
Special Issue: Multiple Valued Logic 2023

Guest Editors
Martin Lukac
Jovanka Pantovic

Journal of applied logics (Print) ISSN 2631-9810
Journal of applied logics (Online) ISSN 2631-9829

Journal of
Applied Logics
The IfCoLog Journal of Logics and their Applications

Available online at
www.collegepublications.co.uk/journals/ifcolog/

Free open access

Published bySponsored by
V
o
lu

m
e
 1

0

Is
s
u
e
 6

D

e
c
e
m

b
e
r 2

0
2
3

Journal of Applied Logics
The IfCoLog Journal of Logics and their Applications

Volume 10 Issue 6 December 2023

Contents
Articles
Editorial Note for the Special Issue on Multiple
Valued Logic 2023
Martin Lukac 969
Multi-Valued Data Transmission Quality Evaluation
Using Two-Dimensional PAM-4 Symbol Mapping
Kazuharu Nakajima, Yasushi Yuminaka and Yosuke Iijima 973
Quantum Algorithms for Unate and Binate Covering
Problems with Application to Finite State
Machine Minimization
Abdirahman Alasow and Marek Perkowski 993
Embedding First-order Classical Logic into Gurevich’s
Extended First-order Intuitionistic Logic: The Role of
Strong Negation
Norihiro Kamide 1025
On Weak Bases for Boolean Relational Clones and
Reductions for Computational Problems
Mike Behrisch 1059
On Representation of Maximally Asymmetric Functions
Based on Decision Diagrams
Shinobu Nagayama, Tsutomu Sasao and Jon Butler 1105
p-valued Maiorana-McFarland Functions Structure of
Their Reed-Muller Spectra
Claudio Moraga, Radomir Stankovic and Milena Stankovic 1131

Journal of Applied Logics - IfCoLog
Journal of Logics and their Applications

Volume 10, Number 6

December 2023

Disclaimer
Statements of fact and opinion in the articles in Journal of Applied Logics - IfCoLog Journal of
Logics and their Applications (JALs-FLAP) are those of the respective authors and contributors and
not of the JALs-FLAP. Neither College Publications nor the JALs-FLAP make any representation,
express or implied, in respect of the accuracy of the material in this journal and cannot accept any
legal responsibility or liability for any errors or omissions that may be made. The reader should
make his/her own evaluation as to the appropriateness or otherwise of any experimental technique
described.

© Individual authors and College Publications 2023
All rights reserved.

ISBN 978-1-84890-444-6
ISSN (E) 2631-9829
ISSN (P) 2631-9810

College Publications
Scientific Director: Dov Gabbay
Managing Director: Jane Spurr

http://www.collegepublications.co.uk

All rights reserved. No part of this publication may be used for commercial purposes or transmitted in
modified form by any means, electronic, mechanical, photocopying, recording or otherwise without prior
permission, in writing, from the publisher.

http://www.collegepublications.co.uk

Editorial Board

Editors-in-Chief
Dov M. Gabbay and Jörg Siekmann

Marcello D’Agostino
Natasha Alechina
Sandra Alves
Jan Broersen
Martin Caminada
Balder ten Cate
Agata Ciabattoni
Robin Cooper
Luis Farinas del Cerro
Esther David
Didier Dubois
PM Dung
David Fernandez Duque
Jan van Eijck
Marcelo Falappa
Amy Felty
Eduaro Fermé
Melvin Fitting

Michael Gabbay
Murdoch Gabbay
Thomas F. Gordon
Wesley H. Holliday
Sara Kalvala
Shalom Lappin
Beishui Liao
David Makinson
Réka Markovich
George Metcalfe
Claudia Nalon
Valeria de Paiva
Jeff Paris
David Pearce
Pavlos Peppas
Brigitte Pientka
Elaine Pimentel
Henri Prade

David Pym
Ruy de Queiroz
Ram Ramanujam
Chrtian Retoré
Ulrike Sattler
Jörg Siekmann
Marija Slavkovik
Jane Spurr
Kaile Su
Leon van der Torre
Yde Venema
Rineke Verbrugge
Heinrich Wansing
Jef Wijsen
John Woods
Michael Wooldridge
Anna Zamansky

iii

iv

Scope and Submissions

This journal considers submission in all areas of pure and applied logic, including:

pure logical systems
proof theory
constructive logic
categorical logic
modal and temporal logic
model theory
recursion theory
type theory
nominal theory
nonclassical logics
nonmonotonic logic
numerical and uncertainty reasoning
logic and AI
foundations of logic programming
belief change/revision
systems of knowledge and belief
logics and semantics of programming
specification and verification
agent theory
databases

dynamic logic
quantum logic
algebraic logic
logic and cognition
probabilistic logic
logic and networks
neuro-logical systems
complexity
argumentation theory
logic and computation
logic and language
logic engineering
knowledge-based systems
automated reasoning
knowledge representation
logic in hardware and VLSI
natural language
concurrent computation
planning

This journal will also consider papers on the application of logic in other subject areas:
philosophy, cognitive science, physics etc. provided they have some formal content.

Submissions should be sent to Jane Spurr (jane@janespurr.net) as a pdf file, preferably
compiled in LATEX using the IFCoLog class file.

v

jane@janespurr.net

vi

Contents

ARTICLES

Editorial Note for the Speical Issue on Multiple Valued Logic 2023 969
Martin Lukac

Multi-Valued Data Transmission Quality Evaluation Using Two-Dimensional
PAM-4 Symbol Mapping . 973
Kazuharu Nakajima, Yasushi Yuminaka and Yosuke Iijima

Quantum Algorithms for Unate and Binate Covering Problems with Application
to Finite State Machine Minimization . 993
Abdirahman Alasow and Marek Perkowski

Embedding First-order Classical Logic into Gurevich’s Extended First-order
Intuitionistic Logic: The Role of Strong Negation1025
Norihiro Kamide

On Weak Bases for Boolean Relational Clones and Reductions for Computational
Problems .1059
Mike Behrisch

On Representation of Maximally Asymmetric Functions Based on Decision
Diagrams .1105
Shinobu Nagayama, Tsutomu Sasao and Jon Butler

vii

p-valued Maiorana-McFarland Functions Structure of their Reed-Muller
Spectra .1131
Claudio Moraga, Radomir Stanković and Milena Stanković

viii

968

Editorial Note for the Special Issue on
Multiple Valued Logic 2023

Martin Lukac
Hiroshima City University, Japan

martin.lukac@nu.edu.kz

In this issue special issue on Multiple-Valued Logic with original contributions as
well as with extended contributions from the International Symposium on Multiple-
Valued Logic (ISMVL) 2022 we are delighted to present several works of high quality
and exciting content. As we are slowly closing towards an imminent change of
technology in the computing, the drastic change ahead will also radically speed up
a change in various related areas. Logic, mathematics, complexity and other areas
with marginal fields of interests will become of prominent inters with the emergence
of quantum computing.

As is usual we have papers in three different areas: circuits, computing and algo-
rithms and theory. All papers propose advanced knowledge in their respective areas
of research in the Multuiple-Valued Logic and are well aligned with the expected
arrival of the quantum computing platforms and commercial applications.

In the area of circuits, devices and signal, the first paper entitled Multi-Valued
Data Transmission Quality Evaluation Using Two-Dimensional PAM-4 Symbol
Mapping by Kazuharu Nakajima, Yasushi Yuminaka and Yosuke Iijima from Gunma
University and Oyama College, Japan. The paper presents work in the 2D symbol
transition mapping during the eye-opening signal monitoring in a pulse amplitude
modulation with four levels. The paper shows that the eye-opening monitor is suf-
ficient to assess the quality of the transmission in the PAM-4 regime by allowing to
determine the intersymbol interference.

In the area of computing and algorithms, the paper entitled Quantum Algorithms
for Unate and Binate Covering Problems with Application to Finite State Machine
Minimization by Abdirahman Alasow and Marek Perkowski from Portland State
University, USA describes heuristics for designing algorithms on a quantum com-
puter for the covering problems. Covering problem is a constraint satisfaction based
logic problems often used in the design of classical logic circuits. The authors demon-
strate that it is possible to build quantum algorithms that can accelerate the search

Vol. 10 No. 6 2023
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

Lukac

for minimal covering and therefore minimize the resulting effort of the designer as
when compared to classical methods.

Finally in the theoretical area we have this year four papers. Two of the papers
focus purely on logic and mathematical logic while the other two are focusing more
on function analysis of specific types of logic functions.

The first paper entitled Embedding first-order classical logic into Gurevich’s ex-
tended first-order intuitionistic logic: The role of strong negation by Norihiro Kamide
from Nagoya City University, Japan presents a method of embedding first-order logic
to the higher order intuitionistic logic. The paper presents several steps of the de-
scribed approach by introducing an extension called ELK to the sequent calculus
LK and LJ. Then tools for embedding the first-order logic in the ELK framework
is embedded into the LJ intuitionistic framework is proposed. The methodology
in the paper support the strong negation and thus is well suited as the embedding
approach of the first order logic.

The next paper entitled On Weak Bases for Boolean Relational Clones and Re-
ductions for Computational Problems by Mike Behrisch from TU Wien, Austria
discusses the weak bases on finite sets in the context of relational clones. The paper
considers groups of similar clones as a parallel representation to the clones given by
the Post’s lattice. The main result of this paper is the analysis of weak bases that
can be used to reduce computational problems such as satisfability by showing that
the instances grow linearly in size.

The third paper in this group is entitled On Representation of Maximally Asym-
metric Functions Based on Decision Diagrams by Shinobu Nagayama, Tsutomu
Sasao and Jon Butler from Hiroshima City University, Japan, Meiji University,
Japan and Naval Postgraduate School, USA respectively. The paper discusses the
multiple-valued maximally asymmetric functions, functions that are as far as possible
from the symmetric functions. Symmetric functions are a class of functions that do
not change the output under input variable permutations and thus are useful tools in
the design of logic circuits. The paper discusses the usage of maximally asymmetric
functions in cryptography and for this purpose the paper studies efficient representa-
tion of such functions in order to promote the building of benchmarks for future use.

The last paper in this section and this special issue is entitled p-valued Maiorana-
McFarland Functions Structure of Their Reed-Muller Spectra by Claudio Moraga,
Radomir Stanković and Milena Stanković from TU Dortmund, Germany, Mathe-

970

Editorial Note

matical Institute of SASA, Serbia and University of Niš, Serbia respectively. The
paper discusses the existence of specific type of Bent functions for input variable
radix p > 2. Bent functions are the least linear functions (or the most non linear)
and therefore are considered as a good candidate for the usage in cryptography. The
paper discusses their representation and identification using the Reed-Muller spec-
trum unlike the classical representation that uses the flatness of the Walsh spectrum.

We believe that this year’s special issue on MVL will be an exciting addition to
the study of the latest MVL trends and we hope to see you at the next ISVML event.

Received November 2023971

Multi-Valued Data Transmission Quality
Evaluation Using Two-Dimensional PAM-4

Symbol Mapping

Kazuharu Nakajima
Graduate School of Science and Technology, Gunma University, JAPAN

T211D053@gunma-u.ac.jp

Yasushi Yuminaka
Graduate School of Science and Technology, Gunma University, JAPAN

yuminaka@gunma-u.ac.jp

Yosuke Iijima
National Institute of Technology (KOSEN), Oyama College, JAPAN

yiijima@oyama.kosen-ac.jp

Abstract

This paper presents an eye-opening monitor technique leveraging four-level
pulse amplitude modulation (PAM-4) symbol transition characteristics. This
approach facilitates the evaluation of data transmission quality concerning the
adaptive coefficient settings of PAM-4 equalizers. The two-dimensional (2D)
symbol transition mapping visually depicts the degree of intersymbol interfer-
ence (ISI). This work expands upon the 2D mapping model introduced in [14],
adding more theoretical analysis and new simulation results. Both simulation
and empirical results indicate that 2D symbol mapping can assess the quality
of PAM-4 data transmission impaired by ISI and can visually represent the
equalization effect.

This paper is an extension of [14].
This work was supported by JSPS KAKENHI Grant Numbers 21K11819 and 21H01381.

Vol. 10 No. 6 2023
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

1 Introduction

The demand for fast data transmission is growing [1], driven by the increasing need
for high-speed, large-capacity information communication services like the Internet
of Things (IoT), 5G applications, and cloud computing. This surge in demand has
significantly increased data transmission volumes at data centers and other facilities.
However, when transmitting data at high speeds, electric wires operate as low-
pass filters, leading to the degradation of the high-frequency components of the
transmitted data. The restricted bandwidth of the channel can cause intersymbol
interference (ISI) at the receiving end. Therefore, the utilization of waveform shaping
techniques becomes essential to minimize such interference. Multi-valued signaling
effectively lowers the Nyquist frequency of the transmitted data, thereby diminishing
the effect of ISI. The 4-level pulse amplitude modulation (PAM-4) technique can
halve the Nyquist frequency while maintaining the same bitrate as binary data
signaling. PAM-4 signaling can transmit double the information compared to binary
signaling within the same Nyquist frequency, given that PAM-4 can transmit 2 bits
of data in a single symbol.

However, PAM-4 signaling is three times more susceptible to noise amplitude
than binary signaling. This sensitivity is due to decreased distances between each
symbol, complicating threshold discrimination and impeding accurate determination
of PAM-4 symbols. Thus, waveform shaping techniques, such as the continuous-time
linear equalizer (CTLE) and/or decision feedback equalizer (DFE), are employed in
high-speed data transmission systems to counteract ISI at the receiver’s end [2, 3]. A
transmitter-side equalizer, like a feed-forward equalizer (FFE), can effectively mit-
igate the effects of ISI [4]-[6]. These waveform shaping circuits demand parameter
adjustments [7], which are based on the transmission characteristics. Determin-
ing the actual transmission line characteristics can be complex and difficult due to
the influence of adjacent wiring and peripheral components like connectors. Ad-
ditionally, the transmission environment can fluctuate over time. To handle these
complexities, eye-opening monitor (EOM) techniques [8]-[13] are used to assess the
quality of received signals under adaptively adjusted equalizer parameters. However,
the three eyes of the PAM-4 hinder the implementation of the corresponding EOM
algorithm.

Consequently, this paper presents new EOM techniques based on two-
dimensional (2D) symbol mapping to visualize the symbol distribution using an
analog-to-digital converter (ADC)-based receiver [14]. The 2D symbol mapping en-
ables us to visualize the ISI effect of the transmitted multi-valued symbols [15, 16].
This research investigates 2D symbol mapping to shed light on the relationship be-
tween ISI and 2D symbol transition pattern mapping in multi-valued data transmis-

974

(a) Evaluation board of MSLs. (b) Measured frequency characteristics
of MSL.

Figure 1: Measured frequency characteristics of MSLs (0.5, 1, and 2 m).

sion, taking into account eye-opening conditions. Both simulation and experimental
results substantiate the efficacy of 2D symbol mapping in assessing the integrity
of PAM-4 data transmission compromised by ISI while also effectively illustrating
the impact of equalization. In this paper, we advance and extend the 2D mapping
model presented in [14] by integrating a theoretical analysis and additional sim-
ulation results. Specifically, we examine how post-cursors and pre-cursors of the
impulse response in transmission channels influence the form of 2D mapping.

The structure of this paper is as follows: Section 2 discusses the symbol distri-
bution in multi-valued signaling affected by ISI. The proposed 2D PAM-4 symbol
transition mapping method is detailed in Section 3. Section 4 provides simulation
and experimental results to validate the proposed method using 2D symbol map-
ping. The findings are summarized and discussed in Section 5, and finally, Section
6 concludes the paper.

2 Symbol distribution with ISI in PAM-4 signaling

2.1 Symbol distribution of received PAM-4 symbols

In high-speed data transmission over a band-limited channel, the frequency charac-
teristics of the transmission line have an impact on the received symbols. Figure
1 displays the measured frequency characteristics of micro-strip lines (MSLs) that

975

Figure 2: Simulation results of eye diagram of each data rate and symbol distribution
of both 1 Gbps and 2.5 Gbps PAM-4 on the 2-m MSL.

were specifically fabricated for evaluation purposes. The lengths of these MSLs are
0.5, 1, and 2 m. The evaluation board is composed of a glass epoxy multilayer
PCB, with a dielectric thickness of 0.1 mm and a relative permittivity of 4.1 to 4.2
at 1 GHz, and sub-miniature type A (SMA) connectors. The wiring pattern has a
width of 0.2 mm and an 18 µ m thickness. Figure 1(b) shows the S21 characteristic
measured using a vector network analyzer. The attenuation at 2 GHz is −15.6 dB
in the 1-m MSL, and the attenuation at 1.25 GHz is −19.7 dB in the 2-m MSL.

The eye diagrams of the PAM-4 data transmission on the 2-m MSL are depicted
in Fig. 2. In these diagrams, we can observe the impact of ISI on both vertical
eye-opening and horizontal eye-opening. The ISI effect manifests as a decrease in
the amplitude of the vertical eye-opening and as timing ambiguity in the horizontal
eye-opening. The eye is open at a PAM-4 data rate of 1 Gbps, and each symbol
distribution is well-separated, as illustrated in Figs. 2(a)–(c). However, the eye
becomes completely closed due to severe ISI when the data rate increases to 2.5
Gbps. In this scenario, the Nyquist frequency is 1.25 GHz, considering a channel
loss of -19.7 dB. Consequently, the detection of each symbol becomes challenging
because the ISI effect causes overlapping symbol distributions, leading to a loss of
distinction between symbols.

2.2 Estimation of symbol distribution using Gaussian mixture
model

Various eye-opening monitor techniques have been proposed to evaluate the ISI
effect at the receiver [8]-[13]. Our previous proposal involved an eye-opening moni-
tor technique that utilized a Gaussian mixture model (GMM) estimation approach

976

Figure 3: GMM estimation simulation results of symbol distribution of 2.5 Gbps
PAM-4 on the 2-m MSL.

to evaluate symbols while the eye is closed [9]-[13]. Within the GMM estimation
method, the distribution of each symbol can be determined by fitting a curve to the
GMM, assuming that the received symbols follow a Gaussian distribution. In the
case of PAM-4, the expression for the received symbol distribution can be given as:

p(x) =
3∑

k=0
πkN(x|µk, σk), (1)

where N(x|µk, σk) represents a Gaussian distribution with a mean µk and standard
deviation σk. Additionally, πk denotes the mixing coefficient corresponding to the
weight of each Gaussian distribution.

The GMM estimation can be achieved by generating four Gaussian function
curves, each corresponding to a symbol distribution in PAM-4, as depicted in Fig.
3. The bar graph illustrates the probability density function (PDF) of the received
symbols for a 2.5 Gbps PAM-4 signal under a 2-m MSL condition. Through GMM
estimation, we can assess the histogram of the received symbol and its associated
ISI effect for each symbol, even when the eye is closed.

3 2D mapping for PAM-4 signaling
We have also introduced a symbol-evaluation technique based on 2D PAM-4 symbol
transition mapping as an alternative method for evaluating ISI [14]. In this approach,
the received PAM-4 symbols (. . ., si−1, si, si+1, . . .) are plotted on a 2D surface,
where the x-axis represents the previous symbol values si−1 and the y-axis represents
the current symbol values si, as illustrated in Fig. 4. When there is no ISI or
attenuation on the transmission line, the transmitted symbols (−3, −1, +1, +3) are

977

Figure 4: Overview of 2D mapping of PAM-4 received symbols.

Figure 5: Example of 2D mapping of PAM-4 received symbols.

mapped onto a 2D plane, as depicted in Fig. 4. The transitions between si−1 and
si are plotted as a 16-point grid pattern.

In contrast, Figure 5 illustrates an example of the 2D mapping of received PAM-
4 symbols after transmission through a channel, including the presence of ISI. For
instance, if the current symbol value xi is 2 and the previous symbol xi−1 is 0, the
corresponding 2D mapping plot would represent the cluster of (0,2), as depicted in

978

Figure 6: Correlation between 2D symbol mapping with symbol distribution curves.

Fig. 5.
The ISI effect expands and tilts the distributions of the received symbols. As

shown in Fig. 6, ∆ai shows the distribution of the previous symbols i, and ∆bi−j

shows the distribution of symbols of transition symbol i to symbol j. All the symbol
distribution curves were derived by projecting these symbol distributions onto the
2D mapping surface, as depicted in Fig. 6. Each symbol distribution curve repre-
sents the integration of four distributions resulting from the four transition patterns
in PAM-4. For instance, the distribution curve of symbol 3 encompasses the symbol
distributions of s0−3, s1−3, s2−3, and s3−3. Within the 2D symbol mapping, the
spaces d0−1, d1−2, and d2−3 represent the symbol distances. When di−j > 0, the
distribution curves of each symbol do not overlap, indicating an open eye. Hence,
the utilization of 2D symbol mapping enables the visualization of individual symbol

979

Figure 7: Relationship between eye diagram and 2D mapping.

distributions, which accurately represents the intricate symbol transition patterns
involved in multi-valued data transmission. This approach provides an actual mea-
surement rather than relying on predictions from GMM estimation.

Figure 7 illustrates the relationship between the 2D mapping and the conven-
tional eye diagram utilized in waveform degradation evaluation methods. In this
context, the spacing along the y-axis in the 2D mapping corresponds to the eye
height of the eye aperture at the sampling point of the eye diagram. As the data
rate increases and the eye diagram closes, the 2D mapping point cloud exhibits a
steeper slope and narrower spacing along the y-axis direction.

4 Simulation and experimental results

The simulation results of the 2D mapping and PDF histogram of the received PAM-
4 symbols on a 2-m MSL are depicted in Fig. 8. For this simulation, the impulse
response of the transmission line was obtained from measurement results of its trans-
mission characteristics. The received waveform was calculated through numerical
simulation using the IGOR software tool, employing the convolution of the data and
impulse response. The ADC resolution is neglected in the simulation.

Under the condition of low ISI impact at 1 Gbps PAM-4, each symbol is indi-
vidually arranged in the 2D mapping, resulting in separated histograms for each
symbol, as demonstrated in Fig. 8(a). The histogram of symbol 3 represents the
combination of s0−3, s1−3, s2−3, and s3−3. However, as the data rate increases to
2.5 Gbps PAM-4, both ∆ai and ∆bi−j expand because of the heightened ISI and
the overlapping distributions of current symbols, as illustrated in Fig. 8(b). The
tilt of each distribution becomes significantly more pronounced compared to the re-
sults at 1 Gbps PAM-4. Consequently, the histogram of the received symbol, which

980

(a) 1 Gbps PAM-4. (b) 2.5 Gbps PAM-4.

Figure 8: Simulation results of both the 2D mapping and histogram of PAM-4
received symbols with ISI on the 2-m MSL.

Figure 9: Experimental setup.

represents the projection on the y-axis, combines into a single group. While the 2D
symbol mapping visually represents the ISI effect on each symbol transition, symbol
classification becomes challenging when using a 1D plot like a histogram, as observed
in Fig. 8(b).

The measurement setup for obtaining PAM-4 sampling signals using an arbitrary
waveform generator and an oscilloscope is illustrated in Fig. 9. In Fig. 10, the
measurement result of a 4 Gbps PAM-4 signal on a 1-m MSL is presented through
an eye diagram and a 2D symbol mapping. The heat map distribution is generated
from 3, 999, 994 sampling points at the receiver. Despite the complete closure of

981

(a) Eye diagram. (b) 2D symbol mapping.

Figure 10: Evaluation result of 2D symbol mapping using measurement result of
received symbol at 4 Gbps PAM-4 on the 1-m MSL.

the eye due to overlapping projections of each symbol on the y-axis, the 2D symbol
mapping successfully separates the distribution of each symbol, as depicted in Fig.
10(b). The minimum and maximum ranges are −0.25 and +0.25, respectively. With
60 × 60 pixels in Fig. 10(b), each pixel represents the number of symbols falling
within a range of 0.5/60 V. Consequently, this is equivalent to an evaluation using
an ADC with a resolution of 0.5/60 = 0.0083 V. Creating a 1D histogram of the
distribution of receiving-end symbols to determine the overlapping symbols proves
to be challenging. Conversely, the 2D mapping technique successfully separates each
symbol.

5 Discussion

5.1 Evaluation of ISI effect using 2D mapping

The 2D mapping technique preserves the ISI characteristic, even when the eye di-
agram is closed, enabling the evaluation of the ISI effect, as demonstrated in Fig.
10. Although the distribution of the symbol transition shown in Fig. 10(b) over-
laps, the distributions of other symbol transitions do not overlap. As a result, four
distinct clusters can be identified. However, capturing the property of this distribu-
tion between symbols necessitates sampling at the appropriate time in the received
waveform at the receiving end.

982

Figure 11: Experimental result of received waveform and sampling points.

In particular, it is crucial to sample each symbol at its peak value in the received
waveform. If the sampling timing is incorrect, the characteristic property of the
2D symbol plot is not preserved. Figure 11 illustrates an example case where the
sampling timing varies, showing the sampling points in the received waveform of a 4
Gbps PAM-4 signal on a 1-m MSL. Figures 12(a)-(e) display the 2D plot results for
the sampling points depicted in Fig. 11, with an error ranging from 5% to 30% of the
unit interval (UI) time. As the variation in sampling points increases, the variation
of each symbol on the 2D plot also increases, leading to the loss of characteristic
properties between symbols due to the ISI.

Under certain conditions, the receiving-end symbol can be identified even when
the eye diagram is completely closed due to the distinct characteristics shared be-
tween symbols. For example, in Fig. 13, it is demonstrated that, particularly within
the overlapping range of specific symbols, the correct symbol can be identified by
considering the value of a preceding symbol, even if di−j is negative. In the ex-
ample(Fig. 14), the overlapping symbol distribution is determined by whether the
previous symbol is to the right or left of the center [13]. However, if multiple over-
lapping symbol distributions exist, it becomes challenging to determine the correct
symbol based on the information from just one previous symbol value.

The slope of the 2D mapping point cloud can be determined by considering the
impulse response of the transmission line. In the case where the transmitted symbol
value is denoted as a[n] and the received symbol value is denoted as y[n], their
relationship can be expressed as follows:

y[n − 1] = · · · + h1a[n − 2] + h0a[n − 1] + h−1a[n] + · · ·
y[n] = · · · + h1a[n − 1] + h0a[n] + h−1a[n + 1] + · · · ,

(2)

where hi is the sampled value of the impulse response. Approximating Eq. (2) by
focusing only on a[n − 1] and a[n] yields the following equation:

y[n − 1] ≃ h0a[n − 1] + h−1a[n]
y[n] ≃ h1a[n − 1] + h0a[n].

(3)

983

(a) Variation 0% UI.

(b) Variation 5% UI. (c) Variation 10% UI.

(d) Variation 20% UI. (e) Variation 30% UI.

Figure 12: 2D symbol mapping with variation of sampling at 4 Gbps measured
PAM-4 signaling on the 1-m MSL (1 UI = 0.5 nsec).

984

Figure 13: 2D symbol mapping with an overlapping adjacent symbol.

Figure 14: Simulation result of 2D mapping at 2 Gbps PAM-4 on the 2-m MSL.

By examining the term h1a[n−1], we observe that as the value of a[n−1] increases,
y[n] also increases. Similarly, from the term h−1a[n], we can observe that as a[n]
increases, y[n − 1] also increases. Hence, the coefficients h1 and h−1, representing
pre-/post-cursor effects, can be interpreted as factors causing the 2D mapping to
exhibit skewness, as depicted in Fig. 15.

Based on these relationships, the distributions of symbols, ∆ai and ∆bi−j , ex-
pand and follow the increasing symbol rate. The distributions of the same symbols
align and combine with each other, resulting in Fig. 16(a). As a consequence, di−j

approaches zero when di−j < 0, leading to a closed eye. In a 1D plot, each symbol
distribution curve overlaps, making it challenging to discriminate individual sym-
bols. However, in the 2D mapping, the symbol areas do not overlap, allowing for
discrimination of each symbol, unlike in the 1D plot where overlapping occurs.

985

(a) 1 Gbs PAM-4 (b) 4 Gbs PAM-4

Figure 15: symbol clusters property of 2D mapping.

(a) 2D symbol mapping with ISI. (b) 2D symbol mapping with rotation.

Figure 16: Symbol distribution of closed eye owing to ISI effect.

5.2 Visualization of equalizer effect using 2D mapping

As symbol rates increase, the spacing along the y-axis tends to reduce. Nevertheless,
there can be situations where despite the reduced y-axis spacing in the 2D mapping,
the spacing viewed from an oblique angle remains open. In these circumstances, if
the slope can be adjusted such that the oblique spacing is rotated to align with the
y-axis spacing, the eye diagram could present an open eye, as shown in Fig. 16.

986

Figure 17: Symbol map rotation of received data.

Figure 16(b) illustrates the compensation of angles for each symbol distribution,
resulting in symbol distances denoted as di−j becoming di−j > 0. To achieve this,
the current symbol sn is updated by rotating the distributions using the previous
symbol sn−1, according to the following relationship:

s′
n = sn − w · sn−1. (4)

The appropriate weight w can be calculated as w = Dh
Dw

, where Dh and Dw are
represented as depicted in Fig. 16(a). By rotating the symbols on a 2D surface, the
overlap of each symbol distribution can be eliminated, and these symbol distributions
are obtained by projecting the 2D mapped symbols onto the y-axis, as shown in Fig.
16(b). The block diagram of the symbol rotation at the receiver end is illustrated in
Fig. 17. The outputs of the symbol rotation operation are achieved by subtracting
the current symbol from the previous (delayed) symbol, as depicted in Fig. 17. The
symbol rotation operation is equivalent to a 1st-order FFE. Symbol detection can
be accomplished through conventional threshold discrimination by rotating the 2D
mapping onto a 1D signal. This relationship demonstrates that the 2D mapping can
visualize the equalizer effect, as shown in Fig. 18.

Figure 19 illustrates the simulation results of a transmission at 2.5 Gbps PAM-4
on a 2-m MSL, along with the 2D plot and symbol distribution resulting from the
rotation process with different weights. The symbol distribution undergoes rotation
as the weights are adjusted, resulting in vision changes in the symbol distribution.
While the histograms of each symbol may overlap, as shown in Fig. 19(a), the
shapes of the histograms are altered through symbol rotation, as depicted in Figs
19(b)-(d). When the weight is set to −0.3, the symbol distribution is rotated almost
horizontally, separating each symbol from the distribution. The received symbols

987

(a) without FFE

(b) with FFE

Figure 18: Visualization of FFE impact using 2D mapping.

can be accurately obtained by appropriately setting threshold levels for symbol dis-
crimination.

Figure 20 displays a 2D plot depicting the results of the rotation process with
various weights for the measured symbol data at the receiver end on a 1-m MSL
at 4 Gbps. The symbol distribution undergoes rotation by adjusting the weights
(corresponding to the FFE operation), making the distribution nearly horizontal
when the weight is set to −0.3.

The utilization of 2D mapping for signal transmission quality evaluation repre-
sents a novel approach, and conducting a quantitative assessment compared to con-
ventional methods presents a challenge for future research. However, in evaluating
commonly encountered scenarios with challenging complete eye closure conditions,
the 2D mapping technique provides qualitative advantages by enabling the assess-
ment of symbol overlap. Furthermore, 2D mapping facilitates the visualization and
evaluation of noise effects. Further theoretical investigations are planned to expand
upon these findings.

988

 !

 "

#

"

!

$
%
&'

%
&

 ! " # " !

()*+,-%./.012-3

#4!5#4##

(67

 !

 "

#

"

!

(a) w = 0

 !

 "

#

"

!

$
%
&'

%
&

 ! " # " !

()*+,-%./.012-3

#4!5#4##

(67

 !

 "

#

"

!

(b) w = −0.1

 !

 "

#

"

!

$
%
&'

%
&

 ! " # " !

()*+,-%./.012-3

#45#46#4!#4#

(78

 !

 "

#

"

!

(c) w = −0.2

 !

 "

#

"

!
$
%
&'

%
&

 ! " # " !

()*+,-%./.012-3

"4##45#46#47#4!#4#

(89

 !

 "

#

"

!

(d) w = −0.3

Figure 19: Simulation results of 2D symbol mapping with symbol rotation at 2.5
Gbps PAM-4 on the 2-m MSL (Sampling variation is 10% with 2,982 sampling
points).

6 Conclusion
This paper proposed a novel technique for evaluating the quality of PAM-4 data
transmission by employing a 2D symbol mapping method. This study advanced the
current approach by integrating further theoretical elements, effectively expanding
on the prior work proposed in [14] The 2D symbol mapping method enables the visu-
alization of ISI, providing insights into the extent of its impact. The results obtained
from simulations and experiments demonstrate that the data transition diagram ef-
fectively evaluates the quality of PAM-4 data transmission, even in the presence of
degraded performance due to ISI. Furthermore, it allows for the visualization of the
equalization effect.

This study primarily examines the visualization of post-cursor ISI influence us-
ing 2D mapping. However, future research efforts will expand this approach to
incorporate 3D mapping, considering the pre-cursor effect.

989

 !
"#

 !
"$

!
"!

!
"$

!
"#

%
&
'(

&
'

 !"# !"$!"! !"$!"#

)*+,-.&/0/123.4

$"!

!"5

!"6

!"7

!"#

!"!

8
*+

9
&
+
:
;
1

(a) w = 0
 !

"#
 !

"$
!
"!

!
"$

!
"#

%
&
'(

&
'

 !"# !"$!"! !"$!"#

)*+,-.&/0/123.4

$"!

!"5

!"6

!"7

!"#

!"!

8
*+

9
&
+
:
;
1

(b) w = −0.1

 !
"#

 !
"$

!
"!

!
"$

!
"#

%
&
'(

&
'

 !"# !"$!"! !"$!"#

)*+,-.&/0/123.4

$"!

!"5

!"6

!"7

!"#

!"!

8
*+

9
&
+
:
;
1

(c) w = −0.2

 !
"#

 !
"$

!
"!

!
"$

!
"#

%
&
'(

&
'

 !"# !"$!"! !"$!"#

)*+,-.&/0/123.4

$"!

!"5

!"6

!"7

!"#

!"!

8
*+

9
&
+
:
;
1

(d) w = −0.3

Figure 20: 2D symbol mapping of rotated symbol using measured results of received
symbol at 4 Gbps PAM-4 on the 1-m MSL (Sampling variation 10% UI).

References
[1] IEEE P802.3bs 200 Gb/s and 400 Gb/s Ethernet Task Force, http://www.ieee802.

org/3/bs/
[2] J. Barry, E. Lee, and D. Messerschmitt, Digital Communication, Springer, 2004.
[3] D. Cui, H. Zhang, N. Huang, A. Nazemi, B. Catli, H. G. Rhew, B. Zhang, A. Mom-

taz, and J. Cao, “3.2 A 320mW 32Gb/s 8b ADC-based PAM-4 Analog Front-End with
Programmable Gain Control and Analog Peaking in 28nm CMOS,” 2016 IEEE Inter-
national Solid-State Circuits Conference (ISSCC), pp.58-59, 2016.

[4] G. Steffan, E. Depaoli, E. Monaco, N. Sabatino, W. Audoglio, A.A. Rossi, S. Erba, M.
Bassi, and A. Mazzanti, “A 64Gb/s PAM-4 Transmitter with 4-Tap FFE and 2.26pJ/b
Energy Efficiency in 28nm CMOS FDSOI,” 2017 IEEE International Solid-State Cir-

990

cuits Conference, pp.116–117, 2017.
[5] T.O. Dickson, H.A. Ainspan, and M. Meghelli, “A 1.8pJ/b 56Gb/s PAM-4 Transmitter

with Fractionally Spaced FFE in 14nm CMOS,” 2017 IEEE International Solid-State
Circuits Conference, pp.118–119, 2017.

[6] Y. Iijima and Y. Yuminaka, “Double-Rate Tomlinson-Harashima Precoding for Multi-
Valued Data Transmission,” IEICE Transactions on Information & Systems, vol.100-D,
no.8, pp.1611–1617, 2017.

[7] Y. Yuminaka, T. Kitamura, and Y. lijima, “PAM-4 Eye Diagram Analysis and Its Mon-
itoring Technique for Adaptive Pre-Emphasis for Multi-Valued Data Transmissions,”
Proc. IEEE 47th International Symposium on Multiple-Valued Logic, pp. 13–18, 2017.

[8] B. Analui, A. Rylyakov, S. Rylov, M. Meghelli, and A. Hajimiri, “A 10-Gb/s Two-
Dimensional Eye-Opening Monitor in 0.13-µm Standard CMOS,” IEEE Journal of
Solid-State Circuits, vol.40, no.12, pp.2689–2699, 2005.

[9] Y. Iijima, K. Taya, and Y. Yuminaka, “PAM-4 Eye-Opening Monitoring Techniques us-
ing Gaussian Mixture Model,” IEEE 50th International Symposium on Multiple-Valued
Logic, pp.149–154, 2020.

[10] Y. Yuminaka, K. Taya, and Y. Iijima, “PAM-4 Eye-Opening Monitoring Techniques
based on Gaussian Mixture Model Fitting,” IEICE Communication Express, Vol.9,
No.10, pp.464–469, 2020.

[11] K. Taya, Y. Yuminaka, and Y. Iijima, “Statistical Waveform Evaluation Method for
Adaptive PAM-4 Equalization,” Journal of Applied Logics - IfCoLog Journal of Logics
and their Applications, Vol.8, No.4, pp.1087–1099, 2021.

[12] Y. Iijima and Y. Yuminaka, “PAM-4 Eye-Opening Monitor Technique Using Gaus-
sian Mixture Model for Adaptive Equalization,” IEICE Transactions on Information
& Systems, vol.104-D, no.8, pp.1138–1145, 2021.

[13] Y. Iijima and Y. Yuminaka, “Efficient PAM-4 Data Transmission with Closed Eye Using
Symbol Distribution Estimation,” IEEE 51st International Symposium on Multiple-
Valued Logic, pp.195–200, 2021.

[14] Y. Iijima K. Nakajima, and Y. Yuminaka, “Two-Dimensional Symbol Mapping for Eval-
uating Multi-Valued Data Transmission Quality,” IEEE 52nd International Symposium
on Multiple-Valued Logic, pp.170–175, 2022.

[15] F. Lu, P. Peng, S. Liu, M. Xu, S. Shen, and G. Chang, “Integration of Multivariate
Gaussian Mixture Model for Enhanced PAM-4 Decoding Employing Basis Expansion,”
2018 Optical Fiber Communications Conference and Exposition (OFC), pp.1–3, 2018.

[16] L. Sun, J. Du, J. Liu, B. Chen, K. Xu, B. Liu, C. Lu, and Z. He, “Intelligent 2-
Dimensional Soft Decision Enabled by k-means Clustering for VCSEL-based 112-Gbps
PAM-4 and PAM-8 Optical Interconnection,” Journal of Lightwave Technology, vol.37,
no.24, pp.6133–6146, 2019.

991

Quantum Algorithms for Unate and Binate
Covering Problems with Application to

Finite State Machine Minimization

Abdirahman Alasow
Portland State University, Portland, OR, USA

alasow@pdx.edu

Marek Perkowski
Portland State University, Portland, OR, USA

mperkows@ee.pdx.edu

Abstract

Covering problems find applications in many areas of computer science and
engineering, such that numerous combinatorial problems can be formulated as
covering problems. Combinatorial optimization problems are generally NP-
hard problems that require an extensive search to find the optimal solution.
Exploiting the benefits of quantum computing, we present a quantum oracle
design for covering problems, taking advantage of Grover’s search algorithm to
achieve quadratic speedup. This paper also discusses applications of the quan-
tum counter in unate covering problems and binate covering problems with some
important practical applications, such as finding prime implicants of a Boolean
function, implication graphs, and minimization of incompletely specified Finite
State Machines.

1 Introduction
Many optimization problems can be formulated as the selection of a subset from
a larger set. One familiar form is the covering problems [8, 20, 26]. Covering
problems are minimization problems for combinatorial optimization problems in
which a certain combinatorial structure covers another. For instance, in logic design,
the covering problems can be formulated as a set of minterms to be covered by a set of
subsets of minterms (such as the prime implicants for a specific example). Minterms
for a Boolean function of n variables are products of literals for all variables of this

Vol. 10 No. 6 2023
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

Alasow, Perkowski

function. A literal is a variable or the negation of a variable. True minterms are
those for which the value of the function is 1. The prime implicant is the product of
literals that cannot be extended by removing some of the literals and which covers
some subset of true minterms. Covering problems are generally given as a table with
rows corresponding to the set elements and columns corresponding to the subsets.

Covering problems include two main types: unate covering problem (UCP) and
binate covering problem (BCP) [28, 12, 18]. The unate covering problem is the
problem of finding a minimum cost assignment to variables to which a given Boolean
function f is equal to 1. The literals are all in positive form (uncomplemented).
The Binate covering problem has the extra constraint that negative literals may
be present. The covering problem can be generalized by assuming that the choice
of a subset implies the choice of another subset. This additional constraint can
be represented by an implication clause. For example, if the selection of group a
implies the choice of b (a ⇒ b), then the clause a + b is added. Note that the
implication clause makes the product of sums form binate in variable a, because
a (uncomplemented) is also part of some covering clauses. Therefore, this class of
problems is called binate covering or covering with closure. There are two main ways
to express the covering problems: constraints in the form of a matrix or a product of
sum (POS) form of a Boolean equation f = 1. This formulation of POS is known as
Petrick’s method [33]. If the covering problems are expressed in the form of a matrix,
then the corresponding matrix (covering matrix) of the UCP is filled with elements
from the set {1, 0} while the BCP is filled with elements from the set {1, −1, 0}. A -1
entry corresponds to a complemented variable, and a 1 entry to an uncomplemented
one. In the covering matrix, the rows correspond to each term of the expression, and
the columns correspond to each variable. Covering problems can also be expressed
in the form of a POS formula, such that f(x1, x2, x3, x4) = (x1 + x2)(x2 + x3)(x1 +
x4)x3x4 = 1 then this is called an unate covering, which always has a solution. If
some of the variables in the function appear both positive and negative (complement)
such that f(x1, x2, x3, x4) = (x1 + x3 + x4)(x1 + x2 + x4)(x2 + x3 + x4)(x2 + x3 + x4)
then it is called binate covering, which may or may not have a solution. In this
paper, we will express the covering problems in POS form.

2 Related Work

The fundamental covering problem known from computer science has many practical
applications in electronic design automation (EDA) and digital systems.

994

Quantum Algorithms for Unate and Binate Covering Problems

2.1 Applications of Covering Problems

There are many combinatorial optimization problems for covering problems in var-
ious areas, such as logic minimization [35], scheduling [27], parallel computation on
a GPU [30], and allocation, encoding, and routing [7] for unate covering problem.
Binate covering problem is used in finite state machine minimization [12, 17], tech-
nology mapping [28], Boolean relations [15], and Directed Acyclic Graphs (DAG)
covering problems [35, 24, 25]. Logic minimization is the process of finding the
optimal implementation of a logic function. The minimum-cost implementation is
achieved when the cover of a given function consists of the minimum number of
prime implicants to represent the function. In another variant, the solution should
have the total minimum cost of selected prime implicants. The Unate covering can
be used to achieve exact logic minimization [35]. Scheduling problems can be for-
mulated as UCP, such as vehicle and crew scheduling problems in [27], to minimize
the combined vehicle and crew cost. Parallel computation on a GPU [30, 40, 39, 38]
was explored using the Unate covering problem. The classical task of the GPU is
matrix multiplication, which can be mapped to the UCP implementation. Also,
UCP has many other applications in logistic problems such as allocation, encoding,
and routing [7]. Finite state machine minimization [12, 17] can be formulated as a
binate covering problem such that the number of internal states in the finite state
machine can be reduced. A standard-cell library must first comply with the avail-
able library primitives in VLSI, a process known as technology mapping. Finding
the optimal mapping of logic gates to VLSI library cells can be accomplished via bi-
nate covering [28]. Boolean relations such as two-level logic minimization under the
Sum-of-Product (SOP) representation can be solved based on the binate covering
problem formulation [15]. Finding the minimum set of nodes or paths covering every
node in a directed acyclic graph is called DAG covering. This can be formulated as
a binate covering problem [35, 24, 25] by constructing the closure condition of the
graph.

2.2 Classical Algorithms for Covering Problems

The covering problem is considered NP-hard [34, 16], and much effort has been spent
on it because of its wide applications. Several classical algorithms are proposed for
covering problems based on exact and heuristic algorithms. Several exact algorithms
are proposed for covering problems, such as the most widely known approach, the
branch and bound algorithm [41, 15, 36, 22], with many techniques suggested for
lower bound and upper bound improvement using pruning techniques. In the branch
and bound technique, the covering table is expressed as the POS of the constraints,

995

Alasow, Perkowski

and the problem solution explores, in the worst case, all possible solution instances.
Branch and bound employs the upper bound and lower bound methods. For each
solution to the constraints, upper bounds on the value of the cost function are iden-
tified, and lower bounds are estimated using the current set of variable assignments.
The upper bound value is updated each time a new lower-cost solution is discov-
ered. When the lower bound estimation is greater than or equal to the most recently
computed upper bound, the search can be pruned. As a result, a better solution
will not be found using the current variable assignments, allowing us to prune the
search. Branch and bound used reduction and bounding techniques of search space
for solutions to avoid the generation of some of the suboptimal solutions. The upper
bound is the cost of the cheapest solution seen so far. Eventually, it will be the cost
of the optimal solution. While the lower bound is an estimate of the minimum cost
of a solution for the problem. The lower bound is the most important factor for
runtime.

A Binary Decision Diagrams (BDDs) based algorithm [41] was proposed to solve
the covering problem such that finding the solution only requires computing the
shortest path in the BDD. The number of variables in the BDD is equal to the
number of columns in the binate table. However, the BDD tree is too large to be built
when there are many variables. A mixed technique of both branch-bound and BDD-
based algorithms was proposed in [15], such that the constraints are represented as
a conjunction of BDDs. This method leads to an effective method to compute a
lower bound on the cost of the solution. Exact algorithms are computationally
expensive for large problems because of exhaustive searches. Although there are
several improvements using pruning and reduction techniques for exact algorithms,
in general, the computational time can be exponential. Thus, a heuristic approach
[16, 37] has been proposed for covering problems that provide suboptimal solutions.
The heuristic approach in [37] has time complexity O(n2m) where n is the number of
variables and m the number of terms in the covering problem. While the literature
proposes both exact and heuristic approaches for classical algorithms, there is still
a need for efficient algorithms that may take advantage of quantum algorithms to
solve covering problems efficiently.

3 Quantum Algorithm for Covering Problem

Since classical optimization techniques are inefficient for solving NP-hard problems
in terms of computational complexity, we present a quantum algorithm for solving
the covering problems. To the best of our knowledge, this is the first quantum
algorithm for solving covering problems. Algorithms with quantum oracles are bet-

996

Quantum Algorithms for Unate and Binate Covering Problems

ter than the corresponding classical search algorithms because they operate using
quantum parallelism and quantum superposition, with all vectors being potential
solutions simultaneously (all minterms). Thus, a quantum oracle that iterates suf-
ficiently many times highly increases the probability of finding one of the solutions
in a single measurement of all input qubits. Grover’s algorithm implemented in
quantum circuits gives a quadratic speedup when compared to an exhaustive clas-
sical algorithm for the same problem. Our paper reduces all covering problems to
Grover’s algorithm with an innovative way of building the quantum oracle that al-
lows the number of qubits to be reduced logarithmically and at the same time solves
both the decision and optimization problems in various variants.

A hybrid algorithm (a combination of classical and quantum) can be used to
solve the covering problems, which assumes an arbitrary number of terms and vari-
ables. This algorithm would be a direct generalization of the algorithm presented
in this paper. A classical computer can use any type of heuristic or algorithmic
search method to expand a search tree. The upper part of the tree is created on
a classical computer using all kinds of general search strategies, heuristic functions,
cost functions, parameters, and constraints such as those discussed in [32, 18, 22].
This way, the sizes of the macro-leaves of the tree are reduced step by step such that
the number of terms in them is less than m and the number of variables is less than
n. For each macro-leaf, a quantum computer is called and executes a full search
based on Grover’s algorithm. Suppose the problem in the macro-leaves with less
than m terms and less than n variables is recognized as a special type of problem.
In that case, a special algorithm on a classical computer is executed for this reduced
tree. This is a standard method used recently by several authors because Grover’s
algorithm gives a quadratic speedup only for problems for which a more efficient
algorithm than a complete search does not exist. Also, this method allows for ex-
cellent scalability by sharing subtasks between the classical and quantum processors
based on the availability of the quantum computer size (parameters of m and n).

3.1 Grover’s Search Algorithm

Grover’s algorithm [29, 42], searches an unordered array of N elements to find a
particular element with a given property. In classical computations, in the worst
case, this search takes N queries (tests and evaluations of the classical oracle). In
the average case, a particular element will be found in N

2 queries. Grover’s algorithm
can find elements in

√
N queries. Thus, Grover’s algorithm can be used to find all

possible solutions for covering problems. Grover’s algorithm is a quantum search
algorithm that speeds up a classical search algorithm of complexity O(N) to O(

√
N)

in the space of N objects. Hence, Grover’s algorithm gives a quadratic speedup. To

997

Alasow, Perkowski

solve all optimal solutions of the covering problem, Grover’s algorithm has to be
repeated.

The covering problem contains n variables from the given Boolean function that
are used to represent the search space of N = 2n elements. To solve the cover-
ing problem in Grover’s algorithm, these N elements are applied in a superposition
state, which is the input to the oracle. If the oracle recognizes an element as the
solution, then the phase of the desired state is inverted. This is called the phase
inversion of the marked element. The marked element is a true minterm of function
f from the oracle. The true minterm is a product of all variables of function f that
evaluates to f = 1. Grover’s search algorithm uses another trick called inversion
about the mean (average), also known as diffusion operation or amplitude amplifi-
cation. Inversion about the mean amplifies the amplitude of the marked states and
shrinks the amplitudes of other items. The amplitude amplification increases the
probability of measuring the marked states, so that measuring the final states will
return the target solution with a high probability near to 1.

An oracle is a black box operation that takes an input and gives an output, a
yes/no decision. A quantum oracle is realized as a binary reversible circuit that is
used in quantum algorithms for the estimation of the value of the Boolean function
realized in it. The quantum oracle also has to replicate all input variables on the
respective output qubits. If the function of the oracle is not reversible, we use ancilla
qubits to make the function reversible. If the oracle uses ancilla qubits initialized to
|0⟩, it has to return also a |0⟩ for every ancilla qubit. The classical oracle function is
defined as a Boolean function f(x) which takes a proposed solution x of the search
problem. If x is the solution, then f(x) = 1; If x is not a solution, then f(x) = 0.
The quantum oracle is a unitary operator O such that:

|x⟩|y⟩ → |x⟩|q ⊕ f(x)⟩
where x is the value in search space, q is a single qubit, the oracle qubit, and ⊕ is
the EXOR operator (also called the addition modulo 2). A simplified formula of the
quantum oracle can be written as:

|x⟩ → (−1)f(x)|x⟩
As shown in Figure 1a, the n qubits in the superposition state result from applying

a vector of Hadamard gates to the initial state |0⟩n . Next, we applied a repeated
operator G which is called the Grover’s Loop. After the iteration of the Grover’s
Loop operator O(

√
N) times the output is measured for all input qubits. Oracle can

use an arbitrary number of ancilla qubits, but all these qubits must be returned to
value |0⟩ inside the oracle. The Grover’s Loop G is a quantum subroutine that can
be broken into four steps, as shown in Figure 1b:

998

Quantum Algorithms for Unate and Binate Covering Problems

Figure 1: (a) Schematic circuit for Grover’s algorithm [29]. (b) Grover’s Loop
Operator

1. Apply the Oracle O. This step is phase inversion.

2. Apply the Hadamard transform H⊗n, where H = 1√
2

[
1 1
1 −1

]

3. Perform the condition phase shift also known as a zero state phase shift, in
which all states receive a phase shift of -1 except for the zero state |0⟩. This
step is also known as the diffusion operator.

4. Apply the Hadamard transform H⊗n

The number of required iterations for Grover’s operator is: R ≤
⌈

π
4

√
N
M

⌉
where M

is number of solutions and N is number of all search space elements. The literature
includes many methods for efficient and optimal design of circuits in quantum oracle
[6, 13, 19, 11].

3.2 Quantum Counter
Each term of the clause required one multi-input Toffoli gate that has n qubit for
the clause literals and one extra ancilla qubit to store the result of the clause. This
was the traditional design of the quantum oracle, where each clause would have one
ancilla qubit. For large problems, the number of ancilla qubits is very large, so even
future quantum computers could not handle this approach. We propose an advanced
quantum oracle design based on a quantum counter [3] that logarithmically reduces
the number of required qubits. The quantum counter block is built from multi-input
Toffoli and CNOT gates, where the first qubit of the quantum counter is applied as
a constant 1 with the other qubits together.

In Figure 2a z is the least significant qubit and x the most significant. The
outputs of CNOT and two of the Toffoli gates are 1 ⊕ z, 1 · z ⊕ y, and 1 · z · y ⊕ x
respectively. When xyz = 000, the first Toffoli gate outputs 1 ·z ·y⊕x = 1 ·0 ·0⊕0 =
0 ⊕ 0 = 0 and the second 1 · z ⊕ y = 1 · 0 ⊕ 0 = 0 ⊕ 0 = 0. The outputs of the qubits

999

Alasow, Perkowski

y and x are both zeros. The output of the qubit z is 1 ⊕ z = 1 ⊕ 0 = 1. Hence the
circuit incremented 000 by 1 to 001. Quantum counter circuit indeed outputs the
value input + 1.

If we connect the first control input of the quantum counter block to a circuit,
then the output of the connected circuit (a term of the POS) will either activate or
deactivate the counter. When the output of the connected circuit is equal to 1, the
output of the counter block is incremented by 1. When the output of the circuit is
equal to 0, the output of the counter block is unchanged. Below is a table in Figure
2b for all the input combinations of the 3-qubit quantum counter.

Figure 2: (a) Three-qubit quantum counter. (b) Analysis of a 3-qubit quantum
counter block from (a)

We assign a counter block for each OR term (clause) and individual terms in the
Boolean function for the covering problem, where the result of the clause is used as
one of the control qubits of the counter. When the clause evaluates to 0, the counter
forwards its input to the output without change. When it evaluates to 1, the counter
outputs the binary number value + 1 to the previously accumulated count value.
The use of a quantum counter allows us to send the result from the Toffoli gate

1000

Quantum Algorithms for Unate and Binate Covering Problems

representing one OR term to the counter circuit, hence eliminating the need for an
ancilla qubit. We can set the function qubit back to 1 by mirroring the Toffoli gate
used to compute the result and set the input qubits back to the original by applying
NOT gates when appropriate. Our design drastically reduces the number of qubits
needed for a function at the cost of replicating Toffoli gates in the POS expression
and the costs of the iterative counter.

Our proposed concept of using a quantum counter can be used to design a quan-
tum oracle for both decision and optimization problems, such as SAT-like, MAX-
SAT problems, and many other problems in machine learning, such as mining fre-
quent pattern generation [4]. In traditional quantum oracle design for SAT-like,
MAX-SAT, and covering problems, every clause is built as a multi-input Toffoli
gate. The number of qubits in the multi-input Toffoli gate is equal to the number of
variables in the clause plus one extra ancilla qubit to save the result of the clause.
In our design, there is no need for extra ancilla qubits for each clause, but several
clauses have a quantum counter which shares ancilla qubits. For instance, if there
are 30 clauses, our design requires only 5 ancilla qubits for all 30 clauses, rather than
the 30 ancilla qubits required in the traditional quantum oracle. Thus, our design
reduces the number of qubits logarithmically.

4 Grover Algorithm for Unate Covering Problem
The unate covering problem (also called the set covering problem [21]) is to find
the minimum cost assignment of variables that satisfy a Boolean equation f = 1.
The literals in the POS function f are all in the positive form (uncomplemented
variables).

4.1 Finding All Prime Implicants for the Exact Minimum Covering
of a SOP Circuit

Minterms for a Boolean function of n variables are products of literals for all variables
of the function. A literal is a variable or the negation of a variable. True minterms
are those for which the value of the function is 1. The prime implicant in a sum-
of-product (SOP) structure is a product of literals that cannot be extended by
removing some of the literals and which covers some subset of true minterms. For
instance, given a function from Figure 3a, all its prime implicants are marked as ovals
(loops). Using the minterm compatibility graph G, all prime implicants are found
as maximum cliques. Prime implicants can also be found as maximum independent
sets of graphs (G complement). Based on the truth table (or a Karnaugh Map) and
the prime implicants, the covering table from Figure 3b is created. In this table,

1001

Alasow, Perkowski

every row represents a prime implicant as a product of Boolean literals, and each
column represents a true minterm. The covering table is filled with symbol X for
every minterm included in a prime implicant.

Figure 3: (a) Truth table for all prime implicants of a SOP circuit. (b) Covering
table for SOP function from (a)

From the table in Figure 3b, denoting rows A, B, C, D, E we compile the Petrick
function in a standard way such that each column is created as one term by adding
the variables in the row corresponding with symbol X. For instance, column 0101
has two cells filled with X. Adding the two rows A+E as one term that corresponds
to the symbols X in column 0101. In such a way, equation (1) is created:

A(A + E)(B + E)BD(D + E)(C + E)C = 1 (1)

Equation (1) can be simplified using the Boolean law: A(A + E) = A · A +
A · E = A(1 + E) = A to the following equation: 1 = A · B · C · D. Therefore,
f = A + B + C + D = acd + abc + acd + abc is the minimum sum of products of
expression of function f . In the case of many variables and clauses, solving this
problem exactly is very difficult.

The main goal of this example is to show how SOP minimization can be solved
using the UCP. Then the quantum oracle is built from UCP to apply Grover’s
algorithm. The quantum oracle is built from UCP (1). First, we need to convert each
OR term into a product using De Morgan’s Law A+E = A + E = AE = 1⊕AE; B+
E = B + E = BE = 1 ⊕ BE; C + E = C + E = CE = 1 ⊕ CE; D + E = D + E =
DE = 1⊕DE. From (1) we can rearrange A·B ·C ·D(A+E)(B+E)(D+E)(C +E).

1002

Quantum Algorithms for Unate and Binate Covering Problems

To simplify the oracle design, we consider A · B · C · D as one term, which needs
one quantum circuit. Then we connect one block of the iterative quantum counter
after each Toffoli gate representing the OR term of the function POS formula. We
put the ancilla qubit back to its original state by mirroring each Toffoli gate after
each counter. In this case, we need five quantum counter circuits, as can be seen
in Figure 4. Also, we need to add the NOT gate in the output circuit block, which
makes the last qubit out0 to produce 1 if the variable xyz in counter circuit is 101
such that the Boolean function in equation (1) is equal to 1.

Figure 4: Quantum oracle for A · B · C · D(A + E)(B + E)(D + E)(C + E)

In Figure 5, we applied the oracle circuit in Figure 4 in the Grover’s search algo-
rithm for iterations R = 4 from this formula: R ≤

⌈
π
4

√
N
M

⌉
where N = 25 = 32 is

the number of all search space elements since there are 5 variables for A, B, C, D, E.
M = 2 is the number of solutions. M = 2 because in equation (1) is equal to 1 either
ABCDE = 11110 or ABCDE = 11111. We run the circuit on the ‘qasm_simulator’
from QISKIT for 1024 shots (independent runs to get high precision probability)
which the circuit produces the correct answers. We measured a0, a1, a2, a3 and a4 in
Figure 5 where a0, a1, a2, a3, a4 correspond to the Boolean variables A, B, C, D, E re-

1003

Alasow, Perkowski

Figure 5: Grover’s algorithm with 4 iterations using the oracle circuit from Figure 4

Figure 6: Measurement of the Boolean variables from A · B · C · D(A + E)(B +
E)(D + E)(C + E)

1004

Quantum Algorithms for Unate and Binate Covering Problems

spectively. As can be seen in Figure 6, the diagram illustrates the QISKIT [5] output
graphics for the simulated circuit. The measured values a4a3a2a1a0 with high prob-
ability are 11111, 01111. The values 11111 and 01111 correspond to E, D, C, B, A
respectively which are two solutions to equation (1): A, B, C, D and A, B, C, D, E.

This example explains that the above method can be applied to an arbitrary
POS formula with x variables and y clauses. Therefore, our method is scalable to
an arbitrary size of unate covering problem, assuming a sufficiently large number of
qubits in a quantum computer or in a quantum component of a hybrid computer.

5 Grover’s Algorithm for Binate Covering Problem
Binate covering problem is the same as unate covering problem with the additional
constraint that BCP can contain negative literals. There are some cases that have
no solution, and therefore, the BCP should reliably notify the user about this fact.
We presented three examples of BCP problems: (1) Finding the minimum covering
for an implication graph. (2) Finding a minimum cost constraint. (3) Minimization
of incompletely specified Finite State Machines.

5.1 Finding the Minimum Covering for an Implication Graph
An implication graph is a directed acyclic graph (DAG) where each node repre-
sents a variable assignment. An implication graph represents the implication rela-
tions between pairs of variable assignments. Given a set S and a family of subsets
F = {s1, s2, · · · , sn}, a closure conditions are represented as an implication graph.
For instance, assuming given a family of subsets of the set {1, 2, 3, 4, 5, 6} and the
implication graph from in Figure 7, the optimization task is to select a subset of
nodes from the set A, B, C, D, E that satisfies all three conditions:

• Covering condition: all items from the set {1, 2, 3, 4, 5, 6} must be covered by
the selected nodes.

• All closure conditions must be satisfied.

• The set of selected nodes must have the minimum number of elements.

The general optimization can be solved by constructing a covering and closure
table. For a particular problem, as specified above, the table is shown in Figure 8.
Here, the rows correspond to the nodes (subsets) of the implication graph in Figure
7, while the columns correspond to the individual elements of the set {1, 2, 3, 4, 5, 6}
for covering table and the columns for the closure table correspond to the nodes in
the implication graph which are the same subsets as the rows of the table.

1005

Alasow, Perkowski

Figure 7: Implication graph for the set {1, 2, 3, 4, 5, 6}

Figure 8: Covering-closure table based on the implication graph from Figure 7

The closure conditions are illustrated in Figure 7. Assuming that we select set
A = {1, 2, 3, 5} on top of the implication graph, it is implied that the set B = {4, 6}
and the set C = {2, 3} must be also selected. Set {2, 3} implies set {1, 5} and set
{2, 3, 5} implies set {4, 6} (see Figure 7 above). This way, the table from Figure 8
is created. For instance, the black dots in the row A mean that set A = {1, 2, 3, 5}
implies sets B = {4, 6} and C = {2, 3}. Set C = {2, 3} implies sets D = {1, 5}. Set
E = {2, 3, 5} implies sets B = {4, 6}. Based on the covering and closure table from
Figure 8, Petrick’s method creates a Boolean formula in equation (2). Next, this

1006

Quantum Algorithms for Unate and Binate Covering Problems

formula is transformed into the general POS formula from equation (3)

(A + D)(A + C + E)B(A + D + E)(A ⇒ BC)(C ⇒ D)(E ⇒ B) = 1 (2)

In equation (2), the first four terms describe the covering conditions, and the last
three terms correspond to closure conditions (closure constraints). Equation (2) can
be converted to equation (3) by using the logic transformation rule (A ⇒ B) ⇔
(A + B)

(A + D)(A + C + E)B(A + D + E)(A + BC)(C + D)(E + B) (3)

Next , we build a quantum oracle for the general POS formula from equation (3) by
converting each OR term into Products using De Morgan’s law A + D = A + D =
AD = 1 ⊕ AD; A + C + E = A + C + E = ACE = 1 ⊕ ACE; A + D + E =
A + D + E = ADE = 1 ⊕ ADE; A + BC = A + BC = ABC = 1 ⊕ ABC =
1⊕A(1⊕BC); C +D = C + D = CD = 1⊕CD; E +B = E + B = EB = 1⊕EB.
Then we connect one block of the iterative quantum counter after each Toffoli gate,
representing the OR term of the function POS formula. We put the ancilla qubit
back to its original state by mirroring each Toffoli gate after each counter. In this
case, we need seven quantum counter circuits (one for B term and six for each POS
term), as can be seen in Figure 9. The oracle circuit in Figure 9 is inserted into
Grover’s Oracle. This is similar to previous examples that demonstrate one more
time how inefficient using the global AND is, even for very small practical binate
covering problems. Rather than using AND, we use a quantum counter.

This example illustrates that an arbitrary size problem of solving an implication
graph can be reduced to algorithmically creating Grover’s oracle with x variable
qubits and y terms. Therefore, the implication graph problem can be solved by
Grover’s algorithm with a quadratic speedup.

In Figure 10, we applied the oracle circuit from Figure 9 in Grover’s search
algorithm for iterations R = 2 from this formula: R ≤

⌈
π
4

√
N
M

⌉
where N = 25 =

32 and M = 5 (this can be verified by a truth table). We run the circuit on
the ‘qasm_simulator’ from QISKIT for 1024 shots, and the circuit produces the
correct answers. We measured a0, a1, a2, a3 and a4 in Figure 10 where a0, a1, a2, a3, a4
corresponds to the Boolean variables A, B, C, D, E respectively. As can be seen
in the histogram in Figure 11, this illustrates the QISKIT [5] output graphics for
the simulated circuit. The measured values a4a3a2a1a0 with high probability are
01110, 01111, 11010, 11110, and 11111 corresponding to variables E, D, C, B, A
respectively. For instance, the vector 01110 corresponds to the solution of DCB.

1007

Alasow, Perkowski

Figure 9: Quantum oracle for (A + D)(A + C + E)B(A + D + E)(A + BC)(C +
D)(E + B)

In the measurement, the solutions have much higher probabilities than the non-
solutions. These solutions are verified outside of Grover’s algorithm, just by using
the oracle with function (A+D)(A+C +E)B(A+D +E)(A+BC)(C +D)(E +B).

5.2 Finding Minimum Cost Constraint
Minimum cost constraint minimizes the cost of satisfying the assignment for the
given problem. Given m constraints on n Boolean variables, the goal is to find an
assignment that satisfies all constraints such that:

minimizing
n−1∑

i=0
wixi

subject to f = y0 ∧ y1 ∧ · · · ∧ ym−1 = 1.
Where wi ≥ 0 is the weight of variable xi and ym is a clause which means a sum

of xi. This is called a weighted binate covering. The practical application of finding

1008

Quantum Algorithms for Unate and Binate Covering Problems

Figure 10: Grover’s algorithm with 2 iterations using the oracle circuit

the minimum cost constraint can be found in [21], which can be formulated as a
binate covering problem. However, we present in this paper a general example of a
Boolean function that can be solved using Grover’s algorithm. For instance, given
is the following set of clauses Y :

y0 = x0 + x3

y1 = x2 + x3

y2 = x1 + x2

y3 = x1 + x2 + x3

and let the weight wi for each value of xi as follow: w0 = 4, w1 = 2, w2 = 1, and
w3 = 1. The optimization task is to find the minimum cost assignment based on the
given weight. First, we construct the POS function, and then we design a quantum
oracle for the Grover’s algorithm to find the exact minimum solution. Based on the
solution, we apply the weight for each clause to find the minimum cost constraint.
Here the Y clauses are represented by a POS Boolean formula:

(x0 + x3)(x2 + x3)(x1 + x2)(x1 + x2 + x3) (4)

1009

Alasow, Perkowski

Figure 11: Measurement of the Boolean variables from Figure 10 based on ABCDE

The solution found in Grover’s algorithm is subject to the equation (5) for the
minimum cost function:

4x0 + 2x1 + x2 + x3 (5)

Equation (5) is an arithmetic function that is computed in a classical processor of
a hybrid computer, while equation (4) is computed in Grover’s algorithm. First, we
build a quantum oracle from equation (4), similar to the previous examples, after
applying De Morgan’s low: x0 + x3 = x0x3 ⊕ 1; x2 + x3 = x2x3 ⊕ 1; x1 + x2 =
x1x2 ⊕ 1; x1 + x2 + x3 = x1x2x3 ⊕ 1

We need to add the two NOT gates in the output circuit block, which makes the
last qubit out0 to produce one if the variable xyz in counter circuit is 100, such that
the Boolean function in equation (4) is equal to 1.

In Figure 13, we applied the oracle circuit in Figure 12 in Grover’s search algo-
rithm for iterations R=2 from this formula: R ≤

⌈
π
4

√
N
M

⌉
where N = 24 = 16 is the

number of all search space elements. M = 4 is the number of solutions that can be
verified by creating a truth table. We run the circuit on the ‘qasm_simulator’ from

1010

Quantum Algorithms for Unate and Binate Covering Problems

Figure 12: Quantum oracle for (x0 + x3)(x2 + x3)(x1 + x2)(x1 + x2 + x3)

Figure 13: Grover’s algorithm with 2 iterations using the oracle circuit from Figure
12

1011

Alasow, Perkowski

Figure 14: Measurement of the Boolean variables from Figure 13 based on x0x1x2x3

QISKIT for 1024 shots, and the circuit produces the correct answers. We measured
x3x2x1x0 in Figure 13. As can be seen in Figure 14, the measured values x3x2x1x0
with high probability are {1111,1110,0111,0011}. Applying these values to equation
(4), we found 1110, which gives the minimum cost of 4.

1110 : 4x0 + 2x1 + x2 + x3 = 4 ∗ 0 + 2 ∗ 1 + 1 ∗ 1 + 1 ∗ 1 = 4

Based on this value, we choose 1110 from the answer {1111,1110,0111,0011},
which corresponds to the solution of x3x2x1 respectively with the minimum cost
of 4. In another variant of our method, the arithmetic calculation is built into a
quantum counter inside the oracle, such that for clause i instead of value 1, the value
of wi is added. This general method, however, is not practical for current quantum
simulators. Concluding, the presented method is scalable to arbitrary size problem of
minimizing the minimum cost constraint can be reduced to algorithmically creating
Grover’s oracle with x variable qubits and y terms. Therefore, finding the minimum
cost constraint can be solved by Grover’s algorithm with a quadratic speedup.

5.3 Minimization of Incompletely Specified Finite State Machines
A Finite State Machine (FSM) is an abstract model used in design to model prob-
lems in various fields of science and engineering. A finite state machine consists

1012

Quantum Algorithms for Unate and Binate Covering Problems

of input states, output states, and internal states that can change from one state
to another state based on input. The change of the internal state is described by
a transition function. For various reasons, finite state machines can have incom-
pletely specified output functions and transition functions. The minimization of
incompletely specified finite state machines is considered an NP-hard problem [17].
We present the complete oracle design for Grover’s algorithm for the well-known
classical problem of minimization of the number of states of incompletely specified
finite state machines. For a given incompletely specified finite state machine, the
solution is achieved by the following steps:

1. Classical computers create a triangular table to obtain compatible states.

2. Based on the triangular table, the classical computer creates a compatibility
graph.

3. Quantum computer finds all maximum cliques in the compatibility graph.

4. The classical computers create the covering table component of the covering-
closure based on the maximum cliques.

5. The classical computer creates a closure table component of the covering-
closure table only for compatible states.

6. The classical computer creates a Boolean function for the oracle from the
covering-closure table.

7. A quantum oracle is designed by a classical computer.

8. Grover’s algorithm is called on a quantum computer with the oracle found in
point 7.

Below we will illustrate the above general hybrid algorithm on a particular ex-
ample. Given is an incompletely specified Mealy finite state machine described as
a transition/output table from Figure 15a. Dashes represent don’t care in internal
states or output states. This table has internal states A, B, C, D, E, F , two input
signals for columns, and one binary output under a slash symbol in cells of the map.
A triangular table in Figure 15b was generated based on the table from Figure 15a.
The table from Figure 15b covers all possible cases to minimize the number of states
in the finite state machine. The ‘X’ symbol in the table indicates no possibility for
grouping the corresponding states. Symbol ‘V ’ in the table indicates that the states
can be combined without any problem. A pair of state variables in a cell of the
triangular map V indicates that states can be grouped only if the states mentioned

1013

Alasow, Perkowski

in the block can be combined without any problem. For instance, states B and
F can be combined under the condition that states C, F are compatible (can be
combined). The method of creating the triangular table is well-known from [20].

Figure 15: (a) Truth table of FSM (b) FSM triangular table generated based on the
truth table from (a)

Based on the triangular table, a compatibility graph for the state machine is
generated, as shown in Figure 16a. Every cell in the triangular map that has no
symbol X corresponds to a compatible pair of states. For instance, the cell at the
intersection of row C and column A is compatible. The cell at the intersection of
row B and column A is not compatible as it has a symbol X in it. Similarly, states
A and D are not compatible. In Figure 15b, states A and D are compatible under
the condition that states A and B are compatible. But we found earlier that states
A and B are not compatible; thus, states A and D are not compatible. The cell at
the intersection of row D and column A is crossed-out as symbol X. In the same
way, the cell at the intersection of column A and row E is replaced with X because
states A and D are not compatible. A simple recursive classical algorithm creates
symbols X for every incompatible pair of internal states.

From Figure 16a, the maximum cliques of the graph are identified as {A, C, F},
{B, F}, {C, D, F}, {C, E, F}. Finding of all cliques in a graph is done by a SAT-
based algorithm similar to those discussed earlier in this paper. The compatibility
graph from Figure 16a is a complement of the incompatibility graph from Figure

1014

Quantum Algorithms for Unate and Binate Covering Problems

Figure 16: (a) Compatibility graph (b) Incompatibility graph.

16b. As we see, the maximum cliques in the compatibility graph are the same
as the maximum independent sets in the incompatibility graph from Figure 16b.
These maximum independent sets can be found from the graph coloring [14] of
the incompatibility graph. The graph coloring can be solved by a special Grover’s
oracle. It can be solved by finding the Maximum Independent Sets and then solving
the unate covering problem with them. These problems are reducible to SAT-like
oracles for Grover’s algorithm. This example explains the relation between the
graph coloring of the incompatibility graph, finding the maximum cliques of the
compatibility graph, and covering problems. These partial quantum algorithms are
also useful in a quantum algorithm for solving the Ashenhurst-Curtis Decomposition
[23].

To minimize the finite state machine, a covering-closure table, shown in Figure
17, is created by considering the maximum cliques and all their subsets as rows of the
table. All of the states {A, B, C, D, E, F} in the machine correspond to columns of
the covering table, and the implications {A, C}, {C, F}, {C, D} in the compatibility
graph from the cell of the triangular table correspond to columns of the closure
table. From the table in Figure 17, a binate covering problem can be specified using
the equation:

(X + V + P)Y (X + Z + U + V + Q + R + T)(Z + R + S)(U + T + W)(X + Y +

1015

Alasow, Perkowski

Figure 17: Covering-Closure table for the FSM

Z + U + P + Q + S + W)(X ⇒ V Q)
(Y ⇒ Q)(Z ⇒ Q)(U ⇒ QR)(V ⇒ V)(P ⇒ Q)(Q ⇒ Q)(T ⇒ R) = 1

The function can be simplified using the Boolean laws A ⇒ B ⇔ (A + B).

(X + V + P)Y (X + Z + U + V + Q + R + T)(Z + R + S)(U + T +
W)(X +Y +Z +U +P +Q+S +W)(X +V Q)(Y +Q)(Z +Q)(U +
QR)(V + V)(P + Q)(Q + Q)(T + R) = 1

(6)

The number of search space N = 211 = 2048 where 11 is the number of variables
in the rows of covering-closure table. There are 155 solutions that the Boolean
equation (6) is equal to 1. The presented method is not yet practical as contemporary
quantum computers have not enough qubits. However, with a sufficient number of
qubits, the presented algorithm will allow to minimize large machines with quadratic
speedup. To visualize all these solutions in a histogram is difficult such that we use a
more general case in Figure 18, we repeat the Grover’s algorithm for iterations R = 3
with tuning values of thresholds until equal to counter value. The comparator G = H

1016

Quantum Algorithms for Unate and Binate Covering Problems

compares the output from the counter with the threshold value given as constant
values n1, n2, n3 and n4. (Using the threshold with a comparator has many other
applications such as finding the minimum set of support [31]).

Figure 18: FSM Oracle Design with counter circuit and threshold with comparator

The solution with the minimum number of positive literals is {V, Q, R, Y, U}
which simplifies to {V, R, Y, U} because group Q = {C, F} is included in U =
{C, E, F}, thus Q ⇒ U . Symbol V requires combining states A and C, symbol Y
requires combining states B and F , symbol R combines states C and D and symbol
U combines states C, E, F together. As the result, we obtain the minimized state
machine from Figure 19a. We combine states from the respective states of Figure
15. Thus, combining in column 00 for row V we obtain symbols A and C and
output 0. This way, combining states from groups V, Y, R and U the entire table
from Figure 19a is created. Now for every subset of initial states A, B, C, D, E, F
corresponding to each symbol from set of sets {V, Y, R, U} we check to which set
this subset belongs. For instance state C is included in sets V, R and U . Therefore
symbol C in the table from Figure 19a is replaced with symbols V, R and U in the
transition cells. This way, the non-deterministic machine from Figure 19b is created.
Now select any state among V, R and U to create one of the deterministic machines

1017

Alasow, Perkowski

described by the non-deterministic machine. Choose every row U in column 11 in
order to improve the logic realization of the machine. Similarly, for the purpose of
good encoding (encoding not explained here), select state R in column 00 to have
two transitions to V and two transitions to R in this column. One final finite state
machine minimized in this way is shown in Figure 19c.

Figure 19: Steps to create an exactly minimized deterministic FSM using binate
covering problem. (a) the table created directly from the solution to the covering-
closure problem; (b) a non-deterministic automaton created from the table in (a);
(c) one deterministic automaton created from the non-deterministic automaton in
(b)

There are not yet benchmarks for quantum algorithms. However, there exist
benchmarks for classical algorithms, such as those in [18, 22, 1, 9]. The current
quantum computers are too small to run the classical benchmarks on them. One
can, however, speculate on the speedup of future quantum and hybrid computers
based on these classical benchmarks. Suppose a benchmark takes m terms and n
variables, using our method, this benchmark would require n qubits for variables
and

⌈
log2 m

⌉
ancilla qubits for terms to represent the problem in a quantum algo-

rithm design. In contrast, the traditional quantum oracle design would require n
qubits for variables and m + 1 ancilla qubits for terms [2]. Thus, when compared to
the traditional Grover, our proposed design requires fewer qubits with a quadratic

1018

Quantum Algorithms for Unate and Binate Covering Problems

speedup of Grover’s algorithm. As can be seen from Figure 20, for instance, if a
given covering problem consists of 100,000 clauses, then our quantum oracle design
requires only 18 ancilla qubits, while the traditional quantum oracle would require
100,000 ancilla qubits, which is the same as the clause number in the given prob-
lem. Assuming a complete search, the complexity of the classical algorithm would
be N = 2n. The complexity of our quantum algorithm would be O(

√
N). When

the quantum computers have enough qubits, comparing practical benchmarks will
be possible. Because IBM aims to build a quantum computer with 100,000 qubits
in 10 years [10], we hope that in this time frame, our quantum algorithm for EDA
problems will become practical.

Figure 20: Comparison of the required numbers of ancilla qubits for our quantum
oracle design (left) and the traditional quantum oracle design (right) [2]

6 Conclusion
We presented new quantum algorithms to solve with quadratic speedup several fun-
damental problems of classical logic circuits and finite state machine design. All
these algorithms either use Grover, repeated Grover, or hybrid algorithms that use
Grover’s algorithm. Optimization problems are reduced to a repetition of constraint
satisfaction problems solved by Grover’ algorithm. Our approach is based on cre-
ating various oracles, which are, however, based on the same basic principle. We
presented quantum oracle designs for various well-known EDA applications of the
Unate and Binate covering problems. Innovative quantum algorithms for exact
an incompletely specified FSM minimization have been presented here for the first

1019

Alasow, Perkowski

time. Each of these problems is converted to a general quantum oracle. Our quan-
tum oracle design uses an iterative quantum counter block used inside the oracles
for the Grover-like algorithms. The concept of introducing this quantum counter
can be applied to all these algorithms, allowing them to solve in a uniform way both
SAT-like and MAX-SAT-like problems. Most importantly, this approach reduces
the number of qubits logarithmically [3]. The introduction of the iterative quantum
counter circuit replaces the ancilla qubits of the global large AND gate for tradi-
tional quantum oracle design for SAT-like problems. This is important because it
reduces not only the number of required qubits but also avoids designing a quantum
AND gate with many inputs, which is known to be a very complicated gate. We
presented experimental results from the QISKIT simulator that showed the circuit
works correctly.

Our future research will investigate using quantum counting based on combining
Grover’s algorithm with quantum phase estimation [29] to more specifically estimate
the number of Grover’s Loop repetitions for larger problems, which are difficult to
calculate manually. Further improvement is to extend the quantum oracle design to
add an arithmetic circuit for the weighted covering problems.

References

[1] The mcnc benchmark problems for vlsi floorplanning. http://www.mcnc.org. [Online].
[2] Abdirahman Alasow, Peter Jin, and Marek Perkowski. Quantum algorithm for variant

maximum satisfiability. Entropy, 24(11), 2022.
[3] Abdirahman Alasow and Marek Perkowski. Quantum algorithm for maximum satisfia-

bility. In 2022 IEEE 52nd International Symposium on Multiple-Valued Logic (ISMVL),
pages 27–34. IEEE, 2022.

[4] Abdirahman Alasow and Marek Perkowski. Quantum algorithm for mining frequent
patterns for association rule mining. Journal of Quantum Information Science, 13(1):1–
23, 2023.

[5] Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello, Yael
Ben-Haim, David Bucher, F Jose Cabrera-Hernández, Jorge Carballo-Franquis, Adrian
Chen, Chun-Fu Chen, et al. Qiskit: An open-source framework for quantum computing.
Accessed on: Mar, 16, 2019.

[6] Carolina Allende, Efrain Buksman, and André Fonseca De Oliveira. Quantum circuit
design using neural networks assisted by entanglement. In 2021 IEEE URUCON, pages
316–319. IEEE, 2021.

[7] Julien Bramel and David Simchi-Levi. On the effectiveness of set covering formulations
for the vehicle routing problem with time windows. Operations Research, 45(2):295–301,
1997.

1020

Quantum Algorithms for Unate and Binate Covering Problems

[8] Melvin A Breuer. Design Automation of Digital Systems: Vol. 1.: Theory and Tech-
niques. Prentice-Hall, 1972.

[9] Franc Brglez. A neutral netlist of 10 combinational benchmark circuits and a target
translator in fortran. In Proc. Intl. Symp. Circuits and Systems, 1985, 1985.

[10] Michael Brooks. Ibm wants to build a 100,000-qubit quantum com-
puter. https://www.technologyreview.com/2023/05/25/1073606/
ibm-wants-to-build-a-100000-qubit-quantum-computer. Accessed: 2023-06-
15.

[11] Hongxiang Fan, Ce Guo, and Wayne Luk. Optimizing quantum circuit placement via
machine learning. In Proceedings of the 59th ACM/IEEE Design Automation Confer-
ence, pages 19–24, 2022.

[12] Gary D Hachtel and Fabio Somenzi. Logic synthesis and verification algorithms.
Springer Science & Business Media, 2005.

[13] Chi-Chuan Hwang, Chu-Yuan Tseng, and Cheng-Fang Su. Quantum circuit design for
computer-assisted shor’s algorithm. 2022.

[14] Tommy R Jensen and Bjarne Toft. Graph coloring problems. John Wiley & Sons, 2011.
[15] Jeong and Somenzi. A new algorithm for the binate covering problem and its application

to the minimization of boolean relations. In 1992 IEEE/ACM International Conference
on Computer-Aided Design, pages 417–420. IEEE, 1992.

[16] Ankit Kagliwal and Shankar Balachandran. Set-cover heuristics for two-level logic
minimization. In 2012 25th International Conference on VLSI Design, pages 197–202.
IEEE, 2012.

[17] Timothy Kam, Tiziano Villa, Robert Brayton, and Alberto Sangiovanni-Vincentelli. A
fully implicit algorithm for exact state minimization. In Proceedings of the 31st annual
Design Automation Conference, pages 684–690, 1994.

[18] Timothy Kam, Tiziano Villa, Robert K Brayton, and Alberto L Sangiovanni-
Vincentelli. Synthesis of finite state machines: functional optimization. Springer Science
& Business Media, 2013.

[19] Sumeet Khatri, Ryan LaRose, Alexander Poremba, Lukasz Cincio, Andrew T Sorn-
borger, and Patrick J Coles. Quantum-assisted quantum compiling. Quantum, 3:140,
2019.

[20] Zvi Kohavi and Niraj K Jha. Switching and finite automata theory. Cambridge Uni-
versity Press, 2009.

[21] Xiao Yu Li. Optimization algorithms for the minimum-cost satisfiability problem. North
Carolina State University, 2004.

[22] Xiao Yu Li, Matthias F Stallmann, and Franc Brglez. Effective bounding techniques for
solving unate and binate covering problems. In Proceedings of the 42nd annual Design
Automation Conference, pages 385–390, 2005.

[23] Yiwei Li, Edison Tsai, Marek Perkowski, and Xiaoyu Song. Grover-based ashenhurst-
curtis decomposition using quantum language quipper. Quantum Information & Com-
putation, 19(1-2):35–66, 2019.

1021

Alasow, Perkowski

[24] Stan Liao, Srinivas Devadas, Kurt Keutzer, and Steve Tjiang. Instruction selection
using binate covering for code size optimization. In Proceedings of IEEE International
Conference on Computer Aided Design (ICCAD), pages 393–399. IEEE, 1995.

[25] Stan Liao, Kurt Keutzer, STEVEN Tjiang, and Srinivas Devadas. A new viewpoint on
code generation for directed acyclic graphs. ACM Transactions on Design Automation
of Electronic Systems (TODAES), 3(1):51–75, 1998.

[26] Edward J McCluskey. Minimization of boolean functions. The Bell System Technical
Journal, 35(6):1417–1444, 1956.

[27] Marta Mesquita and Ana Paias. Set partitioning/covering-based approaches for the
integrated vehicle and crew scheduling problem. Computers & Operations Research,
35(5):1562–1575, 2008.

[28] Giovanni De Micheli. Synthesis and optimization of digital circuits. McGraw-Hill Higher
Education, 1994.

[29] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum informa-
tion. Cambridge university press, 2010.

[30] Eric Paul, Bernd Steinbach, and Marek Perkowski. Application of cuda in the boolean
domain for the unate covering problem. 2010.

[31] Marek Perkowski. Inverse problems, constraint satisfaction, reversible logic, invertible
logic and grover quantum oracles for practical problems. In Reversible Computation:
12th International Conference, RC 2020, Oslo, Norway, July 9-10, 2020, Proceedings
12, pages 3–32. Springer, 2020.

[32] Marek A Perkowski, Jiuling Liu, and James E Brown. Rapid software prototyping:
Cad design of digital cad algorithms. In Progress in computer-aided VLSI design, pages
353–401. 1990.

[33] Stanley R Petrick. A direct determination of the irredundant forms of a boolean function
from the set of prime implicants. Air Force Cambridge Res. Center Tech. Report, pages
56–110, 1956.

[34] Richard L Rudell. Multiple-valued logic minimization for PLA synthesis. Electronics
Research Laboratory, College of Engineering, University of . . . , 1986.

[35] Richard L Rudell. Logic synthesis for VLSI design. University of California, Berkeley,
1989.

[36] Tsutomu Sasao. Logic synthesis and optimization, volume 2. Springer, 1993.
[37] Michal Servit and Jan Zamazal. Heuristic approach to binate covering problem. In

Proceedings The European Conference on Design Automation, pages 123–124. IEEE
Computer Society, 1992.

[38] Bernd Steinbach and Christian Posthoff. Sources and obstacles for parallelization-a
comprehensive exploration of the unate covering problem using both cpu and gpu.
GPU Computing with Applications in Digital Logic, 63, 2012.

[39] Bernd Steinbach and Christian Posthoff. Fast calculation of exact minimal unate cov-
erings on both the cpu and the gpu. In Computer Aided Systems Theory-EUROCAST
2013: 14th International Conference, Las Palmas de Gran Canaria, Spain, February

1022

Quantum Algorithms for Unate and Binate Covering Problems

10-15, 2013. Revised Selected Papers, Part II 14, pages 234–241. Springer, 2013.
[40] Bernd Steinbach and Matthias Werner. Alternative approaches for fast boolean cal-

culations using the gpu. In Computational Intelligence and Efficiency in Engineering
Systems, pages 17–31. Springer, 2015.

[41] Tiziano Villa, Timothy Kam, Robert K Brayton, and Alberto L Sangiovanni-
Vincenteili. Explicit and implicit algorithms for binate covering problems. IEEE Trans-
actions on computer-Aided Design of integrated Circuits and Systems, 16(7):677–691,
1997.

[42] Wikipedia. Grover’s algorithm — Wikipedia, the free encyclopedia. http://en.
wikipedia.org/w/index.php?title=Grover’s%20algorithm&oldid=1169154668.
accessed: 2023-06-27.

Received1023

Embedding First-order Classical Logic into
Gurevich’s Extended First-order

Intuitionistic Logic: The Role of Strong
Negation

Norihiro Kamide
Nagoya City University, School of Data Science,

Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
drnkamide08@kpd.biglobe.ne.jp

Abstract

In this study, a theorem for embedding first-order classical logic into Gure-
vich’s extended first-order intuitionistic logic with strong negation is investi-
gated in terms of the Gödel–Gentzen negative translation. First, an alternative
cut-free Gentzen-style sequent calculus ELK for first-order classical logic is in-
troduced to extend Gentzen’s sequent calculus LK for first-order classical logic.
Second, a theorem for embedding ELK into a Gentzen-style sequent calculus
ELJ for Gurevich’s extended first-order intuitionistic logic with strong negation
is proved using an extended Gödel–Gentzen negative translation. Finally, a
theorem for embedding ELK into Gentzen’s sequent calculus LJ for first-order
intuitionistic logic is obtained using a slightly modified version of the extended
Gödel–Gentzen negative translation.

1 Introduction
In this study, we investigate a theorem for embedding first-order classical logic (CL)
into Gurevich’s extended first-order intuitionistic logic with strong negation (GL)
[12]. First, to investigate the embedding theorem, we introduce an alternative cut-
free Gentzen-style sequent calculus ELK for CL by extending Gentzen’s sequent cal-
culus LK [10] for CL. Second, we introduce an extended version of the well-known
Gödel–Gentzen negative translation [11, 9] from CL to first-order intuitionistic logic

We would like to thank the referees for their valuable comments. This research was supported by
JSPS KAKENHI Grant Number 23K10990.

Vol. 10 No. 6 2023
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

Kamide

(IL). Third, we prove a theorem for embedding ELK into a Gentzen-style sequent
calculus ELJ [15] for GL by using the extended Gödel–Gentzen negative transla-
tion (i.e., we obtain a theorem for embedding CL into GL). Finally, we obtain a
theorem for embedding ELK into Gentzen’s sequent calculus LJ for IL by using a
slightly modified version of the extended Gödel–Gentzen negative translation (i.e.,
we obtain an alternative new theorem for embedding CL into IL). Based on these
results, we can clarify and understand the role of strong negation in CL and GL,
where strong negation was introduced in [19] and traditionally used in GL and re-
lated constructive logics [1, 19, 21, 28, 26, 30]. More specifically, we can clarify and
understand that strong negation is an essential and natural component of CL for
representing falsification-aware reasoning and plays a crucial role in smoothly prov-
ing some theorems for embedding CL into GL and IL (and some related theorems
for CL).

The key technique for smoothly proving the theorem for embedding CL into
GL is to construct an alternative cut-free Gentzen-style sequent calculus ELK for
CL. We first explain the concept of constructing ELK. We construct ELK as a
natural classical extension or a version of ELJ, which was introduced in [15] for GL
(although it was referred to as GI in [15]). This implies that the language of CL
is extended by adding a classical strong negation connective, which is regarded as
the classical counterpart of the (intuitionistic) strong negation connective equipped
with GL. Thus, this extended language includes two types of negation connectives:
∼ (classical strong negation) and ¬ (classical negation). However, we can show that
these negations are essentially equivalent in ELK (i.e., we can prove that ELK ⊢
∼α ⇒ ¬α and ELK ⊢ ¬α ⇒ ∼α). This means that ∼ (classical strong negation) is
equivalent to ¬ (classical negation) in the context of CL. However, as is well known,
∼ (strong negation) is not equivalent to ¬ (intuitionistic negation) in the context
of IL (i.e., we can prove that ELJ ⊢ ∼α ⇒ ¬α, but we cannot prove that ELJ
⊢ ¬α ⇒ ∼α in general; hence ∼ is “stronger” than ¬). Thus, ∼ (classical strong
negation) is regarded as a redundant and auxiliary negation connective in ELK, but
this connective plays a crucial role in proving the theorem for embedding ELK into
ELJ.

ELK is also constructed as an extension and combination of both Gentzen’s LK
and the falsification-aware normal Gentzen-style sequent calculus LKF introduced
in [16]. LKF is obtained from ELK by deleting the logical inference rules concerning
¬, and LK is obtained from ELK by deleting the initial sequents and logical infer-
ence rules concerning ∼. On the one hand, the cut-elimination and completeness
theorems for LK are well known [10, 25]. On the other hand, the cut-elimination and
completeness theorems for LKF were proved in [16] using Schütte’s method. The
theorem-equivalence between LK and LKF was also proved in [16]. Thus, LK, LKF,

1026

Embedding classical logic into Gurevich’s logic

and ELK are all Gentzen-style sequent calculi for CL. In this study, we prove a weak
theorem for syntactically embedding ELK into LK and use this theorem to prove the
cut-elimination theorem for ELK. Using this cut-elimination theorem, we can also
obtain the cut-elimination theorem for LKF because LKF is a subsystem of ELK.
This fact provides a solution to the unsolved problem discussed in [16] for obtain-
ing an embedding-based syntactical proof of the cut-elimination theorem for LKF.
Thus, the proposed embedding-based simple syntactical proof of the cut-elimination
theorems for ELK and LKF is a novel contribution of this study. More specifically,
we can understand that the use of ∼ (classical strong negation) plays a crucial role
in smoothly obtaining the embedding-based proof of the cut-elimination theorems
for ELK and LKF.

Next, we provide the background of GL. GL was originally introduced by Gure-
vich in [12], wherein a Hilbert-style axiomatic system, a cut-free Gentzen-style se-
quent calculus, and Kripke and three-valued semantics were introduced for GL. In
addition, the completeness theorems with respect to the Kripke and three-valued
semantics were proved for GL. As previously mentioned, ELJ was introduced in [15]
as an alternative Gentzen-style sequent calculus for GL. ELJ and the original system
G by Gurevich for GL were shown to be theorem-equivalent. The Hilbert-style ax-
iomatic system introduced by Gurevich was obtained from that for IL by adding the
following axiom schemes, where ∼ and ¬ are the strong negation and intuitionistic
negation connectives, respectively:

1. ∼∼α ↔ α,

2. ∼¬α ↔ α,

3. ∼α→¬α,

4. ∼(α∧β) ↔ ∼α∨∼β,

5. ∼(α∨β) ↔ ∼α∧∼β,

6. ∼(α→β) ↔ α∧∼β,

7. ∼∀xα ↔ ∃x∼α,

8. ∼∃xα ↔ ∀x∼α.

This axiomatic system is theorem-equivalent to the axiomatic system obtained from
this system by replacing the law ∼α→¬α of strong negation with the law (α∧∼α)→β
of explosion. For more information on this, see Remark 2.20 in Section 2 of this
paper.

1027

Kamide

Next, we explain the aims of this study. One aim is to clarify the relationship
between GL and CL by extending the Gödel–Gentzen negative translation by means
of strong negation. Through this clarification, we can understand the significance of
GL and its related subsystem N3, which are known to be typical logics with strong
negation. In addition, through the theorem for embedding ELK (i.e., CL) into ELJ
(i.e., GL), GL can be considered as an alternative first-order intuitionistic logic.
Another aim is to construct an alternative Gödel–Gentzen negative translation from
CL to IL by adding strong negation. Through this construction, we can understand
the role and essence of strong negation behind CL and IL (i.e., we can obtain another
new perspective on CL and IL by means of strong negation).

The remainder of this paper is organized as follows. In Section 2, we introduce
ELK with an extended auxiliary language that includes ∼ (classical strong negation)
to extend LK. In addition, some theorems for embedding ELK into LK are proved
and the cut-elimination theorem for ELK is then proved using one of these embed-
ding theorems. Finally, in this same section, we introduce ELJ and provide some
remarks on ELJ. In Section 3, we prove a theorem for embedding ELK into ELJ
using an extended Gödel–Gentzen negative translation, and we derive a theorem for
embedding ELK into LJ using a slightly modified version of the extended Gödel–
Gentzen negative translation. In Section 4, we conclude this paper and address some
remarks on related works.

2 Sequent calculi
2.1 Alternative sequent calculus for classical logic
Formulas of CL with an extended language including classical strong negation are
constructed using countably many predicate symbols p, q, ..., countably many in-
dividual variables x, y, ..., countably many individual constants a, b, ..., countably
many function symbols s, t, ..., and the logical connectives ∧ (conjunction), ∨ (dis-
junction), → (implication), ¬ (classical negation), ∼ (classical strong negation), ∀
(universal quantifier), and ∃ (existential quantifier). Terms are constructed from in-
dividual variables, individual constants, and function symbols. We use small letters
p, q, ... to denote not only predicate symbols but also atomic formulas, small letters
s, t, ... to denote not only function symbols but also terms, Greek small letters α, β, ...
to denote formulas, and Greek capital letters Γ, ∆, ... to represent finite (possibly
empty) sets of formulas. We use an expression α[t/x] to represent the formula that
is obtained from the formula α by replacing all free occurrences of the individual
variable x in α by the term t, but avoiding a clash of variables by a suitable renaming
of bound variables. We use the symbol ≡ to denote the equality of symbols. We

1028

Embedding classical logic into Gurevich’s logic

call an expression of the form Γ ⇒ ∆ sequent. We use an expression L ⊢ Γ ⇒ ∆
to represent the fact that the sequent Γ ⇒ ∆ is provable in a Gentzen-style sequent
calculus L where L in this expression will occasionally be omitted. We use an ex-
pression α ⇔ β to represent the abbreviation of the sequents α ⇒ β and β ⇒ α.
We say that “two Gentzen-style sequent calculi L1 and L2 are theorem-equivalent”
if {S | L1 ⊢ S} = {S | L2 ⊢ S}. We say that “a rule R of inference is admissible in
a Gentzen-style sequent calculus L” if the following condition is satisfied: For any
instance

S1 · · · Sn

S

of R, if L ⊢ Si for all i, then L ⊢ S. Furthermore, we say that “R is derivable in L”
if there is a derivation from S1, · · · , Sn to S in L.

We now introduce a Gentzen-style sequent calculus ELK for CL with the ex-
tended language including ∼.

Definition 2.1 (ELK). In the following definition, we use the symbol p to represent
an arbitrary atomic formula, the symbol t to represent an arbitrary term, and the
symbol z to represent a special individual variable (called eigenvariable) that satisfies
the following condition: z does not occur as a free individual variable in the lower
sequent of the rule.

The initial sequents of ELK are of the form:

p ⇒ p ∼p ⇒ ∼p p, ∼p ⇒ ⇒ p, ∼p.

The structural inference rules of ELK are of the form:

Γ ⇒ ∆, α α, Σ ⇒ Π
Γ, Σ ⇒ ∆, Π (cut) Γ ⇒ ∆

α, Γ ⇒ ∆ (we-left) Γ ⇒ ∆
Γ ⇒ ∆, α

(we-right).

The normal logical inference rules of ELK are of the form:

α, β, Γ ⇒ ∆
α∧β, Γ ⇒ ∆ (∧left) Γ ⇒ ∆, α Γ ⇒ ∆, β

Γ ⇒ ∆, α∧β
(∧right)

α, Γ ⇒ ∆ β, Γ ⇒ ∆
α∨β, Γ ⇒ ∆ (∨left) Γ ⇒ ∆, α, β

Γ ⇒ ∆, α∨β
(∨right)

Γ ⇒ ∆, α β, Σ ⇒ Π
α→β, Γ, Σ ⇒ ∆, Π (→left) α, Γ ⇒ ∆, β

Γ ⇒ ∆, α→β
(→right)

Γ ⇒ ∆, α

¬α, Γ ⇒ ∆ (¬left) α, Γ ⇒ ∆
Γ ⇒ ∆, ¬α

(¬right)

1029

Kamide

α[t/x], Γ ⇒ ∆
∀xα, Γ ⇒ ∆ (∀left)

Γ ⇒ ∆, α[z/x]
Γ ⇒ ∆, ∀xα

(∀right)

α[z/x], Γ ⇒ ∆
∃xα, Γ ⇒ ∆ (∃left)

Γ ⇒ ∆, α[t/x]
Γ ⇒ ∆, ∃xα

(∃right).

The strongly-negated logical inference rules of ELK are of the form:

α, Γ ⇒ ∆
∼∼α, Γ ⇒ ∆ (∼∼left) Γ ⇒ ∆, α

Γ ⇒ ∆, ∼∼α
(∼∼right)

∼α, Γ ⇒ ∆ ∼β, Γ ⇒ ∆
∼(α∧β), Γ ⇒ ∆ (∼∧left) Γ ⇒ ∆, ∼α, ∼β

Γ ⇒ ∆, ∼(α∧β) (∼∧right)

∼α, ∼β, Γ ⇒ ∆
∼(α∨β), Γ ⇒ ∆ (∼∨left) Γ ⇒ ∆, ∼α Γ ⇒ ∆, ∼β

Γ ⇒ ∆, ∼(α∨β) (∼∨right)

α, ∼β, Γ ⇒ ∆
∼(α→β), Γ ⇒ ∆ (∼→left) Γ ⇒ ∆, α Γ ⇒ ∆, ∼β

Γ ⇒ ∆, ∼(α→β) (∼→right)

α, Γ ⇒ ∆
∼¬α, Γ ⇒ ∆ (∼¬left) Γ ⇒ ∆, α

Γ ⇒ ∆, ∼¬α
(∼¬right)

∼α[z/x], Γ ⇒ ∆
∼∀xα, Γ ⇒ ∆ (∼∀left)

Γ ⇒ ∆, ∼α[t/x]
Γ ⇒ ∆, ∼∀xα

(∼∀right)

∼α[t/x], Γ ⇒ ∆
∼∃xα, Γ ⇒ ∆ (∼∃left)

Γ ⇒ ∆, ∼α[z/x]
Γ ⇒ ∆, ∼∃xα

(∼∃right).

Remark 2.2. For the sake of simplicity, ELK adopts the explicit weakening rules
(we-left) and (we-right), but do not adopt the contraction and exchange rules. Con-
cerned with this setting, ELK adopts the set-based sequents Γ ⇒ ∆ where Γ and ∆
are (possibly empty) sets of formulas. Similar setting will be used for the sequent
calculus ELJ for Gurevich logic.

Proposition 2.3. Sequents of the form α ⇒ α for any formula α are provable in
cut-free ELK.

Proof. By induction on α.

Proposition 2.4. Sequents of the form α, ∼α ⇒ and ⇒ α, ∼α for any formula α
are provable in cut-free ELK.

Proof. By induction on α. We distinguish the cases according to the form of α and
show only the following cases.

1030

Embedding classical logic into Gurevich’s logic

1. Case α ≡ β→γ: We obtain the required fact:
.... Prop. 2.3

β ⇒ β

.... Ind. hyp.
γ, ∼γ ⇒

β→γ, β, ∼γ ⇒ (→left)

β→γ, ∼(β→γ) ⇒ (∼→left)

.... Prop. 2.3
β ⇒ β

β ⇒ γ, β
(we-right)

⇒ β→γ, β
(→left)

.... Ind. hyp.
⇒ γ, ∼γ

β ⇒ γ, ∼γ
(we-left)

⇒ β→γ, ∼γ
(→right)

⇒ β→γ, ∼(β→γ) (∼→right).

2. Case α ≡ ¬β: We obtain the required fact:
.... Prop. 2.3

β ⇒ β

¬β, β ⇒ (¬left)

¬β, ∼¬β ⇒ (∼¬left)

.... Prop. 2.3
β ⇒ β

⇒ ¬β, β
(¬right)

⇒ ¬β, ∼¬β
(∼¬right)

Proposition 2.5. The following sequents are provable in cut-free ELK: For any
formulas α and β,

1. ∼∼α ⇔ α,

2. ∼(α∧β) ⇔ ∼α∨∼β,

3. ∼(α∨β) ⇔ ∼α∧∼β,

4. ∼(α→β) ⇔ α∧∼β,

5. ∼¬α ⇔ α,

6. ∼∀xα ⇔ ∃x∼α,

7. ∼∃xα ⇔ ∀x∼α,

8. α∧∼α ⇒ β,

9. ⇒ α∨∼α,

1031

Kamide

10. ∼α ⇔ ¬α.

Proof. By using Propositions 2.3 and 2.4. To prove the cases (8) and (9), Proposition
2.4 is required. We show only the case (10) as follows.

.... Prop. 2.4
α, ∼α ⇒
∼α ⇒ ¬α (¬right)

.... Prop. 2.4
⇒ α, ∼α
¬α ⇒ ∼α (¬left).

Next, we introduce a Gentzen-style sequent calculus LK for CL. The language
of LK is obtained from that of ELK by deleting ∼.

Definition 2.6 (LK). A Gentzen-style sequent calculus LK for CL is defined as the
∼-free part of ELK (i.e., it is obtained from ELK by deleting the strongly-negated
initial sequents and strongly-negated logical inference rules).

Remark 2.7. We make the following remarks.

1. Proposition 2.5 (10) means that ∼ and ¬ are equivalent. Namely, strong nega-
tion in the context of CL is equivalent to classical negation. Moreover, by
Proposition 2.5 (10), we can understand that ELK and LK are essentially
equivalent. Namely, ELK is regarded as an alternative Gentzen-style sequent
calculus for CL with an extended auxiliary language including ∼.

2. On the one hand, ∼ and ¬ are equivalent in the context of CL. On the other
hand, ∼ and ¬ are not equivalent in the context of IL (i.e., strong negation in
the context of IL is not equivalent to intuitionistic negation). Thus, the clas-
sical logic counterpart ∼ of strong negation is required for showing a theorem
for embedding ELK into a Gentzen-style sequent calculus ELJ for GL [12].
Actually, ∼ has a crucial role for smoothly proving the theorem for embedding
ELK into ELJ.

3. The system ELJ was introduced in [15] and was also referred to as GI in [15].
ELJ will be precisely defined as an intuitionistic version (or subsystem) of ELK
that is characterized by the intuiitionistic sequents of the form Γ ⇒ γ where
γ is a single formula or the empty set. The subsystem that is obtained from
ELJ by deleting all the logical inference rules concerning ¬ is a Gentzen-style
sequent calculus for Nelson’s three-valued constructive logic (N3) [1, 19].

1032

Embedding classical logic into Gurevich’s logic

4. The subsystem that is obtained from ELK by deleting the logical inference rules
concerning ¬ was referred to as LKF in [16] and was defined as a “falsification-
aware” Gentzen-style sequent calculus for CL. The cut-elimination and com-
pleteness theorems for LKF were proved in [16] using Schütte’s method. The
theorem-equivalence between LKF and LK was also proved in [16]. Thus, the
systems LKF, ELK, and LK are all Gentzen-style sequent calculi for CL.

5. The subsystem that is obtained from ELK by deleting the logical inference rules
concerning ¬ and the initial sequents p, ∼p ⇒ and ⇒ p, ∼p (i.e., it is obtained
from LKF by deleting p, ∼p ⇒ and ⇒ p, ∼p) is regarded as a Gentzen-style
sequent calculus for the {∧, ∨, →, ∼}-fragment of Arieli–Avron logics of logical
bilattices [2, 3]. The intuitionistic version of this subsystem is a Gentzen-style
sequent calculus for Nelson’s four-valued constructive logic (N4) [1, 19]. For
more information on Gentzen-style sequent calculi for N4, see [17, 18].

6. The name “LK” used in this paper is from Gentzen’s original sequent calculus
LK for CL [10]. In this paper, the name LK is used for a small modification
of the original LK. The same proposition as Proposition 2.3 holds for LK. The
cut-elimination theorem for LK holds. For more information on Gentzen’s
LK, consult e.g., [10, 25].

Next, we show the cut-elimination theorem for ELK by using a theorem for
embedding ELK into LK. Prior to show the embedding theorem, we introduce a
translation form the formulas of ELK to those of LK.

Definition 2.8. Let Φ be a set of atomic formulas (or predicate symbols). The
language (or the set of formulas) LELK of ELK is defined using terms, Φ, ∧, ∨, →,
¬, ∼, ∀, and ∃. The language (or the set of formulas) LLK of LK is obtained from
LELK by deleting ∼.

A mapping f from LELK to LLK is defined inductively by:

1. For any p ∈ Φ, f(p) := p and f(∼p) := ¬p,

2. f(α♯β) := f(α)♯f(β) where ♯ ∈ {∧, ∨, →},

3. f(♯α) := ♯f(α) where ♯ ∈ {¬, ∀x, ∃x},

4. f(♯α) := f(α) where ♯ ∈ {∼∼, ∼¬},

5. f(∼(α∧β)) := f(∼α)∨f(∼β),

6. f(∼(α∨β)) := f(∼α)∧f(∼β),

1033

Kamide

7. f(∼(α→β)) := f(α)∧f(∼β),

8. f(∼∀xα) := ∃xf(∼α),

9. f(∼∃xα) := ∀xf(∼α).

An expression f(Γ) denotes the result of replacing every occurrence of a formula
α in Γ by an occurrence of f(α). Analogous notation is used for another mapping
discussed later.

Remark 2.9. We make the following remarks.

1. The translation defined in Definition 2.8 is independent of terms (i.e., terms
are not changed by this translation).

2. The translation function defined in Definition 2.8 is a modified extension
of the translation function from LKF to LK, which was introduced in [16].
The translation function from LKF to LK was obtained from the translation
function defined in Definition 2.8 by deleting the conditions f(∼p) := ¬p,
f(¬α) := ¬f(α), and f(∼¬α) := f(α) and adding the condition f(∼p) := ∼p.
It is remarked that the symbol ∼ was not used in [16], but the symbol ¬ was
used as only one negation symbol.

3. A similar translation to the translation defined in Definition 2.8 has been used
by Gurevich [12], Rautenberg [21], and Vorob’ev [28] to embed some variants
of Nelson’s constructive logics [1, 19] into intuitionistic logic.

Theorem 2.10 (Weak syntactical embedding from ELK into LK). Let Γ and ∆ be
(possibly empty) sets of formulas in LELK and f be the mapping defined in Definition
2.8.

1. If ELK ⊢ Γ ⇒ ∆, then LK ⊢ f(Γ) ⇒ f(∆).

2. If LK − (cut) ⊢ f(Γ) ⇒ f(∆), then ELK − (cut) ⊢ Γ ⇒ ∆.

Proof.

1. By induction on the proofs P of Γ ⇒ ∆ in ELK. We distinguish the cases
according to the last inference of P and show only the following cases.

(a) Case ∼p ⇒ ∼p: The last inference of P is of the form: ∼p ⇒ ∼p for any
p ∈ Φ. We have LK ⊢ ¬p ⇒ ¬p. Thus, we obtain LK ⊢ f(∼p) ⇒ f(∼p)
by the definition of f . It is remarked that the translation f(∼p) can
be given for any forms of the atomic formula p (e.g., if p is of the form
p(x, y), then f(∼p(x, y)) is of the form ¬p(x, y)).

1034

Embedding classical logic into Gurevich’s logic

(b) Case p, ∼p ⇒: The last inference of P is of the form: p, ∼p ⇒ for any
p ∈ Φ. Using (¬left), we obtain LK ⊢ p, ¬p ⇒. Thus, we obtain LK ⊢
f(p), f(∼p) ⇒ by the definition of f .

(c) Case (∼∃left): The last inference of P is of the form:

Γ ⇒ ∆, ∼α[z/x]
Γ ⇒ ∆, ∼∃xα

(∼∃right).

By induction hypothesis, we have LK ⊢ f(Γ) ⇒ f(∆), f(∼α[z/x]). Then,
we obtain: Ind. hyp.

f(Γ) ⇒ f(∆), f(∼α[z/x])
f(Γ) ⇒ f(∆), ∀xf(∼α) (∀right)

where ∀xf(∼α) coincides with f(∼∃xα) by the definition of f . It is
remarked that f is independent of terms (i.e., f does not change the
terms from the original ones). Thus, the above application of (∀right) is
guaranteed.

2. By induction on the proofs Q of f(Γ) ⇒ f(∆) in LK − (cut). We distinguish
the cases according to the last inference of Q and show only the following case.
Case (∀right): The last inference of Q is (∀right).

(a) Subcase (1): The last inference of Q is of the form:

f(Γ) ⇒ f(∆), f(α[z/x])
f(Γ) ⇒ f(∆), f(∀xα) (∀right)

where f(∀xα) coincides with ∀xf(α) by the definition of f . By induction
hypothesis, we have ELK − (cut) ⊢ Γ ⇒ ∆, α[z/x]. We thus obtain:

.... Ind. hyp.

Γ ⇒ ∆, α[z/x]
Γ ⇒ ∆, ∀xα

(∀right).

(b) Subcase (2): The last inference of Q is of the form:

f(Γ) ⇒ f(∆), f(∼α[z/x])
f(Γ) ⇒ f(∆), f(∼∃xα) (∀right)

1035

Kamide

where f(∼∃xα) coincides with ∀xf(∼α) by the definition of f . By in-
duction hypothesis, we have ELK − (cut) ⊢ Γ ⇒ ∆, ∼α[z/x]. We thus
obtain: Ind. hyp.

Γ ⇒ ∆, ∼α[z/x]
Γ ⇒ ∆, ∼∃xα

(∼∃right).

Theorem 2.11 (Cut-elimination for ELK). The rule (cut) is admissible in cut-free
ELK.

Proof. Suppose ELK ⊢ Γ ⇒ ∆. Then, we have LK ⊢ f(Γ) ⇒ f(∆) by Theorem 2.10
(1), and hence LK − (cut) ⊢ f(Γ) ⇒ f(∆) by the cut-elimination theorem for LK.
By Theorem 2.10 (2), we obtain ELK − (cut) ⊢ Γ ⇒ ∆.

Theorem 2.12 (Syntactical embedding from ELK into LK). Let Γ and ∆ be (pos-
sibly empty) sets of formulas in LELK and f be the mapping defined in Definition
2.8.

1. ELK ⊢ Γ ⇒ ∆ iff LK ⊢ f(Γ) ⇒ f(∆).

2. ELK − (cut) ⊢ Γ ⇒ ∆ iff LK − (cut) ⊢ f(Γ) ⇒ f(∆).

Proof.

1. (=⇒): By Theorem 2.10 (1). (⇐=): Suppose LK ⊢ f(Γ) ⇒ f(∆). Then we
have LK − (cut) ⊢ f(Γ) ⇒ f(∆) by the cut-elimination theorem for LK. We
thus obtain ELK − (cut) ⊢ Γ ⇒ ∆ by Theorem 2.10 (2). Therefore, we have
ELK ⊢ Γ ⇒ ∆.

2. (=⇒): Suppose ELK − (cut) ⊢ Γ ⇒ ∆. Then we have ELK ⊢ Γ ⇒ ∆. We
then obtain LK ⊢ f(Γ) ⇒ f(∆) by Theorem 2.10 (1). Therefore, we obtain
LK − (cut) ⊢ f(Γ) ⇒ f(∆) by the cut-elimination theorem for LK. (⇐=): By
Theorem 2.10 (2).

Remark 2.13. We make the following remarks.

1. A weak theorem for syntactically embedding LKF [16] into LK could not be
proved in a similar way as that for Theorem 2.10.

1036

Embedding classical logic into Gurevich’s logic

2. By this situation, the embedding-based syntactical proof of the cut-elimination
theorem for LKF was not obtained in [16]. Thus, the embedding-based simple
syntactical proof of the cut-elimination theorem for ELK is considered to be a
novel contribution of this study.

3. By Theorem 2.11, we can obtain the following facts: (1) ELK is a conser-
vative extension of LKF and LK, although ∼ and ¬ are equivalent, (2) the
cut-elimination theorems for LKF and LK hold, and (3) LKF and LK are the
{∧, ∨, →, ∼}- and {∧, ∨, →, ¬}-fragments of ELK, respectively. Thus, an al-
ternative embedding-based syntactical proof of the cut-elimination theorem for
LKF, which was not obtained in [16], is obtained by Theorem 2.11. This is
also a new contribution of this study.

4. A theorem for syntactically embedding LKF into LK was proved in [16], but the
same item 2 as that for Theorem 2.12 was not proved in a similar way as that
for Theorem 2.12. The proof of the item 1 in the theorem for embedding LKF
into LK was required to use the cut rule in LKF. Thus, the direct proof of (the
item 2 of) the strong theorem for embedding ELK into LK is also considered
to be a novel contribution of this study.

2.2 Sequent calculus for Gurevich logic
Next, we present a Gentzen-style sequent calculus ELJ [15] for GL. The language of
ELJ is the same as that of ELK, but ¬ and ∼ are used as the intuitionistic negation
and strong negation connectives, respectively. The same notations and notions as
those for ELK are used for ELJ. However, the notion of sequent should be modified
for ELJ. An intuitionistic sequent (simply called sequent) for ELJ is an expression
of the form Γ ⇒ γ where γ is a single formula or the empty set. The same names of
inference rules as those of ELK are also used for ELJ, although the forms of inference
rules in ELJ are different from those in ELK.

We now introduce a Gentzen-style sequent calculus ELJ for GL.
Definition 2.14 (ELJ). In the following definition, we use the symbol γ to represent
an arbitrary formula or the empty set and the symbols p, t, and z to represent the
same objects as those indicated in Definition 2.1.

The initial sequents of ELJ are of the form:
p ⇒ p ∼p ⇒ ∼p p, ∼p ⇒.

The structural inference rules of ELJ are of the form:
Γ ⇒ α α, Σ ⇒ γ

Γ, Σ ⇒ γ
(cut) Γ ⇒ γ

α, Γ ⇒ γ
(we-left) Γ ⇒

Γ ⇒ α
(we-right).

1037

Kamide

The normal logical inference rules of ELJ are of the form:

α, Γ ⇒ γ

α∧β, Γ ⇒ γ
(∧left1) β, Γ ⇒ γ

α∧β, Γ ⇒ γ
(∧left2)

Γ ⇒ α Γ ⇒ β

Γ ⇒ α∧β
(∧right) α, Γ ⇒ γ β, Γ ⇒ γ

α∨β, Γ ⇒ γ
(∨left)

Γ ⇒ α
Γ ⇒ α∨β

(∨right1) Γ ⇒ β

Γ ⇒ α∨β
(∨right2)

Γ ⇒ α β, Σ ⇒ γ

α→β, Γ, Σ ⇒ γ
(→left) α, Γ ⇒ β

Γ ⇒ α→β
(→right)

Γ ⇒ α
¬α, Γ ⇒ (¬left) α, Γ ⇒

Γ ⇒ ¬α
(¬right)

α[t/x], Γ ⇒ γ

∀xα, Γ ⇒ γ
(∀left)

Γ ⇒ α[z/x]
Γ ⇒ ∀xα

(∀right)

α[z/x], Γ ⇒ γ

∃xα, Γ ⇒ γ
(∃left)

Γ ⇒ α[t/x]
Γ ⇒ ∃xα

(∃right).

The strongly-negated logical inference rules of ELJ are of the form:

α, Γ ⇒ γ

∼∼α, Γ ⇒ γ
(∼∼left) Γ ⇒ α

Γ ⇒ ∼∼α
(∼∼right)

∼α, Γ ⇒ γ ∼β, Γ ⇒ γ

∼(α∧β), Γ ⇒ γ
(∼∧left)

Γ ⇒ ∼α
Γ ⇒ ∼(α∧β) (∼∧right1) Γ ⇒ ∼β

Γ ⇒ ∼(α∧β) (∼∧right2)

∼α, Γ ⇒ γ

∼(α∨β), Γ ⇒ γ
(∼∨left1) ∼β, Γ ⇒ γ

∼(α∨β), Γ ⇒ γ
(∼∨left2)

Γ ⇒ ∼α Γ ⇒ ∼β

Γ ⇒ ∼(α∨β) (∼∨right)

α, Γ ⇒ γ

∼(α→β), Γ ⇒ γ
(∼→left1) ∼β, Γ ⇒ γ

∼(α→β), Γ ⇒ γ
(∼→left2)

Γ ⇒ α Γ ⇒ ∼β

Γ ⇒ ∼(α→β) (∼→right)

α, Γ ⇒ δ

∼¬α, Γ ⇒ δ
(∼¬left) Γ ⇒ α

Γ ⇒ ∼¬α
(∼¬right)

1038

Embedding classical logic into Gurevich’s logic

∼α[z/x], Γ ⇒ γ

∼∀xα, Γ ⇒ γ
(∼∀left)

Γ ⇒ ∼α[t/x]
Γ ⇒ ∼∀xα

(∼∀right)

∼α[t/x], Γ ⇒ γ

∼∃xα, Γ ⇒ γ
(∼∃left)

Γ ⇒ ∼α[z/x]
Γ ⇒ ∼∃xα

(∼∃right).

Proposition 2.15. Sequents of the form α ⇒ α for any formula α are provable in
cut-free ELJ.

Proof. By induction on α.

Proposition 2.16. Sequents of the form α, ∼α ⇒ for any formula α are provable
in cut-free ELJ.

Proof. By induction on α. We use Proposition 2.15.

The following proposition shows that the sequents that correspond to the axiom
schemes introduced by Gurevich in [12] are provable in cut-free ELJ.

Proposition 2.17. The following sequents are provable in cut-free ELJ: For any
formulas α and β,

1. ∼∼α ⇔ α,

2. ∼(α∧β) ⇔ ∼α∨∼β,

3. ∼(α∨β) ⇔ ∼α∧∼β,

4. ∼(α→β) ⇔ α∧∼β,

5. ∼¬α ⇔ α,

6. ∼∀xα ⇔ ∃x∼α,

7. ∼∃xα ⇔ ∀x∼α,

8. α∧∼α ⇒ β,

9. ∼α ⇒ ¬α.

Proof. By using Propositions 2.15 and 2.16.

The following theorem was shown in [15].

Theorem 2.18 (Cut-elimination for ELJ). The rule (cut) is admissible in cut-free
ELJ.

1039

Kamide

Proof. See [15].

Next, we introduce a Gentzen-style sequent calculus LJ for IL. The language of
LJ is obtained from that of ELJ by deleting ∼.

Definition 2.19 (LJ). A Gentzen-style sequent calculus LJ for IL is defined as
the ∼-free part of ELJ (i.e., it is obtained from ELJ by deleting the negated initial
sequents and negated logical inference rules).

Remark 2.20. We make the following remarks.

1. A Gentzen-style sequent calculus G originally introduced by Gurevich [12] used
the following logical inference rule for ∼ instead of the initial-like sequents of
the form α, ∼α ⇒:

Γ ⇒ α
∼α, Γ ⇒ (∼left).

The cut-elimination theorem for G was shown in [12].

2. The systems ELJ and G are theorem-equivalent. This fact is shown as fol-
lows. Using (∼left), we can prove the sequents of the form α, ∼α ⇒ in G.
Conversely, we can show that (∼left) is derivable in ELJ by:

....
Γ ⇒ α

.... Prop. 2.16
α, ∼α ⇒

∼α, Γ ⇒ (cut).

3. We can assume that the original axiom scheme ∼α→¬α by Gurevich can be
replaced with the axiom scheme (∼α∧α)→β. This fact is explained as fol-
lows. Let ELJ1 be the system that is obtained from ELJ by replacing the initial
sequents with the initial sequents of the form α ⇒ α and ∼α, α ⇒ β for any
formulas α and β and let ELJ2 be the system that is obtained from ELJ1
by replacing the initial sequents of the form α, ∼α ⇒ β with the initial se-
quents of the form ∼α ⇒ ¬α for any formula α. Then ELJ, ELJ1, and ELJ2
are theorem-equivalent. The theorem-equivalence of ELJ and ELJ1 is obvious.
Thus, we show the theorem-equivalence of ELJ1 and ELJ2 by:

∼α ⇒ ¬α
α ⇒ α

¬α, α ⇒ (¬left)
∼α, α ⇒ (cut)

∼α, α ⇒ β
(we-right)

α, ∼α ⇒ ¬γ
α, ∼α ⇒ γ

¬γ, α, ∼α ⇒ (¬left)
α, ∼α ⇒ (cut)
∼α ⇒ ¬α (¬right).

1040

Embedding classical logic into Gurevich’s logic

4. As mentioned previously, a Gentzen-style sequent calculus for Nelson’s N3 is
obtained from ELJ by deleting the logical inference rules concerning ¬ and a
Gentzen-style sequent calculus for Nelson’s N4 is obtained from ELJ by deleting
the logical inference rules concerning ¬ and the initial sequents of the form
p, ∼p ⇒. The cut-elimination theorems for these systems for N3 and N4 hold.

5. The name “LJ” used in this paper is from Gentzen’s original sequent calculus
LJ for IL [10]. In this paper, the name LJ is used for a small modification of
the original LJ. The same proposition as Proposition 2.15 holds for LJ. The
cut-elimination theorem for LJ holds. For more information on Gentzen’s LJ,
consult e.g., [10, 25].

3 Extended Gödel–Gentzen translation
We introduce a translation from the formulas of ELK to those of ELJ. This trans-
lation is regarded as an extension of the well-known Gödel–Gentzen negative trans-
lation from the formulas of CL to those of IL.

Definition 3.1 (Extended Gödel–Gentzen negative translation). Let L be the lan-
guage (or the set of formulas) of ELK and ELJ. A mapping h from L to L is defined
inductively by:

1. For any p ∈ Φ, h(p) := ¬¬p,

2. h(α♯β) := h(α)♯h(β) where ♯ ∈ {→, ∧},

3. h(α∨β) := ¬(¬h(α)∧¬h(β)),

4. h(♯α) := ♯h(α) where ♯ ∈ {¬, ∀x},

5. h(∃xα) := ¬∀x¬h(α),

6. For any p ∈ Φ, h(∼p) := ∼¬¬p (i.e., h(∼p) = ∼h(p)),

7. h(♯α) := h(α) where ♯ ∈ {∼∼, ∼¬},

8. h(∼(α∧β)) := ¬(¬h(∼α)∧¬h(∼β)) (i.e., h(∼(α∧β)) = h(∼α∨∼β)),

9. h(∼(α∨β)) := h(∼α)∧h(∼β) (i.e., h(∼(α∨β)) = h(∼α∧∼β)),

10. h(∼(α→β)) := h(α)∧h(∼β) (i.e., h(∼(α→β)) = h(α∧∼β)),

11. h(∼∀xα) := ¬∀x¬h(∼α) (i.e., h(∼∀xα) = h(∃x∼α)),

1041

Kamide

12. h(∼∃xα) := ∀xh(∼α) (i.e., h(∼∃xα) = h(∀x∼α)).

Remark 3.2. We cannot show the same embedding theorem (Theorem 3.6) based
on the simple extended Gödel–Gentzen negative translation that adopts the simple
condition h(∼α) := ∼h(α) for any formula α instead of the conditions from 6 to 12
in Definition 3.1. Actually, we cannot prove the cases for (∼∨left) and (∼→left) in
Lemma 3.5.

Lemma 3.3. Let h be the mapping defined in Definition 3.1. For any formula α,
ELK ⊢ α ⇔ h(α).

Proof. By induction on α. We distinguish the cases according to the form of α and
show only the cases for α ≡ ∼β.

1. Case β ≡ p where p is an atomic formula: We show ELK ⊢ ∼p ⇔ h(∼p) as
follows:

p, ∼p ⇒
∼p ⇒ ¬p (¬right)

∼p ⇒ ∼¬¬p (∼¬right)
⇒ p, ∼p
¬p ⇒ ∼p (¬left)

∼¬¬p ⇒ ∼p (∼¬left)

where ∼¬¬p coincides with h(∼p) by the definition of h.

2. Case β ≡ ∼γ: We show ELK ⊢ ∼∼γ ⇔ h(∼∼γ). By induction hypothesis, we
have: ELK ⊢ γ ⇔ h(γ) and hence obtain the required facts:

.... Ind. hyp.

γ ⇒ h(γ)
∼∼γ ⇒ h(γ) (∼∼left)

.... Ind. hyp.

h(γ) ⇒ γ

h(γ) ⇒ ∼∼γ
(∼∼right)

where h(γ) coincides with h(∼∼γ) by the definition of h.

3. Case β ≡ γ∧δ: We show ELK ⊢ ∼(γ∧δ) ⇔ h(∼(γ∧δ)). By induction hypoth-
esis, we have: ELK ⊢ ∼γ ⇔ h(∼γ) and ELK ⊢∼δ ⇔ h(∼δ). We then obtain
the required facts:

.... Ind. hyp.

∼γ ⇒ h(∼γ)
¬h(∼γ), ∼γ ⇒ (¬left)

¬h(∼γ), ¬h(∼δ), ∼γ ⇒ (we-left)

¬h(∼γ)∧¬h(∼δ), ∼γ ⇒ (∧left)

.... Ind. hyp.

∼δ ⇒ h(∼δ)
¬h(∼δ), ∼δ ⇒ (¬left)

¬h(∼γ), ¬h(∼δ), ∼δ ⇒ (we-left)

¬h(∼γ)∧¬h(∼δ), ∼δ ⇒ (∧left)

¬h(∼γ)∧¬h(∼δ), ∼(γ∧δ) ⇒ (∼∧left)

∼(γ∧δ) ⇒ ¬(¬h(∼γ)∧¬h(∼δ)) (¬right)

1042

Embedding classical logic into Gurevich’s logic

.... Ind. hyp.

h(∼γ) ⇒ ∼γ

⇒ ∼γ, ¬h(∼γ) (¬right)

⇒ ∼γ, ∼δ, ¬h(∼γ) (we-right)

.... Ind. hyp.

h(∼δ) ⇒ ∼δ

⇒ ∼δ, ¬h(∼δ) (¬right)

⇒ ∼γ, ∼δ, ¬h(∼δ) (we-right)

⇒ ∼γ, ∼δ, ¬h(∼γ)∧¬h(∼δ) (∧right)

¬(¬h(∼γ)∧¬h(∼δ)) ⇒ ∼γ, ∼δ
(¬left)

¬(¬h(∼γ)∧¬h(∼δ)) ⇒ ∼(γ∧δ) (∼∧right)

where ¬(¬h(∼γ)∧¬h(∼δ)) coincides with h(∼(γ∧δ)) by the definition of h.

4. Case β ≡ γ∨δ: We show ELK ⊢ ∼(γ∨δ) ⇔ h(∼(γ∨δ)). By induction hypoth-
esis, we have: ELK ⊢ ∼γ ⇔ h(∼γ) and ELK ⊢∼δ ⇔ h(∼δ). We then obtain
the required facts:

.... Ind. hyp.

∼γ ⇒ h(∼γ)
∼γ, ∼δ ⇒ h(∼γ) (we-left)

∼(γ∨δ) ⇒ h(∼γ) (∼∨left)

.... Ind. hyp.

∼δ ⇒ h(∼δ)
∼γ, ∼δ ⇒ h(∼δ) (we-left)

∼(γ∨δ) ⇒ h(∼δ) (∼∨left)

∼(γ∨δ) ⇒ h(∼γ)∧h(∼δ) (∧right)

.... Ind. hyp.

h(∼γ) ⇒ ∼γ

h(∼γ), h(∼δ) ⇒ ∼γ
(we-left)

h(∼γ)∧h(∼δ) ⇒ ∼γ
(∧left)

.... Ind. hyp.

h(∼δ) ⇒ ∼δ

h(∼γ), h(∼δ) ⇒ ∼δ
(we-left)

h(∼γ)∧h(∼δ) ⇒ ∼δ
(∧left)

h(∼γ)∧h(∼δ) ⇒ ∼(γ∨δ) (∼∨right)

where h(∼γ)∧h(∼δ) coincides with h(∼(γ∨δ)) by the definition of h.

5. Case β ≡ γ→δ: We show ELK ⊢ ∼(γ→δ) ⇔ h(∼(γ→δ)). By induction
hypothesis, we have: ELK ⊢ γ ⇔ h(γ) and ELK ⊢∼δ ⇔ h(∼δ). We then
obtain the required facts:

.... Ind. hyp.

γ ⇒ h(γ)
γ, ∼δ ⇒ h(γ) (we-left)

∼(γ→δ) ⇒ h(γ) (∼→left)

.... Ind. hyp.

∼δ ⇒ h(∼δ)
γ, ∼δ ⇒ h(∼δ) (we-left)

∼(γ→δ) ⇒ h(∼δ) (∼→left)

∼(γ→δ) ⇒ h(γ)∧h(∼δ) (∧right)

1043

Kamide

.... Ind. hyp.

h(γ) ⇒ γ

h(γ), h(∼δ) ⇒ γ
(we-left)

h(γ)∧h(∼δ) ⇒ γ
(∧left)

.... Ind. hyp.

h(∼δ) ⇒ ∼δ

h(γ), h(∼δ) ⇒ ∼δ
(we-left)

h(γ)∧h(∼δ) ⇒ ∼δ
(∧left)

h(γ)∧h(∼δ) ⇒ ∼(γ→δ) (∼→right)

where h(γ)∧h(∼δ) coincides with h(∼(γ→δ)) by the definition of h.

6. Case β ≡ ¬γ: We show ELK ⊢ ∼¬γ ⇔ h(∼¬γ). By induction hypothesis, we
have: ELK ⊢ γ ⇔ h(γ) and hence obtain the required facts:

.... Ind. hyp.

γ ⇒ h(γ)
∼¬γ ⇒ h(γ) (∼¬right)

.... Ind. hyp.

h(γ) ⇒ γ

h(γ) ⇒ ∼¬γ
(∼¬right)

where h(γ) coincides with h(∼¬γ) by the definition of h.

7. Case β ≡ ∀xγ: We show ELK ⊢ ∼∀xγ ⇔ h(∼∀xγ). By induction hypothesis,
we have: ELK ⊢ ∼γ[z/x] ⇔ h(∼γ[z/x]). We then obtain the required facts:

.... Ind. hyp.

∼γ[z/x] ⇒ h(∼γ[z/x])
¬h(∼γ[z/x]), ∼γ[z/x] ⇒ (¬left)

∀x¬h(∼γ), ∼γ[z/x] ⇒ (∀left)

∀x¬h(∼γ), ∼∀xγ ⇒ (∼∀left)

∼∀xγ ⇒ ¬∀x¬h(∼γ) (¬right)

.... Ind. hyp.

h(∼γ[z/x]) ⇒ ∼γ[z/x]
⇒ ∼γ[z/x], ¬h(∼γ[z/x]) (¬right)

⇒ ∼∀xγ, ¬h(∼γ[z/x]) (∼∀right)

⇒ ∼∀xγ, ∀x¬h(∼γ) (∀right)

¬∀x¬h(∼γ) ⇒ ∼∀xγ
(¬left)

where ¬∀x¬h(∼γ) coincides with h(∼∀xγ) by the definition of h.

8. Case β ≡ ∃xγ: We show ELK ⊢ ∼∃xγ ⇔ h(∼∃xγ). By induction hypothesis,
we have: ELK ⊢ ∼γ[z/x] ⇔ h(∼γ[z/x]). We then obtain the required facts:

.... Ind. hyp.

∼γ[z/x] ⇒ h(∼γ[z/x])
∼∃xγ ⇒ h(∼γ[z/x]) (∼∃left)

∼∃xγ ⇒ ∀xh(∼γ) (∀right)

.... Ind. hyp.

h(∼γ[z/x]) ⇒ ∼γ[z/x]
∀xh(∼γ) ⇒ ∼γ[z/x] (∀left)

∀xh(∼γ) ⇒ ∼∃xγ
(∼∃right)

where ∀xh(∼γ) coincides with h(∼∃xγ) by the definition of h.

1044

Embedding classical logic into Gurevich’s logic

Lemma 3.4. Let h be the mapping defined in Definition 3.1. For any formula α,
ELJ ⊢ ¬¬h(α) ⇒ h(α).

Proof. By induction on α. We distinguish the cases according to the form of α and
show only the cases for α ≡ ∼β.

1. Case β ≡ p where p is an atomic formula: We show ELJ ⊢ ¬¬h(∼p) ⇒ h(∼p).
We obtain the required fact:

p ⇒ p
¬p, p ⇒ (¬left)

∼¬¬p, p ⇒ (∼¬left)
p ⇒ ¬∼¬¬p (¬right)

p, ¬¬∼¬¬p ⇒ (¬left)
¬¬∼¬¬p ⇒ ¬p (¬right)

¬¬∼¬¬p ⇒ ∼¬¬p (∼¬right)

where ∼¬¬p coincides with h(∼p) by the definition of h.

2. Case β ≡ ∼γ: We show ELJ ⊢ ¬¬h(∼∼γ) ⇒ h(∼∼γ). By induction hypothe-
sis, we have: ELJ ⊢ ¬¬h(γ) ⇒ h(γ). We then obtain the required fact, because
h(γ) coincides with h(∼∼γ) by the definition of f .

3. Case β ≡ γ∧δ: We show ELJ ⊢ ¬¬h(∼(γ∧δ)) ⇒ h(∼(γ∧δ)). We obtain the
required fact:

.... Prop. 2.15
¬h(∼γ)∧¬h(∼δ) ⇒ ¬h(∼γ)∧¬h(∼δ)

¬(¬h(∼γ)∧¬h(∼δ)), ¬h(∼γ)∧¬h(∼δ) ⇒ (¬left)

¬h(∼γ)∧¬h(∼δ) ⇒ ¬¬(¬h(∼γ)∧¬h(∼δ)) (¬right)

¬h(∼γ)∧¬h(∼δ), ¬¬¬(¬h(∼γ)∧¬h(∼δ)) ⇒ (¬left)

¬¬¬(¬h(∼γ)∧¬h(∼δ)) ⇒ ¬(¬h(∼γ)∧¬h(∼δ)) (¬right)

where ¬(¬h(∼γ)∧¬h(∼δ)) coincides with h(∼(γ∧δ)) by the definition of h.

4. Case β ≡ γ∨δ: We show ELJ ⊢ ¬¬h(∼(γ∨δ)) ⇒ h(∼(γ∨δ)). By induction
hypothesis, we have: ELJ ⊢ ¬¬h(∼γ) ⇒ h(∼γ) and ELJ ⊢ ¬¬h(∼δ) ⇒ h(∼δ).
We then obtain the required fact:

.... P1
¬¬(h(∼γ)∧h(∼δ)) ⇒ h(∼γ)

.... P2
¬¬(h(∼γ)∧h(¬δ)) ⇒ h(∼δ)

¬¬(h(∼γ)∧h(∼δ)) ⇒ h(∼γ)∧h(∼δ) (∧right)

1045

Kamide

where P1 is of the form:

.... Prop. 2.15
h(∼γ) ⇒ h(∼γ)

h(∼γ)∧h(∼δ) ⇒ h(∼γ) (∧left1)

¬h(∼γ), h(∼γ)∧h(∼δ) ⇒ (¬left)

¬h(∼γ) ⇒ ¬(h(∼γ)∧h(∼δ)) (¬right)

¬h(∼γ), ¬¬(h(∼γ)∧h(∼δ)) ⇒ (¬left)

¬¬(h(∼γ)∧h(∼δ)) ⇒ ¬¬h(∼γ) (¬right)
.... Ind. hyp.

¬¬h(∼γ) ⇒ h(∼γ)
¬¬(h(∼γ)∧h(∼δ)) ⇒ h(∼γ) (cut)

and P2 is of the form:

.... Prop. 2.15
h(∼δ) ⇒ h(∼δ)

h(∼γ)∧h(∼δ) ⇒ h(∼δ) (∧left2)

¬h(∼δ), h(∼γ)∧h(∼δ) ⇒ (¬left)

¬h(∼δ) ⇒ ¬(h(∼γ)∧h(∼δ)) (¬right)

¬h(∼δ), ¬¬(h(∼γ)∧h(∼δ)) ⇒ (¬left)

¬¬(h(∼γ)∧h(∼δ)) ⇒ ¬¬h(∼δ) (¬right)
.... Ind. hyp.

¬¬h(∼δ) ⇒ h(∼δ)
¬¬(h(∼γ)∧h(∼δ)) ⇒ h(∼δ) (cut)

where h(∼γ)∧h(∼δ) coincides with h(∼(γ∨δ)) by the definition of h.

5. Case β ≡ γ→δ: We show ELJ ⊢ ¬¬h(∼(γ→δ)) ⇒ h(∼(γ→δ)). By induction
hypothesis, we have: ELJ ⊢ ¬¬h(γ) ⇒ h(γ) and ELJ ⊢ ¬¬h(∼δ) ⇒ h(∼δ).
We then obtain the required fact:

.... P1
¬¬(h(γ)∧h(∼δ)) ⇒ h(γ)

.... P2
¬¬(h(γ)∧h(∼δ)) ⇒ h(∼δ)

¬¬(h(γ)∧h(∼δ)) ⇒ h(γ)∧h(∼δ) (∧right)

1046

Embedding classical logic into Gurevich’s logic

where P1 is of the form:
.... Prop. 2.15

h(γ) ⇒ h(γ)
h(γ)∧h(∼δ) ⇒ h(γ) (∧left1)

h(γ)∧h(∼δ), ¬h(γ) ⇒ (¬left)

¬h(γ) ⇒ ¬(h(γ)∧h(∼δ)) (¬right)

¬h(γ), ¬¬(h(γ)∧h(∼δ)) ⇒ (¬left)

¬¬(h(γ)∧h(∼δ)) ⇒ ¬¬h(γ) (¬right)
.... Ind. hyp.

¬¬h(γ) ⇒ h(γ)
¬¬(h(γ)∧h(∼δ)) ⇒ h(γ) (cut)

and P2 is of the form:
.... Prop. 2.15

h(∼δ) ⇒ h(∼δ)
h(γ)∧h(∼δ) ⇒ h(∼δ) (∧left2)

h(γ)∧h(∼δ), ¬h(∼δ) ⇒ (¬left)

¬h(∼δ) ⇒ ¬(h(γ)∧h(∼δ)) (¬right)

¬h(∼δ), ¬¬(h(γ)∧h(∼δ)) ⇒ (¬left)

¬¬(h(γ)∧h(∼δ)) ⇒ ¬¬h(∼δ) (¬right)
.... Ind. hyp.

¬¬h(∼δ) ⇒ h(∼δ)
¬¬(h(γ)∧h(∼δ)) ⇒ h(∼δ) (cut)

where h(γ)∧h(∼δ) coincides with h(∼(γ→δ)) by the definition of h.

6. Case β ≡ ¬γ: We show ELJ ⊢ ¬¬h(∼¬γ) ⇒ h(∼¬γ). By induction hypothe-
sis, we have: ELJ ⊢ ¬¬h(γ) ⇒ h(γ). We then obtain the required fact, because
h(γ) coincides with h(∼¬γ) by the definition of f .

7. Case β ≡ ∀xγ: We show ELJ ⊢ ¬¬h(∼∀xγ) ⇒ h(∼∀xγ). We obtain the
required fact: Prop. 2.15

∀x¬h(∼γ) ⇒ ∀x¬h(∼γ)
∀x¬h(∼γ), ¬∀x¬h(∼γ) ⇒ (¬left)

∀x¬h(∼γ) ⇒ ¬¬∀x¬h(∼γ) (¬right)

∀x¬h(∼γ), ¬¬¬∀x¬h(∼γ) ⇒ (¬left)

¬¬¬∀x¬h(∼γ) ⇒ ¬∀x¬h(∼γ) (¬right)

where ¬∀x¬h(∼γ) coincides with h(∼∀xγ) by the definition of h.

1047

Kamide

8. Case β ≡ ∃xγ: We show ELJ ⊢ ¬¬h(∼∃xγ) ⇒ h(∼∃xγ). By induction hy-
pothesis, we have: ELJ ⊢ ¬¬h(∼γ[z/x]) ⇒ h(∼γ[z/x]). We then obtain the
required fact:

.... Prop. 2.15
h(∼γ[z/x]) ⇒ h(∼γ[z/x])
∀xh(∼γ) ⇒ h(∼γ[z/x]) (∀left)

∀xh(∼γ), ¬h(∼γ[z/x]) ⇒ (¬left)

¬h(∼γ[z/x]) ⇒ ¬∀xh(∼γ) (¬right)

¬¬∀xh(∼γ), ¬h(∼γ[z/x]) ⇒ (¬left)

¬¬∀xh(∼γ) ⇒ ¬¬h(∼γ[z/x]) (¬right)
.... Ind. hyp.

¬¬h(∼γ[z/x]) ⇒ h(∼γ[z/x])
¬¬∀xh(∼γ) ⇒ h(∼γ[z/x]) (cut)

¬¬∀xh(∼γ) ⇒ ∀xh(∼γ) (∀right)

where ∀xh(∼γ) coincides with h(∼∃xγ) by the definition of h.

Lemma 3.5. Let h be the mapping defined in Definition 3.1. For any sequent
Γ ⇒ ∆, if ELK ⊢ Γ ⇒ ∆, then ELJ ⊢ h(Γ), ¬h(∆) ⇒.
Proof. By induction on the proofs P of Γ ⇒ ∆ in ELK. We distinguish the cases
according to the last inference of P and show some cases.

1. Case ∼p, p ⇒: The last inference of P is of the form: ∼p, p ⇒ for any atomic
formula p. In this case, we obtain the required fact:

p ⇒ p
p, ¬p ⇒ (¬left)
¬p ⇒ ¬p (¬right)

¬p, ¬¬p ⇒ (¬left)
∼¬¬p, ¬¬p ⇒ (∼¬left)

where ∼¬¬p and ¬¬p coincide with h(∼p) and h(p), respectively, by the defi-
nition of h.

2. Case ⇒ ∼p, p: The last inference of P is of the form: ⇒ ∼p, p for any atomic
formula p. In this case, we obtain the required fact:

p ⇒ p
¬p, p ⇒ (¬left)
p ⇒ ¬¬p (¬right)

p, ¬¬¬p ⇒ (¬left)
¬¬¬p ⇒ ¬p (¬right)

¬¬¬p ⇒ ∼¬¬p (∼¬right)
¬∼¬¬p, ¬¬¬p ⇒ (¬left)

1048

Embedding classical logic into Gurevich’s logic

where ∼¬¬p and ¬¬p coincide with h(∼p) and h(p), respectively, by the defi-
nition of h.

3. Case (∼∧left): The last inference of P is of the form:

∼α, Γ ⇒ ∆ ∼β, Γ ⇒ ∆
∼(α∧β), Γ ⇒ ∆ (∼∧left).

By induction hypothesis, we have: ELJ ⊢ h(∼α), h(Γ), ¬h(∆) ⇒ and ELJ ⊢
h(∼β), h(Γ), ¬h(∆) ⇒. We then obtain the required fact:

.... Ind. hyp.

h(∼α), h(Γ), ¬h(∆) ⇒
h(Γ), ¬h(∆) ⇒ ¬h(∼α) (¬right)

.... Ind. hyp.

h(∼β), h(Γ), ¬h(∆) ⇒
h(Γ), ¬h(∆) ⇒ ¬h(∼β) (¬right)

h(Γ), ¬h(∆) ⇒ ¬h(∼α)∧¬h(∼β) (∧right)

¬(¬h(∼α)∧¬h(∼β)), h(Γ), ¬h(∆) ⇒ (¬left)

where ¬(¬h(∼α)∧¬h(∼β)) coincides with h(∼(α∧β)) by the definition of h.

4. Case (∼∧right): The last inference of P is of the form:

Γ ⇒ ∆, ∼α, ∼β

Γ ⇒ ∆, ∼(α∧β) (∼∧right).

By induction hypothesis, we have: ELJ ⊢ h(Γ), ¬h(∆), ¬h(∼α), ¬h(∼β) ⇒.
We then obtain the required fact:

.... Ind. hyp.

h(Γ), ¬h(∆), ¬h(∼α), ¬h(∼β) ⇒.... (∧left1), (∧left2)
h(Γ), ¬h(∆), ¬h(∼α)∧¬h(∼β) ⇒

h(Γ), ¬h(∆) ⇒ ¬(¬h(∼α)∧¬h(∼β)) (¬right)

h(Γ), ¬h(∆), ¬¬(¬h(∼α)∧¬h(∼β)) ⇒ (¬left)

where ¬(¬h(∼α)∧¬h(∼β)) coincides with h(∼(α∧β)) by the definition of h.

5. Case (∼∨left): The last inference of P is of the form:

∼α, ∼β, Γ ⇒ ∆
∼(α∨β), Γ ⇒ ∆ (∼∨left).

1049

Kamide

By induction hypothesis, we have: ELJ ⊢ h(∼α), h(∼β), h(Γ), ¬h(∆) ⇒. We
then obtain the required fact:

.... Ind. hyp.

h(∼α), h(∼β), h(Γ), ¬h(∆) ⇒.... (∧left1), (∧left2)
h(∼α)∧h(∼β), h(Γ), ¬h(∆) ⇒

where h(∼α)∧h(∼β) coincides with h(∼(α∨β)) by the definition of h.

6. Case (∼∨right): The last inference of P is of the form:

Γ ⇒ ∆, ∼α Γ ⇒ ∆, ∼β

Γ ⇒ ∆, ∼(α∨β) (∼∨right).

By induction hypothesis, we have: ELJ ⊢ h(Γ), ¬h(∆), ¬h(∼α) ⇒ and ELJ ⊢
h(Γ), ¬h(∆), ¬h(∼β) ⇒. By Lemma 3.4, we have: ELJ ⊢ ¬¬h(∼α) ⇒ h(∼α)
and ELJ ⊢ ¬¬h(∼β) ⇒ h(∼β). We then obtain the required fact:

.... P1
h(Γ), ¬h(∆) ⇒ h(∼α)

.... P2
h(Γ), ¬h(∆) ⇒ h(∼β)

h(Γ), ¬h(∆) ⇒ h(∼α)∧h(∼β) (∧right)

h(Γ), ¬h(∆), ¬(h(∼α)∧h(∼β)) ⇒ (¬left)

where P1 is of the form:
.... Ind. hyp.

h(Γ), ¬h(∆), ¬h(∼α) ⇒
h(Γ), ¬h(∆) ⇒ ¬¬h(∼α) (¬right)

.... Lemma 3.4
¬¬h(∼α) ⇒ h(∼α)

h(Γ), ¬h(∆) ⇒ h(∼α) (cut)

and P2 is of the form:
.... Ind. hyp.

h(Γ), ¬h(∆), ¬h(∼β) ⇒
h(Γ), ¬h(∆) ⇒ ¬¬h(∼β) (¬right)

.... Lemma 3.4
¬¬h(∼β) ⇒ h(∼β)

h(Γ), ¬h(∆) ⇒ h(∼β) (cut)

where h(∼α)∧h(∼β) coincides with h(∼(α∨β)) by the definition of h.

1050

Embedding classical logic into Gurevich’s logic

7. Case (∼→left): The last inference of P is of the form:
α, ∼β, Γ ⇒ ∆

∼(α→β), Γ ⇒ ∆ (∼→left).

By induction hypothesis, we have: ELJ ⊢ h(α), h(∼β), h(Γ), ¬h(∆) ⇒. We
then obtain the required fact:

.... Ind. hyp.

h(α), h(∼β), h(Γ), ¬h(∆) ⇒.... (∧left1), (∧left2)
h(α)∧h(∼β), h(Γ), ¬h(∆) ⇒

where h(α)∧h(∼β) coincides with h(∼(α→β)) by the definition of h.

8. Case (∼→right): The last inference of P is of the form:
Γ ⇒ ∆, α Γ ⇒ ∆, ∼β

Γ ⇒ ∆, ∼(α→β) (∼→right).

By induction hypothesis, we have: ELJ ⊢ h(Γ), ¬h(∆), ¬h(α) ⇒ and ELJ ⊢
h(Γ), ¬h(∆), ¬h(∼β) ⇒. By Lemma 3.4, we have: ELJ ⊢ ¬¬h(α) ⇒ h(α) and
ELJ ⊢ ¬¬h(∼β) ⇒ h(∼β). We then obtain the required fact:

.... P1
h(Γ), ¬h(∆) ⇒ h(α)

.... P2
h(Γ), ¬h(∆) ⇒ h(∼β)

h(Γ), ¬h(∆) ⇒ h(α)∧h(∼β) (∧right)

h(Γ), ¬h(∆), ¬(h(α)∧h(∼β)) ⇒ (¬left)

where P1 is of the form:
.... Ind. hyp.

h(Γ), ¬h(∆), ¬h(α) ⇒
h(Γ), ¬h(∆) ⇒ ¬¬h(α) (¬right)

.... Lemma 3.4
¬¬h(α) ⇒ h(α)

h(Γ), ¬h(∆) ⇒ h(α) (cut)

and P2 is of the form:
.... Ind. hyp.

h(Γ), ¬h(∆), ¬h(∼β) ⇒
h(Γ), ¬h(∆) ⇒ ¬¬h(∼β) (¬right)

.... Lemma 3.4
¬¬h(∼β) ⇒ h(∼β)

h(Γ), ¬h(∆) ⇒ h(∼β) (cut)

where h(α)∧h(∼β) coincides with h(∼(α→β)) by the definition of h.

1051

Kamide

9. Case (∼¬right): The last inference of P is of the form:

Γ ⇒ ∆, α

Γ ⇒ ∆, ∼¬α
(∼¬right).

By induction hypothesis, we have: ELJ ⊢ h(Γ), ¬h(∆), ¬h(α) ⇒. We then
obtain the required fact ELJ ⊢ h(Γ), ¬h(∆), ¬h(∼¬α) ⇒, because h(∼¬α)
coincides with h(α) by the definition of h.

10. Case (∼∀left): The last inference of P is of the form:

∼α[z/x], Γ ⇒ ∆
∼∀xα, Γ ⇒ ∆ (∼∀left).

By induction hypothesis, we have: ELJ ⊢ h(∼α[z/x]), h(Γ), ¬h(∆) ⇒. We
then obtain the required fact:

.... Ind. hyp.

h(∼α[z/x]), h(Γ), ¬h(∆) ⇒
h(Γ), ¬h(∆) ⇒ ¬h(∼α[z/x]) (¬right)

h(Γ), ¬h(∆) ⇒ ∀x¬h(∼α) (∀right)

¬∀x¬h(∼α), h(Γ), ¬h(∆) ⇒ (¬left)

where ¬∀x¬h(∼α) coincides with h(∼∀xα) by the definition of h.

11. Case (∼∀right): The last inference of P is of the form:

Γ ⇒ ∆, ∼α[t/x]
Γ ⇒ ∆, ∼∀xα

(∼∀right).

By induction hypothesis, we have: ELJ ⊢ h(Γ), ¬h(∆), ¬h(∼α[t/x]) ⇒. We
then obtain the required fact:

.... Ind. hyp.

h(Γ), ¬h(∆), ¬h(∼α[t/x]) ⇒
h(Γ), ¬h(∆), ∀x¬h(∼α) ⇒ (∀left)

h(Γ), ¬h(∆) ⇒ ¬∀x¬h(∼α) (¬right)

h(Γ), ¬h(∆), ¬¬∀x¬h(∼α) ⇒ (¬left)

where ¬∀x¬h(∼α) coincides with h(∼∀xα) by the definition of h.

1052

Embedding classical logic into Gurevich’s logic

12. Case (∼∃left): The last inference of P is of the form:

∼α[t/x], Γ ⇒ ∆
∼∃xα, Γ ⇒ ∆ (∼∃left).

By induction hypothesis, we have: ELJ ⊢ h(∼α[t/x]), h(Γ), ¬h(∆) ⇒. We
obtain the required fact:

.... Ind. hyp.

h(∼α[t/x]), h(Γ), ¬h(∆) ⇒
∀xh(∼α), h(Γ), ¬h(∆) ⇒ (∀left)

where ∀xh(∼α) coincides with h(∼∃xα) by the definition of h.

13. Case (∼∃right): The last inference of P is of the form:

Γ ⇒ ∆, ∼α[z/x]
Γ ⇒ ∆, ∼∃xα

(∼∃right).

By induction hypothesis, we have: ELJ ⊢ h(Γ), ¬h(∆), ¬h(∼α[z/x]) ⇒. By
Lemma 3.4, we have: ELJ ⊢ ¬¬h(∼α[z/x]) ⇒ h(∼α[z/x]). We then obtain
the required fact:

.... Ind. hyp.

h(Γ), ¬h(∆), ¬h(∼α[z/x]) ⇒
h(Γ), ¬h(∆) ⇒ ¬¬h(∼α[z/x]) (¬right)

.... Lemma 3.4
¬¬h(∼α[z/x]) ⇒ h(∼α[z/x])

h(Γ), ¬h(∆) ⇒ h(∼α[z/x]) (cut)

h(Γ), ¬h(∆) ⇒ ∀xh(∼α) (∀right)

where ∀xh(∼α) coincides with h(∼∃xα) by the definition of h.

Theorem 3.6 (Gödel–Gentzen embedding from ELK into ELJ). Let h be the map-
ping defined in Definition 3.1. For any formula α, ELK ⊢ ⇒ α iff ELJ ⊢ ⇒ h(α).

Proof. (=⇒): Suppose ELK ⊢⇒ α. Then, we have ELJ ⊢ ¬h(α) ⇒ by Lemma 3.5.
By Lemma 3.4, we have ELJ ⊢ ¬¬h(α) ⇒ h(α). We thus obtain the required fact:

.... Lemma 3.5
¬h(α) ⇒

⇒ ¬¬h(α) (¬right)
.... Lemma 3.4

¬¬h(α) ⇒ h(α)
⇒ h(α) (cut).

1053

Kamide

(⇐=): Suppose ELJ ⊢ ⇒ h(α). Then, we have ELK ⊢ ⇒ h(α) and hence obtain
ELK ⊢ ⇒ α by Lemma 3.3 with (cut):

.... Hyp.

⇒ h(α)

.... Lemma 3.3
h(α) ⇒ α

⇒ α (cut).

We can show a theorem for embedding ELK into LJ using a slightly modified
version of the translation defined in Definition 3.1.

Definition 3.7 (Modified extended Gödel–Gentzen negative translation). Let L be
the language (or the set of formulas) of ELK and L− be the language (or the set of
formulas) of LJ (i.e., it is obtained from L by deleting ∼). A mapping h from L
to L− is obtained from the conditions in Definition 3.1 by replacing the condition 6
with the following condition:

6′. For any p ∈ Φ, h(∼p) := ¬h(p) (i.e., h(∼p) = ¬¬¬p).

Remark 3.8. We can prove the same lemmas with respect to Definition 3.7 as
Lemmas 3.3, 3.4, and 3.5. The same lemma as Lemma 3.3 can be proved using the
same manner as that of Lemma 3.3. The same lemmas as Lemmas 3.4 and 3.5 can
be proved using (¬left) and (¬right) instead of (∼¬left) and (∼¬right).

Theorem 3.9 (Gödel–Gentzen embedding from ELK into LJ). Let h be the mapping
defined in Definition 3.7. For any formula α, ELK ⊢ ⇒ α iff LJ ⊢ ⇒ h(α).

Proof. Similar to the proof of Theorem 3.6.

4 Concluding remarks
In this study, we proved the theorems for embedding first-order classical logic (CL)
into Gurevich’s extended first-order intuitionistic logic with strong negation (GL)
[12] and first-order intuitionistic logic (IL). To prove the embedding theorems, we
first introduced the new alternative cut-free Gentzen-style sequent calculus ELK for
CL by extending Gentzen’s sequent calculus LK [10] for CL. Actually, ELK was ob-
tained from LK by adding the strongly-negated initial sequents and strongly-negated
logical inference rules for the strong negation connective ∼. Strong negation was
originally introduced by Nelson in [19] and traditionally used in GL and related
constructive logics [1, 19, 21, 28, 26, 30]. Next, we introduced an extended version

1054

Embedding classical logic into Gurevich’s logic

of the Gödel–Gentzen negative translation [11, 9] from CL to IL. Then, we proved
the theorem for embedding ELK into a Gentzen-style sequent calculus ELJ [15] for
GL by using the extended Gödel–Gentzen negative translation (i.e., we obtained the
theorem for embedding CL into GL). Finally, we proved the theorem for embedding
ELK into Gentzen’s sequent calculus LJ [10] for IL by using a slightly modified
version of the extended Gödel–Gentzen negative translation (i.e., we obtained the
alternative theorem for embedding CL into IL). By these results, the role of strong
negation in CL and GL was clarified. More specifically, it was shown in this study
that strong negation is an essential and natural component of CL for representing
falsification-aware reasoning and plays a crucial role in smoothly proving the the-
orems for embedding CL into GL and IL (and some of the related theorems for
CL).

We now present some related works on important GL subsystems with strong
negation. A major GL subsystem (or fragment) is its propositional fragment. Spinks
and Veroff [23, 24] showed that the propositional fragment of GL, called N by them,
is definitionally equivalent to a certain axiomatic extension NFLew of the substruc-
tural logic FLew. Another major GL subsystem is Nelson’s first-order constructive
three-valued logic (N3) [1, 19], which is obtained from GL by deleting intuitionistic
negation (i.e., N3 is the intuitionistic-negation-less fragment of GL). Thus, a Hilbert-
style axiomatic system for N3 is obtained from the axiomatic system previously
presented for GL by deleting the axiom schemes concerning ¬. Other important
GL subsystems are Nelson’s first-order constructive paraconsistent four-valued logic
(N4) [1, 19] and Belnap–Dunn logic (BD) (also referred to as Belnap and Dunn’s
useful four-valued logic, Dunn–Belnap logic, or first-degree entailment logic) [4, 5, 7].
A Hilbert-style axiomatic system for N4 is obtained from that for N3 by deleting the
axiom scheme (α∧∼α)→β, and N4 is regarded as an extension of BD obtained by
adding implication. Odintsov [20] showed that (propositional) N3 can be faithfully
embedded into (propositional) N4. Some neighbors of Nelson logics N3 and N4 have
also been studied [21, 28, 26]. Although N4 and its classical variants have been well
studied, N3 and GL have not been studied extensively. For more information on N4
and its variants, see [30, 17, 18] and the references therein.

Next, we present some remarks on strong negation and its applications. As men-
tioned previously, ∼α→¬α, where ¬ is the intuitionistic negation connective, is an
axiom scheme of GL. This means that ∼ is stronger than ¬ in GL. On the one hand,
this fact is a reason why ∼ is referred to as strong negation. On the other hand, ∼ in
N4 is not stronger than ¬. Actually, ∼ and ¬ are incomparable in N4. However, the
negations in N4 and its variants are also referred to as strong negations. In addition,
the negations in GL, N3, N4, and their variants are also refereed to as Nelson nega-
tions. Strong or Nelson negations are known to be useful for appropriately handling

1055

Kamide

inexact predicates and constructive reasoning [1, 19] and are also known to be useful
for handling inconsistency-tolerant (paraconsistent) reasoning in some paraconsis-
tent subsystems of GL. Concerned with the constructive reasoning, GL, N3, and
N4 have so-called the constructible falsity property: If ∼(α∧β) is provable in these
logics, then either ∼α or ∼β is provable in the logics. This property is regarded as
the dual to the well-known disjunction property: If α∨β is provable in a logic, then
either α or β is provable in the logic. Concerned with the paraconsistent reasoning,
N4 is a well-known paraconsistent (or inconsistency-tolerant) logic because N4 re-
jects the axiom scheme (α∧∼α)→β (cf., a paraconsistent logic is defined as a logic
that rejects (α∧∼α)→β). By these good characteristic properties of strong negation
(i.e., the properties for representing inexact predicates, constructive reasoning, and
inconsistency-tolerant reasoning), logic programming with strong negation, which
is based on constructive logics with strong negation, was studied, for example, in
[29, 14].

Finally, we present some related works on Gödel–Gentzen negative translation
and alternative sequent calculi for CL. A comprehensive investigation of the existing
negative translations including the Gödel–Gentzen translation was obtained by Fer-
reira and Oliva in [8], wherein the relationship among various negative translations
was clarified based on the notion of modular simplification. Various alternative se-
quent calculi for CL and its fragments have also been studied extensively in order to
obtain some computational interpretations concerning typed λ-calculi and natural
deduction systems for CL and its fragments. For this direction of research, various
classical sequent calculi with labeled (or annotated) formulas have been introduced
and investigated, for example, in [22, 27, 13, 6, 31].

References
[1] A. Almukdad and D. Nelson, Constructible falsity and inexact predicates, Journal of

Symbolic Logic 49 (1), pp. 231-233, 1984.
[2] O. Arieli and A. Avron, Reasoning with logical bilattices, Journal of Logic, Language

and Information 5, pp. 25-63, 1996.
[3] O. Arieli and A. Avron, The value of the four values, Artificial Intelligence 102 (1), pp.

97-141, 1998.
[4] N.D. Belnap, A useful four-valued logic, In: Modern Uses of Multiple-Valued Logic, G.

Epstein and J. M. Dunn (eds.), Dordrecht: Reidel, pp. 5-37, 1977.
[5] N.D. Belnap, How a computer should think, In: Contemporary Aspects of Philosophy,

G. Ryle (ed.), Oriel Press, Stocksfield, pp. 30-56, 1977.
[6] V. Danos, J.-B. Joinet, and H. Schellinx, Computational isomorphisms in classical logic,

Theoretical Computer Science 294 (3), pp. 353-378, 2003.

1056

Embedding classical logic into Gurevich’s logic

[7] J.M. Dunn, Intuitive semantics for first-degree entailment and ‘coupled trees’, Philo-
sophical Studies 29 (3), pp. 149-168, 1976.

[8] G. Ferreira and P. Oliva, On various negative translations, Proceedings of the 3rd Inter-
national Workshop on Classical Logic and Computation (CL&C 2010), EPTCS 47, pp.
21-33, 2010.

[9] G. Gentzen, Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen
112, pp. 493-565, 1936.

[10] G. Gentzen, Collected papers of Gerhard Gentzen, M.E. Szabo (ed.), Studies in logic
and the foundations of mathematics, North-Holland (English translation), 1969.

[11] K. Gödel, Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse eines Math-
ematischen Kolloquiums 4, pp. 34-38, 1933.

[12] Y. Gurevich, Intuitionistic logic with strong negation, Studia Logica 36, pp. 49-59,
1977.

[13] J.-B. Joinet, H. Schellinx, and L.T. de Falco, SN and CR for free-style LKtq: Linear
decorations and simulation of normalization, Journal of Symbolic Logic 67 (1), pp. 162-
196, 2002.

[14] N. Kamide, A uniform proof-theoretic foundation for abstract paraconsistent logic pro-
gramming, Journal of Functional and Logic Programming 2007 (1), pp. 1-36, 2007.

[15] N. Kamide, Cut-elimination, completeness, and Craig interpolation theorems for Gure-
vich’s extended first-order intuitionistic logic with strong negation, Journal of Applied
Logics 8 (5), pp. 1101-1122, 2021.

[16] N. Kamide, Falsification-aware semantics and sequent calculi for classical logic, Journal
of Philosophical Logic 51 (1), pp. 99-126, 2022.

[17] N. Kamide and H. Wansing, Proof theory of Nelson’s paraconsistent logic: A uniform
perspective, Theoretical Computer Science 415, pp. 1-38, 2012.

[18] N. Kamide and H. Wansing, Proof theory of N4-related paraconsistent logics, Studies
in Logic, Volume 54, College Publications, pp. 1-401, 2015.

[19] D. Nelson, Constructible falsity, Journal of Symbolic Logic 14, pp. 16-26, 1949.
[20] S.P. Odintsov, On the embedding of Nelson’s logics, Bulletin of the Section of Logic

31(4), pp. 241-248, 2002.
[21] W. Rautenberg, Klassische und nicht-klassische Aussagenlogik, Vieweg, Braunschweig,

1979.
[22] J. E. Santo, Revisiting the correspondence between cut elimination and normalisation,

Proceedings of the 27th International Colloquium on Automata, Languages and Program-
ming (ICALP 2000), Lecture Notes in Computer Science 1853, pp. 600-611, 2000.

[23] M. Spinks and R. Veroff, Constructive logic with strong negation is a substructural
logic. I, Studia Logica 88 (3), pp. 325-348, 2008.

[24] M. Spinks and R. Veroff, Constructive logic with strong negation is a substructural
logic. II, Studia Logica 89 (3), pp. 401-425, 2008.

[25] G. Takeuti, Proof theory (second edition), Dover Publications, Inc. Mineola, New York,
2013.

1057

Kamide

[26] R.H. Thomason, A semantical study of constructible falsity, Zeitschrift für Mathema-
tische Logik und Grundlagen der Mathematik 15, pp. 247-257, 1969.

[27] C. Urban and G.M. Bierman, Strong normalisation of cut-elimination in classical logic,
Fundamenta Informaticae 45 (1-2), pp. 123-155, 2001.

[28] N.N. Vorob’ev, A constructive propositional calculus with strong negation (in Russian),
Doklady Akademii Nauk SSSR 85, pp. 465-468, 1952.

[29] G. Wagner, Logic programming with strong negation and inexact predicates, Journal
of Logic and Computation 1 (6), pp. 835-859, 1991.

[30] H. Wansing, The logic of information structures, Lecture Notes in Artificial Intelligence
681, 163 pages, 1993.

[31] D. Zunic, Computing with sequents and diagrams in classical logic - calculi *X, dX and
©X, Phd thesis, Ecole normale superieure de Lyon, France, 2007.

Received1058

On Weak Bases for Boolean Relational
Clones and Reductions for Computational

Problems

Mike Behrisch∗

Institut für Diskrete Mathematik und Geometrie, TU Wien
Institut für Algebra, JKU Linz

behrisch@logic.at

Abstract

We improve an existence condition for weak bases of relational clones on
finite sets. Moreover, we provide a set of singleton weak bases of Boolean re-
lational clones different than those exhibited by Lagerkvist in [24]. We treat
groups of ‘similar’ Boolean clones in a uniform manner with the goal of thereby
simplifying proofs working by case distinction along the clones in Post’s lattice.
We then present relationships between weak base relations along the covering
edges in Post’s lattice, which can (with one exception) be exploited to obtain
parsimonious reductions of computational problems related to constraint satis-
faction, in which the size of the instance only grows linearly. We also investigate
how the number of variables changes between instances in these reductions.

Keywords: relational clone, weak base, strong partial clone, Boolean clone, Boolean
relational clone, Boolean co-clone, parsimonious reduction

1 Introduction
A fundamental problem frequently encountered throughout applications, the sci-
ences, but also within mathematics itself is undeniably the task to solve systems of
equations. In many contexts the functions appearing in such systems are restricted

This is an extended version of the article [3] that appeared in the proceedings of ISMVL 2022.
We acknowledge the work of the unknown referee, who provided several helpful remarks that lead

to an improvement of the article, for example, to the inclusion of Figure 3.
∗The research of M. Behrisch was partly funded by the Austrian Science Fund (FWF) through

project P 33878 ‘Equations in Universal Algebra’.

Vol. 10 No. 6 2023
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

Behrisch

to a special form, e.g., linear, non-linear, disjunctive, conjunctive, etc., and the na-
ture of the functions very much determines the solution methods and the difficulty
of the problem. In fact, there are two basic questions associated with a system of
equations: one is to determine whether it has solutions at all, another one is to find
at least their exact number (or even the solutions themselves). The first problem is
known as a decision problem, deciding the existence of solutions; the second one is a
counting problem, determining not only whether the set of solutions is non-empty,
but also its precise cardinality.

Since functions can be understood as relations, systems of equations can be
treated as constraint satisfaction problems (CSPs), i.e., questions to find satisfying
variable assignments to finite conjunctions of atomic predicates corresponding to a
given (usually finite) set of finitary relations—the constraint language or template
of the CSP. Thanks to the CSP Dichotomy Theorem [39, 40, 11, 41], the complexity
of deciding the solvability of CSPs is now finally understood on finite sets. Using
the algebraic approach to CSP, mediated by the Pol-Inv Galois connection between
clones and relational clones, it could be shown that deciding the existence of solu-
tions for a CSP is always (assuming P ̸= NP, either) in P or NP-complete. Seen from
a fundamental point of view, a crucial fact that made this complexity classification
possible was the (a priori) compatibility of the decision version of CSP with existen-
tial quantification and the equality predicate. That is to say, it was possible—before
proving the Dichotomy Theorem—to show that CSPs whose parametrising relations
can be expressed in terms of some other template by a definition involving just
existential quantification, conjunction and equality, can be reduced in logarithmic
space to the CSP given by that template. The existence of such reductions is the
key fact ensuring that the dividing line between problems in P and NP-complete
problems could be phrased in terms of clones and relational clones; namely, a CSP
on a finite set is in P if (under P ̸= NP also only if) the template has a so-called
Taylor polymorphism. As this compatibility with polymorphism clones (on the side
of templates with existential quantification and equality) was known beforehand, it
was also instrumental in the proof of the dichotomy.

Using Turing reductions the counting version of CSP was also shown to be (a
priori) compatible with Pol-Inv [12, Theorems 2,3], and a dichotomy was proved
in [9, 10], using congruence singularity as the distinguishing property, cf. [10, Theo-
rem 2.22]. This result was subsequently characterised differently in terms of strongly
balanced templates [16, Theorem 28], making the dichotomy decidable. However,
when using parsimonious reductions, where—in contrast to Turing reductions—one
may only reduce problems to others with the same number of solutions, or when re-
quiring that the size of the instance not increase too much in a reduction, counting
solutions of a CSP is not compatible with the introduction of existential quan-

1060

Weak bases for Boolean relational clones and reductions

tification any more. In those cases and also in the analysis of enumerating solu-
tions [37, 36] different methods are needed, as the framework provided by relational
clones is too coarse to appropriately reflect the complexity. In fact, changing the al-
lowed complexity reductions for a computational problem, for example, considering
counting CSPs under parsimonious reductions, or restricting the available reduc-
tions to obtain more fine-grained complexity classifications for CSPs and related
problems [22, 25, 19, 20, 28, 23, 21, 13], is a typical situation where compatibility
with existential quantification and/or equality may be lost or not available. More-
over, there are several other questions in computer and information science that do
not exhibit a known a priori compatibility with ∃, see, e.g., optimisation problems
studied in [4, 5, 6], the Boolean inverse satisfiability problem [28], the character-
isation of all polynomially closed Boolean relational clones [29], or the search for
a surjective solution of a CSP. A possible approach to answer these questions or
to even classify the complexity in such situations (many examples can be found in
the previously listed references) is to consider weaker invariants that do not rely
on existential quantification, e.g., strong partial clones, their counterparts—weak
relational systems, and weak bases of relational clones [37, 38].

For each finitely generated Boolean relational clone, Victor Lagerkvist [24] de-
termined a singleton weak base consisting of a certain ‘minimal’ relation. When
treating computational problems related to Boolean clones via the weak bases ap-
proach, it often happens—exemplified in the investigations in [6], but also in the
context of counting complexity when one restricts the allowable reductions—that
one wishes to deal with groups of closely related Boolean clones, e.g., Horn clones
E, E0, E1, E2, cf. Figure 1, in a uniform way. Due to the minimality requirement on
the number of tuples imposed in [24], the weak bases from [24] do not always allow
such a treatment, and this is addressed in the present article: we provide a partially
new collection of weak bases for Boolean relational clones, fixing some misprints
of [24] on the way. We believe that this will make studying complexity questions via
the weak bases approach simpler and possibly more elegant. Our choice of groups of
Boolean clones that we wish to treat in a similar fashion is clearly a subjective one;
however, it is informed by similarities of the associated relational clones, by shared
algebraic properties of the corresponding clones, and by experience in dealing with
previous complexity classifications. For the convenience of the reader we give an
overview of the relations we use in Appendix A.

We conclude the paper by exhibiting several expressibility results between our
weak base relations belonging to different Boolean relational clones. Here we ex-
ploit the uniform shape of the weak base relations for the chosen groups of Boolean
clones (cf. Figure 1), and we are convinced that such relationships will be useful in
proving reductions (e.g., reductions with constant or linear growth of the param-

1061

Behrisch

eter measuring the complexity as used in [22, 25, 19, 20, 21] or suitable variants
thereof) between computational problems parametrised by generating systems of
the respective Boolean relational clones.

2 Notation and preliminaries
We write N = {0, 1, 2, . . .} for the set of natural numbers and N+ for N \ {0}. The
cardinality of a set A is written as |A|. A partial function between sets A and B
formally is a triple f = (A, f•, B) where f• ⊆ A × B is a right-unique relation,
that is, f• satisfies y = y′ for all pairs (x, y), (x, y′) ∈ f•. The domain of f is the
set dom(f) := {x ∈ A | ∃ y ∈ B : (x, y) ∈ f•}. To simplify notation, we often write
f : D ⊆ A −→ B to denote that f = (A, f•, B) is a partial function with domain D.
A (total) function between A and B is a partial function f , where dom(f) = A.

For an integer n ∈ N, an n-ary partial operation on a set A is a partial function
f : D ⊆ An −→ A, and an n-ary operation on A is any total function f : An −→ A.
We collect the former in the set P(n)

A and the latter in O(n)
A ; moreover we set

OA := ⋃
n∈N+ O(n)

A and PA := ⋃
n∈N+ P(n)

A . For a set F ⊆ PA, we define F (n)

to be P(n)
A ∩F . Also, if f, g ∈ PA, we say that f is a subfunction of g and write

f ⪯ g if they share the same arity and f• ⊆ g•, that is, if f is the restriction of g
to dom(f) being a subset of dom(g). For 1 ≤ i ≤ n ∈ N+ the i-th n-ary projection
on A is the operation e

(n)
i ∈ O(n)

A given by the rule e
(n)
i (x1, . . . , xn) := xi for all

(x1, . . . , xn) ∈ An. We define J A :=
{

e
(n)
i

∣∣∣ 1 ≤ i ≤ n ∈ N+
}

as the set of all total
projections on A; any subfunction of a projection in J A is called a partial projection.
Furthermore, if n, m ∈ N and f ∈ P(n)

A , g1, . . . , gn ∈ P(m)
A , we define their compo-

sition to be the partial operation f ◦ (g1, . . . , gn) : D ⊆ Am −→ A having domain
D = {x ∈ ⋂n

i=1 dom(gi) | (g1(x), . . . , gn(x)) ∈ dom(f)} and operating according to
f ◦ (g1, . . . , gn)(x) := f(g1(x), . . . , gn(x)) for all x ∈ D. If f, g1, . . . , gn ∈ OA, then
clearly f ◦ (g1, . . . , gn) ∈ OA, as well.

A clone of partial operations, or partial clone for short, is any subset P ⊆ PA

with J A ⊆ P that is closed under composition. A partial clone P ⊆ PA is strong
if it is additionally closed under taking subfunctions—equivalently, if it contains all
partial projections. A clone (of (total) operations), also functional clone, on A is
any partial clone F ⊆ OA, that is, any sub-partial clone of the (partial) clone of
all total operations OA. The set of all clones on A forms a closure system; as such
it has an associated closure operator, which we denote by F 7→ ⟨F ⟩OA

and which
maps every set F ⊆ OA to the least clone on A containing F .

1062

Weak bases for Boolean relational clones and reductions

The number of clones on the Boolean set A = {0, 1} is ℵ0; these countably
many clones were first described by Post [33] and form a lattice, which is depicted in
Figure 1. By contrast, the number of clones on any finite set A of size |A| ≥ 3 [18, 1],
as well as the number of partial or even just strong partial clones on A with |A| ≥ 2,
is already 2ℵ0 [14, Theorem 2].

For m ∈ N, an m-ary relation on A is any subset ρ ⊆ Am. For the powerset
of Am, i.e., the set of all such relations, we introduce the notation R(m)

A , and we
define RA := ⋃

m∈N+ R(m)
A as the set of all finitary (non-nullary) relations on A.

We conveniently use a representation of ρ = {r1, . . . , rn} ∈ R(m)
A with at most

n ∈ N+ tuples in Am as an (m × n)-matrix the columns of which are the tuples
r1, . . . , rn ∈ ρ. Such a representation is, of course, only unique up to permutation
of columns (and possibly duplication of columns); certainly, if n = |ρ|, then no
duplication is necessary. If F ⊆ OA and ρ ∈ R(m)

A , then by ΓF (ρ) ⊆ Am we denote
the subuniverse of the algebra ⟨A; F ⟩m generated by ρ, that is, the least F -invariant
(v.i.) relation containing ρ. If ρ = {r1, . . . , rn} and F is a clone, then it is well
known that ΓF (ρ) =

{
f ◦ (r1, . . . , rn)

∣∣∣ f ∈ F (n)
}

, where for all i ∈ {1, . . . , n} we
understand tuples ri : m −→ A as functions. The requirement that F be a clone is
not a severe restriction since always ΓF (ρ) = Γ⟨F ⟩O

A
(ρ). This also means that for a

functional clone F ⊆ OA, presented via some generating set G ⊆ OA as F = ⟨G⟩OA
,

we may write ΓF (ρ) = Γ⟨G⟩O
A

(ρ) = ΓG(ρ), and thus ΓF (ρ) can be computed by
subpower closing ρ ⊆ Am under the operations given by G.

For finite A and n ∈ N, the n-th graphic of a clone F is the relation ΓF (χn)
representing the n-ary part F (n) of the clone as follows: χn ⊆ Aq, where q := |A|n,
is a |A|n-ary relation given by the n (value tuples of the) n-ary projections; to enforce
an unambiguous definition we represent χn as the (q × n)-matrix whose rows are all
tuples of An ordered lexicographically with respect to a fixed underlying linear order
of A (for A = {0, . . . , k − 1} we implicitly use the natural linear order of A here).
More abstractly speaking, we fix a bijection β : q = {0, . . . , q − 1} −→ An (e.g., the
one given by lexicographic ordering); then we have χn =

{
e

(n)
i ◦ β

∣∣∣ 1 ≤ i ≤ n
}

. The
tuples in ΓF (χn) are then exactly the value tuples of all functions in F (n), where the
order of enumeration of the values is determined by the bijection β, that is to say,
ΓF (χn) =

{
f ◦ (e(n)

1 ◦ β, . . . , e
(n)
n ◦ β) = (f ◦ (e(n)

1 , . . . , e
(n)
n)) ◦ β = f ◦ β

∣∣∣ f ∈ F (n)
}

.
For m ∈ N+ a relation ρ ⊆ Am is primitive positively definable from a set Q ⊆ RA

if it can be written as ρ = {(x1, . . . , xm) ∈ Am | ∃ y1 · · · ∃ yl : z1 ∈ ρ1 ∧ · · · ∧ zt ∈ ρt}
where t, l ∈ N, t ̸= 0, ρ1, . . . , ρt ∈ Q ∪ {∆A} and z1, . . . , zt are variable tuples
constructed from x1, . . . , xm, y1, . . . , yl. Here ∆A := {(x, x) | x ∈ A} denotes the
equality relation on A. A quantifier-free primitive positive definition is one where

1063

Behrisch

S1

S3
1

S2
1

S12

S11

S10

S3
12

S2
12

S3
11

S2
11

S3
10

S2
10

S00

S3
00

S01

S3
01

S02

S3
02

S0

S3
0

S2
0

S2
00

S2
01

S2
02

I2

E2 V2
I0 I1

N2

N
I

L0 L1

L2

L3

L
D2

E0 V1V0E1

E V

M2

R0 R1

O2 = R

M1

M0

M
R2

D1

D

essentially nullary clones, generated by constants
essentially unary clones, containing negation
Horn clones, polynomially equivalent to a ∧-semilattice
Dual Horn clones, polynomially equivalent to a ∨-semilattice
affine linear clones, polynomially equivalent to a vector space
clones of selfdual, selfdual idempotent, selfdual monotone functions
clones of monotone operations
clones of subset-preserving operations
clones of zero-separating functions (of various degrees)
clones of one-separating functions (of various degrees)

non-finitely related clones
Figure 1: Lattice of Boolean clones, ‘similar’ clones having identical nodes; naming
conventions are guided by [8], where relational descriptions can be found

1064

Weak bases for Boolean relational clones and reductions

l = 0; it is purely conjunctive if, additionally, ∆A is not used in it (unless it belongs
to Q).

Example 1. We shall give here two examples how one calculates the n-th graphic
of a clone (based on β given by the lexicographic ordering of n-tuples). We also
show how calculations with the matrix representations of relations can be used to
verify primitive positive expressions. These techniques are essential for many proofs
of the paper; moreover, the expressions we derive here will be used later on.

The Boolean clone E is generated by the binary conjunction ∧ and the two
constant operations c0, c1 [15, Figure 2], that is, we have E = ⟨{∧, c0, c1}⟩O2 . To
compute the relation RE := ΓE(χ2) we start from the matrix representation of χ2
and close the columns of the matrix componentwise under the generators of the
clone E:

χ2 =

00
01
10
11

 ;

0001
0101
1001
1101

 ;

00010
01010
10010
11011

 = ΓE(χ2).

The Boolean clone M consists of all monotone operations; the only unary oper-
ation on {0, 1} which is not monotone is the Boolean negation ¬. Hence we have
M(1) =

{
e

(1)
1 , c0, c1

}
and thus RM := ΓM(χ1) =

{
001
101

}
.

We now want to derive the relationship (cf. Lemma 31 below)

∀x1, x2, x3 ∈ {0, 1} : (x1, x2) ∈ RM ⇐⇒ (x1, x1, x1, x2) ∈ RE .

For this we work with the matrix representation of RE and suitably identify variables,
i.e., rows of the matrix, deleting columns (marked by ↓) that violate the prescribed
identification (and finally rearrange the rows according to the specified order of the
variables and permute the columns such that the result matches the matrix derived
above for RM):

↓
0

↓
0010 x1

01010 x1
10010 x1
11011 x2

;

010 x1
010 x1
010 x1
011 x2

; 010 x1
011 x2

; 001 x1
101 x2

In this example we verified a purely conjunctive expression, and thus we showed
that RM ∈ [{RE}]∧, see below for the meaning of this notation.

As a second example, we shall consider a formula that actually involves existential
quantification. Namely, we want to demonstrate for any x1, . . . , x8 ∈ {0, 1} that

(x1, . . . , x8) ∈ ΓL3(χ3)
⇐⇒ ∃!u, u′, v, w ∈ {0, 1} : (w, x1, x2, u, u′, x7, x8, v) ∈ ΓL2(χ3) ∧

(w, x3, x4, u, u′, x5, x6, v) ∈ ΓL2(χ3),

1065

Behrisch

cf. Lemma 28. The clone L2 is generated by the ternary Maľcev operation g ∈ O(3)
2

given by g(x, y, z) := x ⊕ y ⊕ z (triple sum modulo 2) for all x, y, z ∈ {0, 1}, cf. [15,
Figure 2]. Being the join of the clones L2 and N2 (cf. Figure 1), the clone L3 is
generated by {g, ¬} since ¬ generates N2, see [15, Figure 2]. We therefore obtain
the octonary relations ΓL2(χ3) and ΓL3(χ3) by closing the three columns in χ3 com-
ponentwise under g, and under g and ¬, respectively:

χ3 =

000
001
010
011
100
101
110
111

;

0000
0011
0101
0110
1001
1010
1100
1111

= ΓL2(χ3),

00001111
00111100
01011010
01101001
10010110
10100101
11000011
11110000

= ΓL3(χ3)

In order to check the existentially quantified expression above, we form the
sedenary relation ΓL2(χ3) × ΓL2(χ3), consisting of sixteen tuples, and identify vari-
ables as given in the expression above. We then remove the columns violating the
variable identification (again marked by ↓) and observe for later use in Lemma 28
that the variables u, u′, w, v always satisfy u = x1 ⊕ x2, u′ = ¬u, w = 0 and v = 1.
We then project to the non-quantified variables, that is, we remove all rows labelled
by existentially quantified variables, scilicet w, u, u′, v. After that we reorder the
rows according to ascending variable indices x1, . . . , x8, and finally, we reorder the
columns in the matrix such that the resulting matrix exactly matches the represen-
tation computed above for ΓL3(χ3):

0
↓
0

↓
00

↓
000

↓
0

↓
000

↓
00

↓
0

↓
00 w

0000000011111111 x1
0000111100001111 x2
0000111111110000 u
1111000000001111 u′

1111000011110000 x7
1111111100000000 x8
1111111111111111 v
0000000000000000 w
0011001100110011 x3
0101010101010101 x4
0110011001100110 u
1001100110011001 u′

1010101010101010 x5
1100110011001100 x6
1111111111111111 v

;

00000000 w
00001111 x1
00110011 x2
00111100 u
11000011 u′

11001100 x7
11110000 x8
11111111 v
00000000 w
01010101 x3
01101001 x4
00111100 u
11000011 u′

10010110 x5
10101010 x6
11111111 v

;

00001111 x1
00110011 x2
11001100 x7
11110000 x8
01010101 x3
01101001 x4
10010110 x5
10101010 x6

;

00001111 x1
00110011 x2
01010101 x3
01101001 x4
10010110 x5
10101010 x6
11001100 x7
11110000 x8

;

00001111 x1
00111100 x2
01011010 x3
01101001 x4
10010110 x5
10100101 x6
11000011 x7
11110000 x8

In many results of this article, we require the reader to perform routine calcu-
lations of this form on their own; in fact, this is what we mean if we write that
a certain relationship follows from the matrix representations of the relations in-
volved. Sometimes additional hints are given, but the matrix manipulations are
usually omitted.

1066

Weak bases for Boolean relational clones and reductions

A relational clone on a finite set A is any subset Q ⊆ RA that is closed under
all relations that are primitive positively definable from it. Every relational clone Q
on A contains ∆A, and for m, n ∈ N+, if ρ ⊆ Am belongs to Q, then so do

Vα(ρ) :=
{

(xα(1), . . . , xα(n))
∣∣∣ (x1, . . . , xm) ∈ ρ

}
,

Wβ(ρ) :=
{

(x1, . . . , xn) ∈ An
∣∣∣ (xβ(1), . . . , xβ(m)) ∈ ρ

}

for any maps α : {1, . . . , n} → {1, . . . , m}, β : {1, . . . , m} → {1, . . . , n}; these rela-
tions are even definable from Q by a quantifier-free primitive positive formula for
arbitrary β and for surjective α. If we just require closure of a set Q ⊆ RA under
quantifier-free primitive positive definitions, we obtain the more general notion of
a weak system with equality; if we use only purely conjunctive (equality-free) defi-
nitions, we get weak systems of relations. It is easy to see that weak systems, and
also relational clones, are moreover closed under finite intersection of relations of
the same arity. The sets of all weak systems, and of all those with equality, and
of all relational clones on A each form a closure system. For technical reasons we
have to focus on weak systems / weak systems with equality / relational clones that
also include the empty relation; we denote the corresponding closure operators by
Q 7→ [Q]∧, Q 7→ [Q]∧,=, and Q 7→ [Q]RA

, respectively, and they compute the least
weak system / weak system with equality / relational clone containing Q ∪ {∅}.

There is an integral relationship between clones and relational clones, and be-
tween strong partial clones and weak systems with equality. It is described by the
following Galois connection between partial operations and relations induced by the
concept of preservation. For m, n ∈ N we say that f ∈ P(n)

A preserves a relation
ρ ⊆ Am if for every (m × n)-matrix X ∈ Am×n with columns (r1, . . . , rn) and rows
(z1, . . . , zm) the following condition holds: if r1, . . . , rn ∈ ρ and z1, . . . , zm ∈ dom(f),
then also f ◦ (r1, . . . , rn) := (f(z1), . . . , f(zm)) ∈ ρ. If this condition holds, we write
f � ρ. Clearly, if f ∈ O(n)

A is total, the implication that needs to be checked
is that f ◦ (r1, . . . , rn) ∈ ρ whenever r1, . . . , rn ∈ ρ. If Q ⊆ RA is a set of
relations, the (partial) operations preserving all relations in Q are called (par-
tial) polymorphisms of Q; conversely, the preserved relations are called invari-
ants. We use the following standard notation: Pol Q = {f ∈ OA | ∀ ρ ∈ Q : f � ρ}
pPol Q = {f ∈ PA | ∀ ρ ∈ Q : f � ρ} for polymorphisms and partial polymorphisms
of Q ⊆ RA, respectively, and Inv P = {ρ ∈ RA | ∀ f ∈ P : f � ρ} for the invari-
ant relations of a set of partial (or total) operations P ⊆ PA. We observe that
OA ∩ pPol Q = Pol Q.

For a finite set A, the following fundamental theorems describe the Galois closed
sets of partial and total operations.

1067

Behrisch

Theorem 2 ([7, 17]). For a finite set A the clones F ⊆ OA are exactly the
Galois closed sets of the form F = Pol Inv F . Moreover, the Galois closed sets
Q = Inv Pol Q ⊆ RA are precisely all relational clones that include the empty rela-
tion.

Theorem 3 ([17, 35, 34]). For a finite set A, the strong partial clones P ⊆ PA

are exactly the Galois closed sets of the form P = pPol Inv P . Moreover, the Galois
closed sets Q = Inv pPol Q ⊆ RA are precisely all weak systems with equality, also
containing the empty relation.

Note that in both theorems the necessity to include the empty relation in the
Galois closed sets on the relational side comes from the choice to not include nullary
(partial) operations on the other side of the Galois correspondence.

In [38, 37] it is proved that for finite A the union of the set

L↾F := {P ⊆ PA | P strong partial clone, OA ∩P = F}

(that is, ⋃ L↾F = ⋃{pPol R | R ⊆ RA, Pol R = F}) over all strong partial clones that
share the same clone F ⊆ OA as their total part, is again a strong partial clone. It
trivially follows from this that ⋃ L↾F ∈ L↾F ; hence L↾F has a largest element under
inclusion. Under the Galois connections characterised in Theorems 2 and 3, the dual
statement of this is that there is a least weak system with equality SF ⊆ RA having
the property that [SF]RA

= Inv F , scilicet

SF = Inv
⋃

L↾F =
⋂

R⊆RA
Pol R=F

Inv pPol R =
⋂

R⊆RA
Pol R=F

[R]∧,=.

Coming from a computational perspective, Schnoor and Schnoor [37, 38] define a
weak base of Inv F as any finite set W ⊆ RA of relations such that SF = [W]∧,=.
Lagerkvist and Roy [27] have recently relaxed the finiteness requirement and call any
W ⊆ RA with [W]∧,= = SF a weak base. We stick here to the original definition.
Although it is conceptually misleading, for the sake of convenience, we agree, for a
clone F and a set of relations W , that saying ‘W is a weak base of F ’ means that W
is a weak base of Inv F . Note that every weak base W of Inv F is a generating
system of Inv F , for Inv F = [SF]RA

=
[
[W]∧,=

]
RA

= [W]RA
.

In [37, Proposition 5.2] the relevance of irredundant relations was also noted:
ρ ⊆ Am is irredundant if and only if for all i, j ∈ m we have i = j given that ai = aj

for all (a0, . . . , am−1) ∈ ρ. For n ∈ N+ and q = |A|n, any q-ary relation ρ ⊇ χn is
irredundant since for i, j ∈ q, i ̸= j the n-tuples β(i), β(j) are distinct, so there is

1068

Weak bases for Boolean relational clones and reductions

ℓ ∈ {1, . . . , n} such that e
(n)
ℓ ◦ β(i) ̸= e

(n)
ℓ ◦ β(j) and e

(n)
ℓ ◦ β ∈ χn ⊆ ρ. Moreover,

for all R ⊆ RA, it follows from [37, Proposition 5.2] that any irredundant ρ ⊊ Am

belonging to [R]∧,= actually is in [R]∧, that is, ρ can be expressed in terms of the
relations from R without explicitly using the equality predicate. This is clearly
very useful when dealing with problems that do not enjoy a priori compatibility
with equality. We note that if we build a reduction for a CSP-like problem based
on replacing in a formula atoms corresponding to a finite set W of relations by a
conjunction of atoms from R∪{=} as consequence of an expressibility result such as
W ⊆ [R]∧,= (or W ⊆ [R]∧), the number of variables does not change and the growth
in size of the formula is bounded above by a constant factor (namely, there is one
of the finitely many relations in W having the largest growth factor comparing the
length of atoms of the relation to their conjunctive representation, and this factor
bounds the growth of the whole formula in the reduction).

Lemma 4. For a finite set A and any set of relations R ⊆ RA, we have W ⊆ [R]∧,=
for any weak base W of [R]RA

. If W contains only irredundant proper relations, we
even obtain W ⊆ [R]∧.

Proof. Define F := Pol R and SF := ⋂
R′⊆RA

Pol R′=F

[R′]∧,=; then, by the definition of

weak base, we clearly have W ⊆ [W]∧,= = SF ⊆ [R]∧,=. The additional statement
about W consisting of irredundant relations ρ ⊊ Am is easy and follows from [37,
Proposition 5.2].

Schnoor and Schnoor [37] define a core of a clone F ⊆ OA as any relation
ρ ∈ RA such that Pol {ΓF (ρ)} = F , and |ρ| as one of several possible core sizes of F .
They suggest on p. 240 et seq. to treat finitely related clones F = Pol Q0, where
Q0 = {ρ1, . . . , ρt} ⊆ RA \{∅} with t ∈ N is a finite set of non-empty relations, as
follows: letting ρ := ρ1 × · · · × ρt we have F = Pol {ρ}. Since ρ is hence F -invariant,
we have ΓF (ρ) = ρ and thus F = Pol {ρ} = Pol {ΓF (ρ)}, turning ρ into a core and
giving |ρ| as a core size of F . As core sizes are essential for the description of weak
bases (cf. [37, Theorem 4.11]), and taking direct products is highly inefficient in
this respect, we improve on this construction with the first result of the subsequent
section.

3 Construction of singleton weak bases
Theorem 5. Let A be a finite set, n ∈ N+, and F := Pol Q with Q ⊆ RA be such
that for each ρ ∈ Q there is a set Bρ ⊆ ρ of size 1 ≤ |Bρ| ≤ n satisfying ρ = ΓF (Bρ).
Then χn is a core of F of size n, i.e., F = Pol {ΓF (χn)}.

1069

Behrisch

Proof. By its construction, we have ΓF (χn) ∈ Inv F , thus F ⊆ Pol {ΓF (χn)}. For
the converse inclusion consider ℓ ∈ N+ and f ∈ Pol {ΓF (χn)} of arity ℓ; we have to
show that f ∈ Pol Q. For this take ρ = ΓF (Bρ) ∈ Q with Bρ = {r1, . . . , rn} ⊆ Am

and tuples s1, . . . , sℓ ∈ ρ = ΓF (Bρ). Then there are functions g1, . . . , gℓ ∈ F (n) such
that sj = gj ◦ (r1, . . . , rn) for each j ∈ {1, . . . , ℓ}. We consider r1, . . . , rn as columns
of an (m × n)-matrix with rows z1, . . . , zm ∈ An. Moreover, let q := |A|n and
let β : q −→ An be the bijection used in the definition of χn; define α(i) := β−1(zi)
for i ∈ {1, . . . , m}. Hence, we have e

(n)
j (zi) = e

(n)
j ◦ β ◦ β−1(zi) = e

(n)
j ◦ β(α(i)) for

all j ∈ {1, . . . , n} and all i ∈ {1, . . . , m}. As e
(n)
j (zi) is the i-th entry of rj , we thus

obtain rj = e
(n)
j ◦ β ◦ α for all j ∈ {1, . . . , n}. Consequently,

st = gt ◦ (e(n)
1 ◦ β ◦ α, . . . , e(n)

n ◦ β ◦ α) = gt ◦ (e(n)
1 , . . . , e(n)

n) ◦ β ◦ α = gt ◦ β ◦ α

for all t ∈ {1, . . . , ℓ}. We have g1, . . . , gℓ ∈ F ⊆ Pol {ΓF (χn)} ∋ f , and therefore
h := f ◦(g1, . . . , gℓ) ∈ Pol {ΓF (χn)}. Hence h◦β = h◦(e(n)

1 ◦β, . . . , e
(n)
n ◦β) ∈ ΓF (χn),

that is, by the characterisation of ΓF (χn), we infer h ◦ β = g ◦ β for some g ∈ F (n).
As β is bijective, it follows that h = g ∈ F . Now we can finally conclude

f ◦ (s1, . . . , sℓ) = f ◦ (g1 ◦ (r1, . . . , rn), . . . , gℓ ◦ (r1, . . . , rn))
= f ◦ (g1, . . . , gℓ) ◦ (r1, . . . , rn) = h ◦ (r1, . . . , rn) ∈ ΓF (Bρ) = ρ,

where the final containment holds since h ∈ F .

Note that in the situation described at the end of Section 2 we hence get
max{1, |ρ1|, . . . , |ρt|} instead of |ρ1| · . . . · |ρt| as a core size of a finitely related
F = Pol {ρ1, . . . , ρt} with t ≥ 0.

Corollary 6. Let A be a finite set, F := Pol Q with Q ⊆ RA be such that for each
ρ ∈ Q there is a set Bρ ⊆ ρ of size 1 ≤ |Bρ| ≤ n ∈ N+ satisfying ρ = ΓF (Bρ).
Then {ΓF (χn)} is a weak base of F consisting of a single irredundant relation.

It is possible to appeal to [37, Theorem 4.11] to infer that ΓF (χn) provides a
singleton weak base from the fact that F has core size n (see Theorem 5). However,
using the theory developed above, we can also give a simple self-contained argument:

Proof. We use Theorem 5 to get that F = Pol {ΓF (χn)}. We will show that
pPol {ΓF (χn)} = ⋃ L↾F = ⋃

R⊆RA
Pol R=F

pPol R; thus [{ΓF (χn)}]∧,= = Inv pPol {ΓF (χn)}
equals the least weak system SF with [SF]RA

= Inv F . Due to F = Pol {ΓF (χn)},
the inclusion pPol {ΓF (χn)} ⊆ ⋃ L↾F is obvious. For the converse, let ℓ ∈ N+ and

1070

Weak bases for Boolean relational clones and reductions

suppose an ℓ-ary f satisfies f ∈ pPol R for some R ⊆ RA with Pol R = F . To show
that f ∈ pPol {ΓF (χn)}, consider g1, . . . , gℓ ∈ F (n) so that g1 ◦β, . . . , gℓ ◦β ∈ ΓF (χn)
and (g1(β(i)), . . . , gℓ(β(i))) ∈ dom(f) for every i ∈ q = |A|n. Since β is bijective,
this means that (g1(z), . . . , gℓ(z)) ∈ dom(f) for all z ∈ An; therefore, the compo-
sition h := f ◦ (g1, . . . , gℓ) ∈ OA is total. Since R ⊆ RA satisfies F = Pol R, we
have g1, . . . , gℓ ∈ F = Pol R ⊆ pPol R, but also f ∈ pPol R due to the assumption
on f . Hence, we get h = f ◦ (g1, . . . , gℓ) ∈ OA ∩ pPol R = Pol R = F , wherefore
f ◦ (g1 ◦ β, . . . , gℓ ◦ β) = f ◦ (g1, . . . , gℓ) ◦ β = h ◦ β ∈ ΓF (χn) as desired.

This proves that ΓF (χn) constitutes a weak base of Inv F ; it is an irredundant
relation because χn ⊆ ΓF (χn).

To construct new weak bases from old ones, we use the following lemma.

Lemma 7. If W ⊆ RA is a weak base of a clone F ⊆ OA on a finite set A and
some finite W ′ ⊆ [W]∧,= is such that Pol W ′ = F , then W ′ is a weak base of F , too.

Note that under the assumptions of the lemma we have W ′ ⊆ [W]RA
, implying

by Theorem 2 that F = Pol Inv F = Pol [W]RA
= Pol W ⊆ Pol W ′ because the weak

base W generates the relational clone Inv F . Thus, the precise condition that needs
to be verified when applying Lemma 7 is that this inclusion is not proper, i.e., that
Pol W ′ ⊆ F .

Proof. We abbreviate Q := Inv F . As Pol W ′ = F , we get [W ′]RA
= Inv Pol W ′ = Q;

therefore, W ⊆ [W ′]∧,= by the weak base property w.r.t. Q (cf. Lemma 4). This
implies [W]∧,= ⊆ [W ′]∧,=, and together with the assumption [W ′]∧,= ⊆ [W]∧,= we
obtain [W ′]∧,= = [W]∧,= = SF . Therefore, W ′ also is a weak base of F .

Corollary 8. If W ⊆ RA is a weak base of a clone F ⊆ OA and W ′ ⊆ RA arises
from W by subjecting each ρ ∈ W to some permutation of its entries, then W ′ is a
weak base of F , as well.

4 Boolean weak bases with similarities
We denote the clones of Post’s lattice by the symbols shown in Figure 1. Often
we write 2 = {0, 1} for the Boolean set; for example, L2 = L{0,1} means the set
of all Boolean clones. We further use ∧, ∨ for the binary Boolean conjunction and
disjunction, ⊕ for addition modulo 2 (exclusive disjunction), → for implication,
¬, c0, c1 for negation and the two unary constant operations, and a = (a, . . . , a) ∈ 2n

where a ∈ {0, 1} for the two constant tuples, their arity n usually being implicit.

1071

Behrisch

If F ∈ L2, then we write RF for the relation given in [24, Table 1] such that {RF }
is a weak base of F , and ρF in the cases where we give an alternative weak base {ρF }.
For most relations we use in this paper, descriptions as sets of tuples are given in
Appendix A. Clones F ∈ L2 that we wish to treat as a ‘similar’ group are those with a
closely related generating set, or with a similar generating set for Inv F . The groups
we choose are clones generated by constants (I, I0, I1, I2), essentially unary clones
involving negation (N, N2), Horn (E, E0, E1, E2) and dual Horn clones (V, V0, V1, V2),
affine (linear) clones (L, L0, L1, L2, L3), clones between selfdual and selfdual monotone
operations (D, D1, D2), clones of zero-separating functions (Sn

0 , Sn
01, Sn

02, Sn
00) and of

one-separating functions (Sn
1 , Sn

11, Sn
12, Sn

10), monotone clones (M, M0, M1, M2), and
subset-preserving clones (O2 = R, R0, R1, R2). In several cases, these clones come
in groups of four that are ordered in the form of a diamond. In these cases we
would preferably try to maintain constructibility of our weak base relations according
to the commutative diagram specified by the upwards directed edges of the order
of the corresponding relational clones, where parallel edges represent a common
type of construction (ideally preserving the cardinality of the relation), cf. Figure 2.
Moreover, if for some F ∈ L2 the weak base relation RF is an argument permutation

F2

F0F1

F

Inv F

Inv F0Inv F1

Inv F2

ρF

ρF0ρF1

ρF2

Figure 2: Square covering sublattices of Boolean relational clones and intended
constructions of weak base relations

of ΓF (χn) for some n ∈ N+, then we shall actually prefer to choose ρF = ΓF (χn)
with the argument order determined by the lexicographic order defining χn.

We start from the top of Post’s lattice. For the subset-preserving clones, we wish
to modify RR = {(x, x) | x ∈ 2}, which is not irredundant. Our choice is irredundant,
but contains a fictitious argument, allowing for a uniform construction.

Lemma 9. We have the weak base relations ρR = {0, 1}, RRa = {a} for a ∈ 2
and RR2 = {(0, 1)}; alternatively, the relations ρR, ρR0 = ΓR0(χ1) = {0} × ρR,
ρR1 = ΓR1(χ1) = ρR ×{1} and ρR2 = {0} × ρR ×{1} = {0} × ρR1 = ρR0 ×{1} also
give weak bases.

Proof. We have ρR = {x ∈ 2 | (x, x) ∈ RR} ∈ [{RR}]∧,= and Pol ρR = O2 = R, so
ρR is a weak base by Lemma 7. By [24, Table 1] the four considered clones have
core size 1, so we can apply [37, Theorem 4.11] or Corollary 6 to get the alternative

1072

Weak bases for Boolean relational clones and reductions

irredundant weak bases for Ra, a ∈ 2. Taking RR2 = {(0, 1)} from [24, Table 1],
we can express the relation ρR2 =

{
(x, y, z) ∈ 23 | (x, z) ∈ RR2

} ∈ [{RR2}]∧,=, and
clearly we have Pol

{
ρR2

}
= Pol {{0}, {1}} = R0 ∩ R1 = R2; hence, {0} × ρR ×{1} is

a weak base of R2 by Lemma 7.

Lemma 10. A weak base is given by the order relation RM = ΓM(χ1) = ≤2, and,
similar to Lemma 9, it can be extended to ρM0 = {0} × RM, RM1 = RM ×{1} and
ρM2 = {0} × RM ×{1} = {0} × RM1 = ρM0 ×{1}, describing singleton weak bases of
the remaining clones from the monotone group.

Proof. Clearly, we can express the relations ρM0 =
{

(x, y, z) ∈ 23 ∣∣ (y, z, x) ∈ RM0

}
,

and ρM2 =
{

(x, y, z, u) ∈ 23 ∣∣ (y, z, x, u) ∈ RM2

}
simply using variable permutations,

wherefore the claim follows from Corollary 8.

Lemma 11. Weak bases are given by RE = ΓE(χ2), and, similar to Lemma 9, by
ρE0 = {0} × RE, ρE1 = RE ×{1} and ρE2 = {0} × RE ×{1} = {0} × ρE1 = ρE0 ×{1}.

Proof. Immediate verification gives that RE from [24] equals ΓE(χ2); moreover ρE0
provides a weak base due to ρE0 =

{
(x, y, z, u, v) ∈ 25 ∣∣ (y, z, u, v, x) ∈ RE0

}
and

Corollary 8. By Corollary 6, ΓE1(χ3) is a weak base relation for E1 since the latter
has core size 2 ≤ 3 (cf. [24, Table 1]). From ΓE1(χ3) we form

{(x1, . . . , x5) ∈ 25 | (x1, x2, x1, x2, x3, x4, x3, x5) ∈ ΓE1(χ3)}

and direct verification shows that this relation is RE ×{1}. We therefore know that
ρE1 = RE ×{1} ∈ [{ΓE1(χ3)}]∧,=, thus ρE1 ∈ [{ΓE1(χ3)}]RA

⊆ [Inv E1]RA
= Inv E1,

which means that E1 ⊆ Pol {ρE1}. This inclusion cannot be proper, because we have
∨ /∈ Pol

{
ρE1

}
(namely (0, 0, 1, 1, 1) ∨ (0, 1, 0, 1, 1) = (0, 1, 1, 1, 1) /∈ ρE1), showing

M1 ̸⊆ Pol
{
ρE1

}
, and moreover (0, 0, 0, 0, 0) /∈ ρE1 , i.e., c0 /∈ Pol

{
ρE1

}
, showing

E ̸⊆ Pol
{
ρE1

}
. As M1 and E are the only upper covers of E1 in Post’s lattice, we

infer Pol
{
ρE1

}
= E1, and Lemma 7 proves that ρE1 is a weak base relation of E1.

The proof for ρE2 is similar: ΓE2(χ4) is a weak base relation of E2 for this clone has
core size 3 ≤ 4 (cf. [24, Table 1]). We verify that ρE2 = ρE0 ×{1} ∈ [{ΓE2(χ4)}]∧,=,
by checking that

ρE2 =
{

(x1, . . . , x6) ∈ 26
∣∣∣

(x1, x1, x1, x1, x2, x3, x2, x3, x1, x1, x1, x1, x4, x5, x4, x6) ∈ ΓE2(χ4)
}

.

Thus ρE2 ∈ [{ΓE2(χ4)}]RA
⊆ [Inv E2]RA

= Inv E2, i.e., E2 ⊆ Pol
{
ρE2

}
. Certainly,

ca /∈ Pol
{
ρE2

}
for both a ∈ 2, thus Ea ̸⊆ Pol

{
ρE2

}
. Neither is (x, y, z) 7→ x ∧ (y ∨ z)

1073

Behrisch

in Pol
{
ρE2

}
because

(0, 1, 1, 1, 1, 1) ∧ ((0, 0, 0, 1, 1, 1) ∨ (0, 0, 1, 0, 1, 1)) = (0, 1, 1, 1, 1, 1) ∧ (0, 0, 1, 1, 1, 1)
= (0, 0, 1, 1, 1, 1) /∈ ρE2 .

Therefore, we have S10 ̸⊆ Pol
{
ρE2

}
, cf. [15, Figure 2]. By inspecting Post’s lattice,

the inclusion E2 ⊆ Pol
{
ρE2

}
cannot be proper. Hence Lemma 7 shows that ρE2 is a

weak base relation of E2.

Lemma 12. Weak bases are given by ρV = ΓV(χ2),1 and, similar to Lemma 9, by
ρV1 = {1} × ρV, ρV0 = ρV ×{0} and ρV2 = {1} × ρV ×{0} = {1} × ρV0 = ρV1 ×{0}.

Proof. This follows from Lemma 11 by duality, i.e., switching the roles of 0 and 1.

For the four clones generated by constants, we cannot do much. We have
ΓI2(χn) = χn, ΓIa(χn) = χn ∪{a} for a ∈ 2, and ΓI(χn) = χn ∪{0, 1} for all n ∈ N+.
The weak bases from [24] satisfy for all x1, x2, x3, x4 ∈ 2 that (x1, x2, x3, x4) ∈ RI1
iff there are (unique) x′

1, x′
2, x′

3, x′
4 ∈ 2 with (x′

1, x′
2, x3, x1, x2, x′

3, x′
4, x4) ∈ RI2 and

x′
4 = 0; also (x1, x2, x3, x4) ∈ RI0 iff there are (unique) x′

1, x′
2, x′

3, x′
4 ∈ 2 with

(x′
3, x2, x1, x3, x′

2, x′
1, x4, x′

4) ∈ RI2 and x′
4 = 1. This is to say that for a ∈ {0, 1} one

can define RIa from RI2 by existentially quantifying four variables, and that in each
case the values of these four variables are in fact uniquely determined because both
relations contain precisely three tuples. It therefore makes no difference whether
one employs the quantifier ∃ or ∃! in the definition; hence, when counting solutions
plays a role, such a relationship can be exploited to get a parsimonious reduction.
Choosing ρIa = χ3 ∪ {a} for both a ∈ 2 and ρI2 = χ4, we can achieve a similar
property also for all four clones I, I0, I1, I2.

Lemma 13. For all x1, . . . , x8 ∈ 2 we have (x1, x2, x3, x4) ∈ RI = ΓI(χ2) iff there
are (unique) values x′

1, x′
2, x′

3, x′
4 ∈ 2 such that (x′

1, x′
2, x′

3, x′
4, x1, x2, x3, x4) ∈ ρI0

(and x′
1 = 0), equivalently, iff there are (unique) x′

1, x′
2, x′

3, x′
4 ∈ 2 such that (x′

4 = 1
and) (x1, x2, x3, x4, x′

1, x′
2, x′

3, x′
4) ∈ ρI1. Moreover, we have (x1, x2, . . . , x8) ∈ ρI0

iff there are (unique) values x′
1, . . . , x′

8 ∈ 2, such that (x′
i = ¬xi for 1 ≤ i ≤ 8

and) (x1, x′
8, x2, x′

7, x3, x′
6, x4, x′

5, x5, x′
4, x6, x′

3, x7, x′
2, x8, x′

1) is in ρI2. Dually, we
have (x1, x2, . . . , x8) ∈ ρI1 iff there are (unique) values x′

1, . . . , x′
8 ∈ 2, with (x′

i = ¬xi

for i ≤ 8 and) (x′
8, x1, x′

7, x2, x′
6, x3, x′

5, x4, x′
4, x5, x′

3, x6, x′
2, x7, x′

1, x8) ∈ ρI2.

Proof. This can be directly verified by writing out the matrix representations of
the relations. The uniqueness of the values of the existentially quantified variables
follows from the fact that all compared relations contain exactly four tuples.

1In contrast to RE = ΓE(χ2), the relation RV given by Lagerkvist in [24, Table 1] is only equal
to ΓV(χ2) up to a permutation of variables. Therefore in this lemma the notation ρV was used.

1074

Weak bases for Boolean relational clones and reductions

The weak base relations for the essentially unary clones with negation both have
six tuples and are closely related, too.

Lemma 14. The weak base relations for N and N2 satisfy for all x1, x2, x3, x4 ∈ 2
that (x1, x2, x3, x4) ∈ RN = ΓN(χ2) iff there are unique elements x′

i = ¬xi ∈ 2 (for
1 ≤ i ≤ 4) such that (x1, x2, x3, x4, x′

1, x′
2, x′

3, x′
4) ∈ RN2, or alternatively such that

(x1, x2, x3, x4, x′
4, x′

3, x′
2, x′

1) ∈ ρN2 := ΓN2(χ3).

Proof. This holds directly by the definition of RN2 in [24], which can be stated as

RN2 =
{

(x1, x2, x3, x4, x′
1, x′

2, x′
3, x′

4) ∈ 28
∣∣∣∣∣ (x1, x2, x3, x4) ∈ RN ∧

4∧

i=1
x′

i = ¬xi

}
.

Moreover, for arbitrary x1, x2, x3, x4, x′
1, x′

2, x′
3, x′

4 ∈ {0, 1} it is easy to see that
(x1, x2, x3, x4, x′

1, x′
2, x′

3, x′
4) ∈ RN2 iff (x1, x2, x3, x4, x′

4, x′
3, x′

2, x′
1) ∈ ρN2 .

For the clones D, D1, D2 we do not see an easy possibility to get weak base
relations with the same number of tuples for all three of them, which might improve
the relations from [24]. Thus, we stick with RD = ΓD(χ1), ρD1 = ΓD1(χ2) = χ2,
being

{
(x, y, z, u) ∈ 24 ∣∣ (y, z, x, u) ∈ RD1

}
, and RD2 ; furthermore, since D2 has core

size 3 (cf. [24, Table 1]), we note that sometimes also ρD2 = ΓD2(χ3) may be a useful
weak base relation (see Corollary 6).

Lemma 15. For n ∈ N, n ≥ 2, we have weak base relations RSn
0

= (2n \ {0}) × {1},
ρSn

02
= {0} × RSn

0
= {0} × (2n \ {0}) × {1}, RSn

01
= ρSn

02
∪ {1}, ρSn

00
= {0} × RSn

01
.

Dually, we have RSn
1

= (2n \ {1}) × {0}, ρSn
12

= {1} × RSn
1

= {1} × (2n \ {1}) × {0},
RSn

11
= ρSn

12
∪ {0}, ρSn

10
= {1} × RSn

11
.2

Proof. By Corollary 8, the relations ρSn
02

and ρSn
00

form weak bases because

ρSn
02

=
{

(u, x1, . . . , xn, v) ∈ 2n+2
∣∣∣ (x1, . . . , xn, u, v) ∈ RSn

02

}
,

ρSn
00

=
{

(u, x0, . . . , xn, v) ∈ 2n+3
∣∣∣ (x0, . . . , xn, u, v) ∈ RSn

00

}
.

Following the definition of RSn
01

and RSn
11

from [24], we conclude

RSn
01

= (({0} × (2n \ {0})) ∪ {1}) × {1} = ({0} × (2n \ {0}) × {1}) ∪ {1}
= ρSn

02
∪ {1},

2Using ρSn
12

∪{0} as RSn
11

and ρSn
10

(or also (ρSn
12

∪{0}) × {1}) fixes the base relations for Sn
11

and Sn
10 that are incorrectly printed in [24, Table 1].

1075

Behrisch

RSn
11

= (({1} × (2n \ {1})) ∪ {0}) × {0} = ({1} × (2n \ {1}) × {0}) ∪ {0}
= ρSn

12
∪ {0}.

The weak base relations belonging to the clones Sn
1 , Sn

12, Sn
11, Sn

10 follow from the
preceding results by duality.

Taking inspiration from bases of relational clones given in [8, Table 1, p. 61], it
would be desirable to prove that at least L, L0, L1, L2 have weak base relations of the
form RL = ΓL(χ2), {0} × RL , RL ×{1}, {0} × RL ×{1} (note that RL consists of
those eight quadruples in {0, 1}4 that have an even number of entries equal to 1).
However, the following lemma shows that this hope is in vain.

Lemma 16. {{0} × RL}, {RL ×{1}}, and {{0} × RL ×{1}} fail to be weak bases
for L0, L1, and L2, respectively. Instead, one may use ρL0 = ΓL0(χ2), ρL1 = ΓL1(χ2),
ρL2 = ΓL2(χ3) and ρL3 = ΓL3(χ3) as irredundant weak base relations.

Proof. According to [24, Table 1], the clones L0 and L1 have core size 2, L2 and
L3 have core size 3. Hence Corollary 6 tells us that ρLa

where a ∈ {0, 1, 2, 3} are
irredundant weak base relations of the respective clones; in particular these relations
are generators for the relational clone Inv La. We now discuss the weak base failures.

By duality between L1 and L0, it is sufficient to show that {0} × RL does not
give a weak base of L0. Knowing that ρL0 generates Inv L0, if {0} × RL were to
form a weak base of L0, then {0} × RL ∈ [{

ρL0

}]
∧,= by Lemma 4, equivalently,

by Theorem 3, pPol
{
ρL0

} ⊆ pPol {{0} × RL}. However, f : D ⊆ 23 −→ 2 defined
on D = {(0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)} as f(x, y, z) = x ∧ y ∧ z for
x, y, z ∈ 2 fails to preserve {0} × RL , because the following matrix X ∈ 25×3 has its
three columns in {0} × RL , its rows in D, but the application of f produces a tuple
outside {0} × RL :

X :=

0 0 0
1 0 0
1 0 1
1 1 0
1 1 1

∈ D
∈ D
∈ D
∈ D
∈ D

;

f(0, 0, 0)
f(1, 0, 0)
f(1, 0, 1)
f(1, 1, 0)
f(1, 1, 1)

=

0
0
0
0
1

/∈ {0} × RL

Adding the bottom row (1, 1, 1) to X, we immediately observe that f does not
preserve {0} × RL ×{1} either. One can now check that f preserves ρL0 = {0} × σ,
where σ =

{
(x1, x2, x3) ∈ 23 ∣∣ x1 ⊕ x2 ⊕ x3 = 0

}
consists of all triples with an even

number of values 1. For this it is sufficient to see that f preserves the relation σ, as
ρL0 ∈ [{{0}, σ}]∧,= and f clearly preserves {0}. We thus take an arbitrary matrix

1076

Weak bases for Boolean relational clones and reductions

X ∈ 23×3 with rows z1, z2, z3 ∈ D and columns r1, r2, r3 ∈ σ. We have to prove that
f(X) := f ◦ (r1, r2, r3) = (f(z1), f(z2), f(z3)) belongs to σ. This is trivial whenever
0 ∈ {r1, r2, r3}, because then f(X) = 0. Hence, we suppose now that none of the
columns equals 0. If 0 /∈ {z1, z2, z3}, then all rows of the matrix begin with 1,
wherefore r1 = 1 /∈ σ, a contradiction. Consequently, there is i ∈ {1, 2, 3} such that
zi = 0. Then, in order to have an even number of ones in each column and to avoid
any columns being 0, we must have r1 = r2 = r3, whence f ◦ (r1, r2, r3) = r1 ∈ σ
by the idempotence of f . This shows that always f(X) ∈ σ, and thus f preserves σ
and hence ρL0 . We therefore know now that f ∈ pPol

{
ρL0

} \ pPol {{0} × RL},
which precludes {{0} × RL} from being a weak base of L0. By duality we obtain the
analogous statement for L1 and RL ×{1}.

Similarly, if {{0} × RL ×{1}} were a weak base for L2, then we would have to have
{0} × RL ×{1} ∈ [{

ρL2

}]
∧,=, for L2 has core size 3 (cf. [24, Table 1]). Hence, from

Theorem 3, it would follow that pPol
{
ρL2

} ⊆ pPol {{0} × RL ×{1}}, which is again
impossible using the same f /∈ pPol {{0} × RL ×{1}} as above. Here again, we need
to check that f preserves ρL2 = ΓL2(χ3) =

{
e

(3)
1 ◦ β, e

(3)
2 ◦ β, e

(3)
3 ◦ β, g ◦ β

}
, where

β : 8 −→ {0, 1}3 is the bijection from the construction of χ3 and g(x, y, z) := x⊕y⊕z

for x, y, z ∈ 2. It is easy to see that if h, ℏ ∈ J (3)
2 ∪{g} are any two ternary operations

from L2 such that
{

x ∈ 23 ∣∣ h(x) = 0
} ⊆ {

x ∈ 23 ∣∣ ℏ(x) = 0
}
, then h = ℏ. Let

us now consider an arbitrary matrix X ∈ 28×3 such that all its columns belong
to ΓL2(χ3) and its rows belong to D. The columns are therefore given as hj ◦ β

for certain h1, h2, h3 ∈ L(3)
2 , and for all z ∈ 23 we have (h1(z), h2(z), h3(z)) ∈ D.

Since 0 ∈ D is the only triple in D that begins with a 0, for every z ∈ 23 where
h1(z) = 0, we must also have h2(z) = h3(z) = 0. This implies that the inclusion{

x ∈ 23 ∣∣ h1(x) = 0
} ⊆ {

x ∈ 23 ∣∣ hj(x) = 0
}

holds for all j ∈ {1, 2, 3}, and therefore
hj = h1, i.e., h1 = h2 = h3. Thus, all columns of X are identical, and hence f(X)
equals its first column h1 ◦ β ∈ ΓL2(χ3) = ρL2 by the idempotence of f .

The two technical preservation properties f ∈ pPol {ΓL0(χ2)} \ pPol {{0} × RL}
and f ∈ pPol {ΓL2(χ3)}\pPol {{0} × RL ×{1}}, which underlie this proof, have also
been formally verified using the SMT solver Z3 [30, 31]. The corresponding data
files are available from [2].

Theorem 17. For F ∈ {R, M, E, V} there are single irredundant relations ρF such
that {ρF }, {{0} × ρF }, {ρF × {1}}, and {{0} × ρF × {1}} are (irredundant) weak
bases of F , F0, F1 and F2, respectively. For F = L a simple construction of this
form fails. For F ∈ {I, N} there are irredundant weak base relations ρF such that
weak bases of F0, F1, F2 can be obtained from them by extending the tuples in ρF

with uniquely determined values. For F = Sn
0 irredundant weak base relations can

1077

Behrisch

be constructed from ρF as {0} × ρF , ({0} × ρF) ∪ {1}, {0} × (({0} × ρF) ∪ {1}), for
F2, F1 and F0, respectively; for F = Sn

1 dual constructions apply.

Proof. This follows from Lemmata 9–16.

5 Relationships between Boolean weak bases
In [27] it was studied for which pairs F, G of Boolean clones we have ⋃ L↾F ⊆ ⋃ L↾G,
that is, whether a particular weak base WG of G is expressible as WG ∈ [WF]∧,= by
a conjunctive formula (possibly including equality) from a weak base WF of F , or
not. It turns out that in many cases this is impossible [27, Figure 1, Table IV]. Nev-
ertheless, in some of these impossible cases, the weak bases may be closely related
in a slightly different way, and these relationships can still be exploited to obtain
reductions for certain computational problems (such as counting), in which the pa-
rameter used for measuring the complexity does not change too much, e.g., linearly
(by a constant factor) or by an additive constant. In many of these relationships
we exploit existentially quantified variables whose values are additionally uniquely
determined by the values of (some of) the non-quantified variables as in [26], which
leads to parsimonious reductions where the size of the instance grows only linearly,
using the same argument as given before Lemma 4. Thus, in many cases shown below
the existence of such relationships can be considered as a consequence of the theory
developed in [26], but the precise nature of the expressibility for the individual ex-
amples does not follow from there. The details of how relations can be expressed are
important insofar as the relationships are particularly useful if the quantified vari-
ables are determined by an empty tuple of the non-quantified variables, that is, have
a constant value (this has been called frozen existential quantification in [32]), or if
they are determined by a single one of the non-quantified variables. We comment
on these aspects for the individual examples presented subsequently.

To shorten formulations, we stipulate for relation symbols R, R′
1, . . . , R′

m, tuples
of variables x, z1, . . . , zm, sequences of variables y and u1, . . . , un, and constants
a1, . . . , an ∈ {0, 1} that the expression

‘x ∈ R
◦⇐⇒ ∃!y ∈ 2:

m∧

i=1
zi ∈ R′

i ∧
n∧

j=1
uj = aj ’

is true if and only if the following chain of implications, wherein ∃! denotes unique
existence of elements (values being functionally determined by the value of x), holds:

x ∈ R =⇒ ∃!y ∈ {0, 1} :
m∧

i=1
zi ∈ R′

i

1078

Weak bases for Boolean relational clones and reductions

=⇒ ∃!y ∈ {0, 1} :
m∧

i=1
zi ∈ R′

i ∧
n∧

j=1
uj = aj

=⇒ ∃y ∈ {0, 1} :
m∧

i=1
zi ∈ R′

i

=⇒ x ∈ R.

Likewise, we use ‘x ∈ R
◦⇐⇒ ∃!y ∈ {0, 1} : z ∈ R′’ to denote

x ∈ R =⇒ ∃!y ∈ {0, 1} : z ∈ R′ =⇒ ∃y ∈ {0, 1} : z ∈ R′ =⇒ x ∈ R.

Lemma 18. For all x1, . . . , x5 ∈ 2 = {0, 1} we have

(x1, . . . , x4) ∈ RE
◦⇐⇒ ∃!u ∈ 2: (u, x1, . . . , x4) ∈ ρE0 ∧ u = 0,
◦⇐⇒ ∃!u ∈ 2: (x1, . . . , x4, u) ∈ ρE1 ∧ u = 1,

(x1, . . . , x5) ∈ ρE0
◦⇐⇒ ∃!u ∈ 2: (x1, . . . , x5, u) ∈ ρE2 ∧ u = 1,

(x1, . . . , x5) ∈ ρE1
◦⇐⇒ ∃!u ∈ 2: (u, x1, . . . , x5) ∈ ρE2 ∧ u = 0.

Proof. This follows because the relations appearing on the right-hand side of the
equivalence ◦⇐⇒ are a direct product of the respective ones on the left-hand side
with a singleton set, e.g., ρE0 = {0} × RE , ρE2 = {0} × ρE1 , etc., cf. Lemma 11.

The dual of this result is as follows:

Lemma 19. For all x1, . . . , x5 ∈ 2 = {0, 1} we have

(x1, . . . , x4) ∈ ρV
◦⇐⇒ ∃!u ∈ 2: (x1, . . . , x4, u) ∈ ρV0 ∧ u = 0,
◦⇐⇒ ∃!u ∈ 2: (u, x1, . . . , x4) ∈ ρV1 ∧ u = 1,

(x1, . . . , x5) ∈ ρV0
◦⇐⇒ ∃!u ∈ 2: (u, x1, . . . , x5) ∈ ρV2 ∧ u = 1,

(x1, . . . , x5) ∈ ρV1
◦⇐⇒ ∃!u ∈ 2: (x1, . . . , x5, u) ∈ ρV2 ∧ u = 0.

Proof. We argue as for Lemma 18, but employ Lemma 12 instead of Lemma 11.

For the group of ‘monotone’ clones we have the following result:

Lemma 20. For all x1, x2, x3 ∈ {0, 1} we have

(x1, x2) ∈ RM
◦⇐⇒ ∃!u ∈ 2: (u, x1, x2) ∈ ρM0 ∧ u = 0,
◦⇐⇒ ∃!u ∈ 2: (x1, x2, u) ∈ RM1 ∧ u = 1,

(x1, x2, x3) ∈ ρM0
◦⇐⇒ ∃!u ∈ 2: (x1, x2, x3, u) ∈ ρM2 ∧ u = 1,

(x1, x2, x3) ∈ RM1
◦⇐⇒ ∃!u ∈ 2: (u, x1, x2, x3) ∈ ρM2 ∧ u = 0.

1079

Behrisch

Proof. The proof is analogous to Lemma 18, now using the representations as a
direct product with a singleton set from Lemma 10.

The same happens for the clones of subset preserving operations.

Lemma 21. For all x, y ∈ {0, 1} we have

x ∈ ρR
◦⇐⇒ ∃!u ∈ 2: (u, x) ∈ ρR0 ∧ u = 0,
◦⇐⇒ ∃!u ∈ 2: (x, u) ∈ ρR1 ∧ u = 1,

(x, y) ∈ ρR0
◦⇐⇒ ∃!u ∈ 2: (x, y, u) ∈ ρR2 ∧ u = 1,

(x, y) ∈ ρR1
◦⇐⇒ ∃!u ∈ 2: (u, x, y) ∈ ρR2 ∧ u = 0.

Proof. The proof works as for Lemma 18, using the definitions from Lemma 9.

We observe the very similar shape of the expressions used in Lemmata 18 to 21,
which is due to the uniform construction of weak base relations guaranteed by The-
orem 17. Thus, if these relationships are employed in a gadget reduction, the re-
ductions will always be parsimonious, the number of variables will increase by 1
(constant value), and the size of the instance will grow linearly as the additional
variable appears in every atom of the formula.

Lemma 22. For n ∈ N, n ≥ 2, and x1, . . . , xn+2 ∈ {0, 1} we have

(x1, . . . , xn+1) ∈ RSn
0

◦⇐⇒ ∃!u ∈ 2: (u, x1, . . . , xn+1) ∈ ρSn
02

∧ u = 0, (1)
⇐⇒ ∃u ∈ 2:

(
(u, x1, . . . , xn+1) ∈ RSn

01
∧ u = 0

) ∨̇
(
(u, x1, . . . , xn+1) ∈ RSn

01
∧

(u, x1, . . . , xn+1) = 1
)
,

(2)

(x1, . . . , xn+2) ∈ ρSn
02

[27]⇐⇒ (x1, x1, x2, . . . , xn+2) ∈ ρSn
00

, (3)
⇐⇒ ∃u ∈ 2:

(
(x1, u, x2, . . . , xn+2) ∈ ρSn

00
∧ u = 0

) ∨̇
(
(x1, u, x2, . . . , xn+2) ∈ ρSn

00
∧

(u, x2, . . . , xn+2) = 1 ∧ x1 = 0
)
,

(4)

(x1, . . . , xn+2) ∈ RSn
01

◦⇐⇒ ∃!u ∈ 2: (u, x1, . . . , xn+2) ∈ ρSn
00

∧ u = 0. (5)

Proof. The first equivalence (1) holds because ρSn
02

= {0}×RSn
0
, see Lemma 15. The

second equivalence (2) holds since, by Lemma 15, RSn
01

= ρSn
02

∪ {1}, and this union
is disjoint as ρSn

02
= {0}×RSn

0
, i.e., every tuple in ρSn

02
begins with 0. The projection

1080

Weak bases for Boolean relational clones and reductions

of the tuples in ρSn
02

completely describes RSn
0

as shown before, and the projection
of 1 to its last n + 1 places is again 1 ∈ (2n \ {0}) × {1} = RSn

0
, cf. Lemma 15.

From Lemma 15 we also have ρSn
00

= {0}×RSn
01

, which directly explains the final
equivalence (5). Therefore, if (x1, x1, . . . , xn+2) ∈ ρSn

00
, then (x1, . . . , xn+2) ∈ RSn

01
and x1 = 0. Hence, (x1, . . . , xn+2) ∈ RSn

01
= ρSn

02
∪ {1} and (x1, . . . , xn+2) ̸= 1 as

x1 = 0; consequently, (x1, . . . , xn+2) ∈ ρSn
02

. In the other direction, if we assume that
(x1, . . . , xn+2) ∈ ρSn

02
= {0} × RSn

0
, then x1 = 0 and (x1, . . . , xn+2) ∈ ρSn

02
⊆ RSn

01
.

Therefore, (x1, x1, . . . , xn+2) ∈ {0}×RSn
01

= ρSn
00

, and we have shown (3). We remark
that equivalence (3) has also been stated earlier in the proof of [27, Lemma 8].

Since the union RSn
01

= ρSn
02

∪ {1} =
(
{0} × RSn

0

)
∪ {1} is disjoint, there are two

kinds of tuples in ρSn
00

= {0} × RSn
01

: the tuple (0, 1, . . . , 1), and all the remaining
tuples, which are of the form (0, 0, x2, . . . , xn+2) = (x1, u, x2, . . . , xn+2) with the
condition x1 = u = 0. Their projections obtained by removing the second entry, i.e.,
(0, 1, . . . , 1) and (x1, . . . , xn+2) = (0, x2, . . . , xn+2) = (u, x2, . . . , xn+2), belong to the
relation ρSn

02
= {0} × RSn

0
because 1 ∈ RSn

0
and (u, x2, . . . , xn+2) ∈ RSn

01
\{1} = ρSn

02
since u = 0. Conversely, if (x1, . . . , xn+2) ∈ ρSn

02
= {0} × RSn

0
, then x1 = 0. Letting

u := 0 = x1 and using equivalence (3) that was demonstrated above, we then have
(x1, u, x2, . . . , xn+2) = (x1, x1, x2, . . . , xn+2) ∈ ρSn

00
, finishing the proof of (4).

The equivalences (1), (3) and (5) can be used to obtain parsimonious reductions
between computational problems; in the case of (3) the number of variables does
not change between the instances, in the case of (1) and (5) it grows by 1 as only
a single variable with a constant value of 0 throughout the whole instance needs
to be introduced. In all three cases the size of the instance grows linearly as the
length of each atom in the formula extends by a constant factor. From the equiva-
lences (2) and (4) one can obtain reductions, in which one introduces a single fresh
variable u throughout the instance and replaces each RSn

0
-atom by the corresponding

u-extended RSn
01

-atom or ρSn
00

-atom as mentioned in (2) or (4), respectively. Each
atom will thereby grow by a constant factor, hence the size of the instance in such
a reduction will grow only linearly. According to the equivalences (2) and (4), this
leads to an ‘almost parsimonious’ reduction, that is, the number of solutions in-
creases by 1. For brevity, we shall explain this in the case of (2), the analysis for (4)
being analogous. There is the possibility that the value of u in a solution to the
RSn

01
-instance is 1. Since this variable occurs in every atom, the first component of

the tuples for each atom is equal to 1, and, according to (2), this can only occur if
the whole tuple is 1, i.e., u and all the other variables have the value 1 (which is
indeed a solution to the instance we have reduced to). In all the other solutions the
value of u is 0, and, according to (2), these solutions correspond bijectively to those
of the original RSn

0
-instance. Therefore, the number of solutions of the RSn

01
-instance

1081

Behrisch

is equal to the number of solutions of the RSn
0
-instance increased by one, and in a

reduction of a counting problem one needs to subtract 1 to obtain the answer to the
original problem.

The dual of the preceding result is as follows, and an analogous analysis of the
parameter growth in reductions can be performed:

Lemma 23. For n ∈ N, n ≥ 2, and x1, . . . , xn+2 ∈ {0, 1} we have

(x1, . . . , xn+1) ∈ RSn
1

◦⇐⇒ ∃!u ∈ 2: (u, x1, . . . , xn+1) ∈ ρSn
12

∧ u = 1,

⇐⇒ ∃u ∈ 2:
(
(u, x1, . . . , xn+1) ∈ RSn

11
∧ u = 1

) ∨̇
(
(u, x1, . . . , xn+1) ∈ RSn

11
∧

(u, x1, . . . , xn+1) = 0
)
,

(x1, . . . , xn+2) ∈ ρSn
12

⇐⇒ (x1, x1, x2, . . . , xn+2) ∈ ρSn
10

,

⇐⇒ ∃u ∈ 2:
(
(x1, u, x2, . . . , xn+2) ∈ ρSn

10
∧ u = 1

) ∨̇
(
(x1, u, x2, . . . , xn+2) ∈ ρSn

10
∧

(u, x2, . . . , xn+2) = 0 ∧ x1 = 1
)
,

(x1, . . . , xn+2) ∈ RSn
11

◦⇐⇒ ∃!u ∈ 2: (u, x1, . . . , xn+2) ∈ ρSn
10

∧ u = 1.

There is also an immediate relationship between the weak base relations for
the clones of zero-separating functions of different degrees, which, in principle, was
already observed in the proof of [27, Lemma 8]. However, in two of the expressions
given there, unfortunately a variable is missing and hence variable identifications
occur in the wrong places; the precise relationships are as follows:

Lemma 24 (cf. [27, Lemma 8]). For n ∈ N, n ≥ 2, and any x1, . . . , xn+3 ∈ {0, 1}
we have

(x1, . . . , xn+1) ∈ RSn
0

⇐⇒ (x1, x1, x2, . . . , xn+1) ∈ RSn+1
0

,

(x1, . . . , xn+2) ∈ ρSn
02

⇐⇒ (x1, x2, x2, x3, . . . , xn+2) ∈ ρSn+1
02

,

(x1, . . . , xn+2) ∈ RSn
01

⇐⇒ (x1, x2, x2, x3, . . . , xn+2) ∈ RSn+1
01

,

(x1, . . . , xn+3) ∈ ρSn
00

⇐⇒ (x1, x2, x3, x3, x4, . . . , xn+3) ∈ ρSn+1
00

.

Proof. Since for n ≥ 2 the relation 2n \ {0} lies at the heart of the construction
of RSn

0
= (2n \ {0}) × {1}, and thus of the remaining weak base relations, the key

fact to observe for the four equivalences is that for all x1, . . . , xn ∈ {0, 1} we have
(x1, x2, . . . , xn) = 0 iff (x1, x1, x2, . . . , xn) = 0. Its contrapositive directly implies the

1082

Weak bases for Boolean relational clones and reductions

first two equivalences because RSn
0

= (2n\{0})×{1} and ρSn
02

= {0}×(2n\{0})×{1},
cf. Lemma 15. Adding the tuple 1 in the form RSn

01
= ρSn

02
∪ {1} is compatible

with the variable identification relating ρSn+1
02

and ρSn
02

, which then shows the third
equivalence. Now the fourth equivalence follows immediately from the third one
since by Lemma 15 we have ρSn

00
= {0} × RSn

01
.

By duality we also obtain the respective relationships between clones of one-
separating operations.

Lemma 25. For n ∈ N, n ≥ 2, and any x1, . . . , xn+3 ∈ {0, 1} we have

(x1, . . . , xn+1) ∈ RSn
1

⇐⇒ (x1, x1, x2, . . . , xn+1) ∈ RSn+1
1

,

(x1, . . . , xn+2) ∈ ρSn
12

⇐⇒ (x1, x2, x2, x3, . . . , xn+2) ∈ ρSn+1
12

,

(x1, . . . , xn+2) ∈ RSn
11

⇐⇒ (x1, x2, x2, x3, . . . , xn+2) ∈ RSn+1
11

,

(x1, . . . , xn+3) ∈ ρSn
10

⇐⇒ (x1, x2, x3, x3, x4, . . . , xn+3) ∈ ρSn+1
10

.

We see that Lemmata 24 and 25 provide parsimonious reductions, in which the
number of variables in the instance does not change; clearly, the size of the instance
grows only by a constant factor as each atom in the formula grows slightly in length.

For the weak base relations of the essentially nullary clones the expressibility
relationships are mainly contained in Lemma 13. We here simply make the nature
of the functional dependence of all variables that were existentially quantified in
Lemma 13 explicit (and for the sake of presentation we omit the symbols ◦⇐⇒
and ∃! which follow implicitly). As noted before such relationships, when employed
in a gadget reduction, will lead to parsimonious reductions.

Lemma 26. For all x1, . . . , x4 ∈ {0, 1} we have

(x1, . . . , x4) ∈ RI ⇐⇒ (0, x2 ∧ ¬x1, x3 ∧ ¬x1, x4 ∧ ¬x1, x1, x2, x3, x4) ∈ ρI0 ,

⇐⇒ (x1, x2, x3, x4, x1 ∨ ¬x4, x2 ∨ ¬x4, x3 ∨ ¬x4, 1) ∈ ρI1 ,

(x1, . . . , x8) ∈ ρI0
⇐⇒ (x1, ¬x8, x2, ¬x7, x3, ¬x6, x4, ¬x5, x5, ¬x4, x6, ¬x3, x7, ¬x2, x8, 1) ∈ ρI2 ,

(x1, . . . , x8) ∈ ρI1
⇐⇒ (0, x1, ¬x7, x2, ¬x6, x3, ¬x5, x4, ¬x4, x5, ¬x3, x6, ¬x2, x7, ¬x1, x8) ∈ ρI2 ;

(x1, . . . , x4) ∈ ΓI0(χ2) ⇐⇒ (x1, ¬x4, x2, ¬x3, x3, ¬x2, x4, 1) ∈ ΓI2(χ3) = χ3,

(x1, . . . , x4) ∈ ΓI1(χ2) ⇐⇒ (0, x1, ¬x3, x2, ¬x2, x3, ¬x1, x4) ∈ ΓI2(χ3) = χ3.

Proof. This is straightforwardly verified using Lemma 13 or Appendix A.

1083

Behrisch

If one uses the last four equivalences of Lemma 26 in a reduction for a CSP or CSP
counting problem, each variable that would be (uniquely) existentially quantified is
either frozen or uniquely determined by a single non-quantified variable. It therefore
suffices to introduce a companion variable for each variable occurring in the instance,
thus doubling the number of variables of the instance (constant factor 2). Thereby
also the size of the instance roughly doubles as each atom roughly gets twice as long.

Gadget reductions obtained from the first two equivalences of Lemma 26 are not
as benign in terms of variables. Since the additional variables depend on combi-
nations of two non-quantified variables, the number of variables needed may grow
quadratically during the reduction. Since the size of each atom still at most doubles
in the reduction, the growth in size is again bounded by the constant factor 2.

A possibility to express the weak base relation RN in terms of RN2 (or ρN2) and
unique existential quantification has been fully described in Lemma 14. We note
that also in this case the values of the existentially quantified variables are each
functionally determined by a single one of the non-quantified ones. Thus, as above,
in a reduction the growth in the number of variables and in the size of the instance
can be bounded linearly by a constant factor of 2. Clearly, such a reduction will be
parsimonious.

Recalling the weak base relations RD = ΓD(χ1), ρD1 = ΓD1(χ2) = χ2, and
ρD2 = ΓD2(χ3) from Section 4, we observe a comparable situation. We shall see
that ρD1 = χ2 ∈ [{

ρD2

}]
∧, wherefore in a reduction the number of variables will

not change, but the size will double (cf. Lemma 27); moreover RD = ΓD(χ1) can be
expressed using ρD1 = χ2 with the help of frozen existential quantification, wherefore
in a reduction the number of variables will grow by a constant value of 2 and,
similarly to Lemmata 18 to 21, the growth in size can be bounded by a constant
factor. The details of how the relations can be expressed are contained in the
following lemma.

Lemma 27. For all x1, . . . , x4 ∈ {0, 1} we have

(x1, x2, x3, x4) ∈ ρD1 ⇐⇒ (x1, x2, x3, x4, x1, x2, x3, x4) ∈ ρD2 ,

(x1, x2) ∈ RD
◦⇐⇒ ∃!u, v ∈ 2: (u, x1, x2, v) ∈ ρD1 ∧ u = 0 ∧ v = 1.

Proof. The clone D2 is minimal and it is generated by the ternary Boolean majority
operation µ [15, Figure 2]. The ternary part D(3)

2 = J (3)
2 ∪ {µ} consists of only

four functions, whence ρD2 = ΓD2(χ3) contains exactly the value tuples of these four
ternary operations. The variable identification stated in the lemma eliminates the
value tuples of the projection e

(3)
1 and of µ, wherefore only the two binary projections

forming χ2 = ρD1 remain.

1084

Weak bases for Boolean relational clones and reductions

Moreover, if from the value tuples of the two binary projections in χ2 one removes
the two constant coordinates, then one obtains the relation {(0, 1), (1, 0)}, containing
the value tuples of the only two unary selfdual operations e

(1)
1 and ¬. The resulting

binary relation therefore coincides with ΓD(χ1) = RD .

The last remaining group of clones are the five affine linear clones. The possibility
to express invariant relations, in particular weak base relations, in terms of others
using formulæ with uniquely determined existentially quantified variables follows
from [26, Theorem 15]. The following lemma lists a concrete expressibility result,
allowing reductions from RL = ΓL(χ2) to each of ρL0 = ΓL0(χ2), ρL1 = ΓL1(χ2) and
ρL3 = ΓL3(χ3), and from there to ρL2 = ΓL2(χ3). These relations form weak bases
according to the minimum core sizes of the respective clones and they coincide with
the relations given in [24, Table 1] up to a permutation of variables.

Lemma 28. For all x1, . . . , x8 ∈ {0, 1} we have

(x1, . . . , x4) ∈ RL
◦⇐⇒ ∃!u, v ∈ 2: (u, x1, x2, v) ∈ ρL0 ∧(u, x3, x4, v) ∈ ρL0 ∧ u = 0,

⇐⇒ (0, x1, x2, x1 ⊕ x2) ∈ ρL0 ∧(0, x3, x4, x1 ⊕ x2) ∈ ρL0 ,
◦⇐⇒ ∃!u, v ∈ 2: (v, x1, x2, u) ∈ ρL1 ∧(v, x3, x4, u) ∈ ρL1 ∧ u = 1,

⇐⇒ (1 ⊕ x1 ⊕ x2, x1, x2, 1) ∈ ρL1 ∧(1 ⊕ x1 ⊕ x2, x3, x4, 1) ∈ ρL1 ,
◦⇐⇒ ∃!x′

1, x′
2, x′

3, x′
4 ∈ 2: (x1, x2, x3, x4, x′

4, x′
3, x′

2, x′
1) ∈ ρL3 ,

⇐⇒ (x1, x2, x3, x4, ¬x4, ¬x3, ¬x2, ¬x1) ∈ ρL3 ;

moreover

(x1, . . . , x4) ∈ ρL0
◦⇐⇒ ∃!u, x′

2, x′
3, x′

4 ∈ 2: (x1, x2, x3, x4, x′
4, x′

3, x′
2, u) ∈ ρL2 ∧u = 1,

⇐⇒ (x1, x2, x3, x4, ¬x4, ¬x3, ¬x2, 1) ∈ ρL2 ,

(x1, . . . , x4) ∈ ρL1
◦⇐⇒ ∃!u, x′

2, x′
3, x′

4 ∈ 2: (u, x′
3, x′

2, x′
1, x1, x2, x3, x4) ∈ ρL2 ∧u = 0,

⇐⇒ (0, ¬x3, ¬x2, ¬x1, x1, x2, x3, x4) ∈ ρL2 ,

and

(x1, . . . , x8) ∈ ρL3
◦⇐⇒ ∃!u, u′, v, w ∈ 2: (w, x1, x2, u, u′, x7, x8, v) ∈ ρL2 ∧ w = 0 ∧

(w, x3, x4, u, u′, x5, x6, v) ∈ ρL2 ∧ v = 1,

⇐⇒ (0, x1, x2, x1 ⊕ x2, 1 ⊕ x1 ⊕ x2, x7, x8, 1) ∈ ρL2 ∧
(0, x3, x4, x1 ⊕ x2, 1 ⊕ x1 ⊕ x2, x5, x6, 1) ∈ ρL2 .

Proof. The expressibility results can be computed by inspecting the matrix repre-
sentations of the relations (the relationship between ρL3 and ρL2 has been verified

1085

Behrisch

previously in Example 1); the unique values of the existentially quantified variables
have in each case been shown by giving a functional dependence below the quanti-
fied formula, the uniqueness itself is a consequence of the fact that after identifying
variables in the relations on the right-hand side, the number of remaining tuples is
the same as for the relation on the left-hand side.

To provide an idea how the given formulæ arise, we consider the following de-
scription of the weak base relations occurring in the lemma:

RL =
{

(x1, . . . , x4) ∈ 24
∣∣∣ x1 ⊕ · · · ⊕ x4 = 0

}
,

ρL0 =
{

(x1, . . . , x4) ∈ 24
∣∣∣ x1 = 0 ∧ x2 ⊕ x3 ⊕ x4 = 0

}
,

ρL1 =
{

(x1, . . . , x4) ∈ 24
∣∣∣ x1 ⊕ x2 ⊕ x3 = 1 ∧ x4 = 1

}
,

ρL2 =
{

(x1, . . . , x8) ∈ 28
∣∣∣∣∣ x1 = 0 ∧ x2 ⊕ x3 ⊕ x4 = 0 ∧ x8 = 1 ∧

4∧

i=2
x9−i = ¬xi

}
,

ρL3 =
{

(x1, . . . , x8) ∈ 28
∣∣∣∣∣ x1 ⊕ · · · ⊕ x4 = 0 ∧

4∧

i=1
x9−i = ¬xi

}
.

Moreover, as every a ∈ {0, 1} satisfies a ⊕ a = 0, clearly for all x, y, u, v ∈ {0, 1} the
following equivalences hold

x ⊕ y ⊕ u ⊕ v = 0 ⇐⇒ x ⊕ y = u ⊕ v ⇐⇒ ∃!z ∈ 2: x ⊕ y = z ∧ u ⊕ v = z,

x ⊕ y ⊕ u = 0 ⇐⇒ u = x ⊕ y;

these can be used to rewrite the descriptions of the relations as stated in the lemma.

From the expressions in Lemma 28 we obtain parsimonious reductions, where the
size of the instance grows only linearly (bounded by a constant factor). The growth
in the number of variables in each case is at most quadratic (as for the reductions
arising from Lemma 26); for the reductions from RL to ρL3 , and from ρLa

to ρL2
(a ∈ {0, 1}), the growth in the number of variables is even only linear and can be
bounded by a constant factor of 2 by introducing a companion with the negated
value for each variable occurring in the instance.

We now turn to expressions relating different groups of clones.

Lemma 29 (cf. [27, Table III]). For all x1, . . . , x4 ∈ {0, 1} we have

(x1, x2, x3) ∈ RM1 ⇐⇒ (x1, x2, x3, x3) ∈ RS2
01

,

(x1, x2, x3, x4) ∈ ρM2 ⇐⇒ (x1, x2, x3, x4, x4) ∈ ρS2
00

,

1086

Weak bases for Boolean relational clones and reductions

(x1, x2, x3) ∈ ρM0 ⇐⇒ (x3, x2, x1, x1) ∈ RS2
11

,

(x1, x2, x3, x4) ∈ ρM2 ⇐⇒ (x4, x3, x2, x1, x1) ∈ ρS2
10

.

Proof. In principle these relationships are contained in Table III of [27], but the third
and fourth equivalence are stated in that table with variable-permuted relations for
S2

11 and S2
10 and with an incorrect substitution of variables into those. It is hence

easier to verify these facts directly using the definitions of the relations given in
Lemma 15 or in Appendix A.

Lemma 30. For all x1, . . . , x5 ∈ {0, 1} we have

(x1, . . . , x5) ∈ ρS2
00

◦⇐⇒ ∃!x′
2, x′

3, x′
4 ∈ 2: (x1, x′

4, x′
3, x′

2, x2, x3, x4, x5) ∈ ρD2 ,

⇐⇒ (x1, ¬x4, ¬x3, ¬x2, x2, x3, x4, x5) ∈ ρD2 ,

(x1, . . . , x5) ∈ ρS2
10

◦⇐⇒ ∃!x′
2, x′

3, x′
4 ∈ 2: (x5, x3, x4, x2, x′

2, x′
4, x′

3, x1) ∈ ρD2 ,

⇐⇒ (x5, x3, x4, x2, ¬x2, ¬x4, ¬x3, x1) ∈ ρD2 .

Proof. It is immediate from the matrix representation of ρD2 that the projection
of ρD2 to the coordinates specified in the lemma gives the relations ρS2

00
and ρS2

10
,

respectively. That the values of the existentially quantified variables are uniquely
determined is a consequence of the fact that all relations in the lemma contain exactly
four tuples; one observes during the projection that their values are determined as
complements of other variables as indicated in the lemma.

If one uses these expressions in a gadget reduction, it will be parsimonious.
Moreover, similar to the last four equivalences of Lemma 26, the number of variables
will grow only with a constant factor of at most 2; also the size of the instance will
increase only by a factor of 8/5 < 2. Hence number of variables and size will grow
linearly.
Lemma 31. For all x1, x2, x3 ∈ {0, 1} we have

(x1, x2) ∈ RM ⇐⇒ (x1, x1, x1, x2) ∈ RE ⇐⇒ (x1, x1, x2, x2) ∈ RE ,

⇐⇒ (x1, x2, x2, x2) ∈ ρV
3

⇐⇒ (x1, x1, x2, x2) ∈ ρV ,

(x1, x2, x3) ∈ ρM0 ⇐⇒ (x2, x3, x3, x3, x1) ∈ ρV0 ⇐⇒ (x2, x2, x3, x3, x1) ∈ ρV0 ,

(x1, x2, x3) ∈ RM1 ⇐⇒ (x1, x1, x1, x2, x3) ∈ ρE1 ⇐⇒ (x1, x1, x2, x2, x3) ∈ ρE1 .

3In principle the relationship in the second line of Lemma 31 could be obtained from [27,
Table III], but, contrary to the claim in [27], the formula presented there produces the dual order,
i.e., indices 1 and 2 would have to be swapped in Table III. For the relationships between M0 and V0,
and between M1 and E1, the article [27] uses different weak base relations with some incorrectly
placed variable indices, hence our expressions cannot be derived from there.

1087

Behrisch

Proof. All expressions are readily verified using the matrix representations of the
relations involved; the first equivalence relating RM and RE has been shown in
Example 1, the proof of the second one is similar. The equivalences in the second
line thence follow by duality. All remaining equivalences are direct consequences
of the ones in the first two lines, taking into account the definition of the involved
relations and placing the variable with the constant value on both sides of the
equivalence in the appropriate place.

Again, Lemma 31 can be used to produce parsimonious reductions in which the
number of variables stays identical and the size of the instance grows only linearly.

Lemma 32. For all x1, . . . , x6 ∈ {0, 1} we have

(x1, . . . , x4) ∈ RE
◦⇐⇒ ∃!u, u′, y2, y3 ∈ 2: (x1, x2, x3, u, u′, y3, y2, x4) ∈ ΓI(χ3),

(x1, . . . , x5) ∈ ρE0
◦⇐⇒ ∃!y2, y3, y4, x6, y6, x7, y7, x8, y8, x9, y9 ∈ 2:

(x1, x2, x6, x7, x8, x3, y4, x9, y9, x4, y3, y8, y7, y6, y2, x5) ∈ ΓI0(χ4),
(x1, . . . , x5) ∈ ρE1

◦⇐⇒ ∃!y2, y3, y4, x6, y6, x7, y7, x8, y8, x9, y9 ∈ 2:
(x1, y4, x6, x7, x2, x8, x9, y3, x3, y9, y8, y2, y7, y6, x4, x5) ∈ ΓI1(χ4),

(x1, . . . , x6) ∈ ρE2
◦⇐⇒ ∃!y2, y3, y4, y5, x7, y7, x8, y8, x9, y9, x10, y10, x11, y11,

x12, y12, x13, y13, x14, y14, x15, y15, x16, y16, x17, y17 ∈ 2:
(x1, x2, y5, x7, x8, x9, x10, x11, x12, x3, x13, x14, x15, x16, y4, x17,

y17, x4, y16, y15, y14, y13, y3, y12, y11, y10, y9, y8, y7, x5, y2, x6)
∈ ΓI2(χ5).

The values of the existentially quantified variables are functionally determined by
the values of x2, x3, x4 in the case of RE and ρE1, and by x3, x4, x5 in the other two
cases.

Proof. These relationships follow immediately by deleting rows in the matrix rep-
resentations of the relations ΓI(χ3), ΓIa(χ4) (a ∈ {0, 1}) and ΓI2(χ5) as explained
in Example 1. That the values of the existentially quantified variables are uniquely
determined by the variables on the left-hand side of the equivalence holds because
all relations in the lemma contain precisely five tuples. It can be observed that
the matrix rows corresponding to the variables x2, x3, x4 and x3, x4, x5, respectively,
contain exactly five distinct triples, explaining the functional dependence of the
quantified variables.

From all expressions in Lemma 32 we can obtain parsimonious reductions in
which the size of the instance grows linearly by a constant factor of at most 32/6.

1088

Weak bases for Boolean relational clones and reductions

The growth in the number of variables, however, is bounded by a cubic polynomial,
not linearly. We forego explicitly listing the dual of Lemma 32, which would allow
to construct reductions from dual Horn clones to clones generated by constants.

As the weak base relations for the monotone group of clones have a much simpler
shape, one can observe that the degree of the polynomial bounding the growth of the
number of variables in a direct reduction to the weak bases of the clones I, I0, I1, I2
decreases in comparison to a two-step reduction via the Horn group of clones. This
is a consequence of the following result.

Lemma 33. For all x1, . . . , x4 ∈ {0, 1} we have

(x1, x2) ∈ RM
[27]⇐⇒ (x1, x1, x2, x2) ∈ RI = ΓI(χ2),

(x1, x2, x3) ∈ ρM0
◦⇐⇒ ∃!u ∈ 2: (x1, u, x2, x3) ∈ ΓI0(χ2),

⇐⇒ (x1, x2 ⊕ x3, x2, x3) ∈ ΓI0(χ2),
(x1, x2, x3) ∈ RM1

◦⇐⇒ ∃!u ∈ 2: (x1, x2, u, x3) ∈ ΓI1(χ2),
⇐⇒ (x1, x2, ¬(x1 ⊕ x2), x3) ∈ ΓI1(χ2),

(x1, . . . , x4) ∈ ρM2
◦⇐⇒ ∃!y2, y3, x5, y5 ∈ 2: (x1, x2, x5, x3, y3, y5, y2, x4) ∈ ΓI2(χ3),

⇐⇒ (x1, x2, x2 ⊕ x3, x3, ¬x3, ¬(x2 ⊕ x3), ¬x2, x4) ∈ ΓI2(χ3).

Proof. The first equivalence has already been observed in [27, Table III], the others
are easily verified using the matrix representations of the relations, and the values
of the uniquely determined variables have in each case been specified below the
existentially quantified formula. One may observe that in all three cases at least
one of the existentially quantified variables is functionally determined by a pair
of non-quantified variables, hence if these expressions are used in a reduction the
number of variables may grow quadratically, although the size clearly increases only
linearly.

Lemma 34. There is a permutation π ∈ Sym {1, . . . , 64}—for example, one may
take the cycle product π = (1·57·8)◦(2·22)◦(3·36)◦(4·50)◦(5·15)◦(6·29)◦(7·43)—such
that for all elements x1, . . . , x8 ∈ {0, 1} we have

(x1, . . . , x8) ∈ ρD2
◦⇐⇒ ∃!x9, y9, x10, y10, x11, y11, x12, y12 ∈ 2:

(x1, x2, x3, x9, x5, x10, x11, x12, y12, y11, y10, x4, y9, x6, x7, x8) ∈ ΓI2(χ4),
(x1, . . . , x4) ∈ RN

◦⇐⇒ ∃!x5, y5, x6, y6, x7, y7, x8, y8, x9, y9, x10, y10 ∈ 2:
(x5, x6, x7, x1, x8, x9, x2, x10, y10, x3, y9, y8, x4, y7, y6, y5) ∈ ΓI(χ4),

(x1, . . . , x8) ∈ ρN2
◦⇐⇒ ∃!x9, . . . , x64 ∈ 2: (xπ(1), . . . , xπ(64)) ∈ ΓI2(χ6).

1089

Behrisch

In all three equivalences the values of the existentially quantified variables are deter-
mined as functions of x2, x3, x4.

Proof. The result and its proof are very similar to Lemma 32. Note that the quatuor-
sexagenary relation ΓI2(χ6) = χ6 consists exactly of the six value tuples of the senary
projection functions, and its matrix representation lists each Boolean sextuple ex-
actly once (that is, in a uniquely determined row). Thus, if for 1 ≤ i ≤ 8 the
i-th row of the matrix representation of ρN2 appears as the j-th row of χ6 (for a
unique value of j ∈ {1, . . . , 64}), we set π(j) := i. This partial definition can be
extended to a permutation π of {1, . . . , 64}, filling up the not yet defined indices
j ∈ {1, . . . , 64} \ {

π−1(1), . . . , π−1(8)
}

with the values π(j) ∈ {9, . . . , 64}. One par-
ticular choice for π has been stated in the lemma. Since the relations ρN2 and χ6
both contain exactly 6 tuples, the values of the variables x9, . . . , x64 in the formula
are always uniquely determined by the values of x1, . . . , x8. In fact, the rows of the
matrix belonging to x2, x3, x4 contain six (respectively four) distinct triples; hence
these variables suffice to functionally determine the values of the quantified ones.

One may turn the expressions in Lemma 34 into parsimonious reductions where
the size of the instance will grow only linearly, but the number of variables may have
to be increased cubically (possibly including a large constant factor).

Lemma 35. For all x1, . . . , x8 ∈ {0, 1} we have

(x1, . . . , x4) ∈ RL
◦⇐⇒ ∃!y1, . . . , y4 ∈ 2: (x2, y4, y3, x1, y1, x3, x4, y2) ∈ ΓN(χ3),

(x1, . . . , x8) ∈ ρL3
◦⇐⇒ ∃!x9, y9, x10, y10, x11, y11, x12, y12 ∈ 2:

(x2, x9, x10, x1, x11, x3, x4, x12, y12, x5, x6, y11, x8, y10, y9, x7) ∈ ΓN2(χ4),
(x1, . . . , x8) ∈ ρL2

◦⇐⇒ ∃!x9, y9, x10, y10, x11, y11, x12, y12 ∈ 2:
(x1, x9, x10, x2, x11, x3, x4, x12, y12, x5, x6, y11, x7, y10, y9, x8) ∈ ΓI2(χ4),

⇐⇒ (x1, x3 ↛ x4, x4 ↛ x3, x2, x3 ∧ x4, x3, x4,

x3 ∨ x4, ¬(x3 ∨ x4), x5, x6, ¬(x3 ∧ x4),
x7, x4 → x3, x3 → x4, x8) ∈ ΓI2(χ4),

(x1 . . . , x4) ∈ ρL0
◦⇐⇒ ∃!y1, . . . , y4 ∈ 2: (x1, y4, y3, x2, y2, x3, x4, y1) ∈ ΓI0(χ3),

⇐⇒ (x1, x2 ∧ x3, x2 ↛ x3, x2, x3 ↛ x2, x3, x4, x2 ∨ x3) ∈ ΓI0(χ3),
(x1, . . . , x4) ∈ ρL1

◦⇐⇒ ∃!y1, . . . , y4 ∈ 2: (y4, x3, x2, y1, x1, y2, y3, x4) ∈ ΓI1(χ3),
⇐⇒ (x2 ∧ x3, x3, x2, x2 ∨ x3, x1, x2 → x3, x3 → x2, x4) ∈ ΓI1(χ3).

In the first equivalence, the values of the existentially quantified variables are deter-
mined as functions of x1, x2, x3, and in the second one as functions of x1, x3, x4.

1090

Weak bases for Boolean relational clones and reductions

Proof. The equivalences follow by deleting the indicated rows in the matrix rep-
resentations of the relations appearing on the right-hand sides. The values of the
existentially quantified variables are uniquely determined since the number of tu-
ples in the relations on both sides of each equivalence coincide. The details of how
exactly they are determined can be seen from the matrix representation.

The expressions in Lemma 35 can be used to obtain parsimonious reductions, in
which the size of the instances grows only linearly. However, if one reduces from RL
or from ρL3 , the number of variables may increase cubically, in the other three cases
quadratically.

Lemma 36. For all x, y, u, v ∈ {0, 1} we have4

(u, x, y, v) ∈ ρD1 ⇐⇒ (u, u, x, x, y, y, v, v) ∈ ρL2 ,

(x, y) ∈ RD ⇐⇒ (x, y, y, x, y, x, x, y) ∈ ρL3 ,

(x) ∈ ρR ⇐⇒ (x, x, x, x) ∈ RL ,

(x, y) ∈ ρR0 ⇐⇒ (x, y, y, x) ∈ ρL0 ,

(x, y) ∈ ρR1 ⇐⇒ (y, x, x, y) ∈ ρL1 .

Proof. This is immediately visible after identifying rows in the matrix representa-
tions of the relations, cf. Appendix A.

Lemma 37. For all x, y ∈ {0, 1} we have4

(x) ∈ ρR ⇐⇒ (x, x) ∈ RM ,

(x, y) ∈ ρR0 ⇐⇒ (x, y, y) ∈ ρM0 ,

(x, y) ∈ ρR1 ⇐⇒ (x, x, y) ∈ RM1 ,

(x, y, z) ∈ ρR2 ⇐⇒ (x, y, y, z) ∈ ρM2 .

Proof. Since the order relation RM = ≤2 is reflexive, identifying its variables pro-
duces the full set {0, 1} = ρR . The other equivalences are direct consequences of
this, exploiting the uniform construction of the weak base relations.

Lemma 38. For all x, y, z ∈ {0, 1} we have4

(x, y) ∈ ρR1 ⇐⇒ (x, y, y) ∈ RS2
0
,

(x, y) ∈ ρR0 ⇐⇒ (y, x, x) ∈ RS2
1
,

(x, y, z) ∈ ρR2 ⇐⇒ (x, y, z, z) ∈ ρS2
02

⇐⇒ (z, y, x, x) ∈ ρS2
12

.

Proof. The proof is again straightforward, cf. Appendix A.

1091

Behrisch

Lemma 39. For all x, y, z ∈ {0, 1} we have

(x) ∈ ρR
◦⇐⇒ ∃!u ∈ 2: (x, u) ∈ RD ,

⇐⇒ (x, ¬x) ∈ RD ,

(x, y, z) ∈ ρR2
◦⇐⇒ ∃!u ∈ 2: (x, y, u, z) ∈ ρD1 ,

⇐⇒ (x, y, ¬y, z) ∈ ρD1 ,
4

⇐⇒ (x, x, z, z) ∈ ρD1 ⇐⇒ (x, z) ∈ RR2 .

Proof. These variable projections are evident by taking a quick glance at the rela-
tions RD = ΓD(χ1), ρD1 = ΓD1(χ2) = χ2 and RR2 , cf. Appendix A.

The equivalences in Lemmata 36 to 39 can be exploited to obtain parsimonious
reductions where the number of variables does not change (for Lemmata 36 up
to 38) or at most doubles (for the reductions based on the existentially quantified
expressions from Lemma 39). In any case this is a linear increase in variables. The
size of the instance will scale by a constant factor, i.e., increase only linearly.

Lemma 40. For all n ∈ N, n ≥ 2 there are indices 0 ≤ i0, i1, . . . , in+1 < 2n such
that for all x0, . . . , xn+1 ∈ {0, 1} we have

(x0, . . . , xn+1) ∈ RSn
01

◦⇐⇒ (∃!yi ∈ 2)i∈{0,...,2n−1}\{i0,...,in+1} : y ∈ ΓV1(χn),

where yij = xj for 0 ≤ j ≤ n + 1 and yi = yi for 0 ≤ i < 2n, i /∈ {i0, . . . , in+1}.
Here the values of the existentially quantified variables can always be expressed as a
function of the values of x1, . . . , xn.

Proof. The clone V1 is generated by {∨, c1}, cf. [15, Figure 2]. Therefore, ΓV1(χn)
contains the value tuples of all n-ary term operations of the algebra ⟨{0, 1}; ∨, c1⟩,
of which there are precisely 2n: the constant n-ary function with value 1, and
for each non-empty set I ⊆ {1, . . . , n} the function (a1, . . . , an) 7→ ∨

i∈I ai. Since
RSn

01
= ({0} × (2n \ {0}) × {1}) ∪ {1} has also 2n elements, the existentially quan-

tified variables on the right-hand side are uniquely determined by the values of
x0, . . . , xn+1; in fact, as xn+1 = 1 for every tuple (x0, . . . , xn+1) ∈ RSn

01
, they are

determined by the values of x0, . . . , xn, and one can also see that even x1, . . . , xn

suffice.
For every j ∈ {1, . . . , n} define Ij = {1, . . . , n} \ {j} and let fj ∈ V(n)

1 be given
by fj(a1, . . . , an) = ∨

i∈Ij
ai for all a1, . . . , an ∈ {0, 1}. There is exactly one tuple

4In [27, Table III] very similar relationships are presented; however, different weak base relations,
e.g., for R, R0, R1, R2, are used there, so no direct comparison can be made.

1092

Weak bases for Boolean relational clones and reductions

(a1, . . . , an) ∈ 2n\{0} such that fj(a1, . . . , an) = 0, namely ej = (0, . . . , 0, 1, 0, . . . , 0)
where the 1 occurs in the j-th position. Let ij ∈ {0, . . . , 2n − 1} be the coordinate
of ΓV1(χn) corresponding to this tuple, that is, β(ij) = ej or ij := β−1(ej) in
the terminology of Section 2. The projection of ΓV1(χn) to i1, . . . , in gives the
relation {0, 1}n \ {0}. Letting i0 := β−1(0) and in+1 := β−1(1) be the coordinates
corresponding to 0 and 1, respectively, the projection of ΓV1(χn) to i0, . . . , in+1
yields RSn

01
.

If Lemma 40 is used to produce a parsimonious reduction from RSn
01

to ΓV1(χn)
for some fixed n ∈ N, n ≥ 2, then the size s and the number k of variables of an
instance will grow at most as follows: s 7→ κn ·s where κn := 2n

n+2 , and k 7→ k+λn ·kn

where λn := 2n − (n + 2). This is so because in each atom there are λn places with
existentially quantified variables the values of which are determined by the values
of the combination of those n variables that are placed in the positions i1, . . . , in of
the atom. For each of these kn value combinations of the k variables (and each of
the possibly λn distinct functional dependencies) we introduce a new variable in the
reduction. It seems possible that the degree of the polynomial bound on the number
of variables could be reduced further by investigating the specific λn functional
dependencies; however, this appears to be simpler to do, if it is needed, in the case
of a concrete value of n. We note also that the quantities λn and κn, although
they grow exponentially fast with n, are constants for each individual reduction, as
they depend only on the considered constraint language, not on the instance that is
transformed.

Of course, a dual result can be formulated concerning a parsimonious reduction
from RSn

11
-instances to ΓE0(χn)-instances for n ≥ 2. Note, however, that ΓV1(χn)

and ΓE0(χn) only form weak bases if n ≥ 3 since V1 and E0 have minimum core
size 3 each. Thus, for reductions between weak bases, one would reduce from RS2

01
to RS3

01
and then to ΓV1(χ3), and likewise from RS2

11
to RS3

11
and then to ΓE0(χ3).

Lemma 41. For n ∈ N, n ≥ 2 there are 0 ≤ i−1, i0, i1, . . . , in+1, l1, . . . , ln+1 < 2n+1

such that for all x−1, x0, . . . , xn+1 ∈ {0, 1} we have

(x−1, x0, . . . , xn+1) ∈ ρSn
00

◦⇐⇒ (∃!yi ∈ 2)i∈{0,...,2n+1−1}\{i−1,i0,...,in+1,l1,...,ln+1} : y ∈ ΓV2(χn+1),

where yij = ylj = xj for 1 ≤ j ≤ n + 1, yi−1 = x−1, yi0 = x0 and yi = yi for
0 ≤ i < 2n+1, i /∈ {i−1, i0, . . . , in+1, l1, . . . , ln+1}. Here the values of the existentially
quantified variables can always be expressed as a function of the values of x1, . . . , xn.

1093

Behrisch

Proof. The proof of this lemma is similar to Lemma 40, but a little more technical.
The clone V2 is generated by {∨}, cf. [15, Figure 2]. Therefore, ΓV2(χn+1) contains
the value tuples of all (n+1)-ary term operations of the algebra ⟨{0, 1}; ∨⟩, of which
there are precisely 2n+1 − 1: namely for each non-empty subset I ⊆ {1, . . . , n + 1}
the function (a1, . . . , an+1) fI7→ ∨

i∈I ai. Their value tuples fI ◦ β form the columns in
the relation ΓV2(χn+1) (cf. Section 2). It will be our goal to use a variable identifica-
tion with respect to ΓV2(χn+1) that keeps the 2n − 1 value tuples of the functions fI

where ∅ ≠ I ⊆ {1, . . . , n} and the one where I = {1, . . . , n + 1}. Up to reordering
of columns, we are going to find the n + 3 rows of the relation ρSn

00
in positions

i−1, i0 . . . , in+1 among the rows of the identification minor of ΓV2(χn+1). Since the
minor and ρSn

00
both contain 2n tuples, the values of the variables in the other rows

are uniquely determined by the variable values in positions i−1, i0 . . . , in+1; more-
over, since the values in positions i−1 and in+1 are constant 0 and 1, respectively, the
values of x0, . . . , xn are sufficient to determine the remaining (existentially quanti-
fied) variables. In fact, the variable values in position i0 only serve to distinguish the
two columns f{1,...,n} ◦ β and f{1,...,n+1} ◦ β of the minor, which have identical values
in the existentially quantified places. Hence the variable values of x1, . . . , xn suffice
to functionally determine the values of the existentially quantified variables yi.

This explains the uniqueness of the existential quantifier. We are now giving the
variable identification. Similar to Lemma 40, we set ij := β−1(ej) and lj := β−1(e′

j)
for 1 ≤ j ≤ n, where ej = (0, . . . , 0, 1, 0, . . . , 0, 0) and e′

j = (0, . . . , 0, 1, 0, . . . , 0, 1),
and in both (n+1)-tuples the left-most 1 appears in position j. Additionally, we set
i−1 := β−1(0), i0 := β−1(en+1), in+1 := β−1(1) and ln+1 := β−1((1, . . . , 1, 0)). For
any 1 ≤ j ≤ n and each non-empty I ⊆ {1, . . . , n + 1}, we have fI(ej) = fI(e′

j) if and
only if the implication n + 1 ∈ I =⇒ j ∈ I holds for I. These are the functions the
value tuples of which survive the variable identification yij = ylj = xj in ΓV2(χn+1).
Since we are employing the variable identifications for all 1 ≤ j ≤ n simultaneously,
the functions fI (tuples fI ◦ β) that are not removed by the identification are those
that satisfy all of these implications, i.e., those where n + 1 ∈ I =⇒ {1, . . . , n} ⊆ I
holds. These are exactly the 2n − 1 functions fI where ∅ ̸= I ⊆ {1, . . . , n} and, in
addition, f{1,...,n+1}. Since n > 0, none of these is e

(n+1)
n+1 , hence they also satisfy

fI(1) = 1 = fI((1, . . . , 1, 0)) and thus survive yin+1 = yln+1 = xn+1, too.
Projecting these 2n tuples fI ◦ β to the indices i1, . . . , in+1 corresponds to re-

stricting the fI to {e1, . . . , en, 1} and produces every tuple in (2n \{0})×{1} = RSn
0
,

where 1 appears twice, from f{1,...,n} and from f{1,...,n+1}. If we project instead to
i0, . . . , in+1, i.e., if we restrict the fI to {e1, . . . , en+1, 1}, then we are able to sepa-
rate the two tuples 1 and obtain ({0} × (2n \ {0}) × {1}) ∪ {1} = ρSn

02
∪ {1} = RSn

01
.

Finally, if we project to i−1, . . . , in+1, we restrict to {0, e1, . . . , en+1, 1} and thus

1094

Weak bases for Boolean relational clones and reductions

add another zero in the first coordinate. Hence we obtain {0} × RSn
01

= ρSn
00

as the
projection of the given identification minor of ΓV2(χn+1) to the places i−1, . . . , in+1
as claimed. The uniqueness of the values of the existentially quantified variables
follows since the relation ρSn

00
on the left-hand side of the equivalence and the minor

on the right-hand side both contain exactly 2n tuples.

By duality one can formulate from Lemma 41 a corresponding expressibility re-
sult for ρSn

10
in terms of ΓE2(χn+1) for n ≥ 2. Due to the uniquely existentially

quantified variables in Lemma 41 and its dual, we hence obtain parsimonious re-
ductions from ρSn

00
to ΓV2(χn+1) and from ρSn

10
to ΓE2(χn+1). For fixed n ≥ 2,

in such a reduction the size s and the number of variables k of an instance grow
within the following bounds: s 7→ κ̂n · s and k 7→ k + λ̂n · kn where κ̂n := 2n+1

n+3 and
λ̂n := 2n+1 − 2(n + 2) (in fact, the value λ̂n could be halved since the existentially
quantified variables can be grouped in identical pairs). In any case, for the parsimo-
nious reductions established by Lemmata 40 and 41, the growth in size is linearly
bounded, the growth in the number k of variables may depend polynomially on k
with degree at most n ≥ 2.

We have summarised the reductions that were presented in this article in Fig-
ure 3, including information on the growth of the number of variables between in-
stances. All reductions exhibit an (at most) linear growth in the size of the instances;
all, except for one type, are parsimonious, and the exceptional type is almost so:
the number of solutions increases by 1. We note that in many cases, the weak bases
appearing in the individual reductions match, so that transitivity can be applied
seamlessly. There are, however, a few connections where one needs to switch the
used weak base relations, and this can be done with the help of Lemma 4. As a
consequence of this lemma any two irredundant, proper, non-empty weak base re-
lations of the same relational clone parsimoniously inter-reduce to each other with
no change in the number of variables of the instances and a linear bound on the
growth in size. An example where such a change is necessary would be that one can
parsimoniously reduce from RL to ΓN(χ3) via the expression shown in Lemma 35,
then one has to invoke Lemma 4 to reduce from ΓN(χ3) to RN = ΓN(χ2) before one
may continue to reduce from RN to ΓI(χ4) by the expression from Lemma 34.

6 Concluding remarks
When tasked with the problem to provide reductions between computational prob-
lems parametrised by relations that do not exhibit an a priori compatibility with
the existential quantifier or the equality predicate, weak bases with irredundant non-
empty proper relations have proven a useful method. This is explained by Lemma 4

1095

Behrisch

since problems parametrised by a weak base of a relational clone reduce to any
problem parametrised by any generating set of that relational clone, as long as the
problem is compatible with conjunction. Therefore, for obtaining complexity clas-
sifications it is usually a good start to connect and compare problems parametrised
by weak bases.

In the Boolean case singleton weak bases are available for each relational clone,
see [24] and the results in the article at hand, e.g., Theorem 17 and Appendix A. A
helpful initial source of information to establish reductions between the weak base re-
lations is [27, Figure 1]. However, many more paths for reduction are possible if par-
simonious reductions are an option for the problem under consideration—counting
CSPs being the prime example, for those reductions can be produced from expres-
sions with existentially quantified variables whose values are uniquely determined,
see [26]. In this article we have examined in detail reductions that are possible along
all covering edges of Post’s lattice and a few additional direct relationships. These
are illustrated in Figure 3. In almost all cases our reductions are parsimonious, as
predicted by the results of [26] on unique primitive positive definability. The only
exceptions are notably the reductions between problems parametrised by the weak
base relations RSn

0
and RSn

01
for each n ∈ N, n ≥ 2, following from Lemma 22, and

their duals, following from Lemma 23. Here the target clones Sn
01 and Sn

11 are in-
deed among the few clones marked as ‘not ∃!-covered’ in [26, Figure 1] where such
a situation would be conceivable. In these exceptional cases our proposed reduction
is ‘almost parsimonious’ in the sense that the number of solutions changes only by
one. Other target clones where, according to [26, Figure 1], we might have run into
similar troubles, concern the reductions from RM to RE and to ρV , those from RE
to ρE0 , and those from ρV to ρV1 . However, Lemmata 18, 19 and 31 show that
for the weak bases studied in this article unique primitive positive definitions and
hence parsimonious reductions exist, which confirms what can be expected from [27,
Figure 1].

For each relationship between Boolean relational clones that was investigated, a
careful analysis has been performed regarding the growth of parameters that have
been used in the past as measurements of complexity, namely the size of the for-
mula and the number of distinct variables it contains. The increase in size is always
bounded by a constant factor, that is, linear, being a consequence of a unique primi-
tive positive (or even purely conjunctive) definition used to construct the reduction,
or following from the specific reductions derived from Lemmata 22 and 23. In more
than three fifths of the presented reductions the number of variables increases by
at most two, in about three quarters, it increases not more than linearly; in about
one fourth of the studied cases, however, our reductions entail a quadratic, cubic (or
possibly higher degree, cf. Lemmata 40 and 41) blow-up in the number of variables.

1096

Weak bases for Boolean relational clones and reductions

26 26

26
26

34

19

1919

19

18

18 18

18

22 22

22

22

22

22

22
22

22
22

22

22

21

21

21

21

35
34

35

33

33

33
33

28

28

28
28

28

28

20

20
20

20

40

14

32

3232

32

41
31

34

35

36

39

35 35

36 36

36

30

37

37
37

37

31 24

24

24

24

29

29
38

38

23

23
23

23

23

23
23

23

40

25

25

25

25

23

23 23

23

3232

32

32

41

29

29

38

38

30

27

27

39

36

31

31

Sn+1
1

S1

Sn
1

S2
1

S12

S11
S10

Sn
12

Sn+1
12

S2
12

Sn
11

Sn+1
11

S2
11

Sn
10

Sn+1
10

S2
10

S00

Sn
00

Sn+1
00

S01

Sn+1
01

Sn
01

S02

Sn
02

Sn+1
02

S0

Sn+1
0

Sn
0

S2
0

S2
00

S2
01

S2
02

I2

E2 V2
I0 I1

N2

N
I

L0 L1

L2

L3

L
D2

E0 V1V0E1

E V

M2

R0 R1

O2 = R

M1

M0

M
R2

D1

D

Reductions represented by downward edges (edge labels refer to proofs):
edge type of the reduction degree of the polynomial bounding the

growth in the number of variables
‘almost’ parsimonious 0 (constant)
parsimonious 0 (constant)
parsimonious 1 (linear)
parsimonious 2 (quadratic)
parsimonious 3 (cubic)
parsimonious n + 1 ≥ 3 (cubic or higher)

Figure 3: Reductions between weak bases of Boolean relational clones shown in
this article: solid downward edges represent parsimonious reductions with a linear
growth in size of the instance, while dashed edges are ‘almost’ parsimonious

1097

Behrisch

We thus have identified these cases as the ones that in a complexity classification
relying on reductions where the number of variables is not allowed to grow beyond
linearly do not work ‘out of the box’ and hence necessitate special attention and
possibly a separate argumentation.

References

[1] István Ágoston, János Demetrovics, and László Hannák. On the number of clones
containing all constants (a problem of R. McKenzie). In Lectures in universal algebra
(Szeged, 1983), volume 43 of Colloq. Math. Soc. János Bolyai, pages 21–25. North-
Holland, Amsterdam, 1986.

[2] Mike Behrisch. Verification of some Boolean partial polymorphisms [dataset]. Zenodo,
30 November 2021. 10.5281/zenodo.5745852.

[3] Mike Behrisch. Weak bases for Boolean relational clones revisited. In 2022 IEEE
52nd International Symposium on Multiple-Valued Logic—ISMVL 2022, Dallas, Texas,
USA, 18–20 May 2022, pages 68–73. IEEE Computer Soc., Los Alamitos, CA, May
2022. 10.1109/ISMVL52857.2022.00017.

[4] Mike Behrisch, Miki Hermann, Stefan Mengel, and Gernot Salzer. Give me another one!
In Khaled M. Elbassioni and Kazuhisa Makino, editors, Proceedings of the 26th Inter-
national Symposium on Algorithms and Computation (ISAAC 2015), Nagoya (Japan),
volume 9472 of Lecture Notes in Comput. Sci., pages 664–676. Springer, Berlin, Hei-
delberg, November 2015. 10.1007/978-3-662-48971-0_56.

[5] Mike Behrisch, Miki Hermann, Stefan Mengel, and Gernot Salzer. As close as it gets.
In Mohammad Kaykobad and Rossella Petreschi, editors, Proceedings of the 10th In-
ternational Workshop on Algorithms and Computation (WALCOM 2016), Lalitpur-
Kathmandu (Nepal), volume 9627 of Lecture Notes in Comput. Sci., pages 222–235.
Springer, Berlin, Heidelberg, March 2016. 10.1007/978-3-319-30139-6_18.

[6] Mike Behrisch, Miki Hermann, Stefan Mengel, and Gernot Salzer. Minimal distance of
propositional models. Theory Comput. Syst., 63(6):1131–1184, 2019. 10.1007/s00224-
018-9896-8.

[7] V. G. Bodnarčuk, Lev Arkaďevič Kalužnin, Victor N. Kotov, and Boris A. Romov.
Теория Галуа для алгебр Поста. I, II [Galois theory for Post algebras. I, II]. Kibernetika
(Kiev), 5(3):1–10; ibid. 5(5):1–9, 1969.

[8] Elmar Böhler, Steffen Reith, Henning Schnoor, and Heribert Vollmer. Bases for Boolean
co-clones. Inform. Process. Lett., 96(2):59–66, October 2005. 10.1016/j.ipl.2005.06.003.

[9] Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem.
In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna
Ingólfsdóttir, and Igor Walukiewicz, editors, Automata, languages and programming,
35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7–11 2008, Pro-
ceedings, Part I: Tack A: Algorithms, automata, complexity, and games, volume 5125

1098

Weak bases for Boolean relational clones and reductions

of Lecture Notes in Comput. Sci., pages 646–661. Springer, Berlin, 2008. 10.1007/978-
3-540-70575-8_53.

[10] Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. J.
ACM, 60(5):34:1–41, 2013. 10.1145/2528400.

[11] Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 58th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,
15–17 October 2017, pages 319–330. IEEE Computer Soc., Los Alamitos, CA, October
2017. 10.1109/FOCS.2017.37.

[12] Andrei A. Bulatov and Víctor Dalmau. Towards a dichotomy theorem for the count-
ing constraint satisfaction problem. Inform. and Comput., 205(5):651–678, 2007.
10.1016/j.ic.2006.09.005.

[13] Miguel Couceiro, Lucien Haddad, and Victor Lagerkvist. Fine-grained complexity of
constraint satisfaction problems through partial polymorphisms: a survey. In 2019
IEEE 49th International Symposium on Multiple-Valued Logic—ISMVL 2019, Freder-
icton, New Brunswick, Canada, 21–23 May 2019, pages 170–175. IEEE Computer Soc.,
Los Alamitos, CA, May 2019. 10.1109/ISMVL.2019.00037.

[14] Miguel Couceiro, Lucien Haddad, and Karsten Schölzel. On the nonexistence of minimal
strong partial clones. In 2017 IEEE 47th International Symposium on Multiple-Valued
Logic—ISMVL 2017, Novi Sad, Serbia, 22–24 May 2017, pages 82–87. IEEE Computer
Soc., Los Alamitos, CA, May 2017. 10.1109/ISMVL.2017.43.

[15] Nadia Creignou and Heribert Vollmer. Boolean constraint satisfaction problems: When
does Post’s lattice help? In Nadia Creignou, Phokion G. Kolaitis, and Heribert Vollmer,
editors, Complexity of Constraints – An Overview of Current Research Themes [Result
of a Dagstuhl Seminar], volume 5250 of Lecture Notes in Comput. Sci., pages 3–37.
Springer, Berlin, Heidelberg, 2008. 10.1007/978-3-540-92800-3_2.

[16] Martin Dyer and David Richerby. An effective dichotomy for the counting constraint
satisfaction problem. SIAM J. Comput., 42(3):1245–1274, 2013. 10.1137/100811258.

[17] David Scott Geiger. Closed systems of functions and predicates. Pacific J. Math.,
27(1):95–100, 1968. 10.2140/pjm.1968.27.95.

[18] Jurij Ivanovič Janov and Aľbert Abramovič Mučnik. О существовании k-значных
замкнутых классов, не имеющих конечного базиса [On the existence of k-valued
closed classes having no finite basis]. Dokl. Akad. Nauk SSSR, 127(1):44–46, 1959.

[19] Peter Jonsson, Victor Lagerkvist, Gustav Nordh, and Bruno Zanuttini. Strong partial
clones and the time complexity of SAT problems. J. Comput. System Sci., 84:52–78,
March 2017. 10.1016/j.jcss.2016.07.008.

[20] Peter Jonsson, Victor Lagerkvist, and Biman Roy. Time complexity of constraint
satisfaction via universal algebra. In Kim G. Larsen, Hans L. Bodlaender, and Jean-
François Raskin, editors, 42nd International Symposium on Mathematical Foundations
of Computer Science, MFCS 2017, Aalborg, Denmark, 21–25 August 2017, volume 83
of LIPIcs. Leibniz Int. Proc. Inform., pages 17:1–15. Schloß Dagstuhl. Leibniz-Zent.
Inform., Wadern, 2017. 10.4230/LIPIcs.MFCS.2017.17.

[21] Peter Jonsson, Victor Lagerkvist, and Biman Roy. Fine-grained time complexity of

1099

Behrisch

constraint satisfaction problems. ACM Trans. Comput. Theory, 13(1):2:1–32, March
2021. 10.1145/3434387.

[22] Peter Jonsson, Victor Lagerkvist, Johannes Schmidt, and Hannes Uppman. Relating
the time complexity of optimization problems in light of the exponential-time hypoth-
esis. In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik, editors, 39th
International Symposium on Mathematical Foundations of Computer Science, MFCS
2014, Budapest, Hungary, 25–29 August 2014. Proceedings, Part II, volume 8635 of
Lecture Notes in Comput. Sci., pages 408–419. Springer, Heidelberg, 2014. 10.1007/978-
3-662-44465-8_35.

[23] Peter Jonsson, Victor Lagerkvist, Johannes Schmidt, and Hannes Uppman. The
exponential-time hypothesis and the relative complexity of optimization and log-
ical reasoning problems. Theoret. Comput. Sci., 892:1–24, November 2021.
10.1016/j.tcs.2021.09.006.

[24] Victor Lagerkvist. Weak bases of Boolean co-clones. Inform. Process. Lett., 114(9):462–
468, September 2014. 10.1016/j.ipl.2014.03.011.

[25] Victor Lagerkvist. Precise upper and lower bounds for the monotone constraint satis-
faction problem. In Giuseppe F. Italiano, Giovanni Pighizzini, and Donald T. Sannella,
editors, 40th International Symposium on Mathematical Foundations of Computer Sci-
ence, MFCS 2015, Milan, Italy, 24–28 August 2015. Proceedings, Part I, volume 9234
of Lecture Notes in Comput. Sci., pages 357–368. Springer, Heidelberg, August 2015.
10.1007/978-3-662-48057-1_28.

[26] Victor Lagerkvist and Gustav Nordh. On the strength of uniqueness quantification in
primitive positive formulas. In Peter Rossmanith, Pinar Heggernes, and Joost-Pieter
Katoen, editors, 44th International Symposium on Mathematical Foundations of Com-
puter Science, MFCS 2019, Aachen, Germany, 26–30 August 2019, volume 138 of
LIPIcs. Leibniz Int. Proc. Inform., pages 36:1–15. Schloß Dagstuhl. Leibniz-Zent. In-
form., Wadern, 2019. 10.4230/LIPIcs.MFCS.2019.36.

[27] Victor Lagerkvist and Biman Roy. The inclusion structure of Boolean weak bases.
In 2019 IEEE 49th International Symposium on Multiple-Valued Logic—ISMVL 2019,
Fredericton, New Brunswick, Canada, 21–23 May 2019, pages 31–36. IEEE Computer
Soc., Los Alamitos, CA, May 2019. 10.1109/ISMVL.2019.00014.

[28] Victor Lagerkvist and Biman Roy. Complexity of inverse constraint problems and a
dichotomy for the inverse satisfiability problem. J. Comput. System Sci., 117:23–39,
May 2021. 10.1016/j.jcss.2020.10.004.

[29] Victor Lagerkvist and Magnus Wahlström. The power of primitive positive defini-
tions with polynomially many variables. J. Logic Comput., 27(5):1465–1488, July 2017.
10.1093/logcom/exw005.

[30] Microsoft Research. Z3 Theorem Prover, 2021. Available on-line from https:
//github.com/z3prover/z3, see also the description from https://web.archive.
org/web/20210119175613if_/https://rise4fun.com/Z3/tutorial/guide.

[31] Leonardo de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In Cartic R.
Ramakrishnan and Jakob Rehof, editors, International Conference on Tools and Al-

1100

Weak bases for Boolean relational clones and reductions

gorithms for the Construction and Analysis of Systems (TACAS 2008), volume 4963
of Lecture Notes in Comput. Sci., pages 337–340. Springer, Berlin, Heidelberg, March
2008. 10.1007/978-3-540-78800-3_24.

[32] Gustav Nordh and Bruno Zanuttini. Frozen Boolean partial co-clones. In 2009 IEEE
39th International Symposium on Multiple-Valued Logic—ISMVL 2009, Naha, Oki-
nawa, Japan, 21–23 May 2009, pages 120–125. IEEE Computer Soc., Los Alamitos,
CA, 2009. 10.1109/ISMVL.2009.10.

[33] Emil Leon Post. The Two-Valued Iterative Systems of Mathematical Logic, volume 5
of Annals of Mathematics Studies. Princeton University Press, Princeton, N. J., 1941.

[34] Boris A. Romov. Алгебры частичных функций и их инварианты [The algebras of
partial functions and their invariants]. Kibernetika (Kiev), 17(2):1–11, March 1981.

[35] Boris A. Romov. The algebras of partial functions and their invariants. Cybernetics,
17(2):157–167, March 1981. 10.1007/BF01069627.

[36] Henning Schnoor and Ilka Schnoor. Enumerating all solutions for constraint satisfac-
tion problems. In Wolfgang Thomas and Pascal Weil, editors, Proceedings of the 24th
Annual Symposium on Theoretical Aspects of Computer Science, STACS 2007, Aachen,
Germany, 22–24 February 2007, volume 4393 of Lecture Notes in Comput. Sci., pages
694–705. Springer, Berlin, 2007. 10.1007/978-3-540-70918-3_59.

[37] Henning Schnoor and Ilka Schnoor. Partial polymorphisms and constraint satisfaction
problems. In Nadia Creignou, Phokion G. Kolaitis, and Heribert Vollmer, editors,
Complexity of Constraints – An Overview of Current Research Themes [Result of a
Dagstuhl Seminar], volume 5250 of Lecture Notes in Comput. Sci., pages 229–254.
Springer, Berlin, Heidelberg, 2008. 10.1007/978-3-540-92800-3_9.

[38] Ilka Schnoor. The Weak Base Method for Constraint Satisfaction. PhD dissertation,
Gottfried Wilhelm Leibniz Universität Hannover, 2008.

[39] Dmitriy Zhuk. An algorithm for constraint satisfaction problem. In 2017 IEEE 47th
International Symposium on Multiple-Valued Logic—ISMVL 2017, Novi Sad, Serbia,
22–24 May 2017, pages 1–6. IEEE Computer Soc., Los Alamitos, CA, May 2017.
10.1109/ISMVL.2017.20.

[40] Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In 58th Annual IEEE Sympo-
sium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, 15–17
October 2017, pages 331–342. IEEE Computer Soc., Los Alamitos, CA, October 2017.
10.1109/FOCS.2017.38.

[41] Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1–78,
August 2020. 10.1145/3402029.

A Matrix representations of weak base relations
Here we show representations of Boolean weak base relations as matrices the columns
of which are the tuples contained in the relation. Several relations of high arity used
in connection with the clones I, I0, I1, I2 generated by constants are not presented,

1101

Behrisch

but are certainly clear how to be constructed.

RR =
{

01
01

}
RR0 = {0} RR1 = {1} RR2 =

{
0
1

}

ρR = {01} ρR0 =
{

00
01

}
ρR1 =

{
01
11

}
ρR2 =

{
00
01
11

}

RM =
{

001
011

}
ρM0 =

{
000
001
011

}
RM1 =

{
001
011
111

}
ρM2 =

000
001
011
111

RE =

00001
01001
10001
11101

 ρE0 =

00000
00001
01001
10001
11101

ρE1 =

00001
01001
10001
11101
11111

ρE2 =

00000
00001
01001
10001
11101
11111

ρV =

00001
01101
10101
11101

 ρV0 =

00001
01101
10101
11101
00000

ρV1 =

11111
00001
01101
10101
11101

ρV2 =

11111
00001
01101
10101
11101
00000

RL =

00001111
01101001
10100101
11000011

 ρL0 =

0000
0110
1010
1100

 ρL1 =

0011
0101
1001
1111

 ρL2 =

0000
0011
0101
0110
1001
1010
1100
1111

RD =
{

01
10

}
ρD1 =

00
01
10
11

 ρD2 =

0000
0010
0100
0111
1000
1011
1101
1111

ρL3 =

00001111
00111100
01011010
01101001
10010110
10100101
11000011
11110000

RN =

000111
010101
100011
110001

 RN2 =

000111
010101
100011
110001
111000
101010
011100
001110

ρN2 =

000111
010101
100011
110001
001110
011100
101010
111000

1102

Weak bases for Boolean relational clones and reductions

ΓN(χ3) =

00001111
00101101
01001011
01101001
10000111
10100101
11000011
11100001

ΓN2(χ4) =

00001111
00011110
00101101
00111100
01001011
01011010
01101001
01111000
10000111
10010110
10100101
10110100
11000011
11010010
11100001
11110000

RI =

0001
0101
1001
1101

 RI0 =

001
010
011
000

 RI1 =

011
101
001
111

 RI2 =

100
010
001
011
101
110
000
111

ρI0 =

0000
0010
0100
0110
1000
1010
1100
1110

ρI1 =

0001
0011
0101
0111
1001
1011
1101
1111

ρI2 =

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

RS2
0

=
{

011
101
111

}
ρS2

02
=

000
011
101
111

 RS2

01
=

0001
0111
1011
1111

 ρS2

00
=

0000
0001
0111
1011
1111

RS2
1

=
{

001
010
000

}
ρS2

12
=

111
001
010
000

 RS2

11
=

1110
0010
0100
0000

 ρS2

10
=

1111
1110
0010
0100
0000

RSn
0

=
{

̸= 0
1 · · · 1

}
ρSn

02
=

{
0 · · · 0
̸= 0

1 · · · 1

}
RSn

01
=

{
0 · · · 01
̸= 0 1

1 · · · 11

}
ρSn

00
=

0 · · · 00
0 · · · 01
̸= 0 1

1 · · · 11

RSn
1

=
{

̸= 1
0 · · · 0

}
ρSn

12
=

{
1 · · · 1
̸= 1

0 · · · 0

}
RSn

11
=

{
1 · · · 10
̸= 1 0

0 · · · 00

}
ρSn

10
=

1 · · · 11
1 · · · 10
̸= 1 0

0 · · · 00

Received1103

On Representation of Maximally
Asymmetric Functions Based on Decision

Diagrams

Shinobu Nagayama
Dept. of Computer and Network Eng., Hiroshima City University, Hiroshima,

JAPAN

Tsutomu Sasao
Dept. of Computer Science, Meiji University, Kawasaki, JAPAN

Jon T. Butler
Dept. of Electr. and Comp. Eng., Naval Postgraduate School, Monterey, CA USA

Abstract

Maximally asymmetric functions are multiple-valued functions that have
the maximum distance from their nearest symmetric functions, in terms of
Hamming distance. Maximally asymmetric functions can be promising for ap-
plications such as radio communication and cryptography, due to randomness
of the functions. To promote such application studies, benchmarks for maxi-
mally asymmetric functions in compact form are needed. However, few studies
on benchmark generation or even on characteristics for maximally asymmet-
ric functions have been reported. Thus, this paper investigates representation
of maximally asymmetric functions based on decision diagrams. This paper
begins with proposing a method to compute asymmetry of a given function
easily, and then, derives a new characteristic of maximally asymmetric func-
tions based on the computation method. Using the derived characteristic, we
also propose a method to automatically generate benchmarks for maximally
asymmetric functions represented by decision diagrams. By comparing sizes
of different types of decision diagrams, we consider suitable representations for
maximally asymmetric functions.

This paper is an extension of [24].

Vol. 10 No. 6 2023
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

Nagayama, Sasao, and Butler

1 Introduction

It is hard to over-state the importance of symmetric functions in the study of logic
functions. Symmetric functions appear in most, if not all, textbooks on logic design.
Indeed, older textbooks even include a discussion of the synthesis of symmetric func-
tions in the realization of the old-style contact switch network, (e.g., pp. 158-171 in
[17]). The basic binary logic operations, two-variable AND and OR, realize sym-
metric functions. Symmetric functions occur in the sum (three-variable majority)
and carry (three-variable exclusive OR) functions of the full adder. In an almost
forgotten set of articles approximately 50 years ago, the articles [4, 12, 18, 34] ex-
ploited the surprising result that any binary function f can be realized by a single
symmetric function in which certain variables are combined into a single variable of
f . The significance of symmetric functions in cryptographic applications is investi-
gated in [11, 19, 21, 27, 28]. In 1999, [25] introduced rotation symmetric functions,
which represent a subset of symmetric functions. Such functions can be used in the
rounds of efficient hashing algorithms.

A symmetric function is unchanged by any permutation of its variables. There-
fore, in order to determine if a function is symmetric, one need examine only the
function itself, and not any other functions. On the other hand, for maximally
asymmetric functions, it is hard to determine if they are maximally asymmetric
by just examining functions themselves. This is because an n-variable maximally
asymmetric function is defined as a function as far away as possible from the set of
n-variable symmetric functions. The descriptor “far”, in this case, refers to the Ham-
ming distance across the function values. For example, in the case of two-variable
binary functions, the eight non-symmetric functions represent all of the maximally
asymmetric functions. That is, all non-symmetric functions are at a distance 1 from
some symmetric function. For larger n, there are many more maximally asymmetric
than there are symmetric functions [30]. These observations suggest that maximally
asymmetric functions are more complex than symmetric functions.

As for bent functions [26], with the aim to apply to encryption technology, their
characteristic analyses and generation methods have been widely studied [16, 29, 32].
It is said that maximally asymmetric functions can be promising for applications
such as CDMA communication and encryption [2, 5, 8, 13, 33], due to randomness
of the functions [3, 9, 14, 30]. However, as far as we know, the usefulness of max-
imally asymmetric functions in such applications has not been shown, since their
characteristics and generation methods have not been reported as much as ones for
symmetric functions. Although the number of n-variable r-valued maximally asym-
metric functions has been shown in [8, 9], their characteristics as well as generation
methods are not sufficiently known yet. Thus, this paper shows a new character-

1106

On Representation of MAFs Based on DDs

istic of maximally asymmetric functions. It is based on a new method to compute
asymmetry of a given function easily, which is proposed in this paper. By using the
derived characteristic, we can determine if a given function is maximally asymmetric
by just examining the function itself.

To promote studies on maximally asymmetric functions, providing their bench-
marks in compact form is important. This paper focuses on the use of decision
diagrams as a means to compactly represent maximally asymmetric functions. Al-
though decision diagrams are well-known as a compact form for various functions,
the size of decision diagrams varies significantly, depending on classes of functions
as well as the order of variables. Thus, it is important to choose an appropriate
decision diagram to a targeting class of functions. To do that, this paper shows
sizes of different types of decision diagrams, MDD, EVMDD, BDD, and ZDD, for
maximally asymmetric functions. This paper also proposes a method to randomly
generate benchmarks for maximally asymmetric functions represented by decision
diagrams. As far as we know, this is the first time to propose the method for bench-
mark generation of maximally asymmetric functions. The proposed method is based
on the new characteristic of maximally asymmetric functions.

The rest of this paper is organized as follows: Section 2 shows some definitions
for maximally asymmetric functions and decision diagrams. Section 3 shows a char-
acteristic of maximally asymmetric functions derived from the results of [8, 9, 10].
Based on the derived characteristic, Section 4 presents a generation method of bench-
marks for n-variable r-valued maximally asymmetric functions in decision diagram
form. Section 5 shows sizes of decision diagrams for randomly generated maximally
asymmetric functions, and Section 6 concludes the paper.

2 Preliminaries

This section shows definitions of maximally asymmetric functions [8] and decision
diagrams.

2.1 Maximally Asymmetric Functions

Definition 1. For an n-variable r-valued function f(X1, X2, . . . , Xn) : {0, 1, . . . , r−
1}n → {0, 1, . . . , r − 1}, an assignment of values to the n variables is an input
vector. When the rn input vectors (0, 0, . . . , 0), (0, 0, . . . , 1), . . . , (r −1, r −1, . . . , r −
1) are applied to the input variables of the function f in ascending order, the vector
of obtained function values is the function vector F .

1107

Nagayama, Sasao, and Butler

Definition 2. The Hamming distance d(F, G) between two vectors F and G of
the same length is the number of positionwise different elements between F and G.

Definition 3. A symmetric function f satisfies

f(X1, X2, . . . Xi, . . . , Xj , . . . , Xn) = f(X1, X2, . . . Xj , . . . , Xi, . . . , Xn)

for any pair of variables Xi and Xj. In a symmetric function, function values are
decided only by combinations of values assigned to X1, X2, . . . , Xn. This is also
known as v-symmetry (variable-symmetry) [7]. Although there is another symmetry
(vv-symmetry [8]), this paper focuses only on v-symmetry since techniques in this
paper are expandable to vv-symmetry.

Definition 4. The asymmetry of a function f is the Hamming distance between
f and its nearest symmetric function g, and is defined as

min
g∈Γ

d(F, G),

where F and G are function vectors of f and g, respectively, and Γ is the set of all
symmetric functions.

Definition 5. An n-variable r-valued maximally asymmetric function (MAF)
has the larg-est asymmetry among all n-variable r-valued functions.

Example 1. Table 1 shows truth tables of f1 and f2, three-variable three-valued
asymmetric functions, and of g1 and g2, symmetric functions. In Table 1, input
vectors are reordered and grouped into the same combinations of input values. As
shown in Table 1, function values of g1 and g2 depend on combinations of input
values rather than individual input vectors. On the other hand, function values of
f1 and f2 are independent of combinations of input values. Since g1 is the nearest
symmetric function of f1 in terms of the Hamming distance, the asymmetry of f1 is
16. Although the Hamming distance between g1 and f2 is 27, it is not the asymmetry
of f2 since g1 is not the nearest symmetric function of f2. Its nearest function is
g2, and thus, the asymmetry of f2 is 7. Since f1 has the largest asymmetry among
three-variable three-valued functions, f1 is maximally asymmetric.

In this way, to compute the asymmetry of a given n-variable r-valued function
and decide whether it is maximally asymmetric or not, we have to find its nearest
symmetric function and confirm that its asymmetry is the largest among n-variable
r-valued functions. If we follow only the definitions (i.e., if we do not use any
characteristics of MAFs shown later), then it is not easy to decide whether a given
function is maximally asymmetric or not.

1108

On Representation of MAFs Based on DDs

X1 X2 X3 f1 g1 f2 g2

0 0 0 1 1 0 0
1 1 1 2 2 1 1
2 2 2 0 0 2 2
0 0 1 0 1 0 2
0 1 0 1 1 2 2
1 0 0 2 1 2 2
0 0 2 1 0 2 1
0 2 0 2 0 1 1
2 0 0 0 0 1 1
0 1 1 0 1 0 0
1 0 1 1 1 2 0
1 1 0 2 1 0 0
0 2 2 0 1 0 0
2 0 2 1 1 0 0
2 2 0 2 1 0 0
1 1 2 0 0 1 1
1 2 1 1 0 1 1
2 1 1 2 0 1 1
1 2 2 2 0 1 1
2 1 2 0 0 1 1
2 2 1 1 0 2 1
0 1 2 1 2 1 0
0 2 1 2 2 0 0
1 0 2 1 2 1 0
1 2 0 2 2 0 0
2 0 1 0 2 0 0
2 1 0 0 2 1 0

Table 1: Asymmetric functions f1 and f2, and symmetric functions g1 and g2.

2.2 Decision Diagrams

Definition 6. A binary decision diagram (BDD) [1, 6] is a rooted directed
acyclic graph (DAG) representing a binary logic function. The BDD is obtained by
recursively applying the Shannon expansion f = xif0 + xif1 to the logic function,
where f0 = f(xi = 0), and f1 = f(xi = 1). It consists of two terminal nodes
representing function values 0 and 1 respectively, and nonterminal nodes representing
input variables. Each nonterminal node has two unweighted outgoing edges, 0-edge
and 1-edge, that correspond to the values of the input variables. Both terminal
nodes have no outgoing edges. In this paper, a BDD means a reduced ordered BDD
(ROBDD) that is obtained by fixing the order of variables in a BDD, and by applying
the following two reduction rules:

1. Coalesce equivalent sub-graphs.

1109

Nagayama, Sasao, and Butler

1 0

f1h

x6

1 0

x5

x4

x3

0

x5

x4 x4

0

x3

x2

x1

0 1

x6

x5

x4

0

x5

x4

x3

x2

1 0

f1l

x6

x3

x5

x4

0

x3

x2

x1

0 1

x6

x5

x4

0

x3

x2

x5

x4

Figure 1: BDDs for f1 = (f1h, f1l)

2. Delete nonterminal nodes v when both its outgoing edges point to the same
node u , and redirect edges pointing to v to its child node u.

Definition 7. A zero-suppressed binary decision diagram (ZDD) [20] is a
variant of a BDD. In ZDDs, the following reduction rules are used:

1. Coalesce equivalent sub-graphs.

2. Delete nonterminal nodes v whose 1-edge points to the terminal node repre-
senting 0, and redirect edges pointing to v to its child node u that is pointed
by the 0-edge of v.

BDDs and ZDDs represent multiple-valued functions by converting them into
binary encoded multiple-output logic functions.

Example 2. Figs. 1 and 2 show BDDs and ZDDs for a binary encoded two-output
logic function that is obtained by converting the maximally asymmetric function f1
in Table 1 as follows:

X1 = (x1, x2) X2 = (x3, x4) X3 = (x5, x6)
(0)3 = (00)2 (1)3 = (01)2 (2)3 = (10)2
f1 = (f1h, f1l).

1110

On Representation of MAFs Based on DDs

1 0

f1h

1

x3

0

x5

x4 x4

x3

x2

x1

1

x6

x3

f1l

x3

x5

x4

x2

x1

0 1

x6

x3

x5

x6

1 0 1

x5

Figure 2: ZDDs for f1 = (f1h, f1l)

In these figures, dashed lines and solid lines denote 0-edges and 1-edges, respec-
tively. For simplicity, terminal nodes are not shared completely. In addition, each
logic function is represented separately by a single-rooted decision diagram. However,
multiple-output logic functions can be represented by multiple-rooted monolithic de-
cision diagrams sharing equivalent sub-graphs among logic functions. Such multiple-
rooted BDDs and ZDDs are called shared BDDs and shared ZDDs, respectively.

Definition 8. A multi-valued decision diagram (MDD) [15] is an extension
of a BDD to represent an r-valued function. It consists of r terminal nodes repre-
senting function values, and nonterminal nodes representing input variables. Each
nonterminal node has r outgoing edges that correspond to the values of the input
variables.

Definition 9. An edge-valued MDD (EVMDD) [22] is a variant of an MDD. It
consists of one terminal node representing 0 and nonterminal nodes with edges having
integer weights; 0-edges always have zero weights. In an EVMDD, the function value
is represented as a sum of weights for edges traversed from the root node to the
terminal node.

1111

Nagayama, Sasao, and Butler

1 0

X3

10,2

X2

0, 1

2 0

X3

20,1

2

2 1

X3

1,20

2 1

X3

10,2

X2

1 0 2

0 1

X3

20,1

0 2

X3

10,2

2 1 0

X3

1 20

X2

0 1 2

X10

1

2

f1

Figure 3: MDD for f1

X3

10, 2

X2
0, 1 2

X2

1 0

2

X2

0 1 2

X10

1

2

f1

-1

1

X3

20, 1

-2

1

X3

1, 20

-1

1

X3

20, 1

1

X3

10, 2

2

X3

10

-1

2

-2

0

2

-1

Figure 4: EVMDD for f1

Example 3. Figs. 3 and 4 show an MDD and an EVMDD for the maximally asym-
metric function f1, respectively. For simplicity, terminal nodes in the MDD are not
shared completely. Note that in Fig. 4, the edge to the root node also has a weight
1.

1112

On Representation of MAFs Based on DDs

3 Analysis of Maximal Asymmetries
This section begins by introducing the notation needed for characteristic analysis
of maximally asymmetric functions. Then, we derive a characteristic of maximally
asymmetric functions.

3.1 Notation for Characteristic Analysis
To analyze characteristics of maximally asymmetric functions, we introduce the
notation used for symmetric functions [7, 8]. As shown in Example 1, function
values of symmetric functions depend on combinations of input values. Thus, the
set of input vectors can be classified into equivalence classes, each of which has
the same combination of input values. A representative of each equivalence class is
denoted as follows:

Definition 10. For an n-variable r-valued function f(X1, X2, . . . , Xn), when input
vectors (X1, X2, . . . , Xn) are classified into equivalence classes, each of which has
the same combination of input values, a representative of an i-th equivalence class
is

α⃗(i) = (α0(i), α1(i), . . . , αr−1(i)),

where αj(i) denotes the number of variables whose values are j in the i-th equivalence
class, and ∑r−1

j=0 αj(i) = n. In this paper, such equivalence classes of input vectors
are called α-equivalence classes. Each equivalence class is denoted by [α⃗(i)], and
#[α⃗(i)] denotes the number of input vectors belonging to the class [α⃗(i)].

Lemma 1. For an n-variable r-valued function, the number of input vectors belong-
ing to a [α⃗(i)] is

#[α⃗(i)] = n!
α0(i)!α1(i)! . . .!αr−1(i)! . (1)

(Proof) This is the number of ways to distribute n distinct items into r distinct bins,
which is the multinomial in (1).

Lemma 2. [8] For an n-variable r-valued function, the number of α-equivalence
classes, Nα, is

Nα =
(

n + r − 1
r − 1

)
.

Since Nα < rn, symmetric functions are represented more compactly than their
truth tables by using the notation of α⃗ and its corresponding function value.

1113

Nagayama, Sasao, and Butler

i X1 X2 X3 α0(i) α1(i) α2(i) g1

1 0 0 0 3 0 0 1
2 1 1 1 0 3 0 2
3 2 2 2 0 0 3 0

4
0 0 1

2 1 0 10 1 0
1 0 0

5
0 0 2

2 0 1 00 2 0
2 0 0

6
0 1 1

1 2 0 11 0 1
1 1 0

7
0 2 2

1 0 2 12 0 2
2 2 0

8
1 1 2

0 2 1 01 2 1
2 1 1

9
1 2 2

0 1 2 02 1 2
2 2 1

10

0 1 2

1 1 1 2

0 2 1
1 0 2
1 2 0
2 0 1
2 1 0

Table 2: Representation of g1 using α⃗(i)’s.

Example 4. Table 2 shows the α-equivalence classes for g1 in Table 1. Here, Nα =
10 since n = 3 and r = 3.

In symmetric functions, all input vectors belonging to an α-equivalence class
map to the same function value. Thus, we can decide whether a given function is
symmetric or not by checking if all input vectors in an equivalence class map to only
one function value. To implement this process, the following notation is introduced.

Definition 11. In an n-variable r-valued function f , consider input vectors belong-
ing to an α-equivalence class [α⃗(i)]. Of #[α⃗(i)] input vectors, the number of input
vectors, X’s, satisfying f(X) = j is denoted by vj(f, i). Then, the distribution of
input vectors to function values for the i-th equivalence class [α⃗(i)] is

v⃗(f, i) = (v0(f, i), v1(f, i), . . . , vr−1(f, i)),

where values of vj(f, i)’s are constrained by ∑r−1
j=0 vj(f, i) = #[α⃗(i)].

1114

On Representation of MAFs Based on DDs

α⃗(i) v⃗(g1, i) v⃗(f1, i)
i X1 X2 X3 α0(i) α1(i) α2(i) g1 v0(g1, i) v1(g1, i) v2(g1, i) f1 v0(f1, i) v1(f1, i) v2(f1, i)
1 0 0 0 3 0 0 1 0 1 0 1 0 1 0
2 1 1 1 0 3 0 2 0 0 1 2 0 0 1
3 2 2 2 0 0 3 0 1 0 0 0 1 0 0

4
0 0 1

2 1 0
1

0 3 0
0

1 1 10 1 0 1 1
1 0 0 1 2

5
0 0 2

2 0 1
0

3 0 0
1

1 1 10 2 0 0 2
2 0 0 0 0

6
0 1 1

1 2 0
1

0 3 0
0

1 1 11 0 1 1 1
1 1 0 1 2

7
0 2 2

1 0 2
1

0 3 0
0

1 1 12 0 2 1 1
2 2 0 1 2

8
1 1 2

0 2 1
0

3 0 0
0

1 1 11 2 1 0 1
2 1 1 0 2

9
1 2 2

0 1 2
0

3 0 0
2

1 1 12 1 2 0 0
2 2 1 0 1

10

0 1 2

1 1 1

2

0 0 6

1

2 2 2

0 2 1 2 2
1 0 2 2 1
1 2 0 2 2
2 0 1 2 0
2 1 0 2 0

Table 3: Representation of g1 and f1 using α⃗(i)’s and v⃗(f, i)’s.

Example 5. Table 3 shows distributions of input vectors to function values v⃗(f, i)’s
for g1 and f1 shown in Table 1 with α⃗(i)’s.

3.2 Computation Method for Asymmetry
As shown in Table 3, in each v⃗(g, i) of symmetric functions g , only one element
vj(g, i) has a non-zero value, and all other elements are zero. On the other hand,
in asymmetric functions f , there exists a v⃗(f, i) that has more than one non-zero
vj(f, i). From this observation of distributions v⃗(f, i)’s, we have the following lemma:

Lemma 3. A function g is symmetric iff for any α-equivalence class [α⃗(i)],

max(v⃗(g, i)) = #[α⃗(i)]

holds, where max(v⃗(g, i)) is the largest element vj(g, i) in v⃗(g, i).

1115

Nagayama, Sasao, and Butler

(Proof) If g is symmetric, then from Definitions 3 and 10, it is clear that all the input
vectors in an equivalence class [α⃗(i)] correspond to the same function value. Without
loss of generality, let the function value be j. Then, from Definition 11, only vj(g, i)
has the value of #[α⃗(i)], and all others are zero. Thus, max(v⃗(g, i)) = #[α⃗(i)] holds.

If max(v⃗(g, i)) = #[α⃗(i)] holds, then from Definition 11, all vk(g, i)’s other than
the largest element vj(g, i) are zero since values of vk(g, i)’s are constrained by∑r−1

k=0 vk(f, i) = #[α⃗(i)]. This means that all the input vectors in [α⃗(i)] correspond
to the function value j. Thus, g is symmetric.

From Lemma 3, when max(v⃗(f, i)) < #[α⃗(i)], a function f is asymmetric. For an
asymmetric function f , its nearest symmetric function is obtained by the following
lemma:

Lemma 4. For an asymmetric function f , consider α-equivalence classes [α⃗(i)]’s
and distributions v⃗(f, i)’s of input vectors. For each [α⃗(i)], let vj(f, i) = max(v⃗(f, i)).
Then, by assigning j as function values for input vectors in [α⃗(i)], we obtain the
nearest symmetric function to f .

(Proof) In the asymmetric function f , vj(f, i) = max(v⃗(f, i)) means that the most
input vectors among ones in [α⃗(i)] correspond to the function value j. Since in
symmetric functions, all the input vectors in [α⃗(i)] correspond to the same function
value, by setting the function value to j, we have a symmetric function with the
smallest Hamming distance from f .

To compute the asymmetry of general functions f according to Definition 4, a
symmetric function with the smallest Hamming distance from f has to be found. In
general, such a search task tends to be intractable. However, we can easily find a
symmetric function with the smallest Hamming distance by focusing on distributions
of function values v⃗(f, i) and by using Lemma 4. In addition, based on Lemma 4,
we can efficiently compute the asymmetry of general functions f by the following
theorem:

Theorem 1. The asymmetry of an n-variable r-valued function f is

min
g∈Γ

d(F, G) =
Nα∑

i=1
(#[α⃗(i)] − max(v⃗(f, i))), (2)

where max(v⃗(f, i)) is the largest element vj(f, i) in v⃗(f, i).

(Proof) From Lemma 4, in the nearest symmetric function to f , all the input vectors
in [α⃗(i)] correspond to the function value j. On the other hand, in f , vj(f, i) input

1116

On Representation of MAFs Based on DDs

vectors in [α⃗(i)] correspond to j. That is, other input vectors in [α⃗(i)] correspond
to different function values than j. These input vectors contribute to the Hamming
distance between F and G. Thus, by tallying the difference (#[α⃗(i)]−max(v⃗(f, i))),
we can compute the asymmetry of f .

Note that the right hand side of (2) computes the asymmetry of f without using
the set of symmetric functions. Thus, Theorem 1 computes the asymmetry much
more efficiently than Definition 4.

3.3 Characteristic of Maximally Asymmetric Functions
From Theorem 1, the maximum asymmetry occurs when all the max(v⃗(f, i))’s are
minimum. That is, when all the max(v⃗(f, i))’s are minimum, their function f is
maximally asymmetric. When the distribution of input vectors v⃗(f, i) is uniform,
max(v⃗(f, i)) achieves the minimum. However, its converse does not hold. Even if a
max(v⃗(f, i)) is minimum, the distribution v⃗(f, i) is not always uniform because the
number of input vectors is not always an integer multiple of r positions specified by
v⃗(f, i). By considering discreteness of v⃗(f, i), we have the following theorem on the
minimum max(v⃗(f, i))’s for maximally asymmetric functions f .

Theorem 2. An n-variable r-valued function f is maximally asymmetric iff each
v⃗(f, i) for [α⃗(i)] satisfies the following:

max(v⃗(f, i)) =
⌈#[α⃗(i)]

r

⌉
.

(Proof) From (2), the maximum asymmetry occurs when max(v⃗(f, i)) is minimum
across all i. Note that from Definition 11, a value of each element vj(f, i) in v⃗(f, i) is
constrained by ∑r−1

j=0 vj(f, i) = #[α⃗(i)]. Each i contributes a part of the asymmetry
to the right hand side of (2) a value that is independent of all other i. That is,
each value, max(v⃗(f, i)), should be minimum, independent of all other values. This
occurs when

max(v⃗(f, i)) =
⌈#[α⃗(i)]

r

⌉

for all i.

If we follow only Definition 5, it is hard to decide if a given function f is maxi-
mally asymmetric by just examining function itself since we have to confirm that the
asymmetry of f is the largest among all functions. However, by using Theorem 2,
we can easily decide whether f is maximally asymmetric or not by just examining
f itself.

1117

Nagayama, Sasao, and Butler

Lemma 5. For an n-variable r-valued maximally asymmetric function f , the small-
est element in each v⃗(f, i) is

min(v⃗(f, i)) =

0
(

#[α⃗(i)]
max(v⃗(f,i)) ≤ r − 1

)

#[α⃗(i)]% max(v⃗(f, i))
(

r − 1 < #[α⃗(i)]
max(v⃗(f,i)) < r

)

max(v⃗(f, i))
(

#[α⃗(i)]
max(v⃗(f,i)) = r

)

where % denotes the modulo operation.

(Proof) Each element in v⃗(f, i) can be up to max(v⃗(f, i)) while satisfying the neces-
sary and sufficient condition for maximally asymmetric functions. If #[α⃗(i)] is large
enough that all the elements are max(v⃗(f, i)), then the smallest element is max(v⃗(i)).
Otherwise, it is 0 or the remainder when dividing #[α⃗(i)] by max(v⃗(f, i)), depending
on #[α⃗(i)].

Lemma 6. Let f0, f1, . . . , fr−1 be (n − 1)-variable r-valued maximally asymmetric
functions. Consider an n-variable r-valued function composed of the r maximally
asymmetric functions by the Shannon expansion. Then, there exists an n-variable
function that is not maximally asymmetric.

(Proof) Consider f0, f1, and f2 in Table 4. These functions are maximally asym-
metric. However, a 3-variable function f composed by the Shannon expansion:

f = X0
3 f0 + X1

3 f1 + X2
3 f2

is not maximally asymmetric as shown in Table 4, where Xi
3 is a literal of X3. The

asymmetry of f is 10 that is smaller than the asymmetry, 16, of the MAF in Table 1

4 DD-Based Computation Methods for Asymmetry and
MAFs

This section proposes decision diagram-based methods to compute asymmetry of
functions and to generate benchmarks for maximally asymmetric functions.

4.1 Computation of Asymmetry on Decision Diagrams
Given a multiple-valued function represented by a decision diagram, its asymmetry
is computed by the following two main processes:

1118

On Representation of MAFs Based on DDs

X1 X2 X3 f X1 X2 f0 f1 f2
0 0 0 2 0 0 2 1 1
1 1 1 0 1 1 2 0 2
2 2 2 0 2 2 0 2 0
0 0 1 1 0 1 1 2 2
0 1 0 1 1 0 0 1 0
1 0 0 0 0 2 0 1 2
0 0 2 1 2 0 1 2 0
0 2 0 0 1 2 0 1 0
2 0 0 1 2 1 1 2 2
0 1 1 2
1 0 1 1
1 1 0 2
0 2 2 2
2 0 2 0
2 2 0 0
1 1 2 2
1 2 1 1
2 1 1 2
1 2 2 0
2 1 2 2
2 2 1 2
0 1 2 2
0 2 1 1
1 0 2 0
1 2 0 0
2 0 1 2
2 1 0 1

Table 4: A function f composed of MAFs f0, f1, and f2.

1. Traverse all paths in a decision diagram in the depth first manner, and make
a table of α⃗(i)’s and v⃗(i)’s as in Table 3.

2. Compute the asymmetry using the table and Theorem 1.

Fig. 5 shows pseudo code for the Process 1. This procedure requires the root node
of a decision diagram and the undefined input vector as its arguments. It traverses
a path while setting elements of input vector one by one. When a terminal node

1119

Nagayama, Sasao, and Butler

Make_Vtable (node, input_vector) {
if (node is terminal) {

Find equivalence classes [α⃗(i)]’s to which input_vector belongs;
Update their v⃗(i)’s with the function value represented at the terminal;
return;

}

for (i = 0; i < r; i++) {
input_vector[node.variable] = i;
Make_Vtable (node.edge[i], input_vector);

}
input_vector[node.variable] = Undefined;
return;

}
Figure 5: Traversing a DD and making a table α⃗ and v⃗.

is reached, equivalence classes [α⃗(i)]’s to which the input vector belongs are found.
Note that some elements in the input vector can remain undefined due to skipped
nodes in a path of the decision diagram. Since all possible values are assigned to
those elements, multiple classes [α⃗(i)]’s are found. Then, their v⃗(i)’s are incremented
by the function value represented at the terminal node.

4.2 Benchmark Generation of Maximally Asymmetric Functions
In applications where maximally asymmetric functions can be promising, bench-
mark functions are required to evaluate their usefulness. This subsection presents a
method to randomly generate maximally asymmetric functions based on the char-
acteristic derived in the previous section.

As shown in Theorem 2, in maximally asymmetric functions, max(v⃗(i))’s in dis-
tributions v⃗(i)’s are minimized. Therefore, by generating function values randomly
such that max(v⃗(i))’s are minimized, we can generate a benchmark for maximally
asymmetric function. Lemma 6 shows that from smaller maximally asymmetric
functions, a larger maximally asymmetric function cannot be always composed by
the Shannon expansion. Thus, we generate an n-variable maximally asymmetric
function directly without using subfunctions. Algorithm 1 shows the algorithm to
randomly generate a benchmark for a maximally asymmetric function in decision
diagram form.

In Algorithm 1, steps 3 and 4 randomly generate a function value j in a range

1120

On Representation of MAFs Based on DDs

Algorithm 1. Overview of the generation algorithm

Input: the numbers of variables n and values r
Output: a decision diagram DDfin for an n-variable r-valued MAF
Initialize:

- each v⃗(i) = 0⃗, and
- construct DDfin for the 0 constant function.

1. For each class [α⃗(i)], the following processes apply.
2. For each input vector in [α⃗(i)], the following applies.

3. Randomly generate a function value j satisfying
vj(i) <

⌈
#[α⃗(i)]

r

⌉
, where vj(i) ∈ v⃗(i).

4. Increment vj(i).
5. If j = 0, then skip the steps 6 and 7.
6. Construct a decision diagram DDmin for an input vector and j (i.e., a minterm).
7. Merge DDmin with DDfin.

of 0 to r − 1 satisfying vj(i) ≤
⌈

#[α⃗(i)]
r

⌉
. Step 6 constructs a decision diagram for

a minterm, and then at step 7, it is merged with DDfin by any of the following
operations:

• Max operation for MDDs [15]

• Add operation for EVMDDs shown in Fig. 6

• Logical OR operation for BDDs [6]

• Union operation for ZDDs [20]

Since the DDfin is initially set to the constant 0 function, we can skip the processes
for constructing and merging decision diagrams if the generated function value j is
0. After all the iterations of steps 1 and 2, the decision diagram DDfin representing
an n-variable r-valued maximally asymmetric function is obtained.

Fig. 6 shows pseudo code for the Add operation for EVMDDs. For simplicity,
pseudo code for the computed table is omitted in this figure. In Fig. 6, “height”
denotes the height of EVMDD for f or g. This operation merges two EVMDDs in
the depth first manner.

1121

Nagayama, Sasao, and Butler

Add_EVMDD (f , g) {
if (f = 0) return g;
if (g = 0) return f ;
if (f .height > g.height) {

for (i = 0; i < r; i++) {
edge[i] = Add_EVMDD (f .edge[i], g);
edge_val[i] = f .edge_val[i];

}
height = f .height;

}
else if (f .height < g.height) {

for (i = 0; i < r; i++) {
edge[i] = Add_EVMDD (f , g.edge[i]);
edge_val[i] = g.edge_val[i];

}
height = g.height;

}
else {

for (i = 0; i < r; i++) {
edge[i] = Add_EVMDD (f .edge[i], g.edge[i]);
edge_val[i] = f .edge_val[i] + g.edge_val[i];

}
height = f .height;

}
return get_node (height, edge, edge_val);

}
Figure 6: Add operation for EVMDDs f and g

5 Experimental Results
The proposed benchmark generation method is implemented on our own package
for decision diagrams, and run on the following computer environment: CPU: Intel
Core2 Quad Q6600 2.4GHz, memory: 4GB, OS: CentOS 5.7 Linux, and C-compiler:
gcc -O2 (version 4.1.2). The variable order for decision diagrams is the natural order
(i.e., x1, x2, . . . , xn, from the root node to a terminal node).

We randomly generated n-variable r-valued maximally asymmetric functions in
MDDs, EVMDDs, BDDs, and ZDDs using the proposed method, for various n
and r. All the decision diagrams represent the same functions. For each n and r,

1122

On Representation of MAFs Based on DDs

Truth Tables MDDs Ratio
n r (rn words) (# nodes) (%)
3 3 27 14 52
4 3 81 33 40
5 3 243 66 27
6 3 729 148 20
7 3 2,187 390 18
8 3 6,561 1,106 17
9 3 19,683 3,187 16
10 3 59,049 8,865 15
11 3 177,147 22,275 13
12 3 531,441 48,237 9
13 3 1,594,323 108,254 7
3 4 64 25 38
4 4 256 82 32
5 4 1,024 250 24
6 4 4,096 592 14
7 4 16,384 1,621 10
8 4 65,536 5,717 9
9 4 262,144 22,101 8
10 4 1,048,576 87,636 8
3 5 125 36 29
4 5 625 157 25
5 5 3,125 727 23
6 5 15,625 2,749 18
7 5 78,125 7,009 9
8 5 390,625 22,656 6
9 5 1,953,125 100,781 5

Table 5: Comparison in size of truth tables and MDDs.

we generated 10 maximally asymmetric functions. Other details are shown in the
following subsections.

5.1 Comparison with Truth Tables

We begin by comparing the size of MDDs with the size of truth tables. For maximally
asymmetric functions, suitable representations have not been well-known yet. Thus,
we use the size of truth tables as a baseline for size evaluation of decision diagrams.

Table 5 compares the size of MDDs with the size of truth tables for n-variable
r-valued maximally asymmetric functions. The size of the truth table is rn, the
total number of input vectors. The size of MDDs is the average number of nodes in

1123

Nagayama, Sasao, and Butler

10 MDDs for the randomly generated maximally asymmetric functions. In Table 5,
the average is rounded to the nearest integer. The column “Ratio” shows the ratio
of the size of MDD to the size of truth table.

From Table 5, we can see that the size of MDDs is much smaller than that of
truth tables. Thus, providing benchmarks for maximally asymmetric functions in
MDD form is more useful than providing them in truth table form.

5.2 Comparison with Random Functions

To show the difference between maximally asymmetric functions and random func-
tions, we compared them. We define random functions as follows:

Definition 12. A function of which function values are generated only by uniform
random numbers is called a random function.

Table 6 compares maximally asymmetric functions with randomly generated
functions, in terms of the number of nodes in an MDD and asymmetry. We ran-
domly generated 10 n-variable r-valued functions by generating functions values
using uniform random numbers. Table 6 shows the average number of nodes in
an MDD and the average asymmetry. The columns “MAF” and “Random” show
the results for maximally asymmetric functions and randomly generated functions,
respectively. The column “UB of nodes in MDDs” shows the upper bound on the
number of nodes in an MDD for an n-variable r-valued function. It is obtained by

rn−l − 1
r − 1 + rrl

,

where l is the largest integer satisfying n − l ≥ rl [23].
From Table 6, we can see that the size of MDDs for maximally asymmetric

functions is almost equal to the size of MDDs for randomly generated functions.
In addition, their size is almost equal to its upper bound. Thus, the maximally
asymmetric functions belong to the worst class, in which functions require large
MDDs, as randomly generated functions.

However, randomly generated functions have smaller asymmetry than maximally
asymmetric functions. In fact, no maximally asymmetric functions were obtained
by just generating function values using uniform random numbers. From this obser-
vation, we can conclude that it is hard to generate maximally asymmetric functions
unless the proposed method is used.

1124

On Representation of MAFs Based on DDs

nodes UB of Asymmetry
MAF Random # nodes in MAF Random

n r MDDs [23]
3 3 14 14 16 16 9
4 3 33 31 40 48 37
5 3 66 66 67 153 127
6 3 148 148 148 483 418
7 3 390 388 391 1,449 1,335
8 3 1,106 1,105 1,120 4,356 4,148
9 3 3,187 3,186 3,307 13,120 12,671
10 3 8,865 8,872 9,868 39,360 38,560
11 3 22,275 22,299 29,524 118,089 116,707
12 3 48,237 48,234 49,207 354,288 351,822
13 3 108,254 108,253 108,256 1,062,864 1,058,003
3 4 25 24 25 40 28
4 4 82 80 89 186 144
5 4 250 250 341 744 649
6 4 592 593 597 3,052 2,796
7 4 1,621 1,621 1,621 12,236 11,649
8 4 5,717 5,717 5,717 49,146 47,741
9 4 22,101 22,101 22,101 196,584 193,396
10 4 87,636 87,637 87,637 786,396 779,458
3 5 36 36 36 80 62
4 5 157 159 161 465 390
5 5 727 727 786 2,496 2,190
6 5 2,749 2,750 3,906 12,480 11,642
7 5 7,009 7,012 7,031 62,450 60,148
8 5 22,656 22,656 22,656 312,400 306,376
9 5 100,781 100,781 100,781 1,562,325 1,546,763
Boldfaced numbers show that the number of nodes in an MDD
reaches its upper bound.

Table 6: Comparison of MAFs with random functions.

5.3 Comparison of Decision Diagrams

To investigate a decision diagram appropriate for maximally asymmetric functions,
we compare sizes of MDDs, EVMDDs, BDDs, and ZDDs for them. To represent
maximally asymmetric functions by BDDs and ZDDs, we convert the multiple-valued
functions into multiple-output binary logic functions by using two kinds of encoding
methods: the natural binary encoding and the one-hot encoding. These encoding
can produce don’t cares in function values. In this experiment, 0 is assigned to the

1125

Nagayama, Sasao, and Butler

Binary One-hot
ZDDs ZDDs

n r MDDs EVMDDs BDDs ZDDs for CFs BDDs for CFs
3 3 14 12 28 20 25 65 33
4 3 33 28 67 49 57 151 73
5 3 66 59 161 117 118 364 153
6 3 148 140 400 297 277 899 347
7 3 390 382 977 730 732 2,149 884
8 3 1,106 1,097 2,354 1,808 1,948 5,100 2,342
9 3 3,187 3,172 5,953 4,752 4,990 12,780 6,100
10 3 8,865 8,822 16,013 13,205 12,895 34,423 16,087
11 3 22,275 22,069 45,143 37,721 32,874 97,235 –
12 3 48,237 47,771 128,003 106,839 78,528 277,474 –
13 3 108,254 107,742 358,213 296,072 197,590 – –
3 4 25 21 43 42 50 152 71
4 4 82 73 131 130 141 446 208
5 4 250 213 421 422 439 1,446 586
6 4 592 513 1,270 1,271 1,293 4,898 1,611
7 4 1,621 1,540 4,312 4,312 4,341 16,237 5,026
8 4 5,717 5,636 16,116 16,115 16,179 51,805 18,229
9 4 22,101 22,020 58,677 58,673 58,848 162,717 –
10 4 87,636 87,555 187,742 187,746 188,031 527,256 –
3 5 36 32 129 89 101 287 129
4 5 157 150 446 335 388 1,049 501
5 5 727 682 1,776 1,459 1,623 4,349 1,908
6 5 2,749 2,310 7,367 6,053 5,742 18,973 6,595
7 5 7,009 5,997 32,802 26,558 19,381 82,146 22,267
8 5 22,656 21,632 153,247 123,700 81,852 344,917 –
9 5 100,781 99,757 704,325 567,252 393,172 – –
"–": DDs could not be produced due to memory overflow or too long computation time.

Table 7: Comparison of MDDs, EVMDDs, BDDs, and ZDDs.

don’t cares. The multiple-output logic functions are represented by shared BDDs
and shared ZDDs. In addition, by using characteristic functions, the multiple-output
logic functions are converted into single-output logic functions, and they are repre-
sented by single ZDDs.

Table 7 compares MDDs, EVMDDs, BDDs, and ZDDs for maximally asymmetric
functions, in terms of the number of nodes. Similarly to the experiment for Table 5,
10 maximally asymmetric functions are generated, and the average number of nodes
in their decision diagrams are shown in Table 7. The columns “BDDs” and “ZDDs”
show the numbers of nodes in shared BDDs and shared ZDDs for the binary encoded
functions, respectively. The column “ZDDs for CFs” shows the number of nodes in

1126

On Representation of MAFs Based on DDs

ZDDs for characteristic functions of the encoded multiple-output functions.
As shown in Table 7, EVMDDs are the smallest among the decision diagrams

used in this experiment. However, there is little difference between the sizes of MDDs
and EVMDDs. The binary encoding and the one-hot encoding increase the number
of input variables, resulting in much larger BDDs and ZDDs. There are some cases
where by using characteristic functions, the size of ZDDs is reduced significantly.
However, for maximally asymmetric functions, ZDDs for CFs are much larger than
MDDs and EVMDDs. Thus, among these decision diagrams, MDDs and EVMDDs
are suitable for maximally asymmetric functions.

6 Conclusion and Future Works

This paper derives a new characteristic of maximally asymmetric function, and
proposes an automatic generation method of maximally asymmetric functions in
decision diagram form. The derived characteristic is based on the computation
method, and the proposed benchmark generation method uses the characteristic.
The above things are the main contributions of this paper.

The proposed method efficiently generates rare maximally asymmetric functions,
and thus, it will be helpful to find an application where the use of maximally asym-
metric functions can be promising. The generated benchmark functions and their
generator could be provided. This paper also shows sizes of MDDs, EVMDDs,
BDDs, and ZDDs for maximally asymmetric functions. Among these decision di-
agrams, MDDs and EVMDDs are suitable for representation of maximally asym-
metric functions. However, their sizes are almost equal to the upper bounds, and
thus, the maximally asymmetric functions belong to the same worst class as random
functions in terms of decision diagram size.

Since time complexity of the proposed generation method is O(rn), a method
with less complexity would be more useful. Our future work includes reduction of
time complexity and proposal of more scalable methods. In addition, investigating
a more compact representation method would be interesting and helpful in various
applications.

Acknowledgments

This research is partly supported by the JSPS KAKENHI Grant (C), No.23K11038,
2023. The reviewers’ comments were helpful in improving the paper.

1127

Nagayama, Sasao, and Butler

References

[1] S. B. Akers, “Binary decision diagrams,” IEEE Trans. Comput., Vol. C-27, No. 6,
pp. 509–516, 1978.

[2] F. Armknecht, C. Carlet, P. Gaborit, S. Künzli, W. Meier, and O. Ruatta, “Efficient
computation of algebraic immunity for algebraic and fast algebraic attacks,” Adv. in
Crypt. - EUROCRYPT 2006, LNCS, Vol. 4004, pp. 147–164, Springer-Verlag, 2006.

[3] A. Bogdonov and A. Rosen, “Pseudorandom functions: three decades later,” in Y.
Lindel (ed.) Tutorials on the Found. of Crypto., pp. 79-158, Springer Inter. Publ. AG.
Part of Springer Nature, 2017.

[4] R. C. Born, “An iterative technique for determining the minimal number of variables for
a totally symmetric function with repeated variables,” IEEE Trans. Comput., Vol. C-21,
No. 10, pp. 1129–1131, 1972.

[5] S. Boztas, R. Hammons, and P. V. Kumar, “4-phase sequences with near optimum
correlation properties,” IEEE Trans. Infor. Theory, Vol. 40, pp. 1101-1113, 1992.

[6] R. E. Bryant, “Graph-based algorithms for Boolean function manipulation,” IEEE
Trans. Comput., Vol. C-35, No. 8, pp. 677–691, 1986.

[7] J. T. Butler and T. Sasao, “On the properties of multiple-valued functions that are
symmetric in both variable values and labels,” Proc. of 28th International Symposium
on Multiple-Valued Logic, pp. 83-88, 1998.

[8] J. T. Butler and T. Sasao, “Maximally asymmetric multiple-valued functions,” Proc.
of 49th International Symposium on Multiple-Valued Logic, pp. 188-193, 2019.

[9] J. T. Butler and T. Sasao, “Enumerative analysis of asymmetric functions,” Proc. of
Reed-Muller Workshop 2019, pp. 3-11, 2019.

[10] J. T. Butler and T. Sasao, “Properties of multiple-valued partition functions,” Proc. of
50th International Symposium on Multiple-Valued Logic, pp. 82-87, 2020.

[11] A. Canteaut and M. Videau, “Symmetric Boolean functions,” IEEE Trans. Infor. The-
ory, Vol. 51, No. 8, pp. 2791–2811, 2005.

[12] B. Dahlberg, “On symmetric functions with redundant variables - weighted functions,”
IEEE Trans. Comput., Vol. C-22, No. 5, pp. 450–458, 1973.

[13] O. Goldreich, S. Goldwasser, and S. Micali, “On the cryptographic application of ran-
dom functions,” in G. R. Blakley and D. Chaum (Eds.) Advances in Cryptology -
CRYPTO’84, LNCS 196, pp. 276-288, 1985.

[14] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random functions,”
Journal of the Association for Computing Machinery, Vol. 33, No. 4, pp. 792-807, 1986.

[15] T. Kam, T. Villa, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Multi-valued
decision diagrams: Theory and applications,” Multiple-Valued Logic: An International
Journal, Vol. 4, No. 1-2, pp. 9–62, 1998.

[16] C. Karanikas, N. Atreas, and R. S. Stankovic, “Bent functions, bent permutations and
a variety of methods to construct them,” Proc. of Reed-Muller Workshop 2019, pp.
12-17, 2019.

1128

On Representation of MAFs Based on DDs

[17] Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill Book Company, 1979.
[18] D. T. Lee and S. J. Hong, “An algorithm for transformation of an arbitrary switching

function to a completely symmetric function,” IEEE Trans. Comput., Vol. C-25, No. 11,
pp. 1117–1123, 1976.

[19] S. Maitra and P. Sarkar, “Maximum nonlinearity of symmetric Boolean functions on
odd number of variables,” IEEE Trans. Infor. Theory, Vol. 48, No. 9, pp. 2626–2630,
2002.

[20] S. Minato, “Zero-suppressed BDDs for set manipulation in combinatorial problems,”
Proc. of 30th Design Automation Conference, pp. 272–277, 1993.

[21] C. Moraga, M. Stankovic, and R. S. Stankovic, “On ternary symmetric bent functions,”
Proc. of 50th International Symposium on Multiple-Valued Logic, pp. 76–81, 2022.

[22] S. Nagayama, T. Sasao, and J. T. Butler, “A systematic design method for two-variable
numeric function generators using multiple-valued decision diagrams,” IEICE Trans.
on Information and Systems, Vol. E93-D, No. 8, pp. 2059–2067, 2010.

[23] S. Nagayama, T. Sasao, and J. T. Butler, “Analysis of multi-state systems with
multi-state components using EVMDDs,” Proc. of 42nd International Symposium on
Multiple-Valued Logic, pp.122-127, 2012.

[24] S. Nagayama, T. Sasao, and J. T. Butler, “On decision diagrams for maximally asym-
metric functions,” Proc. of 52nd International Symposium on Multiple-Valued Logic,
pp. 164–169, 2022.

[25] J. Pieprzyk and C. X. Qu, “Fast hashing and rotation symmetric functions,” Journal
of Universal Computer Science, Vol. 5, No. 1, pp. 20–31, 1999.

[26] O. S. Rothaus, “On "bent" functions,” Journal of Combinatorial Theory, Series A, Vol.
20, Issue 3, pp. 300-305, 1976.

[27] P. Sarkar and S. Maitra, “Balancedness and correlation immunity of symmetric Boolean
functions,” Proc. of R. C. Bose Centenary Symp., Vol. 15, pp. 176–181, 2003.

[28] P. Savicky, “On the bent Boolean functions that are symmetric,” European J. Combi-
natorics, Vol. 15, Issue 4, pp. 407-410, 1994.

[29] J. L. Shafer, S. Schneider, J. T. Butler, and P. Stanica, “Enumeration of bent Boolean
functions by reconfigurable computer,” Proc. of 18th International Symposium on Field-
Programmable Custom Computing Machines, pp. 265-272, 2010.

[30] P. Stanica, T. Sasao, and J. T. Butler, “Distance duality on some classes of Boolean
functions,” Journal of Combinatorial Mathematics and Combinatorial Computing, Vol.
107, pp. 181-198, 2018.

[31] R. Stanley, Enumerative Combinatorics, Vol. 1, 2nd edition, Cambridge University
Press, 2012.

[32] N. Tokareva, Bent functions: Results and Applications to Cryptography, Academic
Press, 2015.

[33] K. Yang, Y.-K. Kim, and P. V. Kumar, “Quasi-orthogonal sequences for code-division
multiple-access systems,” IEEE Trans. Infor. Theory, Vol. 46, pp. 982-993, 2000.

[34] S. S. Yau and Y. S. Tang, “Transformation of an arbitrary switching function to a

1129

Nagayama, Sasao, and Butler

totally symmetric function,” IEEE Trans. Comput., Vol. C-20, No. 12, pp. 1606–1609,
Dec. 1971.

Received1130

p-valued Maiorana-McFarland Functions
Structure of Their Reed-Muller Spectra

Claudio Moraga
Technical University of Dortmund, 44221 Dortmund, Germany

claudio.moraga@tu-dortmund.de

Radomir Stanković
Mathematical Institute of SASA, 11000 Belgrade, Serbia

radomir.stankovic@gmail.com

Milena Stanković
University of Niš, Faculty of Electronic Engineering, 18 000 Niš, Serbia

milena.stankovic@elfak.ni.ac.rs

Abstract
p-valued Maiorana-McFarland bent functions exist, as in the binary case,

only for an even number of variables and they are normally associated to their
Discrete Fourier spectra in order to specify their bentness through the flatness
of the spectra. In this paper, a closely related, but different approach is consid-
ered. Structural properties of the Reed-Muller spectra of p-valued Maiorana-
McFarland bent functions are studied when p > 2 is a prime. It is shown that
the Reed-Muller spectra of p-valued Maiorana-McFarland bent functions have
a regressive structure, parameterized by p and k, where n = 2k denotes the
even number of variables.

1 Introduction
Bent functions were introduced by Oscar Rothaus in 1976 [17] as the most non-linear
Boolean functions. This property attracted the interest of researchers in the areas of
Coding Theory and Cryptography. In [17], Rothaus provided a simple, but effective,
method to generate Boolean bent functions. This method was strongly improved,

The authors gladly acknowledge the strong support given by the Reviewers of a preliminary version
of this paper with their constructive criticism and suggestions for further research.

Vol. 10 No. 6 2023
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

independently, by James Maiorana [6] and R. McFarland [7], which gave origin to
the “Maiorana-McFarland (MMF) class of bent functions.”

Bent functions were extended to the multiple-valued domain about a decade
later by P. V. Kumar et al. [4] and in the spectral domain, by M. Luis and C.
Moraga [5]. p-valued Maiorana-McFarland bent functions were possibly introduced
in [9] and [10] and continued to be studied up to [13]. See, however, the books [8]
and [20] for further references. Moreover, it should be recalled, that the Discrete
Fourier transform converges to the Walsh transform [22] when working with Boolean
functions, and to the Vilenkin-Chrestenson transform [21], [1] when working in the
p-valued domain.

In the Boolean domain, the Reed-Muller transform [16], [15] is another view
the Zhegalkin polynomials [24], [25]. The extension to the prime multiple-valued
domain was introduced by Green and Taylor [2] in 1976. In the present paper, the
Reed-Muller transform matrix is obtained as the inverse of the Reed-Muller basis in
the ring of non-negative integers modulo p prime [11], [18].

The characterization of the Maiorana-McFarland Boolean bent functions (i.e.,
p = 2) based on the Reed-Muller transform was shown in [14] and it may be consid-
ered as a basic step and motivation for the study reported in the present chapter.
Results obtained for p > 2 are consistent with the results obtained with p = 2.

2 Formalisms
Notation:

Let p be a prime, with p > 2. Yp(k) will denote a p-valued square matrix or
a vector of dimension pk. From the context it will be clear whether it represents
a matrix or a vector. Moreover, if the valuedness is known, the index p may be
omitted.

Definition 1. Let Q stand for a vector or a square matrix. Then 1Q denotes a
vector or a square matrix of the same dimension as Q, with all entries equal to 1.
Similarly with 0Q and other values of the value set. Moreover, 1q denotes a vector
or a square matrix of the same dimension as Q, with its first entry equal to 1 and
all other entries equal to 0.

Definition 2. Let A be a matrix. Then vec(A) represents the vectorizing operation,
which concatenates the columns of A to build a column vector [3].

Since in this paper, unless other specified, matrices will be square, the length
of vec(A) equals the square of the length of a side of A. Moreover, the inverse

1132

operation vec−1 is uniquely defined. To simplify the notation, ω will denote vec−1.
Thus, ω(vec(A)) = A.

Definition 3. Let A and B be matrices of the same dimensions. These matrices
will be called disjoint if for all rows, whenever a row of a matrix has an entry larger
than 0 then the corresponding row of the other matrix is a 0-row. Clearly, both
matrices may share common 0-rows.

The following Lemmas will support the below disclosed calculations.

Lemma 1. (Adapted from Lemma 4.3.1 of [3])
Let A, X, and B be square matrices of the same dimensions. Then:

(A ⊗ A)vec(X) = vec(B) ↔ A · X · AT = B. (1)

Lemma 2. [14]
Let Y (k) be a square matrix and G be a row vector of length pk. Then:

Y (k)(1G ⊗ G) = ⟨Y (k) · 1G⟩ ⊗ G. (2)

In analogy to the Maiorana-McFarland method to generate Boolean bent func-
tions, the following equation from [9], [10] will be used:

F = vec⟨M [k] · P (k) ⊕ (1G ⊗ G)⟩, (3)

where F denotes the value vector of an n-place MMF p-valued function, n = 2k, M
is a (p × p) matrix, whose entries represent the value table of the product of two
variables, M [k] indicates the k-fold tensor sum of M with itself [9], P (k) represents
a (pk × pk) permutation matrix, G is the row value vector of an arbitrary k-place
p-valued function. In what follows, we restrict G to be other than the constant 0 to
avoid a strong restriction of F as may be seen in Eqs. (3) (4). Further details are
shown after Eq. (10).

From (3) follows:

ωF = M [k] · P (k) ⊕ (1G ⊗ G). (4)

3 Reed-Muller spectrum of ternary MMF functions
In this section, we study the RM spectrum of ternary MMF functions for different
values of the number of variables n.

1133

3.1 Case k = 1, n = 2, 3k = 3.

The basic Reed-Muller Basis is denoted symbolically X3(1) =
[

1 x x2
]

and in
(Z3, +, ·) is

X3(1) =

1 0 0
1 1 1
1 2 1

 .

The basic Reed-Muller transform matrix is obtained as the inverse of the Basis
[10], [11], [18], [19].

RM3(1) =

1 0 0
0 2 1
2 2 2

 . (5)

Furthermore, the Reed-Muller transform matrix has a Kronecker product struc-
ture [18], i.e.,

RM3(2) = RM3(1) ⊗ RM3(1) mod 3. (6)

Notice that the bottom row of an RM matrix is a constant row and, except for
the first row, all other rows add up to 0 mod 3.

Additionally, M =

0 0 0
0 1 2
0 2 1

. Clearly, the first row of M is a 0-row and a

permutation of its columns will obviously preserve this property. Moreover, the sum
of the entries of every row and column of M is congruent with 0 mod 3.

With (6) and (3) the RM-spectrum of an MMF function on n variables is given
by:

RM3(2) · F = RM3(2) · ⟨vec⟨M · P (1) ⊕ (1G ⊗ G)⟩⟩. (7)

and with Lemma 1

RM3(2) · F = RM3(1) · ωF · RM3(1)T

= RM3(1) · ⟨M · P (1) ⊕ (1G ⊗ G)⟩ · RM3(1)T

RM3(2) · F = RM3(1) · M · P (1) · RM3(1)T

⊕RM3(1) · (1G ⊗ G) · RM3(1)T . (8)

1134

Let

Alpha3(1) = RM3(1) · M · P (1) · RM3(1)T , (9)
Beta3(1) = RM3(1) · (1G ⊗ G) · RM3(1)T .

Recall that the first row of M · P (1) is a 0-row; then the first row of Alpha will
also be a 0-row.

With Lemma 2,

RM3(1) · (1G ⊗ G) = (RM3(1) · 1G) ⊗ G

=

1 0 0
0 2 1
2 2 2

 ·

1
1
1

 ⊗ G

=

1
0
0

 ⊗ G =

g1 g2 g3
0 0 0
0 0 0

 ,

therefore,

Beta3(1) =

g1 g2 g3
0 0 0
0 0 0

 ·

1 0 2
0 2 2
0 1 2

 =

g1 2g2 + g2 2(g1 + g2 + g3)
0 0 0
0 0 0

 .(10)

It becomes apparent that the first row of Beta is the only non-0 row. Therefore,
Alpha and Beta are disjoint matrices. (If G had been chosen to be the constant 0
function, then Beta would become a 0-matrix, obviously also disjoint with Alpha.)
Furthermore, it may be shown that the steps leading to equation (10) may be ex-
tended to other values of p prime.

Notice that

(Beta3(1))T = RM3(1) ·
[

GT 0G 0G
]

=
[

(RM3(1) · GT) 0G 0G
]

,

therefore, the first row of Beta equals (RM3(1) ·GT)T . An extension to larger values
of k is straightforward.

1135

Example 1. In (3), let P (1) =

0 0 1
1 0 0
0 1 0

 and G =

[
0 2 1

]
. Then,

Alpha3(1) = RM3(1) · M · P (1) · RM3(1)T

=

1 0 0
0 2 1
2 2 2

 ·

0 0 0
0 1 2
0 2 1

 ·

0 0 1
1 0 0
0 1 0

 ·

1 0 2
0 2 2
0 1 2

=

0 0 0
1 1 0
0 0 0

 .

In Beta3(1), the first row is

row 1 = (RM3(1) · GT)T =

1 0 0
0 2 1
2 2 2

 ·

0
2
1

T

=
[

0 2 0
]

.

3.2 Case k = 2, n = 4, pk = 9

With (6),

RM(4) = RM(2) ⊗ RM(2) mod 3 = ⟨RM(1)⟩⊗4 mod 3.

and by using results from [3],

M [2] = (M ⊗ 1M) ⊕ (1M ⊗ M)

=

0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 1 2
0 2 1 0 2 1 0 2 1
0 0 0 1 1 1 2 2 2
0 1 2 1 2 0 2 0 1
0 2 1 1 0 2 2 1 0
0 0 0 2 2 2 1 1 1
0 1 2 2 0 1 1 2 0
0 2 1 2 1 0 1 0 2

. (11)

1136

Example 2. Let

P (2) =

0 0 1
1 0 0
0 1 0

 ⊗

0 1 0
1 0 0
0 0 1

 =

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0

and G =
[

0 2 1
]

⊗
[

1 0 2
]

mod 3.
Then,

M [2] · P (2) =

0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 1 2
0 2 1 0 2 1 0 2 1
0 0 0 1 1 1 2 2 2
0 1 2 1 2 0 2 0 1
0 2 1 1 0 2 2 1 0
0 0 0 2 2 2 1 1 1
0 1 2 2 0 1 1 2 0
0 2 1 2 1 0 1 0 2

·

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0

=

0 0 0 0 0 0 0 0 0
1 0 2 1 0 2 1 0 2
2 0 1 2 0 1 2 0 1
1 1 1 2 2 2 0 0 0
2 1 0 0 2 1 1 0 2
0 1 2 1 2 0 2 0 1
2 2 2 1 1 1 0 0 0
0 2 1 2 1 0 1 0 2
1 2 0 0 1 2 2 0 1

.

Further,

Alpha3(2) = (RM(1) ⊗ RM(1)) · (M [2] · P (2)) · (RM(1) ⊗ RM(1))T

1137

and

Alpha3(2) =

0 0 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

,

Beta3(2) =

0 0 0 2 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Alpha3(2) and Beta3(2) are clearly disjoint.

3.3 Case k = 3, n = 6, pk = 27
It becomes evident that in this case (27 × 27) matrices are the basic components
of the system and their explicit representation in the calculations will no longer be
reasonable. Calculations were conducted in ©Scilab 6.0.2 [23] and only the results
will be presented.

Example 3. Let

P (3) =

0 0 1
1 0 0
0 1 0

 ⊗

0 1 0
1 0 0
0 0 1

 ⊗

0 0 1
0 1 0
1 0 0

and

G =
[

0 2 1
]

⊗
[

1 0 2
]

⊗
[

2 1 2
]

mod 3.

Then,

1138

Alpha3(3) row 2 = [22000000000 · · · 00]
row 4 = [10020000000 · · · 00]
row 10 = [10000000010 · · · 00]

Beta3(3) row 1 = [0000000001222110 · · · 00]

All other rows are 0-rows.
Notice that Alpha3(3) preserved the position of the non-0 rows of Alpha3(2) and

added a new one. Beta3(3), as expected, is quite different than Beta3(2) since their
only non-0 row transposed equal the RM spectra of the corresponding GT functions
and they were strongly different. Several experiments with other arbitrary permuta-
tion matrices produced consistent results in terms of the position of the non-0 rows
of Alpha3(3).

3.4 Case k = 4, n = 8, pk = 81.

In this case, (81 × 81) matrices are involved in most calculations and cannot be
explicitly disclosed. Only the results of calculations will be reported. Moreover,
since it is clear that Alpha and Beta are disjoint and Beta has only one non-0 row
in the first position, in what follows only the structure of Alpha will be considered.
Furthermore, to simplify the representations, permutations and G-functions will be
represented as the Kronecker product of elementary components, but consistent
result are obtained with arbitrary permutation matrices and arbitrary G-functions.

Example 4. Let

P (4) =

1 0 0
0 0 1
0 1 0

 ⊗

0 0 1
1 0 0
0 1 0

 ⊗

0 1 0
1 0 0
0 0 1

 ⊗

0 0 1
0 1 0
1 0 0

and

G =
[

1 2 2
]

⊗
[

0 2 1
]

⊗
[

1 0 2
]

⊗
[

2 1 2
]

mod 3.

Alpha3(4) row 2 = [22000000000000000000000000000 · · · 00]
row 4 = [10020000000000000000000000000 · · · 00]
row 10 = [10000000010000000000000000000 · · · 00]
row 28 = [00000000000000000000000000020 · · · 00].

All other rows are 0-rows.

1139

k n Position of the
non-0 rows of Alpha3(k)

1 2 2
2 4 2,4
3 6 2, 4, 10
4 8 2, 4, 10, 28
5 10 2, 4, 10, 28, 82
6 12 2, 4, 10, 28, 82, 244

Table 1: Distribution of the non-0 rows of Alpha3(k).

Examples with k = 5 and k = 6 were conducted, but for space reasons cannot
be included here. The distribution of the non-0 rows of Alpha3(k) are summarized
in Table 1.

The data in Table 1 support the following (strong) conjectures:

i) There are k non-0 rows in Alpha3(k),

ii) Let rj denote the position of some non-0 row of Alpha and rj−1 the position
of the previous non-0 row. Then for all 2 < j ≤ k holds: rj = 3 · rj−1 − 2 =
3(rj−1 − 1) + 1.

4 Reed-Muller spectrum of 5-valued MMF functions

In this section, we discus the structure of the RM spectrum for 5-valued functions.

4.1 Case k = 1, n = 2, 5k = 5.

In the 5-valued domain, the elementary Reed-Muller basis is given by X5(1) =[
1 x x2 x3 x4

]
, which in the ring (Z5, +, ·) corresponds to

X5(1) =

1 0 0 0 0
1 1 1 1 1
1 2 4 3 1
1 3 4 2 1
1 4 1 4 1

.

1140

As mentioned for (5), its inverse leads to

RM5(1) =

1 0 0 0 0
0 4 2 3 1
0 4 1 1 4
0 4 3 2 1
4 4 4 4 4

, (12)

and, as mentioned after (3)

M5 =

0 0 0 0 0
0 1 2 3 4
0 2 4 1 3
0 3 1 4 2
0 4 3 2 1

(13)

Recall that

ωF = M [k] · P (k) ⊕ (1G ⊗ G),

and with (9),

Alpha5(1) = RM5(1) · M · P (1) · RM5(1)T

and

Beta5(1) = RM5(1) · (1G ⊗ G) · RM5(1)T .

Remark 1. Notice that M5 has particular properties consistent with M3: It has a
first 0-row. The sum of all row entries and column entries add up to 0 mod 5. The
first row of RM5(1) is a 1 0 · · · 0 row and its bottom row is a constant 4 row.
Then RM5(1) · M5 produces a matrix whose first and bottom rows are 0-rows. This
property, that appears in Alpha, as shown in Example 5 below, is independent of
the permutation P (1), which mainly affects the entries of the non-0 rows.

In what follows, permutation matrices may be coded with a row vector, where
the position of an entry indicates the column of the permutation matrix and the
value of that entry indicates the row where the permutation matrix has the entry 1.
It is simple to see that coding vectors are permutations of the "identity vector" =[

1 2 · · · 5k
]
.

1141

Example 5. Let

P5(1) =
[

5 3 4 1 2
]

; G =
[

4 2 3 0 1
]

.

Alpha5(1) = RM5(1) · M5 · P5(1) · RM5(1)T

1 0 0 0 0
0 4 2 3 1
0 4 1 1 4
0 4 3 2 1
4 4 4 4 4

·

0 0 0 0 0
0 1 2 3 4
0 2 4 1 3
0 3 1 4 2
0 4 3 2 1

·

0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0

·

1 0 0 0 0
0 4 2 3 1
0 4 1 1 4
0 4 3 2 1
4 4 4 4 4

T

=

0 0 0 0 0
4 0 0 3 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

.

Beta5(1)row 1 = (RM5(1) · GT)T

=

1 0 0 0 0
0 4 2 3 1
0 4 1 1 4
0 4 3 2 1
4 4 4 4 4

·

4
2
3
0
1

T

=
[

4 0 0 3 0
]

.

Examples with other permutations and G functions gave consistent results.

4.2 Case k = 2, n = 4, 5k = 25.
For these values of k and n,

RM5(2) = RM5(1) ⊗ RM5(1),
M

[2]
5 = (M5 ⊗ 1M) ⊕ (1M ⊗ M5).

1142

Example 6. Let P (2) = P1 ⊗ P2, with

P1 =
[

5 3 4 1 2
]

,

P2 =
[

3 5 2 4 1
]

.

The Kronecker product is meant to be of the corresponding permutation matrices;
not of their coding vectors.

G =
[

1 0 3 2 4
]

⊗
[

3 2 1 2 3
]

mod 5.

Notice that P (2) is a (25 × 25) matrix and G has a length of 25.

Alpha5(2) = RM5(2) · M
[2]
5 · P (2) · RM5(2)T .

Alpha5(2) row 2 = [220000 · · · 00]
row 6 = [400000 · · · 00]

All other rows are 0-rows.

Examples with other arbitrary permutations and G functions gave consistent
results.

4.3 Case k = 3, n = 6, 5k = 125.
For these values of k and n, it is

RM5(3) = RM5(1) ⊗ RM5(2),
M

[3]
5 = (M [2]

5 ⊗ 1M) ⊕ (1M [2] ⊗ M5).

Example 7. Let P1 and P2 be as in Example 6 and chose P3 =
[

5 1 4 2 3
]
.

Then, let P5(3) = P1 ⊗ P2 ⊗ P3. Notice that P5(3) is a (125 × 125) matrix.

Alpha5(3) = RM5(3) · M
[3]
5 · P5(3) · RM5(3)T .

Alpha5(3) row 2 = [412300 · · · 000 · · · 00]
row 6 = [200002 · · · 000 · · · 00]
row 26 = [400000 · · · 030 · · · 00].

All other rows are 0-rows.

Additional examples with other arbitrary permutations gave consistent results.

1143

k n Position of
the non-0 rows of Apha5(k)

1 2 2
2 4 2, 6
3 6 2, 6, 26
4 8 2, 6, 26, 126

Table 2: The non-0 rows of Alpha5(k).

4.4 Case k = 4, n = 8, 5k = 625.
For these values of k and n, it is

RM5(4) = RM5(2) ⊗ RM5(2),
M

[4]
5 = (M [2]

5 ⊗ 1M [2]) ⊕ (1M [2] ⊗ M
[2]
5).

Example 8. Let P1, P2, and P3 be as in Example 7 and chose

P4 =
[

4 2 1 3 5
]

.

Then, let P5(4) = P1 ⊗ P2 ⊗ P3 ⊗ P4. Notice that P5(4) is a (625 × 625) matrix.

Alpha5(4) = RM5(4) · M
[4]
5 · P5(4) · RM5(4)T .

Since the Alpha matrix is sparse, the following notation will be used for its non-0
rows: vw will denote a non-0 entry, where v indicates the value of an entry and w
tells “where”, i.e., the position of that non-0 entry.

Alpha5(4) row 2 = [31, 42, 23, 24]
row 6 = [41, 16, 211, 316]
row 26 = [21, 226]
row 126 = [41, 3376].

Notice that to try to analyze the case k = 5, it would require calculations with
(3125×3125) matrices, but this is beyond the possibilities of the available computing
environment. A different representation would be needed. This is however outside
the scope of this paper.

The available Alpha data is summarized in Table 2.
The available data support the following conjectures, closely related to those

stated for Alpha3(k):

1144

i) There are k non-0 rows in Alpha5(k),

ii) Let rj denote the position of some non-0 row of Alpha and rj−1 the position
of the previous non-0 row. Then, for all 2 ≤ j ≤ k holds: rj = 5 · rj−1 − 4 =
5(rj−1 − 1) + 1.

5 Reed-Muller spectrum of 7-valued MMF functions
Notice that 72 = 49, 73 = 343 and 74 = 2, 401. Therefore, only the cases k < 4 can
be reported.

The Reed-Muller basis is given by

X7(1) =
[

1 x x2 x3 x4 x5 x6
]

,

which in (Z7, +, ·) becomes

X7(1) =

1 0 0 0 0 0 0
1 1 1 1 1 1 1
1 2 4 1 2 4 1
1 3 2 6 4 5 1
1 4 2 1 4 2 1
1 5 4 6 2 3 1
1 6 1 6 1 6 1

.

Therefore,

RM7(1) =

1 0 0 0 0 0 0
0 6 3 2 5 4 1
0 6 5 3 3 5 6
0 6 6 1 6 1 1
0 6 3 5 5 3 6
0 6 5 4 3 2 1
6 6 6 6 6 6 6

, (14)

moreover,

M7 =

0 0 0 0 0 0 0
0 1 2 3 4 5 6
0 2 4 6 1 3 5
0 3 6 2 5 1 4
0 4 1 5 2 6 3
0 5 3 1 6 4 2
0 6 5 4 3 2 1

. (15)

1145

5.1 Case k = 1, n = 2, 7k = 7
The following example illustrates this selection of k and n for p = 7.

Example 9. Let P7(1) =
[

2 4 6 5 1 2 7
]
. Then,

Alpha7(1) = RM7(1) · M7 · P7(1) · RM7(1)T .

Alpha7(1) row 2 =
[

2 2 5 3 1 4 0
]
.

All other rows are 0-rows.

5.2 Case k = 2, n = 4, 7k = 49.
In this case,

RM7(2) = RM7(1) ⊗ RM7(1),
M

[2]
7 = (M7 ⊗ 1M) ⊕ (1M ⊗ M7).

Example 10. Let

P7(2) = P7(1) ⊗ P7(1),
Alpha7(2) = RM7(2) · M

[2]
7 · P7(2) · RM7(2)T .

Alpha7(2) row 2 = [2253140 · · · 00]
row 8 = [21, 28, 515, 322, 129, 436].

All other rows are 0-rows.

5.3 Case k = 3, n = 6, 7k = 343.
In this case,

RM7(3) = RM7(1) ⊗ RM7(2),
M

[3]
7 = (M7 ⊗ 1M [2]) ⊕ (1M ⊗ M

[2]
7).

Example 11. Let

P7(3) = P7(1) ⊗ P7(2),
Alpha7(3) = RM7(3) · M

[3]
7 · P7(3) · RM7(3)T .

1146

k n Position of
the non-0 rows of Alpha7(k)

1 2 2
2 4 2, 8
3 6 2, 8, 50

Table 3: The non-0 rows of Alpha7(k).

Alpha7(3) row 2 = [2253140 · · · 00]
row 8 = [21, 28, 515, 322, 129, 436].
row 50 = [21, 250, 599, 3148, 1197, 4246].

The distribution of the non-0 rows of Alpha7(k) are shown in Table 3.

This data, albeit a small amount, supports conjectures closely related to those
for the cases with p = 3 and p = 5.

i) There are k non-0 rows in Alpha7(k),

ii) Let rj denote the position of some non-0 row of Alpha and rj−1 the position
of the previous non-0 row. Then, for all 2 ≤ j ≤ k holds: rj = 7 · rj−1 − 6 =
7(rj−1 − 1) + 1.

The first conjecture is general, since it is supported by the three considered values
of p.

The second conjecture may be generalized as:
For all 2 ≤ j ≤ k holds

rj = p · rj−1 − (p − 1) = p(rj−1 − 1) + 1. (16)

6 Induction proof for the conjectures.
Preliminaries

Direct calculations show that RMp(1) ·1M ·RMp(1)T = diag(100000 . . . 0) = 1m.
Furthermore, it is obvious that for any permutation and any k, 1M [k] ·Pp(k) = 1M [k] .

Induction basis

1147

Assume that for some u > 2 there are u non-0 rows in Alphap(u) and their
distribution follows the conjectures.

Induction step

Alphap(u + 1) = RMp(u + 1) · M [u+1]
p · Pp(u + 1) · RMp(u + 1)T .

Recall that M
[u+1]
p = (M [u]

p ⊗ 1M) ⊕ (1M [u] ⊗ Mp) and assume that (to simplify
the presentation of the proof) Pp(u + 1) = Pp(u) ⊗ Pp(1) for some Pp(1). Then,

M [u+1]
p · Pp(u + 1) = ⟨(M [u]

p ⊗ 1M) ⊕ (1M [u] ⊗ Mp)⟩⟨Pp(u) ⊗ Pp(1)⟩
= (M [u]

p ⊗ 1M) · (Pp(u) ⊗ Pp(1))

⊕(1M [u] ⊗ Mp) · (Pp(u) ⊗ Pp(1))
= M [u]

p · Pp(u) ⊗ 1M · Pp(1) ⊕ 1M [u] · Pp(u) ⊗ Mp · Pp(1)

= M [u]
p · Pp(u) ⊗ 1M ⊕ 1M [u] ⊗ Mp · Pp(1).

Hence,

Alphap(u + 1) = (RMp(u) ⊗ RMp(1)) · ⟨M [u]
p · Pp(u) ⊗ 1M

⊕1M [u] ⊗ Mp · Pp(1)⟩ · (RMp(u) ⊗ RMp(1))T

= (RMp(u) · M [u]
p · Pp(u) · RMp(u)T) ⊗ (RMp(1) · 1M · RMp(1)T)

⊕(RMp(u) · 1M [u] · RMp(u)T)
⊗(RMp(1) · Mp · Pp(1) · RMp(1)T) (17)

= Alphap(u) ⊗ 1m ⊕ (1m)⊗u ⊗ Alphap(1).

Recall that 1m is a (p×p) matrix with a single non-0 entry at the position (1, 1).
Alphap(u) is a (pu × pu) matrix, where the position of its u (non-0) rows follows
the corresponding conjecture. Then, Alphap(u) ⊗ 1m is a (pu+1 × pu+1) matrix such
that every entry of Alphap(u) is replaced by a 1m matrix scaled by the value of
the corresponding entry. In other words, Alphap(u) ⊗ 1m is a matrix whose rows
are ordered in blocks of p rows. The first row of each block depends on the row of
Alphap(u) associated to that block. The remaining rows of the block will be 0-rows.
Notice that therefore, the first block of Alphap(u) ⊗ 1m will be a 0-block. However,
(1m)⊗u is a (pu × pu) matrix such that its only non-0 entry is at the position (1, 1).
Therefore, (1m)⊗u ⊗ Alphap(1) copies Alphap(1) at its left upper corner. With (17)
this provides a non-0 row at the 2nd position for Alphap(u + 1), as needed.

1148

Let the positions of the rows of Alphap(u) be first assigned to the blocks of
Alphap(u + 1) and recall that each row of Alphap(u) became the first row of a
block of Alphap(u + 1). Notice that with this construction, Alphap(u + 1) will have
(only) the u non-0 rows of Alphap(u). Recall, however, that as detailed above,
the second term of (17) provides the "missing" non-0 row at the second position and
then Alphap(u+1) comprises u+1 non-zero rows (which proves the first conjecture.)
Now, if the first row of the rj-th block of Alphap(u + 1) is a non-0 row, it has rj−1
preceding blocks, i.e., p(rj − 1) preceding rows. Therefore, its own row-position is
p(rj − 1) + 1 = prj − (p − 1). This proves the second generalized conjecture. 2

7 Closing Remarks

We have considered p as an odd prime and have proven that the Reed-Muller spec-
tra of p-valued Maiorana-McFarland (MMF) bent functions have special properties,
which remain valid for different values of p and n = 2k. In [14] we had already
proven that an analog to (16), (with p = 2) holds for Maiorana-McFarland bent
functions in the Boolean domain. In both cases, experiments done with bent func-
tions which do not belong to the respective Maiorana-McFarland classes lead to
Reed-Muller spectra with a different number and distribution of non-0 rows. This
supports the conclusion, that the disclosed results provide a characterization for
MMF bent functions. Without this, to find out whether a p-valued bent function
is MMF or not, besides checking for necessary conditions [12], reversing Eq. (3)
would be needed. This has however, a higher complexity than the product of the
Reed-Muller transform matrix and the value-matrix of the function.

References
[1] Chrestenson H. E., “A class of generalized Walsh functions,” Pacific J. of Math., 5,

(5), 17-31, 1955.
[2] Green D. H., Taylor I. S., “Multiple-valued switching circuit design by means of gener-

alized Reed-Muller expansions,” Digital Processes, 2, 63-81, 1976.
[3] Horn R. A., Johnson Ch. R., Topics in Matrix Analysis. Cambridge University Press,

New York, 1991.
[4] Kumar P. V., Scholtz R. A., Welch L. R., “Generalized bent functions and their pro-

perties,” J. Combinatorial Theory, Vol. A, No. 40, 90-107, 1985.
[5] Luis M., Moraga C., “Functions with flat Chrestenson spectra,” Proc.19th Int. Symp.

Multiple-valued Logic, Guangzhou, China, 406-413, IEEE Press, 1989.
[6] Maiorana J., “A Class of Bent Functions,” R41 Technical Paper, August 1970

1149

[7] McFarland R., “A discrete Fourier theory for binary functions,” R41 Technical Paper;
June 1971.

[8] Mesnager S., Bent Functions. Fundamentals and Results., Springer, 2016.
[9] Moraga C., Stanković R. S., Stanković M., Stojković S., “Contribution to the study of

ternary bent functions,” in Proc. 43rd Int. Symp. on Multiple-Valued Logic, 340-345,
IEEE Press, 2013.

[10] Moraga C., Stanković M., Stanković R. S., Stojković S., “The Maiorana Method to
generate ternary bent functions revisited,” in Proc. 44th Int. Symp. on Multiple-Valued
Logic, 19-24, IEEE Press, 2014.

[11] Moraga C., Stanković M., Stanković R. S., “Multiple-valued functions with bent Reed-
Muller spectra,” (B. Steinbach, Ed.) Problems and new Solutions in the Boolean Do-
main, 309-324, Cambridge Scholar Publishing, Newcastle upon Tyne, UK, 2016.

[12] Moraga C., Stanković R. S., Stanković M., “New properties of the Maiorana-McFarland
Ternary Bent Functions,” In Proc. 52nd. Int. Symp. on Multiple-Valued Logic, 56-61,
IEEE Xplore, 2022.

[13] Moraga C., Stanković R. S., Stanković M., “Reed-Muller-Fourier Spectra of p-valued
MMF Bent Functions,” In Proc. 53rd Int. Symposium on Multiple-Valued Logic, 64-69,
IEEE Press, 2023.

[14] Moraga C., Stanković R. S., Stanković M., “Properties of the Reed-Muller Spectrum
of Maiorana-McFarland Boolean Bent Functions,” In Proc. Int. Workshop on Boolean
Functions, 47-61, Press University of Bremen, 2022.

[15] Muller D.E., “Application of Boolean algebra to switching circuit design and error
detection,” IRE Trans. Electron. Comp., 1, 6–12, 1954.

[16] Reed I. S., “A class of multiple-error-correcting codes and their decoding scheme,” IRE
Trans. Information Theory, 3, 6–12, 1954.

[17] Rothaus O.S., “On ‘bent’ Functions,” J. of Combinatorial Theory, Series A, 20, 300-305,
1976.

[18] Stanković R. S., Moraga C., Astola J., “Reed-Muller expressions in the last decade,”
Proc. International Workshop on Theory and Applications of Reed Muller Expressions,
7-26, University of Mississippi, USA, 2001.

[19] Stanković M. M., Moraga C., Stanković R. S., “Construction of ternary bent functions
by spectral invariant operations in the Generalized Reed-Muller domain,” In Proc. 48th
Int. Symposium on Multiple-Valued Logic, 235-240, IEEE Press, 2018.

[20] Tokareva N., Bent Functions. Results and Applications to Cryptography. Elsevier –
Academic Press, Amsterdam, 2015.

[21] Vilenkin N. Ya., Agaev G. N., Dzafarli G. M., “Towards a theory of multiplicative
orthogonal systems of functions,” DAN Azerb. SSR, 18, (9), 3-7, 1962.

[22] Walsh, J. L., “A closed set of orthogonal functions,” Amer. J. Math., 55, 5-24, 1923.
[23] www.scilab.org
[24] Zhegalkin, I. L., “O tekhnyke vychyslenyi predlozhenyi v symbolytscheskoi logykye,”

Math. Sb., Vol. 34, 9-28, 1927. In Russian.

1150

[25] Zhegalkin, I. L., “Aritmetizatiya symbolytscheskoi logyky,” Math. Sb., Vol. 35, 311-377,
1928. In Russian.

1151

	FrontCover.pdf
	10-6.pdf

