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Adams’ p-validity in the research on human
reasoning

Gernot D. Kleiter
Fachbereich Psychologie, Universität Salzburg, A-5020 Salzburg, Hellbrunnerstr. 34

gernot.kleiter@gmail.com, gernot.kleiter@sbg.ac.at

Abstract
This contribution throws a critical light on the application of Adams’ prob-

abilistic validity (p-validity) in the research on human reasoning. While Adams
introduced “p-validity” in probability logic as a surrogate for “validity” in classi-
cal logic, it has recently been used in psychology as a “new standard” to evaluate
probabilistic inferences. A major misunderstanding concerns the fact that in
the work of Adams the probabilities of the premises are interval probabilities,
while in the psychological experiments the participants assess point probabili-
ties. The contribution argues that the coherence approach to probability, that
is, the current continuation and extension of the work of de Finetti, is the more
fruitful approach to evaluate and model human probabilistic inferences.

Keywords: p-validity, human reasoning, probability logic, coherence

1 Introduction
For more than a millennium philosophers compared human reasoning with logical
principles. In the last century psychologists developed new theories and methods
but continued to compare human inferences with the standards of classical logic.
In the last two decades, however, a substantial number of psychologists working on
human reasoning switched the perspective from classical logic to probability so that
the old standards were not applicable any more. This included one of the most
important standards of classical logic, the validity of inference rules:

If ϕ = {ϕ1, . . . , ϕn} denotes a set of premises and ψ a conclusion, then
an inference rule is valid, ϕ |= ψ, if and only if it is impossible for all
premises in ϕ to be true and the conclusion ψ to be false.

I thank David Over for his help and patience in discussing many points of the paper. Thanks are
due to the anonymous reviewers who helped to remove errors in the original manuscript and who
stimulated a series of improvements.
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Looking for a similar standard that applies to the probabilistic approach psycholo-
gists hit on Adams’ p-validity [3, 4, 6, 9, 11]. P-validity allows to classify probabilistic
inference rules as either “p-valid” or “p-nonvalid” 1 analog to “valid” and “nonvalid”
rules in classical logic. Adams introduced p-validity in probability logic as a surro-
gate for validity in classical logic. P-validity functions as a substitute, an “Ersatz”,
when “... ’probable’ and ’improbable’ are substituted for ’true’ and ’false’.” [6, p.1]
What’s “validity” in classical logic is “p-validity” in probability logic.

Adams was not the first philosopher who emphasized the role of probabilities
for reasoning. The outstanding pioneer was George Boole [20]. MacColl introduced
the suppositional interpretation of conditionals and conditional probability. “The
symbol A

B , when the numerator and denominator denote statements, expresses the
chance that A is true on the assumption that B is true.” [57, 58]. In the 1960s
the development of modern probability logic started with Patrick Suppes [87]. He
stimulated the beginning of the work of Ernest Adams [4]. Well-known became Sys-
tem P [52] and several of the closely related systems like the ϵ-semantic [65], System
P+ [81, 82] or System Z [65]. Some of these systems are “syntactically” equivalent
to one of David Lewis’ 27 systems investigated in the context of counterfactuals
[55, 56].

In the psychology of reasoning p-validity was especially interesting since—when
combined with the interpretation of the probability of conditionals as conditional
probabilities, P (if A then B) = P (B|A)—it classifies the probabilistic versions of
some classically valid but counter-intuitive rules as p-nonvalid. The counter-intuitive
paradoxes of the material implication, contraposition, or strengthen-
ing the antecedent are p-nonvalid. Moreover, the set of p-valid inference rules
[4, p.277, Definition 6] corresponds to the rules of System P [36, 52]. Would human
reasoning be closer to such a system than to a system of classical logic [83, 69, 71, 67]?

P-validity has been discussed in the psychological literature, for example, in
[62, 47, 69]. Recently it has been claimed to be a “new standard” to evaluate
the rationality of probability judgments in human reasoning [86, 31]. The present
contribution throws a critical light on the application of p-validity in reasoning
research. I first give an outline of the main arguments and topics of the contribution.

1.1 Preview

1. Coherence: Human judgments and inferences are evaluated by comparisons
with “normative” standards. One such standard is coherence (de Finetti).
A probability assessment is said to be coherent if it does not allow a Dutch
Book. A Dutch Book is a bet where you lose for sure; you pay one Dollar for

1I follow Adams and write “p-nonvalid” and not “non-p-valid”.

776



p-validity

a bet in which you can maximally win only 99 Cents. The coherence approach
to probability theory provides a special and (I think) fruitful perspective to
model human uncertain reasoning. As Adams’ p-validity is seen here on the
background of the coherence approach I explain the concept of coherence in
section 2.

2. P-validity: In classical logic an inference is valid if the conjunction of its
premises implies its conclusion. In probability logic an inference is p-valid
if the probability of the conjunction or the quasi-conjunction of its premises
exceeds the probability of its conclusion. Quasi-conjunctions were introduced
by Adams [6] to allow the conjunction of conditional events [39]. Adams ex-
pressed this criterion in terms of “uncertainties” where uncertainties are just
the 1-complements of probabilities. The result is the uncertainty-sum criterion:
The uncertainty of the conclusion may not exceed the sum of the uncertainties
of the premises. P-validity is explained in section 3.

3. Precise versus imprecise probabilities P-validity refers to interval probabilities,
not to point probabilities. Interval probabilities (or imprecise probabilities),
assign lower and an upper bounds to each of the premises and infer an interval
probability for the conclusion. P-validity refers to inferences where the prob-
abilities of the premises are higher than a given value and less than or equal
to 1. In psychological experiments human inferences were evaluated by the
criterion of p-validity, but the participants in the experiments assessed point
probabilities and not interval probabilities. As a consequence, incoherent judg-
ments are claimed to be rational. We introduce the concept of p-validity in
section 3.

4. Generalized p-validity: P-validity defines a threshold that depends upon the
lower probabilities of the premises, that is, only upon the numerical values,
not upon the logical form of the premises. The threshold is the same for any
permutation of these values. Moreover, the uncertainty-sum criterion applies
only to logically independent premises. Every-day reasoning may, however, re-
quire logically dependent premises. Section 4 introduces Adams’ and Levine’s
[11] concept of essentialness leading to the so called generalized p-validity.

5. Nonintuitive inference rules: Classical logic contains rules which are valid but
nonintuitive in everyday reasoning. Typical examples are the paradoxes of
the material implication. In Adams’ probability logic these rules turn out to
be p-nonvalid. Do we need p-validity to protect against these nonintuitive
rules? Pfeifer and Kleiter [70, 71, 74] have shown that the nonintuitive rules
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are those which lead to conclusions with the vacuous probability interval [0, 1].
We have called such rules “probabilistically noninformative” and argued that
the intuitive rules are probabilistically informative, while the nonintuitive rules
are probabilistically noninformative.

6. Interpretation of conditionals: Adams introduced “The Equation”, which
means to set the probability of an if-then statement equal to the probabil-
ity of a conditional event. P-validity works in alliance with the conditional
event interpretation of conditionals. The conditional event interpretation is
clearly different from the material implication of classical propositional calcu-
lus. The interpretation of if-then sentences has extensively been studied in the
psychological literature [32, 50, 68]. The relationship between p-validity and
the interpretation of conditionals is discussed in section 6.

7. Inconsistent premises: P-validity presupposes premises with upper probabili-
ties equal to 1. Not all sets of premises admit coherent upper bounds equal
to 1 simultaneously for all premises. Adams called such cases “inconsistent
premises”. We will treat inconsistent premises in section 7. We will observe an
interesting relationship to inferences in which if-then sentences are interpreted
as material implications. The topic is treated in section 7.

8. Inferring correlations: From a psychological perspective it is often more im-
portant to consider inferences about correlations than inferences about propo-
sitions. Many psychological studies investigated the judgment of correlations.
Section 9 treats inferences about 2×2 correlations in the context of probability
logic and p-validity. From the premises of a modus ponens, for example, we
may infer lower and upper correlations.

9. Zero probabilities of the conditioning event. Kolmogorov’s probability theory
introduces conditional probability by the ratio-definition: P (B|A) = P (A ∧
B)/P (A), where P (A) ̸= 0. If P (A) = 0 conditional probabilities are unde-
fined. Adams regrets “. . . the neglect of the possibility that the antecedents
of the conditionals involved may have zero probability and we have no theory
which applies to that case . . . I arbitrarily stipulated that if p(A) = 0 then both
[p(B|A)] and [p(¬B|A)] equal 1 . . . ” [6, p.40, p. 46]. Setting P (B|A) = 1 if
P (A) = 0 is called the null-unity convention [14]. While zero probabilities do
not directly appear in the psychological literature, probabilities equal to 1 do
[62, 63]. If we consider P (B|A) and assume P (A) = 1 what about P (B|¬A)?
Zero probabilities are relevant in modeling uncertain reasoning [68] and are
discussed in section 8.
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10. n-increasing probabilities: Consider a probabilistic inference rule with n
premises. Assume that if the probability of any of the n premises increases,
then also the probability of the conclusion increases. Such rules may be called
“n-increasing”. Are p-valid rules n-increasing? No, the modus tollens, for
example, is not n-increasing but p-valid. In section 5 we speculate that human
reasoning endorses n-increasing rules.

11. Nothing is wrong with p-nonvalid rules: Logical inference rules like denying
the antecedent or affirming the consequent are logically nonvalid.
Their probabilistic versions are p-nonvalid. But why should the probabilistic
versions of these rules be discredited? They propagate coherent probabilities
of the premises to coherent probabilities of the conclusions corresponding to
the rules of probability theory. Propagating probabilities coherently is just
fine.

1.2 Preliminaries

A probabilistic inference rule has the form

{(X1, val1), . . . , (Xn, valn)} |= (Y, valY ) ,

where

1. X = {X1, . . . , Xn} denotes a finite set of n premises. In basic inference rules
the number of premises is just one or two. Each premise contains one or more
events. The events are either unconditional or conditional events. Uncondi-
tional events are denoted by A, B etc. They are negated and combined like
propositions in propositional logic. If-then sentences are either interpreted as
conditional events or as material implications. Conditional events are denoted
by B|A (B given A, A ̸= ⊥). They have the truth or indicator values (i) 1
(true) if both A and B have the values 1 (true), (ii) 0 (false) if A is 1 and
B is 0, and (iii) the truth value is undetermined if A is 0 (false). Conditional
events are not propositions. They do not combine as conjunctions or disjunc-
tion in the usual way and they do not iterate in the usual way (but see [43], [9,
p. 164]). Material implications are denoted by A → B. They have the truth or
indicator value 0 (false) if A is true and B is false and the value 1 otherwise.
X builds the logical carrier structure of the valuation of the premises. Adams
calls the (truth-functional) language that contains only unconditional events
factual and a language that contains also (non-truth-functional) conditionals
its extension. An unconditional event may be represented by conditioning on
the tautology; A is the short form of A|⊤.
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2. val1, . . . , valn is an associated valuation of the premises. The valuation may
be a probability assessment; the assessment may be precise (point probabili-
ties), imprecise (interval probabilities or second order density functions), or a
mixture of both. In some cases, like in the left logical equivalence in
System P, a premise is explicitly valuated by a truth value.

3. Y denotes the conclusion and valY its inferred valuation. Y contains again
unconditional or conditional events. The valuation may be precise. However,
in probability logic it is usually an interval probability.

4. |= denotes the entailment relation. For finite numbers of premises p-validity
is a deduction relation; it is monotone, transitive, and invariant with respect
to the substitution of truth-functional formulas for atomic formulas (see The-
orem 1.3 in [4, p. 275] or [9, p. 151]). For more details the reader is referred
to chapter 3 in [84], especially to the definition of a “Wahrscheinlichkeitsthe-
oretische Folgerung” in Def. 3-5. and to the 2012 paper of Schurz and Thorn
[85].

We denote the lower and upper values of a probability interval by single or double
inverted commas like [α′, α′′], 0 ≤ α′ ≤ α′′ ≤ 1. In some sections we mark the prob-
ability of conditionals either by a vertical stroke “|”, like P (B|A) = β|, or by a right
arrow “ →′′, like P (A → B) = β→. The vertical stroke is used for the interpretation
of conditionals as conditional events, the right arrow for the interpretation as mate-
rial implications. Throughout I use “material implication” for material conditionals
and “conditional events” for the conditional event interpretation of conditionals.

The inference rules most often investigated in the psychology of reasoning are
the members of the quartet modus ponens, modus tollens, denying the An-
tecedent, and affirming the consequent (Table 1). The modus ponens and

Modus Modus Denying the Affirming the
ponens tollens antecedent consequent
A ¬B ¬A B
A → B A → B A → B A → B
B ¬A ¬B A

Table 1: The four inference rules most often investigated in reasoning research.

the modus tollens are valid, denying the antecedent and affirming the
consequent are nonvalid.
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In probability logic the conditional “if A then B” is interpreted as a conditional
event “B|A”. Each premise is assigned a probability assessment which in the psycho-
logical experiments is usually precise, that is, a point and not an interval probability.
The coherent probabilities of the conclusions are usually intervals. For the inference
rules in Table 1 the corresponding probabilities are shown in Table 2.

Modus ponens Modus tollens
P (A) = α P (¬B) = α
P (B|A) = β P (B|A) = β

P (B) ∈ [αβ, αβ + 1 − α] P (¬A) ∈ [max{1−α−β
1−β , α+β−1

β }, 1]
Denying the antecedent Affirming the consequent
P (¬A) = α P (B) = α
P (B|A) = β P (B|A) = β
P (¬B) ∈ [(1 − α)(1 − β), 1 − β(1 − α)] P (A) ∈ [0,min{α

β ,
1−α
1−β }]

Table 2: The rules of Table 1 for precise probabilities of the premises and the
inferred coherent lower and upper probabilities of the conclusion [71, p.212]. The
bounds require A and B to be logically independent.

2 Coherence
One of the first publication of Adams’ [2, 1, in two parts] shows that his work on
probabilistic inference started with the investigation of rational betting systems, very
much in the spirit of Ramsey and de Finetti and what today is called the coherence
approach (compare also the Appendix 1 in [9]). Probabilities are introduced with
the help of conditional bets, that is, by bets that A will be found true, given that B
is true. Bets are called off if A will be found false. Adams was also highly familiar
with the behavioral decision theory of the 1950ties. This is shown by work done
together with Fagot on riskless choice behavior [10].

Coherence is one of the most fundamental concepts on which the foundation of
de Finetti’s theory of subjective probability in based. In philosophy and cognitive
science coherence is a widely accepted rationality criterion of uncertain reasoning.
In the behavioral sciences it functions as a normative benchmark to evaluate human
inferences and judgments under uncertainty. Originally the concept was introduced
for the assessment and the propagation of precise probabilities. It was extended
by Walley [90, 91] to the paradigm of imprecise probabilities [12]. The imprecise
probability approach assesses and propagates interval probabilities from premises to
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conclusions. Closely related is the work of Gilio [34, 38, 18, 19]. Of special interest is
his study [36] on the relationships between System P, a nonmonotonic logical system
[52] pioneered by Adams [6], and interval probabilities. Interval probabilities were
extensively studied by Weichselberger [99, 96, 97].

The precise probability assessment of a sequence of conditional events is coherent
if there exists no combination of bets which certainly results in a loss [24, 26, p. 87]:
A precise probability assessment P = (α1, . . . , αn) of a sequence of conditional events
X = (B1|A1, . . . , Bn|An) is coherent if and only if the random gain G given by

G =
n∑

i=1
λi|Ai|(|Bi| − αi) (1)

is neither uniformly positive nor uniformly negative and if this holds for all subsets
of X ; |Ai| ∈ {0, 1} and |Bi| ∈ {0, 1} denote the indicator values of Ai and Bi, and
λi, denotes the “stakes” of a bet; λi, −∞ < λi < +∞ may have any finite positive
or negative real value. A bet with sure loss is often called a “Dutch Book”. For
unconditional events the factor |Ai| simplifies to |Ai| = |⊤| = 1.

Geometrically an interval assessment [α′
1, α

′′
1], . . . , [α′

n, α
′′
n] may be represented by

an n-dimensional hyperrectangle (called an n-orthotope) resulting from the set of
all points in the Cartesian product [α′

1, α
′′
1] × · · · × [α′

n, α
′′
n]. An interval assessment

[α′
1, α

′′
1], . . . , [α′

n, α
′′
n] is g-coherent (generalized coherence, [38, 40]) if its n-orthotope

is (i) not empty and (ii) if all precisely coherent assessments (α1 ∈ [α′
1, α

′′
2], . . . , αn ∈

[α′
n, α

′′
n]) are a subset of the n-orthotope. No coherently precise point (α1, . . . , αN )

lies outside of the n-orthotope.
The left panel of Figure 1 shows a numerical example for a 3-orthotope. It

represents the probabilities for a modus ponens with the premises P (A) = α ∈
[.7, .9] and P (B|A) = β ∈ [.4, .65], and the probability of the conclusion (B) =
γ ∈ [.28, .775]. The lower and upper probabilities of the conclusion are γ′ = α′β′

and γ′′ = 1 − α′ + α′β′′. The expressions are extensions of the formula for precise
probabilities P (B) ∈ [αβ, 1 − α + αβ] (see Table 2). The interval assessment is g-
coherent for the events A, B|A and B of a modus ponens with a conditional event
interpretation of the conditional.

The right panel of Figure 1 shows an n-polytope. Here the lower and upper
probabilities of the conclusion P (B) are not constant but functions of the premise
probabilities P (A) and P (B|A). We have again α ∈ [α′ = .7, α′′ = .9], β ∈ [β′ =
.4, β′′ = .65], but now γ ∈ [α′β′, 1 − α′ + α′β′′]. Now all the points in the polytope
are precisely coherent.

An interval assessment [α′
1, α

′′
1], . . . , [α′

n, α
′′
n] is totally coherent if all (α1, . . . , αn),

α1 ∈ [α′
1, α

′′
1], . . . , αn ∈ [α′

n, α
′′
n], are precisely coherent. In Figure 1 the polytope on

the right hand side is completely included in the 3-orthotope on the left hand side.
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Computationally the coherence of a precise conditional probability assessment
may be investigated by means of linear algebra. The indicator values of the atoms
(constituents) generated by the events (A1|B1, . . . , An|Bn) are represented in a ma-
trix Q and the assessed probabilities in a vector α. If the rank of Q and the rank
of Q|α, the matrix extended by the vector α, are equal, then the corresponding
system of linear equations is solvable and the assessment is coherent. If the system
is not solvable the assessment is not coherent.

.25
.5
.75

.25 .5 .75

0

.25

.5

.75

P(A)

P(B | A)

P(B)

.25
.5
.75

.25 .5 .75

0

.25

.5

.75

P(A)

P(B | A)

P(B)

Figure 1: Left: A g-coherent interval assessment for a modus ponens with P (A) =
α ∈ [.7, .9], P (B|A) = β ∈ [.4, .65] and γ ∈ [.28, .775]. Right: A totally coherent
interval assessment for the same premises but inferred and not fixed probabilities of
the conclusion, P (B) = γ ∈ [αβ, 1−α+αβ]. For fixed (α, β)-points (at the bottom)
all points in the interval between the lower and upper surfaces are coherent.

For interval assessments different names for the same properties are used: avoid-
ing sure loss in the framework of imprecise probabilities [90], g-coherence (gener-
alized coherence) in the the framework of Gilio [35], or R-probable (reasonable) in
the framework of Weichselberger [99, 96, 97, 98]. An interesting proposal involv-
ing second order probabilities was made by Bamber [13] and Bamber, Goodman,
and Nguyen [14]. The second order probabilities may be used to determine the
probability of being coherent (see also [49]).

The recent probabilistic paradigm on human reasoning tends to neglect premises
with interval assessments. In the probability logic of Adams interval probabilities
of the premises are, however, essential. Referring to Adams’ p-validity means to
refer to imprecise probabilities in the premises. As this is not always obvious in the
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literature let us give some more detailed explanation in the next section.

3 P-validity
Assume the premises of an inference consist of a sequence of events X1, . . . , Xn to-
gether with the interval assessment P (X1) = α1 ∈ [α′

1, 1], . . . , P (Xn) = αn ∈ [α′
n, 1].

Assume that the lower and the upper bounds of the assessment are coherent. Follow-
ing Adams, call the 1-complement of the probability of an event Xi its “uncertainty”,
u(Xi) = 1 − P (Xi) 2. Adams introduced the following uncertainty-sum criterion to
define probabilistically valid (p-valid) inferences:

The uncertainty of the conclusion of a [probabilistically] valid inference
cannot exceed the sum of the uncertainties of its premises [9, p.38] [6,
p.2].

Let us make this definition more explicit. The phrase “cannot exceed” refers to two
upper bounds, one derived from the coherence and one derived from the uncertainty-
sum criterion. Denote the upper coherent uncertainty of the conclusion Y by v′′

Y and
its upper uncertainty-sum by u′′

Y , respectively. The definition requires that u′′
Y ≤ v′′

Y .
So we have:

Definition 1 (P-validity in terms of uncertainty). Let R be a probabilistic inference
rule with the form

u(X1) ∈ [0, u′′
1], . . . , u(Xn) ∈ [0, u′′

n] |= uY ∈ [0, v′′
Y ], 1 ≤ n < ∞ .

Assume the premises X1, . . . , Xn to be logically independent. v′′
Y denotes the up-

per coherent uncertainty of the conclusion Y . Let u′′
Y denote the uncertainty-sum

criterion given by

u′′
Y =

n∑
i=1

u′′
i . (2)

R is p-valid if for all coherent assessments of the (α′
1, . . . , α

′
n) it holds that v′′

Y ≤ u′′
Y .

As without further restrictions u′′
Y might be greater than 1, we replace Equation

(2) by Equation (3)

u′′
Y = min

{
1,

n∑
i=1

u′′
i

}
. (3)

2In his 1975 book [6, p.2 and 41] and in [11, p.429] Adams gives the warning: “... (where
uncertainty is here defined as probability of falsity - not to be confused with the entropic uncertainty
measure of Information Theory).” Despite this warning, in a recent paper the authors [47, p.3]
identify Adams’ uncertainty by means of Shannon’s entropy.

784



p-validity

Adams’ uncertainties are 1-complements of probabilities and his phrase “... the
uncertainty cannot exceed ...” refers to an upper bound of an interval, the lower
bound of which is zero by default. The number of premises is finite ([6, p.52]).
As it is more common to work with probabilities and not with 1-complements of
probabilities we rephrase Definition 1 in terms of probability (compare also [36]).

Definition 2 (P-validity in terms of probability). Let R be a probabilistic inference
rule with the form

P (X1) ∈ [α′
1, 1], . . . , P (Xn) ∈ [α′

n, 1] |= P (Y ) ∈ [θ′, 1], 1 ≤ n < ∞.

Assume the premises X1, . . . , Xn to be logically independent. θ′ denotes the lower
coherent probability of Y . Let γ′ denote the lower probability corresponding to the
uncertainty-sum criterion

γ′ =
[
max

{
0,

n∑
i=1

α′
i − (n− 1)

}
, 1

]
. (4)

R is p-valid if for all coherent assessments of the (α′
1, . . . , α

′
n) it holds that γ′ ≤ θ′.3

Figure 2 shows a numerical example of the uncertainties and the associated
probabilities for the uncertainty-sum criterion applied to the modus ponens. The
inequality γ′ ≤ θ′ in Definition 2 states that the lower p-validity bound is smaller
than the lower coherence bound. The values in the interval [γ′, θ′] are incoherent,
those in [θ′, 1] are coherent. The uncertainty-sum criterion is g-coherent and avoids
sure loss.

In 1966 Suppes [87] proved that an inference from a finite set of unconditional
events to an unconditional event is p-valid exactly if it is classically valid (for a proof
see also [84, p. 31 and p. 191]). Patrick Suppes was the supervisor of the PhD thesis
of Ernest Adams.4

Example 1 (Modus ponens). The coherent lower and upper probabilities of the
conclusion of a modus ponens (see Table 1 and Table 2) may be obtained with the
Theorem of Total Probability P (B) = P (A)P (B|A) + P (¬A)P (B|¬A) (see Figure
3). Let P (A) = α ∈ [α′, 1] and P (B|A) = β ∈ [β′, 1]. In terms of probabilities
the uncertainty-sum criterion leads to γ′ ∈ [max{0, α′ + β′ − 1}, 1]. As P (B|¬A)
is not given it may have any value between 0 and 1. If P (B|¬A) = 0 we have

3Questions about upper probabilities γ′′ = 1 arising from zero probabilities of conditioning
events will be discussed below in Section 8.

4The thesis, however, was written ten years earlier and on rigid body mechanics, a field rather
different from probability logic.
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u′′
A
= .60 u′′

B|A = .10 u′′
B
= 0.70 v′′

B
= 0.64

α′
= .40 β′

= .90 γ′
= 0.30 θ′ = .36

Figure 2: 1-complements of upper uncertainties (yellow on the web) and lower
probabilities (blue on the web) for a modus ponens with uA ∈ [0, .60] and uB|A ∈
[0, .10]. The uncertainty-sum criterion is u′′

B = .10 + .60 = .70 or in terms of lower
probability γ′ = .30. The lower probability of the modus ponens is the product
θ′ = α′β′ = .36. As for all α and β ∈ [0, 1] γ′ < θ′ the modus ponens is p-valid.

A

[α, 1]

B

[β, 1]

¬B

[0, 1− β]

¬A

[0, 1− α]

B

[0, 1]

¬B

[1, 0]

Figure 3: Modus ponens: Inferring the lower and upper probabilities of B, P (B) ∈
[α′β′, 1], from an interval assessment of the premises P (A) ∈ [α′, 1] and P (B|A) ∈
[β′, 1]. As P (B|¬A) is not given it may have any value in [0, 1].
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P (B) = P (A)P (B|A) so that the coherent solution is θ′ ∈ [α′β′, 1]. As γ′ ≤ θ′,
0 ≤ α, β,≤ 1, the modus ponens with conditional event interpretation is p-valid.5
We will treat the question of a conditioning event with zero probability P (A) = 0
below.

P-validity is a property that characterizes inferences. It may also be used to
classify individual probability judgments as falling in- or outside of a “p-validity
interval”. If, however, in a psychological experiment the participants assess point
probabilities for the premises and the probability judgments of the conclusion are
evaluated by the uncertainty-sum criterion, then incoherent judgments are classified
as “p-valid” or “rational”.

The following example shows that for an important special case, the conjunction,
the “p-validity interval” and the “coherence interval” of the conclusion are identical.

Example 2 (And-Introduction). From P (A1) ∈ [α′
1, 1] and P (A2) ∈ [α′

2, 1] we
infer P (A1∧A2) ∈ [max{0, α′

1+α′
2−1}, 1]. In this case the uncertainty-sum criterion

γ′ and the coherent lower probability θ′ are identical. And-Introduction is p-
valid. Figure 4 shows the three-dimensional representation of the lower and upper
probabilities and the linear contour lines for the lower probability of the conclusion.

The uncertainty-sum criterion is nothing else than the lower probability of the
conjunction of the premises.

While for simple problems lower and upper probabilities may be obtained by
Gaussian elimination, more complex problems, are solved by linear programming.
We arrange the indicators in an (n+ 1) ×m matrix of coefficients Q; n denotes the
number of premises; one additional row is added representing the sure event Ω. m
denotes the number of constituents. For r logically independent events m = 2r. We
denote the vector of the m indicators of the conclusion by cT and the probabilities

of the constituents by x =

 x1
. . .
xm

. The objective function of the linear program

corresponds to the probability of the conclusion, that is, to cT x. The linear program
finds the lower probability

min cT x under the constraints Qx = b, xi ≥ 0, i = 1, . . . ,m . (5)

5One of the reviewers points out that Adams’ uncertainty-sum criterion does not always lead to
the tightest interval bounds because the purpose of Adams’ notion of p-validity and p-entailment
was to give a complete semantics for the p-calculus: p-validity is derivation-independent and holds
for all inferences that can be derived from the p-calculus! The price for this is that p-valid intervals
are not always tight.
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Figure 4: Left: Three-dimensional representation of the lower probability of the
conjunction, max{0, P (A) + P (B) − 1} and the upper bound 1. Right: Contour
lines.

and the upper probability by maximizing the objective function. For the conjunction
we have

Q =

 1 1 0 0
1 0 1 0
1 1 1 1

 .

The first two rows correspond to the indicators of A and B, respectively. The
third row represents the sure event Ω. The indicators of the conjunction are cT =
(1, 0, 0, 0). The linear program finds the minimum and the maximum of cT x.

In the case of precise premise probabilities Qx = b is a system of linear equa-
tions. In the case of imprecise premises the probabilities b are replaced by the lower
probabilities of the premises and the “=” are replaced by “≥”relations so that a sys-
tem of linear inequalities Qx ≥ b results. It checks for the existence of a coherent
solution for the weaker constraints.

If the premises contain conditional events the indicator values in the coefficient
matrix Q are replaced by the values of the conditional probabilities in those cases in
which the indicator of conditioning event is zero. In the case of the modus ponens,
for example, we have

Q =

 1 1 0 0
1 0 β β
1 1 1 1

 .

β is the conditional probability P (B|A). It denotes the “money back” condition of
the conditional bet on B if the conditioning event A is false. In the case in which the
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conclusion is a conditional event the problem is solved by fractional programming.
Its application to probabilistic inference is explained in [54]. Numerical solutions of
linear programming problems may easily be obtained with the help of Matlab [59]
or R [79].

When referring to the uncertainty-sum criterion, the literature—not only the
psychological literature—is often silent about the upper probability bounds of the
premises. In Adams’ framework they are—often implicitly—assumed to be 1. Let us
repeat the uncertainty-sum criterion: “if an inference is truth-conditionally sound
then the uncertainty of its conclusion cannot exceed the sum of the uncertainties
of its premises ...”. In terms of uncertainty this means that the premises may have
any value between 0 and the uncertainty-sum value. In terms of probabilities this
means that the probability of the premises may be 1. In psychologically relevant
situations this is unrealistic. It may lead to study the propagation of overconfidence
[62, 86, 31]. Also in well-known philosophical references such as [17, p. 131] it is not
clear that the premises are interval probabilities. The uncertainty-sum criterion lures
the understanding that the uncertainties are 1-complements of point probabilities
while, corresponding to Adams’ p-validity, they are 1-complements of bounds of
interval probabilities. What is called the “uncertainty” of the conclusions is actually
the upper bound of an interval with a lower bound equal to zero, that is, [0, u′′

B].

4 Generalized p-validity

The uncertainty-sum criterion is insensitive to the logical form of an inference.
Whatever the logical interdependence of the premises, for the same numerical values
of their probabilities the uncertainty-sum is the same. Adams met the insensitivity
to the logical structure in two ways: (i) he generalized the p-validity criterion so
that it becomes sensitive to the essentialness of the premises and (ii) he investi-
gated lower coherent probabilities (sometimes called “worst case probabilities” by
Adams). We turn to the generalized p-validity first and discuss the lower coherent
probabilities in the section on p-entailment and probability preservation below.

The generalized p-validity criterion was introduced by Adams and Levine [11],[9,
p.41ff.], [64, p.15]. It incorporates the inferential essentialness of the premises with
respect to the specific conclusion at hand.

A premise Ai is essential with degree ei = 1 if its removal from the set of
premises makes the inference logically nonvalid. If a premise Ai is not a member of
any essential subset of the premises, then its degree of essentialness ei is 0. Otherwise
Ai belongs to one or more sets of essential premises. If the cardinality of the set
with the smallest number of premises to which Ai belongs is k, then ei = 1/k. Now
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we have the following generalized p-validity criterion:

Definition 3 (Generalized p-validity). Let R be a probabilistic inference rule as in
Definition 2. Let θ′ denote the coherent lower probability of the conclusion Y . Let
γ′ denote the lower probability corresponding to the p-validity criterion, now given
by

γ′ = max
{

0, 1 +
n∑

i=1
eiα

′
i −

n∑
i=1

ei

}
. (6)

R is p-valid if for all coherent assessments of the α′
i it holds that γ′ ≤ θ′.

Compare [9, p. 44] or Theorem 3.5 in [64]. Equation (6) builds weighted av-
erages of the probabilities of premises in essential sets with identical cardinalities.
Definition 2 refers to the special case in which e1 = 1, . . . , en = 1.

Only elementary rules such as the modus ponens have premises with all ei = 1.
In these cases the uncertainty-sum criterion of Definitions 1 and 2 require no “correc-
tion”. Equation (6) reduces to Equation (2). In many every-day inferences, however,
the especially simple version of the uncertainty-sum criterion is not applicable as the
following example shows.

Example 3 ( Or-Introduction). Adams [9] gives the example
From {P (A) = .9, P (B) = .9, P (C) = .9} infer P (AB ∨AC ∨BC) ∈ [.85, 1].

(Writing AB for A ∧ B etc.) None of the individual premises is essential but each
one belongs to a set with two members, thus e1 = e2 = e3 = 1/2

x1 x2 x3 x4 x5 x6 x7 x8 α′
i

A 1 1 1 1 0 0 0 0 .9
B 1 1 0 0 1 1 0 0 .9
C 1 0 1 0 1 0 1 0 .9

AB ∨AC ∨BC 1 1 1 0 1 0 0 0 [.85, 1]
¬(AB ∨AC ∨BC) 0 0 0 1 0 1 1 1 [0, .15]

Table 3: Inference with premises having essentialness k = 1/2 (Adams [9, p.42]).
AB denotes the conjunction A ∧B. The last row shows the conjugacy property.

With Equation (6) we obtain Adams’ lower bound γ′ = 1 + 3 1
2 .9 − 1.5 = .85.
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With the help of Table 3 we have the linear system

x1 + x2 + x3 + x4 = .9
x1 + x2 + x5 + x6 = .9
x1 + x3 + x5 + x7 = .9

8∑
i=1

xi = 1, xi ≥ 0, i = 1, . . . , 8 .

and the objective function x1 +x2 +x3 +x5 = γ. The lower bound of the disjunction
is γ′ = .85. Applying the uncertainty-sum formula of Definition 2 would lead to the
value .7. Adams’ lower probability is identical with the coherence solution, γ′ = θ′.
Moreover, the upper probability of the conclusion is 1. But this is not generally
true. If P (A) = P (B) = P (C) = .6, for example, we obtain γ ∈ [.4, .9]. Adams
is misleading when he seems to assign point probabilities to the premises: “Suppose
also that each premise has probability .9 and uncertainty .1.” [9, p.42].

In the example all premises have the same probability. For premises with different
probability assessments the generalized p-validity bounds are not the tightest ones
[9, Footnote 7, p. 45]. We come back to this condition below.

Essentialness has not been discussed in the psychological literature and also some
logical references do not mention it [17]. It is important even for such elementary
rules as or-introduction.

Consider a committee with n members—think, for example, of the five perma-
nent members of the UN Security Council. The members vote for or against a
resolution. The probability that the ith member votes in favor of the resolution is
αi. What is the probability that exactly r members vote in favor of the resolution? If
the votes are assumed to be independent and the probabilities are all equal, αi = α,
i = 1, . . . , n, then the probability of r successes in n trials is given by the binomial
P (r|n, α, ind) =

(n
r

)
αr(1 − α)n−r . Results for the case in which the independence

assumption is dropped and for exchangeable events are given in [93, 26, 48].
What is the probability of r or more votes in favor of the resolution? In the case

of independence it would be the sum of the binomial probabilities of r, r + 1, . . . , n
successes. If we do not assume independence and if all probabilities are equal, then
the lower coherent probability of r or more successes is

θ′(s ≥ r|n, α) = max{0, nα− (r − 1)}
n− r + 1

. (7)

For r = n events this is the lower probability of the conjunction of r events. As n
increases and r is kept constant, also n− r+ 1, the number of the events outside of
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the conjunction increases; the lower conjunction probability is allocated to more and
more events and gets smaller and smaller. Equation (7) is equivalent to Equation
(14) in Adams and Levine [11, p. 446] if probabilities are replaced by their 1-
complements (uncertainties) and “≥” is replaced by “>”. It may easily be seen that
Equation (7) and Equation (6) are identical:

1 +
n∑

i=1
eiα−

n∑
i=1

ei = 1 + nα

n− r + 1
− n

n− r + 1

= nα− (r − 1)
n− r + 1

For the disjunction of r out of n events the degree of essentialness of the events is
ei = 1/(n− r + 1), i = 1, . . . , n, for r > 0 and 0 otherwise.

If the probabilities αi, i = 1, . . . , n, are not all equal the essentialness criterion
“approximates” the coherent solution by setting all probabilities equal to their mean.
This leads to a bound that is below the coherent bound. Adams remarks in a footnote
[9, p. 44/45] that his Theorem 15∗ “. . . is not the worst case uncertainty of its
conclusion . . .”.

Let us briefly show how the “approximation” can be replaced by an exact value.
The coherent lower bound for the case in which the probabilities are not equal and
the events are not independent is obtained as follows. (i) We order the probabilities
in descending order, α1 ≥ α2, . . . , αn−1 ≥ αn. (ii) We build a sequence of wk, k =
r, . . . , n

wk = wk−1 + αk − wk−1
k − r + 1

, k = r + 1, . . . , n (8)

starting with the conjunction probability of the most probable r events

wr = max
{

0,
r∑

k=1
αk − (r − 1)

}
(9)

and stop the sequence at k if the next ratio αk+1−wk

k−r+1 is negative. The lower proba-
bility is

θ′(s ≥ r|n, α1, . . . , αn) = wk, where wr, . . . , wk > 0 and wk+1 ≤ 0 (10)

(iii) If k = n, i.e., all ratios are positive, the lower probability is

θ′(s ≥ r|n, α1, . . . , αn) = max{0,
∑n

k=1 αk − (r − 1)}
n− r + 1

, (11)

if k < n
θ′(s ≥ r|n, α1, . . . , αn) = wk . (12)
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The start value wr is the same as in the case in which all probabilities are equal.
The wr, . . . , wk iteratively tighten the interval of the probability of the conclusion.

Example 4 (Non-equal probabilities). Let A1, . . . , A5 be n = 5 events having prob-
abilities α1, . . . , α5 = (.80, .75, .70, .50, .10). What is the lower probability of at least
r = 2 successes? Corresponding to the Adams and Levine approach the essentialness
of each of the 5 events is ei = 1/(n− r + 1) = 1/4 and the lower probability of 2 or
more successes is 1 +

∑5
i=1 eiαi −

∑n
i1 ei = 0.4625. The mean of the five αi is .57.

Replacing the probabilities (.80, .75, .70, .50, .10) by their mean (.57, .57, .57, .57, .57)
leads to the same result .4625.

We next determine the lower probability corresponding to the coherence criterion.
The probabilities are already ordered descendingly. The lower conjunction probability
of the first r = 2 events is .80 + .75 − 1 = .55 so that w2 = .55; now w3 is w3 =
w2 + (α3 − w2)/(3 − 2 + 1) = .55 + (.70 − .55)/2 = .625. In the next step w4 =
w3 + (α4 − w3)/(4 − 2 + 1), the ratio (.5 − .625)/3 = −.0417 is negative so we stop
here and θ′(s ≥ 2|n = 5, α1 = .8, α2 = .75, α3 = .7, α4 = .5, α5 = .1) = .625. The
coherence bound leads to the tightest lower bound which, in the example, is much
higher than the bound resulting from the essentialness criterion.

To summarize: In the case of equal probabilities the essentialness result and the
coherence result coincide. In the case of non-equal probabilities the essentialness
criterion results in a g-coherent “approximation” of the coherent result. The essen-
tialness criterion applies to factual formulas only, not to “... inferences involving
conditional propositions, whose probabilities are plausibly measured as conditional
probabilities.” [emphasized in the original text] [11, p.431]

5 P-entailment and probability preservation

Do probabilistically reasonable inference rules always lead from highly probable
premises to highly probable conclusions? Is the probability of the conclusions
increasing if the probability of any of its n premises is increasing, i.e., is it n-
increasing? Adams introduced two properties that investigate these questions, prob-
abilistic entailment (p-entailment) and high probability preservation. Let us turn to
p-entailment first.

Definition 4 (P-entailment). Let R be an inference rule with the form

P (X1) ∈ [t, 1), . . . , P (Xn) ∈ [t, 1) |= P (Y ) ∈ [θ′, 1) .
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R is said to probabilistically entail (p-entail) its conclusion if for all coherent prob-
ability assessments of the premises it holds that

∀θ′ ∈ (0, 1) ∃t ∈ (0, 1)
(
(P (X1) ∈ [t, 1), . . . , P (Xn) ∈ [t, 1)) |= P (Y ) ∈ [θ′, 1)

)
. (13)

If we fix the lower probability of the conclusion then there exists a threshold t
such that all probabilities of the premises that are higher than the threshold guaran-
tee the minimum probability of the conclusion; t is chosen such that it is the coherent
minimum probability to infer the conclusion with lower probability θ′. In the defini-
tion the backward direction is important, from the conclusion to the premises. We
note that the intervals are semiopen, that is, probability 1 is not included.

P-entailment was introduced by Adams in 1966 and originally called reasonable
consequence [4, p. 274]. It was discussed in many of his later contributions [11, 6, 9].
Following Pearl [65, 66] it is often called ε-entailment. P-entailment does not require
to exclude conditioning events with probability zero. As one of the reviewers points
out Adams [6, 5, 7] distinguishes ϵ- and p-entailment (see also [85]); ϵ-entailment
restricts the probability assignments to those which are proper while p-entailment
does not.

For various inference rules Figure 5 shows on the X-axis the lower probability
of the conclusion, θ′, and on the Y-axis the threshold t for the premises required
to guarantee the probability θ′ of the conclusion. The left part shows inference
rules which are p-entailing, the right part shows rules that are not p-entailing. The
thresholds are obtained by setting all lower probabilities of the conclusion to θ′ and
solving the corresponding formulas for t. For the conjunction, e.g., we obtain from
θ′ = α1 + α2 − 1 the value t = (1 + θ′)/2. The lower bound t = 1/(2 − θ′) is the
same for if-then-introduction, modus tollens, and cautious monotonicity
(from {P (B|A), P (C|A)} infer P (C|A ∧B)).

Benferhart, Dubois, and Prade [16] have shown that p-entailment also holds for
non-infinitesimal probabilities; more specifically, it holds for P (A∧B) > P (A∧¬B)
or t > .5. It is interesting to note that [29] and [30] put the comparison of the two
conjunctions at the heart of the psychological interpretation of the Ramsey test.
The t = .5-threshold is, of course, a psychologically highly plausible and designated
value.

When the probability of a conditional event approaches 1, then its probability
will get closer and closer to the probability of a material implication. Suppes [88,
p.10] took the modus ponens as an example. If P (A) = 1 − ε and P (B|A) = 1 − ε
then the lower bound for P (B) is (1 − ε)2. For the material implication P (A → B)
the result is 1−2ε. For very small ε the difference is of little practical value. “Surely
such a small difference in itself cannot have much psychological significance ...” [88].
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What about premises with probability 1? The question leads to what Adams
called strict validity in 1966 [4, Definition 5.2, p. 274] and weak validity in his 1998
book [9, p. 152]: An inference form is weakly valid if: if all its premises are certain
then its conclusion is certain [9, p. 152]. In other words, if the inference form is
certainty-preserving.

Adams takes, as an example, one of the paradoxes of the material implication,
from “A” infer “if ¬A then B”. “. . . if the probability of A is not only close to but
actually equal to 1, then the probability of B|¬A must also equal 1” [9, p. 152,
changed notation]. If P (A) = 1, then the probability of the conditioning event
must be zero, P (¬A) = 0. In this case, corresponding to the Kolmogorov approach
the conditional probability is not defined. Adams’ way out [9, p. 152, footnote 5]
is to take P (B|¬A) = 1. Following this proposal makes, however, the paradox of
the material implication strictly valid! The paradoxes of the material implication
are, however, nonintuitive and empirical investigations have shown that humans do
not endorse them [74]. Conditional probability logic is psychologically attractive
because it keeps intuitive inference rules and discards nonintuitive ones such as the
paradoxes of the material implication.

The coherence approach to probability avoids the difficulty. If P (A) = 1 and
therefore P (¬A) = 0 then all we can say about P (B|¬A) is that it is in the vacuous
interval [0, 1], i.e., that the inference is probabilistically noninformative [70, 74].

Example 5 (Denying the Antecedent). To infer from “¬A” and “if A then B”
the conclusion “¬B” is logically nonvalid. In terms of probabilities, we remember
from Table 2 that if P (¬A) = α and P (B|A) = β, then P (¬B) ∈ [(1−α)(1−β), 1−
β(1 − α)]. We see that if α = β = t and thus θ′ = (1 − t)2, θ′ is a monotonically
decreasing function of t.

Let us fix the lower probability of P (¬B) at θ′ = .5; this requires a t-value of
.293. The existence of just one t for which θ′ = .5 is satisfied is not enough; θ′ = .5
must be satisfied for all t ≥ .293 and this is clearly not the case. Denying the
antecedent does not p-entail its conclusion.

The example shows that in the definition of p-entailment the all-quantifier is
crucial. As a consequence, psychological experiments which investigate p-entailment
cannot do that with judgments about single numerical examples. Such experiments
would require to keep values of θ′ fixed and vary the values of t.

Let us remark that following Adams condition of proper (non-zero) probability
assignments we specify P (¬A) by the semiopen interval [t, 1) to avoid a zero prob-
ability for A in P (B|A). In the coherence approach this is not necessary. Here
P (B|A) ∈ [0, 1] for P (A) = 0, i.e., the inference is probabilistically noninformative.
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Figure 5: Lower probability of the conclusion θ′ on the X-axis, threshold t for
the lower probabilities of the premises on the Y-axis. P-entailment (left): And-
Introduction (solid line), modus Ponens (dashed), modus tollens (dot-
ted), and or-introduction (dotdash). Non-p-entailment (right): Non-and-
introduction (solid line), denying the antecedent (dashed), affirming the
consequent (dotted at θ′ = 0).

P-validity and p-entailment are equivalent (First Equivalence Theorem in [9, p.
152]). We next consider, however, an example which is p-valid, p-entailing but not
n-increasing.

Example 6 (Modus tollens). Setting α and β equal to t in the formula for the
modus tollens in Table (2)

{P (B|A) = t, P (¬B) = t} |= P (¬A) = θ ∈
[
max

{1 − 2t
1 − t

,
2t− 1
t

}
, 1

]
(14)

and solving for t gives (i) t ≥ 1−θ′

2−θ′ if t ≤ .5 and (ii) t = 1
2−θ′ if t ≥ .5. Wagner [89,

p. 752] derives the lower and upper bounds and for ε ≤ .5 (corresponding to our
1−t > .5) compares the lower bound with Suppes’ ε-semantics. For various inference
rules Figure (5) shows the relationship between the lower probability of the conclusion
(θ′, on the abscissa) and the minimum probabilities of the premises (t, on the ordi-
nate) required to guarantee θ′. The modus tollens requires either highly probable
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p-validity

(increasing dotted line) or highly low probable (decreasing dotted line) premises to
generate a highly probable concluson. Figure 6 compares the modus ponens and the
modus tollens in a three-dimensional representation. The “V-shaped” represen-
tation of the modus tollens differs from the monotonically increasing shape of the
modus ponens. Figure (7) shows the corresponding contour lines. For α = β = .5
the lower coherent probability of the modus tollens is θ′ = 0. As for α = β = .5
also the uncertainty-sum criterion is γ′ = 0 the p-validity criterion is satisfied. The
modus tollens is not n-increasing, but it is p-entailing. For every θ′ there exists
a threshold t such that Definition 4 is satisfied. Adams did not fully analyze the
modus tollens. He writes [6, Note 2, p. 68] “ ... the maximum uncertainty of
the conclusion ¬A of the ... Modus Tollens inference with premises B|A and ¬B
equals the uncertainty of ¬B divided by the probability of B|A.” [changed notation,
italic in the original text] This means that u′′ = (1 − α)/β, but this holds only for
α+ β > 1, but not for α+ β < 1.

Figure (5) and (6) compare some of the most elementary inference rules. Usually
people endorse those rules for which the probabilities of the premises and the con-
clusion are proportional. The modus ponens is “easy” while the modus tollens
is “difficult”. The relationships between the probabilities of the premises and the
conclusions may empirically be investigated by calculating the correlations between
the corresponding probability judgments.

We call a rule in which the probability of the conclusion increases monotonically
with the probability of each of its n premises “n-increasing”. And-introduction
and the modus ponens are 2-increasing, but the mondus tollens is not 2-
increasing. This can easily be seen in the three-dimensional representations in Figure
6 and the corresponding contour lines in Figure 7. Copula-functions are n-increasing.
The lower bound of the modus ponens is in fact a copula (the product copula),
the lower probability of the modus tollens, however, is not a copula. Copulas
may be ordered by a dominance relation inducing a partial order, i.e., an order
which is reflexive, antisymmetrical and transitive, but in which not necessarily all
members are comparable. On the left side of Figure 5 lower curves probabilisti-
cally dominate non-crossing upper curves, or-introduction ≻ modus ponens ≻
and-introduction, while the modus tollens is non-comparable. The dominance
relation is an indicator of the strength of an inference rule.

Evans et al. [31, Table 3] use the uncertainty-sum criterion α+β−1 for the lower
and 1 for the upper probabilities of Denying the Antecedent and Affirming
the Consequent. The uncertainty-sum criterion is, however, not applicable be-
cause both inference rules are not p-valid. Incoherent probabilities are systematically
classified as endorsing the Denying the Antecedent. The upper probability 1
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Figure 6: Left: Modus ponens. Right: Modus tollens. Lower and upper
probabilities inferred from interval probabilities of the premises P (A) (P (¬B)) and
P (B|A) with upper bounds 1. On the left hand side the probability of the conclusion
is a monotonically increasing function of the probabilities of the premises, on the
right hand side it is not.

would be fine if the probability assessments of the premises would be interval prob-
abilities α ∈ [α′, 1] and β ∈ [β′, 1]. But the participants of the experiment assessed
point probabilities so that the coherent upper probabilities are less than 1.

In addition to p-validity and p-entailment Adams introduced a hierarchy of four
probability-preservations [8]. Of these high probability preservation is most relevant
in the present context. It removes the difficulty with low probabilities in the modus
tollens.

An unconditional event A is highly probable if and only if the highest probability
of those constituents where A is true is higher than the highest probability of those
constituents where A is false [9, p. 133 ff.]. A conditional event B|A is highly probable
if and only if the highest probability of those constituents where the conjunction
A∧B holds is higher than the highest probability of those constituents where A∧¬B
holds.

To find out whether an event is highly probable or not, we rank order the con-
stituents by their probabilities. If the highest rank in the set of constituents where
A = 1 is higher than the highest rank where A = 0, A is said to be highly probable.
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Figure 7: Contour lines of lower probabilities. Left: Modus ponens (equivalent
to a product copula); the contour lines are increasing in the X- and in the Y-axis.
Right: Modus tollens; points on the diagonal from (0,1) to (1, 0) correspond to
P (¬A) = θ′ = 0, above and to the right of the diagonal the lines are increasing in
the X- and increasing in the Y-axis; below the diagonal they are decreasing in the
X- and increasing in the Y-axis.

A conditional event B|A is highly probable if the highest rank of those constituents
where (A ∧ B) = 1 is higher than the highest rank of those constituents where
(A ∧ ¬B) = 0. To test for high probability requires to first compute the probabil-
ities of the constituents which generate the lower bound of the probability of the
conclusion.

Definition 5 (High probability-preservation). An inference rule is high probability
preserving if all premises and its conclusion have high probabilities [4, 8, 9].

The uncertainty-sum condition and high probability preservation are equivalent
[8, p.9, p.14ff.].

Figure 8 shows two examples, the conjunction and the modus tollens with
conditional event interpretation of the conditional. For all values of the probabilities
of the premises from 0 to 1 in steps of .005 first the lower bound of the conclusion
was found by linear programming. The solution of the linear program provided the
probabilities of the constituents. The probabilities of the constituents were rank
ordered and the premises and the conclusion were checked for high probability. The
modus ponens generates the same area as the modus tollens on the right hand
side of Figure 8.
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Figure 8: High probability-preservation. Left: conjunction; the dark area marks
the cases where high probabilities of A and B lead to a high probability of the
conclusion P (A∧B). Right: modus tollens with conditional event interpretation
of the conditional; the dark area marks the cases where high probabilities of the
premises, ¬B and B|A, lead to a high probability of the conclusion ¬A.

High probability preservation is important for practical reasons [82, p.86]. Al-
though “high probability” is not defined by a fixed numerical threshold, for every-day
inferences the fixed value .5 will do a good job (compare [16]). For every-day in-
ferences it is an intuitively appealing property. I am not aware, however, of an
empirical study on high probability-preservation in human reasoning research. The
criterion is defined in terms of the coherent probabilities of the constituents. Adams
[8, p.14] remarks that ‘. . . the author [Adams] and others have taken this condition
as ‘the’ criterion of validity for inferences with less-than-certain premises . . .”.

6 The interpretation of conditionals
Psychologists observed that humans often interpret conditionals as conditional
events and not as material implications. The human understanding of conditionals
seems to agree with Adams’ conditional probability interpretation. Does human rea-
soning also agree with Adams’ conception of p-validity? For Adams p-validity is a
surrogate for classical validity. Is human uncertain reasoning sensitive to p-validity
so that the classical distinction between valid and nonvalid rules can be transferred
to uncertain reasoning? To better understand the intimate relationship between
the interpretation of conditionals and p-validity we ask why the probability of the
conjunction or a special form of the conjunction, called quasi-conjunction, of the
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premises can become a criterion for the validity of a probabilistic inference rule.
Adams [6] distinguishes formulas with and without conditionals. Conditional-

free formulas are called factual. Let Xf
1 , . . . , X

f
n and Y f be such factual formulas.

Probabilities in inference forms containing only factual formulas show a parallel to
classical logic. In classical logic the conjunction of the premises of a valid argument
implies its consequence:

If {Xf
1 , . . . , X

f
n} |= Y f , then

n∧
i=1

Xf
i → Y f , (15)

where |= denotes entailment and → denotes material implication. The uncertainty-
sum criterion is equal to the lower bound of the probability of the conjunction of
the factual premises:

γ ≥ P (Xf
1 ∧ . . . ∧Xf

n) = max{0,
n∑

i=1
P (Xf

i ) − (n− 1)} .

For factual languages (in which conditionals are expressed by material implications)
Suppes [87] was the first who showed that inference forms that are valid in classical
logic satisfy the uncertainty-sum criterion in probability logic. Adams extended
the uncertainty-sum criterion to languages in which conditionals are expressed by
conditional events.

Conditional events are not propositions and cannot be connected by the usual
conjunction. To circumvent this restriction Adams [6, p. 46] [9, p.164ff.] introduced
as an Ersatz the quasi-conjunction. It is defined by

C(B1|A1, B2|A2) = (A1 → B1) ∧ (A2 → B2) | (A1 ∨A2), (16)

where A1, B1 and A2, B2 are unconditional events and A1 and A2 ̸= ⊥. The defini-
tion involves two kinds of conditionals, (a) two material implications, (A1 → B1) and
(A2 → B2), and (b) one conditional event signaled by the vertical stroke. Adams
[6, p. 46] calls the right arrows (he uses the ⊃ notation) the “material counter-
parts” of the conditional events in a set of premises or conclusions. Now assuming
the disjunction A1 ∨ A2 to be true, we can build the conjunction of two material
implications “as usual”. Adams uses this construction for the entailment relation,
|=, in probabilistic inference forms involving conditional events. Let P (B1|A1) and
P (B2|A2) be two premises and assume A1 ∨ A2 to be true. The probability of the
quasi-conjunction of the premises P (C(B1|A1), B2|A2)) becomes the criterion for
the validity of an inference. Thus, the conditional event interpretation refers to the
entailment relation, not to the conditionals “inside” the premises! This led to serious
misunderstandings in the psychological literature.
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An inference rule is p-valid if the probability of its conclusion is at least as
probable as the probability of the quasi-conjunction of its premises. To obtain
the lower bound of the quasi-conjunction (i) the conditionals in the premises are
replaced by their material counterparts and (ii) the lower bound of the probability
of their conjunction is determined under the constraint that the disjunction of the
conditioning events in the premises is true. We are familiar with the result: The
lower bound is just the lower bound of the conjunction of the premises when the
conditional events are replaced by material implications and we have seen that this
is the uncertainty-sum criterion of p-validity.

Consider a probabilistic inference rule R in a language containing conditional
events with the form

P (X1) ∈ [α′
1, 1], . . . , P (Xn) ∈ [α′

n, 1] |= P (Y ) ∈ [θ′, 1], 1 ≤ n < ∞.

The premises X1, . . . , Xn and the conclusion Y contain N elementary events
A1, B1, . . . , AN , BN . Assume the premises are logically independent so that they
generate 2N constituents. We encode the the premises in an (n + 1) × 2N matrix
Q. We follow Adams and replace the conditional events B1|A1, . . . , Bn|An by their
material counterparts A1 → B1, . . . , An → Bn as prescribed by the definition in
(16). The first n rows of Q contain the 0/1 truth values of the premises. In row
n + 1 we put the truth values of the disjunction A1 ∨ . . . ∨ An. The disjunction
functions as the sure event Ω with P (A1 ∨ . . . ∨ An) = 1. In addition we build
the column vector b = (α′

1, . . . , α
′
n, 1)T containing the probabilities of the premises

and the disjunction probability 1. The conclusion Y is encoded in the objective
function of a linear program. If for all coherent probability assessments of the
premises (including the constraint P (A1 ∨ . . . ∨An) = 1) the linear system built by
Q, b, and the objective function defined by the conclusion Y has a solution with
γ′ ≥ max{0,

∑n
i=1 α

′
i − (n − 1)} for P (Y ), then the premises entail the conclusion

and the inference rule is p-valid.
To see this let K = {j :

∑(n+1)
i=1 qij = n+ 1} be the set of all columns of Q which

contain 1s only. This set represents the quasi-conjunction of the premises. Assume
K ̸= ∅.6 Next consider the truth values yj , j = 1, . . . , 2N , of the conclusion Y . In a
logically valid inference form the conclusion vector must not contain a 0 in position j
and j ∈ K. As P (Y ) =

∑2N

j=1 yjxj , where xj denotes the unknown probability of the
jth constituent, P (Y ) must at least be equal to P (K). Thus the probability of the
quasi-conjunction K is the lower probability that the premises entail the conclusion.

Gilio [37, 41, 42] used a tri-valued valuation of the premises. This leads to the
same lower bound of the quasi-conjunction as above. Goodman, Nguyen, and Walker

6The premises are consistent. We come back to this property in section 7.
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[44, 61] investigated operators combining conditional events in conditional event
algebras, structures that are extensions of Boolean algebras. Quasi-conjunction was
investigated in a possibilistic setting by Benferhat, Dubois and Prade [15]. For
a criticism of the quasi-conjunction see [22]. The quasi-conjunction is a rather
permissive bound that may easily lead to incoherent results if used to evaluate
individual probability judgments. For a probabilistic semantic of a default logic
Coletti and Scozzafava [22, chapter 20] proposed to work with probability 0 and 1
assessments only. They showed that the proposal sanctions all rules of System P
and rejects monotonicity, contraposition, and transitivity. In several of our papers
[69, 70] we considered inferences with a noninformative probability interval [0, 1] of
the conclusion as inconclusive. Monotonicity, contraposition, and transitivity are
probabilistically noninformative.

P-validity represents a semantics for System P. This has been shown for propo-
sitional languages, e.g., in [9, 84] and for languages extended by conditionals in [6].
System P has three purely probabilistic axioms: cautious monotonicity

from {P (B|A), P (C|A)} infer P (C|A ∧B),
cautious cut or cautious transitivity

from {P (B|A), P (C|A ∧B} infer P (C|A),
and cautious disjunction

from {P (C|A), P (C|B)} infer P (C|A ∨B).
Consider cautious monotonicity. If we drop A, which is a conditioning event in
the two premises and in the conclusion, then cautious monotonicity is equivalent to
conditioning: From {P (B) = α1, P (C) = α2} infer P (C|B) = γ ∈ [α1+α2−1

α1
, α2

α1
].

Moreover, after dropping A cautious transitivity is equivalent to the modus ponens.
The disjunction rule is best known from Simpson paradox [65]. Take as an

especially easy example P (C|A) = P (C|B) = α; then the lower bound of P (C|A ∨
B) = γ′ = α/(2 − α). If α = .6, then z′ = .4286. So it may happen that a
therapy helps 60 % of male and 60 % of female patients but overall it helps only
45 % of all patients. The uncertainty-sum criterion is .6 + .6 − 1 = .2, i.e., much
below the coherence bound.7 While many psychological experiments investigated
the “modus-ponens-quartet”, only a few studies investigated the axioms of System
P (see however [69, 73, 72]). The modus ponens is part of both settings.

System P is sound and complete. All that is required to decide the p-validity of
an inference are the probabilities of the premises, no intermediate “derivations”
are needed; “...we may compute the lower bound of the entire inference in one

7The Simpson paradox is “resolved” if the lower and upper probabilities are expressed as second
order distributions and the probability of being coherent is maximized [49]. A simple approximation
is the midpoint of the [γ′, γ′′]-interval, in the example (γ′ + γ′′)/2 = .589. That is the probability
for all patients is approximately the same as for the male and for the female patients.
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step, independently from the way in which the conclusion has been proved from
the premises.” [81, p.542]

In a psychological study we should state what we want the participants to do:
(i) to evaluate the validity of a rule or (ii) to evaluate the probability of a conclusion.
The computation of an uncertainty-sum is in fact “easy”. To check the p-validity of
a rule, however, the uncertainty-sum criterion (γ′ in Definition 2) must be compared
with all (!) coherent lower probabilities (θ′ in Definition 2) to decide whether γ′ ≤ θ′

or not. Computationally this is expensive and psychologically unrealistic. It is
however possible that such rules were reinforced, implemented, and hard-wired in
our brain by evolution [83].

Most probability assessments in every-day life are made in terms of point prob-
abilities and not in terms of interval probabilities with upper bounds equal to 1.
Similarly, in reasoning research experimenters ask participants to provide point prob-
ability judgments of the premises and not interval probabilities with upper bounds
1. For the comparison of human judgments with the formal model the interval prob-
abilities of the premises should be replaced by point probabilities. The probability
of the conclusions are still interval probabilities. The lower bounds are the same
as in the previous sections, but the upper bounds are now usually less than 1. As
a consequence, experiments asking for the assessment of point probabilities of the
premises, like [86, 31], should evaluate the judgments of their participants with the
correct upper bounds and not with upper bounds equal to 1.

The lower and upper bounds of interval probabilities are related by the conjugacy
property (in the context of imprecise probabilities see [90, 12, 78], in the context of
the coherence approach see [21]):

The upper bound of an interval probability of an event A is equivalent to
1 minus the lower bound of its complement, P ′′(A) = 1 − P ′(¬A) .

For a precise probability assessment of the premises the p-validity criterion be-
comes:

Definition 6 (P-validity for precise probabilities). Let R be a probabilistic inference
rule with the form

P (X1) = α1, . . . , P (Xn) = αn |= P (Y ) ∈ [γ′, γ′′] ,

where the Xi are logically independent. R is p-valid for point probabilities if the
degree of essentialness of each of the premises is ei = 1, i = 1, . . . , n, and if the
probability of the conclusion γ = P (B) is in the interval

γ ∈
[
max

{
0,

n∑
i=1

αi − (n− 1)
}
,min{α1, . . . , αn}

]
. (17)
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0.0 0.2 0.4 0.6 0.8 1.0

P (B|A) ∈ [.6, 1]

P (A) ∈ [.7, 1]

P (B) ∈ [.42, 1]

P (B) ∈ [.3, 1]

Figure 9: Modus ponens with the interval premises P (A) ∈ [.7, 1] and P (B|A) ∈
[.6, 1]. The coherent probability of the conclusion is P (B) ∈ [.42, 1]. The
uncertainty-sum criterion leads to P (B) ∈ [.3, 1]. Probabilities in the interval [.3, .42]
are incoherent.

If ei ̸= 1, i = 1, . . . , n, the lower bound is given by Equation (6) and the upper bound
is obtained by the conjugacy property.

That is, γ is within the bounds of the conjunction of a set of premises and
the premises are either conditional-free or the conditionals in the premises are in-
terpreted as material implications. The lower and upper bounds in (17) are the
Frechét-Hoeffding copulas. They hold when no assumptions about the dependence
or independence of the events are made. The bounds were already known to George
Boole [20, p.298/9] who gave credit to de Morgan.

Figure 9 shows an example of a modus ponens in which the premises were
assessed by interval probabilities. Figure 10 shows a closely related example with
a point probability assessment. On the left side of Figure 9 there is a region of
incoherence resulting from the difference of g-coherence and coherence. In Figure
10 there are two regions of incoherence, one on the left and one on the right side.
They result from applying the uncertainty-sum criterion to point probabilities of
the premises. If in an experiment the participants assess point probabilities of the
premises and the responses are evaluated by the uncertainty-sum criterion, then
incoherent responses may be classified as “rational”.

Because of the conjugacy property p-validity for point probabilities may equiv-
alently be defined in terms of upper probabilities: R is p-valid if P (B) ≤ γ′′. Here
p-validity not only protects against too low but also against too high probabil-
ity judgments. Evaluating human judgments using upper probability 1 when the
premises have point probabilities ignores the gap between γ′′ and 1.
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0.0 0.2 0.4 0.6 0.8 1.0

P (A) = .7

P (B|A) = .6

P (B) ∈ [.42, .72]

P (B) ∈ [.3, 1]

Figure 10: Modus ponens with the point premises P (A) = .7 and P (B|A) = .6.
The coherent probability of the conclusion is P (B) ∈ [.42, .72]. The uncertainty-sum
criterion leads to P (B) ∈ [.3, 1]. Probabilities in the intervals [.3, .42] and [.72, 1] are
incoherent

A different but closely related question arises: under which conditions can upper
probabilities equal to 1 be coherent at all. We turn to this question in the next
section.

7 Inconsistent premises

The upper probabilities of the premises of a p-valid inference form are all equal to
1, α ∈ [αi, 1], i = 1, . . . , n. This can only be coherent if at least one column in the
matrix of coefficients Q contains 1s only. If all entries in column j are 1 then the
conjunction of the premises is true if xj = 1, i.e., xj = 1 leads to the existence
of a solution of the linear system. If Q does not contain such a column then the
premises are inconsistent. In this case an assessment with all probabilities equal 1
is incoherent. Thus p-validity requires consistent premises.

Here an example of inconsistent premises given by Levine and Adams [11, p.
435].

Example 7 (Inconsistent premises). From P (A) = α1, P (B) = α2, P [¬(A∧B)] = α3
infer P (A ↔ ¬B) = γ.

Table 4 shows the possible indicator values of the premises and the conclusion.
The premises are inconsistent as there is no column containing only 1s. The proba-
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x1 x2 x3 x4 αi

A 1 1 0 0 α1
B 1 0 1 0 α2

¬(A ∧B) 0 1 1 1 α3
Ω 1 1 1 1

A ↔ ¬B 0 1 1 0 γ

Table 4: Inference with inconsistent premises (Adams [11, p.435]).

bility of the conclusion is obtained by solving

x1 + x2 = α1

x1 + x3 = α2

x2 + x3 + x4 = α3 and
4∑

i=1
xi = 1, xi ≥ 0, i = 1, . . . , 4.

for the objective function γ = x2 + x3. The solution is precise:

γ = α1 + α2 − 2(1 − α3) ,

where α1 + α2 ≥ 2(1 − α3) is required for coherent premises. Upper probabilities 1
would be incoherent.

The modus tollens is another example where the premises are inconsistent.
To find lower and upper probabilities Adams and Levine introduce several sub-

sets of the premises, such as “minimal sufficient sets”, “minimal essential sets“, and
“negatively sufficient sets”. With the help of these sets they build a “minimal fal-
sification matrix” which is solved by linear programming. A critical discussion of
Levine and Adams is given in Hailperin [46, p.168 ff.]. He “...show[s] how Adams-
Levine’s minimal falsification matrix ... can be obtained by a straightforward (to
us, less obscure) method, Boole’s ‘purely algebraic form’ ...“ [46, p. 171].

If the premises contain conditional events having probability 1, then the entries in
the matrix of coefficients are the same as if the conditional is interpreted as a material
implication. We remember that for conditional events with false antecedents the
entries are conditional probabilities which are now equal to 1. This corresponds
exactly to the truth function of the material implication; its valuation is true if the
antecedent is false.

P-validity may be seen as a relation between two interpretations of conditionals,
conditional event and material implication. Here is a close link to the new probabilis-
tic paradigm in reasoning research in which the human interpretation of conditionals
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is a key topic. Strong evidence was found that conditionals are interpreted as con-
ditional events [32, 50]. We compare the two interpretations for the introduction
of a conditional, that is, for the inference from {A,B} to “if A then B”.

Example 8 (Introduction of material implication). If P (A) = αA and
P (B) = αB, then the probability of the material implication P (A → B) = γ→ is in
the interval

γ→ ∈ [max{1 − αA, αB},min{1, 1 − αA + αB}]. (18)

Because P (A → B) = 1−P (A∧¬B) the minimum of γ→ is obtained if the probability
of the conjunction of A and ¬B is maximal, P (A∧¬B) = min{αA, 1−αB} so that its
1-complement is γ′

→ = max{1−αA, αB}. The maximum is obtained if P (A∧¬B) is
minimized, i.e., if P (A∧¬B) = max{0, αA +(1−αB)−1} so that the 1-complement
is γ′′

→ = min{1, 1 − αA + αB}.

Example 9 (Introduction of a conditional event). If P (A) = αA and
P (B) = αB, then the probability of the conditional event P (B|A) = θ| is in the
interval

θ| ∈
[
max

{
0, αA + αB − 1

αA

}
,min

{
1, αB

αA

}]
, if αA > 0 (19)

and θ| ∈ [0, 1] if αA = 0.
For 0 < αA ≤ 1 the interval is obtained from P (B|A) = P (A ∧ B)/P (A) and the
bounds of the conjunction P (A ∧B) ∈ [max{0, αA + αB − 1},min{αA, αB}].

For probabilities close to .5 the intervals for the two interpretations can be re-
markably different. Assuming αA = αB = .5, for example, leads to γ→ ∈ [.5, 1] for
the material implication and to θ| ∈ [0, 1] for the conditional event interpretation.
To infer from αA = .5 and αB = .5 that the probability of “if A then B” is greater
than .5 seems to be absurd; to infer the vacuous interval [0, 1] seems to be reason-
able. I am not aware of an empirical study comparing the two interpretions along
this line. A related question about the introduction of conditional events
leads to the next section.

8 The null-unity convention
In the psychological literature the probability of premises are sometimes taken to
be equal to one [62, 63]. In the probabilistic version of denying the antecedent,
“from {P (¬A), P (B|A)}” infer “P (¬B) = . . .”, it may be assumed that P (¬A) = 1.
This section deals with questions that arise when the probabilities of the conditioning
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events are 0 or 1, i.e., questions about P (B|A) when P (A) = 0 or P (¬A) = 1,
respectively.

Kolmogorov [51] formulated probability axioms for elementary events like A and
B. He introduced conditional probability by the ratio definition

P (B|A) = P (A ∧B)
P (A)

, for P (A) > 0 .

In a way statements about conditional statements are abbreviations for longer state-
ments about unconditional probabilities [14, p.18]. If P (A) = 0 the ratio is unde-
fined. As a consequence, if P (A) = 1, then P (B|¬A) is also not defined. This means
that in such cases inference rules like the modus ponens or the modus tollens
are undefined, in a psychological context a painful restriction.

The coherence approach (like several other approaches, best known perhaps the
approach of Popper [76, 77]) starts from axioms for conditional events like B|A [22,
p.73/74]. Conditioning on events with probability zero is completely legal [22]. A
conditional probability is an element in the set of all values t that satisfy the axiom
of compound probability

P (B|A) ∈ {t ∈ [0, 1] : P (A ∧B) = tP (A)}

(compare [14, p. 18]). For P (A) = 0 this consists of the set of all real numbers
in [0, 1], i.e., the “vacuous” interval. The coherence approach, however, does not
allow conditioning on the impossible event ∅, i.e., P (A|∅) is not allowed [22, p.63].
(Conditioning on the contradiction is legal in Popper’s approach, where P (B|A ∧
¬A) = 1 [77, p. 273].)

For P (A) = 0 Adams [4, 9] set P (B|A) equal to 1. This has been called the
“null-unity convention” [14, p. 18]. It takes only the maximum of the [0, 1]-interval
and thus replaces maximal imprecision with the highest precise value, substituting
certainty for the vacuous interval. As a consequence, for P (A) = 0 we have P (B|A)+
P (¬B|A) = 1 + 1 = 2 which is absurd. (A similar problem appears in Popper’s
approach where P (A|A ∧ ¬A) + P (¬A|A ∧ ¬A) = 2 [77, p.305]).

The motivation behind the null-unity convention is to export the role of the
material implication in the consequence relation from deductive logic to probability
logic. The truth values false and true lure behind probabilities 0 and 1. The
truth value of the material implication A → B is a function of the truth values of
A and of B. A → B is true if A and B are true and if A is false. It is false
if A is true and B is false. What “if A is false, then A → B is true” is in logic
becomes “if P (A) = 0, then P (B|A) = 1” in probability logic.

The probability of a conditional event B|A is constrained by the probability of
A and B such that if P (A) = x, x > 0 and P (B) = y, then P (B|A) = z is in the
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interval
z ∈ [max{0, x+ y − 1

x
},min{y

x
, 1}] . (20)

This is illustrated in Figure 11. It shows the lower and upper probabilities for four
selected values P (B) = .2, .4, .6 and .8. P (A) is represented on the X-axes. The
lower and upper bounds of P (B|A) are shown by the dotted and the solid lines,
respectively. For a fixed value of P (A) all P (B|A) in the interval between the
dotted and the solid lines are coherent. As P (A) approaches zero the lower and
upper probabilities approach the unit interval [0, 1]. The small circle at P (A) =
0 and P (B|A) = 1 indicates the null-unity convention. It replaces “probabilistic
noninformativeness” by “certainty”. The null-unity proposal establishes an analogy
between the truth values of a material implication and probability 0 and 1 of a
conditional event. This may also be seen from the fact that if P (A) = 0 fixes the
value of P (B|A) at 1, this amounts to a perfect analogy to “from ¬A infer A → B”,
the paradox of the material implication. Since the probability of the premise is
P (¬A) = 1 and the probability of the conclusion is P (B|A) = 1, the paradox would
be p-valid for this special case.

The lower and upper probabilities in Figure 11 show how misleading this analogy
is. In the realm of probability a decreasing P (A) leads to increasing ignorance and
clearly not to certainty.
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Figure 11: Lower (dotted) and upper (solid) conditional probabilities P (B|A) (on
the Y-axis) as functions of P (A) (on the X-axis). Four different values of P (B) = .2
(top), .4, .6 and .8 (bottom). Setting P (B|A) = 1 if P (A) = 0 projects the [0, 1]
intervals to just one point (small circle at P (B|A) = 1).

Zero probabilities have an impact on the quartet of the categorical syllogisms
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(see Table 1). If in a modus ponens the unconditional premise is P (A) = 0 then
the ratio definition of conditional probabilities makes the second premise P (B|A)
undefined. No conclusion can be drawn. If we take the null-unity convention, then
P (B|A) is fixed at β = 1, i.e., the probability of the conditional premise is not
free to vary. The lower and upper bounds, αβ and 1 − α + αβ of P (B) are 0 and
1, i.e., the inference is probabilistically noninformative. In the coherence approach
the inference is also probabilistically noninformative, but P (B|A) is free to vary. If
P (A) = 0. The probabilistic modus ponens is probabilistically noninformative for
all P (B|A) ∈ [0, 1].

In the modus tollens the upper bound of the conclusion P (¬A) is γ′′ = 1 (see
Table 1). P (¬A) = 1 implies P (A) = 0 and with the ratio definition the conditional
premise P (B|A) is not defined. If we apply the null-unity convention the value
γ′′ = 1 implies that P (B|A) = β = 1 (since P (A) = 0) and is not free to vary. In
the coherence approach γ′′ = 1 is the upper bound for all β ∈ [0, 1]. Similar results
are obtained for denying the antecedent and affirming the consequent.

In the coherence approach it is completely legal to work with the zero probability
of the conditioning event, i.e., with P (B|A) where P (A) = 0. In the introduction
of conditional events it leads to the vacuous interval γ| ∈ [0, 1]. In more complex
cases the computational investigation of zero probabilities involves two steps:

1. Find out whether the zero probability of the conditioning event is compatible
with the linear system. To do so, introduce the conditioning event as a new
consequent and find its lower probability. In a linear program, e.g., the event is
represented by a new objective function. If the lower bound of the consequent
is zero, the zero probability of the conditioning event is compatible.

2. If the zero probability is compatible, include the conditioning event along
with its zero probability explicitly in the system and solve it for its original
consequent or objective function.

The steps may be iterated leading to a sequence of “zero layers” [22] (for alternative
algorithms see [92] or [23]).

The psychological literature on zero probabilities is confusing. Oaksford and
Chater [62, p. 111], e.g., consider the following paradox of the material implication,

from ¬A infer A → B.

It is counter-intuitive, but valid in classical logic. Its probabilistic versions reads

from P (¬A) = α infer P (B|A) = β.
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First, Oaksford and Chater cite Bennett [17]: “your conditional probability for B
given A is the probability for B that results from adding P (A) = 1 to your belief
system . . .” [changed notation]8,9. They continue to follow Bennett and speak of
a “zero-intolerance” if P (A) = 0. They conclude that “. . . when P (A) = 1, then
P (A → B) should also be 1.”

Next the authors argue that if α = 0 the ratio formula is undefined10 and “. . . no
value can be assigned to the probability of the conditional in the conclusion because
of zero-intolerance.” [62, p. 111]. If α = 1, then β should also be 1, “. . . which means
their uncertainties are equal. However, p-validity requires the inequality in 5.8 [an
equation on the same page] to hold whatever the value of α [changed notation].”
The formula 5.8 follows Adams [9, p. 187]), however, and defines p-validity in
terms of “less than or equal” (≤) and not in terms of “less than” (<). Moreover,
Adams suppresses the paradox not because of zero probability, but because it may
happen that the “... inference has a highly probable premise and a highly improbable
conclusion, which would make it seem irrational for persons to reason in this way,
at least if they hope to reach probable conclusions thereby.” The probability of
the conclusion is not a monotonically increasing function of the probability of the
premise (not 1-increasing in the sense of section 5).

In the coherence approach the suppression of the paradoxes of the implication
question is straightforward: If P (A) = 0, then P (B|A) ∈ [0, 1], that is, the inference
is probabilistically noninformative. If you think that the probability of A is zero,
you may bet any amount because you think that you will always get your money
back with probability 1.

In the four inference forms modus ponens etc. the probability of the condition-
ing event is already stated in the premises. Its probability is not constrained by the
second premise, so the lower value zero is compatible [33, p. 167] and P (B) may
be obtained from P (B) = P (A)P (B|A) + P (¬A)P (B|¬A). The first term vanishes
and as P (B|¬A) is not constrained P (B) ∈ [0, 1]. We note that “. . . by defining
conditional probability as any solution to equation P (A ∩ C) = P (A|C) · P (C), it
still makes sense as a non-negative number when P (C) = 0 (see details in Coletti
and Scozzafava ...)” [28, p.15]

The investigation of the “conditioning on zero probability events” was often
motivated by paradoxes such as the Borel-Kolmogorov paradox [45] or the first digit
problem [22]. An important concept is the conglomerability property, first described
by de Finetti [25]. Important contributions were provided by [27, 80, 100]. For the

8Page 109 in [62] contains a number of more or less obvious misprints.
9Ramsey did not propose to add the probability P (A) = 1 to the belief system but the propo-

sition A.
10For P (A) = 0 Adams, however, takes P (B|A) = 1 and not as undefined!
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treatment of zero probabilities in the theory of imprecise probabilities see [90, p.
306ff., p. 328ff.] and the references in [12, p. 47]. Adams was well aware of the
zero-antecedent problem. He remarked that “... the antecedents of the conditionals
involved may have zero probability and we have no theory which applied to that
case.” and he continued in a note “... the desirability of serious investigation of the
zero-antecedent case ...” [6, p. 40 and note 5, p.41].

Singmann et al. [86] and Evans et al. [31] employed the lower bound max{0, α+
β?−1} to evaluate the probability judgments of the participants in their experiments.
We use the question mark in β? to indicate that the interpretation of the conditional
is unclear: “For generality and to minimize our assumptions we did not presuppose
that P (if p then q) = P (q|p) in our assessment of p-validity.” [31]. Not specifying the
interpretation of conditionals however degrades the uncertainty-sum criterion to an
adhockery. The lower bounds are coherent lower probabilities for the conjunction of
the premises where conditionals are material implications, i.e., β? is—if coherent—
actually β→. If in a psychological investigation p-validity intervals are determined,
it would be consistent to determine the upper bounds with the material implication
interpretation, that is, to work explicitly with γ′′

→ = 1 and not with γ′′
? = 1.

9 Correlated events
In a psychological context the judgment of correlations is often of similar importance
as the judgment of probabilities. In an inference rule correlations may appear at two
locations: at the premises and at the conclusion. We first turn to inferences about
correlations, i.e., to correlations at the conclusion.

We use the notation of Table 2 and consider the 2 × 2 correlation ρ between the

B ¬B
∑

A x1 x2 αA = x1 + x2
¬A x3 x4 1 − αA = x3 + x4∑

αB = x1 + x3 1 − αB = x2 + x4 1

Table 5: Notation in the 2 × 2 scheme to calculate ρ

two binary events A and B,

ρ = x1x4 − x2x3√
αA(1 − αA)αB(1 − αB)

. (21)

The marginal probabilities αA and αB constrain the value of ρ; lower and upper
bounds of ρ are obtained by (21) with the help of the conjunction probabilities
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x1 ∈ [max{0, αA + αB − 1},min{αA, αB}], x2 = αA − x1, x3 = αB − x1, and
x4 = 1 − (x1 + x2 + x3).

What is the relationship between conditionals and correlation in probabilistic in-
ference? In the same way as we may infer from a set of premises the lower and upper
probabilities of conclusions, we may infer lower and upper correlations. Are there
systematic differences between correlations inferred from p-valid and inferred from
p-nonvalid schemata? What a difference makes the interpretation of conditionals—
conditional event or material implication—on correlational inferences?

The probability of a single if A then B sentence that is interpreted as a condi-
tional event carries no information about the correlation between the two events.
From P (B|A) = β| we can only infer the vacuous interval ρ| ∈ [−1, 1]. From the
material implication P (A → B) = β→ we infer ρ→ ∈ [−1, β→/2

1−β→/2 ]. The lower bound
is obtained if x1 = x4 = 0 in Table 5. The upper bound is obtained if x3 = 0 and if
the numerator in (21) is maximized. This is the case if x1 = x4 = β|/2 so that the
product x1x4 in the numerator of (21) obtains a maximum. If, for example, β→ = 0
then ρ→ ∈ [−1, 0], if β→ = .5 then ρ→ ∈ [−1, 1/3], and if β→ is close to 1 the interval
of the correlation becomes vacuous.

We next consider inferences about ρ from the premises of the modus ponens
etc., both for the material implication interpretation, [ρ′

→, ρ
′′
→], and for the con-

ditional event interpretation, [ρ′
|, ρ

′′
| ], of the conditional in the premises. For the

2 × 2 case results are obtained with the help of the lower and upper probabilities
of the conclusions, i.e., P (B), P (¬A), P (¬B), and P (A). They allow to determine
x1, x2, x3, and x4 which are required to determine ρ by Equation (21). Figure 12
shows two numerical examples, one for the modus ponens and one for the modus
tollens. The probabilities of the minor premises, i.e., P (A) and P (¬B), respec-
tively, are fixed at α = 0.5. Because of the conjugacy property the results for the
modus ponens and denying the antecedent are identical and the same holds
for modus tollens and affirming the consequent.

For all four inferences the upper correlation increases from ρ→ = 0 at β→ = .5
approximately linearly up to ρ→ = 1 at β→ = 1. At β→ = .5 the correlation can
only be negative, at β→ = 1 it can only be positive. As coherence requires β→ ≥ α
and in the examples α = .5 the ρ→ is undefined for β→ ≤ .5.

For the conditional event interpretation the modus ponens and denying the
antecedent ρ| increases approximately linearly from [−1, 0] up to [0, 1] as β| in-
creases from 0 to 1. At β| = α the value of ρ| is undefined. For the modus tollens
and affirming the consequent lower and upper correlations switch symmetri-
cally their values below β| = .5 and above β| = .5, respectively. At β| = α = .5 the
lower and upper correlations coincide at ρ| = 0.

814



p-validity

With the premises of the modus ponens the lower and upper bounds of the
correlation for the conditional event interpretation are monotonically increasing from
[−1, 0] to [0, 1]. The bounds are symmetrical around [−.5, .5] and the width of the
interval is constant. ρ′ and ρ′′ are monotonically increasing with P (B|A) = β|.
These properties appear intuitive and reasonable. With the premises of the modus
tollens and P (B|A) < .5 the correlation must be negative; the lower bound is
monotonically increasing and the upper bound is ρ′′ = 0. With P (B|A) > .5 the
relations flip symmetrically, the lower bound remains constant at ρ′ = 0.

For the material implication interpretation the coherence of the premises requires
that P (A → B) = β→ ≥ 1 − α. In the example with β→ = .5 the results for
the modus ponens and the modus tollens are very similar with monotonically
increasing intervals from [−1, 0] at β→ = .5 up to [0, 1] at β→ = 1.

Inferences about lower and upper correlations allow to investigate qualitative
properties like “the correlation is positive” or “the correlation is negative”, respec-
tively. In the probabilistic approach to reasoning such qualitative properties were
elegantly investigated for the probabilities in inference rules [75]. We next turn to
the case of correlated premises.
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Figure 12: Lower and upper 2 × 2 correlation ρ on the Y-axis; P (A) fixed at α = .5;
β = P ( if A then B) from 0 to 1 on the X-axis. Left: Modus ponens. Right:
Modus tollens. Solid line: Conditional event interpretation, dashed: Material
implication interpretation.

Experiments on human reasoning often investigate inferences with content-lean
material, like “If there is an A on one side of the blackboard, then there is a B on the
other side.”. Such conditionals do not carry information about the dependence or
independence of the involved events. If however content-rich material is presented,

815



Kleiter

then the participants have background knowledge that will enter the inference pro-
cess. Especially if-then sentences in the premises will activate beliefs about causal
and correlational dependencies. Similarly, in every-day arguments events are usually
supposed to be correlated.

If in a modus ponens task the participants assess the point probabilities P (A) =
α and P (B|A) = β| and infer the point probability P (B) = γ| = β| and thus ignore
the base rate P (A), then they assume (implicitly or explicitly) that A and B are
probabilistically independent. Likewise, for any other point probability of the con-
clusion it is easy to infer the corresponding correlation. For the modus ponens
with conditional event interpretation we apply Equation (21) with

x1 = αβ| x2 = α(1 − β|)
x3 = γ| − x1 x4 = 1 − γ| − x2

In all similar argument forms the judgment of point probabilities reveals the “per-
ceived correlations”.

10 Second order probability distributions

The lower and upper bounds of the premise probabilities αi span an n-dimensional
hypercube with the volume

∏n
i=1(α′′

i − α′
i). Coherence defines a subvolume within

the hypercube. Each point in the subvolume corresponds to a vector of a coherent
point probabilities. G-coherence requires the subvolume not to be empty. The ratio
of the volume of the coherent volume and the total volume of the hypercube is a
measure of the “degree of coherence” for a given pair of vectors of lower and upper
probabilities.

If we treat the αi as random variables, introduce rectangular density functions
on the [α′

i, α
′′
i ] intervals, f(αi) = 1/(α′′

i − α′
i), and if we assume that the αi are

stochastically independent, then volumes in the hypercube correspond to a proba-
bility measure. The volume of the coherent subspace measures the (second order)
probability of being coherent.

It is however more general to replace the rectangular by more flexible distribu-
tions, to replace the intervals [α′

i, α
′′
i ] by the full range of the unit interval [0, 1], and

to replace the independence assumption by an appropriate measure of probabilistic
dependence [49]. The resulting structure is a vine structure [53]. It is characterized
as follows:

1. The imprecise uncertainty of the n premises is modeled by a multivariate
probability density on the simplex [0, 1]n.
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2. The (marginal) uncertainty of each premise is described by an appropriate
probability density. For practical reasons we prefer to use beta distributions.

3. The pairwise (unconditional and conditional) stochastic dependencies are char-
acterized by copulas. Regular vines allow a pairwise decomposition of the joint
distributions.

4. Practical numerical analyses are performed by stochastic simulation.

The architecture corresponds to a stochastic response model. An individual repre-
sents his or her uncertainty by a distribution and when asked for a point probability
judgment responds with a random number generated by the distribution. Inferences
are performed by the propagation of second order probability distributions [49].

11 Discussion
All valid inference forms of propositional calculus which are conditional-free are p-
valid. Of those containing conditionals a subset is p-nonvalid, most typically the
paradoxes of the material implication, strengthening the antecedent
(from A → C infer (A ∧ B) → C), transitivity (from from A → B and B → C
infer A → C), contraposition (from A → B infer ¬B → ¬A), or-to-if (from
A ∨ B infer ¬A → B). The p-nonvalid rules are just those which seem to be
nonintuitive. Transitivity is an exception (it is probabilistically noninformative).
For an extensive discussion based on the coherence approach see the recent paper
on weak transitivity by Gilio, Pfeifer, and Sanfilippo [40]. The conditional event
interpretation is a filter that prevents nonintuitive rules to enter the inference system
of probability logic. This is the reason why Adams used conditional probabilities
for the probability of conditionals. Both, p-validity and conditional probabilities, go
hand in hand.

Recent psychological studies [31, 86] used p-validity to evaluate human judg-
ments as falling into “p-valid intervals”. The intervals are claimed to be a new
standard of rationality. These studies do not consider that Adams assigns interval
probabilities with upper probabilities equal to 1 to the premises, that is, not point
probabilities as in the judgments of the participants in the experiments. For infer-
ence rules like the modus ponens or the modus tollens, where all premises have
degrees of essentialness equal to 1, Adams’ uncertainty-sum criterion coincides with
the lower probability of these rules when the conditionals are interpreted as mate-
rial implication. If the inferences are not content-lean but involve every-day and
causal knowledge the correlation between the events leads to conclusions with point
probabilities. Moreover, psychologically it is even more plausible to represent the
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uncertain knowledge by continuous probability density functions. The strict classi-
fication as “coherent” and “non-coherent” dissolves and is replaced by distributions
of degrees of coherence [49].

The coherence approach has a very elegant method to establish the bridge be-
tween classical logic and probability. In the coherence approach it is not necessary to
start from a Boolean algebra. If the premises are logically dependent this is directly
taken into account by removing impossible constituents, those that are forbidden by
the logical dependence right at the beginning of any analysis [22].

For the treatment of probability preservation in generalized inference rules the
reader is referred to [95], for degradation in probability logic to [94], and the for
degradation in the context of exchangeable events to [93]. An inference form de-
grades if, as more and more premises are added to the premise set, the probability
intervals of the conclusion get wider and wider. With the conditional event inter-
pretation of conditionals the modus ponens and the modus tollens degrade so
that even after a few steps the interval becomes probabilistically totally noninfor-
mative. The upper probabilities of the modus ponens and the modus tollens
with material implication, γ′′

→ = β→, depend on the probability of the conditionals
only. Therefore for the material implication interpretation the upper bounds do not
degrade as long as the probabilities of the conditionals remain constant.

Adams distinguished different kinds of probability preservation, among them
certainty preservation [8]. “A is a strict [certainty preserving] consequence of S ...
if and only if for all probability functions P ... if P (B) = 1 for all B in S, then
P (A) = 1.” [4, p. 274] McGee [60] observes that this criterion falls back to material
implication: “The strictly valid inferences are not those described by Adams’ theory,
but those described by the orthodox theory, which treats the English conditional as
the material conditional. This raises an ugly suspicion. The failures of the classical
valid modes of inference appear only when we are reasoning from premises that
are less than certain ... to a conclusion that is also less than certain.” [60, p.189]
This is a consequence of Adams’ conception of conditional probability as defined
by P ( if A then B) as P (A ∧ B)/P (B) if P (B) ̸= 0 and as 1 if P (B) = 0, i.e.,
he “...assigns the conditional the probability 1 when the conditional probability is
undefined” [60, p. 190]. McGee proposed Popper functions, but zero probabilities
are directly addressed in the coherence approach.

From a psychological perspective p-validity is attractive because it admits many
rules that are endorsed by human reasoners and excludes logically valid rules that
are not endorsed by human reasoners. People do not, for example, endorse the
paradoxes of the material implication [73]. This can, however, also be
achieved with the criterion of probabilistic noninformativeness [70, 71, 73]. An in-
ference form is noninformative if its premises do not constrain the probability of
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the conclusion. This is the case if the conclusion (represented by the vector of in-
dicators) is linearly independent of the premises. In this case the probability of
the conclusion is in the vacuous interval [0, 1]. P-nonvalid but informative inference
forms, like Denying the Antecedent or Affirming the Consequent, for ex-
ample, should not be discredited as being “non-rational”. They allow to constrain
the probabilities of conclusions in the same way as the modus ponens or the modus
tollens. In probabilistic inference coherence is the gold standard. In models of
human reasoning p-validity is a fossil of classical logic.
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Abstract

In this paper we systematically explore questions of succinctness in modal
logics employed in spatial reasoning. We show that the closure operator, despite
being less expressive, is exponentially more succinct than the limit-point oper-
ator, and that the µ-calculus is exponentially more succinct than the equally-
expressive tangled limit operator. These results hold for any class of spaces
containing at least one crowded metric space or containing all spaces based
on ordinals below ωω, with the usual limit operator. We also show that these
results continue to hold even if we enrich the less succinct language with the
universal modality.

1 Introduction

In spatial reasoning, as in any other application of logic, there are several criteria to
take into account when choosing an appropriate formal system. A more expressive
logic has greater potential applicability, but often at the cost of being less tractable.
Similarly, a more succinct logic is preferable, for example, when storage capacity is
limited: even when two formal languages L1 and L2 are equally expressive, it may
be the case that certain properties are represented in L1 by much shorter expressions
than in L2. As we will see, this is sometimes the case even when L1 is strictly less
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expressive than L2, and it may even be that L1 is exponentially more succinct than
L2 and vice versa (for an intuitive explanation of this fact see [40] for example).

Qualitative spatial reasoning deals with regions in space and abstract relations
between them, without requiring a precise description of them. It is useful in settings
where data about such regions is incomplete or highly complex, yet precise numerical
values of coordinates are not necessary: in such a context, qualitative descriptions
may suffice and can be treated more efficiently from a computational perspective.
One largely unexplored aspect of such efficiency lies in the succinctness of the formal
languages employed. To this end, our goal is to study succinctness in the context of
modal logics of space.

1.1 State-of-the-art in succinctness research

Succinctness is an important research topic that has been quite active for the last
couple of decades. For example, it was shown by Grohe and Schweikardt [22] that
the four-variable fragment of first-order logic is exponentially more succinct than
the three-variable one on linear orders, while Eickmeyer et al. [10] offer a study of
the succinctness of order-invariant sentences of first-order and monadic second-order
logic on graphs of bounded tree-depth. Succinctness problems regarding temporal
logics for formal verification of programs were studied, among others, by Wilke [41],
Etessami et al. [11], and Adler and Immerman [2], while it was convincingly argued
by Gogic et al. [18] that, as far as knowledge representations formalisms studied
in the artificial intelligence are concerned, succinctness offers a more fine-grained
comparison criterion than expressivity or computational complexity.

Intuitively, proving that one language L1 is more succinct than another language
L2 ultimately boils down to proving a sufficiently big lower bound on the size of L2-
formulas expressing some semantic property. For example, if we want to show that
L1 is exponentially1 more succinct than L2, we have to find an infinite sequence
of semantic properties (i.e., classes of models) P1,P2, . . . definable in both L1 and
L2, show that there are L1-formulas ϕ1, ϕ2, . . . defining P1,P2, . . . and prove that,
for every n, every L2-formula ψn defining Pn has size exponential in the size of
ϕn. Many such lower bound proofs, especially in the setting of temporal logics,
rely on automata-theoretic arguments possibly combined with complexity-theoretic
assumptions. In the present paper, we use formula-size games that were developed
in the setting of Boolean function complexity by Razborov [35] and in the setting
of first-order logic and some temporal logics by Adler and Immerman [2]. By now,
the formula-size games have been adapted to a host of modal logics (see for example

1Analogous considerations apply in the case when we want to show that L1 is doubly exponen-
tially, or non-elementarily, etc. more succinct than L2.
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French et al. [16], Hella and Vilander [23], Figueira and Gorín [15], van der Hoek et
al. [40]) and used to obtain lower bounds on modal formulas expressing properties
of Kripke models. Our goal is to build upon these techniques in order to apply them
to modal logics employed in spatial reasoning.

1.2 Spatial interpretations of modality

Modal logic is an extension of propositional logic with a ‘modality’ ◇ and its dual,
◻, so that if ϕ is any formula, ◇ϕ and ◻ϕ are formulas too. There are several
interpretations for these modalities, but one of the first was studied by McKinsey
and Tarski [30], who proposed a topological reading for them. These semantics have
regained interest in the last decades due to their potential for spatial reasoning,
especially when modal logic is augmented with a universal modality as studied by
Shehtman [37], or fixpoint operators studied by Fernández-Duque [12] and Goldblatt
and Hodkinson [21].

The intention is to interpret formulas of the modal language as subsets of a
‘spatial’ structure, such as Rn. To do this, we use the closure and the interior of a
set A ⊆ Rn. The closure of A, denoted c(A), is the set of points that have distance
zero from A; its interior, denoted i(A), is the set of points with positive distance
from its complement. To define these, for x, y ∈ Rn, let δ(x, y) denote the standard
Euclidean distance between x and y. It is well-known that δ satisfies (i) δ(x, y) ≥ 0,
(ii) δ(x, y) = 0 iff x = y, (iii) δ(x, y) = δ(y, x) and (iv) the triangle inequality,
δ(x, z) ≤ δ(x, y) + δ(y, z). More generally, a set X with a function δ∶X ×X → R
satisfying these four properties is a metric space. The Euclidean spaces Rn are
metric spaces, but there are other important examples, such as the set of continuous
functions on [0,1] (with a suitable metric).

Definition 1.1. Given a metric space X and A ⊆ X, we say that a point x has
distance zero from A if for every ε > 0, there is y ∈ A so that δ(x, y) < ε. If x
does not have distance zero from A, we say it has positive distance from A. Then,
c(A) is the set of points with zero distance from A and i(A) is the set of points with
positive distance from its complement.

Note that if we denote the complement of A by A, then i(A) = c(A). The basic
properties of c are well-known, and we mention them without proof.

Proposition 1.2. If X is a metric space and c is the closure operator on X, then,
given sets A,B ⊆X,

(i) c(∅) = ∅,
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(ii) A ⊆ c(A),

(iii) c(A) = c(c(A)) and

(iv) c(A ∪B) = c(A) ∪ c(B).

These four properties are known as the Kuratowski axioms [28]. We will say that
any non-empty set X equipped with a function c∶2X → 2X satisfying the Kuratowski
axioms is a closure space, and that c is a closure operator. Closure spaces are simply
topological spaces in disguise, but presenting them in this fashion will have many
advantages for us. To be precise, if (X, c) is a closure space and A = c(A), we say
that X is closed, and its complement is open; the family of open sets then gives a
topology in the usual way.2

From a computational perspective, it can be more convenient to work with clo-
sure spaces than with metric spaces, as finite, non-trivial closure spaces can be
defined in a straightforward way, and thus spatial relations can be represented using
finite structures. To be precise, let W be a non-empty set and R ⊆W ×W a binary
relation; the structure (W,R) is a frame. Then, if R is a preorder (i.e., a transitive,
reflexive relation), the operator R−1[⋅] defined by R−1[A] = {w ∈W ∶ ∃v ∈ A (w R v)}
is a closure operator.

A good deal of the geometric properties of regions in a metric space X are
reflected in the behavior of its closure operator; however, some information is in-
evitably lost. It has been observed that more information about the structure of X
is captured if we instead consider its limit, or set-derivative, operator. For A ⊆ X,
define d(A) to be the set of points such that, for every ε > 0, there is y ∈ A different
from x such that δ(x, y) < ε. The limit operator was first considered in the modal
logic literature by McKinsey and Tarski [30] and has since been extensively studied
(see e.g. [4, 21, 29]).

Note that it is no longer the case that A ⊆ d(A): for example, if A = {x}
consists of a single point, then d(A) = ∅. Nevertheless, d still satisfies the following
properties.

Proposition 1.3. Let X be a metric space, and let d∶2X → 2X be its limit operator.
Then, for any A,B ⊆X,

(i) d(∅) = ∅,

(ii) d(d(A)) ⊆ d(A),3 and
2We will not define topological spaces in this text, and instead refer the reader to a text such

as [32].
3If, instead, we let X be an arbitrary topological space, then only the weaker condition d(d(A)) ⊆

d(A) ∪A holds in general.

830



Succinctness in Subsystems of the Spatial µ-Calculus

●

A

●

c(A) i(A) d(A)

Figure 1: A region in R2 and its closure, interior and limit sets. The point in the
middle is the only isolated point of A.

(iii) d(A ∪B) = d(A) ∪ d(B).

In order to treat closure operators and limit operators uniformly, we will define
a convergence space to be a pair (X,d), where d∶2X → 2X satisfies these three
properties (see Definition 2.2). In any convergence space, we can then define c(A) =
A ∪ d(A), but in general, it is not possible to define d in terms of c using Boolean
operations. In particular, the isolated points of A can be defined as the elements
of A ∖ d(A), but they cannot be defined in terms of c (see Figure 1). As before,
a convenient source of convergence spaces is provided by finite frames: if (W,R)
is such that R is transitive (but not necessarily reflexive), then (W,R−1[⋅]) is a
convergence space.

Logics involving the d operator are more expressive than those with c alone,
for example being able to distinguish the real line from higher-dimensional space
and Euclidean spaces from arbitrary metric spaces, as shown by Bezhanishvili et
al. [4]. Nevertheless, as we will see, the modal language with the c-interpretation is
exponentially more succinct than modal logic with the d-interpretation.

Layout of the article

In Section 2, we review the syntax and semantics of the spatial µ-calculus, extended
in Section 3 to include the closure and tangled limit operators. Section 4 then
reviews some model-theoretic operations that preserve the truth of modal formulas,
and Section 5 discusses the classes of spaces that we will be interested in.

Section 6 presents the game-theoretic techniques that we will use to establish
our core results in Section 7, where it is shown that the closure operator is more
succinct than the limit-point operator. This is extended to include the tangled limit
operator and the universal modality in Section 8, leading to our main results, namely
Theorem 8.6 and Theorem 8.7. Finally, Section 9 provides some concluding remarks
and open problems.
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2 The spatial µ-calculus

In this section we present the modal µ-calculus and formalize its semantics over
convergence spaces, a general class of models that allow us to study all the semantic
structures we are interested in under a unified framework. Let us begin by defining
the basic formal language we will work with.

2.1 Syntax

We will consider logics over variants of the language Lµ
◇∀

given by the following
grammar (in Backus-Naur form). Fix a set P of propositional variables (also called
atoms), and define:

ϕ,ψ ∶= ⊺ ∣ � ∣ p ∣ p ∣ ϕ ∨ ψ ∣ ϕ ∧ ψ ∣ ◇ϕ ∣ ◻ϕ ∣ ∀ϕ ∣ ∃ϕ ∣ µp.ϕ ∣ νp.ϕ

Here, p ∈ P , p denotes the negation of p, and p may not occur in µp.ϕ or νp.ϕ. For
the game-theoretic techniques we will use, it is convenient to allow negations only
at the atomic level, and thus we include all duals as primitives, but not negation or
implication; however, we may use the latter as shorthands, defined via De Morgan’s
laws. As usual, formulas of the forms p, p are literals. It will also be crucial for our
purposes to measure the size of formulas: the size of a formula ϕ is denoted ∣ϕ∣ and
is defined as the number of nodes in its syntax tree.

Definition 2.1. We define a function ∣ ⋅ ∣ ∶ Lµ
◇∀
→ N recursively by

• ∣p∣ = ∣p∣ = 1

• ∣ϕ ∧ ψ∣ = ∣ϕ ∨ ψ∣ = ∣ϕ∣ + ∣ψ∣ + 1

• ∣◇ϕ∣ = ∣◻ϕ∣ = ∣∀ϕ∣ = ∣∃ϕ∣ = ∣µp.ϕ∣ = ∣νp.ϕ∣ = ∣ϕ∣ + 1.

Sublanguages of Lµ
◇∀

are denoted by omitting some of the operators, with the
convention that whenever an operator is included, so is its dual (for example, L◇
includes the modalities ◇,◻ but does not allow ∀,∃, µ or ν).

2.2 Convergence spaces

Spatial interpretations of modal logics are usually presented in terms of topological
spaces. Here we will follow an unorthodox route, instead introducing modal spaces,
and as a special case convergence spaces; both the closure and limit point operators
give rise to convergence spaces, while Kripke frames can be seen as modal spaces.
As a general convention, structures (e.g. frames or models) will be denoted A,B, . . .,
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while classes of structures will be denoted A, B, . . .. The domain of a structure A
will be denoted by ∣A∣.

Definition 2.2. A normal operator on a set A is any function ρ∶2A → 2A satisfying

(1) ρ(∅) = ∅, and

(2) ρ(X ∪ Y ) = ρ(X) ∪ ρ(Y ).

A modal space is a pair A = (∣A∣, ρA), where ∣A∣ is any non-empty set and ρA∶2∣A∣ →
2∣A∣ is a normal operator. If X ⊆ ∣A∣, define ρ̂A(X) = ρA(X). We say that ρA is a
convergence operator if it also satisfies

(3) ρA(ρA(X)) ⊆ ρA(X).

If ρA is a convergence operator, we will say that A is a convergence space.
If X ⊆ ρA(X) for all X ⊆ ∣A∣, we say that ρA is inflationary. An inflationary

convergence operator is a closure operator, and if ρA is a closure operator then A
is a closure space.

This general presentation will allow us to unify semantics over metric spaces with
those over arbitrary relational structures.

Remark 2.3. Modal spaces are just neighborhood structures [33] in disguise; in-
deed, if (A,N) is a neighborhood structure (i.e., N ⊆ A × 2A), we may set ρN(X)
to be the set of a ∈ A such that every neighborhood of a intersects X. Conversely, if
X ⊆ ∣A∣ and a ∈ ∣A∣, we let X be a neighborhood of a if a ∈ ρ̂A(X).

As mentioned before, a Kripke frame is simply a structure A = (∣A∣,RA), where
∣A∣ is a non-empty set and RA ⊆ ∣A∣ × ∣A∣ is a binary relation. We will implicitly
identify A with the modal space (∣A∣, ρA), where ρA(X) = R−1

A
[X] for any X ⊆ ∣A∣.

It is readily verified that the operator ρA thus defined is normal. In this sense,
modal spaces generalize Kripke frames, but the structure (∣A∣, ρA) is not always a
convergence space. Nevertheless, convergence spaces may be obtained by restricting
our attention to frames where RA is transitive.

Definition 2.4. Define K to be the class of all Kripke frames, K4 to be the class
of all Kripke frames with a transitive relation, KD4 to be the class of all Kripke
frames with a transitive, serial4 relation, and S4 to be the class of all Kripke frames
with a transitive, reflexive relation.

4Recall that a relation R ⊆ W ×W is serial if R(w) /= ∅ for all w ∈ W .
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The names for these classes are derived from their corresponding modal logics
(see e.g. [8]). The following is then readily verified, and we mention it without proof:

Proposition 2.5.

1. If A ∈ K, then (∣A∣,R−1
A

[⋅]) is a modal space.

2. If A ∈ K4, then (∣A∣,R−1
A

[⋅]) is a convergence space.

3. If A ∈ S4, then (∣A∣,R−1
A

[⋅]) is a closure space.

Before defining our semantics, we need to briefly discuss least and greatest fixed
points. Let X be a set and f ∶2X → 2X be monotone; that is, if A ⊆ B ⊆ X, then
f(A) ⊆ f(B). Say that A∗ is a fixed point of f if f(A∗) = A∗. Then, Knaster and
Tarski [39] showed the following:

Theorem 2.6. If X is any set and f ∶2X → 2X is monotone, then

1. f has a ⊆-least fixed point, which we denote LFP(f), and

2. f has a ⊆-greatest fixed point, which we denote GFP(f).

This result is discussed in some detail in the context of the spatial µ-calculus in
[21]. With this, we turn our attention from frames to models.

2.3 Models and truth definitions

Formulas of Lµ
◇∀

are interpreted as subsets of a convergence space, but first we need
to determine the propositional variables that are true at each point.

Definition 2.7. If A is a modal space, a valuation on A is a function V ∶ ∣A∣ → 2P
(recall that P is the set of atoms). A modal space A equipped with a valuation V is
a model. If A is a convergence space, then (A, V ) is a convergence model.

If X ⊆ ∣A∣ and p ∈ P , we define a new valuation V[X/p] by setting

• for q /= p, q ∈ V[X/p](w) if and only if q ∈ V (w), and

• p ∈ V[X/p](w) if and only if w ∈X.

Now we are ready to define the semantics for Lµ
◇∀

.
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Definition 2.8. Let (A, V ) be a model. We define the truth set

JϕKV = {w ∈ ∣A∣ ∶ (A,w) ⊧ ϕ}
by structural induction on ϕ. We first need an auxiliary definition for the cases µp.ϕ
and νp.ϕ. Suppose inductively that JϕKV ′ has been defined for any valuation V ′, and
define a function λp.ϕ[V ]∶2∣A∣ → 2∣A∣ given by λp.ϕ[V ](X) = JϕKV[X/p]

. With this,
we define:

JpKV = {w ∈ ∣A∣ ∶ p ∈ V (w)} JpKV = {w ∈ ∣A∣ ∶ p /∈ V (w)}
Jϕ ∧ ψKV = JϕKV ∩ JψKV Jϕ ∨ ψKV = JϕKV ∪ JψKV
J◇ϕKV = ρA(JϕKV ) J◻ϕKV = ρ̂A(JϕKV )
J∃ϕKV = X if JϕKV /= ∅ else ∅ J∀ϕKV = X if JϕKV =X else ∅
Jµp.ϕKV = LFP(λp.ϕ[V ]) Jνp.ϕKV = GFP(λp.ϕ[V ]).

Given a model (A, V ) and formulas ϕ,ψ ∈ Lµ
◇∀

, we say that ϕ is equivalent to ψ
on A if JϕKV = JψKV . If A is a modal space, ϕ,ψ are equivalent on A if they are
equivalent on any model of the form (A, V ), and if A is a class of structures, we say
that ϕ,ψ are equivalent over A if they are equivalent on any element of A. When
A or A is clear from context, we may write ϕ ≡ ψ, and if ϕ ≡ ⊺ we say ϕ is valid,
in which case we write A ⊧ ϕ or A ⊧ ϕ, respectively.

It is readily verified that if p does not appear in ϕ, it follows that λp.ϕ[V ] is
monotone, and hence the above definition is sound. On occasion, if M is a model
with valuation V , we may write J⋅K

M
or even J⋅K instead of J⋅KV . In the case that

(A, V ) is a Kripke model, the semantics we have just defined coincide with the
standard relational semantics [8]. To see this, note that for any formula ϕ and any
w ∈ ∣A∣, w ∈ J◇ϕK if and only if w ∈ ρA(JϕK), which means that w ∈ R−1

A
[JϕK]; i.e.,

there is v ∈ JϕK such that w RA v. Thus, the interpretation of ◇ coincides with the
standard relational interpretation in modal logic.

3 The extended spatial language

The spatial µ-calculus, as we have presented it, may be naturally extended to include
other definable operations. Of course such extensions will not add any expressive
power to our language, but as we will see later in the text, they can yield considerable
gains in terms of succinctness. We begin by discussing the closure operator.

3.1 The closure operator

As we have mentioned, the closure operator is definable in terms of the limit point
operator on metric spaces. Let us make this precise. We will denote the closure
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operator by |ϕ, defined as a shorthand for ϕ ∨ ◇ϕ. Dually, the interior operator
⊞ϕ will be defined as ϕ ∧ ◻ϕ. To do this, let Lµ

|◇∀
be the extension of Lµ

◇∀
which

includes |,⊞ as primitives. Then, for ϕ ∈ Lµ
|◇∀

, define a formula5 t◇
|
(ϕ) ∈ Lµ

◇∀
by

letting t◇
|
(⋅) commute with Booleans and all modalities except for |,⊞, in which

case t◇
|
(|ϕ) = t◇

|
(ϕ) ∨◇t◇

|
(ϕ) and t◇

|
(⊞ϕ) = t◇

|
(ϕ) ∧ ◻t◇

|
(ϕ).

Semantics for Lµ
|◇∀

are defined by setting JϕKV =
q
t◇
|
(ϕ)

y
V
, and we extend

Definition 2.1 to Lµ
|◇∀

in the obvious way, by

∣|ϕ∣ = ∣⊞ϕ∣ = ∣ϕ∣ + 1.

With this, we can give an easy upper bound on the translation t◇
|
.

Lemma 3.1. If ϕ ∈ Lµ
|◇∀

, then ∣t◇
|
(ϕ)∣ ≤ 2∣ϕ∣.

However, this bound is not optimal; it can be improved if we instead define ◇ in
terms of µ. Define tµ

|
∶ Lµ

|◇∀
→ Lµ

◇∀
by replacing every occurrence of |ϕ recursively

by µp.(tµ
|
(ϕ)∨◇p) and every occurrence of ⊞ϕ recursively by νp.(tµ

|
(ϕ)∧◻p) (where

p is always a fresh variable), and commuting with Booleans and other operators.
Then, we obtain the following:

Lemma 3.2. For all ϕ ∈ Lµ
|◇∀

, we have that ϕ ≡ tµ
|
(ϕ) over the class of convergence

spaces, and ∣tµ
|
(ϕ)∣ ≤ 4∣ϕ∣.

We omit the proof, which is straightforward. Whenever ◇ is interpreted as a
convergence operator, | is then interpreted as a closure operator. To be precise,
given a modal space A, define a new operator ρ+

A
on ∣A∣ by ρ+

A
(X) = X ∪ ρA(X).

Then, A+ = (∣A∣, ρ+
A
) is an inflationary modal space, and if A is a convergence space,

it follows that A+ is a closure space. If (A, V ) is any model and ϕ is any formula, it
is straightforward to check that J|ϕKV = ρ+

A
(JϕKV ). In the setting of Kripke models,

we see that w ∈ J|ϕKV if and only if w ∈ JϕKV , or there is v ∈ W such that wRAv
and v ∈ JϕKV ; as was the case for ◇ϕ, this coincides with the standard relational
semantics, but with respect to the reflexive closure of RA.

3.2 Tangled limits

There is one final extension to our language of interest to us; namely, the tangled
limit operator, known to be expressively equivalent to the µ-calculus over the class
of convergence spaces, but with arguably simpler syntax and semantics.

5We use the general convention that the symbol being replaced by a translation is placed as a
subindex, and the symbol used to replace it is used as a superindex. However, this convention is
only orientative.

836



Succinctness in Subsystems of the Spatial µ-Calculus

Definition 3.3. Let Lµ◇
∗

|◇∀
be the extension of Lµ

|◇∀
such that, if ϕ1, . . . , ϕn are

formulas, then so are ◇∗{ϕ1, . . . , ϕn} and ◻∗{ϕ1, . . . , ϕn}. We define tµ
◇
∗(ϕ) to

commute with all operators except ◇∗,◻∗, in which case

tµ
◇
∗(◇∗{ϕ1, . . . , ϕn}) = µp.⋀

i≤n

◇(p ∧ tµ
◇
∗(ϕi))

tµ
◇
∗(◻∗{ϕ1, . . . , ϕn}) = νp.⋁

i≤n

◻(p ∨ tµ
◇
∗(ϕi)).

We extend ∣ ⋅ ∣ and J⋅K to Lµ◇
∗

|◇∀
by defining

∣◇∗{ϕ1, . . . , ϕn}∣ = ∣◻∗{ϕ1, . . . , ϕn}∣ = ∣ϕ1∣ + . . . + ∣ϕn∣ + 1

and JϕKV =
r
tµ
◇
∗(ϕ)

z

V
.

We call ◇∗ the tangled limit operator; this was introduced by Dawar and Otto
[9] in the context of K4 frames, then extended by Fernández-Duque [12] to closure
spaces and by Goldblatt and Hodkinson [21] to other convergence spaces. For clarity,
let us give a direct definition of ◇∗ without translating into the µ-calculus.

Lemma 3.4. If (A, V ) is a convergence model, ϕ1, . . . , ϕn any sequence of formulas,
and x ∈ ∣A∣, then x ∈ J◇∗{ϕ1, . . . , ϕn}KV if and only if there is S ⊆ ∣A∣ such that x ∈ S
and, for all i ≤ n, S ⊆ ρA(S ∩ JϕiKV ).

Although Dawar and Otto proved in [9] that the tangled limit operator is equally
expressive as the µ-calculus, they use model-theoretic techniques that do not provide
an explicit translation. As such, we do not provide an upper bound in the following
result.

Theorem 3.5. There exists a function t◇
∗

µ ∶ Lµ
◇
→ L◇∗

◇
such that, for all ϕ ∈ Lµ

◇
,

ϕ ≡ t◇∗
µ (ϕ) on the class of K4 frames.

Spatial interpretations of the tangled closure and limit operators have gathered
attention in recent years (see e.g. [13, 14, 19, 20]). Later we will show that the tangled
limit operator, despite being equally expressive, is exponentially less succinct than
the µ-calculus.

4 Truth-preserving transformations

Let us review some notions from the model theory of modal logics, and lift them
to the setting of convergence spaces. We begin by discussing bisimulations, the
standard notion of equivalence between Kripke models; or, more precisely between
pointed models, which are pairs (A, a) such that A is a model and a ∈ ∣A∣.
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4.1 Bisimulations

The well-known notion of bisimulation between Kripke models readily generalizes to
the setting of convergence spaces, using what we call confluent relations. Below, we
say that two pointed models (A, a) and (B, b) differ on the truth of a propositional
variable p when we have (A, a) ⊧ p whereas (B, b) ⊧ p, or vice-versa. If (A, a) and
(B, b) do not differ on p, then they agree on p.

Definition 4.1. Let A = (∣A∣, ρA) and B = (∣B∣, ρB) be modal spaces and χ ⊆ ∣A∣×∣B∣.
We say that χ is forward confluent if, for all X ⊆ ∣A∣,

χ[ρA(X)] ⊆ ρB(χ[X]).

Say that χ is backward confluent if χ−1 is forward confluent, and confluent if it is
forward and backward confluent.

Let Q ⊆ P be a set of atoms. If (A, VA) and (B, VB) are models, a bisimulation
relative to Q is a confluent relation χ ⊆ ∣A∣× ∣B∣ such that if a χ b, then (A, a) agrees
with (B, b) on all atoms of Q. If Q is not specified, we assume that Q = P .

A bisimulation between pointed models (A, a) and (B, b) is a bisimulation χ ⊆
∣A∣ × ∣B∣ such that a χ b. We say that (A, a) and (B, b) are locally bisimilar if there
exists a bisimulation between them, in which case we write (A, a) - (B, b). They are
globally bisimilar if there exists a total, surjective bisimulation between them.

The following is readily verified by a structural induction on formulas (see, for
example, [21]). Recall that a variable p is free if it appears outside of the scope of
µp or νp.

Lemma 4.2. Let (A, a) and (B, b) be pointed models, Q ⊆ P , and ϕ ∈ Lµ◇
∗

|◇∀
, all of

whose free atoms appear in Q. Then, if either

1. (A, a) and (B, b) are locally bisimilar relative to Q and ϕ ∈ Lµ◇
∗

|◇
(i.e., ∀,∃ do

not appear in ϕ), or

2. (A, a) and (B, b) are globally bisimilar relative to Q,

it follows that (A, a) ⊧ ϕ if and only if (B, b) ⊧ ϕ.

As a special case, we can view an isomorphism as a bisimulation that is also
a bijection. Isomorphism between structures will be denoted by ≅. Similarly, if
∣A∣ = ∣B∣ and Q is a set of atoms, we say that A and B agree on all atoms in Q if for
every w ∈ ∣A∣, (A,w) agrees with (B,w) on all atoms in Q. It is easy to see that if
A and B agree on all atoms in Q, then A and B are globally bisimilar relative to Q.
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It is instructive to compare our notion of confluence to more familiar notions in
the literature. We begin with the familiar notion of bisimulations between relational
models:

Lemma 4.3. If A = (∣A∣,RA) and B = (∣B∣,RB) are Kripke frames, then χ ⊆ ∣A∣×∣B∣
is forward-confluent if and only if, whenever a RA a′ and a χ b, there is b′ ∈ ∣B∣ such
that a′ χ b′ and b RB b′.

On metric spaces, confluent functions are related to continuous and open maps.

Lemma 4.4. Let A = (∣A∣, δA) and B = (∣B∣, δB) be metric spaces with respective
closure operators cA, cB and limit operators dA, dB, and let f ∶ ∣A∣ → ∣B∣. Then,

1. f is forward-confluent with respect to cA, cB if and only if f is continuous; that
is, for every a ∈ ∣A∣ and every ε > 0, there exists η > 0 such that if δA(a, a′) < η,
then δB(f(a), f(a′)) < ε.

2. f is forward-confluent with respect to dA, dB if and only if f is continuous and
pointwise discrete; that is, if a ∈ ∣A∣, then there is ε > 0 such that if δA(a, a′) < ε
and f(a) = f(a′), then a = a′.

3. f is backward-confluent with respect to cA and cB or, equivalently, with respect
to dA and dB, if and only if f is open; that is, for every a ∈ ∣A∣ and every
ε > 0, there exists η > 0 such that if δB(f(a), b′) < η, then there is a′ ∈ ∣A∣ such
that δA(a, a′) < ε and f(a′) = b′.

Note that item 3 does not require an additional pointwise-discreteness condition
for d; the reason for this is that f is a function so that the image of any point x
is discrete ‘for free’, as f({x}) is always a singleton. Next, we will review some
well-known constructions that yield locally bisimilar models.

4.2 Generated submodels

Given Kripke models A,B, we say that A is a submodel of B if ∣A∣ ⊆ ∣B∣, RA =
RB ∩ (∣A∣ × ∣A∣), and VA(w) = VB(w) for all w ∈ ∣A∣. It is typically not the case that
A satisfies the same formulas as B, unless we assume that ∣A∣ has some additional
properties.

Definition 4.5. If B is any Kripke frame or model, a set U ⊆ ∣B∣ is persistent if,
whenever w ∈ U and w RB v, it follows that v ∈ U . If A is a subframe (respectively,
submodel) of B, then we say that A is persistent if ∣A∣ is.

In this case, the inclusion ι∶ ∣A∣ → ∣B∣ is a bisimulation, and thus we obtain:
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Lemma 4.6. If A is a persistent submodel of B and w ∈ ∣A∣, then (A,w) is locally
bisimilar to (B,w).

In particular, if we are concerned with satisfiaction of Lµ◇
∗

|◇
-formulas on a pointed

model (B,w), it suffices to restrict our attention to the set of points accessible from
w.

Definition 4.7. Given a binary relation R, let R∗ denote the transitive, reflexive
closure of R.

Then, given a Kripke frame or model B and w ∈ ∣B∣, we define the generated
subframe (respectively, submodel) of w to be the substructure of B with domain
R∗

B
(w).

The following is then obvious from the definitions:

Lemma 4.8. If B is a Kripke structure and w ∈ ∣B∣, then the generated substructure
of w is persistent.

Remark 4.9. Although we will not need this in the text, persistent substructures
can be generalized to other classes of convergence spaces by considering substructures
with open domain (see, e.g., [21]). However, it is typically not the case that there is
a least open substructure containing a given point w.

4.3 Model amalgamation

If {Ai ∶ i ∈ I} is a family of sets, let us use ∐i∈I Ai to denote its disjoint union in a
standard way. We extend this notation to families {Ai ∶ i ∈ I} of Kripke models by
setting

∐
i∈I

Ai = (∣A∣,RA, VA),

where

(i) ∣A∣ = ∐i∈I ∣Ai∣,

(ii) RA = ∐i∈I RAi , and

(iii) for w ∈ ∣A∣, VA(w) = VAi(w) if w ∈ ∣Ai∣.

It is easy to check that, for any j ∈ I, Aj is a persistent substructure of ∐i∈I Ai,
and thus we obtain the following from Lemma 4.2:

Lemma 4.10. If {Ai ∶ i ∈ I} is a family of models, w ∈ ∣Aj ∣ and ϕ ∈ Lµ◇
∗

|◇
, then

(Aj ,w) ⊧ ϕ if and only if (∐i∈I Ai,w) ⊧ ϕ.
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The tools we have presented will be instrumental throughout the text to obtain
our main results. Next, we turn our attention to discussing classes of convergence
spaces that will be important throughout the text.

5 Special classes of spaces

Our main succinctness results use constructions based on Kripke semantics, which
we then ‘lift’ to other classes of spaces. Specifically, we will focus on classes of K4
models that are confluent images of natural spaces, including Euclidean spaces. As
the latter are connected and confluent maps preserve connectedness, we must work
with K4 frames that share this property.

5.1 Connectedness

Given any K4 frame A, there always exists some metric space X such that there
is a surjective confluent map f ∶ ∣X ∣ → ∣A∣ [27]. However, if the space X is fixed
beforehand, there is not always a guarantee that such a map exists. In particular,
this is typically not the case for Rn for any n, due to the fact that these spaces are
connected; that is, they cannot be partitioned into two disjoint open sets. More
formally, C ⊆ ∣X ∣ is connected if whenever C ⊆ i(A) ∪ i(A), it follows that either
A ∩ C = ∅ or A ∩ C = ∅. The space X is connected if ∣X ∣ is. As observed by
Shehtman, this property can be characterized using the universal modality:

Proposition 5.1 ([37]). A convergence space A is connected if and only if

A ⊧ ∀(⊞p ∨ ⊞p) → (∀p ∨ ∀p).

Shehtman [36] also considered what we call local (puncture-)connectedness, which
can be characterized with ◻. Say that a metric space X is locally puncture-connected
if whenever x ∈ ∣X ∣ and U is a neighbourhood of x, there is a neighbourhood O ⊆ U
of x such that O ∖ {x} is connected. Similarly, say that a K4 frame A is locally
connected if RA(a) is connected for all a ∈ ∣A∣.
Proposition 5.2 ([36]). If A is either a locally puncture-connected metric space or
a locally connected K4 frame then

A ⊧ ◻(⊞p ∨ ⊞p) → (◻p ∨ ◻p). (1)

It is not hard to check that R2 is locally puncture-connected while R is not. Note
that there are metric spaces satisfying (1) that are not locally puncture-connected;
this is studied in more detail by Lucero-Bryan [29]. In the setting of Kripke models,
connectedness can be characterized by the existence of paths joining any two points:
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Proposition 5.3 ([37]). Let A = (∣A∣,RA) be a K4 frame. Then, B ⊆ ∣A∣ is con-
nected if and only if for all w, v ∈ B, there are b0 . . . bn ∈ B such that b0 = w, bn = v,
and for all i < n, either bi RA bi+1 or bi+1 RA bi.

Let us say that a K4 frame A is totally connected if it is both connected and
locally connected. Of particular interest to us is the class of totally connected KD4
frames, which we denote TC. In view of Proposition 5.3, TC consists of the class
of transitive, serial frames A such that there exists a path between any two points
w, v ∈ ∣A∣ and, moreover, if x RA w and x RA v, we can choose the path entirely
within RA(x).

A celebrated result of McKinsey and Tarski [30] states that any formula of L|
satisfiable over an S4 frame is satisfiable over the real line, or any other crowded6

metric space X satisfying some natural properties. This result has since received
several improvements and variations throughout the years (see e.g. [34, 5, 31, 25]).
We present a powerful variant proven by Goldblatt and Hodkinson [21], which states
the following.

Theorem 5.4. Let X = (∣X ∣, dX ) be a crowded metric space equipped with the limit
operator, and A = (∣A∣,RA) be a finite TC frame. Then, there exists a surjective,
confluent map f ∶ ∣X ∣ → ∣A∣.

Putting together Lemma 4.2 and Theorem 5.4, we obtain the following.

Corollary 5.5. Let X = (∣X ∣, dX ) be a crowded metric space equipped with the limit
operator, and A = (∣A∣,RA, VA) be a finite TC model. Then, there exists a map
f ∶ ∣X ∣ → ∣A∣ and a modelM= (X , VM) such that, for all ϕ ∈ Lµ◇

∗

|◇∀
,

JϕK
M

= f−1[JϕK
A
]. (2)

Proof. The map f is the surjective, confluent map provided by Theorem 5.4, and
the valuation VX is defined by p ∈ VX (x) if and only if p ∈ VA(f(x)) for p ∈ P and
x ∈ ∣X ∣. That (2) holds follows from Lemma 4.2.

5.2 Scattered spaces

In provability logic [7], a seemingly unrelated application of modal logic, ◻ϕ is in-
terpreted as ‘ϕ is a theorem of (say) Peano arithmetic’. It follows from a result of
Solovay [38] that, surprisingly, the valid formulas under this interpretation are ex-
actly the valid formulas over the class of scattered limit spaces. This non-trivial link

6A metric space is crowded if dX (∣X ∣) = ∣X ∣; i.e., if X contains no isolated points.
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between proof theory and spatial reasoning allows for an additional and unexpected
application of the logics we are considering. For this, let us define scattered spaces
in the context of convergence spaces.

Definition 5.6. A convergence space A is scattered if, for every X ⊆ ∣A∣, if X ⊆
ρA(X), then X = ∅.

In other words, if X /= ∅, then there is a ∈X ∖ρA(X); such a point is an isolated
point of X. This property is characterized by the well-known Löb axiom:

Proposition 5.7 ([4]). A convergence space A is scattered if and only if

◻(◻p→ p) → ◻p

is valid on A.

It is not difficult to produce examples of scattered spaces; the most standard are
based either on ordinals or on Kripke frames. Let us begin with the latter.

Lemma 5.8. Let A = (∣A∣,RA) be any K4 frame. Then, A is a scattered space
if and only if RA is converse-well-founded; that is, there are no infinite sequences
a0 RA a1 RA a2 RA . . ..

In particular, if A is a finite K4 frame, then A is scattered as a convergence
space if and only if RA is irreflexive. The class of frames with a transitive, converse
well-founded relation is named GL after Gödel and Löb, whose contributions led
to the development of provability logic. Note that the tangled operator is not very
interesting in this setting.

Proposition 5.9. Let ϕ1, . . . , ϕn ∈ Lµ◇
∗

|◇∀
. Then, ◇∗{ϕ1, . . . , ϕn} ≡ � over the class

of scattered spaces.

Proof. Assume that (A, V ) is a scattered limit model, and consider a set S such
that, for i ≤ n, S ⊆ ρA(S ∩ JϕiKV ). But, this implies that S ⊆ ρA(S), which, since A
is scattered, means that S = ∅. Since J◇∗{ϕ1, . . . , ϕn}KV is the union of all such S,
we conclude that J◇∗{ϕ1, . . . , ϕn}KV = ∅.

From this we immediately obtain the following.

Corollary 5.10. There exists a function t�
◇
∗ ∶ L◇

∗

◇∀
→ L◇∀ such that ϕ ≡ t�

◇
∗(ϕ) is

valid over the class of scattered spaces and ∣t�
◇
∗(ϕ)∣ ≤ ∣ϕ∣ for all ϕ ∈ L◇∗

|∀
.
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Theorem 5.4 has an analogue for a family of ‘nice’ scattered spaces. Below and
throughout the text, we use the standard set-theoretic convention that an ordinal is
equivalent to the set of ordinals below it, i.e. ζ ∈ ξ if and only if ζ < ξ.

Definition 5.11. Given an ordinal Λ, define d∶2Λ → 2Λ by letting ξ ∈ d(X) if and
only if X ∩ ξ is unbounded in ξ.

Recall that addition, multiplication and exponentiation are naturally defined on
the ordinal numbers (see, e.g., [24]) and that ω defines the least infinite ordinal. The
following result can be traced back to Abashidze [1] and Blass [6], and is proven in
a more general form by Aguilera and Fernández-Duque [3].

Theorem 5.12. If A is any finite GL frame, then there exists an ordinal Λ < ωω
and a surjective map f ∶Λ → ∣A∣ that is confluent with respect to the limit operator
on Λ.

As before, this readily gives us the following corollary:

Corollary 5.13. Given a finite GL-model A = (∣A∣,RA, VA), there exists an ordinal
Λ < ωω, a surjective map f ∶Λ → ∣A∣, and a model M = (Λ, VM) such that, for all
ϕ ∈ Lµ◇

∗

|◇∀
,

JϕK
M

= f−1[JϕK
A
].

Now that we have settled the classes of structures we are interested in, we discuss
the techniques that we will use to establish our main succinctness results.

6 Model equivalence games

The limit-point, or set-derivative, operator ◇ is strictly more expressive than the
closure operator | [4]. Nevertheless, if we consider a formula such as ϕ = || . . .|

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

⊺,

we observe that its translation t◇
|
(ϕ) into L◇ is exponential. Of course in this case

ϕ ≡ ⊺, but as we will see in Section 7, this exponential blow-up is inevitable for other
choices of ϕ. To be precise, we wish to show that there is no translation t∶ L| → L◇
for which there exists a sub-exponential function f ∶N → N such that t(ϕ) ≡ ϕ over
the class of convergence spaces and ∣t(ϕ)∣ ≤ f(∣ϕ∣). In view of Theorem 5.10, to
show that ϕ /≡ ψ over the class of convergence spaces (or even metric spaces), it
suffices to exhibit a model A ∈ K4 and a ∈ ∣A∣ such that (A, a) ⊧ ϕ but (A, a) /⊧ ψ,
or vice-versa. We will prove that such A exists whenever ψ is small by using model
equivalence games, which are based on sets of pointed models.
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We will use a,b, . . . to denote pointed models. As was the case for non-pointed
structures, for a class of pointed models A and a formula ϕ, we write A ⊧ ϕ when
a ⊧ ϕ for all a ∈ A, i.e., ϕ is true in any pointed model in A, and say that the
formulas ϕ and ψ are equivalent on a class of pointed models A when a ⊧ ϕ if and
only if a ⊧ ψ for all pointed models a ∈ A. We can also define an accessibility
relation between pointed models.

Definition 6.1. For a pointed model a = (A, a), we denote by ◻a the set {(A, b) ∶
a RA b}, i.e., the set of all pointed models that are successors of the pointed model
a along the relation RA.

The game described below is essentially the formula-size game from Adler and
Immerman [2] but reformulated slightly to fit our present purposes. The general idea
is that we have two competing players, Hercules and the Hydra. Given a formula ϕ
and a class of pointed models M, Hercules is trying to show that there is a “small”
formula ψ in the language L◇ that is equivalent to ϕ on M, whereas the Hydra is
trying to show that any such ψ is “big”. Of course, what “small” and “big” mean
depends on the context at hand. The players move by adding and labelling nodes on
a game-tree, T . Although our use of trees is fairly standard, they play a prominent
role throughout the text, so let us give some basic definitions before setting up the
game.

Definition 6.2. For our purposes, a tree is a pair (T,≺), where T is any set and
≺ a strict partial order such that, if η ∈ T , then {ζ ∈ T ∶ ζ ≺ η} is finite and linearly
ordered, and T has a least element called its root. We will sometimes notationally
identify (T,≺) with T , and write ≼ for the reflexive closure of ≺.

Maximal elements of T are leaves. If ζ, η ∈ T , we say that η is a daughter of ζ if
ζ ≺ η and there is no ξ such that ζ ≺ ξ ≺ η. A path (of length m) on T is a sequence
η⃗ = (ηi)i≤m such that ηi+1 is a daughter of ηi whenever i <m.

Next, Definition 6.3 gives the precise moves that Hercules and the Hydra may
play in the game.

Definition 6.3. Let M be a class of pointed models and ϕ be a formula. The (ϕ,
M) model equivalence game ((ϕ,M)-meg) is played by two players, Hercules and
the Hydra, according to the following instructions.

setting up the playing field. The Hydra initiates the game by choosing two
classes of pointed models A,B ⊆ M such that A ⊧ ϕ and B ⊧ ¬ϕ.
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After that, the players continue the (ϕ,M)-meg on the pair (A,B) by construct-
ing a finite game-tree T , in such a way that each node η ∈ T is labelled with a pair
(L(η),R(η)) of classes of pointed models and one symbol that is either a literal or
one from the set {∨,∧,◻,◇,∃,∀}. We will usually write L(η) ○ R(η) instead of
(L(η),R(η)), where the symbol ‘○’ is meant to be suggestive of a node (not to be
confused with composition). The pointed models in L(η) are called the models on
the left, and those in R(η) are called the models on the right.

Any leaf η can be declared either a head or a stub. Once η has been declared a
stub, no further moves can be played on it. The construction of the game-tree begins
with a root labeled by A ○B that is declared a head.

Afterwards, the game continues as long as there is at least one head. In each
turn, Hercules goes first by choosing a head η, labeled by L ○ R = L(η) ○R(η). He
then plays one of the following moves.

literal-move. Hercules chooses a literal ι such that L ⊧ ι and R /⊧ ι. The node η
is declared a stub and labelled with the symbol ι.

∨-move. Hercules labels η with the symbol ∨ and chooses two sets L1,L2 ⊆ L such
that L = L1 ∪ L2. Two new heads, labeled by L1 ○ R and L2 ○ R, are added to the
tree as daughters of η.

∧-move. Hercules labels η with the symbol ∧ and chooses two sets R1,R2 ⊆ R such
that R = R1 ∪R2. Two new heads, labeled by L ○R1 and L ○R2, are added to the
tree as daughters of η.

◇-move. Hercules labels η with the symbol ◇ and, for each pointed model l ∈ L, he
chooses a pointed model from ◻l (if for some l ∈ L we have ◻l = ∅, Hercules cannot
play this move). All these new pointed models are collected in the set L1. For each
pointed model r ∈ R, the Hydra replies by picking a subset of ◻r.7 All the pointed
models chosen by the Hydra are collected in the class R1. A new head labeled by
L1 ○R1 is added as a daughter to η.

◻-move. Hercules labels η with the symbol ◻ and, for each pointed model r ∈ R, he
chooses a pointed model from ◻r (as before, if for some r ∈ R we have that ◻r = ∅,
then Hercules cannot play this move). All these new pointed models are collected in
the set R1. The Hydra replies by constructing a class of models L1 as follows. For

7In particular, if ◻r = ∅ for some r, the Hydra does not add anything to R1 for the pointed
model r.
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each l ∈ L, she picks a subset of ◻l and collects all these pointed models in the set
L1. A head labeled by L1 ○R1 is added as a daughter to η.

The (ϕ,M)-meg game concludes when there are no heads. Hercules has a win-
ning strategy in n moves in the (ϕ,M)-meg iff no matter how the Hydra plays, the
resulting game tree has n nodes and there are no heads; note that we do not count
the move performed by the Hydra when setting up the playing field.

We remark that ∧- and ◻-moves are symmetric to ∨- moves and ◇-moves, re-
spectively, except that the roles of the left- and the right-hand sides are reversed.
The relation between the (ϕ,M)-meg and formula-size is given by the following
result. The essential features of the proof of the next theorem can be found in any
one of [16, 17, 23].

Theorem 6.4. Hercules has a winning strategy in n moves in the (ϕ,M)-meg iff
there is a L◇-formula ψ with ∣ψ∣ ≤ n that is equivalent to ϕ on M.

Intuitively, a winning strategy for Hercules in the (ϕ,M)-meg is given by the
syntax tree Tψ of any L◇-formula ψ that is equivalent to ϕ on M (note that ϕ
is not necessarily a modal formula: for example, it can be a first- or second-order
formula, or a formula from a different modal language). Since Hercules is trying to
prove that there exists a small formula, i.e., the number of nodes in its syntax tree
is small, while the Hydra is trying to show that any such formula is “big”, if both
Hercules and the Hydra play optimally and Hercules has a winning strategy, then
the resulting game tree T is the syntax tree Tψ of a minimal modal formula ψ that
is equivalent to ϕ on C. In particular, if L ○R is the label of the root, we have that
ψ must be true in every element of L and false on every element of R, which would
be impossible if there were two bisimilar pointed models l ∈ L and r ∈ R. More
generally, the subformula θ of ψ corresponding to any node η is true on all pointed
models of L(η) and false on all pointed models of R(η). It follows that Hercules
loses if any node has bisimilar models on the left and right, provided the Hydra
plays well.

As for what it means to ‘play well’, note that the Hydra has no incentive to pick
less pointed models in her turns, so it suffices to assume that she plays greedily:

Definition 6.5. We say that the Hydra plays greedily if:

(a) whenever Hercules makes a ◇-move on a head η, the Hydra replies by choosing
all of ◻b for each b ∈R(η), and

(b) whenever Hercules makes a ◻-move on a head η, the Hydra replies by choosing
all of ◻a for each a ∈ L(η).
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If the Hydra plays greedily, Hercules must avoid having bisimilar models on each
side:

Lemma 6.6. If the Hydra plays greedily, no closed game tree contains a node η such
that there are l ∈ L(η) and r ∈R(η) that are locally bisimilar.

Proof. We prove by induction on the number of rounds in the game that, once a
node η0 such that there are bisimilar l ∈ L(η0) and r ∈ R(η0) is introduced, there
will always be a head η with bisimilar pointed models on each side. The base case,
where η0 is first introduced, is trivial, as new nodes are always declared to be heads.

For the inductive step, assume that there are a head η, l = (L, l) ∈ L(η), r =
(R, r) ∈R(η), and a bisimulation χ ⊆ ∣L∣ × ∣R∣ with l χ r. We may also assume that
Hercules plays on η, since otherwise η remains on the tree as a head.

Hercules cannot play a literal move on η since l and r agree on all atoms. If
Hercules plays an ∨-move, he chooses L1,L2 so that L1 ∪L2 = L(η) and creates two
new nodes η1 and η2 labeled by L1 ○R(η) and L2 ○R(η), respectively. If l ∈ L1,
then we observe that (l,r) is a pair of bisimilar pointed models that still appears in
L1 ○R(η). If not, then l ∈ L2, and the pair appears on L2 ○R(η). The case for an
∧-move is symmetric.

If Hercules plays a ◇-move, then for the pointed model (L, l′) ∈ ◻l that Hercules
chooses, by forward confluence and the assumption that the Hydra plays greedily,
the Hydra will choose at least one pointed model (R, r′) ∈ ◻r such that l′ χ r′.
Similarly, if Hercules plays a ◻-move, then for the pointed model (R, r′) ∈ ◻r that
Hercules chooses, using backwards confluence, the Hydra replies by choosing at least
one (L, l′) ∈ ◻l such that l′ χ r′. It follows that, no matter how Hercules plays, the
following state in the game will also contain two bisimilar pointed models, and hence
the game-tree will never be closed.

Example 6.7. A closed game tree for a model equivalence game is shown in Figure
2. Pointed models occurring along the nodes of the tree are pairs consisting of the
relevant model A1, A2 or B and the nodes marked by ▷. The relations between
the points in the respective Kripke frame are denoted by the arrows, i.e., if F ∈
{A1,A2,B}, then, for w, v ∈ ∣F∣, we have w RF v if and only if there is an arrow
coming out of w and pointing to v. We have only one proposition p which is true
only on the black points. Note that, if we disregard the Kripke models, the game
tree is actually the syntax tree of the formula ◻p ∨ ◇◇p. It is easily seen that, for
any node η in the tree, the sub-formula of ◻p ∨◇◇p starting at η is true in all the
pointed models on the left of η and false in all the pointed models on the right. It is
worth pointing out that Hercules could have also won if he had played according to
the formula ◻p ∨◇(p ∧◇p).
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Figure 2: A closed game tree.

7 Exponential succinctness of closure over derivative

Now we may use the model equivalence games we have presented to show that the
closure operation is exponentially more succinct than the set-derivative operator.
Our proof will be based on the following infinite sequence of formulas.

Definition 7.1. For every n ≥ 1, let the formulas ϕn be defined recursively by

(i) ϕ1 = |p1, and (ii) ϕn+1 = |(pn+1 ∧ ϕn).

Then, define ψn = t◇|(ϕn).

Recall that t◇
|

was defined in Section 3.1, and that φn is equivalent to ψn for
every n. Before we proceed, let us give some bounds on the size of the formulas we
have defined, which can be proven by an easy induction.

Lemma 7.2. For all n ∈ N, ∣ϕn∣ ≤ 3n and ∣ψn∣ ≥ 2n.
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Thus there is an exponential blow-up when passing from ϕn to ψn. We are
going to show that on any class of models that contains the class of finite GL or TC
models, we cannot find an essentially shorter formula than ψn in the modal language
L◇ that is equivalent to ϕn. This result will be a consequence of the following.

Theorem 7.3. Let C be either:

(a) the class of all finite GL frames, or

(b) the class of all finite TC frames.

Then, for every n ≥ 1, Hercules has no winning strategy of less than 2n moves in the
(ϕn,C)-meg.

This theorem will be proven later in this section. Once we do, we will immediately
obtain a series of succinctness results:

Proposition 7.4. Let C be a class of convergence spaces containing either

1. all finite GL frames,

2. all finite TC frames,

3. all ordinals Λ < ωω, or

4. any crowded metric space X .

Then, for all n ≥ 1, whenever ψ ∈ L◇ is equivalent to ϕn over C, it follows that
∣ψ∣ ≥ 2

∣ϕ∣
3 .

Proof. In the first two cases, the claim follows immediately from Theorems 7.3 and
6.4.

Now, suppose that ∣ψ∣ ≤ 2
∣ϕn ∣

3 . Then, by the first claim, there is a finite, pointed
GL model (K,w) such that (K,w) /⊧ ψ↔ ϕn. By Corollary 5.13, there are a model
M based on some Λ < ωω and a surjective map f ∶Λ→ ∣K∣ such that JθK

M
= f−1[JθK

K
]

for all Θ. In particular, for ξ ∈ f−1(w) we have that (M, ξ) /⊧ ψ ↔ ϕn, and thus ψ
is not equivalent to ϕn on ωω.

If C contains a crowded metric space X , we reason analogously, but instead
choose K to be a TC-model and use Corollary 5.5 to produce the required function
f .
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Proposition 7.4 will be progressively improved throughout the text until culmi-
nating in Theorem 8.6. In order to prove Theorem 7.3 when C is the class of finite
GL-models, we are going to define, for every n ≥ 1, a pair of sets of pointed GL-
models An, Bn such that An ⊧ ϕn, whereas Bn ⊧ ¬ϕn. The Hydra is going to pick
An and Bn when setting up the playing field for the (ϕn,GL)-meg. After that, we
show that Hercules has no winning strategy of less than 2n moves.

7.1 The sets of models An and Bn

Each model in An ∪Bn is based on a finite, transitive, irreflexive tree (i.e., a finite,
tree-like GL model), as illustrated in Figures 3 and 4. The ‘critical’ part of each
model lies in its right-most branch as shown in the figures. To formalize this, let us
begin with a few basic definitions.

Definition 7.5. A model A is rooted if there is a unique w0 ∈ ∣A∣ with ∣A∣ = {w0}∪
RA(w0), and tree-like if (∣A∣,RA) is a tree. A model with successors is a model A
equipped with a partial function SA∶ ∣A∣ → ∣A∣ such that SA(a) is always a daughter
of a.

If A is a rooted model with successors, the critical branch of A is the maximal
path w⃗ = (wi)i≤m such that w0 is the root of A and wi+1 = SA(wi) for all i < m; we
say that m is the critical height of A.

We denote the generated submodel of SA(w0) by S[A]. If w ∈ ∣A∣ and SA(w) is
defined, we define S[(A,w)] = (A, SA(w)); note that in this case, we do not restrict
the domain.

Observe that the notation S[⋅] has a different meaning depending on whether
the argument is a model or a pointed model; these conventions will be helpful in the
rest of the text. If A is a non-pointed model, then S[A] is a smaller, non-pointed
model; however, if a is a pointed model, then S[a] is identical to a except for the
evaluation point. The partial function SA will not be used in the semantics, but
it will help us to describe Hercules’ strategy. Let us begin by defining recursively
the two sets An and Bn, each containing 2n pointed models with successors. The
formal definition of An and Bn is as follows.

Definition 7.6. For n ≥ 0, the GL-models in the sets An+1 = {An+1
i ∶ i ≤ 2n} and

Bn+1 = {Bn+1
i ∶ i ≤ 2n+1} are defined recursively according to the following cases.

When defined, we will denote the roots of Amj and Bmj by amj and bmj , respectively,
and the pointed models (Amj , amj ), (Bmj , bmj ) by amj and bmj .
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1
▷

a1
1

▷

a1
2

1

▷

b1
1

▷

b1
2

Figure 3: The pointed models in the sets A1 and B1. The numbers appearing next
to each point w are the indices of the propositional variables true in w. Intuitively,
B1

2 is obtained by “erasing” the right branch of A1
2.

Case i ≤ 2n. If n = 0, then A1
1 is a single point a1

1 with V
A

1
1
(a1

1) = {p1}, and B1
1 is a

single point b11 with V
B

1
1
(b11) = ∅.

If n > 0, assume inductively that An,Bn have been defined. We define An+1
i to

be a copy of Ani , except that the new propositional symbol pn+1 is true in the root.
Similarly, Bn+1

i is a copy of Bni , except that pn+1 is true in the root.

Case i > 2n. Let j = i − 2n. Set

X = (
2n

∐
k=2

S[An+1
k ]) ∐ Bn+1

j ,

and then construct Bn+1
2n+j by adding a (fresh) irreflexive root bn+1

2n+j to X which sees
all elements of ∣X ∣ and satisfies no atoms. We set

S
B
n+1
2n+j

= S
B
n+1
j

∪ {(bn+1
2n+j , b

n+1
j )}.

The models An+1
2n+j are constructed similarly, except that we take

Y = (
2n

∐
k=2

S[An+1
k ]) ∐ Bn+1

j ∐An+1
j ,

and add an irreflexive root which sees all elements of Y and satisfies no atoms.
Finally, we set

S
A
n+1
2n+j

= S
A
n+1
j

∪ {(an+1
2n+j , a

n+1
j )}.

Example 7.7. Figure 3 shows A1 and B1. We are using the conventions established
in Example 6.7 that each pointed model consists of the relevant model and the point
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pn+1

An1
▷

an+1
1

. . .
pn+1

An2n
▷

an+1
2n

▷

an+1
2n+1

An2
pn+1

Bn+1
1

pn+1

S[An+1
2n ]

. . .
S[An+1

2 ]

. . . ▷

bn+1
1

an+1
2n+1

An2n

pn+1

Bn+1
2n

pn+1

S[An+1
2n ]

. . .
S[An+1

2 ]

pn+1

Bn1
▷ . . .

bn+1
2n

pn+1

Bn2n
▷ ▷

bn+1
2n+1

Bn+1
1

pn+1

S[An+1
2n ]

. . .
S[An+1

2 ]

. . . ▷

bn+1
2n+1

Bn2n

pn+1

S[An+1
2n ]

. . .
S[An+1

2 ]

Figure 4: The pointed models in the sets An+1 and Bn+1.

designated with ▷. The indices of the propositional letters that are true on a point
are shown next to it. In any frame F displayed and any w ∈ ∣F∣, SF(w) is the right-
most daughter of w (when it exists). Note that A1

2 and B1
2 are defined according

to the inductive clause, where in the latter X is just B1
1 (as the rest of the disjoint

union has empty range) and Y is B1
1 ∐A1

1.
Next, A2 and B2 are shown in Figure 5, and are obtained as follows. A2

1,A2
2

are copies of A1
1,A1

2, but with p2 made true at the root, and B2
1,B2

2 are defined
similarly from B1

1,B1
2. In this case, we just have that ∐21

k=2 S[A2
k] = S[A2

1], so that
for example B2

3 is obtained by taking X = S[A2
1] ∐ B2

3 and A2
3 is obtained by taking

Y = S[A2
1] ∐B2

3 ∐A2
3. Note that we do not take k = 1 in the disjoint union, as S[A1

1]
is not defined.

Finally, let us show how to obtain the models in A3 and B3 with the help of the
models in A2 and B2 (see Figure 6). Note that the relations denoted by the arrows
are actually transitive but the remaining arrows are not shown in order to avoid
cluttering. As before, the first four pointed models in A3 and B3 are obtained from
the four models in A2 and B2, respectively, by simply making the new proposition
p3 true in their roots. To construct the next four models in A3 and B3, observe
that ∐22

k=2 S[A3
k] = S[A3

2] ∐S[A3
3] ∐S[A3

4]. Then, B3
4+j is defined by adding a root to

X = S[A3
2] ∐ S[A3

3] ∐ S[A3
4] ∐ B3

j , and A3
4+j is obtained by adding A3

j to B3
j .
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21
▷

a2
1

2
▷

a2
2

1

▷

a2
3

2121

▷

a2
4

2

1

21

2
▷

b2
1

2
▷

b2
2

▷

b2
3

21

▷

b2
4

21

Figure 5: The pointed models in the sets A2 and B2.

Finally, we remark that S[A3
1] ≅ A1

1, S[A3
2] ≅ A2

1 and S[A3
3] ≅ A2

2.

In fact, the latter observation is only a special case of a general pattern.

Lemma 7.8. Let i = 2k + j, where j < 2k and n ≥ k be arbitrary. Then, S[An+1
i ] is

isomorphic to Ak+1
j , and S[Bn+1

i ] is isomorphic to Bk+1
j .

Proof. By induction on n. In the base case, n = k, and Ak+1
i is defined by the clause

for i > 2k, from which it is obvious that S[Ak+1
i ] ≅ Ak+1

j . Similarly, S[Bk+1
i ] ≅ Bk+1

j .
If n > k, then An+1

i is defined by the clause for i ≤ 2k, meaning that it is a copy
of Ani with an atom added to the root. It follows that

S[An+1
i ] ≅ S[Ani ]

ih≅ S[Ak+1
i ],

as needed. The claim for Bn+1
i is analogous.

In order for the Hydra to be allowed to set up the playing field with An ○Bn, we
need our formulas ϕn to be true on the left and false on the right, which is indeed
the case. Intuitively, ϕn is made true by the rightmost branches of the models in
An, which is missing in Bn. Note that these branches are pairwise different: a fact
that is crucial for our subsequent arguments.

Lemma 7.9. For all n ≥ 0, An+1 ⊧ ϕn+1, whereas Bn+1 ⊧ ¬ϕn+1.

Proof. By induction on n. If n = 0, then ϕ1 = |p1, which is true on all pointed
models of A1 and false on all models of B1, as can be seen by inspection on Figure
3.

If n > 0, recall that ϕn+1 = |(pn+1 ∧|ϕn). Fix i ≤ 2n+1. Let a = (A, a) = an+1
i ∈

An and b = (B, b) = bn+1
i ∈ Bn+1. We consider two cases.
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Case i ≤ 2n. In this case, a = an+1
i ⊧ pn+1 by construction. By the induction

hypothesis, ani ⊧ ϕn. Since a agrees everywhere with ani on all atoms different from
pn+1, it follows that a ⊧ ϕn as well, and hence a ⊧ pn+1 ∧|ϕn, which readily implies
that a ⊧ |(pn+1 ∧|ϕn).

As for b = bn+1
i , by the induction hypothesis we have that bni /⊧ ϕn, which im-

plies that b /⊧ ϕn, since the two agree on all atoms appearing in ϕn. Now, consider
arbitrary v ∈ ∣B∣ (so that b RB v). If we had that (B, v) ⊧ ϕn, by the transitivity of
RB, we would have that b ⊧ ϕn, which is false. Hence, ϕn is false on every point of
∣B∣, from which it follows that |ϕn is false on every point of ∣B∣ as well. It follows
that b /⊧ |(pn+1 ∧|ϕn).

Case i > 2n. Write i = 2n + j. Since we already have that anj ⊧ ϕn+1 by the previous
case, and anj is locally bisimilar to (A, SA[a]), we see that a ⊧ |ϕn+1, which implies
that a ⊧ ϕn+1.

Finally, for b we see by construction that the only point of ∣B∣ that satisfies pn+1
is SB(b). However, by the previous case, (B, SB(b)) /⊧ ϕn+1, from which it follows
that (B, SB(b)) /⊧ |ϕn, and hence b /⊧ ϕn+1.

7.2 The lower bound on the number of moves in (ϕn,GL)-meg

The pointed models in An ○ Bn are constructed so that the critical branch of Ani
is always very similar to the critical branch of Bni , differing only at their top point
(see, for example, Figure 6). Let us make this precise.

Definition 7.10. Suppose that M, N are two finite models with successors and
with roots w and v, respectively. We say that r ∈ N distinguishes M and N if
(M, Sr

M
(w)), (N , Sr

N
(v)) differ on the truth of a propositional variable, but when-

ever i < r, then (M, Si
M

(w)), (N , Si
N
(v)) agree on the truth of all propositional

variables. We call r the distinguishing value ofM and N .

Note that the distinguishing value of two modelsM,N need not be defined, but
when it is, it is unique. Moreover, the distinguishing values of the models we have
constructed usually do exist.

Lemma 7.11. Fix n ≥ 1 and 1 ≤ i < j ≤ 2n. Suppose that Ani and Anj have the same
critical height m. Then, Ani and Anj are distinguished by some r <m, satisfying the
following properties:

(a) If i ≤ 2n−1 and 2n−1 < j, then Ani and Anj have distinguishing value 0.
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32
▷

b3
1

321
▷

a3
1

32
▷

a3
2

1
b3

2

▷
3

a3
3

2121
b3

3

3
▷

a3
4

2

1

21

b3
4

▷

a3
5

2

1

211
32 321

b3
5

▷

a3
6

2

1

211
32 32

1b3
6

▷

a3
7

2

1

211
3

21

3

2 211b3
7

▷

a3
8

2

1

211
3

2
1

3

2 2

1

1b3
8

Figure 6: The pointed models in the sets A3 and B3. Note that bij is a submodel
of aij obtained by deleting the rightmost branch, indicated in the figure within the
gray boxes.
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(b) If Ani and Anj have distinguishing value r, then An+1
i , An+1

j have distinguishing
value r and An+1

2n+i, An+1
2n+j have distinguishing value r + 1.

Proof. Assume that An+1
i and An+1

j are so that their critical heights have the same
value, m. To prove (a), it suffices to observe that in this case, the root of An+1

i

satisfies pn+1, but not the root of An+1
j . For (b), if Ani and Anj are distinguished by

r, it is easy to see that An+1
i and An+1

j are still distinguished by r, since the models
agree on all variables pk with k ≤ n, and pn+1 is true exactly on both roots of the
new models. Meanwhile, S[An+1

2n+i] ≅ An+1
i and S[An+1

2n+j] ≅ An+1
j , hence An+1

i and
An+1
j are distinguished by r+1 since we have added a new root to each model, both

satisfying no atoms.
From this, the existence of a distinguishing value r <m follows by a straightfor-

ward induction on n. The base case, n = 1, follows vacuously since no two models
in A1 have the same critical height. For the inductive case, we assume the claim for
n and prove it for n + 1. If i, j ≤ 2n, then by the induction hypothesis we have that
Ani and Anj are distinguished by some r < m, and by (b), An+1

i and An+1
j are still

distinguished by r. If i ≤ 2n and 2n < j, by (a), An+1
i and An+1

j are distinguished
by r = 0. Finally, if 2n < i, j, by the induction hypothesis, Ani−2n and Anj−2n are
distinguished by some r <m−1, so that by (b), An+1

i and An+1
j are distinguished by

r + 1 <m.

Lemma 7.12. Fix n ≥ 1 and i ∈ [1,2n]. Then, Ani and Bni have the same critical
height m, and are distinguished by m.

Proof. Proceed by induction on n. The base case follows from inspecting A1,B1,
depicted in Figure 3. For the inductive step, we assume the claim for n and prove
it for n + 1. If i ≤ 2n, since An+1

i and Bn+1
i are based on the same frames as An

i

and Bn
i , respectively, it follows from the induction hypothesis that they share the

same critical height, m. Then, for k < m, Sk[ani ] and Sk[bni ] agree on all atoms
by the induction hypothesis, and hence Sk[an+1

i ] and Sk[bn+1
i ] agree on all atoms

too, including pn+1, which is true precisely on the roots of both models. Moreover,
Sm[ani ] and Sm[bni ] disagree on some atom (in fact, on p1), hence so too do Sm[an+1

i ]
and Sm[bn+1

i ].
If 2n < i, then S[an+1

i ] ≅ an+1
i−2n and S[bn+1

i ] ≅ bni−2n , which by the previous case
share the same critical height, m. It follows that an+1

i and bn+1
i also share the same

critical height, m+1. Moreover, an+1
i and bn+1

i agree on all atoms (they are all false),
and since Sr+1[an+1

i ] ≅ Sr[ani ] and Sr+1[bn+1
i ] ≅ Sr[bni ] for r ≤ m, it follows once
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again by the previous case that they share the same atoms for r < m and disagree
on some atom for r =m.

By twins of height k we mean a pair of the form (Sk[ani ], Sk[bni ]), where i ≤ 2n
and both expressions are defined. If L is a set of pointed models from An and
R from Bn, we say that there are twins of height k in L ○ R if there are twins
(Sk[ani ], Sk[bni ]) such that Sk[ani ] ∈ L and Sk[bni ] ∈ R.

For example, the pointed models (an+1
2n+1,b

n+1
2n+1) shown in Figure 4 are twins

of height zero, and (S[an+1
2n+1], S[bn+1

2n+1]) are twins of height one. Note that the
two pairs share the same models, and vary only on the evaluation point: an+1

2n+1 and
bn+1

2n+1 are evaluated at their respective roots, S[an+1
2n+1] and S[bn+1

2n+1] at the rightmost
daughters of these roots.

The following lemma tells us that, while models Ani and Bnj can never be bisimilar
(since one satisfies ϕn but the other does not), they can come quite close to being
so. Recall that if a,b are pointed models, we write a - b to indicate that they are
locally bisimilar.

Lemma 7.13. Fix n ≥ 1 and r ≥ 0.

(i) If (a,b) are twins of height r in An ○Bn and a′ ∈ ◻a is such that a′ /= S[a],
then there is b′ ∈ ◻b such that a′ - b′

(ii) If (a,b) are twins of height r in An ○ Bn and b′ ∈ ◻b, then there is a′ ∈ ◻a
such that a′ - b′.

(iii) If 1 ≤ i < j ≤ 2n, Ani and Bnj have the same critical height m > r, and they are
distinguished by r, then there is b′ ∈ ◻Sr[bnj ] such that Sr+1[ani ] - b′.

Proof. The three claims are proven by induction on n.

(i). The base case (for n = 1) follows by observing Figure 3. Indeed, the only twins
are (a1

1,b
1
1), (a1

2,b
1
2) and (S[a1

2], S[b1
2]). Of these, only for (a1

2,b
1
2) can we choose

a′ as in the antecedent, so in the other cases the claim is vacuously true. But in this
case, we have that a′ must be A1

2 evaluated at the top-left point, which is clearly
locally bisimilar to B1

2 evaluated at its top point.
Otherwise, assume the claim for n, and let us establish it for n + 1. Write

a = (A, a) and b = (B, b), and assume that i ∈ [1,2n+1] is so that

(a,b) = (Sr[an+1
i ], Sr[bn+1

i ]).

Let a′ = (A, a′) ∈ ◻a be such that a′ /= S[a], and consider two cases, according to i.
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Case i ≤ 2n. Observe that a′ cannot be the root of A, since RA is irreflexive.
It follows that (A, a′) - (Ani , a′) since, by definition, Ani and A = An+1

i disagree
only at the root. By the induction hypothesis, there is b′ ∈ ∣Bni ∣ such that b RB b′
and (Ani , a′) - (Bni , b′), but once again b′ cannot be the root so we must have that
(Bni , b′) - (B, b′) ∈ ◻b, as claimed.

Case i > 2n. We consider two sub-cases. First, assume that a is not the root
of A, so that a ∈ ∣S[A]∣. In this case, by Lemma 7.8, (A, a) - (Ani−2n , a) and
(B, b) - (Bni−2n , b). We can then apply the case for i ≤ 2n to find b′ ∈ ∣S[B]∣ such
that b RB b′ and (S[B], b′) - (S[A], a′). This gives us that (B, b′) - (A, a′) as well.

Otherwise, assume that a is the root of A, so that b is also the root of B. If
a′ ∈ ∣∐2n

j=2 S[An+1
j ] ∐ Bn+1

j ∣, we can take b′ = a′, and clearly (A, a′) is locally bisimilar
to (B, b′). Otherwise, a′ ∈ ∣S[A]∣, and by the assumption a′ /= SA(a).

If a′ = SA(SA(a)), we let b′ be the copy of SA(SA(a)) in ∐2n
j=2 S[An+1

j ]. If not,
since SA(a) is the root of S[A], we have that SA(a) RA a′. Since S[a] - an+1

i−2n ,
we can apply the case for i ≤ 2n to find b′ ∈ ∣S[B]∣ such that SB(b) RB b′ and
(B, b′) - (A, a′). By transitivity we also have that b RB b′, as needed.

(ii). The base case can readily be verified for A1 ○B1 on Figure 3. The inductive
step follows the same structure as that for claim (i) by swapping the roles of a and
b, except that in the case where i > 2n and b is the root of B, the proof is somewhat
simplified as we always have b′ ∈ ∣∐2n

j=2 S[An+1
j ] ∐ Bn+1

j ∣, and thus we can always take
a′ = b′.

(iii). It is obvious that the proposition is trivially true for n = 1 because the respec-
tive critical heights of A1

1 and B1
2 are different. The inductive step also follows a

similar structure as before, but in order to apply the induction hypothesis we must
also pay some attention to the distinguishing values.

Case i, j ≤ 2n. By Lemma 7.11(b), if An+1
i and Bn+1

j are distinguished by r,
then so are Ani and Bnj , which by the induction hypothesis tells us that there is
(Bnj , b′) ∈ ◻Sr[bnj ] that is locally bisimilar to Sr+1[ani ]. Reasoning as in the case for
i ≤ 2n in claim (i), this yields Sr+1[an+1

i ] - (Bn+1
j , b′) ∈ ◻Sr[bn+1

j ].

Case i, j > 2n. We once again use Lemma 7.11(b) (twice) to see that if An+1
i and

Bn+1
j are distinguished by r, then An+1

i−2n and Bn+1
j−2n are distinguished by r−1. By the

case for i, j ≤ 2n, this tells us that there is (Bn+1
j−2n , b

′) ∈ ◻Sr−1[bn+1
j−2n] that is locally

bisimilar to Sr[an+1
i−2n]. Setting b′ = (Bn+1

j , b′), we reason as in the proof of the case

859



Fernández-Duque and Iliev

i > 2n in claim (i) to obtain Sr+1[an+1
i ] - b′ and b′ ∈ ◻Sr[bn+1

j ].

Case i ≤ 2n < j. By Lemma 7.11(a), An+1
i and Bn+1

j are distinguished by r = 0. But,
∐2n
k=2 S[An+1

k ] already contains a copy of S[an+1
i ], and we use this copy as b′.

Example 7.14. Lemma 7.13(iii) is best understood by looking at the models in
Figures 5 and 6. A simple inspection of Figure 5 is enough to see that a2

2 and b2
3

differ on the truth of p2 and that S[a2
2] is locally bisimilar to B2

3 at its top-left point.
Meanwhile, in Figure 6, a3

2 and b3
3 differ on the value of p2, i.e., the smallest number

for which the critical branches of A3
2 and B3

3 differ on the truth of a propositional
variable is zero. Obviously, S[a3

2] satisfies only p1 and the same applies to the left
successor point of b3

3. In a similar way, we see that the smallest number for which
the critical branches of A3

6 and B3
7 differ on the truth of a propositional variable is

one because the rightmost daughters s and t of the roots of A3
6 and B3

7, respectively,
differ on the truth of p2. Again, we have that the rightmost daughter of s satisfies
only p1 and the same applies to the left successor of the only node in B3

7 that satisfies
p3.

Lemma 7.13 shows us that the moves that Hercules can make in order to win
are, in fact, rather restricted. Below, for fixed n ≥ 1, say that the Hydra plays well
if she labels the root by An ○Bn and plays greedily.

Lemma 7.15. Assume that the Hydra plays well. For any node η (not necessarily
a leaf) in a closed game tree T for the (ϕn,GL)-meg:

(a) if there are twins (a,b) in L(η) ○R(η), then Hercules did not play a ◻-move
in η;

(b) if there are twins (a,b) in L(η) ○R(η) and Hercules played a ◇-move, then
he chose S[a] ∈ ◻a, and

(c) if there there are two pairs of twins (a,b) and (a′,b′) both of height r in
L(η) ○ R(η) and r distinguishes a and a′, then Hercules did not play a ◇-
move at η.

Proof. Assume that Hercules played either a ◇-move or a ◻-move, and let η′ be the
new head that was created.

(a). If L(η) ○R(η) contains twins (a,b) and Hercules plays a ◇-move in η, he must
choose a′ ∈ ◻a to place in L(η′). If a′ /= S[a], then by Lemma 7.13(i), there is
b′ ∈ ◻b such that a′ - b′. Since the Hydra plays greedily, we have that b′ ∈ R(η′),
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which by Lemma 6.6 implies that Hercules cannot win.

(b). This is simliar to the previous item. If Hercules plays a ◻-move in η, then he
must choose b′ ∈ ◻b to place in L(η′). But then, by Lemma 7.13(ii), the Hydra will
place a bisimilar a′ ∈R(η′), and Hercules cannot win.

(c). Assume that (Sr[ani ], Sr[bni ]) and (Sr[anj ], Sr[bnj ]) are two pairs of twins in
L(η) ○R(η) with i < j, and such that r distinguishes Ani and Anj . If Hercules plays
a ◻-move, by claim (a), he must place Sr+1[ani ] ∈ L(η′). By Lemma 7.13(iii), there
will be v ∈ ◻Sr[bnj ] such that Sr+1[ani ] - v. As before, this causes there to be
bisimilar pointed models in L(η′) and R(η′), which implies that Hercules cannot
win.

Since the respective rightmost branches in the pointed models anj and bnj differ
on a literal only in their leaves, we see that for every pair of twins (a,b), the Hydra’s
strategy forces Hercules to make m many ◇-moves, where m is the critical height
of a and b. Let us make this precise.

Definition 7.16. Fix n ≥ 1, i ∈ [1,2n] and a closed game tree (T,≼). Then, define
Λ(i) to be the set of leaves η of T such that for every η′ ≼ η, there is some r ≥ 0 such
that (Sr[ani ], Sr[bni ]) appear in L(η′) ○R(η′).

The sets Λ(i) are non-empty and disjoint when Hydra plays well, from which
our exponential lower bound will follow immediately. To prove this, we will need
the following lemma.

Lemma 7.17. Fix n ≥ 1. Let T be a closed game-tree for the (ϕn,GL)-meg where
the Hydra plays well. Let i ∈ [1,2n], and η ∈ Λ(i).

(a) For all ζ ≼ η and all r ≥ 0, if Hercules has played r ◇-moves before ζ then
(Sr[ani ], Sr[bni ]) appear in L(ζ) ○R(ζ).

(b) If Hercules played m ◇-moves before η, then m is the critical height of Ani and
Bni .

Proof. Fix T as in the statement of the lemma, and let η0 be its root.

(a). We proceed by induction on ζ along ≺. For the induction to go through, we
need to prove a slightly stronger claim: if Hercules has played r ◇-moves before ζ,
then (Sr[ani ], Sr[bni ]) appear in L(ζ) ○R(ζ), and

(c) for all t /= r, St[ani ] /∈ L(ζ).
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For the base case this is clear, as only S0[ani ], S0[bni ] appear in An ○Bn = L(η0) ○
R(η0), and Hercules has played zero ◇-moves before η0.

For the inductive step, assume the claim for ζ, and suppose that ζ ′ ≼ η is a
daughter of ζ; we will prove claims (a) and (c) for ζ ′. Let r be the number of◇-moves
that Hercules has played before ζ. Since η ∈ Λ(i), we have that (Sk[ani ], Sk[bni ])
occur in L(ζ ′) ○R(ζ ′) for some k.

Hercules obviously did not play a literal move on ζ, or it would be a leaf. If
Hercules played a ∨- or ∧-move, since these moves do not introduce new pointed
models, it follows that (Sk[ani ], Sk[bni ]) also occur in L(ζ)○R(ζ), and by uniqueness
that k = r, from which claim (a) follows for ζ ′. As for claim (c), if St[ani ] ∈ L(ζ ′),
then once again we have that St[ani ] ∈ L(ζ) and thus t = r.

If Hercules played a ◇-move, then (Sr[ani ], Sr[bni ]) occur in L(ζ) ○R(ζ) by the
induction hypothesis. By Lemma 7.15(i), Hercules chose Sr+1[ani ] ∈ ◻Sr[ani ]. By
Lemma 7.12, Ani has the same critical height as Bni , and thus Sr+1[bni ] is defined.
Since the Hydra plays greedily, she chose Sr+1[bni ] ∈ ◻Sr[bni ]. But, there are now
r+1 ◇-moves before ζ ′, so claim (a) follows. Moreover, if St[ani ] ∈ L(ζ ′), then there
must be a′ ∈ L(ζ) such that St[ani ] ∈ ◻a′. But, since Ani is a tree, this can only
occur when a′ = St′[ani ] for some t′ < t, and it follows that t′ = r by the induction
hypothesis, so that once again by Lemma 7.15(i), t = r + 1. Claim (c) follows.

Finally, we note that Hercules cannot play a ◻-move on ζ by Lemma 7.15(b).

(b). Let r be the number of ◇-moves that Hercules played before η. By Lemma
7.12, if m is the critical height of Ani , then it is also the critical height of Bni and
m distinguishes Ani and Bni . Since T is closed, η must be a stub, which means that
Hercules must have played a literal move on η. But this is only possible if Sr[ani ]
and Sr[bni ] disagree on a literal, which is only possible if r =m.

Lemma 7.18. Fix n ≥ 1. Let (T,≼) be a closed game-tree for the (ϕn,GL)-meg
where the Hydra plays well.

(a) For all i ∈ [1,2n], Λ(i) is non-empty.

(b) If 1 ≤ i < j ≤ 2n, then Λ(i) ∩Λ(j) = ∅.

Proof. Let a = ani and b = bni .

(a) We show by induction on the number of rounds in the game that there is always
a leaf η such that

(∗) for all ζ ≼ η there is r ≥ 0 such that (Sr[a], Sr[b]) appear in L(ζ) ○R(ζ).
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For the base case, we take η to be the root, in which case it is clear that (S0[a], S0[b])
appears in L(η)○R(η) = An○Bn. For the inductive step, assume that η is a leaf such
that (∗) holds. We may assume that Hercules plays on η, for otherwise η remains
on the game-tree as a leaf.

If Hercules plays a literal move, then η simply becomes a stub, but remains on
the game-tree. If Hercules plays a ∨- or ∧-move, then two heads η1 and η2 are added,
and as in the proof of Lemma 6.6, either (Sr[a], Sr[b]) occurs in L(η1) ○R(η1) and
we take η1 as the new head, or it occurs in L(η2) ○R(η2) and we take η2 instead.

If Hercules plays a ◇-move, then a new node η′ is added, and by Lemma
7.15(i), Hercules places Sr+1[a] in L(η′). Since the Hydra plays greedily and
Sr+1[b] exists by Lemma 7.12, we have that Sr+1[b] ∈ R(η′). Therefore, the twins
(Sr+1[a], Sr+1[b]) appear in L(η′) ○R(η′). Finally, Hercules cannot play a ◻-move
by Lemma 7.15(b).

(b) Now, let 1 ≤ i < j ≤ 2n. Towards a contradiction, assume that η ∈ Λ(i)∩Λ(j). Let
m be the number of ◇-moves that Hercules played before η. By Lemma 7.17(b), Ani
andAnj both have critical heightm. By Lemma 7.11, there is r <m that distinguishes
Ani and Anj . Let ζ ′ ≼ η be the first node such that Hercules has played r+1 ◇-moves
before ζ ′, and ζ be its predecessor. Then, by Lemma 7.17(a), (Sr[ani ], Sr[bni ]) and
(Sr[anj ], Sr[bnj ]) both appear on L(ζ) ○R(ζ), which by Lemma 7.15(c) implies that
Hercules cannot play a ◇-move at ζ. This means that he cannot have played r + 1
◇-moves before ζ ′, a contradiction.

We are finally ready to prove our lower bound on the number of moves in the
(ϕn,GL)-meg. In fact, we have proven a slightly stronger claim.

Proposition 7.19. For every n ≥ 1, Hercules has no winning strategy of less than
2n moves in the (ϕn,An ∪Bn)-meg.

Proof. Assume that Hydra plays well, and let T be a closed game tree. Then, by
Lemma 7.18, the sets of leaves {Λ(i) ∶ i ∈ [1,2n]} are non-empty and disjoint. It
follows that there are at least 2n leaves, and since closing each leaf requires one
literal move, Hercules must have played at least 2n moves.

Since An ∪ Bn ⊆ GL, Theorem 7.3(a) readily follows. In view of Theorem 6.4,
we also obtain the following stronger form of Proposition 7.4.1:

Proposition 7.20. For all n ≥ 1, whenever ψ ∈ L◇ is such that ϕn ≡ ψ on An∪Bn,
it follows that ∣ψ∣ ≥ 2n.
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7.3 L| is exponentially more succinct than L◇ on TC

We proceed to show that Hercules has no winning strategy of less than 2n moves in
(ϕn,TC)-meg. We begin by defining two sets of pointed models Ân and B̂n that
are a slight modification of the models in An and Bn, respectively.

Definition 7.21. Let K = (∣K∣,RK, VK) be any Kripke model. We define a new
model K̂ such that

(i) ∣K̂∣ = ∣K∣ ∪ {∞}, where ∞ /∈ ∣K∣,

(ii) R
K̂
= RK ∪ (∣K̂∣ × {∞}), and

(iii) V
K̂
(w) = VK(w) if w ∈ ∣K∣, V

K̂
(∞) = ∅.

If K is equipped with a successor partial function SK, we also define S
K̂
= SK. For a

class of models X, we denote {K̂ ∶ K ∈ X} by X̂.

In other words, we add a ‘point at infinity’ that is seen by both worlds. Note that
the successor function remains unchanged, i.e. ∞ is never a successor. In particular,
∞ can never belong to a critical branch.

This operation allows us to easily turn a model into a totally connected model:

Lemma 7.22. LetM,N be K4 models. Then:

(a) M̂ is a TC model;

(b) if w ∈ ∣M∣ and v ∈ ∣N ∣ are such that (M,w) - (N , v), then (M̂,w) - (N̂ , v),
and

(c) (M̂,∞) - (N̂ ,∞).

Proof. If w,w′ ∈ ∣M̂∣, then w,∞,w′ is a path connecting w to w′ (as x R
M̂

∞ holds
for all x ∈ ∣M̂∣). It follows that M̂ is connected, and indeed the same path witnesses
that M̂ is locally connected if we take w,w′ ∈ RM(u). The second claim follows from
observing that if χ ⊆ ∣M∣×∣N ∣ is a bisimulation then so is χ̂ = χ∪{(∞,∞)} ⊆ ∣M̂∣×∣N̂ ∣,
and the third by choosing an arbitrary such χ̂ (setting χ = ∅, so that χ̂ = {(∞,∞)},
will do).

The following analogue of Lemma 7.9 then holds; we omit the proof, which is
identical.

Lemma 7.23. For any n ≥ 0, Ân+1 ⊧ ϕn+1 and B̂n+1 ⊧ ¬ϕn+1.

864



Succinctness in Subsystems of the Spatial µ-Calculus
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▷
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1

▷

b2
2

Figure 7: The pointed models in Â1 and B̂1 are shown on the left and on the right
of the dotted line, respectively.

Intuitively, the proof that Hercules has no winning strategy of less than 2n moves
in the game that starts with Ân○B̂n revolves around the observation that the models
in Ân and B̂n are constructed in such a way that Hercules, when playing a ◇- or
◻-move at some position labeled by L ○ R, cannot pick ∞ in any model of L or
R, as this will lead to bisimilar pointed models on each side. Thus, given the
construction of the models in Ân and B̂n, Hercules and the Hydra are essentially
playing a (ϕn,GL)-meg on An ○Bn and the lower bound on the number of moves
in any winning (ϕn,GL)-meg for Hercules on An ○Bn established in the previous
sub-section applies to the present case too.

Let us formalise the above intuitive considerations. As before, we will say that
the Hydra plays well in the (ϕn,TC)-meg if she labels the root by Ân ○ B̂n and
plays greedily.

Lemma 7.24. Fix n ≥ 1, and assume that the Hydra plays well in the
(ϕn,TC)-meg. Then, for any position η in a closed game tree T such that L(η)
and R(η) are both non-empty,
(i) if Hercules played a ◇-move in η, he did not pick any pointed model of the

form (A,∞), and

(ii) if Hercules played a ◻-move in η, he did not pick any pointed model of the
form (B,∞).

Proof. The claims are symmetric, so we prove the first. If Hercules picked a frame
of the form (A,∞), since the Hydra plays greedily, she will also pick at least one
pointed model of the form (B,∞). By Lemma 7.22, (A,∞) - (B,∞), which in view
of Lemma 6.6 contradicts the assumption that T is closed.
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We will not give a full proof of Theorem 7.3.(b), as it proceeds by replacing
An ○Bn by Ân ○ B̂n throughout Section 7.2. Instead, we give a rough outline below.

Proposition 7.25. For every n ≥ 1, Hercules has no winning strategy of less than
2n moves in the (ϕn, Ân ∪ B̂n)-meg.

Proof sketch. The analogues of Lemmas 7.11 and Lemmas 7.12 for Ân ○ B̂n follow
directly from the original statements by observing that S

K̂
= SK, so that the critical

branch is identical. Similarly, an analogue of Lemma 7.13 follows easily from the
original if we use Lemma 7.22 to see that, whenever a′ - b′, we also have that
â′ - b̂

′. The analogue of Lemma 7.15 can then be proven as before, using Lemma
7.24 to rule out situations where Hercules chooses ∞.

The rest of the results leading up to Proposition 7.4 rely on these basic lemmas
and thus readily apply to the (ϕn,TC)-meg. In particular, Definition 7.16 makes no
assumption about the frames appearing in T , hence the sets Λ(i) for i ∈ [1,2n] are
readily available for the (ϕn,TC)-meg, and as before are disjoint and non-empty.
We conclude that Hercules has no winning strategy in less than 2n moves.

Theorem 7.3(b) readily follows, as does the following stronger version of Propo-
sition 7.4.2:

Proposition 7.26. For all n ≥ 1, whenever ψ ∈ L◇ is such that ϕn ≡ ψ on Ân∪ B̂n,
it follows that ∣ψ∣ ≥ 2n.

Remark 7.27. In fact, in Theorem 7.3(b), TC can readily be replaced by ĜL.
While the latter class is not necessarily of independent interest, it is a sub-class of
several others studied in the modal logic literature. In particular, any A ∈ ĜL has a
greatest element and is Noetherian; if x0 RA x1 RA x2 RA . . ., then there is n ∈ N
such that, for all m ≥ n, xm = xn. Thus, ĜL is a sub-class of the class of transitive,
serial, Noetherian frames with a greatest element.

Note that the property of having a greatest element is quite strong; it implies, for
example, that A is confluent, in the sense that if x RA y1 and x RA y2, then there
is z ∈ ∣A∣ such that y1 RA z and y1 RA z.

8 Succinctness in the extended language

Proposition 7.4 holds even if we replace L◇ by the extended language L◇∗

◇∀
. In this

section, we will first extend these results to L◇∀ and then to L◇∗

◇∀
.
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1
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1

Ĉ1

Figure 8: The models C1 and Ĉ1.

8.1 Succinctness with the universal modality

As it turns out, the universal modality is not of much help in expressing| succinctly.
This is perhaps not surprising, as | is essentially a local operator and ∀ is global.
The disjoint union operation from Section 4.3 will be useful in making this precise.

Definition 8.1. Let the model Cn be obtained by taking the disjoint union of all the
models used in An and Bn i.e.,

Cn = (
2n

∐
i=1
Ani ) ∐ (

2n

∐
i=1
Bni ).

The models Cn will allow us to make the universal modality effectively useless in
distinguishing between the pointed models we have constructed.

Proposition 8.2. For all n ≥ 1, whenever ψ ∈ L◇∀ is such that ϕn ≡ ψ either on
Cn or on Ĉn, it follows that ∣ψ∣ ≥ 2n.

Proof. Given a modelM, consider a translation tM
∀
∶ L◇∀ → L◇ that commutes with

all Booleans and◇,◻, and so that if θ is of one of the forms ∀ϕ or ∃ϕ, then tM
∀

(θ) = ⊺
if M ⊧ θ, tM

∀
(θ) = � otherwise. It is immediately clear that for w ∈ ∣M∣ and any

ψ ∈ L◇∀, (M,w) ⊧ ψ if and only if (M,w) ⊧ tM
∀

(ψ); moreover, it is obvious that
∣tM
∀

(ψ)∣ ≤ ∣ψ∣.
Let us consider a point w in one of the models Anj from Definition 7.6. Since

(Anj ,w) is locally bisimilar to (Cn,w), by Lemma 4.2 we have that for any L◇-
formula ψ, (Cn,w) ⊧ ψ if and only if (Anj ,w) ⊧ ψ.
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Thus, for any L◇∀-formula ψ that is equivalent to ϕn on Cn, we have that its
translation tCn

∀
(ψ) is also equivalent to ϕn on An∪Bn. Note, however, that according

to Proposition 7.20, the size of tCn
∀

(ψ) is at least 2n. This establishes the proposition
for Cn.

For Ĉn we proceed as above, but work instead with Proposition 7.26.

8.2 Succinctness with tangle and fixed points

Recall that the translation t�
◇
∗(ϕ) is defined simply by replacing every occurrence of

◇∗Φ by � and every occurrence of ◻∗Φ by ⊺. Since Proposition 7.4 applies to scat-
tered spaces, we can use our work in Section 5.2 to immediately obtain succinctness
results relative to the tangled derivative over such spaces.

For metric spaces, however, the behavior of the tangled derivative is less trivial.
Fortunately, in the TC models we have constructed, its behavior is still rather
simple.

Lemma 8.3. Let K be a GL model and Φ ⊆ L◇∗

◇∀
be finite. Then, for any w ∈ ∣K̂∣,

(a) (K̂,w) ⊧ ◇∗Φ if and only if (K̂,∞) ⊧ ⋀Φ, and

(b) (K̂,w) ⊧ ◻∗Φ if and only if (K̂,∞) ⊧ ⋁Φ.

Proof. Let K be any GL model. By the semantics of ◇∗, if w ∈ ∣K̂∣ and Φ ⊆ L◇∗

◇∀
is

finite, then (K̂,w) ⊧ ◇∗Φ if and only if there is an infinite sequence

w = w0 RK̂ w1 RK̂ w2 . . .

such that each formula of Φ holds on (K̂,wn) for infinitely many values of wn.
However, since K is a GL frame, we must have wn = ∞ for some value of n, which
implies that wm = ∞ for all m ≥ n. From this it readily follows that (K̂,∞) ⊧
⋀Φ. Conversely, if (K̂,∞) ⊧ ⋀Φ, then the sequence ∞,∞,∞, . . . witnesses that
(K̂,w) ⊧ ◇∗Φ. It follows that (M,w) ⊧ ◇∗Φ if and only if (M,∞) ⊧ ⋀Φ. By
similar reasoning, (M,w) ⊧ ◻∗Φ if and only if (M,∞) ⊧ ⋁Φ.

This allows us to define a simple translation from L◇∗

◇∀
to L◇∀ tailored for our

TC models.

Definition 8.4. Fix a GL model K. We define a translation tK
◇
∗ ∶ L◇

∗

◇∀
→ L◇∀ by

letting tK
◇
∗ commute with Booleans and all modalities except ◇∗,◻∗, in which case

we set
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tK
◇
∗(◇∗Φ) =

⎧⎪⎪⎨⎪⎪⎩

⊺ if (K̂,∞) ⊧ ⋀Φ,
� otherwise;

tK
◇
∗(◻∗Φ) =

⎧⎪⎪⎨⎪⎪⎩

⊺ if (K̂,∞) ⊧ ⋁Φ,
� otherwise.

Lemma 8.5. Let K be a GL model and ϕ ∈ L◇∗

◇∀
be finite. Then, tK

◇
∗(ϕ) ≡ ϕ over

K̂.

Proof. Immediate from Lemma 8.3 using a routine induction on ϕ.

We are now ready to prove the full version of our first main result:

Theorem 8.6. Let C be a class of convergence spaces that contains either

1. all finite GL frames,

2. all finite TC frames,

3. all ordinals Λ < ωω, or

4. any crowded metric space X .

Then there exist arbitrarily large ϕ ∈ L| such that, whenever ψ ∈ L◇∗

◇∀
is equivalent

to ϕ over C, it follows that ∣ψ∣ ≥ 2
∣ϕ∣
3 .

Proof. First assume that C contains all finite GL frames. Fix n ≥ 1, and assume
that ψ ∈ L◇∗

◇∀
is equivalent to ϕn over C. Then, by Corollary 5.10, t�

◇
∗(ψ) ∈ L◇∀ is

equivalent to ψ, and hence to ϕn, over C, and in particular, over Cn. By Proposition
8.2, it follows that ∣t�

◇
∗(ψ)∣ ≥ 2n, and hence ∣ψ∣ ≥ 2n as well. This establishes item 1

and, in view of Corollary 5.13, item 3.
If C contains the class of all finite TC frames, we proceed as above, but instead

use the translation tCn
◇
∗ , so that tCn

◇
∗(ψ) ∈ L◇∀ is equivalent to ψ ∈ L◇∗

◇∀
, and hence

to ϕn, over Ĉn. Finally, we use Corollary 5.5 to lift this result to C containing any
crowded metric space X .

Given the fact that L◇∗

◇
is equally expressive as Lµ

◇
, it is natural to ask which is

more succinct. Note that L◇∗

◇
cannot be exponentially more succinct than Lµ

◇
, as

the translation tµ
◇
∗ is polynomial. On the other hand, we do have that the µ-calculus

is more succinct than the tangled language:

Theorem 8.7. Let C contain either

1. all finite GL frames,

2. all finite TC frames,

3. all ordinals Λ < ωω, or

4. any crowded metric space X .
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Then there exist arbitrarily large θ ∈ Lµ
◇

such that, whenever ψ ∈ L◇∗

◇∀
is equivalent

to θ over C, it follows that ∣ψ∣ > 2
∣θ∣
12 .

Proof. By Lemma 3.2, for all n ∈ N, ϕn ≡ tµ
|
(ϕn) and ∣tµ

|
(ϕn)∣ ≤ 4∣ϕn∣. Hence,

the sequence (tµ
|
(ϕn))n∈N witnesses that Lµ

◇
is exponentially more succinct than

L◇∗

◇∀
.

Remark 8.8. In view of Remark 7.27, the class TC can be replaced by ĜL in both
Theorems 8.6 and 8.7.

9 Concluding remarks

There are several criteria to take into account when choosing the ‘right’ modal logic
for spatial reasoning. It has long been known that the limit-point operator leads to
a more expressive language than the closure operator does, making the former seem
like a better choice of primitive symbol. However, our main results show that one
incurs in losses with respect to formula-size, and since the blow-up is exponential,
this could lead to situations where e.g. formally proving a theorem expressed with
the closure operator is feasible, but treating its limit-operator equivalent is not.
Similarly, the results of Dawar and Otto [9] make the tangled limit operator seem
like an appealing alternative to the spatial µ-calculus, given its simpler syntax and
more transparent semantics. Unfortunately, the price to pay is also an exponential
blow-up.

We believe that the takeaway is that different modal logics may be suitable for
different applications, and hope that the work presented here can be instrumental
in clarifying the advantages and disadvantages of each option. Moreover, there are
many related questions that remain open and could give us a more complete picture
of the relation between such languages.

For example, one modality that also captures interesting spatial properties is
the ‘difference’ modality, where ⟨≠⟩ϕ holds at w if there is v /= w satisfying ϕ. This
modality has been studied in a topological setting by Kudinov [26], and succinctness
between languages such as L◇∀ and L|⟨≠⟩ remains largely unexplored. Even closer
to the present work is the tangled closure operator, |∗, defined analogously to ◇∗,
but instead using the closure operation. The techniques we have developed here do
not settle whether Lµ

|
is exponentially more succinct than L|∗

|
.

There are also possible refinements of our results. Our construction uses infinitely
many variables, and it is unclear if L| is still exponentially more succinct than L◇
when restricted to a finite number of variables. Finally, note that Theorem 8.6 is
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sharp in the sense that an exponential translation is available, but this is not so
clear for Theorem 8.7, in part because an explicit translation is not given by Dawar
and Otto [9]. Sharp upper and lower bounds remain to be found.
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Abstract
The computer implementation of a majority of engineering and physical

systems requires the discretization of continuous parameters (e.g., time, tem-
perature, voltage, etc.). Such systems are then called discrete-time systems
and their dynamics can be described by difference or recurrence equations. Re-
cently, there is an increasing interest in applying formal methods in the domain
of cyber-physical systems to identify subtle but critical design bugs, which can
lead to critical failures and monetary loss. In this paper, we propose to for-
mally reason about discrete-time aspects of cyber-physical systems using the
z-Transform, which is a mathematical tool to transform a time-domain model
to a corresponding complex-frequency domain model. In particular, we present
the HOL Light formalization of the z-Transform and difference equations along
with some important properties such as linearity, time-delay and complex trans-
lation. An interesting part of our work is the formal proof of the uniqueness of
the z-Transform. Indeed, the uniqueness of the z-Transform plays a vital role in
reliably deducing important properties of complex systems. We apply our work
to formally analyze a switched-capacitor interleaved DC-DC voltage doubler
and an infinite impulse response (IIR) filter, which are important components
of a wide class of power electronics, control and signal processing systems.
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1 Introduction

We observe many continuous-time natural phenomena in our every day life, for in-
stance the speed of a car, the temperature of a city and heart-beat are time varying
quantities. Even though continuous-time quantities permeate in nature, we also
observe many discrete-time quantities, e.g., maximum and minimum temperature
in a city, average speed of traffic vehicles and a stock market index. It is therefore
indispensable to design engineering systems which can detect and process these phe-
nomena to achieve different functionalities. However, the continuous-time quantities
cannot be processed directly using digital computing machines, which are suitable
to deal with the discrete-time quantities. In practice, a continuous-time quantity
is converted to a corresponding sampled version which coincides with the original
quantity at some instant in time [6]. For example, a continuous-time signal can be
sampled into a sequence of numbers where each number is separated from the next
in time by a sampling period of T seconds as shown in Figure 1.
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Time0     1      2      3           n-2    n-1 n k

Figure 1: Sampling of a Continuous Signal

In general, the dynamics of engineering and physical systems are characterized
by differential equations [33] and difference equations [7] in case of continuous-time
and discrete-time, respectively. The complexity of these equations varies depending
upon the corresponding system architecture (distributed, cascaded, hybrid etc.), the
nature of input signals and the physical constraints. Transformation analysis is one
of the most efficient techniques to mathematically analyze such complex systems.
The main objective of transform method is to reduce complicated system models
(i.e., differential or difference equations) into algebraic equations. The z-Transform
[21] provides a mechanism to map discrete-time signals over the complex plane also
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called z-domain. This transform is a powerful tool to solve linear difference equations
(LDE) by transforming them into algebraic operations in z-domain. Moreover, the
z-domain representation of LDEs is also used for the transfer function analysis of
corresponding systems. Due to these distinctive features, the z-Transform is one
of the main core techniques available in physical and engineering system analysis
software tools (e.g., MATLAB [20], Mathematica[19]) and is widely used in the
design and analysis of signal processing filters [21], electronic circuits [7], control
systems [8], photonic devices [5] and queueing networks [1].

The main idea of the z-Transform can be traced back to Laplace, but it was
formally introduced by W. Hurewicz (1947) to solve linear constant coefficient dif-
ference equations [15]. Mathematically, the z-Transform can be defined as a function
series which transforms a discrete time signal f [n] to a function of a complex variable
z, as follows:

X(z) =
∞∑
n=0

f [n]z−n (1)

where f [n] is a complex-valued function (f : N → C) and the series is defined for
those z ∈ C for which the series is convergent.

The first step in analyzing a difference equation (e.g., xn+1 = kxn(1−xn)) using
the z-Transform is to apply the z-Transform on both sides of a given equation. Next,
the corresponding z-domain equation is simplified using various properties of the z-
Transform, such as linearity, scaling and differentiation. The main task is to either
solve the difference equation or to find a transfer function which relates the input
and output of the corresponding system. Once the transfer function is obtained, it
can be used to analyze some important aspects such as stability, frequency response
and design optimization to reduce the number of corresponding circuit elements such
as multipliers and shift registers.

Traditionally, the analysis of linear systems based on the z-Transform has been
done using numerical computations and symbolic techniques [20, 19]. Both of these
approaches, including paper-and-pencil proofs [21] have some known limitations like
incompleteness, numerical errors and human-error proneness. In recent years, theo-
rem proving has been actively used for both the formalization of mathematics (e.g.,
[11, 9]) and the analysis of physical systems (e.g., [30, 29]). For the latter case,
the main task is to identify and formalize the underlying mathematical theories. In
practice, four fundamental transformation techniques (i.e., the Laplace Transform
(LT), the z-Transform (ZT), the Fourier Transform (FT), and the Discrete Fourier
Transform (DFT)) are used in the design and development of linear systems. Inter-
estingly, the Fourier transform and the Discrete Fourier transform can be derived
from the Laplace Transform and the z-Transform, respectively. The formalization
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of the Laplace Transform and the Fourier Transform have been reported in [32] and
[22] using the multivariate analysis libraries of HOL Light [12], with an ultimate
goal of reasoning about differential equations and transfer functions of continuous
systems. However, the formal proof of both the inverse Laplace Transform and the
inverse Fourier Transform have not been provided in [32] and [22], which is necessary
to reason about transformation from s-domain and ω-domain (where s and ω are
LT and FT domain parameters, respectively) to the time-domain. The uniqueness
and inverse of the z-Transform can be used to overcome this limitation by using the
well-known Bilinear-Transformation of the z-domain and the s-domain [21]. The
main relation amongst these four transformations is outlined in Figure 2.

Laplace/ Fourier Transform

Sampling

Continuous Time Continuous Frequency

Discrete Time Discrete Frequency z-Transform
Discrete-Fourier Transform

Sampling

Figure 2: Discrete and Continuous Transformation Analysis

Nowadays, discrete-time linear systems are widely used in safety and mission
critical domains (e.g., digital control of avionics systems and biomedical devices).
We believe that there is a dire need for an infrastructure which provides the basis
for the formal analysis of discrete-time systems within the sound core of a theorem
prover. In this paper, we propose a formal analysis approach for the z-Transform
based system models using a higher-order logic (HOL) theorem prover. The main
idea is to leverage upon the high expressiveness of HOL to formalize Equation (1)
and use it to verify classical properties of the z-Transform within a theorem prover.
These foundations can be built upon to reason about the analytical solutions of
difference equations or transfer functions. In [28], we presented the preliminary
formalization of the z-Transform and its associated region of convergence (ROC).
In this paper, however, we widen the scope by adding more interesting properties
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such as complex conjugation and initial value theorem of the z-Transform. We
also provide the formally verified expressions for the z-Transform of commonly used
mathematical functions (e.g., exp(x), sin(x) and cos(x)). We then present the for-
malization of generic linear constant coefficient difference equations (LCCDE) along
with the formal verification of corresponding z-Transform expressions by utilizing
the key properties such as linearity of the z-Transform and ROC. A central part
of the reported work is the formal proof of the uniqueness and inverse of the z-
Transform, for which we also formalize the notion of an exterior region of a circle
and its relation to ROC of the z-Transform. In order to demonstrate the practical
effectiveness of the reported work, we present the formal analysis of a switched ca-
pacitor DC-DC power converter and an infinite impulse response (IIR) digital signal
processing filter. The formalization reported in this paper has been developed in the
latest version of the HOL Light theorem prover due to its rich multivariate analysis
libraries [12]. The source code of our formalization is available for download [23]
and can be utilized by other researchers and engineers for further developments and
the analysis of more practical systems.

The rest of the paper is organized as follows: Section 2 describes some funda-
mentals of multivariate analysis libraries of the HOL Light theorem prover. Sections
3 and 4 present our HOL Light formalization of the z-Transform and the verifica-
tion of its properties, respectively. Section 5 presents the formalization of difference
equations and transfer functions. We describe the formal proof of the uniqueness
of the z-Transform in Section 6. In Section 7, we present the analysis of a power-
electronic DC-DC converter and IIR filter. Finally, Section 8 concludes the paper
and highlights some future directions.

2 Preliminaries

In this section, we provide a brief introduction to the HOL Light formalization of
some core concepts such as vector summation, summability, complex differentiation
and infinite summation [12]. Our main intent is to introduce the basic definitions
and notations that are used in the rest of the paper.

In the formalization of multivariate theory, an N-dimensional vector is repre-
sented as an RN column matrix with individual elements as real numbers. All of
the vector operations are then treated as matrix manipulations. Similarly, instead
of defining a new type, complex numbers (C) can be represented as R2. Most of the
theorems available in multivariate libraries of HOL Light are verified for arbitrary
functions with a flexible data-type of (RM → RN ). The injection from natural num-
bers to complex numbers can be represented by & : N→ R. Similarly, the injection
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from real to complex numbers is done by Cx : R→ C. The real and imaginary parts
of a complex number are represented by Re and Im both with type C→ R. The
unary negation of x is represented as −x, where x can be real or a complex number.

The generalized summation over arbitrary functions is defined as follows:

Definition 1 (Vector Summation).
`def ∀s f. vsum s f = (lambda i. sum s (λx. f x$i))

where vsum takes two parameters s : A→ bool which specifies the set over which
the summation occurs and an arbitrary function f : (A→ RN). The function sum
is a finite summation over real numbers and accepts f : (A→ RN). For example,∑K
i=0 f(i) can be represented as vsum (0..K) f.
The traditional mathematical expression

∑∞
i=0 f(i) = L is defined in HOL Light

as follows:

Definition 2 (Sums).
`def ∀s f l. (f sums l) s ⇔

((λn. vsum (s INTER (0..n)) f) −→ l) sequentially

where the types of the parameters are: (s : N→ bool), (f : N→ RN) and (L : RN).
We present the definition of the summability of a function (f : N→ RN), which

indeed represents that there exist some (L : RN) such that
∑∞
i=0 f(i) = L.

Definition 3 (Summability).
`def ∀f s. summable s f ⇔ (∃l. (f sums l) s)

The limit of an arbitrary function can be defined as follows:

Definition 4 (Limit).
`def ∀f net. lim net f = (εl. (f −→ l) net)

where the function lim is defined using the Hilbert choice operator ε in the func-
tional form. It accepts a net with elements of arbitrary data-type A and a func-
tion (f : A→ RN), and returns (L : RN) the value to which f converges at the given
net. In Definition 2, sequentially represents a sequential net which describes
the sequential evolution of a function, i.e., f(i), f(i + 1), f(i + 2), . . . , etc. This
is typically used in the definition of an infinite summation. Note that nets are
defined as a bijective type in which domain is the set of two-parameter boolean
functions, where we use the function mk_net to construct a net. The sequential
nets are defined as mk_net λm n. m ≥ n. According to this definition, we notice
that the number a that satisfies the property ∀n. (n ≥ a), represents infinity. The
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continuous counterpart of the sequential net is at_infinity, which is defined as
mk_net λx y. norm(x) ≥ norm(y). This is a generalized definition valid for any Eu-
clidian space RN. In case of real numbers, this simply reduces to mk_net λx y. x ≥ y.
The concept tends to (−→) is formally defined as follows:

Definition 5.

`def ∀f l net. (f −→ l) net ⇔
(∀e. &0 < e ⇒ eventually(λx.dist (f x,l) < e) net)

We next present the definition of an infinite summation which is one of the most
fundamental requirement in our development.

Definition 6 (Infinite Summation).
`def ∀f s. infsum s f = (εl. (f sums l) s)

where function infsum is defined using the Hilbert choice operator ε in the functional
form. It accepts a parameter (s : num→ bool) which specifies the starting point
and a function (f : N→ RN), and returns (L : RN) , i.e., the value at which infinite
summation of f converges from the given s.

In some situations, it is very useful to specify infinite summation as a limit of
finite summation (vsum). We proved this equivalence in the following theorem:

Theorem 1 (Infinite Summation in Terms of Sequential Limit).
` ∀s f. infsum s f = lim sequentially(λk.vsum (s INTER (0..k)) f)

The differentiability of complex-valued functions is quite important in the de-
velopment of the z-Transform, since it is the key element of proving uniqueness of
the z-Transform. In HOL Light, a complex derivative is defined using the vector
derivative as follows:

Definition 7 (Vector Derivative).
`def ∀f f′ net. (f has_complex_derivative f′) net ⇔

(f has_derivative (λx. f′ * x)) net

where a vector derivative (has_derivative) is defined as follows:

Definition 8 (Vector Derivative).
`def ∀f f′ net. (f has_derivative f′) net ⇔

linear f′ ∧ ((λy. inv (norm (y − netlimit net)) %
(f y − (f (netlimit net) +
f′ (y − netlimit net)))) −→ vec 0) net
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where netlimit of a net returns the supremum of the net.
The definition of a complex derivative can also be described in a functional form

as follows:

Definition 9 (Complex Differentiation).
`def ∀f x. complex_derivative f x =

(εf′. (f has_complex_derivative f′) (at x))

This definition can further be generalized to formalize the concept of higher-order
complex derivatives as described in the following definition:

Definition 10 (Higher-Order Complex Derivative).
`def ∀f. higher_complex_derivative 0 f = f ∧

(∀n. higher_complex_derivative (SUC n) f =
complex_derivative (higher_complex_derivative n f))

Another important concept in complex analysis is holomorphic functions which
are differentiable in the neighbourhood of every point in their domain. The formal
definition of holomorphic functions in HOL Light is given as follows:

Definition 11 (Holomorphic Function).
`def ∀f s. f holomorphic_on s ⇔

(∀x. x IN s ⇒
(∃f′. (f has_complex_derivative f′) (at x within s)))

3 Formalization of z-Transform

The unilateral z-Transform [16] of a discrete time function f [n] can be defined as
follows:

F (z) =
∞∑
n=0

f [n]z−n (2)

where f is a function from N→ C and z is a complex variable. Here, the definition
that we consider has limits of summation from n = 0 to ∞. On the other hand, one
can consider these limits from n = −∞ to ∞ and such a version of the z-Transform
is called two-sided or bilateral. This generalization comes at the cost of some compli-
cations such as non-uniqueness, which limits its practicality in engineering systems
analysis. On the other hand, unilateral transform can only be applied to causal
functions, i.e., f [n] = 0 for ∀n.n < 0. In practice, unilateral z-Transform is suffi-
cient to analyze most of the engineering systems because their designs involve only
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causal signals [31]. For similar reasons, the authors of [32] formalized the unilateral
Laplace transform rather than the bilateral version.

An essential issue of the z-Transform of f [n] is whether the F (z) even exists,
and under what conditions it exists. It is clear from Equation (2) that the z-
Transform of a function is an infinite series for each z in the complex plane or
z-domain. It is important to distinguish the values of z for which the infinite series
is convergent and the set of all those values is called the region of convergence
(ROC). In mathematics and digital signal processing literature, different definitions
of the ROC are considered. For example, one way is to express z in the polar form
(z = rejω) and then the ROC for F (z) includes only those values of r for which
the sequence f [n]r−n is absolutely summable. Unfortunately, to the best of our
knowledge, this claim (i.e., absolute summability, e.g., [21]) is incorrect for certain
functions, for example, f [n] = 1

nu[n − 1] for which certain values of r result in
convergent infinite series, but x[n]r−n is not absolutely summable.

Now, we have two distinct choices for defining the ROC: (1) values of z for
which F (z) is finite (or summable) and (2) values of z for which x[n]z−n is absolutely
summable. Most of textbooks are not rigorous about the choice of the ROC and both
of these definitions are widely used in the analysis of engineering systems. In this
paper, we use the first definition of the ROC, which we can define mathematically
as follows:

ROC = {z ∈ C : ∃k.
∞∑
n=0

f [n]z−n = k} (3)

In the above discussion, we mainly highlighted some arbitrary choices of using the
definition of the z-Transform and its associated ROC. We formalize the z-Transform
function (Equation 2) in HOL Light, as follows:

Definition 12 (z-Transform).
`def ∀f z. z_transform f z = infsum (from 0) (λn. f n / z pow n)

where the z_transform function accepts two parameters: a function f : N→ C
and a complex variable z : C. It returns a complex number which represents the
z-Transform of f according to Equation (2).

We formalize the ROC of the z-Transform as follows:

Definition 13 (Region of Convergence).
`def ∀f. ROC f = {z | ¬(z = Cx (&0)) ∧

summable (from 0) (λn. f n / z pow n)}

here, ROC accepts a function f : N→ C and returns a set of non-zero values of variable
z for which the z-Transform of f exists. In order to compute the z-Transform, it
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is mandatory to specify the associated ROC. We prove two basic properties of ROC
which describe the linearity and scaling of the ROC, as follows:

Theorem 2 (ROC Linear Combination).
` ∀z a b f g. z IN ROC f ∧ z IN ROC g ⇒

z IN ROC (λn. a * f n) INTER ROC (λn. b * g n)

Theorem 3 (ROC Scaling).
` ∀z a f. z IN ROC f ⇒ z IN ROC (λn. f n / a)

Theorem 2 describes that if z belongs to ROC f and ROC g then it also belongs to
the intersection of both ROCs even though the functions f and g are scaled by
complex parameters a and b, respectively. Similarly, Theorem 3 shows the scaling
with respect to complex division by a complex number a.

4 Main Properties of the z-Transform
In this section, we use Definitions 12 and 13 to formally verify some of the classical
properties of the z-Transform in HOL Light. The verification of these properties
plays an important role in reducing the time required to analyze practical applica-
tions, as described later in Section 7.

4.1 Linearity of the z-Transform

The linearity of the z-Transform is a very useful property while handling systems
composed of subsystems with different scaling inputs. Mathematically, it can be
defined as:

If Z(f [n]) = F (z) and Z(g[n]) = G(z) then the following holds:

Z(α ∗ f [n]± β ∗ g[n]) = α ∗ F (z)± β ∗G(z) (4)

The z-Transform of a linear combination of sequences is the same linear combination
of the z-Transform of the individual sequences. We verify this property as the
following theorem:

Theorem 4 (Linearity of z-Transform).
` ∀f g z a b. z IN ROC f ∧ z IN ROC g ⇒

z_transform (λx. a * f x + b * g x) z =
a * z_transform f z + b * z_transform g z

where a : C and b : C are arbitrary constants. The proof of this theorem is based on
the linearity of the infinite summation and Theorem 2.
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4.2 Shifting Properties

The shifting properties of the z-Transform are mostly used in the analysis of digital
systems and in particular in solving difference equations. In fact, there are two kinds
of possible shifts: left shift (f [n+m]) or time advance and right shift (f [n−m]) or
time delay. The main idea is to express the transform of the shifted signal ((f [n+m])
or (f [n−m])) in terms of its z-Transform (F (z)).

Left Shift of a Sequence: If Z(f [n]) z = F (z) and k is a positive integer, then
the left shift of a sequence can be described as follows:

Z(f [n+ k]) z = zk(F (z)−
k−1∑
n=0

f [n]z−n) (5)

We verify this theorem as follows:

Theorem 5 (Left Shift or Time Advance).
` ∀f z k. z IN ROC f ∧ 0 < k ⇒

z_transform (λn. f (n + k)) z =
z pow k * (z_transform f z −

vsum (0..k − 1) (λn. f n / z pow n))

The verification of this theorem mainly involves properties of complex numbers,
summability of shifted functions and splitting an infinite summation into two parts
as given by the following lemma:

Lemma 1 (Infsum Splitting).
` ∀f n m. summable (from m) f ∧ 0 < n ∧ m ≤ n ⇒

infsum (from m) f = vsum (m..n−1) f + infsum (from n) f

Right Shift of a Sequence: If Z(f [n]) z = F (z), and assuming f(−n) = 0, ∀n =
1, 2, ...,m, then the right shift or time delay of a sequence can be described as follows:

Z(f [n−m]) z = z−mF (z) (6)

We formally verify the above property as the following theorem:

Theorem 6 (Right Shift or Time Delay).
` ∀f z m. z IN ROC f ∧ is_causal f ⇒

z_transform (λn. f (n−m)) z = z_transform f z / z pow m
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Here, is_causal defines the causality of the function f in a relational form to ensure
that f(n− m) = 0, ∀m.n < m. The proof of this theorem also involves properties of
complex numbers along with the following two lemmas:

Lemma 2 (Series Negative Offset).
` ∀f k l. (f sums l) (from 0) ⇒ ((λn. f (n−k)) sums l) (from k)

Lemma 3 (Infinite Summation Negative Offset).
` ∀f k. summable (from 0) f ⇒

infsum (from 0) (λn. if k ≤ n then f (n−k) else vec 0) =
infsum (from 0) f

As a direct application of the above results, we verify another important prop-
erty called first-difference (which represents the difference between two consecutive
samples of a signal), as follows:

Theorem 7 (First Difference).
` ∀f z. z IN ROC f ∧ is_causal f ⇒

z_transform (λn. f n − f (n − 1)) z =
(Cx (&1) − z cpow Cx(−&1)) * z_transform f z

4.3 Scaling in the z-Domain or Complex Translation

The scaling property of the z-Transform is useful to analyze communication systems,
such as the response analysis of modulated signals in z-domain. If Z(f [n]) z = F (z),
then two basic types of scaling can be defined as below:

Z(hnf [n]) z = F ( z
h

) (7)

Z(ω−nf [n]) z = F (ωz) (8)

If h is a positive real number, then it can be interpreted as shrinking or expanding
of the z-domain. If h is a complex number with unity magnitude, i.e., h = ejω0 ,
then the scaling corresponds to a rotation in the z-plane by an angle of ω0. On the
other hand, multiplication by ω−n (Equation 8) shrinks the z−domain. Indeed, in
the communication and signal processing literature, it is interpreted as frequency
shift or translation associated with the modulation in the time-domain.
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We verify the above theorems in HOL Light as follows:

Theorem 8 (Scaling in z-Domain).
` ∀f z h. inv h * z IN ROC f ∧ z IN ROC f ⇒

z_transform (λn. h cpow Cx (&n) * f n) z =
z_transform (λn. f n) (inv h * z)

Theorem 9 (Scaling in z-Domain (Negative)).
` ∀f z w. w * z IN ROC f ∧ z IN ROC f ⇒

z_transform (λn. w cpow −Cx (&n) * f n) z =
z_transform (λn. f n) (w * z)

4.4 Complex Differentiation

The differentiation property of the z-Transform is frequently used together with
shifting properties to find the inverse transform. Mathematically, it can be expressed
as:

Z(n ∗ f [n]) z = −z ∗ (
∞∑
n=0

d

dz
(f [n]z−n)) (9)

We prove this property in the following theorem:

Theorem 10 (Complex Differentiation).
` ∀f z. &0 < Re z ∧ z IN ROC (Cx (&n) * f n) ⇒

z_transform (λn. Cx (&n) * f n) z = −z * infsum (from 0)
(λn. complex_derivative (λz. f n * z cpow Cx (−&n)) z)

The proof of the above theorem requires the properties of complex differentiation,
summability and complex arithmetic reasoning.

4.5 Complex Conjugation

The complex conjugation property provides the ease to manipulate the z-Transform
of conjugated functions. The mathematical form of this property is as follows:

Z(f∗[n]) z = F ∗(z∗) (10)
where f∗[n] represents the complex conjugate of function f [n]. The corresponding
formal form of the complex conjugation is given as follows:

Theorem 11 (Complex Conjugation).
` ∀f z. cnj z IN ROC f ⇒

z_transform (λn. cnj (f n)) z = cnj(z_transform f (cnj z))
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4.6 The z-Transform of Commonly Used Functions

In real-world applications, the system is usually subject to a set of known input
functions depending upon the dynamics and overall output response. It is quite
handy to verify the z-Transform of such functions to simplify the reasoning while
tackling practical applications using our formalization. In this regard, we verify the
z-Transform expressions for most commonly used functions in signal processing and
control systems. Table 1 summarizes these functions along with their mathematical
form and corresponding z-Transform. In the following, we provide the formal defi-
nition and verification of the z-Transform of the Dirac-Delta function only whereas
the verification of other functions can be found in the proof script [23].

Function Name Mathematical Notation Z-Transform
Dirac-Delta Function δ[n−m] z−m

Exponential exp[−α ∗ n] 1
1−exp[−α]z−1

Complex Constant an 1
1−az−1

Sine sin[ω0n] z−1 sin[ω0]
1−2z−1 cos[ω0]+z−2

Cosine cos[ω0n] 1−z−1 cos[ω0]
1−2z−1 cos[ω0]+z−2

Scaled Sine an sin[ω0n] az−1 sin[ω0]
1−2az−1 cos[ω0+a2z−2]

Scaled Cosine an cos[ω0n] 1−az−1 cos[ω0]
1−a2z−1 cos[ω0+a2z−2]

Table 1: z-Transform of Commonly used Functions

Definition 14 (Dirac-Delta Function).
`def delta m = (λn. if n = m then Cx (&1) else Cx (&0))

Theorem 12 (The z-Transform of Dirac-Delta Function).
` ∀z n. z_transform (delta m) z = inv z pow m

5 Formalization of Difference Equations

A difference equation characterizes the behavior of a particular phenomena over a
period of time. Such equations are widely used to mathematically model complex
dynamics of discrete-time systems. Indeed, a difference equation provides a formula
to compute the output at a given time, using present and future inputs and past
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output as given in the following example:

y[k]− 5y[k − 1] + 6y[k − 2] = 3x[k − 1] + 5x[k − 2] (11)

In the perspective of engineering systems, a difference equation is concerned with
the generation of a sequence of control outputs x[n] given a sampled sequence of the
system inputs y[n]. Generally, it is important to determine the control output at a
sample instance n based on the sampled system input at the sample instance n and
a finite number of previous sampled outputs. Mathematically, it can be written as
follows:

y[n] = f(x[n], x[n− 1], x[n− 2], . . . , x[n−m], y[n− 1], y[n− 2], ..., y[n− k]) (12)

There is an infinite number of ways the m+ k − 1 values on the right-hand side
of the above equation can be combined to form y(n). We consider the practical case
where the right-hand side of the above equation involves a linear combination of the
past samples of the outputs and control inputs, which can be described as follows:

y[n] =
N∑
i=1

αiy[n− i] +
M∑
i=0

βix[n− i] (13)

where αi and βi are input and output coefficients. The output y[n] is a linear com-
bination of the previous N output samples, the present input x[n] and M previous
input samples. Here, αi and βi are considered as constants (either complex (C) or
real (R)) due to which the Equation (13) is called Linear Constant Coefficient Dif-
ference Equation (LCCDE). For a given N th order difference in terms of a function
f [n], its z-Transform is given as follows:

Z(
N∑
i=0

αif [n− i]) z = F (z)
N∑
i=0

αiz
−i (14)

Applying the z-Transform on both sides of Equation (13) results in an important
mathematical form describing the relation among the coefficients of x[n] and y[n],
called transfer function or system function, given as follows:

H(z) = Y (z)
X(z) =

M∑
i=0

βiz
−i

1−
N∑
i=1

αiz
−i

(15)

In order to build the reasoning support for LCCDE in HOL Light, we formalize
the N th difference as follows:
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Definition 15 (N th Difference).
`def ∀N alst f x. nth_difference alst f N x =

vsum (0..N) (λt. EL t alst * f (x − t))

The function nth_difference accepts the order (N) of the difference equation, a
list of coefficients alst, function f and the variable x. It utilizes the functions vsum
s f and EL i L, which return the vector summation and the ith element of a
list L, respectively, to generate the difference equation corresponding to the given
parameters.

Next, we formalize a general LCCDE (i.e., Equation (13)) as follows:

Definition 16 (Linear Constant Coefficient Difference Equation (LCCDE)).
`def ∀y M x N n. LCCDE x y alist blist M N n ⇔

y n = nth_difference alist y M n +
nth_difference blist x N n

Now equipped with these formal definitions, our next step is to verify the z-
Transform of the N th-difference (Definition 15) which is one of the most important
results of our formalization.

Theorem 13 (z-Transform of N th-Difference).
` ∀f lst N z. z IN ROC f ∧ is_causal f ⇒

z_transform (λx. nth_difference lst f N x) z =
z_transform f z * vsum (0..N)

(λn. z cpow −Cx (&n) * EL n lst)

The proof of Theorem 13 is based on induction on the order of the difference and
Theorems 2 and 4 along with the following important lemma about the summability
of N th-difference equation:

Lemma 4 (Summability of Difference Equation).
` ∀N a_lst f. z IN ROC f ∧ is_causal f ⇒

z IN ROC (λx. nth_difference a_lst f N x)

In order to verify the transfer function of the LCCDE (Equation (15)), we need to
ensure that the input and output functions should be causal as described in Section
3. Another important requirement is to ensure that there are no values of z for
which the denominator is 0, such values are called poles of that transfer function.
We package these conditions in the following definitions:

Definition 17 (Causal System Parameters).
`def is_causal_lccde x y ⇔ is_causal x ∧ is_causal y
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Definition 18 (LCCDE ROC).
`def ∀x y M alst. LCCDE_ROC x y M alst =

(ROC x) INTER (ROC y) DIFF
{z | Cx (&1) − vsum (1..M)

(λn. EL n alst * z cpow −Cx (&n)) = Cx(&0)}

Here, the function is_causal_lccde takes two parameters, i.e., input and output,
and ensures that both of them are causal. In Definition 18, LCCDE_ROC specifies
the region of convergence of the input and output functions, which is indeed the
intersection of ROC x and ROC y, excluding all poles of the transfer function. The
function DIFF represents the difference of two sets, i.e., A\B = {z | z ∈ A∧ z /∈ B}.

Next, we present the formal verification of the transfer function as given in
Equation 15.

Theorem 14 (LCCDE Transfer Function).
` ∀x y alst blst M N.

z IN LCCDE_ROC x y M alst ∧
is_causal_lccde x y ∧
(∀n. LCCDE x y alist blist M N n) ⇒
z_transform y z / z_transform x z =
vsum (0..N) (λn. z cpow −Cx (&n) * EL n blst) /
(Cx (&1) − vsum (1..M) (λn. z cpow −Cx(&n) * EL n alst))

The first and second assumptions describe the region of convergence for LCCDE
and the causality of the input and output. The last assumption gives the time-
domain model of the LCCDE. The proof of this theorem is mainly based on the
properties of the z-Transform such as linearity (Theorem 4), time-delay (Theorem
6) and summability of difference equation (Lemma 4). This is a very useful result
to simplify the reasoning for the LCCDE of any order.

6 Uniqueness of the z-Transform

One of the most critical aspects of transformation based analysis of discrete-time sys-
tems is to be able to obtain the time-domain expressions from z-domain parameters.
The inverse transformation is very important to reliably deduce the properties of the
underlying system because the actual implementation is done in the time-domain.
The inversion of bilateral z-Transform X(z) to its corresponding time domain func-
tion x[n] is not unique due to the existence of infinitely many ROCs for one function.
However, the uniqueness of unilateral z-Transform (that we have formalized in our

891



Siddique, Mahmoud and Tahar

work) can be proved considering the nature of the ROC which is always the exte-
rior region of a circle as shown in Figure 3. Mathematically, the uniqueness of the
z-Transform can be described as follows:

Z(f [n]) = Z(g[n])⇔ f = g (16)

Re z

Im z

z-Domain

ROC

Figure 3: Region of Convergence (ROC) for Inverse z-Transform

The proof of the uniqueness of the z-Transform can be divided into two subgoals,
i.e., forward and backward implications as follows:

f = g =⇒ Z(f [n]) = Z(g[n]) (17)

Z(f [n]) = Z(g[n]) =⇒ f = g (18)

The first subgoal is straight forward and can be proved by the definition of the
z-Transform. However, the second subgoal requires the reconstruction of the original
function f [n] from the transformed function Z(f [n]) or (F (Z)). There are two main
methods for obtaining such reconstruction: First, a sequence that consists of the
coefficients of the Laurent series of F (z), which is given by the following equation
[10]:

f(k) = 1
2πi

∮
C
F (z)k−1dz (k = 0, 1, 2, ...) (19)

where the path of integration C is a circle of radius r > ρ traversed in the anticlock-
wise direction. The second method involves the higher-order complex derivative of
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the infinite summation (i.e., the z-Transform F (z)) at origin (z = 0), given as follows
[10]:

f(k) = 1
k! (

dk

dzk
F (1
z

))z=0 (k = 0, 1, 2, ...) (20)

Interestingly, the multivariate analysis libraries of HOL Light are rich enough
to tackle both proofs involving the path integrals and the higher-order complex
derivatives of a complex series. However, we have chosen the second methods due to
the availability of some important lemmas in HOL Light as described in the sequel.

6.1 Formal Proof of Uniqueness

The unilateral z-Transform is unique for the ROC which forms an exterior of a circle
excluding the centre as shown in Figure 3. We formally define the exterior region of
a circle as follows:

Definition 19 (Exterior of Circle).
`def ∀s. exterior_circle s ⇔

(∃R. &0 < R ∧ (∀z. R < dist (z,Cx (&0)) ⇒ z IN s))

where exterior_circle accepts a set of complex elements (s : (real2 → bool))
which forms an exterior region of a circle.

We verify three important properties describing the relation between the ROC
of the z-Transform and the exterior of a circle.

• If the ROCs of the two functions f and g are exterior regions of a circle, then
the intersection of their ROCs will also form an exterior circle.

` ∀f g. exterior_circle (ROC f) ∧ exterior_circle (ROC g) ⇒
exterior_circle (ROC f INTER ROC g)

• If a function f is summable, then its ROC will always form an exterior region
of a circle.

` ∀f. summable (from 0) f ⇒ exterior_circle (ROC f)

• If a function f is decaying over time, then its ROC will always be an exterior
region of a circle.

` ∀f c N. c < &1 ∧ (∀n. n ≥ N ⇒
norm (f (SUC n)) ≤ c * norm (f n)) ⇒
exterior_circle (ROC f)
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We next prove the inverse transform function given in Equation 20.

Theorem 15 (Inverse z-Transform).
` ∀f n. exterior_circle (ROC f) ⇒

f n = higher_complex_derivative n
(λz. z_transform f (inv z)) (Cx(&0)) / Cx(&(FACT n))

where the proof of Theorem 15 is done using the higher-order derivatives of a power
series which is already available in HOL Light, as given in the following form:

Lemma 5 (Higher-Order Derivative of Power Series).
` ∀f c r n k. &0 < r ∧ n IN k ∧

(∀w. dist (w,z) < r ⇒
((ı. c i * (w − z) pow i) sums f w) k) ⇒

higher_complex_derivative n f z / Cx(&(FACT n)) = c n

Finally, we prove the uniqueness of the z-Transform based on Theorem 15 and
Lemma 5 along with some complex arithmetic reasoning.

Theorem 16 (Uniqueness of the z-Transform).
` ∀f g. exterior_circle (ROC f) ∧ exterior_circle (ROC g) ⇒

(z_transform f = z_transform g ⇔ f = g)

6.2 Initial Value Theorem of the z-Transform

In many situations, it is desirable to compute the initial value of the function from
its z-Transform. This is mainly achieved by using the famous initial value theorem
of the z-Transform, which states that if the z-Transform of x[k] is X(z) and if
limz→∞X(z) exists, then the initial value of x[k] (i.e., x[0]) can be obtained from
the following limit:

x(0) = lim
z→∞

X(z) (21)

Theorem 17 (Initial Value Theorem).
` ∀f. exterior_circle (ROC f) ⇒

f 0 = lim at_infinity (λz. z_transform f z)

The proof of Theorem 17 is mainly based on the concepts about the differentia-
bility, continuity and theory of holomorphic functions, as described in the following
two lemmas (which are available in the HOL Light multivariate theory).
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Lemma 6 (Complex Differentiability Implies Continuity ).
` ∀f x. f complex_differentiable at x ⇒ f continuous at x

Lemma 7 (Holomorphic Implies Differentiability).
` ∀f s x. f holomorphic_on s ∧ open s ∧ x IN s ⇒

f complex_differentiable at x

7 Applications

In order to illustrate the utilization and effectiveness of the reported formalization,
we present the formal analysis of a couple of real-world applications namely power
converters and digital filters which are widely used systems in the domain of power
electronics and digital signal processing, respectively.

7.1 Formal Analysis of Switched-Capacitor Power Converter

In the last decade, very-large scale integrated (VLSI) systems industry has revolu-
tionized many fields of physical sciences and engineering including communication,
mobile devices and health-care. However, increased density of integrated chips re-
sulted in high power dissipation which is known as energy crisis in VLSI industry.
In order to overcome this issue, power management techniques can be applied at the
system, circuit or device level depending on the system complexity and nature of the
device operation. The system level power management techniques are used to iden-
tify optimal operating conditions by power sensing and power management. DC-DC
converter [17] is one of the most important circuit level power management modules
which convert an unregulated input DC voltage into an output voltage. Mainly,
integrated DC-DC converters can be divided into three classes namely linear regu-
lators, switch mode power converters and switched-capacitor power converters [17].
In this paper, we aim at formal modeling and analysis of switched-capacitor (SC)
DC-DC converters due to their robustness and wide application domain [14].

7.1.1 Mathematical Modeling of SC Power Converter

In the design and modeling of any kind of power converter, it is very critical to
obtain the transfer function (the input-output relation) to analyze the overall sys-
tem design, system stability and desired power-gain. Generally, power electronics
engineers obtain the power stage transfer function of switch mode and SC power
converters using the z-Transform. Figure 4 outlines the system architecture of the
interleaved SC power converter. The power stage is a cross-coupled voltage doubler
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Figure 4: System Architecture of the Interleaved SC Power Converter [17]

that is regulated using an analog pulse-width modulation (PWM) controller. We can
briefly describe its operation as follows: Initially, Vout is scaled down with the aid
of a resistive voltage divider. This scaled voltage is then compared with the desired
reference voltage Vref and the corresponding voltage regulation error is determined
and amplified by the error amplifier. The output of the error amplifier is then used
to determine the output-input ratio of each charge pump sub-cell [17].

In order to derive the transfer function of the cross-coupled voltage doubler,
Figure 5 describes the charge and discharge process of one charge pump cell. The
charge pump operates in a full charge mode in which the current delivered by the
pumping capacitors CPi at the end of each switching interval drops to a very low
level, in comparison to its peak value. Since the two cross-coupled cells do not
exchange charge or power at any instant during their operation, they can be modeled
as separate elements. Finally, the overall operation can be modelled by the following
six equations:

896



Formal Analysis of Discrete-Time Systems using z-Transform

Figure 5: Charge and Discharge Phases for Interleaving SC Power Converter [17]

Q1(n) = Cp(Vout(n)− Vin(n)) (22)

Q3(n) = CpVin(n) (23)

Qout(n) = CoutVout(n) (24)

Q1(n− 1) = CpVin(n− 1) (25)

Q3(n− 1) = Cp(Vout(n− 1)− Vin(n− 1)) (26)

Qout(n− 1) = CoutVout(n− 1) (27)

where Qi, represents the charge stored at different nodes in the circuit, whereas Vin
and Vout represent the input and output of the voltage doubler. The total charge
transfer can be described as follows:

2 ∗ (Q1(n− 1)−Q1(n) +Q3(n)−Q3(n− 1)) +Qout(n− 1)−Qout(n) =
Ts
2 [Vout(n− 1)

Rout
+ Vout(n)

Rout
] (28)

where Rout is output load resistor.
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Using Equations ((22)-(28)) and the z-Transform results in the following transfer
function:

Vout(z)
Vin(z) = 4Cp(1 + z−1)

(2Cp − Cout + Ts
2Rout

)(
(2Cp+Cout− T s

2Rout
)

(2Cp−Cout+ T s
2Rout

) + z−1)
(29)

Finally, letting z = 1 and Ts = 0, results in the DC conversion gain which should
be consistent with the gain of an ideal voltage doubler, i.e., 2, as follows:[

Vout(z)
Vin(z)

]
z=1,T s=0

= 2 (30)

7.1.2 Formal Verification of the Transfer Function and DC Conversion
Gain

Our main goal is to verify the transfer function of the voltage doubler (Equation
(29) and the DC conversion gain (Equation (30), which are two critical require-
ments in the correct operation of the interleaved SC power converters. We formalize
Equations ((22)-(28)) in HOL Light as follows:

Definition 20 (Voltage Doubler Model).
`def sc_voltage_doubler Q1 Q3 Qout Cp Cout Vin Vout ⇔

(∀n. Q1 n = Cp * (Vout n − Vin n) ∧
Q3 n = Cp * Vin n ∧ Qout n = Cout * Vout n ∧
Q1 (n − 1) = Cp * Vin (n − 1) ∧
Q3 (n − 1) = Cp * (Vout (n − 1) − Vin (n − 1)) ∧
Qout (n − 1) = Cout * Vout (n − 1))

where the three variables Q1, Q3 and Qout represent the values of the stored charge
at different nodes. The parameters Cp and Cout represent the capacitors, whereas
Vin and Vout represent the input and output voltages, respectively. The function
sc_voltage_doubler returns the corresponding model of the voltage doubler corre-
sponding to Equations ((22)-(27)). We next formally define the total transfer charge
(Equation (28) as follows:

Definition 21 (Total Transfer Charge).
`def ∀Q1 Q3 Qout Ts Vout n Rout.

total_charge_transfer Q1 Q3 Qout Vout Rout Ts n ⇔
Cx(&2) * (Q1 (n − 1) − Q1 n + Q3 n − Q3 (n − 1)) +
Qout (n − 1) − Qout n =
Cx Ts / Cx(&2) * (Vout (n − 1) − Vout n) / Cx Rout
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We next verify the transfer function of the SC Voltage doubler as follows:

Theorem 18 (SC Voltage Doubler Transfer Function).
` ∀Q1 Q3 Qout n Vin Vout Cp Cout Ts Rout z.

[A1] sc_voltage_doubler Q1 Q3 Qout Cp Cout Vin Vout ∧
[A2] total_charge_transfer Q1 Q3 Qout Vout Rout Ts n ∧
[A3] sc_parameters_constraints Cp Rout Cout Ts z ∧
[A4] z IN ROC Vin ∧ z IN ROC Vout ∧
[A5] is_causal Vin ∧ is_causal Vout ⇒

transfer_function Vin Vout z =
(Cx(&4) * Cp * (Cx(&1) + z cpow −Cx(&1))) /
((Cx(&2)* Cp − Cout + Cx Ts / (Cx(&2) * Cx Rout)) *
((Cx(&2)* Cp + Cout − Cx Ts / (Cx(&2) * Cx Rout)) /
(Cx(&2) * Cp − Cout +

Cx Ts / (Cx(&2) * Cx Rout)) + z cpow −Cx(&1)))

where assumptions A1 and A2 describe the function of the SC voltage doubler and
total transfer charge, respectively. The assumption A3 describes the constraints
among the parameters of the SC voltage doubler so that the transfer function is well
defined (i.e., there are no poles at which it becomes undefined). The assumptions
A4 and A5 ensure that the input and output voltages are causal functions and form
valid ROCs. The function transfer_function takes an input function x, an output
function y and a z-domain parameter z:complex and returns the z-domain transfer
function z_transform y z / z_transform x z.

Finally, we utilize Theorem 18 to verify the corresponding DC conversion gain
of the voltage doubler configuration as follows:

Theorem 19 (SC Voltage Doubler Transfer Function).
` ∀Q1 Q3 Qout n Vin Vout Cp Cout Rout.

[A1] sc_voltage_doubler Q1 Q3 Qout Cp Cout Vin Vout ∧
[A2] total_charge_transfer Q1 Q3 Qout Vout Rout (&0) n ∧
[A3] sc_parameters_constraints Cp Rout Cout (&0) z ∧
[A4] summable (from 0) Vin ∧ summable (form 0) Vout
[A5] is_causal Vin ∧ is_causal Vout ⇒

transfer_function Vin Vout Cx(&1) = Cx(&2)

In this application, we present the design of an interleaved cross-coupled SC
voltage doubler, which is regulated using an analog PWM control scheme. We
demonstrate the use of our formalization of the z-Transform and its properties by
the formal modeling and verification of the SC interleaved cross-coupled SC voltage
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doubler. Similar analysis steps can be followed to analyze more converter configu-
rations such as the monolithic SC power converter and the charge pump [17].

7.2 Formal Analysis of Infinite Impulse Response Filters

Digital filters are fundamental components of almost all signal processing and com-
munication systems. The main functionality of such components are to: 1) limit a
signal within a given frequency band; 2) decompose a signal into multiple bands;
and 3) model the input-output relation of complicated systems such as mobile com-
munication channels and radar signal processing. Digital filters can be used for the
performance specifications which are very difficult to achieve by analog filters. More-
over, the functionality of digital filters can be controlled using software applications.
Due to these features, such filters are widely used in adaptive filtering applications
in telecommunications, speech recognition and biomedical devices.

An impulse response of a system describes its behavior under an external change
(mathematically, this describes the system response when the Dirac-Delta function
is applied as an input [21]). Infinite impulse response (IIR) filters have an impulse
response function which is non-zero over an infinite length of time. In practice,
IIR filters are implemented using the feedback mechanism, i.e., the present output
depends on the present input and all previous input and output samples. Such an
architecture requires delay elements due to the discrete nature of input and output
signals. The highest delay used in the input and the output function is called the
order of the filter. The time-domain difference equation describing a general M th

order IIR filter, with N feed forward stages and M feedback stages, is shown in
Figure 6.

Mathematically, it can be described as:

y[n]− 1
α0

M∑
i=1

αiy[n− i] =
N∑
i=0

βix[n− i] (31)

where αi and βi are input and output coefficients (Note that, α0 = 1 in most practical
situations [21]). In case of a time-invariant filter, αi and βi are considered constants
(either complex (C) or real (R)) to obtain the filter response according to the given
specifications.

Our main objective is to formally verify the frequency response of an IIR filter
which is given as follows:

H(ω) =
[
Num

Den

]
∗ exp

(
j ∗Arg

[
Num

Den

])
(32)
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Figure 6: Generalized Structure of an M th Order IIR Filter

where:

Num =‖ (
N∑
i=0

βicos(iω))− j(
N∑
i=0

βisin(iω)) ‖ (33)

Den =‖ (1−
M∑
i=1

αicos(iω)) + j(
M∑
i=1

αisin(iω)) ‖ (34)

Note that ‖ . ‖ represents complex norm and H(ω) represents the complex
frequency response of the filter. The function Arg(z) represents the argument of a
complex number [21]. Equation 32 can be derived from the transfer function H(z)
by mapping z on the unit circle, i.e., z = exp(j ∗ ω). The parameter ω represents
the angular frequency.

7.2.1 Formal Verification of the Frequency Response of the IIR Filter

Based on the above description of the IIR filter, our next move is to verify the
frequency response (Equation (32)), which mainly involves two major steps, i.e.,
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formal description of the model and the verification of the frequency response which
is mainly based on the derivation of the transfer function. The difference equation
(Equation (31)) describing the dynamics of IIR is similar to the LCCDE (i.e., Equa-
tion (13)). So we can model the IIR filter using the formalization of LCCDE as
follows:

Definition 22 (IIR Model).
`def ∀y M x N n. iir_model x y a_list b_list M N n =

LCCDE x y alist blist M N n

The function iir_model defines the dynamics of the IIR structure in a relational
form. It accepts the input and output signals (x, y : N→ C), a list of input and out-
put coefficients (a_lst, b_lst : (C(list))), the number of feed forward and feed-
back stages (N, M) and a variable n, which represents the discrete time.

We formally verify the frequency response of the filter given in Equation 32 as
follows:

Theorem 20 (IIR Frequency Response).
` ∀x y N blst M w alst.

cexp(j * w) IN LCCDE_ROC x y M alst ∧ is_causal_lccde x y ∧
(∀n. iir_model x y alst blst M N n) ∧
¬(z_transform x (cexp (j * w)) = Cx(&0)) ⇒
(let H = transfer_function x y (cexp (j * w)) and
num_real = vsum (0..N) (λn. ccos (Cx(&n) * w) * EL n blst) and
num_im = j * vsum (0..N) (λn. csin (Cx(&n) * w) * EL n blst) and
denom_real = Cx(&1) − vsum (1..M)

(λn. ccos (Cx(&n) * w) * EL n alst) and
denom_im = j * vsum (1..M) (λn. csin (Cx(&n) * w) * EL n alst) in
H = Cx(norm (num_real − num_im) / norm (denom_real + denom_im)) *

cexp(j * Cx(Arg((num_real − num_im) / (denom_real + denom_im)))))

where cexp and Arg represent complex exponential and argument of a complex num-
ber, respectively. The verification of the above theorem is mainly based on Theorem
14 and tedious complex analysis involving complex norms and transcendental func-
tions.

This completes our formal analysis of a generalized IIR filter which demonstrates
the effectiveness of the proposed theorem proving based approach to reason about
practical discrete-time linear systems. The availability of the z-Transform properties
greatly simplified the verification of the transfer function and frequency response.
Moreover, Theorem 20 provides the generic results due to the universal quantification
over the system parameters such as input and output coefficients (αi and βk, where
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i = 0, 1, 2, . . . ,M and k = 1, 2, . . . , N), which is not possible in case of simulation
based analysis of an IIR filter.

Thanks to the rich multivariate libraries of the HOL Light theorem prover, we
have been able to formalize the z-Transform, which is an important tool to model
discrete-time linear systems. The overall formalization reported in this paper con-
sists of around 2000 lines of the HOL Light script. Indeed the underlying formal-
ization of the z-Transform including its properties and the uniqueness took around
1700 lines of code, wheras the analysis of both applications took around 300 lines
of code. The main contribution of formalizing the z-Transform in HOL can be seen
as twofold: 1) To demonstrate the effectiveness of current state-of-the-art technol-
ogy in theorem proving to formalize the fundamentals of engineering mathematics;
2) To build a formal framework which can be used to reason about the analytical
properties of discrete-time systems in the time and frequency domain. Mostly the
Laplace transform transfer functions are converted into z-domain to evaluate in-
teresting properties and to obtain corresponding time-domain equations. The main
reason behind this choice is the difficulty to obtain the inverse Laplace transform and
issues about its uniqueness. In this perspective, the formalization of the z-Transform
can also be used to analyze the continuous-time systems using the Biliear Transform,
which is yet to be formalized in higher-order logic.

Note that the verification of the properties of the z-Transform had to be done
in an interactive way due to the undecidable nature of higher-order logic. The main
advantages of this long process are the accuracy of the verified results and digging
out all the hidden assumptions, which are usually not mentioned in the textbooks
and engineering literature. We believe that this is a one-time investment as the ver-
ification of applications becomes quite easy due to the availability of already verified
properties of the z-Transform. As mentioned in [2], the availability of fundamen-
tal libraries of mathematics can attract mathematicians to use interactive theorem
proving for verifying key lemmas in their work, so as in the case of engineers.

8 Conclusion and Future Directions

In this paper, we reported the formal analysis of discrete-time systems using the
z-Transform which is one of the most widely used transform methods in signal pro-
cessing and communication engineering. We leveraged upon the high expressiveness
and the soundness of the HOL Light theorem prover to formalize the fundamental
properties (e.g., time delay, time advance, complex translation and initial value the-
orem) of the z-Transform and linear constant coefficient difference equations. We
also discussed and presented a proof of the uniqueness of the z-Transform which is
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required to transform z-domain expressions in the time-domain. Finally, in order
to demonstrate the effectiveness of the developed formalization, we presented the
formal analysis of a switched capacitor voltage doubler and a generalized infinite
impulse response filter. Our reported work can be considered as a step towards an
ultimate goal of using theorem provers in the design and analysis of systems from
different engineering and physical science disciplines (e.g., signal processing, control
systems, biology, optical and mechanical engineering).

In future, we plan to use the formalization of the z-Transform to verify the prop-
erties of photonic filters [5, 18] and discrete-time fractional order systems [27, 25].
In both these applications, our current formalization can be substantially used in
its current state. However, the analysis of fractional order systems require more
formalization of discrete fractional derivates based on the theory of special functions
(e.g., Gamma Function [26, 13]). Another interesting direction is the development
of a formal link between the z-Transform and the signal-flow-graph [24], which is
a complementary technique to obtain the transfer functions of various engineering
systems [4, 3]. Indeed such a formal link will provide a framework to use our formal-
ization to reason about graphical models of signal processing and control systems
often realized in MATLAB Simulink.
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Abstract

Formalization of physical theories using mathematical logic allows us to dis-
cuss the assumptions on which they are based, and the extent to which those as-
sumptions can be weakened. It also allows us to investigate hypothetical claims,
and hence identify experimental consequences by which they can be tested. We
illustrate the potential for these techniques by reviewing the remarkable growth
in First Order Relativity Theory (FORT) over the past decade, and describe
the current state of the art in this field. We take as a running case study the
question “Does negative mass imply superluminal motion?”, and show how a
many-sorted first-order theory based on just a few intuitively obvious, but rig-
orously expressed, axioms allows us to formulate and answer this question in
mathematically precise terms.
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1 Axiomatization of Physical Theories

Relativity theory has been intrinsically axiomatic since its birth, since Einstein pre-
sented his 1905 theory of special relativity as a consequence of two informal postu-
lates [12]. Since then several distinct formal axiomatizations of relativity theories
(both special and general) have appeared in the literature (see, e.g., [6] and ref-
erences therein). More recently, a number of researchers have started working on
comparing and connecting these different axiomatizations, as well as developing and
improving tools to make this possible [5, 7, 8, 28, 31]. In this paper, we work in
the framework developed by the research team/school of Hajnal Andréka and István
Németi [6, 1, 4], and illustrate the techniques involved by formulating and investi-
gating the question “does negative mass imply superluminal motion?” within that
framework.

We have chosen this question for our case study because it illustrates a particu-
larly powerful application of the logical approach, viz. the ability to formulate and
reason about concepts about which we do not yet have any experimental experi-
ence. In such circumstances the ability to write down formal definitions and make
logical deductions is essential. If we can show that a concept leads inexorably to
logical paradox, we thereby provide firm evidence that the concept is unphysical.
Alternatively, we may discover physically feasible preconditions under which the
concept is logically entailed, and this in turn gives the potential to devise relevant
experimental tests. For example, we know that simple inelastic collisions between
positive-mass slower-than-light particles cannot result in particles moving faster-
than-light (tachyons). So any experiment in which tachyons are generated through
a simple inelastic collision of slower-than-light particles must entail the existence of
negative-mass particles. Conversely, as we show formally below, the possibility of
simple inelastic collisions between negative-mass particles necessarily entails the ex-
istence of tachyons. As a result, those who wish to refute the possibility of negative
mass need only refute the existence of tachyons — and the logical method can again
be used to investigate this issue. For example, a common argument against tachyons
(and hence against negative-mass particles) is that they would lead to causality vi-
olations, but the logical methods espoused in this paper can be used to show that
this argument is itself logically flawed — tachyons can exist in relativity theories
without introducing causality violations [2].

Even though negative mass has never been observed experimentally, physicists
have speculated [13] about its existence since at least the 19th century and a consid-
erable amount has been published on the subject. Even in the absence of physical
evidence, there are situations where negative mass can be invoked as a useful sim-
plifying concept. For example, negative mass can be used to simplify the dynamics
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of objects embedded in fluids [11], and similar classical situations where negative
mass is a practical concept are discussed by Meyer [24] and Ziauddin [33]. However,
there is confusion in the wider literature, because different authors deduce their find-
ings from different background assumptions—this makes it unclear which results can
sensibly be combined without accidentally generating logical inconsistencies.

One may contrast the possibility of negative mass to that of negative length.
From an intuitive standpoint the length of an object ‘ought’ to be positive, but
when lengths are used in computations it is convenient to use negative and positive
values to take account of orientation. In contrast, the concept of negative mass is not
just a convenient sign notation. It has real empirical, and hence physical, meaning.
Something has negative inertial mass if it has negative resistance to changing its
state of motion. So if we attempt to slow down a negative-mass body by pushing
against it, its velocity will actually increase instead.

In Newtonian theory, mass refers to three distinct concepts. The inertial mass
(mi) of a particle determines how its acceleration is related to the forces acting
upon it, its active mass (ma) gives rise to gravitational fields, and its passive mass
(mp) determines how it is acted upon by gravity. Applying Newton’s Third Law to
gravitational forces tells us that ma/mp is the same for all particles, while the weak
equivalence principle (that gravity and acceleration have identical effects) implies
that mi/mp is a positive constant for any given particle. Choosing units such that
ma/mp = mi/mp = 1 therefore allows us to declare that ma = mp = mi, and since
gravity is observed to be universally attractive one typically assumes that mass is
positive.

Hohmann andWohlfarth [17] note, however, that the experimental basis for these
equalities applies only to observable matter, and discuss the possibility that negative
mass particles might contribute, at least in part, to the ‘dark matter’ component of
the Universe. For their purposes a particle has negative mass if mi/mp = −1, but
since this violates the weak equivalence principle in relativity theory (which requires
mi = mp) they use a modified version of Einstein gravity in which the geodesics fol-
lowed by positive masses are defined by one space-time metric and those of negative
masses by another, and assume that there is no non-gravitational coupling between
the two types of particle (since we could otherwise have observed negative masses
already). They note that ‘bimetric’ models of this kind, which generate asymmetric
forces between positive and negative mass particles, are themselves considered by
some to be inconsistent [26], and deduce a further constraint on their construction,
viz. it is not possible to have gravitational forces of exactly equal strength and op-
posite direction acting on the two classes of test particle. However, even this result
depends on background assumptions, and anti-gravity models are known to exist in
which their theorem does not apply [18, 19].
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In perhaps the best-known relativistic analysis of negative-mass particles, Bondi
[10] successfully constructed a “world-wide nonsingular solution of Einstein’s equa-
tions containing two oppositely accelerated pairs of bodies, each pair consisting of
two bodies of opposite sign of mass”. More recently, Belletête and Paranjape [9]
have demonstrated in a general relativistic setting that Schwarzchild solutions exist
representing matter distributions which are “perfectly physical”, despite describing a
negative mass geometry outside the matter distribution. Jammer [20] has discussed
the historical and philosophical context of negative mass at length. While stress-
ing the fact that no negative-mass particle has yet been observed experimentally,
he notes that “no known physical law precludes the existence of negative masses”.
On the other hand, several unusual (and potentially unphysical) properties of nega-
tive mass bodies have been proven using various background theories ranging from
Newtonian physics to string theory [27, 16].

However, all of this knowledge is based on assumptions and frameworks which
differ from one author to the next, and it is consequently difficult to determine
to what extent the various claims are consistent with one another or even exactly
what basic assumptions are used in each framework. In the absence of experimental
evidence, using a framework where the basic concepts and assumptions are crystal
clear is essential, since any inadvertent combination of inconsistent results from the
literature would allow us to confirm any claim, no matter how fanciful.

Here we introduce just such a framework to investigate of the consequences of
having negative mass bodies. Our framework is delicate enough to formulate precise
axioms with clear meanings and formally prove the connection between the existence
of negative mass bodies and superluminal ones. At the same time, it is also simple
enough to be grasped by a college physics student with only a basic understanding
of mathematical logic.

Our results imply the existence of yet another constraint on the existence of
negative mass particles. We show formally that if such particles exist, provided they
can collide inelastically (i.e. fuse together) with ‘normal’ particles in collisions that
conserve four-momentum, then faster-than-light (FTL) particles must also exist.
We prove this by showing how, given any negative mass particle a with known 4-
momentum, it is possible to specify a suitable positive mass particle b, such that
the inelastic collision of a with b would generate an FTL body. We prove our claims
within a general axiomatic logical framework, using axioms that are relevant in both
Newtonian and relativistic dynamics. This ensures that we can be certain exactly
what is assumed and what is not, and hence confirm the absence of unintended
inconsistencies. Moreover, keeping things as general as possible ensures that our
results have the widest possible applicability.

Another important feature of our approach is that we explicitly avoid using
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unstated and potentially unjustifiable assumptions in deriving our results. Avoid-
ing such assumptions, and in particular the blanket assumption that negative-mass
particles cannot exist, is important in this context, since it allows us to provide
potentially educational explanations as to why such phenomena may or may not
be physically feasible. In contrast, if we simply assert a priori that negative mass
is unphysical, the only answer we can give to the question “why?”, is “because we
say so”. For example, it might be argued informally that the entailed existence of
FTL particles, proven in this paper, would itself entail the possibility of causality
paradoxes, so that the consequences of negative mass particles are not ‘reasonable’.
But informal arguments of this nature can be flawed: using our formal approach,
we and our colleagues have recently shown that spacetime (of any dimension 1 + n)
can be populated with particles and observers in such a way that faster-than-light
motion is possible, but this does not lead to the ‘time travel’ situations (so beloved
of Star Trek fans) that give rise to causality problems [2]. Consequently, the fact
that negative-mass particles entail the existence of FTL particles cannot, of itself,
be used to argue logically against their existence.

Formal axiomatization also allows us to address consistency issues and what-if
scenarios. It is possible to show, for example, that the consistency of relativistic
dynamics with interacting particles having negative relativistic masses follows by
a straightforward generalization of the model construction used by Madarász and
Székely [23] to prove the consistency of relativistic dynamics and interacting FTL
particles, see also [30]. The same approach allows us to derive and prove the validity
of key relativistic formulae. For example, we can also show logically that all inertial
observers of any particle must agree on the value of m

√
|1− v2|, where m is the

particle’s relativistic mass and v its speed (c = 1). This formally confirms the
widely-held ‘popular’ belief that the observed relativistic mass and momentum of a
positive-mass FTL particle must decrease as its relative speed increases [21].

We introduce our results in two stages. In Section 2, we show informally that
there are several simple ways to create FTL particles using inelastic collisions be-
tween positive and negative relativistic mass particles. Then in Section 3, we recon-
struct our informal arguments within an axiomatic framework so as to make explicit
all the assumptions needed to prove our central claim, that the existence of particles
with negative relativistic mass necessarily entails the existence of FTL particles.

In addition to its pedagogic advantages, actively restating and proving our state-
ments formally has a further advantage over the informal approach. The mechanics
of proof construction require us to identify all of the tacit assumptions underpinning
our informal arguments, thereby revealing which assumptions are relevant and which
are unwarranted or unnecessary. Identifying and avoiding those which are unneces-
sary is itself beneficial, since including different sets of conflicting, but unnecessary,
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hypotheses could potentially prevent us fusing different areas of physics – e.g., grav-
ity and quantum theory – into a single coherent framework. This is, intriguingly,
a task with which automated interactive theorem provers [32] are increasingly able
to assist, both in terms of proof production and automatic checking of correctness.
Indeed, this approach is already leading to the production and machine-verification
of non-trivial relativistic theorems [15, 29].

In summary, an obvious didactic benefit of using a formal axiomatic framework
for investigating questions such as the one investigated here is the elimination of
tacit assumptions. In an axiomatic framework it is clear what is assumed and what
is not, as well as where these assumptions are used. (For a more delicate discussion
on the epistemological significance of the axiomatic framework used in this paper,
see Friend’s independent study [14] of this approach.)

2 Generating FTL particles from negative mass parti-
cles

Let us assume that particles do indeed exist with negative relativistic mass, and
that it is possible for such particles to collide inelastically with ‘normal’ particles.
As we now illustrate informally, the existence of FTL particles (tachyons) follows
almost immediately, provided we assume that four-momentum is conserved in such
collisions. For simplicity, we take c = 1. Throughout this paper, we will always
understand ‘mass’ to mean ‘relativistic mass’.

Recall first that the four momentum of a particle b is the four-dimensional vector
(m, p), where m is its relativistic mass and p its linear momentum (as measured
by some inertial observer whose identity need not concern us, because switching
to another observer may change the values of certain quantities but not the main
phenomena). Notice also that the particle b is a tachyon if and only if |m| < |p|
(i.e. its observed speed is greater than c = 1), and that all inertial observers agree
as to this judgement (if one inertial observer considers b to be travelling faster than
light, they all do — this is because all inertial observers consider each other to be
travelling slower than light relative to one another. For a machine-verified proof of
this assertion using our approach, see the work of Stannett and Németi [29]).

In this paper, we concentrate on three special types of collisions so as to em-
phasize how few background assumptions (e.g., about what kinds of positive mass
particles exist) are needed to create FTL particles by inelastically colliding particles
of positive and negative mass. We will assume the existence of two colliding particles
a and b, where a has negative mass m < 0 and b has positive mass M > 0, which
move along the same spatial line (though possibly in opposite directions). Taking
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the common line of travel to be the x-axis, positive in the direction of b’s travel, the
four-momenta of a and b can be written (m, p, 0, 0) and (M, P, 0, 0), respectively, for
suitable values of p and P . Assuming that four-momentum is conserved during the
collision, the four-momentum of the particle c generated by the fusion of a and b
will be (M + m, P + p, 0, 0), and this particle will be a tachyon provided

|M + m| < |P + p| (1)

If this tachyon has negative mass and positive momentum, it moves in the negative
x-direction (it is an unusual property of negative-mass particles that their velocity
and momentum vectors point in opposite directions); if it has positive-mass and
positive momentum it moves in the positive x-direction. By definition, M > 0 > m,
and b has both positive mass (M > 0) and positive momentum (P > 0), since its
motion defines the positive x-direction.

2.1 First thought experiment

Suppose a travels slower than light, while b moves at light-speed, so that the four-
momenta of a and b can be written (m, p, 0, 0) and (M, M, 0, 0), respectively. Ac-
cording to (1), the particle created by their collision will be a tachyon provided

|M + m| < |M + p| (2)

There are various ways in which this can happen, depending on the values of m and
p (see Fig. 1 and Proposition 1). Notice that |p| < |m| since a travels slower than
light.

The case when |m| = M , i.e. M = −m, is ambiguous irrespective of the velocities
of the colliding particles a and b. Since M + m = 0 and |p| < |m| = M , the linear
momentum M + p of the resulting particle c must be positive, even though it has
zero relativistic mass. In terms of the space-time diagram (Fig. 2), this means
that the particle’s worldline is horizontal, i.e. it ‘moves’ with infinite speed. In these
circumstances, the question whether c moves in the positive or negative x-direction is
meaningless. However, like other observer-dependent concepts such as simultaneity
or the temporal ordering of events, this indeterminacy does not lead to a logical
contradiction [23].

2.2 Second thought experiment

Suppose b is stationary, i.e. P = 0. By arguments similar to those above, this will
result in an FTL particle c whenever |m|+ |p| > M > |m| − |p|, and its direction of
travel will be determinate provided M 6= −m. See Fig. 3 and Proposition 2.
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x

t

m = −2M − p

p = −M

p = −mp = m

m = −M

c

a

(m, p)
bM

M

Figure 1: Illustration for generating an FTL particle by colliding a negative rela-
tivistic mass particle with a particle moving with the speed of light.

c1c1

ab

Figure 2: The “inelastic” collision of two particles having opposite relativistic masses
is ambiguous in the sense that in this case we have two possible outcomes satisfying
the conservation of four-momentum.

2.3 Third thought experiment

Suppose a and b have similar, but oppositely-signed, masses, and that they collide
‘head-on’ while travelling with equal speeds in opposite directions (relative to some
observer, whose identity need not concern us). If the difference in the absolute values
of their masses is small relative to their common speed, the resulting particle will
be FTL because it will have a small mass relative to its large momentum (which
is greater than those of the colliding particles as they have opposite masses); see
Proposition 3 for more details.
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c

a
b

|p|

|m|
M

|m|+ |p|

|m| − |p|

Figure 3: Illustration for generating an FTL particle by colliding a negative rela-
tivistic mass particle with a stationary particle of positive relativistic mass.

2.4 FTL particle creations requiring negative relativistic mass

We have seen above that the existence of negative-mass particles implies the exis-
tence of FTL particles. Conversely, it is easy to see that an inelastic collision between
two slower-than-light particles having positive relativistic masses always leads to a
slower-than-light particle. Consequently, the only way in which an inelastic colli-
sion between slower-than-light particles can create an FTL particle is if incoming
particles can have negative relativistic masses.

In particular, if we impose the condition that such collisions are the only mech-
anism by which FTL particles can be created, then the existence of FTL particles
implies the existence of negative-mass particles. While this suggests that tachyons
and negative-mass particles are equally ‘exotic’, this is, of course, not the case, since
the argument that FTL particles require the existence of negative-mass particles
relies on the assumption that inelastic collisions are the only mechanism by which
FTL particles can be created.

This is by no means a trivial assumption; indeed we have demonstrated else-
where a consistent model of spacetime in which FTL particles exist, but in which
no collisions are posited [2].
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3 Axiomatic reconstruction
We have seen three thought experiments in which FTL particles are generated by
colliding an arbitrary negative mass particle with an appropriate positive mass one.
However, we have not explicitly identified the background assumptions needed to
prove our claims concerning these thought experiments. In this section, we dig
deeper by identifying these background assumptions; these will turn out to be so
general that they are consistent with both relativistic and classical dynamics. To
do so, we now reconstruct the above arguments in a precise axiomatic framework,
in which each of the used background assumptions will be stated as an explicit
axiom. Indeed, making all tacit assumptions explicit can be seen as one of the main
advantages of the axiomatic method. Readers interested in the wider context are
referred to [23, 29, 21].

3.1 Quantities and Vector Spaces

To formulate the intuitive image above, we need some structure of numbers de-
scribing physical quantities such as coordinates, relativistic masses and momenta.
Traditional accounts of relativistic dynamics take for granted that the basic number
system to be used for expressing measurements (lengths, masses, speeds, etc.) is the
field R of real numbers, but this assumption is far more restrictive than necessary.1
Instead, we will only assume that the number system is a linearly ordered field Q
equipped with the usual constants, zero (0) and one (1); the usual field operations,
addition (+), multiplication (·) and their inverses; and the usual ordering (≤) and
its inverse; we also assume that the field is Euclidean, i.e. positive quantities have
square roots. Formally, this is declared as an axiom:

AxEField The structure 〈Q, 0, 1, +, ·,≤〉 of quantities is a linearly ordered field (in
the algebraic sense) in which all non-negative numbers have square roots, i.e.
(∀x ∈ Q)((0 ≤ x)⇒ (∃y ∈ Q)(x = y2)).

We write
√

x for this root, which can be assumed without loss of generality to be
both unique and non-negative (regarding machine-verified proofs of this and other
relevant claims concerning Euclidean fields, see [29]).

1The assumption that R is the correct number system for expressing lengths (say) is experi-
mentally untestable. Given that we only have access to finitely many measurements, and many of
these are (necessarily computable) approximations to ‘true’ (possibly uncomputable) values, it is
not experimentally possible to decide if all non-empty bounded sets of lengths have a supremum,
as would be the case if the use of R were physically necessary.
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We choose to use Euclidean fields, as this allows us to refer to ‘lengths of vectors’
and considerably simplifies the proofs. In practice proofs can generally be modified
(by referring instead to ‘squared length’) to work over any arbitrary ordered field,
such as the field of rational numbers. However, that also makes them more compli-
cated. For a paper discussing special relativity in this framework, see [22].

3.2 Inertial particles and observers

We denote the set of physical bodies (things that can move) by B. This includes
the sets IOb ⊆ B of inertial observers, Ip ⊆ B of inertial particles. Given any
inertial observer k ∈ IOb and inertial particle b ∈ Ip, we write w`k(b) ⊆ Q4 for the
worldline of particle b as observed by k. The coordinates of x̄ ∈ Qn are denoted
by x1, x2, . . . , xn.

The following axiom asserts that the motion of inertial particles are uniform and
rectilinear according to inertial observers.

AxIp For all k ∈ IOb and b ∈ Ip, the worldline w`k(b) is either a line, a half-line or
a line segment2.

Suppose observer k ∈ IOb sees particle b ∈ Ip at the distinct locations x̄, ȳ ∈ Q4.
Then its velocity according to k is the associated change in spatial component
divided by the change in time component,

vk(b) :=


space(x̄,ȳ)
time(x̄,ȳ) if time(x̄, ȳ) 6= 0

undefined otherwise

where space(x̄, ȳ) := (x2−y2, x3−y3, x4−y4) and time(x̄, ȳ) := x1−y1. The length3

of the velocity vector (if it is defined) is the particle’s speed,

vk(b) := |vk(b)|.

By AxIp, these concepts are well-defined because w`k(b) lies in a straight line. So
the velocities of the considered particles are constants.

If vk(b) is defined, we say that b is observed by k to have finite speed, and write
vk(b) <∞. The anomalous case time(x̄, ȳ) = 0 corresponds to a situation where all

2Taking x̄ and ȳ to be of sort Q4, and λ to be of sort Q, these concepts are defined formally
as follows. A line is a set of the form {z̄ | (∃x̄, ȳ, λ)(z̄ = λx̄ + (1 − λ)ȳ)}. A half-line is a set
of the form {z̄ | (∃x̄, ȳ, λ)((0 ≤ λ)&(z̄ = λx̄ + (1 − λ)ȳ))}. A line segment is a set of the form
{z̄|(∃x̄, ȳ, λ)((0 ≤ λ ≤ 1)&(z̄ = λx̄+ (1− λ)ȳ))}.

3The Euclidean length, |x̄|, of a vector x̄ is the non-negative quantity |x̄| =
√
x2

1 + · · ·+ x2
n.
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points in w`k(b) are simultaneous from k’s point of view, so that k considers the
particle to require no time at all to travel from one spatial location to another.

3.3 Collision axioms

In this subsection, we introduce some very simple axioms concerning the dynamics
of collisions, and show that the existence of negative relativistic mass implies the
existence of faster-than-light (FTL) inertial particles.

Suppose an inertial observer k sees two inertial bodies travelling at finite speed
fuse to form a third one at some point x̄. In this case, the worldlines of the two
incoming particles terminate at x̄, while that of the outgoing particle originates
there. Formally, we say that an inertial particle b is incoming at x̄ (according to
k) provided x̄ ∈ w`k(b) and x̄ occurs strictly later (according to k) than any other
point on w`k(b), i.e. ȳ ∈ w`k(b) & ȳ 6= x̄ ⇒ y1 < x1. Outgoing bodies are
defined analogously. An inelastic collision between two inertial particles a and b
(according to observer k) is then a scenario in which there is a unique additional
particle c ∈ Ip and a point x̄ such that a and b are incoming at x̄, c is outgoing at x̄.
We write inecollk(ab : c) to denote that the distinct inertial particles a and b collide
inelastically, thereby generating inertial particle c (according to observer k). The
relativistic mass of inertial particle b according to observer k is denoted by mk(b).

ConsFourMomentum Four-momentum is conserved in inelastic collisions of inertial
particles according to inertial observers, i.e.

inecollk(ab : c)⇒
mk(c) = mk(a) + mk(b) &

mk(c)vk(c) = mk(a)vk(a) + mk(b)vk(b)

The next axiom, AxInecoll, states that inertial particles moving with finite speeds
can be made to collide inelastically in any frame in which their relativistic masses
are not equal-but-opposite. Since a collision of particles having equal but opposite
relativistic masses does not lead to an inelastic collision according to our formal
definition, we do not include this case in this axiom (this does not mean that such
particles cannot collide, just that such a collision will not comply with our definition
of inelasticity in the associated frame because the third participating particle has
infinite speed).
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a

b

c′

a′

b′

Figure 4: Illustration for axiom AxInecoll

AxInecoll If k ∈ IOb and a, b ∈ Ip such that vk(a) < ∞, vk(b) < ∞ and mk(a) +
mk(b) 6= 0, then there are a′, b′ ∈ Ip such that a′ and b′ collide inelastically,
with mk(a′) = mk(a), vk(a′) = vk(a), mk(b′) = mk(b) and vk(b′) = vk(b).4
See Fig. 4.

4 Formulating the thought experiments
Here we are going to formalize and prove the thought experiments of Subsections 2.1,
2.2 and 2.3.

Formula ∃NegMass below says that there is at least one inertial particle of finite
speed and negative relativistic mass.

∃NegMass There are k ∈ IOb and a ∈ Ip such that mk(a) < 0 and vk(a) <∞.

Formula ∃FTLIp below says that there is at least one faster than light inertial
particle.

∃FTLIp There are k ∈ IOb and b ∈ Ip such that 1 < vk(b) <∞.

4Because here we use the framework of [3], we express possible worldlines of particles using
existential quantifiers as is usual in frameworks of classical logic. See [25] for an axiomatic framework
where this possibility is expressed instead by a modal logic operator.
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4.1 First thought experiment

Axiom AxThExp1 below says that the thought experiment described in Subsection 2.1
can be done by asserting that inertial observers can send out particles moving with
the speed of light 1 in any direction and having arbitrary positive relativistic mass.

AxThExp1 For k ∈ IOb, m ∈ Q and v ∈ Q3 for which m > 0 and |v| = 1, there is
b ∈ Ip such that vk(b) = v and mk(b) = m.

Proposition 1. Assume ConsFourMomentum, AxEField, AxIp, AxInecoll, AxThExp1.
Then

∃NegMass ⇒ ∃FTLIp. (3)

Proof. By axiom ∃NegMass, there is an inertial observer k and inertial particle a
such that mk(a) < 0 and vk(a) <∞. Let v ∈ Q3 for which |v| = 1. Then by axiom
AxThExp1, there is an inertial particle b such that mk(b) = −2mk(a) and

vk(b) =

v if vk(a) = 0,
−vk(a)
vk(a) if vk(a) 6= 0.

By axiom AxInecoll, there are inelastically colliding inertial particles a′, b′ and c′

such that inecollk(a′b′ : c′), mk(a′) = mk(a), vk(a′) = vk(a), mk(b′) = mk(b) and
vk(b′) = vk(b). By ConsFourMomentum,

mk(c′) = mk(a′) + mk(b′)
= mk(a) + mk(b) = −mk(a)

(4)

and

mk(c′)vk(c′) =

−2mk(a)v if vk(a) = 0,

mk(a)vk(a) + 2mk(a)vk(a)
vk(a) if vk(a) 6= 0.

(5)

Hence

vk(c′) =

2v if vk(a) = 0,

−(vk(a) + 2)vk(a)
vk(a) if vk(a) 6= 0.

(6)

Therefore, vk(c′) = |vk(c′)| > 1 and vk(c′) < ∞; and this is what we wanted to
prove.
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4.2 Second thought experiment

Axiom AxThExp2 below ensures the existence of the particle having positive rela-
tivistic mass used in the thought experiment described in Subsection 2.2.

AxThExp2 For every k ∈ IOb and m > 0, there is b ∈ Ip such that vk(b) = 0 and
mk(b) = m.

Formula ∃MovNegMass below asserts that there is at least one moving inertial
particle of finite speed and negative relativistic mass.

∃MovNegMass There are k ∈ IOb and b ∈ Ip such that mk(b) < 0 and 0 < vk(b) <∞.

For the sake of economy, we use axiom ∃MovNegMass instead of ∃NegMass because
in this case we do not have to assume anything about the possible motions of inertial
observers or the transformations between their worldviews. We note, however, that
these two axioms are clearly equivalent in both Newtonian and relativistic kinematics
(assuming that inertial observers can move with respect to each other).

Proposition 2. Assume ConsFourMomentum, AxEField, AxIp, AxInecoll, AxThExp2.
Then

∃MovNegMass ⇒ ∃FTLIp. (7)

Proof. By axiom ∃MovNegMass, there is an inertial observer k and inertial particle
a such that mk(a) < 0 and 0 < vk(a) < ∞. By axiom AxThExp2, there is an
inertial particle b such that mk(b) = −mk(a) (1 + vk(a)/2) and vk(b) = 0. By axiom
AxInecoll, there are inelastically colliding inertial particles a′, b′ and c′ such that
inecollk(a′b′ :c′), mk(a′) = mk(a), vk(a′) = vk(a), mk(b′) = mk(b) and vk(b′) = vk(b).
By ConsFourMomentum,

mk(c′) = mk(a′) + mk(b′)

= mk(a) + mk(b) = −mk(a)vk(a)
2

(8)

and
mk(c′)vk(c′) = mk(a)vk(a). (9)

It follows that
vk(c′) = −2vk(a)

vk(a) ,

and hence that vk(c′) = 2 > 1, which is what we wanted to prove.
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4.3 Third thought experiment

Finally let us introduce the following axiom ensuring the existence of the particles
having positive relativistic mass needed in the thought experiment of Subsection 2.3.

AxThExp3 For all ε > 0, k ∈ IOb and a ∈ Ip, there is b ∈ Ip such that (1+ε)|mk(a)| <
mk(b) < (1 + 2ε)|mk(a)| and vk(a) = −vk(b).

Proposition 3. Assume ConsFourMomentum, AxEField, AxIp, AxInecoll, AxThExp3.
Then

∃MovNegMass ⇒ ∃FTLIp. (10)

Proof. By axiom ∃MovNegMass, there is an inertial observer k and inertial particle
a such that mk(a) < 0 and 0 < vk(a) < ∞. Let 0 < ε < vk(a). Then by axiom
AxThExp3, there is an inertial particle b such that (1 + ε)|mk(a)| < mk(b) < (1 +
2ε)|mk(a)| and vk(b) = −vk(a).

c

a

b

|mk(a)|

ε · |mk(a)|

ε · |mk(a)|

Figure 5: Illustration for the proof of Proposition 3

By axiom AxInecoll, there are inelastically colliding inertial particles a′, b′ and
c′ such that inecollk(a′b′ : c′), mk(a′) = mk(a), vk(a′) = vk(a), mk(b′) = mk(b) and
vk(b′) = vk(b). By ConsFourMomentum,

ε|mk(a)| < |mk(c′)| < 2ε|mk(a)| (11)

and
2|mk(a)|vk(a) < (2 + ε)|mk(a)|vk(a) < |mk(c′)vk(c′)|. (12)
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Hence

vk(c′) = |vk(c′)| > 2|mk(a)|vk(a)
2ε|mk(a)| >

vk(a)
ε

. (13)

Therefore, 1 < vk(c′) <∞; and this is what we wanted to prove.

5 Concluding remarks

Using only basic postulates concerning the conservation of four-momentum, we
have shown axiomatically that the existence of particles having negative relativis-
tic masses implies the existence of FTL particles. The following are the two most
straightforward applications of this result.

• If an experiment eventually shows the existence of particles having negative
masses, then we will know that FTL particles must also exist. If evidence
exists suggesting otherwise, our approach would then imply that one or more
of the natural assumptions encoded in our axioms must be false. This in turn
would provide information suitable for guiding further experimentation.

• Similarly, if we can prove that FTL particles cannot exist, and no evidence
can be found suggesting that the natural physical assumptions encoded by our
axioms are invalid, then this can be used to prove the non-existence of particles
having negative masses.

It is also worth noting that we have made no restrictions on the worldview
transformations between inertial observers. Hence our axioms are so general that
they are compatible with both Newtonian and relativistic kinematics. In addition to
making our axioms relatively easy for students to understand, and hence our results
more believable, the benefit of being so parsimonious with the basic assumptions is
that it makes results obtained using our axiomatic method that much more difficult
to challenge, because so few basic assumptions have been made concerning physical
behaviours in the “real world”.
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Abstract

We propose that strength for defeasible arguments be understood as resis-
tance to rebuttals: the greater the resistance, the stronger the argument. We
may explicate this characterization through L. J. Cohen’s method of relevant
variables. A relevant variable is a condition which may hold in different ways
in different situations and may hold more or less, and not just all or none. In
some cases, if a variable holds in some way or to some extent, some universal
generalization, most simply of the form that all Ps are Qs, may be counter-
exampled. Likewise the corresponding warrant from Px to infer Qx will be
rebutted by this condition. The more such variants of such variables do not
produce counterexamples or rebuttals, the stronger the generalization and its
associated warrant and the stronger the argument. A canonical test systemat-
ically exposes a generalization to progressively greater combinations of rele-
vant variables. The more levels passed without counterexample, the stronger
the generalization. Our strategy for explicating argument strength requires
defining the concept of a relevant variable and indicating a canonical way
to order relevant variables in constructing a canonical test. After explicating
Cohen’s concept, we develop how relevant variables may be ordered through
appealing to the concept of plausibility and Rescher’s account of plausibility
indexing.
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1 Introduction

Consider the following argument:

1. Martina will do well in college, because

2. She scored high on the Scholastic Aptitude Test and

3. She has demonstrated high scholastic motivation.

Intuitively, we want to count this argument stronger than the arguments from (2)
or (3) alone as premises to (1) as conclusion. But why? Before proceeding further,
it will be useful to review certain aspects of the Toulmin model (See [10, pp. 97–
107]), his view of the “layout of arguments.” Toulmin begins by distinguishing
claims, data, and warrants. A claim is what an argument seeks to establish or
support. Data are facts–using “fact” very broadly–put forward to support a claim.
A warrant answers the question of how one gets from the data to the claim. It is
the principle of reasoning used in the argument, an inference licence.

Consider the warrant of the argument from (2) and (3) to (1):

From: x scored high on the Scholastic Aptitude Test and x has
demonstrated high scholastic motivation

To infer: x will do well in college1

The argument from this conjunction is not subject to a rebutting defeater the way
an argument from just (2) or (3) to (1) is. Within the framework of formal dispu-
tation [8, pp. 1–24], we can model the genesis of the argument from (2) to (1) this
way:

Proponent Challenger

(1) Martina will do well in college. Please show that Martina will do
well in college.

(2) Martina scored high on the
Scholastic Aptitude Test.

The challenger can obviously attack the proponent’s argument by raising the issue
of a rebutting defeater, a rebuttal for short, a condition logically consistent with
the premise but negatively relevant to the conclusion, such as Martina’s having low
scholastic motivation. She can extend the exchange this way:

1Notice that we identify the warrant as licencing the move from the conjunction of the premises
to the conclusion. We are not reading this argument as having two warrants, one from (2) to (1) and
the other from (3) to (1), their separate strength to be somehow arithmetically combined to determine
the overall strength of the argument.

928



Estimating the Strength of Defeasible Arguments

(2) Martina scored high on the
Scholastic Aptitude Test.

Ceteris paribus Martina will not
do well in college if she does
not have high scholastic motiva-
tion. But for all you have shown,
she does not have high scholastic
motivation, i.e. please show that
she does.

The proponent’s response to the challenger’s second move may very well be to add
the second premise above, i.e. (3). Clearly, the challenger could not have introduced
her rebuttal to the move from (2) and (3) conjointly to (1) because it would be
inconsistent with the second conjunct altogether. If the proponent had presented
the conjunction of (2) and (3) as the initial move to his argument, he would have
made a pre-emptive strike against the challenger’s attack at step (2). The rebuttal
is already countered. The moral of the story, as we see it, is that the warrant of the
argument from (2) and (3) to (1) is more rebuttal-resistant than the warrant from
the argument just from (2) alone to (1) or from (3) alone to (1). We propose then
that comparative argument strength (for defeasible arguments) be understood as
resistance to rebuttals: the more resistant to rebuttal, the stronger the argument.

2 The Method of Relevant Variables

We further propose that we may refine this intuitive thesis and frame an argument
for it by developing L. J. Cohen’s account of the method of relevant variables in
[2, 3, 4]. Suppose we observe a correlation between occurrences ofm-ary properties
P and Q. In accordance with Cohen’s conception, let us assume the correlation is
universal rather than statistical. Our observations then back the warrant

From: Px1, . . . ,xm

To infer: Qx1, . . . ,xm

We have made our observations in a default condition. There may be one or more
other factors, operating in the current case, needed for something’s being a Q even
when it is P. Likewise other factors preventing its being a Q are not operating in
this case. We have made no attempt to investigate whether varying the degree to
which these other factors are present affects whether there may be Ps which are
not Q. These other factors are variables and the degree to which they are present
are variants of that variable. Should an instance of P which is also an instance of a
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variant v of some variableV not beQ, we have a rebuttal to our warrant. Likewise,
if we were to take

(∀x1) . . . (∀xm)(Px1, . . . ,xm ⊃Qx1, . . . ,xm)

as the associated generalization of the warrant, we would have a counterexample
to that generalization.

Since the cases in our default situation show constant conjunction, but no vari-
ables have been varied, we say that our warrant is backed to degree 1 or alter-
natively that our universal generalization has received first level of support, sup-
port to degree 1/n, where n is the number of recognized relevant variables. In
the method of relevant variables, we identify and order a finite number n of these
variables. We then conduct a canonical test. At degree one, we consider just the
default situation, where we vary only the values of the first variable. Finding no
counterexample at this level, we proceed to level two of the test, where we consider
variants of the second relevant variable singly and in combination with values of
the first variable. If no counterexample appears, the warrant and its associated
generalization pass level two. The test then continues until some level i+1 reveals
a counterexample or we proceed all the way through to level n with no counterex-
ample appearing. A counterexample at i + 1 but at no j ≤ i allows us to say that
the generalization is supported to degree i/n. No counterexample appearing at
any level of the test constitutes n/n level of support and, in Cohen’s view, identi-
fies the generalization as a law of nature. This is not to say that the generalization
is a logically necessary statement or that the evidence gathered by the canonical
test necessitates the generalization. There may be unrecognized relevant variables
with variants which do constitute counterexamples. There is no logical impossi-
bility here. But until and unless such a relevant variable appears, we are justified
in reasoning according to our warrant without qualification or hedging. We are
proposing then that we may estimate argument strength through degree of sup-
port by a canonical test. Where i > j, a level of support to i/n is greater than a level
of support to j/n.

Our account of the method of relevant variables is seriously incomplete on two
grounds. First, how does one define or identify a relevant variable? Second, how
does one order the set of relevant variables once they are identified? Cohen has
addressed the first problem, which we address in the next section. The ordering
question will occupy the remaining sections of this paper.
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3 The Problem of Defining Relevant Variables

We must understand a relevant variable relative to a universal generalization and,
following Cohen, should understand it relative to a set of universal generalizations.
Although his characterization of a relevant variable is complex, natural kinds may
furnish a straightforwardmotivation. Giraffes and horses are distinct natural kinds
and there is no overlap between them. Clearly, without worrying about biological
issues, wemay regard giraffes and certain other natural kinds as all species within a
given genus. Where s1, . . . ,sk are the species within a genus G,Si ,1 ≤ i ≤ k indicate
the predicates saying that an element e is a member of species si . We refer to
these predicates as species predicables. In addition, there will be a distinct set of
predicables, mutually exclusive of the Si ,Tj ,1 ≤ j ≤ k. Following Cohen, we may
call these the target predicables. Observation may indicate that for some species
predicables and target predicable, universal generalizations hold of that species,
i.e. observation confirms ‘(∀x)(Six1, . . . ,xn ⊃ Tjx1, . . . ,xn)’ holds. In the simplest
case, where Si ,Tj are monadic predicates, we have that observation confirms that
‘(∀x)(Six ⊃ Tjx)’ holds. For simplicity, let us consider just monadic predicates here.

Consider just three natural kinds of animals, horses, giraffes, and zebras. For
the purposes of our discussion here, let us call these three kinds species and let
Sh,Sg ,Sz be the three species predicables. Suppose we want to test the extent to
which some generalization ‘(∀x)(Px ⊃ Qx)’ holds of giraffes. We have observed a
constant correlation. Could that correlation be counterexampled? Let V1, . . . ,V5

be properties which can hold of giraffes, horses, and zebras to some degree. Con-
sider V1. Let v i1 indicate a particular degree of V1. Where e is a horse, suppose
observation shows that ‘(Pe & v i1e)& ∼ Qe’ holds, i.e. e is a counterexample to
‘(∀x)(Px ⊃ Qx)’ for horses. Given the analogy of horses, giraffes, and zebras, let
us count the union of the sets of horses, giraffes, and zebras as a genus containing
these three species. Thus, it is possible that where ‘h’ indicates a horse, v i1h consti-
tutes a counterexample to ‘(∀x)(Px ⊃Qx)’ for horses, as may ‘v i1h’ for other degrees
of V1. That is, observation has shown that V1 is a potential relevant variable for
the class of horses when the issue is whether all horses which are Ps are also Qs.
We understand our relevant variables to be relevant variables for that genus. The
observation of the failure of a universal generalization for horses when some value
of a relevant variable also holds raises the question of whether the generalization
will fail for other species within that genus, in particular giraffes, even if the re-
sults of no test of whether the generalization for giraffes holds, despite values of
the relevant variable also holding, have been observed.

Consider some natural kind, e.g. tiger, wasp, tulip, gold. Observation may
show that certain generalizations hold constantly or universally for the members of
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this natural kind. For example, restricting our universe of discourse just to tigers,
“Whenever offered meat, it will eat the meat,” ‘(∀x)(Ox⊃Ex)’. The question now
arises of whether this is simply an accidental correlation or whether there is a more
law-like connection for tigers between being offered meat and eating the meat of-
fered. The class of tigers is a subset of a wider class, if anything the class of felines.
Let us suppose, for sake of illustration, that some members of that wider class will
refuse meat under certain circumstances, i.e. ‘(Ox & Rx) & ∼ Ex’ holds of those
members of that class. ‘Rx’ abbreviates some further property, which when hold-
ing of some feline, the animal instances a counterexamle to ‘(∀x)(Ox⊃Ex).’ Like-
wise ‘Rx’ constitutes a rebuttal to the inference from ‘Ox’ to ‘Ex.’ As lions, cougars,
pumas, house cats are subclasses of felines, so observation may show that some
members of some of these classes under some conditions instance courterexam-
ples to ‘(∀x)(Ox⊃Ex).’ Let V1, ...,Vn list these counter-exampling properties. We
may assume that at least some of the Vi come in degrees. The degree vi−j consti-
tutes a variant of the variable Vi . V1, . . . ,Vn then are the relevant variables for the
class of felines (at least those relevant variables which are known for that class).
The inquiry via the method of relevant variables on whether being offered meat
and eating the meat offered are more connected in a law-like way than what an
observation of constant co-variation among tigers shows consists of offering meat
to one or more tigers which satisfy some degree of a recognized relevant variable
Vi , recognized through observation of members of other species in the genus who
refuse meat when offered and who also satisfy a degree of some Vi . If the tigers
all satisfying some degree of the relevant variable all eat the meat offered, then
our canonical test has shown the generalization “Whenever offered meat, the tiger
will eat the meat,” has passed the ith level of the test. Of course, the generaliza-
tion may fail for other relevant variables which have yielded counterexamples for
other members of the genus. However, the fewer the relevant variables which yield
counterexamles when tested on tigers, the tighter the connection between ‘Ox’ and
‘Ex’ for tigers.

It is important to emphasize two points here.2 First, recognizing that when
members of some species, other than tigers but within the same genus, satisfy some
property P (to some degree) in addition to O, they fail to satisfy E, we have identi-
fied P as a potential or possible relevant variable for tigers. If there have been no
previous tests of the generalization ‘(∀x)(Ox⊃Ex)’ for tigers, until we run a canoni-
cal test on tigers which satisfy ‘O’ and ‘P’ to some degree and find failure to satisfy
‘E’, we shall not have found that ‘P’ or degrees of ‘P’ yield counterexamples to

2We wish to thank an anonymous referee of IfCoLog for pointing out to us the objections these
two points seek to meet.
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‘(∀x)(Ox⊃Ex).’ The point is that from V ’s being a relevant variable for some genus,
we cannot infer that values of V will generate counterexamples for all the species
within the genus.

The second point to emphasize is that where ‘P i ’ expresses the property of satis-
fying the ith degree of the relevant variable P, ‘P i ’ and ‘O’ must be simultaneously
satisfiable, i.e. we can consistently predicate ‘P i ’ and ‘O’ of any element in the
species over which we are testing ‘(∀x)(Ox⊃Ex).’ Recognizing this point allows us
to meet an objection to our understanding of ‘rebuttal’ and ‘relevant variable.’ Sup-
pose we have included in our genus of which tiger is one species, a species which
cannot digest meat and because of this the members of the species will refuse meat
when offered. Would values of the variable ‘not being able to digest meat’ (surely
not being able to digest meat may come in degrees) constitute potential rebuttals to
the generalization that tigers offered meat eat the meat. Should we count ‘not being
able to digest meat’ a relevant variable when setting up a canonical test for meat
eating for tigers? I believe the answer is no. Although the property of being a tiger
may be logically compatible with being unable to digest meat, one can argue that
not being able to digest meat is essentially incompatible with being a tiger .It would
certainly be a very unusual tiger who could not digest meat. In [6], Kornblith points
out that objects belonging to a natural kind (or in some cases an artificial kind) have
and can be perceived to have “insides” and “outsides.” “Outsides” involve super-
ficial properties of an object, such as color or–for certain animals–furriness. These
properties are open to inspection through direct perception. “Insides” by contrast
deal with causal factors which may explain the outside or surface properties and
which do determine whether an object is a member of that kind. If one does not
object to speaking of essences, the “insides” constitute the essence of the object.
(See [6, Chapter 4 and especially 4.3].) Hence, lacking an essential property is an
indication that an object is not a member of that natural kind.

Properties such as mode of nutrition and mode of reproduction are essential
properties of a natural kind of living thing. So is a tiger who cannot digest meat
really a tiger? Obviously we cannot entertain an exploration of that issue here.
What we can say is that if we count being able to digest meat as of the essence or
consequent upon the essence of being a tiger, then not being able to digest meat
should not be counted among the relevant variables in setting up a canonical test
of ‘(∀x)(Ox⊃Ex),’ for tigers since the property is incompatible with being a tiger.
We are dealing with an essential, if not logical, incompatibility. On the other hand,
if being able to digest meat is not of the essence of being a tiger, we still need
not include not being able to digest meat (to some degree) as a relevant variable
in setting up a canonical test, if as a matter of fact it is known that there are no
tigers which cannot digest meat. If ‘not being able to digest meat’ were included
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as a relevant variable in a canonical test, our generalization would pass this level
vacuously.

We may make a similar reply to a second issue. Consider the warrant

From: x is a tiger & x is more than 2.5 years old & x has not given
birth in the past 2.5 years

To infer: x lives alone

We may accept that tigers which are more than 2.5 years old live alone except if
they have given birth within the past 2.5 years. But lions, which presumably will
be included in the same genus as tigers, may not live alone. Let us assume that not
being able to get an adequate amount of food if living alone explains why lions do
not live alone. So does ‘not being able to get sufficient food when living alone’ con-
stitute a potential rebuttal to our warrant? Again, I believe the answer is no. Surely
there is more than an accidental connection between being a tiger and being able to
get enough food even if living alone, at least when more than 2.5 years old. Tigers
who are more than 2.5 years old but not able to get sufficient food are somehow
defective in what is essential to being a tiger. So either one would not include this
rebuttal as a relevant variable in a canonical test or a canonical test would pass the
level of this relevant variable vacuously. Having given this motivation, we can now
turn to Cohen’s general formal characterization of a relevant variable.

Assume P1, . . . ,Pk are j-ary predicate expressions whose extensions are mutu-
ally exclusive classes, e.g. distinct natural kinds. Q1, . . . ,Qm, are further predicates
which may be true of the elements in the extension of P1, . . . ,Pk , e.g. ‘is a herbi-
vore,’ ‘bears its young live.’ The sets {P1, . . . ,Pk}, {Q1, . . . ,Qm}, have no members in
common. The Pis are j-ary predicates to the effect that the j-ary sequences satisfy-
ing these predicates are instances of some “natural kind.” The Qis are predicates
that some j-ary attribute holds of some j-ary sequence. It must be semantically
meaningful to predicate these attributes of sequences satisfying some natural kind
predicable. Notice that P1, . . . ,Pk need not be atomic predicates. In particular, we
may form conjunctions of these predicates as long as we use a different individual
variable with each conjunct. Since the Pis, 1 ≤ i ≤ k are mutually incompatible, us-
ing the same variable would result in a predicate with empty extension, e.g. noth-
ing is both a horse and a giraffe. But relations may hold constantly between the
members of two kinds, e.g. ‘having a longer neck than.’ Hence for example, the
sentence ‘Giraffes have naturally longer necks than horses’ becomes

(∀x)∀y)([Gx&Hy] ⊃ Lxy),

a sentence perfectly meaningful and not vacuously true.
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Suppose that observation has shown that members of a given natural kind al-
ways satisfy some property or relation. For example, observation may show that
giraffes are especially fond of the leaves of a given tree. Suppose chemical analysis
shows that these leaves are especially rich in a given nutrient. Does the abundance
of this nutrient explain giraffe preference or is some other factor or combination
of factors present in the leaf causing the behavior? After all, the leaves are, for
giraffes, conveniently located, they are all green, and they all contain various other
nutrients. Now convenience of food source, color of food source, nutrients avail-
able in the source are all factors which for other kinds of herbivores may exert an
established causal influence on whether they prefer that food source. Clearly color,
convenience of access, and amount of nutrient present can vary by more or less.
This factor motivates regarding different amounts of each as variants of a variable,
but does not rule out that in some cases, the variants may simply be the presence
or absence of the variable. So what are the giraffes responding to? The point is this.
We are assuming that giraffes consistently prefer one type of leaf rich in a certain
nutrient necessary to giraffe flourishing. So where “Gx’ abbreviates ‘x is a giraffe,’
‘Pxy’ abbreviates ‘x prefers y,’ and ‘Nx” abbreviates ‘x is an available food source
containing nutrient n,’ observation supports

(∀x)(∀y)(Gx ⊃ [Ny ⊃ Pxy])

where ‘x’ ranges over the class of giraffes. This body of observation gives the uni-
versal generalization basic or first-degree support.

This support may be tested experimentally by considering variants of the vari-
ables identified. The factors our observation has shown which affect whether other
types of herbivores prefer a given food source satisfying that factor to some degree
identify these factors as relevant variables. So to see whether our generalization
has more than first-degree support for giraffes, we must test it when degrees of
those other factors are present (i.e. variants of those other variables). One might
place the leaves various distances from the ground. One might change the color of
the leaves or their taste. One might both vary the distance of the leaves from the
ground and alter the color or taste of the leaves, or both. That is, one might carry
out a canonical test, having identified by observation of horses, deer, rabbits, and
squirrels a set of relevant variables. Clearly, the more the variants of these variables
fail to produce counterexamples to the generalization, the stronger the support of
the generalization and the stronger the backing we have for the warrant

From: Gx

To infer: (∀y)(Ny⊃Pxy)
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However, as we have indicated, our account is not yet complete. Perhaps there
is little reason to think that an instance of one relevant variable would constitute
a counterexample, while there may be good reason to suspect that instances of an-
other would. The weight of the evidence for the generalization and the strength
of the backing for the warrant might vary significantly depending on the order in
which the relevant variableswere addressed in the canonical test. Is there a “canon-
ical” way of ordering the variables in a canonical test? We begin that investigation
in the next section.

4 The Problem of Ordering Relevant Variables

Central to ordering relevant variables, according to Cohen, is the concept of greater
falsficatory potential. In empirical investigation, whether variable Vi is seen to
have greater falsificatory potential than Vj reflects empirical observation and is
subject to revision over time. The ordering also presupposes that the number of
relevant variables, together with the number of variants within each relevant vari-
able, is finite. The rationale for this assumption is that any postulate that a given
finite set of relevant variables or given finite set of variants within a variable is ex-
haustive is open to empirical refutation, while postulates of infinite variation are
not. According to Cohen, “In practice, within a particular field of enquiry, experi-
mental scientists generally have a rough scale of importance for relevant variables,
depending partly on the accepted falsificatory efficiency of their variants and partly
on convention” [4, p. 148]. Available empirical evidence then contributes to this
accepted falsificatory efficiency. A set of relevant variables then will be ordered ac-
cording to perceived lessening strength of falsificatory potential. What influences
this perception? According to Cohen, “The greater the variety of types of hypothe-
ses that a particular relevant variable is seen to falsify, the more important it will
normally be presumed to be” [3, p. 141]. Here falsificatory potential parallels ex-
planatory potential, a plausibility desideratum for explanatory hypotheses. Ceteris
paribus, the hypothesis which explains more is more preferable. Cohen immedi-
ately adds that “considerations of simplicity, fruitfulness, technological utility, etc.,
often have to be taken into account besides considerations of evidential support”
[3, p. 142], in hypothesizing the proper order of relevant variables. But simplicity,
fruitfulness, utility are factors contributing to plausibility, as we shall see.

In setting up a canonical test, then, the relevant variables should be ordered
according to the empirical information that we have concerning how likely they
are to generate counterexamples to the generalization being tested. Suppose to
adapt Cohen’s example [3, pp. 129–133] one undertakes experiments to determine
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which colors, if any, bees may discriminate. Suppose that observation shows that
when a colony of bees is trained to return to a blue card on which sugar water
has been placed, bees continue to return to the card when there is no sugar water.
What explains this behavior? One hypothesis is that the bees recognize the color
blue. That bees are responding to the shape of the card, its relative position to
the ground, its height off the ground, are alternative hypotheses involving relevant
variables. Various particular shapes of the card, particular angles with respect to
the ground, particular distances from the ground, are variants of these variables.
In addition, bees as a natural kind subdivide into species. If only some species of
bees discriminate colors, at least the color blue, that fact will not become evident
just by observing one species of bee which does identify blue. So we have four
variables. Which should we vary first in the canonical test?

5 Order Through Prior Probability

Bees as a natural kind are coordinate with certain other natural kinds–wasps, bum-
ble bees, hornets to name just some. We may have some information antecedent to
constructing and conducting our canonical test on bees about the sensitivity of in-
sects of these other kinds to shape, position, height, and whether this sensitivity
varies with respect to the species within a natural kind. If we regard our infor-
mation about these other natural kinds as generating evidence for what relevant
variables might affect bee behavior, we may regard our antecedent evidence con-
cerning similar natural kinds as indicating the prior probability of some condition
functioning as a relevant variable for bees. What we are asking for here is the prior
probability for a particular condition that counterexamples to our generalization
that all bees discriminate the color blue would be found by realizing determinates
of that condition taken as a determinable. A proper answer to this question would
both identify relevant variables and make ordering the variables a straightforward
matter. Start with the variable having the highest prior probability of generating
the most counterexamples and order the rest with decreasing prior probability.
(Remember that our set of relevant variables is finite.) But how do we determine
these prior probabilities?

We may have some information about how shape, relative position, height af-
fects behavior of insects within a given class of insects appropriately analogous
to bees at least with respect to visual mechanism. Is this information sufficient
to justify a judgment of prior probability in general for canonical test purposes?
Certain problems may obviously arise. We may very well have gaps in our infor-
mation about types of cases. Evidence may show two relevant variables with the
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same number of counterexamples among their variants. How are these two to be
ordered in particular on the grounds of prior probability? In connection with de-
fending his view on confirmation theory, W. Salmon has discussed the notion of
prior probability at length and connected it with the concept of plausibility, a con-
cept which has been investigated by other philosophers, in particular N. Rescher.
Can we construct an answer to our ordering question by consulting these accounts?

6 Prior Probability and Plausibility

6.1 A Standard Textbook Account of Plausibility

I. M. Copi and C. Cohen in [5] explicate the plausibility of a hypothesis through
three properties: compatibility with previously established hypotheses, predic-
tive or explanatory power, and simplicity. Barring new evidence coming to light
which would call for a new hypothesis to explain that evidence together with the
previously established evidence, and assuming that a previous hypothesis is well-
confirmed, “the presumption is in favor of the older hypothesis” [5, p. 520], italics
in original). Predictive or explanatory power refers to the body of facts deducible
from or explained by a hypothesis. The greater this body of facts, the more pow-
erful the theory. Finally, plausibility favors simplicity. A theory which identifies
a single suspect as responsible for a crime is simpler than one which postulates a
conspiracy. As Copi and Cohen point out, deciding which of rival hypotheses is
simpler may in certain cases involve a judgment call subject to challenge. One hy-
pothesis may be simpler than another in a given respect, while the reverse is true
for a different respect. Which one, then, is simpler? May we link the concept of
plausibility to prior probability to advance our understanding of how to order rel-
evant variables according to their decreasing falsificatory efficiency? Let us turn to
Salmon directly.

6.2 Salmon on Prior Probability and Plausibility

Salmon recognizes the plausibility of a hypothesis as involving “direct consider-
ation of whether the hypothesis is of a type likely to be successful” [9, p. 118],
i.e. direct consideration of its probability before taking into account a specific
body of evidence. Relating this to the problem at hand, what is the probability
that for 1≤i≤5,Hi (i.e. Vi produces more counterexamples to (∀x)(Px ⊃ Qx) than
any Vj , j,i) is true before ordering them in the design of a canonical test? Recall
how one identifies a relevant variable. We are regarding Px as attributing having
a certain property to n-tuples of a certain species S. But we recognize S as a natu-
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ral kind among a class of natural kinds. Although we may not have near enough
evidence about the Ss to make any projection about any of the Vis with any ac-
ceptable degree of confidence, we may expect that we have more evidence when
we take into account all the other species within the genus. This may still not be
enough for a projection with confidence, but it may be all the information we have
before designing and carrying out any canonical test. But this information should
indicate which Vi produces more counterexamples to (∀x)(Px⊃Qx) than any other
Vj . On the basis of this data, however preliminary, we may rank the Vi ,1≤i≤5.
This ranking satisfies one of the major criteria for plausibility, i.e. compatibility
with previously established results (allowing that these results may include data
as well as theories). Why is this criterion truth-conducive? As Copi and Cohen
explain, to yield reliable explanations (or generalizations), a theory must be sup-
ported by evidence. Hence a well-established theory can be relied on. Likewise, the
more evidence one has that specific values of an attribute constitute counterexam-
ples to a generalization, the more reliant one may be that those values will result
in counterexamples in a new context.

Salmon indicates that another class of criteria may bear on plausibility ranking,
which he calls pragmatic criteria. These criteria concern estimates of the reliability
of the source of a claim. As such they relate directly to our example. We claim
we have data based on observation of other species in the genus to which S belongs
and which indicate which variable has the most variants which produce counterex-
amples to (∀x)(Px⊃Qx). What are the sources of this data and how trustworthy are
these sources both in making observations and in reporting them sincerely? These
considerations are also relevant to ranking the relevant variables for plausibility.

6.3 Rescher on Plausibility and Plausibility Indexing

Rescher is also concerned with these pragmatic criteria. In his discussion, he refers
to the plausibility criteria of conformity to previous results, predictive or explana-
tory power, and simplicity as principles of inductive systematization [8, p. 41].
He indicates two more criteria: the authority or reliability of the source or sources
vouching for a claim and “the probative strength of confirming evidence” [8, p. 35].
The word of a recognized authority renders some distinct plausibility to a claim, ce-
teris paribus. The scope of recognized authority extends beyond exclusively expert
opinion to include any source which is “well-informed or otherwise in a position
to make good claims to credibility” [8, p. 39]. So the word of someone in a position
to have observed some event or a claim which has gained the status of common
knowledge would count as plausible to some degree on this criterion [8, p. 39] and
[7, p. 25].
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What may we say of the sources which may vouch for a claim as markers of
plausibility? By “source” Rescher means not just external sources which may vouch
for a claim, such as testimony or common knowledge, but sources internal to the
person entertaining the claim, such as sense perception. Including external and
internal sources as factors bearing on the plausibility of claims indicates that the
question of the plausibility for the claims whose ranking we are investigating de-
pends not just on the quantity of evidence but its quality. To return to our example
of five relevant variables, the claim that for 1≤i≤5, Vi has among its variants more
counterexamples to (∀x)(Px⊃Qx) than for any Vj , j,i, gains plausibility from the
quality of the sources vouching for the claims about the relevant variables them-
selves and about the individual counterexample variants. The question about the
number of counterexamples concerns the specific variants which have produced
counterexamples. Clearly, source T could vouch thatVi has more counterexamples
among its variants than any other Vj , but why should an interlocutor regard T’s
word as reliable? So in ranking the plausibility of the claims about which relevant
variable produces the most counterexamples, it is conceivable that more claims
about particular variants of relevant variables of some Vj be recognized but the
claim about Vi be regarded as the most plausible on the reliability, i.e. quality, of
the sources vouching for it. Thus a conflict between ranking plausibility on the
number of reported counterexamples produced by variants of a particular relevant
variable and the quality of the sources reporting these counterexamples is possible.

Rescher has proposed a classification of the bases of plausibility into three
groups, sources, confirming evidence, and principles of inductive systematization
[8, p. 41]. The authoritativeness of the sources, the probative strength of the evi-
dence, and the highest rank on principles of inductive strength are the contributing
factors to the plausibility of a claim. We have seen that for our purposes, confor-
mity with previous results and extent of probative evidence amount to the same
thing. The statements whose plausibility we are trying to rank are claims that a
particular relevant variable posesmore counterexamples to a certain generalization
than any other relevant variable. These statements are not universally generalized
conditionals for which more specific laws or test conditionals might be derived.
True, each statement yields the implication that in a test involving all the relevant
variables, the variants of the relevant variable which is the subject of the statement
will produce the more counterexamples. But this does not yield a preference for
any of these statements over the others. Likewise these statements do not seem
to differ in simplicity. Hence, in ranking the statements for plausibility, standing
of sources in point of authoritativeness and probative strength of confirming evi-
dence [8, p. 41], i.e. extent of analogous evidence, are the bases for ranking the
statements for plausibility.
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Suppose, as we have just indicated is possible, these sources conflict. Suppose
the claim concerningVi has the most confirming evidence but the claim concerning
Vj is attested to by sources deemed more authoritative. How may we deal with this
conflict and properly order Vi ,Vj according to plausibility considerations? Rescher
proposes grading sources according to their reliability. His scale parallels Cohen’s
scale for grading the legisimilitude of universal generalizations according to the
method of relevant variables. We assume that there are n grades. The reliability
of a source is graded by m/n, where 1≤m≤n. n/n = 1 “represents maximal or total
reliability” [7, p. 7]. Only sources with at least some reliability need be considered.
Those judged to have less than 1/n reliability “would be so unreliable that their
data are effectively unusable” [7, p. 8]. If only sources of less than 1/n reliability
have vouched for Vi ,Vj , then they would not be ranked. But suppose at least one
source of non-negligible reliability vouches that Vi contains more counterexamples
than does any Vj and that there is conflict among sources possessing some positive
degree of reliability. Clearly in this case, considering just questions of the relia-
bility of sources, we rank statements according to the degree of reliability of the
sources vouching for them. Ranking statements of the form “the number of coun-
terexamples to (∀x)(Px⊃Qx) among the variants of Vi is greater than the number of
counterexamples among the variants of Vj” for plausibility is now straightforward.
We simply transfer the ranking of the sources to the ranking of the plausibility of
the statement. If two or more sources of differing reliability vouch for the same
statement, its plausibility will be the maximum of the reliability of the sources
vouching for it. But we are still left with our principal question: How do we rank
the reliability of sources which vouch for the claims about the relative falsificatory
capacity of the relevant variables for some generalization (∀x)(Px ⊃ Qx)? Have we
not simply shifted the problem from ranking the plausibility of hypotheses to rank-
ing the reliability of sources? At least for some, if not all of the sources vouching
for a hypothesis, we shall have some reason to believe the source has some reliabil-
ity. If we have no reason to believe that a source has at least minimal reliability, we
can set that source aside. Such a source we judge to have less than 1/n reliability
and thus regard it as so unreliable that its vouching for a claim does nothing to
increase our confidence in that claim. This would be the case if someone simply
vouched for the overall claim that among the variants of Vi are more counterex-
amples to (∀x)(Px ⊃ Qx) than among the variants of any other Vj ,1≤i≤5, where
the person had no acquaintance–direct or indirect–with the capacity of the Vi to
generate counterexamples to the claim.

How then may we rank reliability of sources? We are here considering sources
which may vouch for two types of information–information about the number of
counterexamples a relevant variable has produced across the “species” of some
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genus, and information about the compatibility of the hypothesis with previously
established results. The trustworthiness of a source determines its reliability. I
believe Rescher has addressed the issue of ranking source reliability in [8]. The re-
liability of a source is its “entitlement to qualify as well-informed or otherwise in a
position to make good claims to credibility. It is on this basis that expert testimony
and general agreement (the consensus of men [sic]) come to count as conditions
for plausibility” [8, p. 41]. Let us elaborate. Suppose our knowledge of a source’s
cognitive background in some area indicated some positive level of competence or
expertise in that area. Suppose also that we had no knowledge of any proclivity
to dissemble or otherwise make false assertions on the part of that source. For
example, should a trained and licenced oncologist present an interpretation of an
x-ray which the oncologist had ordered, our recognition of this background and
the absence of defeating evidence justifies our reposing a degree of confidence in
the oncologist’s word, indeed we would expect a relatively high degree of confi-
dence. Again, suppose we had little information about the training or certification
of the oncologist, but we did know that the physician had a very high track record
of successful diagnoses, very few false positives or false negatives. Clearly, then,
the oncologist has a proper entitlement to credibility. Again, suppose a number of
sources which we recognize to possess a moderate amount of background in a sub-
ject area and a moderately good track record about rendering correct judgments
in that area. We would be justified in according some degree of reliability to each
source. Suppose all of the sources on a given occasion vouched for the same inter-
pretive claim on the basis of the evidence. Rescher allows that we may count these
sources which have converged on this point as one source, with higher reliability
than any of the individual sources. This clearly stands to reason. Presumably these
sources have diverse backgrounds, and thus the convergent source is rendering its
opinion on a wider background in the subject area. In this way, we rank sources on
the basis of our background knowledge of their reliability.

Let’s apply these considerations to a case where hypotheses Hi ,Hj conflict. On
the basis of which of these two hypotheses is deemed most plausible, we shall de-
cide which relevant variable should be tested first. We are considering the situation
inwhich reports indicate that Vi produces more counterexamples to analogous gen-
eralizations concerning other species within the genus of the species about which
we are generalizing. Hi is the claim that values of Vi produce the most counterex-
amples for the genus overall (and by analogy can be expected to produce the most
counterexamples for (∀x)Px⊃Qx). However, past experience and theory suggest
that Vj involves the most counterexamples for the genus and thus that Hj should
be regarded as correct. The question then is which sources’s word is to be deemed
more authoritative. Rescher suggests [7, p. 111] that in different contexts different
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factors will determine the answer to this question. Since we are looking on both
reports of observations and common knowledge or theoretical expectations, and
seeking to adjudicate plausibility through witness reliability, the context for an-
swering our question, according to Rescher, is information processing [7, p. 111].
What has Rescher said about information processing with inconsistent data which
is germane to our question?

The first step in resolving the conflict posed by Hi versus Hj is to rate the reli-
ability of the sources through an index from 0 to 1, with 1 high. A source deemed
absolutely reliable gets an index of 1.0, relatively reliable 0.8 and somewhat reli-
able 0.5 [7, p. 75]. Where there is conflict, a source of higher reliability trumps
those of lower reliability. Rescher makes this indexing of sources intuitively. So, to
use his example, when the issue is reconstructing the text of a lost letter as accu-
rately as possible, a photocopy, even fragmentary, he regards as absolutely reliable,
a transcript by a scribe with known high accuracy but yet handwriting difficult to
read might be rated 0.8, while a transcript by a scribe with neat handwriting but
known careless might be rated 0.5. This rating depends on our background knowl-
edge of the reliability of the sources. But once the sources have been ranked, the
conflicting statement vouched for by the highest ranked source is recognized as the
most plausible. (For this and the previous paragraph, compare [1], forthcoming).

There is one further issue to take into account in assessing the reliability of
sources. Suppose there is a consensus among a subclass of independent observers
about the relative number of counterexamples occurring. These sources are all
moderately reliable. However, a source of highly rated reliability vouches for an-
other relevant variable as producing the most counterexamples. Remember, how-
ever, that if a number of sources agree, we may count them as one source. In this
way, a consensus of a number of moderately reliable sources may outweigh a source
of very high reliability. Indeed, if one source represents a very wide convergence of
sources, say sources vouching for established fact or theory, that source may then
outweigh a number of other independent sources vouching for a contrary fact or
theory.

7 Conclusion

Carrying out a canonical test of a generalization when the variables recognized rel-
evant to counterexampling the generalization have been canonically ordered gives
us a way of justifying a judgment of the strength of an argument whosewarrant cor-
responds to the generalization being tested. Given this ordering, the more relevant
variables whose values fail to constitute counterexamples to the generalization, the
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stronger the generalization and its corresponding warrant. Likewise the stronger
the warrant, the stronger the argument which instances the warrant. One point re-
mains. How strong is strong enough? That is, how strong does a warrant have to be
to justify accepting the conclusion of an argument on the basis of its premises? Co-
hen has addressed this point in [3, pp. 310–12; 318–23]. Addressing that question
is the topic of a sequel to this paper.
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