
This book is a different  approach to teaching 
the foundations of mathematical analysis and of 
computation. The main idea is to delay the use of 
“formal definitions”, which are definitions that nobody can 
understand without working with them. The approach 
of  this book is to employ the history of mathematics to 
first develop fundamental concepts of mathematical 
analysis and the theory of computation and to only 
introduce formal definitions after the concepts are 
understood by the students.

The historical order clarifies what analysis is really about 
and also why the theory of computation came about. 
The book provides students with a broader background 
involving for instance glimpses of cardinal arithmetic, 
predicate logic background and intricacies of metrical 
and topological spaces, as well as the importance of a 
sound theory of the infinitesimal (which is in essence the 
foundations of mathematics and computation).

There is a wealth of exercises (with solutions in a 
separate booklet) and numerous graphical illustrations 
which give an experienced instructor lots of possibilities 
to select a stimulating course with a broader 
background. Even for just browsing by general readers, 
this book presents stories, insights and mathematical 
theories, covering a window of ancient times to the 
present. The book is self explanatory and self sufficient, 
so any staff member in the departments of mathematics 
or computer science can teach this course. This book 
will give the students the right techniques and skills 
to work with mathematical analysis and the theory 
of computation and to go on further to study more 
advanced courses on the subject.
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C.1 Solutions for Chapter 1

Solution C.1. [Of Exercise 1.1.] Say x = age of Diophantus, then his son
was born when Diophantus had x

6 + x

12 +
x

7 +5 years. The son lived half his
father’s life which is x

2 . Diophantus lived for four more years after his son
died. So, the entire life of Diophantus is the period up to his son’s birth +
the life of his son + 4 which is: x = x

6 +
x

12 +
x

7 +5+ x

2 +4, hence x = 84. So
Diophantus lived till 84, his son lived till 42. When his son died, Diophantus
was 80 years old.

Solution C.2. [Of Exercise 1.2.] n⇥ 5 + 20
5 � n = 4.

Solution C.3. [Of Exercise 1.3.] n⇥ 6 + 48
6 � n = 8.

Solution C.4. [Of Exercise 1.4.] n⇥m+m⇥ k
m � n = k.

Solution C.5. [Of Exercise 1.5.] As can be seen from the pictures below,
if we divide the cake into 6 pieces (as in the ballroom), instead of 8 pieces
(as in the seminar room), we get a larger piece of cake if we are in the

ballroom. This is a general phenomena. If m < n then 1
m > 1

n . We will

see this in more details in later chapters.

1

23

4

5 6
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1

2

3

4

5

6

7

8

Solution C.6. [Of Exercise 1.6.] In step 4, we divided by (a� b) which is 0
and hence the division is not allowed. Furthermore, if a = b = 0 then many
other steps are false (give these steps).

Solution C.7. [Of Exercise 1.7.] The false step here is that we passed from
the squares to the numbers themselves in step 6. As we saw in Section 1.2,
each positive number has two squares roots, one positive and one negative.
Hence, the fact that the squares of two numbers are equal does not mean
that the numbers are equal.

Solution C.8. [Of Exercise 1.8.] The second interest rate of 10% of the
total value added to the sum at the end of every six months is better. This
can be seen as follows:

1st Year 2nd Year
Int 1 Int 2 Int 1 Int 2

Sum after 1st Half of Year 40,000 44,000 48,000 53,240
Sum after 2nd Half of Year 48,000 48,400 57,600 58,564
Total interest for Year 8,000 8,400 9,600 10,164

Solution C.9. [Of Exercise 1.9.] The given so-called proof is not a proof
of anything. It is true that since all sides involve positive numbers, we can
square all sides and still get the same inequalities. But this has no implication
on the truth or falsity of the inequalities we started from. That is, although
81 < 84 < 100 is true, this does not imply that either of

p
3+
p
7 <

p
20 andp

3 +
p
7 >

p
19 is true. In order to prove that both

p
3 +

p
7 <

p
20 andp

3 +
p
7 >

p
19 hold (which they do), we follow the proof by contradiction

method as follows:
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• Assume
p
19 �

p
3 +

p
7.

Then 19 � 10 + 2
p
21.

Hence 9 � 2
p
21.

So 81 � 84.
Contradiction.
Hence

p
19 <

p
3 +

p
7.

• Assume
p
3 +

p
7 �

p
20.

Then 10 + 2
p
21 � 20.

Hence 2
p
21 � 10.

So 84 � 100.
Contradiction.
Hence

p
3 +

p
7 <

p
20.

Solution C.10. [Of Exercise 1.10.] The problem here is that in the third
step we considered P1, P2, · · · , Pk and P2, · · · , Pk, Pk+1 to have at least one
common element. If the inductive case we are trying to prove in step 3 above
involves k + 1 < 3 (say k = 1) then when looking at P1, P2 and splitting it
into the two subcollections P1 and P2 which have no common elements, then
we will not be able to deduce that the age of P1 is the same as the age of
P2. For example, we know that the property holds for k = 1 and so proving
it for k + 1 = 2 by taking the sets {P1} and {P2} where the age of P1 is 50
years and the age P2 is 20 years does not allow us to say that all elements
of {P1, P2} have the same age.

Solution C.11. [Of Exercise 1.11.] The first requested figure is on the left
below. The second figure is on the right. In both figures, the boundary is
a collection of straight lines but where the collection is leaning towards a
curve. In the second figure, the curve is more pronounced. The more we
reduce the length of the connecting lines, the more curve-like the boundary
becomes.
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x

y
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Solution C.12. [Of Exercise 1.12.] Let a and b be the sides of the rectangle.
Then, the area of the rectangle is A = ab and the perimeter is P = 2(a+ b).

Since (a + b)2 � (a � b)2 = 4ab = 4A then 4A = (P2 )2 � (a � b)2. That

is, A = (P4 )2 � (a� b
2 )2. Now, since (P4 )2 and (a� b

2 )2 are positive, to

maximise A we need to minimise (a� b
2 )2. Hence to maximise A we need to

have a = b. Therefore, the rectangle with maximum area whose perimeter
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is P is the square whose side is P
4 .

Solution C.13. [Of Exercise 1.13.]

1)2) Assume 1 holds. If by contradiction 2 does not hold, then let C be a
circle whose area is A and perimeter is P and let B be a planar shape
whose area is A and whose perimeter is P 0 < P . Now, let C 0 be the
circle C whose perimeter is P 0 (and hence the area A0 of C 0 is strictly
smaller than A). By 1, since the perimeters of C 0 and B are equal, the
area of B is smaller than the area of C 0. That is, A is smaller than A0.
Contradiction.

2)1) Assume 2 holds. If by contradiction 1 does not hold, then let C be a
circle whose area is A and perimeter is P and let B be a planar shape
whose area is A0 > A and whose perimeter is P . Now, let C 0 be the
circle C whose area is A0 and hence its parameter is P 0 > P . By 2,
since the areas of C 0 and B are equal, the perimeter of C 0 is smaller
than that of A0. That is, P 0 is smaller than P . Contradiction.

Solution C.14. [Of Exercise 1.14.]

1. (1+7+72+73+74)(7�1) = 7+72+73+74+75�(1+7+72+73+74) =

75 � 1. Hence 1 + 7 + 72 + 73 + 74 = 75 � 1
7� 1 .

2. 1 + 2 + 22 + 23 + · · ·+ 2n�1 = (1 + 2 + 22 + 23 + · · ·+ 2n�1)(2� 1) =
2 + 22 + 23 + · · ·+ 2n � (1 + 2 + 22 + 23 + · · ·+ 2n�1) = 2n � 1.
Hence 1 + 2 + 22 + 23 + · · ·+ 2n�1 = 2n � 1.

Solution C.15. [Of Exercise 1.15.]

1. In the Moscow Papyrus, the numbers used for h, a, and b were resp. 6,
4, and 2, and the answer given for V was 56. If we fill these numbers

in V = 1
3h(a

2 + ab+ b2) we get indeed that 56 = 1
36(4

2 + 4⇥ 2 + 22).

2. (a): (a2 + ab+ b2)(a� b) = a3 + a2b+ ab2� (a2b+ ab2 + b3) = a3� b3.

Hence, a2 + ab+ b2 = a3 � b3
a� b .

(b): Without loss of generality, assume that a = b+ 1. Then,
a2 + ab+ b2 = (b+ 1)2 + b(b+ 1) + b2 = 3b2 + 3b+ 1 = a3 � b3.
Hence, a2+ab+b2 = a3 � b3 when a and b are two consecutive integers.

3. Left to the reader.
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C.2 Solutions for Chapter 2

Solution C.16. [Of Exercise 2.1.] According to Dichotomy, the runner
needs to reach half of the 100 km (that is 50 km), then half of the re-
maining 50 km (that is 25 km) and then half of the remaining 25 km and
so on. According to Dichotomy, the runner can never reach his destina-
tion because to do so, he would need to cross an infinite sequence of points
100/2, 100/4, 100/8, 100/16, 100/32, · · · . The runner needs to complete an
infinite serie of tasks which is impossible.

Solution C.17. [Of Exercise 2.2.] According to Dichotomy, the frog needs
to reach half the way to the pond, then half of the remaining way and then
half of the remaining way and so on. According to Dichotomy, the frog can
never reach the pond because to do so, it would need to cross an infinite
sequence of points. The frog needs to complete an infinite series of tasks
which is impossible.

Solution C.18. [Of Exercise 2.3.] At the start, Achilles (A) is at point 0
and the tortoise (T ) is at point 100. By the time A reaches point 100, T will
have reached point 110. By the time A does another 10 meters and reached
point 110, T will have 1 meter and reached point 111. By the time A does
another 1 meters and reached point 111, T will have done another 0.1 meter
and reached point 111.1. This process continues ad infinitum and we always
see that T is ahead of A.

Here are the positions of T resp. A:

T 100 110 111 111 + 1
10 111 + 1

10 + 1
100 111 + 1

10 + 1
100 + 1

1000 · · ·

A 0 100 110 111 111 + 1
10 111 + 1

10 + 1
100 · · ·

Solution C.19. [Of Exercise 2.4.] \BAC = 30� and \ACB = 90�.

Solution C.20. [Of Exercise 2.5.] We will show that \ACB = 90�. The
proof of \ADB = 90� is similar. It is clear that the two triangles AOC and
BOC are isosceles since OA = OB = OC.
Hence, \OAC = \OCA and \OCB = \OBC.
But, \OAC + \OCA+ \AOC = \OBC + \OCB + \BOC = 180�.
So, 2\OCA+ \AOC + 2\OCB + \BOC = 360�.
Since 2\OCA+2\OCB = 2\ACB and \AOC+\BOC = \AOB = 180�,
we get 2\ACB + 180� = 360�. Hence, \ACB = 90�.
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O
BA

C

Solution C.21. [Of Exercise 2.6.] It is clear that the two triangles AOC
and BOC are isosceles since OA = OB = OC.
Hence, \OAC = \OCA and \OCB = \OBC.
But, \OAC + \OCA + \AOC = \OBC + \OCB + \BOC = 180� and
\AOB + \AOC + \COB = 360�.
Solving these equations we get: \AOB + (180� � 2\ACO) + (180� �
2\OCB) = 360�.
Hence, \AOB = 2(\ACO + \OCB) = 2\ACB.

O

C

BA

Solution C.22. [Of Exercise 2.7.] From each of A, B, C and D, draw the
tangent to the circle and let these tangents meet at E, F , G and H. Then,
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each of OBEC, OAHB, OCFD, ODGA and EFGH is a square. Moreover,
the area of the square EFGH is twice the area of the square ABCD. So,

area of square ABCD = 1
2 area of square EFGH > 1

2 area of circle ABCD
and we are done.

O

B
E

A

G

H

D

C

F

Solution C.23. [Of Exercise 2.8.] Let us draw the tangent to the circle at
point I and the tangent join BC at L and AD at K. We see that the area of
the parallelogram ABLK is twice that of the triangle ABI. Hence, the area

of the triangle ABI = 1
2 the area of parallelogram ABLK > 1

2 the part of

the circle enclosing triangle ABI.

O

L
B

I

A
K

D

C

Solution C.24. [Of Exercise 2.9.] For each of the 16 triangles, if the sides
are of length a, b and c where the side of length c is opposite the right angle,
then c =

p
a2 + b2. For the smallest triangle, both sides adjacent to the

right angle are of length 1 and hence, the remaining side is of length
p
2.

Similarly, for the second smallest triangle, since it has two sides of lengths 1
and

p
2 resp., the length of the third side is

p
3. And so on we establish the

length of all the sides opposite the right angle.

Solution C.25. [Of Exercise 2.10.]
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Solution C.26. [Of Exercise 2.11.]

Solution C.27. [Of Exercise 2.12.]

• Proposition 23: On the left hand side diagram, we have odd addi-
tions of odd numbers. On the right hand side, we have 1 + addition
of even numbers which is odd since by Euclid IX Proposition 21, any
addition of even numbers returns even.
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c c cc c c c cc c c c c c c
c cc c c cc c c c c cc cc

You could also show Proposition 23 using other numbers and giving
more details as follows:

Assume the numbers are AB, BC, CD where the numbers are 7, 11
and 3.

A B C D

Following Knorr, the first 3 lines of the diagram below represent these
3 numbers AB (line 1), BC (line 2) and CD (line 3). The 4 following
lines represent resp. the numbers AB (line 4), BC (line 5), CD minus
unit (line 6), and then the unit (line 7). By Proposition 22, the addition
of lines 4 and 5 is even and the number at line 6 is even and hence by
Proposition 21, the total of lines 4, 5 and 6 is even. But the number
at line 7 is unit, and hence the total at lines 4, 5, 6 and 7 is odd (since
it is an even number + 1).

7.

6.

5.

4.

3.

2.

1.

• Proposition 24: We start on the left hand side diagram and end on
the right hand side.
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c c c cc c c c c c c c
Again here, we will use other numbers to demonstrate the proposition
again and giving more details:

Assume the numbers are AB and BC where the numbers are 10 and
4.

A BC

Following Knorr, the first 2 lines of the diagram below represent these
2 numbers AB (line 1) and BC (line 2). The vertical lines show sub-
traction, after which we are left with the number at line 3 which has
a half part and hence is even by definition.

1.

2.

3.

• Proposition 25: We start on the left hand side diagram and end on
the right hand side.

c c c c cc c c c c c c c c
Another example here is as follows:

Assume the numbers are AB and BC where the numbers are 10 and
5.

A BC
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Following Knorr, the first 2 lines of the diagram below represent these
2 numbers AB (line 1) and BC (line 2). Line 4 represents the number
BC from which a unit is subtracted. The unit is now in line 5. The
vertical lines show subtraction, after which we are left with the number
at line 6 which does not have a half part and hence is odd by definition.

1.

2.

3.

4.

5.

6.

• Proposition 26: Assume the numbers are AB and BC where the
numbers are 9 and 5.

A BC

Following Knorr, the first 2 lines of the diagram below represent these
2 numbers AB (line 1) and BC (line 2). The vertical lines show sub-
traction, after which we are left with the number at line 3 which has
a half part and hence is even by definition.

1.

2.

3.
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• Proposition 27: Assume the numbers are AB and BC where the
numbers are 11 and 4.

A BC

Following Knorr, the first 2 lines of the diagram below represent these
2 numbers AB (line 1) and BC (line 2). The vertical lines show sub-
traction, after which we are left with the number at line 3 which has a
1 unit more than an even number and hence is odd by definition. If an
odd number is multiplied by an odd number, then the product is odd.

1.

2.

3.

• Proposition 28: Assume the numbers are AB and BC where the
numbers are 5 and 6.

A B C D

Let us recall here the definition of multiplication from Euclid (Defini-
tion 15, book VII).

A number is said to multiply a number when that number
which it multiplies is added to itself as many times as there
are units in the other, and thus some number is produced.

Following Knorr, the first 2 lines of the diagram below represent these 2
numbers AB (line 1) and CD (line 2). The remaining 5 lines represent
the addition of the second number to itself as many times as there
are units in the first number. Since we are adding even numbers, by
Proposition IX, 21, the result is even.



14 APPENDIX C. SOLUTIONS TO EXERCISES

1.

2.

3.

4.

5.

6.

7.

• Proposition 29: Assume the numbers are AB and BC where the
numbers are 5 and 7.

A B C D

Following Knorr, the first 2 lines of the diagram below represent these 2
numbers AB (line 1) and CD (line 2). The remaining 5 lines represent
the addition of the second number to itself as many times as there are
units in the first number. Since we are adding odd numbers, an odd
number of times, by Proposition IX, 23, the result is odd.
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1.

2.

3.

4.

5.

6.

7.

Solution C.28. [Of Exercise 2.14.]

1. (3, 4, 5), (5, 12, 13), (8, 15, 17), (7, 24, 25), (20, 21, 29).

2. In a Pythagorean triple (a, b, c), we know that c > a and c > b. Hence,
c 6= 1. Also, c 6= 2 since otherwise by Theorem 2.5.5, both a and b need
to be even which is impossible since they can only be 1. Furthermore,
c 6= 3 since by Theorem 2.5.8, one of a, b needs to be even (2) and
the other needs to be odd (1) and we can check that 12 + 22 6= 32.
Moreover, c 6= 4 because by Corollary 2.5.7, both a and b need to be
multiples of 4 and hence both need to be 4 which is absurd. Now we
check if c = 5. By Theorem 2.5.8, one of a, b needs to be odd and
the other even. So the only choices are: (1 and 4) or (2 and 3) or (3
and 4). A quick check would demonstrate that (1, 4, 5) and (2, 3, 5)
are not a Pythagorean triples but (3, 4, 5) is. Furthermore, this is
a primitive Pythagorean triple and 5 is the smallest integer c where
(a, b, c) a Pythagorean triple.

3. Since (3, 4, 5) is a Pythagorean triple, then for any number k > 1,
(3k, 4k, 5k) is a Pythagorean triple. Pick 100 triples from these.

4. If (a, b, c) is a primitive Pythagorean triple and both a and b are even
then by Theorem 2.5.9, c is even. This means that all of a, b, and c
are divisible by 2 which contradicts the primitivity of the Pythagorean
triple. Hence, a and b cannot both be even.
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5. If (a, b, c) is a primitive Pythagorean triple and both a and b are odd
then by Theorem 2.5.10, c is even. This contradicts Theorem 2.5.5,
which states that when c is even then both a and b must be even.
Hence a and b cannot both be odd.

6. Assume (a, b, c) is a primitive Pythagorean triple and a is odd. By
Theorems 2.5.10 and 2.5.5, c is odd and b is even. If c + b and c � b
have a common factor d > 1 then for some k, k0, c + b = kd and
c � b = k0d. Hence 2c = d(k + k0) and 2b = d(k � k0). So, d is a
common factor for 2c and 2d. Since b and c do not share any common
factors, d = 2. Hence (c+ b)(c� b) = c2� b2 = a2 = d2kk0 = 4kk0. So,
a2 is even which contradicts Theorem 2.4.2 which states that since a
is odd, a2 must be one more than a multiple of 4 which is odd. Hence,
c+ b and c� b have no common factor d > 1.

7. Assume (a, b, c) is a primitive Pythagorean triple. If c is even then
by Theorem 2.5.5, all of a, b and c are even and have 2 as a common
factor contradicting the primitivity of (a, b, c). Hence c is odd.

Solution C.29. [Of Exercise 2.15.] (m2�n2)2+4m2n2 = m4+n4+2m2n2 =
(m2 + n2)2. Hence, (m2 � n2, 2mn,m2 + n2) is a Pythagorean triple.
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C.3 Solutions for Chapter 3

Solution C.30. [Of Exercise 3.1.]

1. (a) R1 is reflexive on N+ because for any m in N+, by reflexivity of
=, m ·m = m ·m and so, mR1m.

(b) R1 is symmetric on N+ because for any m,n in N+, if mR1n then
m ·m = n · n and by symmetricity of =, n · n = m ·m and hence
nR1m.

(c) R1 is transitive on N+ because for any m,n, p in N+, if mR1n
and nR1p then m ·m = n · n and n · n = p · p and by transitivity
of =, m ·m = p · p and hence mR1p.

(d) R1 is an equivalence relation because it is reflexive, symmetric,
and transitive.

2. (a) R2 is reflexive on N+ because for any m in N+, by reflexivity of
=, m+m = m+m and so, mR2m.

(b) R2 is symmetric on N+ because for any m,n in N+, if mR2n then
m +m = n + n and by symmetricity of =, n + n = m +m and
hence nR2m.

(c) R2 is transitive on N+ because for any m,n, p in N+, if mR2n and
nR2p then m+m = n+ n and n+ n = p+ p and by transitivity
of =, m+m = p+ p and hence mR2p.

(d) R2 is an equivalence relation because it is reflexive, symmetric,
and transitive.

3. (a) R3 is not reflexive on N+. For example, choose m = 1 then there
is no p in N+ such that m · p = m + p. In fact, for any p in N+,
m · p = 1 · p = p and m + p = 1 + p. There is no p in N+ such
that p = 1 + p. Hence 1 6 R31.

(b) R3 is not symmetric on N+. For example, choose m = 5 and
n = 4. Then, there is p = 1 such that m · p = n + p. That is:
5 · 1 = 4 + 1.

But, there is no p such that n · p = 4 · p = 5+ p. There is no p in
N+ such that 3p = 5. Hence, 5R34 but 4 6 R35.

(c) R3 is not transitive on N+. For example, choose m = 5, n = 4
and k = 3. Then, 5R34 (take p = 1) and 4R33 (again take p = 1).
But there is no p in N+ such that 4p = 3 and so there is no p in
N+ such that 5 · p = 3 + p. Hence 5 6 R33.
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(d) R3 is not an equivalence relation on N+ because it is not all of
reflexive, symmetric, and transitive. In fact, it is none of them.

4. (a) R4 is not reflexive on N+. For example, choose m = 1 then there
is no p in N+ such that m ·m = m+ p. In fact, for any p in N+,
m ·m = 1 · 1 = 1 and 1 + p 6= p. Hence 1 6 R41.

(b) R4 is not symmetric on N+. For example, choose m = 5 and
n = 1. Then, there is p = 4 such that m · n = n + p. That is:
5 · 1 = 1 + 4.

But, there is no p such that n ·m = 1 · 5 = 5 + p. There is no p
in N+ such that 5 = 5 + p. Hence, 5R41 but 1 6 R45.

(c) Transitivity of R4 is left as an exercise.

(d) equivalence of R4 is left as an exercise.

Solution C.31. [Of Exercise 3.2.] Let a =
⇥m
n
⇤
, b =

h
p
q

i
and c =

⇥r
s
⇤
be

rational numbers.

a ·r (b+r c) =
hm
n

i
·r
✓

p

q

�
+r

hr
s

i◆

=
hm
n

i
·r

ps+ qr

qs

�

=


m(ps+ qr)

n(qs)

�

=


n(mps+mqr)

n(nqs)

�

=


(mp)(ns) + (nq)(mr)

(nq)(ns)

�

=


mp

nq

�
+r

hmr

ns

i

=
hm
n

i
·r

p

q

�
+r

hm
n

i
·r
hr
s

i

= a ·r b+r a ·r c.

Solution C.32. [Of Exercise 3.3.]

1.

mr +r nr =
hm
1

i
+r

hn
1

i
=


m+ n

1

�
= (m+ n)r.

2.
mr ·r nr =

hm
1

i
·r
hn
1

i
=
hmn

1

i
= (mn)r.
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Solution C.33. [Of Exercise 3.4.] Let a =
⇥m
n
⇤
and b =

h
p
q

i
. By Theo-

rem 3.2.21, we know that a�1 =
⇥ n
m
⇤
and b

�1 =
h
q
p

i
.

1. By Theorem 3.2.21, we know that (a�1)�1 =
⇥m
n
⇤
. Hence, (a�1)�1 =

a.

2. ab =
⇥m
n
⇤
·r
h
p
q

i
=
h
mp
nq

i
and By Theorem 3.2.21, (ab)�1 =

h
nq
mp

i
.

But a�1
b
�1 =

⇥ n
m
⇤ hq

p

i
=
h
nq
mp

i
. Hence, (ab)�1 = a

�1
b
�1.

3. By definition, a

b
= a ·r b�1. Hence, by 2., resp. 1.,

⇣
a

b

⌘�1
= a

�1 ·r
(b�1)�1 = a

�1 ·r b = b ·r a�1 = b
a

4. By 3 above,
⇣
a

b

⌘�1
·r a = b

a ·r a =Associativity of ·r (b ·r a�1) ·r a =

b ·r (a�1 ·r a) =Inverse for ·r b ·r 1r =Identity for ·r b.

5. Left to the reader to prove that (ab)�1 ·r a = b
�1.

Solution C.34. [Of Exercise 3.5.] Let three rationals a =
⇥m
n
⇤
, b =

h
p
q

i
,

and c =
⇥r
s
⇤
.

1. If a+r b = a+r c then⇥m
n
⇤
+r

h
p
q

i
=
⇥m
n
⇤
+r

⇥r
s
⇤
, hence

h
mq + np

nq

i
=
h
ms+ nr

ns

i
and so

mq + np
nq ⇣ms+ nr

ns and

(mq + np)ns = mqns + npns = nq(ms + nr) = nqms + nqnr. So,
mqns+npns = nqms+nqnr and by commutativity, associativity and

cancellation we get ps = qr and finally, b =
h
p
q

i
=
⇥r
s
⇤
= c.

2. If a ·r b = a ·r c then⇥m
n
⇤
·r
h
p
q

i
=
⇥m
n
⇤
·r
⇥r
s
⇤
, hence

h
mp
nq

i
=
⇥mr
ns
⇤
and so

mp
nq ⇣

mr
ns and mpns⇣nqmr, so ps⇣qr and p

q⇣
r
s . Finally, b =

h
p
q

i
=

⇥r
s
⇤
= c.

Solution C.35. [Of Exercise 3.6.] If we start with nonzero even naturals,
then the identity for multiplication property (property 10 of Figure 3.1)
would fail since there is no identity e on nonzero even naturals such that
e · m = m · e = e. However, all other properties 1..9 hold, simply replace
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nonzero natural by nonzero even natural. Then, all definitions except Defini-
tion 3.2.18 remain exactly the same except that nonzero natural is replaced
by nonzero even natural. All lemmas and theorems (except Theorem 3.2.20)
hold exactly as they are, just make sure that whenever you see nonzero
natural, simply replace it by nonzero even natural.

As for Definition 3.2.18, it should be replaced by

Definition C.3.1. The nonzero natural rational nr, which corresponds to
the nonzero even natural n is defined by

nr =


2n

2

�
.

And, Theorem 3.2.20 remains the same except for the definition of 1r
which should be 1r =

⇥
2
2

⇤
.

This exercise illustrates the fact that if we start with a natural number
system without a multiplicative identity, the rational number system we get
adds one.

Solution C.36. [Of Exercise 3.8.] Assume m  n 2 ↵, p  q 2 � and
r  s 2 �. Then

↵ ·i (� +i �) = [m n] ·i [(p q) +c (r  s)]

= [m n] ·i [(p+ r) (q + s)]

= [(m(p+ r) + n(q + s)) (m(q + s) + n(p+ r))]

= [(mp+ nq +mr + ns) (mq + np+ nr +ms)]

= [((mp+ nq) + (mr + ns)) ((mq + np) + (nr +ms))]

= [(mp+ nq) (mq + np)] +i [(mr + ns) (nr +ms)]

= [(m n) ·i (p q)] +i [(m n) ·i (r  s)]

= ↵ ·i � +i ↵ ·i �.

Solution C.37. [Of Exercise 3.9.] Assume m  n 2 ↵, p  q 2 � and
r  s 2 �.

• Cancellation for addition:
↵+i � = ↵+i � =)
[m n] +i [p q] = [m n] +i [r  s] =)
[(m n) +c (p q)] = [(m n) +c (r  s)] =)
[(m+ p) (n+ q)] = [(m+ r) (n+ s)] =)
((m+ p) (n+ q)) ⇠= ((m+ r) (n+ s)) =)
m+ p+ n+ s = n+ q +m+ r =)
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p+ s = q + r =)
p q ⇠= r  s =)
[p q] = [r  s] =) � = �.

• Cancellation for multiplication: Assume ↵ 6= 0.
↵ ·i � = ↵ ·i � =)
[m n] ·i [p q] = [m n] ·i [r  s] =)
[(m n) ·c (p q)] = [(m n) ·c (r  s)] =)
[(mp+ nq) (mq + np)] = [(mr + ns) (ms+ nr)] =)
((mp+ nq) (mq + np)) ⇠= ((mr + ns) (ms+ nr)) =)
mp+ nq +ms+ nr = mq + np+mr + ns =)
m(p+ s) + n(q + r) = m(q + r) + n(p+ s) =)

– If m > n then m = n + t and n(p + s) + t(p + s) + n(q + r) =
n(q + r) + t(q + r) + n(p+ s) =)
t(p+ s) = t(q + r) =)
p+ s = q + r =)
p q ⇠= r  s =)
[p q] = [r  s] =) � = �.

– Case m < n is similar to above case.

Solution C.38. [Of Exercise 3.10.] ]

1. mi+ini = [(p+m) p]+i [(p+n) p] = [((p+m) p)+c ((p+n) p)] =
[(p+m+ p+ n) (p+ p)] = [(p+ p+m+ n) (p+ p)] = (m+ n)i.

2. mi ·i ni = [(p+m) p] ·i [(p+n) p] = [((p+m) p) ·c ((p+n) p)] =
[((p +m)(p + n) + pp)  ((p +m)p + p(p + n))] = [p(m + n) + 2pp +
mn) (p(m+ n) + 2pp)] = (mn)i.

Solution C.39. [Of Exercise 3.11.] Assume ↵ = [m n].
1i ·i ↵ = [(p + 1)  p] ·i [m  n] = [((p + 1)  p) ·c (m  n)] = [(m(p + 1) +
pn) (pm+ n(p+ 1))] = [(pm+ pn+m) [(pm+ pn+ n)] = [m n].
Similarly we can show that ↵ ·i 1i = ↵.

Solution C.40. [Of Exercise 3.12.] We do the case for (N+,+) and leave
the other case to the reader.
By definition of N+ as given at the start of Chapter 3, the laws of closure,
commutative, associative and cancellations all hold for + on N+. Hence,
(N+,+) is a commutative cancellation semigroup.

Solution C.41. [Of Exercise 3.13.] Since y�z = w�y then by commutativity
z �y = w �y and by cancellation z = w. Hence, since x�z = y �w and z = w
then by cancellation x = y.
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x and z (hence y and w) do not need to be equal. For example, in (N+, ·)
we can take x = y = 10 and z = w = 5.

Solution C.42. [Of Exercise 3.14.] By Definition 3.4.1 and Theo-
rems 3.4.18, 3.4.19 and 3.4.20, we only need to show the cancellation law
for �d on Sd. Let a = [(x, y)], b = [(x0, y0)], and c = [(u, v)] be elements in
Sd such that a �d c = b �d c. Then
[(x, y) ⇤ (u, v)] = [(x0, y0) ⇤ (u, v)] and hence [(x � u, y � v)] = [(x0 � u, y0 � v)].
So, x�u�y0�v = y�v�x0�u and hence x�y0 = y�x0 and so, [(x, y)] = [(x0, y0)].
Therefore, a = b.

This means, (Sd, �d) is a commutative cancellation semigroup.

Solution C.43. [Of Exercise 3.15.] (Q+, ·r) is a commutative cancellation
semigroup by Theorems 3.2.14, 3.2.1.5. and 3.2.16 and Exercise 3.5.
(Z,+i) is a commutative cancellation semigroup by Theorems 3.3.13, 3.3.14
and 3.3.15 and Exercise 3.9.
(Q+,+r) and (Z, ·i) are also commutative cancellation semigroups for the
same reasons as that (Q+, ·r) and (Z,+i).

Solution C.44. [Of Exercise 3.16.] We build (Q+, ·r) from (N+, ·). We
know by Lemma 3.4.2 that (N+, ·) is a commutative cancellation semigroup.

1. We write (x, y) as x
y .

2. We build a congruence ⇣ on N+ ⇥ N+ based on (N+, ·) as follows:
(x, y)⇣(u, v) i↵ x · v = y · u. In our notation, xy⇣

u
v i↵ x · v = y · u.

By Theorem 3.4.9 ⇣ is an equivalence relation.

3. The operation ·f on N+ ⇥ N+ inherited from · is defined by
(x, y) ·f (u, v) = (x · u, y · v). In our notation, xy ·f u

v = x · u
y · v .

4. The value of xy is [xy ]⇣ = {uv : uv⇣
x
y }. We define Q+ = {[xy ]⇣ : x, y 2

N+}.

5. The operation ·r corresponding to · is defined as follows: If a = [xy ]⇣
and b = [uv ]⇣, define a ·r b = [xy ·f u

v ]⇣ = [x · u
y · v ]⇣.

6. Closure Law. For all a and b in Q+, a ·r b is an element of Q+

uniquely determined by a and b. See Theorem 3.4.18.

7. Commutative Law. For all a and b in Q+, we have a ·r b = b ·r a.
See Theorem 3.4.19.
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8. Associative Law. For all a, b and c in Q+, we have (a ·r b) ·r c =
a ·r (b ·r c). See Theorem 3.4.20.

9. Cancellation law for ·r on Q+. For all a, b and c inQ+, if a·rc = b·rc,
then a = b. See Exercise 3.14.

10. (Q+, ·r) is a commutative cancellation semigroup. See Exer-
cise 3.14.

11. N+
is a subset of Q+. For each x in N+, xr = [y · xy ]⇣ is in Q+. See

Definition 3.4.22 and Lemma 3.4.21.

12. Identity for Q+. Define 1r to be [xx ]⇣ for some x in N+. For all a in
Q+, we have 1r ·r a = a ·r 1r = a. See Theorem 3.4.26.

13. Inverses for Dyads. If a = [xy ]⇣, define a�1 to be [yx ]⇣. We have

a ·r a�1 = 1r = a�1 ·r a. See Theorem 3.4.29.

We build (Z,+i) from (N+,+). We know by Lemma 3.4.2 that (N+,+) is a
commutative cancellation semigroup.

1. We write (x, y) as x y.

2. We build a congruence ⇠= on N+ ⇥ N+ based on (N+,+) as follows:

(x, y) ⇠= (u, v) i↵ x + v = y + u. In our notation, x  y ⇠= u  v i↵
x+ v = y + u.

By Theorem 3.4.9 ⇠= is an equivalence relation.

3. The operation +c on N+ ⇥ N+ inherited from + is defined by
(x, y) +c (u, v) = (x + u, y + v). In our notation, x  y +c u  v =
x+ u y + v.

4. The value of x  y is [x  y]⇠= = {u  v : u  v ⇠= x  y}. We define
Z = {[x y]⇠= : x, y 2 N+}.

5. The operation +i corresponding to + is defined as follows: If a = [x 
y]⇠= and b = [u v]⇠=, define a+ib = [x y+cu v]⇠= = [x+ u y + v]⇠=.

6. Closure Law. For all a and b in Z, a+i b is an element of Z uniquely
determined by a and b. See Theorem 3.4.18.

7. Commutative Law. For all a and b in Z, we have a +i b = b +i a.
See Theorem 3.4.19.



24 APPENDIX C. SOLUTIONS TO EXERCISES

8. Associative Law. For all a, b and c in Z, we have (a +i b) +i c =
a+i (b+i c). See Theorem 3.4.20.

9. Cancellation law for ·r on Z. For all a, b and c in Z, if a+i c = b+i c,
then a = b. See Exercise 3.14.

10. (Z,+i) is a commutative cancellation semigroup. See Exer-
cise 3.14.

11. N+
is a subset of Z. For each x in N+, xi = [y + x y]⇠= is in Z. See

Definition 3.4.22 and Lemma 3.4.21.

12. Identity for Z. Define 0i to be [x x]⇠= for some x in N+. For all a
in Z, we have 0i +i a = a+i 0i = a. See Theorem 3.4.26.

13. Inverses for Dyads. If a = [x  y]⇠=, define �a to be [y  x]⇠=. We
have a+i �a = 0i = �a+i a. See Theorem 3.4.29.

We build (Q,+r0) from (Q+,+r). We have already built (Q+,+r) in Sec-
tion 3.2 and there, we have also shown the closure, commutative, associative
and cancellation laws for +r. Hence, we know that (Q+,+r) is a commuta-
tive cancellation semigroup.

1. For x, y 2 Q+, we write (x, y) as x y.

2. We build a congruence ⇠ on Q+ ⇥Q+ based on (Q+,+r) as follows:

(x, y) ⇠ (u, v) i↵ x +r v = y +r u. In our notation, x  y ⇠ u  v i↵
x+r v = y +r u.

By Theorem 3.4.9 ⇠ is an equivalence relation.

3. The operation +c0 on Q+ ⇥Q+ inherited from +r is defined by
(x, y) +c0 (u, v) = (x+r u, y +r v). In our notation, x y +c0 u v =
x+r u y +r v.

4. The value of x  y is [x  y]⇠ = {u  v : u  v ⇠ x  y}. We define
Q = {[x y]⇠ : x, y 2 Q+}.

5. The operation +r0 corresponding to +r is defined as follows: If a =
[x  y]⇠ and b = [u  v]⇠, define a +r0 b = [x  y +c0 u  v]⇠ =
[x+r u y +r v]⇠.

6. Closure Law. For all a and b in Q, a+r0 b is an element of Q uniquely
determined by a and b. See Theorem 3.4.18.
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7. Commutative Law. For all a and b in Q, we have a+r0 b = b+r0 a.
See Theorem 3.4.19.

8. Associative Law. For all a, b and c in Z, we have (a +r0 b) +r0 c =
a+r0 (b+r0 c). See Theorem 3.4.20.

9. Cancellation law for ·r0 on Q. For all a, b and c in Q, if a +r0 c =
b+r0 c, then a = b. See Exercise 3.14.

10. (Q,+r0) is a commutative cancellation semigroup. See Exer-
cise 3.14.

11. Q+
is a subset of Q. For each x in Q+, xr0 = [y +r x y]⇠ is in Q.

See Definition 3.4.22 and Lemma 3.4.21.

12. Identity for Q. Define 0r0 to be [x x]⇠ for some x in Q+. For all a
in Q, we have 0r0 +r0 a = a+r0 0r0 = a. See Theorem 3.4.26.

13. Inverses for Dyads. If a = [x  y]⇠, define �a to be [y  x]⇠. We
have a+r0 �a = 0r0 = �a+r0 a. See Theorem 3.4.29.
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C.4 Solutions for Chapter 4

Solution C.45. [Of Exercise 4.1.]

1. This is because there is no element of ;, and so every element of ; is
an element of every other set. When you study logic in Chapter 6, you
will learn that something that is false will imply anything you want.
We also know that for all objects a, a 62 ; and hence, a 2 ; is false
which will imply anything including a 2 S. Hence, for all objects a, if
a 2 ; then a 2 S and by the definition of subset, ; ✓ S.

2. By above, ; ✓ S. If also S 6= ; then by definition of proper subset,
; ⇢ S.

3. Let S and T be sets.

• Assume S = T . Then, by the principle of Extensionality of
Page 86, for every x, (x 2 S if and only if x 2 T ). Hence,
for every x, ((if x 2 S then x 2 T ) and (if x 2 T then x 2 S)).
Thus, for every x, (if x 2 S then x 2 T ) and for every x, (if x 2 T
then x 2 S). That is: S ✓ T and T ✓ S.

• Assume S ✓ T and T ✓ S. Then, (for every x, if x 2 S, then
x 2 T ) and (for every x, if x 2 T , then x 2 S). Hence, for every
x, ((if x 2 T , then x 2 S) and (if x 2 S, then x 2 ST )). Thus,
for every x, (x 2 S if and only if x 2 T ) and by the principle of
Extensionality of Page 86, S = T .

4. Left to the reader.

5. Left to the reader.

Solution C.46. [Of Exercise 4.2.]
Clearly ; 2 {;}.

Since ; 2 {;} then {;} 6= ;. Hence, By Lemma 4.1.2, ; ⇢ {;}.
The proof of the remaining item is similar to the above.

Solution C.47. [Of Exercise 4.3.]
Since S ✓ N, 0 2 S, and whenever n 2 S we also have n + 1 = {n} 2 S,
then by the induction axiom for N, S = N.

Solution C.48. [Of Exercise 4.4.]
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1. One direction is clear by Lemma 4.1.4.1. We do the other direction,
using the induction axiom for N. Assume T = {n 2 N : if m 2 N and
N<m is in one-to-one correspondence with N<n then m = n }. We will
show that T = N using the induction axiom for N.
Clearly, 0 2 T because ; is the only set in one-to-one correspondence
with ;.
Assume n 2 T . We will show n+1 2 T . Let m 2 N be such that N<m

is in one-to-one correspondence (say f) with N<n+1. We need to show
that m = n+1. First, note that m 6= 0 because n+1 6= 0 and we have
0 2 T .

• If the correspondence f takes m � 1 2 N<m to n 2 N<n+1 then
f is also a one-to-one correspondence between N<m�1 and N<n

and since n 2 T , we have n = m� 1 and hence m = n+ 1.

• If the correspondence f takes m� 1 2 N<m to y 2 N<n+1 where
y < n and also a certain x 2 N<m to n 2 N<n+1, then let g be
the one-to-one correspondence between N<m�1 and N<n which
corresponds m�1 to y and every j < m�1 to its correspondence
by f . Clearly g is a one-to-one correspondence between N<m�1

and N<n and since n 2 T , we have m � 1 = n. Therefore, m =
n+ 1.

Hence by the the induction axiom for N we have T = N.

2. Again, we will use the induction axiom for N. Let us say that
N<m uniquely associates1 to N<n if every element of N<m corre-
sponds to a unique element of N<n and no two di↵erent elements of
N<m correspond to the same element of N<n. Let T = {n 2 N :
if m 2 N and N<m uniquely associates to N<n then m  n}. We will
show that T = N using the induction axiom for N. Clearly, 0 2 T .
Assume n 2 T . We will show n+1 2 T . Let m 2 N be such that N<m

uniquely associates to N<n+1. We need to show that m  n + 1. If
m = 0, there is nothing to show. Assume m 6= 0.

• If there is no i 2 N<m such that i associates to n 2 N<n+1, then
the same unique association from N<m to N<n+1 is also a unique
association from N<m to N<n and since n 2 T , we have m  n.
Hence, m  n+ 1.

• Assume f is the unique association from N<m to N<n+1. If there
is k 2 N<m such that k associates by f to n 2 N<n+1, then
take the association g from N<m�1 to N<n such that for every

1Note that this is the definition of an injection which we study later on.
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i 2 N<m�1 where i 6= k, the association by g to i is the same
as the association by f . For k, the association by g to k is the
association by f to m� 1. Clearly, N<m�1 uniquely associates to
N<n and since n 2 T , we have m� 1  n. Hence, m  n+ 1.

Hence by the the induction axiom for N we have T = N.

Solution C.49. [Of Exercise 4.5.]

1. We write A \ {x} instead of B. Since A is a finite non empty set and
x 2 A, then let |A| = n where n > 0 and let there be a one-to-one
correspondence between A and N<n. If x corresponds to n � 1 then
the same one-to-one correspondence between A and N<n is also a one-
to-one correspondence between A \ {x} and N<n�1 because we have
removed the x and n � 1 from A resp. N<n. If on the other hand x
corresponds to m < n � 1 and there is an x0 2 A which corresponds
to n� 1 then we take the correspondence between A \ {x} and N<n�1

which takes any y 6= x0 to what it corresponded to earlier, but we take
x0 to what x corresponded to earlier. That is:

N<n

x

x0

A

0

1

2

3

n� 2

n� 1
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N<n�1

x0

A \ {x}

0

1

2

3

n� 2

Clearly, this is a one-to-one correspondence between A\{x} and N<n�1

and hence A \ {x} is finite and |A \ {x}| = n� 1 = |A|� 1.

2. We write A[{x} instead of B. Since A is a finite set then by definition,
there is a one-to-one correspondence between A and N<n for some n 2
N and |A| = n. Since x 62 A, then the above one-to-one correspondence
between A and N<n can be extended into a one-to-one correspondence
between A [ {x} and N<n+1 by associating x to n. Hence, A [ {x} is
finite and |A [ {x}| = n+ 1 = |A|+ 1. That is:

Since A $ N<n then A [ {x} $ N<n [ {n} = N<n+1

3. We will use the induction axiom for N. Let us say that A in-
jectively associates2 to N<n if every element of A corresponds to
a unique element of N<n and no two di↵erent elements of A cor-
respond to the same element of N<n. Let T = {n 2 N :
if A injectively associates to N<n then A is finite and |A|  n}. We
will show that T = N using the induction axiom for N. Clearly, 0 2 T
since if A injectively associates to N<0 then A is empty and hence A is
in one-to-one correspondence with N<0 and A is finite and |A| = 0  0.
Assume n 2 T . We will show n+1 2 T . Let A such that A injectively

2Note that this is the definition of an injection which we study later on.
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associates to N<n+1. Call this association f . We need to show that A
is finite and |A|  n + 1. If A = ;, there is nothing to show. Assume
A 6= ;,

• If there is no x 2 A that associates to n 2 N<n+1, then all el-
ements on A are associated to elements of N<n and the same
injective association f from A to N<n+1 is also a injective asso-
ciation from A to N<n and since n 2 T , we have that A is finite
and |A|  n. Hence, A is finite and |A|  n+ 1. So, n+ 1 2 T .

• If there is x 2 A such that x associates to n 2 N<n+1, then
take the association from A \ {x} to to N<n which keeps to each
element of A\{x} the same association in N<n+1. Obviously this
is an injective association from A \ {x} to N<n and since n 2 T ,
we deduce that A \ {x} is finite and |A \ {x}|  n. By item 2
above, A = (A\{x})[{x} is finite and |A| = |A\{x}|+1  n+1.
So, n+ 1 2 T .

Hence by the the induction axiom for N we have T = N.

4. Since B is finite then by definition there is an n 2 N such that B is in
one-to-one correspondence with N<n and |B| = n. We can easily show
that this one-to-one correspondence between B and N<n associates to
every element of A a unique element of N<n such that no two di↵erent
elements of A correspond to the same element of N<n. Hence, by 3 A
is finite and |A|  n.

5. If B is finite then by 4 above, A is also finite. Absurd since A is infinite
by hypothesis.

Solution C.50. [Of Exercise 4.6.] Let a1
a2 2 Q where a1, a2 2 Z. Without

loss of generality, we can assume that a2 is a positive integer. Let n 2 N+.

Now, n

q
a1
a2 is an nth root for the equation a2xn + (�a1) = 0. Hence, n

q
a1
a2

is algebraic.

Solution C.51. [Of Exercise 4.7.]

1. The polynomials of height 4 are: x3, 2x2, x2+x, x2�x, x2+1, x2�1,
x+ 2, x� 2, 2x+ 1, 2x� 1.

2. The polynomials for height 5 which give all the new numbers listed
under height 5 in the proof of Theorem 4.1.13 are as follows:
x+ 3 and x� 3 which give resp. the numbers �3 and 3.
3x+ 1 and 3x� 1 which give resp. the numbers � 1

3 and 1
3 .
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x2 � 2 which gives the numbers �
p
2 and

p
2.

2x2 � 1 which gives the numbers � 1
2

p
2 and 1

2

p
2.

x2 � x� 1 whose solutions are 1
2 + 1

2

p
5 and 1

2 �
1
2

p
5.

x2 + x� 1 whose solutions are � 1
2 �

1
2

p
5 and � 1

2 + 1
2

p
5.

x2 � x+ 1 whose solutions are 1
2 �

i

2

p
3 and 1

2 + i

2

p
3.

x2 + x+ 1 whose solutions are � 1
2 �

i

2

p
3 and � 1

2 + i

2

p
3.

Solution C.52. [Of Exercise 4.8.]

1. The one-to-one correspondence below shows that E+ the set of positive
even integers is countable.

1 $ 2 = e1
2 $ 4 = e2
3 $ 6 = e3
4 $ 8 = e4

...
n $ 2n = en

...

To show that E is countable, we write E as 0, e1,�e1, e2,�e2, · · · . We
can then find a one-to-one correspondence with the nonzero natural
numbers as follows:

1 $ 0
2 $ 2
3 $ �2
4 $ 4
5 $ �4

...
n $ 2n if n is even
n $ �n+ 1 if n is odd

...

2. In the same spirit as above, the one-to-one correspondence below shows
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that O+ the set of positive odd integers is countable.

1 $ 1 = o1
2 $ 3 = o2
3 $ 5 = o3
4 $ 7 = o4

...
n $ 2n� 1 = on

...

To show that O is countable, we write O as 0, o1,�o1, o2,�o2, · · · . We
can then find a one-to-one correspondence with the nonzero natural
numbers as follows:

1 $ 0
2 $ 1
3 $ �1
4 $ 3
5 $ �3

...
n $ if n� 1 is even
n $ if �n+ 2 is odd

...
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Solution C.53. [Of Exercise 4.9.]

1. We need to prove that for any x, x 2 S [ S if and only if x 2 S. But
by the definition of union, x 2 S [S if and only if x 2 S or x 2 S, and
this is clearly the same as x 2 S.

2. Since x 62 ; for every object x, we have

x 2 ; [ S , x 2 ; or x 2 S

, x 2 S

, x 2 S or x 2 ;
, x 2 S [ ;.

3. We need to prove that x 2 S [ T if and only if x 2 T [ S. We have

x 2 S [ T , x 2 S or x 2 T

, x 2 T or x 2 S

, x 2 T [ S.

Solution C.54. [Of Exercise 4.10.]

1. We need to prove that for any x, x 2 S \ S if and only if x 2 S. But
by the definition of intersection, x 2 S \ S if and only if x 2 S and
x 2 S, and this is clearly the same as x 2 S.

2. For any x, if x 2 ; \ S then x 2 ;, but this is impossible. Therefore,
for no x, is x 2 ; \ S. The proof is similar for x 2 S \ ;.

3. We need to prove that x 2 S \ T if and only if x 2 T \ S. We have

x 2 S \ T , x 2 S and x 2 T

, x 2 T and x 2 S

, x 2 T \ S.

Solution C.55. [Of Exercise 4.11.]

x 2 S [ (T \R) , x 2 S or (x 2 T and x 2 R)

, (x 2 S or x 2 T ) and (x 2 S or x 2 R)

, (x 2 S [ T ) and (x 2 S [R)

, x 2 (S [ T ) \ (S [R)
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Solution C.56. [Of Exercise 4.12.] We only prove the first item and leave
the rest to the reader.

1. We prove A \B = A as follows:

• x 2 A \B , x 2 A and x 2 B ) x 2 A.

• x 2 A ) x 2 A and x 2 A )since A ✓ B x 2 A and x 2 B )
x 2 A \B.

We prove A [B = B as follows:

• x 2 A [ B , x 2 A or x 2 B )since A ✓ B x 2 B or x 2 B )
x 2 B.

• x 2 B ) x 2 A or x 2 B ) x 2 A [B.

Solution C.57. [Of Exercise 4.13.]

1. ; and N<n are 2 di↵erent elements of PN<n which are finite sets. They
are di↵erent because n 6= 0 and hence N<n 6= ;. Clearly ; and N<n

are finite and |;| = 0 and |N<n| = n.

2. ; and {0} are 2 di↵erent elements of PN<n which are finite sets. They
are di↵erent because {0} 6= ;. Clearly ; and {0} are finite and |;| = 0
and |{0}| = 1.

3. N�n and N�n+1 are 2 di↵erent elements of PN�n which are infinite
sets. They are di↵erent because n 2 N�n but n 62 N�n+1. They are
infinite because each can be put in one-to-one correspondence with N
as follows:

N $ N�n

m $ m+ n
N $ N�n+1

m $ m+ n+ 1

4. If S 2 PN�n, then S ✓ N�n. By Corollary 4.1.15, S is countable.

Solution C.58. [Of Exercise 4.14.] Since (0, 1] ✓ R \ Nn�2 and by Theo-
rem 4.1.17, (0, 1] is uncountable, then R\Nn�2 is uncountable. Otherwise, by
Theorem 4.1.14, (0, 1] would also be countable contradicting Theorem 4.1.17.

Solution C.59. [Of Exercise 4.15.]

1. • Assume f is bijective. Then, (for every b 2 T , there is a unique
a 2 S such that f(a) = b). Obviously, f is surjective. If for some
a, b 2 S, f(a) = f(b) then since f(a) 2 T , there can only be one
member c 2 S such that f(c) = f(a) = f(b). Hence, a = b = c
and f is injective.
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• Assume f is injective and surjective. Let b 2 T . By surjection,
there is a 2 S such that f(a) = b. If there is also a0 2 S such that
f(a0) = b, then f(a) = f(a0) and by injection, a = a0. Hence, for
every b 2 T , there is a unique a 2 S such that f(a) = b.

2. Let b 2 T . Since f is bijective, there is a unique a 2 S such that
f(a) = b. Hence, there is a unique a 2 S such that f�1(b) = a, and
so, f�1 is a function. Moreover, if b, b0 2 T such that a = f�1(b) =
f�1(b0) = a0 then b = f(a) = f(a0) = b0 and hence, f�1 is injective.
Finally, for any a 2 S, since f is a function, f(a) 2 T and hence, there
is b 2 T such that f�1(b) 2 S. Moreover,

• If x 2 S then since f is bijective, there is a unique y 2 T such
that f(x) = y. But, f(x) = y i↵ f�1(y) = x. Hence, 1S(x) =
x = f�1(y) = f�1(f(x)) and so, f�1 � f(x) = 1S(x) and so,
f�1 � f = 1S .

• The proof that f � f�1 = 1T is similar to the above item.

3. (a) Since f and g are functions, let a 2 S, then there is a unique
b in T such that b = f(a) and hence, there is a unique c in V
such that c = g(f(a)). Hence, there is a unique c in V such that
c = g � f(a) and g � f is a function from S to V .

(b) Assume f and g are injective and a, b 2 S.

g � f(a) = g � f(b) )g injective f(a) = f(b) )f injective a = b.
Hence g � f is injective.

(c) Assume f and g are surjective.

c 2 V )g surjective 9b 2 T such that g(b) = c )f surjective

9a 2 S such that f(a) = b and g(b) = c ) 9a 2 S such that
g(f(a)) = c. Hence g � f is surjective.

(d) Assume f and g are bijective. Hence, f and g are injective and
surjective. Hence, by the above two items g � f is both injective
and surjective and so, it is bijective.

4. Easy. Left to the reader.

5. Define g : PS 7! PT such that for any S0 ✓ S, we set g(S0) = f [S0] =
{f(a) : a 2 S0}. Clearly g(S0) ✓ T . We invite the reader to show that
g is a function. We will show that g is bijective.

• Assume g(S1) = g(S2). Let a 2 S1. Then f(a) 2 g(S1) = g(S2)
and hence there is a0 2 S2 such that f(a) = f(a0). Since f is
injective then a = a0 2 S2 and so, S1 ✓ S2. Similarly we show
S2 ✓ S1 and so, g is injective.
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• Let T 0 2 PT and S0 = {a 2 S : f(a) 2 T 0}. Clearly S0 2 PS. We
show that g(S0) = T 0:

– If b 2 g(S0) then for some a 2 S0, b = f(a) and hence b 2 T 0.

– If b 2 T 0 then since f is surjective there is a 2 S such that
b = f(a). Hence by definition a 2 S0 and b 2 g(S0).

Hence g is surjective.

6. If f|S0(x) = f|S0(y) then f(x) = f(y) and hence since f is injective, we
have x = y. Therefore, f|S0 is injective.

7. If we take g : S0 7! S such that g(a) = a, then it is easy to show that
g is an injection.

Solution C.60. [Of Exercise 4.16.] Let y 2 f [A]. Then, y = f(a) for some
a 2 A. Then, y = f(a) for some a 2 B. Hence y 2 f [B].
Let x 2 f�1[C]. Then, x 2 S and f(x) 2 C. Then, x 2 S and f(x) 2 D.
Then x 2 f�1[D].

Solution C.61. [Of Exercise 4.17.] h is a function because if x 2 A1 [ A2,
then since A1\A2 = ;, x is either exclusively in A1 or exclusively in A2 and
in each case, h(x) is a unique element in B1[B2 since f and g are functions.

Let x, y 2 A1 [ A2 such that h(x) = h(y). If x, y 2 A1 then f(x) =
h(x) = h(y) = f(y) and by injectivity of f , x = y. The same proof holds if
x, y 2 A2. The cases that (x 2 A1 and y 2 A2) or ( x 2 A2 and y 2 A1)
cannot hold since otherwise, we would have (h(x) 2 B1 and h(y) 2 B2)
or resp. (h(x) 2 B2 and h(y) 2 B1) which would contradict B1 \ B2 = ;.
Therefore, whenever x, y 2 A1 [ A2 such that h(x) = h(y), we have x = y
and h is injective.

Let y 2 B1 [ B2. Then, since B1 \ B2 = ;, y is either exclusively
in B1 or exclusively in B2. In the first case, by surjectivity of f , there is
x 2 A1 ✓ A1 [ A2 such that h(x) = f(x) = y. In the second case, by
surjectivity of g, there is x 2 A2 ✓ A1 [ A2 such that h(x) = g(x) = y.
Hence, h is a surjection.

Solution C.62. [Of Exercise 4.18.] h is a function because if x 2
S

n�1 An,
then since for all n 6= m, An \ Am = ;, x is exclusively in one of the An’s
(say x 2 Ap) and h(x) = fp(x) is a unique element in

S
n�1 Bn since fp is a

function.
Let x, y 2

S
n�1 An such that h(x) = h(y). If for some n � 1, x, y 2 An

then fn(x) = h(x) = h(y) = fn(y) and by injectivity of fn, x = y. The
cases that x 2 An and y 2 Am where n 6= m cannot hold since otherwise,
we would have (h(x) = fn(x) 2 Bn and h(y) = fm(x) 2 Bm) which would
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contradict Bn \ Bm = ;. Therefore, whenever x, y 2
S

n�1 An such that
h(x) = h(y), we have x = y and h is injective.

Let y 2
S

n�1 Bn. Then, since for all n 6= m, Bn \ Bm = ;, y is
exclusively in one of the Bi’s (say Bn) and by surjectivity of fn, there is
x 2 An ✓

S
n�1 An such that h(x) = fn(x) = y. Hence, h is a surjection.

Solution C.63. [Of Exercise 4.19.]

1. • Case S1 [ S2:

b 2 f [S1 [ S2],
for some a, (a 2 S1 [ S2 and b = f(a)),
for some a, ((a 2 S1 or a 2 S2) and b = f(a)),
for some a, ((a 2 S1 and b = f(a)) or

(a 2 S2 and b = f(a))),
for some a, (a 2 S1 and b = f(a)) or
for some a, (a 2 S2 and b = f(a)),
(b 2 f [S1] or b 2 f [S2]),
b 2 f [S1] [ f [S2]

• Case
S1

i=1 Si:

b 2 f [
S1

i=1 Si],
for some a, (a 2

S1
i=1 Si and b = f(a)),

for some a, for some i 2 N+, (a 2 Si and b = f(a)),
for some i 2 N+, for some a, (a 2 Si and b = f(a)),
for some i 2 N+, b 2 f [Si],
b 2

S1
i=1 f [Si]

2. • Case S1 \ S2:

b 2 f [S1 \ S2])
for some a, (a 2 S1 \ S2 and b = f(a)))
for some a, (a 2 S1 and a 2 S2 and b = f(a)))
for some a, (a 2 S1 and and b = f(a)) and

(a 2 S2 and b = f(a)))
for some a, (a 2 S1 and b = f(a)) and
for some a, (a 2 S2 and b = f(a)))
(b 2 f [S1] and b 2 f [S2]))
(b 2 f [S1] \ f [S2])



38 APPENDIX C. SOLUTIONS TO EXERCISES

b 2 f [S1] \ f [S2])
(b 2 f [S1] and b 2 f [S2]))
for some a, (a 2 S1 and b = f(a)) and
for some a0, (a0 2 S2 and b = f(a0)))
for some a 2 S1, a0 2 S2, b = f(a) = f(a0))f inj.

for some a 2 S1, a0 2 S2, a = a0 and b = f(a) = f(a0))
for some a 2 S1 \ S2, b = f(a))
b 2 f [S1 \ S2]

Now, if f is not injective, S1 = {a}, S2 = {a0}, a 6= a0 and f(a) =
f(a0) = b then S1\S2 = ;, f [S1\S2] = ;, and f [S1]\f [S2] = {b}.

• Case S1 \ S2:

b 2 f [S1] \ f [S2])
(b 2 f [S1] and b 62 f [S2]))
(for some a 2 S1, b = f(a) and for all a0 2 S2, b 6= f(a0)))
(for some a 2 S1 \ S2, b = f(a)))
b 2 f [S1 \ S2]

b 2 f [S1 \ S2])
for some a 2 S1 \ S2, b = f(a))
for some a 2 S1, b = f(a))
b 2 f [S1]

So far we have shown that f [S1 \ S2] ✓ f [S1] and f [S1] \ f [S2] ✓
f [S1 \ S2].

– If f is injective, b 2 f [S1 \ S2] and b 2 f [S2] then for some
a 2 S1 \ S2, a0 2 S2, b = f(a) = f(a0). Since f is injective
then a = a0 and hence a 62 S1 \ S2 contradiction. Hence, if
b 2 f [S1 \ S2] then b 2 f [S1] \ f [S2].

– To give an example that f [S1 \ S2] = f [S1] \ f [S2] fails when
f is not injective, take S1 = {a}, S2 = {a0}, a 6= a0, f(a) =
f(a0). Then, S1 \ S2 = {a}, f [S1 \ S2] = {f(a)} but f [S1] \
f [S2] = ;.

• Case
T1

i=1 Si:

b 2 f [
T1

i=1 Si])
for some a, (a 2

T1
i=1 Si and b = f(a)))

for some a, ( for all i 2 N+, a 2 Si and b = f(a)))
( for all i 2 N+, for some a, a 2 Si and b = f(a)))
( for all i 2 N+, b 2 f [Si]))
b 2

T1
i=1 f [Si]
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b 2
T1

i=1 f [Si])
for all i 2 N+, b 2 f [Si])
for all i 2 N+, for some ai, ai 2 Si and b = f(ai))
for all i 2 N+, for some ai, ai 2 Si and b = f(ai) and
for all j 2 N+, for some aj , aj 2 Sj and b = f(aj))
for all i 2 N+, for some ai, ai 2 Si and b = f(ai) and
for some a1, a1 2 S1 and b = f(a1))
for all i 2 N+, for some ai, for some a1,

ai 2 Si, a1 2 S1, and b = f(ai) = f(a1))f inj.

for all i 2 N+, for some ai, for some a1,
ai 2 Si, a1 2 S1, a1 = ai and b = f(a1))
for all i 2 N+, for some a1, a1 2 Si and b = f(a1))
for some a1, for all i 2 N+, a1 2 Si and b = f(a1))
for some a1, a1 2

T1
i=1 Si and b = f(a1))

b 2 f [
T1

i=1 Si]

To give a counterexample that shows that injectivity is needed,
let Si = {i} and f(i) = 1 for each i 2 N+. Then,

T1
i=1 Si = ;,

f [
T1

i=1 Si] = ; and
T1

i=1 f [Si] = {1}.

3.

a 2 f�1[T1 [ T2] , f(a) 2 T1 [ T2

, f(a) 2 T1 or f(a) 2 T2

, a 2 f�1[T1] or a 2 f�1[T2]

, a 2 f�1[T1] [ f�1[T2]

a 2 f�1[
1[

i=1

Ti] , f(a) 2
1[

i=1

Ti

, for some i 2 N+, f(a) 2 Ti

, for some i 2 N+, a 2 f�1[Ti]

, a 2
1[

i=1

f�1[Ti]
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4.

a 2 f�1[T1 \ T2] , f(a) 2 T1 \ T2

, f(a) 2 T1 and f(a) 2 T2

, a 2 f�1[T1] and a 2 f�1[T2]

, a 2 f�1[T1] \ f�1[T2]

a 2 f�1[
1\

i=1

Ti] , f(a) 2
1\

i=1

Ti

, for all i 2 N+, f(a) 2 Ti

, for all i 2 N+, a 2 f�1[Ti]

, a 2
1\

i=1

f�1[Ti]

Solution C.64. [Of Exercise 4.20.] Let A = {n 2 Nn�1 : Sn+1 ✓ g[Tn] ✓
Sn and Tn+1 ✓ f [Sn] ✓ Tn}. We prove by induction on Nn�1 that A =
Nn�1.

• Note that f [S] ✓ T and so, by Exercise 4.16 g[f [S]] ✓ g[T ]. Therefore,
S2 = g[f [S1]] = g[f [S]] ✓ g[T ] = g[T1] ✓ S = S1. Hence S2 ✓ g[T1] ✓
S1. Similarly, we prove that T2 ✓ f [S1] ✓ T1. Hence, 1 2 A.

• Assume that for some n > 1, Sn ✓ g[Tn�1] ✓ Sn�1 and Tn ✓
f [Sn�1] ✓ Tn�1. Then by Exercise 4.16, g[f [Sn]] ✓ g[f [g[Tn�1]]] ✓
g[f [Sn�1]] and so, Sn+1 ✓ g[Tn] ✓ Sn. Similarly, we prove Tn+1 ✓
g[Sn] ✓ Tn.

Hence by induction on Nn�1, we conclude that A = Nn�1. So, for all n � 1,
Sn+1 ✓ g[Tn] ✓ Sn and Tn+1 ✓ f [Sn] ✓ Tn.
Now,

1. Since for all n � 1, Sn+1 ✓ g[Tn] ✓ Sn, then:

· · · ✓ Sn+2 ✓ g[Tn+1] ✓ Sn+1 ✓ g[Tn] ✓ Sn · · · ✓ g[T3] ✓ S3 ✓ g[T2] ✓
S2 ✓ g[T1] ✓ S1.

2. Also, since for all n � 1, Tn+1 ✓ f [Sn] ✓ Tn, then:

· · · ✓ Tn+2 ✓ f [Sn+1] ✓ Tn+1 ✓ f [Sn] ✓ Tn · · · ✓ f [S3] ✓ T3 ✓
f [S2] ✓ T2 ✓ f [S1] ✓ T1.
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3. Assume f is injective. By Exercise 4.19, f [S⇤] = f [
T1

n=1 Sn] =T1
n=1 f [Sn]. Since for all n, Tn ✓ T1 and Sn ✓ S1, then T ⇤ =

T1
n=1 Tn = T1 \

T1
n=2 Tn =Exercise 4.12 T1

n=2 Tn =
T1

n=1 Tn+1. Now,

• T ⇤ =
T1

n=1 Tn+1 ◆
T1

n=1 f [Sn+1] =
T1

n=2 f [Sn] = f [S1] \T1
n=2 f [Sn] =

T1
n=1 f [Sn] = f [

T1
n=1 Sn] = f [S⇤].

• T ⇤ =
T1

n=1 Tn+1 ✓
T1

n=1 f [Sn] = f [S⇤].

Hence, T ⇤ = f [S⇤].

Furthermore, by Lemma 4.2.23, we can show that f|S⇤ : S⇤ 7! T ⇤

is bijective. This is done as follows: Since f : S 7! T is injective and
S⇤ ✓ S, hence f|S⇤ : S⇤ 7! T is injective and so f|S⇤ : S⇤ 7! f [S⇤] = T ⇤

is a bijection.

4. Assume f and g are injective.

• – If b 2 f [Sn \ g[Tn]] then b = f(a) where a 2 Sn \ g[Tn] and
hence b = f(a) where a 2 Sn and a 62 g[Tn]. So, b 2 f [Sn]
and b = f(a) where a 62 g[Tn].
If b 2 Tn+1 = f [g[Tn]] then for some a0 2 g[Tn], b = f(a0) =
f(a) and hence since f is injective, a = a0 and a 2 g[Tn]
absurd. Hence, b 62 Tn+1 and b 2 f [Sn] \ Tn+1.

– If b 2 f [Sn] \ Tn+1 then b = f(a) for some a 2 Sn and
b 62 Tn+1 = f [g[Tn]]. If a 2 g[Tn] then b = f(a) 2 f [g[Tn]] =
Tn+1 absurd. Hence, b 2 f [Sn \ g[Tn]].

Hence f [Sn \ g[Tn]] = f [Sn] \ Tn+1.

• Similarly we show that g[Tn \ f [Sn]] = g[Tn] \ Sn+1.

Solution C.65. [Of Exercise 4.21.] f : N+ 7! Z is defined by

f(n) =

(
n

2 if n is even

� 1�n

2 if n is odd.

Solution C.66. [Of Exercise 4.22.] Clearly this is a function because for
every x 2 (�1, 1), f(x) is a unique value in R.
f is injective because if f(x) = f(y) then by inspection on the cases, we can
show x = y.
f is surjective because if we take 0 2 R, we have 0 2 (�1, 1) such that f(0) =
0. If we take y > 0 then for x = 1

y+1 2 (0, 1) we have f(x) = 1
x
� 1 = y.

Finally, if y < 0 then for x = 1
y�1 2 (�1, 0) we have f(x) = 1

x
+ 1 = y.

Solution C.67. [Of exercise 4.23.] Let R = {A 2 PS : A ✓ f(A)} and take
T =

S
A2R

A. It is easy to show that f(T ) = T :
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• Note that if A 2 R then A ✓
S

A2R
A = T and hence by hypothesis,

f(A) ✓ f(T ).
If A 2 R then by definition A 2 PS and A ✓ f(A) ✓ f(T ). Hence, if
A 2 R then A ✓ f(T ). Therefore, T =

S
A2R

A ✓ f(T ).

• Since T, f(T ) 2 PS and by above, T ✓ f(T ) then by hypothesis
f(T ) ✓ f(f(T )). Hence, f(T ) 2 R and since T =

S
A2R

A, we get
f(T ) ✓ T .

Solution C.68. [Of Exercise 4.24.]

1. Since S is infinite, then by Lemma 4.3.1.5 there is S0 ✓ S and a
bijection g : N 7! S0. By Lemma 4.2.23.6, f|S0 : S0 7! T is injective. By
Lemma 4.2.23.4, f|S0 : S0 7! f|S0 [S0] is bijective. By Lemma 4.2.23.3,
f|S0 � g : N 7! f|S0 [S0] ✓ T is bijective. Hence, T is infinite.

2. This is a corollary of the previous item.

3. Since T is infinite, by Lemma 4.3.1.5, there is T 0 ✓ T such that T 0 is
in one-to-one correspondence with N. Since f is surjective, for each
y 2 T 0 there is at least one x 2 S such that f(x) = y. Let us pick
for each y 2 S0 exactly one x 2 S such that f(x) = y. We collect
these x’s into a set S0 ✓ S. That is, S0 ✓ S is such that for each
y 2 T 0, S0 contains exactly one x 2 S for which f(x) = y. Clearly,
there is a one-to-one correspondence between S0 and T 0. Hence, there
is a one-to-one correspondence between S0 and N and S is infinite.

4. This is a corollary of the previous item.

Solution C.69. [Of Exercise 4.25.] Since S is countable, let g : N 7! S be
a bijection. Then, by Lemma 4.2.23, f � g : N 7! T is a surjection and by
Lemma 4.3.1.4, T is countable.

Solution C.70. [Of Exercise 4.26.] Let g : N 7! S be defined as follows:

g(0) = f(0)

g(1) = f(p1) where p1 is the least p > 0 such that f(p) 62 {g(0)}
g(2) = f(p2) where p2 is the least p > 1 such that f(p) 62 {g(0), g(1)}

...

g(n) = f(pn) where pn is the least p > n� 1

such that f(p) 62 {g(0), · · · , g(n� 1)}

By construction, g is injective because at every stage, we built g(n) to
be di↵erent from all of g(0), g(1), · · · g(n � 1). But, g is also surjective. To
see this, let b 2 S. Since f is surjective, then b = f(n) for some n.
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• If n = 0 then g(0) = f(0) = b.

• If n > 0 then if b 2 {g(0), · · · , g(n � 1)} then we are done, else if
b 62 {g(0), · · · , g(n� 1)} then b = g(n).

Hence by Definition 4.1.6, S is infinitely countable.

Solution C.71. [Of Exercise 4.28.] By Corollary 4.1.15, every subset of a
countable set is countable. If S is countable, then since S \ T ✓ S, we have
S \ T is also countable.

If we take S = T then S \ T = ; is always countable no matter what S
was.

By Theorem 4.1.17, (0, 1] is uncountable. Since f : (0, 1] 7! [0, 1] such
that f(x) = x is injective, then by Lemma 4.3.1.1, [0, 1] is uncountable. Let
S = [0, 1] and T = (0, 1). Then, S \ T = {0} is countable.

If on the other hand, we take (0, 1] which is uncountable by Theo-
rem 4.1.17, then since the functions f : (0, 1] 7! (0, 2] such that f(x) = x and
g : (0, 1] 7! (1, 2] such that f(x) = 2x are injective, then by Lemma 4.3.1.1,
(0, 2] and (1, 2] are both uncountable. Now, if S = (0, 2] and T = (0, 1] then
(1, 2] = S \ T = (0, 2] \ (0, 1] is uncountable.

Solution C.72. [Of Exercise 4.29.] Let Pn be the set of polynomials of
degree n and let f : Pn 7! Zn+1 = Z⇥ Z⇥ · · ·⇥ Z| {z }

n+1 times

such that f(anxn +

an�1xn�1 + . . . a1x + a0) = (an, an�1, · · · , a0). It is esy to show that f is
bijective and hence Pn is infinitely countable. Hence, by Theorem 4.3.9,

P =
1[

i=0

Pi is (infinitely) countable. Furthermore, if p 2 P and Rp is the

set of roots of p then Rp is countable and has at most degree p elements.

Hence again by Theorem 4.3.9, the set of algebraic numbers which is
[

p2P

Rp

is countable. It is easy to show that the set of algebraic numbers is infinite
and hence, it is infinitely countable.

Solution C.73. [Of Exercise 4.30.] Since N and Q are countable, let
0, 1, 2, · · · respectively q1, q2, · · · be listings of N resp. Q. Now, we give
two listings of N⇥Q.

The first listing is:
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(0, q1) (0, q2) (0, q3) (0, q4) · · ·

(1, q1) (1, q2) (1, q3) (1, q4) · · ·

(2, q1) (2, q2) (2, q3) (2, q4) · · ·

(3, q1) (3, q2) (3, q3) (3, q4) · · ·

The second listing is:

(0, q1) (0, q2) (0, q3) (0, q4) · · ·

(1, q1) (1, q2) (1, q3) (1, q4) · · ·

(2, q1) (2, q2) (2, q3) (s2, q4) · · ·

(3, q1) (3, q2) (3, q3) (3, q4) · · ·

Solution C.74. [Of Exercise 4.31.] If S [ T is finite then since S ✓ S [ T
and T ✓ S [ T , by Lemma 4.1.8.4, S and T are finite.
On the other hand, assume S and T are finite, then by definition, let f :
S 7! N<n and g : T 7! N<m be bijections where n,m 2 N and without
loss of generality we can assume n � m. Now, |S| = n and |T | = m. Let

h : S [ T 7! N<n+m such that h(x) =

(
f(x) if x 2 S

g(x) if x 2 T \ S
It is easy to show that h is an injection and hence by Lemma 4.3.1.2,

S [ T is finite and |S [ T |  n+m.

Solution C.75. [Of Exercise 4.32.] We show f injective by induction on N.
Let I = {n 2 N : for all m 2 N, if f(n) = f(m) then n = m}. We will show
that I = N.
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• For all m 2 N, if f(0) = f(m) then f(0) = f(m) = (0, 0) and by
definition, m = 0. Hence 0 2 I.

• Assume n 2 I. For all m 2 N, if f(n+ 1) = f(m) then

– If f(n + 1) = f(m) = (0, k + 1) then by definition, m > 0 and
f(n) = f(m � 1) = (k � 1, 0). Since n 2 I, then n = m � 1 and
so, n+ 1 = m.

– If f(n + 1) = f(m) = (k + 1, l � 1) then by definition, m > 0,
l > 0 and f(n) = f(m� 1) = (k, l). Since n 2 I, then n = m� 1
and so, n+ 1 = m.

Hence, n+ 1 2 I.

To show f surjective, we show by induction that for any (x, y) 2 N ⇥ N,
there is m 2 N such that f(m) = (x, y).

• If (x, y) = (0, 0), then take m = 0.

• Assume x+ y 6= 0 and for any (x0, y0) such that either (x0 + y0 = x+ y
and x0 < x) or x0+ y0 < x+ y, we have an n where f(n) = (x0, y0). We
will show that there is also an m such that f(m) = (x, y).
If x = 0 then y 6= 0 and by Induction Hypothesis, there is n such that
f(n) = (y � 1, 0) and hence, f(n+ 1) = (0, y).
If x 6= 0 then by IH, there is n such that f(n) = (x � 1, y + 1) and
hence f(n+ 1) = (x, y).

Now, if we take f(0), f(1), f(2), · · · in this order we get:

(0, 0)| {z }
1

, (0, 1), (1, 0)| {z }
2

, (0, 2), (1, 1), (2, 0)| {z }
3

, (0, 3), (1, 2), (2, 1), (3, 0)| {z }
4

, · · ·

This is the listing we saw in the proof of Theorem 4.3.6 which is also the
first listing we gave in Remark 4.3.7.

Solution C.76. [Of Exercise 4.33.] Let f : N<n ⇥ N<m 7! N<n⇥m such
that f(i, k) = k + i(m� 1). We leave it to the reader to show that this is a
bijection. Hence, N<n ⇥ N<m is finite and |N<n ⇥ N<m| = n⇥m.

Solution C.77. [Of Exercise 4.34.] Since S and T are non empty, let x 2 S
and y 2 T . Clearly there is a bijection between S and S ⇥ {y} respectively
T and {x}⇥T and S⇥ {y} ✓ S⇥T and {x}⇥T ✓ S⇥T . If S⇥T is finite
then by Lemma 4.1.8.4, S ⇥ {y} and {x}⇥ T are finite and hence S and T
are finite.
On the other hand, assume S and T are finite, then by definition, let f :
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S 7! N<n and g : T 7! N<m be bijections. Now, |S| = n and |T | = m. Let
h : S ⇥ T 7! N<n ⇥ N<m such that h((x, y)) = (f(x), g(y)).

It is easy to show that h is a bijection. By Exercise 4.34, there is a
bijection between N<n ⇥ N<m and N<n⇥m and hence between S ⇥ T and
N<n⇥m and so, S ⇥ T is finite and S ⇥ T | = n⇥m.

Solution C.78. [Of Exercise 4.38.] Let g : N 7! Q⇥Q such that:

g(0) = (q0, q0)

g(n) =

(
(q0, qk+1) if n 6= 0 and g(n� 1) = (qk, q0)

(qk+1, ql�1) if n 6= 0, l 6= 0 and g(n� 1) = (qk, ql)

We now leave it to the reader to show that g is a bijection.

Solution C.79. [Of Exercise 4.39.]

1. Since T is finite and S is infinitely countable, there are m 2 N, and
bijections f : T 7! N<m and g : S 7! N. Let h : T [ S 7! N such that

h(x) =

(
f(x) if x 2 T

g(x) +m if x 2 S.

Since S \ T = ;, h is a function and since f and g are bijections, we
can easily prove that h is also a bijection.

2. Since T is finite and S is infinitely countable, there are m 2 N, and
bijections f : T 7! N<m and g : S 7! N. Let h : T [ S 7! N such that

h(x) =

(
f(x) if x 2 T

g(x) +m if x 2 S \ T .
h is a function and since f and g are bijections, we can easily prove
that h is also a bijection.

3. Since T and S are infinitely countable, there are bijections f : T 7! N
and g : S 7! N. Let h : T [ S 7! N such that

h(x) =

(
2f(x) if x 2 T

2g(x) + 1 if x 2 S.

h is a function and since f and g are bijections, we can easily prove
that h is also a bijection.

4. There are two cases:

• S \ T is finite: Since S \ T is finite and T is infinitely count-
able, there are m 2 N, and bijections f : S \ T 7! N<m and
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g : T 7! N. Let h : S [ T = (S \ T ) [ T 7! N such that

h(x) =

(
f(x) if x 2 S \ T
g(x) +m if x 2 T .

Since (S \ T ) \ T = ;, h is a function and since f and g are
bijections, we can easily prove that h is also a bijection.

• S \ T is infinitely countable: Since S \ T and T are infinitely
countable, there are bijections f : S \ T 7! N and g : T 7! N. Let
h : S [ T = (S \ T ) [ T 7! N such that h(x) =(
2f(x) if x 2 S \ T
2g(x) + 1 if x 2 T .

Since (S \ T ) \ T = ;, h is a function and since f and g are
bijections, we can easily prove that h is also a bijection.
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C.5 Solutions for Chapter 5

Solution C.80. [Of Exercise 5.1.] We prove 1., first:

• Reflexive: For any set S, the identity correspondence 1S which asso-
ciates to any element, the element itself is a one-to-one correspondence
between S and S.

• Symmetric: For any sets S and T , if f is a one-to-one correspondence
from S to T then the inverse f�1 is a one-to-one correspondence from
T to S.

• Transitive: For any sets S, T and V , if f is a one-to-one correspon-
dence from S to T and g is a one-to-one correspondence from T to V
then the composition g � f is a one-to-one correspondence from S to
V .

Now we prove 2.

• For any set S, f : S 7! S such that f(x) = x is injective and hence
S � S.

• For any set S, T and V , If f : S 7! T and g : T 7! V are injective,
then g � f : S 7! V is injective by Lemma 4.2.23.3. Hence if S � T
and T � V then S � V .

• If S � T and T � S then there is an injection from S to T and an
injection from T to S, and by Theorem 4.2.24, S ⇠ T .
On the other hand, if S ⇠ T , say f : S 7! T is bijective then there is
obviously an injection f from S to T and an injection f�1 from T to
S, and hence S � T and T � S.

• If S = ; then S ⇠ ;.
The case of a bijection f : S 7! ; when S 6= ; is impossible since
otherwise, there is x 2 S which has no image in ;.

Solution C.81. [Of Exercise 5.2.]

1. First note that ; = N<0 and hence by Definition 4.1.6, #; = 0. Now,
by Definition 5.1.4, #S = #; i↵ S ⇠ ; i↵ (by Lemma 5.1.3) S = ;.

2. If #S = #T then S ⇠ T and hence by Lemma 4.3.1.1 either S and T
are both finite or they are both infinite.
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3. Since #S = #T i↵ S ⇠ T , and by Theorem 5.1.3, ⇠ is an equivalence
relation, we can easily deduce that = is an equivalence relation on
cardinal numbers. We only show the transitive case:
If #S = #T and #T = #U then S ⇠ T and T ⇠ U and hence S ⇠ U
and so, #S = #U .

4. Since #S  #T i↵ S � T , and by Theorem 5.1.3, � is reflexive and
transitive, we can easily deduce that  is reflexive and transitive on
cardinal numbers. We only show the transitive case:
If #S  #T and #T  #U then S � T and T � U and hence S � U
and so, #S  #U .

5. Since by Theorem 5.1.3, S � T and T � S i↵ S ⇠ T , and since
#S  #T i↵ S � T , and #S = #T i↵ S ⇠ T , we can easily show that
#S = #T i↵ (#S  #T and #T  #S).

6. #S  #T i↵ S � T i↵ there is an injection f : S 7! T .

• If there is an injection f : S 7! T then there is a bijection f : S 7!
f [S] ✓ T and hence there is a bijection from S to a subset of T
and hence S is equivalent to a subset of T .

• If S is equivalent to a subset of T 0 of T then let f : S 7! T 0 be a
bijection, then f : S 7! T is an injection.

Hence, there is an injection f : S 7! T i↵ S is equivalent to a subset
of T . So, #S  #T i↵ S is equivalent to a subset of T .

7. By the third item above, #S = #T i↵ (#S  #T and #T  #S).
Hence, #S 6= #T i↵ (#S 6 #T or #T 6 #S).
Now, #S < #T i↵
#S  #T and #S 6= #T i↵
#S  #T and (#S 6 #T or #T 6 #S) i↵
(#S  #T and #S 6 #T ) or (#S  #T and #T 6 #S) i↵
(#S  #T and #T 6 #S) i↵ by above item
S is equivalent to a subset of T and T is not equivalent to a subset of
S.

Solution C.82. [Of Exercise 5.3.] Since S and T are infinitely countable sets
then there is a one-to-one correspondence between N and S and a one-to-one
correspondence between N and T . Hence, there is a one-to-one correspon-
dence between S and T and so, #S = #T = a.
Since N<n ⇢ N ⇢ R then N<n � N � R and hence n = #N<n  #N  #R.
Since R is uncountable then R 6⇠ N and hence #R 6= #N and so #N < #R.
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Furthermore, since N is infinite and N<n is finite, #N 6= #N<n and so,
n < #N.
So, n < a < c.

Solution C.83. [Of Exercise 5.4.] Let S = { 1n : n 2 N+}. Ob-
viously S ✓ (0, 1]. Let f : (0, 1] 7! (0, 1) such that f(x) =(
x if x 2 (0, 1] \ S

1
n+ 1 if x = 1

n where n 2 N+

It is easy to show that f is a one-to-one correspondence.
Now, to give a one-to-one correspondence between [0, 1] and (0, 1), let S =

{0} [ { 1n : n 2 N+}. Obviously S ✓ [0, 1]. Let f : [0, 1] 7! (0, 1) such that

f(x) =

8
><

>:

x if x 2 [0, 1] \ S
1
2 if x = 0
1

n+ 2 if x = 1
n where n 2 N+

It is easy to show that g is a one-to-one correspondence.

Solution C.84. [Of Exercise 5.5.] You could also use a di↵erent proof as
follows: By Theorem 4.1.10, Q is infinitely countable and hence Q ⇠ N.

By Lemma 4.2.23.5, if S ⇠ T then PS ⇠ PT , and hence, PQ ⇠ PN.
By the proof of Theorem 5.1.11, we have an injection f : PN 7! [0, 1]

and since [0, 1] ⇢ R then we have an injection f : PN 7! R.
Also, by the proof of Theorem 5.1.11, we have and an injection g : R 7!

PQ and since PQ ⇠ PN then by Lemma 4.2.23.3, we have an injection
h : R 7! PN.

Since f : PN 7! R and h : R 7! PN are injections, then by Theo-
rem 4.2.24, R ⇠ PN.

Solution C.85. [Of Exercise 5.6.] Since Q is countable then Q \ [0, 1] is

countable. Since the infinite set { 1n : n 2 N+} ✓ Q\ [0, 1], we have Q\ [0, 1]
is infinite. Hence, let r : N+ 7! Q \ [0, 1] be a one-to-one correspondence
and denote r(n) by rn for ech n 2 N+ (r1, r2, · · · is a listing of Q \ [0, 1]).

Take the infinite countable set S = { 1p
n

: n 2 N+ and
p
n is irrational}.

Similarly to Q\ [0, 1], let s1, s2, · · · be a listing of S. Now, let the one-to-one

correspondence g : S [ (Q\ [0, 1]) 7! S such that g(x) =

(
s2n if x = rn
s2n�1 if x = sn

Obviously g is a one-to-one correspondence.

Let f : [0, 1] 7! [0, 1] \Q such that f(x) =

(
g(x) if x 2 S [ (Q \ [0, 1])

x otherwise
It is easy to show that f is a bijection.



C.5. SOLUTIONS FOR CHAPTER 5 51

Solution C.86. [Of Exercise 5.7.] Let f : [�1, 1] 7! [a, b] such that f(x) =
a(1�x)+b(1+x)

2 . We show that f is bijective.

• If f(x) = f(y) then b(1+x)+ a(1�x) = b(1+ y)+ a(1� y) and hence
b(x� y) = a(x� y).
If x 6= y then a = b which is a contradiction. Hence x = y and f is
injective.

• Let y 2 [a, b] and x = 2y�(b+a)
b�a

. Now, x 2 [�1, 1] because:

a  y  b implies
2a  2y  2b implies
2a� (b+ a)  2y � (b+ a)  2b� (b+ a) implies
�(b� a)  2y � (b+ a)  b� a implies

�1  2y�(b+a)
b�a

 1 since b� a 6= 0

Furthermore, f is a surjection because f(x) = y can be seen as follows:

f(x) = a

2 (1�
2y�(b+a)

b�a
) + b

2 (1 +
2y�(b+a)

b�a
)

= a

2(b�a) (b� a� 2y + b+ a) + b

2(b�a) (b� a+ 2y � b� a)

= 1
2(b�a) (2ab� 2ay) + 1

2(b�a) (2by � 2ab)

= 1
2(b�a) (2y(b� a))

= y.

Solution C.87. [Of Exercise 5.8.] Since S ⇠ T , let f : S 7! T a one-to-one
correspondence between S and T . It is easy to show that g : S [R 7! T [R

defined by g(x) =

(
f(x) if x 2 S

x if x 2 R
is a one-to-one correspondence between

S [R and T [R. Hence, S [R ⇠ T [R.

Solution C.88. [Of Exercise 5.9.] Since S ⇠ T and R and S[T are disjoint,
then by Exercise 5.8, S [ R ⇠ T [ R. Similarly, since R ⇠ U and T and
R [ U are disjoint, then by Exercise 5.8, T [ R = R [ T ⇠ U [ T = T [ U .
Since ⇠ is transitive and S [R ⇠ T [R ⇠ T [ U , we get S [R ⇠ T [ U .

Solution C.89. [Of Exercise 5.10.] If S is finite, nothing to prove. Assume
S is infinite. Since S � N, then #S  #N = a. But also by Lemma 4.3.1.5,
there is S0 ✓ S such that S0 and N are in one-to-one correspondence. So,
#S0 = #N = a. But, #S0  #S. Hence, a  #S  a and therefore,
#S = a.

Solution C.90. [Of Exercise 5.11.] � is a function because for every f 2
RS[T , there is a unique pair (g, h) 2 RS ⇥ RT such that g(x) = f(x) for
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every x 2 S and h(x) = f(x) for every x 2 T .
� is an injection because if �(f) = �(f 0) where

• �(f) = (g, h) 2 RS ⇥ RT where g(x) = f(x) for every x 2 S and
h(x) = f(x) for every x 2 T and

• �(f 0) = (g0, h0) 2 RS ⇥ RT where g0(x) = f(x) for every x 2 S and
h0(x) = f(x) for every x 2 T ,

then since for all x 2 S, g(x) = g0(x) we have g = g0 and also since for all
x 2 T , h(x) = h0(x) we have h = h0 and so, (g, h) = (g0, h0).
� is a surjection because for any (g, h) 2 RS ⇥RT , we can define f 2 RS[T

such that f(x) =

(
g(x) if x 2 S

h(x) if x 2 T .

Since S \ T = ;, we can show that f is a function and f 2 RS[T . Hence,
�(f) = (g, h).

Solution C.91. [Of Exercise 5.12.] Assume ⇢(f) = ⇢(f 0) where f, f 0 2 ST .
Let x 2 T . Then, ⇢(f)( (x)) = ⇢(f 0)( (x)) and so, �(f( �1( (x)))) =
�(f 0( �1( (x)))). But, since  is bijective, then by Lemma 4.2.23.2,
 �1( (x)) = x and so, �(f(x)) = �(f 0(x)). But, � is injective and hence
f(x) = f 0(x). Therefore, f = f 0 and ⇢ is injective.

Now, let g 2 S0T 0
and let f = ��1 � g �  . Recall that � � ��1 = 1S0

and  �  �1 = 1T 0 . Then, f 2 ST and for any x 2 T 0, ⇢(f)(x) =
⇢(��1 � g �  )(x) = �((��1 � g �  )( �1(x))) = �(��1 � g( ( �1(x))) =
�(��1 � g(x)) = �(��1(g(x))) = g(x). Hence, ⇢(f) = g and ⇢ is surjective.

Solution C.92. [Of Exercise 5.13.] Assume �(f) = �(f 0) for f, f 0 2 (R ⇥
S)T and let x 2 T . Then, �(f) = (f1, f2) = (f 0

1, f
0
2) = �(f 0) and f(x) =

(f1(x), f2(x)) = (f 0
1(x), f

0
2(x)) = f 0(x). Hence, f = f 0 and � is injective.

On the other hand, let (g, h) 2 RT ⇥ ST . We construct f 2 (R ⇥ S)T as
follows: for any x 2 T , we let f(x) = (g(x), h(x)). Clearly, �(f) = (g, h)
and hence � is surjective.

Solution C.93. [Of Exercise 5.14.] Assume �(f) = �(f 0) = h for f, f 0 2
(RS)T . We need to show that f = f 0. We will show that for any x 2 T ,
f(x) = f 0(x). Assume x 2 T . For any y 2 S, (y, x) 2 S ⇥ T and h((y, x)) =
f(x)(y) = f 0(x)(y). Since for any y 2 S, f(x)(y) = f 0(x)(y), we conclude by
function extensionality that f(x) = f 0(x). This is for any x 2 T and hence,
by function extensionality f = f 0 and � is injective.
On the other hand, let h 2 RS⇥T . We construct f 2 (RS)T as follows: for
any x 2 T , we let f(x) 2 RS such that for any y 2 S, f(x)(y) = h((y, x)).
Clearly, �(f) = h and hence � is surjective.
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Solution C.94. [Of Exercise 5.15.] Let �(T ) = �(T 0). Then ⇠T = ⇠T 0 .
Now,
x 2 T i↵ ⇠T (x) = 1 i↵ ⇠T 0(x) = 1 i↵ x 2 T 0. Hence T = T 0 and � is injective.
On the other hand, let g 2 {0, 1}S . Take T = {x 2 S : g(x) = 1}. Clearly
g = ⇠T = �(T ) and hence, � is surjective.

Solution C.95. [Of Exercise 5.16.] Let X 2 S. Then, by hypothesis there
is Y 2 S such that #X < #Y . But, since Y ✓

S
S, we have #Y  #

S
S.

Hence, #X < #
S

S.

Solution C.96. [Of Exercise 5.17.] Recall that #N = a and by Theo-
rems 5.1.14 and 5.2.21, for any set S, #PS > #S, and #PS = 2#S . Hence,
2a > a and hence a  2a.

Now, since 2  a and a  2a, then by Theorem 5.2.23, 2a  aa and
aa  (2a)a =Cor 5.2.20 2aa =The 5.2.9.1 2a.
Hence, aa = 2a.

Solution C.97. [Of Exercise 5.18.]

1. • For n = 0, U0 = {;} and #U0 = 1.

• For n = 1, U1 = {S ✓ N : S ⇠ N<1} = {S ✓ N : |S| = 1} =
{S ✓ N : S = {m} where m 2 N}. Let f : U1 7! N such that
f({m}) = m. It is easy to prove that f is a bijection and hence
#U1 = a.

• For n = 2, U2 = {S ✓ N : S ⇠ N<2} = {S ✓ N : |S| = 2} = {S ✓
N : S = {m, p} where m, p 2 N}.
Let f : U2 7! N ⇥ N such that f({m, p}) = (m, p) where m  p.
It is easy to prove that f is an injection and hence #U2  #(N⇥
N) = a.
Let g : N 7! U2 such that g(n) = {n, n+ 1}. Then, g is injective.
Hence, a = #N  #U2.

That is: a  #U2  a and so, #U2 = a.

• Assume that for n � 1 that #Un = a, we will show that #Un+1 =
a.

Let f : Un+1 7! N⇥Un such that for S 2 Un+1, f(S) = (k, S\{k})
where k is the smallest natural in S. It is easy to prove that f is
an injection and hence #Un+1  #(N⇥ Un) = aa = a.
Let g : N 7! Un+1 such that g(k) = {k, k + 1, · · · , k + n}. Then,
g is injective. Hence, a = #N  #Un+1.

That is: a  #Un+1  a and so, #Un+1 = a.
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2. Clearly, U =
S

n2N Un. By Theorem 4.3.9 and the first item above, U
is countable. Since U contains an infinite number of elements like {n}
where n 2 N, U is infinite. Hence, U is countably infinite and #U = a.

3. Clearly PN = U [ V . Hence, #PN = #U +#V . By Theorem 5.2.21
and Corollary 5.2.22, #PN = 2#N = c. By the above item, #U = a.
Hence, c = a+#V . Now:

• By Theorem 5.2.2, #V = 0 +#V  a+#V = c.

• Note that V is infinite because for any n 2 N, nN = {nk : k 2
N} 2 V and for any n,m 2 N where n 6= m we have nN 6= mN.
Hence, a  #V .

• a < #V , because if a = #V then c = a+#V = a+a = a absurd.

• Hence, a < #V  c and so, #V = c.

Solution C.98. [Of Exercise 5.19.]

1. Let S = N, T = N+, S0 = N, T 0 = {n 2 N : n is even}. Then S \ T =
{0} and S0 \ T 0 = {n 2 N : n is odd}, T ✓ S, #S = #T = #S0 =
#T 0 = #(S0 \ T 0) = a but #(S \ T ) = 1. So #(S \ T ) 6= #(S0 \ T 0).

2. Assume S ⇠ S0, T ⇠ T 0, T ✓ S, T 0 ✓ S0 and #S > #T then since
T\(S\T ) = T 0\(S0\T 0) = ; and S = (S\T )[T and S0 = (S0\T 0)[T 0,
we have #S = #(S \ T ) [ #T and #S0 = #(S0 \ T 0) [ #T 0. Since
#S = #S0 and #T = #T 0, then #(S \ T ) = #(S0 \ T 0).

3. Left to the reader.

4. Left to the reader.

Solution C.99. [Of Exercise 5.20.] For all x 2 S, let Xx = {y 2 T : f(y) =
x} and let U = {Xx : x 2 S}. Since S 6= ; and f is a surjection, by the
axiom of choice, we can choose for each Xx 2 U , a unique yx 2 Xx such that
f(yx) = x.

Let g : S 7! T such that g(x) = yx. It is easy to show that g is injective.

Solution C.100. [Of Exercise 5.21.] Since S 6= ;, let a 2 S. Let y 2 T . If
y = f(x) for x 2 S, then this x is unique because f is injective. Hence, let

g : T 7! S such that g(y) =

(
x if there is x 2 S such that y = f(x)

a otherwise
It is easy to show that g is surjective.
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Solution C.101. [Of Exercise 5.22.] Let I = {n 2 N : #n = n}. Use the
induction axiom to show that I = N. Hence, n, #n = n.

This is not a good definition since for each n � 1, it defines n in terms of
n. This is not well founded. Instead, we can change the definition as follows:

0 = {}, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2}, · · · , for n � 1, n =
{0, 1, 2, · · · , n� 1}.
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C.6 Solutions for Chapter 6

Solution C.102. [Of Exercise 6.1.]

1. A100 is a w↵ and an atomic w↵.

2. A1 is a w↵ and an atomic w↵.

3. A3 _A5 is a w↵ but not an atomic w↵.

4. (A3 _A5) is a w↵ but not an atomic w↵.

5. A3 _A5) is neither a w↵ nor an atomic w↵.

6. (A3 _A5 is neither a w↵ nor an atomic w↵.

7. A0^ is neither a w↵ nor an atomic w↵.

8. ¬A0 ^A1 _A2 is neither a w↵ nor an atomic w↵ since it is ambiguous
as to which is grouped with which.

9. ¬A0 ^ (A1 _A2) is a w↵ but not an atomic w↵.

10. (¬A0 ^A1) _A2 is a w↵ but not an atomic w↵.

11. ¬A0 v (A1 _A2) is a w↵ but not an atomic w↵.

If we take the case where all of A0, A1, A2, A3, A5 and A100 are false then
all the w↵s in this exercise are false.
If we take the case where all of A1, A2, A3, A5 and A100 are true but A0 is
false then all the w↵s in this exercise are true.

Solution C.103. [Of Exercise 6.2] Let A � B be � and B � A be  . Here
is a truth table for the desired formulas.

A B �  � ^ � _ ¬� ¬ ¬� ^ ¬ 
T T T T T T F F F
T F F T F T T F F
F T T F F T F T F
F F T T T T F F F

(A � B)_ (B � A) is a tautology and ¬(A � B)^¬(B � A) is a contradic-
tion, whereas (A � B) ^ (B � A) is neither.
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Solution C.104. [Of Exercise 6.3] Let A � B be � and ¬B � ¬A be  .
Here is a truth table for the desired formulas:

A B � ¬A ¬B  � v  ¬A v � B v �
T F F F T F T T T
T F F F T F T T T
F T T T F T T T T
F F T T F T T T T

All the formulas given in this exercise are tautologies.

Solution C.105. [Of Exercise 6.4] The proofs are all truth tables.

1.

A A ^A A ^A v A
T T T
F F T

2.

A B A ^B B ^A A ^B v B ^A
T T T T T
T F F F T
F T F F T
F F F F T

3. Let � be A ^ (B ^ C) v (A ^B) ^ C.

A B C B ^ C A ^ (B ^ C) A ^B (A ^B) ^ C �
T T T T T T T T
T T F F F T F T
T F T F F F F T
T F F F F F F T
F T T T F F F T
F T F F F F F T
F F T F F F F T
F F F F F F F T

Solution C.106. [Of Exercise 6.5] The proofs are all truth tables.
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1. Let � be A ^ (B _ C) v (A ^B) _ (A ^ C).

A B C B _ C A ^ (B _ C) A ^B A ^ C (A ^B)_ �
(A ^ C)

T T T T T T T T T
T T F T T T F T T
T F T T T F T T T
T F F F F F F F T
F T T T F F F F T
F T F T F F F F T
F F T T F F F F T
F F F F F F F F T

2. Let � be A _ (B ^ C) v (A _B) ^ (A _ C). Then, � is a tautology.

A B C B ^ C A _ (B ^ C) A _B A _ C (A _B)^ �
(A _ C)

T T T T T T T T T
T T F F T T T T T
T F T F T T T T T
T F F F T T T T T
F T T T T T T T T
F T F F F T F F T
F F T F F F T F T
F F F F F F F F T

Solution C.107. [Of Exercise 6.6.] Let A be x 2 T and B be x 2 R. Below
we will use the tautologies x 2 S v x 2 S ^ x 2 S, ¬(A _ B) v ¬A ^ ¬B,
Then

x 2 S \ (T [R) , x 2 S and x 62 (T [R)

, x 2 S and not x 2 (T [R)

, x 2 S and not ((x 2 T ) or (x 2 R))

, x 2 S and not (A or B)

, x 2 S and ¬(A _B)

, x 2 S and ¬A ^ ¬B
, (x 2 S ^ x 2 S) ^ ¬A ^ ¬B
, (x 2 S ^ ¬A) ^ (x 2 S ^ ¬B)

, (x 2 S ^ x 62 T ) ^ (x 2 S ^ x 62 R)

, (x 2 S \ T ) ^ (x 2 S \R)

, x 2 (S \ T ) \ (S \R).
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Solution C.108. [Solution of Exercise 6.7.]

1. ⌃k=0
k=00⇥ 0! = 0 = (0 + 1)!� 1. Hence the property holds for 0.

2. Assume IH which is that the property holds for n 2 N. We will show
the property for n+ 1.
⌃k=n+1

k=0 k ⇥ k! = ⌃k=n

k=0k ⇥ k! + (n + 1) ⇥ (n + 1)! =IH (n + 1)! � 1 +
(n+ 1)⇥ (n+ 1)! = (n+ 1)!⇥ (n+ 2)� 1 = (n+ 2)!� 1.

Hence by induction, for every n 2 N, ⌃k=n

k=0k ⇥ k! = (n+ 1)!� 1.

Solution C.109. [Solution of Exercise 6.8.]

1. If n = 0 then a2 = a1 + a0 = 1 = 1 + 0 = 1 + ⌃k=0
k=0ak.

2. Assume IH which is that the property holds for all i  n 2 N. We will
show the property for n+ 1.
an+1+2 = an+1 + an+2 =IH an+1 + 1 + ⌃k=n

k=0ak = 1 + ⌃k=n+1
k=0 ak.

Hence, by strong induction, for all n 2 N,

an+2 = 1 + ⌃k=n

k=0ak.
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C.7 Solutions for Chapter 7

Solution C.110. [Of Exercise 7.2.]

1. Applying repeated/alternate subtraction (anthyphairesis) to 7 and 5
gives:

ri = qi ⇥ ri+1 + ri+2.
7 = 1 ⇥ 5 + 2.

i = 0 r0 = q0 ⇥ r1 + r2.
5 = 2 ⇥ 2 + 1.

i = 1 r1 = q1 ⇥ r2 + r3.
2 = 2 ⇥ 1 + 0.

i = 2 r2 = q2 ⇥ r3 + r4.

Since the one before the final r in the series is 1 (r3 = 1), 7 and 5 are
relatively prime.

2. Applying repeated/alternate subtraction (anthyphairesis) to 212 and
24 gives:

ri = qi ⇥ ri+1 + ri+2.
212 = 8 ⇥ 24 + 20.

i = 0 r0 = q0 ⇥ r1 + r2.
24 = 1 ⇥ 20 + 4.

i = 1 r1 = q1 ⇥ r2 + r3.
20 = 5 ⇥ 4 + 0.

i = 2 r2 = q2 ⇥ r3 + r4.

Since the one before the final r in the series is 1 (r3 = 4 6= 1), it is the
GCD of 212 and 24.

Solution C.111. [Of Exercise 7.3.] Assume b < a and let r0 = a and r1 = b.
Using anthyphairesis to calculate the GCD of a, b goes as follows:

ri = qi ⇥ ri+1 + ri+2. [q0, . . . , qi]
i = 0 r0 = q0 ⇥ r1 + r2. [q0]
i = 1 r1 = q1 ⇥ r2 + r3. [q0, q1]
:: :: :: :: :: :: :: :: ::
i = n rn = qn ⇥ rn+1 + rn+2. [q0, q1, . . . , qn]

The process stops when rn+2 = 0. If rn+1 = 1 then a and b are relatively
prime to one another. Else, rn+1 is the GCD of a, b.
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Using anthyphairesis to calculate the GCD of ma, mb goes as follows:

mri = qi ⇥ mri+1 + mri+2. [q0, . . . , qi]
i = 0 mr0 = q0 ⇥ mr1 + mr2. [q0]
i = 1 mr1 = q1 ⇥ mr2 + mr3. [q0, q1]
:: :: :: :: :: :: :: :: ::
i = n mrn = qn ⇥ mrn+1 + mrn+2. [q0, q1, . . . , qn]

Again here, the process stops when mrn+2 = 0. Since mrn+1 6= 1, a and b
are not relatively prime to one another and mrn+1 is the GCD of ma, mb.

Hence we see that the characterising sequences for a/b and ma/mb are
the same, but at every stage, the remainders of ma/mb are m times the
remainders of a/b. The GCD of ma/mb is m times that of a/b if a, b have
a GCD. Else it is m.

Solution C.112. [Of Exercise 7.4.]

1) The ratio of 15 to 4 is characterised by the sequence [3, 1, 3] as is shown
in the geometric diagram below:

4

4 4 4 1 1 1

1

3

315/4

2) The ratio of 20 to 7 is characterised by the sequence [2, 1, 6] as is shown
in the geometric diagram below:

7

7 7

1 1 1 1 1 1
1

6

6

20/7
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3) The ratio of 15 to 10 is characterised by the sequence [1, 2] as is shown
in the geometric diagram below:

10

10

5

5

5

515/10

4) The ratio of 3 to 2 is characterised by the sequence [1, 2] as is shown
in the geometric diagram below:

2

2

1

1

1

13/2

5) The ratio of 7 to 2 is characterised by the sequence [3, 2] as is shown
in the geometric diagram below:

2

2

2 2 1
1
1

17/2
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6) The ratio of 14 to 4 is characterised by the sequence [3, 2] as is shown
in the geometric diagram below:

4

4

4 4 2

2

2

214/4

Solution C.113. [Of Exercise 7.5.]

1. The ratio of
p
3 to 1 is calculated as follows:

... 2�
p
3

p
3� 1

p
3� 1

1

1

p
3

Figure C.1: Ratio of
p
3 to 1

• Let r0 =
p
3 and r1 = 1. Since 1 <

p
3 < 2 then 0 <

p
3� 1 < 1.

Let q0 = 1 and r2 =
p
3� 1. Note 0 < r2 < r1. We have

r0 = q0 ⇥ r1 + r2 or
r0
r1

= q0 +
r2
r1

.

p
3 = 1 + (

p
3� 1) or

p
3

1
= 1 +

p
3� 1

1
= 1 +

1
1p
3� 1
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• Recall that we need to find ri+2, qi for i � 0 such that 0 < . . . <
ri+2 < ri+1 < ri < . . . < r2 < r1 < r0 and ri = qi ⇥ ri+1 + ri+2.
I.e.,

ri
ri+1

= qi +
1

ri+1

ri+2

.

Let us calculate
ri+1
ri+2

and qi for i � 1.

• Let i = 1. Then r1
r2 = 1p

3� 1
= 1+( 1p

3� 1
�1) = 1+ 2�

p
3p

3� 1
=

1 + 1p
3� 1

2�
p
3

= 1 + 1
(
p
3� 1)(

p
3 + 1)

(2�
p
3)(
p
3 + 1)

= 1 + 1
2p
3� 1

Let q1 = 1, r3 = 2�
p
3 and note that 0 < r3 < r2. We have:

r1 = q1 ⇥ r2 + r3 or
r1
r2

= q1 +
1
r2
r3

.

1 = 1⇥ (
p
3� 1) + (2�

p
3) or

1p
3� 1

= 1 +
1
2p
3� 1

.

Hence so far:

r1
r2

=
1p
3� 1

= 1 +
1
2p
3� 1

= 1 +
1
r2
r3

.

•

r2
r3

=
2p
3� 1

=
2(
p
3 + 1)

(
p
3� 1)(

p
3 + 1)

=
p
3 + 1 = 2 +

1
1p
3� 1

.

Hence
r2
r3

= 2 +
1
r1
r2

.

Now we see that the process is infinite as follows:

r1
r2

= 1 +
1
r2
r3

= 1 +
1

2 +
1

1 +
1
r2
r3

.
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So the ratio of
p
3 to 1 is characterised by the repeating (after 1)

infinite sequence [1, 1, 2, 1, 2, 1, 2, ...] which we also write as [1, 1, 2].

Figure C.1 shows the diagram version.

2. The ratio of
p
5 to 1 is calculated as follows:

1

1

p
5� 2

p
5� 2

p
5� 2

p
5� 2

p
5� 2

....

1

p
5

Figure C.2: Ratio of
p
5 to 1

• Let r0 =
p
5 and r1 = 1 and q0 = 2. Note 0 < r2 < r1. We have

r0 = q0 ⇥ r1 + r2 or
r0
r1

= q0 +
r2
r1

.

p
5 = 2 + (

p
5� 2) or

p
5

1
= 2 +

p
5� 2

1
= 2 +

1
1p
5� 2

• Recall that we need to find ri+2, qi for i � 0 such that 0 < . . . <
ri+2 < ri+1 < ri < . . . < r2 < r1 < r0 and ri = qi ⇥ ri+1 + ri+2.
I.e.,

ri
ri+1

= qi +
1

ri+1

ri+2

.

Let us calculate
ri+1
ri+2

and qi for i � 1.

• Let i = 1. Then r1
r2 = 1p

5� 2
= 4 + 9� 4

p
5p

5� 2
= 4 +

(9� 4
p
5)(
p
5 + 2)

(
p
5� 2)(

p
5 + 2)

= 4 + (
p
5 � 2) = 4 + 1

1p
5� 2

= 4 + 1
r1
r2

=
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4 + 1

4 +
1
r1
r2

= ...

Now we see that the process is infinite.

So the ratio of
p
5 to 1 is characterised by the repeating (after 2)

infinite sequence [2, 4, 4, 4, ...] which we also write as [2, 4].

Figure C.2 shows the diagram version.

3. The ratio of
p
7 to 1 is calculated as follows:

...

3�
p
71

1

p
7� 2

p
7� 2

3�
p
7

1

p
7

Figure C.3: Ratio of
p
7 to 1

• Let r0 =
p
7 and r1 = 1. Recall that we need to find ri+2, qi for

i � 0 such that 0 < . . . < ri+2 < ri+1 < ri < . . . < r2 < r1 < r0
and ri = qi ⇥ ri+1 + ri+2. I.e.,

ri
ri+1

= qi +
1

ri+1

ri+2

.

Let us calculate
ri+1
ri+2

and qi for i � 1.

• Let q0 = 2 and r2 =
p
7�2. Note 0 < r2 < r1 and r0 = q0⇥r1+r2.

Now,

p
7 = 2 + (

p
7� 2) or

p
7

1
= 2 +

p
7� 2

1
= 2 +

1
1p
7� 2
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• Note that r1
r2 = 1p

7� 2
=

p
7 + 2

(
p
7� 2)(

p
7 + 2)

=
p
7 + 2
3 .

Let q1 = 1 and r3 = 3 �
p
7. Let q2 = 1 and r4 = 2

p
7 � 5. Let

q3 = 1 and r5 = 8� 3
p
7. Let q4 = 4 and r6 = 14

p
7� 37.

We have for 0  i  4:

ri = qi ⇥ ri+1 + ri+2 i.e.,
ri

ri+1
= qi +

1
ri+1

ri+2

.

Now, it is easy to show that
p
7 + 2
3 = 8� 3

p
7

14
p
7� 37

. Hence

r5
r6

=
r1
r2

Hence we see that this process is infinite with a chracterizing
sequence of the ration

p
7 to 1 being [2, 1, 1, 1, 4, 1, 1, 1, 4, ...] =

[2, 1, 1, 1, 4].

Figure C.3 shows the diagram version.

Solution C.114. [Of Exercise 7.6] The solutions are respectively; 1, 2, 3
and 4.

Solution C.115. [Of Exercise 7.7.] We only do the first two cases since the
remaining cases are similar to above.

1. For ACF and AFD: Since AF is the bisector of \CAD and CA = AD,
then the two triangles are similar. The angles are as follows: \CAF =
\FAD = 22.5�, \FDA = \FCA = 90�. \CFA = \DFA = 67.5�.

2. For BFD and BCA: Since ACF and AFD are similar, then \FDB
is a right angle. Hence, \FDB = 90�. Since \FBD = 45� then
\BFD = 45� and the triangles BFD and BCA have the same angles.
Hence, they are similar.

Solution C.116. [Of Exercise 7.8.]

1. Since Theorem 7.2.5 already dealt with the case of a square of area
3, we assume n > 0. Let p be a number of the form 4n + 3. Note
that p�1

2 = 2n + 1 and p+1
2 = 2n + 2. The square of area p units has

a side of length
p
p. Now consider a right triangle whose legs have

lengths
p
p and p�1

2 , which will mean by the Pythagorean Theorem,

that the hypotenuse has length p+1
2 . We will use this triangle to prove
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2n+ 1

2n+ 2
p
4n+ 3

(2n+ 1)b

(2n+ 2)ba

Figure C.4: Diagram for the proof of irrationality of
p
4n+ 3

the irrationality of
p
p. Assuming commensurability of

p
p with the

unit, there must be a right triangle whose legs have lengths a and
(2n+1)b and whose hypotenuse has length (2n+2)b where a and b are
positive integers; see Figure C.4. Now since the hypotenuse has length
(2n+2)b, it is even, and so by Theorem 2.5.5, both legs are even. This
means that a and (2n+1)b (and hence b) are all even. Thus, we can get
a smaller triangle of the same form whose linear dimensions are half
of those of the triangle we started with. But then we have a triangle
whose legs have lengths a/2 and (2n+1)b/2 and whose hypotenuse has
length (2n+2)(b/2), or a0, (2n+1)b0 and (2n+2)b0, where a = a/2 and
b0 = b/2. Assuming that a0 and b0 are positive integers, this is, again,
a right triangle whose hypotenuse is even, and the above argument
can be repeated. Clearly, we cannot indefinitely repeat this argument.
Hence, there is no right triangle whose legs have lengths a and (2n+1)b
and whose hypotenuse has length (2n+2)b where a and b are integers.
It follows that

p
p and 1 are incommunserable.

2. Since Theorem 7.2.6 already dealt with the case of a square of area 5,
we assume n > 0. Let q be a number of the form 8n + 5. Note that
q�1
2 = 4n+ 2 and q+1

2 = 4n+ 3. The square of area q units has a side
of length

p
q. Now consider a right triangle whose legs have lengths

p
q and q�1

2 and whose hypotenuse therefore has length q+1
2 by the

Pythagorean Theorem. We will use this triangle to prove that
p
q is

irrational. Assuming commensurability of
p
q, there must be a right

triangle whose legs have lengths a and (4n+2)b and whose hypotenuse
has length (4n+3)b where a and b are positive integers; see Figure C.5.
Now b is either even or odd.
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4n+ 2

4n+ 3
p
8n+ 5

(4n+ 2)b

(4n+ 3)ba

Figure C.5: Diagram for the proof of irrationality of
p
8n+ 5

If b is even, then (4n + 3)b is even, so the hypotenuse is even, and
hence, by Theorem 2.5.5, both a and (4n+2)b are even. Then we can
construct another triangle of the same form by halving each dimension.
This cannot be repeated indefinitely, so there must be a triangle of
this form in which b is odd. It follows that (4n + 3)b is odd. Now we
may assume that a and b have no common factors, since otherwise we
can divide out these common factors, and we cannot keep doing this
indefinitely. Now, since (4n+ 3)b is odd, it is not a multiple of 4. By
Theorem 7.2.1, only one of a and (4n+ 2)b is a multiple of 4. If a is a
multiple of 4, then it is even, so (4n+3)b must be the sum of two even
squares and cannot be odd. Hence, a is not a multiple of 4, and so
(4n+2)b must be a multiple of 4, from which it follows that b is even,
contradicting its being odd. Hence, there is no right triangle whose
legs have length a and (4n + 2)b, where a and b are positive integers,
and

p
q is incommensurable with 1.

3. Let r be a number of the form 2(2n+1) (i.e., an even number which is
not a multiple of 4.) Consider a right triangle whose legs have lengths
2
p
r and r � 1 and whose hypotenuse therefore has length r + 1. We

will use this right triangle to prove that
p
r is irrational. Assuming

commensurability of
p
r, there must be a right triangle whose legs legs

have lengths 2a and (r�1)b and whose hypotenuse has length (r+1)b
where a and b are positive integers; see Figure C.6. Now if a and b
are both even, we could divide all the linear dimensions by 2, and we
cannot do this indefinitely. So we may assume that a and b are not
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4n+ 1

4n+ 32
p
2(2n+ 1)

(4n+ 1)b

(4n+ 3)b2a

Figure C.6: Diagram for the proof of irrationality of
p

2(2n+ 1)

both even. Now suppose b is even, so that a must be odd. Then b
cannot be a multiple of 4, since then the hypotenuse would also be
divisible by 4, and so by Theorem 7.2.1, 2a would also be divisible by
4, contradicting the oddness of a. Hence, b is not divisible by 4. Then
neither are (4n + 3)b (the hypotenuse) and (4n + 1)b divisible by 4,
from which it follows by Theorem 7.2.1 that 2a is divisible by 4, again
contradicting the oddness of a. Hence, b cannot be even, so it must
be odd. Then, as before, (4n + 3)b and (4n + 1)b are odd, and hence
not divisible by 4, so by Theorem 7.2.1, 2a is divisible by 4, and so a
is even. Say a = 2c. Now the Pythagorean condition implies that

(2a)2 = ((4n+ 3)b)2 � ((4n+ 1)b)2,

and substituting 2c for a, this gives us

16c2 = 8(2n+ 1)b2.

This is equivalent to

2c2 = (2n+ 1)b2.

Now since b is odd, (2n+1)b2 is odd, so it cannot equal 2c2. It follows
that there is no right triangle whose legs are 2a and (4n + 1)b and
whose hypotenuse is (4n+ 3)b where a and b are positive integers.

Solution C.117. [Of Exercise 7.9.] We will prove that a positive integer
has a rational nth root if and only if it is a n-th power of a positive integer.
It is clear that if a positive integer is an nth power then it has a rational nth
root, namely the positive integer itself, so we need only prove the converse.
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Suppose k is a positive integer with a rational nth root, say p
q . Then p and

q are positive integers, and

pn

qn
= k,

or

pn = kqn.

Now consider the prime factorisations of the two sides. Since pn is an nth
power, the number of times each prime number occurs in its prime factori-
sation is a multiple of n. Similarly, the number of times each prime number
occurs in qn is a multiple of n. Now since the number of times each prime
factor occurs in kqn is the same as the number of times it occurs in pn, the
number of times it occurs in k is the number of times it occurs in pn minus
the number of times it occurs in qn. But this means that the number of times
each prime number occurs in the prime factorisation of k is the di↵erence of
two multiples of n and is therefore a multiple of n. It follows that k is an
nth power of a positive integer.

Solution C.118. [Of Exercise 7.10.]

1. Let the angle be \BAC. From A draw the arc of a circle to bisect
both AB and AC resp. at D and E. By Proposition 1, Book I, we can
construct the equilateral triangle DEF as seen in the following figure.
Since AD = AE and DF = EF then the two triangles ADF and AFE
are similar and hence \BAF = \FAC. Hence AF is the bisector of
the angle \BAC.
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E

A B

C

D

F

2. Let the line be AB. By Proposition 1, Book I, we can construct the
equilateral triangle ABC as in the following picture. By 1 above, let
CD bisect the angle \ACB. Since AC = BC, \ACD = \DCB and
since CD is common between the triangles ADC and CDB, we get
that AD = DB. Furthermore, since \DAC = \DBC and \ACD =
\DCB, we get \ADC = \BDC and hence by Definition 10, book
1, each of \ADC and \BDC is right angle. Therefore, CD is the
perpendicular bisector of AB.
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C

DA B

Here is another way of doing the proof which we leave to the student
to fill in the remaining details.
Let AB be the given finite straight line. It is required to construct the
perpendicular bisector of AB.

A B

F

E

C

D

Describe the circle BCD with centre A and radius AB. Again describe
the circle AFE with centre B and radius BA. [Post.3]
Join the straight lines CF . [Post.1]

Now, CF is the perpendicular bisector of AB. The proof will need
some other propositions along the way from Proposition 1 that was
proved in Section 7.3. We leave this to the reader.

3. Let AB be the line and C the point. From B, draw the circle with
radius BC. From A draw the circle with radius AC. Let D be the
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other intersection of these circles. Let F be the intersection of CD and
AB. Since the triangles ACB and ADB are similar then \ABC =
\ABD and hence the triangles BCF and BDF are similar. Hence
\BFC = \BFD and by Definition 10, book 1, \BFC is right angle.
See the picture below:

C

A D

B
F
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C.8 Solutions for Chapter 8

Solution C.119. [Of Exercise 8.1.] We need to prove that if c is a value or
1 or �1, and if

lim
x!c

f(x) = l and lim
x!c

g(x) = m,

then

1.
lim
x!c

[f(x)� g(x)] = l �m.

2. If m 6= 0 then

lim
x!c

f(x)

g(x)
=

l

m
.

3. If n is any positive integer, then

lim
x!c

[f(x)]n = ln.

4. If p, q are positive integers and l � 0 whenever q is even,

lim
x!c

[f(x)]
p
q = l

p
q .

1. We have

limx!c[f(x)� g(x)] =

limx!c[f(x) + (�1)g(x)] =by LF3

[limx!c f(x)] + [limx!c(�1)g(x)] =by LF4

l + [limx!c(�1)][limx!c g(x)] =by LF2

l + (�1)m =
l �m.

2. We have

limx!c

f(x)
g(x)

= limx!c

✓
f(x). 1

g(x)

◆

= (limx!c f(x))

✓
limx!c

1
g(x)

◆
by LF4

= l 1m. by LF5

= l
m.
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3. By induction on n.
Basis: If n = 1, we have [f(x)]n = [fx)]1 = f(x) and ln = l1 = l, and
the result follows immediately by hypothesis.
Induction step: Assume that

lim
x!c

[f(x)]k = l.

Then we have

limx!c[f(x)]k+1 = limx!c[f(x)]kf(x)
= (limx!c[f(x)]k)(limx!c f(x)) by LF4
= lkl by the induction hypothesis
= lk+1.

4. We have

limx!c[f(x)]
p
q = limx!c

⇣
q
p
f(x)

⌘p

=
⇣
limx!c

q
p
f(x)

⌘p
by the above item 3.

= ( q
p
l)p by LF6

= l
p
q .

Solution C.120. [Of Exercise 8.2]

c�: We prove that: If c is a value and if

lim
x!c�

f(x) = l and lim
x!c�

g(x) = m,

then

1.
lim

x!c�
[f(x)� g(x)] = l �m.

2. If m 6= 0 then

lim
x!c�

f(x)

g(x)
=

l

m
.

3. If n is any positive integer, then

lim
x!c�

[f(x)]n = ln.

4. If p, q are positive integers and l � 0 whenever q even, then

lim
x!c�

[f(x)]
p
q = l

p
q .
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The proof is as follows:

1. We have limx!c� [f(x)� g(x)]

= limx!c� [f(x) + (�1)g(x)]
= [limx!c� f(x)] + [limx!c(�1)g(x)] by LF3
= l + [limx!c�(�1)][limx!c g(x)] by LF4
= l + (�1)m by LF2
= l �m.

2. We have limx!c�
f(x)
g(x)

= limx!c� f(x). 1
g(x)

= (limx!c� f(x))

✓
limx!c�

1
g(x)

◆
by LF4

= l 1m. by LF5

= l
m.

3. By induction on n.
Basis: If n = 1, we have [f(x)]n = [fx)]1 = f(x) and ln = l1 = l,
and the result follows immediately by hypothesis.
Induction step: Assume that

lim
x!c�

[f(x)]k = l.

Then we have limx!c� [f(x)]
k+1

= limx!c� [f(x)]
kf(x)

= (limx!c� [f(x)]
k)(limx!c� f(x)) by LF4

= lkl by the induction hypothesis
= lk+1.

4. We have limx!c� [f(x)]
p
q

= limx!c�

⇣
q
p
f(x)

⌘p

=
⇣
limx!c�

q
p
f(x)

⌘p
by the above item 3.

= ( q
p
l)p by LF6

= l
p
q .
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c+: Exactly like that of c�, just replace every c� by c+.

Note that throughout this exercise, we only used properties LF2..LF6 of
Definition 8.1.1.

Solution C.121. [Of Exercise 8.3.]

LF13 Let f(x) = x. Since n is a positive integer, and by LF1 limx!c f(x) =
c, we get by LF12.3 that limx!c xn = cn.

LF14 By LF2, limx!c a = a. By LF13, limx!c xn = cn. Hence, by LF4,
limx!c axn = (limx!c a)(limx!c xn) = acn.

LF15 Let p(x) = anxn+an�1xn�1+ . . .+a1x+a0 where for all 0  i  n, ai
is a constant (and of course for all 1  i  n, i is a positive integer). By
LF14, limx!c aixi = aici for all 0 < i  n. By LF2, limx!c a0 = a0.
Hence by n repetitions of LF3,

limx!c p(x)
= limx!c anxn + an�1xn�1 + . . .+ limx!c a1x+ limx!c a0
= ancn + an�1cn�1 + . . .+ a1c+ a0 = p(c).

LF16 First we need to prove that if for all x, q(x) 6= 0 then limx!c q(x) 6= 0.
By LF15, we have limx!c q(x) = q(c). Since for all x, q(x) 6= 0, we
have q(c) 6= 0 and limx!c q(x) 6= 0. Then:

lim
x!c

r(x) = lim
x!c

p(x)

q(x)
=LF12.2

lim
x!c

p(x)

lim
x!c

q(x)
=LF15 p(c)

q(c)
= r(c).

Solution C.122. [Of Exercise 8.4.] Recall that the area of a triangle is 1
2bh

where b is the base of the triangle and h is its height. Hence, the area of

the triangle OCD is 1
2 sinx and the area of the triangle OAB is 1

2 tanx.

Furthermore, the area of the slice of the square OBC is x
2 . Note that

1
2 sinx  x

2 
1
2 tanx. Recall that tanx = sinx

cosx . Hence sinx  x  sinx
cosx .

Note that we can add absolute values to all sides without changing anything.

Hence | sinx|  |x|  | sinx|
| cosx| . Hence

| sinx|
| sinx| 

|x|
| sinx| 

1
| cosx| . Hence

1  |x|
| sinx| 

1
| cosx| . I.e., | cosx|  | sinx|

|x|  1. Whether x is positive or

negative, as x approaches 0, cosx is positive and sinx and x have the same

sign. Hence, cosx  sinx
x  1. Since limx!0 cosx = 1 and limx!0 1 = 1, by

LF7, limx!0
sinx
x = 1.
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Solution C.123. [Of Exercise 8.5.]

LF18 limx!0
tanx
x = limx!0

1
x
sinx
cosx = limx!0(

1
cosx

sinx
x ) =LF4

(limx!0
1

cosx )(limx!0
sinx
x ) =LF5 ( 1

lim
x!0

cosx )(limx!0
sinx
x ) =LF17

1
lim
x!0

cosx = 1
1 = 1.

LF19 limx!0
1� cosx

x = limx!0
(1� cosx)(1 + cosx)

x(1 + cosx)
=

limx!0
1� cos2 x
x(1 + cosx)

= limx!0
sin2 x

x(1 + cosx)
=

limx!0(
sinx
x )

✓
sinx

(1 + cosx)

◆
=LF4

limx!0(
sinx
x ) limx!0

✓
sinx

(1 + cosx)

◆
=LF17

limx!0

⇣
sinx

1 + cosx

⌘
=LF12.2

lim
x!0

sinx

lim
x!0

(1 + cosx)
=LF12,LF3

0
2 = 0.

LF20 limx!0
1� cosx

x2 = limx!0
(1� cosx)(1 + cosx)

x2(1 + cosx)
=

limx!0
1� cos2 x

x2(1 + cosx)
= limx!0

sin2 x
x2(1 + cosx)

=LF4

limx!0(
sinx
x ) limx!0(

sinx
x )

⇣
1

1 + cosx

⌘
=LF4

limx!0(
sinx
x ) limx!0(

sinx
x ) limx!0

⇣
1

1 + cosx

⌘
=LF17

limx!0

⇣
1

1 + cosx

⌘
=LF5 1

lim
x!0

(1 + cosx)
=LF3 1

2 .

Solution C.124. [Of Exercise 8.6.] We need to prove that if k > 0 and if,
for each 1  i  k,

lim
n!1

ai,n = ai,

then

lim
n!1

 
kX

i=1

ai,n

!
=

kX

i=1

ai.

The proof is by mathematical induction on k. Basis: k = 1. Then

lim
n!1

 
kX

i=1

ai,n

!
= lim

n!1
a1,n
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and
kX

i=1

ai = a1,

and so the conclusion follows by the hypothesis.
Inductive step. k = m+ 1. By the induction hypothesis,

lim
n!1

 
mX

i=1

ai,n

!
=

mX

i=1

ai.

Then

limn!1

⇣P
m+1
i=1 ai,n

⌘
= limn!1(

P
m

i=1 ai,n + am+1,n)

=LS2 limn!1
P

m

i=1 ai,n + limn!1 am+1,n

=IH & Hyp. P
m

i=1 ai + am+1

=
P

m+1
i=1 ai.

Solution C.125. [Of Exercise 8.7.] We need to prove that

1. If k is any constant value and if

lim
n!1

an = a,

then
lim
n!1

kan = ka.

2. If
lim

n!1
an = a, and lim

n!1
bn = b,

then
lim
n!1

(an � bn) = a� b.

We do this as follows:

1. We have

limn!1 kan = (limn!1 k)(limn!1 an) by LS3
= k(limn!1 an) by LS1
= ka.

2. We have

limn!1(an � bn) = limn!1[an + (�1)bn]
= limn!1 an + limn!1(�1)bn by LS2
= limn!1 an + (�1)(limn!1 bn) by above
= a+ (�1)b
= a� b.



C.8. SOLUTIONS FOR CHAPTER 8 81

Solution C.126. [Of Exercise 8.8.] Since b 6= 0, we have by LS4

lim
n!1

1

bn
=

1

b
.

Hence,

limn!1
an
bn

= limn!1 an
1
bn

= (limn!1 an)(limn!1
1
bn

) by LS3

= a1b
= a

b .

Solution C.127. [Of Exercise 8.9.]

LS21. By LS17, limn!1�n = �1 i↵ limn!1 n = +1. Since by LS11,
limn!1 n = +1, we have limn!1�n = �1.

LS22. Let c = �b. We have limn!1�bn =LS3

(limn!1�1)(limn!1 bn) =LS1 �(limn!1 bn) = �b = c. Hence by
LS12, limn!1(an � bn) = ±1.

LS23. By LS17, limn!1�bn = ⌥1. Hence by LS12, limn!1 an�bn = ⌥1.

LS24. By LS17, limn!1�bn = ±1. Hence by LS12, limn!1(an � bn) =
±1.

LS25. The proof is by mathematical induction on k. Basis: k = 1. Then

lim
n!1

 
kY

i=1

ai,n

!
= lim

n!1
a1,n

and
kY

i=1

ai = a1,

and so the conclusion follows by the hypothesis.

Inductive step. k = m+ 1. By the induction hypothesis,

lim
n!1

 
mY

i=1

ai,n

!
=

mY

i=1

ai.
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Then limn!1

⇣Q
m+1
i=1 ai,n

⌘

= limn!1 (
Q

m

i=1 ai,n) (am+1,n)
= limn!1 (

Q
m

i=1 ai,n) (limn!1 am+1,n) by LS3
= (

Q
m

i=1 ai) (am+1) by IH and Hyp.
=

Q
m+1
i=1 ai.

LS26. The proof is by mathematical induction on k.

Basis: k = 1. Then limn!1 an = a by hypothesis.

Inductive step. k = m+1. By the induction hypothesis, limn!1 am
n

=

am. Then limn!1 am+1
n

=LS3 (limn!1 am
n
) (limn!1 an) =IH, Hyp.

ama = am+1.

LS27. Assume limn!1 an = ±1 and limn!1 bn = b < 0. Then
limn!1�bn =LS3 limn!1(�1) limn!1 bn =LS1 �1 ⇥ limn!1 bn =
�b > 0. Hence by LS13, limn!1�(anbn) = limn!1 an(�bn) = ±1.
By LS17, limn!1(anbn) = ⌥1. The case limn!1 an = a < 0 and
limn!1 bn = ±1, is similar.

LS28. By LS17, limn!1�bn = ±1. Hence limn!1�(anbn) =

limn!1 an(�bn) =LS14 1 and by LS17 limn!1(anbn) = �1.

LS29. By LS4, limn!1
1
bn

= 1
b > 0. Hence by LS13, limn!1

an
bn

=

limn!1 an
1
bn

= ±1.

LS30. By LS4, limn!1
1
bn

= 1
b < 0.

Now limn!1� 1
bn

=LS3 (limn!1�1)
⇣
limn!1

1
bn

⌘
=LS1 �1

b > 0.

Hence by LS13, limn!1�an
bn

= limn!1 an
⇣
� 1
bn

⌘
= ±1. Finally, by

LS17, limn!1
an
bn

= ⌥1.

LS31. Since an  bn for all n > N , we have an � bn  0 for all n > N . By
LS22, limn!1(an � bn) = a� b and by LS5, a� b  0. Hence a  b.

LS32. By LS19, limn!1�an = 0. Since |bn|  an for all n > N , then for all
n > N , �an  bn  an. Hence by LS9, limn!1 bn exists. By LS31,
limn!1 bn  0 and 0  limn!1 bn. Hence, limn!1 bn = 0. By LS6,
limn!1 |bn| = 0.

LS33. By LS9, limn!1 bn exists. By LS31, limn!1 bn  l and l 
limn!1 bn. Hence, limn!1 bn = l.
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LS34. Let bn = a for all n. By LS1, limn!1 bn = a.

– If limn!1 an = a then by LS20, limn!1(an � bn) = a� a = 0.

– If limn!1(an � bn) = 0 then limn!1 an exists for otherwise
if limn!1 an = ±1 then by LS22, limn!1(an � bn) = ±1
contradiction. By LS20, limn!1(an�bn) = (limn!1 an)�a = 0
and hence limn!1 an = a.

Solution C.128. [Of Exercise 8.10.] \ABD = \BCA = 60�.
\ADB = \ADC = 90�. \BAD = \DAC = 30�.
Moreover, BD = DC = l

2 . Since AB = BC = AC = l, then

AD2 = l2 � ( l2)
2 = 3l2

4 . Hence, AD = l
p
3

2 .

The area of ABC = 1
2(AD)(BC) = 1

2
l
p
3

2 l =
p
3
4 l2.

The area of the square ADEF = ( l
p
3

2 )2 = 3l2
4 .

Similarly, \A0B0D0 = \B0C 0A0 = 60�. \A0D0B0 = \A0D0C 0 = 90�.
\B0A0D0 = \D0A0C 0 = 30�.
Moreover, B0D0 = D0C 0 = 2l

2 = l. Since A0B0 = B0C 0 = A0C 0 = 2l, then

A0D02 = 4l2 � l2 = 3l2. Hence, A0D0 =
p
3l.

The area of A0B0C 0 = 1
2(A

0D0)(B0C 0) = 1
2
p
3l(2l) =

p
3l2.

The area of the square A0D0E0F 0 = (
p
3l)2 = 3l2.

Since the corresponding angles of ABC and A0B0C 0 are equal, then these
triangles are similar.
Also, since all angles of both squares ADEF and A0D0E0F 0 are right angles,
and since each side of ADEF is equal to half of any side of A0D0E0F 0, the
two squares are similar.

Finally, the area ratio area ABC
area A0B0C 0 of the triangles ABC to A0B0C 0 is equal

( AB
A0B0 )

2 = (12)
2 = ( AD

A0D0 )
2.

And also, the area ratio area ADEF
area A0D0E0F 0 of the squares ADEF to A0D0E0F 0

is equal ( AD
A0D0 )

2 = (12)
2.
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C.9 Solutions for Chapter 9

Solution C.129. [Of Exercise 9.1.] We will show that for any " > 0,
|l1 � l2| < ". Let " > 0. By definition, there are M1 and M2 such that
if n > M1 then |xn � l1| < "/2 and if n > M2 then |xn � l2| < "/2. Let
M = max{M1,M2}. If n > M then |xn � l1| < "/2 and |xn � l2| < "/2. Let
n > M . Now, |l1 � l2| = |l1 � xn + xn � l2|  |xn � l1|+ |xn � l2| < ".

Solution C.130. [Of Exercise 9.2.]

LS6.

limn!1 an = 0,
for every " > 0, there is an N such that for each n > N , |an| < ",
for every " > 0, there is an N such that for each n > N , ||an|| < ",
limn!1 |an| = 0.

LS7. Suppose limn!1 an = 0. Let bn be defined for n > k (for some k > 0),
and let there be a g, independent of n, such that |bn|  g for n > k.

Let " > 0. By definition, there is N 0 such that such that for each
n > N 0, |an| < "

g . Let N = max{N 0, k}. For each n > N , we have

|anbn| = |an||bn| < "
g g = ". Hence limn!1(anbn) = 0.

LS16. Assume limn!1 an = 1 and for all n > N for some N , we have
an  bn. Let M > 0. By definition, there is an N such that for all
n > N , an > M . Hence for all n > N , bn � an > M and by definition,
limn!1 bn =1.

LS18. We need to prove that if k > 0 and if, for each 1  i  k,

lim
n!1

ai,n = ai,

then

lim
n!1

 
kX

i=1

ai,n

!
=

kX

i=1

ai.

Let k > 0 and " > 0. By definition, for each 1  i  k, there is Ni such
that such that for each n > Ni, |ai,n�ai| < "

k . Let N be the maximum

of N1, N2, · · · , Nk. Then, for each n > N , |
P

k

i=1 ai,n �
P

k

i=1 ai| <=

|
P

k

i=1(ai,n � ai)| 
P

k

i=1 |ai,n � ai| < k "k = ".
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LS19. We need to prove that:
If k is any constant value and if

lim
n!1

an = a,

then
lim

n!1
kan = ka.

Let " > 0. By definition, for each there is N such that such that for
each n > Ni, |an � a| < "

k . Hence, for each n > Ni, |kan � ka| =
k|an � a| < k "k = ". Hence, limn!1 kan = ka.

LS20. We need to prove that:
If

lim
n!1

an = a, and lim
n!1

bn = b,

then
lim
n!1

(an � bn) = a� b.

Let " > 0. By definition, there are N1 and N2 such that such that for
each n > N1, |an�a| < "

2 and for each n > N2, |bn�b| < "
2 . Let N be

the maximum of N1, N2. Then, for each n > N , |an � bn � (a� b)| 
|an � a|+ |bn � b| < "

2 + "
2 = ". Hence, limn!1(an � bn) = a� b.

LS21. Let M < 0 and a natural number N such that N � �M . Then, for
each n > N , an = �n < �N M . Hence, limn!1�n = �1

LS22. We need to prove that:
If limn!1 an = ±1 and limn!1 bn = b, then

lim
n!1

(an � bn) = ±1.

1. The hypotheses are limn!1 an = 1 and limn!1 bn = b. By
the hypotheses,

(a) for every M > 0, there is N such that for n > N , an > M ,

(b) for every ✏ > 0, there is N such that for n > N , |bn � b| < ✏.

Let M > 0 be given. Then there are N1 and N2 such that

(a) For n > N1, an > M + |b|+ 1; and

(b) For n > N2, |bn � b| < ✏, where if b = 0, ✏ = 1
2 and if b 6= 0,

✏ is the minimum of 1
2 and |b|.
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Let N be the maximum of N1 and N2. Then for n > N ,

an � bn > M + |b|+ 1� bn.

This is clearly greater than M if bn is 0 or negative, so suppose bn
is positive. Then b is either 0 or positive. If b is 0, then |bn� b| =
|bn| < 1

2 , so, since bn is positive, bn < 1
2 , then �bn > �1

2 , and

1� bn > 1
2 . Therefore,

M + |b|+ 1� bn = M + 1� bn > M +
1

2
> M.

If b is positive, then |b| = b and |b� bn| < 1
2 . Hence, b� bn > �1

2
and |b|+ 1� bn > 1� 1

2 = 1
2. Hence,

M + |b|+ 1 + bn > M +
1

2
> M.

In either case, an � bn > M .

2. The hypotheses are limn!1 an = �1 and limn!1 bn = b. By
the hypotheses,

(a) for every M < 0, there is N such that for n > N , an < M ,

(b) for every ✏ > 0, there is N such that for n > N , |bn � b| < ✏.

Let M < 0 be given. Then there are N1 and N2 such that

(a) For n > N1, an < M � |b|� 1; and

(b) For n > N2, |bn � b| < ✏, where if b = 0, ✏ = 1
2 and if b 6= 0,

✏ is the minimum of 1
2 and |b|.

Let N be the maximum of N1 and N2. Then for n > N ,

an � bn < M � |b|� 1� bn.

This is clearly less than M if bn is positive or 0, so suppose bn is

negative. Then b is 0 or negative. If b is 0, then |bn�b| = |bn| < 1
2 ,

so, since bn is negative, �bn < 1
2 , and

M � |b|� 1� bn = M � 1� bn < M � 1� 1

2
< M.

If b is negative, then |b| = �b and |b� bn| < 1
2 . Hence,

�1

2
< b� bn <

1

2
,
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and so,

b� 1� bn < �1

2
.

Hence,

M � |b|� 1� bn = M + b� 1� bn < M � 1

2
< M.

In either case, an � bn < M .

LS23. If limn!1 an = a and limn!1 bn = ±1, then

lim
n!1

(an � bn) = ⌥1.

1. The hypotheses are limn!1 an = a and limn!1 bn =1. This
is like the first case of LS22 above with the an and bn interchanged.

2. The hypotheses are limn!1 an = a and limn!1 bn = �1.
This is like the second case of LS22 above with the roles of an
and bn interchanged.

LS24. If limn!1 an = ±1 and limn!1 bn = ⌥1, then

lim
n!1

(an � bn) = ±1.

1. The hypotheses are limn!1 an = 1 and limn!1 bn = �1.
From the hypotheses,

(a) For every M > 0, there is N > 0 such that if n > N , an > M ,

(b) For every M < 0, there is N > 0 such that if n > N , bn < M .

Let M > 0 be given. Then there are N1 and N2 such that

(a) if n > N1, an > M
2 , and

(b) if n > N2, bn < �M
2 .

Let N be the maximum of N1 and N2. Then for n > N ,

an � bn >
M

2
+

M

2
= M.

2. The hypotheses are limn!1 an = �1 and limn!1 bn = 1.
From the hypotheses,

(a) For every M < 0, there is N > 0 such that if n > N , an < M ,

(b) For every M < 0, there is N > 0 such that if n > N , bn > M .
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Let M < 0 be given. Then there are N1 and N2 such that

(a) if n > N1, an < M
2 , and

(b) if n > N2, bn > �M
2 .

Let N be the maximum of N1 and N2. Then for n > N ,

an � bn <
M

2
+

M

2
= M.

LS25. We need to prove that:
If k > 0 and for each i, 0 < i < k, limn!1 ai,n = ai, then

lim
n!1

 
kY

i=1

ai,n

!
=

kY

i=1

ai.

Let I = {k 2 N⇤ : if 80 < i < k, limn!1 ai,n = ai, then

limn!1

⇣Q
k

i=1 ai,n
⌘
=
Q

k

i=1 ai}.
We prove by induction that I = N⇤.

Clearly 1 2 I. Assume k 2 I. We have if 80 < i < k, if limn!1 ai,n =

ai, then limn!1

⇣Q
k

i=1 ai,n
⌘

=
Q

k

i=1 ai. Repeating the proof we

gave for LS3 on Page 247, on limn!1

⇣Q
k

i=1 ai,n
⌘

=
Q

k

i=1 ai and

limn!1 ak+1,n = ak+1, we can show that limn!1

⇣Q
k+1
i=1 ai,n

⌘
=

Q
k+1
i=1 ai. Hence, k + 1 2 I. Therefore, by induction, I = N⇤ and we

are done.

LS26. If limn!1 an = a and if k is a positive integer, then

lim
n!1

ak
n
= ak.

The proof of LS26 is similar to the proof of LS25 where for each i,
0 < i < k, ai,n = an, and each ai = a.

LS27. Left to the reader.

LS28. If limn!1 an = ±1 and limn!1 bn = ⌥1, then

lim
n!1

(anbn) = �1.

This is two results.
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1. The hypotheses are limn!1 an = 1 and limn!1 bn = �1.
By the hypotheses,

(a) For every M > 0, there is N such that for n > N , an > M .

(b) For every M < 0, there is N such that for n > N , bn < M .

Let M < 0 be given. Then there is N1 such that for n > N1,

an > M2 and there is N2 such that for n > N2, bn < 1
M . Let

N be the maximum of N1 and N2. Then for all n > N , bn < 1
M

and an > M2. Hence, �an < �M2 and �anbn > �M and so,
anbn < M .

2. If the hypotheses are limn!1 an = �1 and limn!1 bn = 1
is similar.

LS29. If limn!1 an = ±1 and limn!1 bn = b > 0, then

lim
n!1

an
bn

= ±1.

This is two results.

1. The first hypothesis is limn!1 an =1. By the hypotheses,

(a) For every ✏ > 0, there is N such that for n > N1, |bn� b| < ✏,
and

(b) For every M > 0, there is N such that for n > N , an > M .

Let M > 0 be given. Then

(a) There is N1 such that for all n > N1, |bn � b| < b
2 , and

(b) There is N2 such that for all n > N2, an > 3bM
2 .

Then for n > N1, |bn| = |bn� b+ b|  |bn� b|+ |b| < b+ b
2 = 3b

2 ,

so 1
|bn|

> 2
3b . Let N be the maximum of N1 and N2. Then for

n > N ,
���anbn

��� = |an|
|bn|

> 3bM
2

2
3b = M .

2. The first hypothesis is limn!1 an = �1. By the hypotheses,

(a) For every ✏ > 0, there is N such that for n > N , |bn� b| < ✏,
and

(b) For every M < 0, there is N such that for n > N , an < M .

Let M < 0. Then

(a) There is N1 such that for all n > N , |bn � b| < b
2 , and
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(b) There is N2 such that for all n > N2, an < Mb
2 .

Then for n > N1, � b
2 < bn � b < b

2 and so, bn > b� b
2 = b

2 > 0.

so 1
|bn|

< 2
b . Let N be the maximum of N1 and N2. Then for

n > N ,
���anbn

��� = |an|
|bn|

< bM
2

2
b = M .

LS30. Left to the reader.

LS31. Left to the reader.

LS32. Left to the reader.

LS33. Left to the reader.

LS34. Left to the reader.

Solution C.131. [Of Exercise 9.3.]

1. Let " > 0, and let N be the smallest integer such that N > 1
" > 0.

For all n > N we have 1
" < N < n and hence 1

n < ". Now, for each

n > N ,

����
(�1)n
n � 0

���� =
|(�1)n|
|n| = 1

n < ". Hence limn!1
(�1)n
n = 0.

2. Given " > 0, we want, for large values of n:
����
2n� 1

3n+ 2
� 2

3

���� < ".

But
���2n� 1
3n+ 2 �

2
3

��� =
����

�7
3(3n+ 2)

���� =
7

3(3n+ 2)
. Hence we want

7

3(3n+ 2)
< ".

Let N be the smallest positive integer such that N > 7
9" �

2
3 . Hence

for all n > N we have n+ 6
9 > 7

9" and hence 7
3(3n+ 2)

< ".

Now,
���2n� 1
3n+ 2 �

2
3

��� =
����

�7
3(3n+ 2)

���� =
7

3(3n+ 2)
< ". Hence by definition

lim
n!1

2n� 1

3n+ 2
=

2

3
.
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3. Given " > 0, we want, for large values of n:
����
n+ 6

n2 � 6

���� < ".

But

����
n+ 6
n2 � 6

���� =
��� 1
n� 6

���. Hence (for n > 6) we want

1

n� 6
< ".

Let N be the smallest integer such that N > 1
" + 6 > 6. Hence for all

n > N we have 1
n� 6 < ". Now

����
n+ 6
n2 � 6

���� =
��� 1
n� 6

��� < ". Hence by

definition,

lim
n!1

n+ 6

n2 � 6
= 0.

4. Given " > 0, we want, for large values of n:
���
p

n2 + 1� n
��� < ".

But
��pn2 + 1� n

�� =

�����
(
p
n2 + 1� n)(

p
n2 + 1 + n)p

n2 + 1 + n

����� =

����
1p

n2 + 1 + n

����. Hence we want

1p
n2 + 1 + n

< ".

But, for n > 1 we have 1p
n2 + 1 + n

< 1
2n . Hence, we need n > 1

2" .

Let N be the smallest integer greater than 1 such that N > 1
2" . Then,

for any n > N we have n > 1
2" and hence 1

2n < ".

Now,
��pn2 + 1� n

�� =
�����
(
p
n2 + 1� n)(

p
n2 + 1 + n)p

n2 + 1 + n

����� =
����

1p
n2 + 1 + n

���� =
1p

n2 + 1 + n
<

1
2n < ". Hence by definition,

lim
n!1

hp
n2 + 1� n

i
= 0.
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5. Given " > 0, we want, for large values of n:
���
p
n2 + n� n� 1/2

��� < ".

But
��pn2 + n� n� 1/2

�� =�����
(
p
n2 + n� (n+ 1/2))(

p
n2 + n+ (n+ 1/2))p

n2 + n+ n+ 1/2

����� =

�����
�1/4p

n2 + n+ n+ 1/2

����� =
1

4
p
n2 + n+ 4n+ 2

. Hence we want

1

4
p
n2 + n+ 4n+ 2

< ".

But, for n > 1 we have 1
4
p

n2 + n+ 4n+ 2
< 1

4n+ 4n+ 2 <

1
4n+ 4n = 1

8n . Hence, we need 1
8n < " or n > 1

10" . Let N be

the smallest integer greater than 1 such that N > 1
8" . Then, for any

n > N we have n > 1
10" and hence 1

8n < ".

Now,
��pn2 + n� n� 1/2

�� =�����
(
p
n2 + n� (n+ 1/2))(

p
n2 + n+ (n+ 1/2))p

n2 + n+ (n+ 1/2)

����� =

�����
�1/4p

n2 + n+ n+ 1/2

����� = 1
4
p

n2 + n+ 4n+ 2
< 1

8n < ". Hence

by definition,

lim
n!1

hp
n2 + n� n

i
=

1

2
.

Solution C.132. [Of Exercise 9.4.]

1. We will show that
lim
n!1

|n/(n2 + 1)| = 0.

Given " > 0, we want, for large values of n (note that n > 0):
��n/(n2 + 1)

�� < ".

But
��n/(n2 + 1)

�� < n/n2 = 1
n . Hence we want

1

n
< ".
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Let N be the smallest integer such that N > 1
" > 0. Then, for any

n > N we have n > 1
" and hence 1

n < ".

Now,
��n/(n2 + 1)

�� < n/n2 = 1
n < ". Hence by definition,

lim
n!1

n/(n2 + 1) = 0.

2. We will show that

lim
n!1

(7n� 19)/(3n+ 7) = 7/3.

Given " > 0, we want, for large values of n (note that n > 0):

|(7n� 19)/(3n+ 7)� 7/3| < ".

But |(7n� 19)/(3n+ 7)� 7/3| =

����
21n� 57� 21n� 49

3(3n+ 7)

���� =
����
�106

3(3n+ 7)

���� =
106

3(3n+ 7)
< 12⇥ 9

9n = 12
n . Hence we want

12

n
< ".

Let N be the smallest integer such that N > 12
" > 0. Then, for any

n > N we have n > 12
" and hence 12

n < ".

Now, |(7n� 19)/(3n+ 7)� 7/3| =

����
21n� 57� 21n� 49

3(3n+ 7)

���� =
����
�106

3(3n+ 7)

���� =
106

3(3n+ 7)
< 12⇥ 9

9n = 12
n < ".

Hence by definition,

lim
n!1

(7n� 19)/(3n+ 7) = 7/3.

3. We will show that

lim
n!1

(4n+ 3)/(7n� 5) = 4/7.

Given " > 0, we want, for large values of n (note that n > 0):

|(4n+ 3)/(7n� 5)� 4/7| < ".
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But for n > 1, we have |(4n+ 3)/(7n� 5)� 4/7| =����
28n+ 21� 28n+ 20

7(7n� 5)

���� =

����
41

7(7n� 5)

���� = 41
7(7n� 5)

< 42
7(7n� 5)

=

6
7n� 5 < 6

7n� 5n = 3
n . Hence we want

3

n
< ".

Let N be the smallest integer greater than 1 such that N > 3
" > 0.

Then, for any n > N we have n > 3
" and hence 3

n < ".

Now, |(4n+ 3)/(7n� 5)� 4/7| =

����
28n+ 21� 28n+ 20

7(7n� 5)

���� =
����

41
7(7n� 5)

���� =
41

7(7n� 5)
< 42

7(7n� 5)
= 6

7n� 5 < 6
7n� 5n = 3

n < ".

Hence by definition,

lim
n!1

(4n+ 3)/(7n� 5) = 4/7.

4. We will show that

lim
n!1

(2n+ 4)/(5n+ 2) = 2/5.

Given " > 0, we want, for large values of n (note that n > 0):

|(2n+ 4)/(5n+ 2)� 2/5| < ".

But for n > 1, we have |(2n+ 4)/(5n+ 2)� 2/5| =����
10n+ 20� 10n� 4

5(5n+ 2)

���� =

����
16

5(5n+ 2)

���� < 16
5(7n)

< 16
32n = 1

2n .

Hence we want
1

2n
< ".

Let N be the smallest integer greater than 1 such that N > 1
2" > 0.

Then, for any n > N we have n > 1
2" and hence 1

2n < ".

Now, |(2n+ 4)/(5n+ 2)� 2/5| =

����
10n+ 20� 10n� 4

5(5n+ 2)

���� =
����

16
5(5n+ 2)

���� <
16

5(7n)
< 16

32n = 1
2n < ".

Hence by definition,

lim
n!1

(2n+ 4)/(5n+ 2) = 2/5.
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5. We will show that
lim
n!1

(1/n) sinn = 0.

Given " > 0, we want, for large values of n (note that n > 0):

|(1/n) sinn| < ".

But |(1/n) sinn| = | sinn|
n < 2

n . Hence let N be the smallest integer

such that N > 2
" . Then for any n > N we have n > 2

" and so, 2
n < ".

Now, for any n > N we have |(1/n) sinn| = | sinn|
n < 2

n < ".

Solution C.133. [Of Exercise 9.5.]

LF1. We need to prove

lim
x!c�

x = c and lim
x!c+

x = c and lim
x!1

x =1 and lim
x!�1

x = �1

– Let " > 0 be given. Let � = ". Then, since f(x) = x for all x, we
have that if 0 < c � x < ", then |f(x) � c| = |x � c| < ". Hence
by definition limx!c� x = c.

– Let " > 0 be given. Let � = ". Then, since f(x) = x for all x, we
have that if 0 < x � c < ", then |f(x) � c| = |x � c| < ". Hence
by definition limx!c+ x = c.

– Let M1 > 0 and let M2 = M1. If x > M2 then f(x) = x > M1.
Hence by definition limx!1 x =1.

– Let M1 < 0 and let M2 = M1. If x < M2 then f(x) = x < M1.
Hence by definition limx!�1 x = �1.

LF2. We need to prove

lim
x!c�

k = k and lim
x!c+

k = k and lim
x!1

k = k and lim
x!�1

k = k

– Let " > 0 be given. Let � be no matter what. Then, since
f(x) = k for all x, we have that if 0 < c�x < �, then |f(x)�k| =
|k � k| = 0 < ". Hence by definition limx!c� k = k.

– Let " > 0 be given. Let � be no matter what. Then, since
f(x) = k for all x, we have that if 0 < x�c < �, then |f(x)�k| =
|k � k| = 0 < ". Hence by definition limx!c+ k = k.

– Let " > 0 be given. Let M > 0 be anything. If x > M then
|f(x)� k| = |k � k| = 0 < ". Hence by definition limx!1 k = k.
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– Let " > 0 be given. Let M < 0 be anything. If x < M then
|f(x)� k| = |k� k| = 0 < ". Hence by definition limx!�1 k = k.

LF3. We need to prove the following:

1. If limx!±1 f(x) = l and limx!±1 g(x) = m then
limx!±1[f(x) + g(x)] = l +m.

2. If limx!c� f(x) = l and limx!c� g(x) = m then
limx!c� [f(x) + g(x)] = l +m.

3. If limx!c+ f(x) = l and limx!c+ g(x) = m then
limx!c+ [f(x) + g(x)] = l +m.

The proof is as follows:

1. Let " > 0 be given. Then there are M1 > 0 and M2 > 0 (resp.
M1 < 0 and M2 < 0) such that

(a) if x > M1 (resp. x < M1) then |f(x)� l| < "
2 , and

(b) if x > M2 (resp. x < M2) then |g(x)�m| < "
2 .

Let M be the larger of M1 and M2 (resp. the smaller of M1 and
M2). Then for x > M (resp. x < M) we have

|(f(x) + g(x))� (l +m)|
= |(f(x)� l) + (g(x)�m)|
 |f(x)� l|+ |g(x)�m|
< "

2 + "
2

= ".

Hence by definition limx!±1[f(x) + g(x)] = l +m.

2. Let " > 0 be given. Then there are �1 and �2 such that

(a) if 0 < c� x < �1, then |f(x)� l| < "
2 , and

(b) if 0 < c� x < �2, then |g(x)�m| < "
2 .

Let � be the smaller of �1 and �2. Then for 0 < c � x < �, we
have

|(f(x) + g(x))� (l +m)|
= |(f(x)� l) + (g(x)�m)|
 |f(x)� l|+ |g(x)�m|
< "

2 + "
2

= ".

Hence by definition limx!c� [f(x) + g(x)] = l +m.

3. Let " > 0 be given. Then there are �1 and �2 such that
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(a) if 0 < x� c < �1, then |f(x)� l| < "
2 , and

(b) if 0 < x� c < �2, then |g(x)�m| < "
2 .

Let � be the smaller of �1 and �2. Then for 0 < x � c < �, we
have

|(f(x) + g(x))� (l +m)| = |(f(x)� l) + (g(x)�m)|
 |f(x)� l|+ |g(x)�m|
< "

2 + "
2

= ".

Hence by definition limx!c+ [f(x) + g(x)] = l +m.

LF4. We need to prove the following:

1. If limx!±1 f(x) = l and limx!±1 g(x) = m then
limx!±1[f(x)g(x)] = lm.

2. If limx!c� f(x) = l and limx!c� g(x) = m then
limx!c� [f(x)g(x)] = lm.

3. If limx!c+ f(x) = l and limx!c+ g(x) = m then
limx!c+ [f(x)g(x)] = lm.

The proof is as follows:

1. Let " > 0 be given. Then by hypothesis there are M1 > 0 and
M2 > 0 (resp. M1 < 0 and M2 < 0) such that

(a) if x > M1 (resp. x < M1), then |f(x) � l| <
"

2

✓
"

2(|l|+ 1)
+ |m|

◆ , and

(b) if x > M2 (resp. x < M2), then |g(x)�m| < "
2(|l|+ 1)

.

(Here, |l| + 1 is used instead of |l| since l might be 0.) Since
|g(x)�m| < "

2(|l|+ 1)
, then |g(x)| = |g(x)�m+m|  |g(x)�m|+

|m| < "
2(|l|+ 1)

+ |m|. Let M be the minimum (resp. maximum)
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of M1 and M2. Then for x > M (resp. x < M):

|f(x)g(x)� lm|
= |f(x)g(x)� lg(x) + lg(x)� lm|
= |(f(x)� l)g(x) + l(g(x)�m)|
 |f(x)� l||g(x)|+ |l||g(x)�m|

< "

2

✓
"

2(|l|+ 1)
+ |m|

◆
✓

"
2(|l|+ 1)

+ |m|
◆
+ |l| "

2(|l|+ 1)

< "
2 + (|l|+ 1) "

2(|l|+ 1)
= "

2 + "
2

= ".

Hence by definition limx!±1[f(x)g(x)] = lm.

2. Let " > 0 be given. Then by hypothesis there are �1 and �2 such
that

(a) if 0 < c�x < �1, then |f(x)� l| < "

2

✓
"

2(|l|+ 1)
+ |m|

◆ , and

(b) if 0 < c� x < �2, then |g(x)�m| < "
2(|l|+ 1)

.

(Here, |l|+ 1 is used instead of |l| since l might be 0.) Note that
the second of these implies that |g(x)| < "

2(|l|+ 1)
+ |m| (this is

similar to what we did on Page 97). Let � be the minimum of �1
and �2. Then for 0 < c� x < �,

|f(x)g(x)� lm|
= |f(x)g(x)� lg(x) + lg(x)� lm|
= |(f(x)� l)g(x) + l(g(x)�m)|
 |f(x)� l||g(x)|+ |l||g(x)�m|

< "

2

✓
"

2(|l|+ 1)
+ |m|

◆
✓

"
2(|l|+ 1)

+ |m|
◆
+ |l| "

2(|l|+ 1)

< "
2 + (|l|+ 1) "

2(|l|+ 1)
= "

2 + "
2

= ".

Hence by definition limx!c� [f(x)g(x)] = lm.

3. Let " > 0 be given. Then by hypothesis there are �1 and �2 such
that
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(a) if 0 < x� c < �1, then |f(x)� l| < "

2

✓
"

2(|l|+ 1)
+ |m|

◆ , and

(b) if 0 < x� c < �2, then |g(x)�m| < "
2(|l|+ 1)

.

(Here, |l|+ 1 is used instead of |l| since l might be 0.) Note that
the second of these implies that |g(x)| < "

2(|l|+ 1)
+ |m| (this is

similar to what we did on Page 97). Let � be the minimum of �1
and �2. Then for 0 < x� c < �:

|f(x)g(x)� lm|
= |f(x)g(x)� lg(x) + lg(x)� lm|
= |(f(x)� l)g(x) + l(g(x)�m)|
 |f(x)� l||g(x)|+ |l||g(x)�m|

< "

2

✓
"

2(|l|+ 1)
+ |m|

◆
✓

"
2(|l|+ 1)

+ |m|
◆
+ |l| "

2(|l|+ 1)

< "
2 + (|l|+ 1) "

2(|l|+ 1)
= "

2 + "
2

= ".

Hence by definition limx!c+ [f(x)g(x)] = lm.

LF5. We need to prove the following:

1. If limx!±1 f(x) = l 6= 0 then limx!±1
1

f(x)
= 1

l .

2. If limx!c� f(x) = l 6= 0 then limx!c�
1

f(x)
= 1

l .

3. If limx!c+ f(x) = l 6= 0 then limx!c+
1

f(x)
= 1

l .

The proof is as follows:

1. Let " > 0 be given. Let "0 > 0 be the minimum of |l|/2 and
(l2")/2. By hypothesis, there is M > 0 (resp. M < 0) such that
if x > M (resp. x < M) then

|f(x)� l| < l2"

2

and

|f(x)� l| < |l|
2
.
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We also have f(x) � |l|/2, since otherwise we would have

|l| = |l � f(x) + f(x)|  |l � f(x)|+ |f(x)| < |l|
2

+
|l|
2

= |l|,

a contradiction. It follows that

1

|f(x)| 
2

|l| .

Hence if x > M (resp. x < M) then

����
1

f(x)
� 1

l

���� =
|f(x)� l|
|l||f(x)|

=
|f(x)� l|
|l||f(x)|

 2
|l|

|f(x)� l|
|l|

< 2
l2
|f(x)� l|

< 2
l2

l2"
2

= ".

Hence by definition, limx!±1
1

f(x)
= 1

l .

2. Let " > 0 be given. Let "0 > 0 be the minimum of |l|/2 and
(l2")/2. By hypothesis, there is � > 0 such that if 0 < c� x < �,
then

|f(x)� l| < l2"

2

and

|f(x)� l| < |l|
2
.

We also have f(x) � |l|/2, since otherwise we would have

|l| = |l � f(x) + f(x)|  |l � f(x)|+ |f(x)| < |l|
2

+
|l|
2

= |l|,

a contradiction. It follows that

1

|f(x)| 
2

|l| .
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Hence if 0 < c� x < �, then
����

1
f(x)

� 1
l

���� =
|f(x)� l|
|l||f(x)|

=
|f(x)� l|
|l||f(x)|

 2
|l|

|f(x)� l|
|l|

< 2
l2
|f(x)� l|

< 2
l2

l2"
2

= ".

Hence by definition, limx!c�
1

f(x)
= 1

l .

3. Let " > 0 be given. Let "0 > 0 be the minimum of |l|/2 and
(l2")/2. By hypothesis, there is � > 0 such that if 0 < x� c < �,
then

|f(x)� l| < l2"

2
and

|f(x)� l| < |l|
2
.

We also have f(x) � |l|/2, since otherwise we would have

|l| = |l � f(x) + f(x)|  |l � f(x)|+ |f(x)| < |l|
2

+
|l|
2

= |l|,

a contradiction. It follows that

1

|f(x)| 
2

|l| .

Hence if 0 < x� c < �, then
����

1
f(x)

� 1
l

���� =
|f(x)� l|
|l||f(x)|

=
|f(x)� l|
|l||f(x)|

 2
|l|

|f(x)� l|
|l|

< 2
l2
|f(x)� l|

< 2
l2

l2"
2

= ".

Hence by definition, limx!c+
1

f(x)
= 1

l .
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LF6. We need to prove the following:

1. If limx!±1 f(x) = l and if l � 0 whenever n is even, then
limx!±1

n
p
f(x) = n

p
l.

2. If limx!c� f(x) = l and if l � 0 whenever n is even, then
limx!c�

n
p

f(x) = n
p
l.

3. If limx!c+ f(x) = l and if l � 0 whenever n is even, then
limx!c+

n
p
f(x) = n

p
l.

The proof is as follows:

1. There are three cases.

Case 1. l = 0. Let " > 0 be given. Then there is M > 0 (resp.
M < 0) such that if x > M (resp. x < M), we have
|f(x)| < "n. Hence, if x > M (resp. x < M), we have
| n
p

f(x)| = n
p
|f(x)| < n

p
"n = ". Hence by definition,

limx!±1
n
p
f(x) = n

p
l.

Case2. l > 0. Let " > 0 be given. Then there isM > 0 (resp.M < 0)
such that if x > M (resp. x < M), we have

|f(x)� l| < "| n
p
ln�1|

|f(x)� l| < |l|
2
.

From the second of these, it follows that f(x) and l have the
same sign. For any n 2 N, let Pq stand for n

p
f(x)q. It follows

that for these values of x,

| n
p
f(x)� n

p
l|

=

����
(P1 �

n
p
l)(Pn�1 + Pn�2

n
p
l + Pn�3

n
p
l2 + · · ·+ n

p
ln�1)

(Pn�1 + Pn�2
n
p
l + Pn�3

n
p
l2 + · · ·+ n

p
ln�1)

����

=
|f(x)� l|

|Pn�1 + Pn�2
n
p
l + Pn�3

n
p
l2 + · · ·+ n

p
ln�1|

<
"| n
p
ln�1|

| n
p
ln�1|

= ".

Hence by definition, limx!±1
n
p
f(x) = n

p
l.
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Case 3. l < 0. Then n is odd. Let " > 0 be given. Then there is
M > 0 (resp. M < 0) such that if x > M (resp. x < M), we
have

|f(x)� l| < "| n
p
ln�1|

|f(x)� l| < |l|
2
.

From the second of these, it follows that f(x) and l have the
same sign, both negative and |f(x)| = �f(x) and |l| = �l. It
follows that if 0 < |x� c| < �,

| n
p
f(x)� n

p
l| = | n

p
�|f(x)|� n

p
�|l||

= |� n
p
|f(x)|+ n

p
|l||

= | n
p
|f(x)|� n

p
|l||

and we can prove this less than " by Case 2 above. Hence by
definition, limx!±1

n
p
f(x) = n

p
l.

2. There are three cases.

Case 1. l = 0. Let " > 0 be given. Then there is � > 0 such that if
0 < c�x < �, we have |f(x)| < "n. Hence, if 0 < c�x < �, we
have | n

p
f(x)| = n

p
|f(x)| < n

p
"n = ". Hence by definition,

limx!c�
n
p

f(x) = n
p
l.

Case2. l > 0. Let " > 0 be given. Then there is � > 0 such that if
0 < c� x < �, we have

|f(x)� l| < "| n
p
ln�1|

|f(x)� l| < |l|
2
.

From the second of these, it follows that f(x) and l have the
same sign. For any n 2 N, let Pq stand for n

p
f(x)q. It follows

that for these values of x,

| n
p
f(x)� n

p
l|

=

����
(P1 �

n
p
l)(Pn�1 + Pn�2

n
p
l + Pn�3

n
p
l2 + · · ·+ n

p
ln�1)

(Pn�1 + Pn�2
n
p
l + Pn�3

n
p
l2 + · · ·+ n

p
ln�1)

����

=
|f(x)� l|

|Pn�1 + Pn�2
n
p
l + Pn�3

n
p
l2 + · · ·+ n

p
ln�1|

<
"| n
p
ln�1|

| n
p
ln�1|

= ".
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Hence by definition, limx!c�
n
p
f(x) = n

p
l.

Case 3. l < 0. Then n is odd. Let " > 0 be given. Then there is
� > 0 such that if 0 < c� x < �, we have

|f(x)� l| < "| n
p
ln�1|

|f(x)� l| < |l|
2
.

From the second of these, it follows that f(x) and l have the
same sign, both negative and |f(x)| = �f(x) and |l| = �l. It
follows that if 0 < |x� c| < �,

| n
p
f(x)� n

p
l| = | n

p
�|f(x)|� n

p
�|l||

= |� n
p
|f(x)|+ n

p
|l||

= | n
p
|f(x)|� n

p
|l||

and we can prove this less than " by Case 2 above. Hence by
definition, limx!c�

n
p

f(x) = n
p
l.

3. There are three cases.

Case 1. l = 0. Let " > 0 be given. Then there is � > 0 such that if
0 < x�c < �, we have |f(x)| < "n. Hence, if 0 < x�c < �, we
have | n

p
f(x)| = n

p
|f(x)| < n

p
"n = ". Hence by definition,

limx!c+
n
p
f(x) = l.

Case2. l > 0. Let " > 0 be given. Then there is � > 0 such that if
0 < x� c < �, we have

|f(x)� l| < "| n
p
ln�1|

|f(x)� l| < |l|
2
.

From the second of these, it follows that f(x) and l have the
same sign. For any n 2 N, let Pq stand for n

p
f(x)q. It follows
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that for these values of x,

| n
p
f(x)� n

p
l|

=

����
(P1 �

n
p
l)(Pn�1 + Pn�2

n
p
l + Pn�3

n
p
l2 + · · ·+ n

p
ln�1)

(Pn�1 + Pn�2
n
p
l + Pn�3

n
p
l2 + · · ·+ n

p
ln�1)

����

=
|f(x)� l|

|Pn�1 + Pn�2
n
p
l + Pn�3

n
p
l2 + · · ·+ n

p
ln�1|

<
"| n
p
ln�1|

| n
p
ln�1|

= ".

Hence by definition, limx!c+
n
p

f(x) = n
p
l.

Case 3. l < 0. Then n is odd. Let " > 0 be given. Then there is
� > 0 such that if 0 < x� c < �, we have

|f(x)� l| < "| n
p
ln�1|

|f(x)� l| < |l|
2
.

From the second of these, it follows that f(x) and l have the
same sign, both negative and |f(x)| = �f(x) and |l| = �l. It
follows that if 0 < |x� c| < �,

| n
p
f(x)� n

p
l| = | n

p
�|f(x)|� n

p
�|l||

= |� n
p
|f(x)|+ n

p
|l||

= | n
p
|f(x)|� n

p
|l||

and we can prove this less than " by Case 2 above. Hence by
definition, limx!c+

n
p
f(x) == n

p
l.

LF7. We need to prove:

1. If g(x)  f(x)  h(x) for all x in an interval whose right end-point
is c, and if

lim
x!c�

g(x) = lim
x!c�

h(x) = l,

then

limx!c�f(x) = l.
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2. If g(x)  f(x)  h(x) for all x in an interval whose left end-point
is c, and if

lim
x!c+

g(x) = lim
x!c+

h(x) = l,

then
limx!c+f(x) = l.

The proof is as follows:

1. Let " > 0 be given. By hypothesis, we have

(a) there is �1 > 0 such that if 0 < c�x < �1, then |g(x)� l| < ",
and

(b) there is �2 > 0 such that if 0 < c�x < �2, then |h(x)� l| < ".

Let � be the smaller of �1 and �2. Then if 0 < c� x < �, we have
|g(x)� l| < " and |h(x)� l| < ". It follows that

l � " < g(x)  f(x)  h(x) < l + ",

from which it follows that |f(x) � l| < ". Hence by definition,
limx!c� f(x) = l.

2. Let " > 0 be given. By hypothesis, we have

(a) there is �1 > 0 such that if 0 < x�c < �1, then |g(x)� l| < ",
and

(b) there is �2 > 0 such that if 0 < x�c < �2, then |h(x)� l| < ".

Let � be the smaller of �1 and �2. Then if 0 < x� c < �, we have
|g(x)� l| < " and |h(x)� l| < ". It follows that

l � " < g(x)  f(x)  h(x) < l + ",

from which it follows that |f(x) � l| < ". Hence by definition,
limx!c+ f(x) = l.

LF8 We need to prove the following:

1. If f(x)  g(x) for all x greater than some value, then

lim
x!1

f(x)  lim
x!1

g(x),

provided that both limits exist.

2. If f(x)  g(x) for all x less than some negative value, then

lim
x!�1

f(x)  lim
x!�1

g(x),

provided that both limits exist.
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3. If f(x)  g(x) for all x in an interval whose right end-point is c,
then

lim
x!c�

f(x)  lim
x!c�

g(x),

provided that both limits exist.

4. If f(x)  g(x) for all x in an interval whose left end-point is c,
then

lim
x!c+

f(x)  lim
x!c+

g(x),

provided that both limits exist.

The proof is as follows:

1. Suppose that

lim
x!1

f(x) = l and lim
x!1

g(x) = m,

and suppose l > m. Let " = (l �m)/2 > 0. By hypothesis,

(a) there is M1 > 0 such that if x > M1, then |f(x)� l| < ", and

(b) there is M2 > 0 such that if x > M2, then |g(x)�m| < ".

Let M be the larger of M1 and M2. Then for x > M , we have
both |f(x)� l| < " and |g(x)�m| < ". Then

l � " = l � l �m

2
=

2l � l +m

2
=

l +m

2

and

m+ " = m+
l �m

2
=

2m+ l �m

2
=

l +m

2

so l�" = m+". Now the conditions |f(x)�l| < " and |g(x)�m| <
" imply that g(x) < m + " = l � " < f(x), contradicting the
hypothesis that f(x)  g(x). Hence limx!1 f(x)  limx!1 g(x).

2. Suppose that

lim
x!�1

f(x) = l and lim
x!�1

g(x) = m,

and suppose l > m. Let " = (l �m)/2 > 0. By hypothesis,

(a) there is M1 < 0 such that if x < M1, then |f(x)� l| < ", and

(b) there is M2 < 0 such that if x < M2, then |g(x)�m| < ".
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Let M be the smaller of M1 and M2. Then for x < M , we have
both |f(x)� l| < " and |g(x)�m| < ". Then

l � " = l � l �m

2
=

2l � l +m

2
=

l +m

2

and

m+ " = m+
l �m

2
=

2m+ l �m

2
=

l +m

2

so l � " = m + ". Now the conditions |f(x) � l| < " and
|g(x) �m| < " imply that g(x) < m + " = l � " < f(x), contra-
dicting the hypothesis that f(x)  g(x). Hence limx!�1 f(x) 
limx!�1 g(x).

3. Suppose that

lim
x!c�

f(x) = l and lim
x!c�

g(x) = m,

and suppose l > m. Let " = (l �m)/2 > 0. By hypothesis,

(a) there is �1 > 0 such that if 0 < c�x < �1, then |f(x)� l| < ",
and

(b) there is �2 > 0 such that if 0 < c�x < �2, then |g(x)�m| < ".

Let � be the smaller of �1 and �2. Then for 0 < c � x < �, we
have both |f(x)� l| < " and |g(x)�m| < ". Then

l � " = l � l �m

2
=

2l � l +m

2
=

l +m

2

and

m+ " = m+
l �m

2
=

2m+ l �m

2
=

l +m

2

so l�" = m+". Now the conditions |f(x)�l| < " and |g(x)�m| <
" imply that g(x) < m + " = l � " < f(x), contradicting the hy-
pothesis that f(x)  g(x). Hence limx!c� f(x)  limx!c� g(x).

4. Suppose that

lim
x!c+

f(x) = l and lim
x!c+

g(x) = m,

and suppose l > m. Let " = (l �m)/2 > 0. By hypothesis,

(a) there is �1 > 0 such that if 0 < x�c < �1, then |f(x)� l| < ",
and

(b) there is �2 > 0 such that if 0 < x�c < �2, then |g(x)�m| < ".
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Let � be the smaller of �1 and �2. Then for 0 < x � c < �, we
have both |f(x)� l| < " and |g(x)�m| < ". Then

l � " = l � l �m

2
=

2l � l +m

2
=

l +m

2

and

m+ " = m+
l �m

2
=

2m+ l �m

2
=

l +m

2

so l�" = m+". Now the conditions |f(x)�l| < " and |g(x)�m| <
" imply that g(x) < m + " = l � " < f(x), contradicting the hy-
pothesis that f(x)  g(x). Hence limx!c+ f(x)  limx!c+ g(x).

LF9. We will prove that if l is a value and limx!c� f(x) = limx!c+ f(x) = l
then limx!c f(x) = l.
Suppose that limx!c� f(x) = limx!c+ f(x) = l. Let " > 0. By hy-
pothesis, there are �1 > 0 and �2 > 0 such that if 0 < c � x < �1,
then |f(x) � l| < " and if 0 < x � c < �2, then |f(x) � l| < ". Let
� = min{�1, �2} and let x such that 0 < |x� c| < �.

– If x > c then 0 < x� c < � < �2, and hence |f(x)� l| < ".

– If x < c then 0 < c� x < � < �1, and hence |f(x)� l| < ".

Hence |f(x)� l| < " and by definition limx!c f(x) = l.
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LF10. We need to prove the following:

1. If c is a value and if limx!c f(x) = �1, then limx!c
1

f(x)
= 0.

2. If c is a value and if limx!c� f(x) = �1, then limx!c�
1

f(x)
= 0.

3. If c is a value and if limx!c� f(x) =1, then limx!c�
1

f(x)
= 0.

4. If c is a value and if limx!c+ f(x) = �1, then limx!c+
1

f(x)
= 0.

5. If c is a value and if limx!c+ f(x) =1, then limx!c+
1

f(x)
= 0.

6. If limx!1 f(x) = �1 then limx!1
1

f(x)
= 0.

7. If limx!1 f(x) =1 then limx!1
1

f(x)
= 0.

8. If limx!�1 f(x) = �1 then limx!�1
1

f(x)
= 0.

9. If limx!�1 f(x) =1 then limx!�1
1

f(x)
= 0.

The proof is as follows:

1. We prove that if c is a value and if limx!c f(x) = �1, then

limx!c
1

f(x)
= 0.

Assume limx!c f(x) = �1. Let " > 0. By hypothesis, there is
� > 0 such that for 0 < |x� c| < �,

f(x) < �1

"
.

It follows that for these values of x, f(x) < 0, so |f(x)| = �f(x),
and ����

1

f(x)
� 0

���� = �
1

f(x)
< ".

Hence limx!c
1

f(x)
= 0.

2. We prove that if c is a value and if limx!c� f(x) = �1, then

limx!c�
1

f(x)
= 0.

Assume limx!c� f(x) = �1. Let " > 0. By hypothesis, there is
� > 0 such that for 0 < c� x < �,

f(x) < �1

"
.
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It follows that for these values of x, f(x) < 0, so |f(x)| = �f(x),
and ����

1

f(x)
� 0

���� = �
1

f(x)
< ".

Hence limx!c�
1

f(x)
= 0.

3. We prove that if c is a value and if limx!c� f(x) = 1, then

limx!c�
1

f(x)
= 0.

Assume limx!c� f(x) = 1. Let " > 0. By hypothesis, there is
� > 0 such that for 0 < c� x < �,

f(x) >
1

"
.

It follows that for these values of x, f(x) > 0, so |f(x)| = f(x),
and ����

1

f(x)
� 0

���� =
1

f(x)
< ".

Hence limx!c�
1

f(x)
= 0.

4. We prove that if c is a value and if limx!c+ f(x) = �1, then

limx!c+
1

f(x)
= 0.

Assume limx!c+ f(x) = �1. Let " > 0. By hypothesis, there is
� > 0 such that for 0 < x� c < �,

f(x) < �1

"
.

It follows that for these values of x, f(x) < 0, so |f(x)| = �f(x),
and ����

1

f(x)
� 0

���� = �
1

f(x)
< ".

Hence limx!c+
1

f(x)
= 0.

5. We prove that if c is a value and if limx!c+ f(x) = 1, then

limx!c+
1

f(x)
= 0.

Assume limx!c+ f(x) = 1. Let " > 0. By hypothesis, there is
� > 0 such that for 0 < x� c < �,

f(x) >
1

"
.
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It follows that for these values of x, f(x) > 0, so |f(x)| = f(x),
and ����

1

f(x)
� 0

���� =
1

f(x)
< ".

Hence limx!c+
1

f(x)
= 0.

6. We prove that if limx!1 f(x) = �1 then limx!1
1

f(x)
= 0.

Assume limx!1 f(x) = �1. Let " > 0. By hypothesis, there is
M > 0 such that for x > M ,

f(x) < �1

"
.

It follows that for these values of x, f(x) < 0, so |f(x)| = �f(x),
and ����

1

f(x)
� 0

���� = �
1

f(x)
< ".

Hence limx!1
1

f(x)
= 0.

7. We prove that if limx!1 f(x) =1 then limx!1
1

f(x)
= 0.

Assume limx!1 f(x) = 1. Let " > 0. By hypothesis, there is
M > 0 such that for x > M ,

f(x) >
1

"
.

It follows that for these values of x, f(x) > 0, so |f(x)| = f(x),
and ����

1

f(x)
� 0

���� =
1

f(x)
< ".

Hence limx!1
1

f(x)
= 0.

8. We prove that if limx!�1 f(x) = �1 then limx!�1
1

f(x)
= 0.

Assume limx!�1 f(x) = �1. Let " > 0. By hypothesis, there is
M < 0 such that for x < M ,

f(x) < �1

"
.

It follows that for these values of x, f(x) < 0, so |f(x)| = �f(x),
and ����

1

f(x)
� 0

���� = �
1

f(x)
< ".
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Hence limx!�1
1

f(x)
= 0.

9. We prove that if limx!�1 f(x) =1 then limx!�1
1

f(x)
= 0.

Assume limx!�1 f(x) = 1. Let " > 0. By hypothesis, there is
M < 0 such that for x < M ,

f(x) >
1

"
.

It follows that for these values of x, f(x) > 0, so |f(x)| = f(x),
and ����

1

f(x)
� 0

���� =
1

f(x)
< ".

Hence limx!�1
1

f(x)
= 0.

LF11. 1. We will prove that if c is a value, if

lim
x!c

f(x) = 0,

and if for all x in an open interval containing c, f(x)  0 then

lim
x!c

1

f(x)
= �1.

Let M < 0 be given. By hypothesis, there is � > 0 such that if
0 < |x� c| < �, f(x)  0 and

|f(x)� 0| = �f(x) < � 1

M
.

Then for these same values of x,

1

f(x)
< M.

Hence limx!c
1

f(x)
= �1.

2. We will prove that if

lim
x!1

f(x) = 0,

and if f(x) � 0 for all x greater than a certain value, then

lim
x!1

1

f(x)
=1.
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Let M > 0 be given. By hypothesis, there is � > 0 such that if
x > �, f(x) � 0 and

|f(x)� 0| = f(x) <
1

M
.

Then for these same values of x,

1

f(x)
> M.

Hence limx!1
1

f(x)
=1.

3. We will prove that if

lim
x!1

f(x) = 0,

and if f(x)  0 for all x greater than a certain value, then

lim
x!1

1

f(x)
= �1.

Let M < 0 be given. By hypothesis, there is � > 0 such that if
x > �, f(x)  0 and

|f(x)� 0| = �f(x) < � 1

M
.

Then for these same values of x,

1

f(x)
< M.

Hence limx!1
1

f(x)
= �1.

4. We will prove that if

lim
x!�1

f(x) = 0,

and if f(x) � 0 for all x less than a certain value, then

lim
x!�1

1

f(x)
=1.

Let M > 0 be given. By hypothesis, there is � < 0 such that if
x < �, f(x) � 0 and

|f(x)� 0| = f(x) <
1

M
.
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Then for these same values of x,

1

f(x)
> M.

Hence limx!�1
1

f(x)
=1.

5. We will prove that if

lim
x!�1

f(x) = 0,

and if f(x)  0 for all x less than a certain value, then

lim
x!�1

1

f(x)
= �1.

Let M < 0 be given. By hypothesis, there is � < 0 such that if
x < �, f(x)  0 and

|f(x)� 0| = �f(x) < � 1

M
.

Then for these same values of x,

1

f(x)
< M.

Hence limx!�1
1

f(x)
= �1.

6. We will prove that if c is a value, if

lim
x!c�

f(x) = 0,

and if for all x in an interval whose right end-point is c, f(x) � 0,
then

lim
x!c�

1

f(x)
=1.

Let M > 0 be given. By hypothesis, there is � > 0 such that if
0 < c� x < �, f(x) � 0 and

|f(x)� 0| = f(x) <
1

M
.

Then for these same values of x,

1

f(x)
> M.

Hence limx!c�
1

f(x)
=1.
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7. If c is a value, if
lim

x!c�
f(x) = 0,

and if for all x in an interval whose right end-point is c, f(x)  0,
then

lim
x!c�

1

f(x)
= �1.

Let M < 0 be given. By hypothesis, there is � > 0 such that if
0 < c� x < �, f(x)  0 and

|f(x)� 0| = �f(x) < � 1

M
.

Then for these same values of x,

1

f(x)
< M.

Hence limx!c�
1

f(x)
= �1.

8. If c is a value, if
lim

x!c+
f(x) = 0,

and if for all x in an interval whose right end-point is c, f(x) � 0,
then

lim
x!c+

1

f(x)
=1.

Let M > 0 be given. By hypothesis, there is � > 0 such that if
0 < x� c < �, f(x) � 0 and

|f(x)� 0| = f(x) <
1

M
.

Then for these same values of x,

1

f(x)
> M.

Hence limx!c+
1

f(x)
=1.

9. If c is a value, if
lim

x!c+
f(x) = 0,

and if for all x in an interval whose right end-point is c, f(x)  0,
then

lim
x!c+

1

f(x)
= �1.
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Let M < 0 be given. By hypothesis, there is � > 0 such that if
0 < x� c < �, f(x)  0 and

|f(x)� 0| = �f(x) < � 1

M
.

Then for these same values of x,

1

f(x)
< M.

Hence limx!c+
1

f(x)
= �1.

Solution C.134. [Of Exercise 9.6.]

1. Prove directly from the definition that

lim
x!2

x2 = 4.

Let " > 0 and let � = min{1, "/5}. If 0 < |x� 2| < � then 2� � < x <
2 + � and hence since �  1 we can easily show that |x+ 2| < 5. Now,
let x be such that 0 < |x � 2| < �. Now |x2 � 4| = |x � 2||x + 2| <
("/5)⇥ 5 = ". Hence, limx!2 x2 = 4.

2. Prove directly from the definition that for every value c,

lim
x!c

|x| = |c|.

Note that |x| = |x � c + c|  |x � c| + |c| hence |x| � |c|  |x � c|.
Note also that |c|  |c � x| + |x| and hence |c| � |x � c|  |x|. Hence
||x|� |c||  |x� c|.
Let " > 0. Let � = ". Let x be such that 0 < |x � c| < �. Then
||x|� |c||  |x� c| < � = ". Hence by definition limx!c |x| = |c|.

3. Prove directly from the definition that

lim
x!2

(5x� 11) = �1.

Let " > 0. Let � = "/5. Let x be such that 0 < |x � 2| < � = "/5.
Then |5x� 11 + 1| = 5|x� 2| < 5� = 5("/5) = ". Hence by definition
limx!2(5x� 11) = �1.

4. Prove directly from the definition that

lim
x!1

(x2 + x� 1) = 1.
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Let " > 0 and let � = min{1, "/4}. If 0 < |x� 1| < � then 1� � < x <
1 + � and hence since �  1 we can easily show that |x+ 2| < 4. Now,
let x be such that 0 < |x� 1| < �. Then |x2 + x� 2| = |x� 1||x+2| <
("/4)⇥ 4 = ". Hence, limx!1(x2 + x� 2) = �1.

5. Prove directly from the definition that

lim
x!1

(x� 3x2) = �2.

Let " > 0 and let � = min{1, "/8}. If 0 < |x� 1| < � then 1� � < x <
1+ � and hence since �  1 we can easily show that |3x+2| < 8. Now,
let x be such that 0 < |x�1| < �. Then |x�3x2+2| = |1�x||3x+2| <
("/8)⇥ 8 = ". Hence, limx!1(x� 3x2) = �2.

6. Prove directly from the definition that

lim
x!4

(
p
x) = 2.

Let " > 0 and let � = min{1, 3"}. If 0 < |x� 4| < � then 4� � < x <
4+� and hence since �  1 we can easily show that

p
x+2 > 3. Now, let

x be such that 0 < |x� 4| < �. Then |
p
x� 2| = | x� 4p

x+ 2
| < 3"/3 = ".

Hence, limx!4(
p
x) = 2.

7. Prove directly from the definition that

lim
x!�2

x3 = �8.

We will show the more general result that

lim
x!a

x3 = a3 for all reals a.

Let " > 0. We want � > 0 such that if 0 < |x�a| < � then |x3�a3| < ".
Let � = min{1, "

3a2 + 3a+ 1
}. Since 0 < |x� a| < � then a� � < x <

a+ � and we can show that x2 + xa+ a2 < (a+ 1)2 + a(a+ 1) + a2 =
3a2+3a+1. Now, for such x, we have: |x3�a3| = |x�a||x2+xa+a2| <
�(3a2+3a+1) < ( "

3a2 + 3a+ 1
)(3a2+3a+1) = ". Hence by definition

limx!a x3 = a3.

8. Prove directly from the definition that

lim
x!1

4

3x+ 2
=

4

5
.
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Let " > 0 and let � = min{1, 56"}. If 0 < |x � 1| < � then 1 � � <
x < 1 + � and hence since �  1 we can easily show that x > 0

and 1
3x+ 2 < 1

2 . Now, let x be such that 0 < |x � 1| < �. Then
��� 4
3x+ 2 �

4
5

��� =
����
12(1� x)
5(3x+ 2)

���� =
12
5
|1� x|
3x+ 2 < 12

5
1
2 |1 � x| = 6

5 |1 � x| <
6
5
5
6" = ". Hence, limx!1

4
3x+ 2 = 4

5 .

Solution C.135. [Exercise 9.7.]

1. Prove that the limit of a function is unique; i.e., that a function has
at most one limit as x! c.
Assume a function f(x) has two limits l1 and l2 as x! c. By definition,
this implies for any " > 0, there are �1 and �2 such that for any x: if
0 < |x � c| < �1 then |f(x) � l1| < "/2 and if 0 < |x � c| < �2 then
|f(x) � l2| < "/2. Let � = min{�1, �1}. Then for any 0 < |x � c| < �
we have |f(x) � l1| < "/2 and |f(x) � l2| < "/2. Hence for these x’s
|l1�l2| = |l1�f(x)+f(x)�l2|  |l1�f(x)|+|f(x)�l2|  "/2+"/2 = ".
Hence no matter what " we take, |l1 � l2| < ". This means l1 = l2.

2. Suppose that f is a function defined on an open interval containing c
except possibly at c itself.

1. Suppose that limx!c f(x) exists. Prove that limx!c |f(x)| exists
and limx!c |f(x)| = | limx!c f(x)|.
Assume limx!c f(x) = l. We will show that limx!c |f(x)| = |l|.
Let " > 0. By definition there is � > 0 such that for all x, if
0 < |x� c| < � then |f(x)� l| < ". But, ||f(x)|� |l||  |f(x)� l|.
Hence there is � > 0 such that for all x, if 0 < |x � c| < � then
||f(x)|� |l|| < ". Thus, limx!c |f(x)| = |l|.

2. Suppose that limx!c |f(x)| exists. Give an example to show that
limx!c f(x) may not exist.

Let f(x) =

(
1 if x is rational

�1 if x is irrational.

Then, it is easy to prove that for any c, limx!c |f(x)| = 1 but
limx!c f(x) does not exist.

3. Suppose that limx!c |f(x)| = 0. Prove that limx!c f(x) = 0.
Let " > 0. Since limx!c |f(x)| = 0, there is a � such that if
0 < |x � c| < � then ||f(x)|| < ". But ||f(x)|| = |f(x)|. Hence
there is a � such that if 0 < |x � c| < � then |f(x)| < ". By
definition, limx!c f(x) = 0.
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3. Find

lim
x!2+

1

x2 � 2x

and prove using the definition that this limit is correct.

We will show that limx!2+
1

x2 � 2x
= 1. Let M > 0 and let � =

min{1, 1
3M }. If 0 < x � 2 < � then 0 < x < 3 and x(x � 2) <

3�  3 1
3M = 1

M . Hence for any x such that 0 < x � 2 < � we have
1

x2 � 2x
= 1

x(x� 2)
> M . Hence by definition limx!2+

1
x2 � 2x

=1.

4. Find

lim
x!1

sin x

x

and prove using the definition that this limit is correct.

We will show that limx!1
sin x
x = 0. Let " > 0 and let M = 1

" .

For any x > M we have | sinxx |  1
x < 1

M = ". Hence by definition

limx!1
sin x
x = 0.

Solution C.136. [Exercise 9.8.] This solution is also taken from [25]. As-
sume a < c1 < c2 < · · · < cp < b. Let x0 = a and xp = b and for each
0 < i < p, let xi be such that ci < xi < ci+1. Hence

x0 = a < c1 < x1 < c2 < x2 < · · ·xp�1 < cp < b = xp.

Let 1  i  p. Since f is monotonically increasing, lim
x!c

+
i
f(x)  f(xi)

and f(xi�1)  lim
x!c

�
i
f(x). Hence, f(xi) � f(xi�1) � lim

x!c
+
i
f(x) �

lim
x!c

�
i
f(x). Let �(ci) = lim

x!c
+
i
f(x)� lim

x!c
�
i
f(x). Therefore:

For all 1  i  p, f(xi)� f(xi�1) � �(ci).

Now,

f(b)� f(a) = f(xp)� f(x0) = ⌃
p

i=1(f(xi)� f(xi�1)) � ⌃p

i=1�(ci).

Since we are only interested in discontinuity points, assume that for each
1  i  p, f is discontinuous at ci and hence �(ci) > 0. Hence, for some

n > 0, we have �(ci) >
1
n for each 1  i  p. Therefore,

f(b)� f(a) � ⌃p

i=1�(ci) >
p

n
.

and
p < n(f(b)� f(a)).
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So for each n > 0, we have a finite number p of points c in (a, b) such that

�(c) > 1
n and hence we have at most p+2 points c in [a, b] such that �(c) > 1

n
(in case �(a) > 1

n and/or �(b) > 1
n ).

For each point c in A (the set of points at which f is discontinuous),

�(c) > 1
n for some n > 0. We can write the elements of A as a sequence as

follows:

• First, list in sequence the finite set A1 of points c of A such that
�(c) > 1.

• Then list in sequence the finite set A2 of points c of A \ A1 such that

�(c) > 1
2 .

• Then list in sequence the finite set A3 of points c of A \ (A1 [A2) such

that �(c) > 1
3 .

• Repeat this process for each n > 0.

This demonstrates that A is countable
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C.10 Solutions for Chapter 10

Solution C.137. [Of Exercise 10.1.]

C2. Here is the figure for this case:

A C

B

G

D

F

E

The proof for this case is exactly the same as the proof given at the
start of Example 10.1.1. We repeat it here:
Since DG is the perpendicular bisector of AC, AD = DC. Also, angles
\ADG and \GDC are both right angles. Then by Proposition 4 of
Book I on triangles ADG and GDC, AG = CG.

Since BG is the angle bisector of \ABC, \ABG = \GBC. Also,
\BEG = \BFG, since both are right angles by construction, and
since BG is common, by Proposition 26 of Book I, it follows that
BE = BF and GE = GF .

Since \GEA = \GFC are both right angles, by the Pythagorean
triples, AE2 = CF 2 = AG2 � EG2 = CG2 � FG2. Hence it follows
that AE = CF .

Now AB = AE+BE and BC = BF +CF , it follows that AB = BC,
and the triangle ABC is isosceles.

C3. Here is the figure for this case:
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Since D is the middle point of AC, and D and G coincide, we have
AG = CG.

Since BG is the angle bisector of \ABC, \ABG = \GBC. Also,
\BEG = \BFG, since both are right angles by construction, and
since BG is common, by Proposition 26 of Book I, it follows that
BE = BF and GE = GF .

Since \GEA = \GFC are both right angles, by the Pythagorean
triples, AE2 = CF 2 = AG2 � EG2 = CG2 � FG2. Hence it follows
that AE = CF .

Now AB = AE+BE and BC = BF +CF , it follows that AB = BC,
and the triangle ABC is isosceles.

C4. Here is the figure for this case:
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C

B

G

D
F

E
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Since DG is the perpendicular bisector of AC, AD = DC. Also, angles
\ADG and \GDC are both right angles. Then by Proposition 4 of
Book I on triangles ADG and GDC, AG = CG.

Since BG is the angle bisector of \ABC, \ABG = \GBC. Also,
\BEG = \BFG, since both are right angles by construction, and
since BG is common, by Proposition 26 of Book I, it follows that
BE = BF and GE = GF .

Since \GEA = \GFC are both right angles, by the Pythagorean
triples, AE2 = CF 2 = AG2 � EG2 = CG2 � FG2. Hence it follows
that AE = CF .

Now AB = BE�AE and BC = BF �CF , it follows that AB = BC,
and the triangle ABC is isosceles.

Solution C.138. [Of exercise 10.2] If in the model of Example 10.1.2, we
consider only the xy-plane, then, for each line (i.e., the set of pairs (p, q) of
rational numbers satisfying ap + bq = c for rational numbers a, b, and c),
we define its slope to be �a/b if b 6= 0, otherwise, the line is p = c/a and is
parallel to the y axis (as in the red line in the figure below).3

Let us consider two lines which are the set of points ap+ bq = c respectively
a0p+ b0q = c0

• If b = b0 = 0 then each of the lines is parallel to the y axis and hence
the two lines are parallel.

• If b = 0 and b0 6= 0, then a 6= 0 (otherwise the set of points ap+ bq = c

is not a line). Let A = ( ca ,
c0

b0
� a0

b0
c
a ). Note that the coe�cients of

A are rational. Furthermore, A is in both set of points ap + bq = c

respectively a0p+b0q = c0. That is: a ca+0 = c and a0 ca+b0 c
0

b0
�b0 a

0

b0
c
a =

a0 ca + c0 � a0 ca = c0. Hence, A is the intersection point of both lines.

• If b 6= 0 and b0 6= 0 then the slopes are respectively a/b and a0/b0.

Assume a/b 6= a0/b0. Hence a
b �

a0

b0
6= 0. Let A = (x, y) where x =

c

b
� c0

b0

a

b
� a0

b0

and y = c
b � xab . Note that the coe�cients of A are rational.

Note also that since x =

c

b
� c0

b0

a

b
� a0

b0

then y = c
b � xab = c0

b0
� xa

0

b0
.

3Note that we cannot have both a and b be 0, since otherwise, we would be not be
talking of a line.
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Furthermore, A is in both set of points ap+ bq = c respectively a0p+
b0q = c0 as can be seen from the following:

– ax+ by = ax+ bcb � xbab = ax+ c� ax = c.

– a0x+ b0y = a0x+ b0 c
0

b0
� xb0 a

0

b0
= a0x+ c0 � a0x = c0.

x

y

p=-1.5

q=2.2

q=p+1q=2p-1

Solution C.139. [Of Exercise 10.3] By F9, the Archimedean ordered field
includes 1, and by F1 it includes 1 + 1, 1 + 1 + 1, etc. Hence, it includes all
positive integers. By F4 it contains 0 and by F5 it contains additive inverses.
Hence, it contains all the integers. By F10 it contains multiplicative inverses
and by F6 it contains the rationals.

Solution C.140. [Of Exercise 10.4] Assume an ordered field A. Let a and
b be elements of A such that a > 0.
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• Assume A satisfies AP and b > a. By AP , There is a positive integer
n such that b < an. Hence, A satisfies AL.

• Assume A satisfies AL. We consider all the possible cases:

– If b < 0 or b = 0 then let n = 1 and clearly there is a positive
integer n such that b < an.

– If b > a, then by AL, there is a positive integer n such that b < an.

– If a > b > 0 then just take n = 1 and clearly there is a positive
integer n such that b < an.

Solution C.141. [Of Exercise 10.5] Let a = supS. By hypothesis, a 2 S.
By Definition 10.3.1, 8x 2 S, x  a. Hence a is a maximum of S.

Solution C.142. [Of Exercise 10.6] If S has a least upper bound which is
an element of S then by Exercise 10.5 above, this least upper bound is a
maximum of S.
Assume S has a maximum a. Then, a is an upper bound of S and by the
Axiom of Completeness AC, S has a least upper bound b. Now, since a 2 S
then a  b. Since a is an upper bound of S then b  a. Hence a = b and S
has a least upper bound a which is an element of S.

Solution C.143. [Of Exercise 10.7] Let S = {a1, · · · , an} where n � 1. By
OF1 and OF2, we can order the finite set S to be b1 < b2 < · · · < bn. Hence
bn is a maximum element of S. If S has a least upper bound c then by
Exercise 10.6 above, S has a least upper bound which belongs to S.
By Exercise 10.5 above, the least upper bound of S is a maximum element
of S.

Solution C.144. [Of Exercise 10.8] By the Archimedean property (Theo-
rem 10.4.4), since 1 > 0, there is m > 0 such that m > a.

Solution C.145. [Of Exercise 10.9]
Let S be a nonempty bounded set of real numbers.

1. Since S 6= ;, let a 2 S. Let l and m be the greatest lower versus least
upper bounds of S. By definition, l  a  m.

2. If l = m then S is a singleton set. This is because, for any a 2 S,
l  a  m, but l = m, hence all elements of S are equal.

Solution C.146. [Of Exercise 10.10] Let g 2 R such that g > 0 and g < 1
a

for some 1
a 2 A. By the Archimedes Law AL, there is a positive integer n

such that 1
a < ng. Hence, for 1

na 2 A we have 1
na < g. Therefore is no

g 2 R such that g > 0 and g < x for every x 2 A. Hence 0 is a greatest
lower bound (i.e., infimum) of A.
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Solution C.147. [Of Exercise 10.11] Let S and T be nonempty bounded
sets of real numbers.

1. By definition, 8a 2 T , infT  a. But S ✓ T . Hence 8a 2 S, infT  a.
Hence inf T  inf S.
By definition, 8a 2 T , a  supT . But S ✓ T . Hence 8a 2 S,
a  sup T . Hence sup S  sup T .
By Exercise 10.9.1, inf S  sup S. Hence inf T  inf S  sup S 
sup T .

2. I. If a 2 S then a 2 S[T . Hence a  sup(S[T ) and supS  sup(S[T ).
Similarly, supT  sup(S [ T ). Hence max{supS, supT}  sup(S [ T ).
II. If a 2 S [ T then

– Either a 2 S and hence a  supS  max{supS, supT}.
– Or a 2 T and hence a  supT  max{supS, supT}.

Hence sup(S [ T )  max{supS, supT}.
Hence by I and II, sup(S [ T ) = max{supS, supT}.

Solution C.148. [Of Exercise 10.12] Assume the contrary. I.e., assume
there is " > 0 such that for all x 2 S, x  � � ". Hence, supS = �  � � ".
So, "  0. Contradiction. Hence, for every " > 0, there exists an element x
of S such that x > � � ".

Solution C.149. [Of Exercise 10.13] Let " > 0. Then x � " and x + " are
two real numbers such that x � " < x + ". By the density theorem 10.4.5,
there is a rational q such that x � " < q < x + ". Hence x < q + " and
q � " < x. I.e., q � " < x < q + " or �" < x � q < ". In other words,
|x� q| < ".

Solution C.150. [Of Exercise 10.14] First we will show that if r and s are
rationals such that s 6= 0 then r+s

p
2 is irrational. Let r = m/n and s = p/q

where n, p, q 6= 0. If r + s
p
2 is a rational e/f , i.e., m/n+ (p/q)

p
2 = e/f is

rational, then mq + np
p
2

nq = e
f . Hence

p
2 =

nq
e

f
�mq

np which is rational.

Absurd. Hence r + s
p
2 is irrational.

Now, since b > a then b � a > 0. Since b � a and
p
2 are two positive

reals, by the Archimedean property, there is a positive integer m such that
m(b� a) >

p
2. Hence ma+

p
2 < mb.

Let n be the greatest integer such that ma � n. Hence ma < n+1 < n+
p
2.

Also, ma +
p
2 � n +

p
2. Hence ma < n +

p
2  ma +

p
2 < mb and so,

a < n
m + 1

m
p
2 < b. Since a < n

m + 1
m
p
2 < b and n

m + 1
m
p
2 is irrational,

we are done.
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Solution C.151. [Of Exercise 10.15] Since S and T are nonempty, let to 2 T
and so 2 S.

1. By hypothesis, for any s 2 S, s  t0. Hence S is bounded above by
t0. By hypothesis, for any t 2 T , s0  t. Hence T is bounded below
by s0.

2. Since S is bounded above, by the Axiom of Completeness, sup S exists.
Since T is bounded below, by Theorem 10.4.2, inf T exists. Since by
hypothesis, any t in T is an upper bound of S, and since sup S is the
least upper bound, then sup S  t for any t 2 T . Hence sup S is
a lower bound of T . But inf T is the greatest lower bound. Hence
sup S  inf T .

3. Let S = (2, 3] and T = [3, 4). Then, for all s 2 S, for all t 2 T , s  t
and hence S \ T = {3}.

4. Let S = (2, 3) and T = (3, 4). Then, for all s 2 S, for all t 2 T , s  t,
sup S = inf T = 3 and S \ T = ;.

Solution C.152. [Of Exercise 10.16] Since a and 1 are positive real num-
bers, then by the Archimedean property Theorem 10.4.4, there are p and m
(strictly) positive integers such that ap > 1 and m > a. Let n = max{p,m}.
Hence an > ap > 1 and n > a. That is, 1/n < a < n.

Solution C.153. [Of Exercise 10.17]

1. Since A and B are non empty and bounded above then by the Axiom
of Completeness supA and supB exist. Let a+ b 2 S. Since a  supA
and b  supB then a + b  supA + supB. Hence supA + supB is
an upper bound of S. Since S is nonempty then by the Axiom of
Completeness supS exists. Therefore, supS  supA+ supB.
Now we show that for any upper bound ↵ of S, we have ↵ � supA +
supB. Assume on the contrary that ↵ < supA + supB. Then, ↵ �
supA < supB and since supB is the least upper bound of B, there
must exist a b 2 B such that ↵ � supA < b. Hence, ↵ � b < supA.
Again, there must exist an a 2 A such that ↵ � b < a. Hence, there
is a + b 2 S such that ↵ < a + b contradicting the fact that ↵ is an
upper bound of S. Hence ↵ � supA+ supB for any upper bound ↵ of
S. Hence supS = supA+ supB.

2. Since A and B are non empty and bounded below then by Theo-
rem 10.4.2 inf A and inf B exist. Let a + b 2 S. Since inf A  a and
inf B  b then inf A + inf B  a + b. Hence inf A + inf B is a lower
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bound of S. Since S is nonempty then by Theorem 10.4.2, inf S exists.
Therefore, inf A+ inf B  inf S.
Now we show that for any lower bound ↵ of S, we have ↵ 
inf A+ inf B. Assume on the contrary that ↵ > inf A+ inf B. Then,
↵ � inf A > inf B and since inf B is the greatest lower bound of B,
there must exist a b 2 B such that ↵� inf A > b. Hence, ↵�b > inf A.
Again, there must exist an a 2 A such that ↵ � b > a. Hence, there
is a + b 2 S such that ↵ > a + b contradicting the fact that ↵ is a
lower bound of S. Hence ↵  inf A + inf B for any lower bound ↵ of
S. Hence inf S = inf A+ inf B.

Solution C.154. [Of Exercise 10.18] Let S = {b + 1
n :

n is a positive integer}. Note that a and b are both lower bounds of
S and S is not empty. Hence by Theorem 10.4.2, inf S exists. We will show
that b = inf S. That is, we will show that if ↵ is a lower bound of S then
↵  b. Assume otherwise that ↵ > b. Then, ↵� b > 0. By the Archimedean
property, since ↵ � b and 1 are real numbers, there is a positive integer n

such that n(↵ � b) > 1. I.e., ↵ > b + 1
n . Contradicting the fact that ↵ is a

lower bound of S. Hence, if ↵ is a lower bound of S then ↵  b. This means
that b = inf S. Therefore a  b.

Solution C.155. [Of Exercise 10.19] First note that a is an upper bound of
Sa and that Sa is not empty. Hence, by the Archimedean property, sup Sa

exists and sup Sa  a. If sup Sa < a then by the Density of rationals
Theorem 10.4.5, there is a rational r such that sup Sa < r < a. Since r < a
then r 2 Sa. But sup Sa < r contradicts the fact that sup Sa is an upper
bound of Sa. Hence, supSa = a.
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C.11 Solutions for Chapter 11

Solution C.156. [Of Exercise 11.1] ] In the diagram below, we see that we
doubled the area of the square ABCD into the square EFGH. We did this
by drawing the two diagonals AC and BD and making a copy of each of
the internal triangles (AOD, DOC, AOB and BOC) by taking their mirror
image on the corresponding side of the square ABCD.

Another way of doubling the area of the square is by taking the square
AODE, drawing the diagonal AD and then making 3 copies (DOC, COB
and BOA) of the triangle AOD. The resulting square ABCD is double the
square AODE.

H
B

G

C
O

A

F
D

E

Solution C.157. [Of Exercise 11.2] ]

1. The area of S is a2. The area of T whose side is x is x2. By our
formula, a

x = x
2a and so, x2 = 2a2.

2. The formula is:
a : x = x : 3a.

In this case, x2 = 3a2.

3. The formula is:

a : x = x :
3

4
a.

In this case, x2 = 3
4a

2.

Solution C.158. [Of Exercise 11.3] Using proportions as we did in Exer-
cise 11.2, we need to find the side x of T so that a3 = 2x3. We use a
temporary variable y such that a : x = x : y = y : 2a. Then,

⇣a
x

⌘3
=

a

x

x

y

y

2a
=

1

2
and x3 = 2a3.
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For the second case, for a temporary variable y we use the formula

a : x = x : y = y :
3

4
a.

Then,

⇣a
x

⌘3
=

a

x

x

y

y
3

4
a
=

4

3
and x3 = 3

4a
3.

Solution C.159. [Of Exercise 11.4]

1. f(x) = 6x� 11.
Let " > 0 and let � = "/6. For any c 2 R, c is in the domain of f .
Let c 2 R. If |x � c| < � then |f(x) � f(c)| = |6x � 6c| = 6|x � c| <
6("/6) = ". Hence by definition f is continuous at c for any c. Hence
f is continuous everywhere.

2. g(x) = |x|.
Let " > 0 and let � = ". For any c 2 R, c is in the domain of g. Let
c 2 R. If |x� c| < � then |g(x)� g(c)| = ||x|� |c||  |x� c| < ". Hence
by definition f is continuous at c for any c. Hence g is continuous
everywhere.

3. h(x) = x2.
Let " > 0 and let � = min{1, "/(2|c| + 1)}. For any c 2 R, c is in the
domain of h. Let c 2 R. If |x� c| < � then |h(x)� h(c)| = |x2 � c2| =
|x � c||x + c| < (2|c| + 1)("/(2|c| + 1)) = ". Hence by definition h is
continuous at c for any c. Hence f is continuous everywhere.

Solution C.160. [Of Exercise 11.5] Let " > 0 and let � = "/|a|. For
any c 2 R, c is in the domain of f . Let c 2 R. If |x � c| < � then
|f(x)� f(c)| = |ax� ac| = |a||x� c| < |a|("/|a|) = ". Hence by definition f
is continuous at c for any c. Hence f is continuous everywhere.

Solution C.161. [Of Exercise 11.6] Let " > 0. For any c 2 R such that
c � 0, c is in the domain of f . Let c 2 R where c � 0. Note that |

p
x�
p
c| 

|
p
x +

p
c| and that |

p
x �

p
c|2  |

p
x �

p
c||
p
x +

p
c| = |x � c|. Hence if

� = "2 and |x � c| < "2 then |
p
x �

p
c|2 < "2 and |

p
x �

p
c| < ". Hence

by definition f is continuous at c for all non negative values of c. Hence f is
continuous everywhere.

Solution C.162. [Of Exercise 11.7] Let m = f(c)/2 > 0. Since f is con-
tinuous at c, there is � > 0 such that if |x � c| < � then |f(x) � f(c)| < m.
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I.e., if c � � < x < c + � then m < f(x) < 3m (hence f(x) � m). Let
[u, v] = (c � �, c + �) \ [a, b]. Obviously c 2 [u, v] ✓ [a, b]. Now, if x 2 [u, v]
then c� � < x < c+ � hence |x� c| < � and f(x) � m.

Solution C.163. [Of Exercise 11.8] We need to show that

1. f is continuous at c i↵

2. limx!c f(x) = f(c) i↵

3. for each {xn} in I, such that limx!1 xn = c, we have limx!1 f(xn) =
f(c).

We show 1() 2 as follows: Recall that

• f is continuous at c i↵ f is defined at c and for all " > 0 there is � > 0
such that if |x� c| < � then |f(x)� f(c)| < ".

• f has limit f(c) at c (i.e., limx!c f(x) = f(c)) i↵ for all " > 0 there is
� > 0 such that if 0 < |x� c| < � then |f(x)� f(c)| < ".

1 =) 2. Obviously if f is continuous at c then limx!c f(x) = f(c).

2 =) 1. On the other hand, if limx!c f(x) = f(c) and " > 0 then there is � > 0
such that if 0 < |x� c| < � then |f(x)� f(c)| < ". Hence

– If 0 < |x� c| < � then |f(x)� f(c)| < ".

– If |x� c| = 0 then x = c and hence |f(x)� f(c)| = 0 < ".

Therefore, if |x� c| < � then |f(x)� f(c)| < " and f is continuous.

Now we will show 1() 3.

3 =) 1. Assume for each {xn} in I, such that limn!1 xn = c, we have
limx!1 f(xn) = f(c). We need to show f is continuous at c. As-
sume there is " > 0 such that for every � > 0, if |x � c| < � then
|f(x)� f(c)| � ". For all n > 0, let �n = 1/n and let xn in I be such
that |xn � c| < 1/n. Hence |f(xn)� f(c)| � ". Now, {xn} is in I such
that limn!1 xn = c and limn!1 f(xn) 6= f(c). Contradiction. Hence
f is continuous at c.

1 =) 3. Let a sequence {xn} in I, such that limn!1 xn = c. We need to show
that limn!1 f(xn) = f(c). I.e., we need to show that for all " > 0,
there is M > 0 such that if xn > M then |f(xn)� f(c)| < ".

Let " > 0. Since f is continuous, there � > 0 such that if |x � c| < �
then |f(x)�f(c)| < ". Since limn!1 xn = c, for this �, there is M > 0
such that if xn > M then |xn � c| < � and hence |f(xn) � f(c)| < ".
Hence there is M > 0 such that if xn > M then |f(xn)� f(c)| < ".
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Solution C.164. [Of Exercise 11.9]

f + g: Let " > 0. There are �1 and �2 such that if |x � c| < �1 then |f(x) �
f(c)| < "/2 and if |x � c| < �2 then g(x) � g(c)| < "/2. Let � =
min{�1, �2}. Now, if |x � c| < � then |f(x) + g(x) � f(c) � g(c)| 
|f(x)� f(c)|+ |g(x)� g(c)| < ". Hence f + g is continuous at c.

f � g: Let " > 0. There are �1 and �2 such that if |x � c| < �1 then |f(x) �
f(c)| < "/2 and if |x � c| < �2 then g(x) � g(c)| < "/2. Let � =
min{�1, �2}. Now, if |x � c| < � then |f(x) � g(x) � f(c) + g(c)| 
|f(x)� f(c)|+ |g(x)� g(c)| < ". Hence f � g is continuous at c.

kf : Let " > 0. There is � such that if |x� c| < � then |f(x)� f(c)| < "/k.
Now, if |x� c| < � then |kf(x)� kf(c)| = |k||f(x)� f(c)| < ".

fg: Note that |f(x)g(x) � f(c)g(c)| = |f(x)g(x) � f(c)g(x) + f(c)g(x) �
f(c)g(c)|  |g(x)||f(x) � f(c)| + |f(c)||g(x) � g(c)|. Let " > 0. We
deal with the case f(c) 6= 0 and leave the case f(c) = 0 as an exercise.
There are �1, �2 and �3 such that

– if |x� c| < �1 then |f(x)� f(c)| < "
2(|g(c)|+ 1)

and

– if |f(c)| 6= 0 and |x� c| < �2 then |g(x)� g(c)| < "
2|f(c)| and

– if |x� c| < �3 then |g(x)� g(c)| < 1 and hence |g(x)| < |g(c)|+1.

Let � = min{�1, �2, �3}. Now, if |x�c| < � then |f(x)g(x)�f(c)g(c)| =
|f(x)g(x) � f(c)g(x) + f(c)g(x) � f(c)g(c)|  |g(x)||f(x) � f(c)| +
|f(c)||g(x)�g(c)| < (|g(c)|+1) "

2(|g(c)|+ 1)
+ |f(c)| "

2|f(c)| = ". Hence

fg is continuous at c.

f
g : Let g(c) 6= 0. We prove that 1

g is continuous at c and use the above

item to deduce that f
g is continuous at c. Let " > 0. There are �1, �2

such that

– If |x�c| < �1 then |g(x)�g(c)| < |g(c)|/2 (hence |g(x)| > |g(c)|/2)
and

– If |x� c| < �2 then |g(x)� g(c)| < ("|g(c)|2)/2.

Let � = min{�1, �1} then | 1
g(x)

� 1
g(c)

| = |g(c)� g(x)
g(x)g(c)

| 
|g(c)� g(x)|
|g(x)g(c)| < (("|g(c)|2)/2)(2/|g(c)|2) = ".
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Solution C.165. [Of Exercise 11.10] Let I be an interval, let c be an element
of I, let g be a function whose domain includes I, and let f be defined on
an interval J that includes the image g(I) = {g(x) : x 2 I}. Assume g is
continuous at c and f is continuous at g(c). Let " > 0. Since f is continuous
at c then there is a �1 > 0 such that if |x � c| < �1 then |f(x) � f(c)| < ".
But for �1, there is � such that if |x� c| < � then |g(x)� g(c)| < �1. Hence,
there is � such that if |x � c| < � then |f(g(x)) � f(g(c))| < " and f � g is
continuous at c.
Hence, if g is continuous on I and f is continuous on J , then f�g is continuous
on I.

Solution C.166. [Of Exercise 11.11]

1. Let p(x) = anxn + an�1xn�1 + . . .+ a1x+ a0 where for all 0  i  n,
ai is a constant (and of course for all 1  i  n, i is a positive integer).
Let c be a quantity.

• We first show that f(x) = x is continuous at c. Note that f is
defined for c and if " > 0 then let � = ". Now, |x� c| < � implies
|f(x)� f(c)| < ".

• Then, we show by induction on n � 0 that for any n � 0,
gn(x) = xn is continuous at c. If n = 0 then it is easy to show
g0(x) = 1 is continuous. Assume the property holds for n � 0
then gn+1(x) = gn(x)f(x) is continuous by IH and the above item
and Theorem 11.2.4. Hence gn is continuous for any n.

• By Theorem 11.2.4, p(x) is continuous.

Hence the polynomial p(x) is continuous at every quantity.

2. A rational function is continuous at every quantity for which it is de-
fined.

A rational function f(x) is of the form
p(x)
q(x)

where p(x) and q(x) are

polynomials. f(x) is defined on all quantities c such that q(c) 6= 0. Let
c be such that f(c) is defined. Then, by the above item, the polyno-

mials p(x) and q(x) are continuous at c and by Theorem 11.2.4,
p(x)
q(x)

is continuous at c.

Solution C.167. [Of Exercise 11.12] ]

1. f 0(1) = limx!1
x4 � 2x2 � (1� 2)

x� 1 = limx!1
x4 � 2x2 + 1

x� 1 =

limx!1
(x2 � 1)2

x� 1 = limx!1
(x� 1)2(x+ 1)2

x� 1 =

limx!1 (x� 1)(x+ 1)2 = 0.
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2. f 0(x) = limx!1

p
x�

p
1

x� 1 = limx!1

p
x� 1
x� 1 =

limx!1

p
x� 1

(
p
x� 1)(

p
x+ 1)

= limx!1
1p
x+ 1

= 1
2.

3. f 0(x) = limx!1
x/
p
x2 + 1� 1/

p
12 + 1

x� 1 =

limx!1

x
p
2�

p
x2 + 1p

2(x2 + 1)
x� 1 = limx!1

x
p
2�

p
x2 + 1

(x� 1)
p
2(x2 + 1)

=

limx!1
x
p
2�

p
x2 + 1

(x� 1)
p
2(x2 + 1)

⇥ x
p
2 +

p
x2 + 1

x
p
2 +

p
x2 + 1

=

limx!1
2x2 � x2 � 1

(x� 1)
p
2(x2 + 1)

⇣
x
p
2 +

p
x2 + 1

⌘ =

limx!1
x2 � 1

(x� 1)
p
2(x2 + 1)

⇣
x
p
2 +

p
x2 + 1

⌘ =

limx!1
(x� 1)(x+ 1)

(x� 1)
p
2(x2 + 1)

⇣
x
p
2 +

p
x2 + 1

⌘ =

limx!1
(x+ 1)p

2(x2 + 1)
⇣
x
p
2 +

p
x2 + 1

⌘ = 1
2
p
2
.

Solution C.168. [Of Exercise 11.13] ]

1. By Corollary 11.3.13, f 0(x) = 4x3 � 4x.

2. f 0(x) = limh!0

p
x+ h�

p
x

h = limh!0
x+ h� x

h(
p
x+ h+

p
x)

=

limh!0
1

(
p
x+ h+

p
x)

= 1
2
p
x
.

3. Let g1(x) = x2 + 1 and g2(x) =
p
x. Note that h(x) = g2(g1(x)).

By the item above, g02(x) =
1

2
p
x
. By Corollary 11.3.13, g01(x) = 2x.

Hence by the chain rule (Theorem 11.3.15): f 0(x) = g02(g1(x)).g
0
1(x) =

1
2
p

x2 + 1
.2x = xp

x2 + 1
.

4. Let h(x) =
p
x2 + 1. By the above item, h0(x) = xp

x2 + 1
. Since

f(x) = x/h(x) then by Corollary 11.3.13 and the quotient rule (The-

orem 11.3.14), f 0(x) =
h(x)� xh0(x)

x2 + 1
=

p
x2 + 1� x2/

p
x2 + 1

x2 + 1
=
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x2 + 1� x2

(x2 + 1)
p
x2 + 1

= 1
(x2 + 1)

p
x2 + 1

.

Solution C.169. [Of Exercise 11.14] Use the definition of the derivative to
find f 0(x).

1.

f 0(x)

= limh!0
f(x+ h)� f(x)

h

= limh!0
(x+ h)3 � 5(x+ h)2 � x3 + 5x2

h

= limh!0
(x+ h)3 � 5x2 � 5h2 � 10xh� x3 + 5x2

h

= limh!0
(x+ h)3 � 5h2 � 10xh� x3

h
= limh!0

x3 + xh2 + 2x2h+ hx2 + h3 + 2xh2 � 5h2 � 10xh� x3

h
= limh!0

3xh2 + 3x2h+ h3 � 5h2 � 10xh
h

= limh!0(3xh+ 3x2 + h2 � 5h� 10x)
= 3x2 � 10x.

2.

f 0(x) = limh!0
f(x+ h)� f(x)

h

= limh!0

1

(x+ h)2
� 1

x2

h

= limh!0
x2 � (x+ h)2

hx2(x+ h)2

= limh!0
�h2 � 2xh
hx2(x+ h)2

= limh!0
�h� 2x
x2(x+ h)2

= �2x
x4 = � 2

x3

3. f(x) =
p
x.

f 0(x) = limh!0
f(x+ h)� f(x)

h

= limh!0

p
x+ h�

p
x

h

= limh!0

p
x+ h�

p
x

h ⇥
p
x+ h+

p
xp

x+ h+
p
x

= limh!0
h

h(
p
x+ h+

p
x)

= limh!0
1p

x+ h+
p
x
= 1

2
p
x
.
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Solution C.170. [Of Exercise 11.15]

• Let " > 0. Let � = ". If |x � 0| = |x| < � then ||x| � 0| = |x| < " and
hence |x| is continuous at 0.

• limx!0+
|x|� |0|
x� 0 = limx!0+

x
x = limx!0+ 1 = 1 whereas

limx!0�
|x|� |0|
x� 0 = limx!0�

�x
x = limx!0� �1 = �1.

Hence by [LF9] of Theorem 9.3.9, limx!0
|x|� |0|
x� 0 does not exist and

|x| is not di↵erentiable at 0.

Solution C.171. [Of Exercise 11.16] Let c 2 [0, 1]. We will show that

limx!c

|x|� |c|
x� c is defined. Since x, c 2 [0, 1], then |x| = x and |c| = c.

Hence limx!c

|x|� |c|
x� c = limx!c

x� c
x� c = 1. Hence |x| is di↵erentiable on

the interval [0, 1].

Solution C.172. [Of Exercise 11.17] limx!1+
f(x)� f(1)

x� 1 =

limx!1+
2x� 1� (2� 1)

x� 1 = limx!1+
2x� 2
x� 1 = limx!1+ 2 = 2.

limx!1�
f(x)� f(1)

x� 1 = limx!1�
x2 � 1
x� 1 = limx!1�

(x� 1)(x+ 1)
x� 1 =

limx!1� x+ 1 = 2.

Hence limx!1
f(x)� f(1)

x� 1 = 2 and f is di↵erentiable at 1.

Since it is di↵erentiable at 1 then it is also continuous at 1.

Solution C.173. [Of Exercise 11.18] Let n = 1
h . Note that h ! 0 i↵

n!1. Now

f 0(c) = limh!0
f(c+ h)� f(c)

h = limn!1
f(c+

1

n
)� f(c)

1

n

=

limn!1

⇣
n
⇣
f(c+ 1

n )� f(c)
⌘⌘

.

Solution C.174. [Of Exercise 11.19] Corollary 11.3.12 gives the result for
r a positive integer: f 0(x) = rxr�1.

• First, we do the proof for r a negative integer. Let n = �r. Then,

xr = x�n = 1
xn . By the quotient rule Theorem 11.3.14, f 0(x) =

⇣
1
xn

⌘0
= 0xn � nxn�1

x2n = �n
xn+1 = �nx�n�1 = rxr�1.

• Next we do the proof for r = 1
n where n is a positive integer. For this,

we leave it as an exercise to the reader to show the following:
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1. limx!c+
x
1
n � c

1
n

x� c = 1
nc

1
n�1.

2. limx!c�
x
1
n � c

1
n

x� c = 1
nc

1
n�1.

Hence by [LF9] of Theorem 9.3.9, limx!c
x
1
n � c

1
n

x� c = 1
nc

1
n�1.

• Finally, if f(x) = x
m
n where m,n are integers then let g2(x) = x

1
n

and g1(x) = xm. Note that f = g2 � g1 and by the above, g02(x) =
1
nx

1
n�1 and g01(x) = mxm�1. By the chain rule Theorem 11.3.15,

f 0(x) = g02(g1(x)).g
0
1(x) = 1

n (x
m)

1
n�1mxm�1 = m

n x
m
n x�mxm�1 =

m
n x

m
n x�1 = m

n x
m
n �1.

Solution C.175. [Of Exercise 11.20]

• Case r = 2. limx!0
f(x)� f(0)

x� 0 = limx!0
x2 cos(1/x)� 0

x� 0 =

limx!0
x2 cos(1/x)

x = limx!0(x cos(1/x)) =
limx!0 x limx!0 cos(1/x) = 0 (since cos(1/x) is bounded).

• Case r = 1. limx!0
f(x)� f(0)

x� 0 = limx!0
x cos(1/x)� 0

x� 0 =

limx!0
x cos(1/x)

x = limx!0 cos(1/x).
Now we show that limx!0 cos(1/x) does not exist. Intuitively, this is
the case because in any interval around 0, no matter how small, we
can find x’s such that cos(1/x) = 1 and x’s such that cos(1/x) = �1.
Hence cos(1/x) has no limit at x = 0.

Solution C.176. [Of Exercise 11.21]

1. If f is neither strictly increasing nor strictly decreasing on I then let
a, b, c 2 I such that a < b < c and f(a) < f(c) < f(b). By the
hypothesis (IVT), there is a d such that a < d < b and f(d) = f(c).
Since d < b < c, f cannot be one-to-one, absurd. Hence f is either
strictly increasing or strictly decreasing on I.

2. Let f(x) and f(y) be elements in J such that f(x) < f(y). Clearly
x 6= y and x, y 2 I. Let f(x) < M < f(y). By IVT, there is z 2 I
such that f(z) = M . Hence, f(z) 2 J and J is an interval.

We need to show finv is continuous on all points of J (whether interior
points or end points). we only do the proof for interior points as the
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proof for end points is similar.
Let a be an interior point of J . By the above, finv(a) is an interior
point of I. Let " > 0. We need to find � > 0 such that |y � a| < �
implies |finv(y) � finv(a)| < ". Since finv(a) is interior in I, we can
find I 0 ⇢ I such that for all x 2 I 0, |x � finv(a)| < ". By the above,
f(I 0) is interval and there is � > 0 such that |y � a| < � implies
y 2 f(I 0). Hence, |y � a| < � implies |finv(y)� finv(a)| < ".

3. Since f is continuous on I, by 2, finv is continuous on J . Let c 2 I
such that f 0(c) 6= 0.
Since finv is continuous and for any y 2 J there is x 2 I such that
f(x) = y, we have f(x)! f(c) implies x! c. Now,

limy!f(c)
finv(y)� finv(f(c))

y � f(c)
=

1

lim
y!f(c)

y � f(c)

finv(y)� finv(f(c))

=

1

lim
x!c

f(x)� f(c)

finv(f(x))� finv(f(c))

=

1

lim
x!c

f(x)� f(c)

x� c

=

1
f 0(c)

Hence, f 0
inv(f(c)) =

1
f 0(c)

.

Solution C.177. [Of Exercise 11.22] By Theorem 11.3.5, f is continuous
on I. Let x be an element of J for which f 0(finv(x)) 6= 0. Since f is
di↵erentiable at finv(x) and f 0(finv(x)) 6= 0, then by Exercise11.21.3., finv
is di↵erentiable at x and f 0

inv(f(finv(x))) =
1

f 0(finv(x))
. Hence, f 0

inv(x) =

1
f 0(finv(x))

.

Solution C.178. [Of Exercise 11.23]

1. First recall LF17 that we proved in Exercise 8.4 where we showed that
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limx!0
sinx
x = 1. Recall also the trigonometric formula:

sinA� sinB = 2 cos
A+B

2
sin

A�B

2

Now, limh!0
sin (x+ h)� sinx

h = limh!0

2 cos
2x+ h

2
sin

h

2
h =

limh!0 cos
2x+ h

2

sin
h

2
h

2

= limh!0 cos
2x+ h

2 limh!0

sin
h

2
h

2

= cosx.

2. Again recall LF17 that we proved in Exercise 8.4 where we showed

that limx!0
sinx
x = 1. Recall also the trigonometric formula:

cosA� cosB = �2 sin A+B

2
sin

A�B

2

Now, limh!0
cos (x+ h)� cosx

h = limh!0

�2 sin 2x+ h

2
sin

h

2
h =

� limh!0 sin
2x+ h

2

sin
h

2
h

2

= � limh!0 sin
2x+ h

2 limh!0

sin
h

2
h

2

=

� sinx.

3. First recall that tanx = sinx
cosx and that cos2 x + sin2 x = 1. By the

quotient rule Theorem 11.3.14, tan0 x = cosx sin0 x� sinx cos0 x
cos2 x

=

cos2 x+ sin2 x
cos2 x

= 1
cos2 x

= sec2 x.

4. First recall that cotx = 1
tanx = cosx

sinx and that cos2 x+sin2 x = 1. By

the quotient rule Theorem 11.3.14, cot0 x = sinx cos0 x� cosx sin0 x
sin2 x

=

� sin2 x� cos2 x
sin2 x

= � 1
sin2 x

= � csc2 x.

5. secx = 1
cosx . Hence, by the quotient rule Theorem 11.3.14, sec0 x =

sinx
cos2 x

= 1
cosx

sinx
cosx = secx tanx.

6. cscx = 1
sinx . Hence, by the quotient rule Theorem 11.3.14, csc0 x =

� cosx
sin2 x

= � 1
sinx

cosx
sinx = � cscx cotx.
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7. Recall that arcsinx = sininv x and that cos2 x + sin2 x = 1. Hence
cos2(sininv x) = 1 � sin2(sininv x) = 1 � x2. We can easily show

that this implies cos(sininv x) =
q

1� sin2(sininv x) =
p
1� x2 (the

positive rather than negative sign).

Now, we can easily establish the preconditions of Theorem 11.3.19 and

hence, arcsin0x = sin0inv(x) = 1
sin0(sininv(x))

= 1
cos(sininv(x))

=

1p
1� x2

.

8. Recall that arctanx = taninv x. Recall also that cos2 x + sin2 x = 1

and hence cos2 x
cos2 x

+ sin2 x
cos2 x

= 1
cos2 x

and 1 + tan2 x = sec2 x. Hence

1 + tan2(taninv x) = sec2(taninv x). I.e., sec
2(taninv x) = 1 + x2.

By Theorem 11.3.19, arctan0x = tan0inv(x) =
1

tan0(taninv(x))
=

1
sec2(taninv(x))

= 1
1 + x2 .

9. Recall that arcsecx = secinv x. Recall also that cos2 x + sin2 x = 1

and hence cos2 x
cos2 x

+ sin2 x
cos2 x

= 1
cos2 x

and 1 + tan2 x = sec2 x. Hence

tan2 x = sec2 x � 1. And so, tan2(secinv(x)) = sec2(secinv(x)) � 1 =

x2 � 1. I.e., tan(secinv(x)) = ±
p
x2 � 1.

By Theorem 11.3.19, arcsec0x = sec0inv(x) =
1

sec0(secinv(x))
=

1
sec(secinv(x)) tan(secinv(x))

= 1
x tan(secinv(x))

.

Note that sec0inv(x) = 1
sec(secinv(x)) tan(secinv(x))

is always posi-

tive since sec(secinv(x)) and tan(secinv(x)) are either both positive
or both negative. Hence to guarantee this, we replace x by |x|
in 1

x tan(secinv(x))
and we replace tan(secinv(x)) = ±

p
x2 � 1 by

tan(secinv(x)) =
p
x2 � 1. That is, we have arcsec0x = sec0inv(x) =

1
x tan(secinv(x))

= 1
|x|
p
x2 � 1

.
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C.12 Solutions for Chapter 12

Solution C.179. [Of Exercise 12.1]

1. Let " > 0. Then there is a positive N such that 1
2N�1  ". Just take

N any natural number such that N � log2
2
" .

Now, let n,m > N and without loss of generality, assume m > n.

Hence m = n+ k where k > 0. Note that 1
2n�1 < 1

2N�1  ".

|am � an| = |an+k � an| 
|an+k � an+k�1|+ |an+k�1 � an+k�2|+ · · · |an+1 � an| <
2�(n+k�1) + 2�(n+k�2) + · · ·+ 2�n =
2�(n�1)�k + 2�(n�1�(k�1)) + · · ·+ 2�(n�1)�1 =
2�(n�1)(2�k + 2�(k�1) + · · ·+ 2�1) =

2�(n�1)(1� 1
2k

) <

2�(n�1) = 1
2n�1 < "

Hence {an} is a Cauchy sequence and hence by Lemma 12.1.8, it is a
sequence that converges to a limit.

2. No. Take the sequence {an} where an =
P

n

k=1
1
k . For this sequence,

we have that |an+1 � an| = 1
n+ 1 < 1

n for all positive integers n. But

this sequence is not convergent as we will see below and hence it is
not a Cauchy sequence. The proof that it is not convergent is due to

Jacob Bernouilli and goes as follows: Let apn = a2n = 1 + 1
2 + (13 +

1
4)+ (15 + 1

6 + 1
7 + 1

8)+ · · · ( 1
2n�1 + 1

+ · · ·+ 1
2n ). Note that {apn} is a

subsequence of {an} and apn > 1+ 1
2+( 1

22
+ 1
22

)+· · · ( 1
2n +· · ·+ 1

2n ) =

1 + 1
2 + 2 1

22
+ · · · 2n�1 1

2n = 1 +
1

2
+

1

2
+ · · · 1

2| {z }
n

= 1 + n
2 .

Now, {apn} can be shown to diverge as follows: Let M > 0 and let N

be a positive integer such that N > 2(M �1). Hence N
2 +1 > M . For

all n > N , apn > 1+ n
2 > 1+ N

2 > M . Hence {apn} is not convergent.

Solution C.180. [Of Exercise 12.2] First we prove that the sequence {rn}
converges. If " > 0, let N be such that rN < ". Then, for any n > N we
have |rn| < |rN | < ". Hence by Lemma 12.1.6, {rn} is a Cauchy sequence.
Now we show that {an} is a Cauchy sequence. Let " > 0. Since {rn} is a
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Cauchy, there is an N > 0 such that for all n,m > N we have |rn � rm| <
(1� r)". Let n,m such that n > m > M . Then |an � am| 

P
n

k=m+1 |ak �
ak�1| <

P
n

k=m+1 r
k�1 = rm � rn

1� r < ". Hence {an} is a Cauchy sequence

and by Lemma 12.1.8 converges to a limit.

Solution C.181. [Of Exercise 12.3] Note that for k > 1 we have |ak �
ak�1|  rk�2|a2� a1|. If a2 = a1 then for all k, ak = ak+1 and the sequence
is the constant sequence and it is Cauchy. We assume that a2 6= a1.
Now, for n > m we have:
|an � am| 

P
n

k=m+1 |ak � ak�1| 
P

n

k=m+1 r
k�2|a2 � a1| =

|a2 � a1|
r

P
n

k=m+1 r
k�1 =

|a2 � a1|
r

rm � rn
1� r =

|a2 � a1|
r(1� r)

(rm � rn). By Ex-

ercise 12.2 above, we know that {rn} is a Cauchy sequence. Let " > 0. There

is a number N such that for all n,m > N we have |rm�rn| < r(1� r)
|a2 � a1|

". Let

n > m > N . Then |an � am|  |a2 � a1|
r(1� r)

(rm � rn) <
|a2 � a1|
r(1� r)

r(1� r)
|a2 � a1|

" =

".
Hence {an} is a Cauchy sequence and by Lemma 12.1.8 converges to a limit.

Solution C.182. [Of Exercise 12.4] Let the Jacobsthal numbers be defined
as follows:

Jn =

(
1 if n = 1 or n = 2

2Jn�1 + (�1)n�1 if n > 2

Note that Jn = Jn�1 + 2Jn�2.

We can easily show that an = 1
2n�1 (Jn�1a0 + Jna1) for n � 2. Below we

show some examples:

a2 = 1
2(a0 + a1)

a3 = 1
22

(a0 + 3a1)

a4 = 1
23

(3a0 + 5a1)

a5 = 1
24

(5a0 + 11a1)

a6 = 1
25

(11a0 + 21a1)

Note that

a2 � a1 = �1
2(a1 � a0)

a3 � a2 = 1
22

(a1 � a0) = �1
2(a2 � a1)

a4 � a3 = � 1
23

(a1 � a0) = �1
2(a3 � a2)
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In general, for n � 1 we have

an+1 � an =
(�1)n

2n
(a1 � a0) = �

1

2
(an � an�1).

With these equations, we can show that

|an+1 � an| =
1

2
|an � an�1| <

3

4
|an � an�1|.

Hence by Exercise 12.3 above we know that {an} is a Cauchy sequence and
by Lemma 12.1.8 it converges. Now,

an = (an � an�1) + (an�1 � an�2) + · · ·+ (a2 � a1) + a1

= (a1 � a0)

✓⇣
�1
2

⌘n�1
+
⇣
�1
2

⌘n�2
+ · · ·+ �1

2

◆
+ a1

= a1 + (a1 � a0)⌃
n�1
k=1

⇣
�1
2

⌘k
.

Since |�12 | < 1, the geometric series ⌃n�1
k=1

⇣
�1
2

⌘k
converges to 1

1 +
1

2

= 2
3.

Hence an converges to 2
3(a1 � a0) + a1 = 5a1 � 2a0

3 .

Solution C.183. [Of Exercise 12.5] Let c = sup S and and let a 2 S. For

each positive integer n, c � 1
n is not an upper bound of S and hence there

is an an 2 S such that c � 1
n  an < c. We know that limn!1(c � 1

n ) = c
and hence by LS9, limn!1 an = c.

Solution C.184. [Of Exercise 12.6] Let s1 = 1 and sn+1 = (sn + 1)/3 for
n � 1.

1. s2 = 2
3, s3 = 5

32
, s4 = 14

33
, s5 = 41

34
.

2. s1 = 1 > 1
2 and s2 = 2

3 > 1
2 . Assume sn > 1

2 for n > 1. Then, for

n � 1, sn+1 = (sn + 1)/3 > (12 + 1)/3 = 1
2. Hence, sn > 1/2 for all n.

3. For n � 1, sn+1 � sn = sn + 1
3 � sn = 1� 2sn

3 <by2. 1
3 �

2
3
1
2 = 0.

Hence for n � 1, sn+1 < sn. Hence {sn} is a nonincreasing sequence.

4. We have shown in 3. above that for all n > 1, sn < s1 = 1. We have
also shown in 2. above that sn > 1/2 for all n. Hence for all n > 1,
1/2 < sn < 1. Now, {sn} is a bounded and monotone sequence, hence

by Theorem 12.1.2, {sn} has a limit l. Now, since sn+1 = sn + 1
3 and

both {sn} and {sn+1} have the same limit l, we have: l = l + 1
3 . That

is, l = 1
2.
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Solution C.185. [Of Exercise 12.7] Let t1 = 1 and tn+1 = [1�1/(n+1)2]tn
for n � 1.

1. Note that for all n � 1, 1/2  1� 1/(n+1)2  1. Hence for all n � 1:

– tn > 0. We prove this by induction on n � 1. t1 = 1 > 0. Assume
tn > 0 then tn+1 = [1� 1/(n+ 1)2]tn � tn/2 > 0.

– Since tn > 0 and 1 � 1/(n + 1)2  1, then tn+1 = [1 � 1/(n +
1)2]tn  tn. Hence {tn} is a nonincreasing sequence.

Hence for all n � 1, 0 < tn  t1 = 1. Now, {tn} is a bounded and
monotone sequence, hence by Theorem 12.1.2, {tn} has a limit l.

2. t1 = 1 = (1 + 1)/(2). Assume tn = (n + 1)/(2n) for some n � 1.
Then, tn+1 = [1 � 1/(n + 1)2]tn = [1 � 1/(n + 1)2](n + 1)/(2n) =
((n+ 1)2 � 1)(n+ 1)

2n(n+ 1)2
= n2 + 2n

2n(n+ 1)
= n+ 2

2(n+ 1)
.

Hence for all n, tn = (n+ 1)/(2n).

3. Since {tn} and {12 + 1
2n} have limits, then limn!1 tn = limn!1(12 +

1
2n ) =

1
2 + limn!1

1
2n = 1

2.

Solution C.186. [Of Exercise 12.8] We will prove that 5 ) 4 ) 1 ) 2 )
4 ) 5 and 1 , 3 hence establishing that 1 , 2 , 3 , 4 , 5.

5 ) 4. Let In = {[an, bn]} be a nested sequence of closed and bounded inter-
vals. Hence for each n, In+1 is contained in In and a1  an  bn  b1.
Hence by the Bolzano-Weierstrass Theorem 12.1.15, there is a conver-
gent subsequence {bpn} of {bn}. Let b be the limit of {bpn}. Note
that {bpn} is a decreasing sequence and that pn � n for all n. Hence
bpn  bn for all n and bpn  bpm for all n > m. It is the case that
b  bn for all n, since otherwise, if there is an m0 such that b > bm0 ,
then bpn  bpm0

 bm0 < b. Hence b � bpn � b � bm0 for all n > m0

which contradicts the fact that b is a limit of {bpn}. Furthermore, since
for all n, we have an  bpn , then an  b for all n. Hence an  b  bn
for all n, and b belongs to all intervals In.

4 ) 1. Let A be a nonempty set of real numbers that has an upper bound b1.

Since A is not empty, then there is a1 2 A. If a1 is an upper bound of
A then a1 is the least upper bound of A and we are done. Else, if a1 is

not an upper bound of A then a1 < b1 and let [a1, b1] and c1 = a1 + b1
2 .

Repeat the same process. If c1 is an upper bound of A, let [a2, b2] =
[a1, c1] else, if c1 is not an upper bound of A, let [a2, b2] = [c1, b1].
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Let c2 = a2 + b2
2 . Note that b2 is an upper bound of A and [a2, b2] ✓

[a1, b1].

Again, if we have already constructed [an, bn] and cn = an + bn
2

such that bn is an upper bound of A and [an, bn] ✓ [an�1, bn�1],
then we repeat the same process. If cn is an upper bound of A,
let [an+1, bn+1] = [an, cn] else, if cn is not an upper bound of A, let

[an+1, bn+1] = [cn, bn]. Let cn+1 =
an+1 + bn+1

2 .

Note that bn+1 is an upper bound of A and [an+1, bn+1] ✓ [an, bn].

Clearly, we have [a1, b1] ◆ [a2, b2] ◆ [an, bn], · · · such that bn is an
upper bound of A. By the nested interval theorem, there is a b 2T

n�1 In. We show that b = supA.

– b is an upper bound of A: Assume otherwise there is a c 2 A
such that c > b. Note that c � b > 0. But, for each n, we have
c  bn and an  b. By the Archimedean law, there is a positive
integer n such that b1�a1 < n(c� b) and hence here is an integer

N such that b1�a1 < 2N�1(c� b) and so, b1 � a1
2N�1 < c� b. Recall

that bn � an = b1 � a1
2n�1 for each n. We have for each n � N :

c� b  bn � b  bn � an =
b1 � a1
2n�1  b1 � a1

2N�1 < c� b.

Absurd. Hence b is an upper bound of A.

– b is least upper bound of A: Let d be an upper bound of A.
We want to show that b  d. Assume otherwise that d < b. Then
b� d > 0. Similarly as we did in the above item, let N such that
b1 � a1
2N�1 < b � d. Recall that bn � an = b1 � a1

2n�1 for each n and

that an  d and b  bn.

b� d  bn � an =
b1 � a1
2n�1  b1 � a1

2N�1 < b� d.

Absurd. Hence b is the least upper bound of A.

1 ) 2. This was seen as part of the proof of Theorem 12.1.2 where it was
shown for nondecreasing bounded sequences. Here, we show it for non-
increasing bounded sequences. Let {an} be a nonincreasing sequence.
Let A be the set of all real numbers an in the sequence, and since A is
bounded and not empty, by the Completeness Axiom, it has a greatest
lower bound, say l. Let " > 0 be given. Then l + " cannot be a lower
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bound for A, so there is a positive integer N such that aN < l + ".
Since an is nonincreasing, aN � an for all n > N . Of course, for all
n, an � l > l � ", and so if n > N , l � " < an < l + ". This latter
implies that |an � l| < ". This shows that limn!1 an = l.

2 ) 4. This was seen as part of the proof of Theorem 12.1.11 where {[an, bn]}
is a nested sequence of closed and bounded intervals, and since the
sequences {an} and {bn} are monotone and bounded, they have limits
a resp. b such that a  b and any z satisfying a  z  b is in all the
intervals. Furthermore, if limn!1(bn � an) = 0, then then we have

0 = lim
n!1

(bn � an) = lim
n!1

bn � lim
n!1

an = b� a,

so a = b and z = b = a is unique.

4 ) 5. Let {an} be a bounded sequence. We will find a subsequence that
converges. We do this by finding a sequence of nested closed bounded
intervals {In} such that for some a, a 2

T
n�1 In and we will find a

subsequence of {an} that converges to a. Since {an} is bounded, let
M such that |an|  M for every M . Let [l1, r1] = [�M,M ] and let

c1 = l1 + r1
2 . We construct [l2, r2] = I2 such that

– r2 � l2 = r1 � l1
2 and

– if [l1, c1] has infinitely many elements of {an} then I2 = [l1, c1]
else [c2, r2] has infinitely many elements of {an} and we let I2 =
[c2, r2].

We iterate this process building [ln+1, rn+1] = In+1 such that for cn =
ln + rn

2 , we have

– rn+1 � ln+1 = rn � ln
2 and

– if [ln, cn] has infinitely many elements of {an} then In+1 = [ln, cn]
else [cn, rn] has infinitely many elements of {an} and we let In+1 =
[cn, rn].

Obviously, {In} is a sequence of nested closed bounded intervals and by
the nested interval theorem 12.1.11, there is an a such that a 2

T
n�1 In

and for each n, ln  ln+1  a  rn+1  rn. Since {ln} and {rn} are
monotone bounded sequences, they converge to l resp. r such that
ln  ln+1  l  a  r  rn+1  rn. We will show that l = r.

We know that rn+1�ln+1 = rn � ln
2 and hence 2(lim rn+1�lim ln+1) =
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lim rn � lim ln. I.e., 2(r� l) = r� l. I.e., r = l. This means l = r = a.
Since for every n, In is not empty, we build our subsequence as follows:
an1 is an arbitrary element of I1. Since I2 contains infinitely many
elements of {an}, let an2 be one of these elements in I2 such that
an1 < an2 . We repeat the process building the subsequence {ank} of
{an}. It is easy to show that {ank} converges to a. In fact, since for
every k, lk  ank  ck, by LS33, {ank} converges to a.

1 ) 3. In the proof we gave for Lemma 12.1.8, we used both the Axiom
of Completeness (our item 1 1), and Theorem 12.1.2 (our item 2). Here,
reproduce the proof but where you replace the use of Theorem 12.1.2 (our
item 2) by a proof of it as we did in the step 1 ) 2 above.

3 ) 1. Let A be a non empty set that has an upper bound c1. Since A is non
empty, let a1 2 A. If a1 is an upper bound of A then a1 is the least upper
bound of A and we are done. Else, if a1 is not an upper bound of A then

a1 < c1 and let m1 = a1 + c1
2 . We will define a bounded Cauchy sequence

whose limit is the least upper bound of A.
We start by building three sequences {an} increasing, {cn} decreasing,

and {mn} such that for every n, an  mn  cn, mn = an + cn
2 and |cn+1 �

an+1| 
|cn � an|

2 , |cn+1�cn| 
|cn � an|

2 , an 2 A and cn is an upper bound
of A.

• If m1 is an upper bound of A, let a2 = a1 and c2 = m1, else, if m1

is not an upper bound of A, then there is a2 2 A such that m1 < a2.

Let c2 = c1 and m2 = a2 + c2
2 . Note that c2 is an upper bound of

A, |c2 � a2| 
|c1 � a1|

2 , |c2 � c1| 
|c1 � a1|

2 , a1  a2, c2  c1 and
a2  m2  c2.

• Assume we have an 2 A, cn upper bound of A and mn = cn + an
2

as above. We repeat the process: If mn is an upper bound of A, we
let an+1 = an and cn+1 = mn, else, there is an+1 2 A such that

mn < an+1 and cn+1 = cn. Obviously |cn+1 � an+1| 
|cn � an|

2 ,
an  an+1, cn+1  cn and an+1  mn+1  cn+1 and an+1 2 A and
cn+1 is an upper bound of A.

Hence, we can easily show that |cn+1�an+1| 
|c1 � a1|

2n , limn!1 cn�an = 0

and |cn+i � cn| 
|c1 � a1|

2i
for any positive i and |an+i � an| 

|c1 � a1|
2i

for any positive i. Hence, we can show that {an} and {cn} are both Cauchy
sequences. Hence by Lemma 12.1.8, {an} and {cn} converge to a and c
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respectively. Since {cn � an} converges to 0, a = c. Note that an  a = c 
cn.
Now we show that c is a lub of A.

• For all x 2 A, x  cn for all n. Hence, x  c and c is an upper bound
of A.

• Next, If b is upper bound of A, then an  b for every n and hence
a  b. Hence, c  b and c is a least upper bound of A.

Solution C.187. [Of Exercise 12.9]

1. The tails of {an} where an = (�1)n+1 = 1, �1, 1, �1, · · · , were
already given in Section 12.2. If N is odd, TN is the same as the entire
sequence, while if N is even, TN = {�1, 1,�1, 1, · · · }. Clearly, for each
N ,

inf TN = �1 and sup TN = 1.

Hence, lim inf an = �1 and lim sup an = 1.

The floor terms of {an} are all the terms aN such that N is even and
all these floor terms are equal to �1. The sequential limits are {�1, 1}
because we have found a subsequence that converges to 1 and another
subsequence that converges to �1.

2. The tails of {an} where an = (�1)n = �1, 1, �1, 1, · · · , are as follows:
If N is even, TN is the same as the entire sequence, while if N is odd,
TN = {1,�1, 1,�11, · · · }. Clearly, for each N ,

inf TN = �1 and sup TN = 1.

Hence, lim inf an = �1 and lim sup an = 1.

The floor terms of {an} are all the terms aN such that N is odd and
all these floor terms are equal to �1. The sequential limits are {�1, 1}
because we can found a subsequence that converges to 1 and another
subsequence that converges to �1.

3. Left as an exercise.

Solution C.188. [Of Exercise 12.10] We do the proof first for f(a) < v <
f(b). The proof for f(b) < v < f(a) follows. Let S = {x 2 [a, b] : f(x) < v}.
Since S is nonempty (it contains a) and bounded above (b is an upper bound),
S has a least upper bound c = supS by the Completeness Axiom. Note that
for x 2 [a, b]:

1. If f(x) < v then a  x  c  b.
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2. Hence if x > c then f(x) � v.

3. Furthermore, since c is the least upper bound such that f(x) < v then
there is no y < c such that f(x) � v for x > y.

4. Finally, since f is continuous, limx!c f(x) = f(c).

We show now that the value c satisfies f(c) = v.

• We show first that f(c)  v. For any positive integer n, let cn =
c � c� a

2n . Note that c1 = c � c� a
2 = c+ a

2 > a and that for all n,

cn < c and by 3. above, f(cn) < v. Also, since 2n < 2n+1, we have
cn < cn+1. So, {cn} is an increasing sequence of elements of S such
that for all n, a < cn < c. Hence by Bounded monotone sequences
Theorem 12.1.2, {cn} has a limit. In fact, we have that limn!1 cn = c.
By Theorem 11.2.3, limn!1 f(cn) = f(c). Since f(cn) < v for all n
then f(c)  v.

• Now we show that f(c) � v. Let dn = c+ b� c
n for each positive integer

n and note that by 2. above, {dn} is a sequence in the complement
of S that converges to c (we prove this similarly to the above item).
Since f(dn) � v for all n and the sequence {f(dn)} converges to f(c),
the inequality f(c) � v must hold.

It follows that f(c) = v.
As for the proof when f(b) < v < f(a), let g(x) = �f(x). Then g is defined
on the same interval as f and g is continuous on [a, b] and g(a) < �v < g(b).
By what we proved above, there is a c 2 (a, b) such that g(c) = �v. Hence
f(c) = v.

Solution C.189. [Of Exercise 12.11] Assume f is not bounded on closed
interval I. Then, for each positive integer n, there is xn 2 I such that
|f(xn)| > n. By the Bolzano-Weierstrass Theorem 12.1.15, {xn} has a sub-
sequence {xpn} that converges to a limit a. Since inf I  xpn  sup I, then
inf I  a  sup I and a 2 I. Since f is continuous, by Theorem 11.2.3,
limn!1 f(xpn) = f(a) and by Exercise 9.7.2, limn!1 |f(xpn)| = |f(a)|.
But for all n, |f(xn)| > n, hence |f(xpn)| > pn � n. So, |f(a)| =
limn!1 |f(xpn)| � limn!1 n. Absurd since f is defined at a.
Since f(I) is bounded non empty, by the Completeness Axiom, let g and l
be the greatest lower versus least upper bounds of f(I).

• For each positive n, since l is a least upper bound of f(I), there is

yn 2 I such that |f(yn) � l| < 1
n . Let " > 0 and let N a positive
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integer such that N � 1
" . Then for each n > N we have: |f(yn)� l| <

1
n < 1

N  " > 0. Hence limn!1 f(yn) = l. Since I is closed and
yn 2 I for all n, then limn!1 yn = y 2 I. Since f is continuous then
l = limn!1 f(yn) = f(limn!1 yn) = f(y).

• The proof that there is x 2 I such that f(x) = g is similar to the
above.

Hence there are x and y in I such that f(x) = g and f(y) = l.

Let h(x) = 1
x2 and J = [�1, 0). Then, h is continuous on [�1, 0) with

greatest lower bound �1 and least upper bound 0. But there is no x 2 [�1, 0)
such that h(x) = 0.
Let h0(x) = x and J = [�1, 0). Then, h0 is continuous on J = [�1, 0) with
greatest lower bound of J being �1 and least upper bound of J being 0. But
there is no x 2 [�1, 0) such that h0(x) = 0.

Solution C.190. [Of Exercise 12.12]

1. Let f(x) = x�tanx. Since f is continuous on [2⇡, 2⇡+ ⇡
2 ), f(2⇡) = 2⇡

and lim"!0 f(2⇡ + ⇡
2 � ") = �1, by Intermediate Value Theo-

rem 12.3.2, for " very small, there is x 2 [2⇡, 2⇡ + ⇡
2 � "] such that

f(x) = 0. Hence there is x > 2⇡ such that tanx = x.

2. Let f(x) = x � cosx. Since f is continuous on [0, ⇡2 ], f(0) = �1 < 0

and f(⇡2 ) = ⇡
2 > 0, by Intermediate Value Theorem 12.3.2, there is

x 2 [0, ⇡2 ], such that f(x) = 0. Since f(0) 6= 0 and f(⇡2 ) 6= 0, there is

x 2 (0, ⇡2 ), such that cosx = x.

3. If f(a) = a or f(b) = b we are done. Assume f(a) 6= a and f(b) 6= b
and let g(x) = f(x)� x. Then, since f([a, b]) ✓ [a, b], a < f(a), f(b) <
b. Hence g(b) < 0 < g(a) and since g is continuous on [a, b], by
Intermediate Value Theorem 12.3.2, there is x 2 [a, b] such that g(x) =
0. Hence there is x 2 [a, b] such that f(x) = x.

4. f(x) = x2xx � 1 is continuous on [0, 1] and f(0) = �1 and f(1) = 1.
Since f(0) < 0 < f(1), by Intermediate Value Theorem 12.3.2, there
is x 2 [0, 1] such that f(x) = 0. But f(0) 6= 0 and f(1) 6= 0. Hence
there is x 2 (0, 1) such that x2xx = 1.

5. Assume a < b. Note that f is continuous on [a, b]. Since f(a)f(b) < 0,
we know that f(a) 6= 0, f(b) 6= 0 and 0 is strictly between f(a) and
f(b). Hence by Intermediate Value Theorem 12.3.2, there is a number
x between a and b such that f(x) = 0.
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Solution C.191. [Of Exercise 12.13] Since for any x real number,
limn!1

x
n = 0, given " > 0 and a real number x, there is a positive in-

teger N(", x) such that N(", x) >
|x|
" . Hence there is a positive integer

N(", x) such that for all n > N(", x), |xn | <
|x|

N(", x)
< ".

Solution C.192. [Of Exercise 12.14] Since for all x 2 (0, 1), limn!1 xn = 0,
given " > 0 and a real number x, there is a positive integer N(", x) such
that N(", x) > log

x
". Hence there is a positive integer N(", x) such that for

all n > N(", x), |xn| < |xN(",x)| < xlogx " = ".

Solution C.193. [Of Exercise 12.15]

1. Let " = 1. Since {fn} uniformly converges to f , there is a positive
integer N such that for each n > N , for each x 2 I, |fn(x)�f(x)| < 1.
Hence, for each n > N , for each x 2 I, |fn(x)|  |fn(x)�f(x)|+|f(x)�
fN+1(x)|+ |fN+1(x)| < 2 +MN+1. Let M = max{M1,M2, ...MN , 2 +
MN+1}. Obviously, for all n, for all x 2 I, |fn(x)| M .

2. Let " = 1. Since {fn} uniformly converges to f , there is a positive
integer N such that:
for each n > N , for each x 2 I, |fn(x) � f(x)| < 1. Hence, for each
x 2 I, |f(x)|  |fN+1(x) � f(x)| + |fN+1(x)| < 1 + Mf . Hence f is
bounded.

Solution C.194. [Of Exercise 12.16] Let I be an interval. Suppose that
{fn} converges uniformly to f on I and that {gn} converges uniformly to g
on I.

1. Let " > 0. Since {fn} converges uniformly to f on I and {gn} converges
uniformly to g on I, there are positive integers N1 and N2 such that:
for all x 2 I and all n > N1, |f(x)� fn(x)| < "/2 and
for all x 2 I and all n > N2, |g(x)� gn(x)| < "/2.

Let N = max{N1, N2}. Then for all x 2 I and all n > N

|(f(x)� g(x))� (fn(x) + gn(x))| 
|f(x)� fn(x)|+ |g(x)� gn(x)| <
"/2 + "/2 =
".

Hence {fn + gn} converges uniformly to f + g on I.

2. For any x 2 R and n positive integer, let fn(x) =
1
n , gn(x) = x, f(x) =

0 and g(x) = x. Obviously {fn} uniformly converges to f and {gn}
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uniformly converges to g. Furthermore, {fngn} converges pointwise
to fg (limn!1 fn(x)gn(x) = limn!1

x
n = 0 = f(x)g(x)). However,

{fngn} does not uniformly converge to fg. To see this, for each n, let
Mn = sup{|fn(x)gn(x)� f(x)g(x)| : x 2 R} = sup{|xn | : x 2 R} =1.
Hence {Mn} does not converges to 0 and by Theorem 12.4.7, {fngn}
does not uniformly converge to fg.

We could give another example where the domain of the function is
not the whole R. Here is such an example:

For any x 2 (0, 1) and positive integer n, let fn(x) =
1
n , gn(x) =

1
x ,

f(x) = 0 and g(x) = 1
x . Obviously {fn} uniformly converges to f on

(0, 1) and {gn} uniformly converges to g on (0, 1). Furthermore, {fngn}
converges pointwise to fg (limn!1 fn(x)gn(x) = limn!1

1
xn = 0 =

f(x)g(x)). However, {fngn} does not uniformly converge to fg. To see
this, for each n, let Mn = sup{|fn(x)gn(x)� f(x)g(x)| : x 2 (0, 1)} =

sup{| 1nx | : x 2 (0, 1)} =1. Hence {Mn} does not converges to 0 and
by Theorem 12.4.7, {fngn} does not uniformly converge to fg.

3. Since f and g are bounded on I, then there are Mf and Mg such that
for all x 2 I, |f(x)| Mf and |g(x)| Mg.

Since {fn} converges uniformly to f on I there is a positive integer
N1 such that:
for all x 2 I and all n > N1, |f(x) � fn(x)| < 1. Hence for all x 2 I
and all n > N1, |fn(x)|  |fn(x)� f(x)|+ |f(x)| < 1 +Mf

Let " > 0. Since {fn} converges uniformly to f on I and {gn} converges
uniformly to g on I, there are positive integers Nf and Ng such that:
for all x 2 I and all n > Nf , |f(x)� fn(x)| < "

2(Mg + 1)
and

for all x 2 I and all n > Ng, |g(x)� gn(x)| < "
2(Mf + 1)

.

Let N = max{N1, Nf , Ng}. Then for all x 2 I and all n > N

|(f(x)g(x))� (fn(x)gn(x))| 
|f(x)g(x)� fn(x)g(x)|+ |fn(x)g(x)� fn(x)gn(x)| =
|f(x)� fn(x)||g(x)|+ |fn(x)||g(x)� gn(x)| <
Mg

"
2(Mg + 1)

+ (1 +Mf )
"

2(Mf + 1)
=

Mg
"

2(Mg + 1)
+ "

2 <

(Mg + 1) "
2(Mg + 1)

+ "
2 =

"
2 + "

2 =
".
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Hence {fngn} converges uniformly to fg on I.

4. If for all n, fn and gn are bounded on I, then by Exercise 12.15.(1.
and 2.) above, there are Mf , Mg such that for each n, for each x 2 I,
|fn(x)|  Mf and |gn(x)|  Mg and f and g are bounded. Then use
3. above to conclude that {fngn} converges uniformly to fg on I.

Solution C.195. [Of Exercise 12.17] Define f on (0, 1) such that f(x) = 1
x .

Let x 2 (0, 1). By applying the definition of limit, we can show that
limn!1 fn(x) = f(x). Hence the sequence {fn} converges pointwise to
f(x).
Note that for any n, for any x 2 (0, 1), n

n+ 1 < n
nx+ 1 < n. Hence each fn

is bounded. However, f(x) is not bounded on (0, 1) since limx!0+ f(x) =1.
Hence the sequence {fn} where fn(x) =

n
xn + 1 cannot converge uniformly

to the pointwise f(x) on (0, 1). Otherwise, by Exercise 12.15.2 above, f
would be bounded.

Solution C.196. [Of Exercise 12.18] For each of the sequences of functions
given below, determine its pointwise limit on [0, 3] and give a proof whether
convergence to this limit is uniform.

1. Let x 2 [0, 3]. limn!1 fn(x) = limn!1
x2

n+ 1 = 0.

Hence fn(x) =
x2

n+ 1 converges pointwise to f(x) = 0 on [0, 3].

Let " > 0 and take N be a positive integer such that N > 9� "
" . Then,

9
N + 1 < ".

Now, for all n > N , for all x 2 I, |fn(x) � f(x)| = | x2

n+ 1 � 0| <
9

N + 1 < ". Hence the sequence {fn} where fn(x) =
x2

n+ 1 converges

uniformly to f(x) = 0 on [0, 3].

2. Let x 2 [0, 3]. limn!1 fn(x) = limn!1
x

x� n = 0.

Hence fn(x) =
x

x� n converges pointwise to f(x) = 0 on [0, 3].

Let " > 0 and take N be a positive integer such that N > 3 + 3"
" .

Then, 3
N � 3 < ".

Now, for all n > N , for all x 2 I, |fn(x) � f(x)| = | x
x� n � 0| <

3
N � 3 < ". Hence the sequence {fn} where fn(x) =

x
x� n converges

uniformly to f(x) = 0 on [0, 3].

3. Let f(x) = 0 for all x 2 [0, 3]. It is easy to show that for any x 2 [0, 3],
limn!1 fn(x) = f(x). Hence {fn} converges pointwise to f(x).
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Now, for all n, for all x 2 [0, 3], fn(x) = x
nx+ 1 = 1

n
nx

nx+ 1 =

1
n

⇣
nx+ 1
nx+ 1 �

1
nx+ 1

⌘
= 1

n

⇣
1� 1

nx+ 1

⌘
< 1

n .

Hence for all n, for all x 2 [0, 3], |fn(x)| = x
nx+ 1 < 1

n . Let

Mn = sup{|fn(x) � f(x)| : x 2 [0, 3]}. Then, for all n, 0  Mn  1
n .

Hence, limn!1 Mn = 0 and by Theorem 12.4.7, the sequence {fn},
where fn(x) =

x
nx+ 1 uniformly converges to f(x) on [0, 3].

4. Let f(x) = 0 for all x 2 [0, 3]. It is easy to show that for any x 2 [0, 3],
limn!1 fn(x) = f(x). Hence {fn} converges pointwise to f(x).
Since (

p
n|x| � 1)2 � 0, then nx2 + 1 � 2

p
n|x| and hence

1
2
p
n
� |x|

nx2 + 1
.

Hence for all n, |fn(x)| =
|x|

nx2 + 1
 1

2
p
n
. Let Mn = sup{|fn(x) �

f(x)| : x 2 [0, 3]}. Then, for all n, 0  Mn  1
2
p
n
. Hence,

limn!1 Mn = 0 and by Theorem 12.4.7, the sequence {fn}, where
fn(x) =

x
nx2 + 1

uniformly converges to f(x).

5. Let

f(x) =

(
0 if x = 0

1 if 0 < x  3

It is easy to show that for any x 2 [0, 3], limn!1 fn(x) = f(x). Hence
{fn} converges pointwise to f(x).
Note that f is not continuous on [0, 3] whereas for each n, fn is con-
tinuous on [0, 3]. Hence by Corollary 12.4.5, the sequence {fn}, where
fn(x) =

nx
nx+ 1 cannot uniformly converge to f(x).

6. Let

f(x) =

8
><

>:

0 if 0  x < 1
1
2 if x = 1

1 if 1 < x  3

It is easy to show that for any x 2 [0, 3], limn!1 fn(x) = f(x). Hence
{fn} converges pointwise to f(x).
Note that f is not continuous on [0, 3] whereas for each n, fn is con-
tinuous on [0, 3]. Hence by Corollary 12.4.5, the sequence {fn}, where
fn(x) =

xn

xn + 1 cannot uniformly converge to f(x).
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Solution C.197. [Of Exercise 12.19] For each of the sequences given be-
low, determine whether there is a function to which the sequence converges
pointwise on [0, 1] and if such a function exist:

• Formally show the pointwise convergence.

• Determine whether this convergence is uniform and give a proof for
your claim.

1. Define f on [0, 1] such that f(x) =

(
1 if x = 0

0 if 0 < x  1.

If x = 0 then limn!1 fn(0) = 0 = f(0).
Let x such that 0 < x  1. We show limn!1 fn(x) = limn!1(1 �
x2)n = 0 as follows:
Let " > 0. There is N(", x) such that N(", x) > log1�x2 ". Note that
since 0  1� x2 < 1 then if n > m then (1� x2)n < (1� x2)m.

Hence there is a positive integer N(", x) such that for all n > N(", x),
|(1� x2)n| < |(1� x2)N(",x)| < (1� x2)log1�x2 " = ".

Hence for any x 2 [0, 1], limn!1 fn(x) = f(x). Hence {fn} converges
pointwise to f(x).
Note that f is not continuous on [0, 1] whereas for each n, fn is con-
tinuous on [0, 1]. Hence by Corollary 12.4.5, the sequence {fn}, where
fn(x) = (1� x2)n cannot uniformly converge to f(x).

2. Let f(x) = 0 for all x 2 [0, 1]. If x = 0 then limn!1 fn(0) = 0 = f(0).
Similarly, if x = 1 then limn!1 fn(1) = 0 = f(1).
Let x such that 0 < x < 1. We show limn!1 fn(x) = limn!1 x(1 �
x)n = 0 as follows:
Let " > 0. There is N(", x) such that N(", x) > log1�x

"
x . Note that

since 0 < 1� x < 1 then if n > m then (1� x)n < (1� x)m.

Hence there is a positive integer N(", x) such that for all n > N(", x),

|x(1� x)n| < |x(1� x)N(",x)| < x(1� x)log1�x
"
x = x "x = ".

Hence for any x 2 [0, 1], limn!1 fn(x) = f(x). Hence {fn} converges
pointwise to f(x) on [0, 1].

Furthermore, the functions f and fn for each n are continuous and
[0, 1] is closed.
Since 0  1�x  1 then for each n, 0  (1�x)n  1 and hence for each
n, 0  (1�x)n+1  (1�x)n. Since 0  x then x(1�x)n+1  x(1�x)n

and for each x, {fn} is decreasing.
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Hence, by Dini’s theorem 12.4.9, the sequence {fn}, where fn(x) =
x(1� x)n uniformly converges to f .

3. Let f(x) = 0 for all x 2 [0, 1]. If x = 0 then limn!1 fn(0) = 0 = f(0).
Similarly, if x = 1 then limn!1 fn(1) = 0 = f(1).
Let x be such that 0 < x < 1. We show limn!1 fn(x) =
limn!1 nx(1� x)n = 0 as follows:
First note that for any a > 0 and n � 2 we have (1 + a)n = 1 + na+
n(n� 1)a2

2 + · · · >
n(n� 1)a2

2 and hence 1
(1 + a)n

< 2
n(n� 1)a2

.

So, we look for replacing (1 � x)n by 1
(1 + a)n

. But, it is possible

to find a > 0 such that 1 � x = 1
1 + a (take a = x

1� x ). Hence,

nx(1� x)n = nx 1
(1 + a)n

< nx 2
n(n� 1)a2

= 2x
(n� 1)a2

.

Let " > 0. There is N(", x) such that N(", x) > 2x
a2"

+ 1 and hence

2x
(N(", x)� 1)a2

< ".

Hence there is a positive integer N(", x) such that for all n > N(", x),

|nx(1� x)n| < 2x
(n� 1)a2

2x
(N(", x)� 1)a2

< ".

Hence for any x 2 [0, 1], limn!1 fn(x) = f(x). Hence {fn} converges
pointwise to f(x) on [0, 1].

As for uniform convergence, recall Theorem 12.4.7. So, let us look
at Mn = sup{|fn(x) � f(x)| : x 2 [0, 1]} = sup{|nx(1 � x)n| : x 2
[0, 1]}. Since 1

n 2 [0, 1], Mn � n 1
n (1 �

1
n )

n = (1 � 1
n )

n. Hence

limn!1 Mn � limn!1(1 � 1
n )

n = 1
e and limn!1 Mn > 0. Hence by

Theorem 12.4.7, the sequence {fn}, where fn(x) = nx(1 � x)n does
not converge uniformly to f(x).

4. Let f(x) = 0 for all x 2 [0, 1]. If x = 0 then limn!1 fn(0) = 0 = f(0).
Similarly, if x = 1 then limn!1 fn(1) = 0 = f(1).
Let x such that 0 < x < 1. We show limn!1 fn(x) = limn!1 nx(1�
x2)n = 0 as follows:

– First note that for any a > 0 and n � 2 we have (1+a)n = 1+na+
n(n� 1)a2

2 +· · · > n(n� 1)a2

2 and hence 1
(1 + a)n

< 2
n(n� 1)a2

.

– We will prove that if 0 < a < 1 then limn!1 nan = 0.

Let a such that 0 < a < 1 and let b such that a = 1
1 + b . Then
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obviously, b > 0 and if n � 2 then by above, nan = 1
(1 + b)n

<

2
n(n� 1)b2

 1
(n� 1)b2

.

Let " > 0 and let N be a positive integer such that N > 1 + 1
"b2

.

Then, N � 2 and 1
(N � 1)b2

< " and for all n > N , |nan| 
1

(n� 1)b2
< 1

(N � 1)b2
< ". Hence limn!1 nan = 0.

Now, let a = 1 � x2. Since 0 < x < 1 then 0 < a < 1
and 0 < nx(1 � x2)n < n(1 � x2)n = nan. Hence
0  limn!1 nx(1 � x2)n  limn!1 nan = 0. So, for any x 2 [0, 1],
limn!1 fn(x) = f(x) and {fn} converges pointwise to f(x) on [0, 1].

As for uniform convergence, recall Theorem 12.4.7. So, let us look at
Mn = sup{|fn(x)� f(x)| : x 2 [0, 1]} = sup{|nx(1� x2)n| : x 2 [0, 1]}.
Since 1p

n
2 [0, 1], Mn � n 1p

n
(1� 1

n )
n =

p
n(1� 1

n )
n.

Now, since limn!1
p
n = 1 and limn!1(1 � 1

n )
n = 1

e > 0 then

by LS13, limn!1
p
n(1 � 1

n )
n = 1. Hence limn!1 Mn = 1. By

Theorem 12.4.7, the sequence {fn}, where fn(x) = nx(1 � x2)n does
not converge uniformly to f(x).
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C.13 Solutions for Chapter 13

Solution C.198. [Of Exercise 13.1] Assume P1 = {xi : 0  i  n} such
that a = x0 < x1 < x2 < · · · < xn = b, P2 = {yj : 0  j  m} and
a = y0 < y1 < y2 < · · · < ym = b where P2 ✓ P1. Clearly, for every
1  j  m, there is 1  i  n such that [yj�1, yj ] ✓ [xi�1, xi]. Hence, for
every 1  j  m, there is 1  i  n such that yj�yj�1]  xi�xi�1]. Hence,
kP1k = max{xi � xi�1 : 1  i  n}  max{yj � yj�1 : 1  j  m} = kP2k.

Solution C.199. [Of Exercise 13.2]

1. This statement says that the area between a and b under the curve of
f is unique.
Assume there are two distinct values L and L0 which are the Riemann
integral of f on [a, b]. Then, let " = |L� L0| > 0. By definition, there
are � and �0 such that for any tagged partition tP of [a, b],

• ktPk < �, we get |S(f,t P )� L| < "
2 , and

• ktPk < �0, we get |S(f,t P )� L0| < "
2 .

Let �00 = min{�, �0} and a tagged partition tP of [a, b] such that ktPk <
�00. Then, |S(f,t P )�L| < "

2 and |S(f,t P )�L0| < "
2 . Now, |L�L0| =

|L � S(f,t P ) + S(f,t P ) � L0|  |L � S(f,t P )| + |S(f,t P ) � L0| <
"
2 + "

2 = " = |L� L0|. Absurd.

2. Obviously, since the function h is constant, the area between a and b
under the graph of h is the area of the rectangle whose sides are k and
(b� a). Hence, the area is k(b� a). The proof is as follows:
For any tagged partition tP = {(ti, [xi�1, xi]) : 1  i  n} of [a, b] we
have: S(h,t P ) = ⌃n

i=1h(ti)(xi � xi�1) = ⌃n

i=1k(xi � xi�1) = k(b� a).
Let " > 0 and let � be any positive number. Then, for any tagged
partition tP of [a, b] such that ktPk < � we have |S(h,t P )�k(b�a)| =
0 < ". Hence, by definition, h is Riemann integrable on [a, b] and has
k(b� a) as its Riemann integral.

3. Obviously, since the function kf always multiplies the value of f by
k, the area between a and b under the graph of kf is k-times the area
between a and b under the graph of f . The proof is as follows:
Let " > 0. By definition, there is a � > 0 such that for all tagged

partitions tP of [a, b] where ktPk < � we have |S(f,t P )�
R
b

a
f | < "

|k| .
Note that if tP = {(ti, [xi�1, xi]) : 1  i  n} then S(kf,t P ) =
⌃n

i=1(kf)(ti)(xi � xi�1) = k⌃n

i=1f(ti)(xi � xi�1). Hence, for all
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tagged partitions tP where ktPk < � we have |S(kf,t P ) � k
R
b

a
f | =

|k||S(f,t P )�
R
b

a
f | < |k| "|k| = ". Hence, kf is Riemann integrable and

R
b

a
kf = k

R
b

a
f .

4. Obviously, the area between a and b under the graph of f + g is the
sum of the area between a and b under the graph of f and the area
between a and b under the graph of g. The proof is as follows:
Let " > 0. By definition, there are �1 > 0 and �2 > 0 such that for all

tagged partitions tP where ktPk < � we have |S(f,t P ) �
R
b

a
f | < "

2
and |S(g,t P ) �

R
b

a
g| < "

2 . Let � = min{�1, �2}. Note that if tP =

{(ti, [xi�1, xi]) : 1  i  n} then S(f + g,t P ) = ⌃n

i=1(f + g)(ti)(xi �
xi�1) = ⌃n

i=1f(ti)(xi � xi�1) + ⌃n

i=1g(ti)(xi � xi�1) = S(f,t P ) +
S(g,t P ). Hence, for all tagged partitions tP where ktPk < � we have

|S(f,t P )�
R
b

a
f | < "

2 and |S(g,t P )�
R
b

a
g| < "

2 . Hence |S(f + g,t P )�
(
R
b

a
f+
R
b

a
g)|  |S(f,t P )�

R
b

a
f |+ |S(g,t P )�

R
b

a
g| < "

2 +
"
2 < ". Hence

f + g is Riemann integrable and
R
b

a
f + g =

R
b

a
f +

R
b

a
g.

Solution C.200. [Of Exercise 13.3]

1. Recall that !(f, I) = sup{f(z) : z 2 I} � inf{f(z) : z 2 I} � 0.
Since for any x, y 2 I, inf{f(z) : z 2 I}  f(x)  sup{f(z) : z 2
I} and �sup{f(z) : z 2 I}  �f(y)  �inf{f(z) : z 2 I} then
�(sup{f(z) : z 2 I} � inf{f(z) : z 2 I})  f(x) � f(y)  sup{f(z) :
z 2 I} � inf{f(z) : z 2 I} and so, 0  |f(x) � f(y)|  sup{f(z) : z 2
I}� inf{f(z) : z 2 I}.

2. Since by 1, !(f, I) � |f(x) � f(y)| then !(f, I) � sup{|f(x) � f(y)| :
x, y 2 I}.
Furthermore, since for all x, y 2 I, f(x) � f(y)  |f(x) � f(y)| 
sup{|f(x) � f(y)| : x, y 2 I} then for all x, y 2 I, f(x)  sup{|f(x) �
f(y)| : x, y 2 I} + f(y) and hence, sup{f(x) : x 2 I}  sup{|f(x) �
f(y)| : x, y 2 I} + f(y) for all y 2 I. Therefore, sup{f(x) : x 2
I} � sup{|f(x) � f(y)| : x, y 2 I}  f(y) for all y 2 I, and finally
sup{f(x) : x 2 I} � sup{|f(x) � f(y)| : x, y 2 I}  inf{f(x) : x 2 I}.
Hence, !(f, I) = sup{|f(x)� f(y)| : x, y 2 I}.
Now, since for any x, y 2 I, f(x)�f(y)  |f(x)�f(y)|, then sup{f(x)�
f(y) : x, y 2 I}  sup{|f(x) � f(y)| : x, y 2 I}. Moreover, since for
any x, y 2 I, f(x) � f(y)  sup{f(x) � f(y) : x, y 2 I} then for
any x, y 2 I, |f(x) � f(y)|  sup{f(x) � f(y) : x, y 2 I} and hence,
sup{|f(x)� f(y)| : x, y 2 I}  sup{f(x)� f(y) : x, y 2 I}.
Therefore, sup{|f(x)� f(y)| : x, y 2 I} = sup{f(x)� f(y) : x, y 2 I}.
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3. Since sup{f(x) : x 2 [c, d]}  sup{f(x) : x 2 [a, b]} and �inf{f(x) :
x 2 [c, d]}  �inf{f(x) : x 2 [a, b]} then !(f, [c, d])  !(f, [a, b]).

4. By the above case, !(f, [c, d])  !(f, [c, e]) and !(f, [d, e]) 
!(f, [c, e]). Hence max{!(f, [c, d]),!(f, [d, e])}  !(f, [c, e]).
As for the second inequality, let m = inf{f(x) : x 2 [c, e]}, M =
sup{f(x) : x 2 [c, e]}, m1 = inf{f(x) : x 2 [c, d]}, M1 = sup{f(x) :
x 2 [c, d]}, m2 = inf{f(x) : x 2 [d, e]} and M2 = sup{f(x) : x 2 [d, e]}.
Note that m = min{m1,m2} = max{M1,M2} = M . Now do the
proof by the cases on the order between the mi and Mi. For example,
if m = m1  m2  M1  M2 = M then M � m = M2 � m1 
M2 +M1 �m2 �m1.

5. Since P2 is a refinement of P1, the set P2 \ [zi�1, zi] is a partition of
[zi�1, zi]. Consequently, since we can work with each interval [zi�1, zi]
separately, it is su�cient to consider the case in which P1 = {a, b}; this
simplifies the notation in the proof considerably. Let tP1 = {(v, [a, b])},
let P2 = {xi : 0  i  p}, and let

tP2 = {(ti, [xi�1, xi]) : 1  i  p}.

It follows that

|S(f,t P2)� S(f,t P1)| =
|⌃p

i=1f(ti)(xi � xi�1)� f(v)(b� a)| =
|⌃p

i=1f(ti)(xi � xi�1)� f(v)⌃p

i=1(xi � xi�1)| =
|⌃p

i=1f(ti)(xi � xi�1)� ⌃p

i=1f(v)(xi � xi�1)| =
|⌃p

i=1(f(ti)� f(v))(xi � xi�1)| 
⌃p

i=1|f(ti)� f(v)|(xi � xi�1) 
⌃p

i=1!(f, [a, b])(xi � xi�1) =
!(f, [a, b])(b� a).

Now we prove the general result. Assume P1 = {z0, z1, · · · , zn} and
that for all 1  i  n, P2\ [zi�1, zi] = {x0(i�1), x1(i�1), · · ·xp(i�1)(i�1)}
where zi�1 = x0(i�1) < x1(i�1) < · · · < xp(i�1)(i�1) = zi.

Assume also that tP1 = {(ti, [zi�1, zi]) : 1  i  n} and for all 1  i 
n, tP2|[zi�1, zi] = {(tj(i�1), [x(j�1)(i�1), xj(i�1)]) : 1  j  pi�1}.
By above, for all 1  i  n, |S(f,t P2|[zi�1, zi]) �
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S(f, {(ti, [zi, zi�1])})|  !(f, [zi�1, zi])(zi � zi�1). Hence

|S(f,t P2)� S(f,t P1)| =
|⌃n

i=1S(f,
t P2|[zi�1, zi])� ⌃n

i=1S(f, {(ti, [zi�1, zi])})| =
|⌃n

i=1(S(f,
t P2|[zi�1, zi])� S(f, {(ti, [zi�1, zi])}))| 

⌃n

i=1|S(f,t P2|[zi�1, zi])� S(f, {(ti, [zi�1, zi])})| 
⌃n

i=1!(f, [zi�1, zi])(zi � zi�1) =
O(f, P1)

6. Assume P2 = P1[{y} where for some 1  j  n, zj�1 < y < zj . Since
!(f, [zj�1, y])  !(f, [zj�1, zj ]) and !(f, [y, zj ])  !(f, [zj�1, zj ]), we
have

O(f, P2) = ⌃j�1
i=1!(f, [zi�1, zi])(zi � zi�1)+

!(f, [zj�1, y])(y � zj�1) + !(f, [y, zj ])(zj � y)+
⌃n

i=j+1!(f, [zi�1, zi])(zi � zi�1)

 ⌃j�1
i=1!(f, [zi�1, zi])(zi � zi�1)+

!(f, [zj�1, zj ])(y � zj�1) + !(f, [zj�1, zj ])(zj � zj�1)+
⌃n

i=j+1!(f, [zi�1, zi])(zi � zi�1)
= O(f, P1)

If P2 = P1 [ {y1, . . . , ym}, use induction on m.

7. O(f, P1) = ⌃n

i=1!(f, [xi�1, xi])(xi � xi�1) = ⌃n

i=1(sup{f(x) : x 2
[xi�1, xi]} � inf{f(x) : x 2 [xi�1, xi]})(xi � xi�1) = ⌃n

i=1sup{f(x) :
x 2 [xi�1, xi]}(xi � xi�1)�⌃n

i=1inf{f(x) : x 2 [xi�1, xi]}(xi � xi�1) =
S+(f, P1)� S�(f, P1).

8. Assume tP1 = {(ti, [zi�1, zi]) : 1  i  n}. Since for all 1  i  n,
inf{f(x) : x 2 [xi�1, xi]}  f(ti)  sup{f(x) : x 2 [xi�1, xi]} then
⌃n

i=1inf{f(x) : x 2 [xi�1, xi]}(xi � xi�1)  ⌃n

i=1f(ti)(xi � xi�1) 
⌃n

i=1sup{f(x) : x 2 [xi�1, xi]}(xi � xi�1).
Hence S�(f, P1)  S(f,t P1)  S+(f, P1).

9. Obviously S�(f, P1)  sup{S�(f, P ) : P is a partition of [a, b]} and
inf{S+(f, P ) : P is a partition of [a, b]}  S+(f, P1). Also, since by 8.
above, S�(f, P1)  S+(f, P1) for any P1, we have
sup{S�(f, P ) : P is a partition of [a, b]} 
inf{S+(f, P ) : P is a partition of [a, b]}.
Hence S�(f, P1)  S�(f)  S+(f)  S+(f, P1).

10. By 9. and 7. above, S+(f)�S�(f)  S+(f, P1)�S�(f, P1) = O(f, P1).
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Solution C.201. [Of Exercise 13.4] Proof by Contradiction: Since f
is Riemann integrable on [a, b], there exists a positive number � such that

|S(f,t P ) �
R
b

a
f | < 0.5 (and hence |S(f,t P )| < |

R
b

a
f | + 0.5) for all tagged

partitions tP on [a, b] that satisfy ktPk < �. Assume f is unbounded on
[a, b]. Let Q = {xi : 0  i  n} be a partition of [a, b] such that kQk < �.
Since f is unbounded on [a, b], there is a 1  j  n such that f is unbounded

on [xj�1, xj ]. Let M = 1
xj � xj�1

(|
R
b

a
f | + 0.5 + |⌃n

i=1f(xi)(xi � xi�1) �
f(xj)(xj � xj�1)|). Since f is unbounded on [xj�1, xj ], let v 2 [xj�1, xj ]
such that |f(v)| > M and hence |f(v)(xj � xj�1)|� |⌃n

i=1f(xi)(xi� xi�1)�
f(xj)(xj � xj�1)| > |

R
b

a
f |+ 0.5.

Let tQ = ({(xi, [xi�1, xi]); 1  i  n} [ {(v, [xj�1, xj ])}) \
{(xj , [xj�1, xj ])}. Obviously, ktQk < �, but |S(f,t Q)| = |⌃n

i=1f(xi)(xi �
xi�1)) � f(xj)(xj � xj�1) + f(v)(xj � xj�1)| � |f(v)(xj � xj�1)| �
|⌃n

i=1f(xi)(xi � xi�1))� f(xj)(xj � xj�1)| > |
R
b

a
f |+ 0.5 contradiction.

Solution C.202. [Of Exercise 13.5] Let f be Riemann integrable on [a, b].
We first show that f is Riemann integrable on [a, c] and on [c, b]. Note that
by Theorem 13.2.1, f is bounded on [a, b]. Let " > 0. By Theorem 13.2.3,
there exists a partition P = {xi : 0  i  n} of [a, b] such that

O(f, P ) = ⌃n

i=1!(f, [xi�1, xi])(xi � xi�1) < ".

• If for some 0  j  n, c = xj then P1 = {xi : 0  i  j} is a partition
of of [a, c] and P2 = {xi : j  i  n} is a partition of of [c, b] such
that O(f, P ) = O(f, P1) + O(f, P2) < ". Since each of O(f, P1) and
O(f, P2) are positive, then O(f, P1) < " and O(f, P2) < ". Since f is
bounded on each of [a, c] and [c, b], by Theorem 13.2.3, f is Riemann
integrable on each of [a, c] and [c, b].

• If for some 0  j  n, xj�1 < c < xj then P 0 = P [{c} is a refinement
of P and O(f, P 0)  O(f, P ) can be seen as follows:

O(f, P 0) = ⌃j�1
i=1!(f, [xi�1, xi])(xi � xi�1)+

!(f, [xj�1, c])(c� xj�1) + !(f, [c, xj ])(xj � c)+
⌃n

i=j+1!(f, [xi�1, xi])(xi � xi�1)

 ⌃j�1
i=1!(f, [xi�1, xi])(xi � xi�1)+

!(f, [xj�1, xj ])(c� xj�1) + !(f, [xj�1, xj ])(xj � c)+
⌃n

i=j+1!(f, [xi�1, xi])(xi � xi�1)

= ⌃j�1
i=1!(f, [xi�1, xi])(xi � xi�1)+

!(f, [xj�1, xj ])(xj � xj�1)+
⌃n

i=j+1!(f, [xi�1, xi])(xi � xi�1)
= O(f, P ).
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But, P1 = {xi : 0  i  j} [ {c} is a partition of of [a, c] and P2 =
{xi : j  i  n} [ {c} is a partition of of [c, b] such that O(f, P 0) =
O(f, P1)+O(f, P2)  O(f, P ) < ". Since each of O(f, P1) and O(f, P2)
are positive, then O(f, P1) < " and O(f, P2) < ". Since f is bounded
on each of [a, c] and [c, b], by Theorem 13.2.3, f is Riemann integrable
on each of [a, c] and [c, b].

Now, since f is Riemann integrable of each of [a, c] and [c, b], by what we
just proved above, f is also integrable on each of [c, d] and [d, b]. Hence, f
is Riemann integrable on [c, d].

Solution C.203. [Of Exercise 13.6] By Exercise 13.5, if f is Riemann inte-
grable on [a, b] then f is Riemann integrable on [a, c] and on [c, b]. Conversely,
assume f is Riemann integrable on [a, c] and on [c, b]. By Theorem 13.2.1,
f is bounded on [a, c] and on [c, b]. Hence f is bounded on [a, b]. Let " > 0.
By Theorem 13.2.3, there are P1 partition of [a, c] and P2 partition of [c, b]
such that O(f, P1) <

"
2 and O(f, P2) <

"
2 . Let P = P1[P2. P is a partition

of [a, b] and O(f, P ) = O(f, P1) + O(f, P2) < ". By Theorem 13.2.3, f is
bounded on [a, b].

Solution C.204. [Of Exercise 13.7] We first show that f2 is Riemann inte-
grable on [a, b].

By Theorem 13.2.1, f is bounded on [a, b]. Let M be a bound for f
on [a, b]. Hence, f2 is also bounded (by M2) on [a, b]. Let " > 0. By
Theorem 13.2.3, there is a partition P = {xi : 0  i  n} of [a, b] such that
O(f, P ) = ⌃n

i=1!(f, [xi�1, xi])(xi � xi�1) <
"

2M .

Now, let Mi = sup{f(x) : x 2 [xi�1, xi]} and mi = inf{f(x) : x 2
[xi�1, xi]}. Then !(f2, [xi�1, xi]) = M2

i
� m2

i
= (Mi + mi)(Mi � mi) <

2M(Mi � mi). Hence, O(f2, P ) = ⌃n

i=1!(f
2, [xi�1, xi])(xi � xi�1) =

⌃n

i=1(Mi + mi)(Mi � mi)(xi � xi�1) < ⌃n

i=12M(Mi � mi)(xi � xi�1) =
2M⌃n

i=1(Mi � mi)(xi � xi�1) = 2MO(f, P ) < 2M "
2M = ". Hence by

Theorem 13.2.3, f2 is Riemann integrable on [a, b].

Since fg = 1
2((f + g)2 � f2 � g2), we use Theorem 13.1.8 and what we

just proved above to deduce that fg is Riemann integrable on [a, b].

Solution C.205. [Of Exercise 13.8]

1. Note that for any partition P of [a, b], O(f+, P )  O(f, P ) and
O(f�, P )  O(f, P ). Since f is Riemann, by Theorem 13.2.1, f is
bounded on [a, b] and hence f+ and f� are also bounded on [a, b]. By
Theorem 13.2.3 for each " > 0, there exists a partition P of [a, b] such
that O(f, P ) < ". Hence for each " > 0, there exists a partition P of
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[a, b] such that O(f+, P )  O(f, P ) < " and O(f�, P )  O(f, P ) < ".
Hence, by Theorem 13.2.3, f+ and f� are Riemann integrable on [a, b].

2. Note that f = f+ � f� and |f | = f+ + f�. Since by 1. above f+ and
f� are Riemann integrable on [a, b] then by Theorem 13.1.8.1, |f | is
Riemann integrable on [a, b]. Furthermore, we have �|f |  f  |f | and
by Theorem 13.1.8.(2+3), �

R
b

a
|f | =

R
b

a
�|f | 

R
b

a
f 

R
b

a
|f |. Hence

|
R
b

a
f | 

R
b

a
|f |.

Solution C.206. [Of Exercise 13.9] f is not necessarily Riemann integrable
on [a, b]. Take for example the function

f(x) =

(
1 if x is even;

�1 otherwise

Since |f | is the constant function, it is Riemann integrable on [a, b] by
Theorem 13.1.8.2. However, f is not Riemann integrable on [a, b]. To see
this, let 0 < " < b� a and let P = {xi : 0  i  n} be any partition of [a, b].
Let tP1 = {(ti, [xi�1, xi]) : 1  i  p} and tP2 = {(t0

i
, [xi�1, xi]) : 1  i  p}

such that all tis are even and all t0
i
s are odd. Then, |S(f,t P2)�S(f,t P1)| =

|⌃n

i=1(f(ti)� f(t0
i
))(xi� xi�1)| = 2|⌃n

i=1(xi� xi�1)| = 2(b� a) > ". Since f
is bounded, by Theorem 13.2.2, f is not Riemann integrable on [a, b].

Solution C.207. [Of Exercise 13.10] First note that f is bounded on
[a+ c, b+ c] i↵ g is bounded on [a, b].
Assume f is Riemann integrable on [a + c, b + c]. Let " > 0. By Theo-
rem 13.2.3 there exists a partition P = {xi + c : 0  i  n} of [a + c, b + c]
such that O(f, P ) < ". Now, P 0 = {xi : 0  i  n} is a parti-
tion of [a, b]. Note that !(f, [xi�1 + c, xi + c]) = !(g, [xi�1, xi]). Hence
⌃n

i=1!(f, [xi�1+c, xi+c])(xi+c�xi�1�c) = ⌃n

i=1!(f, [xi�1, xi])(xi�xi�1).
I.e., O(f, P ) = O(g, P 0). Hence g is Riemann integrable on [a, b].
Conversely, assume g is Riemann integrable on [a, b]. Let a = a0 � c and
b = b0 � c and g0(x) = g(x � c) = f(x) (i.e., g0 = f). Then, since g is
Riemann integrable on [a0 � c, b0 � c], by the previous case, f is Riemann
integrable on [a0, b0]. I.e., f is Riemann integrable on [a+ c, b+ c].

We will show that if f is Riemann integrable on [a+ c, b+ c] then for all

" > 0, |
R
b

a
g �

R
b+c

a+c
f | < ". Let " > 0. Since f is Riemann integrable on

[a+ c, b+ c] then by above, g is Riemann integrable on [a, b]. By definition,
there are �1 and �2 such that for any tP1 and tP2 partitions of [a+ c, b+ c]
resp. [a, b] we have:

if ktP1k < �1 then |S(f,t P1)�
Z

b+c

a+c

f | < "

2
.
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if ktP2k < �2 then |S(g,t P2)�
Z

b

a

g| < "

2
.

Let � = min{�1, �2}. And let tP = {(ti, [xi�1, xi]) : 1  i  n} be a tagged
partition of [a, b] such that ktPk < �. Then tP 0 = {(ti+ c, [xi�1+ c, xi+ c]) :
1  i  n} is tagged a partition of [a + c, b + c] such that ktP 0k < � and
S(g,t P ) = S(f,t P 0). Hence:

|
R
b

a
g �

R
b+c

a+c
f |  |

R
b

a
g � S(g,t P )|+ |S(f,t P 0)�

R
b+c

a+c
f | < "

2 + "
2 =< ".

Solution C.208. [Of Exercise 13.11]

1. Note that f is bounded by 1. We will use two methods to prove that
this function is not Riemann integrable.

• Cauchy Criterion for Riemann Inegrability. By Theo-
rem 13.2.2, f is Riemann integrable on [a, b] if and only if for
each " > 0 there exists � > 0 such that |S(f,t P1)�S(f,t P2)| < "
for all tagged partitions tP1 and tP2 of [a, b] with norms less than
�. Let " < 1. Let tP1 = {(ti, [xi�1, xi] : 1  i  n} be an arbi-
trary tagged partition of [a, b] whose tags ti are all rational. Let
tP2 = {(t0

i
, [x0

i�1, x
0
i
] : 1  i  m} be an arbitrary tagged parti-

tion of [a, b] whose tags t0
i
are all irrational. Then, S(f,t P1) =

⌃n

i=1(xi � xi�1) = b � a and S(f,t P2) = ⌃n

i=1(xi � xi�1)0 = 0.
Hence, |S(f,t P1)�S(f,t P2)| = 1 > ". Hence, by Theorem 13.2.2,
f is not Riemann integrable on [a, b].

• Partition with small oscillation. By Theorem 13.2.3, f
is Riemann integrable on [a, b] if and only if for each " > 0,
there exists a partition P = {xi : 0  i  n} of [a, b] such
that ⌃n

i=1!(f, [xi�1, xi])(xi � xi�1) < ". By the density of
the rationals Theorem 10.4.5, for any [a, b] and any partition
P = {xi : 0  i  n} of [a, b], !(f, [xi�1, xi]) = 1 and
⌃n

i=1!(f, [xi�1, xi])(xi � xi�1) = ⌃n

i=1(xi � xi�1) = b� a. Hence
for any " < b� a, the property fails and by Theorem 13.2.3, f is
not Riemann integrable on any interval [a, b].

2. We will show that
R 1
0 g = 0. Let " > 0. There is n > 0 such that

1
n < "

2 . Hence, An = {x 2 [0, 1] : g(x) � "
2} is finite because if x 2 An

then x = k
l where k, l < n. Let |An| be the number of elements of An

and let � =

(
1 if |An| = 0
"

4|An|
otherwise.
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Let tP be a tagged partition of [0, 1] such that kPk < �. Let tP1

be the subset of tP where all the tags belong to An and let tP2 be
the subset of tP where all the tags do not belong to An. Obviously,
S(g,t P ) = S(g,t P1) + S(g,t P2). Since g(x) � 0 for all x 2 [0, 1] then
S(g,t Q) � 0 for any tagged partition of [0, 1].

Now, if P = {xi : 0  i  l} and An = {a1, · · · , a|An|}
then tP1 can contain at most 2|An| (where for example,
{(xi, [xi�1, xi]), (xi, [xi, xi+1])} ✓ tP1). Hence, S(g,t P1) =
⌃ti2Ang(ti)(xi � xi�1)  ⌃ti2An(xi � xi�1)  2|An|�  "

2 .

Furthermore, S(g,t P2) = ⌃ti 62Ang(ti)(xi � xi�1)  ⌃ti 62An
"
2(xi �

xi�1)  "
2⌃ti 62An(xi � xi�1)  "

2 .

Hence S(g,t P ) = S(g,t P1) + S(g,t P2)  "
2 + "

2 = ".

So we have shown that for every " > 0, there is � > 0 such that for all
tagged partition P of [0.1], S(g,t P )  ". Hence by definition,

R 1
0 g = 0.

Note that this function is discontinuous at every rational and a function
need not be continuous to be Riemann integrable.

3. Assume that
R 2
0 h exists. Then by definition, for every " > 0 there

exists a � > 0 such that
R 2
0 h � " < S(h,t P ) <

R 2
0 h + " for all tagged

partitions tP of [0, 2] that satisfy ktPk < �.

Since S(h,t P ) � 0, for any tP , we have
R 2
0 h � 0. There are two

possibilities:

• If
R 2
0 h = 0 then let " = 2. For this ", there is a � > 0 such

that S(h,t P ) < 2 for all tagged partitions tP of [0, 2] that satisfy
ktPk < �.

Let tP = {(ti, [xi�1, xi]) : 1  i  n} be a tagged partition whose
tags are all irrationals such that ktPk < �. For this tP , we have
2 > S(h,t P ) = ⌃n

i=1h(ti)(xi � xi�1) > ⌃n

i=1(xi � xi�1) = 2,
absurd.

• If
R 2
0 h > 0 then let " =

R 2
0 h > 0. For this ", there is a � > 0

such that 0 =
R 2
0 h � " < S(h,t P ) for all tagged partitions tP of

[0, 2] that satisfy ktPk < �. Let tP be a tagged partition whose
tags are all rationals such that ktPk < �. For this tP , we have
0 < S(h,t P ) = 0 absurd.

Note here that we could have given an easier proof as follows:
limx!0 h(x) = 1, h(x) is not bounded on [0, 2] and hence by The-
orem 13.2.1, h is not Riemann integrable.
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4. We show that r is Riemann integrable on [a, b] by applying the def-
inition of Riemann integrability. Let " > 0 and let � > 0 such that
� < "

2 and c + � < d � �. Let tP = {(ti, [xi�1, xi]) : 1  i  n}
be a tagged partition of [a, b] such that ktPk < �. Since [c, c + �]
is of length � and ktPk < �, there is an 1  l  n such that
c < tl < c+�. Similarly, there is an 1  k  n such that d�� < tk < d.
Hence [c + �, d � �] ✓

S
ti2[c,d][xi�1, xi] ✓ [c � �, d + �]. Hence

d� c� 2�  ⌃ti2[c,d](xi � xi�1)  d� c+ 2�.
But S(r,t P ) = ⌃n

i=1r(ti)(xi � xi�1) = ⌃ti2[c,d](xi � xi�1). That is,
d� c� 2�  S(r,t P )  d� c+2� and |S(r,t P )� (d� c)|  2� < ". So

by definition r is Riemann integrable on [a, b] and
R
b

a
r = d� c.

Solution C.209. [Of Exercise 13.12]

• If f is Riemann integrable on [a, b] and " > 0, let g" = f = h".
Then, obviously g" and h" are Riemann integrable on [a, b] and g"(x) 
f(x)  h"(x) for all x 2 [a, b]. By Theorem 13.1.8,

R
b

a
h" � g" =

R
b

a
h" �

R
b

a
g" =

R
b

a
f �

R
b

a
f = 0 < ".

• Assume that for every " > 0, there are two Riemann integrable func-
tions g" and h" on [a, b] such that g"(x)  f(x)  h"(x) for all x 2 [a, b]

and
R
b

a
h" � g" < ".

Let " > 0 and let g" and h" be two Riemann integrable functions
on [a, b] such that g"(x)  f(x)  h"(x) for all x 2 [a, b] andR
b

a
h" � g" <

"
3 .

By Theorem 13.2.1, both h" and g" are bounded on [a, b] and hence f
is bounded on [a, b]. By definition, there are �1, �2 > 0 such that for
all tagged partition tP of [a, b],

– if ktPk < �1 then |S(g",t P )�
R
b

a
g"| < "

3 ;

– if ktPk < �1 then |S(h",t P )�
R
b

a
h"| < "

3 .

Let � = min{�1, �2} and let tP and tQ be tagged partitions of [a, b]
such that ktPk < �. We have S(g",t P )  S(f,t P )  S(h",t P ) and:

Z
b

a

g" �
"

3
< S(g",

t P ) and S(h",
t P ) <

Z
b

a

h" +
"

3

Hence Z
b

a

g" �
"

3
< S(f,t P ) <

Z
b

a

h" +
"

3
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Similarly we have

Z
b

a

g" �
"

3
< S(f,t Q) <

Z
b

a

h" +
"

3

Hence

�(
Z

b

a

h" �
Z

b

a

g" +
2"

3
) < S(f,t P )� S(f,t Q) <

Z
b

a

h" �
Z

b

a

g" +
2"

3

That is,

|S(f,t P )� S(f,t Q)| <
Z

b

a

h" �
Z

b

a

g" +
2"

3
< +

"

3
+

2"

3
= ".

By Cauchy Criterion for Riemann Inegrability Theorem 13.2.2, f is
Riemann integrable.

Solution C.210. [Of Exercise 13.13] Assume f is Riemann integrable and
let " > 0. By Theorem 13.2.2, there exists � > 0 such that |S(f,t P1) �
S(f,t P2)| < " for all tagged partitions tP1 and tP2 of [a, b] with norms less
than �. Let P = {xi : 0  i  n} a partition of [a, b] such that kPk < �.

Note that sup{f(x) � f(y) : x, y 2 [xi�1, xi]} = !(f, [xi�1, xi]) for all
1  i  n. Hence for all 1  i  n, choose ti, t0i 2 [xi�1, xi] such that
f(ti)� f(t0

i
) = sup{f(x)� f(y) : x, y 2 [xi�1, xi]}.

Let tP1 = {(ti, [xi�1, xi]) : 1  i  n} and tP2 = {(t0
i
, [xi�1, xi]) : 1 

i  n}. Now, |S(f,t P1) � S(f,t P2)| = |⌃n

i=1(f(ti) � f(t0
i
)(xi � xi�1)| =

|⌃n

i=1!(f, [xi�1, xi])(xi � xi�1)| < " and we are done.

Solution C.211. [Of Exercise 13.14]

1. If f and g are continuous, then by Theorem 11.2.7 f � g is continuous
on [c, d] and hence by Theorem 13.2.7, f � g is Riemann integrable on
[c, d].

2. 4 Let " > 0. We will show that there is a partition P of [c, d] such that
O(f � g, P ) < " (by Theorem 13.2.3).

Since f is continuous on [a, b] then

– By Lemma 13.2.6, there exists � > 0 such that for all x, y 2 [a, b]
that satisfy |y � x| < �, we have |f(y)� f(x)| < "

2(d� c)

4This solution has been taken from [?] and [?]. In [?] you will also find an example
of two functions f and g where f is continuous on [a, b] and g is Riemann integrable on
[c, d], but f � g is not Riemann integrable on [c, d].
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– f is bounded on [a, b] (this comes from either the Extreme Value
Theorem 12.3.12 or from both Theorems 13.2.7 and 13.2.1 which
state that a continuous function is Riemann integrable and a Rie-
mann integrable function is bounded). Hence, let U be such that
|f(x)| < U for all x 2 [a, b].

Since g is Riemann integrable on [c, d] then by Theorem 13.2.3, there
is a partition P = {x0, x1, · · · , xn} of [c, d] such that O(g, P ) =

⌃n

i=1!i(xi � xi�1) < "�
4U where Ii = [xi�1, xi] for 1  i  n and

!i = !(g, Ii). Recall that !(g, [l, u]) = sup{g(x) : x 2 [l, u]}�inf{g(x) :
x 2 [l, u]} = sup{|g(x)� g(y)| : x, y 2 I} = sup{g(x)� g(y) : x, y 2 I}
by Lemma 13.1.11.

Let !0
i
= !(f � g, Ii). Note that !0

i
 sup{|f(x)| + |f(x)| : x, y 2

[a, b]} < 2U . There are two cases:

– Either !i < � and hence !0
i
< "

2(d� c)
and ⌃i/!i<�!

0
i
(xi�xi�1) <

⌃i/!i<�
"

2(d� c)
(xi � xi�1) = "

2(d� c)
⌃i/!i<�(xi � xi�1) <

"
2(d� c)

⌃n

i=1(xi � xi�1) =
"

2(d� c)
(d� c) = "

2

– Or !i � � and hence ⌃i/!i��!
0
i
(xi�xi�1) < 2U⌃i/!i��(xi�xi�1).

But ⌃n

i=1!i(xi � xi�1) � ⌃i/!i��!i(xi � xi�1) � ⌃i/!i���(xi �
xi�1) = �⌃i/!i��(xi � xi�1) and hence ⌃i/!i��(xi � xi�1) 
⌃n

i=1!i(xi � xi�1)
� < "�

4U� = "
4U . Hence, ⌃i/!i��!

0
i
(xi� xi�1) <

2U⌃i/!i��(xi � xi�1) < 2U "
4U = "

2 .

Since O(f � g, P ) = ⌃i/!i��!
0
i
(xi � xi�1) + ⌃i/!i<�!

0
i
(xi � xi�1) <

"
2 + "

2 = ", we are done.

Solution C.212. [Of Exercise 13.15] We will first do the proof for the case
that f and g only di↵er on one value. That is, suppose there is c 2 [a, b] such
that f(x) = g(x) for x 6= c and f(c) 6= g(c). We will show that f is Riemann
integrable implies g is Riemann integrable. Assume f is Riemann integrable
on [a, b]. Hence by Theorem 13.2.1, f is bounded. Hence g is bounded. Let
M > 0 such that |f |, |g| < M .

Let " > 0. By definition, there is a � > 0 such that for any tagged

partition tP of [a, b], if ktPk < � then |S(f,t P ) �
R
b

a
f | < "

2 . Let �0 =

min{�, "
8M }.

Let tP be a tagged partition of [a, b] such that ktPk < �0 and
P = {xi : 0  i  n}. Let tP1 be the subset of tP whose tags are
all c. Let tP2 be the subset of tP whose tags exclude c. Obviously,
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S(f,t P ) = S(f,t P1) + S(f,t P2) and S(g,t P ) = S(g,t P1) + S(g,t P2). Note
that S(f,t P2) = S(g,t P2) and |tP1|  2 (since either c 6= xi for any i and
hence |tP1|  1; or c 2 {a, b} and hence |tP1|  1; or c = xj for some
1  j  n� 1 and |tP1|  2).

Hence |S(f,t P )� S(g,t P )| = |S(f,t P1)� S(g,t P1)| =8
>>><

>>>:

0 if |tP1| = 0

|g(c)� f(c)|(xj � xj�1) if tP1 = {(c, [xj�1, xj ])}
|g(c)� f(c)|(c� xj�1) + |g(c)� f(c)|(xj+1 � c)

if tP1 = {(c, [xj�1, c]), (c, [c, xj+1])}
That is, |S(f,t P )� S(g,t P )| < 2|g(c)� f(c)|�0  4M�0  4M "

8M = "
2 .

Now, |S(g,t P ) �
R
b

a
f | = |S(g,t P ) � S(f,t P ) + S(f,t P ) �

R
b

a
f | 

|S(g,t P )� S(f,t P )|+ |S(f,t P )�
R
b

a
f | < "

2 + "
2 = ".

Hence, g is Riemann integrable on [a, b] and
R
b

a
f =

R
b

a
g.

If f and g di↵er on more than one point, we do the proof by induction
on the number of points on which they di↵er, using the above result.

Solution C.213. [Of Exercise 13.16]

1. Since F is an indefinite integral of f on interval I then F 0 = f . By
Theorems 11.3.6 and 11.3.8, (F + c)0 = F 0 + c0 = F 0 = f . Hence F + c
is an indefinite integral of f .

2. By Theorem 11.3.8, (F +G)0 = F 0 +G0.

3. By Corollary 11.3.11, (cF )0(x) = cF 0(x) = cf(x). Hence cF is an
indefinite integral of cf .


	9781848904439-solutions_FrontCover.pdf
	solutionsC-1.pdf



