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Editorial Preface

The biennial DEON conferences are designed to promote interdisciplinary
cooperation amongst scholars interested in linking the formal-logical study of
normative concepts and normative systems with computer science, arti�cial
intelligence, philosophy, ethics, linguistics, organization theory and law.

There have been �fteen previous DEON conferences held in Amsterdam
(December 1991), Oslo (January 1994), Sesimbra (January 1996), Bologna
(January 1998), Toulouse (January 2000), London (May 2002), Madeira
(May 2004), Utrecht (July 2006), Luxembourg (July 2008), Fiesole (July
2010), Bergen (July 2012), Ghent (July 2014), Bayreuth (July 2016), Utrecht
(July 2018), and Munich (July 2021). The 16th occurrence of the conference,
DEON2023, was held for the �rst time in North America at Université du
Québec à Trois-Rivières.

DEON2023 focused on the theme Theoretical and technical limitations

of automated behavior. This theme aimed to address the growing literature
in machine ethics attempting at creating ethical machines through AI and
machine learning. This, in conjunction with the fact that there is a tendency
to anthropomorphise AI, has led some scholars to believe that we should
thrive to de�ne and build machines that would be better than humans
at making ethical choices and behaving ethically. While many limitations
to such attempts are known, including the framing problem, incompatible
ethical theories, con�icts between rules, and computation time, it remains
that many problems and characteristics well known in the deontic logic
literature (e.g. deontic paradoxes, con�icting norms and obligations) and
that have a direct impact on the mere possibility of de�ning truly autonomous
ethical machines seem to have been overlooked in the machine ethics literature.
As such, DEON2023 aimed to raise awareness on important aspects from the
deontic logic literature that should impact machine ethics by focusing on the
theoretical and technical limitations of automated behavior.

DEON2023 was organized in the context of a partnership and collaboration
between Clayton Peterson (Université du Québec à Trois-Rivières) and
Leendert van der Torre (Université du Luxembourg) through their
INTEGRAUTO Audace International funded project. The conference was
organized as a hybrid conference, with live transmission and recordings of
the conference, but with speakers required to be physically present (i.e. in
person attendance was required for speakers). Talks, posters, and poster
teasers were made publicly available on the conference's website.

The conference was divided into a main track and a poster track. Papers
were �rst accepted or rejected for the proceedings, and then, for the papers
accepted for the proceedings, papers were either accepted for oral presentation
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or for poster presentation. This decision was based on many criteria,
including whether papers are of interest to a larger or smaller community,
while trying to be inclusive and give the authors the opportunity to present
and discuss their work. We received 43 submissions, out of which 27
materialized as full papers, and 6 submissions to the poster track. Out
of these 27 papers, 10 were included as contributed talks, whereas 7 where
redirected to the poster track (with full papers published in the proceedings).
Each paper was carefully evaluated by at least three reviewers during a
blind review process. Overall, DEON2023 presented 5 keynote speakers, 10
contributed talks, and 12 posters, with 17 papers and 5 abstracts published
in the conference proceedings.
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Keynote speakers

Marina De Vos (University of Bath)

Marina De Vos is a senior lecturer/associate professor in arti�cial intelligence
and the director of training for the UKRI Centre for Doctoral Training in
Accountable, Responsible, and Transparent AI at the University of Bath.
With a strong background in automated human reasoning, Marina's research
focuses on enabling improved access to specialist knowledge, the logical
foundations of AI systems, explainable arti�cial intelligence methods, and
modelling the behaviour of autonomous systems. In her work on normative
multi-agent systems, Marina combines her interests in the development of
software tools and methods, drawing from a diverse range of domains
including software veri�cation, logic programming, legal reasoning, and AI
explainability, to e�ectively model, verify and explain autonomous agents.
Currently, Marina's exploration involves systems that possess the ability to
autonomously evolve through external and internal stimuli.

Title From normative systems to business rules

Abstract In human society, norms, policies, and laws serve as mechanisms
to describe, guide, and regulate expected behaviour. These rules outline the
desired conduct of individuals and specify rewards or penalties for compliance
or violation. Similarly, these concepts can be applied to socio-technical
systems, encompassing both human and software agents. Within such
normative systems, agents possess autonomy, enabling them to decide
whether to adhere to norms or deviate from them. This talk delves into the
representation and computational reasoning of norms, policies, and laws,
while ensuring su�cient clarity for human participants involved in the system.
The focal point is InstAL, a domain-speci�c language (DSL) designed to
capture deontic concepts and the e�ects of agents' actions. Execution is
facilitated through answer set programming, a declarative logic programming
language. Together, they provide a powerful approach for modelling, verifying,
monitoring, and revising norms within socio-technical systems. To illustrate
the practical implications, this presentation presents a case study that explores
the compliance of business processes with speci�c aspects of the General
Data Protection Regulation (GDPR). To seamlessly integrate with established
practices in business process modelling and semantic web technology, an
ODRL layer was developed on top of InstAL, facilitating smooth integration
with existing work�ows. This talk aims to o�er valuable perspectives on
the potential of combining InstAL, answer set programming, and the ODRL
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layer to e�ectively model, verify, monitor, and revise norms within socio-
technical systems, as exempli�ed through the GDPR compliance case study.

Huimin Dong (Sun Yat-Sen University)

Huimin Dong, an Assistant Professor at Sun Yan-sen University's Department
of Philosophy (Zhuhai), specializes in developing formal models for normative
reasoning. Her interdisciplinary research covers logic, philosophy, ethics, law,
and AI, with a particular focus on deontic logic, nonmonotonic reasoning,
and logic-based methods for AI ethics and law.

Title Resolving the Paradox of Free Choice Permission: A Semantic
Approach

Abstract The concept of free choice permission is commonly understood
as follows: if it is permitted to do α or β, then it is permitted to do α and it
is permitted to do β. This di�ers from a permission that simply implies the
absence of prohibition. However, when applying monotonic reasoning to this
type of permission, a permission to do α logically leads to a permission to
do both α and β. Problems arise when we introduce a prohibition on doing
β, resulting in a paradox of free choice permission. Various proof theory
solutions have been proposed to address the nonmonotonic aspects of this
issue. In this talk, I will present a semantic approach aimed at resolving this
problem. Following the tradition of dynamic logic, I will focus on the concept
of open reading as the semantic core of free choice permission. Furthermore,
I will discuss how the inclusion of normality can be incorporated into this
framework to resolve the free choice paradox.

Lou Goble (Willamette University)

Lou Goble studied philosophy and logic at Oberlin College (B.A.) and the
University of Pittsburgh (M.A., Ph.D.), where he worked withWilfrid Sellars,
Alan Ross Anderson, and Nuel D. Belnap, Jr., amongst others. He then
taught philosophy at the University of Wisconsin, Madison, and the
University of North Carolina, Chapel Hill, before retiring for a while to
the wilds of Oregon. He emerged from the shadows to teach at Willamette
University, until his full retirement. The author of The Kalevide (a novel)
and editor of The Blackwell Guide to Philosophical Logic and, with J. J.
Ch. Meyer, Deontic Logic and Arti�cial Normative Systems (Proceedings of
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DEON 2006), he continues to write, though not usually for publication, on
questions in philosophical logic and the philosophy of language, and more or
less academic matters.

Title Preemption and Plausible Oughts

Abstract I present a problem for deontic logic, a puzzle to invite further
investigation. It is the problem of preemption: Imagine a case in which
(a) there is something, X, that might occur but really should not, but also
(b) there is something else, Y, that, if done, would preempt X, i.e., if Y
were done, then X would not occur, while (c) if Y were not done, then X
would happen. Moreover, in this case, neither X nor Y is determined; it is
even possible (d) that Y not be done and X not happen, though, in light
of (c), that is a remote possibility, even far-fetched. We may suppose too
(e) it would be better for Y to be done and X not occur than for Y not
to be done and X occur. And yet, although it is a remote possibility, (f)
having Y not be done and X not occur would be better still than for Y to
be done and X not occur. Given (a)�(f), and especially (a), (b), (c) and
(e), the inference to (g) that Y should be done, seems clear, despite (d) and
(f). The problem for deontic logic is to explain the validity of that inference
in a plausible way. I present four approaches to that problem, all within
the framework of branching time structures designed to accommodate the
indeterminism inherent in the case. One of these approaches is familiar but
it fails to account for the inference. The others are o�ered as more realistic
alternatives that work better. Yet each has its drawbacks, and there is more
work to be done. My primary purpose is to encourage that research.

John Horty (University of Maryland)

John Horty received his BA in Classics and Philosophy from Oberlin College
and his PhD in Philosophy from the University of Pittsburgh; he is currently
a Professor of Philosophy at the University of Maryland with a�liate
appointments in Computer Science and the Institute for Advanced Computer
Studies. His interests include logic, arti�cial intelligence, ethics, epistemology,
philosophy of language, and philosophy of law. John Horty is the author of
four books as well as papers on a variety of topics in logic, philosophy, and
computer science. His work has been supported by three fellowships from the
National Endowment for Humanities and several grants from the National
Science Foundation, by visiting fellowships at the Netherlands Institute for
Advanced Studies and at the Center for Advanced Studies in Behavioral
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Sciences at Stanford University, and more recently, by a Humboldt Research
Award.

Title Knowledge representation for computational normative reasoning

Abstract I will talk about issues involved in designing a machine capable
of acquiring, representing, and reasoning with information needed to guide
everyday normative reasoning - the kind of reasoning that robotic assistants
would have to engage in just to help us with simple tasks. After reviewing
some current top-down, bottom-up, and hybrid approaches, I will de�ne a
new hybrid approach that generalizes ideas developed in the �elds of AI and
law and legal theory. Joint work with Ilaria Canavotto.

Réka Markovich (Université du Luxembourg)

Réka Markovich researches computational legal theory and studies its
applications in Arti�cial Intelligence and legal reasoning. Her focus areas
are legal knowledge representation, normative multi-agent systems, deontic
logic, machine ethics, and XAI. Réka has an interdisciplinary background:
she has degrees in law, in logic, and in communications, and a PhD in logic.
Réka is currently an independent research scientist at the Department of
Computer Science at the University of Luxembourg where she is the head
of the newly established Computational Law and Machine Ethics (CLAiM)
group in the Interdisciplinary Lab for Intelligent and Adaptive Systems.
She represents Luxembourg on the board of the Benelux Association for AI
and in 2021, she got elected to the international Steering Committee of the
Foundation for Legal Knowledge Based Systems.

Title A formal theory of rights

Abstract Deontic logics traditionally concern impersonal obligations,
however, to understand some basic concepts and structures of law, agents
must be explicitly taken into account. For understanding rights, one actually
needs to consider pairs of agents and formally map the variants of relations
between them. In the talk, I give a comprehensive overview of the formal
theory of rights I have been working on in the last few years. This work
contributes to the tradition of the theory of normative positions, but exceeds
that by de�ning formal characterizations using a multi-modal language, by
sketching a theory of legal metaphysics, and also by o�ering resolution to
di�culties rights theories often face.
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Abstract

This paper brings together two traditions in deontic logic: the theory of normative
positions, that is, reasoning about different types of rights, and practical reasoning,
which has special relevance from the viewpoint of artificial intelligence (AI). We do
this by exploring the role epistemic rights play in practical reasoning. Rights such
as the right to know are intended to enable us to make informed decisions. They
often play a role in determining what kind of plans we can make. A patient has the
right to know his hospital test results so he can choose his treatment after his doctor
has fulfilled her duty of informing him about possible risks and outcomes. This
paper investigates, from the “database perspective”, the role of (epistemic) rights
in planning different scenarios from the database perspective and the dynamics of
temporal beliefs and intentions. We take this perspective, extend the logic with
deontic notions, and illustrate this with a running example.

Keywords: normative reasoning in AI, practical reasoning, normative positions

1 Introduction

Research in deontic logic includes a decades-long investigation into nor-
mative positions, benchmarked by Sergot’s chapter in the first volume of the
Handbook of Deontic Logic [24]. From the perspective of artificial intelligence

1 Corresponding author: donghm.logic@gmail.com



Rights and Practical Reasoning in Deontic Logic

(AI), practical reasoning is one of the most important topics in deontic logic
and normative reasoning, benchmarked by Thomason’s chapter in the second
volume of the Handbook of Deontic Logic [27]. However, the topics of norma-
tive positions and practical reasoning are hardly ever brought together. The
aim of this paper is to bring practical reasoning as used in AI to the field of
deontic logic, with a special focus on the use of reasoning with rights from the
database perspective [26,28].

In the tradition of reasoning about rights, the logics developed for normative
positions (by Kanger [13] and Lindahl [15]) were initially aimed at mapping the
space of logically possible legal relations between two given agents, differentiat-
ing between more and more variants [24]. These logics used a very weak action
logic (Chellas called this system ET [7]) preventing the derivation of extensive
consequences. Several more recent papers focusing on the conceptual elabora-
tion of different notions of right like [17] adopt this approach. These logics thus
have limited use for representing how an agent can reason practically about its
actions in detail based on its own normative positions.

In contrast, most research on practical reasoning disregards rights and nor-
mative relations. BDI (Belief-Desire-Intention) logics (e.g., [8,22,28]) focus on
specifying the relations between various mental states such as belief, desire,
intention, and goal, but they traditionally ignore normative concepts. BOID
(Belief-Obligation-Desire-Intention) [5] later incorporated obligations, but did
not do so with normative positions.

This paper contributes to closing this gap by pointing out that in everyday
life, we plan our actions by deliberating different scenarios. Our rights can
play an important role in this planning, for instance when we come up with
an optimal scenario where we have the right to do or get what we want. We
start from the “database perspective” [26], a recent proposal that differentiates
between a planner and belief-intention databases. The planner is engaged in
some form of (temporal) practical reasoning, and in this process updates the
databases. The task for the databases is to remain coherent. Van Zee et al. [28]
formalized the databases using (Par)ameterized-time Action Logic (PAL) logic
and providing AGM-like (Alchourrón-Gärdenfors-Makinson) postulates [1] for
the revision of beliefs and intentions. Our main research question is: “how
to characterize (epistemic) rights in terms of the role they play in practical
reasoning”. This is broken down into the following three sub-questions:

RQ1: the role and components of rights in practical reasoning;
RQ2: how to extend PAL [28] with the concepts needed for (epistemic) rights in

practical reasoning;
RQ3: how to use this formal framework to model (epistemic) rights in practical

reasoning.

We will characterize some variants of the right to know—with an empha-
sis on power—in terms of how they influence the dynamics of planning from
the database perspective”. The approach we use contributes to several aspects
compared to previous research on the dynamic nature of normative positions
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Dong et al.

(i.e., frameworks on the power type of right). For instance, from a conceptual
point of view, it emphasizes the practical reasoning aspect, while from a tech-
nical point of view, it expresses the dynamics by using two revision operators
as two kinds of coherence on a database. We will discuss this in detail at the
end of the paper.

The layout of this paper follows the three research questions. In Section 2,
we discuss the role of epistemic rights in practical reasoning and introduce the
logic of intentions [28]. We extend the logic of intentions with obligation and
permission in Section 3, and in Section 4 we apply the new logic to develop a
revision operator to characterize Hohfeldian power. Section 5 ends the paper
with our conclusions and future work.

2 Background

This section provides the background for this paper. First, we provide
a short introduction to the theory of rights within the theory of normative
positions, then we introduce a running example that we formalize throughout
the paper. Finally, we give a summary of the database perspective.

2.1 (Epistemic) Rights in Deontic Logic: Theory of Normative
Positions

The theory of normative positions in deontic logic refers to the tradition
of formalizing normative relations between pairs of agents and their resultant
relative positions. The theory relies on different meanings of the word “right”
and their correlative duties put forward by Hohfeld. The tradition began with
the work of Kanger and Kanger [13] and Lindahl [15], and has been devel-
oped by many others (e.g., [16,12,17,9]) more recently. The basic idea is that
“right” can have different meanings, and the four atomic ones—in Hohfeldian
terminology—are claim-right, privilege, power, and immunity. Each comes
with its own correlative duty. That is, whenever an agent has one of these right
positions, the counterparty has a duty position: duty (in the narrow sense),
no-claim, liability, or disability, respectively. Claim-right is a claim that the
duty bearer should take a particular action. Duty is the directed version of the
classical notion of obligation in deontic logic. Privilege refers to the freedom
of the right-holder to take a particular action when the counterparty has no
claim to refrain him from doing so. This is the relationalized version of a weak
permission. Power is when the right-holder has the possibility of changing the
counterparty’s normative positions with a special action. If a professor has the
right to hand out homework, that means that she can create a duty for her
students to do their homework. Immunity means that the counterparty does
not have the power to change the right-holder’s normative position. The inter-
pretation of epistemic rights with Hohfeldian categories was put forward by the
epistemologist Lani Watson [29], and the logical formalization of this interpre-
tation has been articulated in some recent papers [18,19,14]. The formalization
of the right to know in [18] and [19] uses the weak action logic referred to above.

3



Rights and Practical Reasoning in Deontic Logic

2.2 Running Example

Avery (also called “Patient”, or simply P) suspects he has an illness that
makes him eligible for early retirement, but he doesn’t want to apply until he
is sure. He intends to get tested, knowing that he has the right to know the
results as this is one of the patient’s listed rights under the law. After the tests,
Avery exercises his right to know by asking for the results. The ‘right to know’
is understood as a Hohfeldian power by default. When Avery asks for the
results, this puts an obligation on the doctor to inform him. That obligation
means that Avery’s right to know becomes a claim-right. The doctor may
intend to ignore the request, violating her obligation. This could make Avery
give up his plan to apply for early retirement. Or he could decide to complain
to the hospital director with the expectation that he would then get the results.
After all, he still believes he has the right to be informed.

2.3 The Database Perspective

The logic of intentions has been studied in the fields of theory of mind and
artificial intelligence. Van Zee et al. [28] provided a logic for reasoning about
the dynamics of intentions and beliefs in time, formalizing Shoham’s database
perspective [26]. This approach uses a temporal branching time logic called
Parameterized-time Action Logic (PAL).

Definition 2.1 [The PAL Language] Let Act = {a, b, c, . . . } be a finite set of
deterministic primitive actions and let Prop = {p, q, r, . . . } ∪ {pre(ā), post(a)}
be a finite set of propositions where ā = (a1, a2, . . . ) is a non-empty sequence
of actions and {a, a1, a2, . . . } ⊆ Act are actions. The language L of the logic
is as follows:

φ ::= χt | do(a)t | 2tφ | φ ∧ φ | ¬φ,

where χ ∈ Prop, a ∈ Act, and t ∈ N.

Intuitively, pt means that p is true at time t, and do(a)t means that action a
is executed at time t. Then, pre(ā)t means that the precondition for a sequence
of actions ā = (a1, ..., an) at time t is satisfied. Preconditions are defined
on action sequences to ensure that it is possible to do the all the intended
actions together (see the original paper [28] for more details). For instance,
pre(a1, a2, a3)0 indicates that the precondition for doing a1 at time 0, a2 at
time 1 and a3 at time 2 is true. Then, post(a)t represents the postcondition
for a at time t. The modal operator 2t is interpreted as a temporal necessity
for the planner, so a formula of the form 2tpt′ means “it is necessary at time t
that p is true at time t′”. This necessity means that no matter which actions
are executed between time t and time t′, p will hold in t′.

This provides a sound and strongly complete axiomatization. Due to space
constraints, we only provide axioms relevant to this paper.

Definition 2.2 [Axiomatization (Partial)] Here are some PAL axioms. The
full axiomatization can be found in the work of Van Zee [28], Section 2.3.
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(A5) 2tφ→ 2t+1φ

(A6)
∨
a∈Act do(a)t

(A7) do(a)t → ¬do(b)t, where b ̸= a

(A8) do(a)t → post(a)t+1

(A9) pre(a)t → 3tdo(a)t

(NEC) From φ, infer 20φ

The intuitive meaning of some of the above axioms is explained below.
Axiom A5 indicates continuity along the progression of time. If something is
necessary at time t, then it remains necessary at the next time point t + 1.
Axiom A6 and Axiom A7 together state that at any given time point, one and
only one action can be executed.

Due to space constraints, we omit the technical details of the semantics, and
provide a short description only (see the work of Van Zee et al. [28], Section
2.2, for full details). PAL semantics is similar to that of computation tree logic
(CTL)∗ [23] except that each transition between two consecutive states, the
transition is also labeled by an action. A model (T, π) consists of a tree T
and a path π. Trees have their root at time 0. Then, T, π |= pt means that
proposition p is in the valuation function of the state corresponding to path π at
time t (denoted as πt). It follows that T, π |= do(a)t means that the transition
from state πt to πt+1 is labeled with action a. And T, π |= 2tφ means that φ is
true for all paths that are equivalent to π up to time t (i.e., they have the same
states as π up to time t) in tree T . The other truth definitions are defined as
per usual.

Note that the semantics distinguishes regular or strong beliefs from weak
beliefs, which are beliefs contingent on the intended actions. The set SB of all
strong beliefs is generated by Boolean combinations of 20φ where φ ∈ L . A
strong belief is an element of SB. A set SB of strong beliefs is the deductive
closure of a subset of SB such that SB = Cn(Σ) where Σ ⊆ SB. Semantically,
a strong belief is a formula that is true for all the paths of the tree, meaning
that they are independent of a specific future or plan (i.e., a specific sequence
of intentions).

Definition 2.3 [Belief-Intention Database] A belief-intention database (SB, I)
consists of a belief database SB and an intention database I:

• SB ∈ SB is a set of strong beliefs closed under consequence: SB = Cn(SB);

• I = {(a1, t1), (a2, t2), . . . } is a set of intentions (ai, ti) where ai ∈ Act such
that no two intentions exist at the same time point, i.e., if i ̸= j then ti ̸= tj .

Weak beliefs are obtained by adding intentions to the strong beliefs and
closing the result under consequence. Thus, a weak belief is closely related to
a contingent or specific plan.

Definition 2.4 [Weak Beliefs] Given a belief-intention database (SB, I), weak
beliefs are defined as follows:

WB(SB, I) = Cn(SB ∪ {do(a)t|(a, t) ∈ I}).
Commitment to intentions is characterized using a coherence condition stat-

ing that it is possible to perform all the intended actions.

Definition 2.5 [Coherence] Given an intention database I =
{(bt1 , t1), . . . , (btn , tn)} with t1 < . . . < tn, let
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Cohere(I) = 30

∨
at∈Act:t̸∈{t1,...,tn}
at=bt:t∈{t1,...,tn}

pre(at1 , at1+1, . . . , atn)t1 .

More precisely, when we have a set of intended actions at non-consecutive time
points t1, . . . , tn, it is always possible at the initial time point 0 to carry out
these intended actions by incorporating additional actions in the remaining
time points. We say that a given belief-intention database (SB, I) is coherent
iff SB is consistent with Cohere(I), i.e., SB ̸⊢ ¬Cohere(I).

A proposition relating weak beliefs to coherence [28] is shown below.

Proposition 2.6 Given a belief-intention database (SB, I), if (SB, I) is co-
herent, then WB(SB, I) is consistent.

Revision operators are then defined for both beliefs and intentions. The
ones presented here are almost the same as those of Van Zee et al. but are
slightly simpler. 2

Definition 2.7 [Intention revision function] An intention revision function ⊗
maps a belief-intention database and an intention to a belief-intention database
such that

(SB, I)⊗ i = (SB, I ′),

where the following postulates hold:
(P1) (SB, I ′) is coherent;
(P2) If (SB, {i}) is coherent, then i ∈ I ′;
(P3) If (SB, I ∪ {i}) is coherent, then I ∪ {i} ⊆ I ′;
(P4) I ′ ⊆ I ∪ {i};
(P5) For all I ′′ with I ′ ⊂ I ′′ ⊆ I ∪ {i}:(SB, I ′′) is not coherent.

Postulate (P2) states that new intention i takes precedence over all other
current intentions. If possible, it should be added even if all current intentions
must be discarded. Postulate (P3) and (P4) together state that if it is possible
to simply add the intention, then this is the only change that is made. These
two postulates are comparable to the inclusion and vacuity of AGM. Finally,
(P5) states that we do not discard intentions unnecessarily.

Definition 2.8 [Belief revision function] A belief revision function ◦ maps a
belief-intention database and a strong belief formula φ to a belief-intention
database such that

(SB, I) ◦ φ = (SB′, I ′),

where:

• SB′ is the result of revising SB with a φ that satisfies the AGM postulates [1],

2 Our revision operators differ from those of Van Zee et al. in three ways. 1) They bind
their revision operators up to a time point t, which is a mere technical detail to prove a
representation theorem, so we leave this out. 2) For technical reasons, they represent a belief
set SB as a propositional formula ψ such that SB = {φ|ψ ⊢ φ}, but we simply use SB
directly. 3) They define a revision operator for revising with the pair (φ, i), which is slightly
more general than our variant but is used only for edge cases.
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• I ′ is the result of revising the new beliefs with the empty intention ϵ so that
coherence is restored, i.e., (SB′, I)⊗ ϵ = (SB′, I ′).

Note that, by this definition, the revision of strong beliefs cannot be trig-
gered by intention revision, but it can trigger intention revision. Intuitively,
this makes sense: one would not wish to change one’s strong beliefs after adopt-
ing an intention, but might want to update one’s intentions after learning new
information.

3 Formalizing Obligation (and Claim-Right)

In this section, we formalize obligation—and thus also claim-right, its cor-
responding notion in the normative position theory—from the database per-
spective, while not extending them in any way. It turns out that we are able
to model these concepts quite naturally using only beliefs and intentions. In
the next section, we extend the coherence condition so that we are able to use
deontic notions when revising with new information.

We model the doctor-patient example with only one belief base and one
intention base. In this case, the beliefs may be seen as shared or common
beliefs, and the intentions may be seen as shared intentions. 3

In our minimal formalization, we introduce only some special actions such
as test, ask, and inform. And we introduce only some special propositions such
as pre/postconditions for actions and a violation constant for obligations.

3.1 Actions

To model the action that agent i informs agent j about proposition p, we use
the action inform(i, j, p). And we use is-informed-whether(i, p) propositions
(abbreviated as iiw(i, p)) to model whether agent i is informed about the truth
or falsehood of p. We have that iiw(i, p) is a precondition of inform(i, j, p)
and iiw(j, p) is a postcondition of that action.

We assume that the doctor can not only learn whether p is true or false
by being informed but can also carry out tests to find out. So test(i, p) has
postcondition iiw(i, p).

Since p (whether the patient is ill) is the focus and is always repeated in
our running example, we simplify things by omitting it from the actions and
propositions below.

Example 3.1 [Running example] Let Prop = {iiw(D), iiw(P), v} and
Act = {test(D), ask(P, D), inform(D, P), ignore(D, P), complain(P, HD)}. These
are interpreted as follows:

• test(D): the doctor tests whether the patient is ill;

• ask(P, D): the patient asks the doctor whether he is ill or not;

• inform(D, P): the doctor informs the patient whether he is ill or not;

3 Note that this means that the revision operators aren’t revision operators for a particular
agent but for the entire system. Thus, if we revise intentions related to a particular agent,
this may affect the intentions of other agents.
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• ignore(D, P): the doctor ignores the patient’s request;

• complain(P, HD): the patient complains to the director;

• iiw(D) / iiw(P): the doctor/patient is informed whether the patient is ill;

• v: a violation occurs.

While PAL defines pre- and postconditions as primitive propositions, we
introduce the following abbreviations in our running example:

(i) post(test(D)) = iiw(D): after the doctor has carried out the tests, she
knows whether the patient is ill or not;

(ii) pre(inform(D, P)) = iiw(D): the doctor can only inform the patient if she
knows whether the patient is ill or not;

(iii) post(inform(D, P)) = iiw(P): after the doctor has informed the patient,
he knows whether he is ill or not;

(iv) post(ask(P, D)) = pre(ignore(D, P)): the doctor can only ignore the request
if the patient has made the request.

(v) post(ask(P, D)) = pre(inform(D, P)): the doctor can inform the patient
whether he is ill or not upon request;

(vi) post(ignore(D, P)) = pre(complain(P, HD)): the patient can only complain
to the director if the doctor ignores his request.

While PAL defines preconditions for action sequences as primitive propo-
sitions, we use the following inductive definition so that we can also in-
clude the precondition formulas above in preconditions for action sequences:
pre(a, b)t = pre(a)t ∧3t(do(a)t → pre(b)t+1).

We can use PAL axiomatization (Def. 2.2) and the above formulas to derive
new formulas:

• do(test(D))t → iiw(D)t+1 (A8, (i));

• 20(do(inform(D, P))t → iiw(P)t+1) (A8, (iii), NEC);

• iiw(D)t → 3tdo(inform(D, P))t ((ii), A9);

• do(ask(P, D))t →
(3t+1do(ignore(D, P))t+1 ∧3t+1do(inform(D, P))t+1 (A8, (iv), (v), A9).

Example 3.2 [Running Example (cont’d.)] Avery suspects he has an illness,
so he intends to get tested, knowing he has a right to know the results. We
formalize this as the following strong belief formula:

RK = 20 [do(test(D))0 ∧ do(ask(P, D)1) → 22(¬do(inform(D, P)2 → v3)] .

RK should be understood as: the doctor ought to inform the patient of the
test results if the patient has had the tests and has asked for his test results;
otherwise, a violation occurs. That is, this is a power type of right: the duty
occurs once the patient asks for the results. Note that this is not supposed
to be a general definition of the power to know; it describes actions that are
preconditions for the duty to hold in this setting. One is the duty-creating
action of the patient, the other is a practical precondition: the patient has to
get tested before he can be informed of any kind of result.
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Using this formalization, we now provide the initial belief-intention database
for our running example.

Example 3.3 [Running Example (cont’d.)] Initially, there are no intentions,
and the only belief under consideration is: Avery has the right to know whether
he is ill. Since we would like to be able to reason about obligations and what
happens when a violation occurs, we use RK from Example 3.2 to formalize
the right to know. Formally, the initial belief-intention database is (SB, I),
where

SB0 = Cn(RK) and I0 = ∅.
Because the patient has no action he intends to carry out, his set of weak beliefs
WB(SB0, I0) = SB0 is the set of strong beliefs.

Next, we add two intentions using the intention revision operator. Notice
that we actually have two agents. Avery is the agent we consider from the
planning point of view, and he reasons about the doctor’s obligation when
planning. He derives the doctor’s obligation from his weak beliefs since he still
needs to ask to be informed, and he reasons from his strong beliefs after he has
made his request.

Example 3.4 [Running Example, revision with intentions (cont’d.)] After a
process of planning, the following two intentions are added: i1 = (test(D), 0)
and i2 = (ask(P, D), 1). Since both these intentions cohere with the current
beliefs, they can simply be added to the intention database.

More formally, using postulates [P3] and [P4] (Def. 2.7), we obtain

((SB0, I0)⊗ i1)⊗ i2 = (SB1, I1),

where SB1 = SB0 = Cn(RK) (revision of intentions cannot change strong
beliefs), and I1 = {(test(D), 0), (ask(P, D), 1)}.

Note that WB(SB1, I1) ⊢ 22(¬do(inform(D, P)2 → v3) (Def. 2.4), which
means that that the doctor should inform the patient of his test results at time
2; otherwise a violation occurs at time 3. We simply consider the obligation
derived from weak beliefs as the result of exercising a legal power.

This is the point of power type of rights: one can plan with them with the
knowledge that by carrying out these actions, the other party will have a duty.
Hence, if carrying out the action (of asking) is among my intentions, then the
obligation of the other person will be among those postconditions that depend
on the actions I intend to carry out. That is, the obligation will be derivable
from weak beliefs.

Next, we model the belief database with an action a executed at time 0.
This is something that was not investigated by Van Zee et al. [28]. We model
this simply by adding the strong belief 20do(a)0, which states that some action
is necessarily carried out. Intuitively, this ensures that everything that follows
from executing a at time 0 is now a strong belief. So, for instance, 20post(a)1
now also holds, as well as everything that follows from that.

Example 3.5 [Running Example, revision with strong beliefs (cont’d.)] Next,
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the doctor carries out the tests, which we model by adding the strong belief

(SB1, I1) ◦20do(test(D))0 = (SB2, I2),

where

• SB2 = Cn({RK,20do(test(D))0});
• I2 = I1 = {(test(D), 0), ask(P, D), 1)} (adding that the strong belief did not
invalidate any intentions).

We can now infer the following power relationship between the patient and
the doctor: if the doctor does not provide the test result upon request, there
is a violation. In other words, the doctor is obliged to provide the test results:

SB2 ⊢ 20(do(ask(P, D)1 → 22(¬do(inform(D, P)2) → v3).

Next, the patient requests his test results:

(SB2, I2) ◦20do(ask(P, D))1 = (SB3, I3),

where

• SB3 = Cn({RK,20do(test(D))0,20do(ask(P, D))1});
• I3 = I2 = I1 = {(test(D), 0), ask(P, D), 1)}.

We can infer the next claim-right relationship between the patient and the
doctor: if the doctor does not inform the patient, there is a violation:

SB3 ⊢ 20(¬do(inform(D, P)2) → v3).

We will formalize the obligation, claim-right, and legal power involved in
the above examples more precisely in the next section.

3.2 Obligations and Claim-Rights in the Logic of Intentions

In deontic logic, deontic concepts such as obligation and permission are con-
sidered to be deontic variants of necessity and possibility [11]. Following this
tradition, our database framework represents modalities for deontic concepts
utilizing temporal modalities, taking deontic necessity and possibility as tem-
poral modalities of necessity or possibility to plan what is normative. We will
define obligation, permission and prohibition in the sense of “ought to do” [11],
representing them as deontic modalities on individual actions. They are defined
in the style of Anderson reduction [2].

Definition 3.6 [Obligation, Permission, and Prohibition] Given t ∈ N and
a ∈ Act:

• an action a that is allowed to be carried out at time t, denoted as P (a)t, is
defined as 3t(do(a)t ∧ ¬vt+1);

• an action a that ought to be carried out at time t, denoted as O(a)t, is
defined as 2t(¬do(a)t → vt+1);

• an action a that is prohibited from being carried out at time t, denoted as
F (a)t, is defined as 2t(do(a)t → vt+1).

These three deontic modalities are defined on single actions but not consecutive
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actions (denoted by a, see Def. 2.1). For instance, if a = (a1, a2) with a1, a2 ∈
Act, then O(a)3 is not a correct expression.

In the PAL language, P (a)t means that it is possible at time t to do action
a and not have a violation in the next time point. Then, O(a)t means that it
must be the case that if at time t action a is not executed, there is a violation
in the next time points, and F (a)t means that it must be the case that if action
a is executed, there is a violation in the next time point.

Next, we extend the logic of Van Zee et al. with a new axiom stating that
it is always possible to avoid a violation.

Definition 3.7 [Avoiding Violation Axiom] We add the following axiom to
the axiomatization of Van Zee et al. (see [28], Section 2.3) 4 : 3t¬vt+1.

We now obtain the following proposition. We omit the proof since it follows
straightforwardly from the definition of O(a)t, P (a)t and the new axiom.

Proposition 3.8 (Obligation Implies Permission) If we add the Avoiding
Violation Axiom, O(a)t → P (a)t is a theorem of the logic.

To capture claim-rights, we show how our deontic concepts can be included
in the strong beliefs given a belief-intention database.

Example 3.9 [Running example, claim and privilege (cont’d.)] Recall from
the previous example that SB3 = Cn({RK, do(test(D))0, do(ask(P, D))1} and
that we could then infer the following:

SB3 ⊢ 20(¬do(inform(D, P)2) → v3).

Using Def. 3.6 and Axiom A5 (Def. 2.2), it follows that an obligation is inferred:

SB3 ⊢ O(inform(D, P))2.

Thus, after the patient has asked for his result at time point 1, the doctor has
an obligation to inform the patient of the result at time 2. Therefore, Avery
now has a claim-right that the doctor should inform him of the result.

We obtain other types of deontic concepts if we update the databases dif-
ferently. For instance, assume the following strong belief formula b1:

20(do(test(D))0 → 31((inform(D, P))1 ∧ ¬v2)),
and suppose we update the belief-intention database, after carrying out the
tests specified in the planner (Example 3.5), as follows:

(SB2, I2) ◦ b1 = (SB′
2, I

′
2).

Now the following permission can be inferred:

SB′
2 ⊢ P (inform(D, P))1,

4 Due to space constraints, we omit the semantics here, but if we add a property to the
definition of the model (see [28], Def. 6) stating that in each state there exists an action
transition such that in the next time moment ¬v holds, then we can straightforwardly prove
that the logic remains sound and strongly complete.
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which states that the doctor has a permission to inform the patient of the
result, which then indicates in this belief base that the patient has the privilege
of requesting that the doctor informs him of the result.

Similarly, if we add the following strong belief b2:

30(do(test(D))0 ∧ ¬v1),
we have this revision of the belief-intention:

(SB2, I2) ◦ b2 = (SB′′
2 , I

′′
2 ).

Now we conclude with another permission as a strong belief in this database:

SB′′
2 ⊢ P (test(D))0.

So the patient has the privilege, given his strong beliefs SB′′
2 , of expecting the

doctor to carry out the tests.

The permission and prohibition of an action cannot simply be reduced to an
action obligation, as shown in the following proposition. Proposition 3.10 shows
how obligation, permission, and prohibition can be connected. In particular,
Proposition 3.10 (iii) and (iv) shows that a variant of the dual relation between
obligation and permission exists.

Proposition 3.10 Given t ∈ N and a ∈ Act, the following propositions are
theorems in our logic.

(i) F (a)t ↔ ¬P (a)t;
(ii) F (a)t →

∨
b̸=a P (b)t;

(iii) P (a)t →
∧
b̸=a ¬O(b)t;

(iv) O(a)t ↔
∧
b̸=a ¬P (b)t.

Note that the last part of Proposition 3.10(iv) implies that if an action is
obligatory, then no other action can be permitted. In our logic, the property
is a consequence of a practical interpretation of A7. It clarifies our key under-
standing about actions from the database perspective: if an action is executed
at some time point, no other action can be performed at the same time. This
leads to the conclusion that if we are obligated to do action a, we are not al-
lowed to engage in other actions as that would prevent us from executing a.
This property does not necessarily fit the understanding on norms or the law
from a deontic point of view, but it fits well from a database perspective.

4 Optimality and Power

In the previous section, we formalized static deontic concepts such as obli-
gation and permission using a violation constant. But because the coherence
condition of Van Zee et al. does not use this information, we were not able
to use it when revising with new beliefs or intentions. In this section, we
propose a new condition, stronger than coherence, called “optimality”: if a
belief-intention database is optimal, then it is coherent, and it avoids violation
states. We show that this new coherence condition can be used to revise belief-
intention databases satisfying the deontic notions we proposed in the previous
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section.

Definition 4.1 [Optimality] Given an intention database I =
{(bt1 , t1), . . . , (btn , tn)} with t1 < · · · < tn, let

Opt(I) = 30

∨

at∈Act:t̸∈{t1,...,tn}
at=bt:t∈{t1,...,tn}

(pre(at1 , at1+1 . . . , atn)t1∧
∧

t1≤i≤tn
(do(ai)i → ¬vti+1

)).

For a given belief-intention database (SB, I), we say that it is optimal iff SB
is consistent with Opt(I), i.e., SB ̸⊢ ¬Opt(I).

Note that the above definition requires not only that the actions intended
don’t lead to a new violation state but also that the other possible actions
that may be carried out should act as a bridge on the path from t1 to tn.
It ensures that no new violation can occur from t2 to tn+1. For example,
Opt({(a, 1), (c, 3)}) requires the execution of some action b at time 2 bridging
a at time 1 and c at time 3 without any new violations from time 2 to time 4.

Definition 4.2 [Postulates of Optimal Revision] An intention revision func-
tion • maps a belief-intention database and an intention to a belief-intention
database such that

(SB, I) • i = (SB, I ′)

where the postulates that hold for optimality are similar to the postulates for
intention revision (Def. 2.7) (P1)–(P5), except that the condition of coherence
is replaced by the condition of optimality.

In order to specify the distinction between the coherence and optimality
conditions, we continue our discussion of the running example and now con-
sider the action ignore(D, P), which means that the doctor ignores the patient’s
request.

Example 4.3 [Coherent Intentions vs. Optimal Intentions (Ctd.)] Recall that
SB2 = Cn(RK) ◦ 20(do(test)0) (Example 3.5). We consider two possible
intention databases:

• I = {(inform(D, P), 2)};
• I ′ = {(ignore(D, P), 2)}.
Now we have the following implications:

Cohere(I) = 30pre(inform(D, P))2;
Cohere(I ′) = 30pre(ignore(D, P))2.

Thus, both I and I ′ cohere with strong belief SB2. However, only I is optimal
with SB2. The intention database I ′ is not optimal because there is a violated
state that necessarily occurs after the intended action is executed:

SB2 ⊢ 20(do(ignore(D, P))2 → v3).
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This formula follows from SB2 because, informally, it means that for all the
paths in which ignore(D, P) is executed at time 2, violations will occur at
time 3. This is true because in each such path, with ask(D, P) occurring at
time 1, the doctor can ignore the patient’s request for his results (recall that
post(ask(P, D)) = pre(ignore(D, P)) and A9).

So intention base I is optimal but intention base I ′ is not:

SB2 ⊢ Opt(I) and SB2 ⊢ ¬Opt(I ′).
Consequently, the optimal revision of the belief-intention database (SB2, I0)

(recall that I0 = ∅) will not incorporate the action ignore(D, P) at time 2, unlike
the coherent revision:

• (SB2, I0) • (ignore(D, P), 2) = (SB2, I0);

• (SB2, I0)⊗ (ignore(D, P), 2) = (SB2, {(ignore(D, P), 2)}).
We introduced optimal revision because it prevents an artificial agent (like a

robot) from remaining committed to an intended action that leads to violations
and helps it to make and revise legal plans. On the other hand, violations
do occur in practice, and therefore we should also allow reasoning about the
dynamics of intentions (like contrary-to-duty reasoning [21]) to account for
those situations. We will use a coherence condition (see Example 4.5) for this
purpose.

Example 4.4 [Running example, power (cont’d.)] We know that the strong
beliefs set SB2 does not contain the following two deontic concepts:

SB2 ⊬ O(inform(D, P))2 and SB2 ⊬ F (ignore(D, P))2.
Now by updating the database with intention (ask(D, P), 1), we can see
that an obligation exists in the weak beliefs of the updated database
(SB2, {(ask(D, P), 1)}):

WB((SB2, {(ask(D, P), 1)})) ⊢ O(inform(D, P))2;
WB((SB2, {(ask(D, P), 1)})) ⊢ F (ignore(D, P))2.

After the tests have been carried out, patient Avery has a Hohfeldian power.
If Avery exercises that power by asking for the results, then he will have a
claim-right that the doctor informs him of the result. If the patient does not
intend to ask for the result, the doctor cannot be obliged to inform the patient.

If, instead of forming the intention (ask(D, P), 1), the planner has the action
ask(D, P) that is actually executed at time 1, then we obtain the revised strong
beliefs set SB3 (see Example 3.5). The same obligation and prohibition exist,
but since the claim-right of Avery (and thus the corresponding duty of the
doctor) was created by his request, now the obligation (and the prohibition)
follows from the strong beliefs:

SB3 ⊢ O(inform(D, P))2 and SB3 ⊢ F (ignore(D, P))2.
The question arises: what happens if the doctor ignores the request, violat-

ing her duty? This scenario leads to contrary-to-duty reasoning [21]. It is very
intuitive to say that Avery’s right to know his results must include a “solu-
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tion” for when the newly created claim-right’s corresponding duty is violated.
Indeed, Avery has a new intention for which this violation is a precondition:
a complaint to the hospital director. 5 The example below shows what can be
done in the current version of the logic.

Example 4.5 [Running example, contrary-to-duty reasoning (cont’d.)] As-
sume that following Avery’s request to the doctor at time 1, the doctor intends
to ignore him:

(SB3, I0)⊗ (ignore(D, P), 2) = (SB3, I4),

where I4 = {(ignore(D, P), 2)}. To recover from this bad situation, Avery
will have a new intention: complain to the hospital director. Intuitively, this
corresponds to contrary-to-duty scenarios in deontic logic literature [21], which
is about how to recover when the primary obligation is violated. Therefore we
have:

(SB3, I4})⊗ (complain(P, HD), 3) = (SB3, I5),

where I5 = {(ignore(D, P), 2), (complain(P, HD), 3)}. Recall that we assume
that the database is shared. After the doctor understands that Avery intends
to complain to the hospital director, she revises her intention and decides to
let Avery know his test results:

(SB3, I5})⊗ (inform(D, P), 2) = (SB3, I6).

Here we have that I6 = {(inform(D, P), 2)}. The intention (ignore(D, P), 2) is
dropped because only one intention is possible at time 2, and the new intention
takes priority (according to P2 from Def. 2.7). Then (ignore(D, P), 2) must be
dropped as well because its precondition will not hold at time 3.

It would be rather intuitive to allow Avery to model conditional planning by
adding to the database both his intention to complain and his intention to sub-
mit a request at time 3, depending on how the situation develops (i.e., whether
the doctor informs him or ignores his request). But they have incompatible
preconditions. The precondition for the complaint action is the postcondition
of the ignore action, while the precondition for applying for early retirement
requires that Avery is informed 6 ). The agent will drop the action whose pre-
condition is not met. In any case, the current system does not allow two
intentions at the same time point, so we leave this as future work.

5 Conclusions and Future Work

Rights, including epistemic rights, influence our plans and thus the inten-
tions we assume or discard. Avery wouldn’t have gotten tested if he hadn’t
believed that he would get the information he needed to apply for early re-

5 This complaint action is very similar to asking for test results; it imposes a duty on the
hospital director to inform Avery (or make the doctor inform Avery). This duty can also be
violated, but we do not go that far into the reasoning in this paper.
6 For the sake of simplicity, we haven’t formally added the action submit(P ) and its pre-
and postconditions to the language since we haven’t used them in the example.
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tirement. In order to accommodate reasoning about normative positions in a
framework, we need basic deontic concepts such as obligation and permission:
these could be introduced through a violation constant. We also need some
formalism to express the nature of power: that some specific power action can
result in changes to normative positions. We could express this by updating
obligations so that weak beliefs become strong beliefs once the duty-bound ac-
tion has been carried out. Additionally, one of the most characteristic features
of the theory of normative positions is that we consider pairs of agents and
their relations. In this paper, we considered only two agents, thus the relation
between their normative positions could be handled tacitly.

We employed the PAL temporal logic of intentions [28] to reason about
obligations, permissions, and rights by modeling the dynamics of intentions
and beliefs. We were able to model obligations and claim-rights directly in the
PAL framework and without extending it in any way. However, we did extend
the revision of belief-intention databases in two ways. First, we introduced
Optimal Revision, which revises the databases so that no violation can occur
and prevents artificial agents from having illegal intentions. Secondly, we in-
troduced revision of databases after actions have been carried out in order to
model the nature of power (transforming weak beliefs into strong beliefs). This
framework thus introduces a new way of characterizing Hohfeldian rights in
practical reasoning.

In conclusion, this paper contributes to closing the gap between reasoning
about rights and practical reasoning. On the one hand, the deontic concepts
introduced to the framework make it possible to align the plans of artificial
agents with norms. These agents are (or will be) subject to normative expec-
tations and will have normative positions based on the deontic concepts and
optimality condition involved in planning to make these possible. On the other
hand, deontic logic, including the theory of normative positions, is ultimately
about defining and reasoning about the normative aspect of actions. A richer
action logic contributes to fulfilling its full potential.

Our future research needs to address the “ought to be” question. When
it comes to rights, it seems very natural at first to talk about actions, and so
“ought to do” appears to be an adequate concept to work with. In deontic logic,
it is also very natural to consider “ought to be” and compare this to “ought
to do” [11]. It is particularly relevant if we consider the planning aspect: the
normative goal is taken as an “ought to be”, and it is the role of the planner
to assign the obligation to an agent to fulfill the normative plan. 7 However,
from a technical point of view, defining “ought to be” in the database is more
complicated than defining “ought to do”. We cannot simply represent “It
ought to be the case that χ at time t” as 2t(¬χt → vt), because axiom A8
makes the temporal modality redundant. To maintain the temporal necessity of

7 In fact, this also fits what happens with rights. For instance, a legislative agent that signs
the Convention of Human Rights is obliged to assign corresponding duties in its own legal
system.
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planning normatively while avoiding temporal redundancy, one could consider
the following definition of “ought to be”: O(χt) := 2t−1(¬χt → vt). This
states: “It is necessary to plan at time t−1 that χ will be the case at time t if no
violation occurs”, which makes sense as a way to describe χ as a normative goal
for the planner. However, the proper formalization of “ought to be” remains
to be studied.

As compared to existing theories of agents and norms, our proposal high-
lights the crucial role of belief and intention in normative reasoning. Traditional
logic-based methods, including dynamic deontic logic [20], see-to-it-that (STIT)
logics [3], and labeled transition systems [25], encompass a wide range of deon-
tic and temporal operators, which are interpreted using semantic models like
CTL∗. Our logic also uses CTL∗-like models and fairly simple syntax based on
PAL [28]. The framework is expressive enough to model rights and define deon-
tic operators but is simple enough to perform AGM-style revision of belief and
intention, and is therefore suitable for practical reasoning. It can be extended
to address issues related to physical or normative constraints, such as environ-
mental persistence [25], multi-agent interaction within the context of personal
intentions [4,10], and the trade-off between violation and compliance [6]. We
leave these topics for future work.
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Abstract

We study a STIT logic for two agents, augmented with three deontic constants
1, 1i, 1j . The constants express, respectively, admissibility for the group {i, j}, ad-
missibility for agent i, and admissibility for agent j. Our semantics uses deontic game
models [25,5], where an action X is admissible for an (individual or group) agent if
and only if X is not weakly dominated by any other action X ′ that is available to that
same agent. After presenting the formal language and game-theoretic semantics, we
first spell out a corresponding Kripke-semantics for the same logic. On the basis of
the latter, we provide a proof system via a geometric extension of a labelled sequent
calculus for STIT in [16]. We demonstrate the structural properties of said calculus,
including height-preserving admissibility of contraction, as well as cut elimination,
and then establish soundness and completeness. Finally, we illustrate the general
applicability of the calculus by discussing a number of possible variations and exten-
sions.

Keywords: Deontic logic, STIT, game models, relational models, sequent calculus,
soundness and completeness

1 Introduction

The marriage between logics of agency and deontic logic has been a long and
fruitful one, dating back to the famous Meinong-Chisholm thesis [8] and the
work on normative positions [10,11]. With the advent of STIT logic [3], the
logic of agency received renewed interest in the deontic logic community, with
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Projektnummer 459928802. Funded by the German Research Foundation (DFG) - Project
number 459928802.
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[9] as a key reference. What distinguishes Horty’s approach from earlier work is
that he uses decision-theoretic concepts and models to provide a semantics for
expressions of the type “agent i ought to see to it that A” (OiA). On Horty’s
dominance act utilitarian semantics, the latter statement is true if and only if
all admissible actions of i are such that they guarantee A. Admissibility is in
turn spelled out in line with the standard concept of (weak) dominance from
decision theory, by quantifying over all possible combinations of actions of all
other agents, and relative to an agent-independent (normative) comparison of
outcomes. 3

More recently, Tamminga and Hindriks [26] have developed an alternative,
game-theoretic semantics for deontic STIT logic that abstracts from the branch-
ing time framework of traditional STIT logic and takes the agent’s actions as
primitive. 4 In [25,5], this semantics is used to interpret a more expressive
language where the deontic operators are replaced with deontic constants 1i
expressing that “agent i is performing an admissible action”. As shown in
[25], OiA can then be defined as S(1i → A), i.e., “it is settled true that if i
performs an admissible action, then A”, following the well-known Andersonian-
Kangerian reduction of deontic logic [10,1].

While there has been a recent uptick in the proof-theoretic investigations
of both STIT logic [21,31,12,16,2,17] and deontic logic [22,32,7], none of these
tackle admissibility constants. 5 Proof-theoretic methods allow for a stream-
lined integration of semantics within a system of syntactic rules, in a manner
that is highly modular. That is to say, extensions of the system do not require
us to backtrack and re-check any of the previous results, but rather one needs
only to establish that those still hold for the new additions. Moreover, if one
considers rules of the geometric form [18,20], as is the case in the present pa-
per, it is only necessary to ascertain that they are of correct syntactic format,
and no further proof is required. This is especially useful when combining two
considerably complex systems, as is the case here.

Desired properties enable or facilitate a wide range of insights, both philo-
sophical and technical. Among those, invertibility of the rules (whereby, if a
conclusion of a rule is derivable so are its premises) means that a counterex-
ample to a premise is also a counterexample to the conclusion. Consequently,
one can generate countermodels from a failed proof search. This allows for
straightforward proofs of completeness and is utilized in this paper.

A more general property of a system is analyticity, whereby features of a
derivation, such as its length or the number and weight of formulas therein, can
be gleaned simply by observing the conclusion. This property is achieved by,

3 See in particular [9, Chapter 4].
4 Similar models are used in [24] to analyse collective obligations and team plans.
5 Murakami [13] presents an axiomatization of one of Horty’s logics, for a language that
(only) features individual agency operators 2i and individual obligation operators Oi. As
shown there, the axiomatization requires no specific interactions between the deontic op-
erators; all theorems can be derived from the STIT fragment and the way each individual
obligation operator Oi interacts with the corresponding agency operator 2i.
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among others, admissibility of contraction, cut, and the resultant subformula
property (where only syntactic subformulas of those in the conclusion occur
in any derivation). As a consequence, by merely observing the (purported)
conclusion, it is possible to infer facts about its acceptability or extract more
precise and substantial sub-derivations, as was recently done for deontic logic
without STIT in [7]. Finally, proof theoretic characterizations are an important
step towards syntactic proofs of decidability [22,12,16] and complexity results
in general.

Here we make some initial headway in proof-theoretic investigation of de-
ontic STIT logic with admissibility constants. We focus on a STIT logic for
two agents with deontic constants 1, 1i, 1j that express, respectively, admissi-
bility for the group {i, j}, admissibility for agent i, and admissibility for agent
j. This represents the smallest multi-agent case. The extension to n agents,
which we discuss and outline in Section 6, is not difficult, but the present case
is sufficiently illustrative while offering far greater transparency. We spell out
the formal language and game-theoretic semantics of the resulting logic STITd

2

(in the style of [25]) in Section 2. Next, we provide a corresponding Kripke-
semantics (Section 3). The latter in turn allows us to build a proof system
for STITd

2 , via a geometric extension of a labelled sequent calculus for STIT
in [16], and demonstrate its structural properties (Section 4). In Section 5 we
establish soundness and completeness. Finally, we argue that our calculus can
be generalized to other deontic STIT logics and logics of weak dominance in
normal form games (Section 6).

2 Language and semantics of STITd
2

In this section we present the formal language and game-theoretic semantics
of STITd

2 . Our exposition mostly follows [25,5]; where we deviate from the
modeling choices in this work, we explicitly mention this.

2.1 Formal language

Fix a countable set P of propositional variables and two distinct agents i, j. In
what follows, we use α as a metavariable for both and we let i = j, and j = i.
The formal language L is given by the following Backus-Naur form:

A ::= ⊥ | p | 1 | 1α | 0 | 0α | ¬A | A ⊃ A | 2αA | 3αA | SA | PA

where p ∈ P and α ∈ {i, j}. Table 1 provides an overview of the different
interpretations of the non-standard constants and operators in this language.
Note that we treat more symbols as primitive than is usual in a classical modal
logic setting; this allows us to draw on established proof theoretic techniques
to obtain the sequent calculus for the logic [18,20,15,16].

2.2 Two-agent deontic game models

Deontic game models (for the set of agents {i, j}) can be seen as normal game
forms equipped with (i) a deontic assignment that tells us which combinations
of actions by i and j are acceptable, and (ii) a valuation function that tells us
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1 “The current state is deontically acceptable.”
“The current combination of actions is admissible for {i, j}.”

1i “i performs a deontically admissible action.”
“i’s choice is deontically admissible.”

2ip “i sees to it that p.”
“i’s choice guarantees that p is the case.”

Sp “p is true, no matter what i or j do.”

Table 1
Natural language interpretations of some expressions in L.

which propositions are true given any such combination. Formally:

Definition 2.1 (Deontic Game Model) A (two-agent) deontic game model
M is a quadruple ⟨Ai,Aj , d, V ⟩, where Ai and Aj are non-empty sets of actions
available to agent i, resp. j, where d : Ai × Aj → {0, 1} is a deontic value
assignment such that there is at least one a in Ai × Aj with d(a) = 1, and
V : P → ℘(Ai × Aj) is a valuation function.

In what follows, we use A to abbreviate Ai × Aj , where the deontic game
model in question is clear from the context. A is called the set of action profiles
of the given deontic game model.

Note that, in contrast to [25,5], we do not presuppose that Ai and Aj are
finite. Such an assumption would arguably render the logic non-compact. 6 As
a consequence of lifting the finiteness condition, the simple dominance relation
on actions (cf. Definition 2.2) is also no longer smooth, which does have an
impact on the logic in question — we return to this point in Section 6.

To illustrate the above definition, consider the model M1 depicted in Fig-
ure 1. Here, rows represent actions of i and columns represent actions of j.
Each cell in the diagram thus corresponds to an action profile. The deontic
value assignment and the valuation function are represented by the 1s and 0s,
and by the propositional variables that occur in these cells. Thus, for instance,
d(ci, bj) = 0 and V (p) = {(ai, aj), (ci, cj)}.

aj bj cj
ai 0/p 1 1
bi 1/q 1/q 0/q
ci 1 0 0/p

Fig. 1. Deontic game model M1

Given any such model, formulas are evaluated relative to action profiles.
For instance, in the model M1 given above, 2iq is true at the action profile

6 In particular, one can construct an infinite set that expresses that there are infinitely many
distinct action profiles: Γ = {P(¬p1∧ . . .∧¬pn∧pn+1) | n ≥ 0}. Every finite subset of Γ can
be satisfied by some finite deontic game model, but Γ cannot. If one imposes the stronger
condition that |Ai ×Aj | ≤ k for some k ∈ N, then the logic is again compact.
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(bi, aj), since given bi, it is guaranteed that q is the case. In contrast, 2iq is
false at (ai, aj), since ai does not in itself guarantee that q is the case.

Similarly, whether α performs an admissible action depends on the action
profile in question. To specify truth-conditions for 1α, we compare the actions
in Aα by way of a simple dominance relation ⪰αM : 7

Definition 2.2 (Simple Dominance) Let M = ⟨Ai,Aj , d, V ⟩ be a deontic
game model and let α ∈ {i, j}. Then

aα ⪰αM bα iff for all cα ∈ Aα it holds that d(aα, cα) ≥ d(bα, cα).

Weak dominance is the strict counterpart of simple dominance: aα ≻αM bα if
and only if aα ⪰αM bα and bα ̸⪰αM aα. Finally, an action is deontically admissible
in deontic game model M if it is ⪰αM -maximal:

Definition 2.3 (Deontic Admissibility) Let M = ⟨Ai,Aj , d, V ⟩ be a deon-
tic game model and α ∈ {i, j}. Then the set of α’s deontically admissible
actions in M is given by

Admα(M) = {aα ∈ Aα : there is no bα ∈ Aα such that bα ≻αM aα}.
So for instance, Admi(M1) = {ai, bi} and Admj(M1) = {aj , bj}.
We are now in a position to state the truth-conditions for STITd

2 :
8

Definition 2.4 (Truth-Conditions) Where M = ⟨Ai,Aj , d, V ⟩ is a deontic
game model, a ∈ A, α ∈ {i, j}, and p ∈ P:

M,a |= p iff a ∈ V (p)
M,a |= 1 iff d(a) = 1
M,a |= 0 iff d(a) ̸= 1
M,a |= 1α iff aα ∈ Admα(M)
M,a |= 0α iff aα ̸∈ Admα(M)
M,a |= SA iff for all b ∈ A it holds that M, b |= A
M, a |= PA iff for some b ∈ A it holds that M, b |= A
M, a |= 2αA iff for all b ∈ A with bα = aα it holds that M, b |= A
M, a |= 3αA iff for some b ∈ A with bα = aα it holds that M, b |= A.

3 Kripke semantics for STITd
2

We now provide a Kripke-semantics for STITd
2 as an intermediary between

game models and sequent calculi, which will allow us to draw on well-known
techniques for the proof theoretic characterization of STIT-logics. 9 We do so
in two steps: first we define a more general class of models for L, and next we

7 Here, we follow terminology recently introduced in [6] and deviate from [25,5], in order
to be more in line with common terminology in decision and game theory. Horty [9] uses
“strong dominance” for what is called weak dominance here.
8 Here and below, we omit the standard truth-conditions for the classical connectives.
9 The link between normal game forms and (Kripke-semantics for) normal modal logics of
type S5 is meanwhile well-documented. Some key references are [30,29,28], cf. also [27,
Section 2.6] for an introduction to this area.
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impose additional conditions on them that ensure that the deontic constants
1α and 0α get their intended meaning.

Definition 3.1 (Relational quasi-model) A relational quasi-model is a
quintuple M = ⟨W,∼i,∼j , d, V ⟩, where W is non-empty, ∼i and ∼j are equiv-
alence relations over W , d : W → {0, 1} is a deontic value assignment, and
V : P ∪ {1i, 0i, 1j , 0j} → ℘(W ) is a valuation function, and such that each of
the following conditions hold:

• Independence of Agents (IOA): for all w,w′ ∈W , there is a w∗ ∈W such
that w ∼i w∗ and w′ ∼j w∗

• Determinism (Det): for all w,w′ ∈ W , if w ∼i w′ and w ∼j w′, then
w = w′

• Deontic Consistency (D): there is some w ∈W such that d(w) = 1

Definition 3.2 (Valuation) Where M = ⟨W,∼i,∼j , d, V ⟩ is a relational
quasi-model, A,B ∈ L, and w ∈W :

M,w |= A iff a ∈ V (A) for A ∈ P ∪ {1i, 0i, 1j , 0j}
M,w |= 1 iff d(w) = 1
M,w |= 0 iff d(w) ̸= 1
M,w |= SA iff for all w′ ∈W , it holds that M,w |= A
M,w |= PA iff for some w′∈W , M,w |= A
M,w |= 2αA iff for all w′∈W such that w∼αw′, it holds that M,w′ |=A
M,w |= 3αA iff for somew′ ∈W such that w∼αw′, it holds that M,w′ |=A
Henceforth, let |w|α = {w′ ∈ W | w ∼α w′} and let Aα(M) = {|w|α |

w ∈ W}. It can be easily observed that, save for the deontic constants 1α
and 0α, there is a one-to-one mapping from deontic game models to relational
quasi-models and vice versa that preserves equivalence. In particular, actions
of an agent α in a deontic game model correspond to equivalence classes |w|α
in the corresponding relational quasi-model, and action profiles correspond to
worlds. The conditions (IOA) and (Det) ensure that every combination of a
given action X ∈ Ai(M) with an action Y ∈ Aj(M) coincides with a unique
world w, i.e. X ∩ Y = {w}, and hence with a unique action profile in the
corresponding deontic game model. 10

In order to obtain full equivalence of the semantics, we need to ensure that
the deontic constants 1α (0α) are true (false) in exactly those states w for which
|w|α is “deontically admissible”. We first define the latter notion for relational
quasi-models and then introduce the relevant conditions. In what follows, we
extend the deontic function d so that it ranges over singleton sets of worlds,
putting d({w}) = d(w).

Definition 3.3 Let X,X ′ ∈ Aα(M). Then X ⪰αM X ′ iff for all Y ∈ Aα(M),
d(X ∩Y ) ≥ d(X ′ ∩Y ). X ≻αM X ′ iff X ⪰αM X ′ and X ′ ̸⪰αM X. X ∈ Aα(M) is

10See [33] for an investigation of non-deterministic STIT-models and their relation to deter-
ministic ones.
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deontically admissible for α in M (X ∈ Admα(M)) iff there is no X ′ ∈ Aα(M)
such that X ′ ≻αM X.

Definition 3.4 (Relational model) M = ⟨W,∼i,∼j , d, V ⟩ is a relational
STITd

2-model iff M is a relational quasi-model and each of the following hold
for α ∈ {i, j} and for all w ∈W :

w ∈ V (1α) iff |w|α ∈ Admα(M)

w ∈ V (0α) iff |w|α ̸∈ Admα(M).

To avoid redundancy we indicate |w|α ⪰αM |w′|α by w ⪰αM w′, and fur-
ther omit an explicit reference to M , which we call simply ‘relational model’,
when clear from context. The presentation so far allows a simple mapping
of relational and game models. To likewise facilitate the mapping to sequent
calculi, we will characterize the above two conditions in the form closer to an
implication:

Lemma 3.5 M is a relational STITd
2-model iff M is a quasi-model and each

of the following hold, for all X ∈ Aα(M):

(BAα) Either X ⊆ V (1α) or X ⊆ V (0α), but not both.
(BNDα) If X ⊆ V (1α), then for all X ′∈Aα(M): if X ′ ⪰αM X then X ⪰αM X ′.
(NBDα) If X ⊆ V (0α), then there is an X ′ ∈ Aα(M) s.t. X ′ ⪰αM X and
X ̸⪰αM X ′.

Proof. (L-R) This follows immediately from Definitions 3.3 and 3.4.
(R-L) By (BAα), for every w: w ∈ V (1α) or w ∈ V (0α) (but not both). So it

suffices to prove only one of the two equivalences in Definition 3.4. Suppose first
that w ∈ V (0α). By (BAα), |w|α ⊆ V (0α). By (NBDα) there is a Y ∈ Aα(M)
such that Y ⪰αM |w|α. Hence |w|α ̸∈ Admα(M). The reasoning for the other
direction is analogous, using (BNDα). 2

Intuitively, these conditions express the facts that (BAα): optimality (be-
ing the best) belongs to actions, (BNDα): best actions are not (strictly)
dominated, and (NBDα): if an action is not the best, then it is dominated
by another action.

In the following section we formulate a sequent calculus for this logic by
unraveling the conditions into rules in a geometric format, enabling us to briefly
and schematically demonstrate all the prerequisite structural rules. This will
be made possible by representing actions via their elements, e.g. the condition
(BAα) is represented via a geometric implication (w : 1α ∧ w∼αw′) → w′ : 1α,
mirroring the corresponding step in the proof of Lemma 3.5 above.

4 Sequent calculi for STITd
2

The basic unit of sequent calculus is a sequent, of the form Γ ⇒ ∆, where Γ,
∆ are multisets of formulas. All the rules of sequent calculi then consist of one
sequent, written below the inference line, which is its conclusion, and one or
more sequents above the line called its premises. All the formulas except Γ
and ∆ are called active formulas of the rule if they occur in the premise(s) and
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principal if they occur in the conclusion of the rule. Γ and ∆ are called a context
of the rule. A branch is a series of sequents, starting with the endsequent, in
which every element is a conclusion of a rule that the following element is a
premise of (two-premise rules thus split the branches).

The height of a derivation is the length (number of consecutive applications
of derivation rules) of its longest branch. Derivability with height bounded
by n is then indicated by ⊢n, and height-preservation (hp) means that in the
resulting derivation height is not increased. When a rule and a semantic con-
straint bear the same name, they can be distinguished by the latter appearing
in parentheses.

Initial sequents: w :p,Γ ⇒ ∆, w :p w :⊥,Γ ⇒ ∆

Propositional rules: Standard G3cp, negation and implication only.

Modal rules:

w′∼αw,w : 2αA,w′ :A,Γ ⇒ ∆
L2α

w′ ∼α w,w : 2αA,Γ ⇒ ∆

w′∼αw,Γ ⇒ ∆, w′ :A
R2α

Γ ⇒ ∆, w :2αA

w∼αw′, w′ :A,Γ ⇒ ∆
L3α

w :3αA,Γ ⇒ ∆

w∼αw′,Γ ⇒ ∆, w :3αA,w′ :A
R3α

w∼αw′,Γ ⇒ ∆, h :3αA

w′ :A,w :SA,Γ ⇒ ∆
LS

w :SA,Γ ⇒ ∆

Γ ⇒ ∆, w′ :A
RS

Γ ⇒ ∆, w :SA
w′ :A,Γ ⇒ ∆

LP
w :PA,Γ ⇒ ∆

Γ ⇒ ∆, w :PA,w′ :A
RP

Γ ⇒ ∆, w :PA

Rules for relational atoms:

w = w,Γ ⇒ ∆
Refl=Γ ⇒ ∆

At(w′), w′ = w,At(w),Γ ⇒ ∆
Repl=

w = w′, At(w),Γ ⇒ ∆

w ∼α w′, w ∼α w′, w = w′,Γ ⇒ ∆
Det

w ∼α w′, w ∼α w′,Γ ⇒ ∆

w ∼α w,Γ ⇒ ∆
Refl∼αΓ ⇒ ∆

w2 ∼α w3, w1 ∼α w2, w1 ∼α w3,Γ ⇒ ∆
Etrans∼αw1 ∼α w2, w1 ∼α w3,Γ ⇒ ∆

w1∼αw′∼αw2, w1 ∼α w′
1, w2 ∼α w′

2,Γ ⇒ ∆
Ind

w1 ∼α w′
1, w2 ∼α w′

2,Γ ⇒ ∆

- w′ is fresh (the eigenvariable) in R2α, L3α, RS, LP and Ind. At(w) is
either a relational atom containing w, or an atomic formula labelled by w.

Fig. 2. G3STIT2

The base for our system is (a slight modification of) G3STIT [16], a labelled
sequent calculus [20], whereby for a countable set of labels H, every formula
A ∈ L combines with a label w ∈ H to produce a labelled formula w : A.
Simplified to two agents and using worlds instead of moment/history pairs, this
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base is introduced in Figure 2. 11 Displayed formulas which are not labelled
are referred to as relational atoms.

As previously discussed, the language L extends the base language of STIT
logic with three deontic constants. Henceforth, let subscript ϵ stand for either
i, j, or an empty string of symbols. The sequent calculus G3STITd2 is obtained
by extending G3STIT2 with the deontic rules in Figure 3. 12

Notice that the rules 01ϵ and 01ϵ state that each pair of constants is mutually
exclusive and jointly exhaustive, rules for ⪰ express its inferential behavior per
Definition 2.2, rule PB expresses the condition (D) of Definition 3.1, while the
remaining rules capture the conditions from Lemma 3.5 as already discussed
after that Lemma.

Deontic part:

w :1ϵ,Γ ⇒ ∆ w :0ϵ,Γ ⇒ ∆
01ϵ

Γ ⇒ ∆
01ϵw :1ϵ, w :0ϵ,Γ ⇒ ∆

w′ :1,Γ ⇒ ∆
PB

Γ ⇒ ∆

w∼αw′, w ⪰α w′′, w′ ⪰α w′′,Γ ⇒ ∆ ⪰αL
w∼αw′, w ⪰α w′′,Γ ⇒ ∆

w′ :1α, w :1α, w∼αw′,Γ ⇒ ∆
BAα

w :1α, w∼αw′,Γ ⇒ ∆

w∼αw′, w ⪰α w′′, w ⪰α w′,Γ ⇒ ∆ ⪰αR
w′′∼αw′, w ⪰α w′′,Γ ⇒ ∆

w ⪰α w′, w ∼α w′, w′ :1, w :1,Γ ⇒ ∆ ⪰α
w ⪰α w′, w ∼α w′, w′ :1,Γ ⇒ ∆

w ⪰α w1, w∼αw1, w :1α,Γ ⇒ ∆ w1∼αw′∼αw′′∼αw,w′ :0, w′′ :1, w∼αw1, w :1α,Γ ⇒ ∆
BNDα

w∼αw1, w :1α,Γ ⇒ ∆

w ∼α w′ ∼α w′′, w′′ ⪰α w,w′ :0, w′′ :1, w :0α,Γ ⇒ ∆
NBDαw :0α,Γ ⇒ ∆

- w′, w′′ are fresh in BNDα and NBDα.

Fig. 3. G3STITd2

4.1 Structural properties

Given that all the rules extending the system follow the geometric pattern, the
structural rules of the new system are straightforwardly established, using the
familiar sequence below, expanding upon the proofs of [16,20].

- Derivability of sequents of the form w :A,Γ ⇒ ∆, w :A for any A.
- Height-preserving substitution on labels and agents.
- Height-preserving admissibility of weakening.

11Since i and j are stipulated to be distinct agents, the Difference rule from [16] is no longer
required.
12Note that the system in [16] did not contain primitive 3α. However, in parallel with
S/P and anticipating that this formulation will streamline future axiomatizations, we have
decided to include it here.
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- Height-preserving invertibility of all the rules.
- Height-preserving admissibility of contraction.
- Admissibility of cut.

We will briefly go over each in turn, noting first that the weight of the
formula is defined in the standard way as

Definition 4.1 (Weight of a formula, w) The weight of a labelled formula
w :A is given by the weight of A, w(A), and is defined recursively as follows:

- w(P ) = w(⊥) = w(1ϵ) = w(0ϵ) = 1,
- w(A ⊃ B) = w(A) + w(B) + 1 ,
- w(2αA) = w(3αA) = w(SA) = w(PA) = w(¬A) = w(A) + 1.

Lemma 4.2 (Initial sequent generalization) The sequents of the form
w :A,Γ ⇒ ∆, w :A are derivable in G3STITd2 for any formula A of L.

Proof. Routine by induction on the weight of A. Since G3stit in [16] did not
contain 3α, we illustrate the case for it:

i.h.
w∼αw′, w′ :A,Γ ⇒ ∆, w :3αA,w′ :A

R3α

w∼αw′, w′ :A,Γ ⇒ ∆, w :3αA
L3α

w :3αA,Γ ⇒ ∆, w :3αA

The remaining new vocabulary (i.e. the constants) simply falls under the basic
case of an initial sequent. 2

Lemma 4.3 (Substitution) If ⊢n Γ ⇒ ∆ is derivable in G3STITd2, so are
⊢n Γ′ ⇒ ∆′ and ⊢n Γ′′ ⇒ ∆′′, obtained from Γ ⇒ ∆ by uniform substitution
of labels and agent indices, respectively.

Proof. By induction on the height of the derivation, using the inductive hy-
pothesis twice when a clash of eigenvariables needs to be avoided. 2

Lemma 4.4 (Weakening) Weakening is hp-admissible: if ⊢n Γ ⇒ ∆ then
⊢n A,Γ ⇒ ∆ and ⊢n Γ ⇒ ∆, B, where A is a labelled formula or a relational
atom, and B a labelled formula.

Proof. Routine by induction on the height of the derivation, using Lemma 4.3
to avoid eigenvariable clashes. 2

Lemma 4.5 (Invertibility) All the rules of G3STITd2 are hp-invertible: if
the conclusion of the rule is derivable, so are its premises.

Proof. By induction on the height of a derivation. Note that the proofs for
the rules of G3STIT2 are identical to those in [16] or straightforward for the
new ones, while for all the deontic rules this is simply an application of Lemma
4.4 (hp-weakening). 2

Lemma 4.6 (Contraction) Contraction is hp-admissible in G3STITd2: if ⊢n
A,A,Γ ⇒ ∆ then ⊢n A,Γ ⇒ ∆ and if ⊢n Γ ⇒ ∆, A,A then ⊢n Γ ⇒ ∆, A.
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Proof. By simultaneous induction on the height of the derivation. This is
routine via the inductive hypothesis and possibly Lemma 4.5 applied to the
premises of the last rule used. Note that the closure condition is met, namely
whenever two principal formulas of a rule could be one and the same, the
contracted version also appears as a rule (this is possible with Etrans∼α and
Repl=, with the contracted versions being instances of Refl∼α and Refl=,
respectively). 2

Theorem 4.7 (Cut) The rule of Cut is admissible in G3STITd2:

Γ1 ⇒ ∆1, C C,Γ2 ⇒ ∆2
Cut

Γ1,Γ2 ⇒ ∆1,∆2

Proof. By induction on the weight of the cut formula with a secondary induc-
tion on the height of the cut (sum of the heights of its premises). Most of the
proof is routine, and we will just illustrate the example of the cut formula of
the form 3αA and principal in both premises. The instance of the Cut rule
then has the form:

w∼αw′,Γ1 ⇒ ∆1, w :3αA,w′ :A
R3i

w∼αw′,Γ1 ⇒ ∆1, w :3αA

w∼αw′, w′ :A,Γ2 ⇒ ∆2
L3i

w :3αA,Γ2 ⇒ ∆2
Cut

w∼αw′,Γ1,Γ2 ⇒ ∆1,∆2

This is transformed into:

w∼αw′,Γ1 ⇒ ∆1, w :3αA,w′ :A w :3αA,Γ2 ⇒ ∆2
Cut2

w∼αw′,Γ1,Γ2 ⇒ ∆1,∆2, w
′ :A w∼αw′, w′ :A,Γ2 ⇒ ∆2

Cut1
w∼αw′, w∼αw′,Γ1,Γ2,Γ2 ⇒ ∆1,∆2,∆2

Lemma 4.6
w∼αw′,Γ1,Γ2 ⇒ ∆1,∆2

where Cut1 is of lower weight, and Cut2 of lower height, and therefore elim-
inable by primary and secondary inductive hypotheses, respectively.

Note that all the deontic rules follow the geometric rule schema, and there-
fore do not hinder the admissibility of cut. Specifically, since no relational
formula or labelled atom is ever principal in a right rule, we can by reduction
of height on the left obtain a premise of cut which is initial, in which case the
cut is routinely eliminated. 2

5 Soundness and completeness

In this section we establish that the proposed sequent calculus is sound and
complete with respect to the Kripke semantics from Section 3. This also shows
soundness and completeness w.r.t. the semantics from Section 2. Our overall
proof methods follow [16], but their application to deontic admissibility con-
stants is new to this paper.

5.1 Soundness of G3STITd
2

In what follows M is assumed to be a relational model. We say that M makes
w :A true whenever M,w ⊨ A, and that M makes a relational atom true iff
the atom in question holds for M . We thus use truth to encompass claims that
hold both in and of the model.
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Theorem 5.1 (Soundness of G3STITd
2) G3STITd2 is sound: if a sequent

Γ ⇒ ∆ is derivable, then any relational model that makes all the formulas in
Γ true also makes some formula in ∆ true.

Proof. By induction on the height of the derivation. Since for the rules of
G3STIT2 this is mostly a simplification of the proofs in [16], we only check
for the deontic rules (L3α/R3α are treated symmetrically to R2α and L2α,
respectively). Note that PB and Det straightforwardly correspond to, respec-
tively, (D) and (Det) of relational models.

01ϵ/01ϵ: Let Γ ⇒ ∆ be derived by 01ϵ:

w :1ϵ,Γ ⇒ ∆ w :0ϵ,Γ ⇒ ∆
01ϵ

Γ ⇒ ∆

Assume M makes all formulas in Γ true. Then by Definition 3.4, for every
w, either M,w ⊨ 1ϵ or M,w ⊨ 0ϵ. In either case some formula in ∆ is true in
M by the inductive hypothesis (IH). By the same Definition, either M,w ̸⊨ 1ϵ
or M,w ̸⊨ 0ϵ, so soundness trivially holds for any sequent derived by 01ϵ.

⪰αL/⪰αR: Let Γ ⇒ ∆ be derived by ⪰αL:
w∼αw′, w ⪰α w′′, w′ ⪰α w′′,Γ ⇒ ∆ ⪰αL

w∼αw′, w ⪰α w′′,Γ ⇒ ∆

Assume M makes all formulas in w ∼α w′, w ⪰α w′′,Γ true. From the
second atom it follows that |w|α ⪰α |w′′|α. But since w ∼α w′, it follows
that |w|α = |w′|α. So, |w′|α ⪰α |w′′|α, and thus w′ ⪰α w′′. Then all of
w∼αw′, w ⪰α w′′, w′ ⪰α w′′,Γ are true in M and by the IH so is some formula
in ∆. The proof for ⪰αR is very similar and safely left to the reader.

BAα: Let Γ ⇒ ∆ be derived by BAα:

w′ :1α, w :1α, w∼αw′,Γ ⇒ ∆
BAα

w :1α, w∼αw′,Γ ⇒ ∆

AssumeM makes all the formulas in w :1α, w∼αw′,Γ true. Let Y = |w|α =
|w′|α ∈ Aα(M). Then, since X ∩ V (1α) ̸= ∅ and since M satisfies (BAα) (cf.
Lemma 3.5), it follows that X ⊆ V (1α). So, w

′ ∈ V (1α) and henceM,w′ |= 1α.
In sum, all of w′ :1α, w :1α, w∼αw′,Γ are true in M , and by the IH so is some
formula in ∆.

⪰α: Let Γ ⇒ ∆ be derived by ⪰α:
w ⪰α w′, w ∼α w′, w′ :1, w :1,Γ ⇒ ∆ ⪰α
w ⪰α w′, w ∼α w′, w′ :1,Γ ⇒ ∆

Assume M makes all the formulas in w ⪰α w′, w∼α w′, w′ : 1,Γ true. Let
Y = |w|α = |w′|α ∈ Aα(M). From w ⪰α w′ it follows that |w|α ⪰α |w′|α, and
therefore for every Z ∈ Aα(M) : d(|w|α ∩ Z) ≥ d(|w′|α ∩ Z). Therefore, also
d(|w|α ∩ Y ) ≥ d(|w′|α ∩ Y ). By Determinism, d(w) ≥ d(w′). Since w′ : 1 it
follows that w′ ̸∈ V (0). Thus, w ∈ V (1), and so w : 1 holds. In sum, all of
w ⪰α w′, w ∼α w′, w′ : 1, w : 1,Γ are true, and by the IH so is some formula in
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∆.
BNDα: Let Γ ⇒ ∆ be derived by BNDα:

w ⪰α w1, w∼αw1, w :1α,Γ ⇒ ∆ w1∼αw′∼αw′′∼αw,w′ :0, w′′ :1, w∼αw1, w :1α,Γ ⇒ ∆
BNDα

w∼αw1, w :1α,Γ ⇒ ∆

Assume M makes all the formulas in w ∼α w1, w : 1α,Γ true. Case 1:
w1 ⪰α w. Given that |w1|α ⪰α |w|α and by (BAα), |w|α ⊆ V (1α). Since M
satisfies (BNDα) (cf. Lemma 3.5), also |w|α ⪰α |w1|α and therefore w ⪰α w1.
In sum, all of w ⪰α w1, w∼αw1, w :1α,Γ are true and therefore by the IH so is
some formula in ∆.
Case 2: w1 ̸⪰α w. Then there is some Y ∈ Aα(M) : d(|w1|α∩Y ) ̸≥ d(|w|α∩Y ),
i.e. such that d(|w1|α∩Y ) = 0 and d(|w|α∩Y ) = 1. Let simply w′ ∈ |w1|α∩Y
and w′′ ∈ |w|α ∩ Y , otherwise use Lemma 4.3 to (hp-)derive the sequent with
those labels. Then, given Determinism, d(w′) = 0 and d(w′′) = 1, and therefore
w′ : 0 and w′′ : 1 are both true. Moreover, since w′, w′′ ∈ Y , it holds that
w′∼αw′′. Since w′ ∈ |w1|α it holds that w1∼αw′ and since w′′ ∈ |w|α it holds
that w∼αw′′. In sum, all of w1∼αw′∼αw′′∼αw,w′ :0, w′′ :1, w∼αw1, w :1α,Γ
are true, and by the IH so is some formula in ∆.

NBDα: Let Γ ⇒ ∆ be derived by NBDα:

w ∼α w′ ∼α w′′, w′′ ⪰α w,w′ :0, w′′ :1, w :0α,Γ ⇒ ∆
NBDαw :0α,Γ ⇒ ∆

Assume M makes all the formulas in w : 0α,Γ true. Since M satisfies
(BAα), it follows that |w|α ⊆ V (0α). Since M satisfies (NBDα), there is a
Y ∈ Aα(M) s.t. Y ⪰α |w|α and |w|α ̸⪰α Y . It follows from the latter that for
some Z ∈ Aα(M) : d(|w|α ∩ Z) ̸≥ d(Y ∩ Z), and so w0 ∈ |w|α ∩ Z : w0 ∈ V (0)
and w1 ∈ Y ∩Z : w1 ∈ V (1). Let w′ = w0 and w′′ = w1, otherwise use Lemma
4.3. So, w′ : 0 and w′′ : 1 both hold. Moreover, since w1 ∈ Y , it follows that
w′′ ⪰α w. Since w0, w1 ∈ Z ∈ Aα(M), it follows that w′∼αw′′. Finally, since
w0 ∈ |w|α, it follows that w∼αw′. In sum, all of w ∼α w′ ∼α w′′, w′′ ⪰α w,w′ :
0, w′′ :1, w :0α,Γ are true, and by the IH so is some formula in ∆. 2

5.2 Completeness of G3STITd
2

Completeness of G3STITd2 is demonstrated by a countermodel construction
via a failed proof search [19,14]. We begin by defining a reduction tree, which
corresponds to a bottom-up proof search [23].

Definition 5.2 (Reduction tree) A reduction tree for the sequent Γ ⇒ ∆
is a tree built bottom-up in steps, each consisting of stages for each of the rules.

A sequent that does not contain the same labelled atom in both the succedent
and the consequent, or a bottom in the antecedent, or both h : 1ϵ and h : 0ϵ (for
some label h) in the antecedent, is called active.

At each stage we apply, bottom-up, the rule of that stage to each leaf of the
tree which is an active sequent Γn ⇒ ∆n. An application of a rule to a formula
is called the reduction of the latter. We don’t reduce the formulas if the active
formulas are already in the sequent. Once the rule of the stage can no longer
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be applied, we move to the next stage if there are still active sequents.
The order of the stages in a step is the order of presentation of the rules in

Figures 2 and 3, left to right and consecutively. For each rule with a freshness
condition, we take from the denumerable list of labels the first label(s) not yet
used in the tree. We apply Refl=, Reflα and 01ϵ for any label occurring in
Γi ⇒ ∆i just once per branch, and we apply PB only once per branch.

If there are still active sequents once every stage of a step has been com-
pleted, a new step begins with the stage for propositional rules.

If we reach a point where no leaf is an active sequent, we have a derivation
of Γ ⇒ ∆. Namely, every leaf is either an initial sequent or a conclusion of
01ϵ, each sequent is generated by an application of a rule, and the endsequent
is Γ ⇒ ∆. Otherwise, we have a branch where no more steps can be applied,
but all sequents are active. We use that branch to generate a countermodel.

Definition 5.3 (Refutation model M c) Let Γ0 ⇒ ∆0,Γ1 ⇒ ∆1, ... be a
(finite or infinite) branch of a reduction tree for Γ ⇒ ∆ (so Γ0 ⇒ ∆0 is just
Γ ⇒ ∆). Let Γ∗ =

⋃
Γn≥0 and ∆∗ =

⋃
∆n≥0. Let M c = ⟨W,∼i,∼j, d, V ⟩ and

I : H →W be such that (i) I(w) ∈W iff w occurs in Γ∗∪∆∗; (ii) I(w) = I(w′)
iff w = w′ occurs in Γ∗; (iii) I(w)∼α I(w′) iff w∼αw′ occurs in Γ∗; and (iv)
for every labelled atom w :φ: if φ ∈ P ∪ {1i, 1j , 0i, 0j}, then I(w) ∈ V (φ) iff
w : φ ∈ Γ∗, if φ = 1, then d(I(w)) = 1 iff w : φ ∈ Γ∗, and if φ = 0, then
d(I(w)) = 1 iff w :φ ∈ ∆∗.

Lemma 5.4 M c is a relational quasi-model.

Proof. First, we show that M c, w ⊨ 0ϵ iff M c, w ⊭ 1ϵ. L-R holds because all
sequents in the branch are active. R-L holds because by Definition 5.2 rule 01ϵ
has been applied to the branch in question.

Next, we show that in M c both∼α are equivalence relations, because the
rules Refl∼α and Etrans∼α have been applied to any (appropriate combination
of) labels occurring in the branch. E.g. for every label w, w∼α w appears in
the branch, and therefore I(w) ∈ |I(w)|α. Likewise for (IOA), given the rule
Ind, and (Det), given rule Det. Finally, since in every branch the rule PB has
been applied, for some I(w) ∈ W , d(I(w)) = 1, so W is non-empty and (D)
holds. 2

Lemma 5.5 If w ⪰α w′ occurs in Γ∗, then |I(w)|α ⪰α |I(w′)|α in M c.

Proof. Let w ⪰α w′ occur in Γ∗. It then holds for every w1 ∼α w (and thus
I(w1) ∈ |I(w)|α) and every w2 ∼α w′ (and thus I(w2) ∈ |I(w′)|α), since rules
⪰αL and ⪰αR have been respectively applied, that also w1 ⪰α w2 occurs in Γ∗.

Now let w1 and w2 be such a pair, and let w1∼αw2 also occur in Γ∗ (and
therefore I(w1), I(w2) ∈ Y ∈ Aα(M

c)). Since the rule ⪰α has been applied
it holds that if d(I(w2)) = 1 then d(I(w1)) = 1, and therefore d(I(w1)) ≥
d(I(w2)). Since by Lemma 5.4 Determinism holds, it holds that for every
Z ∈ Aα(M

c), d(|I(w)|α ∩ Z) ≥ d(|I(w′)|α ∩ Z), i.e. |I(w)|α ⪰α |I(w′)|α. 2

Lemma 5.6 M c is a relational model.
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Proof. Given Lemmas 3.5 and 5.4, we just need to show that M c satisfies
(BAα), (BNDα) and (NBDα).

Ad (BAα): Suppose that X ∈ Aα(M
c) and X ̸⊆ V (0α). Then for some

I(w) ∈ X: I(w) ∈ V (1α) and by Lemma 5.4, X = |I(w)|α. Let I(w′) ∈ |I(w)|α.
By Definition 5.3, w :1α and w∼αw′ occur in Γ∗. Since the rule BAα has been
applied, w′ : 1α likewise occurs in Γ∗, and therefore I(w′) ∈ V (1α). Therefore,
|I(w)|α ⊆ V (1α) i.e. X ⊆ V (1α). Hence either X ⊆ V (0α) or X ⊆ V (1α).

Ad (BNDα): Suppose that |I(w)|α ⊆ V (1α). By Definition 5.3, w : 1α
occurs in Γ∗. Since the rule Ind has been applied and therefore relational
atoms w ∼α w2 ∼α w1 occur in Γ, and the rule BAα has been applied and
therefore the labelled formula w2 :1α likewise occurs in Γ∗, the rule BNDα has
also been applied. So, one of two things holds for every |I(w1)|α.

First, that w2 ⪰α w1 occurs in Γ∗, and thus |I(w2)|α ⪰α |I(w1)|α holds
by Lemma 5.5. Otherwise there are some I(w′), I(w′′) ∈ Y ∈ Aα(M

c) (from
w′ ∼α w′′) s.t. I(w′) ∈ |I(w1)|α, V (0) (from w1 ∼α w′ and w′ : 0, respectively)
and I(w′′) ∈ |I(w2)|α, V (1) (similar). Therefore there is some Y ∈ Aα(M) :
d(|I(w1)|α ∩ Y ) ̸≥ d(|I(w2)|α ∩ Y ), i.e. such that |I(w1)|α ̸⪰α |I(w2)|α. Either
way, since |w|α = |w2|α (Lemma 5.4, Definition 5.3 from w∼α w2), for every
|I(w)|α ⊆ V (1α), if |I(w1)|α ⪰α |I(w)|α, then |I(w)|α ⪰α |I(w1)|α.

Ad (NBDα): Suppose that |I(w)|α ⊆ V (0α). By Definition 5.3, w : 0α
occurs in Γ∗. Since NBDα has been applied, for some label w′′ the relational
atom w′′ ⪰α w likewise occurs in Γ∗, and therefore by Lemma 5.5 it holds that
|I(w′′)|α ⪰α |I(w)|α.

Moreover, there is some I(w′′) ∈ |I(w′′)|α s.t. d(I(w′′)) = 1 (from w′′ : 1,
by Definition 5.3) and some I(w′) ∈ |I(w)|α (since w ∼α w′ occurs in Γ∗)
s.t. d(I(w′)) = 0 (from w′ : 0). Therefore d(I(w′)) ̸≥ d(I(w′′)) for some
I(w′), I(w′′) ∈ Z ∈ Aα(M

c) (since w′ ∼α w′′ occurs in Γ∗), and hence
|I(w)|α ̸⪰α |I(w′′)|α. 2

Lemma 5.7 (Refutation in M c) M c makes any labelled formula A in Γ∗

true and any labelled formula B in ∆∗ false.

Proof. By induction on the weight of the formula. The base case is covered by
Definition 5.3 and Lemma 5.6. Most of the induction steps are familiar from
[16], so we just cover the new case as an illustration.

So, let A be w :3αC. By Definition 5.2, for some w′ s.t. w∼αw′ (and thus
I(w′) ∈ |I(w)|α), w′ :C is in Γ∗, and by the inductive hypothesisM c, I(w′) ⊨ C.
Therefore M c, I(w) ⊨ 3αC.

Let B be w :3αC. By Definition 5.2, for every w′ s.t. w∼α w′ (and thus
I(w′) ∈ |I(w)|α), w′ :C is in ∆∗, and by the inductive hypothesis M c, I(w′) ⊭
C. Therefore M c, I(w) ⊭ 3αC. 2

Theorem 5.8 (Completeness of G3STITd
2) G3STITd2 is complete: if ev-

ery relational model that makes all the formulas in Γ true also makes some
formula in ∆ true, then the sequent Γ ⇒ ∆ is derivable.

Proof. Suppose Γ ⇒ ∆ is not derivable in G3STITd2. Using Definition 5.3, we
build a countermodel for this sequent. By Lemma 5.6 this model is a relational

35



A proof theory for admissibility in two-player (deontic) games

model. By Lemma 5.7 it validates all formulas in Γ (since they are all in Γ∗)
and invalidates all formulas in ∆ (all in ∆∗). So, if Γ ⇒ ∆ is not derivable
then there is a relational countermodel. 2

6 Further work

Our proof theory suggests a more general recipe for proof theoretic character-
izations of weak dominance in richer (cooperative or non-cooperative) games
and for richer languages. More precisely, although they require some modelling
decisions and additional technical machinery, each of the following extensions
and generalizations are arguably within reach.

Smoothness of simple dominance. In previous work on deontic game models
[26,25,5] the sets Aα are assumed to be finite. While finiteness is hard if not
impossible to characterize 13 unless one imposes a fixed bound k on |W |, it
is relatively easy to characterize the condition of smoothness: whenever some
action X of α is not admissible, then there is some action X ′ of α that is
admissible, with X ′ ⪰α X. Given this condition, it is easy to see that the
strengthening of NBDα where w′′ : 1α is added to the premise is sound, and
gives us a complete calculus which retains all the structural properties.

The n-agent case. In order to generalize the sequent calculi to the case of
n ∈ N distinct agents, note that in this setting, the role that is now played by
α will be taken over by N − {α}. That is, simple dominance over the actions
of α is defined by quantifying over all combinations of actions by all the agents
in N − {α}. Consequently, in the rules ⪰α, BNDα, and NBDα, the expression
w ∼α w′ should be read as: for every β ∈ N−{α}, w ∼β w′. Similarly, the rule
Det that expresses the determinism of the model should be rewritten so that
worlds are identical if and only if they are in the same equivalence class for all
the agents. Finally, Ind should be replaced with the like-named rule from [16],
with the difference of agents reintroduced.

Agent-relative standards of admissibility. In the preceding, we presupposed
that there is a unique, common normative evaluation of the possible worlds.
In game-theoretic terms, we focused on cooperative games. Instead, one may
also consider agent-dependent acceptability constants dα (for “as far as α is
concerned, this is an acceptable world”) and their negation vα. An adequate
proof system for such a richer logic would be obtained by replacing 1 and 0
with those two respective constants. Note that this allows us to model both
notions of egoistic admissibility – i.e. actions of α are admissible for α if and
only if they are not weakly dominated with respect to α’s own standards – and
altruistic admissibility – i.e. actions of α are admissible for α iff they are not
weakly dominated with respect to α’s standards. More generally, any boolean
combination of (agent-relative or agent-independent) deontic constants may be
taken as the evaluative standard for admissibility.

Non-binary deontic evaluation. Current work on deontic game models pre-
supposes a simple, binary classification of action profiles into acceptable and

13See also footnote 6.
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unacceptable ones. A natural extension would allow for some finite number
k of distinct deontic values that are used to evaluate the outcomes of com-
bined actions. To obtain a proof theoretic characterization of admissibility in
this setting, one may draw on [4], where propositional constants un are used
to express that the given world has a utility (deontic value) of at least n. A
rule such as our ⪰α would then have to be rewritten, replacing 1 with un for
every n ∈ {1, . . . , k}. While we think that such a richer semantics can be ade-
quately characterized by an extension of our sequent calculi, we leave the full
exploration of this and the other mentioned variants for future work.
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Abstract

Different meanings of the “right to know” can be distinguished based on the theory
of normative positions. In this paper, we focus on one of them—the power to know.
Intuitively, in a sender-receiver setting, the receiver’s power to know whether φ is
the case means that the sender is obliged to (truthfully) announce the answer if
the receiver asks the question φ?. Therefore, we develop a logic called LRK for
reasoning about the power to know, the obligatory announcements, and the dynamics
of questions and public announcements. We explore some semantic results for LRK
and study the expressive power of fragments of LRK. In particular, we show that no
DEL-style reduction axiomatization exists for LRK.

Keywords: epistemic rights, public announcement logic, logic of questions

1 Introduction

The aim of this paper is to provide a logical framework to reason about the
notion of the right to know and its interaction with other related notions.
As a theoretical-conceptual background, we rely on the theory of normative
positions [18] based on the theory of Hohfeld [9,15]. Using this analysis, we can
differentiate between four different meanings of the right to know: the privilege
to know, the claim-right to know, the power to know, and the immunity to
know. The difference between the four meanings of the right to know can be
illustrated by the following example [23]: suppose that an agent i has been
tested for some disease by his doctor. It is usually mentioned in laws that i
has the right to know the test result. However, it is unclear which type of right
they mean by it. i has a privilege-right to know the result which means that
i has no duty not to know them, while i has a claim-right to know the result
meaning that his doctor has a duty to inform him about the result. Besides,
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2 This work was supported by the Fonds National de la Recherche Luxembourg through
the project Deontic Logic for Epistemic Rights (OPEN O20/14776480) and the project
INTEGRAUTO (INTER/AUDACE/21/16695098).
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i has a power-right to know the result meaning that his doctor has a duty to
inform them if i requests it. Last, i has an immunity-right to know the results,
which protects him from his doctor taking away or altering his claim-right to
know the results.

In the logical literature, so far the claim-right to know received explicit
attention, see, e.g., [16]. In this paper, we will investigate the right to know
as a power. Power is characterized in [15] as a potential: the agent having the
power is able to execute an action resulting in the counterparty’s normative
positions changing, e.g. a duty arising. Thus in this case: the patient’s asking
about the test results creates the doctor’s duty to tell.

The notion of the power to know can also be found extensively in database
theory under the name of “the right/permission to access” (see, e.g., [5]). The
logical characterization of “the right/permission to access” is crucial for practi-
cal problems like maintaining security in databases. The point of the problem is
that the database has to answer the users’ queries while complying with certain
security policies (e.g., privacy policies). Many factors affecting the solutions to
the problem have been identified in the literature. E.g., the representation of
the database, the expressiveness of the query language, the space of admissible
responses, the initial knowledge of the user, etc [3]. However, the expressiveness
of the language for specifying security policies has somehow been overlooked.
To the best of our knowledge, all existing works on the topic consider the per-
mitted, forbidden, and obligatory knowledge/belief of users as the only compo-
nents of a security policy, see, e.g., [3,5,1]. However, as a counter-example, it is
stated in the General Data Protection Regulation of Europe (GDPR) that “A
data subject should have the right of access to personal data which have been
collected concerning him or her”. We illustrate by a toy example the role of
“the right/permission to access” in solving the security problem for databases.
Consider two security policies P1 and P2 where P1 consists of the following
clauses (1) and (2), and P2 the clauses (1), (2), and (3).

(1) The user i is permitted to know whether p.
(2) The user i is forbidden to know whether q.
(3) The user i has the right to access the answer to whether p.

Suppose further that the user i knows that p is equivalent to q. If the user i
asks the database whether p holds, there are two different situations. Under the
security policy P1, the database has solutions to this query, e.g., the database
may keep silent. 3 However, under the security policy P2, no solution exists
because the database is forced to answer the query p?.

In this paper, we develop a Logic of the Right to Know, LRK, to reason
about the notion of the power-type of right to know whether something is the
case (we often will refer to it as a ‘power to know’ in what follows). As suggested

3 A dispute may arise on whether the database may keep silent. This depends on our
understanding of “permission to know”: does the user’s permission to know whether p imply
that the database needs to answer the query p? raised by the user? But this is exactly a sign
that we need different formalizations for these two different notions.

40



Li and Markovich

by the previous examples, the notion of the power to know is closely intertwined
with other notions such as the obligation to inform, the public announcement,
and the dynamics of questions. Therefore, LRK is devised such that these
notions can also be expressed in the language.

The paper is structured as follows. In the next section, we introduce the lan-
guage and semantics of LRK, as well as an example illustrating them. Section
3 and Section 4 are devoted to some semantic results of LRK and the expres-
sive power of fragments of LRK, respectively. We discuss related literature in
Section 5 and conclude with Section 6.

2 Language and Semantics

In this section, we introduce the language and semantics of LRK and illustrate
them by an example. The scenarios that LRK is intended to characterize are
communications between two agents where the information can only be trans-
mitted from one agent (the sender/speaker, indicated by s) to the other (the
receiver/addressee, indicated by r).The sender is further subject to some secu-
rity policies such as privacy policies. These scenarios are common in our life,
e.g., communications between a database and its users, conversations between
a doctor and their patients, etc. We fix the role of the sender making only one
of the agents able to make announcements. The restriction may seem to be
unnatural. But, for simplicity, we will only consider the restricted scenarios.
The following will serve as the running example of this paper:

Example 2.1 Two patients a and b have been tested for some diseases by
the same doctor in the same time period. The policy consists of the following
clauses: (1) The doctor is obliged to inform the patients about their test results;
(2) Any patient is forbidden to know others’ results; (3) The patients have the
power to know whether the cheaper medicine is as good as the expensive one.

Suppose that, unfortunately, the test results for both a and b are positive
and the cheaper medicine has the same efficacy as the expensive one. Let the
sender be the doctor and the receiver the patient a. The doctor needs to decide
which information should be informed.

Let us first introduce the formal language. Let prop be a countable infinite
set of propositional variables.

Definition 2.2 The language L is given by the following BNF grammar:

φ ::= p | ¬φ | (φ→ φ) | Krφ | Rrφ | Osφ | 2φ | [r :φ?]φ | [s :φ!]φ

where p ∈ prop. Other boolean connectives are defined as usual and ⟨s :φ!⟩ψ
is an abbreviation for ¬[s :φ!]¬ψ.

The readings of the operators in L are as follows:

• Krφ: The receiver knows φ.

• Rrφ: The receiver has the power-right to know the answer to the question
φ? (or, equivalently, the receiver has the power-right to know whether φ).
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• Osφ: The sender is obliged to (truthfully) announce φ.

• 2φ: It is universally true that φ.

• [r :φ?]ψ: After the receiver asked the question φ?, it holds that ψ.

• [s :φ!]ψ: After the sender (truthfully) announced φ, it holds that ψ.

Next, we introduce the models for LRK. Our models are essentially a com-
bination of the “neighbourhood epistemic models” introduced in [12] and the
“epistemic issue models” in [21], see Section 5.

Definition 2.3 A model is a tuple M = (W,∼,≈, N, V) where:
• W is a non-empty set of possible worlds or states;

• ∼⊆W ×W is an equivalence relation on W ;

• ≈⊆ ℘(W ) is a partition of W ;

• N :W → ℘(℘(W )) is such that w ∈ U for all w ∈W and U ∈ N(w);

• V : prop → ℘(W ) is a valuation.

A pointed model is a pair M,w such that w is a state of M . For every state
w ∈ W , we denote the set {v ∈ W | w ∼ v} as ∼ (w). We will also denote the
unique subset in ≈ that contains w as ≈ (w).

In the above definition, ∼ is the familiar epistemic indistinguishability rela-
tion (of the receiver). The partition ≈ is intended to encode the set of questions
to which the receiver has the power to know the answers. The set of questions
may be stipulated by some normative systems such as privacy policies. The
idea to represent a set of questions by a partition can be found in, e.g., [7], [4],
and [21]. Finally, each subset in the neighbourhood N(w) is an ideal epistemic
state for the receiver at w. Thus the neighbourhood function N specifies which
epistemic states (of the receiver) are ideal at every state w.

Let us illustrate the definition of the models by the running example:

Example 2.4 Let pa, pb, and g be the propositions that “The result for a is
positive”, “The result for b is positive”, and “The cheaper medicine is as good as
the expensive one”, respectively. The case in Example 2.1 can be characterized
by the model M = (W,∼,≈, N, V ) (as illustrated in Fig. 1) where:

• W = {000, 001, 010, 011, 100, 101, 110, 111};
• ∼=W ×W ;

• ≈= {{000, 010, 100, 110}, {001, 011, 101, 111}};
• for all xyz ∈ {000, 001, 010, 011}, N(xyz) = {U | xyz ∈ U & U ⊆
{000, 001, 010, 011}& U ̸⊆ {000, 001}& U ̸⊆ {010, 011}},
for all xyz ∈ {100, 101, 110, 111}, N(xyz) = {U | xyz ∈ U & U ⊆
{100, 101, 110, 111}& U ̸⊆ {100, 101}& U ̸⊆ {110, 111}};

• V (pa) = {xyz ∈W | x = 1},
V (pb) = {xyz ∈W | y = 1},
V (g) = {xyz ∈W | z = 1}.
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111 101 001 011

110 100 000 010

Fig. 1. The model M = (W,∼,≈, N, V ). States are 000, 001, ... and the actual
state is 111. For each state xyz, x = 1 (y = 1, z = 1, respectively) iff xyz ∈ V (pa)
(xyz ∈ V (pb), xyz ∈ V (g), respectively). The indistinguishability relation ∼ is
indicated by the straight line (with the reflexive and transitive arrows omitted). ≈
is the partition indicated by the rectangles with rounded corners (this captures the
patient’s power to know g). Finally, for every xyz ∈ W , N(xyz) consists of the
subsets such that: (1) it contains xyz itself; (2) it is contained in one of the shaded
areas (this corresponds to the doctor’s obligation to inform about pa); (3) it is not
contained in one of the dashed rectangles (the patient is prohibited to know pb).

111 101 001 011

110 100 000 010

Fig. 2. The updated model Mg?. The same convention is adopted as in Fig. 1.

The next step is to provide the semantics for L, especially for the formulas
Rrφ and [r : φ?]ψ. The semantics for Rrφ is relatively straightforward: the
receiver has the power to know the answer to φ? iff the question φ? is “settled”
by the partition ≈, in the sense that all the cells in the partition ≈ are subsets
of the truth set of φ or ¬φ. One may already notice that the truth of Rrφ does
not depend on the evaluating states. Hence, the notion of the power to know
is a global notion in our models. 4 To express this fact, we use the universal
modality 2.

For the semantics for [r : φ?]ψ, as mentioned before, [r : φ?]ψ is intended
to express that “after the receiver asked the question φ?, it holds that ψ”. If
the receiver has no power to know the answer to φ?, then nothing will change
after the action [r :φ?]. On the contrary, if the receiver indeed has the power,
the sender is then forced to answer the question φ?. This is modeled in our

4 It also makes sense to generalize our models to account for cases where, for example, the
receiver is not aware of their rights to know. We leave that for future work.
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framework in a way such that, in the updated model, all epistemic states that
are not answers to φ? become no longer ideal. Formally, the idea is captured
by the definition of Mφ? in the next definition.

Definition 2.5 Given a modelM = (W,∼,≈, N, V), for all w ∈W and φ ∈ L,
the satisfaction relation M,w |= φ is inductively defined as follows:

M,w |= p iff w ∈ V (p)
M,w |= ¬φ iff M,w ̸|= φ

M,w |= (φ→ ψ) iff M,w ̸|= φ or M,w |= ψ
M,w |= Krφ iff for all v ∈W , w ∼ v implies M,v |= φ
M,w |= Rrφ iff for all U ∈≈, U ⊆ [[φ]]M or U ⊆ [[¬φ]]M
M,w |= Osφ iff for all U ∈ N(w), U ⊆∼ (w) implies U ⊆ [[φ]]M
M,w |= 2φ iff for all v ∈W , M,v |= φ

M,w |= [r :φ?]ψ iff Mφ?, w |= ψ
M,w |= [s :φ!]ψ iff M,w |= φ implies Mφ!, w |= ψ

where [[φ]]M = {x ∈ W |M,x |= φ} is the truth set of φ in M and the models
Mφ? and Mφ! are defined as follows:

Mφ? =M if M,w ̸|= Rrφ; otherwise Mφ? = (Wφ?,∼φ?,≈φ?, Nφ?, Vφ?) where:
• Wφ? =W , ∼φ?=∼, ≈φ?=≈, Vφ? = V ,

• Nφ?(x) = {U ∈ N(x) | U ⊆ [[φ]]M or U ⊆ [[¬φ]]M} for all x ∈W .

Mφ! = (Wφ!,∼φ!,≈φ!, Nφ!, Vφ!) where:
• Wφ! =W , ≈φ!=≈, Nφ! = N , Vφ! = V ,

• ∼φ!=∼ ∩{(u, v) ∈W ×W |M,u |= φ iff M, v |= φ}.
The semantics forKrφ and [s :φ!]ψ is standard, except that in the definition

ofMφ! we choose to delete the links between the φ-states and ¬φ-states, instead
of removing all ¬φ-states from the model. Those ¬φ-states are reserved for
further reference. 5 This kind of model updating can be found in, e.g., [20,21].
The intuition behind the semantics for Rrφ and [r :φ?]ψ has been explained.
As for Osφ, it reflects the intuition that the sender is obliged to announce φ
if φ holds in all ideal epistemic states (for the receiver) that are achievable by
further announcements (i.e., φ is a piece of necessary information for restoring
ideality). Let us illustrate the semantics by the running example:

Example 2.6 In the model M , we have, e.g., M, 111 |= Ospa, M, 111 |= Rrg,
and M, 111 ̸|= Ospb. After the receiver (the patient a) asked “Is the cheaper
medicine as good as the expensive one?” (g?), the updated pointed model
is Mg? in Figure 2. We have, e.g., Mg?, 111 |= Ospa, Mg?, 111 |= Rrg, and
Mg?, 111 |= Osg.

A question may arise regarding the semantics for Osφ: why do we just
consider ideal epistemic states achievable by further announcements instead of

5 This deviates from the classical public announcement logic. But, in our case, deleting all
¬φ-states may change the truth of formulas like Rrp, which is unreasonable.
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all? Technically, one may propose the following alternative semantic definition
for Osφ:

M,w |= Osφ iff for all U ∈ N(w), U ⊆ [[φ]]M . (†)

We will argue, however, that (†) does not work in certain cases within the
context of database security, whereas our original semantics does. Consider
the following example taken from [1]:

Example 2.7 Suppose the sender is communicating classified information to
the receiver. Since the receiver is permitted to know some information p, the
only constraint for the sender is that it is forbidden for the receiver to know
p while not to know that it is classified (c). Furthermore, suppose that the
receiver currently knows p, but she does not know c. The scenario can be
represented by the following model M = (W,∼,≈, N, V ) such that:

• W = {w, u, v, x};
• ∼ (w) =∼ (u) = {w, u}, ∼ (v) = {v}, and ∼ (x) = {x};
• ≈= {W};
• N(w) = {Y ⊆W | w ∈ Y and Y ̸= {w, u}};
• V (p) = {w, u} and V (c) = {w, v}.

Intuitively, we will agree that, in this case, it is obligatory for the sender to
announce c. This is consistent with our semantics sinceM,w |= Osc. However,
it would not be the case if we adopted (†).

When defining our models, the set of ideal epistemic states for a state w,
N(w), is not required to be non-empty. This is in contrast with standard
deontic logic. Formally, we say a model M = (W,∼,≈, N, V) is standard if for
all w ∈ W , N(w) ̸= ∅. The next proposition shows that the class of standard
models gives the same logic as the class of all models.

Proposition 2.8 For all pointed models M,w, there is a standard model M ′

and w′ in M ′ such that M,w |= φ iff M ′, w′ |= φ for all φ ∈ L.
Proof. Given a model M = (W,∼,≈, N, V), we define the double model of M ,
M ′ = (W ′,∼′,≈′, N ′, V ′), as follows:

• W ′ =W × {1, 2} (elements of W ′ will be denoted by w1, w2, . . . );
• wi ∼′ vj iff w ∼ v and i = j;
• ≈′= {U × {1}, U × {2} | U ∈≈};
• for all wi ∈W ′, N ′(wi) = {U × {i} | U ∈ N(w)} ∪ {{w} × {1, 2}};
• V ′(p) = V (p)× {1, 2}.

It is clear that N ′(wi) ̸= ∅ for any wi ∈ W ′, hence M ′ is a standard model.
Then the proposition follows from the following claim:

Claim. For all wi ∈W ′, M ′, wi |= φ iff M,w |= φ for all φ ∈ L.
Proof of Claim. Induction on the structure of φ. Here we show only the
inductive step for Osψ: From left to right. Suppose M ′, wi |= Osψ. Let
U ∈ N(w) be such that U ⊆∼ (w). It suffices to show that U ⊆ [[ψ]]M . Note
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that U × {i} ∈ N ′(wi) and U × {i} ⊆∼′ (wi) by the definition of N ′ and
∼′, respectively. Hence U × {i} ⊆ [[ψ]]M ′ by the assumption. It follows that
U ⊆ [[ψ]]M by the IH. From right to left. Suppose M,w |= Osψ. Let U ′ ∈
N ′(wi) be such that U ′ ⊆∼′ (wi). It suffices to show that U ′ ⊆ [[ψ]]M ′ . Since
{w}× {1, 2} ̸⊆∼′ (wi), there must be U ∈ N(w) such that U ′ = U ×{i}. Note
also that U ⊆∼ (w) since U ′ ⊆∼′ (wi). Hence U ⊆ [[ψ]]M by the assumption.
Thus U ′ ⊆ [[ψ]]M ′ by the IH.

For the case [r : ψ?]χ (and, similarly, [s : ψ!]χ), note that M ′
ψ? is still

the double model of Mψ? by the IH. Hence, by applying the IH, we have
M ′
ψ?, wi |= χ iff Mψ?, w |= χ. 2

3 Some Semantic Results

In this section, we list some (in)validities of LRK. The first group of validities
is about the notion of the power to know. We omit the proofs because they are
all straightforward.

Proposition 3.1 The following hold for all formulas φ and ψ:

(1) |= Rr⊤.

(2) |= Rrφ ∧Rrψ → Rr(φ ∧ ψ).
(3) |= Rrφ→ Rr¬φ.
(4) |= 2(φ↔ ψ) → (Rφ↔ Rψ).

From the above, we can see that the fragment of LRK on the notion of the
power to know is nothing but the logical entailment relation between questions.
That is to say, in LRK, if the answer to a question φ? can be derived from that
of a set of questions that the receiver has the power to know the answers to,
then the receiver also has the power to know the answer to φ?. 6

Proposition 3.2 The following hold for all formulas φ and ψ:

(1) |= Kr(φ→ ψ) → (Osφ→ Osψ).
(2) |= ¬Os⊥ → (Osφ→ φ).

(3) |= Os(φ→ ψ) → (Osφ→ Osψ).
(4) |= 2φ→ Osφ.
(5) |= Krφ→ Osφ.

The proofs are again omitted due to the same reason. A few remarks can
be made on the above logical rules governing the behavior of the operator Os.
The first says that if φ is more informative than ψ for the receiver and the
sender is obliged to inform φ, 7 then the sender is also obliged to inform ψ.

6 One may argue that the notion of the power to know characterized in LRK is a rather
weak notion. For example, in most scenarios, the receiver has only the power to know what
they are permitted to know (otherwise there would be conflict in the security policy). To
model these scenarios, we can impose extra constraints on the models, e.g., for all w ∈ W ,
there is U ∈ N(w) such that ≈ (w) ⊆ U . Since the focus of this paper is on the formalization
of the power to know, we leave this for future work.
7 We follow [1, Definition 9] for the definition of “informativeness” of formulas.
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The second says that the sender is not obliged to lie unless they are obliged
to announce the contradiction (i.e., they face a deontic dilemma). Further,
the validities (3) and (4) indicate that Osφ is a normal modality. But we
have a problem with interpreting the last validity. Literally, it states that the
sender is obliged to announce whatever the receiver knows. This seems rather
counterintuitive. To understand (5), note that, if φ is known by the receiver,
the announcement of φ is actually less informative than any announcement for
the receiver. Thus, from the informational point of view, the announcement of
φ is “implied” by any announcement. In this sense, the announcement of φ is
inevitable or necessary in our system since we assume that the sender can only
make (truthful) announcements. So, the obligatory announcement of φ simply
follows from the fact that the announcement of φ is necessary. 8

The previous two propositions are about the properties of “the power to
know” and “obligatory announcements” separately. However, it is natural to
expect that there would be some interaction between them. One candidate
is the formula Rrφ → (φ → [r : φ?]Osφ), expressing that if the receiver has
the power to know whether φ and φ is the case, then the sender is obliged to
announce φ once the receiver has asked the question φ?. It is not hard to show
the validity of the formula when φ is propositional. But the next proposition
shows that this needs not to be the case when φ is a general formula:

Proposition 3.3 ̸|= Rrφ→ (φ→ [r :φ?]Osφ) for some formulas φ.

Proof. We show that ̸|= Rr(p∧¬Osp) → ((p∧¬Osp) → [r : (p∧¬Osp)?]Os(p∧
¬Osp)). Let the model M = (W,∼,≈, N, V ) be as follows:

• W = {w, v}, ∼=W ×W , ≈= {{v}, {w}}, V (p) = {w},
• N(w) = {{w}, {v, w}} and N(v) = {v, w}.

We are going to show that M,w ̸|= Rr(p ∧ ¬Osp) → ((p ∧ ¬Osp) → [r :
(p ∧ ¬Osp)?]Os(p ∧ ¬Osp)). First, it is not hard to see that M,w |= p ∧ ¬Osp
(1) andM,v ̸|= p∧¬Osp. Hence [[p∧¬Osp]]M = {w} and [[¬(p∧¬Osp)]]M = {v}.
ThereforeM,w |= Rr(p∧¬Osp) (2). In the updated modelM(p∧¬Osp)?, the only
change is that N(p∧¬Osp)?(w) = {{w}}. It follows that M(p∧¬Osp)?, w |= Osp.
Thus M(p∧¬Osp)?, w ̸|= Os(p∧¬Osp). Therefore M,w ̸|= [r : (p∧¬Osp)?]Os(p∧
¬Osp) (3). By (1), (2), and (3), M,w ̸|= Rr(p ∧ ¬Osp) → ((p ∧ ¬Osp) → [r :
(p ∧ ¬Osp)?]Os(p ∧ ¬Osp)). 2

In the above proof, the formula p∧¬Osp is used to show the invalidity of the
given axiom schema. The formula has the same structure as the Moore sentence
[17], i.e., p is true but I do not believe p. It is well known, in dynamic epistemic
logic [22], that the Moore sentence (p ∧ ¬Kp) is an unsuccessful formula, in
the sense that the Moore sentence may become false after the announcement
of itself. Here we see a similar situation: after the receiver asks the question
p∧¬Osp?, it becomes obligatory for the sender to announce p. Thus the truth
of the formula p ∧ ¬Osp becomes false. However, the operator Os satisfies a

8 This can be seen as an analogy to the rule of necessitation in SDL.
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weak form of the axiom (T): |= ¬Os⊥ → (Osφ → φ) (Proposition 3.2(2)).
Hence, in the updated model, it is not the case that Os(p ∧ ¬Osp).

At first glance, the invalidity of the axiom schema in Proposition 3.3 may
seem to be counterintuitive. How could it be that the receiver has the power to
know something while the sender has no obligation to inform even if the receiver
requests it? We will, nevertheless, argue that the phenomenon can be explained
if we make explicit the time involved in the axiom schema. The operator
Osφ in LRK expresses veritable obligations ([8], i.e., obligations specific to a
particular situation) instead of normative rules. This means that the truth of
formulas like Osφ may flip after the receiver asks some questions because the
situation changes. Consider the formula Rr(p ∧ ¬Osp) → ((p ∧ ¬Osp) → [r :
(p∧¬Osp)?]Os(p∧¬Osp)). The first three occurrences of the operator Os really
refer to the obligation of the sender before the question (p ∧ ¬Osp)?, whereas
the last two occurrences express the sender’s obligation after the question.
Thus, the antecedent Rr(p∧¬Osp) just asserts that the receiver has the power
to know the sender’s deontic status before the question. However, in LRK,
there is no way to express the sender’s previous obligation in the scope of the
dynamic operator [r : p ∧ ¬Osp?]. This suggests that LRK may be equipped
with temporal operators like “Yesterday”.

The next two propositions are on the behavior of the two dynamic operators
[s :φ!] and [r :φ?]. Like in dynamic epistemic logic, a series of reduction axioms
exist for these two operators. In order to show this, we need Lemma 3.4.

Lemma 3.4 The following hold:

(1) for any model M and formulas φ,ψ, [[⟨s :φ!⟩ψ ∨ ⟨s :¬φ!⟩ψ]]M = [[ψ]]Mφ!
.

(2) for any pointed model M,w and formulas φ,ψ, if M,w |= Rrφ then
[[[r :φ?]ψ]]M = [[ψ]]Mφ?

.

Proof. The proof for (2) is straightforward. We consider only (1): let M =
(W,∼,≈, N, V) and w ∈W . We have

M,w |= ⟨s :φ!⟩ψ ∨ ⟨s :¬φ!⟩ψ
iff M,w |= ⟨s :φ!⟩ψ or M,w |= ⟨s :¬φ!⟩ψ (semantics)
iff (M,w |= φ and Mφ!, w |= ψ) or

(M,w |= ¬φ and M¬φ!, w |= ψ)
(semantics)

iff (M,w |= φ and Mφ!, w |= ψ) or
(M,w |= ¬φ and Mφ!, w |= ψ)

(Mφ! =M¬φ!)

iff Mφ!, w |= ψ

Proposition 3.5 The following hold for all formulas φ and ψ:

(1) |= [s :φ!]p↔ (φ→ p).

(2) |= [s :φ!]¬ψ ↔ (φ→ ¬[s :φ!]ψ).
(3) |= [s :φ!](ψ → χ) ↔ ([s :φ!]ψ → [s :φ!]χ).

(4) |= [s :φ!]Krψ ↔ (φ→ Kr[s :φ!]ψ).

(5) |= [s :φ!]Rrψ ↔ (φ→ Rr(⟨s :φ!⟩ψ ∨ ⟨s :¬φ!⟩ψ)).
(6) |= [s :φ!]2ψ ↔ (φ→ 2(⟨s :φ!⟩ψ ∨ ⟨s :¬φ!⟩ψ)).
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(7) if |= φ then |= [s :ψ!]φ.

Proof. We show only (5). Let M = (W,∼,≈, N, V) and w ∈W . We have

M,w |= [s :φ!]Rrψ
iff M,w |= φ implies Mφ!, w |= Rrψ (semantics)
iff M,w |= φ implies

(∀U ∈≈φ!: U ⊆ [[ψ]]Mφ!
or U ⊆ [[¬ψ]]Mφ!

)
(semantics)

iff M,w |= φ implies
(∀U ∈≈: U ⊆ [[ψ]]Mφ!

or U ⊆ [[¬ψ]]Mφ!
)

(def. of Mφ!)

iff M,w |= φ implies
(∀U ∈≈: (U ⊆ [[⟨s :φ!⟩ψ ∨ ⟨s :¬φ!⟩ψ]]M or
U ⊆ [[¬(⟨s :φ!⟩ψ ∨ ⟨s :¬φ!⟩ψ)]]M ))

(Lemma 3.4(1))

iff M,w |= φ implies
M,w |= Rr(⟨s :φ!⟩ψ ∨ ⟨s :¬φ!⟩ψ)

(semantics)

iff M,w |= φ→ Rr(⟨s :φ!⟩ψ ∨ ⟨s :¬φ!⟩ψ) (semantics)

Proposition 3.6 The following hold for all formulas φ and ψ:

(1) |= [r :φ?]p↔ p.

(2) |= [r :φ?]¬ψ ↔ ((¬Rrφ ∧ ¬ψ) ∨ (Rrφ ∧ ¬[r :φ?]ψ)).
(3) |= [r :φ?](ψ → χ) ↔ ([r :φ?]ψ → [r :φ?]χ).

(4) |= [r :φ?]Krψ ↔ ((Krψ ∧ ¬Rrφ) ∨ (Kr[r :φ?]ψ ∧Rrφ)).
(5) |= [r :φ?]Rrψ ↔ ((Rrψ ∧ ¬Rrφ) ∨ (Rr[r :φ?]ψ ∧Rrφ)).
(6) |= [r :φ?]2ψ ↔ ((2ψ ∧ ¬Rrφ) ∨ (2[r :φ?]ψ ∧Rrφ)).
Proof. We show only (2) and (4). Let M = (W,∼,≈, N, V) and w ∈ W . (2):
It is clear that M,w |= [r :φ?]¬ψ ∧ ¬Rrφ iff M,w |= ¬ψ ∧ ¬Rrφ (∗). On the
other hand, we have:

M,w |= [r :φ?]¬ψ ∧Rrφ
iff Mφ?, w |= ¬ψ and M,w |= Rrφ (semantics)
iff Mφ?, w ̸|= ψ and M,w |= Rrφ (semantics)
iff M,w ̸|= [r :φ?]ψ and M,w |= Rrφ (semantics)
iff M,w |= ¬[r :φ?]ψ ∧Rrφ (semantics)

Hence |= ([r :φ?]¬ψ ∧ Rrφ) ↔ (¬[r :φ?]ψ ∧ Rrφ) (∗∗). From (∗) and (∗∗) it
follows that |= [r :φ?]¬ψ ↔ ((¬Rrφ ∧ ¬ψ) ∨ (Rrφ ∧ ¬[r :φ?]ψ)).

(4): It is clear that |= ([r :φ?]Krψ ∧ ¬Rrφ) ↔ (Krψ ∧ ¬Rrφ) (∗). On the
other hand:

M,w |= [r :φ?]Krψ ∧Rrφ
iff Mφ?, w |= Krψ and M,w |= Rrφ (semantics)
iff (∀v ∈Wφ?: w ∼φ? v impliesMφ?, v |= ψ) andM,w |= Rrφ (semantics)
iff (∀v ∈W : w ∼ v implies Mφ?, v |= ψ) andM,w |= Rrφ (def. of Mφ?)
iff (∀v ∈W : w ∼ v implies M,v |= [r :φ?]ψ) and M,w |= Rrφ

(Lemma 3.4(2))
iff M,w |= Kr[r :φ?]ψ ∧Rrφ (semantics)

Therefore |= ([r : φ?]Krψ ∧ Rrφ) ↔ (Kr[r : φ?]ψ ∧ Rrφ) (∗∗). From (∗) and
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(∗∗) it follows that |= [r :φ?]Krψ ↔ ((Krψ ∧ ¬Rrφ) ∨ (Kr[r :φ?]ψ ∧Rrφ)). 2

4 Expressivity

In this section, we investigate the expressive power of some fragments of L.
As we have seen, there are a couple of operators in L. But it is not clear
whether some of them are superfluous. In particular, we are going to address
the following two questions in the section:

• Does adding the two dynamic operator [s :φ!] and [r :φ?] to L increases
the expressive power?

• Is the operator Rrφ for the power to know expressible in a language with-
out it?

It is well known that adding the public announcement operator to the lan-
guage of epistemic logic (without common knowledge) does not increase expres-
sive power. In Section 3, we have seen that there exists a series of reduction
axioms for the two dynamic operators [s :φ!] and [r :φ?], but not for formulas
of the form [s :φ!]Osψ and [r :φ?]Osψ. Thus it is interesting to know whether
the same holds for LRK. To answer the first question, let L0, L1, and L2 be
the sublanguages of L defined as follows:

φ ::= p | ¬φ | (φ→ φ) | Krφ | Rrφ | Osφ | 2φ (L0)

φ ::= p | ¬φ | (φ→ φ) | Krφ | Rrφ | Osφ | 2φ | [s :φ!]φ (L1)

φ ::= p | ¬φ | (φ→ φ) | Krφ | Rrφ | Osφ | 2φ | [r :φ?]φ (L2)

The next theorem shows that adding any of the two operators [s : φ!]ψ and
[r : φ?]ψ to the static language L0 does increase the expressive power. This
is in contrast with the situation in public announcement logic and gives a
positive answer to the first question. It also follows that no DEL-style reduction
axiomatization exists for LRK.

Theorem 4.1 The following hold:

(1) L1 is more expressive than L0.

(2) L2 is more expressive than L0.

Proof. (1): It is clear that L1 is at least as expressive as L0 since L0 is a
sublanguage of L1. We show that L0 is not at least as expressive as L1. This
is done by showing that there is no ψ ∈ L0 such that [s : p!]Os⊥ ≡ ψ (i.e.,
they are satisfied at exactly the same pointed models). Consider two models
M1 = (W,∼,≈, N1, V ) and M2 = (W,∼,≈, N2, V ) where:

• W = {w, u}, ∼=W ×W , ≈= {{w}, {u}}, V (p) = {w};
• N1(w) = {{w, u}}, N2(w) = {{w}, {w, u}}, N1(u) = N2(u) = {W}.

It is not hard to see thatM1, w |= [s :p!]Os⊥ andM2, w ̸|= [s :p!]Os⊥. However,
by an induction on the structure of ψ, we can show thatM1, y |= ψ iffM2, y |= ψ
for all ψ ∈ L0 and y ∈W . Here we show only the inductive step for Osχ. The
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case for y = u follows directly from that N1(u) = N2(u) and the IH. For y = w,
we have:

M1, w |= Osχ
iff ∀U ∈ N1(w), U ⊆∼ (w) implies U ⊆ [[χ]]M1

(semantics)
iff ∀U ∈ N1(w), U ⊆ [[χ]]M1 (def. of N1(w) and ∼)
iff ∀U ∈ N1(w), U ⊆ [[χ]]M2 (IH)
iff ∀U ∈ N2(w), U ⊆ [[χ]]M2

(
⋃
N1(w) =

⋃
N2(w))

iff ∀U ∈ N2(w), U ⊆∼ (w) implies U ⊆ [[χ]]M2
(def. of N2(w) and ∼)

iff M2, w |= Osχ (semantics)

(2): (2) can be shown similarly to (1). To obtain proof, we replace the
formula [s :p!]Os⊥ in the proof of (1) by [r :p?]Os⊥. 2

The remainder of the section is devoted to the second question. We want
to know whether the notion of the power to know characterized in LRK is
reducible to (a combination of) other operators. To do this, we consider the
following sublanguage of L without the operator Rrφ:

φ ::= p | ¬φ | (φ→ φ) | Krφ | Osφ | 2φ | [s :φ!]φ | [r :φ?]φ (L3)

The usual way to proceed is to find a suitable notion of “bisimulation” for
L3. In the next definition, we define the “almost-identical” relation between
two models. Although the notion is much stronger than the usual notion of
bisimulation, it is sufficient for our current purpose.

Definition 4.2 Let M = (W,∼,≈, N, V ) and M ′ = (W ′,∼′,≈′, N ′, V ′) be
two models. We say M and M ′ are almost-identical if the following hold:

(A1) W =W ′, ∼=∼′, N = N ′, V = V ′, and

(A2) for all w ∈W and U ∈ N(w), U ⊆≈ (w) and U ⊆≈′ (w).

Lemma 4.3 For all models M = (W,∼,≈, N, V ) and M ′ = (W ′,∼′,≈′

, N ′, V ′), if M and M ′ are almost-identical then M,w |= φ iff M ′, w |= φ
for all w ∈W and φ ∈ L3.

Proof. Induction on the structure of φ. We show only the cases for [s :ψ!]χ
and [r :ψ?]χ since the remaining are all straightforward.

Case [s :ψ!]χ: we have

M,w |= [s :ψ!]χ
iff M,w ̸|= ψ or Mψ!, w |= χ (semantics)
iff M ′, w ̸|= ψ or Mψ!, w |= χ (IH)
iff M ′, w ̸|= ψ or M ′

ψ!, w |= χ (IH)

iff M ′, w |= [s :ψ!]χ (semantics)

Note that the third “iff” holds because Mψ! and M
′
ψ! are almost-identical since

[[ψ]]M = [[ψ]]M ′ by the IH.
Case [r :ψ?]χ: we have 9

9 We need to slightly modify the definition of Mψ? (and M ′
ψ?) below since the operator Rrψ
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M,w |= [r :ψ?]χ
iff Mψ?, w |= χ (semantics)
iff M,w |= χ (Mψ? =M by the condition (A2))
iff M ′, w |= χ (IH)
iff M ′

ψ?, w |= χ (M ′
ψ? =M ′ by the condition (A2))

iff M ′, w |= [r :ψ?]χ (semantics)

The next proposition gives a negative answer to the second question. The
operator Rrφ does express an independent notion.

Proposition 4.4 There is no formula φ ∈ L3 such that φ ≡ Rrp.

Proof. Consider two models M = (W,∼,≈, N, V ) and M ′ = (W,∼,≈′, N, V )
such that W = {w, v}, ∼= W ×W , N(w) = {{w}}, N(v) = {{v}}, V (p) =
{w}, and

• ≈= {{w}, {v}},
• ≈′= {{w, v}}.

It is easy to see that M,w |= Rrp and M ′, w ̸|= Rrp. However, note that M
and M ′ are almost-identical. Hence, M,w |= φ iff M ′, w |= φ for all φ ∈ L3 by
Lemma 4.3. 2

Corollary 4.5 L is more expressive than L3.

5 Related Work

Deontic logic for epistemic actions. In general, LRK is a specific deontic logic
for actions in the epistemic context. Several attempts at developing deontic
logic for epistemic actions can be found in the literature, e.g., [2], [1], and [12].

A logic for the notion of permitted announcements has been developed in
[12]. The logic is based on the idea that a piece of information φ is permitted
to be announced (Pφ) if the epistemic state after the announcement is ideal.
The notion of epistemic state can be understood either as a syntactic notion
or as a semantic notion. Syntactically, an epistemic state is just a set of epis-
temic formulas representing the knowledge of an agent. In contrast, from the
semantic perspective, an epistemic state is a set of indistinguishable possible
worlds by an agent (or, equivalently, an indistinguishability relation over all
possible worlds). In [12], two semantic definitions of permitted announcements
have been proposed based on the two understandings of epistemic states. In-
terestingly, the two definitions are shown to be equivalent, in the sense that
they give the same set of logical validities. In this paper, we consider epistemic
states as a semantic notion and apply the “neighbourhood epistemic model”
introduced in [12]. Formally, a neighbourhood epistemic model is a structure
M = (W,∼, N, V ) where W , ∼, and V are the same as in the standard epis-
temic models (S5 models) and N :W → ℘(℘(W )) is a neighbourhood function
assigning a set of ideal epistemic states to each possible world. Note that the

does not appear in L3. For example, Mψ? should be defined as “Mψ? = M if it is not the
case that for all U ∈≈, U ⊆ [[ψ]]M or U ⊆ [[¬ψ]]M ; otherwise ...”.
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public announcement of a proposition φ may restrict the current epistemic
state to only those possible worlds satisfying φ. Hence, in [12], the formula
Pφ is interpreted in such a way that it is true at a possible world w iff the
epistemic state after the announcement of φ is an element of N(w). In this pa-
per, we employ a similar idea to provide semantics for the notion of obligatory
announcements.

In [2], two binary operators P (ψ,φ) and O(ψ,φ) are introduced to express
the notions that “after announcing ψ, it is permitted/obligatory to announce
φ”. It is clear that our operator Osφ can be expressed in their framework as
O(⊤, φ). Conversely, the operator O(ψ,φ) can be expressed as [s : ψ!]Osφ in
LRK. In [2], a ternary relation P ⊆ S×℘(S)×℘(S) is used to provide the seman-
tics for O(ψ,φ) in such a way that M, s |= O(ψ,φ) iff for all (s, [[ψ]]M , S

′′) ∈
P, S′′ ⊆ [[⟨ψ⟩φ]]M , where S is the domain of the model. The major difference
between the semantics for Osφ and O(ψ,φ) is that our operator Osφ is spe-
cific to the receiver’s knowledge. This is reflected in the fact that the formula
Kr(φ → ψ) → (Osφ → Osψ) is valid in LRK whereas not in the logic of [2].
We think that LRK is more suitable for reasoning about obligatory announce-
ments in the context of, e.g., database security, because the receiver’s initial
knowledge is crucial for the sender’s decision on which information should be
disclosed, as suggested by Example 2.7.

An alternative definition of obligatory announcements has also been pro-
posed in [1, Definition 10]. Aucher et al. [1] define the obligatory message of
a security monitor as the minimal informative message such that, by sending
it, the privacy policy compliance is restored. Clearly, the notion of “obligatory
message” is different from the notion of obligatory announcements in our pa-
per and [2]. But a detailed conceptual analysis of the difference between these
notions is beyond the scope of the paper.

Logic of questions. The semantics of questions or interrogatives has received
much attention in logic, see [7]. The basic idea is that the meaning of a ques-
tion is what counts as an answer to that question. For example, the question
“Is it raining in Guangzhou?” has two possible answers: “It is raining in
Guangzhou” and “It is not raining in Guangzhou”. Observe that they are
both propositions or statements and, furthermore, they logically exclude each
other and are jointly exhaustive. Hence, some logicians propose that questions
can be represented semantically as a partition over the set of all possible worlds
(or the logical space), e.g., [7], [4], and [21]. The semantics for questions pro-
posed in [7], [4], and [21] are different. In this paper, we follow the approach in
[21], because it is a conservative extension to the standard epistemic logic and
we want to focus on the semantics for the power to know.

In [21], the so-called epistemic issue models are used to provide the seman-
tics for questions. Formally, they are structures M = (W,∼,≈, V ) where the
only novel thing is the equivalence relation ≈ on W (or, equivalently, a parti-
tion of W ). Instead of having a single modality expressing that “the question
whether φ is one of the current issues”, a complex formula is used in [21] to
express the notion. Technically, in addition to the modality Kφ for knowledge,
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there are two new modalities Uφ and Qφ where Uφ is the familiar universal
modality and the truth definition of Qφ is as follows:

M,w |= Qφ iff for all v ∈W : w ≈ v implies M,v |= φ

The notion that “the question whether φ is one of the current issues” is then
expressed as the formula U(Qφ ∨Q¬φ).

As mentioned above, the idea behind the logic of question in [21] is that a
set of questions can be represented as a partition over the logical space. But
the logic remains neutral about where the partition or the set of questions is
induced. For example, it can be induced either by a conversation, or by a
game, or even by a research program [21]. In this paper, we assume that the
partition is induced by the part of a normative system, such as a privacy policy,
stipulating the questions an agent has the power to know the answers to.

Our work is closely related to [21] as the fragment of LRK on the operator
Rrφ is roughly a reinterpretation of the static logic ELQ in [21]. However, there
is also an important difference between our paper and [21]. In [21], there is
also a dynamic operator [φ?]ψ expressing that ψ holds after asking the question
whether φ. But the effect of [φ?] is to add the question φ? to the set of current
issues. In contrast, the operator [r :φ?]ψ in LRK captures the deontic aspect
of asking questions. It seems more appropriate to interpret the operator [r :φ?]
in our paper as the action that commands the sender to inform whether φ.

Logic of legal competence. The right to know is an epistemic right, and thus is
a form of right. Works on the logical analysis of legal rights can also be found
in the literature, e.g., [11,13,14,10]. Recent works on the topic investigating
explicitly the power type of right includes [15,19,6]. Given that these works
are on general (power-)rights, one may wonder why there is a need to develop
a separate logic for epistemic rights. One reason is that there are some valid
reasoning patterns for epistemic rights that can not be expressed in a language
devised for general rights, just like not all principles of public announcement
logic can be expressed in dynamic logic.

In our paper, we treat the power to know as an independent notion. As
pointed out by [6], there exist two different logical approaches formalizing legal
power: an earlier tradition reduces power to (a combination of) obligations,
permissions, and actions ([11,13]); whereas the other (e.g.[14,10]) holds that
power is not reducible to static normative positions, which follows the original
separation of Hohfeld (see [15]). Thus, our work adopts the second approach.
We also show, in Proposition 4.4, that the notion of the power to know char-
acterized in LRK can not be expressed in a language without it.

6 Conclusion and Future Work

In this paper, a logic LRK was introduced semantically for reasoning about the
power to know, the obligatory announcements, and the dynamics of questions
and public announcements. We explored some (in)validities of LRK, where the
interaction between the power to know and the obligatory announcements has
been highlighted. We also studied the expressive power of several fragments of
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the language of LRK. We showed that the incorporation of the two dynamic
operators in LRK increases the expressive power and the operator for the power
to know cannot be expressed in a language without it.

There are many directions for future research. A natural task is to investi-
gate some metalogical properties of LRK, such as axiomatization, completeness,
and computational complexity. We can also consider extensions to LRK. For
example, it is interesting to reason about the ability of the receiver in LRK
since the receiver may use their power to know by asking (a sequence of) ques-
tions. Other interesting extensions to LRK include the incorporation of “the
power not to know” [16], how to model the actions of adding or removing the
receiver’s power to know, how to extend to the multi-agent case, etc.
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Abstract

The theme of extensionality in first-order deontic logic has been thoroughly studied in
the past, but not in the context of a combination of different types of modalities. An
operator is extensional if it allows substitution salva veritate of co-referential terms
within its scope and intensional if it does not. It can be argued that one distinctive
feature of “ought” (as opposed to the other modalities) is that it is extensional. The
question naturally arises as to whether it is possible to combine extensionality and
intensionality of different modal operators in the same semantics without creating the
deontic collapse. We answer this question within a particular framework, Åqvist’s
system F for conditional obligation. We develop in full detail a perspectival account
of obligation (and related notions), as was done for Standard Deontic Logic (SDL)
by Goble. It is called “perspectival”, because one always evaluates the content of an
obligation in one world from the perspective of another one, hence using some form
of cross-world evaluation. The proposed framework allows for a more nuanced way
of approaching first-order deontic principles.

Keywords: First-order reasoning, extensionality, conditional obligation,
2-dimensional semantics, preferences, perspectivism

1 Introduction

The past 15 years have seen a renewed interest in so-called relativism or per-
spectivism in the philosophy of language. Relativist or perspectivist accounts
have been put forth to explain discourse about knowledge, epistemic possibil-
ity, matters of taste, contingent future events, modalities (including the deontic
ones) and the like. Here relativism is usually taken to be, or to presuppose, a
semantic thesis. Understanding how some discourses function requires recog-
nizing that speakers express propositions whose truth or falsity are relative to
parameters or perspectives in addition to a possible world−see Kölbel [20] for a
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Author Accepted Manuscript version arising from this submission. This paper was originated
by the first author’s master thesis [25]. The material was modified, and expanded. We thank
three anonymous reviewers for their valuable comments.



thorough defense of this view, and also MacFarlane [22]. The approach is often
called “perspectivism” as it has a less negative connotation than “relativism”,
and we will stick to this term.
The purpose of the present paper is to show some of the usefulness of this view
for normative reasoning. We believe it may shed light on a topic that has been
overlooked in the recent papers devoted to first-order deontic reasoning, e.g.
[7,8,28]. This is the topic of extensionality of “ought”. We do not claim to be
original, as we will pick up on a proposal made long ago by Goble [12,13,14].
It can be summarized thus. An operator is extensional if it allows substitution
salva veritate of co-referential terms within its scope, and intensional if it does
not. It can be argued that one distinctive feature of “ought” (as opposed to
the other modalities) is that it is extensional. The problem is: a deontic logic
in which “ought” is extensional can be shown to collapse to triviality. Goble
developed his own solution to this problem, and we will refer to it as the origi-
nal “perspectival” account. The basic idea is that the content of an obligation
at one world is to be evaluated from the perspective of another one, so that
some form of cross-world evaluation is made possible. This idea of cross-world
evaluation is familiar from the literature on multi-dimensional modal logic (see
e.g. [3,11,18,29]). Other works in multi-dimensional deontic logic we are aware
of focus on the propositional case [6,9,10,17]. The novelty lies in linking the
perspectival idea to first-order considerations.

Our goal is to improve the original account in two ways. By doing so,
we hope to strengthen the case for the perspectival idea, and provide more
credibility to it.

• The original account is cast within the framework of Standard Deontic
Logic (SDL) [31], which is known to be plagued by the deontic paradoxes,
in particular the paradox of contrary-to-duty (CTD) obligation [4]. We
will recast the account within the framework of preference-based dyadic
deontic logic [1,5,15,16,23]. Dyadic deontic logic is the logic for reasoning
with dyadic obligations “it ought to be the case that ψ if it is the case that
φ” (notation: ⃝(ψ/φ)). Its semantics is in terms of a betterness relation.
Initially devised to resolve the CTD paradox, dyadic deontic logic is a
recognized standard for normative reasoning. The idea of making it two-
dimensional is not entirely new: Lewis [21, p. 63] suggested to analyze
conditionals within the framework of two-dimensional modal logic, but his
motivations were different.

• The original account does not allow for different types of modalities to in-
teract. We will lift this restriction, and look at the question of whether it
is possible to combine extensionality and intensionality of different modal
operators in the same semantics without creating the collapse. We will
use Åqvist’s mixed alethic-deontic preference-based logic F [1,23,24]. The
language of F has an extra modal operator 2 (“it is settled that”), allow-
ing to capture some fundamental principles of normative reasoning, like
“strong factual detachment” [26]. Among the systems proposed by Åqvist,
F is also the weakest one in which the collapse arises. The first-order ex-
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tension of F will be called F∀. (One could object that, in F, 2 is a soi
disant modality, definable in terms of ⃝(−/−). In F∀, it will become a
first-class citizen, viz. a primitive modality.)

The paper is organized as follows. Section 2 sets the stage, and defines a list of
basic requirements to be met by the logic. Section 3 develops in full semantic
detail the perspectival account of obligation (and related notions) alluded to
above. Section 4 shows how the requirements are met. Section 5 concludes.

2 Setting the stage

We give a list of basic requirements that we think an adequate first-order (FO)
deontic logic should meet. The problem dealt with in this paper will be to
devise a framework meeting them. For ease of readability, we formulate the
requirements within the language of a monadic deontic logic. Our list is not
meant to be exhaustive.

2.1 Requirements

Requirement 1 (Extentionality for “ought”) ⃝ (“It ought to be the case
that ...”) should validate the principle of substitution salva veritate (E-⃝),
where φ is a formula, t and s are terms, and φt↪→s is the result of replacing
zero up to all occurrences of t, in φ, by s:

t = s→ (⃝φ↔ ⃝φt↪→s) (E-⃝)

Intuitively: two co-referential terms may be interchanged without altering the
truth-value of the deontic formula in which they occur.

Amodal operator is usually said to be referentially transparent, when it satisfies
the principle of substitution salva veritate, and referentially opaque otherwise.
As pointed out by Castañeda [2] there are good reasons to believe that deontic
operators are referentially transparent. For instance, the inference from (1)
and (2) to (3) is intuitively valid:

(1) The Pope ought to live a life of exceptional sanctity: ⃝S( ιxPo(x))

(2) Jose is the Pope: j = ιxPo(x)

(3) Jose ought to live a life of exceptional sanctity: ⃝S(j)

ιxPo(x) is a so-called definite description, and is read “the x that is Po”
(“the Pope”). Definite descriptions are used to refer to what a speaker wishes
to talk about. Castañeda (rightly) says: “a man’s obligations are his [the
author’s emphasis] regardless of his characterizations”. In other worlds, they
are independent of the way he is referred to.
In daily conversations, one casually switches between a proper name and the
definite description associated with it. When using one instead of the other,
we are still talking about the same individual, referring to him using different
descriptions (the Pope, the direct successor of St Peter, ...). This would just
not be possible if “ought” was not referentially transparent.
However, it may be questioned whether the inference from (1) and (2) to (3)
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is valid intuitively. 2 For one can consistently add to the premises set

(2′) Jose ought not to be the Pope: ⃝(j ̸= ιxPo(x))

Does (3) still follow? It seems not. Two comments are in order. First, it
may be thought that a finer-grained version of the principle is needed. To add

(2′′) Jose ought to be the Pope: ⃝(j = ιxPo(x))

would resolve the problem, but would make (2) superfluous. For (3) follows
from (1) and (2′′) using the standard principles of deontic logic and first-order
logic. To add

(2⋆) Jose may be the Pope: P (j = ιxPo(x))–P : “it is permitted that”

would resolve the problem, and not make (2) superfluous. Thus, one way to
address the above problem is to introduce the following permitted version of
(E-⃝):

t = s ∧ P (t = s) → (⃝φ↔ ⃝φt↪→s) (Permitted E-⃝)

Second, it may make a difference whether the substitution is done in the con-
sequent or the antecedent of a conditional obligation. Consider:

(4) If the Pope does not live a life of exceptional sanctity, we should elect a
new one: ⃝(∃y(El(y) ∧ y ̸= ιxPo(x))/¬S( ιxPo(x)))

(5) If Jose does not live a life of exceptional sanctity, we should elect a new
Pope: ⃝(∃y(El(y) ∧ y ̸= ιxPo(x))/¬S(j))

The antecedent of (4) refers to a sub-ideal world where (1) is violated. Intu-
itively, (4) and (5) seem equivalent, even in the presence of (2′). Thus, (4) and
(5) are two different ways to say the same thing. If “ought” is not referentially
transparent, then (4) and (5) are not synonymous, since they have a different
antecedent. If so, one would need

• the permitted version of the principle for any substitution done in the
consequent (proviso: P (t = s));

• the unrestricted version for any substitution done in an antecedent.

We leave it as a topic of future research to investigate how to implement these
suggestions.

For simplicity’s sake, 2 will be read as “It is necessary that ...”. Whether
it is historical necessity or some other type of necessity is not germane for our
discussion.

Requirement 2 (Intensionality for “necessarily”) 2 should not validate
the principle of substitution salva veritate, where t and s are terms (either a
constant or a definite description):

t = s→ (2φ↔ 2φt↪→s) (E-2)

2 We owe this objection from an anonymous referee.
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It is usually thought that 2 should not verify (E-2). The reason why is best
illustrated with the following well-known example. Intuitively, (6) and (7) do
not imply (8): 3

(6) Number of planets = 8

(7) 2(8 = 8)

(8) 2(Number of planets = 8)

If 2 means “settled” in the sense of outside of the agent’s control, then (8)
is fine. But if 2 means metaphysical necessity, settledness in the sense of
historical necessity, or knowledge, then (8) is clearly unwanted. Indeed, before
2006, (6) was false. 4

A second, independent argument against (E-2) will be given in Prop. 2.2.

Requirement 3 (No collapse) The logic should avoid the deontic collapse.
That is, the formula φ↔ ⃝φ should not be derivable.

This requirement is taken from Goble [12,13,14]. A separate section is devoted
to this requirement.

The raison d’être of our last requirement is this: obligations are there to
make the world a better place; they are constantly violated, but should not
be so. Therefore, our account should make the notion of definite description
well-behaved with respect to negation. That is to say:

Requirement 4 (Self-negation) Given E-⃝, the logic should be able to ac-
count for the meaningfulness of a deontic statement denying a property of an
individual identified using that very same property.

Here is an example:

(9) The tyrant has an obligation not to be a tyrant: ⃝¬T ( ιxT (x))
Self-negation like the one in (9) cannot be accounted for in (a straightforward
FO extension of) SDL. (9) tells us that in the best of all possible worlds the
tyrant x is not a tyrant. But this is a contradiction (assuming that such an x
exists). Of course, the claim is not that in the best of all possible worlds the
tyrant x is not a tyrant. Rather−to anticipate our solution−the claim is that
the individual x that is a tyrant in the actual world is not a tyrant in all the
best worlds. This is a relation among objects in possible worlds that cannot
be captured in the standard possible world semantics. The semantic analysis
of (9) calls for a “cross-world” mode of evaluation.

In itself, the above point is independent of the question of whether ⃝ is
extensional or not. However (9) may very well follow from an application of
the principle of substitution salva veritate. Premises:

3 Quine argues for this requirement in his [27]. Notoriously, Kripke [19] defended the view
that (E-2) holds for constants (proper names are rigid designators). We do not make this
assumption in this paper.
4 Since then, Pluto is no longer considered a planet of the solar system (cf. https://www.

iau.org/public/themes/pluto)
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(10) Sam has an obligation not to be a tyrant: ⃝¬T (s)
(11) Sam is a tyrant: s = ιxT (x)

Conclusion:

(12) The tyrant has an obligation not to be a tyrant: ⃝¬T ( ιxT (x))
One could object that (9) may alternatively be rendered as ∃x(T (x)∧⃝¬T (x)).
This formalisation is unproblematic. First, we point out that as a spin-off of the
extensionality of the deontic operator the principles of universal instantiation
and existential generalisation hold unrestrictedly (viz. even if t is inside the
scope of a deontic operator).

∃x(x = t) → (∀xφ(x) → φ(t)) (UI)

∃x(x = t) → (φ(t) → ∃xφ(x)) (EG)

Given the assumption ∃x(x = ιyT (y)), the two formalisations are equivalent.
Thus the principle of extensionality turns an apparently unproblematic formula
(∃x(T (x) ∧ ⃝¬T (x)) into a problematic one (⃝¬T ( ιxT (x))). Our task is to
account of the meaningfulness of the later formula. The following two deriva-
tions show the equivalence between the two formalisations. We use ∃! for the
uniqueness quantification defined as ∃!xφ := ∃x∀y(φ↔ y = x).

(a) ∃x(x = ιyT (y)) (Hypothesis)
(b) ∃x(T (x) ∧⃝¬T (x)) (Hypothesis)
(c) ∃!xT (x) (a)
(d) ∃!x(T (x) ∧⃝¬T (x)) (FO + b + c)
(e) ∀x(T (x) → ⃝¬T (x)) (FO + d)
(f) T ( ιyT (y)) → ⃝¬T ( ιyT (y)) (e + UI)
(g) T ( ιyT (y)) (a)
(h) ⃝¬T ( ιyT (y)) (f + g)

Derivation 1

(a) ∃x(x = ιyT (y)) (Hypothesis)
(b) ⃝¬T ( ιyT (y)) (Hypothesis)
(c) T ( ιyT (y)) (a)
(d) T ( ιyT (y)) ∧⃝¬T ( ιyT (y)) (b + c)
(e) ∃x(T (x) ∧⃝¬T (x)) (d + EG)

Derivation 2

2.2 Collapse

We explain in more detail how the collapse mentioned in requirement 3 arises.
The discussion draws on Goble [12,13,14]. We say the deontic collapse arises in
a logic if the formula φ ↔ ⃝φ is derivable (for every formula φ). This would
mean that everything that is true is obligatory and vice versa. Goble pointed
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out that, if the principle of substitution salva veritate holds, then the deontic
collapse follows. We reiterate and amplify his main points.

The derivation of ⃝φ→ φ presupposes that of φ→ ⃝φ. We start with the
former one. It appeals to the law of contraposition, the law of double negation
elimination, and the D axiom for ⃝:

(a) ⃝φ (Hypothesis)
(b) ¬⃝¬φ (D axiom)
(c) ¬¬φ (φ→ ⃝φ and contraposition)
(d) φ (Double ¬ elimination)

Derivation 3

One may be tempted to block this derivation by just abandoning the prin-
ciple of contraposition or the principle of double ¬ elimination. However, this
would not block the derivation of φ→ ⃝φ, which in itself is counter-intuitive.
We turn to this implication. We do not give the original argument, but a
variant one, which highlights the role of 2.

Proposition 2.1 Consider a deontic logic containing (i) the usual principles
of first-order logic (FO), (ii) the principle of substitution salva veritate for
“ought” (E-⃝), t = s → (⃝φ ↔ ⃝φt↪→s) (iii) the principle 2φ → ⃝φ
(22⃝) and (iv) the principle of inheritance “If ⊢ φ → ψ then ⊢ ⃝φ → ⃝ψ”
(In). Then φ→ ⃝φ is derivable from 2∃y(y = t).

Proof. In this derivation we assume that x and y do not occur free in φ:

(a) φ (Hypothesis)
(b) 2∃y(y = t) (Hypothesis)
(c) t = ιx(x = t ∧ φ) (FO + a)
(d) ⃝∃y(y = t) (22⃝ + b)
(e) ⃝∃y(y = ιx(x = t ∧ φ)) (E-⃝ + c + d)
(f) ⃝φ (In + e)

Derivation 4
2

Some comments are in order:

• We show φ→ ⃝φ, where the original argument shows ⃝ψ → (φ→ ⃝φ).
• Our derivation starts from the supposition 2∃y(y = t). This may be read
as t necessarily denotes. We take this supposition to be harmless. We do
not even want the collapse under this assumption.

• Line (c) “drags” φ inside the scope of the definite description to write “the-
unique-x-identical-with-t-and-φ”. Line (f) “drags” φ outside the scope of
the definite description. The move is allowed in first-order logic.

• The principle (E-⃝) is used on line (d), where t is replaced by the co-
referential term “the-unique-x-identical-with-t-and-φ”. The formula (e)
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seems already counter-intuitive. However, as we will see in Section 4.3 the
two-dimensional semantics presented in this paper gives an unproblematic
reading to this formula.

• Line (f) is obtained by applying (In). This final move is explained in more
detail in derivation 5.

To avoid the deontic collapse, the following ways out suggest themselves:

Option 1 Revise the laws of first-order logic;

Option 2 Abandon (22⃝);

Option 3 Abandon (In), or restrict its application.

We will go with option 3. Thus, in derivation 4, the move from (e) to (f) is
blocked. A good reason for choosing this path is that option 2 alone would not
block the original derivation of the collapse in a mono-modal setting, which
uses (In) and the laws of first-order logic. Note that in Åqvist’s system F, (In)
is not a primitive rule, but is derivable from (22⃝) and two extra principles:

• the principle of necessitation for 2 : “If ⊢ φ, then ⊢ 2φ” (N-2)
• the K axiom for ⃝: ⃝(φ→ ψ) → (⃝φ→ ⃝ψ) (K-⃝)

This is easily verified. The move from (e) to (f) is explained thus:

(a) ⊢ ∃y(y = ιx(x = t ∧ φ)) → φ (FO)
(b) ⊢ 2[∃y(y = ιx(x = t ∧ φ)) → φ] (N-2)
(c) ⊢ ⃝[∃y(y = ιx(x = t ∧ φ)) → φ] (22⃝)
(d) ⊢ ⃝∃y(y = ιx(x = t ∧ φ)) → ⃝φ (K-⃝)

Derivation 5
Ultimately, the solution will consist in restricting the application of (N-2).

However, the final effect will be the same: (In) will go away in its plain form.
Prop. 2.2 provides an independent argument for keeping 2 intensional (cf.
requirement 2):

Proposition 2.2 Consider the same deontic logic as in Prop. 2.1, but with
(E-⃝) replaced with (E-2). In such a logic, φ→ ⃝φ is derivable from
2∃y(y = t).

Proof. As before we assume that x and y do not occur free in φ:

(a) φ (Hypothesis)
(b) 2∃y(y = t) (Hypothesis)
(c) t = ιx(x = t ∧ φ) (FO + a)
(d) 2∃y(y = ιx(x = t ∧ φ)) (E-2 + b + c )
(e) ⃝∃y(y = ιx(x = t ∧ φ)) (22⃝)
(f) ⃝φ (In)

Derivation 6
2
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3 The perspectival account

In this section, we develop in full detail our perspectival account. The ba-
sic idea is that the content of an obligation at one world is to be evaluated
from the perspective of another one. What we mean by this is the following.
Formulas will be evaluated with respect to two dimensions, or pair of worlds
(v, w). World v is where the evaluation takes place, and world w is the one
from the perspective of which formulas are evaluated (call it the reference or
actual world, if you wish). Throughout the paper the reference world will be
represented as an upper index in the notation v |=w. What is meant by “φ is
evaluated in v from w’s perspective” is this: when determining the truth-value
of φ in v, the terms occurring in φ get the same denotation as in w.
To get a more flexible framework, we introduce two alethic modal operators,
⊡ and ⊠. The first will be extensional, and the second intensional. Our prime
interest is in combining extensionality for ⃝ and intensionality for 2. However,
there are readings of 2 under which extensionality remains desirable. Hence
we allow for both.

Definition 3.1 The language L contains:

• A countable set of variables V := {x, y, z, ...}
• A countable set of constants C := {c, d, e, ...}
• Two propositional connectives ∧,¬
• Three first-order logic symbols ∀, ι,=
• A binary obligation operator ⃝(−/−)
• Two unary alethic operators ⊡ and ⊠
• For each n ∈ Z+ a countable set of n-place predicate symbols
P := {An, Bn, ...}

We can now define inductively the well-formed terms and formulas used in
our logic and their respective complexity (⌜...⌝).
Definition 3.2 [Terms and formulas]

• Terms:
· Every element of V ∪ C is a term of complexity 0
· If φ is a formula and x ∈ V then ιxφ is a term with ⌜ ιxφ⌝ := ⌜φ⌝+1

• Formulas:
· If Rn ∈ P is a n-place predicate symbol and t1, ..., tn are terms then
Rn(t1, ..., tn) is a formula with ⌜Rn(t1, ..., tn)⌝ :=

∑n
i=1⌜ti⌝

· If φ is a formula and x ∈ V then ∀xφ is a formula with ⌜∀xφ⌝ :=
⌜φ⌝+ 1

· If t1 and t2 are terms then t1 = t2 is a formula with ⌜t1 = t2⌝ :=
⌜t1⌝+ ⌜t2⌝+ 1

· If φ is a formula then ¬φ is a formula with ⌜¬φ⌝ := ⌜φ⌝+ 1
· If φ is a formula then ⊡φ is a formula with ⌜⊡φ⌝ := ⌜φ⌝+ 1
· If φ is a formula then ⊠φ is a formula with ⌜⊠φ⌝ := ⌜φ⌝+ 1
· If φ and ψ are formulas then φ ∧ ψ is a formula
with ⌜φ ∧ ψ⌝ := ⌜φ⌝+ ⌜ψ⌝+ 1
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· If φ and ψ are formulas then ⃝(ψ/φ) is a formula
with ⌜⃝(ψ/φ)⌝ := ⌜φ⌝+ ⌜ψ⌝+ 1

· Nothing else is a formula

Definition 3.3 [Derived connectives] Let t be a term. We define E(t) as
∃x(x = t), where x is the first element of V not appearing in t. The sym-
bols ∨,⊥,⊤,→,↔,♢. φ,♢×φ, P (./.),∃,∃! and ̸= are introduced the usual way.

Definition 3.4 [Frames] F = ⟨W,⪰, D⟩ is called a frame, where

• W ̸= ∅ is a set of worlds
• ⪰⊆W ×W is a binary relation called the betterness relation 5

• D is a function which maps every world w ∈W to a non-empty set Dw

D is called the domain function, and Dw is called the domain of w.
D :=

⋃
w∈W Dw is called the “actual” domain and D+ := D ∪ {D} the (whole)

domain.

The individual domains (Dw)w∈W contain all objects which are within the
range of the universal quantifier at a world w. The actual domain D is not
contained in the domain of any world 6 and is used as the value assigned to
definite descriptions that do not designate (uniquely).

Definition 3.5 [Models] M = ⟨W,⪰, D, I⟩ is called a model (on the frame
F = ⟨W,⪰, D⟩), where I is a function (called interpretation function) such
that:

• for c ∈ C and w ∈W : I(c, w) ∈ D+

• for Rn ∈ P and w ∈W : I(Rn, w) ⊆ (D+)n

I(c, w) = a says that a is the denotation of c in w. In our semantics a constant
may not denote, and it does not need to designate the same entity in every
possible world. In Kripke’s terminology, proper names are not rigid designators.
We have not investigated the effects of making this assumption.

Definition 3.6 [Variable assignment] Given a model M = ⟨W,⪰, D, I⟩ we call
a function g : V ×W 7→ D+ a variable assignment (of M).

Notice that the assignment is world-dependent. Roughly speaking,
g(x,w) = a says that a is the denotation of x in w. Note that g(x,w) does not
have to be an element of the domain of w. 7 We amend the usual notion of an
x-variant as follows. An x-variant of some variable assignment g at a world w
is a variable assignment h that agrees with g on all values except for x, whose
value in every world remains constant, and an element of Dw. Formally:

Definition 3.7 [x-variant] Assume a model M = ⟨W,⪰, D, I⟩, a variable as-
signment g of M and an element of the whole domain d ∈ D+. We write gx⇒d

5 When w ⪰ v, we say that a world w is at least as good as world v.
6 D ̸∈ D.
7 The element a does not even have to be contained in the actual domain.
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for the variable assignment which replaces the value assigned to x at any world
by d:

gx⇒d(z, v) :=

{
d if (z, v) ∈ {x} ×W

g(z, v) otherwise

A variable assignment h is an x-variant of g at w iff h = gx⇒d for some d ∈ Dw.

“Best”, in terms of which the truth-conditions for ⃝(−/−) are cast, is
defined by:

Definition 3.8 [best] Given a model M = ⟨W,⪰, D, I⟩ and a set of worlds
X ⊆W we define

best(X) := {w ∈ X : ∀v ∈W (v ∈ X ⇒ w ⪰ v)}

best(X) is the set of worlds in X that are at least as good as every member
of X.

The construct “M, v |=wg φ” can be read as “v forces φ under g if looked at
from the point of view of (an inhabitant of) w”. We stress that M, v |=wg does
not convey a truth value for the formula φ per se, but it is used to define the
truth conditions of φ by induction. We put ||φ||Mg,w := {v ∈W : M, v |=wg φ}.
Definition 3.9 Let M = ⟨W,⪰, D, I⟩ be a model, g a variable assignment,
x ∈ V and c ∈ C. We define

• Iwg (x) := g(x,w)
• Iwg (c) := I(c, w)

• Iwg (

ιxφ) :=





h(x,w) if h is the unique x-variant of g at w

such that M, w |=wh φ
D otherwise

The forcing relation |= can be defined inductively as follows:

• M, v |=wg Rn(t1, ..., tn) :⇔ ⟨Iwg (t1), ..., Iwg (tn)⟩ ∈ I(Rn, v)
• M, v |=wg ¬φ :⇔ M, v ̸|=wg φ
• M, v |=wg φ ∧ ψ :⇔ M, v |=wg φ and M, v |=wg ψ
• M, v |=wg ∀xφ :⇔ M, v |=wh φ for all x-variants h of g at v
• M, v |=wg t1 = t2 :⇔ Iwg (t1) = Iwg (t2)
• M, v |=wg ⊡φ :⇔ ∀u ∈W M, u |=wg φ
• M, v |=wg ⊠φ :⇔ ∀u ∀v′ ∈W M, u |=v′g φ
• M, v |=wg ⃝(ψ/φ) :⇔ best(||φ||Mg,w) ⊆ ||ψ||Mg,w
We drop the reference to M when it is clear what model is intended.

Definition 3.10 [Truth in F∀] Given a model M = ⟨W,⪰, D, I⟩, a variable
assignment g, a formula φ and a world w we define what it means that φ is
true in M at w under g (in symbols: M, w |=g φ) as

M, w |=g φ :⇔ M, w |=wg φ
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The meaning of ⊡, ⊠ and ⃝ is easier to explain using the following derived
truth conditions.

Remark 3.11 [Derived truth conditions]

• M, w |=g ⊡φ :⇔ ∀v ∈W M, v |=wg φ
• M, w |=g ⊠φ :⇔ ∀u ∀v ∈W M, u |=vg φ
• M, w |=g ⃝(ψ/φ) :⇔ best(||φ||Mg,w) ⊆ ||ψ||Mg,w
When evaluating the truth-value of ⊡φ at w, one moves to an arbitrary

world v, and determines the truth-value of φ in v from w’s perspective. This
means giving to the terms occurring in φ the denotation they have in w. When
evaluating the truth-value of ⊠φ at w, one moves to an arbitrary world u, and
evaluates φ in u from every other world’s v perspective. For obligation, the
idea is similar. The standard evaluation rule puts ⃝(ψ/φ) as true whenever all
the best φ-worlds are ψ-worlds. The φ-worlds and the ψ-worlds in question are
those according to w’s perspective. This is how the principle of substitution
salva veritate will be validated for ⃝ and ⊡, and invalidated for ⊠.

Definition 3.12 Given a model M = ⟨W,⪰, D, I⟩. ⪰ is reflexive if
∀w ∈ W (w ⪰ w), and ⪰ fulfils the limitedness condition if for every φ, g and
w ∈W we have

||φ||Mg,w ̸= ∅ ⇒ best(||φ||Mg,w) ̸= ∅
U is the class of models in which ⪰ is reflexive and fulfils limitedness.

Intuitively, the limitedness condition validates the dyadic version of the D
axiom (with ♢ replaced with ♢. ) involved in derivation 3 of the collapse (see
Subsect. 2.2).

Definition 3.13 [Validity in F∀]

• φ is valid at w in a model M (notation: M, w |= φ) if for every variable
assignment g, we have that M, w |=g φ;

• φ is valid in a model M (notation: M |= φ) if for every world w we have
M, w |= φ;

• φ is valid in a class M of models (notation: M |= φ) if for every model
M ∈ M we have M |= φ;

• φ is valid (notation: |= φ) if φ is valid in the class U as defined above.

4 Benchmarking

We test the account introduced in Sect. 3 against the requirements discussed
in Sect. 2.

4.1 Extensionality / intensionality / self-negation

A proof of the principle of extensionality in its general form is given in Sub-
sect. 4.2. For simplicity’s sake, here we only discuss the examples considered
in Sect. 2.

Proposition 4.1 (Extensionality of ⃝, requirement 1) We have:

j = ιxP (x) →(⃝(S( ιxP (x)) ↔ ⃝S(j))
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j = ιxP (x) →[⃝(El( ιy(y ̸= ιxP (x)))/¬S( ιxP (x))) ↔ ⃝(El( ιy(y ̸= ιxP (x)))/¬S(j))]
Proof. When a formula does not contain a free variable its truth condition
does not depend on which variable assignment is assumed. Therefore for this
and all future proofs (in which no free variable is involved) we always deal with
an arbitrary variable assignment. Now, if w |=wg j = ιxP (x), then for every

u ∈ best(||⊤||Mg,w)
u |=wg S( ιxP (x)) ⇔ u |=wg S(j)

This is because the terms on both sides get the denotation they have in w.
Similarly:

best(||¬S( ιxP (x))||Mg,w) ⊆ ||El( ιy(y ̸= ιxP (x)))||Mg,w
⇔ best(||¬S(j)||Mg,w) ⊆ ||El( ιy(y ̸= ιxP (x))||Mg,w

2

Proposition 4.2 (Intensionality of ⊠, requirement 2) We do not have:

c = ιxB(x) →(⊠(c = c) ↔ ⊠(c = ιxB(x)))

Proof. Put M = ⟨W,⪰, I,D⟩ with (an arrow from v to w means v ⪰ w, and
no arrow from from w to v means w ̸⪰ v):

w v

B(a), c = a B(b), c = a

W := {w, v}
⪰:= the reflexive closure of {(v, w)})
Dw := {a}, Dv := {a, b}
I(B,w) := a, I(B,w) := b

I(c, w) := a, I(c, v) := a

The condition of limitedness is fulfilled. We have:

• w |=wg c = ιxB(x) since c and ιxB(x) denote a in w
• w |=wg ⊠(c = c) since c = c is a tautology
• w ̸|=wg ⊠(c = ιxB(x)) since w ̸|=vg c = ιxB(x) 8

2

Proposition 4.3 (Self-negation, requirement 4) The sentences (10),
(11) and (12) are simultaneously satisfiable.

Proof. We give a model which satisfies all three formulas in the same world.

w v

T (a), s = a s = a

W := {w, v}
⪰:= the reflexive closure of {(v, w)})
Dw := {a}, Dv := {a}
I(T,w) := {a}, I(T, v) := ∅
I(s, w) := a, I(s, v) := a

8 c and ιxB(x) do not have the same denotation in v.
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As before ⪰ is limited. We have:

• w |=wg s = ιxT (x) since s and ιxT (x) denote a in w
• w |=wg ⃝¬T (s) since a is not T in v
• w |=wg ⃝¬T ( ιxT (x)) since a (=the unique T in w) is not T in v

The paradox is resolved by having Sam, who is the tyrant in the actual
world w, not be a tyrant in the best world v. Therefore ⃝¬T ( ιxT (x)) can be
satisfied. 2

4.2 Extensionality (general form)

We show the principle of extensionality in its general form. Where φ is a
formula and s and t terms, let φt↪→s be the result of replacing zero up to all
unbound occurrences of t, 9 in φ, by s. We may re-letter bound variables, if
necessary, to avoid rendering the new occurrences of variables in s bound in φ.

Proposition 4.4 Consider some g and some w in M such that w |=wg t = s.
Then, for all v in M,

v |=wg φ↔ φt↪→s (#)

provided t is not contained in the scope of the ⊠ operator in φ.

Proof. By induction on the complexity n of a formula φ. The base case, if φ
is R(t1, ..., tm) with ⌜R(t1, ..., tm)⌝ = 0, follows from the definitions involved.
For the inductive case, we assume (#) holds for all k < n, and for all v in M.
We only consider three cases−the other ones are left to the reader:

• φ := ∀x ψ. Given the restrictions put on t and s, we have the following
chain of equivalences:

v |=wg ∀x ψ iff v |=wh ψ for all x-variants h at v

v |=wh ψt↪→s for all x-variants h at v (by IH)

v |=wg ∀x ψt↪→s

• φ := ⃝(χ/ψ).

v |=wg ⃝(χ/ψ) iff best(||ψ||Mg,w) ⊆ ||χ||Mg,w
best(||ψt↪→s||Mg,w) ⊆ ||χt↪→s||Mg,w (by IH)

v |=wg ⃝(χt↪→s/ψt↪→s)

v |=wg ⃝(χ/ψ)t↪→s

• φ := R(t1, ..., tm). Assume v |=wg R(t1, ..., tm). If t appears only as one
of the ti’s, then we are done. So let us suppose that t appears in one
(or more) of the ti’s. W.l.o.g. let t only appear in t1 = ιxψ. By the
IH w |=wg ψ ↔ ψt↪→s, so I

w
g (

ιxψ) = Iwg (

ιxψt↪→s). Consider some v ∈ W .

9 By an unbounded occurrence of t, we mean that no variables in t are in the scope of a
quantifier or a definite description not in t.
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We have ⟨Iwg ( ιxψ), ..., tm⟩ ∈ I(R, v), so ⟨Iwg ( ιxψt↪→s), ..., tm⟩ ∈ I(R, v).
Hence v |=wg R(t1, ..., tm)t↪→s as required. For the converse implication,
the argument is the same.

2

Corollary 4.5 (Extensionality) The principle (E) is valid:

|= t = s→ (φ↔ φt↪→s) if t is not in the scope of ⊠ (E)

Proof. This follows from Prop. 4.4 putting v = w. 2

4.3 Deontic collapse

We start by explaining how the collapse is avoided semantically. We define a
model in which the formulas at steps (a)-(e) in derivation 4 are true in the
actual world w but the formula at step (f) is not.

Example 4.6 Put φ := A(c). M is defined by

w v

A(a), c = t = a c = t = a

W := {w, v}
⪰:= the reflexive closure of {(v, w)}
Dw := {a}, Dv := {a}
I(c, w) := I(c, v) := a

I(t, w) := I(t, v) := a

I(A,w) := {a}, I(A, v) := ∅

We have

(a) w |=g A(c) since I(c, w) = a ∈ I(A,w)
(b) w |=g ⊠∃y(y = t) since I(t, w) = I(t, v) = a ∈ Dw

and I(t, w) = I(t, v) = a ∈ Dv

(c) w |=g t = ιx(x = t ∧A(c)) since I(t, w) = a = Iwg (

ιx(x = t ∧A(c)))
(d) w |=g ⃝∃y(y = t) since I(t, w) = a ∈ Dv

10

(e) w |=g ⃝∃y(y = ιx(x = t ∧A(c))) since Iwg ( ιx(x = t ∧A(c))) = a ∈ Dv

(f) w ̸|=g ⃝A(c) since I(c, w) = a ̸∈ I(A, v)

Let it be clear that (e) means v |=wg ∃y(y = ιx(x = t ∧ A(c))), which says
that the unique x, for which the formula x = t ∧ A(c) holds in w, exists in
v. However this does NOT imply v |=wg ∃x(x = t ∧ A(c))), since there exists
no element in the domain of v for which the formula x = t ∧ A(c) holds in v
from w’s perspective. In the statements, v |=wg ∃y(y = ιx(x = t ∧ A(c))) and
v |=wg ∃x(x = t∧A(c)) the two c refer to the same individual a, but in different
worlds where they have different properties.

This model serves as a counter-model to the rule of inheritance. The formula
∃y(y = ιx(x = t∧A(c))) → A(c) is valid, but not ⃝∃y(y = ιx(x = t∧A(c))) →
⃝A(c).

10By definition v |=wg ∃y(y = t) holds if there exists an y-variant h of g at v such that
h(y, w) = I(t, w). This is equivalent to I(t, w) being an element of Dv .
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To explain how the deontic collapse is avoided proof-theoretically, we intro-
duce the notion of “variable only” version φ∗ of a formula φ. Intuitively, φ∗ is
obtained by substituting, in φ, a new variable for every definite description and
constant occurring in φ. This ensures that φ∗ contains only variables, making
it impossible to apply the rule of inheritance (and necessitation) from which
the collapse follows. Formally:

Definition 4.7 [Variable only version, Goble [13]] Given a formula φ, we define
φ∗ as the formula in which all terms t1, ..., tn, which are not variables and are
occurring in the formula φ, have been replaced by x1, ..., xn ∈ V respectively.
The variables x1, ..., xn are the first, pairwise different, elements of V such that
x1, ..., xn do not occur in φ.

Example 4.8 Let A,B and C be predicate symbols, x, y, z ∈ V the first three
variables of V , c ∈ C a constant and φ ∈WF a well-formed formula:

• A( ιyφ, c)∗ = A(x, z)
• ∀xA( ιyB(y, d), x)∗ = ∀xA(z, x)

• A( ιyB( ιxC(x, y)), y)∗ = A(z, y)
• A(y, y)∗ = A(y, y)

Like in Goble’s original treatment, the collapse is blocked by restricting the
application of the rule of necessitation for ⊠, and of the principle of inheritance
for ⃝. These two are now available in the following form:

If |= φ∗ then |= ⊠φ (N∗-⊠)

If |= (ψ1 → ψ2)
∗ then |= ⃝(ψ1/φ) → ⃝(ψ2/φ)) (In⋆)

Before continuing want to point out that the other law involved in the
collapse, ⊠ψ → ⃝(ψ/φ), still holds. This follows at once from the following:

Proposition 4.9 We have

|= ⊠ψ → ⊡ψ (⊠2⊡)

|= ⊡ψ → ⃝(ψ/φ) (⊡2⃝)

Proof. (⊠2⊡) is straightforward, and may be left to the reader. For (⊡2⃝),
let us assume w |=g ⊡ψ holds for a fixed model M = ⟨W,⪰, D, I⟩, a world
w ∈ W and a variable assignment g. This is equivalent to ||ψ||Mg,w being equal
to the whole set of worldsW . Hence we can infer that for any formula φ we have
best(||φ||Mg,w) ⊆W = ||ψ||Mg,w, which, by definition, means w |=g ⃝(ψ/φ). 2

We now show that the rules (N∗-⊠) and (In⋆) preserve validity. To show
this we need the following two lemmas.

Lemma 4.10 Given a formula φ and a model M, then

M |= φ∗ ⇒ M |= ⊠(φ∗)

Proof. Let φ be a formula and M = ⟨W,⪰, D, I⟩ a model. If for every world
w ∈W and every variable assignment g of M it holds that w |=g φ∗, it follows
that w |=wg φ∗ holds for every world w ∈ W and every variable assignment
g of M. Now let us take two arbitrary but fixed worlds v, w ∈ W and an
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arbitrary but fixed variable assignment g and define a new variable assignment
h : V ×W → D+ of M as:

h(x, u) :=





g(x,w) if u = v

g(x, v) if u = w

g(x, u) otherwise

Since h and g only swap how they see the variables at w and v, and φ∗ does
not contain constants or definite descriptions, we get ∀u(u |=wg φ∗ ⇔ u |=vh φ∗).
Therefore from v |=vh φ∗, which holds by assumption, we can infer v |=wg φ∗.
Since v, w ∈W and g were arbitrary we can conclude M |= ⊠φ∗. 2

Lemma 4.11 Given a formula φ and a model M, then

M |= φ∗ ⇒ M |= φ

Proof. This proof is done by contraposition. Suppose there are
M = ⟨W,⪰, D, I⟩, w ∈ W and g such that w ̸|=wg φ. Let t1, ..., tn be all
terms in φ which are replaced by the corresponding variables x1, ..., xn in φ∗.
Then for the variable assignment

h(x, v) :=

{
Ivg (ti) if (x, v) ∈ {xi} ×W where i ∈ {1, ..., n}
g(x, v) otherwise

we have w ̸|=wh φ∗. 2

Putting those two lemmas together, we can prove the soundness of (N∗-⊠):

Lemma 4.12 Given a formula φ and a model M then

M |= φ∗ implies M |= ⊠φ

Proof. M |= φ∗ ⇒ M |= ⊠(φ∗) ⇔ M |= (⊠φ)∗ ⇒ M |= ⊠φ. 2

Theorem 4.13 We have

If |= φ∗ then |= ⊠φ (N∗-⊠)

If |= (ψ1 → ψ2)
∗ then |= ⃝(ψ1/φ) → ⃝(ψ2/φ) (In⋆)

Proof. The first rule follows at once from Lem. 4.12. The second rule follows
from the first one and Prop. 4.9. 2

We end with the observation that the rule of necessitation in its plain
form fails for ⊠. Here is a counter-example. The formula ∃y(y = ιxR(x)) →
R( ιxR(x)) is valid in any model. To see why, fix a model M = ⟨W,⪰, D, I⟩,
a variable assignment g, and a world w ∈ W . Assume w |=g ∃y(y = ιxR(x)).
Hence, there exists a y-variant h of g at w such that h(y, w) = Iwh (

ιxR(x)).
This means that h(y, w) = a for some a ∈ Dw. By definition of ιxR(x), a is
the unique element in Dw s.t. a ∈ I(R,w). So w |=h R( ιxR(x)). Since y does
not occur in R( ιxR(x)) we conclude w |=g R( ιxR(x)) as required.
Now we define a model in which ⊠[∃y(y = ιxR(x)) → R( ιxR(x))] is not valid:
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Example 4.14 Consider the model M := ⟨W,⪰, D, I⟩ with

w v

R(a) R(b)

W := {w, v}
⪰:= the reflexive closure of {(v, w)}
Dw := {a, b}, Dv := {a, b}
I(R,w) := {a}, I(R, v) := {b}

We have v |=wg ∃y(y = ιxR(x)), as Iwg (

ιxR(x)) = a ∈ Dv. But v ̸|=wg R( ιxR(x))
because Iwg (

ιxR(x)) = a ̸∈ I(R, v). So M ̸|= ⊠[∃y(y = ιxR(x)) → R( ιxR(x))].

5 Concluding remarks

We have defined and studied a new perspectival account of conditional obli-
gation. A number of requirements were identified, and shown to be met by
the framework. The framework allows for a more nuanced way of approaching
first-order deontic principles.
Topics for future research include:

(i) to investigate variant candidate truth-conditions for ⊠
(ii) to find a suitable axiomatic basis

Ad (i): the truth-conditions for ⊠ in Def. 3.9 allowed us to make the minimal
changes to the axiomatic basis of F. The most significant change is that Lewis’s
absoluteness principle ⃝(ψ/φ) → ⊠⃝ (ψ/φ), stipulating that obligations are
necessary, goes away. This may be considered good news. But (⊠2⃝) remains,
and this law may be considered counter-intuitive. The following alternative
truth-conditions may be used:

w |=g ⊠φ iff ∀v : v |=vg φ

Intuitively: w |=g ⊠φ holds, if φ holds at all v under the hypothesis that the
terms occurring in φ take the reference they have in this very same world.
With this definition of ⊠, (⊠2⃝) goes away, and the rule of necessitation holds
without any restriction.
Ad (ii): we have identified a sound axiomatic basis for the logic. This one is
shown in Appendix B. Completeness is left as a topic for future research.
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Appendix A: Åqvist’s system F

Axioms:

All truth-functional tautologies

S5-schemata for 2 and ♢
⃝ (φ→ χ/ψ) → (⃝(φ/ψ) → ⃝(χ/ψ))

⃝ (φ/ψ) → 2⃝ (φ/ψ)

2φ→ ⃝(φ/ψ)

2(φ↔ ψ) → (⃝(χ/φ) ↔ ⃝(χ/ψ))

⃝ (φ/φ)

⃝ (φ/ψ ∧ χ) → ⃝(χ→ φ/ψ)

♢ψ → (⃝(φ/ψ) → P (φ/ψ))

Rules:

If ⊢ φ and ⊢ φ→ χ then ⊢ χ
If ⊢ φ then ⊢ 2φ

An explanation of the axioms can be found in [24]. The dyadic version of
the D axiom (♢ψ → (⃝(φ/ψ) → P (φ/ψ))) is the distinguishing axiom of this
logic. This axiom makes the system F the weakest system in the family of
Åqvist’s systems in which the collapse arises.

Appendix B: Axiomatisation of F∀

A sound Hilbert axiomatisation of the logic developed in this paper is shown
below. In this axiomatisation, the symbol φx⇒t is the result of replacing ALL
occurrences of the variable x, in φ, by the term t. Furthermore, we write
free(φ) for the set of variables appearing in φ, which are not bound by a
quantifier or a definite description.

Axioms:

All truth functional tautologies

All axioms of system F with 2 replaced with ⊡ and ♢ with ♢.
S5-schemata for ⊠ and ♢×
⊠ φ→ ⊡φ
⊠ ψ → ⊠⃝ (ψ/φ)

⊠ (φ↔ ψ) → ⊠(⃝(χ/φ) ↔ ⃝(χ/ψ))

t = s→ (φ↔ φt↪→s) if t is not in the scope of the ⊠ operator

E(t) → (∀xφ→ φx⇒t) if x is not in the scope of the ⊠ operator

∃x∃y(x = y)

t = t
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t ̸= s→ ⊡t ̸= s

∀y((∀x(φ↔ x = y)) → y = ιxφ)

E( ιxφ) → ∃!xφ
∀x(E(x) → φ) → ∀xφ
(∀xφ ∧ ∀xψ) ↔ ∀x(φ ∧ ψ)

Rules:

If ⊢ φ and ⊢ φ→ χ then ⊢ χ
If ⊢ φ∗ then ⊢ ⊠φ
If ⊢ ⃝(φ/ψ) then ⊢ ⊠⃝ (φ/ψ)

If ⊢ φ→ t ̸= x then ⊢ ¬φ where x ̸∈ free(φ)

If ⊢ φ→ ψ then ⊢ φ→ ∀xψ where x ̸∈ free(φ)

If ⊢ φ→ ⊡ψ then ⊢ φ→ ⊡∀xψ where x ̸∈ free(φ)

If ⊢ φ→ ⊠ψ then ⊢ φ→ ⊠∀xψ where x ̸∈ free(φ)

An explanation of the first-order and definite description axioms can be found
in [30].
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Abstract

The key strength of preference-based logics for conditional obligation is their ability
to handle contrary-to-duty paradoxes and account for exceptions. Here we investigate
Åqvist’s system F, a well-known logic in this family. F has the notable feature that
every satisfiable formula has a “best” element. Thus far, the only proof system for
F was a Hilbert calculus, impeding applications and deeper investigations. We fill
this gap, constructing the first analytic calculus for F. The calculus possesses good
proof-theoretical properties—in particular, cut-elimination, which greatly facilitates
proof search. Our calculus is used to provide explanations of logical consequences, as
a decision-making tool, and to obtain a preliminary complexity upper bound for F
(giving a theoretical limit on its automated behavior).

Keywords: Dyadic deontic logic; analytic sequent calculi; hypersequents; system F

1 Introduction

This paper deals with so-called preference based dyadic deontic logic, initially
put forth by [7,14,28,18]. The syntax contains a conditional obligation operator
⃝(B/A), read as“B is obligatory given A”. A binary relation ranks the possible
worlds in terms of betterness. In that framework, the truth-conditions for
⃝(B/A) are phrased in terms of best-antecedents worlds. It has emerged as
one of the de facto standards for normative reasoning; its key strengths are the
ability to handle contrary-to-duty paradoxes [5] and to account for exceptions.

Past research on preference-based dyadic deontic logic has focused on the
search for an Hilbert style axiomatization, and on the question of clarifying the
correspondence between semantic properties and modal axioms. An overview
of the existing findings may be found in, e.g., [11,22]. It is only recently that an-
alytic calculi for these logics have been proposed [24,6]. In an analytic calculus,
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proof search proceeds by step-wise decomposition of the formulas to be proven
and this yields practical and theoretical advantages over Hilbert systems. In
particular, they can be used to establish important meta-logical properties for
the formalized logics (e.g., decidability, complexity and interpolation), and they
facilitate the development of automated reasoning methods. The original tool
to construct analytic calculi was the sequent calculus; following Gentzen (1933),
the key idea was to use the cut rule to establish completeness, and then show
elimination (or redundancy) of this rule from derivations to establish analyt-
icity. However, the sequent calculus is not expressive enough to support cut
elimination for most logics of interest. Hence various extensions and general-
izations have been introduced in the pursuit of analytic proof calculi.

Analytic sequent-style calculi were obtained for two well-known systems
proposed by Åqvist [1]: E and G. For E the calculus (called HE) was defined
in [6], whereas the calculus for G appears in [10] (it was in fact introduced for
Lewis’s VTA, to which G is equivalent). In this paper we consider F which lies
between E and G. It is obtained by supplementing E with axiom (D⋆) that
rules out models without a best element (a ‘limit’). Obligations in E collapse
to triviality when there is no best world: if A does not have a best element
element then ⃝(B/A) holds for any B. One obtains G, by extending F with
the so-called principle of rational monotony [17].

The main contribution of the paper is an analytic calculus HF for F, lead-
ing to a decision procedure and a CoNEXP upper bound, the first complexity
bound for this logic. Of Åqvist’s three systems, F is the most complex in terms
of proof theory. HF is obtained in a modular way, by adding to (an equivalent
version of) HE a new rule corresponding to the (D⋆) axiom. Surprisingly, this
rule shares common structural features with the peculiar rule for the calculus
for provability logicGL [23]. As inHE, the calculusHF employs hypersequents
to accommodate the extra S5-type modality used to express settledness. The
hypersequent framework [2] consists of multiple sequents in parallel, and it can
be seen as the minimal extension of Gentzen’s sequent framework permitting
a cut-free calculus for the logic S5 [19,3,16] (itself a sub-logic of F). The ana-
lyticity of HF is established as a consequence of the algorithmic eliminability
of the cut rule from derivations (cut-elimination). The proof is intricate and
of technical interest. In particular, the presence in the peculiar rule of HF of
“diagonal formulas” [23] (i.e., formulas that change polarity from conclusion
to premises) makes the proof very challenging; even more than in Valentini’s
cut-elimination proof [25] for GL (see [12,13] for a survey on cut-elimination
proofs for GL).

A potential misunderstanding must be cleared up from the start. As in
previous work on modal interpretation of conditionals, e.g., [9,20,26,6], we en-
code maximality by a unary modal operator Bet . It is important to realize
that by doing so we are not carrying out a reduction of dyadic deontic logic to
some bi-modal logic. Indeed the calculus rules for Bet cannot be understood
in isolation, and they do not correspond to any known normal or non-normal
modality. The Bet operator is not part of the language of F, and it is used
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just in the hypersequent calculus to define suitable rules for the conditional
obligation operator.

2 The system F in a nutshell

We present the logic F. Its language is defined by the following BNF:

A ::= p ∈ PropVar | ¬A | A→ A | 2A | ⃝(A/A)

2A is read as “A is settled as true,” and ⃝(B/A) as “B is obligatory, given
A.” The Boolean connectives other than ¬ and → are defined as usual. 3 is a
derived connective, defined as usual (viz. as the dual of 2).

Definition 2.1 F consists of any Hilbert system for S5 supplemented with:

⃝ (B → C/A) → (⃝(B/A) → ⃝(C/A)) (COK)

⃝ (A/A) (Id)

⃝ (C/A ∧ B) → ⃝(B → C/A) (Sh)

2(A ↔ B) → (⃝(C/A) ↔ ⃝(C/B)) (Ext)

⃝ (B/A) → 2⃝ (B/A) (Abs)

2A → ⃝(A/B) (O-Nec)

3A→ ¬⃝ (⊥/A) (D⋆)

F extends E with one axiom: (D⋆). This axiom, which is equivalent to
the original axiom, 3A→ ¬(⃝(B/A)∧⃝(¬B/A)), rules out the possibility of
conflicts between obligations (for consistent, or possible, antecedents).

The notions of derivation and theoremhood are defined in the usual way.
The semantics of F can be defined in terms of preference models. They

are possible-world models equipped with a comparative goodness relation ≻ on
worlds so that x ≻ y can be read as “world x is better than world y.” Condi-
tional obligation is defined by considering “best” worlds: intuitively, ⃝(B/A)
holds in a model, if all the best worlds in which A is true also make B true.

Definition 2.2 A preference model is a structure M = (W,≻, V ) (W ̸= ∅)
whose members are called possible worlds, ≻ ⊆W×W , V :W → P(PropV ar).
The evaluation rules for the Boolean connectives are as usual. The evaluation
rules for 2 and ⃝ are defined as follows:

• M,x ⊨ 2A iff ∀y ∈W M,y ⊨ A
• M,x ⊨ ⃝(B/A) iff ∀y ∈ best(A) M,y ⊨ B

Here best(A) = {y ∈W |M,y ⊨ A and there is no z ≻ y such that M, z ⊨ A}.
When no confusion arises, we write x ⊨ A for M,x ⊨ A.
The distinctive feature of the semantics for F (w.r.t E) is that ≻ is required

to be limited, that is if ∃x s.t. x |= A, then best(A) ̸= ∅. Intuitively, if the
set of A-worlds is non-empty, then it has a best element. This assumption
validates (D⋆). Observe that the relation ≻ is not assumed to be transitive.

Validity in a model and validity over all models are defined as usual.
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For the purpose of the calculi developed subsequently, we introduce the
modality Bet that will allow us to represent the “Best” worlds: M,x ⊨ Bet A
iff ∀y ≻ x M, y ⊨ A. By this definition, we get x ∈ best(A) iff M,x ⊨ A and
M,x ⊨ Bet ¬A. However, the modality Bet is not part of L.

The following applies:

Theorem 2.3 (Soundness and completeness, [21]) F is sound and com-
plete w.r.t. the class of preference models whose relation ≻ is limited.

A few words on the rationale behind the limitedness condition. As men-
tioned, it provides a remedy to the fact that obligations collapse to triviality
when there is no best world in a given model. This collapse may arise in two
typical situations: when there is an infinite sequence of better and better worlds
(see Ex. 2.4 below), and when there is a cycle of betterness (see Ex. 2.5).

Example 2.4 [Starvation, [8]] Let W = {xi : i < ω}. Assume that all the
worlds share an infinite number of inhabitants, {ai : i < ω}. In each world xi,
all the individuals whose index is less than or equal to i are relieved and saved
from starvation, all the other are left dying. Thus, in x1, only a1 is relieved
or saved, all the other individuals are starving. In world x2, only a1 and a2
are relieved, all the others are starving, and so on. Suppose the worlds are
ranked according to the number of individuals saved from starvation. Then,
for all i < ω, xi+1 ≻ xi. There is no best world. In this model, for all i < ω,
(sv ai stand for “ai is saved”) ⃝(sv ai/⊤) and ⃝(¬sv ai/⊤), contradicting
(D⋆). Note that ≻ has been chosen so as to be transitive. But nothing hinges
on it. Indeed, what makes the limitedness condition fail in this model, is that
≻ is serial, viz. for all xi, there is a y such that y ≻ xi.

Cycles are usually considered irrational, because they lead to a violation of
the principles of transitivity and consistency in decision-making. Nevertheless,
empirical studies have revealed that cycles can arise in certain contexts, for
instance when the ranking is based on multiple criteria. It is customary to
rank the possible worlds based on the number of obligations they violate: the
less obligations are violated by a world, the better the world is. This mono-
criterion becomes a bi-criterion, if one distinguishes between the obligations
issued by an authority P from those issued by an authority Q, and use them
separately to rank the possible worlds.

Example 2.5 [Multi-criteria ranking, [27]] Suppose the authorities P and Q
issue the commands p1 and p2, and q1 and q2, respectively. Consider two words
x1 and x2 such that x1 |= p1∧p2∧q1∧¬q2, and x2 |= ¬p1∧p2∧q1∧q2. We have
x1 ≻ x2, since x1 violates less obligations issued by P than x2. But x2 ≻ x1,
because x2 violates less obligations issued by Q than x1. This is a cycle of
length 1. In this model, e.g. 3(p1 ∨ p2), ⃝(p2/p1 ∨ p2) and ⃝(¬p2/p1 ∨ p2),
contradicting (D⋆). As in the previous example, even though ≻ has been chosen
so as to be transitive, nothing hinges on it. To see why, we use the following
variant of ≻, putting x ≻ y whenever x violates strictly less obligations issued
by one authority than y does. The outcome is the same. In particular we still

82



Ciabattoni et al.

have x2 ≻ x1 and x1 ≻ x2. But ≻ is no longer transitive (since e.g. x2 ̸≻ x2).
Observe that ≻ has been chosen to be total or complete, viz. for all x and

y, x ≻ y or y ≻ x. To show that nothing hinges on this property, consider
the following variant definition, setting x ≻ y whenever the set of obligations
issued by one authority that are violated by x is a subset of the set of those
violated by y. Suppose the model contains two extra words x3 and x4 such
that x3 |= ¬p1∧p2∧¬q1∧q2, and x4 |= p1∧¬p2∧q1∧¬q2. We have in addition
x1 ≻ x3, x2 ≻ x4, x1 ≻ x4, x2 ≻ x3, x3 ̸≻ x4, and x4 ̸≻ x3. Observe that the
the outcome is the same even though ≻ is not total in this setting.

3 A cut-free hypersequent calculus for F

We introduce the hypersequent calculus HF for the logic F. HF is defined
by adding to (a slightly modified 4 version of the) calculus for E a new rule
(BetF ) corresponding to the (D⋆) axiom. The resulting calculus extends the
hypersequent calculus for S5 [3,16] with left and right rules for the dyadic
obligation, and two rules for Bet (the HE calculus for E had only one).

Introduced in [19] to define a cut-free calculus for S5, hypersequents consist
of sequents working in parallel.

Definition 3.1 [2] A hypersequent is a multiset Γ1 ⇒ Π1 | . . . |Γn ⇒ Πn
where, for all i = 1, . . . , n, Γi ⇒ Πi is a multisets-based sequent, called a
component of the hypersequent.

The hypersequent calculus HF is presented in Definition 3.2. HF consists
of initial hypersequents (i.e., axioms), logical/modal/deontic and structural
rules. The latter are divided into internal and external rules. HF incorpo-
rates the sequent calculus for the modal logic S4 as a sub-calculus and adds
an additional layer of information by considering a single sequent to live in
the context of hypersequents. Hence all the axioms and rules of HF (but the
external structural rules) are obtained by adding to each sequent a context G
or H, representing a (possibly empty) hypersequent. For instance, the (hy-
persequent version of the) axioms are Γ, p ⇒ ∆, p |G. The external structural
rules include ext. weakening (ew) and ext. contraction (ec) (see Fig. 1). These
behave like weakening and contraction over whole hypersequent components.
The hypersequent structure opens the possibility to define new such rules that
allow the “exchange of information” between different sequents. These type
of rules increases the expressive power of hypersequent calculi compared to se-
quent calculi, enabling the definition of cut-free calculi for logics that seem to
escape a cut-free sequent formulation (e.g., S5). An example of external struc-
tural rule is the (s5) rule in [16] (reformulated as (s5′) in Fig. 1 to account for
the presence of ⃝), that allows the peculiar axiom of S5 to be derived.

The rules in Fig. 1 and 2 make use of the following notation:

Σ2 = {2B : 2B ∈ Σ} ΣO = {⃝(C/D) : ⃝(C/D) ∈ Σ} Σ2,O = Σ2,ΣO

4 We employ a version of the rule (Bet) that contains exactly one formula on its LHS, see
Remark 3.10.
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G
G |Γ ⇒ Π

(ew)
G |Γ ⇒ Π |Γ ⇒ Π

G |Γ ⇒ Π
(ec)

G |Γ□,ΓO,Γ′ ⇒ Π′

G |Γ ⇒ |Γ′ ⇒ Π′ (s5′)

Fig. 1. External structural rules

Also, for any set D of formulae, define Bet D as the set {Bet D | D ∈ D}.
Definition 3.2 The hypersequent calculus HF consists of the hypersequent
version of Gentzen LK sequent calculus for propositional classical logic, the
external structural rules in Fig. 1, and the modal and deontic rules in Fig. 2.

Lemma 3.3 The rules (⃝R), (Bet), (□R) and (BetF ) are equivalent in HF to
their version (⃝R)∗, (Bet)∗, (□R)∗, and (BetF )

∗ without the internal contexts
Γ and Γ2,O.

Proof. One direction is trivial. For the other direction, consider the case of
(⃝R) (the other cases are similar), and the following proof

Γ2,O, A,Bet ¬A⇒ B |G
(s5′)

A,Bet ¬A⇒ B |Γ2,O ⇒ |G
(⃝R)∗

⇒ ⃝(B/A) |Γ2,O ⇒ |G
(w)

Γ ⇒ ⃝(B/A) |Γ ⇒ ⃝(B/A) |G
(ec)

Γ ⇒ ⃝(B/A) |G
2

Remark 3.4 The (BetF ) rule corresponds to the condition of limitedness of
the betterness relation. A natural way to express this condition as a hyperse-
quent rule is

G |Γ2,O,Bet A⇒ A

G |Γ ⇒ A

The upper sequent encodes the fact that in an arbitrary model best(¬A) = ∅
(i.e. for any world x, if y ⊨ A for all y ≻ x, then x ⊨ A also). The limitedness
condition states that this can only happen if there is no world where ¬A holds.
The lower sequent encodes this fact. However, the addition of this rule to the
calculus HE is not enough to obtain a complete cut-free calculus. The same
holds for the one premise version of (BetF ), viz

G |Γ2,O,Bet A⇒ A

G |Γ ⇒ Bet A

In a calculus with this sole rule, the following formula (where a, b, and c are
propositional variables) cannot be derived without using the cut rule:

⃝(b ∧ ¬c/a) ∧⃝(a ∧ c/b) → ⃝(⊥/a)

Ex. 3.9 shows how (BetF ) enables to get a cut free derivation of this formula.
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Γ2,O, A,Bet ¬A⇒ B |G
(⃝R)

Γ ⇒ ∆,⃝(B/A) |G
Γ2,O, B ⇒ A |G

(Bet)
Γ,Bet B ⇒ ∆,Bet A |G

Γ2,O ⇒ A |G
(2R)

Γ ⇒ ∆,2A |G

Γ, A⇒ ∆ |G
(2L)

Γ,2A⇒ ∆ |G
{Γ2,O,Bet D,Bet B ⇒ Di |G}Di∈D Γ2,O,Bet D,Bet B ⇒ B |G

(BetF )
Γ,Bet D ⇒ ∆,Bet B |G

Γ,⃝(B/A) ⇒ ∆, A |G Γ,⃝(B/A) ⇒ ∆,Bet ¬A |G Γ,⃝(B/A), B ⇒ ∆ |G
(⃝L)

Γ,⃝(B/A) ⇒ ∆ |G

Fig. 2. Deontic and modal rules

A derivation in HF is a (possibly infinite) tree obtained by applying the rules
bottom up. A proof D is a finite derivation whose leaves are axioms.

The soundness ofHE is proved with respect to preference models. Although
we can interpret a hypersequent H directly into the semantics, it is easier (and
more readable) to interpret it as a formula I(H) of the extended language
L+ Bet . Then validity of I(H) is defined as usual. We now show the validity
of this formula whenever H is provable.

Theorem 3.5 If there is a proof in HF of H := Γ1 ⇒ Π1 | . . . |Γn ⇒ Πn,
then I(H) := 2(

∧
Γ1 → ∨

Π1) ∨ . . . ∨2(
∧

Γn → ∨
Πn) is valid.

Proof. We only need to show the soundness of the new rule (BetF ). Soundness
of the other rules w.r.t. F follows from their soundness w.r.t. the weaker logic
E proved in [6]. This includes the (Bet) rule ofHF, which is a weakened version
of the homonymous rule of HE. It is enough to establish soundness for the
simplified version of (BetF ) without internal contexts since the original version
can be obtained via its combination with sound structural rules (Lemma 3.3).
Suppose all the premises of (BetF ) are valid but not the conclusion. Thus,
for some model M whose relation ≻ is limited and some world w in it, w ⊭
□(

∧Bet D → Bet B) ∨ I(G). Thus w ⊭ I(G) and therefore (1) I(G) does
not hold in any world–I(G) is a disjunction of formulas prefixed with 2, and
gets the same truth-value in all worlds. Also, for some world x, x ⊭ Bet B.
Therefore, there exists a world y ≻ x such that y ⊭ B, viz. y ⊨ ¬B and so
y ⊨ ¬(B ∧∧

Di∈DDi). By the limitedness condition, there exists a world z
in M that belongs to best(¬(B ∧∧

Di∈DDi)), i.e. (2) z ⊭ B ∧∧
Di∈DDi and

(3) for all u ≻ z, u ⊨ B ∧∧
Di∈DDi. By (2), (4) either z ⊭ B or z ⊭ Dj

for some Dj ∈ D. Consider the second case. From the opening assumption
(using the left-most premise, with Dj on the right) and (1), one gets z |=∧Bet D ∧ Bet B → Dj . By contraposition, one gets that either z ̸|= Bet B or
z ̸|= Bet Dk for some Dk ∈ D. This contradicts (3). The case when z ⊭ B in
(4) is handled analogously (now using the right-most premise, with B on the
right hand side of ⇒). 2
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Lemma 3.6 For every formula A: A⇒ A is derivable in HF.

Proof. Standard induction on the complexity of A. 2

Theorem 3.7 (Completeness with cut) Each theorem of F has a proof
in HF with the addition of the cut rule:

G |Γ, A⇒ ∆ H |Σ ⇒ Π, A

G |H |Γ,Σ ⇒ ∆,Π
(cut)

Proof. (D⋆) axiom (with 3 rewritten as ¬2¬) can be derived as follows:

A⇒ A
(¬R)

⇒ ¬A,A

A⇒ A
(¬R)

⇒ ¬A,A Bet ¬A⇒ Bet ¬A
(⊥L)

⊥ ⇒
(⃝L)+(w)

⃝(⊥/A),Bet ¬A⇒ ¬A
(BetF)

⃝(⊥/A) ⇒ Bet ¬A
(⊥L)

⊥ ⇒
(⃝L)+(w)

⃝(⊥/A) ⇒ ¬A
(2R)

⃝(⊥/A) ⇒ 2¬A
(¬L)+(¬R)

¬2¬A⇒ ¬⃝ (⊥/A)
(→R)

⇒ ¬2¬A → ¬⃝ (⊥/A)

(Nec) and all the remaining axioms are provable in HF (without using
(BetF ) or (cut)), while modus ponens requires (cut). 2

Example 3.8 The Kantian principle “ought implies can” ⃝(B/A) → (3A→
3(A ∧B)) holds in F, as shown by the following HF proof (we omit straight-
forward subderivations of propositional tautologies in the leaves)

⇒ ¬A,A

⇒ ¬A,A Bet ¬A⇒ Bet ¬A

¬(A ∧B), B ⇒ ¬A
(2L)

2¬(A ∧B), B ⇒ ¬A
(⃝L)+(w)

⃝(B/A),2¬(A ∧B),Bet ¬A⇒ ¬A
(BetF)

⃝(B/A),2¬(A ∧B) ⇒ Bet ¬A

¬(A ∧B), B ⇒ ¬A
(2L)

2¬(A ∧B), B ⇒ ¬A
(⃝L)+(w)

⃝(B/A),2¬(A ∧B) ⇒ ¬A
(2R)

⃝(B/A),2¬(A ∧B) ⇒ 2¬A
(→R)x2+(¬L)+(¬R)

⇒ ⃝(B/A) → (¬2¬A → ¬2¬(A ∧B))

Example 3.9 A derivation in HF of the formula in Remark 3.4 is as follows.
First, we eliminate connectives and modalities in a natural fashion (we omit
the premises of the (⃝L) rule applications that are propositional tautologies):
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. . . . . .

. . .

(1) (2)
(BetF)

⃝(b ∧ ¬c/a),⃝(a ∧ c/b),Bet ¬a⇒ Bet ¬b . . .
(⃝L)+(w)

⃝(b ∧ ¬c/a),⃝(a ∧ c/b), a,Bet ¬a, b ∧ ¬c⇒ ⊥
(⃝L)+(w)

⃝(b ∧ ¬c/a),⃝(a ∧ c/b), a,Bet ¬a⇒ ⊥
(⃝R)

⃝(b ∧ ¬c/a),⃝(a ∧ c/b) ⇒ ⃝(⊥/a)
(→R)+(∧L)

⇒ ⃝(b ∧ ¬c/a) ∧⃝(a ∧ c/b) → ⃝(⊥/a)

The sequent ⃝(b ∧ ¬c/a),⃝(a ∧ c/b),Bet ¬a ⇒ Bet ¬b can be
derived by applying the (BetF ) rule on both Bet-formulas leading
to the two premises (1) O(b ∧ ¬c/a), O(a ∧ c/b),Bet ¬a,Bet ¬b⇒ ¬a and
(2) O(b ∧ ¬c/a), O(a ∧ c/b),Bet ¬a,Bet ¬b⇒ ¬b, both of which can be
proved by applying (⃝L) once again.

Remark 3.10 The calculus HF is obtained by extending the hypersequent
calculus for S5 with suitable rules for ⃝, making use of the auxiliary modality
Bet . It is easy to see that ⃝ can be actually defined in the language with 2

and Bet in the sense that we have the following semantic equivalence

⃝(B/A) ≡ 2((A ∧ Bet ¬A) → B)

It is possible to obtain a proof system for F by treating ⃝(B/A) as an ab-
breviation. However, we have not done so for two reasons. First of all, this
makes it possible to study ⃝ even in the 2-free fragment of F. Moreover,
we have a complete calculus for the 2-free fragment of F (and this entails
that the addition of 2 is conservative). The second reason is that the way
the Bet-modality is treated in the calculus HF does not correspond to any
known normal or non-normal modal logic. For instance, it is easily seen that
the (Bet)-rule does not allow us to derive standard axioms of the modal logic
K, like (Bet A ∧ Bet B) → Bet(A ∧ B). Therefore the rules for Bet are not
complete with respect to its semantics for proving arbitrary sequents in the
language with Bet (as opposed to sequents containing formulas in the language
of F). Also observe that the following rule (cf. Remark 3.4) is valid:

Bet A→ A

Bet A
This rule is not valid in K, but it is in GL (see, e.g. [25]). In conclusion, HF
is not the combination of two existing calculi, one for S5 and one for Bet .
3.1 Cut-elimination

The completeness proof of HF makes use of the cut rule. Here we give a
constructive proof that cut can be eliminated from HF+cut proofs. This result
(cut-elimination) is typically proved by stepwise applications of permutation
and principal reductions. The former shifts a cut one step upwards in either
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the left premise or the right premise. Following repeated applications, the
situation is reached of a cut in which the cut-formula is principal (i.e. created
by the rule immediately above it) in both premises. The principal reduction is
now used to replace that cut with cuts on proper subformulas. An appeal to
(transfinite) induction ultimately yields a cut-free proof.

The cut-elimination proof for HF + cut is not an easy adaptation of the
corresponding result for HE. Indeed, the presence in (BetF ) of a formula
Bet B that changes polarity from conclusion to premises, makes the principal
reduction step even more involved than in the modal logic of provability GL.

The immediate corollary of cut-elimination is (a relaxed form of) the subfor-
mula property: every formula in a HF proof is a subformula (possibly negated
and under the scope of Bet) of the end-formula.

Roadmap of the proof: To reduce the complexity of the cut on a → or ¬-
formula we exploit the invertibility of its introduction rules (Lemma 3.11) and
the usual principal reduction steps. Invertibility does not work for formulas of
the form 2A, Bet A, and ⃝(B/A) so cuts have to be shifted upward till the
cut-formula is introduced. The first challenge, already witnessed in HE is that
the (2R), (⃝R) and (Bet) (as well as (BetF )) rules cannot be shifted below
every cut: only those involving hypersequents of a certain “good” shape. There-
fore a specific reduction strategy for lifting uppermost cuts is required: first
over the premise in which the cut formula appears on the right (Lemma 3.15)
and then, when a rule introducing the cut formula is reached (and in this
case the sequent has a “good” shape), shifting the cut upwards over the other
premise (Lemma 3.14) and then applying the principal reduction. This last
reduction step is “standard” for 2, ⃝-formulas and Bet formulas introduced
on both sides by (Bet) (Lemma 3.12), while when Bet formulas are introduced
by (BetF ) a sophisticated argument inspired by the cut-elimination proof for
the logic GL [25] is used. This is the second, and main, challenge in proving
cut-elimination for HF. Note that the hypersequent structure itself does not
necessitate major changes: the (s5′) rule permits permutation with cuts of a
“good” shape, and to handle (ec) we consider the hypersequent version of the
multicut: cut one component against (possibly) many components.

Notation and Terminology. The length |D| of an HF proof D is (the
maximal number of applications of inference rules) +1 occurring on any branch
of d. The complexity ⌈A⌉ of a formula A is defined as: ⌈A⌉ = 1 if A is atomic,
⌈¬A⌉ = ⌈A⌉+1, ⌈A→ B⌉ = ⌈A⌉+⌈B⌉+1, ⌈Bet A⌉ = ⌈A⌉+1, ⌈2A⌉ = ⌈A⌉+1,
and ⌈⃝(A/B)⌉ = ⌈A⌉ + ⌈B⌉ + 3. The cut rank ρ(D) of D is the maximal
complexity of cut formulas in D, so ρ(D) = 0 if D is cut-free. We use An (resp.
Γn) to indicate n occurrences of A (resp. of Γ).

The rules of the classical propositional connectives remain invertible.

Lemma 3.11 (invertible connectives) Every HF proof D of a hyperse-
quent containing a formula ¬A (resp. A → B), can be transformed into a
proof D′ of the same hypersequent ending in an introduction rule for ¬A (resp.
A→ B) such that ρ(D′) ≤ ρ(D).
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As shown below, any cut whose cut formula is immediately introduced in
left and right premise can be replaced by smaller cuts. While for compound
formulas not introduced by the rule (BetF ) the transformation is easy, this last
case requires Lemma 3.13.

Lemma 3.12 (reduce principal cuts) Let A be a compound formula and
Dl and Dr be HF proofs such that ρ(Dl) < ⌈A⌉ and ρ(Dr) < ⌈A⌉, and
(i) Dl is a proof of G | Γ, A⇒ ∆ ending in a rule introducing A

(ii) Dr is a proof of H | Σ ⇒ A,Π ending in a rule introducing A

There is a transformation of these proofs into a HF proof of G | H | Γ,Σ ⇒
∆,Π with ρ(D) < ⌈A⌉.
Proof. We discuss the only non-standard case: A = Bet B, and use a simplified
version of the rules without internal contexts (cf. Lemma 3.3).

Assume that Bet B is introduced by two (Bet) rules as in
G | B ⇒ C

(Bet)

G | Σ,Bet B ⇒ Bet C,Π

H | D ⇒ B
(Bet)

H | Γ,Bet D ⇒ Bet B,∆
(cut)

G | H | Γ,Σ,Bet D ⇒ Bet C,∆,Π
the above cut is replaced by

G | B ⇒ C H | D ⇒ B
(cut)

G | H | D ⇒ C
(Bet)

G | H | Γ,Σ,Bet D ⇒ Bet C,∆,Π

Assume that Bet B is introduced on the right hand side by (BetF ) as in
G | B ⇒ C

(Bet)

G | Σ,Bet B ⇒ Bet C,Π

{H | Bet D,Bet B ⇒ Di}1≤i≤n H | Bet D,Bet B ⇒ B
(BetF)

H | Γ,Bet D ⇒ Bet B,∆
(cut)

G | H | Γ,Σ,Bet D ⇒ Bet C,∆,Π

This case cannot be simply handled by cutting the premises of (Bet) and
(BetF ), because of the additional formulas Bet B on the left appearing in the
premises of (BetF ). The strategy is to apply Lemma 3.13 to all premises of
(BetF ) to get proofs, with cut-rank < ⌈Bet BN⌉, of the same hypersequents
but with Bet B on the left removed. Hence we get

{H | Bet D ⇒ Di}1≤i≤n
(ew)+(w)

{G | H | Bet D,Bet C ⇒ Di}1≤i≤n

G | B ⇒ C H | Bet D ⇒ B
(cut)

G | H | Bet D ⇒ C
(w)

G | H | Bet D,Bet C ⇒ C
(BetF)

G | H | Γ,Σ,Bet D ⇒ Bet C,∆,Π
2

The following lemma allows us to remove any application of Bet B formu-
las that appear on the left hand side of the (BetF ) rule, via suitable cuts on
B. Its proof is inspired by Valentini’s cut-elimination argument for provability
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logic GL [25] where the corresponding lemma provides a constructive proof of
Löb’s theorem in GL. It requires indeed to perform global transformations:
tracing bottom up from all the premises of (BetF ) all the occurrences (an-
cestors) of the Bet B formulas and substituting them with suitable formulas,
taking care that the resulting proof is still correct. The tracing works as follows:
we denote by Bet B∗ a decorated occurrence of Bet B. Starting with a hyper-
sequent with one decorated occurrence of Bet B, we propagate the decoration
through the proof to all formulas Bet B which are in a predecessor relation 5

with Bet B∗. The tracing terminates at an upper sequent that is either (a)
an axiom Γ,Bet B∗, p ⇒ p,∆, or the conclusion (b) of an internal/external
weakening or of a rule with weakening built in (i.e., (2R), and (⃝R)), or (c)
of (Bet). In the following, for B = B1, . . . , BN , we write Bj to denote B \Bj .
Lemma 3.13 Let D1, . . . ,Dn be the following HF+ cut proofs of the premises
of a (BetF ) rule instance.

D1

G | Bet B ⇒ B1

· · · Dn
G | Bet B ⇒ Bn

Suppose that N satisfies 1 ≤ N ≤ n, and ρ(Di) < ⌈Bet BN⌉ for each i
(1 ≤ i ≤ n). There is a transformation of these proofs into a HF + cut proof
with cut-rank < ⌈Bet BN⌉ of G | Bet BN ⇒ Bi for each i.

Proof. Observe that the lemma is easy to prove using cut if we remove the
requirement that the resulting proof has cut-rank < ⌈Bet BN⌉ (apply (BetF )
to D1, . . . ,Dn to get Bet BN ⇒ Bet BN , then apply cut with the latter to each
Di). To reduce clutter we omit the external contexts and the modal internal
contexts as they do not play a role in the argument (cf. Lem. 3.3 for the latter).

Trace Bet BN upwards in each Di (we indicate with Bet B∗
N its decorated

version) until the upper sequents ((a)-(c) above) introducing Bet B∗
N are en-

countered. Define the depth of Bet B∗
N for a proof ending in a (BetF ) rule

as the total number (over all of its premises) of (BetF ) rules that contain the
decorated formula Bet B∗

N . Note that Bet B∗
N can only appear on the LHS of

sequents. We prove the claim by induction on the depth K of Bet B∗
N in the

premises D1, . . . ,Dn.
Inductive case. Suppose that the depth K > 0. In that case there must be

a nearest (BetF ) rule above the root of some Di of the form

{Bet B∗
N ,Bet D ⇒ Di}1≤i≤I Bet B∗

N ,Bet D ⇒ BN
(BetF )Bet B∗

N ,Bet DI ⇒ Bet DI

(1)

Each premise of the above is one (BetF ) rule away from the root of Di and so
the depth of Bet B∗

N in (1) must be < K. Hence we can apply IH to obtain
proofs with cut-rank < ⌈Bet BN⌉ of Bet D ⇒ Di for every i (1 ≤ i ≤ I).

Let D′
i be obtained from Di by replacing the subproof concluding (1) with

5 This is the familiar parametric ancestor relation of [4] in the setting of hypersequents.
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{Bet D ⇒ Di}1≤i≤I
(BetF )Bet DI ⇒ Bet DI (w)Bet B∗

N ,Bet DI ⇒ Bet DI

Since we replaced a (BetF ) rule between the root and the upper sequent with a
weakening on Bet B∗

N , it follows that the depth of Bet B∗
N in D1, . . . ,D′

i, . . . ,Dn
(n elements) is < K. From the IH we obtain proofs of Bet BN ⇒ Bi with cut-
rank < ⌈Bet BN⌉ for every i so the claim is proved.

Base case K = 0: there are no (BetF ) rule instances involving Bet B∗
N . In

this case, when replacing the decorated formula Bet B∗
N with suitable formulas,

only the upper sequents arising from applications of (Bet) (i.e. case (c)) need
some care. We illustrate the proof strategy with a concrete example. See the
Appendix for full details.

Suppose that the following upper sequents occur in D1, , . . .Dn.
BN ⇒ C

Bet B∗
N ⇒ Bet C

BN ⇒ D

Bet B∗
N ⇒ Bet D

BN ⇒ BN
Bet B∗

N ⇒ Bet BN
Replace Bet B∗

N with Bet BN ,Bet C,Bet D throughout D1, , . . .Dn. The
first two upper sequents above become quasi-axioms (cf. Lem. 3.6)
Bet BN ,Bet C,Bet D ⇒ Bet C and Bet BN ,Bet C, Bet D ⇒ Bet D, respec-
tively. The third upper sequent now looks like Bet BN ,Bet C,Bet D ⇒ Bet BN ;
the latter sequent is provable by applying (BetF ) to the conclusions of
D1, . . . ,Dn (followed by some weakening). In this way we obtain proofs of
(∗) Bet BN ,Bet C,Bet D ⇒ Bi for each i. Now, by two applications of cut on
BN (with the premises BN ⇒ C and BN ⇒ D that appeared in the upper
sequents indicated above), we also get (∗∗) Bet BN ,Bet C,Bet D ⇒ C and
(∗ ∗ ∗) Bet BN ,Bet C,Bet D ⇒ D. An application of (BetF ) with premises
(∗)− (∗ ∗ ∗) leads to a proof of Bet BN ,Bet D ⇒ Bet C.

Next, replace Bet B∗
N with Bet BN ,Bet D throughout the original D1, . . .Dn

(once again, as in the previous paragraph, the replacements are made in
the original proofs; this is a feature of the transformation that is seen also
in the next paragraph). Then Bet B∗

N ⇒ Bet D becomes a quasi-axiom
once more (i.e., Bet BN ,Bet D ⇒ Bet D). Also Bet B∗

N ⇒ Bet C becomes
Bet BN ,Bet D ⇒ Bet C whose proof we obtained in the paragraph above. The
third upper sequent now looks like Bet BN ,Bet D ⇒ Bet BN and it is proved
as before. Proceeding downwards similarly as before we ultimately obtain a
proof of Bet BN ⇒ Bet D. In analogous fashion we prove Bet BN ⇒ Bet C.

Finally, replace Bet B∗
N with Bet BN throughout the original D1, . . .Dn.

The point is that the first and second upper sequents become Bet BN ⇒ Bet C
and Bet BN ⇒ Bet D and we have already obtained proofs of these (the third
upper sequent is handled similarly to before). Proceed downwards to obtain a
proof of Bet BN ⇒ Bi for every i. Every introduced cut was on BN and hence
the cut-rank of the final proof is < ⌈Bet BN⌉. 2

The following lemma shifts the cut upward on the left premise of a cut when
the right premise is principal, and uses Lemma 3.15 to reduce it.

Lemma 3.14 (permutation left) Let Dl and Dr be HF proofs such that:
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(i) Dl is a proof of G | Γ1, A
λ1 ⇒ ∆1 | . . . | Γn, Aλn ⇒ ∆n and ρ(Dl) < ⌈A⌉;

(ii) A is a compound formula and Dr := H | Σ ⇒ A,Π ends with a right
logical rule introducing the indicated occurrence of A, and ρ(Dr) < ⌈A⌉;

Here each λi > 0. There is a transformation of these proofs into a HF proof
D of G | H | Γ1,Σ

λ1 ⇒ ∆1,Π
λ1 | . . . | Γn,Σλn ⇒ ∆n,Π

λn with ρ(D) < ⌈A⌉.
Proof. We distinguish cases according to the shape of A. If A is ¬B or B → C,
the claim follows by Lemmas 3.11 and 3.12. If A is 2B, ⃝(B/C) or Bet B the
proof proceeds by induction on |Dl|. If Dl ends in an initial sequent, then we are
done. If Dl ends in a left rule introducing one of the indicated cut formulas,
the claim follows by (i.h. and) Lemma 3.12. Otherwise, let (r) be the last
inference rule applied in Dl. The claim follows by the i.h., an application of
(r) and/or weakening. Some care is needed to handle the cases in which r is
(s5′), (2R), (⃝R) or (Bet) and A is not in the hypersequent context G. Notice
that when A = 2B (resp. A = ⃝(B/C)) the conclusion of Dr is Σ ⇒ 2B,Π
(resp. Σ ⇒ ⃝(B/C),∆), but we can safely use the “good”-shaped sequent
Σ2,ΣO ⇒ 2B (resp. Σ2,ΣO ⇒ ⃝(B/C)), that allows cuts to be shifted
upwards over all HF rules, and we apply weakening afterwards.

Let A = Bet B and Dr ends in a (Bet) rule with conclusion Bet C,Σ ⇒
Bet B,Π. If (r) is a (Bet) rule introducing Bet B, the claim follows by
Lemma 3.12. If (r) is (BetF ), as in the proof below (to simplify the matter we
omit both the internal and external contexts)

··· d′l
{Bet D,Bet B ⇒ Dj}j=1,...N Bet D,Bet B ⇒ B

(BetF )
Bet Di,Bet B ⇒ Bet Di

we apply Lemma 3.13 to its premises (to get rid of the formula Bet B) and get

{Bet D ⇒ Dj}j=1,...N .

The desired hypersequent Bet Di,Bet C,Σ ⇒ Bet Di,Π is simply obtained by
applying the rule (BetF ) followed by (w). The case in which Dr ends in a
(BetF ) rule is analogous. 2

Lemma 3.15 (permutation right) Let Dl and Dr be HF proofs where

(i) Dl concludes G | Γ, A⇒ ∆ and ρ(Dl) < ⌈A⌉
(ii) Dr concludes H | Σ1 ⇒ Aλ1 ,Π′

1 | . . . | Σn ⇒ Aλn ,Π′
n with ρ(Dr) < ⌈A⌉.

Here each λi > 0. There is a transformation of these proofs into a HF proof D
of G | H | Σ1,Γ

λ1 ⇒ Π′
1,∆

λ1 | . . . | Σn,Γλn ⇒ Π′
n,∆

λn with ρ(D) < ⌈A⌉.
Proof. Let (r) be the last inference rule applied in Dr. If (r) is an axiom,
then the claim holds trivially. If (one of) the indicated occurrence(s) of A is
principal by (r) then the claim follows from Lemma 3.14. So suppose that no
A is principal by (r). Proceed by induction on |Dr|.

Consider the following analysis of (r): it acts only on H or is a rule other
than (s5′), (2R), (⃝R), (BetF ) and (Bet); if it is (2R), (⃝R), (BetF ) or
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(Bet) then the indicated A cannot be in the active premise component since
that would make it principal; if (r) is (s5′) and A is in an active component
of the conclusion it must be the component without any context restriction
(it cannot be other since that should be empty). In all these cases the claim
follows by applying the IH to the premise(s) followed by (r). 2

Theorem 3.16 (Cut Elimination) Cut elimination holds for HF+ cut.

Proof. Define the cut-multiset MD of D to be the multiset over the natural
numbers N such that the multiplicity M(n) of n ∈ N is the number of cut-
rules in D with cut-rank n. We establish cut-elimination via induction on the
Dershowitz-Manna 6 well-founded ordering over these multisets.

Let D be a HF + cut proof. Base case: MD = ∅ and hence D is cut-free.
Inductive case: apply Lemma 3.15 to a subproof δ concluding a topmost cut in
D (let the cut-formula be A). We thus obtain a new proof δ′ whose cut-rank
is < ⌈A⌉. Let D′ be the proof obtained from D by replacing δ with δ′. By
inspection, MD′ <m MD and hence the result follows by induction. 2

Corollary 3.17 (Completeness) Each theorem of F has a proof in HF.

4 A proof search oriented calculus for F

By modifying the calculus presented in Section 3, we obtain a decision proce-
dure for the logic F, and a complexity bound. The modified calculus HF+is
based on the following ideas:

(i) Hypersequent component are considered as “set-based”: no duplication of
formula is allowed within a component Γ ⇒ ∆ of an hypersequent G.

(ii) In every rule the “principal” component(s) are kept in all premises, but
not duplicated; thus hypersequents themselves are considered to be sets
of components.

(iii) There are no redundant application of rules, in the sense that a rule is
not applied (to a formula/component) if one of the premises of the rules
is already contained in the conclusion.

(iv) There are no structural rules, except for the rule (s5′).

Restriction (i) is justified by the admissibility of internal contraction. As an
example, by this restriction the backward application of (∧L) will produce:

Γ, A,B ⇒ ∆ |G
Γ, A,A ∧B ⇒ ∆ |G

rather than
Γ, A,A,B ⇒ ∆ |G
Γ, A,A ∧B ⇒ ∆ |G

We display below the modified rules, we omit propositional rules; notice that
the (O-L) rule does not need to be modified:

G |Γ□,ΓO,Γ′ ⇒ Π′ |G |Γ ⇒ ∆

G |Γ ⇒ ∆ |Γ′ ⇒ Π′ (s5′new)

6 M <m N iff M ̸= N and M(k) > N(k) implies there is k′ > k such that M(k′) < N(k′)
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Γ2,O, A,Bet ¬A⇒ B |G |Γ ⇒ ⃝(B/A),∆
(⃝R)

Γ ⇒ ⃝(B/A),∆ |G
Γ2,O, B ⇒ A |G |Γ,Bet B ⇒ ∆,Bet A

(Bet)
Γ,Bet B ⇒ ∆,Bet A |G

Γ2,O ⇒ A |G |Γ ⇒ ∆,2A
(2R)

Γ ⇒ ∆,2A |G

Γ, A⇒ ∆ |G |Γ,2A⇒ ∆
(2L)

Γ,2A⇒ ∆ |G

{Γ2,O,Bet D,Bet B ⇒ Di |G |S}Di∈D Γ2,O,Bet D,Bet B ⇒ B |G |S
(BetF )

Γ,Bet D ⇒ Bet B,∆ |G
where S = Γ,Bet D ⇒ Bet B,∆

It is tacitly assumed that contraction is applied in the premises (in particular
for (s5′) rule), so that 2 and O-formulas are not duplicated).

It is easy to see that the the calculus HF+is sound and also complete, as a
cut-free proof of HF can be simulated by HF+ and vice versa.

Proposition 4.1 Given an hypersequent G: ⊢HF G iff ⊢HF+ G.

Furthermore, observe that all rules are invertible, thus the order of appli-
cation of rules within a derivation does not matter.

In order to obtain a decision procedure based on the calculus HF+, we must
avoid redundant application of rules in a backward proof search. First, let us
define for two hypersequents G1 and G2 that G1 ⊑ G2 if for every Γ ⇒ ∆ ∈ G1

there is Γ′ ⇒ ∆′ ∈ G2 such that Γ ⊆ Γ′ and ∆ ⊆ ∆′. We denote by G1 ⊏ G2

the strict relation. Observe that for any rule R of HF+:

G1 . . . Gn
(R)

G

we have G ⊑ Gi for i = 1, . . . , n. We say that an application of a rule R
is redundant if for some i ∈ {1, . . . , n}, it holds Gi ⊑ G. We say that a
hypersequent G is saturated if it is not an axiom and all rule applications to it
are redundant.

We adopt the following proof-search strategy: (i) no rule can be applied
to an axiomatic sequent (ii) no redundant application of rule is allowed. The
strategy preserves completeness.

Proposition 4.2 Given an hypersequent G: if ⊢HF+ G then G has a proof in
HF+according to the proof-strategy.

From now on we restrict attention to derivations built according to the
strategy. We show that any derivation with root sequent ⇒ A, for a formula
A, is finite. To this purpose given a formula A ∈ L, let Sub(A) be the set of
subformulas of A and Sub+(A) = Sub(A) ∪ {Bet ¬B : ⃝(C/B) occurs in A}.

We now prove that the calculus HF+provides a decision procedure for F.

Theorem 4.3 Let D be a derivation in HF+ with root ⇒ A for a F-formula
A, then D is finite.
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Proof. Since the rules are analytic, given any hypersequent G occurring in D,
we have that for any Γ ⇒ ∆ ∈ G we have Γ ⊆ Sub+(A) and ∆ ⊆ Sub+(A). But
hypersequents are sets of components, thus it must be that for any Γ ⇒ ∆ ∈ G
and Γ′ ⇒ ∆′ ∈ G either Γ ̸= Γ′ or ∆ ̸= ∆′. ThusGmay have at most 2Sub

+(A)×
2Sub

+(A) components, and each component has a size bounded by Sub+(A).
Thus we can conclude that only finitely-many different hypersequents may
occur in a derivation D. By preventing repetitions of the same hypersequent
on any branch (loop-checking), we get that every branch of D is finite. Since
D is a finitely-branching tree, we can conclude that D is finite. 2

Although the previous theorem ensures that any derivation is finite, it does
not provide directly a decision algorithm for F.

Let n be the length of A as a string of symbols. Here is the decision
procedure: we consider a non-deterministic algorithm which takes as input
⇒ A and guesses a saturated hypersequent H: if it finds it, the algorithm
answers “non-provable”, otherwise, it answers “provable”. By inspection, the
size of the candidate saturated hypersequent H is O(22n). More concretely,
the algorithm tries to build the candidate hypersequent H as follows: initialise
a derivation with root H0 = ⇒ A. Apply the rules backwards in an arbitrary
but fixed order, choose non-deterministically a premise if there are more than
one. In this way we generate a branch B = H0, H1, H2 . . .. Observe that by
the strategy, an application of a rule R to Hi is allowed only if Hi is not an
axiom and that application of R is non-redundant, in this case it must be
Hi ⊏ Hi+1. The latter together with the observation that every hypersequent
has size O(22n) implies that the length of every branch B is O(22n) and the
last hypersequent Hk of B is either saturated or an axiom. Since every rule of
HF+is invertible, unprovability of a hypersequent coincides with the existence
of a branch rooted at that hypersequent whose leaf is saturated. Observe that
all checks (whether Hi is an axiom, or is saturated, or whether an application
of R to it is non-redundant) take at most quadratic time in the size of Hi.

The previous argument shows that non-provability in F can be decided in
NEXP time. Whence we get:

Theorem 4.4 Deciding if a formula is a theorem of F is in CoNEXP.

Future work

The proposed calculus provides a preliminary complexity bound (CoNEXP)
for theoremhood in F. Notice that CoNEXP is a worst-case bound, in practice
there are several heuristics and techniques that could be adopted to reduce
the complexity and get a more efficient proof system. Moreover, although the
complexity of the decision problem was previously unknown, we expect that a
better bound can be obtained by refining the rules of the calculus, in particular
the (BetF ) rule which is the source of the exponential blow-up as in principle
it has to be applied to any subset of Bet-formulas.

Furthermore we would like to investigate how to extract countermodels of
non-valid formulas from failed derivations. This is a non-trivial task because
of the limitedness condition that countermodels must satisfy.
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5 Appendix

Proof. [Lemma 3.13 Base case K = 0]
Base case K = 0. There there are no (BetF ) rule instances containing

Bet B∗
N . Define the width of Bet B∗

N (terminology due to Valentini [25]) of a
proof ending in a (BetF ) rule as the total number of upper sequents where
Bet B∗

N is introduced by a (Bet) rule (this is the rule introducing Bet in the
antecedent, it should not to be confused with the (BetF ) rule!) with conclusion
Bet B∗

N ⇒ Bet Cw with Cw ̸= BN .
We establish the result by induction on the width W of the given proof

which ends in a (BetF ) rule with premises D1, . . . ,Dn. We proceed by case
analysis on W .

Case W = 0. The upper sequents introduce Bet B∗
N by weakening, or by a

(Bet) rule whose conclusion is Bet B∗
N ⇒ Bet BN . The desired proof is obtained

by replacing the occurrences of Bet B∗
N in these upper sequents with Bet BN as

follows: the weakening on Bet B∗
N is replaced with Bet BN , and the subproof

ending in Bet B∗
N ⇒ Bet BN is replaced by a proof of Bet BN ⇒ Bet BN (itself

obtained by applying (BetF ) to D1, . . . ,Dn).
Case W > 0. Let C = {C1, . . . , CW } be the set of upper sequents introduc-

ing Bet B∗
N by a (Bet) rule that conclude as Bet B∗

N ⇒ Bet Ci with Ci ̸= BN .
Claim: If Bet BN ,Bet(C \ S) ⇒ Bet C is provable with cut-rank <

⌈Bet BN⌉ for S ⊆ C and every C ∈ S, then the following premises of a (BetF )
rule are provable with cut-rank < ⌈Bet BN⌉:

Bet BN ,Bet(C \ S) ⇒ D (D ∈ BN ∪ (C \ S))
Proof of claim: let S ⊆ C be given. There areW occurrences of subproofs

(spread across D1, . . . ,Dn) that end in an upper sequent of the following form.

BN ⇒ C
(Bet) where C ∈ C and C ̸= BNBet B∗

N ⇒ Bet C
For C ∈ S, replace the above with the following (the premise is the proof
provided from the hypothesis).
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Bet BN ,Bet(C \ S) ⇒ Bet C
(w)Bet BN ,Bet BN ,Bet(C \ S) ⇒ Bet C

For C ∈ C\S, replace instead with the ‘obvious’ proof (NB. Bet C ∈ Bet(C\S))
Bet C ⇒ Bet C (w)Bet BN ,Bet BN ,Bet(C \ S) ⇒ Bet C

In each of the W subproofs, Bet BN has been introduced by weakening.
For this reason, proceeding downwards, we obtain the following premises
of a (BetF ) rule with width 0 (the second row is obtained by a cut on
Bet BN ,Bet BN ,Bet(C \ S) ⇒ BN and BN ⇒ C).

Bet BN ,Bet BN ,Bet(C \ S) ⇒ Bi every i

Bet BN ,Bet BN ,Bet(C \ S) ⇒ C C ∈ C \ S

Since the width is 0, we can remove the Bet BN from every sequent above (see
Case W = 0) and hence the claim is proved.

Returning to the main proof (case K = 0), setting S = ∅, the hypoth-
esis of the above claim is vacuously true and hence we obtain a proof of
Bet BN ,Bet C ⇒ D for each D ∈ BN ∪ C i.e. starting with the given proof
which ends in a (BetF ) rule with premises D1, . . . ,Dn, apply the transforma-
tion to every C ∈ C \ S(= C) that is described in the argument witnessing the
claim.

Now apply (BetF ) to get Bet BN ,Bet(C \ {C1}) ⇒ Bet C1. Applying the
claim we get Bet BN ,Bet(C\{C1}) ⇒ D for eachD ∈ BN ∪ (C\{C1}) and then
from (BetF ) we get Bet BN ,Bet(C\{C1, C2}) ⇒ Bet C2. We cannot apply the
claim yet; we first need Bet BN ,Bet(C\{C1, C2}) ⇒ Bet C1 and this is obtained
in a similar manner. Apply the claim to get Bet BN ,Bet(C \ {C1, C2}) ⇒ D
for each D ∈ BN ∪ (C \ {C1, C2}).

Now apply (BetF ) to get Bet BN ,Bet(C \ {C1, C2, C3}) ⇒ Bet C3. Sim-
ilarly obtain Bet BN ,Bet(C \ {C1, C2, C3}) ⇒ Bet C1 and Bet BN ,Bet(C \
{C1, C2, C3}) ⇒ Bet C2, and then apply the claim. Proceeding in this manner
we ultimately obtain the statement for S := C (i.e. Bet BN ⇒ Bi for each i)
so the lemma is proved.

2
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Abstract

The notion of permission has received less attention than obligation from the deontic
logic community, that has often taken for granted the interdefinability of deontic
operators (obligations, prohibitions and permissions). Yet, permission has proven to
be a complex topic with various nuances that require careful treatment, and can lead
to unwanted consequences if the interdefinability is kept. In contrast, the Sanskrit
philosophical school of Mı̄mām. sā refuted this interdefinability and instead established
independent definitions for deontic concepts. This article focuses on the exploration
of permission within Mı̄mām. sā and its formalization through Hilbert axioms and
semantics. We also compare the Mı̄mām. sā approach to contemporary deontic logic
discussions, and show that the central paradoxes of permission do not arise in the
Mı̄mām. sā paradigm.

Keywords: Permission; Interdefinability of deontic operators; Mı̄mām. sā; Sanskrit
philosophy; Deontic paradoxes; Free choice paradox; Neighbourhood semantics.

1 Introduction

Permission is of crucial importance in several settings, from law to ethics to
artificial intelligence. Despite its significance, it has been the subject of fewer
investigations in the deontic logic literature compared to obligation.

The concept of permission is inherently ambiguous and can be expressed
in various manners such as “you are allowed to”, “ it is open for you to”, and
“you have the right to”. Since the introduction of deontic logic by von Wright,
permission has been often viewed simply as the dual of obligation [40], similar
to how possibility serves as the dual of necessity in modal logic. Due to the
unintuitive consequences (aka deontic paradoxes) mainly arising from this as-
sumption, different varieties of permissions have been considered in the deontic
logic literature; these include weak and strong permissions (e.g. [41,1,5,43,6]),
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bilateral and unilateral permissions (e.g. [12,26,27,23]), positive and negative
permissions (e.g. [32,34]), and explicit, tacit or implicit permissions (e.g. [26]).

This paper contributes to the debate, by revealing and formalizing the con-
cept of permission in Mı̄mām. sā, which is one of the main Sanskrit philosophical
schools and is a largely unexplored source for deontic investigations. Mainly
active between the last centuries BCE and the 20th c. CE, Mı̄mām. sā centred
around the analysis of the prescriptive portions of the Vedas – the sacred texts
of (what is now called) Hinduism. Mı̄mām. sā authors interpreted the Vedas
independently of the will of any speaker, as a consistent and self-sufficient
corpus of laws. Thus, Mı̄mām. sā authors have thoroughly discussed and ana-
lyzed normative statements in order to explain “what has to be done” in the
presence of seemingly conflicting obligations. Since the Vedas are assumed to
be not contradictory, Mı̄mām. sā authors invested all their efforts in creating
a consistent deontic 1 system. Key to their enterprise was the formulation of
reasoning principles called nyāyas (see e.g. [19]), that lend themselves to a
formalization through logic. Some nyāyas can be transformed into properties
(Hilbert axioms) for the corresponding deontic operator in Mı̄mām. sā, others
(e.g. the specificity principle discussed in Kumārila’s Tantravārttika) are in-
stead metarules to resolve seeming contradictions in the Vedas.

The deontic theory of Mı̄mām. sā has been progressively formalized through
a series of works [14,29,8], each introducing new deontic operators and proper-
ties found in the original texts. The initial paper [14] presented the base logic,
which considered only obligation, whose properties were extracted by analyz-
ing around 40 nyāyas. Subsequently, prohibition was added in [29], and [8]
included a weaker form of obligation, corresponding to elective duties, which
are sacrifices to be performed only if one desires their specific outcome.

Our work has involved an interdisciplinary team effort that began with the
discovery of the relevant nyāyas in Sanskrit texts, followed by their translation
into English, their interpretation, and their formalization as Hilbert axioms. It
is important to remark that our logics are solely based on principles extracted
by Mı̄mām. sā texts. Our aim is indeed to faithfully formalize the deontic theo-
ries of the Mı̄mām. sā authors and use them to provide a better understanding
of their debates, as well as new insights for contemporary deontic logic.

A distinctive feature of Mı̄mām. sā deontics is the non-interdefinability of
obligation and prohibition. As we have recently discovered, the independence
of the deontic concepts extends also to permission, which is the focus of the
present paper. Here we extend the logic discussed in [8] with the axioms for
permission, and with newly formalised nyāyas, one of which corresponds to a
version of the ‘ought implies can’ principle, see e.g. [9]. We propose a neigh-
bourhood semantics for the resulting logic, which we call LMP (Mı̄mām. sā Logic
with permission). To analyze the behaviour of LMP we confront it with the
best known deontic paradoxes concerning permission: free choice inference [42],

1 Different Mı̄mām. sā authors interpret commands differently (see [8]), but most of them
looked at the Veda as a text having only deontic, i.e., normative authority.

100



Ciabattoni, Dik, Freschi

Ross’ paradox [37] and the paradox of the privacy act [22]. These paradoxes do
not arise in LMP ; its well-behaved nature can be attributed to the millennia-old
philosophical and juridical foundation upon which it is built.

The paper is organized as follows: Section 2 summarizes our previous find-
ings on Mı̄mām. sā deontics. Section 3 introduces the notion of permission in
Mı̄mām. sā and compares it to the literature of contemporary deontic logic. Mı̄-
mām. sā permission is formalized in Section 4 by extending the logic in [8] with
suitable Hilbert axioms and their semantics. In Section 5, the resulting logic
is examined in light of the main deontic paradoxes related to permission, and
it is demonstrated that it effectively addresses them.

Sanskrit sources: Throughout this paper, we refer to Jaimini’s Mı̄mām. sā
Sūtra (or Pūrva Mı̄mām. sā Sūtra, henceforth PMS, approximately 250 BCE)
and Śabara’s Bhās.ya ‘commentary’ thereon (henceforth ŚBh, approx. 5th c.
CE), whose authority has been recognized by all Mı̄mām. sā authors. We re-
fer also to the following Mı̄mām. sā texts: Kumārila’s Tantravārttika (7th c., a
key subcommentary on the PMS and ŚBh), and Rāmānujācārya’s Tantrara-
hasya (14th c.?), as well as to a key text of Sanskrit jurisprudence (called
Dharmaśāstra), Vijñāneśvara’s Mı̄tāks.arā (early 12th c.), a commentary on
Yajñavalkya’s code of norms.

2 Preliminaries on Mı̄mām. sā Deontics

The Mı̄mām. sā school focused on the rational interpretation and systematiza-
tion of the prescriptive portions of the Vedas. These include commands of
various kinds, such as prescriptions concerning the performance of sacrifices,
and prohibitions applying either to the context of a sacrifice or to the entire
life of a person (e.g. “One should not harm any living being”). Sometimes
the commands seem to be contradictory, like in the case of the Śyena sacrifice,
that should be performed if one wants to kill their enemy. 2 Mı̄mām. sā thinkers
introduced and applied metarules (called nyāyas) in order to rigorously analyze
the Vedic commands and solve seeming contradictions among them.

The nyāyas are not listed explicitly by Mı̄mām. sā authors, and have to be
carefully distilled from their concrete applications within the texts. An example
of a nyāya is “if a certain action is obligatory but it implies other activities, then
these other activities are also obligatory” (Rāmānujācārya’s Tantrarahasya).

Mı̄mām. sā authors distinguish between obligations (vidhi) and prohibitions
(nis.edha).

3 The former are determined by the fact of leading one to a desired
result, if fulfilled, whereas the latter by the risk of sanction, if not fulfilled. This
implies that negative obligations are different from prohibitions, and these two
concepts are not mutually definable. “It is forbidden to lie” means that one will
be liable to a sanction if one lies. “It is obligatory not to lie” means that one will
receive a reward if one avoids any lie. Commands are always uttered with regard

2 See [8] for the solutions to the Śyena controversy provided by the main Mı̄mām. sā authors.
3 Obligations and prohibitions in Mı̄mām. sā have been discussed in [20], and formalized as
suitable logics in [29,8].
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to a specific person, called ‘eligible’ or ‘responsible’ (adhikārin), or to a specific
situation in which an adhikārin might be in. In terms of deontic logic, this
means that commands are always dyadic. For instance, the obligation to recite
the Vedas is incumbent only on male members of the highest three classes who
have undergone initiation, which can be rendered as O(reciteV edas/initiated).

The use of logic to formalize Mı̄mām. sā reasoning is justified by the rigorous
theory of inference implemented by the school, that implicitly refers to logical
principles and methods [14,19].

A further salient characteristic of Mı̄mām. sā deontics is that commands have
always one goal, hence they do not have conjunctions or disjunctions within
them. A seemingly unitary command like “You should offer clarified butter
and pour milk” would be interpreted as two separate commands, namely “You
should offer clarified butter” and “You should pour milk”.

Last, a metarule prescribes that commands should always convey something
new (apūrva). A command that seems to prescribe an action one is already
inclined to do should therefore be interpreted otherwise. For instance, “One
should eat the five five-nailed animals” cannot be interpreted as enjoining the
eating of certain animals, because one is naturally inclined to eat the meat of
each animal. The command is instead interpreted as a prohibition of eating
the meat of any other animal. A connected nyāya prescribes that the Vedas
are always purposeful and do not enjoin anything without purpose. Altough
the scope of these two nyāya may overlap, they are different as it is possi-
ble to imagine a norm being purposeful but not novel. As a consequence of
these metarules, for instance prohibitions need to refer to actions one would
be naturally inclined to undertake (rāgaprāpta) or that have already been en-
joined (śāstraprāpta). Prohibiting something one would never undertake, e.g.
“building an altar in the sky” would be purposeless and hence is not a viable
interpretation of a command.

3 Permissions and new discoveries in Mı̄mām. sā Deontics

One of the most striking features of Mı̄mām. sā deontics is the non-
interdefinability of deontic concepts, that also applies to the concept of per-
mission. Its main characteristic is that a permission is always an exception
to a prohibition or negative obligation. In Mı̄mām. sā, saying “it is permitted
to do X given Y ”, always entails that X is negatively obligatory or forbidden
given a condition Z that is more general than Y . This can be illustrated by
the following applications of an underlying nyāya (i.e. “A permission is always
an exception to a pre-existing prohibition or negative obligation”):

(a) The permission to take a second wife can only occur as an exception to
a general prohibition or negative obligation not to remarry (ŚBh on PMS
6.8.17–18).

(b) The permission to take up the occupation of a lower class in times of
distress depends on the underlying prohibition to take up any occupation
other than the ones admitted for one’s own class (Mitāks.arā on 3.35).
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(c) The permission to eat after buying Soma implies the prohibition to eat (or
the obligation not to eat) before it (Tantravārttika on 1.3.4).

(d) The permission to sell while being a Brāhman. a in distress implies the prohi-
bition to sell while being a Brāhman. a in normal circumstances (Mitāks.arā
on 3.35).

Thus, these permissions are interpreted as presupposing an underlying prohi-
bition or negative obligation, and not as stand-alone permissions.

The permission to sell while being a Brāhman. a in distress, for instance, im-
plies that a Brāhman. a not in distress should not be selling anything. Similarly,
the permission to take up the occupation of a lower class in times of distress
depends on the underlying prohibition to take up any occupation other than
the ones admitted for one’s own class (see Vijñāneśvara’s Mitāks.arā commen-
tary on Yājñavalkya 3.35) and the permission to eat after a certain moment of
the sacrifice implies the prohibition to eat before it (Tantravārttika on 1.3.4).

Hence permissions only make sense for Mı̄mām. sā authors with regard to acts
which were previously prohibited or the abstention from which was obligatory.
To define the realm of “whatever is not prohibited is permitted”, Mı̄mām. sā
authors introduce the concept of “normatively indifferent actions”. These are
actions that are possible, but neither prohibited nor enjoined (nor permitted
in the Mı̄mām. sā sense) and that constitute most of our everyday life. Nor-
matively indifferent actions are the ones on which normative texts make an
intervention. For instance, offering a ritual substance is not permitted in a Mı̄-
mām. sā sense, because it is enjoined. In the following, we will call whatever is
neither prohibited nor permitted nor enjoined “extra-normative”. In sum, for
Mı̄mām. sā there are either normed actions (enjoined, prohibited or permitted)
or extra-normative ones.

A last feature of Mı̄mām. sā permission is the following: if X is permitted
given Y , doing X is not on the same level as not doing it, or as doing X while X
is an extra-normative action. Rather, permissions allow an option that is less
desirable than its counterpart. One of the main consequences of this approach
is that performing a permitted X exposes one to the risk of restrictions, insofar
as the permitted action is actually an action one should have “better-not”
performed. Thus, eating after having bought Soma is permissible, but not
eating is the preferred option (for more details, see [18], Section 4).

Related to permission, we have newly (identified and) formalized a charac-
teristic of Mı̄mām. sā deontics, that is a version of the ‘ought implies can’ prin-
ciple, usually attributed to Immanuel Kant, see [38], and that in Mı̄mām. sā’s
case can be formulated as “each command must be actionable”, thus includ-
ing the claim that also forbidden entails can. This metarule is extracted from
the nyāyas “Prescriptions can only prescribe actions that can be performed”
and “Prohibitions can only prohibit actions that can be performed”, whose
application is found below:

(e) Commands prescribing complicated sacrifices in order to get svarga (that
is, heaven, to be understood as happiness) are addressed to men who are
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able to perform them (see Tantravārttika on 1.3.4).
(f) The seeming prohibition “The fire is not to be kindled on the earth, nor

in the sky, nor in heaven” cannot be taken as a prohibition, because fire
cannot be kindled in the sky nor in heaven (see ŚBh on 1.2.5 and 1.2.18).

The metarule regarding novelty (apūrva, see Section 2) also implies that it is
impossible to have more than one deontic operator applied to the same action
under the same circumstances.

Rather, each deontic operator needs to make a novel intervention and is
therefore applied to an extra-normative situation, or, in the case of permissions,
to a pre-existing negative obligation or prohibition. With regard to permissions,
this also means that the same action cannot be at the same time obligatory
and permitted given the same circumstances (pace SDL [40]), since the operator
for permission would not add anything novel if applied to a situation already
normed by the deontic operator for obligation. For instance, if one already
knows that male married Brahmins ought to perform a certain ritual at dawn,
receiving the information that it is permitted to perform the same ritual at
the same time and given the same circumstances would be redundant and
purposeless, and no command in the Veda can be purposeless.

3.1 Mı̄mām. sā Permission vs Permission in Deontic Logic

The interdefinability between obligation and permission is an old problem in
Deontic Logic, dating back to the observation by Von Wright in [40] of the
similarity with the relation between necessity and possibility. The deontic
axiom D included in Standard Deontic Logic SDL therein introduced says that
obligation implies permission.

As emphasized in [1], a main problem with this interdefinability is that the
resulting system does not allow for gaps. If everything that is not permitted is
prohibited and everything that is not prohibited is permitted, then any norma-
tive system would regulate all possible states of affairs. This is counterintuitive
since not all situations are subject to regulation, as also acknowledged by the
Mı̄mām. sā school and its recognition of extra-normative actions.

Mı̄mām. sā’s concept of extra-normativity aligns with the idea of indifference
as defined by McNamara in relation to supererogation [33]. In McNamara’s
definition, an indifferent action is neither obligatory nor forbidden. Moreover,
the author links an operator for indifference with one for “moral significance”
and thus differentiates between indifference and supererogation. Both indif-
ferent and supererogatory actions are neither obligatory nor forbidden, but
supererogatory actions hold moral significance.

In [41], von Wright treats the notion of permission more carefully than in
his previous writings and introduces a distinction between weak permission and
strong permission. Weak permission is permission as the absence of prohibition,
whereas strong permission is a modality by itself. The latter is defined as
follows: (i) an act “will be said to be permitted in the strong sense if it is
not forbidden but subject to norm”, and (ii) “an act is permitted in the strong
sense if the authority has considered its normative status and decided to permit
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it”. A formalization of strong permission is contained, e.g., in [36]. Like in the
case of Mı̄mām. sā, it functions as a dyadic operator, but, unlike in Mı̄mām. sā,
it can be granted under general conditions (and not just as an exception to a
prohibition or negative obligation), and all tautologies are trivially permitted,
which is not the case in Mı̄mām. sā.

Many authors have attempted a formalization of von Wright’s definition of
strong permission, mainly with the purpose of obtaining a consistent formal-
ization of the so-called ‘free choice inference’, introduced in [42]. This inference
is of the form ‘If it is permitted to do A or B, it is permitted to do A and it is
permitted to do B’. Generally, a disjunction of permissions implies that any of
the disjuncts is a possible option, and this is clearly an inference scheme that
is desirable for a permission to follow. However, accepting the free choice in-
ference might lead to deriving counterintuitive conclusions, e.g., an obligation
to pay your taxes implies a permission to murder someone. Among the works
that have endeavored to establish a formalization of free choice permissions
that are immune to undesired consequences are [3,5,6,16]. The introduced sys-
tems are quite complex, and use, e.g., substructural logics as underlying logics
or semantical elements added to the language.

Hansson’s paper [26] explores a third form of permission: implicit permis-
sion, which is implied by an obligation. For instance, the obligation to testify in
court implies the permission to enter the courtroom. In contrast, for Mı̄mām. sā
an act cannot be both obligatory and permitted under the same circumstance
and the obligation to perform X extends to the obligation to perform whatever
is necessarily entailed by X. Thus, entering the courtroom is not the content
of an implicit permission but of an obligation.

Alchourrón famously recounts a story (originally from [17]) about a hunting
tribe and its new chief, who emits a norm permitting hunting on certain days,
but without prohibiting it on the others. The tribe is utterly dissatisfied,
because one expected from the chief an intervention in the status quo (“The
moral of this story is valuable. It shows that purely permissory norms are of
little if any practical interest” [2]). Alchourrón’s conclusion, is different from
the Mı̄mām. sā one, as he highlights the importance of permissions in the case of
more than one source of norms, see [2]. However the tribe reasoned according to
Mı̄mām. sā principles, based on which each command needs to change something
which was previously the case (see the novelty requirement discussed above and
the examples mentioned in Section 3).

A Mı̄mām. sā permission is always an exception to a more general prohibition
or negative obligation. This approach reflects a common practice in normative
texts, such as legal codes in European jurisprudence, where permissions are typ-
ically stated only when there is an expectation of the opposite due to a general
prohibition. Norms granting permissions usually derogate from what is stated
in other norms, as Bouvier notes in his definition of permission in his legal dic-
tionary in [11]. He distinguishes between express permissions that “derogate
from something which before was forbidden,” and implied permissions, “which
arise from the fact that the law has not forbidden the act to be done”. The
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latter are therefore different from Hansson’s “implicit permission” and rather
correspond to what Hansson calls “tacit permissions” in [26], and to what von
Wright calls “weak permissions” in [41]. Similarly, the idea that permissions
grant one a different degree of freedom if compared to the non-normed space
of indifferent actions is neatly reflected by the comparison of cases like “You
are permitted to run 2km per day” (said by a physician to her patient, who is
recovering from a heart attack), as opposed to the same person’s freedom to
run prior to the heart attack. The permission rules the realm of running by in-
troducing a space of possibility that is, however, not as absolute as the space of
extra-normative actions. Accordingly, permitted actions are actions one would
be naturally inclined to do, prior to the intervention of a normative text pro-
hibiting them (or obliging one to refrain from them). In Mı̄mām. sā deontics, it
would not make sense to have a permission that regards impossible actions like
flying or undesirable actions like harming oneself (assuming that harming one-
self is not desirable for anyone). The Mı̄mām. sā position is neatly distinguished
from the one of, e.g., [26], who thinks that introducing permissions even in the
absence of general prohibitions are useful to define rights.

A last trait of Mı̄mām. sā permissions is that they always lead to less desir-
able options. This offers a solution to seeming problems like the “Interrupted
promise”, discussed by Zylberman [44]. There, one promises to participate in
a conference, but then one’s daughter has an accident and the previous duty is
overruled by the duty to stand by one’s daughter during surgery. Zylberman
notes that despite having permission to withdraw, there is still an obligation
to apologize or make reparations to the conference organizers. This sentiment
contradicts the standard account of permissions, which does not mandate such
actions. For instance, if it is permitted to drive at 18, no 18-years-old is ex-
pected to apologise because they are in fact driving. By contrast, the “inter-
rupted promise” problem is instantly solved if we realise that the permission
Zylberman is referring to is a Mı̄mām. sā permission (“better-not”) and therefore
requires some expiation (such as offering an apology).

The concept of preference in deontic logic is well known, see,
e.g., [15,24,39,30,4,25]. However, its application to a “less preferred” permission
has not been explored in depth. We defer to future research the examination
of the preference aspect of permission. Instead, we focus below on the formal-
ization of the remaining properties.

4 Formalizing Mı̄mām. sā Permission

Following a bottom-up approach of extracting deontic principles from the Mı̄-
mām. sā texts, we transform the properties of the permission operator into suit-
able Hilbert axioms, which are added to the logic LKu+ of [8]. We call the
resulting logic LMP (Mı̄mām. sā Logic with permission). In this section, we
present and justify its Hilbert axiomatization, we introduce a neighbourhood
semantics, and demonstrate soundness, completeness and consistency of LMP .
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Ax1. (2U (ϕ→ ψ) ∧ O(ϕ/θ) ∧ ¬2U ψ) → O(ψ/θ)

Ax2. (2U (ϕ→ ψ) ∧ F(ψ/θ) ∧ □U ϕ) → F(ϕ/θ)

Ax3. ¬(X(ϕ/θ) ∧X(¬ϕ/θ)) for X ∈ {O,F}
Ax4. ¬(O(ϕ/θ) ∧ F(ϕ/θ))

Ax5. (2U (ψ ↔ θ) ∧X(ϕ/ψ)) → X(ϕ/θ) for X ∈ {O,F}
Ax6. ( □U (ϕ ∧ θ) ∧ O(ϕ/⊤) ∧ O(θ/⊤)) → O(ϕ ∧ θ/⊤)

Table 1
Axioms regarding obligation and prohibition from [8]

4.1 Syntax

The logic LMP is an extension of the logic LKu+ of [8]. Recall that the lan-
guage of LKu+ consists of the modalities 4 O(ϕ/ψ) and F(ϕ/ψ) for obligation
and prohibition (read as “ϕ is obligatory/prohibited given ψ”). Here we add
the permission operator P(ϕ/ψ), to be read as “ϕ is permitted, given ψ”. This
operator is treated as a primitive modality, that is, P(ϕ/ψ) is not equivalent to
¬F(ϕ/ψ) or ¬O(¬ϕ/ψ). As explained in Section 2, all the deontic operators
in Mı̄mām. sā are dyadic. The language LLMP

is defined as follows:

ϕ ::= p ∈ Atom | ¬ϕ | ϕ ∨ ϕ | 2U ϕ | O(ϕ/ϕ) | F(ϕ/ϕ) | P(ϕ/ϕ)

(where Atom is the set of atomic propositions). We take the classical logic 5 .
connective ¬ and ∨ as primitive, and define ∧, →, ↔ in the usual way. The
constants ⊤ and ⊥ are abbreviations for ¬ϕ ∨ ϕ and ¬⊤, respectively. 2U is
the universal S5 modality, read as ‘in all scenarios, ϕ is true’ and its dual

□U ϕ = ¬2U ¬ϕ as ‘there is at least one scenario where ϕ is true’.

Definition 4.1 The logic LMP extends LKu+ – whose axiomatization con-
sists of the axiomatization for the modal logic S5 for 2U and the axioms of
Table 1 – with the following axioms:

P1. P(ϕ/ψ) → (F(ϕ/⊤) ∨ O(¬ϕ/⊤))
P2. a) ¬(P(ϕ/ψ) ∧ F(ϕ/ψ))

b) ¬(P(ϕ/ψ) ∧ O(ϕ/ψ))
c) ¬(P(ϕ/ψ) ∧ O(¬ϕ/ψ))

P3. (O(ϕ/ψ) ∨ F(ϕ/ψ)) → □U (ϕ ∧ ψ) ∧ ¬2U ϕ
P4. a) (2U (ψ ↔ θ) ∧ P(ϕ/ψ)) → P(ϕ/θ)

b) (2U (ϕ↔ ψ) ∧ P(ϕ/θ)) → P(ψ/θ)
P5. (P(ϕ/ψ) ∧ (F(ϕ/θ) ∨ O(¬ϕ/θ))) → 2U (ψ → θ)

4 The logic LKu+ formalizes the deontic theories of two main Mı̄mām. sā authors: Kumārila
and Prabhākara (both 7 CE?). Their theories differ from the way elective duties are inter-
preted: as an obligation for Prabhākara, and as a recipe that guarantees to obtain a desired
result, for Kumārila. The latter has been formalized in [8] with a modality E(ϕ/ψ) having
no deontic force. As this modality does not interact with the deontic operators, to simplify
the matter we omit it from the language of LMP .
5 The classical logic base is justified by the presence, e.g., of the reduction ad absurdum law
in Mı̄mām. sā, see [14]
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Introduced in [8] the axioms in Table 1 are based on the following principles
extracted from suitable nyāyas:

1. If the accomplishment of an action presupposes the accomplishment of an-
other action, the obligation to perform the first prescribes also the second.
Conversely, if an action necessarily implies a prohibited action, this will also
be prohibited. This corresponds to the nyāya given as an example in Section
2, and formalized by Ax1 and Ax2.

2. Two actions that exclude each other can neither be prescribed nor prohib-
ited simultaneously to the same group of eligible people under the same
conditions. This principle is the base for Ax3 and Ax4.

3. If two sets of conditions always identify the same group of eligible agents,
then a command valid under the conditions in one of the sets is also enforce-
able under the conditions in the other set. This is formalized by Ax5.

4. If two fixed duties are prescribed and compatible, their conjunction is oblig-
atory as well. This corresponds to Ax6.

Remark 4.2 In this paper we use a slightly different formulation of the axioms
Ax1 and Ax2, w.r.t. [8], as their original version leads to contradictions in
the presence of our new axiom P3. Ax1 was indeed presented as (2U (ϕ →
ψ) ∧O(ϕ/θ)) → O(ψ/θ). Since 2U (ϕ→ ⊤) is true for any formula ϕ, we would
derive O(⊤/θ) whenever we have O(ϕ/θ) for any ϕ and θ, contradicting axiom
P3. Ax2 was presented in [8] as (2U (ϕ→ ψ)∧F(ψ/θ)) → F(ϕ/θ). The formula
2U (⊥ → ψ) is true for any formula ψ, and therefore we derive F(⊥/θ) from
F(ψ/θ) for any ψ and θ, contradicting P3, as well.

We discuss the properties of permission that led to the definition of axioms
P1-P5 in Def. 4.1. We start by presenting the abstract principles behind them.

(i) Permissions are always exceptions to more general prohibitions or negative
obligations.

This principle is extracted from the nyāya applied in (a)-(d) from Section 3,
and is the base for axioms P1 and P5. P1 represents the fact that a permission
is always an exception to a general prohibition or negative obligation (cf. (a)-
(c)). From the application (d), we conclude that if something is allowed in one
context and prohibited (or negatively obliged) in another, the context of the
prohibition or negative obligation is more general, as formalized by axiom P5.

(ii) No more than one deontic operator can be applied to the same action
under the same circumstances.

In the domain of Mı̄mām. sā deontics, this principle represents a foundational
metarule (cf. the apūrva-metarule discussed in Section 2 and 3) and justifies
P2a-P2c. These axioms are similar to Ax4, but extended to permission. Espe-
cially interesting is axiom P2b, which states that an action cannot be permitted
as well as obligatory under the same circumstances, contradicting the often-
accepted inference in deontic logic that obligation implies permission.

(iii) Commands entail possibility.
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The formalization of this principle is accomplished through Axiom P3, which
does not pertain to permission. The principle has been extracted from various
contexts, summarized by the nyāya-applications (e), corresponding to ‘ought
implies can’, and (f), corresponding to ‘forbidden implies can’ (cf. Section 3).
As commands must be meaningful, this axiom also excludes the possibility of
obligatory or prohibited tautologies. Although we have not found an explicit
statement that principle (iii) applies also to permissions, the fact that permitted
actions are exceptions to prohibited or negatively obliged (possible) actions, is
enough to conclude that this axiom should be present; as shown by Lemma 4.4
it is indeed derivable in LMP .

Axiom P4a and P4b do not follow from any explicit discussion by Mı̄mām. -
sā authors. P4a is implicitly used in Dharmaśāstra discussions of permissions
under extreme circumstances. For instance, Vijñāneśvara states that it is per-
mitted to sell certain vegetables if one has assumed the occupation of the
vaísya class, and then refers to the permission to sell the same vegetables if
one is working as a merchant, given that assuming the occupation of a vaísya
implies being a merchant (Mitāks.arā on Yājñavalkya 3.35). Axiom P4b is also
implicitly used in the same context when P(act as a vaísya/(being a Brāhman. a
∧ being in distress)) leads to the P(selling/(being a Brāhman. a ∧ being in dis-
tress)) because acting as a vaísya is synonymous of selling.

Remark 4.3 In contrast with obligation and prohibition (as well as contrary
to the notion of permission in [36]), LMP does not contain a monotonicity
axiom for permission, i.e., (P(ϕ/θ) ∧ 2U (ϕ → ψ)) → P(ψ/θ). The main reason
is that we have not found it in Mı̄mām. sā texts. It is also unlikely to find it as
this axiom would lead to unwanted consequences. For instance, from “eating
meat implies being alive” and P(eating meat/during extreme circumstances),
follows P(being alive/during extreme circumstances) which is not meaningful
as we have no control over being alive. Additionally, as shown by the fol-
lowing derivation, monotonicity of permissions would imply an unconditional
prohibition or negative obligation for any other feasible action:

(i) P(ϕ/θ) → P(ϕ ∨ ψ/θ) (monotonicity for permissions)

(ii) P(ϕ ∨ ψ/θ) → (F(ϕ ∨ ψ/⊤) ∨ O(¬(ϕ ∨ ψ)/⊤)) (P1)

(iii) 2U (ψ → (ϕ ∨ ψ)) ∧ F(ϕ ∨ ψ/⊤) ∧ □U ψ → F(ψ/⊤) (Ax2)

(iv) 2U ((¬ϕ ∧ ¬ψ) → ¬ψ) ∧ O(¬(ϕ ∨ ψ)/⊤) ∧ □U ψ → O(¬ψ/⊤) (Ax1)

(v) P(ϕ/θ) ∧ □U ψ → (F(ψ/⊤) ∨ O(¬ψ/⊤)) (from (i)-(iv))

Lemma 4.4 The following formulas are derivable in LMP :

1. 2U (ϕ→ ψ) → ¬(O(ϕ/θ) ∧ P(ψ/θ))
2. 2U (ϕ→ ψ) → ¬(F(ψ/θ) ∧ P(ϕ/θ))
3. P(ϕ/ψ) → □U ϕ ∧¬2U ϕ
4. ¬(P(ϕ/θ) ∧ P(¬ϕ/θ))
Proof. 1. follows by Ax1 and P2b. 2. follows by Ax2 and P2a. 3. follows
from by axiom P1 and P3. 4. follows from P1, Ax3 and Ax4. 2
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The first two formulas from Lem. 4.4 can be viewed as generalizations of the
D-axiom for permission. Formula 3, that will be utilized in our formalization
of the free choice inference in the next section, constitutes a variation of the
‘commands entail possibility’ principle for permissions. Although formula 4 is
not a property of permission in natural language, in the context of Mı̄mām. -
sā, permissions are treated as exceptions to general prohibitions or negative
obligations and there cannot be a prohibition or negative obligation regarding
both a particular action and its negation.

4.2 Semantics

In line with [8], we use neighbourhood semantics to model LMP .
Neighbourhood semantics generalizes Kripke semantics. It consists of a set

of worldsW and a valuation function V , and contains neighbourhood functions
Nx that map a world to a set of ordered pairs of sets of worlds. Each of the three
modalities, obligation, permission and prohibition, has its own neighbourhood
function. For example, let w ∈W , if (X,Y ) is in w’s obligation-neighbourhood,
this means that X represents the worlds of compliance ‘from the point of view’
of Y . Then, if X is exactly the set of worlds where ϕ is true, and Y is exactly
the set of worlds where ψ is true, then O(ϕ/ψ) is true in w.

Definition 4.5 An LMP -frame F = ⟨W,NO, NP , NF ⟩ is a tuple whereW ̸= ∅
is a set of worlds w, v, u, . . . and Nχ : W 7→ P (P (W )× P (W )) is a neighbour-
hood function for χ ∈ {O,P,F}. Let X,Y, Z ⊆W , F satisfies the following:

(i) If (X,Z) ∈ NP(w) then (X,W ) ∈ NF (w) or (X,W ) ∈ NO(w).
(ii) If (X,Z) ∈ NP(w) then (X,Z) ̸∈ NF (w) and (X,Z) ̸∈ NO(w).
(iii) If (X,Z) ∈ Nχ(w) then X

⋂
Z ̸= ∅ and X ̸=W for (χ ∈ {O,F}).

(iv) If (X,Y ) ∈ NP(w) and (X,Z) ∈ NF (w) or (X,Z) ∈ NO(w) then Y ⊂ Z.
(v) If (X,Z) ∈ NP(w) then (X,Z) ̸∈ NO(w).
(vi) If (X,Z) ∈ NO(w) and X ⊆ Y and Y ̸=W , then (Y,Z) ∈ NO(w).
(vii) If (X,Z) ∈ NF (w) and Y ⊆ X and Y ̸= ∅, then (Y,Z) ∈ NF (w).
(viii) If (X,Y ) ∈ NX (w), then (X,Y ) /∈ NX (w) for X ∈ {O,F}.
(ix) If (X,Z) ∈ NO(w) then (X,Z) ̸∈ NF (w).
(x) If X

⋂
Y ̸= ∅ and (X,W ), (Y,W ) ∈ NO(w), then (X

⋂
Y,W ) ∈ NO(w).

An LMP -model is a tuple M = ⟨F, V ⟩ where F is an LMP -frame and V is a
valuation function mapping atomic propositions from Atom to sets of worlds.

Note that (i) corresponds to axiom P1, (ii) and (vi) to axioms P2a-c, (iii)
to axiom P3 and (iv) to P5. Moreover, (vi) and (vii) correspond to axioms
Ax1 and Ax2, expressing the property of monotonicity in the first argument of
the deontic operators; these conditions are based on the ones in [8], adjusted
to comply with our new version of the monotonicity axioms (see Remark 4.2).
(viii) corresponds to Ax3, avoiding the accumulation of deontic operators, (ix)
corresponds to Ax4, and (x) to Ax6. Axioms P4a, P4b and Ax5 hold in any
neighbourhood model [13] and do not require explicit conditions.

Definition 4.6 Let M be a LMP -model and ∥ϕ∥ = {w ∈W |M,w ⊨ ϕ}. We
define the satisfaction of a formula ϕ ∈ LLMP

at any w ∈W as follows:
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M,w ⊨ p iff w ∈ V (p), for p ∈ Atom
M,w ⊨ ¬ϕ iff M,w ⊭ ϕ
M,w ⊨ ϕ ∨ ψ iff M,w ⊨ ϕ or M,w ⊨ ψ
M,w ⊨ 2U ϕ iff for all wi ∈W M,wi ⊨ ϕ
M,w ⊨ □U ϕ iff there exists a wi ∈W M,wi ⊨ ϕ
M,w ⊨ X (ϕ/ψ) iff (∥ϕ∥, ∥ψ∥) ∈ NX (w) for X ∈ {O,F ,P}

We say a formula ϕ holds in a model M iff M,w ⊨ ϕ for each w ∈W .

Using the strategy outlined in [10] and their corresponding definitions, we
demonstrate that the axioms are sound and complete relative to the given
neighbourhood semantics.

Definition 4.7 A formula ϕ is valid in LMP , if for all worlds w in all LMP -
models M it is the case that M,w ⊨ ϕ.

A formula ϕ is a theorem of LMP , if it is derivable using only the axioms
of LMP , modus ponens and necessitation rule for 2U .

Theorem 4.8 (Soundness) If a formula ϕ is a theorem of LMP , then ϕ is
valid.

Proof. We show that all axioms of LMP are true in all worlds of any LMP -
modelM . For each axiom, we assume that the antecedent holds in a world, and
use the neighbourhood restrictions and the truth conditions of Def. 4.6 to derive
the intended consequent. Showing that modus ponens and the necessitation
rule for 2U preserve validity is easy. We only detail the case of axiom P1 –
the main property of Mı̄mām. sā permission– as all other axioms are proven
similarly. Assume that P(ϕ/ψ) → (F(ϕ/⊤)∨O(¬ϕ/⊤)) is a theorem of LMP .
Consider a world w in model M such that M,w ⊨ P(ϕ/ψ). Def. 4.6 gives us
(∥ϕ∥, ∥ψ∥) ∈ NP(w), and (i) from Def. 4.5 gives us that (∥ϕ∥,W ) ∈ NF (w)
or (∥¬ϕ∥,W ) ∈ NO(w). Since W = ∥⊤∥, we have that M,w ⊨ F(ϕ/⊤) or
M,w ⊨ O(¬ϕ/⊤). Therefore, M,w ⊨ P(ϕ/ψ) → (F(ϕ/⊤) ∨ O(¬ϕ/⊤)). 2

Theorem 4.9 (Completeness) If a formula ϕ is valid, then ϕ is a theorem
of LMP .

Proof. We use the method of canonical models from [13]. First, we define
the canonical model M c, in such a way that for each formula ϕ and world w,
M c, w ⊨ ϕ iff ϕ ∈ w. The formulas true in all worlds of M c are, then, exactly
the theorems of LMP . M

c is not necessarily an LMP -model. The universal
modality 2U is axiomatized by S5, which is canonical for the equivalence relation,
i.e. Rc2U ⊆ W ×W (see [10]). For the global modality, the required property
is Rc2U = W ×W . Thus, as done in [8], we introduce a submodel M∗ of the
canonical model M c, and show that M∗ is an LMP -model. M∗ is then used
to establish completeness.

The canonical model M c = ⟨W c, Rc2U , N
c
O, N

c
P , N

c
F , V

c⟩ for LMP is defined
as follows. W c is the set of all LMP -maximally consistent sets of formulas.
Let (Y, Z) ∈ N c

O(w) iff Y ̸= W c and there is a formula O(ϕ/ψ) ∈ w such that
{wj ∈ W c | ϕ ∈ wj} ⊆ Y and {wj ∈ W c | ψ ∈ wj} = Z. Then, let (Y, Z) ∈
N c

P(w) iff there is a formula P(ϕ/ψ) ∈ w such that Y = {wj ∈ W c | ϕ ∈ wj}
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and {wj ∈ W c | ψ ∈ wj} = Z. Furthermore, let (Y,Z) ∈ N c
F (w) iff Y ̸= ∅

and there is a formula F(ϕ/ψ) ∈ w such that Y ⊆ {wj ∈ W c | ϕ ∈ wj} and
{wj ∈ W c | ψ ∈ wj} = Z. Lastly, w ∈ V c(p) iff p ∈ w. We will use the
following shorthand throughout the proof ∥ϕ∥c = {w ∈W c | ϕ ∈ w}.

To show that our canonical model satisfies the restrictions of Def. 4.5, we
outline the case of (vi). The same strategy can be adopted for the other cases.

(vi) If (X,Z) ∈ N c
P(w), then (X,Z) ̸∈ N c

O(w). To see why, consider
(X,Z) ∈ N c

P for some w ∈ W c and X,Z ⊆ W c. Note that there is a for-
mula P(ϕ/ψ) ∈ w where ∥ϕ∥c = X and ∥ψ∥c = Z. By axiom P2c, we have
O(¬ϕ/ψ) ̸∈ w. It might be the case that (X,Z) ∈ N c

O(w) if there is a χ such
that ∥χ∥c ⊆ ∥¬ϕ∥c and O(χ/ψ) ∈ w. However, since 2U (χ → ¬ϕ), by Ax1, we
have O(¬ϕ/ψ) ∈ w contradicting P2c. Thus, (X,Z) ̸∈ N c

O(w).
We show, by induction on ϕ, that M c, w ⊨ ϕ iff ϕ ∈ w. The base case is

clear: M c, w ⊨ p implies p ∈ w by definition. For the inductive case, we consider
only P(ϕ/ψ), as the classical connectives are straightforward, and O(ϕ/ψ) and
F(ϕ/ψ) are done similarly. IfM c, w ⊨ P(ϕ/ψ), then (∥ϕ∥c, ∥ψ∥c) ∈ N c

P(w). By
the canonical model, there is a formula P(θ1/θ2) ∈ w such that ∥ϕ∥c = ∥θ1∥c
and ∥ψ∥c = ∥θ2∥c. By axioms P4ab, we have that P(ϕ/ψ) ∈ w.

Our model M c satisfies Rc2U ⊆ W c ×W c. However, since 2U represents the
global modality, it is necessary that Rc2U =W c×W c. To meet this requirement,
we generate a submodel M∗ of M c, and show that its relation R∗

2U satisfies
R∗
2U = W ∗ ×W ∗ for some W ∗ ⊆ W c. We then prove that M∗ is an LMP -

model, and utilize this model to demonstrate completeness. To constructM∗ =
⟨W ∗, R∗

2U , N
∗
O, N

∗
F , N

∗
P , V

∗⟩ we begin by selecting a world w ∈W c. Its domain
W ∗ is defined as follows: W ∗ = {v ∈ W c | for all 2U ϕ ∈ w, ϕ ∈ v}. The
relation R∗

2U as R∗
2U = Rc2U ∩ (W ∗ × W ∗). As described in [10], it can be

easily shown that R∗
2U = W ∗ × W ∗, which is our required property. Then,

V ∗(p) = V c(p) ∩W ∗, and the neighborhood functions are defined as follows:
N∗
χ(w) = {(X,Y ) | (X ′, Y ′) ∈ N c

χ(w), X = X ′ ∩ W ∗, Y = Y ′ ∩ W ∗} for
χ ∈ {O,P,F}. By a simple induction on the complexity of ϕ, it follows that
∥ϕ∥∗ = {w ∈W ∗ | ϕ ∈ w} = ∥ϕ∥c∩W ∗. We can show that each neighbourhood
restriction is satisfied by M∗, and that M∗ is thus a LMP -model. We show
the case for (i), the other cases being similar.

(i) If (X,Y ) ∈ N∗
P(w) then (X,W ∗) ∈ N∗

F (w) or (X,W ∗) ∈ N∗
O(w). To

see why, consider (X,Y ) ∈ N∗
P(w) for some w ∈ W ∗. Then, by definition of

the submodel M∗, it follows that X = X ′ ∩W ∗ and Y = Y ′ ∩W ∗ for some
(X ′, Y ′) ∈ N c

P(w). Since M c is an LMP model, we know that (X ′,W c) ∈
N c

F (w) or (X
′,W c) ∈ N c

O(w). Thus, (X
′∩W ∗,W c∩W ∗) = (X,W ∗) ∈ N∗

F (w)
or (X ′ ∩W ∗,W c ∩W ∗) = (X,W ∗) ∈ N∗

O(w).
Lastly, we have that for each w ∈W ∗,M∗, w ⊨ ϕ↔M c, w ⊨ ϕ by induction

on the complexity of ϕ, and therefore M∗, w ⊨ ϕ↔ ϕ ∈ w. 2

Lemma 4.10 (Consistency) The logic LMP is consistent.

Proof. We exhibit a LMP -model M in which all LMP axioms hold but there
is one formula that does not. Let M = ⟨W,NO, NF , NP , V ⟩, where W =
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{w1, w2}, NO(wi) = {({w1}, {w2})}, NP(wi) = NF (wi) = ∅ for i ∈ {1, 2}, and
V (p) = {w1}, V (q) = {w2}.

We show that axiom P2b holds. We haveM,wi ⊨ O(p/q), since (∥p∥, ∥q∥) ∈
NO(wi), and M,wi ̸⊨ P(p/q). The model similarly satisfies axiom P2a, P2c,
Ax3 and Ax4. It trivially satisfies all remaining axioms, since they are impli-
cations and the antecedent is false. Since M,wi ̸⊨ P(p/q), there is a formula
that does not hold in the model and therefore LMP is consistent. 2

5 Deontic Paradoxes in Mı̄mām. sā

To analyze the behaviour of LMP we use as benchmarks the main deontic para-
doxes 6 involving permission: the free choice inference [42], Ross’ paradox [37]
and the paradox of the privacy act [22]. As demonstrated below, LMP behaves
well with respect to them.

5.1 The Free Choice Inference

It is plausible to say that “you may have coffee or tea” implies that you may
have a coffee and you may have a tea (though possibly not both at once).
This very intuitive principle, first mentioned in [42], is known as the free choice
inference (FCI) and is formalized in SDL as P(ϕ∨ψ) → P(ϕ). The paradoxical
consequences of accepting FCI have been widely discussed in deontic logic,
see, e.g. [21,5,12,16]. Among them, as demonstrated in [21], SDL with (FCI)
derives (i) O(ϕ) → O(ϕ ∧ ψ), (ii) O(ϕ) → P(ψ), (iii) P(ϕ) → P(ψ) and (iv)
P(ϕ) → P(ϕ∧ψ). As a special instance of (iii), we get (v) P(ϕ) → P(⊥), which
is a particularly undesirable consequence in Mı̄mām. sā, where permitted actions
should be possible, as shown by Lemma 4.4. As a result, we modify the free
choice inference in LMP to ensure that every inferred permission corresponds
to a feasible action:

P(ϕ ∨ ψ/θ) ∧ □U ϕ→ P(ϕ/θ). (FCI □U )

We demonstrate that the (dyadic variant of) (i)-(v) cannot be derived in LMP

in presence of FCI □U . We start by establishing a sufficient condition for FCI □U
to hold in an LMP -model.

Lemma 5.1 Let M = ⟨W,NO, NP , NF , V ⟩ be an LMP -model, and consider
non-empty X,Y, Z ⊆ W . For all w ∈ W , if X ⊆ Y and (Y,Z) ∈ NP(w)
implies (X,Z) ∈ NP(w), then M,w ⊨FCI □U .

Proof. Assume M,w ⊨ P(ϕ ∨ ψ/θ) ∧ □U ϕ. Then, (∥ϕ∥ ∪ ∥ψ∥, ∥θ∥) ∈ NP(w).
Since ∥ϕ∥ ⊆ ∥ϕ∥∪∥ψ∥ and ∥ϕ∥ ̸= ∅ (byM,w ⊨ □U ϕ), we have that (∥ϕ∥, ∥θ∥) ∈
NP(w) and thus M,w ⊨ P(ϕ/θ). 2

The example below exhibits an LMP -model that satisfies FCI □U but not
the unwanted consequences (i)-(v).

6 Although called paradoxes, they are intended here in a broad sense as (un)derivable theo-
rems that are counter-intuitive in a common-sense reading.
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Example 5.2 Let M = ⟨W,NO, NP , NF , V ⟩ be the LMP -model such that
W = {w1, w2, w3}, V (p) = {w1}, V (q) = {w2}, V (r) = {w3}, NP(wi) =
{(V (q), V (r))}, NO(wi) = {(X,Y ) | V (p) ⊆ X,X ̸= W,Y = V (r)}, NF (wi) =
{(V (p),W )} for i ∈ {1, 2, 3}. FCI □U is true in all wi ∈ W , by Lem. 5.1. We
show that M does not satisfy (i)-(v).

For (i), we see that M,wi ⊨ O(p/r) and M,wi ̸⊨ O(p ∧ q/r). For (ii),
M,wi ⊨ O(p/r) and M,wi ̸⊨ P(r/r). For (iii), we have M,wi ⊨ P(q/r) and
M,wi ̸⊨ P(p/r). For (iv), we have thatM,wi ⊨ P(q/r) andM,wi ̸⊨ P(p∧q/r).
Lastly, for (v), we have M,wi ⊨ P(q/r) and M,wi ̸⊨ P(⊥/r).
Remark 5.3 The undesirable consequences (i)-(v) can be derived in SDL us-
ing instances of obligation implies permission (aka axiom D), interdefinability
between the deontic operators, and monotonicity of permission. These prin-
ciples do not hold in LMP . Nonetheless LMP cannot get rid of all possible
unwanted results. To elaborate: while the undesirable inferences regarding
obligation (i.e., (i) and (ii)), and impossible actions (i.e., (v)) are blocked even
when an unrelated action ψ is possible, in the presence of FCI □U , due to axiom
P4b the statement P(ϕ/θ) ∧ □U (ϕ ∧ ψ) → P(ϕ ∧ ψ/θ) can be derived in LMP .
This debatable statement asserts that if ϕ is permitted, so is ϕ ∧ ψ, for any
compatible action ψ.

5.2 Ross’ paradox

Ross’ paradox [37] is a frequently debated issue. Introduced as a paradox for
obligation, it states that the obligation to mail a letter implies the obligation
to mail the letter or burn it. Here we consider its version for permission (“the
permission to mail the letter implies the permission to mail or burn the letter”),
formalized as the following valid formula in SDL

P(ϕ) → P(ϕ ∨ ψ).

The prima facie version of this paradox does not apply to permissions in Mı̄-
mām. sā, because all commands in Mı̄mām. sā have only one action as their ar-
gument. Moreover, the consequences of the paradox can be avoided even if
we consider the all-things-considered deontic situation. In fact, as discussed
in Section 3, unconditional permissions do not exist in Mı̄mām. sā and thus the
dyadic version of the paradox is the following:

P(ϕ/θ) → P(ϕ ∨ ψ/θ).

This formula is not derivable in LMP , as shown by the following countermodel:
Let M = ⟨W,NO, NP , NF , V ⟩ be a LMP -model, such that W =

{w1, w2, w3}, V (p) = {w1}, V (q) = {w2}, V (r) = {w3}, NP(wi) =
{(V (p), V (r))}, NF (wi) = {(V (p),W )} and NO(wi) = ∅ for i ∈ {1, 2, 3}. Note
that the neighborhood function of prohibition is not empty in order to sat-
isfy condition (i) stated in Def. 4.5. We see that (V (p), V (r)) ∈ NP(wi), but
(V (p)∪V (q), V (r)) ̸∈ NP(wi). Thus M,wi ⊨ P(p/r) while M,wi ̸⊨ P(p∨ q/r).

114



Ciabattoni, Dik, Freschi

Remark 5.4 Ross’ paradox does not appear in LMP as Mı̄mām. sā permission
is not monotonic in the first argument. If we were to derive P(mail ∨ burn/θ)
from P(mail/θ) for some θ, then we would need to have a pre-existing command
F(burn/⊤) or O(¬burn/⊤) (cf. Remark 4.3). This is impossible if such a pre-
existing prohibition or negative obligation is not available.

5.3 The Paradox of the Privacy Act

Introduced in [22], this paradox consists of a privacy act containing the norms:

(i) The collection of personal information is forbidden unless acting on a court
order authorising it.

(ii) The destruction of illegally collected personal information before accessing
it is a defence against the illegal collection of personal data.

(iii) The collection of medical information is forbidden unless the entity collect-
ing the medical information is permitted to collect personal information.

To properly assess this act, we need to consider five distinct scenarios as all
other possible scenarios are variations of these. We refer to these as Scenarios
1-5. Scenario 1 involves a court order that authorizes the collection of personal
data. Regardless of whether the data is ultimately collected or not, this scenario
is compliant with the privacy act. Scenario 2, where a court has not autho-
rized the collection of data and neither personal nor medical data is collected,
is compliant as well. Scenario 3, where personal data is collected illegally but
is compensated by its destruction, is called ‘weakly compliant’. Lastly, there
are two non-compliant situations: Scenario 4, involving the unauthorized col-
lection of personal data, and Scenario 5, involving the unauthorized collection
of medical data.

While SDL can formalize the norms (i)-(iii) in a consistent way, it derives
a contradiction when considering the compliant Scenarios 1 and 2. For, by for-
malizing (i) as F(collPersInf) and auth→ P(collPersInf), when auth is true
(as in Scenario 1), we derive P(collPersInf), contradicting F(collPersInf).

This contradiction is prevented in LMP . We formalize the norms (i)-(iii) in
the following way: (i) is F(collPersInf/⊤) and P(collPersInf/auth). Norm
(ii) represents a contrary-to-duty obligation (see e.g. [35]) since the violation
of collecting personal data must be compensated by its destruction, and is
formalized as O(destrPersInf/collPersInf). Lastly, (iii) is formalized as
F(collMedInf/⊤) and P(collPersInf/X) → P(collMedInf/X) for any X,
since the permission of collecting medical data depends on the condition X of
the permission for collecting personal data.

We show that LMP is suitable to model the privacy act, by giving a
model where all norms (i)-(iii) holds, and each world represents one of the
scenarios without contradictions: M = ⟨W,NO, NP , NF , V ⟩, where: W =
{wi | 1 ≤ i ≤ 5}, ∥collPersInf∥ = {w3, w4}, ∥destrPersInf∥ = {w3},
∥auth∥ = {w1}, ∥collMedInf∥ = {w5}, NF (wi) = {(X,Y ) | X ̸= ∅, X ⊆
∥collPersInf∥, Y = W} ∪ {(U,Z) | U ̸= ∅, U ⊆ ∥collMedInf∥, Z = W},
NO(wi) = {(X,Y ) | ∥destrPersInf∥ ⊆ X,Y = ∥collPersInf∥}, and
NP(wi) = {(∥collPersInf∥, ∥auth∥), (∥collMedInf∥, ∥auth∥)}. The picture
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below illustrates the model.

Scenario 1
auth

Scenario 2
Scenario 3

collPersInf

destrPersInf

Scenario 4
collPersInf

Scenario 5
collMedInf

Compliant
Weakly

Compliant
Not Compliant

Note that the exception-based definition of permission in LMP is well-suited for
the formalization of the privacy act, which considers permissions as exceptions
to prohibitions.

Remark 5.5 The paradox is resolved in LMP by the use of dyadic deon-
tic operators. In contrast to SDL’s monadic operators, LMP indeed enables
the derivation of context-dependent prohibitions, permissions, and obligations,
accommodating changing situations, and thus allowing, e.g., the formulas
F(collPersInf/⊤) and P(collPersInf/auth) to be true simultaneously.

6 Conclusions

Mı̄mām. sā provides a treasure trove of more than 2,000 years worth of deontic
investigations, including the application of deontic principles in juridical con-
texts and problems. In this article, we have analyzed the notion of permission
in Mı̄mām. sā, and formalized its properties by transforming relevant nyāyas
(identified, translated from Sanskrit and interpreted) into suitable Hilbert ax-
ioms. The resulting deontic operator has been added to the logic of Mı̄mām. sā
as discussed in [8], and a sound and complete semantics has been provided.
We have analyzed the behavior of the new permission operator using an es-
tablished method in the deontic logic literature, which involves confronting it
with deontic paradoxes, and found out that the resulting operator behaves well
w.r.t. the considered paradoxes.

One might wonder whether the command we are discussing can be mean-
ingfully described as permission at all. In fact, the term ‘permission’ in Euro-
American philosophy or in Deontic Logic is strongly polysemic, covering, among
others, acts that are not normed as well as acts that were previously prohibited
and are now permitted, and even rights. Philosophers of the Mı̄mām. sā school,
by contrast, adopt the standard Sanskrit terms for permission (anujñā and
anumati), but focus on only one aspect among the ones mentioned above, and
use different terms for the others (for instance, adhikāra comes close to rights,
see [18]). Using the term ‘permission’ thus highlights a single shared aspect
and suggests a way out of the polysemy of ‘permissions’.

Overall, this paper introduces and formalizes the concept of permission in
Mı̄mām. sā, contributes to the ongoing development of deontic logic, and sheds
light on the importance of considering permission in normative reasoning.

There is still a missing component to capture the essence of Mı̄mām. sā per-
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mission. As discussed in Section 3, while a certain condition may render a
generally prohibited action permissible under specific circumstances, Mı̄mām. -
sā still encourages avoiding such action whenever possible. To address this, we
aim to incorporate in LMP the Ceteris Paribus preference (as e.g. in [7,31])
as future work. Specifically, we plan to compare two scenarios with identical
obligations and prohibitions, but where the preference of the world depends on
the fulfilled permissions.
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Philosophies 2 (2017), pp. 47–66.

[20] Freschi, E. and M. Pascucci, Deontic concepts and their clash in mı̄mām. sā: Towards an
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L-4365 Esch-sur-Alzette

David Streit 1

University of Luxembourg
2, avenue de l’Université
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Abstract

Dual-role approaches to reasons say, roughly, that reasons can relate to actions in
two fundamentally different ways: they can either require conformity, or justify an
action without requiring that it be taken. This paper develops a formal dual-role
approach, combining ideas from defeasible logic and practical philosophy. It then
uses the approach to shed light on the phenomenon of supererogation and resolve a
well-known puzzle about supererogation, namely, Horton’s All or Nothing Problem.

Keywords: reasons, dual-role approaches, defeasible logic, supererogation, all or
nothing problem

1 Introduction

This paper has two goals. The first is to capture the core idea behind what
we call dual-role approaches to reasons in a simple defeasible logic—in the
style of the logic presented in [18]. The idea in question is, roughly, that the
normative forces associated with reasons are of two fundamentally different
kinds: some reasons for action require conformity, while others justify actions
without requiring that they be taken. The second goal is to apply the resulting
formal dual-role approach to the phenomenon of supererogation and to develop
a unified response to the puzzles surrounding it.

1 The first author acknowledges the support of the Fonds National de la Recherche
Luxembourg (FNR) through the projects DELIGHT (OPEN O20/14776480). Both authors
acknowledge the travel support from the same funding institution through the project
INTEGRAUTO (INTER/AUDACE/21/16695098). We also thank our three anonymous
reviewers for their insightful comments. The second reviewer’s generous set of comments was
particularly helpful.
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The remainder of this paper is structured as follows. Section 2 provides a
quick survey of the relevant literature on reasons, dual-role approaches, and
formal work. Section 3 sets up the formal model. Section 4 shifts the focus to
supererogation and explains how the dual-role approach that comes with the
model responds to the basic challenge supererogation poses. Section 5 discusses
a further puzzle of supererogation, namely, the All or Nothing Problem, [14].
Section 6 discusses related (formal) work on supererogation. The concluding
Section 7 is followed by an appendix that contains the proofs of the most
important results.

2 Reasons and dual-role approaches

Practical normative reasons are standardly characterized as considerations that
count in favor or against actions. 2 Schroeder [41] helpfully points out the three
“marks” that are characteristic of such reasons: they compete against each
other, they are act-oriented, and they are the sorts of considerations that one
can act for. The notion has become a mainstay of practical philosophy, where
it is routinely made use of in answering various normative and metanormative
questions. This is taken to the extreme in the reasons-first program which
holds, roughly, that the notion of reasons is basic and that all other normative
notions are to be analyzed in terms of it. 3

For our purposes, two more recent developments in the literature on reasons
will be particularly important. The first is the formal work on reasons, and, in
particular, Horty’s default logic-based model of the way reasons interact to sup-
port oughts. 4 Since the publication of Reasons as Defaults [18], this model has
been extended in several ways and applied to many new problems, even find-
ing a path into a more orthodox (that is, nonformal) monograph on reasons. 5

Other frameworks have been used to model reasons too—see, e.g., [6] and [7]—
but default logic and defeasible logics more generally have been more influential.
The second body of literature crucial for our interests develops what we call
dual-role approaches to reasons. 6 Lately, several authors—most notably, Gert
[8], [9], [10] and Greenspan [11], [12]—have argued that we need to distinguish
two fundamentally different dimensions in the normative forces associated with
reasons. 7 Thus, Gert discusses “requiring and justifying strengths” of reasons:
the requiring strength is said to ground potential criticism and, through that,

2 See, e.g., [34], [37], [38], [40], [44]. Whenever we say reasons, we always mean normative
reasons, as opposed to explanatory or motivational reasons—see [1], for a discussion.

3 The locus classicus here is Scanlon [38]. But see also, e.g., [34], [37], [41].
4 We use the terms ought and oughts to refer to conclusions about what we ought to do.
5 See, e.g., [15], [28], [32], and [41, Chs. 4.4–5].
6 We borrow the term from [29].
7 Both Gert and Greenspan urge to draw the distinction since it allows one to resolve

various foundational issues in practical philosophy. For instance, Gert [8] shows how it can
be used to the benefit of certain moral theories which, without the distinction, allow for cases
in which the agent is forced to choose between an irrational moral action and an immoral
rational one.
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require conformity, while the justifying strength is said to ground answers to
potential criticism and, thereby, justify nonconformity—see, e.g., [9, p. 541].
Importantly, some reasons are meant to be “purely justifying”, meaning that
they possess only the latter type of strength. In a similar vein, Greenspan
[11,12] discusses “negative reasons” which count against an action and, with-
out sufficient counterbalancing reasons, “.. [ground] a requirement to take some
alternative option..” [11, p. 387] and “positive reasons” which count in favor
of acts. Greenspan takes purely positive reasons to “ground at most only a
recommendation”. They “do not compel, but instead are optional, rendering
an option eligible for choice, or justifying it, without requiring it” [11, p. 389]. 8

Gert’s and Greenspan’s views differ in details, but these won’t matter for our
purposes. Our main takeaway is their (common) core insight: reasons can re-
late to actions in two fundamentally different ways: They can have requiring
force or (merely) justify an action. 9 The goal of the next section is to make
this precise by expressing the core insight of dual-role approaches in a defea-
sible logic and combining the two strands found in the literature. The only
other published attempt at formalizing dual-role approaches that we are aware
of is due to Mullins [29]. While Mullins builds on Horty’s model, like we do,
his formalization differs from ours in several important respects. We compare
our approach to his in Section 6.

3 The formal model

Let’s start with a simple scenario:

Save One or Two. Alice and Bob are trapped in a collapsing building.
You can easily and without costs to yourself save one of them. You can also
save both, but that would involve serious harm to you: you would lose your
legs. 10

Notice the three reasons that are particularly salient in this scenario: the fact
that Alice will die, unless you save her; the fact that Bob will die, unless you
save him; and the fact that you will lose your legs if you save both. Notice too,
that all of the following judgments seem very intuitive: you have to save either
Alice or Bob (we’d blame you if you walked away); it’s not the case that you
have to save both (we wouldn’t blame you for deciding to keep your legs); but

8 It pays noting that, in the literature on reasons, the terms positive and negative reasons
are often applied to, respectively, reasons that count in favor of an action and those that
count against—see, e.g., [37]. Clearly, this is very different from the way Greenspan uses
these terms. To avoid confusion, we adopt Gert’s terminology.

9 Many other authors have drawn similar distinctions. This includes Dancy’s [5] distinc-
tion between “enticing” and “peremptory” reasons, Parfit’s [34] distinction between “partial”
and “impartial” reasons, Portmore’s [35] distinction between “moral” and “nonmoral” rea-
sons, and Muñoz’s [30] distinction between reasons and “prerogatives”. The idea is always
that we can distinguish two different dimensions in the way reasons—or reasons and consid-
erations that aren’t reasons—relate to actions.

10 The scenario comes from [31].
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were you to save both, your action would be highly admirable. 11

We will now devise a formal notation that is just rich enough for a dual-role
analysis of this scenario. As background, we assume the language of proposi-
tional logic with the standard connectives (including ⊥), and we let the cus-
tomary symbol ⊢ stand for classical logical consequence. Thus, we can use the
propositional letters A, B, and L to express the propositions, respectively, that
you save Alice, that you save Bob, and that you lose your legs. The constraint
that you can’t save Alice and Bob, as well as keep your legs, can be expressed
as the material conditional (A&B) ⊃ L. Extending the language slightly, we
allow for formulas of the form !X and read them as saying that there is a
reason supporting the proposition expressed by X. What !A, !B, and !¬L,
then, say is, respectively, that there’s a reason supporting your saving Alice,
that there’s a reason supporting your saving Bob, and that there’s a reason
supporting your not losing your legs. 12 For our purposes, it is not important
to explicitly represent the reasons that ground such formulas as !A, !B, and
!¬L. In all the cases we will discuss, it won’t matter what these reasons are
exactly. What’s more, we won’t encounter any cases where the fact that a
proposition is supported by multiple different reasons can make a difference
for its analysis. In effect, this means that a formula of the form !X can be
read as “there is a reason supporting X” and also used to refer to the reason
that grounds it. This is why we will often call such formulas reasons. We use
R and J to denote (finite) collections of !-formulas: these will represent, re-
spectively, requiring and justifying reasons—we adopt Gert’s terminology. We
also introduce the function Conclusion(·) that transforms !-formulas (and sets
of such formulas) into ordinary propositional ones: thus, Conclusion(!A) = A
and Conclusion({!L}) = {L}. The intuitive idea that some reasons have more
weight than others will be captured by supplementing sets of !-formulas with a
strict partial order. An expression of the form !Y < !X should, then, be read
as saying that the reason that grounds !X has more weight than the reason
that grounds !Y . 13

We represent particular cases using the notion of a context:

Definition 3.1 [Contexts] A context ∆ is a structure of the form ⟨W,R,J , <⟩,
where W is a consistent set of propositional formulas, R and J are finite sets
of !-formulas, with the requirement that R ⊆ J , and < is a strict partial order
on J . 14

For illustration, we express Save One or Two in the context ∆1 = ⟨W,R,J , <⟩
where W = {(A&B) ⊃ L}, R = {!A, !B}, J = {!A, !B, !¬L}, and < is empty.

11 If your intuitions differ on this, consider upping the cost to yourself. Instead of losing
your legs, you might lose your life.

12 Similar notation is used in [17], [32, Appendix 2], and [45].
13 We thank an anonymous reviewer for pressing us to clarify our conceptualization of

formulas preceded by the ! (bang) operator.
14 The constraint that J is finite keeps proofs in the appendix more manageable. It also

fits well with the informal literature.
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Given our intended interpretation of R and J , the requirement that R ⊆ J
amounts to the idea that every requiring reason can serve as a justifying one.
And the fact that !¬L is in J , but not R formalizes the idea that the reasons
that speaks against you losing your legs are purely justifying.

As our next step, we extend the language with three deontic operators.
Thus, henceforth, we allow for formulas of the form Ought(X), Must(X),
and Can(X); and read them as saying, respectively, that it ought to be the
case that X, that it is required, or that it must be the case, that X, and
that it is permitted that X. 15 In what follows, we will often refer to these
formulas as, respectively, oughts, requirements, and permissions. Before we
specify a procedure for deriving such formulas from contexts, it pays noting
that the emerging consensus in linguistics is that there are two distinct deontic
necessities: a weaker one—typically ascribed using the modals ought to and
should—and a stronger one—typically ascribed using must and have to. 16

Our oughts are meant to capture the weaker modality, while the requirements
are meant to capture the stronger one.

Turning to the procedure, we need to specify how conflicts between reasons
of different strength get resolved. A standard albeit simplistic move is to classify
a reason r as “undefeated” if there is no stronger (requiring) reason r′ such that
W ∪Conclusion(r′) ⊢ ¬Conclusion(r). 17 Unfortunately, this approach won’t
do for us. 18 So, instead, we make use of a slightly more complex approach,
motivated by the work of Brewka [4] and its characterization in [18, Ch. 8.2].
We start by defining two notions.

Definition 3.2 [Active reasons] Given a context ∆ = ⟨W,R,J , <⟩ and D ⊆
J , let
Active∆(D) = {r ∈ J : W ∪Conclusion(D) ∪Conclusion(r) ⊬ ⊥ and r /∈ D}.
Thus, a reason r is active relative to a set of reasons D in case it is consistent
with D, but not (yet) in D. The second notion we need is that of <-maximal
elements:

Definition 3.3 [Maximal element] Given a set of reasons D and a preorder <
on D, let Max<(D) = {r ∈ D : there is no r′ ∈ D with r < r′}.
Here is the basic idea of the Brewka-motivated approach: given a context
⟨W,R,J , <⟩, we look at all possible ways of extending < to a total order
<′ on J , and then, for each of those ways, we build a set of reasons whose

15 The distinction between impersonal and personal obligations—as well as requirements
and permissions—is orthogonal to our goals. So, we follow what Horty [17] calls the policy
of intentional, but harmless equivocation and move freely between impersonal and personal
reading of Ought(X), Must(X), and Can(X).

16 For the discussion of linguistic data, see e.g., [46], [36, pp. 79–81]; for its importance
for ethical theory and reasons-first views in particular, see [3], [42], and [43], and for its
importance for deontic logic, see [24].

17 See, e.g., [17], [20], [29].
18 For a critical discussion of this approach and a number of others, see [18, Ch. 8]. We

can’t use it, because it gives rise to counterexamples to our Proposition 5.1.
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conclusions are consistent, starting with the empty set and iteratively selecting
the <′-maximal element from among the reasons that are active at a given
step. Our next two definitions make this idea precise.

Definition 3.4 [Brewka scenarios, for totally ordered contexts] Let ∆ =
⟨W,R,J , <⟩ be a context where < totally orders J . Then B is the Brewka
scenario of ∆ just in case B =

⋃
i≥0 Bi, where the sequence B0,B1,B2, . . . is

defined as follows:

B0 = ∅,

Bi+1 =

{
Di if Active∆(Bi) = ∅
Di ∪Max<(Active∆(Bi)) otherwise

To illustrate, consider the context ∆2 = ⟨W,R,J , <⟩ where W = {A ⊃
¬B,B ⊃ ¬C}, R = J = {!A, !B, !C} and !A < !B < !C. Notice that !A
and !C are compatible, while !B conflicts with both of them. Now let’s de-
termine the unique Brewka scenario B of this context by constructing the
sequence B0,B1,B2, . . . such that B =

⋃
i≥0 Bi. Clearly, B0 is the empty

set. Since Max<(Active∆(B0)) equals {!C}, we have B1 = {!C}. Fur-
ther, it is not difficult to see that Max<(Active∆(B1)) equals {!A}. Since
W∪Conclusion(B1) = {A ⊃ ¬B,B ⊃ ¬C,A} entails ¬B, the reason !B is not
in Active∆(B1), while the reason !C is. As a reasult, we have B2 = {!A, !C}.
After this step, there are no further active reasons that could be added, and
so we have Bi = B2 for every i ≥ 2. At this point it should be clear that the
Brewka scenario B =

⋃
i≥0 Bi that we were looking for is {!C, !A}.

Our next definition extends the notion of a Brewka scenario to contexts
that are not totally ordered.

Definition 3.5 [Brewka scenarios] Let ∆ = ⟨W,R,J , <⟩ be any context.
Then B is a Brewka scenario based on ∆ just in case B is the Brewka sce-
nario of some context ⟨W,R,J , <′⟩ where <′ is a total order extending <.

Returning to the earlier Save One or Two scenario, there are six ways
to extend the empty relation of ∆1 to a total order. What is important to
determining the Brewka scenarios of the resulting totally ordered contexts are
only the two highest ranked reasons—how they are related to each other doesn’t
matter. If !A and !B are ranked the highest, the Brewka scenario is {!A, !B}.
If !A and !¬L are ranked the highest, the Brewka scenario is {!A, !¬L}. Lastly,
if !B and !¬L are ranked the highest, we get {!B, !¬L}. Thus, in total, there
are three Brewka scenarios based on ∆1.

In addition to Brewka scenarios, our procedure for deriving oughts, require-
ments, and permissions, will make use of the following auxiliary notion:

Definition 3.6 [Stable scenarios, restricted contexts] Given a context ∆ =
⟨W,R,J , <⟩, a stable scenario based on ∆ is any set D such that R ⊆ D ⊆ J .
Letting <D stand for < restricted to D, we call the context ⟨W,R,D, <D⟩ the
restriction of ∆ to D and denote it by ∆D.
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So, a stable scenario includes all requiring reasons and any set of justifying
ones—which implies that R always qualifies as a stable scenario. For illustra-
tion, there are two stable scenarios based on ∆1: {!A, !B} and {!A, !B, !¬L}.

We are finally in a position to specify the conditions under which oughts,
requirements, and permissions follow from contexts. We start with oughts.
Intuitively, these are obtained by restricting attention to requiring reasons and
completely ignoring the justifying ones, and then looking at what follows from
all Brewka scenarios that can be constructed from them.

Definition 3.7 [Oughts] Given a context ∆ = ⟨W,R,J , <⟩, the formula
Ought(X) follows from ∆, written as ∆ |∼ Ought(X), just in case, W ∪
Conclusion(B) ⊢ X for every Brewka scenario B based on ∆R.

It’s not difficult to verify that Ought(A&B) follows from ∆1: you ought to save
both Alice and Bob. Whereas oughts are determined on the basis of requiring
reasons alone, requirements and permissions are determined on the basis of
both types of reasons. The idea underlying our definitions is simple: Must(X)
follows from a context when, for every stable scenario based on the context,
X is a consequence of all of its Brewka scenarios; and Can(X) follows when,
for some stable scenario based on the context, X is a consequence of one of its
Brewka scenarios.

Definition 3.8 [Requirements] Given a context ∆ = ⟨W,R,J , <⟩, the for-
mula Must(X) follows from it, ∆ |∼Must(X), just in case, for every stable
scenario D based on ∆, we have W ∪ Conclusion(B) ⊢ X for every Brewka
scenario B based on ∆D.

Definition 3.9 [Permissions] Given a context ∆ = ⟨W,R,J , <⟩, the formula
Can(X) follows from it, ∆ |∼ Can(X), just in case, for some stable scenario
D based on ∆, we have W ∪ Conclusion(B) ⊢ X for some Brewka scenario B
based on ∆D.

For illustration, the two stable scenarios based on ∆1, one of which we’ve
discussed in detail above, give rise to three Brewka scenarios: {A,B}, {A,¬L},
and {B,¬L}. Since A∨B follows from all of them, we have ∆1 |∼Must(A ∨B).
And since A ∨ B and ¬L follow from some, we have ∆1 |∼ Can(A&B) and
∆1 |∼ Can(¬L). You have to save either Alice, or Bob; you can (and ought to)
save both of them; and you can keep your legs. Thus, the model gets all the
intuitions about Save One or Two right.

The model also has some nice properties. We register them here as a set of
propositions—the proof of Proposition 3.2 is given in the appendix, the other
two follow straightforwardly from the definitions:

Proposition 3.1 For any context ∆ = ⟨W,R,J , <⟩, (i) if ∆ |∼Must(X),
then ∆ |∼ Ought(X); and (ii) if ∆ |∼ Ought(X), then ∆ |∼ Can(X).

Proposition 3.2 For any context ∆ = ⟨W,R,J , <⟩, neither ∆ |∼ Ought(⊥),
nor ∆ |∼Must(⊥), nor ∆ |∼ Can(⊥).
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Proposition 3.3 Let ∆ = ⟨W,R,J , <⟩ be an arbitrary context. Then (i)
∆ |∼ Ought(X&Y ) just in case both ∆ |∼ Ought(X) and ∆ |∼ Ougth(Y ) and
(ii) ∆ |∼Must(X&Y ) just in case both ∆ |∼Must(X) and ∆ |∼Must(Y ).

Before we leave this section, let us answer two natural questions. The first
concerns conditional oughts, requirements, and permissions. It’s natural to
wonder how these might be captured in our framework. It turns out that we
can capture them by generalizing a familiar idea, going back at least to [16].
As a first step, we define the notion of updated contexts:

Definition 3.10 [Updated contexts] Given a context ∆ = ⟨W,R,J , <⟩ and
a formula X consistent with W, the result of updating, or supplementing, ∆
with X, written as ∆[X], is the context ⟨W ∪ {X},R,J , <⟩.
Thus, the context ∆[X] is just like ∆, except that X is now taken to be an
established fact. With the notion of updated contexts, we can specify when
conditional deontic statements follow from a context as follows:

Definition 3.11 [Conditional oughts, requirements, and permissions] Let ∆
be an arbitrary context. Then:

∆ |∼ Ought(Y |X) just in case ∆[X] |∼ Ought(Y );
∆ |∼Must(Y |X) just in case ∆[X] |∼Must(Y );
∆ |∼ Can(Y |X) just in case ∆[X] |∼ Can(Y ).

The second natural question concerns Definitions 3.7, 3.8, and 3.9: one may
wonder what prompts the choice of what’s known as the disjunctive account
(over the conflict account). 19 The short answer is that not much seems to
hinge on it, given our purposes, and that, in deontic settings, the disjunctive
account is the less committal of the two and so also safer to work with.

4 Supererogation and the standard account

Having set up the formal model, let’s take a step back from it and reconsider
the Save One or Two scenario. As we have already noted, there seems to be
an intuitive sense of ought in which you ought to save Alice and Bob, but it’s
not the case that you have to do it. Still, saving Alice and Bob is not only
permissible, but would also be highly admirable. In fact, there seems to be a
clear intuitive sense in which it is the best thing you could do. From a third-
person perspective, it certainly looks like this action leads to the best possible
outcome, with all three people involved staying alive—although one of them
severely inured.

And this means that saving Alice and Bob is a supererogatory action as it is
an action that is ostensibly best, and yet it isn’t obligatory. What Muñoz [30]
calls the Classic Paradox of Supererogation is the challenge to explain the very
possibility of such actions. Our formal approach has the resources to meet this
challenge—which it inherits from the core idea of dual-role approaches. Thus,
in response to the question of why saving Alice and Bob is the best action,

19 See, e.g., [17] for a discussion.
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we can say that it maximizes compliance with the requiring reasons at play in
the scenario. In fact, carrying out A&B, that is, saving Alice and Bob, means
complying with all the requiring reasons at play in ∆1, that is, !A and !B.
And in response to the question of why saving Alice and Bob isn’t obligatory,
our approach lets us point to the (purely) justifying reason !¬L and say that
it can serve as an excuse to not comply with one of the requiring reasons.
Notice that these answers straightforwardly generalize to other cases involving
supererogatory actions, giving us a general response to the classic paradox.

There’s another formal approach to supererogation—the titular standard
approach—that resolves the classic paradox, namely, McNamara’s Doing Well
Enough framework [23], [24], [25]. 20 McNamara works with ranked possible
worlds: the higher a world’s ranking, the (morally) better it is. Requirements
are determined by a threshold: if X is true in all worlds above it, it’s required
that X. Permissions are duals of requirements: if it’s not the case that ¬X is
required, it’s permissible that X. Oughts in our sense are determined by the
best worlds, they are “the most one can do”: if X is true in all the best worlds,
it ought to be that X. Also, since the best worlds are above the threshold, this
gives the intuitive principle that requirements imply oughts.

This setup lets McNamara account for the intuitions in Save One or Two
and respond to the challenge: saving Alice and Bob is best because the worlds
where both get saved are ranked the highest; it is not obligatory because there
are other worlds above the threshold where only one person is saved. 21

So now we have seen two formal accounts of supererogation. The standard
one might look more elegant and simple, but there’s a serious problem with an
account like this: transitively ranking all worlds and determining acceptability
by means of a threshold imposes serious restrictions. It rules out scenarios
where an impermissible act is superior to a permissible one—cf. [47]. The
problem is that such scenarios seem possible: 22

All or Nothing. Alice and Bob are, again, trapped in a collapsing building,
but this time you will lose your legs whether you save one or both of them. 23

Intuitively, worlds where only one person is saved are superior to those where
none are. Nevertheless, walking away seems permissible, while saving only one
person does not—it involves gratuitous loss of life. The threshold framework

20 We see McNamara’s work as a representative of the dominant approach to deontic
modality in philosophy and linguistics, associated, among others, with [21] and [22]. The
difficulties that McNamara faces are symptomatic of problems for this dominant approach.
This is evidenced by the fact that Åqvist in [2], who defends an even more fine-grained
threshold model with an arbitrary number of levels of goodness, still cannot accommodate
the scenario we discuss in the next section in a natural and intuitive manner—at least not
without giving up the intuitive notion of a threshold.

21 Perhaps, a fully satisfactory explanation would need to say more about the ranking and
threshold, but there are several plausible things to say here.

22 In Section 6, we consider the question of how the standard account might be changed
to address this problem.

23 The case comes from [14].
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says otherwise: since worlds where one person gets saved are better than those
where none are, and it’s permissible to walk away, it must be permissible for
you to save only one.

Our model, by contrasts, easily handles the case. We express it as the
context ∆3 = ⟨W,R,J , <⟩, where W = {A ⊃ L,B ⊃ L}, R = {!A, !B}, J =
{!A, !B, !¬L}, and < is empty. It’s not difficult to verify that Can(¬A&¬B)
follows from ∆3, and that neither Can(A&¬B), nor Can(¬A&B) do: while
it’s permissible for you to save neither Alice, nor Bob, it’s not the case that
you can save only one.

5 Horton’s All or Nothing Problem

In addition to the classic paradox, supererogation gives rise to at least two
other puzzles. Following [30], we call them the All or Nothing Problem
[14] and the Intransitivity Paradox [19]. While our dual-role approach can
resolve both puzzles, here we discuss only the former one, for reasons of
space. It emerges as combinations of intuitions about the All or Nothing
scenario and a plausible principle. We present the problem as a set of jointly in-
consistent claims in English, staying close to Horton’s [14] original formulation:

1. It’s morally permissible to save neither Alice nor Bob. (intuition)
2. It’s morally wrong for you to save only one of them. (intuition)
3. If an act X is morally permissible and an act Y is morally wrong—and

X and Y are the only two available acts—one ought to do X, rather than Y .
(intuitive principle)

4. You ought to save neither Alice nor Bob rather than save only one of
them. (from 1–3)

5. But, clearly, (4) is false. (intuition)

Two notes are in order. First, the oughts in claims (3) and (4) aren’t meant
to immediately map onto our technical notion of ought. Rather, at this point,
claims (1)–(5) are meant to express pretheoretical intuitions—as they do in
Horton’s statement of the puzzle. Second, the paradox appeals to the notion
of comparative obligations. While this notion makes intuitive sense and is
used by Horton, it certainly hasn’t been the focus of much research in deontic
logic. Luckily, it seems possible to capture this notion in terms of conditional
obligations: to say that one ought to do X, rather than Y is just to say that
one ought to do X in case X ∨ Y . 24 Bearing this in mind and letting A and
B express the same propositions they did before, we propose to express the
problem in our formal notation as follows—which, we contend, sharpens it:

1. Can(¬A&¬B) (intuition)
2. Must(¬([A&¬B] ∨ [¬A&B])) (intuition)
3. If Can(X) and Must(¬Y ), then Must(X|X ∨ Y ) (intuitive principle)

24 In his original statement of the problem, Horton suggests this much—see [14, fn. 2].
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4. If Can(¬A&¬B) and Must(¬([A&¬B] ∨ [¬A&B])), then
Must(¬A&¬B|[¬A&¬B] ∨ ([A&¬B] ∨ [¬A&B])) (instance of the principle)

5. Must(¬A&¬B|[¬A&¬B] ∨ ([A&¬B] ∨ [¬A&B])) (from 1, 2, and 4)
6. Must(¬A&¬B|¬[A&B]) (substitution of equivalent formulas)
7. But, clearly, not Must(¬A&¬B|¬[A&B]) (intuition)

It’s worth being explicit about two assumptions in the background of our
formalization. First, we take the oughts in the original claims to express the
stronger deontic modals, what we called requirements. Second, we are assuming
that if an action is morally wrong, there’s a requirement forbidding taking this
action. Both assumptions strike us as very plausible. What our formalization,
then, does is show that All or Nothing is, indeed, a genuine puzzle, and that,
their intuitive character notwithstanding, we cannot hold onto claims (1)–(3)
and (7) on pain of inconsistency.

Our model happens to solve this puzzle, suggesting that the fault lies with
the principle expressed in (3). First off, the principle’s counterpart

If ∆ |∼ Can(X) and ∆ |∼Must(¬Y ), then ∆ |∼Must(X|X ∨ Y )

is demonstrably false. This is witnessed by the context ∆4 = ⟨W,R,J , <⟩
where W = {C ⊃ ¬D,D ⊃ ¬E,E ⊃ ¬C}, R = {!C, !D}, J = {!C, !D, !E},
and !D < !C. It’s quite easy to verify that we have both ∆4 |∼ Can(E) and
∆4 |∼Must(¬D), while we don’t have ∆4 |∼Must(E|D ∨ E). What’s more,
it can be shown that two principles in the vicinity hold true in the model—the
proofs are provided in the appendix:

Proposition 5.1 For any context ∆,
(i) if ∆ |∼ Can(X) and ∆ |∼Must(¬Y ), then ∆ |∼ Can(X|X ∨ Y );
(ii) if ∆ |∼ Ought(X) and ∆ |∼Must(¬Y ), then ∆ |∼ Ought(X|X ∨ Y ). 25

The fact that these principles hold can explain the intuitive pull of the original
principle. Our approach also makes clear where the original principle goes
wrong: it attempts to bridge unconditional and conditional deontic statements
without keeping track of the types of reasons that these statements depend on.

6 Related work

This section compares our model to Mullin’s [29] dual-role approach to rea-
sons and briefly discusses related work on supererogation. 26 After discussing

25 To be fair, both principles are immediate consequences of more general principles that
hold in the model, as the proofs in the appendix make manifest. An anonymous reviewer
suggests that this weakens our claim that the principles we propose account for the intuitive
pull of the original principle. While we share the intuition that, it would be a nice feature
of the model, if our principles wouldn’t be mere corollaries of more general ones, it is not
immediately clear to us why the claim is weakened. In any event, Proposition 5.1 is the best
we have for now, and it might well be that our model validates other principles that could
serve its function, or serve it better.

26 We focus on recent work on supererogation. For a historical perspective and its relevance
to current topics see [26].
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Mullins, we revisit McNamara’s threshold account and consider his recent ex-
tension to conditional operators. Then we discuss Wessels’ [47] quasi decision-
theoretic approach—which discusses cases like All or Nothing—and Hansson’s
[13] approach.

6.1 Mullins dual-role approach

Mullins starts with Horty’s model [18] and discusses two ways to capture the
distinction between requirements and oughts. The first appeals to a threshold
of strength, the second one—which we focus on—distinguishes between two
distinct types of reasons in the spirit of dual-role approaches. 27

Unlike us, Mullins relies on the simple approach to defeat, and his strategy
is to, first, specify when a context entails a requirement—that is, a Must-
formula—and then, in the second step, use this as a basis for determining
which permissions and oughts this context entails. More precisely, Can(X)
is set to follow from a context just in case Must(¬X) does not follow, and
Ought(X) is set to follow just in case, roughly, the reasons that entail X are
compatible with the reasons that allow for the derivation of Must-formulas.
Explaining his strategy, Mullins writes:

We first identify our undefeated requiring reasons, in order to determine what
is required or impermissible. Oughts are then supported by our best justi-
fying reasons, provided the consequences of their conclusions are consistent
with some maximal subset of requiring reasons [29, p. 586].

To see Mullins’ model at work, we revisit the familiar Save One or Two scenario.
We captured it in the context ∆1 = ⟨W,R,J , <⟩ where W = {(A&B) ⊃ L},
R = {!A, !B}, J = {!A, !B, !¬L}, and < empty. To determine which Must-
formulas follow from it, we are to look at what follows from the subsets of un-
defeated requiring reasons—that is, the subsets of Conclusion(R) = {A,B}—
that are maxiconsistent with W. This, however, gives us the counterintuitive
result that both Must(A&B) and Must(L) follow from ∆1: you have to save
Alice and Bob, and lose your legs. One might take this to mean that the sce-
nario has to be captured in a different context, and the most natural alternative
that suggests itself is ∆5 = ⟨W,R,J , <⟩ where W = {(A&B) ⊃ L}, R = ∅,
J = {!A, !B, !¬L}, and < is empty. 28 Even barring the counterintuitive im-

27 See [29, Secs. 4 and 5]. The basic idea behind the first way to capture the distinction
is that only reasons above a certain threshold can support requirements. Mullins attributes
the idea to Scanlon [39].

28 Another possible candidate is the context ∆6 = ⟨W,R,J , <⟩ where R = {!(A∨B)} and
the rest is like in ∆5. But while this secures the intuitive results that both Must(A∨B) and
Ought(A&B) are derivable, there’s good reason to be dissatisfied with this context. Most
importantly, the inclusion of a disjunctive requiring reason looks terribly ad hoc, since it
amounts to hard-coding the desired intuition. Also, Ought(¬L) follows from ∆6, just like it
does in the case of ∆5. An anonymous reviewer worries that leaving the ordering < empty
in the representation of the case stacks the cards, since, in Mullins’ model, requiring reasons
can get defeated by justifying ones. While the reviewer’s reaction is certainly reasonable, we
couldn’t think of any way the ordering might be used to get Mullins’ account to deliver the
right result: setting !A, !B < !¬L fails to deliver the intuitive Must(A ∨ B), while adding
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plication that the fact that Alice and Bob are in danger doesn’t exert requiring
normative force, we don’t get a good match with intuitions. First,Must(A∨B)
doesn’t follow from ∆5. Second, while Ought(A&B) follows from ∆5, so does
Ought(¬L), suggesting that not losing your legs is optimal. 29

This invites the conclusion that Mullins’ model has serious trouble accom-
modating the Save One or Two scenario. There are other issues with it too, but
we won’t dwell on them and simply state (what we take to be) the underlying
problem: it determines requirements almost exclusively on the basis of requir-
ing reasons, not giving justifying reasons their due. 30 Admittedly, this appears
to be the default approach in the (informal) philosophical literature—see, e.g.,
[43]—but it doesn’t seem to work once expressed in a defeasible logic-based
framework.

6.2 Doing Well Enough

Since McNamara’s framework was already introduced in Section 4, here we
confine ourselves to some brief remarks focusing on its conditionalized version,
as developed in [27], and briefly sketch some worries whether, if at all, it might
accommodate cases like Horton’s All or Nothing scenario. The main advance of
[27] is the provision of formal tools to capture conditionally acceptable worlds,
in the style of Dyadic Deontic Logic [33, Ch. 2]. Acceptable worlds are those
worlds that are above the threshold or “good enough”, and any proposition
true in one of these world is permitted. This allows one to formalize Horton’s
All or Nothing Problem using conditional obligations, like we suggest in Sec-
tion 5. McNamara’s analogues of our Must-, Can-, and Ought-operators are,
respectively, OB(·), PE(·), and MA(·), “the most one can do”. Both OB(·)
and MA(·) function like standard dyadic operators. This has the consequence
that the principle PE(X)&OB(¬Y ) ⊃ OB(X|X ∨ Y ) is a theorem in McNa-
mara’s logic as he presents it in [27]. The fact that this principle holds, depends
crucially on the semantic principle that there is a threshold: if a world is ac-
ceptable, then any world better than it is acceptable as well. An anonymous
reviewer notes that it is possible to give up this principle. This is true, but
a challenge remains: one has to account for the (remaining) claims that com-
prise the All or Nothing puzzle without simply hard-coding which actions are

!(A&B) to R and setting !(A&B) < !¬L (as the reviewer appears to suggest) doesn’t really
change anything.

29 Mullins’ strategy uses the conflict account in determining which oughts follow from
a context. A natural idea is to substitute it with the disjunctive account—Shyam Nair
suggested this much in his keynote talk at the DEON2020/21 conference. Unfortunately,
this move doesn’t solve the problem: Ought(¬L) no longer follows from the context, but
neither does Ought(A&B).

30 There is only one way in which justifying reasons can have an impact on the requirements
in Mullins’ model: they can outright defeat requiring reasons. This, however, appears to be
not enough to get the cases right—see Footnote 28. We thank an anonymous reviewer for
pushing us to clarify our take on Mullins’ approach.
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permitted and which are not into the logical description of the case. 31

All in all, while McNamara’s (conditional) system allows one to express
normative notions that we cannot easily capture—like “the least one can do”—
we take it to be a serious challenge to modify it so that it can account for puzzles
surrounding supererogation (of which All or Nothing is one) in a natural way. 32

In any event, we should be wary of any framework committed to the existence
of a threshold, since it implies some of our intuitions about the All or Nothing
scenario must be mistaken.

6.3 Other recent proposals

Wessels [47] proposes a very different account to accommodate supererogation.
It is not a full-fledged logic, but still instructive. Wessels’ explicit goal is to
account for cases like the All or Nothing scenario, or cases involving what she
calls “supererogation holes”.

In Wessels’ account, actions (instead of worlds) are totally ordered by their
respective goodness, and an actions’ “being supererogatory with respect to
another action” is used to define supererogation simpliciter. The core idea is
that an action is supererogatory with respect to another action just in case
the relation between gained moral value and burden to the agent is above
a threshold. 33 Using this construction, Wessels then defines supererogatory
actions as follows.

An action fj is supererogatory just in case the answers to all three subques-
tions is yes:
(1) Is there an action fi such that fj is supererogatory with respect to fi?
(2) Are all the actions that are morally better than fj supererogatory with
respect to fj?
(3) Are all the actions that are morally better than fi supererogatory with
respect to fi?

Notice how this way of capturing supererogation lets her say that, in the All or
Nothing scenario, saving either only Alice or only Bob is not supererogatory:
since the act of saving both Alice and Bob doesn’t put an additional burden
on the agent when compared to saving either only Alice or only Bob, it’s not
supererogatory with respect to these other acts, and so the answer to the second
question is negative.

31 Note that our account makes no such assumptions. Which (conditional) actions are
permitted, obligatory, or required follows from the interplay of reasons and their strength
alone.

32 In addition to the issue discussed in the previous paragraph, McNamara’s framework
faces a second problem, which we can only hint at here. As is, it validates the principle
PE(X|Y ∨ X)&PE(Z|X ∨ Y ) ⊃ PE(Z|Y ∨ Z) which certain well-known cases involving
supererogation bring into doubt. Here, too, the framework would have to be modified to
account for this fact. See [19], as well as [31] for a discussion.

33 Wessels uses real numbers to represent this in the style of rational choice theory with
some restrictions. For instance, one action is allowed to be supererogatory with respect to
another one just in case the moral value of the first action is at least as high as the moral
value of the second one.
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While we set out to develop a formal model that can solve some puzzles sur-
rounding supererogation, Wessels’ aims are more moderate. What her frame-
work shows, in effect, is that if a logic can solve the problem of defining “X
supererogatory with respect to Y”, then a preference-based logic might take
care of the rest. What Wessels doesn’t do is develop such a logic. 34

Hansson [13], unlike Wessels, proposes a logic-based account of supereroga-
tion which, like Wessels’ account, builds on the relation “p is supererogatory
relative to q”. Hansson’s idea is to set it that p is supererogatory relative to q
if q is obligatory and p is “a better variant of q”. Betterness is spelled out in
terms of a preference relation, whereas “is a version of” is a primitive spelled
out in terms of logical strength: thus, p ⊢ q means that p is a variant of q.
This approach seems to be overly simplistic as it faces two challenges. First,
not every supererogatory action is a variant of some obligatory action. For
example, in the All or Nothing case, the supererogatory action is saving Alice
and Bob, while no action at all appears to be obligatory. The second challenge
is that, in modeling such scenarios, the choice of which actions are variants of
one another is threatened to become entirely ad hoc. 35

7 Conclusion

We set ourselves two goals in this paper. The first was to express the core
of dual-role approaches to reasons in a defeasible logic. To reach this goal, we
extended Horty’s influential default logic-based model [18] in a number of ways.
Our second goal had to do with supererogation, and we saw how our dual-role
approach provides a unified response to the Classic Paradox of Supererogation
and the All or Nothing Problem. What’s more, we noted some advantages that
our model has over alternative (formal) approaches to supererogation.

We see several promising directions for future research. First, our approach
seems to let us solve another notorious puzzle about supererogation, namely,
Kamm’s Intransitivity Paradox [19], and we plan to discuss the issue in detail
in a follow-up paper. Second, it would be interesting to explore how dual-role
approaches to reasons might be captured in other frameworks that have been
used to model reasons, such as structured argumentation or justification logic.
Relatedly, it seems worthwhile to relate our model to input/output logic with
permission—the latter looks like a more general system. Third, it might pay
exploring further applications of formalized dual-role approaches. For instance,
our model might have something interesting to say about the puzzles associ-
ated with permission. Lastly, it’s worth thinking about the commitments of
the particular dual-role approach that comes with the model and its potential
advantages over the dual-role views defended in the philosophical literature.

34 See [26] for a critical discussion of Wessels in the context of deontic logic.
35 It pays noting that, in a critical discussion of Hansson [13], McNamara [26] suggests

a way to ameliorate the second challenge by means of introducing a dyadic action operator
standing for “an agent brings it about that q by bringing about that p”. We suspect, however,
that this move makes the first challenge more pressing, since it imposes further restrictions
on what can count as a variant of an action.
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Appendix

Proposition 3.2 For any context ∆ = ⟨W,R,J , <⟩, neither ∆ |∼ Ought(⊥),
nor ∆ |∼Must(⊥), nor ∆ |∼ Can(⊥).

Proof. It is enough to show that ∆ |∼ Can(⊥) does not hold, since by Propo-
sition 3.1, if one of the other statements were to hold, so would ∆ |∼ Can(⊥).

Suppose, toward a contradiction, that ∆ |∼ Can(⊥). This implies that
there is a stable scenario D and a Brewka scenario B based on ∆D =
⟨W,R,D, <D⟩ such that W ∪ Conclusion(B) ⊢ ⊥. Let <∗ be the or-
dering that extends <D to a total order over D, and that is used in the
construction of B. Given that W is consistent and that B is the limit
of the sequence B0,B1, . . ., we can be sure that there is some i such that
W ∪ Conclusion(Bi) ⊬ ⊥, while W ∪ Conclusion(Bi+1) ⊢ ⊥. But Bi+1 =
Bi ∪Max<∗(Active⟨W,R,D,<∗⟩(Bi)), and Max<∗(Active⟨W,R,D,<∗⟩(Bi)) is the
singleton set {r ∈ D : W ∪ Conclusion(Bi) ∪ Conclusion(r) ⊬ ⊥ and r /∈ Bi}.
Given that W∪Conclusion(Bi)∪Conclusion(r) = W∪Conclusion(Bi+1), we
have arrived at a contradiction. 2

Before we turn to the proof of Proposition 5.1, we establish two lemmas.

Lemma 1 Given a context ∆ = ⟨W,R,J , <′⟩, where <′ is a total order over
J , and a Brewka scenario B based on ∆, we have W ∪ Cocnlusion(B) ⊬ ⊥.

Proof. The lemma follows by an easy induction on the construction of B. 2

Lemma 2 Let ∆ = ⟨W,R,J , <′⟩ be a context with <′ a total order on J , B
the Brewka scenario of ∆ with W ∪ Conclusion(B) ⊢ X, and B∗ the Brewka
scenario of the context ∆[X ∨ Y ] = ⟨W ∪ {X ∨ Y },R,J , <′⟩. Then B = B∗.

Proof. Before getting into the proof, note that both B and the sequence it
is the limit of are unique. This is due ot the fact that at each step i of the
construction of B there’s at most one <′-maximal reason in Active∆(Bi). We
will show that, for each step i, Bi = B∗

i . We do this by induction on i.
The base case is trivial: B0 = ∅ = B∗

0 .
For the induction step, assume that Bi = B∗

i . Given our definition
of Brewka scenarios, it’s enough to establish that Max<′(Active∆(Bi)) =
Max<′(Active∆[X∨Y ](B∗

i )). So that’s what we turn to.
⊆: Consider some r ∈Max<′(Active∆(Bi)). Then r ∈ Bi+1 ⊆ B. We know

that W ∪ Conclusion(B) ⊢ X, and hence that W ∪ Conclusion(B) ⊢ X ∨ Y .
By Lemma 1, W ∪ Conclusion(B) is consistent. Hence, as it entails X ∨ Y , it
is also consistent with X ∨ Y . Since W ∪ Conclusion(r) ∪ Conclusion(Bi)
is a subset of W ∪ Conclusin(B), we can be sure that W ∪ {X ∨ Y } ∪
Conclusion(Bi) ∪ Conclusion(r) ̸⊢ ⊥. This suffices to conclude that r ∈
Active∆[X∨Y ](Bi). We still need to show that r is <′-maximal in this set.
We know that r is <′-maximal in Active∆(Bi). Hence, for every r′ > r
such that r′ /∈ Bi, r′ /∈ Active∆(Bi). But this means that, for every such
r′, W ∪ Conclusion(Bi) ∪ Conclusion(r′) ⊢ ⊥, and, hence, by monotonic-
ity, that W ∪ {X ∨ Y } ∪ Conclusion(Bi) ∪ Conclusion(r′) ⊢ ⊥. This means
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that each such r′ is not in Active∆[X∨Y ](Bi), and that r is indeed maximal
here. By the inductive hypothesis, Bi = B∗

i , and so we have shown that
r ∈Max<′(Active∆[X∨Y ](B∗

i )).
⊇: Suppose that there is an r ∈ Max<′(Active∆[X∨Y ](B∗

i )). Further,
suppose, toward a contradiction, that r /∈ Max<′(Active∆(Bi)). Either
r ∈ Active∆(Bi) or not. If not, then either (i) r ∈ Bi, or (ii) W ∪
Conclusion(Bi) ∪ Conclusion(r) ⊢ ⊥. If (i), then Bi ̸= B∗

i . If (ii), then
W∪Conclusion(B∗

i )∪Conclusion(r) ⊢ ⊥, and r /∈ Active∆[X∨Y ](B∗
i ) after all.

Hence, r ∈ Active∆(Bi), but not <′-maximal. Let r′ be the <′-maximal rea-
son in Active∆(Bi). Now we can reuse the argument we made use of above to
conclude that r′ ∈ Active∆[X∨Y ](B∗

i ), and that r /∈Max<′(Active∆[X∨Y ](B∗
i ))

after all. This gives us a contradiction. 2

Proposition 5.1 For any context ∆,
(i) if ∆ |∼ Can(X) and ∆ |∼Must(¬Y ), then ∆ |∼ Can(X|X ∨ Y );
(ii) if ∆ |∼ Ought(X) and ∆ |∼Must(¬Y ), then ∆ |∼ Ought(X|X ∨ Y ). 36

Proof. We establish claim (i) by proving a stronger claim, namely, that if
∆ |∼ Can(X), then ∆ |∼ Can(X|X ∨ Y ). Suppose that ∆ |∼ Can(X). It fol-
lows that there is a stable scenario D based on ∆ and a total order <′ on D that
extends < such that W ∪ Conclusion(B) ⊢ X for the Brewka scenario based
on ⟨W,R,D, <′⟩. Note that D is a stable scenario of ∆[X ∨ Y ], and that <′ is
a total order extending < in this restricted updated context as well. Set ∆∗ to
be the context ⟨W ∪ {X ∨ Y },R,D, <′⟩. By Lemma 2, we know that B∗ = B
where B∗ is the Brewka scenario based on ∆∗. Since W ∪Conclusion(B) ⊢ X,
we immediately get W∪Conclusion(B∗) ⊢ X, and, by monotonicity of classical
logic, W ∪ {X ∨ Y } ∪ Conclusion(B∗) ⊢ X. This means that there is a stable
scenario of ∆[X ∨ Y ], namely, D, and a Brewka scenario based on ∆[X ∨ Y ]D,
namely, B∗, such that W ∪ {X ∨ Y } ∪ Conclusion(B∗) ⊢ X. Given our defini-
tion of permissions, this is enough to conclude that ∆[X ∨ Y ] |∼ Can(X), and
hence that ∆ |∼ Can(X|X ∨ Y ).

For Claim (ii), we prove something stronger, namely, that if ∆ |∼ Ought(X),
then also ∆ |∼ Ought(X|X ∨ Y ). Suppose that ∆ |∼ Ought(X). This
means that, for any Brewka scenario B of the context ∆R, we have W ∪
Conclusion(B) ⊢ X. What we need to show is that, for any Brewka sce-
nario B∗ based on ∆[X ∨ Y ]R, we have W ∪ {X ∨ Y } ∪ Conclusion(B∗) ⊢ X.
Suppose, toward a contradiction, that this wasn’t the case. So there is
a context ∆∗ = ⟨W ∪ {X ∨ Y },R,R, <′⟩, where <′ extends < to a to-
tal order over R, such that W ∪ {X ∨ Y } ∪ Conclusion(B∗) ⊬ X for the

36 To be fair, both principles are immediate consequences of more general principles that
hold in the model, as the proofs in the appendix make manifest. An anonymous reviewer
suggests that this weakens our claim that the principles we propose account for the intuitive
pull of the original principle. While we share the intuition that, it would be a nice feature
of the model, if our principles wouldn’t be mere corollaries of more general ones, it is not
immediately clear to us why the claim is weakened. In any event, Proposition 5.1 is the best
we have for now, and it might well be that our model validates other principles that could
serve its function, or serve it better.
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Brewka scenario B∗ based on ∆∗. Consider the context ⟨W,R,R, <′⟩. From
above, we can be sure that, for the Brewka scenario B based on it, we have
W ∪ Conclusion(B) ⊢ X. By Lemma 2, we have B∗ = B. (Recall that B∗ is
unique.) Hence, W∪Conclusion(B∗) ⊢ X, and, by the monotonicity of classical
logic, W ∪ {X ∨ Y } ∪ Conclsuion(B∗) ⊢ X. And this is a contradiction. 2
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Abstract

This paper develops a deontic logic based on dynamic logic for reasoning about per-
mission and prohibition of sequential actions. Our approach is characterized by two
main features. First, permission and prohibition of sequential actions are not neces-
sarily reduced to permission and prohibition of the actions’ constituent parts. Second,
we incorporate the idea that actions may be permitted or prohibited conditional on
another action being performed first. The logic interprets actions in terms of se-
quences of states, and the deontic component of the logic is introduced by relating
sequences of states to their legal and illegal future continuations. We consider various
different logics obtained by imposing natural constraints on models, and formulate
complete axiom systems for several of these logics.

Keywords: Dynamic logic, sequential action, permission, prohibition

1 Introduction

This paper studies deontic logic for reasoning about permissions and prohibi-
tions of sequential actions. Sequential actions are of the form “do α and then
do β”, and can be used to express procedures, plans and instructions which
are executed by performing multiple actions in a step-by-step manner. Reason-
ing about normative properties of sequential actions is important for planning
tasks in the presence of norms, where in addition to finding plans that achieve
one’s goals, one must also take into account which plans are permitted and
which plans are prohibited.

Normative properties of sequential actions are usually studied using vari-
ants of dynamic deontic logic, i.e. variants of PDL extended with resources
for reasoning about deontic concepts (see e.g. [2,5,6,9,10,11,13,14]). In the

1 fengkui.ju@bnu.edu.cn
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dynamic deontic logic literature, there is a distinction between goal-oriented
and process-oriented approaches [5]. Goal-oriented approaches define norma-
tive properties of actions in terms of their possible outcome states (e.g. [5,10]),
whereas process-oriented approaches define normative properties of actions in
terms of their possible executions (e.g. [6,9,11,14]). Here, we focus on the
process-oriented approach. A central question in dynamic deontic logic is how
“deontic properties of compound actions are logically related to deontic prop-
erties of constituent parts of actions” [6, p. 108]. When it comes to sequential
actions, this question has typically been approached by defining normative
properties of sequential actions in terms of normative properties of the transi-
tions that occur during their possible executions (e.g. [1,7,11,14]), or in terms
of the normative properties of atomic actions or “one-step” actions that occur
when the sequential actions are performed (e.g. [6,9]).

In reality, however, normative properties of sequences of actions cannot
always be reduced to combinations of normative properties of their constituent
parts. For example, it is commonly forbidden to drink and then drive but not
forbidden to drive and then drink. There seems to be no obvious way to obtain
the normative properties of the two sequential actions by specifying normative
properties of the action of drinking and the action of driving considered in
isolation. In fact, this point has been explicitly argued by some literature
outside deontic logic, e.g. [3,4]. Here we mention two interesting examples.
The first one is from Bales and Benn [4, p. 7777]:

Kwame is deciding how much weekly pocket money to give to his twin daugh-
ters. Any amount from nothing to £10 is an acceptable amount to give as
pocket money. Given that any amount is acceptable, Kwame decides to give
one daughter £1 and the other £10.

In this example, the sequential action of first giving one daughter £1 and then
giving the other £10 is clearly problematic from a normative point of view.
However, neither of the two actions in the sequence is problematic on its own. 3

The second example is from Arntzenius, Elga and Hawthorne [3, p. 262]:

Satan has cut a delicious apple into infinitely many pieces, labelled by the
natural numbers. Eve may take whichever pieces she chooses. If she takes
merely finitely many of the pieces, then she suffers no penalty. But if she
takes infinitely many of the pieces, then she is expelled from the Garden for
her greed.

In this example, each action of taking a piece of the apple is permissible, if
considered individually. However, performing the sequential action of taking
every piece is clearly impermissible: it leads to expulsion from the Garden.

Normative reasoning about sequential actions is closely connected to rea-

3 Intuitively, the reason that the sequential action in the example is morally problematic is
that one should not treat one’s daughters unequally. Still, the example illustrates the prob-
lem with specifying the normative properties of a sequential action based on the normative
properties of its constituent parts.
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soning about what has already been done in the past. For example, from the
fact that it is morally problematic for Kwame to give his second daughter £1 in
a situation where he has already given his first daughter £10, we can naturally
infer that the sequential action of giving the first daughter £1 followed by giv-
ing the second daughter £10 is morally problematic as well. Similarly, if you
are permitted to finish your main course and then have dessert, it is natural
to infer that if you have already finished your main course, you are permitted
to have dessert. Taking a more ‘future-looking’ perspective, permissions and
prohibitions that are dependent on past events can naturally be formulated
in terms of permissions and prohibitions that hold conditionally on something
else being done first. For example, a prohibition to drive a car after an intake
of alcohol is naturally expressed in terms of a conditional prohibition: if you
drink alcohol, you are prohibited from driving a car afterwards.

These considerations show that in order to properly account for permissions
and prohibitions of sequential actions, we have to consider permissions and
prohibitions that are dependent on past events. Alternatively, if we take a
future-looking perspective, we have to consider permissions and prohibitions
that hold conditionally on some other action being performed first.

In this paper, we develop a deontic logic based on dynamic logic for rea-
soning about permission and prohibition of sequential actions. The logic is
characterized by two main features. First, the normative properties of se-
quential actions are not necessarily reduced to normative properties of their
constituent parts. Second, the logic incorporates the idea that whether an ac-
tion is permitted or prohibited may depend on past events. In the semantics
for the logic, we interpret each action as a set of sequences of states, which
intuitively correspond to the possible executions of the action. The deontic
component of the logic is introduced in terms of relations that relate sequences
of states (which we think of as incomplete records of past sequences of events)
to their possible legal and illegal continuations. This allows us to specify the
legal status of a whole sequence of states, without having to specify the legal
status of the individual transitions occurring in it. In addition, by using rela-
tions between sequences of states, we allow for the legal status of a sequence of
states to depend on which sequence of states it is a continuation of.

When interpreting the deontic operators, we take a future-looking perspec-
tive on the idea that the normative properties of actions may depend on past
events. In particular, we consider dyadic deontic operators that specify an
action to be permitted or prohibited conditional on another action being per-
formed first. We consider a range of natural constraints that may be imposed
on relations that relate past sequences of events to their possible legal or illegal
continuations, and prove correspondences between these constraints and the va-
lidity of certain formulas. We also provide complete axiomatizations for several
of the logics obtained by adopting various combinations of these constraints.

The paper makes a number of simplifying assumptions. For example, we
only consider permission and prohibition, and leave the analysis of obligation
of sequential actions to future research. Also, the language we use to talk
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about actions includes only the operations of sequential composition and non-
deterministic choice, and is thus quite limited in its expressive powers.

The paper is structured as follows. The language and semantics of the logic
are presented in Section 2.1 and Section 2.2, and an axiom system is provided
in Section 2.3. In Section 3, we consider a range of natural constraints that can
be imposed on models, and consider issues concerning correspondence results
and axiomatizations. Section 4 concludes the paper. Some proofs can be found
in the Appendix.

2 A deontic logic for reasoning about sequential actions

In this section, we define the language, semantics and axiomatic system for
a dynamic deontic logic for reasoning about permission and prohibition of se-
quential actions.

2.1 Paths and path relations

Fix a non-empty set of states W . A path is a non-empty finite sequence of
elements of W . Let W ∗ be the set of all paths consisting of elements of W .
Given a path σ = (w1, . . . , wn), the first element w1 of σ is denoted σ[1] and the
last element wn of σ is denoted σ[f ]. Given two paths σ1 = (w1, . . . , wn) and
σ2 = (v1, . . . , vm), σ1 ◦σ2 denotes the path (w1, . . . , wn, v2, . . . , vm) if wn = v1,
otherwise σ1 ◦ σ2 is undefined. We take paths to represent possible sequences
of events, and we will later interpret actions as sets of paths.

A pair of paths (σ, σ′) such that σ ◦ σ′ is defined is called an articulated
history. 4 Intuitively, we think of an articulated history (σ, σ′) as representing a
current state, a past, and a possible future in the following sense: σ′[1] = σ[f ]
represents the current state, σ represents a past sequence of events, and σ′

represents a possible future sequence of events.
A path relation defined on W is a set R of articulated histories, i.e. a set

R ⊆W ∗ ×W ∗ such that for each element (σ, σ′) ∈ R, σ ◦ σ′ is defined.

2.2 Language and semantics

Let Prop be a countable set of atomic proposition symbols and AtAct be a
countable set of atomic actions.

Definition 2.1 [Actions] The set Act of actions is defined by the following
grammar, where a ranges over AtAct :

α ::= a | skip | α ∪ α | α;α.

An action of the form α∪β expresses the non-deterministic choice between
actions α and β. An action of the form α;β expresses the sequential compo-
sition of actions α and β, i.e. doing α followed by doing β. The action skip
corresponds to the action of doing nothing. 5

4 We borrow the term ‘articulated history’ from Segerberg [13].
5 We choose to work with a very simple action language here, and postpone the inclusion of
other action operations, such as test actions, parallel execution and iteration, to future work.
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Definition 2.2 [Language] The language L is defined by the following gram-
mar, where p ranges over Prop and α and β range over Act :

φ ::= p | ¬φ | (φ ∧ φ) | [α]φ | P(α | β) | F(α | β).

The missing Boolean connectives are defined in the usual way. Formulas
of the form [α]φ mean that each execution of α ends in state where φ is true.
We use ⟨α⟩φ as an abbreviation of ¬[α]¬φ. Formulas of the form P(α | β) and
F(α | β) express permissions and prohibitions that are conditional on another
action being performed first: the intended interpretation of P(α | β) is that
after any execution of α, any way of doing β is legal, and the intended interpre-
tation of F(α | β) is that after some execution of α, there is some way of doing
β which is illegal. Unary versions of P and F are defined by Pα := P(skip | α)
and Fα := F(skip | α). Pα and Fα mean that α is permitted, respectively
prohibited, immediately : nothing else has to be done first.

We interpret each action α as a set of paths. When a path σ belongs to the
interpretation of an action α, it intuitively means that σ constitutes a possible
execution of α.

Definition 2.3 [Interpretation of actions] Given a set of states W , an action
interpretation is a function I assigning a set of paths I(a) ⊆ W ∗ to each
a ∈ AtAct . I is extended to cover all actions in Act in the following way:

I(skip) :=W ;

I(α ∪ β) := I(α) ∪ I(β);
I(α;β) := {σ ◦ σ′ | σ ∈ I(α), σ′ ∈ I(β), σ′[1] = σ[f ]}.

To interpret permission and prohibition, we introduce path relations LEG
and ILL that encode legal respectively illegal paths: (σ, σ′) ∈ LEG means that
the path σ′ is legal given that it occurs after σ has been realized, and (σ, σ′) ∈
ILL means that the path σ′ is illegal given that it occurs after σ has been
realized. If (σ, σ′) ∈ LEG/ILL, we say that σ′ is a legal, respectively illegal,
continuation of σ.

One may think of LEG and ILL as being determined by a normative system.
We assume that the function of a normative system is to determine, given some
past sequence of events, which possible future sequences of events are legal
and which possible future sequences of events are illegal; cf. [1,7,13]. Under
this assumption, the sets LEG(σ) = {σ′ | (σ, σ′) ∈ LEG} and ILL(σ) = {σ′ |
(σ, σ′) ∈ ILL} consist of those possible continuations of σ that are considered
legal, respectively illegal, by the normative system.

To keep things as general as possible, we do not require any interaction
principles between LEG and ILL. Consequently, our models allow for paths
that are neither legal nor illegal, and paths that are simultaneously both legal
and illegal. This opens up possibilities for modeling normative systems with
gaps, as well as contradictory normative systems; cf. [16, p. 32]. In Section 3,
we consider additional constraints that may be imposed to rule out gappy and
contradictory normative systems.
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By using path relations, we do not have to assume that the legal status of
a path is completely determined by the legal status of its subpaths. Rather,
our approach makes room for several different options: on one extreme, we can
model cases where the legal status of a path is completely independent of the
legal status of its subpaths; on the other extreme, we can model cases where
the legal status of a path is completely determined by the legal status of its
subpaths. We can also model positions in between these two extremes, where
certain normative properties of the parts of a path may constitute necessary or
sufficient conditions for the path to be legal or illegal.

The use of path relations also allows for the legal status of a path to be
dependent on a past sequence of events. In principle, this means that a path
may be considered legal in relation to one past sequence of events, and illegal
in relation to another.

Definition 2.4 [Frames and models] A frame is a structure F = (W, LEG, ILL),
whereW is a non-empty set of states and LEG and ILL are path relations defined
on W . A model M = (W, LEG, ILL, I, V ) based on a frame F = (W, LEG, ILL)
extends F with an action interpretation I assigning a set of paths I(a) ⊆ W ∗

to each a ∈ AtAct , and a function V assigning a set of states V (p) ⊆ W to
each p ∈ Prop.

Definition 2.5 [Interpretation of formulas] Formulas are interpreted relative
to a model M = (W, LEG, ILL, I, V ) and a state w according to the following
clauses: 6

M, w |= p iff w ∈ V (p);
M, w |= ¬φ iff M, w ̸|= φ;
M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ;
M, w |= [α]φ iff for all σ ∈ I(α), if σ[1] = w then M, σ[f ] |= φ;
M, w |= P(α | β) iff for all σ ∈ I(α), for all σ′ ∈ I(β),

if σ[1] = w and σ′[1] = σ[f ], then (σ, σ′) ∈ LEG;
M, w |= F(α | β) iff there is σ ∈ I(α) and there is σ′ ∈ I(β)

such that σ[1] = w, σ′[1] = σ[f ] and (σ, σ′) ∈ ILL.

Definition 2.6 [Validity and logical consequence] A formula φ ∈ L is valid,
notation |= φ, if M, w |= φ for all models M and all states w of M, and φ is
valid in a frame F , notation F |= φ, if M, w |= φ for all models M based on
F and all states w of M. A formula ψ ∈ L is a logical consequence of a set of
formulas Φ ⊆ L if for all models M and all states w of M, if M, w |= φ for all
φ ∈ Φ, then M, w |= ψ.

One can think of a formula of the form P(α | β) as expressing a permission
to freely choose any of the possible ways to do β after having performed α.
This means that the permission operator P captures a notion of ‘strong’ or

6 Recall that the action interpretation function I is extended to cover all actions in Act as
in Definition 2.3.
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‘free choice’ permission [8,15]. The following validities hold:

P(δ | α ∪ β) ↔ P(δ | α) ∧P(δ | β);
P(α ∪ β | δ) ↔ P(α | δ) ∧P(β | δ).

A formula of the form F(α | β) can be understood as expressing that freely
choosing how to perform β after having done α is prohibited: if there is some
illegal way of doing β after α is performed, then any choice that includes that
way of doing β as an option is prohibited (cf. [6, p. 108] and [5, p. 165]). This
way of interpreting prohibition results in the following validities:

F(δ | α ∪ β) ↔ F(δ | α) ∨ F(δ | β);
F(α ∪ β | δ) ↔ F(α | δ) ∨ F(β | δ).

The first principle says that it is prohibited to choose between α and β condi-
tional on doing δ first if and only if it is prohibited to do α after doing δ or it is
prohibited to do β after doing δ. The second property says that being prohib-
ited to do δ after making a choice between α and β is equivalent to prohibition
to do δ after doing α or prohibition to do δ after doing β.

2.3 Axiomatization

We start by considering a language for action equivalence, consisting of expres-
sions of the form α ≡ β, where α and β are actions from Act . The formal
semantics of these types of expressions are given as follows: α ≡ β is true in
a model M if and only if I(α) = I(β), where I is the action interpretation
function of M. We say that α ≡ β is valid if it is true in all models. An axiom-
atization of action equivalence is given by the following axioms and inference
rules:

• Axioms:
(A1) α ≡ α
(A2) α ∪ α ≡ α
(A3) α ∪ β ≡ β ∪ α
(A4) α ∪ (β ∪ δ) ≡ (α ∪ β) ∪ δ and α; (β; δ) ≡ (α;β); δ
(A5) α; (β ∪ δ) ≡ (α;β) ∪ (α; δ) and (α ∪ β); δ ≡ (α; δ) ∪ (β; δ)
(A6) skip;α ≡ α and α; skip ≡ α

• From α ≡ β, infer β ≡ α.

• From α ≡ β, infer δ ≡ δ′, where δ′ is obtained from δ by replacing some
or all occurrences of α in δ by β.

An action is in normal form if it is of the form δ1 ∪ · · · ∪ δn, where for each
δi, either δi = skip, or δi is a sequence of atomic actions with association to
the right, and for each δi and δj , if i ̸= j then δi ̸= δj . It can be shown that
any action is both semantically and provably equivalent to one in normal form.
Using this fact, we can prove the following soundness and completeness result:

Theorem 2.7 For any α, β ∈ Act, α ≡ β is derivable in the above axiomatic
system iff α ≡ β is valid.
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Next, we use the axiomatization of action equivalence to formulate an axiom
system for our deontic logic, given by the following axioms and inference rules:

• Axioms for propositional logic.

• Axioms for modal operators:
(M1) [a](φ→ ψ) → ([a]φ→ [a]ψ)
(M2) [a ∪ b]φ↔ ([a]φ ∧ [b]φ)
(M3) [a; b]φ↔ [a][b]φ
(M4) [skip]φ↔ φ

• Axioms for deontic operators:
(D1) P(c | a ∪ b) ↔ (P(c | a) ∧P(c | b))
(D2) P(a ∪ b | c) ↔ (P(a | c) ∧P(b | c))
(D3) ¬P(a | b) → ⟨a; b⟩⊤
(D4) F(c | a ∪ b) ↔ (F(c | a) ∨ F(c | b))
(D5) F(a ∪ b | c) ↔ (F(a | c) ∨ F(b | c))
(D6) F(a | b) → ⟨a; b⟩⊤

• Modus ponens: from φ and φ→ ψ, infer ψ.

• Action replacement: from α ≡ β, infer D(α | δ) ↔ D(β | δ) and
D(δ | α) ↔ D(δ | β), where D ∈ {P,F}.

• Necessitation: from φ, infer [a]φ.

• Uniform action substitution: from φ, infer θ, where θ is obtained from φ
by uniformly replacing atomic actions in φ by arbitrary actions. 7

We use ⊢ ψ to mean that ψ is derivable in the above axiomatic system. For
any Φ ⊆ L and any ψ ∈ L, Φ ⊢ ψ means that ⊢ φ1 ∧ · · · ∧ φn → ψ for some
φ1, . . . , φn ∈ Φ.

Proving soundness is routine. We prove completeness in Appendix A.

Theorem 2.8 (Soundness and completeness) For any Φ ⊆ L and any
ψ ∈ L, Φ |= ψ iff Φ ⊢ ψ.

3 Additional constraints on path relations

In this section, we consider some natural constraints that may be imposed on
the path relations LEG and ILL, and discuss the logical principles that corre-
spond to these constraints. The different constraints can be freely combined
to form various different deontic logics to pick and choose from, depending on
one’s modeling needs. We show correspondences between the constraints on
LEG and ILL and the validity of certain formulas, and provide complete axiom-
atizations for several of the logics obtained by adopting various combinations
of these constraints.

7 We note that the rule of uniform action substitution is non-standard in dynamic logic;
see [12] for some discussion.
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3.1 Constraints on the interaction between LEG and ILL

A natural constraint on the interaction between LEG and ILL is to require that
no path is both legal and illegal. This constraint is suitable when modeling nor-
mative systems where no conflicts between norms arise [16, p. 32]. Accordingly,
we call it the no conflicts constraint:

NoCon LEG ∩ ILL = ∅.

Adopting NoCon results in the following validity: 8

P(α | β) → ¬F(α | β).

A second natural constraint is to require that there are no gaps in the
division of paths into legal and illegal ones: everything which is not illegal is
legal [16, p. 32]. In our framework, this is captured by the following property
(we assume implicit universal quantification over paths):

NoGap (σ, σ′) ̸∈ ILL and σ′[1] = σ[f ] implies (σ, σ′) ∈ LEG.

Imposing NoGap on models results in the following validity:

¬F(α | β) → P(α | β).

3.2 Constraints on LEG

We say that a path relation R is closed under forward motion if the following
condition holds:

FoMo (σ, σ′ ◦ σ′′) ∈ R implies (σ ◦ σ′, σ′′) ∈ R.

Segerberg [13, p. 393] refers to a similar property as the coherence condition:
when imposed on the relation LEG, FoMo can be understood as capturing
the idea that a legal path is ‘coherent’ in the sense that its legal status does
not change in the middle of it. At the level of validities, FoMo captures the
property that if a sequential action α;β is permitted conditional on performing
δ, then β is permitted conditional on performing δ;α. Closing LEG under
FoMo corresponds to validating the following principle:

P(δ | α;β) → P(δ;α | β).

A path relation R is closed under future initial segments if the following
condition holds:

InSeg (σ, σ′ ◦ σ′′) ∈ R implies (σ, σ′) ∈ R.

When imposed on the relation LEG, we may think of InSeg as capturing the
property that if a sequential action is permitted, then the first part of the

8 All constraints that we consider in this and the following subsections, together with their
corresponding validities, are listed in Theorem 3.1 below.
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sequential action is also permitted. Closing LEG under InSeg corresponds to
validating the following principle:

P(δ | α;β) ∧ [δ;α]⟨β⟩⊤ → P(δ | α).

The additional conjunct [δ;α]⟨β⟩⊤ in the antecedent is needed to rule out cases
where there are executions of α ending in states where β cannot be performed.

A path relation R is closed under path-transitivity if the following condition
holds:

Trans (σ, σ′) ∈ R and (σ ◦ σ′, σ′′) ∈ R implies (σ, σ′ ◦ σ′′) ∈ R.

When imposed on the relation LEG, Trans captures the idea that if an action
α is permitted conditional on performing δ, and the action β is permitted
conditional on performing δ;α, then the action α;β is permitted conditional
on performing δ. This is mirrored by the fact that closing LEG under Trans
corresponds to validating the following principle:

P(δ | α) ∧P(δ;α | β) → P(δ | α;β).

The principle lays down sufficient conditions for inferring the permission of a
sequential action from the permission of its parts.

We note in particular that if LEG is closed under FoMo, InSeg and Trans
at the same time, then the following principle holds:

[δ;α]⟨β⟩⊤ → (P(δ | α;β) ↔ P(δ | α) ∧P(δ;α | β)).

This principle can be seen as a kind of reduction principle for permission:
under some conditions (given by the antecedent of the above schema), being
permitted to perform a sequential action is equivalent to being permitted to
perform each part of the sequential action.

3.3 Constraints on ILL

We now turn to properties that we think are natural to impose on the relation
ILL. The first property is called closure under backward motion; a path relation
R satisfies this property if the following condition holds:

BaMo (σ ◦ σ′, σ′′) ∈ R implies (σ, σ′ ◦ σ′′) ∈ R.

Closing the relation ILL under BaMo corresponds the following validity:

F(δ;α | β) → F(δ | α;β).

That is, if an action β is prohibited after the action δ;α has been performed,
then the sequential action α;β is prohibited after δ has been performed. This
seems like an intuitively desirable property. From the prohibition to drive a
car after drinking alcohol, it intuitively follows that the sequential action of
drinking alcohol followed by driving a car is prohibited as well.
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Next, a path relation R is closed under forward extension if the following
condition holds:

FoEx (σ, σ′) ∈ R implies (σ, σ′ ◦ σ′′) ∈ R.

Imposing FoEx on the relation ILL captures the property that if some path σ
is illegal, then any path σ ◦ σ′ extending σ is also illegal. If ILL is closed under
FoEx, then the following principle of excluded Robin Hood is valid: 9

F(δ | α) ∧ [δ;α]⟨β⟩⊤ → F(δ | α;β).

As before, the additional conjunct [δ;α]⟨β⟩⊤ in the antecedent is needed to rule
out cases where there are executions of α ending in states where β cannot be
performed. This principle says that if some action α is prohibited (conditional
on performing δ first), then performing α followed by some other action β is
also prohibited (conditional on performing δ first). This can be understood as
capturing the idea that an action can never be made “better” by performing
some other action afterwards.

Next, we consider the following property: a path relation R is closed under
splitting paths if the following condition hold:

Split (σ, σ′ ◦ σ′′) ∈ R implies (σ, σ′) ∈ R or (σ ◦ σ′, σ′′) ∈ R.

When imposed on the relation ILL, this property corresponds to the idea that a
necessary condition for a path to be illegal is that there is some illegal transition
occurring in it. When closing ILL under Split, the following principle is valid:

F(δ | α;β) → F(δ | α) ∨ F(δ;α | β).

That is, if α;β is prohibited after some execution of δ, it follows that either α
is prohibited after some execution of δ, or β is prohibited after some execution
of δ;α.

If ILL is closed under all three of BaMo, FoEx and Split, the following
principle holds:

[δ;α]⟨β⟩⊤ → (F(δ | α;β) ↔ F(δ | α) ∨ F(δ;α | β)) .

This principle can be seen as a reduction principle for prohibition: under the
conditions specified in the antecedent, the principle tells us how a prohibited
sequential action can be reduced to a combination of prohibitions of its con-
stituent parts.

9 The name comes from the following instance: “If it is forbidden to take money from the
rich, then it is forbidden to take money from the rich and give it to the poor afterwards.” [2,
p. 429].
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3.4 Properties concerning the past

We consider two additional properties, which may be imposed on LEG and ILL:
closure under past final segments and closure under backwards extension:

FiSeg (σ ◦ σ′, σ′′) ∈ R implies (σ′, σ′′) ∈ R;

BaEx (σ′, σ′′) ∈ R implies (σ ◦ σ′, σ′′) ∈ R.

The property FiSeg can be understood as cutting off a part of the past of an
articulated history, whereas BaEx can be understood as extending the past of
an articulated history backwards.

When imposed on the relations LEG and ILL, FiSeg captures the prop-
erty that if a path σ′ is a legal/illegal continuation of a path σ, then σ′ is a
legal/illegal continuation of any final segment of σ as well. This property cor-
responds to the idea that if the action β is permitted/prohibited after δ;α has
been performed, then β is permitted/prohibited after α has been performed.
If LEG, respectively ILL, are closed under FiSeg, then the following validities
hold:

P(δ;α | β) → [δ]P(α | β)
F(δ;α | β) → ⟨δ⟩F(α | β).

The constraint BaEx, when imposed on LEG or ILL, captures the property
that if a path σ′ is a legal/illegal continuation of σ, then σ′ is a legal/illegal
continuation of any path σ′′ of which σ is a final segment. This property can
be taken to mean that if the action β is permitted/prohibited conditional on α
being performed first, then β is permitted/prohibited conditional on α being
performed first, regardless of what happens before α is performed. If LEG,
respectively ILL, are closed under BaEx, then the following validities hold:

[δ]P(α | β) → P(δ;α | β)
⟨δ⟩F(α | β) → F(δ;α | β).

We note in particular that if LEG and ILL satisfy both FiSeg and BaEx,
the dyadic deontic operators can be reduced to a combination of unary deontic
operators and dynamic modal operators in the following way (recall that Pα
abbreviates P(skip | α) and that Fα abbreviates F(skip | α)):

P(α | β) ↔ [α]Pβ

F(α | β) ↔ ⟨α⟩Fβ.

3.5 Corresponding validities and axiomatization

The following theorem connects the different path relation properties with their
corresponding validities. We prove a representative example in Appendix B.

Theorem 3.1 Let F = (W, LEG, ILL) be a frame. Then the following hold:

(i) LEG and ILL together satisfy NoCon iff F |= P(a | b) → ¬F(a | b);
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(ii) LEG and ILL together satisfy NoGap iff F |= ¬F(a | b) → P(a | b);
(iii) LEG is closed under FoMo iff F |= P(a | b; c) → P(a; b | c);
(iv) LEG is closed under InSeg iff F |= P(a | b; c) ∧ [a; b]⟨c⟩⊤ → P(a | b);
(v) LEG is closed under Trans iff F |= P(a | b) ∧P(a; b | c) → P(a | b; c);
(vi) LEG is closed under FiSeg iff F |= P(a; b | c) → [a]P(b | c);
(vii) LEG is closed under BaEx iff F |= [a]P(b | c) → P(a; b | c);
(viii) ILL is closed under BaMo iff F |= F(a; b | c) → F(a | b; c);
(ix) ILL is closed under FoEx iff F |= F(a | b) ∧ [a; b]⟨c⟩⊤ → F(a | b; c);
(x) ILL is closed under Split iff F |= F(a | b; c) → F(a | b) ∨ F(a; b | c);
(xi) ILL is closed under FiSeg iff F |= F(a; b | c) → ⟨a⟩F(b | c);
(xii) ILL is closed under BaEx iff F |= ⟨a⟩F(b | c) → F(a; b | c).

What about the logics concerning these properties? The properties NoCon
and NoGap for LEG and ILL, the properties FoMo,Trans and FiSeg for LEG,
and the properties BaMo,Split and BaEx for ILL can be directly handled by
the approach to proving completeness of the logic given in Section 2.3. To
be precise, we have the following claim (the proof of the soundness part of the
theorem is routine; we sketch the proof of the completeness part of the theorem
in Appendix C):

Theorem 3.2 For every property Pr of LEG and ILL in {NoCon,NoGap},
we use ϕPFPr to indicate the corresponding formula, for every property Pr of LEG
in {FoMo,Trans,FiSeg}, we use ϕPPr to indicate the corresponding formula,
and for every property Pr of ILL in {BaMo,Split,BaEx}, we use ϕFPr to
indicate the corresponding formula. Let Φ be the set consisting of the eight
formulas. For every nonempty subset Φ′ of Φ, the logic obtained by adding the
formulas in Φ′ as axioms to the logic given in Section 2.3 is sound and complete
with respect to the class of models with the corresponding properties.

The other four properties cannot be dealt with directly.

4 Concluding remarks

In this paper, we introduced and studied a deontic logic for reasoning about
permission and prohibition of sequential actions. In the semantics for the logic,
we interpret actions as sets of paths, which intuitively correspond to the possi-
ble executions of the actions. The deontic component of the logic is introduced
in terms of relations between paths, which intuitively relate paths representing
possible past sequences of events to their possible legal and illegal continua-
tions. The logic features dyadic deontic operators that can be used to express
that an action is permitted, respectively prohibited, conditional on some other
action being performed first. We provided the logic with a complete axiomatiza-
tion, and studied several natural constraints that may be imposed on relations
between paths in order to validate additional deontic logic principles.
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There are several important topics for future work. In addition to per-
missions and prohibitions, we would like to consider obligations of sequential
actions. One complication is that obligation intuitively involves a notion of
omission (e.g. α is obligatory if and only if it is prohibited to omit doing α),
and formalizing what it means to omit doing a sequential action is notoriously
difficult [5]. One option that seems promising is to introduce obligation as a
primitive notion; for work in this direction, see [9].

In this work, we interpret permission and prohibition using universal-
universal and existential-existential quantifier patterns, respectively (that is,
P(α | β) is true iff after all α-paths, all β-paths are legal, and F(α | β) is
true iff after some α-path, some β-path is legal). It would also be natural
to interpret permission using an existential-existential quantifier pattern (thus
obtaining a kind of ‘weak’ permission concept [15]), and to interpret prohibi-
tion using a universal-universal quantifier pattern (which would be more in line
with established tradition in deontic logic). In addition, there are two other
quantifier patterns to consider for the interpretation of permission and prohi-
bition: universal-existential and existential-universal. An interesting direction
for future research is to study the concepts of permission and prohibition aris-
ing from these different quantifier patterns. One option is to consider all of
these different concepts of permission and prohibition in the same logic, thus
obtaining a more expressive language for reasoning about normative properties
of sequential actions.

We would also like to investigate more closely the idea that the relations
LEG and ILL can be understood as being determined by a normative system.
In [7], a formal model of norms and normative systems is developed and used
to determine the legal status of transitions in a transition system. However,
only norms that regulate non-sequential actions were considered in that paper,
and it seems that the formal model must be extended in order to handle norms
that regulate sequential actions directly.

In this work, we take a ‘future-looking’ perspective on the idea that the
normative properties of actions may depend on the past. This can be seen
from the readings of the two deontic operators: after any/some execution of α,
any/some way of doing β is permitted/prohibited. There is also a ‘past-future-
looking’ perspective on the idea, that is, to introduce the following deontic
operators: given that α has been executed, any/some way of doing β is permit-
ted/prohibited. This is similar to the approach in Segerberg’s dynamic deontic
logic [13], where deontic formulas are evaluated at paths representing the past,
rather than single states. We leave the investigation of this approach, as well
as a detailed comparison with Segerberg’s logic, for future work.

On the technical side, we would like to establish complete axiomatizations
for all logics obtained by imposing any of the constraints on path relations
considered in Section 3. As shown in Section 3.5, for some of these logics we
can obtain complete axiomatizations by adopting the formulas corresponding
to the path relation properties as axioms. However, this strategy does not
generalize directly to all path relation properties, and further work is needed.
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Appendix

A Completeness proof

Here, we sketch the proof of the completeness part of Theorem 2.8. First, we
provide some definitions and establish some lemmata.

Definition A.1 The language Lred is defined by the following grammar, where
p ranges over Prop and a ranges over AtAct :

φ ::= p | ¬φ | (φ ∧ φ) | [a]φ | P(δ | δ) | F(δ | δ)
δ ::= skip | γ
γ ::= a | γ; γ

In the language Lred, only atomic actions occur in dynamic modalities, and
any action within the scope of a deontic operator is either in the form of a
sequence of atomic actions, or equal to skip.

Lemma A.2 There is a translation t : L → Lred such that for each formula
φ ∈ L, ⊢ φ↔ t(φ).

Let Ω be the set of maximally consistent sets of formulas of Lred. For each
a ∈ AtAct , we define the relation Ra ⊆ Ω× Ω as follows:

(∆,∆′) ∈ Ra iff for all φ ∈ Lred, if [a]φ ∈ ∆ then φ ∈ ∆′.

Fix a maximally consistent set ∆0. We define the set W c step by step:

• Step 0. Let w0 = (0,∆0) and set W c
0 = {w0}.

• Step 1. For each maximally consistent set ∆ ∈ Ω and each a ∈ AtAct
such that (∆0,∆) ∈ Ra, put the point v = (1, w0, a,∆) in W c

1 .

• Step i+1. Assume that the setW c
i has been defined. For each maximally

consistent set ∆ ∈ Ω, each action a ∈ AtAct and each w = (i, w′, a′,∆′) ∈
W c
i such that (∆′,∆) ∈ Ra, put the point v = (i+ 1, w, a,∆) in W c

i+1.

Finally, we set W c to be the union of all W c
i for i ∈ N.

By construction of W c, each element w is associated with a maximally
consistent set which we denote mcs(w): for w = (0,∆0) ∈ W c

0 , set mcs(w) =
∆0; for w = (i, v, a,∆) ∈ W c

i , with i ≥ 1, set mcs(w) = ∆. For each element
w = (i, v, a,∆) ∈ W c

i with i ≥ 1, we say that v is the predecessor of w and
denote it by pre(w), and that a is the action label of w and denote it by act(w).

Define the interpretation Ic(a) of the atomic action a ∈ AtAct as a set of
paths of length 2 in the following way:

Ic(a) = {(w,w′) ∈W c ×W c | act(w′) = a and pre(w′) = w}.
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For any path σ ∈ (W c)
∗
such that w0 either only occurs as the first element

of σ, or w0 does not occur in σ at all, we define the action trace of σ recursively
as follows:

• trace(w) = skip

• trace((w,w′)) = act(w′)

• trace((w,w′) ◦ τ) = act(w′); trace(τ), if τ is of length ≥ 2.

Lemma A.3 Let δ be either equal to skip, or equal to a sequence of atomic
actions with association to the right. If σ ∈ Ic(δ) then trace(σ) = δ.

Lemma A.4 Let γ = a1; . . . ; ak be a sequence of atomic actions with associa-
tion to the right, let w ∈W c and let φ ∈ Lred. If mcs(w) ⊢ ⟨a1⟩ . . . ⟨ak⟩φ, then
there is σ ∈ Ic(γ) such that σ[1] = w and mcs(σ[f ]) ⊢ φ.

Next, we define the path relations LEGc and ILLc on W c as follows:

(σ, σ′) ∈ LEGc iff σ′[1] = σ[f ] and mcs(σ[1]) ⊢ P(trace(σ) | trace(σ′));
(σ, σ′) ∈ ILLc iff σ′[1] = σ[f ] and mcs(σ[1]) ⊢ F(trace(σ) | trace(σ′)).

We define the interpretation V c for atomic proposition symbols by setting
w ∈ V c(p) iff p ∈ mcs(w).

Finally, the canonical model for ∆0 is defined as the structure Mc =
(W c, LEGc, ILLc, Ic, V c).

Lemma A.5 For any w ∈ W c and any δ and δ′, Mc, w |= P(δ | δ′) iff
mcs(w) ⊢ P(δ | δ′).
Proof. First, without loss of generality, we can assume association to the right
if δ and δ′ are sequences of atomic actions.

Suppose Mc, w ̸|= P(δ | δ′). Then there is σ ∈ Ic(δ) and σ′ ∈ Ic(δ′)
such that σ[1] = w, σ′[1] = σ[f ], and (σ, σ′) ̸∈ LEGc. By construction of
LEGc, mcs(w) ̸⊢ P(trace(σ) | trace(σ′)). By Lemma A.3, trace(σ) = δ and
trace(σ′) = δ′. Hence, mcs(w) ̸⊢ P(δ | δ′).

Suppose mcs(w) ̸⊢ P(δ | δ′). We have to consider four different cases: (i)
δ = δ′ = skip; (ii) δ = skip and δ′ is a sequence of atomic actions; (iii) δ is a
sequence of atomic actions and δ′ = skip; (iv) both δ and δ′ are sequences of
atomic actions. Here we consider cases (i) and (iv).

For case (i), assume that δ = δ′ = skip. Since trace(w) = skip, it holds
that mcs(w) ̸⊢ P(trace(w) | trace(w)). By the construction of LEGc it holds
that (w,w) ̸∈ LEGc. Then clearly Mc, w ̸|= P(skip | skip).

For case (iv), assume that δ = a1; . . . ; ak and δ′ = b1; . . . ; bl. Since mcs(w)
is maximally consistent, mcs(w) ⊢ ¬P(δ | δ′), so by Axiom (D3), mcs(w) ⊢
⟨δ; δ′⟩⊤. By the standard reduction axioms for dynamic modalities, mcs(w) ⊢
⟨a1⟩ . . . ⟨ak⟩⟨b1⟩ . . . ⟨bl⟩⊤. By Lemma A.4 there is σ ∈ Ic(δ; δ′) such that σ[1] =
w. Then σ = τ1 ◦ τ2, with τ1 ∈ Ic(δ) and τ2 ∈ Ic(δ′). By Lemma A.3,
trace(τ1) = δ and trace(τ2) = δ′. Then mcs(w) ̸⊢ P(trace(τ1) | trace(τ2)), so by
construction of LEGc, (τ1, τ2) ̸∈ LEGc. It follows that Mc, w ̸|= P(δ | δ′). 2

Lemma A.6 For any w ∈ W c and any δ and δ′, Mc, w |= F(δ | δ′) iff
mcs(w) ⊢ F(δ | δ′).
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Proof. As in the proof of the previous lemma, we assume association to the
right for δ and δ′.

Suppose Mc, w |= F(δ | δ′). Then there is σ ∈ Ic(δ) and σ′ ∈ Ic(δ′)
such that σ[1] = w, σ′[1] = σ[f ] and (σ, σ′) ∈ ILLc. By construction of ILLc,
mcs(w) ⊢ F(trace(σ) | trace(σ′)). By Lemma A.3, trace(σ) = δ and trace(σ′) =
δ′, so mcs(w) ⊢ F(δ | δ′).

Suppose mcs(w) ⊢ F(δ | δ′). As in the previous lemma, there are four
different possibilities for δ and δ′ to consider: here, we consider only the case
where both δ and δ′ are sequences of atomic actions. Assume that δ and
δ′ are sequences of atomic actions. By Axiom (D6), mcs(w) ⊢ ⟨δ; δ′⟩⊤. By
Lemma A.4, there are paths τ1 ∈ Ic(δ) and τ2 ∈ Ic(δ′) such that τ1[1] = w
and τ2[1] = τ1[f ]. By Lemma A.3, trace(τ1) = δ and trace(τ2) = δ′. Then
mcs(w) ⊢ F(trace(τ1) | trace(τ2)), so by construction of ILLc, (τ1, τ2) ∈ ILLc.
Then Mc, w |= F(δ | δ′). 2

Lemma A.7 For any w ∈W c and any φ ∈ Lred, Mc, w |= φ iff mcs(w) ⊢ φ.
Finally, we are ready to prove the completeness part of Theorem 2.8, i.e.

that for any Φ ⊆ L and any ψ ∈ L, if Φ |= ψ then Φ ⊢ ψ.
Proof of completeness part of Theorem 2.8 Suppose Φ ̸⊢ ψ. By
Lemma A.2, t(Φ) ̸⊢ t(ψ), where t is the translation referred to in Lemma A.2,
and t(Φ) = {t(φ) | φ ∈ Φ}. Then t(Φ) ∪ {¬t(φ)} is consistent. Let ∆0 be a
maximally consistent extension of t(Φ)∪ {¬t(φ)} and let Mc be the canonical
model for ∆0. Then mcs(w0) ⊢ t(φ) for all t(φ) ∈ t(Φ), and mcs(w0) ̸⊢ t(ψ).
By Lemma A.7, Mc, w0 |= t(φ) for all t(φ) ∈ t(Φ), and Mc, w0 ̸|= t(ψ). Then
t(Φ) ̸|= t(ψ). By Lemma A.2 and soundness, Φ ̸|= ψ. 2

B Corresponding validities

Proof of Theorem 3.1 Here, we provide an illustrative proof of one of the
items in Theorem 3.1: LEG is closed under FoMo iff F |= P(a | b; c) →
P(a; b | c). The other items are proved using similar arguments.

Suppose F ̸|= P(a | b; c) → P(a; b | c). Then there is a model M based on
F and a state w such that (i) M, w |= P(a | b; c), but (ii) M, w ̸|= P(a; b | c).
From (i), it follows that for all σ ∈ I(a) and all σ′ ∈ I(b; c), if σ[1] = w and
σ′[1] = σ[f ], then (σ, σ′) ∈ LEG. From (ii), it follows that there are paths
τ1, τ2 and τ3 such that τ1 ∈ I(a), τ2 ∈ I(b), τ3 ∈ I(c), (τ1 ◦ τ2)[1] = w and
τ3[1] = (τ1 ◦ τ2)[f ], and (τ1 ◦ τ2, τ3) ̸∈ LEG. Since τ1 ◦ τ2 ∈ I(a; b) and τ3 ∈ I(c),
it holds that (τ1, τ2 ◦ τ3) ∈ LEG. Thus, LEG is not closed under FoMo.

Suppose F |= P(a | b; c) → P(a; b | c). Take any paths τ1, τ2 and τ3 such
that (τ1, τ2 ◦ τ3) ∈ LEG. Construct the model M based on F such that I(a) =
{τ1}, I(b) = {τ2} and I(c) = {τ3}. Let τ1[1] = w. Then M, w |= P(a | b; c), so
by the initial assumption it holds that M, w |= P(a; b | c). Since I(a) = {τ1},
I(b) = {τ2} and τ2[1] = τ1[f ], it holds that τ1 ◦ τ2 ∈ I(a; b). Since I(c) = {τ3}
and τ3[1] = (τ1 ◦ τ2)[f ], it follows that (τ1 ◦ τ2, τ3) ∈ LEG. Since τ1, τ2 and τ3
were chosen arbitrarily, it follows that LEG is closed under FoMo. 2
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C Completeness proof for extended logics

Proof of completeness part of Theorem 3.2 The proof follows the same
structure as the proof of the completeness part of Theorem 2.8 in Appendix A,
but we also have to show that the relations LEGc and ILLc in the canonical
model satisfy the properties corresponding to the added axioms. Here, we
prove some illustrative examples:

• Assume that the formula corresponding to NoCon, i.e. P(a | b) →
¬F(a | b), is added as an axiom. Assume that (σ, σ′) ∈ LEGc. By the def-
inition of LEGc, it holds that mcs(σ[1]) ⊢ P(trace(σ) | trace(σ′)). By the
axiom P(a | b) → ¬F(a | b) and the inference rule of uniform action substi-
tution, mcs(σ[1]) ⊢ ¬F(trace(σ) | trace(σ′)). Since mcs(σ[1]) is consistent,
it holds that mcs(σ[1]) ̸⊢ F(trace(σ) | trace(σ′)). Then (σ, σ′) ̸∈ ILLc by
the definition of ILLc. Hence, LEGc and ILLc together satisfy NoCon.

• Assume that the formula corresponding to NoGap, i.e. ¬F(a | b) →
P(a | b), is added as an axiom. Assume that (σ, σ′) ̸∈ ILLc and that
σ′[1] = σ[f ]. Then mcs(σ[1]) ̸⊢ F(trace(σ) | trace(σ′)) by the defini-
tion of ILLc. Since mcs(σ[1]) is maximally consistent, it holds that
mcs(σ[1]) ⊢ ¬F(trace(σ) | trace(σ′)). By the axiom ¬F(a | b) → P(a | b)
and uniform action substitution, mcs(σ[1]) ⊢ P(trace(σ) | trace(σ′)), so by
the definition of LEGc, (σ, σ′) ∈ LEGc. Hence, LEGc and ILLc together
satisfy NoGap.

• Assume that the formula corresponding to FoMo, i.e. P(a | b; c) →
P(a; b | c), is added as an axiom. Assume that (σ, σ′ ◦ σ′′) ∈ LEGc.
By the definition of LEGc, mcs(σ[1]) ⊢ P(trace(σ) | trace(σ′ ◦ σ′′)).
Then, mcs(σ[1]) ⊢ P(trace(σ) | trace(σ′); trace(σ′′)). By the axiom
P(a | b; c) → P(a; b | c) and uniform action substitution, we can
get mcs(σ[1]) ⊢ P(trace(σ); trace(σ′) | trace(σ′′)). Then mcs(σ[1]) ⊢
P(trace(σ ◦ σ′) | trace(σ′′)). By the definition of LEGc, (σ◦σ′, σ′′) ∈ LEGc.
Hence, LEGc is closed under FoMo.

• Assume that the formula corresponding to BaMo, i.e. F(a; b | c) →
F(a | b; c), is added as an axiom. Assume that (σ ◦ σ′, σ′′) ∈ ILLc.
By the definition of ILLc, mcs(σ[1]) ⊢ F(trace(σ ◦ σ′) | trace(σ′′)).
Then, mcs(σ[1]) ⊢ F(trace(σ); trace(σ′) | trace(σ′′)). By the axiom
F(a; b | c) → F(a | b; c), and uniform action substitution, we know
mcs(σ[1]) ⊢ F(trace(σ) | trace(σ′); trace(σ′′)). Then, mcs(σ[1]) ⊢
F(trace(σ) | trace(σ′ ◦ σ′′)). By the definition of ILLc, (σ, σ′ ◦ σ′′) ∈ ILLc.
Hence, ILLc is closed under BaMo.

2
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Abstract

In the 17th century, Leibniz analyzed obligatoriness as “what is necessary for a good
person to do”. Almost 300 years later, Anderson and Kanger independently came to a
similar analysis. Both proposed alethic modal logics with a deontic constant, in which
an obligation operator can be defined. It can be proven that several deontic logics are
fragments of these alethic modal logics. Åqvist calls this translation theorem, “one
of the main mathematical results on propositional monadic deontic logic”. We will
show that a similar translation theorem can be proven for a number of predicative
deontic logics, known as term-modal deontic logics (TMDLs). TMDLs were recently
developed and allow one to explicitly represent quantification over bearers and coun-
terparties of obligations. In doing so, they avoid the pitfalls of earlier attempts at
developing predicative deontic logics.
In this paper we define several TMDLs and several alethic modal logics with predica-
tive constants, as well as a translation from the TMDLs to the alethic modal logics.
We show that this translation is actually closer to the original Leibnizian analysis
of obligation than what is provided in the standard Andersonian-Kangerian systems.
We also prove that each of the TMDLs is a fragment of one of the alethic modal
logics. This is interesting not only from a conceptual, but also from a technical per-
spective. It shows that (some) term-modal logics are actually reducible to standard
(non term-modal) modal logics.

Keywords: Deontic logic, term-modal logic, Andersonian-Kangerian reduction

1 Introduction

The best studied system of deontic logic is Standard Deontic Logic (SDL).
SDL is just the normal propositional modal logic KD, where the modal oper-
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integrated formal account of actual ethical reasoning, with applications in medical ethics.”
(G0D2716N). The author would like to thank Frederik Van De Putte, Lorenz Demey, Jan
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ator, written as O, is interpreted as obligation. A different approach to deontic
logic was introduced by Alan Ross Anderson [1,2] and Stig Kanger [15,13],
although the philosophical idea behind this approach can be traced back to
the philosopher and mathematician G. W. Leibniz. The latter analysed ‘φ is
obligatory for a’ as ‘φ is necessary for a’s being a good person’ [14]. Inspired
by a similar intuition, Anderson and Kanger do not use a primitive obligation
operator, but instead an alethic modal operator and a propositional constant.
They then define the obligation operator in this new language.

Kanger and Anderson work this out in different ways. In the Kangerian
approach, the propositional constant G is to be read as “what morality pre-
scribes” [15]. It is obligatory that φ, denoted as Oφ, is then defined as “it is
necessary for what morality prescribes that φ”, 2(G → φ). In the Andersonian
approach, a different propositional constant, S, is used. This denotes some
bad state of affairs [1, p. 103], a violation of a rule [2, p. 348] or a sanction
being applicable [14]. It is obligatory that φ, also denoted as Oφ, can then be
formally defined as 2(¬φ→ S). This can be read as ‘not φ necessarily implies
a bad state of affairs’, ‘not φ necessarily implies a violation of a rule’ or ‘not φ
necessarily implies the applicability of a sanction’. These two approaches are
equivalent if we simply take S to be the negation of G [18].

It turns out that all logical principles validated by SDL and other logics
like it, are also validated by Andersonian-Kangerian logics. One can define a
translation that assigns to each formula of SDL (or a closely related system) a
formula of an Andersonian-Kangerian logic. It has been proven that for every
formula φ, φ is a theorem of SDL iff the translation of φ is a theorem of the
Andersonian-Kangerian logic. Åqvist calls this translation theorem “one of the
main mathematical results on propositional monadic deontic logic” [4]. In this
paper, our main goal is to expand this result to predicative deontic logic.

Predicative (or first-order) deontic logic has long been understudied. Pre-
sumably, this was because it was either thought to be trivial, in view of the
results on first-order modal logic in general, or because there are certain prob-
lems (e.g. the interpretation of the Barcan Formula in a deontic context) for
which there was no solution at hand [14,7]. Whatever the reason might have
been, the result is that most systems of deontic logic cannot capture elementary
patterns of deontic reasoning that involve quantification.

Recently, this has changed with the introduction of term-modal deontic
logics (TMDLs) [7,9,19]. The language of these TMDLs contains obligation
operators indexed with terms (variables or constants) of the language. This
allows for a great increase in expressivity, as illustrated in Table 1 (taken from
[7,9]). In addition, this indexing solves the problems plaguing earlier attempts
at constructing a system of first-order deontic logic (as argued in [7,9]).

In this paper, we prove a translation theorem for TMDLs. We define a
family of logics that model the Andersonian-Kangerian ideas in a predicative
context. These logics use a standard (that is, not term-modal) modal operator
and two predicative constants Q and Q2. So for example, ‘it is obligatory
for a that φ’, Oaφ, can be defined in these logics as ‘a being a good person
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It is obligatory for Alfred that φ Oaφ
φ is obligatory for every philosopher (∀x)(Px→ Oxφ)
Everyone has an obligation towards b
to help b

(∀x)(ObxHxb)
b has an obligation towards everyone
else to help them

(∀x)(x ̸= b→ OxbHbx)

Every parent of a sick child has an obli-
gation towards the child to care for it

(∀x)(∀y)((Pxy ∧ Sy) → OyxCxy)

Table 1
Illustrating the expressiveness of TMDL

necessarily implies φ’, 2(Qa→ φ). 2

The paper is structured as follows. In Section 2 we define and discuss a
family of TMDLs, and in Section 3 we do the same for a family of first-order
modal logics based on the Andersonian-Kangerian ideas. Section 4 is dedicated
to proving the translation theorem for each of these logics. Finally, Section 5
summarizes the results, briefly discusses their implications, and sketches pos-
sible paths for future research.

2 Term-modal deontic logics

Term-modal deontic logics are based on term-modal logics that were themselves
developed for epistemic logic [6,16]. The main innovation is that instead of a
standard modal operator, the language of term-modal logic contains a modal
operator that is indexed by a term (variable or constant) of the language.
Semantically, this is mirrored by the use of a ternary (or quaternary) instead
of a binary accessibility relation.

In this section we start out by defining the language that is shared by all
TMDLs discussed in this paper (Section 2.1). We then define the semantics
(Section 2.2) and an axiomatisation (Section 2.3) of the weakest TMDL that
we discuss in this paper: TMK. This is a term-modal variant of the normal
modal logic K. In Section 2.4 we define different extensions of TMK.

2.1 The language of TMDLs

The definition of the language of TMDLs is taken from previous work [7,9].
Let C = {a, b, . . .} be the set of constants and V = {x, y, . . .} be the set of
variables. We let α, β, . . . range over C and ν, ξ, . . . over V . Let T = C ∪ V
be the set of terms (always denoting persons) and θ, κ, . . . the metavariables
ranging over it. For each natural number n we let Pn be a set of n-ary predicate
symbols and we let P be the union of all Pn. We let P range over P. Lastly, we
let φ,ψ, χ be metavariables for formulas and we use Γ,∆,Θ as metavariables
for sets of formulas. Our language L is defined by the following Backus-Naur

2 In chapter four of the PhD-thesis [7] such a translation theorem is given for one specific
logic. In the terminology of this paper that is the logic TML extended with all of the axiom
schemes in Table 4.
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form:

φ ::= Pθ1 . . . θn | θ = κ | ¬φ | φ ∨ φ | Oθφ | Oθκφ | (∀ν)φ
The other Boolean connectives are defined in the standard way. Addition-

ally, (∃ν)φ =df ¬(∀ν)¬φ, Pθφ =df ¬Oθ¬φ and Pθκφ =df ¬Oθκ¬φ. We will often
write θ ̸= κ instead of ¬θ = κ.

The notion of free and bound variables are as usual, with two additions
(cfr. Fitting et al. [6]): (1) The free occurrences of variables in Oθφ are all free
occurrences of variables in φ and in addition θ if θ is a variable, and (2) the
free occurrences of variables in Oκθφ are θ, if θ is a variable, κ, if κ is a variable,
and all free occurrences of variables in φ. We define the set S of sentences as
consisting of those formulas φ ∈ L such that all variables in φ are bound.

The two term-modal operators Oθ and Oκθ denote undirected and directed
personal obligations. A formula Oθφ is read as ‘θ has an obligation that φ’
and Oκθφ as ‘θ has an obligation towards κ that φ’. Here, θ is the bearer of the
obligation, i.e. the person who is at fault if the obligation has been violated,
and κ is the counterparty of the obligation.

The second term-modal operator (Oκθ ) is very useful to model reasoning with
the Hohfeldian rights-relations. For example, ‘a has the right to vote’ becomes
in the Hohfeldian analysis: ‘everyone else has towards a the obligation not to
prevent a from voting’. This can be formalised as: (∀x)((x ̸= a) → Oax¬Pxa),
where Pxy is interpreted as ‘x prevents y from voting’. The expressiveness of
this language is further illustrated in Table 1. For a more detailed discussion
of this language, see [7,9].

2.2 Semantics of TMK

TMK-models (Definition 2.1) do not differ substantially from other models for
first-order modal logic with constant domains, except for the two accessibility
relations.

Definition 2.1 A TMK-model is a tuple M = ⟨W,A, R,RD, I⟩, where:
1. W ̸= ∅
2. A ≠ ∅
3. R ⊆W ×A×W
4. RD ⊆W ×A×A×W
5. I is an interpretation function that assigns to every θ ∈ T a p ∈ A and

to every pair ⟨P,w⟩ ∈ Pn × W an element of ℘(An) for every natural
number n ∈ N.

The set W is the world domain, consisting of possible worlds w,w1, . . . and
A is the agent domain, consisting of agents p, p1, p2, . . . Both are non-empty and
are allowed to be at most countably infinite. 3 R and RD are two accessibility
relations. The set R(w, p1) =df {w′ ∈ W | ⟨w, p1, w′⟩ ∈ R} is interpreted as

3 The agent domain is the analogue of the (object) domain of first-order logic. It is possible
to expand the agent domain to include objects that are not agents. This is discussed in
Section 3.5.3 of [7].
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the set of worlds where all the obligations that agent p1 has in world w have
been fulfilled. Similarly, R(w, p1, p2) =df {w′ ∈ W | ⟨w, p1, p2, w′⟩ ∈ RD} is
interpreted as the set of worlds where all obligations that agent p1 has towards
p2 in world w have been fulfilled.

After definining what it means to be a ν-alternative (Definition 2.2), we
are in a position to give the semantic clauses (Definition 2.3). The only non-
standard clauses are SC5 and SC6. Semantic consequence and validity are
defined in the usual way (Definitions 2.4 and 2.5). In what follows, we will
omit the subscript TMK when this is clear from the context.

Definition 2.2 For any ν ∈ V , M ′ = ⟨W,A, R,RD, I ′⟩ is a ν-alternative to
M = ⟨W,A, R,RD, I⟩ iff I ′ differs at most from I in the member of A that I ′

assigns to ν.

Definition 2.3 [Semantic Clauses] For any TMK-model M =
⟨W,A, R,RD, I⟩:
SC1 M,w |= Pθ1 . . . θn iff ⟨I(θ1), . . . , I(θn)⟩ ∈ I(P,w)
SC2 M,w |= ¬φ iff M,w ̸|= φ
SC3 M,w |= φ ∨ ψ iff M,w |= φ or M,w |= ψ
SC4 M,w |= θ = κ iff I(θ) = I(κ)
SC5 M,w |= Oθφ iff M,w′ |= φ for all w′ ∈ R(w, I(θ))
SC6 M,w |= Oκθφ iff M,w′ |= φ for all w′ ∈ RD(w, I(θ), I(κ))
SC7 M,w |= (∀ν)φ iff for every ν-alternative M ′: M ′, w |= φ

Definition 2.4 [Semantic consequence] φ is a semantic consequence of Γ,
Γ ⊩TMK φ iff for every TMK-model M = ⟨W,A, R,RD, I⟩ and w ∈ W :
if M,w |= ψ for all ψ ∈ Γ, then M,w |= φ.

Definition 2.5 [Validity] φ is valid, ⊩TMK φ iff for every TMK-model M =
⟨W,A, R,RD, I⟩ and w ∈W : M,w |= φ.

2.3 Axiomatisation of TMK

A sound and strongly complete axiomatisation ofTMK is obtained by closing a
complete axiomatisation of classical propositional logic (CL) with all instances
of the axiom schemata in Table 2 under the rules of Table 3. 4 φ(θ/κ) is
the result of replacing all free occurrences of κ in φ by θ, relettering bound
variables if necessary to avoid rendering new occurrences of θ bound in φ(θ/κ).
φ(θ//κ) is the result of replacing various (not necessarily all or even any) free
occurrences of θ in φ by occurrences of κ, again relettering if necessary [20].

Theoremhood and derivability are defined as follows. A formula φ is a
TMK-theorem (denoted ⊢TMK φ) iff φ can be derived from the TMK-axioms
and rules. φ ∈ S is TMK-derivable from Γ ⊆ S (denoted Γ ⊢TMK φ) iff there
are ψ1, . . . , ψn ∈ Γ such that ⊢TMK (ψ1 ∧ . . . ∧ ψn) → φ. From this it follows
immediately that ⊢TMK is compact. We write ⊢ instead of ⊢TMK where this
does not lead to confusion.

4 The proof of soundness and strong completeness is a straightforward variation on the
completeness proof for TMDL in [7,9].
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(K) Oα(φ→ ψ) → (Oαφ→ Oαψ) (UI) (∀ν)φ→ φ(α/ν)
(BF) (∀ν)Oαφ→ Oα(∀ν)φ (REF) α = α
(DK) Oβα(φ→ ψ) → (Oβαφ→ Oβαψ) (SUB) (α = β) → (φ→ φ(α//β))
(DBF) (∀ν)Oβαφ→ Oβα(∀ν)φ (ND) (α ̸= β) → Oγ(α ̸= β)

(DND) (α ̸= β) → Oδγ(α ̸= β)

Table 2
Axiom schemata of TMK

(MP) if φ→ ψ and φ, then ψ
(NEC) if ⊢ φ, then ⊢ Oαφ
(DNEC) if ⊢ φ, then ⊢ Oβαφ.
(UG) if ⊢ φ→ ψ(α/ν) and α not in φ or ψ, then ⊢ φ→ (∀ν)ψ.

Table 3
Rules of TMK

2.4 Extensions of TMK

One of the points of contention in propositional deontic logic is what principles
should be accepted. For example, the scheme Oφ → ¬O¬φ is valid in SDL,
but in the face of deontic conflicts one could argue that this should be given
up [12]. These discussions are also relevant for TMDLs: TMK does not
validate Oθφ→ ¬Oθ¬φ, but an extension of the logic might. We will not take
a stand on such discussions here. Instead, we propose a family of TMDLs.
Each member of this family is obtained by adding different axiom schemes
and corresponding frame conditions from Table 4 to TMK. For example, the
TMDL discussed in [9] is obtained by adding the axiom schemes (D) and (DIU)
(and the corresponding frame conditions) to TMK. 5 For all these logics, the
proof of soundness and strong completeness is a straightforward variation on
the completeness proof for TMDL in [7,9].

(D) Oθφ→ Pθφ For all p ∈ A and w ∈W , R(w, p) ̸= ∅
(DD) Oκθφ→ Pκθφ For all p, p′ ∈ A and w ∈W , RD(w, p, p′) ̸= ∅
(+) Oθ(Oθφ→ φ) For all w,w′ ∈W and p ∈ A, R(w, p) = R(w′, p)
(D+) Oκθ (O

κ
θφ→ φ) For all w,w′ ∈ W and p, p′ ∈ A, RD(w, p, p′) =

R(w′, p, p′)
(DIU) Oβαφ→ Oαφ For all w ∈ W , p1, p2 ∈ A: R(w, p1) ⊆

R(w, p1, p2)

Table 4
Additional axiom schemes for TMDLs

Other axiom schemes could have been added to Table 4. However, we think
that the schemes presented here are the most plausible candidates for inclusion
in a TMDL. The schemes (D) and (DD) are the term-modal analogues of

5 One could also argue that TMK itself is already too strong. We refer the interested reader
to [10] for a discussion of term-modal logics weaker than TMK.
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the famous ought-implies-can principle in propositional deontic logic. Under a
plausible reading, the schemes (+) and (D+) can be used to model the intuition
that iterated deontic modalities of the same kind do not add any meaning.
For a deeper discussion of such intuitions for propositional deontic logic, see
for example [5]. Finally, the scheme (DIU) concerns the interaction between
directed and undirected personal obligations. Arguments for and against this
principle in a predicative context were discussed in [7,9]. 6

3 The alethic modal logics

As mentioned in the introduction, the goal of this paper is to prove a trans-
lation theorem for different TMDLs. This means that we must also define a
family of first-order logics inspired by Andersonian-Kangerian (and Leibnizian)
intuitions. Each of these logics is built around an alethic modal operator and
two predicative constants Q and Q2. To define this family of logics, we take the
same approach as in Section 2. We first define the language shared by all the
logics in this family in Section 3.1. Then we give the semantics and axiomati-
sation of the weakest logic in the family, AK, in Sections 3.2 and 3.3. Finally,
Section 3.4 defines the extensions of AK by giving a list of axiom schemes (and
corresponding frame conditions) that can be added to AK.

3.1 The language of AK

The language of AK is built using the same constants, variables and predicate
symbols as the language of TMDLs. 7 We add to this a standard modal oper-
ator 2, and two predicative constants Q and Q2 with arity 1 and 2 respectively.
Our new language LQ is defined by the following Backus-Naur form:

φ ::= Pθ1 . . . θn | θ = κ | ¬φ | φ ∨ φ | 2φ | (∀ν)φ | Qθ | Q2θκ

The other connectives are defined in the standard way, with the addition that
3φ =df ¬2¬φ. The notions of free and bound variables are as usual. A wff
φ is a sentence, φ ∈ SQ, iff all the variables in φ are bound. Note that the
language of AK contains no term-modal operators, but only standard modal
operators.

The main novelty in the language LQ lies in the predicative constants. Qx
can be read in different ways. Staying close to the Leibnizian intuitions, we will
read Qx as ‘x is a good person’. However, this choice is rather arbitrary. We
can also stay closer to a Kangerian or Andersonian interpretation and read Qx
as ‘x’s obligations have been fulfilled’ or ‘x is not in violation of any obligation’.
From a technical point of view, nothing hinges on the precise interpretation of
the constant. The same goes for Q2. The formula Q2xy can be read as ‘x is a
good person when it comes to their dealings with y’, ‘x’s obligations towards
y have been fulfilled’, or ‘x is not in violation of any obligation that x has
towards y. A predicate similar to Q2 was proposed by Lindahl [17, p. 163]

6 A non-monotonic version of this principle was proposed in [8].
7 This will be important for the proof of the translation theorem (Theorem 4.9).
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to solve some problems with Kanger’s formal treatment of rights. Following
Lindahl’s suggestion, we will read Q2xy as ‘y has not been wronged by x’.

3.2 Semantics of AK

The semantics of AK are fairly standard. Definition 3.1 gives the defini-
tion of AK-models. This does not differ significantly from that of familiar
constant-domain models for first-order modal logic, except for the addition of
the functions f and f2. Definition 3.2 gives the semantic clauses for AK. A
ν-alternative, semantic consequence and validity are all defined analogous to
those definitions for TMK in Section 2.2.

Definition 3.1 An AK-model is a tuple M = ⟨W,A, RQ, f, f2, I⟩, where:
1. W ̸= ∅
2. A ≠ ∅
3. RQ ⊆W ×W
4. f and f2 are functions such that:
4.1. f : A → ℘(W )
4.2. f2 : A×A → ℘(W )
5. I is an interpretation function that assigns to every θ ∈ T a p ∈ A and

to every pair ⟨P,w⟩ ∈ Pn × W an element of ℘(An) for every natural
number n ∈ N.

The relation RQ should be given an alethic instead of a deontic interpreta-
tion: RQ(w) =df {w′ | ⟨w,w′⟩ ∈ RQ} is the set of worlds that are possible at w.
The function f(p) can be interpreted as the set of worlds that are (deontically)
ideal for agent p. Alternatively, we could say that f(p) is the set of worlds
where p is praiseworthy, where p is not blameworthy, or where p satisfies her
obligations/the demands placed on her. Similarly, f(p, p′) is the set of worlds
where p′ has not been wronged by p, or where p’s obligations toward p′ have
been fulfilled.

Definition 3.2 [Semantic Clauses] For any AK-model M =
⟨W,A, RQ, f, f2, I⟩:
SC1 M,w |= Pθ1 . . . θn iff ⟨I(θ1), . . . , I(θn)⟩ ∈ I(P,w)
SC2 M,w |= ¬φ iff M,w ̸|= φ
SC3 M,w |= φ ∨ ψ iff M,w |= φ or M,w |= ψ
SC4 M,w |= θ = κ iff I(θ) = I(κ)
SC5 M,w |= 2φ iff M,w′ |= φ for all w′ ∈ RQ(w)
SC6 M,w |= (∀ν)φ iff for every ν-alternative M ′: M ′, w |= φ
SC7 M,w |= Qθ iff w ∈ f(I(θ)).
SC8 M,w |= Q2θκ iff w ∈ f2(I(θ), I(κ)).

3.3 Axiomatisation of AK

A sound and strongly complete axiomatisation of AK is obtained by closing
a complete axiomatisation of CL with all instances of the axiom schemata in
Table 5 under the rules of Table 6. Theoremhood and derivability are defined in
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a manner completely analogous to that in Section 2.3. The proofs for soundness
and strong completeness are safely left to the reader.

(QK) 2(φ→ ψ) → (2φ→ 2ψ)
(QBF) (∀ν)2φ→ 2(∀ν)φ
(QUI) (∀ν)φ→ φ(α/ν)

(QREF) α = α
(QSUB) (α = β) → (φ→ φ(α//β))
(QND) (α ̸= β) → 2(α ̸= β)

Table 5
Axiom schemata of AK

(QMP) if φ→ ψ and φ, then ψ
(QNEC) if ⊢ φ, then 2φ
(QUG) if ⊢ φ→ ψ(α/ν) and α not in φ or ψ, then ⊢ φ→ (∀ν)ψ.

Table 6
Rules of AK

3.4 Extensions of AK

As we did for TMK, we will now define a family of extensions of AK. Each
member of this family is obtained by adding any number of axiom schemes and
corresponding frame conditions from Table 7 to AK. For all these logics, the
proofs of soundness and strong completeness can safely be left to the reader.

(QQ) Qθ → Q2θκ For all p1, p2 ∈ A and w ∈W : f(p1) ⊆ f2(p1, p2)
(AQ) 3Qθ For all p ∈ A and w ∈W , RQ(w) ∩ f(p) ̸= ∅
(ADQ) 3Q2θκ For all p, p′ ∈ A and w ∈W , RQ(w) ∩ f2(p, p′) ̸= ∅
(AT) 2φ→ φ R is reflexive

Table 7
Additional axiom schemes for AK

The axiom schemes in Table 7 deserve a short explanation. The scheme
(QQ) corresponds to the intuition that whenever one is a good person, then
one has not wronged anyone. 8 This corresponds to the intuition behind (DIU).
The schemes (AQ) and (ADQ) model the intuition that it is always possible to
be a good person or not to wrong another person (i.e. to fulfill one’s obligations
to other persons). These schemes correspond to (D) and (DD). For an alethic
interpretation of the 2 operator, (AT) is usually considered to be a plausible
axiom scheme: if φ is necessary, then φ is the case. We will need this scheme
to prove the translation theorem for TMDLs that contain (+) and (D+). 9

8 One could even wonder about the other direction: if θ has not wronged anyone, then θ is
a good person, (∀ν)(Q2θν) → Qθ. Accepting this and (QQ) would mean that Q is definable
in terms of Q2 (and vice versa).
9 We could have added more schemes to the table. For example (A4) 2φ→ 22φ and (A5)
3φ → 23φ are plausible candidate schemes for an alethic interpretation of the 2 operator.
However, these schemes play no role for the translation theorems in the next section.
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4 The translation theorems

This section contains the most important technical result of this paper,
the proof of the translation theorems for TMDLs. In Section 4.1 we de-
fine the translation from the language of TMDLs to that of the first-order
Andersonian-Kangerian logics and comment on the implications of this trans-
lation. In Section 4.2 we prove the translation theorem for the two weakest
logics, i.e. we show that TMK is the deontic fragment of AK, that for every φ
that is valid in TMK, the translation of φ is valid in AK. Section 4.3 shows
how this proof can be expanded to the extensions of TMK and AK.

4.1 The translation

Definition 4.1 gives a translation T , based on [3, p. 114]. The translation
is trivial except for clauses 5. and 6. These clauses capture the Leibnizian-
Andersonian-Kangerian intuitions discussed in the introduction. In fact, we
would argue that clause 5. better represents the Leibnizian analysis than the
propositional proposals by Anderson and Kanger did. Leibniz is after all an-
alyzing an (undirected) personal obligation with a bearer, which is a nuance
that gets lost in the propositional approach.

Definition 4.1 [Translation] Let φ ∈ L, then:
1. T (Pθ1, . . . , θn) = Pθ1, . . . , θn 5. T (Oθφ) = 2(Qθ → T (φ))
2. T (θ = κ) = (θ = κ) 6. T (Oκθφ) = 2(Qθκ→ T (φ))
3. T (¬φ) = ¬T (φ) 7. T ((∀ν)φ) = (∀ν)T (φ)
4. T (φ ∨ ψ) = T (φ) ∨ T (ψ)

There is a difference in the expressiveness of the language of the TMDLs
and that of AK. Note that the translation is not surjective: for every formula
in the language of TMDLs there is a formula in the language of AK, but
not vice versa. For example, there is no φ ∈ L such that T (φ) is of the
form 2(ψ → Qθ). Such formulas can be used to express ‘deontic sufficiency’:
2(ψ → Qθ) means that the truth of ψ is sufficient for θ being a good person
(see [21]).

4.2 Proof of the translation theorem for TMK

The proof of the translation theorem for TMK, Theorem 4.9, mostly follows
that for the propositional case as laid out by Åqvist [3,4]. However, there
are some important complications associated with the step to the term-modal
level. The proof starts with Lemma 4.2, which shows that for every theorem of
TMK, its translation is a theorem of AK. For the other direction it remains
to prove that for every φ ∈ L, if T (φ) is a theorem of AK, then φ is a
theorem of TMK (Lemma 4.8). To prove this, we first define a model M+

for every TMK-modelM (Definition 4.3). This definition is significantly more
complicated than its propositional counterpart, and as a result the following
lemmas are as well. In the next step we prove what Åqvist calls the “easy
lemma”: each model constructed according to Definition 4.3 is an AK-model
(Lemma 4.4). Then we prove Lemma 4.5, the lemma “on relations”, stating
that the accessibility relations in the TMK-model M correspond to that in
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the AK-model M+. After the small auxiliary Lemma 4.6, we can prove the
“crucial” Lemma 4.7: for any world w in the original TMK model, this world
models φ iff the corresponding worlds in the AK-model M+ model T (φ).

Lemma 4.2 If ⊢TMK φ, then ⊢AK T (φ).

Proof. The proof is a simple induction on the length of the derivation. For
the base cases (i.e. derivations of length one), φ is an instance of one of the
axiom schemes of TMK. We leave it to the reader to see that for each axiom
scheme ψ of TMK, T (ψ) is a theorem of AK (see also [7]). For the induction
step, it suffices to prove that if φ has been obtained by an application of one of
the rules of TMK to some TMK-theorem(s), then T (ψ) is a theorem of AK.
This is also safely left to the reader. 2

Definition 4.3 Let M = ⟨W,A, R,RD, I⟩ be a TMK-model. We define
M+ = ⟨W+,A, RQ, f, f2, I+⟩ as follows:
1. W+ = (W ×A) ∪ (W ×A×A)
2. For all w ∈W and p1, p2 ∈ A, RQ(⟨w, p1⟩) = RQ(⟨w, p1, p2⟩) = {⟨w′, p′⟩ ∈

W+ | w′ ∈ R(w, p′)} ∪ {⟨w′′, p′′, p′′′⟩ ∈W+ | w′′ ∈ RD(w, p′′, p′′′)}
3.1. For all p ∈ A, f(p) = {⟨w, p⟩ ∈ W+ | there exists a w′ ∈

W such that w ∈ R(w′, p)}
3.2. For all p1, p2 ∈ A, f2(p1, p2) = {⟨w, p1, p2⟩ | there exists a w′ ∈ W

such that w ∈ RD(w′, p1, p2)}
4.1. For all θ ∈ T , I+(θ) = I(θ)
4.2. For all P ∈ P and ⟨w, p⟩, ⟨w, p′, p′′⟩ ∈W+, I+(P, ⟨w, p⟩) =

I+(P, ⟨w, p′, p′′⟩) = I(P,w)

M+ is defined such that for any TMK-model M = ⟨W,A, R,RD, I⟩, w ∈
W , p ∈ A and φ ∈ L: M,w |= φ iff M+, ⟨w, p⟩ |= T (φ) iff M+, ⟨w, p, p′⟩ |=
T (φ) (Lemma 4.7). In what follows we will prove this formally, but now we
first sketch an example to illustrate Definition 4.3.

Consider a TMK-model M1 = ⟨W,A, R,RD, I⟩ such that:
W = {w1, w2},
A = {p1, p2},
R = {⟨w1, p1, w2⟩, ⟨w1, p1, w1⟩} and
RD = {⟨w1, p2, p1, w2⟩}.

This model is graphically represented in Figure 1.

w1 w2

p1

p2, p1

p1

Fig. 1. The model M1

M+
1 = ⟨W+,A, RQ, f, f2, I+⟩ is graphically represented in Figure 2. By

clause 1 of Definition 4.3, W+ contains the eight elements represented in
Figure 2. By clause 2, for any ⟨w, p⟩ ∈ W+: RQ(⟨w, p⟩) contains the
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worlds ⟨w′, p′⟩ such that w′ ∈ R(w, p′) and the worlds ⟨w′, p′, p′′⟩ such that
w′ ∈ RD(w, p′, p′′). Similarly, for any ⟨w, p, p′⟩ ∈ W+: RQ(⟨w, p, p′⟩) contains
the worlds ⟨w′, p′′⟩ such that w′ ∈ R(w, p′′) and the worlds ⟨w′, p′′, p′′′⟩ such
that w′ ∈ RD(w, p′′, p′′′).

So for every world that is a copy of w1 (i.e. every world on the left side of
Figure 2) there are three RQ-accessible worlds: ⟨w1, p1⟩ (since ⟨w1, p1, w1⟩ ∈
R), ⟨w2, p1⟩ (since ⟨w1, p1, w2⟩ ∈ R) and ⟨w2, p2, p1⟩ (since ⟨w1, p2, p1, w2⟩ ∈
RD). For every copy of w2 there are no RQ-accessible worlds, since no worlds
are accessible from w2 in model M1.

By clause 3.1. of Definition 4.3, ⟨w, p⟩ ∈ f(p′) iff p = p′ and there is a
w′ ∈W such that w ∈ R(w′, p). So f(p1) = {⟨w1, p1⟩, ⟨w2, p1⟩}, and f(p2) = ∅.
In Figure 2 we have designated the worlds in f(p1) by underlining the names
of these worlds. By clause 3.2. of Definition 4.3, f(p2, p1) = ⟨w2, p2, p1⟩. This
is shown in Figure 2 by the double underlining of the name of this world. Note
that f(p2) = f2(p1, p2) = f2(p1, p1) = f2(p2, p2) = ∅.

⟨w2, p1⟩

⟨w2, p2⟩

⟨w2, p1, p1⟩

⟨w2, p1, p2⟩

⟨w2, p2, p1⟩

⟨w2, p2, p2⟩

⟨w1, p1⟩

⟨w1, p2⟩

⟨w1, p1, p1⟩

⟨w1, p1, p2⟩

⟨w1, p2, p1⟩

⟨w1, p2, p2⟩

Fig. 2. The model M+
1

To illustrate Lemma 4.7, take again model M1 and suppose that I(a) = p1,
I(b) = p2, I(R,w1) = ∅, and I(R,w2) = p2. Then by the semantic clauses
of TMK, M1, w2 |= Rb and M1, w1 |= ¬Rb ∧ OabRb ∧ ¬OaRb. By Definition
4.1, T (Rb) = Rb and T (¬Rb ∧ OabRb ∧ ¬OaRb) = ¬Rb ∧ 2(Q2ba → Rb) ∧
¬2(Qa → Rb). By clause 4.2. of Definition 4.3 and the semantic clauses
of AK, M+

1 , ⟨w1, p1⟩ |= 2(Q2ba → Rb) (since f2(I(b), I(a)) = ⟨w2, p2, p1⟩).
Similarly, M+

1 , ⟨w1, p1⟩ |= ¬Rb ∧ ¬2(Qa → Rb). A similar line of reasoning
can be made for every copy of w1.

To prevent some possible confusion, we make two further clarificatory com-
ments on clause 2. of Definition 4.3. First, note that to the left of the last
identity symbol there is mention of p1 and p2, while on the right of that sym-
bol there are p′, p′′, and p′′′. In contrast, w occurs on both sides of the identity
symbol. This is done intentionally. In each instance w refers to the same world,
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while p1 and p2 on the one hand and p′, p′′p′′′ on the other are variables for
different instances of quantification.

Second, note that for the proof it is important that each copy of a world
has the same accessible worlds. We could, for example, not have written clause
2. as the following two clauses: For all w ∈ W and p1, p2 ∈ A, RQ(⟨w, p1⟩) =
{⟨w′, p′⟩ ∈ W+ | w′ ∈ R(w, p′)} and RQ(⟨w, p1, p2⟩) = {⟨w′′, p′′, p′′′⟩ ∈ W+ |
w′′ ∈ RD(w, p′′, p′′′)}. If we had done so, then for example M+

1 , ⟨w1, p1, p1⟩ |=
2(Qa →) would have been the case, since there would have been no RQ-
accessible worlds that make Qa true. Given these clarifications, we now return
to the proof.

Lemma 4.4 (Easy Lemma) Given a TMK-model M = ⟨W,A, R,RD, I⟩,
M+ = ⟨W+,A, RQ, f, f2, I+⟩ is an AK-model.

Proof. It suffices to prove that M+ satisfies all the conditions in Definition
3.1. In view of [7], this is safely left to the reader. 2

Lemma 4.5 (Lemma on Relations) Let M = ⟨W,A, R,RD, I⟩ and M+ =
⟨W+,A, RQ, f, f2, I+⟩. For all w,w′ ∈W and p, p′ ∈ A:
1. w′ ∈ R(w, p) iff ⟨w′, p⟩ ∈ RQ(⟨w, p⟩) and ⟨w′, p⟩ ∈ f(p)
2. w′ ∈ RD(w, p, p′) iff ⟨w′, p, p′⟩ ∈ RQ(⟨w, p⟩) and ⟨w′, p, p′⟩ ∈ f2(p, p′)

Proof. 1. and 2. both follow from clauses 2., 3.1. and 3.2. of Definition 4.3.2

Lemma 4.6 Let M = ⟨W,A, R,RD, I⟩ and M+ = ⟨W+,A, RQ, f, f2, I+⟩, as
in Definition 4.3. Then for all w ∈ W and p1, p2, p3, p4 ∈ A: RQ(⟨w, p1⟩) =
RQ(⟨w, p2⟩) = RQ(⟨w, p3, p4⟩)
Proof. This follows from clause 2. of Definition 4.3. 2

Lemma 4.7 (Crucial Lemma) Let M = ⟨W,A, R,RD, I⟩ be a TMK-
model, w ∈W , p, p1 ∈ A and φ ∈ L, then:

M,w |= φ iff M+, ⟨w, p⟩ |= T (φ) iff M+, ⟨w, p, p1⟩ |= T (φ)

Proof. The proof proceeds by induction on the complexity of φ. In view of
Definitions 4.3 and 4.1, all cases can safely be left to the reader except for the
cases where φ is of the form Oθψ or Oκθψ.

We start with the case where φ is of the form Oθψ. We first prove that
M,w |= Oθψ iff M+, ⟨w, p⟩ |= T (Oθψ). For the left to right direction, assume
that M,w |= Oθψ. By clauses 2. and 3.1. of Definition 4.3, RQ(⟨w, I(θ)⟩) ∩
f(I(θ)) ⊆ W ×A. Suppose that ⟨w′, p′⟩ ∈ RQ(⟨w, I(θ)⟩) ∩ f(I(θ)). By clause
3.1. of Definition 4.3, p′ = I(θ). By Lemma 4.5, w′ ∈ R(w, I(θ)). SinceM,w |=
Oθψ, M,w′ |= ψ. By the Induction Hypothesis, M+, ⟨w′, I(θ)⟩ |= T (ψ). Thus,
for all ⟨w′, p′⟩ ∈ RQ(⟨w, I(θ)⟩): if ⟨w′, p′⟩ ∈ f(I(θ)), then M+, ⟨w′, I(θ)⟩ |=
T (ψ). By Lemma 4.6, RQ(⟨w, I(θ)⟩) = RQ(⟨w, p⟩). Hence, by the semantic
clauses of AK, M+, ⟨w, p⟩ |= 2(Qθ → T (ψ)).

For the right to left direction, assume that M+, ⟨w, p⟩ |= 2(Qθ → T (ψ)).
Suppose that w′ ∈ R(w, I(θ)). By Lemma 4.5, ⟨w′, I(θ)⟩ ∈ RQ(⟨w, I(θ)⟩) ∩
f(I(θ)). By Lemma 4.6, ⟨w′, I(θ)⟩ ∈ RQ(⟨w, p⟩)∩ f(I(θ)). By the assumption,
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M+, ⟨w′, I(θ)⟩ |= T (ψ). By the induction hypothesis, M,w′ |= ψ. Thus, by
the semantic clauses, M,w |= Oθψ.

For this case all that remains is to prove that M+, ⟨w, p⟩ |= T (Oθψ) iff
M+, ⟨w, p, p1⟩ |= T (Oθψ). By the definition of the translation, we have to
prove that M+, ⟨w, p⟩ |= 2(Qθ → T (ψ)) iff M+, ⟨w, p, p1⟩ |= 2(Qθ → T (ψ)).
This follows immediately from the induction hypothesis, Lemma 4.6 and the
semantic clauses.

For the case where φ is of the form Oκθψ, we first prove thatM,w |= Oκθψ iff
M+, ⟨w, p⟩ |= T (Oκθψ).

10 For the left to right direction, assume that M,w |=
Oκθψ. Suppose that ⟨w′, p′, p′′⟩ ∈ RQ(⟨w, I(θ)⟩) ∩ f2(I(θ), I(κ)). By clause
3.2. of Definition 4.3, p′ = I(θ) and p′′ = I(κ). By Lemma’s 4.5 and 4.6,
w′ ∈ RD(w, I(θ), I(κ)). Since M,w |= Oκθψ, M,w′ |= ψ. By the induction
hypothesis, M+, ⟨w′, I(θ)⟩ |= T (ψ). Thus, for all ⟨w′, p′, p′′⟩ ∈ RQ(⟨w, I(θ)⟩):
if ⟨w′, p′, p′′⟩ ∈ f2(I(θ), I(κ)), then M+, ⟨w′, I(θ)⟩ |= T (ψ). By Lemma 4.6
and clause 3.2. of Definition 4.3, for all ⟨w′, p′⟩ ∈ RQ(⟨w, p⟩): if ⟨w′, p′⟩ ∈
f2(I(θ), I(κ)), then M+, ⟨w′, p′⟩ |= T (ψ) By the semantic clauses and the fact
that f2(I(θ), I(κ)) ⊆W ×A×A, M+, ⟨w, p⟩ |= 2(Q2θ, κ→ T (ψ)).

For the right to left direction, assume thatM+, ⟨w, p⟩ |= 2(Q2θκ→ T (ψ)).
Suppose that w′ ∈ RD(w′, I(θ), I(κ)). By Lemma 4.5, ⟨w′, I(θ), I(κ)⟩ ∈
RQ(⟨w, I(θ), I(κ)⟩) ∩ f2(I(θ), I(κ)). By Lemma 4.6, ⟨w′, I(θ), I(κ)⟩ ∈
RQ(⟨w, p⟩) ∩f2(I(θ), I(κ)). By the assumption, M+, ⟨w′, I(θ), I(κ)⟩ |= T (ψ).
By the induction hypothesis, M,w′ |= ψ. By the semantic clauses, M,w |=
Oκθψ.

What remains to be proven for this case is that M+, ⟨w, p⟩ |= T (Oκθψ) iff
M+, ⟨w, p, p1⟩ |= T (Oκθψ). By the translation, this means that we have to
prove that M+, ⟨w, p⟩ |= 2(Q2θκ → ψ) iff M+, ⟨w, p, p1⟩ |= 2(Q2θκ → ψ).
This follows immediately from Lemma 4.6 and the semantic clauses. 2

Lemma 4.8 For all φ ∈ L, if ⊢AK T (φ), then ⊢TMK φ.

Proof. Suppose that ⊬TMK φ. By completeness, there is a TMK-model
M = ⟨W,A, R,RD, I⟩ and a w ∈W , such that M,w ̸|= φ. By Lemmas 4.4 and
4.7, there is an AK-model M+ = ⟨W+,A, RQ, f, f2, I+⟩ and ⟨w, p⟩ ∈ W+,
such that M+, ⟨w, p⟩ ̸|= T (φ). By the soundness of AK, ⊬AK T (φ). 2

Theorem 4.9 {φ ∈ L | ⊢TMK φ} = {φ ∈ L | ⊢AK T (φ)}
Proof. This follows immediately from lemmas 4.2 and 4.8. 2

4.3 The translation theorems for the extensions

In this section we prove the translation theorem for each of the extensions of
TMK that were defined in Section 2.4. The first column of Table 8 gives a list of
axioms. Adding any combination of these axioms and the corresponding frame
conditions (see Table 4) toTMK gives an extension ofTMK (though note that

10From here on the proof differs significantly from that in [7], since we do not assume (DIU)
for TMK.
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we demand that either both or neither of (+) and (D+) are added 11 . To find
the logic of which such an extension of TMK is the deontic fragment, simply
add the axioms that are on the same lines in the second column of Table 8 (and
their corresponding frame conditions) to AK. For example, TMK extended
with (DIU), (+) and (D+) is the deontic fragment of TMK extended with
(QQ) and (AT). In what follows we sketch how the proof of the translation
theorem needs to be adapted for each of these extensions.

TM-axioms AK-axioms Modification to definition of M+

(D) (AQ) no changes
(DD) (ADQ) no changes
(+) and (D+) (AT) add ∪{⟨w, p′⟩|⟨w, p′⟩ ∈W}∪

{⟨w, p′, p′′⟩|⟨w, p′, p′′⟩ ∈W} to 2.
(DIU) (QQ) add ∪f(p1) to 3.2.

Table 8
Term-modal and Andersonian-Kangerian axioms

Theorem 4.10 For any combination of lines from Table 8, let TML be the
extension of TMK obtained by adding the axioms (and corresponding frame
conditions) from the first column to TMK, and let AKL be the extension of
AK obtained by adding the axioms (and corresponding frame conditions) from
the second column to AK. Then {φ ∈ L | ⊢TML φ} = {φ ∈ L | ⊢AKL T (φ)}.
Proof. For each of the logics, the proof is mostly analogous to that for TMK
and AK in Section 4.2. We go through each of the lemmas and definitions in
that section and describe where the proof changes substantially.

Proving the analogue of Lemma 4.2 is straightforward. The proof is anal-
ogous to that for Lemma 4.2, except that there are more cases to prove. For
example, if the line with (D) and (AQ) is included, then we need to prove
that ⊢AKL 2(Qθ → ψ) → ¬2(Qθ → ¬ψ). This follows from (AQ) and the
properties of normal modal logic. The other cases are analogous; each time the
theorem follows from the axiom added to AKL and the properties of normal
modal logic.

The Definition of M+ needs to be adapted in some cases. These changes
are described in the third column of Table 8. The easy Lemma (Lemma 4.4)
is then safely left to the reader.

For the Lemma on relations (Lemma 4.5), only the extensions containing
(+) and (D+) require further comment. For both 1. and 2. the left to right cases
still follow immediately from clauses 2. and 3.1. or 3.2. For the right to left case
of 1., assume ⟨w′, p⟩ ∈ RQ(⟨w, p⟩) and ⟨w′, p⟩ ∈ f(p). By (the modified) clause
2., either (A) w′ ∈ R(w, p) or (B) w′ = w. In case of (B), by ⟨w, p⟩ ∈ f(p)
and clause 3.1., there exists a w′′ ∈ W such that w ∈ R(w′′, p). By the frame

11This is not a problem, since any argument for the acceptance of (+) is in all likelihood
also an argument for the acceptance of (D+).
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condition corresponding to (+), R(w′′, p) = R(w, p). Hence w ∈ R(w, p). For
2. the proof is analogous.

For the crucial Lemma (Lemma 4.7) there are no significant changes neces-
sary for (D) or (DD). For (+) and (D+) there are also no significant changes,
since it is still the case thatRQ(⟨w, p⟩) ⊆W×A andRQ(⟨w, p, p′⟩) ⊆W×A×A.
For (DIU) the difference is significant, but the proof is entirely analogous to
that for Lemma 4.16 in [7, pp. 94-95]. 2

5 Conclusion

In this paper we have defined a family of TMDLs and a family of first-
order logics inspired by the Andersonian-Kangerian view on deontic logic. We
have gone on to show that the TMDLs are reducible to the Andersonian-
Kangerian logics. In other words, we have shown that the TMDLs are a
fragment (the deontic fragment) of the Andersonian-Kangerian logics. At
first glance, the TMDLs may have seemed highly unorthodox because of the
ternary/quaternary accessibility relations and the term-modal operators. How-
ever, the results in this paper show that TMDLs fit neatly with the canon of
deontic logic.

On a conceptual level, it is often argued that the Andersonian-Kangerian
reduction shows that the notion of obligation can be analysed in non-deontic
terms. The same arguments can be made for the reduction presented in this
paper. However, whether this argument is convincing depends on the reading
of the constants, both in the propositional and the predicative case. If Qθ is for
example read as ‘θ fulfils all of their obligations’, then the reduction is merely
an analysis of obligations in terms of obligations. Even if Qθ is read as ‘θ is
a good person’, then it might still be debated whether Q is not still a deontic
constant (see [18] for a more detailed discussion).

There are different paths open for future work. In this paper we have
used constant domains and have treated constants as rigid designators. It is
still an open question whether this is actually the way to go for deontic logic,
see for example [11,7]. If we can prove a similar reduction for variable domain
semantics or non-rigid designators, then it might be argued that such questions
about deontic logic can be reduced to the (much better studied) corresponding
questions for alethic modal logic.

There are also a number of possible term-modal logics for which we have
not yet proven the reduction to an Andersonian-Kangerian style system. Here
one can think of the dyadic or non-normal TMDLs presented in [7]. Other ex-
amples might be found outside the domain of deontic logic itself. Term-modal
versions of the 4, 5 and T-principles are relevant for doxastic and epistemic
logic. The proofs for the reductions of such systems are not trivial. For exam-
ple, for the 4-axiom it does not work to simply close RQ in the definition of
M+ under transitivity. Things would be easier if we only had one accessibil-
ity relation in the term-modal models (which might be more applicable in an
epistemic context anyway). Even more difficult would be the T-principle: if we
close RQ under reflexivity, then we lose Lemma 4.6.
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Another, more philosophically inspired, possibility for future work is to
explore the connection between AKH and virtue ethics. Very briefly, virtue
ethics judges the correctness of an action not by the consequences of that action
(as consequentialists might do), nor by whether that action corresponds to a
previous set of rules (as a deontologist might). Instead, the virtue ethicist
would say that an action is obligatory iff the action exemplifies some positive
characteristic of the agent. Our definition of ‘φ is obligatory for a’ as ‘φ is
necessary for a being a good person’ seems to fit this point of view rather well.
Virtue ethics has mostly been overlooked in the literature on deontic logic, so
it might be worthwhile to investigate whether this link can be substantiated. 12
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360.
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[4] Åqvist, L., Deontic logic, Handbook of Philosophical Logic: Volume 8 (2002), pp. 147–
264.

[5] Barcan Marcus, R., Iterated deontic modalities, Mind 75 (1966), pp. 580–582.

[6] Fitting, M., L. Thalmann and A. Voronkov, Term-modal logics, Studia Logica 69 (2001),
pp. 133–169.

[7] Frijters, S., “All doctors have an obligation to care for their patients: term-modal logics
for ethical reasoning with quantified deontic statements,” Ph.D. thesis, Ghent University
(2021).

[8] Frijters, S. and T. De Coninck, The manchester twins: Conflicts between directed
obligations., in: DEON, 2021, pp. 166–182.

[9] Frijters, S., J. Meheus and F. Van De Putte, Reasoning with rules and rights: term-modal
deontic logic, in: New Developments in Legal Reasoning and Logic: From Ancient Law
to Modern Legal Systems, Springer, 2021 pp. 321–352.

[10] Frijters, S. and F. Van De Putte, Classical term-modal logics, Journal of Logic and
Computation 31 (2021), pp. 1026–1054.

[11] Goble, L., Quantified deontic logic with definite descriptions, Logique et Analyse 37
(1994), pp. 239–253.

[12] Goble, L., Prima facie norms, normative conflicts, and dilemmas, Handbook of deontic
logic and normative systems 1 (2013), pp. 241–351.

[13] Hilpinen, R., Stig kanger on deontic logic, Collected Papers of Stig Kanger with Essays
on His Life and Work: Vol. II (2001), pp. 131–149.

[14] Hilpinen, R. and P. McNamara, Deontic logic: A historical survey and introduction,
Handbook of deontic logic and normative systems 1 (2013), pp. 3–136.

[15] Kanger, S., New foundations for ethical theory, in: Deontic Logic: Introductory and
Systematic Readings, Springer, 1971 pp. 36–58.

[16] Liberman, A. O., A. Achen and R. K. Rendsvig, Dynamic term-modal logics for first-
order epistemic planning, Artificial Intelligence 286 (2020), p. 103305.

[17] Lindahl, L., Stig kanger’s theory of rights, Collected Papers of Stig Kanger with Essays
on His Life and Work: Vol. II (2001), pp. 151–171.

12 I would like to thank one of the anonymous reviewers for this suggestion.

175



An Andersonian-Kangerian Reduction of Term-Modal Deontic Logics

[18] McNamara, P. and F. Van De Putte, Deontic Logic, in: E. N. Zalta and U. Nodelman,
editors, The Stanford Encyclopedia of Philosophy, Metaphysics Research Lab, Stanford
University, 2022, Fall 2022 edition .

[19] Sawasaki, T., K. Sano and T. Yamada, Term-sequence-modal logics, in: Logic,
Rationality, and Interaction: 7th International Workshop, LORI 2019, Chongqing,
China, October 18–21, 2019, Proceedings 7, Springer, 2019, pp. 244–258.

[20] Thomason, R. H., Some completeness results for modal predicate calculi, Philosophical
problems in logic: Some recent developments (1970), pp. 56–76.

[21] Van De Putte, F., “That will do”: logics of deontic necessity and sufficiency, Erkenntnis
82 (2017), pp. 473–511.

176



Extensions and Variations of the DWE
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Abstract

Building on McNamara’s DWE (Doing Well Enough) framework, a substantial gen-
eralization of that framework extends its expressive resources by adding two ordering
operators, changing the underlying semantic ordering’s scope, and adding other op-
erators making fuller use of the resulting expanded frames. A solution to DWE’s
“Disjunctive Supererogation Problem” is provided via two stronger semantic charac-
terizations of permissible supererogation. The new framework can represent a divide
in normative ethical theory between classical deontologists and consequentialists. It
allows for modeling supererogatory hole scenarios and consequently, the all or noth-
ing problem scenarios. We use the enriched resources to carefully explore modeling
these problem cases, bringing greater resources to bear on them. It becomes clear
that the classical deontological conflicts with consequentialism are close cousins to
the just-mentioned problems with supererogation; each involves a growing divide in
normative ethics over whether something as good as something permissible must be
permissible. It is also made clear just how much impact it has if endorsed.

Keywords: DWE, supererogation, must, ought, the least one can do, good as ok is
ok, supererogatory holes, all or nothing cases, deontology, consequentialism
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1 Introduction
In a variety of places (e.g. [12,13], [15]-[17]), I developed the DWE framework
as a first approximation for modelling supererogation and associated concepts.
However, there are artificial limitations in the semantic framework and sub-
stantial limitations in its expressive power, as well as in the logic of the su-
pererogation operator itself. 2 We aim to rectify these lacks by expanding on
and modifying the DWE framework, thereby generating a much richer and more

1 paulm@unh.edu
2 Some of these limitations have been previously noted in print (see especially [17], Section
5.10) and in prior conference presentations; in [17] and [18] expansions of framework are
explored, but we do so here in a number of different ways making much fuller use of a
generalization of the DWE semantic framework articulated there.
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adequate framework. The resulting language is complex and we will focus on
some semantic results to put them to use in modeling some classical debates be-
tween deontologists and optimizing consequentialists (for general background,
see [1]), and in modeling two recent issues in ethical theory: Wessels’ “su-
pererogatory holes” (see especially [23,24]), and Horton’s “all or nothing cases”
[7] 3 . The framework can accommodate nuanced positions on these topics, as
well as those that deny the basic intuitions often expressed (e.g. that there
are supererogatory holes or that there can be all or nothing problem scenar-
ios). We will see that the proposed operators for going beyond the call improve
significantly on DWE’s analysis, adding more nuance and subtlety while not
succumbing to DWE’s “Disjunctive Problem of Supererogation.”

Section 2 sketches the classical DWE semantic framework and raises a num-
ber of questions about it to motivate our substantial expansions. Section 3.1
supplies those with a new language, which will include two ordering operators. 4
It then provides the semantics, resulting is a new framework, “DWE(≥).” Sec-
tion 3.2 reflects on the expanded semantic framework that help us zero in on
some payoffs: a resolution of the Disjunctive Supererogation Problem as well
as modeling the aforementioned issues in ethical theory. In Section 4 we turn
to a strengthened semantic framework, DWE(≥)G, where we add a seman-
tic constraint to the prior frames and then show its quite powerful reductive
significance thereby highlighting some more payoffs of the general DWE(≥)
framework. Section 5 concludes with some brief reflections on the framework
and some future directions.

2 The DWE Framework and Some Limitations
2.1 Sketch of DWE’s Language and Semantics 5

Imagine a language for classic truth-functional propositional logic with the
usual operators, ¬, &, ∨, →, ↔, and these primitive deontic operators of DWE
added:

OBφ: It is overridingly Obligatory (for Jane) that φ. 6

MIφ: The Minimum involves/implies (its being the case that) φ.
MAφ: The Maximum involves/implies (its being the case that) φ.
INφ: It is a matter of Indifference that φ. 7

3 Section 6.1 of [17] gives a brief critical exposition of Wessel’s framework, and for just a
couple of reactions to Horton’s piece, see [19] and [20].
4 [6] put an ordering relation to good use in discussing models for supererogation.
5 See Section 5.6 of [17], as well as [12], [13], and [16] for expositions of this framework,
6 We leave the intended relativization to an agent tacit in the remaining glosses on all
operators. On the legitimacy of personal but non-agential readings of deontic operators, see
especially Sections 1.3 of [14], briefly summarized in, Section 5.7 of [17], as well as the earlier
[9]. See below on the qualifier “overridingly” in the reading here of OB.
7 That is, the language envisioned is φ ::= p | ¬φ | φ → φ | OBφ | MIφ | MAφ | INφ,
where p ∈ S (sentence letters).
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Here are a few of DWE’s defined operators:

PEφ def
= ¬OB¬φ It is Permissible that φ.

IMφ
def
= ¬OB¬φ It is Impermissible that φ.

SIφ def
= ¬INφ It is Significant that φ.

BCφ def
= PEφ & MI¬φ It is Beyond the Call that φ.

PSφ def
= PEφ & MA¬φ It is Permissibly Suboptimal that φ.

Next, let us define the frames for the DWE framework:

Definition 2.1 F = ⟨W,A,≿⟩, is a DWE Frame, where:

(i) W ̸= ϕ

(ii) A ⊆W 2 and ∀ i ∃ jAij (Seriality-A)
(iii) ≿ ⊆W 3:

a) (k ≿i j or j ≿i k) only if (Aij & Aik) [Confinement of ≿i for A]
b) (Aij & Aik) only if (k ≿i j or j ≿i k) [Connectivity of ≿i for A]
c) if j ≿i k and k ≿i l then j ≿i l [Transitivity of ≿i]

Here is a pictorial representation:

Fig. 1. DWE Frames

For simplicity, the frames are pictured as if there are upper and lower lim-
its for the weak ordering. The context is classical: the focus is on modeling
things that are overridingly obligatory, so on contexts where there is always
an acceptable alternative (per world i)—one where all such overriding obli-
gations are met. It is analytic that overriding obligations can’t conflict with
one another and overriding obligations provide the natural context for the new
notions introduced in DWE since they reside primarily in the domain of what
is optional. Note that for a world, i, the i-relative ranking relation is confined
to the set of worlds that are i-acceptable. We define the following derivative
notions (dropping parentheses where confusion is unlikely):

Definition 2.2 In a DWE Frame, ⟨W,A,≿⟩:

a) Ai def
= {j ∈W : Aij};

b) j ≈i k def
= j ≿i k & k ≿i j;

c) j ≿i k
def
= j ≿i k & ¬(k ≿i j).
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Models are defined as usual. Here are the truth conditions for the four primitive
operators of DWE:

Definition 2.3 DWE’s Basic Deontic Operator Truth-Conditions:
[OB] M |=iOBφ: ∀j(Aij → M |=j φ)
[MI] M |=iMIφ: ∃j(Aij & ∀k(j ≿i k → M |=k φ))
[MA] M |=i MAφ: ∃j(Aij & ∀k(k ≿i j → M |=k φ))
[IN] M |=i INφ: ∃j[Aij → ∃k(k ≈i j & M |=k φ) &

∃k(k ≈i j & M |=k ¬φ)]

Here are truth conditions for our sample five defined operators:

Definition 2.4 Some of DWE’s Derivative Truth-Conditions:
[PE] M |=iPEφ: ∃j(Aij & M |=j φ)
[IM] M |=iIMφ: ∃j(Aij → M |=j ¬φ)
[SI] M |=iSIφ: ∃j(Aij & [∀k(k ≈i j → M |=k φ)∨∀k(k ≿i j →

M |=k ¬φ)])
[BC] M |=iBCφ: ∃j(Aij & M |=j φ) & ∃j[Aij & ∀k(j ≿i k →

M |=k ¬φ)]
[PS] M |=iPSφ: ∃j(Aij & M |=j φ) & ∀j[Aij & ∃k(k ≈i j &

M |=k ¬φ)]

Fig 2 Illustrates,

Fig. 2. DWE Illustration

Imagine you must provide a colleague with some delicate info. Suppose you
can do so in exactly three ways, ordered on the right of the figure to reflect
their value. All three delivery options on the right are permissible (they occur
in acceptable worlds). You are obligated to provide the info (you do so in all
acceptable worlds), what you ought to do (the maximum) involves giving the
delicate info in person (you do so in the best acceptable worlds), the least you
can do (the minimum) involves giving the info via email (you do so in the lowest
ranked acceptable worlds); it is beyond the call to give the info in person or by
phone since each is permissible but excluded from the minimal “acceptables”
(acceptable worlds), and it is permissibly suboptimal to give the info by email
or by phone, since these are precluded from the maximal acceptables. Each
option is significant since there is a level of acceptable worlds (set of equi-ranked
acceptables) throughout which that option occurs. Assume that it is a matter
of indifference that you wear a belt, since all the acceptable levels of value can
be achieved with or without wearing that. 8

8 We leave the logic determined by the semantics aside ([10]).
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Let’s pause to state DWE’s Disjunctive Supererogation Problem:

Proposition 2.5 |= (IMψ & BCφ) → BC(φ ∨ ψ). [The Disjunctive Su-
pererogation Problem]

Proof. Assume M |=iIMψ & BCφ, that is by def., M |=iIMψ & PEφ &
MI¬φ, so that (1) ∀j(Aij → |=j ¬ψ), and (2) ∃j(Aij & M |=j φ) and (3)
∃j(Aij & ∀k[j ≿i k → M |=k ¬φ]). (2) entails (4) ∃j(Aij & M |=j φ ∨ ψ).
Fixing j in (3), we get (5) Aij′ and (6) ∀k[j′ ≿i k → M |=k ¬φ]. For arbitrary
k, suppose (7) j′ ≿i k & Aik. Then from (6), it follows that (8) M |=k ¬φ.
But (1) and (7) imply (9) M |=k ¬ψ, and so we have (10) M |=k ¬(φ ∨ ψ).
But k was arbitrary in (7), so we have (11) ∀k[j′ ≿i k → M |=k ¬(φ ∨ ψ)].
But (11) conjoined to (5) yields (12) ∃j(Aij & ∀k[j ≿i k → M |=k ¬(φ∨ψ)],
and this conjoined to (4) is the truth-condition for M |=jBC(φ ∨ ψ). 2

To illustrate:

Fig. 3. The Disjunctive Supererogation Problem (for DWE)n

Tiny Tim is caught in a burning building and you pass by. The least you
can do (e.g. go for help) precludes rescuing Tiny Tim (i.e. MI¬t), which
we assume is permissible (PEt), so per DWE, BCt. Fanning the flames is
impermissible (IMf); so it is beyond the call for you to be such that either you
rescue Tiny Tim or fan the flames (BC(t ∨ f)). Upshot: Here going beyond
the call seems to not really require that you go beyond the call. I have myself
described the intuition behind my analysis of supererogation as “doing more
good than you would have done had you done the least you could have done”
(e.g. [17,16], but this condition seems to not be met by realizing (t ∨ f).

2.2 DWE Reinterpreted
Here we will reinterpret the DWE operators in anticipation of substantial re-
visions and expansions of that framework. Doing so will help pave the way
for understanding various similar but distinct concepts and modeling them as
distinct 9 . We begin by raising some questions about the DWE framework:

• Why not order the worlds generally per i and then integrate that ordering
with a subset of i-acceptable worlds?

9 This of course leaves open whether or not the concepts might be necessarily coextensive.
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• Given the confinement of ≿i to Ai, doesn’t IN amount to indifference-
among-permissible-alternatives, not indifference per se (i.e. over a full
ordering of acceptable and unacceptable worlds)?

• Is the permissible maximum the maximum in the full ordering? Is the
best per se the acceptable best and what I ought to do?

• Is going beyond the call merely going beyond the permissible minimum or
must it also be permissibly done?

• Given that there is a semantic ordering, would it be worthwhile to intro-
duce a preference operator to reflect the semantic ordering?

• Can we solve DWE’s Disjunctive Supererogation Problem?

Before exploring answers to these, let’s add anticipatory qualifiers to DWE’s
naive operator labels (which we imagine as relativized to an agent).

DWE Operators with Anticipatory Qualifiers:
OBφ: It is overridingly Obligatory that φ.
MIpφ: The Permissible Minimum involves/implies φ.
MAPφ: The Permissible Maximum involves/implies φ.
INPφ: It is Indifferent qua what is Permissible that φ.

IMφ
def
= OB¬φ (It is Impermissible that φ.)

PEφ def
= ¬OB¬φ (It is Permissible that φ.)

OMφ
def
= ¬OBφ (It is Omissible that φ.)

OPφ def
= ¬OBφ & ¬OB¬φ (It is Optional that φ.)

NOφ def
= OBφ ∨ OB¬φ (It is Non-Optional that φ.)

SIPφ def
= INPφ (It is Significant qua what is Permissible that

φ.)
BCPφ

def
= PEφ & MIP¬φ (It is Permissibly Beyond the Call

(the permissible minimum) that φ.)

PSPφ
def
= PEφ & MAP¬φ (It is Permissibly Suboptimal

qua what is Permissible that φ.)

The underlining introduces the intended qualified readings and the oper-
ators have a “P” indicator added. 10 This will allow us to more easily grasp
conceptual distinctions to be made next.

3 DWE(≥)
3.1 The DWE(≥) Framework
We expand the DWE language with additional operators (but note that some
DWE-basic operators will now be defined operators). Let’s call the new frame-
work “DWE(≥)”.

10They reflect DWE’s constraint of the ordering relation to Ai.
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Definition 3.1 The Language of DWE(≥) follows: As with DWE, we assume
a classical propositional logic language with these additional deontic operators:

The Primitive Operators of DWE(≥) and Their Readings:
φ ≥ ψ: It is at least as good that φ as that ψ. 11
φ ≥P ψ: It is at least as good among the permissibles that φ as that ψ.
MIP: The Permissible Minimum involves φ.
MI′φ: The de facto Minimum (worst per se) involves φ.
BMP*φ: It is unalterably permissibly Beyond the permissible Minimum that

φ 12 .
BMφ: It is Beyond the permissible minimum that φ.
INPφ: It is Indifferent among the permissibles that φ.
VIφ: It is Valuatively Indifferent that φ 13 .

Additional Defined Operators and Their Readings:

φ > ψ
def
= (φ ≥ ψ) & ¬(ψ ≥ φ) It is better that φ than that ψ.

φ ∼ ψ
def
= (φ ≥ ψ) & (ψ ≥ φ) It is just as good that φ as that ψ.

φ >P ψ
def
= (φ ≥P ψ) & ¬(ψ ≥P φ) It is better among the Permissibles

that φ than that ψ.
φ ∼P ψ

def
= (φ ≥P ψ) & (ψ ≥P φ) It is just as good among the Permis-

sibles that φ as that ψ.
BMP def

= PEφ & BMφ It is permissibly Beyond the Permis-
sible Minimum that φ.

PEφ def
= (φ ≥P φ) It is Permissible that φ.

IMφ
def
= ¬(φ ≥P φ) It is Impermissible that φ.

OBφ def
= ¬(¬φ ≥P ¬φ) It is overridingly Obligatory that φ.

OMφ
def
= (¬φ ≥P ¬φ) It is Omissible that φ.

OPφ def
= (φ ≥P φ) & (¬φ ≥P ¬φ) It is Optional that φ.

NOφ def
= ¬(¬φ ≥P ¬φ)∨¬(φ ≥P φ) It is Non-Optional that φ.

MAPφ
def
= φ >P ¬φ The Permissible Maximum implies

φ.
MA′φ

def
= φ > ¬φ The Maximum per se implies φ.

11φ ≥ ψ on the proposed reading might seem to entail the truth of φ and ψ (see [3,4]), but
here we wish to reflect the value the propositions would have from a world i if they were
realized (i.e. “≥” has a subjunctive flavor). Similarly for ≥P. We will drop parentheses where
the intent is clear for these dyadic operators.
12The “unalterably” qualifier indicates that the semantics will guarantee that any such φ
can’t be impermissibly realized, in contrast with for example BMPφ (Proposition 3.5).
13That is, the language envisioned is φ ::= p | ¬φ | φ → φ | φ ≥ φ | φ ≥P φ | MIPφ |
MI′φ | BMP*φ | BMφ | INPφ | VIφ, where p ∈ S (sentence letters).

183



Extensions and Variations of the DWE Framework with Applications

BCPφ
def
= PEφ & MIP¬φ It is Beyond the call (as in DWE)

that φ.
PSPφ

def
= PEφ & MAP¬φ It is Suboptimal among the Permis-

sibles that φ.
SOφ def

= MA′¬φ It is Sub-Optimal per se that φ.
SIPφ def

= INPφ It is Significant among the Permis-
sibles that φ.

VSφ def
= ¬VIφ It is Valuatively Significant that φ.

CIφ def
= VIφ & INPφ It is Completely Indifferent that φ.

For DWE(≥), the only modifications of the DWE Frames are in clauses 3a
and 3b, but we include all the clauses here:

Definition 3.2 F = ⟨W,A,≿⟩, is a DWE(≥) Frame, where:

1. W ̸= ϕ, [non-Emptiness]
2. A ⊆W 2 and ∀i∃jAij, [Seriality-A]
3. ≿ ⊆W 3:

a) j ≿i j, [Reflexivity of ≿i] 14
b) k ≿i j or j ≿i k, [Connectivity of ≿i]
c) (j ≿i k & k ≿i l) → j ≿i l [Transitivity of ≿i]

Now, for each i in W , the connected weak ordering is not confined to Ai,
but ranges over all of W . This is the key change, but as we shall see, the
enrichment it brings is quite substantial: it opens a great deal of space for
expressing different notions and positions of interest in ethical theory, and
toward the end we will be looking at an additional fundamental constraint that
has substantial additional impact. Fig 4 pictures some key potentials in the
frames.

Fig. 4. DWE(≥) Frames

Here the central bar is the weak ordering of W per i, the right bar is
the sub-ordering of the i-acceptables, the left bar is the sub-ordering of the
i-unacceptables. As the arrows and angling suggest, the selection is order-
preserving : for any two worlds j, k both appearing among one of the two sets

14Clause a’ follows from Clause b’ of course.
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of non-central worlds, the ordering relation they have there just is the one they
have in the i-ranking of W ; but as indicated, there can be gaps.

The changes in the frames call for some qualifications in the truth conditions
for the classical DWE operators to restore what was their intended for them,
and we also must introduce new clauses for the new operators. All the familiar
basic clauses for the traditional SDLish operators will hold (but that claim must
be justified since these are all now defined operators and so their explicit truth
conditions are those given via the conditions for their definiens). In the case
of the non-SDL-ish operators of classical DWE that were interpreted via an
ordering relation confined to Ai, those conditions must be qualified to restore
the intent.

Assume we have sufficient clauses for the truth-functional operators: ¬, &,
∨, →, ↔; the truth conditions for DWE(≥)’s basic operators follow:

Basic DWE(≥) Deontic Operator Truth-Conditions:
[≥] M |=i φ ≥ ψ ∀j[M |=j ψ → ∃k(k ≿i j & M |=k φ)]
[≥P] M |=i φ ≥P ψ ∃j(M |=j φ & Aij) & ∀k[(M |=k ψ & Aik) →

∃l(M |=l ψ & Ail & l ≿i k)]
[MIP] M |=iMIPφ: ∃j(Aij & ∀k[j ≿i k & Aik) → M |=k φ])
[MI′] M |=iMI′φ: ∃j∀k(j ≿i k → M |=k φ]). 15
[BMP*]M |=iBMP*φ: ∃j(Aij & M |=j φ) & ∃j′(Aij′ & ∀k[(j′ ≿i k

& Aik) → [M |=k ¬φ & ∀l(M |=l φ →
(l ≻i j′ & Ail))]])

[BM] M |=iBMφ: ∃j′M |=j′ φ & ∃j[Aij & ∀k[(j ≿i k & Aik) →
[M |=k ¬φ & ∀l(M |=i φ → l ≻i j)])]

[INP] M |=iINPφ: ∀j[Aij → ∃k(k ≈i j & Aik & M |=k φ) &
∃k(k ≈i j & Aik & M |=k ¬φ)]

[VI] M |=iVIφ: ∀j[∃k(k ≈i j &M |=k φ) & ∃k(k ≈i j &M |=k ¬φ)]
So |=i φ ≥ ψ will hold (in a model M) iff “φ tracks ψ” in the ≿i ordering,

that is, for every ψ-world, there is a φ-world i-ranked (per ≿i) at least as high;
whereas |=i φ ≥P ψ will hold iff “φ tracks ψ” among the i-acceptables (the
i-acceptable worlds) per ≿i—more explicitly, there is an i-acceptable φ-world
and for all i-acceptable ψ-worlds (if any), there is some i-acceptable φ-world
i-ranked (at least) as high. |=iMIPφ holds iff there is an i-acceptable world j
such that all i-acceptables i-ranked as low are φ-worlds; whereas M |=iMI′φ
holds iff there is a world j such that all worlds i-ranked as low are φ-worlds. 16
M |=iBMP*φ holds iff there is at least one i-acceptable φ-world and there is an
i-acceptable world j such that a) from there on down among the i-acceptables
φ is precluded and b) every φ-world is both i-ranked above j and i-acceptable.

15We cannot define MIφ as ¬φ > φ for “¬φ > φ” says ¬φ at its best outranks any φ worlds.
We could introduce a mirror image “≤” operator that says φ ≤ ψ holds iff for all ψ worlds,
there is a φ-world ranked at least as low, but for our contrastive purposes we only need an
MI operator.
16Since j ≿i j, in both cases, j must itself be a φ-world, and so only if, respectively, φ is
permissible, φ is possible.
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M |=iBMφ holds iff there is a φ-world (i.e. φ is possible) and there is an
i-acceptable world j such that a) from there on down among the i-acceptables
φ is precluded and b) every φ-world is i-ranked above j (whether i-acceptable
or not). This allows for impermissibly exceeding the permissible minimum,
as needed to map some conceptual space in current ethical theory. |=iINPφ
holds iff among the i-acceptable worlds, for every level (equivalence class per
≈i) there is a φ-world and a ¬φ-world at that level; i.e. the realization of no
i-acceptable level of value hinges on φ’s status. Similarly for |=iVIφ except
with no restriction to the i-acceptable worlds—for every i-level per se, there is
a φ-world and a ¬φ-world at that level.

Here are truth conditions for the defined operators: 17

Defined Deontic Operator Truth Conditions:
[>]M |=i φ > ψ: ∃j[M |=i φ & ∀k(M |=k ψ → j ≻i k)]
[∼]M |=i φ > ψ: ∃j[M |=i ψ → ∃k(k ≿i j & M |=k φ)] &

∀j[M |=j φ → ∃k(k ≿i j & M |=k ψ)]
[>P]M |=i φ >P ψ: ∃j[M |=j φ & Aij & ∀k((M |=k ψ & Aik → j ≻i k)]
[∼P]M |=i φ ∼P ψ: ∀j[(M |=j ψ & Aij) → ∃k(k ≿i j & M |=k φ &

Aij)] & ∀j[(M |=j φ & Aij) → ∃k(k ≿i j & M |=k
ψ & Aij

[PM]M |=iPEφ: ∃j(Aij & M |=j φ)
[IM]M |=iIMφ: ∀j(Aij → M |=j ¬φ)
[OB]M |=iOBφ: ∀j(Aij → M |=j φ)
[OM]M |=iOMφ: ∃j(Aij & M |=j ¬φ)
[OP]M |=iOPφ: ∃j(Aij & M |=j φ) & ∃j(Aij & M |=j ¬φ)
[NO]M |=iNOφ: ∃j(Aij → M |=j φ) ∨ ∀j(Aij → M |=j ¬φ)
[MAP]M |=iMAPφ: ∃j(Aij & ∀k[k ≿i j & Aik) → M |=k φ)
[MA′]M |=iMA′φ: ∃j∀k(k ≿i j → M |=k φ)
[BCP]M |=iBCPφ: ∃j(Aij & M |=j φ) & ∃j(Aij & ∀k[(j ≿i k & Aik) →

M |=k ¬φ])
[BMP]M |=iBMPφ: ∃j(Aij & M |=j φ) & ∃j[Aij & ∀k((j ≿i k & Aik) →

[M |=k ¬φ & ∀l(M |=l φ → l ≻ j)])]
[PSP]M |=iPSPφ: ∃j(Aij & M |=j φ) & ∃j[Aij & ∀k[(k ≿i j & Aik) →

[M |=k ¬φ])
[SO]M |=iSOφ: ∃j(M |=j φ) & ∃j∀k(k ≿i j → M |=k ¬φ)
[SIP]M |=iSIPφ: ∃j(Aij & [∀k((k ≈i j & Aik) → M |=k φ) ∨

∀k((k ≈i j & Aik) → [M |=k ¬φ)])
[VS]M |=iVSφ: ∃j[∀k(k ≈i j → M |=k φ)∨∀k(k ≈i j → M |=k ¬φ)]
[CI]M |=iCIφ: ∀j[Aij → ∃k(k ≈i j & Aik & M |=k φ) &

∃k(k ≈i j & Aij & M |=k ¬φ)] & ∀j[∃k(k ≈i j &
M |=k φ) & ∃k(k ≈i j & M |=k ¬φ)]

17Most of these are derivative truth-conditions, and so need justificatory proofs that the
truth conditions via their definiens and the explicit conditions for those are equivalent to the
ones given above. These are left out given space constraints.
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|=i φ > ψ holds iff there is a φ-world i-ranked higher than any ψ-world,
|=i φ ∼ ψ holds iff φ tracks ψ and vice versa. |=i φ >P ψ holds iff there
is an i-acceptable φ-world that outranks every i-acceptable ψ-world, and |=i
φ ∼P ψ holds iff for every i-acceptable ψ-world there is an i-acceptable φ-
world i-ranked as high, and vice versa. 18 For the next six defined SDL-style
operators, standard truth conditions are given since they are easily derivable,
so that for example |=iPEφ holds iff |=i φ ≥P φ holds by definition, but that
is equivalent to there is an i-acceptable φ-world. |=iMAPφ holds iff there is an
i-acceptable world where all i-acceptable worlds i-ranked as high are φ-worlds;
while |=iMA′φ holds iff there is a world such that all worlds i-ranked as high
are φ-worlds. |=iBCPφ holds iff there is an i-acceptable φ-world and there is
an i-acceptable world j such that all i-acceptables i-ranked as low exclude φ.
BMPφ holds iff the conditions for BMφ mentioned above hold as well as those
for PEφ. |=iPSPφ holds iff there is an i-acceptable φ-world and there is an
i-acceptable world j such that all i-acceptables i-ranked as high exclude φ. In
contrast |=iSOφ holds iff there is a φ-world (φ is possible) and there is a world
j such that all worlds i-ranked as high exclude φ. |=iSIPφ holds iff |=i ¬INPφ,
that is, iff there is an i-acceptable world j such that either all i-acceptable
worlds i-ranked equally with j are φ-worlds or all i-acceptable worlds i-ranked
equally with j are ¬φ-worlds—the status of φ is essential to realizing some
i-acceptable level; whereas |=iVSφ holds iff there is a world j such that either
all worlds i-ranked equally with j are φ-worlds or all worlds i-ranked equally
with j are ¬φ -worlds—the status of φ is essential to realizing some i-level of
value (i-acceptable or not); Finally, |=iCIφ holds iff the conditions above for
both |=iVIφ and |=iINPφ are met.

3.2 Some Applications and Reflections on the DWE(≥)
Framework

Here we highlight some key features of the semantic framework, but with a
special focus on some applications to ethical theory.

First, let’s note that an option’s being an unalterably permissible case of
going beyond the permissible minimum entails that it is beyond the permissible
minimum (whether permissible or not) and entails that it is permissible as well:

Proposition 3.3 |= BMP*φ → (BMφ & BMPφ)

Proof. Assume M |=iBMP*φ, that is (1) ∃j(Aij & M |=j φ) &
(2) ∃j[(Aij & ∀k[(j ≿i k & Aik) → [M |=k ¬φ & ∀l(M |=l φ →
(l ≻ j & Ail))]]). Note that (2) at once implies the sightly weaker (2’)
∃j(Aij & ∀k[(j ≿i k & Aik) → [M |=k ¬φ & ∀l[(M |=l φ) → l ≻ j])
by predicate logic alone. But (1) also implies the weaker (1’) ∃j′M |=j φ,

18Although φ ∼ ψ and φ ∼P ψ might be said to represent a sort of indifference, they are
strictly weaker than VIφ and INφ, respectively. Imagine all i-levels, and all i-acceptable
levels, can be placed one-to-one with 1, 2, 3, . . . , and for each odd-mapped such level there
are all φ-worlds and for each even-mapped such level, there are all ¬φ-worlds; then φ ∼ ψ
and φ ∼P ψ are true, but VIφ and INφ are false. That VIφ and INφ are respectively as
strong is easily seen.
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which conjoined to (2’) is the truth condition for M |=iBMφ. Also, since (1)
is the truth condition for M |=iPEφ, by definition, we have |=iBMPφ. 2

Corollary 3.4 |=BMP*φ → PEφ.

In Section 2.1 we explained DWE’s Disjunctive Supererogation Problem
and proved the following (now merely adapted to our alternative notation):

|= (IMψ & BCP(φ ∨ ψ). [The Disjunctive Supererogation Problem]

Why does DWE have this problem? Given |=iBCPφ, nothing guarantees
that φ’s realization will exceed the permissible minimum, only that it can (i.e.
there is an acceptable world where it does). In contrast, none of our three
variants of going beyond the permissible minimum fall prey to this problem:

Proposition 3.5 ̸|= (IMψ & BMP*φ) → BMP*(φ ∨ ψ). [No Disjunctive
Supererogation Problem]

Proof. Let M be such that: W = ⟨i, j, k⟩, Ai = {i, j}, M |=i φ & ¬ψ,
M |=j ¬φ & ¬ψ, M |=k ¬φ & ψ, and i ≻i j ≻i k (with reflexivity of ≿i for
i, j, k) 19 . M |=iIMψ is obvious. For M |=iBMP*φ: Aii & M |=i φ, so a)
∃j(Aij & M |=j φ). Also Aij and so both j ≿i j and Aij and M |=j ¬φ (but
not j ≿i i and not Aik); and M |=i φ but not so for j or k, and
i ≻i j & Aii. So b) ∃j′(Aij′ & ∀k[(j′ ≿i k & Aik) → [M |=k ¬φ &
∀l(M |=l φ → (l ≻ j′ & Ail)), and b) conjoined to a) yields M |=iBMP*φ.
For M ̸|=iBMP*(φ ∨ ψ): First, i (and only i) does satisfy the condition on j
in a′) ∃j(Aij & M |=j (φ ∨ ψ)). But each world fails to satisfy the condition
of j′ in b′) ∃j′(Aij′ & ∀k[(j′ ≿i k & Aik) → [M |=k ¬(φ ∨ ψ) & ∀l(M |=l
(φ ∨ ψ) → (l ≻ j′ & Ail))]]); for i does not meet it since although Aii and
i ≿i i hold, M |=i ¬(φ ∨ ψ) fails; nor does k meet it since ¬Aik; nor does j
meet it since although Aij, j ≿i j, M |=j ¬(φ ∨ ψ), and M |=k (φ ∨ ψ) hold,
k ≻ j fails (as does Aik). 2

Corollary 3.6 ̸|= (IMψ & BMφ) → BM(φ ∨ ψ). 20

Corollary 3.7 ̸|= (IMψ & BMPφ) → BMP(φ ∨ ψ) 21

19For invalidating models, I will assume reflexivity without stating it is so, and likewise I
will not remark on transitivity, connectivity, and seriality being satisfied when obvious.
20Given the proof of |= BMP*φ → BMφ in Proposition 3.3, we need only show that
|=iBM(φ ∨ ψ) fails in the model for Proposition 3.5. Tracing through the model makes
that apparent: in brief, the only world in the model that can fit the condition on j in
∃j[Aij & ∀k((j ≿i k & Aik) → M |=k ¬(φ ∨ ψ) is j itself, but j does not meet condition
∀l(M |=l (φ ∨ ψ) → l ≻ j) since |=k (φ ∨ ψ) yet j ≻ k.
21Recall BMPφ

def
= PEφ & BMφ. Since |= BMP*φ → BMφ, we need only note that |=iPEφ

holds in the model for Proposition 3.5 (obvious) and that |=iBM(φ ∨ ψ) fails in the model
for the reasons just noted for the first corollary. So |=iIMψ & BMPφ holds, but not so for
|=iPE(φ ∨ ψ) & BM(φ ∨ ψ).
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Corollary 3.8 ̸|= BCPφ → BMφ. 22

Observation 3.1 Neither BM, BMP, nor BMP* fall prey to the disjunctive
supererogation problem.

BMφ, BMPφ and BMP*φ each require that to be beyond the permissible mini-
mum at all, φ must guarantee the realization of more good than the permissible
minimum does, with BMPφ entailing that φ can be permissibly realized, and
with BMP*φ guaranteeing that φ can only be permissibly realized. All three
operators fit my frequent gloss on going beyond the call as “doing more good
than the permissible minimum”, although I assumed it must be permissible to
do so as well, which BMP and BMP* entail, unlike BMφ. Let’s we verify the
latter claim—that we can model impermissibly going beyond the permissible
minimum—next.

Proposition 3.9 ̸|= BMφ → PEφ

Proof. Let W = {i, j}, Ai = {j}; i ≻i j and let φ be true at i only. Then
M |=iBMφ, since (1) ∃jM |=j φ, namely i, and (2) j satisfies ∃j(Aij &
∀k[(j ≿i k & Aik) → [M |=k ¬φ & ∀l[M |=l φ → l ≻i j]), for Aij, and
only j itself satisfies the condition on k that j ≿i k & Aik and it also satisfies
M |=k ¬φ; lastly, the only φ-world is i and i ≻i j. Nonetheless M ̸|=iPEφ,
since ¬∃j(Aij & M |=j φ) for only j satisfies Aij but M ̸|=j φ. 2

Corollary 3.10 ̸|= BMφ → BMP*φ. 23

Corollary 3.11 ̸|= BMφ → BMPφ. 24

We have thus made conceptual space for impermissibly doing more good
than the permissible minimum.

Observation 3.2 The permissibility-entailing supererogation operators are
ordered via proper entailment from left to right as BMP*, BMP, BCP. If
we include the permissibility-neutral BMφ, the new beyond the permissible
minimum operators are ordered in strength left to right as: BMP*φ, BMPφ,
BMφ, that is,

|= BMP*φ → BMPφ; ̸|= BMPφ → BMP*φ; 25 |= BMPφ → BCPφ; and
̸|= BCPφ → BMPφ; |= BMPφ → BMφ; ̸|= BMφ → BMPφ.

Lastly, for BCPφ and BMφ, neither entails the other. Proofs for these claims
is straightforward.

22DWE’s BCPφ
def
= PEφ & MIP¬φ. But in the model for Proposition 3.5, the truth-

conditions for PE(φ ∨ ψ) and MIP¬(φ ∨ ψ) are satisfied (by i and j respectively), but not
so for BM(φ ∨ ψ), as noted for the first corollary.
23The first conjunct of the truth condition for BMP*φ is just the truth-condition for PEφ.
24By definition, |= BMPφ → PEφ.
25We prove ̸|= BMPφ → BMP*φ directly and discuss it below (Proposition 3.16)
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The next invalidity pair shows that our two maximizing operators are in-
dependent; it also illustrates how we can model the tension between classical
deontological views and classical optimizing consequentialist views.

Proposition 3.12 a) ̸|= MA′φ → MAPφ and b) ̸|= MAPφ → MA′φ.

Proof. Let W = {i, j}, Ai = {i}, j ≻ i, M |=i ¬φ, and M |=j φ. Then
a) M |=iMA′φ, for j satisfies ∃j∀k(k ≿i j → M |=k φ), but M ̸|=iMAPφ,
that is, ¬∃j(Aij & ∀k[(k ≿i j & Aik) → M |=k φ]), since the only i-acceptable
world is i itself and it is ranked as high as itself yet M ̸|=i φ.
b) Same model except now M |=i φ and M |=j ¬φ. Then M |=iMAPφ, for
i satisfies ∃j(Aij & ∀k[(k ≿i j & Aik) → M |=k φ]), since Aii holds and
so does ∀k[(k ≿i i & Aik) → M |=k φ] since only i satisfies the conjunctive
antecedent of the quantified conditional and M |=i φ; but M ̸|=iMA′φ, since
neither i nor j satisfy the condition on j in ∃j∀k(k ≿i j → M |=k φ): i
doesn’t since j ≿i i, but M ̸|=j φ, and j doesn’t j ≿i j but M ̸|=j φ. 2

Corollary 3.13 ̸|= MA′φ → PEφ.

Note that the first invalidating instance for formula a) in Proposition 3.12
fits with a classic case where you, a surgeon, can save five lives by distributing
the organs of one healthy person (sacrificing “the donor”) to five others who
will die if they don’t get them. 26 Here, as above, the classical deontologist can
claim that although worlds where five are saved are better than those where
none of them are, it is nonetheless impermissible for the agent to access those
worlds. Fig 5 pictures the model.

Fig. 5. Organ Harvesting Deontological Model

Note also that the fact that MAP and MA′ come apart also raises ques-
tions about “ought.” Should “ought” be associated with the best per se, or the
permissible bests? It seems that the latter must be said if we think that MAP

and MA′ can diverge. We can define such classical deontological dilemmas as
follows:

26See [21], p.206; but there are multiple cases of this sort such as Trolley cases ( [2,22]) and
framing the innocent cases [11] to name two others. The cases all circle around the classical
Deontologist’s central claim: that there are harms “that cannot be justified by the production
of a greater good, or the avoidance of a greater harm, for others” ([8], p.464).
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Definition 3.14 A set of formulas encodes a classical deontological dilemma
in a DWE(≥) Model M at a world i

def
= there is a formula φ such that:

|=iMA′φ & IMPφ. 27

Let’s next model a minor adaptation of a key case of Wessels’ for su-
pererogatory holes using this interpretation of three simple formulae:

φ = I donate exactly $50 (US dollars) and save exactly one life;
ψ = I donate exactly $5000 and I save exactly 100 lives.
χ = I donate exactly 5000+50 and save exactly 200 lives

For χ, we might imagine a dystopian future with an online fundraiser for
which passing a $5050 threshold triggers another 100 lives saved. Add that
$50 is the permissible minimum and $50 is of modest utility for me, $5000 is a
very big sacrifice, but $50 more is just a very slightly bigger sacrifice. Assume
as suggested that φ, ψ, χ are mutually exclusive. Let model M be such that:

W = {i, j, k}; Ai = {i, k}; M |=i φ, M |=j ψ, M |=k χ, and k ≻i j ≻i i.

What follows? |=iMIPφ & BMψ & BMP*χ & (ψ > φ), yet |=iIMψ. Here
although we imagine that ψ outranks the minimum, φ, the fact that a very
marginally greater donation (adding $50) than that of ψ provides such a large
return in saved lives that it makes ψ impermissible even though ψ is (much)
better than the permissible minimum, φ. The “hole” is said to stem from the
existence of the still higher ranked accessible alternative χ; χ is supererogatory
and it “removes ψ” from the ranking of the permissible options—it bumps it
into the impermissibles bucket, but does not change its relative ranking. This
is illustrated in Fig 6 (“k” for thousands).

Fig. 6. Wessels’ Donation Case

Wessels deems ψ to be not supererogatory since not permissible, but she
certainly thinks that ψ involves impermissibly doing more good than the per-
missible minimum. DWE(≥) seems to model features of Wessels’ case well. 28

27Note that |=iMA′φ↔ (φ > ¬φ) by definition, and |=iIMφ → (¬φ >P φ).
28Since we set aside conditionals here, we do not discuss her argument via conditional oper-
ators. See the references in the next note.
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We can also use the same model for the all or nothing problem scenario,
since that scenario is just a special (and especially vivid) case where the
marginal sacrifice is the limit of minimal: none. Here we let:

φ = I call for help and perform no rescue;
ψ = I rescue exactly one and lose one arm;
χ = I rescue both and lose one arm.

The intuition of many about this case, as modeled above, is that the min-
imum involves φ, χ is permissibly beyond the permissible minimum, and ψ
yields more good than the permissible minimum but ψ is nonetheless im-
permissible since it is ruled out by the marginal difference in cost of χ
(none) given the large gain. In the framework of DWE(≥), once again,
|=iMIPφ & BMψ & BMP*χ & ψ > φ, yet |=iIMψ, just as in the Wessells’
case. 29

Within our system, we can define supererogatory holes:

Definition 3.15 A set of formulas encodes a supererogatory hole in a DWE(≥)
Model M at a world i def= there are formulas φ, ψ, χ meeting these conditions:
|=i ¬[(φ & ψ)∨(φ & χ)∨(ψ & χ)] and |=iMIPφ & BMψ & BMP*χ & IMψ. 30

In Proposition 3.3 we showed that |= BMP*φ → BMPφ, but we now show
that even though these two new operators are permission-entailing and each
also entails the conditions for the BM operator, they are nonetheless distinct.

Proposition 3.16 ̸|= BMPφ → BMp*φ.

Proof. M : W = {i, j, k}; Ai = {i, j}; M |=i ¬φ & ¬ψM |=j φ & ¬ψ,
M |=k φ & ψ, and k ≻i j ≻i i. Clearly M |=iPEφ, so in particular ∃j′M |=j′
φ. But the second clause for M |=iBMφ, ∃j[Aij & ∀k((j ≿i k & Aik) →
[M |=k ¬φ & ∀l[(M |=l φ) → l ≻ j)])], is also satisfied; i satisfies the
condition on j, for Aii holds and only i satisfies the antecedent of the universally
quantified clause [i/j, i/k] and M |=i ¬φ; also ∀l[(M |=l φ) → l ≻ i)] holds,
since all φ-worlds outrank i. So M |=iBMφ. But M ̸|=iBMP*φ. For its
second clause, ∃j′(Aij′ & ∀k[(j′ ≻i k & Aik) → [M |=k ¬φ & ∀l(M |=l
φ → (l ≻ j′ & Ail))]]), fails since the only acceptable ¬φ-world is i but
∀l(M |=l φ → (l ≻ i & Ail) fails since k is a φ-world yet Aik fails. 2

Here, although PEφ holds and φ guarantees more good than the permissi-
ble minimum, there are better worlds where φ and ψ occur but IMψ, so that
not all cases of φ are unalterably permissible as BMP*φ requires. For ψ here,
suppose it involves gains procured by framing the innocent, another prop for
a deontological objection to utilitarianism ([11]). Suppose also that my doing

29We are abstracting from details by not modeling agent cost and collective or altruistic
gain. See [23,24] for Wessel’s attempt to do just that and [17] for brief critical exposition.
30Note that |= (BMP*χ & IMψ) → (χ >P ψ) since |= (PEχ & IMψ) → (χ >P ψ) and
|= BMP*χ → PEχ.
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anything to calm the nerves (φ) will do more good than the permissible mini-
mum for me; but if I see to φ by framing an innocent outcast (ψ), I still do more
good than doing the bare minimum. This is a case where classical deontologists
would say it is sometimes just out of bounds to do the best thing. 31

In closing this section, let me just note that the above perhaps reflects one
advantage of BMP over BMP*. Consider again the cases of supererogatory
holes and the all or nothing cases. Let’s focus on Wessels’ example and now
let’s add ψ′ to the case:

ψ′ = I donate at least $5000 and I save at least 100 lives.

Donating $5050 (χ) and donating exactly 5000 (ψ) each entail ψ′. What
is the status of ψ′? Of course we still have |=iMIPφ & BMP*χ & BMψ, yet
|=iIMψ, but checking the prior model for the original example, you will see
that the following holds:

Both BMψ′ & BMPψ′ hold, but BMP*ψ′ fails,.

For since |= χ → ψ′ and |=i PEχ, we get |=i PEψ′, and then BMPψ′ from
BMψ′, but for the reasons stated regarding the countermodel for Proposition
3.16, we can say of ψ′ that not all cases of ψ′ are permissible, since ψ isn’t.
That way of achieving ψ′ is ruled out by the strong conditions for BMP*,
since BMP*ψ′ requires that all worlds where ψ′ is realized are acceptable. But
one might think that donating at least $5000 and saving at least one hundred
lives is unproblematically and permissibly beyond the call. For that much
of what is done was beyond the call, even if something else stronger, ψ, is
impermissibly beyond the call. BMP is a bit more like DWE’s BC operator
(ψ′ is permissible but excluded by doing the minimum), while adding value
in that BM’s also makes realizing φ guarantee exceeding the minimum. We
might say of the person who we think wrongfully acts in realizing ψ, “you went
permissibly beyond the call in realizing ψ′—that was commendable, but not
so for realizing ψ. Similar remarks would apply to the all or nothing case and
the status of rescuing at least one of the two: realizing that was permissibly
beyond the call, but not so for rescuing exactly one— that was impermissibly
beyond the call. It is good to have each of BMP and BMP* on the books as
well as BM, and like BC, they are all ripe for the picking from the deceptively
rich DWE(≥) Frames.

4 DWE(≥)G Framework: The Impact of the GOO
Constraint

Let’s define a special subset of DWE(≥) Frames:

31 Indeed, this model also shows that MA′φ does not guarantee MAPφ or even PEφ.
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Definition 4.1 F = ⟨W,A,≿⟩, is a DWE(≥)G Frame def
= F is a DWE(≥)

Frame such that: (k ≿i j & Aij) → Aik [“GOO” for “Good as OK is OK”]

Here we merely highlight GOO’s significance with a selection of contrasting
invalidities and validities. In doing so, “|=” stands for validity in DWE(≥)
frames, “G |=” for validity in DWE(≥)G frames (similarly for invalidity and
“ ̸|=” and “G ̸|=”). All proofs are set aside because of space constraints.

Proposition 4.2 ̸|= [PEφ & (¬φ ≥ φ)] → PE̸ φ
Corollary 4.3 ̸|= [PEφ & (ψ ≥ φ)] → PEψ

Proposition 4.4 G |= [PEφ & (ψ ≥ φ)] → PEψ (GPP: Good as Permissible
is Permissible)

Proposition 4.5 a) ̸|= [PEφ & PEψ & (φ > ψ)] → (φ ≥P ψ);
b) ̸|= PEψ → [(φ ≥P ψ → (φ ≥ ψ)].

Corollary 4.6 ̸|= [φ ≥P)] → (φ ∨ ψ).
Proposition 4.7 G |= PEφ → [(φ ≥ ψ) ↔ (φ ≥P ψ)].

Corollary 4.8 G |= (φ ≥P ψ) → (φ ≥ ψ). 32

Corollary 4.9 G |= (φ ≥P ¬φ) → (φ ≥ ¬φ).
So given GOO, φ ranks as high as ψ among the permissibles only if it ranks as
high as ψ, period. What of our maximality operators?

Proposition 4.10 a) ̸|= MA′φ → MAPφ; b) ̸|= MAPφ → MA′φ 33

Proposition 4.11 G |= MA′φ↔ MAPφ.

Without GOO, MA′φ and MAPφ are independent; with GOO, a permissible
best is just a best per se—what I ought to do is the best either way.

Note next an asymmetry in that the minimality operators remain indepen-
dent, but this is to be expected on reflection:

Proposition 4.12 a) G ̸|= MI′φ → MIPφ; b) G ̸|= MIPφ → MI′φ

Corollary 4.13 a) ̸|= MI′φ → MIPφ; b) ̸|= MIPφ → MI′φ

What of the operators for exceeding the permissible minimum? Consider
these contrasts:

Proposition 4.14 a) ̸|= BMφ → BMPφ; b) ̸|= BMPφ → BMP*φ

Proposition 4.15 G |= BMφ → BMP*φ

Corollary 4.16 G |= BMφ → PEφ 34

Corollary 4.17 G |= BMφ↔ BMPφ 35

Corollary 4.18 G |= BMφ↔ BMP*φ 36

32The converse is invalid with or without GOO, since φ and ψ might both be impermissible.
33We proved this in Section 3.2 as Proposition 3.12 there.
34Recall the proof in Section 3.2 that |= BMP*φ → PEφ
35Recall BMPφ

def
= BMφ & PEφ

36Recall the proof in Section 3.2 that |= BMP*φ → BMφ
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Corollary 4.19 G |= BMPφ↔ BMP*φ

So, among other reductions, our three new beyond-the-minimum operators
are equivalent given GOO, and the conceptually permission-neutral BM op-
erator is now permissibility entailing. To go beyond the call at all is to do
so unalterably in a permissible manner that guarantees more good than the
minimum. Unsurprisingly, BC from DWE remains distinct from these three.

Proposition 4.20 G ̸|= BCφ → BMφ

Corollary 4.21 G ̸|= BCφ → BMPφ

Corollary 4.22 G ̸|= BCφ → BMP*φ

Given GOO, even the conceptually permission-neutral BM operator is now
stronger than BC:

Proposition 4.23 G |= BMφ → BCφ

What about the indifference notions?

Proposition 4.24 ̸|= VIφ → INPφ

Corollary 4.25 ̸|= VIφ → CIPφ

Proposition 4.26 G |= VIφ → INPφ.

Corollary 4.27 G |= CIφ↔ VIφ (Recall CIφ def
= VIφ & INφ)

Finally, we have:

Observation 4.1 Given GOO, there are no deontological dilemmas per Def-
inition 3.14 (for MA′φ now entails MAPφ, and so PEφ) nor supererogatory
holes per Definition 3.15 (for BMφ now entails BMP*φ, and so PEφ).

All these results reflect the fact that given GOO, the ordered worlds per i
(along with a subset selection, Ai) are just the ordered i-acceptables stacked
on top of the ordered i-unaceptables, as in Figure 7.

Fig. 7. Impact of GOO Constraint

We have established that GOO is a very significant principle for deontic
logic, as is its analogue for ethics, GPP. 37 It is plainly very reductive and
results in substantial theoretical simplifications.

37Likewise for GPP: what is as good as permissible is permissible.
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5 Brief Concluding Remarks
Space limitation constrained us from exploring other semantic features, and
from exploring what logics for the DWE(≥) and DWE(≥)G frameworks might
look like, as well as exploring other operators we might have defined (e.g. condi-
tionalized versions of some of the operators). 38 There is also a way to generate
the framework above for DWE(≥)G from a more fundamental framework in a
substantively plausible way (a hybrid deontological cum consequentialist frame-
work (see [1] for general background on hybrids). Recasting things in a less
classical framework would be worthwhile as well. For example, the semantic
ordering relation needn’t be connected. We leave these and other changes for
the future.

I hope we’ve made clear that classical deontological dilemmas are cousin
to the problem of supererogatory holes: for each hinges on a longstanding but
growing divide in normative ethics over whether something as good as some-
thing permissible must be permissible. 39 We also saw that the all or nothing
case is a special case of Wessels’ supererogatory holes. The expanded DWE
framework allows us to inherit some of the advantages of the original when it
comes to reconsidering supererogatory holes. First, focusing on the latter case,
even if we deny the permissibility of saving just one (ψ), we can still get the re-
sult that saving at least one (ψ′) was permissibly beyond the call (i.e. BMPψ′)
even if de facto done impermissibly by saving exactly one (BMψ & IMψ).
This is a byproduct of solving DWE’s Problem of Disjunctive Supererogation.
Secondly, suppose we embrace GOO and so deny the possibility of impermis-
sibly going beyond the call? The resources we have naturally allow us to still
say unequivocally that Jane ought to not rescue just one (MAP¬ψ) and that
certainly seems to take some of the alleged sting out of just saying it is ok for
Jane to save just one. We can say she shouldn’t do that, even if it is not the
case that she must not (¬OB¬ψ). It is important to clearly distinguish must
from the weaker ought. 40 If we do say morality forbids rescuing just one, then
mustn’t we say of Jane who rescues just one, losing an arm in the process “The
least Jane could have done was just call for help"? That sounds unpalatable.
One could, I guess, get rid of the supererogatory hole by saying that in not
saving the other person when it could be done with no more cost than saving
just one that is so unjust that it is outright worse than just going for help
(saving none), but I find that hard to swallow. It seems more plausible to say
that (morally speaking) Jane should not go for help, and she should not rescue
just one (even though doing so is permissibly beyond the call of duty); what
she (and all of us) ought to do is even better than that: rescue both.

38 [18] has made a start in this direction.
39Hansson’s impressive [5] is a noteworthy prior case in deontic logic where the GPP principle
is put to important use. GOO was also put to more restricted use in [18].
40As argued for in detail in [13], where the first model theoretic account is offered of the
difference.
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When there are two lines of argument that contradict each other but still end up with
the same conclusion, this conclusion is called a floating conclusion. It is an open topic
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On Floating Conclusions

1 Introduction

Floating conclusions are a phenomenon that appears in the context of defeasi-
ble or non-monotonic reasoning. It was investigated already early in [6] and [7].
When there are (at least) two lines of reasoning that contradict each other, but
still end up with the same conclusion, this conclusion is called a floating con-
clusion. One famous example is the Nixon case. In this example, we have one
line of reasoning starting from the fact that Nixon is a republican from which
it can be concluded (defeasibly) that Nixon is a hawk from which again it can
be concluded that Nixon is politically extreme. A different line of reasoning
starts from the fact that Nixon is a quaker from which it can be concluded that
Nixon is a dove from which again it can be concluded that Nixon is politically
extreme. These two lines of reasoning contradict each other, because Nixon
cannot be both a hawk and a dove. We have to reject one line of reasoning.
Still, both lines of reasoning, albeit conflicting, end up with the same con-
clusion: the floating conclusion that Nixon is politically extreme. Should we
accept this floating conclusion then after all? This is the question that immedi-
ately arises and that is going to be the topic of this paper. The name ‘floating
conclusion’ that stems from [7] nicely captures that the conclusion ‘floats’ above
the conflicting arguments. The question of whether we should accept floating
conclusions is tied closely to the question of whether we should accept at least
one line of reasoning among a set of conflicting lines of reasoning. This builds
on the intuition that all the reasoning lines involved have, albeit being fallible,
a certain credibility or plausibility. When a conflict between them arises, it
becomes clear that at least one line of reasoning fails at some point. Given
that it is not clear which line of reasoning fails, we cannot simply accept one
and reject the other. However, can we still assume that there is (at least) one
line of reasoning that is sound? If this is the case, then we should accept a
floating conclusion. If this is not the case, then we should not.

Interestingly, there is not one clear answer to this question. In different ex-
amples of floating conclusions, we seem to have contradicting intuitions about
whether the floating conclusion should be accepted or not. In other words: in
conflicting situations, we sometimes think that at least one line of reasoning is
sound, while at other times we think that the conflict between the lines of rea-
soning destroys both conflicting reasoning lines. Floating conclusions are one
of the most exciting phenomena in the area of defeasible reasoning, but they
also pose an unresolved problem in terms of how to deal with them. Therefore,
floating conclusions expose possible imitations in defeasible reasoning and also
in automated decision-making. A systematic treatment of floating conclusions
is missing in the literature so far. Especially in deontic contexts, this can re-
solve in an alarming inability to derive norms of action in certain situations.

In this paper, we provide a systematic treatment of the phenomenon of
floating conclusions. Thereby, we aim to explain the different intuitions con-
cerning the acceptability of floating conclusions in the different examples. It
is important to note here that our approach is based on intuitions. We try to
provide a theory that manages to explain pre-theoretic intuitions about differ-

200



Schuster, Broersen and Prakken

ent examples and situations. This method is not undisputed. As it has been
noted in [12] and again in [9] the use of intuitions in logic has at least two
difficulties. One difficulty is the question of whose intuitions should count (as
people might differ in their intuitions). The second difficulty questions the as-
sumption that intuitions should always be taken at face value. In fact, Veltman
[12, p. 10] argues that when looking for intuitions, we are usually interested
in the pre-theoretic judgments of ‘common people’ who are no experts in the
field and have not been exposed to theories about the topic yet. However, then
we cannot tell whether these judgments represent knowledge or barely some
kind of fallible belief. Hence, those judgments are fallible and do not provide
a “rock bottom empirical basis for testing logical theories” [12, p. 13]. More-
over, (good) theories and arguments can surely guide and change intuitions and
pre-theoretic judgments [12, p. 15]. Hence, it is important to not blindly rely
on any intuition. Nevertheless, theories should also not contradict all broadly
accepted ‘common-sense’ judgments. Although different people may differ in
their intuitions about the acceptability of one floating conclusion or the other,
there is clear empirical evidence that some floating conclusions are commonly
regarded as acceptable, while others clearly are not (especially when it is con-
sidered that people should act on these conclusions). A theory that accepts all
floating conclusions is just as unsatisfactory as a theory that rejects all floating
conclusions. In this paper, we do not blindly rely on any intuition. Rather,
as Prakken [9] already suggests, we are searching for some underlying pattern
in (commonly shared) intuitions and thereby try to explain similarities and
differences.

First, we will present several different examples of non-monotonic argu-
ments that involve a floating conclusion. Many examples are discussed in the
literature already, others have been constructed for this paper specifically. We
will see that the different examples trigger different intuitions about whether we
should accept the respective floating conclusion. Next, we will present different
hypotheses that try to explain these conflicting intuitions and we will test the
validity of these hypotheses with the help of our examples. After having tested
the different hypotheses, we will argue that there is not one single explanation
that manages to explain all the different intuitions. Instead, our presented so-
lution will take some ingredients from different explanations. We argue that,
per default, floating conclusions are to be accepted. However, there are reasons
to deviate from the default and to reject a floating conclusion. We will present
two different reasons for deviation that together nicely explain and cover all
the presented examples. One reason applies if there is a possible ‘compromise’
between the conflicting elements of the arguments; the second reason applies if
the conflict is harmful not only to the conflicting part of the argument but also
to other non-conflicting parts because the conflict undermines the credibility
of the sources of information altogether. Both of these reasons are based on
the fact that in situations of floating conclusions, the conflicting propositions
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are contrary. 4 This means that the propositions cannot be true together, but
yet can be false together. The two explanations which give us reason to devi-
ate from the default both spell out a way in which the conflicting propositions
are both false, offering a third alternative beyond the two (in the arguments
displayed) alternatives that one proposition is true and the other one false or
vice versa.

2 Examples of floating conclusions

We will present examples of arguments that involve a floating conclusion. Some
of the examples can be found in the literature, others are invented for this paper
in order to obtain a precise impression of the phenomenon that is as compre-
hensive as possible. In a second step, we will divide them by means of the
different intuitions about the acceptance of the respective floating conclusion.

2.1 Presenting the examples

In the following, we will use capital letters to abbreviate the sentences or
propositions. The arguments are visualized via arrows connecting the sen-
tences. The non-dashed arrows represent strict, monotonic reasoning, while
the dashed arrows represent defeasible inferences. 5 The double-sided crossed-
out arrow visualizes a conflict between two sentences, while the T stands for
‘truth.’ Sentences that follow from T are taken to be known.

Ice-Skating [9]

T

A B

N D

S

A Brigt Rykkje has a Norwegian name.

B Brigt Rykkje was born in the Netherlands.

N Brigt Rykkje is Norwegian.

D Brigt Rykkje is Dutch.

S Brigt Rykkje likes ice-skating.

The argument that is visualized by the picture then reads as follows: It is
both true (hence strictly follows from (T)) that Brigt Rykkje was born in the
Netherlands (B) and that he has a Norwegian name (A). The argument on
the right side tells us that Brigt Rykkje is Dutch (D) since he was born in
the Netherlands (B). The argument on the left tells us that Brigt Rykkje is
Norwegian (N) since he has a Norwegian name (A). These two statements, (N)
and (D), however, contradict each other and cannot be both true at the same

4 Thanks to Michael De for pointing us towards this.
5 One could also call them material inferences in the terminology of [11] and [1].
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time. 6 On the right side, the argument continues: Brigt Rykkje likes ice-
skating, since he is Dutch (D). On the left side, the argument continues: Brigt
Rykkje likes ice-skating (S), since he is Norwegian (N). Hence, both argument
lines end up with the floating conclusion that Brigt Rykkje likes ice-skating
(S). All reasoning steps here are beliefs.

Economy [4]

T

A B

D I

E

A Economist A says we will have deflation.

B Economist B says we will have inflation.

D We will have deflation.

I We will have inflation

E We will have economic downturn.

Student Housing [2]

T

B F

A U

H

B Susan’s boyfriend studies in Amsterdam.

F Susan’s best friend studies in Utrecht.

A Susan wants to study in Amsterdam.

U Susan wants to study in Utrecht.

H It will be difficult to get housing.

Here not only beliefs but also desires are involved. For example: Susan wants
to study in Amsterdam (A), because her boyfriend studies in Amsterdam (B).
But again, she believes that housing will be very expensive if she studies in
Amsterdam.

6 In almost all the examples, we are making some empirical assumptions, like here: It is
not possible to have two citizenships. This reflects the fact that we are reasoning in a non-
monotonic setting with incomplete knowledge. One could say that the inferences we draw are
material inferences rather than formal inferences in the terms of Sellars [11] and Brandom
[1].
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Yacht [4]

T

B S

M D

Y B My brother tells me that dad will give his half a
million dollars to him, but mom will give it to me.

S My sister tells me that mom will give her half a
million dollars to her, but dad will give it to me.

M I will get half a million dollars from my mom.

D I will get half a million dollars from my dad.

Y I put a high deposit on a Yacht that costs half a
million dollars.

This example from Horty [4] is about a situation where I have a brother and
sister. Our parents are separated and will both die soon. The parents each
have a fortune of half a million dollars. Before both parents went into comas,
my brother talked to my father and my sister talked to my mother. My sister
tells me that according to my mother, my mother will give her half a million
dollars to her (my sister), but my father will give his half a million dollars to
me. My brother tells me that according to my father, my father will give his
half a million dollars to him (my brother), but my mother will give her half
a million dollars to me. In this story, I really want to buy a (very particular)
yacht for half a million dollars and I intend to make a very large down payment
on the yacht should I receive half a million after my parents die.

Nixon [4]

T

R Q

H D

E

R Nixon is a republican.

Q Nixon is a quaker.

H Nixon is a hawk.

D Nixon is a dove.

E Nixon is politically extreme.
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Primary Color

T

A B

R Y

P

A Anna says that the cup is red.

B Ben says that the cup is yellow.

R The cup is red.

Y The cup is yellow.

P The cup is colored in a primary color.

Wavelength Color

T

A B

R Y

W
A Anna says that the cup is red.

B Ben says that the cup is yellow.

R The cup is red.

Y The cup is yellow.

W The color of the cup has a higher wavelength than
the wavelength of blue.

Murderer [9]

T

A B

K G

V
A Witness A says that Peter killed the victim with

a knife.

B Witness B says that Peter killed the victim with a
gun.

K Peter killed the victim with a knife.

G Peter killed the victim with a gun.

V Peter killed the victim.
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Mary in Canada [10] and [4]

T

S W

O V

C

S Mary’s spouse lives in Toronto.

W Mary’s work is in Vancouver.

O Mary lives in Toronto.

V Mary lives in Vancouver.

C Mary lives in Toronto or in Vancouver.

Carol in the US [4]

T

S W

C A

U

S Carol’s spouse lives in College Park.

W Carol’s work is in Alexandria.

C Carol lives in College Park.

A Carol lives in Alexandria.

U Carol lives in College Park or in Alexandria.

2.2 Intuitions about the acceptance of the floating conclusions in
the examples

Floating conclusion accepted Floating conclusion rejected

Ice-Skating Economy

Student Housing Yacht

Wavelength Color Primary Color

Mary in Canada Carol in the US

Nixon

Murderer

The table shows the examples in which the floating conclusion should be intu-
itively accepted and the examples in which it should not. As mentioned in the
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introduction, the use of intuitions raises some questions. Of course, some peo-
ple’s intuitions may diverge from the table. Although we have not conducted
a scientific study, we have asked enough people about their intuitions regard-
ing these examples to assume that the table is representative. Of course, we
are also aware that most of the people we interviewed come from an academic
background and that the intuitions of other groups of people might be different.

The Nixon case is probably the most controversial and therefore the most
interesting case. In former literature [3] people argued that the floating con-
clusion in the Nixon case should be accepted. However, we think that it should
be rejected. Especially when we explain our reasons why the Nixon floating
conclusion should be rejected, people seem to sometimes change their intuitions
and admit that in fact, one cannot conclude that Nixon is politically extreme.
Without presuming additional knowledge about Nixon as a person, it is nat-
ural to think that his quaker and his republican side ‘balance each other out’
such that he ends up with no politically extreme stance. This reflects nicely
what we said in the introduction. Intuitions are not infallible and they are not
necessarily stable. Sometimes good explanations can change intuitions.

3 Hypotheses

In this section, we present different hypotheses that aim to explain why some
but not all floating conclusions seem acceptable. We do not claim that the
list of hypotheses is exhaustive, nor that all of the hypotheses are prima facie
equally convincing. The list contains the hypotheses we found in the literature
so far and new hypotheses that we took to be reasonable and worth mentioning.
In the subsequent subsection, we will then evaluate the hypotheses by virtue
of our examples.

3.1 Presenting the hypotheses

(i) Vagueness: One possible explanation is bound to the concept of vague-
ness. Some conflicts can be seen as borderline cases for vague concepts that
are involved in the corresponding defaults. If a vague concept is involved,
and the conflicting propositions incorporate a clear, non-borderline case
of the concept, it has to be tested whether the floating conclusion also
follows from the borderline case. If the floating conclusion does not follow
from the borderline case, it should be rejected.

(ii) The direction of fit [2]: The difference could stem from different direc-
tion of fits. Beliefs are propositions that aim to describe the world, hence
the direction of fit can be described as proposition-to-world. Desires and
intentions, on the other hand, are propositions that describe how the world
ought to be, so the direction of fit is world-to-proposition. This is why
conflicting beliefs ‘cancel each other out,’ resulting in the rejection of the
floating conclusion. Conflicting desires or intentions, on the other hand,
do not cancel each other out. Thus, at least one of the desires will remain
intact and the floating conclusion is to be accepted.

(iii) Hidden Defaults [9]: This explanation states that the reason that some
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floating conclusions might seem unacceptable, results from implicit “hid-
den defaults” that are not mentioned explicitly, but have to be thought
along the respective examples. These hidden defaults defeat (through
undercutting) the presented defaults that lead to the alleged floating con-
clusions, such that these in fact are no floating conclusions but conclusions
of defeated defaults.

(iv) Possible Compromise: This explanation suggests that one has to look
at the compatibility of the conflicting propositions. If there is a possible
‘compromise,’ or intermediate position, between the conflicting proposi-
tions, it is likely that this compromising position is in fact the case. In such
a situation, one has to check if the floating conclusion also follows from
the compromising case. If it follows only from the presented ‘extreme’
cases but not from the compromising one, the floating conclusion must be
rejected. If there is no compromise between the conflicting propositions,
it is justified to think that at least one of the conflicted propositions is
true, and hence that the floating conclusion is acceptable.

(v) Harmfulness of the conflict: This explanation takes a closer look at the
conflict, as well as at the sources of information. Sometimes it seems that
the conflict is only harmful to the conflict itself. In other cases, though,
the conflict seems to destroy the credibility of the sources of information
more generally. If this is the case, there is no longer a reason to assume
that at least one line of reasoning is sound which results in rejecting the
floating conclusion.

3.2 Testing the hypotheses

In this section, we will test the presented hypotheses by means of our examples.
We will see that, while most hypotheses manage to explain certain examples
well, no hypothesis manages to explain the intuitions behind every example
presented.

(i) Vagueness: The vagueness hypothesis is motivated by examples like
Wavelength Color and Primary Color. These two examples involve a
vague concept (a color). Clearly, the conflicting propositions (that the cup
is red and that the cup is yellow) can be dissolved by a third proposition
(that the cup is orange) representing the borderline case. In the Primary
Color example, the floating conclusion does not follow from the borderline
case (thus the conclusion is rejected), for Wavelength Color the floating
conclusion does follow from the borderline case as well (thus it is accepted).
The involvement of vagueness alone does not do the job of explaining the
differences though. Moreover, there are plenty of examples that do not
involve vagueness and for which we still have varying intuitions. These
cannot be explained by this hypothesis. However, it becomes clear quite
easily that vagueness alone cannot explain all examples. For example,
there is Yacht which is a rejection example and Ice-Skating which is an
acceptance example, but neither of the examples involves a vague concept.

208



Schuster, Broersen and Prakken

(ii) The direction of fit: The idea that a different direction of fit can lead to
different intuitions about the acceptability of floating conclusions was orig-
inally motivated in [2] by the different intuitions in the examples Econ-
omy and Student Housing. In the latter example, the conflict arises
due to conflicting desires. Susan wants to study both in Utrecht and in
Amsterdam. Although it is clear, that one desire will ‘defeat’ the other
eventually, the desires do not cancel each other out as in the Economy
case where we have a conflict between beliefs. However, this explanation
fails in other examples. Ice-Skating is an example that is free of desires
and intentions and purely based on beliefs. Still, we want to accept the
floating conclusion in Ice-Skating. 7

(iii) Hidden Defaults: [9] argues that the examples Yacht and Murderer
do in fact not provide a reason to reject floating conclusions. The propo-
sitions that conflict each other and from which the floating conclusions
follow are in both cases defeated since the defaults leading to these con-
clusions are undercut by other defaults, that are not mentioned explicitly
in the theory. In the case of Murderer, what makes the alleged floating
conclusion unacceptable is the hidden default that, if two witnesses say
contradicting things, their credibility is dismissed. This default then un-
dercuts both the default that concludes that Peter killed the victim with
a gun and the default that concludes that Peter killed the victim with a
knife, yielding no floating conclusion. Likewise in the Yacht example, a
hidden default will undercut both arguments that rely on the testimonies
of my sister and my brother. 8 This strategy succeeds in other examples
as well. In the Nixon case, one could find an additional, hidden default
stating that if someone is both a quaker and a republican, one cannot
tell anything about his or her opinion with respect to military operations.
This hidden default would then undercut both defaults that infer either
that Nixon is a dove or that Nixon is a hawk. The floating conclusion that
he is politically extreme would then not follow either. The rather clear
case of Ice-Skating also speaks in favor of this hypothesis. There is no
apparent hidden default that should be visualized in the example, leading
to the intuitively correct conclusion that the floating conclusion is accept-
able. The strategy, however, becomes more questionable when examples
like Mary in Canada and Carol in the US (or the Color examples)

7 One can easily see how the explanation fails in the other direction as well. If one adapted
Carol in the US to an example about Carol’s desires to live in one and the other city, the
hypothesis would state that the floating conclusion is to be accepted, although we want to
reject it.
8 Note that Prakken [9] described the example slightly differently. In his description, both my
sister and my brother tell me that they spoke to both parents and that my mom (respectively
my dad) told my sister (respectively my brother) that she will give me her (his) money.
Prakken argues that this example relies on the additional default that people tend to speak
the truth about their intentions, which is undercut as soon as people (in this case both mom
and dad) tell conflicting things about their intentions.
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are considered, where the same defaults in one case lead to seemingly ac-
ceptable floating conclusions and in another case to unacceptable ones.
Why should there be hidden defaults in one case but not in the other?
Prakken himself also admits that this strategy might not be valid for all
possible examples, such as conflicts due to different interpretations of legal
norms. Moreover, we think that, although this thesis might be applicable
for a lot of examples, it does not really provide an explanation about why
in certain situations a floating conclusion is to be accepted and in others
not. By referring only to possible missing defaults, we might get a way
out of the unequal treatment of the different floating conclusions, but it
still shifts the burden of explanation only to the question about why we
feel like there are some defaults missing (or hidden) in some cases, while
in other cases this is not so.

(iv) Possible Compromise: The idea behind this thesis can best be visual-
ized by the different intuitions of the Mary in Canada and Carol in the
US case. Although the defaults leading to the conflict and to the floating
conclusions are of the exact same form, the floating conclusion seems jus-
tified in one case and not in the other (as [4] notices.) What explains the
difference in this particular case? It seems like the conclusion that Mary
lives either in Vancouver or in Toronto is acceptable because there is not
really an alternative option in the ‘middle.’ Since the cities are extremely
far away from each other, it is not likely that Mary could live somewhere
in the middle and commute between the places on a daily basis. This is
different in the case of Carol in the US. Since both cities, College Park
and Alexandria, are in fact not very far away from each other and there is
a good ‘compromise,’ Washington D.C., that is in the middle, it is likely
that Carol neither lives in College Park nor in Alexandria, but went for
the compromise, the city in between. This idea can be transferred to other
examples, too. In the Economy case, there is a ‘compromise’ 9 between
(strong) deflation and inflation, namely that there will be none of both.
Likewise in the Nixon case, the compromise between Nixon being a Hawk
and Nixon being a Dove lies clearly in the middle in describing Nixon as
not having a clear or extreme opinion on military use. In both cases, we
do not want to accept the floating conclusion, because the compromise
is just too likely and from the compromise the floating conclusion does

9 Note that the use of the word ‘compromise’ may be somewhat unusual in this context.
Not in all the cases described is there really a compromise in the sense of people agreeing
on something. What we mean here by compromise is rather an unignorable possibility or
relevant alternative. We use the word ‘compromise’ anyway because it suggests so nicely
that this alternative or possibility lies somewhere in the middle on a spectrum at the end of
which the two conflicting options lie (and is not simply some additional alternative that lies
outside the spectrum considered so far).
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not follow. 10 This is different in the cases of Ice-Skating and Student
Housing. There is no attractive student town between Amsterdam and
Utrecht and even less is it possible, that Brigt Rykkje can have a citi-
zenship ‘in between’ Norwegian and Dutch. Therefore, we should stick
with the conclusion that, even if he cannot have both, he has at least
one of the citizenships, such that the floating conclusion can be drawn.
The general idea is that if there is no compromise between the conflicting
propositions, then it is likely that at least one line of reasoning is correct
and the floating conclusion will follow. If there is a plausible compromise,
then it has to be tested if the floating conclusion follows from this com-
promise, too. This can be nicely visualized via the two color examples. In
the identically constructed examples Wavelength Color and Primary
Color, the compromise (that the cup is orange) entails one floating con-
clusion (that the cup is colored with a higher wavelength than the one of
blue) but not the other floating conclusion (that the cup is colored in a
primary color). However, the examples of Murderer and Yacht cannot
be perfectly explained by this hypothesis. The reason why we want to re-
ject the floating conclusion is not that there seems to be a compromise or
intermediate position between the two conflicting propositions. Rather, it
seems like the sole fact that there is a conflict undermines the credibility
of both argument lines.

(v) Harmfulness of the conflict: The thesis about the harmfulness of the
conflict is based exactly on this observation concerning Yacht and Mur-
derer. The basic idea is that there are different kinds of conflicts. Some
kinds of conflicts are harmful to the floating conclusion, others are not.
The cases of Yacht and Murder, for example, involve a conflict in which
two witnesses assess different things that, although in conflict with each
other in some respect, are consistent with each other in another respect.
In the Murderer case the witnesses’ testimonies conflict in respect to the
murder weapon they describe Peter to have used, but they agree upon the
fact that it was Peter who killed the victim. In the case of the Yacht,
the siblings’ testimonies are in conflict with each other in respect to what
Mom and Dad will do with their half a million dollars, but they agree
that I will end up having half a million dollars from one of them. Still,
we wouldn’t want to conclude that Peter killed the victim or that I will
inherit half a million dollars. Why is this? The conflict involved seems to
be harmful not only to the conflicting part itself but harmful to the whole
situation as such. The existence of the conflict puts us in doubt about
the credibility of the witnesses and makes us suspect that something more
general ‘has gone wrong.’ We might suspect that the two witnesses or the
siblings have arranged their statements, or that the conditions for seeing

10Horty [4, p. 69] already suggests something similar in his considerations of Economy and
Nixon: “Perhaps the extreme predictions are best seen as undermining each other and the
truth lies somewhere in between.”
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Peter kill the victim weren’t that great or that our parents have no in-
tention to reveal anything about who gets their money. This explanation
can be made for the Economy example, too. 11 In other cases, like Stu-
dent Housing or Ice-Skating, the conflict doesn’t seem to destroy or
harm anything over and above the conflicting part itself. We have some
information that speaks in favor of Brigt Rykkje being Norwegian and we
have some other information that speaks in favor of Brigt Rykkje being
Dutch. However, the different kinds and sources of information are in-
dependent of each other and are not destroyed by the conflict. In all of
the cases where the conflict is harmful to the general argument, this is so
because the credibility of the sources of information or the authority of
the experts is undermined by the conflict. 12 It is not clear, however, how
this explanation succeeds to explain the different intuitions about Mary
in Canada and Carol in the US, or Wavelength Color and Primary
Color. The conflict involved is exactly of the same form, and thus, it is
not clear why the conflict is harmful for one floating conclusion but not
for the other.

4 A possible solution: A default framework for floating
conclusions

In the last section, we found that none of the presented hypotheses is suited to
explain the intuitions about all examples. Still, we are positive that the two
hypotheses “Possible Compromise” and “Harmfulness of the Conflict” com-
bined manage to describe what is at the heart of the matter for the different
examples. For example, “Possible Compromise” nicely explains the different
judgments for Mary in Canada and Carol in the US and for Wavelength
Color and Primary Color by referring to the compromising proposition.

We propose a solution that manages to combine different hypotheses. The
basic idea is that a floating conclusion should be accepted by default. We should
prima facie believe them. Then, there are different reasons to deviate from the
default and to reject a floating conclusion. One such reason is explained by the
“Possible Compromise” thesis. If there is a compromise between the conflicting
propositions (and from this compromising proposition the floating conclusion
doesn’t follow) then the floating conclusion is to be rejected. 13 Another reason
to deviate from the default and to reject the floating conclusion is described

11 It would be interesting to see if the situation changes when the two conflicting propositions
that seem to ‘cancel each other out’ are not equally strong.
12This can be seen even clearer when modeling examples like Yacht or Murderer in a
different way. For example, one can take e.g. “Witness A says that p, hence p” to be not
a defeasible argument but rather a justification through testimony or utterance for p. The
argument as such then starts from the two premises “Peter killed the victim with a knife”
and “Peter killed the victim with a gun” (which are both justified by some testimony). Then
one could argue that both arguments (from K to V and from G to V) are in fact even
undermined (see [8] for this terminology) since the premises of the arguments are attacked
by the conflicting testimonies. Many thanks to Stipe Pandzic for this remark.
13 It can be noted that the vagueness thesis describes a special case of a possible compromise.
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in the “Harmfulness of the conflict” thesis. If a conflict is not only harmful to
the conflicting propositions but undermines the credibility or authority of the
sources of information entirely, then the floating conclusion is to be rejected.
The basic idea behind this can already be found in [5, p. 189]: “we might
suppose that, although floating conclusions are in general acceptable, there are
structural features present in situations such as the yacht example, but not
yet captured in our formal representations of these examples that block these
conclusions.”

In all cases of floating conclusions, the conflicting propositions are contrary
to each other. Although they cannot both be true at the same time, they can
both be false at the same time. That is, in addition to the possibility that
one proposition is true and the other false (or vice versa), there is a third
possibility: both propositions are false. The two reasons to deviate from the
default describe both one version of (or reasons for) this third possibility. Ei-
ther we reject both propositions because the credibility of their justification
has been undermined or because there is a third proposition as a compromise
available. 14 Logically, one could capture this by saying that both conflicting
propositions p and q that lead to a floating conclusion are false, i.e., ¬p∧¬q or
¬(p ∨ q). The other (default) situation in which we should accept the floating
conclusion could then be captured by the exclusive disjunction p⊻ q of the two
propositions being true. 15 With this manifold solution, we think that we man-
age best to precisely describe what is going on in the different examples and hit
the heart of the matter, describing the underlying patterns of the intuitions.
In the case of Primary Color, Nixon, or Carol in the US it is really the
plausibility of the compromise between the conflicting propositions (either that
the cup is orange, that Nixon is politically in the middle, or that Carol lives ‘in
between’) that makes us reject the floating conclusion intuitively. In the cases
of Yacht and Murderer or Economy 16 the reason why we intuitively reject
the floating conclusion is that we do not trust any line of argument anymore
as the credibility of the sources got destroyed. For example, in the Murderer
case, the credibility of the testimonies is destroyed by their disagreeing about
the weapon. Moreover, we do not want to claim that these two reasons: com-
promise and harmfulness of the conflict are the only reasons for deviating from
the default of accepting the floating conclusion. Plausibly, there will be other
reasons. This is not a problem for our theory, though, as this default-based
framework can easily be extended with multiple more reasons to deviate.

14 In this sense, the “hidden default” thesis can also be incorporated into the framework. The
two explanations ”possible compromise” and “harmfulness of the conflict” describe different
reasons why in some examples a default still seems to be missing or hidden.
15Thanks to an anonymous reviewer for pointing this out.
16 In fact, Economy can be explained both by referring to a possible compromise and by
the harmfulness of the conflict for the credibility of the sources. Thus, this example shows
that there can be even more than one reason to deviate from the default of accepting floating
conclusions.
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5 Conclusion and Outlook

In this paper, we investigated the phenomenon of floating conclusions. The
question about the acceptability of floating conclusions can be reformulated as
the question of whether we should accept at least one line of reasoning among
a set of conflicting lines of reasoning. We presented an overview of different
examples of floating conclusions from the literature and extended the list with
new examples. We examined different hypotheses that aim to explain our non-
uniform intuitions about whether floating conclusions should be accepted or
not and tested them via our examples. We argued that no hypothesis succeeds
in explaining our intuitions concerning all the presented examples. Instead,
we presented an overarching explanation for the acceptability of floating con-
clusions. The explanation starts with the basic idea that floating conclusions
ought to be accepted by default. The framework then allows several reasons
to deviate from the default and to reject the floating conclusion. These rea-
sons come into play when there seems to be a third alternative besides the
two conflicting propositions. We presented two possible reasons why this al-
ternative arises. If there is a compromise between the conflicting propositions
from which the floating conclusion does not follow or if the conflict is harmful
to the sources of information, one can deviate from the default and reject the
floating conclusion. We saw that these two reasons nicely cover and explain all
the examples investigated in this paper. We thereby manage to describe the
underlying pattern of our intuitions regarding the floating conclusions. Still,
the framework is open for new, additional reasons that will come along with
new examples when the matter is investigated more.

As we already mentioned in the introduction, intuitions alone do not always
help us decide about the different examples. This is visualized nicely in the
following example from practical reasoning. Imagine there was a robbery where
jewelry was stolen. Later, the police stop a man in a car and find the stolen
jewelry. The police have reason to believe that the occupant stole the jewelry.
However, the man claims to have bought the jewelry. Both activities (stealing
and the so-called ‘Hehlerei’/‘heling,’ i.e., the purchase of stolen goods) are pun-
ishable in the Netherlands as well as in Germany. The German legal system
allows the suspect to be convicted for the crime with the lesser penalty since
it is clear that he committed one of the two crimes. The Dutch legal system,
on the other hand, cannot convict the suspect unless there is evidence that
clearly shows which of the crimes was committed. 17 The acceptance of the
practical floating conclusion (the suspect is punishable) here does not depend
on intuitions but on the legal system, one is referring to. The dependency on
context and on stakes can also be nicely visualized by our presented examples.
While the conflict destroys the credibility of the witnesses in Yacht or Mur-
derer, the conflict does not seem to destroy the credibility of Anna and Ben
in the color examples. In these contexts, where they are simply telling us the
color of a cup, we have no reason to be suspicious because the context offers

17According to: Hans Nijboer, personal communication, 2007
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us no reason why they should lie about the color of the cup. 18 Since whether
or not we want to choose the third alternative, deviate from the default, and
reject the floating conclusion seems to depend heavily on the stakes and on the
context, we consider it a very difficult challenge to represent the appropriate
handling of floating conclusions in a formal logical system. Moreover, these
examples suggest that there might be a difference between purely theoretical,
epistemological reasoning, and practical reasoning. As the intuitions would
also become more comparable when actions are involved, further research on
the influence of practical reasoning for floating conclusions seems very fruitful.
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Abstract

In this paper, we introduce a novel framework for deontic logic of strong permission
that accommodates free choice. Our approach treats permission as a bundled modal-
ity, which combines a universal quantifier with a possibility modality such that an
action type α is permitted if and only if every token of α can be executed in some
deontically ideal world. Our formalization of action tokens and their types is inspired
by the BHK-style interpretation for intuitionistic logic. We axiomatize the logics of
strong permission under various conditions. Beyond satisfying desirable logical prop-
erties found in the literature, our framework also predicts interesting new phenomena
related to permission and distribution laws that align with our linguistic intuition.

Keywords: deontic logic, bundled modality, strong permission, free choice, BHK
interpretation, first-order modal logic

1 Introduction

Modalities are often more than what they appear to be. An innocent-looking
modality in natural language may have hidden inner logical structures that can
cause its behavior to diverge from normal modal logic, resulting in a range of
puzzles. For example, considering know-how as a 2 modality, one can know
how to achieve α (2α) and how to achieve β (2β), without knowing how to
achieve α ∧ β simultaneously (2(α ∧ β)). Thus the conjunction aggregation in
normal modal logic is intuitively invalid. Technically, such non-normality can
be accommodated by more general semantics (cf. e.g., [9]), but it has a deeper
semantic root that the know-how modality can be understood as a bundle of
an existential quantifier and a know-that modality ∃xK, i.e., knowing how to
achieve α can be interpreted as there is a plan such that one knows that it
is executable and will guarantee α (cf. e.g., [23]). The interaction between ∃
and K reflects the de re nature of knowledge-how and can also account for its
“ambiguous” logical behavior ensembles both 2 and 3 to some extent. 1

Such cases may find resonance in deontic logic, where logical puzzles
abound. One of the most discussed puzzles in deontic logic is the puzzle of

1 The swapped version K∃x represents de dicto knowledge, e.g., knowing that there is a
proof for some theorem, which does not imply knowing how to prove the theorem.
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free choice permission (FCP) [14], wherein the permission to do either α or β
intuitively results in the permission of α and the permission of β in various con-
texts. This view contrasts with the notion that permission is a 3-like modality
in standard deontic logic (SDL). Furthermore, incorporating FCP as an axiom
on top of SDL yields unacceptable consequences. This raises the question of
whether there is an unexplored logical inner structure of permission that can
account for FCP and other related puzzles.

We think the answer is positive. In particular, there may be a hidden bundle
of a quantifier and a modality behind the modality of permission, as in the case
of know-how. Actually, this is not a new idea in deontic logic.

First of all, quantifiers can be introduced to deontic logic over the set of
agents to whom the norms are applied. However, a more significant role played
by quantifiers emerges when we distinguish between action tokens and action
types. This distinction was already observed by von Wright in his seminal work
that pioneered the field of deontic logic [24]. Action tokens can be consid-
ered individual acts of certain action types, with deontic modalities primarily
applied to the latter. The distinction between types and tokens has proven
fruitful in addressing puzzles like FCP, such as the Boolean-algebra-based ap-
proach initiated by Segerberg [19] and its more sophisticated generalizations
based on (il)legal sets [8,20] (see also [12,6,4,10] for comprehensive reviews of
the literature regarding approaches to FCP). Like many other puzzles in deon-
tic logic, FCP cannot be solved in isolation. It remains to be seen whether a
semantic approach can lead to a logic satisfying most, if not all, of the intuitive
constraints discussed in the literature. 2 This paper presents the first steps of
our attempt toward this goal.

Our approach is inspired by Hintikka, who explored various combinations
of quantifiers and modalities to address the deficiencies of SDL in the early
days of deontic logic [13]. Given the distinction between action types and
tokens, we can quantify the tokens in defining the semantics for permission in
combination with the modality. In particular, Hintikka informally proposed
capturing a notion of permission with ∀x3α, i.e., a (strong) permission of α
asks for each token of type α to be executed in some deontically ideal world
w.r.t. the current world. For instance, if you are allowed to take one day off
next week, it means that you can take any single day off next week. If you
are only allowed to take Monday off, then the previous permission would be
considered false, i.e., allowing merely one token does not justify the strong
permission about the action type. Universally quantified interpretations of
permission can also be found in other approaches, such as [5] in terms of “open
reading of permission”, and [18,7] in the tradition of dynamic deontic logics. 3

2 There are “hybrid” approaches that combine semantics and pragmatic features, satisfying
most constraints (cf., e.g. [2]).
3 Some may view the use of universal quantifier to be too strong as it may involve every
token no matter how strange, cf., e.g., [6]. Note that as the interpretation of quantifiers in
other applications, it is always about a set of relevant acts given in the context (technically
a model). We leave the philosophical discussions on this to the full version of the paper.
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However, Hintikka’s original proposal was mostly forgotten in the literature
after receiving early criticisms regarding the use of quantifiers (cf. e.g., [16]).

We believe that Hintikka’s ∀3-schema for permission has the potential
to provide a satisfactory semantics for strong permission. However, one of
the missing pieces is an alternative formal treatment of action types and to-
kens, which would differ from those found in the literature, such as the ones
based on Boolean algebra. Our inspiration comes from the Brouwer-Heyting-
Kolmogorov (BHK) interpretation of intuitionistic logic, which has an interest-
ing connection with the know-how bundle [22]. Although this interpretation
is commonly known as the proof interpretation, a more general view advo-
cated by Kolmogorov treats each intuitionistic formula as a type of problem,
interpreting it as the set of all its solutions [15,17]. From this broader perspec-
tive, formulas are not necessarily propositions with truth values; rather, they
represent types of specific entities. We draw upon this parallel and provide a
semantics for strong permissions, utilizing the ideas in [22] to formalize the ∀3
bundle instead of the ∃2 bundle for the know-how operator found in [22].

In this initial attempt, we constrain our language and focus solely on the
concept of strong permission, which is taken to be descriptive rather than
declarative [12]. Technically, our contribution encompasses a new formal se-
mantics, along with a series of complete axiomatizations for the logic of strong
permission under various settings. These complete axiomatizations with in-
tuitive axioms largely assure us that there are no unexpected consequences
arising from our semantics. Moreover, as we will explain below, our approach
uncovers intriguing natural language phenomena related to strong permission,
which might have remained unnoticed without such a formal framework.

As a preview, we first list the logical features of our framework:

Valid in our framework

FC P(α ∨ β) ↔ (Pα ∧Pβ) CD P(α ∧ (β ∨ γ)) ↔ P((α ∧ β) ∨ (α ∧ γ))
CE P(α ∧ β) → (Pα ∧Pβ) DCl P((α ∨ β) ∧ (α ∨ γ)) → P(α ∨ (β ∧ γ))

Invalid in our framework

CA (Pα ∧Pβ) → P(α ∧ β) DCr P(α ∨ (β ∧ γ)) → P((α ∨ β) ∧ (α ∨ γ))
RP Pα→ P(α ∨ β) EX Pα→ P(α ∧ α)
MN ` α→ β ⇒ ` Pα→ Pβ RE ` α↔ β ⇒ ` Pα↔ Pβ

FC is the (two-way) free choice principle; CE is the conjunction exploitation.
Three of the four (one-way) distribution laws are valid as captured by CD and
DCl, leaving DCr invalid. The invalidity of DCr is intuitive: e.g., imagine you
are given a coupon that allows you to take a hamburger or a menu of French
fries and salad, this does not mean you can take a hamburger or fries, and a
hamburger or salad. Note that the later permission intuitively allows you to
take a hamburger and salad, which is not allowed by the premise (the coupon).
The conjunction aggregation CA is intuitively invalid as you may not be allowed
to do α and β together, given the permission of each. Moreover, RP captures
the invalid Ross’s paradox for permission. EX is the duplication of permitted
actions, whose invalidity may raise some eyebrows as it looks so innocent.
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However, the case is more subtle than it may appear. According to our ∀3
semantics for P, allowing α does not mean you can do α twice using any
combination of the tokens. More importantly, adding it as an axiom leads to a
very counterintuitive consequence that P(α∨ β)→ P(α∧ β), given the widely
accepted CD and FC:

P(α ∨ β)

=⇒ P((α ∨ β) ∧ (α ∨ β)) (EX)

⇐⇒ P(((α ∨ β) ∧ α) ∨ ((α ∨ β) ∧ β)) (CD)

⇐⇒ P((α ∨ β) ∧ α) ∧P((α ∨ β) ∧ β) (FC)

⇐⇒ P((α ∧ α) ∨ (α ∧ β)) ∧P((β ∧ α) ∨ (β ∧ β)) (CD, commutativity)

⇐⇒ P(α ∧ α) ∧P(α ∧ β) ∧P(β ∧ α) ∧P(β ∧ β) (FC)

=⇒ P(α ∧ β) (TAUT)

Nevertheless, a weaker version of EX can be made valid by imposing some
further constraints in our framework. Finally, it is important to note that the
rules of monotonicity (MN) and replacement of equivalents (RE), which often
cause counterintuitive consequences [12,11], are not valid, as demonstrated by
the fact that classical tautologies are valid in our setting, but EX and DCr are
not.

To the best of our knowledge, these (in)validities distinguish our logic from
existing approaches that admit FCP. For instance, CA and DCr are valid in
Boolean-algebra-based approaches, such as [8,20]; CD is invalid in [6] due to the
emptiness condition for disjunction; DCr is also valid in the hybrid approach
based on BSML [2]; and CE is not valid in [21]. We believe that an effective
semantics should not merely serve as a technical tool to “fit” the known behav-
iors of a modality, but also correctly predict intriguing new phenomena that
align with its use in natural language.

The rest of the paper is structured as follows. In Section 2, we lay out
the fundamentals of our framework and introduce the proof systems DLSP and
DLSPs. Section 3 presents the completeness proofs. In Section 4, we discuss
the generalizations of our models and provide the corresponding axiomatiza-
tion results. Finally, we conclude the paper and outline future directions in
Section 5.

2 Language, Semantics and Proof System

2.1 Language and Semantics

As mentioned in the introduction, we use a propositional language to specify
the action types. As the initial step, we only include constructors of ∨ and ∧,
and we will come back to other constructors at the end of the paper.

Definition 1 (Action Type AT) Given a countable set P of propositional
letters, the language of action types (ATP ) is defined as follows:

α ::= p | (α ∧ α) | (α ∨ α)
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where p ∈ P .

Propositional letters are intended to represent atomic action types; α ∧ β rep-
resents a joint action type of doing both α and β (though not necessarily at
the same time); α ∨ β is a type of doing α or β. Given P (and thus ATP ), we
define the language of our deontic logic for strong permission.

Definition 2 (Language DLSP) Given P , the language of deontic logic for
strong permission (DLSPP ) is defined as follows:

ϕ ::= ⊥ | p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | ¬ϕ | Pα,

where p ∈ P and α ∈ ATP .

Pα says that action type α is (strongly) permitted. As we will see later, the
connectives outside P are classical. In the following we fixed a countably infinite
P , and write DLSPP and ATP simply as DLSP and AT.

Before introducing the model, we define the action tokens of each type
inspired by the BHK interpretation (cf., e.g., [17]).

Definition 3 (Action Token Space) Given P and a non-empty set I of
atomic action tokens such that I ∩ {0, 1} = ∅, an action (token) space S based
on I is a function over AT satisfying the following constraints:

(i) S(p) 6= ∅ ⊆ I for any p ∈ P ;

(ii) S(α ∧ β) = S(α)× S(β);

(iii) S(α ∨ β) = (S(α)× {0}) ∪ (S(β)× {1}).
S gives the (non-empty) set of possible tokens of each composite type based on
tokens for the atomic types. A token of a disjunctive type is a pair of a token
of one of the disjunct types and a marker 0 or 1 indicating the left or right
disjunct that it belongs to. The tokens of a conjunctive type are exactly those
pairs of tokens from both conjunct types respectively.

As an interesting special case, a singleton action space reflects the setting
where atomic types and tokens are not distinguished.

Definition 4 (Singleton Action Token Space) A singleton action token
space S is an action space such that for any p ∈ P , S(p) is a singleton.

Now we can define the deontic model where tokens in the space are executed
or not on each possible idealization of the current world.

Definition 5 (Deontic Model) A deontic model M for DLSP is a tuple
(S,W,R,A) where S is an action space based on some non-empty I, W is a
non-empty set of possible worlds, R ⊆W ×W , and A is a binary function over
AT×W such that for any p ∈ P , α, β ∈ AT and w ∈W :

• A(p, w) ⊆ S(p);

• A(α ∧ β,w) = A(α,w)×A(β,w);

• A(α ∨ β,w) = (A(α,w)× {0}) ∪ (A(β,w)× {1});
A pointed deontic model is an ordered pair (M, w) where w is inM. A singleton
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deontic model is a model based on a singleton action space.

Intuitively, wRv means the world v is a deontic idealization for w. 4 The func-
tion A gives each world its executed (or realized) action tokens compositionally
for each type within its action space, e.g., if tokens a of type α and b of type β
are both executed on world w, then (a, b) of type α ∧ β is executed on w.

Definition 6 (Semantics) For any ϕ ∈ DLSP and any pointed deontic
model M, w where M = (S,W,R,A), the satisfaction relation is defined as:

M, w 2 ⊥
M, w � p ⇐⇒ A(p, w) 6= ∅
M, w � (ϕ ∧ ψ) ⇐⇒ M, w � ϕ and M, w �
M, w � (ϕ ∨ ψ) ⇐⇒ M, w � ϕ or M, w �
M, w � (ϕ→ ψ) ⇐⇒ M, w 6� ϕ or M, w �
M, w � ¬ϕ ⇐⇒ M, w 6� ϕ
M, w � Pα ⇐⇒ for any a ∈ S(α), there is a v s.t.wRv and a ∈ A(α, v)

The notion of semantic consequence Γ � ϕ are defined as usual. We use �s
to denote semantic consequence w.r.t. singleton deontic models. We say ϕ is
valid (s-valid) if � ϕ (�s ϕ).

Note that the boolean connectives outside P are indeed interpreted classically.
On the other hand, the semantics of P involves a bundle ∀3 that we mentioned,
thus making Pα true iff each token of α can be executed on some deontically
ideal world w.r.t. the current world. Based on the semantics of p and the
definition of A for the ∧ and ∨ types, we can show that:

Proposition 2.1 For any α ∈ AT, any pointed deontic model M, w, M, w �
Pα implies there is v s.t., wRv and M, v � α.

However, the converse is not true, e.g., M, v � p and wRv do not imply
M, w � Pp, for the latter requires every token of p to be realized. Thus P is
not reducible to a standard 3. Note that, in general, the truth value of α in the
actual world has no connection with the truth value of Pα, e.g., ¬α ∧Pα and
α∧¬Pα are both satisfiable. To familiarize the readers with the semantics, let
us check the validity of a few formulas such as FC.

Proposition 2.2 For any α, β ∈ AT, the following schemas are valid:

FC P(α ∨ β)↔ (Pα ∧Pβ) CE P(α ∧ β)→ (Pα ∧Pβ)

Proof. We only present the proof for the validity of FC here. Let M =
(S,W,R,A) be a deontic model and w ∈W be arbitrary.

⇒ : Assume that M, w � P(α ∨ β). We only show M, w � Pα for the case
of Pβ is symmetric. Given an arbitrary a ∈ S(α), it follows that (a, 0) ∈
S(α ∨ β). Since M, w � P(α ∨ β), there is a v ∈ W such that wRv and
(a, 0) ∈ A(α ∨ β, v). By the definition of A in M, a ∈ A(α, v). Since the
selection of a is arbitrary, we have M, w � Pα.

4 Imposing seriality in the model will result in the same logic. See later discussion.

222



Wang and Wang

⇐ : Assume thatM, w � (Pα∧Pβ). Given an arbitrary x ∈ S(α∨β), it follows
that either x = (a, 0) for some a ∈ S(α) or x = (b, 1) for some b ∈ S(β) by
the definition of S. Assume without loss of generality that x = (a, 0). Since
M, w � Pα, there is a v ∈ W such that wRv and a ∈ A(α, v). By the
definition of A in M, (a, 0) ∈ A(α ∨ β, v). 2

Given the above proposition, it is clear that P(α∧β)→ P(α∨β). However
the converse is not valid as the following proposition implies.

Proposition 2.3 For any α, β ∈ AT, the following formulas are not valid:

CA (Pα∧Pβ)→ P(α∧ β) EX Pα→ P(α∧α) RP Pα→ P(α∨ β)

Proof. For CA, note that it is possible that every token a of α and every token b
of β are executable respectively in accessible ideal worlds but some combination
(a, b) ∈ S(α ∧ β) is not executable in any accessible world.

For EX, let S(p) = {a, b} then S(p ∧ p) = {(a, a), (b, b), (a, b), (b, a)}. It is
easy to define a modelM, w such thatM, w � Pp∧¬P(p∧p) with no accessible
ideal world witnessing both tokens; thus (a, b) is not executable anywhere.

The invalidity of RP is clear given that P(α ∨ β)↔ (Pα ∧Pβ) is valid. 2

The invalidity of CA prevents P(α ∧ β) from being equivalent to P(α ∨
β). Given the proof for EX, readers may wonder what would happen if the
atomic type p has at most one token. We will address this later in Section 2.2.
The invalidity of RP avoids Ross’ paradox in the context of strong permission.
Further, note that under our semantics, � α↔ (α∧α) and � α→ (α∨β) hold
for any α, β ∈ AT. Therefore, it is not hard to see that:

Proposition 2.4 The following rules are invalid:

(i) Monotonicity (MN): for any α, β ∈ AT, if ` α→ β, then ` Pα→ Pβ.

(ii) Replacement of equivalents (RE): for any α, β ∈ AT, if ` α ↔ β, then
` Pα↔ Pβ.

The commutativity and associativity laws are valid within the scope of P,
and we omit the proofs that are routine checks by definition.

Proposition 2.5 For any α, β ∈ AT, the following formulas are valid:

P(α ∧ β)↔ P(β ∧ α) P((α ∧ β) ∧ γ)↔ P(α ∧ (β ∧ γ))
P(α ∨ β)↔ P(β ∨ α) P((α ∨ β) ∨ γ)↔ P(α ∨ (β ∨ γ))

Concerning the distributivity within P, the situation is more subtle. As we
mentioned in the introduction, one of the four (one-way) laws is invalid.

Proposition 2.6 For any α, β, γ ∈ AT, we have:

CD: � P(α ∧ (β ∨ γ))↔ P((α ∧ β) ∨ (α ∧ γ));

DCr: 2 P(α ∨ (β ∧ γ))→ P((α ∨ β) ∧ (α ∨ γ));

DCl: � P((α ∨ β) ∧ (α ∨ γ))→ P(α ∨ (β ∧ γ)).
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Proof. We only show the invalidity of DCr and the validity of DCl. For DCr,
consider the countermodel illustrated below, where the rightmost part demon-
strates the definition of A on u, v, e.g., A(p, v) = {a} and A(q, u) = {b}.

v p : {a}, r : ∅, q : ∅
S(p) = {a}, S(q) = {b}, S(r) = {c} w

33

++ u p : ∅, q : {b}, r : {c}

S(p∨(q∧r)) contains (a, 0) and ((b, c), 1) only, which are executable on v and u
respectively, thus P(p∨ (q ∧ r)) is true on w. However, the token ((a, 0), (c, 1))
in S((p ∨ q) ∧ (p ∨ r)) is not executable on u nor v, thus P((p ∨ q) ∧ (p ∨ r)) is
false on w. Note that this model is also a singleton model so DCr is not s-valid.

For DCl, letM = (S,W,R,A) be a deontic model and w ∈W be arbitrary.
Assume thatM, w � P((α∧ β)∨ (α∧ γ)). Let x ∈ S(α∧ (β ∨ γ)) be arbitrary.
Thus x = (a, (b, 0)) for some a ∈ S(α) and b ∈ S(β), or x = (a′, (c, 1)) for some
a′ ∈ S(α) and c ∈ S(γ). Assume without loss of generality that x = (a, (b, 0)).
Since ((a, b), 0) ∈ S((α ∧ β) ∨ (α ∧ γ)), there is a v ∈ W such that wRv and
((a, b), 0) ∈ A((α ∧ β) ∨ (α ∧ γ), v). By definition, a ∈ A(α, v) and b ∈ A(β, v).
Therefore, (a, (b, 0)) ∈ A(α ∧ (β ∨ γ), v). 2

Finally, let us consider the singleton action space and the corresponding
singleton models, where a variant of EX in Proposition 2.3 is s-valid. In the
following, we use mi · pi to abbreviate the conjunction of mi copies of pi.

5

Proposition 2.7 The following formula (denoted by EXP) is valid with respect
to the class of singleton deontic models:

�s P(p1 ∧ ... ∧ pk)→ P(m1 · p1 ∧ ... ∧mk · pk),

where p1, ...pk ∈ P are distinct, and k,mi ∈ N>0 for any 1 ≤ i ≤ k.

Proof. Let M = (S,W,R,A) be an arbitrary singleton deontic model and
w ∈W . Since for any 1 ≤ i ≤ k, S(pi) is a singleton, S(p1∧...∧pk) = Πk

i=1S(pi)
is also a singleton. Assume thatM, w � P(p1∧ ...∧pk). Thus there is a v ∈W
such that wRv and A((p1∧...∧pk), v) = Πk

i=1S(qi). Hence, by definition, for any
1 ≤ i ≤ k, A(pi, v) = S(pi). So, A((m1 ·p1∧ ...∧mk ·pk), v) = Πm1

i=1S(p1)× ...×
Πmk
i=1S(pk) = S(m1·p1∧...∧mk ·pk). Therefore,M, w � P(m1·p1∧...∧mk ·pk).2

Note that the converse holds by the validity of CE. Over singleton models,
EX is still not valid, e.g., 2s P(p ∨ q) → P((p ∨ q) ∧ (p ∨ q)) since S(p ∨ q) is
not a singleton.

2.2 Proof Systems and Normal Form

Here we introduce the following two proof systems.

System DLSP

5 Notations like P(p1 ∧ ...∧ pk) are justified because action conjunctions within P are com-
mutative and associative under the above semantics.
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Axioms
(TAUT) Propositional Tautologies
(FC) P(α ∨ β)↔ (Pα ∧Pβ)
(CE) P(α ∧ β)→ (Pα ∧Pβ)
(COM∧) P(α ∧ β)↔ P(β ∧ α)
(ASSO∧) P((α ∧ β) ∧ γ)↔ P(α ∧ (β ∧ γ))
(CD) P(α ∧ (β ∨ γ))↔ P((α ∧ β) ∨ (α ∧ γ))
Rules
(MP) Given ϕ and (ϕ→ ψ), infer ψ.

System DLSPs

System DLSP with the following axiom
(EXP) P(p1 ∧ ... ∧ pk)→ P(m1 · p1 ∧ ... ∧mk · pk)

As a demonstration of our systems, we show that

Proposition 2.8 DCl : P((α ∨ β) ∧ (α ∨ γ)) → P(α ∨ (β ∧ γ)) is provable in
DLSP and in DLSPs.

Proof. The derivation goes as follows:

1. P((α ∨ β) ∧ (α ∨ γ))→ P(((α ∨ β) ∧ α) ∨ ((α ∨ β) ∧ γ)) (CD)

2. P(((α ∨ β) ∧ α) ∨ ((α ∨ β) ∧ γ))→ P((α ∨ β) ∧ γ) (FC)

3. P((α ∨ β) ∧ γ)→ P(γ ∧ (α ∨ β)) (COM∧)

4. P(γ ∧ (α ∨ β))→ P((γ ∧ α) ∨ (γ ∧ β)) (CD)

5. P((γ ∧ α) ∨ (γ ∧ β))→ (P(γ ∧ α) ∧P(γ ∧ β)) (FC)

6. P((α ∨ β) ∧ (α ∨ γ))→ (P(γ ∧ α) ∧P(γ ∧ β)) (1−5, TAUT, MP)

7. P(γ ∧ α)→ Pα (CE)

8. P(γ ∧ β)→ P(β ∧ γ) (COM∧)

9. (P(γ ∧ α) ∧P(γ ∧ β))→ (Pα ∧P(β ∧ γ)) (7, 8, TAUT, MP)

10. (Pα ∧P(β ∧ γ))→ P(α ∨ (β ∧ γ)) (FC)

11 (P(γ ∧ α) ∧P(γ ∧ β))→ P(α ∨ (β ∧ γ)) (9, 10, TAUT, MP)

12. P((α ∨ β) ∧ (α ∨ γ))→ P(α ∨ (β ∧ γ)) (6, 11, TAUT, MP)

2
Based on the Propositions 2.1, 2.5, 2.6, 2.7, and the fact that the connectives

outside P are classical in the semantics, we can show:

Theorem 2.9 (Soundness Theorem) DLSP is sound w.r.t. the class of all
deontic models, and DLSPs is sound w.r.t. the class of singleton deontic models.

The completeness proof will make use of a normal form of DLSP, towards
which we first present an example below.

Example 2.10 We use axioms in DLSP to equivalently transform the follow-
ing formula into a conjunction of formulas in the shape of P(p1 ∧ ... ∧ pn).

P(p1 ∨ (p2 ∧ ((p3 ∨ p4) ∧ p5))).
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The formula is logically equivalent to

1. Pp1 ∧P(p2 ∧ ((p3 ∨ p4) ∧ p5)) (FC)

2. Pp1 ∧P((p5 ∧ p2) ∧ (p3 ∨ p4)) (ASSO∧ + COM∧)

3. Pp1 ∧P(((p5 ∧ p2) ∧ p3) ∨ ((p5 ∧ p2) ∧ p4)) (CD)

4. Pp1 ∧P((p5 ∧ p2) ∧ p3) ∧P((p5 ∧ p2) ∧ p4) (FC)

In fact, such a method can be uniformly used to transform any formula of
the form Pα into a similar form.

Lemma 2.11 (Normal Form for Pα) For any α ∈ AT, Pα is logically
equivalent to a formula of the form (Pβ1 ∧ ...∧Pβk) where for each 1 ≤ i ≤ k,
βi is in the shape of P(p1 ∧ ...∧ pn), which is called a normal form for Pα. 6

Proof. (Sketch) We follow the same procedure in the example above to trans-
form any Pα into a normal form. If α is in the shape of p1 ∧ ... ∧ pn, then
it trivially holds. If not, then use (FC) and (CD) alternately with the help of
(COM∧) and (ASSO∧) to split action types and eliminate disjunction symbols.2

Now we can rewrite DLSP into a new form.

Proposition 2.12 For any formula ϕ ∈ DLSP, ϕ is logically equivalent to a
formula in the following language (denoted by DLSP∗):

::= ⊥ | p | P(p1 ∧ ... ∧ pn) | ¬ψ | (ψ ∧ ψ) | (ψ ∨ ψ) | (ψ → ψ),

where p, p1, ..., pn ∈ P .

Qua expressive power, DLSP∗ and DLSP are the same language, but
in DLSP∗, no disjunction symbol occurs within P, which will facilitate our
canonical model construction in the next section.

3 Completeness

In this section, we prove strong completeness results for DLSP and DLSP∗.

3.1 System DLSP
Note that due to the validity of ASSO∧ and COM∧, we will treat an action token
of type (p1 ∧ ... ∧ pn) as an n-ary tuple of action tokens modulo paring.

Definition 7 (All-Distinct Token) An action token of type (p1 ∧ ...∧ pn) is
all-distinct if tokens of the same atomic action type in the tuple are pairwise
distinct.

Now let Σ be a maximally DLSP-consistent set of DLSP∗ formulas (MCS).
To build a canonical model MC

Σ , we first construct a canonical action space
SCΣ . The basic idea is that for each p ∈ P , we set SCΣ to be the set of n distinct
pi symbols where n ∈ N>0 is the least number such that ¬P(n · p) ∈ Σ (cf.
Proposition 2.7 for the “n · p” notation).

6 Due to propositional tautologies for ∧, permutations do not matter in the normal form.
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Definition 8 (Canonical Action Space) Given Σ, we define SCΣ by distin-
guishing the two cases of p ∈ P :

• If there is an i ∈ N>0 such that the formula ¬P(i · p) ∈ Σ, assume that n is
the least of such i, and let SCΣ (p) := {p1, p2, ..., pn}, in which each pj is the
propositional letter p superscript with the numeral j.

• If not, i.e., P(i · p) ∈ Σ for all i ∈ N>0, let SCΣ (p) := {p1, p2, ...}.
For composite α ∈ AT, we define SCΣ (α) recursively as in the definition of S.

Note that for distinct p, q ∈ P , SCΣ (p)∩SCΣ (q) = ∅. The following lemma plays
an important role in the later proofs.

Lemma 3.1 For any formula ϕ of the form P(m1 · pt1 ∧ ... ∧mk · ptk) where
pti , ptj are pairwise distinct, if ϕ ∈ Σ, then for any 1 ≤ j ≤ k, mj < |SCΣ (ptj )|.

Proof. Assume that ϕ ∈ Σ and suppose (towards a contradiction) that there is
1 ≤ j ≤ k such that mj ≥ |SCΣ (ptj )|. Thus |SCΣ (ptj )| is finite, say |SCΣ (ptj )| = n.
By definition, ¬P(n · ptj ) ∈ Σ. However, since ϕ ∈ Σ and mj ≥ n, by (CE) and
(MP), P(n · ptj ) ∈ Σ. That is a contradiction. 2

This lemma shows the size of the action space is more than enough to
guarantee the existence of all-distinct action tokens of the type (m1 · pt1 ∧ ...∧
mk · ptk) when P(m1 · pt1 ∧ ... ∧ mk · ptk) ∈ Σ. Based on this and SCΣ we
will build a pointed deontic model MC

Σ , w such that the truth lemma holds,
i.e.,P(p1 ∧ ... ∧ pn) ∈ Σ iff MC

Σ , w � P(p1 ∧ ... ∧ pn). The idea is simple:
given a designated world w, build the accessible worlds according to formulas
P(m1 ·pt1∧ ...∧mk ·ptk) ∈ Σ. The subtlety is that we should only realize action
tokens that are necessary to witness the truth of those ϕ, but no more, for we
also need tokens not realizable to witness ¬P(p1 ∧ ...∧ pn) ∈ Σ. The later task
is doable because we have some spare tokens in SCΣ based on Lemma 3.1.

To define MC
Σ , we first fix an ordering of (countably many) propositional

letters p0, p1, p2, .... For formulas P(ps1∧...∧psn) ∈ Σ, note that based on ASSO∧
and COM∧, we only need to consider P(m1 · pt1 ∧ ...∧mk · ptk) ∈ Σ such that pti
and ptj are distinct and ordered according to the order of propositional letters,
e.g., P(3 · p2 ∧ 4 · p6). We propose a simple representation for such formulas
using functions on natural numbers.

Definition 9 For any ϕ of the form P(m1 ·pt1 ∧ ...∧mk ·ptk) ∈ Σ such that pti
and ptj are distinct and ordered according to the order of propositional letters,
we define fϕ : N→ N such that

fϕ(i) =

{
mj i = tj for some 1 ≤ j ≤ k;
0 i 6= tj for any 1 ≤ j ≤ k.

For example, P(3·p2∧4·p6) is represented by the function f such that f(2) = 3,
f(6) = 4 and f(i) = 0 for any i ∈ N\{2, 6}. We collect these (countably many)
functions in FΣ.
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Definition 10 For any f ∈ FΣ, we define Gf :=

{g : N→ P(
⋃

p∈P
(SCΣ (p))) | for any i ∈ N, g(i) ⊆ SCΣ (pi) and |g(i)| = f(i)}.

Intuitively, each g ∈ Gf assigns a subset of the canonical action space of each
pi whose cardinality is f(i). It follows if f(i) = 0 then g(i) = ∅. Let GΣ =⋃{Gf | f ∈ FΣ}, which will be used to build the canonical model below. We
first have the following observation:

Proposition 3.2 Given a MCS Σ and any distinct f, f ′ ∈ FΣ, we have: (1)
Gf is not empty; (2) Gf ∩Gf ′ = ∅.
Proof. For (1), by Lemma 3.1, given f ∈ FΣ, f(i) < |SCΣ (pi)|, thus each Gf
is not empty. For (2), note that if f 6= f ′ then there must be some i such that
f(i) 6= f ′(i) and this will distinguish any g ∈ Gf from any g′ ∈ Gf ′ due to the
cardinality requirement |g(i)| = f(i) 6= f ′(i) = |g′(i)|. 2

Definition 11 (Canonical Deontic Model) Given a MCS Σ, we define the
model MC

Σ = (SCΣ ,W
C , RC , AC) where:

• WC = {w} ∪GΣ; RC = {(w, g) | g ∈ GΣ};

• AC(pi, u) =




SCΣ (pi) if u = w and pi ∈ Σ,
∅ if u = w and pi 6∈ Σ,
u(i) if u ∈ GΣ;

and AC(α, u) for composite α is defined as in Definition 5.

By Proposition 3.2 (2), if g ∈ GΣ then there is a unique f ∈ FΣ s.t. g ∈ Gf .
Intuitively, each g ∈ Gf realizes some all-distinct token (cf. Definition 7) of the
formula Pα ∈ Σ corresponding to f , and Gf realize all the necessary tokens.

Lemma 3.3 (Truth Lemma for DLSP) Let Σ be a maximally DLSP-
consistent set of DLSP∗ formulas. For any ϕ ∈ Σ,

MC
Σ , w � ϕ⇐⇒ ϕ ∈ Σ.

Proof. We show this by induction on the structure of ϕ.

• ϕ = ⊥: by definition, MC
Σ , w 6� ⊥. And, since Σ is consistent, ⊥ 6∈ Σ. So, it

trivially holds.

• ϕ = p: MC
Σ , w � p iff AC(p, w) 6= ∅ iff AC(p, w) = SCΣ (p) iff p ∈ Σ.

• ϕ = ¬ψ, (ψ ∧ χ), (ψ ∨ χ) or (ψ → χ): it holds by definition, inductive
hypothesis and maximality of Σ.

• ϕ = P(p1 ∧ ... ∧ pn): By (COM∧) and (ASSO∧), ϕ is logically equivalent to a
formula ψ of the form P(m1 ·pt1 ∧ ...∧mk ·ptk) where pti and ptj are pairwise
distinct and ordered. We only need to show that

MC
Σ , w � ψ ⇐⇒ ψ ∈ Σ.
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⇐: Assume that ψ ∈ Σ. We have the corresponding fψ ∈ FΣ. We show that
each token in SCΣ (m1 · pt1 ∧ ... ∧mk · ptk) is realized in some g ∈ Gfψ . Take
an arbitrary token x of (m1 · pt1 ∧ ... ∧mk · ptk), let function h be defined
by setting h(i) = {pji | pji appear in x} ⊆ SCΣ (pi). By Proposition 3.2, it is
clear that there is a g ∈ Gfψ such that h(i) ⊆ g(i) for all i ∈ N. Therefore
by the definition of AC , x ∈ AC((m1 · pt1 ∧ ... ∧mk · ptk), g).
⇒: Assume that 6∈ Σ. To show MC

Σ , w 6|= ψ, we need to find some token
in SCΣ (m1 · pt1 ∧ ... ∧ mk · ptk) cannot be witnessed by any successor. The
crucial point here is that our definition of SCΣ and AC together guarantee
that some action tokens are indeed left out at every g ∈ GΣ.

Now we consider two cases:
◦ If for any 1 ≤ j ≤ k, mj ≤ |SCΣ (ptj )|, we take an all-distinct token x ∈
S(m1 ·pt1∧...∧mk ·ptk) and show it is not realizable in GΣ, thusMC

Σ , w 2 ψ.
Suppose not, then there is a g ∈ GΣ that realizes x, then there is a unique
f such that g ∈ Gf by Proposition 3.2. Since g realizes all-distinct token
x, then we have f(tj) = |g(tj)| = |AC(ptj , g)| ≥ mj for any 1 ≤ j ≤ k. Due
to our construction, there must be a χ ∈ Σ such that f = fχ. Therefore,
χ must be of the form P((m′1 · pt1 ∧ ... ∧ m′k · ptk) ∧ (m′k+1 · ptk+1

∧ ... ∧
m′k+l · ptk+l)) ∈ Σ such that m′j = f(tj) ≥ mj . By (CE) and (MP), ψ ∈ Σ,

contradicting to the assumption that ψ 6∈ Σ. So, MC
Σ , w 2 ψ.

◦ If there is 1 ≤ j ≤ k such that mj > |SCΣ (ptj )|, thus SCΣ (ptj ) is finite, say
|SCΣ (ptj )| = n. Suppose towards a contradiction that MC

Σ , w � ψ. Thus
by the validity of CE, MC

Σ , w � P(n · ptj ). Hence, to realize the token
using all the atomic tokens in SCΣ (ptj ), there must be a g ∈ G such that
AC(ptj , g) = g(tj) = SCΣ (ptj ). Note that by Proposition 3.2 there must be
a unique f such that g ∈ Gf and f(tj) = |g(tj)| = |SCΣ (ptj )| = n. Therefore
there is a χ ∈ Σ such that f = fχ. However this means χ must be in the
shape of P(n · ptj ∧ β) ∈ Σ. By (CE), P(n · ptj ) ∈ Σ contradicting to the
fact that |SCΣ (ptj )| = n (cf. Definition 8). Therefore MC

Σ , w 2 ψ. 2

Based on the truth lemma, by a Lindenbaum-like argument, we can show:

Theorem 3.4 (Completeness Theorem for DLSP) DLSP is strongly
complete with respect to the class of all deontic models.

Proof. We show its contraposition that every DLSP-consistent set of formulas
is satisfiable by the canonical model. First, using a Lindenbaum-like argument
to extend a DLSP-consistent set into an MCS Σ, and then turn this set into
a provably equivalent set Σ′ of DLSP∗ formulas by using the normal form.
Finally, we apply the truth lemma to construct the model for Σ′ (thus also
satisfies Σ). 2

Note that DLSP is also complete over all serial models, i.e., the models
where every node has a successor. The canonical model in Definition 11 works
as before, except for (1) we need to add self-loops to g ∈ GΣ and (2) in case
of {¬Pp | p ∈ P} ⊆ Σ thus GΣ = ∅, we need to add a self-loop successor to w
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where no tokens are realized.

3.2 System DLSPs

Now let Σ be a maximally DLSPs-consistent set of DLSP∗ formulas. First we
define the singleton action space SsΣ straightforwardly.

Definition 12 (Canonical Singleton Action Space) Given Σ, we define
the canonical singleton action space SsΣ such that SsΣ(p) := {p} for any p ∈ P
and SsΣ(α) is defined recursively as above for any composite α ∈ AT.

To define the canonical singleton deontic model Ms
Σ = (SsΣ,W

s, Rs, As), we
essentially apply the same method as we use to define the canonical deontic
model in Definition 11. In fact, the definition is simpler here since P(m1 · pt1 ∧
...∧mk · ptk) is logically equivalent to P(pt1 ∧ ...∧ ptk) by extra validities (EXP)
in DLSPs where pti and ptj are distinct and ordered. Thus we only consider
formulas ϕ of the latter form in Σ and define fϕ, Gfϕ as before. So, note here
that for any i ∈ N, if i = tj , then fϕ(i) = 1, and otherwise fϕ(i) = 0. And by
this feature of fϕ and SsΣ as singleton action space, there is indeed a unique
g ∈ Gfϕ that g(i) = {ptj} if i = tj and g(i) = ∅ otherwise. We collect all such
g in G′Σ.

Definition 13 (Canonical Singleton Deontic Model) Given Σ, we de-
fine the singleton deontic model Ms

Σ = (SsΣ,W
s, Rs, As) where:

• W s = {v} ∪G′Σ; Rs = {(v, g) | g ∈ G′Σ};

• As(pi, u) =




SsΣ(pi) if u = v and pi ∈ Σ,
∅ if u = v and pi 6∈ Σ,
u(i) if u ∈ G′Σ;

and As(α, u) for composite α is defined as in Definition 5.

Lemma 3.5 (Truth Lemma for DLSPs) Let Σ be a maximally DLSPs-
consistent set of DLSP∗ formulas. For any ϕ ∈ Σ,

Ms
Σ, v �s ϕ⇐⇒ ϕ ∈ Σ.

Proof. Similarly by induction on the structure of ϕ, we only show the case
where ϕ = P(p1 ∧ ... ∧ pn). By the validities of (EXP) and (CE), ϕ is logically
equivalent to ψ = P(pt1 ∧ ... ∧ ptk) where pt1 , ..., ptk ∈ P are pairwise distinct
and ordered. We show this inductive case holds for ψ.
⇐: Assume that P(pt1∧...∧ptk) ∈ Σ. Then the corresponding fψ is defined. By
the definition of Ms

Σ, there is a unique g ∈ Gfψ such that for any 1 ≤ j ≤ k,
As(ptj , g) = g(tj) = {ptj}. Hence, As(pt1 ∧ ... ∧ ptk , g) = {(pt1 , ..., ptk)} =
SsΣ(pt1 ∧ ... ∧ ptk). Therefore, Ms

Σ, v � P(pt1 ∧ ... ∧ ptk).
⇒: Assume that Ms

Σ, v � P(pt1 ∧ ... ∧ ptk). Since SsΣ(pt1 ∧ ... ∧ ptk) =
{(pt1 , ..., ptk)}, there is g ∈ G′Σ such that for any 1 ≤ j ≤ k, As(ptj , g) = {ptj}.
So, by the definition of G′Σ, there is ϕ of the form P(pt1 ∧ ... ∧ ptk ∧ ... ∧ ptk+l)
where pi and pj are pairwise distinct and ordered such that Gfϕ = {g}. Hence,
by (CE) and (MP), P(p1 ∧ ... ∧ pn) ∈ Σ. 2
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Theorem 3.6 (Completeness Theorem for DLSPs) DLSPs is strongly
complete with respect to the class of all singleton deontic models.

4 Generalizations

In our framework, the function A in the model computes the executed tokens of
complex types based on atomic tokens in each world. Such a setting may raise
the question of whether there are too many tokens “automatically” executed
on each world. Our framework can be generalized if we can take a subset of
those generated tokens as the executed ones. In this section, we explore this
possibility in a specific setting where the tuples of executed tokens might not
be executed, e.g., the realization of token a of type α and token b of type β on
a world does not necessarily imply the realization of (a, b) of type α ∧ β, and
the realization of other tokens such as (a, b, a, a, b, a), due to limited executive
resources. Surprisingly, this change does not affect the logic much.

Given an action space S, we define IS :=
⋃
α∈AT S(α). That is, IS collects

exactly all possible action tokens of all action types under S.

Definition 14 (Closure Set of Tokens) We say a set T ⊆ IS of action to-
kens is closed iff

(i) a ∈ T if and only if (a, 0) ∈ T if and only if (a, 1) ∈ T ;

(ii) If a, b ∈ IS and (a, b) ∈ T , then a ∈ T and b ∈ T ;

(iii) If a, b ∈ IS and (a, b) ∈ T , then (b, a) ∈ T ;

(iv) If a, b, c ∈ IS, then ((a, b), c) ∈ T if and only if (a, (b, c)) ∈ T ;

(v) If a, b ∈ IS, then ((a, b), i) ∈ T if and only if (a, (b, i)) ∈ T, i ∈ {0, 1}.
These closure properties correspond to the basic axioms in our system DLSP.
However, it is possible for a, b ∈ T but (a, b) 6∈ T . Below we make use of closure
sets to introduce two ways of generalizing our model and semantics. For the
first one, an extra function σ that assigns to each world a closure set of tokens
is straightforwardly added into a deontic model.

Definition 15 (I-Type General Deontic Model) A I-type general deontic
model MG is a 5-ary tuple (S,W,R,A, σ) such that

• (S,W,R,A) is a deontic model.

• σ : W → ℘(IS) such that for any w ∈W , σ(w) is closed.

Given a I-type model, we further ascertain for each action type α, what action
tokens are done at each possible world w by the following binary function AG:

AG(α,w) := A(α,w) ∩ σ(w).

At each world, only those action tokens in the closure set given by σ are ex-
ecutable. So the original binary function A just computes what tokens are in
principle executed; rather, what are actually executed are those given by the
defined AG. For another generalizing way, we omit the original A and add such
σ in a deontic model.
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Definition 16 (II-Type General Deontic Model) A II-type general deon-
tic model is a 4-ary tuple (S,W,R, σ) such that

• S, W , R are as usual,

• σ : W → ℘(IS) such that for any w ∈W , σ(w) is closed.

As the case in I-type general deontic model, we also ascertain a binary function
AG rather by AG(α,w) := S(α) ∩ σ(w).

Here, what action tokens are executed are directly given by σ, and AG further
shows what tokens are executed for each action type. Now we define semantics
for any i-type general deontic modelMG by replacing all appearances of binary
function A with AG in clauses of Definition 6, i.e. M, w i p ⇐⇒ AG(p, w) 6=
∅ and for any a ∈ S(α), there is a v ∈ W such that wRv and a ∈ AG(α, v),
where i ∈ {I, II}.

Obviously, a II-type general deontic model is a special kind of I-type model
where A(α,w) = S(α) for any α ∈ AT and w ∈W . In fact, a I-type model can
also be transformed into a II-type one under certain conditions while truths
are preserved. We present the relevant definitions and results below.

Definition 17 (Disjointed Action Space) Given a non-empty set I of ac-
tion tokens such that I ∩ {0, 1} = ∅, a disjointed action space S is an action
space such that for any p, q ∈ P , if p 6= q, then S(p) ∩ S(q) = ∅.
Definition 18 (Co-Executive) For any binary function A in a (I-type gen-
eral) deontic model M = (S,W,R,A) (or (S,W,R,A, σ)), we say that A is
co-executive (“Co”) if for any x ∈ IS and w ∈ W , if x ∈ S(α) ∩ S(β), then
x ∈ A(α,w)⇔ x ∈ A(β,w).

Lemma 4.1 For any (I-type general) deontic model based on a disjointed ac-
tion space, A is co-executive.

Proposition 4.2 Given a disjointed action space S, for each I-type general
deontic model M = (S,W,R,A, σ), there is a II-type general deontic model
M′ = (S,W,R, σ′) such that for any ϕ ∈ DLSP and w ∈ W , M, w I ϕ if
and only if M′, w II ϕ; and vice versa.

Therefore, based on disjointed action spaces, I-type and II-type general
deontic model can be transformed into each other while preserving truths and
thus treated together as a “general deontic model”. Now under the class of
general deontic models, first we can show that:

Theorem 4.3 DLSP is sound with respect to the class of all general models.

We can adapt the canonical model (based on a disjoint action space) in
Definition 11 to show the following completeness, which shows our logic cannot
differentiate whether the closure of conjunctive tokens is imposed.

Theorem 4.4 DLSP is strongly complete over the class of all general models.

Following similar ideas, we can summarize the results of complete axiom
systems under different kinds of deontic models:
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Deontic Models A A: Co (A, σ) (A, σ): Co σ

S DLSP DLSP DLSP DLSP DLSP
S: Disjointed DLSP DLSP DLSP DLSP DLSP
S: Singleton DLSPs DLSPs DLSP DLSP DLSP
S: Singleton, Disjointed DLSPs DLSPs DLSP DLSP DLSP

In the future, we may relax other closure properties in Definition 14.

5 Conclusions and Future Work

In this paper, we have taken the first steps towards treating strong permission
as a ∀3 bundle in deontic logic, drawing on a BHK-like semantics to assign
tokens to action types. Through our semantics, we uncover a new invalid
law that aligns with our linguistic intuition. The failure of this particular
distribution law, DCr, sets our framework apart from most other approaches
that admit free choice permission. Another invalid law within our framework
is the duplication law EX within the permission operator. We demonstrated
that, when combined with the widely acceptable distribution law CD and the
free choice law FC, this seemingly innocuous law leads to the counter-intuitive
consequence that P(α ∨ β) → P(α ∧ β). The invalidity of EX in our setting
arises from the fact that permitting various tokens of one type does not imply
permitting their arbitrary combinations. We also present cases where the action
spaces are singletons, resulting in a restricted version EXP of EX. To ensure that
we do not overlook any other (in)validities, we completely axiomatize the logics
over arbitrary models and singleton models, obtaining intuitive proof systems
DLSP and DLSPs. We also generalize our framework to make it possible that
the tokens are not closed under conjunctions due to resource bounds. It turns
out the logic will stay almost the same in this more general setting.

There are many further directions. First of all, the generalizations of the
semantics in Section 4 give us the fine-grain control needed on the semantics
w.r.t. validity of the axioms. Thus it is possible to address further subtleties
regarding the law of permissions, such as making CE invalid in certain contexts
(only the combination of two actions is permitted without allowing single ones).
It remains to see whether we can handle the concerns in [2] about the purely
semantic approaches. We will also extend the framework with other connec-
tives, such as ¬ and→, and modalities, such as O and F, enriching the current
formal treatment. Comparisons and connections with other approaches where
action types and tokens are interpreted by similar inquisitive semantics like
[1,3] are also worth exploring.
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Abstract

Machine ethics aims to produce moral behaviour in artificial intelligence (AI) systems,
by equipping such systems with moral reasoning capacities. One approach within
machine ethics is to use deontic logics, i.e. logics that model moral reasoning. Horty
has proposed a particular branch of default logic as a potential basis for deontic logic.
Default logic models many intuitively desirable features of moral reasoning, such as
the possibility of moral conflicts, the idea that moral rules can be overridden, and
the distinction between different types of moral reasons. However, when considered
in the context of AI ethics, Horty’s approach has some shortcomings. Specifically,
the traditional, binary valuation of propositions appears unable to capture realistic
decision-making scenarios, in which moral reasons can have a variety of strengths.
Therefore, this paper explores a numeric default reasoning system, which extends
Horty’s default logic with numeric valuations for propositions and default rules. It is
shown that this new system preserves several advantages of Horty’s logic, but can also
uniquely model certain intuitively common patterns of moral reasoning, specifically
aggregation of reasons. Further directions are suggested, including exploiting the
neurosymbolic character of the reasoning system to facilitate moral learning.

Keywords: machine ethics, default logic, moral reasons, aggregation

1 Introduction

As autonomous artificial intelligence (AI) systems become more prominent in
multiple societal domains, the question arises how we can program such systems
to behave morally. One approach is to equip AI systems with moral rules that,
when applied to decision-making situations, lead to morally right decisions with
some reliability. This approach is known as machine ethics ([3,1,36,2,8]). One
approach within machine ethics is to use deontic logics, i.e. logics that model
moral reasoning and, as such, can be used to derive morally correct decision
from representations of decision-making situations in a formal way (see e.g.
[35,4,6]). If these derivations can be implemented computationally, such logics

1 j.j.graff@uu.nl
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lend themselves to being incorporated in artificial systems to enable them to
make morally right decisions.

In this paper, we consider logic-based machine ethics from a numeric default
logic perspective. Default logic is a branch of non-monotonic logic that lends
itself well to modelling defeasible reasons. Section 2 outlines the motivation
for approaching machine ethics from the perspective of default logic. Section 3
discusses a promising approach to modelling moral reasoning by default logic
advanced by John Horty, but section 4 notes some limitations of this approach.
Section 5 proposes a numeric extension of Horty’s default logic, that associates
propositions and reasoning steps with numeric strengths. Section 6 shows that
the proposed numeric default logic can reconstruct a limited but core version
of Horty’s default logic, and section 7 shows that it has additional advantages.
Section 8 discusses related literature and section 9 suggests further directions
in which numeric default logic may be developed, including facilitating moral
learning. Finally, section 10 discusses some philosophical questions raised by
numeric default logic and concludes.

Because of space constraints, the system proposed here is only sketched in a
rough and exploratory way. Several important patterns of moral reasoning are
left to future extensions of the framework, and a deeper exploration of meta-
theoretic properties is also left for future work (see also section 9). The main
purpose of this paper is to suggest that non-numeric default logic, although
capturing some intuitive aspects of moral reasoning, falls short in other re-
spects, and that numeric default logic is a promising avenue to overcome these
problems.

2 Motivation

Before considering a specific deontic logic as a framework for machine ethics,
we need to know which features of moral reasoning we want the logic to model.
On a general level, it is important that deontic logics for ethical AI are a)
able to recommend the morally correct outcome in a range of situations and
b) explainable to users or other affected parties. To meet the latter require-
ment, it is preferable to have a logic that accommodates some core features of
commonsense moral reasoning. The following four features appear especially
important to incorporate in machine ethics:

1) Commonsense moral reasoning is pluralistic (see e.g. [18]) That is, there
are multiple moral values (e.g. harm minimisation, honesty, respect for
autonomy, etc.) giving rise to multiple moral principles. This feature is
important for machine ethics, since an AI system that follows a monistic
ethical theory, such as Kantianism or utilitarianism, would behave in ways
that most people would consider morally problematic, because most peo-
ple are not strict Kantians or utilitarians. Moreover, a pluralistic ethical
framework can more easily accommodate a compromise between different
moral concerns that different stakeholders find important.

2) Commonsense moral reasoning is defeasible. That is, (most) moral rules
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or principles do not hold unconditionally, but can be defeated by other
principles. If we accept feature 1, it is likely that in some cases, two differ-
ent moral principles recommend different actions – for instance, keeping
our promise may cause harm. Such cases may be called moral conflicts. In
moral conflicts, one of both principles is intuitively overridden, and which
principle is overridden plausibly depends on the context (e.g. the serious-
ness of the promise or the severity of harm). Ethical AI systems should
incorporate this intuition to reach intuitively correct outcomes in a wide
range of cases.

3) Commonsense moral reasoning gives some role to aggregation of effects.
Intuitively, there are situations in which the duties to prevent effects A
and B do not individually outweigh some other duty, but, in combination,
do outweigh this other duty. For instance, it may be that I am not released
from my promise if keeping it would disappoint friend A, or if keeping it
would disappoint friend B, but that I am released from my promise if
keeping it would disappoint both friends. Ethical AI should incorporate
this feature, since otherwise, whenever a moral duty outweighs any of a
potentially large set of harms, it also outweighs all those harms together.
If implemented, this would lead to an artificial system that would choose
to cause major harms.

4) In commonsense moral reasoning, there are different ways in which moral
reasons may impact which action ought to be done ([25]). Jonathan Dancy
([10], pp. 42-43) has made the following useful distinction between three
types of moral reasons 2 :
• A (dis)favourer is simply a reason that counts in favour of or against an
action.

• An intensifier is a reason that does not directly count in favour of or
against an action, but rather increases the strength of another reason.
Conversely, an attenuator decreases the strength of another reason.

• A disabler is a reason that does not directly count in favour of or against
an action, but rather removes another reason from consideration (as
opposed to merely reducing its strength).

A short set of examples will illustrate the plausibility of this distinction.
Imagine first that I promised to perform act A, but that doing A would
result in some harm. Then the fact that I promised to do A (call this
fact P ) serves as a favourer of doing A, and the fact that A would cause
harm (call this fact H) serves as a disfavourer of doing A. Imagine, sec-
ond, that P and H are again the case, but that the person to whom I
promised to do A is a close friend who has shown much loyalty to me in
the past. Plausibly, this does not itself give me a reason to do A, but it
does increase the strength of my promise; i.e. it serves as an intensifier of
P . Imagine, third, that P and H are again the case, but that the promisee

2 We here depart from Dancy’s terminology, in which only favourers and disfavourers are
called reasons.
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has explicitly released me from the promise. Then the promise no longer
has any strength; hence this fact serves as a disabler of P . Whether of not
P defeats H as a reason may depend both on the initial strengths of P
and H and on the effects of potential intensifiers, attenuators or disablers.

One question about attenuators and intensifiers is whether they decrease
or increase the strength of a reason comparatively to another reason, or
whether they decrease or increase the strength of a reason in general (fol-
lowing Horty ([23], p. 145), we will call this per se). In the first case,
an intensifier, for instance, would be a reason for the conclusion ‘reason
A is more important than reason B’, whereas in the second case, the
conclusion would be of the form ‘A is more important (full stop)’. The
difference becomes clear when we want to compare A to a third reason,
say C. The comparative intensifier tells us nothing about how A compares
to C. However, the per se intensifier may lead us to conclude that, since A
is stronger in general, it is now also stronger than C (provided that A and
C were equally strong to begin with). Arguments can be made for both
interpretations, or for a distinction between two types of intensifiers (and
attenuators). In this paper, we will stick to a per se interpretation (as does
Dancy in [10]). The reason is that, in cases of moral intensification and at-
tenuation, we intuitively have grounds to increase or diminish the strength
of a reason A without having to specify each individual other reason in
comparison to which A’s strength is increased or diminished. For instance,
plausibly, the fact that someone is a close friend serves as an intensifier
of reasons concerning that person’s suffering – i.e., her suffering counts
more. We do not have to specify a range of individuals in comparison to
whom our friend’s suffering counts more (indeed, such a specification will
always fall short). More generally, given that a reason A can always come
to clash with other, perhaps unforeseen reasons, it seems that specifying
a limited set of reasons in comparison to which A’s strength is intensified
leaves open many potential comparisons. But in many cases, this com-
parison ought to be settled by the fact that one reason is intensified (or
attenuated) and the other is not.

A moral system that incorporates the first three features is Ross’s theory of
prima facie duties ([33]). A prima facie duty is a feature of a moral act that
defeasibly tends to make the act morally right or wrong. In Ross’s theory, moral
agents have multiple types of duties, such as the duty to keep our promises and
the duty to prevent harm. When different duties conflict, one of the duties
can be overridden. When an action involves positive or negative consequences,
whether or not the duty to prevent or ensure those consequences is overridden
may depend on the aggregation of the consequences. Ross’s framework can be
extended to include the fourth feature, i.e. the distinction between different
types of moral reasons, by allowing that the strength of prima facie duties,
which in specific situations serve as (dis)favourers, is often modified, or entirely
removed, by further considerations, which serve as intensifiers, attenuators and
disablers.
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In the next section, we turn to Horty’s brand of default logic as a promising
candidate for formally modelling this extended Rossian framework. This choice
is motivated by the fact that Horty explicitly intends his framework to be a
model of different types of reasons, along the lines outlined above ([23], pp.
41–61, 147–165), and also by the fact that default logic is inherently defeasible
and therefore naturally allows for modelling moral conflicts. This latter feature
may be seen as an advantage over modal deontic logics, which are generally
not defeasible and therefore struggle with representing moral conflicts. 3

3 Horty’s Default Logic

‘Default logic’ refers to a class of non-monotonic logics originally introduced
by Reiter ([32]). We are here interested in Horty’s default logic (HDL), which
only contains what Reiter calls ‘normal defaults’. This section summarises the
main elements of HDL, as set out in [23], specifically Horty’s variable default
theories.

HDL is based on a language L which is some ordinary logical language, e.g.
propositional logic, enriched with constants of the form dx, where each such
constant refers to a default δx, a relation symbol ≺, such that dx ≺ dy means
that δy has a higher priority than δx (written as δx < δy), and a predicate Out,
such that Out(dx) means that δx is disabled. Then, a (variable) default theory
∆ is defined as follows:

Definition 3.1 A default theory ∆ is an ordered pair ⟨W,D⟩, where W, the
knowledge base, is a set of propositions in L and D is a set of defaults of the form
δ : X → Y , where X and Y , the default’s premise and conclusion respectively,
are again propositions in L.

We write prem(δ) = X and conc(δ) = Y . We also write prem(S) and
conc(S) to denote the union of all premises or conclusions of a set S of defaults.
It is imposed that L contains a constant dx for each δx ∈ D. Intuitively, we
can think of a default theory ∆ as a set of known statements (W) and a
set of defeasible rules (D) that can be used to extract conclusions from those
statements.

These extracted conclusions are formalised as extensions, which in turn are
built on the concept of scenarios. A scenario S is a subset of D, intuitively
consisting of those defaults that have been applied to the knowledge base. A
proper scenario is then defined as follows.

Definition 3.2 Given a default theory ∆ = ⟨W,D⟩, a proper scenario S ⊆ D
is a scenario that contains all and only those defaults that are a) triggered, b)
not conflicted and c) not defeated in the context of that scenario.

3 This is a slight oversimplification. Horty ([22]) shows that modal deontic logics can, to some
extent, accommodate moral conflicts. However, it is unclear how they can model resolution
of these conflicts by higher-order reasons (attenuators etc.), which play an important role in
the framework set out here. See also Fuhrmann ([15]) for further discussion and Dong et al.
([11]) for a proposal to embed modal deontic logic in a non-monotonic framework.
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• A default δ is triggered in the context of scenario S iff a) W ∪ conc(S) ⊢
prem(δ) and b) δ is not disabled, i.e. W ∪ conc(S) ⊬ Out(d).

• A default δ is conflicted in the context of scenario S iff W ∪ conc(S) ⊢
¬conc(δ).

• A default δ is defeated in the context of scenario S iff there is a default δ′

which is triggered in the context of S, such that a) W ∪ conc(S) ⊢ d ≺ d′

and b) W ∪ {conc(δ′)} ⊢ ¬conc(δ).
Intuitively, a proper scenario contains all defaults that can consistently be

applied because their premises are known and their conclusions are not known
to be false on the basis of other defaults in the scenario or of stronger, applicable
defaults outside of the scenario. Then an extension E is defined as follows:

Definition 3.3 Given a default theory ∆ = ⟨W,D⟩ and a proper scenario S
of ∆, an extension of ∆ is E = Th(W ∪ conc(S)),

where Th denotes logical closure. Note that a default theory can have
multiple proper scenarios, and therefore multiple extensions.

So far, the logic can be applied to any form of defeasible reasoning and
is not clearly a deontic logic. Horty ([23], pp. 68–74) suggests extending it
into a deontic logic by defining a deontic operator ⃝ in terms of extensions.
Here, we take a different approach: we use default logic to reason about moral
statements, rather than defining moral statements in terms of default theories
(cf. [15]). This means that the logic is not deontic in the classical sense of
containing deontic operators, but rather that the logic itself has been tuned to
the features of moral reasoning, as discussed in section 2.

Horty ([23], pp. 42–47) argues that, given a default theory, a reason for
some proposition X can be defined as a proposition that is the premise of a
triggered default that has X as its conclusion. Moreover, we can, within HDL,
distinguish between the three types of reasons identified in the previous section
([23], pp. 142–146). First, a favourer of a proposition X is just a proposition
that is the premise of a triggered default that has X as its conclusion. Second,
when we have a triggered default of the form δ1 : X → d2 ≺ d3, then X is an
intensifier of δ3 and an attenuator of δ2.

4 Third, when we have a triggered
default of the form δ1 : X → Out(d2), then X is a disabler of δ2.

Example 3.4 As an example of the application of HDL to machine ethics,
consider the following situation that a self-driving car may encounter. Imagine
that, suddenly, two pedestrians appear in front of the car, so that there is no
option to brake before the pedestrians are hit and thereby bodily harmed. The

4 Note that in this definition, contrary to the definition given in section 2, attenuators and
intensifiers are comparative, i.e. they always attenuate or intensify some reason compared to
some other reason. As Horty notes, this feature is ‘dictated by our framework assumption
that reasons are to be related to one another only through an ordinal ranking, rather than
an assignment to each of some cardinal weight, so that strengthening one reason relative to
another is the only for of strengthening there is’ ([23], p. 145). But as we saw in section 2,
this notion of attenuation has some counter-intuitive results. We will return to this issue in
section 6, after we have introduced a cardinal weighing of reasons.
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only way to avoid hitting the pedestrians is to steer the car away from them.
This would cause it to crash into the guardrail, causing bodily harm to the
passenger. Imagine, moreover, that both pedestrians appear in front of the car
as the result of a demonstrable traffic violation (e.g. ignoring a red traffic
light). We can model this situation as a default theory ∆ = ⟨W,D⟩. Let G
be the proposition that steering into the guardrail would harm the passenger,
P2 the proposition that not steering would harm the two pedestrians in front
of the car, V the proposition that the pedestrians violated a traffic rule, and S
the proposition that the car ought to steer to the side. Then, W = {G,P2, V }.
Clearly, the default set D should contain the defaults δ1 : G → ¬S and δ2 :
P2 → S, since there is a general prima facie duty to prevent harm to both the
passenger and the pedestrians. Moreover, the fact that there are two pedestrians
as opposed to one passenger plausibly gives rise to δ3 : ⊤ → d1 ≺ d2, which
gives a general reason to prioritise the pedestrians, following from the vacuously
true proposition ⊤. Finally, the fact that the pedestrians are in their current
predicament due to violating a traffic rule may be thought to give rise to δ4 :
V → d2 ≺ d1, giving a reason to prioritise the innocent passenger. 5 This
default theory can be displayed in graph form as in Fig. 1, adopting Horty’s
conventions that X ⇒ Y means that Y is a strict logical consequence of X,
X → Y means that Y follows from X by default, and X ⇏ Y and X ↛ Y
mean the same as X ⇒ ¬Y and X → ¬Y , respectively. ⊤ ⇒ X means that X
follows from the trivially true proposition, which is a way to indicate that X is
in W.

⊤

G P2 V

S d1 ≺ d2 d2 ≺ d1

δ1 δ2

δ3

δ4

Fig. 1. Example III.1.

In this default theory, we have two types of reasons. The fact that the
passenger would be harmed by steering into the guardrail is a favourer for not
steering (or a disfavourer for steering), and the fact that two pedestrians would
be harmed otherwise is a favourer for steering. At the same time, the trivial
proposition acts as a general intensifier of the potential harm to the pedestrians

5 This latter default is of course controversial. The point is not that the reader should agree
with it, but only to illustrate the functioning of attenuators.

241



A Numeric Default Reasoning System as a Framework for Ethical AI

as a reason to steer, while the fact that the pedestrians are guilty of a traffic
violation serves as an attenuator of the reason provided by their potential harm.

To determine which action recommendation can be inferred from this moral
default theory, we need to find its extensions. ∆ has two proper scenarios:
S1 = {δ1, δ4} and S2 = {δ2, δ3} (the reader can verify that these are the only
scenarios satisfying the criteria in definition 3.2). Therefore, there are two
extensions: E1 = Th({G,P2, V,¬S, d2 ≺ d1}), and E2 = Th({G,P2, V, S, d1 ≺
d2}). Since we are faced with multiple, incompatible extensions, we are faced
with a dilemma whether or not to steer. In order to force a decision, we would
need to provide a priority ordering between δ3 and δ4. For instance, we may
add the sentence d3 ≺ d4 to W. This new default theory would have only one
extension, containing ¬S, the recommendation not to steer.

4 Limitations of Horty’s Default Logic

HDL satisfies features 1, 2 and 4 outlined in section 1: 1) it can accommodate
multiple duties, modelled as different defaults, 2) its rules are inherently de-
feasible, and 4) it can model different types of reasons, as seen in the previous
section. However, as Horty ([23], pp. 59–61) notes, it does not satisfy feature
3: it does not allow for aggregation of reasons. That is, if a default theory ∆
contains (in D) a set Z of defaults for some conclusion Z, and each default in
this set is individually outweighed by some other default δk for the opposite
conclusion ¬Z, then the set as a whole is also outweighed by default δk. This
means that, unless Z follows from ∆ in some other way, or unless δk is dis-
abled, no extension of ∆ will contain Z, no matter how many members of Z
are triggered.

To return to the example in section 2: say that I promised to do A (call this
reason P ), but that doing A would cause harm to two of my friends (call these
reasons F1 and F2). This situation can be modelled as a default theory ∆ =
⟨W,D⟩, with W containing P, F1, and F2, and with D containing δ1 : P → A,
δ2 : F1 → ¬A, and δ3 : F2 → ¬A. Say moreover that the promise outweighs
both harms individually, i.e. W contains both d2 ≺ d1 and d3 ≺ d1. Then, if
there are no other sentences inW and no other defaults in D, ∆’s only extension
will contain A. But this may be counterintuitive: it may be that both harms,
though each is individually outweighed by P , together ought to outweigh P .
This situation may be mended by adding a fourth default, δ4 : F1 ∧ F2 → ¬A,
and adding the sentence d1 ≺ d4 to W. But this solution is unsatisfactory. If
there would be many harms that are individually outweighed by P , but that, in
various combinations, outweigh P , we would need to add a separate default for
each combination of harms that could possibly outweigh P . This would make
the default theory very cumbersome and difficult to interpret. Moreover, it
would make it difficult to update the default theory when new defaults become
known.

In recent years, some proposals have been made to model aggregation (or
more generally ‘accrual’ – this notion is more general in that accruing reasons
may weaken as well as strengthen each other) in defeasible reasoning systems.
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Prakken’s ASPIC+-based approach ([31]) overcomes the problem of having to
compare many sets of accruing reasons (or, in ASPIC+, arguments) by only
comparing the sets of those accruing arguments (‘accrual sets’) that are in
fact active in a specific situation (more specifically, given an in/out-labelling,
only arguments are considered that are not labelled ‘out’ and that have no
undercutter labelled ‘in’). However, in different situations, this method may
still produce many different accrual sets. In a machine ethics context, this
means that we may still need to provide an unfeasibly large number of ordinal
rankings between potential accrual sets to deal with all situations that an AI
system may encounter. The alternative would be to only provide rankings after
the accrual sets are established, i.e. after it is known which arguments are and
are not active. But this is also unfeasible, since it would mean that, for any
decision-making situation that the AI system faces, a weighing of reasons can be
provided only after the details of the situation are known. This would require
continuous oversight by a human supervisor, in effect abandoning the field of
machine ethics and returning moral decision-making to the supervisor. It would
be much preferable if a default theory that contains many weak reasons would
automatically aggregate these reasons without requiring an explicit weighing.
In order for this to be possible, however, we need to associate each default with
a certain numeric weight. This approach is taken up in Gordon and Walton’s
Carneades-based approach ([20]), further developed by Gordon ([19]). This
approach introduces weighing functions that assign a weight between 0 and 1 to
each argument within a labelled (i.e. valuated) argument graph, on the basis of
the in/out-labelling and further details of the graph, which may include external
information about the plausibility of arguments. Aggregation may then be
modelled by positing a weighing function that makes an argument’s weights
a positive (partial) function of the number and strength of its premises. This
approach is promising in the current context, but the structure of the argument
graphs it is based on does not allow for a distinction between all types of
reasons set out in section 2 (specifically, it does not account for attenuators and
intensifiers). Below, we therefore develop an approach that combines numeric
valuations with the ability to distinguish between different types of reasons.

There is a second, related problem with HDL as a basis for machine ethics.
In Horty’s system, knowledge is represented as propositions with discrete val-
uations. But the moral domain that some autonomous systems would likely
encounter is too complex to be captured in this way. The reason is that some
morally relevant features, such as amount or probability of harm, allow for
many gradations. For instance, to capture each potential situation that a self-
driving car may encounter, we would need propositions such as ‘Probability
of 0.2–0.25 of 1 non-passenger accruing harm with severity in range 0.5–0.55
by action 1’. This would lead to a very cumbersome language. It would be
preferable to have propositions with continuous valuations. For instance, the
strength of the proposition ‘Harm may occur to person 1’ may vary given the
probability and severity of the harm to person 1. This requires a system that
assigns weights, not only to defaults, but also to propositions.
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5 Numeric Default Logic

The aim of this section is to develop a numeric default logic (NDL) 6 that
preserves some features of HDL, most notably its ability to model different
types of reasons, but that introduces numeric weights for both propositions
and defaults in order to overcome the limitations mentioned in section 4.

We define NDL by replacing default theories with default graphs.

Definition 5.1 A default graph Γ is a triple ⟨NP ,ND, C⟩, where NP is a set
of proposition nodes, ND is a set of default nodes, and C ⊆ {⟨n1, n2⟩|n1, n2 ∈
NP ∪ ND} is a set of connections or edges between nodes. (Thus, given N =
NP ∪ND, the pair ⟨N , C⟩ is a directed graph.)

We sometimes write cab as a shorthand for the connection ⟨na, nb⟩. When,
for two nodes n1 and n2, there is a connection ⟨n1, n2⟩, we say that n1 is an
input node of n2 and n2 is an output node of n1. We also say that n1 feeds
into n2.

Default graphs are subject to the following constraint: for each default node
nδ ∈ ND, there is at least one node n ∈ N such that ⟨n, nδ⟩ ∈ C and there
is exactly one node n ∈ N such that ⟨nδ, n⟩ ∈ C. Intuitively, nodes that feed
into a default node represent either the premise of the corresponding default
or other defaults that affect the weight of the default. The node that a default
node feeds into represents the conclusion of the corresponding default.

Furthermore, we call the set of nodesNin = {n ∈ N|¬∃n′ ∈ N : ⟨n′, n⟩ ∈ C}
the set of input nodes and we call the set of nodes Nout = {n ∈ N|¬∃n′ ∈ C :
⟨n, n′⟩ ∈ C} the set of output nodes. Note that the above constraint guarantees
that Nin ⊆ NP and Nout ⊆ NP , i.e. only proposition nodes can be input or
output nodes.

Next, the question is how to derive conclusions from premises in default
graphs. In this paper, we limit ourselves to acyclic default graphs, i.e. default
graphs such that ⟨N , C⟩ forms a directed acyclic graph (DAG). We also limit
ourselves to proposition nodes that correspond to atomic propositions; that
is, we do not consider connectives such as conjunction and disjunction. Given
these limitations, the strategy for derivation within default graphs is as follows.
We first introduce a valuation V : N ∪ C → R, which is a function that assigns
a numerical value to each node and to each connection. V is subject to the
constraint that the value of each non-input node is a function of the values of
its input nodes and the corresponding connections. More precisely, for each
non-input node nk, we define a numeric activation function gk. Then values of
non-input nodes are determined as follows:

6 ‘Logic’ is here used in the wide sense of a formal reasoning system. NDL is not a logic in
the more restricted sense, since it does not define a formal proof system. We use the term
‘numeric default logic’ rather than ‘numeric default reasoning system’ to stress the affinity
with HDL.
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• For each proposition node nP ∈ NP with input nodes ni,

V (nP ) = gP (
∑

i

V (ni)V (ciP )) (1)

where V (ni) is the valuation of input node ni and V (ciP ) is the valuation of
the connection ⟨ni, nP ⟩.

• For each default node nδ ∈ ND with input nodes ni,

V (nδ) = gδ(
∏

i

V (ni)V (ciδ)) (2)

where V (ni) is the valuation of input node ni and V (ciδ) is the valuation of
the connection ⟨ni, nδ⟩.
The difference between functions 1 and 2 has the following motivation.

Different inputs to a proposition node nP represent different favourers or dis-
favourers of the conclusion P . Favourers and disfavourers appear to function
in an additive manner; hence the activation of nP is a function of the sum of
its inputs. On the other hand, different inputs to a default node nδ represent
different factors that impact the strength of the default. These include the
default’s premise, but also attenuators, intensifiers, or disablers of the default
in question. These last three types of reasons do not directly add to or subtract
from a default’s strength, but rather strengthen or lessen it proportionally. In-
tuitively, an attenuator multiplies a default’s strength by a value lower than
1 (but higher than 0), an intensifier multiplies a default’s strength by a value
higher than 1, and a defeater multiplies a default’s strength by 0 (see also [25]).
Therefore, the activation of nδ is a function of the product of its inputs.

Next, we introduce a positive threshold value θp and a negative threshold
value θn. Given these elements, we define a valuated default graph as follows:

Definition 5.2 Given a default graph Γ = ⟨NP ,ND, C⟩, a valuated default
graph ΓV on Γ is defined as a tuple ⟨Γ, V,G, θp, θn⟩, where V : N ∪ C → R is
a valuation function, G = {gk : R → R|nk ∈ N \ Nin} is a set of activation
functions gk for each non–input node nk, and θp, θn ∈ R are a positive and a
negative threshold.

Given a valuated default graph, and an interpretation according to which
each proposition node nP corresponds to a proposition P , we can define exten-
sions as follows:

Definition 5.3 Given a valuated default graph ΓV = ⟨Γ, V,G, θp, θn⟩, an ex-
tension E is defined as E = Th({P |V −g(nP ) > θp} ∪ {¬P |V −g(nP ) < θn}).
Here, V −g is the activation of a node before the activation function g has been
applied, i.e.

• For each non–input proposition node nP ∈ NP \ Nin with input nodes ni,

V −g(nP ) =
∑

i

V (ni)V (ciP ) (3)
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• For each default node nδ ∈ ND with input nodes ni,

V −g(nδ) =
∏

i

V (ni)V (ciδ) (4)

• For each input proposition node nP ∈ NP ∩Nin, V
−g(nP ) = V (nP ).

Obviously, each valuated default graph has a single extension.
This general framework allows, of course, for an indefinitely large variety

of interactions between reasons, since there are indefinitely many activation
functions we could choose for each non-input node. The next section will
show, however, that, using a limited number of activation functions, we can
reconstruct Horty’s default theories in an intuitive manner.

6 Reconstructing Horty’s Default Logic in NDL

NDL can reconstruct a restricted version of HDL, in that we only consider
default theories ∆ that meet the following conditions. (Below, we call atomic
propositions of the form P , that do not contain the ≺ or Out operators, normal
atomic propositions. Similarly, we call literals of the form P or ¬P normal
literals).

(i) Propositions in W are restricted to a) normal literals, b) sentences of the
form d1 ≺ d2 or Out(d1), and c) implications of the form P ⊃ Φ, where P
is a normal atomic proposition and Φ is a normal literal.

(ii) W is consistent.

(iii) Defaults in D are restricted to defaults where the premise is a normal
atomic proposition P and the conclusion is a normal literal or a sentence
of the form d1 ≺ d2 or Out(d1).

(iv) D is finite.

(v) ∆ is acyclic. That is to say, there is no series Q1, P1, . . . , Qk−1, Pk−1, Qk
such that Q1 = Qk and such that for each i, 1 ≤ i < k, a) either Qi = Pi
or Qi = ¬Pi or D contains a default of the form δ : Pi → Qi+1 and
Qi = Out(d) or Qi = d ≺ d′ or Qi = d′ ≺ d for some δ′ ∈ D, and b) either
there is some δ : Pi → Qi+1 ∈ D or there is some δ : Pi → ¬Qi+1 ∈ D or
W ∪ {Pi} ⊢ Qi+1 or W ∪ {Pi} ⊢ ¬Qi+1.

These restrictions hold for most examples that Horty discusses in [23], with
two exceptions. First, Horty sometimes discusses default theories where W or
the premises or conclusions of D contain conjunctions or disjunctions. How-
ever, such complex sentences are in effect treated the same as atomic sentences
and therefore, in our restricted language, can be replaced by introducing a
new atomic sentence. Second, Horty discusses some cases in which W or the
conclusions of D contain sentences of the form ¬(A ∧ B), indicating that two
atomic propositions are mutually exclusive. Such sentences would have to be
modelled by cyclic default graphs, which belong to future work (see section 9).

Following the strategy of D’Avila Garcez et al. ([17], ch. 3, [16], ch. 4)
for representing defeasible logic programs as neural networks, we have first
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constructed an algorithm to translate each default theory ∆ in HDL into a
default graph Γ in NDL, and to translate each extension E of ∆ into a valuated
default graph ΓV based on Γ. Next, we have proven that extensions in HDL
can be reconstructed by default graphs as obtained by this algorithm. Because
of space constraints, the details of the translation algorithm and the proof are
omitted. Instead, we provide the core principles behind the translation, the
precise result that was proven, and an example.

• Normal atomic propositions in HDL correspond to proposition nodes in NDL.

Each proposition node has the step function step(x) =

{
0 if x ≤ 0

1 if x > 0
as its

activation function.

• Defaults in HDL correspond to default nodes in NDL. For each default δ with
premise P , the proposition node nP feeds into the default node nδ in NDL
(recall that we only consider defaults with atomic propositions as premises).
There are three types of default nodes:
· If a node nδ represents a favourer or disfavourer default (i.e. a default
of the form δ : P → Q or δ : P → ¬Q, with P and Q being normal
atomic propositions) in HDL, then nδ feeds into nQ. Since, intuitively, a
more strongly activated (dis)favourer provides a stronger reason, nδ has
the linear function lin(x) = x as its activation function.

· If a node nδ represents an attenuator default (i.e. a default of the form
δ : P → d′ ≺ d′′) in HDL, then nδ feeds into the node corresponding
to the default that is attenuated, i.e. node nδ′ . The activation function
should be such that, if activated, node nδ multiplies the activation of node
nδ′ by a value between 0 and 1. Below, we consider the function τ(x) =
−tanh(x) + 1, which satisfies this property.

· If a node nδ represents a disabler default (i.e. a default of the form δ : P →
Out(d′)) in HDL, then nδ feeds into the node corresponding to the default
that is disabled, i.e. node nδ′ . The activation function should be such that,
if activated, node nδ multiplies the activation of node nδ′ by a value of 0.

Below, we consider the inverse step function invstep(x) =

{
1 if x ≤ 0

0 if x > 0
.

• Material implications in HDL correspond to direct connections from the an-
tecedent to the consequent nodes.

This translation is not complete; specifically, it models attenuators differ-
ently than HDL. The reason is that NDL involves a conceptual shift in the
interpretation of attenuators (and intensifiers) away from Horty’s comparative
interpretation and towards Dancy’s per se interpretation. That is, whereas in
HDL attenuators always compare two defaults, in NDL, each attenuator node
outputs to exactly one default node. As argued in section 2, this conceptual
shift is intuitive, but it does mean that NDL cannot represent sentences of the
form d1 ≺ d2, which HDL can represent (see also footnote 4). Despite this
difference, the (partial) translation produced by the algorithm based on the
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above translation principles still reconstructs HDL’s extensions with regards to
normal literals. That is, we have proven the following correspondence: for a
default theory ∆ in HDL, and an extension E of ∆, if we construct a valuated
default graph ΓV according to the above translation principles, then ΓV ’s ex-
tension E ′ contains exactly the same normal literals as does E . Note that this
result is obtained using only a small number of activation functions that intu-
itively capture the roles of favourers, disfavourers, attenuators, and disablers.
Therefore, the result shows not only that it is possible to reproduce extensions
in HDL in NDL (which in itself would be unsurprising, given the freedom to
choose different activation functions), but also that this is possible in a natural
way.

6.1 Example

To illustrate the reconstruction of HDL, we show a valuated default graph that
reconstructs an extension of the default theory from example 3.1.

Example 6.1 As we saw in example 3.1, ∆ has two extensions. The valuated
default graph shown in Fig. 2 reconstructs extension E1, which is derived from
the scenario S1 = {δ1, δ4}. (Extension E2 can be reconstructed by providing
different valuations on the same default graph.) Proposition nodes are indicated
by squares and default nodes are indicated by circles. Valuations are given to
the right of each node or connection. For nodes, the activation function g and
the pre-activation value V −g are also given.

⊤ 1.0

G
step(1.0)
= 1.0

P2
step(1.0)
= 1.0

V step(1.0) = 1.0

1.0 1.0 1.0

δ1 lin(−0.8) = −0.8

δ3
τ(0.20)
= 0.8

δ2 lin(0.4) = 0.4

δ4 τ(0.69) = 0.4−1.0

0.20

1.0

0.69

1.0 1.0

S step(−0.4) = 0

1.0 1.0

Fig. 2. Example VI.1.
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We can see that this default graph indeed yields an extension E ′
1 such that

for all normal propositions P , P ∈ E ′
1 iff P ∈ E1 and ¬P ∈ E ′

1 iff ¬P ∈ E1.
Moreover, the graph captures the idea that, in scenario S1, δ4 outweighs δ3 and
therefore δ1 outweighs δ2: nδ4 attenuates the activation of nδ2 more than nδ3
attenuates the activation of nδ1 . This makes it possible to interpret the default
graph in terms of reasons, as is the case for default theories: the self-driving car
should not steer because the guardrail would harm the passenger (a favourer),
and because the fact that the pedestrians have committed a traffic violation
weakens the reason that their harm provides for steering (an attenuator).

7 Extending Horty’s Default Logic

Section 6 has shown that we can reconstruct (a restricted but core version
of) HDL in NDL. However, the main interest of NDL is that it can extend
HDL, specifically in a way that solves the problems described in section 4. It
is clear how we can solve the first problem, i.e. that HDL does not allow for
aggregation of reasons. Since a proposition node’s valuation is a function of
the sum of the valuations of its input nodes, several weaker input nodes could
together outweigh a strong input node.

The second problem was that binary valuations cannot capture the com-
plexity of realistic situations. Consider first proposition nodes that are part
of the knowledge base, e.g. nodes representing facts such as ‘Person 1 may be
harmed by action A’. In realistic situations, such nodes should not obtain their
input from the fixed node n⊤, but rather from a more distributed representa-
tion of the moral situation. This representation may for instance be a vector
representing different circumstances relevant to the probability, strength etc.
of the fact that the node in question (call it nP ) represents. For instance, nP
could have one input node corresponding to the number of people harmed, one
input node corresponding to the probability of harm occurring to each of these
people, etc. When properly weighed, this input vector to nP would produce an
appropriate value for V (nP ) which represents a combination of the probabil-
ity and intensity of the harm. Alternatively, nP may receive its input from a
neural network that has been trained to estimate the probability and extent of
harm on the basis of the system’s sensor inputs. The affinity between default
graphs and neural networks is explored further in section 9.

Consider next proposition nodes that represent the proposition that an
action ought (not) to be performed. Intuitively, we sometimes feel that an
action is strongly morally required or forbidden, whereas in other situations
the balance of reasons is almost equal (see also section 10). To capture this
intuition, such evaluative proposition nodes should have a non-binary activation
function, e.g. the linear function (f(x) = x), or some normalised continuous
function.

By using continuous inputs and activation functions, default graphs can
represent a wider and more realistic range of situations than Horty’s default
theories. At the same time, they retain the features that made HDL a promis-
ing framework for deontic logic. Specifically, default graphs still distinguish
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between different types of moral reasons (which are distinguished by different
activation functions), and allow for moral conflicts that may be resolved in a
variety of ways.

8 Related Work

Apart from default logic – especially Horty’s version – and Gordon and Wal-
ton’s ([20,19]) approach discussed in section 4, NDL has commonalities with
other strands of work within defeasible reasoning. The closest of these is
the neurosymbolic approach towards logic programming advanced by D’Avila
Garcez et al.; this approach is discussed in section 8.1. After this, we dis-
cuss another type of defeasible reasoning systems that lends itself to gradual
valuation, namely Pollock’s inference graphs (8.2). The current section only
focuses on structured inference or argumentation systems; it should be noted,
however, that there has also been much work on gradual valuations within
the context of Dung’s unstructured argumentation frameworks ([12]) (see e.g.
[7,13,27,26,34,24]).

8.1 Neuro-Symbolic Logic Programming

D’Avila-Garcez et al. ([17], ch. 3, [16], ch. 4) have developed the Connection-
ist Inductive Learning and Logic Programming System (CILP). CILP provides
neural network implementations of non-monotonic logic programs. Most no-
tably, D’Avila-Garcez et al. discuss extended logic programs, which consist of
sets of implicative clauses by which a literal (the ‘head’) follows from a set of
literals (the ‘body’), where literals in the body may be preceded by a negation-
as-failure operator ∼. Each such clause is roughly interpreted as stating that
the literal in the head can be defeasibly inferred if all normal literals in the
body are known to be true, and all literals preceded by the negation-as-failure
operator are not known to be false (they thus have a strong similarity with
defaults with potential disablers). The semantics of extended logic programs
are defined by answer sets, which, roughly, contain all and only those conclu-
sions that can consistently be derived from a knowledge base in combination
with a set of clauses (these have a strong similarity to extensions in default
logic). D’Avila-Garcez et al. have provided algorithms to translate extended
logic programs into three-layer artificial neural networks (with the input layer
representing all literals occurring in the body of some clause and the output
layer representing all literals occurring in the head of some clause). D’Avila-
Garcez et al. ([17], ch. 3) prove that, for extended logic programs that are
well-behaved, i.e. have just one answer set, provided some threshold to deter-
mine which nodes are included in the answer set, the neural networks produced
by these algorithms yield the same answer sets as the logic programs they are
based on. Conversely, a CILP-style neural network can be learnt from training
data rather than based on a pre-given logic program, in which case a logic
program can be extracted from the trained model.

Besold et al. ([5]) use CILP as a framework for deontic logic. They do so by
interpreting extended logic programs in a deontic manner, which is to say that
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each clause represents a norm, each literal in the body of the clause contains
a precondition for the norm to hold, and the literal in the head of the clause
represents an obligation. (Technically, Besold et al. depart from input/output
logic, not logic programming. But as they show, their input/output models
can straightforwardly be translated into extended logic programs.) Thus for
such deontic extended logic programs, each answer set can be interpreted as an
‘obligation set’. Then, they show that D’Avila-Garcez et al.’s translation algo-
rithm can be used to construct a neural network that computes the obligation
set for any well-behaved deontic extended logic program.

The current approach is in some ways inspired by D’Avila Garcez et al.’s
approach, specifically in the usage of translation algorithms and thresholds to
construct numeric networks on the basis of non-numeric non-monotonic mod-
els. D’Avila Garcez et al.’s motivations are very different from the motivations
behind NDL, however. Specifically, D’Avila Garcez et al.’s neural networks
are meant to correspond directly to extended logic programs (the added value
being that they facilitate learning of logic programs), whereas default graphs
in NDL are meant to go beyond default theories in HDL. Thus, the correspon-
dence in CILP is two-way: each logic program can be represented as a neural
network, and each CILP-style neural network can also be interpreted as a logic
program. This is not the case for HDL and NDL: although each default the-
ory (that meets the constraints mentioned in section 6) can be reconstructed
as a default graph in NDL, the inverse is not true. Most notably, default
graphs that contain aggregation of reasons have no counterpart in NDL, for
the reasons outlined in section 4. In other words, NDL is an extension of (a
constrained version of) HDL. This means that D’Avila Garcez et al.’s approach
(and Besold et al.’s deontic interpretation of this approach) are not suited to
overcome the problems mentioned in section 4. Specifically, CILP-style neural
networks do not allow for aggregation of reasons, since the logic programs to
which they correspond do not allow for aggregation of reasons either. Moreover,
since answer set programs (at least of the forms that D’Avila Garcez et al. and
Besold et al. discuss) do not contain the syntax required to distinguish between
(dis)favourers, attenuators/intensifiers, and disablers, CILP-style neural net-
works do not possess the structure to distinguish between these different types
of reasons either. On the other hand, it must be noted that CILP-style neural
networks have some advantages over the current version of NDL, specifically in
that they allow for modelling cyclic answer sets (by means of connections from
the output to the input layer). Besold et al. for instance exploit this feature to
model contrary-to-duty obligations, which are not straightforwardly modelled
in the current framework.

8.2 Inference Graphs

Pollock’s ([28,29,30]) inference graphs consist of inference steps (which can be
interpreted as propositions) that are linked together through edges. There
are two types of edges, representing support and defeat relations, respectively.
Originally, Pollock defined conclusions that can be drawn from inference graphs
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according to in/out-labellings, which are similar to extensions in HDL ([28,29]).
However, in his [30], Pollock revised his framework to associate each proposi-
tion with a justification strength and each support edge with a reason strength.
A conclusion’s justification strength is a function of the strengths of its sup-
porting propositions and the corresponding reason strengths, as well as the
strengths of its defeaters. This feature is similar to NDL. Pollock’s function,
however, is very different from the functions that were presented in equations
1 and 2. First, while equation 1 means that multiple reasons for a proposition
aggregate, Pollock rejects aggregation and identifies a conclusion’s (prima fa-
cie) strength with the strength of its strongest argument only. This difference
is a result of the fact that Pollock’s interest is mainly in epistemic reasoning,
rather than practical reasoning, and his believe that aggregation of reasons is
more plausible in the domain of practical reasoning than in the domain of epis-
temic reasoning ([30], p. 246). While staying non-committal with regards to
Pollock’s claim about the non-aggregation of epistemic reasons, we agree that
aggregation of different moral reasons is often an important step in ethical rea-
soning. Second, although Pollock importantly distinguishes between two types
of defeaters, i.e. rebutting and undercutting defeaters, these defeaters affect a
proposition’s justification strength in the same way. In contrast, NDL makes
a functional distinction between disfavourers (which are similar to Pollock’s
rebutting defeaters), attenuators and disablers (which are similar to Pollock’s
undercutting defeaters), which more naturally models commonsense moral rea-
soning.

9 Further Directions

Although NDL as defined in section 5 accounts for some patterns of reasoning
that cannot be modelled by HDL, it is more limited in other respects, reflected
in some of the limitations mentioned in section 6. The most pressing limitation
of NDL is the restriction that default graphs are acyclic. Intuitively, defeat
cycles are quite common in moral reasoning. For instance, if there are two
available actions, A and B, only one of which can be performed, then it seems
that the sentence ‘A should be performed’ attacks the sentence ‘B should be
performed’, and vice versa. The most natural way to model this in NDL would
be to add connections from nA to nB and vice versa, where both connections
have a negative valuation (perhaps a valuation of -1). But this would introduce
a cycle in the graph, which would mean that computing some nodes’ valuation
V (n) according to equations 1 and 2 becomes less straightforward, since the
valuations of n’s input nodes may themselves depend on V (n).

Future work may address this issue by introducing an iterative valuation
function which, at each step τn, computes the valuations of all nodes simul-
taneously on the basis of the valuations at step τn−1, until it converges on a
fixpoint. Such functions have been employed by D’Avila Garcez et al. ([17], ch.
3, [16], ch. 4), and also in some gradual approaches to Dung-style argumenta-
tion frames, which may contain cycles of argument defeat (e.g. [9,26,14]). The
iterative function to determine the valuations of a cyclic default graph would be
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different from these earlier fixpoint functions, however, given the more complex
ways in which different nodes can influence each others’ activations in NDL.

Second, it would be useful to extend NDL to model more complex logical
formulae and more complex defaults, compared to the simple formulae and
defaults that conditions 1 and 3 in section 6 allow. For instance, it would be
helpful to allow representation of negative premises and of other propositional
operators, such as conjunction and disjunction. For this purpose, we may
introduce ‘operator nodes’ that represent the valuations of logically complex
sentences, and make the valuations of such nodes dependent on the valuations
of their atomic constituent sentences. A natural approach, for instance, would
be to have conjunction nodes take the minimum activation of all the nodes
representing the conjuncts, and to have disjunction nodes take the maximum
activation of the nodes representing the disjuncts.

Finally, future work may take advantage of the fact that default graphs in
NDL have a strong structural similarity to artificial neural networks (ANNs).
Like ANNs, default graphs consist of nodes and edges, such that the activation
of each non-input node is a function of the activation of its input nodes, and
the weights of the connecting edges. This similarity opens up the possibility
to use learning algorithms that have been designed for ANNs in order to learn
the weights of the connections of a default graph, similarly to D’Avila-Garcez
et al. ([17,16]). For instance, we could provide a default graph with a set of
training instances, representing descriptions of moral situations, and training
labels, representing which act is morally right in each situation. Such labels
may for instance be gathered by asking humans to judge the situations in ques-
tion (see e.g. Guarini ([21]), who trained an ANN on the moral judgements of a
group of students). Then, we could use backpropagation to iteratively update
the default graph’s weights on the basis of its error with regards to the training
labels. It should be noted, however, that backpropagation is a gradient-based
algorithm, i.e. it calculates the gradients of the error score with respect to each
of a network’s parameters through chained differential equations. This, how-
ever, requires each function within the network to be differentiable. However,
the (inverse) step function used in section 6 is not differentiable at 0, and has a
derivative of 0 for any other value. Future attempts to apply backpropagation
to default graphs would need to consider this obstacle. Partially for this reason,
the possibility to train default graphs like neural networks currently remains
an uncertain aspiration.

If backpropagation-based learning would be possible for default graphs, this
would allow such graphs to learn weights that represent the (average) moral
intuitions of a group of people. This may be preferable to simply stipulating
the connection weights, as we have done in earlier examples. At the same
time, contrary to ANNs (such as the one trained by Guarini, [21]), default
graphs would remain inherently interpretable, given that each node corresponds
to a proposition or a default. This would be a substantial merit within the
framework of machine ethics, where it is important that those affected by an
automated decision can understand why the decision was made.
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10 Discussion and Conclusion

The introduction of numeric weights, of course, invokes the question what these
weights mean. Such weights cannot be interpreted in a probabilistic manner,
as is the case for some other numeric frameworks in defeasible reasoning. The
reason is that ought-statements, such as ‘The car ought to steer to the side’, are
not descriptive propositions, and therefore it is unclear whether probabilities
apply to them. Instead, the valuation of each output node in NDL seems to
represent what can best be described as an act’s degree of rightness. This is an
idealisation of a commonsense notion that is sometimes expressed in sentences
along the lines of ‘I feel very strongly that I should...’ or ‘I feel somewhat
obliged to...’ (As a rough analogy, we may consider Bayesian probabilities as
idealisations of sentences such as ‘I know very certain that...’)

At the same time, it must be recognised that the input nodes of default
graphs do often represent descriptive propositions (such as ‘Harm would occur
if the car steers to the side’). The valuations of such nodes, then, can be
(partially) dependent on the corresponding proposition’s probability (they may
also depend on other descriptive features, such as degree of harm). The way
in which the ‘descriptive valuation’ of input nodes relates to the ‘evaluative
valuation’ of output nodes is a question that cannot be decided here, since it
requires extensive discussion of topics in moral philosophy. It should be noted,
however, that there are reliable ways in which evaluative propositions depend
on descriptive propositions: the higher the probability of harm, for instance,
the more wrong an action is (prima facie). Any deontic default logic is based
on these links, since each deontic default logic must allow for inferences from
descriptive statements to evaluative statements. NDL makes these inferences
more explicit by expressing them as numeric functions.

This paper has presented a numeric extension of HDL, where the strengths
of both propositions and defaults are represented as numeric weights. It can be
shown how NDL can reconstruct a (restricted but core) version of HDL, and
also how it can be used to express patterns of moral reasoning that cannot be
captured in HDL, most notably aggregation of reasons. For this reason, NDL
offers interesting opportunities for combining the intuitions behind default logic
(and nonmonotonic logic in general) with the affordances of the numeric modes
of representation that are common in artificial systems. At the same time, it
should be stressed that NDL is only a first step that can and should be extended
in several ways to capture the full complexity of moral reasoning.
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Abstract

We give a logical account of all-things-considered (pro toto) oughts via practical (pro
tanto) reasons, adding to the deontic justification logic of [18] a very general relation
of strength on sets of reasons. The agent can reason about reasons and then conclude
what ought to be done, all-things-considered, given which reasons are stronger. In
the first part of the paper we recall the deontic interpretation of justification logic.
In the second part we show how to extend it to all-things-considered oughts. The
resulting logic is explicit with regard to pro tanto reasons (which are expressed via
terms), implicit with regard to the all-things-considered ought. In the final part of
the paper we discuss some philosophical issues and ideas for future work.

Keywords: all-things-considered oughts, pro tanto reasons, justification logic, basic
models, deontic logic, explicit modal logic

1 Introduction

Normative, or practical, reasons play a large, if not fundamental, role in con-
temporary normative theory. 2

Normative reasons can be further distinguished into pro tanto and pro toto
ones. 3 The former give some sort of initial justification for some obligation,

1 federico.faroldi@unipv.it
2 A reason can be thought of as a consideration in favor of or against something, at least for
the scope of this paper. We remain non-committal about their metaphysical nature. Some
take reasons to be primitive (or fundamental) for other normative notions (in the vicinity
of this view are [39], [34], [13]). [36] takes reasons to be those things our rational capacities
respond to; [27,29,28] take reasons to be evidence one ought to act in a certain way.
3 A terminological point: in this paper we prefer pro tanto to prima facie, for the latter
has unwanted epistemic connotations, but we use interchangeably pro toto and ‘all-things-
considered’.
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whereas the latter justify an obligation once all relevant considerations for and
against have been considered. Pro tanto and pro toto reasons are obviously
related. The simplest and most naive idea is that one considers all the pro
tanto reasons in favor of something, consider all the pro tanto reasons against
something and, after some kind of aggregation, there is some process of weigh-
ing and the resulting reason (or aggregation of relevant reasons) is the pro
toto reason for or against something. Given this very simple picture, one can
easily see that pro tanto reasons will oftentimes conflict, whereas, if the aggre-
gation and weighing processes are possible and consistent, 4 pro toto reasons
won’t – unless one’s background theory is perhaps committed to inconsistent
obligations for theoretical or pragmatic reasons. 5

Related Literature Even without introducing more complicated metaethi-
cal ideas, reasons are seldom considered from a formal, and even less from a
logical, point of view, as [26] confirms. There have been recent exceptions,
like Horty’s own work [25], which is mostly concerned about other normative
notions like ought. [22] dedicates a whole section to what Goble calls prima
facie obligations, which, under at least some readings, play a similar role to
pro tanto reasons. Dietrich and List have been sketching a deontic logic [15]
whose semantics is based on the reasons structures they define for their version
of rational choice theory [14], reformulated with the normative interpretation
given in [16]. As such, in their approach there is no way to deal with reasons
in the object language and no logic of reasons themselves, nor a distinction
between pro toto and pro tanto reasons. [18] is a recent attempt to explic-
itly deal with reasons, using the framework of justification logic (for a general
introduction see [3,6]). Reasons are represented by justification terms, which
can be manipulated and reasoned with, thus providing a first approximation
to everyday practical reasoning.

Motivation There are two main advantages in using the justification logic
framework to deal with normative reasons.

First, one can explicitly track which reasons are reasons for what, perform
operations on them, and thus have a higher degree of accuracy in formal nor-
mative reasoning: every obligation has a source. Puzzles and paradoxes such
as Ross’ are very easy to identify and, under a plausible set-up, disappear.

Second, the framework allows for the hyperintensionality of obligation,
namely that logically equivalent contents may not be normatively equivalent.
In fact in general it is not the case that if t:φ, “t is a reason for φ”, and φ ≡ ψ,
then t:ψ, “t is a reason for ψ”, see [18]. This also ensures a finer-grained formal
approach to everyday normative reasoning that is currently unavailable in more
standard approaches.

In [18], however, reasons were “flat”, i.e. no ordering was imposed on them:

4 For a skeptical argument on this front, see [17] and [12].
5 Note that the logic we present here will allow for a conflict-tolerant all-things-considered
ought, because we do not commit ourselves to the existence of a consistent aggregation and
weighing process. For more on this, see Sect 6.
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this means that no reason (or set of reasons) is more important than another,
and therefore one cannot conclude what ought to be done in case of conflicts.
Without doubt, there are several ways to pass from prima facie (or pro tanto)
reasons, oughts or obligations to the all-things-considered (or pro toto) version.
One traditional idea, for instance, is that the final, actual obligation is just an
(or the) undefeated prima facie one(s). 6 Another idea is that one ought to do
whatever one has most reason to do. 7

In this paper we propose to make the framework developed in [18] a bit
more adequate to real-world agents, by adding a way of comparing (simple
and complex) reasons, thus making it possible to have all-things-considered
obligations. 8

The plan of the paper is as follows. In Sect. 2 we explain the philosophical
ideas on which our formal account is based. In Sect. 3 we briefly introduce
justification logics and discuss their intended deontic interpretation, focusing
on a specific system in Sect. 4. In Sect. 5 we show how to extend it to
all-things-considered oughts. The resulting logic is explicit with regard to pro
tanto reasons, but implicit with regard to the all-things-considered ought. In
the final section of the paper, Sect. 6, we put forward some philosophical
remarks and point out some ideas for future work.

2 Pro tanto reasons and all-things-considered ought

This section will informally introduce and discuss the ideas used later in the
paper.

Example 2.1 Suppose you just promised a friend to meet at 3pm in the main
square. Your promise is a reason for why you ought to be in the main square at
3. But further suppose that, on your way to the meeting, a crazy biker, after a
hazardous maneuver, falls and seems quite seriously wounded, and you are the
only passerby. This seems a reason why you ought to call an ambulance and
wait for the biker to be succoured. Now, let’s agree that, if you stay and help
the biker, you won’t make it to your meeting: one excludes the other. What
to do?

In this very simple case it is quite natural to say that you ought to stay
and help the biker. 9 But why? Let’s try to generalize: what seems to be

6 [10, p. 149], [11, p. 125]: an agent ought to perform an action just in case there is an
undefeated reason for the agent to perform that action.
7 In favor of the thesis that an agent ought to perform an action just in case the reasons that
favor that action outweigh the reasons disfavoring it cf. [40, p. 130] For a comprehensive
and critical survey, see [22].
8 Once one reads reasons as prima facie or pro tanto obligations or duties, the underlying
philosophical idea is of course not new, and in modern times can be retraced at least back to
[38]. Formal investigations started at least with [1]. For other more recent formal treatments
of this issue, see at least [9], [23], [24], and, more recently and within the adaptive logic
framework, [41]. For deontic logics based on reasons (based on preferences), without taking
into account the strength of obligations, see also [33,32].
9 Whether this enjoins further obligations on your part (such as letting your friend know) is
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going on here is not that, given the factual details of the situation, you just
considered your two obligations in isolation, as it were; rather there seems to
be some sort of reasoning performed thanks to and on the reasons for the two
obligations. Somewhat tentatively we might want to say that the reason for
staying and helping is stronger, or more important, than the reason for going
to the meeting. This is easily shown if we manipulate our example a little
bit by adding other reasons for the obligation to go to the meeting, which are
stronger than that for staying and helping the biker, or whose combination
or aggregation with the reasons already existing makes a stronger case; for
instance, if the failure to meet with your friend results in the injury of more
people.

How to account for that? There are two main views: the weight-first view,
and the ordering-first view. On the former view, the weight of individual
reasons is given, and the ordering is then derivative on the ordering on weights
(possibly the natural ordering on real numbers). 10 On the latter view, the
first natural idea that springs to mind is to impose some sort of ordering on the
reasons, something akin to a preference ordering on options in decision theory,
but whose intended interpretation is normative, rather than motivational or
descriptive, and, in case some conditions are respected, some weights or other
can then be assigned. However, there are many well-known problems with
these ideas, having to do with either the requirement that this ordering be
complete, or with transitivity, or with some sort of separability condition, not
to mention the strong conditions required to prove a representation theorem
into quantitative structures.

What we propose is to generalize this idea and to use a generic binary
relation on sets of reasons for actions, rather than on individual reasons. 11

This relation is not required to be an ordering. 12

Such a relation seems to capture what normally happens in everyday rea-
soning, where you consider all the reasons in favor of staying and helping the
biker, and all the reasons not to (including the reasons favoring going to the
meeting), and then we conclude what we ought to do, all things considered,
given which of the two collections is more important.

Defining this relation on sets of reasons, rather than on individual reasons,
has an advantage: such an account lets you be non-committal about how rea-
sons aggregate, and therefore the above-mentioned problems can be put aside.
In particular we don’t force an atomistic view of reasons (according to which
they have the same weight no matter the context, e.g. which other reasons
are present or absent) nor a holistic view of reasons. If you want to track

a rather interesting question we don’t tackle here.
10For several objections to this view, see [17].
11For a similar idea, although in a slightly different context, see [40, Ch. 7]; and [16] for a
decision-theoretic context. Using a relation on sets of reasons, rather than a binary relation
on individual reasons was also criticized in [17].
12 [25] defines a partial ordering on defaults of the form X → Y , where X could perhaps
serve as a reason in our sense, given it meets further conditions.
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the reasoning of agents and, ultimately, give a logical account, certain more
metaphysical questions can be productively abstracted away.

These ideas are realized by adding to the semantics a binary relation > on
sets of reasons, which are represented by terms in the logic. Moreover, since
the semantical interpretation of terms we adopt for the purposes of this paper
is that a term is a set of formulas (namely, the set of formulas it justifies),
it is easy to see that this binary relation is a relation between sets of sets of
formulas: >⊆ 2Tm × 2Tm.

Is this relation an ordering? No: the rationale is to be as general as possible,
for two reasons: first, to avoid certain technical problems of standard orderings;
second, to have a certain amount of freedom to be able to plug in, in this logic,
your preferred normative theory, or an approximation thereof. For instance, it
is quite sensible to think that, were we to require the binary relation to be a
preference ordering (i.e. transitive and complete), we would be then reasoning
with a broadly teleological (if not consequentialist) normative theory. One
can also impose a separability condition on the relation, in order to recover
additive theories of value. 13 Not imposing further conditions on the binary
relation on sets of reasons fulfills another desideratum: generality. 14 In fact it
is compatible with the thought that, in different worlds, the characteristics of
the “ordering” are different, perhaps because the background normative theory
is different.

Given this binary relation on sets of reasons, an obligation to φ is now
all-things-considered, or pro toto, which we will write standardly as Oφ just
in case that the set of reasons for φ is more important or stronger than the
set of reasons for ¬φ, which provides the intuitive reading of formulas like
(t:φ � s:¬φ). 15

This understanding presupposes that the situations represented by φ and
by ¬φ are exclusive. This, in a sense, respects our underlying intuitions: pro
tanto reasons can conflict; in case of conflict, however, there will be a pro toto
obligation only if you can find, among the conflicting reasons, a set of them
that clearly supports an outcome and is more important than the others. If
this cannot be found, then there is no all-things-considered obligation.

13For several options in this respect, see [16] and later on in this paper.
14But won’t technical problems of standard orderings come back via the plugged-in normative
theory, if the chosen normative theory employs one of those standard orderings? Yes. But
this highlights that the problems are to be imputed to the background normative theory,
rather than to the formalization. In this sense we can see how generality, whose other side
of the coin is underspecification, can be of theoretical help.
15The fact that the set of reasons for φ is more important than the set of reasons for ¬φ
amounts to an all-things-considered obligation to φ gives an indication of what this “arbi-
trary” relation captures, also in the general case. While such an approach raises modeling
questions, the problem is that the informal weighing relation between reasons (as discussed
in the informal ethics literature) is not well understood in the first place (for some evidence
for this claim, see [17, Ch. 6]).
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3 Logics for pro tanto reasons

The framework of Justification Logic [3,6], a.k.a. explicit modal logic, offers
a formal setting in which we can represent reasons explicitly allowing us to
represent reasoning about the reasons for which something is obligatory. We
offered such an account in [18]. In this section we briefly summarize the basics.

3.1 Explicit Deontic Logic

The generic deontic reading of a modal formula 2A, or OA, is

A is obligatory.

Presumably in each case there is some reason for this obligation, but the lan-
guage of standard deontic logic is not capable of denoting it explicitly.

In the explicit modal language of Justification Logic modalities, 2’s, are
decomposed into terms, t, denoting the specific reason why a proposition is
justified, proved, known, believed etc. In a deontic setting this means that
formulas of the type OA are replaced with formulas of the type

t:A.

Some possible readings of this are

t is a reason why A is obligatory

or

t is a reason to do A

or

t is a reason for A being the case

or

you ought to do A because of t. 16

Readings of conjunctions and disjunctions are obvious: t:(A ∧ B) may be
read as t is a reason why ‘A and B’ are obligatory or as t is a reason to do both
A and B. Likewise t:(A∨B) might be read as you ought to do either A or B for
reason t. The reading of the material conditional is standard, although at this
point one can ask whether it would not be better to have genuine conditional
obligations, perhaps represented as A→ t:B. These points are of course going
to be relevant when trying to formalize so-called contrary-to-duty oughts, but
we don’t think having reason terms substantially alters these problems, which
are directly inherited from, implicit, standard deontic logic. 17

16At this point, as it is clear, we are not committed to an ought-to-do or an ought-to-be
reading. We do not exclude, however, that an enrichment of the framework allows for such a
distinction. We also do not claim that the above possible readings are necessarily mutually
consistent; different readings will, presumably, give rise to different logics.
17 [37] tackles conditional obligations in the framework of justification logic.
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3.2 Operations on Terms

The other key feature of an explicit modal language is the possibility of defin-
ing operations on terms. In general operations on terms represent some kind
of reasoning with our reasons, in order to obtain new reasons. The most fun-
damental operation is application, which can be thought of as representing a
step of modus ponens.

Assume that s is a reason for A, s:A, and t is a reason for A→ B, t:(A→ B),
for the sake of concreteness say that s and t are proofs in a formal system with
the last line A and A→ B respectively. If one applies modus ponens to t and
s one thereby obtains a proof of B; this proof is denoted by (t·s):B.

Application is the main operation for reasoning with reasons, not just formal
proofs. These observations, hence, justify and are encoded in the application
principle

t:(A→ B)→ (s:A→ (t·s):B)

Application is the only operation we are concerned with here, but it is not
the only operation possible. For example the first justification logic, the Logic
of Proofs [2], the explicit counterpart of S4, the system JT4 of [3,6], contains
two operations in addition to application: plus, + – which takes two proofs, t
and s and returns a proof (t+s) which proves anything that either t or s proves
– and proof checker, !, which takes a proof t and returns a proof !t which is a
proof that t is indeed a proof. [21] and [7] contain several examples of other
possible operations and discuss the issue in a general setting. The basic explicit
deontic logic proposed in [18], the system NRLCS , contains plus in addition to
application; it also considers that ! and a reflection operation, ‡ – which takes
a deontic reason t and returns a higher order reason ‡t to satisfy the obligation
that t enjoins – might make sense in a deontic context.

In what follows we take only the minimal system of justification logic, J−,
in order to have in place most of the technical machinery needed to properly
set up our discussion of pro tanto reasons and all-things-considered obligations
later on.

4 The Minimal Justification System J−

Definition 4.1 [Basic Explicit Language]
The basic explicit language contains the following items:

1. The language of classical propositional logic;
2. Variables: x, y, x1, x2 . . .;
3. Constants: a, b, c, c1, c2 . . .;
4. Application, ·.

Formulas are built up according to the following rules:

• Terms: any variable or constant is a term; if t and s are terms so is (t·s).
• Formulas: As for classical logic, and additionally if A is a formula and t a

term then t:A is a formula.

Now we define the minimal system of justification logic J−0 .
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Definition 4.2 [J−0 ] J−0 consists of the following axioms and rules:

J0. Axioms of classical propositional logic;

J1. t:(A→ B)→ (s:A→ (t·s):B).

• Modus Ponens

4.1 Variables and Constants

A key feature of justification logics is that terms can be of two types: variables
and constants. Variables represent arbitrary reasons, while constants represent
reasons for assumptions, and in particular for axioms. Constants represent
specific “atomic” reasons, i.e. reasons which are simply accepted as justifying
what they do.

Deontically, reasons for logical axioms can be understood to represent how
logic-respecting one’s obligations are. For instance for a constant c, c:((A ∧
B) → A) might be read as c is a reason to do A on condition that A ∧ B is
done. Another example is c:(A→ (A∨B)), which can be read as c is a reason
to do A∨B on condition that A is done. The first might seem plausible, because
rather trivial, while the second might be more implausibile.

Fortunately, the framework of Justification Logic is very flexible when it
comes to the choice of basic assumptions and their justification, as represented
by constants. Technically this is known as a constant specification (see def-
inition 4.3), the set of assumptions justified by constants. To anticipate, a
constant specification may range from being empty (no assumption is justified)
to being total (any constant is a reason for any assumption).

Several deontic puzzles depend on the idea that axioms or tautologies are
obligatory, for instance by derivation with the necessitation rule. The mecha-
nism of a constant specification allows a great degree of control over this kind
of reasoning, and is an important ingredient in the analysis of some standard
deontic puzzles. Given that many puzzles in standard deontic logic center on,
or involve, necessitation or the assumption that some logical principle is oblig-
atory, it is conceivable that the most realistic kinds of explicit deontic systems
will have empty, or very limited, constant specifications.

In J−0 no axiom is justified, i.e. no formulas of the form t:A are derivable
where A is an axiom of J−0 . If one wishes to be able to derive conclusions of
the form t:A one needs to assume some axioms are justified. This is one of the
purposes of a constant specification.

Definition 4.3 [Constant Specification]
A constant specification, CS, is a set of formulas of the form

{cn:cn−1: . . . c1:A} where cn, cn−1, . . . , c1 are constants and A is an axiom. It
is assumed that if cn:cn−1: . . . c1:A ∈ CS then so is cn−1: . . . c1:A.

A constant specification CS keeps track of the assumptions, i.e. the axioms
of the given system, which are considered justified. The members of a given
CS can be added to J−0 as additional axioms to obtain the system J−CS . Note
that J−0 is J−CS with CS = ∅.

In general, what is in a given CS is up to the user. A CS may be a finite set,
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stating that only some of the axioms of the system are justified. An important
class of CS’s are the axiomatically appropriate ones. A CS is axiomatically
appropriate when each axiom of the system, including those in the CS itself, is
justified, i.e. if cn:cn−1: . . . c1:A ∈ CS then cn+1:cn:cn−1: . . . c1:A ∈ CS. A CS is
total when for every axiom and any constant c1, c2, . . . cn, cn:cn−1: . . . c1:A ∈
CS.

A CS makes possible certain interactions between terms and the logical
connectives.

Definition 4.4 [J−]
The system J− is the system J−0 with the additional rule of Axiom Neces-

sitation:
` A

` cn:cn−1: . . . c1:A

where A is J0 or J1 and c1, c2, . . . cn are any constants.

J−0 coincides with J−CS with a total CS.
A ground term is a term built up entirely from constants. Given an ax-

iomatically appropriate CS or axiom necessitation the rule of constructive ne-

cessitation is derivable:
` F
` t:F for a ground term t. This rule follows from a

more general property of systems with an axiomatically appropriate CS: they
are able to internalise their own proofs: If A1 . . . An, y1:B1 . . . yn:Bn ` F then
for some term p(x1 . . . xn, y1 . . . yn)

x1:A1 . . . xn:An, y1:B1 . . . yn:Bn ` p(x1 . . . xn, y1 . . . yn):F

Since a number of significant puzzles in standard deontic logic involve ne-
cessitation, or the obligatoriness of logical principles, we mention these options
to give a sense of the degree of control possible over such assumptions. 18

5 Logics for pro toto reasons

We now come to the novel developments. There are two additions to the
language of basic justification logic we introduced in the previous section. First,
the importance or strength relation �; second, the implicit modality O (i.e.
O is unrealized by a set of terms, see 3.1), expressing all-things-considered
obligation. All-things-considered obligation depends on the balance of reasons,
namely, if we have an all-things-considered obligation then we know that the
reasons in favor are more important, or stronger, than the reasons against.

5.1 Syntax

To get the logic PTJ−, the logic for pro toto reasons, we modify the system
J− above by expanding the language, definition 4.1, with the two following
operations:

Definition 5.1 [Language of PTJ−]

18For more details and proofs see, for instance, [2,3,6,19,21].
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5. “Stronger Than”: �;

6. Obligation: O.

Accordingly, we expand the definition of formulas thus:

• Formulas: if A is a ‘purely propositional’ formula, i.e. not containing any
occurences of O, � or any term t, then OA is a formula.

• If A and B are formulas not containing any occurence of O, � or any term
t, then t:A � s:B is again a formula.

Note that, t:A � s:B and OA behave like atomic formulas.

Definition 5.2 [PTJ−] PTJ− consists of the following axioms and rules:

J0. Axioms of classical propositional logic;

J1. t:(A→ B)→ (s:A→ (t·s):B);

J2. OA→ (t:A � s:¬A).

• Modus Ponens

• Axiom Necessitation

5.2 Basic Models

We will now introduce a semantics known as basic models (cf. /e.g. [4]). The
principle advantage of basic models is that they give a precise answer to the
question ‘what is a reason?’: a reason is represented by a set of formulas,
namely, those it supports. Possible-world models (i.e. Fitting semantics) in-
stead treat justification terms as undefined primitive objects. Another advan-
tage is that basic models keep separate the question of the truth of A from that
of t:A: whether it is true that t is a reason for A is a separate question from
whether it is true that A. Possible-world models do not separate these ques-
tions completely; the truth of t:A depends on the truth of A at some (other)
states. Basic models treat A and t:A as distinct formulas; indeed they treat
formulas of the form t:A as atomic.

Basic models are built from two sets, that of justification terms, Tm, and
that of formulas Fm (built in the usual way from propositional atoms using
Boolean connectives and also via justification terms of the form t:A). In a basic
model formulas are interpreted as truth values, and terms are interpreted as
sets of formulas; i.e. a term is just the set of formulas for which it serves as a
justification.

In order to interpret the application operation we first need to define the set
of formulas Φ .Γ which is the result of applying modus ponens to the members
of sets of formulas Φ and Γ.

Definition 5.3 [.] For sets of formulas Φ and Γ and formulas A and B,

Φ . Γ =df {B | A→ B ∈ Φ and A ∈ Γ}.
With this we now define a basic model for the logic of all-things-considered

obligations:
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Definition 5.4 [PTJ− Basic Model]
A PTJ− basic model (∗, >) consists of the following:

1. An interpretation of the elements of the set of atomic formuals, At, to truth
values, {0, 1}, and the elements of Tm to sets of formulas, i.e.

∗ : At 7→ {0, 1}

and
∗ : Tm 7→ 2Fm.

2. s∗ . t∗ ⊆ (s·t)∗ 19
3. A ∈ t∗ for any conclusion t:A of axiom necessitation.

4. A binary relation > between sets of sets of formulas: >⊆ 22
Fm × 22

Fm

.

Definition 5.5 [Truth in a PTJ− basic model]
Truth in a PTJ− (indeed any) basic model is defined inductively:

1. (∗, >)  P iff P ∗ = 1, for atomic P .

2. Boolean conditions for the propositional connectives.

3. (∗, >)  t:A iff A ∈ t∗, for any t ∈ Tm and any A ∈ Fm.

4. (∗, >)  t:A � s:B iff {t∗|A ∈ t∗} > {s∗|B ∈ s∗}, for all t, s ∈ Tm.

5. (∗, >)  OA iff {t∗|A ∈ t∗} > {s∗|¬A ∈ s∗}, for all t, s ∈ Tm and A ∈ Fm.

Definition 5.6 [Consequence] Γ  A iff for every (∗, >) and for every B ∈ Γ,
if (∗, >)  B then (∗, >)  A.

Theorem 5.7 (Soundness) If PTJ− ` F then (∗, >)  F for any PTJ− basic
model.

Proof. By induction on derivations.
The Boolean cases are standard. Let us check the justifcation axioms:

1. F is t:(A → B) → (s:A → (t·s):B). Assume (∗, >)  t:(A → B) and
(∗, >)  s:A, hence A → B ∈ t∗ and A ∈ s∗. Hence B ∈ t∗ . s∗, and
B ∈ (t·s)∗; and so (∗, >)  (t·s):B.

2. F is OA→ (t:A � s:¬A). Assume (∗, >)  OA, hence for any t, s ∈ Tm and
any A ∈ Fm {t∗|A ∈ t∗} > {s∗|¬A ∈ s∗}, and hence (∗, >)  t:A � s:¬A.

2

Theorem 5.8 (Completeness) If (∗, >)  F for any PTJ− basic model then
PTJ−  F .

Proof. By constructing a canonical model (∗c, >c) as in Theorem 3.8 in [30],
with the following additions for the ordering clause. For a maximally PTJ−-
consistent set of formulas Φ

1. t:A � s:B ∈ Φ iff for all t and s, {t∗|A ∈ t∗} >c {s∗|B ∈ s∗}.

19 In case we have +: s∗ ∪ t∗ ⊆ (s+ t)∗.
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2. OA ∈ Φ iff for all t and s {t∗|A ∈ t∗} >c {s∗|¬A ∈ s∗}.
By definition >c is a binary relation between sets of formulas, hence item 4.

of definition 5.4 is satisfied, and the canonical model is a PTJ− model.
As usual the Truth Lemma, for any formula F , F ∈ Φ ⇔ (∗c, >c)  F , is

proved by induction on the complexity of formulas. We add the following two
cases:

F is t:A � s:B.
⇒: Assume t:A � s:B ∈ Φ, then {t∗|A ∈ t∗} >c {s∗|B ∈ s∗}, and hence

(∗c, >c)  t:A � s:B.
⇐: Assume t:A � s:B /∈ Φ, then for some t∗ and s∗ {t∗|A ∈ t∗} ≯c {s∗|B ∈

s∗}, hence (∗c, >c) 1 t:A � s:B.

F is OA.
⇒: Assume OA ∈ Φ, then {t∗|A ∈ t∗} >c {s∗|¬A ∈ s∗}, and hence

(∗c, >c)  OA.
⇐: Assume OA /∈ Φ, then for some t∗ and s∗ {t∗|A ∈ t∗} ≯c {s∗|¬A ∈ s∗},

hence (∗c, >c) 1 OA.
2

Example 1, continued The following is a basic model representing our biker
example from above:

i) A = you meet your friend at 3pm

ii) B = you help the biker

iii) t = you made a promise to your friend

iv) s = you are the only passerby and the biker is seriously wounded

v) A and B are mutually exclusive, in particular B → ¬A, s is a reason for
¬A

vi) (t:A)∗ = 1, (s:B)∗ = 1 (s:¬A)∗ = 1, t∗ = {{A}}, s∗ = {{¬A,B}}, s∗ > t∗.

We can now conclude that O¬A.
In the last section we are going to expand these considerations by taking

into account some connections to recent choice-theoretic developments.

6 Philosophical Remarks and Future Work

Conflicting Oughts The current approach is extremely flexible, maybe even
too flexible. If no further conditions are imposed on >, the relation between sets
of reasons, it may very well happen that (i) there is no all-things-considered
ought: the relation in fact is not required to be connected; (ii) there might
be all-things-considered oughts for inconsistent things. 20 This fact raises two
questions. In one hypothesis, we could change the understanding of pro toto
obligations, by postulating that a pro toto obligation is no more than an un-

20 In particular, unless > is assumed to be asymmetric, one can build a model where OA ∧
O¬A is true. This, however, does not result in O(A ∧ ¬A) as in standard deontic logic.
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defeated pro tanto reason, where the defeasibility, as it were, in our present
approach is simply captured by checking that there are no reasons that are
more important or stronger. Therefore, under such an understanding, the fact
that two particular sets of reasons are unrelated does not matter for pro toto
obligations, because we have a way of generating them automatically from the
pro tanto reasons we have. Such position is neither new nor satisfactory, and
will just set us back at the beginning of our inquiry. In another hypothesis, such
incompleteness should be embraced insofar as it is an accurate description of
our messy normative life. Suppose we don’t have pro toto obligations, because
all pro tanto reasons are indecisive. Then other practical, extra-normative
methods will be needed to take a decision about what to do. Consider, for in-
stance, a relation that happens to be cyclic: a:(p∧¬q), b:(q∧¬r), c:(r∧¬p) and
a∗ > b∗, b∗ > c∗, c∗ > a∗. In this case, there is simply no all-things-considered
obligation. If we think that such a situation is unacceptable, then we could
require that > be connected.

Reason aggregation There is an obvious question to answer, that is, how
the ordering on sets of reasons works and should work in the non-atomic case.
The ordering would be separable if given c disjoint from a and from b, if a > b
then a ∪ c > b ∪ c, where the union stands for the relevant notion of sum, etc.
It is well-known that additivity is a special case of separability, so all additive
representations are separable.

In our practical reason case, it is easy to see that, if we had +, given s∗∪t∗ ⊆
(s+t)∗, our ordering would indeed be separable. Without +, however, assuming
that, in the metalanguage, you have complex reasons (sets of formulas) that
are the union of others, their place in the ordering will have to be specified case
by case.

This, moreover, will be relevant to all-things-considered obligations just in
case all the reasons we aggregate are indeed for or against the same proposition.
We cannot, however, just assume something like t:A∧ s:A→ (t+ s):A, for it’s
not clear that two reasons for the same thing when taken separately, are still
going to be a reason for that thing when taken together.

Pro tanto vs Partial Reason What about partial reasons?
For the time being, let’s put aside whether partial reasons are indeed rea-

sons. We are going to talk about partial considerations in favor or against
something. Roughly, a partial consideration in favor of something is a consid-
eration that, taken alone, is not sufficient to establish an obligation. However,
it may be the case that several partial considerations taken together could sup-
port a full-fledged obligation. As a very simple example, the fact that almost
everyone is going to be there might be a partial consideration for me to go to
the department party. Taken by itself, that’s not enough: were for that fact
only, I won’t be bothered to think I have a full-fledged reason to go the party.
Likewise, I know a dear friend is going to be there. Taken by itself, that’s
not enough, were for that fact only, I won’t be bothered to think that I have
a full-fledged reason to go to the party. They’re both partial considerations
in favor of going. But perhaps taken together they are a reason (perhaps pro
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tanto, if not pro toto) to go. So far, there is no way to express partial consid-
erations in our system. As a matter of fact, pro tanto reasons are full reasons.
Here is a possible way to distinguish between pro tanto reasons and partial
considerations (reasons). Suppose that there is only one pro tanto reason, r.
Then, r would become an all-things-considered reason, a pro toto reason, an
obligation to φ. However, suppose that there is only one partial consideration
for φ. Then, in the absence of other considerations or reasons for or against φ,
there won’t be a reason or an obligation to φ.

Here’s how we can handle partial considerations. Recall that, in the seman-
tics, the interpretation of a term is a set of formulas, i.e. the set of formulas
it justifies. Under normal conditions, operations on terms are specified recur-
sively. Let’s take a concrete example, i.e. the plus operation.

The interpretation of (t + s), i.e. (t + s)∗, is just the union of the inter-
pretations of the individual terms, i.e. t∗ ∪ s∗. Now it’s clear, for elementary
set-theoretic facts, that a given formula A cannot be in t∗ ∪ s∗ without being
either in t∗ or in s∗. But that’s exactly what we need to express partial con-
siderations. Let’s consider again the example above. Set a := ‘almost everyone
is going to be at the party’; b := ‘my friend is going to be there’ and C := ‘I
go to the party’. Now, neither of a or b, taken alone, is a reason to go to the
party, C. However, let’s suppose that together they are.

Thus, it seems that a + b is indeed a reason for C, without a or b being
reasons as well. So it can’t be the case that (a+ b)∗ = {C} without a∗ ∪ b∗ =
{C}.

The obvious workaround is to define a new operation analogous to +, ± ,
directly specifying an interpretation of “aggregated” reasons.

More formally, (t±s)∗ 6= t∗∪s∗, but is understood primitively. In this sense,
we modify the clause for terms in this way: τ∗ = 2Fm, or ∗ : Tm→ 2Fm, where
τ ∈ Tm is of the form t, t·s or t± s.

Such a set-up is different than defining the plus operation as a partial op-
eration, because given that t ± s has an interpretation, it is not required that
either t or s, taken alone, do.

Moreover, such a clause is perfectly compatible with another feature of our
system. In particular we defined an ordering relation on sets of terms, and
we asked whether this ordering is separable. If ± were defined point-wise, like
+ is, then this seems to force the ordering to be separable (because ± would
behave additively), whereas by defining ± primitively, the position of a given
t± s in the ordering would not depend on the positions in the ordering of the
individual factors.

Defeaters In line with our first hypothesis in the preceding paragraph, we
may ask if we can provide a more precise understanding of defeaters. One of the
most prominent formal theories of oughts taking into account (what he calls)
reasons is, as already mentioned, Horty’s (see in particular [25]). Horty’s work is
based on default theory. He also has an ordering on defaults, representing their
priority. As it is well known from this tradition, there are two kinds of defeaters:
rebutting defeaters, i.e. additional stronger reasons for a conflicting conclusion,
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and undercutting defeaters, ones that somehow impact the capacity of a reason
to be a reason at all. In the current framework, a rebutting defeater A for t:φ
can be of the form, given t:φ, A → s:¬φ, with {s} > {t}. An undercutting
defeater B, given t:φ, can be of the form: B → ¬t:φ. It is in this latter sense
that Raz’s exclusionary reasons can be understood (e.g. [35]).

The importance of reasons and reasons for importance Open remains
the question of what to do with reasons for priority claims, i.e. possible rea-
sons of the form t:(s:A � u : B), which, in a radically different framework, are
allowed by [25, Ch. 5] and are excluded in the present framework. Such a fea-
ture would allow practical reasoning about priorities. However, while it seems
to be conceptually hard to make sense of iterated or “second-order” reasons
for reasons, 21 it may be appropriate to interpret reasons for priority claims in
deontic terms as intensifiers and attenuators, to the extent that intensifiers and
attenuators are themselves reasons (and not extranormative considerations, as
e.g. [13] and [8] think).

Wrong reasons Since there is now a way to express pro tanto reasons, which,
at least in the presence of other reasons, do not generate all-things-considered
obligations, it might make sense to ask whether there is a way to express
that something is a wrong reason. We do not engage with the philosophical
debate. The most natural way to account for this thought is the following.
Assuming that right and wrong reasons are full-fledged reasons, and that they
are disjoint, one can simply introduce two disjoint sets of terms: one for the
right reasons, and one for the wrong reasons, see [5] for an approach in the
context of epistemic logic. Moreover, one restricts the ordering on sets of terms
to subsets of the right reasons, because wrong reasons do not contribute to form
all-things-considered obligations. More controversially, one has also to modify
the clause for obligations, restricting the pro tanto reasons contributing to
the all-things-considered obligation to the ones which are in the set of the right
reasons. As a matter of fact, one could think that such a modification is useless,
for the ordering is already defined only on the right reasons. However, assuming
that there is only one (right) pro tanto reason, it will be vacuously “better”
than all others, thus becoming our pro toto obligation. This unfortunately
would also happen if there is only one wrong pro tanto reasons, which might
then become our pro toto obligation, rather than there being no obligation
whatsoever, as intuition demands.

Subset semantics and quantification over terms We conclude with two
technical ideas for future work.

The first has to do with the semantics, and involves developing a semantics
for the system discussed in this paper not based on basic models, which still
retains a syntactic feeling, but rather on the subset semantics developed by
Studer et al. [37], where terms are assigned not just a set of formulas, but a
set of worlds, and thus have themselves a semantical content.

21For a general discussion about iterated deontic reasons, see [18].
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The second idea has to do with quantifying over terms in the manner of
[20]. In the present context, such an extended system would be able to express
different analyses of all-things-considered obligation, such as that for all reasons
for ¬φ, there is a (potentially complex) better reason, such and such, for φ,
and thus that φ is all-things-considered obligatory.

Even without these extensions, in the present paper we developed a basic
approach in the framework of justification logic to capture practical reasoning
about all-things-considered obligations and pro tanto reasons.
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Abstract

Systems of Deontic Logic usually ignore the fact that deontic propositions can be
analysed in organisational contexts. They also ignore specific solutions to various
logical problems, that emerge in such circumstances. To fill this gap, this paper
proposes a class of formal framework to represent such contexts based on a general
notion of ’hierarchy’ as an ordered set of agents. Each agent has ascribed a set of
variables representing states of affairs they are authorized (or may commit others)
to produce. Consistent subsets of such variables are possible worlds for him and
give place to traditional deontic operators. Two additional operators representing
directive speech acts, aiming to reduce or widen his authority, generate new models
each time. Thus, commands and obligations are considered independent from each
other: one agent may be obliged to act even though no command has been uttered
to do so.
This framework is flexible enough to distinguish different types of obligations on
a purely formal ground. Individual and general obligations, but also contractual,
democratic and customary obligations are explained in a similar fashion. Finally,
natural solutions for deontic conflicts arise relying on the order of agents in every
hierarchy as well as on prioritising hierarchies.

Keywords: Hierarchies, Deontic Logic, Deontic Conflicts.

1 Introduction

Most systems of Deontic Logic ignore the solutions arising from everyday law
practice to conflicts among obligations. These solutions are well known for
centuries of detailed study on real-world normative systems. Possible solutions
to such conflicts in formal logic involve weakening the logic in order to allow
up to some point inconsistencies among obligations without trivial results (as
Da Costa and Carnielli suggest in [8]), the rejection of the deontic version of
the Necessitation Rule (see [9] or [7]), or the development of non-monotonic
systems: i) to acknowledge the existence of contradictory obligations and ii)
to provide an escape route to such antinomies at the same time [12]. Paying
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tribute to both ideas seems to be one distinctive feature of almost all formal
approaches to deontic conflicts.

As is usual in Logic, adding more structure to deontic models should provide
one opportunity to deal with both requirements, but logicians have used this
approach to study the connections between the notion of agency and that of
obligation instead of normative antinomies. This is understandable considering
that agency problems may be more pressing than mere contradictions from a
philosophical point of view.

Hierarchies are maybe the most suitable type of structures to represent
contradicting obligations and ways to avoid them, although it seems that these
structures have not been studied in full detail, at least, in order to fulfil these
goals. They have been studied concerning concepts such as power or authority
[5], although as far as the author of the present paper knows, they do not
coincide with the approach adopted here.

In the next sections, two different classes of models are described. The
idea is to consider hierarchies as partially strict orders of agents (or sets of
agents), each of which has attached a set of variables representing states of
affairs open to be produced by them according to the hierarchy configuration
(called its ‘authority’). Two deontic operators recover Deontic Logic consider-
ing sets of such states. Later, two additional operators representing speech acts
aimed to enlarge or reduce the authority of agents with some resemblance to
those studied by Public Announcement Logic are analysed too. Different types
of obligations are distinguished afterwards, and finally, well-known solutions
coming from Law theory and practice are adapted to this general framework.

2 Hierarchical Models: The Basic Picture

The main goal of this paper is to extend to Deontic Logic some solutions that
everyday legal practice use to avoid conflicts among obligations, adapting the
formal language of Deontic Logic with only minor changes. So, let L be a
language construed over the rule:

φ ::= p | ¬φ | φ ∧ ψ | ⟨H⟩aφ | [H]aφ (1)

Every propositional variable such as p, q... belongs to a set AT of atoms,
and other connectives are defined as usual. Read the symbols ⟨H⟩aφ as “agent
a is authorized to produce a state where φ is true in hierarchy H” and [H]aφ
as “agent a ought to produce a state where φ is true in hierarchy H”.

Let the frame H = ⟨A,<,AU⟩ be a hierarchy, with A as a set of agents, <
as a binary order relation between members of A, and AU as an authorization
function.

A hierarchy H is a strict partial order. Call ‘chain of command’ to every
path from a superordinate to subordinate agents that ends in a subordinate
with no other subordinates. Call the node occupied by an agent as her ‘position
in the hierarchy’, and let a function f : A 7→ N determine the ‘rank of a
position’, assigning a natural number starting with 1 to nodes at the top of
the hierarchy and adding 1 to every immediate subordinate. According to
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common usage, consider that the biggest the rank of an agent, the closer its
number approximates 1, so take a < b if f(a) < f(b). If an agent belongs to
two or more different chains of commands in a hierarchy, f assigns to every
position the biggest natural number deriving from all chains. Additionally, the
depth of the hierarchy is the same as the rank of the last subordinate in its
longest chain of command.

Take a hierarchy H = ⟨A,<,AU⟩ as example number 1, with A =
{a, b, c, d}, <= {⟨a, c⟩, ⟨b, d⟩, ⟨c, d⟩. Ignore AU at the moment. It is possible to
represent H as follows:

a

α

b

β

c

d

Fig. 1

There are two chains of command in this hierarchy: α and β. There is a label
identifying both chains above their initial node. According to both chains,
agents a and b have positions of rank 1. Agent c has a position of rank 2 and
agent d has a position of rank 3 because 3 is the biggest rank that can be
assigned to his position according to a chain to whom he belongs.

Let AU be a possibly partial authorization function that assigns to each
variable in AT or its negation a set of members a ∈ A. Propositional variables
or their negations in AU describe states that may be produced as a result of
the actions of an agent. Let AUa designate the inverse image of a under AU ,
and call it ‘the authority of a’. When the context is clear enough, the subscript
is omitted.

Take hierarchy H from example 1, with AU(p) = {a, b, c, d}, AU(¬p) =
{a, c}, AU(q) = {a, d}, AU(¬q) = {d}, and AU(r) = {a, b, c, d}. It should look
like this:

a

α

AUa = {p,¬p, q, r} b

β

AUb = {p, r}

cAUc = {p,¬p, r}

d AUd = {p, q,¬q, r}
Fig. 2

In modern bureaucracies (the epitome of a hierarchy), agents may be au-
thorized to produce certain states of affairs but also to abstain from producing
them. Thus, their authority may comprehend possible incompatible (inconsis-
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tent) results, being guaranteed the freedom to do or undo specific outcomes.
In these cases, one agent could produce a state where p is true but also another
where ¬ p is true. So, AU must be considered as a possibly partial function
because we cannot assume that any agent not authorized to produce a state
where p is true, is automatically authorized to perform actions resulting in
states where ¬p is true. Although the reason for this will become clear later, it
is maybe important to say here that if an agent is only authorized to obtain a
certain result but not its negation, he may be considered obliged to obtain it, so
it seems unnatural to assume that every agent has always negative obligations
if a propositional variable does not belong to her authority. Here, it is better to
think that the agent cannot intervene in the final outcome neither to produce
it nor to avoid it, being indifferent to him. Otherwise, it could be difficult
to imagine models where agents lack any obligation at all, even though such
models are perfectly conceivable. In any case, it is pretty normal to authorize
the same agents to undo whatever they may be ordered to do. In fact, avoiding
this kind of inconsistency in the distribution of authorizations is one way to
solve some problems in deontic logic. However, imposing such a restriction on
all models is not only inconvenient but unrealistic. It is worth noting that no
hereditary condition is assumed among the AU sets of agents in the same chain
of command.

Call MAXa to every subset of AUa comprising every atom in AUa or its
negation (if it also exists in AUa), but not both. In a sense, all MAXa are
maximally consistent sets with respect to AUa given that no two atoms p and
¬p in AUa belong to the same MAXa, and that for every superset Γ ⊆ AUa, Γ
comprises at least one pair of atoms p and ¬p. The set AUa = {p,¬p, q, r}, in
the example above, gives rise to two different MAXa sets (MAXa

1 = {p, q, r}
and MAXa

2 = {¬p, q, r}); the set AUb = {p, r}, only one MAX set that is
exactly the same AUb, etc...

a

α

MAXa
1 = {p, q, r}

MAXa
2 = {¬p, q, r} b

β

AUb =MAXb
1 = {p, r}

cMAXc
1 = {p, r}

MAXc
2 = {¬p, r} d

MAXd
1 = {p, q, r}

MAXd
2 = {p,¬q, r}

AUa

AUc AUd

Fig. 3

Let M = ⟨H,V ⟩ be a model construed over a hierarchy H, with V as a
valuation function that assigns to A a set of propositional variables in AT , but
not necessarily in AUa for any a. Unlike AU , consider V as a total function.

While atoms in AU represent the authority of an agent (the range of actions
an agent is authorized to do), atoms in the inverse image of A under V describe
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the actual world (called ‘AW ’), common for every agent in H. 2 To represent
in the actual world the fact that agents have such and such power or obligation
in the context of a hierarchy, it is necessary to attach special operators to the
corresponding variable (or its negation) in AUa. As has been said before, let
⟨H⟩a and [H]a be those operators.

So, define truth according to the following clauses:

• M ⊨ p if and only if p ∈ AW ,

• M ⊨ ¬φ if and only if M ⊭ φ,
• M ⊨ φ ∧ ψ if and only if M ⊨ φ and M ⊨ ψ,
• M ⊨ ⟨H⟩aφ if and only if there is at least one n ∈ N such that φ ∈MAXa

n,

• M ⊨ [H]aφ if and only if there is at least one n ∈ N such that φ ∈ MAXa
n

and for all n ∈ N it is the case that φ ∈MAXa
n.

Definitions of validity and semantic consequence are as usual (a formula
φ is valid here if and only if it is true in all hierarchical models, and it is a
consequence of a set of formulas Γ if and only if is true whenever all formulas
in Γ are also true).

The fourth clause says that an agent is able to produce a state where φ
is true if there exists at least one consistent set of state descriptions she is
authorized to obtain, containing φ. AUa contains all the possible states au-
thorized to a to produce, and every MAXa is a maximally consistent subset
of AUa. It is convenient to think about AUa as the set of all possible worlds
immediately accessible to a, and every set MAXa

n as one particular world in
AUa. Consequently, according to the fifth clause, whenever φ ∈ MAXa

n for
all n, it is not only possible for a to produce φ, but also an obligation to do
it. In other words, an agent is obliged to produce a given outcome just when
the variable representing it is contained in AUa, and it is not able to obtain a
different incompatible state. 3

Recall hierarchy H from the example, and let V (p) = A. The following
figure represent the model M = ⟨H,V ⟩

2 As one of the referees correctly suggested, given that V (A) assigns the same set of variables
to all agents, an alternative way to define a model should be as a pair ⟨H,AW ⟩, with
AU ⊆ AT . The only reason to stick to our original definition is that V allows us to distinguish
how different a description of the actual world and a normative one are.
3 In order to validate D axiom ([H]aφ → ⟨H⟩aφ), the existential requirement in the inter-
pretation of the [H]a-operator is unavoidable. According to this, another way to define the
set of obligations of an agent is as the intersection of all possible worlds open for him in AUa
whenever this intersection is not empty.
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a

α

MAXa
1 = {p, q, r}

MAXa
2 = {¬p, q, r} b

β

AUb =MAXb
1 = {p, r}

cMAXc
1 = {p, r}

MAXc
2 = {¬p, r} d

MAXd
1 = {p, q, r}

MAXd
2 = {p,¬q, r}

AUa

AUc AUd

p

M

Fig. 4

Note that p, ¬q and ¬r are true in M . ⟨H⟩aq is also true because there is at
least one MAX world accessible to a. [H]aq is true in M too, given that q is
in all MAX worlds accessible to a. For the same reason, [H]nr is true for all
agents n ∈ A. Finally, both ⟨H⟩cq and ⟨H⟩c¬q are false given that neither q
nor ¬q belong to AUc.

This way, all basic deontic operators are recovered here in a very weak
logic, where both operators are not inter-definable with each other (at least in
the usual way, ‘[H]aφ := ¬⟨H⟩a¬φ’), as a consequence of AU being a partial
function. 4

So, in the basic picture, it is possible to distinguish different types of obliga-
tions. Those binding only one agent are called ‘individual’ obligations ([H]aq,
in the example above); those binding sets of agents are ‘collective’ obligations
([H]np for all agents n ∈ B with B as the set of agents B = {b, d}). ‘Gen-
eral’ obligations are collective obligations forcing all members of the set A, to
perform or to abstain to perform an action ([H]n for all n ∈ A).

3 Changes in the Simple Picture

3.1 Reducing AUa

In the basic framework, agents cannot modify the set of powers and obligations
they have. One way to represent these changes in a hierarchy is by adding
special operators representing commands and authorizations.

The simplest way to interpret a command is as an act of forcing another
agent (considered as an immediate successor in the hierarchy), to obtain a
certain outcome. So, define an (immediate) successor function in the structure
as a mapping s : ℘A 7→ ℘A assigning to every agent a ∈ A, one set of agents

4 One of the referees of this paper correctly suggests that [H]aφ → ⟨H⟩aφ and [H]aφ →
¬⟨H⟩a¬φ hold in this system, but ¬⟨Ha⟩φ → [H]a¬φ does not hold if AUa is empty. In
that case ¬⟨H⟩aφ is true but [H]aφ, false. In fact, as anyone could expect, the equivalence
between ⟨H⟩a and [H]a only holds when AUa is non-empty, but this is not a necessary feature
of AU sets.
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B ⊂ A− {a} such that there is no agent c ∈ A− {a} such that a < c < b for
every member b ∈ B.

No reasonable command may force an agent to produce states where p and
¬ p are true at the same time, but only when is forced to produce one of both
options, the other turns out to be prohibited (that is, ⟨H⟩aφ ∧ ⟨H⟩a¬φ may
hold for an agent a but if a is then forced to produce φ, ¬⟨H⟩a¬φ will be the
case (or in other words, [H]aφ). According to this, an agent is obliged to do
something when being authorized to do so, is not authorized to abstain from
doing it. 5 So, whenever an agent is forced to produce states where φ is true,
his authority is temporarily cut preserving only those MAX subsets of AUa
containing φ.

So, define the truth of a new command !-operator according to clause (!1)
as follows:

(!1): M ⊨ !abφ if and only if M ⊨ ⟨H⟩aφ and b is such that b ̸= a, and it is
the case that s(a) = b, that M ⊨ ⟨H⟩bφ, and that M ′ ⊨ [H ′]bφ.

Subscripts are added to the operator to make clear the issuer and the re-
ceiver of the command, otherwise, it would be not clear who of two different
superordinate agents oblige a common subordinate to do something. With-
out subscripts, the command could be true for all of them. Additionally, the
apostrophe inM and H indicates the new structure arising after the command
issued by a superordinate agent. H ′ is the new hierarchy arising from a true
command. As such, it is a modification of the original hierarchy H. In H ′,
the new function AU ′ remains exactly the same with respect to the original
function AU except that according to AU ′, AUb lacks ¬φ if this atom already
belonged to it. So, AU ′(¬φ) = {a ∈ A : ¬φ ∈ AUa} − {b}. Consequently,
H ′ = ⟨A,<,AU ′⟩, and M ′ is the new model that comprises ⟨H ′, V ⟩.

In any case, according to this clause, one can consider that an agent a has
committed another agent b to perform φ only when:

(i) a has the authority to perform an action φ,

(ii) there is a subordinate b that is a successor of a (call this as the ‘order
condition’ or OC),

(iii) b is also authorized to perform φ (that is, φ ∈ AUb holds for b),

(iv) the authority of b is reduced to φ, verifying [H ′]bφ, after the command.

Not every agent in a hierarchy is entitled to command others to produce a
specific outcome, nor is entitled to command others to produce any outcome the
agent wants. It is natural to think that an agent can only issue orders within
their own scope of authority (requirement 1). 6 No one expects the Secretary

5 Coincidently, a very similar definition of an obligation, based on the idea of normative
ability can be found in [15, p. 397 and 398].
6 This does not necessarily mean that for every agent a and a subordinate b, the formula
⟨H⟩aφ→ ⟨H⟩a!abφ always hold. It will only hold for an agent a if !-formulas are previously
allowed to belong to AUa sets, and after that, when !abφ ∈AUa also holds for a.
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of Defense to issue rules about Public Health. It is pretty clear also, that the
only states of affairs an issuer of a command can force others to produce are
those within the authority of the receiver (requirement 3). A captain cannot
order his lieutenants to act beyond the call of duty. And finally, it is difficult
to consider that an agent has been commanded to do something if the agent
is already obliged to do so. In these cases fail a preparatory condition of the
speech act.

It is interesting to point out here that the last clause defines the idea of
hierarchical obligation in a way independent of the act of commanding some-
thing. In some normative systems, it is commonly accepted that the obligation
of an agent emerges at the same time as the correlative command of another
agent, who forces the first to give or do whatever the second agent may re-
quire from him. In this setting, one must accept that in a hierarchy commands
and obligations are not necessarily symmetrical, and that forcing anyone to do
something that the agent already has to do changes nothing.

In this setting, one superordinate can only bind immediate subordinates
to produce some state, because the idea here is to simplify the description of
hierarchies. It is worth noting that, according to the last clause agents of rank
1 cannot be forced by anyone in the hierarchy, and agents of the last rank
cannot force anyone else to produce a result true in some states of affairs. So,
they don’t have any other choice but to do the required action by themselves.

So, let !acp hold in M from example 1. This gives birth to the following
model M ′:

a

α

MAXa
1 = {p, q, r}

MAXa
2 = {¬p, q, r} b

β

AUb =MAXb
1 = {p, r}

cMAXc
1 = {p, r}

d

MAXd
1 = {p, q, r}

MAXd
2 = {p,¬q, r}

AUa

AUc AUd

p !acp

M ′

Fig. 5

Accordingly, MAXc
2 disappears, turning MAXc

1 be the only ideal world ac-
cessible to c. Note that a formula !acq should not be true because q /∈ AUc.
This is consistent with the intuitive idea that it is not reasonable to force an
agent to obtain a state of affairs whose production is not in his authority, nor
to disqualify the agent to obtain a state of affairs which he could not produce
in the first place.

It is possible to generalize the interpretation of the !-operator if one drops
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the restriction posed on commands, to be directed only to immediate subordi-
nates. Adding subscripts to commands indicating the recipient of them in each
case is enough to open a door to a more fine-grained analysis of norms. Let
!abφ be a command directed from agent a to b. The clause for such a formula
would be, then:

(!2): M ⊨ !abφ if and only if M ⊨ ⟨H⟩aφ and there is an agent b ̸= a, such
that a < b, it is the case that M ⊨ ⟨H⟩bφ, and it is the case that M ′ ⊨ [H ′]bφ.

If the last clause is admitted, letting the formula !ad¬q hold inM ′ give birth
to the following model M ′′:

a

α

MAXa
1 = {p, q, r}

MAXa
2 = {¬p, q, r} b

β

AUb =MAXb
1 = {p, r}

cMAXc
1 = {p, r}

d MAXd
2 = {p,¬q, r}

AUa

AUc AUd

p !acp !ad¬q
M ′′

Fig. 6

Up to now, a superordinate agent cannot eliminate an obligation forcing
a subordinate. One way to do it should be allowing superordinate agents to
make authorizations, turning obligations into permissions (this alternative is
to be explored in the next section.) A second way to do it should be modifying
the !-clause in a specific way in order to allow agents in a higher position to
eliminate variables from AUa sets of agents in a lower position, whose negation
is already not in AUa:

(!3): M ⊨ !abφ if and only if M ⊨ ⟨H⟩aφ and there is an agent b ̸= a, such
that a < b, and it is the case that M ′ ⊭ ⟨H ′⟩bψ, with ψ as the atom ¬p if

φ = p, or the atom p if φ = ¬p.
Now, it is not even necessary that the receiver of the command be previously

authorized to obtain the state of affairs commanded by his superior. It is
enough that the agent in a superordinate position commands something that
eliminates an incompatible state of affairs from the AUa set of his subordinates.
Thanks to this clause, the formula !ac¬p added to modelM ′′, for example, gives
place to the model M ′′′:
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a

α

MAXa
1 = {p, q, r}

MAXa
2 = {¬p, q, r} b

β

AUb =MAXb
1 = {p, r}

cMAXc
1 = {r}

d MAXd
2 = {p,¬q, r}

AUa

AUc AUd

p !acp !ad¬q !ac¬p
M ′′′

Fig. 7

3.2 Increasing AUa

Up to now, the only normative action one agent could perform was to commit
someone to produce some state of affairs. This way, one agent reduces the
authority of another. But there are at least two other different possible available
normative actions: to increase the authority of an agent (sets of agents), and
to change the position of an agent (sets of agents) in the hierarchy. Only
the first alternative will be analysed here. So, this requires the addition of a
new authorization +-operator in our language, which should be interpreted as
follows:

(+1): M ⊨ +abφ if and only if M ⊨ ⟨H⟩aφ, there is an agent b ̸= a, such
that s(a) = b, M ⊭ ⟨H⟩bφ, and it is the case that M ′ ⊨ ⟨H⟩bφ.

Again, the apostrophe indicates a new hierarchy, where AUb has changed:
the utterance of a formula +bφ by an agent a gives place to a new model
M ′ = ⟨H ′, V ⟩ with V as always, but with H ′ = ⟨A,<,AU ′⟩. A and < remain
the same, but AU ′(φ) = {a ∈ A : φ ∈ AUa} ∪ {b}. 7 Also, as happened
with the !-operator, it seems that four conditions must be met to consider an
authorization true (or at least, effective):

(i) the agent a that issued an authorization has the authority to produce
states of affairs where φ is true,

(ii) there is a subordinate b that is a successor of a,

(iii) b is not authorized to perform φ (that is, φ /∈ AUb),

(iv) the authority of b includes φ after the command, and because of that the
new set AU ′

b = AUb ∪ φ is in H ′.

Here it is also natural to think that agents can only be authorized to obtain
certain states of affairs that lie within the scope of authority of the authorizing

7 The referee correctly pointed out that here it is implicit that AU remains the same for all
other formulas.
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agent (requirement 1). It would be surprising that the Secretary of Defense
authorize hospitals to apply a special vaccine or a medical procedure to every-
one. One should expect the Secretary of Defense to authorize others to produce
states he could produce by himself. On the other hand, it is not reasonable to
consider that one agent has been authorized to obtain states he was already
able to produce before the authorization (requirement 3). The preparatory con-
ditions of such authorization would fail as happened to the !-operator, turning
this speech act useless.

It is worth noting that increasing the authority of an agent a doesn’t mean
that a necessarily acquires the right to perform or to omit an action. If an agent
is only granted to produce a state where φ is true not being also authorized to
produce ¬φ, then the authorization looks very similar to a command, in fact,
it is equivalent to a command to produce a state the agent cannot produce
before. Here ‘authorization’ has been used for lack of a better word. So, one
authorization grants the right to produce or omit the production of a state only
when its negation has previously been granted to the agent.

Take modelM ′′′ and let +acp be true in it. The resulting modelM ′′′′ should
be identical toM ′′. According toM ′′′′, agent c is now obliged to obtain a state
of affairs where p and r hold. This is an example of an authorization that is
equivalent to a command from a to c as ‘you must produce a state of affairs
such that p ∧ r’.

The interpretation of the +-operator may be generalized in the same way
the !-operator was in the previous section:

(+2): M ⊨ +abφ if and only if M ⊨ ⟨H⟩aφ, and there is an agent b ̸= a, such
that a < b, M ⊭ ⟨H⟩bφ, and it is the case that M ′ ⊨ ⟨H ′⟩bφ.

Thanks to this clause, if +adq is added to model M ′′′′, the resulting model
M ′′′′′ will be exactly as M ′, being ⟨H⟩dq and ⟨H⟩d¬q true again.

One last remark must be added now. If it is allowed to iterate !- and +-
operators and to include ! or +-formulas in AU -sets, it is possible to represent
more changes in the authority of agents. It could be possible for a superordi-
nate agent to grant the subordinate agents the authority to perform normative
actions. Thanks to this modification, the first agent could authorize others
to address or being able to receive new commands. A formula like !ab !bcφ is
true for agents a < b < c, for example, if only !bcφ ∈ AU ′

b holds for b, and
consequently, [A]b!bcφ also holds. This means that b ought to command c to
obtain φ. This happens when a General says to a Colonel: ‘order your men to
attack!’, in the face of the enemy. It is easy to think of the truth conditions
and possible examples of formulas built by all other possible combinations of !
or +-operators. 8

8 There is an obvious similarity among formulas [H]a!abφ and [H]a+abφ, and those formal-
izing the theory of normative position in the style of Kanger-Lindahl (KL) works, although
this framework was not intended to fulfil such goal. The ‘position of an agent in a hierarchy’
has a different meaning here but, due to its generality, it should be also possible to distinguish
here relevant deontic positions in the sense of KL theory.
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4 Relations with the Standard System of Deontic Logic
(SDL).

The hierarchical framework described here (HF) provides a more general ap-
proach to Deontic Logic than the Standard System (SDL). SDL rests on at
least three assumptions that HF lacks: SDL presupposes the normative valid-
ity of deontic formulas (those with deontic operators), their completeness and
consistency. The first is very subtle, the other two are more easy to grasp.

According to a descriptive interpretation of Deontic Logic, the validity of
a formula with deontic operators depends on the existence of a normative sys-
tem, the utterance of a corresponding norm, and the fact that the utterer is
competent to issue such a norm. As Kelsen elegantly puts it, the validity of
a norm is the particular mode of its existence [10, p. 10]. And this coincides,
partly, with the concrete act of will that gives birth to it. Under this kind of
interpretation, the validity conditions of a norm turn out to be the same as
the truth conditions of the proposition describing it. But the resulting logic
cannot coincide with SDL. Many of its theorems become automatically invalid.
On the other hand, if one sticks to a normative interpretation to preserve SDL,
deontic formulas should be considered without regard to any normative system,
nor to the competence of any issuer or receiver. But now the validity of deontic
formulas is up to some point ‘presupposed’ [9, p. 30 and 31]. In fact, according
to the usual semantics of SDL, a formula Op is true or false only depending
on whether p is true in every ideal world accessible from the actual world, in a
way completely independent of the grounds that make it obligatory. In other
words, the normative status of ideal worlds (their ideality) is already given,
and there is no account of how this happens.

HF does not assume the validity of deontic formulas. As on the descrip-
tive interpretation above, the validity of normative formulas depends explicitly
on the membership of an agent to a normative system (a hierarchy), and his
competence according to it (the AU set attached to him). In a more general

The positions agents occupy in a hierarchy are defined in a relational way based on the
existence of an order among them. This order justifies the power of one agent over his
subordinates. All these elements are absent from the usual theory of normative positions.
According to Sergot [14, p. 357], KL theory only has a deontic logic component, an action
logic component, and a method for generating all logically possible normative relations be-
tween two agents. So, even though KL also defines positions on relational grounds it lacks
all the structure that hierarchical frameworks rely on and, especially, the power dimension
that also justifies the normative force of deontic operators here.
The deontic logic component of the KL theory is the Standard System of Deontic Logic,
so any theory of normative positions built over hierarchical frameworks will differ from KL
in all points described in the next section. The action logic component in KL theory is
different from those in the class of hierarchical frameworks too. KL theory uses the STIT
theory approach, focused on the end result of actions than on state changes [14, p. 359].
Hierarchical Frameworks use the two new ! and +-operators that increase or decrease the
authority of an agent instead. They are not strictly related to actions but to changes in the
legal capacity of agents. This fact poses an important restriction on a theory of normative
positions built on a hierarchical framework because this could only refer to what has been
called as normative actions, like commands and authorizations.
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sense than Kelsen’s, the membership of an agent to a hierarchy determines its
‘imputability’. Obligations emerging from a hierarchy are not imputable to
agents that do not belong to it. Conversely, the production of a state of affairs
that is not mandatory nor permitted in the hierarchy is not imputable to its
members, being indifferent to them. The ideality of MAX sets follows from
the specific role they play in these ordered structures of agents. Their content
is determined by the agents in a higher position on the hierarchy, and its nor-
mative force derives from this order. From a strictly formal point of view, it
is not necessary to commit oneself to the social nature of such an order but to
acknowledge its existence and provide a way to model it. Consequently, HF
gives place to an openly different weaker logic, closer to Alchourrón’s logic of
normative propositions than to a proper Deontic Logic [1].

Alchourrón [1, p. 264] shows that a logic based on a descriptive interpre-
tation of norms (a logic of normative propositions) is isomorphic to SDL when
the first admits two more assumptions the second tacitly accepts: normative
completeness and consistency. A concrete normative system is complete if it
lacks gaps, meaning that every possible state of affairs has a normative status:
it is permitted or prohibited, and therefore, the formula Pp ∨ ¬Pp is true for
every variable p in the language ([1, p. 259]; [6, p. 137]). That formula is,
as expected, a theorem of SDL and a modal instance of the law of excluded
middle. In the ideal-worlds semantics of SDL, this is a consequence of a total
valuation function assigning variables to all possible worlds. So, if a variable is
not assigned to a world, its negation is. On the contrary, HF rejects normative
completeness. The formula ⟨H⟩aφ ∨ ¬⟨H⟩aφ is false whenever neither φ nor
¬φ belongs to AUa and, therefore, to any MAXa set for any agent a. This is a
consequence of being AU a partial valuation function, so it is not admissible to
assume that ¬p ∈ AUa for any a whenever p /∈ AUa. For the same reason, it is
not admissible to consider the falsity of a formula [H]¬p as a weak permission
of p. If p/inAUa for some a, the falsity of [H]a¬p means that ⟨H⟩ap is true to
a, but if p/notinAUa, then p is normative indifferent for a and, therefore, not
imputable to him.

A normative system is consistent when forces its agents to obtain only
mutually compatible states of affairs, so ¬(Pp ∧ ¬Pp) is true for all p in its
formal language. That formula is also a theorem of SDL, but only some of its
instances hold in HF. The restriction posed over MAX sets to be maximally
consistent is responsible in HF for every hierarchy to be consistent but this is
not granted for agents belonging to two different hierarchies. Take for example
two hierarchies H = ⟨AH , <H , AUH⟩ and I = ⟨AI , <I , AU I⟩ and an agent
a such that a ∈ AUH and a ∈ AU I . Let AUHa = p and AU Ia = ¬p. So,
[H]ap is true to H and [I]a¬p true to I, given that all MAXa in H contain p
and likewise all MAXa in I contain ¬p. Consequently [H]ap ∧ [I]a¬p is true
according to HF, but neither [H]ap ∧ [H]a¬p nor [I]ap ∧ [I]a¬p can be true
because it is not possible that p and ¬p hold at the same time for every MAX
sets of a in H or I.
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a

H I

AUHa =MAXa
1 = {p} AU Ia =MAXa

1 = {¬p}
Fig. 8

5 Hierarchies based on the power set of agents.

5.1 A new picture

Slightly different modifications of the basic framework could provide a deeper
understanding of normative systems, beyond the scope of usual Deontic Logics,
if hierarchies are also defined as strict orders of subsets from the power set of
A instead of just the set A itself.

Take a hierarchy as a structure H = ⟨A, <,AU⟩, with A ⊆ ℘A. This way,
collective obligations may receive a very natural representation. In the basic
picture, the position of every agent must be specified individually. There is no
way to represent in a single position a group of agents even if their AUa sets
contain the exact same set of atoms. This is not exactly a problem in the basic
picture but poses many limitations to representing commands that can emerge
in some concrete hierarchies.

Take the following hierarchy J = ⟨A,<,AU⟩, with A = {a, b, c, d, e}, and
<= {⟨a, c⟩, ⟨b, c⟩, ⟨c, d⟩, ⟨c, e⟩}. If one wants to make both agents in the highest
positions and both agents in the lowest position to work as a collective, it may
be necessary to let AUa = AUb and AUd = AUe. In any case, the only way
to represent the resulting hierarchy according to the basic picture is like in the
picture at the left. Hierarchy J should be depicted as in the right, nonetheless.

aAUa b AUb

c AUc

dAUd e AUe

{a, b}

{c}

{d, e}

AUa = AUb

AUc

AUd = AUe

Fig. 9

In order to represent J in HF, it is inescapable to admit nodes to be occupied
by sets of agents instead of only single agents, like in the picture on the right.
If this is accepted, it could be possible to find agents that play two roles in a
single hierarchy, like in the next hierarchy K:
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{a, b}

{a} {b}

AU{a,b}

AU{a} AU{b}

Fig. 10

This new feature may be sometimes inappropriate to reflect concrete hier-
archies, so it could be possible to impose one additional ‘disjoint condition’ to
prevent the possibility that one agent is in two different positions at the same
time:

(DC) Every position in a hierarchy must be occupied by disjoint subsets from
the power set of agents.

If the ‘disjoint condition’ is dropped, HF can now represent very complex
types of organizations and equally complex types of obligations. Now it is
perfectly possible that a subordinate b > a be a member of a set of agents that
commits a to produce a desired outcome, as happens in the following picture.
So, consider every set of agents as a special entity different from its members.
So, by dropping DC it is possible to represent commands that invert the order
relation of the hierarchy. Take as an example hierarchy L:

{b, c}

{a}

{b} {c}

AU{b,c}

AU{a}

AU{b} AU{c}

Fig. 11

By dropping DC, many types of hierarchies emerge. Hierarchies of sin-
gletons are still possible, as well as disjoint hierarchies, but now it would be
possible to identify contractual hierarchies, as those where members of sets in a
subordinate position also belong to sets on a superordinate position, like in the
last two figures (hierarchies K and L). A coherent picture of the binding force
of a contract in HF requires the set of its parties to be considered as superor-
dinate to each of them in a new hierarchy born out of their common will. In
the hierarchy K of Figure 10, agents a and b may represent the parties. Their
obligations arise from a special entity formed by their agreement, portrayed by
{a, b} (called ‘the contract’).

The set of all parties must possess full authority to produce all the results
that every party is obliged to obtain according to a contract, even though each
party may have only a part of such authority. In other words, the authority of
the set of parties is the union of every portion of their individual authority they
choose to contribute to the contract. In Figure 10, this means that AU{a,b} ⊆
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AUa ∪AUb must hold in K. The normative ability that arises to each of them
because of the contract is also limited to such a union set, obviously.

Finally, it should also be noted that it is possible to construct new hier-
archies as the union of two or more other hierarchies. Here, for example, two
hierarchies H = {AH , <H , AUH} and I = {AI , <I , AU I} can give place to
a new hierarchy J = {AH∪I , <H∪I , AUH∪I}. It is possible to construct the
product of hierarchies using the intersection operation on the sets of agents,
order relations and authority sets of two or more prior hierarchies. This way,
it would be possible to identify the sum and product of hierarchies as well.

5.2 Types of Obligations in this New Picture

As has been said before, contractual obligations should be defined here as de-
riving from the command of the very set of agents to whom the obliged agents
belong. Many other obligations may be also analysed in this framework: indi-
vidual and general obligations, and among these, also democratic and custom-
ary obligations. It is possible to explain the last two obligations with regard
to purchase contracts.

According to an old theory from Civil Law, in these contracts, one party
must give the purchased thing (the ‘seller’), to another which must pay the
price (the ‘buyer’), and all other agents not in the contract must refrain to
disturb the ownership rights the second agent acquired over the thing.

{a, b}

{a} {b}

AU{a,b} = {p,¬p, q,¬q, r}

AU{a} = {p, r} AU{b} = {q, r} {c} AU{c} = {r}

Fig. 12

Figure 12 shows a hierarchy J = H ∪ I with H as the purchase contract
binding the buyer‘a’ and the seller ‘b’, and I as a hierarchy formed by one single
agent c, who is a third person outside the contract. Let ‘p’ means ‘agent a pays
the price’; ‘q’, ‘agent b gives the thing’, and ‘r’, ‘the agent refrains himself of
disturbing ownership rights of others’. The binding force that obliges agents
that are not a party in the contract (the truth of the formula ‘[J ]cr’) doesn’t
emerge from the contract but should be considered in it. It is not possible for
the members of the set of parties (the set {a, b}) to command agents outside
the contract to do anything because these are not subordinate agents of the
former. This means that the obligation of the agents outside the contract is true
because of another reason. There are two possible answers here: considering
general obligations as democratic or as customary obligations.

A ‘democratic’ obligation is just a contractual obligation issued by the set
of all singletons in a hierarchy (maybe according to an aggregation rule such
as the majority rule) that forces one or more agents in the hierarchy to do
something. It must be singletons to exclude groups to be considered as agents
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in a democracy. 9 In other words, a democratic obligation arises from a demo-
cratic command. In these cases, the complete picture should require a set of
all members of singletons ({a, b, c} in the following picture) and a democratic
command forcing everyone (!{a,b,c}{a}r, !{a,b,c}{b}r, and !{a,b,c}{c}r), not to dis-
turb the property rights of other agents, forcing the hierarchy created by the
purchase contract to be part of a bigger hierarchy L = H ∪K with J as the
purchase contract, and K = ⟨A,<,AU⟩ as a democratic hierarchy created by
all singletons A = {{a}, {b}, {c}}, just like the one in figure 13:

{a, b}

{a} {b}

AU{a,b}

AU{a} AU{b} {c} AU{c}

{a, b, c} AU{a,b,c}

M

!{a,b,c}{a}r !{a,b,c}{b}r !{a,b,c}{c}r

Fig. 13

A ‘customary obligation’ is one that forces the entire set of agents in the
hierarchy but which was addressed by no agents. 10 One can think about
these obligations as being set by default. The difference between what we call
‘democratic’ and ‘customary’ obligation lies here in which is the author of every
kind: the author of the first one is the set of all agents A and the author of
the last one, the empty set. Moral obligations sometimes may be considered
customary obligations, sometimes not (i.e. when they are issued by a specific
agent namely a prophet or a priest). So, if the general obligation r is interpreted
as a customary obligation with respect to the purchase contract of the example
above, the hierarchy of the model of the whole situation should coincide with
Figure 12.

9 The difference between individual and general obligations depends on the proportion of
agents obliged in a given situation. That is why it is not necessary to use different operators
for all these different types of obligations in this framework: a simple verification is enough
to identify them depending on the number of agents obliged in each case.
10This concept tries to capture the legal notion of customary obligation, as a ‘practice re-
peated for a long time and generally accepted as having acquired the force of law’[13, p. 56].
As a common practice, has no specific author, but it is believed it is obligatory for all agents.
This way, this is a simpler concept of customary obligation than that of Bicchieri in [3].
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6 Old Solutions with their own problems.

HF provides some solutions to everyday problems in normative systems. One
obvious problem is that two norms may contradict each other. This could
happen, at least, when one of the following pairs of formulas holds in a model
[4, p. 187]:

• [H]aφ and [I]b¬φ,
• [H]aφ and ⟨I⟩b¬φ,
• [H]a¬φ and ⟨I⟩bφ,
for any hierarchies H and I, and any agents a and b. So, if one takes α and β
to represent the formulas of these pairs, they may give place to the following
types of conflicts in HF.

(i) α and β hold for a single agent a in a hierarchy H;

(ii) α and β hold for different agents a and b in a hierarchy H;

(iii) α and β hold for a single agent a in two hierarchies H and I;

(iv) α and β hold for different agents in different hierarchies H and I.

Type-i conflicts may be divided into three sub-types: the issuer of a command
or authorization is a single agent in a higher position (type i-a), the issuers
are two agents in a higher position but in the same chain of command (type
i-b), the issuers are two agents in a higher position but in different chains of
command (type i-c). Figure 8 depicts type iii conflicts.

Many different solutions to solve these problems may be found in the litera-
ture, ignoring that an obligation may be analysed in the context of a hierarchy.
So, solutions based on paraconsistent and defeasible deontic logics have been
presented elsewhere. Here, a set of traditional solutions from normative sys-
tems will be presented.

One obvious solution is to distribute among all agents only consistent sets
of authorizations. But this is a very unrealistic solution, so it is better to accept
that no matter what, conflicting commands and obligations can always appear.
Standard solutions in everyday law practice admit the possibility of conflicts
and depend on the order of issuers of a command or authorization (recall that
an obligation may arise from one or the other), or on an order of hierarchies.

Type i-b conflicts are automatically solved in HF considering that a true
command at a superior level could force all his subordinates to fulfil his orders
if (!1) clause is accepted. Specific rules are generally added if clause (!2) is
accepted instead, stating that commands from an agent in a higher position in
the hierarchy supersede commands from a lesser agent in the hierarchy (as the
classical aphorism lex superiori derogat lex inferiori suggests with respect to
law conflicts):

(LSDLI) “Whenever !acφ→ [H]cφ and !acφ hold, but also hold
!bc¬φ→ [H]c¬φ and !bc¬φ, it must be case that [H]cφ if f(a) < f(b)”.

This solution could also be applicable to type i-c conflicts. Recall that function

292



f assigns a rank to the position of every agent in the hierarchy.
One general solution in HF that may solve all problems of type-i and ii is

to consider that one first command crop the authority of a subordinate agent
turning ineffective whatever a second incompatible command could intend from
him, as in a first come first serve situation. A second command forcing him
to produce an incompatible state of affairs will not automatically restore his
previous authority nor change it to authorize him to do the opposite. Conflict-
ing commands may eliminate all variables in the AUa set of an agent a, if (!3)
clause is admitted in a model, turning every state of affairs indifferent for a, as
happens in the neutral view of normative conflicts studied in [11]. But this is
opposed to the usual practice of law repealing, according to which a posterior
command issued by an agent of the same rank or higher should derogate a prior
one (summarized by old Baldo de Ubaldi’s aphorism ’lex posterior derogat legi
priori ’). The lex posterior solution is nevertheless possible in these frameworks
provided the second order enlarges the previously reduced authority, and sub-
sequently cut it again, to force the agent to obtain the opposite incompatible
desired state. So, instead of simply issuing a !bc¬φ order, the second superor-
dinate agent b < c should also utter an authorization +bc¬φ as a previous step
in the same normative action.

Type-i and ii conflicts may also arise in an indirect way. The command or
authorization issued by one or two different agents in a higher position should
derogate all other obligations that imply the first by contraposition. These
cases are usually called ‘implied derogations’, and correspond up to some point
to the lex specialis derogat legi generali solution.

Finally, to solve conflicts of types iii and iv it is still possible to add another
condition such as

[PH] “Whenever !acφ→ [H]cφ and !acφ hold, but also !bc¬φ→ [B]c¬φ and
!bc¬φ, it must be case that [H]cφ if A�B”,

being ‘�’ a symbol stating a priority order among obligations depending on
which hierarchy they belong (a priority of hierarchies, PH), such that A �

B holds whenever a hierarchy A must be considered more important than
another hierarchy B. This is a different, simpler approach to hierarchies of
regulations than that Alchourrón and Makinson presented in [2], and should not
be considered definitive. As Alchourrón and Makinson said, there is no obvious
solution to the problem of prioritising obligations and the solution adopted
here is in no way easy to determine. Lex superiori and lex posteriori solutions
have been proposed here as naturally deriving from the hierarchy of agents that
commit subordinates to do or omit something, by means of their commands and
authorizations, and not as a relation that emerges directly among obligations
as such. Furthermore, many different criteria may be invoked to define an order
among hierarchies and it is not clear whether a formal approach to deontic logic
favours one among all others or not.

Anyway, this is not over. All these solutions may oppose each other in some
kind of second-level deontic conflict [4, p. 217]. For example, which solution
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is applicable if a posterior order is opposed to an order issued by an agent of
a superior rank? The traditional way to solve this problem is to limit one of
these rules (the lex posterior solution) to apply only in case of two opposed
superordinate agents have the same rank. That is, to consider the lex superiori
as a stronger criterion.

7 Conclusion

Hierarchical frameworks are very flexible and provide solutions to deontic con-
flicts in a natural way. These solutions are well-known in everyday law practice
but are usually ignored from a formal point of view. They also provide the op-
portunity to model complex normative facts that the standard system can’t,
thanks to different types of obligations that may be distinguished here.

It is maybe true that HF oversimplify the way real-world normative systems
work, but they have not been designed to provide a full picture of such systems,
nor solutions to all open problems in Deontic Logic. It is pretty clear that
many problems from Deontic Logic remain unsolvable under this framework.
Although may not be of central interest, it seems that problems related to O⊤
have a solution here, due to the weakening of the necessitation rule, derived
from the fact that AU is only a partial function. Considering deontic modalities
not to range over maximally consistent subsets of the authority of every agent
but to the whole inconsistent set may provide another solution here. This is
going to be studied in another paper.

Impossible norms and Kant’s Law are problematic here also. Kant’s Law
states that ’anything morally obligatory for an agent must be within the agent’s
ability ’[9, p. 67]. In the hierarchical approach, the factual ability is ignored
and the notion of ’authorization’ (as a deontic ability) is considered instead.
The definition of ability in terms of the possibility modality remains available
and nothing prevents us to consider the set of two formulas [H]ap and ¬3a p
consistent (for any hierarchy H), and therefore, after the addition of a theorem
such as [H]ap→ 3a p (a possible definition of factual ability on Deontic Logic),
derive also 3a p by modus ponens.

Although it seems adequate to provide a frame for the normative positions
theory, this is also a pending task concerning HF.

In any case, there is no reason to deny hierarchical frameworks the possi-
bility of being adapted to provide solutions to all these problems as much as
other representations of normative systems are adaptable in such terms too.
The solutions HF provide for normative conflicts at least, seem very simple
and endorsed by practice.
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Abstract

The formal analysis of normative systems has traditionally focused on their deontic
dimension rather than on their potestative dimension; yet, a growing amount of
works aims at shedding light on the notion of power, its norm changing potential
and its general interactions with deontic concepts. The present article contributes
to this line of inquiry by adopting the following perspective: a normative system
can be metaphorically seen as an agent that allocates abilities (powers) in order
to promote the fulfillment of certain desires (deontic directives), and in doing so
regulates its behavioural domain. Our analysis emphasizes the instrumental nature
of power, while clarifying the distinction between ‘being allowed’ and ‘being enabled’
and unveiling new patterns of interaction between deontic and potestative concepts.
Operationally, we formulate this framework in terms of conditional rules, and provide
a corresponding logic programming (ASP) implementation.

Keywords: Normative Systems; Permission; Power; Instrumental Reasoning;
Answer Set Programming

1 Introduction

The idea of analysing normative systems in terms of deontic concepts has tra-
ditionally inspired many logic frameworks [1,12] and tends to overlook the
potestative dimension present in normative discourse. This tendency can be
also observed in computational systems that incorporate normative expressions,
since they generally rely on the idea that (not) being granted permission to do

1 Corresponding author: g.sileno@uva.nl.
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a certain action upon the system is the same as (not) holding power to do it
on the system. 2

Yet, exceptions to this trend in the formal literature exist and are increas-
ing—mainly in the tradition called the theory of normative positions [27] which
is based on the characterisation of Hohfeld [13]. For instance, Lindahl [18]
interprets power as a possibility, which can be either a permission, or a prac-
tical possibility, or a legal possibility. Jones and Sergot [14] treat power as a
count-as conditional : within a given institution, some behaviours by certain
parties count as ways of establishing normatively relevant states-of-affairs (e.g.
within a department, secretaries’ signatures count as their employers’ signa-
tures). Markovich [21] provides a definition of power as a potential involving
an operator for legal necessity, which indicates that a party p has power on a
party q when a certain behaviour of p brings legal consequences on some nor-
mative relation involving q and other parties. Dong and Roy [6,7] emphasize
the relation-changing nature of power by defining it in a framework of dynamic
epistemic logic, where actions available to some agents may affect the norma-
tive relations among others. Sileno and Pascucci [30] provide a definition of
power in terms of ability and, in subsequent work [24], they build diagrams of
opposition for various concepts of power (change-centered, outcome-centered
and force-centered) and analyse their interactions. Kulicki, Trypuz and Sergot
[15] use labelled transition systems in order to represent an agent’s power to
exercise a right in situations where such a right conflicts with those of other
parties (e.g. a woman must be able to exercise her right to abortion despite
doctors’ conscience clause). Similarly, in the technical literature, new policy
specification languages have been recently proposed, which includes potestative
and deontic concepts, as for instance Symboleo [28] and eFLINT [31]. 3

All mentioned approaches focus on representing the way in which power
produces changes in normative relations; yet, they do not address the problem
of characterizing the reasons why power arises in institutional settings. In other
words, we lack a formal theory concerning the “instrumental” nature of power
with respect to maintaining normative systems or producing a desired change in
them. This is the problem we address in the present article and which, in turn,
is related to the problem of appropriately characterizing the difference between
the notions of permission (‘being allowed’) and power (‘being enabled’).

While permission and power indeed frequently come together, there are in-
stitutional settings in which they are activated by different conditions—proving
the need for their ontological separation— as observed e.g. by Makinson [19],
or Jones and Sergot [14]. For instance, according to canon law, people who are
ordained priests retain the sacramental powers even when they leave priest-
hood: they are merely not allowed to exercise them. This shows that an ac-

2 See e.g. GRANT PRIVILEGE to database users in MySQL, Permit effects in XACML rules
for access control, allow directives in .htaccess for Apache webservers.
3 Insights on how to structure a theory of power independently from a theory of deontic
directives in computational settings can be found e.g. in Sileno, Boer and van Engers [29].
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tion may produce (normative) effects even in presence of a prohibition that
is meant to signal the undesirability of those effects. A similar observation
can be drawn also on scenarios involving non-institutional (e.g. physical) ac-
tions that are normatively regulated while, obviously, no institutional power
is associated to their performance. For instance, the action of smoking is in
some contexts permitted although its performance does not involve any previ-
ous assignment of power. Another example of the separation between power
and permission can be taken from markets operating on digital infrastructures,
where enforcement occurs primarily ex-ante, in the tradition of authorization
systems: transactions are allowed/enabled or not depending on certain condi-
tions. However, markets also open the possibility of fraudulent schemes (i.e.
complex behavioural patterns disrupting the normal functioning of the market),
whose acknowledgement occurs mostly ex-post. Because of the impossibility of
strict control (e.g. part of the scheme occurs off-chain), there may be outcomes
which are prohibited, and yet possible, as they are in practice enabled by the
infrastructure.

In order to analyse how power arises and to which extent the notions of
power and permission diverge in normative settings, we introduce a formal
framework where a normative system is seen as a collective agent, embodying
the institution, that allocates abilities (corresponding to institutional powers)
in order to promote the fulfillment of certain desires (corresponding to deontic
directives). 4 This simplifying conceptual step is meant to ease the usage of
practical reasoning constructs, generally discussed from an individual agent’s
stanpoint, rather than positing a perfect alignment between intentional and
normative categories.

Our framework presents several mechanisms by means of which power orig-
inates; these mechanisms are expressed in the form of conditional rules and
can be grouped into theories. The justification of the mechanisms comes from
reasonability or rationality aspects of the norm-making process, which emerged
already in the views of Georg Henrik von Wright [32,33] in terms of the sug-
gested reading of deontic logic: a rational legislator does not create norms
saying both Oϕ and O¬ϕ. Principles of rationality are also at the base of in-
strumental (or means-end) reasoning, as well as of engineering efforts relying
on this, exemplified in control theory and goal-driven agents in AI, upon which
we will build for this paper. The proposed formal theories will then have two
readings: normative in the sense of the requirements rationality puts on the
collective agent, and descriptive as specifying what these “rational” patterns
are, implemented accordingly.

Moreover, specifications of power in legal settings generally consists of three
dimensions (see e.g. Hart [11, p. 28]): qualification (requirements to be ascribed
to a role), performance (manner and form in which the power is exercised), and
subject-matter (variety of rights and duties which may be created or modified).

4 The metaphor of institutions as agents echoes Hobbes’ idea of the Leviathan and can be
found also in recent technical works, such as Boella and van der Torre [3].
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Since we map institutional powers to the abilities of a collective agent to cause
changes in the normative system (and in particular, changes concerning po-
tential changes), this paper will elaborate on what supports the creation or
modification mechanisms associated to performances.

The structure of the article is as follows. Section 2 presents the formal
framework, whose main ingredients are: the collective agent’s desires, condi-
tions holding in the world and causal connections between events and condi-
tions. Section 3 provides conditional rules that can be used to build a theory
for instrumental reasoning and that are grouped into patterns, according to the
general mechanisms they represent. Section 4 provides additional patterns of
rules corresponding to more specific institutional mechanisms. Finally, Section
5 presents an answer set programming (ASP) implementation of the framework.

2 Formal framework

We introduce a formal language L whose vocabulary and formulas are based
on the syntax of the expressions used in ASP. The advantage of this choice is
that the framework can be directly encoded into a program, as shown in the
final part of the article.

2.1 Vocabulary

Each item in the vocabulary of L is associated with a type clarifying its meaning.
Types can be atomic or complex. A complex type is either a functional type
or a union type. A functional type t is denoted as (t1, t2), where t1 and t2
are (possibly complex) types which respectively constitute the input and the
output of t. A union type t is denoted as t1|t2 and can be associated with
symbols which are either of type t1 or of type t2. The atomic type boolean

denotes the Boolean truth-values 0 and 1.

Object variables

We use upper case Latin letters for object variables. These variables are asso-
ciated with two atomic types: condition (the type of conditions holding in the
world, which convey factual information) and event (the type of events driven
by agents, i.e. actions performed by them). Variables of each type are char-
acterized by a particular notation in the following presentation: Cstand for
conditions; A,B stand for events (sometimes with different subscripts making
reference to names of individual agents that are part of the normative system,
as in Ax, in which case they are actions driven by the individual agent indi-
cated). We take object to be the type of all object variables, i.e. the union
type event | condition. Object variables are denoted as X.

Object constants

We use lower case Latin letters for object constants. They are associated with
the two types also used for object variables, namely condition and event. Nota-
tion is used accordingly, namely c for conditions and a for events (sometimes
with different subscripts making reference to names of individual agents that
are part of the normative system, as in ax, in which case they are actions driven
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by the indicated agent).

Connectives

We use unary connectives for classical negation (¬) and default negation
(not), binary connectives for classical conjunction (∧) and the ASP con-
ditional (→), and the universal quantifier (∀). Unary connectives are as-
sociated with the type (boolean, boolean), binary connectives with the type
((boolean, boolean), boolean) and, for any object variable X, the expression ∀X
is associated with the type (boolean, boolean). 5 In the present context, the in-
terpretation of → can be either descriptive, if one wants to characterize how an
idealized normative system works, or prescriptive, if one wants to characterize
how a normative system should be designed.

Function symbols

We use two binary function symbols causes+ and causes− which take as input
an event (first argument) and a condition (second argument). Their outputs
are conditions. Thus, their type is: ((event, condition), condition). The function
causes+ represents a positive form of causation: an expression of the form
causes+(A,C) reifies a causal mechanism binding action type A and condition
C. More precisely, it indicates a condition according to which, by perform-
ing an action of type A, the agent triggers the consequent realization of C.
The function causes− represents a negative form of causation: the expression
causes−(A,C) reifies an inhibiting causal mechanism binding action type A
and condition C. It indicates a condition according to which, by performing
an action of type A, the agent inhibits the consequent realization of C (by any
other means). We also use a unary function symbol neg which takes a condi-
tion as input and gives a condition (incompatible with C) as output. 6 Hence,
its type is: (condition, condition).

Predicate symbols

Our framework involves reference to desires with a positive or negative atti-
tude. We introduce two predicates Des+ and Des− which take a condition
or an event as input and give a truth-value as output. Hence, their type is:
(object, boolean). Des+(C) means that the collective agent has a positive atti-
tude towards condition C (e.g. it prefers C to hold), whereas Des−(C) means
that the collective agent has a negative attitude towards condition C (e.g. it
prefers C to not hold). Analogous readings hold for Des+(A) and Des−(A).
Moreover, we use a unary predicate Holds taking a condition as input and
giving a truth-value as output. Hence, its type is: (condition, boolean). The
meaning of an expression of the form Holds(C) is that condition C holds.

5 We stress that the connective → denotes a conditional operator typically used in ASP
programs and behaving differently from material implication; for details, see [17]. Material
implication (as well as the other classical connectives and ∃) is definable in L via the primitive
connectives.
6 The derivation mechanism (e.g. in our ASP implementation) may rely on intensional
predicate functions, and therefore may not require to determine this incompatible condition.
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Finally, we use a symbol for identity among objects (=). The type of = is
((object, object), boolean).

2.2 Terms, formulas and instrumental theories

Definition 2.1 Terms. The set of terms (T1, T2, etc.) of L is the smallest set
satisfying the following properties:

• every object variable and object constant is a term of L;
• if T is a term whose type is condition, then neg(T ) is a term of L; 7
• for every term T1 of type event and term T2 of type condition, causes

+(T1, T2)
and causes−(T1, T2) are terms of L.

Definition 2.2 Formulas. The set of atomic formulas of L is the smallest set
satisfying the following properties:

• for every terms T1 and T2, T1 = T2 is a formula of L;
• for every term T , Des+(T ) and Des−(T ) are formulas of L;
• for every term T whose type is condition, Holds(T ) is a formula of L;
• if ϕ is a formula of L, then so are ¬ϕ and not(ϕ);

• if ϕ and ψ are formulas of L, then so are ϕ ∧ ψ and ϕ→ ψ;

• if ϕ is a formula of L, then so is ∀X : ϕ, for X an object variable.

A formula is atomic iff it has one of the forms T1 = T2, Des
+(T ), Des−(T )

or Holds(T ). We use T1 ̸= T2 as an abbreviation for ¬(T1 = T2). In the
construction of terms and formulas the auxiliary symbols ‘:’, ‘(’ and ‘)’ can be
omitted according to binding conventions in the ASP syntax [17].

Definition 2.3 Instrumental theories. An instrumental theory Θ is a non-
empty set of formulas which are either atomic or of the form ϕ→ ψ and, in the
latter case, ψ is either of the form Des+(T ) or of the form Des−(T ). Within
a theory, a formula of the form ϕ→ ψ is said to be a conditional rule and ψ is
said to be the target desire of that rule. If Θ consists only of atomic formulas,
then it is said to be an atom-based theory. Finally, a theory Θ1 is an expansion
of a theory Θ2 iff Θ1 ⊇ Θ2.

Let Θ be an atom-based theory, namely a set of formulas describing either
the collective agent’s desires, or conditions holding in the world, or causal con-
nections between events and conditions, or identity of objects. It is possible
to expand Θ to a theory Θ′ by adding conditional rules representing relevant
mechanisms for instrumental reasoning that can be grouped into certain pat-
terns. The next section will explain how this expansion can be performed. In
all rules mentioned therein, free occurrences of variables should be understood
as being in the scope of a universal quantifier, as in ASP rules [17].

7 A technical remark: in the ASP implementation of the framework (Section 5) will only
make use of terms where neg occurs at most once, since this is enough to encode the rules
discussed in the article.
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Des+(C) Des−(C)

¬Des−(C) ¬Des+(C)

¬Des±(C)=def ¬Des+(C) ∧ ¬Des−(C)

Des±(C) =def Des+(C) ∨Des−(C)

Causes+(A,C) Causes−(A,C)

¬Causes−(A,C) ¬Causes+(A,C)

¬Causes±(A,C)=def ¬Causes+(A,C) ∧ ¬Causes−(A,C)

Causes±(A,C) =def Causes+(A,C) ∨ Causes−(A,C)

Fig. 1. Relations between elements of the language illustrated on hexagons of opposi-
tion. Labels of the hexagon on the right abuse the notation not to overload the image:
e.g. Causes+(A,C) has to be read as Holds(causes+(A,C)). Given two vertices v
and u, an arrow from v to u indicates that u is a subalternate of v; a full line between
v and u that v and u are contradictories; a dashed line between v and u that v and
u are contraries; a dotted line between v and u that v and u are sub-contraries. The
contrariety relation on the left hexagon holds only for collective agents corresponding
to idealized normative systems; yet, we will also discuss scenarios in which a collective
agent happens to have conflicting desires. The logic assumed for desires and causation
is very simple and sufficient to serve the purposes of the article.

3 Patterns of conditional rules and theory expansion

3.1 Fundamental patterns

Suppose that the collective agent has certain desires with either positive or neg-
ative attitude with respect to a certain outcome (represented by condition C),
and suppose that this condition currently is not in place. Moreover, suppose
that action A is a causal mechanism producing C or inhibiting its produc-
tion. Thus, we will start with an atom-based theory Θ that will contain one
among Des+(C) and Des−(C), as well as one among Holds(causes+(A,C))
andHolds(causes−(A,C)), as well as ¬Holds(C). The following patterns show
how the collective agent’s additional desires are triggered by the various com-
binations of these options. We stress an important point on the interpretation
of conditional rules mentioned in the article. Under the descriptive reading of
operator →, a rule states that the target desire arises for the collective agent
as an indication of a sufficient (rather than a necessary) instrument to get the
desired outcome. Similarly, under the prescriptive reading of operator →, a
rule states that a prima facie (rather than an all-things-considered) duty arises
for the collective agent with respect to the target desire. The reason behind
this is that a sufficient instrument (a prima facie duty) does not have to be
necessarily used (fulfilled) to achieve the intended goal, given that sometimes
such an instrument (duty) might lead to unwelcome outcomes too. 8

8 We thank one of the reviewers for DEON for inquiring about this aspect of our framework.
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(i) Means-end derivation

If you desire some (not present) condition to hold, and you have the ability to
make this happen, you [should] desire to use such ability: 9

[1] Des+(C) ∧ ¬Holds(C) ∧Holds(causes+(A,C)) → Des+(A)

The formula in the antecedent of the conditional is a conjunction composed of
three elements that represent a common template in control theory and classic
AI 10 : the reference (i.e. Des+(C)) and the current state (i.e. ¬Holds(C))
define the trajectory, the causal mechanism (i.e. Holds(causes+(A,C))) iden-
tifies the control that produces that trajectory. The consequent of the condi-
tional indicates that the causal mechanism needs to be triggered. 11 Following
a similar rationale, three additional rules can be identified:

[2] Des−(C) ∧ ¬Holds(C) ∧Holds(causes+(A,C)) → Des−(A)

[3] Des−(C) ∧ ¬Holds(C) ∧Holds(causes−(A,C)) → Des+(A)

[4] Des+(C) ∧ ¬Holds(C) ∧Holds(causes−(A,C)) → Des−(A)

Rule 2 is about the derivation of negative desires: actions which may trigger
undesired events are undesired too. Rule 3 and Rule 4 deal with inhibiting
mechanisms (causes−), which are desired if they disable the occurrence of
negatively desired events, undesired otherwise.

Next, we consider rules to represent situations in which the collective agent
desires an instrument to obtain a certain goal.

(ii) Desire of instrument

If you desire some (not present) condition to hold, but you do not have the
ability to make it happen, you [should] desire to create this ability. From a
conceptual point of view, this rule works at a meta-level with respect to the
previous ones; it indicates that before having the possibility of using a means
to reach an end, we should have some means available. Similarly, if you desire
some (not present) condition to hold, and you have the ability to make it hap-
pen, you [should] desire not to remove this ability. This second rule indicates

9 The should in the various patterns indicates the normative (as opposed to descriptive)
possible readings.
10See e.g. the general template of negative feedback [8, p. 8], the general architecture of
goal-based agents [25, p. 56], or agent-programming language frameworks [4].
11Computational implementations based on practical reasoning principles typically set an
intentional bottleneck constraint, because the agent triggers only one action to reach the
desired outcome (e.g. the best one, in terms of costs and certainty). This passage, from
possibly conflicting volitional elements (desires) to non-conflicting deliberative elements (in-
tentions), is well-known in beliefs-desires-intentions (BDI) frameworks [5], and has strong
connections to argumentative patterns (necessary vs sufficient means) [10,34,16], and to the
distinction between prima-facie and all-things-considered obligations [2], of which we talked
at the beginning of this section with respect to the two alternative readings. For simplicity,
we keep these aspects out of our current scopes, although we acknowledge their relevance
and plan to approach them in future works.
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instead that when such a means is available, we should protect it. However,
these patterns do not say anything about how the relevant causal mechanisms
are created, and unnecessarily complicates the definition of L. For this reason,
we will rather focus on the following realization pattern in order to expand the
theory Θ with mechanisms to create instruments for desired goals.

(iii) Creation of instrument

If you desire some (not present) condition to hold, and you do not have the
ability to make it happen, but you have the ability to create such an ability, you
[should] desire to use this ability.

Des+(C) ∧ ¬Holds(C) ∧ not ∃A : Holds(causes+(A,C)) ∧
Holds(causes+(B, causes+(A,C))) → Des+(B)

This pattern looks at the existing causal mechanisms and picks some action
available to produce the target causal mechanism (enabling, or disabling a
change). 12 This schema could in principle be applied recursively to take into
account higher-order levels (e.g. causal mechanisms that create causal mecha-
nisms that create. . .), but this is out of the scope for our present purposes.

The rules resulting from all combinations of desires, conditions and causal
relations are the following:

(for 5–8) let ϕ be ¬Holds(C) ∧ not ∃A : Holds(causes+(A,C)), then

[5] ϕ ∧Des+(C) ∧Holds(causes+(B, causes+(A,C)))) → Des+(B)

[6] ϕ ∧Des+(C) ∧Holds(causes−(B, causes+(A,C)))) → Des−(B)

[7] ϕ ∧Des−(C) ∧Holds(causes+(B, causes+(A,C)))) → Des−(B)

[8] ϕ ∧Des−(C) ∧Holds(causes−(B, causes+(A,C)))) → Des+(B)

(for 9–12) let ψ be ¬Holds(C) ∧ not ∃A : Holds(causes−(A,C)), then

[9] ψ ∧Des+(C) ∧Holds(causes+(B, causes−(A,C)))) → Des−(B)

[10] ψ ∧Des+(C) ∧Holds(causes−(B, causes−(A,C)))) → Des+(B)

[11] ψ ∧Des−(C) ∧Holds(causes+(B, causes−(A,C))) → Des+(B)

[12] ψ ∧Des−(C) ∧Holds(causes−(B, causes−(A,C))) → Des−(B)

Rules 5-8 deal with the absence of causal mechanisms bringing about change;
Rules 9-12 deal with the absence of inhibiting mechanisms.

(iv) Protection of instrument

We apply the same principle with the second pattern in (ii), concerning the
protection of an existing relevant ability. We obtain therefore eight additional

12Note the use of connective not in this formula, which indicates that no such instrument
has been found.
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rules:

(for 13–16) let ϕ be ¬Holds(C) ∧Holds(causes+(A,C)), then
[13] ϕ ∧Des+(C) ∧Holds(causes+(B,neg(causes+(A,C)))) → Des−(B)

[14] ϕ ∧Des+(C) ∧Holds(causes−(B,neg(causes+(A,C)))) → Des+(B)

[15] ϕ ∧Des−(C) ∧Holds(causes+(B,neg(causes+(A,C)))) → Des+(B)

[16] ϕ ∧Des−(C) ∧Holds(causes−(B,neg(causes+(A,C)))) → Des−(B)

(for 17–20) let ψ be ¬Holds(C) ∧Holds(causes−(A,C)), then
[17] ψ ∧Des+(C) ∧Holds(causes+(B,neg(causes−(A,C))) → Des+(B)

[18] ψ ∧Des+(C) ∧Holds(causes−(B,neg(causes−(A,C)))) → Des−(B)

[19] ψ ∧Des−(C) ∧Holds(causes+(B,neg(causes−(A,C)))) → Des−(B)

[20] ψ ∧Des−(C) ∧Holds(causes−(B,neg(causes−(A,C)))) → Des+(B)

Patterns similar to (i), (iii) and (iv) can be constructed also in presence of
the target condition C i.e. when the antecedent of a conditional rule includes
Holds(C). By making this amendment, one obtains twenty additional rules
[21–40] (more precisely, for 1 ≤ i ≤ 20, rule 20+ i is obtained by performing
the mentioned amendment on rule i). These new rules are here not explicitly
stated for reasons of space, but are present in the code. For more details, see
Table 1.

3.2 Relaxations

All the patterns identified above require a desire to be present, either positively,
either negatively, in order to trigger the derivation of new desires. Even if at
the moment the agent does not desire something (the negation here stands as
absence of desire), it is not the case that the agent has a negative volitional at-
titude towards that thing. This is a more relaxed condition, as indicated by the
hexagon of opposition for desires (Fig. 1): ¬Des−(C) subalternates Des+(C).
This relation identifies ¬Des−(C) as a a necessary condition for Des+(C) to
hold. We may therefore explore the possibility of expanding theory Θ with new
patterns involving the relaxed condition ¬Des−(C). We will distinguish two
families of scenarios: contextual and direct anticipatory interventions.

3.2.1 Contextual interventions: preparing relevant abilities

In the first family of scenarios, the anticipation approach can be read as such: if
the agent does not have a negative volitional attitude towards C, it is expected
that at a certain pointDes+(C) may hold, and so better be prepared by settling
what will then be needed to bring about C. In other words, to motivate such
endeavour it is sufficient to be committed to ¬Des−(C). In this way, once the
desire comes to existence, relevant abilities are already in place for the agent.
For instance, relaxing pattern [5] we obtain:

[5*] ¬Des−(C) ∧ ¬Holds(C) ∧ not ∃A : Holds(causes+(A,C)) ∧
Holds(causes+(B, causes+(A,C))) → Des+(B)
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Following the same idea we can rewrite all patterns [5–20], [25–40] into relaxed
forms [5*–20*], [25*–40*], which are about enabling or disabling (positive or
negative) causal mechanisms that will be relevant when C—acknowledged as
desirable (positively or negatively)—is eventually instantiated.

3.2.2 Direct interventions

The second family of scenarios concerns the core of the means-end derivation.
Relaxing as before the premises concerning desire in e.g. Rule [1] and Rule [2],
we obtain:

[1*] ¬Des−(C) ∧ ¬Holds(C) ∧Holds(causes+(A,C)) → Des+(A)

[2*] ¬Des+(C) ∧ ¬Holds(C) ∧Holds(causes+(A,C)) → Des−(A)

At further inspection, however, we observe that patterns concerning action
avoidance (as [2*]) have different practical implications than patterns concern-
ing performance of actions ([1*]). For instance, if C is recognized as undesirable
(but possibly not as undesired), it is already acceptable that the agent should
avoid performing an action A that would bring about C. 13 In contrast, if C is
recognized as desirable (but possibly not as desired), it is less sound that the
agent should perform an action to already bring about the condition C, just
as we were in the positive desire case. A possible explanation for this intuition
is that, independently of its effects in the world, executing an action carries
always costs for the agent, whereas action avoidance generally plays a role only
in plan selection, not in execution. In other words, the preference about apply-
ing the proposed relaxation between the two patterns seems to emerge out of
principles of economy, entailing that instrumental reasoning common-sensically
carries along a concurrent desire to select efficient plans (all other things being
the same). This trail of thoughts is confirmed by observing that the avoidance
case becomes unsound just as the performance case when there are few or no
other plans available (or those that are available have much higher cost than
the avoided plan).

Focusing for simplicity only on the qualitative dimension of these conditions,
we can capture them as absence or presence of a substitute (equivalent and
alternative) ability:

Holds(onecauses+(A,C)) =def Holds(causes
+(A,C)) ∧

not ∃B : Holds(causes+(B,C)) ∧A ̸= B

Holds(manycauses+(A,C)) =def Holds(causes
+(A,C))∧

∃B : Holds(causes+(B,C)) ∧A ̸= B

The patterns can then be rewritten as:

[1**] ¬Des−(C) ∧ ¬Holds(C) ∧Holds(onecauses+(A,C)) → Des+(A)

[2**] ¬Des+(C) ∧ ¬Holds(C) ∧Holds(manycauses+(A,C)) → Des−(A)

13Note that we are overlooking all problems related to defeasibility here. In the general case,
the action A may still be required for satisfying concurrent desires of higher priority.
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Absence of target: ¬Holds(C) Presence of target: Holds(C)

Des+(C) or Des−(C) or Des+(C) or Des−(C) or
Available ability ¬Des−(C) ¬Des+(C) ¬Des−(C) ¬Des+(C)

k. causes−(A, neg(C)) Des+(A) Des−(A)
r. causes+(A,C) Des+(A) Des−(A)
e. causes+(A,neg(C)) Des−(A) Des+(A)
a. causes−(A,C) Des−(A) Des+(A)

kk. causes−(B,neg(causes−(A,neg(C)))) Des+(B) Des−(B)
kr. causes−(B,neg(causes+(A,C))) Des+(B) Des−(B)
ke. causes−(B,neg(causes+(A,neg(C)))) Des−(B) Des+(B)
ka. causes−(B,neg(causes−(A,C))) Des−(B) Des+(B)

rk. causes+(B, causes−(A,neg(C)) Des+(B) Des−(B)
rr. causes+(B, causes+(A,C)) Des+(B) Des−(B)
re. causes+(B, causes+(A,neg(C)) Des−(B) Des+(B)
ra. causes+(B, causes−(A,C)) Des−(B) Des+(B)

ek. causes+(B,neg(causes−(A,neg(C)))) Des−(B) Des+(B)
er. causes+(B,neg(causes+(A,C))) Des−(B) Des+(B)
ee. causes+(B,neg(causes+(A,neg(C)))) Des+(B) Des−(B)
ea. causes+(B,neg(causes−(A,C))) Des+(B) Des−(B)

ak. causes−(B, causes−(A,neg(C))) Des−(B) Des+(B)
ar. causes−(B, causes+(A,C)) Des−(B) Des+(B)
ae. causes−(B, causes+(A,neg(C))) Des+(B) Des−(B)
aa. causes−(B, causes−(A,C)) Des+(B) Des−(B)

Table 1

Overview of all instrumental patterns identified in section 2, in presence/absence of
desired/undesired target, and considering presence/absence of four types of relevant
abilities (k, r, e, a, standing respectively for keep, reach, escape, avoid). The re-
laxations from Des+(C) to ¬Des−(C) and from Des−(C) to ¬Des+(C) requires
conditions on absence and on presence of substitute abilities (see section 2.2).

In words, performance is sustained by the absence of equivalent alternatives
(although for an individual agent this desire is typically defeated due to eco-
nomic reasons); action avoidance is sustained by the presence of equivalent
alternatives (and generally it is not defeated as it does not incur in further
costs). This idea will be applied on patterns [1–4] and [21–24].

3.3 A framework of interventions

The 40 patterns can then be reorganized as follows. We first separate scenarios
in which the target condition C is present from those in which it is absent, then
we specify the attitude towards the target (positive or negative). The resulting
organization is illustrated in Table 1. The evident symmetries suggest that
further simplification of the notation is possible at a syntactic level, but this is
beyond the scope of the present paper.

The practical derivation performed by the agent eventually depends on
the available abilities, reified as causal connections, or possible interventions.
For better readability, these abilities can labeled: k for Keep abilities, as
e.g. causes−(A,neg(C)), maintaining C in Holds(C); r for Reach abilities,
as e.g. causes+(A,C), producing C in ¬Holds(C); e for Escape abilities, as
e.g. causes+(A,neg(C)), removing C in Holds(C); a for Avoid abilities, as e.g.
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causes−(A,C), inhibiting C in ¬Holds(C). 14 This relabeling is useful here
to denote in a more succint manner second-order abilities. For instance, rr will
denote the ability to “reach” an ability to “reach” a certain condition—that is,
causes+(B, causes+(A,C)).

4 Relevant institutional patterns

This section elaborates on how the machinery presented above can be applied
to investigate patterns observable in institutional domains.

4.1 From (collective) agent to normative system

At this point, we want to interpret agentive attitudes in terms of a normative
system, here taken as (i) a system of agents guided by (ii) a system of norms.
Intuitively, the collective agent’s desires would map to deontic directives, its
abilities to potestative directives. Yet, two considerations are crucial in this
passage. First, we need to take into account that there exist abilities which are
primitives or given independently from the institution: either because they are
physical abilities proper of individuals, or because they are (recognized) institu-
tional abilities provided by some other institution. Second, actions A performed
by the collective agent map to actions performed by individual agents for the
sake of the institution. However, because they are autonomous, individuals
may still perform actions for other purposes (e.g. for their own interests). We
will utilize subscripts to distinguish individuals, e.g. Ax would be an event
driven by agent x. We will now consider a few relevant patterns to show
potential applications of the proposed framework.

4.2 Protected liberty

In the normative system literature, a distinction is usually made between per-
missions (and/or liberties) which are explicitly declared, and those which are
derived from the absence of relevant obligations or prohibitions. Various au-
thors 15 have argued that a permissive norm issuing a “strong permission”
bring along additionally mechanisms, that can be overall reorganized as:

14This framework is similar to taxonomies presented in other disciplines. For instance, works
in agent-based programming distinguish maintenance, achievement, remedy, and avoidance
goals. Similarly, in psychology, Ogilvie and Rose [23] introduce the prevent-acquire-cure-keep
(PACK) framework to classify explanations given by people about their own behaviour. The
PACK framework of motives however takes also into account the positive or negative attitude
of the agent towards the target. For instance acquire (A) is always about reaching a positive
outcome; the agent is not deemed to reach (purposely) a negative outcome.
15For instance, Makinson [19] observes that explicit permission “appears to be needed by
real-life normative systems that change over time, as a device for limiting the interpretation
of obligations and preventing their proliferation.” Together with Alchourrón and Bulygin, he
sees this practice as “to limit the authority of subordinate instances to create new norms”
that go against the given permission. Additional mechanisms are summarized by Sartor
[26], building upon Hart (for the protection coming with explicit permissions), Alexy and
Pettit (for protected freedoms), and Sen (for the creation of effective capability in presence
of permission). More recently, Markovich and Roy provide a logical formalization of the
freedom of thought pointing out all the protective layers [22].
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• a practical protection: the prohibition of interference against performance
addressing all other social participants;

• an institutional protection: the disability for subordinate regulators to pro-
duce directives conflicting with that norms;

A special case is then that of institutional actions; here explicit liberty (e.g.
right to marry discussed by Markovich [20]) also implies an obligation of the
normative system to follow along the consequence of the action, i.e.

• an institutional instrument, i.e. a power for the addressee of the liberty to
require a certain performance from the normative system.

A non-intervention by the normative system (the only one that can keep track
of effects of institutional actions as marrying) would count as an interference.

For instance, let us consider a directive as x is free to marry, as well as free
not to marry. The practical protection function entails that someone should
not prohibit or interfere with x’s marrying, as well as nobody should oblige or
control x in this sense. The institutional protection entails that subordinate
regulators cannot change this directive. The institutional instrument entails
that x should be enabled to marry if x wished to (the institution being the
only agency able to produce this institutional outcome).

4.2.1 Application of the proposed framework

Rephrasing this discussion in agentive terms, a weak liberty would map to hav-
ing ¬Des± derived from the absence of other volitional attitudes (i.e. issued
by some form of default negation), whereas a strong liberty would map to stat-
ing the attitude ¬Des± (entailing strongly negated statements). The directive
expressed in the example is an explicit expression of strong liberty, in the form
of a ¬Des±(C) position:

¬Des±(C) → ¬Des+(C) ∧ ¬Des−(C)

Looking at Table 1, this entails that both conclusions in the first and the sec-
ond column are potentially relevant. The role of the constraints on relaxation
(section 2.2) based on substitute abilities becomes here particularly relevant,
as they prevent to conclude opposite desires.

As a first validation, let us check whether our framework captures what
is expected from the legal literature. With respect to practical protection, we
have:

• If an event Ay can inhibit the outcome C (e.g. y can interfere with x’s
marrying), knowing that Ax also can do it (x can refrain from marrying),
entails that Ay is undesired (Table 1, a, first column).

• If an event Ay can bring about the outcome C (e.g. y has the ability to control
marrying besides x), then Ay is undesired (Table 1, r, second column).

With respect to institutional protection:

• The institution needs to protect x’s ability by disabling the possibility to
remove it (Table 1, kr, first column).
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Note that in this case there are no substitute abilities (only the institution
can intervene on this matter) and this entails that the conclusion is a positive
desire. With respect to institutional instrument,

• The institution needs to put in place mechanisms so that x’s marrying is
eventually acknowledged (Table 1, rr, first column)

Note that the framework concludes also that the institution should abstain
to create or keep instruments that may interfere with the marriage (Table 1, ka
and ra, first column), as long as x is expected to have the ability of abstaining
from marrying. Dually, our framework would suggest that if marriages may be
combined (and individuals have no ability to abstain from marrying), dedicated
institutional instruments should be created to empower individuals to stop
marriages to occur. The legal theoretical understanding of such a conclusion
could be of course subject to a detailed discussion, but we only refer to the
openness of this question here.

5 Implementation

We have implemented a version of the framework in answer set programming
(ASP) [17]. 16 We will report here excerpts of the code, the full version is
publicly available. 17 The notation used in the code is slightly adapted from
the formal framework, following syntactic conventions of the ASP syntax (-
represents ¬, posdes represents Des+, poscauses represents causes+, nodes
represents ¬Des±, all predicates start with lower case letters, :- replaces →
switching antecedent and consequent, etc.). For instance, rule [1] becomes:

posdes(A) :- posdes(C), -holds(C), holds(poscauses(A, C)). % 1 (r)

Stating that there is no available cause of a condition requires using default
negation (not), as in the second line of the code below:

holds(some_poscauses(C)) :- holds(poscauses(_, C)).

posdes(B) :- posdes(C), -holds(C), not holds(some_poscauses(C)),

holds(poscauses(B, poscauses(A, C))). % 5 (rr)

Negated conditions require a function neg operating at the level of terms, e.g.:

negdes(A) :- posdes(C), holds(C),

holds(poscauses(A, neg(C))). % 21 (e)

negdes(B) :- posdes(C), -holds(C), holds(poscauses(A, C)),

holds(poscauses(B, neg(poscauses(A, C)))). % 13 (er)

In order to take into account anticipatory patterns, following the relax-
ation discussed in Section 3, we first need to define relations corresponding to
subalternation in the deontic hexagon of Figure 1:

-negdes(C) :- posdes(C). -posdes(C) :- negdes(C).

16ASP is a declarative programming paradigm based on a stable-model semantics [9], oriented
towards NP-hard search problems, and increasingly used to model and solve problems in
research and industry in a wide range of application domains.
17https://github.com/gsileno/abilities-desires-asp

311



Allowed, or enabled, that is the question

-negdes(C) :- nodes(C). -posdes(C) :- nodes(C).

The two constraints we require for the relaxation are encoded as:

holds(one_poscauses(A, C)) :-

holds(poscauses(A, C)), not holds(many_poscauses(A, C)).

holds(many_poscauses(A, C)) :-

holds(poscauses(A, C)), holds(poscauses(B, C)), A != B.

We can then rewrite the patterns in the relaxed form:

posdes(A) :- -negdes(C), -holds(C),

holds(one_poscauses(A, C)). % 1** (r)

negdes(A) :- -posdes(C), -holds(C),

holds(many_poscauses(A, C)). % 2** (r)

For the combinatorial exploration, we specify that all conditions present in
the program may hold or not:

{holds(C)} :- condition(C).

We also introduce four integrity constraints, one for each type of causal con-
nection. For instance, the potential transition reified in causes+(A,C) requires
C not to hold (otherwise there would be no change):

-holds(C) :- holds(poscauses(A, C)), condition(C).

To reason about the absence of conditions, we need to introduce a closed-world
assumption relying on default negation:

-holds(C) :- not holds(C), condition(C).

With these rules, we can specify a certain normative configuration (deontic
and potestative directives mapped to desires and abilities) and automatically
derive what theoretically entailed by the instrumental reasoning patterns iden-
tified above. The result may confirm and possibly extend normative constructs
discussed in the literature. For instance, supposing that x’s marrying (event de-
noted as m x) is permitted (if interpreted as facultativeness, in our framework
it is encoded as nodes(m x)), we can check the associated normative conse-
quences in different potestative configurations. For instance, suppose that the
authority a has the institutional power to create the power for x to marry, i.e.:

nodes(m_x). holds(poscauses(a_a , poscauses(a_x , m_x ))).

Indeed, we derive that the authority should exercise its power, i.e.
posdes(a a). Now let us assume that this power already exists:

nodes(m_x). holds(poscauses(a_x , m_x)). holds(poscauses(a_y , m_x)).

If x and y have both the ability to bring about x’s marriage (for instance forcing
x to do so), y is forbidden to do so, i.e. we derive negdes(a y). However,
this scenario shows also a limitation of the current formalization: as it does
not allow for distinguishing individuals driving actions (e.g. legitimate from
illegitimate), it generates also a prohibition upon x. We leave this extension to
future work.
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6 Conclusion

The paper introduces a framework to investigate the relationships between
potestative and deontic categories, looking at institutions as collective agents
and exploiting instrumental reasoning patterns. The framework allows for per-
forming a combinatorial exploration of several patterns of interactions between
powers, obligations, prohibition and permissions. As an example, by perform-
ing the derivation on a strong permission/liberty, we entailed several mecha-
nisms discussed (often separately, and by distinct authors) in the normative
systems’ literature. Yet, we acknowledge that these results are just initial with
respect to the potential applications of the framework. At the moment, our
analysis is a-temporal. We primarily identify desires “rationally” holding at a
certain moment of time, including those concerning the modification of abili-
ties, without being concerned of solving conflicts that may emerge. In future
work, we aim to add to the present framework deliberative and causal/temporal
modules.

The deliberative module will serve to select a set of (non-conflicting) in-
tentions based upon the existing (possibly conflicting) desires. This problem
has connections with the distinction between prima-facie vs actual obligations.
Indeed, a normative system does not consists only of mechanisms for allocating
powers, but also of substantial and procedural constraints on such allocation.
In our current formalization, these constraints may be captured as directives
which, in the moment of allocation/derivation, would determine conflicts. The
causal/temporal module will enable reasoning about the effects of events (in-
cluding performances driven by intention). Once these modules are integrated
with the present framework, we could reason on the overall institutional dy-
namics. For instance, the need for institutional protection will be derived
automatically after an institutional instrument has been decided and created.

Complementary to these extensions, further effort is needed to identify how
to unveil institutionally relevant generic mechanisms, as for instance the power
of declaring the occurrence of a violation, and of requiring interventions from
an enforcer. More fundamentally, the prescriptive reading opens up also to
the use of the framework for assistive technologies: given a certain normative
system, how could this be improved?
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Abstract

Computational models of legal precedent-based reasoning developed in the field of
Artificial Intelligence and Law are typically based on the simplifying assumption that
the background set of precedent cases is consistent. Besides being unrealistic in the
legal domain, this assumption is problematic for recent promising applications of
these models to the development of explainable Artificial Intelligence methods. In
this paper I explore a model of legal precedent-based reasoning that, unlike existing
models, does not rely on the assumption that the background set of precedent cases
is consistent. The model is a generalization of the reason model of precedential
constraint. I first show that the model supports an interesting deontic logic, where
consistent obligations can be derived from inconsistent case bases. I then provide
an explanation of this surprising result by proposing a reformulation of the model in
terms of cases that support a new potential decision and cases that conflict with it.

Keywords: Legal case-based reasoning, reason model, inconsistent case bases,
explainable artificial intelligence.

1 Introduction

Suppose that it is Monday morning and we post a homework assignment for
our logic class with due date on Friday at 4:00pm. Right after we post the
assignment, a student, Ann, writes us an email asking for an extension because
she is going to be at a conference for the entire week. Suppose that we grant
her the extension. On Wednesday another student, Bob, writes us an email
asking for an extension because he is going to be at a conference on Thursday
and Friday. We decide not to grant him the extension. Bob writes us back
complaining that Ann, who was in a similar situation, was granted an extension.
Did we have an obligation to grant Bob an extension given how we decided
Ann’s case? Or were we permitted to decide Bob’s case the way we did?

The question of how previous authoritative decisions, or precedent cases,
constrain future decisions has been addressed especially in legal theory in the
common law tradition. According to the common law doctrine of precedent,

1 icanavot@umd.edu.
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the decisions of earlier courts constrain the decisions of later courts through
the requirement that later decisions ought to be consistent with precedent deci-
sions. But what, exactly, does “consistency” mean? Besides being a traditional
problem in legal theory, this has become, through the development of the rea-
son model of constraint by Horty and Bench-Capon [11,14], a central concern
in the field of Artificial Intelligence and Law (AI and Law) as well.

The reason model, which builds on Lamond’s theory of precedential con-
straint [15], supplements a factor-based representation of legal cases in the
style of early models of legal case-based reasoning like HYPO [3] and CATO
[1] with a priority ordering between sets of factors representing the strength of
the reasons underlying the decisions of different courts. With respect to ear-
lier proposals based on similar ideas [5,17,19], the key innovation is that this
priority ordering is used to define a notion of consistency, and so a notion of
constraint.

This has led to a number of developments in AI and Law that aim at re-
fining the analysis of constraint by tackling, for instance, factors that can have
multiple values [12,17,21], framework precedents [20], or issues [6]. A problem
that has not been taken up in this literature, however, is that the reason model
notion of consistency presupposes that the background set of precedent cases
is consistent to start with. Besides being unrealistic in the legal domain, this
assumption is also problematic for recent promising applications of models of
precedential constraint to the development of AI systems that can learn and
reason about normative information in a way that is explainable. The key idea
behind these approaches is to interpret training data sets as sets of precedent
cases and then use the relevant model of precedential constraint to either build
interpretable systems [7,8,9] or construct post hoc explanation algorithms for
machine learning systems for binary classification [18]. One challenge in imple-
menting this idea is that training data is typically inconsistent.

Horty [11] briefly mentions a generalization of the reason model notion of
constraint that applies to inconsistent case bases as well. Yet, the idea is only
presented and not explored in any detail. My aim in this paper is to take
Horty’s suggestion and study how, exactly, according to the generalized notion
of constraint, inconsistent case bases constrain future decisions and generate
permissions and obligations for future courts. 2

I proceed as follows. In Section 2, I review some basic definitions and
present the generalized reason model of constraint. In Section 3, I define what
it means, in this framework, for it to follow from a possibly inconsistent case
base that a decision is obligatory or permitted and show that the resulting
notions of permission and obligation support a simple conflict-free deontic logic.
This result is promising but surprising: how does the generalized reason model
extract consistent requirements from an inconsistent set of precedent cases? In

2 A different approach to the problems presented by inconsistent case bases can be found in
recent work by Peters and colleagues [16] and by van Woerkom and colleagues [22], which
develop Prakken’s and Ratsma’s proposal to use a version of the reason model to analyze
how machine learning systems base their decisions on training data [18].
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Section 4, I present a reformulation of the generalized reason model that will
provide me with a way to answer this question in Section 5. Finally, Section 6
concludes.

2 The generalized reason model

The reason model represents cases as consisting of three elements: a fact situa-
tion presented to the court; an outcome, which can be either a decision for the
plaintiff or a decision for the defendant; and a rule that justifies the outcome on
the basis of a reason that holds in the considered situation. I start by reviewing
the definitions of these elements.

A fact situation is a set of facts that are legally relevant, called factors.
Factors are assumed to have polarities: every factor favors either the plaintiff,
denoted with π, or the defendant, denoted with δ. We take Fπ = {fπ1 , . . . , fπn }
to be the set of factors favoring the plaintiff, Fδ = {fδ1 , . . . , fδm} to be the set
of factors favoring the defendant, and F = Fπ ∪Fδ to be the set of all factors.
Where s is one of the two sides, we will use s to represent the other, so s = π
if s = δ and s = δ if s = π. Where X is a fact situation, Xs = X ∩ Fs is the
set of factors from X that favor the side s. For example, if X1 = {fπ1 , fπ2 , fδ1},
then Xπ

1 = {fπ1 , fπ2 } and Xδ
1 = {fδ1}.

Next, a reason for the side s is a non-empty set of factors uniformly favoring
s; a reason is then a non-empty set of factors uniformly favoring a side. We
say that a reason U holds in a fact situation X whenever U ⊆ X and that U
is at least as strong as another reason V favoring the same side as U whenever
V ⊆ U . To illustrate, the sets {fπ1 } and {fπ1 , fπ2 } are reasons for π that hold
in the previous fact situation X1 and such that {fπ1 , fπ2 } is at least as strong
as {fπ1 }.

We can now define a rule as a statement of the form U → s, where U is
a reason for the side s. Intuitively, U → s represents a defeasible rule that,
roughly, says that, if U holds in a fact situation, then the court has a pro
tanto reason to decide that situation for s. For any rule r = U → s, we let
premise(r) = U and conclusion(r) = s. We say that r is applicable in a fact
situation X whenever its premise holds in X, that is premise(r) ⊆ X.

At this point, we can define a case as any triple of the form 〈X, r, s〉, where
X is a fact situation, r is a rule applicable in X and whose conclusion is s, and
s is either π or δ. For any case c = 〈X, r, s〉, we set facts(c) = X, rule(c) = r,
and outcome(c) = s. Since the rule of a case justifies the outcome on the basis
of the reason that forms its premise, in the following I will indifferently say
that a case is decided on the basis of either its rule or the premise of its rule.

Finally, a case base Γ is simply a set of cases. A case base represents the
set of precedent cases that constrain the decisions of future courts. How does
it do this? Well, the reason model is based on two key ideas: first, that every
case decided by a court induces a priority ordering among reasons and, second,
that the decisions taken by later courts ought to be consistent with the priority
ordering induced by precedent cases.

To make the previous ideas precise, we start by defining the priority ordering
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induced by a case:

Definition 2.1 [Priority ordering induced by a case.] Where c = 〈X, r, s〉 is
a case, the priority ordering <c induced by c is defined by setting, for any
pair of reasons U ⊆ Fs and V ⊆ Fs: U <c V if and only if U ⊆ X and
premise(r) ⊆ V .

To illustrate, let c1 be the case 〈X1, r1, π〉, where X1 is as above and r1 =
{fπ1 } → π. The idea behind Definition 2.1 is that c1 reveals that, according
to the court, the reason {fπ1 } has higher priority than every reason for δ that
holds in X1—i.e., {fδ1}—and that every reason for π that is at least as strong
as {fπ1 }, for instance {fπ1 , fπ2 , fπ3 }, also has higher priority than every such
reason. It is worth noting that Definition 2.1 ensures that the ordering <c is
asymmetric: there are no reasons U and V such that U <c V and V <c U .

Having defined the notion of a priority ordering induced by a case, we can
now lift it to a corresponding notion of a priority ordering induced by a case
base Γ by simply requiring that a reason have higher priority than another
according to Γ just in case Γ contains a case that induces that priority:

Definition 2.2 [Priority ordering induced by a case base.] Where Γ is a case
base, the priority ordering <Γ induced by Γ is defined by setting, for any pair
of reasons U and V : U <Γ V if and only if there is a case c in Γ such that
U <c V .

Observe that, unlike Definition 2.1, Definition 2.2 does not force <Γ to be
asymmetric: there may be reasons U and V such that U <Γ V and V <Γ

U . This happens when some cases in Γ support conflicting information about
the priority ordering among reasons. Such cases make Γ inconsistent. More
precisely, let us define the notion of an inconsistency in Γ as follows:

Definition 2.3 [Inconsistency in Γ.] Where Γ is a case base, an inconsistency
in Γ is any pair of reasons U and V such that U <Γ V and V <Γ U .

We can then define the notions of an inconsistent and of a consistent case base
in the expected way:

Definition 2.4 [Inconsistent and consistent case base.] A case base Γ is in-
consistent when there is an inconsistency in Γ and consistent otherwise.

So, if c1 is as before and c2 is the case 〈X2, r2, δ〉, where X2 = {fπ1 , fδ1 , fδ2}
and r2 = {fδ1} → δ, then the case base Γ1 = {c1, c2} is inconsistent: In fact,
as we have seen above, according to the priority ordering derived from c1, the
reason {fπ1 } has higher priority than the reason {fδ1}, while, as the reader can
easily verify, the opposite is true according to the priority ordering derived
from c2. Since c1 and c2 belong to Γ1, the reasons {fπ1 } and {fδ1} thus form
an inconsistency in Γ1: {fδ1} <Γ1 {fπ1 } and {fπ1 } <Γ1 {fδ1}.

Now, in the previous example, the case base Γ1 is inconsistent in a way that
is so obvious that it would be striking if any court actually had to work with a
case base like it. But, in real life, case bases are much more complex than Γ1 and
it is not at all unusual that some precedents pull in different directions. The
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question How do inconsistent case bases constrain? thus becomes pressing.
The reason model notion of constraint does not allow us to pose—let alone
answer—this question. To see this, recall that, according to the reason model,
decisions of later courts ought to preserve consistency of the underlying case
base. This idea is modeled in two steps. First, we characterize the rules that a
court is permitted to use to justify a decision:

Definition 2.5 [Reason model: permitted rules] Let Γ be a consistent case
base. Then, against the background of Γ, the court is permitted to decide the
fact situation X for the side s on the basis of a rule r, applicable in X and
favoring s, just in case the augmented case base Γ ∪ {〈X, r, s〉} is consistent.

And then, given this notion of permission, we say that the reason model con-
strains the court to reach a decision on the basis of some applicable rule that
is permitted according to the model. The problem with inconsistent case bases
is that Definition 2.5 explicitly requires that the underlying case base be con-
sistent. Even worse, simply dropping this requirement would not give us a
sensible account of how inconsistent case bases constrain—given an inconsis-
tent case base, there would be no permitted way at all to decide any new fact
situation, which is absurd.

Fortunately, however, there is another way to generalize the reason model
notion of constraint so that it applies to inconsistent case bases as well. The
idea, which was suggested in [11, p.15], is that, rather than being required
to preserve consistency of a consistent case base, courts should be required to
introduce no new inconsistencies into a possibly inconsistent case base. What is
a new inconsistency? Well, let Γ and Γ′ be two case bases such that Γ′ extends
Γ. Then a new inconsistency in Γ′ with respect to Γ is simply an inconsistency
present in Γ′ but not in Γ:

Definition 2.6 [New inconsistency with respect to Γ] Let Γ and Γ′ be two case
bases such that Γ ⊂ Γ′. Then a pair of reasons U and V is a new inconsistency
in Γ′ with respect to Γ if and only if it is the case that U <Γ′ V and V <Γ′ U
but it is not the case that U <Γ V and V <Γ U .

With the notion of a new inconsistency in place, we can, first, generalize
the reason model notion of a permitted rule as follows:

Definition 2.7 [Generalized reason model: permitted rule.] Against the back-
ground of a case base Γ, the court is permitted to decide the fact situation X
for the side s on the basis of the rule r, applicable in X and favoring s, just in
case there is no new inconsistency in the augmented case base Γ ∪ {〈X, r, s〉}
with respect to Γ.

And, given the generalized notion of a permitted rule, we can then say that the
generalized reason model constrains the court to reach a decision on the basis
of some applicable rule that is permitted according to the model.

To make Definition 2.7 less abstract, suppose that a court has to decide
the situation X3 = {fπ1 , fπ2 , fδ1 , fδ2} against the background of our earlier in-
consistent case base Γ1 = {c1, c2}. Is the court permitted to decide X3 for the
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defendant on the basis of the rule {fδ1} → δ? The answer is negative: De-
ciding X3 in the suggested way would lead to the case c3 = 〈X3, r3, δ〉, where
r3 = {fδ1} → δ, and to the priority {fπ1 , fπ2 } <c3 {fδ1}, which would conflict
with the priority {fδ1} <c1 {fπ1 , fπ2 } derived from the case c1. Since the aug-
mented case base Γ2 = Γ1 ∪ {c3} contains c1 and c3, we would then have that
{fδ1} <Γ2 {fπ1 , fπ2 } and {fπ1 , fπ2 } <Γ2 {fδ1}. The case base Γ2 would thus be
inconsistent. Crucially, according to the generalized reason model notion of
constraint, this would not be a problem if the inconsistency consisting of the
reasons {fπ1 , fπ2 } and {fδ1} were not new with respect to Γ1—if, that is, we
already had that {fδ1} <Γ1

{fπ1 , fπ2 } and {fπ1 , fπ2 } <Γ1
{fδ1}. But this is not

the case: Although the former priority holds because {fδ1} <c1 {fπ1 , fπ2 } and
c1 belongs to Γ1, the latter priority does not hold. In fact, among the cases
belonging to Γ1, only c2 could support a priority of {fδ1} over {fπ1 , fπ2 }; yet,
since {fπ1 , fπ2 } does not hold in the fact situation X2 decided in c2, we do not
have that {fπ1 , fπ2 } <c2 {fδ1}.

Does this mean that the court is not permitted to decide X3 for δ at all?
Well, No: For instance, by deciding X3 for δ on the basis of the rule {fδ1 , fδ2} →
δ, the court would extend the case base Γ1 with the case c4 = 〈X4, r4, δ〉, where
X4 = X3 and r4 = {fδ1 , fδ2} → δ. This case, in turn, would lead to the priority
ordering <c4 according to which every reason for the defendant that is at least
as strong as {fδ1 , fδ2} has higher priority than each of the reasons {fπ1 }, {fπ2 },
and {fπ1 , fπ2 } holding in X4. Now, the only case in the augmented case base
Γ3 = Γ1 ∪ {c4} that could induce a priority ordering that conflicts with <c4 is
the case c1. Yet, the priority ordering <c1 does not conflict with <c4 because
no reason that is at least as strong as {fδ1 , fδ2} holds in the fact situation X1

decided in c1, and so, if U is one such reason, we have that {fπ1 } <c4 U ,
that {fπ2 } <c4 U , and that {fπ1 , fπ2 } <c4 U , but not that U <c1 {fπ1 }, that
U <c1 {fπ2 }, or that U <c1 {fπ1 , fπ2 }. 3 Since it would not introduce any new
inconsistencies, deciding X3 for δ on the basis of the rule r4 is thus permitted. 4

To conclude this section, it is immediate to verify that Definition 2.7 is
indeed a generalization of the reason model notion of constraint:

Observation 2.8 Let Γ be a consistent case base, X a new fact situation con-
fronting the court, and r a rule applicable in X and favoring the side s. Then,
there is no new inconsistency in the augmented case base Γ ∪ {〈X, r, s〉} with
respect to Γ if and only if the augmented case base Γ∪{〈X, r, s〉} is consistent.

Observation 2.8 tells us that, in the context of a consistent case base, a rule
applicable to a new fact situation facing the court is permissible in the sense of
the generalized reason model notion of constraint just in case it is permissible
in the sense of the reason model notion of constraint.

3 There is another reason why the priority U <c1 {fπ2 } does not hold, namely that the
reason {fπ2 } is not as strong as the premise of the rule of the case c1, i.e., {fπ1 }.
4 The reader can use arguments analogous to those presented in the last two paragraphs to
verify that, against the background of Γ1, the court is permitted to decide X3 for π on the
basis of the rule {fπ1 , fπ2 } → π but not on the basis of the rule {fπ1 } → π.
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3 Deontic logic

Observation 2.8 supports the idea that the notion of constraint set out in Def-
inition 2.7 is a natural generalization of the reason model notion of constraint.
But how exactly does the generalized notion work when the background case
base is inconsistent? I start by exploring this question from a logical perspec-
tive: assuming the generalized notion, I aim, first, to define what it means to
say that it follows from a possibly inconsistent case base that a decision for
a side is obligatory or permitted and, second, to study the logic of constraint
underlying the resulting notions of permission and obligation.

For the first task, I follow an idea from [13, Sect. 1.2.4]. Recall that
Definition 2.7 characterizes the rules that, in the context of a certain case
base, a court is permitted to use to justify its decisions in a particular fact
situation. Given this notion, we can say that it follows from a case base that
it is permissible to decide a fact situation for a side whenever there is a rule
applicable to that fact situation that is permitted in the context of that case
base and supports that side. We can also say that it follows from a case base
that it is obligatory to decide a fact situation for a side whenever all rules
applicable to that fact situation that are permitted in the context of that case
base support that side. To state this formally, let Γ |∼ PX(s) mean that it
follows from Γ that deciding X for s is permitted according to the generalized
reason model and Γ |∼ OX(s) mean that it follows from Γ that deciding X for
s is obligatory according to the generalized reason model—in the following, I
will also use Γ 6|∼ PX(s) to indicate that it does not follow from Γ that deciding
X for s is permitted according to the generalized reason model, and similarly
for Γ 6|∼ OX(s). Then, Γ |∼ PX(s) and Γ |∼ OX(s) are defined as follows:

Definition 3.1 [Deontic operators] Let Γ be a case base and X a new fact
situation confronting the court. Then, Γ |∼ PX(s) holds if and only if, against
the background of Γ, there is a rule applicable in X that is permitted by the
generalized reason model and favors s, and Γ |∼ OX(s) holds if and only if,
against the background of Γ, every rule applicable in X that is permitted by
the reason model favors s.

To illustrate, we have seen in the previous section that, against the background
of the case base Γ1, the rule {fδ1 , fδ2} → δ applicable in the fact situation
X3 and favoring the defendant is permitted by the generalized reason model.
And, as mentioned in Footnote 4, the rule {fπ1 , fπ2 } → π applicable in X3 and
favoring the plaintiff is also permitted by the generalized reason model. So,
both Γ1 |∼ PX3

(δ) and Γ1 |∼ PX3
(π) hold, while neither Γ1 |∼ OX3

(δ) nor
Γ1 |∼ OX3

(π) hold.
Turning now to the logic of constraint underlying the introduced notions

of permission and obligation, it immediately follows from our definitions that
a court ought to decide a given fact situation for a side if and only if it is not
permitted to decide that fact situation for the opposite side and, conversely,
it follows from a case base that a court is permitted to decide a given fact
situation for a side if and only if it does not follow from that case base that
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the court ought to decide that fact situation for the opposite side:

Observation 3.2 Let Γ be a case base and X a new fact situation confronting
the court. Then the following hold:

1. Γ |∼ OX(s) if and only if Γ 6|∼ PX(s);
2. Γ |∼ PX(s) if and only if Γ 6|∼ OX(s).

Observation 3.2 tells us that the deontic operators introduced above are
interdefinable in the usual way. A key question is whether, as it is often assumed
in deontic logic, they also exclude the possibility of conflicting obligations: Can
we exclude that, in the context of an inconsistent case base, a court is required
to decide for the side s and also required to decide for the opposite side s?
The question is not trivial because Definition 3.1 mirrors the semantics of
standard deontic logics and, in standard deontic logics, inconsistent normative
information does give rise to contradictory requirements. 5 Now, in our case,
the only situation in which both Γ |∼ OX(s) and Γ |∼ OX(s) would hold is when
no rule applicable in X is permitted in the context of Γ. Fortunately, it turns
out that this situation can be excluded: no matter whether Γ is inconsistent
or which factors are present in X, there is a rule that the court is permitted
to use to decide X. This result is important because it guarantees that the
generalized reason model can sensibly guide a court’s decision in every fact
situation.

Observation 3.3 Let Γ be a case base and X a new fact situation confronting
the court. Then there exists some rule r applicable in X such that there is
no new inconsistency in the augmented case base Γ∪{〈X, r, outcome(r)〉} with
respect to Γ. 6

An immediate consequence of Observation 3.3 is that, regardless of whether
the background case base is inconsistent, the court will never be subject to
contradictory requirements; in addition, in any situation, the court will be
either required to decide for a side, or required to decide for the opposite side,
or permitted to decide for either side:

Observation 3.4 It is never the case that both Γ |∼ OX(s) and Γ |∼ OX(s)
hold. In addition, it is always the case that exactly one of the following holds:
either Γ |∼ OX(s), or Γ |∼ OX(s), or both Γ |∼ PX(s) and Γ |∼ PX(s).

We can thus conclude that possibly inconsistent case bases support a natural,
conflict-free deontic logic.

5 Definition 3.1 mirrors the semantics of standard deontic logics in the sense that the deontic
operators of permission and obligation are interpreted, respectively, as existential and uni-
versal quantifiers over a set of “permissible” or “ideal” entities, where the entities in question
are rules in our case and possible worlds in the case of standard deontic logic. There is also
a deeper connection between the two semantics, based on the possibility of constructing a
Kripke model from case bases and fact situations. For reasons of space, I cannot present the
details here.
6 Observation 3.3 can be proved by adapting the proof of Observation 1 in [13, App. A.2].
The proof, which is not particularly complicated, is omitted for reasons of space.
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4 Reformulating the generalized reason model

The previous conclusion—that, given the generalized reason model notion
of constraint, possibly inconsistent case bases support a conflict-free deontic
logic—is highly desirable on the one hand but still puzzling on the other: What
is, exactly, the mechanism through which the generalized reason model extracts
consistent requirements from an inconsistent case base? I will answer this ques-
tion by proposing an illuminating reformulation of the generalized reason model
notion of constraint. But, to do this, I first need to introduce a new distinction
between cases supporting a potential decision and cases conflicting with it.

The basic idea behind the two new notions is simple and in line with a
common understanding of legal arguments: Suppose that a court, facing a new
fact situation X, wants to determine whether, against the background of a case
base Γ, it is permissible to decide X for the side s on the basis of the rule r.
The first thing that the court would do in this situation is to take the potential
decision c = 〈X, r, s〉 and see if Γ contains precedent cases that support that
decision or cases that conflict with that decision; depending on its finding, the
court would then either retain or disregard the potential decision in question.

What does it mean, in the framework of the generalized reason model, that
a precedent case ci = 〈Xi, ri, si〉 supports the potential decision c = 〈X, r, s〉? I
will take this to mean two things: First, the precedent case ci and the potential
decision c have the same outcome—that is, si = s. And, second, the potential
decision c is at least as strong for the winning side s as the precedent case ci.
But when is it the case that the potential decision c at least as strong for the
winning side s as the precedent case ci? Well, when it satisfies two conditions:
First, the reason justifying the potential decision c is at least as strong as the
reason justifying the precedent decision ci—that is, premise(ri) ⊆ premise(r).
Second, the strongest reason for s holding in the situation Xi decided in the
precedent case ci is at least strong as the strongest reason for the losing side s
holding in the new situation X—that is, Xs ⊆ Xs

i . In other words, a precedent
case decided for the side s supports a potential decision for s when the potential
decision presents a justification for s that is at least as strong as that presented
in the precedent case, in the context of a fact situation that includes reasons
for s that are weaker than those included in the precedent fact situation. 7

Formally, the set supportingΓ(c) of cases from Γ that support the potential

7 The notion of a supported case proposed here is a generalization of the notion of an a
fortiori case discussed in [2] and formalized in [11]. This notion is defined in the context of
a model of precedential constraint, called the result model, that can be obtained from the
reason model by adding the requirement that the only reasons a court can use to justify its
decision regarding a fact situation X are either Xs or Xs. In this framework, a potential
decision c = 〈X,Xs → s, s〉 is said to be a fortiori given a precedent case ci = 〈Xi, ri, si〉
such that si = s just in case Xs

i ⊆ Xs and Xs ⊆ Xs
i . According to Prakken and Ratsma

[18], the precedents that make a potential decision a fortiori are the best precedents to cite
in support of that decision. The notion of support defined here can thus also be viewed as
a generalization of Prakken’s and Ratsma’s notion of best precedent to cite. For the reader
familiar with the literature in AI and Law, it might be worth noticing that the latter notion
does not coincide with the familiar notion of best precedent to cite form HYPO [3].
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decision c is thus defined as follows:

Definition 4.1 [Supporting cases.] Let Γ be a case base and c = 〈X, r, s〉 a
new potential decision. Then,

supportingΓ(c) = {ci = 〈Xi, ri, si〉 ∈ Γ : (1) si = s, and

supportingΓ(c) = {ci = 〈Xi, ri, si〉 ∈ Γ : (2) premise(ri) ⊆ premise(r), and

supportingΓ(c) = {ci = 〈Xi, ri, si〉 ∈ Γ : (3) Xs ⊆ Xs
i }

To illustrate the definition, let us go back to the earlier inconsistent case
base Γ1 = {c1, c2} and to the fact situation X3 = {fπ1 , fπ2 , fδ1 , fδ2}. We can
easily verify that the precedent case c2 does not support the potential decision
c3 = 〈X3, r3, δ〉, where r3 = {fδ1} → δ. In fact, even if, in accordance with
condition 2, the precedent c2 and the potential decision c3 justify a decision
for the defendant on the basis of the same reason, the strongest reason for the
plaintiff that holds in X3 (i.e., {fπ1 , fπ2 }) is stronger than the strongest reason
for the plaintiff that holds in facts(c2) (i.e., {fπ1 }), against condition 3. Since
c2 is the only precedent in Γ2 that was decided for the defendant, this means
that supportingΓ1

(c3) = ∅. Let me also note (for later) that a similar argument
shows that, where c4 = 〈X4, r4, δ〉 with X4 = X3 and r4 = {fδ1 , fδ2} → δ, we
also have that supportingΓ2

(c4) = ∅.
Before moving on to the notion of a conflicting case, it is crucial to observe

that, when a potential decision is supported by a precedent case, the infor-
mation about the priority of reasons derived from that decision can already
be derived from the supporting precedent. Another way of thinking of a sup-
porting case is then as a precedent case that supports the priority of reasons
derived from the supported potential decision:

Observation 4.2 Let Γ be a case base, ci = 〈Xi, ri, s〉 a case in Γ, and c =
〈X, r, s〉 a new potential decision. Then ci belongs to supportingΓ(c) if and only
if, for every pair of opposing reasons U and V , if U <c V , then U <ci V . 8

It follows immediately from Observation 4.2 that, when we augment a case base
Γ with a decision c that is supported by a case from Γ, the priority ordering
<Γ∪{c} induced by the augmented case base Γ ∪ {c} is just the same as the
priority ordering <Γ induced by the initial case base Γ—that is, the potential
decision c does not tell us anything new about the priority of reasons.

Now, when a court evaluates a potential decision, it considers not only
whether some precedent cases support that decision but also whether some
precedent cases conflict with it. In the framework of the generalized reason
model, it is natural to say that a precedent cj = 〈Xj , rj , sj〉 conflicts with a
potential decision c = 〈X, r, s〉 when three conditions obtain: First, the prece-
dent cj and the potential decision c have different outcomes—that is, sj = s.
Second, the reason justifying the precedent decision for s holds in the fact sit-

8 Both directions of Observation 4.2 are an immediate consequence of Definition 2.1, Defi-
nition 4.1, and, for the right-to-left direction, the fact that Xs <c premise(r). The details of
the proof are left to the reader.

326



Canavotto

uation the potential decision is about—that is, premise(rj) ⊆ X. And, finally,
according to the priority ordering derived from the precedent case, the rea-
son justifying the potential decision for s has lower priority than the reason
justifying the precedent decision for s—that is, premise(r) <cj premise(rj).
Intuitively, these three conditions can be taken to say that, according to the
precedent cj , the new fact situation X should be decided for s on the basis of
premise(rj) rather than for s on the basis of premise(r). 9 Since, by Defini-
tion 2.1, the third condition is equivalent to the requirement that the reason
premise(r) holds in Xj , we can define the set conflictingΓ(c) of cases from Γ
that conflict with the potential decision c as follows:

Definition 4.3 [Conflicting cases.] Let Γ be a case base and c = 〈X, r, s〉 a
new potential decision. Then,

conflictingΓ(c) = {cj = 〈Xj , rj , sj〉 ∈ Γ : (1) sj = s, and

supportingΓ(c) = {cj = 〈Xj , rj , sj〉 ∈ Γ : (2) premise(rj) ⊆ X, and

supportingΓ(c) = {cj = 〈Xj , rj , sj〉 ∈ Γ : (3) premise(r) ⊆ Xj}

Going back to our previous example, it is not difficult to see that the
precedent case c1 conflicts with the potential decision c3 because the reason
justifying a decision for the plaintiff in c1, i.e., the reason {fπ1 }, holds in
X3 = {fπ1 , fπ2 , fδ1 , fδ2} and, in turn, the reason justifying a decision for the defen-
dant in c3, i.e., {fδ1}, holds in X1 = {fπ1 , fπ2 , fδ1}. Hence, c1 ∈ conflictingΓ1

(c3).
On the other hand, the case c1 does not conflict with the potential decision
c4 = 〈X4, r4, δ〉, because the reason justifying a decision for the defendant in
c4, i.e., the reason {fδ1 , fδ2}, does not hold in X1. Since c1 is the only case in
Γ1 that could conflict with c4, we then have that conflictingΓ1

(c4) = ∅.
At this point, a natural question arises: In discussing Observation 4.2, I

suggested that a supporting case can be thought of as a case supporting the
priority of reasons derived from the supported potential decision. Can we think
of a conflicting case as a case that conflicts with the priority of reasons derived
from the conflicted potential decision? The answer is Yes: when a precedent
case conflicts with a new potential decision, there is a priority relation between
two opposing reasons that the precedent case and the potential decision disagree
about.

9 In the AI and Law literature, legal arguments are typically analysed as having a “three-
ply” structure, where, first, the proponent presents a precedent case supporting their claim,
then the opponent responds by either distinguishing the precedent case from the focus case
advanced by the proponent or by presenting another precedent case as a counterexample,
and finally the proponent attempts to rebut the opponent’s response (for a recent overview
of models of legal arguments in AI and Law see [4]). In this context, it is natural to think
of conflicting cases as counterexamples. I did not choose this terminology, first, to avoid
confusion with other notions of counterexample present in the literature and, second, to
avoid suggesting that I am trying to model three-ply arguments—even if supporting and
conflicting cases may be used in a legal argument, there is no explicit representation of legal
arguments in the (generalized) reason model.
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Observation 4.4 Let Γ be a case base, cj = 〈Xj , rj , s〉 a case in Γ, and c =
〈X, r, s〉 a new potential decision. Then cj belongs to conflictingΓ(c) if and only
if there is a pair of opposing reasons U and V such that U <c V and V <cj U .

In fact, the reader can easily verify that Observation 4.4 holds, for in-
stance, when U = premise(rj) and V = premise(r) or when U = Xs and
V = premise(r). So, the precedent cj conflicts with the potential decision c
whenever cj and c disagree about the relative importance of their respective
justifications or, equivalently, whenever they disagree about whether the reason
premise(r) is in fact important enough to justify a decision for s in spite of the
presence of the reason Xs.

We are now ready to reformulate the generalized reason model notion of
constraint. Recall that, according to this notion, the court is permitted, against
the background of a case base Γ, to decide a fact situationX for the side s on the
basis of the rule r just in case there is no new inconsistency in the augmented
case base Γ ∪ {〈X, r, s〉} with respect to Γ, where a new inconsistency is an
inconsistency in the augmented case base that was not an inconsistency in the
initial case base. Let us now ask: When is it the case that extending Γ with a
potential decision of the form 〈X, r, s〉 leads to an inconsistency? Well, given
Observation 4.4, the answer is simply that this happens when there is a case
in Γ that conflicts with 〈X, r, s〉. But when is it the case that, in addition,
the inconsistency in question is new? Well, given our Observation 4.2, the
inconsistency is new when there is no precedent case in Γ that supports the
potential decision 〈X, r, s〉. More precisely:

Observation 4.5 Let Γ be a case base and c = 〈X, r, s〉 a new potential de-
cision considered by the court. Then, there is a pair of opposing reasons U
and V such that it is the case that U <Γ∪{c} V and V <Γ∪{c} U but not
the case that U <Γ V and V <Γ U if and only if conflictingΓ(c) 6= ∅ and
supportingΓ(c) = ∅. 10

So, according to Observation 4.5, the court is not permitted to decide a
fact situation X for the side s on the basis of the rule r against the background
of Γ whenever there is a precedent case in Γ that conflicts with this potential
decision but no precedent case in Γ that supports it. If we go back one more
time to the example of the case base Γ1 and the new fact situation X3, we can
now see that the potential decision c3 is not permitted because, as we have seen
above, the precedent case c1 conflicts with it while no precedent case supports
it. On the other hand, the potential decision c4 is permitted because, even if
no precedent case supports it, no precedent case conflicts with it either.

10 The left-to-right direction of Observation 4.5 follows immediately from Observation 4.2 and
Observation 4.4. For the left-to-right direction, the reader can verify that, if conflictingΓ(c) 6=
∅ and supportingΓ(c) = ∅, then the reasons premise(r) and Xs form a new inconsistency in
Γ ∪ {c} with respect to Γ.
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5 Back to deontic logic

Let us now go back to the notion of obligation set out in Definition 3.1. Obser-
vation 3.2 told us that, according to this notion, a court ought to decide a new
fact situation X for the side s against the background of a case base Γ just in
case it is not permitted to decide X for s against the background of Γ:

Γ |∼ OX(s) iff Γ 6|∼ PX(s) (1)

In turn, by Definition 3.1, the right-hand side of (1) holds just in case, against
the background of Γ, there is no rule applicable in X and favoring s that is
permitted by the generalized reason model. Given our reformulation of the
generalized reason model in Observation 4.5, this means that, for every poten-
tial decision c = 〈X, r, s〉, there is a case in Γ that conflicts with c but no case
in Γ that supports c. By distributing the universal quantifier we then get:

Γ |∼ OX(s) iff, for all c = 〈X, r, s〉 : conflictingΓ(c) 6= ∅ and (2)

iff, for all c = 〈X, r, s〉 : supportingΓ(c) = ∅ and

Conveniently, it turns out that, for every potential decision of the form
c = 〈X, r, s〉, there is a case in Γ that conflicts with c just in case there is a
case in Γ that conflicts with the potential decision

cXs =
〈
X,Xs → s, s

〉
. 11

We can then replace the biconditional (2) with the following biconditional:

Γ |∼ OX(s) iff conflictingΓ(cXs) 6= ∅ and c = 〈X, r, s〉 : (3)

for all c = 〈X, r, s〉 : supportingΓ(c) = ∅

It also turns out that, for every potential decision of the form c = 〈X, r, s〉,
there is no case in Γ that supports c just in case there is no case in Γ that
supports the potential decision cXs .

12 We can then replace the biconditional
(3) with:

Γ |∼ OX(s) iff conflictingΓ(cXs) 6= ∅ and (4)

iff supportingΓ(cXs) = ∅ and

One final transformation and we are done: it follows immediately from
our definitions of a conflicting and of a supporting case that a precedent case
conflicts with the potential decision cXs if and only if it supports the potential
decision

cXs = 〈X,Xs → s, s〉 .

11 This fact is an immediate consequence of Definition 2.1 and Definition 4.3.
12 This fact is an immediate consequence of Definition 2.1 and Definition 4.1.
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That is: conflictingΓ(cXs) = supportingΓ(cXs). We can thus replace the bicon-
ditional (4) with:

Γ |∼ OX(s) iff supportingΓ(cXs) 6= ∅ and (5)

iff supportingΓ(cXs) = ∅ and

And, of course, form the previous biconditional and Observation 3.2, we also
get:

Γ |∼ PX(s) iff Γ 6|∼ OX(s)esttestesttesttest (6)

iff either supportingΓ(cXs) = ∅
iff e or supportingΓ(cXs) 6= ∅

At this point, we are in a position to understand how it is, exactly, that the
generalized reason model extracts consistent obligations from inconsistent case
bases. In order to determine whether deciding X for s is obligatory, the model
does the following: First, it restricts the set of potential decisions concerning
X to the set {cXs , cXs}. Then, it inspects the background case base Γ and
determines, for each of the two potential decisions, whether there are cases in
Γ that support it. Depending on the result of the analysis, the model reaches
a conclusion as shown in the following table:

supportingΓ(cXs ) = ∅ supportingΓ(cXs ) 6= ∅
supportingΓ(c

X
s ) = ∅ (A) Γ |∼ PX(s) and Γ |∼ PX(s) (B) Γ 6|∼ PX(s) and Γ |∼ OX(s)

supportingΓ(c
X
s ) 6= ∅ (C) Γ |∼ OX(s) and Γ 6|∼ PX(s) (D) Γ |∼ PX(s) and Γ |∼ PX(s)

Now, recall that a supporting case can be viewed as a case that supports
the priority of reasons derived from the supported case. This notion of support
has, in fact, the strength of an entailment relation: every priority that can be
derived from the supported case can already be derived from the supporting
case. This might lead us to think that the presence of a supporting relation
generates a sort of requirement—the supporting case requires, in a sense, that
the court adopt the priority ordering derived from the supported case. 13 If
we assume this interpretation, then it makes perfect sense that, in the cases
(A), (B), and (C) from the table above, the model draws the conclusion that it
does: In the case (A), there is no precedent case requiring either a decision for
s or a decision for s, so it is permissible to decide for either side. On the other
hand, in the cases (B) and (C), there is a precedent requiring a decision for
one of the two sides but no precedent requiring a decision for the other, so it
is obligatory to satisfy the only existing requirement. The problem, of course,
arises in the case (D), where there is both a precedent requiring a decision for s
and a precedent requiring a decision for s. Here is where the biconditional (5)
reveals that the generalized reason model simply builds consistency into the

13 In fact, in the context of the result model (see Footnote 7), a supporting case is sometimes
said to “control” [10] or “force” [18] the supported potential decision; in addition, the presence
of a supporting case in the background case base is what grounds a requirement to decide
for the side that won the supporting case (see [13], Definition 21).
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notion of obligation: when two precedents support conflicting decisions, the
model basically ignores the conflicting requirements and concludes that either
decision is permissible.

6 Conclusion

I investigated a generalization of the reason model notion of precedential con-
straint that can be used to address the question How does an inconsistent set
of precedent cases constrain future decisions? I started to explore this question
in Section 3 from a logical perspective. I have shown, first, that the model sup-
ports an interesting deontic logic, where consistent obligations can be derived
from inconsistent case bases. I then provided an explanation of this surprising
result in two steps: In Section 4, I proposed a reformulation of the generalized
reason model notion of constraint in terms of cases that support a new poten-
tial decision and cases that conflict with it. In Section 5, I then observed that
it follows from the proposed reformulation that a court is obliged to decide a
fact situation for a side just in case the background case base contains a case
that supports the strongest potential decision for that side but no case that
supports the strongest potential decision for the opposite side. I argued that
this shows that the generalized reason model builds consistency into the notion
of obligation. I close by simply mentioning two open issues:

First, the generalized reason model starts with a factor-based representation
of legal cases, where each factor is binary in the sense that it fully favors either
the plaintiff or the defendant. But, in real cases, it is not unusual that some
facts favor either one of the two sides, not fully, but only to a certain extent. For
instance, going back to the example at the beginning of the paper, a relevant
consideration to decide whether a student should be granted an extension on
an assignment might be whether the student asked for extensions before. This
consideration is best represented not as a binary, all-or-nothing factor, but
as a multi-valued factor, where the different values are the numbers of times
the student asked for an extension and greater values progressively weakens
the student’s case. As mentioned in the introduction, several scholars have
proposed ways to refine the reason model to account for multi-valued factors of
this sort [12,17,21]. A natural question is then whether these refinements of the
reason model can be generalized to apply to inconsistent case bases along the
lines proposed in this paper and, if so, whether the results obtained in Sections
3 to 5 still hold.

A different issue concerns the possibility of extracting, from an inconsistent
case base, not only obligations and permissions, but also explanations for par-
ticular decisions. Recent work has shown how a consistent case base can be
mapped into default logic [13], logic programming [8], or an abstract argumen-
tation framework [9,18]. The latter formalisms can then be used to generate
so-called argumentative explanations of decisions made against the background
of the case base under consideration. The question here would be whether the
generalized reason model could help us generalize these mappings to inconsis-
tent case bases as well and, if so, whether the generated explanations would
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still be sensible.
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There is a lot of interest in explainable AI [2,11].When a system takes decisions
that affect people, they can demand an explanation of how the decision was
derived, or a justification of why the decision is justified. Note that explanation
and justification are related, but not the same [1]. The need for explanation
or justification is more pressing, when the system makes legal decisions [3],
or when the decision is based on social or ethical norms [5]. Requests for
explanation and justification are typically made in a dialogue setting [5].

(1) A. You must do the dishes!
B. Why?
A. Because someone must do the dishes! And I don’t have time.

What is the meaning of a why-question in a deontic context? What qualifies as
an answer? We aim to provide a semantics of deontic explanations as answers
to why-questions. Our method is to combine three types of semantics, based
on a partition or equivalence relation over possible worlds: a logic of questions
and answers by Groenendijk and Stokhof [8], a logic of obligations or norms,
by Kratzer [6,10], and a logic of choice and action, by Horty [9]. A question
indicates various possible answers, which correspond to a choice of actions, the
outcomes of which are ordered by a normative preference order.

A’s imperative in (1) presupposes that B has a choice to obey or not. In
STIT-logic that choice structure can be modelled by two equivalence classes of
histories: those of doing the dishes and those of not doing the dishes. All other
differences between possible worlds are abstracted over. This choice structure
turns out to correspond to the semantics of a question from B’s perspective:
shall I do the dishes or not? The obligation means that there is a preference:
worlds in which B does the dishes are strictly preferred over similar worlds, in
which B does not do the dishes, at least according to A (Figure 1 left).

Now consider B’s why-question. Just like a who-question asks for persons,
a why-question asks for reasons. What reasons qualify as an explanation in this
context? Here, a reason is a proposition, that will help to reduce the context
set, so the preferred alternative remains. But the why-question is not exactly



What should I do and why?

Fig. 1. Analogy between questions, obligations and STIT, contrasting alternatives

the choice! For A to order B to do the dishes, some felicity conditions must
hold [4]. A dialogue context is generally underspecified. That triggers questions
under discussion [7], whose answers are relevant. Are there rules about doing
the dishes? Does A have authority over B? Who else is present?

Day to day explanations are supposed to be contrastive: they show why the
outcome is to be preferred over some counterfactual alternatives [11]. A reason
should resolve enough of the underspecification in the context, to persuade the
other to select the preferred alternative.

(2) A. You must do the dishes!
B. Why [must]F I do the dishes?
B. Why must [I]F do the dishes?
B. Why must I do [the dishes]F ?

What are the possible alternatives? In example (2) alternatives are marked by
focus, see [12]. The original why-question is ambiguous. Dialogue participants
have the freedom to ‘take-up’ a why-question in different ways and negotiate
sensitive issues, such as authority [4]. Here B chooses to answer by referring
to a rule: someone must do the dishes. The underspecified nature of ‘someone’
triggers a question-under-discussion ‘who’ (Figure 1 middle). The rest of the
answer rules out A. Only one alternative remains: B must do the dishes.

So, by combining linguistics and deontic logic, we develop the idea for a
semantics of deontic explanations in a dialogue context. A deontic explanation
is an answer to a question-under-discussion triggered by an underspecified part
of the dialogue context. That answer reduces the context set to one of the
preferred alternatives in the partition that is induced by the choice structure.
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We study the right to know and its logical characterization in the theory
of normative positions. The theory of normative positions [3] stems from the
work of the American legal theorist Hohfeld who, finding that the word ‘right’
was overused and referred to various concepts causing a terminological and
conceptual confusion, differentiated between four atomic types of rights (claim-
right, privilege, power, immunity) and their correlative duties (duty, no-claim,
liability, disability)[1]. Despite Hohfeld’s pursuit, the legal terminology has not
changed much ever since, thus identifying the consequences of a right today
still requires investigating which atomic normative position or their molecular
combinations it refers to and analyzing it with an adequate formalism.

We investigate and formalize the possible meaning of the right to know using
different (monadic and dyadic) deontic logics extending them with epistemic
and (legal)-alethic modalities. We propose several plausible but non-equivalent
formalizations of the ‘right to know whether’. Our first set of formalizations
capture the right to know as a conditional claim-right, i.e. that one has the
right to know ϕ, given that ϕ is the case. We compare these formalizations in
terms of how they fare with respect to the so-called Aqvist paradox [2]. We
furthermore investigate the logical behavior of these claim rights with respect to
detachment and detachment principles, which are central to both legal theory
and deontic logic. We finally study the logical relationship between the different
formalizations.

Our second set of formalizations captures the right to know as a legal power.
In the theory of normative positions, the claim-right-duty and privilege-no-

1 This work was supported by the Fonds National de la Recherche Luxembourg through
the project Deontic Logic for Epistemic Rights (OPEN O20/14776480) and the project
INTEGRAUTO (INTER/AUDACE/21/16695098).
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claim pairs refer to the static, deontic aspects: duty is a directed obligation,
a privilege is a relational variant of weak permission in standard deontic logic.
The power-liability and the immunity-disability pairs refer, in contrast, to an
agent’s capacity to change the counterparty’s normative positions, thus to dy-
namic normative positions. After proposing a concrete formalization of the
right to know as a power, or more precisely the power to create a claim right,
we comment on the potential of this formalization to capture claim rights that
are conditionals of certain epistemic conditions.

All in all, the paper makes a conceptual rather than technical contribution:
it maps the possibilities of understanding the right to know as a claim-right
and as a power, and shows more generally the fruitfulness of the theory of
normative positions to the understanding of epistemic rights The meta-logical
and computational properties of the underlying logic are left for future work.
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When philosophers talk about normative matters—about what is right, oblig-
atory, permitted, and so on—they tend to rely on the notion of normative
reasons, understanding them as considerations that count in favor of or against
actions (or attitudes). The notion has become a mainstay of practical philos-
ophy, where it is routinely made use of in answering various normative and
metanormative questions. This is taken to the extreme in the reasons-first pro-
gram which holds, roughly, that the notion of a reason is basic, and that all
other normative notions are to be analyzed in terms of it. 2 When discussing
the interaction between reasons, philosophers often use such phrases as “the
action supported on the balance of reasons” and “reasons for outweigh reasons
against”, inviting an image of weight scales. The simplest version of these nor-
mative scales is meant to work roughly as follows. The reasons speaking in
favor of ϕ-ing go in one pan of the scales, the reasons against ϕ-ing go in the
other. If the weight of the reasons in the first pan is greater than that of the
reasons in the second, ϕ ought to be carried out. If the weight of the reasons
in the second pan is greater, ϕ ought not to be carried out. 3

Philosophers have explored various ideas about the exact workings of the
normative weight scales, as well as some alternatives to them, but, with few

1 This research has been supported by the Fonds National de la Recherche Luxembourg
(FNR) through the project Deontic Logic for Epistemic Rights (OPEN O20/14776480). The
authors also acknowledge the travel support from the same funding institution through the
project INTEGRAUTO.
2 The locus classicus here is Scanlon [11]. But see also, e.g., Parfit [9], Raz [10], and Schroeder
[12].
3 Cf., e.g., Dancy [1], Lord and Maguire [5], and Tucker [13].
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exceptions, these investigations have been carried out informally, while the
more formal investigations have focused on exploring particular models. 4 Our
alternative proposal is to think of the weight scales as a kind of inference
pattern: the titular reason-based detachment. We set up a general formal
framework built around it and report on the (first) results of exploring it. 5 The
underlying idea is to start with the general notion of detachment systems—
which can be thought of as structures in which reason-based detachment is
guaranteed to be valid—formulate various principles or properties that a given
detachment system can satisfy, and explore different classes of such systems.
For example, we define the principle called Neutrality which requires, roughly,
that reasons of opposing polarity—reasons for and against—are treated equally,
and the principle called Fixed Value which requires that a reason’s polarity is
the same in every context. Of particular interest is the class that we call
balancing operations, since the detachment systems in it reflect some of the
core features of the informal idea of weighing scales. We also define several
concrete balancing operations and present a principle-based analysis of reason-
based detachment.
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Many scholars think that artificial ethical (moral) agents (otherwise known
as AMA), capable of autonomous ethical decision making, can be defined (cf.
[2],[12], [14], [15]). In the machine ethics literature, rational choice theory,
specifically understood on the grounds of instrumental rationality, is generally
conceived as a prerequisite for these artificial ethical agents (cf. [13], [9], [18],
[1]), which are (at least partly) conceived as expected utility maximizers. Pe-
terson [16] recently showed some limitations of implementing rational choice
through the maximization of expected utility. While instrumental rationality
is generally conceived as the only type of rationality needed to implement in
autonomous decision making in the machine ethics literature, Peterson showed
how parameters and coding affect the output of the alleged ethical choice, inci-
dentally pointing out the insufficiency of instrumental rationality for modeling
ethical choices. As such, assuming that artificial ethical agents can be defined
(which is in itself arguable, see [17]), instrumental rationality might not be
the only type of rationality that needs to be incorporated within models of
autonomous reasoning. For instance, the epistemic norms regulating how one
should obtain, revise, or discard beliefs also plays a significant role in rational
choice. While some scholars argue that epistemic rationality can be reduced to
instrumental rationality, the relationship between these two types of rationality

1 M.A. candidate, Nicolas.Tardif2@uqtr.ca
2 This work was financially supported by the Fonds de Recherche du Québec and the Fonds
National de Recherche du Luxembourg [FRQSC-AUDACE-310754] as well as by the Fonds
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is actually not trivial (see for example [3], [5], [4], [6], [7], [8], [10], [11], [19],
[20], [21]). In light of these considerations, our objective is to get a deeper
understanding of the relationship between instrumental and epistemic ratio-
nality and determine the limitations of these types of rationality in modeling
autonomous ethical decision making.
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We take probabilistic deontic logic [2] and make it defeasible using an
argumentation method published in [3]. The specific probabilistic deontic logic
we use is dyadic deontic logic [6][5][9] combined with a multi-agent variant
of probabilistic logic [4]. More specifically, we will use the developed method
of specifying an upper and a lower bound logic that will define the strict
and defeasible rules of an ASPIC+ framework [8][1]. The lower bound logic
uses axiom system G of the Hansson-Lewis systems of Dyadic Deontic Logic
combined with axioms for the probabilistic logic. And for the upper bound
logic, the axioms of Upward and Downward inheritance introduced in [10] are
added.

We consider the described framework as a framework that is used by an
agent to describe specific elements of its surroundings and reason about it.
The framework combines multiple operators namely: strict and defeasible
implications (→, ⇒), permissions and obligations (O(ϕ|ψ), P (ϕ|ψ)), agent
specific probabilistic formulas (α ∗ wi(ϕ) ≥ β), theory of mind formulas
(α1 ∗ wi(α2 ∗ wj(ϕ) ≥ β2) ≥ β1) and also strict and defeasible knowledge.
An important question therefore is: “What is the difference between a
defeasible permission and an uncertain permission?” The difference is that
defeasible knowledge is debunkable while the uncertainty about something is
not debunkable, if the uncertainty is not defeasible in the first place -Normally
ϕ is permitted; I am uncertain whether ϕ is permitted–. Furthermore, we
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2 Vincent de Wit is supported by the Luxembourg National Research Fund

PRIDE19/14268506 .
3 This work was supported by the Fonds National de la Recherche Luxembourg through the
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can express “normally I am uncertain whether ϕ is permitted.” The work
also opens up whether the framework should give preference to more certain
information, i.e. wi(ϕ) ≥ 0.8 versus wi(ψ) ≥ 0.7. There is more justification
for ϕ than there is for ψ.

Consider the following example scenario of an agent learning about the
rules of a library. The agent does not know that it is a rule to be silent
in a library, and attempts to derive such rules without breaking them or
explicitly asking other agents about the rules. While in the library, the agent
will discover that most people are silent in the library, though that there are
exceptions –for example at the checkout counter–. Furthermore, the agent
will encounter an ambiguous situation in which people talk inside a room.
Multiple explanations are possible in this case: it is allowed to talk inside the
room, the people do not know about the rule to be silent, or the people do not
care about the rule i.e. they are breaking the rule.

Furthermore, we set out to determine whether this framework is able to
solve the paradox of epistemic obligation satisfyingly. A paradox of epistemic
obligation goes as follows: (1) The bank is being robbed; (2) It ought to be
the case that Jones (the guard) knows that the bank is being robbed; (3) It
ought to be the case that the bank is being robbed [7]. The proposed solution
is to consider the formulas in the knowledge base as known by the agent.

Lastly, notable future research is whether it is possible to lift syntax level
probability to probability on argument level.
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