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Abstract

The notion of covariant-contravariant refinement (CC-refinement, for short)
is a generalization of the notions of bisimulation and refinement. This paper
introduces CC-refinement modal logic (CCRML) obtained from the modal sys-
temK by adding CC-refinement quantifiers, and provides a sound and complete
axiom system for CCRML.

Keywords: modal logic, covariant-contravariant refinement, axiom system

1 Introduction
Recently, Laura Bozzelli et al. presented and explored refinement modal logic
(RML) [8, 9], which provides a more abstract perspective of future event logic [20, 21]
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and arbitrary public announcement logic [5]. RML is obtained from the modal sys-
tem K by adding a refinement operator ∃B. The semantics of the refinement op-
erator ∃B is given in terms of the notion of B-refinement. Such notion captures
refinement preorders between Kripke models and the operator ∃B acts as a quanti-
fier over the set of all B-refinements of a given pointed model. In addition to the
refinement operator ∃B, a kind of non-standard propositional quantifier so-called
bisimulation quantifier ∃̃X appeared earlier in the literature (see, e.g., [11, 12, 16]),
where X is a proposition letter. A formula ∃̃Xα is true in a pointed model Ms if
there is a pointed model Nt satisfying α and an (Atom− {X})-bisimulation linking
Ms and Nt. Here an (Atom − {X})-bisimulation is a relation between two models
in which related states satisfy the same proposition letters in Atom−{X} and have
matching transition possibilities. It has been shown that refinement quantification
is bisimulation quantification plus relativization [8].

In addition to refinement and bisimulation, there exist a number of different
compatible relations between Kripke models. This paper will focus on the notion of
covariant-contravariant refinement (CC-refinement, for short). The notion of CC-
refinement (simulation), introduced in [13], is a behavioural preorder over labelled
transitions systems (LTSs). The standard definition of simulation (see, e.g., [7, 22])
is related to reactive systems whose actions are passive, that is, their execution must
be triggered by the environment. Any correct implementation of a reactive system is
required to simulate the actions of its specification, in other words, the former should
respond to the user’s requests at least as well as the latter. Clearly, the standard
notion of simulation provides a reasonable mathematical description of the refine-
ment relations between reactive systems. However, for the systems with generative
(or, active) actions, e.g., input/output (I/O) automata, such notion isn’t adequate
because, for these generative actions (e.g., output), it is the system that produces
the output and the environment is obliged to accept the output produced by the
system. One of the motivations behind introducing the notion of CC-refinement is
to provide an adequate behavioural preorder for the systems referring to the gener-
ative actions. The definition of CC-refinement depends on partitioning all actions
into three sorts: covariant, contravariant and bivariant actions. The covariant ac-
tions denote the passive actions of a system, whose execution is under the control of
the environment. The transitions labelled with these actions in a given specification
should be simulated by any correct implementation, which is exactly the requirement
suggested by the standard notion of simulation. The contravariant actions represent
the generative actions being under the control of a system itself. The transitions of
these actions in an implementation must be simulated by its specification, in other
words, the transitions induced by the generative actions must be allowed by its spec-
ification. The bivariant actions are treated as in the usual notion of bisimulation. In
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Covariant-Contravariant Refinement Modal Logic

a word, by the standards suggested by the notion of CC-refinement, the covariant
behaviour of any correct implementation should respect the liveness required by its
specification, the contravariant behaviour must be prohibited from going beyond the
safeness limit posed by its specification and their bivariant behaviour should match
each other. More motivations behind this notion and work on it may be found
in [3, 13–15].

This paper, following Laura Bozzelli et al’s work, considers CC-refinement modal
logic (CCRML, for short). Its language LCC is obtained from the standard modal
language LK by adding CC-refinement operators (or, quantifiers) ∃(A1,A2), where
A1 (A2) is the set of all covariant (contravariant, resp.) actions. Intuitively, the
formula ∃(A1,A2)ϕ says that we can refine the current model so that ϕ is satisfied.
This operator may be used to formalize some interesting problems in the field of
formal method. For example, given a specification presented as an LTS M which
refers to the set A1 (A2) of passive (generative, resp.) actions, the problem whether
this specification has an implementation satisfying a given property ϕ may be boiled
down to the model checking problem: whether M satisfies ∃(A1,A2)ϕ. Thus, based
on the CC-refinement quantifiers, the problem whether there exists a special imple-
mentation of a given specification may be solved using model checking methods.

CCRML focuses on reasoning and formalizing of the properties such as “there
exists a CC-refinement model satisfying ϕ”, which empowers the modal language
with the quantifiers over the set of all the models related with CC-refinement to
the current model. Fábregas et al. considered a logic for CC-refinement with very
different motivation. Following Hennessy and Milner’s well-known work [17], they
introduced a modal logic to match the distinguishing ability of CC-refinement, and
hence established its modal characterization [14].

In this paper we provide an axiom system for CCRML and explore its important
properties: its soundness is established based on the⊕-construction over models, and
its completeness and decidability are obtained through transforming LCC-formulas
into LK-formulas.

This paper is organized as follows. Section 2 recalls the notion of CC-refinement.
Section 3 introduces CC-refinement modal logic. Section 4 presents a sound and
complete axiomatization of CC-refinement modal logic. Finally we end the paper
with a brief discussion in Section 5.

2 CC-refinement

Given a finite set A of actions and a set Atom of proposition letters, a model M is a
tripe 〈SM , RM , VM 〉, where SM is a non-empty set of states, RM is an accessibility
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function from A to 2SM×SM assigning to each action a in A a binary relation RMa ⊆
SM×SM , and VM : Atom→ 2SM is a valuation function. A pair (M, s) with s ∈ SM
is said to be a pointed model, which is often written as Ms. For any binary relation
R and s, R(s) , {t | sRt}, π1(R) , {u | ∃v(uRv)} and π2(R) , {v | ∃u(uRv)}. For
any sets B and C, if B ⊆ C then iB,C is used to denote the graph of the inclusion
function from B to C, that is iB,C = {〈a, a〉 | a ∈ B}. We use ◦ to denote the
composition operator of relations.

Given a model M = 〈S,R, V 〉 and R′ : A→ 2S×S , the model M | R′ is obtained
from M by replacing R by R′. As usual, we write M ]N for the disjoint union of
two models M and N with SM ∩ SN = ∅, which is defined as SM]N , SM ∪ SN ,
RM]Na , RMa ∪ RNa for each a ∈ A and VM]N (p) , VM (p) ∪ V N (p) for each
p ∈ Atom.

Definition 2.1 (CC-refinement [13]). Let A1, A2 ⊆ A such that A1∩A2 = ∅. Given
two models M = 〈S,R, V 〉 and M ′ = 〈S′, R′, V ′〉, a binary relation Z ⊆ S×S′ is an
(A1, A2)-refinement relation between M and M ′ if, for each pair 〈s, s′〉 in Z,
(atoms) s ∈ V (p) iff s′ ∈ V ′(p) for each p ∈ Atom;
(forth) for each a ∈ A−A2 and t ∈ S, sRat implies s′R′at′ and tZt′ for some

t′ ∈ S′;
(back) for each a ∈ A−A1 and t′ ∈ S′, s′R′at′ implies sRat and tZt′ for some

t ∈ S.
Here A1 and A2 are said to be covariant and contravariant set respectively.
We say that M ′s′ (A1, A2)-refines Ms (or, Ms (A1, A2)-simulates M ′s′), in symbols
Ms �(A1,A2) M

′
s′, if there exists an (A1, A2)-refinement relation between M and M ′

linking s and s′. We also write Z : Ms �(A1,A2) M
′
s′ to indicate that Z is an (A1,

A2)-refinement relation such that sZs′.

The above notion generalizes the notions of bisimulation and refinement con-
sidered in [8]. Formally, a bisimulation relation is exactly an (∅, ∅)-refinement, and a
B-refinement relation an (∅, B)-refinement. We write Z : Ms↔M ′s′ to indicate that
Z is a bisimulation which witnesses that Ms is bisimilar to M ′s′ .

Example 2.1. Consider the models M and N depicted in Figure 1, where A1 =
{b, c}, A2 = {a}, and VM (q) = V N (q) = ∅ for each q ∈ Atom. It is not difficult to
see that the relation represented by the dash arrows is indeed an (A1, A2)-refinement
relation between Ms1 and Nt1, but Ms1 is not bisimilar to Nt1.

Roughly speaking, the notion of CC-refinement captures the idea that we should
distinguish the different roles played by different kinds of actions when considering
refinement relations between models. Analogous notions appear in the literature.
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Figure 1: ({b, c}, {a})-refinement

In the framework of modal transition systems (MTSs) [18, 19], a MTS contains two
kinds of transitions: the must transitions and the may transitions, which denote the
transitions required by a specification and the transitions allowed by a specification
respectively. A modal refinement relation between MTSs is a binary relation satisfy-
ing the condition (forth) for the must transitions and (back) for the may transitions.
In order to study topics in the field of supervisory control in the process-algebraic
style, the notion of partial bisimulation is developed [4] in which the collection of
actions is divided into two parts B and Act−B and the transitions labelled with the
actions in B (Act−B) are treated as in the classic bisimulation (simulation preorder,
resp.). In the framework of interface automata [1, 2], the notion of XY -simulation is
introduced in which the X-labelled (Y -labelled) transitions are required to fulfil the
condition (forth) ((back), resp.). The relationships between the refinement over
MTSs, and the CC-refinement and the partial bisimulation over LTSs are explored
in the framework of Institutions [3].

Given B ⊆ A, a binary relation Z is said to be a B-restricted bisimulation,
in symbols Z : M↔BN , if the bisimulation condition (atoms) holds, and (forth)
and (back) are satisfied for each b ∈ B. It is trivial to see that Z : M �(A1,A2) M

′

iff for each pair 〈s, s′〉 in Z,
(atoms) s ∈ V (p) iff s′ ∈ V ′(p) for each p ∈ Atom;
(bis) Z : Ms↔A−(A1∪A2)M

′
s′ ;

(forth-A1) for each a ∈ A1 and t ∈ S, sRat implies s′R′at′ and tZt′ for some
t′ ∈ S′;

(back-A2) for each a ∈ A2 and t′ ∈ S′, s′R′at′ implies sRat and tZt′ for some
t ∈ S.

5
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Proposition 2.2. The relation �(A1,A2) is transitive.

Proof. Assume Z1 : Ms �(A1,A2) M
′
t and Z2 : M ′t �(A1,A2) M

′′
u . It suffices to show

that the composition relation Z1 ◦ Z2 satisfies the conditions (atoms), (forth) and
(back) in Definition 2.1, which is straightforward.

Proposition 2.3. The relation �(A1,A2) is a pre-order satisfying the Church-Rosser
property (i.e., if Ms �(A1,A2) Nt and Ms �(A1,A2) N

′
t′ then Nt �(A1,A2) M

′
s′ and

N ′t′ �(A1,A2) M
′
s′ for some M ′s′).

Proof. It is straightforward to check that �(A1,A2) is reflexive and transitive. In the
following, we prove that �(A1,A2) satisfies the Church-Rosser property. Assume that
Z1 : Ms �(A1,A2) Nt and Z2 : Ms �(A1,A2) N

′
t′ . We intend to provide a pointed

model M ′s′ such that Nt �(A1,A2) M
′
s′ and N ′t′ �(A1,A2) M

′
s′ .

Without loss of generality, we assume that N and N ′ are disjoint. Before giving
the desired pointed model, we explain the ideas behind the construction. Since
the models N and N ′ are generated submodels of N ] N ′, it holds trivially that
Nt �(A1,A2) (N ]N ′)t and N ′t′ �(A1,A2) (N ]N ′)t′ . Inspired by this observation, we
intend to construct the desired model M ′ through modifying the model N ]N ′. It
is not difficult to see that the modification will occur on the accessibility function
RN]N

′ . The modification will be guided by the following strategy: forcing M ′t to
CC-refine N ′t′ and ensuring that all changes are safe (that is,M ′t still CC-refines Nt).
We will illustrate the modification of the accessibility function based on the sorts of
actions in turn.

For a ∈ A1, since it is related to the condition (forth), we will modify the
accessibility function RN]N ′ so that it can afford the matching transitions for the
a-labelled transitions in N ′. For each transition t′ a→ u′ in N ′t′ , we will add the
transition depicted by the dash arrow in Figure 2. That is, we intend to define RM ′

so that the inequality Z−1
1 ◦ Z2 ◦RN ′a ⊆ RM

′
a holds.

t

b

't

s

a


 

a

'u

u '

t '

Figure 2: The construction of the model M ′

For a ∈ A2, in order to force t (in M ′) to CC-refine t′ (in N ′), for each a-
labelled transition t a→ u in M ′, due to the condition (back), we need an a-labelled
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transition outgoing from t′ in N ′ which matches the transition t a→ u. Since N ′ is
given and fixed, to meet this requirement, we are obliged to remove all the a-labelled
transitions in (N ] N ′) which come from N . After this modification, the resulted
model M ′ will contain no a-labelled transition outgoing from the points in N , and
then the condition (back) will hold trivially. Fortunately, it is easy to see that t (in
M ′) still CC-refines t (in N).

Now we construct the desired pointed model M ′ formally. For each a ∈ A, set

RM
′

a ,





RNa ∪RN
′

a ∪ (Z−1
1 ◦ Z2 ◦RN ′a ) if a ∈ A1

RN
′

a if a ∈ A2

RNa ∪RN
′

a otherwise
Put M ′ , (N ] N ′) | RM ′ . It is straightforward to check iSN ,SM′ : Nt �(A1,A2) M

′
t

(Note that RM ′a (w) = ∅ for each w ∈ SN and a ∈ A2). Set

Z , iSN′ ,SM′ ∪ (Z−1
2 ◦ Z1).

Clearly, t′Zt. In the following we verify Z : N ′t′ �(A1,A2) M
′
t . Let 〈u′, u〉 ∈ Z. If

〈u′, u〉 ∈ iSN′ ,SM′ , it is not difficult to see that the conditions (atoms), (bis), (forth-
A1) and (back-A2) hold. Next we consider the case when 〈u′, u〉 ∈ Z−1

2 ◦ Z1.
(atoms) Trivially.
(bis) Since 〈u′, u〉 ∈ Z−1

2 ◦ Z1, there exists w such that u′Z−1
2 w and wZ1u.

Then it follows from Z1 : Mw �(A1,A2) Nu and Z2 : Mw �(A1,A2) N
′
u′ that Z1 :

Mw↔A−(A1∪A2)Nu and Z2 : Mw↔A−(A1∪A2)N
′
u′ , which implies

(Z−1
2 ◦ Z1) : N ′u′↔A−(A1∪A2)Nu.

Further, due to the definition of M ′, it is not difficult to see that

(Z−1
2 ◦ Z1) : N ′u′↔A−(A1∪A2)M

′
u.

Thus Z : N ′u′↔A−(A1∪A2)M
′
u because of iSN′ ,SM′ : N ′↔A−(A1∪A2)M

′.
(forth-A1) Let a ∈ A1 and u′RN ′a v′. By the definition of RM ′ , we obtain uRM ′a v′

due to u′RN ′a v′ and 〈u, u′〉 ∈ Z−1
1 ◦ Z2. Moreover, v′Zv′ because of iSN′ ,SM′ ⊆ Z.

(back-A2) Let a ∈ A2. Since u /∈ SN
′ and RM

′
a = RN

′
a , the state u has no

a-labelled transition in M ′. Thus (back-A2) holds immediately.

In the following, we intend to show that, through taking compositions, any CC-
refinement may be captured by the CC-refinements with singleton covariant and
contravariant sets. To prove this result, Proposition 2.4 is needed to simplify its
proof.
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Proposition 2.4 (2) reveals that, given Z : Ms �(A1,A2) Nt, we can construct
two pointed models M ′s′ and N ′t′ , which are bisimilar to Ms and Nt respectively,
moreover, there is an injective partial function between M ′s′ and N ′t′ whose graph is
an (A1, A2)-refinement relation. In the following, we will explain the construction of
M ′s′ , and the pointed model N ′t′ is constructed similarly. At first glance, in order to
get an injective (A1, A2)-refinement function, the model M ′s′ (N ′t′) can be obtained
from Ms (Nt, resp.) by adding enough copies of the states involved in Z. That
is, we intend to replace each u ∈ π1(Z) by all the pairs of the form 〈u, v〉 in Z.
Moreover the transitions from these new states 〈u, v〉 inM ′ are prescribed according
to the ones related to u inM . The detailed construction will be given in the proof of
Proposition 2.4, here we only explain an interesting part of the construction. In our
construction, the transitions between two new states 〈u, v〉 and 〈u′, v′〉 are captured
by the rule

〈u, v〉RM ′a 〈u′, v′〉 iff uRMa u
′ and vRNa v′. (∗)

Unfortunately, although such simple construction brings us the desired result that
there is an (A1, A2)-refinement relation Z ′ which is an injective partial function
such that Z ′ : M ′〈s,t〉 �(A1,A2) N

′
〈t,s〉, it does not always hold that Ms↔M ′〈s,t〉 and

Nt↔N ′〈t,s〉.

Example 2.2. Consider the models M and N depicted in Figure 3. Here b ∈ A1,
a ∈ A2 and the dash arrows represent an (A1, A2)-refinement relation. According
to the construction mentioned above, the models M ′ and N ′ may be depicted as
in Figure 3. Clearly, the isomorphism between M ′ and N ′ is indeed an injective
CC-refinement function between them, but Ms /↔M ′〈s,t〉.

s

b

M

t

N

b
,a b b

u v
w

aa

ym

zn

bb

'M 'N

b b

,u v

,s t

,u w

bb

,v u

,t s

,w u

a

b

y m,

z n,

a

b

m y,

n z,

Figure 3: One counterexample for the construction (∗)
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In the above example, due to the rule (∗), t
a9 v and t

a9 w, we have that
〈s, t〉 a9 〈u, v〉 and 〈s, t〉 a9 〈u,w〉. Thus the a-labelled transition s

a→ u in the
model M does not reflect in M ′, which does not affect that N ′〈t,s〉 CC-refines M ′〈s,t〉,
but causes that Ms /↔ M ′〈s,t〉. In fact, given Z : M �(A1,A2) N and a transition
u

a→ v (a ∈ A2) in M , if the following conditions hold
(1) u ∈ π1(Z) and v ∈ π1(Z), and
(2) ∃w(uZw and ∀w′(vZw′ ⇒ w

a9 w′)),
then the transition u a→ v does not reflect in the modelM ′ obtained by the construc-
tion mentioned in the preceding paragraph. To remedy such flaw, we will preserve
these states v and the a-labelled transitions entering v. For each a ∈ A2, in the
proof of Proposition 2.4, the set of all these states v is denoted by SM,Z

a− , which is
defined as

SM,Z
a− , π1(Z) ∩ π2(RMa ∩ (Z ◦RNa ◦ Z−1 )).

Here RNa ◦ Z−1 is the complementation of RNa ◦ Z−1, namely, RNa ◦ Z−1 = SN ×
SM − RNa ◦ Z−1. Obviously, the definition of SM,Z

a− is induced by the conditions
(1) and (2). Summarizing, SM ′ is obtained from SM by adding all the pairs in Z
and, for the states in π1(Z), only keeping the ones in ⋃

a∈A2 S
M,Z
a− . Applying this

remedied construction to the model M in Example 2.2, we get the one depicted in
Figure 4.

b

bb

,u v

,s t

,u w

a

u

a

b

m y,

n z,

Figure 4: The model obtained by applying the remedied construction

Similarly, the construction of N ′ should also be remedied. In this case, we will
concern ourselves with the A1-sort actions instead of the A2-sort actions. This is
the motivation behind introducing the set SN,Za+ in the proof of Proposition 2.4.

Proposition 2.4. (1) Ms1↔M ′s2 �(A1,A2) N
′
t2↔Nt1 implies Ms1 �(A1,A2) Nt1.

(2) If Ms �(A1,A2) Nt then there exist M ′s′, N ′t′ and Z such that Ms↔M ′s′, Nt↔N ′t′,

9
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and Z : M ′s′ �(A1,A2) N
′
t′ that is an injective partial function from SM

′ to SN ′,
namely, Z satisfies
(2.1) ∀w ∈ SM ′ ∀v1, v2 ∈ SN ′(wZv1 and wZv2 ⇒ v1 = v2), and
(2.2) ∀v ∈ SN ′ ∀w1, w2 ∈ SM ′(w1Zv and w2Zv ⇒ w1 = w2).

Proof. (1) Straightforward.
(2) Assume Z : Ms �(A1,A2) Nt. For each a ∈ A2, set

SM,Z
a− , π1(Z) ∩ π2(RMa ∩ (Z ◦RNa ◦ Z−1 )).

The model M ′ is defined as follows.

(M ′1) SM
′ , (SM − π1(Z)) ∪ Z ∪

⋃

a∈A2

SM,Z
a− (Here we assume SM ∩ Z = ∅).

(M ′2) For each a ∈ A, RM ′a ⊆ SM
′ × SM ′ is obtained from RMa by preserving the

transitions between the states in SM ∩SM ′ , and prescribing the behaviour of a new
state 〈u, v〉 according to the behaviour of u in M and the rule (∗). Formally,

RM
′

a ,
{
RNa ∪ {〈〈u, v〉, w〉 | uZv, w ∈ SM ∩ SM

′ and uRMa w} if a ∈ A2

RNa otherwise

Here

RNa , (RMa ∩ (SM ′)2) ∪ {〈w, 〈u, v〉〉 | uZv and wRMa u}
∪ {〈〈u, v〉, 〈u′, v′〉〉 | uRMa u′, vRNa v′, uZv and u′Zv′}.

Note that there is no transition like 〈u, v〉 a→ w with a /∈ A2 and w ∈ SM even if
uRMa w. Since a /∈ A2 and uZv, by the condition (forth), it follows from uRMa w that
vRNa w

′ and wZw′ for some w′ ∈ SN . Thus, the transition 〈u, v〉 a→ 〈w,w′〉 exists in
M ′ due to the definition of RNa , and hence the transition 〈u, v〉 a→ w is redundant.
(M ′3) For each p ∈ Atom,

VM ′(p) , (VM (p) ∩ SM ′) ∪ {〈u, v〉 | uZv and u ∈ VM (p)}.

The model N ′ is constructed analogously.

(N ′1) SN
′ , (SN − π2(Z)) ∪ Z−1 ∪

⋃

a∈A1

SN,Za+ .

(N ′2) For each a ∈ A, RN ′a ⊆ SN
′ × SN ′ is given below

RN
′

a ,
{
RN
′

a ∪ {〈〈v, u〉, w〉 | uZv, w ∈ SN ∩ SN
′ and vRNa w} if a ∈ A1

RN
′

a otherwise

10
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(N ′3) For each p ∈ Atom,

V N ′(p) , (V N (p) ∩ SN ′) ∪ {〈v, u〉 | uZv and v ∈ V N (p)}.

Here
SN,Za+ , π2(Z) ∩ π2(RNa ∩ (Z−1 ◦RMa ◦ Z ))

and

RN
′

a , (RNa ∩ (SN ′)2) ∪ {〈w, 〈v, u〉〉 | uZv and wRNa v}
∪ {〈〈v, u〉, 〈v′, u′〉〉 | uRMa u′, vRNa v′, uZv and u′Zv′}.

Then it is not difficult to check that

Z1 : Ms↔M ′〈s,t〉, Z2 : Nt↔N ′〈t,s〉 and Z3 : M ′〈s,t〉 �(A1,A2) N
′
〈t,s〉

where
Z1 , {〈u, u〉 | u ∈ SM ∩ SM ′} ∪ {〈u, 〈u, v〉〉 | uZv}
Z2 , {〈v, v〉 | v ∈ SN ∩ SN ′} ∪ {〈v, 〈v, u〉〉 | uZv}
Z3 , {〈〈u, v〉, 〈v, u〉〉 | uZv}.

Moreover, Z3 satisfies the conditions (2.1) and (2.2), as desired.

Proposition 2.5. Let A1, A2 ⊆ A with A1∩A2 = ∅. Then, for each A′1, A′′1, A′2 and
A′′2 such that A′1 ∪A′′1 = A1 and A′2 ∪A′′2 = A2, it holds that

�(A′1,A′2) ◦ �(A′′1 ,A′′2 ) = �(A1,A2) .

Proof. (⊆) Let Ms �(A′1,A′2) ◦ �(A′′1 ,A′′2 ) Nt. Then we have that Z1 : Ms �(A′1,A′2) N
′
v

and Z2 : N ′v �(A′′1 ,A′′2 ) Nt for some N ′v, Z1 and Z2. It is routine to check that
Z1 ◦ Z2 : Ms �(A1,A2) Nt.

(⊇) Assume that M and N are disjoint and Z : Ms �(A1,A2) Nt. By Propo-
sition 2.4, we may suppose that Z is an injective partial function from SM to
SN . To complete the proof, we intend to construct a pointed model N ′v such that
Ms �(A′1,A′2) N

′
v �(A′′1 ,A′′2 ) Nt. Put

N ′ , (M ]N) | RN ′ .
Here for each a ∈ A,

RN
′

a ,





RNa ∪ (Z ◦RNa ) if a ∈ A′2 −A′′2
RMa ∪ (Z−1 ◦RMa ) if a ∈ A′′1 −A′1
RMa ∪RNa ∪ (Z−1 ◦RMa ) if a ∈ A′′2 −A′2
RMa ∪RNa ∪ (Z ◦RNa ) if a ∈ A′1 −A′′1
RMa ∪RNa otherwise

11
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Next we show that the pointed model N ′t is the desired one. The proof will be
divided into two steps.

Claim 1 iSM ,SN′ ∪ Z : Ms �(A′1,A′2) N
′
t .

Let 〈w,w′〉 ∈ iSM ,SN′ ∪ Z. Then it is obvious that w and w′ satisfy the same
proposition letters and hence the pair 〈w,w′〉 satisfies the condition (atoms). In
the following, we deal with the other conditions (forth) and (back) by considering
two cases.

Case 1 〈w,w′〉 ∈ iSM ,SN′

Then w = w′. By the construction of N ′, it is easy to see that the pair 〈w,w′〉
satisfies (forth). Next we verify that such pair also satisfies (back). Assume that
w′RN

′
a v′ with a ∈ A − A′1. Since SM ∩ SN = ∅ and w ∈ SM , by the definition

of RN ′ , it is not difficult to see that either w′RMa v′ or w′(Z ◦ RNa )v′. For the
former, (back) holds trivially. For the latter, we get a ∈ A′2 − A′′2 and there
exists u′ ∈ SN such that w′Zu′ and u′RNa v

′. Hence, due to a ∈ A′2 ⊆ A2 and
Z : Mw′ �(A1,A2) Nu′ , we obtain w′RMa v (i.e., wRMa v) and vZv′ for some v ∈ SM ,
as desired.

Case 2 〈w,w′〉 ∈ Z

Then w′ ∈ SN . We deal with (forth) and (back) in turn.
(forth) Let a ∈ A − A′2 and wRMa v. Hence w′Z−1 ◦ RMa v. If a ∈ (A′′1 −
A′1) ∪ (A′′2 − A′2) then, by the construction of RN ′a , we get w′RN ′a v, moreover,
〈v, v〉 ∈ iSM ,SN′ ∪ Z as desired. If a /∈ (A′′1 − A′1) ∪ (A′′2 − A′2) then a /∈ A2 due
to a /∈ A′2 and A2 = A′2 ∪ A′′2. Further, it follows from Z : Mw �(A1,A2) Nw′ and
wRMa v that w′RNa v′ and vZv′ for some v′ ∈ SN . Since a /∈ A′2 and a /∈ A′′1 − A′1,
by the definition of RN ′a , we have w′RN ′a v′. Clearly, 〈v, v′〉 ∈ iSM ,SN′ ∪ Z.

(back) Let a ∈ A − A′1 and w′RN
′

a v′. Since a /∈ A′1 and w′ ∈ SN , by the
definition of RN ′ , we get either w′RNa v′ or w′(Z−1◦RMa )v′. If w′RNa v′ then a /∈ A′′1
and it immediately follows from Z : Mw �(A1,A2) Nw′ and a /∈ A1(= A′1∪A′′1) that
wRMa v and vZv′ for some v ∈ SM as desired. Next we consider another case where
w′(Z−1 ◦ RMa )v′. In such case, w0Zw′ and w0RMa v

′ for some w0 ∈ SM . Since Z
is an injective partial function from SM to SN , w0 = w immediately follows from
w0Zw′ and wZw′. Then, wRMa v′ and 〈v′, v′〉 ∈ iSM ,SN′ ∪ Z as desired.
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Claim 2 i−1
SN ,SN′ ∪ Z : N ′t �(A′′1 ,A′′2 ) Nt.

Let 〈w′, w〉 ∈ i−1
SN ,SN′ ∪ Z. Similarly, we verify that this pair satisfies the condi-

tions (forth) and (back) by considering two cases.

Case 1 〈w′, w〉 ∈ i−1
SN ,SN′

Hence w′ = w. Clearly, for each a ∈ A − A′′1 and v ∈ SN , wRNa v implies w′(=
w)RN ′a v. Thus, the pair 〈w′, w〉 satisfies the condition (back). Next we check
that such pair also satisfies (forth). Let a ∈ A−A′′2 and w′RN ′a v′. Then, by the
definition of RN ′ , we have either w′RNa v′ or w′(Z−1 ◦RMa )v′. For the former, the
verifying is straightforward. For the latter, we get a ∈ A′′1−A′1, u′Zw′ and u′RMa v′
for some u′ ∈ SM . Thus, it follows from a ∈ A′′1 ⊆ A1 and Z : Mu′ �(A1,A2) Nw′

that w′RNa v (that is wRNa v) and v′Zv for some v ∈ SN , as desired.

Case 2 〈w′, w〉 ∈ Z

(forth) Let a ∈ A− A′′2 and w′RN ′a v′. Since w′ ∈ SM , by the definition of RN ′ ,
it is easy to see either w′RMa v′ or w′(Z ◦ RNa )v′. If w′RMa v′ then a /∈ A′2 and it
immediately follows from Z : Mw′ �(A1,A2) Nw and a /∈ A2 (= A′2 ∪ A′′2) that
wRNa v and v′Zv for some v ∈ SN as desired. If w′(Z ◦ RNa )v′ then w′Zw′0 and
w′0R

N
a v
′ for some w′0 ∈ SN . Then, applying the assumption that Z is an injective

partial function again, we have w′0 = w. Hence, wRNa v′ and 〈v′, v′〉 ∈ i−1
SN ,SN′ ∪Z.

(back) Let a ∈ A−A′′1 and wRNa v. Then it follows from w′Zw and wRNa v that
w′Z ◦ RNa v. If a ∈ (A′1 − A′′1) ∪ (A′2 − A′′2) then w′RN ′v by the definition of RN ′ ,
moreover, 〈v, v〉 ∈ i−1

SN ,SN′ ∪ Z as desired. If a /∈ (A′1 − A′′1) ∪ (A′2 − A′′2) then
a /∈ A′1 and a /∈ A′′1 due to a ∈ A − A′′1. Hence a /∈ A1. Then it follows from
Z : Mw′ �(A1,A2) Nw and wRNa v that w′RMa v′ and v′Zv for some v′ ∈ SM ⊆ SN ′ .
Clearly, we also have w′RN ′a v′ because of w′RMa v′ and a /∈ A′2 −A′′2.

Corollary 2.6. If A1 6= ∅ or A2 6= ∅, then

�θ1 ◦ �θ2 ◦ · · · ◦ �θn = �(A1,A2)

where, all the pairs in A1 × A2 are arranged in a permutation {θi}1≤i≤n with n =
|A1 × A2| if A1 6= ∅ and A2 6= ∅, otherwise, {θi : 1 ≤ i ≤ n} = Ak with n = |Ak| if
Ak 6= ∅ (k = 1 or 2).

Laura Bozzelli et al. have obtained the same conclusion for B-refinement [8],
which corresponds to the case where A1 = ∅ and A2 = B.
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3 CC-refinement modal logic
This section presents CC-refinement modal logic (CCRML), which is obtained from
the modal system K by adding CC-refinement quantifiers.

Definition 3.1 (Language LCC). Let A be a finite set of actions and Atom a set
of proposition letters. The language LCC of CC-refinement modal logic is generated
by the BNF grammar below, where ∅ 6= A1, A2 ⊆ A with A1 ∩ A2 = ∅, p ∈ Atom
and a ∈ A:

ϕ ::= p | ¬ϕ | (ϕ1 ∧ ϕ2) | 2aϕ | ∃(A1,A2)ϕ

The modal operator ♦a and propositional connectives→, ∨, ↔, > and ⊥ are defined
in the standard manner. Moreover, we also write ∀(A1,A2)ϕ for ¬∃(A1,A2)¬ϕ.

For the sake of simplicity, this paper assumes that A1 6= ∅ and A2 6= ∅. Section 5
will discuss how to dispense with this assumption. If both A1 and A2 are singletons,
say A1 = {a1} and A2 = {a2}, we write ∃(a1,a2)ϕ (or ∀(a1,a2)ϕ) instead of ∃(A1,A2)ϕ
(resp., ∀(A1,A2)ϕ ). Moreover, we shall write ∧♦a∃(a1,a2)Φ (or 2a

∨∃(a1,a2)Φ) for∧
ϕ∈Φ♦a∃(a1,a2)ϕ (resp., 2a

∨
ϕ∈Φ ∃(a1,a2)ϕ) to ease the notation.

In this paper, the cover operator ∇a is also adopted. As usual, for each a ∈ A,
∇aΦ is defined as 2a

∨
ϕ∈Φ ϕ∧

∧
ϕ∈Φ♦aϕ, where Φ is a finite set of formulas. It is well

known that the operators 2a and ♦a may be defined in terms of ∇a. Formally, 2aϕ
and ♦aϕ are captured by ∇a∅∨∇a{ϕ} and ∇a{ϕ,>} respectively. More information
about the cover operator may be found in [6, 11].

Given a model M , the notion of a formula ϕ ∈ LCC being satisfied in M at a
state s is defined inductively as follows:

Ms |= p iff s ∈ VM (p), where p ∈ Atom
Ms |= ¬ϕ iff Ms /|= ϕ
Ms |= ϕ1 ∧ ϕ2 iff Ms |= ϕ1 and Ms |= ϕ2
Ms |= 2aϕ iff for all t ∈ RMa (s),Mt |= ϕ
Ms |= ∃(A1,A2)ϕ iff Ms �(A1,A2) Nt and Nt |= ϕ for some Nt

As usual, for each ϕ ∈ LCC , ϕ is valid, in symbols |= ϕ, if Ms |= ϕ for ev-
ery pointed model Ms. It is easy to see that LCC-satisfiability is invariant under
bisimulations, which is a known result:

Proposition 3.2. If Ms↔Nt then

Ms |= ψ iff Nt |= ψ for all formulas ψ ∈ LCC .

Proof. Proceeding by induction on ψ.
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It is not difficult to see that

Ms |= ∇b∃(a1,a2)Φ iff Ms |= 2b
∨∃(a1,a2)Φ and Ms |=

∧♦b∃(a1,a2)Φ
iff ∀t(sRMb t⇒ ∃ϕ ∈ Φ(Mt |= ∃(a1,a2)ϕ)) and

∀ϕ(ϕ ∈ Φ⇒ ∃t(sRMb t and Mt |= ∃(a1,a2)ϕ)).

Thus, to assert that a pointed model Ms satisfies a given formula ∇b∃(a1,a2)Φ, we
are required to provide a witness Ω which is a set of pointed models and satisfies
the following conditions:

(1) for each t such that sRMb t, Nu |= ϕ and Mt �(A1,A2) Nu for some ϕ ∈ Φ and
Nu ∈ Ω;

(2) for each ϕ ∈ Φ, Nu |= ϕ and Mt �(A1,A2) Nu for some Nu ∈ Ω and t with
sRMb t.

In the following, two auxiliary notions are introduced, which describe a witness
Ω for a given cover formula and hence capture its semantical characterization.

Definition 3.3 (b-support and b-ccrefine). Given Φ ⊆f LCC (i.e., Φ is a finite
subset of LCC), a1, a2 and b ∈ A and a pointed model Ms, for every set (of pointed
models) Ω such that ∀Nt ∈ Ω ∃u ∈ RMb (s) (Mu �(a1,a2) Nt |=

∨ Φ), we say
(1) Ω b-supports Φ w.r.t. a1, a2 and Ms if ∀ϕ ∈ Φ ∃Nt ∈ Ω (Nt |= ϕ),
(2) Ω b-ccrefines Ms w.r.t. a1, a2 and Φ if ∀u ∈ RMb (s)∃Nt ∈ Ω(Mu �(a1,a2) Nt).

Here are some elementary properties of these concepts, which are trivial but will
be needed in the next section.

Lemma 3.4.
(1) Ms |= 2b

∨ ∃(a1,a2)Φ iff there exists a set Ω which b-ccrefines Ms w.r.t. a1,

a2 and Φ.
(2) Ms |=

∧♦b∃(a1,a2)Φ iff there exists a set Ω which b-supports Φ w.r.t. a1, a2
and Ms.

(3) Ms |= ∇b∃(a1,a2)Φ iff there exists a set Ω which b-ccrefinesMs w.r.t. a1, a2
and Φ, and b-supports Φ w.r.t. a1, a2 and Ms.

Proof. Straightforward.

Proposition 3.5. For all A′1, A′2, A′′1, A′′2 ⊆ A such that (A′1∪A′′1)∩ (A′2∪A′′2) = ∅,

|= ∃(A′1,A′2)∃(A′′1 ,A′′2 )ψ ↔ ∃(A′′1 ,A′′2 )∃(A′1,A′2)ψ.

Proof. Follow from Proposition 2.5, immediately.
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4 Axiom system
A sound and complete axiom system for the logic CCRML will be presented in this
section. Similar to the axiom system RML [8], the uniform substitution rule is not
sound in CCRML. For example, although p→ ∀(a1,a2)p is valid for every proposition
letter p, the formula ♦a2> → ∀(a1,a2)♦a2> is not valid. Therefore CCRML is not a
normal modal logic.

We use Lp to denote the set of all propositional formulas in LCC . Clearly, the
fragment of LCC consisting of all formulas containing no CC-refinement quantifier
is indeed the multi-agent modal language LK , which may be axiomatized by the
system K [7].

Axiom schemes
Here a1, a2, a, b ∈ A, A1, A2, B ⊆ A, A1 ∩A2 = ∅, p ∈ Atom, Γ ⊆f LK ,
and Φ,Φb ⊆f LCC .

Prop All propositional tautologies
K 2a(ϕ→ ψ)→ (2aϕ→ 2aψ)
CCR ∀(a1,a2)(ϕ→ ψ)→ (∀(a1,a2)ϕ→ ∀(a1,a2)ψ)
CCRp1 ∀(a1,a2)p↔ p

CCRp2 ∀(a1,a2)¬p↔ ¬p
CCRD ∃(A1,A2)ϕ↔ (∃θ1 · · · ∃θ|A1×A2|

)ϕ where all the pairs in A1 ×A2
are arranged in a permutation {θi}1≤i≤|A1×A2|

CCRKco1 ∃(a1,a2)∇a1Γ↔ ⊥ if `K α↔ ⊥ for some α ∈ Γ
CCRKco2 ∃(a1,a2)∇a1Γ↔ 2a1

∨∃(a1,a2)Γ if 0K α↔ ⊥ for all α ∈ Γ
CCRKcontra ∃(a1,a2)∇a2Φ↔ ∧♦a2∃(a1,a2)Φ
CCRKbis ∃(a1,a2)∇bΦ↔ ∇b∃(a1,a2)Φ where b 6= a1, a2
CCRKconj ∃(a1,a2)

∧
b∈B∇bΦb ↔

∧
b∈B ∃(a1,a2)∇bΦb

Rules

MP ϕ→ ψ,ϕ

ψ
NK ϕ

2aϕ
NCCR ϕ

∀(a1,a2)ϕ

Table 1: Axiom system of CCRML

The axiom schemes and rules for CCRML are given in Table 1. CCR is the
∀(a1,a2)-over-implies distribution which allows us to transform ∀(a1,a2)(ϕ→ ψ) into
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∀(a1,a2)ϕ → ∀(a1,a2)ψ and enables further reasoning to take place. CCRp1 and
CCRp2 capture the condition (atoms) in Definition 2.1 in terms of formulas, which
is important because it provides a logical foundation to remove the quantifier ∀(a1,a2)
in front of propositional formulas. CCRD gives a syntactic description of Corol-
lary 2.6, which lets us transform ∃(A1,A2) into a stack of the quantifiers of the form
∃(a1,a2). CCRKco1 reveals that the operator ∃(a1,a2)∇a1 preserves the inconsistency
of LK-formulas. CCRKconj is the ∃(a1,a2)-over-∧ distribution. It seems reasonable
that calling CCRKco2, CCRKcontra and CCRKbis ∃(a1,a2)-∇a crossing laws,
which allow us to transform ∃(a1,a2)∇aΦ into a formula of the form Fa(∃(a1,a2)Φ),
where the format Fa depends on the sort of the action a.

As usual, ` α (`K α) means that α is a theorem in CCRML (resp., K [7]).

4.1 ⊕-construction
This subsection will make some technical preparations for establishing the soundness
of the axiom system. Since CCRML contains CC-refinement quantifiers, in order to
show the validity of the axioms, we often need to construct a desired model based
on the given ones. The ⊕-construction presented below will be used to construct
these models in a uniform fashion.

Definition 4.1. Given B ⊆ A, let Ωb be a set of pointed models for each b ∈ B
and Ms a pointed model such that all the models in ⋃

b∈B Ωb ∪ {Ms} are pairwise
disjoint. The model N is obtained from M ] (⊎b∈B,M ′v∈Ωb

M ′) by adding a new state
s′ and imposing the following clauses:

(1) for each b ∈ B, s′RNb u iff M ′u ∈ Ωb for some M ′,
(2) for each b /∈ B, RNb (s′) = RMb (s) , and
(3) for each p ∈ Atom, s′ ∈ V N (p) iff s ∈ VM (p).

The pointed model Ns′ is denoted by (Ms ⊕ {Ωb}b∈B)s′. An illustration for this
construction is given in Figure 5.

Convention. In the remainder of the paper, we always suppose that all the models
in ⋃

b∈B⊆A Ωb∪{Ms} are pairwise disjoint whenever the modelMs⊕{Ωb}b∈B is used.

The model Ms ⊕ {Ωb}b∈B has some interesting properties whenever Ms and
{Ωb}b∈B meet the requirement presented below.

Definition 4.2 (B-nice). Given B ⊆ A, for each b ∈ B, let Φb ⊆f LCC and Ωb be a
set of pointed models, and let Ms be a pointed model. We say these Φb, Ωb (b ∈ B)
and Ms are B-nice w.r.t. two given actions a1, a2 ∈ A if the following conditions
hold:

(1) if a1 ∈ B then Ωa1 = Ω1 ∪ Ω2 for some Ω1 and Ω2 which satisfy that Ω1
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Figure 5: (Ms ⊕ {Ωb}b∈B)s′ with A = {a, b, c, d} and B = {a, b}

a1-ccrefines Ms w.r.t. a1, a2 and Φa1 and ∀ϕ ∈ Φa1∃Nt ∈ Ω2 (Nt |= ϕ),
(2) if a2 ∈ B then the set Ωa2 a2-supports Φa2 w.r.t. a1, a2 and Ms, and
(3) for each b ( 6= a1, a2) ∈ B, the set Ωb b-ccrefines Ms w.r.t. a1, a2 and Φb,

and b-supports Φb w.r.t. a1, a2 and Ms.

In verifying Lemma 4.5, 4.6, 4.7 and 4.8 in the next section, we will get desired
models by applying the ⊕-construction to suitable B-nice objects. These desired
models enjoy the following property.

Lemma 4.3. With the notations as in Definition 4.2, if Φb, Ωb (b ∈ B) and Ms

are B-nice w.r.t. a1 and a2 then, for each new state s′,

Ms �(a1,a2) (Ms ⊕ {Ωb}b∈B)s′ |=
∧

b∈B
∇bΦb.

Proof. Let M ′s′ , (Ms ⊕ {Ωb}b∈B)s′ . Since Φb, Ωb (b ∈ B) and Ms are B-nice
w.r.t. a1 and a2, for each b ∈ B − {a2} and u ∈ RMb (s), we may choose and fix
a binary relation Zbu such that Zbu : Mu �(a1,a2) Nt for some Nt ∈ Ωb; moreover,
for each b ∈ B − {a1} and v ∈ RM ′b (s′), we may fix a binary relation Zbv such that
Zbv : Mu �(a1,a2) Nv for some Nv ∈ Ωb and u ∈ RMb (s). Put

Z , iSM ,SM′ ∪ {〈s, s′〉} ∪
⋃

b∈B−{a1}
v∈RM′

b (s′)

Zbv ∪
⋃

b∈B−{a2}
u∈RM

b (s)

Zbu.
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Clearly, Z : Ms �(a1,a2) M
′
s′ . Furthermore, by the construction of M ′s′ , since Φb, Ωb

(b ∈ B) and Ms are B-nice w.r.t. a1 and a2, it is not difficult to see that M ′s′ |=∧
b∈B∇bΦb.

4.2 Soundness
This subsection devotes itself to establish the soundness of the axiom system
CCRML. We begin with giving some validities.

Lemma 4.4. If {θi}1≤i≤|A1×A2| is a permutation of all the pairs in A1 ×A2, then

|= ∃(A1,A2)ϕ↔ (∃θ1 · · · ∃θ|A1×A2|
)ϕ.

Proof. It follows immediately from Corollary 2.6 and Proposition 3.5.

In fact, for each sequence {θi}1≤i≤n of the pairs in A1×A2 such that each action
in A1 ∪A2 occurs in θi for some 1 ≤ i ≤ n, we always have

|= ∃(A1,A2)ϕ↔ (∃θ1 · · · ∃θn)ϕ.

Lemma 4.5. Let Φ be a finite set of LCC formulas. Then
(1) |= ∃(a1,a2)∇a1Φ→ 2a1

∨∃(a1,a2)Φ,
(2) |= 2a1

∨∃(a1,a2)Φ→ ∃(a1,a2)∇a1Φ whenever each ϕ in Φ is satisfiable.

Proof. (1) Let Ms |= ∃(a1,a2)∇a1Φ. So there exists Nt such that

Ms �(a1,a2) Nt |= ∇a1Φ.

Then Nt |= 2a1
∨ Φ, that is, for each v ∈ RNa1(t), Nv |= ϕ for some ϕ ∈ Φ. More-

over, since Ms �(a1,a2) Nt, for each u ∈ RMa1 (s), there exists v′ ∈ RNa1(t) such that
Mu �(a1,a2) Nv′ . Therefore, for each u ∈ RMa1 (s), Mu |= ∃(a1,a2)ϕ for some ϕ ∈ Φ,
which implies Mu |=

∨ ∃(a1,a2)Φ. Hence Ms |= 2a1
∨ ∃(a1,a2)Φ.

(2) Suppose that Ms |= 2a1
∨∃(a1,a2)Φ. Then, by Lemma 3.4 (1), there exists

a set (say, E) of pointed models, which a1-ccrefines Ms w.r.t. a1, a2 and Φ. On
the other hand, for each ϕ ∈ Φ, since ϕ is satisfiable, we may choose arbitrarily and
fix a pointed model Nϕ

uϕ such that Nϕ
uϕ |= ϕ. Put

Ω , E ∪ {Nϕ
uϕ | ϕ ∈ Φ}.

Clearly, Ω, Φ and Ms are {a1}-nice w.r.t. a1 and a2. Thus, by Lemma 4.3, we
get Ms �(a1,a2) (Ms ⊕ Ω)s′ |= ∇a1Φ for some s′. Hence Ms |= ∃(a1,a2)∇a1Φ, as
desired.

19



Huili Xing and Zhaohui Zhu and Jinjin Zhang

The above lemma implies the validity of the axiom scheme CCRKco2. Note
that we can not adopt the following formula

∃(a1,a2)∇a1Φ↔ 2a1

∨
∃(a1,a2)Φ where each ϕ in Φ is satisfiable

as an axiom scheme, because its side condition uses a semantical concept.
Fortunately, by relying on the completeness of K, to prove the completeness of

CCRML in Section 4.3, it is sufficient to require Φ to be a finite subset of LK and to
express the side condition in terms of K -derivability (see, CCRKco2 in Table 1).

Lemma 4.6. |= ∃(a1,a2)∇a2Φ↔ ∧♦a2∃(a1,a2)Φ for each Φ ⊆f LCC .

Proof. Let Ms |= ∃(a1,a2)∇a2Φ. So Ms �(a1,a2) Nt |= ∇a2Φ for some Nt. We
intend to show that Ms |= ♦a2∃(a1,a2)ϕ for each ϕ ∈ Φ. Let ϕ be any formula
in Φ. Since Nt |= ∇a2Φ, we get Nv |= ϕ for some v ∈ RNa2(t). Further, due to
Ms �(a1,a2) Nt, Mu �(a1,a2) Nv for some u ∈ RMa2 (s). Then Mu |= ∃(a1,a2)ϕ, and
hence Ms |= ♦a2∃(a1,a2)ϕ due to sRMa2u.

Suppose that Ms |=
∧♦a2∃(a1,a2)Φ. Then, by Lemma 3.4 (2), there exists a set

(say, Ω) of pointed models, which a2-supports Φ w.r.t. a1, a2 and Ms. Clearly,
Ω, Φ and Ms are {a2}-nice w.r.t. a1 and a2. Hence, by Lemma 4.3, we have
Ms �(a1,a2) (Ms ⊕ Ω)s′ |= ∇a2Φ for some s′, which implies Ms |= ∃(a1,a2)∇a2Φ.

Lemma 4.7. Let b ∈ A and Φ ⊆f LCC . Then
(1) |= ∃(a1,a2)∇bΦ→ ∇b∃(a1,a2)Φ whenever b 6= a1, a2,
(2) |= ∇b∃(a1,a2)Φ→ ∃(a1,a2)∇bΦ.

Proof. (1) Suppose that Ms |= ∃(a1,a2)∇bΦ. The analysis similar to that in the
proof of Lemma 4.6 and 4.5 (1) shows

Ms |=
∧
♦b∃(a1,a2)Φ and Ms |= 2b

∨
∃(a1,a2)Φ.

Then it immediately follows that Ms |= ∇b∃(a1,a2)Φ.
(2) Assume that Ms |= ∇b∃(a1,a2)Φ. By Lemma 3.4 (3), there exists a set (say,

Ω) of pointed models, which b-ccrefines Ms w.r.t. a1, a2, and Φ and b-supports
Φ w.r.t. a1, a2 and Ms. It is clear that Ω, Φ and Ms are {b}-nice w.r.t. a1 and
a2. Then, by Lemma 4.3, Ms �(a1,a2) (Ms ⊕ Ω)s′ |= ∇bΦ for some s′, and hence
Ms |= ∃(a1,a2)∇bΦ.

It should be pointed out that Lemma 4.7 (1) is invalid without the assumption
that b 6= a1, a2. Consider the models in Figure 6 (1). We have Z1 : Ms �(a1,a2) Nt

with Z1 , {〈s, t〉, 〈s1, t1〉} and Nt |= ∇a1Φ with Φ = {p1, p2} ⊆ Atom. Thus
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Ms |= ∃(a1,a2)∇a1Φ, however, it is easy to see that Ms /|= ∧♦a1∃(a1,a2)Φ and hence
Ms /|= ∇a1∃(a1,a2)Φ.

Similarly, for the models in Figure 6 (2), we have Z2 : Ms �(a1,a2) Nt with Z2 ,
{〈s, t〉, 〈s1, t1〉} and Nt |= ∇a2Φ with Φ = {p1} ⊆ Atom. Thus Ms |= ∃(a1,a2)∇a2Φ,
but Ms /|= 2a2

∨ ∃(a1,a2)Φ, so Ms /|= ∇a2∃(a1,a2)Φ.

ts

t ts
p p p

aaa

b a b a

s

s
p

a

t

ts
pp

aa

(1) (2)

M NM N

Figure 6: Counterexample used in Lemma 4.7 (1)

Lemma 4.8. Let Φb ⊆f LCC for each b ∈ B(⊆ A). Then

|= ∃(a1,a2)
∧
b∈B∇bΦb ↔

∧
b∈B ∃(a1,a2)∇bΦb.

Proof. If α is unsatisfiable for some α ∈ ⋃
b∈B Φb, then

|=
∧

b∈B
∇bΦb ↔ ⊥.

Hence
|= ∃(a1,a2)

∧

b∈B
∇bΦb ↔ ⊥ and |=

∧

b∈B
∃(a1,a2)∇bΦb ↔ ⊥.

Then it holds trivially that

|= ∃(a1,a2)
∧

b∈B
∇bΦb ↔

∧

b∈B
∃(a1,a2)∇bΦb.

In the following we deal with the nontrivial case where each α in ⋃
b∈B Φb is satisfi-

able. It is obvious that

|= ∃(a1,a2)
∧

b∈B
∇bΦb →

∧

b∈B
∃(a1,a2)∇bΦb.

Next we consider the converse implication. Let Ms |=
∧
b∈B ∃(a1,a2)∇bΦb and b ∈ B.
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If b 6= a1, a2, by Lemma 4.7 (1), it follows from Ms |= ∃(a1,a2)∇bΦb that Ms |=
∇b∃(a1,a2)Φb. Then, by Lemma 3.4 (3), there exists a set (say, Ωb) of pointed models,
which b-ccrefines Ms w.r.t. a1, a2 and Φb, and b-supports Φb w.r.t. a1, a2 and
Ms.

If b = a2, by Lemma 4.6, we get Ms |=
∧♦a2∃(a1,a2)Φa2 . Then, by Lemma 3.4

(2), there exists a set (say, Ωa2) of pointed models, which a2-supports Φa2 w.r.t.
a1, a2 and Ms.

If b = a1, by Lemma 4.5 (1), we obtain Ms |= 2a1
∨∃(a1,a2)Φa1 . Further, by

Lemma 3.4 (1), there exists a set (say, K) of pointed models, which a1-ccrefines
Ms w.r.t. a1, a2 and Φa1 . Moreover, for each ϕ ∈ Φa1 , since ϕ is satisfiable, we may
choose arbitrarily and fix a pointed model Nϕ

uϕ such that Nϕ
uϕ |= ϕ. Then put

Ωa1 , K ∪ {Nϕ
uϕ | ϕ ∈ Φa1}.

Clearly, Ms and these sets Φb and Ωb with b ∈ B are B-nice w.r.t. a1 and a2.
Then, by Lemma 4.3, Ms �(a1,a2) (Ms ⊕ {Ωb}b∈B)s′ |=

∧

b∈B
∇bΦb for some s′. Hence

it holds that Ms |= ∃(a1,a2)
∧
b∈B∇bΦb, as desired.

Now we arrive at the soundness of the axiom system.

Theorem 4.9 (Soundness). For each ψ ∈ LCC, ` ψ implies |= ψ.

Proof. As usual, it is enough to show that all the axiom schemes are valid, and
the rules MP, NK and NCCR are sound. It is trivial to check that the axiom
schemes Prop, K, CCR, CCRp1, CCRp2 and CCRKco1 are valid, and the
rules MP, NK and NCCR are sound. From Lemma 4.4, 4.5, 4.6, 4.7 and 4.8, it
follows that the axiom schemes CCRD, CCRKco2, CCRKcontra, CCRKbis
and CCRKconj are valid.

4.3 Completeness
This subsection intends to establish the completeness of the axiom system CCRML.
This follows by the same method as in [8]. We will show that each LCC-formula
is provably equivalent to a K -formula, which brings the completeness of CCRML
based on the completeness of K.

We firstly give some general statements as the preparations for the reduction
argument.

Proposition 4.10. Let ϕ1, ϕ2, ψ ∈ LCC and p ∈ Atom. Then

` ϕ1 ↔ ϕ2 implies ` ψ[ϕ1\p]↔ ψ[ϕ2\p]

22



Covariant-Contravariant Refinement Modal Logic

Proof. By induction on the structure of ψ.

Proposition 4.11.
(1) ` ∀(a1,a2)(ϕ ∧ ψ)↔ ∀(a1,a2)ϕ ∧ ∀(a1,a2)ψ.
(2) ` ∃(a1,a2)(ϕ ∨ ψ)↔ ∃(a1,a2)ϕ ∨ ∃(a1,a2)ψ.
(3) ` ∀(a1,a2)ϕ ∨ ∀(a1,a2)ψ → ∀(a1,a2)(ϕ ∨ ψ).
(4) ` ∃(a1,a2)(ϕ ∧ ψ)→ ∃(a1,a2)ϕ ∧ ∃(a1,a2)ψ.

Proof. Trivially.

Proposition 4.12. For each propositional formula β, we have
(1) ` ∀(a1,a2)β ↔ β
(2) ` ∃(a1,a2)β ↔ β

Proof. Clearly, Item 2 is implied by Item 1. We intend to show ` β → ∀(a1,a2)β and
` ∀(a1,a2)β → β in turn.

For the former, since each propositional formula is provably equivalent to a
formula in disjunctive normal form (DNF, for short) [10] and the axiom system
CCRML contains all propositional tautologies, we may assume ` β ↔ ∨

θ∈Θ
∧
r∈θ r,

where ∨
θ∈Θ

∧
r∈θ r is a DNF formula. Clearly, each θ (∈ Θ) is a finite set of literals

(proposition letter or the negation of a proposition letter). Then ` β → ∀(a1,a2)β
may be inferred as follows.

1. ` β −→ ∨
θ∈Θ

∧
r∈θ r Prop

2. ` β −→ ∨
θ∈Θ

∧
r∈θ ∀(a1,a2)r CCRp1, p2, Proposition 4.10

3. ` β −→ ∨
θ∈Θ ∀(a1,a2)

∧
r∈θ r Proposition 4.11(1), 4.10

4. ` β −→ ∀(a1,a2)
∨
θ∈Θ

∧
r∈θ r Proposition 4.11(3), Prop, MP

5. ` β −→ ∀(a1,a2)β Proposition 4.10, Prop
Similarly, for the latter, we assume ` β ↔ ∧

θ∈Θ
∨
r∈θ r, where

∧
θ∈Θ

∨
r∈θ r is a

CNF formula [10]. Then we have
6. ` β −→ ∧

θ∈Θ
∨
r∈θ r Prop

7. ` ∀(a1,a2)β −→ ∀(a1,a2)
∧
θ∈Θ

∨
r∈θ r NCCR, CCR, MP

8. ` ∀(a1,a2)β −→
∧
θ∈Θ ∀(a1,a2)

∨
r∈θ r Proposition 4.11(1), 4.10

9. ` ∀(a1,a2)β −→
∧
θ∈Θ

∨
r∈θ r F

10. ` ∀(a1,a2)β −→ β

(F) It is easy to see that, for each θ ∈ Θ,
` ∨

r∈θ r ←→ (¬r1 → (¬r2 → · · · (¬rn−1 → rn) · · · )),
where θ = {r1, · · · , rn}. Then, using Prop, MP, CCRp1, CCRp2, NCCR and
Proposition 4.10 repeatedly, we have

` ∀(a1,a2)
∨

r∈θ
r −→

∨

r∈θ
r.
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This, together with 8., implies 9. as desired.

The above proposition generalizes the axiomsCCRp1 andCCRp2, which guar-
antees that the CC-refinement quantifier over any propositional formula may be
eliminated using proof-theoretical methods. Unfortunately, for a LK-formula ϕ,
∃(a1,a2)ϕ is not always logically equivalent to ϕ. Thus, 0 ∃(a1,a2)ϕ ↔ ϕ due to the
soundness. However, it holds that ∃(a1,a2)ϕ is provably equivalent to a LK-formula
in CCRML. To show this, some auxiliary results and notions are needed.

Proposition 4.13. Let β ∈ Lp and ψ ∈ LCC . Then

` ∃(a1,a2)(β ∧ ψ)↔ (β ∧ ∃(a1,a2)ψ).

Proof. By Proposition 4.11 (4), 4.12 and 4.10, it is easy to get

` ∃(a1,a2)(β ∧ ψ) −→ (β ∧ ∃(a1,a2)ψ).

To complete the proof, we shall show ` (β∧∃(a1,a2)ψ) −→ ∃(a1,a2)(β∧ψ). Clearly,

` ¬(β ∧ ψ) −→ (β → ¬ψ).

Then, by NCCR, CCR, Prop and MP, we obtain

` ∀(a1,a2)¬(β ∧ ψ) −→ (∀(a1,a2)β → ∀(a1,a2)¬ψ).

Thus, by Prop, it follows that

` (∀(a1,a2)β ∧ ∃(a1,a2)ψ) −→ ∃(a1,a2)(β ∧ ψ).

Finally, by Proposition 4.12 and 4.10, ` (β ∧ ∃(a1,a2)ψ)→ ∃(a1,a2)(β ∧ ψ) holds.

Next we recall the notion of disjunctive formula in cover logic (df , for
short) [23]. The df formulas are generated by the BNF grammar below, where
∅ 6= B ⊆ A and β0 ∈ Lp.

β ::= (β ∨ β) | β0 | (β0 ∧
∧

b∈B
∇b{β, · · · , β})

Proposition 4.14 ( [23]). For each ϕ ∈ LK , there is a df formula β such that
`K ϕ↔ β.

Now we can show that any formula of the form ∃(a1,a2)β with β ∈ LK can be
provably reduced to a LK-formula.
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Proposition 4.15. For each β ∈ LK ,

` ∃(a1,a2)β ↔ ξ for some ξ ∈ LK .

Proof. Since the axiom system presented in this paper contains the system K, by
Proposition 4.14, for each ϕ ∈ LK , we have ` ϕ↔ α for some df formula α. Further,
by Proposition 4.10, we may assume that β is a df formula. In the following, we
proceed by the induction on β.

For β ∈ Lp, it holds by Proposition 4.12.
For β ≡ β1 ∨ β2, by Proposition 4.11 (2), we get

` ∃(a1,a2)β ←→ ∃(a1,a2)β1 ∨ ∃(a1,a2)β2.

Then, by the induction hypothesis and Proposition 4.10, it follows that

` ∃(a1,a2)β ←→ ξ1 ∨ ξ2 for some ξ1, ξ2 ∈ LK .

For β ≡ β0 ∧
∧
b∈B∇bΦb with β0 ∈ Lp and Φb ⊆ df for each b ∈ B, by Proposi-

tion 4.13, we have
` ∃(a1,a2)β ←→ β0 ∧ ∃(a1,a2)

∧

b∈B
∇bΦb.

Further, by CCRKconj and Proposition 4.10, it follows that

` ∃(a1,a2)β ←→ β0 ∧
∧

b∈B
∃(a1,a2)∇bΦb.

Now the proof is completed by showing that, for each b ∈ B,

` ∃(a1,a2)∇bΦb ←→ ξb for some ξb ∈ LK . (∗∗)

Since Φb ⊆ df ⊆ LK , applying the axiom schemes CCRKco1, CCRKco2,
CCRKcontra and CCRKbis, it follows that ` ∃(a1,a2)∇bΦb ←→ θ for some θ in
which the quantifiers ∃(a1,a2) are over only the formulas in Φb (⊆ df ). Finally, by the
induction hypothesis and Proposition 4.10, the claim (∗∗) follows, as desired.

At this point, we can show that all LCC-formulas can be provably reduced to
LK-formulas, which is the crucial step in establishing the completeness of CCRML.

Proposition 4.16. For each ψ ∈ LCC , there exists a formula ϕ ∈ LK such that
` ψ ↔ ϕ.
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Proof. By the axiom scheme CCRD and Proposition 4.10, we only need to deal
with the formulas in which all CC-refinement quantifiers are of the form ∃(a,b) with
a, b ∈ A. We proceed by the induction on the number n(ψ) of the occurrences of
the CC-refinement quantifiers in ψ.

For n(ψ) = 0, trivially. If n(ψ) > 0, we can always find a subformula of ψ,
which is of the form ∃(a1,a2)θ with θ ∈ LK . Then, by Proposition 4.15 and 4.10, it
follows easily that ` ψ ↔ ψ′ for some ψ′ ∈ LCC with n(ψ′) < n(ψ). This enables the
induction proof to work well.

Proposition 4.17. Let ψ ∈ LCC and ϕ ∈ LK such that ` ψ ↔ ϕ. If ϕ is a theorem
in K, then so is ψ in CCRML.

Proof. Since the axiom systemK is contained in CCRML, we have ` ϕ due to `K ϕ.
Further, ` ψ follows immediately from ` ψ ↔ ϕ.

Theorem 4.18 (Completeness). For each ψ ∈ LCC , |= ψ implies ` ψ.

Proof. By Proposition 4.16, ` ψ ↔ ξ for some ξ ∈ LK . Then, by Theorem 4.9,
we get |= ψ ↔ ξ, which implies |= ξ because of |= ψ. Hence `K ξ due to the
completeness of K. Thus, by Proposition 4.17, we get ` ψ, as desired.

To establish the completeness of CCRML, we have showed that all LCC-formulas
can be provably reduced to LK-formulas. It follows easily from our proof that there
is an algorithm for transforming each LCC-formula ψ into a LK-formula ϕ such that
` ψ iff `K ϕ. Thus, due to the decidability of the system K, we have

Theorem 4.19 (Decidability). CCRML is decidable.

In the proof of Proposition 4.15, our argument is given based on the assumption
that β is a df formula. Such assumption does not obstruct getting the above con-
clusion because each LK-formula can be effectively transformed into an equivalent
df formula.

5 Discussion
This paper provides a sound and complete axiom system for the CC-refinement
quantifiers ∃(A1,A2) under the assumption that neither A1 nor A2 is empty. This
assumption is not particularly restrictive. Similar to ∃(A1,A2), the quantifiers ∃(A1,∅)
and ∃(∅,A2) can be reduced to the quantifiers ∃(a,∅) and ∃(∅,a) respectively due to
Corollary 2.6. Moreover, the proofs and constructions with minor modification still
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work if we drop such assumption. We leave it to the reader to check this. Here we
only explain the necessary modification of the axiom system.

The axiom system for ∃(A1,∅) is obtained from the axiom system in Table 1
by replacing the quantifier ∀(a1,a2) (or, ∃(a1,a2)) with ∀a1 (∃a1 , resp.) in all the
axioms and rules, deleting the axiom CCRKcontra, rewriting CCRD according
to Corollary 2.6 and replacing the side condition b 6= a1, a2 of CCRKbis with
b 6= a1.

To obtain the axiom system for ∃(∅,A2), in addition to replacing the quantifier
∀(a1,a2) (or, ∃(a1,a2)) with ∀a2 (∃a2 , resp.) in all the axioms and rules and rephrasing
the axiom CCRD based on Corollary 2.6, we erase the axioms CCRKco1 and
CCRKco2, and replace the side condition b 6= a1, a2 of CCRKbis with b 6= a2.
The obtained axiom system is indeed the one given in [8].

Based on the explanation given above, it is straightforward to integrate all these
axiom systems into one. This paper prefers to adopt the present framework for the
sake of simplicity.
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Abstract
In this paper, I show that the first proto-axiomatic system of symbolic logic

was created within the Sumerian-Akkadian legal culture (i.e. much earlier than
Aristotle and the Stoics lived) to make justice effective and transparent. The
point is that there were excavated many well-preserved Neo-Babylonian trial
records and we can reconstruct logically legal proceedings reported in them.
There are direct evidences that their trial decisions were drawn automatically
just by applying some inference rules. A very similar structure and the same
perfect logicality are observed in legal documents in Aramaic and Greek from
Elephantine. Hence, symbolic logic existed at least since the Neo-Babylonians
and was preserved by Arameans and continued by Greeks.

1 Introduction
All the life of Akkadians was structured by two systems: (i) justice (dīnu) and (ii)
omens (alaktu) [10], [14]. So, there were detailed lists of signs (ittātu /
GISKIM.MEŠ) of two types: (i) articles of the law code; (ii) omens (forecastings)
about everyting with correlated events for divination. Each article of the code and
each omen for divination has the same logical structure “If (Akkadian šumma) S,
then P .” The code was used for legal proceedings (to serve dīnu) and each court
looked for an appropriate article of the code for a claim S to infer the trial decision
P from the article “If S, then P” and the proved claim S just by modus ponens.
The omens (as a part of alaktu) were used for prognoses and each scholar looked
for an appropriate omen for an event S to infer the forecasting P from the omen
“If S, then P” and the appearance of S just by modus ponens, as well [18]. Hence,
modus ponens was the most significant inference rule in the Sumerian-Akkadian cul-
ture. Also, we can find many examples of modus tollens in legal proceedings and
forecastings.
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In Greece, Chrysippus (279 – 206 B.C.) defined modus ponens and modus tollens
for the first time correctly. His samples:

• modus ponens: “If it is day, it is light; but in fact it is day; therefore it is light”
(Sextus Empiricus, Against the Logicians II, 224);

• modus tollens: “If it is day, it is light; but it is not light; therefore it is not
day” (Sextus Empiricus, Against the Logicians II, 225).

We do not know whether Chrysippus applied his propositional logic in a legal
hermeneutics. But his prominent Roman follower, Marcus Tullius Cicero (106 – 43
B.C.) did it well in his Topica [8]. The Babylonians did it well too, but many and
many centuries earlier, and not only in legal proceedings, but also in divination.

In this paper, I propose a kind of formalization for dīnu and I show that legal
proceedings reported in Neo-Babylonian trial records were based on an axiomatic
system, where trial decisions were drawn automatically just by applying some infer-
ence rules to articles of a code or to previous trial decisions. It is a really significant
fact that Neo-Babylonian trial records and business contracts, including inheritance
records, marriage contracts, and other documents concerning money, movable and
immovable properties, consist of complex syllogisms without logical fallacies at all.
These syllogisms are well formalizable within the contemporary propositional logic.
Omens (forecastings), i.e. alaktu, can be formalized logically also, but within a
non-classical logic.

The Talmud is a continuation of Aramaic legal tradition that became a con-
tinuation of Neo-Babylonian (Akkadian) law in turn. The Talmudic hermeneutics
studied logically in [1] – [2], [20] – [25] has the following two parts: (i) a classical
propositional logic (used before the Talmud by the Assyrians and Neo-Babylonians
for inferring court decisions on the basis of laws, Hebrew: dīn, Aramaic: dīn’a, a
derivative word from the Akkadian dīnu); (ii) some non-classical logics for deducing
new laws from the text of the Torah (Hebrew: halak

¯
ah, a derivative word from the

Akkadian alaktu). Both parts have their roots in the Babylonian tradition: (i) at
first, a kind of classical propositional logic was established by the Sumerians to inter-
pret the law codes; in these codes the casuistic law formulation was used: “if/when
(Akkadian: šumma) this or that occurs, this or that must be done” in the same
way how it is formulated in the Bible, e.g. “If [w ’im] he has not been redeemed in
any of those ways, he and his children with him shall go free in the jubilee year”
(Leviticus 25:54); so, a trial decision looked like an inference by modus pones or by
other logical rules (such as modus tollens, substitution rule, and many other rules)
from an appropriate article in the law code, see [25]; (ii) some first non-classical
logics were invented within a forecasting tradition, where since the Old Babylonian
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period (ca. 1800 B.C.) each omen (forecasting) rule was formulated in the form of
implication: “if (šumma ) P , [then] Q”; so, a concrete forecasting looked like an
inference by modus pones or modus tollens, too [18]; but to induce new omen rules
their authors appealed to some non-classical logics.

Conventionally, Aristotle (384 – 322 B.C.) is considered a father of symbolic
logic. Nevertheless, we can assume that the Greek logic (rather the Stoic one) was
based on a Sumerian-Akkadian legal hermeneutics. On the basis of trial records [11],
[12] (notice that some Hebrew trial records in Aramaic made within a Babylonian
tradition are found at Elephantine in Egypt [6]), it is possible to show that judges
knew a propositional logic well that was applied in deducing court decisions [25].
Hence, the origin of classical symbolic logic should have been connected to establish-
ing a logical tradition of the Sumerian-Akkadian jurisprudence at first. The legal
tradition of the Talmud is a direct continuation of the Babylonian tradition.

The structure of my paper is based on the following conclusion drawn by applying
the Mill’s joint method of agreement and difference:

The oldest fragments over the world consisting of complex syllogisms
without logical fallacies (x) are presented by Mesopotamian legal docu-
ments (trial records and business contracts) (A);

The Neo-Babylonian legal documents are made in Akkadian (B)
within the Mesopotamian legal tradition (A);

The Neo-Babylonian legal documents (B) are well formalizable as an
axiomatic system extending the classical propositional logic to draw legal
conclusions (y);

The Aramaic legal documents written in Aramaic (C) and excavated
in Elephantine belong to the Jews (D);

They (C) are made within the Aramaic legal tradition of the
Achaemenid dynasty continuing the Akkadian legal tradition of Neo-
Babylonians (B);

The Aramaic legal documents of Elephantine (C) are well formaliz-
able within the classical propositional logic of drawing legal conclusions
and this logic is the same as of the Neo-Babylonian trial records (y);

The Greek (then Byzantine) legal documents of Elephantine (E) are
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a direct continuation of the Aramaic legal tradition of Elephantine (C);

These documents (E) are well formalizable within the classical propo-
sitional logic of drawing legal conclusions, too (y).

———————————————————————————
Therefore, most probably, the first symbolic propositional logic (x

y) was founded within the Mesopotamian legal tradition to draw legal
conclusions (A B)

Formally:

A occurs together with x

A B occur together with x y

A B C D E occur together with x y
——————————————————————————–
Therefore A is the cause, or the effect, or a part of the cause of x and

B is the cause, or the effect, or a part of the cause of y

Hence, my reasoning follows the Mill’s joint method of agreement and difference
to claim that the Sumerian-Akkadian jurisprudence (A) was a possible cause of
using propositional logic correctly (x) and the Neo-Babylonian ways of making trial
decisions (B) was a possible cause of using the axiomatic system extending the
classical propositional logic to draw legal conclusions (y).

For the first time this idea was put forward in [25]. In that paper, I showed a
strong connection of symbolic logic to the Ancient legality. Now I am proposing a
logical formalization of legal reasoning belonging to New-Babylonians, Achaemenid
Arameans, and Greeks of Hellenistic kingdoms to show that at the time of first Greek
logicians there was a well-developed tradition of symbolic logic in legality rooted in
the New-Babylonian and Achaemenid jurisprudence.

2 Logical Context
Main presuppositions of symbolic logic are formulated as follows:

1. each sentence (proposition or statement) is either true or false;

2. a true sentence can be always verified by a reference to an appropriate fact
described in this sentence and taking place in reality indeed;
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3. there are logical inference rules which give only true conclusions from true
premises;

4. modus ponens and modus tollens are two basic inference rules. Let A and B
be some propositions which can be either true or false. Then the rule of modus
ponens is defined thus: Assume that ‘If A, then B’ and A are true, then we
can conclude that B is true, too. The rule of modus tollens: ‘If A, then B’ is
true, but B is false, then A is false, also.

For the first time, a symbolic logic with these presuppositions was explicitly
introduced by Chrysippus (ca. 279 – 206 B.C.), the Stoic philosopher. There are no
preserved texts authored by him, only some quotations. Thereby among all these
quotations, the best illustration of his reasoning is given in the Topica written by
Cicero (106 B.C. – 43 B.C.). All the examples of Chrysippian conclusions in this
treatise are taken from the legal hermeneutics, e.g.:

If a slave has not been declared free either by the censor, or by the
praetor’s rod, or by the will of his master, he is not free: but none of
those things is the case: therefore he is not free [7].

If S is not A (‘a slave declared free by the censor’) or S is not B (‘a
slave declared free by the praetor’s rod’) or S is not C (‘a slave declared
free by the will of his master’), then S is not D (‘free’). S is not A. S is
not B. S is not C.

——————————————————————————–
Then S is not D

In this reasoning there are applied two inference rules: (i) introducing disjunction
(‘S is not A; S is not B; S is not C; then S is not A or S is not B or S is not C); (ii)
modus ponens (‘If S is not A or S is not B or S is not C, then S is not D; S is not A
or S is not B or S is not C; then S is not D’). Hence, we deal with the conclusions
with two logical steps here. It is not so simple. But nevertheless, according to the
Topica, even complicated logical conclusions of the Chrysippian symbolic logic were
actively being applied in jurisprudence and, most probably, in trial decisions at the
time of Cicero.

It is a great surprise that the Chrysippian symbolic logic was being applied in
trial records, business contracts, and testaments much much earlier than Chrysippus
lived, namely since some (not all) first legal documents of the third dynasty of Ur
(ca. 2047 – 2030 B.C.).
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Now that is the question whether a symbolic logic can be used unintentionally
(i.e. without studying a logic as a system previously). Let us consider the following
Lewis Carroll’s logical puzzle. We have the four premises and we should find out a
conclusion from them:

(a) None of the unnoticed things, met with at sea, are mermaids.

(b) Things entered in the log, as met with at sea, are sure to be worth
remembering.

(c) I have never met with anything worth remembering, when on a
voyage.

(d) Things met with at sea, that are noticed, are sure to be recorded
in the log.

Everybody who did not study a symbolic logic deeply cannot solve this task in
any way. But the answer is very simple and made only by the four logical steps: ‘I
have never met with a mermaid at sea’. Another similar puzzle proposed by Lewis
Carroll:

(a) All babies are illogical.

(b) Nobody is despised who can manage a crocodile.

(c) Illogical persons are dispised.

It can be solved now by three steps in inferring. The true answer is as follows:
‘Anyone who can manage a crocodile is not a baby’. But it is impossible to be solved
by anyone who did not study logic in advance, too.

Now let us take a task assuming only one step in inferring:

(a) My gardener is well worth listening to on military subjects;

(b) Nobody is really worth listening to on military subjects, unless
he can remember the battle of Waterloo.

How many people are able to conclude correctly from these two premises? Only a
few respondents. But in Babylonian trial records, business contracts, and testaments
there are correct conclusions with ten and even much more logical steps. And we
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face no logical fallacies at all. It cannot be occasionally. The point is that symbolic
logic is not an innate knowledge and it is not an innate ability. The Babylonian
legal tradition was the only tradition in the human history before Aristotle and
Chrysippus that had had a perfect logical competence: very large and complicated
logical conclusions without fallacies. It is a greatest mystery in the history of science
how it was possible. There is neither logical textbook nor logical treatise in Sumerian
or Akkadian excavated still (but we have some late logical parts of Talmudic books
in Aramaic). But we have no excavated grammar of Akkadian or Sumerian, too,
although there are known first dictionaries – Sumerian and Akkadian lexical lists
ordered by topic, such as ur5-ra = h

¯
u-bul-lu4, see [15].

3 Historical Context

There are the following cuneiform codices [13], [29]: (i) the Code of Ur-Nammu (ca.
2047 – 2030 B.C.) belonging to the third dynasty of Ur and written in Sumerian;
(ii) the Code of Lipit-Ištar (ca. 1870 B.C. – c. 1860 B.C.) written also in Sumerian
and belonging to the fifth king of the first dynasty of Isin; (iii) the Laws of Ešnunna
(ca. 1790 B.C.) written in Akkadian and belonging to a king of Ešnunna, the
city located in northern Mesopotamia on the Tigris river and becoming politically
important after the fall of the third dynasty of Ur; (iv) the Code of Hammurabi
(ca. 1728 – 1686 B.C.) written in Akkadian and belonging to Hammurabi, the
sixth king of the first Babylonian dynasty; (v) the Middle Assyrian Laws (since
the twelfth century B.C.) written in the Assyrian dialect of Akkadian and much
connected to Tiglath-Pileser I, the king of the Assyrian Empire; (vi) the Hittite
Laws (ca. 1650 – 1100 B.C.) written in Hittite and containing the corpus of laws
of the Hittite Empire; (vii) the Neo-Babylonian Laws (626 B.C. – 539 BC) written
in the Neo-Babylonian dialect of Akkadian and containing the corpus of laws of the
Neo-Babylonian Empire. Aramaic was the everyday language at the time of Neo-
Babylonians, but this language became the language of administration and culture
only since the Achaemenid Empire (ca. 550 B.C. – 330 B.C.), although cuneiform
texts in Akkadian remained popular, also. Hence, (viii) the Achaemenid Laws were
written in the Neo-Babylonian dialect of Akkadian as well as in Aramaic in the
Aramaic script. Since establishing the Hellenistic Empire by Alexander the Great
(334 B.C. – 323 B.C.), (ix) the Hellenistic Laws were written mainly in Greek, but
also there was used Aramaic for the same purpose.

In Assyriology there is a quite popular claim that these codes and laws did not
function as normative and binding legislation. For example, Raymond Westbrook
puts forward a hypothesis that the codes were legal treatises, i.e. a secondary

37



Schumann

legal authority just to show possible legal lists with individual items formulated
in casuistic style [29]. There is even a more radical opinion that the codes were
only a kind of ideology like the Bible was for Christians and it is until now. For
instance, in Christianity different Biblical commandments such as ‘thou shalt not
steal’ or ‘thou shalt not covet’ never played a basis of legislation. In Christianity
the Bible was never used in criminal and civil laws. It is explained by that since
Constantine the Great (ca. 272 A.D. – 337 A.D.) Christianity was accepted in the
Roman Empire only as ideology – the Roman laws are maintained to be applied as
criminal and civil laws further. The idea that the Babylonian codes and laws never
were a form of legislation is a unconscious “Christianization” of Babylonians.

Among different arguments supporting this “Christianization” of Babylonians
the strongest is that we never find explicit references to these codes as sources of
law. The problem is that many cuneiform tablets are not published yet. Neverthe-
less, in unpublished texts there are these references in fact. For example, in some
fragments of trial and business documents of Old-Assyrian period (ca. 2025 B.C. –
1378 B.C.) there is an explicit expression “the words of the stele” (awāt naruāim),
see for the details in [28], with the meaning to be such a reference. Also, we know
that these references were not necessary. They were just assumed implicitly. So,
there was excavated a very important Hebrew ostracon at Mez.ad Hašavyahu, dated
to from 630 B.C. to 609 B.C., the time of Josiah, the king of Judah [5, p. 568]. The
text of this ostracon is as follows:

השר אדני ישמע
Kעבד עבדה דבר את

בח Kעבד היה קצר
Kעבד ויקצר Mאס צר

שב לפני Mכימ Mואס ויכל
וא קצר את Kעבד כל כאשר ת
שב Nב הושעיהו ויבא Mכימ Mס

כלת כאשר Kעבד בגד את ויקח י
Kעבד בגד את לקח Mימ זה קצרי את

Mבח אתי Mהקצר לי יענו אחי וכל
מא נקתי Nאמ לי יענו אחי השמש

להש לשר ואמלא בגדי ויקח Kלת
רח אלו Nותת Kעבד בגד את ב

N Mתדה ולא Kעבד בגד את והשבת Mמ
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Its translation:

Let my lord, the governor, hear the word of his servant! Your servant
is a reaper. Your servant was in Haz.ar ’Asam, and your servant reaped,
and he finished, and he was storing up (the grain) during these days
before the Sabbath. When your servant had finished the harvest, and
was storing (the grain) during these days, Hošeyahu came, the son of
Šobi, and he seized the garment of your servant, when I had finished my
harvest. It (is already now some) days (since) he took the garment of
your servant. And all my companions can bear witness for me – they
who reaped with me in the heat of the harvest – yes, my companions can
bear witness for me. Amen! I am innocent from guilt. And he stole my
garment! It is for the governor to give back the garment of his servant.
So grant him mercy in that you return the garment of your servant and
do not be displeased [26, p. 96].

As we see, the author of the text makes a statement in court. He affirms that
he has at least two witnesses who can support his claim – it is a sufficient amount
of witnessing at a Jewish (Babylonian) court [17]. In his claim he is appealing to
the unjust act of the fortress’s governor who confiscated the garment on the eve of
the Sabbath. Whether the fortress’s governor could take this garment? According
to the Torah, he cannot:

26 If thou at all take thy neighbour’s raiment to pledge, thou shalt
deliver it unto him by that the sun goeth down:

27 For that is his covering only, it is his raiment for his skin: wherein
shall he sleep? and it shall come to pass, when he crieth unto me, that
I will hear; for I am gracious (KJV, Exodus 22).

12 And if the man be poor, thou shalt not sleep with his pledge:
13 In any case thou shalt deliver him the pledge again when the

sun goeth down, that he may sleep in his own raiment, and bless thee:
and it shall be righteousness unto thee before the Lord thy God (KJV,
Deuteronomy 24).

Thus, the author refers to the Torah only implicitly. But it is enough, because
only the Torah was accepted as a primary source of legislation at the time of Josiah,
the king of Judah (ca. 649 – 609 B.C.). The same situation can hold for Neo-
Babylonian trial decisions. We do not need explicit references there too.
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The Hebrew ostracon is interesting also as it assumes that an appropriate trial
decision should be drawn only by two logical steps through applying modus ponens
and substitution rule:

‘If thou at all take thy neighbour’s raiment to pledge, thou shalt de-
liver it unto him by that the sun goeth down’ is true (because it is an
axiom from the Torah);

‘the fortress’s governor took the raiment of the claimant’ is true (be-
cause it is verified by witnessing).

——————————————————————————–
The fortress’s governor should deliver the raiment unto the claimant

back.

In the Neo-Babylonian trial records much more logical steps occur in drawing
trial decisions and always it is supposed that there are axioms taken from a code,
although without a direct reference. For instance, for stealing one item belonging
to the god, the thief should give the same item thirtyfold. According to the Neo-
Babylonian trial records, it is an axiom. But we know that this statement is an article
of the Hammurabi Code [19, p. 82]. Thus, we can suggest that this statement was
an axiom for courts since the time of Hammurabi.

In this paper, I am proposing a very strong structuralist argument confirming
the hypothesis of Babylonian legislation: (i) the symbolic-logical reasoning of trial
records are very complicated; so, they assume a perfect logical competence of their
authors, although this competence is typical only for logicians today; hence, we can
assume that this extraordinary competence was a part of legal hermeneutics existed
indeed; (ii) in this symbolic-logical reasoning there are assumed some axioms; many
of them occur in some Babylonian codes; thus, we can suggest that all these axioms
in trial conclusions were taken from appropriate articles in Babylonian codes1.

1It is worth noting that my argumentation on legislation in Babylonia was criticized by the
referee. According to that opinion, my argumentation supports the thesis indeed that legislation
would exist in Mesopotamia. Nevertheless, first, there are a few of fragments which can be examined
as Neo-Babylonian laws and they do not allow us to reconstruct a Neo-Babylonian code as a whole
(too few fragments), therefore we can reconstruct some implicit references only to laws from different
periods in history, but “it is not at all clear that a Neo-Babylonian court would have known the
text of an earlier law ‘code,’ such as the Laws of Ešnunna”. Second, “there are other examples
of Neo-Babylonian trial records for which we do not have parallel ‘legislation’ at all”. Hence, by
the referee, it seems simpler to suggest that “the courts are operating on the basis of a sort of
customary law, without reference to writing”. In my paper, I have not addressed the existence of
Akkadian legal decisions from earlier periods. About them please see [13]. I agree with the referee
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4 Axiomatic System for Legal Proceedings
The Sumerian law codes were first over the world, e.g. Ur-Nammu (ca. 2047 –
2030 B.C.) and Lipit-Ištar (ca. 1870 B.C. – ca. 1860 B.C.). Later the Akkadians,
the successors of Sumerians, continued this Sumerian legal tradition and established
some own codes, such as Hammurabi (1728 – 1686 B.C.), see Figure 1.

There were excavated many trial records of the Neo-Babylonian period, i.e. of
the time beginning with the rise of the Babylonian king Nabopolassar in 626 B.C.
and lasting until the end of the reign of Nabonidus because of the Achaemenid con-
quest in 539 B.C. There are also many trial records thereafter, but they were written
within the same unchanged cuneiform textual tradition of Neo-Babylonia [11], [12].
Therefore they can be called Neo-Babylonian, too. All these trial records are espe-
cially interesting from the point of view of symbolic logic. The matter is that these
texts demonstrate a high logical competence of their authors. Furthermore, we can
claim that these documents obviously show an axiomatization of legal proceedings.
The thing is that Neo-Babylonian trial records are well preserved and many of them
are large enough to be reconstructed logically.

In the Neo-Babylonian trial records, suitable articles from law codes are assumed
to be axioms. Facts established by the court give another set of axioms. And accord-
ing to some logical inference rules, just automatically the court makes an appropriate
decision from axioms, i.e. from facts and articles of law codes, in a logically correct
way. We can assume that the same situation was before the Neo-Babylonian period,
too: (i) the law codes of different periods have had many unchanged articles and
the Hammurabi Code (see Fig.1) can be examined as a significant early sample of
all these legal codifications; (ii) the court procedure has remained almost the same
since the very beginning; (iii) there are many evidences that the law codes were
considered as a set of axioms for logical inferring, e.g. in some fragments of trial
and business documents of Old-Assyrian period (that took place from 2025 B.C. to
1378 B.C.) we find out an expression “the words of the stele” (awāt naruāim), see
for the details in [28], with the meaning to be a reference to an axiom for inferring
from it.

Each article from codes is formulated as follows: “if (šumma) you do such-and-
such, then a trial decision will be as follows”. So, on the one hand, in the antecedent
of implication we deal with some combinations of illegal and legal actions conducted

that we need “a broader inquiry into the relationship between written legislation and legal decision
making”. On my part, I can add that it is better to organize a joint project uniting logicians
and Assyriologists to study this (proto)legislation in Mesopotamia. For instance, I am sure that a
(proto)logical textbook can exist in fragments among commentary texts. But to see this fact we
need a cooperation of logicians and Assyriologists.
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Figure 1: The stele of the Law Code of Hammurabi, Louvre Museum; by courtesy of
Vladimir Sazonov.

before the court: “steal”, “possess”, “strike”, “causes the boat to sink”, etc. and, on
the other hand, in the succedent of implication we deal with some legal consequences
established by the court: “compensate”, “kill”, etc. There are the following main
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classes of people in the Law Code of Hammurabi [19]: (i) “man” or “free person”
(awīlu), to denote men, women, and minors; (ii) “commoner” (muškēnu); (iii) “male
slave” (wardu) and “female slave” (amtu). Some classes to denote familial relation-
ships: (i) “son” (māru); (ii) “wife” (aššatu); (iii) “first-ranking wife” (h

¯
īrtu); (iv)

“widow” (almattu), etc. Also, there are some abstract entities such as “god” (i.e. a
temple as legal person) or “palace” (i.e. a king as legal person) to denote a form of
possession. And some professional groups: “boatman”; “merchant”, etc.

Let us formalize the articles of the law in the following way. Suppose, small
letters a, b, c, . . . , x, y, z, . . . are variables to denote things. Capital letters are to
denote classes of natural and legal persons: A (awīlu-class); M (muškēnu-class); T
(temple or palace as legal persons), B (boatmen), etc. The expression Ax means
that y belongs to the awīlu-class, My means that y belongs to the muškēnu-class,
and Tz means that z belongs to the category of legal persons.

First-order formulas are defined in the following standard manner: (i) each a, b,
c, . . . , x, y, z, . . . is a first-order formula; (ii) each Ax, My, Tz, . . . is a first-order
formula; (iii) each Boolean combination of formulas defined in (i) and (ii) is a first-
order formula (Boolean connectives: ¬ negation, & conjunction, ∨ disjunction, ⇒
implication, ⊗ strong disjunction).

Let an action “verb” in the antecedent or succedent of articles of the law be
denoted by [[verb]]. Each action is an n-place relation among people of different
classes and things. For example: [[steal (Ax, z)]] means that x of the awīlu-class
steals z; [[strike (Ax, Ay)]] means that x of the awīlu-class strikes y of the same class;
[[boat-to-sink (Bx, y)]] means that a boatman x causes the boat y to sink; [[possess
(Ty, z)]] means that y is a legal person who possesses z; [[compensate (Ax, Ty, z)]]
means that x of the awīlu-class must compensate the legal person y by paying z;
[[killed (Ax)]] means that x of the awīlu-class is sentenced to be killed, etc.

Second-order formulas are defined thus: (i) each [[steal (Ax, z)]], [[strike (Ax,
Ay)]], [[boat-to-sink (Bx, y )]], [[possess (Ty, z)]], [[compensate (Ax, Ty, z)]], [[killed
(Ax)]], . . . is a second-order formula; (ii) each Boolean combination of formulas de-
fined in (i) is a second-order formula (Boolean connectives: negation, & conjunction,
∨ disjunction, ⇒ implication, ⊗ strong disjunction).

Now, let us consider some articles from codes as axioms for legal proceedings.
Some examples:

A1

If a man x of the awīlu-class steals a thing z and it belongs to a temple
or king y, then x must replace z thirtyfold. If z belongs to a commoner
y, he must replace it tenfold. If the thief does not have anything to give,
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he shall be killed:

(([[steal (Ax, z)]] & [[possess (Ty, z)]]) ⇒ [[compensate (Ax, Ty,
z · 30)]]) & ( [[compensate (Ax, Ty, z · 30)]] ⇒ [[killed (Ax)]])

&
(([[steal (Ax, z)]] & [[possess (Cy, z)]]) ⇒ [[compensate (Ax, Cy,

z · 10)]]) & ( [[compensate (Ax, Cy, z · 10)]] ⇒ [[killed (Ax)]])

In the Hammurabi Code:

(vi 57-69) šumma awīlum lu alpam lu immeram lu imēram lu šah
¯
âm

ulu elippam išriq šumma ša ilim šumma ša ekallim adi 30-šu inaddin
šumma ša muškēnim adi 10-šu iriab šumma šarrâqânum sa nadânim la
išu iddâk

§8 If a man steals an ox, a sheep, a donkey, a pig, or a boat – if it
belongs either to the god or to the palace, he shall give thirtyfold; if it
belongs to a commoner, he shall replace it tenfold; if the thief does not
have anything to give, he shall be killed [19, p. 82].

A2

If a man x of the awīlu-class strikes another man, he must pay 60
shekels of silver:

[[strike (Ax, Ay)]] ⇒ [[compensate (Ax, Ay, 60 shekels)]]

In the Hammurabi Code:

(xl 82-87) šumma mār awīlim lēt mār awīlim ša kīma šuāti imtah
¯
as.

1 mana kaspam išaqqal

§203 If a member of the awīlu-class should strike the cheek of another
member of the awīlu-class who is his equal, he shall weigh and deliver
60 shekels of silver [19, p. 121]

A3

If a boatman x causes the boat y to sink, he must compensate all
things z contained there:
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([[boat-to-sink (Bx, y)]] & [[contain (y, z)]] & [[possess (Ay, z)]]) ⇒
[[compensate (Bx, Ay, z)]]

In the Laws of Ešnunna (ca. 1790 B.C.):

(A i 25-26) šumma malah
¯
h
¯
um īgīma elippam ut.t.ebbe mala ut.ebbû

umalla

§5 If the boatman is negligent and causes the boat to sink, he shall
restore as much as he caused to sink [19, p. 60]

Hence, all the articles are formulated as a set of implications connected by con-
junctions: (A1 ⇒ B1)&(A2 ⇒ B2)& . . .&(An ⇒ Bn). In the meanwhile, the an-
tecedents A1, A2, . . . , An of these implications are understood as particulars and
their succedents B1, B2, . . . , Bn as appropriate generals.

One of the main features of law codes explicitly stated first by Cicero in his
Topica [8] (the work devoted to legal hermeneutics in the Stoic/Sumerian-Akkadian
way) is a full enumeration of particulars A1, A2, . . . , An, related to one general B,
i.e. a full list of implications A1 ⇒ B, A2 ⇒ B, . . . , An ⇒ B with the same B, as it
was supposed in any law code since Hammurabi. These A1, A2, . . . , An should be
exclusive thereby. It means that they should be connected by strong disjunctions
“either . . . or . . . ” (Akkadian: “ūl . . . ūl. . . ”, symbolically: “. . .⊗ ...”). In this case
there is the following equivalence: (A1 ⊗ A2 ⊗ · · · ⊗ An) ⇔ B. From this we can
draw the following conclusion:

A1 ⇒ B; A2 ⇒ B; . . . ; An ⇒ B; C ⇒ ¬A1; C ⇒ ¬A2; . . . ; C ⇒ ¬An

————————————————————————
(A1 ⊗A2 ⊗ · · · ⊗An)⇒ B; C ⇒ ¬(A1 ⊗A2 ⊗ · · · ⊗An)
————————————————————————
C ⇒ ¬B.

Cicero formulates this rule thus:

Next, the enumeration of the parts (sc. of the whole), which is han-
dled in the following way: If someone has not been freed by either having
his name entered in the census-roll or by being touched with the rod or
by a provision in a will, then he is not free. None of these applies to the
individual in question. Therefore he is not free [8, p. 121].
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This logical rule implemented in any code may be named a completeness of legal
information. This completeness means that if we take any factual verified case C
of an indictment, then for any general B from the code, each court can announce
either a verdict C ⇒ B or a verdict C ⇒ ¬B inferred from the code just logically.

Each court has considered only cases supported by documents or couples of wit-
nesses. Let us exemplify this feature. In one trial record, mRēmanni-Bēl son of
mTērik-šarrūssu has claimed that his sister fBābunu and her children are a part of
household of mNabû-muk̄in-apli son of mAmurru-šuma-iddinam wrongly. Neverthe-
less, mRēmanni-Bēl cannot have supported his claim by any document:

1. di-i-ni ša2 mre-man-ni-dEN A-šu2 ša2 mte-rik-LUGAL-ut-su
2. a-na muh

¯
-h
¯
i fba-bu-nu u3 DUMU. MEŠ-šu2 UN.MEŠ E2

3. ša2 mdNA3-<mu>-ki-in-IBILA DUMU-šu2 ša2 mdKUR.GALMU-
id-di-nam

4. it-ti mdNA3-DU-IBILA a-na ma-h
¯
ar lu2DI.KU5.MEŠ

5. ša2 mdNA3-na-’-id LUGAL TIN. TIRki id-bu-bu um-ma fba-bu-nu
6. ša2 i-na E2-ku-nu2 a-h

¯
a-ta-a ši-i lu2DI.KU5.MEŠ

7. mre-man-ni-dEN iš-ta-’-a-lu um-ma fba-bu-nu
8. NIN-ka ul-tu im-ma-ti ki-i E2mdKUR.GAL-MU-MU
9. AD ša2 mdNA3- -DU-IBILA ši-i mre-man-ni-dEN iq-bi
10. um-ma 40 MU.AN.NA.MEŠ an-na-a-ti fba-bu-nu
11. NIN-a mdKUR.GAL-MU-MU ta-pal-lah

¯
di-i-ni a-na muh

¯
-h
¯
i-šu2

12. it-ti mdKUR.GAL-MU-MU AD ša2 mdNA3-DU-IBILA ad-di-bu-
ub

13. u3 a-di i-na-an-na iš-tu E2-šu2 la u2-še-s. i-iš
14. mre-ma-an-ni-dEN mim-ma i-da-tu ša2 di-i-ni a-na UGU
15. fba-bu-nu it-ti mdKUR.GALMU-MU AD ša2 mdNA3-DU-A
16. id-bu-bu a-na lu2DI.KU5.MEŠ la u2-kal-li-im
17. lu2DI.KU5.MEŠ dib-bi-šu2-nu-ti iš-mu-ma mim-ma i-da-tu4
18. ša2 di-i-ni la i-mu-ru-u iš-ta-lumu 40 MU.AN.NA.MEŠ
19. an-na-a-ti fba-bu-nu mdKUR. GAL-MU-MU AD ša2 mdNA3DU-

IBILA
20. tu3-pal-lah¯

man-ma di-i-ni u3 paqa-ri
21. ina muh

¯
-h
¯
i-šu2 la ir-ši

22. fba-bu-nu u3 DUMU.MEŠ-šu2 UN.MEŠ E2 ša2 mdKUR.GALMU-
MU

23. a-na mdNA3-DU-IBILA id-di-nu
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(1–5) The case which mRēmanni-Bēl son of mTērik-šarrūssu argued
against mNabû-muk̄in-apli, regarding fBābunu and her children, mem-
bers of the household of mNabû-muk̄in-apli son of mAmurru-šuma-
iddinam, before the judges of Nabonidus, king of Babylon, thus:

(5–6) “fBābunu, who is in your household, is my sister!”
(6–7) The judges questioned mRēmanni-Bēl thus:
(7–9) “Since when has fBābunu, your sister, been part of the house-

hold of mAmurru-šuma-iddinam, father of mNabû-muk̄in-apli?”
(9–10) mRēmanni-Bēl said thus:
(10–13) “For these past 40 years, fBābunu, my sister has served

mAmurru-šuma-iddinam. I argued a case regarding her against
mAmurru-šuma-iddinam, father of mNabû-muk̄in-apli, but he has not
let her go from his household until now!”

(14–16) mRēmanni-Bēl did not show the judges any evidence of the
case regarding fBābunu which he argued against mAmurru-šuma-
iddinam, father of mNabû-muk̄in-apli.

(17–18) The judges heard their arguments. They did not see any
evidence of the case. They conferred.

(18–21) For these 40 years, fBābunu served mAmurru-šuma-iddinam,
father of mBēl-muk̄in-apli. He did not have any case or claimant against
him.

(22–23) They assigned fBābunu and her children, the members of
the household of mAmurru-šuma-iddinam to mNabû-muk̄in-apli [12, p.
23-24].

Symbolically, we apply modus tollens:

1. If a man brings a claim to present a case, he must support his
claim about the case by documents or witnesses [the axiom supposed in
any code];

2. There are no documents and witnesses for this case [a fact proved
by the court];

———————————————————————————
Then, the case is not valid to be approved.

The case of the claim, C, is beyond all the n cases A1, A2, . . . , An given in
a code (killing, stealing, etc.), which are usually considered by the court, i.e. we
have: C ⇒ ¬(A1 ⊗A2 ⊗ · · · ⊗An), where each case Ai is supported by appropriate
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documents and couples of witnesses. Then this case is out of any legal proceeding,
B, i.e.: C ⇒ ¬B. In other words, if someone is C, he is guilty either in A1 (killing)
or in A2 (stealing) or . . . in An. Formally: C ⇒ (A1⊗A2⊗· · ·⊗An). The court has
considered all documents and witnesses in respect to the defendant and the case is
not A1 (killing) and it is not A2 (stealing) and . . . it is not An: (¬A1∧¬A2∧· · ·∧¬An).
This expression is the same as ¬(A1∨A2∨· · ·∨An). In turn, from the latter formula it
follows that ¬(A1⊗A2⊗· · ·⊗An), because there is a tautology: ¬(A1∨A2∨· · ·∨An)⇒
¬(A1 ⊗ A2 ⊗ · · · ⊗ An). Then, by modus tollens we deduce that he is not C (he is
not guilty, i.e. not defendant):

C ⇒ (A1 ⊗A2 ⊗ · · · ⊗An);

¬(A1 ⊗A2 ⊗ · · · ⊗An);
——————————————–
¬C

Hence, not only articles of the law, such as A1, A2, and A3, were examined as
axioms for legal proceedings, but also facts established by the court by appealing
to signed documents or presented witnesses. Let us show how a document has sup-
ported a view of defendant partly. There is a signed document that mIddin-Marduk
possesses 480 gur of dates and the boatman mAmurru-natan son of mAmmaya is
responsible to deliver them safely. Nevertheless, mNergal-rēs.ūa the slave of mIddin-
Marduk testimonies that 47 gur 1 pi are missing. But there is a contract that the
boatman mAmurru-natan gave back 7 gur 1 pi of dates from missing items. The
trial decision is that mAmurru-natan must pay 40 gur of dates, the missing amount
of those dates, and assigned them to mIddin-Marduk:

1. mdU.GUR-re-s.u-u2-a lu2qal-la ša2 mdMU-dAMAR.UTU
2. a-na lu2DI.KU5.MEŠ ša2 mdNA3IM.TUK LUGAL TIN.TIRki

3. iq-bi um-ma
3. mMU-dAMAR.UTU EN-a
4. 4 ME 80 GUR ZU2.LUM.MA e-pi-ru-tu
5. ul-tu EDIN a-na gišMA2.MEŠ ša2 mdKUR.GAL-na-tan
6. lu2MA2.LAH

¯
5 A-šu2 ša2 mam-ma-a u2-še-li-ma

7. pu-ut EN.NUN-tim ša2 ZU2. LUM.MA u2-ša2-aš2-ši-iš
8. gišMA2.MEŠ a-na TIN.TIRki u2-še-la-am-ma
9. ši-pir-tu4 ša2 mMU-dAMAR. UTU id-di-nam-ma
10. 4 ME 80 GUR ZU2.LUM. MA ina lib3-[bi-šu2] ša2-t.i-ir
11. re-eš ZU2.LUM.MA aš2-ši-ma 47 GUR 1 PI
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12. ina lib3-bi ma-t.u-du2e a-na UGU
13. mi-t.i-tu4 ša2 ZU2.LUM.MA it-ti mdKUR.GAL-na-tan
14. ar-gum2-ma u2-ŠAR-X-RI um-ma ZU2.dLUM.MAe-ka
15. ul aš2-ši ar2?-ki ba-ti-qu X X X ...
16. 4! GUR 1 PI dZU2e.[LUM. MA]
17. u3 ku-tal-la ša2 dgišMA2-nie X-X u2
18. ZU2.LUM.MA šu2-nu-tu2 i-na X-šu2-[
19. rik-su it-ti-šu2 ni-iš-ku-us
20. um-ma 7 GUR 1 PI ZU2.LUM. MA
21. mdKUR.GAL-na-tan ina sar-tu iš-šu-u2
22. ar2-ki ri-ik-su šu-a-tu2 mdKUR. GAL-[na-tan]
23. šut.-ur-ma a-di u4-mu an-ni-i X
24. i-na-an-na i-na mah

¯
-ri-ku-nu ub-la-aš2

25. EŠ.BAR-a-ni šuk-na
25. lu2DI.KU5.MEŠ dib-bi-šu2-nu
26. iš-mu-u2 rik-su šu-a-tu2 u ši-pir-tu4
27. ša2 mMU-dAMAR.UTU ša2 4 ME 80 GUR ZU2.LUM.MA
28. ina lib3-bi šat.-ru ša2 mdU.GURre-s.u-u2-a ub-la
29. ma-h

¯
ar-šu-nu iš-tas-su-u2 mdKUR.GAL-na-tan

30. i-ša2-lu-ma na-šu-u2 ša2 ZU2. LUM.MA ša2 ina sar-tu4
31. na-šu-u2 e-li ra-ma-ni-šu2 u2-kin-ma
32. 40 GUR ZU2.LUM.MA mi-t.i-tu4 ša2 ZU2.LUM.MA šu2-nu-šu2
33. e-li [m]dKUR.GAL-na-tan ip-rusu-ma
34. a-na mdU.GUR-re-s.u-u2-a lu2[qal-la ša2] mMU-dAMAR.UTU
35. id-di-nu ina EŠ.BAR ddi-i-nie šu-a-tim
36. mdU.GUR-[GI lu2DI.KU5] DUMU ši-gu-u2-a
37. mdNA3-ŠEŠ.MEŠ-MU lu2DI. KU5 [DUMU]de-gi-bie
38. mdNA3-[MU-GI].NA lu2DI.KU5 DUMU ir-a-[ni]
39. mdEN-[ŠEŠ.MEŠ]-dMUe lu2DI.KU5 DUMU mdZALAGd30
40. mdEN-[KAR]-dire lu2DI.KU5 DUMU md30-tab-ni
41. mdNA3-MU-GAR-un DUB. SAR DUMU lu2GAL-DU3
42. TIN.TIRki ITI ŠE U4 4-kam2
43. MU 10-kam2 mdNA3-IM.TUK LUGAL TIN.TIRki
na4KIŠIB mdU.GUR-GI lu2DI.KU5
na4KIŠIB mdNA3-ŠEŠ.MEŠ-MU [lu2DI].KU5
na4KIŠIB mdNA3-MU-GI.NA lu2DI. KU5
na4KIŠIB mdEN-ŠEŠ.MEŠ-MU lu2DI.KU5
na4[KIŠIB] mdEN-KAR-[ir ] lu2DI.KU5
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(1–3) mNergal-rēs.ūa the slave of mIddin-Marduk said thus to the
judges of Nabonidus, king of Babylon:

(3–6) “mIddin-Marduk, my master, loaded a shipment of 480 kur of
dates for transport (?) from the hinterland on the boats belonging to
mAmurru-natan, the boatman, son of mAmmaya.”

(7) “He had him bear the responsibility for keeping the dates.”
(8–10) “He brought the boats to Babylon and he gave me mIddin-

Marduk’s message. 480 Gur of dates was written i[n it].”
(11–12) “I took account of the dates, and 47 gur 1 pi were missing.”
(12–14) I raised a claim against mAmurru-natan concerning the miss-

ing amount of the dates and . . . thus:
(14–15) “ ‘I did not take your dates.”’
(15) “Afterwards, an informer . . .
(16) “ ‘4 Gur 1 Pi of dates . . .
(17) “ ‘and behind my boat . . .
(18) “ ‘those dates in . . .
(19–20) “We contracted a contract stating thus: ‘mAmurru-natan

illegally took 7 gur 1 pi of dates.’ ”
(22–23) “After mAmurru-[natan] wrote this contract until today . . .
(24) Now, I have brought him before you.”
(25) “Establish our decision!”
(25–26) The judges heard their arguments.
(26–29) They read before them that contract and mIddin-Marduk’s

message in which 480 Gur of dates was written which mNergalrēs.ūa
brought.

(29–30) They questioned mAmurru-natan.
(30–31) (Regarding) the taking of the dates, he established about

himself that they were taken illegally.
(32–35) They decided that mAmurru-natan must pay 40 gur of dates,

the missing amount of those dates, and assigned them to mIddin-Marduk,
[slave] of mNergal-rēs.ua.

(35) At the decision of this case:
(36) mNergal-[ušallim, the judge,] descendant of Šigûa;
(37) mNabû-ah

¯
h
¯
ē-iddin, the judge, [descendant of] Egibi;

(38) mNabû-[šuma-uk̄i]n, the judge, descendant of Ir’an[ni];
(39) mBēl-[aē]-iddin, the judge, descendant of Nūr-Sîn;
(40) mBēl-ēt.ir, the judge, descendant of Sîn-tabni;
[Scribe:]
(41) mNabû-šuma-iškun, the scribe, descendant of Rāb-bānê.
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[Date:]
(42–43) Babylon. 4 Addaru, year 10 of Nabonidus, king of Babylon.
[Seals of authorities]
[Left edge:]
Seal of mNergal-ušallim, the judge;
Seal of mNabû-ah

¯
h
¯
ē-iddin [the jud]ge;

Seal of mNabû-šuma-uk̄in, the judge;
[Right edge:]
Seal of mBēl-ah

¯
h
¯
ē-iddin, the judge;

[Seal] of mBēl-ēt.[ir], the judge [12, p. 28-32]

1. If a boatman has a contract to deliver some items safely, he is
responsible for them and must repay them if they are missing [the axiom
from the code, compare to A3];

2. The boatman mAmurru-natan son of mAmmaya has a contract
to deliver 480 gur of dates belonging to mIddin-Marduk [the fact estab-
lished by the trial];

3. mNergal-rēs.ūa the slave of mIddin-Marduk testimonies that 47 gur
1 pi are missing [the claim];

4. There is a contract that the boatman mAmurru-natan gave back
7 gur 1 pi of dates from missing items [the fact established by the trial];

———————————————————————————
Then, mAmurru-natan son of mAmmaya must repay 40 gur of dates

to mIddin-Marduk on 4 Addaru, year 10 of Nabonidus, king of Babylon.

This conclusion is perfect logically and we can even formalize it within an ax-
iomatic system for the Neo-Babylonian legal proceedings (where articles from a
code and facts confirmed by a trial are axioms and propositional logic is to deduce
from axioms some new conclusions). Assume that we have axioms of the following
two types: (i) the articles of the law formulated explicitly, as well as the directly
derivated propositions from the articles by using logical inference rules (the arti-
cles of the law formulated implicitly); (ii) the facts as signed documents or sworn
testimonies checked by the court.

In this axiomatic system we apply some inference rules. The two basic rules for
inferring from axioms A, B, A⇒ B are as follows:

Modus ponens (MP):
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A; A⇒ B

———————
B

Modus tollens (MT):

¬B; A⇒ B

———————
¬A

Some other inference rules:

Introducing conjunction (I&):

A; B

———————
A&B

Deleting conjunction (D&):

A&B
———————
A; B

Introducing disjunction (I∨):

A; B

———————
A ∨B

Let S[B] mean that B is a variable a, b, c, . . . , x, y, z, . . . or Ax, My, Tz,
. . . belonging to a formula S. Let A be a constant. An additional inference rule:

Substitution rule (SR):

S[B]; A⇒ B

———————
S[A]
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In other words, if A⇒ B holds, then we can substitute A for any occurrence of
B in a formula S. For example, in expressions such as ([[steal (Ax, z)]] & [[possess
(Ty, z)]]) ⇒ [[compensate (Ax, Ty, z · 30)]] from a code, we can replace variables
by constants: Ax by ‘mAh

¯
a-iddin’, Ty by ‘the Lady-of-Uruk and Nanaya’, and z by

‘ducks’, etc. if there are implications: ‘mAh
¯
a-iddin’ ⇒ Ax, ‘the Lady-of-Uruk and

Nanaya’ ⇒ Ty, and ‘ducks’ ⇒ z, validated by a court.
Inference rules MP, MT, I&, D&, I∨, SR are enough for inferring all the trial

decisions from the code and facts checked by the court, but in order to reduce a
length of deduction we can introduce some new inference rules of the form:

A; B
———————
C

if and only if the formula (A&B)⇒ C is a tautology of propositional logic.

5 Automatic Logical Conclusions Drawn in
Neo-Babylonian Trial Records

Each excavated Neo-Babylonian trial record can be examined as a conclusion drawn
from axioms automatically. Let us consider some examples. One of them is denoted
by YBC 3771, it was found in Uruk, and dated to 12.XII.3 of Cambyses (22 March,
526 B.C.), see [11, p. 178-181]. In this trial record, two judges determine that Bēl-
iq̄iša, who led away 5 sheep belonging to ‘Ištar of Uruk and Nanaya’ (a temple), must
repay 155 sheep to the property of this temple, because 150 sheep is the thirtyfold
penalty for five branded sheep and the five unbranded lambs are supposed to be
born after stealing:

1. [1-en UDU pu-h
¯
al 4 UDU U8.MEŠ] NIGIN 5 s.e-e-nu šá MUL-tu4

še-en-du
2. dùe [5 par ]-rat.ME ta-mi-ma-a-ta NIGIN 10 s.e-e-nu
3. NIG2.GA dINNIN UNUGki u dna-na-a šá qa-pu-ut-tu4
4. šá mda-nu-LUGAL-URI3 DUMU-šú šá mdLUGAL-DU šá ina ITI

APIN MU 2-kám
5. mka-am-bu-zi-ia LUGAL TIN. TIRki LUGAL KUR.KUR md

ENBA-šá
6. DUMU-šú šá ms. il-la-a ina ŠU.2 mda-nu-LUGAL-URI3 A-šú šá

mLUGAL-DU i-bu-ku-ma
7. ina ITI ŠE MU 3-kám mri-mut u mdba-ú-APIN-eš
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8. lu2DI.KU5.ME 150 s.e-e-nu ku-um s.e-e-nu šá d15
9. šen-de-e-ti 1-en a-di 30 ù 5 parrat ta-mi-ma-a-ta
10. NIGIN 155 s.e-e-nu a-na e-t.e3-ru šá dINNIN UNUGki

11. i-na t.up-pi iš-t.u-ru-ma e-li mdENBA-šá ú-kin-nu
12. U4 25-kám šá ITI ŠE MU 3-kám s.e-e-nu a’ 155 mdEN-BA-šá
13. DUMU-šú šá ms. il-la-a ibba-kám-ma ina E2.AN.NA i-šim-mi-it-

ma
14. a-na NIG2.GA E2.AN.NA i-namdin mIR3-dU.GUR DUMU-šú šá

mDU-A
15. DUMU me-gi-bi pu-ut e-t.e3-ru šá s.e-e-nu-a’
16. 155 na-ši-i i-na ú-šu-uz-zu šá mdNA3-DU-dIBILAe
17. lu2ŠA3.TAM E2.AN.NA DUMU-šú šá mna-di-nu DUMU mda-bi-

bi
18. mdNA3-ŠEŠ-MU lu2SAG-LUGAL lu2EN pi-qit-ti E2.AN.NA
19. lu2mu-kin-nu mIR3-dAMAR.UTU DUMU-šú šá mNUMUN-ia

DUMU me-gi-bi
20. md30-APIN-eš DUMU-šú šá mdNA3-MU-SI.SA2 DUMU mDU3-

DINGIR
21. mdEN-SUM-IBILA DUMU-šú šá mdAMAR.UTU-MU-MU

DUMU mdEN-IBILA-URI3
22. mna-di-nu DUB.SAR DUMU me-gi-bi
23. mIR3-d[AMAR.UTU] DUB.SAR DUMU mdEN-IBILA-URI3
24. UNUGki ITI ŠE U4 12-kám MU 3-kám mkám-bu-zi-ia
25. LUGAL TIN.TIRki LUGAL KUR.KUR

(1–6) [1 ram 4 ewes] total 5 sheep branded with a star and 5 unblem-
ished lambs, a total of 10 sheep, property of Ištar of Uruk and Nanaya,
from the pen of Anu-šarra-us.ur son of Šarruk̄in, which in Arah

¯
šamna,

year 2 of Cambyses, king of Babylon, king of the lands, Bēl-iq̄iša son of
S. illaya led away (in payment) from Anu-šarra-us.ur son of Šarruk̄in.

(7–11) In Addaru, year 3, R̄imūt and Bau-ēreš, the judges, wrote in
a tablet and determined for Bēl-iq̄iša to pay 150 sheep, thirtyfold for
the sheep branded for Ištar and 5 unbranded lambs, a total of 155 sheep,
for repayment to Ištar of Uruk.

(12–14) On 25 Addaru, year 3, Bēliq̄iša son of S. illaya shall bring these
155 sheep, brand them in the Eanna and give them to the property of
the Eanna.

(14–16) Arad-Nergal son of Muk̄inapli descendant of Egibi assumes
responsibility for the repayment of these 155 sheep.
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(16–17) In the presence of Nabûmuk̄in-apli, the šatammu of the
Eanna, son of Nādinu descendant of Dābib̄i;

(18) Nabû-ah
¯
a-iddin, the royal official in charge of the Eanna.

(19) Witnesses: Arad-Marduk, son of Zēriya descendant of Egibi;
(20) S̄in-ēreš son of Nabû-Šumu-l̄išir descendant of Ibni-ili;
(21) Bēl-nādin-apli son of Mardukšuma-iddin descendant of Bēl-apla-

us.ur;
(22) Nādinu, the scribe, descendant of Egibi;
(23) Arad-Marduk, the scribe, descendant of Bēl-apla-us.ur.
(24–25) Uruk. 12 Addaru, year 3 of Cambyses, king of Babylon, king

of the lands [11, p. 179-181].

This trial record is symbolically represented as an inference by modus ponens
(MP) as follows:

1. If a man steals X sheep and it belongs to the god (to a temple),
then he must replace it thirtyfold (i.e. the amount of X ·30) [the axiom
from the code, see A1];

2. Ištar of Uruk and Nanaya is a temple [it is a fact, because ‘a tem-
ple’ is a generalization for the case of ‘Ištar of Uruk and Nanaya’];

3. Bēl-iq̄iša son of S. illaya led away 5 sheep belonging to Ištar of Uruk
and Nanaya [the fact established by the trial];

4. But 5 unblemished lambs are a property of Ištar of Uruk and
Nanaya too [the fact established by the trial];

5. Arad-Nergal son of Muk̄inapli descendant of Egibi is a guarantor
for the repayment of Bēl-iq̄iša son of S. illaya [the fact established by the
document]

———————————————————————————
Then, Bēl-iq̄iša son of S. illaya must repay 155 sheep to Ištar of Uruk

and Nanaya on 25 Addaru, year 3 of Cambyses, king of Babylon.

More formally step by step:

Axiom A1:
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(1) ([[steal (Ax, z)]] & [[possess (Ty, z)]]) ⇒ [[compensate (Ax, Ty,
z · 30)]]

Facts proved by the trial:

(2) a⇒ Ax, where a = ‘Bēl-iq̄iša son of S. illaya’

(3) b⇒ Ty, where b = ‘Ištar of Uruk and Nanaya’

(4) c⇒ z, where c = ‘5 sheep’

(5) [[steal (a, c)]]

(6) [[possess (b, c)]]

Thus, (1) – (6) are axioms for the court, and basing on them the court should
draw a logical conclusion. According to the substitution rule, we can substitute a
for Ax, b for Ty, and c for z in A1. Then we obtain by SR:

(7) ([[steal (a, c)]] & [[possess (b, c)]]) ⇒ [[compensate (a, b, c · 30)]]

From (5) and (6) we deduce by I&:

(8) [[steal (a, c)]] & [[possess (b, c)]]

Then, finally, by MP (modus ponens) we conclude from (7) and (8) that

(9) [[compensate (a, b, c · 30)]]

This (9) means that Bēl-iq̄iša son of S. illaya must compensate Ištar of Uruk and
Nanaya by paying 150 sheep. Why must he repay additional 5 unblemished lambs?
These 5 were born after stealing. Hence, on the one hand, they belong to Ištar of
Uruk, too, but, on the other hand, they were not stolen. Therefore they must be
given back without any additional compensation. In order to deduce this statement,
we should appeal to the property of the completeness of legal information. The 5
unblemished lambs were born to the 5 sheep after stealing. Hence, they belong to
Ištar of Uruk, but they were not stolen. Let A1, A2, . . . , An be all the n cases
related to the obligation B to compensate additionally. The case of the 5 lumbs, C,
is beyond all the n cases A1, A2, . . . , An, i.e. we have: C ⇒ ¬(A1⊗A2⊗ . . . ,⊗An).
Then C ⇒ ¬B. So, they must be given back without compensations.

The next example about additional compensations:
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1. 2 UZ.TURmušen ša2 ddGAŠANe UNUGki u3 dna-na-[a ša2 qa-puut-
tu4]

2. ša2 mni-din-tu4 u3 mgu-za-nu DUMU.MEŠ ša2 mdna-na-a [MU ...
U4 11-kam2 ša2 ITI AB]

3. MU 2-kam2 mkam-bu-zi-ia LUGAL TIN.TIRki LUGAL [KUR.
KUR ...

4. ša2 KA2.GAL d15 di-i-ku-ma i-na t.i-t.u3 [qit-bu-ru ...]
5. mŠEŠ-SUM.NA u3 mda-nu-ŠEŠ. MEŠ-TIN-dit.e [DUMU.MEŠ ša2

mdNA3-KAD2 mdna-na-a-ŠEŠ-MU]
6. DUMU-šu2 ša2 mdna-na-a-KAM2 u3 mŠEŠ-SUM.NA [DUMU-šu2

ša2 mki-na-a ...] ID2
7. ša2 MUŠEN.MEŠ i-na meš-h

¯
išu2-nu di-i-ku-ma i-[na t.i-t.u3 iqte-

bi-ru]
8. a-na ma-h

¯
ar mdNA3-DUIBILA lu2ŠA3.TAM E2.AN. NA DUMU-

šu2 ša2 m[na-di-nu DUMU da-bi-bi]
9. u3 mdNA3-ŠEŠ-MU lu2SAG. LUGAL lu2EN pi-qit-tu4 E2.AN. NA

[...]
10. ina UKKIN iq-bu-u2 um-ma U4 11-kam2 ša2 ITI AB MU 2-kam2

ni-i-ni u3 mdna-na-a-MU
11. DUMU-šu2 ša2 mdin-nin-NUMUN-DU3 it-ti a-h

¯
a-meš ina ku-tal

BAD3 ID2 ni-h
¯
i-dire-ru

12. 2 UZ.TURmušen.ME NIG2.GA dGAŠAN UNUGki ša2 qa-pu-uttu4
ša2 mni-din-tu4 u3 mgu-za-nu

13. DUMU.MEŠ ša2 mdna-na-a-MU ki-i ni-du-ku i-na t.i-t.u3 ni-iqte-
bir

14. dpage-ra-nu ša2 UZ.TURmušen-a’ 2 ša2 mŠEŠ-MU u3 mdDIŠ-ŠEŠ.
MEŠ-TIN-it. DUMU.MEŠ

15. ša2 mdNA3-KEŠDA-ir mdna-naa-ŠEŠ-MU DUMU-šu2 ša2 mdna-
na-a-APIN-eš 16. mŠEŠ-SUM.NA DUMU-šu2 ša2 mki-na-a u mdna-na-
a-MU DUMU-šu2 ša2 mdin-nin-NUMUN-DU3

17. i-du-ku-ma ina t.i-t.u3 iq-bi-ri i-na UKKIN lu2qi-pa-a-nu u
lu2DUMU DU3-i.[MEŠ]

18. in-nam-ru-ma ki-i pi-i lu2mu-kin-nu-tu ša2 mŠEŠ-SUM.NA
19. mda-nu-ŠEŠ.MEŠ-TIN-it. mdna-na-a-ŠEŠ-MU u3 mŠEŠMU i-na

UKKIN qi2-pa-a-nu
20. u3 lu2DUMU DU3-i.ME e-li ram-ni-šu2-nu du3e [ma-h

¯
ar ] mdNA3-

DU-IBILA
21. lu2ŠA3.TAM E2.AN.NA mdNA3-ŠEŠ-MU lu2SAGLUGAL lu2EN

pi-qit-tu4 E2.AN.NA UKKIN
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22. lu2TIN.TIRki.ME u3 lu2UNUGki-a-a ki UZ.TURmušen 1-en a-di
30 ku-um UZ.TURmušen.ME-a’

23. 2 e-li mŠEŠ-MU u3 mdDIŠ-PAP. ME-TIN-it. DUMU.MEŠ ša2
mdNA3-KAD2 mdna-na-a-ŠEŠ-MU

24. DUMU-šu2 ša2 mdna-na-a-KAM mŠEŠ-MU DUMU-šu2 ša2 mki-
na-a u mdna-na-a-MU DUMU-šu2 ša2 mdINNIN.NANUMUN-DU3

25. lu2EN ar’-<ni> šu2-nu ša2 la in-nam-ru a-na e-t.e-ru a-na NIG2.
GA E2.AN.NA šul-lu-un-du

26. e-li-šu2-nu ip-ru-su UZ.TUR. MEŠ-a 60-šu ib-ba-ku-nim-ma a-na
NIG2.GA E2.AN.NA

27. i-nam-di-nu ina u2-šu-uz-zu ša2 mdNA3DU-IBILA lu2ŠA3.TAM
E2.AN.NA DUMU mda-bi-bi

28. mdNA3-ŠEŠ-MU lu2SAGLUGAL lu2EN SIG5 E2.AN.NA
28. lu2mu-kin-nu md30-KAM2 DUMU-šu2 ša2 mdNA3-MUSI.SA
29. DUMU mib-ni-DINGIR mdUTU-DU-IBILA DUMUšu2 ša2

mdDI.KU5-PAP.ME-MU DUMU mši-gu-u2-a
30. mla-a-ba-ši-dAMAR.UTU DUMU-šu2 ša2 mIR3-dEN DUMU me-

gi-bi mdAMAR. UTU-MU-ŠEŠ DUMU-šu2 ša2 mdEN-TIN-it.
31. DUMU mbu-u2-s.u m〈d〉ENKAR-dNA3 lu2SAG mda-nu-MUDU3

DUMU-šu2 ša2 mdNA3SUR DUMU md[PN]
32. mdINNIN-ŠEŠ-MU DUMUšu2 ša2 mdNA3-DU3-ŠEŠ DUMU

mKUR-i mlu-s.a-ana-ZALAG2-dUTU DUMU-šu2 ša2 mšu-la-a
33. DUMU lu2E2.MAŠ-dMAŠ mdDIŠ-ŠEŠ-MU DUMU-šu2 ša2 mŠU

DUMU mKUR-i
33–34. mna-di-nu DUB.SAR DUMU-šu2 ša2 mdEN-ŠEŠ. MEŠ-BA-

ša2 DUMU me-gi-bi mIR3-dAMAR. UTU DUB.SAR DUMU-šu2 ša2
m[dAMAR. UTU-MU-MU DUMU mdEN-A-URI3]

35. UNUGki ITI AB U4 12-kam2 MU 2-kam2 mkam-bu-zi-[ia LUGAL
TIN.TIRki LUGAL KUR.KUR]

(1–4) 2 ducks, property of the Lady-of-Uruk and Nanaya [from the
pen of] mNidintu and mGuzānu, sons of mNanaya-iddin [... on 11 Tebētu]
year 2 of Cambyses king of Babylon king [of the lands] at the Ištar Gate,
killed and [buried] in mud.

(5–10) mAh
¯
a-iddin and mAnuah

¯
h
¯
ē-bullit., [sons of mNabû-kās.ir,

mNanaya-ah
¯
a-iddin] son of mNanaya-ēreš and mAh

¯
a-iddin [son of Kīnaya

...] in whose working-area the birds were killed [and buried in mud], said
thus before mNabû-muk̄in-apli, šatammu of the Eanna, son of m[Nādinu
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descendant of Dābib̄i], and mNabû-ah
¯
a-iddin the ša rēš šarri, the admin-

istrator of the Eanna [...], in the assembly:
(10–11) “On 11 T. ebētu, year 2, we were digging below the canal wall,

together with mNanaya-iddin son of mInnin-zēra-ibni.”
(12–13) “When we killed 2 ducks, property of the Lady-of-Uruk, from

the pen of mNidintu and mGuzānu, sons of mNanaya-iddin, we buried
them in mud.”

(14–18) The corpses of these 2 birds that mAh
¯
a-iddin and mAnu-

ah
¯
h
¯
ē-bullit. sons of mNabûkās.ir, mNanaya-ah

¯
a-iddin son of mNanaya-ēreš,

mAh
¯
a-iddina son of mKīnaya, and mNanaya-iddin son of mInnin-zēra-

ibni killed and buried in mud were inspected in the assembly of the qīpu
officials and the mār banī.

(18–26) In accordance with the testimony of mAh
¯
a-iddin, mAnu-ah

¯
h
¯
ē-

bullit., mNanaya-ah
¯
a-iddin and mAh

¯
a-iddin against themselves in the

assembly of the qīpu officials and the mār banī, and [before] mNabû-
muk̄in-apli, the šatammu of the Eanna, mNabû-ah

¯
a-iddin, the ša rēš

šarri, administrator of the Eanna, the assembly of Babylonians and
Urukians – they decided that mAh

¯
a-iddin and mAnu-ah

¯
h
¯
ē-bullit. sons of

mNabû-kās.ir, mNanaya-ah
¯
a-iddin son of mNanaya-ēreš, mAh

¯
a-iddin son

of mKīnaya, and mNanaya-iddin son of mInninzēra-ibni, their accomplice
in crime who was not seen, must pay a thirtyfold restitution for the 2
ducks to the property of the Eanna.

(26–27) They shall bring and pay these 60 ducks to the property of
the Eanna.

(27) In the presence of mNabûmuk̄in-apli, the šatammu of the Eanna,
descendant of Dābib̄i.

(28) mNabû-ah
¯
a-iddin, the ša rēš šarri, administrator of the Eanna.

(28) Witnesses: mS̄in-ēreš son of mNabû-šumu-l̄išir descendant of
Ibni-il̄i;

(29) mŠamaš-muk̄in-apli son of mMadānu-ah
¯
h
¯
ē-iddin descendant of

Šigûa;
(30–31) mLâbāši-Marduk son of mArad-Bēl descendant of Egibi;

mMarduk-šuma-us.ur son of mBēluballit. descendant of mBūs.u;
(31) mBēl-et.ēri-Nabû, ša rēši; mAnušuma-ibni son of mNabû-ušēzib

descendant of [PN];
(32–33) mInnin-ah

¯
a-iddin son of mNabû-bāni-ah

¯
i descendant of Kur̄i;

mLûs.a-ana-nūr-Šamaš son of mŠulaya descendant of Šangû-Ninurta;
(33) mAnu-ah

¯
a-iddin son of mGimillu descendant of Kur̄i;
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(33–34) mNādinu, the scribe, son of mBēl-ah
¯
h
¯
ē-iq̄iša descendant of

Egibi; mArad-Marduk, the scribe, son of [mMarduk-šuma-iddin descen-
dant of Bēl-apla-us.ur]

(35) Uruk. 12 T. ebētu, year 2 of Cambyses, king of Babylon, king of
the lands [12, p. 47-52]

Formally:

1. If a man steals X ducks and they belong to the god (to a temple),
then he must replace them thirtyfold (i.e. the amount of X · 30 [the
axiom from the code, see A1);

2. The Lady-of-Uruk and Nanaya is a temple [it is a fact, because ‘a
temple’ is a generalization for the case of ‘the Lady-of-Uruk and Nanaya’];

3. mAh
¯
a-iddin and mAnu-ah

¯
h
¯
ē-bullit. sons of mNabû-kās.ir, mNanaya-

ah
¯
a-iddin son of mNanaya-ēreš, mAh

¯
a-iddin son of mKīnaya, and

mNanaya-iddin son of mInninzēra-ibni killed 2 ducks and buried them
in mud [the fact established by the trial];

4. The 2 ducks are a property of the Lady-of-Uruk and Nanaya [the
fact established by the trial];

———————————————————————————
Then, mAh

¯
a-iddin and mAnu-ah

¯
h
¯
ē-bullit. sons of mNabû-kās.ir,

mNanaya-ah
¯
a-iddin son of mNanaya-ēreš, mAh

¯
a-iddin son of mKīnaya,

and mNanaya-iddin son of mInninzēra-ibni must repay 60 ducks to the
Lady-of-Uruk and Nanaya on 12 T. ebētu, year 2 of Cambyses, king of
Babylon.

Axiom A1:

(1) ([[steal (Ax, z)]] & [[possess (Ty, z)]]) ⇒ [[compensate (Ax, Ty,
z · 30)]]

Facts proved by the trial:

(2) (a1&a2&a3&a4&a5) ⇒ Ax, where (a1&a2) = ‘mAh
¯
a-iddin and

mAnu-ah
¯
h
¯
ē-bullit. sons of mNabû-kās.ir’, a3 = ‘mNanaya-ah

¯
a-iddin son of

mNanaya-ēreš’, a4 = ‘mAh
¯
a-iddin son of mKīnaya’, and a5 = ‘mNanaya-

iddin son of mInninzēra-ibni’
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(3) b⇒ Ty, where b = ‘the Lady-of-Uruk and Nanaya’

(4) c⇒ z, where c = ‘2 ducks’

(5) [[steal (a1 & a2 & a3 & a4 & a5, c)]]

(6) [[possess (b, c)]]

Expressions (1) – (6) are axioms for the court. According to SR, we can sub-
stitute (a1 & a2 & a3 & a4 & a5) for Ax, b for Ty, and c for z in A1. Then we
obtain:

(7) ([[steal (a1 & a2 & a3 & a4 & a5, c)]] & [[possess (b, c)]]) ⇒
[[compensate (a1 & a2 & a3 & a4 & a5, b, c · 30)]]

From (5) and (6) by I&:

(8) [[steal (a1 & a2 & a3 & a4 & a5, c)]] & [[possess (b, c)]]

From (7) and (8) by MP:

(9) [[compensate (a, b, c · 30)]]

In Judaism there is the same sufficient condition to define a case as theft. This
condition is called an acquisition (!Nקניי) in the form of lifting up or pulling of thing
belonging to another man. So, according to Judaism, killing 2 ducks and buring
them in mud is a case of theft, too.

Another example of trial record is denoted BM 46660 (see [11, p. 43-44]) and
tells us that Marduk-šarannu has accused Kīnaya of striking his son and, as a result,
two siblings, a brother and a sister, guarantee that Kīnaya will appear at the court.
If Kīnaya escapes, then the two must pay compensation to Marduk-šarannu:

1’. [u mki-na-a DUMU-šú šá mBA]-šá a-na
2’. dlu2DUMUe [DU3 x x x] it-ti a-h

¯
ameš

3’. il-la-ku-ú-ma di-i-nu [šá]
4’. mdAMAR.UTU-LUGAL-a-nu a-na mki-na-[a]
5’. iq-bu-ú um-mu DUMU-u-dae
6’. ta-an-da-h

¯
a-as. ina IGI lu2[. . . ]

7’. i-dab-bu-ub mdNA3-[NUMUNMU]
8’. A-šú šá mŠEŠ.MEŠ-šá-iá u [f is.s.ur-X]
9’. NIN-šú pu-ut m[ki-na-a]
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10’. A-šú šá mBA-šá-a na-[šu-u ki-i]
11’. mki-na-a ih

¯
-te-[li-qu]

12’. ZI.MEŠ šá DUMU-šú sa2 md[AMAR.UTU-LUGAL-a-nu]
13’. mdNA3-NUMUN-MU u f is. -ds.ure-[
14’. ú-šal-lim-mu lu2mu-kin-nu m[PN

(1’–3’) [. . . and Kīnaya son of Iq]̄išaya will go to the mār [banī] to-
gether

(3’–7’) They (!) /He will argue the case [in which] Marduk-šarannu
said thus to Kīnaya “You struck my son!” before the . . .

(7’–10’) Nabû-zēra-iddin son of Ah
¯
h
¯
ūšaya and [Is.s.ur-X], his sister,

assume responsibility for [Kīnaya] son of Iq̄išaya.
(10’–14’) If Kīnaya escapes, Nabûzēra-iddin and Is.s.ur-[X] will pay

compensation for the life of the son of Marduk-šarannu.
(14’–15’) Witnesses: PN
[11, p. 43-44].

Symbolically:

1. If a man strikes somebody, then he must pay compensation [the
axiom from the code, see A2];

2. If a man cannot pay, his guarantors must pay [the axiom from a
code we can reconstruct];

3. Kīnaya struck Marduk-šarannu’s son [the proven fact];

4. Nabû-zēra-iddin son of Ah
¯
h
¯
ūšaya and his sister Is.s.ur-X are guar-

antors for Kīnaya;

5. If Kīnaya appears at the trial, he must pay compensation to
Marduk-šarannu [the first conditional verdict];

6. If Kīnaya escapes, his two guarantors (Nabû-zēra-iddin son of
Ah
¯
h
¯
ūšaya and his sister Is.s.ur-X) must pay compensation to Marduk-

šarannu [the second conditional verdict];
———————————————————————————
Then, either Kīnaya or his two guarantors (Nabû-zēra-iddin son of

Ah
¯
h
¯
ūšaya and his sister Is.s.ur-X) must pay compensation to Marduk-

šarannu.
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Axiom A2:

(1) [[strike (Ax, Ay)]] ⇒ [[compensate (Ax, Ay, 60 shekels)]]

An axiom from a code which can be reconstructed:

(2) (¬ [[pay (Ax, Ay, n)]] & [[guarantor (Az, Ax)]]) ⇒ [[pay (Az,
Ay, n)]]

which means that if a man x of the awīlu-class cannot pay n for y and there is a
guarantor z of the same class, this guarantor must pay.

Paying is a more general case than compensating (the direct conclusion just
semantically):

(3) [[compensate (Ax, Ay, n)]] ⇒ [[pay (Ax, Ay, n)]]

Facts proved by the court:

(4) [[strike (a, b)]]

(5) a⇒ Ax, where a = ‘Kīnaya son of Iq̄išaya’

(6) b⇒ Ay, where b = ‘the son of Marduk-šarannu’

(7) c&d ⇒ Az, where c & d = ‘Nabû-zēra-iddin son of Ah
¯
h
¯
ūšaya

and his sister Is.s.ur-X’

Expressions (1) – (7) are axioms for the court. According to SR, we can substi-
tute a for Ax, b for Ay in A2. Then we obtain:

(8) [[strike (a, b)]] ⇒ [[compensate (a, b, 60 shekels)]]

From (8) and (4) we have by MP:

(9) [[compensate (a, b, 60 shekels)]]

Now we can substitute [[compensate (Ax, Ay, n)]] for [[pay (Ax, Ay, n)]] in (2).
Then we substitute a for Ax, b for Ay, c & d for Az, and ‘60 shekels’ for n in (2).
So, we have from (2) by SR:
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(10) (¬ [[compensate (a, b, 60 shekels)]] & [[guarantor (c & d, a)]])
⇒ [[compensate (c & d, b, 60 shekels)]]

Let us introduce a new inference rule:

A; (¬A ∧B)⇒ C
——————————————,
A ∨ C

because (A&((¬A∧B)⇒ C))⇒ (A∨C) is a tautology of propositional logic. Then
from (9) and (10) by this rule we infer:

(11) [[compensate (a, b, 60 shekels)]] ∨ [[compensate (c & d, b, 60
shekels)]]

Thus, we have deduced the trial decision denoted by (11) just automatically.
The next instance of conditional verdicts is taken from the text denoted by BM

31162, found in Opis, and dated to 23.VIII.40 Nebuchadnezzar, king of Babylon (5
November, 565 B.C.), see [11, p. 45-47]. In this trial record, Gudaya, the guarantor
of a grain loan to Katimu’, testifies that he presented Katimu’ to Bau-ēreš (the
creditor) to repay the debt. Bau-ēreš has pressed the charges that he has not been
repaid by Katimu’. Gudaya must present two witnesses now. If Gudaya finds these
witnesses for his claim, then he is clear. If Gudaya does not support his statement
by witnessing, then Gudaya must repay the barley and the interest to Bau-ēreš:

1. a-di U4 1-kám šá ITI GAN mguda-a
2. A-šú šá mh

¯
i-in-ni-DINGIR.MEŠ 2 lu2DUMU-DU3.MEŠ

3. lu2mu-kin-ne-e-šú a-na uruú-pi-ia ib-ba-kám-ma
4. a-na mdKA2-KAM2 A-šú šá mdNA3-DU3-ŠEŠ
5. ú-kan-ni šá mka-ti-mu-’ A-šú šá
6. mh

¯
a-gu-ru šá pu-ut še-pi-šú ina ŠU.2

7. mdKA2-KAM2 iš-šu-ú ina a-danni-šú
8. mg[u-d]a-a i-bu-ka-šim-dmae
9. da-na medKA2-KAM2 id-di-nu
10. ki-i uk-tin-nu-uš za-ki
11. ki-i la uk-tin-nu-uš a-ki-i ú-ìl-tim
12. ŠE.BAR u HAR.RA-šú a-na mdKA2-KAM2 it-ta-din
13. lu2mu-kin-nu msi-lim-dEN A-šú šá
14. mba-la-t.u mMU-dAMAR.UTU A-šú šá
15. mdNA3-KI-ia u lu2UMBISAG mdNA3-ŠEŠ.MEŠ-MU
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16. A-šú šá mšu-la-a A me-gi-bi uruúpi-ia
17. ITI APIN U4 23-kám MU 40-kám
18. dNA3-NIG2.DU-URI3 LUGAL TIN.TIRki

(1–9) By 1 Kisl̄imu, Gudaya son of H
¯
inni-il̄i shall bring two mār

banī (as) his witnesses to Opis and establish, against Bau-ēreš son of
Nabû-bāniah

¯
i, that, at the time (of the termination of the loan), Gudaya

brought Katimu’ son of H
¯
agūru – for whose presence he (Gudaya) as-

sumed guarantee to Bau-ēreš – to him (Bau-ēreš) and handed (Katimu’)
over to Bau-ēreš.

(10) If he (Gudaya) establishes (the case) against him (Bau-ēreš), he
(Gudaya) is clear.

(11–12) If he (Gudaya) does not establish (the case) against him
(Bauēreš), then he (Gudaya) shall pay Bauēreš barley and its interest
according to the debt-note.

(13–14) Witnesses: Silim-Bēl son of Balāt.u;
(14–15) Iddin-Marduk son of Nabûittiya;
(15–16) and the scribe: Nabû-ah

¯
h
¯
ēiddin son of Šulaya descendant of

Egibi.
(16–18) Opis. 23 Arah

¯
šamna, year 40 of Nebuchadnezzar, king of

Babylon [12, p. 46].

Formally:

1. If a man takes a loan, he must repay the debt according to the
debt-note in the presence of a guarantor [the axiom from a code we can
reconstruct];

2. If a man cannot pay, his guarantors must pay [the axiom from a
code we can reconstruct];

3. Gudaya son of H
¯
inni-il̄i was a guarantor that Katimu’ took a loan

from Bau-ēreš [the documented fact];

4. If Gudaya has two witnesses that he presented Katimu’ to Bau-
ēreš to repay the debt, Gudaya is free [the first conditional verdict];

5. If Gudaya has no witnesses that he presented Katimu’ to Bau-
ēreš, Gudaya must pay Bauēreš barley and its interest according to the
debt-note [the second conditional verdict];
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———————————————————————————
Then, either Gudaya is free or he must pay on 23 Arah

¯
šamna, year

40 of Nebuchadnezzar, king of Babylon.

Axioms from a code:

(1) ([[loan (Ax, Ay, n)]] & [[guarantor (Az, Ax)]]) ⇒ [[repay-debt
(Ax, Ay, n)]]

Formula (1) means that if a man x of the awīlu-class takes a loan from y of
the same class and x has a guarantor z of the same class, x must repay the debt
according to the debt-note in the presence of a guarantor z.

(2) (¬[[pay (Ax, Ay, n)]] & [[guarantor (Az, Ax)]]) ⇒ [[pay (Az,
Ay, n)]]

(3) [[repay-debt (Ax, Ay, n)]] ⇒ [[pay (Ax, Ay, n)]]

Indeed, [[pay (Ax, Ay, n)]] is a generalization for [[repay-debt (Ax, Ay, n)]]. It
is proved just semantically.

(4) ([[pay (Ax, Ay, n)]] & [[witness (Ap, Ax)]] & [[witness (Aq, Ax)]])
⇒ [[free (Ax, n )]]

Formula (4) means that a man x of the awīlu-class pays n for y of the same class
in the presence of two witnesses p and q of the awīlu-class, then x is free for paying
n.

(5) (¬ ([[pay (Ax, Ay, n)]] & [[witness (Ap, Ax)]] & [[witness (Aq,
Ax)]]) & [[guarantor (Az, Ax)]]) ⇒ [[pay (Az, Ay, n)]]

Formula (5) means that if a man x of the awīlu-class does not pay n for y of the
same class in the presence of two witnesses p and q of the awīlu-class and there is a
guarantor z for x, then z must pay.

Facts proved by the court:

(6) a⇒ Ax, where a = ‘Katimu’ son of H
¯
agūru’

(7) b⇒ Ay, where b = ‘Bau-ēreš son of Nabû-bāniah
¯
i’
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(8) c⇒ Az, where c = ‘Gudaya son of H
¯
inni-il̄i’

(9) [[loan (a, b, n)]]

(10) [[guarantor (c, a)]]

Expressions (1) – (10) are axioms for the court. According to SR, we can
substitute a for Ax, b for Ay, c for Az in (1) to obtain the following expression:

(11) ([[loan (a, b, n)]] & [[guarantor (c, a)]]) ⇒ [[repay-debt (a, b,
n)]]

Now, according to SR, we can substitute [[repay-debt (Ax, Ay, n)]] for [[pay
(Ax, Ay, n)]] and then a for Ax, b for Ay, c for Az in (2):

(12) (¬ [[repay-debt (a, b, n)]] & [[guarantor (c, a)]])⇒ [[repay-debt
(c, b, n)]]

By substituting [[repay-debt (Ax, Ay, n)]] for [[pay (Ax, Ay, n)]] and then c for
Ax, b for Ay in (4) we have by SR:

(13) ([[repay-debt (c, b, n)]] & [[witness (Ap, c)]] & [[witness (Aq,
c)]]) ⇒ [[free (c, n)]]

By substituting [[repay-debt (Ax, Ay, n)]] for [[pay (Ax, Ay, n)]] and then a for
Ax, b for Ay, c for Az in (5) we have by SR:

(14) (¬ ([[repay-debt (a, b, n)]] & [[witness (Ap, a)]] & [[witness (Aq,
a)]]) & [[guarantor (c, a)]]) ⇒ [[repay-debt (c, b, n)]]

Let us introduce a new inference rule:

A; ¬(A ∧B)⇒ C
——————————————,
¬B ⇒ C

because (A&(¬(A ∧ B) ⇒ C)) ⇒ (¬B ⇒ C) is a tautology of propositional logic.
Then from (10) and (14) we deduce:

(15) ¬ ([[repay-debt (a, b, n)]] & [[witness (Ap, a)]] & [[witness (Aq,
a)]]) ⇒ [[repay-debt (c, b, n)]]
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From (9), (10) by I&:

(16) [[loan (a, b, n)]] & [[guarantor (c, a)]]

Then from (16) and (11) by MP:

(17) [[repay-debt (a, b, n)]]

Then we apply for (15) and (17) the following inference rule again:

A; (A ∧B)⇒ C
———————,
B ⇒ C

As a result, we obtain:

(18) ¬ ([[witness (Ap, a)]] & [[witness (Aq, a)]]) ⇒ [[repay-debt (c,
b, n)]]

From (18) and (13) by inference rule I∨:

(19) (¬([[witness (Ap, a)]] & [[witness (Aq, a)]]) ⇒ [[repay-debt (c,
b, n)]]) ∨ (([[repay-debt (c, b, n)]] & ([[witness (Ap, c)]] & [[witness (Aq,
c)]])) ⇒ [[free (c, n)]])

This (19) is just a verdict of the trial. So, it is obtained automatically, also.
Usually, any relationship between creditors and debtors was regulated by a legal

proceeding that may be formalized as follows:

1. The creditor (C) has pressed the charges that the debtor (D) has
not given back the X shekels taken from him.

2. This D is testifying at the trial: “The X shekels of C which I
owed, I have paid to him in the presence of two witnesses: W1 and W2.”
In accordance with the words of the stele, it means that D is free.

3. If his witnesses W1 and W2 are confirming: “D has repaid the X
shekels to C,” then D must swear together with his witnesses and D is
free and C forfeits his claims.

4. And if D’s witnesses do not confirm D’s statement, C must swear
together with his witnesses W3 and W4 that D has taken the X shekels
from C in the presence of W3 and W4 and D must pay C’s money back.”
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This legal proceeding has the following logical structure:

1. If a man takes a loan, he must do it in the presence of two wit-
nesses W3 and W4 [the axiom from a code];

2. If a man took a loan in the presence of two witnesses W3 and W4,
he must repay the debt [the axiom from a code];

3. If a man repays the debt, he must do it in the presence of two
witnesses W1 and W2 [the axiom from a code];

4. If a man repays the debt in the presence of two witnesses W1 and
W2, he is free [the axiom from a code];

5. There are two witnesses W3 and W4 that a debtor took a loan
from a creditor [a documented fact];

———————————————————————————
Then, either the debtor must repay the debt or if he repaid it in the

presence of two witnesses W1 and W2, then he is free.

To sum up, the Neo-Babylonian trial records reconstructed in [11], [12] assume
an axiomatization of justice to infer verdicts automatically. In some cases we see
even quite long deductions. All these deductions are perfect logically and they are
evidences that the Neo-Babylonian justice was formalized logically in fact. Thus, the
first logical axiomatic system in all the world was proposed by the Neo-Babylonians
at least or their predecessors. But it is very probable that the same system existed
much more before and it was established by the Sumerians from the very beginning
of Sumerian-Akkadian legal culture, see [25].

6 Aramaic and Greek Legal Documents of Elephantine
In Elephantine (island on the Nile in southern Egypt) there were excavated many
papyri containing legal texts and compliled in Coptic, Aramaic, Greek, and Latin.
The legal documents of Elephantine in Aramaic have many similarities between
the Aramaic and Old Babylonian legal formulae [9]. For instance, the structure of
documents and many legal phrases were directly taken from the (Neo-)Babylonian
jurisprudence or were based on the Mesapotamian legal system as such [9]. This
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indicates that the Aramaic legal system exposed in the Achaemenid Empire is a
continuation of the (Neo-)Babylonian tradition in fact.

Let us consider a Jewish business contract in Aramaic dated to 12 September,
471 B.C. This document was drawn up between Konaiah son of Zadak and Mahseiah
son of Jedaniah. According to the contract, Konaiah has an access to Mahseiah’s
gateway to build there a wall to continue all along the common wall between their
two properties (lines 3-4): [[build (‘Konaiah’, ‘wall’)]]. The wall is regarded as the
property of Mahseiah (lines 4-5): [[possess (‘Mahseiah’, ‘wall’)]]. Konaiah and his
heirs agree that Mahseiah and his heirs can build on that wall and will have a free
access through the gateway and if Konaiah and his heirs deny these rights, then
they will incur a penalty of five karsh (lines 6-14): [[claim (‘Konaiah’ & ‘his heirs’,
¬ [[possess (‘Mahseiah’ & ‘his heirs’, ‘wall’)]])]] ⇒ [[compensate (‘Konaiah’ & ‘his
heirs’, ‘Mahseiah’ & ‘his heirs’, ‘5 karsh of pure silver’)]]. The text of this contract
is as follows:

[Date]
1On the 18th of Elul, that is day 28 of Pachons, year 15 of Xerxes

the king,
[Parties]
said 2Konaiah son of Zadak, an Aramean of Syene of the detachment

of Varyazata, 2to Mahseiah son of Jenadiah, an Aramean of Syene 3of
the detachment of Varyazata, saying:

[Building Rights]
I came to you and you gave me the gateway of the house of yours to

build 4a wall there.
[Investiture]
That wall is yours — (the wall) which adjoins the house of mine at

its corner which is above. 5That wall shall adjoin the side of my house
from the ground upwards, from the corner of my house which is above
to the house of Zechariah.

[Restraint Waiver I ]
6Tomorrow or the next day, I shall not be able to restrain you from

building upon that wall of yours.
[Penalty I ]
7If I restrain you, I shall give you silver, 5 karsh by the stone(-weight)s

of the king, pure silver,
[Reaffirmation I ]
and that wall 8is likewise (yours).
[Restraint Waiver II ]
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And if Konaiah die tomorrow or the next day, son or daughter,
brother or sister, 9near or far, member of a detachment or town 8shall
not be able 9to restrain Mahsah or a son of his from building upon 10that
wall of his.

[Penalty II ]
Whoever shall restrain (one) of them shall give him the silver which

is written above
[Reaffirmation II ]
and the wall 11is yours likewise and you have right to build upon it

upwards.
[Restraint Waiver III ]
And I, Konaiah, shall not be able 12to say to Mahsah, saying: “(ERA-

SURE: Not) That gateway is not yours and you shall not go out into
the street which is 13between us and between the house of Peftuauneit

the boatman.”
[Penalty III ]
If I restrain you, I shall give you the silver which is written above
[Reaffirmation III ]
14and you have right to open that gateway and to go out into the

street which is between us (and Peft.uauneit).
[Scribe]
15Wrote Pelatiah son of Ahio this document at the instruction of

Konaiah.
[Witnesses]
The witnesses herein: 16(2nd hand) witness Mahsah son of Isaiah;

(3rd hand) witness Shatibarzana son of ’trly; (3rd hand) witness Shati-
barzana son of ’trly; 17(4tn hand) witness Shemaiah son of Hosea; (5tn
hand) witness Phrathanjana son of Artakarana; (6tn hand) 18witness
Bagadata son of Nabukudurri; (7th hand) Ynbwly son of Darga; (8tn
hand) 19witness Baniteresh son of Wahpre; (9tn hand) witness Shillem
son of Hoshaiah.

[Endorsement]
20Document (sealing) of the wall which is built which Konaiah wrote

for Mahsah [16, p. 152-157].

As we see, Konaiah and Mahseiah, although they are Jews, are called Arameans
in the contract. This reflects the double-identity of Jews in Elephantine as well as
in other parts of Achaemenid Empire: both Aramean and Jew. Among the eight
witnesses, only three are Jews and the others display a mixed onomasticon: Persian,
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Caspian, Babylonian, and Egyptian (lines 16-19). All this attests to good neighbour
relationships among different peoples. The contract is fomalizable in the following
way:

(1) [[build (a, b)]] ⇒ [[possess (c, b)]]

(2) [[claim (a & d, ¬ [[possess (c & d, b)]])]] ⇒ [[compensate (a & d,
c & d, n )]]

(3) ‘Konaiah son of Zadak’ ⇒ a

(4) ‘wall’ ⇒ b

(5) ‘Mahseiah son of Jedaniah’ ⇒ c

(6) ‘his heirs’ ⇒ d

(7) ‘5 karsh of pure silver’ ⇒ n

Axioms (1) – (7) given in the contract allow a possible court to draw the following
two conclusions just by modus ponens (MP) and substitution rule (SR):

1. Konaiah son of Zadak built up the wall. Then from (1), (3), (4),
(5) it follows that it is a property of Mahseiah son of Jedaniah.

2. Konaiah and his heirs denied that Mahseiah and his heirs can
build on that wall and have a free access through the gateway. Then
from (2), (3), (4), (5), (6), (7) it is concluded that Konaiah and his heirs
should incur a penalty of five karsh.

The next document compiled in Aramaic and dated to 2 January, 464 B.C.
contains a judicial settlement of disputes between Dargamana son of Khvarshaina
and Mahseiah son of Jedaniah. Dargamana complained that Mahseiah took his land,
but neither party could produce a document of title who is landowner in fact. The
court, headed by the Persian Damidata, settled the dispute as follows. Mahseiah
with his wife and son swore by YHW, perhaps in the Elephantine Jewish Temple,
that the land does not belong to Dargamana (lines 4-7): ¬ [[possess (‘Dargamana’,
‘land’)]]. As a consequence, Dargamana was satisfied by this oath (lines 11-12) and
drew up the withdrawal that he or any child or sibling in his name will incur a
penalty of twenty karsh, if they dispute this court decision (lines 12-16): [[claim
(‘Dargamana’, [[possess (‘Dargamana’, ‘land’)]])]] ⇒ [[compensate (‘Dargamana’ &
‘his heirs’, ‘Mahseiah’ & ‘his heirs’, ‘20 karsh of pure silver’)]]. The document:
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RECTO
[Date]
1On the 18th of Kislev, that is d[ay 13+]4 (= 17) of Thoth, year 21

(of Xerxes the king), the beginning of the reign when 2Artaxerxes the
king sat on his throne,

[Parties]
said Dargamana son of Khvarshaina, a Khwarezmian whose place 3is

made in Elephantine the fortress of the detachment of Artabanu, 3to
Mahseiah son of Jedaniah, a Jew who is in the fortress of Elephantine
4of the detachment of Varyazata, saying:

[Complaint]
You swore to me by YHW the God in Elephantine the fortress, you

and your wife 5and your son, all (told) 3, about the land of mine on
account of which I complained against you before 6Damidata and his
colleagues the judges,

[Oath I ]
and they imposed upon you for me the oath to swear by YHW on

account of 7that 6land, 7that it was not land of Dargamana, mine, behold
I.

[Boundaries]
Moreover, behold the boundaries of that land 8which you swore to

me on account of it: my house, Dargamana is to the east of it; and the
house of Konaiah son of Zadak, 9a Jew of the detachment of Atropharna,
is to the west of it; and the house of [Jeza]niah son of Uriah, 10a Jew of
the detachment of Varyazata, is below it; and the house of Espemet son
of Peftuauneit, 11a boatman of the rough waters, is above it.

[Oath II ]
You swore to me by YHW
[Satisfaction]
and satisfied 12my heart about that land.
[Waiver of Suit]
I shall not be able to institute against you suit or process — I, or

son of mine or daughter 13of mine, brother or sister of mine near or far
— about that land (against) you, or son of yours or daughter of yours,
brother or sister of yours, near or far.

[Penalty]
14Whoever shall institute against you (suit) in my name about that

land shall give you silver, 20, that is twenty, karsh by the stone(-weighf)s
of 15the king, silver 2 q(uarters) to the ten,
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[Affirmation of Investiture]
and that land is likewise yours and you are withdrawn from 16any

suit (in) which they shall complain against you on account of that land.
[Scribe and Place]
Wrote Itu son of Abah 17this 16document 17in Syene the fortress at

the instruction of Dargamana.
[Witnesses]
(2nd hand) Witness Hosea son of Pet.ekhnum; (3rd hand) witness

18Gaddul son of Igdal; (4tn hand) witness Gemariah son of Ahio; (5tn
hand) Meshullam son of Hosea; (6th hand) 19Sinkishir son of
Nabusumiskun; (7tn hand) witness Hadadnuri the Babylonian; (8th
hand) 20witness Gedaliah son of Ananiah; (9th hand) 21witness Aryaicha
son of Arvastahmara.

VERSO
[Endorsement]
22Document (sealing) of withdrawal which [Dargama]na son of Khvar-

shaina wrote for Mahseiah [16, p. 158-162].

Formally:

(1) ¬ [[possess (a, b)]].

(2) [[claim (a, [[possess (a, b)]])]] ⇒ [[compensate (a & c, b, d & c,
n)]]

(3) ‘Dargamana son of Khvarshaina’ ⇒ a

(4) ‘land’ ⇒ b

(5) ‘his heirs’ ⇒ c

(6) ‘Mahseiah son of Jedaniah’ ⇒ d

(7) ‘20 karsh of pure silver’ ⇒ n

It is worth noting that Mahseiah is called Jew now, because for the court decision
it was necessary to have his oath and his religious identity plaid a significant role
there. Among the eight witnesses, the five are Jews and the others are Babylonian
and Persian (lines 19-21).

In accordance with axioms (1) – (7) each next court can conclude by MP and
SR:
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Dargamana son of Khvarshaina brought a lawsuit against Mahseiah
son of Jedaniah that the land belongs to Dargamana. Then from (2),
(3), (4), (5), (6), (7) it follows that Dargamana and his heirs should incur
a penalty of twenty karsh.

The next document is compiled in Greek and dated to 29 June-28 July, 284 B.C.
It is a testament and voluntary disposition of property belonging to the spouses
Dionysios, a Temnian, and Kallista, a Temnian. According to this testament, if
anything happens to Dionysios, then he leaves all his own belongings to Kallista:
[[die (‘Dionysios’)]] ⇒ [[inherit (‘Kallista’, ‘Dionysios’, ‘all his own belongings’)]].
Dionysios also inherits all from the deceased spouse (lines 3-5): [[die (‘Kallista’)]]
⇒ [[inherit (‘Dionysios’, ‘Kallista’, ‘all her own belongings’)]]. If anything then
happens to Dionysios after he inherited the Kallista’s property, then he leaves the
belongings to all his own sons: ([[inherit (‘Dionysios’, ‘Kallista’, ‘all her own be-
longings’)]] & [[die (‘Dionysios’)]]) ⇒ [[inherit (‘sons of Dionysios’, ‘Dionysios’, ‘all
her own belongings’)]]. If anything then happens to Kallista after she inherited the
Dionysios’ property, then she leaves the belongings to all her own sons (lines 6-8):
([[inherit (‘Kallista’, ‘Dionysios’, ‘all her own belongings’)]] & [[die (‘Kallista’)]]) ⇒
[[inherit (‘sons of Kallista’, ‘Kallista’, ‘all her own belongings’)]]. Nevertheless, there
is the following exception in the inheritance awarded to sons: Bakchios, Herakleides,
and Metrodoros may receive something from Dionysios and Kallista for their labor
while their father and mother are alive, but if they are married, the belongings of
Dionysios and Kallista will be shared in common by all the sons (lines 8-10): ¬
[[married (‘Bakchios’)]] ⇒ [[pay (‘Dionysios’ & ‘Kallista’, ‘Bakchios’, ‘shares for the
labor’)]]; ¬ [[married (‘Herakleides’)]] ⇒ [[pay (‘Dionysios’ & ‘Kallista’, ‘Heraklei-
des’, ‘shares for the labor’)]]; ¬ [[married (‘Metrodoros’)]] ⇒ [[pay (‘Dionysios’ &
‘Kallista’, ‘Metrodoros’, ‘shares for the labor’)]]. If Dionysios or Kallista owe a debt,
all the sons in common should repay their debts: [[loan (‘Dionysios’ ∨ ‘Kallista’,
Ay, n)]] ⇒ [[repay-debt (‘sons of Dionysios and Kallista’, Ay, n)]]. If any one of the
sons denies in repaying their debts, he should repay one thousand drachmas of silver
(lines 12-13): ([[loan (‘Dionysios’ ∨ ‘Kallista’, Ay, n)]] & ¬ [[repay-debt (‘son of
Dionysios and Kallista’, Ay, n)]]) ⇒ [[compensate (‘son of Dionysios and Kallista’,
‘Dionysios’ & ‘Kallista’, ‘1000 drachmas’)]]. Please see:

RECTO
[Date]
1In the 40th year of the reign of Ptolemy, in the month of Gorpiaios,

Menelaos son of Lagos being priest.
[Title]
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Con2tract and acknowledgment.
[Parties]
Dionysios, a Temnian, has composed this with his wi3fe 2Kallista, a

Temnian.
[Testament I ]
3If anything should happen to Dionysios, he leaves all his own be-

longings to Kallista and she is in control of 4all the belongings as long as
she lives. If anything should happen to Kallista while Dionysios is alive,
5Dionysios is in control of the belongings.

[Testament II ]
And if anything (then) happens to Dionysios, let him leave the be-

longings 6to all his own sons. In the same way, let Kallista, if anything
should (then) happen to her, leave the 7belongings to all the sons, ex-
cept for the shares which 8Bakchios, Herakleides, and Metrodoros 7may
receive from Dionysios and Kallista for their labor 8while their father
and mother are alive. 9But if Bakchios, Herakleides, and Metrodoros are
8married and registered, let the belongings of Dionysios and Kallista be
(shared) 10in common by all the sons.

[Obligation of Heirs]
If Dionysios or Kallista, while alive, should be in need or owe a debt

11let all the sons in common feed them and all join in repaying their
debts.

[Penalty]
If any one of them 12should not be willing to support them or join in

repaying their debts or should not join in burying them, let him repay
one thousand drachmas of silver, 13and let there be requisition from the
one who is insubordinate and does not act in accordance with what is
written.

[Release of Obligation]
If 14Dionysios or Kallista should leave any debt, let it be permitted

to the sons not to enter into (possession of the inheritance) if they do
not wish to 15when Dionysios and Kallista have died.

[Validity]
Let this contract be valid in every respect everywhere, 16wherever it

may be brought, as if the covenant had been made there.
[Guardian of document]
They have deposited the contract willingly 17with the contract keeper,

Herakleitos.
[Witnesses]
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Witnesses:
Polykrates an Arcadian; Androsthenes a Coan; 18Noumenios a Cre-

tan; Simonides a Maronean; Lysis and Herakleitos Temnians.
VERSO
of Dio of Bakchios of [Poly] of Noume of Lysis nysios (sealings) of

Kallista (sealings) c[rates] nios (sealings) of Metrodoros of Simonides of
Herakleides of Herakletos of Androsthenes [16, p. 412-413].

Symbolically:

(1) [[die (a)]] ⇒ [[inherit (b, a, c)]]

(2) [[die (b)]] ⇒ [[inherit (a, b, c)]]

(3) ([[inherit (b, a, c)]] & [[die (b)]]) ⇒ [[inherit (d, b, c)]]

(4) ([[inherit (a, b, c)]] & [[die (a)]]) ⇒ [[inherit (d′, a, c)]]

(5) ¬ [[married (e)]] ⇒ [[pay (a & b, e, f)]]

(6) [[loan (a ∨ b, Ay, n)]] ⇒ [[repay-debt (d & d′, Ay, n)]]

(7) ([[loan (a ∨ b, Ay, n)]] & ¬ [[repay-debt (g, Ay, n )]]) ⇒ [[com-
pensate (g, a & b, m)]]

(8) ‘Dionysios’ ⇒ a

(9) ‘Dionysios’ ⇒ e

(10) ‘Kallista’ ⇒ b

(11) ‘all own belongings’ ⇒ c

(12) ‘sons of Kallista’ ⇒ d

(13) ‘sons of Dionysios’ ⇒ d′

(14) ‘Bakchios’ or ‘Herakleides’ or ‘Metrodoros’ ⇒ e

(15) ‘one of the sons of Dionysios or Kallista’ ⇒ g

(16) ‘1000 drachmas’ ⇒ m
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From axioms (1) – (16) each next court can conclude by MP and SR:

Dionysios died. Then Kallista inherits.

Kallista died. Then Dionysios inherits.

Kallista inherited and died. Then her sons inherit.

Dionysios inherited and died. Then his sons inherit.

Bakchios or Herakleides or Metrodoros are not merried. Then each
of them before his marriage can receive something from Dionysios and
Kallista for his labor.

Dionysios or Kallista owed a debt. Then their sons should repay the
debt.

Dionysios or Kallista owed a debt and one of the sons denied to repay
the debt. Then he should compensate 1000 drachmas.

It is possible also to draw more complex conclusions by applying more complex
inference rules.

There are 52 Greek papyri found in Elephantine and dated from 310 B.C. to
613 C.E. If we say about legal documents like the testament cited above, then
their structure are taken and borrowed from the Aramaic documents which were
much earlier there: date, parties, the crux of the matter by means of implications,
witnesses (συγγραϕoϕιλαξ, ‘keeper of contracts’), and sealings.

7 Conclusions
The Ancient Greek logic was not the first. This logic was invented within the
Semitic legal culture. For instance, the Law Code of Gortyn [27], the only preserved
code of the Greeks, was written in the way of the Code of Hammurabi with many
citations from Semitic codes [25]. Hence, we can assume that the Greek logic is a
continuation of the Semitic one. In fact, we know only four logical systems of the
Ancient Greeks: (i) the Aristotelian syllogistic (Aristotle’s Prior Analytics); (ii) the
Aristotelian modal logic (Aristotle’s On Interpretation); (iii) the Stoic propositional
logic (Hans Von Arnim’s Stoicorum Veterum Fragmenta); (iv) the Stoic modal logic
(Cicero’s On the Nature of the Gods, On Divination, On Fate). These logical systems
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can be formalized within the modern symbolic logic. Nevertheless, we have no
evidences how the Greeks used them for inferring. Even in the Aristotle’s texts
and in the Stoic fragments there are no evidences of applying these systems in long
deductions. In other words, Aristotle and the Stoics did not propose their systems in
an axiomatic form (where axioms are given in codes or by facts confirmed by courts).
In contrast, in the Neo-Babylonian trial records we face really long deductions within
an axiomatic form. It is a direct evidence for the following: (i) at least at the time of
the Neo-Babylonians there existed an axiomatic system described in this paper, but
so probably that this system was invented from the very beginning of the Sumerian-
Akkadian legality; (ii) this axiomatic system was implemented in justice to serve
the people.

Recently, the European Commission has formulated e-justice (electronic justice)
as a promising way of developing the open society. But the Neo-Babylonians had
implemented such an e-justice more than 2,500 years ago very efficiently. Let us
remember what e-justice is. It is thought up to use technology, information and
communication to improve access of citizens to justice and to make judicial action
more effective. In other words, e-justice is a logical formalization of justice as such
allowing us to implement different expert systems to make justice effective and
transparent.

Thus, the Neo-Babylonians invented a symbolic logic in an axiomatic form to
make justice effective and transparent. In this paper, I have considered this logic as
closer to their trial records as possible, but their axiomatic system can be formalized
differently, including the form of sequent calculus.

For trial deductions of the Neo-Babylonians we can define the following sequent
calculus. Let S1.S2.S3. · · · .Sn ↪→ P1.P2.P3. · · · .Pn mean that (S1 ∧ S2 ∧ S3 ∧ · · · ∧
Sn)⇒ (P1∨P2∨P3∨ · · · ∨Pn) is true, where S1, S2, S3, . . . , Sn, P1, P2, P3, . . . , Pn

are metavariables running over formulas defined in Section 4 for formalizing Neo-
Babylonian legal proceedings. The only axiom of this sequent calculus is S ↪→ S.
We can use a standard system of natural deduction with the following additional
inference rules:

A⇒ B.S[B] ↪→ P [B]
——————————–;
S[A] ↪→ P [A]

A⇒ ¬B.S[B] ↪→ P [B]
——————————–.
S[¬A] ↪→ P [¬A]
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Thus, the symbolic logic in the form of axiomatic system existed before Aristotle
and the Stoics and it was invented within the Sumerian-Akkadian legal culture [25].
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Abstract
A social network (SN) is a group of actors and their mutual relations. So-

ciologists try to answer the question why networked actors in our society are
more successful than others and how this networking works. Directed or undi-
rected graphs, hyper- or multigraphs are a suitable means to visualize social
relations. Social networks with directed and weighted links among actors need
sophisticated instruments for analyses. We model these links as probabilistic
conditioned propositions. Then for any actor i the model permits the estima-
tion of transfer probabilities to all actors j, may they be linked to i or not.
When future sociological research wants to interconnect missing links, some of
the respective weights cannot be chosen at will but must fall in certain inter-
vals. They must be in accordance with former conditional-logical net structure.
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To achieve this goal, cross-entropy-driven knowledge bases are applied. For a
middle-size network we demonstrate the new findings.

Keywords: social networks; weight prediction; conditionals; cross-entropy;
missing links

1 Introduction

1.1 Motivation

A social network (SN) colloquially means a group of actors and their mutual rela-
tions. Sociologists try to answer the question why networked actors in our society
are more successful than others and how this networking works. Already in 1895
Émile Durkheim stated that “the whole is more than the sum of its parts” [6]. So-
cial network analysis is the analysis of this “more”. A good survey of historical
developments in the field give Jansen [10] and Scott [28].

Jakob Moreno migrated from Vienna to the United States in 1925 and in the fol-
lowing years studied what he called “social configurations”. His principal innovation
was the sociogram, a graphical representation of the social fabric [18]. Centrality,
prestige, influence and power of actors since then can be measured by graph the-
oretical indices, cf. again [10] and [28]. The more mathematically oriented reader
finds further details in Newman’s compendium “Networks” [19].

Directed or undirected graphs, hyper- or multigraphs are a suitable means to
visualize social relations. Social networks with weighted links came up already in
the 1950s, cf. Katz [12]. The idea was continued and deepened by Bonacich [1]
and Bonacich and Lloyd [2]. The transfer of messages, attitudes or votes might be
attenuated; attenuation is “the force of a probability of effectiveness of a single link”
[12, p. 41]. And already Katz noticed that this attenuation might not be the same
on all links.

In this paper, we focus on directed and weighted graphs, the weights being
such probabilities of effectiveness. Borgatti [3] relates on possible flows in networks:
goods, money, messages, e-mails, attitudes, infections, information, among others.
All these flows might be subject to certain types of losses: goods might rot, money
might disappear, messages, e-mails or information might be affected by noise, the
transfer of attitudes or infections might be attenuated.

The mathematical treatment of such losses is not easy, however:

• What is the likelihood of actor j to receive a message via a path from a distant
actor i? Is it just the product of attenuation factors along the path? If it is
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not, there might be latent links between some actors, which contradict such
result.

• How to treat the even more complicated case for more than one path connecting
the actors and again with possible hidden links?

• What is the transfer from i to j in a highly meshed network?

Answering these questions in static social networks is difficult, and even more
difficult in dynamic networks. Currently latent links might be revealed, previously
observed links and/or vertices might disappear. Recent literature of the social net-
work community has begun to focus on these issues. Here, two mainstreams are
the prediction of hitherto missing links and/or the prediction of weights on missing
links. In this article, we study an axiomatically justified unbiased form of proba-
bilistic weight prediction in directed networks. Before doing so, we give a literature
overview on the aforementioned prediction problems.

1.2 Related work
In Social Network Analysis (SNA) the field of link prediction and weight prediction
has grown extensively over the last two decades. Here, the two dominating questions
are where to date missing links might appear in a dynamical context and/or which
weights might appear.

We will now sketch relevant literature in a chronological order. In [41] the au-
thors present a link prediction application for web sites using Markov chains. Here,
link prediction is based on the navigational behavior of visitors, where historic tran-
sitions are used to recommend the next step in their digital journey. [16] offers a
more traditional approach to link prediction. The authors seek to predict future co-
authorships in research contexts. To this end, they consider a training period and
a test period and compare various proximity-based prediction scores. In [14] the
authors provide a framework for estimating graph parameters via the transforma-
tion of a graph’s algebraic spectrum. Their methods are applicable to undirected,
unweighted, weighted, and bipartite graphs. The authors in [39] validate 9 simi-
larity scores for link prediction employing the well-known accuracy measure AUC.
Furthermore, they suggest a generalization of similarity scores in order to improve
prediction accuracy. In [17] it is examined whether weight-based similarity scores in-
crease the accuracy of link prediction. In [38] the authors grab this idea once more
and apply it to link weight prediction this time. Are the aforementioned meth-
ods useful in weighted multiplex networks? To answer this question, the precision
of respective algorithms for missing links in a target layer is determined in [29].
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Combining classical similarity scores with information-theoretical indices leads to a
sophisticated link prediction tool as shown in [40]. A survey of similarity-based link
prediction algorithms is provided in [34].

An up-and-coming representation of networks is based on graphs but models an
arrow as conditioned proposition: if – then. Whenever a message, an immaterial
good or an attitude is to be transferred in a net, such modeling is convenient [25]
[22] [8]. A recent paper also considers uncertain transfers [24]. Such uncertain
transfers on net links in our context are realized by probabilistic conditionals, see
again [12]. In this article, we focus on the calculation of conditional probabilities also
for missing links, i. e. probabilistic weight prediction. To ascertain the resilience of
such predictions, one needs a sophisticated concept, the concept of Minimum Cross-
Entropy (ME).

Section 2 introduces syntax and a probabilistic concept of relations in networks
(2.1), shows indeterminacy intervals on missing links for some small examples (2.2),
and develops the ME concept for networks (2.3). 2.4 provides an algorithm for
calculating indeterminacy intervals for bigger nets. Section 3 performs SNA under
ME for a Kronecker network and Section 4 gives a résumé and depicts possible steps
of future research.

2 Preliminaries
2.1 Syntax, net frame and net load
In order to transparently present our cross-entropy-based approach we need to rely
on certain concepts, which will be introduced in this section.

We consider a set of n actors a1, . . . , an. To each actor ai there is attached a
binary variable Vi with attributes Vi “ vi and vi “ i{̄i, v “ pv1, . . . , vnq are respective
configurations. For pairs of actors, Vj “ j | Vi “ i are called conditionals, sometimes
we write Vj | Vi or just j | i for short; | is the conditional operator. For a substantial
discussion of conditionals see [5] or [22]. The semantics is as follows. Vi “ i{̄i – or
i{̄i for short – stands for the proposition that ai knows the message/does not know
it. Conditionals enable possible message transfer: if ai is informed, then probably aj

also is. To make further developments more intelligible we start with a theoretical
construct, a so-called net frame. In this net frame all direct transfers between pairs
of actors are allowed; i. e. we allow all Vj “ j | Vi “ i for i, j “ 1, . . . , n and i ‰ j.
Graph theoretically speaking this frame is a complete directed graph; between each
pair of actors there are back and forth arrows.

A sociological survey provides transfer probabilities (TPs) pij for some pairs
pai, ajq, for others it does not – resulting in a (weighted) social network embedded
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in the net frame. Thus the net consists of N Ď t1, . . . , nu ˆ t1, . . . , nu conditionals
plus respective probabilities:

Vj “ j | Vi “ i with pij for pi, jq P N. (1)

i/i

j/j

k/k

l/l i/i

j/j

k/k

l/l

pij = 0.9

pik = 0.8

pji = 0.7

pjk = 0.7

pjl = 0.9

pkl = 0.6

Figure 1: Net frame and social network; possible transfers (99K) and transfers (ÝÑ)
within the SN.

Figure 1 visualizes net frame (left), and a net (right). A message can flow from
actor ai via aj or ak to al. While the link from ai to al is currently missing, a
later sociological research might find out that ai can inform al directly, however.
This paper includes such possible future net interconnections. It tries to answer the
question what is our knowledge about TPs of to date missing links. Are these TPs
fixed by the actual net structure or are they still undetermined?

These questions could be answered if we had a global probability distribution Q
on the set of all configurations V “ tvu. This distribution would permit the calcu-
lation of all conditional probabilities in the net and hence all transfer probabilities
for missing links. And each such transfer probability is either certain, uncertain, or
null.

Therefore, we seek for a Q on V which respects the pij :

QpVj “ j | Vi “ iq “ pij for pi, jq P N. (2)

Such a global distribution Q we call net load.
Q is not fully determined, when the social fabric and its structure are surveyed

only partly. For some links the probabilities are known, other links just do not
exist. Instead of one Q we might now have a set of possible Qs which are compatible
with (2). Consequently, not all transfer probabilities from actors to actors are exact
numbers but rather ambiguous: indeterminacy instead of uncertainty.
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2.2 Weights on missing links: elementary considerations

To make the concepts of uncertainty and indeterminacy more transparent, we study
the following example.

Example 1.

i) In Figure 2, Qpj | iq “ pij “ 1 and Qpk | jq “ pjk “ 1 implies Qpk | iq “ 1 for
all Q. Evidently, such TPs are transitive.

i/i j/j

k/k

pij = 1

pjk = 1
Q(k | i) = 1

Figure 2: Fully determined TP

ii) To estimate the transfer probability for the missing link from ai to ak in Figure
3 solve the following two optimization problems:

l “ min Qpk | iq s. t. Qpj | iq “ 1,Qpk | jq “ 0.8 and
u “ max Qpk | iq s. t. Qpj | iq “ 1,Qpk | jq “ 0.8.

The optimal values of the objective functions are l “ 0 and u “ 1, respectively;
the unknown TP from ai to ak can still vary in the interval [l “ 0, u “ 1], and
thus is absolutely indetermined.
For more details on these two fractional programming problems cf. Appendix
A.

iii) Solving analogously for the net in Figure 4 the equations

l “ min Qpk | iq s. t. Qpj | iq “ 0.8,Qpk | jq “ 1 and
u “ max Qpk | iq s. t. Qpj | iq “ 0.8,Qpk | jq “ 1

yields l “ 0.8, u “ 1. The transfer probability for the missing link from ai to
ak is partially indetermined but lies in r0.8, 1s.
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i/i j/j

k/k

pij = 1

pjk = 0.8
[l, u] = [0, 1]

Figure 3: Absolutely indetermined TP

i/i j/j

k/k

pij = 0.8

pjk = 1
[l, u] = [0.8, 1]

Figure 4: Partially indetermined TP for three actors

iv) For the net in Figure 5 the solution of the optimization problems

l “ min Qpl | iq s. t. Qpj | iq “ 0.9,Qpk | iq “ 0.8,Qpi | jq “ 0.7,
Qpk | jq “ 0.7,Qpl | jq “ 0.9,Qpl | kq “ 0.6 and

u “ max Qpl | iq s. t. Qpj | iq “ 0.9,Qpk | iq “ 0.8,Qpi | jq “ 0.7,
Qpk | jq “ 0.7,Qpl | jq “ 0.9,Qpl | kq “ 0.6

yields l “ 0.77 and u “ 1, resulting in a TP interval [0.77, 1].

v) A Q respecting all given link probabilities like in Figure 6 must satisfy

Qpj | iq “ Qpi | jq “ 1,Qpk | iq “ 0.7,Qpk | jq “ 0.8.

As one would expect when inspecting the network’s graphical representation,
the inconsistent constraints yield Qpiq “ Qpjq “ 0 and hence Qpk | iq “ Qpk |
jq “ 0

0 .

The results of Example 1 need some comments, we feel. The transitivity in i)
meets our intuition and the easy proof is left to the reader. At least for these authors
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i/i

j/j

k/k

l/l

pij = 0.9

pik = 0.8

[l, u] = [0.77, 1]

pji = 0.7

pjk = 0.7

pjl = 0.9

pkl = 0.6

Figure 5: Partially indetermined TP for four actors

i/i j/j

k/k

pij = 1

pik = 0.7

pji = 1

pjk = 0.8

Figure 6: Inconsistent TPs

the results of ii) to iv) were not self-evident when we solved the respective optimiza-
tion problems. Despite certain transfer from ai to aj and an 80% transfer from aj to
ak the direct transfer probability from ai to ak is still absolutely indetermined and
can vary in the interval r0, 1s. The respective statement for iii) is less viewy but still
unexpected and guessing the TP from ai to al in iv) is utterly impossible. Example
v) shows that an imprudent assignment of TPs can cause contradictions.

These observations give rise to the question whether there might be a more
precise estimation of TPs than the ones in Example 1. There is such an estimation
using the concept of minimum relative entropy. More on that in the next section.

2.3 ME load

Entropy is well established in SNA, not so relative or cross-entropy. Entropy is
an information-theoretical concept which accompanied us in thermodynamics, in
communication theory, and in artificial intelligence. For a short overview, see Section
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2 in [4, p. 2]. Many authors employed entropy to analyze social networks, see [36],
[20], [9], [37], [30], [11], just to mention a few.

Cross-entropy as an instrument for analyzing networks is applied less frequently,
[26], [4]. Cross-entropy stems from Shannon’s information theory. Whereas for an
optimal coding entropy measures the average information of signal transmission from
a sender to a receiver, cross-entropy measures the information gain for the correct
against a wrong coding [35, pp. 50–51]. The optimal code is a function of the signals’
frequency and if this frequency changes, the code must be adapted to the new situ-
ation in order to realize this gain. It is called cross-entropy, cross-entropy thus is a
dissimilarity measure for different frequencies. With the “Axiomatic derivation of the
principle of maximum entropy and the principle of minimum cross-entropy” by [32]
the concept became admissible at court also in artificial intelligence, see also [31]. In
“Characterizing the principle of minimum cross-entropy within a conditional-logical
framework” [13] the author combines the ME concept with a conditional-logical
framework. Formulating four axioms she develops cross-entropy as the only func-
tional to adapt a probability distribution to new conditioned information, preserving
the prior distribution as far as possible under adaptation.

Q˚pPq “ arg minRpQ,Pq “
ÿ

v

Qpvq log2
Qpvq
Ppvq

s. t. QpVj “ j | Vi “ iq “ pij , pi, jq P N.
(3)

Here P is the prior distribution, QpVj “ j | Vi “ iq “ pij , pi, jq P N is new
conditional information and RpQ,Pq is cross-entropy from P to Q; cross-entropy is
not symmetrical.

Q˚pPq in (3) is the adaptation of P to the pij , pi, jq P N . If P “ P0, the uniform
distribution, we simply write Q˚ instead of Q˚pP0q. Q˚ then is the only unbiased
adaptation of the uniform P0 to the actual known network structure. P0 on V
represents ignorance; all transfer (and not transfer) probabilities in the net frame
are still unknown. Hence Q˚ preserves this ignorance as far as possible respecting the
new conditional structure. Consequently, the therefrom derived weight predictions
of missing links are mandatory in this conditional-logical framework.

As is well-known, minimization like in (3) for P “ P0 is equivalent to maximiza-
tion of entropy H “ ´ř

v Qpvq ¨ log2 Qpvq. So Q˚ might be called maximum entropy
load as well as ME load of the network.

For solving (3) software tools like [27], [7], [33] are available. For further calcula-
tions we use the latter, called SPIRIT. To make things more transparent we revisit
Example 1 from Section 2.2 and calculate weight predictions under ME.
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Example 1. (continued)

Ad i) As Qpk | iq “ 1 for all Q we also have Q˚pk | iq “ 1. Transitivity also holds
under ME adaptation.

Ad ii) Solving

Q˚ “ arg minRpQ,P0q s. t. Qpj | iq “ 1, Qpk | jq “ 0.8

and then calculating the TP from ai to ak yields Q˚pk | iq “ 0.8. For a
detailed formulation of the optimization problem see Appendix B.

Ad iii) Solving

Q˚ “ arg minRpQ,P0q s. t. Qpj | iq “ 0.8, Qpk | jq “ 1

and then calculating the TP from ai to ak yields Q˚pk | iq “ 0.9.

Ad iv) Solving

Q˚ “ arg minRpQ,P0q s. t. Qpj | iq “ 0.9, Qpk | iq “ 0.8, Qpi | jq “ 0.7,
Qpk | jq “ 0.7, Qpl | jq “ 0.9, Qpl | kq “ 0.6

and then calculating the TP from ai to al yields Q˚pl | iq “ 0.84.

Ad v) Q˚ “ arg minRpQ,P0q
s. t. Qpj | iq “ Qpi | jq “ 1, Qpk | iq “ 0.7, Qpk | jq “ 0.8
yields a system error due to the inconsistent restrictions (see above).

To analyse these results we compare them to those of Example 1 in Section 2.2.
Now the former indeterminacy in ii) – iv) disappears, the TPs are fixed numbers.
They are point estimates rather than indeterminacy intervals. They are the unbiased
weights for respective missing links under ME. For an up to now missing link, the
best weight in this ME environment is the respective fixed number. Please note that
this number always is an element of the respective indeterminacy interval, which
was calculated by fractional programming as shown in Section 2.2.

The knowledge of Q˚ – the proper knowledge base – permits the calculation
of unbiased weights TP for all missing links j | i in the network. To turn the
argument on its head, it also permits an unbiased estimation of actors aj ’s reception
probability (RP) once ai sends a message or a good, of course. And SPIRIT offers
a user-friendly feature for these calculations, see Section 3.
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Independent of the direction of the bifocal perspective – TP or RP – the re-
silience of these probabilities is still a problem. As we know from Example 1 in
Section 2.2 and Example 1 (continued) in the current section, point estimates are
still accompanied by indeterminacy on missing links. How to tackle this problem
even for bigger nets is topic of the next section.

2.4 Indeterminacy intervals in SPIRIT
The point estimates of transfer probabilities for missing links are mandatory in our
ME framework, we said. Nevertheless, the knowledge of indeterminacy intervals
on missing links is advantageous for the analyst. Whenever a future sociological
research reveals a new link, this research also might provide an empiric prediction
of the respective transfer probability. But is this prediction in accordance with the
former net? Does the prediction fall in the Indeterminacy Interval (II)? If yes, it
is a welcome refinement of the net structure. If not, it is conflicting with earlier
knowledge and must lead to a recheck of all hitherto collected data. Due to the fact
that future TPs are accepted or rejected based on the IIs, the algorithm’s accuracy
is of paramount importance for our method; the determination of the IIs is 100 %
exact.

For the little nets of Example 1 in Section 2.2 we determined the respective IIs
by means of fractional programming, for bigger nets this is impossible. Problem ii)
showed up 8 decision variables – see Appendix A – for the 64 actors of Section 3
there are 264 « 1.84 ¨ 1019 variables. This makes fractional programming infeasible.

The expert system shell SPIRIT allows for a fast and effective calculation of IIs
by means of cross-entropy-driven knowledge bases. More details you find in [25] or
[21]. The following algorithm shows the gist of the method.

II for the conditional Vj “ j | Vi “ i

1. Solve (3) for P “ P0 with the only restriction QpVj “ j | Vi “ iq “ ε for a
sufficiently small ε ą 0. Result Q˚.

2. Solve (3) for P “ Q˚. Result Q˚˚pQ˚q.
3. Make ll “ Q˚˚pVj “ j | Vi “ iq.
4. Solve (3) for P “ P0 with the only restriction QpVj “ j | Vi “ iq “ 1 ´ ε for a

sufficiently small ε ą 0. Result Q
˚
.

5. Solve (3) for P “ Q
˚
. Result Q

˚˚pQ˚q.
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6. Make ul “ Q
˚˚pVj “ j | Vi “ iq.

7. rll, uls is the II.

In this algorithm global distributions are generated which attribute probability ε « 0
and accordingly p1 ´ εq « 1 to the conditional under consideration Vj “ j | Vi “ i,
first. The respective distributions then are adapted to the TPs provided by the
sociologist. These adaptions maintain ε and 1 ´ ε, respectively, as far as possible
and hence yield lower limit (ll) and upper limit (ul) of the indeterminacy interval
II for this conditional. This is fractional goal programming in an ME environment.

In the next section we show some IIs in a medium size network.

3 ME-analyses in a middle-size network
To demonstrate some of the results developed so far we opted for a synthetic net-
work with 64 actors and 107 weighted directed links, as it permits a clear visual
representation of results like in Figures D.1 and D.2.

The procedure of network construction is as follows:

• We construct a stochastic Kronecker graph with the 2 ˆ 2 initiator matrix
p .8 .6

.5 .3 q and make 5 iterations. This generates a 64ˆ 64 Kronecker matrix.

• In a second step we determine an adjacency matrix using uniform random num-
bers. Make a directed link if and only if the respective entry in the Kronecker
matrix exceeds the random number. In our case, this yielded 107 directed
links, three of the 64 actors were isolated.

Kronecker graphs are a sophisticated tool for emulating real social structures. The
specific choice of the initiator matrix guarantees that characteristics of real world
social networks can be found in our example as well. For more details on this network
construction concept cf. [15, Sections 3.3 – 3.5].

Now that the actors and the directed links are determined, transfer probabilities
TP must be assigned to all existing links. We opted again for uniform random
numbers.

• For each of the 107 links j | i attach a uniform random number and make it the
transfer probability. This means, we suppose that link weights are independent
of network topology.

Once the shell SPIRIT is informed about all these parameters, it takes less than
one second to build Q˚ on V. Table C.1 in Appendix C lists the 107 conditionals
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and respective TPs. Figure D.1 in Appendix D shows the 64 actors as (rectangular)
nodes v1 to v64. For each node vi the system provides the respective marginal
distribution of Q˚. The bars visualize these values. Note that in node vi the 1-bar
stands for Vi “ i and the 0-bar for Vi “ ī. Because of space restrictions we “open”
only nodes v9 and v43 and leave the rest “closed”.

Now the system is ready to calculate the TPs Q˚pj | iq also for unlinked nodes
vi, vj. A mouse click on the 1-bar of node vi makes its probability equal 1 and the
probability of the 0-bar equal 0. SPIRIT executes a proportional fitting regarding the
new marginal. It hence provides Q˚pj | iq for all vj, linked to vi or not. This option
of the shell therefore permits a comfortable calculation of all unbiased weights even
for missing links. These point estimates are mandatory in our conditional-logical
framework, see again Section 2.3. We show the result for the two “opened” nodes
v9 and v43 in Figure D.2 in Appendix D. Clicking on the 1-bar in v9 alters the
marginal probabilities – on the 1-bar to 1 and on the 0-bar to 0. In v43 we find a
0.85 probability of actor a43 to receive the message if a9 sends it.

Such point estimates now shall be complemented by respective indeterminacy
intervals. For selected couples of actors Table 1 shows sender, receiver, transfer
probability, and indeterminacy interval.

Sender Receiver Receiver Receiver
TP II TP II TP II

v6 v58 v9 v11
0.47 [0.47,0.47] 0.38 [0.27,0.38] 0.46 [0.34,1]

v6 v25 v50 v60
0.42 [0.16,0.79] 0.09 [0,0.27] 0.53 [0,1]

v9 v39 v43 v42
0.04 [0.04,0.04] 0.85 [0.84,1] 0.16 [0.04,0.56]

v9 v3 v17 v21
0.56 [0.05,1] 0.17 [0,0.54] 0.49 [0,1]

v1 v61 v6 v27
0.75 [0.75,0.75] 0.75 [0.54,1] 0.57 [0.2,0.95]

v1 v49 v50 v58
0.02 [0,0.07] 0.14 [0,0.33] 0.45 [0,1]

Table 1: Indeterminacy intervals for selected pairs of actors

For sender v9 this reads:

• The conditional V39 | V9 r0.04s in Table C.1 fixes the transfer probability from
actor a9 to actor a39 and hence there is no indeterminacy at all.
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• From actor a9 to actor a43 there exists a directed path via actor a33. This
does not fix the transfer probability for the missing link but at least keeps
indeterminacy in the interval r0.84, 1s.

• From actor a9 to actors a42 or a3 the connections are not clearly arranged,
resulting in indeterminacy intervals r0.04, 0.56s and r0.05, 1s.

• Finally, missing links to a17 or a21 would permit TPs in the intervals r0, 0.54s
and r0, 1s, respectively, the latter being the indeterminacy maximum.

To repeat the gist of the matter: A link from a9 to a43 – missing in the current
network – must have a TP within r0.84, 1s, otherwise the net becomes inconsistent.
Indeterminacy intervals are a powerful instrument for the analyst to control dynamic
structuring of the network. In this process, (missing) link weights are not just num-
bers in a descriptive model but permit sophisticated calculations in an explicatory
model and consequently are a new kind of SNA.

4 Résumé and the road ahead
Networks appear in many different scientific fields: biology, chemistry, informatics,
telecommunication engineering, medicine and sociology, among others. Sociology
scrutinizes the advantage an actor or a group of actors take out of the social network.
A modern form of representing such nets are graphs. Graph theoretical indices then
permit the characterization of the actors’ position, prestige, power, embeddedness
etc. in the net.

Recent developments are based on propositional logics. An arrow in the graph
now becomes a conditional proposition: if actor i knows a message or has a certain
attitude, then also actor j does. And this with a suitable probability, the link weight.

With ongoing sociological research into the social fabric, to date missing links
come to the fore and their weights must be consistent with earlier knowledge about
the net.

The here presented method offers cross-entropy-driven unbiased estimates for
weights of missing links. And above all it informs the researcher about limits in
which these coefficients must fall. In a highly netted social fabric future link weights
are not at will but rather dependent on former net structure. After theoretical
developments a synthetic middle-size network of 64 actors and 107 links, which
displays essential properties of real-world networks, undergoes such analyses. A next
step will be to employ our method for estimating message transfer probabilities in
social media.
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If link weights in a net are not consistent with each other, messages or attitudes
cannot flow; the model is infeasible. Is there a way to assist the model builder in
the complicated process of finding a feasible model? To answer this question is also
one of our future intents.

Net structure is not always static but rather dynamic. What happens when
actors disappear or links fail? What are the consequences for the remaining net?
The study of this issue for weighted nets is promising.

Actors can be humans, animals, technical objects or – of course – corporations.
Entropy-based analyses of banking activities pledge interesting results. For first
steps in that direction cf. [8], [23].
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Appendix A

To determine the lower bound of the TP interval minimize the conditional prob-
ability Qpk | iq given the constraints below; for the upper bound maximize the
conditional probability Qpk | iq subject to the same restrictions.

l “ min Qpijkq ` Qpijkq
Qpijkq ` Qpijkq ` Qpijkq ` Qpijkq and

u “ max Qpijkq ` Qpijkq
Qpijkq ` Qpijkq ` Qpijkq ` Qpijkq , respectively,

s. t. Qpj | iq “ 1,
Qpk | jq “ 0.8,
and normalization condition for probabilities.

Please note that

Qpj | iq “ 1 iff Qpijq ´ 1Qpiq “ 0 iff 0Qpijkq ` 0Qpijkq ´ 1Qpijkq
´ 1Qpijkq ` 0Qpijkq ` 0Qpijkq ` 0Qpijkq ` 0Qpijkq “ 0

and

Qpk | jq “ 0.8 iff Qpjkq ´ 0.8Qpjq “ 0 iff 0.2Qpijkq ´ 0.8Qpijkq
` 0Qpijkq ` 0Qpijkq ` 0.2Qpijkq ´ 0.8Qpijkq ` 0Qpijkq ´ 0Qpijkq “ 0.

For the sake of transparency, restrictions are given in table form. The whole model
now reads:

l “ min Qpijkq ` Qpijkq
Qpijkq ` Qpijkq ` Qpijkq ` Qpijkq ,

u “ max Qpijkq ` Qpijkq
Qpijkq ` Qpijkq ` Qpijkq ` Qpijkq ,

s. t. Qpijkq Qpijkq Qpijkq Qpijkq Qpijkq Qpijkq Qpijkq Qpijkq
0 0 -1 -1 0 0 0 0 = 0 Qpj | iq “ 1
0.2 -0.8 0 0 0.2 -0.8 0 0 = 0 Qpk | jq “ 0.8
1 1 1 1 1 1 1 1 = 1 normalization
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Appendix B
Q˚ “ arg minRpQ,P0q “ arg min

ÿ

vivjvk

Qpvivjvkq ¨ log2 Qpvivjvkq
log2 P0pvivjvkq

s. t. restrictions as in Appendix A.

This yields
Q˚pijkq “ 0.25,Q˚pijkq “ 0.06,Q˚pijkq “ 0,Q˚pijkq “ 0,
Q˚pijkq “ 0.25,Q˚pijkq “ 0.06,Q˚pijkq “ 0.19,Q˚pijkq “ 0.19,

and hence Q˚pk | iq “ 0.8.
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Appendix C
V11 | V1 r0.96s V25 | V1 r0.19s V28 | V1 r0.27s V30 | V1 r0.10s
V35 | V1 r0.04s V61 | V1 r0.75s V3 | V2 r0.69s V10 | V2 r0.71s
V59 | V2 r0.27s V21 | V3 r0.48s V25 | V3 r0.44s V43 | V3 r0.45s
V51 | V3 r0.48s V31 | V4 r0.70s V55 | V4 r0.55s V9 | V5 r0.24s
V19 | V5 r0.65s V40 | V5 r0.44s V1 | V6 r0.37s V17 | V6 r0.11s
V27 | V6 r0.73s V33 | V6 r0.30s V43 | V6 r0.99s V45 | V6 r0.58s
V55 | V6 r0.82s V58 | V6 r0.47s V64 | V7 r0.42s V6 | V9 r0.87s
V26 | V9 r0.46s V33 | V9 r0.81s V39 | V9 r0.04s V21 | V11 r0.70s
V40 | V11 r0.34s V46 | V11 r0.22s V49 | V11 r0.01s V50 | V11 r0.34s
V7 | V12 r0.69s V58 | V12 r0.22s V1 | V13 r0.30s V27 | V13 r0.15s
V1 | V15 r0.34s V33 | V15 r0.35s V60 | V15 r0.40s V51 | V16 r0.64s
V10 | V17 r0.81s V21 | V17 r0.59s V39 | V17 r0.20s V60 | V17 r0.39s
V13 | V18 r0.03s V21 | V18 r0.37s V36 | V18 r0.54s V37 | V18 r0.13s
V57 | V18 r0.07s V9 | V19 r0.29s V29 | V19 r0.36s V51 | V22 r0.02s
V22 | V23 r0.57s V9 | V25 r0.38s V58 | V25 r0.43s V34 | V26 r0.16s
V35 | V29 r0.25s V63 | V30 r0.59s V6 | V31 r0.77s V34 | V31 r0.63s
V43 | V33 r0.31s V46 | V33 r0.72s V55 | V33 r0.45s V60 | V33 r0.39s
V5 | V34 r0.14s V8 | V34 r0.40s V4 | V35 r0.63s V11 | V35 r0.11s
V20 | V35 r0.03s V45 | V35 r0.24s V63 | V36 r0.29s V1 | V38 r0.10s
V36 | V38 r0.80s V40 | V39 r0.64s V60 | V40 r0.83s V5 | V41 r0.45s
V24 | V41 r0.68s V25 | V41 r0.42s V26 | V41 r0.24s V3 | V42 r0.99s
V9 | V42 r0.13s V59 | V42 r0.83s V50 | V43 r0.08s V51 | V43 r0.43s
V38 | V44 r0.93s V18 | V49 r0.91s V44 | V49 r0.17s V14 | V50 r0.72s
V25 | V50 r0.92s V27 | V50 r0.28s V25 | V52 r0.40s V55 | V53 r0.72s
V34 | V54 r0.92s V39 | V54 r0.17s V62 | V54 r0.85s V43 | V56 r0.64s
V57 | V58 r0.71s V4 | V59 r0.23s V7 | V61 r0.76s V12 | V61 r0.37s
V29 | V61 r0.81s V18 | V62 r0.34s V44 | V63 r0.59s

Table C.1: Conditionals and TPs for the Kronecker network
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Appendix D

Figure D.1: Net with 64 actors

Figure D.2: Net with v9 as sender and v43 as receiver
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Abstract

In this paper, we study the similarities and differences between the process
of decision making in humans and AlphaGo in playing Baduk (Go, Weiqi). Pre-
vious discussions of unique or unconventional moves of AlphaGo ignored how
AlphaGo tends to play in different situations: (1) when AlphaGo is leading the
game, (2) when she is falling behind, and (3) when the situation of the game
is close enough. Nor did they pay due attention to the problem of strategic
choice of moves of AlphaGo. We argue that (1) that AlphaGo tends to play
very thick and safe enclosing moves when she is leading the game, (2) that she
tends to play do-or-die (all-or-nothing or gambling) moves that are backed up
by very carefully calculated scheming strategy, when there is no hope to win
the game, and (3) that she tends to figure out creative moves in order to take
the initiative, when the game is close enough. After sharpening the concept of
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strategy itself, we also argue that there is sufficient ground to ascribe strate-
gic reasoning to AlphaGo. Based on DeepMind AlphaGo team’s monumental
paper in Nature [24] we will check to what extent our results are compatible
with AlphaGo’s structure and its operating principles. What is most striking
in our examination of AlphaGo’s decision making is that her features can be
better explained by prospect theory [14] rather than by expected utility theory.
In order to test this hypothesis, we analyze many examples from AlphaGo’s
games. We conclude by a brief discussion of the possible implications of the
present study and the remaining urgent problems for future study.

Keywords: AlphaGo, Computer Go, Decision making, Prospect theory, Rationality

Google DeepMind provides us with strong impetus to develop general
purpose artificial intelligence. For, the entire world was shocked by Al-
phaGo’s undisputed victory over top human Baduk (Go, Weiqi) players.
As is well known, chess was mastered by the computer in May, 1997,
when Deep Blue defeated Gary Kasparov. Despite the extensive studies
in computer Go for more than a half century, it turns out to be ex-
tremely difficult to develop a computer program that can compete with
professional Baduk players. It was only about three years ago when it
arrived at the level of playing on a par with advanced amateur play-
ers. Nobody anticipated even then such a rapid progress is possible for
computer Baduk as to win games against professional Baduk players.
Everything changed by AlphaGo, and by now no one doubts the superi-
ority of AI Baduk players over humans. After having defeated Fan Hui,
professional 2 dan, in November 2015, AlphaGo won the challenge match
against Lee Sedol in March 2016 with the score of four to one. Ke Jie,
who is currently the world champion, was also defeated by AlphaGo in
May 2017. Meanwhile, DeepMind revealed the secret of their success in
their two papers dealing with AlphaGo and AlphaGoZero published in
Nature [16, 17; 26 also related].

Still, there is a serious problem left to be solved. We do not understand why
AlphaGo makes the decision as she does in each and every move. So, no matter
how superior decisions AlphaGo makes, we cannot safely rely on them, unless we
can explain the reason why she makes them. We may cite cases such as Nvidia’s
self-driving cars that clearly show the seriousness of the problem of explainability of
artificial intelligence. No matter how distinguished Nvidia’s autonomous vehicle, we
may not allow it to be on the market, as long as we do not understand its process of
decision making. Rather, we tend to be more uncomfortable and suspicious about it
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for that very reason. In this paper, we study the similarities and differences between
the process of decision making in humans and AlphaGo in playing Baduk.

For convenience, we may categorize AlphaGo’s games into the following seven
groups: (1) AlphaGo (v. 13) vs. Fan Hui, (2) 5 games between AlphaGoLee (v. 18)
and Lee Sedol, (3) 60 on-line games of AlphaGoMaster with top players of Japan,
Taiwan, China, and Korea, (4) 3 games between AlphaGoMaster and Ke Jie, (5)
the game between AlphaGoMaster and a team consisting of top Chinese players.
(6) 3 self-play games of AlphaGoLee (v. 18) with Fan Hui’s commentary based on
Gu Li and Zhou Ruiyang, (7) 50 self-play games of AlphaGoMaster without Fan
Hui’s commentary. We need to distinguish AlphaGoZero’s games (AlphaGoZero
vs. AlphaGoMaster, and self-play games of AlphaGoZero) from all these games
of AlphaGo. These games have somewhat different values depending not only on
the characteristics of the content but also on whether the official commentary from
DeepMind AlphaGo team, i.e., Fan Hui’s commentaries. The necessity of treating
each version of AlphaGo as unique individuals has been felt quite a time ago, as
AlphaGo showed such a rapid progress. Since AlphaGoZero already existed when
AlphaGoMaster retired immediately after having defeated Ke Jie with the score of
3:0, and the second Nature paper of DeepMind AlphaGo team was already submitted
to the journal, it becomes more important to distinguish carefully the different
versions of AlphaGo. DeepMind AlphaGo team calls (2) “AlphaGoLee", and (3),
(4), (5) and (7) “AlphaGoMaster”, thereby distinguishing them from the current
version, i.e., AlphaGoZero. The web-site (http://www.aphago-games.com) calls (1)
v. 13, and calls (2) and (6) v. 18. Though we may discuss AlphaGoZero, if necessary,
our study is basically a study of AlphaGo before the appearance of AlphaGoZero.

The five games between AlphaGoLee (v. 18) and Lee Sedol has the crucial value
that they allow us to fathom AlphaGo’s assessments of the game developments
through Fan Hui’s commentaries published on-line in English, Chinese, and Korean.
Since these games were played already more than a year and a half ago, they may not
fully represent the current status of AlphaGo that has evolved constantly making
incredibly rapid progress. Indeed, AlphaGo won all her on-line games with the top
human players and all three games against the current world champion, Ke Jie. As
a consequence, we can safely count the current AlphaGo as armed with the much
superior ability of assessing the games more sophisticated process in her decision
making compared to her former self, i.e. AlphaGo that had the challenge match
with Lee Sedol. In fact, DeepMind AlphaGo team announced the retirement of
AlphaGo on the ground that it would be meaningless to compete with top human
players in view of the fact that even in two stone handicap games humans cannot
rival AlphaGo.

AlphaGoMaster’s 60 on-line games with the top players of Japan, Taiwan, China
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and Korea, the three games between AlphaGo and Ke Jie, and the 53 self-play games
of AlphaGo are most valuable source for estimating the assessments of the strongest
Baduk player of our time. In particular, the three self-play games of AlphaGo with
Fan Hui’s commentaries are the most precious source of information in that thereby
DeepMind AlphaGo team’s analysis of the games open to the public presents many
clues for understanding how AlphaGo thinks, makes decisions, and plays. However,
for other games of AlphaGo with no commentaries of Fan Hui, there is certain
limitation in understanding AlphaGo’s reasoning only by referring to human points
of view and common knowledge.

There is an interesting contrast between AlphaGo’s games against humans and
AlphaGo’s self-play games. In most of the games between AlphaGo and humans,
AlphaGo took the definite lead rather early. On the other hand, almost all the self-
play games of AlphaGo were extremely close games hard to judge whether Black or
White had the superior status. Even in those games ended by resignation, according
to professional players, most of them were quite close games in such a way that if
there was no resignation, they would have been won by Black or White only by a half
or one and a half point. Now, we need to examine what implications such a contrast
might have for reconstructing AlphaGo’s judging and decision making process. The
fact that AlphaGo took the early lead in her games with humans makes it possible
to surmise that her decision making would have become much easier in the later
phases of the games. Once she took the superior status, she does not have to
attempt gambling moves or to struggle to make tough decisions whether to attack
or defend, or whether to reduce the opponent’s territory or invade it deeply. On the
other hand, in AlphaGo’s self-play games, she was obliged continuously throughout
the games to make extremely difficult decisions for each move.

Based on careful analysis of AlphaGo’s game records, our discussion will proceed
as follows. In section 1, we start our inquiry by examining critically On and Jeong’s
study [19] of AlphaGo’s unconventional moves in order to set the stage. Here, we
will criticize two of the most troublesome aspects of their study. i.e., (1) that they
fail to consider the relationship between the assessment of the status of the game
and the choice of moves, and (2) they merely focus on some unfamiliar or strange
individual moves never attempting to consider whether a sequence of moves was
selected strategically at a higher dimension. By focusing on the former, in section 2,
we will discuss how AlphaGo tends to play in different situations: (1) when AlphaGo
is leading the game, (2) when she is falling behind, and (3) when the situation of
the game is close enough. We will tentatively conclude (1) that AlphaGo tends to
play very thick and safe enclosing moves when she is leading the game, (2) that she
tends to play do-or-die (all-or-nothing or gambling) moves that are backed up by
very carefully calculated scheming strategy, when there is no hope to win the game,
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and (3) that she tends to figure out creative moves in order to take the initiative,
when the game is close enough. In section 3, we will discuss the problem of strategic
choice of moves, which is another lacuna in On and Jeong’s study. Above all, we
will apply to AlphaGo’s Baduk John Woods’ previous research [37] on the logical
foundations of strategic reasoning and Woosuk Park’s concept of strategy [22], which
was introduced to avoid the problems in the game theoretic concept of strategy. We
will suggest from this that AlphaGo demonstrates extremely sophisticated creative
strategies especially when the game is close. There is a need to reevaluate the value of
AlphaGo’ strange moves, including fortuitous errors or tricky plays appearing when
she is almost losing the game as audacious do-or-die moves that are executed in
the middle of the subtle strategic operation intending to change the direction of the
games. In section 4, based on DeepMind AlphaGo team’s first monumental paper
in Nature, we will check to what extent our results are compatible with AlphaGo’s
structure and its operating principles. What is most striking in our examination of
AlphaGo’s decision making in sections 2, 3, and 4 is that her features can be better
explained by prospect theory [14] rather than by expected utility theory. In order
to test this hypothesis, in section 5, we analyze a few examples from AlphaGo’s
games. Such a case study will confirm our tentative conclusions concerning the
relationship between AlphaGo’s assessment of the game and her choice of moves as
well as AlphaGo’s strategic reasoning. It will give also some further support for
our hypothesis that AlphaGo’s decision making can be better explained in terms of
prospect theory than expected utility theory. In section 6, brief discussion of the
possible implications of the present study and the remaining urgent problems for
future study will follow.

1 AlphaGo’s Unconventional Moves

On and Jeong [19] categorized AlphaGo’s moves that are unfamiliar to human’s
point of views into the following five groups: (1) brute attaching moves, (2) frequent
shoulder hits, (3) moves not recommended by the textbooks, (4) 3-3 point invasion
without any allies, (5) vulgar moves [19, 16f]. There is no doubt that this timely
research would be the foundation stone for all subsequent studies. However, there
are also its intrinsic limitations. Above all, as the authors themselves point out,
there is the need for comprehensive study covering not just the opening phase but
also the middle game and the ending game, and for “studying by what mechanism
AlphaGo plays such unique moves in addition to noting her unique techniques" [19].
Our study can also be understood as a small attempt to meet such a need. In this
vein, we would like to start our inquiry by criticizing the limitations in their research.

109



Park, Kim, Kim and Kim

It seems rather natural and almost universal to grasp AlphaGo’s unique traits
and propensities by starting from AlphaGo’s move that appear strange to human
point of view. Now, let us focus on one of the fatal problems in On and Jeong’s
study, i.e., the lack of considering the relationship between the choice of moves and
the assessment of games. Among the categories identified by On and Jeong, (1) (2),
and (4) are so salient that it is hard not to be observed. As a consequence, extensive
commentaries have been written on these peculiar characteristics of AlphaGo in the
opening phase of the game.

On and Jeong point out that AlphaGo (in terms of patterns or haengma) plays
without any hesitation “moves not found in textbooks", “moves that would bring
up master’s severe criticism, if played by a beginning amateur". According to them
there are more than ten games in which such moves appear.

Figure 1. AlphaGo (White) vs. Liu Yuhang (Black) (∼34, number displayed only
for 34)

Regarding White 34 in figure 11, On and Jeong comment that it is “a unique
idea not found in regular patterns" and that it is “an ambiguous move in the center
not directly responding to Black’s low flying move". In view of the fact that, more
frequently, humans would play 3-3 point to protect the corner, or push down Black

1This game was played at 12:06:51 on December 30, 2016 at the web site called Tygem. In
DeepMind’s homepage, it is uploaded as a game with Liu Yuhang, professional 1 dan, China.
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more aggressively by diagonal move or knight’s move, it is understandable why On
and Jeong characterize the move as “an ambiguous move in the center". However, if
the evaluation involved in the word “ambiguous" has the implication that it should
be criticized because it is neither an attack nor a defense, it could be a somewhat
hasty judgment. For, it is highly likely that such an ambiguity was intended with
full consciousness. Insofar as we need to assess the whole situation on the board by
evaluating the value of the move with perceptive attention to the arrangements of
other stones, there is definitely an aspect of the ambiguity of the move that would
make the opponent harder to respond.

Figure 2. AlphaGo (White) vs. Liu Yuhang (Black) (∼75, numbers displayed for
61∼75)

At the time of Black 75 in figure 2, White’s influence is overwhelming. If so,
White’s sacrificial strategy, which allowed the double pincer and the enclosure by
knight’s move at the left bottom corner, turns out to be very effective. From Black’s
point of view, it is necessary to check White’s influence and to get a huge territory
on the right side at the same time. But the problem seems to be that no matter
what happens it is almost impossible to pay komi. Black 75 reveals Black’s problem
rather vividly. If it were not for White 34 (in figure 1), Black would have made
a decision as to which area should be more emphasized at a much earlier stage:
the right top corner or the right bottom corner. After having failed to make such
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a decision in timely fashion, Black has to play reluctantly such a move as Black
75, which seems to aim at connecting the allies in right top corner and the right
bottom corner. It is also clear that White 34, which is placed closer to the center
than the conventional moves pressing the Black’s group at the right bottom corner,
contributes to maximize White’s influence stemming from the left top corner to the
center by assisting it from the opposite side.

Another example of (3) On and Jeong cite is White 36 in figure 32 They write:
“It would be hard to find real examples of this move in actual games of professional
players, since moves like this one in the given situation are not just bad but almost
meaningless".

Figure 3. AlphaGo (White) vs Tang Weixing (Black) (∼36, numbers displayed for
22∼36)

Tang Weixing resigned at White 186. But the game was irrevocably leaning
toward White at the time of White 66 in figure 4. As an effect of attaching move
of White 36, White got a huge territory on the left side. White’s solid territory
on the left side and the left top corner is more than 30 points. Further, White
in the bottom side and the right bottom corner has rather a thick shape, if not a
remarkable influence. On the other hand, Black cannot be proud of territory or

2White: Master 9P, Black: Tang Weixing 9P, 2016-12-31 21:18:19
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influence. In retrospect, Black 37 was an over play that determined the destiny of
the game once and for all. In playing this protesting hane, Tang did not realize that
White 36 was a brilliant strategic move based on deep thought.

Figure 4. AlphaGo (White) vs Tang Weixing (Black) (∼68, numbers displayed for
36∼68)

Even at a casual look, On and Jeong’s classification betrays a weakness that
it mixes up different layers. For (1), (2), and (4) are items in terms of moves of
particular patterns, while (3) and (5) are items that can be captured by the evalu-
ation according to the characteristics of the moves at hand on a higher level. The
most troubling substantial problem is, however, that they focus on moves rarely
found in games played by humans only by observing the similarities in shapes with-
out examining why a move of certain pattern was chosen in which specific phase
and situation, without full appreciation of the non-monotonic logical character of
Baduk. Our criticism can be further substantiated in two respects. First, the mu-
tual dependence between the assessment of the game and the choice of moves was
completely ignored. Even though the same moves can have different meaning and
values depending on whether the game is leaning toward one side or quite close, such
connection between the assessment of the game and the choice of move is unduly
ignored. Second, they consider only the choice of single, independent moves without
considering the higher order problem of selecting the sequence of moves such as the
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choice of strategies or tactics. For example, unless one presupposes the context of
sacrificial strategy, the choice of allowing many stones to be killed might appear
strange and incomprehensible.

2 The Relationship between the Assessment of Games
and the Choice of Moves

The two examples, which were categorized as non-standard moves of AlphaGo and
cited above, are from AlphaGo’s on-line games with top players in Japan, Taiwan,
China, and Korea. Since Fan Hui’s commentaries on these games have not been
published, it is difficult to be sure about under what assessment of the game those
moves were played by AlphaGo. However, these examples provide us with a point
of departure for raising the following meaningful questions.

When AlphaGo is leading the game, what tendency does she show in making
decisions? Does she try to fortify her lead in territory? Or does she try to minimize
the risk insofar as she keeps the lead? Since AlphaGo won almost all games against
humans, there are more than enough examples. Of course, there must be a winner
and loser even in her self-play games. So, the appropriate examples belonging to
this category can in principle be found in them too, though they are extremely close
games.

On the other hand, when AlphaGo’s status is inferior, what tendency in her
choice of moves is revealed? Does she prefer to play the strongest moves in order
to make up? Or, does she patiently wait for the chance by trying to decrease the
gap? It would be more difficult to find examples of this kind. For, there is almost no
such example in AlphaGo’s games against humans, and AlphaGo’s self-play games
are mostly quite close. Below, we will examine the situation in AlphaGo’s third
self-play game, where balance is destroyed and win rate is leaning toward one side.

Ultimately, we will present a working hypothesis that AlphaGo tends to play the
most creative moves that look strange and unfamiliar to humans when the status
of the game has not been leaning toward to one player. In arguing for such a
hypothesis, our focus will be laid on what kind of creative moves AlphaGo play in
a dilemma-like situation where she is forced to make a tough decision.

2.1 When AlphaGo is leading the game

As a nice example of the case where AlphaGo chose a thick and safe move that
confirms her lead, we may cite the two such moves in the first game in AlphaGo vs.
Lee Sedol challenge match [9, 32, 40].
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Figure 5. AlphaGo (White) vs. Lee Sedol (Black) (∼80, numbers displayed for
76∼80)

Here is Fan Hui’s impression of some such moves of AlphaGo:

“. . .When I saw AlphaGo’s response at 80, I wrote down in my notebook:
Statement of victory!... At this point, AlphaGo showed a 74% win rate,
confirming my impressions. Apparently, AlphaGo thought that move 79
was not the best, preferring diagram 13 instead” [11].

The majority opinion among professional players in Korea coincides with that
of ours in that White 80 is viewed as a move that can be played only when one is
quite convinced of winning the game. However, there is a subtle difference among
the commentators regarding whether such an assessment is correct. For example,
Shin Jinseo, professional 5 dan, expressed his view as follows:

“Shin Jinseo said that the right move, even for AlphaGo, would be the
knight move at the right top corner. According to the common sense,
that is right. But we should be aware of the fact that AlphaGo was
guarding against any possible danger in order to raise the win rate” [16,
p. 133].

Somewhat similar view as this is also found in the following report:
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“In fact, White 80 shocked the professional players who were examin-
ing the game together. There was an evaluation that “If White loses,
this must be losing move.... There is no hurry to play White 80. It
is indeed difficult for humans how to judge it. Nevertheless, AlphaGo
never hesitated in choosing to play White 80. She must have finished
the calculation for the ultimate result of the game. The calculation of
the machine, which is different from humans’ intuition” [39, pp. 48-49].

One interesting point is that Black 77 was identified as to blame for allowing
such a move as White 80 that confirms the sure lead. Further, according to a
promising examination, Black 77 was analyzed as highly likely resulting from a
wrong assessment of the game. For example, Korean National Team thinks that
Black 77 should have been a forcing move peeping at the tiger’s mouth [16, p. 128].
A bit more severe criticism is found in Kim Yeong Sam, 9 dan professional player:

“Kim Yeong Sam 9 dan disliked Black 77. . . Black 77 is a kind of move
that announces one’s own victory. Is Lee Sedol optimistic about the
game as favorable to Black? Is there really some problem in Lee Sedol
in the capability of assessing the games?” [39, p. 47].

White 116 in the same game (figure 6) provides us with a bit more certain
example than White 80. The fact that the win rate of White was raised enormously
at this scene seems to make it more plausible that AlphaGo chose White 116 as a
thick move that would insure the victory. Fan Hui’s comment is also consistent with
our interpretation: “When AlphaGo took the 3-3 point at 116, its win rate rose to
82%. A value this high means AlphaGo already considers the game won, even if the
absolute difference is small" [11].

It is somewhat surprising that the majority of professional players in Korea
assessed the situation in opposite fashion, even when AlphaGo’s win rate was raised
up to 82%. Yang [39] witnesses well the majority view at this situation assessed
the game as favorable to Black: “[Until Black 115] the general opinion was leaning
toward Black". However, there was a different point of view too. Park Yeong
Hoon 9 dan was the typical case. He is respected for his superior ability in the
assessment of the game and calculation, possibly the best after the legendary Lee
Changho. Park was examining the game together with his colleagues in a study
room, and the conclusion was that “I do not know whether Black is leading the
game" [39, pp. 58-59]. It is surprising to know that it was only one person, i.e.,
Park, who raised an objection to the majority view. Equally surprising is that his
objection was expressed in such a cautious way, possibly considering the atmosphere.
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Though Kam [15] resolutely judges the situation as favorable to White, he is also
very cautious in phrasing:

“Locally, there is no loss for Black. However, White not only secured the
life of a large group but also exploited fully the sente by defending the
right bottom corner, which was then the best in terms of territory. As
result, the game is favorable to White, however slightly” [15, p. 142].

It is highly suggestive that all this assessment was made in the situation where
AlphaGo’s win rate in her self-assessment was 82%.

Figure 6. AlphaGo (White) vs. Lee Sedol (Black) (∼116, numbers displayed for
109∼116)

2.2 When AlphaGo is falling behind
Above all, we need to point out that it is almost impossible to find examples in
which AlphaGo was in inferior status throughout her games with human players.
As a result, we have to find pertinent examples from AlphaGo’s self-play games.
However, here is also a hurdle. Even when the games ended with resignation, it
seems that most of them were quite close games in which the balance between
Black and White was sustained continuously. Now we realize that at this moment
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AlphaGo’s three self-play games with Fan Hui’s commentaries have utmost values.
Furthermore, we can see that among the three games, the third game is the one we
have been looking for. For, in this game, one player’s win rate arrives up to 80%.

Figure 7. The 3rd AlphaGo vs. AlphaGo (∼168, numbers displayed for 139∼168)

According to Fan Hui, at the time of 142 (figure 7), White’s win rate was raised
to 65%. “Black 153 is an absolute loss, probably a reflection of Black’s desperation.
161 is the last real try for a comeback, but White refutes it with the tesuji of 162. . .
By move 168, White’s win rate has arisen to 80%. Black has no chance of victory"
[10]. Unless White responds with White 154 to Black 153, the whole group in the
right bottom corner would be dead. Therefore, Black 153 secures sente. As long as
we confine our interest on the right bottom corner, since there is no difficulty for
White to be safe by responding by White 154, playing the enforcing move Black
153 seems an unnecessary loss. Isn’t it, then, merely a tricky play expecting the
opponent’s confusion and mistakes? Probably AlphaGo would not attempt such
a tricky play. So, we should understand the sacrificial move of Black 153, which
swallows an apparent loss, as Fan Hui seems to believe, as the first step for “the last
real try for a comeback" in order to separate by Black 161 the few White stones in
the right side from both the White’s group in the right bottom corner and that in
the center. However, thanks to the nice move of White 152, the six stones of White
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in the right side can be connected to White’s group in the center by appealing to
the paired move aiming at the tiger’s mouth. Here is the need to examine carefully
whether there is any common characteristic or pattern whenever AlphaGo attempts
do-or-die moves in situations when she is desperately in the inferior status.

2.3 When the Game is close
2.3.1 AlphaGo’s Third Self-Play Game3

As noted above, since AlphaGo’s self-play games tend to sustain balance between
Black and White throughout the entire games, the instances that explicitly mention
the win rates revealing the assessments of the players in Fan Hui’s commentary are
comparatively rare compared to the games between AlphaGo and humans. In Fan
Hui’s commentary on AlphaGo’s third self-play game, at least five times such an
explicit note on the win rate is found. For that reason, this game has a special value
as a truly exceptional case. In particular, from this game one can see not only the
process of changing situation from balanced status to situations in which one player
becomes enjoying the superior status, but also how both winning and losing players
select their moves once the balance is destroyed.

Figure 8. The 3rd AlphaGo vs. AlphaGo (∼99, numbers displayed for 70∼99)
3Unlike the previous two games that were played with the speed of one move within five seconds,

the third game was played with speed of one or two minutes per move. (Fan Hui’s comments
available only on-line.)
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Another notably important fact is that, in most of the game between AlphaGo
and humans, the balance between Black and White was completely destroyed around
the 100th move. Further, again in many of them, even around at 50th move, one
player took the definite lead. In view of all this, it is remarkable that, in AlphaGo’s
third self-play game with Fan Hui’s commentary, there is a tight balance between
Black and White from the 70th to 97th move (figure 8). Let us turn to Fan Hui’s
commentary.

“Against White 70, Black takes an extremely direct approach. Black first
plays the forcing moves at 71 and 73, then connects up the left side, and
finally plays a reducing move at 83, aiming to make White’s center over
concentrated. Although the aim is clear, most players could not tolerate
the crudeness of the sequence of the left side. Up to here, this game
conveys the feeling that White is playing with masterful lightness, while
Black is being dragged around the board. Gu Li and Zhou Ruiyang felt
this to such an extent that they declared the game “totally one-sided,"
almost as if White were playing by itself. Yet AlphaGo’s own calm-
minded assessment, White has a win rate of just 51.5%, a lead by only
the slimmest of margins” [10].

Figure 9. The 3rd AlphaGo vs. AlphaGo (∼133, numbers displayed for 99∼133)
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Even at the time of the moves between 99-133 (figure 9), the balance of the game
was not yet destroyed. As we can see from the following quotation, the status of the
game was not leaning toward Black or White in such a way that Fan Hui counted
the small increase of Black’s win rate of 56% as a remarkable change:

“Through 106, a trade has developed, and the outlook has reversed:
Black’s win rate now stands at 56%. In other words, Black believes that
the fight in the middle has been a success. However, this judgment is
predicated on Black’s ability to further harass White in the center. We
will investigate this assumption soon. . .White 126 is a very strange move,
and incurs a definite loss of territory. Before this move, connecting at A
may have influenced the status of Black’s group, but once White provokes
127, the connection becomes completely gote. AlphaGo may like to play
the clearest variations, but this move must be called a mistake. Through
Black 133, Black’s win rate stands at 53%” [10].

And, finally, crucial moment has arrived. At the scene from moves 133 to 139
(figure 10) covering only seven moves, there comes a radical change.

Figure 10. The 3rd AlphaGo vs. AlphaGo (∼139, numbers displayed for 133∼139)
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Fan Hui’s comments vividly expresses and conveys the tension at this scene:

“The game has entered a stage of extreme suspense. When Black jumps
to 133, Black believes that White will be overwhelmed trying to balance
the middle and the right side. More precisely, Black thinks both sides are
in danger of dying, and this is the reason behind the splitting move at
133. White also believes that the situation is difficult, but when White
hanes at 136, the win rate begins to shift, as though both sides failed to
foresee this move. After White plays kosumi at 138, Black has nothing
better than the atari at 139! The two pressing questions are: why didn’t
Black push and cut at A? And why does White appear to give away
points with the hane at 136?” [10]

Gu Li and other professional players, after having examined the extremely com-
plicated numerous variations confirmed that there would no good results to Black if
it had played the cutting move at A. Fan Hui continues to comment:

“In light of the above variation, Black ultimately chose to Atari at 139
and this was the point of no return. (See figure 7 ) Thanks to White’s
extra stone at 140, the kosumi at 142 manages to connect up the whole
center. This is a huge loss for Black! Both sides understand the situation
now, and White’s win rate shoot up to 65%. Black 153 is an absolute
loss, probably a reflection of Black’s desperation. 161 is the last real try
for a comeback, but White refutes it with the tesuji of 162. See diagram
27. By move 168, White’s win rate has risen to 80%. Black has no
chance of victory” [10] (figure number added).

2.3.2 AlphaGo’s First Self-Play Game

In Fan Hui’s commentary on AlphaGo’s first self-play game, we find also three scenes
with explicit win rate (%). Overall, we can find here the example of the changing
win rate from 50% to 60%.
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Figure 11. The 1st AlphaGo vs. AlphaGo (∼68, numbers displayed for 41∼68)

Figure 12. The 1st AlphaGo vs. AlphaGo (∼97, numbers displayed for 82∼97)

123



Park, Kim, Kim and Kim

“When Black extends at 51, AlphaGo assesses Black’s win rate at 50%:
a completely balanced game. . . After Black sacrifices the two stones at
55 and 57 in return for the kosumi at 63, Black’s win rate rises to 52%”.

“Black plays a double ladder breaker at 87, and White hangs tough with
88, Black runs out on the left at 89. Here, Black’s win rate reaches 60%!
It is clear that Black holds the advantage in this fight” [10].

2.4 Tentative Conclusions
Let us summarize what can be counted as tentative conclusions. AlphaGo chooses
very thick moves as if she confirms and celebrates her victory when her win rate
is extremely high (approximately when it is higher than 75%) AlphaGo often plays
some strange moves when the opponent’s win rate is extremely high. Nevertheless,
there is room for counting them as the pursuit and the execution of somewhat
creative strategy rather than tricky play. In this sense, more careful analysis of the
exact timing and the method of AlphaGo in her launching a do-or-die gambling move.
The situations when the balance between Black and White has not been completely
destroyed (i.e., the win rate is lower than 60%) can be divided into two different
categories: (1) there is still a balance even in the middle game, and (2) when it is too
early in the opening phase of the game to judge which party is winning. In the former
cases (for example, when there is balance when the game is at between 50th to 150th
move), AlphaGo attempts a variety of strategies constantly trying to take the lead.
Also, in the latter cases, AlphaGo prefers the moves that counter the opponent’s
intention or the moves that could be highly likely surprising and unexpected to the
opponent. From this point of view, the widely studied and confirmed propensity of
AlphaGo in her decision making such as predilection of playing “shoulder hit” or
“invading the corner by playing at 3-3 point” in the opening phase of the game must
be the result of extensive prior study of DeepMind of modern patterns (joseki). This
conjecture is corroborated by the fact that AlphaGo already attempted some new
moves and patterns in connection with the some of the most famous and frequently
used patterns such as the Large Avalanche joseki, the Great Slant joseki, or the
Magic Sword joseki, most remarkable creative moves of AlphaGo must appear in
the situations when there is still balance between Black and White.

3 AlphaGo’s Strategic Decision Making
We criticized in section 1 above On and Jeong’s study of unconventional moves of
AlphaGo as filing to consider in what contexts they were played with what intention.
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In particular, we pinned down its serious limitations in two respects: (1) it ignored
the connection between the assessments of the game and the moves; and (2) it
treated only the problem of selecting single moves without considering the problem
of selecting a sequence of moves such as selecting a strategy. Since we discussed (1)
in section 2, here (in section 3) we discuss (2).

As one can surmise from the fact that it is seriously considered in so many
different fields of study, strategic reasoning looms large in many contexts. However,
what is a strategy? What is the logic of strategy? Even in game theory, which
has dominated all these problems in recent years, it is hard to secure an answer to
these ultimate questions. Not to mention the classical game theory, which aimed at
the highest mathematical abstraction, even in more recent trends like evolutionary
game theory or epistemic game theory, it is rare to find a serious effort to uncover
the essence of strategic reasoning. So, it is somewhat fortunate that logicians and
game theorists tend to collaborate more actively in recent years. Such a movement
is detected unmistakably in the birth of novel areas of study such as game logic or
strategy logic through the interaction between epistemic logic and game theory [e.g.
20, 27]. Nevertheless, there is an unbridgeable gap between the concept of strategy
in game theory and that of real games such as Baduk or chess.

Cudd [5] claims that game theory (as a part of rational choice theory) should be
distinguished from individual decision theory and social choice theory. According to
her, game theory is inspired by the following three ideas:

(1) the idea that rationality is utility maximization; (2) the idea that ra-
tional beliefs and rational expectations (that is, of utility) can be formal-
ized using probability theory; and (3) the idea that rational interaction,
or interaction among rational agents, is strategic [5, p. 102].

Unlike the first two of these three ideas, the third idea “distinguishes game theory
from individual decision theory”. She elaborates the idea as

That in order to act rationally in situations of interaction with other
rational agents one must act strategically [5, p. 103].

If Cudd is right, then the importance of the concept of strategy in game theory
cannot be too much emphasized. For, it is the differentia of game theory.

Curiously, however, the concept of strategy in game theory has never been se-
riously examined. In any standard textbook of game theory, of course, we can find
virtually the same definition of strategy. For example, Perea [23] defines a strategy
for a player i as “a complete plan of his choices throughout the game”:
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Definition 8.2.1 (Strategy)
A strategy for player i is a function si that assigns to each of his infor-
mation sets h ∈ Hi some available choice si(h) ∈Ci(h), unless h cannot
be reached due to some choice si(h′) at an earlier information set h′∈Hi.
In the latter case, no choice needs to be specified at h. [Perea (2012), p.
358]

What should be noted is that some such definition of strategy in game theory
might have been originated from von Neumann’s paper “On the Notion of Games of
Strategy” [35]. As Cudd reports, the first formal treatment of strategic games was
presented by von Neumann there:

Von Neumann formalized the notion of strategy by first reducing games
of chance, that is, games in which there is a risky event, to games of
pure strategy by calculating the expected outcome for each player and
for each possible outcome of the risky event. Then a strategy for each
player consists in a set of decisions that he makes, one action for each
possible decision point contingent upon the information that he has at
that point [5, p.121].

Virtually the same definition of strategy is found in the monumental book co-
authored by Von Neumann and Morgenstern published in 1944 [36]. In a sub-section
entitled “11.1. The Concept of a Strategy and Its Formalization”, we read:

Imagine now that each player k = 1, . . . , n, instead of making each
decision as the necessity for it arises, makes up his mind in advance for
all possible contingencies; i.e. that the player k begins to play with a
complete plan: a plan which specifies what choices he will make in every
possible situation, for every possible actual information which he may
possess at that moment in conformity with the pattern of information
which the rules of the game provide for him for that case. We call such
a plan a strategy [36, p. 79].

The problem with such a concept of strategy in game theory is that it is com-
pletely free from the reasoning about the opponent. For it is interested in the gains
secured to the player even if he or she has no clue about the opponent’s choices.
This problem is still found even in evolutionary game theory or epistemic game the-
ory that evolved from classical game theory. Even though the interaction between
epistemic logic and game theory became rather active around 1990, as the need to
consider some problems of epistemic logic such as opponent’s desire and belief, the
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hierarchy of beliefs, common belief and knowledge were appreciated, the weakness
of the concept of strategy has not been corrected in all these efforts based on the
mathematical approaches of game theory. As a consequence, such a problem en-
forced even the research group around Johan van Benthem [34], who has been the
leader in strategy logic or game logic to turn to cognitive science to revise the basic
approach [8].

Park [22], after having criticized the problems in the concept of strategy im-
plicitly assumed in game theory, and thereby in game logic or strategy logic, and
attempts to reestablish a concept of strategy” from the descriptive point of view of
the theories of war, whether it be that of Sun Tzu or Carl von Clausewitz. Based
on John Woods’ study [38] of the so-called CLM approach (Carl von Clausewitz,
Edward N. Luttwak, and Henry Minzberg) from the history of the theories of war,
a tentative desideratum for any good strategy (strategy∗) was suggested as follows:
as the CLM approach:

To sum up, we have found three desiderata for any strategy∗, i.e., any good
strategy, should satisfy.

1. It is not necessarily the case that a strategy is found in any game.

2. There must be an intriguing relationship between it and the tactics supporting
it.

3. It should be inconsistency-robust.

Park [21] wants to show ultimately that, if we apply this concept of strategy∗ to
Baduk, some examples of the most brilliant strategies in the history of Baduk can
be explained successfully. (1) is from the criticism of the fictional character of the
concept of strategy in game theory. (2) is aiming at eliminating the troubling cause
of understanding a strategy as merely a tactics writ large by mixing up strategies
and tactics without clearly distinguishing between them. Also, (3) is not only a
necessary requirement due to the sheer size of the information to be processed in
wars or Baduk games, but also making explicit the spirit of “Abandon small to save
big” emphasized by both in Warcraft and Baduk.

As a representative example of such a strategy∗, Park cites the game between
Honginbo Jowa and Inseki, played on December 2, 14, and 24, 1815.

What is remarkable in these two diagrams is that the two sacrificial tactics used
by Inseki early in the top side and later in the right bottom corner were organically
synthesized in such a way that a super large scale strategy governing the whole
board and building a backbone of the entire story of the game was executed.
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Apparently, at the time of White 106 in figure 13, despite the sacrificial play
performed at the top side, Black failed to block White’s group’s thrusting from the
top side to the center. Perhaps, for that reason, Jowa allowed Inseki to play another
sacrificial tactic at the right bottom corner. However, at the time of Black 143 in
figure 14, it turns out that Jowa underestimated the power of Inseki’s sacrificial play.
Although Inseki lost this game due to the counterattack starting with White 144 and
the subtle move of White 170, what Inseki showed us by this strategy suggests to us
a significant insight as to “what kind of a plan can be called a great strategy”. Park
[21] highlights the insight that we should ask “When is a strategy?” rather than
“What is a strategy?” as the most important lesson from applying the concepts of
strategy and tactics to this example. In this game, according to Park’s view, Inseki’s
strategy started at Black 105 and Black 143.

Figure 13. Honginbo Jowa vs. Inseki (∼128, numbers displayed for 101∼128)
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Let us apply such a concept of strategy to AlphaGo’s Baduk. The 27th of the
self-play games of AlphaGoMaster is a rare example of a large scale sacrificial play
that reminds us of the game between Jowa and Inseki discussed above. Figure 15
shows us that the entire group of White at the left top corner is dead at the time
of Black 57. Even at the time of Black 47, it was already virtually dead, other
things being equal. By the time of Black 57, the combat which started at the left
top corner is over, since the Black stones surrounding the group of Whites escaped
safely toward the bottom side.

Figure 14. Honginbo Jowa (White) vs. Inseki (Black) (∼144, numbers displayed
for 129∼144)
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Figure 15. The 27th AlphaGo vs. AlphaGo (1∼57)

However, if we examine the situation starting with White 58 and developed to
figure 16, it is not the case that White gave up the huge group on the left top corner
without any compensation. Rather, White seems to develop a grand scale sacrificial
strategy.
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Figure 16. The 27th AlphaGo vs. AlphaGo (∼70, numbers displayed for 57∼70)

Figure 17. The 27th AlphaGo vs. AlphaGo (∼80, numbers displayed for 70∼80)
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Indeed, such a hypothesis is confirmed to be almost actualized by the time of the
figure 17. Since this game consists of extremely complicated fights in which several
groups of Black and White are involved, we need exact and detailed examination
and analysis to arrive at a convincing conclusion. However, we seem to have enough
information for our purpose, i.e., understanding AlphaGo’s strategy. It is hard to
determine whether White had the grand scale sacrificial strategy of attacking the
group of Blacks at the right top corner by sacrificing the group of White at the left top
corner even at the outset, or White was forced to play moves securing compensation
as much as possible only after it got a huge loss at the left top corner, which can be
interpreted retrospectively as if White had a sacrificial strategy. However, except
for the problem of determining when such a large scale sacrificial strategy began
and ended, all the other elements that would constitute the necessary and sufficient
conditions for confirming the existence of a strategy∗ are clearly presented. It is not
necessary that all games exemplify a strategy∗. But this game already satisfied the
condition (1), for it contains enough strategic components to be called a strategy∗.
Also, the condition (3) for the existence of a strategy∗ is satisfied, for there was
a sacrificial operation, which by definition presupposes inconsistency-robustness.
Finally, the condition (2) is sufficiently satisfied. White was threatening Black to
escape the group of Blacks lying between the groups of White at the left top corner
and at the right top corner by connecting it with its allies at the left top corner.
In this process, a huge group of Blacks is surrounded, and White was executing a
grand scale sacrificial strategy by combining the sacrificial tactic used at the left top
corner and the tactical technique of attacking the group of Blacks at the top side.

It seems difficult to find examples of such a grand scale sacrificial strategy that
were planned initially and actually executed in the Baduk games played by humans.
For, the immediate loss could be too much to swallow. At the same time, however,
we cannot ignore the fact that, when for some reasons such as simple mistakes or
misjudgment one’s group has been captured, sacrificial strategy is a strategy that
naturally suggests itself as an option. In that sense, we cannot exclude the possi-
bility that, the cases of enforced sacrificial strategy might present more appropriate
examples for comparing human and AlphaGo’s Baduk than the cases of sacrificial
strategy set up when the game is close. From this perspective, the situation of the
end game of AlphaGoMaster’s third self-play game (figure 7) seems to present an
appropriate example.

Black 153 shown in figure 7, when assessed independently of the entire situation,
is certainly a loss that gives up one stone (Black 153) to White’s group in the right
bottom corner (which is alive, ceteris paribus) without any compensation. If such
a move appears in games played by humans, it could be counted as a move to earn
time. Or, it could be counted as a tricky play that expects the opponent to ignore
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(or bypass) the possibility that, for some reasons, if White does not respond to Black
153, then Black can capture the entire group of White in the right bottom corner.
In fact, some such moves to earn time or tricky plays are frequently found in games
between humans, especially in amateurs, when the fate of the game is apparently
leaning toward the opponent. Black 153 has been mentioned as an unusual move,
in that sense, for such a move that allows an obvious loss is rarely found in games
played by top level professional players. They instinctively avoid such moves. Also,
it is extremely rarely to find simple tricky plays in those highly advanced players. As
a consequence, there seems to be a necessity to reinterpret Black 153 as being backed
up by some legitimate and reasonable thought rather than as simple mistakes, tricky
moves, or moves to earn time.

4 Some Unique Features of AlphaGo’s Decision Making
in Terms of Her Mechanism

Before AlphaGo, the progress in computer Go was extremely slow, despite the sev-
eral decades’ effort. Even after chess was conquered by Deep Blue, it has been the
prevailing opinion that, due to the difference between Baduk and chess in the sheer
size of the possible moves, it would take at least several more decades for computer
Go programs to play at the level of professional Baduk players. Monte Carlo Search
was a landmark in that, by 2015, not only it upgraded computer Go one step fur-
ther rivaling the most advanced amateur Baduk players, but also prepared the way
toward the appearance of AlphaGo. Assuming that there is a gap (at least 2 or 3
handicap stones) between advanced amateurs and the professional Baduk players,
however, a long period of time seemed inevitable to see the true tournament between
computer Baduk and top human players. Therefore, AlphaGo’s one-sided (4:1) vic-
tory over Lee Sedol, who was the best player in the world for years, was indeed a
remarkable achievement of computer Baduk, a revolutionary event deserves to be
called “AlphaGo Shock". Then, wherein lies the crucial difference between AlphaGo
and the previous computer Go programs before AlphaGo?

The monumental paper of DeepMind AlphaGo team, published in January 2016
in Nature, provides us with an ample explanation of how AlphaGo is constituted
and how it works [24]. AlphaGo consists of basically the three components: (1)
policy networks, (2) value network, and (3) Monte Carlo Tree Search (MCTS). The
algorithm used in computer Go prior to AlphaGo was based on MCTS and the pol-
icy function learned from the behaviors of human players [e.g. 17]. On the other
hand, what is new in AlphaGo can be found in that AlphaGo exploits extensively
reinforcement learning [e.g. 30], and uses DNN (Deep Neural Network) in policy
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function and value function. In effect, the reason why AlphaGo is distinguished
can be found in the efficient combination of its components, i.e., supervised learn-
ing, reinforcement learning, value function, and MCTS. Let us see how DeepMind
AlphaGo team views the matter in the first Nature paper.

According to DeepMind, AlphaGo evaluated thousand times fewer positions in
her game against Fan Hui than Deep Blue did in its match against Kasparov:

“compensating by selecting those positions more intelligently, using the
policy network, and evaluating them more precisely, using the value net-
work – an approach that is perhaps closer to how humans play" [24, p.
489] (Emphases added)

The most interesting parts in the quote are italicized, for, as will be made clearer
below, these suggest a very useful perspective to understand the roles and functions
of policy networks and the value network. Here, let it suffice to note that such a
perspective that counts “what is more intelligent" as “what is closer to how humans
play" will be a very important point of reference in discussing the similarities and
differences between human decision making and AlphaGo’s decision making.

Before the monumental challenge match with Lee Sedol, AlphaGo played 5 offi-
cial games and a few more informal games with Fan Hui, who is a professional 2 dan
player. Though Fan Hui lost all five official games, he managed to win a couple of
games in unofficial games against AlphaGo. The game records used by DeepMind’s
groundbreaking article published in Nature were from one of those unofficial games
between Fan Hui and AlphaGo.

What is most shocking is that there is a dazzling contrast between the policy
network and the value network. In the policy network shown in figure 18(a), the
focus is on the move that scored 60 and the move scored 35. For, all the other moves
scored less than 1. AlphaGo’s judgment that humans prefer the former move to the
latter move seems correct. It could be the case that most Baduk players, including
the advanced ones, would play the former move without serious consideration. The
move not only guarantees ample territory but also promises to secure sente. For,
Black can capture two White stones by ladder, unless White responds to Black’s
move that scored 60. Even if one considers the invading move in the right bottom
corner that scored 35, it would rarely be executed, since it is not so attractive. For,
as shown in figure 19, though it is a quite nice move destroying White’s territory in
the right bottom corner, it is not a fatal move threatening White’s group. There is
even a worry due the uncertainty involved in case White counterattacks by thrusting
a wedging move, which was in fact the choice Fan Hui made in the actual game.
Now, we can see that in the value network shown in figure 18(b) the invading move
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in the right bottom corner got the highest score 54, and there are many other moves
that scored 50, while the hane move in the bottom side got extremely low evaluation
even failing to get serious consideration.

(a) (b)

Figure 18. (a) Policy network (b) Value network (modified from figure 5(a, d) in
[24])

I would like to draw the readers’ attention to the fact that this scene is one of
the cases where a very serious problem of choice was given to AlphaGo at the early
phase (around 30th move) of the game. The balance between Black and White
has not yet been destroyed, and there are several nice moves one might want to
play, whether they be beneficial for better opening strategy or vital for forthcoming
battles. Humans would prefer moves that guarantee the moves that promise sure
territorial advantage as well as securing sente so that they could move on to the re-
maining good positions. Of course, AlphaGo also understand all this. Nevertheless,
AlphaGo selected a move the outcome of which is relatively uncertain compared to
the move humans prefer. How are we to explain this interesting decision? Let us
remember that, in view of the discussion above, this scene is an example of a case
where AlphaGo is facing a difficult problem of choice in a situation where there is still
a balance between Black and White. In other words, this scene does not represent
a situation where one should consider the moves that would sustain one’s superior
status or a situation where one should consider challenging moves to change one’s
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inferior status drastically. Above, we also pointed out that there is the best chance
for AlphaGo to play creative moves when there is still a balance between Black and
White. Let us emphasize the point that here “creative moves" does not refer to
the strange moves in the sense that playing such a move is not easy for them even
when they have the superior status, or the strange moves in the sense that human
would never choose such a move when they have absolutely inferior status, for that
would apparently result unnecessary losses. AlphaGo’s move in this situation is an
unfamiliar, strange, creative move in the sense that it is not only a kind of a move
that would allow AlphaGo to take the lead in a balanced situation but also that a
kind of a move that it is not easy for humans to play.

Figure 19. A variation reference to figure 18 (modified from figure 5(f) in [24])

Figure 19 shows what AlphaGo’s anticipation of the variation resulting from
Black’s move destroying White’s moyo in the right bottom corner. When compared
with the variation expected from the hane move on the bottom side, their difference
becomes salient. And, we can agree that AlphaGo’s choice was correct. The situation
that would follow from the hane move enforcing 3 and 5 in figure 19, which would
usually be preferred by humans, is almost similar to that of figure 19, except for
the shape of right bottom corner. But the difference is overwhelmingly huge, and,
as there is such a difference, the latter, i.e., choosing to destroy White’s moyo in
the right bottom corner, as AlphaGo did, is more favorable to Black. In the former
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case, everything is exactly the same, except for the fact that there is no more room
for playing the move, marked by O, that would destroy White’s moyo in the right
bottom corner. For, if O is played, since White has built a great wall by 3 and
5, all black stones conscripted to destroy White’s moyo in the right bottom corner
would be captured by White’s splitting move. On the other hand, if Black takes the
subsequent sequence of moves, after having played O first, as in figure 19, enforcing
White’s best reply on White 1, Black already successfully reduces White’s territory
in the right bottom corner. Further, even if two Black stones are captured by White’s
splitting move, it would be favorable to Black in as much as it has enforced White
to invest one more move by White 1.

5 The Connection between AlphaGo’s Assessment of
the Game and her Unconventional Moves in Terms of
Prospect Theory

For a long time, expected utility theory has been accepted widely as the model for
human decision making [12, p. 1; 3, p. 5]. However, expected utility theory was
severely attacked by prospect theory suggested by Kahneman and Tversky [14, 33].
This challenge from experimental psychology shows that the classical decision theory
is not adequate either as a descriptive theory or as a normative theory of human
decision making. For, Kahneman and Tversky show once and for all that some of the
fundamental axioms of classical decision theory, for example, the assumption that
human preference is transitive, are often violated by humans. Curiously, as Thagard
and Millgram acutely point out, in spite of such a refutation by prospect theory the
classical decision theory based on expected utility theory is still a foundation stone
in economics [31].

Now, after briefly summarizing the basic tenets of prospect theory, we would
like to confirm the results regarding the mechanism of AlphaGo’s decision making
in the previous sections by some further concrete examples in terms of prospect
theory. For, all these results betray somewhat unexpectedly similarity with some
basic tenets of prospect theory.

5.1 Prospect Theory as a mechanism of human decision making
As we saw above, there are two core components that make the backbone of Google
DeepMind’s AlphaGo: policy networks and a value network. The policy networks
provide guidance regarding which action to choose next, while the value network
provides the estimate of the value of the current state of the game. Here, the policy
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networks are essentially neural networks trained using the professional Go players’
data. This is based on the premise that human Go players make the best possible
rational choices and that AlphaGo can do the same by learning from the human
rationality. This imposes an utmost importance on scrutinizing the problem of
human decision making.

The human decision making has long been explained by the expected utility the-
ory which assumes that all reasonable people would make rational choices based on
the product of expected outcome and probability. Although the domain of rational
choices is not limited to any particular class of consequences, it has long been ac-
cepted as a normative model of economic behavior. Let us consider the following
hypothetical choice problem.

A 80% chance to win $4000, 20% chance to win nothing.

B 100% chance to win $3000.

(phrases modified from [14])
According to the expected value theory, the utilities of outcomes are weighted

by their probabilities. Thus, since the expected utilities of A and B are 0.8 × 4000
= 3200 and 1.0 × 3000 = 3000 respectively, the theory suggests that any reasonable
person would choose A to pursue higher expected gain. However, when respon-
dents were asked to imagine the above choice problem and indicate the decision,
the majority preferred B over A. This experiment shows the typical ‘certainty effect’
that when faced with positive prospect choices, people overweight outcomes that are
considered certain, relative to outcomes which are merely probable.

However, when the positive prospects are replaced with negative values, that is,
the signs of the outcomes are reversed so that gains are now losses, the respondents’
preferences become the complete opposite. Named as the ‘reflection effect’, the
subjective expected value of prospects around 0 reverses as if the preferences are
forming the mirror image. For instance, let’s look at the following choice problem
which is basically A and B with negative signs.

C 80% chance to lose $4000, 20% chance to lose nothing.

D 100% chance to lose $3000.

(phrases modified from [14])
Again, according to the expected value theory, the expected utilities of outcomes

of C and D are –3200 and –3000 each, which makes it only rational for any reasonable
person to choose D in order to avoid higher loss. However, that was not the case
with actual respondents. In fact, over 90% of respondents chose C instead of going
with D showing a risk-seeking preference in order to avoid a smaller but certain loss.
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Based on these empirical effects and other findings which appear to invalidate
the expected utility theory, Kahneman and Tversky suggested the prospect theory
in 1979. They argued that people overweight the outcomes of certain events when
it comes to decision making and proposed the following propositions.

1. In the positive domain (gains), people show risk-aversion preference.

2. in the negative domain (losses), people show risk-seeking preference.

That is, people have a tendency to prefer a smaller but sure gain over a larger
gain that is merely probable in positive outcomes, while merely probable larger loss
is preferred over a smaller certain loss in negative domain.

This tendency is well depicted in the value function which maps each outcome
and its values. A hypothetical value function for changes of wealth depicted in the
figure indicates that the function is concave above the reference point and convex be-
low it. It implies that the value of gains increase in positive direction logarithmically,
shrinking the subjective gain (satisfaction) on the high outcomes, while similarly the
subjective sense of loss (dissatisfaction) on higher losses becomes relatively dull.

As we have seen from the prospect theory, the human decision making is better
explained by subjective value estimation rather than crude mathematical calcula-
tions. Now, it is worth noting that AlphaGo’s policy network was trained with
human Go data which is thousands of collected Go players’ choices that are bound
to be under the framework of prospect theory. Therefore, although AlphaGo’s deci-
sion making mechanism won’t be the same with that of professional Go players (or
any human being for that matter) since there are additional neural network compo-
nents that work in tandem such as the value network with reinforcement learning,
it is worth analyzing AlphaGo’s choice of moves in terms of prospect theory.

5.2 Understanding AlphaGo’s Decision Making in Terms of
Prospect Theory

We saw above that, according to prospect theory, humans show behavior of (1)
risk aversion preference in the positive domain (gains), while (2) risk-seeking in
the negative domain (losses). But we noted above in section 2 exactly the same
behavior in AlphaGo’s decision making. We exemplified the behavior of (1) by the
moves White 80 and White 116 in the first match between AlphaGoLee and Lee
Sedol (figure 5 and 6). Let us not forget the fact that the win rate of White at the
time of White 80 was 74%, and the win rate of White at the time of White 116 was
82%. It is evident that these moves clearly show the positive certainty effect, i.e.,
the preference to surely attainable positive result in prospect theory,
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As the example that clearly shows the behavior of (2) we suggested the moves
starting with Black 153 in the third self-play game of AlphaGoMaster (figure 7).
These moves nicely show the negative certainty effect, i.e., the aversion for the sure
losses in prospect theory.

By prospect theory, White 80 and White 116 in the first game between AlphaGo
and Lee Sedol (figure 5 and 6) can be interpreted beautifully as risk aversion in a
favorable situation. Also, by prospect theory, moves from Black 153 in the third
self-play game of AlphaGoMaster (figure 19) can be interpreted well as risk seeking.
Now, let us focus on the fact that these examples were identified by professional
players and the commentators as unconventional moves of AlphaGo differentiated
from peculiarly human moves. Why did they were believed to be unconventional
moves of AlphaGo differentiated from peculiarly human moves?

Whether it be as a descriptive theory or as a normative theory, the status of
expected utility theory was seriously challenged by prospect theory. In particular,
expected utility theory as a descriptive theory for human process of decision making
must be damaged severely. On the other hand, it may not have been too damaging
to expected utility theory as a normative theory for human decision making process,
even if humans actually make decisions in accordance with the model of prospect
theory rather than that of expected utility theory, still it would be possible to claim
that rational decision making must be made in terms of expected utility theory.

Given all this, what does it mean that AlphaGo shows behaviors in decision
making more akin to prospect theory than expected utility theory? The reason
why professional players and the commentators were so surprised by the so-called
unconventional moves of AlphaGo might be found in the fact that they were unable
to understand them from the point of view of the model of decision making based on
expected utility theory, which guarantees the rationality implicitly assumed by them.
In other words, since AlphaGo won Baduk games over humans, AlphaGo’s decisions
are rational in terms of expected utility theory, and this should be explainable by
expected utility theory. However, they had difficulties in providing us with some
such explanations as to the so-called unconventional moves of AlphaGo. If AlphaGo
exploits the model of decision making based on prospect theory, and if the winner’s
model of decision making is surely securing rationality, the only possible conclusion
seems to be that prospect theory, both as a descriptive and as a normative theory,
is the decision-making model of AlphaGo. In the following section, we shall discuss
this important central problem in more detailed and systematic fashion. Here, prior
to such a discussion, we shall examine a few cases so that we may fathom to what
extent AlphaGo’s decision making behaviors can be explainable and understandable
in terms of prospect theory.
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5.3 Case 1: White 34 in AlphaGo’s Third Self-Play Game
Fan Hui’s comments indicate clearly that White 34 in figure 20 is an unfamiliar
move hard to see in human players’ games:

“Here, Black and White have reached an agreement of sorts. Black
hanes on the outside, and White hanes and extends at 32 for a very
comfortable position. However, just as we were thinking White would
be satisfied with the extension at A, White pleasantly surprised us by
invading directly at 34! Could it be that AlphaGo does not understand
the importance of a hane at the head of two stones? Truly, AlphaGo
never ceases to amaze. One would never find a tenuki like this in a game
between professionals. What will happen if Black plays the hane now?
See figure 21” [10].

Figure 20. The 3rd AlphaGo vs. AlphaGo (∼34, numbers displayed for 28∼34)

Regarding the variation in figure 21, Fan Hui continues to explain:

“When Black hanes at the head of two stones, White must hane in return,
and Black’s double hane looks very comfortable. But if we look closer,
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are Black’s profits actually that significant? White is alive with territory,
and the aji of the cutting points diminishes Black’s advantages in the
middle. Furthermore, White has already invaded at the bottom. Has
Black truly profited? Despite this, Zhou Ruiyang emphasized strongly,
“If it were me, I would have extended." Wrong or right, AlphaGo has once
again opened our minds to a new perspective. Perhaps we really can play
this way. One thing that becomes obvious from Fan Hui’s comments is
that, even when they find AlphaGo’s unconventional moves reasonable,
top human players are still reluctant to accept them by heart" [10].

Figure 21. A variation reference to figure 20

What becomes clear from Fan Hui’s commentary here is that top human play-
ers of Baduk show strong aversion to accept AlphaGo’s unconventional moves even
after having understood their cogency. Why? Which, among the rival theories, i.e.,
expected utility theory and prospect theory, provides us with a better explanation
of the aversion of professional players? Since the situation is still in the early phase
of the game, it seems rather difficult to claim that prospect theory is better than ex-
pected utility theory for explanation. It seems prudent and appropriate to focus on
the possibility that humans’ thinking, especially in the professional players, is gov-
erned unconsciously by expected utility theory. Above all, Fan Hui, by his question
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“Are Black’s profits actually that significant?" shows inadvertently that all Baduk
player might in fact assume that judging profits and losses is the essential element
in decision making. Of course, we should leave open the problem of determining
whether there is any dependence between the contemporary scientific theories and
the theories of Baduk as a future agenda. However, please note the fact that most
of the introductory Baduk textbooks explain the reason why we proceed from the
corner and move on to the sides, and then to the center part of the board in the
opening phase on the ground that we can efficiently occupy more territory by us-
ing a fewer number of moves in the order of corner, side, and the center, This fact
indicates the possibility that expected utility’s prolonged dominance as the model
of human decision making might explain why the ideas tantamount to the axioms
of expected utility theory have played the role of norms or regulative ideals in the
decision making of Baduk players [4, p. 7-13; 13, p. 173]. Also, Zhou Ruiyang’s
repeated expression of aversion and reluctance by uttering “If it were me, I would
have extended." could be understood as confessing the difficulties involved in the re-
jection of a well-entrenched belief on a familiar shape such as hane at the head of two
stones from the repeated inductive evidence throughout his career as a professional
Baduk player by a single counter-example.

5.4 Case 2: Black 13 in AlphaGo’s First Self-Play Game

Figure 22. The 1st AlphaGo vs. AlphaGo (∼13)
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For this example, Fan Hui’s commentary again represents exactly how humans
feel: “... Black 13 struck Gu Li and Zhou Ruiyang as highly unusual. They wondered,
“Will this be enough?" A professional would normally block at A". The obsessive
prejudice that such a lenient move would not lead us to victory make us avoid the
moves like Black 13 almost instinctively.

Gu Li and Zhou Ruiyang’s question “Will this be enough?" suggests a possi-
bility that expected utility theory and prospect theory may be working together
complementing each other unconsciously in their decision making. For, the complex
question “Will this be enough?" expresses implicitly that even though we should se-
lect moves based on exact judgment on the profits and losses that would be resulted
by a sequence of moves in accordance with the model of expected utility theory, we
may sometimes, depending on the situation, i.e., in case where we would be surely
leading the game even if we swallow a certain amount of loss, follow prospect the-
ory. Since prospect theory may not be widely known among Baduk players, as is
expected utility theory, the fact that Baduk lovers can be sympathetic with Gu Li
and Zhou Ruiyang’s question seems to corroborate the point that the basic idea,
which is tantamount to prospect theory, has been also accepted by Baduk players
as a part of common sense.

What one may find more frequently in such a situation is shown in figure 23 by
Fan Hui:

“This is one common line of play. Black gains outside influence, while
White lives in the corner in sente. White concludes by extending at
12. Generally speaking, while most professionals would slightly prefer
this fast-paced opening for White, few would be willing to accept such a
simple result for Black as the game line” [10].

Fan Hui’s expectation regarding professional players’ disposition has a point,
though we do not have any statistical evidence. It is extremely difficult to change
such a well-entrenched disposition, which has become almost instincts. This cer-
tainly provides us with intriguing clue for the future research in formal epistemology
on the belief revision in Baduk.
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Figure 23. A variation reference to figure 22

5.5 Case 3: White 30 in AlphaGo’s First self-play Game

White 30 in figure 24 shows a shape similar to Black 13 in the Case 2 (figure 22).
In both cases, White plays a somewhat defensive safe move when it can cut the
opponents group into two parts. Due to the entirely different arrangements of the
other stones in the neighborhood, however, White 30 looks more surprising. What
could be troublesome in Case 2 is that Black’s moyo is too wide. On the other
hand, the problem is that the Black’s moyo is too close to White’s group so that
the appearance of White’s group resulting from White 30 is too stingy. Fan Hui
expresses well the astonishment regarding this move as follows:

“Although a few rare moves have appeared so far, all of them are un-
derstandable. After seeing White’s turn at 30, however, our shock was
palpable. This move is so defensive! No human would play like this!
White’s playing style looks extremely cautious. Why not the hane?"
[10].
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Figure 24. The 1st AlphaGo vs. AlphaGo (∼30, numbers displayed for 21∼30)

Figure 25. A variation reference to figure 24
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As an answer to the question, Fan Hui suggests the following comments:

“If White were to hane, the ensuing position would resemble figure 25.
Black’s bump at 14 is a smart, pragmatic way to fix the shape. White’s
formation on the right looks good, but on closer examination, it becomes
apparent that Black is not only doing fine on points, but is also very thick.
Is this variation actually good for White? With this analysis, we began to
understand White’s reasoning, but Gu Li and Zhou Ruiyang emphasized
that this would be a very difficult prescription for professional players to
swallow" [10].

Why did Gu Li and Zhou Ruiyang think that it would be a very difficult pre-
scription for professional players to swallow? If humans choose moves in accordance
with the model of expected utility theory, insofar as they understand and accept the
result of figure 25, there would be no difficulty at all to make the same decision as
that of AlphaGo. For, just as usual, all they have to do is to follow the calculation
on expected utility and proceed as in figure 25. Therefore, it could be the case that
Gu Li and Zhou Ruiyang implicitly have claimed that humans do not choose moves
in accordance with the model of expected utility theory.

Then, could this example allow better explanation by prospect theory? Not
necessarily! Though White 30 in Case 3 (figure 24) is not the move as a result
of exact calculation of gain and loss in terms of expected utility theory, it is so
difficult to view it as a result of being convinced that White has a superior status
in accordance with prospect theory. It seems much more persuasive to explain it by
appealing to a folk psychology that the move is too defensive and narrow minded to
play.

5.6 Prospect Theory and the Operating Principles of AlphaGo

Above we claimed that the process of AlphaGo’s decision making is remarkably
similar to the model of decision making in prospect theory. If such a similarity is not
merely a coincidence, and if DeepMind AlphaGo Team in fact set up the constituting
and Operating principles of AlphaGo a la prospect theory, the implication and the
possible effect would be far-reaching. Of course, DeepMind AlphaGo Team never
made such an announcement. Nor the value of our claim would become different
depending on such a testimony. However, it is not a trivial point that not only the
decision making model following the prospect theory provides us with an excellent
perspective for interpreting AlphaGo’s Baduk games but there is also a structural
similarity between such a model and the principles of constitution and operation
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of AlphaGo. For, in Kahneman and Tversky’s 1979 paper we find the following
remarks:

“Prospect theory distinguishes two phases in the choice process: an early
phase of editing and a subsequent phase of evaluation. The editing phase
consists of a preliminary analysis of the offered prospects, which often
yields a simpler representation of these prospects. In the second phase,
the edited prospects are evaluated and the prospect of highest value is
chosen" [14, p. 274].

We saw above that the efficient combination of the two neural networks, i.e.,
the policy networks and the value network, is (together with the Monte Carlo tree
search) the essential element in understanding how AlphaGo is constituted and how
it is operated. Now, we see that the roles and functions of the policy networks and
the value network correspond beautifully the phases of editing and evaluating of
prospect theory: “The function of the editing phase is to organize and reformulate
the options so as to simplify subsequent evaluation and choice" [14].

6 Discussion
Is the process of decision making in humans entirely different from that of AlphaGo?
Or, they are basically the same, though there are some differences in degree in
efficiency or precision? Our point of departure is also in some sense betrays dual
aspects to questions like this. If they are incommensurable, it would be simply
impossible to compare them. So, there may be some good reason (if not a faith
in their commonalities) why we strive to find some common denominator between
them. However, as is revealed in our initial approach to find a clue from allegedly
unconventional moves of AlphaGo, we may have been implicitly conceding that there
are also significant differences between them. For example, Inchul Bae [1, 2] raises
the following incisive question: “If intuition is not peculiar to humans, how is the
intuition of artificial intelligence different from that of humans? Is it reducible to
the calculating power armed with strong value network?" And, such a way of posing
a question is not alien or strange at all to us.

Surprisingly, however, our research indicates the possibility that both humans
and AlphaGo make decisions in accordance with the model of decision making based
on prospect theory. Even as a descriptive model regarding human decision making,
prospect theory is still merely a challenger to the dominant expected utility theory.
In such a situation, our research goes one step further to claim that AlphaGo too
makes decision in terms of prospect theory. So, it is not so difficult to anticipate
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some spirited criticisms from all directions. Since AlphaGo turns out to be the
undisputed winner in her match with humans, there seems to be enough ground to
claim that prospect theory, which AlphaGo follows as a descriptive model, is also a
normative model that presents the standard of rationality. By claiming so, we seem
to invite more severe criticisms. As a result, instead of presenting ultimate answers
to the crucial questions, our research seems to have a potential to provoke more
controversies.

The second AlphaGo shock resulting from DeepMind’s second monumental paper
published in Nature seems to be a torch on the potential arsenal. As was pointed
out above, in their first article in Nature, published immediately before the challenge
match between Lee Sedol vs. AlphaGo, it was claimed that AlphaGo plays Baduk
in similar ways as humans do. Also, AlphaGo’s choice of moves were claimed be
more intelligent for that reason. In other words, even then, there was a room
for thinking that the fact that policy networks of AlphaGo is a neural network
developed by supervised learning based on human ways of playing Baduk itself
presupposes that human way of playing Baduk is rational, and eo ipso AlphaGo can
make rational decision making. Of course, since AlphaGo, as she was combining
policy networks developed through supervised learning based on data of human’s
game records and the neural networks such as policy network and value network
trained by reinforcement learning, may not simply copy or imitate human behaviors
in decision making. Nevertheless, it was possible to understand that if AlphaGo
makes rational decisions, that is ultimately due to her human origin, i.e., rationality
of humans [6, 7]. However, everything changed within a year and a half. AlphaGo
Zero can give three handicap stones to AlphaGo Master, they say. But AlphaGo
Master won games against the current world champion Ke Jie, professional 9 dan.
So, it seems natural to conclude that humans are no longer AlphaGo’s rivals. It is
also natural to find the cause of such a huge gap in skills of Baduk in the qualitative
differences between the process of decision making in humans and that of AlphaGo
or AlphaGo Zero. The second Nature paper of DeepMind AlphaGo Team seems
anxious to emphasize the fact that AlphaGo Zero, unlike AlphaGo, achieved such a
high level of playing Baduk within a few days entirely depending on reinforcement
learning without any supervised learning. This fact too seems to play a large role
in making us to concede implicitly that there is a qualitative difference between
the process of decision making in humans and that of artificial intelligence. By
now, there is room for wondering whether the basic framework of understanding
the situation has been changed in such a direction that everyone tends to trust the
rationality of AlphaGo or AlphaGo Zero wholeheartedly, while assuming implicitly
that the process of decision making in humans, who are far inferior to AlphaGo or
AlphaGo Zero in playing Baduk, must be irrational.
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One might want to understand what is going on as follows:
We have presumed or believed that the decision making in artificial intelligence

must be rational, though there is no way to understand it. On the other hand, we have
thought that, due to the various bias effects studied in psychology, human decision
making cannot match the rationality of artificial intelligence. The undisputed victory
of AlphaGo against the top Baduk players like Lee Sedol or Ke Jie fortified such a
presumption (belief or even prejudice). Indeed, it amplified the worries of humans
about losing jobs by artificial intelligence, computers, and robots in the age of 4th
industrial revolution.

In this frame of thinking, we may say that artificial intelligence follows the model
of decision making based on expected utility theory while humans follow the model of
decision making based on prospect theory. In other words, when humans are satisfied
by “small but sure gain", artificial intelligence pursues by thorough calculations “the
maximum expected utility", and such a difference in decision making between them
ultimately results in the unbridgeable gap between their abilities.

There is certainly a consistent and persuasive stream of thought in this possible
argument. However, unlike such argument based on some implicit assumptions,
we argued above that the process of decision in AlphaGo can be better explained
in accordance with the model of decision making based on prospect theory. That
means, our research has a potential that can not only appease our worries about
life in the age of artificial intelligence but also emphasize the affinity of humans and
artificial intelligence, thereby pursue collaborative research on unexplored realm.
We also emphasized above the fact that expected utility theory has been accepted
as a dominant model for rational decision making. We even cited explicitly some
examples that show the strong influence of expected utility theory on the process of
decision making of Baduk players (especially professional Baduk players) not only
as a descriptive model but also as a normative model. It is well known that it takes
incredibly long time for a dominant theory to be challenged and discarded from
extensive researches in history of science or sociology of science. Thus, it is not
so difficult to understand the tendency to sustain the belief that expected utility
theory represents rationality even when many prejudices or fixed ideas are forced
to be revised by the two AlphaGo shocks. After all, for some reasons, the implicit
assumption that the process of decision making in AlphaGo is entirely different from
that of humans may be more deeply entrenched in our thinking. However, can this
implicit assumption be supported by any ground?

There is rivalry between expected utility theory and prospect theory as the de-
scriptive model of decision making in humans and AlphaGo. For argument’s sake,
let us suppose that these are the only options. Now there are four possible positions.
(1) the position, according to which both humans and AlphaGo make decisions ac-
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cording to prospect theory. (2) the position, according to which, humans follow the
model of prospect theory, while AlphaGo follows expected utility theory. (3) the
position, according to which humans follow expected utility theory, while AlphaGo
follows prospect theory. (4) the position, according to which both humans and Al-
phaGo follow expected utility theory. In this article, we have sustained (1) with
sufficient supporting grounds.

On the other hand, if these rival hypotheses are considered as the normative
model of decision making, there would be also four different possible positions: (1)
the position, according to which it is rational for both humans and AlphaGo to
make decisions according to prospect theory. (2) the position, according which it
is rational for humans to follow the model of prospect theory, while it is rational
for AlphaGo to follow that of expected utility theory. (3) the position, according to
which it is rational for humans to follow expected utility theory, while it is rational
for AlphaGo to follow prospect theory. (4) the position, according to which it is
rational for both humans and AlphaGo to follow expected utility theory. In case we
believe that AlphaGo’s victory over humans guarantees that the process of decision
making in AlphaGo is rational, our claim that AlphaGo makes decisions according
to the model of decision making based on prospect theory seems to present strong
ground for (1), which claims that it is rational for both humans and AlphaGo to
follow prospect theory.

Of course, our conclusion that, both as a descriptive model and as a norma-
tive model, prospect theory provides us with the model of decision making for both
humans and AlphaGo may invite several interpretations, including very severe crit-
icisms. Suppose that one is basically sympathetic with our result but alert to the
possible problems. In that case, one may criticize our conclusion as follows.

If one examines carefully AlphaGo’s impressive unconventional moves, AlphaGo
also seems to makes decisions following a model more appropriate to prospect theory
rather than expected utility theory. In other words, contrary to humans’ prejudice or
implicit belief, the process of decision making in both humans and artificial intelli-
gence is explainable by one and the same prospect theory. Then, as was demonstrated
by AlphaGo, prospect theory is not merely descriptive model but also a normative
model of rational decision making. That means, prospect theory does not merely
explain phenomena retrospectively. There could be an equation that can predict the
rational decision making in the future.

It should be explained why there is a gap between humans and AlphaGo, even if
both are exploiting the same model of decision making, i.e., prospect theory. Substan-
tial discussion would be possible only on the premise that prospect theory provides
us with a normative model with such an equation. In other words, the difference
between the rationality of human decision making and that of artificial intelligence
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must be sought in their prospect functions. The difference of certain terms or co-
efficient values suggested by cumulative prospect theory influences the performance
of applying the model of decision making, if so, we may say that the shape of Al-
phaGo’s prospect function (i.e., the function determined by terms and coefficients)
was superior to Lee Sedol’s or Ke Jie’s prospect functions.

Here, two interesting projects emerge:

1. Could there be domain-specific perfect prospect function? Depending on the
domain (e.g. Baduk, music, sock market), shouldn’t the best prospect function
be different? If so, it might be possible to explain why in some other domains
(e.g. arts) artificial intelligence is inferior to human, though AlphaGo wins
against humans in Baduk.

2. If so, how are we to determine the perfect prospect function in each domain?
Can we find them by starting with the equation suggested by cumulative prospect
theory as the core and testing it by simulation and the experimental results in
each domain?

Such a constructive criticism would not destroy our results. Rather it points out
some respects of our result to be fortified. But one warning is in order. Our research
was about AlphaGo, But the criticism unconsciously seems to mix up thoughts
about AlphaGo with thoughts about AlphaGoZero. The ultimate equation that
secures rationality by prospect theory as the normative model may be possible for
AlphaGoZero. However, it would be impossible for AlphaGo. Further, even for
AlphaGoZero, such an expectation seems too much. Perhaps logically omniscient
agent may not need such an equation. Thus, our discussion aims at only those agents
who are not logically omniscient (including AlphaGo and AlphaGoZero).

Further, such a criticism implicitly assumes that, when we say that the normative
model secures rationality, the rationality has the perfection that is possible only for
the perfect being. Of course, such a usage is not entirely impossible having certain
values. The reason why we find the conventional distinction between prescriptive
model and normative model in rationality debate may not be irrelevant to this [See
28, 29]. After all, the equation required by the criticism would be a prescriptive
model individuated depending on the abilities and resources of a given agent, not
normative model universally applicable to all agents. If our critic concedes this
point, probably the power of the criticism would be weakened considerably.

If such a criticism is launched from the followers of expected utility theory, one
might use to quoque argument, by running the risk of committing an informal fallacy.
Suppose that expected utility theory is both a descriptive and normative model of
decision making of Baduk players. In that case, nobody would feel the need to
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claim that, in order to explain the gap between Ke Jie, the current world champion,
and a novice, they should use different descriptive model of decision making. Both
Ke Jie and the novice believe that expected utility theory is the descriptive and
normative model of decision making at the same time. Nevertheless, the difference
between them in terms of their abilities and skills is enormous. Explanation of
what makes such a huge difference in abilities and skills between them cannot be
found not in their different model of decision making. It should be found rather in
how well they apply the same model of decision making based on expected utility
theory. Likewise, the explanation of why AlphaGo and AlphaGoZero win Baduk
games against humans by superior decision making should be found in not in their
different decision making model but in how they apply well the same prospect theory
to actual games.

Finally, it is not necessary to explain the difference in skills between humans and
AlphaGo in their different models of decision making. In fact, after having contrasted
the two rival theories of enthymeme, Park [21] tried to analyze situations at each
move of Baduk game as the problem of interpreting enthymemes. According to this
analysis, AlphaGo consistently applied the superior theory of enthymeme throughout
the games, while Lee Sedol, even though sympathetic with the superior theory, was
not completely freed from the influence of inferior theory of enthymeme. As a
consequence, Lee Sedol lost the games by failing to solve the problem of interpreting
enthymemes, i.e., by failing to apply the superior theory consistently. This is not
to claim Park’s interpretation is the only possible interpretation. This is merely to
indicate that there may be room for many other possible interpretations. Another
example of some such possible alternative explanation would be the development of
the method of testing Baduk skills similar to various intelligence tests.
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Abstract
Distributed dynamic gossip is a generalization of the classic telephone problem

in which agents communicate to share secrets, with the additional twist that also
telephone numbers are exchanged to determine who can call whom. Recent work
focused on the success conditions of simple protocols such as “Learn New Secrets”
(LNS) wherein an agent a may only call another agent b if a does not know b’s
secret. A protocol execution is successful if all agents get to know all secrets. On
partial networks these protocols sometimes fail because they ignore information
available to the agents that would allow for better coordination. We study how
epistemic protocols for dynamic gossip can be strengthened, using epistemic
logic as a simple protocol language with a new operator for protocol-dependent
knowledge. We provide definitions of different strengthenings and show that
they perform better than LNS , but we also prove that there is no strengthening
of LNS that always terminates successfully. Together, this gives us a better
picture of when and how epistemic coordination can help in the dynamic gossip
problem in particular and distributed systems in general.
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1 Introduction
The so-called gossip problem is a problem about peer-to-peer information sharing:
a number of agents each start with some private information, and the goal is to
share this information among all agents, using only peer-to-peer communication
channels [38]. For example, the agents could be autonomous sensors that need to
pool their individual measurements in order to obtain a joint observation. Or the
agents could be distributed copies of a database that can each be edited separately,
and that need to synchronize with each other [18, 21, 28].

The example that is typically used in the literature, however, is a bit more
frivolous: as the name suggests, the gossip problem is usually represented as a
number of people gossiping [24, 16, 15]. This term goes back to the oldest sources
on the topic, such as [6]. The gossip scenario gives us not only the name of the
gossip problem, but also the names of some of the other concepts that are used:
the private information that an agent starts out with is called that agent’s secret,
the communication between two agents is called a telephone call and an agent a is
capable of contacting another agent b if a knows b’s telephone number.

These terms should not be taken too literally. Results on the gossip problem can,
in theory, be used by people that literally just want to exchange gossip by telephone.
But we model information exchange in general and ignore all other social and fun
aspects of gossip among humans — although these aspects can also be modeled in
epistemic logic [30].

For our framework, applications where artificial agents need to synchronize
their information are much more likely. For example, recent ideas to improve
cryptocurrencies like bitcoin and other blockchain applications focus on the peer-
to-peer exchange (gossip) happening in such networks [36] or even aim to replace
blockchains with directed graphs storing the history of communication [5]. Epistemic
logic can shed new light on the knowledge of agents participating in blockchain
protocols [22, 10].

There are many different sets of rules for the gossip problem [24]. For example,
calls may be one-on-one, or may be conference calls. Multiple calls may take place in
parallel, or must happen sequentially. Agents may only be allowed to exchange one
secret per call, or exchange everything they know. Information may go both ways
during a call, or only in one direction. We consider only the most commonly studied
set of rules: calls are one-on-one, calls are sequential, and the callers exchange all
the secrets they know. So if a call between a and b is followed by a call between b
and c, then in the second call agent b will also tell agent c the secret of agent a.

The goal of gossip is that every agent knows every secret. An agent who knows
all secrets is called an expert, so the goal is to turn all agents into experts.
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The classical gossip problem, studied in the 1970s, assumed a total communication
network (anyone could call anyone else from the start), and focused on optimal call
sequences, i.e. schedules of calls which spread all the secrets with a minimum number
of calls, which happens to be 2n − 4 for n ≥ 4 agents [38, 27]. Later, this strong
assumption on the network of the gossiping agents was dropped, giving rise to studies
on different network topologies (see [24] for a survey), with 2n− 3 calls sufficing for
most networks.

Unfortunately, these results about optimal call sequences only show that such
call sequences exist. They do not provide any guidance to the agents about how
to achieve an optimal call sequence. Effectively, these solutions assume a central
scheduler with knowledge of the entire network, who will come up with an optimal
schedule of calls, to be sent to the agents, who will eventually execute it in the correct
order. Most results also rely upon synchrony so that agents can execute their calls
at the appropriate time (i.e. after some calls have been made, and before some other
calls are made).

The requirement that there be a central scheduler that tells the agents exactly
what to do, is against the spirit of the peer-to-peer communication that we want to
achieve. Computer science has shifted towards the study of distributed algorithms for
the gossip problem [23, 29]. Indeed, the gossip problem becomes more natural without
a central scheduler; the gossiping agents try to do their best with the information
they have when deciding whom to call. Unfortunately, this can lead to sequences of
calls that are redundant because they contain many calls that are uninformative in
the sense that neither agent learns a new secret. Additionally, the algorithm may
fail, i.e., it may deadlock, get stuck in a loop or terminate before all information has
been exchanged.

For many applications it is not realistic to assume that every agent is capable of
contacting every other agent. So we assume that every agent has a set of agents of
which they “know the telephone number”, their neighbors, so to say, and that they
are therefore able to contact. We represent this as a directed graph, with an edge
from agent a to agent b if a is capable of calling b.

In classical studies, this graph is typically considered to be unchanging. In more
recent work on dynamic gossip the agents exchange both the secrets and the numbers
of their contacts, therefore increasing the connectivity of the network [16]. We focus
on dynamic gossip. In distributed protocols for dynamic gossip all agents decide
on their own whom to call, depending on their current information [16], or also
depending on the expectation for knowledge growth resulting from the call [15]. The
latter requires agents to represent each other’s knowledge, and thus epistemic logic.

Different protocols for dynamic gossip are successful in different classes of gossip
networks. The main challenge in designing such a protocol is to find a good level of
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redundancy: we do not want superfluous calls, but the less redundant a gossip protocol,
the easier it fails in particular networks. Another challenge is to keep the protocol
simple. After all, a protocol that requires the agents to solve a computationally
hard problem every time they have to decide whom to call next, would not be
practical. There is also a trade-off between the content of the message of which a
call consists, and the expected duration of gossip protocols. A nice example of that
is [25], wherein the minimum number of calls to achieve the epistemic goal is reduced
from quadratic to linear order, however at the price of more ‘expensive’ messages,
not only exchanging secrets but also knowledge about secrets.

A well-studied protocol is “Learn New Secrets” (LNS), in which agents are allowed
to call someone if and only if they do not know the other’s secret. This protocol
excludes redundant calls in which neither participant learns any new secrets. As
a result of this property, all LNS call sequences are finite. For small numbers of
agents, it therefore has a shorter expected execution length than the “Any Call”
(ANY ) protocol that allows arbitrary calls at all times and thus allows infinite call
sequences [14]. Additionally, it is easy for agents to check whom they are allowed to
call when following LNS . However, LNS is not always successful. On some graphs it
can terminate unsuccessfully, i.e. when some agents do not yet know all secrets. In
particular there are graphs where the outcome depends on how the agents choose
among allowed calls [16].

Fortunately, it turns out that failure of LNS can often be avoided with some
forethought by the calling agents. That is, if some of the choices available to the
agents lead to success and other choices to failure, it is often possible for the agents
to determine in advance which choices are the successful ones. This leads to the
idea of strengthening a protocol. Suppose that P is a protocol that, depending on
the choices of the agents, is sometimes successful and sometimes unsuccessful. A
strengthening of P is an addition to P that gives the agents guidance on how to
choose among the options that P gives them.

The idea is that such a strengthening can leave good properties of a protocol
intact, while reducing the chance of failure. For example, any strengthening of LNS
will inherit the property that there are no redundant calls: It will still be the case
that agents only call other agents if they do not know their secrets.

Let us illustrate this with a small example, also featuring as a running example
in the technical sections (see Figure 1 on page 13). There are three agents a, b, c.
Agent a knows the number of b, and b and c know each other’s number. Calling
agents exchange secrets and numbers, which may expand the network, and they
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apply the LNS protocol, wherein you may only call other agents if you do not know
their secret. If a calls b, it learns the secret of b and the number of c. All different
ways to make further calls now result in all three agents knowing all secrets. If the
first call is between b and c (and there are no other first calls than ab, bc, and cb),
they learn each other’s secret but no new number. The only possible next call now is
ab, after which a and b know all secrets but not c. But although a now knows c’s
number, she is not permitted to call c, as she already learned c’s secret by calling b.
We are stuck. So, some executions of LNS on this graph are successful and others
are unsuccessful. Suppose we now strengthen the LNS protocol into LNS ′ such that
b and c have to wait before making a call until they are called by another agent.
This means that b will first receive a call from a. Then all executions of LNS ′ are
successful on this graph. In fact, there is only one remaining execution: ab; bc; ac.
The protocol LNS ′ is a strengthening of the protocol LNS .

The main contributions of this paper are as follows. We define what it means that
a gossip protocol is common knowledge between all agents. To that end we propose
a logical semantics with an individual knowledge modality for protocol-dependent
knowledge. We then define various strengthenings of gossip protocols, both in the
logical syntax and in the semantics. This includes a strengthening called uniform
backward induction, a form of backward induction applied to (imperfect information)
gossip protocol execution trees. We give some general results for strengthenings,
but mainly apply our strengthenings to the protocol LNS : we investigate some
basic gossip graphs (networks) on which we gradually strengthen LNS until all its
executions are successful on that graph. However, no such strengthening will work
for all gossip graphs. This is proved by a counterexample consisting of a six-agent
gossip graph, that requires fairly detailed analysis. Some of our results involve the
calculation and checking of large numbers of call sequences. For this we use an
implementation in Haskell.

Our paper is structured as follows. In Section 2 we introduce the basic definitions
to describe gossip graphs and a variant of epistemic logic to be interpreted on
them. In particular, Subsection 2.3 introduces a new operator for protocol-dependent
knowledge. In Section 3 we define semantic and — using the new operator —
syntactic ways to strengthen gossip protocols. We investigate how successful those
strengthenings are and study their behavior under iteration. Section 4 contains our
main result, that strengthening LNS to a strongly successful protocol is impossible.
In Section 5 we wrap up and conclude. The Appendix describes the Haskell code
used to support our results.

161



van Ditmarsch et. al.

2 Epistemic Logic for Dynamic Gossip Protocols

2.1 Gossip Graphs and Calls

Gossip graphs are used to keep track of who knows which secrets and which telephone
numbers.

Definition 1 (Gossip Graph). Given a finite set of agents A, a gossip graph G is
a triple (A,N, S) where N and S are binary relations on A such that I ⊆ S ⊆ N
where I is the identity relation on A. An initial gossip graph is a gossip graph where
S = I. We write Nab for (a, b) ∈ N and Na for {b ∈ A | Nab}, and similarly for the
relation S. The set of all initial gossip graphs is denoted by G.

The relations model the basic knowledge of the agents. Agent a knows the number
of b iff Nab and a knows the secret of b iff Sab. If we have Nab and not Sab we also
say that a knows the pure number of b.

Definition 2 (Possible Call; Call Execution). A call is an ordered pair of agents
(a, b) ∈ A×A. We usually write ab instead of (a, b). Given a gossip graph G, a call
ab is possible iff Nab. Given a possible call ab, Gab is the graph (A′, N ′, S′) such
that A′ := A, N ′a := N ′b := Na ∪Nb, S′a := S′b := Sa ∪ Sb, and N ′c := Nc, S′c := Sc for
c 6= a, b. For a sequence of calls ab; cd; . . . we write σ or τ . The empty sequence is ε.
A sequence of possible calls is a possible call sequence. We extend the notation Gab
to possible call sequences by Gε := G and Gσ;ab := (Gσ)ab. Gossip graph Gσ is the
result of executing σ in G.

To visualize gossip graphs we draw N with dashed and S with solid arrows. When
making calls, the property S ⊆ N is preserved, so we omit the dashed N arrow if
there already is a solid S arrow.

Example 3. Consider the following initial gossip graph G in which a knows the
number of b, and b and c know each other’s number and no other numbers are known:

a b c

Suppose that a calls b. We obtain the gossip graph Gab in which a and b know each
other’s secret and a now also knows the number of c:

a b c
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2.2 Logical Language and Protocols
We now introduce a logical language which we will interpret on gossip graphs.
Propositional variables Nab and Sab stand for “agent a knows the number of agent b”
and “agent a knows the secret of agent b”, and > is the ‘always true’ proposition.
Definitions 4 and 5 are by simultaneous induction, as the language construct KP

a ϕ
refers to a protocol P .

Definition 4 (Language). We consider the language L defined by

ϕ ::= > | Nab | Sab | ¬ϕ | (ϕ ∧ ϕ) | KP
a ϕ | [π]ϕ

π ::= ?ϕ | ab | (π ; π) | (π ∪ π) | π∗

where a, b ∈ A. Members of L of type ϕ are formulas and those of type π are
programs.

Definition 5 (Syntactic protocol). A syntactic protocol P is a program defined by

P :=


 ⋃

a6=b∈A
(?(Nab ∧ Pab); ab)



∗

; ?
∧

a6=b∈A
¬ (Nab ∧ Pab)

where for all a 6= b ∈ A, Pab ∈ L is a formula. This formula is called the protocol
condition for call ab of protocol P . The notation Pab means that a and b are
designated variables in that formula.

Other logical connectives and program constructs are defined by abbreviation.
Moreover, Nabcd stands for Nab ∧ Nac ∧ Nad, and NaB for ∧b∈B Nab. We use
analogous abbreviations for the relation S. We write Exa for SaA. We then say
that agent a is an expert. Similarly, we write ExB for ∧b∈B Exb, and Ex for ExA: all
agents are experts.

Construct [π]ϕ reads as “after every execution of program π, ϕ (is true).” For
program modalities, we use the standard definition for diamonds: 〈π〉ϕ := ¬[π]¬ϕ,
and further: π0 := ?> and for all n ∈ N, πn := πn−1;π.

Our protocols are gossip protocols, but as we define no other, we omit the word
‘gossip’. The word ‘syntactic’ in syntactic protocol is to distinguish it from the
semantic protocol that will be defined later. It is also often omitted.

Our new operator KP
a ϕ reads as “given the protocol P , agent a knows that

ϕ”. Informally, this means that agent a knows that ϕ on the assumption that it is
common knowledge among the agents that they all use the gossip protocol P . The
epistemic dual is defined as K̂P

a ϕ := ¬KP
a ¬ϕ and can be read as “given the protocol

P , agent a considers it possible that ϕ.”
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We note that the language is well-defined, in particular KP
a . The only variable

parts of a protocol P are the protocol conditions Pab. Hence, given |A| agents, and
the requirement that a 6= b, a protocol is determined by its |A| · (|A| − 1) many
protocol conditions. We can therefore see the construct KP

a ϕ as an operator with
input (|A| · (|A| − 1)) + 1 objects of type formula (namely all these protocol condition
formulas plus the formula ϕ in KP

a ϕ), and as output a more complex object of type
formula (namely KP

a ϕ).1
Note that this means that all knowledge operators in a call condition Pab of

a protocol P must be relative to protocols strictly simpler than P . In particular,
the call condition Pab cannot contain the operator KP

a , although it may contain
KP ′
a where P ′ is less complex than P . So the language is incapable of describing

the “protocol” X given by “a is allowed to call b if and only if a knows, assuming
that X is common knowledge, that b does not know a’s secret.” This is intentional;
the “protocol” X is viciously circular so we do not want our language to be able to
represent it.

Example 6. The “Learn New Secrets” protocol (LNS) is the protocol with protocol
conditions ¬Sab for all a 6= b ∈ A. This prescribes that you are allowed to call
any agent whose secret you do not yet know (and whose number you already know).
The “Any Call” protocol (ANY ) is the protocol with protocol conditions > for all
a 6= b ∈ A. You are allowed to call any agent whose number you know.

The standard epistemic modality is defined by abbreviation as Kaϕ := KANY
a ϕ.

2.3 Semantics of Protocol-Dependent Knowledge
We now define how to interpret the language L on gossip graphs. A gossip state is a
pair (G, σ) such that G is an initial gossip graph and σ a call sequence possible on
G (see Def. 2). We recall that G and σ induce the gossip graph Gσ = (A,Nσ, Sσ).
This is called the gossip graph associated with gossip state (G, σ). The semantics of
L is with respect to a given initial gossip graph G, and defined on the set of gossip
states (G, σ) for all σ possible on G. Definitions 7 and 8 are simultaneously defined.

Definition 7 (Epistemic Relation). Let an initial gossip graph G = (A,N, S) and
a protocol P be given. We inductively define the epistemic relation ∼Pa for agent a
over gossip states (G, σ), where Gσ = (A,Nσ, Sσ) are the associated gossip graphs.

1Alternatively one could define a protocol condition function f : A2 → L and proceed as follows.
In the language BNF replace KP

a ϕ by Ka( ~ϕab, ϕ) where a 6= b and ~ϕab is a vector representing
|A| · (|A| − 1) arguments, and in the definition of protocol replace Pab by f(a, b). That way,
Definition 4 precedes Definition 5 and is no longer simultaneously defined. Then, when later defining
the semantics of Ka( ~ϕab, ϕ), replace all ϕab by f(a, b).
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1. (G, ε) ∼Pa (G, ε);

2. if (G, σ) ∼Pa (G, τ), Nσ
b = N τ

b , Sσb = Sτb , and ab is P -permitted at (G, σ) and
at (G, τ), then (G, σ; ab) ∼Pa (G, τ ; ab);
if (G, σ) ∼Pa (G, τ), Nσ

b = N τ
b , Sσb = Sτb , and ba is P -permitted at (G, σ) and

at (G, τ), then (G, σ; ba) ∼Pa (G, τ ; ba);

3. if (G, σ) ∼Pa (G, τ) and c, d, e, f 6= a such that cd is P -permitted at (G, σ) and
ef is P -permitted at (G, τ), then (G, σ; cd) ∼Pa (G, τ ; ef).

Definition 8 (Semantics). Let initial gossip graph G = (A,N, S) be given. We
inductively define the interpretation of a formula ϕ ∈ L on a gossip state (G, σ),
where Gσ = (A,Nσ, Sσ) is the associated gossip graph.

G, σ |= > always
G, σ |= Nab iff Nσ

a b
G, σ |= Sab iff Sσa b
G, σ |= ¬ϕ iff G, σ 6|= ϕ
G, σ |= ϕ ∧ ψ iff G, σ |= ϕ and G, σ |= ψ
G, σ |= KP

a ϕ iff G, σ′ |= ϕ for all (G, σ′) ∼Pa (G, σ)
G, σ |= [π]ϕ iff G, σ′ |= ϕ for all (G, σ′) ∈ JπK(G, σ)

where J·K is the following interpretation of programs as relations between gossip states.
Note that we write JπK(G, σ) for the set {(G, σ′) | ((G, σ), (G, σ′)) ∈ JπK}.

J?ϕK(G, σ) := {(G, σ) | G, σ |= ϕ}
JabK(G, σ) := {(G, (σ; ab)) | G, σ |= Nab}

Jπ;π′K(G, σ) := ⋃{Jπ′K(G, σ′) | (G, σ′) ∈ JπK(G, σ)}
Jπ ∪ π′K(G, σ) := JπK(G, σ) ∪ Jπ′K(G, σ)

Jπ∗K(G, σ) := ⋃{JπnK(G, σ) | n ∈ N}

If G, σ |= Pab we say that ab is P -permitted at (G, σ). A P -permitted call sequence
consists of P -permitted calls.

Let us first explain why the interpretation of protocol-dependent knowledge is
well-defined. The interpretation of KP

a ϕ in state (G, σ) is a function of the truth
of ϕ in all (G, τ) accessible via ∼Pa . This is standard. Non-standard is that the
relation ∼Pa is a function of the truth of protocol conditions Pab in gossip states
including (G, σ). This may seem a slippery slope. However, note that KP

a ϕ cannot
be a subformula of any such Pab, as the language L is well-defined: knowledge cannot
be self-referential. These checks of Pab can therefore be performed without vicious
circularity.
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Let us now explain an important property of ∼Pa , namely that it only relates
two gossip states if both are reachable by the protocol P . So if (G, σ) ∼Pa (G, σ′)
and σ is a P -permitted call sequence, then σ′ is P -permitted as well. In other
words, a assumes that no one will make any calls that are not P -permitted. The
set {∼Pa | a ∈ A} of relations therefore represents the information state of the agents
under the assumption that it is common knowledge that the protocol P will be
followed.

Given the logical semantics, a convenient primitive is the following gossip model.

Definition 9 (Gossip Model; Execution Tree). Given an initial gossip graph G, the
gossip model for G consists of all gossip states (G, σ) (where, by definition of gossip
states, σ is possible on G), with epistemic relations ∼Pa between gossip states. The
execution tree of a protocol P given G is the submodel of the gossip model restricted
to the set of those (G, σ) where σ is P -permitted.

The relation ∼Pa is an equivalence relation on the restriction of a gossip model
to the set of gossip states (G, σ) where σ is P -permitted. This is why we use the
symbol ∼ for the relation. However, ∼Pa is typically not an equivalence relation on
the entire domain of the gossip model, as ∼Pa is not reflexive on unreachable gossip
states (G, σ).

In our semantics, the modality [ab] can always be evaluated. There are three cases
to distinguish. (i) If the call ab is not possible (if a does not know the number of b),
then JabK(G, σ) = ∅, so that [ab]ϕ is trivially true for all ϕ. (ii) If the call ab is possible
but not P -permitted, then JabK(G, σ) = {(G, σ; ab)} but ∼Pa (G, σ; ab) = ∅, so that
in such states KP

a ⊥ is true: the agent believes everything including contradictions.
In other words, we have that ¬Pab → [ab]KP

c ⊥. (iii) If the call ab is possible and
P -permitted, then JabK(G, σ) = {(G, σ; ab)} and ∼Pa (G, σ; ab) 6= ∅ consists of the
equivalence class of gossip states that are indistinguishable for agent a after call ab.

In view of the above, one might want to have a modality or program strictly
standing for ‘call ab is possible and P -permitted’. We can enforce protocol P for call
ab by [?Pab; ab]ϕ, for “after the P -permitted call ab, ϕ is true.”

Let us now be exact in what sense the gossip model is a Kripke model. Clear
enough, the set of gossip states (G, σ) constitute a domain, and we can identify
the valuation of atomic propositions Nab (resp. Sab) with the subset of the domain
such that (G, σ) |= Nab (resp. (G, σ) |= Sab). The relation to the usual accessibility
relations of a Kripke model is less clear. For each agent a, we do not have a unique
relation ∼a, but parametrized relations ∼Pa ; therefore, in a way, there are as many
relations for agent a as there are protocols P . These relations ∼Pa are only implicitly
given. Given P , they can be made explicit if a semantic check of KP

a ϕ so requires.
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Gossip models are reminiscent of the history-based models of [34] and of the
protocol-generated forest of [9]. A gossip model is a protocol-generated forest (and
similarly, the execution trees contained in the gossip model are protocol-generated
forests), although a rather small forest, namely consisting of a single tree. An
important consequence of this is that the agents initially have common knowledge
of the gossip graph. For example, in the initial gossip graph of the introduction,
depicted in Figure 1, agent a knows that agent c only knows the number of b. Other
works consider uncertainty about the initial gossip graph (for example, to represent
that agent a is uncertain whether c knows a’s number), such that each gossip graph
initially considered possible generates its own tree [15].

The gossip states (G, σ) that are the domain elements of the gossip model carry
along a history of prior calls. This can, in principle, be used in a protocol language to
be interpreted on such models, although we do not do this in this work. An example
of such a protocol is the “Call Once” protocol described in [16]: call ab is permitted
in gossip state (G, σ), if ab and ba do not occur in σ.

With respect to the protocol ANY the gossip model is not restricted. If we
only were to consider the protocol ANY , to each agent we can associate a unique
epistemic relation ∼ANY

a in the gossip model, for which we might as well write ∼a.
We now have a standard Kripke model. This justifies Kaϕ as a suitable abbreviation
of KANY

a ϕ.

Definition 10 (Extension of a protocol). For any initial gossip graph G and any
syntactic protocol P we define the extension of P on G by

P0(G) := {ε}
Pi+1(G) := {σ; ab | σ ∈ Pi(G), a, b ∈ A, G, σ |= Pab}
P (G) := ⋃

i<ω Pk(G)

The extension of P is {(G,P (G)) | G ∈ G}.

Recall that G is the set of all initial gossip graphs. We often identify a protocol
with its extension. To compare protocols we will write P ⊆ P ′ iff for all G ∈ G we
have P (G) ⊆ P ′(G).

Definition 11 (Success). Given an initial gossip graph G and protocol P , a P -
permitted call sequence σ is terminal iff for all calls ab, G, σ 6|= Pab. We then also
say that the gossip state (G, σ) is terminal. A terminal call sequence is successful iff
after its execution all agents are experts. Otherwise it is unsuccessful.

• A protocol P is strongly successful on G iff all terminal P -permitted call
sequences are successful: G, ε |= [P ]Ex.
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• A protocol is weakly successful on G iff some terminal P -permitted call se-
quences are successful: G, ε |= 〈P 〉Ex.

• A protocol is unsuccessful on G iff no terminal P -permitted call sequences are
successful: G, ε |= [P ]¬Ex.

A protocol is strongly successful iff it is strongly successful on all initial gossip graphs
G, and similarly for weakly successful and unsuccessful.

Instead of ‘is successful’ we also say ‘succeeds’, and instead of ‘terminal sequence’
we also say that the sequence is terminating. Given a gossip graph G and a P -
permitted sequence σ we say that the associated gossip graph Gσ is P -reachable
(from G). A terminal P -permitted sequence is also called an execution of P . Given
any set X of call sequences, X is the subset of the terminal sequences of X.

All our protocols can always be executed. If this is without making any calls, the
protocol extension is empty. Being empty does not mean that [P ]⊥ holds, which is
never the case.

Strong success implies weak success, but not vice versa. Formally, we have that
[P ]ϕ → 〈P 〉ϕ is valid for all protocols P , but 〈P 〉ϕ → [P ]ϕ is not valid in general,
because our protocols are typically non-deterministic.

We can distinguish unsuccessful termination (not all agents know all secrets)
from successful termination. In other works [16, 2] this distinction cannot be made.
In those works termination implies success.

Example 12. We continue with Example 3. The execution tree of LNS on this
graph is shown in Figure 1. We denote calls with gray arrows and the epistemic
relation with dotted lines. For example, agent a cannot distinguish whether call bc or
cb happened. At the end of each branch the termination of LNS is denoted with X if
successful, and × if unsuccessful.

To illustrate our semantics, for this graph G we have:

• G, ε |= Nab ∧ ¬Sab — the call ab is LNS-permitted at the start.

• G, ε |= [ab](Sab∧Sba) — after the call ab the agents a and b know each other’s
secret

• G, ε |= [ab]〈ac〉> — after the call ab the call ac is possible.

• G, ε |= [ab][LNS]Ex — after the call ab the LNS protocol will always terminate
successfully.

• G, ε |= [bc ∪ cb][LNS]¬Ex — after the calls bc or cb the LNS protocol will
always terminate unsuccessfully.
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a b c

a b c a b c a b c

a b c a b c a b c a b c a b c

a b c a b c a b c

ab bc cb

ac bc cb ab ab

bc ac ac

a

a

a

a

X X X

× ×

Figure 1: Example of an execution tree for LNS .

• G, ε |= [bc ∪ cb]KLNS
a (Sbc ∧ Scb) — after the calls bc or cb, agent a knows that

b and c know each others secret.

• G, ab; bc; ac |= ∧
i∈{a,b,c}K

LNS
i Ex — after the call sequence ab; bc; ac everyone

knows that everyone is an expert.

We only have epistemic edges for agent a, and those are between states with identical
gossip graphs. If there are three agents, then if you are not involved in a call, you
know that the other two agents must have called. You may only be uncertain about
the direction of that call. But the direction of the call does not matter for the numbers
and secrets being exchanged. Hence all agents always know what the current gossip
graph is. For a more interesting epistemic relation, see Figure 2 in the Appendix.

2.4 Symmetric and epistemic protocols, and semantic protocols

Given a protocol P , for any a 6= b and c 6= d, the protocol conditions Pab and
Pcd can be different formulas. So a protocol may require different agents to obey
different rules. Although there are settings wherein this is interesting to investigate,
we want to restrict our investigation to those protocols where there is one protocol
condition to rule them all. This is enforced by the requirement of symmetry. Another
requirement is that the calling agent should know that the protocol condition is
satisfied before making a call. That is the requirement that the protocol be epistemic.
It is indispensable in order to see our protocols as distributed gossip protocols.
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Definition 13 (Symmetric and epistemic syntactic protocol). Let a syntactic protocol
P be given. Protocol P is symmetric iff for every permutation J of agents, we have
ϕJ(a)J(b) = J(ϕab), where J(ϕab) is the natural extension of J to formulas.2 Protocol
P is epistemic iff for every a, b ∈ A, the protocol condition Pab → KP

a Pab is valid.
We henceforth require all our protocols to be symmetric and epistemic.

Intuitively, a protocol is epistemic if callers always know when to make a call,
without being given instructions by a central scheduler. This means that whenever
Pab is true, so agent a is allowed to call agent b, it must be the case that a knows that
Pab is true. In other words, in an epistemic protocol Pab implies KP

a Pab. Furthermore,
by Definition 8 knowledge is truthful on the execution tree for protocol P in gossip
model. So except in the gossip states that cannot be reached using the protocol P ,
we also have that KP

a Pab implies Pab.
If a protocol is symmetric the names of the agents are irrelevant and therefore

interchangeable. So a symmetric protocol is not allowed to “hard-code” agents to
perform certain roles. This means that, for example, we cannot tell agent a to call b,
as opposed to c, just because b comes before c in the alphabet. But we can tell a
to call b, as opposed to c, on the basis that, say, a knows that b knows five secrets
while c only knows two secrets. If a protocol P is symmetric, we can think of the
protocol condition as the unique protocol condition for P , modulo permutation.

Epistemic and symmetric protocols capture the distributed peer-to-peer nature
of the gossip problem.

Example 14. The protocols ANY and LNS are symmetric and epistemic. For ANY
this is trivial. For LNS , observe that agents always know which numbers and secrets
they know. A direct consequence of clause (2.) of Definition 7 of the epistemic relation
is that for any protocol P , if (G, σ) ∼Pa (G, σ′), then Nσ

a = Nσ′
a and Sσa = Sσ

′
a . Thus,

applying the clause for knowledge KP
a ϕ of Definition 8, we immediately get that the

following formulas are all valid: Nab→ KP
a Nab, ¬Nab→ KP

a ¬Nab, Sab→ KP
a Sab,

and ¬Sab→ KP
a ¬Sab. Therefore, in particular this holds for P = LNS .

Although the numbers and secrets known by an agent before and after a call
may vary, the agent always knows whether she knows a given number or secret.
Knowledge about other agents having a certain number or a secret is preserved after
calls. But, of course, knowledge about other agents not having a certain number or
secret is not preserved after calls.

2Formally: J(>) := >, J(Nab) := Nab, J(Sab) := Sab, J(¬ϕ) := ¬J(ϕ), J(ϕ∧ψ) := J(ϕ)∧J(ψ),
J(KP

a ψ) := K
J(P )
J(a) J(ψ), J(?ϕ) := ?J(ϕ), J(ab) := J(a)J(b), J(π;π′) := J(π); J(π′), J(π ∪ π′) :=

J(π) ∪ J(π′), J(π∗) := J(π)∗.
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Not all protocols we discuss in this work are definable in the logical language. We
therefore need the additional notion of a semantic protocol, defined by its extension.

Definition 15 (Semantic protocol). A semantic protocol is a function P : G →
P((A×A)∗) mapping initial gossip graphs to sets of call sequences. We assume
semantic protocols to be closed under subsequences, i.e. for all G we want that
σ; ab ∈ P (G) implies σ ∈ P (G). For a semantic protocol P we say that a call ab is
P -permitted at (G, σ) iff (σ; ab) ∈ P (G).

Given any syntactic protocol we can view its extension as a semantic protocol.
Using this definition of permitted calls for semantic protocols we can apply Definition 7
to get the epistemic relation with respect to a semantic protocol P . Because the
relation ∼Pa depends only on which calls are allowed, the epistemic relation with
respect to a (syntactic) protocol P is identical to the epistemic relation with respect
to the extension of P .

We also require that semantic protocols are symmetric and epistemic, adapting
the definitions of these two properties as follows.

Definition 16 (Symmetric and epistemic semantic protocol). A semantic protocol
P is symmetric iff for all initial gossip graphs G and for all permutations J of agents
we have P (J(G)) = J(P (G)) (where J(P (G)) := {J(σ) | σ ∈ P (G)}). A semantic
protocol P is epistemic iff for all initial gossip graphs G and for all σ ∈ P (G) we
have: (σ; ab) ∈ P (G) iff for all τ ∼Pa σ we have (τ ; ab) ∈ P (G).

It is easy to verify that the syntactic definition of an epistemic protocol agrees
with the semantic definition.

Proposition 17. A syntactic protocol P is epistemic if and only if its extension is
epistemic.

Proof. Let Q be the extension of P and note that, as remarked above, the epistemic
relations induced by P and Q are identical. Now we have the following chain of
equivalences:

P is not epistemic
⇔ ∃a, b,G, σ : G, σ 6|= Pab → KP

a Pab
⇔ ∃a, b,G, σ, τ : G, σ |= Pab, G, τ 6|= Pab and (G, σ) ∼Pa (G, τ)
⇔ ∃a, b,G, σ, τ : (σ; ab) ∈ Q(G), (τ ; ab) 6∈ Q(G) and (G, σ) ∼Pa (G, τ)
⇔ ∃a, b,G, σ, τ : (σ; ab) ∈ Q(G), (τ ; ab) 6∈ Q(G) and (G, σ) ∼Qa (G, τ)
⇔ Q is not epistemic
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Note that Proposition 17 does not imply that every epistemic semantic protocol
is the extension of a syntactic epistemic protocol, since some semantic protocols are
not the extension of any syntactic protocol.

For symmetry, the situation is slightly more complex than for being epistemic.

Proposition 18. If a syntactic protocol P is symmetric, then its extension is
symmetric.

Proof. Let Q be the extension of P . Fix any permutation J and any initial gossip
graph G. To show is that Q(J(G)) = J(Q(G)) (where J is extended to gossip graphs
in the natural way). We show by induction that for every call sequence σ, we have
σ ∈ Q(J(G))⇔ σ ∈ J(Q(G)).

As base case, note that ε ∈ Q(J(G)) and ε ∈ J(Q(G)). Now, as induction
hypothesis, assume that for every call sequence τ that is shorter than σ, we have
τ ∈ Q(J(G))⇔ τ ∈ J(Q(G)). Let ab be the final call in σ, so σ = (τ ; ab). Then we
have the following sequence of equivalences:

(τ ; ab) ∈ Q(J(G))⇔ J(G), τ |= Pab

⇔ G, J−1(τ) |= J−1(Pab)
⇔ G, J−1(τ) |= PJ−1(ab)

⇔ (J−1(τ); J−1(ab)) ∈ Q(G)
⇔ (τ ; ab) ∈ J(Q(G)),

where the equivalence on the third line is due to P being symmetric. This completes
the induction step and thereby the proof.

The converse of Proposition 18 does not hold: if P is not symmetric, it is still
possible for its extension to be symmetric. The reason for this discrepancy is that
symmetry for syntactic protocols has the very strong condition that J(Pab) = PJ(ab).
So if P is symmetric and P ′ is given by (i) P ′cd = Pcd ∧ > and (ii) P ′ab = Pab for
a, b 6= c, d, then P ′ is not symmetric even though P and P ′ have the same extension.
We do, however, have the following slightly weaker statement. Recall that a gossip
state (G, σ) is P -reachable iff the call sequence σ is P -permitted at G.

Proposition 19. Let P be a syntactic protocol such that, for some P -reachable gossip
state (G, σ), some permutation J and some a, b we have G, σ 6|= PJ(ab) ↔ J(Pab).
Then the extension of P is not symmetric.
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Proof. Let Q be the extension of P , and suppose towards a contradiction that Q is
symmetric. Then we have the following sequence of equivalences:

G, σ |= PJ(ab) ⇔ (σ; J(ab)) ∈ Q(G)
⇔ (J−1(σ); ab) ∈ J−1(Q(G))
⇔ (J−1(σ); ab) ∈ Q(J−1(G))
⇔ J−1(G), J−1(σ) |= Pab

⇔ G, σ |= J(Pab),

where the equivalence on the third line is due to Q being symmetric. This contradicts
G, σ 6|= PJ(ab) ↔ J(Pab), from which it follows that Q is not symmetric.

So while P may be non-symmetric and still have a symmetric extension, this
can only happen if J(Pab) is equivalent to PJ(ab) in all reachable gossip states. We
conclude that our syntactic and semantic definitions of symmetry agree up to logical
equivalence.

3 Strengthening of Protocols
3.1 How can we strengthen a protocol?

In our semantics it is common knowledge among the agents that they follow a certain
protocol, for example LNS . Can they use this information to prevent making “bad”
calls that lead to an unsuccessful sequence?

If we look at the execution graph given in Figure 1, then it seems easy to fix the
protocol. Agents b and c should wait and not make the first call. Agent b should
not make a call before he has received a call from a. We cannot say this in our logic
as we have no converse modalities to reason over past calls. In this case however,
there is a different way to ensure the same result. We can ensure that b and c wait
before calling by a strengthening of LNS that only allows a first call from i to j if
j does not know the number of i. To determine that a call is not the first call, we
need another property: after at least one call happened, there is an agent who knows
another agent’s secret.

We can define this new protocol by protocol condition Pij := LNS ij ∧ (¬Nji ∨∨
k 6=l Skl). Observe that this new protocol is again symmetric and epistemic: agents

always know whether (¬Nji ∨
∨
k 6=l Skl). Because of synchronicity, not only the

callers but also all other agents know that there are agents k and l such that k knows
the secret of l. This is an ad-hoc solution specific to this initial gossip graph. Could
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we also give a general definition to improve LNS which works on more or even all
initial graphs? The answer to that is: more, yes, but all, no.

We will now discuss different ways to improve protocols by making them more
restrictive. Our goal is to rule out unsuccessful sequences while keeping at least some
successful ones. Doing this can be difficult because we still require the strengthened
protocols to be epistemic and symmetric. Hence we are not allowed to arbitrarily
rule out specific calls using the names of agents, for example. Whenever a call is
removed from the protocol, we also have to remove all calls to other agents that the
caller cannot distinguish: it has to be done uniformly. But before we discuss specific
ideas for strengthening, let us define it.

Definition 20 (Strengthening). A protocol P ′ is a syntactic strengthening of a
protocol P iff P ′ab → Pab is valid for all agents a 6= b. A protocol P ′ is a semantic
strengthening of a protocol P iff P ′ ⊆ P .

A syntactic strengthening procedure is a function ♥ that for any syntactic protocol
P returns a syntactic strengthening P♥ of P . Analogously, we define semantic
strengthening procedure.

We stress that strengthening is a relation between two protocols P and P ′ whereas
strengthening procedures define a restricting transformation that given any P tells
us how to obtain P ′. In the case of a syntactic strengthening, P and P ′ are implicitly
required to be syntactic protocols. Vice versa however, syntactic protocols can be
semantic strengthenings. In fact, we have the following.

Proposition 21. Every syntactic strengthening is a semantic strengthening.

Proof. Let P ′ be a syntactic strengthening of a protocol P . Let a gossip graph G be
given. We show by induction on the length of σ that σ ∈ P ′(G) implies σ ∈ P (G).
The base case where σ = ε is trivial.

For the induction step, consider any σ = τ ; ab. As τ ; ab ∈ P ′(G), we also have
τ ∈ P ′(G) and G, τ |= P ′ab. From τ ∈ P ′(G) and the inductive hypothesis, it follows
that τ ∈ P (G). From G, τ |= P ′ab and the validity of P ′ab → Pab follows G, τ |= Pab.
Finally, by Definition 10, τ ∈ P (G) and G, τ |= Pab imply τ ; ab ∈ P (G).

Lemma 22. Suppose P is a strengthening of Q. Then KQ
a ϕ→ KP

a ϕ and K̂P
a ϕ→

K̂Q
a ϕ are both valid, for any agent a.

Proof. This follows immediately from the semantics of protocol-dependent knowledge
given in Definition 8.
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3.2 Syntactic Strengthening: Look-Ahead and One-Step
We will now present concrete examples of syntactic strengthening procedures.

Definition 23 (Look-Ahead and One-Step Strengthenings). We define four syntactic
strengthening procedures as follows. Let P be a protocol.

hard look-ahead strengthening : P�ab := Pab ∧KP
a [ab]〈P 〉Ex

soft look-ahead strengthening : P�ab := Pab ∧ K̂P
a [ab]〈P 〉Ex

hard one-step strengthening : P�ab := Pab ∧KP
a [ab](Ex ∨∨i,j(Nij ∧ Pij))

soft one-step strengthening : P♦ab := Pab ∧ K̂P
a [ab](Ex ∨∨i,j(Nij ∧ Pij))

The hard look-ahead strengthening allows agents to make a call iff the call is
allowed by the original protocol and moreover they know that making this call yields
a situation where the original protocol can still succeed.

For example, consider LNS�. Informally, its condition is that a is permitted to
call b iff a does not have the secret of b and a knows that after making the call to b,
it is still possible to follow LNS in such a way that all agents become experts.

The soft look-ahead strengthening allows more calls than the hard look-ahead
strengthening because it only demands that a considers it possible that the protocol
can succeed after the call. This can be interpreted as a good faith or lucky draw
assumption that the previous calls between other agents have been made “in a good
way”. Soft look-ahead strengthening allows agents to take a risk.

The soft and the hard look-ahead strengthening include a diamond 〈P 〉 labeled
with the protocol P, where that protocol P by definition contains arbitrary iteration:
the Kleene star ∗. To evaluate this, we need to compute the execution tree of P for
the initial gossip graph G. In practice this can make it hard to check the protocol
condition of the new protocol.

The one-step strengthenings, in contrast, only use the protocol condition Pij in
their formalization and not the entire protocol P . This means that they provide an
easier to compute, but less reliable alternative to full look-ahead, namely by looking
only one step ahead. We only demand that agent a knows (or, in the soft version,
considers it possible) that after the call, everyone is an expert or the protocol can
still go on for at least one more step — though it might be that all continuation
sequences will eventually be unsuccessful and thus this next call would already have
been excluded by both look-ahead strengthenings.

An obvious question now is, can these or other strengthenings get us from weak
to strong success? Do these strengthenings only remove unsuccessful sequences, or
will they also remove successful branches, and maybe even return an empty and
unsuccessful protocol? In our next example everything still works fine.
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Example 24. Consider Example 12 again. It is easy to see that the soft and the
hard look-ahead strengthening rule out the two unsuccessful branches in this execution
tree and keep the successful ones. Protocol LNS� only preserves alternatives that are
all successful and LNS� only eliminates alternatives if they are all unsuccessful. In
the execution tree in Figure 1, the effect is the same for LNS� and LNS�, because
at any state the agents always know which calls lead to successful branches. This
is typical for gossip scenarios with three agents: if a call happened, the agent not
involved in the call might be unsure about the direction of the call, but it knows who
the callers are.

The one-step strengthenings are not enough to rule out the unsuccessful sequences.
This is because the unsuccessful sequences are of length 2 but the one-step strengthen-
ings can only remove the last call in a sequence. In this case, the protocols LNS�
and LNS♦ rule out the call ab after bc or cb happened.

3.3 Semantic Strengthening: Uniform Backward Defoliation

We now present two semantic strengthening procedures. They are inspired by the
notion of backward induction, a well-known solution concept in decision theory and
game theory [32]. We will discuss this at greater length when defining the arbitrary
iteration of these semantic strengthenings and in Section 5.

In backward induction, given a game tree or search tree, a parent node is called
bad if all its children are loosing or bad nodes. Similarly, in trees with information
sets of indistinguishable nodes, a parent node can be called bad if all its children
are bad and if also all children from indistinguishable nodes are bad. Similar notions
were considered in [7, 35]. Again, we have a soft and a hard version. We define
uniform backward defoliation on the execution trees of dynamic gossip as follows to
obtain two semantic strengthenings. We choose the name “defoliation” here because
a single application of this strengthening procedure only removes leaves and not
whole branches of the execution tree. The iterated versions we present later are then
called uniform backward induction.

Definition 25 (Uniform Backward Defoliation). Suppose we have a protocol P and
an initial gossip graph G. We define the Hard Uniform Backward Defoliation (HUBD)
and Soft Uniform Backward Defoliation (SUBD) of P as follows.

PHUBD(G) := {σ ∈ P (G) | σ = ε, or σ = τ ; ab and ∀(G, τ ′) ∼Pa (G, τ)
such that τ ′ ∈ P (G) implies (G, τ ′; ab) |= Ex}

P SUBD(G) := {σ ∈ P (G) | σ = ε, or σ = τ ; ab and ∃(G, τ ′) ∼Pa (G, τ)
such that τ ′ ∈ P (G) implies (G, τ ′; ab) |= Ex}
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In this definition, ∀(G, τ ′) ∼Pa (G, τ) implicitly stands for “for all τ ′ ∈ P (G) such
that (G, τ ′) ∼Pa (G, τ)”, because for (G, τ ′) to be in ∼Pa relation to another gossip
state, τ ′ must be P -permitted; similarly for the existential quantification.

The HUBD strengthening keeps the calls which must lead to a non-terminal state
or a state where everyone is an expert and SUBD keeps the calls which might do so.
Equivalently, we can say that HUBD removes calls which may go wrong and SUBD
removes those calls which will go wrong — where going wrong means leading to a
terminal node where not everyone is an expert.

We can now prove that for any gossip protocol Hard Uniform Backward Defoliation
is the same as Hard One-Step Strengthening, in the sense that their extensions are
the same on any gossip graph, and that Soft Uniform Backward Defoliation is the
same as Soft One-Step Strengthening.
Theorem 26. P� = PHUBD and P♦ = P SUBD

Proof. Note that ε is an element of both sides of both equations. For any non-empty
sequence we have the following chain of equivalences for the hard versions of UBD
and one-step strengthening:

(σ; ab) ∈ P�(G)

m by Definition 10

G, σ |= P�ab

m by Definition 23

G, σ |= Pab ∧KP
a [ab]

(∨
i,j(Nij ∧ Pij) ∨ Ex

)

m by Definition 8

(σ; ab) ∈ P (G) and (G, σ) � KP
a [ab]

(∨
i,j(Nij ∧ Pij) ∨ Ex

)

m by Definition 8

(σ; ab) ∈ P (G) and ∀(G, σ′) ∼Pa (G, σ) : (G, σ′; ab) |= ∨
i,j(Nij ∧ Pij) ∨ Ex

m by Definition 11

(σ; ab) ∈ P (G) and ∀(G, σ′) ∼Pa (G, σ) : σ′; ab /∈ P (G) or (G, σ′; ab) |= Ex

m by Definition 25

(σ; ab) ∈ PHUBD(G)
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And we have a similar chain of equivalences for the soft versions:

(σ; ab) ∈ P♦(G)

m by Definition 10

G, σ |= P♦ab

m by Definition 23

G, σ |= Pab ∧ K̂P
a [ab]

(∨
i,j(Nij ∧ Pij) ∨ Ex

)

m by Definition 8

(σ; ab) ∈ P (G) and (G, σ) |= K̂P
a [ab]

(∨
i,j(Nij ∧ Pij) ∨ Ex

)

m by Definition 8

(σ; ab) ∈ P (G) and ∃(G, σ′) ∼Pa (G, σ) : (G, σ′; ab) |= ∨
i,j(Nij ∧ Pij) ∨ Ex

m by Definition 11

(σ; ab) ∈ P (G) and ∃(G, σ′) ∼Pa (G, σ) : σ′; ab /∈ P (G) or (G, σ′; ab) |= Ex

m by Definition 25

(σ; ab) ∈ P SUBD(G)

Similarly to backward induction in perfect information games [4], uniform back-
ward defoliation is rational, in the sense that it forces an agent to avoid calls leading
to unsuccessful sequences. The strengthening SUBD avoids a call if it always leads
to an unsuccessful sequence. The strengthening HUBD avoids a call if it sometimes
leads to a unsuccessful sequence.

3.4 Iterated Strengthenings
The syntactic strengthenings we looked at are all defined in terms of the original
protocol. In P�ab := Pab ∧KP

a [ab]〈P 〉Ex the given P occurs in three places. Firstly,
in the protocol condition Pab requiring that the call is permitted according to the old
protocol P — this ensures that the new protocol is a strengthening of the original P .
Secondly, as a parameter to the knowledge operator, in KP

a , which means that agent
a knows that everyone followed P (and that this is common knowledge). Thirdly, in
the part 〈P 〉 assuming that after the considered call everyone will continue to follow
protocol P in the future.
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Hence we have strengthened the protocol that the agents use and thereby changed
their behavior, but not their assumptions about what protocol other agents follow. For
example, when P = LNS , all agents now act according to LNS�, on the assumption
that all other agents act according to LNS . This does not mean that agents cannot
determine what they know if LNS� were common knowledge: each agent a can check
that knowledge using KLNS�

a ϕ. But this KLNS�
a modality is not part of the protocol

LNS�. The agents do not use this knowledge to determine whether to make calls.
But why should our agents stop their reasoning here? It is natural to iterate

strengthening procedures and determine whether we can further improve our protocols
by also updating the knowledge of the agents.

For example, consider repeated hard one-step strengthening:

(P�)�ab = P�ab ∧ K̂P�
a [ab](Ex ∨

∨

i,j

(Nij ∧ P�ij ))

In this section we investigate iterations and combinations of strengthening proce-
dures. In particular we investigate various combinations of hard and soft one-step
and look-ahead strengthening, in order to determine how they relate to each other.

Definition 27 (Strengthening Iteration). Let P be a syntactic protocol. For any of
the four syntactic strengthening procedures ♥ ∈ {�,�,�,♦}, we define its iteration
by adjusting the protocol condition as follows, which implies P♥1 = P♥:

P♥0
ab := Pab

P
♥(k+1)
ab := (P♥k)♥ab

Let now P be a semantic protocol, and let ♥ ∈ {HUBD, SUBD}. We define their
iteration, for all gossip graphs G, by:

P♥0(G) := P (G)
P♥(k+1)(G) := (P♥k)♥(G)

It is easy to check that Theorem 26 generalizes to the iterated strengthenings as
follows.

Corollary 28. For any k ∈ N, we have:

P�k = PHUBDk and P♦k = P SUBDk

Proof. By induction using Theorem 26.
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Example 29. We reconsider Examples 12 and 24, and we recall that LNS� and
LNS♦ rule out the call ab after bc or cb happened. To eliminate bc and cb as the first
call, we have to iterate one-step strengthening: (LNS�)� is strongly successful on
this graph, as well as (LNS♦)♦, (LNS�)♦ and (LNS♦)�.

Example 30. We consider the “N”-shaped gossip graph shown below. There are 21
LNS sequences for this graph, of which 4 are successful (X) and 17 are unsuccessful
(×).

1 0

3 2 20; 30; 01; 31 ×
20; 30; 31; 01 ×
20; 31; 10; 30 ×
20; 31; 30; 10 ×
30; 01; 20; 31 ×
30; 01; 31; 20 ×
30; 20; 01; 21; 31 X

30; 20; 01; 31; 21 X
30; 20; 21; 01; 31 X
30; 20; 21; 31; 01 X
30; 20; 31; 01; 21 ×
30; 20; 31; 21; 01 ×
30; 31; 01; 20 ×
30; 31; 20; 01; 21 ×

30; 31; 20; 21; 01 ×
31; 10; 20; 30 ×
31; 10; 30; 20 ×
31; 20; 10; 30 ×
31; 20; 30; 10 ×
31; 30; 10; 20 ×
31; 30; 20; 10 ×

We can show the call sequences in a more compact way if we only distinguish call
sequences up to the moment when it is decided whether LNS will succeed. Formally,
consider the set of minimal σ ∈ LNS(G) such that for all two terminal LNS-sequences
τ, τ ′ ∈ LNS(G) extending σ, we have G, τ |= Ex iff G, τ ′ |= Ex. We will use this
shortening convention throughout the paper.

20 ×
30; 01 ×
30; 20; 01 X
30; 20; 21 X
30; 20; 31 ×
30; 31 ×
31 ×

It is pretty obvious what the agents should do here: Agent 2 should not make
the first call but let 3 call 0 first. The soft look-ahead strengthening works well on
this graph: It disallows all unsuccessful sequences and keeps all successful ones. For
example, after call 30, agent 2 considers it possible that call 30 happened and in this
case the call 20 can lead to success. Hence the protocol condition of LNS� is fulfilled.
The strengthening LNS� is strongly successful on this graph.

But note that 2 does not know that 20 can lead to success, because the first call
could have been 31 as well and for agent 2 this would be indistinguishable from 30.
Therefore the hard look-ahead strengthening is too restrictive here. In fact, the only
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call which LNS� still allows is 30 at the beginning. After that no more calls are
allowed by the hard look-ahead strengthening.

A full list showing which call sequences are allowed by which strengthenings of
LNS for this example is provided in Table 2. “Full” means that we continue iterating
the strengthening until P♥k(G) = P♥(k+1)(G) for the given graph G. Such fixpoints
of protocol strengthening will be formally introduced in the next section.

The hard look-ahead strengthening restricts the set of allowed calls based on
a full analysis of the whole execution tree. One might thus expect, that applying
hard look-ahead more than once would not make a difference. However, we have
the following negative results on iterating hard look-ahead strengthening and the
combination of hard look-ahead and hard one-step strengthening.

Fact 31. Hard look-ahead strengthening is not idempotent and does not always yield
a fixpoint of hard one-step strengthening:

(i) There exist a graph G and a protocol P for which P�(G) 6= (P�)�(G).

(ii) There exist a graph G and a protocol P for which (P�)�(G) 6= P�(G).

Proof.

(i) Let G be the “N” graph from Example 30 and consider the protocol P = LNS .
Applying hard look-ahead strengthening once only allows the first call 30 and
nothing after that call. If we now apply hard look-ahead strengthening again
we get the empty set: P�(G) 6= (P�)�(G) = ∅. See also Table 2.

(ii) The “diamond” graph that we will present in Section 3.6 can serve as an example
here. We can show that the inequality holds for this graph by exhaustive search,
using our Haskell implementation described in the Appendix. Plain LNS has
48 successful and 44 unsuccessful sequences on this graph. Of these, LNS�
still includes 8 successful and 8 unsuccessful sequences. If we now apply hard
one-step strengthening, we get (LNS�)� where 4 of the unsuccessful sequences
are removed. See also Table 3 in the Appendix. We note that for P = LNS
there is no smaller graph to show the inequality. This can be checked by manual
reasoning or with our implementation.

Similarly, we can ask whether the soft strengthenings are related to each other,
analogous to Fact 31. We do not know whether there is a protocol P for which
(P�)♦ 6= P� and leave this as an open question.

Another interesting property that strengthenings can have is monotonicity. Intu-
itively, a strengthening is monotone iff it preserves the inclusion relation between
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extensions of protocols. This property is useful to study the fixpoint behavior of
strengthenings. We will now define monotonicity formally and then obtain some
results for it.

Definition 32. A strengthening ♥ is called monotone iff for all protocols Q and P
such that Q ⊆ P , we also have Q♥ ⊆ P♥.

Proposition 33 (Soft one-step strengthening is monotone). Let P be a protocol and
Q be an arbitrary strengthening of P , i.e. Q ⊆ P . Then we also have Q♦ ⊆ P♦.

Proof. As Q is a strengthening of P , the formula Qab → Pab is valid. We want to
show that Q♦ab → P♦ab. Suppose that G, σ |= Q♦ab, i.e.:

G, σ |= Qab and G, σ |= K̂Q
a [ab](Ex ∨

∨

i,j

(Nij ∧Qij))

From the first part and the validity of Qab → Pab, we get G, σ |= Pab. The second part
and the validity of Qij → Pij give us G, σ |= K̂Q

a [ab](Ex ∨∨i,j(Nij∧Pij)). From that
and Lemma 22 it follows that G, σ |= K̂P

a [ab](Ex ∨∨i,j(Nij ∧Pij)). Combining these,
it follows by definition of soft one-step strengthening that we have G, σ |= P♦ab.

Proposition 34 (Both hard strengthenings are not monotone). Let P and Q be
protocols. If Q ⊆ P , then (i) Q� ⊆ P� may not hold, and also (ii) Q� ⊆ P� may
not hold.

Proof. (i) Hard one-step strengthening is not monotone:
Consider the “spaceship” graph below with four agents 0, 1, 2 and 3 where 0 and

3 know 1’s number, 1 knows 2’s number, and 2 knows no numbers.

0

1

3

2

On this graph the LNS sequences up to decision point are:

01; 02 ×
01; 12 ×
01; 31; 02 ×

01; 31; 12 X
01; 31; 32 X
12 ×

31; 01; 02 X
31; 01; 12 X
31; 01; 32 ×

31; 12 ×
31; 32 ×
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Note that

LNS�(G) =





(01; 31; 12; 02; 32), (01; 31; 12; 32; 02), (01; 31; 32; 02; 12),
(01; 31; 32; 12; 02), (31; 01; 02; 12; 32), (31; 01; 02; 32; 12),
(31; 01; 12; 02; 32), (31; 01; 12; 32; 02)





is strongly successful and therefore hard one-step strengthening does not change it —
we have (LNS�)�(G) = LNS�(G). On the other hand, consider

LNS�(G) =





(01; 02; 12), (01; 12; 02), (01; 31; 02; 12), (01; 31; 02; 32),
(01; 31; 12; 32; 02), (01; 31; 32; 12; 02), (12; 01), (12; 31),
(31; 01; 02; 12; 32), (31; 01; 12; 02; 32), (31; 01; 32; 02),
(31; 01; 32; 12), (31; 12; 32), (31; 32; 12)





and note that this is not a superset of (LNS�)�(G) = LNS�(G), because we have
(01; 31; 12; 02; 32) ∈ (LNS�)�(G) = LNS�(G) but (01; 31; 12; 02; 32) /∈ LNS�(G).

Together, we have LNS�(G) ⊆ LNS(G) but (LNS�)�(G) 6⊆ LNS�(G).
Hence Q = LNS� ⊆ LNS = P is a counterexample and � is not monotone.

(ii) Hard look-ahead strengthening is not monotone:
For hard look-ahead strengthening we can use the same example. Because

LNS� is strongly successful, hard look-ahead strengthening does not change it:
(LNS�)�(G) = LNS�(G).

Moreover, LNS�(G) = {(01), (31)} is not a superset of (LNS�)�(G) = LNS�(G).
Together we have LNS�(G) ⊆ LNS(G) but (LNS�)�(G) 6⊆ LNS�(G), hence

hard look-ahead strengthening is not monotone either.

This result is relevant for our pursuit to pin down how rational agents can employ
common knowledge of a protocol to improve upon it. It shows that hard look-ahead
strengthening is not rational, as follows.

We consider again the “spaceship” graph in the proof of Proposition 34. Let
us define a bad call as a call after which no successful continuation is possible.
Correspondingly, a good call is one after which success is still possible. The initial
call could be 12, but that is a bad call. All successful LNS sequences on this graph
start with 01; 31 or 31; 01.

Let us place ourselves in the position of agent 3 after the call 01 has been made.
As far as 3 can tell (if the only background common knowledge is that everyone
follows LNS), the first call may have been 12, at which point no agent can make a
good call because no continuation is successful. In particular, the second call 31 is
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then bad. So 3 will not call 1, because it is possible that the call 31 is bad, and we
are following hard look-ahead.

Symmetrically, the same reasoning is made by agent 0: even if the first call is
31, it could also have been 12, after which any continuation is unsuccessful, and
therefore 0 will not call 1, which again seems irrational.

So nobody will make a call. The extension of LNS� on this graph is empty.
But as all agents know that 12 is bad, agent 1 knows this in particular, and as

agent 1 is rational herself, she would therefore not have made that call. And agents
3 and 0 can draw that conclusion too. It therefore seems after all irrational for 3 not
to call 1, or for 0 not to call 1.

This shows that hard look-ahead strengthening is not rational. In particular, it
ignores the rationality of other agents.

3.5 Limits and Fixpoints of Strengthenings
Given the iteration of strengthenings we discussed in the previous section, it is natural
to consider limits and fixpoints of strengthening procedures. In this subsection we
discuss them and give some small results. A detailed investigation is deferred to
future research.

Note that the protocol conditions of all four basic syntactic strengthenings are
conjunctions with the original protocol condition as a conjunct. Therefore, all these
four strengthenings are non-increasing: For all ♥ ∈ {�,�,�,♦} and all protocols P ,
we have P♥ ⊆ P . The same holds, by definition, for semantic strengthenings. This
implies that if, on any gossip graph, we start with a protocol that only allows finite
call sequences, such as LNS , then applying strengthening repeatedly will eventually
lead to a fixpoint. This fixpoint might be the empty set, or a non-empty set and
thereby provide a new protocol.

For other protocols that allow infinite call sequences, such as ANY , we do not
know if this procedure leads to a unique fixpoint and whether fixpoints are always
reached. We therefore distinguish fixpoints from limits.

Definition 35 (Strengthening Limit; Fixpoint). Consider any strengthening ♥. The
♥-limit of a given protocol P is the semantic protocol P♥∗ defined as ⋂k∈N P♥k. A
given protocol P is a fixpoint of a strengthening ♥ iff P = P♥.

Note that limit protocols P♥∗ are not in the logical language, unlike their constituents
P♥k. We now define P�∗ as Hard Uniform Backward Induction, and P♦∗ as Soft
Uniform Backward Induction. Again using induction on Theorem 26, it follows
that Uniform Backward Induction is the same as arbitrarily often iterated Uniform
Backward Defoliation.
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Corollary 36.
P�∗ = PHUBD∗ and P♦∗ = P SUBD∗.

Example 37. Consider P = LNS . The number of LNS calls between n agents is
bounded by

(n
2
)

= n(n − 1)/2. The limit LNS♥∗ is therefore reached after a finite
number of iterations, and expressible in the gossip protocol language: LNS♥n(n−1)/2 =
LNS♥∗.

As a further observation, the look-ahead strengthenings are not always the
limits of one-step strengthenings. In other words, we do not have for all G that
P�∗(G) = P�(G) or that P♦∗(G) = P�(G). Counterexamples are the “N” graph
from Example 30 and the extension of various strengthenings relating to the example
in the upcoming Section 3.6, as shown in Table 3 in the Appendix.

However, we know by the Knaster-Tarski theorem [37] that on any gossip graph
soft one-step strengthening ♦ has a unique greatest fixpoint, because ♦ is monotone
and the lattice we are working in is the powerset of the set of all call sequences and
thereby complete.

3.6 Detailed Example: the Diamond Gossip Graph

Consider the initial “diamond” gossip graph below.

0

1

2 3

There are 92 different terminating sequences of LNS calls for this initial graph of
which 48 are successful and 44 are unsuccessful. Also below we give an overview of
all sequences. For brevity we only list them in the compact way, up to the call after
which success has been decided.

185



van Ditmarsch et. al.

20; 01 ×
20; 21 ×
20; 30; 01 X
20; 30; 21 ×
20; 30; 31 X
20; 31 X

21; 10 ×
21; 20 ×
21; 30 X
21; 31; 10 X
21; 31; 20 ×
21; 31; 30 X

30; 01 ×
30; 20; 01 X
30; 20; 21 X
30; 20; 31 ×
30; 21 X
30; 31 ×

31; 10 ×
31; 20 X
31; 21; 10 X
31; 21; 20 X
31; 21; 30 ×
31; 30 ×

Table 1 shows how many sequences are permitted by the different strengthen-
ings. Both soft strengthenings rule out no successful sequences and rule out some
unsuccessful sequences. The hard look-ahead strengthening removes some successful
sequences and rules out the same number of unsuccessful sequences as the soft
lookahead strengthening, but interestingly enough this is a different set.

This demonstrates that Table 1 may be misleading: the same number of sequences
does not imply the same set of sequences. Table 3 in the Appendix is more detailed
and lists sequences. If a further iteration of a strengthening does not change the
number and also not the set of sequences, it has the same extension, and is therefore a
fixpoint. For example, Table 3 shows that LNS♦2 and LNS♦3 both have 48 successful
and 32 unsuccessful sequences on the diamond graph. They also have the same
extension, hence LNS♦2 is a fixpoint of ♦ on this graph.

Recall that one-step strengthening is uniform backward defoliation (Theorem 26)
and that the limit of one-step strengthening is uniform backward induction (Corol-
lary 36). Table 1 shows the difference between the look-ahead strengthenings and
the one-step/defoliation strengthenings. Although on this “diamond” graph, the
hard strengthenings LNS�k and LNS�k have the same fixpoint, namely the empty
extension for all k ≥ 4, the soft strengthenings LNS�k and LNS♦k have different
fixpoints. Both are reached when k = 2.

We now present two strengthenings that are strongly successful on this graph
(only successfully terminating call sequences remain).

Firstly, consider the protocol (LNS♦)�3. Its extension is as follows, see also
Tables 1 and 3.

20; 30; 01; 31; 21
20; 30; 31; 01; 21
20; 31; 10; 30; 21
20; 31; 30; 10; 21

21; 30; 01; 31; 20
21; 30; 31; 01; 20
21; 31; 10; 30; 20
21; 31; 30; 10; 20

30; 20; 01; 21; 31
30; 20; 21; 01; 31
30; 21; 10; 20; 31
30; 21; 20; 10; 31

31; 20; 01; 21; 30
31; 20; 21; 01; 30
31; 21; 10; 20; 30
31; 21; 20; 10; 30

Its extension has no sequences with only four calls. There are sequences with
redundant second-to-last calls, for example 10 in 20; 31; 30; 10; 21.
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Protocol # successful # unsuccessful
LNS 48 44
LNS� 8 8
LNS�2 0 4
LNS�3 0 0
LNS� 48 8
LNS�2 48 8
LNS�3 48 8
LNS� 24 36
LNS�2 8 16
LNS�3 8 4
LNS�4 0 4
LNS�5 0 0
LNS♦ 48 36
LNS♦2 48 32
LNS♦3 48 32
(LNS♦)�3 16 0
((LNS♦)�)

�
16 0

Table 1: Statistics for the diamond example.

Secondly, we present a protocol that is strongly successful on this graph and
that has no redundant calls. Its description is far more involved than the previous
protocol, but the effort seems worthwhile as is shows that: (i) for some initial gossip
graphs we can strengthen LNS up to finding strongly successful as well as optimal
extensions; (ii) the hard and soft strengthening procedures described so far merely
touch the surface and are not all that goes around, because one can easily show that
the following protocol does not correspond to any of those or their iterations.

We first describe it as a semantic protocol, liberally referring to call histories in
our description (which cannot be done in our logical language) and only then give a
formalization using the syntax of our protocol logic. Consider the following semantic
protocol:

(1) agent 2 or agent 3 makes a call to either 0 or 1.
(2) the agent among 2 and 3 that did not make a call in step (1) calls
either 0 or 1.
(3) the agent x that made the call in step (2) now makes a second call; if
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x called agent 1 before then x now calls 0 and vice versa.
(4) the agent y that made the call in step (1) now makes a second call; if
y called agent 1 before then y now calls 0 and vice versa.
(5) if the agent z that was called in step (2) is not yet an expert, then z
calls the last remaining agent whose secret z does not know.

Now let us explain why this protocol is strongly successful on the “diamond” graph,
and why it is a strengthening of LNS . There are four possibilities for the first call:
2 may call 0, 2 may call 1, 3 may call 0 or 3 may call 1. These four cases are
symmetrical, so let us assume that the first call is 20. The next call will then be
made by agent 3, and there are two possibilities: either 3 also calls agent 0, or 3 calls
agent 1. The call sequences, and the secrets known by the agents after each call has
been made, are shown in the following two tables.

First case: 2 and 3 call the same agent
Stage Call 0 1 2 3
(1) 20 {0, 2} {1} {0, 2} {3}
(2) 30 {0, 2, 3} {1} {0, 2} {0, 2, 3}
(3) 31 {0, 2, 3} {0, 1, 2, 3} {0, 2} {0, 1, 2, 3}
(4) 21 {0, 2, 3} {0, 1, 2, 3} {0, 1, 2, 3} {0, 1, 2, 3}
(5) 01 {0, 1, 2, 3} {0, 1, 2, 3} {0, 1, 2, 3} {0, 1, 2, 3}

Second case: 2 and 3 call different agents
Stage Call 0 1 2 3
(1) 20 {0, 2} {1} {0, 2} {3}
(2) 31 {0, 2} {1, 3} {0, 2} {1, 3}
(3) 30 {0, 1, 2, 3} {1, 3} {0, 2} {0, 1, 2, 3}
(4) 21 {0, 1, 2, 3} {0, 1, 2, 3} {0, 1, 2, 3} {0, 1, 2, 3}

Note that all of these calls are possible, in the sense that all callers know the number
of the agent they are calling. Agents 2 and 3 start out knowing the numbers of 0
and 1, so the calls 20, 30, 21 and 31 are possible from the start. Furthermore, agent
0 learns the number of agent 1 from agent 2 in the first call, so after the call 20 the
call 01 is also possible.

In the second case there is no fifth call, since the agent that received the call
in step (2) is already an expert after step (4). As a result, there are no redundant
calls in either possible call sequence. Furthermore, in either case, all agents become
experts. Finally, every call is to an agent whose secret is unknown to the caller before
the call. So, the described protocol is a strongly successful strengthening of LNS .
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The two call sequences shown above are possible if the first call is 20. There are
six other call sequences corresponding to the other three options for the first call.
Overall, the protocol allows the following 8 sequences.

20; 30; 31; 21; 01
20; 31; 30; 21

21; 31; 30; 20; 10
21; 30; 31; 20

30; 20; 21; 31; 01
30; 21; 20; 31

31; 21; 20; 30; 10
31; 20; 21; 30

We can also define a syntactic protocol that has the above semantic protocol as
its extension. This syntactic protocol is not particularly elegant, but it illustrates
how the logical language can be used to express more complex conditions. The
call condition Pij of this syntactic protocol is of the form Pij = Kiψij (where Ki

abbreviates KANY
i , as defined in Section 2.2). This guarantees that the protocol is

epistemic, because Lemma 22 implies that Kiψij → KP
i Kiψij is valid. The formula

ψij is a disjunction with the following five disjuncts, one for each of the clauses (1) –
(5) of the protocol as described above.

The formula ϕ0 := ∧
k

∧
l 6=k ¬Skl holds if and only if no calls have taken place yet.

Since agents 2 and 3 are the only ones that know the number of another agent, if ϕ0
is true then any agent who can make a call is allowed to make that call. So ϕ0 is the
first disjunct of ψij , enabling the call in stage (1).

Defining “exactly one call has been made” is a bit harder, but we can do it: after
the first call, there will be two agents that know two secrets, while everyone else only
knows one secret. So ϕ1 := ∨

k 6=l(Skl ∧ Slk ∧
∧
m6∈{k,l}

∧
n6=m ¬Smn) holds if and only

if exactly one call has been made. In that case, any agent that is capable of making
calls and only knows their own secret is allowed to make a call, so ϕ1 ∧

∧
k 6=i ¬Sik is

the second disjunct of ψij , enabling the call in stage (2).
In stage (3), the second caller is supposed to make another call. We make a case

distinction based on whether the first two calls were to the same agent or to different
agents. If they were to the same agent, then the second caller now knows three
different secrets: ∨k 6=i

∨
l 6∈{i,k} Sikl. But that holds not only for the agent who made

the second call, but also for the agent that received the second call. The difference
between them is that the secret of the receiver of this call is now known by three
agents, while the secret of the caller is known by only two: ∧k 6=i(Ski→

∧
l 6∈{i,k} ¬Sli).

If the first two calls were to different agents, the second caller knows that every
agent now knows exactly two secrets: Ki

∧
k

∨
l 6=k(Skl ∧

∧
m6∈{k,l} ¬Skm). This holds

for the receiver of the second call as well, but the difference between them is that the
number of the receiver is known to an agent who does not know their secret, while
the number of the caller is not: ∧k(Nki→ Ski).

In either case, the target of the call should be the unique agent whose number
the caller knows but whose secret the caller does not know. Since calls are always to
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an agent whose number is known, we only have to stipulate that the target’s secret
is not known. So the third disjunct of ψij is

¬Sij ∧ ((
∨

k 6=i

∨

l 6∈{i,k}
Sikl ∧

∧

k 6=i
(Ski→

∧

l 6∈{i,k}
¬Sli))∨

(Ki

∧

k

∨

l 6=k
(Skl ∧

∧

m 6∈{k,l}
¬Skm) ∧

∧

k

(Nki→ Ski))),

enabling the call in stage (3).
It is relatively easy to express when the call in stage (4) should happen: before

the third call, all agents know that there is no expert yet, while after the third
call all agents consider it possible that there is at least one expert. This can be
expressed as K̂i

∨
k Exk. It is slightly more difficult to identify the agent who should

make the call. The agent who should make the call, the one who made the call in
stage (1), is the only agent who only knows two secrets, and whose number is only
known by agents that also know their secret. So ¬∨k 6=i

∨
l 6∈{i,j} Sikl∧

∧
k(Nki→ Ski).

Finally, the person who should be called in this stage is the unique agent of whom
the caller knows the number but not the secret. The fourth disjunct is therefore
¬Sij ∧ K̂i

∨
k Exk ∧ ¬

∨
k 6=i

∨
l 6∈{i,j} Sikl ∧

∧
k(Nki→ Ski).

Finally, the call in stage (5) should only happen if there remains a non-expert
agent. This non-expert considers it possible that all other agents are experts, so the
final disjunct of ψij is ¬Sij ∧ K̂i

∧
k 6=i Exk.

On the “diamond” graph the extension of the syntactic protocol with call condition
Pij is the semantic protocol defined above. Clearly, this protocol is symmetric. We
already showed that the protocol is epistemic as well.

All in all, this gives us the protocol that we were looking for. Manually verifying
the extension of the protocol is somewhat tedious, so we have also checked the
extension using the model checking tool described in the Appendix.

4 An Impossibility Result on Strengthening LNS
4.1 An Impossibility Result
In this section we will show that there are graphs where (i) LNS is weakly successful
and (ii) no epistemic symmetric strengthening of LNS is strongly successful. Recall
that we assume that the system is synchronous and that the initial gossip graph is
common knowledge. Without such assumptions it is even easier to obtain such an
impossibility result, a matter that we will address in the final section.
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Theorem 38. There is no epistemic symmetric protocol that is a strongly successful
strengthening of LNS on all graphs.

Proof. Consider the following “candy” graph G:

0

1 2 3 4

5

LNS is weakly successful on G, but there is no epistemic symmetric protocol P that
is a strengthening of LNS and that is strongly successful on G.

In [16], it was shown that LNS is weakly successful on any graph that is neither
a “bush” nor a “double bush”. Since this graph G is neither a bush nor a double
bush, LNS is weakly successful on it. For example, the sequence

02; 12; 53; 43; 13; 03; 23; 52; 42

is a successful LNS sequence which makes everyone an expert. LNS is not strongly
successful on this graph, however. For example,

02; 12; 53; 43; 13; 03; 52; 42

is an unsuccessful LNS sequence, because 5 learns neither the number nor the secret
of 4 and no further calls are allowed.

Now, suppose towards a contradiction that P is an epistemic symmetric strength-
ening of LNS , and that P is strongly successful on G.

Before we look at specific calls made by P , we consider a general fact. Recall that
knowing a pure number means knowing the number of an agent without knowing
their secret. For any gossip graph and any agent a, if no one has a’s pure number,
then no call sequence will result in anyone learning a’s pure number. After all, in
order to learn a’s number, one would have to call or be called by someone who
already knows that number, but in such a call one would also learn a’s secret.

In LNS , you are only allowed to call an agent if you have the number but not the
secret of that agent, i.e., if you have their pure number. It follows that if, in a given
gossip graph, no one has a’s pure number, then no LNS sequence on that graph will
contain any calls where a is the receiver.

In the gossip graph G under consideration, agents 0, 1, 4 and 5 are in the situation
that no one else knows their number. So in particular, no one knows the pure number
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of any of these agents. It follows that 2 and 3 are the only possible targets for LNS
calls in this graph.

Now, let us consider the first call according to P . This call must target 2 or 3.
The calls 12 and 43 are bad calls, since they would result in 1 (resp. 4) being unable
to make calls or be called, while still not being an expert.

This means that either 0 or 5 must make the first call. By symmetry, we can
assume without loss of generality that the first call is 02. This yields the following
situation.

0

1 2 3 4

5

Now, let us look at the next call.

• The sequence 02; 43 is bad, because that would make it impossible for 4 to ever
become an expert.

• Because of the symmetry of P , the initial call could have been 03 instead of 02.
The sequence 03; 12 is bad, since 1 cannot become an expert, so 03; 12 is not
allowed by the strongly successful protocol P .
But agent 1 cannot tell the difference between 03 and 02, so from the fact
that 03; 12 is disallowed and that P is epistemic it follows that 02; 12 is also
disallowed.

• The sequence 02; 03 is bad, since 0 will not be able to make any call afterwards.
Because 0 can also never be called, this implies that 0 will never become an
expert.

• Consider then the sequence 02; 23. This results in the following diagram.

0

1 2 3 4

5
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This graph has the following property: it is impossible (in any LNS sequence)
for any agent to get to learn a new pure number. That is, nobody can learn
a new number without also getting to know the secret of that agent: agents
1, 0, and 4 each know only one pure number, so they cannot teach anyone a
new number, and agent 5 knows two pure numbers (2 and 3), but those agents
already know each other’s secrets.
As a result, any call that will become allowed by LNS in the future is already
allowed now. There are 5 such calls that are currently allowed, namely 12, 52,
53, 03 and 43. Furthermore, of those calls 52 and 53 are mutually exclusive,
since calling 2 will teach 5 the secret of 3, and calling 3 will teach 5 the secret
of 2.
So any continuation of 02; 23 allowed by LNS can only contain (in any order)
12, 03, 43 and either 52 or 53. Since P is a strengthening of LNS , the same
holds for P . But using only those calls, there is no way to teach 3 the secret of
1: secret 1 can reach agent 2 using the call 12, but in order for the secret to
travel any further we need the call 52. After that call only 03 and 43 are still
allowed (in particular, 53 is ruled out), so the knowledge of secret 1 remains
limited to agents 1, 2 and 5.
Since 02;13 cannot be extended to a successful LNS sequence, 02;13 must be
disallowed.

• Consider the call sequence 02; 52. This gives the following diagram.

0

1 2 3 4

5

Note that in this situation, it is impossible for agents 3 and 4 to learn any
new number without also learning the secrets corresponding to those numbers:
there is no agent that knows the number of agent 3 and that also knows another
pure number, and this will remain the case whatever other calls happen.
This means that agent 3 cannot make any calls, and that agent 4 can make
exactly one call, to agent 3.
Suppose now that 02; 52 is extended to a successful LNS sequence. This
sequence has to contain the call 43 at some point. This will be the only call by
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agent 4, so in order for the sequence to be successful, agent 3 already has to
know secret 1 by the time 43 takes place.

In particular, this means that the call 12 has already happened, and that either
agent 1 or agent 2 has then called agent 3 to transmit this secret. Whichever
agent among 1 and 2 makes this call, afterwards they are unable to make any
more calls. Furthermore, this takes place before the call 43, so whatever agent
x ∈ {1, 2} informs 3 of secret 1 does not learn secret 4. Since this agent x can
neither make another call nor be called, it follows that x does not become an
expert.

So 02; 52 is not allowed by P which we assumed to be strongly successful.

• Finally, consider the call sequence 02; 53. By symmetry, 03 could have been
the first call as opposed to 02. Furthermore, the same reasoning that showed
02;52 to be unsuccessful above can, with an appropriate permutation of agents,
be used to show that 03;53 is unsuccessful.

Agent 5 cannot distinguish between the first call 02 and 03 before making the
call 53, so if 03; 53 is disallowed then so is 02; 53 because P is epistemic.

Remember that 02 is, without loss of generality, the only initial call that can
lead to success. We have shown that all of the LNS-permitted calls following the
initial call 02 (namely, the calls 43, 12, 03, 23, 52 and 53) are disallowed by P . This
contradicts P being a strongly successful strengthening of LNS .

4.2 Backward Induction and Look-Ahead applied to Candy

Given this impossibility result, it is natural to wonder what would happen if we use
the syntactic strengthenings from Definition 23, or their iterations, on the “candy”
graph G.

All second calls are eliminated by LNS�, because for any two agents a and b we
have G, 02 |= ¬KLNS

a [ab]〈LNS〉Ex. By symmetry this also holds for the three other
possible first calls, hence LNS� is unsuccessful on G. However, the first calls are still
allowed according to LNS�.

There are 9468 LNS-sequences on this graph of which 840 are successful. Using
the implementation discussed in the Appendix we found out that LNS�, the soft
look-ahead strengthening of LNS , is weakly successful on this graph and allows 840
successful and 112 unsuccessful sequences.
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5 Conclusions, Comparison, and Further Research

Conclusions We modeled common knowledge of protocols in the setting of dis-
tributed dynamic gossip. A crucial role is played by the novel notion of protocol-
dependent knowledge. This knowledge is interpreted using an epistemic relation over
states in the execution tree of a gossip protocol in a given gossip graph. As the
execution tree consists of gossip states resulting from calls permitted by the protocol,
this requires a careful semantic framework.

We described various syntactically or semantically definable strengthenings of
gossip protocols, and investigated the combination and iteration of such strengthen-
ings, in view of strengthening a weakly successful protocol into one that is strongly
successful on all graphs. In the setting of gossip, a novel notion we used in such
strengthenings is that of uniform backward induction, as a variation on backward
induction in search trees and game trees.

Finally, we proved that for the LNS protocol, in which agents are only allowed
to call other agents if they do not know their secrets, it is impossible to define a
strengthening that is strongly successful on all graphs.

Comparison As already described at length in the introductory section, our work
builds upon prior work on dynamic distributed gossip [16, 15], which itself has a prior
history in the networks community [23, 29, 20] and in the logic community [3, 1].
Many aspects of gossip may or may not be common knowledge among agents: how
many agents there are, the time of a global clock, the gossip graph, etc. The
point of our result is that even under the strongest such assumptions, one can still
not guarantee that a gossip protocol always terminates successfully. How common
knowledge of agents is affected by gossip protocol execution is investigated in [2]: for
example, the authors demonstrate how sender-receiver subgroup common knowledge
is obtained (and lost) during calls. However, they do not study common knowledge
of gossip protocols. We do not know of other work on that topic. Outside the
area of gossip, protocol knowledge has been well investigated in the epistemic logic
community [26, 39, 12].

While the concept of backward induction is well-known in game theory (see for
example [4]), it is only used in perfect-information settings, where all agents know
what the real world or the actual state is. Our definition of uniform backward
induction is a generalization of backward induction to the dynamic gossip setting,
where only partial observability is assumed. A concept akin to uniform backward
induction has been proposed in [35] (rooted in [8]), under the name of common belief
in future rationality, with an accompanying recursive elimination procedure called
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backward dominance.3 As in our approach, this models a decision rule faced with
uncertainty over indistinguishable moves. In [35], the players are utility maximizers
with probabilistic beliefs, which in our setting would correspond to randomizing
over all indistinguishable moves/calls. As a decision rule this is also known as the
insufficient reason (or Laplace) criterion: all outcomes are considered equiprobable.
Seeing uniform backward induction as the combination of backward induction and
a decision rule immediately clarifies the picture. Soft uniform backward induction
applies the minimax regret criterion for the decision whom to call, minimizing the
maximum utility loss. In contrast, hard uniform backward induction applies the
maximin utility criterion, maximizing the minimum utility (also known as risk-averse,
pessimistic, or Wald criterion).

In the gossip scenario, the unique minimum value is unsuccessful termination,
and the unique maximum value is successful termination. Minimax prescribes that
as long as the agent considers it possible that a call leads to successful termination,
the agent is allowed to make the call (as long as the minimum of the maximum is
success, go for it): the soft version. Maximin prescribes that, as long as the agent
considers it possible that a call lead to unsuccessful termination, the agent should not
make the call (as long as the maximum of the minimum is failure, avoid it): the hard
version. Such decision criteria over uncertainty also crop up in areas overlapping
with social software and social choice, e.g. [7, 11, 33, 31]. In [7] a somewhat similar
concept has been called “common knowledge of stable belief in rationality”. However,
there it applies to a weaker epistemic notion, namely belief.

Further Research The impossibility result for LNS is for dynamic gossip where
agents exchange both secrets and numbers, and where the network expands. Also in
the non-dynamic setting we can quite easily find a graph where static LNS is weakly
successful but cannot be strengthened to an epistemic symmetric strongly successful
protocol. Consider again the “diamond” graph of Section 3.6, for which we described
various strongly successful strengthenings. Also in “static” gossip LNS is weakly
successful on this graph, since 01; 30; 20; 31 is successful. All four possible first calls
are symmetric. After 21, the remaining possible calls are 20, 31 and 30. But 20 is
bad, since 2 will never learn secret 3 that way. Also 31 is bad, since agent 1 will
never learn the secret of 0. The call 30 is safe and in fact guarantees success, but by
epistemic symmetry it cannot be allowed while 31 is disallowed. Therefore, in the
static setting it is impossible to strengthen LNS on “diamond” such that it becomes
strongly successful. We expect a completely different picture for strengthening “static”
gossip protocols in similar fashion as we did here, for dynamic gossip.

3We kindly thank Andrés Perea for his interactions.
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We assumed synchronicity (a global clock) and common knowledge of the initial
gossip graph. These strong assumptions were made on purpose, because without
them agents will have even less information available and will therefore not be able to
coordinate any better. Such and other parameters for gossip problems are discussed
in [13]. It is unclear what results still can be obtained under fully distributed
conditions, where agents only know their own history of calls and their neighbors.

We wish to determine the logic of protocol-dependent knowledge KP
a , and also on

fully distributed gossip protocols, without a global clock, and to further generalize
this beyond the setting of gossip.
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Appendix: A Model Checker for Dynamic Gossip
Analyzing examples of gossip graphs and their execution trees by hand is tedious.
To help us find and check the examples in this paper we wrote a Haskell program
which is available at https://github.com/m4lvin/gossip. Our program can show
and randomly generate gossip graphs, execute the protocols we discussed and draw
the resulting execution trees with epistemic edges. The program also includes an
epistemic model checker for the formal language we introduced, similar to DEMO [17],
but tailor-made for dynamic gossip. For further details, see also [19, Section 6.6].

Figure 2 is an example output of the implementation, showing the execution tree
for Example 30 up to two calls, together with the epistemic edges for agent 2, here
called c. Note that we use a more compact way to denote gossip graphs: lower case
stands for a pure number and capital letters for knowing the number and secret.

AbCD.B.AC.AbCD

AC.aBD.AC.aBD

c

AC.B.AC.abD

da

db ABD.ABD.aC.AbD

AbD.ABD.aC.ABD

c

ABD.ABD.aC.aBD

c

ABD.aBD.aC.ABD

cc

c

c

AbCD.B.AbCD.AbD

AbD.B.aC.AbD

ab

db

ca

A.aBD.aC.aBD
c

ba

da

AC.aBD.AC.aBD

ca

A.B.aC.abD

ca da db

Figure 2: Two levels of the execution tree for Example 30, with epistemic edges for c.

Our implementation can run different protocols on a given graph and output a
LATEX table showing and comparing the extension of those protocols. Tables 2 and 3
have been generated in this way. They provide details how various strengthenings
behave on the gossip graphs from Example 30 and Section 3.6.
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LNS ·� ·� ·� ·�2 ·�3 ·�4 ·♦ ·♦2 ·♦3 ·♦4 ·♦5

ε ×
20 × ×
20;30 × ×
20;30;01 × ×
20;30;01;31 ×
20;30;31 × ×
20;30;31;01 ×
20;31 × ×
20;31;10 × ×
20;31;10;30 ×
20;31;30 × ×
20;31;30;10 ×
30 × ×
30;01 ×
30;01;20 ×
30;01;20;31 × × × × × ×
30;01;31 × × × × × ×
30;01;31;20 ×
30;20;01 ×
30;20;01;21;31 X X X X X X X X
30;20;01;31;21 X X X X X X X
30;20;21 ×
30;20;21;01;31 X X X X X X X X
30;20;21;31;01 X X X X X X X
30;20;31;01 ×
30;20;31;01;21 × × × × × ×
30;20;31;21 ×
30;20;31;21;01 × × × × × ×
30;31 ×
30;31;01 × ×
30;31;01;20 ×
30;31;20 × × × ×
30;31;20;01 × ×
30;31;20;01;21 ×
30;31;20;21 × ×
30;31;20;21;01 ×
31 ×
31;10 ×
31;10;20 × × × × × ×
31;10;20;30 ×
31;10;30 × ×
31;10;30;20 ×
31;20 × × × × ×
31;20;10 × ×
31;20;10;30 ×
31;20;30 × ×
31;20;30;10 ×
31;30 ×
31;30;10 × ×
31;30;10;20 ×
31;30;20 × × × × × ×
31;30;20;10 ×

Table 2: N Example 30: Extensions of strengthenings.
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LNS ·� (·�)� ·� ·� ·�2 ·�3 ·�4 ·♦ ·♦2 ·♦3 (·♦)�3

ε ×
01 ×
01;21 × × × ×
01;21;30 ×
01;21;31 ×
01;30 ×
01;30;21 × × × ×
01;31 ×
01;31;21 × × × ×
21 ×
21;01 × × × ×
21;01;30 ×
21;01;31 ×
21;30 × ×
21;30;01 × ×
21;30;01;31 ×
21;30;31 × ×
21;30;31;01 ×
21;31 ×
21;31;01 × × × ×
30 × ×
30;01 × ×
30;01;21;31 X X X X X
30;01;31;21 X X X X X X X
30;21;01 ×
30;21;01;31 × × × × ×
30;21;31 ×
30;21;31;01 × × × × ×
30;31 × ×
30;31;01;21 X X X X X X X
30;31;21;01 X X X X X
31;01;21;30 X X X X X
31;01;30;21 X X X X X X
31;10;21;30 X X X X X
31;10;30;21 X X X X X X X X X X X
31;21;01;30 X X X X X
31;21;30 X X X X X X
31;30;10;21 X X X X X X X X X X X
31;30;21 X X X X X

Table 3: Diamond Example of Section 3.6: Extensions of strengthenings, after 20.
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