valued logic (§§10–14) denoted
here as GML3, which turns out to be definitionally equivalent to Łukasiewicz’s three-
valued logic [53]; this is the subject of Section 3. Finally, in Section 4, we discuss the
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general symmetric modal logic GSML introduced in §16 [60, Chapter 4]. This system
is obtained by adding an involutive and contrapositive negation inspired by that of
Łukasiewicz’s three-valued logic to general modal logic. It turns out that this system
is closely related to two logics, which are the subject of Odintsov and Wansing [63].

There are various threads connecting Moisil’s work with that of Michael Dunn. At
the core of [60] are certain interests, which are heavily represented in Dunn’s works.
Namely, the applications of algebra to logic in general [20; 31] and residuation princi-
ples in particular [23; 24; 30; 4], as well as modal operators and the notion of negation
[25; 26; 27; 28; 29; 32]. Let us also point out that the negation of Moisil’s general
symmetric modal logic is axiomatized via the same axioms and rules as the negation
of first degree entailment FDE in Anderson and Belnap [1] (see also Dunn [20; 21])
and can be (and in fact was) equivalently characterized by means of a perp-relation
and of a star-function. The relation between these two characterizations is the subject
of Dunn’s [25] (also [22]).

1. MOISIL’S BIRESIDUAL LOGIC BiM

In this section, we will discuss a system introduced in [60, §2] on the way of
formulating Moisil’s general modal logic. As such, Moisil does not give this system
its own name; we will denote it here as BiM. We dedicate some space to this logic due
to its connection to bi-intuitionistic logic which we will discuss shortly.

Let us first give a few definitions. For the purpose of this paper, by a language
we understand a finite set of connectives with their arities, which contains binary
implication →, conjunction ∧ and disjunction ∨. The smallest such language, i.e.,
{∧,∨,→}, we denote Lp. Formulas of a given language L are defined as usual using
propositional variables from a fixed countable set Prop and connectives in L; the set
of all formulas in a language L is denoted by FormL.

As we have discussed in the introduction, Moisil formulates all of his systems via
a special calculus of deductive schemes, which consists of a number of rules and
meta-rules. However, it is quite easy to reformulate them as common Hilbert-style
calculi, which we will do here. By a logic in a language L we will understand any
set of formulas L in L, which is closed under modus ponens and substitution. As
usual, we will sometimes call elements of L its theorems. For technical reasons, we
will associate with any logic L its multiple-conclusion consequence relation `L. For
Γ ,∆ ⊆ FormL, let Γ `L ∆ hold, if
(1) ∆ 6=∅ and for some ϕ1, . . . ,ϕn ∈ ∆ the formula ϕ1∨·· ·∨ϕn can be derived from

Γ and theorems of L using modus ponens, or
(2) ∆ =∅ and Γ `L ϕ , for any formula ϕ ∈ FormL.

It is important to point out that [60] considers no consequence relations at all.
Before introducing BiM, Moisil first formulates the positive propositional logic in

[60, §1] as a logic in the language Lp. It is defined by the following nine axioms:

(P1) p→ (q→ p) (P6) (r→ p)→ ((r→ q)→ (r→ (p∧q)))
(P2) (p→ (p→ q))→ (p→ q) (P7) p→ (p∨q)
(P3) (p→ q)→ ((q→ r)→ (p→ q)) (P8) q→ (p∨q)
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(P4) (p∧q)→ p (P9) (p→ r)→ ((q→ r)→ ((p∨q)→ r))
(P5) (p∧q)→ q

This list of axioms includes all axioms of the positive logic by Hilbert and Bernays
[41, Ch. III, §3] except for three axioms for the equivalence connective (as it is called
in [41]), which Moisil did not include in the language. Notice that this axiomatization
of the positive fragment of intuitionistic logic differs from the standard one. The
standard axiomatization includes the axiom

(P10) (p→ (q→ r))→ ((p→ q)→ (p→ r))

from the very first axiomatization of classical propositional logic in the language {→,
¬} instead of (P2) and (P3), see Frege [34]. The reason for the replacement of (P10)
by (P2) and (P3) is discussed in [41, Ch. III, §3.3].

Further, in [59, §2], Moisil extends the language of positive logic with a binary
connective called exception and denoted S (from “sans” — without). We will call this
connective “coimplication” and denote it as �.1 This connective is characterized by
the following axiom and rule:2

(M1) p→ ((p�q)∨q) (M2) χ → (ϕ ∨ψ)/(χ �ψ)→ ϕ
In what follows we will denote this logic as BiM. Moisil’s general modal logic (see

Section 2) is strictly speaking an extension of BiM, but it can also be considered as
simply a definitional variant of it.

Let us outline algebras which lie at the foundation of [60]. We call a lattice
〈L,∨,∧,→,−〉with implication→ and a difference operation− a biresiduated lattice.
Moisil [60, §18] defines difference as an operation satisfying two conditions:

a≤ (a−b)∨b and (a≤ c∨b ⇒ a−b≤ c),

which are trivially equivalent to

a−b≤ c iff a≤ c∨b,

and directly correspond to axiom (M1) and rule (M2) for the coimplication connective
in BiM. This readily implies that the Lindenbaum algebra of BiM is a biresiduated
lattice. In turn, this means that one could quite easily obtain the result that Moisil
seems to have envisioned, but did not prove; namely, that BiM is sound and complete
with respect to the class of all biresiduated lattices. Since it would take too much
space and we have opted to characterize all logics via Kripke-style semantics, we will
not prove this result here.

It turns out that the system BiM is equivalent to the propositional logic nowadays
usually called Heyting–Brouwer logic, HB, or bi-intuitionistic logic, BiInt. The logic
HB, alias BiInt, alias BiM has been investigated by Cecylia Rauszer in a series of pa-
pers published between 1974 and 1980 [72; 71; 73; 74; 75; 77; 76; 78], It is widely
believed that this research commenced the investigation of Heyting–Brouwer logic
(see, for example, Helena Rasiowa’s obituary for Rauszer [70]). Neither Rauszer’s

1The reasons for this choice of notation becomes clear in the next section. The symbol “�” for coim-
plication was introduced in Goré [35].

2Note that Moisil writes (M2) with propositional variables in place of formula-variables and uses a
special substitution meta-rule to obtain all instances of this rule.
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writings nor the careful and critical re-examination of Rauszer’s work in [39] men-
tions Moisil’s [60]. Moisil’s paper was reviewed in the Journal of Symbolic Logic in
1948 by Atwell R. Turquette [82], but that review was not very favorable and, it seems,
went largely unnoticed. In [72], Rauszer considers semi-Boolean algebras understood
as a combination of pseudo-Boolean algebras, i.e., Heyting algebras, and their duals,
Brouwerian algebras, and in [78, p. 5] she remarks that “[f]rom those investigations
it appeared that an intuitionistic logic with two negations and two implications, dual
to itself, would have a more elegant algebraic and model-theoretic theory than an or-
dinary intuitionistic logic.”3 Semi-Boolean algebras are also called double Heyting
algebras (Beazer [3], Köhler [47]), Heyting–Brouwer algebras (Wolter [87]), and bi-
Heyting algebras (Makkai and Reyes [58]), but again in those papers there are no
references to Moisil’s [60].

In Karl Popper’s paper [69], from 1948, reprinted with corrections in [5], there is
a system that extends intuitionistic logic with an “anticonditional” dual to intuition-
istic implication. However, it seems that Popper as well was not aware of Moisil’s
work, and that it was indeed Moisil, who first defined and investigated HB. Another
early paper in which coimplication was introduced is Ingebrigt Johansson’s short note
[46] from 1953. Remarkably, this paper does not contain any references, so it is not
clear whether Johansson was aware of Moisil’s or Popper’s work, whereas it may be
suspected that he was aware of [79].

Note that looking at HB and BiM syntactically, it is not immediately obvious that
they are equivalent. There are two key differences. First, HB as defined in [72] is
formulated in a language with two additional operators ¬ and �, which we will call
here (intuitionistic) negation and conegation, respectively. By now, it is well known
that these two negations are definable in the {∧,∨,→,�}-fragment of HB, and in fact
oftentimes, the system is presented in the literature as one in the language without
negations. This likely stems from [35] — a seminal paper on HB, where a cut-free
display sequent calculus has been presented. This paper along with Crolard [13; 14]
contributed to bringing HB to the attention of computer scientists. Second, each sys-
tem uses one additional inference rule (aside from modus ponens), those are

χ → (ϕ ∨ψ)

(χ �ψ)→ ϕ
and

ϕ
¬�ϕ

for BiM and HB, respectively. Note that the second rule resembles the necessitation
rule of modal logics and, in fact, plays a similar role as was highlighted in [39]. As in
modal logics, it makes sense to differentiate between the local (which does not employ
the additional rule in derivations) and global (which does) consequence relations of
HB, cf. Kracht [50]. The authors of [39] attribute to this distinction some of the errors
Rauszer has made in her works. Most notably, in [71] she claims to have presented a
cut-free sequent calculus for HB. It was later noted by Tarmo Uustalu that Rauszer’s
Gentzen-style sequent calculus for BiInt does not admit cut-elimination, see [10]. As
a result, various other generalizations of ordinary Gentzen sequents have been con-
sidered and shown to be suitable for obtaining cut-free sequent calculi for HB (see,

3She also points to the fact that first-order HB validates the constant-domain axiom ∀x(A(x)∨B)→
(∀xA(x)∨B) (notation adjusted), but notes that this was not the immediate reason for her to introduce HB.
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[37; 38; 36], [57], [66; 67], [84]). Moreover, non-standard Gentzen-style sequent sys-
tems for HB with the analytic cut property, but without the cut-rule being eliminable
have been investigated in [49]. References to Moisil’s work on bi-intuitionistic logic
in recent literature are [43, §4.21.8] and [85], and full credit to Moisil’s discovery of
Leitgeb’s HYPE is given in [63].

There are a few ways of establishing the equivalence between HB and BiM includ-
ing a purely syntactic one. One obvious way would be through algebraic semantics
since the biresiduated lattices of Moisil turn out to be exactly Heyting–Brouwer alge-
bras. Since Moisil himself did not establish any algebraic completeness results, one
would have to prove that BiM is sound and complete with respect to Heyting–Brouwer
algebras. This, in fact, can be done routinely using the Lindenbaum–Tarski algebra of
BiM. In this paper, we instead chose to turn to Kripke semantics, which, naturally, had
not been invented yet at the time Moisil wrote his paper. This serves two purposes:
first, it serves as a kind of translation for a modern logician; second, it allows us to
illuminate some of the logics Moisil has introduced in his paper.

The language of BiM is Lb =Lp∪{�}. We identify BiM with the smallest logic in
the language Lb, which contains all axioms of positive logic (P1)–(P9), axiom (M1)
and is closed under (M2). By an extension of a logic in the language containing Lb (in
particular, of BiM) we will understand any logic which contains the given one and is
closed under (M2). Note that our definition of a consequence relation of a logic from
the beginning of the section is local (in the sense discussed above): we use both modus
ponens and (M2) to calculate the set of theorems of BiM, but only modus ponens is
explicitly used to define `BiM.

We define a falsity constant, (intuitionistic) negation, a truth constant and conega-
tion, respectively, (here p0 is some designated propositional variable):

⊥ := p0 � p0 ¬ϕ := ϕ →⊥ > := p0→ p0 �ϕ := >�ϕ

The difference between negation and conegation will be clear once we will outline
their semantic characterizations. Note that coimplication is sometimes interpreted
in terms of exclusion. Then, whereas ¬ϕ states that ϕ implies falsity, �ϕ states
that truth excludes ϕ . Classically, coimplication corresponds to ϕ ∧¬ψ and both
negation and conegation correspond to classical negation. There is a sense in which
negation and conegation are dual to each other. One way of expressing the duality
is by highlighting the fact that ¬ is a paracomplete negation insofar as ψ 0BiM ϕ,¬ϕ
for some ψ , while � is a paraconsistent negation because ϕ,�ϕ 0BiM ψ for some ψ .
The duality between paraconsistency and paracompleteness was studied in Michael
Dunn’s paper [29]. The presence of � in GML makes Moisil one of the forerunners of
paraconsistent logic. (Jaśkowski’s discussive logic [44] is sometimes considered to be
the first formal paraconsistent logic.)

We establish some properties of BiM syntactically.

Theorem 1 (Restricted deduction). Suppose L is an extension of BiM, and Γ ,∆ ,
{ϕ,ψ} ⊆ FormLb.

(1) Γ ,ϕ `L ψ ⇐⇒ Γ `L ϕ → ψ;
(2) ϕ `L ψ,∆ ⇐⇒ ϕ �ψ `L ∆ .
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Proof. The first item is standard (see, e.g., Chagrov and Zakharyaschev [12, Theo-
rem 1.12]).

For the second, assume ϕ `L ψ,∆ . If ∆ 6=∅, then there are χ1, . . . ,χn ∈∆ such that
ϕ `L ψ∨χ , where χ = χ1∨·· ·∨χn. Applying the first item, we get ϕ→ (ψ∨χ)∈ L,
hence, (ϕ �ψ)→ χ ∈ L, by (M2), and applying the first item again, we infer ϕ �ψ `L
χ . Consequently, ϕ �ψ `L ∆ . In case ∆ =∅, by the definition, we have to show that
for an arbitrary χ , we have ϕ �ψ `L χ . From ϕ `L ψ , we can clearly infer ϕ `L ψ,χ
and then reason as above.

Now assume ϕ �ψ `L ∆ . By (M1), we have ϕ → ((ϕ �ψ)∨ψ) ∈ L. Then by the
previous item we have ϕ `L (ϕ � ψ)∨ψ . From ϕ � ψ `L ∆ , we infer ϕ � ψ `L ψ,∆
and from ψ `L ψ , we infer ψ `L ψ,∆ . From this, using the previous item and (P9),
it is easy to derive (ϕ � ψ)∨ψ `L ψ,∆ . Then combining ϕ `L (ϕ � ψ)∨ψ and
(ϕ �ψ)∨ψ `L ψ,∆ , we obtain ϕ `L ψ,∆ . /

Note that both deduction properties are formulated with restrictions. The first is
formulated for the case of exactly one formula in the consequent, and the second one
for the case of exactly one formula in the antecedent. Observe also that the second
deduction property implies that Γ `L ∅ iff Γ `L ⊥, for any extension L of BiM.

We can also establish the replacement property. It is important to note that Moisil
never proves the replacement property for his logics, which makes some of his proofs
incomplete.

Corollary 2 (Replacement). For any extension L of BiM, if ϕ↔ψ ∈ L, then χ(ϕ)↔
χ(ψ) ∈ L, where χ(ϕ) and χ(ψ) are the results of replacing some occurrence of a
propositional variable in χ by ϕ and ψ , respectively.

Proof. We use induction on the complexity of χ . Clearly, every theorem of the posi-
tive fragment of intuitionistic logic is a theorem of BiM, hence,

(p↔ p′)→ ((q↔ q′)→ ((p∗q)↔ (p′ ∗q′))) ∈ BiM,

where ∗ ∈ {∧,∨,→}. This suffices to prove the induction steps corresponding to
conjunction, disjunction and implication.

For the case of coimplication it is enough to show that if ϕ↔ ϕ ′,ψ↔ψ ′ ∈ L, then
(ϕ �ψ)↔ (ϕ ′�ψ ′)∈ L. Using axioms for conjunction and symmetry considerations,
it is enough to show that (ϕ �ψ)→ (ϕ ′ �ψ ′) ∈ L. Using the deduction property and
the definition of a consequence relation, we get the following string of equivalences:

(ϕ �ψ)→ (ϕ ′ �ψ ′) ∈ L ⇐⇒ ϕ �ψ `L ϕ ′ �ψ ′ ⇐⇒ ϕ `L (ϕ ′ �ψ ′)∨ψ.

Now, from ψ ↔ ψ ′ ∈ L and the already established induction step for disjunction we
infer ((ϕ ′�ψ ′)∨ψ ′)↔ ((ϕ ′�ψ ′)∨ψ)∈ L, and hence, (ϕ ′�ψ ′)∨ψ ′ `L (ϕ ′�ψ ′)∨ψ .
We also have ϕ ′ `L ϕ from the assumption and ϕ ′ `L (ϕ ′ � ψ ′)∨ψ ′ via (M1) and
the deduction property. Thus ϕ `L ϕ ′, ϕ ′ `L (ϕ ′ � ψ ′)∨ψ ′ and (ϕ ′ � ψ ′)∨ψ ′ `L
(ϕ ′�ψ ′)∨ψ . Transitivity of derivations gives us the required ϕ `L (ϕ ′�ψ ′)∨ψ . /

We now turn to semantics. A BiM-frame is just a non-empty partially ordered set
W = 〈W,≤〉. A BiM-modelM= 〈W,≤,v〉 is a BiM-frame together with a valuation
v : Prop→ 2W , which maps propositional variables to (upward) cones in 〈W,≤〉, i.e.,

∀x,y ∈W ((x ∈ v(p) and x≤ y) =⇒ y ∈ v(p)).
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We define satisfaction clauses for formulas over elements of a model as follows:
1. M,x � p ⇐⇒ p ∈ v(x), where p ∈ Prop;
2. M,x � ϕ ∧ψ ⇐⇒ M,x � ϕ andM,x � ψ;
3. M,x � ϕ ∨ψ ⇐⇒ M,x � ϕ orM,x � ψ;
4. M,x � ϕ → ψ ⇐⇒ ∀y≥ x(M,y � ϕ =⇒ M,y � ψ);
5. M,x � ϕ �ψ ⇐⇒ ∃y≤ x(M,y � ϕ andM,y 2 ψ).

For a BiM-model M = 〈W,≤,v〉, we write M � ϕ if M,x � ϕ , for all x ∈W .
For a BiM-frameW = 〈W,≤〉, we writeW � ϕ ifM � ϕ , for every BiM-modelM
over W . For a class K of BiM-frames, let Γ �K ∆ , if (∀ϕ ∈ Γ M,x � ϕ) implies
(∃ψ ∈ ∆ M,x �ψ) for every choice ofW = 〈W,≤〉 ∈K, BiM-modelM overW and
x ∈W . We say that L is sound and complete with respect to a class K of BiM-frames
if `L = �K. As usual we have that

Proposition 3 (Monotonicity). For every BiM-modelM = 〈W,≤,R,v〉 and formula
ϕ , we have ∀x,y ∈W ((M,x � ϕ and x≤ y) =⇒ M,y � ϕ).

The following is routine.

Theorem 4 (Soundness). W � ϕ , for any ϕ ∈ BiM and BiM-frameW .

We fix an extension L of BiM. We say that a pair of sets of formulas 〈Γ ,Γ ′〉 is L-
consistent if Γ 0L Γ ′, and it is maximally L-consistent, if it is L-consistent and Γ ∪Γ ′ is
the set of all formulas. For a set of formulas Γ , we set Γ := FormL\Γ . Then clearly,
all maximally L-consistent pairs are of the form 〈Γ ,Γ 〉. The proof of the following
lemma is standard (see, e.g., [12, Lemma 5.1]).

Lemma 5 (Pair extension). If Γ 0L Γ ′, then there are ∆ ⊇ Γ and ∆ ′ ⊇ Γ ′ such that
〈∆ ,∆ ′〉 is maximally L-consistent.

Proposition 6. Let us fix a maximally L-consistent pair 〈Γ ,Γ ′〉.
(1) If Γ `L ϕ , then ϕ ∈ Γ . In particular, L⊆ Γ .
(2) If ϕ ∨ψ ∈ Γ , then ϕ ∈ Γ or ψ ∈ Γ .

Proof. (1) If ϕ /∈ Γ , then ϕ ∈ Γ , by the definition. Then from Γ `L ϕ , we infer
Γ `L Γ , which contradicts the definition of maximally L-consistent pairs 〈Γ ,Γ ′〉.

(2) Suppose, on the contrary, ϕ ∨ψ ∈ Γ , ϕ,ψ /∈ Γ . Then ϕ,ψ ∈ Γ . But ϕ ∨ψ `L
ϕ,ψ , hence, Γ `L Γ , which again gives us a contradiction. /

The canonical L-frame is WL = 〈WL,⊆〉, where WL = {Γ : 〈Γ ,Γ 〉 is maximally
L-consistent}. The canonical L-model isML = 〈WL,vL〉, where vL(p) = {Γ ∈WL :
p ∈ Γ }, for p ∈ Prop.

Lemma 7 (Canonical model). For any Γ ∈WL and for any formula ϕ , we have

ML,Γ � ϕ ⇐⇒ ϕ ∈ Γ .

Proof. We only consider the case of coimplication. Then we have to establish the
following equivalence: ϕ �ψ ∈ Γ ⇐⇒ ∃Γ ′ ∈WL (Γ ′ ⊆ Γ &ϕ ∈ Γ ′&ψ /∈ Γ ′).
⇐=. We reason by contraposition. Suppose ϕ � ψ /∈ Γ and Γ ′ ∈WL is such that

Γ ′ ⊆ Γ and ϕ ∈ Γ ′. Then from ϕ → ((ϕ � ψ)∨ψ) ∈ BiM ⊆ L ⊆ Γ ′, we conclude
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that (ϕ � ψ)∨ψ ∈ Γ ′ and from ϕ � ψ /∈ Γ we conclude ϕ � ψ /∈ Γ ′. Consequently,
ψ ∈ Γ ′, as required.

=⇒. Suppose that ϕ �ψ ∈ Γ . Assume additionally that ϕ `L ψ,Γ . Then ϕ �ψ `L
Γ , hence, Γ `L Γ , which cannot be the case. Then by the pair extension lemma, there
is Γ ′ ∈WL such that ϕ ∈Γ ′ and Γ ∪{ψ}⊆Γ ′. From this, we infer ψ /∈Γ and Γ ′ ⊆Γ .
Indeed, if χ ∈ Γ ′, then χ /∈ Γ ′ and χ /∈ Γ , which implies χ ∈ Γ . /

We say that a BiM-frameW is an L-frame ifW � ϕ for all ϕ ∈ L. L is canonical if
WL is an L-frame.

Theorem 8 (Completeness). Any canonical extension L of BiM is sound and complete
with respect to the class KL of all L-frames. In particular, BiM is sound and complete
with respect to the class of all BiM-frames.

Proof. If Γ 0L ∆ , then by the pair extension lemma, there is Γ ′ ∈WL with Γ ⊆ Γ ′,
∆ ⊆ Γ ′. Then by the canonical model lemma, we haveML,Γ ′ � ϕ for all ϕ ∈ Γ and
ML 2 ψ for all ψ ∈ ∆ . Hence, Γ 2WL

∆ . And since WL ∈ KL, by canonicity we
obtain Γ 2KL

∆ . /

Comparing this semantics to the semantics of HB, one can easily conclude that
BiM is definitionally equivalent to HB as defined in [72] and coincides with HB as
presented in [35].

We establish one more technical result which will be useful for us later. For a BiM-
frame W = 〈W,≤〉, we denote by W m the set of all maximal elements of W and by
Wm the set of all minimal elements of W , i.e.,

x ∈Wm ⇐⇒ ∀y ∈W (y≤ x =⇒ x = y);

x ∈W m ⇐⇒ ∀y ∈W (x≤ y =⇒ x = y).

We say thatW is bounded if the following holds:

(bounded) ∀x ∈W (∃y ∈Wm y≤ x and ∃z ∈W m x≤ z).

Note that our notion of a bounded frame is not to be confused with other uses of
the term “bounded.” In particular, our notion does not presuppose the uniqueness
of bounds, only that every element is contained between some minimal and some
maximal element. Using Zorn’s lemma it is easy to see that for any extension L of
BiM its canonical frame is bounded, which implies the following.

Theorem 9. Any canonical extension L of BiM is sound and complete with respect
the class of all bounded L-frames.

The semantics of BiM suggests a close relationship to temporal logic. It is clear
that the following translation τ from Lb into the language {∧,∨,�,�,¬c,→c} of S4t,
temporal S4 based on classical logic, is a straightforward generalization of the well-
known Gödel–Tarski translation:

(1) τ(p) =�p, where p ∈ Prop, (4) τ(ϕ → ψ) =�(τ(ϕ)→c τ(ψ)),
(2) τ(ϕ ∧ψ) = τ(ϕ)∧ τ(ψ), (5) τ(ϕ �ψ) = �(τ(ϕ)∧¬c τ(ψ)),
(3) τ(ϕ ∨ψ) = τ(ϕ)∨ τ(ψ),
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where ¬c is classical negation,→c is classical implication, and � is the “sometimes in
the past” modal operator, i.e., ifM= 〈W,R,v〉 is a Kripke model for S4t and x ∈W ,
thenM,x � �ϕ iff ∃y(yRx andM,y � ϕ). In fact, the following holds:

Proposition 10 (Łukowski [56]). For every Lb-formula ϕ , ϕ ∈ HB iff τ(ϕ) ∈ S4t.

2. GENERAL MODAL LOGIC

It is important to note that BiM plays in [60] an auxiliary role on the way to defining
Moisil’s general modal logic, which we denote here as GML, in [60, §3 and §4]. As
we outlined in the introduction, Moisil was interested in introducing a new kind of
modal logic and so to obtain GML he introduced four new operators into BiM in an
axiomatic way. Namely, he added to BiM impossibility, η , and contingency, γ , in [60,
§3] and possibility, µ , and necessity, ν , in [60, §4] via axiomatic equivalences:

(G1) η p↔ (p→ (p� p)) (G3) µ p↔ ηη p
(G2) γ p↔ ((p→ p)� p) (G4) ν p↔ γγ p

Moisil sometimes refers to these four operators as modalities. We denote by GML the
smallest logic in the language Lg = Lb ∪{η ,γ,µ,ν}, which contains all axioms of
BiM, (G1)–(G4) and is closed under (M2).

Moisil realized [60, §3] that his impossibility and contingency operators are kinds
of negations, which are, moreover, duals of each other. Meanwhile, both positive
modalities are defined as double negations [60, §4]: possibility is double impossibility
and necessity is double contingency. Whereas Moisil maintains that the “impossibility
of the impossibility” should be identified with the “possibility,” on the latter definition
he writes that “[a]lthough this interpretation seems forced, the structure of the theory
as well as the example of [Łukasiewicz’s three-valued logic] makes it plausible.” The
duality of impossibility and contingency implies in a natural way the duality of pos-
sibility and necessity. Moreover, Moisil observed in [60, §5] that his impossibility
operator η is nothing more than Gentzen’s negation p→⊥ with p� p substituted for
⊥. In particular, he shows that both axioms for intuitionistic negation (axioms 4.1
and 4.11 from [40]):

(I1) ((p→ q)∧ (p→ ηq))→ η p (I2) η p→ (p→ q)

are theorems of GML.
Moisil concludes §5 of [60] by stating that: “. . . applying I. Johansson’s theorem

we conclude that every theorem of general modal logic containing only the functors
→, ∨, ∧ and η is a theorem of Heyting’s logic.” Doing so he effectively claims that
GML is a conservative extension of intuitionistic logic, when formulated in the lan-
guage {∧,∨,→,η}. Unfortunately, it is not clear what he understands by Johansson’s
theorem. The only reference to Johansson in the paper is to [45], which does contain
a result to the effect that intuitionistic logic is a conservative extension of its positive
fragment. To infer straightforwardly from this the conservativity of GML over intu-
itionistic logic would be a stretch. The claim itself, however, is correct as we can
easily verify.

First, observe that all of the definitions and results from the previous section can
be transferred directly into GML. To make a clear distinction, a GML-frame(-model)
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is the same as a BiM-frame(-model), except that we add the following satisfaction
clauses for the four modalities:

6. M,x � ηϕ ⇐⇒ ∀y ∈W (x≤ y =⇒ M,y 2 ϕ);
7. M,x � γϕ ⇐⇒ ∃y ∈W (y≤ x andM,y 2 ϕ);
8. M,x � µϕ ⇐⇒ ∀y ∈W (x≤ y =⇒ ∃z ∈W (y≤ z andM,z � ϕ));
9. M,x � νϕ ⇐⇒ ∃y ∈W (y≤ x and ∀z ∈W (z≤ y =⇒ M,z � ϕ)).

Consider an extension of GML to be any logic inLg that contains GML and is closed
under (M2). Then the following is proved exactly the same way as Theorems 8 and 9:

Theorem 11. Any canonical extension L of GML is sound and complete with respect
to the class of all (bounded) L-frames. In particular, GML is sound and complete with
respect to the class of all (bounded) GML-frames.

Comparing this result with the completeness of intuitionistic logic with respect to
its Kripke-style semantics (e.g., [12]), one immediately obtains the following.

Corollary 12. The {∧,∨,→,η}-fragment of GML coincides with intuitionistic logic
(with η in place of negation).

Note that, strictly speaking, η and ¬ as we have defined them are two different
operators, because ηϕ = ϕ→ (ϕ �ϕ), whereas ¬ϕ = ϕ→ (p0 � p0). Their behavior,
nevertheless, is clearly the same. In fact, Moisil himself showed that (p� p)↔ (q�q)
is a theorem of GML. The following statement, along with the replacement property,
effectively allows us to conflate Moisil’s impossibility η with¬, contingency γ with �,
possibility µ with ¬¬ and necessity ν with ��. We will make use of these conflations
throughout the remainder of the paper.

Corollary 13. The following formulas belong to GML:

η p ↔ ¬ p; γ p ↔ � p; µ p ↔ ¬¬ p; ν p ↔ �� p.

We are now in a position to discuss these four modal operators in more detail.
Whereas Moisil’s impossibility is the familiar intuitionistic negation, his contingency
� is another negation connective that in a certain sense is dual to ¬. As we have seen,
in the Kripke semantics for GML (and HB), negation is a forward-looking modal oper-
ator of impossibility, while conegation � is a backward-looking unnecessity operator.
Note that over bounded GML-models, monotonicity allows us to simplify the satisfac-
tion clauses for Moisil’s possibility and necessity as follows.

M,x � ¬¬ϕ ⇐⇒ ∀y ∈W m (x≤ y =⇒ M,y � ϕ);
M,x � ��ϕ ⇐⇒ ∃y ∈Wm (y≤ x andM,y � ϕ).

Thus, over bounded GML-models, Moisil’s possibility can be given a satisfaction
clause that follows the pattern of the satisfaction clause for �ϕ in Kripke models for
normal modal logics, with universal quantification over the set of all maximal worlds.
Similarly, Moisil’s necessity can be given a satisfaction clause that follows the pattern
of the satisfaction clause for formulas ♦ϕ in Kripke models for normal modal logics,
with existential quantification over the set of all minimal worlds. This observation
thus offers a justification for viewing Moisil’s possibility ¬¬ as a necessity operator
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and Moisil’s necessity �� as a possibility operator.4 We will bring more substance to
this claim a little bit later, but now let us say a few words about a possible motivation
for Moisil’s definitions.

The key laws governing necessity and possibility for Moisil are the following the-
ses: ��ϕ→¬¬ϕ; ��ϕ→ ϕ; ϕ→¬¬ϕ are theorems, whereas the inverse prin-
ciples are not.5 This is in line with Łukasiewicz’s view that for modal operators of
necessity, �, and possibility, ♦, the formulas �ϕ → ϕ and ϕ → ♦ϕ are provable
[54] (see also [55, §38]). It seems to be a natural conjecture that Moisil was heavily
inspired by Łukasiewicz’s works on modal logic.

On the other hand, M. Božič and K. Došen [8; 17] proved that the double intuition-
istic negation is an intuitionistic necessity operator in the sense of [9]. In particular, the
reason for Božič and Došen to consider double intuitionistic negation as a necessity
operator is that (¬¬ϕ ∧¬¬ψ)→¬¬(ϕ ∧ψ) and ¬¬(ϕ → ϕ) are intuitionistically
valid and the following rule is validity preserving:

ϕ → ψ
¬¬ϕ →¬¬ψ

.

More specifically, in [9], Božič and Došen introduced two intuitionistic modal log-
ics, HK� in the language with necessity (�) as the only modal operator, and HK♦ in
the language with possibility (♦) as the only modal operator. Both of these systems
were considered to be intuitionistic versions of the smallest normal modal logic K in
their respective languages. The reason to consider these two systems independently is
that intuitionistic negation is not strong enough to establish a duality between possibil-
ity and necessity which is available over classical logic. Axiomatically, HK� (HK♦)
is defined as the smallest logic in the language {∧,∨,→,⊥,�} ({∧,∨,→,⊥,♦}),
which contains all axioms of intuitionistic logic, formulas (�2) and (�3) ((♦2) and
(♦3)) and is closed under (�1) ((♦1)):

(�1) ϕ → ψ /�ϕ →�ψ (♦1) ϕ → ψ /♦ϕ → ♦ψ
(�2) (�p∧�q)→�(p→ q) (♦2) ♦(p∨q)→ (♦p∨♦q)
(�3) �> (♦3) ¬♦⊥

In [17, p. 16], Došen specifically explains that he will (notation and reference ad-
justed) “not connect intuitionistic double negation with the possibility operator ♦, be-
cause ♦(ϕ ∨ψ)→ (♦ϕ ∨♦ψ), which is one of the schemata characteristic for HK♦
— the minimal normal intuitionistic modal logic with ♦ (see [9]) — does not hold
when ♦ is interpreted as intuitionistic double negation.” Then, in [8; 17] Božič and
Došen axiomatize double intuitionistic negation in the form of the following logic:

4Note that Hughes and Cresswell [42, p. 29] argue with respect to logical necessity that an “intuitively
sound principle is that whatever follows logically from a necessary truth is itself necessarily true. If we
were to deny this — if, that is, we were to admit that a contingent proposition (let alone an impossible
one) might follow from a necessary proposition — we should be violating a principle which has sometimes
been expressed by saying that in a valid inference the conclusion runs no greater risk of falsification than the
premisses do.” As a convenient way of reflecting that principle they use the distribution axiom�(p→ q)→
(�p→�q) (notation adjusted), which is intuitionistically valid for � as intuitionistic double negation.

5These three formulas can be intuitively read as “whichever is necessary is possible,” “whichever is
necessary is true” and “whichever is true is possible.”



S. Drobyshevich, S. Odintsov and H. Wansing: Moisil’s Modal Logic and Related Systems 163

HKdn = HK� + p→�p + �(((p→ q)→ p)→ p) + ¬�¬(p→ p).6

For this system they establish not just �p↔¬¬ p ∈ HKdn, but also that HKdn=
HK� + �p↔¬¬ p.

It turns out that we can similarly obtain an axiomatization of Moisil’s necessity
�� as a possibility operator if we consider a natural expansion of BiM with ♦ (which
coincides with a natural expansion of HK♦ with �).

Let us define HBK♦ as the smallest logic in the language L♦b = Lb ∪{♦}, which
contains all axioms of BiM, formulas (♦2) and (♦3) and is additionally closed under
rules (M2) and (♦1). We start by briefly outlining the completeness result of HBK♦
with respect to the Kripke-frames from [9]. This result is a straightforward combina-
tion of the completeness proof in the previous section and the one in [9], so we skip
most of the details.

An HB♦-frame is a structure W = 〈W,≤,R〉, where 〈W,≤〉 is a non-empty poset
and R⊆W 2 is such that the following interplay condition is satisfied:

∀x,y,z ∈W ((x≤ y and xRz) =⇒ yRz).

An HB♦-modelM = 〈W,v〉 is an HB♦-frame together with a valuation v : Prop→
2W defined as in the previous section. The satisfaction clause for possibility is as
follows:

M,x � ♦ϕ ⇐⇒ ∃y ∈W (xRy andM,y � ϕ).

The interplay property allows us to prove the monotonicity property in this case.
Note that this time around the completeness result is obtained for normal extensions

of HBK♦, i.e., for logics extending HBK♦, which are closed under both (M2) and
(♦1). Then for a normal extension L of HBK♦, we define its canonical L-frame as
WL = 〈WL,⊆,RL〉, where WL is defined as in the previous section and for Γ ,∆ ∈WL:

Γ RL∆ ⇐⇒ ∀ϕ (ϕ ∈ ∆ =⇒ ♦ϕ ∈ Γ ).

The canonical L-model is defined exactly as in the previous section. Then combining
the proofs from the previous section and the ones from [9], we can obtain:

Theorem 14. Every canonical normal extension L of HBK♦ is sound and complete
with respect to the class of all (bounded) L-frames.

Consider the smallest normal extension of HBK♦ containing the following for-
mulas (dc1) ♦>, (dc2) ♦p → p and (dc3) ¬♦(p∧� p). We denote it by HBdc
(dc stands for “double conegation”). Observe that ¬♦⊥ is a substitution variant of
♦p→ p.

We develop some correspondence theory.

Proposition 15. SupposeW = 〈W,≤,R〉 is a bounded HBK♦-frame. Then,

(1) W � ♦> ⇐⇒ ∀x ∈W ∃y ∈W xRy;
(2) W � ♦p→ p ⇐⇒ ∀x ∈W ∀y ∈W (xRy =⇒ y≤ x);
(3) W � ¬♦(p∧� p) ⇐⇒ ∀x ∈W ∀y ∈W (xRy =⇒ y ∈Wm).

6Here, “+” presupposes the closure under the additional rule, e.g., (�1).
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Proof. For the proof of (1), see [18].
(2) ⇐=. Assume the condition does not hold, i.e., there are x,y ∈W such that

xRy, but y� x. Taking an HBK♦-modelM= 〈W,v〉 with v(p) = {z : y≤ z} one can
readily compute thatM,x � ♦p andM,x 2 p. The other direction is routine.

(3)⇐=. Suppose the condition holds,M= 〈W,v〉 is an HBK♦-model and x ∈W .
We show thatM,x 2♦(p∧� p). To do so, assume xRy for some y. Then the condition
implies that y is minimal. IfM,y � � p, then for some z≤ y we haveM,z 2 p. But y
is minimal, so z = y andM,y 2 p. Thus eitherM,y 2 � p orM,y 2 p, that is,M,y 2
p∧� p. Given that y was an arbitrary accessible world, we inferM,x 2 ♦(p∧� p).

=⇒. Assume the condition does not hold, i.e., there are x,y,z ∈W such that xRy
and z < y. Consider an HBK♦-model M = 〈W,v〉 with v(p) = {u : y ≤ u}. Then
z /∈ v(p) andM,z2 p, hence,M,y�� p. On the other hand, y∈ v(p), hence,M,y� p
andM,y � p∧� p. Consequently,M,x � ♦(p∧� p) andM,x 2 ¬♦(p∧� p). /

Lemma 16. Take a normal extension L of HBdc, then the canonical L-frame is an
HBdc-frame.

Proof. We already know that WL is bounded. If Γ ∈WL, then we get ∆ ∈WL such
that Γ RL∆ immediately via the canonical model lemma.

Consider Γ ,∆ ∈WL and assume Γ RL∆ . If ϕ ∈ ∆ , then by the definition of RL, we
have ♦ϕ ∈ Γ , hence, ϕ ∈ Γ since ♦ϕ → ϕ ∈ HBdc; thus, ∆ ⊆ Γ . Suppose now there
is ∆ ′ ∈WL such that ∆ ′ ⊂ ∆ . Then there is ϕ such that ϕ ∈ ∆ \∆ ′, then ϕ ∧�ϕ ∈ ∆
by the canonical model lemma and ♦(ϕ ∧�ϕ) ∈ Γ , by the definition of RL, which
contradicts the fact that ¬♦(ϕ ∧�ϕ) ∈ HBdc. /

Proposition 17. Suppose W = 〈W,≤,R〉 is an HBdc-frame. Then for every x ∈W,
{y : xRy} = {z : z≤ x and z is minimal}.
Proof. One inclusion follows from the definition of an HBdc-frame. Take some min-
imal z ≤ x. Then zRz, since R is serial and every accessible world from z has to be
below z. Then from zRz and z≤ x, we derive xRz, by the interplay condition. /

Corollary 18. ♦p↔ �� p ∈ HBdc.

In fact, we clearly have that HBdc coincides with the smallest normal extension of
HBK♦ containing ♦p↔ �� p.

Note that we can easily expand the translation at the end of last section to accom-
modate HBdc. We inductively define the translation τ♦ from L♦b into Lb as follows:

1. τ♦(p) = p, p ∈ Prop; 3. τ♦(♦ϕ) = ��τ♦(ϕ)).
2. τ♦(ϕ ◦ψ) = τ♦(ϕ)◦ τ♦(ψ), for ◦ ∈ {∧,∨,→,�};

Proposition 19. For every L♦-formula ϕ , we have ϕ ∈ HBdc iff τ(τ♦(ϕ)) ∈ S4t.

Proof. By Proposition 10 and Corollary 18. /

3. SPECIAL MODAL LOGIC

Chapter II of [60] is dedicated to developing special modal logic — an extension
of general modal logic with additional axioms. This system is introduced in [60, §8],
but along the way Moisil also introduces special extensions of positive logic and of
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intuitionistic logic in §6 and §7, respectively. We introduce these logics and outline
some of Moisil’s results before giving a Kripke-style characterization and making
some further remarks.

The key formulas for formulating the special extensions are
(S1) ((p∧q)→ r)→ ((p→ r)∨ (q→ r)) (S2) ((r � p)∧ (r �q))→ (r � (p∨q)).
One can see that these two formulas seem to be dual to each other in some sense.

The special positive logic SPL and the special intuitionistic logic SIL are extensions
of positive and intuitionistic logic, respectively, with (S1). The special modal logic
SML is an extension of GML with both (S1) and (S2).

In [60, §6], Moisil only gives some preliminary derivations using (S1). The key
fact for us here is that he establishes that the formula

(S3) (p→ q)∨ (q→ p),

which one might recognize as an axiom of Dummett’s logic LC [19], is a theorem
of SPL. In fact, we will show later that (S1) is equivalent to Dummett’s axiom over
positive logic.

The section [60, §6] on special intuitionistic logic begins with the remark that (no-
tation adjusted) “the introduction of the distributivity axiom (S1) to intuitionist logic
profoundly changes its structure.” As Moisil points out, one way in which it does
this is that the following “modal principle of excluded middle, weaker than that of
classical logic”

(WEM) ¬ p∨¬¬ p,

is a theorem of SIL. Observe that under Moisil’s reading of modalities this principle
can be intuitively read as stating that every statement is either impossible or possible.
Further, he essentially establishes that the following are theorems of SIL:
(AM1) ¬¬(p∨q)↔ (¬¬ p∨¬¬q) (AM2) ¬¬(p∧q)↔ (¬¬ p∧¬¬q).
What is interesting here is that he comments on these two formulas by saying that
possibility ¬¬ “is an automorphism.” This exhibits a good understanding of the con-
nection between his logical derivations and corresponding algebraic facts since ¬¬
would indeed induce a lattice automorphism on Heyting algebras validating (S1). A
similar result is obtained in [60, §8] for necessity �� and special modal logic, namely,
that the following are theorems of SML:
(AM3) ��(p∨q)↔ (�� p∨��q) (AM4) ��(p∧q)↔ (�� p∧��q).

Next, Moisil observes that the triple negation laws ¬¬¬ p↔ ¬ p and ��� p↔
� p, which were previously established in GML, along with the following theorems
of SML, ¬� p↔ �� p and �¬ p↔¬¬ p, allow one to show that (notation adjusted)
“modalities can be reduced to four (¬, �, ¬¬, ��).” It is fairly clear here that by
modalities he understands strings of ¬ and �. Notice that, strictly speaking, one would
also require the replacement property to be able to fully reduce any string of negations
to one of the four listed strings, which Moisil himself does not establish, but which
does indeed hold in all extensions of GML and so in SML as well.

Finally, Moisil shows that the following law of excluded fourth is a theorem of
SML, (EF) �� p∨¬ p∨ (� p∧¬¬ p). Moisil reads this formula as stating that ev-
ery statement is either necessary, or impossible, or problematic. It is unclear why
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he considers statements which are both contingent and possible (� p∧¬¬ p) to be
problematic.

We proceed to develop a correspondence theory for (S1) and (S2). Along the way
we establish that the result of adding (S1) is equivalent to the result of adding (S3) and
the result of adding (S2) is equivalent to the result of adding

(S4) ¬((p�q)∧ (q� p)).

Notice that the duality between (S3) and (S4) is even more clear than that between
(S1) and (S2), if one looks at (S4) as saying that (p�q)∧ (q� p) is a counter-theorem
of the logic, i.e., (p�q)∧ (q� p) `SML ∅.

Proposition 20. SupposeW = 〈W,≤〉 is a GML-frame.

(1) The following are equivalent: (i) W � (S1), (ii) W � (S3) and
(iii) ∀x,y,z ∈W ((x≤ y and x≤ z) =⇒ (y≤ z or z≤ y)).

(2) The following are equivalent: (i) W � (S2), (ii) W � (S4) and
(iii) ∀x,y,z ∈W ((x≥ y and x≥ z) =⇒ (y≤ z or z≤ y)).

Proof. We prove (2); (1) is proved similarly.
(iii) =⇒ (i). Take some GML-model M = 〈W,v〉 and x ∈W . Suppose M,x �

(r � p)∧ (r � q), then there is y ≤ x such thatM,y � r andM,y 2 p and z ≤ x such
thatM,z � r andM,z 2 q. By the assumption, we have y ≤ z or z ≤ y. We consider
the former case, the latter is similar. By monotonicity, we have M,y � q, hence,
M,y 2 p∨q. We conclude thatM,x � r � (p∨q).

(iii) =⇒ (ii) is similar.
(i) =⇒ (ii) and (ii) =⇒ (iii) are established by contraposition. Suppose the con-

dition does not hold, that is, there are x,y,z ∈ W such that x ≥ y, x ≥ z, but y,z
are incomparable with respect to ≤. Define a GML-model M = 〈W,v〉 such that
v(p) = {u : y ≤ u}, v(q) = {u : z ≤ u} and v(r) = v(p)∪ v(q). Then we clearly have
M,y � p,M,y 2 q,M,y � r,M,z 2 p,M,z � q andM,z � r. From this we infer
M,x � p � q and M,x � q � p, hence, M,x 2 ¬((p � q)∧ (q � p)) and (ii) does not
hold. To establish that (i) does not hold, first observe that M,x � r � q. Now, sup-
pose u ≤ x is such thatM,u � r. Then u ≥ y or u ≥ z, hence,M,u � p orM,u � q,
respectively, and M,u � p∨ q in either case. Consequently, M,x 2 r � (p∨ q) and
W 2 (S2). /

Lemma 21. For i ∈ {1,2,3,4}, if (Si) ∈ L thenWL � (Si), whereWL is the canonical
L-frame.

Proof. Given the previous proposition it is enough to establish that the condition cor-
responding to (S1) and (S3) holds for WL in case (S3) ∈ L, and that the condition
corresponding to (S2) and (S4) holds forWL in case (S4) ∈ L. We establish only the
latter.

Suppose Γ ,∆ ,Θ ∈WL are such that ∆ ,Θ ⊆ Γ . Suppose also neither ∆ ⊆Θ , nor
Θ ⊆ ∆ . Then there are ϕ,ψ such that ϕ ∈ ∆ \Θ , ψ ∈Θ \∆ . Then, using the canonical
model lemma, we obtain ϕ �ψ ∈Γ , ψ �ϕ ∈Γ , and consequently, (ϕ �ψ)∧(ψ �ϕ)∈
Γ . On the other hand, from (S4) ∈ L ⊆ Γ we infer ¬((ϕ � ψ)∧ (ψ � ϕ)) ∈ Γ , which
contradicts the choice of Γ . /



S. Drobyshevich, S. Odintsov and H. Wansing: Moisil’s Modal Logic and Related Systems 167

Notice that the results of the last two statements can clearly be transferred to pos-
itive and intuitionistic logic. An immediate consequence of that is that the results of
adding (S1) and (S3) to intuitionistic logic coincide.

Corollary 22. Dummett’s logic LC coincides with special intuitionistic logic SIL.

To summarize, in his special intuitionistic logic Moisil has introduced LC 17 years
before it was done by Dummett. Note that according to von Plato [68], this system
was already introduced in 1913 by Skolem.7 It is also worth pointing out that we are
not the first ones to make the connection between Moisil’s work and LC — it was
already established by Lloyd Humberstone in [43, p. 312], albeit without a proof.

It is well known (cf. [12]) that LC is sound and complete with respect to the class of
linearly ordered sets (chains). Would it not imply that the result of adding (S1) to GML
will already give us a logic sound and complete with respect to linear orders? The
answer to this is negative. The way one can obtain this result for LC is by employing
generated subframes (e.g., [12]). In the intuitionistic case generated subframes are
just (upward) cones and thus taking a generated subframe of a frame satisfying the
condition corresponding to (S1) will yield a linear order. This is not the case for GML
and HB since the notion of a generated subframe has to change due to the presence
of backward-looking coimplication. More specifically, one can see that restricting a
GML-model to a cone does not necessarily preserve validity of formulas. Consider
M= 〈W,≤,v〉, where W = {x,y,z} with y,z≤ x and y,z being incomparable, v(p) =
{x,y}, v(q) = {x,z} and v(r) = {x,y,z}. Then, following the proof of proposition 20,
we would have M,x 2 (S2), hence, M,x � ¬ (S2). Yet we would not have M′,x �
¬ (S2), where M′ is the natural restriction of M to {x}, which is the intuitionistic
submodel ofM generated by x.

SupposeW = 〈W,≤〉 is a GML-frame and x∈W . Denote by Wx the smallest subset
of W containing x and closed both upwards and downwards. The latter condition
means that ∀y ∈Wx∀z ∈W ((y≤ z or z≤ y) =⇒ z ∈Wx). It is easy to see that

Wx = {y ∈W : ∃n ∈ N∃u1, . . . ,un ∈W x = u1(≤ ◦ ≤−1)u2 · · ·un−1(≤ ◦ ≤−1)un = y}.
Denote by Wx = 〈Wx,≤x〉 the restriction of W to Wx, i.e., y ≤ z ⇐⇒ y ≤x z for
y,z ∈Wx. If, additionally, M = 〈W,v〉 is a GML-model, then let Mx := 〈Wx,vx〉,
where vx(p) = v(x)∩Wx. Then we callWx andMx the x-generated subframe and the
x-generated submodel ofW andM, respectively.

Lemma 23 (Submodel). SupposeM= 〈W,≤,v〉 is a GML-model, x ∈W andMx =
〈Wx,≤x,vx〉 is its x-generated submodel. Then for all y ∈Wx,

M,y � ϕ ⇐⇒ Mx,y � ϕ.
In particular,W � ϕ impliesWx � ϕ , whereW = 〈W,≤〉.
Proof. Routine induction on the complexity of ϕ . /

Corollary 24. SML is sound and complete with respect to the class of all (bounded)
GML-framesW = 〈W,≤〉 such that ≤ is a linear order.

7Since [19] does not reference any of Skolem’s works, it is safe to assume that Dummett was not aware
of the connection.
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Proof. If ϕ /∈ SML, then there is SML-model M = 〈W,≤,v〉 and x ∈W such that
M,x 2 ϕ . ThenMx,x 2 p and clearly the underlying frame of the x-generated sub-
modelMx is a linearly ordered set. /

As a result, the special extensions of Moisil are exactly those extensions of positive,
intuitionistic, and general modal logic that are sound and complete with respect to
linear orders. This is especially noteworthy since it means that despite not having
access to Kripke semantics which makes this connection transparent, Moisil felt that
one needs to add the new axiom (S2) to make GML behave in a similar way to the
special positive and intuitionistic logics.

4. THREE-VALUED LOGIC

The third chapter of [60] is entitled “some specific logics” and is dedicated to build-
ing on top of special modal logic to express classical logic (§9), Łukasiewicz’s [53]
three-valued logic L3 (§§10–14) and, finally, Słupecki’s [80] logic (§15). We postpone
an in-depth discussion of this chapter for a future paper, but will dedicate some space
to an extension of SML introduced in [60, §10], which we denote here as GML3. This
system is obtained from SML by adding the following formula as an axiom:

(T1) ((� p→ �q)∧ (¬ p→¬q))→ (q→ p).

The main result concerning this logic is that it is equivalent to Łukasiewicz’s three-
valued logic. As Moisil points out, the key property of this logic is the that the follow-
ing determinism principle is among its theorems.

(T2) ((�� p→ ��q)∧ (¬¬ p→¬¬q))→ (p→ q).

This formula can be intuitively read as “if the necessity of p implies the necessity of
q and the possibility of p implies the possibility of q, then p implies q.”

To obtain the result on the equivalence between GML3 and L3, Moisil first adds
Łukasiewicz’s negation ∼ in [59, §11] and implication→L in [59, §12] (N and CL in
his notation, respectively) axiomatically to GML3. The negation∼ is characterized by
(LN) ∼ϕ ↔ (¬ϕ ∨ (ϕ ∧�ϕ)). Regarding this negation he observes that all of the
De Morgan laws and both double negation laws hold with respect to it. Moreover,
he points out that coimplication is definable via this negation and implication, since
(ϕ �ψ) ↔ ∼(∼ψ →∼ϕ) would be a theorem of the resulting system.

Similarly, Łukasiewicz’s implication is introduced via the following axiom

(LI) (ϕ →L ψ)↔ ((ϕ → ψ)∧ (∼ψ →∼ϕ)).

For brevity we conflate the resulting expansion with GML3 here.
The next two sections [59, §§13–14] are dedicated to establishing the complete-

ness result of GML3 with respect to three-valued truth tables which extend those of
Łukasiewicz’s three-valued logic.8

8Moisil uses values v, f and p instead of 1, 0 and i, which we use here.
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∨ 0 i 1 ∧ 0 i 1 → 0 i 1 � 0 i 1

0 0 i 1 0 0 0 0 0 1 1 1 0 0 0 0
i i i 1 i 0 i i i 0 1 1 i i 0 0
1 1 1 1 1 0 i 1 1 0 i 1 1 1 1 0

→L 0 i 1 ϕ ∼ϕ ¬ϕ �ϕ ¬¬ϕ ��ϕ
0 1 1 1 0 1 1 1 0 0
i i 1 1 i i 0 1 1 0
1 0 i 1 1 0 0 0 1 1

Note that taking the {∧,∨,→L,∼}-fragment of these truth tables gives us exactly the
truth tables for Łukasiewicz’s three-valued logic and that 1 is considered as the only
designated value when the tables are read as a matrix.

The soundness part is routine; for the completeness Moisil first develops conjunc-
tive and disjunctive normal forms, which are exactly the same as for classical logic,
except that all formulas of the following forms are allowed as atoms: p, ∼ p, ¬ p, � p,
¬¬ p and �� p (where p ∈ Prop). He then gives a criterion of theoremhood in terms
of conjunctive normal forms to the effect that ϕ ∈GML3 iff its conjuctive normal form
ϕ1∧·· ·∧ϕn (with ϕi = ψi1∨·· ·∨ψisi and ψi j being atomic in the above sense) is such
that for every 1≤ i≤ n, there is p∈ Prop such that ϕi contains as its disjunctive mem-
bers either (i) p and � p, or (ii) � p and �� p, or (iii) � p and ¬¬ p, or (iv) ¬ p and
¬¬ p.

To establish the equivalence of GML3 and Łukasiewicz’s three-valued logic, Moisil
first shows that all of the axioms and rules of Wajsberg’s axiom system [83] hold for
GML3 and then remarks that one could reduce every formula of GML to a formula in
the language→L,∼ according to the following previously obtained equivalences:

(i)–(iii) ¬¬ϕ ↔ (∼ϕ →L ϕ) ¬ϕ ↔ ∼¬¬ϕ �ϕ ↔ (ϕ →L ∼ϕ)
(iv)–(v) (ϕ ∨ψ) ↔ ∼(∼ϕ ∨∼ψ) (ϕ ∧ψ) ↔ ∼(∼ϕ ∨∼ψ)

(vi) (ϕ �ψ) ↔ ((��ϕ ∧�ψ)∨ (ϕ ∧�ϕ ∧¬ψ))

(vii) (ϕ → ψ) ↔ (¬ϕ ∨��ψ ∨ (�ϕ ∧¬¬ψ)∨ (��ϕ ∧ψ ∧�ψ)
)

Then employing completeness results of GML3 and Łukasiewicz’s logic with re-
spect to the truth tables above establishes what Moisil claims is “an identity between
the three-valued logic and the logic of Mr. Łukasiewicz.”

A few remarks are in order. First, Moisil writes regarding the third and the first
equivalences above that “these are the definitions of operators γ , η due to Mr. Tarski.”
We remind the reader that γ = � denotes Moisil’s contingency and η = ¬ denotes
Moisil’s impossibility operator. Note that the first equivalence is not, in fact, a defini-
tion of impossibility ¬, but of double impossibility ¬¬, which is Moisil’s possibility
operator. We plan to investigate this claim at a future occasion. The definitions for
implication and coimplication are given in the shape of disjunctive normal forms. Fi-
nally, strictly speaking, the two systems cannot coincide since they are formulated in
different languages, which suggests that Moisil employs a different notion of identity;
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what he effectively shows is that GML3 is definitionally equivalent to Łukasiewicz’s
three-valued logic.

We now proceed to investigate the frame condition corresponding to (T1).

Proposition 25. SupposeW = 〈W,≤〉 is an SML-frame. Then,

W � (T1) ⇐⇒ ∀x,y,z ∈W (x≤ y≤ z =⇒ (x = y or y = z)).

Proof. ⇐=. We reason by contraposition. Take some SML-modelM= 〈W,v〉 over
W and assume thatM,x�� p→�q,M,x�¬ p→¬q,M,x� q andM,x2 p. From
M,x � q we infer M,x 2 ¬q, hence, M,x 2 ¬ p and there is some y ≥ x such that
M,y � p. Then from x ≤ y andM,x 2 p, we inferM,y � � p and henceM,y � �q
and there exists z ≤ y such that M,z 2 q. Given frame conditions corresponding to
SML and monotonicity we infer that z≤ x. Finally, we see that x and y cannot coincide
since they do not agree on p, and x and z cannot coincide since they do not agree on
q. Consequently, our frame condition cannot hold.

=⇒. Again, we use contraposition. Assume that x,y,z∈W are such that x≤ y≤ z,
x 6= y and y 6= z. Consider an SML-modelM= 〈W,v〉 such that v(q) = {u ∈W : z≤
u} and v(p) = W \{u ∈W : u≤ x}. It is routine to verify thatM,y 2 (T1). /

Lemma 26. If L is an extension of SML that contains (T1), thenWL � (T1).

Proof. It is enough to show that the frame condition of the previous proposition
holds for the canonical L-frame. We make heavy use of the canonical model lemma
(Lemma 7). Suppose on the contrary that Γ ⊂ ∆ ⊂ Θ , for some Γ ,∆ ,Θ ∈ WL.
Then there are ϕ ∈ Θ \∆ and ψ ∈ ∆ \Γ . Then ψ → ϕ /∈ ∆ , and hence, by (T1)
¬ϕ →¬ψ /∈ ∆ or �ϕ → �ψ /∈ ∆ . Consider the former; then, there is ∆ ′ ⊇ ∆ with
¬ϕ ∈ ∆ ′ and ¬ψ /∈ ∆ ′. Given the canonicity of SML, we have ∆ ′ ⊆Θ or Θ ⊆ ∆ ′. In
both cases, we obtain a contradiction because of ϕ ∈Θ and ¬ϕ ∈ ∆ ′. For the latter
possibility, there is, again, ∆ ′ ⊇ ∆ with �ϕ ∈ ∆ ′ and �ψ /∈ ∆ ′. Then ψ ∈ ∆ and
�ψ /∈ ∆ ′ give us a contradiction. /

Theorem 27. GML3 is sound and complete with respect to a single two-element chain.

Proof. We sketch the proof. Using generated subframes we immediately conclude
that every formula not belonging to GML3 can be refuted on a chain of no more than
two elements. Thus it remains to see that every formula which is refuted on a singleton
frame can be refuted on a two-element chain. Consider ϕ andM = 〈{x},≤,v〉 such
thatM,x 2 ϕ . Then defineM′ = 〈{x,y},≤′,v′〉, where x≤′ y and

v′(p) =

{
{x,y}, if x ∈ v(p);
∅, if x /∈ v(p).

Then a routine induction on the complexity of ψ shows thatM,x � ψ is equivalent to
M′,x � ψ , which concludes the proof. /

Note that this result essentially implies that GML3 is a conservative extension of
here-and-there — an important logic for logical programming (see, e.g., Balbiani
et al. [2] and references therein). Observe that the logic of a two-element chain will
naturally be three-valued as monotonicity guarantees that any formula will be satisfied
either on both elements of the chain, or on the top element, or on none of the elements.
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5. GENERAL SYMMETRIC MODAL LOGIC

Chapter 4 of [60] is titled “Symmetric modal logic” and is dedicated to adding
a new negation to general modal logic; this negation is clearly motivated by that of
Łukasiewicz’s three-valued logic. The resulting general symmetric modal logic GSML
is obtained from GML by stating that negation is involutive and contrapositive:

(GS1) p↔∼∼ p (GS2) ϕ → ψ /∼ψ →∼ϕ.
Note that Humberstone [43, p. 1240] calls this negation Moisil negation. As far as

we can tell, Moisil considers ∼ to be the only negation of GSML. While we would
consider his contingency and impossibility operators to be negations, he considers
them only as modal operators. Observe also that taking (GS2) along with the two con-
juncts of (GS1) gives one exactly the same axioms and rule that characterize negation
in first degree entailment FDE in Anderson and Belnap [1] (see also Dunn [21]).

The key properties of this negation that Moisil establishes are that it satisfies all the
De Morgan laws and that once again coimplication can be recovered from implication
and negation as before. That is, (ϕ �ψ)↔∼(∼ψ →∼ϕ) ∈ GSML.

As was outlined in [63] this implies that GSML is definitionally equivalent to the
propositional version of Hannes Leitgeb’s logic HYPE [51] and to the involutive ex-
tension of logic N∗ Cabalar et al. [11] (see also Odintsov [62]). In particular, all three
logics share the same {∧,∨,→,∼}-fragment.

We only give here a semantic characterization of GSML, for technical details one
can consult [62; 51; 63]. The one we will present here is in terms of a star-function,
but it is important to note that Leitgeb also gives a characterization in terms of a perp-
relation; these two types of semantics are the subject of Dunn [25] (see also [20; 22]).

By a GSML-frame we mean a triple W = 〈W,≤,∗〉, where 〈W,≤〉 is a partially
ordered set and ∗ : W →W is an involutive anti-monotone function, i.e., (i) x ≤ y
implies y∗ ≤ x∗ and (ii) x∗∗ = x, for all x,y ∈W . A GSML-model M = 〈W,v〉 is
defined exactly as a GML-model with the following additional satisfaction clause for
negationM,x �∼ϕ ⇐⇒ M,x∗ 2 ϕ .

Adopting all of the definitions of the first section and reasoning exactly as in the
proofs of Theorems 8 and 9 we obtain:

Theorem 28. Any canonical extension L of GSML is sound and complete with respect
to the class of all (bounded) L-frames. In particular, GSML is sound and complete with
respect to the class of all (bounded) GSML-frames.

6. SUMMARY

We considered the very remarkable paper [60] by the Romanian mathematician,
logician, and computer scientist Grigore Constantin Moisil (1906–1973). The aim of
our paper was to shed some light on what Moisil was doing in that paper, to outline
the connections of his contributions in [60] with more recent developments, and to
supplement formal proofs to some facts Moisil seemed to have envisioned.

For several reasons Moisil’s article remained largely unnoticed. It was published
in the middle of World War II in a not widely known Romanian journal, it was written
in French rather than the modern lingua franca of science, English, and it made use of
the — at the time still popular but nowadays hardly ever used — Łukasiewicz notation.



172 S. Drobyshevich, S. Odintsov and H. Wansing: Moisil’s Modal Logic and Related Systems

Moreover, the paper received a not very favorable review in the Journal of Symbolic
Logic ([82]). As we have tried to make clear, Moisil’s paper is, however, a gem and
bears witness to the great originality of its author.

It deserves to be highlighted that Moisil, who was influenced by Łukasiewicz’s
modal logic, presented highly innovative results in his [60] insofar as he

(1) motivated logics by algebras and the notion of residuation;
(2) made use of algebraic semantics (even if without completeness proofs), and

thereby, made an early contribution to algebraic logic;
(3) introduced coimplication six years before Karl Popper and 11 years earlier than

Ingebrigt Johansson;
(4) introduced the bi-intuitionistic logic BiM 32 years earlier than Cecylia Rauszer

introduced the definitionally equivalent Heyting–Brouwer logic HB;
(5) introduced Michael Dummett’s superintuitionistic logic LC (also know as Gödel

logic or Gödel–Dummett logic) 17 years before Dummett, and independently
from Skolem (cf. [68]);

(6) introduced the logic HYPE already 77 years earlier than Hannes Leitgeb.

In addition to outlining Moisil’s achievements in [60], in the present paper, a num-
ber of results related to Moisil’s work have been obtained.

In Section 1, the Restricted Deduction Theorem and the Replacement Theorem
for BiM were proved. Moreover, it was shown that BiM is sound and complete with
respect to the class of all BiM-frames and that any canonical extension L of BiM
is sound and complete with respect the class of all bounded L-frames. This result
turned out to be useful in the discussion of Moisil’s general modal logic, GML. We
observed that any canonical extension L of GML is sound and complete with respect
to the class of all (bounded) L-frames, and thus GML is sound and complete with
respect to the class of all (bounded) GML-frames. This characterization allows one
to give a satisfaction clause for formulas ¬¬ϕ (��ϕ) in bounded GML-models that
follows the pattern of the satisfaction clause for�ϕ (♦ϕ) in Kripke models for normal
modal logics, thereby, connecting Moisil’s reading of ¬¬ as expressing possibility
with Došen’s understanding of intuitionistic double negation as a necessity operator.

In relation with Božič and Došen’s work on intuitionistic modal logics, in Sec-
tion 2, the bi-intuitionistic modal logic HBK♦ was defined, and it was shown that
every canonical normal extension L of HBK♦ is sound and complete with respect to
the class of all (bounded) L-frames. Moreover, the axiom system HBdc was defined
and it was shown that HBdc is the smallest normal extension of HBK♦ that contains
♦p↔ �� p.

The coincidence of Moisil’s special intuitionistic logic with the superintuitionistic
logic LC was already stated by Humberstone. In Section 3, this result was proved by
observing that Moisil’s axiom (S1) is equivalent with Dummett’s linearity axiom and
that the result of adding this axiom to GML is canonical. Something similar was shown
for Moisil’s axiom S2 and a dual of Dummett’s axiom. Moreover, by introducing
suitable notions of a generated subframe and a generated submodel, it was shown that
SML, the extension of GML by (S1) and (S2), is sound and complete with respect to
the class of all (bounded) GML-framesW = 〈W,≤〉, where ≤ is a linear order.
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In Section 4, after explaining Moisil’s demonstration that his axiomatic extension
GML3 of SML is definitionally equivalent with Łukasiewicz’s three-valued logic, cor-
responding frame conditions were presented for the axioms (T1) and (T2) that are
added to SML to obtain GML3, and a proof was sketched of the fact that GML3 is
sound and complete with respect to a single two-element chain.

Finally, in Section 5 on Moisil’s general symmetric logic, GSML, the system that
is definitionally equivalent with HYPE, it was observed that any canonical extension
L of GSML is sound and complete with respect to the class of all (bounded) L-frames.

We intend to discuss the historical aspects of Moisil’s [60] in greater detail in a
sequel to the present paper.
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[18] Došen, K. (1985). Models for stronger normal intuitionistic modal logics, Studia Logica
44(1): 39–70.

[19] Dummett, M. (1959). A propositional calculus with denumerable matrix, Journal of Sym-
bolic Logic 24(2): 97–106.

[20] Dunn, J. M. (1966). The Algebra of Intensional Logics, Doctoral dissertation, University
of Pittsburgh, Pittsburgh, PA. (Published as Vol. 2 in the Logic PhDs series by College
Publications, London (UK), 2019.).

[21] Dunn, J. M. (1976). Intuitive semantics for first-degree entailments and ‘coupled trees’,
Philosophical Studies 29(3): 149–168.

[22] Dunn, J. M. (1986). Relevance logic and entailment, in D. M. Gabbay and F. Guenthner
(eds.), Handbook of Philosophical Logic, Vol. 3, D. Reidel, Dordrecht, pp. 117–224.

[23] Dunn, J. M. (1991a). Gaggle theory: An abstraction of Galois connections and residua-
tion, with applications to negation, implication, and various logical operators, in J. van Ei-
jck (ed.), Logics in AI: European Workshop on Logics in Artificial Intelligence (JELIA
’90), number 478 in Lecture Notes in Computer Science, Springer, Berlin, pp. 31–51.

[24] Dunn, J. M. (1991b). Partial-gaggles applied to logics with restricted structural rules, in
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[39] Goré, R. and Shillito, I. (2020). Bi-intuitionistic logics: a new instance of an old problem,
in N. Olivetti, R. Verbrugge, S. Negri and G. Sandu (eds.), Advances in Modal Logic,
Vol. 13, College Publications, London, pp. 269–288.

[40] Heyting, A. (1930). Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte
der preussischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse,
pp. 42–56, 57–71, 158–169.

[41] Hilbert, D. and Bernays, P. (1934). Grundlagen der Mathematik I, Springer, Berlin.
[42] Hughes, G. E. and Cresswell, M. J. (1968). An Introduction to Modal Logic, Methuen,

London.
[43] Humberstone, L. (2001). The Connectives, MIT Press, Cambbridge, MA.
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KRIPKE’S ARGUMENT FOR γ

J. Michael Dunn

The following argument is entirely due to Kripke,∗ and was intended by him to
be dual to the usual Meyer–Dunn style of argument.# Kripke’s argument is modeled
on completeness proofs for tableaux systems, wherein (in effect) a partial valuation
is extended to a total valuation. It thus (as Kripke remarked) avoids the apparatus of
inconsistent theories that is so characteristic of the Meyer–Dunn strategy, wherein an
inconsistent complete theory is cut down to a consistent complete theory.

I will run the argument for R without quantifiers out of laziness, but Kripke’s proof
works for quantifiers as well, surely by analogy with completeness results for tableau
systems for first order logic.

The formalism. Let’s work with signed formulas TA, FA à la Smullyan, and write
down “truth trees” using the following rules of Smullyan,

TA∧B FA∧B FA∨B TA∨B T∼A F∼A

TA

TB

FA FB FA

FB

TA TB FA TA

together with two additional rules,

TA→ B FB

FA TB FA→ B FA

All the rules except the very last are “analytic” (have the subformula property). After
we have defined “closure” for the trees, it is easy to see that the formalism without the
very last rule is equivalent to the formalism with it in the sense that the same sentences
will have closed trees.

A branch of a tree is closed iff either both TA, FA are in it for some A, or FA
appears in it for some axiom of A of R (could just say “theorems” here, but it is
interesting that “axiom” will do). A tree is closed iff all its branches are closed.

2020 Mathematics Subject Classification. Primary: 03B47.

∗ Though the write up is my own, and any mistakes or infelicities should be charged to me.
# In particular, to that version due entirely to Meyer using “(quasi-)metavaluations.”

Bimbó, Katalin, (ed.), Relevance Logics and other Tools for Reasoning. Essays in Honor of J. Michael
Dunn, (Tributes, vol. 4{#}), College Publications, London, UK, 2022, pp. 178–181.



J. Michael Dunn: Kripke’s Argument for γ 179

The argument. Suppose `R A, `R ∼A∨B, yet aR B. Run a tableau for FB. If the
tableau closes, it is easy to see that `R B, contrary to hypothesis. Run a tableau in an
“efficient” way, so that rules are applied as often as possible. Because of the very last
rule, this means (since, the tableau doesn’t close) that some branch will run on forever.
Let S be the set of signed sentences in that branch. It is clear that S has the following
properties:

(1) no TA, FA ∈ S
(2) no FA ∈ S, where A is an R axiom

α
{

(3) TA∧B ∈ S ⇒ TA, TB ∈ S, FA∨B ∈ S ⇒ FA, FB ∈ S,
T∼A ∈ S ⇒ FA ∈ S, F∼A ∈ S ⇒ TA ∈ S

β
{

(4) TA∨B ∈ S ⇒ TA ∈ S or TB ∈ S
(5) TA→ B ∈ S ⇒ FA ∈ S or TB ∈ S
(6) FB ∈ S ⇒ FA→ B ∈ S or FA ∈ S

Further, (2) can be changed to

(2′) no FA ∈ S, where, A is an R theorem

without loss, as we now verify.

Proof (by induction on length of proof of A). If A is an axiom, immediate. Suppose
A comes from B, and B→ A. If FA ∈ S, then by (6) FB or FB→ A ∈ S, which by
inductive hypothesis, they are not.

Define V: Sentences→{0,1} as follows: If Tp∈ S, V(p) = 1; if Fp∈ S, V(p) = 0;
and otherwise V(p) is arbitrary (for explicitness, set then V(p) = 0). This is for p a
propositional variable. Let V(A∧B), V(A∨B), V(∼A) be Boolean, i.e., defined in
the usual truth-table way. Set

V(A→ B) = 1 ⇔ (1) V(A) = 0 or V(B) = 1, and (2) FA→ B /∈ S.

Note that (1) is the extensional condition and (2) the intensional condition.

Lemma 0. For arbitrary sentences A, V(A) is uniquely defined as 0 or 1.
(Proof by trivial induction; tacitly used in sequel.)

Lemma 1. For arbitrary sentences A,

(i) TA ∈ S ⇒ V(A) = 1
(ii) FA ∈ S ⇒ V(A) = 0

Proof (by induction on complexity of A). Immediate when A is a propositional vari-
able. Cases when A=B∧C, B∨C,∼B fall by routine considerations. So we consider
case where A = B→ C. Ad (i). Let TB→ C ∈ S. Then FB ∈ S or TC ∈ S. So by
inductive hypothesis, V(B) = 0 or V(C) = 1. So extensional condition is satisfied.
Further, since S is consistent, FB→ C /∈ S. So intensional condition is satisfied. So
V(B→ C) = 1. Ad (ii). Suppose FB→ C ∈ S. It cannot be that V(B→ C) = 1 since
this requires (intensional condition) that FB→ C /∈ S. So V(B→ C) = 0.
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Lemma 2. `R A ⇒ V(A) = 1.

Lemma 2 follows by routine induction from following:

Sublemma 1. If A is an R-axiom, V(A) = 1.

Sublemma 2. (i) V(A) = V(A→ B) = 1 ⇒ V(B) = 1;
(ii) V(A) = V(B) = 1 ⇒ V(A∧B) = 1.

Part (ii) of Sublemma 2 is trivial (since V is Boolean).
Part (i) comes from extensional condition.
Proof of Sublemma 1 is more involved and proceeds by examining axioms one by

one. We do only two by way of example.
Assertion. We wish to show V(A→ .A→ B→ B) = 1. Suppose not. Then since

we have an axiom, it must be the case that FA→ .A→ B→ B /∈ S. So intensional
condition is satisfied. So extensional condition must fail. So V(A) = 1 and V(A→
B→ B) = 0. Clearly, FA→ B→ B /∈ S, for if otherwise, by property 6 of S, then,
either FA ∈ S or FA→ .A→ B→ B ∈ S. The first disjunct fails since V(A) = 1
and so by Lemma 1 (ii) FA /∈ S. The second disjunct fails as noted above. So since
intensional condition thus holds for A→ B→ B, it must be extensional condition that
fouls up. So V(A→ B) = 1 and V(B) = 0. But those, together with V(A) = 1 lead
(extensional condition) to V(B) = 1, a contradiction.

Contraposition. We wish to show V(A→∼B→ .B→∼A) = 1. Suppose not.
Then since we have an axiom, it must be the case that FA→∼B→ .B→∼A /∈ S.
But then we must have V(A→ ∼B) = 1 and V(B→ ∼A) = 0. We cannot have
FB→ ∼A ∈ S since then by property 6, we would have FA→ ∼B ∈ S or F(A→
∼B→ .B→∼A) ∈ S. The latter, we have noted above does not hold, but we cannot
have FA→ ∼B ∈ S either since V(A→ ∼B) = 1, which by Lemma 1 (ii) means
FA→∼B /∈ S.

The proof of the admissibility of γ now falls quickly from the lemmas. By Lemma 2,
V(A) = V(∼A∨B) = 1, since both `R A and `R ∼A∨B. But by “truth-tables,” then
V(B) = 1. Yet by Lemma 2, V(B) = 0, since FB ∈ S. Contradiction. Q.E.D.

AFTERWORD

The original hand-written manuscript bears Dunn’s signature and the date 23rd July
1978. Sometime later, Dunn had the manuscript typed up. Both the handwritten man-
uscript and its typed version are in the Archives of Indiana University, Bloomington.
The present typeset version is based on a photocopy of the typescript (that Dunn gave
to KB in 2016) and a photocopy of the handwritten original. We publish this short
paper in this volume with permission from Sarah J. Dunn.

Obviously, this is not a full-length paper. Dunn might have intended this to be a
theorem (perhaps, the main theorem or the initial theorem in a series of theorems) in
a longer paper. Dunn gave a talk, entitled “Some proof-theoretic aspects of relevance
logic,” in the Logic Seminar at the Mathematical Institute, University of Oxford, in
April 1978, where he might have mentioned insights from [13], [14] and [12]. But the
paper contains no “context,” and it does not introduce the problem of the admissibility
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of γ in R or even the logic R. The paper has no references, although Dunn alludes to
other proofs of the admissibility of γ . The list below aims to compensate for the lack
of references, and also to situate the admissibility of γ . The references contain books
and articles on relevance logics (including R), and a paper that motivated the quest to
prove γ admissible, which was first accomplished in Meyer and Dunn [13]. Further
papers deal with other proofs of the same, the history of the problem, the admissibility
of γ in logics closely related to R and E, for example, in extensions of Dunn’s RM.
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CONDITIONAL FDE LOGICS

Nicholas Ferenz

ABSTRACT. The present work adds a conditional connective to the logic FDE. The
conditional is defined as in Chellas’ conditional logics, and two base logics are con-
structed (based on Chellas’ minimal and standard conditional logics). I further con-
sider (i) propositional extensions of these logics in which the behavior of the condi-
tional can be largely engineered to fit one’s purpose, and (ii) first-order extensions
which are modeled using the Mares–Goldblatt interpretation of the quantifiers. The
main results are soundness and completeness for a wide range of (first-order) condi-
tional FDE logics.

Keywords. Conditional logic, Conditionals, FDE, Relevant logic

1. INTRODUCTION

The logic FDE, especially in its four-valued presentation, and sometimes referred
to as the Belnap–Dunn logic due to its origins in the work of both Nuel Belnap [3;
4] and J. Michael Dunn [9], is typically presented without a conditional connective.
Moreover, adding a conditional to FDE is not always straightforward, and sometimes
presents interesting problems. An infamous problem shared by many paraconsistent
logics is that the standard definitions of the material conditional (via ¬ and either ∨ or
∧) result in a conditional for which modus ponens is not valid. While there are several
extensions and expansions of FDE with a conditional connective, the present work
adds to this list by combining Dunn’s two-valued relational approach to FDE with
conditionals, where the conditionals are defined (semantically) as in the conditional
logics presented by Chellas in [6] and in Chapter 10 of [7]. In addition, we present
a general frame semantics that, strictly speaking, is only necessary for some of the
extensions (quantified or propositional) of the base logics constructed here.

Recently, Ma and Wong [17] and Wansing and Unterhuber [40] have also defined
Chellas-style conditional logics based on FDE. Both approaches combine the stan-
dard models of Chellas with the logic FDE. The major differences in the approach
taken in this work consist of the generalization to minimal models and our treatment
of first-order extensions.

There are many extant ways of adding a conditional to FDE, and we will briefly
summarize a few approaches. The interested reader is directed to Omori and Wans-
ing [19], for an overview with more depth. The first, and often troubling approach,
is the truth-functional approach. Here a conditional’s truth value is determined only
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by the truth values of the antecedent and consequent. The prominent downside to
this approach is that the resulting conditional often lacks certain desirable properties
(e.g., modus ponens and contraposition). Recently, Pelletier, Hazen, and sometimes
Sutcliff [13; 35] have defined a conditional they call cmi (for classical material impli-
cation) in FDE and related logics. This conditional detaches (i.e., is modus ponens-
able), and can be used to create a useful conditional for which contraposition is valid.

Relevant logics represent an approach capable of capturing (to some approxima-
tion, and in contrast with truth-functional approaches) the intensional nature of nat-
ural language conditionals. In the Routley–Meyer ternary relational semantics (e.g.,
see [26; 27; 30]), a three-place relation between points (of FDE situations, but with
a conditional) can model a highly intensional conditional. A related approach adds a
strict implication between those situations. On the strict conditional approach (with a
good falsity condition and a binary relation) we can obtain the logics sometimes called
K4 and (with non-normal situations) N4 [20; 19].

Here we will define conditional FDE-logics. These logics extend FDE with an in-
tensional conditional. Indeed, the semantics of these logics share a close connection to
neighborhood ternary relational semantics.1 The base conditional FDE-logics can be
extended to recapture many desirable properties of the conditional, including modus
ponens. Moreover, the conditional FDE-logics defined here also have comparisons
with dynamic modal logics (with formula-indexed modalities). Notably, the logics we
develop below are distinct from the neighborhood relevant logics by their treatment
of negation (for which no star-worlds are required), and by presenting essentially as a
set of formula-formula sequents.

The paper is divided as follows. First, we set out the preliminaries in Section 2
(notations, logical vocabulary, etc.), 2.1 (the logic FDE), and 2.2 (Chellas’ conditional
logics). Notably, in Section 2.1, the logic of FDE is given by a contraposition-less
axiomatization, and a first order extension is defined. (The Appendix contains the
proofs of soundness and completeness for quantified FDE with respect to a Mares–
Goldblatt style semantics.) The basis and theme of the semantics given is Dunn’s
two-valued relational semantics for FDE. The conditional logics of [7] are given in
Section 2.2, where the minimal and standard conditional logics are defined.

Then, in Section 3 we combine propositional FDE with minimal conditional logics.
We develop these logics without (at least as primitive) the rule of contraposition in
order to construct the minimal conditional FDE-logics that will play the star role in
the quantified extensions below. This section ends with discussions of the possible
admissibility of the rule of contraposition, and semantic characterizations of numerous
extensions. Section 4 mirrors the previous section, but with standard conditional logics
in place of the minimal conditional logics.

The remainder of the paper, Section 6, is devoted to quantified extensions of the
minimal conditional FDE-logics. Logics are defined and proved to be sound and com-
plete with respect to a Mares–Goldblatt style semantics. Extensions of these logics are
likely desirable for many applications, as the base quantified minimal conditional log-
ics do not validate the sequent ∀x(A⇒ B) ` A⇒ ∀xB, where x is not free in A. A

1For neighborhood ternary relational semantics, see Routley and Meyer [28; 29], Lavers [15],
Goble [11], and more recently Standefer [34] and Tedder [37] and Tedder and Ferenz [38].
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countermodel is given to this formula, which is essentially a Barcan Formula (with
conditionals instead of boxes). We end by giving some characterization results for
axioms where the conditional and quantifiers interact.

2. PRELIMINARIES

Propositional and first-order languages are defined as follows. For propositional
logics, we assume a denumerable set of a atomic propositions or propositional vari-
ables, denoted as lowercase letters from p through s, with or without subscripts. For
any propositional logic, the set of (well-formed) formulas is defined in the usual way,
restricted to the set of connectives of that logic. The particular set of connectives
will be clear from the context, and will be a selection from ¬ (negation), ∧ (truth-
functional conjunction), ∨ (truth-functional disjunction),⇒ (conditional), ◦ (fusion),
⇐ (left-conditional). A truth-functional implication →, and bi-implication ↔, are
taken to be defined in the usual way.

For first-order logics, we assume a denumerable set of variables, which will be
denoted by lowercase letters near the end of the Latin alphabet, sometimes with integer
decoration (e.g., x,y,z,y4). A signature is a setL consisting of a non-empty but at most
denumerable set of predicate symbols and an at most denumerable set of individual
constant symbols. Each predicate symbol is of the form Pn, where n is the arity of the
predicate. The arity is often omitted. I shall denote individual constants by c, with or
without subscripts. A term is denoted by τ , with or without integer decoration. An
L-term, for signature L, is the union of the variables and constants of L. A term is
closed when it contains no variables, otherwise it is open.

For a given signature L, the atomic formulas (atomic L-formulas) are those of the
form Pn(τ1, . . . ,τn), where Pn ∈ L and τ1, . . . ,τn are L-terms. The set of well-formed
formulas of a first-order logic with signature L is defined in the usual way, extending
the propositional connectives with the cases for ∀x (universal quantification) and ∃x
(existential quantification), for each variable x. We will use calligraphic, uppercase
Latin letters to range over the set of well-formed formulas, for both propositional and
first-order logics.

An instance of a variable x is bound in the formulaA if either (1) the instance is the
x of an expressions ∀x or ∃x occurring in A, or (2) the instance of x occurs within the
scope of a quantifier, ∀x or ∃x. An instance is free when it is not bound, and a formula
with no free variables is called a sentence. A term τ is free for (or freely substitutable
for) x in A if, for every variable y occurring in τ , there are no free occurrences of x in
A that are in the scope of a quantifier ∀y or ∃y.

We shall write A[τ/x] for the result of replacing every free occurrence of x in A
with the term τ . Similarly, we will use A[τ0/v0, . . . ,τn/vn] for the result of simul-
taneously replacing v0 through vn with τ0 through τn, respectively. Similar substi-
tution notation is adopted for sequents (a pair of formulas separated by “`”), where
(A ` B)[τ/x] =A[τ/x] ` B[τ/x].

A variable assignment, g ∈Uω , assigns an element of the domain U to each vari-
able. In detail, we order the variables and associate each position in that ordering with
an element of the domain, using gn to denote the nth element of the ordering. That is,
a variable assignment is a denumerable list of elements in the domain. An x-variant
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FIGURE 1. Hasse Diagrams

of a variable assignment g differs from g in at most the assignment to the variable x,
and the set of all x-variants of g is denoted xg. We write g[ j/n] (or g[ j/x]) to represent
the variable assignment just like g, except that the n-th element in the order g (or x) is
replaced by the element j.

2.1. First-Degree Entailment. FDE is the first-degree fragment of the many rele-
vant logics, including B, T, E and R. That is, it was originally defined in Belnap’s
dissertation, and soon after in Anderson and Belnap [1], as the set of theorems of
E of the form A → B, where A and B can only contain connectives from the set
{¬,∧,∨}. Given this relation to relevant logics, there are at least as many semantic
approaches to FDE as there are relevant logics. A short, non-exhaustive list includes
the star-world approaches (cf. Australian Plan semantics for relevant logics; e.g., see
Sylvan (né Routley) and Meyer [26; 27], Sylvan and Plumwood (né Routley) [31],
and Restall [21]), two-valued relational and four-valued approaches (cf. the American
Plan semantics; e.g., see Restall [22] and Sylvan [24]), approaches combining both
the American and the Australian plan (Logan [16]), and the algebraic approach (that
is, with De Morgan lattices; e.g., see Dunn [8]).

In the logic of First-Degree Entailment, the four-valued interpretation employs val-
uations that map propositions to one of 4 truth values: True, False, Both, and Neither.
These truth values are often put into a Hasse diagram, as in Figure 1(a).

With the truth values of Both and Neither, FDE is a logic that allows for both truth
value gaps and gluts. In fact, by removing elements of the truth value set we can obtain
the paraconsistent logic LP, Kleene’s paracomplete logic K3, and classical logic (as
all the connectives preserve classical values). On the other hand, the relational seman-
tics of FDE captures the idea of gaps and gluts in an interesting way. In Figure 1(b),
the truth values are the elements of the powerset of {True,False} (hereafter {t, f}).
The set {} is a gap or lack of truth value, and the {t, f} is a glut or overabundance
of truth values. This relational semantics was developed by Dunn in [9], and is the
basis for some of the semantic constructions of the present work. Following [9], and
generalizing to a frame of points, we present a semantics for FDE.

Definition 1. An FDE-situation-model is a pair M= 〈K,V 〉, where K is a non-empty
set of points (situations), and V is a valuation function that assigns to each world-
atom(ic sentence) pair a subset of {t, f}.2 V is extended to every sentence by the
following. For every α ∈ K,

2From this function we can easily obtain the more familiar function (in most presentations of modal
logic) from atomic sentences to the set of situations at which they are true, and the less familiar function
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(i) t ∈V (α,¬A) iff f ∈V (α,A)
(ii) f ∈V (α,¬A) iff t ∈V (α,A)

(iii) t ∈V (α,A∧B) iff t ∈V (α,A) and t ∈V (α,B)
(iv) f ∈V (α,A∧B) iff f ∈V (α,A) or f ∈V (α,B)
(v) t ∈V (α,A∨B) iff t ∈V (α,A) or t ∈V (α,B)

(vi) f ∈V (α,A∨B) iff f ∈V (α,A) and f ∈V (α,B)

Definition 2. Consequence relations are defined as follows:

(i) A �MFDE B iff, for every α ∈ K, if t ∈V (α,A), then t ∈V (α,B).
(ii) A �FDE B iff, for every model M, A �MFDE B.

This single-premise — or FMLA–FMLA, in the terminology of [14] — consequence
relation, is exactly the first-degree fragment of the Logic of Entailment E. In other
words, as shown in [1], forA and B in the language of FDE,A �MFDE B iff `E A⇒B.
However, FDE can be generalized to allow premise sets.3 We will often remove the
sub- and super-scripts from �MFDE (�FDE or simply �), when the intent is clear from
the context.

Here we are considering FDE-situation-models (built on frames of points) instead
of the simpler models lacking a set of situations. This is primarily due to a better fit
with the remainder of this paper. However, it also provides some additional utility. We
will often want to talk about the truth set of a sentence. The truth set of a sentence A,
sometimes referred to as a proposition or UCLA proposition, is the set of situations at
which A is (at least) true. We record the following definition and fact.

Definition 3. The truth set of a proposition A in model M, denoted by ||A||+M is the
set {α ∈ K : t ∈V (α,A)}. The falsity set of a proposition, denoted with a minus sign
decoration as in ||A||−M is the set {α ∈ K : f ∈V (α,A)}.

Throughout the paper, we will drop the M, when it is implied by context. In
addition, we will sometimes drop the “+” of a truth set, when doing so produces
no ambiguity.

Fact 4. Some facts about the consequence relation are equivalently stated using the
truth sets:

(1) A � B iff ||A||+M ⊆ ||B||+M.
(2) A � B and B �A iff ||A||+M = ||B||+M.

2.1.1. Axiomatic Proof Theory. The logic of FDE can be axiomatized in a number
of ways. Here, following [33], we will use a sequent-based axiomatization which we

from atomic sentences to the set of situations at which they are false. For FDE, these are commonly
represented as positive and negative valuation functions V+ and V−.

3The conditionals of E have single sentence antecedents, and so we are presented with multiple ways
of connecting E to a multi-premise FDE. As a first option, we could take the premises as conjoined, and
conjoin the premises into a single antecedent in a conditional of E. The other option is to take the (non-
commutative) “fusion” of the premises by right-nesting conditionals. That is where A,B `FDE C, we take
its corresponding conditional in E to be A⇒ (B⇒ C). On this route, the order of premises matters, as E
does not have permutation, so we must give up the commutativity of premises in FDE.
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will call the De Morgan-based FDE axiomatization. The key feature of this axiom
system is that there is no rule of contraposition.

(∧-El) A∧B ` A (∧-Er) A∧B ` B
(∨-Il) A `A∨B (∨-Ir) B ` A∨B

(∧∨-D) A∧ (B∨C) ` (A∧B)∨C
(DNI) A ` ¬¬A (DNE) ¬¬A ` A

(DM1) ¬(A∨B) ` ¬A∧¬B (DM2) ¬A∧¬B ` ¬(A∨B)
(DM3) ¬(A∧B) ` ¬A∨¬B (DM4) ¬A∨¬B ` ¬(A∧B)

(RT) A ` B and B ` CVA ` C
(R∧-I) A ` B and A ` CVA ` (B∧C)

(R∨-E) A ` B and C ` BV (A∨C) ` B
Rules are written in the form Γ VA ` B, where Γ is a set of sequents. As in the

rules given above, we write “A ` B and C ` B” for “{A ` B, C ` B}.” A rule of the
form Γ VA`B means that if C `D, for each sequent C `D ∈Γ , then you may infer
the sequent A ` B. If a sequent A ` B is derivable in an axiom system L, we will call
the sequent a theorem of L.

Soundness and completeness are straightforward to prove for this system with re-
spect to the models defined above.

2.1.2. Quantified FDE. There are numerous first-order extensions of FDE. We define
a number of systems from the following list of axioms and rules:

(∀E) ∀xA `A[τ/x], where τ is free for x in A
(∃ I) A[τ/x] ` ∃xA, where τ is free for x in A

(R∀ I) A ` BVA ` ∀xB, where x is not free in A
(R∃E) A ` BV ∃xA ` B, where x is not free in B
(EC1) ∀x(A∨B) ` A∨∀xB, where x is not free in A
(EC2) A∧∃xB ` ∃x(A∧B), where x is not free in A

(Dual1) ∀x¬A a` ¬∃xA
(Dual2) ∃x¬A a` ¬∀xA

We define a couple logics as follows:4

QFDE = FDE + (∀E) + (∃ I) + (R∀ I) + (R∃E) + (Dual1) + (Dual2)
FDEQ = QFDE + (EC1) + (EC2)

The next lemma states that two other statements of the duality of the quantifiers are
provable sequents. However, note that without contraposition (Dual1) and (Dual2) are
not provable from (Dual3) and (Dual4).

Lemma 5. The following are theorems of QFDE (and a fortiori of FDEQ).
(Dual3) ¬∀x¬A a` ∃xA
(Dual4) ¬∃x¬A a` ∀xA

Proof. For (Dual4), the right-to-left direction is given by

4The permutation of Q with a logic’s name to indicate the presence of extensional confinement is fairly
standard in relevant logic, especially, in more recent works. This convention is adopted, for example,
in [10; 12; 18; 38].
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(1) ∀xA `A[τ/x] (∀E)
(2) A[τ/x] ` ¬¬A[τ/x] (DNI)
(3) ∀xA ` ∀x¬¬A (RT), (R∀I)
(4) ∀xA ` ¬∃x¬A (Dual1), (RT)

while the left-to-right direction is by

(1) ¬∃x¬A ` ∀x¬¬A (Dual1)
(2) ∀x¬¬A ` ∀xA (∀E), (DNE), (RT)
(3) ¬∃x¬A ` ∀xA (RT)

The proof of (Dual3) is similar, but dual. /

The following lemma is used in the completeness proof.

Lemma 6. If sequent (A ` B)[c/x] is a theorem, where c does not occur in A ` B,
then (A ` B)[τ/x] is also a theorem, where τ is a term nor occurring in A ` B.

Proof. Given a proof of (A ` B)[c/x], where c does not occur in A ` B, let τ be a
term not occurring in this sequent. Replace c throughout the proof with τ . As τ is
new, and the axioms and rules do not rely on constants in their statements, the result
is a proof of (A ` B)[τ/x]. /

2.1.3. QFDE- and FDEQ-models. For the semantics of first-order extensions of FDE,
we employ the general frame Mares–Goldblatt semantics. This requires some addi-
tional preliminaries. First, we add a set of admissible propositions (Prop), and a set of
admissible propositonal functions (PropFun) to our models. The former is the subset
of the sets of situations K that are to be treated as admissible propositions; that is, as
sets of situations that together can coherently serve as the truth set of a sentence. The
latter are functions from value assignments for variables to the admissible proposi-
tions. We will represent a truth set by a propositional function ϕ applied to a variable
assignment g: ϕg is the truth set of the formula ϕ under the variable assignment g.

In the first-order setting, we will break from the use of Dunn’s two-valued, rela-
tional semantics in form but not in spirit. That is, the same motivations and inter-
pretations are present. However, we will focus on the propositions (truth sets) and
propositional functions.

A proposition is the truth set of a formula. On these sets of situations, we use the
set theoretic ∩ and ∪ operators, and the operators ¬,

d
, and

⊔
defined as follows.

For
d

, and
⊔

, for every set of sets of situations S:
d

S =d f
⋃{X ∈ Prop : X ⊆ ⋂

S};⊔
S =d f

⋂{X ∈ Prop :
⋃

S ⊆ X}. We state the definition of ¬ using a model’s valua-
tion condition, although we could push negation into the frame proper (but we don’t
due to the fact that our giving negative (falsity) propositional functions to each atomic
formula guarantees closure under this defined negation operator). For every truth and
falsity set ||A||+ and ||A||− in Prop, for some formula A — in the models below,
|A|+g and |A|−g for some variable assignment g — we define ¬||A||+ =d f ||A||−
and ¬||A||− =d f ||A||+.

A consequence of this is that the set of admissible propositions Prop will be closed
only under ¬ with respect to truth and falsity sets of formulas relative to a particular
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model, and not arbitrary elements of Prop; however, this does no harm as (i) sound-
ness only requires this weaker closure, and (ii) this closure is found in the canonical
model.

Essentially, the defined
d

and
⊔

enable the restriction of the intersections and
unions to admissible propositions with the same behaviour, as Prop is not required to
be closed under infinite intersections and unions. Goldblatt describes this definition
of

d
as “Motivated by the intuition that the sentence ∀xϕ expresses the conjunction

of all the sentences ϕ[a/x]” [12, p. 17]. A similar, but dual, motivation underlies
⊔

.
Goldblatt adds to this a “more semantic” interpretation. A proposition X entails Y
when X ⊆ Y , and we call Y weaker and X stronger than the other. The operation

d
S,

therefore, gives the weakest member of Prop that entails every member in S. If the
(infinite) conjunction of the members of S is in Prop, then

d
S =

⋂
S. The reader is

directed to Mares and Goldblatt [18] and Goldblatt [12] for additional explication of
these operators.

Using these operators, we can define operations on propositional functions. For the
truth functional connectives, we have for every g∈Uω and ϕ,ψ ∈PropFun, (¬ϕ)g=
¬(ϕg); (ϕ ∩ψ)g = ϕg∩ψg; and (ϕ ∪ψ)g = ϕg∪ψg. Then, for the quantifiers, we
define ∀n and ∃n by, for every g ∈Uω , every n ∈ ω , and every ϕ ∈ PropFun,

(∀nϕ)g =
l

j∈U

ϕg[ j/n] =
⋃
{X ∈ Prop : X ⊆

⋂

j∈U

ϕg[ j/n]},

(∃nϕ)g =
⊔

j∈U

ϕg[ j/n] =
⋂
{X ∈ Prop :

⋃

j∈U

ϕg[ j/n]⊆ X}.

Definition 7. A QFDE-model is a tuple 〈K,U,Prop,PropFun, |−|〉, where K is a
non-empty set of points, U is a non-empty set of individuals, Prop and PropFun
satisfy conditions (c1)–(c3), and the valuation function |−| is defined as below.

(c1) Prop is closed under ∩,∪,¬, as defined above.
(c2) PropFun is closed under ∩,∪,¬.5

(c3) PropFun is closed under ∃n and ∀n, for every n ∈ ω .
The valuation function |−| is then defined by assigning

(1) an element |c| ∈U to each constant symbol c;
(2) a positive function |P|+ : Un −→℘(K) to each n-ary predicate symbol P;
(3) a negative function |P|− : Un −→℘(K) to each n-ary predicate symbol P;
(4) a positive and negative admissible propositional function |A|+ and |A|− (each

of type Uω −→ Prop) to each formula A such that, when A is the atomic
Pτ1, . . . ,τn, the propositional function is given by, for every g ∈Uω ,

|Pτ1 . . .τn|+g = |P|+(|τ1|g, . . . , |τn|g)
|Pτ1 . . .τn|−g = |P|−(|τ1|g, . . . , |τn|g),

where |τ|g ∈ U is |c| if τ is the constant c, and gn if τ is the variable xn.
When A is not atomic, the function assigned to the formula is given by, for

5Closure under ¬, strictly speaking, follows from the definition of the valuation function and the clo-
sure under ∩,∪,∀n, and ∃n. A model’s valuation function assigns negative (falsity) functions for atomic
propositions. Furthermore, all negative functions reduce via the extension of the valuation function to the
base cases, namely, positive and negative functions for atomics.
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every g ∈Uω ,

|A∧B|+g = |A|+g∩|B|+g |A∧B|−g = |A|−g∪|B|−g
|A∨B|+g = |A|+g∪|B|+g |A∨B|−g = |A|−g∩|B|−g
|¬A|+g = |A|−g |¬A|−g = |A|+g
|∀xnA|+g = (∀n|A|+)g |∀xnA|−g = (∃n|A|−)g
|∃xnA|+g = (∃n|A|+)g |∃xnA|−g = (∀n|A|−)g

We may also define the valuation using the equality |∀xnA|+g =
d

h∈xg
|A|+h, and

similarly for the other quantifier cases. This is because
d

h∈xg
|A|+h =

d
j∈U
|A|+g[ j/n],

as in [18].
The functions |P|+ and |P|− give what can be called the extension and the anti-

extension of a predicate. That is, the propositional functions that return truth and
falsity sets, respectively, when given a variable assignment.

The formula ∀xA is true at a situation (given a variable assignment) just when it
is a member of the weakest admissible proposition that entails every instance of A.
The formula ∀xA is false at a situation when it is a member of the strongest admissible
proposition that is entailed by every falsity set of the instances ofA. We may explicate
the existential quantifier using a dual interpretation. Note also that this guarantees the
duality of the quantifiers via negation — that is, the validity of (Dual1) and (Dual2)
— by the following identity:

|¬∀xnA|+ = |∀xnA|− = ∃n|A|− = ∃n|¬A|+ = |∃xn¬A|+

Definition 8. Consequence relations are defined as follows:
(i) A �MQFDE B iff, for every g ∈Uω , |A|+g⊆ |B|+g.

(ii) A �QFDE B iff, for every QFDE-model M, A �MQFDE B.

For the logic FDEQ, the conditions added to the models for the validity of the EC
axioms are, for every ϕ ∈ PropFun, X ,Y ∈ Prop, n ∈ ω , and g ∈Uω :

(cEC1) X−Y ⊆ ⋂
j∈U

ϕ(g[ j/n]) only if X−Y ⊆ (∀nϕ)g

(cEC2)
⋃

j∈U
ϕ(g[ j/n])⊆ X ∪Y only if |∃nϕ|g⊆ X ∪Y .

Without the rule of contraposition, it appears (though is yet to be proved) that (EC1)
and (EC2) are independent in the background of QFDE. Semantically, the QFDE-
models that satisfy (cEC1) will validate (EC2) if it is the case that A a` B implies
|A|− = |B|−. This would be the case if the rule of contraposition was an admissible
rule. This has not been proved either way for QFDE with or without either of the
extensional confinement axioms. Thus, for now we opt to give semantic conditions
for both axioms, whether or not they are independent.

Theorem 9 (Soundness and Completeness). The logics defined are sound and com-
plete with respect to their class of models. That is,

(1) A `QFDE B iff A �QFDE B, and (2) A `FDEQ B iff A �FDEQ B.
The proof of this theorem is tangential to the main theme of conditional FDE-

logics, and is, therefore, relegated to the Appendix.
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2.2. Conditional Logics. Conditional logics, as presented in [7], add a non-truth-
functional conditional based on neighborhood semantics. In [7], these logics are used
to construct deontic logics; however, conditional logics offer an alternative construc-
tion for conditionals on top of a truth-functional logic, which presents the opportunity
to add a solid conditional to FDE. Chellas defines a class of standard conditional
models (corresponding, in a rough sense, with normal modal logics) and minimal con-
ditional models (corresponding roughly with classical modal logics).6

2.2.1. Minimal Conditional Models. Here we restate Chellas’ model definitions, the
axiom systems corresponding to these semantics, and some extensions of these logics.
Most of the results are given (or stated) in [7], with some minor exceptions we will
note. We begin with the minimal conditional models.

Definition 10. A minimal conditional model is a tuple 〈K, f ,V 〉 where, K is a non-
empty set of situations, f is a function from a situation and proposition to a set of
propositions (i.e., f : (K×℘(K)) −→℘(℘(K))), and V is a valuation function that
assigns a set of worlds to each atomic formula. V is then extended to every sentence
by the following. For every α ∈ K,

(i) α � p iff α ∈V (p) (ii) α � ¬A iff α 2A
(iii) α �A∧B iff α �A and α � B (iv) α �A∨B iff α �A or α � B
(v) α �A→B iff α 2A or α � B (vi) α �A⇒B iff ||B|| ∈ f (α, ||A||)

The conditional ⇒ is the only non-straightforward case, and it can use a bit of
explanation. Chellas explains that f (α, ||A||) returns a set of all the propositions
that are “necessary relative to the condition expressed by A at that world [α]” [7,
p. 270]. The semantics here is essentially neighborhood semantics, as the focus is
on propositions (sets of situations) instead of worlds, unlike the standard conditional
models below. In fact, the relation to Classical, Monotonic, and Regular logics can be
seen quite clearly if we rewrite A⇒ B as [A]B (as in [7]), where “[A]” is treated as
a modal operator, and we have a denumerable number of modal operators indexed to
formulas.

2.2.2. Soundness, Completeness, and Some Extensions. Here we first define all of the
two-valued conditional logics we will consider using a Hilbert-style axiom system. A
list of axioms and rules is given, then we define logics using that list. Our list is as
follows:

(PL) All the theorems of propositional, two-valued logic.
(ID) A⇒A

(CMP) (A⇒B)→ (A→B)
(RCEA) A↔BVA⇒ C ↔B⇒ C
(RCEC) B ↔ CVA⇒B↔A⇒ C
(RCM) B → CVA⇒B→A⇒ C
(RCR) (B∧D)→CV ((A⇒B)∧ (A⇒D))→A⇒ C
(RCN) BVA⇒B

6We use the terms classical, regular, monotonic as in Segerberg [32], where they were introduced.
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The minimal conditional logic (or least/smallest classical conditional logic), de-
noted by CE, is defined by (PL) + (RCEA) + (RCEC). This logic is sound and com-
plete for the minimal models. The least monotonic conditional logic, CM, is defined
as CE + (RCM). The least regular conditional logic, CR, is defined as CM + (RCR).
Finally, the least normal conditional logic, CK is defined as CR + (RCN).

The semantic conditions for these axioms are given here by correspondence in
the background of CE. Chellas [7] gives semantic conditions for (ID) and (CMP) in
standard models. The conditions given by Chellas for the rules (RCM), (RCR), and
(RCN), characterize those axioms in the background of CE, although the proof is not
given explicitly by Chellas. For (cID) and (cCMP), Chellas only gives conditions in
the standard models, but the conditions below are easy to check.7

The conditions are as follows:
(cID) X ∈ f (α,X);

(cCMP) if α ∈ X and Y ∈ f (α,X), then α ∈ Y ;
(cRCM) if Y ∩Y ′ ∈ f (α,X), then Y ∈ f (α,X) and Y ′ ∈ f (α,X);
(cRCR) if Y ∈ f (α,X) and Y ′ ∈ f (α,X), then Y ∩Y ′ ∈ f (α,X);
(cRCN) K ∈ f (α,X).
Some characterization results are recorded in the following lemmas.

Fact 11. For minimal conditional models:
(1) CE is sound and complete with respect to the class of minimal conditional models.
(2) The logics extending CE with the axioms and rules listed above are sound and

complete with respect the the class of models determined by the conditions corre-
sponding to the additional axioms and rules.

2.2.3. Standard Conditional Models. In two-valued modal logic, the neighborhood
and relational models are related. A very informative result concerning their relation
is that the relational models are point-wise equivalent to the augmented neighborhood
models. In particular, this result says that augmented neighborhood models are just
relational models under a different description; you can transform the models back
and forth, keeping the set of situations and the atomic valuations the same, and only
replacing neighborhoods with relations or vice versa. For conditional logics, there
is similarly a set of conditions such that, when a minimal model satisfies these con-
ditions, it is sound and complete with respect to the least normal conditional logic
characterized by the standard conditional models. Unlike the two-valued case relat-
ing neighborhood and relational frames, here, we have a relation between two distinct
kinds of neighborhood-based frames.

While Chellas [7] does not provide proofs of these results, the related equivalence
in terms of soundness and completeness is given. That is, the logic CK is sound
and complete with respect to the standard conditional models defined below, and with
respect to the minimal conditional models that satisfy (cRCM), (cRCR), and (cRCN).
For the logic CK and its extensions, we can give what Chellas calls standard models,
where the f function returns a single set of worlds instead of a set of sets of worlds.

7Note that (RCR) implies (RCM), but the condition (cRCR) does not imply (cRCM). Logics with
(RCM) satisfy both conditions. Note also that I have renamed Chellas’ conditions to conform to the con-
ventions in this paper, where (cXYZ) is the condition for the axiom or rules named (XYZ).
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Definition 12. A standard conditional model is a tuple 〈K, f ,V 〉 where, K is a non-
empty set of situations, f is a function from a situation and proposition to a proposition
(i.e., f : (K×℘(K)) −→℘(K)), and V is a valuation function that assigns a set of
worlds to each atomic formula. V then is extended to every sentence as in the minimal
conditional models, with the exception of the case for conditionals, which is

(i) α �A⇒B iff f (α, ||A||)⊆ ||B||.
The difference between minimal and standard models is similar to the difference be-
tween neighborhood and relational models, as a set of sets of worlds is reduced to just
a single set (their intersection). The standard models can be seen as a multi-relational
model, where the relations are indexed to formulas as in β ∈ f (α, ||A||) iff αRAβ .

The logic CK can be axiomatized as above, or equivalently, by adding to classical
logic, (RCEA) and the rule
(RCK) (B1∧·· ·∧Bn)→CV ((A⇒B1)∧·· ·∧ (A⇒Bn))→ (A⇒C).

For further extensions of these logics, particularly in the deontic setting, the reader
is directed to the aforementioned chapter of [7].

3. MINIMAL CONDITIONAL FDE LOGICS

As conditional logics can be distinguished based on whether or not they can be
given standard or minimal conditional models, we will separate our discussion of Con-
ditional FDE Logics based on this divide. First, we will examine the logics defined
by combining FDE with the minimal conditional models. The logics characterized
by these models may be called classical in the Segerberg-like sense of the conditional
being congruent in both the antecedent and consequent. That is, provably equivalent
formulas are substitutable in both the antecedent and consequent position of a con-
ditional. The term “minimal,” although merely the name of a collection of semantic
structures, is often used to label the logics characterized by said structures. Because
the term “classical” can refer to types of modal logics as well as two-valued truth-
functional logic, we will tend to (ab)use the term “minimal” when referring to the
logics of this section.

The approach taken here is semantics-first. That is, we start with the semantic idea
of conditional logics (as in [7, Ch. 10]), but replace the “classical” foundation with
FDE. As in Routley’s “American Plan Completed” [24], there are several ways we
may go about defining the semantics in terms of the falsity condition for the condi-
tionals. Here we opt for reducing the negated conditionals to non-negated conditionals
by pushing the negation into the consequent of the conditional. That is, by the equiv-
alence of ¬(A⇒B) with A⇒¬B. This approach is taken, for example, by Wansing
in connexive logic (e.g., see [39]). In addition, this approach enables a conditional to
have all four combinations of truth values. Another method which would ensure this
is where a conditional is false when some of the antecedent- f -selected situations are
such that the negation of the consequent is true. We call this the overlap method and
the former method the container method.

Wansing and Unterhuber [40] combine these methods for standard (and not mini-
mal) conditional logics. In particular, there is the connective �→ of their logic cCL,
which employs the container method for both negated and non-negated conditionals.
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Our approach differs from their �→ in cCL in that we, additionally, generalize in this
section to minimal conditional logics.

Note the contrast with Ma and Wong [17], whose paraconsistent conditional logic
employs a positive selection function f+ and a negative selection function f−. More-
over, we will only construct logics based on the FDE axiomatization without contra-
position (again, in contrast to [17]).8 We will say more about contraposition, and its
potential admissibility, in Section 3.2.

Here we will define general frames — that is, admissible semantics that restrict
the possible truth sets to a special subset of sets of points we call Prop. We have
already defined the operator ¬ on (the truth and falsity sets of formulas in) Prop. A
conditional operator is defined by the following; for every X ,Y ∈ Prop,

X ⇒ Y = {a ∈ K : Y ∈ f (a,X)}.
Definition 13. A CEFDE-model is a tuple M = 〈K, f ,Prop,V 〉 where, K is a non-
empty set of situations, Prop⊆℘(K), f is a function from a situation and proposition
to a set of propositions (i.e., f : (K×Prop) −→℘(Prop)) and the condition (c1a) is
satisfied.

(c1a) Prop is closed under ∩, ∪, ¬, and⇒.
Moreover, V is a valuation function that assigns to each world-atom(ic sentence) pair
an element of ℘({t, f}) such that for every atomic sentence p, ||p||+, ||p||− ∈ Prop.
V is then extended to every sentence using (i)–(vi) of Definition 1 for ¬,∧, and ∨, and
using (vii) and (viii) below for⇒. For every α ∈ K,

(vii) t ∈V (α,A⇒B) iff ||B||+M ∈ f (α, ||A||+M);
(viii) f ∈V (α,A⇒B) iff ||¬B||+M ∈ f (α, ||A||+M).9

The truth condition for the conditional is the expected condition for minimal con-
ditional logics. The falsity condition, referred to above as the container approach,
reduces the negated conditionals to bare conditionals. The f -function is fairly unre-
stricted, so the reader may easily confirm that a conditional can be just true, just false,
neither, and both truth and false under this definition.

Lemma 14. In every CEFDE-model M, every sentence A is mapped onto an element
of Prop by the valuation function.

Proof. The proof is by induction on the complexity of A. The atomic case is by
definition. We will only show the conditional case. Assume thatA=B⇒C. We have

||B ⇒ C||= {a ∈ K : t ∈V (α,B ⇒ C)}
= {a ∈ K : ||C|| ∈ f (α, ||B||)
= ||B|| ⇒ ||C||

By the induction hypothesis, both ||B|| and ||C|| are elements of Prop, and so, by
(c1a), ||B ⇒ C|| ∈ Prop. /

8An earlier version of this paper additionally contained the logic defined by adding contraposition to
the minimal conditional FDE-logic defined here. To capture these logics, the minimal models need only be
modified by defining the consequent relation as preserving truth in the left-to-right direction, and falsity in
the right-to-left direction.

9The reader is reminded of the convention to drop the “+” superscript for truth sets in what follows.



Nicholas Ferenz: Conditional FDE Logics 195

The consequence relation is then defined as only left-to-right truth preservation.

Definition 15. The consequence relations �MCEFDE
and �CEFDE are defined as in Defi-

nition 2, but with respect to CEFDE.

We say that Prop (or a model) is full when Prop =℘(K). Several extensions of
CEFDE are not complete with respect to full models. This will be shown later, and is
partially due to the fact that no sentence is contained in every prime theory.

First we will provide an axiom system for this logic, and then prove soundness
and completeness. Then, we will address whether or not the rule of contraposition is
admissible.

The De Morgan-based axiom system for FDE, on which the system below is de-
fined, is a more flexible axiomatic system than the one with the rule of contraposition.
For example, this axiomatisation is known to be more amenable to extensions with
new connectives [33, p. 313].

Definition 16. The logic CEFDE is defined axiomatically by extending the De Morgan-
based axiomatization of FDE with the following:

(¬-⇒) ¬(A⇒B) a` A⇒¬B
(RCEA) A a` BVA⇒ C a` B ⇒ C
(RCEC) B a` CVA⇒B a` A⇒ C

A proof is defined in the usual way, but let us briefly note how to use the occur-
rences of “a`” in the new rules. Because A a` B is shorthand for the metalogical
conjunction of A ` B and B ` A. Citing an axiom such as (¬-⇒) will justify one of
the metalogical conjuncts in a proof. Following this, the rules will cite both metalogi-
cal conjuncts to produce a single metalogical conjunct per line. For example,

(1) A ` ¬¬A (DNI)
(2) ¬¬A ` A (DNE)
(3) A⇒ C ` ¬¬A⇒ C (1), (2), (RCEA)
(4) ¬¬A⇒ C ` A⇒ C (1), (2), (RCEA)
We take this to not only be a proof of ¬¬A⇒ C `A⇒ C, using the last line of the

proof, but also of¬¬A⇒C a`A⇒C, using the last two lines of the proof. (Although
we could always introduce “a`” to the proof system, with suitable introduction and
elimination rules to achieve the same result.)

3.1.1. Soundness.

Lemma 17. The axioms (∧-El), (∧-Er), (∨-Il), (∨-Ir), (∧∨-D), (DNI), (DNE), and
the De Morgan axioms are all valid in the class of CEFDE-models.

The proof is similar to those already in the literature.

Lemma 18. The axiom (¬-⇒) is valid in the class of CEFDE-models.

Proof. Note that t ∈V (α,¬(A⇒B)) iff f ∈V (α,A⇒B)
iff ||¬B|| ∈ f (α, ||A||)
iff t ∈V (α,A⇒¬B) /
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Lemma 19. The rules (RT), (R∧-I), (R∨-E), (RCEA), (RCEC) preserve validity in the
class of CEFDE-models.

Proof. The rules of FDE can be shown to be valid using the usual arguments. For
(RCEA) and (RCEC), suppose that A � B and B � A. Then ||A|| = ||B||. Assume
that ||C|| ∈ f (α, ||A||). Immediately, we get ||C|| ∈ f (α, ||B||), as required, using the
equality above. For (RCEC), a similar argument may be applied. /

Theorem 20 (Soundness). The logic CEFDE is sound with respect to the class of
CEFDE-models. That is, if A ` B, then A � B.

3.1.2. Completeness. Let Γ �CEFDE ∆ mean that there are some A1, . . . ,An ∈ Γ and
B1, . . . ,Bm ∈ ∆ such that (A1 ∧ ·· · ∧An) ` (B1 ∨ ·· · ∨Bm) is a theorem of CEFDE,
where Γ and ∆ are sets of formulas. When ∆ = {A}, we’ll just write Γ �CEFDE A for
Γ �CEFDE {A}, and similarly where Γ is a singleton.

Definition 21. An L-theory is a set of formulas Γ such that if Γ �CEFDE A, then
A ∈ Γ . A theory Γ is prime if and only if, if A∨B ∈ Γ , then either A ∈ Γ or B ∈ Γ .

Definition 22 (Canonical Model for CEFDE). The canonical model for CEFDE is
MC

CEFDE
= 〈KC, fC,PropC,VC〉, where

(i) KC is the set of prime CEFDE-theories;
(ii) ||A||= {α ∈ KC : A ∈ α};

(iii) fC is defined by ||B|| ∈ fC(α, ||A||) iff A⇒B ∈ α;
(iv) PropC is defined to be the set {X ∈℘(KC) : X = ||A|| for some formula A};
(v) VC is defined, for every α ∈ KC, and every atomic sentence p, by

(a) t ∈VC(α, p) iff p ∈ α;
(b) f ∈VC(α, p) iff ¬p ∈ α .

(vi) The valuation is extended to all well-formed formulas as usual.

Lemma 23 (Pair Extension). If Γ 6�CEFDE ∆ , then there is some prime CEFDE-theory
Γ ′ such that Γ ⊆ Γ ′ and Γ ′∩∆ = /0.

For the proof, the reader is directed to Restall [23, 5.1–5.2].

Lemma 24. A ` B is a theorem iff ||A|| ⊆ ||B ||.
Proof. The left-to-right direction is immediate by definition. For the right-to-left di-
rection, by contraposition assume that A ` B is not a theorem. Then A 6�CEFDE B,
and so by the previous lemma we have a prime theory α such that A ∈ α , but B /∈ α .
Therefore ||A||* ||B ||. /

Lemma 25. The canonical model is a CEFDE-model.

Proof. This is fairly straightforward to check. Note that the set of prime theories is
non-empty, so K is non-empty. The function f is of the right type; by definition only
truth sets (elements of Prop) appear in the second place of the function, and only sets
of truth sets (sets of elements of Prop) are returned by the function. Further, (c1a) is
satisfied. This is shown by the following equations.

||A∧B ||= ||A||∩ ||B || ||A∨B ||= ||A||∪ ||B ||
||A⇒ B||= ||A|| ⇒ ||B || ||¬A||= ¬||A||
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The equations are straightforward to prove. We will show the details of only the
conditional. Suppose that α ∈ ||A⇒B||. This is if and only ifA⇒B ∈ α . That is, if
and only if ||B|| ∈ f (α||A||), which is also if and only if α ∈ ||A||⇒ ||B||. Moreover,
for each atomic proposition p, ||p||+, ||p||− ∈ Prop, as can seen by the definition of
the canonical valuation. /

Lemma 26 (Truth). t ∈VC(α,A) iff A ∈ α (i.e., α ∈ ||A||).
Proof. The proof is by induction on the complexity of A. The truth-functional con-
nective cases are straightforward. We will show the case for the conditional.

First we must show that {α ∈ KC : A⇒ B ∈ α} = {α ∈ KC : t ∈ V (α,A⇒ B)}.
For the left-to-right direction, suppose thatA⇒B ∈ α . Then, by the definition of fC,
||B|| ∈ fC(α, ||A||), which gives us that t ∈ V (α,A⇒ B). For the other direction,
suppose that t ∈V (α,A⇒B). Then ||B|| ∈ fC(α, ||A||), and so A⇒B ∈ α . /

Theorem 27 (Completeness). The logic CEFDE is complete with respect to the class
of CEFDE-models. That is, if A � B, then A ` B.

Completeness may be shown by the usual contrapositive method. Suppose that
A 0 B. Then there is a prime theory α , obtained by the extension lemma on the
closure of A under `, such that A ∈ α , but B /∈ α . By the truth lemma, t ∈VC(α,A)
and t /∈VC(α,B), and therefore, A 2 B.

In summary, we have proved soundness and completeness for the minimal condi-
tional FDE logic defined without contraposition. The chosen falsity condition opted
for here works well with minimal models. Roughly, f (α, ||A||) is the set of propo-
sitions that are A-possible at α . So if ||B|| is one of those propositions, then the
conditionalA⇒B is true at α . However, having one of those accessible propositions
overlap ||¬B|| is insufficient to give us the negation of the conditional, for ||¬B|| is
not accessible in this way. Thus, the overlap method is not motivated.

3.2. Rule Contraposition. Contraposition is not truth-preserving in every CEFDE-
model. We can show this by constructing a single model in which the rule does not
preserve truth. This is not surprising. In logics where γ is admissible, we can some-
times identify models in which A and ¬A∨B are true, but in which B is not true.
We have to look at the set of theorems, and not merely the sentences made true by
any old model, in order to address rule admissibility. Nonetheless, here is a quick
demonstration.

Let K = {e}, Prop=℘(K), and f (e, ||A||) = /0. Set f (e, ||C||) = {{e}}= {||¬D||},
and let ||A||= ||B||= ||C||= ||D||= ||¬B||= /0.

We have that A⇒B ` C ⇒D is valid in this model, for it satisfies “if /0 = ||B|| ∈
f (e, ||A||) = /0, then /0 = ||D|| ∈ f (e, ||C||) = /0.” In fact, this is satisfied vacuously,
as the antecedent is false: the empty set is not a member of itself. Additionally, we
have that C ⇒ ¬D, which is ¬(C ⇒ D), is true at e, by definition of f . But also that
A⇒¬B, which is ¬(A⇒B), is not true at e. So ¬(A⇒B) 2 ¬(C ⇒D).

The question remains as to whether the rule is admissible by being valid over the
whole class of CEFDE-models. That is, if every model makes A ` B true, then do
they all also make ¬B ` ¬A true? I strongly expect a positive answer to this question.
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The conditionals introduced by the rules (RCEA) and (RCEC) (i) require the inter-
provability of a sentence with another, and (ii) add the same sentence in the same
position in the introduced conditional on each side of the sequent. Semantically, then,
we can observe that a sentence is modeled by the same truth set as itself; moreover,
inter-derivable sentences have the same truth set. Combined with the semantics for
conditionals and their negations, this strongly suggests that contraposition is an ad-
missible rule.

Whether or not contraposition is admissible, this is quite a fragile admissibility.
Let’s briefly make a few observations on extensions in which the rule of contraposition
is inadmissible.

First, adding truth value constants to these logics can result in contraposition inad-
missibility.

Lemma 28. The logic CEFDE extended with the constants T and B — where V (α,T)=
{ t} and V (α,B) = { t, f}, for all α — does not admit the rule of contraposition.

Proof. It is easy to check that T � B. However, it is not the case that ¬B � ¬T, as
f ∈V (α,B), but f /∈V (α,T). /

It may be desirable to have a theorem of identity, (ID⇒) A⇒A. As we are work-
ing with `-sequents only, we can either be happy with A ` A, or add the irrelevant
axiom that the identity formula (ID⇒) follows from anything. This also results in
contraposition inadmissibility.

Lemma 29. The logic CEFDE extended with the semantic condition if α ∈ Y , for
some Y , then X ∈ f (α,X), for every X — which corresponds to the axiomA` B⇒B
— does not admit the rule of contraposition.

Proof. In this logic, A⇒A � B ⇒ B, but not necessarily ¬(B ⇒ B) � ¬(A⇒A).
The reader may easily construct a model to demonstrate this fact (where ||¬B|| ∈
f (α, ||B||), but ||¬A|| /∈ f (α, ||A||)). /

Following Ross Brady, we may define the depth of a conditional subformula of
a formula to be “the degree of nestings of ‘⇒’’s required to ‘reach’ the occurrence
of the subformula” [5, p. 64]. Some desirable axioms (and rules) may include (or
introduce) sequents where the maximum depth of a conditional subformula on one
side of the sequent is not the same as the maximum on the other side. For example,
take the contraction sequent A ⇒ (A ⇒ B) ` A ⇒ B. Sequents such as this will
ensure the inadmissibility of contraposition, as the truth set of a conditional need not
be equivalent to the truth set of a non-conditional. (Of course, that is only if we
do not add additional axioms or rules to regain contraposition.) We will not take
the time here to formally examine the concept of depth, or to develop the sufficient
and necessary conditions for the inadmissibility of contraposition when asymmetric
conditional-depth sequents are included.

We thus conclude that, even if the rule of contraposition is admissible in CEFDE, it
is a fragile admissibility that does not survive some fairly minor extensions.

3.3. Extensions. The conditional of CEFDE is quite “weak,” in that many sequents
with conditional formula occurrences are, perhaps surprisingly, not theorems. A short
list of example sequents is presented in the following lemma.
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Lemma 30. The follow statements of non-theorems of CEFDE hold.
(1) A⇒ (A⇒B) 0A⇒B
(2) A⇒B 0A⇒ (A⇒B)
(3) A⇒B 0 (B ⇒ C)⇒ (A⇒ C)
(4) A⇒B 0 (C ⇒A)⇒ (C ⇒ B)

Proof. For (1), consider the model 〈{e}, f ,Prop,V 〉, with f defined by f (e,X) =
{||A ⇒ B||}, and V defined by ||A|| = ||B || = /0, and ||A ⇒ B|| = {e}. Let Prop
be full. It is easy to verify (1) on this model. For (2), a similar construction may be
defined.

For (3), consider the model 〈{e}, f ,V 〉 with, for all X , f (e,X) = {{e}}= {||B ||},
and where ||A ⇒ C|| = /0, and Prop is full. It is straightforward to show this is a
countermodel for (3). A countermodel for (4) is left to the reader to construct. /

The logic may be interestingly extended by various axioms and rules. Consider the
following list:

(W) A⇒ (A⇒B) ` A⇒B
(Wc) A⇒B `A⇒ (A⇒B)
(B′) A⇒B ` (B ⇒ C)⇒ (A⇒ C)
(B) A⇒B ` (C ⇒A)⇒ (C ⇒ B)

(IDr) A ` B ⇒B
(RCT) A ` BV B ⇒ C ` A⇒ C

(RCM) B ` CVA⇒B `A⇒ C
(RCR) B∧D ` CV (A⇒B)∧ (A⇒D) ` A⇒ C
These axioms and rules (with the rules denoted with an “R” prefix) are charac-

terized by conditions below. Note that these conditions are restricted to elements of
Prop. For the CEFDE-models, Prop was non-essential, but for these extensions Prop
appears to be necessary. The reason is that the completeness proofs only seem to
work (for these conditions) with the restriction to Prop . For example, without Prop
the condition (cRCM) would imply that the set of prime theories KC is an element of
every set f (α,X), but (even with the definition of f ) there is no CEFDE sentence that
is contained in every CEFDE-prime theory. The following conditions are each to be
appended by “for every X ,Y,Y ′ and Z ∈ Prop.”

(cW) If X ⇒ Y ∈ f (α,X), then Y ∈ f (α,X).
(cWc) If Y ∈ f (α,X), then X ⇒ Y ∈ f (α,X).
(cB′) If Y ∈ f (α,X), then X ⇒ Z ∈ f (α,Y ⇒ Z).
(cB) If Y ∈ f (α,X), then Z⇒ Y ∈ f (α,Z⇒ X).

(cIDr) X ∈ f (α,X), if α ∈ Y for some Y .

(cRCT) Z ∈ f (α,Y ) and X ⊆ Y imply Z ∈ f (α,X).
(cRCM) Y ∈ f (α,X) and Y ⊆ Z imply Z ∈ f (α,X).
(cRCR) Y ∈ f (α,X), Y ′ ∈ f (α,X), and Y ∩Y ′ ⊆ Z imply Y ∩Y ′ ∈ f (α,X).

Lemma 31. In any logic extending CEFDE, the axioms (W), (Wc), (B′), (B), and (IDr)
and the rules (RCT), (RCM), (RCR) are characterized by models satisfying the corre-
sponding conditions above.
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Proof. The cases for the axioms are straightforward. We include only the cases for
the rules.

Case (RCT). Soundness: Assume that A ` B. That is ||A|| ⊆ ||B||. Further sup-
pose that ||C|| ∈ f (α, ||B||). So ||C|| ∈ f (α, ||A||) as required. Completeness: Sup-
pose that Z ∈ f (α,Y ) and X ⊆Y . By definition, X = ||A||, Y = ||B|| and Z = ||C||, for
some sentences A,B,C, and B ⇒ C ∈ α . Since α is a theory, and by the rule (RCM),
A⇒ C ∈ α for every A. Thus, ||C|| ∈ f (α, ||A||); that is, Z ∈ f (α,X), as required.
Therefore, (cRCT) is satisfied by the canonical model.

Case (RCM). Soundness: Suppose that A ` B, that is, ||A|| ⊆ ||B||. Further sup-
pose that ||A|| ∈ f (α,X). Applying the condition gives ||B|| ∈ f (α,X), as required.
Completeness: Suppose that Y ∈ f (α,X) and Y ⊆ Z. From the former, we have that
A⇒ B ∈ α , where Y = ||B|| and X = ||A||. From the latter, we have that B ` C for
Z = ||C||. Thus, by (RCM) and the fact that α is a theory, we have that A⇒ C ∈ α ,
which gives Z ∈ f (α,X).

Case (RCR). Soundness is straightforward. For completeness, assume that Y ∈
f (α,X), Y ′ ∈ f (α,X), and Y ∩Y ′ ⊆ Z. Then X = ||A||, Y = ||B||, Y ′ = ||D||, and
Z = ||C|| for some formulasA,B, D and C. It follows thatA⇒B,A⇒D ∈ α . Thus,
since theories are closed under conjunction, (A⇒B)∧ (A⇒D) ∈ α . Moreover, we
have that (A⇒ B)∧ (A⇒ D) ` (A⇒ C) is a theorem, by (RCR), Lemma 24 and
Y ∩Y ′ ⊆ Z. ThusA⇒C ∈ α , which is our desired result that Z ∈ f (α,X). Therefore,
(cRCR) is satisfied by the canonical model. /

Note that the rule of (RCN) is missing. This is due to the logic containing no
formula-theorems, but only sequents.

Some of the extensions defined so far can be equivalently specified with corre-
sponding axioms. This is noted by Chellas in [6] for (CM) and (CR) in the classical
setting, additionally shown here for (CT).10

We define the following axioms:
(CM) A⇒ (B∧C) ` (A⇒B)∧ (A⇒ C)
(CR) (A⇒B)∧ (A⇒ C) ` A⇒ (B∧C)
(CT) B ⇒ C ` (B∧D)⇒C

Lemma 32. Where (CM), (CR), and (CT) are defined above,
(i) CEFDE + (CM) is equivalent to CEFDE + (RCM);

(ii) CEFDE + (CR) is equivalent to CEFDE + (RCR) + (RCM);
(iii) CEFDE + (CT) is equivalent to CEFDE + (RCT).

Proof. We show only the case for (CT).
(1) B∧D ` B (∧-El)
(2) B ⇒ C ` (B∧D)⇒C 1, (RCT)

(1) A ` B Assumption
(2) A a` A∧B 1, (R∧-I), (∧-El)
(3) B ⇒ C ` (A∧B)⇒C (CT)
(4) (A∧B)⇒C a` A⇒ C 2, (RCEA)

10Note that (CR) here is what Chellas calls (CC).
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(5) B ⇒ C ` A⇒ C 3, 4, (RT)

/

4. STANDARD CONDITIONAL FDE-LOGICS

The standard conditional FDE-logics are defined similarly, by combining two-
valued standard conditional logics with FDE.

Definition 33. A CKFDE-model is a tuple M = 〈K, f ,Prop,V 〉 where, K is a non-
empty set of situations, f is a function from a situation and proposition to a proposi-
tion (i.e., f : (K×Prop)−→ Prop), Prop⊆℘(K), the condition (c1a) defined above
in Definition 13 is satisfied, and V is a valuation function that assigns to each world-
atom(ic sentence) pair an element of { t, f} such that the truth and falsity sets of ev-
ery atomic proposition are elements of Prop. V is extended to every sentence using
(i)–(vi) from Definition 1 for ¬,∧ and ∨, and using (ix) and (x) below for ⇒. For
every α ∈ K,

(ix) t ∈V (α,A⇒B) iff f (α, ||A||+M)⊆ ||B||+M;
(x) f ∈V (α,A⇒B) iff f (α, ||A||+M)⊆ ||¬B||+M.

For the valuations of conditionals, the truth condition is the same as the truth con-
dition for Chellas’ conditional logics. A conditional is (at least) true under a valuation
at a situation α — that is, t ∈V (α,A⇒B) — when the accessibility relation relative
to the antecedent and α results in a set of situations at which the consequent is (at
least) true. Intuitively, A⇒ B is true at α if we look at the set of situations that α
takes to be such that A is at least true, all of those situations are also B situations. The
falsity condition again reduces negated conditionals to non-negated conditionals.

Lemma 34. In every CKFDE-model M, every sentence A is mapped onto an element
of Prop by the valuation function.

The proof is as in Lemma 14.

Definition 35. The consequence relations �MCKFDE
and �CKFDE are defined as in Defi-

nition 2, but with respect to CKFDE.

4.1.1. Axiom system. The logic CKFDE is defined axiomatically, and somewhat re-
dundantly, as the logic CEFDE (that is, with De Morgan axioms and without the rule
of contraposition) plus the following rule (RCK).

(RCK) (B1∧·· ·∧Bn) `CV ((A⇒B1)∧·· ·∧ (A⇒Bn)) ` A⇒C, for n≥ 1.

4.1.2. Soundness and completeness.

Theorem 36 (Soundness). The logic CKFDE is sound with respect to the class of
CKFDE-models. That is, if A ` B, then A � B.

This theorem is easy to check.
For completeness, we first define theories in the usual way. The canonical model is

defined as follows.
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Definition 37 (Canonical Model for CKFDE). The canonical model for CKFDE is
MC

CKFDE
= 〈KC, fC,PropC,VC〉, where KC, PropC and VC are defined by (i), (ii),

(iv)–(vi) of Definition 22 (using CKFDE-theories in place of CEFDE-theories), and fC

is defined by
(iii′) β ∈ fC(α, ||A||) iff, if A⇒B ∈ α then B ∈ β .

Lemma 38 (Extension). If Γ 6�CKFDE ∆ , then there is some prime CKFDE-theory Γ ′
such that Γ ⊆ Γ ′ and Γ ′∩∆ = /0.

Lemma 39 (f-Squeeze). If β is a theory, α is a prime theory, β ∈ f ′(α,X) and E /∈ β ,
then there is a prime theory β ′ ⊇ β such that β ′ ∈ fC(α,X) and E /∈ β ′.11

Proof. Given a theory β such that β ∈ f ′(α,X), E /∈ β , and α is a prime theory, by
Lemma 38 there is a prime extension of β ′ ⊇ β such that E /∈ β ′. In addition, given
the definition of f ′ (and fC), β ′ ∈ f ′, and since β ′ is prime, β ′ ∈ fC(α,X). /

Lemma 40. The canonical CKFDE-model is an CKFDE-model.

This lemma is straightforward to check.

Lemma 41 (Truth Lemma). t ∈VC(α,A) iff A ∈ α .

Proof. The proof is by strong induction on the complexity ofA defined as follows. (i)
An atomic has a complexity of 1. (ii) The complexity of ¬A is the complexity of A
plus 1. The complexity ofA⊗B (for ⊗∈ {⇒,∧,∨}) is the complexity ofA, plus the
complexity of B, plus 1.

The only interesting case is that of a conditional and its negation, corresponding
to the truth and falsity conditions of a conditional. Consider A⇒ B. For the left-to-
right direction, assume that t ∈ VC(α,A⇒ B) and that A⇒ B /∈ α . By the former,
f (α, ||A||) ⊆ ||B||. Now consider the set γ = {C : A⇒ C ∈ α}. By the rule (RCK)
and the fact that α is a prime theory, γ is a theory, and by assumption, B /∈ γ . By the
squeeze lemma above, there is a prime γ ′ ⊇ γ such that B /∈ γ ′. Moreover, by construc-
tion γ ′ ∈ f (α, ||A||), and so given the implication from the original supposition (after
the induction hypothesis) B ∈ γ ′, a contradiction. Thus A⇒ B ∈ α . For the other
direction, assume thatA⇒B ∈ α . Next suppose that t /∈V (α,A⇒B). Then ∃β ∈K
such that β ∈ f (α, ||A||), but β /∈ ||B||. Thus, B /∈ β , by the induction hypothesis.
But by the definition of f , B ∈ β , a contradiction. Therefore t ∈ V (α,A ⇒ B), as
required.

The case for a negated conditional is similar, except that the induction hypothesis
applies so that ¬B ∈ γ ′ iff γ ′ ∈ ||¬B||. This works using strong induction, as the
complexity of ¬B is strictly less than the complexity of the negated conditional. /

Theorem 42 (Completeness). The logic CKFDE is complete with respect to the class
of CKFDE-models. That is, if A � B, then A ` B.

Completeness may be shown by the usual contrapositive method. Suppose that
A 0 B. Then there is a prime theory α , obtained by the extension lemma on the
closure of A under `, such that A ∈ α , but B /∈ α . By the truth lemma, t ∈VC(α,A)
and t /∈VC(α,B), and therefore, A 2 B.

11Note that f ′ is the relaxation of fC to theories.
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5. MODUS PONENS

Many extensions of FDE with a truth-functional conditional fail to validate the rule
of modus ponens. However, there are several formulations of rules and axioms that
could be considered a kind of modus ponens in the systems constructed so far.

The rule form of modus ponens as A,A ⇒ B V B is inappropriate because A
would have to be a theorem. That is, it would have to be a sequent, as all of our
theorems are sequents of the form X `Y . As something of the form “(C ` D)⇒B” is
undefined, we could opt for the defined “C ` DVA ` B,” resulting in the following
meta-rule formulation.
(MPm) If C ` D is a theorem and C ` DVA`B is admissible, then infer thatA`B

is a theorem.
However, (MPm) is just a restatement of how the proof system works, and is, there-

fore, derivable. If you prove that C ` DVA ` B is admissible, then if you also have
a proof of the sequent C ` D, then you can apply the admissible rule without citing
(MPm). Even though this rule does not add anything to our logics, we will reject it as
formalizing modus ponens for⇒ primarily because⇒ does not have any occurrences
in its formulation. So much for the classical multi-premise rule approach. Thus, we
are left with a couple options. First, the sequent
(MP1) A⇒B `A⇒B

is a decent option for modus ponens. This is because (i) it is a valid sequent, and (ii)
it roughly states that if a conditional is true, then its antecedent will imply (via that
conditional) the consequent. The downsides of this formulation are that (i) it does not
guarantee closure of theories under⇒, and consequently (ii) it does not quite capture
a more robust sense of modus ponens in which, if you have both the antecedent of a
conditional and the conditional, then you also have the consequent.

While (MP1) was decent, it failed what we will consider the be the prime desider-
atum for modus ponens, namely, that it guarantees the closure of theories under the
conditional. With this in mind, let’s continue exploring the options.

The next axiom is the one adopted by Chellas (as evidenced by his naming of the
axiom MP). In the language of FDE — since it involves a truth-functional conditional
— the axiom is as follows:
(MP2) A⇒B ` ¬A∨B.

Unfortunately, this also does not close theories under the conditional. The reason
is that, when A is both true and false, the material conditional does not detach, and
thus we are back to the same problem, namely, the lack of modus ponens for truth-
functional conditionals in FDE. However, this axiom does give us a sort of reflexivity,
where the truth of a conditional in a theory has truth-functional consequences in that
very theory. Nonetheless, let’s move on.

The final option we will consider is the axiom
(MP3) (A⇒B)∧A ` B.

This axiom, which is often called weak contraction, does close theories under the
conditional.12 The semantic condition is as follows:

12In non-sequent form, namely ((A⇒ B)∧A)⇒ B, it is also known as the modus ponens axiom.
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(cMP3) Y ∈ f (α,X) and α ∈ X imply α ∈ Y .

We have seen multiple ways of expressing modus ponens in conditional FDE-
logics. The latter two, (MP2) and (MP3) may be added non-trivially to the minimal
and standard logics. The logics CEFDE and CKFDE lack these forms of modus ponens,
a rule of contraposition, contraposition for the conditional, and other often desirable
properties for conditionals, but can be extended to logics that have these properties by
construction. We conclude the conditional FDE-logics in fact add a robust and useful
conditional which may be customized with ease (in contrast to the truth-functional
conditionals, for example).

6. QUANTIFIED CONDITIONAL FDE-LOGICS

The most immediate quantified extensions of Conditional FDE-Logics — that is,
those that just adjoin the axioms and rules of CEFDE with QFDE (in an appropriately
combined language) — do not validate some fairly desirable properties of the interac-
tion between a conditional and quantifiers. For example, this logic does not validate
the sequent ∀x(A⇒B) ` (A⇒∀xB), where x is not free inA. Here, we first develop
the most-straightforward quantified conditional FDE-logic as a base for exploring the
relationship between conditionals and quantifiers.

Definition 43. The logic CEQFDE (CEFDEQ) is defined by extending the logic QFDE
(FDEQ) by adding a conditional to the language and adding the axioms and rules that
define CEFDE.

Lemma 44. The following sequents are theorems of CEQFDE.

(i) A⇒ ∀xB ` A⇒¬∃x¬B
(ii) ∀xA⇒B ` ¬∃x¬A⇒B

(iii) ∀xA∧∀xB ` ∀x(A∧B)
(iv) ∀x(A∧B) ` ∀xA∧∀xB

Proofs for these sequents can be easily constructed.

Lemma 45. If the sequent (A ` B)[c/x] is a theorem of CEQFDE, where c does not
occur in A ` B, then (A ` B)[τ/x] is also a theorem, where τ is a term not occurring
in A ` B.

The proof of the previous lemma is as above, in the similar Lemma 6.

6.1. Semantics. The semantics will be much as it was for quantified FDE, with the
necessary modifications for the conditional. As in the models for quantified logics
above, we will also lift the operations onto propositions and propositional functions.
To this end, let use define a conditional operation on elements of Prop. We have
already defined the ⇒ operation on Prop in Section 3. This is further lifted to the
propositional functions as you would expect, namely, by

(ϕ ⇒ ψ)g = ϕg⇒ ψg,

for every ϕ,ψ ∈ PropFun and g ∈Uω .
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Definition 46. A CEQFDE-model is a tuple M = 〈K, f ,U,Prop,PropFun, |−|〉 de-
fined by extending Definition 7. The additional element f is a function from a situa-
tion and proposition to a set of propositions (i.e., f : (K×Prop) −→℘(Prop)). We
add to conditions (c1)–(c3) the following condition (c4).

(c4) Prop is closed under⇒; PropFun is closed under⇒.
Finally, the valuation function |−| is defined as in QFDE-models, but with the follow-
ing additions for conditionals:

|A⇒ B|+g = |A|+g⇒ |B|+g |A⇒ B|−g = |A|+g⇒ |B|−g

A CEFDEQ-model is a CEQFDE-model that satisfies both (cEC1) and (cEC2).

Definition 47. The consequence relations �MCEQFDE
and �CEQFDE are defined as in

Definition 8, but with respect to CEQFDE.

Unlike the case of quantified FDE, the proofs of soundness and completeness are
not left to the Appendix, for we aim to explore these models with greater focus.

6.2. Soundness. For soundness, we can extend the arguments in the Appendix by the
cases for the conditional. The proof is mostly left to the reader, but we will provide
some arguments.

The axiom (¬-⇒) is valid in every CEQFDE-model. To see this, consider the fol-
lowing chain of equalities:

|¬(A⇒B)|+g = |A⇒ B|−g

= |A|+g⇒ |B|−g

= |A|+g⇒ |¬B|+g

= |A⇒ ¬B|+g

This chain of equalities holds for any g ∈Uω , so the axiom is valid (given the defini-
tion of the consequence relation).

Consider the rule (RCEA). The arguments for CEFDE are easily adapted. Suppose
thatA �B and B �A. Then, for every model and every g∈Uω , we have that |A|+g =
|B|+g. Thus, for any point α in any these models, for any g ∈ Uω , f (α, |A|+g) =
f (α, |B|+g). This gives us that A⇒ C � B ⇒ C and B ⇒ C �A⇒ C, as required.

6.3. Completeness. For completeness, first, we define theories and prime theories as
before, but with respect to the CEQFDE and CEFDEQ. Again, here we shall use L to
refer to both CEQFDE and CEFDEQ.

Lemma 48 (Pair Extension). If Γ 6�L ∆ , then there is a prime L-theory Γ ′ such that
Γ ⊆ Γ ′ and Γ ′∩∆ = /0.

Proof. The proof is fairly standard, and the reader is directed to Anderson, Belnap,
and Dunn [2, pp. 123–126] and again to [23, 5.1–5.2], and is invited to check that
the ` relation is indeed pair extension acceptable. Note well that the theories are not
required to be ω-complete. The lack of ω-completeness as a requirement means that
we can have theories which contain every instance of ∀xA, but yet do not contain the
universally quantified formula ∀xA. /
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Corollary 49. If A 0 B, then there is a prime theory Γ such that A ∈ Γ , but B /∈ Γ .

Definition 50 (Canonical Model for CEQFDE). The canonical model for CEQFDE,
MC

QFDE, is a tuple 〈KC, fC,UC,PropC,PropFunC, |−|C〉, where KC and fC are de-
fined as in Definition 22 (but with respect to CEQFDE-theories), and

(i) UC is the set of individual constants.
(ii) For every closed formula A, ||A||=d f {α ∈ K : A ∈ α}.

(iii) PropC =d f {||A|| : A is a closed formula}.
(iv) For any g ∈Uω , each variable is mapped to a constant, and so we may define

the substitution of all variables in a formula with their respective constants.
We obtain the closed formula Ag by A[g0/x0, . . . ,gn/xn, . . . ].

(v) For each formula A, the function ϕA : Uω −→ Prop is given by
(ϕA)g = ||Ag||.

(vi) PropFun is the set of all functions ϕA, for every formula A.
(vii) The canonical valuation is defined by

(a) |c|= c;
(b) |P|+c1 . . .cn = ||Pc1 . . .cn||;
(c) |P|−c1 . . .cn = ||¬Pc1 . . .cn||.13

(d) The valuation is extended to all formulas as before.

Lemma 51. The canonical models for CEQFDE and CEFDEQ satisfy (c1), (c2), (c3),
and (c4).

Proof. The cases for (c1)–(c3) can be proven using the arguments for the non-condi-
tional case in the Appendix. For (c4), note the equalities, for closed A and B:

||A⇒ B||= {α ∈ K : A⇒B ∈ α} Df: ||−||
= {α ∈ K : ||B|| ∈ f (α, ||A||)} Df: f

= ||A|| ⇒ ||B|| Df: X ⇒ Y

This shows that Prop is closed under⇒, for every element in prop is of the form ||C||
for a closed formula C. The argument to show that PropFun is closed under ⇒ is
similar to the other cases for binary operators for (c2). In particular, we obtain the
equality ϕA⇒ ϕB = ϕA⇒B, which is used in the Truth Lemma below. /

Lemma 52. The canonical model for CEFDEQ satisfies (cEC1) and (cEC2).

The proof is as for FDEQ in the Appendix.

Lemma 53. For every n-ary predicate P, terms τ1, . . . ,τn, and g ∈Uω ,
(i) (Pτ1, . . . ,τn)

g = P(|τ1|g, . . . , |τn|g)
(ii) |Pτn, . . . ,τn|+ = ϕPτn,...,τn

(iii) |Pτn, . . . ,τn|− = ϕ¬Pτn,...,τn

The proof is as for FDEQ.

Lemma 54 (Truth Lemma). For every formula A, |A|+ = ϕA. That is, for every
g ∈Uω , |A|+g = ||Ag||.

13Equivalently, we could define falsity sets for closed formulas as primitive, but this definition is
sufficient.
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Proof. The proof is by induction on the complexity of A. The new case is for condi-
tionals. Suppose that A= B ⇒ C. It follows that

|B ⇒ C|+ = |B|+⇒ |C|+ Df: |−|+
= ϕB⇒ ϕC Inductive Hypothesis
= ϕB⇒C (c4) Equality of Lemma 51 /

Theorem 55 (Completeness). The logic CEQFDE (and CEFDEQ) is complete with
respect to the class of CEQFDE-models (CEFDEQ-models). That is, if A �CEQFDE B,
then A `CEQFDE B, and similarly, for CEFDEQ.

Proof. The proof is similar to the case for QFDE. Suppose that A �CEQFDE B. By the
Truth Lemma, for every g ∈Uω , we have that ||Ag|| ⊆ ||Bg||. By Corollary 49, we
have thatAg ` Bg — that is, (A`B)[. . .gn/xn . . . ] for the free variables xn inA and B
— as every prime filter is an element of the canonical model. By repeated applications
of Lemma 45, the proof of Ag ` Bg may be turned into a proof of A ` B, as required,
since the variables occurring in A ` B do not occur in Ag ` Bg. The proof is similar
for CEFDEQ. /

6.4. Quantifier Distribution (Countermodels). The sequent ∀x(A ⇒ B) ` (A ⇒
∀xB), where x is not free in A, and the similar distribution of the universal quanti-
fier into the antecedent (as an existential quantifier) are not theorems of CEQFDE or
CEFDEQ. To show this, consider the following model.

Suppose we have a tuple 〈K, f ,U,Prop,PropFun, |−|〉 defined by K = {a,b,c},
U = { j,k}, Prop=℘(K), PropFun is the set of all propositional functions { j,k}ω −→
Prop. Further suppose that f (a,{a}) = f (b,{a}) = f (c,{a}) = {{b},{c}}; for every
other X ∈ Prop, f (a,X) = f (b,X) = f (c,X) = /0. Further, suppose we have a signa-
ture with a zero place P0

1 , and a one-place P1
2 (which we will often write without a

term), and that the valuation |−| is defined so that, for every g ∈Uω , |P0
1 |+g = {a},

|P1
2 xn|+g[ j/xn] = {b} for all variables xn, and |P1

2 xn|+g[k/xn] = {c} for all variables
xn. We will show that a,b,c ∈ |∀x(P0

1 → P1
2 )|+, but also that a,b,c /∈ |(P0

1 →∀xP1
2 )|+,

where x is, obviously, not free in P0
1 .

First, we show that a,b,c∈ |∀x(P0
1→ P1

2 )|+. Since Prop is finite
d

S =
⋂

S. So then

|∀xn(P0
1 → P1

2 )|+g = ∀n|(P0
1 → P1

2 )|+g

=
l

i∈U

|(P0
1 → P1

2 )|+g[i/n]

=
⋂

i∈U

|(P0
1 → P1

2 )|+g[i/n]

Now, since |P1
2 xn|+g[ j/xn] = {b} ∈ f (a, |P0

1 |+g[ j/xn]) and that f (a, |P0
1 |+g[ j/xn]) =

f (b, |P0
1 |+g[ j/xn]) = f (c, |P0

1 |+g[ j/xn]), we have that a,b and c are all in |(P0
1 →

P1
2 )|+g[ j/n]. Similarly, we can show this for |(P0

1 → P1
2 )|+g[k/n]. The intersection

of {a,b,c} with itself is itself. Thus, given the equality established above, a,b,c ∈
|∀x(P0

1 → P1
2 )|+.
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To show that a,b,c /∈ |(P0
1 →∀xP1

2 )|+, it suffices to show that |∀xP1
2 |+g /∈ f (a, |P0

1 |+),
for all g ∈Uω , and similarly, with b and c. We easily obtain the equalities

|∀xnP1
2 |+g = ∀n |P1

2 |+g =
l

i∈U

|P1
2 |+g[i/n]

=
⋂

i∈U

|P1
2 |+g[i/n] = |P1

2 |+g[ j/n]∩|P1
2 |+g[k/n] = /0

Note that the empty set is not an element of f (γ,X), for any γ ∈K and X ∈ Prop, so in
particular |∀xP1

2 |+g /∈ f (a, |P0
1 |+). Similar results can be shown for b and c to obtain

our claim. Thus, ∀x(P0
1 ⇒ P1

2 ) ` (P0
1 ⇒∀xP1

2 ) is not a theorem of CEQFDE.
Note that not only does the model fail to satisfy the sequent, since |∀x(P0

1 ⇒
P1

2 )|+ * |(P0
1 ⇒ ∀xP1

2 )|+, but it is also a model of the formula ∀x(P0
1 ⇒ P1

2 ), since
every point of the frame is in |∀x(P0

1 ⇒ P1
2 )|+.14 (We can easily modify the model by

f (b,{a}) = f (c,{a}) = /0 to produce a model that fails to satisfy the sequent, but isn’t
also a model of the ∀x(P0

1 ⇒ P1
2 ).)

Let us label some quantifier distribution (over the conditional) sequents:
(∀-∀) ∀x(A⇒B) ` A⇒ ∀xB, where x is not free in A
(∀-∃) ∀x(A⇒B) ` ∃xA⇒B, where x is not free in B

(∀-∀c) A⇒ ∀xB ` ∀x(A⇒B), where x is not free in A
(∀-∃c) ∃xA⇒B ` ∀x(A⇒B), where x is not free in B

For the sequent (∀-∃), a model can be more easily constructed. Clearly, the sets
f (α, ||A||) and f (α, ||∃xA||) are not constricted to be related by the definition of the
models so far. Given this and the model above, we record the following fact.

Fact 56. The sequents (∀-∀) and (∀-∃) are not theorems of CEQFDE or CEFDEQ.

What about the converse sequents (∀-∀c) and (∀-∃c)? The sequents (∀-∀) and (∀-
∃) are conditional translations of Barcan formulas, and similarly, their converses are
translations of converse Barcan Formulas. As in the case of quantified relevant log-
ics, these translations of Converse Barcan Formulas are provable when the (formula-
indexed) modality is monotonic in the right way — here by (RCM) and (RCT).

Fact 57. The sequents (∀-∀c) and (∀-∃c) are theorems of CEQFDE + (RCM) and
CEFDEQ + (RCT), respectively.

Proof. The derivations below suffice.
(1) ∀xB ` B (∀E)
(2) A⇒ ∀xB ` A⇒B 1, (RCM)
(3) A⇒ ∀xB ` ∀x(A⇒B) 2, (R∀I)
(1) A ` ∃xA (∃I)
(2) ∃xA⇒B `A⇒B 1, (RCT)
(3) ∃xA⇒B ` ∀x(A⇒B) 2, (R∀I)

/

14Being a model of a formula has not been explicitly defined, since we never have an empty left-hand-
side of a turnstile. However, we can say that a model is a model of a formula A when every point in that
model makes the formula A at least true.
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For the sequents (∀-∀c) and (∀-∃c), it is easy to see — from a semantic point of
view — why (cRCT) and (cRCM) are sufficient.

Our Barcan formulas (∀-∀) and (∀-∃) are difficult to characterize in the general
frame setting, even when expressed using a � modality (e.g., see [12]). So the behav-
ior of the conditional and the quantifier observed so far is not surprising. The formula
∀x(A ⇒ B) ` (A ⇒ ∀xB) is similar to the Barcan Formula. That is, when trans-
lating arrows to formula-indexed boxes, we obtain the formula ∀x�AB ` �A∀xB,
which is the Barcan Formula expressed as a `-sequent. In Goldblatt [12], Ferenz [10]
and Tedder and Ferenz [38], the best (and indeed only) characterization for the Bar-
can Formula in the Mares–Goldblatt semantics is a straightforward transliteration into
a semantic (algebraic) dialect. That is, the semantic condition that ∀n�ϕ ⊆ �∀nϕ .
Analogously, we can use the following conditions obtained by applying a similar ap-
proach, making the requisite changes for the restriction that x is not free in A.

(c∀-∀) ∀n(ϕ ⇒ ψ)⊆ ϕ ⇒∀nψ , where ϕg = ϕg[ j/xn] for every j ∈U and g ∈Uω .
(c∀-∃) ∀n(ψ ⇒ ϕ)⊆ ∃nψ ⇒ ϕ , where ϕg = ϕg[ j/xn] for every j ∈U and g ∈Uω .

The restriction on these conditions ensures that ϕ does not “have x free.”

Lemma 58. CEQFDE-models satisfying the conditions above are adequate for exten-
sions of CEQFDE with the corresponding axioms. That is,

(i) CEQFDE + (∀-∀) is sound and complete with respect to the CEQFDE-models
satisfying (c∀-∀);

(ii) CEQFDE + (∀-∃) is sound and complete with respect to the CEQFDE-models
satisfying (c∀-∃).

Proof. Goldblatt’s arguments in [12] for a similar condition for the Barcan formula
in classical settings are used here. The proof of soundness is straightforward. For
completeness, we first show that ifA`B is a theorem, then in the canonical model we
have ϕA ⊆ ϕB. For any α ∈ K and g ∈Uω , by definition α ∈ ϕAg implies α ∈ ||Ag||,
which is Ag ∈ α . But since α is a theorem and A ` B is a theorem, Bg ∈ α , and
so α ∈ ϕB. Combined with the fact that (∀-∀) (or (∀-∃)) is a theorem, the canonical
model is indeed a model satisfying the corresponding constraint. /

Model conditions that are merely axioms rewritten into a semantic dialect are great
for obtaining completeness in general frame settings, given that theories are closed
under the consequence relation. Nonetheless, it is desirable to have a less transliterated
semantic condition. For example, the property of reflexivity of a binary relation as
characterizing the T axiom in modal logics offers, in many respects, a much better
semantic explanation of the axiom T compared to the transliterated condition that
�ϕ ⊆ ϕ . So far, the efforts to produce a nice semantic condition for the Barcan
formula (or rule) in quantified modal (relevant) logics, and for the formulas (∀-∀) and
(∀-∃) in this paper, have not been fruitful. The transliterated condition is what [12]
(in the classical case) and [10] (in the relevant case) give for the Barcan Formula.
So far, every other condition that I have demonstrated to work is (i) lengthy, and
not surprisingly, (ii) just an unnecessarily wordy reformulation of (c∀-∀). Moreover,
these conditions contain phrases like “S is the range of a propositional function ϕ
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restricted to a domain of xng for some variable xn,” which needlessly complicates
matters without providing the desired insight.15

7. CONCLUSION AND FURTHER WORK

In conclusion, we have constructed two classes of propositional FDE-logics, and
extended the most general of these classes with quantifiers. This work opens up several
areas of further research. Some pioneering work of interest to the relevant logician on
the relation between functional models and relational models is found in Routley [25]
and Sylvan, Meyer, and Plumwood [36]. There, the relation between RαXY , RαXβ
and Y ∈ f (α,X) and f (α,X) ⊆ Y is introduced. In terms of furthering that develop-
ment and the current work, future directions of research include tying down the exact
relation between the sequent systems given here and the usual bunch of relevant logics
(with ternary relational semantics), especially as the latter are often presented as sets
of theorems. A particularly interesting line of research in this direction is determining
what the intensional conjunction ◦ and intensional truth t can (or should) look like in
these sequent systems.
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and comments. This paper was supported by RVO 67985807 and by the Czech Sci-
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APPENDIX. METATHEORY FOR FDE

A.1.1. Soundness. Soundness can be proved using the arguments of [18] and [10],
with modifications for the existential quantifier (and the presentation as a sequent sys-
tem). The only interesting new case in the proof is recorded in the following lemma.

Lemma 59. The axiom (EC2) is valid in the class of FDEQ-frames.

Proof. Suppose in an arbitrary model, and arbitrary assignment g, that α ∈ |A ∧
∃xnB|+g, with x not occurring free in A. Then α ∈ |∃xnB|+g, and α ∈ |A|+g. For
reductio, assume that

α /∈ |∃xn(A∧B)|+g = ∃n|A∧B|+g =
⊔

h∈xg

|A∧B|+h.

Then, by the definition of
⊔

, there is an X ∈ Prop such that α /∈ X and
⋃

h∈xg
|A∧B|h⊆

X . But then, since x does not occur free inA, we have that
⋃

h∈xg
|B|+h⊆ X ∪|A|+g. By

(cEC2), we have |∃nB|+g⊆ X ∪|A|+g. But α ∈ |∃nB|+g and α /∈ X ∪|A|+g, whence
we obtain contradiction. /

15There is some insight to be gained here. We want the f (α,X) to be closed under
d

, but just for those
sets that correspond to the right kind of propositional function. Otherwise, it would close it under finite
intersection, and thus entail the rule (RCR).
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A.1.2. Completeness. Theories, prime theories and�L are defined as in Section 3.1.2,
but with respect to QFDE and FDEQ. For this section, we shall use L to refer to both
QFDE and FDEQ. The proof in [2] may be used to show the following:

Lemma 60 (Extension). If Γ 6�L ∆ , then there is a prime L-theory Γ ′ such that
Γ ⊆ Γ ′ and Γ ′∩∆ = /0.

Corollary 61. If A 0 B, then there is a prime theory Γ , where A ∈ Γ but B /∈ Γ .

Definition 62 (Canonical Model for QFDE). The canonical model for QFDE is
MC

QFDE = 〈KC,UC,PropC,PropFunC, |−|C〉, where each element is defined as in
Definition 50 (without fC) with respect to QFDE-theories.

Lemma 63. The canonical model for QFDE (FDEQ) satisfies (c1)–(c3).

The proof is from [18], with the existential quantifier cases from [10].

Lemma 64. Where ∃xA is closed, ∃xA∈ α iff for every X ∈ Prop,
⋃

c∈UA[c/x]⊆ X
implies α ∈ X.

Proof. Left-to-right: Suppose first that ∃xA∈α . For reductio, suppose that there is an
X ∈ Prop such that

⋃
c∈UA[c/x]⊆ X and α /∈ X . However, X = ||B|| for some closed

B. Further, it must the case that ∃xA` B is a theorem. If it were not, thenA[c/x] 0 B.
But then, by the extension lemma, we can extend α to a prime theory δ such that (i)
A[c/x] ∈ δ and (ii) B /∈ δ . But then by assumption we have δ ∈ ⋃

c∈UA[c/x], and so
δ ∈ ||B||, a contradiction. So ∃xA ` B is a theorem. But α is a theory, and so B ∈ α ,
which means α ∈ X , our contradiction.

Right-to-left: Suppose that for every X ∈ Prop,
⋃

c∈UA[c/x] ⊆ X implies α ∈ X .
Take X = ||∃xA||. By the axiom (∃I), it follows that ||A[c/x]|| ⊆ ||∃xA||, for every
c ∈U . So in particular, we obtain

⋃
c∈UA[c/x]⊆ ||∃xA||, and so α ∈ ||∃xA||, which

is ∃xA ∈ α . /

Lemma 65. The canonical model for FDEQ satisfies (cEC1) and (cEC2).

Proof. For (cEC1), see [18, Theorem 10.3]. For (cEC2), suppose condition is appli-
cable to some ϕ,X ,Y,n, and g. By the definition of the canonical model, X = ||A||,
for some sentence A, and ϕ = ϕB for some formula B.

Suppose that
⋃

c∈U ϕ(g[c/n])⊆ X ∪||A||. Thus, for every c ∈U , we have that

ϕBg[c/n]⊆ X ∪||A||
||A||∩ ||Bg[c/n]|| ⊆ X

||A∧ (Bg[c/n])|| ⊆ X

Because A is closed, and the identity Ag\n[c/n] =Ag[c/n],16

A∧ (Bg[c/n]) =A∧ (Bg\n[c/n])

= (A∧B)g\n[c/n]

16The formula Ag\n, the result of applying the substitution of the assignment g but leaving the variable
xn alone, is defined as A[g0/x0, . . . ,g(n−1)/xn−1,xn/xn,g(n+1)/xn+1, . . . ]. Below we will freely use the
identity (for both quantifiers) ∃xn(Ag\n) = (∃xnA)g.
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So, in particular we have that ||A∧(Bg[c/n])||= ||(A∧B)g\n[c/n]||. Now, suppose a /∈
X ∪||A||. Then α /∈ X , which means that α /∈ ||(A∧B)g\n[c/n]||, for every c ∈U . By
Lemma 64, we have ∃xn((A∧B)g\n) /∈ α . By (EC2) and α being a theory, it follows
that A∧∃xnBg\n /∈ α . But α /∈ ||A|| entails α ∈ ||A||, which gives A ∈ α . Thus,
∃xn(B)g\n /∈ α . Thus, α /∈ ||(∃xnB)g|| = (ϕ∃xnB)g = (∃nϕB)g. As α was arbitrary,
this gives the desired result that |∃nϕ|g⊆ X ∪Y . /

The next theorem shows that all of the atomic formulas are given both positive and
negative functions within PropFun.

Lemma 66. For every n-ary predicate P, terms τ1, . . . ,τn, and g ∈Uω ,

(i) (Pτ1, . . . ,τn)
g = P(|τ1|g, . . . , |τn|g)

(ii) |Pτn, . . . ,τn|+ = ϕPτn,...,τn

(iii) |Pτn, . . . ,τn|− = ϕ¬Pτn,...,τn

The proof is similar to that in [18].

Lemma 67 (Truth Lemma). For every formula A, |A|+ = ϕA. That is, for every
g ∈Uω , |A|+g = ||Ag||.
Proof. The proof is straightforward, as in [18], given the equalities shown in the proof
of Lemma 63. /

Theorem 68 (Completeness). The logic QFDE (and FDEQ) is complete with respect
to the class of QFDE-models (FDEQ-models). That is, if A �QFDE B, then A `QFDE
B, and similarly, for FDEQ.

The proof is as in the proof of Theorem 55.
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RECONCILIATION OF APPROACHES TO THE SEMANTICS OF
LOGICS WITHOUT DISTRIBUTION

Chrysafis (Takis) Hartonas

In memoriam Jon Michael Dunn

ABSTRACT. This article clarifies and indeed completes an approach to the relational
semantics of logics that may lack distribution (Dunn’s non-distributive gaggles). The
approach was initiated by Dunn and this author several years ago and again pursued
by the present author over the last three years or so. It uses sorted frames with an inci-
dence relation on sorts (polarities), equipped with additional sorted relations, but, in
the spirit of Occam’s razor principle, it drops the extra assumptions made in the gen-
eralized Kripke frames approach, initiated by Gehrke, that the frames be separated
and reduced (RS-frames). We show in this article that, despite rejecting the additional
frame restrictions, all the main ideas and results of the RS-frames approach relating
to the semantics of non-distributive logics are captured in this simpler framework.
This contributes in unifying the research field, and, in an important sense, it comple-
ments and completes Dunn’s gaggle theory project for the particular case of logics
that may drop distribution.

Keywords. Canonical lattice extensions, Gaggle theory, Relational semantics for non-
distributive logics, RS-frames

1. PRELIMINARIES

1.1. A Note on Motivation. The motivation for this article is twofold. First, it aims at
complementing Dunn’s gaggle theory project pursued in Dunn [11; 12]; Allwein and
Dunn [1]; Dunn and Hardegree [14]; Dunn and Zhou [15]; Dunn et al. [13]; Bimbó and
Dunn [2], by addressing the case of logics that may lack distribution. This has been
the topic of recent research both by the present author and by researchers in the RS-
frames approach, initiated by Gehrke [18]. The second motivation relates to clarifying
points of convergence and divergence between our approach and that of RS-frames.
Dunn himself seems to have stood at the junction of the two, as he has contributed,
with this author, the lattice representation result Hartonas and Dunn [33] on which our
approach is based, while having also contributed in applying the RS-frames approach
to his gaggle theory project, with Gehrke and Palmigiano [13]. Indeed we conclude
that apart from dropping the “RS” from the “RS-frames” approach, which is to say
the assumptions that frames (polarities with relations) are Separated and Reduced,
the two approaches have nearly identical objectives and nearly identical techniques,
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though they have developed separately. In our concluding remarks we point at some
issues that seem to indicate that the approach we have taken may be better suited for
some purposes (though no doubt the same can be said for the RS-approach, for some
other purposes).

1.2. Normal Lattice Expansions. In [11], Dunn introduced the notion of a distrib-
utoid, as a distributive lattice with various operations that in each argument place
either distribute or co-distribute over either meets or joins, always returning the same
type of lattice operation (always a meet, or always a join). To define technically the
extended notion, to which we refer as a normal lattice expansion, let {1,∂} be a 2-
element set, L1 = L and L∂ = Lop (the opposite lattice, order reversed). Extending
the Jónsson–Tarski terminology [36], a function f : L1×·· ·×Ln −→Ln+1 is additive
and normal, or a normal operator, if it distributes over finite joins of the lattice Li, for
each i = 1, . . . ,n, delivering a join in Ln+1.

Definition 1. An n-ary operation f on a bounded lattice L is a normal lattice oper-
ator of distribution type δ ( f ) = (i1, . . . , in; in+1) ∈ {1,∂}n+1 if it is a normal additive
function f : Li1 ×·· ·×Lin −→ Lin+1 (distributing over finite joins in each argument
place), where each i j, for j = 1, . . . ,n+ 1, is in the set {1,∂}, i.e., Li j is either L,
or L∂ .

Example 2. A normal diamond operator ♦ is a normal lattice operator of distribution
type δ (♦) = (1;1), i.e., ♦ : L−→L, distributing over finite joins of L. A normal box
operator� is also a normal lattice operator in the sense of Definition 1, of distribution
type δ (�) = (∂ ;∂ ), i.e., � : L∂ −→L∂ distributes over finite joins of L∂ , which are
then just meets of L.

An FLew-algebra (also referred to as a full BCK-algebra, or a commutative integral
residuated lattice)A= (L,∧,∨,0,1,◦,→) is a normal lattice expansion, where δ (◦) =
(1,1;1), δ (→) = (1,∂ ;∂ ), i.e., ◦ : L×L −→ L and → : L×L∂ −→ L∂ are both
normal lattice operators with the familiar distribution properties.

Dropping exchange, ◦ may have two residuals←,→, one in each argument place,
where δ (←) = (∂ ,1;∂ ), i.e.,← : L∂ ×L−→L∂ .

De Morgan Negation ¬ is a normal lattice operator and it has both the distribution
type δ1(¬) = (1;∂ ) and δ2(¬) = (∂ ;1), as it switches both joins to meets and meets
to joins.

The Grishin operators [23] ↽,?,⇁, satisfying the familiar co-residuation condi-
tions a≥ c ↽ b iff a?b≥ c iff b≥ a ⇁ c have the respective distribution properties,
which are exactly captured by assigning to them the distribution types δ (?) = (∂ ,∂ ;∂ )
(? behaves as a binary box operator and it is known as fission in the relevance logic
literature), δ (↽) = (1,∂ ;1) and δ (⇁) = (∂ ,1;1).

Dunn’s distributoids as defined in [11] are the special case of a normal lattice ex-
pansion where the underlying lattice is distributive. BAO’s (Boolean Algebras with
Operators) [36; 37] are the special case where the underlying lattice is a Boolean al-
gebra and all normal operators distribute over finite joins of the Boolean algebra, i.e.,
they are all of distribution types of the form (1, . . . ,1;1). For BAO’s there is no need
to consider operators of other distribution types, as they can be obtained by composi-
tion of operators with Boolean complementation. For example, in studying residuated
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Boolean algebras [38], Jónsson and Tsinakis introduce a notion of conjugate operators
and they show that intensional implications (division operations) \,/ (the residuals of
the product operator ◦) are interdefinable with the conjugates (at each argument place)
C,B of ◦, i.e., a\b = (aBb−)− and aBb = (a\b−)− (and similarly for / and C, see
[38] for details). Note that \,/ are not operators in the sense of [36], whereasC,B are.

The relational representation of BAO’s in [36] extended Stone’s representation
[45] of Boolean algebras, using the space of ultrafilters of the algebra. To quote
Copeland [9], the results of [36] “can be viewed as in effect a treatment of all the
basic modal axioms and corresponding properties of the accessibility relation. Kripke
described this paper by Jónsson and Tarski as the ‘most surprising anticipation’ of his
own work.” It appears fair to say that, in retrospect, the relational representation of
[36] forms, logically speaking, the technical basis of the subsequently introduced by
Kripke [39; 40; 41] possible worlds semantics (relational semantics), with its well-
known impact on the development of normal modal logics.

Dunn’s approach and objective in [11] has been to achieve the same unified se-
mantic treatment for the logics of distributive lattices with various quasioperators,
now based on the Priestley representation [43] of distributive lattices in ordered Stone
spaces (simplifying Stone’s original representation [44] of distributive lattices), using
the space of prime filters, and abstracting over various specific results in the semantics
of distributive, non-classical logics, notably Relevance Logics.

For non-distributive lattices, Urquhart pioneered a representation theorem [47], us-
ing the space of maximally disjoint filter-ideal pairs. Over the years, Urquhart’s repre-
sentation has proven notoriously difficult to work with, though some authors, includ-
ing Allwein and Dunn [1], as well as Düntsch, Orłowska, Radzikowska and Vakarelov
[16] have based a semantic treatment of specific systems on it. Hartonas and Dunn
[32], published in 1997 as [33], provide a lattice representation and duality result
based on the representation of semilattices and of Galois connections and abstracting
over Goldblatt’s [22] representation of ortholattices, replacing orthocomplementation
with the trivial Galois connection (the identity map ı : L −→ (L∂ )∂ ). Hartonas [24]
presents another lattice representation, extended to include various lattice expansions.
Both [33; 24] form the background of a representation and duality result for normal
lattice expansions Hartonas [25; 31], extending the representation of [33].

The bulk of Dunn’s work on gaggles predates the extension of the theory of canon-
ical extensions to bounded lattices advanced by Gehrke and Harding in [19], extend-
ing the Jónsson–Tarski results for perfect extensions of Boolean algebras [36] and
the Gehrke–Jónsson following extension to distributive lattice expansions [20]. Sub-
sequently, Gehrke [18] proposed generalized Kripke frames (RS-frames), based on
Hartung’s lattice representation [35], as a suitable framework for the relational se-
mantics of logics lacking distribution Chernilovskaya et al. [4], including full Linear
Logic Coumans et al. [10]. The RS-frames approach to the semantics of logics with-
out distribution was further developed by Palmigiano and co-workers, notably Con-
radie [8; 5; 7].
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2. POLARITIES WITH RELATIONS

2.1. Definitions, Notational Conventions and Basic Facts. Let {1,∂} be a set of
sorts and (Z1,Z∂ ) a sorted set. Base sorted frames F = (X ,⍊,Y ) = (Z1,⍊,Z∂ ) are
triples consisting of nonempty sets Z1 = X , Z∂ = Y and a binary relation ⍊ ⊆ X ×Y ,
which will be referred to as the Galois relation of the frame. It generates a Galois
connection ( )⍊ : ℘(X)� ℘(Y )∂ :⍊( ) (V ⊆U⍊ iff U ⊆ ⍊V ), defined by

U⍊ = {y ∈ Y : ∀x ∈U x ⍊ y} = {y ∈ Y : U ⍊ y}⍊V = {x ∈ X : ∀y ∈V x ⍊ y} = {x ∈ X : x ⍊V}
Triples (X ,R,Y ), R⊆ X×Y , where R is treated as the Galois relation of the frame,

are variously referred to in the literature as polarities, after Birkhoff [3], as formal
contexts, in the Formal Concept Analysis (FCA) tradition Ganter and Wille [17], or
as object-attribute (categorization, classification, or information) systems Orłowska
[42], Vakarelov [48], or as generalized Kripke frames [18], or as polarity frames in
the bi-approximation semantics of Suzuki [46].

A subset A ⊆ X will be called stable if A = ⍊(A⍊). Similarly, a subset B ⊆ Y
will be called co-stable if B = (⍊B)⍊. Stable and co-stable sets will be referred to as
Galois sets, disambiguating to Galois stable or Galois co-stable when needed and as
appropriate.
G(X), G(Y ) designate the families (complete lattices) of stable and co-stable sets,

respectively. Note that the Galois connection restricts to a duality of the complete
lattices of Galois stable and co-stable sets ( )⍊ : G(X)w G(Y )∂ :⍊( ).

Preorder relations are induced on each of the sorts, by setting for x,z ∈ X , x � z
iff {x}⍊ ⊆ {z}⍊ and, similarly, for y,v ∈ Y , y � v iff ⍊{y} ⊆ ⍊{v}. We use Γ as
the upper closure operator, and simplify Γ ({x}) to Γ x. A (sorted) frame is called
separated if the preorders � (on X and on Y ) are in fact partial orders ≤. Note that
if the frame is separated, then Γ x = Γ z iff x = z and ⍊{y}= ⍊{v} iff y = v. Thus we
can identify X and Y with the corresponding subsets of G(X),G(Y ). Moreover, we can
identify Z = X ∪Y with the family of sets {Γ x : x ∈ X}∪{⍊{y} : y ∈Y} ⊆ G(X). The
following result is due to Gehrke [18, Proposition 2.7, Corollary 2.11].

Proposition 3 (Gehrke [18]). In a separated frame (X ,⍊,Y ) the set Z = X ∪Y is
partially ordered by the relation 6 defined for x,z ∈ X and y,v ∈ Y by

x6 y iff Γ x⊆ ⍊{y} iff x ⍊ y
x6 z iff Γ x⊆ Γ z iff z≤ x
y6 v iff ⍊{y} ⊆ ⍊{v} iff y≤ v
y6 x iff ⍊{y} ⊆ Γ x iff ∀u ∈ X ∀w ∈ Y (u ⍊ y ∧ x ⍊ w −→ u ⍊ w)

Moreover, G(X) is the Dedekind–MacNeille completion Z of (Z,6).

We caution the reader not to confuse the relation 6 on X ∪Y with the relation ≤
induced by the Galois connection on each of X and Y in a separated frame. General-
ized Kripke frames, introduced by Gehrke [18], are separated and reduced polarities
(RS-frames), where the latter is defined by the conditions

1. ∀x ∈ X ∃y ∈ Y (x 66 y ∧ ∀z ∈ X (z6 x ∧ z 6= x−→ z6 y))
2. ∀y ∈ Y ∃x ∈ X (x 66 y ∧ ∀v ∈ Y (y6 v∧ y 6= v−→ x6 v))
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The concept goes back to Wille’s Formal Concept Analysis (FCA) framework [17]
and Hartung’s lattice representation theorem [35]. Gehrke observes that being reduced
means that all the elements of X are completely join irreducible in X (equivalently, in
Z, equivalently in Z = G(X)) and, dually, that all the elements of Y are completely
meet irreducible in Y (equivalently in Z, equivalently in Z = G(X)). This turns the
poset (Z,6) to what is called a perfect poset in [13] (join-generated by the set J∞(Z)
of its join irreducibles and meet-generated by the set M∞(Z) of its meet irreducibles),
which can be represented as the two-sorted frame (J∞(Z),M∞(Z),6).

To model additional logical operators, RS-frames are equipped with relations sub-
ject to the requirement that all their sections be stable sets, where a section of a re-
lation is the set obtained by leaving one argument place unfilled. For example, to
model the Lambek calculus product operator ◦, RS-frames are equipped with a rela-
tion S⊆Y × (X×X), all sections of which are required to be stable, and an operation⊗

is generated on stable sets by defining (see [18])

A
⊗

C = ⍊{y ∈ Y : ∀x ∈ A∀z ∈C ySxz}
= {u ∈ X : ∀y ∈ Y (∀x,z ∈ X(x ∈ A∧ z ∈C −→ ySxz)−→ u ⍊ y)}

In the canonical frame (which is precisely Hartung’s representation [35] of the Lin-
denbaum–Tarski algebra L of the logic), the relation S is defined by the condition ySxz
iff ∀a,c ∈ L(a ∈ x ∧ c ∈ z−→ a◦ c ∈ y).

In our own approach, initiated with Dunn and the lattice representation result of
[32; 33] and gradually developed in the last three years or so by this author [25; 34;
30; 27; 26; 28; 31], we have preferred to apply Occam’s razor principle and reject
any property of frames that can be rejected while still allowing for the derivation of
the needed results. Therefore we work with polarities that need not be separated,
or reduced. Section stability for the additional relations, however, is retained as a
requirement.1

In the rest of this section, we specify the dual objects (polarities with relations) of
normal lattice expansions, thereby a class of frames for logics that may lack distribu-
tion is described. Representation issues (for completeness arguments) is discussed in
the next section and it amounts to an extension of the lattice representation published
by this author and Dunn [33]. We do not specify any particular logical signature (ex-
cept for assuming that conjunction, disjunction and logical constants for truth and
falsity are present). The logical setting is very much the same as that detailed by Con-
radie and Palmigiano in [6] and the reader is referred to this article for a syntactic
description of the logics. We save some space by working here with the algebraic
structures corresponding to logics that may lack distribution (LE-logics, in the termi-
nology of Conradie et al. [8]), i.e., with normal lattice expansions.

Remark 4 (Notational Conventions). For a sorted relation R⊆∏n+1
j=1 Zi j , where i j ∈

{1,∂} for each j (and thus Zi j = X if i j = 1, and Zi j = Y when i j = ∂ ), we make
the convention to regard it as a relation R ⊆ Zin+1 ×∏n

j=1 Zi j . We agree to write its
sort type as σ(R) = (in+1; i1 · · · in) and for a tuple of points of suitable sort we write

1The usefulness of this property has not been fully acknowledged in some of our previous writings, as
we did not make section stability explicit. We fill in this gap in this article.
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uRu1 · · ·un for (u,u1, . . . ,un) ∈ R. We often display the sort type as a superscript, as
in Rσ . Thus, for example, R∂1∂ is a subset of Y × (X ×Y ). In writing then yR∂1∂ xv
it is understood that x ∈ X = Z1 and y,v ∈ Y = Z∂ . The sort superscript is understood
as part of the name designation of the relation, so that, for example, R111,R∂∂1 name
two different relations.

We use Γ to designate upper closure ΓU = {z ∈ X : ∃x ∈ U x � z}, for U ⊆ X ,
and similarly for U ⊆ Y . U is increasing (an upset) iff U = ΓU . For a singleton set
{x} ⊆ X , we write Γ x rather than Γ ({x}), and similarly for {y} ⊆ Y .

We typically use the standard FCA [17] priming notation for each of the two Galois
maps ⍊( ), ( )⍊. This allows for stating and proving results for each of G(X),G(Y )
without either repeating definitions and proofs, or making constant appeals to duality.
Thus for a Galois set G, G′ = G⍊, if G∈ G(X) (G is a Galois stable set), and otherwise
G′ = ⍊G, if G ∈ G(Y ) (G is a Galois co-stable set).

For an element u in either X or Y and a subset W , respectively of Y or X , we write
u|W , under a well-sorting assumption, to stand for either u ⍊W (which stands for
u ⍊ w, for all w ∈W ), or W ⍊ u (which stands for w ⍊ u, for all w ∈W ). Well-sorting
means that either u ∈ X ,W ⊆ Y , or W ⊆ X and u ∈ Y , respectively. Similarly, for the
notation u|v, where u,v are elements of different sorts.

We designate n-tuples (of sets, or elements) using a vectorial notation, setting
(G1, . . . ,Gn) = ~G ∈∏n

j=1G(Zi j), ~U ∈∏n
j=1℘(Zi j), ~u ∈∏n

j=1 Zi j (where i j ∈ {1,∂}).
Most of the time we are interested in some particular argument place 1 ≤ k ≤ n and
we write ~G[F ]k for the tuple ~G where Gk = F (or Gk is replaced by F). Similarly~u[x]k
is (u1, . . . ,uk−1,x,uk+1, . . . ,un). For brevity, we write ~u �~v for the pointwise order-
ing statements u1 � v1, . . . ,un � vn. We also let ~u ∈ ~W stand for the conjunction of
componentwise membership statements u j ∈Wj, for all j = 1, . . . ,n.

To refer to sections of relations (the sets obtained by leaving one argument place un-
filled) we make use of the notation~u[ ]k which stands for the (n−1)-tuple (u1, . . . ,uk−1,
[ ]k,uk+1, . . . ,un) and similarly for tuples of sets, extending the membership con-
vention for tuples to cases such as ~u[ ]k ∈ ~F [ ]k and similarly for ordering relations
~u[ ]k �~v[ ]k. We also quantify over tuples (with, or without a hole in them), instead
of resorting to an iterated quantification over the elements of the tuple, as for example
in ∃~u[ ]k ∈ ~F [ ]k ∃v,w ∈ G wR~u[v]k. Quantification as in the example just given is al-
ways understood under a well-sorting assumption, which however is typically omitted,
though always tacitly assumed.

We extend the vectorial notation to distribution types, summarily writing δ =
(~i j; in+1) for (i1, . . . , in; in+1). Then, for example, ~i j[∂ ]k is the tuple with ik = ∂ . Fur-
thermore, we let i j = ∂ , if i j = 1 and i j = 1, when i j = ∂ .

Lemma 5. Let F= (X ,⍊,Y ) be a polarity and u ∈ Z = X ∪Y .
1. ⍊ is increasing in each argument place.
2. (Γ u)′ = {u}′, and Γ u = {u}′′ is a Galois set.
3. Galois sets are increasing, i.e., u ∈ G implies Γ u⊆ G.
4. For a Galois set G, G =

⋃
u∈G Γ u.

5. For a Galois set G, G =
∨

u∈G Γ u =
⋂

v|G{v}′.
6. For a Galois set G and any set W, W ′′ ⊆ G iff W ⊆ G.
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Proof. By simple calculation. Proof details are included in [25], Lemma 2.2. For
claim 4,

⋃
u∈G Γ u ⊆ G by claim 3 (Galois sets are upsets). In claim 5, given our

notational conventions, the claim is that if G ∈ G(X), then G =
⋂

G⍊y
⍊{y} and if

G ∈ G(Y ), then G =
⋂

x⍊G{x}⍊. /

For the purposes of this article, the following definition of closed and open elements
suffices.

Definition 6 (Closed and Open Elements). The principal upper sets of the form Γ x,
with x ∈ X , will be called closed, or filter elements of G(X), while sets of the form⍊{y}, with y ∈Y , will be referred to as open, or ideal elements of G(X). Similarly for
G(Y ). A closed element Γ u is clopen iff there exists an element v, with u|v, such that
Γ u = {v}′.

By Lemma 5, the closed elements of G(X) join-generate G(X), while the open
elements meet-generate G(X) (similarly for G(Y )).
Definition 7 (Galois Dual Relation). For a relation R, of sort type σ , its Galois dual
relation R′ is the relation defined by uR′~v iff ∀w(wR~v −→ w|u). In other words,
R′~v = (R~v)′.

For example, given a relation R111 its Galois dual is the relation R∂11 where for any
x,z∈X , R∂11xz= (R111xz)⍊= {y∈Y : ∀u∈X (uR111xz−→ u⍊ y)} and, similarly, for
a relation S∂1∂ its Galois dual is the relation S11∂ where for any z ∈ X ,v ∈ Y we have
S11∂ zv = ⍊(S∂1∂ zv), i.e., xS11∂ zv holds iff for all y ∈ Y , if yS∂1∂ zv obtains, then x ⍊ y.

Definition 8 (Sections of Relations). For an (n+1)-ary relation Rσ and an n-tuple ~u,
Rσ~u = {w : wRσ~u} is the section of Rσ determined by ~u. To designate a section of
the relation at the k-th argument place we let ~u[ ]k be the tuple with a hole at the k-th
argument place. Then wRσ~u[ ]k = {v : wRσ~u[v]k} ⊆ Zik is the k-th section of Rσ . Note
that Rσ~u is the (n+1)-th section of the relation.

2.2. Image Operators, Conjugates and Residuals. If Rσ is a relation on a sorted
frame F, of some sort type σ = (in+1; i1 · · · in), then as in the unsorted case, Rσ (but
we shall drop the displayed sort type when clear from context) generates a (sorted)
image operator αR, defined by (1), of sort σ(αR) = (i1, . . . , in; in+1), defined by the
obvious generalization of the Jónsson–Tarski image operators in [36]

αR(~W ) = {w ∈ Zin+1 : ∃~w(wR~w∧∧n
j=1(w j ∈Wj))} =

⋃

~w∈~W
R~w,(1)

where for each j, Wj ⊆ Zi j .
Thus αR is a normal and completely additive function in each argument place,

therefore, it is residuated, i.e., for each k there is a set-operator β k
R satisfying the

condition:

(2) αR(~W [V ]k)⊆U iff V ⊆ β k
R(~W [U ]k).

Hence β k
R(~W [U ]k) is the largest set V s.t. αR(~W [V ]k)⊆U , and thus, it is definable by

(3) β k
R(~W [U ]k) =

⋃
{V : αR(~W [V ]k)⊆U}.



222 Chrysafis Hartonas: Reconciliation of Approaches to the Semantics of Logics without Distribution

Let αR be the closure of the restriction of αR to Galois sets ~F ,

(4) αR(~F) = (αR(~F))′′ =




w j∈Fj⋃

j=1,...,n

R~w



′′

=
∨

~w∈~F
(R~w)′′,

where Fj ∈ G(Zi j), for each j ∈ {1, . . . ,n}. The operator αR is sorted and its sorting
is inherited from the sort type of R. For example, if σ(R) = (∂ ;11), αR : ℘(X)×℘(X) −→ ℘(Y ), hence, αR : G(X)×G(X) −→ G(Y ). Single sorted operations α1

R :
G(X)×G(X) −→ G(X) and α∂

R : G(Y )×G(Y ) −→ G(Y ) can be then extracted by
composing appropriately with the Galois connection (which is a duality of Galois
stable and co-stable sets): α1

R(A,C) = (αR(A,C))′ (where A,C ∈ G(X)) and, similarly,
α∂

R(B,D) = αR(B′,D′) (where B,D ∈ G(Y )). Similarly, for the n-ary case.

Definition 9 (Complex Algebra). Let F = (X ,⍊,Y,R) be a polarity with a relation R
of some sort σ(R) = (in+1; i1 · · · in). The full complex algebra of F is the structure
F+ = (G(X),α1

R) and its dual full complex algebra is the structure F∂ = (G(Y ),α∂
R).

Most of the time we work with the dual sorted algebra ( )⍊ : G(X)wG(Y )∂ :⍊( ), as
it allows for considering sorted operations that distribute over joins in each argument
place (which are either joins of G(X), or of G(Y ), depending on the sort type of the
operation). Single-sorted normal operators are then extracted in the complex algebra
by composition with the Galois maps, as indicated above.

Remark 10 (Objective). The primary objective of the current section is to specify
conditions under which the residuation structure αR a β k

R is preserved under the re-
striction and closure operation described above so that the sorted operator αR on Ga-
lois sets is residuated, hence it distributes over arbitrary joins of Galois sets. The
notion of conjugate operators we next introduce is useful in this context. Conjugates
were introduced in [38] for residuated Boolean algebras. We generalize here to the
sorted case, using the duality provided by the Galois connection rather than by classi-
cal complementation.

Definition 11 (Conjugates). Let α be an image operator (generated by some relation
R) of sort type σ(α) = (~i j; in+1) and α the closure of its restriction to Galois sets in
each argument place, as defined above. A function γk on Galois sets, of sort type
σ(γk) = (~i j[in+1]k; ik) = (i1, . . . , ik−1, in+1, ik+1, . . . , in; ik) (where recall that i j = ∂ if
i j = 1 and i j = 1 when i j = ∂ ) is a conjugate of α at the k-th argument place (or a
k-conjugate) iff the following condition holds

(5) α(~F)⊆ G iff γk(~F [G′]k)⊆ F ′k ,

for all Galois sets Fj ∈ G(Zi j) and G ∈ G(Zin+1).

It follows from the definition of a conjugate function that γ is a k-conjugate of α
iff α is one of γ and we thus call α,γ k-conjugates. Note that the priming notation for
both maps of the duality ( )⍊ : G(X) w G(Y )∂ :⍊( ) packs together, in one form, four
distinct cases (due to sorting) of conjugacy.
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Example 12. In the case of a ternary relation R111 of the indicated sort type, an image
operator αR =

⊙
: ℘(X)×℘(X) −→ ℘(X) is generated. Designate the closure of its

restriction to Galois stable sets by ⦶ : G(X)×G(X)−→G(X). Then α =⦶ is of sort
type σ(⦶) = (1,1;1). If γ2

R = . : G(X)×G(Y )−→ G(Y ), with σ(.) = (1,∂ ;∂ ), then
⦶, . are conjugates iff for any Galois stable sets A,F,C ∈G(X) it holds that A⦶F ⊆C
iff A.C′ ⊆ F ′.

We point out that, given an operator . : G(X)×G(Y ) −→ G(Y ), if we now define
⇒ : G(X)×G(X) −→ G(X) by A⇒C = (A .C′)′ = ⍊(A .C⍊), it is immediate that
⦶,. are conjugates iff ⦶,⇒ are residuated. In other words

A⦶F ⊆C iff A.C′ ⊆ F ′ iff F ⊆ A⇒C.

Lemma 13. The following are equivalent.
(1) αR distributes over any joins of Galois sets at the k-th argument place.
(2) αR has a k-conjugate γk

R defined on Galois sets by

γk
R(~F) =

⋂
{G : αR(~F [G′]k)⊆ F ′k}.

(3) αR has a k-residual β
k
R defined on Galois sets by

β
k
R(~F [G]k) = (γk

R(~F [G′]k))′ =
∨
{G′ : αR(~F [G′]k)⊆ F ′k}.

Proof. Existence of a k-residual is equivalent to distribution over arbitrary joins and
the residual is defined by

β
k
R(. . . ,Fk−1,H,Fk+1, . . .) =

∨
{G : αR(. . . ,Fk−1,G,Fk+1, . . .)⊆ H}.

We show that the distributivity assumption (1) implies that (2) and (3) are equivalent,
i.e., that

αR(~F [G]k)⊆ H iff γk
R(~F [H ′]k)⊆ G′ iff G⊆ β

k
R(~F [H]k).

We illustrate the proof for the unary case only, as the other parameters remain idle
in the argument.

Assume αR(G) ⊆ H and let γR(H
′) =

⋂{E : αR(E ′) ⊆ H}, a Galois set by defi-
nition, given that G,H,E are assumed to be Galois sets. Then G′ is in the set whose
intersection is taken. Hence, γR(H

′) ⊆ G′ follows from the definition of γR. It also
follows by definition that G⊆ β R(H) = (γR(H

′))′.
Assuming G ⊆ β R(H) we obtain by definition that G ⊆ (γR(H

′))′, hence, G ⊆∨{E ′ : αR(E ′)⊆H}, using the definition of γR and duality. Hence by the distributivity
assumption αR(G)⊆∨{αR(E ′) : αR(E ′)⊆H}⊆H. This establishes that αR(G)⊆H
iff γR(H

′)⊆ G′ iff G⊆ β R(H), as desired. /

Definition 14. We let β k
R/ be the restriction of β k

R of equation (3) to Galois sets, ac-
cording to its sort type, explicitly defined by (6):

(6) β k
R/(

~E[G]k) =
⋃
{F ∈ G(Zik) : αR(~E[F ]k)⊆ G}.

Theorem 15. If αR is residuated in the k-th argument place, then β k
R/ is its resid-

ual and β k
R/(~E[G]k) is a Galois set, i.e., the union in equation (6) is actually a join

in G(Zik).
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Proof. It suffices to argue the unary case only. We have that βR/(G) =
⋃{F : αR(F)

⊆ G}, for Galois sets F,G.
Note first that αR(F) ⊆ G iff F ⊆ βR/(G). Left-to-right is obvious by definition

and by the fact that for a Galois set G and any set U , U ′′ ⊆ G iff U ⊆ G. If F ⊆
βR/(G) ⊆ βR(G), then by residuation αR(F) ⊆ G. Given that G is a Galois set, it
follows that αR(F)⊆ G.

If indeed αR is residuated on Galois sets with a map β R, then the residual is defined
by β R(G) =

∨{F : αR(F)⊆G}=∨{F : αR(F)⊆G} and this is precisely the closure
of βR/(G) =

⋃{F : αR(F)⊆ G}. But in that case we obtain F ⊆ β R(G) iff αR(F)⊆
G iff αR(F) ⊆ G iff F ⊆ βR/(G) and setting F = β R(G) it follows that β R(G) ⊆
βR/(G)⊆ β R(G). /

Lemma 16. β k
R/ is defined equivalently by (7) and by (8).

β k
R/(

~E[G]k) =
⋃
{Γ u ∈ G(Zik) : αR(~E[Γ u]k)⊆ G}(7)

β k
R/(

~E[G]k) = {u ∈ Zik : αR(~E[Γ u]k)⊆ G}(8)

Proof. β k
R/ is defined by equation (6), so if u ∈ β k

R/(~E[G]k), let F ∈ G(Zik) be such
that u ∈ F and αR(~E[F ]k) ⊆ G. Then Γ u ⊆ F and by monotonicity of αR we have
αR(~E[Γ u]k) ⊆ αR(~E[F ]k) ⊆ G and this establishes the left-to-right inclusion for the
first identity of the lemma. The converse inclusion is obvious since Γ u is a Galois set.

For the second identity, the right-to-left inclusion is obvious. Now if u is such that
αR(~E[Γ u]k)⊆G and u� w, then Γ w⊆ Γ u and then by monotonicity of αR it follows
that αR(~E[Γ w]k)⊆ αR(~E[Γ u]k)⊆ G.

This shows that
⋃{Γ u ∈ G(Zik) : αR(~E[Γ u]k) ⊆ G} is contained in the set {u ∈

Zik : αR(~E[Γ u]k) ⊆ G}, and given the first part of the lemma, the second identity ob-
tains as well. /

Definition 17 (Conjugate Relations). Let F=(X ,⍊,Y,R,S), where σ(R)= (in+1; i1 · · ·
ik · · · in), σ(S) = (tn+1; t1 · · · tk · · · tn), where tn+1 = ik, tk = in+1 and for j /∈ {k,n+ 1},
t j = i j. Let αR and ηS be the generated image operators and αR,ηS be the closures of
their respective restrictions to Galois sets.

The relations R,S will be called k-conjugate relations iff the Galois set operators
αR,ηS are k-conjugates (Definition 11), i.e., just in case (given that G,F ′k are Galois
sets) αR(~F)⊆ G iff ηS(~F [G′]k)⊆ F ′k .

Lemma 18. Let F = (X ,⍊,Y,R,S), where σ(R) = (in+1; i1 · · · ik · · · in), σ(S) = (tn+1;
t1 · · · tk · · · tn), where tn+1 = ik, tk = in+1 and for j /∈ {k,n+1}, t j = i j. Assume that the
k-th sections of the Galois dual relation R′ of R are Galois sets. Let T be the relation
defined, for w ∈ Zik

, by vT~p[w]k iff w ∈ (vR′~p[ ]k)′ iff ∀u ∈ Fk (vR′~p[u]k −→ u|w).
If the constraint (9) below holds in the frame, then R and S are k-conjugates.

(9) ∀v ∈ Zin+1
∀~p[ ]k ∈ ~Zi j [ ]k∀w ∈ Zik

(vT~p[w]k ↔ wS~p[v]k)

Proof. We have

αR(~F)⊆ G iff
⋃
~p∈~F R~p ⊆ G iff ∀~p (~p ∈ ~F −→ (R~p⊆ G))
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iff ∀~p (~p ∈ ~F −→ (G′ ⊆ R′~p))
iff ∀~p (~p ∈ ~F −→ ∀v ∈ Zin+1

(G|v−→ vR′~p))
iff ∀~p ∀v ∈ Zin+1

(~p[ ]k ∈ ~F [ ]k ∧ pk ∈ Fk ∧G|v −→ vR′~p[pk]k)

iff ∀~p ∀v ∈ Zin+1
(~p[ ]k ∈ ~F [ ]k ∧G|v −→ (pk ∈ Fk −→ vR′~p[pk]k))

iff ∀~p[ ]k ∀v ∈ Zin+1
(~p[ ]k ∈ ~F [ ]k ∧G|v −→ (Fk ⊆ vR′~p[ ]k))

(using the hypothesis that the k-th sections of R′ are Galois sets)
iff ∀~p[ ]k∀v ∈ Zin+1

(~p[ ]k ∈ ~F [ ]k ∧G|v −→ ((vR′~p[ ]k)′ ⊆ F ′k))

iff ∀~p[ ]k∀v ∈ Zin+1

(
~p[ ]k ∈ ~F [ ]k ∧G|v −→ ∀w ∈ Zik

(vT~p[w]k −→ Fk|w)
)

iff ∀~p[ ]k∀v ∈ Zin+1
∀w ∈ Zik

(
vT~p[w]k ∧~p[ ]k ∈ ~F [ ]k ∧G|v −→ Fk|w

)

On the other hand, we have

ηS(~F [G′]k)⊆ F ′k iff
⋃
~p[v]k∈~F [G′]k

S~p[v]k ⊆ F ′k
iff ∀~p[ ]k∀v ∈ Zin+1

∀w ∈ Zik

(
wS~p[v]k ∧~p[ ]k ∈ ~F [ ]k ∧G|v −→ Fk|w

)

and thus the claim of the lemma is proved. /

Theorem 19. Let F = (X ,⍊,Y,R) be a frame with an (n+ 1)-ary sorted relation, of
some sort σ(R) = (in+1; i1 · · · in). If for any w ∈ Zin+1

and any (n−1)-tuple ~p[ ]k with
p j ∈ Zi j , for each j ∈ {1, . . . ,n}\{k}, the sections wR′~p[ ]k of the Galois dual relation
R′ of R are Galois sets, then αR distributes at the k-th argument place over arbitrary
joins in G(Zik).

Proof. Define the relation T from R as in the statement of Lemma 18,

vT~p[w]k iff w ∈ (vR′~p[ ]k)′.

Then use equation (9), repeated below, as a definition for a relation S

∀v ∈ Zin+1
∀~p[ ]k ∈ ~Zi j [ ]k∀w ∈ Zik

(vT~p[w]k ↔ wS~p[v]k) .

Note that the sort type of S, as defined, is σ(S) = (tn+1; t1 · · · tk · · · tn), where tn+1 =
ik, tk = in+1 and for j /∈ {k,n+1}, t j = i j. By the proof of Lemma 18, the relations R
and S are k-conjugates. Consequently, by Lemma 13, αR distributes at the k-th argu-
ment place over arbitrary joins in G(Zik) and it has a k-residual which, by Theorem 15,
is precisely the restriction to Galois sets β k

R/ (defined by equation (6), equivalently by
Lemma 16) of the k-residual β k

R of the image operator αR. /

By composition with the Galois connection, single-sorted operators α1
R,α

∂
R can be

obtained on G(X) and G(Y ), respectively. Given that the Galois connection is a duality
between Galois stable and co-stable sets, completely normal lattice operators (dual to
each other) are obtained on G(X) and G(Y ), respectively. Therefore we have proven
the following result.

Corollary 20. Let F= (X ,⍊,Y,(Rp)p∈P) be a polarity with relations indexed in some
set P, of sort types σp (p ∈ P) and such that every section of the Galois dual relations
R′p (p ∈ P) is a Galois set. Then the full complex algebra F+ of F is a normal lat-
tice expansion where a relation of sort type (in+1;~i j) determines a completely normal
lattice operator of distribution type (~i j; in+1).
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3. REPRESENTATION OF NORMAL LATTICE EXPANSIONS

A bounded lattice expansion is a structure L= (L,≤,∧,∨,0,1,F1,F∂ ), where F1

consists of normal lattice operators f of distribution type δ ( f ) = (~i j;1) (i.e., of output
type 1), while F∂ consists of normal lattice operators h of distribution type δ (h) =
(~t j;∂ ) (i.e., of output type ∂ ). For representation purposes, nothing depends on the
size of the operator families F1 and F∂ and we may as well assume that they contain a
single member, say F1 = { f} and F∂ = {h}. In addition, the representation argument
is uniform for operators of any arity, so we may assume they are both n-ary.

3.1. Canonical Frame Construction. The canonical frame is constructed as follows,
based on [32; 33; 24; 25].

First, the base polarity F = (Filt(L),⍊, Idl(L)) consists of the sets X = Filt(L) of
filters and Y = Idl(L) of ideals of the lattice and the relation ⍊ ⊆ Filt(L)× Idl(L) is
defined by x ⍊ y iff x∩ y 6= /0, while the representation map ζ1 sends a lattice element
a ∈ L to the set of filters that contain it, ζ1(a) = {x ∈ X : a ∈ x}= {x ∈ X : xa ⊆ x}=
Γ xa. Similarly, a co-represenation map ζ∂ is defined by ζ∂ (a)= {y∈Y : a∈ y}= {y∈
Y : ya ⊆ y} = Γ ya. It is easily seen that (ζ1(a))′ = ζ∂ (a) and, similarly, (ζ∂ (a))′ =
ζ1(a). The images of ζ1,ζ∂ are precisely the families (sublattices of G(X),G(Y ),
respectively) of clopen elements of G(X),G(Y ), since clearly Γ xa =

⍊{ya} and Γ ya =
{xa}⍊. For further details the reader is referred to [32; 33].

Second, for each normal lattice operator a relation is defined, such that if δ =
(~i j; in+1) is the distribution type of the operator, then σ = (in+1;~i j) is the sort type of
the relation. Without loss of generality, we have restricted to the families of operators
F1 = { f} and F∂ = {h}, so that we shall define two corresponding relations R,S of
respective sort types σ(R) = (1; i1 · · · in) and σ(S) = (∂ ; t1 · · · tn), where for each j, i j
and t j are in {1,∂}. In other words,

R ⊆ X×
n

∏
j=1

Zi j S ⊆ Y ×
n

∏
j=1

Zt j .

To define the relations, we use the point operators introduced in [24] (see also [25]).
In the generic, case we examine, we need to define two sorted operators

f̂ :
n

∏
j=1

Zi j −→ Z1 ĥ :
n

∏
j=1

Zt j −→ Z∂ (recall that Z1 = X ,Z∂ = Y ).

Assuming for the moment that the point operators have been defined, the canonical
relations R,S are defined by

xR~u iff f̂ (~u)⊆ x (for x ∈ X and ~u ∈
n

∏
j=1

Zi j)

yS~v iff ĥ(~v)⊆ y (for y ∈ Y and ~v ∈
n

∏
j=1

Zt j)(10)

Returning to the point operators and letting xe,ye be the principal filter and principal
ideal, respectively, generated by a lattice element e, these are uniformly defined as
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follows, for~u ∈∏n
j=1 Zi j and~v ∈∏n

j=1 Zt j ,

f̂ (u1, . . . ,un) =
∨
{x f (a1,...,an) :

n∧

j=1

(a j ∈ u j)} =
∨
{x f (~a) : ~a ∈~u}

ĥ(v1, . . . ,vn) =
∨
{yh(a1,...,an) :

n∧

j=1

(a j ∈ v j)} =
∨
{yh(~a) : ~a ∈~v}(11)

In other words, f̂ (~u) is the filter generated by the set { f (~a) : ~a ∈ ~u}, and similarly,
ĥ(~v) is the ideal generated by the set {h(~a) : ~a ∈~v}.
Example 21 (FLew). We consider as an example the case of associative, commutative,
integral residuated lattices L = (L,≤,∧,∨,0,1,◦,→), the algebraic models of FLew
(the associative full Lambek calculus with exchange and weakening), also referred
to in the literature as full BCK. By residuation of ◦,→, the distribution types of the
operators are δ (◦) = (1,1;1) and δ (→) = (1,∂ ;∂ ). Let (Filt(L),⍊, Idl(L)) be the
canonical frame of the bounded lattice (L,≤,∧,∨,0,1). Designate the corresponding
canonical point operators by ⦶ and , respectively. They are defined by (11)

x ⦶ z =
∨
{xa◦c : a ∈ x ∧ c ∈ z} ∈ Filt(L) (x,z ∈ Filt(L))

x v =
∨
{ya→c : a ∈ x ∧ c ∈ v} ∈ Idl(L) (x ∈ Filt(L),v ∈ Idl(L))

where recall that we write xe,ye for the principal filter and ideal, respectively, gener-
ated by the lattice element e, so that x ⦶ z ∈ Filt(L), while (x v) ∈ Idl(L).

The relations R111,S∂1∂ are then defined by

uR111xz iff x ⦶ z⊆ u yS∂1∂ xv iff (x v)⊆ y

of sort types σ(R) = (1;11) and σ(S) = (∂ ;1∂ ). The canonical FLew-frame is there-
fore the structure F= (Filt(L),⍊, Idl(L),R111,S∂1∂ ).

3.2. Properties of the Canonical Frame.

Lemma 22. The following hold for the canonical frame.

1. The frame is separated.
2. For ~u ∈∏n

j=1 Zi j and ~v ∈∏n
j=1 Zt j , the sections R~u and S~v are closed elements

of G(X) and G(Y ), respectively.
3. For x ∈ X ,y ∈ Y , the n-ary relations xR, yS are decreasing in every argument

place.

Proof. For 1, just note that the ordering � is set-theoretic inclusion (of filters, and of
ideals, respectively), hence separation of the frame is immediate.

For 2, by the definition of the relations, R~u = {x : f̂ (~u)⊆ x}= Γ ( f̂ (~u)) is a closed
element of G(X) and similarly for S~v.

For 3, if w ⊆ uk, then {x f (a1,...,an) : ak ∈ w∧∧ j 6=k(a j ∈ u j)} is a subset of the set
{x f (a1,...,an) :

∧
j(a j ∈ u j)}, hence taking joins it follows that f̂ (~u[w]k) ⊆ f̂ (~u). By

definition, if xR~u holds, then we obtain f̂ (~u[w]k) ⊆ f̂ (~u) ⊆ x, hence xR~u[w]k holds as
well. Similarly, for the relation S. /
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Lemma 23. In the canonical frame, xR~u holds iff ∀~a ∈ Ln (~a ∈~u−→ f (~a) ∈ x). Sim-
ilarly, yS~v holds iff ∀~a ∈ Ln (~a ∈~v−→ h(~a) ∈ y).

Proof. By definition xR~u holds iff f̂ (~u) ⊆ x, where f̂ (~u), by its definition (11) is the
filter generated by the elements f (~a), for~a ∈~u, hence, clearly~a ∈~u implies f (~a) ∈ x.
Similarly, for the relation S. /

Lemma 24. Where R′,S′ are the Galois dual relations of the canonical relations R,S,
yR′~u holds iff f̂ (~u) ⍊ y iff ∃~b(~b ∈~u∧ f (~b) ∈ y). Similarly, xS′~v holds iff x ⍊ ĥ(~v) iff
∃~e(~e ∈~v∧h(~e) ∈ x).

Proof. By definition of the Galois dual relation, yR′~u holds iff for all x ∈ X , if xR~u
obtains, then x ⍊ y. By definition of the canonical relation R, for any x ∈ X , xR~u
holds iff f̂ (~u) ⊆ x and thereby f̂ (~u)R~u always obtains. Hence, yR′~u is equivalent to
∀x ∈ X ( f̂ (~u)⊆ x−→ x∩ y 6= /0), from which it follows that f̂ (~u) ⍊ y iff yR′~u obtains.

To show that yR′~u holds iff ∃~a(~a ∈ ~u∧ f (~a) ∈ y), since the direction from right
to left is trivially true, assume yR′~u, or equivalently, by the argument given above,
assume that f̂ (~u)⍊ y, i.e., f̂ (~u)∩y 6= /0 and let e∈ f̂ (~u)∩y. By e∈ f̂ (~u) and definition
of f̂ (~u) as the filter generated by the set { f (~a) : ~a∈~u}, let~a1, . . . ,~as, for some positive
integer s, be n-tuples of lattice elements (where ~ar = (ar

1, . . . ,a
r
n), for 1≤ r ≤ s) such

that f (~a1)∧ ·· · ∧ f (~as) ≤ e and ar
j ∈ u j for each 1 ≤ r ≤ s and 1 ≤ j ≤ n. Recall

that the distribution type of f is δ ( f ) = (i1, . . . , in;1), where for j = 1, . . . ,n we have
i j ∈ {1,∂} and define elements b1, . . . ,bn as follows.

b j =

{
a1

j ∧·· ·∧as
j if i j = 1;

a1
j ∨·· ·∨as

j if i j = ∂ .

When i j = 1, f is monotone at the j-th argument place, u j is a filter and b j ≤ ar
j ∈ u j,

for all r = 1, . . . ,s, so that b j = a1
j ∧·· ·∧as

j ∈ u j. Similarly, when i j′ = ∂ , f is antitone
at the j′-th argument place, while u j′ is an ideal, so that b j′ = a1

j′ ∨ ·· · ∨ as
j′ ∈ u j′ .

This shows that ~b ∈ ~u and it remains to show that f (~b) ∈ y. We argue that f (~b) ≤
f (~a1)∧ ·· · ∧ f (~as) ≤ e and the desired conclusion follows by the fact that e ∈ y, an
ideal.

For any 1 ≤ r ≤ s, let ~ar[b j]
i j=1
j be the result of replacing ar

j by b j in the tuple
~ar and in every position j from 1 to n such that i j = 1 in the distribution type of
f . Since b j ≤ ar

j and f is monotone at any such j-th argument place, it follows that

f (~ar[b j]
i j=1
j )≤ f (~ar), for all 1≤ r ≤ s.

In addition, for any 1 ≤ r ≤ s, let ~ar[b j]
i j=1
j [b j′ ]

i j′=∂
j′ be the result of replacing ar

j′

by b j′ in the tuple ~ar[b j]
i j=1
j and in every position j′ from 1 to n such that i j′ = ∂ in

the distribution type of f . Since b j′ ≥ ar
j′ and f is antitone at any such j′-th argument

place, it follows that f (~ar[b j]
i j=1
j [b j′ ]

i j′=∂
j′ )≤ f (~ar[b j]

i j=1
j )≤ f (~ar), for all 1≤ r ≤ s.

Since~ar[b j]
i j=1
j [b j′ ]

i j′=∂
j′ =~b we obtain that

f (~b) = f (~ar[b j]
i j=1
j [b j′ ]

i j′=∂
j′ )≤ f (~ar[b j]

i j=1
j )≤ f (~a1)∧·· ·∧ f (~as)≤ e,
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hence, f (~b) ∈ y and this completes the proof, as far as the relation R is concerned.
The argument for the relation S is similar, and can be safely left to the reader. /

Lemma 25. In the canonical frame, all sections of the Galois dual relations R′, S′ of
the canonical relations R, S are Galois sets.

Proof. There are two cases to handle, one for each of the relations R′, S′, with two
subcases for each one, depending on whether ik is 1, or ∂ .

Case of the relation R′: We have R′~u = (R~u)′, by definition, so the section R′~u is
a Galois (co-stable) set. It remains to be shown that for any y ∈ Y and ~u[ ]k, the k-th
section yR′~u[ ]k is a Galois set, for any 1≤ k≤ n. There are two subcases to consider,
accordingly as ik = 1, or ik = ∂ and recall that δ ( f ) = (i1, . . . , in;1). Hence if ik = 1,
then f is monotone and it distributes over finite joins at the k-th argument place and
if ik = ∂ , then f is antitone and it co-distributes at the k-th argument place over finite
meets (turning them into joins).

Subcase ik = 1: Then yR′~u[ ]k ⊆ X = Filt(L).
Let v be the ideal generated by the set V = {b ∈ L : ∃~a[ ]k f (~a[b]k) ∈ y}. For any

x ∈ X such that yR′~u[x]k holds, by Lemma 24, we have f̂ (~u[x]k) ⍊ y, equivalently,
∃~a[ ]k ∃b(~a[b]k ∈~u[x]k ∧ f (~a[b]k) ∈ y). Thus, b ∈ x∩ v and so yR′~u[ ]k ⍊ v.

We assume z ∈ (yR′~u[ ]k)′′ and we need to show that yR′~u[z]k. The assumption
implies that z ⍊ v, i.e., for some lattice element e we have e ∈ z∩ v. By e ∈ v, let
b1, . . . ,bs ∈V ⊆ v, for some positive integer s, be elements such that e≤ b1∨·· ·∨bs ∈
v, since v is an ideal.

Since b1, . . . ,bs ∈V , there are tuples of lattice elements~cr[ ]k such that f (~cr[br]k)∈
y, for each 1 ≤ r ≤ s. Considering the distribution type of f and as in the proof of
Lemma 24, define the tuple of elements~a = (a1, . . . ,an) by

a j =

{
c1

j ∧·· ·∧ cs
j if i j = 1;

c1
j ∨·· ·∨ cs

j if i j = ∂ .

For each 1 ≤ r ≤ s, let~cr[br]k[a j]
i j=1
j be the result of replacing in~cr[br]k all cr

j by a j
whenever i j = 1 in the distribution type of f . Then for each r as above and by mono-
tonicity of f at the j-th argument place whenever i j = 1 we have f (~cr[br]k[a j]

i j=1
j )≤

f (~cr[br]k) ∈ y, an ideal, hence f (~cr[br]k[a j]
i j=1
j ) ∈ y. Let also~cr[br]k[a j]

i j=1
j [a j′ ]

i j′=∂
j′

be the result of further replacing in~cr[br]k[a j]
i j=1
j all cr

j′ by a j′ whenever i j′ = ∂ in the
distribution type of f . Since f is antitone at the j′-th position when i j′ = ∂ (given that

the output type of f is assumed to be in+1 = 1), we obtain f (~cr[br]k[a j]
i j=1
j [a j′ ]

i j′=∂
j′ )≤

f (~cr[br]k[a j]
i j=1
j )≤ f (~cr[br]k) ∈ y and so f (~cr[br]k[a j]

i j=1
j [a j′ ]

i j′=∂
j′ ) ∈ y. But, having

performed substitutions in all places (except for the k-th) ~cr[br]k[a j]
i j=1
j [a j′ ]

i j′=∂
j′ =

~a[br]k, for each 1≤ r ≤ s.
It follows from the above that, for each 1 ≤ r ≤ s we have f (~a[br]k) ∈ y, an ideal,

hence, also
∨s

r=1 f (~a[br]k) ∈ y. By case assumption, ik = 1, hence, f distributes over
finite joins in the k-th argument place and then we obtain that f (~a[b1 ∨ ·· · ∨ bs]k) =
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∨s
r=1 f (~a[br]k) ∈ y. By e ≤ b1 ∨ ·· · ∨ bs and monotonicity of f at the k-th argument

place we obtain f (~a[e]k)≤ f (~a[b1∨·· ·∨bs]k) ∈ y, hence, also f (~a[e]k) ∈ y.
Therefore, there exists ~a[e]k ∈~u[z]k such that f (~a[e]k) ∈ y which, by Lemma 24 is

equivalent to yR′~u[z]k. This shows that (yR′~u[ ]k)′′ ⊆ yR′~u[ ]k, so the section has been
shown to be a Galois (stable) set.

The subcase ik = ∂ and the case of the relation S are treated similarly, and we leave
details to the interested reader. /

The canonical frame for a lattice expansionL=(L,≤,∧,∨,0,1, f ,h), where δ ( f )=
(i1, . . . , in;1) and δ (h) = (t1, . . . , tn;∂ ) (i j, t j ∈ {1,∂}) is the structure L+, that is,
F= (Filt(L),⍊, Idl(L),R,S). By Proposition 25, the canonical relations R, S are com-
patible with the Galois connection generated by ⍊ ⊆ X ×Y , in the sense that all sec-
tions of their Galois dual relations are Galois sets. Set operators αR,ηS are defined
as in Section 2.2 and we let αR,ηS be the closures of their restrictions to Galois sets
(according to their distribution types). Note that αR(~F) ∈ G(X), while ηS(~G) ∈ G(Y ),
given the output types of f ,h (alternatively, given the sort types of R, S).

It follows from Theorem 19 and Lemma 25, that the sorted operators αR,ηS on
Galois sets distribute over arbitrary joins of Galois sets (stable or co-stable, according
to the sort types of R, S) in each argument place.

Note that αR,ηS are sorted maps, taking their values in G(X) and G(Y ), respec-
tively. We define single-sorted maps on G(X) (analogously for G(Y )) by composition
with the Galois connection

α f (A1, . . . ,An) = αR(. . . , A j︸︷︷︸
i j=1

, . . . , A′r︸︷︷︸
ir=∂

, . . .) (A1, . . . ,An ∈ G(X)),(12)

ηh(B1, . . . ,Bn) = ηS(. . . , Br︸︷︷︸
ir=∂

, . . . , B′j︸︷︷︸
i j=1

, . . .) (B1, . . . ,Bn ∈ G(Y )).(13)

Given that the Galois connection is a duality of Galois stable and Galois co-stable
sets, it follows that the distribution type of α f is that of f and that α f distributes, or
co-distributes, over arbitrary joins and meets in each argument place, according to its
distribution type, returning joins in G(X). Similarly, for ηh. Thus, the lattice repre-
sentation maps ζ1 : (L,≤,∧,∨,0,1)−→ G(X) and ζ∂ : (L,≤,∧,∨,0,1)−→ G(Y ) are
extended to maps ζ1 : L −→ G(X) and ζ∂ : L −→ G(Y ) by setting

ζ1( f (a1, . . . ,an)) = α f (ζ1(a1), . . . ,ζ1(an)) = αR(. . . ,ζ1(a j)︸ ︷︷ ︸
i j=1

, . . . ,ζ∂ (ar)︸ ︷︷ ︸
ir=∂

, . . .)

(14) ζ∂ ( f (a1, . . . ,an)) =
(

α f (ζ1(a1), . . . ,ζ1(an))
)′

ζ1(h(a1, . . . ,an)) = ( ηh(ζ∂ (a1), . . . ,ζ∂ (an)) )
′

(15) ζ∂ (h(a1, . . . ,an)) = ηh(ζ∂ (a1), . . . ,ζ∂ (an))

It has been therefore established that there exists a map from normal lattice expan-
sions to polarities with relations, as specified in the following concluding result.

Corollary 26. Given a normal lattice expansion L= (L,≤,∧,∨,0,1,F1,F∂ ), where
F1,F∂ are families of normal lattice operators of output types 1 and ∂ , respectively,
the dual frame L+ of the lattice expansion L is a polarity with additional relations,
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where for a normal lattice operator f of distribution type (~i j; in+1) the corresponding
frame relation R f is of sort type (in+1;~i j) and where all sections of its Galois dual
relation R′f are Galois sets.

3.3. Representation, Canonical Extensions and RS-Frames. A canonical lattice
extension is defined in [19] as a pair (α,C) where C is a complete lattice and α is
an embedding of a lattice L into C such that the following density and compactness
requirements are satisfied.

• (density) α[L] is dense in C, where the latter means that every
element of C can be expressed both as a meet of joins and as a join
of meets of elements in α[L];
• (compactness) for any set A of closed elements and any set B of
open elements of C,

∧
A ≤ ∨B iff there exist finite subcollections

A1 ⊆ A,B1 ⊆ B such that
∧

A1 ≤
∨

B1,

where the closed elements of C are defined in [19] as the elements in the meet-closure
of the representation map α and the open elements of C are defined dually as the
join-closure of the image of α .

Proposition 27. G(X) (the lattice of Galois stable subsets of the set of filters) is a
canonical extension of the (bounded) lattice (L,≤,∧,∨,0,1).

Proof. This was shown by Gehrke and Harding in [19]. More precisely, existence
of canonical extensions is proven in [19] by demonstrating that the compactness and
density requirements are satisfied in the representation due to Hartonas and Dunn [33],
which is precisely the representation presented in Section 3.1. /

Proposition 28. The canonical representations of the normal lattice operators f , h,
of respective output types 1, ∂ , as defined by the equations (14) and (15), are the σ
and π-extension (in the terminology of [19]), respectively, of f , h.

Proof. In the representation of Section 3.1, the closed and open elements of G(X) are
the sets of the form Γ x(x ∈ X) and ⍊{y} (y ∈ Y ), respectively. For a unary lattice
operator f : L −→ L, its σ -extension in a canonical extension C of the lattice L is
defined in [19] by equation (16), where K is the set of closed elements of C and O is its
set of open elements.

fσ (k) =
∧
{ f (a) : k ≤ a ∈ L} fσ (u) =

∨
{ fσ (k) : K 3 k ≤ u}(16)

fπ(o) =
∨
{ f (a) : L 3 a≤ o} fπ(u) =

∧
{ fπ(o) : u≤ o ∈ O}(17)

where in these definitions L is identified with its isomorphic image in C and a ∈ L is
then identified with its representation image.

Working concretely with the canonical extension of [33], the σ extension fσ :
Lσ −→ Lσ of a monotone map f as in equation (16) and the dual σ -extension f ∂

σ :
L∂

σ −→L∂
σ (not used in [19]) are defined by instantiating equation (16) in the concrete

canonical extension of [33]. For x ∈ X and y ∈ Y and where xe is a principal filter, ye
a principal ideal and the closed elements are precisely the principal upper sets Γ u (for
each of X , Y ) we have, by instantiating (16),
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fσ (Γ x) =
∧{αX ( f a) : a ∈ L,Γ x≤ αX (a)} =

∧{Γ x f a : Γ x⊆ Γ xa}
=
∧{Γ x f a : a ∈ x} = Γ (

∨{x f a : a ∈ x})
= Γ ( f̂ (x))

f ∂
σ (Γ y) =

∧{αY ( f a) : a ∈ L,Γ y≤ αY (a)} =
∧{Γ y f a : Γ y⊆ Γ ya}

=
∧{Γ y f a : a ∈ y} = Γ (

∨{y f a : a ∈ y})

Hence fσ (Γ x) = Γ ( f̂ (x)), where f̂ is the point operator we defined, after [24], by
equation (11). For an n-ary operator f , first observe that in a product ∏n

j=1G(Zi j),
where when i j = ∂ then Zi j = Y and G(Zi j) = G(Y ), closed elements are n-tuples of
closed elements of the factors (Γ u1, . . . ,Γ un). Then fσ (Γ u1, . . . ,Γ un) = Γ ( f̂ (~u)),
by the same analysis. This is a sorted operator and by composition with the Galois
connection we obtain (in the case examined the output type is 1) the single-sorted
σ -extension f σ (. . . ,Γ u j︸︷︷︸

i j=1

, . . . ,⍊{ur}︸ ︷︷ ︸
ir=∂

, . . .) = Γ ( f̂ (~u)).

For an arbitrary Galois stable set A and unary monotone f , f σ (A) is defined in (16)
using join-density of closed elements. Hence we obtain f σ (A) =

∨
x∈A fσ (Γ x) =∨

x∈A Γ ( f̂ (x)).
For an n-ary monotone map we similarly obtain that f σ (~F) =

∨
~u∈~F Γ ( f̂ (~u)). Since

w ∈ Γ ( f̂ (~u)) iff f̂ (~u)⊆ w iff wR~u, by the way the canonical relation R was defined in
equation (10), so that Γ ( f̂ (~u)) = R~u, we obtain that (observing that R~u is a Galois set,
indeed a closed element of G(X))

f σ (~F) =
∨

~u∈~F
R~u =


⋃

~u∈~F
R~u



′′

= αR(~F).

Note that σ -extensions, as defined in [19], are sorted maps and then a single-sorted
map is obtained by composing with the Galois connection, as shown in equations (14)
and (15).

The π-extension is simply the Galois image of the dual σ -extension, so there is
nothing new to discuss and the proof is complete. We only note further that the way
we have canonically proceeded is to represent a lattice operator with output type 1 by
its σ -extension and one of output type ∂ by its π-extension. /

Remark 29 (Canonical Relations in the RS-Frames Approach). In modeling the Lam-
bek calculus product operator ◦, of distribution type (1,1;1) (see Example 21), the
canonical relation R111 was defined by (using the point operators) uRxz iff x ⦶ z ⊆ u,
where x ⦶ z is the filter generated by the elements a ◦ c, with a ∈ x and c ∈ z. By
Lemma 23, specialized to this case, this amounts to the classical definition of a canon-
ical relation, familiar from the Boolean and distributive case, by the clause

uRxz iff ∀a,c ∈ L(a ∈ x ∧ c ∈ z −→ a◦ c ∈ u).

By Lemma 24, specialized to the particular case, yR′xz holds iff x ⦶ z ⍊ y iff ∃a,c ∈
L(a ∈ x ∧ c ∈ z ∧ a ◦ c ∈ y), which is precisely Gehrke’s [18] canonical relation
definition for the Lambek product operator.
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This is no isolated matter, as in the RS-frames approach the choice is made to
work directly with a relation that can be nevertheless defined as the Galois dual of a
classically defined accessibility relation. This is also witnessed by the way Goldblatt
[21] proceeds, generalizing on Gehrke’s [18], to define relations and set-operators in
a frame. Indeed, examining (for his case of interest) additive operators F on stable
sets he defines a relation SF by setting ySF~z iff F(Γ z1, . . . ,Γ zn) ⍊ y (which in the case
of a binary, completely additive operator F , is equivalent in the canonical frame to
z1 ⦶ z2 ⍊ y). It is merely a matter of choice and convenience, given the purpose at
hand, which relation to decide to work with. Gehrke [18] does indeed point out that
instead of using the relation S⊆Y×(X×X) defined as above (for the Lambek product
operator), one could use a relation R⊆ X× (X×X), which is actually the Galois dual
of S, but she does not dwell much on the matter.

Though, to the best of this author’s knowledge, it has not been made explicit in
the RS-frames approach how relations are to be defined corresponding to arbitrary
normal lattice operators in general (but only in cases of particular examples), the re-
lations on an RS-frame corresponding to normal lattice operators of some distribution
type (~i j; in+1) are the Galois duals of our canonical accessibility relations, hence they
are systematically of sort type (in+1;~i j), and operators are defined from them. For ex-
ample, Goldblatt [21] (generalizing Gehrke’s [18] definition for the Lambek product
operator) defines from a relation S⊆ Y ×Xn an operator FS by setting

F•S(~F) =
⋂
{S~z : ~z ∈ ~F}(18)

FS(~F) = ⍊F•S(~F) =
∨
{⍊(S~z) : ~z ∈ ~F)}=

∨

~z∈~F

⍊(S~z).(19)

The relation R defined as the Galois dual of S, i.e., by R~z= ⍊(S~z) is precisely a relation
of sort type (in+1;~i j) and, assuming section stability, R and S are each other’s Galois
dual. Therefore, we obtain

FS(~F) =
∨

~z∈~F

⍊(S~z) =
∨

~z∈~F
R~z =


⋃

~z∈~F
R~z



′′

(20)

A comparison of equations (4) and (20) reveals then that the two definitions are
variants of each other.

4. CONCLUSIONS

We have argued that the two approaches, the one developed in this article (con-
cluding and completing our previous recent work on the subject) and the RS-frames
approach really only differ in whether the polarity is assumed to be separated and re-
duced or not. The results of this article have shown that nothing is lost by dropping
these additional assumptions, as far as the semantics of logics without distribution is
concerned.

There are three points of interest, however, that are worth making.
First, a Stone type duality for RS-frames (essentially for Hartung’s lattice rep-

resentation) has encountered difficulties, similar to these encountered in extending
Urquhart’s representation to a full Stone duality. In [25], we have developed a duality
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result for normal lattice expansions, extending the representation of [33]. In view of
Goldblatt’s recent proposal [21] of a notion of bounded morphisms for polarities, this
result, combined with the results of this article, can be improved to a Stone duality for
normal lattice expansions with bounded morphisms as the morphisms in the dual cat-
egory of polarities. This project has been carried out in the sequel [31] of the present
article.

Second, the approach we have presented in this article allows for relating the logic
of non-distributive lattices to the sorted, residuated (poly)modal logic of polarities
with relations, where the residuated pair of modal operators is generated by the com-
plement of the Galois relation of the frame. Preliminary results in this direction have
been reported in [29; 30] by this author, but the area is far from fully explored. Re-
garding non-distributive logics as fragments of sorted, residuated (poly)modal logics
allows for importing techniques and results from modal logic in the field of logics
lacking distribution.

Finally, we believe that the semantic framework presented in this article fully com-
plements Dunn’s gaggle theory project, and in an important sense it completes the
project for the case of non-distributive logical calculi.
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[45] Stone, M. H. (1938). The representation of Boolean algebras, Bulletin of the American
Mathematical Society 44(12): 807–816.

[46] Suzuki, T. (2014). On polarity frames: Applications to substructural and lattice-based
logics, Advances in Modal Logic, 10, College Publications, London, UK, pp. 533–552.

[47] Urquhart, A. (1978). A topological representation theory for lattices, Algebra Universalis
8(1): 45–58.

[48] Vakarelov, D. (1998). Information systems, similarity relations and modal logics, Incom-
plete Information: Rough Set Analysis, Vol. 13 of Studies in Fuzziness and Soft Comput-
ing, Physica, Heidelberg, pp. 492–550.

UNIVERSITY OF THESSALY, GREECE, Email: hartonas@uth.gr



HERBRAND AND CONTRAPOSITION-ELIMINATION THEOREMS
FOR EXTENDED FIRST-ORDER BELNAP–DUNN LOGIC

Norihiro Kamide

Dedicated to the memory of professor J. Michael Dunn

ABSTRACT. Belnap–Dunn logic is known to be useful in broad areas of computer
science. A useful first-order extension of Belnap–Dunn logic is required to de-
velop an expressive inconsistency-tolerant automated theorem proving framework
that can simultaneously handle indefinite and definite information. In this study, Her-
brand and contraposition-elimination theorems (and other theorems) are proved for
a Gentzen-type sequent calculus FBD+ for a first-order extension of De and Omori’s
axiomatic propositional extension BD+ of Belnap–Dunn logic, in which classical
negation and classical implication are added. These fundamental theorems provide
a proof-theoretic justification for developing an FBD+-based inconsistency-tolerant
automated theorem proving framework that can simultaneously handle indefinite and
definite information.

Keywords. Belnap–Dunn logic, Contraposition-elimination theorem, Gentzen-type
sequent calculus, Herbrand theorem

1. INTRODUCTION

Belnap–Dunn logic (also known as Belnap and Dunn’s four-valued logic, first-
degree entailment logic, or Dunn–Belnap logic) [5; 4; 12; 11] and its extensions and
generalizations [2; 13; 40; 46; 45; 39] are considered useful in broad areas of computer
science, including inconsistency-tolerant reasoning, logic programming, and knowl-
edge representation. Additional information on Belnap–Dunn logic and its applica-
tions can be found in [14; 5; 4; 12; 11; 34]. A useful first-order extension of Belnap–
Dunn logic is required to develop an expressive inconsistency-tolerant automated the-
orem proving framework that can simultaneously handle indefinite and definite infor-
mation. In this study, we prove the Herbrand and contraposition-elimination theo-
rems (and other theorems) for the Gentzen-type sequent calculus FBD+ introduced by
Kamide and Omori in [25] for an extended first-order Belnap–Dunn logic with both
paraconsistent and classical negations. The target first-order logic discussed in this
study is a first-order extension of De and Omori’s axiomatic propositional extension
BD+ [10] of Belnap–Dunn logic, in which classical negation and classical implication
are added.
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The Herbrand and contraposition-elimination theorems proved in this study pro-
vide a proof-theoretic justification for developing an FBD+-based automated theorem
proving framework that can simultaneously handle indefinite and definite informa-
tion. The Herbrand theorem for first-order classical logic is considered a fundamental
theorem for realizing automated theorem proving frameworks [8; 37]. By contrast,
the contraposition-elimination theorem, which has been considered, for example, in
[27] and [3], provides an alternative “compact” Gentzen-type sequent calculus (i.e.,
it uses only a few logical inference rules), which is theorem-equivalent to FBD+.
The alternative sequent calculus derived from the contraposition-elimination theorem
is expected to be useful for generating simple negated proofs of automated theorem
proving frameworks (e.g., it is easy to generate proofs of ∼α from a proof of α). In
addition to these fundamental results, the existing standard algorithms for automated
theorem proving frameworks based on first-order classical logic can also be applied to
an FBD+-based automated theorem proving framework using an embedding theorem
that was previously proved in [25]. This embedding theorem proved in [25] also plays
a central and important role in proving the cut-elimination, completeness, Herbrand,
and Craig interpolation theorems for FBD+.

The propositional logic BD+, originally introduced as a Hilbert-style axiomatic
system in [10], was obtained from a Hilbert-style axiomatic system for propositional
classical logic with the standard language {∧,∨,→,¬} by adding the following axiom
schemes with a paraconsistent negation connective ∼:

1. ∼∼α ↔ α , 4. ∼(α→β )↔ (¬∼α ∧∼β ),
2. ∼(α ∧β )↔ (∼α ∨∼β ), 5. ∼¬α ↔¬∼α .
3. ∼(α ∨β )↔ (∼α ∧∼β ),

We note that the characteristic axiom schemes of BD+ are∼(α→β )↔ (¬∼α∧∼β )
and ∼¬α ↔ ¬∼α , which were considered quite natural and plausible in terms of
many-valued semantics in [10]. It was also shown in [10] that BD+ is essentially
equivalent to Béziau’s four-valued modal logic PM4N [6] and Zaitsev’s paraconsis-
tent logic FDEP [47]. Another system that is essentially equivalent to BD+ is that of
Méndez and Robles PŁ4 [32]. In addition, BD+ was observed in [24] to be a conser-
vative extension of Avron’s self-extensional four-valued paradefinite logic (SE4) [3]
(i.e., SE4 is a classical-negation-free fragment of BD+). Furthermore, some modal
and intuitionistic variants of BD+ have recently been studied by Kamide in [23]. In
[38], a similar (but different) first-order extension of Belnap–Dunn logic with an ad-
ditional unary connective 4, referred to as the Baaz’s delta operator, was studied by
Sano and Omori based on a Gentzen-type natural deduction system. This extended
logic with 4 is considered equivalent to an extended first-order Belnap-Dunn logic
with exclusion negation [10].

Gentzen-type sequent calculi for Belnap–Dunn logic have been extensively stud-
ied. See, for example, [28; 20] for a survey of Gentzen-type sequent calculi for
Belnap–Dunn logic. Several Gentzen-type sequent calculi for BD+ were introduced
by Kamide in [22]. It was shown in [22] that completeness (with respect to a valua-
tion semantics) and cut-elimination theorems hold for various Gentzen-type sequent
calculi for BD+ and its neighbors. Using the cut-elimination theorem for one of
these calculi for BD+, we can derive the fact that BD+ is a conservative extension
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of Belnap–Dunn logic and propositional classical logic. In [25], the Gentzen-type
sequent calculus FBD+ for a first-order extension of BD+, which is also used and in-
vestigated in the present study, was introduced by Kamide and Omori. The first-order
system FBD+ is obtained from a Gentzen-type sequent calculus for BD+ by adding
the standard logical inference rules for the universal and existential quantifiers ∀ and
∃ in first-order classical logic as well as the special negated logical inference rules that
correspond to the following axiom schemes:

1. ∼∀xα ↔∃x∼α ,
2. ∼∃xα ↔∀x∼α .

It was shown in [25] that (syntactical and semantical) embedding, cut-elimination, and
completeness (with respect to valuation and many-valued semantics) theorems hold
for FBD+. Thus, this study extends and refines the results of the previous work [25]
to obtain the foundations of FBD+-based inconsistency-tolerant automated theorem
proving framework that can simultaneously handle indefinite and definite information.

We remark that FBD+, BD+, SE4, and Belnap–Dunn logic are paraconsistent log-
ics [35], which are suitable for handling inconsistency-tolerant (or paraconsistent)
reasoning with indefinite information. In general, paraconsistent logics that employ
a paraconsistent negation connective ∼ are logics with the property of paraconsis-
tency with respect to ∼, which rejects the law (α ∧∼α)→β of explosion. See,
for example, [35] for more information on paraconsistency. In the following, we
show that FBD+ is useful for representing both paraconsistent (indefinite) and non-
paraconsistent (definite) situations (information) simultaneously, as it uses both para-
consistent and classical negation connectives. We now consider an illustrative exam-
ple of clinical reasoning, which is regarded as inconsistency-tolerant reasoning. In
clinical reasoning, we do not want a description (s(x)∧∼s(x))→d(x) to be satisfied
for any symptom s and disease d, where ∼s(x) states that “person x does not have
symptom s” and d(x) states that “person x suffers from disease d.” We do not want
this because situations may exist that support the truth of both s(a) and ∼s(a) for
some individual a but not the truth of d(a). However, we also require the classical
negation connective ¬ for clinical reasoning. For example, we do not want to describe
inHospital(x)∧¬inHospital(x), where ¬inHospital(x) states that “person x is not in
a hospital.” Although s(x) and d(x) are vague predicates with indefinite information,
inHospital(x) is a crisp and complete predicate with definite information. Thus, ¬
is required to represent the negation of this type of crisp and complete situation with
definite information. We can then appropriately represent and handle the following sit-
uation by FBD+: ¬inHospital(John)∧healthy(John)∧∼health(John), which states
that “John is not in a hospital, and he is healthy and not healthy.”

The remainder of this paper is structured as follows. In Section 2, along the lines
of [25], we define FBD+ and present a theorem for embedding FBD+ into a Gentzen-
type sequent calculus FLK for first-order classical logic. This embedding theorem
plays a crucial role in proving the Craig interpolation and Herbrand theorems for
FBD+. In Section 3, we prove the contraposition-elimination theorem for FBD+.
This contraposition-elimination theorem shows that the following (global) contrapo-
sition rule is admissible in cut-free FBD+:
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∆⇒Γ
∼Γ ⇒∼∆

(contraposition)

Using this theorem, we construct an alternative compact Gentzen-type sequent calcu-
lus, FBD+∗, which is theorem-equivalent to FBD+. The contraposition-elimination
theorem is regarded as a characteristic theorem for FBD+, as this theorem or its vari-
ants do not hold for Gentzen-type sequent calculi for typical paraconsistent logics such
as Nelson’s paraconsistent four-valued logic N4 [1; 33; 44; 28; 29], which is regarded
as an extension of Belnap–Dunn logic. The contraposition-elimination theorem for
a Gentzen-type sequent calculus GSE4 for SE4 (i.e., the classical-negation-free frag-
ment of BD+) was proved by Avron in [3]. In Section 4, we first prove the strong-
equivalence replacement (or substitution) theorem for FBD+, which was addressed in
[25] (but where its proof was not given). Next, we prove the Herbrand theorem for
FBD+ using this strong-equivalence replacement theorem and the theorem for embed-
ding FBD+ into FLK. The strong-equivalence replacement theorem is a particularly
novel property, as it is lacking in some typical paraconsistent logics such as N4. In
Section 5, we show the Craig interpolation and Maksimova separation theorems for
FBD+ using the theorem for embedding FBD+ into FLK. Furthermore, we introduce
an alternative cut-free Gentzen-type sequent calculus FBD+◦ and prove the theorem
equivalence between FBD+◦ and FBD+. In Section 6, we conclude the study and
address some remarks.

2. PRELIMINARY: EMBEDDING THEOREM

First, we introduce the first-order languageLFBD+ of an extended first-order Belnap-
Dunn logic with classical negation. This language is also denoted as L when we
have no confusion. Formulas of L are constructed from countably many predicate
and function symbols and countably many individual variables and constants by the
following logical connectives: ∧ (conjunction), ∨ (disjunction), → (implication), ¬
(classical negation),∼ (paraconsistent negation), ∃ (existential quantifier), and ∀ (uni-
versal quantifier). We use small letters p,q, . . . to denote predicate symbols or atomic
formulas, small letters x,y, . . . to denote individual variables, small letters t, t1, . . . to
denote terms, small Greek letters α,β , . . . to denote formulas, and Greek capital let-
ters Γ ,∆ , . . . to denote finite (possibly empty) sets of formulas. We use an expression
α[t/x] to denote the formula that is obtained from the formula α by replacing all free
occurrences of the individual variable x in α with the term t, but avoiding a clash of
variables by an appropriate renaming of bound variables. We consider a 0-ary function
and a 0-ary predicate to be an individual constant and a propositional variable, respec-
tively. If Φ is the set of all atomic formulas of L, then it is said that L is based on Φ .
We use expressions ∼Γ and ¬Γ to denote the sets {∼γ : γ ∈ Γ } and {¬γ : γ ∈ Γ },
respectively. We use the symbol ≡ to denote the equality of expressions symbol by
symbol. We call an expression of the form Γ ⇒∆ a sequent. We use an expression
α ⇔ β to represent the abbreviation of the sequents α⇒ β and β⇒α . We use an
expression L ` S to denote the fact that a sequent S is provable in a sequent calculus
L. If L of L ` S is clear from the context, L may be omitted. A rule R of inference
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is called admissible in a sequent calculus L if the following condition is satisfied: For
any instance

S1 · · ·Sn

S
of R, if L ` Si for all i, then L ` S. Furthermore, R is called derivable in L if there
is a derivation from S1, · · · ,Sn to S in L. It is remarked that a rule R of inference is
admissible in a sequent calculus L if and only if two sequent calculi L and L+R are
theorem-equivalent.

We now introduce a Gentzen-type sequent calculus FBD+ for the first-order exten-
sion of De and Omori’s extended Belnap–Dunn logic BD+ with classical negation,
which was introduced in [25].

Definition 1 (FBD+ [25]). In the following definition, we use a symbol t to denote
an arbitrary term and a symbol z to denote an individual variable which obeys the
eigenvariable condition (i.e., z does not occur as a free individual variable in the lower
sequent of the rule).

The initial sequents of FBD+ are of the form: For any atomic formula p,

p⇒ p ∼ p⇒∼ p.

The structural inference rules of FBD+ are of the form:
Γ ⇒∆ ,α α,Σ⇒Π

Γ ,Σ⇒∆ ,Π
(cut)

Γ ⇒∆
α,Γ ⇒∆

(we-left)
Γ ⇒∆

Γ ⇒∆ ,α
(we-right)

The non-negated logical inference rules of FBD+ are of the form:

α,β ,Γ ⇒∆
α ∧β ,Γ ⇒∆

(∧left)
Γ ⇒∆ ,α Γ ⇒∆ ,β

Γ ⇒∆ ,α ∧β
(∧right)

α,Γ ⇒∆ β ,Γ ⇒∆
α ∨β ,Γ ⇒∆

(∨left)
Γ ⇒∆ ,α,β

Γ ⇒∆ ,α ∨β
(∨right)

Γ ⇒∆ ,α β ,Γ ⇒∆
α→β ,Γ ⇒∆

(→ left)
α,Γ ⇒∆ ,β

Γ ⇒∆ ,α→β
(→ right)

Γ ⇒∆ ,α
¬α,Γ ⇒∆

(¬left)
α,Γ ⇒∆

Γ ⇒∆ ,¬α
(¬right)

α[t/x],Γ ⇒∆
∀xα,Γ ⇒∆

(∀left)
Γ ⇒∆ ,α[z/x]
Γ ⇒∆ ,∀xα

(∀right)

α[z/x],Γ ⇒∆
∃xα,Γ ⇒∆

(∃left)
Γ ⇒∆ ,α[t/x]
Γ ⇒∆ ,∃xα

(∃right)

The negated logical inference rules of FBD+ are of the form:

α,Γ ⇒∆
∼∼α,Γ ⇒∆

(∼∼ left)
Γ ⇒∆ ,α

Γ ⇒∆ ,∼∼α
(∼∼ right)

∼α,Γ ⇒∆ ∼β ,Γ ⇒∆
∼(α ∧β ),Γ ⇒∆

(∼∧left)
Γ ⇒∆ ,∼α,∼β
Γ ⇒∆ ,∼(α ∧β )

(∼∧right)
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∼α,∼β ,Γ ⇒∆
∼(α ∨β ),Γ ⇒∆

(∼∨left)
Γ ⇒∆ ,∼α Γ ⇒∆ ,∼β

Γ ⇒∆ ,∼(α ∨β )
(∼∨right)

∼β ,Γ ⇒∆ ,∼α
∼(α→β ),Γ ⇒∆

(∼→ left)
∼α,Γ ⇒∆ Γ ⇒∆ ,∼β

Γ ⇒∆ ,∼(α→β )
(∼→ right)

Γ ⇒∆ ,∼α
∼¬α,Γ ⇒∆

(∼¬left)
∼α,Γ ⇒∆

Γ ⇒∆ ,∼¬α
(∼¬right)

∼α[z/x],Γ ⇒∆
∼∀xα,Γ ⇒∆

(∼∀left)
Γ ⇒∆ ,∼α[t/x]
Γ ⇒∆ ,∼∀xα

(∼∀right)

∼α[t/x],Γ ⇒∆
∼∃xα,Γ ⇒∆

(∼∃left)
Γ ⇒∆ ,∼α[z/x]
Γ ⇒∆ ,∼∃xα

(∼∃right)

To address an embedding theorem, we introduce a Gentzen-type sequent calculus
FLK for first-order classical logic. The languageLFLK of FLK is obtained fromLFBD+
by deleting ∼. This is also simply denoted as L when we have no confusion.

Definition 2 (FLK). The system FLK is the ∼-free fragment of FBD+. Namely, FLK
is obtained from FBD+ by deleting the negated logical inference rules and the initial
sequents of the form ∼ p⇒∼ p.

Remark 3. We make the following remarks.

1. Let L be FLK or FBD+. For any formula α , the sequent α⇒α is provable in
cut-free L. This can be shown by induction on α .

2. The following sequents are provable in cut-free FBD+:
(a) ∼∼α ⇔ α , (e) ∼¬α ⇔¬∼α ,
(b) ∼(α ∧β )⇔∼α ∨∼β , (f) ∼∃xα ⇔∀x∼α ,
(c) ∼(α ∨β )⇔∼α ∧∼β , (g) ∼∀xα ⇔∃x∼α .
(d) ∼(α→β )⇔¬∼α ∧∼β ,

3. The cut-elimination theorem for FLK is well known (see e.g., [15; 41]).
4. The inference rules (∼→left) and (∼→right) correspond to the Hilbert-style ax-

iom scheme ∼(α→β )↔ ¬∼α ∧∼β . The inference rules (∼¬left) and (∼¬
right) correspond to the Hilbert-style axiom scheme ∼¬α ↔∼¬α . These ax-
iom schemes were originally introduced by De and Omori [10] to axiomatize the
extended propositional Belnap–Dunn logic BD+ with classical negation.

5. The {∧,∨,→,∼}-fragment of FBD+, which fragment was called A4 in [24], was
introduced in [24] as an alternative Gentzen-type sequent calculus for Avron’s
self-extensional four-valued paradefinite logic SE4 [3]. The original Gentzen-
type sequent calculus GSE4, which was introduced in [3], is obtained from A4
by replacing the initial sequents of the form p⇒ p and ∼ p⇒∼ p for any propo-
sitional variable p with the initial sequents of the form α⇒α for any formulas.
Since the sequents of the form α⇒α for any formula α are provable in cut-
free A4, the systems GSE4 and A4 are theorem-equivalent. The cut-elimination-
theorem for GSE4 was shown in [3].

Next, we introduce a translation from FBD+ to FLK, and by using this translation,
we address a theorem for embedding FBD+ into FLK.
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Definition 4. We fix a set Φ of atomic formulas, and define the set Φ ′ := {p′ : p∈Φ}
of atomic formulas. Let the languages LFBD+ and LFLK be defined as above based on
sets Φ and Φ ∪Φ ′, respectively. A mapping f from LFBD+ to LFLK is inductively
defined by the following clauses:

1. For any p ∈Φ , f (p) := p, f (∼ p) := p′ ∈Φ ′,
2. f (α ∧β ) := f (α)∧ f (β ),
3. f (α ∨β ) := f (α)∨ f (β ),
4. f (α→β ) := f (α)→ f (β ),
5. f (¬α) := ¬ f (α),
6. f (∀xα) := ∀x f (α),
7. f (∃xα) := ∃x f (α),
8. f (∼(α ∧β )) := f (∼α)∨ f (∼β ),
9. f (∼(α ∨β )) := f (∼α)∧ f (∼β ),

10. f (∼(α→β )) := ¬ f (∼α)∧ f (∼β ),
11. f (∼∼α) := f (α),
12. f (∼¬α) := ¬ f (∼α),
13. f (∼∀xα) := ∃x f (∼α),
14. f (∼∃xα) := ∀x f (∼α).

We use an expression f (Γ ) to denote the result of replacing every occurrence of a
formula α in Γ by an occurrence of f (α).

Remark 5. We make the following remarks on the translation function f .
1. The translation function f is independent of terms. Thus, f can be used based on

an arbitrary language with or without individual constant and function symbols.
2. The expressions p and p′ in Definition 4 include, for example, p(x1,x2) and

p′(x1,x2), respectively, with some individual variables x1 and x2. Also, the ex-
pression f (∼ p(x1,x2)) with f coincides with p′(x1,x2).

3. A similar translation function has been used by Vorob’ev [42], Rautenberg [36],
and Gurevich [16] to embed Nelson’s constructive logic [1; 33] into intuitionistic
logic. A similar translation was used by Burgess [7] (pp. 107–108) to show the
relationship between Belnap–Dunn logic and classical logic. Some similar trans-
lation functions have also been used, for example, in [26; 21; 30; 23] to embed
some paraconsistent logics into classical logic.

We have the following syntactical embedding theorem, which was proved in [25]
as Theorem 10. This theorem will be used for proving the Craig interpolation and
Herbrand theorems for FBD+.

Theorem 6 (Embedding from FBD+ into FLK [25]). Let Γ , ∆ be sets of formulas in
LFBD+, and f be the mapping defined in Definition 4.

1. FBD+ ` Γ ⇒∆ iff FLK ` f (Γ )⇒ f (∆).
2. FBD+ − (cut) ` Γ ⇒∆ iff FLK − (cut) ` f (Γ )⇒ f (∆).

Using Theorem 6, we can obtain the following cut-elimination theorem, which was
also proved in [25].

Theorem 7 (Cut-elimination for FBD+ [25]). The rule (cut) is admissible in cut-
free FBD+.
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Remark 8. Theorem 6 plays a critical role for proving some desired properties of
FBD+. Actually, the cut-elimination (Theorem 7) and completeness theorems for
FBD+ were proved in [25] using Theorem 6. In this study, Theorem 26 (Existence of
quasi-Skolem normal form), Theorem 28 (Herbrand), and Theorem 32 (Craig inter-
polation) will be proved using Theorem 6.

3. CONTRAPOSITION-ELIMINATION THEOREM

In this section, we prove the contraposition-elimination theorem for FBD+. Prior
to proving it, we have to show the following proposition.

Proposition 9. The following rules are admissible in cut-free FBD+:

∼∼α,Γ ⇒∆
α,Γ ⇒∆

(∼∼ left−1)
Γ ⇒∆ ,∼∼α

Γ ⇒∆ ,α
(∼∼right−1)

Proof. For (∼∼left−1), this proposition can be proved by induction on the proofs P of
the upper sequent ∼∼α,Γ ⇒∆ of (∼∼left−1) in cut-free FBD+. For (∼∼right−1),
it can be proved similarly. /

Remark 10. Similar to Proposition 9, we can show that the following rules are ad-
missible in cut-free FBD+:

∼¬α,Γ ⇒∆
Γ ⇒∆ ,∼α

(∼¬left−1)
Γ ⇒∆ ,∼¬α
∼α,Γ ⇒∆

(∼¬right−1)

Using Proposition 9, we show the following contraposition-elimination theorem
for FBD+.

Theorem 11 (Contraposition-elimination for FBD+). The following rule is admissible
in cut-free FBD+:

∆⇒Γ
∼Γ ⇒∼∆

(contraposition).

Proof. By induction on the proofs P of the upper sequent ∆⇒Γ of (contraposition)
in cut-free FBD+. We show some of the critical cases.

1. Case (→left): The last inference of P is of the form:

Γ ⇒∆ ,α β ,Γ ⇒∆
α→β ,Γ ⇒∆

(→ left)

By induction hypothesis, we have FBD+ − (cut) ` ∼α,∼∆⇒∼Γ and FBD+
− (cut) ` ∼∆⇒∼Γ ,∼β . Then, we obtain the required fact:

...
∼α,∼∆⇒∼Γ

...
∼∆⇒∼Γ ,∼β

∼∆⇒∼Γ ,∼(α→β )
(∼→ left)

2. Case (→right): The last inference of P is of the form:

α,Γ ⇒∆ ,β
Γ ⇒∆ ,α→β

(→ right)
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By induction hypothesis, we have FBD+ − (cut) ` ∼β ,∼∆⇒∼Γ ,∼α . Then,
we obtain the required fact: ...

∼β ,∼∆⇒∼Γ ,∼α
∼(α→β ),∼∆⇒∼Γ

(∼→ left)

3. Case (∼¬right): The last inference of P is of the form:

∼α,Γ ⇒∆
Γ ⇒∆ ,∼¬α

(∼¬right)

By induction hypothesis, we have FBD+ − (cut) ` ∼∆⇒∼Γ ,∼∼α . Then, we
obtain the required fact: ...

∼∆⇒∼Γ ,∼∼α
∼∆⇒∼Γ ,α
¬α,∼∆⇒∼Γ

(¬left)
(∼∼ right−1)

∼∼¬α,∼∆⇒∼Γ
(∼∼ left)

where (∼∼right−1) is admissible in cut-free FBD+ by Proposition 9.
4. Case (∼→left): The last inference of P is of the form:

∼β ,Γ ⇒∆ ,∼α
∼(α→β ),Γ ⇒∆

(∼→ left)

By induction hypothesis, we have FBD+ − (cut) ` ∼∼α,∼∆⇒∼Γ ,∼∼β .
Then, we obtain the required fact:

...
∼∼α,∼∆⇒∼Γ ,∼∼β
∼∼α,∼∆⇒∼Γ ,β

α,∼∆⇒∼Γ ,β
∼∆⇒∼Γ ,α→β

(→ right)
(∼∼ left−1)

∼∆⇒∼Γ ,∼∼(α→β )
(∼∼ right)

(∼∼ right−1)

where (∼∼left−1) and (∼∼right−1) are admissible in cut-free FBD+ by Propo-
sition 9.

5. Case (∼→right): The last inference of P is of the form:

∼α,Γ ⇒∆ Γ ⇒∆ ,∼β
Γ ⇒∆ ,∼(α→β )

(∼→ right)

By induction hypothesis, we have FBD+ − (cut) `∼∆⇒∼Γ ,∼∼α and FBD+
− (cut) ` ∼∼β ,∼∆⇒∼Γ . Then, we obtain the required fact:

(∼∼ right−1)

...
∼∆⇒∼Γ ,∼∼α
∼∆⇒∼Γ ,α

...
∼∼β ,∼∆⇒∼Γ

β ,∼∆⇒∼Γ
(∼∼ left−1)

α→β ,∼∆⇒∼Γ
∼∼(α→β ),∼∆⇒∼Γ

(∼∼ left)
(→ left)

where (∼∼left−1) and (∼∼right−1) are admissible in cut-free FBD+ by Propo-
sition 9.
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6. Case (∼∃right): The last inference of P is of the form:

Γ ⇒∆ ,∼α[z/x]
Γ ⇒∆ ,∼∃xα

(∼∃right)

By induction hypothesis, we have FBD+− (cut) `∼∼α[z/x],∼∆⇒∼Γ . Then,
we obtain the required fact:

...
∼∼α[z/x],∼∆⇒∼Γ

... (∼∼ left−1)

α[z/x],∼∆⇒∼Γ
∃xα,∼∆⇒∼Γ

(∃left)

∼∼∃xα,∼∆⇒∼Γ
(∼∼ left)

where (∼∼left−1) is admissible in cut-free FBD+ by Proposition 9. /

Remark 12. We make the following remarks.

1. Theorem 11 is considered to be a novel property of FBD+, because this theorem
does not hold for some typical paraconsistent logics with an implication connec-
tive (e.g., it does not hold for Nelson’s paraconsistent four-valued logic N4).

2. The contraposition-elimination theorem for a Gentzen-type sequent calculus GSE4
for Avron’s self-extensional four-valued paradefinite logic SE4, which was ob-
served in [24] to be the classical-negation-free fragment of BD+, was proved by
Avron in [3].

3. The contraposition-elimination theorems for other systems have been studied, for
example in [27], wherein the contraposition-elimination theorem was proved by
Kamide and Wansing for a Gentzen-type sequent calculus for symmetric prara-
consistent logic that has both implication and co-implication connectives.

Next, we introduce an alternative Gentzen-type sequent calculus FBD+∗ for the
first-order extension of BD+. This system FBD+∗ will be shown to be theorem-
equivalent to FBD+ by using Theorem 11.

Definition 13 (FBD+∗). The system FBD+∗ is obtained from FBD+ by replacing
the negated initial sequents of the form ∼ p⇒∼ p and the negated logical inference
rules (∼∧left), (∼∧right), (∼∨left), (∼∨right), (∼→left), (∼→right), (∼¬left),
(∼¬right), (∼∀left), (∼∀right), (∼∃left), and (∼∃right) with the logical inference
rule (contraposition).

Remark 14. We make the following remarks.

1. For any formula α , the sequent α⇒α is provable in FBD+∗ using (cut). This can
be shown by induction on α .

2. However, it cannot be shown that this sequent is provable in cut-free FBD+∗,
because as will be shown, cut-elimination theorem does not hold for FBD+∗.
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3. Let p and q be distinct propositional variables. Then, the following are examples
of FBD+∗-proofs using (contraposition).

(¬right)
(contraposition)

(→ right)
(we-right)

p⇒ p
p⇒ p,q
⇒p, p→q

∼ p,∼(p→q)⇒
∼(p→q)⇒¬∼ p

q⇒q
q, p⇒q

(we-left)

q⇒ p→q
(→ right)

∼(p→q)⇒∼q
(contraposition)

∼(p→q)⇒¬∼ p∧∼q
(∧right)

p⇒ p q⇒q
p→q, p⇒q

(→ left)

∼q⇒∼(p→q),∼ p
(contraposition)

¬∼ p,∼q⇒∼(p→q)
(¬left)

¬∼ p∧∼q⇒∼(p→q)
(∧left)

4. The proofs displayed just above and the fact presented in the first item of this
remark imply that the sequents of the form ∼(α→β ) ⇔ ¬∼α ∧∼β for any
formulas α and β , which correspond to one of the characteristic axiom schemes
of BD+, are provable in cut-free FBD+∗.

Prior to smoothly proving the equivalence between FBD+ and FBD+∗, we have to
show the following proposition.

Proposition 15. The rules (∼∼left−1) and (∼∼right−1) are derivable in FBD+∗.

Proof. We show only the following case. The other case can be shown similarly.
Case (∼∼left−1): We have the following proof.

(∼∼ right)

...
α⇒α

α⇒∼∼α ∼∼α,Γ ⇒∆
α,Γ ⇒∆

(cut)
/

Using Theorem 11 and Proposition 15, we can obtain the following theorem.

Theorem 16 (Equivalence between FBD+ and FBD+∗). The systems FBD+ and
FBD+∗ are theorem-equivalent.

Proof. We have the following proofs.
First, we show FBD+ ` Γ ⇒∆ implies FBD+∗ ` Γ ⇒∆ for any sets Γ and ∆ of

formulas. This fact is proved by induction on the proofs P of Γ ⇒∆ in FBD+. We
distinguish the cases according to the last inference of P, and show some cases. The
other cases can be shown similarly or straightforwardly. For example, the proof of
Case (∼→right) can be shown in a similar manner as that for Case (∼∧left) using
Proposition 15.

(1) Case ∼ p⇒∼ p: The last inference of P is of the form ∼ p⇒∼ p. In this
case, we obtain the required fact:

p⇒ p
∼ p⇒∼ p

(contraposition)
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(2) Case (∼∧left): We have the following proof:

(∼∼ right−1)

(contraposition)
∼α,Γ ⇒∆

∼∆⇒∼Γ ,∼∼α
∼∆⇒∼Γ ,α

∼β ,Γ ⇒∆
∼∆⇒∼Γ ,∼∼β

(contraposition)

∼∆⇒∼Γ ,β
(∼∼ right−1)

∼∆⇒∼Γ ,α ∧β
∼(α ∧β ),∼∼Γ ⇒∼∼∆

... (∼∼ left−1) (∼∼ right−1)
∼(α ∧β ),Γ ⇒∆

(contraposition)
(∧right)

where (∼∼left−1) and (∼∼right−1) are derivable in FBD+∗ by Proposition 15.

Second, we show FBD+∗ ` Γ ⇒∆ implies FBD+ ` Γ ⇒∆ for any sets Γ and ∆
of formulas. This fact is proved by induction on the proofs Q of Γ ⇒∆ in FBD+∗.
We distinguish the cases according to the last inference of Q. It is sufficient to show
the case when the last inference of Q is (contraposition). This case is obtained by
Theorem 11. /

Remark 17. We can obtain another simple proof for the first direction of the proof
of Theorem 16 without using Proposition 15. But, we intend to obtain a systematic
and unified proof using Proposition 15. As an example of simple proof, we show the
following proof for Case (∼∧left) without using Proposition 15 but using (cut):

(cut)
(contraposition)

(∧right)
α⇒α β⇒β
α,β⇒α ∧β

∼(α ∧β )⇒∼α,∼β ∼α,Γ ⇒∆
∼(α ∧β ),Γ ⇒∆ ,∼β ∼β ,Γ ⇒∆

∼(α ∧β ),Γ ⇒∆
(cut)

We have the following negative result on the cut-elimination theorem for FBD+∗.

Theorem 18 (Failure of cut-elimination for FBD+∗). Cut-elimination theorem does
not hold for FBD+∗.

Proof. A counterexample sequent is p⇒∼(p∧∼ p), where p is a propositional vari-
able. Obviously, this sequent cannot be proved in cut-free FBD+∗. However, this
sequent can be proved in FBD+∗ using (cut) by:

(∼∼ right)
p⇒ p

p⇒∼∼ p

p⇒ p
∼ p⇒∼ p

(contraposition)

p,∼ p⇒∼ p
(we-left)

p∧∼ p⇒∼ p
(∧left)

∼∼ p⇒∼(p∧∼ p)
(contraposition)

p⇒∼(p∧∼ p)
(cut)

/

Remark 19. The counterexample sequent p⇒∼(p∧∼ p) displayed in the proof of
Theorem 18 for the failure of the cut-elimination for FBD+∗ is provable in cut-free
FBD+ by:
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p⇒ p
p⇒∼∼ p

(∼∼ right)

p⇒∼ p,∼∼ p
(we-right)

p⇒∼(p∧∼ p)
(∼∧right)

4. HERBRAND THEOREM

In this section, we prove the Herbrand theorem for FBD+. Prior to proving it, we
have to prove the strong equivalence replacement theorem.

Definition 20 (Strong equivalence for FBD+-formulas). An expression α ↔s β for
any formulas α and β of FBD+, which is called a strong equivalence between α and
β , is defined by FBD+ ` α ⇔ β and FBD+ ` ∼α ⇔∼β .

Proposition 21. We have the following list of strong equivalences:
1. ∼(α ∧β )↔s ∼α ∨∼β , 5. ∼¬α ↔s ¬∼α
2. ∼(α ∨β )↔s ∼α ∧∼β , 6. ∼(∀xα)↔s ∃x∼α ,
3. ∼(α→β )↔s ¬∼α ∧∼β , 7. ∼(∃xα)↔s ∀x∼α .
4. ∼∼α ↔s α ,

Proof. The proof is straightforward. We show some cases.
(1) Case (3): In this case, we show only the following cases:

...
α⇒α

...
β⇒β

α,α→β⇒β
∼∼α,α→β⇒β
∼∼α,α→β⇒∼∼β

α→β⇒∼¬∼α,∼∼β
α→β⇒∼(¬∼α ∧∼β )

∼∼(α→β )⇒∼(¬∼α ∧∼β )

...
α⇒α

α⇒∼∼α
α⇒β ,∼∼α

α,∼¬∼α⇒β
∼¬∼α⇒α→β

...
β⇒β
∼∼β⇒β

α,∼∼β⇒β
∼∼β⇒α→β

∼(¬∼α ∧∼β )⇒α→β
∼(¬∼α ∧∼β )⇒∼∼(α→β )

(2) Case (6): In this case, we show only the following cases:

α[z/x]⇒α[z/x]
α[z/x]⇒∼∼α[z/x]
∀xα⇒∼∼α[z/x]
∀xα⇒∼∃x∼α

∼∼(∀xα)⇒∼∃x∼α

α[z/x]⇒α[z/x]
∼∼α[z/x]⇒α[z/x]
∼∃x∼α⇒α[z/x]
∼∃x∼α⇒∀xα

∼∃x∼α⇒∼∼(∀xα) /

Remark 22. We make the following remarks on the strong equivalence. It is known
that∼(α→β )↔s α∧∼β does not hold for the standard Gentzen-type sequent calcu-
lus for Nelson’s paraconsistent four-valued logic N4. Actually, ∼(α→β )↔ α ∧∼β
is a characteristic axiom scheme of N4, but ∼∼(α→β )↔∼(α ∧∼β ) is not a the-
orem of N4. See e.g., [44; 43] for more information on strong equivalence in some
variants of N4.
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Theorem 23 (Strong equivalence replacement for FBD+). Let α be a subformula of
a formula γ , and γ? be the formula obtained from γ by replacing an occurrence of α
with that of β . Then, we have:

If α ↔s β , then γ ↔s γ?.

Proof. We use induction on γ , and we show some cases.
1. Case γ ≡ γ1→γ2: It is sufficient to show ` γ1→γ2⇔ (γ1→γ2)

? and `∼(γ1→γ2)
⇔ (∼(γ1→γ2))

? where (γ1→γ2)
? and (∼(γ1→γ2))

? coincide with γ?1→γ?2 and
∼(γ?1→γ?2 ), respectively. We show only the latter case. By induction hypothesis,
we have γi↔s γ?i (i ∈ {1,2}), i.e., ` γi⇔ γ?i and ` ∼γi⇔∼γ?i . We thus obtain
the required fact:

ind. hyp.
...

∼γ?1⇒∼γ1

∼γ2,∼γ?1⇒∼γ1

∼γ?1 ,∼(γ1→γ2)⇒

... ind. hyp.
∼γ2⇒∼γ?2

∼γ2⇒∼γ?2 ,∼γ1

∼(γ1→γ2)⇒∼γ?2
∼(γ1→γ2)⇒ (∼(γ1→γ2))?

ind. hyp.
...

∼γ1⇒∼γ?1
∼γ?2 ,∼γ1⇒∼γ?1
∼γ1,(∼(γ1→γ2))?⇒

... ind. hyp.
∼γ?2⇒∼γ2

∼γ?2⇒∼γ2,∼γ?1
(∼(γ1→γ2))?⇒∼γ2

(∼(γ1→γ2))?⇒∼(γ1→γ2)

2. Case γ ≡ ¬δ : It is sufficient to show ` ¬δ ⇔ (¬δ )? and ` ∼¬δ ⇔ (∼¬δ )?
where (¬δ )? and (∼¬δ )? coincide with ¬δ ? and ∼¬δ ?, respectively. We show
only the latter case. By induction hypothesis, we have δ ↔s δ ?, i.e., ` δ ⇔ δ ?

and ` ∼δ ⇔∼δ ?. We thus obtain the required fact:

ind. hyp.
...

∼δ ?⇒∼δ
⇒ (∼¬δ )?,∼δ
∼¬δ⇒ (∼¬δ )?

... ind. hyp.
∼δ⇒∼δ ?

⇒ ∼¬δ ,∼δ ?

(∼¬δ )?⇒∼¬δ
3. Case γ ≡ ∼δ : It is sufficient to show ` ∼δ ⇔ (∼δ )? and ` ∼∼δ ⇔ (∼∼δ )?

where (∼δ )? and (∼∼δ )? coincide with ∼δ ? and ∼∼δ ?, respectively. We
show both cases below. By induction hypothesis, we have δ ↔s δ ?, i.e., ` δ ⇔
δ ? and ` ∼δ ⇔∼δ ?. Thus, the former case is immediately obtained from the
induction hypothesis. For the latter case, we obtain the required fact:

ind. hyp.
...

δ⇒δ ?

δ⇒ (∼∼δ )?
∼∼δ⇒ (∼∼δ )?

... ind. hyp.
δ ?⇒δ

δ ?⇒∼∼δ
(∼∼δ )?⇒∼∼δ

4. Case γ ≡ ∀xδ : It is sufficient to show ` ∀xδ ⇔ (∀xδ )? and ` ∼∀xδ ⇔ (∼∀xδ )?
where (∀xδ )? and (∼∀xδ )? coincide with ∀xδ ? and ∼∀xδ ?, respectively. We
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show both cases below. By induction hypothesis, we have δ [z/x]↔s δ [z/x]?, i.e.,
` δ [z/x]⇔ δ [z/x]? and ` ∼δ [z/x]⇔∼δ [z/x]?. Thus, the former case immedi-
ately obtained from the induction hypothesis. For the latter case, we obtain the
required fact:

ind. hyp.
...

∼δ [z/x]⇒∼δ [z/x]?

∼δ [z/x]⇒ (∼∀xδ )?

∼∀xδ⇒ (∼∀xδ )?

... ind. hyp.
∼δ [z/x]?⇒∼δ [z/x]
∼δ [z/x]?⇒∼∀xδ
(∼∀xδ )?⇒∼∀xδ /

Prior to showing the Herbrand theorem for FBD+, we need to introduce some no-
tions.

Definition 24. A formula of the form p or ∼ p where p is an atomic formula is called
a quasi-atomic formula. A formula α is called a quasi-literal if α is a quasi-atomic
formula or a formula of the form ¬β where β is a quasi-atomic formula. A quasi-
literal α is called the complement of a quasi-literal β if α ≡ ¬β or β ≡ ¬α . The
complement of a quasi-literal α is denoted as α∗, (i.e., α∗ ≡ ¬γ if α ≡ γ , and α∗ ≡ γ
if α ≡ ¬γ , where γ is a quasi-atomic formula).

Definition 25. A quasi-disjunctive normal form of a {∀,∃}-free formula (of FBD+)
is obtained from a usual disjunctive normal form of a formula (of FLK) by replacing
(the part of) “literal” with “quasi-literal.”

A quasi-Skolem normal form of a formula (of FBD+) is obtained from a usual
Skolem normal form by replacing “literal” with “quasi-literal,” i.e., a formula of the
form ∃x1 · · ·∃xm(α1∨·· ·∨αn) (0≤ m, 1≤ n) is a quasi-Skolem normal form if α1∨
·· · ∨αn is a quasi-disjunctive normal form with some usual Skolem functions and
x1, . . . ,xm are the mutually distinct free individual variables occurring in α1∨·· ·∨αn.

A formula β is called an instance of a quasi-Skolem normal form ∃x1 · · ·∃xm(α1∨
·· · ∨αn) if β is obtained from α1 ∨ ·· · ∨αn by replacing x1, . . . ,xm with any terms,
i.e., β is a substitution instance of α1∨·· ·∨αn.

Using Theorem 6, Proposition 21 and Theorem 23, we obtain the following theo-
rem.

Theorem 26 (Existence of quasi-Skolem normal form for FBD+). For any formula
α , we can construct a quasi-Skolem normal form αs such that FBD+ ` ⇒α if and
only if FBD+ ` ⇒αs.

Proof. Let Φ be a set of atomic formulas, and Φ ′ be the set {p′ : p ∈ Φ} of atomic
formulas. Consider a Φ-based language of FBD+ and a {Φ ,Φ ′}-based language of
FLK. We show the way of constructing a quasi-Skolem normal form αs from an ar-
bitrary formula in FBD+. First, each occurrence of the connective ∼ occurring in α
moves to the most inner position of all the other connectives by the virtue of Propo-
sition 21 and Theorem 23. Then, we obtain the formula in which all occurrences of

∼ are of the form
n︷ ︸︸ ︷∼·· ·∼ p where p is an atomic formula occurring in α . By using

Proposition 21 and Theorem 23, we reduce such occurrences of ∼ by the following
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way. If n is odd, then we replace
n︷ ︸︸ ︷∼·· ·∼ p with ∼ p, and if n is even, then we replace

n︷ ︸︸ ︷∼·· ·∼ p with p. The formula β obtained in such a way is logically equivalent to α
by Proposition 21 and Theorem 23. Hence, we have FBD+ ` ⇒α iff FBD+ ` ⇒β .
Next, we transform each formula of the form ∼ p appearing in β into p′ ∈ Φ ′. This
transformation is justified by Theorem 6. Then, we construct a Skolem normal form
β s of FLK in the standard way. Finally, a quasi-Skolem normal form αs in FBD+ is
obtained from β s by replacing all the occurrences of atomic formulas of the form p′

(p′ ∈Φ ′) with ∼ p. This replacement is also justified by Theorem 6. /

Remark 27. We illustrate a quasi-Skolem normal form by an example. Consider a
formula

α ≡ ∀x∃y∃z∀w(∼ p(x,y,z,w)→ p(x,y,z,w)),
where p is a predicate symbol and x,y,z,w are mutually distinct individual variables.
Then, we can obtain the following quasi-Skolem normal form αs of α

αs ≡ ∃y∃z(¬∼ p(c,y,z, fs(y,z))∨ p(c,y,z, fs(y,z))),
where c is a new individual constant and fs is a Skolem function.

The following Herbrand theorem, which is a purely syntactic formulation, is well
known.

Theorem 28 (Herbrand theorem for FLK). For any Skolem normal form α , FLK
` ⇒α if and only if there is a finite set ∆ of instances of α such that FLK ` ⇒∆ .

Remark 29. We make the following remarks on the Herbrand theorem.
1. The direct syntactic proof of Theorem 28 is presented, for example, in [17].
2. An alternative semantic formulation of the Herbrand theorem also holds for the

standard semantics for FLK (see e.g., [8]).
3. Assuming the completeness theorem for FLK, these two syntactic and semantic

formulations represent the same thing.
4. The present syntactic formulation can also be obtained as a corollary of Gentzen’s

mid-sequent theorem (see e.g., [41]).

Using Theorems 6 and 28, we obtain the following Herbrand theorem for FBD+.

Theorem 30 (Herbrand theorem for FBD+). For any quasi-Skolem normal form α ,
FBD+ ` ⇒α if and only if there is a finite set ∆ of instances of α such that FBD+
` ⇒∆ .

Proof. Let α be a quasi-Skolem normal form ∃x1 · · ·∃xm(α1 ∨ ·· · ∨αn) (0 ≤ m, 1 ≤
n), and FBD+ ` ⇒α . By Theorems 6 and 28, we have: FBD+ ` ⇒α iff FLK
` ⇒ f (α) iff FLK ` ⇒ f (∆), where f (α) is obtained from α by replacing all the
occurrences of the negated atomic formulas of the form ∼ p with p′ (i.e., f (∼ p)),
and f (∆) denotes a finite set of instances of f (α). Note that f (∆) is of the form
{ f (α1

1 ∨ ·· · ∨α1
n ), f (α2

1 ∨ ·· · ∨α2
n ), . . . , f (α l

1 ∨ ·· · ∨α l
n)}, where f (α j

1 ∨ ·· · ∨α j
n)

( j ∈ {1,2, . . . , l}) is obtained from f (α1∨ ·· ·∨αn) by replacing x1, . . . ,xm with some
terms. By Theorem 6, we then obtain FLK ` ⇒ f (∆) iff FBD+ ` ⇒∆ , where ∆ is
obtained from f (∆) by replacing all the occurrences of f (∼ p) (i.e., p′) with ∼ p, and



Norihiro Kamide: Herbrand and Contraposition-elimination Theorems 253

hence, ∆ is a finite set of instances of α . Note that ∆ is of the form {α1
1 ∨ ·· · ∨α1

n ,
α2

1 ∨ ·· · ∨α2
n , . . . , α l

1 ∨ ·· · ∨α l
n}, where α j

1 ∨ ·· · ∨α j
n ( j ∈ {1,2, . . . , l}) is obtained

from α1∨·· ·∨αn by replacing x1, . . . ,xm with some terms. /

5. OTHER THEOREMS

5.1. Craig Interpolation and Maksimova Separation Theorems. In what follows,
we show the Craig interpolation and Maksimova separation (Maksimova principle of
variable separation) theorems for FBD+ by using a similar embedding-based proof
method proposed and studied in [18; 19; 26].

Remark 31. We make the following remarks on Craig interpolation and Maksimova
separation theorems.

1. The Craig interpolation theorem for FLK is well known [9; 41].
2. The Maksimova separation theorem for FLK is well known. This theorem can be

derived from the Craig interpolation theorem for FLK.
3. Maksimova separation theorem was originally proved in [31] for some relevant

logics, wherein an example of a relevant logic for which Maksimova separation
theorem doesn’t hold was also shown.

To show the theorems for FBD+, we now assume a slightly simplified first-order
language without individual constants and function symbols. An expression V (α) is
used to denote the set of all predicate symbols occurring in α .

Theorem 32 (Craig interpolation for FBD+). Suppose FBD+ ` α⇒β for any for-
mulas α and β . If V (α)∩V (β ) 6= /0, then there exists a formula γ such that

1. FBD+ ` α⇒ γ and FBD+ ` γ⇒β ;
2. V (γ)⊆V (α)∩V (β ).

If V (α)∩V (β ) = /0, then
3. FBD+ ` ⇒¬α or FBD+ ` ⇒β .

Proof. (Sketch) We give a sketch of the proof. Prior to proving the theorem, we need
to prove the following statement (*):

Let Ip be {p, p′} where p ∈ Φ and p′ ∈ Φ ′. Let f be the mapping defined in
Definition 4. For any atomic formula p in LFBD+ and any formula α in LFBD+,
1. p ∈V (α) iff q ∈V ( f (α)) for some q ∈ Ip,
2. p ∈V (∼α) iff q ∈V ( f (∼α)) for some q ∈ Ip.

This statement is proved by (simultaneous) induction on α . In the following discus-
sion, the subscript p of Ip is omitted for the sake of brevity. The base step is proved
as follows. For 1, we have that p ∈V (p) iff p = f (p) ∈V ( f (p)) by the definition of
f . For 2, we have that p ∈ V (∼ p) iff p′ = f (∼ p) ∈ V ( f (∼ p)), by the definition of
f . For the induction step, we show only the case α ≡ β→γ as follows. For 1, we
obtain that p ∈V (β→γ) iff p ∈V (β ) or p ∈V (γ) iff [r ∈V ( f (β )) for some r ∈ I] or
[s ∈ V ( f (γ)) for some s ∈ I] (by induction hypothesis for 1) iff q ∈ V ( f (β )→ f (γ))
for some q ∈ I iff q ∈ V ( f (β→γ)) for some q ∈ I (by the definition of f ). For 2,
we obtain that p ∈ V (∼(β→γ)) iff p ∈ V (∼β ) or p ∈ V (∼γ) iff [r ∈ V ( f (∼β ))
for some r ∈ I] or [s ∈ V ( f (∼γ)) for some s ∈ I] (by induction hypothesis for 2) iff
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q ∈ V ( f (∼β )∧ f (∼γ)) for some q ∈ I iff q ∈ V (¬ f (∼β )∧ f (∼γ)) for some q ∈ I
iff q ∈V ( f (∼(β→γ))) for some q ∈ I (by the definition of f ).

Next, using the statement (*), we show the following statement (**):
Let f be the mapping defined in Definition 4. For any formulas α and β in
LFBD+, if V ( f (α))⊆V ( f (β )), then V (α)⊆V (β ).

This statement can be proved as follows. Assume V ( f (α)) ⊆ V ( f (β )), and let p ∈
V (α). Then, by the statement (*), we obtain q ∈ V ( f (α)) for some q ∈ I. By the
assumption, q ∈V ( f (β )) for some q ∈ I, and hence, p ∈V (β ), by the statement (*).

Using the statement (**), we can obtain the required theorem as follows.
First, we prove the case V (α)∩V (β ) 6= /0 as follows. Suppose FBD+ ` α⇒β and

V (α)∩V (β ) 6= /0. Then, we have FLK ` f (α)⇒ f (β ), by Theorem 6. By the Craig
interpolation theorem for FLK, we have the following: There exists a formula γ in
LFLK such that

1. FLK ` f (α)⇒ γ and FLK ` γ⇒ f (β ),
2. V (γ)⊆V ( f (α))∩V ( f (β )).

Since γ is a formula of FLK, γ is regarded as in L∗ = LFLK−Φ ′ (⊆ LFBD+). Then,
we have the fact γ = f (γ) for any γ ∈ L∗. This fact can be shown by induction on γ .
By Theorem 6, we thus obtain that there exists a formula γ such that

1. FBD+ ` α⇒ γ and FBD+ ` γ⇒β ,
2. V ( f (γ))⊆V ( f (α))∩V ( f (β )).

Now it is sufficient to show that V ( f (γ))⊆V ( f (α))∩V ( f (β )) implies V (γ)⊆V (α)∩
V (β ). This can be shown by the statement (**).

Second, we prove the case V (α)∩V (β ) = /0 as follows. Suppose FBD+ ` α⇒β
and V (α)∩V (β ) = /0. Then, we have FLK ` f (α)⇒ f (β ) by Theorem 6. We also
have (?): V ( f (α))∩V ( f (β )) = /0. To show this, it is sufficient to prove that V (α)∩
V (β ) = /0 implies V ( f (α))∩V ( f (β )) = /0. We now show the contrapositive, i.e.,
V ( f (α))∩V ( f (β )) 6= /0 implies V (α)∩V (β ) 6= /0. Suppose q ∈ V ( f (α))∩V ( f (β ))
with q ∈ Φ ∪Φ ′. If q is of the form f (p) = p ∈ Φ , then we obviously have p ∈
V (α)∩V (β ). If q is of the form f (∼ p) = p′ ∈ Φ ′, then we have p ∈ V (α)∩V (β ).
Therefore we obtain (?). Thus, by the Craig interpolation theorem for FLK, we have:
FLK ` ⇒¬ f (α) or FLK ` ⇒ f (β ), where ¬ f (α) coincides with f (¬α) by the
definition of f . By Theorem 6, we thus obtain the required fact, that is, FBD+ ` ⇒¬α
or FBD+ ` ⇒β . /

Theorem 33 (Maksimova separation for FBD+). If FBD+ ` α1 ∧ β1⇒α2 ∨ β2 for
any formulas α1,α2,β1 and β2 with V (α1,α2)∩V (β1,β2) 6= /0, then either FBD+
` α1⇒α2 or FBD+ ` β1⇒β2.

Proof. Suppose V (α1,α2)∩V (β1,β2) 6= /0 and FBD+ ` α1 ∧ β1⇒α2 ∨ β2. Then,
we have that FBD+ ` α1,β1⇒α2,β2. We remark that to show this fact, we need
to prove the invertibility of the logical inference rules concerning ∧ and ∨, but this
invertibility can straightforwardly be shown. Then, by this fact, we obtain FBD+ `
α1,¬α2⇒¬β1,β2. Thus, we obtain FBD+ ` α1∧¬α2⇒¬β1∨β2. By Theorem 32,
we obtain FBD+ ` ⇒¬(α1 ∧¬α2) or FBD+ ` ⇒¬β1 ∨ β2. We thus obtain the
required fact FBD+ ` α1⇒α2 or FBD+ ` β1⇒β2 by:
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⇒¬(α1∧¬α2)

...
α1⇒α1

α1⇒α2,α1

...
α2⇒α2

α2,α1⇒α2

α1⇒α2,¬α2

α1⇒α2,α1∧¬α2

¬(α1∧¬α2),α1⇒α2

α1⇒α2
(cut)

or

⇒¬β1∨β2

...
β1⇒β1

β1⇒β1,β2

¬β1,β1⇒β2

...
β2⇒β2

β2,β1⇒β2

¬β1∨β2,β1⇒β2

β1⇒β2
(cut)

respectively. /

5.2. Equivalence and Cut-elimination Theorems for another Sequent Calculus.
Next, we introduce an alternative cut-free Gentzen-type sequent calculus FBD+◦ and
prove the theorem-equivalence between cut-free FBD+◦ and cut-free FBD+.

Definition 34 (FBD+◦). The system FBD+◦ is obtained from FBD+ by replacing the
negated logical inference rules (∼→left) and (∼→right) with the following negated
logical inference rules:
∼¬α,∼β ,Γ ⇒∆
∼(α→β ),Γ ⇒∆

(∼→ left?)
Γ ⇒∆ ,∼¬α Γ ⇒∆ ,∼β

Γ ⇒∆ ,∼(α→β )
(∼→ right?)

Remark 35. In [22], the negated logical inference rules (∼→left?) and (∼→right?)
were introduced for the propositional system BD+. These negated logical inference
rules correspond to the slightly modified Hilbert-style axiom scheme ∼(α→β )↔
(∼¬α ∧∼β ) from the original axiom scheme ∼(α→β )↔ (¬∼α ∧∼β ).

By contrast to FBD+∗, we obtain the following nice property for FBD+◦, which
implies the cut-elimination theorem for FBD+◦.

Theorem 36 (Cut-free equivalence between FBD+ and FBD+◦). The systems FBD+
− (cut) and FBD+◦ − (cut) are theorem-equivalent.

Proof. (Sketch) We give a sketch of the proof. Prior to showing the theorem equiva-
lence, we remark that the following rules are admissible in cut-free FBD+:

∼¬α,Γ ⇒∆
Γ ⇒∆ ,∼α

(∼¬left−1)
Γ ⇒∆ ,∼¬α
∼α,Γ ⇒∆

(∼¬right−1)

This fact can be proved in a similar way as for Proposition 9.
Then, the admissibility of (∼→left?) and (∼→right?) in cut-free FBD+ is proved

as follows:
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...
∼¬α,∼β ,Γ ⇒∆
∼β ,Γ ⇒∆ ,∼α

(∼¬left−1)

∼(α→β ),Γ ⇒∆
(∼→ left)

(∼¬right−1)

...
Γ ⇒∆ ,∼¬α
∼α,Γ ⇒∆

...
Γ ⇒∆ ,∼β

Γ ⇒∆ ,∼(α→β )
(∼→ right)

where (∼¬left−1) and (∼¬right−1) are admissible in cut-free FBD+.
The derivability of (∼→left) and (∼→right) in cut-free FBD+◦ is proved as fol-

lows: ...
∼β ,Γ ⇒∆ ,∼α
∼¬α,∼β ,Γ ⇒∆

(∼¬left)

∼(α→β ),Γ ⇒∆
(∼→ left?)

(∼¬right)

...
∼α,Γ ⇒∆

Γ ⇒∆ ,∼¬α

...
Γ ⇒∆ ,∼β

Γ ⇒∆ ,∼(α→β )
(∼→ right?)

Therefore, FBD+ − (cut) and FBD+◦ − (cut) are theorem-equivalent. /

Theorem 37 (Cut elimination for FBD+◦). The rule (cut) is admissible in cut-
free FBD+◦.

Proof. By Theorems 36 and 7. /

Remark 38. Using Theorems 36 and 37, we can obtain the embedding, Herbrand and
contraposition-elimination theorems for FBD+◦ as well as the Craig interpolation and
Maksimova separation theorems for it.

6. CONCLUDING REMARKS

Belnap–Dunn logic is considered useful for handling inconsistency-tolerant rea-
soning with indefinite (vague and incomplete) information by the paraconsistent nega-
tion connective ∼. De and Omori’s extended propositional Belnap–Dunn logic with
classical negation (BD+) is also useful for handling classical logic-based normal rea-
soning with definite (crisp and complete) information by the classical negation con-
nective ¬. A useful first-order extension of Belnap–Dunn logic and its neighbors is
required for developing an expressive automated theorem proving framework that can
appropriately handle both inconsistency-tolerant and classical logic-based normal rea-
soning with both indefinite and definite information. The Gentzen-type sequent cal-
culus FBD+ for a first-order extension of De and Omori’s BD+ is regarded as a first-
order extension of this type. However, the Herbrand and contraposition-elimination
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theorems (and other fundamental theorems) for FBD+ have yet to be proved. In this
study, we proved the Herbrand, contraposition-elimination, Craig interpolation, and
Maksimova separation theorems for FBD+. The previously obtained embedding the-
orem [25] of FBD+ into a Gentzen-type sequent calculus FLK for first-order classical
logic was effectively used for proving these theorems for FBD+. We also introduced
two alternative Gentzen-type sequent calculi FBD+∗ and FBD+◦, which are theorem-
equivalent to FBD+. These theorems and Gentzen-type sequent calculi are intended
to provide a proof-theoretic justification for developing FBD+-based automated theo-
rem proving framework for appropriately handling and combining both inconsistency-
tolerant and classical logic-based normal reasoning with both indefinite and definite
information.

We next address a remark on a purely paraconsistent (or paradefinite) subsystem
FA4 of FBD+. The subsystem FA4 is the ¬-free fragment of FBD+, which is re-
garded as a first-order extension of a Gentzen-type sequent calculus (A4) [24] for
Avron’s self-extensional four-valued paradefinite logic (SE4) [3]. We can show the
cut-elimination, contraposition-elimination, and strong-equivalence replacement theo-
rems for FA4. However, the Herbrand and Craig interpolation theorems with the same
formulations as those for FBD+ cannot be shown, because these theorems are formu-
lated using ¬ (i.e., ¬ plays a critical role in these theorems). We can also show some
theorems for syntactically and semantically embedding FA4 into FLK. In these em-
bedding theorems, we cannot replace FLK with the¬-free fragment (i.e., positive frag-
ment) of FLK because we require the condition f (∼(α→β )) := ¬ f (∼α)∧ f (∼β )
of the translation function, as given in Definition 4. Using these embedding theorems,
we can also obtain the completeness theorem (with respect to a valuation semantics)
for FA4. The valuation semantics of FA4 can be obtained from the valuation semantics
[25] of FBD+ by deleting the clauses concerning ¬.

Next, we address a remark on a Gentzen-type sequent calculus FBDe for a first-
order extension of De and Omori’s propositional extension BDe [10] of Belnap–Dunn
logic. Some Gentzen-type sequent calculi for BDe were also investigated in [22]. The
system FBDe is obtained from FBD+ by replacing the negated logical inference rules
(∼→left), (∼→right), (∼¬left), and (∼¬right) with the following negated logical
inference rules:

α,∼β ,Γ ⇒∆
∼(α→β ),Γ ⇒∆

(∼→ left])
Γ ⇒∆ ,α Γ ⇒∆ ,∼β

Γ ⇒∆ ,∼(α→β )
(∼→ right])

α,Γ ⇒∆
∼¬α,Γ ⇒∆

(∼¬left])
Γ ⇒∆ ,α

Γ ⇒∆ ,∼¬α
(∼¬right])

These negated logical inference rules correspond to the Hilbert-style axiom schemes
∼(α→β ) ↔ (α ∧∼β ) and ∼¬α ↔ α . On the one hand, we cannot prove the
Herbrand, contraposition-elimination, and strong-equivalence replacement theorems
for FBDe. This fact implies that the Herbrand and contraposition-elimination theo-
rems for FBD+ are regarded as novel properties. However, we can prove the cut-
elimination, completeness (with respect to a standard valuation semantics), Craig in-
terpolation, and Maksimova separation theorems for FBDe and some theorems for
syntactically and semantically embedding FBDe into the ¬-free fragment of FLK (i.e.,
a Gentzen-type sequent calculus for positive first-order classical logic).
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Finally, we provide an interesting direction for future research. In this study, we
examined the Herbrand and contraposition-elimination theorems for FBD+. However,
we have yet to introduce some temporal and modal extensions of FBD+ and prove
the Herbrand and contraposition-elimination theorems for these temporal and modal
extensions. These systems and theorems are required for developing inconsistency-
tolerant temporal, epistemic, etc. automated theorem proving frameworks with both
indefinite and definite information. Based on these systems and theorems, we can
obtain the foundations of these expressive theorem proving frameworks with some
realistic applications.
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Bimbó for their valuable comments and suggestions. This research was supported by
JSPS KAKENHI Grant Numbers JP18K11171 and JP16KK0007 and Grant-in-Aid
for Takahashi Industrial and Economic Research Foundation.

REFERENCES

[1] Almukdad, A. and Nelson, D. (1984). Constructible falsity and inexact predicates, Journal
of Symbolic Logic 49: 231–233.

[2] Arieli, O. and Avron, A. (1998). The value of the four values, Artificial Intelligence
102(1): 97–141.

[3] Avron, A. (2020). The normal and self-extensional extension of Dunn–Belnap logic, Log-
ica Universalis 14(3): 281–296.

[4] Belnap, N. D. (1977a). How a computer should think, in G. Ryle (ed.), Contemporary
Aspects of Philosophy, Oriel Press Ltd., Stocksfield, pp. 30–55.

[5] Belnap, N. D. (1977b). A useful four-valued logic, in J. M. Dunn and G. Epstein (eds.),
Modern Uses of Multiple-valued Logic, Reidel Publishing Company, Dordrecht, pp. 8–37.
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A PROOF OF GAMMA

Saul A. Kripke

ABSTRACT. This paper is dedicated to the memory of Mike Dunn. His untimely
death is a loss not only to logic, computer science, and philosophy, but to all of
us who knew and loved him. The paper gives an argument for closure under γ in
standard systems of relevance logic (first proved by Meyer and Dunn [3]). For defi-
niteness, I chose the example of R. The proof also applies to E and to the quantified
systems RQ and EQ. The argument uses semantic tableaux (with one exceptional
rule not satisfying the subformula property). It avoids the previous arguments’ use
of cutting down inconsistent sets of formulas to consistent sets. Like all tableau ar-
guments, it extends partial valuations to total valuations.

Keywords. Completeness, Partial valuation, Relevance logic, Rule γ , Semantic
tableau

This note gives a new proof of the closure of such systems as R, E, RQ, and EQ
under Ackermann’s rule γ , based on the idea of a semantic tableau.* The usual proofs
of γ , beginning with Meyer and Dunn [3], all “cut down” an “inconsistent valuation”
to a “consistent” one. The present proof proceeds dually: no inconsistent valuation
is used, but rather a partial valuation is extended to a total valuation, as is usual with
tableau completeness proofs. The proof is in fact very similar in flavor to the usual
completeness proofs of tableau procedures.

For convenience, we fix our attention on R. We assume a usual axiomatization of
R, with modus ponens for the relevant conditional and adjunction as the only rules.
The system obtained by adjoining γ as an additional rule is called Rγ .

We assume the reader is thoroughly familiar with semantic tableaux, originally
introduced by Beth [1]. However, we will informally sketch the idea of a tableau
construction in the present context. Following Smullyan [4], we use signed formulae:
ordered pairs 〈A,T 〉 and 〈A,F〉, where A is a formula of R, representing in Beth’s
terminology that A appears on the left or the right, respectively. A tableau is then
simply a set S of signed formulae. A rule extends a tableau S to one (or two) immediate
descendants, S′ (S′ and S′′) such that S⊆ S′ (and S⊆ S′′).

The rules for conjunction and negation are usual:
∧T Set S′ = S∪{〈A,T 〉,〈B,T 〉}, where 〈A∧B,T 〉 ∈ S.
∧F Set S′ = S∪{〈A,F〉} and S′′ = S∪{〈B,F〉}, where 〈A∧B,F〉 ∈ S.
∼T Set S′ = S∪{〈A,F〉}, where 〈∼A,T 〉 ∈ S.
∼F Set S′ = S∪{〈A,T 〉}, where 〈∼A,F〉 ∈ S.
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The rules for disjunction are dual to those for conjunction. As for→:
→ T Set S′ = S∪{〈A,F〉} and S′′ = S∪{〈B,T 〉}, where 〈A→ B,T 〉 ∈ S.
Mpon Set S′ = S∪{〈A,F〉} and S′′ = S∪{〈A→ B,F〉}, where 〈B,F〉 ∈ S.

Mpon is rather different from the usual tableau rules in that it does not decompose
a formula into subformulas.

A construction proceeds in stages. The initial stage is the unit set of tableaux {S}.
Each stage consists in a finite set of tableaux {S1, . . . ,Sn}. The n+ 1th stage comes
from the nth by replacing some set Si by its immediate descendant or its two immediate
descendants according to one of the rules. As usual in tableau constructions, the pro-
cedure can be diagrammed as a tree, where binary branching occurs in connection
with the rules ∧F , ∨T ,→ T , and Mpon. A tableau S is closed if and only if for some
formula A, 〈A,F〉 ∈ S and either 〈A,T 〉 ∈ S or A is an axiom of R. A stage {S1, . . . ,Sn}
is closed if and only if each Si is closed.

We can stipulate a fixed priority ordering for applying rules if we wish. The point
is to make the stages of a construction determinate, given the initial stage. We assume
that the ordering is such that every applicable rule is eventually applied. The con-
struction for A is the construction whose initial stage is {{〈A,F〉}}. A construction is
closed if some one of its stages is closed.

A valuation is a map ν whose domain is the set of formulae of R, and whose range
is {T,F}. A valuation is admissible if and only if:

(i) It respects the usual conditions for truth functions.
(ii) If ν(A→ B) = ν(A) = T , then ν(B) = T (equivalently, given (i): if ν(A→

B) = T , ν(A⊃B) = T ).
(iii) If A is an axiom of R, ν(A) = T .

A formula A is valid if and only if for every admissible valuation ν , ν(A) = T .

Theorem 1. If A is a theorem of Rγ , A is a theorem of R.

Proof. The theorem follows from Lemmas 2–4. The crucial step is Lemma 3. /

Lemma 2. If A is a theorem of Rγ , A is valid.

Proof. The axioms of Rγ are valid, and the rules preserve validity. /

Lemma 3. If A is valid, the construction for A is closed.

Proof. We prove the contrapositive. Suppose the construction for A is not closed.
Then by the usual argument from König’s Lemma, there is an infinite set S of signed
formulae such that:1

(i) S is closed under the rules (e.g., for ∧F , if 〈B∧C,F〉 ∈ S, either 〈B,F〉 ∈ S or
〈C,F〉 ∈ S; for ∧T , if 〈B∧C,T 〉 ∈ S, 〈B,T 〉 ∈ S and 〈C,T 〉 ∈ S; for Mpon, if
〈B,F〉 ∈ S, then for any C, either 〈C→ B,F〉 ∈ S or 〈C,F〉 ∈ S; etc.).

(ii) 〈A,F〉 ∈ S.
(iii) For no formula B are both 〈B,T 〉 and 〈B,F〉 ∈ S.
(iv) If B is an axiom of R, 〈B,F〉 /∈ S.
Define a valuation ν(B) by induction on the complexity of B. If B is atomic, set

ν(B) = T (F) if and only if 〈B,T 〉 ∈ S (〈B,T 〉 /∈ S). For truth-functional formulas,
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define ν so as to respect the truth-functions. ν(B→C) = T if and only if ν(B) = F
or ν(C) = T , and 〈B→C,F〉 /∈ S; otherwise, ν(B→C) = F .

We needed to show that A is not valid. This will follow if ν(A) = F and ν is an
admissible valuation. That ν(A) = F follows from Sublemma 3.1, given that 〈A,F〉 ∈
S. ν obviously satisfies conditions (i) and (ii) for admissibility. Condition (iii) is
Sublemma 3.2.

Sublemma 3.1. For any formula B, if 〈B,T 〉 ∈ S, then ν(B) = T ; if 〈B,F〉 ∈ S,
then ν(B) = F .

Proof. This is the usual lemma for the completeness of a tableau procedure. It is
proved by induction on the number of connectives in A. If A is atomic and 〈A,T 〉 ∈ S,
the result follows by the definition of ν . If 〈A,F〉 ∈ S, then 〈A,T 〉 /∈ S. So by the
definition of ν , ν(A) = F . Suppose B is C∧D, and the lemma holds for C and D.
Then if 〈B,T 〉 ∈ S, then by the closure of S under the rules, 〈C,T 〉 ∈ S and 〈D,T 〉 ∈ S,
so ν(C) = ν(D) = T . So ν(B) = ν(C∧D) = T . If 〈B,F〉 ∈ S, then either 〈C,F〉 ∈ S
or 〈D,F〉 ∈ S, so by inductive hypothesis ν(C) = F or ν(D) = F , so ν(C∧D) = F .
Similarly, for the other truth functional formulas. If B is C → D and 〈B,T 〉 ∈ S,
then either 〈C,F〉 ∈ S or 〈D,T 〉 ∈ S. So, by inductive hypothesis, either ν(C) = F
or ν(D) = T . Also, since 〈C→ D,T 〉 ∈ S, 〈C→ D,F〉 /∈ S, so by definition of ν ,
ν(B) = ν(C→ D) = T . If 〈C→ D,F〉 ∈ S, then by definition of ν , ν(C→ D) = F .

Sublemma 3.2. If B is an axiom of R, ν(B) = T .
Proof. This goes case by case. We give two sample cases. The reader can verify

the others.
Suppose B is (C→ (C→D))→ (C→D). To show ν(B) = T , suppose for reductio

that ν(B) = F . Then by definition of ν , since B is an implicational formula, either
〈B,F〉 ∈ S, or ν(C→ (C→D)) = T and ν(C→D) =F . Since B is an axiom, 〈B,F〉 ∈
S is impossible, so ν(C→ (C→ D)) = T and ν(C→ D) = F . Since ν(C→ D) = F ,
either 〈C→D,F〉 ∈ S, or ν(C) = T and ν(D) = F . Suppose 〈C→D,F〉 ∈ S. Then by
closure of S under Mpon, either 〈(C→ (C→ D))→ (C→ D),F〉 ∈ S or 〈C→ (C→
D),F〉 ∈ S. But the first alternative is impossible, as already observed, and the second
is impossible, since ν(C→ (C→ D)) = T . So ν(C) = T and ν(D) = F . But then, by
definition of ν , ν(C→ (C→ D)) = F . This is a contradiction.

Suppose B is (C→ (D→ E))→ (D→ (C→ E)). Suppose ν(B) = F . 〈B,F〉 ∈ S is
impossible, so ν(C→ (D→E)) = T and ν(D→ (C→E)) =F . So either 〈D→ (C→
E),F〉 ∈ S or ν(D) = T and ν(C→E) =F . In the former case, by Mpon, either 〈(C→
(D→ E))→ (D→ (C→ E)),F〉 ∈ S, or 〈C→ (D→ E),F〉 ∈ S. Both are already
ruled out, since the first is an axiom and the second contradicts ν(C→ (D→ E)) = T .
So 〈D→ (C→ E),F〉 /∈ S, so ν(D) = T and ν(C→ E) = F . Since ν(C→ E) = F ,
either 〈C → E,F〉 ∈ S, or ν(C) = T and ν(E) = F . If 〈C → E,F〉 ∈ S, by Mpon,
either 〈D→ (C→ E),F〉 ∈ S or 〈D,F〉 ∈ S. But 〈D→ (C→ E),F〉 ∈ S has already
been ruled out, and 〈D,F〉 ∈ S is impossible, since then, by Sublemma 2.1, ν(D) = F ,
which has already been ruled out. So, 〈C→ E,F〉 /∈ S, hence ν(C) = T and ν(E) = F .
Also we already have ν(D) = T . Hence by definition of ν , ν(C→ (D→ E)) = F .
This is a contradiction. /
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Lemma 4. If the construction for A is closed, A is a theorem of R.

Proof. Any of the usual methods of proving that a tableau procedure is contained in a
corresponding axiomatic system will do. For example, let a tableau S = {〈B1,T 〉, . . . ,
〈Bm,T 〉,〈C1,F〉, . . . ,〈Cn,F〉} (m or n may = 0). Then define the characteristic for-
mula of S as ¬B1∨·· ·∨¬Bm∨C1∨·· ·∨Cn. Note that if S is closed, its characteristic
formula is provable in R, since either it has two disjuncts of the forms B and ¬B, or
some disjunct is an axiom of R. If a stage of a construction is {S1, . . . ,Sq}with charac-
teristic formulae D1, . . . ,Dq, let the characteristic formula of the stage be D1∧·· ·∧Dq.
Then the characteristic formula of a closed stage is provable in R. By inspection of
the various tableau rules, if C is the characteristic formula of a non-initial stage of
a construction and C′ is the characteristic formula of the preceding stage, C→ C′ is
provable in R. Hence by transitivity of →, if C is the characteristic formula of any
stage of a construction and D is the characteristic formula of the initial stage, C→D is
provable in R. Note that the characteristic formula of the initial stage of the construc-
tion for A is A itself. So, if the construction for A is closed, and C is the characteristic
formula of the closed stage, C→ A and C are both theorems of R. Thus, A is. /

The proof above, except for its treatment of→ and the axioms of R, is very close to
the usual completeness proofs of tableau procedures. It is shown that the theorems of
R, of Rγ , and the valid formulae are all coextensive, though the semantical notion of
validity used is of little independent interest. In Lemma 3, the partial function defined
by ν(A) = T if 〈A,T 〉 ∈ S, and ν(A) = F if 〈A,F〉 ∈ S, and undefined otherwise, is
shown to extend to an admissible valuation defined on all formulae.

Although for definiteness the theorem was stated for R, the proof applies equally
well, for example, to E. If quantifiers are added, as in RQ or EQ, the proof extends
readily. Here we define an admissible valuation over a nonempty domain D, and the
quantifiers are evaluated in the usual way. For the tableaux, quantifier rules of the
usual kind are added.

Acknowledgments. My thanks to Oliver Marshall, Yale Weiss, and especially to Ro-
mina Padró for their help in producing this version. I would like to thank Katalin
Bimbó for some technical help. This paper has been completed with support from the
Saul A. Kripke Center at the City University of New York, Graduate Center.

Notes
* Unfortunately, the original handwritten manuscript of this paper was undated. Mike Dunn,
however, recalled that I verbally reported this result to him in the summer of 1978 at Oxford.
In an email to the Saul Kripke Center, dated February 6th, 2017, Dunn said: “Saul’s commu-
nication to me was verbal without much detail. We were both visitors at Oxford in the spring
of 1978 and [I] know that I at least stayed through mid-summer. I think that early summer/late
spring at Oxford might be when/where he told me about his proof, but my memory is not clear
on this. Anyway, I wrote up his proof, probably within a couple of months after he told me
about it, and sent him a copy. I attach what I sent him. It is dated July 23, 1978, and I think was
sent to him shortly after then.” (See also Dunn and Meyer [2, §5].)

I originally thought that I was influenced by the result in Dunn and Meyer [2] connecting the
proofs of γ to a method of proving Gentzen’s cut elimination, but in the email mentioned above,
Dunn said: “I sent him [me] a copy of ‘Gentzen’s cut . . . ’ Feb. 12, 1980. It wasn’t published
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until 1989, because of delay in publication of the Norman–Sylvan volume.” So unless I had
seen another copy or heard them give a talk, it is unlikely that I was influenced by their paper.

Other proofs of γ in relevance logic had long been around since the original paper by Meyer
and Dunn [3], some of them making it much simpler. However, the present proof was novel in
that it was based on the usual completeness proofs of tableau (cut-free) methods, and it is not
based on cutting down an inconsistent set of statements to a consistent set.
1 S is not a tableau of the construction but is the union of an increasing sequence of non-closed
tableaux, each of which is an immediate descendant of its predecessor in the sequence.
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MODELS FOR PRIORIAN SECOND-ORDER LOGIC

Edwin Mares

ABSTRACT. This paper is both a historical examination of Arthur Prior’s approach
to second-order logic in Objects of Thought and a formal reconstruction of it. I claim
that Prior has in mind a form of supervenience thesis — that truths formulable in
a second-order language supervene on first-order truths. I take this thesis, along
with certain of Prior’s other claims, and construct a substitutional semantics that
vindicates the supervenience claims. I then argue that the logic of this semantics is
ramified second-order logic.

This paper is dedicated to the memory of J. Michael Dunn. Mike was my thesis
supervisor and in recent years he had become my friend. Among a great many other
things, I learned from him a respect for the history of logic.

Keywords. Model theory, Arthur Prior, W. V. O. Quine, Second-order logic, Substi-
tutional quantification

1. INTRODUCTION

Objects of Thought [11] is a book that Arthur Prior was writing at the time of his
death in 1969. Although some sections are not complete, it is clear what his aim and
approach is in the book: Prior describes and defends a sweeping nominalism. In par-
ticular, Prior objects to the view that the very structure of our language and the logic
underlying it commit us to the existence of abstract objects, such as properties, propo-
sitions or sets. Prior adumbrates, but does not develop, a view of quantification over
predicates that supposedly does not have any untoward metaphysical consequences.

My purpose in this paper is both to provide a historical account of what Prior’s
view in Objects of Thought and to formalise this view. In providing the formalisation,
I do not attempt to vindicate Prior’s attempt to avoid ontological commitments. I use
model theory, which is based on set theory, and hence is committed to some of those
entities that Prior rejects. Rather, I wish to make his view clear and precise. The use
of model theory might be understood by readers as a scaffolding that can be discarded
after it is built — and treated as a mere fiction. But I am suspicious of any such moves
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— I find model theory genuinely explanatory in treating semantical matters and find
that the explanation disappears when we claim that it is a mere fiction.1

The key aspect that I wish to concentrate on is what I think of as Prior’s superve-
nience claim. A set of propositions X supervenes over a set of propositions Y (the
supervenience base) if and only if any two worlds (or models) which differ in terms
of the X propositions that they make true must also differ in terms of the Y propo-
sitions that they make true. In Prior’s theory, X is the class of second-order truths
and Y the class of first-order truths. He thinks of all true statements of second-order
logic as being made true by the sorts of features of the world that can be expressed
in first-order logic (which are, in turn, made true by truths of zeroth-order logic, i.e.,
predicate logic without quantifiers). We find this sort of view also in the Tractatus,
but Wittgenstein appeals to atomic facts in making clear the sort of supervenience that
he accepts, and Prior rejects facts. Rather, Prior employs John Wisdom’s notion of
a logical construction to state his view. The result, unlike Wittgenstein’s theory, is a
theory that is essentially informal — by its very nature it resists formalisation.

Thus, I cannot vindicate the view by formalising it. In fact, I do violence to it. But
what I do is extract an important aspect of the theory and show that it has an interesting
property. Contrary to what Prior says, the logic behind the sort of supervenience that
Prior wants is a form of the ramified theory of types. Prior claims to reject the ramified
theory in favour of the simple theory of types, but I think he displays a confusion in
doing so. Moreover, the fact that this logic is ramified is not a mere artefact of my
formalisation, but rather integral to the notion of supervenience.

The plan of the paper is as follows. I begin with a historical exposition of Prior’s
comments regarding second-order logic in Objects of Thought. I then describe a model
theory in which every individual in the domain has a name. I use this model theory
in section 6 to describe a class of “Prior models” for second-order logic. I show
in section 7 that a straightforward version of the supervenience thesis holds of Prior
models. In section 8, I define classes of “overhang models” and supervaluational
models and show that supervenience holds of the former but not of the latter. I end by
pointing out that the logic of Prior models is ramified second-order logic, contrary to
Prior’s explicit rejections of ramified type theory.

2. PRIOR ON SECOND-ORDER LOGIC

One of the goals of Objects of Thought is to present a nominalistic analysis of nat-
ural language, using the tools of formal logic. Prior wishes to avoid any commitment
to abstract objects, in particular, to propositions, facts, sets, and properties. In the
first and second chapters, he presents a strategy to avoid commitment to such entities
by use of John Wisdom’s theory of logical constructions, which I describe below. In
the third chapter, he attempts to undermine Quine’s thesis of ontological commitment.
On Prior’s reading, Quine thinks that bound variables in the statements that we ac-
cept indicate the entities that we thereby must accept. On Quine’s view, second-order
quantification commits us to the existence of sets. Thus, for example, if we accept

1In an interview, Peter Hacker told me that Prior viewed logic as a “grid” that he could lay over natural
language, and the usefulness of logic is only in its ability to illuminate features of natural language, not for
example to expose weaknesses of natural language.
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∀P∀x(Px ⊃ Rx) then we must accept both individuals (as values of “x”) and sets of
individuals (as values of “P”). Prior claims, to the contrary, that the acceptance of
statements that include second-order quantifiers do not commit us to the existence of
sets. In fact, he thinks that, for example, the sentence ∀P∀x(Px⊃Gx) does not commit
us to anything other than the truth of its universal instantiations, such as ∀x(Fx⊃Gx),
∀x(Gx ⊃ Gx), ∀x(Hx ⊃ Gx), and so on. Moreover, none of these instantiations is
committed to the existence of sets.

I think that Prior misreads Quine. Quine thinks of theories rather than individual
sentences as carrying ontological commitment. Our choice of a logic in which to
regiment a theory carries with it ontological commitments [12]. Thus, to formulate
a theory of physics, say, then if we use second-order logic that theory will not only
be committed to the existence of electrons, but to the existence of sets of electrons as
well. Quine prefers to use a first-order set theory to talk about sets, as opposed to a
second-order logic, since the first talks about sets directly and the second does so in a
rather obscure and indirect manner [13, §35]. In addition, Quine, unlike Prior, is not
interested in giving a formal logical analysis of natural language. Rather, he thinks
that the central philosophical purpose of formal logic is to provide a framework in
which scientific theories can be regimented.2

Despite the fact that Prior’s attack on Quine misses its mark by a wide margin, I
think that Prior’s position with regard to higher-order logic is extremely interesting.
I read Prior as proposing a form of supervenience thesis about higher-order truths.
A statement of the form ∀PA(P), is made true by its instantiations A(F), A(G), and
so on. These Fs and Gs are predicates of a supposedly unproblematic first-order
language. Prior’s view is that higher-order truths supervene on first-order (or per-
haps zeroth-order) truths. At first, this theory might seem like a version of the view
of Wittgenstein’s Tractatus or Russell’s Lectures on Logical Atomism, according to
which higher-order truths are all reducible to first-order facts.3 But Prior’s view is
interestingly different from these theories in that Prior rejects the existence of facts in
chapter one of Objects of Thought. Prior thinks that we can talk about facts, but facts
are logical fictions of a sort and are useful only as shorthand to describe features of
the world that should properly not be thought of as entities in their own right.

In adopting this latter view, Prior relies on a theory of logical constructs and logical
fictions developed by John Wisdom [18]. A logical fiction is a locution that seems to
refer to things but may not really refer at all. For example, in “the average New
Zealand family has three children” the phrase “the average New Zealand family” need
not refer to any particular family and there may not be any family in New Zealand
that has three children for this sentence to be true. The average New Zealand family
is a logical construct and it is used to refer in a derivative sense to all New Zealand
families, but need not directly refer to anything.

2Quine expresses this view extremely clearly in his unpublished paper, “Reflections on Models and
Truth” [14], but it comes through also in his published works. Since I am neither interested in Quine
exposition or whether Prior’s attack on Quine is successful in this paper, I will leave this topic to the
side now.

3This is not entirely true for Russell, who thought that relations might sometimes hold between relations,
and are not reducible to the sorts of things that one finds in first-order facts [16, pp. 102–103].
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For Prior, facts and propositions are logical fictions. Consider a situation in which
Susan says “Inflation will surpass 4% next year” and Jane says “That certainly fits the
facts.” Here “facts” does not stand for a collection of entities of some kind, but its
use allows us to indicate a much longer statement such as “the government has had
to put too much money in circulation due to the COVID lockdown, the supply chain
has been disrupted for a wide variety of goods, . . . .” This longer statement might not
even be possible to be stated. It might be infinitely long. The word “facts” is a useful
tool to say things of this sort that we might not want or be able to make otherwise.
Propositions are likewise to be understood as façons de parler. To say that Susan
believes the proposition that eating animals is wrong is to say no more or less than
that Susan believes that eating animals is wrong.

Prior treats truth in a similar manner. He accepts a form of the redundancy theory
of truth. On this theory, we can remove the phrase “it is true that” in sentences like
“it is true that the sky is blue” without loss. “It is true that the sky is blue” means the
same as “the sky is blue.” The ability to rephrase sentences containing “it is true that”
to sentence that do not contain that locution shows that the original sentences are not
really about anything that we call “truth.” Ascribing truth or falsehood to sentences
is merely to agree or disagree with what they say [11, p. 11].4 Like logical fictions
such as “the average New Zealand family,” “it is true that” is useful in representing
our thoughts in an abbreviated manner, but it does not express a real component of
those thoughts.

In doing semantics, the use of the notion of truth is often thought to be essential.
We usually set out truth conditions for each connective to give a recursive theory of
truth for a formal language and that this recursive theory tells us the meaning of the
connective. Prior rejects the theory in which truth conditions for the connectives are
represented in a metalanguage [11, ch. 7]. In fact, Prior rejects the Tarskian semantic
notion of truth altogether [11, pp. 100–101].

Without the notion of truth, and without the appeal to abstract objects, Prior’s se-
mantics becomes extremely informal. Consider a sentence of the form “∀xA(x).” This
sentence is true in the Tarskian semantics if and only if A(x) is true of everything in the
domain. On Prior’s view, we say that ∀xA(x) (note the disappearance of the quotation
marks and “is true”) if and only if A( john), A(susan), A( jane), . . . . I will discuss later
the problem of this ellipsis. But now I point out that Prior accepted the commitment
to things like John, Susan, and Jane, which can be represented by names — which can
take argument position in formal sentences.

With regard to second-order logic Prior has two aims. First, he wants to hold
that predicate expressions do not refer to anything. He says that verbs in general, do
not have “the job of designating objects” [11, p. 35]. Second, he wants to vindicate
second-order (and other higher-order) quantification as legitimate. A second-order
variable for Prior stands in for a verb of some sort. For example, in the open sentence,
“Peter ϕs Paul,” the variable “ϕ” is a place-holder for a transitive verb. Thus, “Peter
visits Paul,” “Peter insults Paul,” “Peter is quite rude to Paul,” “Peter slanders Paul,”
“Peter hits Paul,” “Peter murders Paul,” and so on, are all values of “Peter ϕs Paul.”

4In this, Prior’s theory is very much like the prosentential theory of truth of Dorothy Grover, Joseph
Camp, and Nuel Belnap [8; 7].
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But neither “ϕ” nor any of the verbs that can replace it in a sentence refer to any-
thing by themselves, nor do the sentences in which they occur refer to anything (since
propositions and facts are just logical fictions).

This view of predicate expressions gives Prior’s view of second-order quantifica-
tion a rather substitutional feel. In reading it, I feel pulled to say that, for Prior, ∀PA(P)
is true if and only if, for all predicates F , A(F) is true. But recall that truth is a logical
construct for Prior. What we should say is something closer to ∀PA(P) is true if and
only if for each predicate F , A(F). But there’s a problem with this reading. Prior
wants to avoid recourse to abstract objects in order to understand the semantics of
ordinary language. This sort of substitutional semantics is Platonist. In its models, it
contains sentences that no one has ever or will ever utter. The only way to understand
these things, if we want to treat the theory realistically, is to take them to be abstract
objects: sentence types.

I think it is partly for this reason that Prior shies away from giving a semantics that
gives us biconditionals of some sort for the application of sentences. The bicondi-
tionals that state truth-conditions, say, typically force abstract objects (sets, sentence
types, properties, propositions, . . . ) on us, especially when treating higher-order quan-
tification. I find Prior’s refusal to give a theory that contains bicondionals a refusal to
give a real theory of meaning for natural language, which I would have thought was
his central goal. In order to deal with this tension, I present a formal theory, that does
contain biconditional truth conditions. But I do not pretend that it is Prior’s theory.
If we want, we can think of the theory as a fiction, in the sense of contemporary fic-
tionalist theories, that captures Prior’s ideas in a more rigorous manner than he was
willing to present them.

Prior appeals to his substitutional-like semantics in order to circumvent the appeal
to sets to explain quantification over predicates:

Quine would argue, I think, that the quantified forms ∀xϕx and ∃xϕx do
not commit us to the existence of any other sorts of entities than do the
corresponding singular forms ϕa, ϕb, etc., which follow from the former
and entail the latter. Why, then, should he suppose that the quantified forms
∃ϕϕa, ∃ϕ∃ϕx, etc., commit us to the existence of entities which we are not
committed to by the forms ϕa, ψa, ∃xϕx from which they follow? Or that
the form ∃pδ p commits us to the existence of kinds of entities to which
we are not committed by specific ‘δq’s from which it follows? The alleged
emergence of these new ontological commitments has an almost magical
air about it. [11, p. 43]

Prior’s argument appeals to a general principle: If A entails B, then at most B can carry
the ontological commitments already carried by A. A normal zeroth order sentence ϕa
is committed only to whatever a is. ϕa entails ∃xϕx and this is likewise committed
only to there being things that are ϕ (like a). But ϕa also entails ∃ϕϕa as well.
By the general principle, ∃ϕϕa is committed only to, at most, the things that ϕa is
committed. So, ∃ϕϕa is committed only to a and not to things like properties or sets.

I don’t want to discuss the entailment view of ontological commitment to which
Prior appeals.5 This passage is interesting to me for another reason. It gives us a fairly

5Phillip Bricker [2] presents a clear taxonomy of theories of ontological commitment, including
entailment-based ones like Prior’s.
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clear picture of Prior’s view of higher-order quantification. A sentence ∀PA(P) is true
if and only if for all verbs F , A(F). Here the schema A(F) only represents sentences
in a Pickwickean sense. It is a logical fiction that allows us to express features of the
world that we take to be of the form A(F) (here too, the notion of form is only being
used as a logical fiction).

I suggest that Prior is giving us a picture of truth in natural language according
to which there are some basic truths that are captured by zeroth order sentences and
that all the indicative sentences of natural language are determined in their truth or
falsity by those basic truths. But there is a deeper problem here. Even talking about
basic truths is to engage in a logical fiction. There is no class of entities that are basic
truths, according to Prior. Such things would be facts (or near enough to make Prior
reject them). Prior’s nominalism is a form of what David Armstrong calls “ostrich
nominalism” [1]. It constitutes a refusal to give an explanation. I find this refusal
frustrating, although I do not have an argument that it is illegitimate.6

3. LANGUAGES

My constructions use a variety of related languages. The base first-order language,
L, contains the connectives ¬ (negation) and ∧ (conjunction) and the quantifier ∀ (uni-
versal quantifier), as well as variables, x1,x2, . . ., individuals constants, and predicate
constants (and parentheses). The defined connectives are disjunction, implication,
equivalence, and the existential quantifier:

A∨B =d f ¬(¬A∧¬B); A⊃ B =d f ¬(A∧¬B);
A≡ B =d f (A⊃ B)∧ (B⊃ A); ∃xA =d f ¬∀x¬A.

The models that I use carry with them names for all the objects in their domains. For
each set of individual constants C, the formulae of LC is the set of first-order formulae
that can be constructed in the usual way with names from C and from the language L.

The second-order language L2 is an extension of L with predicate variables for
each finite arity n, Pn,Qn,Rn, . . . and quantifiers binding such variables. Note that the
formation rules of L2 bar predicates, including predicate variables, from being logical
subjects. This means that we cannot have formulas like PQ, where P is a second-
order predicate and Q is a first-order predicate. The language also contains sets of
predicate parameters. I use “Pr” to denote an arbitrary set of predicate parameters.
The language LPr is the language L extended with formulae constructed from the
vocabulary in L together with the parameters of Pr. Similar definitions hold when the
subscript C and the superscript 2 are added.

4. ROBINSON FIRST-ORDER MODELS

In this section, I introduce first-order models in which every member of the domain
has a name, which I will use in later sections in order to formulate metaphysical su-
pervenience. This way of treating model theory seems to have its origin in Abraham

6Wisdom’s method of logical constructions, especially in the way that Prior employs it, turns hand-
waving into a philosophical art. When the ellipses come out, I sometimes want to say that I just don’t know
how the series is supposed to continue. But that may be just a feeling of frustration from someone who
loves philosophical theorising.
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Robinson’s PhD thesis [15], in which he uses these sorts of models to prove compact-
ness.7 I have chosen Robinson models to make clear and precise the supervenience
thesis. In a Robinson model we can represent every fact as a true formula.

Here is a more formal definition of a Robinson model:

Definition 1. A first-order Robinson model, M, is a triple 〈D,C,v〉 such that D is a
non-empty set (the domain of individuals of M), C is a non-empty set (of names), and
v is a function from n-place predicates into the power set of Dn, and from C onto D.

To make the truth clauses slightly simpler, I assume that C always includes all the
names from L. Note that the assumption that every individual has a name makes
the language a very non-standard form of first-order language. Standard first-order
languages have ℵ0 many well-formed formulae. If the domain of a model contains
uncountably many individuals, then the language will be uncountable as well.

The use of Robinson models makes the theory of truth slightly simpler than for the
more common Tarski models. There is no need for the assignments to variables, nor
any talk of “x-variants” of value assignments. Open formulae are not given values at
all. Here are the recursive truth conditions. For M= 〈D,C,v〉:

1. Where F is an n-ary predicate, M � Fc1 . . .cn iff 〈v f (c1), . . . ,v f (cn)〉 ∈ v(F);
2. M � A∧B if and only if M � A and M � B;
3. M � ¬A if and only if M 2 A;
4. M � ∀xA if and only if for all c ∈C, M � A[c/x],

where A[c/x] is the result of replacing every free occurrence of x in A with c.
If we fix C, then we get a model theory that is equivalent to a substitutional theory

of the first-order quantifiers and the compactness theorem would fail. For we would
have the set of formulas Γ , the set of all Pc, for c ∈C, that entails ∀xPx, whereas no
finite subset of Γ entails ∀xPx.

It seems quite plausible to attribute a Robinson-like treatment of quantification to
Prior. In the standard referential treatment of the universal quantifier, ∀xA(x) is true if
and only if A(x) is true of every individual. But Prior thinks that we can only think of
an open sentence’s being true of an individual in an indirect manner. Prior says,

If we start from an open sentence such as ‘x is red-haired’ and ask what
the variable ‘x’ stands for here, the answer depends on what we mean by
‘stands for.’ The variable may be said, in the first place, to stand for a name
(or to keep the place of a name) in the sense that we obtain an ordinary
closed sentence by replacing it with a name, i.e., by any genuine name of
an individual object or person, say ‘Peter.’ The name ‘Peter’ itself stands
for a person, viz. the man Peter, in the sense of referring to or designating
the man; and the variable ‘x’ may be said, in a secondary sense, to stand for
individual objects or persons such as Peter. It ‘stands for’ any such object
or person in the sense that it stands for (keeps a place for) any name that
stands for (refers to) an object or person. [11, p. 35]

Variables, according to Prior, only refer to those things that are their values by means
of standing in for names that actually refer to things. This strongly suggests that Prior

7Leigh Steinhardt had slightly earlier formulated a similar semantical theory — in which it is assumed
that every member of the domain has a name — but her formulation was not, properly speaking, model
theoretic, so I chose to name the models after Robinson instead of Steinhardt [17].



Edwin Mares: Models for Priorian Second-Order Logic 273

does not think that variables can refer to things that do not have names. But Prior
denies that:

I do not say ‘Something is red-haired’ or ‘For some x, x is red-haired’ is
true only if there is some true sentence which specifies it, since its truth
may be due to the red-hairdness of some object for which our language has
no name or one which no one is in a position to point to while saying ‘This
is red-haired’. If we want to bring an ‘only if’ into it the best we can do,
ultimately is to say that ‘For some x, x is red-haired’ is true if and only there
is some red-haired object or person, but this is only to say that it is true if
and only if for some x, x is red-haired. [11, p. 36]

This is an admission that the basic truths in the world outstrip our language, at least
in terms of the objects that they can be about. In effect, in this passage Prior rejects
substitutional semantics for the first-order fragment of natural language. Despite this
rejection of substitutional semantics, I think we can understand his view in terms
of Robinson models in the following manner. A Robinson model may represent the
language of a speaker or community of speakers by analysing it as if there were names
in that language for all the things that they consider individuals. Thus, the use of
Robinson models seems reasonable.

5. SUBSTITUTIONAL SEMANTICS FOR SECOND-ORDER QUANTIFICATION

In this section, I present a substitutional semantics for second-order quantification.
In section 6 below, I combine this semantics with the theory of Robinson models to
produce a Priorian theory of quantification. In this section, I follow Hughes Leblanc
and Robert Meyer [9] in their semantics for higher-order logic. In that paper Leblanc
and Meyer give a semantics for the full simple theory of types. To understand their
treatment of higher-order quantification, consider the following example. ∀P(Pa ⊃
Pa) is true according to the substitutional theory, if and only if, for all formulae A(x)
with only x free, A(a)⊃ A(a). This biconditional, however, does not give an adequate
explanation of the truth of ∀P(Pa ⊃ Pa). The formula, A(x), may contain further
second order quantifications. For example, ∀P(Pb⊃ Fx) is an instance of A(x). Thus,
if the biconditional given above is supposed to explain or determine the truth or falsity
of ∀P(Pa⊃ Pa), it is a failure. Any such explanation will be circular, since it implies
that ∀P(Pa ⊃ Pa) only if ∀P(Pb ⊃ Fa) ⊃ ∀P(Pb ⊃ Fa) is true. We are trying to
explain the truth of a statement with second order quantification by appeal to further
statements that contain second-order quantification. There is no advance here in the
understanding of the meaning of second-order quantifiers.

Instead, Leblanc and Meyer add predicate parameters to their language. I use “F”
and “G” as predicate parameters. They formulate the truth condition for second-order
quantification in terms of predicate parameters:

∀PA(P) is true iff A(F) is true for all predicate parameters F of the same type as P.

There is no circularity here.
Taken on its own, however, the truth condition for second-order quantification is

quite weak. The universal instantiation principle supported by this truth condition is
the following:

∀PA(P)⊃ A(F),



274 Edwin Mares: Models for Priorian Second-Order Logic

where F is a predicate parameter of the same type as P. What we want is something
quite a bit stronger, such as,

(∀2E) ∀PA(P)⊃ A(B),

where B is an open formula of the same type as P and where P is free for B in A.8 To
derive ∀2E, we can add a comprehension scheme to the logic. Here is the general form
of the sort of comprehension scheme that I have in mind:

(CS) ∃P∀x1 . . .∀xn(B≡ Px1 . . .xn),

where x1, . . . ,xn is the complete list of first-order variables that are free in B. Adding
CS entails the validity of some version of ∀2E. But further clarification is still needed.
We need to know what class of formulae are represented by “B” in CS to tell us what
class of formulae B are indicated in ∀2E.

At the very least, Prior’s supervenience thesis requires that the metavariable B
ranges over all the formulae of the original first-order language. Thus, in any second-
order model, we require that for each first-order formula, B, there be a predicate pa-
rameter F such that

∀x1 . . .∀xn(B≡ Fx1 . . .xn).

The Prior models defined in section 6 below satisfy this requirement.
If predicate parameters are only to represent first-order formulae of the original

language, then we can do away with predicate parameters altogether. We can define
satisfaction for second-order formulae in terms of first-order formulae. But I am not
sure that this is what Prior has in mind. Recall that Prior rejects a purely substitutional
approach to first-order quantification because natural languages typically do not have
names for all the entities over which they quantify. This could be true for second-order
quantification as well. This issue, however, is quite complicated and Prior does not
really discuss it. He holds that in a statement such as “Sally runs,” the verb “runs” does
not refer. The issue, then, is not whether we have verbs that refer to every property,
but rather that we have verbs that pick out all the features of the world that in fact
we talk about. Our language does increase sometimes by the addition of new nouns,
but it also expands by the addition of new verbs. “Twerking” was not in our language
three decades ago, but it may be that someone still twerked then. We could represent
there being activities, and other features of things, for which there are no verbs in
the language by the use of predicate parameters in a model for which there are no
corresponding first-order formulae.

I call the situation in which there are more properties in the world (so-to-speak)
than there are predicates to represent them, overhang. In section 8, I define overhang
models and examine their use in a Priorian semantics.

6. PRIOR MODELS

Now that I have sketched the substitutional approach to the semantics of second-
order logic, in this section I use this approach to extend Robinson models to treat
second-order quantification. For obvious reasons, I call the extensions of Robinson

8For a very rigorous treatment of the notion of being “free for” see Church [3] for a good explanation
of this idea.
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models “Prior models.” A Prior model combines a Robinson model with a map from
open formulae of LC to predicate parameters. The idea is that each formula is rep-
resented by a predicate parameter and that this, combined with the truth conditions
for second-order quantification guarantees the validity of CS, when CS is restricted to
treating formulae of LC.9

Definition 2 (Prior Model). A Prior model is a pair 〈M, ι〉, where M is a Robinson
first-order model and ι is a surjective 1–1 function from open formulae of LC with
n-free variables to n-ary predicate parameters.

I call ι a correlation function. It helps to determine the truth or falsity of atomic
formulae that contain predicate parameters:

〈M, ι〉 � Fc1 . . .cn if and only if M � A(c1, . . . ,cn), where ι(A(x1, . . . ,xn)) = F.

The choice of correlation function does not affect the truth or falsity of the first-
order formulae of LC, hence I state the following proposition:

Proposition 3. If A is a formula of L, 〈M, ι〉 is a Prior model, and 〈M, ι〉 � A, then
M � A.

The following theorem and corollary show that the choice of correlation function
does not even affect the truth or falsity of second-order formulae that do not contain
members of C or predicate parameters — i.e., that are formulae of L2.

Theorem 4. If A is a formula of L2
C,Pr and ι and ν are correlation functions, then

〈M, ι〉 � A if and only if 〈M,ν〉 � A′, where A′ results from the replacement of all
propositional parameters F in A with G where ι−1(F) = n−1(G).

Proof. By induction on the complexity of A.
Base case: A is Fa1 . . .an. Suppose that ι−1(F) = n−1(G). Then, by proposition 3,

〈M, ι〉 � Fa1 . . .an if and only if 〈M, ι〉 � B(a1 . . .an) if and only if 〈M, ι〉 �Ga1 . . .an
where ι(B(x1 . . .xn)) = F and ν(B(x1 . . .xn)) = G.

The conjunction and negation cases follow by the inductive hypothesis.
First-Order Quantification case. A is of the form ∀xB. Suppose that 〈M, ι〉 � ∀xB.

Then 〈M, ι〉 � B[a/x] for all a ∈C. By the inductive hypothesis, 〈M,ν〉 � B′[a/x] for
all a ∈C. Therefore, 〈M, ι〉 � ∀xB′. The proof of the other direction is the same.

Second-Order Quantification case. A is of the form ∀PB(P). 〈M, ι〉 � ∀PB(P) if
and only if, for all H, 〈M, ι〉�B(H), where H is a propositional parameter of the same
type as P. By the inductive hypothesis, 〈M, ι〉 � B(H) if and only it 〈M,ν〉 � B(J)
where ι−1(H) = ν−1(J). Hence, 〈M, ι〉 � ∀PB(P) if and only if 〈M, ι〉 � B′(P). /

If A does not contain any predicate parameters, then A′ is just A, so we can state
the following corollary to theorem 4:

Corollary 5. If A is a formula of L2
C then for any two correlation functions ι and ν ,

〈M, ι〉 � A if and only if 〈M,ν〉 � A.

9Note that I have assumed that there are at least as many predicate parameters in Pr as there are formulae
of LC .
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The truth of this corollary allows one to talk of the formulae of L2
C that are true on

a Robinson model, because the same set of such formulae are true on any Prior model
based on a given Robinson model.

We can define different consequence operators on the class of Prior models. Con-
sider a formula A and a set of formulae Γ of the full language, L2

C,Pr. We can say
that Γ �C A if and only if for every Prior model based on the set of constants C, if
all the members of Γ are true on that model then so is A. We can also restrict that
relation to create the relation �C

ι , so that we consider only Prior models that contain
the correlation function ι .

7. SUPERVENIENCE AND PRIOR MODELS

The use of Prior models makes the supervenience thesis quite straightforward. The
following lemma and theorem show that if two Prior models differ in the second-order
statements that they make true, they must differ in the first-order statements that they
make true. Thus, the first-order statements are the supervenience basis for the second-
order statements.

Lemma 6. If A is a formula of L2
C that is true on 〈M, ι〉, then there is a set Γ of

first-order formulae of LC such that Γ �C
ι A and every member of Γ is true in 〈M, ι〉.

Proof. Suppose that A is true in 〈M, ι〉. Let Γ be the set ofLC formulae true in 〈M, ι〉.
Case 1. A = Fc1 . . .cn. Then 〈M, ι〉 � B(c1 . . .cn) where ι(B(x1 . . .xn)) = F . But

B(c1 . . .cn) ∈ Γ , so Γ �C
ι A.

Case 2. A = B∧C. Follows by inductive hypothesis.
Case 3. A = ¬B. Suppose that Γ 2ι ¬B, then there is some 〈M′, ι〉 � B, and

〈M′, ι〉 �G for all G ∈ Γ . By the inductive hypothesis, there is some set of first-order
formulae of LC, Γ ′, such that Γ ′ �C

ι B. But Γ is bivalent, that is, for every first order
formula of the non-extended language, G, either G ∈ Γ or ¬G ∈ Γ . Since the set of
formulae true in any model is negation consistent, Γ ′ ⊆ Γ . The consequence relation,
�C

ι , is monotonic, and so Γ �ι B, but then 〈M, ι〉 is inconsistent, and this can’t be.
Therefore, Γ �C

ι ¬B.
Case 4. A = ∀xB(x). If A is true on 〈M, ι〉, then Γ �C

ι B(c) for all names c. Then,
Γ �C

ι ∀xB(x).
Case 5. A = ∀PB(P). 〈M, ι〉 � ∀PB(P) if and only if, for all parameters F of the

same type as P, 〈M, ι〉 � B(F). By the inductive hypothesis, Γ �ι B(F) for all such
Fs. Therefore, Γ �ι ∀PB(P). /

Theorem 7 (Supervenience). For any two Prior models 〈M, ι〉 and 〈M′, ι〉 both with
set of constants C, for any formula A of L2

C, if 〈M, ι〉 and 〈M′, ι〉 differ in the truth
value attributed to A, then there is a first-order formula of LC, B, that differs in truth
value on 〈M, ι〉 and 〈M′, ι〉.

Proof. Suppose that A is true in 〈M, ι〉 but not in 〈M′, ι〉. By lemma 6, There is some
set of first order formulae, Γ of LC such that Γ �ι A. Then if A fails to be true in
〈M′, ι〉, some member of Γ must be false in 〈M′, ι〉. /
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Sticking with LC as the supervenience basis might seem to make the supervenience
relation rather superficial. In a purely substitutional framework in which every param-
eter expresses a first-order formula, it would seem, supervenience is too straightfor-
ward. But the current framework is not purely substitutional. There is a domain of
individuals in every Robinson model (and, hence, in every Prior model). Suppose that
there is a Prior model, 〈〈D′,v′,C′〉,ν〉 such that the cardinality of C′ is the same as
the cardinality of C. Let f be a 1–1 surjection from C′ to C and let µ be a correlation
function such that ν(A) = µ(A′), where A′ is just like A except that every name c′

that occurs in A is replaced with f (c′). Then it is clear that 〈〈D′,v′′,C〉,µ〉 is a Prior
model, where v′′ is an assignment function on LC, and 〈〈D′,v′,C′〉,ν〉 � A if and only
if 〈〈D′,v′′,C〉,µ〉 � A′. From this fact, we can derive a deeper sense of supervenience.
Therefore, by theorem 7:

Theorem 8. Let C and C′ be sets of names of the same cardinality and let A be a
formula of L2

C, such that A is true on some Prior model based on C. Then there are
sets of formulae Γ and Γ ′ of LC and LC′ , respectively, such that for any formula B of
LC, B ∈ Γ iff B′ ∈ Γ ′ and Γ �C A and Γ ′ �C′ A′.

The supervenience theorems of the present section are rather straightforward. In
the next section, I look at ways in which the relationship between language and the
world could make supervenience false or at least more complicated.

8. SUPERVALUATIONS AND SUPERVENIENCE

In the definition of a Prior model I assume that the set of parameters, Pr, is identical
to the range of the correlation function of a model, or rather, that we do not use the
parameters that are not in that range. Now I discuss models in which there is overhang
in the sense of section 5. That is to say, I now talk about models in which there are
parameters that are not coextensive with open formulae of LC.

If our language use, or the world, or both the world and language use, determines
that there is a determinate class of basic features of the world that are not expressed
in our language, then we can represent this easily using a simple modification of Prior
models. An overhang Prior model is triple 〈M,V, ι〉 such that M is a Robinson model,
ι is a 1–1 map from open formulae of LC into Pr and V is a function that takes n-
place predicate parameters from Pr−Rg(ι) to subsets of Dn. A truth clause is then
added for atomic formulae that contain predicate parameters not in the range of the
correlation function:

〈M,V, ι〉 � Fc1 . . .cn if and only if 〈v(c1), . . . ,v(cn)〉 ∈V (F)

Clearly, the theorems of section 7 hold for overhang models where LC is replaced
by LC,Pr.

A problem arises, however, if we think that our language does not necessarily ex-
haust the basic features of the world, but that the world and our language use together
do not determine what exactly these basic features are. In other words, depending on
how we extend our language, there could be different ways that the world is. If we
take this line on the language/world interface, then I think we should use a form of
supervaluations to represent it.
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Definition 9 (Supervaluational Prior Model). A supervaluational Prior modelM con-
sists of a set of overhang Prior models 〈M,V, ι〉 such that they all contain the same
Robinson model M and the same correlation function ι , but they may vary on their
valuation V .

The theory of truth for supervaluational Prior models is quite simple. For any
formula A of the full language,M � A if and only if 〈M,V, ι〉 � A for every overhang
Prior model 〈M,V, ι〉 inM.

Supervenience fails on the class of supervaluational Prior models. For suppose
that Pr contains countably many binary predicates. Let’s enumerate them F1,F2, . . . .
Consider a supervaluational Prior model that consists of countably many overhang
Prior models, also enumerated, M1,M2, . . . . Suppose that on each Mi, Fi is transitive,
that is, Mi � ∀x∀y∀z((Fixy∧Fiyz)⊃ Fixz) and, for i > 1, there is a counterexample to
the transitivity of Fi−1, that is, there are some c1,c2 and c3 such that Mi � Fi−1c1c2∧
Fi−1c2c3 ∧¬Fi−1c1c3. Thus, we have M � ∃P∀x∀y∀z((Pxy∧Pyz) ⊃ Pxz) but there
is no particular parameter F such thatM � ∀x∀y∀z((Fxy∧Fyz)⊃ Fxz). We can see
that there is a failure of supervenience. In this model, there is no set of “super-true”
first-order formulae that entails this second order formula.

To maintain supervenience, one might remove all the parameters in Pr that are not
in the range of the correlation function ι and replace each one of these parameters, Fi
with countably many new parameters, F1

1 ,F
2
i , . . . . Then, set for all names c1, . . . ,cn,

M � F j
i c1 . . .cn if and only if M j � Fic1 . . .cn. In this way, we create a single overhang

Prior model for second order logic. The acceptance of this sort of model implies
that one takes every overhang model inM as expressing a legitimate way in which to
represent the basic facts of the world and that these can simultaneously all be accepted
as accurate.

What this discussion of the issue of overhangs and supervaluations shows us is that
Prior’s supervenience claim is very fragile. It depends heavily on the exact way in
which a natural language together with the world are supposed to determine the set of
second-order truths. The contribution of the world is really in question here. Prior’s
use of the doctrine of logical fictions, in my opinion, adds to the obscurity of this issue.
A doctrine (like that of the Tractatus) that tells us that there are atomic facts at least
tells us that the world determines what second-order truths there are even if we don’t
know what they are. One that refuses to say what the basic facts of the world are, or
how they are determined, leaves obscure what we really mean by the first-order truths
and whether and how they determine the second-order truths.

9. COMPACTNESS AND NON-COMPACTNESS

If the second-order truths do supervene on the first-order truths, then what is the
point of using second-order logic? The use of quantifiers often allows us to express a
lot of information in a compressed manner. We can often state facts about infinitely
many things using quantifiers, such as, “Every point in space is arbitrarily close to
another point.” Second-order quantifiers allow the same sort of compression, e.g.,
“Nova has every property of a good dog,” “Everything has some property,” and so on.

One way in which supervenience is connected with information compression is
through the failure of compactness. As we have seen, the sort of supervenience that
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second-order statements bear to first-order statements is one of entailment. If A is a
true second-order statement, then there is a set Γ of true first-order statements such
that Γ �C A. But even the first-order fragment of �C is not compact. For let G be a
unary predicate constant of L, then, if C is infinite, {Gc : c ∈C} �C ∀xGx but there is
no finite subset of that premise set that entails ∀xGx. Where A is not a valid formula
and Γ is consistent, if Γ entails A, then A captures some of the information carried by
the statements in Γ . In cases where Γ is irreducibly infinite, A captures information
that is represented by infinitely many first-order formulae. A lot more study is needed
to make precise the way in which second-order statements compress information of
infinitely many first-order statements.

Historical Note. Dunn and Belnap [6] were perhaps the first to point out that com-
pactness typically fails for substitutional interpretations of the quantifiers. Although
the property was given the name “compactness” by Tarski [5, p.25] in 1950, the name
was not in general use in philosophical logic until the 1970s, nor was the notion of
compactness (under any name) widely discussed by philosophical logicians in the
1960s. So, it was of some interest that in 1968 Dunn and Belnap pointed out its failure
in the substitutional semantics.

10. SIMPLE OR RAMIFIED TYPE THEORY?

The form of second-order logic that I have attributed to Prior is what Alonzo
Church calls the ramified functional-calculus of second-order in [3, §58].10 The
salient contrast here is between the second-order fragment of the simple theory of
types and the second-order fragment of the ramified theory of types. A ramified the-
ory of types distinguishes between the types of predicate expressions both in terms of
the arguments they take and in terms of sorts of quantifiers in them. A simple theory
of types, in contrast, only distinguishes between the types of predicate expressions in
terms of the arguments that they take.

If I am right about the way in which Prior views supervenience, then every pred-
icate parameter represents a first-order predicate expression. Thus, the second-order
quantifiers just range over the first-order predicates. Hence, the form of universal
instantiation that Prior models validate is

(∀2E) ∀PA(P)⊃ A(B)

where B is a first-order predicate expression of the same type as the variable, P. This is
the same axiom scheme that Church uses to characterise ramified second-order logic
in [3, p. 349].

Prior, however, rejects ramified type theory both in Formal Logic [10, pp. 285–287]
and in Objects of Thought. In both books, his argument is the same. Ramified type
theory is too complicated, it requires the axiom of reducibility, and the simple theory
of types is adequate to solve the paradoxes. Here is a passage from Objects of Thought
that presents this argument.

10[3] may still be the only textbook that treats the second-order fragment of ramified type theory. I
think, however, that looking at this fragment is perhaps the best way to introduce students to the ramified
hierarchy. Church gives a very clear formulation of full ramified type theory in [4].
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[In the ramified theory of types] propositions and predicates of higher ‘or-
der’ are not absolutely ruled out . . . but they are treated as not being propo-
sitions and predicates in he same sense as of those of lower ‘orders.’ The
resulting restrictions on substitution turned out to exclude certain quite im-
portant forms of mathematical reasoning, and to save these Russell and
Whitehead introduced a rather implausible ‘axiom of reducibility,’ the de-
tails of which need not concern us. In order to eliminate the necessity for
this axiom, various logicians in the 1920s suggested ‘simplifying’ the the-
ory of types by removing, for purposes of instantiating and substitution in
theorems, the discrimination made between propositions and predicates of
different ‘order,’ and dealing in other ways with the problems for which this
discrimination was originally made. [11, pp. 41–42]

The axiom of reducibility is a comprehension axiom, like CS given in section 5 above.
In terms of the logic that I attribute to Prior, what it says is that for every second order
predicate, there is a first-order predicate that is coextensive with it. I.e.,

∃P∀x1 . . .xn(A(x1, . . . ,xn)≡ Px1 . . .xn)

for every formula A of L2. In Prior’s framework, this is indeed an implausible axiom.
The rejection of the axiom of reducibility by itself, however, does not turn the ram-

ified theory of types into simple type theory. Instead, it turns it into predicative type
theory. This is a rather weak theory, from the point of view of mathematical logic,
since in it one can no longer prove the principle of induction or the the reliability of
the method of Dedekind cuts used to construct the real numbers. Note that although
there is no need to have an axiom of reducibility in simple type theory, it is not be-
cause simple type theory rejects reducibility. Rather, like ramified type theory with
reducibility, it claims that all predicates of individuals (say) determine properties of
individuals. Simple type theory does this in a more direct and less complicated man-
ner, this is true, but ramified type theory and simple type theory from a mathematical
point of view are very similar.

Prior suggests, however, that in addition to rejecting the axiom of reducibility, he
is rejecting the distinction between predicates or propositions of different orders. I
think he is not doing this at all. His view of higher-order quantification and his argu-
ment against Quine require that there be this distinction. In the passage against Quine
quoted in section 5 Prior says that the truth of a statement of the form ∀ϕϕa requires
only the truth of ϕa, ψa, and so on. If it also requires the truth of statements such
as ∃χ∃xχxa, then Prior’s statement does little to explain away the commitments of
∀ϕϕa. His view becomes hopelessly circular and some way out is required. It leaves
the Quinean with the option of saying that treating second-order variables as referring
to sets is the best way out of this circle.

What Prior should have done, in my opinion, was explicitly accept predicative ram-
ified type theory and reject logicism. This is the doctrine that mathematics (or some
important part of it) is reducible to logic. Whitehead and Russell’s argument for logi-
cism in Principia required reducibility. He can say that the logic that is needed to
understand natural language is not powerful enough to derive the fundamental theo-
rems of mathematical theories and non-logical axioms are required to do so.
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Noûs 2: 177–185.

[7] Grover, D. (1992). A Prosentential Theory of Truth, Princeton University Press, Princeton.
[8] Grover, D., Camp, J. and Belnap, N. D. (1975). A prosentential theory of truth, Philo-

sophical Studies 27: 75–124.
[9] Leblanc, H. and Meyer, R. K. (1980). Truth value semantics for the theory of types,

in K. Lambert (ed.), Philosophical Problems in Logic: Some Recent Developments, D.
Reidel, Dordrecht.

[10] Prior, A. N. (1955). Formal Logic, Oxford University Press, Oxford, UK.
[11] Prior, A. N. (1971). Objects of Thought, Oxford University Press, Oxford, UK.
[12] Quine, W. V. O. (1957). The scope and language of science, The British Journal for the

Philosophy of Science 8: 1–17.
[13] Quine, W. V. O. (1971). Set Theory and its Logic, Harvard University Press, Cambridge,

MA.
[14] Quine, W. V. O. (1989). Reflections on models and logical truth. Manuscript in the

W. V. Quine Papers held in the Huntington Library, Harvard. ITEM Identifier: MS Am
2587, (2649).

[15] Robinson, A. (1947). On the Metamathematics of Algebra, PhD thesis, Birkbeck College,
University of London, London, UK.

[16] Russell, B. (1912). The Problems of Philosophy, Oxford University Press, Oxford, UK.
[17] Steinhardt, L. D. (1940). The Variable and its Relation to Semantic Problems, PhD thesis,

Harvard University, Cambridge, MA.
[18] Wisdom, J. (1931). Logical constructions, Mind 40: 188–216.

PHILOSOPHY, VICTORIA UNIVERSITY OF WELLINGTON, WELLINGTON, NEW ZEALAND

Email: edwin.mares@vuw.ac.nz



A COMPLETENESS RESULT FOR INEQUATIONAL REASONING
IN A FULL HIGHER-ORDER SETTING

Lawrence S. Moss and Thomas F. Icard

Dedicated to the memory of J. Michael Dunn

ABSTRACT. This paper obtains a completeness result for inequational reasoning
with applicative terms without variables in a setting where the intended semantic
models are the full structures, the full type hierarchies over preorders for the base
types. The syntax allows for the specification that a given constant be interpreted as
a monotone function, or an antitone function, or both. There is a natural set of five
rules for this inequational reasoning. One can add variables and also add a substi-
tution rule, but we observe that this logic would be incomplete for full structures.
This is why the completeness result in this paper pertains to terms without variables.
Since the completeness is already known for the class of general (Henkin) structures,
we are interested in full structures. We obtain the first result on this topic. Our result
is not optimal because we restrict to base preorders which have a weak completeness
property: every pair of elements has an upper bound and a lower bound. To compen-
sate we add several rules to the logic. We also present extensions and variations of
our completeness result.

Keywords. Completeness, Full models, Inequational reasoning, Monotone & anti-
tone functions

1. INTRODUCTION

Tonoids recast. In his work on very general algebraic semantics of non-classical
logics, Dunn [4] introduces the notion of a tonoid. This is a structure of the form (A,≤,
OP), whereA= (A,≤) is a poset, and OP is a set of finite-arity function symbols, each
with a tonic type (s1, . . . ,sn), where each si is either + or −. A familiar example done
this way takes A to be 2 = {0,1} with 0 < 1, and OP = {→}, where → is taken as
an operation with tonicity type (−,+). The formal requirement is that if f ∈ OP is
of arity n, then f : An→ A is either isotone or antitone in the ith argument, depending
on whether si is + or −. To spell out the requirement in more detail, recall that a
function g : A→ A is isotone (here called monotone) if a≤ b implies g(a)≤ g(b); and
g : A→ A is antione if a≤ b implies g(b)≤ g(a). Suppose that f is of arity 3 and its
tonic type is (+,−,+). Then our requirement is:

(1.1) whenever a1 ≤ a2, b2 ≤ b1, and c1 ≤ c2, f (a1,b1,c1)≤ f (a2,b2,c2).
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The idea is to abstract a feature of material implication: it is antitone in its first argu-
ment and monotone in its second. Here are two equivalent ways to state the general
requirement (1.1). The first uses the concept of the opposite poset Aop; this is A with
the converse order. Our requirement (1.1) now would say that

(1.2) f : A×Aop×A→ A.

In this,× denotes the product operation on posets, and the arrow→means “monotone
function.” This formulation (1.2) can be recast by currying, replacing a function of
arity 3 by a higher-order function of the following form:

(1.3) f : A→ Aop→ A→ A.
So A→ A is the set of monotone functions, taken as a poset P with the pointwise
order. Then Aop → A→ A is the set of monotone functions from Aop to P, again
taken as a poset which we call Q. Finally, A→ Aop→ A→ A is the set of monotone
functions from A to Q. Going one step further from (1.3), our requirement may be
rephrased once again.

(1.4) f : A +→ A −→ A +→ A.

In (1.4), the operative notation is that P +→Q denotes the set of monotone functions
from P to Q, and P −→Q denotes the set of antitone functions from P to Q. In both
cases, the order is pointwise.

Up until now, all we have done is to rephrase the definition of a tonoid in terms
of higher-order functions in the realm of posets, something that Dunn did not need to
do. We are indeed interested exactly in higher-order reasoning about ordered struc-
tures. Instead our result is aimed at settings where reasoning about monotone/antitone
functions plays a central role. One such setting is the area of programming language
semantics where the order represents subtyping. Another is natural language inference
where higher-order functions are commonplace, following the tradition in Montague
grammar and type-logical grammar. Concerning inference, van Benthem [11] pointed
out the usefulness of monotonicity in connection with the higher-order semantics of
determiners and saw that this topic would be a central part of logical studies con-
nected to natural language. The connection to higher-order preorders in this area was
first made in [9], and that paper is also the source of the observations behind the moves
from (1.1) to (1.4).
Friedman’s Theorem on the STLC. The results that we are after in this paper are
modeled on the completeness result established by Friedman [5] for the simply typed
lambda calculus (STLC). To explain our contribution, let us review part of Friedman’s
contribution. We change the notation and presentation of [5] to set the stage for our
work.

The STLC begins with a set B of base types β . The full set T of types is the closure
of B under the following rule: if σ and τ are types, so is σ→ τ . Then one forms the set
of typed terms t : σ of the STLC using application of one term to another, variables,
and abstraction. The main assertions in the STLC are identities t = u between terms
of the same type. The semantics is of interest here. The primary models are full (or
standard) type structures. Beginning with sets Xβ for β ∈ B, one constructs sets Xσ
for all types σ ∈ T by recursion: Xσ→τ is the set (Xτ)

Xσ of all functions from Xσ to



284 Lawrence S. Moss and Thomas F. Icard: A Completeness Result for Inequational Reasoning

Xτ . Then one interprets each typed term t : σ by an element [[t]] ∈ Xσ . Naturally, one
is interested in the relation on terms � t = u defined by:

(1.5) � t = u iff [[t]] = [[u]] in all full structures

The main completeness result from [5] is that � t = u iff the statement t = u can be
proved in a certain logical system with very natural rules. The rules of the system
are the reflexive, symmetric, and transitive rules of identity, the congruence rule for
application, and the α , β , and η rules of the STLC. So the completeness of the system
tells us that an identity assertion holds in all full structures iff it is provable from α ,
β , and η on top of the expected rules of identity.
What we are doing. Here is how things change in this paper. We would like the
main assertions in our system to be inequalities t ≤ u instead of identites. Thus, we
want our semantic spaces to be preorders rather than unstructured sets. Beginning
with an assignment of preorders (Pβ )β∈B to the base types, we take preorders for
function types Pσ→τ to be the set of all functions, as above, but endowed with the
pointwise order. This is what we mean by full models in our title and throughout the
paper. Moreover, we allow our type system to insist that a given function symbol be
interpreted by a monotone function, or an antitone one (or both).

The logical systems in this paper are formulated without variables: the only terms
are those which can be constructed from the typed constants using application. This
might seem to be a severe limitation, so let us motivate it from several angles. First of
all, monotonicity calculi without variables are useful in several settings (see Icard and
Moss [6]). Second, the completeness results of interest in this paper are not available
if one has variables (see Section 2.4). This is a parallel to the matter of equational
reasoning with second-order terms (even without abstraction): the natural logical sys-
tem would add substitution to the rules mentioned above. This system is not complete
for full models. Finally, the authors and William Tune have formulated “order-aware”
versions of the lambda calculus (see [7; 8; 10]). The type system expands that of the
usual simply typed lambda calculus by permitting the formation of several additional
kinds of function types: monotone functions σ +→ τ , antitone functions σ −→ τ , and
others. Tune [10] is a variation on this which incorporates something like the “op” op-
eration on preorders which we have seen above in (1.2). All work in this area expands
the syntax of terms using variables and abstraction operations. Finally, the basic as-
sertions in the language include inequalities between objects of the same type. What
is more, it includes some inequalities between objects of different (but related) types.
The formulation of the syntax is non-trivial, and the same goes for the proof rules. In
any case, as we already mentioned, the logical systems in the area cannot be complete
for full models. They are complete for wider classes of “Henkin” models. (The anal-
ogous structures for the STLC in [5] are called pre-structures, and sometimes they
are called applicative structures.) But this is rather an expected result, since one can
build a model canonically from the proof system. This is not what we are doing in
this paper. We are building full models, and we are studying applicative order terms
without variables or abstraction. Our work is thus drastically simpler on the syntactic
side, and more complex on the semantic side: we call on and develop results specific
to preorders (see Sections 1.1, 3.2, and 3.3).
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The main logical system in this paper is presented in Sections 2.1 (the syntax and
semantics) and 2.2 (the proof system). Briefly, the syntax allows us to declare that a
given function symbol f be interpreted as a monotone function by writing f+. We also
might declare that f be interpreted as an antitone function by writing f−. The basic
assertions in the system are inequalities t ≤ u between terms of the same type. The
main semantic objects are full structures in the setting of preorders. The consequence
relation Γ � t∗ ≤ u∗ is defined much as in (1.5), except that we use an order relation
in the obvious way, and that we permit a set Γ of extra hypotheses.

The main completeness result ought to be a completeness result for a logical sys-
tem. We would like to have Γ ` t∗ ≤ u∗ iff Γ � t∗ ≤ u∗. We have a sound logical
system; the rules are in Figure 1. We did not obtain a completeness theorem for this
system, though we believe it to hold. But we do have a related completeness result,
Theorem 42. The formulation restricts the full models to full models whose base pre-
orders are weakly complete (every pair of elements has an upper bound and a lower
bound) and the logic adds a few rules to compensate. Curiously, there is an echo here
from distributoids that were introduced by Dunn in [3]. In distributoids there is a re-
quirement that the underlying poset A be a bounded distributive lattice and that the
operation symbols either respect 0 or 1. Every lattice is trivially a weakly complete
preorder.
Related work. We have already mentioned papers on monotonicity calculi. This
paper is the first in the area to present a completeness results for full structures, the
intended semantic models.

The original completeness theorem of Friedman which we mentioned above has
been extended in a few directions. Dougherty and Subrahmanyam [2] extend the
STLC by adding product and coproduct types and a terminal type, and they obtain the
completeness theorem for full structures. As far as we know, this is the only extension
that obtains completeness for full models on sets. Several papers move from sets to
other categories in order to obtain completeness results, and the completeness here is
the strong completeness theorem Γ � t = u iff Γ ` t = u which is not available in sets.
For more on this topic, see Awodey [1].

1.1. Background: Preorders and Polarized Preorders.

Definition 1. A preorder is a pair P = (P,≤), where P is a set, and ≤ is a reflexive
and transitive relation on P. Although we technically should use P for the universe of
the preorder, we sometimes write p ∈ P when we mean p ∈ P. If p ≤ q and q ≤ p,
then we write p≡ q. It is possible that p≡ q without having p = q.

Let P and Q be preorders, and consider a function f : P→ Q.

1. f is monotone if whenever p≤ q in P, f (p)≤ f (q) in Q. We also say that f
is order-preserving in this case. We write f+ : P→Q.

2. f is antitone if whenever p≤ q in P, f (q)≤ f (p) inQ. We write f− : P→Q.
3. f is order-reflecting whenever f (p)≤ f (q) in Q, p≤ q in P.
4. f is an order embedding if f is one-to-one, and preserves and reflects the

order.
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The logical systems in this paper are about monotone and antitone functions. But
some of the proofs also use the concepts of order-reflecting functions and order em-
beddings.

Example 2. Here are some examples of the kinds of facts of interest in this paper.
1. If f+≤ g− :P→Q, and a≤ c≥ b, then f (a)≤ g(b). This is because f+(a)≤

f+(c)≤ g−(c)≤ g−(b).
2. If f− ≤ g+ : P→ Q, and a ≥ c ≤ b, then again f (a)≤ g(b). This is similar:

f−(a)≤ f−(c)≤ g+(c)≤ g+(b).
3. On the other hand, here is an example where f− ≤ g+, a≤ c≥ b, but f (a)�

g(b). Let P be the poset {a,b,c} with a < c > b, and let Q be {0,1} with
0 < 1. Let f (a) = 1, f (b) = 0, and f (c) = 0. Let g(a) = 1, g(b) = 0, and
g(c) = 1.

4. It is possible for a function to be both monotone and antitone. In our notation,
it is possible that f+ :P→Q and also f− :P→Q. One way for this to happen
is when f is a constant function. Another way is when P is the flat preorder
(also called the discrete preorder) on some set S: p1 ≤ p2 iff p1 = p2.

Some additional definitions and constructions concerning preorders appear later
in this paper, closer to where they are used. At this point, we introduce polarized
preorders, a type of structure that extends preorders.

Definition 3. A polarized preorder is a tuple F= (F,≤,+,−), where F is a set, ≤ is
a pre-order on F , and + and − are subsets of F .

Example 4. For any preorders P and Q, we have a polarized preorder QP defined as
follows. The set of points of QP is the set QP of all functions from P to Q. The order
is the pointwise order. We take + to be the set of monotone f : P→ Q, and − to be
the set of antitone f : P→Q.

We also have abstract examples. In such polarized preorders, we think of the sets
+ and− as providing a specification for what we want them to be in an interpretation.
Thus we think of them as “tagged” + or − (or possibly neither, or both). To say that
f is tagged + just means that f ∈+; similarly for −. (A given function symbol might
thus be tagged with neither + or −, and it might also be tagged with both symbols.)
We use f+ to range over elements f ∈ F which are tagged +, and we also use f− to
range over elements f ∈ F which are tagged −. (And when we write f without + or
−, we mean an arbitrary element of F .)

Definition 5. Let F be a polarized preorder, and let P and Q be preorders. An inter-
pretation of F in P andQ is a function 〈〈 〉〉 : F→QP which is monotone and preserves
polarities. That is, if f+, then 〈〈 f 〉〉 is monotone, and if f−, then 〈〈 f 〉〉 is antitone.

This definition will not be used much in this paper, but is shows where things are
going. We think of F as “syntax” and QP as the “semantic space,” and 〈〈 〉〉 as the
interpretation of the syntax in that space.

2. SYNTAX AND SEMANTICS

This section sets the stage for the rest of the paper by presenting the syntax and
semantics of our system.
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2.1. Syntax, and Semantics in Full Structures. We begin with a set B of base types.
We use the letter β for these. We make no assumption on the set B, and we also do
not vary it in what follows. Henceforth we leave B out of our notation.

The full set T of types is the smallest set such that every base type β belongs to T ,
and if σ and τ belong to T , then so does σ → τ . The types which are not base types
are called function types.

Definition 6. An (ordered) signature is a family (Fβ )β of preorders, one for each base
type, and a family (Fσ )σ of polarized preorders, one for each function type σ ∈ T .
We form typed terms t : σ by the following recursion:

1. If f ∈ Fσ , then f : σ is a typed term.
2. If t : σ → τ and u : σ are typed terms, then tu : τ is a typed term.

When we need notation for a signature, we usually write F= (Fσ )σ and think of these
as polarized, except for the base types.

We use notation like t : σ , u : τ , etc., for typed terms. Usually we drop the types
for readability. Indeed, we only supply the types to make a point about them. For
example, in (2.2) below, the second equation exhibits the types. If we were to write
[[tu]] = [[t]]([[u]]) without the types, it could cause a confusion on first reading. We could
use parentheses as well, but these will not be necessary. When we speak of terms, we
usually do not mention the underlying signature.

The assertions in the language are inequalities t : σ ≤ u : σ between terms of the
same type. Again, we usually drop the types and just write t ≤ u.

Example 7. For all relations R, we write R? for the reflexive and transitive closure of
R. So R? is the smallest preorder including R.

Let β be a base type, let τ be any type, so that β → τ is a function type, and let F
be the signature given by

Fβ = ({a,b,c}, /0?)
Fβ→τ = (Fβ→τ ,≤,+,−) = ({ f ,g},{( f ,g)}?,{ f},{g})
Fτ→(β→τ) = (Fτ→(β→τ),≤,+,−) = ({ϕ}, /0?, /0,{ϕ})

For other function types µ , we take Fµ = ( /0, /0, /0, /0). In this signature, we are taking
a, b, and c to be symbols of type β . There is no order relation among these, but our
signature does have the reflexivity assertions a ≤ a, b ≤ b, c ≤ c. Since β is a base
type, there is no polarization assertion for these symbols. As for β → τ , we have
two symbols f and g. Our signature records f ≤ g and that f ∈ + and g ∈ −. When
working with this signature, we usually will keep the polarization assertions in mind
by repeatedly tagging the symbols. So we would summarize the polarized preorder
Fβ→τ by simply writing f+ ≤ g−.

Typed terms in our signature include ϕ−( f+(a)) : β → τ . We could omit the paren-
theses without risking confusion and also the type; we then would just write ϕ− f+a.
An example term of type τ is (ϕ− f+a)b.

Semantics: full structures. Fix a family of preorders (Pβ )β , one for each base type
β . The family (Pβ )β induces a family of preorders (Pσ )σ by

(2.1) Pσ→τ = ((Pτ)
Pσ ,≤)
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where ≤ is the pointwise order on the function set (Pτ)
Pσ . For function types σ → τ

we use the polarized preorder structure mentioned in Example 4: for f : Pσ → Pτ , we
tag f+ if f is monotone, and we tag f− if f is antitone. If f is neither monotone
nor antitone, it would be tagged with neither polarity. If f were both monotone and
antitone (see Example 7(4)), it would be tagged both + and −. What we have built is
called the full preorder type structure over (Pβ )β .

Definition 8. Fix a signature F. A full F-structure is a family of preorders M =
((Pσ )σ , [[ ]]), where (Pσ )σ is the full preorder type structure over (Pβ )β together with
a function [[ ]] defined on the typed terms over F with the following properties:

1. If f in Fσ , then [[ f ]] ∈ Pσ .
2. For function types σ , [[ ]] restricts to a map [[ ]]σ : Fσ → Pσ which is monotone

and preserves polarity.

In other words: if f ≤ g in Fσ , then [[ f ]]≤ [[g]] in Pσ ; if f+ : σ→ τ , then [[ f ]] :Pσ →Pτ
is monotone; and if f− : σ → τ , then [[ f ]] : Pσ → Pτ is antitone.

Let us emphasize that in a full structure, (2.1) holds. Thus, in a full F-structure,
each function type σ → τ gives us an interpretation of Fσ→τ in Pσ and Pτ in the sense
of Definition 5. Indeed, a full F-structure amounts to a family of such interpretations
together with maps Fβ → Pβ for the base types which preserve the order.
Interpreting typed terms in full structures. Fix a full F-structureM. By recursion
on typed terms t : σ , we define [[t : σ ]]:

(2.2)
[[ f : σ ]] is given inM, when f ∈ Fσ
[[tu : τ]] = [[t : σ → τ]]([[u : σ ]])

We are using (2.1) when we see that [[t : σ → τ]] is a function and hence may apply
it to [[u : σ ]]. An easy induction shows that when t : σ , [[t : σ ]] ∈ Pσ . As mentioned
before, we usually omit the types. This holds when we use the [[ ]] notation.

Semantic assertions. Let t,u be terms of the same type σ . We say thatM � t ≤ u
if [[t]]≤ [[u]]. Let Γ be a set of inequalities t ≤ u, and letM be a full structure. We say
thatM � Γ ifM � t ≤ u whenever Γ contains t ≤ u. We then speak of a full model
of Γ . Let Γ ∪{t∗ ≤ u∗} be a set of inequalities in our language, omitting the types.
We write Γ � t∗ ≤ u∗ if every full F-structure which satisfies Γ also satisfies t∗ ≤ u∗.
(Incidentally, there is no real reason why we use the ∗ notation on the conclusion
t∗ ≤ u∗. It just permits us to use letters t and u in the rest of an argument, and it also
focuses our attention on one particular assertion of interest.)

In addition, we will need variations on this definition of Γ � t∗ ≤ u∗. For exam-
ple, we will be contracting the class of preorders to weakly complete preorders (see
Section 3). We will change our notation slightly to clarify the meaning of semantic
assertions. For example we write Γ �WC A if every weakly complete model of Γ is a
model of A.

An important point is that our language is built on an ordered signature F, and we
do not display F in our notation Γ � t∗ ≤ u∗. But this is something to keep in mind.

Example 9. Let F be as in Example 7. Example 2 shows that f+ ≤ g−,a≤ c,b≤ c �
f a≤ gb.
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Remark 10. This is perhaps a good place to mention a way in which our overall
framework is more permissive than we need it to be. We allow our signatures to have
order assertions f ≤ g, but all such assertions could be absorbed into a given set Γ .
So we could have just taken signatures to be families of polarized sets rather than
polarized preorders.

2.2. Proof System. The proof system for the basic logic (without the rules which we
shall introduce in Figure 2) is shown in Figure 1. One point to highlight is that in
the (MONO) and (ANTI) rules, we have assumptions f+ and f− that are part of the
underlying signature F. There are two ways that we could take these assumptions.
First, we could take them to be side conditions on the rules. Doing things that way
would mean that we would not show those assumptions in examples. The second way
would be to take the polarity assumptions to be “first class.” This would mean that our
proof trees would not consist solely of inequalities: they could also have assertions
from the signature. This second alternative is the one we adopt. (However, very little
would change if we went the other way.) In Section 4.2, we further extend the proof
system in order to infer polarity statements about terms; up until then, all polarity
assertions in proof trees occur at the leaves. With this forward view, we are led to the
formulation which we chose.

Definition 11. We write Γ ` s∗ ≤ t∗, where Γ ∪{s∗ ≤ t∗} is a set of assertions in our
language, if there is a tree labeled by assertions in the language whose root is labeled
with s∗ ≤ t∗, whose leaves are labeled with elements of Γ or with assertions from the
underlying signature F, and such that every non-leaf-node is justified by one of the
rules in Figure 1.

Example 12. This is a version of Example 2, but done in our proof system. Let F be
an ordered signature, and assume that for some type σ → τ , Fσ→τ contains symbols
f and g, and that f+,g− : σ → τ .

Let t, u, and v be terms of the same type σ . Then f+ ≤ g−, t ≤ v≥ u ` f t ≤ gu via
the following derivation:

f+ t ≤ v
f t ≤ f v

MONO
f ≤ g

f v≤ gv
POINT

f t ≤ gv
TRANS

g− u≤ v
gv≤ gu ANTI

f t ≤ gu
TRANS

Observe that the leaves of the tree are assertions in F.
Similarly, if f−,g+ : σ → τ , then we have f− ≤ g+, t ≥ v ≤ u ` f t ≤ gu. This

assertion is more naturally made on top of a different ordered signature. (However,
our framework allows the symbols f and g to be declared as both + and − in a given
signature.)

2.3. The Syntactic Preorder of a Set Γ , and a Construction Lemma. In this sec-
tion, we fix a signature F and a set Γ of inequalities over it.

Definition 13. For each type σ , Psyn
σ is the set of all terms of type σ (not just the

constants, the symbols in F), the order is provability from Γ , and + and − are the
constant symbols with the relevant tagging:
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t ≤ t REFL
s≤ t t ≤ u

s≤ u TRANS
s≤ t

su≤ tu POINT

f+ t ≤ u
f t ≤ f u

MONO
f− t ≤ u

f u≤ f t
ANTI

FIGURE 1. Basic rules of the logic for interpretations in full struc-
tures. See Figure 2 for additional rules sound for weakly complete
preorder structures.

Psyn
σ = {t : t is an F-term of type σ}

t ≤ u iff Γ ` t ≤ u
t+ iff t ∈ Fσ , and t+ in F
t− iff t ∈ Fσ , and t− in F

We call Psyn
σ the canonical polarized preorder of type σ .

Doing this for all σ gives a family (Psyn
σ )σ of polarized preorders. Please note that

the family (Psyn
σ )σ is not a full hierarchy over the base preorders.

Definition 14. Let (Qσ )σ be a full hierarchy over the base preorders. An applicative
family of interpretations (of Γ ) is a family N = (〈〈 〉〉σ )σ of functions indexed by
the types

(2.3) 〈〈 〉〉σ : Psyn
σ →Qσ

such that each 〈〈 〉〉σ is monotone and preserves polarities on the function types, and
with the following property: for all t ∈ Psyn

σ→τ and u ∈ Psyn
σ ,

(2.4) 〈〈t〉〉σ→τ(〈〈u〉〉σ ) = 〈〈tu〉〉τ .
On the left we have function application in the usual sense, and on the right tu is an
application on the level of terms. Please note that an applicative family N depends
on a full hierarchy (Qσ )σ , and as with everything in this section it depends on Γ (and
thus ultimately on F).

Lemma 15. Let (Qσ )σ be a full hierarchy over the base preorders. Let N be an
applicative family of interpretations of Γ as in Definition 14, so that (2.4) holds.
Then there is a full structure M = ((Qσ )σ ,([[ f ]]) f∈F) using the same preorders at
each type, such that the following hold:

1. For all t,u of the same type σ ,M � t ≤ u iff in N , 〈〈t〉〉σ ≤ 〈〈u〉〉σ .
2. If each function 〈〈 〉〉σ preserves the order, thenM � Γ .
3. If t∗,u∗ : σ , and 〈〈 〉〉σ reflects the order andM� t∗≤ u∗, we have Γ ` t∗≤ u∗.

Proof. We define [[ ]] by recursion on typed terms (see Definition 6), starting with
the case of elements f ∈ Fσ [[ f ]] = 〈〈 f 〉〉σ . Then we extend to all typed terms by
[[tu : τ]] = [[t : σ → τ]]([[u : σ ]]). The difference between [[ ]] and (〈〈 〉〉σ )σ is that the
former is a single function defined on all typed terms by recursion on those terms,
while (〈〈 〉〉σ )σ is a family of functions. The content of our claim just below is that the
two definitions agree.
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Claim 16. For all t ∈ Psyn
σ , [[t]] = 〈〈t〉〉σ .

Proof. By induction on the typed term t : σ . The fact that [[ f ]] = 〈〈 f 〉〉σ is immediate
for f ∈ Fσ . Assuming our claim for t : σ → τ and u : σ , we see that

[[tu]] = [[t]]([[u]]) = 〈〈t〉〉σ→τ(〈〈u〉〉σ ) = 〈〈tu〉〉τ
We used (2.4) at the end. /

This claim easily implies part (1):M � t ≤ u iff in N , 〈〈t〉〉σ ≤ 〈〈u〉〉σ .
For (2), suppose that Γ contains an assertion t ≤ u. Let σ be the type of these

terms. Then t ≤ u in Psyn
σ . Since 〈〈 〉〉σ preserves the order, 〈〈t〉〉σ ≤ 〈〈u〉〉σ . By part (1),

M � t ≤ u.
For (3), suppose that inM, [[t∗]]≤ [[u∗]]. Then by Claim 16, 〈〈t∗〉〉σ ≤ 〈〈u∗〉〉σ . Since

〈〈 〉〉σ reflects the order, t∗ ≤ u∗ in Psyn
σ . By the definition of Psyn

σ , Γ ` t∗ ≤ u∗. /

The reason that we will be using Lemma 15 in our main result, Theorem 42, is that
it will be more natural for us to define the functions 〈〈 〉〉σ by recursion on σ than to
define [[ ]] by recursion on the typed terms t.

2.4. Digression: Incompleteness of the Logic with Variables on Full Structures.
Now that we have the semantics of our inequational typed lambda calculus and also
the proof system, we can explain why this paper is about a logic without variables.
The idea behind our construction comes from an example in Awodey [1] concerning
the usual typed lambda calculus: when formulated with variables, it cannot have set
theoretic full models. Take a base type β and function symbols i : (β → β )→ β and
r : β and the equation r(i(x)) = x. Any full model will interpret the base type β by
a singleton set. This leads easily to an incompleteness result for the full semantics in
sets. Although our language does not have the identity symbol =, we still get the same
result.

In this section, we allow variables and also the rule of substitution: from t ≤ u,
infer t[s]≤ u[s], where s is any substitution. (That is, any map s which maps variables
to terms, respecting the types.) Let us write Γ ` t ≤ u for the proof relation which
extends the main proof relation in this paper with this additional rule.

We take one base type, β , and symbols ψ−, ϕ+, c, and d with the types shown
below:

c,d : β
ψ−

++
β → β

ϕ+

kk

For Γ we take three inequalities:

ϕ(ψ(y))≤ y y≤ ϕ(ψ(y)) ψ(ϕ(x))≤ x

Here we are using a variable x of type β → β and a variable y of type β .

Proposition 17. Γ � c ≤ d, but Γ 0 c ≤ d in the logic using our rules, including
substitution.

Proof. LetM be a full model of Γ . We first observe that for p,q ∈ Pβ , if p≤ q, then
q ≤ p. To see this, write k for [[ϕ]]◦ [[ψ]]. So k is antitone, since it is the composition
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of a monotone and an antitone function. Notice that k(r)≡ r for all r ∈ Pβ , by our first
two assertions in Γ . Hence if p≤ q then also q≡ k(q)≤ k(p)≡ p.

Next, we claim that for all elements a,b ∈ Pβ , a≡ b in Pβ . If not, let a 6≡ b. Define
f : Pβ → Pβ by

f (x) =
{

a if [[ψ]](x)(x)≡ b
b otherwise

Since Pβ→β is the full function space, f belongs to it. Let x∗ = [[ϕ]]( f ). By our last
assertion in Γ , [[ψ]](x∗)≤ f . Then

[[ψ]](x∗)(x∗)≤ f (x∗) =
{

a if [[ψ]](x∗)(x∗)≡ b
b otherwise

If [[ψ]](x∗)(x∗) ≡ b, then we would also have [[ψ]](x∗)(x∗) ≤ a. But by our first para-
graph, we then would have b ≡ [[ψ]](x∗)(x∗) ≡ a, and this is a contradiction to our
choice of a and b. So we have [[ψ]](x∗)(x∗) 6≡ b, and thus [[ψ]](x∗)(x∗) ≤ b. Our first
paragraph now shows that [[ψ]](x∗)(x∗)≡ b, giving a contradiction again.

It follows from this claim that in our model (hence in any model of Γ ), [[c]]≤ [[d]].
To complete the proof of our proposition, we make an observation about the partic-

ular set Γ that we have and also our rules, including substitution: if Γ ` t ≤ u, and if
either t or u contains some given variable of either type or constant symbol of base type
β , then the other term contains it as well. (For example, we can prove ψ(ϕ(x))(y)≤
x(y); both sides contain x and y. We can also prove ψ(ϕ(ψ(d)))(y) ≤ ψ(d)(y), and
both sides contain d and y.) This observation is proved by an easy induction. Thus
Γ 0 c≤ d, since c≤ d has c on only one side. /

2.5. Lemmas on New Constants.

Definition 18. Let F = (Fσ )σ be a signature, and write each Fσ as (Fσ ,≤,+,−).
For each σ , let �σ /∈ Fσ . Let Gσ = (Fσ ∪{�σ},≤?

σ ,+,−). We have added the new
symbol �σ to Fσ . Notice that the reflexive-transitive closure ≤?

σ of ≤σ just adds to
≤σ the assertion �σ ≤�σ , and + and − are exactly the same as in Fσ . Thus, we add
no monotonicity information about the new symbols; for a type σ → τ , we do not add
to Γ assertions like �+

σ→τ . Gσ does not have any ordering relation between any new
constant and any other symbol.

This gives a new signature G = (Gσ )σ . Note that we have an inclusion map ισ :
Fσ →Gσ which preserves the order and polarities. For a set Γ of inequalities over F,
we write Γ� for the same set, but taking it to be a set of assertions over G.

For a set Γ over F, the syntactic and semantic consequence relations Γ� ` t∗ ≤ u∗

and Γ� � t∗ ≤ u∗ are different from the ones involving Γ . The main point of the next
results is that moving from Γ to Γ� is a conservative extension in the relevant senses.
First, a semantic fact.

LetM=((Pβ )β ,([[ ]]σ )σ :Gσ →Pσ ) be a full model overG. LetM0 be the reduct
to F. This isM0 = ((Pβ )β ,([[ ]]

0
σ )σ : Fσ → Pσ ), where [[ ]]0σ : Fσ → Pσ , is [[ ]]σ ◦ ισ .

Lemma 19. For every inequality t ≤ u over F,M � t ≤ u iff M0 � t ≤ u.

Proof. An easy induction shows that for all terms t over F, the interpretations of t in
M andM0 are the same: [[t]] = [[t]]0. /
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Lemma 20. If Γ � t∗ ≤ u∗ and Γ� comes from extending the underlying signature
with new constants, then Γ� � t∗ ≤ u∗.

Proof. Let M be a G-structure which satisfies Γ�. By Lemma 19, M0 � Γ . By
hypothesis,M0 � t∗ ≤ u∗. Then by Lemma 19 again,M � t∗ ≤ u∗. /

We now turn to some syntactic results that again point to a conservative extension.

Lemma 21. If Γ� ` t ≤� or Γ� `�≤ t, then t =�.

Proof. By induction on derivations. With a conclusion like t ≤ �, the derivation can
only use (REFL) or (TRANS). The inductive step for (TRANS) is trivial. /

Lemma 22. If t : σ → τ and v : σ and Γ� ` t ≤ v�, then there is some u : σ → τ so
that t = u�, and Γ� ` u≤ v.

Similarly, if Γ� ` v�≤ t, then there is some u so that t = u�, and Γ� ` v≤ u.

Proof. Each part is proved by induction on the derivation. The step for (TRANS) is
easy. If the root uses (MONO), or (ANTI), then t� is v� by Lemma 21; in this case,
t = v. If it uses (POINT), then we directly have that t ≤ v. /

Lemma 23. If Γ� ` t�≤ u�, then Γ� ` t ≤ u.

Proof. By induction on the derivation. If the root uses (POINT), t ≤ u. If it uses
(REFL), (MONO) or (ANTI), t is u. Suppose that the root uses (TRANS), say

t�≤ v v≤ u�
t�≤ u� TRANS

The previous lemma applies to both subproofs. There is some t ≤ x so that v = x�.
There is also some w≤ u so that v = w�. So x = w. And then t ≤ w≤ u tells us that
t ≤ u. /

Lemma 24. If Γ� ` t∗ ≤ u∗ with none of the new symbols �σ occurring in t∗ or u∗,
then Γ ` t∗ ≤ u∗.

Proof. Call a type σ inhabited (in a given signature) if there is a term of type σ other
than �σ . For each inhabited type, pick a term tσ of that type. Consider the following
substitution:

s(�σ ) =

{
tσ if σ is inhabited
�σ otherwise

We claim that if we take any proof tree T over Γ� and apply this substitution to all
terms, the result T [s] is a valid proof tree over Γ�. The proof of this is by induction.

We next claim that in T [s] every assertion t ≤ u has the property that some �σ
occurs in t iff it occurs in u. The proof is by induction, and the main interesting steps
are for (TRANS).

We now fix a proof tree T showing that Γ� ` t∗ ≤ u∗. Now none of the � symbols
occur in the root t∗ ≤ u∗, or in any of the leaves of the tree. So the leaves and root
of T [s] are the same as those of T . We claim that in T [s], every σ which occurs is
inhabited. For this we argue by contradiction; suppose it is false. Since the root has no
� occurrences, there must be a node in the proof tree which does have a�-occurrence
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f+ : σ → τ g− : σ → τ f ≤ g
f t ≤ gu

WC1
f− : σ → τ g+ : σ → τ f ≤ g

f t ≤ gu
WC2

f−,g+,h+,k− : σ → τ g≤ f k ≤ h f t ≤ ku
g≤ h

WC3

FIGURE 2. Additional rules of the logic which are sound for weakly
complete preorders. (WC3) stands in for four rules; we could also
have the following arrangements at the front: (a) f+,g−,h+,k−; (b)
f−,g+,h−,k+; (c) f+,g−,h−,k+.

but whose child (downward) in the tree has no �-occurrences. The only way this can
happen is at the transitivity step:

t ≤ u u≤ v
t ≤ v

But the observation above applies (twice) and tells us that both t and v have a �-
subterm; hence t ≤ v has at least two of them — a contradiction! Therefore, every
type in T [s] is inhabited. And then in passing from T to T [s], we removed �σ in
favor of a term tσ . We conclude that T [s] has no �-terms. Thus, T [s] is a proof tree
over Γ . And as we have seen, its leaves and root are the same as those of T . /

3. COMPLETENESS FOR FULL WEAKLY COMPLETE STRUCTURES IN THE EX-
TENDED LOGIC

The work in the previous section suggests that we should prove a completeness
theorem for reasoning in full structures Γ ` t∗ ≤ u∗ iff Γ � t∗ ≤ u∗, where the proof
system is the one in Figure 1 and the semantic notion is based on the full structures
which we have introduced in Definition 8. We have not been able to obtain this result.
On the other hand, we have related results. First, we might well relax the condition
of fullness to the natural weaker condition associated with Henkin-like models of the
typed lambda calculus. Doing this leads to a completeness result fairly easily, not just
for the logic of this paper but for much more expressive formalisms that have a richer
type system, variables, abstraction, and arbitrary sets of hypotheses. This is not the
topic of this paper, but for work in this area, see [7; 8; 10]. (We should mention that
[8] has an error that will be fixed in a follow-up publication.)

Definition 25. A preorder is weakly complete if every x and y have some upper bound
z and also some lower bound w. The bounds required need not be least upper bounds
or greatest lower bounds. A full structure is called weakly complete if every base
preorder Pβ is weakly complete. (It follows that each Pσ is weakly complete.)

As the name suggests, weak completeness is a fairly weak property. Every lattice
has this property, for example. Every preorder with a greatest and a least element is
weakly complete. On the other hand, a flat preorder containing two or more points is
not weakly complete. A disjoint union of two non-empty preorders is also not weakly
complete.
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The logic relevant to weakly complete full structures is given in Figure 2, taken in
addition to the rules which we saw in Figure 1.

Suppose that f and g are function symbols of the same type, say σ . We write
f ≤+− g to mean that either f+ ≤ g− or else that f− ≤ g+. With this notation, the six
(WC) rules maybe written as two:

f ≤+− g a≤ b
f a≤ gb

WC1,2
g≤+− f k ≤+− h f t ≤ ku

g≤ h
WC3

We write Γ `WC s∗ ≤ t∗ if there is a derivation (a proof tree) that also allows the
weak completeness rules in Figure 2. And Γ �WC s∗ ≤ t∗ means that every weakly
complete full model of Γ is also a model of s∗ ≤ t∗.

Proposition 26. If Γ `WC s∗ ≤ t∗, then Γ �WC s∗ ≤ t∗.

Proof. By induction on proofs in the system. We only consider the (WC) rules. For
(WC1), fix a weakly complete full structure M. We know that [[ f ]] : Pσ → Pτ is a
monotone function, [[g]] : Pσ → Pτ is an antitone function, and also [[t]], [[u]] ∈ Pσ . By
weak completeness of Pσ , let x ∈ Pσ be such that [[t]], [[u]] ≤ x. Then by Example 2,
[[ f ]]([[t]])≤ [[g]]([[u]]). Thus [[ f t]]≤ [[gu]].

The soundness of (WC2) is similar, and it uses the fact that every pair of elements
of Pσ have some lower bound.

Next, let us consider (WC3) with the same notation as just above. The important
thing is that the premises do not include f ≤ k, just the much weaker assertion that for
particular terms t and u, f t ≤ ku. But this is enough: take any x ∈ Pσ and observe

[[g]](x) ≤ [[ f ]]([[t]]) by Example 2
= [[ f t]] by the recursive clauses in the semantics
≤ [[ku]] by the overall induction hypothesis, and f t ≤ ku
= [[k]]([[u]])
≤ [[h]](x)

Since x was arbitrary, we have shown that [[g]]≤ [[h]] pointwise. /

The calculation just above makes it clear that the last two premises could be changed.
For example, we could have g−, h−, f+, and k+. The only thing that matters is that
the arrow directions g and f have to be opposite, and the same goes for h and k. So
there are four (WC3) rules.

3.1. Additional Lemmas on New Constants. We proved results in Section 2.5 that
showed how adding fresh constants to a signature gives a conservative extension both
for the semantics and the proof theory. At this point, we need to re-work that section
in light of the new (WC) rules. Definition 18 mentioned notation having to do with
new constants. This needs no change. The semantic results in Lemma 19 and 20 do
not change: the reduct of a weakly complete model is weakly complete. No change is
needed in Lemma 21, since none of the (WC) rules allow us to conclude an inequality
whose left- or right-hand side is a new symbol �σ by itself. Lemma 22 does need to
change.

Lemma 27. If Γ� `WC t ≤ v�, then one of the following holds:
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1. There is some u≤ v so that t = u�.
2. There is a term s : σ , and constants f ,g : σ → τ such that Γ� `WC t ≤ f s,

and f ≤+− g≤ v.

Proof. By induction on the number of (TRANS) steps in the derivation. We can-
not have a derivation where the root is t ≤ u� justified by (WC3). Applications of
(WC3) conclude an inequation between function symbols which have a declared + or
− marking. /

We also have a parallel result for the situation Γ� ` u�≤ t.

Lemma 28. If Γ� `WC t�≤ u�, then Γ� `WC t ≤ u.

Proof. By induction on the the height of the derivation. If the root is (REFL), (MONO)
or (ANTI), t is u. If the root is (POINT), we see that t ≤ u. If the root is (WC1) or
(WC2), then we have t ≤+− u. In particular, t ≤ y. As in Lemma 27, we cannot have a
derivation where the root is (WC3) and where the assertion at the root is t�≤ u�.

The main work is when the root is (TRANS), say

(3.1)
t�≤ v v≤ u�

t�≤ u� TRANS

The first case is when we have two instances of the first option in Lemma 27. The
proof works as in Lemma 22.

Suppose first that we have the first option in Lemma 27 on the left premise of (3.1),
say with v being w� and t ≤ w. Then the right premise above is w� ≤ u�. By
induction hypothesis Γ� ` w≤ u. But then using (TRANS) we have t ≤ u, as desired.

The same reasoning applies if the first option in Lemma 27 applied to the right
premise of (3.1).

The most interesting case is when both premises of (3.1) give instances of the
second option in Lemma 27. From the left premise t�≤ v, we get x, y, and z such that
xy≤ v, and t ≤ z≤+− x. From the right premise v≤ u� we get f , d, and e such that
v ≤ f d, and f ≤+− e ≤ u. Then xy ≤ v ≤ f d, and also z ≤+− x and f ≤+− e. From
(WC3), we get z≤ e. By this fact together with t ≤ z and e≤ u, we have t ≤ u. /

Lemma 29. If Γ� `WC t∗ ≤ u∗ with none of the new symbols �σ occurring in t∗ or
u∗, then Γ `WC t∗ ≤ u∗.

Proof. The proof of this result elaborates the proof of Lemma 24. We begin again with
the observation that if we take any proof tree T over Γ� in this system and replace, for
every inhabited type σ , every occurrence of �σ by a fixed term t : σ which is not �σ ,
the result is a valid proof tree T [s] over Γ�.

We also claim that in T [s] every assertion t ≤ u has the following property: for all
types σ , �σ occurs in t iff it occurs in u. In the induction this time, we do not have
to worry about (WC3), since conclusions of (WC3) cannot involve a new symbol. But
we do need to think about (WC1) and (WC2). It allows us to conclude an inequality
f x≤ gy where x and y are possibly new (not in the subterm above) terms of the same
type σ . Indeed, x and y might possibly be�. If both or neither is�, then we are done.
And we cannot have one being � and the other not, since this would imply that σ is
inhabited and that the �-occurrence would have been replaced.
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The end of the proof expands on that of Lemma 24. In the other proof, we took a
proof tree T showing that Γ� `WC t∗ ≤ u∗ and directly showed that T [s] could have
no �-occurrences. This time we might have applications of (WC3) that get rid of two
�-occurrences as we go from top to bottom on the left below:

....
g≤+− f

....
k ≤+− h

....
f�σ ≤ k�σ

g≤ h
WC3

....
g≤ f

....
f ≤ k

g≤ k
TRANS

....
k ≤ h

g≤ h
TRANS

However, in view of Lemma 28, the third premise implies that Γ� ` f ≤ k. We can
thus replace the entire application of (WC3) above by two applications of (TRANS) in
order to conclude that Γ� ` g ≤ h, as on the right above. We do this replacement for
every application of (WC3) that dropped two�-occurrences. After that, the same proof
by induction as in Lemma 24 shows that T [s] has no �-occurrences. This completes
the proof. /

3.2. Complete Preorders. Our completeness theorem is for full structures which use
weakly complete preorders for every type. But the proof uses the stronger notion of a
complete preorder. The high-level reason is that in building a model of some set Γ of
assumptions, it is very useful to define functions using joins of sets of elements. The
kind of definition we have in mind would not work out in general on weakly complete
preorders. The pleasant fact is that every preorder has an order embedding into some
complete preorder. Our eventual proof strategy will involve taking the syntactic pre-
orders for the base types Psyn

β determined by Γ , choosing completions for them, and
then building the full hierarchy over the completions.

Definition 30. A complete preorder is a preorder Pwith the property that every subset
S ⊆ P has a least upper bound. This is an element

∨
S ∈ P with the property that for

all x ∈ S, x≤∨S; and if y is such that for all x ∈ S, x≤ y, then
∨

S≤ y.
The least upper bound of a set S is not in general unique, but any two least upper

bounds x and y have the property that x≡ y.

In a complete preorder we can fix an operation
∨

on subsets which gives the least
upper bound. This uses the Axiom of Choice. Our definition does not build in

∨
as part

of the structure of a complete preorder. That is, we did not take a complete preorder
to be a structure (P,≤,∨). But nothing much would change if we had done so.

Notice that if P is a complete preorder then
∨

/0≤ x for all x, and x≤∨P. So
∨

P is
a “top.” Similarly

∨
/0 is a “bottom.” In particular, every complete preorder is weakly

complete.

Proposition 31. If X is a set and L= (L,≤) is a complete preorder, then for all sets
X, the function set LX is a complete preorder under the pointwise ≤ relation. To see
this, fix an

∨
operation for the subsets of L. For S⊆ LX , we define

(
∨

S)x =
∨
({ f (x) : f ∈ S})

Then it is easy to see that
∨

turns LX into a complete preorder.

Remark 32. Here are two facts worth keeping in mind.
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1. For sets A1, . . . ,Ak and B1, . . . ,B` of subsets of M,
∨
(A1∪A2∪·· ·Ak)≤

∨
(B1∪B2∪·· ·∪B`)

provided that every Ai is a subset of some B j. (This sufficient condition is not
necessary, but it is sufficient and useful.)

2. Thus, for sets A,B⊆M,
∨

A≤∨B provided that every a∈ A is≤ some b∈ B.

Proposition 33. Let P = (P,≤) be a preorder. Then there is a complete preorder
P∗ = (P∗,≤) and an order embedding i : P→ P∗.

Remark 34. Before we turn to the proof, let us make two comments. First, we are
not claiming any uniqueness of P∗ of i in Proposition 33. There are in fact many ways
to take a preorder and complete it in our sense.

Second, for P a poset (that is, a preorder additionally satisfying antisymmetry),
we may use the usual construction of a complete lattice extending P by taking down-
closed sets. However, we need a construction in which distinct elements p,q ∈ P
which are equivalent (p ≤ q ≤ p) are not identified by i. So the construction using
down-closed sets will not work. However, it will be close. We are going to take the
product of the complete lattice of down-closed subsets of P by the indiscrete preorder
on the set P.

Proof. We define the preorder (P∗,≤) and the map i by

P∗ = {(A, p) : A⊆ P is down-closed in ≤ and p ∈ P}∪{⊥}
(A, p)≤ (B,q) iff A⊆ B

⊥≤ x for all x ∈ P∗

i(p) = ({q ∈ P : q≤ p}, p)

The symbol ⊥ in P∗ is just intended to be some object which is fresh: it should
not be a down-closed subset of P. In the definition of (A, p) ≤ (B,q), p and q play
no role. To prove that every subset has a least upper bound, we need some extra
machinery and a piece of notation. Fix a choice function ε : P(P) \ { /0} → P such
that ε(W ) ∈W for all nonempty subsets W ⊆ P. For a set S ⊆ P∗, define W =WS by
W = {q ∈ P : for some (A, p) ∈ S, q ∈ A}. Then for each S⊆ P∗ define

∨
S =

{
(W,ε(W )) if W 6= /0
⊥ if W = /0

The reason that we need ε is that we could take
∨

S to be (W, p0) whenever W is
non-empty and p0 ∈W . All such elements (W, p0) will be equivalent in P∗.

It is easy to check that P∗ is a preorder, and that for all S ⊆ P∗,
∨

S is a least
upper bound of S. Here is the verification of the required properties of i. First, if
i(p) = i(q), then by considering the second components of i(p) and i(q), we see that
p = q. Continuing, if p≤ q, then every r ≤ p is also ≤ q, and so

i(p) = ({r : r ≤ p}, p)≤ ({r : r ≤ q},q) = i(q).

Conversely, if i(p)≤ i(q), then since p belongs to the first component of i(p), we see
that p≤ q. /
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3.3. The Extension Lemma. We are going to use a technical lemma which allows us
to take preorders M and L and to define a map F→ML from a map F→MS, where
S is a “sub-preorder” of L. The work in this section will surely seem unmotivated at
first glance. In fact, it will play a key role in our proof of the completeness theorem for
the (WC)-deductive system. The reason for separating out this lemma and presenting
it here is that it will be used infinitely many times as part of an inductive construction
(see Lemma 43). The reader may wish to omit the proof of Lemma 35 on first reading.

Lemma 35 (Extension Lemma). Let F be a polarized preorder. Let L, M, and S be
preorders with M complete. Let j : S→ L be an order embedding. Let p : F→MS

preserve the order and polarity, and write p f for p( f ) : S→M. Assume the following
weak-completeness-like property:

(3.2) whenever f ≤+− g in F, and x,y ∈ S, then p f (x)≤ pg(y).

Then p has an extension q : F→ML: q preserves the order and polarity, and for all
f ∈ F, q f ◦ j = p f :

S M

L

p f

j
q f

Proof. For each f ∈ F and x ∈ L, define the following four subsets of M:

A( f ,x) = {ph+(s) : h+ ≤ f , j(s)≤ x, and s ∈ S}
B( f ,x) = {ph−(s) : h− ≤ f ,x≤ j(s), and s ∈ S}
C( f ) = {ph−(s) : (∃k+ ≤ f )(h− ≤ k+), and s ∈ S}
D( f ) = {ph+(s) : (∃k− ≤ f )(h+ ≤ k−), and s ∈ S}

For each f ∈ F and x ∈ L, we then define q f (x) ∈M by

(3.3) q f (x) =





p f (s), if for some (unique) s ∈ S, x = j(s);
∨
(

A( f ,x)∪B( f ,x)∪C( f )∪D( f )
)
, if x /∈ j[S].

Here and also below, we use the fact that if x = j(s), then s is unique. This is because
j is an order-embedding, hence, it is one-to-one by definition. The join in (3.3) exists
becauseM is a complete preorder.

Claim 36. If x= j(s), then every element of A( f ,x)∪B( f ,x)∪C( f )∪D( f ) is≤ p f (s).

Proof. Take an element of A( f , j(s)), say ph+(t) where j(t) ≤ j(s). Since j reflects
order, t ≤ s. Then ph+(t) ≤ ph+(s) ≤ p f (s). At the end we used the assumption that
p preserves order and polarity: since h+ ≤ f , ph+ ≤ p f inMS and ph+ is monotone.

This time, take an element of B( f , j(s)), say ph−(t) where j(s) ≤ j(t). Since j
reflects order, s≤ t. Then ph−(t)≤ ph−(s)≤ p f (s).

We turn to C( f ). Let h−≤ k+≤ f in F and t ∈ S. We have ph−(t)≤ pk+(s)≤ p f (s).
Finally, for D( f ), let h+ ≤ k− ≤ f and t ∈ S. Then ph+(t)≤ pk−(s)≤ p f (s).

Please note that the points about C( f ) and D( f ) used the weak-completeness-like
property (3.2). /
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Claim 37. Suppose that f ≤ g in F. Then for all x ∈ L, A( f ,x) ⊆ A(g,x), B( f ,x) ⊆
B(g,x), C( f )⊆C(g), and D( f )⊆ D(g).

Proof. All parts of this claim are consequences of the transitivity of ≤ in F. /

Claim 38. Suppose that x≤ y in L. Then A( f ,x)⊆ A( f ,y), and B( f ,y)⊆ B( f ,x).

Proof. These are consequences of the transitivity of ≤ in L. /

In the next few claims, we show that q f (x) ≤ qg(y) by showing that every set
involved in the definition of q f (x) in (3.3) is a subset of some set involved in the
definition of qg(y). This comes from Remark 32.

Claim 39. If f ≤ g, then q f (x)≤ qg(x) for all x ∈ L. Thus, q : F→ML is monotone.

Proof. If x ∈ j[S], say x = j(s), then q f (x) = p f (s)≤ pg(s) = qg(x). If x /∈ S, we see
from Claim 37 that each of the sets involved in q f (x) is a subset of the corresponding
set involved in qg(x). So q f (x)≤ qg(x). /

Claim 40. If f+, then q f+ is monotone.

Proof. Let x ≤ y. We show that q f+(x) ≤ q f+(y). If x ∈ j[S], say x = j(s), then
q f+(x) = p f+(s) ∈ A( f+,y). So p f+(s)≤

∨
A( f+,y)≤ q f+(y).

If x /∈ j[S], we show that B( f+,x) ⊆ C( f+). For then, by Claims 37 and 38, we
would have the desired inequality q f+(x) ≤ q f+(y). In more detail, we would have
A( f+,x)⊆ A( f+,y), B( f+,x)⊆C( f+), and obviously C( f+)⊆C( f+) and D( f+)⊆
D( f+). Let ph−(s) ∈ B( f+,x), where h− ≤ f+ in F and s ∈ S. (We also have x ≤
j(s), but this is not used.) Then ph−(s) ∈ C( f+): take k+ = f+ in the definition
of C( f+). /

Claim 41. If f−, then q f− is antitone.

Proof. Let x ≤ y. We show that q f−(y) ≤ q f−(x). If y ∈ j[S], say y = j(s), then
q f−(y) = p f−(s) ∈ B( f−,x). So p f−(s)≤

∨
B( f−,x)≤ q f−(x).

If y /∈ j[S], we show that A( f−,y) ⊆ D( f−). For then, by Claims 37 and 38, we
would have the desired inequality q f−(y) ≤ q f−(x). Let ph+(s) ∈ A( f−,y), where
h+ ≤ f− in F, s ∈ S, and j(s) ≤ y. Then ph+(s) ∈ D( f−): take k− = f− in the
definition of D( f−). /

We complete the proof of Lemma 35. We began with p : F→MS and defined
q : F→ML. The verifications that q is monotone and preserves polarity come from
Claims 39–41. For all f ∈ F , (3.3) tells us that q f ◦ j = p f . This completes the proof.

/

3.4. Completeness Theorem.

Theorem 42 (Completeness). If Γ �WC s∗ ≤ t∗, then Γ `WC s∗ ≤ t∗.

Proof. Fix a set Γ of inequalities over some signature F. Let G come from F by
adding a fresh constant�σ of every type σ . Let Γ� be Γ , taken as a set of inequalities
over G. Let Psyn

σ be as in Definition 13, using G and Γ�. For each base type β , use
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Proposition 33 to choose a complete preorder Qβ and an order embedding iβ : Psyn
β →

Qβ . Let the preorders Psem
σ be as defined below:

(3.4)
Psem

β = Qβ from just above
Psem

σ→τ = the full function set (Psem
τ )P

sem
σ , ordered pointwise

On the function types σ , we construe Pσ as a polarized preorder in the obvious way.
By Proposition 31, each preorder Psem

σ is complete. The family (Psem
σ )σ is a full

hierarchy.
In the lemma below, recall the notion of an applicative family of interpretations.

We construct such a family using our signature F and the full hierarchy (Psem
σ )σ .

Lemma 43. There is an applicative family of interpretations N = (〈〈 〉〉σ )σ , where

〈〈 〉〉σ : Psyn
σ → Psem

σ ,

such that for base types β , 〈〈 〉〉β = iβ , and for all σ , 〈〈 〉〉σ is an order embedding.

Proof. We define Pσ and 〈〈 〉〉σ by recursion on the type σ . We verify that 〈〈 〉〉σ is
an order embedding and also for function types that the relevant applicative family
property (2.3) holds.

The recursion begins with base types. The order embedding fact is stated in Propo-
sition 33, and there is nothing to check concerning the applicative family property.

In the induction step, we assume that 〈〈 〉〉σ and 〈〈 〉〉τ are order embeddings. We
shall define 〈〈 〉〉σ→τ using Lemma 35. The role of F in the lemma will be played by
the polarized preorder Psyn

σ→τ ; please note that we are not using the preorder given by
the original signature but by its closure under the logic. We further take L = Psem

σ ,
M = Psem

τ , S = Psyn
σ , j : S→ L to be 〈〈 〉〉σ , and p : F→MS to be given by pt(u) =

〈〈tu〉〉τ . In pictures, here is what is going on. For each term t : σ → τ , we obtain
〈〈t〉〉σ→τ as shown below:

Psyn
σ Psem

τ

Psem
σ

u 7→〈〈tu〉〉τ

〈〈 〉〉σ 〈〈t〉〉σ→τ

The rules of the logic translate to properties which we need p to have in order to
apply Lemma 35: (POINT) implies that p preserves the order, while (MONO) and
(ANTI) ensure that p preserves polarities. The induction hypothesis on σ includes the
statement that j is an order embedding.

We also must check the weak-completeness-like property (3.2) which is a hypoth-
esis of Lemma 35. Suppose that we have f and g in Psyn

σ→τ with f+ ≤ g−. The only
tagged symbols in that preorder are those in Gσ→τ , so f and g are symbols in Gσ→τ ;
indeed they come from the original signature. Let t,u : σ . Using the rule (WC1),
Γ� `WC f+t : τ ≤ g−u : τ . That is, f+t ≤ g−u in S = Psyn

τ . Since 〈〈 〉〉τ preserves the
order, 〈〈 f t〉〉τ ≤ 〈〈gu〉〉τ in Psem

τ . This means that p f (t) ≤ pg(u), as required. We also
verify (3.2) when f− ≤ g+. The work is the same, using (WC2) instead of (WC1).

Lemma 35 tells us that p extends to q : F→ML. We define 〈〈 〉〉σ→τ : Psyn
σ→τ →

Psem
σ→τ by 〈〈t〉〉σ→τ = qt . For each term t : σ → τ , qt is an element of ML and hence
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a function of the right type. The fact that q preserves polarities and the order implies
the same properties of 〈〈 〉〉σ→τ . We have several further verifications.
The applicative family property (2.3). Let t ∈ Psyn

σ→τ and let u ∈ Psyn
σ . Using the

fact from Lemma 35 that pt = qt ◦ j,

〈〈t〉〉σ→τ(〈〈u〉〉σ ) = qt(〈〈u〉〉σ ) = qt( j(u)) = pt(u) = 〈〈tu〉〉τ .
〈〈 〉〉σ→τ reflects the order. Suppose that in Psem

σ→τ , 〈〈t〉〉σ→τ ≤ 〈〈u〉〉σ→τ . Let x =
〈〈�σ 〉〉σ . Then using the applicative family property which we just showed,

(3.5) 〈〈t�σ 〉〉τ = 〈〈t〉〉σ→τ(x)≤ 〈〈u〉〉σ→τ(x) = 〈〈u�σ 〉〉τ .
Since 〈〈 〉〉τ reflects order, in Psyn

τ , t�σ ≤ u�σ . Thus, Γ� ` t�σ ≤ u�σ . By Lemma 27,
Γ� ` t ≤ u. This tells us that t ≤ u in Psyn

σ→τ .
〈〈 〉〉σ→τ is one-to-one. Suppose that in Psem

σ→τ , 〈〈t〉〉σ→τ = 〈〈u〉〉σ→τ . As in (3.5)
above, we have 〈〈t�σ 〉〉τ = 〈〈u�σ 〉〉τ . Since 〈〈 〉〉τ is one-to-one, t�σ = u�σ . Thus
t = u.

This concludes the proof of Lemma 43. /

Let us complete the proof of Theorem 42. Suppose that Γ �WC t∗ ≤ u∗. By our
remarks at the beginning of Section 3.1, this assertion holds when we add new symbols
to the underlying signature. Let N = (〈〈 〉〉σ )σ be the applicative family provided by
Lemma 43. LetM be the full structure associated to N using Lemma 15. EachMσ
is (weakly) complete, sinceMσ is the same preorder asNσ . Thus,M � Γ . Since the
maps 〈〈 〉〉σ are monotone,M � Γ�. By the assumption in our theorem,M � t∗ ≤ u∗.
Since all of the maps 〈〈 〉〉σ reflect the order, Lemma 15 tells us that Γ� `WC t∗ ≤ u∗.
By Lemma 29, Γ `WC t∗ ≤ u∗. /

4. VARIATIONS AND EXTENSIONS

Our next section contains results that build on what we saw in the previous section.

4.1. The Logic of Full Poset Structures. A structure is a poset structure if each
preorder Pσ is a partially ordered set: if p ≤ q and q ≤ p, then p = q. For such
structures, the following rule is sound:

s≤ t t ≤ s
f s≤ f t

POS

In this rule, f ∈ Fσ→τ is arbitrary; it need not be tagged + or −. (When f is tagged
either way, (POS) is obviously derivable.) In fact, we have a complete logic of weakly
complete poset structures: take the rules in Figures 1 and 2 and add the (POS) rule.
Here are the reasons: Every preorderQ has an associated posetQ∗ obtained by taking
the quotient P/≡, where p≡ q iff p≤ q≤ p. The syntactic preorders Psyn

σ determined
by a set Γ in the logic with (POS) may be taken to be a poset; we take the associated
poset (Psyn

σ )∗. To interpret function symbols on Psyn
σ , we need a short well-definedness

argument using (POS). We also tag an equivalence class [ f ] with + if some g ≡ f is
tagged +.

Continuing, the constructions of weakly complete preorders which we saw in Propo-
sitions 31 and 33 go through when we replace “preorder” by “poset” in the hypothesis
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and the conclusion. (In fact, Proposition 33 is a little easier in the poset setting, and it
is rather well-known.)

In the proof of Theorem 42, we need to check that some functions are well-defined
on (Psyn

σ )∗. Each p f is well-defined in Lemma 43; this comes from (POS). And in the
Extension Lemma 35, we observe that if f ≡ g, then q f ≡ qg; this implies that each
q f is well-defined as a function on (Psyn

σ→τ)
∗.

Identities. Another way to deal with poset structures would be to expand the basic
assertions in the language to include identity statements t = u with the obvious seman-
tics. (This is also possible even with preordered structures, so we could have made
this move early on.) Doing this, we would have the evident rules

p = q
q = p SYMM

p = q
p≤ q WEAK

p≤ q q≤ p
p = q POS′

Here is how the first two rules above are used. We need these rules in order to build
the syntactic preorders in the first place. Their elements are equivalence classes [t] of
terms t under the = equivalence relation. Using (WEAK) and (POS′), we can derive the
reflexivity and transitivity rules for =. We also need them to define the order structure
on these classes in such a way that [t]≤ [u] iff t ≤ u. This is needed at the very end of
the proof of Theorem 42: our previous proof would go from 〈〈t〉〉 ≤ 〈〈u〉〉 to [t] ≤ [u].
We need this extra step to know that Γ ` t ≤ u (rather than knowing that Γ ` t ′ ≤ u′

for some t ′ ≡ t and u′ ≡ u.) The rule (POS′) implies (POS). This rule (POS′) would also
be used at the very end of the proof of Theorem 42. We show that if Γ �WC t∗ = u∗,
then Γ `WC t∗ = u∗. Our hypothesis easily implies that Γ �WC t∗ ≤ u∗ and that
Γ �WC u∗ ≤ t∗. By the argument which have seen just above, Γ `WC t∗ ≤ u∗ and
Γ `WC u∗ ≤ t∗. Hence using (POS′), Γ `WC t∗ = u∗.

4.2. Arrow Assertions as Conclusions. Up until now, the main assertions in our
language have been inequalities between terms of the same type. The polarity as-
sertions f+ and f− were not “first-class” (despite what we said at the beginning of
Section 2.2): our proof system contained no rules that allowed us to conclude a polar-
ity assertion. To do this, we need to specify the semantics in full structures and to see
what must be added to the proof system. For the semantics, suppose we are given a
full structureM and a symbol f : σ of a function type. Then we say

M � f+ iff [[ f ]] is a monotone function.

The proof theory adds two rules:

f+ f ≤ g g≤ f
g+

POL+
f− f ≤ g g≤ f

g−
POL−

Here, f and g are symbols from the underlying signature F, and they should be of
function type. The soundness of this rule appears in Theorem 45 below. When we
write `WC in the rest of this section, we mean provability with the rules in Figures 1
and 2, together with the rules (POL+) and (POL−).

The completeness proof adds to what we have seen in several ways. To begin, we
need an analog of the construction where we add new symbols �σ . This time, we add
two fresh constants. To ease our notation, we shall elide the type symbols and simply



304 Lawrence S. Moss and Thomas F. Icard: A Completeness Result for Inequational Reasoning

write these symbols as �1 and �2. Given a set Γ , we write ∆ for the set of assertions
that adds �1 ≤�2 for all types.

We need results on adding these new constants in this way, building on what we saw
in Lemmas 22, 23, 27, and 28. In Lemma 44 below, note that some of the assertions
appear to be weaker than one would want. Specifically, point (44) implies that “If
∆ `WC t�1 ≤ u�2, then ∆ `WC t ≤ u.” The reason why we prefer the more involved
statement is that this is what will be used in Theorem 45 below. (An additional support
from our formulation is that the converses of all parts of Lemma 44 are true as well.)

Lemma 44. Let ∆ be defined from Γ as above.

1. If ∆ `WC t ≤�1, then t =�1. If ∆ `WC �2 ≤ t, then t =�2. If ∆ `WC t ≤�2,
then either t =�1 or t =�2. If ∆ `WC �1 ≤ t, then either t =�1 or t =�2.

2. If ∆ `WC t ≤ v�1, then one of the following holds:
(a) there is some u such that t = u�1 and ∆ `WC u≤ v, or else
(b) there are u and g− such that t = u�2 and ∆ `WC u≤ g− ≤ v; or
(c) there is a term s : σ , and constants f ,g : σ → τ such that ∆ `WC t ≤ f s,

and f ≤+− g≤ v.
There are also similar facts when ∆ `WC v�1≤ t, ∆ `WC t ≤ v�2, and ∆ `WC
v�2 ≤ t.

3. If ∆ `WC t�1≤ u�1, then ∆ `WC t ≤ u. If ∆ `WC t�2≤ u�2, then ∆ `WC t ≤ u.
If ∆ `WC t�1 ≤ u�2, then there is a function symbol f+ such that ∆ `WC t ≤

f+ ≤ u.
If ∆ `WC t�2 ≤ u�1, then there is a function symbol f− such that ∆ `WC t ≤

f− ≤ u.
4. If ∆ `WC f+, then Γ `WC f+; similarly for −.

Proof. Each assertion in part (1) is a straightforward induction.
Part (2) also is proved by four straightforward inductions. For one step, suppose

that ∆ `WC t ≤ v�1 with a proof that ends with (ANTI) using �1 ≤ �2. Then there
is an antitone function symbol from the signature, say g−, such that v�1 = g−�1 and
t = g−�2. So in this case, we have u = g− = v.

Part (3) is proved by simultaneous induction on the number of transitivity steps in
derivations. Here is the transitivity step in the first assertion. Suppose that the root
uses (TRANS), say

t�1 ≤ v v≤ u�1

t�1 ≤ u�1
TRANS

The previous lemma applies to both subproofs, and thus we have 3×3 = 9 cases. Let
us suppose first that above the right subproof we have (a). There is some w such that
v is w�1, and ∆ `WC w ≤ u. The left subproof ends t�1 ≤ w�1, so by induction
hypothesis, ∆ `WC t ≤ w. And thus ∆ `WC t ≤ u as well.

Suppose next that above the right subproof we have (b). We thus have w and h−

such that v = w�2 and ∆ `WC w ≤ h− ≤ u. Thus, the second subproof concludes
t�1 ≤w�2. By our induction hypothesis, there is some g+ such that ∆ `WC t ≤ g+ ≤
w. Hence ∆ `WC t ≤ u, as desired.

The other assertions in part (3) are similar to what we have seen, either above or in
Lemmas 22 and 23.
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For part (4). We first show that ∆ 0WC �+
i and ∆ 0WC �−i . The proof is an

easy induction on derivations, and it also uses part (1) of this result. We next show
something stronger than the assertion in part (4): if ϕ is any assertion in this language
which has no new � symbols and ∆ `WC ϕ , then Γ `WC ϕ . The proof is basically
the same as that of Lemma 29: we observe that the rules (POL+) and (POL−) cannot
eliminate the new � symbols: f in these rules cannot be �+

i since ∆ 0WC �+
i ; and if

g were �1 or �2, then since one of the premises is f ≤ g, we would have f =�+
j for

some j by part (44). This again contradicts ∆ 0WC �+
j . /

We turn to our main result on the system. We state Theorem 45 only mentioning
assertions of the form f+, but it also holds for inequality assertions t∗ ≤ u∗, with
basically the same statement and proof as in Theorem 42.

Theorem 45. Γ �WC f ∗+ iff Γ `WC f ∗+, and similarly for −.

Proof. Here is the soundness half. LetM be a full hierarchy, and assume the hypothe-
ses of (POL+). Let the type involved be the (function) type σ . Since f+, we know that
[[ f ]] is monotone. Also, [[ f ]]≤ [[g]]≤ [[ f ]]. Thus [[g]] is also monotone, as desired. The
argument for (POL−) is similar.

We turn to the completeness of the logic. Suppose that Γ �WC f+. Starting from Γ ,
we form a theory ∆ as mentioned earlier: for each type σ , we add two fresh constants
�1 and�2 to the signature, and the assertion�1 ≤�2 to the theory. We need to know
that ∆ �WC f+, and this is straightforward by considering reducts: every full model
of ∆ is (after throwing away the interpretations of the new symbols) a model of Γ , and
so the interpretation of f will be monotone.

At this point we are going to replay the proof of Theorem 42 and dwell only on the
changes that are to be made. Form Psyn

σ and Psem
σ as before, except that now we regard

them as polarized preorders in the evident way: in Psyn
σ we use provability from Γ

to determine the polarities, and in Psem
σ we use the monotonicity/antitonicity of actual

functions.
In Lemma 43 we amend the statement to also say that for a function type σ , 〈〈 〉〉σ

reflects polarities. (This function preserves polarities, since this is part of the defini-
tion of an applicative family of interpretations.) We therefore must check that if 〈〈g〉〉
is monotone, then ∆ `WC g+. Since 〈〈 〉〉σ is monotone (by induction hypothesis),
〈〈�1〉〉 ≤ 〈〈�2〉〉. By monotonicity, 〈〈g〉〉(〈〈�1〉〉)≤ 〈〈g〉〉(〈〈�2〉〉) in Psem

τ . Since 〈〈 〉〉τ re-
flects order, we get that ∆ `WC g�1≤ g�2. By Lemma 44(3) with t = g= u, there is a
symbol h in the underlying signature which is tagged + such that ∆ `WC g≤ h+ ≤ g.
By (POL+), ∆ `WC g+. This concludes the changes in Lemma 43.

To resume and complete the proof of our theorem, suppose that f ∗ is a symbol of
function type and Γ �WC f ∗+. Consider the full modelM whose preorders are Psem

σ
with interpretations given by Lemma 43. Since those interpretations are monotone,
M �WC ∆ . Thus, [[ f ∗]] = 〈〈 f ∗〉〉 is monotone. Since 〈〈 〉〉 reflects polarities, ∆ `WC
f ∗+. In view of Lemma 44(4), Γ `WC f ∗+. /

The result in this section may be recast as a “Lyndon-type” theorem. Statements
like this may be found in [7] and [10]. But in both of these cases, the hypotheses are
different, the languages include variables and abstraction but no polarity assertions,
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and the class of models includes more general models rather than just the full struc-
tures. But all of these are of the form “semantically monotone implies +; semantically
antitone implies −.”

Corollary 46. Fix a set Γ . Let t be a term of function type, and assume that [[t]] is
monotone in all (full) models of Γ ; and also that for some function symbol f from the
underlying signature, Γ `WC f ≤ t ≤ f . Then there is a symbol f with this property
such that Γ `WC f+.

4.3. The Logic of Higher-order Applicative Terms and Equality. For our last vari-
ation, we consider higher-order applicative terms and equality. In other words, we
abandon the order structure entirely and consider the simply typed lambda calculus
without variables or abstraction. The statements of interest are identities between
terms of the same type, and the semantic notion is given by (1.5). For the logic, we
take the reflexive, symmetric, and transitive laws for =, and also the congruence rule
for application

t = t ′ u = u′

tu = t ′u′
CONG

This logic is complete, and we sketch the proof.
First, we need lemmas on constants in both the semantics and the proof theory. Let

Γ be a set of identity assertions between terms, and let Γ� add fresh constants of every
type. In the syntax, the lemma would say that if Γ� ` t�= u�, then Γ ` t = u. In the
semantics, we would want to know that for all assertions t∗ = u∗ in the language of Γ ,
if Γ � t∗ = u∗, then also Γ� � t∗ = u∗.

Suppose that Γ � t∗ = u∗. As we have argued, we have Γ� � t∗ = u∗. For each
type σ , let Xsyn

σ be the set of terms of type σ in the expanded signature, modulo the
equivalence relation R(t,u)↔Γ� ` t = u. So the elements Xsyn

σ are equivalence classes
[t] of terms.

We build a full hierarchy of sets (Xsem
σ ) in the evident way, by taking Xsem

β = Xsyn
β

for base types β , and for other types, Xsem
σ→τ = (Xsem

τ )Xsem
σ .

We now prove that there is a family of injective maps 〈〈 〉〉σ : Xsyn
σ → Xsem

σ with the
property that 〈〈[tu]〉〉τ = 〈〈[t]〉〉σ→τ(〈〈[u]〉〉σ ). When σ is a base type, we take 〈〈 〉〉σ to
be the identity. Suppose we are given 〈〈 〉〉σ and 〈〈 〉〉τ with the desired properties, and
we wish to define 〈〈 〉〉σ→τ . The definition is

〈〈[t]〉〉σ→τ(x) =
{
〈〈[tu]〉〉τ if for some (unique) u : σ , x = 〈〈[u]〉〉σ
〈〈[�τ ]〉〉τ if there is no such term u : σ

where t : σ→ τ is a term and x∈ Psem
σ . In the bottom line, 〈〈[�τ ]〉〉τ is the only element

of Xsem
τ that is sure to exist; no features of it are important. Here is the verification

of the uniqueness of x in the top line: if 〈〈[u]〉〉σ = x = 〈〈[u′]〉〉σ , then since 〈〈 〉〉σ is
injective (by our inductive assumption), [u] = [u′]. We also check that the top line
of this definition is independent of the choice of representatives of the classes [t] and
[u]. For if Γ ` t = t ′ and also Γ ` u = u′, then also Γ ` tu = t ′u′ by (CONG). Hence
[tu] = [t ′u′]. It remains to check that 〈〈 〉〉σ→τ is injective. Suppose that 〈〈[t]〉〉σ→τ =
〈〈[t ′]〉〉σ→τ . Then 〈〈t�σ 〉〉τ = 〈〈[t]〉〉σ→τ(〈〈[�σ ]〉〉σ ) = 〈〈[t ′]〉〉σ→τ(〈〈[�σ ]〉〉σ ) = 〈〈t ′�σ 〉〉τ .
So by injectivity of 〈〈 〉〉τ , Γ� ` t�= t ′�. Thus Γ� ` t = t ′, and in other words [t] = [t ′].
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This completes the inductive step of the lemma. We conclude with a proof of the
overall completeness theorem. Suppose that Γ � t∗ = u∗. Then also Γ� � t∗ = u∗. Let
M be the full type hierarchy (Xsem

σ )σ . We have defined maps 〈〈 〉〉σ : Xsyn
σ → Xsem

σ .
From these, we interpret the symbols in the original signature by taking [[t]] = 〈〈[t]〉〉σ
for the unique σ such that t : σ . As in Lemma 15, for all terms t : σ , [[t]] = 〈〈[t]〉〉σ . It
follows thatM � Γ . By our assumption that Γ � t∗ = u∗, we see that [[t∗]] = [[u∗]]. Let
σ be the type of t∗. Then 〈〈[t∗]〉〉σ = 〈〈[u∗]〉〉σ . Since 〈〈 〉〉 is injective, Γ� ` t∗ = u∗. By
one our our points above, this tells us that Γ ` t∗ = u∗, as desired.

5. CONCLUSION

The main results in this paper were the completeness theorems, Theorems 42
and 45, and also Corollary 46. The theorems suggest that the logical systems in
the paper are the “right” ones: they are complete for the most natural semantics of
higher-order applicative terms using a semantics where one can declare symbols to
be interpreted in a monotone or antitone way, and also assert inequalities between
terms. Corollary 46 does something similar, but not for entailment so much as for the
expressive features of the system.

There are two ways in which it would be important to go beyond what we did here.
First, we return to the very start of this paper, the presentation of tonoids as opera-

tions defined by types as in (1.4). As the reader may have noticed, the type system in
this paper was not sufficient to deal with (1.4). All of our types were “simpler arrows”
→ rather than +→ or −→. So we cannot type a function as in (1.4). It is thus of inter-
est to extend our results to the system where we incorporate monotonicity/antitonicity
information into the type system in a wholehearted manner, at all higher types. It is
possible to formulate a syntax, semantics, and logical system that can handle this ex-
tension. The details are not so simple, and so we shall not enter in to them. Those
details may be found in our paper [6, Section 5]. We expect that the methods of this
paper show that the logical system there is complete for full models, at least when one
works over weakly complete preorders.

Second, we have not been able to prove the completeness theorem that we are
after in this subject, where one considers full preorder hierarchies built over arbitrary
preorders, without assuming that the base preorders Pβ are weakly complete. This
would mean using the most natural logic for higher-order terms in our setting, the
rules in Figure 1. In order to motivate the problem, let us review where in our work the
assumption of weak completeness actually was used. Assuming weak completeness
gives the additional (WC) rules stated in Figure 2. Those rules are not sound for all
preorders, as shown in Example 2, part (2). Yet, they played a key role in Lemma 43.
Specifically, Lemma 43 called on Lemma 35, and in order to apply Lemma 35, the
logic needed to have the (WC) rules.

Here is a related point: our overall work made critical use of the passage from a pre-
order P to a completion P∗, and it also made critical use of the Extension Lemma 43.
To follow the general proof strategy of this paper, we seem to require a weaker type
of completeness (one that adds fewer points), and a stronger Extension Lemma (one
that works for the original logic). Getting all of this to work out is a challenge.
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VARIETIES OF NEGATION AND CONTRA-CLASSICALITY
IN VIEW OF DUNN SEMANTICS

Hitoshi Omori and Heinrich Wansing

ABSTRACT. In this paper, we discuss J. Michael Dunn’s foundational work on the
semantics for First Degree Entailment logic (FDE), also known as Belnap–Dunn
logic (or Sanjaya–Belnap–Smiley–Dunn Four-valued Logic, as suggested by Dunn
himself). More specifically, by building on the framework due to Dunn, we sketch a
broad picture towards a systematic understanding of contra-classicality. Our focus
will be on a simple propositional language with negation, conjunction, and disjunc-
tion, and we will systematically explore variants of FDE, K3, and LP by tweaking
the falsity condition for negation.

Keywords. Bi-lateral natural deduction, Contraposition, Contra-classicality, Dunn
semantics, Negation, Uni-lateral natural deduction, Variable sharing property

1. INTRODUCTION

Let us begin with a brief explanation of the three key notions included in the title
of our paper, namely, Dunn semantics, contra-classicality and negation.
Dunn semantics. The logic of first-degree entailment FDE, also known as Belnap–
Dunn logic (or Sanjaya–Belnap–Smiley–Dunn Four-valued Logic, as suggested by
Dunn himself in [17, p. 95]), is a basic paraconsistent and paracomplete logic that has
found many applications in philosophy and different areas of computer science, in-
cluding the semantics of logic programs and inconsistency-tolerant description logics.
The seminal papers [12; 4; 5] on FDE from the 1970s have been re-printed in [33],
together with some recent essays devoted to Belnap–Dunn Logic.

The system FDE has various equivalent semantical presentations, cf. [31]. There
exists a four-valued semantics, a so-called “star” semantics, an algebraic semantics,
and a two-valued relational semantics due to Dunn [12]. (Note that the results pub-
lished in [12] were already established and included in [11].) This semantics not
only justifies the intuitive reading of the four truth values in the four-valued semantics
but also enables a tweaking of the falsity condition of negation so as to obtain cer-
tain variants of FDE, the paracomplete three-valued strong Kleene logic K3, and the
paraconsistent three-valued logic of paradox, LP. The four-valued semantics and the
relational Dunn semantics are very closely related, and there exists a mechanical pro-
cedure to turn the many-valued truth tables into pairs of truth and falsity conditions,
and vice versa, see [30].
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Contra-classicality. The notion of a contra-classical logic has been coined by Lloyd
Humberstone [26]. The most prominent non-classical logics such as, for example,
minimal logic, intuitionistic logic, and the relevance logics E and R are subclassical.
If they are presented in the vocabulary of classical logic, their consequence relations
are subsets of the consequence relation of classical logic. In contrast to this, a contra-
classical logic validates consequences that are not valid in classical logic. Various
contra-classical logics have been studied in the literature. Examples include Abelian
logic (cf. [29], [34]), systems with demi-negation (cf. [25; 26; 35]), certain systems of
connexive logic (cf. [47], [49]), and the second-order Logic of Paradox (cf. [23]).

Some of the known contra-classical logic are contra-classical in a way that radically
differs from logical orthodoxy insofar as they are non-trivial but negation inconsistent.
These logics contain provable contradictions, i.e., they contain formulas A such that
both A and the negation ∼A of A are theorems. Whilst FDE, K3, and LP are subclas-
sical logics, we will see that a tweaking of the falsity condition for negation in these
logics can give rise to contra-classical systems. Some of the contra-classical vari-
ants of FDE, K3, and LP turn out to be negation inconsistent and some are negation
incomplete.
Negation. There exists an extensive literature on the notion of negation and on
which properties a genuine negation connective minimally ought to possess, see, for
example, [22; 24; 50; 46; 7; 8; 10]. Although Michael Dunn has made substantial
contributions to the study of negation as a modal operator of impossibility or “un-
necessity” [13; 14; 15; 18], he clearly had a broader understanding of the concept
of negation and even voiced the conviction that negation flip-flops between truth and
falsity. Here is a quote from [15, p. 49] (notation adjusted):

Tim Smiley once good-naturedly accused me of being a kind of lawyer for
various non-classical logics. He flattered me with his suggestion that I could
make a case for anyone of them, and in particular provide it with a seman-
tics, no matter what the merits of the case [. . . ] But I must say that my own
favourite is the 4-valued semantics. I am persuaded that ‘∼A is true iff A is
false’, and that ‘∼A is false iff A is true’. And now to paraphrase Pontius Pi-
late, we need to know more about ‘What are truth and falsity?’. It is of course
the common view that they divide up the states into two exclusive kingdoms.
But there are lots of reasons, motivated by applications, for thinking that this
is too simple-minded.

In the present paper, we will study variants of logics in which negation flip-flops
between truth and falsity, namely, variants of FDE, K3, and LP. A very weak require-
ment imposed on a unary connective in a logical system to deserve the classification as
a negation connective is that for some formulas A and B, neither A ` ∼A nor ∼B ` B,
cf. [2; 28]. We will consider one-place connectives that not only satisfy this weak
condition but also share the above truth condition for negation: ∼A is true (under a
given interpretation) iff A is false (under that interpretation). Classically falsity means
untruth, so that the truth condition already fixes the falsity condition, but this is not the
case in general, and in particular, it is not the case in FDE, K3, and LP, where truth
and falsity are two primitive concepts that are on a par. A discussion of semantical
opposition understood as an opposition between on the one hand truth and falsity, and
on the other hand between truth and untruth can be found in [32], where it is observed
that in the four-valued setting of FDE, the above truth condition for ∼A together with
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the understanding of falsity of ∼A as untruth of A results in the “demi-negation” of
the system CP from [27].

According to Arnon Avron, the requirement that∼A is true iff A is false represents
“the idea of falsehood within the language” [1, p. 160]. We shall keep this truth
condition for negated formulas but abandon the classical understanding of falsity as
untruth and instead treat truth and falsity as two separate primitive semantical notions
of equal importance. There is thus a clear sense in which the unary connectives in this
paper written as ∼, sometimes with a subscript, can be seen as negations. However,
there is now room for tweaking the falsity condition for negation. We will consider all
combinations that are possible for FDE, K3, and LP in a classical metatheory. This
gives us sixteen variants of FDE, four variants of K3, and four variants of LP. By
considering these logics, we are applying what Luis Estrada-González [19; 20] has
called “the Bochum Plan.”1

The themes dealt with in the present paper are among the topics addressed in nine
questions we had posed to Prof. J. Michael Dunn in March 2021 together with Grig-
ory Olkhovikov (the notion of negation, the tweaking of falsity conditions, negation
inconsistency, bilateralism, contraposition), see [51]. Unfortunately, Mike was no
longer able to answer these questions. He passed away on 5 April 2021, a few weeks
after he informed us that he is willing to answer our questions.

Before moving further, let us recall some well known results related to FDE, K3,
and LP. The language L consists of a set {∼,∧,∨} of propositional connectives and
a countable set Prop of propositional variables which we denote by p,q, . . . . Further-
more, we denote by Form the set of formulas defined as usual in L. We denote a
formula of L by A,B,C, . . . and a set of formulas of L by Γ ,∆ ,Σ , . . . .

We begin with the many-valued representations of FDE, K3 and LP.

Definition 1. A four-valued FDE-interpretation of L is a function v4 : Prop −→
{t,b,n, f}. Given a four-valued interpretation v4, this is extended to a function I4
that assigns every formula a truth value by truth functions depicted in the form of
truth tables as follows:

∼
t f
b b
n n
f t

∧ t b n f
t t b n f
b b b f f
n n f n f
f f f f f

∨ t b n f
t t t t t
b t b t b
n t t n n
f t b n f

Then, the semantic consequence relation for FDE (�FDE) is defined as follows.

Definition 2. For all Γ ∪{A}⊆Form, Γ �FDE A iff for all four-valued FDE-interpreta-
tions v4, I4(A) ∈ D if I4(B) ∈ D for all B ∈ Γ , where D = {t,b}.

Now, if we eliminate the value b from the semantics for FDE, then we obtain the
three-valued semantics for K3, as follows.

Definition 3. A three-valued K3-interpretation of L is a function v3 : Prop −→
{t,n, f}. Given a three-valued interpretation v3, this is extended to a function I3 that

1Note that the Bochum Plan in general does not privilege truth over falsity, so that we could also keep
the standard falsity condition for negation and systematically tweak the truth condition.
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assigns every formula a truth value by truth functions depicted in the form of truth
tables as follows:

∼
t f
n n
f t

∧ t b f
t t n f
n n n f
f f f f

∨ t b f
t t t t
n t n n
f t n f

Then, the semantic consequence relation for K3 (�K3) is defined as follows.

Definition 4. For all Γ ∪{A} ⊆ Form, Γ �K3 A iff for all three-valued interpretations
v3, I3(A) ∈ D if I3(B) ∈ D for all B ∈ Γ , where D = {t}.

Moreover, if we eliminate the value n from the semantics for FDE, then we obtain
the three-valued semantics for LP, as follows.

Definition 5. A three-valued LP-interpretation ofL is a function v3 : Prop−→{t,b, f}.
Given a three-valued interpretation v3, this is extended to a function I3 that assigns ev-
ery formula a truth value by truth functions depicted in the form of truth tables as
follows:

∼
t f
b b
f t

∧ t b f
t t b f
b b b f
f f f f

∨ t b f
t t t t
b t b b
f t b f

Then, the semantic consequence relation for LP (�LP) is defined as follows.

Definition 6. For all Γ ∪{A} ⊆ Form, Γ �LP A iff for all three-valued interpretations
v3, I3(A) ∈ D if I3(B) ∈ D for all B ∈ Γ , where D = {t,b}.

Finally, let us recall the Dunn semantics for FDE.

Definition 7. A Dunn-interpretation of L is a relation, r, between propositional vari-
ables and the values 1 and 0, namely, r ⊆ Prop×{1,0}. Given an interpretation, r,
this is extended to a relation between all formulas and truth values by the following
clauses:

∼Ar1 iff Ar0, A∧Br1 iff Ar1 and Br1, A∨Br1 iff Ar1 or Br1,
∼Ar0 iff Ar1, A∧Br0 iff Ar0 or Br0, A∨Br0 iff Ar0 and Br0.

Definition 8. A formula A is a two-valued semantic consequence of Γ (Γ �2 A) iff for
all Dunn-interpretations r, if Br1 for all B ∈ Γ then Ar1.

Remark 9. We obtain the Dunn semantics for K3 and LP by adding the following
constraints, respectively, to r: (no-gap) for no p, pr1 and pr0; (no-glut) for all p,
pr1 or pr0. Of course, if we add both constraints, then we obtain the semantics for
classical logic.

Given our assumption concerning negation, we will systematically consider the
variants of FDE, K3 and LP by changing the falsity condition for negation, and ex-
plore their basic properties.2

2Note that in a recent article [21], Estrada-González considers the Bochum plan and suggests systematic
changes in the evaluation conditions not only for negation, but also for other connectives. By doing so, he
emphasized the tweaking of the evaluation clauses as a source of contra-classicality.
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2. SEMANTICS

Let us now present the semantics for the variations of FDE, K3 and LP we consider
in the rest of paper. We begin with the variations of FDE.

By simple combinatorial considerations, the following sixteen operations exhaust
the space of possible connectives that share the truth condition for negation.

A ∼1 A ∼2 A ∼3 A ∼4 A ∼5 A ∼6 A ∼7 A ∼8 A
t f f f f f f f f
b b b b b t t t t
n n n f f n n f f
f t b t b t b t b

A ∼9 A ∼10 A ∼11 A ∼12 A ∼13 A ∼14 A ∼15 A ∼16 A
t n n n n n n n n
b b b b b t t t t
n n n f f n n f f
f t b t b t b t b

In view of the mechanical procedure described in [30, §2], we obtain falsity conditions
for the above operators. We leave the details to interested readers as an easy exercise
(the same applies to the variants of K3 and LP, introduced below). Then, we define
the semantic consequence relations for the variants with ∼i instead of ∼ (notation:
�i

FDE) as in Definition 1.

Remark 10. As one may easily observe,∼1 is the original negation included in FDE.
Moreover, ∼16 is the connective we discussed in [32]. The other fourteen operations
are, to the best of our knowledge, not discussed in the literature.3 Note that only three
of the fourteen operations are subclassical. Further details of the operations will be
explored in §5.

We now turn to variations of K3. By another simple combinatorial consideration,
or by eliminating some cases starting from the above considerations for FDE, the
following four operations exhaust the space of possible connectives that share the
truth condition for negation.

A ∼1 A ∼2 A ∼3 A ∼4 A
t f f n n
n n f n f
f t t t t

Note here that ∼2 is the connective discussed in [41]. Then, we define the semantic
consequence relations for the variants with ∼i instead of ∼ (notation: �i

K3) as in
Definition 3.

Finally, we consider the variations of LP. By another simple combinatorial con-
sideration, or again by eliminating some cases starting from the above considerations
for FDE, the following four operations exhaust the space of possible connectives that
share the truth condition for negation.

3A referee directed our attention to [36] as a reference that covers the connectives that we are discussing
in this paper. This, however, is not the case. Note also that there is a crucial difference between [36] and the
present paper insofar as we are not expanding the language of FDE, but only changing the interpretation of
negation.
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A ∼1 A ∼2 A ∼3 A ∼4 A
t f f f f
b b b t t
f t b t b

Note here that ∼2 is the connective discussed in [40]. We define the semantic con-
sequence relations for the variants with ∼i instead of ∼ (notation: �i

LP) as in Defi-
nition 5.

3. PROOF SYSTEMS

3.1. Unilateral Natural Deduction. Let us first recall the natural deduction system
for FDE, K3 and LP. Our presentation below follows the one due to Dag Prawitz
in [37, Appendix B], where he considers a certain expansion of FDE suggested by
David Nelson, namely a logic that can be seen as an expansion of intuitionistic logic
by a “strong” negation.4

Definition 11. The natural deduction rulesRFDE for FDE are all the following rules:

A B
A∧B

A∧B
A

A∧B
B

A
A∨B

B
A∨B

∼∼A
A

(∼∼1) A
∼∼A

(∼∼2) A∨B

[A]....
C

[B]....
C

C
∼(A∧B)

[∼A]....
C

[∼B]....
C

C
∼B

∼(A∧B)
∼A

∼(A∧B)
∼(A∨B)
∼B

∼(A∨B)
∼A

∼A ∼B
∼(A∨B)

Moreover, for the natural deduction rulesRK3 andRLP for K3 and LP, respectively,
we add the ECQ and the Law of the Excluded Middle, respectively:

A ∼A
B

(ECQ)
A∨∼A

(LEM)
.

Then, given any set Σ ∪{A} of formulas, Σ `FDE A iff for some finite Σ ′ ⊆ Σ , there is
a derivation of A from Σ ′ in the calculus whose rule set isRFDE. In the same way, we
define `K3 and `LP.

We now turn to introduce the natural deduction systems for the variants of our basic
systems.

Definition 12. The natural deduction rulesRi
FDE for FDEi are all the rulesRFDE for

FDE except that we replace (∼∼1) and (∼∼2) by the following rules.
∼1∼1 A

A
(∼1∼1 1) A

∼1∼1 A
(∼1∼1 2)

∼2∼2 A
A∨∼2 A

(∼2∼2 1) A
∼2∼2 A

(∼2∼2 2)
∼2 A
∼2∼2 A

(∼2∼2 3)

∼3∼3 A ∼3 A
A

(∼3∼3 1) A
∼3∼3 A

(∼3∼3 2) ∼3 A∨∼3∼3 A
(∼3∼3 3)

∼4∼4 A
(∼4∼4)

4One can also present the system as in [38, p. 304] using two-way rules with double lines. However, for
the purpose of making the connection more smooth to bilateral natural deduction systems, we will adopt
the presentation by Prawitz.
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∼5 A ∼5∼5 A
B

(∼5∼5 1)
∼5∼5 A

A
(∼5∼5 2) A

∼5 A∨∼5∼5 A
(∼5∼5 3)

A ∼6 A ∼6∼6 A
B

(∼6∼6 1)
∼6∼6 A
A∨∼6 A

(∼6∼6 2) A
∼6 A∨∼6∼6 A

(∼6∼6 3)

∼6 A
A∨∼6∼6 A

(∼6∼6 4)
∼7 A ∼7∼7 A

B
(∼7∼7 1) ∼7 A∨∼7∼7 A

(∼7∼7 2)

A ∼8 A ∼8∼8 A
B

(∼8∼8 1)
A∨∼8∼8 A

(∼8∼8 2) ∼8 A∨∼8∼8 A
(∼8∼8 3)

∼9∼9 A
A

(∼9∼9 1)
∼9∼9 A
∼9 A

(∼9∼9 2)
A ∼9 A
∼9∼9 A

(∼9∼9 3)

∼10∼10 A
∼10 A

(∼10∼10 1)
∼10 A
∼10∼10 A

(∼10∼10 2)

A ∼11∼11 A
∼11 A

(∼11∼11 1)
∼11 A ∼11∼11 A

A
(∼11∼11 2)

A∨∼11 A∨∼11∼11 A
(∼11∼11 3)

A ∼11 A
∼11∼11 A

(∼11∼11 4)

A ∼12∼12 A
∼12 A

(∼12∼12 1)
A∨∼12∼12 A

(∼12∼12 2)
∼12 A
∼12∼12 A

(∼12∼12 3)

∼13∼13 A
B

(∼13∼13)

A ∼14∼14 A
B

(∼14∼14 1)
∼14∼14 A
∼14 A

(∼14∼14 2)
∼14 A

A∨∼14∼14 A
(∼14∼14 3)

A ∼15∼15 A
B

(∼15∼15 1)
∼15 A ∼15∼15 A

B
(∼15∼15 2)

A∨∼15 A∨∼15∼15 A
(∼15∼15 3)

A ∼16∼16 A
B

(∼16∼16 1)
A∨∼16∼16 A

(∼16∼16 2)

Based on these, given any set Σ ∪ {A} of formulas, Σ `i
FDE A iff for some finite

Σ ′ ⊆ Σ , there is a derivation of A from Σ ′ in the calculus whose rule set isRFDEi .

Definition 13. The natural deduction rules Ri
K3 for K3i are all the rules RK3 for K3

but replacing (∼∼1) and (∼∼2) by the following rules.
∼1∼1 A

A
(∼1∼1 1) A

∼1∼1 A
(∼1∼1 2) ∼2 A∨∼2∼2 A

(∼2∼2)

∼3∼3 A
B

(∼3∼3)
A ∼4∼4 A

B
(∼4∼4 1)

A∨∼4 A∨∼4∼4 A
(∼4∼4 2)

Based on these, given any set Σ ∪{A} of formulas, Σ `i
K3 A iff for some finite Σ ′ ⊆ Σ ,

there is a derivation of A from Σ ′ in the calculus whose rule set isRK3i .

Definition 14. The natural deduction rules Ri
LP for LPi are all the rules RLP for LP

but replacing (∼∼1) and (∼∼2) by the following rules.
∼1∼1 A

A
(∼1∼1 1) A

∼1∼1 A
(∼1∼1 2) ∼2∼2 A

(∼2∼2)
∼3 A ∼3∼3 A

B
(∼3∼3)

A ∼4 A ∼4∼4 A
B

(∼4∼4 1)
A∨∼4∼4 A

(∼4∼4 2)

Based on these, given any set Σ ∪{A} of formulas, Σ `i
LP A iff for some finite Σ ′ ⊆ Σ ,

there is a derivation of A from Σ ′ in the calculus whose rule set isRLPi .
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3.2. Bilateral Natural Deduction. We will present bilateral natural deduction sys-
tems for the consequence relations �i

FDE (i ∈ {1, . . . ,16}), �i
K3 (i ∈ {1, . . . ,4}), and

�i
LP (i ∈ {1, . . . ,4}) along the lines of [48]. These calculi make use of pure (sepa-

rated) introduction and elimination rules, i.e., rules that introduce into the conclusion
or eliminate from the premises only a single connective as the main connective of a
compound formula. The systems are, therefore, interesting from the point of view of
proof-theoretic semantics, because their rules can be seen as laying down the meaning
of the connectives inferentially. We will present the bilateral rules in the style of the
natural deduction rules from §3.1, but now with a distinction drawn between proofs
and disproofs (refutations) from assumptions that are taken to be true and counter-
assumptions that are taken to be definitely false. We use single lines in the notation
for proofs and double lines in the notation for refutations. Thus, in this section, double
lines indicate disproofs. In particular, we write A to denote a proof of A from A as an

assumption, and A to denote a refutation of A from A as a counterassumption. This
gives the inductive base for a definition of the set of proofs and refutations in any of
the systems we will consider. A permitted discharge of assumptions is indicated by
square brackets, [ ], and a permitted discharge of counterassumptions is indicated by
double square brackets, J K. We will simplify the notation by writing [A] instead of [A]
and JAK instead of JAK. Moreover, if Σ is a set of formulas, then Σ+ is defined as the
set {A : A ∈ Σ} and Σ− as {A : A ∈ Σ}.

The introduction and elimination rules for conjunctions and disjunctions from §3.1
then take the following form:5

A B
A∧B

A∧B
A

A∧B
B

A
A∨B

B
A∨B

A∨B

[A]....
C

[B]....
C

C

In the present setup, the dotted lines indicate derivations that may be built up from
both refutations and proofs. Instead of rules for introducing and eliminating negated
conjunctions, disjunctions, and negations into and from proofs, we have rules for in-
troducing and removing disjunctions, conjunctions, and negations into and from dis-
proofs.

Definition 15. The set of natural deduction rules RFDE for FDE consists of the above
rules for ∧ and ∨ together with:

A B
A∨B

A∨B
A

A∨B
B

A
A∧B

B
A∧B

A∧B

JAK....

C

JBK....

C
C

and the following rules for introducing and eliminating negations into and from proofs
and refutations:

A
∼A

∼A
A

A
∼A

(∼∼1) ∼A
A

(∼∼2)

5This is the way how these rules are presented in [44], though without abbreviating [A] as [A].
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Moreover, for the sets of natural deduction rules RK3 and RLP for K3 and LP,
respectively, we add the rule ECQ and the dilemma rule DIL, respectively, which
express a certain interaction between proofs and disproofs:

A A
B

(ECQ)

[A]....
B

JAK....
B

B
(DIL)

Let Σ ∪Γ ∪{A} be a set of formulas. Then Σ+∪Γ− `+RFDE A (Σ+∪Γ− `−RFDE A)
iff for some finite Σ ′ ⊆ Σ and finite Γ ′ ⊆ Γ , there is a proof (disproof) of A from
Σ ′+ ∪Γ ′− in the calculus whose rule set is RFDE. In the same way, we define the
relations `+RK3, `−RK3, `+RLP, and `−RLP.

Definition 16. The set of rules Ri
FDE for FDEi, with i∈ {1, . . . ,16}, consists of all the

rules of RFDE for FDE, but the rules for ∼ are replaced by the following introduction
and elimination rules:

A
∼i A

∼i A
A

A
∼1 A

∼1 A
A

∼2 A

[A]....
B

JAK....
B

B
A
∼2 A

A
∼2 A

∼3 A A
A

A
∼3 A

JAK....
B

J∼3 AK....
B

B

∼4 A
A ∼5 A

B
∼5 A

A
A

JAK....
B

J∼5 AK....
B

B

A A ∼6 A
B

∼6 A

[A]....
B

JAK....
B

B
A

JAK....
B

J∼6 AK....
B

B
A

[A]....
B

J∼6 AK....
B

B

A ∼7 A
B

JAK....
B

J∼7 AK....
B

B
A A ∼8 A

B

[A]....
B

J∼8 AK....
B

B

JAK....
B

J∼8 AK....
B

B

∼9 A
A

∼9 A

A
A A
∼9 A

A
∼10 A

∼10 A

A

A ∼11 A

A
A ∼11 A

A

[A]....
B

JAK....
B

J∼11 AK....
B

B
A A
∼11 A

A ∼12 A

A

JAK....
B

J∼12 AK....
B

B
A
∼12 A

∼13 A
B
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A ∼14 A
B

∼14 A

A
A

[A]....
B

J∼14 AK....
B

B

A ∼15 A
B

A ∼15 A
B

[A]....
B

JAK....
B

J∼15 AK....
B

B
A ∼16 A

B

[A]....
B

J∼16 AK....
B

B

Let Σ ∪Γ ∪{A} be a set of formulas. Then Σ+∪Γ− `i+
RFDE A (Σ+∪Γ− `i−

RFDE A)
iff for some finite Σ ′ ⊆ Σ and finite Γ ′ ⊆ Γ , there is a proof (disproof) of A from Σ ′+
∪ Γ ′− in the calculus whose rule set is Ri

FDE.

Definition 17. For i ∈ {1,2,3,4}, the set of natural deduction rules Ri
K3 for K3i

consists all the rules RK3 for K3, but the rules for ∼ are replaced by the following
rules:

A
∼i A

∼i A
A

A
∼1 A

∼1 A
A

JAK....
B

J∼2 AK....
B

B

∼3 A
B

A ∼4 A
B

[A]....
B

JAK....
B

J∼4 AK....
B

B

Let Σ ∪Γ ∪{A} be a set of formulas. Then Σ+∪Γ− `i+
RK3 A (Σ+∪Γ− `i−

RK3 A) iff
for some finite Σ ′ ⊆ Σ and finite Γ ′ ⊆ Γ , there is a proof (disproof) of A from Σ ′+ ∪
Γ ′− in the calculus whose rule set is Ri

K3.

Definition 18. For i ∈ {1,2,3,4}, the set of rules Ri
LP for LPi comprises all the rules

RLP for LP, but the rules for ∼ are replaced by the following rules:

A
∼i A

∼i A
A

A
∼1 A

∼1 A
A ∼2 A

A ∼3 A
B

A A ∼4 A
B

[A]....
B

J∼4 AK....
B

B

Let Σ ∪Γ ∪{A} be a set of formulas. Then Σ+ ∪Γ− `i+
RLP A (Σ+ ∪Γ− `i−

RLP A)
iff for some finite Σ ′ ⊆ Σ and finite Γ ′ ⊆ Γ , there is a proof (disproof) of A from
Σ ′+∪Γ ′− in the calculus whose rule set is Ri

LP.

We show the bilateral systems to be equivalent with their unilateral counterparts.

Theorem 19. Let τ(∆−) = {∼A : A ∈ ∆−}. Then (1) Σ+ ∪Γ− `i+
RFDE A iff Σ ∪

τ(Γ−) `i
RFDE A and (2) Σ+∪Γ− `i−

RFDE A iff Σ ∪ τ(Γ−) `i
RFDE ∼A.

Proof. By induction on derivations in Ri
FDE and Ri

FDE. The cases of the rules for
introducing and eliminating conjunctions and disjunctions into and from proofs are
obvious. We present some of the remaining cases. Direction from left to right, claim
(1). By applying the definition of derivations, the induction hypothesis, and rules of
Ri

FDE, for the derivations on the left we obtain the derivations on the right:
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A A

∼9 A
A

∼2 A

[A]....
B

JAK....
B

B

∼2∼2 A
A∨∼2 A

[A]....
B

[∼2 A]....
B

B

[A]....
B

JAK....
B

J∼11 AK....
B

B

∼9∼9 A
A

A∨ (∼11 A∨∼11∼11 A)

[A]....
B

[∼11 A∨∼11∼11 A]

[∼11 A]....
B

[∼11∼11 A]....
B

B
B

Direction from left to right, claim (2). By applying the definition of derivations, the
induction hypothesis, and rules ofRi

FDE, for the first derivations we obtain the second
derivations with the same subscript:

A ∼A

A A
∼9 A

A ∼9 A
∼9∼9 A

A∧B

JAK....

C

JBK....

C
C

∼i(A∧B)
∼i A∨∼i B

[∼i A]....
∼i C

[∼i B]....
∼i C

∼i C

Direction from right to left, claim (1). By applying the definition of derivations, the
induction hypothesis, and rules of Ri

FDE, for the first derivations we obtain the second
derivations with the same subscript:

A A
∼9∼9 A

A
∼9 A

A
∼13∼13 A

B
∼13 A

B

Direction from right to left, claim (2). By applying the definition of derivations, the
induction hypothesis, and rules of Ri

FDE, for the first derivations we obtain the second
derivations with the same subscript:

∼A A
∼i A∧∼i B
∼i(A∨B)

∼i A∧∼i B
∼i A

A

∼i A∧∼i B
∼i B

B
A∨B

A ∼9 A
∼9∼9 A

A A
∼9 A /

Theorem 20. Let τ(∆−) = {∼A : A ∈ ∆−}. Then (1) Σ+ ∪Γ− `i+
RK3 A iff Σ ∪

τ(Γ−) `i
RK3 A and (2) Σ+∪Γ− `i−

RK3 A iff Σ ∪ τ(Γ−) `i
RK3 ∼A.

Proof. By induction on derivations in Ri
K3 and Ri

K3. We present only one more in-
teresting case for the direction from right to left, claim (1). By applying the definition
of derivations, the induction hypothesis, and a rule of R4

K3, for the first derivations we
obtain the second derivations with the same subscript:

A∨ (∼4 A∨∼4∼4 A)

[A]
A∨ (∼4 A∨∼4∼4 A)

JAK
∼4 A

∼4 A∨∼4∼4 A
A∨ (∼4 A∨∼4∼4 A)

J∼4 AK
∼4∼4 A

∼4 A∨∼4∼4 A
A∨ (∼4 A∨∼4∼4 A)

A∨ (∼4 A∨∼4∼4 A) /
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Theorem 21. Let τ(∆−) = {∼A : A ∈ ∆−}. Then (1) Σ+ ∪Γ− `i+
RLP A iff Σ ∪

τ(Γ−) `i
RLP A and (2) Σ+∪Γ− `i−

RLP A iff Σ ∪ τ(Γ−) `i
RLP ∼A.

Proof. By induction on derivations in Ri
LP and Ri

LP. We present only the more in-
teresting cases. Direction from left to right, claim (1). By applying the induction
hypothesis and the rule for eliminating disjunctions from proofs in Ri

LP, for the first
derivations we obtain the second derivations with the same subscript:

[A]....
B

JAK....
B

B
(DIL)

A∨∼i A

[A]....
B

[∼i A]....
B

B

Direction from right to left, claim (1). By applying rules from Ri
LP, for the first

derivations we obtain the second derivations with the same subscript:

A∨∼i A

[A]
A∨∼i A

JAK
∼i A

A∨∼i A
A∨∼i A

(DIL)

4. SOUNDNESS AND COMPLETENESS

Theorem 22 (Soundness). For all Γ ∪{A} ⊆ Form, (1) Γ `i
FDE A only if Γ �i

FDE A,
(2) Γ `i

K3 A only if Γ �i
K3 A, and (3) Γ `i

LP A only if Γ �i
LP A.

Proof. Tedious, but standard. /

For the completeness direction, we prepare some well known notions and lemmas.

Definition 23. Let Σ be a set of formulas. Then, Σ is a theory iff Σ ` A implies A∈ Σ ,
and Σ is prime iff A∨B ∈ Σ implies A ∈ Σ or B ∈ Σ .

Lemma 24 (Lindenbaum). If Σ 0 A, then there is Σ ′ ⊇ Σ such that Σ ′ 0 A and Σ ′ is
a prime theory.

We now define the canonical valuation in the usual manner.

Definition 25. For any Σ ⊆ Form, let vi
Σ from Prop to {t,b,n, f} be defined as follows:

vi
Σ (p) :=





t iff Σ `i
FDE p and Σ 0i

FDE ∼ p;
b iff Σ `i

FDE p and Σ `i
FDE ∼ p;

n iff Σ 0i
FDE p and Σ 0i

FDE ∼ p;
f iff Σ 0i

FDE p and Σ `i
FDE ∼ p.

The following lemma is the key for the completeness result.

Lemma 26. If Σ is a prime theory, then the following hold for all B ∈ Form.

vi
Σ (B) =





t iff Σ `i
FDE B and Σ 0i

FDE ∼B;
b iff Σ `i

FDE B and Σ `i
FDE ∼B;

n iff Σ 0i
FDE B and Σ 0i

FDE ∼B;
f iff Σ 0i

FDE B and Σ `i
FDE ∼B.
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Proof. Note first that it is obvious that vΣ well defined. Then the desired result is
proved by induction on the construction of B. The base case, for atomic formulas,
is obvious by the definition. For the induction step, the cases are split based on the
connectives. We will here only deal with the case for negation of FDE16.

v16
Σ (∼16 B) = t iff v16

Σ (B) = b (by the definition of v16
Σ ) iff Σ `16

FDE B and Σ `16
FDE

∼16 B (by IH) iff Σ `16
FDE ∼16 B and Σ 016

FDE ∼16∼16 B (by (∼15∼15 1) for the left-to-
right direction and (∼16∼16 2) for the other direction).

v16
Σ (∼16 B) = b iff v16

Σ (B) = f (by the definition of v16
Σ ) iff Σ 016

FDE B and Σ `16
FDE

∼16 B (by IH) iff Σ `16
FDE ∼16 B and Σ `16

FDE ∼16∼16 B (by (∼15∼15 2) for the left-to-
right direction and (∼16∼16 1) for the other direction).

v16
Σ (∼16 B) = n iff v16

Σ (B) = t (by the definition of v16
Σ ) iff Σ `16

FDE B and Σ 016
FDE

∼16 B (by IH) iff Σ 016
FDE ∼16 B and Σ 016

FDE ∼16∼16 B (by (∼16∼16 1) for the left-to-
right direction and (∼16∼16 2) for the other direction).

v16
Σ (∼16 B) = f iff v16

Σ (B) = n (by the definition of v16
Σ ) iff Σ 016

FDE B and Σ 016
FDE

∼16 B (by IH) iff Σ 016
FDE ∼16 B and Σ `16

FDE ∼16∼16 B (by (∼16∼16 2) for the left-to-
right direction and (∼16∼16 1) for the other direction).
The other cases are left to the interested readers to be written out in detail. /

For the variations of K3 and LP, we need to eliminate the values b and n, res-
pectively.

We are now ready to prove the completeness result.

Theorem 27 (Completeness). For all Γ ∪{A} ⊆ Form, (1) Γ �i
FDE A only if Γ `i

FDE
A, (2) Γ �i

K3 A only if Γ `i
K3 A, and (3) Γ �i

LP A only if Γ `i
LP A.

Proof. We only deal with the case for FDEi since other cases can be established in
the same manner. Assume Γ 0i

FDE A. Then, by Lemma 24, there is a Σ ⊇ Γ such that
Σ is a prime theory and A /∈ Σ , and by Lemma 26, a four-valued valuation vΣ can be
defined with IΣ (B)∈D for every B∈Γ and IΣ (A) /∈D. Thus it follows that Γ 2i

FDE A,
as desired. /

5. BASIC RESULTS

5.1. Negation Inconsistency and Negation Incompleteness. As one may easily ob-
serve, all variants of FDE are both paraconsistent and paracomplete, all variants of K3
are paracomplete, but not paraconsistent, and all variants of LP are paraconsistent, but
not paracomplete. However, for some of the variants, some stronger properties than
paraconsistency and paracompleteness hold. The stronger properties we have in mind
are the following.

Definition 28. A logic L is negation inconsistent if for some A, we have both B �L A
and B �L ∼A for all B. Moreover, a logic L is negation incomplete if for some A, both
A �L B and ∼A �L B for all B.

Then, we obtain the following results.

Theorem 29. LP2, LP4, FDE4, FDE8, FDE12 and FDE16 are negation inconsistent.

Proof. We prove the result by showing the specific instances of inconsistency. For
LP2, we have B �2

LP ∼2∼2 A and B �2
LP ∼2∼2∼2 A. For LP4, we have B �4

LP ∼4(A∧
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∼4 A∧∼4∼4 A) and B �4
LP ∼4∼4(A∧∼4 A∧∼4∼4 A). For FDE4, we have B �4

FDE
∼4∼4 A and B �4

FDE ∼4∼4∼4 A. For FDE8, we have B �8
FDE ∼8(A∧∼8 A∧∼8∼8 A)

and B �8
FDE ∼8∼8(A∧∼8 A∧∼8∼8 A). For FDE12, we have B �12

FDE ∼12∼12∼12 A
and B �12

FDE ∼12∼12∼12∼12 A. Finally, for FDE16, we have B �16
FDE ∼16(A∧∼16∼16

A) and B �16
FDE ∼16∼16(A∧∼16∼16 A). /

Remark 30. The other variants of FDE, K3 and LP are not negation inconsistent.
Indeed, for the variants of K3, this is obvious since they are all explosive. For the
other variants of FDE and LP, note that negation inconsistency implies that there is a
formula that receives the value b for all interpretations. But it is easy to see that this
cannot be the case with these variants. For example, the subclassical variants have the
set {t, f} being closed under all three connectives. Similar arguments by looking at
sets {t,n, f} or {n} will establish the desired results.

Theorem 31. K33, K34, FDE13, FDE14, FDE15 and FDE16 are negation incomplete.

Proof. We prove the result by showing the specific instances of incompleteness. For
K33, we have ∼3∼3 A �3

K3 B and ∼3∼3∼3 A �3
K3 B. For K34, we have ∼4∼4(A∧

∼4 A∧∼4∼4 A) �3
K3 B and∼4∼4∼4(A∧∼4 A∧∼4∼4 A) �4

K3 B. For FDE13, we have
∼13∼13 A�13

FDE B and∼13∼13∼13 A�13
FDE B. For FDE14, we have∼14∼14∼14 A�14

FDE
B and∼14∼14∼14∼14 A�14

FDE B. For FDE15, we have∼15∼15(A∧∼15 A∧∼15∼15 A)
�15

FDE B and∼15∼15∼15(A∧∼15 A∧∼15∼15 A) �15
FDE B. Finally, for FDE16, we have

∼16(A∨∼16∼16 A) �16
FDE B and ∼16∼16(A∨∼16∼16 A) �16

FDE B. /

Remark 32. The other variants of FDE, K3 and LP are not negation incomplete.
Indeed, for the variants of LP, this is obvious since they all have (LEM). For the other
variants of FDE and K3, note that negation incompleteness implies that there is a
formula that receives the value n for all interpretations. But it is easy so see that this
cannot be the case by similar considerations we sketched above for the cases with
negation inconsistency.

5.2. Functional Completeness. We now turn to show that the matrices that char-
acterize some of the contra-classical variants of FDE, K3 and LP are functionally
complete as a corollary of a general characterization of functional completeness. To
this end, we first introduce some related notions.

Definition 33 (Functional completeness). An algebra A = 〈A, f1, . . . , fn〉, is said to
be functionally complete provided that every finitary function f : Am→ A is definable
by compositions of the functions f1, . . . , fn alone. A matrix 〈A,D〉 is functionally
complete if A is functionally complete.

Definition 34 (Definitional completeness). A logic L is definitionally complete if
there exists a functionally complete matrix that is strongly adequate for L.

For the characterization of the functional completeness, the following theorem of
Jerzy Słupecki is elegant and useful. In order to state the result, we need the following
definition.

Definition 35. Let A = 〈A, f1, . . . , fn〉 be an algebra, and f be a binary operation
defined in A. Then, f is unary reducible iff for some unary operation g definable in
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A, f (x,y) = g(x) for all x,y ∈ A or f (x,y) = g(y) for all x,y ∈ A. And f is essentially
binary if f is not unary reducible.

Theorem 36 (Słupecki, [42]). A= 〈〈V, f1, . . . , fn〉,D〉 (|V| ≥ 3) is functionally com-
plete iff in 〈V, f1, . . . , fn〉 (1) all unary functions on V are definable, and (2) at least
one surjective and essentially binary function on V is definable.

Based on this elegant characterization by Słupecki, the desired result is obtained as
follows. In case of expansions of the algebra related to FDE, we can simplify even
further, as we observed in [32, Theorem 4.8].

Theorem 37. Given any expansion F of the algebra 〈{t,b,n, f},∧,∨〉 the following
(1) and (2) are equivalent: (1) F is functionally complete; (2) all of the δa’s as well
as Ca’s (a ∈ {t,b,n, f}) are definable, where δa(b) = t, if a = b, otherwise δa(b) = f;
and Ca(b) = a, for all a,b ∈ V .

Similarly, we obtain the next result for the three-element cases, where i ∈ {b,n}.
Theorem 38. Given any expansion F of the algebra 〈{t, i, f},∧,∨〉 the following (1)
and (2) are equivalent: (1) F is functionally complete; (2) all of the δa’s as well as
Ca’s (a ∈ {t, i, f}) are definable, where δa and Ca are defined as in Theorem 37.

Building on these results, we obtain the following.

Theorem 39. FDE16, K34 and LP4 are definitionally complete.

Proof. For FDE16, in view of the above theorem, it suffices to prove that all of
the δas as well as Ca’s (a ∈ {t,b,n, f}) are definable in 〈{t,b,n, f},∼16,∧,∨〉, and
this can be done as follows: δt(x) := ¬(∼16 x ∨∼16∼16 x), δb(x) := ¬(¬∼16 x ∨
∼16∼16 x), δn(x) := ¬(¬∼16∼16 x∨∼16 x), δf(x) := ¬¬(∼16 x∧∼16∼16 x), Ct(x) :=
x∨∼16∼16 x, Cb(x) :=∼16(x∧∼16∼16 x), Cn(x) :=∼16(x∨∼16∼16 x), and Cf(x) :=
x∧∼16∼16 x, where ¬x :=∼16(∼16∼16((x∧∼16 x)∧∼16(x∧∼16 x))∧ ((x∧∼16 x)∨
∼16(x∧∼16 x))).

For K34, in view of the above theorem, it suffices to prove that all of the δa’s as
well as Ca’s (a ∈ {t,n, f}) are definable in 〈{t,n, f},∼4,∧,∨〉, and this can be done as
follows: δt(x) := x∧∼4(x∧∼4∼4 x), δn(x) := ∼4∼4(x∨∼4 x), δf(x) := ∼4∼4(x∨
∼4∼4 x), Ct(x) := ∼4(x∧∼4 x∧∼4∼4 x), Cn(x) := ∼4∼4(x∧∼4 x∧∼4∼4 x), and
Cf(x) := x∧∼4 x∧∼4∼4 x.

Similarly, for LP4, in view of the above theorem, it suffices to prove that all of
the δa’s as well as Ca’s (a ∈ {t,b, f}) are definable in 〈{t,b, f},∼4,∧,∨〉, and this can
be done as follows: δt(x) := x∧∼4∼4(x∧∼4 x), δb(x) := ∼4(x∨∼4∼4 x), δf(x) :=
∼4(x∨∼4 x), Ct(x) := ∼4∼4(x∧∼4 x∧∼4∼4 x), Cb(x) := ∼4(x∧∼4 x∧∼4∼4 x),
and Cf(x) := x∧∼4 x∧∼4∼4 x. This completes the proof. /

Remark 40. Note that it is not difficult to see that other variants are not functionally
complete.

Finally, we add a brief remark on the Post completeness.

Definition 41. The logic L is Post complete iff for every formula A such that 0 A, the
extension of L by A becomes trivial, i.e., `L∪{A} B for any B.
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Theorem 42 (Tokarz, [45]). Definitionally complete logics are Post complete.

In view of Theorems 39 and 42, we obtain the following result.

Corollary 43. FDE16, K34 and LP4 are Post complete.

Remark 44. Note that the converse of Theorem 42 does not hold, i.e., there are logics
that are Post complete without being definitionally complete, such as the negation-
free fragment of classical propositional logic. Therefore, one may ask if other variants
of FDE, LP and K3 are Post complete. The answer is that in our case, none of
the variants other than FDE16, K34 and LP4 are Post complete, as observed in the
following proposition.

Proposition 45. None of the variants other than FDE16, K34 and LP4 are Post
complete.

Proof. The results hold by considering extensions by (ECQ) or (LEM). /

5.3. Variable Sharing Property and Admissibility of Contraposition. Let us now
turn our attention to two more properties that FDE is well known for enjoying, namely,
the variable sharing property and the admissibility of the rule of contraposition. We
will first deal with the variable sharing property, by recalling the definition.

Definition 46. A logic L satisfies the variable sharing property iff for all A,B∈ Form,
A `L B implies that A and B share at least one propositional variable.

Remark 47. Usually, the variable sharing property is stated with respect to the con-
ditional included in the object language, but since we do not have conditionals in the
language, we will consider the version above.6

Then, we obtain the following result.

Theorem 48. FDE1, FDE2, FDE9 and FDE10 satisfy the variable sharing property.
The other systems, including the variants of K3 and LP, do not satisfy the variable
sharing property.

Proof. Suppose A `i
FDE B (i ∈ {1,2,9,10}), but that A and B do not share any propo-

sitional variables. Then, if we consider a valuation v that assigns the value b to all
the variables in A and the value n to all the variables in B, then we obtain v(A) = b
and v(B) = n. Indeed, by a simple inductive proof, we may observe that both val-
ues b and n are closed under the set of operations {∼i,∧,∨}, where i ∈ {1,2,9,10}.
Then the above valuation is a counter-model for A `i

FDE B, an absurdity in view of our
assumption.

For the latter half, it easy to check that one of the rules of the unilateral natural
deduction system serves as a counterexample of the variable sharing property. /

Remark 49. Our result shows that there are no sub-classical variants of FDE with
the variable sharing property (VSP), but there are three other systems if we widen our
scope beyond sub-classicality.

6As a referee pointed out, there is a system with the variable sharing property in the original form, but
not in the above form. Such examples include the logic determined by the matrix M0 presented by Nuel
Belnap in [6].
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Let us now turn to the status of the rule of contraposition, which is seen as cru-
cial for the understanding of negation by, for example, the advocates of the so-called
Australian plan for negation.7 We first clarify the form of contraposition we have
in mind.

Definition 50. A logic L admits the rule of contraposition iff for all A,B ∈ Form,

(Contra) A `L B implies ∼B `L ∼A.

Then, as is well known, FDE admits the rule of contraposition. The easiest way to
see this is from the perspective of the star semantics, defined as follows.

Definition 51. A Routley interpretation is a structure 〈W,∗,v〉, where W is a set of
worlds, ∗ : W −→W is a function with w∗∗ = w, and v : W ×Prop −→ {0,1}. The
function v is extended to an assignment I of truth values for all pairs of worlds and
formulas by the conditions:
(1) I(w, p)=v(w, p), (3) I(w,A∧B)=1 iff I(w,A)=1 and I(w,B)=1,
(2) I(w,∼A)=1 iff I(w∗,A) 6= 1, (4) I(w,A∨B)=1 iff I(w,A)=1 or I(w,B)=1.

Definition 52. A formula A is a star semantic consequence of Γ (Γ �∗FDE A) iff for
all Routley interpretations 〈W,∗,v〉 and for all w ∈W , if I(w,B) = 1 for all B ∈Γ then
I(w,A) = 1.

Then, the following result is well known, due to Richard Routley and Valerie Rout-
ley (cf. [39]).8

Theorem 53 (Routley & Routley). For all Γ ∪{A} ⊆ Form, Γ `FDE A iff Γ �∗FDE A.

As a corollary, we obtain that FDE satisfies the rule of contraposition. Now, the
question is that if there are other systems within the variations we are considering
that satisfy the rule of contraposition. The answer is yes, since FDE7 also admits
(Contra), and for the purpose of establishing this result, we introduce a variation of
Routley interpretations as follows.

Definition 54. Let one-step Routley interpretation be a structure 〈W,∗,v〉 as in Rout-
ley interpretation, except that w∗∗ = w is replaced by w∗ = w∗∗.

Remark 55. One-step here means that it starts to “loop” after one application of the
star operator. We can also consider n-step Routley interpretations in general, but we
will not consider them in this paper.

Definition 56. A formula A is a one step star semantic consequence of Γ (Γ �∗1FDE A)
iff for all one step Routley interpretations 〈W,∗,v〉 and for all w ∈W , if I(w,B) = 1
for all B ∈ Γ then I(w,A) = 1.

Then, we obtain the following result.

Theorem 57. For all Γ ∪{A} ⊆ Form, Γ `7
FDE A iff Γ �∗1FDE A.

7For one of the most recent discussions on this topic, see [7; 8]. Note also that the Dunn semantics
offers the key insight for the so-called American plan for negation.

8Or, more precisely as Dunn writes in [16, p. 440], the star semantics was “actually mathematically in
1957 anticipated by A. Białynicki-Birula and H. Rasiowa, and shown equivalent by Dunn in 1966.”
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Proof. For the soundness direction, we establish the result by a straightforward ver-
ification that each rule is truth-preserving. We only deal with (∼7∼7 1) and (∼7∼7 2).
To this end, it suffices to observe that I(w,∼7 A)= 1 iff I(w∗,A) 6= 1 and that I(w,∼7∼7
A) = 1 iff I(w∗,∼7 A) 6= 1 iff I(w∗∗,A) = 1 iff I(w∗,A) = 1 (by w∗ = w∗∗), and
thus for all A ∈ Form and for all w ∈W , we obtain I(w,∼7 A∨∼7∼7 A) = 1 and
I(w,∼7 A∧∼7∼7 A) 6= 1.

For the completeness direction, we make use of the completeness result with re-
spect to the four-valued semantics (cf. Theorem 27), and establish that if Γ 27

FDE A
then Γ 2∗1FDE A. So, assume that Γ 27

FDE A. Then, there is a four-valued FDE7 inter-
pretation v0 such that v0(B) ∈ D for all B ∈ Γ , and v0(A) /∈ D. Given v0, we define a
one-step Routley interpretation as follows: W := {a,b}, a∗ = b and b∗ = b, and

v(a, p) = 1 iff v0(p) ∈ {t,b}, v(b, p) = 1 iff v0(p) ∈ {t,n}.
Then, once we show that the above condition holds for all A ∈ Form, we obtain the
desired result. That the above condition holds for all A ∈ Form can be proved by
induction on the construction of A. The base case, for atomic formulas, is obvious
by the definition. For the induction step, the cases are split based on the connectives.
Since the cases for conjunction and disjunction can be done in exactly the same way
as we do for FDE, we will focus on the case for negation, namely, the case when A is
of the form ∼7 B. Then,
(1) v(a,∼7 B) = 1 iff v(a∗,B) 6= 1 iff v(b,B) 6= 1 iff v0(B) /∈ {t,n} (by IH) iff v0(∼7 B)

= t (by the truth table) iff v0(∼7 B)∈ {t,b} (since v0(∼7 B) is never b by the truth
table).

(2) v(b,∼7 B) = 1 iff v(b∗,B) 6= 1 iff v(b,B) 6= 1 iff v0(B) /∈ {t,n} (by IH) iff v0(∼7 B)
= t (by the truth table) iff v0(∼7 B)∈ {t,n} (since v0(∼7 B) is never n by the truth
table).

This completes the proof. /

As an immediate corollary, we obtain the following.

Corollary 58. FDE7 admits (Contra).

Remark 59. Note that (Contra) is not admissible for the other systems. First, for K3
and LP, this is immediate since (ECQ) and (Contra) will establish (LEM), and (LEM)
and (Contra) will establish (ECQ). Second, for the variants of FDE that are negation
inconsistent or negation incomplete, it is not difficult to prove the desired results.
Indeed, assume (Contra) and take B to be an instance of the negation inconsistent
formula. Then, we obtain p ` B holds, and thus by (Contra), we obtain ∼B ` ∼ p.
But, since B is an instance of the negation inconsistent formula, we obtain ` ∼ p, but
this is absurd. The proof is similar for the negation incomplete case. Finally, for the
rest of systems, we show specific counterexamples.
1. For FDE2: p `2

FDE ∼2∼2 p but ∼2∼2∼2 p 02
FDE ∼2 p.

2. For FDE3: q `3
FDE ∼3 p∨∼3∼3 p but ∼3(∼3 p∨∼3∼3 p) 03

FDE ∼3 q.
3. For FDE5: q `5

FDE ∼5(p ∧ ∼5 p ∧ ∼5∼5 p) but ∼5∼5(p ∧ ∼5 p ∧ ∼5∼5 p)
05

FDE ∼5 q.
4. For FDE6: p∧∼6 p∧∼6∼6 p `6

FDE q but ∼6 q 05
FDE ∼6(p∧∼6 p∧∼6∼6 p).
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5. For FDE9: ∼9∼9 p `9
FDE p but ∼9 p 09

FDE ∼9∼9∼9 p.
6. For FDE10: ∼10 p∨∼10 q `10

FDE ∼10(p∧ q) but ∼10∼10(p∧ q) 010
FDE ∼10(∼10 p

∨∼10 q).
7. For FDE11: q `11

FDE p ∨ ∼11 p ∨ ∼11∼11 p but ∼11(p ∨ ∼11 p ∨ ∼11∼11 p)
011

FDE ∼11 q.

Remark 60. In view of the above result, none of the contra-classical variants can be
captured by the Australian plan with the local consequence relation. In other words, if
one is in deep favor of (Contra), then the contra-classical variants cannot be captured.
However, one may still work with the Australian plan, but take pointed models and
define the semantic consequence relation in terms of truth preservation at the distin-
guished point. Whether this way will allow the Australian plan advocates to capture
any of the contra-classical variants or not is an interesting question that we will leave
to interested readers.

6. REFLECTIONS: TOO MANY VARIETIES?

Given all the variants, one may conclude that there are far too many options, and
wonder about the implications of all this. This, of course, is a natural and even a
pressing question. For the purpose of addressing the question, at least partially, we
will make use of non-deterministic semantics. More specifically, we will consider
some family of negations under certain classification, put them together along the
framework of non-deterministic semantics, and explore the shared property for those
negations. Let us first recall the basic definition of non-deterministic semantics (cf.
[3] for an overview).

Definition 61. A non-deterministic matrix (Nmatrix for short) for L is a tuple M =
〈V,D,O〉, where V is a non-empty set of truth values, D is a non-empty proper subset
of V , and for every n-ary connective ∗ of L,O includes a corresponding n-ary function
∗̃ from Vn to 2V \ { /0}. We say that M is (in)finite if so is V . A legal valuation in an
Nmatrix M is a function v : Form→V that satisfies the following condition for every
n-ary connective ∗ of L and A1, . . . ,An ∈ Form:

(gHom) v(∗(A1, . . . ,An)) ∈ ∗̃(v(A1), . . . ,v(An)).

The condition (gHom) can be interpreted as a generalized homomorphism condition.

Let us now consider four kinds of non-deterministic matrices. The first one is ob-
tained by putting together the truth table for subclassical negations, with a motivation
to explore the common core of subclassical variants of FDE.

Definition 62. A four-valued subclassical FDE-Nmatrix for L is a tuple M = 〈V,D,
O〉, where V = {t,b,n, f}, D = {t,b}, and for every n-ary connective ∗ of L, O in-
cludes a corresponding n-ary function ∗̃ from Vn to 2V \{ /0} as follows (we omit the
braces for sets):

A ∼̃A
t f
b t,b
n n, f
f t

A∧̃B t b n f
t t b n f
b b b f f
n n f n f
f f f f f

A∨̃B t b n f
t t t t t
b t b t b
n t t n n
f t b n f
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A four-valued subclassical FDE-valuation in a four-valued subclassical FDE-Nmatrix
M is a function v : Form→ V that satisfies (gHom). Finally, A is a four-valued sub-
classical FDE-consequence of Γ (Γ �4s A) iff for every four-valued subclassical FDE-
valuation v, if v(B) ∈ D for every B ∈ Γ then v(A) ∈ D.

The corresponding (unilateral) natural deduction system is introduced as follows.

Definition 63. The natural deduction rulesRsub
FDE for sub-FDE are all the rulesRFDE

for FDE but replacing (∼∼1) and (∼∼2) by the following rules.
∼A ∼∼A

A
(∼∼1) A

∼A∨∼∼A
(∼∼2)

Based on these, given any set Σ ∪ {A} of formulas, Σ `sub
FDE A iff for some finite

Σ ′ ⊆ Σ , there is a derivation of A from Σ ′ in the calculus whose rule set isRsub
FDE.

Remark 64. One can also devise a bilateral natural deduction for sub-FDE replacing
(∼∼1) and (∼∼2) by the following rules to the bilateral presentation of FDE.

A ∼A
A

A

JAK....
B

J∼AK....
B

B

The further details are left for the interested readers.

Then, we may establish soundness and completeness results. The soundness is
again tedious but not difficult.

Theorem 65. For all Γ ∪{A} ⊆ Form, if Γ `sub
FDE A then Γ �4s A.

Proof. It can be shown by a straightforward verification that each rule preserves des-
ignated values. Here we only spell out the details for the validity of (∼∼1) and
(∼∼2).

Ad (∼∼1): Suppose, for reductio, that there is a four-valued subclassical FDE-
valuation v0 such that v0(∼A) ∈ D, v0(∼∼A) ∈ D, but v0(A) /∈ D. Then, the first
and the third assumption together with the Nmatrices imply that v0(A) = f, and thus
v0(∼∼A) = f. But, this is absurd in view of the second assumption.

Ad (∼∼2): Suppose, for reductio, that there is a four-valued subclassical FDE-
valuation v0 such that v0(A) ∈ D, but v0(∼A∨∼∼A) /∈ D. Then, the second as-
sumption together with the Nmatrices imply that v0(∼A) /∈D and v0(∼∼A) /∈D. By
v0(A) ∈ D and v0(∼A) /∈ D, we obtain that v0(A) = t, and thus v0(∼∼A) = t. But,
this is absurd in view of v0(∼∼A) /∈ D. /

For completeness, we prepare a definition and a lemma.

Definition 66. For any Σ ⊆ Form, let vsub
Σ from Form to {t,b,n, f} be defined as

follows:

vsub
Σ (A) :=





t iff Σ `sub
FDE A and Σ 0sub

FDE ∼A;
b iff Σ `sub

FDE A and Σ `sub
FDE ∼A;

n iff Σ 0sub
FDE A and Σ 0sub

FDE ∼A;
f iff Σ 0sub

FDE A and Σ `sub
FDE ∼A.
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Note that we are defining the canonical valuation in a different manner compared
to Definition 25, reflecting the difference of how deterministic and non-deterministic
semantics are introduced.

Lemma 67. If Σ is a prime theory, then vsub
Σ is a well-defined four-valued subclassical

FDE-valuation.

Proof. Note first that the well-definedness of vsub
Σ is obvious. Then the desired result

is proved by induction on the number n of connectives. Base case: For atomic for-
mulas, it is obvious by the definition. Induction step: We split the cases based on the
connectives. Here we only deal with ∼. If A =∼B, then we have the following cases.

Cases vΣ (B) condition for B vΣ (A) condition for A i.e., ∼B
(i) t Σ `sub

FDE B and Σ 0sub
FDE ∼B f Σ 0sub

FDE ∼B and Σ `sub
FDE ∼∼B

(ii) b Σ `sub
FDE B and Σ `sub

FDE ∼B t,b Σ `sub
FDE ∼B

(iii) n Σ 0sub
FDE B and Σ 0sub

FDE ∼B n, f Σ 0sub
FDE ∼B

(iv) f Σ 0sub
FDE B and Σ `sub

FDE ∼B t Σ `sub
FDE ∼B and Σ 0sub

FDE ∼∼B

By induction hypothesis, we have the conditions for B, for cases (ii) and (iii), it is
easy to see that the conditions for A i.e., ∼B are provable. For (i) and (iv), we can use
(∼∼2) and (∼∼1), respectively. /

We are now ready to establish the completeness result.

Theorem 68. For all Γ ∪{A} ⊆ Form, if Γ �4s A then Γ `sub
FDE A.

Proof. Assume Γ 0sub
FDE A. Then, by Lemma 24, there is a Σ ⊇ Γ such that Σ is a

prime theory and A /∈ Σ , and by Lemma 67, a four-valued subclassical valuation vsub
Σ

can be defined with vsub
Σ (B) ∈D for every B ∈Γ and vsub

Σ (A) /∈D. Thus it follows that
Γ 2sub

FDE A, as desired. /

Let us now turn to the second kind of non-deterministic matrices, which is obtained
by combining the negations that produce negation inconsistency.

Definition 69. A four-valued negation inconsistent FDE-Nmatrix for L is a tuple
M = 〈V,D,O〉, where V = {t,b,n, f}, D = {t,b}, and for every n-ary connective ∗
of L, O includes a corresponding n-ary function ∗̃ from Vn to 2V \{ /0}. Definition 62
gives ∧̃ and ∨̃; ∼̃ is

A t b n f
∼̃A n, f t,b f b

A four-valued negation inconsistent FDE-valuation in a four-valued negation incon-
sistent FDE-Nmatrix M is a function v : Form→ V that satisfies (gHom). Finally, A
is a four-valued negation inconsistent FDE-consequence of Γ (Γ �4b A) iff for every
four-valued negation inconsistent FDE-valuation v, if v(B) ∈ D for every B ∈ Γ then
v(A) ∈ D.

The corresponding (unilateral) natural deduction system is introduced as follows.

Definition 70. The natural deduction rules Rb
FDE for b-FDE are all the rules RFDE

for FDE but replacing (∼∼1) and (∼∼2) by the following rule.

A∨∼∼A
(∼∼)
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Based on these, given any set Σ ∪ {A} of formulas, Σ `b
FDE A iff for some finite

Σ ′ ⊆ Σ , there is a derivation of A from Σ ′ in the calculus whose rule set isRb
FDE.

Remark 71. One can also devise a bilateral natural deduction for b-FDE by replacing
(∼∼1) and (∼∼2) by the following rule to the bilateral presentation of FDE.

[A]....
B

J∼AK....
B

B

The further details are left for the interested readers.

Then, we may establish the following result.

Theorem 72. For all Γ ∪{A} ⊆ Form, Γ `b
FDE A iff Γ �4b A.

Proof. For the soundness direction, we establish the result by a straightforward veri-
fication that each rule preserves designated values. Here we only spell out the details
for the validity of (∼∼).

Suppose, for reductio, that there is a four-valued negation inconsistent FDE-valua-
tion v0 such that v0(A∨∼∼A) /∈ D. Then, together with the Nmatrices, the assump-
tion implies that v0(A) /∈ D and v0(∼∼A) /∈ D. By v0(A) /∈ D, there are two cases. If
v0(A)= n, then v0(∼∼A)= b, which is absurd in view of v0(∼∼A) /∈D. If v0(A)= f,
then v0(∼∼A) ∈ D which is absurd in view of v0(∼∼A) /∈ D.

For the completeness direction, we need to define vb
Σ as in Definition 66 with an

obvious modification, and establish the analogue of Lemma 67. In particular, we need
to check the following.

Cases vΣ (B) condition for B vΣ (A) condition for A i.e., ∼B
(i) t Σ `b

FDE B and Σ 0b
FDE ∼B n, f Σ 0b

FDE ∼B
(ii) b Σ `b

FDE B and Σ `b
FDE ∼B t,b Σ `b

FDE ∼B
(iii) n Σ 0b

FDE B and Σ 0b
FDE ∼B f Σ 0b

FDE ∼B and Σ `b
FDE ∼∼B

(iv) f Σ 0b
FDE B and Σ `b

FDE ∼B b Σ `b
FDE ∼B and Σ `b

FDE ∼∼B

By induction hypothesis, we have the conditions for B, for cases (i) and (ii), it is
easy to see that the conditions for A i.e., ∼B are provable. For (iii) and (iv), we can
use (∼∼). /

Remark 73. Note that although we combined the negations that produce negation in-
consistency, and thus named the Nmatrix including the phrase “negation inconsistent,”
it is not clear to us at the time of writing if the resulting system b-FDE is negation
inconsistent or not.

The third one now is obtained by combining the negations that produce negation
incompleteness.

Definition 74. A four-valued negation incomplete FDE-Nmatrix for L is a tuple M =
〈V,D,O〉, where V = {t,b,n, f}, D = {t,b}, and for every n-ary connective ∗ of L,
O includes a corresponding n-ary function ∗̃ from Vn to 2V \{ /0}. Definition 62 gives
∧̃ and ∨̃; ∼̃ is



Hitoshi Omori and Heinrich Wansing: Varieties of Negation 331

A t b n f
∼̃A n t n, f t,b

A four-valued negation incomplete FDE-valuation in a four-valued negation incom-
plete FDE-Nmatrix M is a function v : Form→ V that satisfies (gHom). Finally, A
is a four-valued negation incomplete FDE-consequence of Γ (Γ �4n A) iff for every
four-valued negation inconsistent FDE-valuation v, if v(B) ∈ D for every B ∈ Γ then
v(A) ∈ D.

The corresponding (unilateral) natural deduction system is as follows.

Definition 75. The natural deduction rules Rn
FDE for n-FDE are all the rules RFDE

for FDE but replacing (∼∼1) and (∼∼2) by the following rule.

A ∼∼A
B

(∼∼)

Based on these, given any set Σ ∪ {A} of formulas, Σ `n
FDE A iff for some finite

Σ ′ ⊆ Σ , there is a derivation of A from Σ ′ in the calculus whose rule set isRn
FDE.

Remark 76. One can also devise a bilateral natural deduction for n-FDE by replacing
(∼∼1) and (∼∼2) by the following rules to the bilateral presentation of FDE.

A ∼A
B

The further details are left for the interested readers.

Then, we may establish the following result.

Theorem 77. For all Γ ∪{A} ⊆ Form, Γ `n
FDE A iff Γ �4n A.

Proof. For the soundness direction, we establish the result by a straightforward veri-
fication that each rule preserves designated values. Here we only spell out the details
for the validity of (∼∼).

Suppose, for reductio, that there is a four-valued negation inconsistent FDE-valua-
tion v0 such that v0(A)∈D and v0(∼∼A)∈D, but v0(B) /∈D. Then, the first assump-
tion together with the Nmatrices imply that v0(∼∼A) /∈ D. But this is absurd in view
of the second assumption.

For the completeness direction, we again need to define vn
Σ as in Definition 66 with

an obvious modification, and establish the analogue of Lemma 67. In particular, we
need to check the following.

Cases vΣ (B) condition for B vΣ (A) condition for A i.e., ∼B
(i) t Σ `n

FDE B and Σ 0n
FDE ∼B n Σ 0n

FDE ∼B and Σ 0n
FDE ∼∼B

(ii) b Σ `n
FDE B and Σ `n

FDE ∼B t Σ `n
FDE ∼B and Σ 0n

FDE ∼∼B
(iii) n Σ 0n

FDE B and Σ 0n
FDE ∼B n, f Σ 0n

FDE ∼B
(iv) f Σ 0n

FDE B and Σ `n
FDE ∼B t,b Σ `n

FDE ∼B

By induction hypothesis, we have the conditions for B, for cases (iii) and (iv), it is
easy to see that the conditions for A i.e., ∼B are provable. For (i) and (ii), we can
use (∼∼). /
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Remark 78. Similarly to the case with b-FDE, although we combined the nega-
tions that produce negation incompleteness, and thus named the Nmatrix including
the phrase “negation incomplete,” it is not clear to us at the time of writing if the
resulting system n-FDE is negation incomplete or not.

Finally, let us consider the fully contra-classical kind, by combining all the contra-
classical negations.

Definition 79. A four-valued contra-classical FDE-Nmatrix for L is a tuple M =
〈V,D,O〉, where V = {t,b,n, f}, D = {t,b}, and for every n-ary connective ∗ of L,
O includes a corresponding n-ary function ∗̃ from Vn to 2V \{ /0}. Definition 62 gives
∧̃ and ∨̃; ∼̃ is A t b n f

∼̃A n, f t,b n, f t,b
A four-valued contra-classical FDE-valuation in a four-valued contra-classical FDE-
Nmatrix M is a function v : Form→ V that satisfies (gHom). Finally, A is a four-
valued contra-classical FDE-consequence of Γ (Γ �4c A) iff for every four-valued
contra-classical FDE-valuation v, if v(B) ∈ D for every B ∈ Γ then v(A) ∈ D.

The corresponding (unilateral) natural deduction system is introduced as follows.

Definition 80. The natural deduction rulesRcon
FDE for con-FDE are all the rulesRFDE

for FDE but eliminating the rules (∼∼1) and (∼∼2). Based on this, given any set
Σ ∪{A} of formulas, Σ `con

FDE A iff for some finite Σ ′ ⊆ Σ , there is a derivation of A
from Σ ′ in the calculus whose rule set isRcon

FDE.

Remark 81. One can also devise a bilateral natural deduction for con-FDE by elimi-
nating (∼∼1) and (∼∼2). The further details are left for the interested readers.

Then, we may establish the following result.

Theorem 82. For all Γ ∪{A} ⊆ Form, Γ `con
FDE A iff Γ �4c A.

Proof. For the soundness direction, we having nothing specific to do for rules solely
involving negation since we do not have any after eliminating the double negation
introduction/elimination rules.

For the completeness, we again need to define vcon
Σ as in Definition 66 with an

obvious modification, and establish the analogue of Lemma 67. In particular, we need
to check the following.

Cases vΣ (B) condition for B vΣ (A) condition for A i.e., ∼B
(i) t Σ `con

FDE B and Σ 0con
FDE ∼B n, f Σ 0con

FDE ∼B
(ii) b Σ `con

FDE B and Σ `con
FDE ∼B t,b Σ `con

FDE ∼B
(iii) n Σ 0con

FDE B and Σ 0con
FDE ∼B n, f Σ 0con

FDE ∼B
(iv) f Σ 0con

FDE B and Σ `con
FDE ∼B t,b Σ `con

FDE ∼B

By induction hypothesis, we have the conditions for B, for all the cases, and it is easy
to see that the conditions for A i.e., ∼B are provable without any additional rules. /

Remark 83. Somewhat surprisingly, the contra-classicality vanishes in the resulting
system that is obtained by combining, with the help of non-deterministic semantics,
all the contra-classical variants of FDE with respect to negation. In particular, we
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end up in a subsystem of FDE, which is obtained by removing the falsity condition
for negation. This is in sharp contrast with the case in which we combined the sub-
classical variants of FDE. Of course, if we take the combination of all variants of
FDE, both sub-classical and contra-classical, then the result will be the same as with
the case of focusing on contra-classical variants.

Remark 84. Given that the corresponding Dunn semantics will be to simply leave the
falsity condition for negation unspecified, this system can be also seen as reflecting
the position that there is nothing more to negation than expressing falsity. A similar
consideration for classical negation in the context of expansions of FDE, in which
there are again 16 candidates as explored in [9], can be found in [43].

7. CONCLUDING REMARKS

By building on the framework of Dunn semantics, we explored variants of FDE,
K3, and LP by fixing the truth condition for negation, but making changes in the fal-
sity condition. We also offered proof systems in the style of natural deduction, both in
the unilateral and in the bilateral manner, and established soundness and completeness
results for all systems. This was followed by an investigation into the basic properties
of the given variants. Our results, for the variants of FDE, are summarized in the
following table.

FDE1 FDE2 FDE3 FDE4 FDE5 FDE6 FDE7 FDE8

Subclassical X × X × X × X ×
Contra-classical × X × X × X × X
Neg. inconsistent × × × X × × × X
Neg. incomplete × × × × × × × ×
Func. complete × × × × × × × ×
Post complete × × × × × × × ×

Adm. of (Contra) X × × × × × X ×
VSP X X × × × × × ×

FDE9 FDE10 FDE11 FDE12 FDE13 FDE14 FDE15 FDE16

Subclassical × × × × × × × ×
Contra-classical X X X X X X X X
Neg. inconsistent × × × X × × × X
Neg. incomplete × × × × X X X X
Func. complete × × × × × × × X
Post complete × × × × × × × X

Adm. of (Contra) × × × × × × × ×
VSP X X × × × × × ×

This may seem to be too many variations. With that possible objection in mind, we
also explored four combinations of systems, by putting together (i) sub-classical sys-
tems, (ii) negation inconsistent systems, (iii) negation incomplete systems, and (iv)
contra-classical systems. The resulting systems are semantically described in terms of
non-deterministic semantics, and we also offered unilateral and bilateral proof systems
that are sound and complete.

Moreover, our results, for the variants of K3 and LP, are summarized in the fol-
lowing table.
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K31 K32 K33 K34 LP1 LP2 LP3 LP4

Subclassical X X × × X × X ×
Contra-classical × × X X × X × X

Negation inconsistent × × × × × X × X
Negation incomplete × × X X × × × ×

Functionally complete × × × X × × × X
Post complete × × × X × × × X

Admissibility of (Contra) × × × × × × × ×
Variable sharing property × × × × × × × ×

Unsurprisingly, the variants of K3 and LP do not enjoy the variable sharing property
and thus fail to be relevance logics. The tweaking of the falsity condition of negation
in K3 may lead to negation incomplete systems, whereas the tweaking of the falsity
condition of negation in LP may give one a negation inconsistent logic.

There are a number of different directions to pursue for further investigation. Be-
side those already mentioned in passing, we will note a few more questions. First, let
us briefly note that if one emphasizes the symmetry of truth and falsity, and make that
carry over for various properties, then among the contra-classical variations, the one
with both negation inconsistency and negation incompleteness might be seen as the
most favorable, not only satisfying one of them, and that will single out FDE16 as the
plausible variant of FDE. Given that FDE16 also enjoys the functional completeness,
the system, at least from a purely technical perspective, seems worth investigating
further.

Second, a related direction to the previous one, is to explore if we can specify fur-
ther properties, beside the very basic ones we discussed in this paper, so that each of
the variants can be singled out by different desiderata. A full answer to this prob-
lem seems to contribute substantially to our systematic understanding of both sub-
classicality and contra-classicality.

Third, given the origin of FDE as the first-degree entailment of relevance logics
R and E, we may ask, especially with those having the variable sharing property, if
there are variants of relevance logics that will have our variants as their first degree
entailment.

Fourth, our variations mainly focused on deterministic ones, and only explored
four non-deterministic ones. However, for the case with FDE, from a purely com-
binatorial perspective assuming the framework of non-deterministic semantics, there
are 81 possibilities, and we have only covered 20 of them (16 deterministic and 4 non-
deterministic cases). What can be learnt from the other 41 cases is also a problem that
seems to be worth addressing.

Finally, but not the least, we focused on a simple propositional language in this
paper, but there are a lot of motivations to expand the language both with further
propositional connectives (conditionals, modalities, etc.) as well as quantifiers. What
kind of insight we gain in these various expansions is yet another direction that is
natural and important.
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A CLASS OF 4-VALUED IMPLICATIVE EXPANSIONS OF
FIRST-DEGREE ENTAILMENT LOGIC (FDE) WITH THE

VARIABLE-SHARING PROPERTY

Gemma Robles and José M. Méndez

ABSTRACT. Anderson and Belnap consider the variable-sharing property (VSP) a
necessary property a relevance logic has to fulfill. A logic L has the VSP if in all
L-theorems of implication form antecedent and consequent share at least a proposi-
tional variable. If a propositional logic has the VSP then it is free from “paradoxes
of relevance.” The aim of this paper is to define a class of implicative expansions
with the VSP of the well-known first-degree entailment logic, FDE. The properties
the elements in this class enjoy make them important logics, not mere artificial con-
structs.

Keywords. First degree entailment logic, 4-valued relevance logics, Relevance log-
ics, Two-valued Belnap–Dunn semantics, Variable-sharing property

1. INTRODUCTION

Anderson and Belnap consider the variable-sharing property (VSP) a necessary
property a relevance logic has to fulfill. A logic L has the VSP if in all L-theorems
of implication form antecedent and consequent share at least a propositional variable
(cf. Anderson and Belnap [1] and Anderson, Belnap and Dunn [2]). Given that in a
propositional logic the non-logical semantical content is conveyed by propositional
variables, if L is a propositional logic with the VSP, then it is free from “paradoxes
of relevance” in the sense that L does not contain implicational formulas where the
semantical content of antecedent and consequent is disjoint.

As regards standard relevance logics, first degree entailment logic (FDE) is the
minimal member in Anderson and Belnap’s De Morgan family of relevance logics (cf.
[1; 2]). FDE is also known as Belnap and Dunn’s 4-valued logic BD4 (cf. Omori and
Wansing [22]). BD4 (our label) can be viewed as a 4-valued logic in which formulas
can be both true and false, neither true nor false, in addition to being true or false (cf.
Belnap [7; 6], Dunn [12; 13; 14]).

The question of expanding FDE with a full implicative connective emerges, since
as the name of the logic suggests, formulas of the form A→ B are not considered
in FDE if either A or B contains → (cf. [1, p. 158]; cf. Definition 1 on the logical
language used in the paper). And, according to [22], there is still a lot of investigation
to be done in the topic (cf. also Omori and Wansing [23]).
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Some full implicative expansions of FDE have been given in the literature (cf.
Brady [8], Hazen and Pelletier [17], López [18], Robles and Méndez [19; 20; 28],
[22], Petrukhin and Shangin [24] and references in the last two items). Among these,
Brady’s 4-valued logic BN4 (cf. [8]) seems to be widely regarded as the adequate
implicative 4-valued logic by specialists on relevance logic. In this respect, Meyer
et al. note: “BN4 is the correct logic for the 4-valued situation where extra values are
to be interpreted in the both and neither senses” (cf. [21, p. 25]). On his part, Slaney
thinks that BN4 has the truth-functional implication most naturally associated with
FDE (cf. [32, p. 289]; but cf. also the recent paper [10] by Brady). Nevertheless, BN4
lacks the VSP as it is the case with the 4-valued logic of entailment E4 introduced
in [28] and in fact, with all implicative expansions of FDE proposed so far in the
literature, to the best of our knowledge; for example, the formula (wff) ∼(A→ A)→
(B→ B), is provable in BN4 and E4.

The aim of this paper is to define a class of interesting implicative expansions of
FDE with the VSP, that is, a class of interesting implicative expansions of FDE free
from paradoxes of relevance as this notion has been understood and explained above.
This class is dubbed MI4VSP (i.e., “implicative expansions of FOUR with the VSP”
— cf. §2).

As it is shown in the concluding remarks to the paper, it is very easy to design a
broad class of binary expansions of FDE with the sole purpose that the elements in
this class comply with the VSP regardless of other properties required for a formal
translation of an acceptable notion of a conditional or an implication. However, the
elements in MI4VSP share a number of properties that we think do not support their
consideration as mere artificial constructs.

Without trying to be exhaustive, all logics in MI4VSP have the ensuing properties:
(1) They have “natural conditionals” in the sense of Robles and Méndez [29] akin

to that of Tomova [33] where the notion was originally defined (cf. Definition 7
in §2).

(2) They fulfill all conditions required of implicative logics in the classical Polish
logical tradition, except, of course, that of complying with the rule VEQ, A⇒
B→ A (cf. Definition 25 in §5).

(3) They all are 4-valued extensions of a strong restriction of Brady’s important
weak relevance logic DJd (cf. Remark 17 in §4) instead of being 4-valued ex-
tensions of strong relevance logics, as it happens with BN4 and E4, the former
extending contractionless relevance logic R, while the latter extends reductio-
less logic of entailment E (cf. [8; 28]).

(4) They have considerable expressive power (cf. the concluding remarks to the
paper). For instance, Gödel-type and dual Gödel-type negations are definable.
Also, necessity and possibility operators similar to these definable in BN4 and
E4 (cf. [20; 28]).

(5) They preserve, of course, the paraconsistency and paracompleteness of FDE.
(6) Some expansions in MI4VSP have the “Ackermann property” or the “Converse

Ackermann property” in addition to the VSP (cf. §7).
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And last but not least:

(7) They all are interpretable with the clear and important two-valued Belnap–
Dunn semantics (BD-semantics), which is grounded in the truth values T and
F (truth and falsity, respectively).

Before explaining the structure of the paper, let us point out an observation. It is
known that there are infinitely many logics with the VSP (cf. Dziobiak [15]). Further-
more, some many-valued logics with the VSP have been studied in the literature. For
example, the logic characterized by Belnap’s eight-element matrix M0 (cf. Belnap [5],
axiomatized in Brady [11]); or the logic determined by Meyer’s six-element crystal
lattice CL, also axiomatized in [11]). But it does not seem possible to interpret the
meaning of the logical values in these matrices in an intuitively clear way. However,
the meaning of the four truth-values in FDE (or BD4) and its expansions is crystalline.

The paper is organized as follows. In §2, the class of implicative expansions of
FOUR with the VSP, MI4VSP, is defined. MI4VSP is attained by restricting a broad
class of implicative expansions of FOUR with some desirable basic properties such
as being C-extending matrices satisfying the self-identity axiom, as well as the rules
modus ponens and transitivity. In §3, a two-valued Belnap–Dunn semantics equivalent
to the matrix semantics based upon each one of the 24 matrices in MI4VSP is defined.
By Li we refer to the logic determined by Mi (1 ≤ i ≤ 24). Then we sketch the
soundness and completeness proofs for the Li-logics w.r.t. both the matrix semantics
based on the Mi-matrices and the BD-semantics equivalent to them. We follow the
method in [8], as applied in, e.g., [19; 20] and [28]. We will only sketch soundness
and completeness proofs here; the details can be filled in as in the aforementioned
papers. In §4, the basic logics b0, b1 and b2 are defined. In §5, the Li-logics are built
upon the basic logics and some of their proof-theoretical properties are proved. In
§6, completeness of the Li-logics is proved by using a canonical model construction.
In §7, it is proved that each Li-logic has the VSP. Also, that some of them have the
“Ackermann property” or the “Converse Ackermann property.” In §8, we note some
concluding remarks on the results obtained as well as some suggestions on future work
that could be done in the topic. The paper is ended with an appendix displaying a part
of the proof of the generation of MI4VSP in §2.

As pointed out above, the logics determined by the Mi-matrices in MI4VSP are
given a Hilbert-style formulation using a two-valued BD-semantics following the
method developed in [8] as applied in our papers quoted above. Of course, we could
have used the methods in Avron et al. [3; 4] (resp., those in [24]) in order to define
a Gentzen-type system, (resp. a natural deduction system) equivalent to each one of
the Li-logics formulated as Hilbert-style systems. But let us stress that the aim of this
paper is not to axiomatize the Mi-matrices, but to highlight them and the properties the
Li-logics they determine enjoy when defined from the point of view of a Hilbert-style
calculus. No doubt, other properties of the Li-logics can be emphasized when defined
as Gentzen-type systems or natural deduction ones (concerning the relative merits of
these three methods just mentioned, cf. Robles [26, §6] and [24, §8]).

A last remark. As indicated above, there are 24 Li-logics determined by each one
of the Mi-matrices in MI4VSP. We think that, contrarily to what the market rules state,
this abundance does not devaluate the product: maybe there is a really outstanding
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logic between the 24 candidates, or else, they are in some sense the same logic for-
mulated with different choices of the set of primitive connectives (cf. the concluding
remarks to the paper).

2. A CLASS OF IMPLICATIVE EXPANSIONS OF FOUR WITH THE VSP

In this section we define a class of implicative expansions of Belnap and Dunn’s
matrix FOUR characterizing Anderson and Belnap’s first-degree entailment logic,
FDE (cf. [1, §15.2], [2; 7; 6; 12; 13; 14]). This class is dubbed MI4VSP (i.e., “im-
plicative expansions of FOUR with the VSP”). Firstly, some preliminary notions are
noted. Then, the matrix FOUR is recalled.

Definition 1 (Preliminary notions). The propositional language consists of a denumer-
able set of propositional variables p0, p1, . . . , pn, . . ., and the following connectives:
→ (conditional), ∧ (conjunction), ∨ (disjunction) and ∼ (negation). The bicondi-
tional and the set of wffs is defined in the customary way. A,B,C, etc. are metalin-
guistic variables. Then logics are formulated as Hilbert-type axiomatic systems, the
notions of “theorem” and “proof from a set of premises” being the usual ones, while
the following notions are understood in a fairly standard sense (cf., e.g., [19; 20; 28]):
extension and expansion of a given logic, logical matrix M and M-interpretation, M-
consequence, M-validity and, finally, M-determined logic.

Definition 2 (Belnap and Dunn’s matrix FOUR). The propositional language con-
sists of the connectives ∧,∨ and∼. Belnap and Dunn’s matrix FOUR is the structure
(V,D,F) where (1) V is {0,1,2,3} and is partially ordered as shown in the following
lattice (it is also displayed with the subsets of {T,F}):

(2) D = {2,3}; F = { f∧, f∨, f∼} where f∧ and f∨ are defined as the glb (or lattice
meet) and the lub (or lattice joint), respectively. Finally, f∼ is an involution with
f∼(0) = 3, f∼(3) = 0, f∼(1) = 1, f∼(2) = 2 (cf. [7; 6; 12; 13; 14]). We display the
tables for ∧,∨ and ∼:

∧ 0 1 2 3
0 0 0 0 0
1 0 1 0 1
∗2 0 0 2 2
∗3 0 1 2 3

∨ 0 1 2 3
0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

∼
0 3
1 1
2 2
3 0

Remark 3 (On the symbols for referring to the four truth-values). It is customary to
use f ,n,b and t instead of 0,1,2 and 3, respectively (cf., e.g., [22]). The former stand
for false only, neither true or false, both true and false and true only, respectively. The
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latter have been chosen in order to use the tester in González [16], in case one is needed
and to put in connection the results in the present paper with previous work by us.

Next, we proceed to define the class MI4VSP. The f→-functions expandingFOUR
we are interested in need to have at least the ensuing properties: (a) they are C-
extending f→-functions; (b) they satisfy modus ponens; (c) they verify the self-identity
axiom A→ A; (d) they are such that f→(2,2) = 2 and f→(2,3) ∈ {0,1} (together with
(b), this condition guarantees the fulfillment of the VSP); (e) they satisfy the rule
contraposition (Con), i.e., A→ B⇒∼B→∼A. (An f→-function is C-extending if
it coincides with (the f→-function for) the classical conditional when restricted to the
“classical” values 0 and 3.) But in order to define a member in MI4VSP an f→-function
has to fulfill the following conditions, in addition to properties (a) through (e): (f) it
verifies the contraposition axiom (i.e., (A→ B)→ (∼B→∼A)); (g) it satisfies the
rules prefixing (Pref) and suffixing (Suf) (Pref is B→C⇒ (A→ B)→ (A→C); Suf
is A→ B⇒ (B→C)→ (A→C)).

It will be shown that the requirements just demanded are such that the logics de-
termined by the members in MI4VSP are not mere artificial constructs with the VSP.
But let us advance to describe the implicative expansions of FOUR in MI4VSP. The
class MI4VSP is defined by following 4 steps the 3 last of which consist in successively
restricting a broad class of implicative expansions of FOUR with the VSP built up in
step 1. The 4 steps are the following.

(1) Implicative expansions of FOUR with properties (a)–(d).
(2) Implicative expansions ofFOURwith properties (a)–(d) which satisfy the rule

Con (i.e., implicative expansions of FOUR with properties (a)–(e)).
(3) Implicative expansions of FOUR with properties (a)–(d) which verify the

contraposition axiom (i.e., implicative expansions of FOUR with properties
(a)–(f)).

(4) Implicative expansions ofFOURwith properties (a)–(d) which verify the con-
traposition axiom and satisfy the rules Pref and Suf (i.e., implicative expansions
of FOUR with properties (a)–(g)).

(1) f→-functions fulfilling properties (a)–(d). An implicative truth-table describing
an f→-function fulfilling (a)–(d) has to present the structure displayed in the general
table TI recorded below (blank spaces can be filled with no matter which truth-values
in FOUR)

TI

→ 0 1 2 3
0 3 3
1 a
2 b1 b2 2 b3
3 0 b4 3

where a ∈ {2,3} and bi (1≤ i≤ 4) ∈ {0,1}.
Notice that implicative expansions of FOUR the f→-function of which is one of

the 217 f→-functions described in TI determine logics with the VSP. For let M be
any such expansion and suppose that A and B do not share propositional variables in
A→ B. Define then an M-interpretation I such that I(p) = 2 (resp., I(p) = 0) for all
propositional variables in A (resp., B). It follows that I(A) = 2 and I(B) ∈ {0,3} as
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{2} and {0,3} are closed under →, ∧, ∨ and ∼. Consequently, I(A→ B) ∈ {0,1},
that is, A→ B is not M-valid (cf. Proposition 41 below).
(2) f→-functions fulfilling properties (a)–(e). We restrict the general table TI in order
to obtain f→-functions satisfying the rule Con. The fact to be noted is that Con is not
satisfied if any of f→(0,2), f→(1,0), f→(1,2) and f→(3,2) equals 2 or 3. Then we are
left with the f→-functions described by the general truth tables TII and TIII recorded
below.

TII

→ 0 1 2 3
0 3 a1 b1 3
1 b2 c b3 a2
2 b4 b5 2 b6
3 0 b7 b8 3

TIII

→ 0 1 2 3
0 3 d1 b1 3
1 b2 c b3 d2
2 b4 b5 2 b6
3 0 b7 b8 3

where ai(1≤ i≤ 2) ∈ {2,3}, bi(1≤ i≤ 8) ∈ {0,1}, c ∈ {2,3} and d1,d2 ∈ {0,1}.
We have:

Proposition 4 (TII and TIII satisfy Con). Let M be an implicative expansion of
FOUR built up by adding any of the 211 (resp., 211) f→-functions in the general
table TII (resp., TIII). Then M satisfies Con.

Proof. (1) TII: Let M be built upon TII, and I be an M-interpretation. The cases of
interest are (a) I(A) = 0 & I(B) = 1; (b) I(A) = 0 & I(B) = 3; (c) I(A) = 1 & I(B) = 3.
But it is clear that in each one of these cases I assigns a designated value to∼B→∼A.
(2) TIII: the proof is similar to that of case (1). /

(3) f→-functions fulfilling properties (a)–(f). We have the following fact.

Proposition 5 (Table TIV verifying the contraposition axiom). The general table TIV
recorded below contains the set of all truth-tables in TII and TIII verifying the contra-
position axiom:

TIV

→ 0 1 2 3
0 3 a b 3
1 c f d a
2 e d 2 b
3 0 c e 3

where a ∈ {0,1,2,3}, b,c,d,e ∈ {0,1} and f ∈ {2,3}.
Proof. Given the diagonal in tables TII and TIII, the verification of the contraposi-
tion axiom requires, in addition, the following conditions: (a) f→(0,1) = f→(1,3);
(b) f→(0,2) = f→(2,3); (c) f→(1,0) = f→(3,1); (d) f→(1,2) = f→(2,1) and (e)
f→(2,0) = f→(3,2). The accomplishment of these conditions gives us the general
table TIV containing 128 functions verifying the contraposition axiom. /

(4) f→-functions fulfilling properties (α)–(η). The last step is to select tables in TIV
satisfying both Pref and Suf. In this regard, we note that if one of the conditions
(α)–(η) (resp., θ ) below obtains, then the rule Suf (resp., Pref) is not satisfied as it is
summarily shown in Diagram 1: (α) f→(0,1) = 2 (equivalently, f→(1,3) = 2); (β )
f→(1,1) = 2 if f→(0,1) = 3; (γ) f→(1,2) = 1 and f→(0,2) = 0 if f→(0,1) = 3; (δ )
f→(3,1) = 1 and f→(0,1) = 0; (ε) f→(3,1) = 0 and f→(0,1) = 1; (ζ ) f→(3,2) = 0
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and f→(0,2) = 1 if f→(0,1) 6= 3; (η) f→(3,2) = 1 and f→(0,2) = 0; (θ ) f→(2,0) = 1
and f→(2,1) = 0 if f→(0,1) = 3.

p → q ⇒ (q → r) → (p → r)
α 0 2 1 1 2 3 b 0 3 3
β 0 3 1 1 2 1 b 0 3 1
γ 0 3 1 1 1 2 c 0 0 2
δ 0 3 3 3 1 1 c 0 0 1
ε 0 3 3 3 0 1 1 0 1 1
ζ 0 3 3 3 0 2 b 0 1 2
η 0 3 3 3 1 2 c 0 0 2

q → r ⇒ (p → q) → (p → r)
θ 0 3 1 2 1 0 c 2 0 1

Diagram 1.

(p, q and r are distinct propositional variables.)
Thus, there are 24 f→-functions in TIV satisfying the rules Pref and Suf, in addition

to the contraposition axiom. These 24 f→-functions can be described as shown in the
general tables recorded below (b,c,d,e and f are read as in table TIV).

→ 0 1 2 3
0 3 3 b 3
1 c 3 0 3
2 0 0 2 b
3 0 c 0 3

→ 0 1 2 3
0 3 3 1 3
1 c 3 1 3
2 e 1 2 1
3 0 c e 3

→ 0 1 2 3
0 3 0 0 3
1 0 f d 0
2 0 d 2 0
3 0 0 0 3

→ 0 1 2 3
0 3 0 1 3
1 0 f d 0
2 1 d 2 1
3 0 0 1 3

→ 0 1 2 3
0 3 1 0 3
1 1 f d 1
2 0 d 2 0
3 0 1 0 3

→ 0 1 2 3
0 3 1 1 3
1 1 f d 1
2 1 d 2 1
3 0 1 1 3

In particular, the 24 f→-functions are described by the following truth-tables t1–
t24. With regard to the remaining tables in TIV not satisfying either Pref, Suf or both
rules, they are generally displayed in the Appendix.

Definition 6 (The class MI4VSP). The class MI4VSP consists of 24 implicative ex-
pansions of FOUR, M1,M2, . . . ,M24. Each Mi (1≤ i≤ 24) is the structure (V,D,F)
where V,D, f∧, f∨ and f∼ are defined exactly as in FOUR (Definition 2) and f→ is
defined according to table ti. Tables t1, t2, . . . , t24 are displayed below.

t1

→ 0 1 2 3
0 3 3 0 3
1 0 3 0 3
2 0 0 2 0
3 0 0 0 3

t2

→ 0 1 2 3
0 3 3 0 3
1 1 3 0 3
2 0 0 2 0
3 0 1 0 3

t3

→ 0 1 2 3
0 3 3 1 3
1 0 3 0 3
2 0 0 2 1
3 0 0 0 3
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t4

→ 0 1 2 3
0 3 3 1 3
1 1 3 0 3
2 0 0 2 1
3 0 1 0 3

t5

→ 0 1 2 3
0 3 3 1 3
1 0 3 1 3
2 1 1 2 1
3 0 0 1 3

t6

→ 0 1 2 3
0 3 3 1 3
1 1 3 1 3
2 1 1 2 1
3 0 1 1 3

t7

→ 0 1 2 3
0 3 3 1 3
1 0 3 1 3
2 0 1 2 1
3 0 0 0 3

t8

→ 0 1 2 3
0 3 3 1 3
1 1 3 1 3
2 0 1 2 1
3 0 1 0 3

t9

→ 0 1 2 3
0 3 0 0 3
1 0 2 0 0
2 0 0 2 0
3 0 0 0 3

t10

→ 0 1 2 3
0 3 0 0 3
1 0 3 0 0
2 0 0 2 0
3 0 0 0 3

t11

→ 0 1 2 3
0 3 0 0 3
1 0 2 1 0
2 0 1 2 0
3 0 0 0 3

t12

→ 0 1 2 3
0 3 0 0 3
1 0 3 1 0
2 0 1 2 0
3 0 0 0 3

t13

→ 0 1 2 3
0 3 0 1 3
1 0 2 0 0
2 1 0 2 1
3 0 0 1 3

t14

→ 0 1 2 3
0 3 0 1 3
1 0 3 0 0
2 1 0 2 1
3 0 0 1 3

t15

→ 0 1 2 3
0 3 0 1 3
1 0 2 1 0
2 1 1 2 1
3 0 0 1 3

t16

→ 0 1 2 3
0 3 0 1 3
1 0 3 1 0
2 1 1 2 1
3 0 0 1 3

t17

→ 0 1 2 3
0 3 1 0 3
1 1 2 0 1
2 0 0 2 0
3 0 1 0 3

t18

→ 0 1 2 3
0 3 1 0 3
1 1 3 0 1
2 0 0 2 0
3 0 1 0 3

t19

→ 0 1 2 3
0 3 1 0 3
1 1 2 1 1
2 0 1 2 0
3 0 1 0 3

t20

→ 0 1 2 3
0 3 1 0 3
1 1 3 1 1
2 0 1 2 0
3 0 1 0 3

t21

→ 0 1 2 3
0 3 1 1 3
1 1 2 0 1
2 1 0 2 1
3 0 1 1 3

t22

→ 0 1 2 3
0 3 1 1 3
1 1 3 0 1
2 1 0 2 1
3 0 1 1 3

t23

→ 0 1 2 3
0 3 1 1 3
1 1 2 1 1
2 1 1 2 1
3 0 1 1 3

t24

→ 0 1 2 3
0 3 1 1 3
1 1 3 1 1
2 1 1 2 1
3 0 1 1 3

We remark that the conditional defined by Mi (1≤ i≤ 24) is a natural conditional
in accordance with the following definition (cf. Definition 2.5 in [29]).

Definition 7 (Natural conditionals). Let V and D be defined as in Definition 2. Then,
an f→-function on V defines a natural conditional if the following conditions are sat-
isfied:

(1) f→ coincides with (the f→-function for) the classical conditional when re-
stricted to the subset {0,3} of V .
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(2) f→ satisfies modus ponens, that is, for any a,b ∈ V , if a→ b ∈ D and a ∈ D,
then b ∈ D.

(3) For any a,b ∈ V , a→ b ∈ D if a = b.

Remark 8 (Natural conditionals in Tomova’s original paper). We note that natural
conditionals are defined in [33] exactly as in Definition 7 except for condition (3),
which reads there as follows: For any a,b ∈ V , a→ b ∈ D if a≤ b.

The section is ended by noting that each one of the implicative expansions in
MI4V SP has considerable expressive power. As a way of an example, we show some
unary functions definable in each of them. (For simplicity, we use the wffs defined by
the functions in question instead of the functions themselves.)

Gödel-type negation (
•¬) and dual Gödel-type negation (

◦¬) can be defined as fol-
lows for any wff A:

◦¬A = (A→∼A)∧∼A and
•¬A = ∼ ◦¬∼A in expansions where

f→(1,1) = 2;
◦¬A =∼(∼A→ A) and

•¬A = A→∼A in expansions where f→(1,1) =
3. Also, necessity (�), possibility (♦), truth guaranteeing connective (

•
t) and falsity

ensuring connective (
•
f ) are defined in all expansions in MI4V SP similarly as in [20]

and [28]. For any wff A, �A = ∼ •¬A, ♦A = ∼ ◦¬A,
•
tA = A∨ •¬A and

•
f A = A∧ ◦¬A.

(Recall that the truth-value 2 represents both truth and falsity.)

3. BELNAP–DUNN SEMANTICS FOR THE Li-LOGICS

As it is well-known, Belnap–Dunn two-valued semantics (BD-semantics) is char-
acterized by the possibility of assigning T , F , both T and F or neither T nor F to the
formulas of a given language (cf. [7; 6; 12; 13; 14]; T represents truth and F represents
falsity).

Given M an implicative expansion of FOUR (cf. Definition 2), the idea for defin-
ing a BD-semantics, M′, equivalent to the matrix semantics based upon M is simple:
a wff A is assigned both T and F in M′ iff it is assigned 2 in M; A is assigned neither
T nor F in M′ iff it is assigned 1 in M; finally, A is assigned T but not F (resp., F but
not T ) in M′ iff it is assigned 3 (resp., 0) in M.

The BD-semantics for each one of the Li-logics, equivalent to the matrix semantics
based upon Mi (1 ≤ i ≤ 24) (cf. Definition 6) to be defined below has been built by
following the simple intuitive ideas just exposed.

In the sequel, the notion of an Li-model and the accompanying notions of Li-
consequence and Li-validity are defined for each i (1 ≤ i ≤ 24). Li-models and an-
nexed notions constitute a BD-semantics for each one of the Li-logics (an Li-semantics)
equivalent to the one based upon the matrix Mi (1 ≤ i ≤ 24) in the sense explained
above. It will be proved that for each i (1≤ i≤ 24), the logic Li is sound and complete
w.r.t. Li-semantics.

We will define two types of Li-models: Eb1-models, for extensions of b1 and Eb2-
models, for extensions of b2. (The logics b1 and b2 are defined in §4.)

Definition 9 (Eb1-models). An Li-model (1 ≤ i ≤ 8) is a structure (K, I) where (i)
K = {{T},{F},{T,F}, /0}, and (ii) I is an Li-interpretation from the set of all wffs
to K, this notion being defined according to the following conditions (“clauses”) for
each propositional variable p and wffs A,B:
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1. I(p) ∈ K
2a. T ∈ I(¬A) iff F ∈ I(A)
2b. F ∈ I(¬A) iff T ∈ I(A)
3a. T ∈ I(A∧B) iff T ∈ I(A)& T ∈ I(B)
3b. F ∈ I(A∧B) iff F ∈ I(A) or F ∈ I(B)
4a. T ∈ I(A∨B) iff T ∈ I(A) or T ∈ I(B)
4b. F ∈ I(A∨B) iff F ∈ I(A)& F ∈ I(B)
5a. T ∈ I(A→ B) iff [T /∈ I(A)& F /∈ I(B)] or

[T /∈ I(A)& F ∈ I(A)& T /∈ I(B)] or
[F /∈ I(A)& T ∈ I(B)& F /∈ I(B)] or
[T ∈ I(A)& F ∈ I(A)& T ∈ I(B)& F ∈ I(B)]

Clause 5b for assigning F to conditionals is different for each Eb1-model. Thus, we
have the following 8 conditions.

F ∈ I(A→ B) iff:

(5b1) [T ∈ I(A)& T /∈ I(B)] or [F /∈ I(A)& F ∈ I(B)] or [T ∈ I(A)& F ∈ I(A)] or
[T ∈ I(B)& F ∈ I(B)].

(5b2) [T ∈ I(A)& F ∈ I(B)] or [T ∈ I(B)& F ∈ I(B)] or [T ∈ I(A)& F ∈ I(A)].
(5b3) [F /∈ I(A)& F ∈ I(B)] or [T ∈ I(A)& T /∈ I(B)] or [T ∈ I(A)& F ∈ I(B)].
(5b4) [T ∈ I(A)& F ∈ I(B)] or [F /∈ I(A)& T ∈ I(B)& F ∈ I(B)] or [T ∈ I(A)& F ∈

I(A)& T /∈ I(B)].
(5b5) [F /∈ I(A)& T /∈ I(B)& F ∈ I(B)] or [T ∈ I(A)& F /∈ I(A)& T /∈ I(B)] or [T ∈

I(A)& F ∈ I(A)& T ∈ I(B)& F ∈ I(B)].
(5b6) [T ∈ I(A)& F ∈ I(A)& T ∈ I(B)& F ∈ I(B)] or [T ∈ I(A)& F /∈ I(A)& T /∈

I(B)& F ∈ I(B)].
(5b7) [T ∈ I(A)& F ∈ I(B)] or [F /∈ I(A)& T /∈ I(B)& F ∈ I(B)] or [T ∈ I(A)& F /∈

I(A)& T /∈ I(B)].
(5b8) T ∈ I(A)& F ∈ I(B).

Definition 10 (Eb2-models). An Li-model (9≤ i≤ 24), is a structure (K, I) where K
and I are defined similarly as in Eb1-models, save for clauses (5a) and (5b), which are
now as follows:

(5a) T ∈ I(A→B) iff [T /∈ I(A)&F ∈ I(A)&T /∈ I(B)&F ∈ I(B)] or [T /∈ I(A)&F /∈
I(A)& T /∈ I(B)& F /∈ I(B)] or [T ∈ I(A)& F ∈ I(A)& T ∈ I(B)& F ∈ I(B)]
or [T ∈ I(A)& F /∈ I(A)& T ∈ I(B)& F /∈ I(B)] or [T /∈ I(A)& F ∈ I(A)& T ∈
I(B)& F /∈ I(B)].

Regarding clause 5b for assigning F to conditionals, as in the case of Eb1-models, it
is different for each Eb2-model. So, we have the following 16 conditions.

F ∈ I(A→ B) iff:

(5b9) [T ∈ I(A)& F ∈ I(B)] or [T /∈ I(A)& F /∈ I(A)] or [T ∈ I(A)& F ∈ I(A)] or
[T /∈ I(B)& F /∈ I(B)] or [T ∈ I(B)& F ∈ I(B)].

(5b10) [F /∈ I(A)& F ∈ I(B)] or [T ∈ I(A)& T /∈ I(B)] or [T ∈ I(A)& F ∈ I(A)] or
[T ∈ I(B)&F ∈ I(B)] or [F ∈ I(A)&T /∈ I(B)&F /∈ I(B)] or [T /∈ I(A)&F /∈
I(A)& T ∈ I(B)& F /∈ I(B)].
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(5b11) [T ∈ I(A)&F ∈ I(B)] or [F /∈ I(A)&T /∈ I(B)] or [T /∈ I(A)&T /∈ I(B)&F /∈
I(B)] or [F ∈ I(A)&T ∈ I(B)&F ∈ I(B)] or [T /∈ I(A)&F /∈ I(A)&F /∈ I(B)]
or [T ∈ I(A)& F ∈ I(A)& T ∈ I(B)& F /∈ I(B)].

(5b12) [T ∈ I(A)&F ∈ I(B)] or [F ∈ I(A)&T ∈ I(B)&F ∈ I(B)] or [F /∈ I(A)&T /∈
I(B)& F ∈ I(B)] or [T ∈ I(A)& F ∈ I(A)& T ∈ I(B)] or [T ∈ I(A)& F /∈
I(A)& T /∈ I(B)] or [T /∈ I(A)& F /∈ I(A)& T ∈ I(B)& F /∈ I(B)] or [T /∈
I(A)& F ∈ I(A)& T /∈ I(B)& F /∈ I(B)].

(5b13) [T /∈ I(A)& F /∈ I(A)] or [T /∈ I(B)& F /∈ I(B)] or [F /∈ I(A)& T /∈ I(B)] or
[T ∈ I(A)& F ∈ I(A)& T ∈ I(B)& F ∈ I(B)].

(5b14) [T /∈ I(A)& F /∈ I(A)& T ∈ I(B)] or [F /∈ I(A)& T /∈ I(B)& F ∈ I(B)] or
[T ∈ I(A)& F /∈ I(A)& T /∈ I(B)] or [T ∈ I(A)& T /∈ I(B)& F /∈ I(B)] or
[T /∈ I(A)& F ∈ I(A)& T /∈ I(B)& F /∈ I(B)] or [T ∈ I(A)& F ∈ I(A)& T ∈
I(B)& F ∈ I(B)].

(5b15) [F /∈ I(A)&T /∈ I(B)] or [T /∈ I(A)&F /∈ I(A)&F /∈ I(B)] or [T /∈ I(A)&T /∈
I(B)& F /∈ I(B)] or [T ∈ I(A)& F ∈ I(A)& T ∈ I(B)& F ∈ I(B)].

(5b16) [F /∈ I(A)& T /∈ I(B)& F ∈ I(B)] or [T ∈ I(A)& F /∈ I(A)& T /∈ I(B)] or
[T /∈ I(A)& F /∈ I(A)& T ∈ I(B)& F /∈ I(B)] or [T ∈ I(A)& F ∈ I(A)& T ∈
I(B)& F ∈ I(B)] or [T /∈ I(A)& F ∈ I(A)& T /∈ I(B)& F /∈ I(B)].

(5b17) [T ∈ I(A)& F ∈ I(B)] or [T ∈ I(A)& F ∈ I(A)] or [T ∈ I(B)& F ∈ I(B)] or
[T /∈ I(A)& F /∈ I(A)& T /∈ I(B)& F /∈ I(B)].

(5b18) [T ∈ I(A)& F ∈ I(B)] or [T ∈ I(A)& F ∈ I(A)] or [T ∈ I(B)& F ∈ I(B)].
(5b19) [T ∈ I(A)&F ∈ I(B)] or [F ∈ I(A)&T ∈ I(B)&F ∈ I(B)] or [T ∈ I(A)&F ∈

I(A)& T ∈ I(B)] or [T /∈ I(A)& F /∈ I(A)& T /∈ I(B)& F /∈ I(B)].
(5b20) [T ∈ I(A)&F ∈ I(B)] or [F ∈ I(A)&T ∈ I(B)&F ∈ I(B)] or [T ∈ I(A)&F ∈

I(A)& T ∈ I(B)].
(5b21) [T /∈ I(A)& F /∈ I(A)& T /∈ I(B)& F /∈ I(B)] or [T /∈ I(A)& F /∈ I(A)& T ∈

I(B)& F ∈ I(B)] or [T ∈ I(A)& F ∈ I(A)& T /∈ I(B)& F /∈ I(B)] or [T ∈
I(A)&F ∈ I(A)&T ∈ I(B)&F ∈ I(B)] or [T ∈ I(A)&F /∈ I(A)&T /∈ I(B)&
F ∈ I(B)].

(5b22) [T /∈ I(A)& F /∈ (A)& T ∈ I(B)& F ∈ I(B)] or [T ∈ I(A)& F ∈ I(A)& T /∈
I(B)& F /∈ I(B)] or [T ∈ I(A)& F ∈ I(A)& T ∈ I(B)& F ∈ I(B)] or [T ∈
I(A)& F /∈ I(A)& T /∈ I(B)& F ∈ I(B)].

(5b23) [T /∈ I(A)& F /∈ I(A)& T /∈ I(B)& F /∈ I(B)] or [T ∈ I(A)& F ∈ I(A)& T ∈
I(B)& F ∈ I(B)] or [T ∈ I(A)& F /∈ I(A)& T /∈ I(B)& F ∈ I(B)].

(5b24) [T ∈ I(A)& F ∈ I(A)& T ∈ I(B)& F ∈ I(B)] or [T ∈ I(A)& F /∈ I(A)& T /∈
I(B)& F ∈ I(B)].

Definition 11 (Li-consequence, Li-validity). Let M be an Li-model (1≤ i≤ 24). For
any set of wffs Γ and a wff A:

(1) Γ �M A (A is a consequence of Γ in M) iff T ∈ I(A) whenever T ∈ I(Γ ). (T ∈
I(Γ ) iff ∀A ∈ Γ (T ∈ I(A)); F ∈ I(Γ ) iff ∃A ∈ Γ (F ∈ I(A)).)

(2) Γ �Li A (A is a consequence of Γ in Li-semantics) iff Γ �M A for each Li–
model M.

(3) In particular, �Li A (A is valid in Li-semantics) iff �M A for each Li-model M
(i.e., iff T ∈ I(A) for each Li-model M).

By �Li we shall refer to the relation just defined.
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Now, given Definition 6 together with the adjoined notions of Mi-interpretation
and Mi-validity (1≤ i≤ 24) (cf. Definition 1) and Definitions 9, 10 and 11, we easily
prove (by �Mi we refer to the consequence relation definable in Mi (1≤ i≤ 24) — cf.
Definitions 1 and 6):

Proposition 12 (Coextensiveness of �Mi and �Li ). For each i (1 ≤ i ≤ 24), a set of
wffs Γ and a wff A, Γ �Mi A iff Γ �Li A. In particular, �Mi A iff �Li A.

Proof. See the proof of Theorem 8 in [8] or Proposition 4.4 in [19] where the simple
proof procedure is exemplified in the cases of the logics BN4 and Sm4. /

Proposition 12 simply formalizes the intuitive translation (explained above) of the
matrix semantics based upon Mi into Belnap and Dunn’s two-valued type Li-semantics
(1≤ i≤ 24). Nevertheless, Proposition 12 is a most useful proposition: it gives us the
possibility of easily proving soundness of Li w.r.t. �Mi while proving completeness
w.r.t. �Li by using a canonical model construction.

Suppose that the Li-logics have been defined (cf. Definitions 20 and 21). Then
soundness is proved as follows.

Theorem 13 (Soundness of the Li-logics). For any i (1≤ i≤ 24), a set of wffs Γ and
a wff A, if Γ `Li A then (1) Γ �Mi A and (2) Γ �Li A.

Proof. The 24 Li-logics are axiomatized in Definitions 20 and 21. Then let I be an
Mi-interpretation (defined in the Mi-model M). (1) It is easy to check the following
facts. (i) Let r be an inference rule of Li. Then I assigns a designated valued to the
conclusion of r if it assigns a designated value to the premise(s) of r; (ii) all axioms of
Li are assigned 2 or 3; (iii) regarding the metarule MR, suppose I(D∨A) = I(D∨B) =
2 or 3 but I(D∨C) = 0 or 1 for some wffs A, B and C. Then, it is clear that C is not
a consequence of A, B (i.e., A,B⇒ C is falsified). (2) It is immediate from (1) and
Proposition 12.1 /

As remarked above, completeness is proved by a canonical model construction
similarly as in e.g., [19; 20] or [28]. Let us see how this proof proceeds.

Consider, for example, L5-models. Let T be a prime L5-theory (cf. Definition 26).
A canonical L5-model is a structure (K, IT ) where K is defined as in Definition 9
and IT is a function from the set of all wffs to K defined as follows: for each wff A,
T ∈ I(A) iff A ∈ T , and F ∈ I(A) iff ∼A ∈ T . It is shown that (K, IT ) is a canonical
L5-model by proving that IT fulfills clauses (2a), (2b), (3a), (3b), (4a), (4b), (5a) and
(5b5) in Definition 9, by induction on the structure of A. (It is immediate that IT
complies with clause (1).) That is, we have to prove: (i) B∧C ∈ T iff B ∈ T &C ∈ T ;
(ii) ∼(B∧C) ∈ T iff ∼B ∈ T or ∼C ∈ T ; (iii) B∨C ∈ T iff B ∈ T or C ∈ T ; (iv)
∼(B∨C) ∈ T iff ∼B ∈ T &∼C ∈ T ; (v) ∼∼B ∈ T iff B ∈ T ; (vi) B→ C ∈ T iff
[B /∈ T &∼C /∈ T ] or [B /∈ T &∼B ∈ T &C /∈ T ] or [∼B /∈ T &C ∈ T &∼C /∈ T ]
or [B ∈ T &∼B ∈ T &C ∈ T &∼C ∈ T ]; (vii) ∼(B→ C) ∈ T iff [∼B /∈ T &C /∈
T &∼C ∈ T ] or [B∈ T &∼B /∈ T &C /∈ T ] or [B∈ T &∼B∈ T &C ∈ T &∼C ∈ T ].

Once canonical L5-models are shown L5-models, completeness is proved as fol-
lows. Suppose Γ 0L5 A, i.e., that A is not included in the set of consequences derivable

1In case a tester is needed, the one in [16] can be used.
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in L5 from Γ (in symbols, A /∈ CnΓ [L5]). Then CnΓ [L5] is extended to a prime L5-
theory T such that A /∈ T . Next, the canonical model M = (K, IT ) based upon T is
defined, and we have Γ 2M A since T ∈ IT (Γ ) (as T ∈ IT (CnΓ [L5])) but T /∈ IT (A)
whence Γ 2L5 A (by Definitions 9 and 11), as it was to be proved.

Completeness of the rest of the Li-logics is proved in a similar way. In §6, we prove
the two facts that are required in the completeness proofs, as shown above. For each i
(1≤ i≤ 24):

(1) An Li-theory without a given wff can be extended to a prime Li-theory without
the same wff.

(2) Let T be a prime Li-theory. Then, the canonical translations of clauses (1),
(2a), (2b), (3a), (3b), (4a), (4b) and those of the corresponding clauses for the
conditional are provable in T .

As pointed out in the introduction, we follow the strategy set up in [8] as applied
in, e.g., [19; 20] or [28]. Thus, it is possible to be reasonably general about the details
and most of the proofs will be referred to the papers quoted above.

4. THE BASIC LOGIC B0 AND ITS EXTENSIONS B1 AND B2

The main relevance logics are Routley and Meyer’s basic logic B, T (Ticket Entail-
ment), E (Entailment) and R (Relevance, (cf. [1; 2], Routley et al. [31], [11]), although
some relevantists have argued that weaker relevance logics may be preferable (cf. e.g.,
[31, Chapter 3]). Now, BN4 and its companion E4 are based upon strong relevance
logics. In particular, Brady’s relevance logic BN4 (cf. [8]) can intuitively be described
as a 4-valued extension of contractionless relevance logic R, whereas the logic of en-
tailment E4 (cf. [28]) can be viewed as a 4-valued extension of reductioless entailment
logic E. However, all Li-logics are 4-valued extensions of a basic logic we label b0,
which is related to weak relevance logics in the vicinity of Brady’s important logic DJ
(cf. [9] and references therein), as it will be shown in this section.

In this section, the basic logics b0, b1 and b2 are defined. All Li-logics are ex-
tensions of one of the two basic logics b1 and b2 introduced below. Especially, L1
through L8 are extensions of b1, while L9 through L24 extend b2. Both b1 and b2
(which are independent from each other) are built upon the more basic logic com-
mented upon above.

Definition 14 (The logic b0). The logic b0 can be formulated with the following ax-
ioms, rules of inference and metarule (A1, . . . ,An⇒ B means “if A1, . . . ,An, then B”):

Axioms:
A1. A→ A
A2. (A∧B)→ (B∧A)
A3. [A∧ (B∧C)]→ [(A∧B)∧C]
A4. [A∧ (B∨C)]↔ [(A∧B)∨ (A∧C)]
A5. ∼(A∨B)↔ (∼A∧∼B)
A6. (A→∼B)→ (B→∼A)
A7. ∼∼A→ A

Rules of inference:
R1. A,B⇒ A∧B (Adj)
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R2. A→ B,A⇒ B (MP)
R3. A∧B⇒ A,B (E∧)
R4. A⇒ A∨B,B∨A (I∨)
R5. A→ B,A→C⇒ A→ (B∧C) (CI∧)
R6. A↔ B⇒ (A∧C)↔ (B∧C) (Fac↔)
R7. B→C⇒ (A→ B)→ (A→C) (Pref)

Metarule:
MR. If A,B⇒C, then D∨A,D∨B⇒ D∨C.

Remark 15 (On the axiomatization of b0). CI∧, Fac↔ and Pref abbreviate “condi-
tioned introduction of conjunction,” “factor w.r.t. ↔” and “prefixing,” respectively.
The metarule MR can be dropped if a “disjunctive version” of each rule is added (the
disjunctive version of, e.g., MP is the following rule: C∨ (A→ B),C∨A⇒ C∨B).
On the role of disjunctive rules in certain logics, cf. [31], [11] and references therein.

In what follows, we prove some proof-theoretical properties of b0.

Proposition 16 (Some theorems and rules of b0). We note some wffs and rules prov-
able in b0. A proof sketch is recorded to the right of each item. References to the
transitivity rules T3 and T4 are generally omitted.

T1. A↔ A A1
T2. (A↔ B)→ (B↔ A) A2
T3. A→ B,B→C⇒ A→C (Trans) Pref
T4. A↔ B,B↔C⇒ A↔C (Trans↔) Trans (T3)
T5. A→∼∼A A1, A6
T6. A↔∼∼A A7, T5
T7. A↔ B⇒ (C→ A)↔ (C→ B) (Pref↔) Pref
T8. (A→ B)→ (∼B→∼A) A6, T6, Pref↔
T9. (∼A→∼B)→ (B→ A) A6, T6, Pref↔

T10. (A→ B)↔ (∼B→∼A) T8, T9
T11. (∼A→ B)→ (∼B→ A) T6, T8, Pref↔
T12. A→ B⇒∼B→∼A (Con) T8
T13. A↔ B⇒∼B↔∼A (Con↔) Con
T14. A→ B,∼B⇒∼A (Modus Tollens — MT) Con, MP
T15. A→ B⇒ (B→C)→ (A→C) (Suf) Pref, Con, T10
T16. A↔ B⇒ (B→C)↔ (A→C) (Suf↔) Suf
T17. (A∨B)↔∼(∼A∧∼B) A5, Con↔, T6
T18. A→C,B→C⇒ (A∨B)→C (E∨) Con, CI∧, T11, T17
T19. A↔ B⇒ (A∨C)↔ (B∨C) (Sum↔) Con↔, Fac↔, T17
T20. (A∧B)↔ (B∧A) A2
T21. [(A∧B)∧C]→ [A∧ (B∧C)] A2, A3
T22. [A∧ (B∧C)]↔ [(A∧B)∧C] A3, T21
T23. (A∨B)↔ (B∨A) T20, Con↔, T17
T24. (A∨A)→ A A1, E∨
T25. A→ (A∧A) A1, CI∧
T26. A↔ B⇒ (C∧A)↔ (C∧B) (Fac′↔) Fac↔, T20
T27. A↔ B⇒ (C∨A)↔ (C∨B) (Sum′↔) Sum↔, T23
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T28. ∼(A∧B)↔ (∼A∨∼B) T17, T6, Fac↔, Fac′↔, Con↔
T29. (A∧B)↔∼(∼A∨∼B) T28, Con↔, T6
T30. [A∨ (B∨C)]↔ [(A∨B)∨C] T22, Con↔, T29, T6
T31. [A∨ (B∧C)]↔ [(A∨B)∧ (A∨C)] A4, Con↔, A5, T29, T6

Remark 17 (On b0 and Brady’s logic DJd). Routley and Meyer’s basic logic B is
axiomatized as follows (cf. [31, Chapter 4]): (a1) A→ A; (a2) (A∧B)→ A, (A∧B)→
B; (a3) A→ (A∨B), B→ (A∨B); (a4) [(A→ B)∧ (A→C)]→ [A→ (B∧C)]; (a5)
[(A→C)∧ (B→C)]→ [(A∨B)→C]; (a6) [A∧ (B∨C)]→ [(A∧B)∨ (A∧C)]; (a7)
A→∼∼A; (a8) ∼∼A→ A. Rules of inference: Adj, MP, Pref, Suf (T15) and Con
(T12). Then the logic DW is a useful weak relevant logic extending B, which is
axiomatized when deleting a7 and Con, while adding the axiom (a7′) (A→∼B)→
(B→∼A). Finally, Brady’s important logic DJ is formulated by adding to DW the
axiom (a9) [(A→ B)∧ (B→ C)]→ (A→ C) (cf. [9], [31, Chapter 4]). In addition,
the logics Bd and DWd and DJd (including — but not included in — B, DW and DJ,
respectively) are the result of adding the metarule MR to B, DW and DJ, respectively.
Well then, the logic b0 can intuitively be viewed as the result of restricting in DJd, a2,
a3, a4, a5 and a9 to their respective rule form.

Definition 18 (The logics b1 and b2). The logics b1 and b2 are axiomatized when
adding the following axioms and rules to b0.
b1:

A8. (A∨∼B)∨ (A→ B)
A9. [(A∧∼A)∧ (B∧∼B)]→ (A→ B)
R8. ∼A⇒ (A∨B)∨ (A→ B)
R9. A→ B,A∧∼A⇒∼B

R10. A→ B,B∧∼B⇒∼A
b2: R9 of b1 plus:
A10. [(A∨∼A)∨ (B∨∼B)]∨ (A→ B)
R11. A∧B⇒ (∼A∨∼B)∨ (A→ B)
R12. ∼A∧B⇒ (A∨∼B)∨ (A→ B)
R13. (A∧∼A)∧ (B∧∼B)⇒ (A→ B)
R14. A→ B,∼A⇒ B∨∼B

Proposition 19 (Some rules provable in b1 and b2). By using T6 and T10 the following
alternative versions of the characteristic rules of b1 and b2 are provable:
R8′. B⇒ (∼A∨∼B)∨ (A→ B)
R9′. A→ B,B∧∼B⇒ A

R10′. A→ B,A∧∼A⇒ B
R11′. ∼A∧∼B⇒ (A∨B)∨ (A→ B)
R14′. A→ B,B⇒ A∨∼A
All the above rules except R14′ are provable in b1, while R9′, R11′ and R14′ are
rules of b2.

5. THE 4-VALUED LOGICS DETERMINED BY M1–M24

In this section, the Li-logics, the logics determined by the Mi-matrices (1≤ i≤ 24)
are defined and some of their proof-theoretical properties are proved. As pointed out
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in the preceding section, each Li-logic is a 4-valued extension of the basic logic b0.
Especially, L1–L8 are extensions of b1, and L9–L24 are extensions of b2.

The Li-logics are axiomatized with some subset of the following set of axioms and
rules. Most of the items are accompanied by an alternative version. Both versions are
equivalent by T6 and T10.

A11. (∼A∨B)∨∼(A→ B)
A12. (A∨∼A)∨∼(A→ B)/(B∨∼B)∨∼(A→ B)
A13. [(A∨∼A)∨∼B]∨∼(A→ B)/[(B∨∼B)∨A]∨∼(A→ B)
A14. [(A∨∼A)∨ (B∨∼B)]∨∼(A→ B)
R15. A∧∼B⇒∼(A→ B)
R16. A∧∼A⇒∼(A→ B)/B∧∼B⇒∼(A→ B)
R17. A∧∼B⇒ (∼A∨B)∨∼(A→ B)
R18. A∧∼A⇒ B∨∼(A→ B)/B∧∼B⇒∼A∨∼(A→ B)
R19. A∧∼A⇒ (B∨∼B)∨∼(A→ B)/B∧∼B⇒ (A∨∼A)∨∼(A→ B)
R20. (A∧∼A)∧B⇒∼(A→ B)/(B∧∼B)∧∼A⇒∼(A→ B)
R21. (A∧∼A)∧ (B∧∼B)⇒∼(A→ B)
R22. A⇒ B∨∼(A→ B)/∼B⇒∼A∨∼(A→ B)
R23. A⇒ (∼A∨B)∨∼(A→ B)/∼B⇒ (∼A∨B)∨∼(A→ B)
R24. ∼A⇒ (B∨∼B)∨∼(A→ B)/B⇒ (A∨∼A)∨∼(A→ B)
R25. A⇒ (B∨∼B)∨∼(A→ B)/∼B⇒ (A∨∼A)∨∼(A→ B)
R26. ∼A⇒ [(B∨∼B)∨A]∨∼(A→ B)/B⇒ [(A∨∼A)∨∼B]∨∼(A→ B)
R27. ∼(A→ B)⇒∼A∨∼B/∼(A→ B)⇒ A∨B
R28. ∼(A→ B)⇒ A∨∼B
R29. ∼(A→ B)⇒ A∧∼B
R30. ∼(A→ B)⇒ A∨∼A/∼(A→ B)⇒ B∨∼B
R31. ∼(A→ B)⇒ (A∨∼A)∨ (B∨∼B)
R32. ∼(A→ B)∧∼A⇒ A/∼(A→ B)∧B⇒∼B
R33. ∼(A→ B)∧A⇒∼B/∼(A→ B)∧∼B⇒ A
R34. ∼(A→ B)∧∼A⇒ A∧∼B/∼(A→ B)∧B⇒ A∧∼B
R35. ∼(A→ B)∧∼A⇒ (B∧∼B)∧A/∼(A→ B)∧B⇒ (A∧∼A)∧∼B
R36. ∼(A→ B)∧A⇒∼A∨∼B/∼(A→ B)∧∼B⇒ A∨B
R37. ∼(A→ B)∧∼A⇒ A∨B/∼(A→ B)∧B⇒∼A∨∼B
R38. ∼(A→ B)∧∼A⇒ A∨∼B/∼(A→ B)∧B⇒ A∨∼B
R39. ∼(A→ B)∧ (A∨∼A)⇒ B∨∼B/∼(A→ B)∧ (B∨∼B)⇒ A∨∼A
R40. ∼(A→ B)∧ (∼A∧∼B)⇒ A∨B/∼(A→ B)∧ (A∧B)⇒∼A∨∼B
R41. ∼(A→ B)∧ (∼A∧B)⇒ A∨∼B
R42. ∼(A→ B)∧ (A∧∼A)⇒ B∨∼B/∼(A→ B)∧ (B∧∼B)⇒ A∨∼A
R43. ∼(A→ B)∧ (∼A∧∼B)⇒ A∧B/∼(A→ B)∧ (A∧B)⇒∼A∧∼B
R44. ∼(A→ B)∧ (∼A∧B)⇒ A∧∼B
R45. ∼(A→ B)∧ (A∧∼A)⇒ B∧∼B/∼(A→ B)∧ (B∧∼B)⇒ A∧∼A

In particular, we have:

Definition 20 (Extensions of b1). The following logics are axiomatized by adding to
b1 the following axioms or rules:

L1: R16, R22, R27, R28.
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L2: R15, R16, R27, R28.
L3: R15, R22, R28, R32.
L4: R15, R18, R27, R28, R32.
L5: R21, R23, R28, R35.
L6: R17, R21, R29, R35.
L7: R15, R23, R28, R34.
L8: R15, R29.

Definition 21 (Extensions of b2). The following logics are axiomatized by adding to
b2 the following axioms or rules:

L9: A12, R15, R16, R40, R41.
L10: R16, R22, R24, R26, R31, R40, R41.
L11: A11, A13, R15, R20, R40, R41, R42.
L12: R15, R20, R23, R26, R31, R40, R41, R42.
L13: A11, A12, R21, R43, R44.
L14: R21, R23, R25, R26, R31, R43, R44.
L15: A11, A13, R21, R43, R44, R45.
L16: R21, R23, R26, R31, R43, R44, R45.
L17: A14, R15, R16, R36, R37, R38.
L18: R15, R16, R27, R28.
L19: A14, R15, R20, R36, R37, R38, R39.
L20: R15, R20, R27, R28, R30.
L21: A14, R17, R19, R21, R32, R36, R43.
L22: R17, R19, R21, R27, R28, R32, R43.
L23: A14, R17, R21, R33, R35.
L24: R17, R21, R29. R35.

Next, a couple of proof-theoretical properties of the Li-logics are proved. Besides
being significant in themselves, these properties, are instrumental in the completeness
proofs to be developed in the following section.

Proposition 22 (Replacement). For any wffs A,B, A↔ B⇒ C[A]↔ C[A/B] where
C[A] is a wff in which A appears and C[A/B] is the result of replacing A by B in C[A]
in one or more places where A occurs.

Proof. By induction on the structure of C[A] using Fac↔ (R6), Trans↔ (T4), Con↔
(T13), Suf↔ (T16), Sum↔ (T19), Fac′↔ (T26) and Sum′↔ (T27). /

Proposition 23 (Arrangement in conjunctive and disjunctive wffs). Let A be a wff of
the form B1 ∧ ·· · ∧Bn (resp., B1 ∨ ·· · ∨Bn) where the n wffs are arranged in a given
way. And let A′ be the result of associating B1, . . . ,Bn in any way whichever. Then for
any i (1≤ i≤ 24) `Li A↔ A′.

Proof. By Replacement and the commutative and associative properties of ∧ and ∨
(T20, T22, T23 and T30). /

Proposition 24 (Summation w.r.t. `L — Sum `L). Let us refer by ρ to the set of
inference rules formed by the metarule MR and the rules R1 through R45. And let L
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be an extension of b0 whose primitive rules of inference are in the set ρ . Then, for any
set of wffs A, C, B1, . . . ,Bn, if B1, . . . ,Bn `L A, then C∨ (B1∧·· ·∧Bn) `L C∨A.

Proof. By induction on the structure of the proof B1, . . . ,Bn `L A. If A is some Bi, the
proof follows by E∧ and Propositions 22 and 23; and if A is an axiom, then the proof
is immediate by I∨. Next, if A has been obtained by application of one of the rules
of inference or by a disjunctive rule as a result of an application of the metarule MR,
then the case is proved by the rule in question and MR. Let us consider an example.
Suppose A has been derived by CI∧ (R5). Then A is of the form D→ (E ∧F). By
hypothesis, C∨ (B1∧·· ·∧Bn) `L C∨ (D→ E), C∨ (D→ F), whence C∨ (B1∧·· ·∧
Bn) `L C∨ [D→ (E ∧F)] follows by CI∧ and MR. /

In §2, we have seen that the Mi-matrices determine “natural conditionals” in a
sense akin to that defined in [33]. We conclude the section by noting that the Li-logics
comply with the requirements imposed on “implicative logics” in the classical Polish
logical tradition, except, of course, VEQ (cf. Rasiowa [25, pp. 179–180] or Wójcicki
[34, p. 228]). Consider the following definition.

Definition 25 (Implicative logics). A logic L is implicative if the following properties
(C1)–(C5) are predicable of L:

C1. A→ A Reflexivity
C2. A→ B,A⇒ B Modus Ponens
C3. A⇒ B→ A VEQ
C4. A→ B,B→C⇒ A→C Transitivity
C5. A↔ B⇒C[A]↔C[A/B] Replacement

(VEQ abbreviates “verum e quodlibet” — “Any true proposition follows from no mat-
ter which proposition”.)

Now, each Li-logic has properties C1, C2, C4 and C5 (cf. Definition 14, Proposi-
tion 16 and Proposition 22; none of them, however, satisfies VEQ).

6. EXTENSION AND PRIMENESS LEMMAS. CANONICAL TRANSLATION OF THE
VALUATION CLAUSES. COMPLETENESS

In this section, we proceed to prove the facts (1) and (2), instrumental in the com-
pleteness proofs, as discussed at the end of section 3. Then we prove the completeness
for the Li-logics.

(1) An Li-theory without a given wff can be extended to a prime theory without the
same wff.

(2) Let T be a prime L-theory. Then the canonical translations of the valuation
clauses are provable in T .

Definition 26 (Preliminary concepts). Let us refer by Eb to the family of extensions of
the basic logics bo, b1 and b2 (cf. Definitions 14 and 18) and the Li-logics (1≤ i≤ 24)
(cf. Definitions 20 and 21). (In general, by EL we mean an extension of the logic L —
cf. Definition 1) And let L be an Eb-logic. An L-theory is a set of wffs containing all
L-theorems and closed under all rules of inference of L and under the metarule MR.
For example, an L18-theory is a set of wffs containing all L18-theorems and closed
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under the metarule MR, all the rules of b2 and R15, R16, R27 and R28. Then, an
L-theory t is prime if for any wffs A, B, if A∨B ∈ t, then A ∈ t or B ∈ t.

Definition 27 (Disjunctive derivability). Let L be an Eb-logic. For any sets of wffs
Γ ,Θ , Θ is disjunctively derivable from Γ in L (in symbols, Γ `d

L Θ ) iff A1∧·· ·∧An `L
B1∨·· ·∨Bm for some wffs A1, . . . ,An ∈ Γ and B1, . . . ,Bm ∈Θ .

Definition 28 (Maximal sets). Let L be an Eb-logic. Γ is an L-maximal set of wffs if
Γ 0d

L Γ . (Γ is the complement of Γ .)

Lemma 29 (Extension to maximal sets). Let us refer by ρ to the set of inference rules
formed by the metarule MR and rules R1 through R45, as in Proposition 24 and let L
be an Eb-logic whose rules of inference are in the set ρ . Furthermore, let Γ ,Θ be sets
of wffs such that Γ 0d

L Θ . Then there are sets of wffs Γ ′,Θ ′ such that Γ ⊆ Γ ′, Θ ⊆Θ ′,
Θ ′ = Γ ′ and Γ ′ 0d

L Θ ′ (that is, Γ ′ is an L-maximal set such that Γ ′ 0d
L Θ ′).

Proof. Thanks to Proposition 24 in section 5, the proof can proceed similarly as in
Lemma 3.11 in [20]. /

Lemma 30 (Primeness). Let L be an Eb-logic whose rules of inference are in the set
ρ (cf. Lemma 29). If Γ is an L-maximal set, then it is a prime L-theory.

Proof. Similar to that of Lemma 3.12 in [20]. /

The fundamental fact (1) is proved. Next, we advance to the proof of the funda-
mental fact (2).

Proposition 31 (Conj., disj. and neg. in prime Eb-theories). Le L be an Eb-logic and t
be a prime L-theory. Then (1) A∧B∈ t iff A∈ t and B∈ t; (2)∼(A∧B)∈ t iff ∼A∈ t
or ∼B ∈ t; (3) A∨B ∈ t iff A ∈ t or B ∈ t; (4) ∼(A∨B) ∈ t iff ∼A ∈ t and ∼B ∈ t;
(5) A ∈ t iff ∼∼A ∈ t.

Proof. (1): Adj and E∧; (2): T28, I∨ and primeness; (3): I∨ and primeness; (4): A5,
Adj, E∧; (5): T6. /

Concerning the conditional, we have Propositions 32 through 35.

Proposition 32 (The conditional in prime Eb1-theories). Let L be an Eb1-logic and t
be a prime L-theory. Then A→ B ∈ t iff [A /∈ t &∼B /∈ t] or [A /∈ t &∼A ∈ t & B /∈ t]
or [∼A /∈ t & B ∈ t &∼B /∈ t] or [A ∈ t &∼A ∈ t & B ∈ t &∼B ∈ t].

Proof. (⇒) Suppose (1) A→ B ∈ t and for reductio (2) [A ∈ t or ∼B ∈ t]& [A ∈
t or ∼A /∈ t or B ∈ t] & [∼A ∈ t or B /∈ t or ∼B ∈ t] & [A /∈ t or ∼A /∈ t or B /∈
t or ∼B /∈ t]. There are 72 possibilities to consider but each one of them is impossible
by using one of the following rules: MP, MT(T14), R9, R10 and R9′ (cf. Proposi-
tion 19). Consider, for example, the case where ∼B ∈ t,B ∈ t,∼A /∈ t. This situation
is impossible by R10.

(⇐) A→ B ∈ t follows by using A8, A9, R8 and R8′. /

Proposition 33 (The conditional in prime Eb2-theories). Let L be an Eb2-logic and
t be a prime L-theory. Then A→ B ∈ t iff [A /∈ t &∼A ∈ t & B /∈ t &∼B ∈ t] or
[A /∈ t &∼A /∈ t & B /∈ t &∼B /∈ t] or [A ∈ t &∼A ∈ t & B ∈ t &∼B ∈ t] or [A ∈
t &∼A /∈ t & B ∈ t &∼B /∈ t] or [A /∈ t &∼A ∈ t & B ∈ t &∼B /∈ t].
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Proof. Similar to that of Proposition 32. (⇒) We use MP, MT(T14), R9, R9′, R14 and
R14′. (⇐) It follows by R11′, A10, R13, R11 and R12. /

Proposition 34 (Negated conditionals in Eb1-theories). Let L be an ELi-logic where
Li will refer in each case to one of the extensions of b1 displayed in Definition 20, and
let t be a prime L-theory. We have that ∼(A→ B) ∈ t iff:

L1: [A ∈ t & B /∈ t] or [∼A /∈ t &∼B ∈ t] or [A ∈ t &∼A ∈ t] or [B ∈ t &∼B ∈ t].
L2: [A ∈ t &∼B ∈ t] or [B ∈ t &∼B ∈ t] or [A ∈ t &∼A ∈ t].
L3: [∼A /∈ t &∼B ∈ t] or [A ∈ t & B /∈ t] or [A ∈ t &∼B ∈ t].
L4: [A ∈ t &∼B ∈ t] or [∼A /∈ t & B ∈ t &∼B ∈ t] or [A ∈ t &∼A ∈ t & B /∈ t].
L5: [∼A /∈ t &B /∈ t &∼B ∈ t] or [A ∈ t &∼A /∈ t &B /∈ t] or [A ∈ t &∼A ∈ t &B ∈

t &∼B ∈ t].
L6: [A ∈ t &∼A ∈ t & B ∈ t &∼B ∈ t] or [A ∈ t &∼A /∈ t & B /∈ t &∼B ∈ t].
L7: [A ∈ t &∼B ∈ t] or [∼A /∈ t & B /∈ t &∼B ∈ t] or [A ∈ t &∼A /∈ t & B /∈ t].
L8: A ∈ t &∼B ∈ t.

Proof. Similar to that of Propositions 32 and 33 by using now the characteristic ax-
ioms of each Li-logic (1 ≤ i ≤ 8), as displayed in Definition 20 (cf. the proof of
Proposition 35). /

Proposition 35 (Negated conditional is Eb2-theories). Let L be an ELi-logic where Li
will refer in each case to one of the extensions of b2 displayed if Definition 21, and let
t be a prime L-theory. We have that ∼(A→ B) ∈ t iff:

L9: [A ∈ t &∼B ∈ t] or [A /∈ t &∼A /∈ t] or [A ∈ t &∼A ∈ t] or [B /∈ t &∼B /∈ t] or
[B ∈ t &∼B ∈ t].

L10: [∼A /∈ t &∼B ∈ t] or [A ∈ t & B /∈ t] or [A ∈ t &∼A ∈ t] or [B ∈ t &∼B ∈ t] or
[∼A ∈ t & B /∈ t &∼B /∈ t] or [A /∈ t &∼A /∈ t & B ∈ t &∼B /∈ t].

L11: [A∈ t &∼B∈ t] or [∼A /∈ t &B /∈ t] or [A /∈ t &B /∈ t &∼B /∈ t] or [∼A∈ t &B∈
t &∼B ∈ t] or [A /∈ t &∼A /∈ t &∼B /∈ t] or [A ∈ t &∼A ∈ t & B ∈ t &∼B /∈ t].

L12: [A ∈ t &∼B ∈ t] or [∼A ∈ t & B ∈ t &∼B ∈ t] or [∼A /∈ t & B /∈ t &∼B ∈ t] or
[A ∈ t &∼A ∈ t & B ∈ t] or [A ∈ t &∼A /∈ t & B /∈ t] or [A /∈ t &∼A /∈ t & B ∈
t &∼B /∈ t] or [A /∈ t &∼A ∈ t & B /∈ t &∼B /∈ t].

L13: [A /∈ t &∼A /∈ t] or [B /∈ t &∼B /∈ t] or [∼A /∈ t & B /∈ t] or [A ∈ t &∼A ∈
t & B ∈ t &∼B ∈ t].

L14: [A /∈ t &∼A /∈ t &B∈ t] or [∼A /∈ t &B /∈ t &∼B∈ t] or [A∈ t &∼A /∈ t &B /∈ t]
or [A∈ t &B /∈ t &∼B /∈ t] or [A /∈ t &∼A∈ t &B /∈ t &∼B /∈ t] or [A∈ t &∼A∈
t & B ∈ t &∼B ∈ t].

L15: [∼A /∈ t & B /∈ t] or [A /∈ t &∼A /∈ t &∼B /∈ t] or [A /∈ t & B /∈ t &∼B /∈ t] or
[A ∈ t &∼A ∈ t & B ∈ t &∼B ∈ t].

L16: [∼A /∈ t &B /∈ t &∼B ∈ t] or [A ∈ t &∼A /∈ t &B /∈ t] or [A /∈ t &∼A /∈ t & B ∈
t &∼B /∈ t] or [A ∈ t &∼A ∈ t & B ∈ t &∼B ∈ t] or [A /∈ t &∼A ∈ t & B /∈
t &∼B /∈ t].

L17: [A ∈ t &∼B ∈ t] or [A ∈ t &∼A ∈ t] or [B ∈ t &∼B ∈ t] or [A /∈ t &∼A /∈
t & B /∈ t &∼B /∈ t].

L18: [A ∈ t &∼B ∈ t] or [A ∈ t &∼A ∈ t] or [B ∈ t &∼B ∈ t].
L19: [A ∈ t &∼B ∈ t] or [∼A ∈ t & B ∈ t &∼B ∈ t] or [A ∈ t &∼A ∈ t & B ∈ t] or

[A /∈ t &∼A /∈ t & B /∈ t &∼B /∈ t].
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L20: [A ∈ t &∼B ∈ t] or [∼A ∈ t & B ∈ t &∼B ∈ t] or [A ∈ t &∼A ∈ t & B ∈ t].
L21: [A /∈ t &∼A /∈ t & B /∈ t &∼B /∈ t] or [A /∈ t &∼A /∈ t & B ∈ t &∼B ∈ t] or

[A ∈ t &∼A ∈ t & B /∈ t &∼B /∈ t] or [A ∈ t &∼A ∈ t & B ∈ t &∼B ∈ t] or
[A ∈ t &∼A /∈ t & B /∈ t &∼B ∈ t].

L22: [A /∈ t &∼A /∈ t & B ∈ t &∼B ∈ t] or [A ∈ t &∼A ∈ t & B /∈ t &∼B /∈ t] or
[A ∈ t &∼A ∈ t & B ∈ t &∼B ∈ t] or [A ∈ t &∼A /∈ t & B /∈ t &∼B ∈ t].

L23: [A /∈ t &∼A /∈ t & B /∈ t &∼B /∈ t] or [A ∈ t &∼A ∈ t & B ∈ t &∼B ∈ t] or
[A ∈ t &∼A /∈ t & B /∈ t &∼B ∈ t].

L24: [A ∈ t &∼A ∈ t & B ∈ t &∼B ∈ t] or [A ∈ t &∼A /∈ t & B /∈ t &∼B ∈ t].

Proof. Similar to that of the preceding Propositions 32–34. Let us consider L12 as a
way of an example. (⇒) Suppose ∼(A→ B) ∈ t and, for reductio, [A /∈ t or ∼B /∈
t]& [∼A /∈ t or B /∈ t or ∼B /∈ t]& [∼A ∈ t or B ∈ t or ∼B /∈ t]& [A /∈ t or ∼A /∈
t or B /∈ t]& [A /∈ t or ∼A ∈ t or B ∈ t]& [A ∈ t or ∼A ∈ t or B /∈ t or ∼B ∈ t]& [A ∈
t or ∼A /∈ t or B ∈ t or ∼B ∈ t]. There are 2,592 possibilities to consider but each one
of them is either a contradictory statement or it contains one of the following items
(1)–(6): (1) A ∈ t,B ∈ t,∼A /∈ t,∼B /∈ t; (2) ∼A ∈ t,∼B ∈ t,A /∈ t,B /∈ t; (3) ∼A ∈
t,B∈ t,A /∈ t,∼B /∈ t; (4) B∈ t,∼B∈ t,A /∈ t,∼A /∈ t; (5) A∈ t,∼A∈ t,B /∈ t,∼B /∈ t;
(6) A /∈ t,∼A /∈ t,B /∈ t,∼B /∈ t. But (1)–(6) are impossible by using R40, R40, R41,
R42, R42 and R31, respectively. (⇐) ∼(A→ B) ∈ t follows by using R15, R20, R23,
R20, R26, R23 and R26, respectively. /

Remark 36 (On the proofs of Propositions 32–35). Notice that, as shown above,
the characteristic axioms of b1 (resp., b2) suffice to prove Proposition 32 (resp., 33)
and consequently, the canonical validity of clause (5a). Regarding the clauses for
assigning F to conditionals, in Propositions 34 and 35, we have seen that these are
proved to hold canonically by using the characteristic axioms or rules added to the
basic logics b1 and b2 in order to define the particular Li-logics (cf. Definitions 20
and 21).

Remark 37 (On consistency of Li-theories). Notice that Propositions 31–35 have
been proved without the Li-theories in question needing to be consistent in any sense
of the term.

On the basis of the discussion developed so far in this section, we consider proved
the fundamental facts (1) and (2); then on the basis of the argumentation developed
at the end of section 3 together with facts (1) and (2), we think that we are entitled to
state the following theorem.

Theorem 38 (Completeness of the Li-logics). For any i (1≤ i≤ 24), a set of wffs Γ
and a wff A, (1) if Γ �Mi A then Γ `Li A; (2) if Γ �Li A then Γ `Li A.

7. VARIABLE-SHARING PROPERTY. ACKERMANN PROPERTY

In this section, it is shown that each Li-logic has the variable-sharing property
(VSP). Also, that 5 of the 24 Li-logics have the Ackermann property. These properties
read as follows.
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Definition 39 (Variable-sharing property — VSP). A logic L has the variable-sharing
property (VSP) if in all L-theorems of the form A → B, A and B share at least a
propositional variable.

Definition 40 (Ackermann property — AP). A logic L has the Ackermann property
(AP) if in all L-theorems of the form A→ (B→C), A contains at least an implication
connective (→).

Intuitively, the VSP amounts to rule out implications in which antecedent and con-
sequent do not share some (minimal) semantical content; the AP, on its part, would
intuitively exclude implications in which pure non-necessitive wffs entail necessitive
ones (cf. [1]; A is necessitive if A is equivalent to a wff of the form �B). According
to Anderson and Belnap (cf. [1]), the VSP is a necessary property of any relevance
logic, but, in addition to the VSP, a logic L has to comply with the AP in order to
be considered an entailment logic. Thus, for example, T (Ticket Entailment) and E
(Entailment) are entailment logics as both have the VSP and the AP, but R (Relevance
Logic) and Lewis’ S3 are not entailment logics, given that the former lacks the AP and
the latter the VSP, although the AP is predicable of S3 and the VSP is a property of R.

Next, it is shown that the VSP is a property of each Li-logic and that five of them
in addition have the AP.

Proposition 41 (Each Li-logic has the VSP). Let A→B be an Li-theorem (1≤ i≤ 24).
Then A and B share at least a propositional variable.

Proof. Suppose that A and B do not share propositional variables in A→ B. It is
proved that A→ B is not Mi-valid, Mi being the matrix determining Li. Let I be an
Mi-interpretation assigning 2 (resp., 0) to each propositional variable in A (resp., B).
Then I(A) = 2 and I(B)∈ {0,3} since {2} and {0,3} are closed under→,∧,∨ and∼.
Consequently, I(A→ B) ∈ {0,1}, i.e., A→ B is not Mi-valid. Now, it follows from
the soundness theorem (Theorem 13) that A→ B is not an Li-theorem. /

Proposition 42 (Li-logics with the AP). The logics L9, L10, L12, L14 and L16
have the AP.

Proof. As in the case of Proposition 41, we lean upon the soundness theorem. Sup-
pose then that no implication connective (→) appears in A. It is proved that A→ (B→
C) is not Mi-valid (i ∈ {9,10,12,14,16}).

(1) M9, M10: Let I be an Mi-interpretation (i ∈ {9,10}) assigning 1 to each propo-
sitional variable in A, B and C. Then it is clear that I(A) = 1 and I(B→C) ∈ {0,2,3}.
Thus, I(A→ (B→C)) = 0, that is A→ (B→C) is neither M9-valid nor M10-valid.

(2) M12, M14, M16: As in case (1), let I be an Mi-interpretation (i ∈ {12,14,16})
assigning 1 to each variable in A, B and C. Then, clearly I(A) = 1 and I(B→ C) ∈
{0,3} since in order to have I(B→C) = 1 we need either I(B) = 2 or I(C) = 2, but
{2} is closed under→,∧,∨ and ∼. So I(A→ (B→C)) ∈ {0,1}, i.e., A→ (B→C)
is not Mi-valid (i ∈ {12,14,16}).

Consequently, if→ does not appear in A, then A→ (B→C) is not an Li-theorem
(i ∈ {9,10,12,14,16}). /

However, the rest of the Li-logics do not have the AP.
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Proposition 43 (Li-logics not having the AP). Let L be an Li-logic other than L9,
L10, L12, L14 and L16. Then L does not have the AP.

Proof. Consider the ensuing one-variable wffs: (a) p→ (p→ p); (b) p→ [p→ (p→
p)]; (c) p→ [p→ [p→ (p→ p)]]; (d) p→ [(p→ p)→ [(p→ p)→ p]] (we note that
(a) is an instance of the mingle axiom, A→ (A→ A)). We have : (a) is valid in M1
through M8; (b) is valid in M11, M15, M18–M20, M22–M24; (c) is valid in M17 and
M21; and finally, (d) is M13-valid. Therefore, we use Theorem 38 and conclude that
all Li-logics except L9, L10, L12, L14 and L16 lack the AP. /

The section is ended with some remarks on the Converse Ackermann property
(CAP). The CAP is defined as follows.

Definition 44 (Converse Ackermann property — CAP). A logic L has the Converse
Ackermann property (CAP) if in all L-theorems of the form (A→ B)→C, C contains
at least an implication connective (→).

The CAP is introduced in [1, §8.12] (cf. Robles Vázquez [30] and references
therein for detailed account on the property and the systems having it). We note that
L9, L10, L12 and L14 and L16 have the CAP in addition to the VSP and AP (the fact
can be proved by using the same Mi-interpretations defined in Proposition 42). The
rest of the Li-logics do not have the CAP. The proof is left to the reader. (The wff
[[(p→ p)→ p]→ p]→ (p∨∼ p) can be used in order to prove that L17 and L21 lack
the CAP; the wff [(p→ p)→ p]→ p serves the same purpose in the case of the rest
of the Li-logics, save, of course, the ones with the CAP remarked above.)

8. CONCLUDING REMARKS

The aim of this paper was to define useful implicative expansions of FOUR with
the VSP. That is, important implicative expansions of FOUR free from paradoxes of
relevance. The present paper generalizes the results in Robles [27] where the matrix
M8 and its corresponding logic L8 are investigated.

It is trivial to build up binary expansions of FOUR with the VSP. Consider the
ensuing general truth-table T∗ (ai (1≤ i≤ 12) ∈ {0,1,2,3}; bi (1≤ i≤ 3) ∈ {0,1}).

T∗

∗ 0 1 2 3
0 a1 a2 a3 a4
1 a5 a6 a7 a8
2 b1 b2 2 b3
3 a9 a10 a11 a12

Now, it is clear that some of the functions in T∗ could be considered adequate in-
terpretations of →. Suppose now that A and B do not share propositional variables
in A ∗B. Let M be any expansion of FOUR built by adding any of the ∗-functions
described in T∗ and let I be an M-interpretation such that I(p) = 2 (resp., I(p) = c)
for each propositional variable p in A (resp., in B) (c is a truth-value other than 2).
Then I(A ∗B) ∈ {0,1}. Nevertheless, the 24 implicative functions contained in T∗
we have selected are important, as we have tried to prove in the present paper, due
to the properties predicable of them. These properties include: “natural conditionals”
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(in some sense of the term — cf. §2); C-extensionality; self-extensionality (i.e., “re-
placement”); satisfiability of the self-identity axiom and the rules modus ponens and
transitivity; considerable expressive power; considerable syntactical strength, as they
extend a strong restriction of Brady’s weak relevance logic DJd and finally, their being
interpretable in the clear and important two-valued Belnap–Dunn semantics.

As regards future work, there is a number of ways in which the investigation carried
out in this paper could be pursued. We remark a couple of them.

(1) Let TI′, TII′, TIII′ and TIV′ be the result of deleting t1–t24 in TI, TII, TIII and
TIV, respectively (cf. §2). Surely it will be worthwhile to investigate if it is
possible to build up interesting implicative expansions of FOUR based upon
the tables contained in TI′, TII′, TIII′ and TIV′. The expansions in TI′, TII′,
TIII′ and TIV′ can be treated similarly as those in MI4VSP have been treated in
the present paper. For instance, the basic logic b′′0 , for expansions in TIV′, is
the result of modifying the basic logic b0 as follows: delete Pref (R7) and add
Pref↔ (T7) and Trans (T3). Then the basic logic b′0 adequate for expansions in
TII′ and TIII′, is formulated by adding to b′′0 T5, Sum↔ (T19), Suf↔ (T16) and
Con (T12) while deleting A6. Consider for example the following truth-table
t25 in TIV′.

t25

→ 0 1 2 3
0 3 3 0 3
1 1 3 1 3
2 0 1 2 0
3 0 1 0 3

The particular expansion of FOUR L25 built upon the f→-function described
by t25 can be axiomatized by adding A8, A9, R8, R9, R10, R15, R20, R27,
R28 and R30 to b′′0 . (We note that all theorems and rules of b0, except Suf and
Pref — cf. Proposition 16 — are provable in L25.)

(2) It will be interesting to investigate the functional relations the 24 Li-logics
maintain to each other. Are they actually the same logic but for a different
choice of the set of primitive connectives? In this sense, we note that, for
instance, the M3-conditional function is definable from M4 by using (

•¬B→•¬A)∧ ( ◦¬B→ ◦¬A) where→ is the M4-conditional function and
•¬,
◦¬, the nega-

tion functions defined in §2. But on the other hand, is it maybe one of the
Li-logics, say L, preferable to the rest of them on the basis of some property or
other none of them possess but L?

A THE 104 TABLES NOT SATISFYING AT LEAST ONE OF PREF AND SUF

The f→-functions described in the general tables displayed in (α)–(η) below fail to
satisfy the rule Suf; those in the table in (θ ) do not satisfy the rule Pref (cf. point (4)
in §2. The symbols b,c,d,e and f are read as in table TIV in §2).
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(α) f→-functions such that f→(0,1) = 2 (equivalently, f→(1,2) = 2)
→ 0 1 2 3
0 3 2 b 3
1 c f d 2
2 e d 2 b
3 0 c e 3

(β ) f→-functions such that f→(0,1) = 3 and f→(1,1) = 2
→ 0 1 2 3
0 3 3 b 3
1 c 2 d 3
2 e d 2 b
3 0 c e 3

(γ) f→-functions such that f→(1,2) = 1, f→(0,2) = 0 and f→(0,1) = 3
→ 0 1 2 3
0 3 3 0 3
1 c 3 1 3
2 e 1 2 0
3 0 c e 3

(δ ) f→-functions such that f→(3,1) = 1 and f→(0,1) = 0
→ 0 1 2 3
0 3 0 b 3
1 1 f d 0
2 e d 2 b
3 0 1 e 3

(ε) f→-functions such that f→(3,1) = 0 and f→(0,1) = 1
→ 0 1 2 3
0 3 1 b 3
1 0 f d 1
2 e d 2 b
3 0 0 e 3

(ζ ) f→-functions such that f→(3,2) = 0, f→(0,2) = 1 and f→(0,1) = 3
→ 0 1 2 3
0 3 0 1 3
1 0 f d 0
2 0 d 2 1
3 0 0 0 3

→ 0 1 2 3
0 3 1 1 3
1 1 f d 1
2 0 d 2 1
3 0 1 0 3

(η) f→-functions such that f→(3,2) = 1 and f→(0,2) = 0
→ 0 1 2 3
0 3 0 0 3
1 0 f d 0
2 1 d 2 0
3 0 0 1 3

→ 0 1 2 3
0 3 1 0 3
1 1 f d 1
2 1 d 2 0
3 0 1 1 3

→ 0 1 2 3
0 3 3 0 3
1 c 3 0 3
2 1 0 2 0
3 0 c 1 3
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(θ ) f→-functions such that f→(2,1) = 0 and f→(2,1) = 0 if f→(0,1) = 3
→ 0 1 2 3
0 3 3 1 3
1 c 3 0 3
2 1 0 2 1
3 0 c 0 3
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THE DIAMOND OF MINGLE LOGICS:
A FOUR-FOLD INFINITE WAY TO BE SAFE FROM PARADOX

Yaroslav Shramko

ABSTRACT. System R-Mingle (RM) was invented by J. Michael Dunn in the mid-
dle of the 1960s. This system got its name due to the characteristic logical principle
called “Mingle.” Although this principle allows for certain irrelevant inferences, it
can protect us from (the worst effects of) the paradoxes of relevance. Furthermore,
separating the first-degree entailment fragment of a mingle logic allows one to con-
centrate on the characteristic principle of that fragment, known as “Safety.” Based on
a purely Tarskian formulation of first-degree entailment systems, four types of Safety
can be distinguished and corresponding proof systems can be constructed, forming a
diamond-shaped lattice with infinitely many systems between its vertices. The corner
systems of the diamond can be supplied with uniform and rather natural semantics,
which reaffirms the rightful place of the mingle logics in the family of the first-degree
entailment systems.

Keywords. Binary consequence system, First-degree entailment, Generalized truth-
value functions, Paradoxes of relevance, R-Mingle, Variable-sharing property

1. INTRODUCTION

The first-degree entailment fragment of Dunn’s logic R-Mingle (RM) has occa-
sionally appeared in the literature under various names and characterizations. For one,
Makinson in [43, p. 38] presents it as a system of Kalman implication, reflecting the
fact that the algebraic counterpart of its characteristic axiom x∩−x≤ y∪−y was first
considered by Kalman [42] for defining a “normal” lattice with involution (i-lattice
for short, nowadays standardly called De Morgan lattice). Dunn in [32, p. 43] also
pays tribute to Kalman by calling Kalman consequence system essentially the same
system, but formulated with a turnstile instead of an arrow. Dunn also notes that it is
in fact the first-degree entailment fragment of the relevance logic RM. In Ermolaeva
and Muchnik [37] still the same system is presented as a “fragment of Łukasiewicz’s
logic,” and Dunn in [34, p. 15] observes as well that the system, which comprises “the
first-degree entailments of Dunn and McCall’s ‘R-Mingle’ [. . . ] is also the first-degree
entailment fragment of Łukasiewicz’s 3-valued logic.”

There is also a tradition of naming Kalman’s normal i-lattice Kleene algebra. Ap-
parently, this tradition was initiated by Brignole and Monteiro, see [22, p. 4, especially
Definition 2.4], and then continued by Cignoli [23], Balbes and Dwinger [9], Blyth
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and Varlet [21], and others. However, this word usage can be misleading in two ways.
First, as Dunn remarks [35, p. 444], it should not be confused with Kleene alge-
bras “which arise in the study of relation algebras and regular expressions” (see, e.g.,
Bimbó and Dunn [18] and also [19, Ch. 7]). Second, confusion may arise by extrap-
olating this terminology to a logical level, which happens in Font [38, p. 26], where
it was proposed to define “Kleene’s three-valued logic” through ϕ ∧∼ϕ ` ψ ∨∼ψ
as the characteristic consequence. This proposal is unfortunate indeed, taking into ac-
count the fact that for Kleene’s logic a more general principle ϕ ∧∼ϕ ` ψ is usually
considered to be characteristic.

Rivieccio in [54, p. 325] tries to reconcile the above mentioned algebraic tradition
with logical usage by introducing the name “Kleene’s logic of order” for “the logic
that corresponds to the lattice order of Kleene lattices” in the sense of Brignole and
Monteiro. (He also corrects a mistake in Font’s deductive formalization of this logic
based on his “Hilbert-style system.”) It is unclear how much this new term will help
to clear up the confusion. In Section 7, I will explain why it is better to associate the
system in question with a specific fragment of R-Mingle or Łukasiewicz’s logic rather
than with that of Kleene’s logic.

Anyway, one can only agree with the assessment of Albuquerque, Přenosil and
Rivieccio [1, p. 1025] that this logic “has received considerably less attention in the
literature” than some of its cousins, such as Kleene’s strong three-valued logic and
Priest’s Logic of Paradox. This lack of attention appears to be unjustified given certain
important features of the mingle principle, particularly, its ability to neutralize so-
called paradoxes of relevance.

In this paper, I will explain, in which sense this principle can secure us against
paradoxes even if they appear in our logic, which thus turns out to be “semi-relevant”
(Section 2). Moreover, since the separation of the first-degree entailment fragment
of a mingle logic makes it possible to leave out further irrelevant properties (such as
the “Chain Property”), I will focus on the characteristic principle of that fragment,
known as “Safety” (Section 3). Based on a “purely Tarskian” formulation of the first-
degree entailment systems (Section 4), I will differentiate between four types of Safety
and construct the corresponding proof systems (Section 5). It turns out that these
systems form a diamond-shaped lattice with an infinite number of systems connecting
its vertices. Furthermore, the diamond’s corner systems can be supplied with uniform
and rather natural semantics (Section 6), reaffirming the mingle logics’ rightful place
in the family of first-degree entailment systems.

An important caveat. When in this paper I speak of “first-degree entailment” I al-
ways mean a relation between single formulas, as it is originally conceived by Belnap,
see [11]. Occasionally, I also involve the entailment relation between sets of formulas
and formulas, but only for the sake of comparison.

2. PRELIMINARIES. R-MINGLE AND VARIABLE SHARING PROPERTY

J. Michael Dunn’s contributions to the evolution of modern logic are significant
and varied. His achievements in investigating and eliminating so-called paradoxes
of relevance, in particular, are widely acknowledged. These usually refer to certain
properties of material (and strict) implication, which may be true even if its antecedent
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and consequent have nothing to do with each other (are mutually irrelevant). Central
among these paradoxes are:

(Positive Paradox) ϕ → (ψ → ϕ),

which says that a true proposition is implied by any proposition whatsoever, and

(Negative Paradox) ∼ϕ → (ϕ → ψ),

according to which a false proposition is implied by any proposition whatever it
might be.1

Objections to these paradoxes have given rise to a whole branch of logical inves-
tigation, relevance logic, initiated by pioneering work of Wilhelm Ackermann, Alan
Ross Anderson and Nuel Belnap, see [3].2 People who have chosen relevance logic
as a field of their scientific interest — Mike Dunn among them — are often called
relevance logicians.

One can describe a relevance logician as a person who “seeks an entailment con-
nective → which is such that A→ B holds only if B is relevant to A” Copeland [24,
p. 325]. In search of such a connective Belnap [12] has proposed a certain criterion
that is now considered a necessary condition for any logic (L) to be relevant, the so-
called variable sharing property (VSP):

ϕ → ψ is a theorem of L only if ϕ and ψ share a sentential variable.

As is well known, all of the major relevance logic systems, such as B, T, R and E,
have this property. However, in the vicinity of relevance logics, there is a remarkable
system that lacks VSP. Dunn invented this system, known as R-Mingle (RM), in the
mid-1960s. The system gets its name from a corresponding logical principle, that is
characteristic for it. The principle in question has its origin in a paper by Ohnishi and
Matsumoto [48], where the term “mingle” was used for the following rule:

(Mingle rule)
Γ `Θ Σ `Π

Γ ,Σ `Θ ,Π

Anderson and Belnap in [3, p. 97] consider a version of mingle in the context of an
intuitionistic sequent system, dealing with sequents having at most one formula in the
succedents:

(A–B Mingle)
Γ ` ϕ Σ ` ϕ

Γ ,Σ ` ϕ
.

1 Strictly speaking, the formulas just presented are most commonly called “paradoxes of material im-
plication.” I will use a more general name, however, considering these formulas as paradigmatic represen-
tatives of a wider group of implicative statements (and also consequence expressions), in which “the an-
tecedents and consequents (or premises and conclusions) are on completely different topics” (Mares [44]),
or irrelevant to each other. Note also, that the terms “Positive Paradox” and “Negative Paradox” are some-
times used differently by different authors. In this paper, I will use these terms in the sense just described,
namely, to specify the situations in which truth (maybe necessary, or logical) is implied (or entailed) by any
proposition, and falsehood (maybe necessary, or logical) implies (or entails) any proposition.

2Another powerful branch of modern logic, which arose from a consideration of these paradoxes is, of
course, modal logic.
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They observe, that adding this rule to a system with the following “Arrow on the
right” rule:

(`→)
Γ ,ϕ ` ψ

Γ ` ϕ → ψ
,

yields the following derived rule (even in the absence of Weakening, and provided that
` ϕ → ψ and ϕ ` ψ are interderivable, see Dunn [33, p. 149]):

(O–M Mingle)
ϕ → γ ψ → γ
ϕ → (ψ → γ)

.

The latter leads to the following axiom with the same name (in the presence of ϕ→ϕ):

(Mingle axiom) ϕ → (ϕ → ϕ).3

Dunn in [33, p. 146] tells an interesting story about inventing R-Mingle, formulated
by him in a Storrs McCall’s graduate seminar at the University of Pittsburgh (cf. [3,
p. 94]). By modifying a suggestion of McCall, Dunn simply added Mingle to the set
of axioms of relevance logic R, and formulated thus the system RM, the first appear-
ance of which in print seems to be Dunn [27]. In that paper Dunn shows that, based
on Meyer’s completeness result for RM, every proper normal extension of RM has a
finite characteristic matrix, despite the fact that RM lacks such a matrix.4 As a result,
RM is pretabular (or has the so-called Scroggs’s property, see [33, p. 147]). Further-
more, Dunn demonstrates the strong completeness of RM with respect to Sugihara
matrices.

Despite the perception (perhaps not quite unjustified) that “RM deserves more re-
spect than it has gotten” [33, p. 142], it should be noted that many important as-
pects of R-Mingle and some of its fragments were discussed in detail by different
authors, Avron [5; 6; 7; 8], Blok and Raftery [20], Meyer [46], Metcalfe [45], Parks
[50], Robles, Méndez and Salto [55] among them. Moreover, it is sometimes ar-
gued that the “Dunn–McCall logic RM is by far the best understood and the most
well-behaved logic in the family of logics developed by the school of Anderson and
Belnap” [8, p. 15].

As to the variable sharing property, although RM does not possess it in full gener-
ality, see [3, p. 417], it still has the following weak variable sharing property (WVSP):

If ϕ → ψ is a theorem of RM, then either (i) ϕ and ψ share a sen-
tential variable, or (ii) both ∼ϕ and ψ are theorems of RM. (Cf. [3,
p. 417] and [33, p. 142].)

As Meyer has shown (see [27, p. 4]), the following formula is provable in RM.

(ii) ∼(ϕ → ϕ)→ (ψ → ψ)

This theorem is denoted by (ii) here because it exemplifies exactly item (ii) in the
definition of WVSP by representing an implication in which the negation of a theorem
implies (even if irrelevantly) a theorem. It is worthy of note that Mingle and (ii) are

3My presentation of various “mingles” (either in the form of a rule or an axiom) employs a unified sym-
bolism. “A–B Mingle” and “O–M Mingle” mark the contributions of Anderson and Belnap, and Ohnishi
and Matsumoto, respectively. The latter label is taken from [33, p. 152], where it stands for a corresponding
axiom. In what follows when I say “Mingle,” I will always mean the Mingle axiom.

4An extension of RM is called normal iff it is closed under substitution and the RM-rules of inference.
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interderivable within RM, see Schechter [57], so R + (ii) yields RM. Furthermore,
there is another remarkable property of RM, that appears to be related to the paradoxes
of relevance and states, in effect, that a false proposition implies any true proposition.
Dunn calls this principle Ex Falso Verum:

(EFV) ∼ϕ → (ψ → (ϕ → ψ)).

Mingle is provable in R + EFV (see [33, pp. 154–155]), and thus, all three principles
— Mingle, (ii) and EFV — turn out to be equivalent within RM. However, unlike
Mingle, principles (ii) and EFV allow to identify explicitly a subtle but rather impor-
tant distinction between (1) being free from the paradoxes of relevance, and (2) being
safe from them. This distinction between freedom and safety deserves special con-
sideration. The first, of course, implies the second, but there may well be the second
without the first. That is to say, there may well be irrelevant inferences which, never-
theless, are guaranteed to do no harm, and occurrence of which does not cause damage
to our knowledge.

Imagine we are developing some theory, and we do so in a standard way by es-
tablishing certain axioms (which are by definition true), and then continue to prove
theorems, step by step. We want to avoid at least two bad situations. First, we want to
rule out the possibility of inferring irrelevant conclusions from true premises, i.e., we
want our arguments for what follows from the axioms to be always on point. Second,
even if a false statement is inadvertently introduced into our theory, we want to avoid
the multiplication of falsity, i.e., we want falsehood to remain isolated and, at the very
least, not reproduce itself (till we will be able to find and remove it). As soon as these
minimal conditions are met, we feel safe and unaffected by contradictions, even if
some of them manage to penetrate our theory.

It turns out that RM is quite capable to guarantee the fulfillment of those two condi-
tions. Indeed, according to condition (ii) of WVSP and its proof-theoretic counterpart,
even if our inference comes to be irrelevant, the worst thing that can happen, is that we
stay with our truths. While the variable sharing property is meant to ensure freedom
from paradoxes of relevance, its weak version (WVSP) is well suited to prevent their
possible destructive effect.

It is exactly because of WVSP that RM is often regarded as a “semi-relevant”
system, see, e.g., [3, p. 375], [65, p. 768]. Recently Avron [8] elaborated a more
precise notion of “semi-relevance” which encompasses logics in which (1) for every
two sets of formulas Γ , ∆ , and any formula ψ we have Γ ` ψ whenever Γ ∪∆ ` ψ
and ∆ has no atomic formulas in common with Γ ∪ {ψ}; and which (2) does not
have a finite weakly characteristic matrix. Avron proved that RM is semi-relevant in
this sense.

Dunn in [33, p. 157] specifies some useful properties of RM, which make it desir-
able for use as a “logical tool.” Namely, it is decidable, has a low complexity, and can
be equipped with a simple, easy-to-understand Kripke-style semantics with a binary
accessibility relation, which can be extended to obtain a constant domain semantics
for quantifiers. Although RM does not have the variable sharing property, it is semi-
relevant in the sense of Avron, and it is paraconsistent “in the sense that contradiction
does not imply every sentence whatsoever (‘Explosion’)” [33, p. 160]. Dunn observes
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that whereas RM does have some irrelevant implications like (ii), they are “safe in
that, unlike Explosion lead to nothing new” [33, p. 161].5

In this context another principle derivable in RM might be even more telling, ex-
pressing explicitly the property of being safe from the paradoxes of relevance as dis-
cussed above; namely,

(Safety) (ϕ ∧∼ϕ)→ (ψ ∨∼ψ).

Safety essentially says the same thing as (ii), but with a single implication as the main
connective, which opens up the possibility of explaining the idea of protection against
paradoxes of relevance on the level of first-degree entailment (by replacing implica-
tion with a consequence relation). It is called “Safety” in [34, p. 14], because, as Dunn
observes, with this principle we can always feel safe: “even if a theory has a contra-
diction as a theorem, all that can be derived from it are tautologies” [35, p. 443]. Note,
that although an informal content of Safety is similar to (ii), their deductive strength
is not the same. The former is still weaker than the latter, since neither Mingle, nor
(ii) is derivable in R + Safety, whereas Safety is derivable not only in RM, but also in
R + (ii), see [57].

The significance of Safety may become clearer if we consider another RM property
located between Mingle and Safety, which is rather counter-intuitive from a “relevance
standpoint” — the so-called Chain Property expressed by the formula

(CP) (ϕ → ψ)∨ (ψ → ϕ).
As Dunn explains, “[i]t says that given two possibly very distinct sentences, say p =
‘The moon is made of green cheese,’ and q = ‘The cat is on the mat,’ one of the two
will imply the other” [33, p. 161]. It is hardly possible to find for CP any kind of
intuitive justification similar to the one available for (ii) and Safety, and thus, from a
relevantist perspective, the validity of the Chain Property may be taken as a “serious
weakness for RM” [ibid.].

The claim that CP is located “between” (ii) and Safety has an exact sense, since
these three principles constitute a non-reversible “chain of derivabilities.” (1) CP is
derivable in R + (ii), but (ii) is not derivable in R + CP; and (2) Safety is derivable in
R + CP, but CP is not derivable in R + Safety (see [57, p. 120], taking also into account
that Mingle and (ii) are interderivable as mentioned above). As a result, if we want
to remove the aforementioned weakness from RM, focusing on Safety as “the most
safe” result of adding Mingle to R may be promising. To that end, one can begin by
separating a specific fragment of RM that retains some of its most useful features, but
lacks the Chain Property. This is the first-degree entailment fragment of RM.

3. FIRST-DEGREE ENTAILMENT AND SAFETY FROM THE PARADOXES

First-degree entailment is a rather remarkable field of study, which has arisen
within relevance logic research program, and to which Dunn’s contribution is not only

5Dunn provides a rather witty illustration of how an irrelevant inference can be harmless within RM,
which I quote here in full: “I have been trying to think of an analogy and the best I have been able to come
up with goes something like this. Suppose I am building an electrical circuit and I want to protect against
faults. Normally, a small fault will turn all the switches on. But what if I somehow insert a clever circuit
that allows a switch to be turned on only if it is already on?” [33, p. 158].
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significant, but indeed fundamental. The idea of first-degree entailment has been in-
troduced by Belnap already in his doctoral dissertation [10] and then put into print
in [11], who considered an expression of the form ϕ → ψ a first-degree entailment
iff “ϕ and ψ are both written solely in terms of propositional variables, ∧, ∨, and ∼
(other truth-functional connectives being treated as defined by these)” [11, notation
adjusted]. Thus, by considering first-degree entailments ϕ → ψ , “where ϕ and ψ
can be truth functions of any degree but cannot contain any arrows,” one “ignores the
possibility and problems of nested entailments” [3, p. 150, italics mine].

To grasp this idea, keep in mind that Belnap originally conceived of first-degree
entailment as a fragment of the relevance logic system E (of entailment). The latter,
being the favorite system of Anderson and Belnap, has been designed to provide a
“formal analysis of the notion of logical implication, variously referred to also as ‘en-
tailment,’ [. . . ] expressed in such logical locutions as ‘if . . . then–,’ ‘implies,’ ‘entails,’
etc., and answering to such conclusion-signaling logical phrases as ‘therefore,’ ‘it fol-
lows that,’ ‘hence,’ ‘consequently,’ and the like” [3, p. 5]. According to this interpreta-
tion, the system E represents an object-language theory that explains the properties of
the entailment relation by identifying it (within this theory) with an object-language
implicational connective. In this way, nested implications express statements about
entailments between entailments; for instance, ϕ → (ψ → χ) says that ϕ entails that
ψ entails χ .

However, if we want to treat entailment as a meta-language relation in its own right
(i.e., “as signifying a metalinguistic relation of logical consequence” [3, p. 150]), it
may be appropriate to separate “logical implication” from the rest of the propositional
connectives, and consider expressions, in which statements formed only with these
remaining connectives are consequences of the others. To make this separation more
explicit, one can use turnstile (`) instead of arrow (→), and obtain in this way con-
sequence expressions. Among these expressions one can distinguish the so-called bi-
nary consequence expressions (cf. [32, p. 24]), or expressions from the FMLA-FMLA
logical framework, see [39, p. 198], which represent consequences between single for-
mulas. (Dunn and Hardegree consider in this respect “binary implicational systems”
[36, p. 194].) A binary consequence system is then a proof system which manipulates
consequence expressions as formal objects. Anderson and Belnap’s concept of first-
degree entailment corresponds to the concept of a binary consequence system. Let me
summarize (and in a way generalize) this by means of precise definitions.

If {◦1, . . . ,◦m} is a set of binary, and {�1, . . . ,�n}— a set of of unary propositional
connectives, then propositional language L{◦1,...,◦m,�1,...,�n} can be defined as usual:

ϕ ::= p | ϕ ◦1 ϕ | . . . | ϕ ◦m ϕ | �1ϕ | . . . | �nϕ.

Definition 1. A binary consequence relation ` over L{◦1,...,◦m,�1,...,�n} is a subset of
the set L{◦1,...,◦m,�1,...,�n}×L{◦1,...,◦m,�1,...,�n}.
Definition 2. A binary consequence expression (or simply a consequence) ofL{◦1,...,◦m,
�1,...,�n} is a pair (ϕ,ψ) ∈ `, usually written as ϕ ` ψ (to be read as “ϕ has ψ as a
consequence” Dunn [31, p. 302]), where ϕ,ψ ∈ L{◦1,...,◦m,�1,...,�n}.
Definition 3. A logic in language L{◦1,...,◦m,�1,...,�n} is a binary consequence relation
over L{◦1,...,◦m,�1,...,�n}, closed at least under the usual Tarskian conditions of reflexivity
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and transitivity:

(ref) ϕ ` ϕ, (tr) ϕ ` ψ, ψ ` χ⇒ϕ ` χ.6

Definition 4. A binary consequence system (L{◦1,...,◦m,�1,...,�n},`) in the language
L{◦1,...,◦m,�1,...,�n} is a proof system, which manipulates binary consequences ofL{◦1,...,
◦m,�1,...,�n} as formal objects.

Definition 5. Let L be a logical system formulated in language L{◦1,...,◦m,→,�1,...,�n}
with an implication→ among its binary connectives. Then binary consequence system
Lfde = (L{◦1,...,◦m,�1,...,�n},`) is the first-degree entailment fragment of L iff for any
ϕ,ψ ∈ L{◦1,...,◦m,�1,...,�n}, `L ϕ → ψ ⇔ ϕ `Lfde

ψ .

In Section 4, I will present a more precise definition of the notion of a binary
consequence system (see Definition 12). For now, Definition 4 will suffice for our
purposes.

I now return to system E and Belnap’s elaboration of the idea of first-degree entail-
ment in the context of this system. E is usually formulated in the language L{→,∧,∨,∼}.
In his doctoral dissertation [10] (see also [13]) Belnap introduced a proof system in
the same language, which was then presented in [3, §5.2] under the label Efde. A
distinctive feature of that system is that one of the connectives, namely, implication
(→) could have only one occurrence in a formula of the system as the main operator.
I reproduce here this system under the same label as a binary consequence system
formulated in language L{∧,∨,∼}.

System Efde

(ce1) ϕ ∧ψ ` ϕ (ce2) ϕ ∧ψ ` ψ
(di1) ϕ ` ϕ ∨ψ (di2) ψ ` ϕ ∨ψ
(ni) ϕ ` ∼∼ϕ (ne) ∼∼ϕ ` ϕ

(dis1) ϕ ∧ (ψ ∨χ) ` (ϕ ∧ψ)∨χ (tr) ϕ ` ψ, ψ ` χ / ϕ ` χ
(ci) ϕ ` ψ, ϕ ` χ / ϕ ` ψ ∧χ (de) ϕ ` χ, ψ ` χ / ϕ ∨ψ ` χ

(con) ϕ ` ψ / ∼ψ ` ∼ϕ
The following theorem shows that Efde is indeed the first-degree entailment frag-

ment of system E.

Theorem 6. For any ϕ,ψ ∈ L{∧,∨,∼}, ϕ → ψ is provable in E iff ϕ ` ψ is provable
in Efde.

Proof. Following Belnap [11], define primitive entailment as a consequence χ1∧·· ·∧
χk ` ξ1 ∨ ·· · ∨ ξl , in which every χi and ξ j is an atom (i.e., a propositional variable
or its negation). A primitive entailment is explicitly tautological iff some atom χi is
the same as some ξ j. Now, a consequence ϕ ` ψ represents a tautological entailment
iff it is reducible by replacements through commutativity, associativity, distributivity,
De Morgan and double negation rules to a consequence ϕ1∨·· ·∨ϕm ` ψ1∧·· ·∧ψn,
where every ϕi ` ψ j is an explicitly tautological entailment.

It can be shown that a formula ϕ → ψ (where ϕ,ψ ∈ L{∧,∨,∼}) is provable in
E iff ϕ ` ψ represents a tautological entailment, see [2, p. 14]. Moreover, it is

6Normally, Tarskian conditions for a consequence relation include monotonicity (ϕ ` ψ⇒Γ ,ϕ ` ψ),
but it is inexpressible in the FMLA-FMLA framework.
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known that ϕ ` ψ represents a tautological entailment iff it is provable in Efde, see
[3, pp. 159–161]. /

As Dunn observes, already in his doctoral dissertation, this proof may be easily
adapted to demonstrate that Efde is also the first-degree entailment fragment of system
R, “which shows that E and R agree in their first degree entailment fragments” [25,
p. 115]. To highlight this fact, Dunn in [30, p. 146] calls this system Rfde. In [34] a
somewhat different formulation of the system labeled as Rfde is presented, in which
the contraposition rule (con) is replaced by four De Morgan laws, which are derivable
in Efde.

(dm1) ∼(ϕ ∨ψ) ` ∼ϕ ∧∼ψ (dm2) ∼ϕ ∧∼ψ ` ∼(ϕ ∨ψ)
(dm3) ∼(ϕ ∧ψ) ` ∼ϕ ∨∼ψ (dm4) ∼ϕ ∨∼ψ ` ∼(ϕ ∧ψ)

It is not difficult to demonstrate that (con) remains admissible (although not derivable)
in the system so formulated, see [34, Proposition 11]. In what follows, I will mark by
Rfde the system with De Morgan laws taken as axioms instead of contraposition rule
(con), while retaining the label Efde for the original formulation from [3] with the
contraposition rule. In view of the admissibility of (con) in Rfde and derivability of
(dm1)–(dm4) in Efde, both formulations are deductively equivalent in the sense that
they determine the same set of provable consequences.

We now turn to Dunn’s fundamental contribution to the metatheory of first-degree
entailment. In his doctoral dissertation [25] (see also the seminal paper [28]), Dunn
provides Efde with an intuitively appealing semantics, the main point of which is to
allow for underdetermined and overdetermined valuations, allowing a sentence to be
rationally considered to be neither true nor false, as well as both true and false. This
has given rise to a highly innovative research program in modeling entailment, which
is sometimes called “the American Plan,” see Routley [56], (cf. also Shramko [59]).
Belnap in [14; 15] has developed Dunn’s idea further by introducing specific truth val-
ues for such non-standard valuations. These new truth values allow for a quite natural
informational interpretation, namely, as information that has been communicated, say,
to a computer.

Let {t, f} be the set of classical truth values. Define a generalized truth value
function v4 as a map from the set of propositional variables into the subsets of {t, f}.
These subsets can then be considered generalized truth values understood as “mere
truth” (T = {t}), “mere falsehood” (F = { f}), “neither truth nor falsehood” (N = { }),
and “both truth and falsehood” (B = {t, f}). Function v4 is then determined on the set
{T,F,N,B}, and can be extended to compound formulas by the following definition.

Definition 7.
(1) t ∈ v4(ϕ ∧ψ) ⇔ t ∈ v4(ϕ) and t ∈ v4(ψ),

f ∈ v4(ϕ ∧ψ) ⇔ f ∈ v4(ϕ) or f ∈ v4(ψ);
(2) t ∈ v4(ϕ ∨ψ) ⇔ t ∈ v4(ϕ) or t ∈ v4(ψ),

f ∈ v4(ϕ ∨ψ) ⇔ f ∈ v4(ϕ) and f ∈ v4(ψ);
(3) t ∈ v4(∼ϕ) ⇔ f ∈ v4(ϕ),

f ∈ v4(∼ϕ) ⇔ t ∈ v4(ϕ).
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Generalized truth values can be explicated as the outcomes of applying the function
v4 to propositions of our language, being thus the elements from the power-set of the
set of classical truth values, P({t, f}):

v4(ϕ) = T ⇔ t ∈ v4(ϕ) and f /∈ v4(ϕ) (ϕ is true only);
v4(ϕ) = F ⇔ t /∈ v4(ϕ) and f ∈ v4(ϕ) (ϕ is false only);
v4(ϕ) = B ⇔ t ∈ v4(ϕ) and f ∈ v4(ϕ) (ϕ is both true and false);
v4(ϕ) = N ⇔ t /∈ v4(ϕ) and f /∈ v4(ϕ) (ϕ is neither true nor false).

Note the difference between expressions v4(ϕ)= T and t ∈ v4(ϕ). Whereas the former
expression says that ϕ is only true (i.e., true and not false), the latter means that ϕ is
at least true (which does not exclude that it can be false as well). And similarly for
the expressions v4(ϕ) = F and f ∈ v4(ϕ).

We have the following definition of entailment as a relation between single formu-
las (of the FMLA-FMLA type).

Definition 8. ϕ �fde ψ =df ∀v4(t ∈ v4(ϕ)⇒ t ∈ v4(ψ)).

Entailment relation so defined (call it FDE-entailment) is faithful to the conse-
quence relation of Efde (Rfde), that is, Efde (Rfde) is sound and complete with respect
to Definition 8.

Theorem 9. For any ϕ,ψ ∈ L{∧,∨,∼}, ϕ ` ψ is provable in Efde (Rfde) iff ϕ �fde ψ .

Proof. See, e.g., Dunn [34, Theorem 7]. /

Now, consider the following consequences, which are not derivable in Efde (and, of
course, neither in Rfde).

ϕ ` ψ ∨∼ψ(veq)

ϕ ∧∼ϕ ` ψ(efq)

ϕ ∧∼ϕ ` ψ ∨∼ψ(saf )

Principles verum ex quodlibet (veq), ex falso quodlibet (efq), and (saf) are the con-
sequence (first-degree entailment) analogues of the Positive Paradox, Negative Para-
dox and Safety, respectively (in the sense outlined in footnote 1). Extending Efde or
Rfde with these consequences as axioms yields consequence systems for some well-
known logics, including the first-degree entailment fragment of RM. The latter con-
sequence system is obtained by adding (saf) either to Efde or Rfde, and it is labeled
by RMfde in [34]. Thus, (saf) is the characteristic consequence for the first-degree
entailment fragment of R-Mingle, and in this sense one can consider Safety to be a
representative of Mingle on the first-degree entailment level.

Notably, if (x) ∈ {(veq),(efq),(saf)}, then adding (x) to Efde is not always deduc-
tively equivalent to Rfde +(x). For example, Efde +(veq) is deductively equivalent
to Efde +(efq), and yields a binary consequence system of classical entailment that
includes all valid consequences between formulas of classical logic, cf. Shramko [58,
pp. 255–256]. In contrast, Rfde+(veq) is not deductively equivalent to Rfde+(efq),
and neither of these extensions alone produces classical consequence. To obtain the
classical consequence based of Rfde, one must add both (veq) and (efq). On the other
hand, Efde+(saf) is deductively equivalent to Rfde+(saf). We thus have the follow-
ing observation.
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Observation 10. Let the equality sign (=) mean the deductive equivalence between
consequence systems. Then, Efde+(efq) 6= Rfde+(efq), Efde+(veq) 6= Rfde+(veq)
but Efde+(saf) = Rfde+(saf).

This observation shows that systems Efde and Rfde, even being deductively equiv-
alent, are not of equal strength in terms of their possible extensions. Whereas Efde

allows only two nontrivial extensions, namely, the first-degree entailment fragment
of RM = Efde +(saf), see, e.g., [28, p. 157 and note 7], and a system for classical
consequence Efde+(veq) (or equivalently Efde+(efq)), system Rfde, even being just
another formalization of first-degree entailment, nevertheless, allows two more non-
trivial extensions. These two additional systems (which are indistinguishable from
each other and from classical logic within the deductive framework of Efde) are the
consequence system for Kleene’s strong three-valued logic Rfde+(efq), and Priest’s
Logic of Paradox Rfde+(veq), see [34, Theorem 12].

We thus should differentiate between extending a consequence system and extend-
ing a logic. To extend a logic it is enough to add some consequence to the correspond-
ing set of consequences, and to ensure that the resulting set is closed under reflexivity
and transitivity, see Definition 3. In contrast, extending a consequence system assumes
adding a consequence not derivable in this system to its axioms. Clearly, the resulting
logic will be automatically closed under all of this system’s primitive inference rules.

Taking into account that one and the same logic can be generated (determined) by
different consequence systems, we can generalize Observation 10 by the following
proposition.

Proposition 11. Let S1 and S2 be two different consequence systems, which formalize
one and the same logic (are deductively equivalent), and let C be a binary conse-
quence, such that neither S1 +C, nor S2 +C is trivial. Then logics generated by
S1 +C and by S2 +C may, but do not need be the same.

In the context of this Proposition, and given the fact that Efde + (saf) = Rfde +
(saf) = RMfde, the following questions arise.

1. Is there another consequence system (X) formalizing the logic of first-degree
entailment, such that X+(saf) 6= RMfde?

2. If such a formalization exists, which is the consequence C, such that X+C
= RMfde?

3. Provided there are such X and C, are there other systems between X+(saf)
and X+C, which embody the idea of safety from the paradoxes of relevance,
and if yes, how many are they?

In the following sections, I will address these questions, by introducing the notion
of a purely Tarskian consequence system and applying it to a particular construction
of first-degree entailment logic.

4. A PURELY TARSKIAN DEDUCTIVE FORMALIZATION OF FIRST-DEGREE EN-
TAILMENT

Consider the following precise definition of what is a binary consequence system,
obtained through the notion of a binary consequence rule.
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Definition 12. A binary consequence rule is a construction of the form
C1, . . . ,Cn

C
,

where C1, . . . ,Cn,C are binary consequence expressions. If n = 0, the rule is an ax-
iom scheme. A binary consequence rule is proper iff n ≥ 1. A binary consequence
system is a nonempty set of binary consequence rules, of which at least one is an
axiom. A binary consequence system is proper iff it has at least one proper binary
consequence rule.

In what follows I will keep saying simply “rule” (or “inference rule”) instead of
“binary consequence rule,” and also write rules in the form C1, . . . ,Cn/C. Having a
consequence system, it is important to differentiate between derivable and admissible
rules of this system.

Definition 13. Rule C1, . . . ,Cn/C is derivable in the binary consequence system S iff
there is a derivation of C in S with C1, . . . ,Cn as the premisses of this derivation.

Definition 14. Rule C1, . . . ,Cn/C is admissible in the binary consequence system S
iff whenever all of C1, . . . ,Cn are derivable in S, then so is C.

All the primitive rules of a binary consequence system are derivable by definition.
Clearly, every derivable rule is admissible, but not vice versa. Because adding an
admissible rule to a consequence system does not change the set of derivable con-
sequences, a binary consequence system is closed under all of its admissible rules.
However, while any extension of a consequence system is closed under all derivable
rules of the initial system, this is not true for admissible rules. It is possible that a
rule that is admissible in a consequence system will no longer be admissible in some
of its extensions. Thus, the fewer derivable rules a consequence system has, the more
extensions it may allow.

To ensure that a consequence system generates a logic, one should show, in partic-
ular, that (tr) is admissible in this system. The easiest way to guarantee this is to take
(tr) as a primitive rule. In fact, having transitivity as a derivable rule and reflexivity
as an axiom is all that is needed for a consequence system to determine a logic.

Let me call a consequence system purely Tarskian iff ϕ ` ϕ is derivable for any
ϕ , and (tr) is the only primitive inference rule of this system. It may well be that a
certain logic cannot be generated by a purely Tarskian consequence system. Remark-
ably, the logic of first-degree entailment can be formalized by a system of this kind.
Such a system has been introduced in Shramko [61] as a genuinely structural binary
consequence system (see also Shramko [60, pp. 1234–1235]).

System FDES

(di1) ϕ ` ϕ ∨ψ (dco) ϕ ∨ψ ` ψ ∨ϕ (did) ϕ ∨ϕ ` ϕ
(ce1) ϕ ∧ψ ` ϕ (cco) ϕ ∧ψ ` ψ ∧ϕ (cid) ϕ ` ϕ ∧ϕ

(das∨) (ϕ ∨ (ψ ∨χ))∨ξ ` ((ϕ ∨ψ)∨χ)∨ξ
(cas∧) ((ϕ ∧ψ)∧χ)∧ξ ` (ϕ ∧ (ψ ∧χ))∧ξ
(dis∨∧2 ) ((ϕ ∨ (ψ ∧χ))∨ξ )∧ τ ` (((ϕ ∨ψ)∧ (ϕ ∨χ))∨ξ )∧ τ
(dis∨∧3 ) (((ϕ ∨ψ)∧ (ϕ ∨χ))∨ξ )∧ τ ` ((ϕ ∨ (ψ ∧χ))∨ξ )∧ τ
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(dis∨∧4 ) (((ϕ ∧ψ)∨ (ϕ ∧χ))∨ξ )∧ τ ` ((ϕ ∧ (ψ ∨χ))∨ξ )∧ τ
(dis∨∧5 ) ((ϕ ∧ (ψ ∨χ))∨ξ )∧ τ ` (((ϕ ∧ψ)∨ (ϕ ∧χ))∨ξ )∧ τ
(ni∨∧) (ϕ ∨ψ)∧χ ` (∼∼ϕ ∨ψ)∧χ
(ne∨∧) (∼∼ϕ ∨ψ)∧χ ` (ϕ ∨ψ)∧χ
(dm∨∧1 ) (∼(ϕ ∨ψ)∨χ)∧ξ ` ((∼ϕ ∧∼ψ)∨χ)∧ξ
(dm∨∧2 ) ((∼ϕ ∧∼ψ)∨χ)∧ξ ` (∼(ϕ ∨ψ)∨χ)∧ξ
(dm∨∧3 ) (∼(ϕ ∧ψ)∨χ)∧ξ ` ((∼ϕ ∨∼ψ)∨χ)∧ξ
(dm∨∧4 ) ((∼ϕ ∨∼ψ)∨χ)∧ξ ` (∼(ϕ ∧ψ)∨χ)∧ξ

(tr) ϕ ` ψ, ψ ` χ / ϕ ` χ
In comparison to Efde and Rfde, this system has only one primitive inference rule (tr).
To compensate for the removal of the rules (ci) and (de), and to ensure their admis-
sibility, axioms for the mutual distributivity of disjunction and conjunction, double
negation introduction and elimination, and De Morgan laws are provided with a com-
bined disjunctive-conjunctive context of the form (· · ·∨χ)∧ξ . Moreover, the associa-
tivity axioms for conjunction and disjunction are four-termed (and not three-termed,
as usual).

A notable feature of a purely Tarskian consequence system, and particularly system
FDES, is the ability to be transformed directly into a (purely inferential) Hilbert-style
system. Indeed, a binary consequence expression is nothing more than a (one-premise)
Hilbertian inference rule, and (tr) can be viewed as a tool for connecting such rules
in a logical derivation process. Thus, a binary consequence system with (tr) as the
only binary consequence rule can be easily reshaped in a form of a Hilbert system.
Such Hilbert-style systems for the first-degree entailment FDEH and a family of its
extensions have been elaborated in detail in Shramko [62].

I will now reproduce a number of lemmas and theorems, proofs of which can be
found in [61]. In particular, the following lemma makes derivations in FDES more
manageable, by ridding them of the disjunctive/conjunctive context if redundant, and
thus, securing an unrestricted implementation of all the usual properties of first-degree
entailment.

Lemma 15. For axioms (dis∨∧2 ), (dis∨∧3 ), (dis∨∧4 ), (dis∨∧5 ), (ni∨∧), (ne∨∧), (dm∨∧1 ),
(dm∨∧2 ), (dm∨∧3 ), (dm∨∧4 ) of the form (α ∨χ)∧ξ ` (β ∨χ)∧ξ ,

(1) the respective consequences (dis2)–(dm4) of the form α ` β are derivable;
(2) the respective dual consequences (dis∧∨2 )–(dm∧∨4 ) of the form (α ∧ χ)∨ ξ `

(β ∧χ)∨ξ are derivable;
(3) the respective consequences (dis∨2 )–(dm∨4 ) of the form α ∨ χ ` β ∨ χ , and

(dis∧2 )–(dm∧4 ) of the form α ∧χ ` β ∧χ are derivable.
Moreover, standard formulations of associativity for disjunction (das) ϕ ∨ (ψ ∨ χ) `
(ϕ ∨ψ)∨χ , and conjunction (cas) (ϕ ∧ψ)∧χ ` ϕ ∧ (ψ ∧χ) are derivable as well.

Lemma 16. All the inference rules of Efde are admissible in FDES.

Lemma 17. System FDES is deductively equivalent to systems Efde and Rfde in the
sense that they determine the same set of provable consequences.

And system FDES is sound and complete with respect to Definition 8.

Theorem 18. For any ϕ,ψ , ϕ `fde ψ ⇔ ϕ �fde ψ .
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It is observed in [60, p. 1237] that system FDES provides the most suitable basis for
the family of all its possible extensions. Among these extensions, there is a noteworthy
subfamily that represents logics that implement a “minglish idea” to varying degrees
on the first-degree entailment level. This subfamily will be discussed further in the
following section.

5. VARIATIONS ON SAFETY AND THE CORRESPONDING CONSEQUENCE SYSTEMS

System RMfde, obtained from Efde or Rfde by adding (saf) as an axiom, is indeed
the first-degree entailment fragment of RM.

Lemma 19. For any ϕ,ψ ∈L{∧,∨,∼}, ϕ→ψ is provable in RM iff ϕ `ψ is provable
in Efde+(saf), or equivalently in Rfde+(saf).

The proof of this lemma will be given in Section 7. It might appear that adding
(saf) to any (deductively equivalent) formalization of the first-degree entailment will
produce the same result. However, this would be a mistake, as Rivieccio has shown
in [54, p. 328] by the case study of certain extensions of the SET-FMLA system
`H introduced in [38]. Namely, consequence (ϕ ∧∼ϕ)∨ χ ` (ψ ∨∼ψ)∨ χ turns
out not to be derivable in `H +(saf), although it is valid in RMfde. This is be-
cause the disjunction elimination rule (i.e., (de) of Efde), which is admissible in `H ,
is not admissible in `H +(saf). In fact, it is proved in [1, p. 1066] that adding
(ϕ ∧∼ϕ)∨ χ ` (ψ ∨∼ψ)∨ χ to `H provides a correct deductive formalization of
the SET-FMLA analogue of RMfde.7

In the case of the first-degree entailment constructed in the FMLA-FMLA frame-
work, the situation can be even more intricate. FDES is closed under both disjunction
elimination (de) and conjunction introduction (ci) (see Lemma 16), but its various
extensions may no longer be so. This allows us to distinguish four different versions
of Safety, which correspond to the situations, where (1) neither of the two closures
holds, (2)–(3) one of them holds, but the other does not, and (4) both of them hold.
To express these situations by means of different deductive systems we will need the
following four consequences, neither of which is derivable in FDES.

(saf) ϕ ∧∼ϕ ` ψ ∨∼ψ
(saf∧) (ϕ ∧∼ϕ)∧χ ` (ψ ∨∼ψ)∧χ
(saf∨) (ϕ ∧∼ϕ)∨χ ` (ψ ∨∼ψ)∨χ
(saf∨∧) ((ϕ ∧∼ϕ)∨χ)∧ξ ` ((ψ ∨∼ψ)∨χ)∧ξ
That is, side by side with the standard principle of Safety (saf), we can consider

other three versions of it, augmented with a conjunctive context, a disjunctive context,
and a combined disjunctive-conjunctive context.8 This opens the way for the corre-
sponding binary consequence systems, which formalize different variations of Safety
on the basis of FDES. Let me call these systems “FDE-based mingle logics.”9 We
thus have:

7Cf. also Přenosil [52, p. 12], where it is observed that instead of (ϕ ∧∼ϕ)∨ χ ` (ψ ∨∼ψ)∨ χ one
can likewise take a consequence in two variables, namely, (ϕ ∧∼ϕ)∨ψ ` ψ ∨∼ψ .

8I take this opportunity to correct an erroneous formulation of (saf∨∧) in [60, p. 1238] and [62].
9If the term “mingle logic” is taken literally, it means that the corresponding system includes Mingle

as one of its axioms. In view of this, it might be more appropriate to call these systems “safety logics.”
It should be noted, however, that we are dealing with the first-degree entailment framework, and Safety is
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SMS = FDES +(saf) RM∧S = FDES +(saf∧)
RM∨S = FDES +(saf∨) RMS = FDES +(saf∨∧)

SMS stands for “sub-mingle,” and it is the weakest FDE-based logic that validates
Safety, the characteristic principle of a mingle logic on the first-degree entailment
level. It is not, however, the first-degree entailment fragment of RM, because some
consequences, whose implicational counterparts are derivable in RM, are not deriv-
able in SMS. In particular, (saf∧), (saf∨) and (saf∨∧) do not hold in SMS, although
(ϕ ∧∼ϕ)∧ χ → (ψ ∨∼ψ)∧ χ , (ϕ ∧∼ϕ)∨ χ → (ψ ∨∼ψ)∨ χ and ((ϕ ∧∼ϕ)∨
χ)∧ξ → ((ψ ∨∼ψ)∨ χ)∧ξ are theorems of RM. This enables further unrolling of
Safety in two different directions by means of RM∧S and RM∨S . The first of these two
systems turns out to be an intermediate stage on the road to Pietz/Kapsner and Riviec-
cio’s “Exactly True Logic” [51], whereas the second one leads to “Non-Falsity Logic”
introduced in Shramko et al. [63], see in more detail in [62]. The union of RM∧S and
RM∨S results in RMS, which is exactly the first-degree entailment fragment of RM
(the proof of this fact will be given in Section 7 along with the proof of Lemma 19).

It is not difficult to extend (1)–(3) from Lemma 15 to the case with (saf∨∧), and
thus to show that (saf) is derivable in all FDE-based mingle logics, whereas both
(saf∨) and (saf∧) are derivable in RMS. As an example, consider the derivation of
(saf) in RM∨S .
1. ϕ ∧∼ϕ ` (ϕ ∧∼ϕ)∨ (ψ ∨∼ψ) (di1)
2. (ϕ ∧∼ϕ)∨ (ψ ∨∼ψ) ` (ψ ∨∼ψ)∨ (ψ ∨∼ψ) (saf∨)
3. (ψ ∨∼ψ)∨ (ψ ∨∼ψ) ` ψ ∨∼ψ (did)
4. ϕ ∧∼ϕ ` ψ ∨∼ψ (1–3; (tr), twice)

Relations between the FDE-based mingle systems are such that they constitute a
four-element lattice presented in Figure 1 (together with the base system FDES). In
this Hasse diagram, the order is the subset relation between the sets of provable conse-
quences of the systems. It is also a sublattice of the lattice of FDE family constructed
in [60, Figure 1] (cf. Figure 4 in [62]).

s
s

s s

s FDES

SMS

RM∧SRM∨S

RMS

FIGURE 1. Diamond of FDE-based mingle logics

Remarkably, the four system defined above are not the only FDE-based mingle
logics. In fact, one can show that there are infinitely many of such logics between
SMS and RM∧S , as well as between RM∧S and RMS on the one side, and also between

the characteristic principle of the first-degree entailment fragment of the basic mingle logic RM. There-
fore, I employ the label which reflects the interconnection between Mingle and Safety on the first-degree
entailment level.
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SMS and RM∨S , as well as between RM∨S and RMS on the other side. To show this,
consider the following lemma.

Lemma 20. Rules (ci) and (de) of the system Efde are not admissible in SMS; (ci)
is admissible in RM∧S , but not in RM∨S ; (de) is admissible in RM∨S , but not in RM∧S ;
and both (ci) and (de) are admissible in RMS.

Proof. To see that neither (ci), nor (de) is admissible in SMS, note that the following
consequences are not derivable in this system

(ϕ ∧∼ϕ) ` (ψ ∨∼ψ)∧ (χ ∨∼χ),(saf∧1)

(ϕ ∧∼ϕ)∨ (ψ ∧∼ψ) ` (χ ∨∼χ),(saf∨1)

although ϕ ∧∼ϕ ` χ ∨∼χ , ψ ∧∼ψ ` χ ∨∼χ , ϕ ∧∼ϕ ` ψ ∨∼ψ are derivable
in it. The mentioned non-derivability can be established semantically by using the
completeness result from Theorem 23 in the next section. I postpone this task till then.

Moreover, (ci) is not admissible in RM∨S , because (saf∧1) is not RM∨S -derivable,
and (de) is not admissible in RM∧S , because (saf∨1) is not RM∧S -derivable.

To see that both (ci) and (de) are admissible in RMS, it is enough to show that the
following consequences are derivable in it (cf. [62, Lemma 4.2]).

(((ϕ ∧∼ϕ)∨χ)∧ξ )∧υ ` (((ψ ∨∼ψ)∨χ)∧ξ )∧υ ,
(((ϕ ∧∼ϕ)∨χ)∧ξ )∨υ ` (((ψ ∨∼ψ)∨χ)∧ξ )∨υ ,

which is not a difficult exercise.
Analogously, to see that (ci) is admissible in RM∧S it is enough to observe that ((ϕ∧

∼ϕ)∧ χ)∧ ξ ` ((ψ ∨∼ψ)∧ χ)∧ ξ is derivable in it, whereas for the admissibility
of (de) in RM∨S , one has to show the derivability of ((ϕ ∧∼ϕ)∨χ)∨ξ ` ((ψ ∨∼ψ)
∨χ)∨ξ . /

In view of Lemma 20, we can apply the methodology from [54], and first observe,
that SMS turns out to be stronger than the system SMS∧1 = SMS + (saf∧1), in the
sense that the set of consequences derivable in the first system is a proper subset of the
set of consequences derivable in the second system, i.e., SMS ⊂ SM∧1S. It is possible
to generalize this observation by considering the consequences

(saf∧n) ϕ ∧∼ϕ ` (ψ0∨∼ψ0)∧·· ·∧ (ψn∨∼ψn)

for each n ≥ 1. The corresponding systems are then defined as SMS∧n = SMS +
(saf∧n). We obtain then a denumerable chain of extensions of SMS:

SMS ⊂ SMS∧1 ⊂ ·· · ⊂ SMS∧n ⊂ ·· · ⊂ SMS∧∞ ⊂ RM∧S ,
such that SMS∧n ⊂ SMS∧n+1 for any n≥ 1, and SMS∧∞ is the union of all the elements
of the chain, except of RM∧S (cf. [54, p. 330]).

Furthermore, since RM∧S is not closed under (de), it turns out that, e.g.,

(saf∧∨1) ((ϕ0∧∼ϕ0)∨ (ϕ1∧∼ϕ1))∧χ ` (ψ ∨∼ψ)∧χ
is not derivable in RM∧S , although both (ϕ0 ∧∼ϕ0)∧ χ ` (ψ ∨∼ψ)∧ χ and (ϕ1 ∧
∼ϕ1)∧χ ` (ψ ∨∼ψ)∧χ are derivable in it. Generalizing this observation, consider
the consequences

(saf∧∨n) ((ϕ0∧∼ϕ0)∨·· ·∨ (ϕn∧∼ϕn))∧χ ` (ψ ∨∼ψ)∧χ
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for each n ≥ 1, and define the corresponding systems RM∧S∨n = RM∧S + (saf∧∨n). We
then again obtain a denumerable chain of extensions of RM∧S :

RM∧S ⊂ RM∧S∨1 ⊂ ·· · ⊂ RM∧S∨n ⊂ ·· · ⊂ RM∧S∨∞ ⊂ RMS,

such that RM∧S∨n ⊂ RM∧S∨n+1 for any n≥ 1.
Dually, for each n≥ 1, we can first consider the consequence

(saf∨n) (ϕ0∧∼ϕ0)∨·· ·∨ (ϕn∧∼ϕn) ` ψ ∨∼ψ,

and the corresponding system SMS∨n = SMS + (saf∨n). A denumerable chain of ex-
tensions of SMS in other direction looks then as follows:

SMS ⊂ SMS∨1 ⊂ ·· · ⊂ SMS∨n ⊂ ·· · ⊂ SMS∨∞ ⊂ RM∨S ,

such that SMS∨n ⊂ SMS∨n+1 for any n≥ 1. Moving on this path further towards RMS,
we can consider the consequences:

(saf∨∧n) (ϕ ∧∼ϕ)∨χ ` ((ψ0∨∼ψ0)∧·· ·∧ (ψn∨∼ψn))∨χ

for each n ≥ 1, and define the corresponding systems RM∨S∧n = RM∨S + (saf∨∧n). We
then obtain a denumerable chain of extensions of RM∨S :

RM∨S ⊂ RM∨S∧1 ⊂ ·· · ⊂ RM∨S∧n ⊂ ·· · ⊂ RM∨S∧∞ ⊂ RMS,

such that RM∨S∧n ⊂ RM∨S∧n+1 for any n≥ 1.
Thus, each side of the diamond in Figure 1 contains infinitely many FDE-based

mingle systems. Algebraic properties of these chains of systems deserve special con-
sideration.

6. SEMANTICS FOR SAFETY

Belnap, when explaining his useful four-valued logic of how a computer should
think, argues, in particular, that a computer should “say that the inference from A to B
is valid, or that A entails B, if the inference never leads us from the True to the absence
of the True (preserves Truth), and also never leads us from the absence of the False to
the False (preserves non-Falsity)”, see in [49, p. 44, emphasis in original]. He imme-
diately adds: “Dunn, 1976, has shown that it suffices to mention truth-preservation,
since if some inference form fails to always preserve non-Falsity, then it can be shown
by a technical argument that it also fails to preserve Truth” [ibid.]. The following
lemma confirms the latter remark with respect to the Dunn–Belnap intuitive seman-
tics for first-degree entailment.

Lemma 21. For any ϕ,ψ ∈ L{∧,∨,∼}, ϕ �fde ψ ⇔∀v( f ∈ v4(ψ)⇒ f ∈ v4(ϕ)).

Proof. See, e.g., Dunn [34, Proposition 4]. /

Belnap interprets this result of Dunn in the sense that “the False really is on all
fours with the True, so that it is profoundly natural to state our account of ‘valid’
or ‘acceptable’ inference in a way which is neutral with respect to the two” [ibid.].
Now, it can also make sense to focus on the emphasis in the initial quotation. Why
not interpret it as meaning that the conditions of truth preservation and non-falsity
preservation are not interchangeable, but rather mutually complementary (and thus
jointly necessary)? To be specific, one can assume, that, at least in some cases, it is
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not sufficient for a valid inference to preserve truth or (equivalently) non-falsity, as is
the case with FDE-entailment, but that both preservations must be used as essential
components of an entailment framework.

Quite notably, if we will get literal with Belnap’s initial suggestion that a valid
inference should explicitly preserve both truth and non-falsity, we can obtain seman-
tics for various FDE-based mingle systems. Dunn in [28, Note 7] explains that we
“can capture semantically the first-degree implications of the system RM” (for which,
he says, (saf) is “kind of characteristic”) when, together with the usual requirement
of truth preservation, we “bring into the definition of ‘validity’ the additional require-
ment that whenever the conclusion is false so is the premiss” (italics mine). Moreover,
it turns out that if by these requirements we will appropriately incorporate two types
of truth and falsity — to be only true (false), and to be at least true (false), then we can
develop a general semantic framework which covers all the four “corner systems” of
our Diamond. Whereas truth and falsity conditions for RMS can be defined in terms
of “at least values” (see [34, p. 15]), and truth and falsity conditions for SMS employ
“only values” (see [62, p. 19]), the semantics for RM∧S and RM∨S can be constructed
as certain combinations thereof.

Recall generalized truth-value function v4, which has been defined in Section 3 as
a map from the set of propositional variables (Var) into Dunn–Belnap’s set of (four)
generalized truth values {T,F,B,N}. Define a three-valued truth-value function on a
subset of the set of four truth values, namely, v3 : Var 7→ {T,F,N}, and extend it to
compound formulas as in Definition 7, mutatis mutandis. We have then the following
definition of entailment relations for the four main FDE-based mingle logics.

Definition 22.
1. ϕ �sm ψ =df ∀v4(v4(ϕ) = T⇒ v4(ψ) = T ) & ∀v4(v4(ψ) = F⇒ v4(ϕ) = F);
2. ϕ �rm∧ ψ =df ∀v4(v4(ϕ) = T⇒ v4(ψ) = T ) & ∀v3( f ∈ v3(ψ)⇒ f ∈ v3(ϕ));
3. ϕ �rm∨ ψ =df ∀v3(t ∈ v3(ϕ)⇒ t ∈ v3(ψ)) & ∀v4(v4(ψ) = F⇒ v4(ϕ) = F);
4. ϕ �rm ψ =df ∀v3(t ∈ v3(ϕ)⇒ t ∈ v3(ψ)) & ∀v3( f ∈ v3(ψ)⇒ f ∈ v3(ϕ)).

The entailment relation of SMS ensures the preservation of value T from a premise
to a conclusion, and also the preservation of value F in the backward direction (from
conclusion to premise) in the Dunn–Belnap four-valued framework. Thus, T plays
here the role of the designated truth value, whereas F can be considered the antides-
ignated one, cf. [64, p. 492]. The definition of entailment relation in RMS retains
the same designated and antidesignated truth values, but now in a three-valued setting
{T,F,N}.10 It is also noteworthy that if in the definition of �sm we keep just the first
part, which deals with the value T , we obtain semantics for the Exactly True Logic
from [51], and if we focus only on the second part with the value F , the result will
be semantics for the Non-Falsity Logic from [63]. Quite remarkably, semantics for
Kleene’s strong three-valued logic and Priest’s Logic of Paradox are obtained in the
same way from the definition of �rm, see [62, Definition 5.1]. Therefore, relations of
SMS to Exactly True Logic and Non-Falsity Logic are exactly the same as the relations
of RMS to Kleene’s logic and Priest’s logic.

10 Observe, that it could equivalently be defined by means of another truth-value function v3′ : Var 7→
{T,F,B}, cf. [34, Theorem 12 (iii)].
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Now, since RM∧S is the intersection of RMS and Exactly True Logic, the definition
of �rm∧ is in fact the combination of definitions of their entailment relations. Note,
that in the definition of �rm∧ we use simultaneously two truth-value functions, v4 and
v3. The definition of �rm∨ is obtained dually.

In what follows, I will denote by ϕ `sm ψ , ϕ `rm∧ ψ , ϕ `rm∨ ψ and ϕ `rm ψ the
facts that the consequence ϕ ` ψ is provable in the system SMS, RM∧S , RM∨S and
RMS respectively. We have then the following soundness theorem.

Theorem 23. Let s be sm, rm∧, rm∨ or rm. Then ϕ `s ψ⇒ϕ �s ψ .

Proof. Let us check only the characteristic consequences of each system.
1. Consider (saf) and �sm. Assume, that ϕ ∧∼ϕ 6�sm ψ ∨∼ψ . Then, (a) there

is v4, such that [v4(ϕ ∧∼ϕ) = T , and v4(ψ ∨∼ψ) 6= T ]; or (b) there is v4, such that
[v4(ψ ∨∼ψ) = F , and v4(ϕ ∧∼ϕ) 6= F]. In the case of (a) we have, in particular,
v4(ϕ) = T , and v4(ϕ) = F , which is impossible. In the case of (b), we have that
v4(ψ) = F and v4(ψ) = T , which is again impossible.

2. Consider (saf∧) and �rm∧ . Assume (ϕ ∧∼ϕ)∧ χ 6�rm∧ (ψ ∨∼ψ)∧ χ . Then at
least one of the following two cases should be possible:

(a) ∃v4[v4((ϕ ∧∼ϕ)∧χ) = T and v4((ψ ∨∼ψ)∧χ) 6= T ].
(b) ∃v3[ f ∈ v3((ψ ∨∼ψ)∧χ) and f /∈ v3((ϕ ∧∼ϕ)∧χ)].
Take (a). We immediately get v4(ϕ) = T , and v4(ϕ) = F , which is impossible.
Take (b). Then [( f ∈ v3(ψ) and t ∈ v3(ψ)), or f ∈ v3(χ)], and f /∈ v3(ϕ), t /∈ v3(ϕ),

f /∈ v3(χ). In the first case we have f ∈ v3(ψ), t ∈ v3(ψ), which is impossible for v3.
In the second case we obtain f ∈ v3(χ) and f /∈ v3(χ), a contradiction.

3. Consider (saf∨) and �rm∨ . Assume (ϕ ∧∼ϕ)∨ χ 6�rm∨ (ψ ∨∼ψ)∨ χ . Then at
least one of the following two cases should be possible:

(a) ∃v3[t ∈ v3((ϕ ∧∼ϕ)∨χ) and t /∈ v3((ψ ∨∼ψ)∨χ)].
(b) ∃v4[v4((ψ ∨∼ψ)∨χ) = F and v4((ϕ ∧∼ϕ)∨χ) 6= F ].
Take (a). Then [(t ∈ v3(ϕ) and f ∈ v3(ϕ)), or t ∈ v3(χ)], and t /∈ v3(ψ), f /∈ v3(ψ),

t /∈ v3(χ). In the first case, we get t ∈ v3(ϕ), and f ∈ v3(ϕ), which is impossible for
v3. In the second case, we obtain t ∈ v3(χ), and t /∈ v3(χ), a contradiction.

Take (b). We immediately get v4(ψ) = F , and v4(ψ) = T , which is impossible.
4. Consider (saf∨∧) and �rm. Assume ((ϕ∧∼ϕ)∨χ)∧ξ 6�rm ((ψ∨∼ψ)∨χ)∧ξ .

Then at least one of the following two cases should be possible:
(a) ∃v3[t ∈ v3(((ϕ ∧∼ϕ)∨χ)∧ξ ), and t /∈ v3(((ψ ∨∼ψ)∨χ)∧ξ )].
(b) ∃v3[ f ∈ v3(((ψ ∨∼ψ)∨χ)∧ξ ), and f /∈ v3(((ϕ ∧∼ϕ)∨χ)∧ξ )].
Take (a). Then, first, t ∈ v3((ϕ ∧∼ϕ)∨ χ), and t ∈ v3(ξ ), whereas t /∈ v3((ψ ∨

∼ψ)∨χ), or t /∈ v3(ξ ). We rule out the case t ∈ v3(ξ ), and t /∈ v3(ξ ) (a contradiction),
and what remains is: [(t ∈ v3(ϕ), and f ∈ v3(ϕ)), or t ∈ v3(χ)], and t /∈ v3(ψ), f /∈
v3(ψ), t /∈ v3(χ). In the first case, we get t ∈ v3(ϕ), and f ∈ v3(ϕ), which is impossible
for v3, and in the second case, we obtain t ∈ v3(χ), and t /∈ v3(χ), a contradiction.

Case (b) is covered analogously. /

Having Theorem 23, one can show, as promised, that, e.g., (saf∧1) from the proof
of Lemma 20 is not derivable in SMS. Indeed, let, e.g., v4(ϕ) = B, v4(ψ) = B and
v4(χ) = N. In this case v4((ψ ∨∼ψ)∧ (χ ∨∼χ)) = F , but v4(ϕ ∧∼ϕ) = B. Hence,
(ϕ ∧∼ϕ) 6�sm (ψ ∨∼ψ)∧ (χ ∨∼χ).
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For a completeness proof, we employ the canonical model constructions in terms
of theories. For any system S we as usual define S-theory T as the set of formulas
closed under `s and conjunction introduction, that is, ϕ ∈ T ,ϕ `s ψ⇒ψ ∈ T and
ϕ ∈ T ,ψ ∈ T ⇒ϕ ∧ψ ∈ T . A theory is prime iff it has the disjunction property, that
is, ϕ ∨ψ ∈ T ⇒ϕ ∈ T or ψ ∈ T . A theory T is consistent iff there is no ϕ , such that
both ϕ ∈ T and ∼ϕ ∈ T . T is decisive iff for each ϕ , ϕ ∈ T or ∼ϕ ∈ T .

We first prove the completeness of RMS by considering RM-theories. The follow-
ing variation of Lindenbaum’s lemma holds:

Lemma 24. If ϕ 0rm ψ , then there is a consistent prime RM-theory T , such that
ϕ ∈ T and ψ /∈ T , or there is a consistent prime RM-theory T , such that ∼ϕ /∈ T
and ∼ψ ∈ T .

Proof. As usual, one starts from the set of formulas T0 = {ψ ′ : ϕ `rm ψ ′}. It is easy to
see that T0 is an RM-theory (since (tr) and (ci) are admissible in RMS), and moreover,
ϕ ∈ T0, and ψ /∈ T0. Enumerate all the sentences of our language χ0,χ1,χ2, . . . (where
χ0 is ϕ), and consider a series of RM-theories T0,T1,T2, . . . , defining for any Tn theory
Tn+1 as follows: (1) if ψ /∈ Tn +ϕn, then Tn+1 = Tn +ϕn; (2) Tn+1 = Tn, otherwise.
Consider the union of all Tn. It is easy to see that T is an RM-theory, such that ϕ ∈ T
and ψ /∈ T . By using the closure of RM-theories under (de) and distributivity rules
one can show that T is also prime, cf. e.g., Dunn [34, Lemma 8].

Now, if this theory is consistent, we are through. If it is inconsistent, then by
(saf), which is derivable in RMS, it is decisive. Define theory T ∗ as follows (for
any χ): (1) χ ∈ T ∗⇔∼χ /∈ T ; (2) ∼χ ∈ T ∗⇔ χ /∈ T . Using the closure of RMS

under (con), it is not difficult to show that T ∗ is indeed a prime RM-theory, which is
consistent. We also have ∼ϕ /∈ T ∗ and ∼ψ ∈ T ∗. /

We now have the following valuation lemma.

Lemma 25. Let T be a prime RM-theory, and define a canonical valuation vτ so that
t ∈ vτ(p) iff p ∈ T , and f ∈ vτ(p) iff ∼ p ∈ T . Then truth and falsity conditions of
compound formulas (Definition 7) hold for the canonical valuation so defined.

Proof. A simple check. /

Theorem 26. For any ϕ,ψ ∈ L{∧,∨,∼}, ϕ �rm ψ ⇒ ϕ `rm ψ .

Proof. Let ϕ 0rm ψ . By Lemma 24 there is a consistent prime RM-theory T , such that
ϕ ∈ T and ψ /∈ T , or there is a consistent prime RM-theory T , such that∼ϕ /∈ T and
∼ψ ∈ T . Thus, there is a canonical valuation vτ , such that t ∈ vτ(ϕ), and t /∈ vτ(ψ),
or there is a canonical valuation vτ , such that f /∈ vτ(ϕ), and f ∈ vτ(ψ). Consistency
of T ensures that vτ is v3. Hence, ϕ 2rm ψ . /

For the completeness proof of SMS, RM∧S , and RM∨S , we will deal with FDE-
theories to obtain the corresponding variations of the Lindenbaum lemma.

Lemma 27. Let ϕ 0sm ψ . Then there is a prime FDE-theory T , such that ϕ ∈ T ,
∼ϕ /∈ T , and ψ /∈ T , or there is a prime FDE-theory T , such that ∼ϕ /∈ T ,∼ψ ∈ T ,
and ψ /∈ T .
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Proof. First, take as the starting theory T0 = {ψ ′ : ϕ `fde ψ ′}. We have ϕ ∈ T0, and
since ϕ `fde ψ⇒ϕ `sm ψ , also ψ /∈ T0. Either ∼ϕ ∈ T0 or ∼ϕ /∈ T0. If the latter
is the case, then enumerate all the sentences of the language: χ1,χ2, . . . , and build
up a series of theories by defining for every Tn the next theory Tn+1 as follows: (1)
if ∼ϕ ∨ψ /∈ Tn +ϕn, then Tn+1 = Tn +ϕn; (2) Tn+1 = Tn, otherwise. The required
theory T is then defined as the union of all the Tn’s. T is a theory containing ϕ
that is maximal with respect to the property of not containing ∼ϕ ∨ψ . By the usual
argument one can show that T is prime. By using (di1) and (dco) we also get that
∼ϕ /∈ T and ψ /∈ T .

Assume∼ϕ ∈ T0; then ϕ `fde ∼ϕ . Since ϕ `fde ϕ , by (ci) we have ϕ `fde ϕ∧∼ϕ .
Hence, ϕ `sm ϕ ∧∼ϕ , and by (saf) it turns out that ϕ is such that ϕ `sm ψ ∨∼ψ . In
this case, consider theory T ′0 = {∼ϕ ′ : ϕ ′ `fde ψ}. We have ∼ψ ∈ T ′0 , and ∼ϕ /∈ T ′0 .
Moreover, ψ /∈ T ′0 . Indeed, assume ψ ∈ T ′0 ; then ∼ψ `fde ψ . Using ψ `fde ψ , by
(de) we get ψ ∨∼ψ `fde ψ , and hence ψ ∨∼ψ `sm ψ . By transitivity of `sm we get
to ϕ `sm ψ , contrary to the assumption of the lemma. The required theory T can be
constructed as above. /

Lemma 28. Let ϕ 6`rm∧ ψ . Then there is a prime FDE-theory T , such that ϕ ∈ T ,
∼ϕ /∈ T and ψ /∈ T , or there is a consistent prime FDE-theory T , such that ∼ϕ /∈ T
and ∼ψ ∈ T .

Proof. Again, take as the starting theory T0 = {ψ ′ : ϕ `fde ψ ′}. We have ϕ ∈ T0, and
since ϕ `fde ψ⇒ϕ `rm∧ ψ , also ψ /∈ T0. Either ∼ϕ ∈ T0 or ∼ϕ /∈ T0. If the latter is
the case, then we continue as in Lemma 27 and are through.

Assume ∼ϕ ∈ T0; then ϕ `fde ∼ϕ . Since ϕ `fde ϕ , then by (ci) we have ϕ `fde
ϕ ∧∼ϕ . Now, consider theory T ′0 = {∼ϕ ′ : ϕ ′ `fde ψ}. We have ∼ψ ∈ T ′0 , and
∼ϕ /∈ T ′0 . Starting from T ′0 we build up a series of theories by defining for every
Tn the next theory Tn+1 as follows: (1) if ∼ϕ /∈ Tn +ϕn, then Tn+1 = Tn +ϕn; (2)
Tn+1 = Tn, otherwise. The required theory T can be defined as the union of all the
Tn, which is a maximal theory containing ∼ψ with respect to the property of not
having ∼ϕ . By the usual argument one can show that T is prime. Moreover, T is
consistent. Indeed, assume it is not. Then, there is a formula χ , such that χ ∈ T , and
∼χ ∈ T . Hence, χ `fde ψ , and ∼χ `fde ψ . By (de) we obtain χ ∨∼χ `fde ψ . Recall
that ϕ `fde ϕ ∧∼ϕ . By (saf) we get to ϕ `fde ψ . Then, ϕ `rm∧ ψ , contrary to the
assumption of the lemma. /

Lemma 29. Let ϕ 0rm∨ ψ . Then there is a consistent prime FDE-theory T , such that
ϕ ∈ T and ψ /∈ T , or there is a prime FDE-theory T , such that ∼ϕ /∈ T , ∼ψ ∈ T
and ψ /∈ T .

Proof. The lemma is proved dually to Lemma 28. /

And finally, we have the completeness theorem.

Theorem 30. Let s be sm, rm∧ or rm∨. Then for any ϕ,ψ ∈ L{∧,∨,∼}, ϕ �s ψ ⇒
ϕ `s ψ .
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Proof. 1. Let ϕ 6`sm ψ . By Lemma 27, there is a prime FDE-theory T , such that
ϕ ∈ T , ∼ϕ /∈ T , and ψ /∈ T , or there is a prime FDE-theory T , such that ∼ϕ /∈ T ,
∼ψ ∈ T , and ψ /∈ T . Consider the canonical valuation defined in Lemma 25. We
have t ∈ vτ(ϕ), f /∈ vτ(ϕ), and t /∈ vτ(ψ); or f ∈ vτ(ψ), t /∈ vτ(ψ), and f /∈ vτ(ϕ).
That is, vτ(ϕ) = T and vτ(ψ) 6= T , or vτ(ψ) = F and vτ(ϕ) 6= F . Hence, ϕ 6�sm ψ .

2. Let ϕ 6`rm∧ ψ . Then, by Lemma 28, there is a prime FDE-theory T , such that
ϕ ∈ T , ∼ϕ /∈ T and ψ /∈ T , or there is a consistent prime FDE-theory T , such that
∼ϕ /∈ T and ∼ψ ∈ T . Using the canonical valuation vτ , we get vτ(ϕ) = T and
vτ(ψ) 6= T , or f ∈ vτ(ψ) and f /∈ vτ(ϕ). Consistency of the theory in the second case
ensures that vτ is in fact v3. Hence, ϕ 6�rm∧ ψ .

3. The proof for ϕ 6`rm∨ ψ is analogous. /

7. SAFETY, R-MINGLE AND ŁUKASIEWICZ’S LOGIC

In this section, I will consider the issue of a proper characterization of RMS, and
in particular, a disputability of its association with some kind of “Kleene’s logic,”
as, e.g., in [54; 1; 52]. As observed in Section 1, the latter connection arose from
consideration of certain algebraic structure which is sometimes named after Kleene.
In what follows, I will argue in favor of other logics as more suitable companions for
RMS, and also cast some doubt on the supposed connection of the algebraic structure
in question with Kleene.

To this effect, I will give a proof of the fact mentioned above, namely, that RMS

(and hence RMfde) is indeed the first-degree entailment fragment of both R-Mingle
(RM) and Łukasiewicz’s three-valued logic Ł3. The proof will be essentially seman-
tical. For axiomatic formulations of RM and Ł3 in the language L{→,∧,∨,∼}, consider
the following list of axioms and rules of inference:

A1. ϕ → ϕ
A2. (ϕ → ψ)→ ((ψ → χ)→ (ϕ → χ))
A3. ϕ → ((ϕ → ψ)→ ψ)
A4. (ϕ → (ϕ → ψ))→ (ϕ → ψ)
A5. ϕ → (ϕ → ϕ)
A6. ϕ → (ψ → ϕ)
A7. (ϕ → (ψ → χ))→ ((ϕ → ψ)→ (ϕ → χ))
A8. ((ϕ → χ)→ ψ)→ (((ψ → ϕ)→ χ)→ χ)
A9. (ϕ ∧ψ)→ ϕ A10. (ϕ ∧ψ)→ ψ

A11. ((ϕ → ψ)∧ (ϕ → χ))→ (ϕ → (ψ ∧χ))
A12. ϕ → (ϕ ∨ψ) A13. ψ → (ϕ ∨ψ)
A14. ((ϕ → χ)∧ (ψ → χ))→ ((ϕ ∨ψ)→ χ)
A15. (ϕ ∧ (ψ ∨χ))→ ((ϕ ∧ψ)∨χ)
A16. (ϕ →∼ψ)→ (ψ →∼ϕ)
A17. ∼∼ϕ → ϕ A18. ϕ →∼∼ϕ
A19. (ϕ ∧∼ϕ)→ (ψ ∨∼ψ)

R1. ϕ → ψ,ϕ ⇒ ψ
R2. ϕ,ψ ⇒ ϕ ∧ψ
R3. ϕ → ψ ⇒∼ψ →∼ϕ
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System RM is determined by A1–A5, A9–A17, R1, R2, see, e.g., [3, p. 341] and
[4, §R], and system Ł3 is determined by A6–A14, A17–A19, R1, R3, see Iturrioz [40,
p. 618].

First consider semantics for RM. Dunn in [29] constructs a Kripke-style semantics
for R-Mingle using a binary accessibility relation. Dunn’s construction is explicitly
based on the valuation v3′ from footnote 10, but for the sake of uniformity with the
approach adopted in the present paper, I will modify here that semantics with respect
to valuation v3.

Namely, define an RM-model as a triple 〈W,R,v3〉, where W is a set, R is a re-
flexive, anti-symmetric, transitive, connected relation on W , and valuation v3 is now
relativized with respect to W , being thus defined as a map from Var×W into {T,F,N},
subject to the following hereditary condition (for any p ∈ Var, and α,β ∈W ).

Rαβ ⇒ v3(p,α)⊆ v3(p,β ).
The valuation v3 is extended to compound formulas as follows:

Definition 31.
1. t ∈ v3(ϕ ∧ψ,α) ⇔ t ∈ v3(ϕ,α) and t ∈ v3(ψ,α),

f ∈ v3(ϕ ∧ψ,α) ⇔ f ∈ v3(ϕ,α) or f ∈ v3(ψ,α);
2. t ∈ v3(ϕ ∨ψ,α) ⇔ t ∈ v3(ϕ,α) or t ∈ v3(ψ,α),

f ∈ v3(ϕ ∨ψ,α) ⇔ f ∈ v3(ϕ,α) and f ∈ v3(ψ,α);
3. t ∈ v3(ϕ → ψ,α) ⇔ ∀β

[
Rαβ ⇒ [(t ∈ v3(ϕ,β )⇒ t ∈ v3(ψ,β )) and ( f ∈

v3(ψ,β )⇒ f ∈ v3(ϕ,β ))]
]
,

f ∈ v3(ϕ → ψ,α) ⇔ ∃β
[
Rαβ and [(t ∈ v3(ϕ,β ) and f ∈ v3(ψ,β )) or ( f ∈

v3(ψ,β ) and t ∈ v3(ϕ,β ))]
]
;

4. t ∈ v3(∼ϕ,α) ⇔ f ∈ v3(ϕ,α), f ∈ v3(∼ϕ,α) ⇔ t ∈ v3(ϕ,α).

Let �RM ϕ mean that the formula ϕ is valid in the logic RM, and let `RM ϕ mean
that ϕ is derivable in RM. One can define the notion of RM-validity as follows.

Definition 32. �RM ϕ iff for any valuation v3 in every RM-model 〈W,R,v3〉, we have
that v3(ϕ,α) = T .

And we have the following soundness and completeness theorem, the proof of
which can be extracted from [29] mutatis mutandis.

Theorem 33. For any ϕ ∈ L{→,∧,∨,∼}, `RM ϕ ⇔ �RM ϕ .

Remark 34. The completeness proof of RM is given in [29] by a canonical model
construction, where an RM-model is defined on the base of prime RM-theories. The
canonical valuation vc is then relativized with respect to the theories in a canonical
model, so that for a propositional variable p, and a theory T , t ∈ vc(p,T )⇔ p ∈ T ,
and f ∈ vc(p,T )⇔∼ p ∈ T . It can be shown that the canonical valuation so defined
can be extended to compound formulas by Definition 31.

To obtain semantics for Ł3 define a matrix Ł3 = 〈{T,N,F},T,v3〉, where {T,N,F}
is as in Section 6, T is the designated element, and v3 is again a map Var 7→ {T,F,N}
extended to compound formulas by means of the following definitions for each con-
nective from the language L{→,∧,∨,∼}:
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v3
→ T N F

T T N F
N T T N
F T T T

v3
∧ T N F

T T N F
N N N F
F F F F

v3
∨ T N F

T T T T
N T N N
F T N F

v3
∼

T F
N N
F T

Ł3-validity (�Ł3) can be defined as usual.

Definition 35. �Ł3 ϕ iff for any v3 in valuation system Ł3, v3(ϕ) = T .

Ł3 is sound and complete with respect to this semantics:

Theorem 36. For any ϕ ∈ L{→,∧,∨,∼}, `Ł3 ϕ ⇔ �Ł3 ϕ .

We are now in a position to establish the relationships between RMS on the one
hand, and RM and Ł3 on the other hand (cf. [34, Theorem 12]).

Lemma 37. For any ϕ,ψ ∈ L{∧,∨,∼},
(1) ϕ → ψ is provable in RM iff ϕ ` ψ is provable in RMS;
(2) ϕ → ψ is provable in Ł3 iff ϕ ` ψ is provable in RMS.

Proof. The direction from right to left is easy to establish by demonstrating that for
any rule of RMS of the form ϕ ` ψ the corresponding implication ϕ → ψ is provable
both in RM and in Ł3, which is a routine exercise.

Moving in the opposite direction, assume that ϕ `ψ is not derivable in RMS. Then:
(1) By Lemma 24, there is a consistent prime RM-theory T ′, such that ϕ ∈ T ′ and

ψ /∈ T ′, or there is a consistent prime RM-theory T ′′, such that ∼ϕ /∈ T ′′ and ∼ψ ∈
T ′′. Consider a canonical RM-model 〈W c,Rc,vc〉, where W c is a set of consistent
prime RM-theories, such that T ′,T ′′ ∈W c; Rcαβ ⇔ α ⊆ β ; and vc is defined as
in the remark above. In this RM-model, we thus have ∃α ∈W c(t ∈ vc(ϕ,α) and
t /∈ vc(ψ,α)), or ∃β ∈W c( f ∈ vc(ψ,β ) and f /∈ vc(ϕ,β )). In both cases, we have
2RM ϕ → ψ , and, since RM is sound, ϕ → ψ is not provable in RM.

(2) By Theorem 18, ϕ 6�rm ψ . Hence, ∃v3(t ∈ v3(ϕ) and t /∈ v3(ψ)), or ∃v3( f ∈
v3(ψ) and f /∈ v3(ϕ)). A simple inspection of the definition of v3

→ in the matrix Ł3
shows that in both cases t /∈ v3(ϕ → ψ). Thus, 2Ł3 ϕ → ψ , and so 0Ł3 ϕ → ψ . /

Taking into account the deductive equivalence between RMS and RMfde, this proof
provides also the proof of Lemma 19.

Now, returning to the problem of a suitable characterization of the logic with Safety
as a distinctive principle, consider algebraic structures usually employed on this issue.
The basic structure here is De Morgan algebra.11 It can be defined as a structure
〈A,∩,∪,−,1〉, where 〈A,∩,∪,1〉 is a distributive lattice with greatest element 1, and
− is a unary operation on A satisfying the following conditions:

−−x = x,(1)

−(x∪ y) =−x∩−y.(2)

11Béziau in [16, p. 280] explains: “The idea of De Morgan algebra can be traced back to Moisil’s paper
[47]. They were later on studied in Poland and called quasi-boolean algebras by Rasiowa [17]. They also
have been called distributive i-lattices by Kalman [42].”
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Brignole and Monteiro in [22] came up with a new name “Kleene algebra” for a
structure obtained by equipping a De Morgan algebra with an additional condition,
which is an algebraic counterpart of (saf):12

x∩−x≤ y∪−y.(3)

They seem to justify this name by an observation that (saf) is verified in Kleene’s
(strong) three-valued logic, see [22, p. 4]. Kaarli and Pixley propose in [41, p. 296]
another definition of Kleene algebra by taking the equation

(x∩−x)∪ (y∪−y) = y∪−y(4)

instead of (3). Clearly, (3) and (4) are interderivable. It is observed that the variety of
Kleene algebras so defined is generated by a special structure K3 = 〈{0,a,1},∩,∪,−,
1〉 (notation adjusted), with 0 < a < 1, and −a = a. The label K3 apparently suggests
the association of this structure with Kleene’s logic. It is, however, noteworthy that
the structure in question is not uniquely Kleenean, and may well serve as an algebraic
background for other three-valued logics.

Most importantly, neither (3) nor (4) is characteristic for Kleene’s logic. Indeed,
although (saf) is a valid consequence of Kleene’s logic, it is so only as a substitutional
case of a more general principle (efq) provable there. Moreover, the implicational
version of Safety is not a theorem of Kleene’s logic, since the latter has no theorems
at all. Therefore, Brignole and Monteiro’s justification of the name “Kleene algebra”
seems not very persuasive.

At the same time, an easy check shows that implicational version of Safety is valid
in Łukasiewicz’s three-valued logic, and (saf) is valid there by itself, without (veq) or
(efq) being valid. Lemma 37 states essentially that (saf ) is indeed characteristic for the
non-implicational fragments of both R-Mingle and Łukasiewicz’s three-valued logic.
Thus, it could be more appropriate to associate the algebraic structure in question with
the name of Łukasiewicz rather than Kleene.

Itturioz in [40] defines a three-valued Łukasiewicz algebra as a structure 〈A,∩,∪,
⇒,−,1〉, where 〈A,∩,∪,⇒,1〉 is a relatively pseudo-complemented lattice with the
following additional condition for⇒:13

((x⇒ z)⇒ y)⇒ (((y⇒ x)⇒ y)⇒ y) = 1,(5)

and the unary operation − is subject to the conditions (1) and (2) above, as well as the
following additional condition:

(x∩−x)∩ (y∪−y) = x∩−x.(6)

Of course, (3), (4) and (6) are all equivalent. Furthermore, a Łukasiewicz algebra
so defined is explicitly formulated in the signature Ω = 〈∩,∪,⇒,−〉. Now, if one re-
moves from this signature the operation of relative pseudo-complement together with
the corresponding conditions, one obtains exactly the structure, which Brignole and

12As already said in Section 1, Kalman called such structure a “normal i-lattice.”
13A relatively pseudo-complemented lattice is a structure 〈A,∩,∪,⇒,1〉, where 〈A,∩,∪〉 is a lattice,

and the following condition holds: x ∩ y ≤ z iff x ≤ y⇒ z. The element x⇒ y is called the pseudo-
complement of x relative to y, see [53, pp. 52–53].
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Monteiro called “Kleene algebra,” but which might be better called “Kalman algebra”
or “quasi-Łukasiewicz algebra.”

The corresponding consequence system is the first-degree entailment fragment of
Łukasiewicz’s three-valued logic, which is coincident with the first-degree entailment
fragment of the logic R-Mingle, and which is a subsystem of Kleene’s strong three-
valued logic.

8. CONCLUDING REMARKS

Remarkably, the first individual full-fledged paper [27] published by J. Michael
Dunn (if not to take into account a short note [26]) was devoted to R-Mingle. The de-
velopment of this logical system at the start of Dunn’s rich and fruitful scientific career,
which spanned more than half a century, attested to his exceptional talent and abilities
in the field of philosophical logic. It is also rather symbolic that the last (individual)
paper Dunn apparently was working on, which has been posthumously published in
[33] was also dealing with this logical system. This clearly reaffirms the importance
of the mingle logics and the mingle principle in modern logical investigations.

In this paper, I argued for the applicability of the mingle principle as a kind of
safety-lock that helps to avoid the most disastrous consequences of the paradoxes of
relevance even in the presence of some irrelevant inferences. Furthermore, I have
concentrated on a specific implementation of the mingle principle on the first-degree
entailment level, dubbed “Safety.” As it turns out, the first-degree entailment frame-
work allows for a more subtle distinction between four main versions of this principle,
which form a four-element diamond-shaped lattice of what can be called “FDE-based
mingle logics,” with infinitely many intermediate systems in between. The corner sys-
tems of that lattice have a very natural and uniform semantics in terms of the forward
truth preservation and backward falsity preservation. It would be interesting to extend
the proposed semantic framework to the whole infinity of systems from our diamond.

Moreover, it was also observed that the first-degree fragment of RM is devoid of
a rather problematic irrelevant property (CP), which links together any propositions
of our language. In the first-degree entailment context this property is inexpressible
on the level of the object language; moreover, its meta-language formulation does not
hold in RMS either. That is, there are formulas ϕ and ψ in the language L{∧,∨,∼},
such that neither ϕ ` ψ nor ψ ` ϕ is provable in RMS. This observation suggests a
promising direction of future work — to consider the system RS = R+Safety.
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COMPLETENESS VIA METACOMPLETENESS

Shawn Standefer

ABSTRACT. We show that all logics in a certain class of modal relevant logics are
complete with respect to their reduced frames. The proof uses a combination of the
canonical frame method and metacompleteness results.

Keywords. Completeness, Metavaluations, Modal relevant logics, Reduced frames

This paper is dedicated to the memory of Mike Dunn. I had the good fortune of taking
a class at Pitt with Mike, on relevant logics, although he preferred the term “relevance
logics.” That class was the first time I felt like I understood completeness proofs
for relevant logics with respect to ternary relational frames. Mike was a wonderful
teacher, and his work on relevant logics has influenced my research greatly. I hope
he would have enjoyed this paper for connecting a few dots and answering an open
question.

1. INTRODUCTION

The study of relevant logics has been concerned, from its early days, with modal
elements. (Dunn and Restall [15] and Bimbó [7] are excellent overviews of the field
of relevant logic, and the interested reader can also consult Anderson and Belnap [1],
Read [46], Anderson et al. [2], Routley et al. [56], Brady [9], and Mares [34].) The
logic E of [1] is the logic of relevance and necessity, and Meyer [38] introduced an
alethic modal extension of R, which was algebraized by Dunn [13]. The modal aspect
of E has been further investigated by Mares and Standefer [37], Standefer [64], and
Standefer and Brady [68]. Meyer conjectured that E and the alethic extension of R
would coincide under translation, but this was refuted by Maksimova [28].

Early work on models for relevant logics was concerned with modality, such as
Urquhart [70, ch. 5] Routley and Meyer [53], and Fine [18, 359ff.]. This concern
was revitalized several years later, as evidenced by Fuhrmann [19], Mares and Meyer
[35; 36], Mares [29; 32], Meyer and Mares [40], and others. Certain approaches to
negation in the setting of frames for relevant logics take negation to be a modal notion,
such as Restall [49], Berto [3], and Berto and Restall [4]. Modal relevant logics are
not just restricted to alethic modal logics, as demonstrated by Goble [21; 23], Wansing
[71], Lokhorst [26; 27], Bilková et al. [5], Sedlár [58; 59], Punčochář and Sedlár [45],
Standefer [65; 66], and Savić and Studer [57], for example. Nor are modal relevant
logics restricted to entirely propositional concerns, as demonstrated by Ferenz [16]
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and Tedder and Ferenz [69]. Modal relevant logics are an active area of ongoing
research.

Another theme in the area of frames for relevant logics is an interest in reduced
frames, frames whose set of regular points is a singleton.1 This goes back to the first
papers by Routley and Meyer [53; 54; 55], although it recurs in later works, such as
[56] and Slaney [63].2

The two themes come together in the work of [19]. Furhmann notes the interest
in reduced frames, just before proving a result showing the incompleteness of an S4-
ish extension of R with respect to its reduced frames. The result is generalized by
Standefer [67], extending the incompleteness to weaker base logics and more modal
extensions.3 This leads naturally to the question of whether any modal relevant logics
are complete with respect to some class of reduced frames. In this paper, we will show
that there are. En route to proving this result, we will highlight a slight simplification
of Slaney’s [63] completeness proof for relevant logics that lack the axiom (WI).

The plan of the paper is as follows. In §2, we will present an overview of the
logics we are interested in and provide basic axiom systems. In §3, we will present an
overview of the ternary relational frames for relevant logics and their modal extensions
and we will define reduced frames. Then in §4, we will give an overview of the method
of proving Completeness via the canonical model method, including the adjustments
made for canonical reduced frames. Metavaluations are used in the latter construction
as well as in the main result of this paper, so they are explained in §5. Finally, in
§6, we bring the pieces together to prove that there are modal relevant logics that are
complete with respect to their reduced frames.

2. LOGICS

There are many relevant logics, and there are different ways of distinguishing rel-
evant and non-relevant logics. The logics of interest for this paper are the weaker
relevant logics. The stronger relevant logics will not play a prominent role, since their
modal extensions have been shown to be incomplete with respect to reduced modal
frames.

We will work with a language L built from a countably infinite set of atoms and the
connectives {→,∧,∨,∼} extended to include �.4 We will use L to mean either the
basic relevant language or the modal extension, leaving it to context to settle which
is under discussion. The basic logic B is the smallest set of formulas containing the
following axioms and closed under the following rules.

1See [66] for some discussion of the interest in reduced frames.
2Reduced frames are in some work on simplified semantics, such as Priest and Sylvan [44] and

Restall [48].
3There are incompleteness results for modal relevant logics that do not focus on reduced frames. Goble

[22] and Mares [33] both obtain incompleteness results for modal extensions of relevant logics without
restricting to reduced frames.

4To reduce parentheses, I will adopt the convention that the arrow binds least tightly, followed by
conjunction and disjunction, with negation and necessity binding most tightly.
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(A1) A→ A (A7) ∼∼A→ A
(A2) A∧B→ A, A∧B→ B (R1) A, A→ B⇒B
(A3) (A→ B)∧ (A→C)→ (A→ B∧C) (R2) A, B⇒A∧B
(A4) A→ A∨B, A→ B∨A (R3) A→∼B⇒B→∼A
(A5) (B→ A)∧ (C→ A)→ (B∨C→ A) (R4) A→ B⇒ (B→C)→ (A→C)
(A6) A∧ (B∨C)→ (A∧B)∨ (A∧C) (R5) A→ B⇒ (C→ A)→ (C→ B)

There are many different axioms one can add to obtain other relevant logics. Meyer
and Routley [41], [56, ch. 4] and Brady [10] provide some examples of common
axioms to add to base relevant logics. For the main results of this paper, the upper
bound for the strength of the base logic is marked by the addition of the following
axioms.5

(A9) A∧ (A→ B)→ B (WI)
(A10) (A→ B)→ ((B→C)→ (A→C)) (B′)
(A11) (A→ B)→ (∼B→∼A) (Contra)

Adding these three axioms to B gives one the logic C of [56], who show this logic to be
complete with respect to its reduced frames. C has the distinction of being the weakest
logic to be shown complete with respect to reduced frames using the techniques of
[56]. [63] showed how to obtain completeness results for weaker logics, notably those
lacking (WI), with respect to their reduced frames.6

Given a base logic L, the minimal modal extension L.M is obtained by adding the
following axiom and rule.

(Agg) �A∧�B→�(A∧B)
(Mono) A→ B⇒�A→�B

One gets further modal extensions by adding other modal axioms and rules. Some
standard ones to be considered below are the following.

(T) �A→ A (B) A→�∼�∼A
(D) �A→∼�∼A (5) ∼�A→�∼�A
(4) �A→��A (K) �(A→ B)→ (�A→�B)

(Nec) A⇒�A

Adding a set X of the axioms and rule above to L.M will result in the logic L.MX.
Below, “L” will at times be used in a way that is indifferent between a base relevant
logic and a modal relevant logic, since many of the points do not depend on modal el-
ements being absent. When a modal relevant logic is specifically under consideration,
the “L.M” or “L.MX” notation will be used.

The last two items on the list deserve comment, since they are included in normal
modal logics whose base logic is classical. The standard relational models for clas-
sically based modal logics ensure that (K) and (Nec) are valid. Despite the fact that

5This is not a common upper bound for logical strength, as it is properly weaker than T, perhaps the
weakest of the well known strong relevant logics defended by Anderson and Belnap. To get T from C, one
strengthens (A9) to (A→ (A→ B))→ (A→ B) (W).

6Giambrone [20] made a correction to Slaney’s work, but the details do not matter for present purposes.
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modal frames for relevant logics use a binary relation to interpret the necessity op-
erator, as is done with relational models for normal modal logics, (K) and (Nec) are
not valid.

We will say that a formula A is a theorem of the logic L just in case there is a proof
using the axioms and rules of L ending in A. When this is the case, we write `L A. It
will be useful, at times, to identify a logic with its set of theorems.

Let us turn to the frames for relevant logics.

3. FRAMES

We will use ternary relational frames to define validity.7 For that, we need some
definitions.

Definition 1. A ternary relational frame is a quadruple 〈K,N,R,∗〉, where K 6= /0,
N ⊆ K, R⊆ K×K×K, ∗ : K 7→ K, and which obeys the following conditions, where
a≤ b =Df ∃x ∈ N Rxab:

(i) ≤ is a partial order (reflexive, transitive, and anti-symmetric);
(ii) if a ∈ N and a≤ b, then b ∈ N;

(iii) if a≤ b, then b∗ ≤ a∗;
(iv) a∗∗ = a; and
(v) if Rabc, d ≤ a, e≤ b, and c≤ f , then Rde f .

The basic frames are for the logic B, defined in §2. Frames for stronger logics can
be obtained by imposing frame conditions. We will return to these conditions later in
this section.

The main result of the paper deals with modal extensions of relevant logics, so we
will define modal frames.

Definition 2. A modal frame is a quintuple 〈K,N,R,∗,S〉, where the first four com-
ponents make up a ternary relational frame and S⊆ K×K such that if Sbc and a≤ b,
then Sac.

We have defined modal frames apart from ternary relational frames because there
are a few points at which it will be useful to have the two notions separate. In particu-
lar, the completeness results with respect to reduced frames have mostly been proven
for non-modal, reduced ternary relational frames. We will use “frame” indifferently
for non-modal ternary relational frames and modal frames.

From frames, whether ternary relational or modal, we obtain models by adding a
valuation.

Definition 3. A model M is a pair of a ternary relational frame F and a valuation V ,
where V is a function from At×K to {0,1} such that if a ≤ b and V (p,a) = 1 then
V (p,b) = 1. The valuation is extended to the whole language as follows.

• a  p iff V (p,a) = 1;
• a ∼B iff a∗ 1 B;
• a  B∧C iff a  B and a C;
• a  B∨C iff a  B or a C;

7For more on ternary relational frames, see, for example, Restall [50] or Bimbó and Dunn [8].
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• a  B→C iff ∀b,c ∈ K(Rabc∧b  B⇒ c C);
• a �B iff ∀b ∈ K(Sab⇒b  B).

The heredity condition on ≤ is postulated only for atoms. One can show that in a
given model, for all formulas A, if a  A and a ≤ b, then b  A. This heredity fact,
while important for the overall development of the model theory, will be appealed to
only implicitly in what follows.

With that background in place, we can define validity.

Definition 4. A formula A holds in a model M iff ∀a ∈ N, a  A.
A formula A is valid on a frame F iff A holds in every model M built on F .
A formula A is valid in a class of frames C iff A is valid on every frame F in C.

As suggested by the definition of validity, we are interested in logics in the frame-
work FMLA, that is, as sets of formulas.8

The goal of this paper is to demonstrate completeness with respect to reduced
frames for a range of logics. So, we will define what it is for a frame to be reduced.

Definition 5. A frame F is reduced iff there is a unique ≤-minimal point a ∈ N such
that N = {b ∈ K : a ≤ b}. We will denote the minimal element of N in a reduced
frame by 0.

Where C is a class of frames, r(C) is the class of reduced frames in C.
We will say that a class of frames that does not satisfy the condition that all frames

be reduced is unreduced.

In the definition of ternary relational frames, ≤ was required to be a partial order.
This can be relaxed to be a pre-order, at the cost of adjusting the definition of being a
reduced frame. If ≤ is a pre-order, then there may be multiple, ≤-equivalent minimal
worlds, any one one of which could act as 0.9

In discussions of reduced frames, there is a different definition that is sometimes
used, according to which N is a singleton, {0}.10 In that context, a slightly different
definition of heredity is used, one that involves only 0, namely, a � b iff R0ab. We
can show that this definition of heredity agrees with the usual definition on reduced
frames.

Lemma 6. Suppose 〈K,N,R,∗〉 is a reduced frame. Let ≤ be the usual heredity or-
dering. Define a� b as R0ab. Then, a≤ b iff a� b.

The lemma extends to modal frames, with the additional frame condition on S follow-
ing immediately. There is no difference between the definition of reduced frame used
here in terms of N having a ≤-least element and the other definition in terms of N
being a singleton as far as validity and holding in a model go. This follows from the
next lemma.

Lemma 7. Let 〈K,N,R,∗,S〉 be a reduced frame. Then for any model on the frame,
0  A iff for all a ∈ N, a  A.

8See Humberstone [25, 103ff.] for more on logical frameworks.
9I would like to thank Greg Restall for discussion of this point.
10The definition adopted here is used by [50, 304ff.].
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Proof. The right to left direction is immediate. For the converse, suppose 0  A. Let
a ∈ N be arbitrary. From the definition of 0, 0≤ a, so a  A. Therefore, for all a ∈ N,
a  A, as desired. /

For many logics L, the additional axioms and rules added to B, or to B.M, to obtain
L have corresponding frame conditions. For example, the frame condition for (Con-
tra) is Rabc⇒Rac∗b∗, and the frame condition for (4) is that S is transitive.11 The
class of frames obeying the frame conditions for the axioms and rules of L will be CL.
We will call these L-frames.

In CL, the axioms and rules of L are sound, i.e., if A is a theorem of L then A is valid
in CL, and further, the logic is complete with respect to the class of frames obeying
these conditions, that is, if A is valid in CL, then A is a theorem of L. Not every axiom
and rule has a frame condition to which it corresponds in the present sense. For the
present paper, we are, for the most part, focusing on axioms and rules that do have
corresponding frame conditions.

Soundness with respect to an unreduced class of frames C implies soundness with
respect to a class of reduced frames, r(C). Completeness, however, is another matter.
It is a surprising feature of many non-modal relevant logics that they are complete with
respect to their reduced frames. The primary result of this paper is that completeness
extends to some, but not all, modal extensions of relevant logics.

The logic B is sound and complete with respect to C, the class of all ternary rela-
tional frames. Completeness extends to r(C).12 The logic B.M is sound and complete
with respect toM, the class of all modal frames. If we let X be KT45Nec, for exam-
ple, then the logic B.MX is complete with respect toMB.MX and in fact it is complete
with respect to r(MB.MX), a fact that follows from the results of §6. In §4 we will
look at the relevant details of the completeness proof.

4. CANONICAL MODEL

The proof of Completeness for relevant logics proceeds via a Henkin-style canon-
ical model method. In this method, one uses the logic L to obtain a large set of ap-
propriate L-theories. One then defines the set of regular points as the set of L-theories
containing all the theorems of the logic. One then defines the relations R and S and
the operation ∗ in terms of certain formulas being in, or not, certain L-theories. Let us
look at the details.

First, let us define L-theories.

Definition 8. A set of formulas X is an L-theory iff (i) if `L A→ B and A ∈ X then
B ∈ X , and (ii) if A,B ∈ X , then A∧B ∈ X .

An L-theory X is prime iff A∨B ∈ X only if A ∈ X or B ∈ X .

When proving Completeness, with respect to unreduced frames, one usually proves
a lemma showing that there are enough prime L-theories, where there being enough

11The particular frame conditions will not matter for the results of this paper, so they will be omitted.
For detailed lists of frame conditions, see [41], [56, ch. 4], [50, ch. 11], or Goldblatt and Kane [24], for
example.

12The simplified semantics of [44] uses reduced frames. A version of the Completeness result is
proved there.
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implies that for any non-theorem A, there is a regular, prime L-theory that does not
contain A. We will not recapitulate those details here, since detailed Completeness
proofs for the logics we are interested in can be found elsewhere.13

The canonical frame for L is defined as follows, where S is omitted if a non-modal
L is under consideration, in which case the language L is understood not to contain
formulas with �.

Definition 9. The canonical frame for L is 〈K,N,R,∗,S〉, where the components are
defined as follows.

• K is the set of prime L-theories.
• a ∈ N iff L⊆ a.
• Rabc iff for all B,C ∈ L, if B→C ∈ a and B ∈ b, then C ∈ c.
• a∗ = {B ∈ L : ∼B /∈ a}.
• Sab iff {B ∈ L : �B ∈ a} ⊆ b.

In the proof of Completeness, the canonical frame for L is shown to be in the class
of L-frames, CL. This holds for the logics whose axioms have been listed above, as
well as other logics. The canonical valuation V is defined as V (p,a) = 1 iff p ∈ a,
and one shows that for all formulas A, V (A,a) = 1 iff A ∈ a. This is often called the
Truth Lemma, and it requires substantive proof, the details of which need not concern
us here. One then uses the fact that there is a regular, prime L-theory a with A /∈ a, for
the target non-theorem A, to conclude that A is not valid in CL. We then conclude that
if A is valid in CL, then A is a theorem of L.

To adapt the canonical model method to the case where reduced frames are being
considered, using the method of Routley et al., one needs to consider some special L-
theories. They use L-theories that are closed under T -implications, for some regular,
prime L-theory T , where a theory X is closed under T -implication iff A→ B ∈ T and
A ∈ X only if B ∈ X . L-theories closed under such a theory T are called T -theories. In
the canonical frame, one defines K as the set of prime T -theories, with the remaining
definitions unchanged.

The proofs demonstrating that the canonical model works, as developed by Rout-
ley et al, depend on the theoremhood of (WI), (B), and (Contra) in the target logic.
This works for many of the logics stronger than their logic C, including some of the
best known stronger relevant logics, such as Anderson and Belnap’s R and T. This
approach does not work for logics weaker than C, in particular for those lacking (WI),
as discussed by Slaney. The question of completeness with respect to reduced frames
was, then, left open for those weaker logics for many years. This was, perhaps, unfor-
tunate, since those weaker logics have many virtues.

[63] showed how to prove completeness with respect to reduced frames for many
weaker logics, in fact for most of the better known weaker logics.14 Slaney’s approach
is somewhat different from that of Routley et al. Rather than require that the target

13[50, ch. 5] is a good reference with the relevant details.
14Some of the weaker logics are known not to be complete with respect to reduced frames. An example

is the logic obtained by adding A∨∼A to B. It may be worth noting that A∨∼A was included in a logic
called “B” by [41], although that axiom was later dropped from the now standard B.
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logic L contain the axioms (WI), (B), and (Contra), he defines properties of L-theories
that will work in the axioms’ absence:

• T is detached iff A→ B ∈ T and A ∈ T only if B ∈ T ;
• T is affixed iff whenever A→ B ∈ T , both (C→ A)→ (C→ B) ∈ T and
(B→C)→ (A→C) ∈ T ; and

• T is transpositive iff whenever A→ B ∈ T , ∼B→∼A ∈ T .
We then take a prime, detached, affixed, transpositive, regular L-theory T . We

can use this theory to define the set K in the canonical frame as the set of all prime
T -theories. The other parts of the canonical frame are defined as before.

The remaining issue is showing that there are enough prime theories, in particular
that there is an appropriate regular prime theory. The construction of a regular, prime
L-theory T , excluding the target non-theorem and obeying the conditions above, via
Lindenbaum’s lemma runs into a problem: the end result of the construction may
not be prime. Slaney’s second major innovation was to use metavaluations, to be
explained in §5, to obtain an appropriate prime subtheory U of the constructed theory
T , building on an idea of Meyer. The resulting theory, U , is regular, prime, obeys
the conditions above, and excludes the target non-theorem. The construction of the
canonical frame can proceed using U as 0. We are, then, left to provide the details of
metavaluations, to which we now turn.

5. METACOMPLETENESS

In this section, we will define metavaluations. We will not present any of the details
of the history of metavaluations, an excellent overview of which is provided by Brady
[12]. We will begin with the metavaluations presented by [63]. Slaney distinguishes
two classes of logics, M1 and M2, depending on the additional axioms and rules in-
cluded. The axioms and rules for each class of logics are displayed in Table 1.15

(B1) (A→ B)∧ (B→C)→ (A→C) (B6) A→ (B→ A)
(B2) (A→∼B)→ (B→∼A) (B7) A⇒B→ A
(B3) (A→ B)→ ((C→ A)→ (C→ B)) (B8) A→ ((A→ B)→ B)
(B4) (A→ B)→ ((B→C)→ (A→C)) (B9) (A→ (B→C))→ (B→ (A→C))
(B5) A→ (A→ A) (B10) A⇒ (A→ B)→ B

Table 1. Axioms and rules for the M1 and M2 logics.

The M1 logics are obtained by adding zero or more of (B1)–(B7) to B, and the M2
logics are obtained by adding (B10) and zero or more of (B2)–(B9) to B.

Definition 10. A metavaluation for L is a pair of functions m(·) and m?(·) from L 7→
{0,1} such that

• m(p) = 0, m?(p) = 1, for p ∈ At;
• m(t) = 1, m?(t) = 1;
• m(∼A) = 1 iff m?(A) = 0, m?(∼A) = 1 iff m(A) = 0;

15The metavaluations used here are the metavaluations for the logic. A more general definition is
available, which is appropriate for applying metavaluations to arbitrary theories. The extra generality, while
interesting and sometimes useful, is not needed here, so it is omitted. I will also note that the tables omit an
axiom that does not have a corresponding frame condition for the ternary relational models.
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• m(A∧B) = 1 iff m(A) = 1 and m(B) = 1,
m?(A∧B) = 1 iff m?(A) = 1 and m?(B) = 1;

• m(A∨B) = 1 iff m(A) = 1 or m(B) = 1,
m?(A∨B) = 1 iff m?(A) = 1 or m?(B) = 1;

• m(A→ B) = 1 iff (i) `L A→ B, (ii) if m(A) = 1 then m(B) = 1, and
(iii) if m?(A) = 1, then m?(B) = 1.

For M1 logics, m?(A→ B) = 1.
For M2 logics, m?(A→ B) = 1 iff m(A) = 1 only if m?(B) = 1.

As is clear from the definition, the clause for the conditional differs depending on
whether the logic is an M1 logic or an M2 logic.

[63] proves a metacompleteness theorem for the M1 and M2 logics.16

Theorem 11 (Metacompleteness). Let L be an M1 logic or an M2 logic. Then `L A
iff m(A) = 1.

Seki [61] extends Slaney’s metavaluations to modal vocabulary. We will only use
Seki’s extension for necessity, although he provides clauses for a primitive possibility
operator.

In addition to the distinction between M1 and M2 logics, Seki needs to distinguish
Ms and Mt logics, depending on the modal axioms and rules that are included. The
Ms/Mt distinction is independent of the M1/M2 distinction, so there are four classes
of logics one can consider. The basic modal axioms and rules included in Ms and Mt
logics are in Table 2.17

(C1) �A⇒A (CoNec) (C3) �(A→ B)→ (�A→�B) (K)
(C2) A⇒�A (Nec) (C4) �(A→ B)→ (∼�∼A→∼�∼B)

(C5) A⇒∼�∼A (Poss)

Table 2. Axioms and rules for the Ms and Mt logics.

The Ms logics are obtained by adding zero or more of (C1)–(C4) to L.M, where L is
an M1 or M2 logic, and the Mt logics are obtained by adding (C5) to an Ms logic.

Definition 12. A modal metavaluation for a logic L.MX is a pair of functions m(·) and
m?(·) from L� to {0,1} that satisfy the conditions to be M1 or M2 metavaluations
and also satisfy the following additional conditions.

• m(�A) = 1 iff `L �A and m(A) = 1.
For Ms logics, m?(�A) = 1.
For Mt logics, m?(�A) = 1 iff m?(A) = 1.

[61] proves a metacompleteness theorem for Ms and Mt logics. He goes on to
show that several additional axioms can be added to the different logics, including
various Sahlqvist axiom forms. Several of the more common modal axioms can be

16Slaney [62] proves metacompleteness for some particular M1 and M2 logics, but the later paper
provides the general definition of the classes of logics.

17Seki includes a disjunctive meta-rule, if A⇒B, then A∨C⇒B∨C, as one of the optional additions to
both the Ms and Mt classes. For more on the use of disjunctive meta-rules in reduced completeness proofs,
see [9, pp. 7–9].
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added to Ms and Mt logics while maintaining metacompleteness. Both Ms and Mt
logics can be augmented with (4) (�A→��A) or (5) (∼�A→�∼�A) and remain
metacomplete. Mt logics can also be augmented with any of (D) (�A→∼�∼A),
(T) (�A→ A) and (B) (A→ �∼�∼A) and still be metacomplete.18 These results
hold regardless of whether the non-modal base logic is an M1 or M2 logic, so the
modal element of the metavaluation has considerable freedom from the non-modal
base logic.

Metacompleteness, whether for a base logic or for a modal logic, has many con-
sequences. For our purposes, the primary consequence is that metacomplete logics
are prime.

Corollary 13. Suppose L is metacomplete. Then `L A∨B only if `L A or `L B.

This is the crucial fact that we will appeal to in the completeness results, to which we
now turn.

6. COMPLETENESS

We are now almost in a position to prove that there are modal relevant logics that
are complete with respect to their reduced frames.

Let us say that a frame condition is reducible iff it uses only S,R,∗,≤, terms for
points, existential quantifiers, universal quantifiers, conjunction, disjunction, and the
material conditional. In particular, a frame condition is not reducible if it uses a
restricted quantification over N that is not used in an instance of ≤.19 For exam-
ple, the frame condition for (Contra), Rabc⇒Rac∗b∗, is reducible, as is the frame
condition for (T), that S is reflexive. By contrast, the frame condition for (Nec),
a ∈ N∧Sab⇒b ∈ N, is not, since it uses “N” outside of “≤.” Similarly, ∃x ∈ N Raxa
is not a reducible condition, since it has a restricted quantification on N occurring
outside of “≤.”

Many of the frame conditions for common axioms for relevant logics are reducible.
Adding these axioms, individually or in a group, to B, or to B.M results in a logic that
is sound and complete with respect to the class of frames obeying the correspond-
ing conditions. The proof of Completeness for L with respect to L-frames, using the
canonical model method, demonstrates that the canonical frame for L belongs to the
class of L-frames. For our main result, we will record two lemmas, noting a connec-
tion between L-frames and reducible frame conditions.

Lemma 14. Suppose 〈K,N,R,∗〉 is an L-frame, all the conditions on L-frames are
reducible, and there is 0 ∈ N such that 0 ≤ a, for all a ∈ N. Then 〈K,N,R,∗〉 is a
reduced L-frame.

Proof. All the conditions on B-frames are satisfied in virtue of being an L-frame.
Further, the additional frame conditions hold as the frame is unchanged. Therefore, it
is a reduced L-frame. /

18NB: The axiom (B), “B” for “Brouwersche,” is a modal axiom, not to be confused with the relevant
logic B, “B” for “Basic,” or the names for the implicational axioms (B) and (B′), whose designations come
from combinatory logic.

19It should be clear that a frame condition may be reducible while a logically equivalent condition is not.
A more general definition treats a condition as reducible iff it is equivalent to one of the highlighted form.
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The lemma still holds if the frame is a modal frame, which we will state separately.

Lemma 15. Suppose 〈K,N,R,∗,S〉 is an L-frame, all the conditions on L-frames are
reducible, and there is 0 ∈ N such that 0 ≤ a, for all a ∈ N. Then 〈K,N,R,∗,S〉 is a
reduced L-frame.

The proof is the same as the previous lemma, so we omit it. These lemmas tell us
that if the canonical frame for L has a ≤-minimal world and is an L-frame, then the
canonical frame is a reduced L-frame.

We now come to our main lemma.

Lemma 16. Suppose L is prime. If the canonical frame for L is in a class C of frames,
then the canonical frame is in r(C).
Proof. Suppose L is prime and that the canonical frame for L is in the class C. If L is
a modal logic, then the frame includes S as well, defined as above. Since L is prime,
L ∈ K. In fact, L ∈ N, and for all a ∈ N, L ⊆ a, so L ≤ a. Thus, the canonical frame
for L is reduced, with L acting as 0, and so the canonical frame is in r(C). /

The lemma’s proof does not establish that there are any prime logics, but that is what
the metavaluations do. In particular, the final bit of the argument we need is the
corollary from the previous section, namely that metacomplete logics are prime.

Corollary 17. If L is metacomplete and complete with respect to a class C of frames
that includes the canonical frame for L, then L is complete with respect to r(C).

There are metacomplete relevant logics, so there are prime relevant logics. The
axioms and rules for some of these metacomplete relevant logics have reducible frame
conditions. Thus, the previous corollary applies to them and they are complete with
respect to their reduced frames.

Theorem 18. Let L be a metacomplete logic such that L is complete with respect to
L-frames and its canonical frame is an L-frame. Then L is complete with respect to
reduced L-frames.

Proof. This follows from the previous corollary. /

The logic TW is close to C, as their axiomatizations differ only in the presence
of (WI). That difference makes a difference, as TW is metacomplete, so many of the
modal extensions of TW are complete with respect to their reduced frames. In con-
trast, modal extensions of C.M are not complete with respect to their reduced frames,
as shown by [67].

It is worth dwelling on the proof above to note a few points. First, we do not
use metavaluations on (non-logical) theories, which is to say theories that are not
themselves logics, whereas Slaney does, in general, in his construction of a canonical
reduced frame.20 Second, a logic being prime implies that it is in the set K of its
canonical frame, which means that the canonical frame is, in fact, reduced. Since
the theory L contains no non-theorems, by definition, every non-theorem is refuted
at L, considered as 0, in the canonical model for L. As long as the frame conditions

20[50, ch. 5] also applies metavaluations to non-logical theories, as does Seki [60].
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corresponding to the axioms for L are reducible, then the canonical frame for L is
in fact a reduced L-frame. There is, then, no need to use a separate construction for
the canonical reduced frame.21 The canonical frame that is obtained from the more
standard completeness proof for the unreduced frames does the job. This part of the
argument applies equally to non-modal relevant logics as to modal relevant logics.

In the definition of the Ms and Mt logics, the (Nec) rule is one of the optional extras
that can be added included in a metacomplete logic. While the frame condition for
(Nec) is not reducible, an alternative condition, 0≤ a∧Sab⇒0≤ b, can be shown to
work in the context of reduced models. This condition is obtained from the condition
for unreduced frames by replacing x ∈ N with 0≤ x. In fact, an equivalent, simplified
condition can be used instead, S0a⇒0≤ a.22

The rule (CoNec), �A⇒A, is also an optional extra for the Ms and Mt logics.
Unlike (Nec), it does not appear to have a corresponding frame condition that the
canonical frame is guaranteed to satisfy. Some Ms and Mt logics may not be complete
with respect to any class of reduced frames, because of the lack of a suitable frame
condition for (CoNec).

Since the axioms (Contra) and (B′) are both available in the M1 and M2 logics, the
axiom (WI) presents a stark boundary for completeness with respect to reduced frames
for modal relevant logics. There are non-modal relevant logics containing (WI) that
are complete with respect to their reduced frames, so the issue, or at least this issue,
with (WI) only emerges when one looks at modal relevant logics.23

The results above imply that there are many modal relevant logics that are com-
plete with respect to their reduced frames, even S4-ish and S5-ish logics. [19] and
[67] show that S4-ish and S5-ish extensions of R are incomplete with respect to their
reduced frames. When the base logic is weakened to an M1 or M2 logic whose axioms
have appropriate frame conditions, the S4-ish and S5-ish extensions are complete with
respect to their reduced frames. Since many of the more common weaker logics are
metacomplete, including B, DJ, TW, and RW, many of their modal extensions, in-
cluding S4-ish and S5-ish extensions will be complete with respect to their reduced
frames. Thus, the question left open by [67] has a positive answer. Completeness
with respect to reduced frames can be had by modal relevant logics, if the logic is
metacomplete. This covers a wide range of modal relevant logics, although it does not

21There is no need as far as completeness goes. [63, pp. 405–406] notes a reason to prefer one’s reduced
models satisfy some contingent truths.

22The simplified condition is consequence of the other in virtue of the fact that 0 ≤ 0, setting a in the
condition to be 0 and b to be a. The equivalence is obtained by noting that 0≤ a and Sab yields S0b, from
a frame condition for modal frames, whence 0≤ b, by the simplified condition.

23(WI) is known to lead to other problems. For example, Meyer et al. [42] show how it leads to
triviality in combination with naive set theory via a variation on Curry’s paradox. Indeed, Brady [11] uses
metavaluations to show that for many weaker relevant logics, the addition of the naive set theory axioms
is consistent. It is known that (WI) is not unique for leading to triviality in combination with naive set
theory axioms. Restall [47], Rogerson and Restall [52], Bimbó [6], Robles and Méndez [51], Øgaard [43],
and Field et al. [17] all discuss different routes to triviality via contraction-like axioms, of which (WI) is a
prominent instance.
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include all, and generally does not include logics containing the modal confinement
axiom, (MC) �(A∨B)→∼�∼A∨�B.24

Finally, there are some multi-modal relevant logics in the literature. For example,
logics of alethic necessity and actuality are suggested by [66]. Seki’s metavaluations
can be extended with clauses to cover the additional modalities, with the Ms and
Mt distinction being duplicated for the new modalities. This opens the doorway for
metacompleteness results for these multi-modal logics.25 Some metacompleteness
results will be straightforward consequences of the extensions. Whether logics with
interaction axioms, such as AB→ �B, are metacomplete will depend on the details
of the metavaluations and the classes of logics. For logics that are metacomplete,
however, completeness with respect to reduced frames will be available, provided the
axioms added to B.M, or its adaptation to a multi-modal setting, have reducible frame
conditions.
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SITUATIONS, PROPOSITIONS, AND INFORMATION STATES

Andrew Tedder

ABSTRACT. Two families of relational semantics for relevant logics, the ternary re-
lation and the Fine-style, or operational-relational, semantics are compared on point
of interpretation. Following Punčochář, it’s noted that the former kind tend to be
given ontic or realist styles of interpretation, whereas the latter tend to be given epis-
temic or informational styles. The equivalence between these semantic approaches
means that we can have both in one setting (with one grounded in the other), but it’s
argued that, nonetheless, there are reasons to prefer a version which takes the realist
interpretation as basic and the informational one as grounded in it. The resulting,
layered, semantic picture is sketched, and an application to the Mares–Goldblatt in-
terpretation of quantifiers is proposed.

Keywords. Philosophy of logic, Relational semantics, Relevant logic, Theory of
meaning

1. INTRODUCTION

Relational semantics for relevant and substructural logics can be put into two camps:
there is the ternary relation (TR) framework most famously studied by Sylvan (né
Routley) and Meyer [39; 40] and the operational–relational, or Fine-style (F) frame-
work most famously studied by Fine [20]. (For further details on the history of these
developments, see Bimbó and Dunn [7]; Bimbó et al. [8].) Punčochář [33, §6], not-
ing that these two frameworks are formally equivalent, suggests that the difference
between them should be understood as having to do with the kind of explanation they
tend to proffer for the meanings of the logical vocabulary. As he sees it, the TR frame-
work tends to be understood ontically, as having to do with the real world and objects
therein, while the F framework tends to be understood epistemically, or perhaps a bet-
ter word is informationally, as having to do with the sorts of things grasped by agents,
communicated by assertions, and which comprise theories.

While one should not put too much weight on the claim for TR semantics are
read realistically and the F semantics otherwise (realist versions of F semantics have
been given, for instance, by Jago [24], where the elements of an F model are taken
to represent exact truthmakers), it does track a tendency. For example, Barwise and
Perry [4], whose situation theory is often invoked as a philosophical story motivating
TR semantics (for instance, in Restall [35]; Mares [30] and Tedder [42]), took the
realism of their picture as one of its theoretical strengths. On the other hand, Logan
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[27; 28] has recently proposed a form of the F semantics, which takes the objects
literally to be theories (i.e., deductively closed sets of sentences).

These two frameworks are formally equivalent in the sense that any model of one
kind can be transformed into a model of the other kind satisfying all the same for-
mulas as the original (this will be properly spelled out, and proved, in §4, building
on [33]). Punčochář takes this fact to indicate that one is free to choose whichever
framework one prefers for a particular application, and this is, of course, true. In-
deed, there are mathematical reasons why one might prefer one to the other: the TR
semantics is often simpler in a mechanical sense (there are fewer things in the frames
and fewer constraints), whereas the F semantics is often simpler in a conceptual sense
(binary operations and relations are more familiar as mathematical objects than are
ternary relations).1 So in a sense there is, and need be, no rivalry between these two
approaches.

It has, however, been suggested for some time that the TR semantics of relevant
logics are unmotivated, ad hoc formalisms that do not provide a true meaning theory
for the logical vocabulary. Perhaps the most famous version of this line of criticism is
due to Copeland [9; 10], and one gets the impression that the F semantics has usually
been taken to be the more natural account, as providing a more natural interpretation of
the central conditional connective.2 So when the goal is to provide a philosophically
significant theory of meaning of the relevant vocabulary, which is one of the things
that one may take the relational semantics to be for, there is a serious question on the
table, and a reason to want to take sides.

In this paper, I will harness the equivalence results to suggest that we approach this
apparent distinction in a different way, by focusing on the fact that we can always con-
struct one kind of model from another. The resulting picture is a layered semantics,
where one kind of model is grounded in a model of the other kind. Rather than taking
either an ontic or informational stand, tout court, I’ll suggest that we can always have
both, and that the question comes down to which we take to be basic. We can always
capture the ontic flavor of the TR semantics and the informational flavor of the F se-
mantics in one framework; the real question concerns the direction of explanation. Do
we account the ontic properties of a TR model in terms of the informational properties
of an underlying F model, or vice versa? I’ll argue that, in general, an ontically-based
presentation provides a more satisfying route for explanation of the facts to be ac-
counted for by a semantics (namely, facts about entailments), and that therefore, if we
take Punčochář’s distinction seriously, we ought to prefer to take the TR semantics
as basic. With this argument made, I’ll briefly discuss an interesting upshot for the
Mares and Goldblatt [32] semantics for quantifiers.

1It might be, cheekily, put that part of the miracle performed in Urquhart’s [45] undecidability proof
was simply in finding a ternary relation in the wild, in the form of co-linearity.

2It’s been suggested to the author, in conversation with an interlocutor who shall remain nameless (you
know who you are), that the TR truth condition is a kludge, trying, and failing, to capture the beauty and
simplicity of the operational truth condition, due to Urquhart [44], and that the resulting framework is ugly
and unmotivated.
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2. THEORIES OF MODELS AND THEORIES OF ENTAILMENT

The formal structure of the options for orders of explanation — either accounting
for ontic features in terms of informational ones or vice versa — closely mirrors a
related dispute in the philosophical discussion surrounding possible worlds and their
use in frame semantics for modal logics. In that literature a salient distinction is that
between grounding propositions in possible worlds and grounding possible worlds in
propositions. Versions of these approach are discussed in Loux [29].

The dispute between these two approaches, as discussed in Divers [12], can be
seen as circling around the question of how best to account for the modal properties of
propositions. An account of possible worlds, and the relationship they bear to propo-
sitions, should provide an account of when propositions are necessary or possible.
Ideally, it should give us insight into questions about which particular propositions are
necessary or possible, and why. The account which the realist line on possible worlds
gives of these is familiar, namely, that a proposition is necessary when it is true in
every possible world and it is possible when true in some. So when we are tasked with
accounting for, say, what makes it the case that a particular proposition is possible,
if we take the realist line of explanation our task is to provide reasons to believe that
there is a possible world which makes the proposition true.

Theories of relational semantics for relevant logics are not aimed at providing ex-
planations for why propositions are necessary or possible, but rather are aimed at
providing explanations for why certain propositions entail others. As Anderson and
Belnap [1, §1] stress, entailment is the heart of logic. So if we aim to give an ac-
count of the meanings of the logical connectives in terms of a theory of models, a
major part of our project will be to do so in a way that accounts for why, in general,
some propositions entail others.3 Furthermore, the account should provide us with the
means to answer questions about which particular propositions entail which others.
So when it comes to deciding between rival semantic theories, it will be in terms of
their accounts of entailments, and the kinds of explanation they proffer for particular
entailment facts, that I propose we make our decisions. One reason to prefer a realist
picture, as opposed to one like that of [28], which takes the basic elements to be the-
ories, is that the realist approach seems to stand a better shot at providing satisfying
answers to questions of the form “why does such-and-so particular implication claim
express an entailment (or not)?” In the case of a negative answer to such a question,
the realist line would have us describe a situation which supports an instance of the an-
tecedent but not the appropriate instance of the consequent. With such a countermodel
in mind, one will have provided a strong reason to reject the claim that the implication
in question is an entailment.4 Positive answers will concern the properties of situa-
tions, and how they go about satisfying propositions. The account taking theories as
basic seems hard-pressed to provide a similarly satisfying, non-circular explanation of
entailment facts.

3Throughout, I’ll discuss “explanation” in a metaphysical sense. In this sense, a fact explains another
one when it features in an account of why the latter holds.

4One example of doing such a thing can be found in [42], where it is argued that implications of the
form (A→ B)→ ((B→ C)→ (A→ C)) do not express entailments, by means of describing a concrete
situation which would falsify this implication formula.
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Having said this, note that even theories of meaning for the logical vocabulary
which are formally equivalent may yet differ with respect to the explanations they of-
fer of these facts. (I venture to suggest that non-realist approaches will generally fare
worse on this front.) Consider the case of possible worlds again. Whether we take
propositions to be composed of possible worlds or take possible worlds to be com-
posed of propositions, we may wind up with the same collection of propositions being
necessary. There is, nonetheless, still a debate between these about which approach
provides the better explanation of those modal facts. How can such debates proceed?

2.1. Data-Fit, Parsimony, and Explanatory Power. One way to cash out such de-
bates concerns the extent to which different proposals satisfy different principles of
theory choice. One such principle, the fit to the data, does not decide between these:
being equivalent, both theories will fit the data to the same extent. So the choice comes
down to other principles, and for my purposes there seem to be two, which are most
salient:

(1) Ontological Parsimony: One should choose a theory which, ceteris paribus,
involves commitment to fewer kinds of entity.

(2) Explanatory Power: One should choose a theory which, ceteris paribus, pro-
vides a more satisfying explanation of the phenomena underlying the data.

In the case of modal theories, we can take the salient data to concern the modal
status of propositions, and choose between the candidate theories based on (1) and
(2). Following Lewis [25], there seem to be good reasons to think that a realist account
performs better on (2), but non-realist accounts seem to fare better on (1). The question
then becomes when we’re forced to choose one of (1), (2), which should we prefer?

I think that we should pretty much always prefer to gain explanatory power at the
loss of parsimony than go the other way around, at least when all other things are,
indeed, equal. Let me sketch a brief argument why.5 What is the theoretical cost of
having more ontological commitments? As far as I can tell, the main cost is that taking
on commitments to more kinds of entities runs the risk of falsifying the theory. If we
commit ourselves to the existence of something which turns out not to exist, we’ll
have made an error, and have a false theory on our hands. Such risks are, indeed,
theoretical costs, as are any commitments we take on which might wind up false.
However, they are just as costly as any other such risky commitments we take on by
making assertions — they are not more costly. So when we decide which theories to
adopt, and we weigh the costs of ontological commitments, which come along with
the theory, we should weigh these the same way we do any potentially false claims the
theory makes.

If this is correct, then when we are in a position to decide whether to adopt an onto-
logically profligate, but more explanatory theory or one which is more parsimonious
and less explanatory, the question comes down to whether we should take on a greater
risk of falsehood in the hope of having a more explanatory theory. I think the answer

5This argument is, of course, deeply indebted to Lewis [25], though I’ll refrain from citing chapter and
verse as I go into it. It’s worth noting that it involves an appeal to inference to the best explanation, and this
has been discussed in detail by Lipton, information concerning which can be found in [26]. The notion of a
“satisfying explanation” to which I appeal is, perhaps, best understood as an appeal to an explanation being
the “loveliest,” in his terminology, but I’ll leave this appeal somewhat vague here.
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here should be a resounding “yes.” In general, we are better off taking the liberal at-
titude of seeking truth than we are taking the more conservative approach of avoiding
falsehood; from this perspective, if the only thing we have to lose by taking onboard
commitments to further entities that provide us with better explanatory power is the
risk of falsehood, we should do so.

3. ONTIC TR FRAMES AND INFORMATIONAL F FRAMES

Let’s cash out the sense in which you might understand TR semantics as being more
ontic and F semantics as being more informational. As mentioned, this distinction is
not hard and fast. There are realist readings offered of some forms of F semantics (as
in [24]), and there have certainly been informationally flavored readings of semantics
in the TR framework, such as in Dunn’s work on program interpretations [17; 14; 15].

Having said this, it does seem to be the case that, as Punčochář [33] notes, there
is a tendency for proponents of the TR semantics to defend realist readings and those
of the F semantics to defend informational readings. Perhaps, the most clear point
of distinction between these approaches concerns the interpretation of disjunction; a
bit of discussion of the history here is salient. Urquhart [44] first attempted to give
an operational semantics for relevant logics employing a frame with points obeying
the truth condition for disjunction common from Kripke semantics for modal and
intuitionist logic. Taking JAKM as the collection of points of a frame satisfying a
formula A in a model M, this truth condition is:

JA∨B KM = JAKM ∪ JB KM.

The problem, well known, is that if one attempts to interpret the conditional in terms
of a binary operation ⊗, as

JA→B KM = {s : ∀t(t ∈ JAKM ⇒ s⊗ t ∈ JB KM)},
then one winds up with models for which standard relevant logics are not complete
(see Dunn and Restall [18], for more details). In order to resolve the problem, one
must adopt a different truth condition either for disjunction or the conditional. The F
framework takes the former route, and the TR framework takes the latter.

It’s been noted many times over the years (e.g., [23; 13; 22; 24]) that the standard
truth condition for disjunction is ill-suited to interpretations of points in the frame
as informational, motivating the move made by proponents of the F framework. For
instance, suppose we take frame elements to represent information states, such as
those available to an agent in the course of a reasoning task. There’s no good reason
to suppose that whenever such an agent has information supporting a disjunction,
they’ll have information supporting either disjunct. For instance, Sherlock Holmes
may have enough information to know “either Moriarty or Queen Victoria committed
the murder” without having information adequate to pin down the identity of the killer.
This is one way that an informational reading is especially well suited to the F style
semantics.

The kind of situation-theoretic reading often offered for TR semantics can avoid
this issue by taking situations themselves not to be the sorts of things which agents
directly cognize. On this sort of picture, what an agent cognizes is not a situation
but rather a proposition (or collection thereof), which type situations, but need not be
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situations themselves. Situations are, perhaps, well understood as inexact truthmakers
which support the truth of propositions — in this case, it is a plausible claim that they
support a disjunction just in case they support one of the disjuncts.6

Another way this tendency comes up is that the most standard interpretation of the
ternary relation, using channel theory Barwise [3], as in [35; 42], has a realist flavour.
It posits mind-independent links between situations to interpret the ternary relation.
The operation of the F semantics, on the other hand, is usually read informationally,
as concerning the result of applying an epistemic or informational action on bits of
information, sentences, or theories [44; 41; 28]. I won’t go into further detail, but
hopefully this suffices to bolster Punčochář’s case that there is a tendency for TR se-
mantics to be read ontically and F semantics to be read epistemically/informationally.

Now let’s turn to the equivalence of the frameworks.

4. A SKETCH OF EQUIVALENCE BETWEEN TR AND F

This section is, as the title suggests, just a sketch — a more detailed investigation
of these matters is certainly possible. I’ll give basic details to provide the reader
an indication of how the construction works, going in either direction, and how it
naturally proceeds through the three layers on which I’ll be focused later. A fuller
presentation of a narrower result concerning the logic R can be found in [33].

The main aim is to show that the TR and F semantic frameworks are equivalent in
the sense that from a model on a frame of one kind, we can construct a model on a
frame of the other kind which satisfies just the same formulas. This goes to show that
the frameworks capture, in a sense, the same data, leaving the question of the choice
between them up to other theoretical considerations. In this section, I’ll introduce
a form of the TR semantics and a form of the F semantics and then show how to
construct one from the other in a simple, uniform way.

There are a number of available variations on the theme of “TR semantics” and “F
semantics,” and the versions I sketch here are chosen in a way which is partially due
to my own, perhaps idiosyncratic, preferences and partially in order to simplify the
presentation. I’ll deal here with basic forms of the TR and F semantics appropriate
for the relevant logic B — the correspondence available between frame conditions
and further axioms or rules which may be added to B to obtain further logics is well
known, and we do not need to go into it here. I take the propositional language to
be defined, as usual, from a set of atomic formulas P, the logical constant t, and the
connectives ¬,∧,∨,→ (of arities 1, 2, 2, 2, respectively). I’ll use L to denote the
language.

6For related discussion, into which I’ll not go further here, see Deigan [11]. As a related point, note that
both the TR and F semantic frameworks commonly employ the standard truth condition for conjunction
in terms of set intersection. One upshot of this, in the case of the situation-theoretic picture, is that we
obtain the validity of the distribution law immediately from the fact that a powerset algebra, with unions
and intersections, is a distributive lattice. The justification of the distribution law has been discussed in
relevant circles (e.g., in Belnap [5] and Restall [37]), and this raises a potential avenue of objection against
reading the situation-theoretic line as realist. I won’t go into this question further, but note it as a potential
difficulty.
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4.1. Ternary Relation Frames and Models.

Definition 1. A ternary relation (TR) frame F is a tuple 〈W,N,R,∗〉 where ∅ 6= N ⊆
W , R⊆W 3, and ∗ : W −→W are such that, given the following definitions:

≤= {〈α,β 〉 ∈W 2 : ∃γ ∈ N(Rγαβ )}
P(W )↑ = {X ⊆W : ∀β ∈W (∃α ∈ X(α ≤ β )⇒ β ∈ X)},

the following constraints are satisfied:
(tr1) 〈W,≤〉 is a poset.
(tr2) N ∈ P(W )↑.
(tr3) If α ′ ≤ α,β ′ ≤ β ,γ ≤ γ ′ and Rαβγ , then Rα ′β ′γ ′.
(tr4) If α ≤ β then β ∗ ≤ α∗, and furthermore, α∗∗ = α .

Before defining models on TR frames, let’s fix a couple other definitions. First,

Definition 2. Given a set Γ ⊆ P(W )↑, we fix the following:

[Γ ) := {Y ∈ P(W )↑ : ∃X1, . . . ,Xn ∈ Γ (
⋂

j≤n
X j ⊆ Y )}

Briefly, [Γ ) is the least filter, on the distributive lattice 〈P(W )↑,∩,∪〉, containing Γ .7

Definition 3. Given X ,Y ∈ P(W )↑, let

X → Y = {α : ∀γ (∃β ∈ X(Rαβγ)⇒ γ ∈ Y )}
¬X = {α : α∗ /∈ X}

Definition 4. A model M on a TR frame F is a function of type P −→ P(W )↑, ex-
tended to a valuation J ·KM : L −→ P(W )↑ as follows:

(1) JpKM = M(p) (4) JA∧B KM = JAKM ∩ JB KM

(2) JtKM = N (5) JA∨B KM = JAKM ∪ JB KM

(3) J¬AKM = ¬JAKM (6) JA→B KM = JAKM → JB KM

A formula A is satisfied by M on F just in case N ⊆ JAKM; it is satisfied by F in case
it is satisfied by any model on F; it is valid on a class F of TR frames just in case it is
satisfied by each F ∈ F .

4.2. Fine-Style Frames and Models. The semantics in this section does not quite
follow Fine’s original presentation. The most salient point is that I explicitly include
an operation, u, which interprets disjunction. Since much of what I say here concerns
disjunction, I pull this out explicitly and state some conditions concerning it ((f1),
(f5), and (f6)) in order to clarify its behavior. For instance, (f5) is the constraint, noted
by Humberstone [23], which enforces distribution in a general setting. Fine does not
include a detailed discussion of disjunction, but I render these constraints explicit for
the purposes of comparison.

Definition 5. A Fine-style (F) frame G is a tuple 〈S,SP,v,⊗,−,@〉, where ∅ 6= SP ⊆
S, v⊆ S2, ⊗ : S2 −→ S, − : SP −→ SP, and @ ∈ S so that the following constraints
are satisfied:

7For further information on lattices and related topics, the reader may consult Dunn and Hardegree [16].
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(f1) 〈S,v〉 is a meet (written u) semi-lattice.
(f2) If sv s′ and t v t ′ then s⊗ t v s′⊗ t ′. Also, @⊗ s = s, for any s ∈ S.
(f3) − is an order-inverting involution: so sv t⇒−t v−s and −− s = s.
(f4) If x,y ∈ S, a ∈ SP, and x⊗ y v a, then there are x′,y′ ∈ SP s.t. x v x′, y v y′,

x′⊗ yv a, and x⊗ y′ v a.
(f5) If su t v u, then there are s′, t ′ ∈ SP s.t. sv s′, t v t ′, and s′u t ′ v u.
(f6) If su t 6v u, then there are s′, t ′ ∈ SP s.t. sv s′, t v t ′, and s′u t ′ 6v u.

Definition 6. Given X ,Y ∈ P(S)↑, let

X  Y = {s ∈ S : ∀t ∈ S(t ∈ X ⇒ s⊗ t ∈ Y )}
X tY = {s ∈ S : ∃t,u ∈ S(t uuv s & t ∈ X & u ∈ Y )}
∼X = {s ∈ S : ∀t ∈ SP(sv t⇒−t /∈ X)}

Definition 7. A model on an F frame G is a function L of type P−→ P(S)↑ required
to satisfy the constraint, for any p ∈ P,

∀t ∈ SP(sv t⇒ t ∈ L(p))⇒ s ∈ L(p)

L is extended to a full valuation | · |L : L −→ P(S)↑ required to satisfy the following
clauses:

(1) |p|L = L(p) (2) |¬A|L =∼|A|L
(3) |A∧B|L = |A|L∩|B|L (4) |A∨B|L = |A|Lt|B|L
(5) |A→ B|L = |A|L |B|L (6) ∀t ∈ SP(sv t⇒ t ∈ |A|L)⇒ s ∈ |A|L

A formula A is satisfied on L just in case @ ∈ |A|L. Satisfaction on a frame and
validity w.r.t. a class of frames are defined as for TR models.

4.3. From TR to F. Now let’s show that from an arbitrary TR frame, we can con-
struct an F frame such that for any model on the original frame, we can obtain a model
on the new frame which satisfies the same formulas as the original model.

Definition 8. Given a TR frame F, let its F-mate FF = 〈SF ,SF
P ,vF ,@F ,⊗F ,−F〉 be

defined as follows:
(i) SF = {Γ ⊆ P(W )↑ : ∀Y ∈ P(W )↑(∃i≤nXi ∈ P(W )↑(

⋂
i≤n Xi ∈ Γ ⇒ Y ∈ Γ ))}

(ii) SF
P = {Γ ∈ SF : ∀X ,Y ∈ P(W )↑(X ∪Y ∈ Γ ⇒ X ∈ Γ or Y ∈ Γ )}

(iii) vF=⊆
(iv) @F = [{N})
(v) Γ ⊗F ∆ = {Y ∈ P(W )↑ : ∃X ∈ ∆(X → Y ∈ Γ )}

(vi) −FΓ = {X ∈ P(W )↑ : ¬X /∈ Γ }, for Γ ∈ SF
P .

The idea of the construction is that we take the set of filters, w.r.t. 〈P(W )↑,∩,∪〉,
SF , the set of prime filters thereon, SF

P , an order vF , a logical point @F , and a pair of
operations appropriate for the interpretation of implication and negation on Fine-style
frames,⊗F and−F . So we have, essentially, constructed a set of non-prime points out
of (up)sets of prime points and defined operations appropriate to interpret the logical
vocabulary, all in accordance with the structure of F frames.

This construction proceeds by a two step process. We start from the TR frame,
and then we consider the space of propositions thereon, given by P(W )↑, and it is out
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of this space that we define our desired F frame. Intuitively speaking, we construct
propositions out of elements of W , and from there we construct elements of the desired
F frame. Let us verify that FF is, indeed, an F frame when F is a TR frame.

Fact 9. If F is a TR frame, then FF is an F frame.

Proof. It suffices to ensure that FF verifies conditions (f1)–(f6). For (f1), just note that
vF=⊆ does have a meet, namely, ∩, and so 〈SF ,vF〉 is, indeed, a meet semi-lattice.

For (f2) we have two things to check. First, suppose Γ vF ∆ and Σ vF Θ are
the case, and furthermore, that X ∈ Γ ⊗F Σ . Therefore, there is a Y ∈ Σ such that
Y → X ∈Γ , and so Y ∈Θ and Y → X ∈ ∆ , and so X ∈ ∆⊗F Θ . Since X was arbitrary,
this suffices to prove that Γ ⊗F Σ vF ∆ ⊗F Θ . Next, we want to show that for any
Γ ∈ SF , @F⊗F Γ =Γ . First, if X ∈@F⊗F Γ , then there is a Y ∈Γ s.t. Y → X ∈@F .
But Y → X ∈@F holds iff N ⊆Y → X holds in F and so Y ⊆ X holds there, and so if
Y ∈ Γ then X ∈ Γ , since Γ ∈ SF . For the converse, if X ∈ Γ then, since X ⊆ X always
holds, we have X → X ∈@F , and so X ∈@F ⊗F Γ , as desired.

For (f3), we again have two things to prove. First, suppose that Γ ⊆ ∆ and that
X ∈ −F ∆ . Thus, ¬X /∈ ∆ and so ¬X /∈ Γ , and so X ∈ −FΓ , as desired. Note, further,
that X ∈ −F −F Γ holds iff ¬¬X ∈ Γ iff X ∈ Γ .

For (f4), suppose that we have Γ ,∆ ∈ SF and Θ ∈ SF
P s.t. Γ ⊗F ∆ ⊆Θ . To obtain a

∆ ′ ⊇ ∆ such that Γ ⊗F ∆ ′ ⊆Θ , consider the pair

〈∆ , ∆− = {X ∈ P(W )↑ : ∃Y /∈Θ(X → Y ∈ Γ )}〉.
Now by definition ∆ is a filter on 〈P(W )↑,∩,∪〉, and it is fairly easy to verify that
∆− is an ideal.8 Furthermore, we can show that ∆ ∩ ∆− = ∅. In fact, there are
no X1, . . . ,Xm ∈ ∆ and Y1, . . . ,Yn ∈ ∆− s.t.

⋂
1≤i≤m

Xi ⊆
⋃

1≤ j≤n
Yj. With this fact, since

〈P(W )↑,∩,∪〉 is a distributive lattice, we can employ [16, Corollary 13.4.6] to infer
that there is a ∆ ′ ∈ SF

P s.t. ∆ ′ ⊇ ∆ and ∆ ′ ∩∆− 6= ∅.9 From this, we can infer that
Γ ⊗F ∆ ′ ⊆Θ , as desired.

Let’s show the key fact, assuming, for contradiction, that for each Yj there is a
Z j /∈Θ such that Yj → Z j ∈ Γ , and so

⋂
1≤i≤m

Xi →
⋃

1≤ j≤n
Z j ∈ Γ and so

⋃
1≤ j≤n

Z j ∈Θ ,

contradicting the assumption that Θ ∈ SF
P .10

The argument needed to obtain a Γ ′ ⊇ Γ s.t. Γ ′ ∈ SP and Γ ′⊗∆ ⊆Θ is similar, so
elided. Also, the proofs of (f5) and (f6) are straightforward and, for reasons of space,
are left to the reader. /

This suffices to show that the F-mate of a TR frame is an F frame, as desired. It
remains to show how, given a model M on a TR frame F, to obtain a model on FF

which will satisfy the same formulas. For this, we adapt the definition of a canonical
valuation, given in Bimbó and Dunn [6, p. 23].

8The key facts are: (X → Y )∩ (Z→U)⊆ (X ∪Z)→ (Y ∪U), and if X ⊆ Y then Y → Z ⊆ X → Z.
9Note, this step is analogous to the use of the Pair Extension lemma in completeness proofs for relevant

logics w.r.t. their TR frame semantics, for instance in [2, §48.3].
10This relies on the fact that (X → Y )∩ (Z→U)⊆ (X ∩Z)→ (Y ∪U).
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Definition 10. Given a model M on a TR frame F, we fix | · |M : L −→ P(SF)↑ by
setting |A|M = {Γ ∈ SF : JAKM ∈ Γ }.
Fact 11. Given a model M on a TR frame F, the model | · |M on FF has the following
properties:

(1) |A|M ∈ P(SF)↑, for every A ∈ L (2) |t|M = {Γ ∈ SF : @⊆ Γ }
(3) |A∧B|M = |A|M ∩|B|M (4) |A∨B|M = |A|M t|B|M

(5) |A→ B|M = |A|M  |B|M (6) |¬A|M =∼|A|M

(7) ∀∆ ∈ SF(∀Γ ∈ SF
P (∆ ⊆ Γ ⇒ Γ ∈ |A|M)⇒ ∆ ∈ |A|M)

(8) For any A ∈ L, N ⊆ JAKM iff @F ∈ |A|M .

Proof. (1) is immediate from the definition. The others we can prove by induction on
the complexity of formulas. For (2), the only atomic case, we can show:

|t|M = {Γ ∈ SF : JtKM = N ∈ Γ }= {Γ ∈ SF : [{N}) = @⊆ Γ }
(3) is immediate, and left to the reader. For (4), note that the right-to-left direction is

immediate from the fact that JCKM ⊆ JA∨BKM holds for C ∈ {A,B}, so let’s consider
the converse. Note that if JA∨BKM = JAKM ∪ JBKM ∈ Γ , then it’s immediate that
JCKM ∈ [{JCKM}) holds for C ∈ {A,B} and [{JAKM})∩ [{JBKM})⊆Γ , which suffices
to show that Γ ∈ |A∨B|M , as desired. For (5) and (6), the standard kind of arguments
given in completeness proofs (for instance, those in Restall [36]) suffice, and verifying
these are left to the reader.

For (7), we proceed by contraposition. Suppose that ∆ ∈ SF ∩|A|M , so that JAKM /∈
∆ . We want to show that there is a Γ ∈ SF

P s.t. ∆ ⊆ Γ and JAKM /∈ Γ . For this,
however, it suffices to employ Dunn and Hardegree [16, Corollary 13.4.6], fixing {X ∈
P(W )↑ : X ⊆ JAKM}, noting that this is an ideal which doesn’t overlap ∆ , and thus we
can obtain a prime filter Γ on 〈P(W )↑,N,∩,∪,→,¬〉 s.t. Γ ⊇ ∆ and Γ ∩{X : X ⊆
JAKM}=∅, so that JAKM /∈ Γ as desired.

For (8), it suffices to note that:

@ ∈ |A|M ⇐⇒ JAKM ∈@ = [{N}) ⇐⇒ N ⊆ JAKM /

Points (1)–(7) guarantee that | · |M is well-defined, giving rise to a model on FF .
Point (8) gives the desired property, that the formulas satisfied by | · |M on FF are just
those satisfied by M on F. So we can state:

Theorem 12. Given any TR frame F, and model M thereon, we can construct an
F-frame FF and a model satisfying just those formulas satisfied by M.

This gives us one half of our puzzle; that any formulas satisfiable on a TR frame
are satisfiable on some F frame.

4.4. From F to TR. This direction is quite similar, and is, in any case, better under-
stood. In Fine’s original paper, especially, the part reproduced in Anderson et al. [2,
§51.5], he considered in some detail the relationship between his frames and the TR
frames presented by Sylvan, Meyer, and their collaborators Routley et al. [40]. The
method I’ll employ is a bit different from his, but shares some similarities.
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Definition 13. Given the an F frame G, we construct GT R = 〈W T R,NT R,RT R,∗T R〉,
G’s TR-mate, as follows:

W T R =
{

Γ ⊆ P(S)↑ : ∀Y ∈ P(S)↑(∃i≤nXi ∈ Γ (
⋂

i≤n
Xi ⊆ Y ⇒ Y ∈ Γ )) &

∀X ,Y ∈ P(S)↑(X tY ∈ Γ ⇒ (X ∈ Γ or Y ∈ Γ ))
}

NT R = {Γ ∈W T R : @ ∈ Γ }
RT R =

{
〈Γ ,∆ ,Θ〉 ∈ (W T R)3 : ∀X ,Y ∈ P(S)↑((X  Y ∈ Γ & X ∈ ∆)⇒ Y ∈Θ)

}

Γ ∗
T R

= {X ∈ P(S)↑ : ∼X /∈ Γ }
Fact 14. If G is an F frame then GT R is a TR frame.

Proof. It suffices to prove that (tr1)–(tr4) hold of GT R.
For (tr1), it suffices to show that the defined ≤T R is, in fact, just ⊆, i.e., that ∃Γ ∈

NT R(RT RΓ ∆Θ) ⇐⇒ ∆ ⊆Θ . For the left-to-right, suppose that ∃Γ ∈NT R(RT RΓ ∆Θ)
and X ∈ ∆ . If Γ ∈ NT R, then @ ∈ Γ and since @⊆ X  X , we have that X  X ∈ Γ ,
and thus X ∈Θ . Since X was arbitrary, this suffices to show that ∆ ⊆Θ , as desired.
For the converse, suppose that ∆ ⊆Θ ; in fact, since for any X ∈ ∆ and any Γ ∈ NT R

we have X  X ∈ Γ , we have that RT RΓ ∆Θ , which suffices to show the result (given
that NT R 6=∅, verification of which fact we leave to the reader).

For the remainder, we’ll take the order concerned just to be ⊆ without further
comment. For (tr2), we want to show that if Γ ∈ NT R and Γ ⊆ ∆ then ∆ ∈ NT R. This
is immediate from the definition of NT R.

The arguments needed for (tr3) and (tr4) are quite similar to arguments standardly
given to show that the canonical frame of a logic is a TR frame, and the reader may
consult [2, §48.3] or [40, Ch. 4] for details of this style of argument. /

Definition 15. Given the TR-mate GT R of an F frame G and a model L on G, let
JAKL = {Γ ∈W T R : |A|L ∈ Γ }.

Now, once again, we just have to verify that the resulting model satisfies the re-
quired properties.

Fact 16. Given a model L on a F frame G, the evaluation J·KL on GT R has the follow-
ing properties:

(1) If Γ ∈ JAKL and Γ ⊆ ∆ , then ∆ ∈ JAKL.
(2) JtKL = NT R

(3) JA∧B KL = JAKL∩ JB KL

(4) JA∨B KL = JAKL∪ JB KL

(5) JA→B KL = {Γ ∈W T R : ∀∆ ,Θ((RT RΓ ∆Θ & ∆ ∈ JAKL)⇒Θ ∈ JB KL)}
(6) J¬AKL = {Γ ∈W T R : Γ ∗T R

/∈ JAKL}
(7) For any A ∈ L, NT R ⊆ JAKL iff @ ∈ |A|L.

Proof. The reader is encouraged to check [6] for details of proving completeness for
relational frames for distributive multi-gaggles. The details there suffice here, as can
be noted by the fact that the complex algebra of an F frame will be a multi-gaggle.
The only part of verifying this that is not standard involves verifying that distribution
obtains, and the argument style, using (f5), can be found in [23]. /
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From this we can infer the key fact, which is:

Theorem 17. From any F frame G we can obtain a TR frame GT R such that, for any
model L on G there is a model J·KL on GT R satisfying exactly the same formulas as L.

I’ve only dealt here with frames appropriate for the basic logic B, but there is a
well-known correspondence theory for accommodating stronger logics, and it seems
likely that these results allow for the above to be generalized to frames appropriate for
a wider range of logics (as can be done in the case of R, as shown in [33]). For my
purposes, the basic form I’ve given here is enough to make my point, so I’ll leave it at
that and get back to the philosophical work.

5. LAYERED SEMANTICS

As per §2.1, a realist account provides for a more explanatorily satisfying picture,
and the equivalence results of §4 indicate how it is that, starting from this basis, we
can recapture the working of the information-based semantics of the F approach in a
more satisfying way using the TR semantics.11 In any case, regardless of which way
one proceeds to do the grounding, the equivalence provides a way of capturing both
in one framework with some nice results.

The three-layer picture can be represented as follows — the arrows on the left side
indicate explanatory priority (the arrows go from from the thing-grounded to the thing-
grounding), and those on the right side order of the “defined in terms of” relation:

Information States Γ ∈ SF
y

y
Propositions X ∈ P(W )↑y

y
Situations α ∈W

As indicated, situations provide the ground of the truth of propositions, and elements
of SF represent the states of information to which agents can find themselves having
access. As before, there are good reasons that these should not be required to be prime,
as they are not. One can have an information state which includes/supports a disjunc-
tive proposition without supporting either disjunct. Situations, however, understood
as inexact truthmakers are prime.

On the base level, we have objects, situations — particularly, something like the
abstract situations of [4] — to which we have an existential commitment. We take
them to be real things, and take propositions to be constructed out of these in sys-
tematic ways. Propositions, or representations thereof, are then the constituents of
information states, to which agents have cognitive access. For instance, it is by taking
in visual information that an agent learns what information the witnessed situation
conveys, and they are then in a position to perform various cognitive tasks with that
information. Part of the story here is that we don’t directly perceive situations, nor do

11Assuming, of course, that the version of the F semantics involved is read in a non-realist and the TR
semantics in a realist way.
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we express situations directly by our various linguistic/cognitive actions. Rather, what
we perceive/express/cognize are propositions and collections thereof into information
states. On this line, when we open our eyes and perceive the world around us, what
we perceive is not the world directly, but information carried by the world — what we
perceive is a fact, not an object.

One place where the distinction becomes most salient is that many situations will
be typed by a proposition. This captures the intuitive idea that our available informa-
tion underdetermines the state of the world (the situation) we have information about.
When I look at my office, and out the window, there is a great deal of information
I get, but the actual world situation I, the office, and the window inhabit supports a
great deal more information than that which I obtain by perception. For instance, I
may see a drawer, and have a vague idea of what is in it, but may not have access to
the more precise information supported by the situation of my office, which specifies
precisely what is in the drawer. It is this underdetermination which explains why our
information has certain imperfections, such as not being prime.

While in need of further precisification this story provides a skeleton for how a
reasonably natural theory of meaning could be constructed on this sort of layered
picture, and this in a way which accommodates the nice features of both the ontic and
the epistemic/informational readings.

6. MARES–GOLDBLATT QUANTIFIERS IN LAYERED SEMANTICS

One nice feature of the three-layered semantic picture is that we have three places
where we can locate meanings. I’ve suggested that entailment facts should be un-
derstood to be grounded in the world. Having said that, however, we can locate the
meanings of other expressions in other places, namely in the proposition or informa-
tion state layer. One natural kind of expression which would seem to have its meaning
most naturally in one of these higher layers may be certain modals which concern the
interactions between agents and their available information.

The example I want to consider is the Mares–Goldblatt (MG) [32] interpretation of
quantifiers, which I’ll suggest most naturally lives at the propositional layer.12 This
provides an interesting contrast with the standard, Quinean, picture of the quantifiers
wherein their meanings are to be found in the world, and the arrangements of proper-
ties over objects. The picture I’ll sketch is similar to Mares’ [31] proposed interpreta-
tion of the MG semantics, though it differs from his in some respects. Let me begin
by recapping the basic elements of the MG semantics, building on the basis of the TR
framework.

6.1. MG Quantifiers in TR Semantics. First we extend the basic propositional lan-
guage (implicit up until now) by a denumerable collection of variables Var = {xn}n∈ω ,
and the quantifiers ∀,∃. A language signature consists of a set of name constants Con
and a collection Pred of predicate letters of varying arities: the letter c will function
as a metavariable over Con and Pn over Pred, having arity n.

12The original form of this semantics was given for quantified extensions of R, but it has recently been
expanded to include a range of weaker logics in Ferenz [19]; Tedder and Ferenz [43].
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Definition 18. An MG frame is a tuple 〈W,N,R,∗,Prop,D,PropFun〉, where F =
〈W,N,R,∗〉 is a TR frame, Prop ⊆ P(W )↑, D 6= ∅, and PropFun ⊆ {ϕ : ϕ : Dω −→
Prop}. We stipulate a range of constraints on these things. To that end, given f ∈ Dω

(called a “variable assignment”), if f ′ ∈ Dω is such that for any m 6= n, f m = f ′m,
then f ′ is an xn-variant of f , written f ′∼xn f .

The constraints, taking the definitions of→,¬ as operations on P(W )↑ from Defi-
nition 6, are:
(MG1) There is a ϕN ∈ PropFun s.t. for all f ∈ Dω , ϕN f = N.
(MG2) If ϕ ∈ PropFun, then there is a ¬ϕ ∈ PropFun s.t. (¬ϕ) f = ¬(ϕ f ).
(MG3) If ϕ,ψ ∈PropFun, then there is a ϕ⊗ψ ∈PropFun s.t. (ϕ⊗ψ) f =ϕ f ⊗ψ f

for each ⊗ ∈ {∩,∪,→}.
(MG4) If ϕ ∈ PropFun,n ∈ ω , then there is a ∀nϕ ∈ PropFun s.t.

(∀nϕ) f =
⋃
{X ∈ Prop : X ⊆

⋂

f ′∼xn f

ϕ f ′}.

(MG5) If ϕ ∈ PropFun,n ∈ ω , then there is a ∃nϕ ∈ PropFun s.t.

(∃nϕ) f =
⋂
{X ∈ Prop :

⋃

f ′∼xn f

ϕ f ′ ⊆ X}.

A model M on a MG frame is a multi-type function: it is of types Con −→ D and
Predn −→Dn (where Predn ⊆ Pred is the set of n-ary predicate letters), and we define
the combination of M with f ∈ Dω as follows, for any τ ∈Con∪Var:

M f (τ) =

{
f n if τ = xn ∈Var;
M(τ) if τ ∈Con.

We define J·KM assigning formulas to elements of PropFun inductively as follows
(note that (JAKM) f , often written JAKM

f , takes a value in Prop):

(1) JPn(τ1, . . . ,τn)KM
f = M(Pn)(M f (τ1), . . . ,M f (τn))

(2) J¬AKM
f = ¬(JAKM

f ) (5) JA→B KM
f = JAKM

f → JB KM
f

(3) JA∧B KM
f = JAKM

f ∩ JB KM
f (6) J∀xnAKM

f = (∀nJAKM) f

(4) JA∨B KM
f = JAKM

f ∪ JB KM
f (7) J∃xnAKM

f = (∃nJAKM) f

A formula A is satisfied by the pair M, f just in case N ⊆ JAKM
f . A is satisfied by M

just in case it it satisfied by M, f for any f ∈ Dω . A is satisfied by an MG frame if
satisfied by every model on the frame, and it is valid w.r.t. a class of MG frames if
satisfied by every frame in the class.

The key innovation in this semantic framework concerns, naturally, the quantifiers.
In particular, it is the introduction of the clauses (MG4) and (MG5). Note that, unlike
in the standard, Tarskian framework, these are not interpreted just as generalized inter-
sections/unions of “instances.” Rather, these are mediated by elements of Prop — we
don’t just consider, when evaluating a quantified claim at a world α , whether all/some
instance of the quantified formula holds at α , or even at worlds related to α . Rather,
we consider the state of information from α , that is, how α fits into the structure of
propositions; in effect, we consider what the information supported by α commits one
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to. It’s by working with Prop like this explicitly that Mares and Goldblatt are able to
avoid the problems, discovered by Fine [21], with employing the standard Tarskian
truth condition. So the interpretation of the quantifiers concerns not just a frame, but
this combined with a particular complex algebra over that frame — that is to say, it is
a form of general frame semantics. However this difference isn’t just interesting for
technical purposes, but also for philosophical purposes.

In particular, by working with this larger structure of information, the MG interpre-
tation of the quantifiers seems to open itself up to readings of these objects other than
the traditional reading made famous by Quine [34]. For example, the truth condition
for the existential quantifier can be spelled out as

α ∈ J∃xnAKM
f ⇐⇒ ∀X ∈ Prop(α ∈ X ⇒∀β (∃ f ′ ∼xn f (β ∈ JAKM

f ′)⇒ β ∈ X)).

That is, any proposition X which α supports contains any situation β which supports
at least one instance of A. That is, the information supported by α must be supported
by a situation which supports at least one instance. We are concerned not with an exis-
tential commitment at the world of evaluation, but rather with a situation-independent
informational commitment. In order to be so committed, one does not need to be
committed to the existence of anA in any particular situation, but rather just be com-
mitted to infer the information supported by α in any situation, which does support
the existence of an A. To use the preferred terminology of Sylvan [38], we might
call this a particular quantifier, which simply tracks the commitments associated with
commitment to a particular one satisfying the formula.

The important thing for my purposes is that the three-layer semantic framework
provides the grist both for a realist interpretation of the propositional vocabulary, and
an informational interpretation of the quantifiers, in one setting. That this is a strength
of the account is, of course, the kind of point Punčochář [33] noted, but it’s an advan-
tage we retain even when we are more picky about the grounding of the framework.
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Heister (eds.), Substructural Logics, Clarendon Press, Oxford UK, pp. 31–42.



Andrew Tedder: Situations, Propositions, and Information States 425
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WHO WAS SCHILLER JOE SCROGGS?

Alasdair Urquhart

ABSTRACT. Schiller Joe Scroggs was the author of one of the most renowned papers
in modal logic. Several logicians have conjectured that he in fact never existed,
being the invention of J. C. C. McKinsey. The main aim of this article is to refute
this conjecture, and to explain who he was. The precise origins of Scroggs’s paper
remain somewhat mysterious.

Keywords. Finite characteristic matrix, J. C. C. McKinsey, Modal logic, S5, Schiller
Joe Scroggs

1. THE SCROGGS PROBLEM

The title of our article is a historical puzzle that has exercised the ingenuity of a
number of distinguished logicians. From time to time, I have discussed this question
with (among others) Mike Dunn, Bob Meyer and Kit Fine — there are probably other
logicians who have at least wondered about this intriguing question. Before listing
earlier investigations of this problem, let me explain how the question arose.

1.1. The Famous Scroggs Article. The publication that gave rise to all this head-
scratching is a 9-page article Scroggs [21] that is a classic of modal logic. The main
theorem of the paper is that every logic extending S5 closed under modus ponens and
substitution has a finite characteristic matrix. This result has inspired a large number
of similar theorems, such as the work of Kit Fine [8] on the logics extending S4.3,
Dunn’s theorem [4] on the extensions of the relevant logic RM, and the work of Dunn
and Meyer [6] on the logic LC of Michael Dummett. Dunn’s results on RM are
described in §3.3.

A footnote to Scroggs’s paper reads: “This paper was prepared under the direction
of J. C. C. McKinsey as a Master’s thesis at Oklahoma Agricultural and Mechani-
cal College.” However, the paper obviously bears the strong imprint of the style of
McKinsey, who had been engaged in a research program since the early 1940s, in-
vestigating systems of modal logic using algebraic techniques. Scroggs’s article cites
three of McKinsey’s papers [12; 13; 17], the last co-authored with Alfred Tarski.

Since the techniques and ideas of the Scroggs paper of 1951 are so closely related to
those employed by McKinsey since the 1940s, it is understandable that some logicians
have taken it to be a paper written by McKinsey himself, and even that “Schiller Joe
Scroggs” was his own invention. As we shall see shortly, Scroggs was in fact a real
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FIGURE 1. McKinsey in 1942

person, though the precise circumstances leading to the publication of [21] are not at
all clear.

1.2. Some Earlier Investigations. As I mentioned initially, I have discussed the
Scroggs problem with a number of logicians who were also interested in the ques-
tion. Perhaps the most assiduous of these was Mike Dunn. I recall that he once told
me that he had made a trip to Oklahoma State University (originally, “Oklahoma Agri-
cultural and Mechanical College”) to investigate the matter. However, this was quite
some time ago, and I don’t recall that his pilgrimage bore fruit.

What appeared to be a promising lead on the Scroggs problem came to light when
Mike Dunn received a letter from Schiller Joe himself! In it, Scroggs claimed to have
served in the Second World War, and expressed an interest in graduate work at Indiana
University. Sad to say, however, this letter shortly proved to be a hoax perpetrated by
the Maximum Leader of the Logicians Liberation League, Robert K. Meyer.

I attended a lattice theory and universal algebra conference at Asilomar in 1987,
where Leon Henkin was in attendance. Since I was aware that Henkin knew
McKinsey when the latter taught at Stanford University, I took the opportunity to
ask him about Scroggs. Henkin was not able to answer my query, but he did tell me
two interesting facts about McKinsey. First, he was a chain smoker; second, he was
gay, but completely open about his sexual orientation at a time when most gay men
were strictly in the closet.

2. J. C. C. MCKINSEY

2.1. Biography. John Charles Chenoweth McKinsey (1908–1953), known to his
friends as “Chen,” was a very productive and original mathematician, as well as a re-
markably interesting person, who became Alfred Tarski’s closest friend. A great deal
of material about him is now available in the Fefermans’ fascinating biography [7] of
Tarski. His open homosexuality and the fears it induced in university administrators
led him to move from position to position.
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McKinsey received his B.S. and M.S. degrees from New York University and his
Ph.D. degree from the University of California, where his advisor was Benjamin
Abram Bernstein. He was a Blumenthal Research Fellow at New York University
from 1936 to 1937 and a Guggenheim Fellow from 1942 to 1943. He also taught at
Montana State College, and in Nevada, then Oklahoma. In 1947, he joined a research
group, project RAND, at Douglas Aircraft Corporation. He was fired as a security
risk in 1951, and then took up a position in the Stanford University Philosophy De-
partment, where he collaborated with Patrick Suppes on the foundations of physics.
In his book on the history of RAND Corporation, Alex Abella tells the story of
McKinsey’s dismissal:

An open homosexual, McKinsey had been in a committed relation-
ship for years when the FBI decided he was a security risk. When told
that his sexual orientation could subject him to blackmail,
McKinsey complained to Roberta Wohlstetter, “How can anyone thre-
aten me with disclosure when everybody already knows?” A few
years after his clearance was revoked and Frank Collbohm himself
had fired him, McKinsey committed suicide. [1, Chapter 5]

McKinsey’s tragically early death at the age of 45 was a major loss to logic and phi-
losophy [3].

McKinsey had the misfortune of living through a period of extreme suspicion and
paranoia in the United States. The early 1950s are remembered as a time when com-
munists and people with left-wing political views were persecuted. However, it is
often forgotten that there were equally violent attacks on gay men and lesbians. David
K. Johnson has written an excellent history of this period entitled The Lavender Scare.
In February 1950, Deputy Undersecretary John Peurifoy revealed to a congressional
committee that a number of persons considered to be security risks had been forced
out of the State Department, among them ninety-one homosexuals. This was the be-
ginning of the “Lavender Scare” [9, p. 1].

In the context of that time, McKinsey’s attitude as an openly gay man seems dan-
gerously naı̈ve. In fact, politicians at that time seem to have had trouble distinguish-
ing between homosexuals and communists. Three of President Truman’s top advisors
wrote him a joint memorandum warning that “the country is more concerned about the
charges of homosexuals in the Government that about communists” [9, p. 2]. Senator
Kenneth Wherry, an enthusiastic persecutor of the gay community, remarked in 1950:

You can’t hardly separate homosexuals from subversives. Mind you,
I don’t say every homosexual is a subversive, and I don’t say every
subversive is a homosexual. But a man of low morality is a menace
in the government, whatever he is, and they are all tied up together.
[9, pp. 37–38]

In August 1954, after McKinsey was fired, the mathematician John Nash was arrested
in a police sting operation and charged with indecent exposure. Subsequently, he also
was fired from RAND [19, Chapter 25].

Game theory was one of the central concerns at RAND Corporation while McKin-
sey worked there, and he wrote one of the first textbooks on game theory, a monograph
[14] that is still in print. In the late 1940s, while at RAND, McKinsey wrote to von
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FIGURE 2. Schiller Joe Scroggs in 1949

Neumann about his idea for solving n-person games by using a computer. I have dis-
cussed this interesting correspondence and its connection to computational complexity
in an article [22] in the Bulletin of Symbolic Logic.

2.2. McKinsey’s Work in Modal Logic. In the 1940s, McKinsey published a series
of important papers in the area of modal logic, some co-authored with Alfred Tarski.
Among the latter papers is a groundbreaking article on the algebra of topology [15]
in which a topological space is defined as a closure algebra, that is to say, a Boolean
algebra with an algebraic operator satisfying the usual laws of topological closure. A
closure algebra is an algebraic version of the modal logic S4; this connection with
topology had already been exploited by McKinsey in an earlier article [12]. In that
paper, he proved decidability for the Lewis systems S2 and S4 by showing that they
have the finite model property. This result also yields decidability for the algebra of
topology. McKinsey and Tarski extended this research in two subsequent papers to
include results about Brouwerian algebras and Brouwerian logics [16] and [17], as
well as the Lewis systems.

The techniques employed in all of the above papers by McKinsey, as well as in
the joint work with Tarski all belong to algebraic logic. The usual apparatus of sub-
algebras, free algebras, homomorphisms, product algebras and so forth is deployed
to prove some penetrating results about the algebras in question, that are then used to
prove results about the logical systems from which the algebras were derived.

3. SCHILLER JOE SCROGGS

3.1. Biography. Schiller Joe Scroggs was born in Shawnee, Oklahoma on 17 January
1929. He entered Oklahoma Agricultural and Mechanical College in 1945, where his
father served as Dean of Arts and Sciences, after he graduated from Stillwater High
School. He earned his Bachelor of Science from the College in 1949 and his Master
of Science in 1950.

In the 1951 and 1952 yearbooks of the University of California, Berkeley, Scroggs
is listed as a member of Beta Theta Pi, and described as a “University Associate.”
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It seems likely (given his later employment) that he graduated from Berkeley with a
two-year engineering degree. He died in Orlando, Florida on November 7, 1993, of
throat cancer. He moved to Florida in 1983, where he was employed as an aerospace
engineer and adjunct mathematics instructor at the University of Central Florida.

The Fourjay Foundations established a graduate award in memory of Schiller J.
Scroggs after he passed away in 1993. The recipient of this award is a student who
displays academic leadership and outstanding leadership ability.

3.2. The 1951 Scroggs Paper. The JSL article of 1951 [21] is a slightly altered ver-
sion of Scroggs’s Master’s thesis of 1950. The ideas, techniques and style of the paper
are very similar to those of McKinsey, as well as those of McKinsey and Tarski, in the
series of papers on modal logic that we discussed in §2.2. The article fits seamlessly
into this stream of research from the 1940s.

Scroggs proves the main result of the paper as follows. A matrix for a logic S is
an algebra M = 〈K,D,×,−,∗〉 containing operators × and − corresponding to the
Boolean connectives of conjunction and negation, a modal operator ∗, and a subset D
of designated elements. A logic S is a quasi-normal extension of S5 if is closed under
substitution and modus ponens. An S-matrix M is a matrix such that any theorem of
S always takes a designated value under any assignment to the variables. A matrix is
normal [12] if the family D of designated elements is closed under detachment and
adjunction and in addition, if x↔ y ∈ D, then x = y.

Theorem 1 of [21] shows that any quasi-normal extension S of S5 has the finite
model property with respect to normal matrices, that is to say, any unprovable formula
of S can be refuted in a finite normal S-matrix. Later, Scroggs strengthens Theorem 1
in the following way: any non-theorem of a quasi-normal extension of S5 can be
refuted in a finite Henle matrix M with only one designated element, so that D = {1},
where 1 is the unit element of the Boolean algebra of M.

To explain the notion of a “Henle matrix,” rather than follow Scroggs’s paper at this
point, it is easier to use the well-known duality theory for modal algebras expounded
by Jónsson and Tarski [10; 11]. If R is an equivalence relation on a non-empty set
S, then we can define a modal algebra M(S,R) on the family of all subsets of S by
defining for X ⊆ S, ♦X = {a∈ S : ∃b∈X(aRb)}. If we take S to be the only designated
value, then the resulting matrix validates all theorems of S5. If the relation R is the
universal relation on S, then the matrix defined in this way is a Henle matrix in the
sense of Definition 1 of Scroggs’s paper. Furthermore, any finite Henle matrix with
1 the only designated value is isomorphic to one defined by this dual construction
[10, §3].

Up to isomorphism there is exactly one finite Henle matrix with n atoms and D =
{1}. Consequently, there is a sequence H1, . . . ,Hn, . . . of finite Henle matrices, where
every Hk contains all earlier matrices in the sequence as submatrices. Hence, if S
is a quasi- normal extension of S5, then either there is a k so that Hk is the largest
matrix in the sequence validating S, or no such k exists. In the first case, Hk is a finite
characteristic matrix for S, while in the second case, S is S5. This is the main theorem
of Scroggs’s paper.
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3.3. Dunn’s Continuation of Scroggs’s Work. Scroggs’s paper of 1951 has served
as a model for a number of later results, such as the work of J. M. Dunn [4] on the
logic R-mingle (RM), the extension of the relevant logic R that results by adding the
axiom schema A→ (A→ A). For more details on RM, the reader can consult the
treatise of Anderson and Belnap [2, §29], as well as Dunn’s informative survey [5]
of work on the system, including that of Arnon Avron. A logic X is an extension of
RM if every theorem of RM is a theorem of X; it is a proper extension if it contains
theorems not in RM. An extension is normal if it is closed under substitution, as well
as modus ponens and adjunction.

As in the case of Scroggs’s main theorem, Dunn defines a family of finite matrices,
the Sugihara matrices, defined on a subset of the integers. These matrices come in
two flavors. The matrices Sn are defined on the interval [−n, . . . ,+n] \ {0}, the inte-
gers from −n to +n with 0 omitted. The matrices Sn + 0 are defined on the interval
[−n, . . . ,+n] including 0. The negation of an element m in either case is defined as−m.

In both cases, the non-negative elements are designated. The matrices Sn are nor-
mal (there is no element m in Sn so that m and −m are both designated), while the
matrices Sn + 0 are not, since −0 = 0. Dunn uses the notation Sn(+0) to refer am-
biguously to these two structures. The Sugihara matrices Sn(+0) play the same role in
Dunn’s result as the Henle matrices in Scroggs’s paper. Robert K. Meyer [18] proved
that R-mingle is complete with respect to the matrices Sn; consequently, the rule γ is
admissible in R-mingle, since these matrices are all normal. Later, Dunn and Meyer
generalized this result to logics such as E and R; I discuss this history in my paper
on γ [23].

Dunn’s main theorem [4, Theorem 9] follows the pattern of Scroggs’s paper. Theo-
rem 4 of [4] defines the sequence of matrices S0 +0,S1,S1 +0,S2, . . . , and shows that
if a sentence is valid in a matrix in the sequence, then it is valid in all earlier matrices.
Then any proper normal extension X of RM has a finite characteristic matrix, by an
argument paralleling that of Scroggs. If X is a normal extension of RM, then either
there is a largest k so that the matrix Sk(+0) in the sequence defined above validates
X, or no such k exists. In the first case, Sk(+0) is a finite characteristic matrix for X;
in the second case, X is the full logic RM, by the result of Meyer [18].

The main theorem of [4] has a very pleasing corollary [4, Corollary 4] — a com-
plete classification of those extensions of RM for which the rule γ is admissible. Ack-
ermann’s rule of γ is admissible for all of those consistent proper normal extensions of
RM that have a characteristic matrix of the form Sn, and inadmissible for those with a
characteristic matrix of the form Sn +0.

3.4. The Origins of Scroggs’s Master’s Thesis. The biographical information on
McKinsey and Scroggs answers at least one basic question, since it establishes beyond
doubt that Scroggs was a real person, contrary to speculations that we reported above.
However, in another sense, it deepens the mystery of the origin of the Master’s thesis.
Scroggs submitted his thesis in April 1950 at a time when McKinsey was working at
RAND Corporation. McKinsey must have left his job in Oklahoma in 1947, and it is
hard to believe that he spent a lot of time there supervising Scroggs’s thesis work —
though he could of course have supervised it through correspondence.
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The thesis itself is available online Scroggs [20], but unfortunately does not shed
a great deal of further light on our problem. The typewritten thesis is essentially
the same as the 1951 article in the JSL. It bears the signature of McKinsey as thesis
adviser, together with those of a faculty representative, O. H. Hamilton, and Dean
D. C. McIntosh of the graduate school. The first footnote reads: “This paper was
prepared under the direction of J. C. C. McKinsey as a Master’s thesis at Oklahoma
Agricultural and Mechanical College and was submitted April 30, 1950.” The last
page bears the inscription “Typist: Mrs. J. P. Gardner.”

In terms of ideas, techniques and style, the thesis resembles closely the work of
McKinsey. Furthermore, the 1951 JSL paper is the one and only mathematical publi-
cation by Scroggs. However, we should perhaps not jump too readily to the conclusion
that Scroggs contributed nothing at all to the work. Scroggs seems to have been a com-
petent mathematician, judging by his later employment as an aerospace engineer and
adjunct professor of mathematics in Florida.

A reasonably plausible story about the origins of the thesis is as follows. McKinsey
may have taught Schiller Joe as an undergraduate and could have become friendly with
him and his family (presumably it was Schiller Joe’s father, Dean Schiller Scroggs,
who hired him). It seems conceivable that McKinsey remained in touch with the
Scroggs family and may have explained the basic ideas of the paper to Schiller Joe,
who then wrote it up as his Master’s thesis.

McKinsey was noted for his generosity to students. In their biography of Tarski, the
Fefermans quote reminiscences of Ruth Barcan Marcus, who was McKinsey’s student
at NYU in 1940:

He took me under his wing and invited me to do a tutorial in logic.
We met two or three times a week in Bickford’s cafeteria near Wash-
ington Square and we reviewed my work on the exercises he had
given me from his own translation of Hilbert and Bernays. He urged
me to go to graduate school but not to Harvard where, he said, Quine
would clip my wings. I subsequently realized how much I took his
mentorship and generosity for granted; I thought that was what all
professors did. [7, p. 141]

Schiller Joe Scroggs may well have been a student whose talent McKinsey recog-
nized. Given McKinsey’s generous nature, he may have explained the outline of the
1951 paper to Scroggs and allowed him to publish the results as a Master’s thesis.
However, in the absence of further evidence, this is all just speculation, so we have
achieved only a partial solution to the Scroggs problem.

I would like to thank Katalin Bimbó for very helpful correspondence about my
research on Schiller Joe Scroggs, as well as for her unearthing of Bob Meyer’s hoax
letter at Indiana University.
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REVISITING CONSTRUCTIVE MINGLE: ALGEBRAIC
AND OPERATIONAL SEMANTICS

Yale Weiss

ABSTRACT. Among Dunn’s many important contributions to relevance logic was
his work on the system RM (R-mingle). Although RM is an interesting system in its
own right, it is widely considered to be too strong. In this paper, I revisit a closely re-
lated system, RM0 (sometimes known as “constructive mingle”), which includes the
mingle axiom while not degenerating in the way that RM itself does. My main inter-
est will be in examining this logic from two related semantical perspectives. First, I
give a purely operational bisemilattice semantics for it by adapting previous work of
Humberstone. Second, I examine a more conventional algebraic semantics for it and
discuss how this relates to the operational semantics. A novel operational semantics
for J (intuitionistic logic) as well as its conventional Heyting algebraic semantics
emerge as special cases of the corresponding semantics for RM0. The results of this
paper suggest that RM0 is a more interesting logic than has been appreciated and
that Humberstone’s operational semantic framework similarly deserves more atten-
tion than it has received.

Keywords. Bisemilattices, Intuitionistic logic, Mingle, Operational semantics, Rele-
vance logic

1. INTRODUCTION

Among Mike Dunn’s many important contributions to relevance logic was his work
on the system RM (R-mingle) [11; 15; 12]. Indeed, with Storrs McCall, Dunn is
one of the system’s “parents” (some of the history is recounted in Dunn [14, §7.3]).
RM, which results by adding ϕ → (ϕ → ϕ) to R, is one of the best behaved systems
in the broader family of (quasi-)relevance logics and, not unrelatedly, also rather a
disappointment (that RM is disappointing is, as far as I am aware, the consensus view,
though Dunn has suggested—pace Meyer in Anderson and Belnap [1, §29.3, pp. 393–
394]—that RM is superior to R “when all things are considered” [14, p. 143]). On
the one hand, it is semantically natural, possessing both elegant binary relational and
algebraic semantics, is decidable, and prima facie looks like an eminently reasonable
axiomatic extension of R. On the other hand, it is just way too strong, producing such
unsavory theorems as (ϕ → ψ)∨ (ψ → ϕ) (sometimes called the “chain theorem”)
and ultimately tilting into the abyss of irrelevance.
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Bimbó, Katalin, (ed.), Relevance Logics and other Tools for Reasoning. Essays in Honor of J. Michael
Dunn, (Tributes, vol. 46), College Publications, London, UK, 2022, pp. 435–455.



436 Yale Weiss: Revisiting Constructive Mingle: Algebraic and Operational Semantics

The cognoscenti have long appreciated that the original sin of RM has less to
do with the innocuous seeming mingle axiom than to do with the negation postula-
tes of R:

But the breakdowns that afflicted RM rested on R-style negation, which [. . .]
is not as transparent as the other truth-functional connectives. Accordingly,
further pursuit of the original Dunn-McCall insights, dropping the R-style
negation [. . .] appears an interesting present alternative. (Meyer, in [1, §29.3,
p. 394].)

This seems to me—and has seemed to others—to be an eminently reasonable sug-
gestion.1 The result of adding the mingle axiom to the pure implicational fragment of
R yields a system, RM0→, which does not in fact coincide with the pure implicational
fragment of RM but which is, on any reasonable understanding, relevant.2 Anderson
and Belnap call this “constructive mingle,” as it is a subsystem of the implicational
fragment of J (intuitionistic logic) [1, §8.15, pp. 98–99]. I will extend this name to
all of RM0, which I take to be RM0→ extended with conjunction, disjunction, and
the constant ⊥—all governed by their usual axioms—and potentially some further
connectives, though not the negation of R (Section 2).

This paper is primarily devoted to a study of RM0 from two semantical perspec-
tives. In Section 3, I give a purely operational bisemilattice semantics (cf. Urquhart’s
semilattice semantics of [38]) for RM0 by adapting previous work of Humberstone
from [20]. An operational semantics for J then emerges as the special case in which
the bisemilattices—which here play the role of frames—are lattices. In Section 4, I
examine a more conventional algebraic semantics for RM0 and relate it to the previ-
ously developed operational semantics; here, the familiar Heyting algebraic semantics
for J emerges as the special case.

Let me emphasize that my main interest in this paper is not so much novelty (though
there will be some novelty) as it is in reframing existing ideas and situating them in a
more abstract, broadly lattice-theoretic context. I will point out a number of connec-
tions and conceptual links which do not appear to have been adequately appreciated
and also highlight certain ways in which Humberstone’s ideas, properly situated, have
anticipated subsequent developments (e.g., in inquisitive semantics). Some conclud-
ing remarks on such morals and outstanding problems are offered in Section 5.

2. AXIOMATICS

In this section, I present an axiom (Hilbert) system for RM0 as well as certain ex-
tensions thereof. In what follows, the basic propositional language contains a count-
able set of propositional variables Π, the propositional constant ⊥, and the binary

1For example, in [25], Méndez discusses how various sorts of alternative negations might be added to
the standard axiomatic (not actual) positive fragment of RM (the article also provides ternary relational—
though not algebraic or operational—semantics for some of these variations on RM).

An alternative idea is pursued by Avron (see, e.g., [2; 3]), who considers and advocates for an
implication-negation system—the standard axiomatic (not actual) fragment of RM in that language—in
which intensional versions of conjunction and disjunction can be defined. This project certainly has its
interest, though it is quite different from the project which I shall pursue here.

2 In particular, RM0→ (as well as its extension with the usual axioms for disjunction and conjunc-
tion) satisfies the variable sharing property (i.e., ϕ → ψ is never a theorem when ϕ and ψ do not share
propositional variables) [25, p. 286].
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connectives {→,∧,∨}. Formulae, etc., are defined as usual. I will use p,q, . . . for
arbitrary propositional variables and ϕ,ψ, . . . for arbitrary formulae. I denote the set
of all formulae in this language by Φ.

The axioms for RM0 are just those of positive R (see, e.g., Dunn and Restall [16,
§1.3]), together with the mingle axiom M and ⊥.3

Definition 1. The system RM0 is the smallest set of formulae containing all instances
of the following axiom schemata and closed under the following rules:

(I) ϕ → ϕ
(B) (ϕ → ψ)→ ((χ → ϕ)→ (χ → ψ))

(C) (ϕ → (ψ → χ))→ (ψ → (ϕ → χ))
(W) (ϕ → (ϕ → ψ))→ (ϕ → ψ)

(M) ϕ → (ϕ → ϕ)
(∧E1) (ϕ ∧ψ)→ ϕ
(∧E2) (ϕ ∧ψ)→ ψ

(∧I) ((ϕ → ψ)∧ (ϕ → χ))→ (ϕ → (ψ ∧χ))
(∨I1) ϕ → (ϕ ∨ψ)

(∨I2) ψ → (ϕ ∨ψ)

(∨E) ((ϕ → χ)∧ (ψ → χ))→ ((ϕ ∨ψ)→ χ)
(DIS) (ϕ ∧ (ψ ∨χ))→ ((ϕ ∧ψ)∨χ)

(⊥) ⊥→ ϕ

(ADJ)
ϕ,ψ

ϕ ∧ψ

(MP)
ϕ,ϕ → ψ

ψ

Theoremhood (`RM0) is defined as usual.4 This axiomatization of RM0 contains
some redundancy (e.g., I easily follows from M and W by MP), but it has the benefit
of making clear the relationship between RM0 and R. Also, note that > is definable
as ⊥→⊥ and, so defined, it is clear that `RM0 ϕ →>.

For certain purposes, I will be interested in extensions of RM0 with the propo-
sitional constant t as well as the binary connective ◦ (for intensional conjunction or
fusion). If I need to refer to the set of formulae formulated in a language containing
either or both of these additional connectives, I will refer to it by Φ′. Where these are
included in the language, the corresponding axioms for them are as follows, where
ϕ ↔ ψ abbreviates (ϕ → ψ)∧ (ψ → ϕ):

(t) ϕ ↔ (t→ ϕ)

3It bears emphasis that this is not the fragment of RM in this language. The easiest way to see this is
to note that RM0, so formulated, is a subsystem of J, whereas RM, which contains the chain theorem [1,
§29.3.1, p. 397], clearly is not.

4One could of course also define a suitable consequence relation, holding between sets of formulae and
formulae, though I will not pursue this here.
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(◦) (ϕ → (ψ → χ))↔ ((ϕ ◦ψ)→ χ)
In Subsection 3.4, I will have occasion to make special use of RM0 extended by t. For
emphasis, I will sometimes designate this system by RM0 t .

It is clear that J, intuitionistic logic, is axiomatized by extending RM0 with the
weakening axiom schema:

(K) ϕ → (ψ → ϕ)
Of course, this system has a number of redundancies, but that is alright. One could
also add to J, formulated in the appropriate language, axioms t and ◦, but the result
would be that t and ◦ are equivalent (in the obvious sense) to > and ∧, respectively,
so there is little point (though see Lemma 29).

Finally, note that constructive negation (¬) is definable in both RM0 and J in the
usual way: ¬ϕ abbreviates ϕ →⊥.5 Incidentally, it may be complained that RM0 is
not really a relevance logic as, for example, (ϕ ∧¬ϕ)→ ψ will come out a theorem.
Without wishing to digress for too long on what makes a logic relevant, let me nev-
ertheless state that I do not view this as a serious objection to the relevant credentials
of RM0. In any case, the reader should note that the positive fragment of RM0 does
satisfy the variable sharing property (see footnote 2), standard relevance logics like R
are themselves not infrequently presented with constants including ⊥, and RM0 does
not have as theorems “bad guys” like the chain theorem or K.6

3. OPERATIONAL SEMANTICS

In this section, I present a purely operational bisemilattice semantics for RM0 as
well as J. All of the essential features of this semantics were already isolated in [20],
however, Humberstone’s focus was on different systems and my own presentation will
reframe the material by placing it in a broadly lattice-theoretic context, the benefits of
which will become clear shortly.

In Subsection 3.1, I review some essential concepts from lattice theory and the
theory of bisemilattices. In Subsection 3.2, I present the formal semantics and discuss
its relationship to some other frameworks, including inquisitive semantics. I sketch the
proofs of soundness and completeness in Subsection 3.3. Finally, in Subsection 3.4,
I illustrate an application of this semantics and results concerning it by giving an
embedding of J in RM0 t .

3.1. Lattice-Theoretic Preliminaries. I begin by briefly reviewing some familiar
and less familiar algebraic structures and definitions. The lattice-theoretic material
is standard (consult, for example, Davey and Priestley [7] and Grätzer [18]). The ma-
terial on bisemilattices should also be fairly standard, though I will only be concerned
with elementary results concerning them (for additional background and some more
advanced results, the reader might consult Balbes [4], Romanowska [36] and Ledda
[24], for example).

5For a recent study of various logics with intuitionistic-type negations from a broadly relevant perspec-
tive (i.e., using ternary relational semantics), consult Robles and Méndez [35].

6Omission of this last is how Bimbó characterizes relevance logics [5, p. 723].
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Definition 2 (Semilattice). A semilattice is a structure 〈S,•〉 where S is a set and
• : S×S→ S satisfies the following equations:
(AS) (x• y)• z = x• (y• z);
(CO) x• y = y• x;
(ID) x• x = x.

A semilattice 〈S,•〉 can be used to define a partial order in two ways. In a meet-
semilattice, the semilattice will generally be written as 〈S,∧〉 and the partial order
〈S,≤∧〉 is defined by putting x ≤∧ y if and only if x ∧ y = x. Dually, in a join-
semilattice, the semilattice will generally be written as 〈S,∨〉 and the partial order
〈S,≤∨〉 is defined by putting x≤∨ y if and only if x∨ y = y.

There are notions of distributivity for both kinds of semilattice. So as not to over-
burden a limited terminology, however, I will follow Humberstone in describing these
semilattice-distribution properties as decomposition properties [20, p. 67]. A join-
semilattice 〈S,∨〉 is said to be join-decomposable if z≤∨ x∨y implies ∃x′,y′ such that
x′ ≤∨ x, y′ ≤∨ y, and z = x′ ∨ y′. Dually, a meet-semilattice 〈S,∧〉 is said to be meet-
decomposable if x∧ y ≤∧ z implies ∃x′,y′ such that x ≤∧ x′, y ≤∧ y′, and z = x′ ∧ y′.
How decomposability relates to distribution will be discussed below.

There are also notions of bounds for both semilattices. A join-semilattice 〈S,0,∨〉
has a least element (bottom) 0 if for any x, x∨0 = x. A meet-semilattice 〈S,1,∧〉 has
a greatest element (top) 1 if for any x, x∧1 = x.

Definition 3 (Bisemilattice). A bisemilattice is a structure 〈S,∨,∧〉 where 〈S,∨〉 and
〈S,∧〉 are semilattices.

A bisemilattice will be called join-decomposable (meet-decomposable) just when
the underlying join-semilattice (meet-semilattice) is. It will simply be called decom-
posable if it is both join-decomposable and meet-decomposable. A bounded bisemi-
lattice is a bisemilattice 〈S,0,1,∨,∧〉 with both least and greatest elements. Let it be
emphasized that “least” and “greatest” are relative to the orders ≤∨ and ≤∧, respec-
tively; what is greatest (least) in one order need not be greatest (least) in the other.
A bounded bisemilattice in which x∨1 = 1 holds will be called top respecting and a
bounded bisemilattice in which x∧0 = 0 holds will be called bottom respecting.

A bisemilattice 〈S,∨,∧〉 is meet-distributive if its operations satisfy the equation
x∧ (y∨ z) = (x∧ y)∨ (x∧ z) and join-distributive if they satisfy the equation x∨ (y∧
z) = (x∨ y)∧ (x∨ z). If a bisemilattice is both meet-distributive and join-distributive,
it will be called distributive.

If 〈S,∨,∧〉 is a bisemilattice, a set /0 6= T ⊆ S is called a filter if x,y ∈ T if and
only if x∧y ∈ T . Thinking in terms of the induced partial order, a filter is a nonempty
set which is upwards-closed under ≤∧ and closed under meet. I will call a filter T
join-closed if whenever x,y ∈ T , x∨ y ∈ T . The following result will frequently be
used (mostly implicitly) in the sequel:

Lemma 4. If 〈S,∨,∧〉 is either a meet-distributive or join-distributive bisemilattice
and T is a filter in it, T is join-closed.

Proof. Suppose that 〈S,∨,∧〉 is meet-distributive. Then (x∧ y)∧ (x∨ y) = ((x∧ y)∧
x)∨ ((x∧y)∧y) = (x∧y)∨ (x∧y) = x∧y, so x∧y≤∧ x∨y. Clearly, then, if x,y ∈ T ,
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x∨ y is as well by upwards-closure and the fact that x∧ y ∈ T . Alternatively, suppose
that 〈S,∨,∧〉 is join-distributive. Then (x∧y) = (x∧y)∨ (x∧y) = ((x∧y)∨x)∧ ((x∧
y)∨y) = ((x∨x)∧(x∨y))∧((x∨y)∧(y∨y)) = (x∧y)∧(x∨y), that is, x∧y≤∧ x∨y,
which suffices by parallel reasoning. /

If B is a bisemilattice, I write F(B) for the set of all filters in B and I write ↑x for
the principal filter generated by x, i.e., {y : x ≤∧ y}. Ideals, meet-closed ideals, and
principal ideals are defined dually, though I will have little use for them in this paper.

Definition 5 (Lattice). A lattice is a bisemilattice 〈S,∨,∧〉 in which ∨ and ∧ satisfy
the absorption equations:
(A1) x∨ (x∧ y) = x;
(A2) x∧ (x∨ y) = x.

In any lattice 〈S,∨,∧〉, the partial orders 〈S,≤∧〉 and 〈S,≤∨〉 coincide. Conse-
quently, where 〈S,∨,∧〉 is a lattice, the unambiguous induced partial order will gen-
erally be written as 〈S,≤〉. Over bisemilattices, all of join-decomposability, meet-
decomposability, join-distributivity, and meet-distributivity are independent.7 On the
other hand—and this illustrates how strong the absorption laws really are—all of these
properties are equivalent over lattices (consult, e.g., [18, p. 167]). Any filter T in a lat-
tice, regardless of whether it is distributive, is join-closed (indeed, satisfies the stronger
property that if x ∈ T , x∨y ∈ T for any y). Finally, any bounded lattice is both top and
bottom respecting.

Remark 6. What separates lattices from bisemilattices are the absorption postulates
(A1) and (A2). A weakening of the absorption postulates, that x∨ (x∧ y) = x∧ (x∨
y), is sometimes known as Birkhoff’s equation, and bisemilattices which satisfy this
are known as Birkhoff systems (see, e.g., Harding and Romanowska [19, p. 46]). It
is obvious that any join-distributive or meet-distributive bisemilattice is a Birkhoff
system.8

Before rounding out this subsection by giving some examples of various of the
foregoing algebraic structures, I will note two more facts concerning bisemilattices
and lattices which will turn out to play an important role in semantically distinguishing
(and relating) RM0 and J.

Lemma 7. If 〈S,0,1,∨,∧〉 is a bounded join-distributive bisemilattice, it is a lattice
if and only if it is bottom respecting.9

Proof. For the easy direction, if 〈S,0,1,∨,∧〉 is a lattice, then by (A2), 0∧x = 0∧(0∨
x) = 0. Conversely, suppose that 〈S,0,1,∨,∧〉 is bottom respecting. It must be shown
that the absorption equations from Definition 5 are satisfied. Ad (A2): x = x∨ 0 =
x∨(y∧0) = ((x∨y)∧(x∨0)) = x∧(x∨y). Ad (A1): x∨(x∧y) = ((x∨x)∧(x∨y)) =
x∧ (x∨ y) = x, by (A2). /

7I am not sure if this exact fact is stated anywhere in the literature, but various parts of this independence
result can be found (e.g., in [36, p. 37]) and the rest can be shown without too much difficulty.

8I am grateful to H. P. Sankappanavar for suggesting that Birkhoff systems may be relevant to the subject
of this paper.

9Cf. Płonka [30, p. 195, Theorem 2].
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Lemma 8. If 〈S,0,1,∨,∧〉 is a bounded join-distributive bisemilattice, 〈↑0,0,1,∨,∧〉
is a bounded distributive lattice (where these operations are restricted to ↑0).

Proof. In view of Lemma 7, it suffices to show that 〈↑0,0,1,∨,∧〉 is bottom respect-
ing (which is obvious, since if x ∈ ↑0, 0 ≤∧ x, i.e., x∧ 0 = 0) and closed under the
relevant operations (and so, a sub-bisemilattice of 〈S,0,1,∨,∧〉). The only case that
requires thought involves ∨: if x,y ∈ ↑0, by the assumption that 〈S,0,1,∨,∧〉 is join-
distributive, x∨ y ∈ ↑0, by Lemma 4. /

I now briefly give some examples. The first two, reducts of the strong and weak
Kleene algebras [22, §64, p. 334], are among the best-known lattices and bisemilat-
tices in logic. The third, which I believe is original to this paper, combines them; this
last structure turns out to be a (non-degenerate) frame for RM0.

Example 9 (Strong Kleene). Consider the structure 〈{0, .5,1},0,1,∨,∧〉 where the
operations ∧ and ∨ are defined by the following strong Kleene tables:

∧ 0 .5 1
0 0 0 0
.5 0 .5 .5
1 0 .5 1

∨ 0 .5 1
0 0 .5 1
.5 .5 .5 1
1 1 1 1

It is of course well-known that these tables determine a bounded distributive lattice.

Example 10 (Weak Kleene). Consider the structure 〈{0, .5,1},0,1,∨,∧〉 where the
operations ∧ and ∨ are defined by the following weak Kleene tables:

∧ 0 .5 1
0 0 .5 0
.5 .5 .5 .5
1 0 .5 1

∨ 0 .5 1
0 0 .5 1
.5 .5 .5 .5
1 1 .5 1

This is easily shown to be a bounded join-distributive meet-decomposable bisemilat-
tice, but it is not a lattice: 0∧ (0∨ .5) = .5, contradicting (A2). It is also neither top
respecting (.5∨1 = .5) nor bottom respecting (.5∧0 = .5).

Example 11 (Moderate Kleene). Consider the structure 〈{0, .5,1},0,1,∨,∧〉 where
the operations ∧ and ∨ are defined by the weak and strong Kleene tables, respectively:

∧ 0 .5 1
0 0 .5 0
.5 .5 .5 .5
1 0 .5 1

∨ 0 .5 1
0 0 .5 1
.5 .5 .5 1
1 1 1 1

This is another example of a bounded join-distributive meet-decomposable bisemilat-
tice that’s not a lattice and is not bottom respecting. However, this one is top res-
pecting.

3.2. Bisemilattice Models. In this subsection, I present bisemilattice frames and
models for RM0 and J and prove some basic results about the semantics which will be
required in later parts of the paper. I also discuss connections between this semantics
and Humberstone’s semantics in [20] as well as Punčochář’s semantics in [32].
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As I have already indicated, the semantics to be presented here is directly inspired
by, and largely follows, [20]. Nevertheless, there are important differences. Humber-
stone’s focus is on positive R and the frames he proposes for it are structures of the
form 〈S,1,0, ·,+〉 where 〈S,1, ·〉 is an Abelian (commutative) monoid, 〈S,0,+〉 is a
join-decomposable join-semilattice, · distributes over +, 0 · x = 0, and · and + satisfy
“pseudo-idempotence,” i.e., x · (x+1) = x · x = x2 [20, pp. 66–67].

The condition of pseudo-idempotence is particularly aesthetically and otherwise
unfortunate (which Humberstone actually concedes [20, p. 67]), but Humberstone also
considers, if only briefly, what occurs if you adopt the real thing: you get bisemilattice
frames which suffice to characterize RM0 [20, pp. 75–76].10 I will use the following
bisemilattices to furnish a semantics for RM0:

Definition 12 (Mingle Frame). A mingle frame is a bounded, top respecting, join-
distributive, meet-decomposable bisemilattice F= 〈S,0,1,∨,∧〉.

It must be emphasized that the bisemilattice frames described by Definition 12 are
still not exactly the same as those which Humberstone considered for RM0. The
central distinction is that, in my proposal, everything is, as it were, flipped (thus, I
have meet-decomposability where Humberstone has join-decomposability, etc.). The
motivation for this is narrowly technical and has to do with the naturalness of certain
constructions yet to come.

Concrete instances of mingle frames are given in Examples 9 and 11, though the
first is degenerate in the sense that it is a lattice.11 It turns out that the class of lattice
mingle frames characterizes intuitionistic logic.

Definition 13 (Intuitionistic Frame). An intuitionistic frame is a structure F= 〈S,0,1,
∨,∧〉 where F is a mingle frame which is a lattice (equivalently, in view of Lemma 7,
which is bottom respecting). More succinctly, an intuitionistic frame is just a bounded
distributive lattice.

Definition 13 marks a considerable departure from the frames used to characterize
J in Humberstone’s own semantics. For Humberstone, frames for (positive) J are
just frames for positive R (as described above) which satisfy the added condition that
x+1 = 1 [20, p. 66]. Flipping, this amounts to the condition that I have called bottom
respect. But, over the relevant class of bisemilattice structures, this turns out to be
equivalent to being a lattice, per Lemma 7.

It is here, in the formal apparatus for J, that the real conceptual clarity afforded by
the bisemilattice semantics shines. It allows us to mark the difference between relevant
(RM0) and irrelevant (J) logics by those properties which distinguish bisemilattices
from lattices: the absorption laws. As my principal interest in this paper is not philo-
sophical, I will not dwell long on this, but allow me to point out that, of all the laws
defining distributive lattices, these are the only non-regular identities (i.e., identities in

10Humberstone does not actually use the word “bisemilattice” or talk about RM0 by that name, but this
is effectively what he describes in [20, pp. 75–76].

11It is worth remarking that, while combining weak Kleene conjunction with strong Kleene disjunction
yields a mingle frame, it would not do to combine weak Kleene disjunction with strong Kleene conjunction.
The resulting structure would be bottom respecting, but not top respecting.
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which the variables on the sides of = are mismatched)—a strong whiff of irrelevance,
indeed.12

Definition 14 (Model). A mingle (intuitionistic) model is a structure M = 〈F,V 〉
where F= 〈S,0,1,∨,∧〉 is a mingle (intuitionistic) frame and V : Π→F(F).

Thus, a model is obtained by assigning filters to propositional variables in the un-
derlying frame; note that, by Lemma 4, all such filters must be join-closed. As would
be expected from what has been said so far, in Humberstone’s own semantics, one
gets a model by assigning ideals to variables (Humberstone proposes something a bit
more convoluted in [20, p. 68], but this is what it would come to in a bisemilattice
framework).

Turning now to the truth conditions, which are essentially those of [20, pp. 63–
65, 72] (cf. [38, §§2, 4]) modulo “flipping,” with respect to a mingle model M =
〈S,0,1,∨,∧,V 〉 where x ∈ S, the relation �Mx is defined as follows:13

(1) �Mx p if and only if x ∈V (p);
(2) �Mx ⊥ if and only if x = 1;
(3) �Mx t if and only if 0≤∧ x;
(4) �Mx ϕ ∧ψ if and only if �Mx ϕ and �Mx ψ;
(5) �Mx ϕ ∨ψ if and only if ∃y,z ∈ S such that x = y∧ z, �My ϕ , and �Mz ψ;
(6) �Mx ϕ → ψ if and only if for all y ∈ S, 2M

y ϕ or �Mx∨y ψ;
(7) �Mx ϕ ◦ψ if and only if ∃y,z ∈ S such that y∨ z≤∧ x, �My ϕ , and �Mz ψ .

With reference to a given model M= 〈S,0,1,∨,∧,V 〉 and formula ϕ , define [ϕ]M =
{x ∈ S : �Mx ϕ}. [ϕ]M may intuitively be thought of as the proposition expressed by
ϕ in M.

The following two results (Lemma 15 and Corollary 16) are versions of Humber-
stone’s Plus and Zero lemmata [20, pp. 68–69] though, in the present framework, the
second is a mere corollary of the first.

Lemma 15 (Propositional Filters). For any formula ϕ and any mingle model M =
〈F,V 〉, [ϕ]M ∈ F(F).
Proof. The result holds by Definition 14 for propositional variables. Since ↑1 = {1}
is obviously a filter (indeed, the smallest one), [⊥]M ∈ F(F). It is also obvious that
↑0 = [t]M is a filter. The other cases follow by induction. /

I have been rather brief with Lemma 15 because I will effectively cover some of
the primary inductive cases as part of a more general and related result concerning the
algebra of propositions below (Lemma 34).

Corollary 16. For any formula ϕ and any mingle model M= 〈F,V 〉, 1 ∈ [ϕ]M.

Proof. Immediate from Lemma 15, noting that 1 is an element of any filter. /

12For more on regular identities and their importance, consult Padmanabhan [29].
13Note that all of the truth conditions are in fact purely operational. In particular, ≤∧ is a defined

relation. Therefore, the truth condition for t, for example, could instead have been given as �Mx t if and
only if 0∧ x = 0. This feature of the semantic framework distinguishes it from Fine’s hybrid partial order-
operational framework in [17], which postulates a primitive relation ≤.
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Definition 17 (Validity). Where M = 〈S,0,1,∨,∧,V 〉 is a mingle model, ϕ is valid
in M (�M ϕ) if 0 ∈ [ϕ]M. Where F= 〈S,0,1,∨,∧〉 is a mingle frame, ϕ is valid in F
(�F ϕ) if �M ϕ for every model M over F. ϕ is valid in RM0 (�RM0 ϕ) if �F ϕ for
every mingle frame F and valid in J (�J ϕ) if �F ϕ for every intuitionistic frame F.

Before concluding this subsection, I wish to touch upon the relation of this seman-
tics to inquisitive semantics or, in any case, the sort of “generalization” of inquisitive
semantics developed for J by Punčochář in [32]. Punčochář shows (among other
things) that J is characterized by all distributive information models, where a distribu-
tive information frame (algebra) is a join-decomposable join-semilattice with a least
element and a model is obtained by assigning to each propositional variable an ideal
in the algebra.

The truth conditions proposed by Punčochář in [32, p. 1648] for ⊥, ∧, and ∨ are
identical to Humberstone’s from [20], that is to say, to flipped versions of the condi-
tions presented above. The condition for → offered by [32, p. 1648] is superficially
different. Taking the liberty to flip things as appropriate, it amounts to the following:

(6′) �Mx ϕ → ψ if and only if for all x≤∨ y, 2M
y ϕ or �My ψ .

In fact, though, this condition is just equivalent to (6) over the lattice frames given for
J above. For suppose condition (6) obtains and x≤ y (subscripts may be ignored in a
lattice frame as there is only one unambiguous partial order) and �My ϕ; then �Mx∨y ψ ,
that is, �My ψ , given that y = x∨y, as required for (6′). Conversely, suppose condition
(6′) obtains and �My ϕ; then as x ≤ x∨ y and �Mx∨y ϕ—since y ∈ [ϕ]M and [ϕ]M is
upwards closed—it follows that �Mx∨y ψ , as required for condition (6).

It is clear, then, that there is significant overlap between the inquisitive semantic
approach to J developed in [32], as well as related work by other inquisitive semanti-
cists, and the decades-earlier but unfortunately not well-known work of [20] and my
own presentation of that material here. Since the work of Punčochář and other inquis-
itive semanticists is, however, quite independent as far as I can tell,14 the recurrence
of these ideas should be taken to speak to their quality.

3.3. Soundness and Completeness. In this subsection, I prove that RM0 and J (Sec-
tion 2) are sound and complete with respect to their operational semantics from Sub-
section 3.2. The arguments straightforwardly adapt results from [20], but are worth
including in some detail to make this paper self-contained.

Theorem 18 (Soundness). If `RM0 ϕ , then �RM0 ϕ .

Proof. I survey just a couple representative cases. Suppose that the mingle axiom M
fails, i.e., that 2RM0 ψ→ (ψ→ψ); then there is a mingle model M= 〈S,0,1,∨,∧,V 〉
and some x,y ∈ S such that x,y ∈ [ψ]M and x∨ y /∈ [ψ]M. But [ψ]M is a join-closed
filter by Lemmata 4 and 15, so x ∨ y ∈ [ψ]M, a contradiction. Suppose for con-
tradiction that axiom ⊥ fails, i.e., that 2RM0 ⊥ → ψ; then there is a mingle model
M= 〈S,0,1,∨,∧,V 〉 and an x ∈ S such that x ∈ [⊥]M and x /∈ [ψ]M. But then x = 1,
so by Corollary 16, x ∈ [ψ]M, a contradiction. /

14In fact, in a recent article, Punčochář and Tedder do note the connection to Humberstone’s condition
for ∨ in any case [33, p. 357]. In another fairly recent article, Humberstone himself discusses various
accounts of disjunction including his own from [20] as well as inquisitive views [21].
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Theorem 19 (Soundness). If `J ϕ , then �J ϕ .

Proof. There is only one further case to consider. To show the validity of axiom K,
suppose for contradiction that 2J ψ→ (θ → ψ). Then this fails in some intuitionistic
model M = 〈S,0,1,∨,∧,V 〉 which must be a lattice. So there are x,y ∈ S such that
x ∈ [ψ]M and y ∈ [θ ]M and x∨ y /∈ [ψ]M. But [ψ]M is a filter in a lattice, whence
x ∈ [ψ]M implies x∨ y ∈ [ψ]M, which gives the desired contradiction. /

To prove completeness, I construct a canonical model for L (I will use L to re-
fer ambiguously to RM0 or J in what follows, and disambiguate where it becomes
relevant). A set of formulae Γ is a L theory if the following conditions are satisfied:

1. ϕ ∈ Γ and ψ ∈ Γ imply ϕ ∧ψ ∈ Γ ;
2. ϕ ∈ Γ and `L ϕ → ψ imply ψ ∈ Γ .

I write Th(Γ ) for the smallest theory containing the set of formulae Γ , or just Th(ϕ) if
Γ = {ϕ}.15 By TH, I denote the set of all theories; TH\{ /0} is, then, obviously the set
of all nonempty theories. Define Γ ·∆ = {ψ : ∃ϕ ∈ ∆(ϕ→ψ ∈Γ )} (cf. [17, p. 353]).

Definition 20. The canonical model for L is the structure Mc = 〈TH \ { /0},L,Φ, ·,
∩,V c〉 where V c(p) = {Γ ∈ TH\{ /0} : p ∈ Γ}.16

Remark 21. One reason for my preference for the flipped, filter semantics rather
than Humberstone’s ideal semantics is that the canonical model construction is more
natural. In Humberstone’s construction, ∩ counterintuitively plays the role of join
with Φ as semilattice bottom [20, pp. 70–71].

Lemma 22. The structure Mc = 〈TH\{ /0},RM0,Φ, ·,∩,V c〉 is a mingle model.

Proof. The argument is essentially that given by [20, pp. 70–72] (cf. [17, §3]). For
the flavor, I show that · is idempotent, sketch the main ideas required for proving
meet-decomposability and join-distributivity, and verify that V c meets the condition
required by Definition 14, i.e., that each V c(p) is a filter.

To show that · is idempotent, suppose that ϕ ∈ x · x; then ∃ψ ∈ x such that ψ →
ϕ ∈ x. Since x is closed under ADJ, ψ ∧ (ψ → ϕ) ∈ x whence ϕ ∈ x by the fact that
`RM0 (ψ ∧ (ψ→ ϕ))→ ϕ (note that the proof of this makes indispensable use of W).
Conversely, suppose that ϕ ∈ x; then since `RM0 ϕ → (ϕ → ϕ) by M, ϕ → ϕ ∈ x,
which suffices to show ϕ ∈ x · x. Therefore, x = x · x, as required by idempotence. To
show that 〈TH \ { /0},Φ,∩〉 is meet-decomposable, on the supposition that x∩ y ⊆ z,
put x′ = Th(x∪ z) and y′ = Th(y∪ z). This immediately delivers everything that is
needed except for the property that x′∩ y′ ⊆ z, which follows making use of DIS. Ad
join-distributivity, the difficult direction is showing that (x · y)∩ (x · z) ⊆ x · (y∩ z).
Suppose ϕ ∈ (x · y)∩ (x · z); then ∃ψ ∈ y such that ψ → ϕ ∈ x and ∃θ ∈ z such that
θ → ϕ ∈ x. By ADJ and ∨E, (ψ ∨ θ)→ ϕ ∈ x, and by ∨I1 and ∨I2, ψ ∨ θ ∈ y∩ z.
Hence, ϕ ∈ x · (y∩ z), as required. Finally, to show that V c(p) is a filter, note that it

15In the interest of rigor, I really ought to write something like Th L(Γ ) for the smallest L theory
containing Γ , but I will generally suppress what system L I am talking about when talking about theories.

16Technically, depending on the language, Φ′ should be used instead of Φ. For the purposes of this
subsection, I just intend by Φ the set of all formulae of whatever the language is. Incidentally, nothing in
the basic completeness proof requires the use of the constants or ◦.
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must be nonempty since Φ ∈V c(p) and x,y ∈V c(p) if and only if p ∈ x,y if and only
if p ∈ x∩ y if and only if x∩ y ∈V c(p). /

Lemma 23. The structure Mc = 〈TH\{ /0},J,Φ, ·,∩,V c〉 is an intuitionistic model.

Proof. The proof is identical to that of Lemma 22, except it also has to be shown
that Mc is a lattice. By Lemma 7, it suffices to show that Mc is bottom respecting.
Obviously, J∩ x ⊆ J, so, for the converse, suppose that ϕ ∈ J; then, as there is some
ψ ∈ x and `J ψ → ϕ (by K), ϕ ∈ x, which suffices to show J⊆ J∩ x, as desired. /

Lemma 24 (Truth Lemma). If Mc = 〈TH\{ /0},L,Φ, ·,∩,V c〉 is the canonical model
for L, then for any x ∈ TH\{ /0}, x ∈ [ϕ]Mc

if and only if ϕ ∈ x.

Proof. By induction on the complexity of ϕ . The result holds by definition when ϕ
is a propositional variable and is obvious when ϕ is t, ⊥, or of the form ψ ∧θ . I will
just consider the cases in which ϕ is either of the form ψ → θ or ψ ∨ θ , supposing
the result holds for ψ and θ . (The arguments for→ and ∨ are essentially the same as
those found in [17, p. 355] and [20, p. 72], respectively.)

Suppose ψ → θ ∈ x and y ∈ [ψ]M
c
; by the induction hypothesis, ψ ∈ y, therefore,

θ ∈ x ·y, i.e., x ·y∈ [θ ]Mc
, which suffices to show x∈ [ψ→ θ ]Mc

. Conversely, suppose
that ψ → θ /∈ x and put y = Th(ψ). Then θ /∈ x · y; for otherwise, there would be a
formula χ such that `L ψ → χ and χ → θ ∈ x, which would imply that ψ → θ ∈ x
(by suffixing), a contradiction. Thus, by the induction hypothesis, y ∈ [ψ]M

c
and

x · y /∈ [θ ]Mc
, which suffices.

Suppose ψ ∨ θ ∈ x and put y = Th(ψ) and z = Th(θ). Then y∩ z ⊆ x, for if
χ ∈ y∩ z, then `L ψ → χ and `L θ → χ , whence `L (ψ ∨θ)→ χ by ∨E, so χ ∈ x.
By meet-decomposability, there are y⊆ y′ ∈ TH\{ /0} and z⊆ z′ ∈ TH\{ /0} such that
x = y′∩ z′. By the induction hypothesis, ψ ∈ y⊆ y′ ∈ [ψ]M

c
and θ ∈ z⊆ z′ ∈ [θ ]Mc

,
which yields the result. Conversely, suppose x ∈ [ψ ∨ θ ]Mc

; then there are y,z such
that x = y∩z, y∈ [ψ]M

c
, and z∈ [θ ]Mc

. By the induction hypothesis, ψ ∈ y and θ ∈ z,
whence it follows that ψ ∨θ ∈ y∩ z = x by ∨I1 and ∨I2. /

Theorem 25 (Completeness). If �RM0 ϕ , then `RM0 ϕ .

Proof. Suppose that 0RM0 ϕ; then ϕ /∈ RM0 and so, by Lemma 24, RM0 /∈ [ϕ]Mc
,

i.e., 2Mc ϕ . Moreover, by Lemma 22, Mc is a mingle model, so 2RM0 ϕ , which
suffices. /

Theorem 26 (Completeness). If �J ϕ , then `J ϕ .

Proof. The proof is essentially that for Theorem 25, except the role of Lemma 22 is
played by Lemma 23. /

3.4. An Embedding of J in RM0 t . Using a well-known translation scheme (see,
e.g., Meyer [26, pp. 198ff.] and Dunn and Meyer [15, pp. 229–230]), I shall now give
an embedding of J into RM0 t . The result (if I may say so) gives a nice illustration of
an application of the foregoing semantics and some of the results concerning it.

Definition 27 (Translation). Define the function τ : Φ→Φ′ as follows:
1. τ(p) = p;
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2. τ(⊥) =⊥;
3. τ(ϕ ∧ψ) = τ(ϕ)∧ τ(ψ);
4. τ(ϕ ∨ψ) = τ(ϕ)∨ τ(ψ);
5. τ(ϕ → ψ) = (τ(ϕ)∧ t)→ τ(ψ).

Lemma 28. For any ϕ ∈Φ, if `J ϕ , then `RM0 t τ(ϕ).

Proof. Suppose 0RM0 t τ(ϕ). By Theorem 25, there is a mingle model M= 〈S,0,1,∨,
∧,V 〉 such that 2M

0 τ(ϕ). Define M′ = 〈↑0,0,1,∨,∧,V ′〉, where V ′(p) = V (p)∩↑0
and the operations are likewise restricted. 〈↑0,0,1,∨,∧〉 is an intuitionistic frame by
Lemma 8 and, as intersections of filters are filters, V ′(p) is a filter for every p. Thus,
M′ is an intuitionistic model.

It is to be shown by induction that, for all formulae ψ ∈ Φ and x ∈ ↑0, �M′
x ψ if

and only if �Mx τ(ψ). The basis cases are immediate, so suppose the result holds for
θ and χ . I examine just the cases concerning ∨ and→.

Suppose �Mx τ(θ ∨ χ), i.e., �Mx τ(θ)∨ τ(χ). Then ∃y,z ∈ S such that x = y∧ z,
�My τ(θ), and �Mz τ(χ). By the induction hypothesis and the fact that y,z ∈ ↑0 since
y∧ z = x ∈ ↑0, �M′

y θ and �M′
z χ , i.e., �M′

x θ ∨ χ . Conversely, if �M′
x θ ∨ χ , then

∃y,z ∈ ↑0 such that x = y∧ z, �M′
y θ , and �M′

z χ , which immediately yields the result
by the induction hypothesis.

Suppose �Mx τ(θ → χ), i.e., �Mx (τ(θ)∧ t) → τ(χ), and suppose �M′
y θ . By

the induction hypothesis and the fact that 0 ≤∧ y, �My τ(θ)∧ t, whence �Mx∨y τ(χ).
x,y ∈ ↑0 implies x∨y ∈ ↑0 (Lemma 4), so by the induction hypothesis, �M′

x∨y χ , which
suffices to show �M′

x θ → χ . Conversely, suppose 2M
x τ(θ → χ), i.e., 2M

x (τ(θ)∧
t)→ τ(χ). Then ∃y ∈ S such that �My τ(θ)∧ t and 2M

x∨y τ(χ). Then 0≤∧ y so, by the
induction hypothesis, �M′

y θ and 2M′
x∨y χ , that is, 2M′

x θ → χ .
Then 2M′

0 ϕ follows from 2M
0 τ(ϕ). Therefore, by Theorem 19, 0J ϕ , which was

to be proved. /

Lemma 29. For any ϕ ∈Φ, if `RM0 t τ(ϕ), then `J ϕ .

Proof. Let J′ be J formulated in the language with t and the corresponding axiom t.
Then it is clear that RM0 t is a subsystem of J′, so if `RM0 t τ(ϕ) (ex hypothesi), we
have `J′ τ(ϕ). By induction, τ(ϕ) and ϕ are provably equivalent in J′, thus `J′ ϕ .
Lastly, it must be shown that J′ is a conservative extension of J, i.e., that for any
ψ ∈Φ, `J′ ψ only if `J ψ . But this clearly holds since in any proof in J′ of such a ψ ,
t can be replaced with any theorem of J (e.g., p→ p) thereby yielding a proof of ψ in
J. Thus, `J ϕ , as desired. /

Theorem 30. For any ϕ ∈Φ, `J ϕ if and only if `RM0 t τ(ϕ).

Proof. Immediate from Lemmata 28 and 29. /

4. ALGEBRAIC SEMANTICS

In this section, I present an algebraic semantics for RM0. The kind of algebraic
structure used for modeling RM0 is the obvious extension of what Meyer (in [27,
p. 39], cf. [28, p. 408]) calls a Dunn monoid, in honor of Dunn’s pioneering work
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in [10] (published as [13]).17 Whereas Dunn monoids furnish an algebraic seman-
tics for positive R, what I will call Dunn semilattices furnish an algebraic semantics
for RM0.18 The name is, in a sense, unfortunate, since Dunn semilattices are also
bisemilattices and, indeed, lattices (under different operations). However, I hope the
reader will indulge my penchant for semilattice nomenclature, if only because the
name highlights that the pertinent (commutative) monoids are now required to be fully
idempotent.

Definition 31 (Dunn Semilattice). A Dunn semilattice is a structure D = 〈D,1,0,•,
⇒,t,u〉, where 0,1 ∈ D and the binary operations •,⇒, t, and u satisfy the proper-
ties that:

1. 〈D,0,t,u〉 is a distributive lattice with least element 0;19

2. 〈D,1,•〉 is a meet-semilattice with greatest element 1;
3. a•0 = 0;
4. a• (bt c) = (a•b)t (a• c);
5. a•bv c if and only if av b⇒ c.

It is clear that a Heyting algebra (consult, e.g., Rasiowa and Sikorski [34]) is the
special case of a Dunn semilattice in which • and u are the same operation; for this
reason, where D = 〈D,1,0,•,⇒,t,u〉 is a Heyting algebra, I will often omit •. (Not
every Dunn semilattice is a Heyting algebra; consult Example 36 below.)

A few elementary results concerning Dunn semilattices, some of which I will have
occasion to appeal to in the sequel, are summarized without proof in Fact 32.

Fact 32. In any Dunn semilattice D = 〈D,1,0,•,⇒,t,u〉, the following obtain:
1. av b implies a• cv b• c;
2. aubv a•bv atb;
3. a• (bu c)v (a•b)u (a• c);
4. (aub)• (cud)v (a• c)u (b•d).

There is an obvious way to generate a Dunn semilattice or Heyting algebra from a
given mingle frame (Definition 12) or intuitionistic frame (Definition 13).

Definition 33 (Filter Algebra). Given a mingle frame F = 〈S,0,1,∨,∧〉, the filter
algebra over F, A(F) = 〈D,1,0,•,⇒,t,u〉, is defined as follows:

1. D = F(F);
2. 1 = ↑0;
3. 0 = ↑1;
4. I • J = {k ∈ S : ∃i ∈ I,∃ j ∈ J(i∨ j ≤∧ k)};
5. I⇒ J =

⋃{K ∈ F(F) : K • I ⊆ J};
6. It J = {i∧ j : i ∈ I, j ∈ J};
7. Iu J = I∩ J.

17Of course, much of the mathematics behind Dunn monoids is older; see, e.g., Ward and Dilworth [40].
18In the interest of completeness, I should note that Meyer and Routley discuss algebraic models for

mingle-extended relevance logics en passant in [28, pp. 419–420].
19Any Dunn semilattice will also have a greatest element (with respect to v), viz., 0⇒ 0, which will

not in general be identical to 1.
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Lemma 34. Any filter algebra A(F) = 〈D,1,0,•,⇒,t,u〉 over a mingle frame F =
〈S,0,1,∨,∧〉 is a Dunn semilattice.

Proof. First, it must be verified that the operations, so defined, actually are operations
on F(F), i.e., that given filters, they yield filters. I examine just the cases of • and⇒.

It is clear that I • J is nonempty if I and J are. So suppose that x,y ∈ I • J; then
∃i, i′ ∈ I and ∃ j, j′ ∈ J such that i∨ j ≤∧ x and i′ ∨ j′ ≤∧ y. By join-distributivity
and the facts that (i∨ j)∧ (i′∨ j) ≤∧ i∨ j ≤∧ x and (i∨ j′)∧ (i′∨ j′) ≤∧ i′∨ j′ ≤∧ y,
(i∧ i′)∨ ( j∧ j′) = ((i∨ j)∧ (i′ ∨ j))∧ ((i∨ j′)∧ (i′ ∨ j′)) ≤∧ x∧ y, where i∧ i′ ∈ I
and j∧ j′ ∈ J. Thus, x∧ y ∈ I • J, as desired. Conversely, if x∧ y ∈ I • J, ∃i ∈ I and
∃ j ∈ J such that i∨ j≤∧ x∧y. The result then follows immediately from the facts that
x∧ y≤∧ x and x∧ y≤∧ y.

For any filters I and J, since I •↑1⊆ J, clearly I⇒ J 6= /0. Suppose that x,y∈ I⇒ J;
then ∃X ,Y ∈ F(F) such that x ∈ X and y ∈ Y with X • I ⊆ J and Y • I ⊆ J. Consider
the filter X tY ; we wish to show (X tY )• I ⊆ J. Suppose z ∈ (X tY )• I. Then ∃i ∈ I,
x′ ∈ X , and y′ ∈Y such that (x′∧y′)∨ i = (x′∨ i)∧ (y′∨ i)≤∧ z. But X • I ⊆ J implies
that x′ ∨ i ∈ J and Y • I ⊆ J implies that y′ ∨ i ∈ J, so (x′ ∨ i)∧ (y′ ∨ i) ∈ J (as J is
meet-closed) and z ∈ J (as J is upwards closed). This suffices to show x∧ y ∈ I⇒ J,
since x∧ y ∈ X tY . Conversely, suppose x∧ y ∈ I ⇒ J; then ∃K ∈ F(F) such that
x∧ y ∈ K and K • I ⊆ J. By upwards closure, x,y ∈ K, which suffices.

I omit the arguments that 〈D,0,t,u〉 is a distributive lattice with bottom 0, that
〈D,1,•〉 is a meet-semilattice with top 1, and that I •↑1 = ↑1; these are fairly routine.
It remains to verify the last two requirements from Definition 31. To show that I •
(JtK) = (I • J)t (I •K), suppose that x ∈ I • (JtK); then for some i ∈ I, j ∈ J, and
k ∈ K, i∨ ( j∧ k) = (i∨ j)∧ (i∨ k) ≤∧ x. Clearly, i∨ j ∈ I • J and i∨ k ∈ I •K, so
(i∨ j)∧ (i∨ k) ∈ (I • J)t (I •K), from which the result follows by upwards closure.
Conversely, suppose x ∈ (I • J)t (I •K). Then x = y∧ z for some i, i′ ∈ I, j ∈ J, and
k ∈ K such that i∨ j ≤∧ y and i′ ∨ k ≤∧ z, and therefore, (i∨ j)∧ (i′ ∨ k) ≤∧ y∧ z.
Then j∧k ∈ JtK and i∧ i′ ∈ I, so (i∧ i′)∨ ( j∧k) ∈ I • (JtK); but (i∧ i′)∨ ( j∧k) =
((i∨ j)∧(i′∨ j))∧((i∨k)∧(i′∨k))≤∧ (i∨ j)∧(i′∨k)≤∧ y∧z = x, so x∈ I •(JtK).
Finally, it has to be verified that I • J ⊆ K if and only if I ⊆ J⇒ K. From left to right,
this is essentially immediate from the definition of J⇒ K. Conversely, it suffices to
show that (J⇒ K)• J ⊆ K.20 Suppose x ∈ (J⇒ K)• J; then there is some y in some
filter Y such that Y • J ⊆ K and some z ∈ J such that y∨ z≤∧ x. But then y∨ z ∈ K, so
x ∈ K by upwards closure, as desired. /

Lemma 35. Any filter algebra A(F) = 〈D,1,0,•,⇒,t,u〉 over an intuitionistic frame
F= 〈S,0,1,∨,∧〉 is a Heyting algebra.

Proof. The argument is the same as that for Lemma 34, except we have to check that
I •J = IuJ for all filters I,J. From right to left, if x∈ IuJ = I∩J, then x∈ I,J, so x∈
I•J as x∨x≤ x. Conversely, if x∈ I•J, then there are i∈ I and j∈ J such that i∨ j≤ x;
but i ≤ i∨ j ≤ x and j ≤ i∨ j ≤ x imply that x ∈ I ∩ J, as required. (Obviously this
argument depends on the fact that ≤ is unambiguous in an intuitionistic frame.) /

20This follows from the general fact that I ⊆ J and J •K ⊆ L imply I •K ⊆ L. For if x ∈ I •K, i∨k≤∧ x
for some i ∈ I and k ∈ K. But i ∈ I ⊆ J, so x ∈ L as J •K ⊆ L.
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Example 36 (RM3). Recall the moderate Kleene bisemilattice from Example 11. I
will presently show that the filter algebra over this frame is a reduct of the characteris-
tic algebra for the logic RM3.21 In particular, our algebra is A= 〈{−1,0,1},0,−1,•,
⇒,t,u〉where−1= {1}, 0= {0,1}, and 1= {0, .5,1}—these are all the filters in this
bisemilattice—and the connectives, defined by Definition 33, are displayed table-wise
for convenience:22

• {1} {0,1} {0, .5,1}
{1} {1} {1} {1}
{0,1} {1} {0,1} {0, .5,1}
{0, .5,1} {1} {0, .5,1} {0, .5,1}

u {1} {0,1} {0, .5,1}
{1} {1} {1} {1}
{0,1} {1} {0,1} {0,1}
{0, .5,1} {1} {0,1} {0, .5,1}

⇒ {1} {0,1} {0, .5,1}
{1} {0, .5,1} {0, .5,1} {0, .5,1}
{0,1} {1} {0,1} {0, .5,1}
{0, .5,1} {1} {1} {0, .5,1}

t {1} {0,1} {0, .5,1}
{1} {1} {0,1} {0, .5,1}
{0,1} {0,1} {0,1} {0, .5,1}
{0, .5,1} {0, .5,1} {0, .5,1} {0, .5,1}

Observe that RM3 is not a Heyting algebra as, for example, 0•1 6= 0u1. On the other
hand, the filter algebra over strong Kleene (which is of course an intuitionistic frame,
per Definition 13) does yield a Heyting algebra—indeed, the smallest Heyting algebra
which is not a Boolean algebra.

I have examined how to obtain an algebraic structure from an operational frame;
it is time to examine the converse. While there are several ways to get a mingle
frame from a Dunn semilattice (cf. [32, §5]), I will just consider the one which I find
most natural. The reader will observe that the construction mirrors, algebraically, the
canonical model construction in Definition 20 from Subsection 3.3.23

Definition 37 (Filter Frame). Given a Dunn semilattice D = 〈D,1,0,•,⇒,t,u〉, the
filter frame over D, F(D) = 〈S,0,1,∨,∧〉, is defined as follows:

1. S = F(D);24

2. 0 = ↑1;
3. 1 = ↑0 = D;
4. I∨ J = {k ∈ S : ∃i ∈ I,∃ j ∈ J(i• j v k)};

21Consult, for example, Anderson and Belnap [1, §29.12, p. 470], Brady [6, p. 9], or Priest [31, §7.4,
pp. 124–125]. Note that I am omitting the negation table for RM3.

22I have named the values of the algebra specifically to call to mind the fact that RM3 is one member
of the infinite class of so-called Sugihara matrices (named after the author of [37]); these play an important
role in the algebraic theory of RM [11]. Here I should also note an interesting anticipation of my work
by Meyer, who in [1, §29.3.2, p. 400] very nearly presents Sugihara matrices as bisemilattices, discussing
extensional and intensional orders of the pertinent sets of integers. Of course, an important difference is
that neither v nor ≤• in a Dunn semilattice need be a chain.

23Here I should note that in the canonical model construction, where ◦ is included in the language,
Γ ·∆ could have been equivalently defined as {θ : ∃ϕ ∈ Γ,∃ψ ∈ ∆(`L (ϕ ◦ψ)→ θ)}, which makes the
connection even sharper.

24Just to be clear, F(D) is taken to be the set of u-filters in D.



Yale Weiss: Revisiting Constructive Mingle: Algebraic and Operational Semantics 451

5. I∧ J = I∩ J.

Lemma 38. Any filter frame F(D) = 〈S,0,1,∨,∧〉 over a Dunn semilattice D =
〈D,1,0,•,⇒,t,u〉 is a mingle frame.

Proof. The argument mirrors the proof of Lemma 22, so I will not belabor it for too
long. It should, however, briefly be verified that when I and J are filters, I ∨ J is
as well, since this is not entirely obvious. Suppose a,b ∈ I ∨ J, so as to show that
au b ∈ I ∨ J. Then ∃i, i′ ∈ I and j, j′ ∈ J such that i • j v a and i′ • j′ v b; clearly,
(i• j)u(i′• j′)v aub. I and J are filters, so iu i′ ∈ I and ju j′ ∈ J, whence aub∈ I∨J
since (iu i′) • ( ju j′) v (i • j)u (i′ • j′) v au b by the assumptions, definition of ∨,
and Fact 32. Conversely, if aub ∈ I∨ J, that a,b ∈ I∨ J is immediate from the facts
that au b v a and au b v b. Finally, it is obvious that I ∨ J is nonempty, since (ex
hypothesi) I and J are. /

Lemma 39. Any filter frame F(D) = 〈S,0,1,∨,∧〉 over a Heyting algebra D = 〈D,1,
0,⇒,t,u〉 is an intuitionistic frame.

Proof. The result follows from Lemma 38 and the observation that 0 = ↑1⊆ I for any
filter I because in a Heyting algebra, 1 is the top element in the v order and therefore
is contained in any filter. /

Given a Dunn semilattice, an algebraic model is obtained by assigning elements of
the algebra to propositional variables.25

Definition 40 (Model). A Dunn semilattice model is a structure Ma = 〈D,ν〉 where
D = 〈D,1,0,•,⇒,t,u〉 is a Dunn semilattice and ν : Π→ D is extended to the full
language in the obvious way:

1. ν(⊥) = 0;
2. ν(t) = 1;
3. ν(ϕ ∧ψ) = ν(ϕ)uν(ψ);
4. ν(ϕ ∨ψ) = ν(ϕ)tν(ψ);
5. ν(ϕ ◦ψ) = ν(ϕ)•ν(ψ);
6. ν(ϕ → ψ) = ν(ϕ)⇒ ν(ψ).

A Heyting algebraic model is defined in essentially the same way, with Heyting alge-
bras playing the role of Dunn semilattices and the irrelevant connectives and clauses
being omitted.

Definition 41 (Validity). Where Ma = 〈D,ν〉 is a Dunn semilattice model, ϕ is valid
in Ma (�Ma ϕ) if 1v ν(ϕ). ϕ is Dunn semilattice valid (�a

RM0 ϕ) if �Ma ϕ for every
Dunn semilattice model Ma = 〈D,ν〉. Heyting validity (�a

J ϕ) is defined analogously.

Lemma 42. If �a
RM0 ϕ (�a

J ϕ), then �RM0 ϕ (�J ϕ).

Proof. For the case of RM0, suppose 2RM0 ϕ; then there is some mingle model M=
〈F,V 〉 such that 2M

0 ϕ . Let A(F) = 〈D,1,0,•,⇒,t,u〉 be the filter algebra over
F; by Lemma 34, this is a Dunn semilattice. The Dunn semilattice countermodel is

25For the purposes of algebraic semantics, it is natural to assume RM0 is formulated in the full
language.
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defined to be Ma = 〈A(F),ν〉 where ν(p) =V (p). By an induction that is essentially
trivial in virtue of Lemmata 15 and 34, ν(ψ) = [ψ]M for all ψ . But then, clearly,
↑0 = 1 6v ν(ϕ) = [ϕ]M, as 0 /∈ [ϕ]M ex hypothesi. So, 2Ma ϕ , which suffices. The
case of J is essentially the same, but Lemma 35 fulfills the role of Lemma 34. /

Lemma 43. If �RM0 ϕ (�J ϕ), then �a
RM0 ϕ (�a

J ϕ).

Proof. For the case of RM0, suppose 2a
RM0 ϕ . Then there is a Dunn semilattice model

Ma = 〈D,ν〉 where D = 〈D,1,0,•,⇒,t,u〉 is a Dunn semilattice and 1 6v ν(ϕ). Let
F(D) = 〈S,0,1,∨,∧〉 be the filter frame over D; by Lemma 38, this is a mingle frame.
The mingle countermodel is defined to be M = 〈F(D),V 〉 where, for all p, V (p) =
{I ∈ S : ν(p) ∈ I}. Clearly, each V (p) is a filter in F(D) since I,J ∈V (p) if and only
if ν(p) ∈ I,J if and only if ν(p) ∈ I∩ J if and only if I∩ J ∈V (p) and every V (p) is
nonempty (containing, e.g., 1). Thus, M is a mingle model.

It must be shown that for all ψ and all filters I, �MI ψ if and only if ν(ψ) ∈ I.
The argument for this result is entirely analogous to that for Lemma 24, so I will just
briefly examine the case of→. Suppose �MJ θ and ν(θ → χ) = ν(θ)⇒ ν(χ)∈ I. By
the induction hypothesis, ν(θ)∈ J, so as (ν(θ)⇒ ν(χ))•ν(θ)v ν(χ), ν(χ)∈ I∨J,
which suffices by the induction hypothesis. Conversely, suppose that ν(θ → χ) =
ν(θ)⇒ ν(χ) /∈ I and consider I ∨↑ν(θ). If it were the case that ν(χ) ∈ I ∨↑ν(θ),
then i•kv ν(χ) for some i∈ I and ν(θ)v k. By Fact 32, ν(θ)v k implies i•ν(θ)v
i•kv ν(χ), whence iv ν(θ)⇒ ν(χ) and ν(θ)⇒ ν(χ)∈ I, which is impossible. So
ν(θ) ∈ ↑ν(θ) and ν(χ) /∈ I∨↑ν(θ) imply �M↑ν(θ) θ and 2M

I∨↑ν(θ) χ by the induction
hypothesis, which yields the result.

Now, since 1 6v ν(ϕ), ν(ϕ) /∈ 0 = ↑1, whence 2M
0 ϕ by the immediately preceding

induction. Therefore, 2RM0 ϕ , as desired. The case involving J is essentially the same,
but Lemma 39 plays the role of Lemma 38. /

Theorem 44 (Algebraic Soundness and Completeness). `RM0 ϕ (`J ϕ) if and only if
�a

RM0 ϕ (�a
J ϕ).

Proof. Immediate from Theorems 18, 19, 25, and 26 and Lemmata 42 and 43. /

Theorem 44 could of course have been proved much more directly, using a routine
Lindenbaum construction for the algebraic completeness component; but the proof I
have given sheds considerably more light on the relationship between the algebraic
and operational semantics presented in this paper.

5. CONCLUDING REMARKS

In this paper, I examined operational and algebraic semantics for RM0 and J.
Adapting work of Humberstone from [20], I showed that RM0 is determined by a
certain class of bisemilattices, taken as frames, whereas J is determined by the sub-
class of those frames which are lattices. I also examined algebraic semantics for both
RM0 and J and showed how to transform operational models into equivalent algebraic
models and vice versa.

One clear takeaway from this paper is that RM0 and J are very closely related. This
is not only apparent semantically, in the fact that intuitionistic frames and Heyting al-
gebras are natural special cases of mingle frames and Dunn semilattices respectively,
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but in the fact that J can be straightforwardly exactly translated into RM0 t per The-
orem 30. In [41], I presented extensions of Urquhart’s semilattice relevance logic S
which might be thought of as (quasi-)relevant companions of J and KC (Jankov’s
logic). Such logics, in my view, could hold appeal to relevantists of a constructivist
bent (or constructivists of a relevantist bent). In view of the results of this paper, I
think that RM0 is another system that could hold appeal to such logicians.

Another clear takeaway is that the operational semantics of [20] deserves more
attention than it has received. As I showed, Humberstone’s semantics importantly an-
ticipated more recent developments in inquisitive semantics (as illustrated in the work
of, for example, [32]). In fact, though, this paper only scratches the surface of what
can be done by extending or modifying the Humberstone framework. In unpublished
work, I have shown how the operational semantics of this paper can be used to char-
acterize a variety of intuitionistic and relevant modal logics, with embedding results
forthcoming for intuitionistic modal systems and their relevant companions; without
doubt, the algebra of such logics will also prove a rich vein for future study.

This paper leaves open a number of interesting problems, both philosophical and
technical. I have not attempted to articulate a philosophical account of the operational
semantics developed here for either RM0 or J (in this respect, RM0 would appear to
be on worse footing than the systems surveyed in [41], which have clear philosophical
motivation). This is emphatically not because I do not think the semantics can be
well-motivated, but rather because this is, by design, a technical piece. I leave to
future work, my own or others’, the project of interpreting this semantics.26

On the technical side, much more work could still be done even just on the model
theory of RM0 and J. One example: while I have examined operational and algebraic
models for both of these systems and shown how to move between them, both of these
logics already have relational modelings (ternary in the case of RM0, binary in the
case of J [25; 23]) which I have not discussed. It would be valuable to examine the
relation of those semantics to the semantics presented here.27

Dedication. I dedicate this paper to the memory of J. Michael Dunn, a great logician
and generous human being.

Acknowledgments. This paper is adapted from part of a presentation (“Bisemilattice
Semantics for Intuitionistic and Relevant Modal Logics”) that I gave to the Logic and
Metaphysics Workshop in New York City on October 4, 2021. I thank the attendees

26It could just as well have been left to past and future work, in view of the fact that Humberstone
(not to mention the inquisitive semanticists) has some informal things to say about how to interpret his
semantics in [20]. But I confess that my own interpretive views, germinal though they are, do not entirely
align with his.

27Added in proof : I regret that this paper neglected to discuss certain relevant work of Došen [8; 9].
Došen’s semilattice-ordered groupoid semantics (cf. the monoid semantics from Wansing [39]), apparently
developed independently of and roughly concurrent with Humberstone’s operational semantics, bears vari-
ous connections to the operational semantics presented here (though there are also differences, e.g., in the
formulation of the truth condition for disjunction). I leave to future work a thorough comparison of these
semantic approaches.
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