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The Italian Society for Logic and the Philosophy 
of Science (SILFS) was founded in 1952 with 
the aim of promoting and encouraging research 
in logic and philosophy of science in Italy. On 18-
20 June 2014, the Society held its Triennial 
International Conference, SILFS 14, at the 
University “Roma TRE”. The conference was 
divided into several sessions, each centred 
on one of the main current topics in logic and 
philosophy of science, with a special focus 
on interdisciplinary approaches to logical and 
epistemological issues in the foundations of 
special sciences (both natural, social and human). 
The 100 contributed papers underwent a further 
selection, resulting into the 28 papers that are 
here published, subdivided into three macro-
areas: Epistemology and General Philosophy of 
Science, Logic and Philosophy of Logic, Philosophy 
of Natural Sciences.

These articles offer a representative sample 
of the trends and developments of the 
contemporary research in logic and the 
philosophy of science in Italy, as well as refl ecting 
the direction and themes that characterise the 
current international debate in these disciplines.
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Editors’ preface

The Italian Society for Logic and the Philosophy of Science (SILFS) was founded
in 1952 with the aim of promoting and encouraging research in logic and philosophy
of science in Italy. To this aim, it awards study grants, supports relevant publica-
tions, organizes conferences, and collaborates with national and international bodies
on projects of common interest.

SILFS is the Italian representative of the Division of Logic, Methodology and
Philosophy of Science (DLMPS) in the Union of History and Philosophy of Science,
(IUHPS) – affiliated to the International Council for Science (ICSU – formerly the
International Council of Scientific Unions).

In 2014, from June 18 to June 20, the Society held in Rome its Triennial Inter-
national Conference, SILFS 14, at the Department of Philosophy of the University
of Rome “Roma TRE”.

The conference included three plenary sessions held by John Norton (University of
Pittsburgh), Hannes Leitgeb (Ludwig-Maximilians-Universität München) and Tarja
Knuuttila (University of Helsinki) and a special lecture held by Stefano Giaimo, the
winner of the SILFS prize for the best PhD thesis, awarded for a dissertation enti-
tled ‘The Pleiotropy Theory of Ageing: Conceptual, Methodological and Empirical
Issues’.

The conference was divided into several sessions, each centred on one of the
main current topics in logic and philosophy of science, with a special focus on
interdisciplinary approaches to logical and epistemological issues in the foundations
of special sciences (both natural, social and human). The topics included:

• Causation

• Epistemology

• General philosophy of science

• Historical considerations in mathematics and philosophy

• Logic

• Logic and philosophical paradoxes

• Mathematics and computation

• Metaphysics and science

• Philosophical and historical issues in logic

• Philosophy of biology

• Philosophy of mathematics and truth



x

• Philosophy of perception

• Philosophy of physics

• Philosophy of the social sciences

• Scientific Models and Realism

• Scientific Realism and Antirealism

• Quantum logic and computation

• Topics in the philosophy of science

The 100 contributed papers presented at the conference underwent a further selec-
tion, resulting into the 28 double-blind peer reviewed paper that are here published.
The 28 selected papers are here organized into three macro-areas: Epistemology and
General Philosophy of Science, Logic and Philosophy of Logic, Philosophy of Natural
Sciences.

Part I of the volume is devoted to the Epistemology and General Philosophy
of Science. The first four papers (written by Mario Alai, Karim Bshir, Alberto
Cordero and Luigi Scorzato) discuss topics of scientific realism. The next three
papers (whose authors are Benjamin Bewersdorf, Nevia Dolcini e Marco Fenici) are
devoted to specific debates in philosophy of knowledge. Andreas Bartels analyses
and objects to Alexander Bird’s a priori argument against Categoricalism with
respect to fundamental physics properties. Marco Giunti proposes a real world
semantics for Deterministic Dynamical Systems with Finitely Many Components.
Finally, Simone Pinna illustrates and discusses the virtues of an embodied-extended
approach to the acquisition of numerical skills.

Part II of the volume centres on Logic and the Philosophy of Logic. Three pa-
pers (by Casadio and Sadrzadeh, by Negri and Sbardolini, and by Pistone) share a
marked proof-theoretic flavour, although the former two papers also discuss, from
different perspectives, issues in formal linguistics and the semantics of natural lan-
guage. The problem of logicality, one of the key issues in the philosophy of logic, is
at the heart of Carrara and De Florio’s contribution, while the paper by Ciuni and
Carrara deals with the 3-valued Kleene logic with weak tables and two designated
values. Cevolani’s and Giordani’s papers tackle several questions of interest to the
logician, to the epistemologist and to the philosopher of science alike, while Wittgen-
stein’s troubled relatonship with logical quantifiers is described by von Plato.

Part III of the volume collects ten papers that are devoted to the Philosophy of
Natural Sciences. Massimiliano Badino investigates the notion of tipicality in the
context of statistical mechanics. Marta Bertolaso proposes an analysis of the sta-
tus of context dependencies in biological sciences. James Brian Pitts and Roberto
Lalli discuss some historical and philosophical issues concerning Relativity Theory,
by focusing respectively on the connection between General Relativity and particle
physics, and on the work of Howard P. Robertson and the role of geometry as a
branch of physics. Laura Felline analyses the bottoming-out problem for Stuart
Glennan’s mechanistic theory of causality. Mario Hubert proposes an analysis of
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the notion of mass in Newtonian Mechanics. Davide Romano discusses the classical
limit in the context of Bohmian Mechanics applied to bounded regions. Emanuele
Rossanese proposes a structuralist interpretation of Algebraic Quantum Field The-
ory and discusses some possible objections to this interpretation. Franco Strocchi
analyses the role of symmetries and gauge symmetries in contemporary physics. An-
tonio Vassallo offers some philosophical considerations on the notion of background
in modern space-time physics.

We would like to conclude this introduction by acknowledging our gratitude to
all those who helped making this conference possible, including the speakers and all
the people involved, on different levels, in its organization. In particular, we would
like to to thank:

• The members of the Scientific Committee: Roberto Arpaia (University of
Bergamo), Giovanni Boniolo (University of Milan and IFOM) Chair of the
Programm Committee, Giovanna Corsi (University of Bologna) Chair of the
Program Committee, Massimiliano Carrara (University of Padua), Mauro
Ceruti (University of Bergamo), Mauro Dorato (University of Roma Tre) -
SILFS President, Vincenzo Fano (University of Urbino), Laura Felline (Uni-
versity of Roma Tre), Roberto Giuntini (University of Cagliari), Federico
Laudisa (University of Milan-Bicocca), Sabina Leonelli (University of Exeter),
Massimo Marraffa (University of Roma Tre), Pierluigi Minari (University of
Florence), Matteo Morganti (University of Roma Tre), Francesco Paoli (Uni-
versity of Cagliari), Federica Russo (University of Ferrara);

• The Organizing Commitee: Massimiliano Carrara (University of Padua), An-
gelo Cei (University of Roma Tre), Mauro Dorato (University of Roma Tre),
Pierluigi Graziani (University of Urbino), Matteo Morganti (University of
Roma Tre), Emanuele Rossanese (University of Rome Tre);

• The group of volunteering graduate students, whose role was essential in all
the practicalities: Mariaflavia Castelli, Matteo Grasso and Mattia Sorgon.

• Finally, we would like to thank all the anonymous referees who cooperated in
the peer review process.

Laura Felline, Antonio Ledda, Francesco Paoli, Emanuele Rossanese
March 9, 2016
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PART I

EPISTEMOLOGY AND GENERAL PHILOSOPHY OF
SCIENCE





Stars and Minds. Empirical Realism and
Metaphysical Antirealism
in Liberalized Neopositivism

Mario Alai

abstract. In 1936, after the “liberalization of empiricism”, Schlick and
Carnap thought they could accept C.I. Lewis’ claim “If all minds disappeared
from the universe, the stars would still go on in their courses” as a scientific
truth, without accepting the metaphysical thesis of the mind-independence of
the external world. But this compromise failed, as it was based on mistaken
antirealist semantic views: they accepted Lewis’ sentence, not the proposition
it expresses, or its consequences. This is not to say that science is enough to
support metaphysical realism, since it takes philosophy to show where they
went wrong.

Originally the neopositivists thought that the whole cognitive meaning, or con-
tent, of a statement consisted just in the set of possible experiences which would
verify it. Meaning was thus the method of verification: any empirical proposition
was only about the regular connection of certain experiences ([7], p. xi; Section
179; [8], Section 7; [29], 100, 107, 111; etc.).

Therefore unverifiable sentences1 were meaningless. Among them were all the
philosophical sentences, especially metaphysical sentences. In particular, they re-
jected as meaningless both metaphysical realism

(MR) the external world is mind-independent

and idealism

(I) the external world is mind-dependent ([25], 107).

However, they granted that some traditional philosophical claims could be rein-
terpreted so to become verifiable, hence meaningful ([32], 6). For instance, two
geographers disagreeing on the real existence of a mountain in an unexplored area
of Africa could solve the problem by travelling there and observing whether there
was a mountain, measuring it, etc.: this would settle the empirical question of real-
ity. But if they further disagreed whether the mountain was metaphysically real, in

1More or less like [30], here I use ‘sentence’ for an uninterpreted (possibly meaningless) expres-
sion, and ‘proposition’ for an interpreted expression.
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the sense of being something over and above their perceptions, this question could
not possibly be solved by any experience, so it would be cognitively meaningless
([8], Section 10).

They could even attach an empirical meaning to the claim that the external world
is independent of the mind in the sense that, for instance,

(α) a castle in the park existed hundreds of years ago (well before my existence),
as it can be recognized from the time-worn state of its walls;

(β) it must have existed even last night, when nobody observed it, since experi-
ence tells us that it couldn’t have been built in a few hours this morning. ([29], 103);

(γ) The back of an apple is there even when nobody observes it ([7], Section 135).2

This was possible because according to them “the meaning of every proposition is
exhaustively determined by its verification in the given” ([29], 110), so that “the
claim that a thing is real is a statement about lawful connections of experiences”
(ibid., 100), and “propositions about bodies can be transformed into propositions
of like meaning about the regularity of occurrence of sensations (ibid., 111).3

Therefore (α), (β), and (γ) said nothing about objective states of things, but
only about various patterns of connections among past perceptions and perceptions
one could inductively forecast for the future. In particular, they did not convey
the realist and commonsense idea of the independence of physical objects from
actual or possible perceptions. Hence, this “empirical” reformulation of the mind-
independence of the external world was neither a form of realism nor a philosophical
doctrine: Moritz Schlick explicitly said that he accepted it in the same sense of
Berkeley and Kant ([29], 98-99).

Progressively, however, a closer attention to the factual procedures of science
modified the neopositivists’ stand. They realized that the empirical confirmation
does not concern a single proposition, but a system of propositions ([9], Section
3). Besides, Neurath [23] [24] argued against Schlick and Carnap that the actual
language of science is physicalist, rather than phenomenalist. Carnap replied that
the choice between phenomenalism and physicalism was not a substantial question,
but a pragmatic decision about language, and both languages could be used as a
basis for the unification of science [10]. Eventually, however, he granted that the
physicalist language was preferable, and most importantly, he acknowledged that
commonsense and scientific statements about physical objects cannot be exhaus-
tively translated into statements about perceptions: a physicalist proposition, like

(i) On May 6, 1935, at 4 P.M., there is a round black table in my room

should be translated by an infinite conjunction of propositions of the form:

2Just like the other face of the moon for Kant: [29], 88.
3See also ibid., 98,102, etc.
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(ii) If on May 6, 1935, at 4 P.M., somebody is in my room and looks in such and
such direction, he has a visual perception of such and such a kind.

But first, we cannot produce or understand infinite conjunctions; and second, (i)
would not be equivalent to such a conjunction, anyway: for even if (i) were false
(ii) would be (trivially) true if nobody were in my room on May 6, 1935, at 4 P.M.
(since any material conditional with a false antecedent is true).4

Moreover, it became clear that we cannot completely define the non observational
concepts of scientific theories by observational ones; we can only “reduce” them, i.e.
show which difference they can make with respect to possible observations, which
however do not exhaust their original content ([11] 52-53, [12] Section 9; [21], chs.
I-III).

From all of this there followed that no proposition of science or commonsense
could ever be verified (i.e., made definitely certain). Thus, during the first half of
the Thirties, the neopositivists proceeded to a “liberalization of empiricism”, by
substituting

(I) the requirement of verifiability with that of confirmability (i.e. the possibility
of raising or lowering the probability of a proposition by testing its empirical con-
sequences);

(II) complete with incomplete definability of theoretical terms on the basis of ob-
servation terms ([11], Sections 11 ff.);

(III) the phenomenalist language with a physicalist one.

This is why in a number of papers5 Gino Tarozzi has made two claims:

(1) contra the original claims of the Vienna Circle, there are genuinely philosophical
doctrines supported by experience, hence non metaphysical;

(2) with the liberalization of empiricism the neopositivists came to accept some of
them.

But I shall argue that (2) is not quite the case.

4[11] 68-69; 80, passim. The latter problem arises because Carnap (who only 11 years later was
to develop his intensional logic) interpreted (ii) as a material conditional; hence, this problem would
disappear if (ii) were interpreted as an implication (i.e., the intensional conditional of ordinary
language), for then it would be false whenever (i) is false, even if nobody is in the room. But
unlike material conditionals, implications and counterfactuals require objective truth-makers: in
the case at hand, for example, only the objective existence of the table could entitle us to claim
that if, counterfactually, somebody were in the room, she would have such and such perceptions.
When so understood, therefore, (ii) can be made true only by the existence of an objective table;
hence, statements about physical objects are actually not dispensable in favour of statements about
perceptions.

5See references in [5].
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At first sight their departure from verificationism may seem radical: Schlick, for
instance, accepted as meaningful assertions about:

(a) future events ([30], 345),

(b) the existence of a 10 dimensions universe (ibi, 355)

(c) the existence of perceptions altogether different from those of humans (ibid.);6

(d) the survival after death of myself or of others (ibi, 357).

But they never admitted any change of mind with respect to metaphysics, and even
after 1936 they were adamant in rejecting metaphysical realism and idealism ([13],
Section 4A, and [14], xi; [30], p. 368). So, we must assume that claims about (a)-(d)
were accepted by them only in a non-philosophical interpretation, similar to that
they gave to “realist” claims like (α), (β), and (γ) in the Twenties.

Tarozzi’s favourite example is this: in [22] C.I. Lewis criticized verificationism,
arguing that it excluded even scientifically sound claims like

(1) If all minds disappeared from the universe, the stars would still go on in their
courses.

But Carnap [11] (pp.87-88) and Schlick [30] 368 replied that (1) was empirically
meaningful by their criteria. Yet, (1) implies

(2) stars are something over and above all possible perceptions,

and

(MR) the external world is mind-independent,

both of which they had earlier rejected as meaningless. So, how could they accept
(1) without contradictions? Schlick claimed that the mistake of metaphysicians was
rejecting the empirical interpretation of (1) and look for some further mysterious
sense for it ([30], 368), but in which sense (1) would not entail (2) and (MR)?

To begin with, let’s see how Schlick explains his acceptance of (1). First, he
reformulates it as

(1’) If all living beings disappeared from the universe, the stars would still go on
in their courses,

which he takes to be equivalent; subsequently, he justifies it in a somewhat odd
way:

6While in [29] (pp.93-95) he had claimed that a similar hypothesis, that of inverted colour
spectra, was meaningless.
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The laws of motion of the celestial bodies are formulated entirely without reference to any
human bodies, and this is the reason why we are justified in maintaining that they will go
on in their courses after mankind has vanished from the Earth (ibid.).

But in speaking of living beings, and more precisely of human bodies, he is obviously
changing subject: the question was whether stars are independent of minds, not of
bodies.

In fact, a few pages earlier he had argued that (a) what we call ‘my body’ is
constituted by (actual and possible: 345) sense data (360); and (b) there is nothing
in sense data which qualifies them as belonging to me, to an “I”, or a to a “mind”:
the only meaningful content of saying that my sense data are perceived by me, or by
my mind, is that all the data about the “external world” have a special relation to
the data which constitute “my body” (e.g., whenever I shut my eyes all visual data
disappear, etc.). But this, he says, is a purely empirical fact: it is logically possible
that this relation is broken: for instance, it might be possible to feel sensations of
“other human bodies”; or to go on having data about the world, without having any
more those data which constitute “my body”. So, unlike Carnap, he is still holding
a phenomenalist semantics; hence, what he means by (1’) is actually that

(1”) If all sense data about human bodies disappeared, sense data about the stars
[not stars themselves] would still go on as usual.

He then adds:

Experience shows no connention between the two kinds of events. We observe that the course
of the stars is no more changed by the death of human beings than, say, by the eruption of a
volcano, or by a change of government in China. Why should we suppose that there would
be any difference if all living beings on our planet, or indeed everywhere in the universe, were
extinguished?” (358).

Now, literally understood this would be mean that the very laws of science imply
that

(2) stars are something over and above all possible perceptions,

and

(MR) the external world is mind-independent.

But in Schlick’s phenomenalist semantics these actually mean, respectively,

(2’) sense data about the stars are something over and above all possible perceptions,

and
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(MR’) sense data about the external world are independent of sense data about
human bodies.

This explains why Schlick could consistently reject metaphysical realism while hold-
ing the sentences (not propositions) (1), (2), and (MR): because he interpreted them
respectively as (1”), (2’), and (MR’), which obviously are not realist doctrines. But
it must be noticed that the propositions (1”), (2’) and (MR’) actually held by Schlick
are (a) false, (b) not what science tells us, and of course, (c) not what Lewis had
in mind.
(1”) is false because when we will no longer have any sense data about our bodies
(i.e., when mankind will be extinguished) we will no longer have any sense data
about the stars, either.7

Hence (MR’) is also false, because when sense data about our bodies will cease,
also sense data about the external world in general will. And of course, (2’) is not
just false but inconsistent, as it claims that sense data about the stars are something
over and above all possible sense data.

Moreover, what science teaches, and what Lewis meant by (1) and (2), is not
(1”) and (2’), but rather that stars themselves will exist when no sense data will
exist anymore, hence stars (and the external world in general) are independent of
sense data.

So, pace Schlick, it is not the metaphysical realist which gives (1) some further
mysterious sense, but Schlick himself: the realist understands (1) in the same sense
of science and common sense, while Schlick reinterprets it phenomenistically (even
if no longer verificationistically). So, he did not actually meet Lewis’ challenge, and
got science’s deliverances wrong.

But, Schlick might object, how is it possible that science supports a metaphysical
doctrine? Must it not stick to empirical data, merely describing possible experi-
ences, without venturing to claim anything beyond them? in particular, should not
science refrain from claiming either that physical bodies are something over and
above sets of data (realism) or that they are nothing more than them (idealism)?

Before answering these questions, however, let’s examine Carnap’s argument for
(1), for it is also somewhat puzzling:8 he explains that for some i and some j it
follows from our empirically confirmed astronomical laws L1. . . Ln that

(3) Sinow⊃ Sj1my, ( = if the stars are in state i now, then they will be in state j in
1 million years).

Moreover, we observe that

(4) Sinow ( = the stars are in state i now).

7Perhaps there might be sense data of the stars perceived by other animals; but this is doubtful,
and it is even more doubtful that our language might be given a semantics in terms of sense data
of other animals.

8I am only slightly adapting the wording of his exposition in ([11], 86-88).
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Therefore, by modus ponens, it follows from scientific laws and observation that

(5) Sj1my( = the stars will be in state j in 1 million years).

But (5) implies

(6) ∼M1my⊃ Sj1my( = if in 1 million years there will be no minds, the stars will be
in state j)

(because any conditional with a true consequent is true). But (6) is equivalent to
(1), so (1) can be established just by observation, induction and propositional logic.

It might be objected that (6) is neither equivalent to (1), nor what Lewis meant
by it: for (6) is a logical consequence of (5), so it says nothing more than (5). But
(1) means something more than (5): not only that there will be stars in one million
years, but besides, that they would be there even if there were no minds at that
time: namely

(7) Sj1my & �(∼ M1my & Sj1my)
( = the stars will be in state j in 1 million years, and it might be so even if there
were no minds then),

or

(8) Sj1my & ∼(∼M1my→ ∼Sj1my)
( = the stars will be in state j in 1 million years, and the absence of minds would
not prevent this).

Perhaps, the objection is, Carnap missed the modal or implicative character of
(1) because in 1936 he hadn’t developed his intensional semantics, yet; so, he did
not meet Lewis’ challenge to show that scientific statements like (1) passed the
test of liberalized verificationism. In any case, because of the modal or implicative
character of (7) and (8), he could not accept them (nor their consequences (2) and
(MR)), without committing himself to a metaphysical ontology, either of mind-
independent bodies, or necessitarian laws, or physically possible worlds.

But Carnap might reply that if the laws of astronomy (3) and observation (4)
entail that

(5) the stars will be in state j in 1 million years,

then they teach that this will happen in any case, hence, even if there were no
minds in 1 million years (precisely as the formalization brings out: if we know that
(5) Sj1my, we also know that (6) ∼M1my⊃ Sj1my. After all, this is also what Schlick
argues in the above quotation. And this entails that

(1) If all minds disappeared from the universe, the stars would still go on in their
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courses.

But if so, since (1) entails (2) and (MR), how would Carnap avoid being committed
to metaphysical realism? In fact, how can metaphysical claims like (2) and (MR)
follow just from observation and scientific laws? As we just asked on behalf of
Schlick, does really science tell us that stars themselves will be there in 1 million
years, or does it simply make predictions about possible observations on sense data?

For a phenomenalist like Schlick, science does not quite show that

(3) Sinow⊃Sj1my ( = if the stars are in state i now, then they will be in state j in
1 million years).

In fact, the only law-like correlations we have actually observed are that percep-
tions of kind K at a time t, were followed by perceptions of kind J at a later time
t’; moreover, science tells us that there might not be perceptions at all in 1 mil-
lion years. Therefore, observation and induction cannot really warrant (3), but only

(3’) [∃P(Sinow) & P1my] ⊃ ∃P(Sj1my)
( = if there are perceptions of the stars as in state i now, and if there will be
perceptions at all in 1 million years, then there will be perceptions of the stars as
in state j in 1 million years).

Equally, observation does not quite show that

(4) Sinow ( = the stars are in state i now),

but only that

(4’) ∃P(Sinow) ( = there are perceptions of the stars as in state i now)

But while from (3) and (4) there follows

(5) Sj1my (stars will be in state j in 1 million years),

from (3’) and (4’) there follows only

(5’) ∃P1my ⊃ ∃P(Sj1my) ( = if there will be perceptions in 1 million years, then
there will be perceptions of the stars as in state j in 1 million years),

and obviously from (5’) one cannot derive

(6) ∼M1my⊃ Sj1my( = if in 1 million years there will be no minds, the stars will be
in state j),
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nor a fortiori

(1) If all minds disappeared from the universe, the stars would still go on in their
courses.

This is why Carnap’s (5) and (6) did not seem to render what Lewis meant by
(1): because on the one hand Lewis was clearly concerned with the question of the
mind-independence of stars, quite independently of (5), as brought out by (7) or
(8). On the other hand, (5) is the crucial step in Carnap’s argument, and (6) is his
rendering of (1); but one feels that while science can indeed establish (5) and (6), it
does not by itself establish their semantics: it is not its business to decide whether
they are to be interpreted physicalistically, so to entail the mind-independence of
stars, or phenomenalistically, so to be compatible with antirealism.

But while science cannot decide this question, philosophy can, and we already saw
Carnap’s argument against phenomenalism. Further arguments are given by Sellars
[31], Austin [6] and Quine [27] and [28] sense data as such cannot be perceived,
conceptualized or remembered, only physical objects can. So, a phenomenalist
language is just impossible, we could never learn it.

Thus, phenomenalism is the mistake which explains Schlick’s illusion to be able
to accept (1) and (2) while rejecting metaphysical realism. But how about Carnap?
In 1936 he was already a physicalist, so how could he avoid metaphysical realism?
He felt he could because he regarded the choice of physicalism precisely as a choice
of language (e.g., [11], pp. 69-70; 78-80), which did not settle the metaphysical
question of whether there really are physical entities beyond sense data, or not.
So, in a sense, he refused to interpret his own language, thus feeling entitled to (a)
accept (1) and (2); (b) acknowledge that (1) and (2) are established by science;
yet, (c) deny that science could support a metaphysical doctrine and (d) reject any
commitment to metaphysical realism.

In this way, however, he missed two important points: (I) Quine’s point that
quantification involves ontological commitment: by quantifying over mind-independent
entities I am claiming that they exist; (II) an epistemic point: if the best way to
describe, predict and explain experience is by quantifying over mind-independent
entities, that is evidence that they exist. Physicalism is not just a vocabulary, it is
a theory. Phenomenalism is not only impossible as an interpretition of language,
but also arguably wrong as a metaphysical doctrine, because it fails where real-
ism succeeds: in explaining not any particular empirical phenomenon, but (i) the
determinacy (ii) the order and (iii) the regularity of phenomena in general [4].

Of course the realist arguments (I) and (II) are not strictly scientific, but philo-
sophical, and this is why scientific evidence supports metaphysical realism, but in
and of itself it is not enough to establish it. Science as such is not concerned with
the question of its own semantic and metaphysical interpretation. So, it does speak
of physical entities and claim that they exist, but it does not advance the claim
that they are metaphysically real. It is a task for philosophy to show that the most
correct interpretation of science is the realist one.

Perhaps there is also another reason why Carnap could accept (1) and (2) without
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committing himself to metaphysical realism: perhaps even after giving up phenom-
enalism and the possibility of verification in a strict sense, he still held a confir-
mationist semantics:9 i.e., he thought that the content of an assertion is just the
experiences which confirm it to some extent (no matter whether these experiences
concern sense data or physical bodies); in other words, that meanings are not con-
stituted by truth-conditions, but by confirmation-conditions.

If so, he accepted the astronomical laws L1. . . Ln, the sentence (3) following from
them, plus the observation sentence (4), hence their joint consequences (5), (6),
(1) and (2). But for him their respective content was just the set of all actual
and possible experiences (about physical bodies) which would confirm them: they
meant only that in past conditions C1, C2, . . . Cm we had respectively the confirming
experiences E1, E2,. . . Em, and in possible conditions Cm+1, Cm+2, . . . Cn, we
would have, respectively, the confirming experiences Em+1, Em+2, . . . En.

Obviously, we could not have any experiences relative to a condition C∼M in
which there existed no minds (let’s call these impossible experiences of a world
without minds E∼M ). So, the obtaining of the astronomical laws L1. . . Ln could
not be observed in condition C∼M ; hence, the laws L1. . . Ln could not be (com-
pletely) verified. However, they can be (partially) confirmed (in fact, they are very
well confirmed): this is why in 1936 Carnap, having substituted verification with
confirmation, had no problems in accepting them and their consequences (1), (2),
(3), (5), etc. But if he thought that their meaning consisted only of the experiences
which could confirm them, for him their content did not include any experiences
E∼M of a world without minds: they said nothing about what would happen in
such a world, hence they said nothing on the possibility of the existence of stars
and material bodies independently of minds. Therefore he could accept (1), (2),
(3), (5), etc., without being committed to metaphysical realism.

But it is hard to tell whether Carnap actually relied on this confirmationist
semantics, because it conflicted with his own point that theoretical terms cannot
be completely defined in observation terms: for this entails that observation cannot
supply the whole meaning of propositions, so their content indeed goes beyond all
possible observations: confirmationism can offer a criterion of meaningfulness, but
not a whole semantics.10

Moreover, even if Carnap actually embraced it, confirmationist semantics could
not reconcile his acceptance of (1) and (2) with the rejection of metaphysical realism,
for it is wrong: in science and in common discourse the astronomical laws and
sentences (1), (2), (3), (4), (5), etc., are actually understood as speaking about
stars, not experiences.

9Somewhat like the semantics which was later adopted by Dummett [15]; [16], pp. 590-1; [18],
ch.14, Section 6; etc.

10On the other hand, if Carnap didn’t hold a confirmationist semantics, but only (more con-
sistently) a confirmationist criterion of meningfulness, he might simply have been self-deceived:
by assuming that any scientific result automatically fulfilled his confirmationist criterion of mean-
ingfulness, and that any metaphysical claims failed to do so, he might have accepted (1) and (2),
assuming that they did not commit him to (MR). But if so he failed to see that (a) metaphysical
claims can be empirically confirmed, and (b) one can avoid the implication from (1) and (2) to
(MR) only by a confirmationist semantics.
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This however is not shown by science: contrary to what claimed by Putnam [26]
(pp. 105-109) science by itself cannot fix the interpretation of its own claims, and
Dummett is right that an antirealist interpretation of the whole of science is possible
without contradiction [1]. However, there are various philosophical moves by which
it can be argued, against Dummett, that meanings are truth-conditional rather than
confirmation-conditional: (a) showing that Dummett’s manifestation and acquisi-
tion challenge ([17]; [19], 13) can be met, i.e., that through the compositionality
of language we can learn to assign our statements objective (i.e., confirmation-
transcendent) truth-conditions ([2], 368-374; [5] 40-41); (b) pointing out that the
confirmationist’s claim that the meaning of propositions is not what actual speakers
understand by them is absurd, because meaning is whatever speakers understand;
(c) arguing that if the confirmationist theory of meaning were true, it would be in-
expressible, hence one cannot really understand what confirmationist semanticists
are actually claiming ([2], 377-387).

Thus, the metaphysical dispute between realism and idealism presupposes the
more basic decision between realist and confirmationist semantics ([3], 133): if one
chooses a realist semantics, the dispute between metaphysical realism and idealism
has sense. If one chooses a confirmationist semantics, the metaphysical question
cannot even be expressed, as no objective facts can be expressed. What survives,
in this case, is only a pale ghost of the original dispute: the question whether it
is assertible that stars are mind-independent, or that they are mind-dependent, o
neither. If one does not take stand on the semantic question, just like Carnap when
he considers it as a merely pragmatic choice, one can indeed accept all scientific
and common sense “realist” claims, without any philosophical commitment of any
kind, more or less like FIne [20] with his “NOA”.

Summing up, both Schlick and Carnap accepted the sentences (1) and (2), and
in a sense also the sentence

(MR) the external world is mind-independent,

but Schlick reinterpreted them phenomenistically, so to yield merely propositions
on sense data, while Carnap either declined to interpret them, or interpreted them
confirmation-conditionally. Thus, they actually rejected them not only in their
metaphysical or philosophical sense, but even the sense they have in science or
common sense. The “liberalization of empiricism” was probably a smaller change
than sometimes is thought: they abandoned strict verificationism for the more
liberal confirmationism, and Carnap also abandoned the phenomenalist language for
a physicalist one. This certainly helped them to offer a better account of scientific
methodology; but they remained basically sceptical on the possibility of moving
from subjective experience to the knowledge of reality, thus basically keeping their
positivist strictures against philosophical doctrines.

Contra Tarozzi’s claim (2), the empirical versions of traditional metaphysical
doctrines they accepted in 1936 didn’t have any philosophical content more than
those they had already accepted since the Twenties: they accepted all the sentences
of science, just as before; but Schlick still interpreted them phenomenalistically,
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while Carnap refrained from interpreting them. Science does not fix the semantics
of its own sentences, while philosophy tries to do that, through arguments which
are specifically philosophical, not scientific. Since Carnap didn’t use or consider any
of those arguments, on the question of realism he too didn’t take any philosophical
step beyond his initial positions.11

BIBLIOGRAPHY
[1] Alai, M. (1988). L’argomento della fallacia idealistica nel vecchio e nel nuovo Putnam. In M.L.

Dalla Chiara, M.C. Galavotti (eds.), Temi e prospettive della logica e della filosofia della
scienza contemporanee, Atti del congresso della S.I.L.F.S. 1987, vol. II, Bologna, CLUEB: 93-96.

[2] Alai, M. (1989). A Criticism of Putnam’s Antirealism, Ann Arbor, U.M.I.

[3] Alai, M. (2013). Ontologia, conoscenza e significato nel realismo scientifico, in M. Bianca, P.
Piccari (eds.) Ontologia, realtà e conoscenza, Mimesis, Milano.

[4] Alai, M. (2014a). Realismo, idealismo e agnosticismo. Una prospettiva epistemologica,
Hermeneutica 2014: 109-126.

[5] Alai, M. (2014b). Neopositivism, Realism, and the Status of Philosophy, in V. Fano (ed.) Gino
Tarozzi Philosopher of Physics, Milano, Angeli, 2014: 33-64.

[6] Austin, J.L. (1962). Sense and Sensibilia, Oxford, Clarendon.

[7] Carnap, R. (1928a). Der Logische Aufbau der Welt, Berlin-Schlachtensee, Weltkreis-Verlag.

[8] Carnap, R. (1928b). Scheinprobleme in der Philosophie. Das Fremdpsychische und der
Realismusstreit. Berlin-Schlachtensee, Weltkreis-Verlag.

[9] Carnap, R. (1931). Die physicalische Sprache als Universalsprache der Wissenschaft, Erkennt-
nis II, 5/6: 432-465.

[10] Carnap, R. (1932). Über Protokollsätze, Erkenntnis III, 2/3: 215-228.

[11] Carnap, R. (1936). Testability and Meaning, Philosophy of Science, 3, (4): 419-471. Repr. in
H. Feigl, M. Brotbeck (eds.), University of Minnesota Readings in the Philosophy of Science,
New York, Appleton-Century-Crofts, Inc.: 47-92.

[12] Carnap, R. (1963a). Intellectual Autobiography. In P.A. Schilpp (ed.) (1963), vol. I.: 3-84.

[13] Carnap, R. (1963b). Replies and Systematic Expositions. In P.A. Schilpp (ed.) (1963), vol. II.:
859-1013.

[14] Carnap, R. (1967). Preface to the second edition. In Id., The Logical Structure of the World,
La Salle, III., Open Court.

[15] Dummett, M. (1959). Truth, in Proceedings of the Aristotelian Society 59 (1): 141-162.

[16] Dummett, M. (1973). Frege: Philosophy of Language, London, Duckworth, and Cambridge
Mass., Harvard University Press.

11Carnap’s consistency throughout his career in accepting empirical realism and rejecting meta-
physical realism is well documented also in [25].



Stars and Minds. Empirical Realism and Metaphysical Antirealismin Liberalized Neopositivism15

[17] Dummett, M. (1978). Truth and Other Enigmas, London, Duckworth, and Cambridge Mass.,
Harvard University Press.

[18] Dummett, M. (1991). The Logical Basis of Metaphysics, Cambridge, Mass., Harvard University
Press.

[19] Dummett, M. (1993). The Seas of Language, Oxford, Oxford University Press.

[20] Fine, A. (1984). The Natural Ontological Attitude, in J. Leplin (ed.), Scientific Realism,
Berkeley, University of California 1984: 83-107.

[21] Hempel, C. (1952). Fundamentals of Concept Formation in Empirical Science, Chicago,
University of Chicago.

[22] Lewis, C.I. (1934). Experience and Meaning, The Philosophical Review XLIII: 125-146.

[23] Neurath, O. (1931). Soziologie im Physicalismus, Erkenntnis.

[24] Neurath, O. (1932). Protokollsätze, Erkenntnis III, 2/3 1932, 204-214.

[25] Parrini, P. (1994). With Carnap, Beyond Carnap: Metaphysics, Science, and the Real-
ism/Instrumentalism Controversy. In W. Salmon and G. Wolters (eds.) Logic, Language,
and the Structure of Scientific Theories, Pittsburgh and Konstanz: University of Pittsburgh
Press and Universitätsverlag Konstanz: 255-277. It. ed. Con Carnap oltre Carnap. Realismo e
strumentalismo tra scienza e metafisica, Rivista di Filosofia LXXXII, 3 (1991): 339-367.

[26] Putnam, M. (1978). Meaning and the Moral Sciences, Oxford, Routledge & Kegan Paul.

[27] Quine, W. V. (1957). The Scope and language of Science, British Journal for the Philosophy
of Science 8 (29):1-17.

[28] Quine, W. V. (1960). Posits and Reality, in S. Uyeda (ed.) Basis of the Contemporary
Philosophy, Tokyo, Waseda University, vol. 5.

[29] Schlick, M. (1932). Positivismus und Realismus, Erkenntnis III: 1-31 [references to Italian ed.,
Positivismo e realismo, in M., Schlick Tra realismo e neo-positivismo, Bologna, Il Mulino 1974:
77-111].

[30] Schlick, M. (1936). Meaning and Verification, The Philosophical Review 45 (4): 339-369
[Italian ed., Significato e verificazione. In A. Bonomi (ed.) La struttura logica del linguaggio,
Milano, Bompiani, 1973: 71-101].

[31] , Sellars, W. (1956). Empiricism and the Philosophy of Mind, in H. Feigl, M. Scriven (eds.),
Minnesota Studies in the Philosophy of Science, Volume I: The Foundations of Science and
the Concepts of Psychology and Psychoanalysis, Minneapolis, University of Minnesota: 253-329.

[32] Verein Ernst Mach (hrsg.) (1929). Wissenschaftliche Weltauffassung. Der Wiener Kreis, Veröf-
fentlichungen des Vereines Ernst Mach, Wien, Artur Wolf Verlag.





Realism, Empiricism, and Ontological
Relativity: A Happy Ménage à Trois?

Karim Bschir

abstract. In the debate on scientific realism, empiricists often take an
anti-realist stance. This need not be. I argue that it is possible to merge an
empiricist methodology with a realist perspective on science under the pre-
supposition that one is ready to bite the bullet of ontological relativity. I will
show that ontological relativity is not a predicament, neither for empiricism
nor for realism. Quite on the contrary, it allows us to bring both together in
a consistent manner.

1 Introduction
In the tradition of western philosophy empiricism and realism about unobservables
stand as opposing views. Ever since the time of Locke and Hume, empiricists have
felt a deep discomfort when it comes to the commitment to experience-transcending
or abstract entities. And it is only a slight exaggeration to assert that there exists
an almost sectarian chasm between strict empiricists on the one hand, who deny
the existence of non-observational entities, and realists or rationalists on the other,
who are convinced that there must exist something over and above the empirically
given.

In the twentieth century, the old dispute between empiricists and rationalists
(the “battlefield of endless controversies” as Kant called it) found its continuation
in the debate on scientific realism. However, the debate on scientific realism has a
sharper focus than the traditional conflict between empiricism and rationalism. The
modern debate centers around the question how to justify our commitment to the
existence of the numerous unobservable entities that play important explanatory
roles in our well-confirmed scientific theories. Taking into account the heritage of
empiricism as well as its many virtues, it is by no means difficult to understand why
empiricists have often taken the side of the anti-realists in this debate. The reductive
empiricism of the Vienna Circle or Bas van Fraassen’s constructive empiricism are
among the most important varieties of empiricist anti-realisms that we have seen in
the twentieth century.

The opposition between realists and empiricists in the debate on scientific realism
is, however, rather unfortunate. The reason for this is simple: Both camps make
highly sensible claims! Realism holds that, in general, the unobservable entities
posited in scientific theories are part of reality, and empiricism boils down to the
methodological postulate that all scientific claims about nature must be justified on
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empirical grounds. Both of these statements appear perfectly reasonable, in partic-
ular from the viewpoint of science itself. It may be assumed that most scientists
would happily endorse a philosophical framework that allows for both: a) to take a
realist stance on theoretical entities and b) to subscribe to empiricism as the pre-
ferred methodology for science. Hasok Chang seems to share this assessment when
he writes that “it doesn’t make much sense that empiricism and realism have been
pitted against each other in debates on scientific realism. Typical scientists, as well
as most ‘normal’ people, are both empiricists and realists, and that is not (only)
because they are philosophically unsophisticated” ([8], p. 217).1

Unfortunately, a reconciliation between realism and empiricism turns out to be a
severe philosophical problem. How can we commit to the basic principles of empiri-
cism while at the same time subscribe to the claim that the numerous unobservable
entities in our theories are real in the sense that they exist independently of our de-
scriptions of them? This is the question that empiricists find themselves confronted
with when they develop realist ambitions; and this will also be the main topic of
the following considerations.

I will argue that it is possible to bridge the gap between an empiricist method-
ology and a realistic stance on science under the presupposition that one is ready
to bite the bullet of Quine’s doctrine of ontological relativity, which holds that
unearthing the ontological commitments of a scientific theory always requires a
background framework against which the theory in question is interpreted. As it
turns out, ontological relativity compromises neither empiricism nor realism. Quite
on the contrary, the upshot of my argument will be that we can be realists and
empiricists at the same time if we are ready to accept the fact that science will
never lead us to the one and only true ontology and that ontologies are always and
necessarily “relative” in the sense which Quine put forward. This amounts to a
relaxed view of realism. But empiricism must also relax in order for the ménage to
be happy one: Empiricists have to give up the claim that strictly empirical criteria
alone are sufficient for theory choices.

I will proceed in three steps. First I will explain the reasons for the tension
between empiricism and realism (Section 2). I will then turn to Quine’s doctrine of
ontological relativity. I will show how endorsing ontological relativity can lead the
road towards a reconciliation of empiricism and realism (Section 3). I will end by
formulating an account which I tag empirical realism (with best regards to Moritz
Schlick). The whole analysis will be iced with a short reductio argument against
scientific anti-realism (Section 4).

2 The Tension Between Empiricism and Realism
2.1 Empiricism By and Large
Empiricism, taken as a general doctrine in the philosophy of science, can be char-
acterized by the following features:

1Stathis Psillos calls an empiricism that explicitly denies the reality of theoretical posits a
“revisionary stance to science and, besides, not much less metaphysical than scientific realism”
([18], p. 303).
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1) The denial of synthetic knowledge a priori.
2) The commitment to empirical testability.
3) An instrumentalist stance on scientific theories.
4) A reductionist/nominalist stance on theoretical terms.

The first feature is deeply rooted in the empiricist tradition. It is the idea that all
knowledge must be founded in experience. A wholehearted empiricist quite unam-
biguously claims that the source as well as the justificatory basis for all knowledge
must be experience. This dogma has been expressed most explicitly by John Locke
himself:

Whence has it [the mind] all the materials of reason and knowledge?
To this I answer, in one word, from EXPERIENCE. In that all our
knowledge is founded; and from that it ultimately derives itself. ([16],
Book II, Chapter 1).

This foundationalist attitude was also one of the cornerstones of the logical empiri-
cism of the Vienna Circle:

We have characterized the scientific worldview mainly by two features:
Frist it is empiricist and positivist: There is only knowledge from expe-
rience. This sets the boundaries for legitimate science. ([6], p. 307, my
translation).

For the empiricist, experience constitutes the only source of knowledge about the
empirical world, even if the sources of mathematical or logical knowledge lie outside
experience, i.e. even if we allow for a priori knowledge in those realms. Or, to put
it in other words: If there is a priori knowledge, it cannot be synthetic.

Closely related to the first feature is the commitment to the empirical testabil-
ity of scientific theories. All claims about nature have to be testable empirically.
This also means that all scientific claims are susceptible to revision in light of new
empirical evidence and that they are justifiable only up to a certain limit. Scien-
tific theories can never be verified absolutely, however certain or robust they might
appear. The best we can strive for are tentative corroborations.

This leads to the third feature of empiricism: Instrumentalism. Because most
scientific theories contain statements that go beyond the immediately observable,
we find ourselves confronted with the question of whether those statements should
be interpreted literally. The empiricist is inclined to answer negatively. Neither
need theoretical statements in science to be interpreted literally in the sense that
their theoretical terms refer to existing entities, nor do we require theories to be
literally true. All we need is empirical adequacy. As long as we are able to deduce
empirically testable statements from a theory and as long as the empirical tests of
the theory turn out to be successful, we are entitled to accept the theory. Empirical
adequacy is sufficient for the acceptance of a scientific theory.2

2A qualification is in order here. There are forms of empiricism that do subscribe to the literal
interpretation of theories. Van Fraassen’s constructive empiricism is an example. But for the
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The forth feature follows from the third. Because theoretical statements do not
have to be interpreted literally, empiricists do not have to be committed to the
existence of theoretical entities. Theoretical terms are just names, abbreviations or
logical constructs that we use in order to facilitate talk about observable phenomena.
This is what came to be known, after Quine, as the second dogma of empiricism:
“[T]he belief that each meaningful statement is equivalent to some logical construct
upon terms which refer to immediate experience" ([15], p. 20); or what Russell
called the supreme maxim of scientific philosophising: “Wherever possible, logical
constructions are to be substituted for inferred entities.” ([24], p. 115).3

Now, what exactly is it that makes empiricism an anti-realist position? To be
sure, the fourth feature is straightforwardly anti-realist, because it entails an anti-
realist attitude towards theoretical entities. There is, however, another anti-realist
element in the empiricist package, which is less immediately visible. It is the thesis
that scientific theories are usually underdetermined by empirical evidence. So let
us take a closer look on the two features that are responsible for why empiricism
cannot be realism: Underdetermination and the denial of the existence of theoretical
entities.

2.2 Underdetermination
Underdetermination arises as a problem within the empiricist program as a result of
the normative claim that experience must be the justificatory basis of all scientific
knowledge. The problem was first highlighted by Pierre Duhem. In a famous
thesis (which came to be known later as the Quine-Duhem-thesis), Duhem asserted
that experience is never sufficient to confirm or refute single statements but only
theoretical frameworks as wholes. The thesis holds that instead of refuting a single
proposition in light of contradictory evidence, it is always possible to adjust an
auxiliary assumption related to that proposition such that one can hold on to it
despite contradicting evidence. This is the thesis of confirmation holism: Only
entire theories can be confirmed or refuted by empirical evidence (See [9] and [15]).

Confirmation holism à la Quine-Duhem leads to underdetermination. Because
we can only confirm or refute theories as wholes and because we can always hold
on to a theory in the light of refuting evidence by the adjustment of background
hypotheses, it is possible (in theory at least) to construct empirically equivalent
but logically incompatible alternatives for any given theory. Empirically equivalent
theories entail the same observational consequences and are equally well confirmed
by the available evidence, but they make incompatible theoretical claims (e.g. with

constructive empiricist,“literal interpretation" simply means a correct understanding of what the
theory says. It does neither imply the commitment to the existence of theoretical entities nor
to the literal truth of the theory: “After deciding that the language of science must be literally
understood, we can still say that there is no need to believe good theories to be true, nor to believe
ipso facto that the entities they postulate are real." ([27], p. 11).

3In older empiricisms, the use of theoretical terms was often associated with an economical
function. Ernst Mach in his Mechanics provides the most articulate example for this line of
thought: “It is the object of science to replace, or save, experiences, by the reproduction and
anticipation of facts in thought. [...] This economical office of science, which fills its whole life, is
apparent at first glance; and with its full recognition all mysticism in science disappears.” ([17], p.
481).
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respect to the entities or properties they posit). Hence the choice between them is
underdetermined by empirical data. When we are confronted with two empirically
equivalent theories that make contradictory existential claims, we cannot determine
which of the two is the true theory based on experience alone. Therefore the un-
derdetermination thesis, if true, forces the empiricist to an anti-realist conclusion:
We can never claim for any empirical theory that it is true in a substantial sense.
The best we can hope for is empirical adequacy, and we have to accept the fact
that sometimes two theories with incompatible theoretical posits can be equally
adequate. This is the reason why many believe that empiricism cannot be realism.4

It is important to note, however, that underdetermination does not necessarily
undermine realism. We can accept underdetermination and still be realists, be-
cause it is always possible to allow for more than strictly empirical criteria when
confronted with a choice between two empirically equivalent alternatives.5 How-
ever, applying pragmatic or rational criteria, such as coherence, consistency etc., is
usually understood as a move away from empiricism. Whether underdetermination
forces the empiricist into anti-realism depends on how radical she chooses to be
when it comes to her epistemological foundationalism.

2.3 Trouble with Theoretical Entities
Let us now take a look at the second anti-realist feature of empiricism: the reduc-
tionist stance on theoretical terms. Reductionism was a crucial ingredient of the
logical empiricism in the early decades of the twentieth century. Logical empiricism
operated on the basis of a verificationist criterion of meaning according to which
the meaning of a statement is given by its truth conditions: A statement is mean-
ingful if and only if there are empirically verifiable consequences that determine
the conditions under which the statement is true. Verificationism causes a prob-
lem with respect to theoretical sentences, because their truth conditions cannot
be easily determined. In order to render statements containing theoretical terms
meaningful, the logical empiricists assumed that every theoretical term is reducible
to observational terms via correspondence rules. This kind of reductionism in com-
bination with the verificationist criterion of meaning constitutes the core of the
so called “reductive empiricism” of the Vienna Circle. In the reductionist view,
theoretical terms do not refer to unobservable entities, but only to some logical
construct that contains only terms which refer to things given in immediate experi-
ence. Here is a quote from Carnap, who expresses the empiricist skepticism towards
non-observational entities in the following way:

As far as possible they [empiricists] try to avoid any reference to ab-
stract entities and to restrict themselves to what is sometimes called a
nominalistic language, i.e., one not containing such references. However,
within certain scientific contexts it seems hardly possible to avoid them.
([5], p. 20).

4For a more elaborate discussion of the relationship between holism, underdetermination, em-
piricism and anti-realism see [10].

5See for instance Richard Boyd’s realist countermove against underdetermination ([2, 3]).
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To be sure, the last sentence in this quote is very important because it nicely ex-
presses the trouble that the logical empiricists found themselves in. On the one
hand they were fond of the nominalistic consequences of their empiricist methodol-
ogy. On the other hand they realized two things: First, that the language of science
is obviously full of theoretical terms, and second, that it sometimes turns out to be
very hard to eliminate them via logical reduction. That is to say that the reductive
empiricist program, as it was originally conceived, actually turned out impossible
to implement. And it was of course Carnap himself, who in his Testability and
Meaning from 1936 was among the first who pointed at the problems of reductive
empiricism.6

So on the one hand, the nominalist stance towards theoretical terms forces the
empiricist to back off from a commitment to the reality of theoretical entities. On
the other hand, she has to admit that theoretical posits play an important role in
scientific explanations and that it seems hard to eliminate them via logical reduction.
Hence, the task that the empiricist finds herself confronted with in this situation,
can be formulated in the following way: Is there a way of reconciling empiricism
with the acceptance of unobservable entities (or properties or structures) without
compromising its anti-metaphysical attitude?

Psillos ([18]) has shown that there exists a line within the empiricist tradition that
provides a positive answer to the question whether empiricists can “be committed
to the reality of explanatory posits without opening the floodgates of metaphysics”
([18], p. 303). Psillos discusses attempts by Schlick, Reichenbach and Feigl, who
all provided interesting suggestions for empiricist moves towards realism. Under a
certain reading, even Carnap’s Empiricism, Semantics and Ontology can be seen
as an attempt “to develop the rapprochement between empiricism and scientific
realism, as this was developed in the Schlick-Reichenbach-Feigl tradition of empirical
realism” ([18], p. 313).7

Along the lines of Feigl ([11]), Psillos ([18]) develops his own indispensability
argument for scientific realism, in which he echoes an important element in all the
empiricist moves towards realism: All these contributions have a pragmatic touch.
Whether the adoption of the realist framework is legitimate, is relative to the goal
of achieving a coherent causal-explanatory view of the world. If this is the aim,
then there is no framework that does better than the realist one.

It is not my aim to assess the feasibility of these approaches. What is important
for the context of this article is the fact that all these attempts may be taken as an
indication that a reunion of realism and empiricism is in principle a desirable aim.

3 Ontological Relativity Revisited
Let us take a step back now, and ask again what it would mean for an empiricist to
develop realistic leanings. How would an empiricist’s take on ontology look like? It

6See also [12]. To be sure, the original ideas of the logical empiricists were much more nuanced.
It is beyond this paper to discuss the subtleties of the original version or the details of the historical
development of reductionism. For a much more refined account see for instance [12].

7Alspector-Kelly ([1]) also argues that Empiricism, Semantics and Ontology can be read as an
attempt to free empiricism from the nominalism that it traditionally included.
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seems that any empiricist approach to ontology should be compatible with at least
two claims:

1) Because empirical science provides the most robust way of acquiring knowledge
about reality, the best way of obtaining ontological knowledge about the configura-
tion of reality is through successful and well-confirmed scientific theories. That is
to say that there exists no a priori ontology.

2) All scientific theories can only be confirmed up to the limit of induction. They
always remain subject to revision in the light of new empirical evidence.

Combining 1) and 2) leads to the conclusion that ontological claims are also, like
all knowledge claims about the world, susceptible to revision. The belief in the
existence of point-like elementary particles, for instance, is vindicated by the fact
that theories that postulate point-like elementary particles are successful. But even
those theories will eventually be replaced by new theories with different ontological
commitments. When a scientific theory gets replaced, the ontological commitments
of the theory have to be replaced too. This leads to a further interesting question
that the empiricist who engages in ontology has to answer: How do we sort out
novel ontological commitments when a theory change happens?

In order to answer this question, it is helpful to consider a historical example.
Take for instance the transition from classical mechanics to quantum mechanics.
Quantum mechanics contains several theoretical principles that are absent in clas-
sical physics. One of these is the superposition principle according to which any
linear combination of two well defined states of a quantum system is itself a possi-
ble state of the system. In the formalism of quantum mechanics, superpositions are
represented as wave functions and the famous Schrödinger equation describes the
dynamics of wave functions. The wave function itself has no direct classical corre-
late, and it is not straightforwardly clear what, if anything, it represents in physical
reality. Should we actually decide to ponder on the question what the wave function
corresponds to in reality, we could proceed in at least two ways: We could either
try to interpret the new theoretical framework against the background of the old
picture, in which there are particles with well-defined classical properties moving in
space and time. As it turns out, this interpretation leads into severe problems. The
interpretation will not work because there is no one to one correspondence between
certain elements in the old and the new theory.

We could also go the other way around and try to “invent" an entirely new ontol-
ogy that fits the new theory. In this case we might come up with an interpretation
that refers to “many worlds”, “consistent histories, “spontaneous collapses” or what
have you. In order to test the plausibility of our preferred interpretation we would
then try to reinterpret the old classical picture against the background of the new
putative ontology. This could give rise to interesting conceptual problems regard-
ing locality, identity, causality, and we would probably gain important insights into
the deficiencies and limitations of our old picture. In any case, accepting the fact
that ontologies depend on empirical theories and that they might change as soon as
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those theories change, leads to the insight that theory changes generate interesting
entanglements between the ontological commitments of different theoretical frame-
works. Figuring out the ontology of any given theory always seems to require a
background against which the interpretation is done. This very idea, the idea that
ontologies are always related to theoretical frameworks, and that the interpretation
of a theory always requires a background theory, is precisely the verdict of Quine’s
doctrine of ontological relativity.

Quine developed his doctrine of ontological relativity alongside his views in the
philosophy of language concerning issues like “radical translation” and the “in-
scrutability of reference”.8 The basic claim of ontological relativity is that we al-
ways need a background theory (Quine also calls this the “home theory”) in order
to sort out the ontological commitments of a particular object theory. He says:
“The relativistic thesis to which we have come is this, to repeat: it makes no sense
to say what the objects of a theory are, beyond saying how to interpret that theory
in another” ([21], p. 55).

Ontological relativity entails that ontological stipulations can never be made in
an absolute manner because every fixing of a theory’s ontological commitments is
relative, not only to the theory itself, but also to the background theory used in the
fixing. This sounds very much like an awkward infinite regress, for the very choice
of a background theory is a relative matter. Quine again: “If questions of reference
of the sort we are considering make sense only relative to a further background
language, then evidently questions of reference for the background language make
sense in turn only relative to a further background language” ([21], p. 49). There
is indeed a regress lurking, but Quine compares the kind of relativity that he has
in mind to the one that we encounter when we make coordinate transformations
in physics. In physics, it makes no sense to speak of absolute position or velocity,
because they are always relative to a frame of reference. Likewise, it makes no sense
to fix the interpretation of a theory in an absolute way: “What makes sense is to
say not what the objects of a theory are, absolutely speaking, but how one theory of
objects is interpretable or reinterpretable in another" ([21], p. 50). Ontological rela-
tivity boils down to the insight that we cannot uniquely single out the one and only
ontology of a theory, i.e. we can never fully eliminate unintended interpretations.

My answer is simply that we cannot require theories to be fully inter-
preted, except in a relative sense, if anything is to count as a theory.
In specifying a theory we must indeed fully specify, in our own words,
what sentences are to comprise the theory, and what things are to be
taken as satisfying the predicate letters; insofar we do fully interpret the
theory, relative to our own words and relative to our overall home the-
ory which lies behind them. But this fixes the objects of the described
theory only relative to those of the home theory; and these can, at will,
be questioned in turn. ([21], p. 51).

8Quine himself was unsure about where to draw the distinction between the inscrutability of
reference and ontological relativity. “Kindly readers have sought a technical distinction between
my phrases ‘inscrutability of reference’ and ‘ontological relativity’ that was never clear in my own
mind” ([23], p. 51).
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With respect to scientific theories this means that, strictly speaking, we always have
to interpret our theories against each other (or against the background of natural
language). The crucial point is not which background theory we choose, but the
fact that we are always forced to choose a background theory in order to make
explicit the ontological commitments of a given object theory.

4 Empirical Realism
Many, among them Quine himself, have taken ontological relativity to be a route
leading to instrumentalism. There are passages in Quine (especially in his later
works), in which he clearly draws anti-realist conclusions based on ontological rel-
ativity.9 Putnam saw “ontological relativity as a refutation of any philosophical
position that leads to it” ([19], p. 180), and he believed that it needs to be refuted
in order to maintain even a mild version of realism. I argue, however, that ontologi-
cal relativity does not force us to abandon the basic claims of realism. Quite on the
contrary, it even allows us to unify empiricism and realism in a consistent manner.

With respect to the compatibility with empiricism, we have already seen that on-
tological relativity is well compatible with belief that there is no synthetic a priori
and accordingly no a priori ontology. Ontological relativity also allows for an up-
dating of our belief systems, including their ontological commitments, in the light of
new empirical evidence. After all, Quine himself was an empiricist, and he repeat-
edly claimed that ontology should be seen as a part of empirical science.10 In fact,
the question whether empiricism and ontological relativity are compatible becomes
obsolete if we keep in mind that ontological relativity follows as a consequence if one
embarks on the project of ontology from an empiricist angle. An empiricist will not
only happily accept the fact that all our ontological commitments must come from
empirical theories, but also that the interpretation of those theories is a relative
matter, i.e. that new theories are usually interpreted against the background of
older ones.

The more difficult problem turns out to be the compatibility of ontological relativ-
ity with realism. Accepting ontological relativity forces us to admit that ontological
commitments can never be fixed once and for all. But does this really prevent us
from keeping the belief that scientific theories, each in its own perspective, cap-
ture relevant aspects of a mind-independent reality? I do not think so.11 There is
nothing inconsistent in asserting the mind-independence of reality, the ontology of
which is revealed by the relative interpretation of scientific theories, while at the
same time remaining true to the empiricist claim that our knowledge of this very
ontology is never absolutely certain and always subject to revision in the light of

9See for instance [22], p. 21: “We can repudiate it [our ontology]. We are free to switch, without
doing violence to any evidence. If we switch, then this epistemological remark itself undergoes
appropriate reinterpretation too; nerve endings and other things give way to appropriate proxies,
again without straining any evidence. But it is a confusion to suppose that we can stand aloof
and recognize all the alternative ontologies as true in their several ways, all the envisaged worlds
as real."

10“Ontological questions then end up on par with questions of natural science” ([15], p. 71).
11Readers who sense a resonance of the perspectival realism that has been brought forward by

Ron Giere ([14]) and more recently also by Paul Teller ([26]) are justified to do so.
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new empirical evidence. Ontological relativity allows us to realize that the refer-
ence of theoretical terms is inscrutable in principle. To be sure, “inscrutable” is
an imprecise term. It should not be understood in the sense that the reference of
theoretical terms is beyond our grasp. Rather, “inscrutable” in this context means
that we cannot fix the reference of theoretical terms absolutely, independently of
any background theory.

The notion of realism intended here is admittedly a rather weak one. It contents
itself with the claim that reality must be mind-independent. But what exactly does
mind-independence mean? It simply means that although there is no one single
way of structuring the world ontologically, there exist an objective basis on which
the structuring takes place.

Anjan Chakravartty ([7]) has spelled out a similar idea in terms of what he calls
“sociability-based pluralism”, according to which a) there is more than one structure
of mind-independent entities and processes, and b) the mind-independent content
of scientific descriptions is identified with properties that are commonly attributed
to particulars in those descriptions. While there are many ways in which properties
can be grouped together yielding different categories of particulars, the property
distributions in space-time exist independently of us. And it appears that proper-
ties are not randomly distributed in space-time, but that they are systematically
“sociable”.12

Now what about underdetermination? As we have seen above, underdetermina-
tion is often used as an argument for why empiricism cannot be realism. Because
every theory choice is in principle underdetermined by empirical data, we are unable
to single out the one and only theory that correctly represents the true configuration
of reality (at least if we apply strictly empirical criteria). So the argument goes.
But bringing ontological relativity into the picture makes it clear that the demand
for one and only one true theory containing the one and only true ontology was too
exorbitant to begin with. Underdetermination turns out to be a red herring once we
accept that ontologies are relative in principle. Even the ontological commitments
of a purely observational theory cannot be fixed in an absolute way, because we can
always reinterpret its terms against a different background and we will find that the
ontology changes with every reinterpretation.

This even holds for the ontological commitments of natural languages. To use
Quine’s often quoted example: “Gavagai” can refer to “rabbit” or “undetached
rabbit part” or “temporal stage of a rabbit” or “rest of the universe minus rabbit”.13

So there is no fundamental difference between observational and theoretical terms
when it comes to questions of reference.14 Hence there is no special problem of

12Roman Frigg also argues that reality need not be uniquely structured to be reality enough:
“If a system is to have a structure it has to be made up of individuals and relations. But the
physical world does not come sliced up with the pieces having labels on their sleeves saying ‘this is
an individual’ or ‘this is a relation’ [...] Because different conceptualisations may result in different
structures there is no such thing as the one and only structure of a system” ([13], p. 56).

13This presupposes that the sentences of natural languages do in fact contain ontological com-
mitments. Quine also suggested a physicalistic interpretation of the indeterminacy of Gavagai
utterences in terms holophrasic indeterminacy. Taken as such, “Gavagai” does not refer to any-
thing but some directly observable pattern of sensory stimuli.

14Quine draws the same conclusion: “I extend the doctrine to objects generally, for I see all
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theoretical terms. The same problem arises with the most trivial terms in our
natural language. And who would doubt the reality of rabbits just because the
reference of the term turns out to be inscrutable? Certainly no empiricist.

Let us now try to formulate an account, which we may call empirical realism,
and which brings together empiricism and realism in a consistent way with the help
of ontological relativity.15 Empirical Realism consists of the following three dimen-
sions:

1) The methodological dimension: Empiricism
All scientific knowledge claims must be justified empirically. Empirical testability
is a necessary criterion for something to be called “scientific" in the first place. Ac-
cordingly, all scientific knowledge claims are susceptible to revision in the light of
new empirical evidence.

2) The semantic dimension: Ontological relativity
The reference of the terms of any given theory can never be fixed absolutely because
they are relative to the background against which the interpretation takes place.

3) The metaphysical dimension: Realism
The entities/properties/structures/processes posited in empirically successful scien-
tific theories do represent aspects of a mind-independent reality. Different ontolog-
ical interpretations can be seen as different perspectives on reality.

The anti-realist might object at this point that this picture is inconsistent because
it lacks two important features that are necessary for any philosophical account with
a realist leaning. First, the belief that the physical world is structured in a unique
way and that there is only one “real” ontology. And second the belief that successful
scientific theories are truth bearing descriptions of this uniquely structured reality.
The anti-realist might argue that accepting 1) and 2) actually forces us to add anti-
realism as a third dimension. Precisely because our theories cannot be true in a
strict sense and because the ontological commitments of our theories cannot be fixed
absolutely, we have to be anti-realist about the entities and structures posited in
those theories. A realism without truth and unique structure is not realism enough,
the anti-realist will argue. But this claim might backfire at the anti-realist, because
accepting 1) and 2) implies that all ontological commitments are relative in the
way described above, even the ontological commitments of a purely observational
theory, or even those of our natural language. So the anti-realist is confronted with
a dilemma: Either she becomes anti-realist with respect to observational entities as
well, or she accepts the fact that we have no better reason to be anti-realist about
theoretical entities than about observable ones. But scientific anti-realists typically

objects as theoretical. [...] Even our primordial objects, bodies, are already theoretical [...]” ([22],
p. 20).

15The name “empirical realism” goes back to Schlick ([25]). Schlick also speaks of “consistent
empiricism”. Psillos also refers to the realist position developed by Schlick and Feigl as “empirical
realism” ([18]).
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want to be realists with respect observable things. Taking ontological relativity
seriously dissolves the special problem of scientific realism, because it confronts us
with a more fundamental choice: Either we are anti-realist all the way down and we
end up with radical skepticism even in the realm of the observable, or we retain a
relaxed realist stance, one that no longer presupposes absolute truth or the belief in
a uniquely structured reality. By asserting that realism is compatible with relativity
concerning ontological matters, Empirical Realism chooses the second option.

The position that I have just outlined leads to pluralism. But, to be sure, it is
not an ontological or metaphysical kind of pluralism. In fact, no conclusion about
reality itself follows, except the one that, should the talk of “reality” be sensible in
the first place, reality must mean something mind-independent. The position also
implies that there exists no single unified scheme that represents the structure of
reality exhaustively. The latter claim, however, is an epistemic claim rather than a
metaphysical one. Accordingly, the pluralism intended here pertains to our theories
and representations of reality rather than to reality itself. Because ontology is a
relative matter we must take a permissive stance on theories and we can not accredit
an exquisite claim to truth to any single one of them. As has been brilliantly argued
by Hasok Chang ([8]), and as I hope to have shown above, this sort of epistemic
pluralism does not preclude realism. Certainly the realism that emerges out of this
picture is not – as Chang calls it – the “truth-realism" ([8], p. 222) that was the issue
in the traditional debate on scientific realism. It is a form of realism that is closer
to the practice of real science and that does justice to the history of science. What
we end up with is a philosophical account of science which is less revisionary, not
only than full-blown empiricist anti-realism, but also than all sorts of overambitious
realisms.
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Content Reduction for Robust Realism

Alberto Cordero

abstract. Selective realists try to identify truthful parts in successful the-
ories. One recent strategy focuses on compelling derivations of impressive
predictions from theory. Its leading trend (variously led by Juha Saatsi, Pe-
ter Vickers, and Ioannis Votsis [SVV]) clarifies and refines earlier notions of
“theory-part,” “success” and “truth-content,” but the approach leans worry-
ingly towards a “bare-bones” version of realism that invitites pessimism about
the outcome. Section 1 discusses the SVV approach; sections 2 and 3 explore
an application that exposes a tension with the augmentative inferential goals
of realism. Sections 4 and 5 suggest adjustments that arguably enhance the
augmentative prospects while keeping the focus on truth- content; the pro-
posed adjustments enrich the assessment of theory-parts with resources taken
from scientific practice. The resulting criterion yields a version of selective
realism closer to the selection of theory-parts deemed successful and beyond
reasonable doubt by prevailing methodological practices in the natural sci-
ences.

1 Background: Bare Bones Realism
To many antirealists the fate of past empirical theories refutes the idea that success
betokens truth. Selective realists respond by shifting commitment from whole the-
ories to select theory-parts, seeking to trace empirical success to components with
high truth-content. However, which parts are those? Identifying them has proven
far from straightforward1 An intuitive general strategy looks for persistent retention
through theory-change, attributing truth-content to parts so retained, estimating
that such parts are very likely are either correct or “contain” some abstract version
(somehow restricted perhaps) that gets things right. An exemplar case is Fresnel’s
theory of light, whose assumptions regarding the ether luminiferous are long re-
jected, yet at intermediate levels the theory contains seemingly reliable content in
the form of abstract descriptions rooted in the original proposal. Light is not com-
pletely as Fresnel imagined, yet his theory got many things right— e.g. light is made
of invisible transversal undulations, and these undulations follow the Fresnel laws
of reflection and refraction. Abstracted from reference to the wave substratum, this
part of the theory spells out a core (one might call it Fresnel’s “broad account”) that
all subsequent theories of light have retained. As [11] urges, however, retrospective
projection of current science both reflects limitations of human imagination as easily
as it does truth-content and can be variously misleading and self-serving— and it

1See [2] and references thereof.
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severely weakens realism by giving up the traditional realist goal of identifying the
truthful parts of a theory while the theory is still alive. Accordingly, a more devel-
oped approach, variously developed by [16], [6], [7], and [8] seeks to trace a theory’s
empirical success to specific parts responsible for that success. The adequacy of this
revamped approach faces serious challenges, however. [5], for example, persuasively
argues that features of the caloric theory that were rejected by subsequent physics
were central to the success of the theory. An arguably more damaging conceptual
charge seemingly applies to Fresnel’s theory [2].

In order to convince, these and other critics urge, selective realists need to provide
confirmation criteria that specify in advance which parts of a current theory are both
empirically successful and likely to survive theory-change. Can one assess the truth
of a given partial account while the total theory in which it originates is still in full
flight?

In an ongoing theory, at least some parts seem identifiable as very probably
truthful by tracking the successful predictions the theory licenses. Recent works
in this direction, notably by Juha Saatsi, Peter Vickers, and Ioannis Votsis [SVV]
examine particular derivations of impressive predictions, looking for “causally ac-
tive” posits contained in the steps that lead to those predictions.2 In explanatory
terms, an impressive prediction comes out true because upstream posits invoked in
its derivation have truth-content they pass downstream to the prediction. As in the
ether case, an upstream proposition might turn out to be not a working posit of
the theory, but in that case it will very probably contain a proposition of weaker
content that is properly a working posit [9].

The key question is how to tell which of the theory-parts invoked in a derivation
count as working posits. To [15], the only parts dependably involved in the logical
deduction of impressive predictions are “mathematical parts,” chiefly equations and
mathematically structured concepts. However, because the latter cannot generate
predictions without interpretation, they must be given one, which opens the door
to superfluous content that realists must strive to shrink. Interpretation should
thus stop at the minimum needed to generate impressive predictions. Accordingly,
a prospective realist must (a) drop parts that make no contribution to the empirical
success of the theory at hand (e.g. such explanatory accounts of quantum mechan-
ics as Bohmian Theory, many worlds, etc.); and (b) continue reducing content until
the process reaches parts that cannot be further trimmed without compromising
the theory’s power to make impressive predictions. An example of an item surviv-
ing such a trimming is the Schrodinger equation, without which whole genres of
quantum mechanical phenomena could not be inferred.

Trimming theoretical derivations is problematic, however. The Kinetic Theory of
Matter explains and predicts observable properties of bulk matter from the postu-
lated behavior of microscopic molecules. Trimming away the molecular hypothesis
in favor of some more parsimonious counterpart severely compromises the kinetic
theory’s fecundity and fertility (i.e. its power as guide to new results and connec-
tions), and so in pragmatic terms also its predictive power, which is why realists
generally grant epistemic weight to fertility and fecundity. There are other compli-

2In particular, [9], [15], and [14]
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cations. First, if fecundity and fertility are allowed to provide warrant for the molec-
ular hypothesis, why not also for (in their respective heydays) the posits caloric,
phlogiston, Fresnel’s ether, and the boundary conditions in Kirchhoff’s Theory of
Diffraction, along many other posits seriously off the mark? Relaxing minimalism
easily lets in seriously wrong posits, it seems. Secondly, a given prediction might,
in principle, be derivable from a theory without invoking this or that posit, but to
whom the derivation in question will be available depends on the state of background
knowledge, which (modulo fallibilism) never rests on ideal epistemic conditions. For
example, there are seemingly strong grounds for claiming that 19th century physical
theorists proceeded from a metaphysical framework in which the ether was not (and
arguably could not be) an optional posit, and so to those theorists all derivations
invoking optical waves implicated the ether whether or not they mentioned it3.

Thirdly, minimalist responses arguably don’t work as advertised. [10] critically
present Kirchhoff’s Theory as an illustration of how bare-bones derivational analysis
of impressive predictions can compel realist commitment to “bad” posits. Their
analysis is worth a detour.

2 Impressive Prediction and Prospective Truth: Kirchhoff’s
Theory

Kirchhoff’s Theory describes how an opening A in an opaque screen disturbs a
monochromatic spherical wave of light passing through it. The theory allows calcu-
lation of the electromagnetic field U at an arbitrary point P past the opening, the
squared module corresponding to the light intensity (Fig. 1). Central to the ap-
proach is Green’s theorem, used by Kirchhoff to solve Maxwell’s homogeneous wave
equation at P in terms of conjectured boundary values for the field and its first
order derivative at all points on an arbitrary surface that encloses P. The boundary
conditions are introduced as assumptions together with some specified approxima-
tions. For Kirchhoff’s choice of enclosing boundary, considerations from Maxwell’s
theory indicate that the only non-negligible contributions should come from points
within the aperture, resulting in:

U(P ) = 1
4π

∫ ∫
A

{
U
∂

∂n

(e
8

)
−
(e

8

)∂U
∂n

}
dA

One key assumption—call it “posit H”— hypothesizes that the screen does not
perturb waves within the aperture. The resulting predictions are both impressive
and come true with astounding accuracy.

But here comes a twist in the story. Recent developments in computer speed
and reliable methods of numerical integration now allow for direct calculation of
U from Maxwell’s equations, removing the need for intermediary conjectures about
light’s progress through the aperture. The resulting calculations expose a fly in the
selectivist ointment: they yield U values over the aperture that are at variance from

3While today the predicates ‘being a wave’ and ‘requiring a medium’ are separable in principle,
they were not always so. Waves were thought of as perturbations, requiring that something be
perturbed. [2].
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Figure 1. taken from ( [10] p. 35): Kirchhoff’s method of determining diffraction at an aperture.
P0 is the source of the light, and P is the point beyond the screen at which we want to know the
light intensity. Q is a point in the aperture whose contribution we are considering at a given time,
r is the distance from P0 to Q, s is the distance from Q to P. An imaginary surface of integration S
is comprised of A (the aperture), B (part of the screen), and C (part of a circle of radius R which
has P at its center). n is a normal to the aperture, (n, r) is the angle between this normal and the
line joining P0 to Q, and (n, s) is the angle between this normal and the line joining Q to P
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Figure 2. Comparison of Kirchhoff’s assumption of a ‘flat’ amplitude function across an aperture
of width a with the amplitude function derived from Maxwell’s equations (Adapted by [10] from
Figure 3.20(a) in [1], p. 71.

Kirchhoff’s conjecture (Fig. 2). To [10] these results show that, although extremely
successful, Kirchhoff’s theory is not “approximately true.” As [14] cautions, that a
posit plays an explicit role in a derivation does not make it a ‘working posit’ to
which realists must commit.

Addressing the case of untruthful posits with clear roles in the derivation of
impressive predictions, [14] builds on the standard selectivist approach, proposing
that untruthful but otherwise successful posits have nonetheless some significant
truth to them: logically contained within, they might lodge a more modest, leaner
posit with just enough content to make the relevant predictions go through. The
realist claim about Kirchhoff’s boundary conditions would then be this: taken as
a whole the conditions are false, yet the criterion just proposed predicts that a
subset of the conditions (or leaner versions of them) will prove both approximately
true and sufficient to secure derivations of the theory’s impressive predictions. If
this could be shown, a serious problem for the realist would turn into a victory
for the selectivist strategy. Vickers is clear about the fallibilist background here:
“It remains possible that some of what remains, even concerning the boundary
conditions, is also idle. Even if the mathematics expressing those conditions must
remain, certain features of the interpretation of the relevant equations may be idle.”
(p. 197) As already noted, one shortcoming of bare bones trimming is a lack of
clarity regarding what content is “absolutely necessary.” As Vickers realizes, pur-
suit of interpretive minimalism pushes recipes for theory-part selection into enemy
territory—the “absolutely necessary” might seem no more than the step’s empiri-
cal projection or substructure—the step freed of commitment to any non-empirical
content in the original. Vickers pessimistically concludes “the realist is still some
distance from prospectively identifying (even some of) the working posits of con-
temporary science.” So, according to Vickers, the realist should commit to just some
unspecified parts of what remains once the posits acknowledged as idle are removed.
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This stance, he reasons, at least does a good job of restricting the target of realist
commitment. Vickers exudes pessimism, however:

In all this, we find ourselves—even 30+ years after Laudan’s confutation
of convergent realism—unsure of the extent to which the divide et im-
pera strategy can succeed. Even if the ‘working posits’ of contemporary
science cannot be prospectively identified, it remains possible that we
might develop a recipe for identifying certain idle posits. This would be
a significant achievement, even if not quite what the realist originally
had in mind.” [14] p. 209)

This rather gloomy conclusion is at odds with the expectation that realist com-
mitment should encompass much of the array of theory-parts sanctioned as success-
ful and beyond reasonable doubt by the best current confirmational practices in the
natural sciences. I will suggest that it is also at odds with Kirchhoff’s and other
provocative cases Saatsi and Vickers have pointed to. The remaining sections argue
that selectivism (the divide et impera strategy) has much better prospects than the
above qualms suggest.

3 Some Realist Rejoinders
Selectivist, I suggest, can both question the above pessimistic analysis of Kirch-
hoff’s Theory and propose more informative ways of identifying prospective truth-
ful posits. This section considers the first line, leaving the second for the next.
[10] concentrate on a case in which the opening is a slit on a conducting mate-
rial, focusing on values of the electric-field amplitude in the open region of the slit,
calculated directly from Maxwell’s equations. They point to a particular case of
extreme discrepancy whose significance, I will suggest, is debatable in light of the
full results obtained by the mentioned calculations. In particular, as Fig. 3 (taken
from [1]) illustrates, the direct calculation yields results more nuanced than Saatsi
and Vickers suggest.

In general, light reaching the screen comprises waves with electric field compo-
nents along the slit’s length (Ey) and also across the slit’s length (Ex). Saatsi and
Vickers consider just Ey. In the particular case Brooker analyzes, the slit’s width
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(parameter α) is five times the wavelength, and the discrepancy with Kirchhoff’s as-
sumption is maximal for fields oriented along the slit and minimal for fields across
the slit. The faulty assumption that plays a role in the derivation of impressive
predictions (posit H) matches the Electric field with errors ranging from less than
about 2% (Ex in central regions of the slit) to about the 25% error emphasized
by Vickers and Saatsi (for Ey at the slit edges). It would thus seem unfair to
say that H is drastically off the markin most realizations of posit H. As far as the
electric-field amplitude is concerned, H generally provides the kind of approximately
correct hypothesis a reliabilist might accept. This is a debatable matter, however.
For the sake of argument, then, let us suppose that, in Kirchhoff’s Theory, posit H
is seriously off the mark. This allowance is independently relevant if (as I agree)
at more fundamental levels theories often land in underdetermination and/or high-
level conceptual tension. The SVV approach emphasizes truth-content and minimal
commitment in reverse derivation of predictions, providing two welcome features:
(a) Given a derivation, the relationship between the minimally interpreted parts
and the corroborated prediction is entirely an inferential matter, indifferent to his-
torical context. (b) Working parts can be specified while the theory in question is
still in full flight. The offer seems promising, but under closer scrutiny issues ad-
ditional to those highlighted by Saatsi and Vickers become apparent, particularly
three. Firstly, the primary goal of selectivism is to identify parts that very likely
latch unto what is real and active in the world. If so, the sought identifications seem
only modestly helped by searches focused on derivational analyses of just single-case
inferential chains: claiming that somewhere in a theory some abstract versions of
some part or other gets what is real somewhat right seems below target. What
would make a “proper target” here? To non-Kantian realists, what is epistemolog-
ically accessible reaches beyond the “phenomenal,” into the “noumenal”— as per
realism’s mind-independence thesis. (Scientific realism is at odds with German-
idealist stances). Some realists avoid the term “noumenon,” however, arguably to
the detriment of their positions.4

Secondly, mathematical structures help to make a scientific narrative refutable
and warrantable, but so too do other features (e.g. consilience, internal coherence,
external support). Vickers’s pessimistic passage cited at the end of the previous
section is well-taken, but a good deal of the trouble he envisages comes, I suggest,
from overlooking resources available to selective realists for identifying more fleshy
working posits. These include confirmational relations unavailable at the level of
single-case derivations but accessible from integrated, diachronic, records of how
some theory-parts make an empirical difference as the theory to which they belong

4Current scientific realist positions divide up largely into two camps: (a) those who claim
that at least some of the (unobservable-by-us) entities posited by empirically successful theories
exist mind-independently, and (b) those who, in addition, claim that the entities in question are
approximately as the respective theories say. Neither kind is committed to Kantian dogma, and so
realists are intellectually free to invoke the much-maligned noumenon, which stands for anything
existing without regard to phenomena, e.g. electromagnetic waves not being perceived (or even
perceivable) by anyone. Everything that was real before phenomena got added to reality by
animals counts as noumenon, as does whatever is real independently of the human mind. Realists
are thus free to simply contrast ‘noumenal’ with ‘phenomenal’.



38

plays the field.

Thirdly, we must not conceptually equate selectivism with high theoretical-level
realism. Even if Kirchhoff’s posit H was utterly off the mark, the theory would
still contribute theoretical (noumenal) knowledge at lower levels. Conjoined with
laws and auxiliary assumptions accepted as unproblematic, H yields a theoretical
description of field U that agrees with what we now take as a correct description
over a large and significant portion of the theory’s intended range. This level of
achievement, I urge, is what selective realists can and should aim to get. Even if
posit H had low truth-content and its “good works” were an accident of underde-
termination, the field U and the light waves derived from the theory would still
ring true at various significant levels of noumenal description (beyond the reach of
unaided perception), even if not the deepest level invoked. In this, posit H would be
like the ether of old. Like Fresnel’s and Maxwell’s ether-based proposals, Kirchhoff’s
Theory yields a great deal of prospectively truthful content— ranging from descrip-
tions of low theoretical level to levels right below the current boundaries imposed by
contingent underdetermination, error, and/or high-level conceptual problematicity.
The realist claim to make seems then this: impressive predictive success indicates
that the theory at hand contains reliable, prospectively identifiable theory-parts
that (a) have high truth-content and (b) are also original to the theory. Whether
those theory-parts occur at the theory’s foundational level, at high derivational lev-
els, or at intermediate levels is immaterial to realism, so long as they contribute
noumenal descriptions (as opposed to descriptions retainable at just very low em-
pirical levels). Can one be more precise about the noumenal parts latched upon?
Interpretive minimalism has the advantage of offering an easy criterion for selecting
inferential components. But, as said, it leads to much too vague determinations
of truth-content and concomitant pessimism. Also, it lets in posits of arguably
dubious reliability, from posit H (on one reading of the case, e.g. Vickers’) to the
ether. More importantly, minimalism shifts attention away from the realist task of
identifying theoretical content realists can judiciously commit to— an augmentative
rather than minimalist project. If so realists should stick to the strategy of content
reduction but without too much emphasis on minimalism. In order to keep unnec-
essary posits out, help would have to be secured elsewhere, most naturally from
effective (but not maximally) purgative confirmational resources steadily used in
the sciences. Instances in point include convergence of multiple and varied success-
ful theory applications on specific theory- parts, inferential support from sources
initially external to the theory at hand (especially independent theories), and non-
self-serving post-mortem analyses of the successes of a discarded theory. These
resources, I suggest, can strengthen SVV’s accent on implied content by broadening
the selectivist focus beyond individual derivations and counterproductive minimal-
ism. In scientific practice, deployment of the noted resources is apparent at several
levels [4]: episodes of aggressive probing of a theory’s central tenets and auxiliary
assumptions, arguments from consilience, internal assessments, explanations of a
theory’s successes after its demise, and cases of external support.
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4 Theory-Parts for Realists
The typical SVV derivational analysis runs as follows: pick a representative set
of individual impressive predictions associated with a theory T—successful and
unsuccessful (if available). For each impressive prediction, (a) look for a compelling
derivation from T; (b) then, moving from the prediction statement to the premises,
reflect on each derivational step, spelling out its component claims, reducing their
content to the absolute minimum needed to advance the derivation towards the
prediction; (c) finally, declare a given theory-part “indispensable” only if there
are strong grounds for claiming that no conceivable part with lesser content could
possibly advance the derivation.

How satisfactory is this strategy? Vickers’ words at the end of Section 2 express
a level of pessimism not borne out by the findings discussed in the previous section,
but there are other issues, as already noted. Realism is an augmentative inferential
project, and interpretive minimalism pushes firmly towards antirealism. Also, rea-
sonable expectations of underdetermination and conceptual problematicity heavily
tax “indispensability” claims made on behalf of of posits that might otherwise seem
otherwise efficacious for moving a derivation towards a given prediction. Further-
more, identifying any content as superfluous is complicated by contextualization to
the relevant agents’ situation—how they understand the conceptual relations in-
volved, as, for example, with the ether posit [2]. Concerns such as these cast doubt
on the inferential strategy under consideration. I wish now to suggest how a ver-
sion less committed to minimalism can do better. Here is the task at hand: given
a theory rich in successful impressive predictions, we seek to identify in it truthful
posits reliably. Although realists have limited means for making such identifications,
scientific confirmational practice does point to relevant resources often overlooked
by commentators. Some long-standing ways of reducing error risk have widespread
presence in modern science [4]. One approach concentrates, not on single derivations
of impressive prediction, but on rich and varied records of them: for each predicted
general phenomenon, a representative set of derivations develops as the theory at
hand (T) gains applications. Another complementary approach seeks support from
sources external to T, including independent backing that may be available for par-
ticular theory-parts invoked in the derivation of impressive predictions from T. Yet
another approach benefits from “post-mortem” analyses. Deploying these various
complementary ways suggests the following four-front approach:

Front 1: Begin the assessment of a successful theory T by picking compelling
derivations of its most impressive predictions. Analyza them one by one. In each
case start with the step immediately above the prediction and then move up the
inferential ladder, as in the SVV approach. Purge each step of overtly superfluous
content, but without embracing interpretive minimalism (a problematic goal, as
noted). Concentrate the purge on posits that either (a) seemingly make no acces-
sible empirical difference (e.g. absolute space in Newton’s cosmology), or (b) are
marred by specific compelling doubts (e.g. arguably posit H had this problem in
Kirchhoff’s time5), or (c) are currently spoiled by effective underdetermination, i.e.

5In the late 19th century background physics cast serious doubts on Kirchhoff’s assumption
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theory-parts that, while inferentially contributing to the step below, compete for
this role with alternatives for which scientific support seems at least as good (e.g.
“deep” explanatory accounts of standard quantum mechanics). Having the deriva-
tions thus purged of superfluous content, move to the unfulfilled predictions drawn
from T, looking for posits on which inferences leading to such predictions converge.
Develop two lists of theory-parts—one list (L+) made of parts implicated in cases
of impressive predictive success, and list (L-) made of parts found frequently impli-
cated in unfulfilled predictions. At this point a given part may have a place in both
lists.

Front 2: With the two lists in hand, assess the impact of each of the selected
parts on T’s fruitfulness—by estimating the overall effect (in all fields where T has
application) of purging the part under scrutiny while keeping the others in place.
Recognize as “very probably crucial” only those parts in L+ whose removal clearly
leads to T’s stagnation, judging from T’s extant track record. Recognize as “sus-
pect” those parts in L- whose removal clearly improves T’s predictive power and/or
frees T from seemingly intractable conceptual conundrums. Sharpen up L+ and
L- accordingly. Give each listed part a weight proportional to the number of dif-
ferent successful and unsuccessful prediction lines in which it appears differentially
implicated. In the case of general parts, make the weight (positive or negative)
reflect the number of parts that instantiate them in the lists. In Kirchhoff’s theory,
for example, the yield of impressive predictions (e.g. , the field’s values at points
significantly beyond the screen compared to the aperture’s size) plummets if certain
posits are removed (e.g. the field U as structured by Kirchhoff’s general Green’s
equation, or claims like “light comprises a microscopic undulation w(x,t)”, and so
forth). Here the contention is that, judging by the record of manifest retentions
across theory-change, posits selected using front 2 have a much higher than aver-
age reliability. On the negative side, this front fails to filter out some off-the-mark
posits, conspicuously the ether (at least in the context of 19th century physics) and
the faulty part of posit H in Kirchhoff’s Theory (although this is debatable, as noted
earlier). Reliabilists who demand stronger criteria have an extra resource in Front
3.

Front 3: The focus here is on outside support for items in L+ and L- from inde-
pendently successful empirical theories. L+ backing occurs when claims assumed in
a theory T subsequently gain justification from another, initially unrelated, theory
T1. Think, for example, of the numerous aspects of cell biology that have gained
justificatory elucidation from molecular biochemistry since the 1950s6. In Paul Tha-
gard’s version of this strategy [12], [13], the emphasis is on explanation: if a theory
not only maximizes explanatory coherence, but also broadens its evidence base
over time and its assumptions are elucidated by explanations of why the theory’s
proposed mechanism works, then—in Thagard’s view—we can reasonably conclude

concerning field distortions created by sharp slits. Posit H assumes something incompatible with
Maxwell’s equations, namely that the electric and magnetic fields have discontinuities at the
aperture.

6E.g. neural mechanisms originally introduced as posits are now explained by noting that
neurons consist of proteins and other molecules that organize into functional sub-systems such as
the nucleus, mitochondria, axons, dendrites, and synapses.
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that the theory is at least approximately true. Elucidation has accompanied much
of the advance of modern theoretical science. To the extent that external explana-
tory elucidation springs from an independently supported theory T1, elucidation
raises the credibility of the assumptions and narratives it casts light on—hence its
interest to realists. Moreover, the initial remoteness of T1 lowers the likelihood that
the two theories share conceptual mortgages, giving elucidation independent purga-
tive power on T. In an elucidation instance, the part that gains explanation is an
assumption. On the other hand, the explanation received is of limited emancipatory
power in that it does not fully help claims drawn from assumptions shared by both
theories. For example, to the extent that, in the 19th century, Lagrangian theory
and mechanics shared the traditional metaphysics of waves, Lagragian elucidations
could not expose the ether as a “dispensable posit” [2]. Also, elucidation seems
neither necessary nor sufficient for realism. Unsavory counterexamples give pause
to granting a given part high likelihood on the basis of elucidation alone. Here
are two cases [3]. When Kepler looked for theoretical support for his Second Law,
he derived it from the Aristotelian laws of motion and some principles of optimal
action. Kepler elucidated his law, but by invoking as premises some of the wrongest
claims of Aristotelian physics. This type of difficulty can be improved by requiring
the elucidating theory to be successful in terms of impressive predictions, but this
too fails to filter out some lamentable cases (e.g. in the 1940s and 1950s, Freudians
claimed to have grounded in thermodynamics such of their principles as the "death
instinct"; they did not convince).

Front 4: Construction of L+ and L- often continues after a theory starts to wane,
and even after it dies, adding valuable material to the selectivist realist stance. This
variety of retrospective elucidation is not a “self-serving” realist strategy. For one
thing, it often unveils causal and/or structural justification for a theory’s accom-
plishments, e.g. in the account wave theorists provided for the success of corpus-
cularian optics regarding the phenomena of reflection, refraction and polarization.
Correspondingly, retrospective analyses frequently add precision to specifications of
the parts a past theory got right, as can be seen presently in theoreticians’ attempts
to show why posit H led to correct predictions (e.g. [1]).

5 So, Where is the Beef?
List L+, constituted by parts made salient by the combined application of fronts
1 to 4, provides theoretical claims of high scientific reliability, exemplified by what
was termed Fresnel’s “broad account” in Section 1. L+ items have a superior
record of retention through theory-change, and the collections of cumulative cores
in L+ have grown over time, progressing in number and variety from trifling rates of
growth in early modern science to increasingly steep rates in recent times. Presently,
the theory-parts included, along with bridges built between them, provide a thick
and highly textured arrangement of noumenal claims about entities, structures, ex-
planatory and historical narratives invoked by increasingly interconnected scientific
theories. Theory-parts that pass the screenings of fronts 1, 2 and 3 generally qualify
as items deemed both successful and beyond compelling doubt in current scientific
practice. The collection they make is vast, comprising—among much else—rich por-
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tions of Newtonian theory, pre-quantum chemistry, basic quantum mechanics, basic
geology, Darwin’s original theory, and much more, recent additions including de-
tailed claims about the character of microscopic systems (bosons, fermions, nuclei,
atoms, molecules and more, particularly regarding their energy states, architecture,
and dynamical relations, to mention some of the pluses) and remote systems (e.g.
the Big Bang, and the universe shortly after it). One reason why Kirchhoff’s The-
ory matters to the realist project, then, is because posit H (in conjunction with the
theory’s basic laws and auxiliary assumptions) yields structures that describe the
intended field correctly over a significant range. This grounds the realist claim that
successful theories “yield” parts and narratives that do reliably latch unto what (by
the best current accounts) is real and active in the world—in this case, the field
U at spatial points removed from the aperture. Significantly, L+ is largely made
of claims below the highest theoretical level, also abstract and more coarse-grained
than the theories that lodge them, but still rich in content. Accordingly, in the ver-
sion of selective realism proposed here, the prospective truth-content holders (the
“beef”) do not easily occur at the highest theoretical levels. Rather L+ is largely
made of claims below that, also abstract and more coarse-grained than the theories
that lodge them, but still rich in noumenal content. As argued, L+ provides a
profuse display of reliable claims ranging from low empirical levels up to heights
right below levels epistemically spoiled by current contingent underdetermination,
error, and/or conceptual problematicity.

If the above assessment is correct, then selective realism seems in decent shape as
a contemporary project. What needs to be accomplished is not bare-bones realism
but rather realism with both mathematical bones and as much “healthy meat” as
may be reasonably had. How lean should realist commitment be? In this paper
my emphasis has has been on naturalist fallibility abetted by such signs of melior-
ism as growth of scientifically warranted noumenal content. Other than that, to
naturalists, further guidance best comes from the confirmational status of scientific
theory-parts, but this remains a contended issue. If the suggestions in this paper
are on the right track, then the list of prospectively truthful theory-parts realists
can presently commit to is already remarkably rich and varied –and growing. If so,
more than thirty years after Laudan’ pessimistic reading of the history of science,
there is reasonable confidence that the divide et impera strategy of selective realism
can succeed.
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A Simple Model of Scientific Progress

Luigi Scorzato

abstract. One of the main goals of scientific research is to provide a
description of the empirical data which is as accurate and comprehensive as
possible, while relying on as few and simple assumptions as possible. In this
paper, I propose a definition of the notion of few and simple assumptions
that is not affected by known problems. This leads to the introduction of a
simple model of scientific progress which is also discussed. An essential point
in this task is the understanding of the role played by measurability in the
formulation of a scientific theory.

1 Introduction
A characterization of scientific progress has proven extremely elusive, since [11] con-
vincingly showed that the naive idea of progress as an accumulation of empirically
verified statements is untenable1.

A weaker, but more plausible, view states that there is scientific progress when
new theories are discovered that are better than the available ones [15]. But, what
does better mean? It is certainly not enough to characterize better theories in terms
of empirical adequacy. In fact, if we take seriously the idea that only the agreement
with the experiments matters, to evaluate scientific theories, then the bare collection
of all the available experimental reports should always be the best possible “theory”2.
However, we certainly do not regard such unstructured collection as a valuable
theory, if for no other reason, because it enables no prediction.

This suggests a crucial role of novel predictions. The idea is very appealing, and
it was at the heart of Lakatos’ view of progressive research programmes [13]. There
is little doubt that successful predictions are exactly what scientists look for. But,
how do we use successful predictions for theory selection? Nobody ever formulated
a convincing proposal in this sense. There is at least one very good reason for
that: predictions, by themselves, are not protected against brute force attacks. To
illustrate this, consider an already empirically adequate theory (that can always be
produced by patching together various models, each with limited applicability, and
by adding ad-hoc assumptions to account for any remaining anomalies), and imagine
that there will be a new experiment soon, for which that theory makes no prediction.
A professor could assign to each one of his many students a different extension of

1See, however, the debate involving [3], [16], [19].
2Experimental reports never contradict each others, as long as they bear different dates or

locations.
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that theory, by introducing many different ad-hoc assumptions. In this way, these
students might even cover the whole range of possible outcomes of the upcoming
experiment. At least one of such “theories” will hit the result that will be eventually
measured! Is this a prediction?! But, how can we tell the lucky student who got
it right that it was only by chance? Similarly, how can we tell the clairvoyant
who predicted the earthquake that, considering all the failed predictions by other
clairvoyants, his success is meaningless? His own record of successes is 100%. Also
Einstein’s General Relativity (GR) made only one impressive prediction3.

Science is not defenseless against those brute force attacks and clairvoyant’s
claims. There is a difference between Einstein’s prediction and the clairvoyant
prediction: a good theory behind. This judgement clearly goes beyond any old or
new empirical evidence. Does it mean that it is a totally subjective judgement? No.
But to defend this answer we must identify the non-empirical cognitive values that
we (implicitly) use when we say that Einstein’s theory is good and the clairvoyant’s
is not. Unfortunately, there seems to be no agreement on what should count here.
The cognitive values of explanatory power or the simplicity of the assumptions, their
parsimony, elegance, etc. are often emphasised, but there is no agreement on what
these concepts mean4. Quite enigmatically, [12] stated that these values are neces-
sarily imprecise. But what does imprecise mean? The word imprecise differs from
the expression totally arbitrary only inasmuch the former necessarily assumes a lim-
ited range of possibilities (at least with non negligible probability). If that were the
case, we could certainly exploit that limited range to justify many cases of theory
selection and define scientific progress! But, unfortunately, nobody ever defined
that range. On the contrary, according to well known[10], for any theory T , and
for a wide class of notions of complexity it is always possible to chose a language
in which the complexity of T becomes trivially small. Hence, where Kuhn writes
imprecise, we are apparently forced to read totally arbitrary and useless. Indeed, if
we cannot restrict the notions of complexity somehow, the resulting arbitrariness
in the cognitive values leads inevitably to almost arbitrary theory selection5.

To illustrate better this key point, consider the example of the Standard Model
of particle physics [6]. The model can be defined in terms of a rather lengthy
Lagrangian whose terms must also be defined. The Standard Model represents a
spectacular unification of a huge variety of phenomena and it currently agrees, with
remarkable precision, with all the experiments.

The problems with the Standard Model are indeed non-empirical. They are

3The bending of light in 1919. After that, it is easy to build alternative theories that share all
the successful predictions of GR, but differ from GR.

4See, e.g., [25], where simplicity is recognized as the most important constraint, but its char-
acterization is not sufficiently precise to tell why a long collection of experimental reports cannot
be regarded as simple as any respectable scientific theory, on suitable metrics.

5The status of the value of explanatory power is not better, since it also needs some notion of
simplicity to be defined. See e.g. the notion of lovelier in [14], and the discussion in [22]. See also
[7]) and [20].
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the lack of an elegant unification with General Relativity6, the lack of naturalness7,
and the presence of about thirty free parameters8 that must be determined from the
experiments. Since none of these is a problem of empirical adequacy, it is essential
to understand what are the non-empirical cognitive values associated to them. It
is difficult to answer this question, because, in principle, we could solve all these
problems by rewriting our fundamental laws as Ξ = 0, where each fundamental
equation of the Standard Model and General Relativity is mapped to some set of
digits of the variable Ξ. In fact, nothing prevents us to define Ξ as a whole set
of complex equations. Superficially, this new formulation is the most elegant and
parameter-free formulation we can think of! One could object that Ξ is not directly
measurable, and that we can only translate it back to the traditional notation,
to assign a value to it. But, what does directly measurable mean, exactly? The
translation of Ξ is certainly not more complex than building the Large Hadron
Collider and interpreting its collision events. Shall we call directly measurable only
what is seen by a human being without instruments? Isn’t the human eye already
an instrument (and a very sophisticated one indeed)? We must clarify these issues,
if we want to show, convincingly, that the goal of improving the Standard Model is
not dictated by subjective taste.

These conclusions are by no means restricted to the Standard Model or to par-
ticle physics. In fact, for any empirical scientific discipline, we can always produce
an empirically impeccable theory by patching partial models together and resorting
to ad-hoc assumptions to save any remaining anomalies. In a suitable Ξ-like for-
mulation, that patchwork theory would be both the most accurate and the simplest
possible theory9. What do we need to improve?

Clearly, we feel that the simplification brought about by Ξ is artificial, and that
the idea of simplicity — in spite of its ambiguities — is not totally arbitrary. Can
we make this feeling precise? What is wrong with Ξ? Does it have an intrinsic
problem that limits its usability or its value? And, if so, which one? Or is it just
our subjective taste (biased by our cultural legacies) that prevents us to appreciate
that odd language? And, if so, why not getting used to Ξ? How difficult would it
be to build a Ξ-meter?

As a matter of fact, interpreting Ξ and building a Ξ-meter is not only difficult,
but impossible for a very fundamental reason [21]: the experimental results cannot
always be reported in the form10: Ξ = Ξ0±∆. This seemingly technical observation
has profound consequences for philosophy of science. In simple terms, the idea is the
following ([21] reviewed in Sec. 2). The postulates of any empirical scientific theory
T must mention at least a set B of properties whose measurements are possible

6The Standard Model is not necessarily in contradiction with (classical) General Relativity:
a patchwork theory made of both these theories (combined with any prescription resolving the
ambiguities that emerge in contexts that are anyway not yet experimentally accessible) is ugly,
cumbersome, but neither contradictory nor in conflict with any experiment.

7Naturalness is not precisely defined. Two possibilities are discussed by [2].
8Some curiously vanishing; some curiously much much bigger than others.
9This argument is sometimes taken as evidence of the need of a semantic notion of simplicity,

rather than a syntactic one. Unfortunately, nobody ever defined precisely a semantic notion, able
to escape this problem. See also [15] about semantic vs. syntactic views.

10I.e., they cannot be written as a central value Ξ0 and a connected errorbar of some size ∆.
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and can be reported as b = b0 ± ∆, for all b ∈ B. Furthermore, the properties B
that appear in the postulates must be enough to enable — by employing also the
laws of the theory — the operative definition of all the other measurable properties
of T . We will see that the combination of these two requirements precludes an
arbitrarily concise formulation of T , which, therefore, cannot be shorter than a
minimal length, that is — except for this constraint — language independent (see
Sec. 2), and, hence, it is a well defined property of T (conciseness). By analogy
with Kolmogorov complexity, such minimal length is presumably not computable
exactly, but can be estimated with finite errorbars. Hence, this notion of conciseness
represents a well-defined and non-trivial cognitive value, whose determination is
necessarily imprecise — as expected — but not arbitrary.

Now, having defined a notion of conciseness, can we describe real scientific
progress as a Pareto improvement11 that takes into account only empirical ade-
quacy and conciseness? In this paper I define such simple model of progress and
discuss a few points. Because of space limitations a full discussion is impossible
here, but it can be found in [22].

2 Empirical scientific theories and their reformulations
In order to discuss any cognitive values of scientific theories, we first need to say
what we mean by scientific theories in this context. Moreover, we need to establish
what may or may not count as a valid reformulation of a scientific theory, since we
have seen that Ξ-like reformulations undermine any attempt to express precisely
any interesting cognitive values and goals of science. Hence, the main goal of this
section is to define the set LT of theories that are equivalent reformulations of T .

As a first step, we need to understand what’s wrong with Ξ-like reformulations.
A key observation is that Ξ is not directly measurable even in the weak sense defined
by the following12:
Postulate 1. (Errorbar-connectedness of direct measurements). The result of a
valid direct measurement of a propertyX with central valueX0 and inverse precision
∆ is always expressed as a connected interval as follows: X = X0 ±∆.

This seems a very weak requirement13. Do scientific theories normally have
properties for which Postulate 1 does not hold? Yes, they have, one example is
Ξ. The reason why properties like Ξ do not fulfill Postulate 1 is discussed in great

11A is a Pareto improvement over B, according to a set of qualities, iff A is strictly better than
B according to at least one quality, and there is no quality according to which B is better than A.

12Postulate 1 is not a definition: it does not attempt to characterize the intuitive idea of direct
measurements. Postulate 1 identifies only a minimal requirement, which has the advantage of
being clearly verifiable.

13It is worthwhile noting that Postulate 1 does not apply only to magnitudes assuming real
values: X may represent any property that can be associated to a value in the course of an
observation. For example, in the context of a botanic theory, a typical observation may involve a
decision whether an object is a tree or not. In this case, the property “being a tree” assumes values
1 (=true) or 0 (=false). I.e., it can be measured as much as the property “height of a tree”. In
all cases, the errorbar ∆ remains meaningful and important, because the botanic theory, to which
the concept of tree belongs, may need to account for the probability of failing to recognize a tree.
Hence, the theory must assign the proper meaning to ∆, by associating to it a suitable probability
of correct recognition.
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detail in [21]. In simple terms, this can be understood because Ξ should encode all
the possible empirical consequences of the theory (being Ξ = 0 its only law). But
any sufficiently complex scientific theory entails many consequence that we cannot
measure with any precision. So, for such theories, Ξ cannot be measured with finite
errorbars14.

On the other hand, Postulate 1 is certainly a necessary condition for any property
that we might consider directly measurable. In fact, each single direct measurement
must at least associate to a quantity X a central value and an error-bar. Hence,
Postulate 1 provides a clear and verifiable recipe to exclude all those formulations
of scientific theories that achieve high conciseness at the expenses of any admissible
empirical interpretation.

We can now use Postulate 1 to characterize scientific theories to the extent that is
needed for our goals. In simple terms, an empirical scientific theory is a mathemati-
cal theory, that must also, somehow, make reference to some measurable properties.
The precise way in which such reference should be formulated has always been con-
troversial. The minimalist approach adopted here consists in saying that (i) at least
some properties of the theory T must be directly measurable, at least in the weak
sense of Postulate 1, and (ii) the measurements of any other measurable property
of T must be expressible in terms of those that are directly measurable15. This idea
is made precise by the following Def. 1 and Def. 2:
Definition 1. (Scientific theories). A scientific theory is a quadruple T = {P,R,B,L},
where

• P is a set of principles16,

• R is a set of results deduced from P (according to the logic rules included in
P ),

• B is a set of properties that appear in P and are directly measurable in the
sense of Postulate 1 (we call them Basic Measurable Properties, or BMPs, of
T ),

• L is the language in which all the previous elements are formulated17.
14For example, in the Standard Model, we can imagine many thought experiments in which we

can predict the behaviour of a few particles. Most of these thought experiments cannot be realised
in practice, because we need ways to produce those particles in the wanted states (e.g., through
an accelerator) and detect their later behaviours (e.g. through a detector). Very few phenomena
are both predictable and measurable. See [21] for a very simple — but not too simple — example
of a scientific theory that shares this property.

15Note that a theory typically contains also non-measurable properties, for which we put no
constraints here. Their role is important to improve the conciseness of the formulation. See Sec. 3.

16The principles contain all the assumptions needed to derive the results of the theory, from the
logical rules of deduction to the modeling of the experimental devices and of the process of human
perception. To be clear, what is sometimes called background science is regarded here as part of
the theory. Note that also the domain of applicability of the theory can and must be defined by
specifying suitable restrictions on the principles themselves.

17The cognitive values we are interested in might be very sensitive to the choice of the language
and therefore, assuming a fixed given language is not an option. One of the goals of Def. 3 is
to gather in a single equivalence class all those (infinite) scientific theories that differ by a trivial
change of the language.
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Note that Postulate 1 and Def. 1 cannot ensure that the interpretations of the
BMPs are fixed: theories face the tribunal of experience as a whole [18], and the
assumptions of sufficient unambiguity of their BMPs are part of the theories. The
aim of Postulate 1 is not to fix the interpretation of any theoretical expression, its
aim is rather to exclude totally implausible interpretations.

Besides the BMPs, a theory can typically define many other (possibly unlimited)
measurable properties. These can be characterized as follows:
Definition 2. (Measurable properties). The measurable properties (MPs) of a
theory T are all those properties that can be determined through observations of
the BMPs B of T , by employing results R of T . Their precision is also determined
by T .

Hence, the BMPs must be sufficient to enable the measurements of all the MPs
that the theory needs to describe. In other words, the BMPs provide — together
with the principles to which they belong — the basis18 on which the whole inter-
pretation of the theory is grounded. Thanks to the identification of the BMPs, the
principles truly encode all the assumptions of the theory, in a sense that goes beyond
the logical structure of the theory. This observation deserves to be emphasized:
Remark 1. The principles P of a theory T encode all the information needed to
fully characterize T , in the following sense: the P are sufficient, in principle, to
enable anyone to check whether any given derivation of a result r ∈ R is actually
valid in T . Moreover, the principles P are sufficient to enable anyone who can
interpret the BMPs B to check the agreement between any result r ∈ R and any
experiment.

We can finally address the question that motivated us at the beginning of this
Sec. 2: to what extent can we claim that a theory T ′ is only a reformulation of
another theory T? According to Def. 1 any translation of T in a different language
counts as a different theory. But we obviously want to identify different formu-
lations, as long as their differences are not essential. This is the case when two
theories are equivalent both from the logical and from the empirical point of view,
i.e., when all their statements concerning any MPs agree. More precisely:
Definition 3. (Equivalent formulations for T ). We say that T and T ′ are equiva-
lent formulations iff:

(i) there is an isomorphism I between the logical structures of T and T ′ (logical
equivalence);

(ii) and for each MP c of T (resp. c′ of T ′), I(c) (resp. I−1(c′)) is also measurable
with the same precision and the same interpretation (empirical equivalence).

We denote LT the set of all pairs (L,B) of available languages and BMPs in which
we can reformulate T and obtain a new theory T ′ that is equivalent to T . In the
following, the symbol T refers to a scientific theory up to equivalent formulations,

18It is not a universal basis as in [4]. All MPs (basic or not) are completely theory dependent.
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while T (L[,B]) refers to its formulation in the language L [and basis B]19.
In particular, Def. 3 implies that the Ξ formulation is not equivalent to the Stan-

dard Model: the translation that makes them logically equivalent cannot realize also
an empirical equivalence, because the Ξ is not an acceptable MP, for the Standard
Model.

3 A measure of complexity of the assumptions
After having introduced a representation for scientific theories and their admissible
reformulations, I turn to the original goal of identifying at least one non-empirical
cognitive value that can justify theory selection. In particular I want to define what
it means that a theory T has fewer or simpler assumptions than another theory T ′.

The notion of few, simple assumptions is closely related to the classic idea of
simplicity in the philosophy of science (e.g., [8]; [1]; [24]; [9]. The problem of
simplicity is often identified with the fact that simplicity has many different, and
even conflicting, meanings. But this point of view implicitely assumes that it is
not possible to adopt that notion of complexity which is optimal (i.e. minimal)
for T , when evaluating the complexity of T . The reason why this unambiguous
option is never considered is that — if nothing prevents a Ξ-like formulation —
then the minimal complexity of any T is always trivial (take the length of its Ξ-
like formulation). This forces us to look for alternative, non-optimal, notions of
complexity and then it becomes arbitrary to decide which one to adopt. But the
previous section rules out precisely the general availability of Ξ-like formulations,
and it becomes meaningful to define the complexity of T as the minimum over the
truly equivalent formulations:
Definition 4. (Complexity of the assumptions; conciseness). Let P (L,B) be the
principles of T , when expressed in language L and with BMPs B. Let the complexity
of the assumptions of T be:

C(T ) = min
(L,B)∈LT

length[P (L,B)] (1)

where the function length counts the number of characters in the language L. Let
the conciseness of T be the inverse of C(T ).

Although the set of equivalent formulations LT , defined in Def. 3, is expected
to be very large, the minimum of Eq. (1) is not trivial, in general, because Postu-
late 1 rules out Ξ-like formulations and improving the conciseness of a formulation
becomes a challenging task. Moreover, being the minimum over all equivalent for-
mulations, Def. 4 effectively assigns to T that notion of complexity in which T fares
best, under the constraint of measurability of Postulate 1. I conjecture that Def. 4
represents well — within the limited precision associated to it — the notion of com-
plexity which is relevant for scientific theory selection. The rest of this paper is
devoted to support this conjecture.

19Note that we do not require that B′ = I(B): two equivalent theories may choose different
BMPs, because what is basic for one theory may not be basic for the other. Only the equivalence
of the MPs is required.
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3.1 Analysis of C(T )
The proper justification of the above conjecture can only come from the comparison
with real cases of scientific theory selection20. This is done in [22]. Here I only
comment on some general aspects of C(T ):

1. The first comment concerns the accessible precision in computing C(T ). Al-
though C(T ) is well defined and non-trivial, it is certainly very hard to compute in
practice21. Even though we are always only interested in comparing the complexity
of two alternative theories, that can be expressed by δC(T, T ′) := C(T )−C(T ′), also
δC is often very hard to compute and can be estimated only approximatively. Of-
ten, we are not even able to tell whether δC is positive or negative. In fact, modern
scientific theories typically combine many assumptions from very different scien-
tific fields. Even when all the assumptions that distinguish T from T ′ are clearly
identified, finding the formulations that minimize respectively C(T ) and C(T ′) may
require rewriting a substantial part of the body of science. For this reason, we must
often rely on an estimate based on the traditional formulation. Moreover, in some
cases, the full list of the assumptions of a theory is not entirely specified. This may
happen, for example, when a theory is considered in a preliminary form by its very
proponents (a status that may last a long time); but it may also happen when old
theories contain implicit assumptions whose necessity was overlooked, until an al-
ternative theory reveals them [22]. All this adds further uncertainty on the estimate
of δC.

But the limited precision of δC is exactly the feature that we expect from a
sensible notion of complexity in science. Because, in scientific practice, we do not
rely on complexity to discriminate between theories with a roughly similar amount
of assumptions, since we know that some overlooked formulation might easily reverse
our assessment. In those cases, we need to suspend the judgment on simplicity (i.e.
accept δC ' 0, within errors) and rather look for potential different predictions.

On the other hand, there are also many important cases where it is totally un-
ambiguous that T is simpler than T ′. This is especially important when T ′ achieves
good accuracy only because it puts little effort toward any synthesis. This is the
case, for example, when T ′ adds new parameters or ad-hoc assumptions; or when
T ′ is built by patching together different models, each capable of describing only
a small subset of the data; or, in the extreme case, when T ′ is just a collection of
experimental reports. In these cases, the scientists often do not even consider T ′ a
theory, but this can be justified only because they use — implicitly but essentially
— a notion equivalent to δC to rule out T ′.

This picture is fully consistent with the intuitive idea that the notion of complex-
ity is ambiguous, but only to some extent, because there are many cases in which
there is absolutely no doubt that T is simpler than T ′, in any conceivable and us-
able language. This limited precision without arbitrariness cannot be justified by a
generic appeal to different opinions. But it can be justified by computational limi-

20In this sense I see philosophy of science as an empirical science itself, whose goal is under-
standing the rules behind that historical phenomenon that we call science.

21And perhaps even impossible to compute in principle, because of its likely relation with Kol-
mogorov K [5].
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tations (under constraints of measurability) of a well defined notion of complexity.
2. The second comment concerns possible alternatives to Def. 4. In particular,

one may argue that the usage of the length[] in Eq. (1) is just one arbitrary choice.
However, since the minimum is taken over all possible formulations, I argue that
Def. 4 effectively takes into account any plausible notion of complexity. For example,
instead of the function length[], one might assign more weight to some symbols,
or combinations of symbols. But this would be equivalent to a formulation in which
those (combinations of) symbols are repeated, and we still use the length[]. Hence,
this possibility is already included in Def. 4, but it is not minimal. Alternatively,
one might wish to count only some kind of symbols (i.e. give zero weight to others).
But if we cannot find a formulation where the neglected symbols can be removed
or have negligible contribution, it is hard to claim that they should not count! Of
course, in principle one might consider any other function of P (L,B), but, when it
is too different from any traditional notion of complexity — that inevitably boils
down to count something — it becomes very difficult to justify it as a plausible
notion of complexity.

These arguments do not intend to justify Def. 4 a priori. Def. 4 can only be jus-
tified by showing that it reproduces the preferences that we expect in paradigmatic
real cases. To challenge my conjecture, one should find at least one case where our
best estimate of δC(T, T ′) for empirically equivalent T and T ′ gives an intuitively
unacceptable result.

Combining observations 1. and 2. leads to a new, very important, observation:
two different definitions of complexity that are consistent within errors entail iden-
tical theory selections, and it is immaterial to discuss which one is better. In other
words, we may well propose different notions of complexity that do not coincide
with Def. 4, but as long as these alternative definitions do not produce estimate
that differ from Def. 4 beyond the estimated errorbars, their effect on theory selec-
tion (and hence on scientific progress, as discussed in the next section) is exactly
the same.

4 A model of scientific progress: describing more with less
Having formulated a notion of minimal complexity of the assumptions C, in Def. 4,
we can combine it with the notion of empirical adequacy22 to give a tentative
meaning to the notion of better theories. This leads to a simple model of scientific
progress, which is based only on these two cognitive values. For space limitations,
in this paper I only state the definitions. The comparison with paradigmatic real
cases of scientific progress can be found in [22].

Since the role of empirical adequacy in theory selection is undisputed, comparing
real cases of progress to this model is the proper way to test the conjecture that the
complexity of the assumptions C represents well the non-empirical cognitive values
that actually matter in science.
Definition 5. (Better theories; state of the art; outdated theories; scientific progress).

22Contrary to van Fraassen, empirical adequacy refers here only to what has been actually
measured. We also assume that it refers to an unspecified fixed set of MPs.
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Let a theory T be better than T ′ if T is more empirically adequate or has lower com-
plexity of the assumptions than T ′, without being inferior in any of these aspects. If
there is a theory T better than T ′, we say that T ′ belongs to the outdated theories.
Otherwise, we say that T ′ belongs to the state of the art. Finally, we say that we
have scientific progress, when a state of the art theory T becomes outdated23. We
call this model of scientific progress SP0.

Note that the state of the art may include also theories that are extremely simple
but empirically empty, and theories that are extremely lengthy but agree very well
with the experiments (e.g. the collection of experimental reports). We have no
unambiguous way to rule them out (and probably we should not). Nevertheless, we
have achieved the important result of justifying the growth of scientific knowledge
[15], in the sense that very popular scientific theories are regularly overthrown and
superseded by better ones. Moving the edge of the state of the art is what constitutes
scientific progress, and this is what valuable science does, quite often. But, it does
not achieve it trivially: for example, collecting more and more experimental reports
with unsurprising results, does not make any old theory outdated, and it does not
produce, by itself, progress.

Note that both the estimate of the empirical adequacy of T and the complexity
of T are affected by errors. This makes every statement about empirical adequacy,
simplicity, better theories, etc., a provisional one. For example, new experiments,
or a better estimate of simplicity, may bring back to the state of the art an already
outdated theory. This is always possible, in principle. The errorbars tell us how
unlikely we estimate such event to be. Similarly to any scientific concept, also the
philosophical concept of scientific progress can be precisely defined even though the
assessment of its occurrence is necessarily approximate and revisable.

The state of the art represents, as a whole, our current scientific image of the
world [23]. The theories that belong to it cannot be assembled in a single, logically
coherent, best theory of all. But they represent, altogether, the toolkit from which
we can chose the tool(s) that are best suited to the given empirical questions and
to the given requirements of accuracy. Some theories based on Newton mechanics
still belong to the state of the art for those issues where quantum mechanical effects
are undetectable or where the relevant results cannot yet be deduced from a more
fundamental set-up. Moreover, when we are overwhelmed by surprising experimen-
tal results, in which we cannot find any regular pattern, even the collection of all
experimental reports may be the best theory we have.

Although I have stressed the important role of the state of the art, outdated
theories are not thrown away, since hardly anything is thrown away in science.
They might still contain ideas that will eventually prove fruitful in the future. But
we would never use them in any application. Nor can we sell ideas that might be,
perhaps, fruitful, as actual accomplishments.

Def. 5 does not allow the comparison of any two theories, even on the same topic:
quite often theory T is neither better not worst than theory T ′. This reflects the
fact that in many cases it is impossible and/or unnecessary to declare a winner.

23Note that this can only happen because either a new theory T ′ appears, that is better than
T , or because a new experiment causes an existing theory T ′′ to become better than T .
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However, it is important that, sometimes, some new theories appear that are better
than existing state of the art theories. This does not need to happen very frequently:
it simply needs to be realistic, to define properly the goals of science. This claim
must be supported with real cases of scientific progress, that are discussed in [22],
that also examines many possible challenges to the model of progress proposed here.
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Total Evidence, Uncertainty and A Priori
Beliefs

Benjamin Bewersdorf

abstract.
Defining the rational belief state of an agent in terms of her initial or a priori
belief state as well as her total evidence can help to address a number of
important philosophical problems. In this paper, I discuss how this strategy
can be applied to cases in which evidence is uncertain. I argue that taking
evidence to be uncertain allows us to uniquely determine an agent’s subjective
a priori belief state from her present beliefs and her total evidence. However,
this also undermines a common assumption on the independence evidence.

1 Prior and A Priori Based Rules of Rational Belief Change
Theories of rational belief change state rules about how agents should change their
beliefs. Most of these rules define the rational posterior belief state of an agent at
a time tn by the agents prior belief state at tn−1 and the evidence the agent has
received between tn−1 and tn. I will call such rules prior based rules .

A different type of rules defines the rational posterior belief state of an agent at a
time tn by an initial or a priori belief state of the agent at t0 and the total evidence
the agent received up to tn. I will call such rules a priori based rules.

A priori based rules date back at least to Carnap and are frequently employed
under various names to address a large range of topics.1 Since a priori based rules
presuppose knowledge of the agent’s total evidence and her a priori belief state,
their applications have stronger prerequisites than prior based rules. In return, a
priori based rules allow us to make changes to the agent’s a priori belief state while
retaining the agent’s evidence as well as to remove particular pieces of information
from the agent’s body of evidence. This can be utilized to address topics such as the
problem of old evidence, the relation between credence and chance, scientific revo-
lutions and language change, the doomsday problem, evidence loss due to forgetting
or undermining, as well as the dynamics of de se beliefs.2

1My terminology is borrowed from Jeffrey [13]. Carnap [3], Lewis [18] and Hall [9] speak of
initial credence functions, Glymour [8] as well as Howson and Urbach [11] of counterfactual degrees
of belief, Earman [5], Bartha and Hitchcock [1], Weatherson [22] and Meacham [19] of hypothetical
priors and Williamson [25] of a conceptually prior probability distribution.

2See for example Glymour [8], pp. 85-93, Howson and Urbach [11], pp. 270-271, and Earman
[5], pp. 119-135, on the problem of old evidence, Lewis [18] and Hall [9] on the relation of credence
and chance, Earman [5], pp. 195-199, and Wenmackers and Romeijn [24] on scientific revolutions
and language change, Bartha and Hitchcock [1] on the doomsday problem, Williamson [25], pp.
218-221, and Titelbaum [20] on evidence loss, and Meacham [19] on the dynamics of de se beliefs.
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The a priori based rules used in the literature presuppose that evidence comes in
form of certainties. It has been argued that this is rarely, if ever, the case.3 I will
therefore discuss the prospects of applying a priori based rules to cases in which
evidence is uncertain. It will turn out that taking evidence to be uncertain has two
noteworthy consequences for a priori based accounts. On the one hand, it is possible
to uniquely determine an agent’s subjective a priori belief state from her present
belief state and her total evidence if her evidence is uncertain. This is particularly
interesting, since the lack of knowledge about the a priori belief state is a major
complaint against a priori based accounts. On the other hand, the applications of
a priori based rules rely on an assumption about the independence of evidence and
this assumption is less plausible for uncertain evidence. Presupposing evidence to
be uncertain thus creates a new challenge for the applicability of a priori based
rules.

2 Certain Evidence
I will presuppose the Bayesian framework for rational belief change in the follow-
ing. According to the Bayesian, the belief state of an agent can be represented
by a probability distribution on an algebra of propositions. The probability values
represent the degree to which the agent believes these propositions to be true. A
probability of 1 represents the agent being certain in the truth of a proposition.

Evidence is represented as a change in the degrees of belief in one or more propo-
sitions. In the simplest case the evidence of an agent consists in the agent changing
her degrees of belief in a proposition q to 1. In this case, I will say that the agent
receives certain evidence that q.

According to the Bayesian, an agent who receives certain evidence should adjust
her beliefs in accordance to the following rule.

Simple Conditionalization
Let Pn−1 with Pn−1(q) > 0 be the prior belief state of an agent at tn−1.
If the agent receives certain evidence that q between tn−1 and tn, her
belief state at tn should be Pn(·) = Pn−1(· | q).

Instead of defining the agents rational belief state at tn by her belief state at tn−1
and the evidence the agent received between tn−1 and tn, it is also possible to define
the rational belief state of the agent at tn by her initial or a priori belief state at t0
and the total evidence the agent has received up to tn.

A Priori Based Simple Conditionalization
Let P0 with P0(q*) > 0 be the a priori belief state of an agent. If the
agent’s total certain evidence at tn is q*, her belief state at tn should be
Pn(·) = P0(· | q*).

The a priori based rules discussed in the literature are variants of a priori based
simple conditionalization, differing mostly in the interpretations of the evidence and

3See for example Jeffrey [14].
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the a priori belief state.4 The total certain evidence of an agent at tn is assumed
to be the conjunction of the evidence available to the agent at tn.5

Total Certain Evidence
Let q1, q2, ..., qn be individual pieces of certain evidence, then q1 ∩ q2 ∩
... ∩ qn is the corresponding total certain evidence.

There is no explicit argument given for this account of total certain evidence, but
it can be motivated by the following considerations. Assume an agent receives the
individual pieces of certain evidence q1, q2, ..., qn between t0 and tn. As it should
not matter whether an agent receives all of her evidence at once or in separate
pieces, the total evidence q* of the agent at tn should be such that receiving q*
results in the same belief state as receiving the individual pieces of evidence q1, q2,
..., qn one after the other. I will call this the condition of total certain evidence.

Condition of Total Certain Evidence
q* is the total certain evidence of the individual pieces of certain evidence
q1, q2, ..., qn iff a belief change of P by q* via simple conditionalization
results in the same belief state as an iterated belief change of P by q1,
q2, ..., qn via simple conditionalization for every P .

It can easily be shown that total certain evidence fulfills this condition.

Theorem 1 Total certain evidence fulfills the condition of total certain evidence.

All proofs can be found in the appendix.

3 Uncertain Evidence
It has been argued that evidence is rarely if ever certain. Jeffrey [14] proposed to
represent evidence more generally by a change in the degrees of belief of the elements
of a partition {q1, q2, ..., qk} to any probabilistically coherent new probability values.
I will call evidence uncertain iff no element of this partition receives probability 1.
Jeffrey argues that simple conditionalization can be generalized in the following
way.

Jeffrey Conditionalization
Let Pn−1 represent the prior belief state of an agent. If the agent receives
evidence represented by a change in the degrees of belief of the elements
of a partition {q1, q2, ..., qk} to Pn(qi) ∈ [0, 1], with

∑k
i=1 Pn(qi) = 1,

her posterior belief state should be Pn(·) =
∑k
i=1 Pn−1(· | qi)× Pn(qi).

Instead of representing evidence by a partition of propositions and new degrees of
belief, Field [6] proposed to represent evidence by a partition of propositions and
update factors which denote how strongly the probabilities for the elements of the
partition change. Field proposed to define these update factor as follows.

Field Update Factor
4See footnote 1 and 2.
5See for example Williamson [25], p. 220.
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If an agent changes her degrees of belief in the elements of a partition
{q1, q2, ..., qk} from Pn−1(qi) to Pn(qi) ∈ (0, 1) with

∑k
i=1 Pn(qi) = 1,

then the update factors αi for each qi representing this change are αi =
1/k × log

∏k
j=1

Pn(qi)/Pn−1(qi)
Pn(qj)/Pn−1(qj) .

Uncertain evidence can then be defined in terms of update factors as follows.

Uncertain Evidence
A piece of evidence ξ is an ordered pair 〈℘,I〉, with ℘ being a partition
{q1, q2, ..., qk} and I a function I : ℘ 7→ (−∞,∞) assigning each element
of the partition qi an update factor αi.

Uncertain evidence defined in this way includes certain evidence only as a limiting
case if αi goes to ∞ for some i.

Jeffrey conditionalization can be combined with Field’s definition of update fac-
tors to yield the following version of Jeffrey conditionalization for evidence given in
terms of update factors.

Field Conditionalization
Let Pn−1 represent the prior belief state of an agent. If the agent re-
ceives evidence represented by 〈{q1, q2, ..., qk},I〉 with I(qi) = αi and∑k
i=1 αi = 0, her posterior belief state should be Pn(·) =

∑k

i=1
Pn−1(·∩qi)×eαi∑k

i=1
Pn−1(qi)×eαi

.

As Jeffrey and Field conditionalization are interdefinable via Field’s definition of
update factors, they are essentially the same update rule. The difference between
Jeffrey’s and Field’s account is that Jeffrey presupposes evidence to be given in
terms of new degrees of belief, while Field presupposes evidence to be given in
terms of update factors. This difference will become important below.

It has been argued by Garber [7] that Field conditionalization has the following
counterintuitive consequence. Assume that an agent looks at a cup of coffee several
times in a row. Let q be the proposition that there is a cup of coffee and assume that
the evidence the agent receives by looking at the cup of coffee can be represented
by the same evidence ξ = 〈{q,¬q},I〉 with I(q) > 0 each time. It can easily be
shown that as long as the agents prior degree of belief in q is positive, by repeatedly
looking at the cup of coffee the agent will soon be justified to be virtually certain
that q, according to Field conditionalization. This is the case even if I(q) is very
low, which means that the evidence for q is very weak.

The assumption that the agent’s evidence is ξ each time the agent looks at the
cup is essential for Garber’s argument. As has been pointed out by Wagner [21],
this is the very same assumption that leads to the alleged commutativity problem of
Jeffrey conditionalization. Since Jeffrey and Field conditionalization are essentially
the same update rule, it is unsurprising that an assumption problematic for one is
problematic for the other. The easiest response to Garber’s objection is to reject
this assumption and this is what I will do for the purpose of this paper.6 If the

6This is also Lange’s response to the alleged commutativity problems of Jeffrey conditionaliza-
tion, see Lange [17].
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agent learns nothing new by looking at the cup a second time, the evidence she
receives should not be represented by ξ, but by ξ′ = 〈{q,¬q},I〉 with I(q) = 0
instead.

4 A Priori Based Field Conditionalization and Total
Uncertain Evidence

As shown above, simple conditionalization can easily be transformed into an a priori
based rule of rational belief change. The same holds true for Field conditionaliza-
tion.

A Priori Based Field Conditionalization
Let P0 be the a priori belief state of an agent. If the agent’s total
uncertain evidence at tn is represented by ξ* = 〈{q1, q2, ..., qk},I〉 with
I(qi) = αi and

∑k
i=1 αi = 0, her belief state at tn should be Pn(·) =∑k

i=1
P0(·∩qi)×eαi∑k

i=1
P0(qi)×eαi

.

As discussed above, the total certain evidence of an agent can be argued to be the
conjunction of the agent’s individual pieces of evidence. Since uncertain evidence is
not represented by a single proposition, it cannot be aggregated as easily. However,
we can employ the same reasoning to determine the right way to aggregate uncertain
evidence that we used in the case of certain evidence. As with certain evidence,
it should not matter whether an agent receives all of her uncertain evidence at
once or in separate pieces. Thus, the following analog to the condition of total
certain evidence should hold for an agent who uses Field conditionalization instead
of simple conditionalization to update her degrees of beliefs.

Condition of Total Uncertain Evidence
ξ* is the total uncertain evidence of the individual pieces of uncertain
evidence ξ1, ξ2, ..., ξn iff a belief change of P by ξ* via Field condition-
alization results in the same belief state as an iterated belief change of
P by ξ1, ξ2, ..., ξn via Field conditionalization for every P .

The condition of total uncertain evidence is fulfilled by the following aggregation
rule for uncertain evidence.7

Total Uncertain Evidence
Let ξ1 = 〈℘1,I1〉 and ξ2 = 〈℘2,I2〉 be individual pieces of uncertain
evidence of an agent. Then the total uncertain evidence of this agent is
ξ1⊕2 = 〈℘1⊕2,I1⊕2〉, with ℘1⊕2 = {qi ∩ rj | qi ∈ ℘1, rj ∈ ℘2, qi ∩ rj , ∅}
and I1⊕2(qi ∩ rj) = I1(qi) + I2(rj) for all qi ∩ rj ∈ ℘1⊕2.

Theorem 2 Total uncertain evidence fulfills the condition of total uncertain evi-
dence.

7Jeffrey [15] offers a similar account of combining evidence in his discussion of commutativity.
His account makes use of a variant of Field conditionalization that defines update factors in a
different way. As I will show in the following, Field’s original account has the advantages that it
guarantees a probabilistically coherent posterior belief state for arbitrary update factors and that
update factors can simply be added when evidence is aggregated.
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5 Normalization
Field conditionalization, as stated above, is defined only for uncertain evidence with
update factors that sum to 0. I will call this the normalization requirement and will
call evidence that fulfills this requirement normalized evidence .

Normalized Evidence
A piece of evidence ξ = 〈℘,I〉, with ℘ = {q1, q2, ..., qk} and I(qi) = αi
is normalized iff

∑k
i=1 αi = 0.

It is easy to see that the total of two pieces of normalized uncertain evidence need
not be normalized if total uncertain evidence is defined as above. This means
that Field conditionalization is not defined for all cases of total uncertain evidence.
Fortunately, it is possible to drop the requirement that the update factors have to
sum to 0 in the definition of Field conditionalization or alternatively to normalize
every piece of total evidence such that the sum of the update factors of the evidence
is 0.

The normalization requirement in Field conditionalization is the equivalent to
the requirement of Jeffrey conditionalization that the sum of the new probabilities
of the partition of the evidence is 1. For Jeffrey conditionalization this condition
is central, since the posterior belief state of the agent will not be probabilistically
coherent if this condition is not satisfied. Interestingly, this is not the case for
Field conditionalization. If Pn−1 is probabilistically coherent, updating P with ξ
via Field conditionalization results in a probabilistically coherent Pn even if ξ is
not normalized. This can be seen by noting that there is an equivalent normalized
evidence for every non normalized evidence.

Normalization of Evidence
Let ξ = 〈℘,I〉, ℘ = {q1, q2, ..., qk} and

∑k
i=1 I(qi) = x, then ξN is the

normalization of ξ iff ξN = 〈℘,IN 〉 with IN (·) = I(·)− x/k.

Equivalent Evidence
Two pieces of evidence ξ1 and ξ2 are equivalent iff for every belief state
Pn−1, updating Pn−1 with ξ1 via Field conditionalization and updating
Pn−1 with ξ2 via Field conditionalization result in the same belief state
Pn.

Theorem 3 For every non-normalized evidence ξ there is an equivalent normalized
evidence ξN .

Since the normalization requirement is not necessary to guarantee a probabilistically
coherent posterior belief state, it can be dropped from the definition of Field con-
ditionalization. Alternatively, a normalization step can be added to the definition
of the total evidence.
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6 Consequences of Uncertain Evidence
Taking evidence to be uncertain has two noteworthy consequences for the applica-
tions of a priori based rules. On the one hand, it is possible to uniquely determine
the a priori belief state of an agent from the agent’s present belief state and the
agent’s present total evidence if the latter is uncertain and given in terms of up-
date factors. On the other hand, taking evidence to be uncertain undermines the
assumption that individual pieces of evidence are independent of each other and
the a priori belief state. Since this assumption is crucial for applications of a priori
based rules, taking evidence to be uncertain creates a new challenge for a priori
based accounts.

To show how the a priori belief state of an agent can be determined, define inverse
evidence as follows.

Inverse Evidence
Let ξ = 〈℘,I〉 with ℘ = {q1, q2, ..., qk} be a piece of evidence, then
ξI = 〈℘,II〉 is the respective inverse evidence iff II(qi) = −I(qi) for all
i.

It can be shown that the a priori belief state of an agent is the result of updating
her present belief state with the inverse of her present total evidence by Field
conditionalization.

Theorem 4 Let P be the present belief state and ξ the present total evidence of an
agent, then updating P with ξI via Field conditionalization results in the a priori
belief state of the agent.

It might come as a surprise that the a priori belief state of an agent can be deter-
mined so easily. The crucial assumption for this result is that the agent’s evidence
is given in terms of update factors. I will call evidence characterized this way Field
evidence and evidence characterized by new probabilities Jeffrey evidence. Both
certain evidence and Jeffrey evidence partly determine the new belief state of an
agent independently of the agent’s old beliefs. If an agent receives certain evidence
that q, her new degree of belief in q will be 1, no matter what her old degree of
belief in q has been. The same holds for Jeffrey evidence except that the new degree
of belief for q can have any value. This implies that we cannot determine the prior
belief state of an agent from her present belief state and her certain evidence or
Jeffrey evidence. As we have seen, this is different for Field evidence. This might
suggest that Field evidence contains more information than Jeffrey evidence, but
that is not the case. Field evidence and Jeffrey evidence contain different informa-
tion: the relation between old and new degrees of belief in the first case and the
new degrees of belief in the second. It is an open question whether evidence is best
understood in terms of update factors or new degrees of belief.8 I cannot enter this
debate here, but it seems to depend on the underlying conception of evidence. I
will say a bit more on this below. For now, I will be content with the conclusion
that the a priori belief state of an agent can be determined by her total evidence

8See for example Hawthorne [10] for a defense of Field evidence and further references on this
debate.
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and her present belief state if her total evidence is uncertain and given in terms of
update factors. This conclusion is of interest since the alleged inaccessibility of the
agent’s a priori beliefs is a major complaint against a priori based accounts.

In the first section of this paper I mentioned that the applications of a priori based
rules involve changes to the agent’s a priori belief state or to some of her pieces of ev-
idence. It is commonly assumed without argument that doing so does not affect the
agent’s remaining pieces of evidence. While this independence assumption might
be plausible for certain evidence, it seems less plausible for uncertain evidence. The
classic example of uncertain evidence for which the independence assumption is sup-
posed to fail is color perception. Perceptual evidence about the color of an object
is argued to depend on the perceiver’s background beliefs about the color of the
light shining on the object.9 Apart from these concerns, the independence assump-
tion also causes the problems for Jeffrey and Field conditionalization mentioned in
section 3. Thus, taking evidence to be uncertain seems to force us to reject this
assumption.

Since the applications of a priori based rules rely on changing the agent’s a priori
belief state or part of the agent’s evidence, rejecting the independence assumption
requires us to provide an account on how such changes do affect the remaining
evidence of the agent. The prospects of providing such an account depend on the
presupposed conception of evidence. Jeffrey [12] takes evidence to be the causal
effect of sensory stimulations. According to Jeffrey, evidence can be measured by
observing the agent’s degrees of belief after such stimulations occurred. This con-
ception of evidence favors evidence understood in terms of new degrees of belief.
According to this view, an account of how pieces of evidence depend on each other
would be a hard to establish causal law of cognitive psychology. Carnap in contrast
treats evidence as the justification provided by our experiences.10 This conception
of evidence favors evidence understood in terms of update factors. According to this
view, an account of how pieces of evidence depend on each other would be part of
a normative account of rational belief change. I discuss the prospects of providing
such an account elsewhere.11

7 Appendix

Proof of Theorem 1

Let P be a belief state and q and r individual pieces of certain evidence. Let Pq∩r
be the result of a belief change of P via simple conditionalization with q∩ r, Pq the
result of a belief change of P via simple conditionalization with q and Pq,r the result
of a belief change of Pq via simple conditionalization with r. To prove theorem 1 it
is sufficient to show that Pq∩r = Pq,r.

Pq,r = Pq(· ∩ r)
Pq(r)

= P (· ∩ q ∩ r)
P (q ∩ r) = Pq∩r. �

9See for example Christensen [4] and Weisberg [23].
10See Carnap’s letter to Jeffrey in Jeffrey [13].
11See Bewersdorf [2].
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Proof of Theorem 2

Let P be a belief state and ξ1 and ξ2 two pieces of uncertain evidence such that
ξ1 = 〈℘1,I1〉 with ℘1 = {q1, q2, ..., qk}, I1(qi) = αi and ξ2 = 〈℘2,I2〉, with
℘2 = {r1, r2, ..., rm}, I2(rj) = βj . Let Pξ1⊕2 be the result of updating P via Field
conditionalization with ξ1⊕2, Pξ1 the result of updating P via Field conditionaliza-
tion with ξ1 and Pξ1,ξ2 the result of updating Pξ1 via Field conditionalization with
ξ2. To prove theorem 2 it is sufficient to show that Pξ1⊕2 = Pξ1,ξ2 .

By the definition of total uncertain evidence and Field conditionalization we get

Pξ1⊕2(·) =
∑k
i=1
∑m
j=1 P (· ∩ qi ∩ rj)× eαi+βj∑k

i=1
∑m
j=1 P (qi ∩ rj)× eαi+βj

.

By applying Field conditionalization twice we get

Pξ1,ξ2 =

∑m

j=1

∑k

i=1
P (·∩qi∩rj)×eαi∑k

i=1
P (qi)×e

αi
×eβj∑m

j=1

∑k

i=1
P (qi∩rj)×eαi∑k

i=1
P (qi)×e

αi
×eβj

=
∑k

i=1

∑m

j=1
P (·∩qi∩rj)×eαi+βj∑k

i=1

∑m

j=1
P (qi∩rj)×eαi+βj

= Pξ1⊕2(·). �

Proof of Theorem 3

Let ξ = 〈℘,I〉, with ℘ = {q1, q2, ..., qk}, I(qi) = αi and
∑k
i=1 I(qi) = x. Let

ξN = 〈℘,IN 〉 be the normalization of ξ. Thus,
∑k
i=1 IN (qi) = 0. Let Pξ be the

result updating P with ξ via Field conditionalization and let PξN be the result
updating P with ξN via Field conditionalization. To prove theorem 3 it is sufficient
to show that Pξ = PξN for all P .

By Field conditionalization and normalization of evidence we get

PξN =
∑k
i=1 P (· ∩ qi)× eαi+x/k∑k
i=1 P (qi)× eαi+x/k

=
∑k
i=1 P (· ∩ qi)× eαi∑k
i=1 P (qi)× eαi

= Pξ. �

Proof of Theorem 4

Let ξ = 〈℘,I〉, with ℘ = {q1, q2, ..., qk} be the present total evidence and P be the
present belief state of an agent. Let PξI be the result of updating P with ξI via
Field conditionalization, and let PξI ,ξ be the result of updating PξI with ξ via Field
conditionalization. Since for all probability distributions Q and Q′, Qξ = Q′ξ only
if Q = Q′, PξI is the unique a priori belief state of the agent iff P = PξI ,ξ. Thus, to
prove theorem 4 it is sufficient to show that P = PξI ,ξ.

Let I(qi) = αi and thus by inverse evidence II(qi) = −αi. By applying Field
conditionalization twice we get

PξI ,ξ(·) =
∑k
i=1 P (· ∩ qi)× eαi × e−αi∑k
i=1 P (qi)× eαi × e−αi

=
∑k
i=1 P (· ∩ qi)∑k
i=1 P (qi)

= P (·). �
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The Pragmatics of Self-Deception

Nevia Dolcini

abstract. The current philosophical debate on self-deception is character-
ized by a divide between intentionalist and anti-intentionalist views. Despite
the differences between the two competing approaches, especially with respect
to whether subjects deceive themselves intentionally or unintentionally, I will
argue that they tend to converge on, among other aspects, the interpretation
of self-deception as a process by which the subjects fail to acquire knowledge.
The condition for self-deception that the subject’s acquired (self-deceptive)
belief is a false belief gathers wide and transversal agreement from both the
sides of the divide. I will provide criticism about the validity of such a condi-
tion by showing that it doesn’t match our common intuitions; some positive
consequences of cutting the false-belief condition out of the set of conditions
for self-deception will be explored. Finally, I suggest that self-deceivers mani-
fest a deviant doxastic behavior with respect to the wider (doxastic) context,
and I introduce a novel condition - the ‘Deviation Condition’ - which grasps
the social and pragmatic dimension of self-deception. The proposed ‘tridimen-
sional’ account is a unified model applying to both individual and collective
self-deception.

1 The Imaginary Invalid
Monsieur Argan, the hypochondriac main character of Molière’s The Imaginary
Invalid [17], urges his daughter Angelique to marry the doctor-to-be Thomas Di-
aforious against her will. Toniette, Argan’s maid and Angelique’s best confidant,
tries to dissuade him by raising doubts about his phantomatic illness.

Argan: My reason is, that seeing myself infirm and sick, I wish to have a son-in-law and
relatives who are doctors, in order to secure their kind assistance in my illness, to have in
my family the fountain-head of those remedies which are necessary to me, and to be within
reach of consultations and prescriptions.
Toinette: Very well; at least that is giving a reason, and there is a certain pleasure in
answering one another calmly. But now, Sir, on your conscience, do you really and truly
believe that you are ill?
Argan: Believe that I am ill, you jade? Believe that I am ill, you impudent hussy?
Toinette: Very well, then, Sir, you are ill; don’t let us quarrel about that. Yes, you are very
ill, I agree with you upon that point, more ill even than you think.
[17]

Toinette’s attempt fails miserably, as Argan ‘really and truly’ believes on his
conscience that he is constantly afflicted with a variety of illnesses. According to
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the story, this is untrue: Argan is the unaware victim of self-deception. What we
commonly mean in claiming someone’s self-deceptive state is the failure to recognize
what is seemingly obvious to others: while everybody around Argan believes him
not to be sick, he holds the contrary belief. His belief that he is sick is intense
and resistant to the doubt raised by his relatives and friends, who sometimes would
invite him to come to his senses. Self-deceptive states might just be temporarily so,
and last as long as the self-deceiver fails to ‘face the truth’; once the self-deceiver
becomes aware of her being victim of self-deception, typically she exits self-deception
and adjusts her doxastic attitudes accordingly.

Monsieur Argan is one of the many self-deceptive characters featured in literary
works. Depicted as they are in such a richness of details, these characters make
ideal study cases for philosophical analysis. Sahdra and Thagard [26], for example,
base their analysis of self-deception on the characters from The Scarlett Letter by
Hawthorne, while Talbott [29] engages in an analysis of La Fontaine’s fable The
Fox and the Grapes. In fact, literary cases might easily be regarded as mirroring
real everyday life, where our experience of self-deception is an ‘undeniable fact’
([31], 9). Despite a few voices dismissing the very existence of self-deception1, re-
cent empirical findings suggest that people are often prone to deceive themselves
about a variety of subjects, in different contexts, and for different purposes; for
example, self-deception seems to occur in denial of physical illness [11], it may ac-
count for cases of unrealistic [1], or for positive illusions in self-evaluation tasks [12].
Moreover, self-deception occurs at various degrees in mental conditions classified
as ‘pathological’, such as depression and schizophrenia [18]. As a result, a great
variety of phenomena appears to be comprised in the heterogeneous category of
self-deception: poor insight, unrealistic optimism, wishful thinking, feigning mem-
ories, delusions, akrasia, and other irrational beliefs all falling on a broad spectrum
ranging from normality to pathology. 2

Non-fictional and non-clinical people deceive themselves as well. Ordinary cases
of self-deception entail the idea that the subject enters self-deception in order to
either maintain serenity and psychological stability, or avoid pain. A husband might
(falsely) believe that his unfaithful wife is faithful, despite compelling evidence of
her betrayal; a mother who has evidence at her disposal that her son has robbed a
bank, still believes him innocent. By ‘lying to themselves’, these subjects manage to
sway pain, along with truth. The lying-to-oneself mechanism is intuitively and pre-
philosophically regarded as one of the essential traits of self-deception, which shares
many traits with cases of other-deception, whereby people deceive the others for
their own purposes. Yet, if the subject’s gain in interpersonal deception is obvious,
the same does not apply to self-deception.

In the philosophical literature, self-deception is regarded as a puzzling mental
phenomenon seriously challenging the subject’s doxastic integrity. Even if there is

1A few authors claim that self-deception is impossible. In particular, Paluch [19] and Haight
[13] are skeptical about self-deception for the reason that self-deceptive states would entail the
subject to be in the impossible state of mind of simultaneously having two contradictory beliefs.

2For an analysis of the conceptualization of mental insanity as a lack or negation of irrationality,
see Bortolotti (2015), pp. 45-80.
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little agreement on how exactly to define self-deception, it is common to consider
self-deceptive beliefs as acquired and maintained by the subject in face of adverse ev-
idence, under the pressure of motivations, desires, or emotions, which might or might
not be hidden to the subject herself. In the attempt of clarifying how we acquire
self-deceptive beliefs, several accounts have been endorsed, which ultimately loom
into two competing approaches: intentionalism vs. non-intentionalism3. While the
non-intentionalist approach appears to currently dominate the scene, there is still
little agreement about what exactly the nature and mechanism of self-deception is,
and about what cases can be regarded as paradigmatic [30]. Besides, the discourse
on self-deception fatally drags in elements, such as belief and evidence - crucial to
knowledge analysis - which are per se far from being uncontroversial.

In this paper, after a short critical review of the state of art in the philosoph-
ical debate, I will highlight the general claims upon which the contrasting voices
within the discussion tend to converge. More specifically, I will argue that the
various accounts of self-deception, of both intentionalist and non-intentionalist na-
ture, widely agree that the belief acquired by self-deceivers is false. In contrast,
I argue that in accounting for self-deception we have good reasons for dropping
the condition that the self-deceptive belief is false, and for extending the analysis
to the social and pragmatic dimension of the phenomena. I identify such dimen-
sion in the doxastic tension between the self-deceiver and the ‘spectators’ to the
given self-deceptive occurrence. The proposed account reshapes self-deception as a
‘tridimensional’ phenomenon, which is dependant on the subject’s motivations, the
belief vs. evidence tension, and the self-deceiver vs. spectators (doxastic) tension.
By highlighting the social and pragmatic dimension, the account presented here has
the advantage of applying not only to individual self-deception, but also to the less
explored phenomenon of collective self-deception.

2 The philosophical debate: divergences and convergences
The current philosophical discussion is characterized by a variety of proposals of
both intentionalist and non-intentionalist kind, all aiming at describing and ex-
plaining a phenomenon, which still remains under-defined. Intentionalism4 about
self-deception is the traditional position, quite popular since the 90s, which rests
upon what I call the ‘analogy’ assumption (AA), and on the ‘intention’ assumption
(AI).
(AA) Self-deception is the intrapersonal analog of interpersonal deception (or ‘other-
deception’): self-deception and other-deception share the same structure, yet in self-
deception the self-deceived subject is simultaneously the deceiver and the deceived.
Thus, the following applies to both self- and other-deception: person X deceives
person Y (where Y may or may not be the same as X) into believing that p only
if X knows, or at least believes truly, that non-p (i.e., that p is false) and causes Y
to believe that p. In the case of self-deception, obviously X = Y .

3A comprehensive and updated survey of the various positions within the current debate on
self-deception is provided by [2].

4Talbott, Rorty [23] [25], Pears [21], Davidson [8] [9], and Bermudez [4] [5] are among the best
representatives of intentionalist views.
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(AI) The act of deceiving is intentional: in self-deception the subject intends to
deceive herself into believing p, while knowing that non-p. This claim entails that
non-intentional self-deception cannot occur. (AI) is derived from assumption (AA);
from the analogy between other-and self-deception, it follows that intention (built
into the very fabric of other-deception) is a necessary feature in self-deception as
well.

Non-intentionalism, especially as represented in the account endorsed by Alfred
Mele [16], advances one positive and one negative argument against intentionalism.
The negative argument is based on the rejection of both (AA) and (AI), whereas the
positive one derives from the assumption about psychological features of motiva-
tional biases, which are assigned an essential role in the unfolding of self-deceptive
phenomena. Non-intentionalist supporters usually regard intention-based accounts
as stemming from an over-interpretation of the phenomenon, which in their view
should be rather understood as a motivationally biased judgment.

The pars destruens of the non-intentionalist project identifies (AA) and (AI) as
the sources of fatal paradoxes. Mele [15] suggests that these two assumptions lead
to a static puzzle and a dynamic puzzle, respectively. The static puzzle stems from
(AA), since if that assumption holds true, then to deceive oneself into believing
that p requires that one knows or believes truly that non-p (i.e., that p is false), and
causes oneself to believe that p. That is, self-deceivers (simultaneously) believe both
p and non-p, and therefore find themselves in the problematic situation of holding
contradictory beliefs. The second assumption (AI) is identified as the source of the
dynamic paradox: it does not seem possible for a subject to successfully deceive
herself, while doing so intentionally. Potential (other-)deceivers would miserably
fail their goal if their victims become aware of the deceptive plan: how can X,
while knowing/truly believing non-p, successfully deceive Y into believing that p,
if Y knows exactly what X is up to? By analogy, how can a subject successfully
deceive herself while aware of her own deceptive intention?

Typically, the intentionalist defensive strategy mainly consists in attempts to
dissolve the two puzzles by means of various strategies5 (e.g., temporal partitioning,
psychological partinioning, etc.). However, the dynamic puzzle in particular still
remains a real challenge to intentionalist views, and its solution seems either to
require the adoption of problematic doxastic and mental states (implicit intentions,
unaware intentions, aliefs, and the like), or the very letting go of the intention itself;
the latter move resulting in the total defeat of intentionalism.

Despite the distance between the two sides of the debate, mainly created by
their divergence in regard to (AA) and (AI), intentionalists and their opponents still
seem to agree on at least three jointly sufficient conditions for the subject to enter
self-deception in acquiring a belief p. I call the three conditions, the ‘Motivation

5[4] suggests that no paradox stems from the subject’s holding of two contradictory beliefs, since
they could be inferentially insulated. Another defensive strategy by [7] aims at supporting the
idea that the simultaneous possession of conflicting beliefs is neither impossible nor illogical within
current models of human cognition. For coping with the dynamic puzzle, partitioning strategies
are sometimes used: [24] regards the ‘self’ (‘persona’, or the ‘I’) as a loose sort of committee, so
that deceiver and deceived are but two distinct parts constituting the entire configuration; others
make recourse to mental exotica, such as “belief without awareness of such belief” [?]fing).
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Condition’ (CM), the ‘Tension Condition’ (CT), and the ‘False Belief Condition’
(CFB)6.

CM motivational biases (desires and emotions) favored the acquisition of p.

CT the acquired belief that p is in tension with features either internal (subject’s
doxastic repertoire) or external (evidence) to the process of belief formation.

CFB the belief that p is false.

These three conditions are not only commonly shared within the philosophi-
cal discussion, but they are also highly compatible with our pre-philosophical and
common sense views of self-deceptive phenomena. While CM has been especially
emphasized by non-intentionalists authors (e.g., Mele’s core idea of self-deception
as a motivationally biased judgment), it is still entailed by intentionalist accounts.
The second condition CT has more to do with the process of belief formation, and
it is revealing of the tension accompanying any self-deceptive occurrence. Finally,
CFB is a condition about the output of the self-deceptive process, which ends with
the subject holding a false belief. I understand this last condition as providing the
natural terrain for the discussion of the epistemological status of self-deceptive be-
liefs, as well as of the epistemological nature of self-deception as a whole. In fact,
the subject’s acquisition of the belief that p, which satisfies CM and CT, but does not
satisfy CFB, would hardly qualify as an instance of self-deception, precisely because
of the subject’s acquisition of a true belief.

This result directly follows from the jointly sufficient conditions for entering self-
deception, and it seems to be revealing of how philosophers look at the very nature
of the process of self-deceptive belief acquisition. Indeed, CFB is a condition about
the truth value of p, so that it shifts the observer’s attention from a doxastic level
to an epistemological level of analysis: entering self-deception looks like a process
by which the subject fails to acquire knowledge, where knowledge is intended in the
traditional sense of (at least) justified true belief. In the following, I will show how
such result is not desirable, and counterintuitive, too.

3 Two scenarios for Argan
The account of self-deception as an instance of failed knowledge - at least, within the
framework of the traditional tripartite analysis of knowledge - can be better clarified
by looking at the relations between the conditions for self-deception and knowledge
conditions, which go as follows: a subject S knows that p iff (i) p is true, (ii) S

6Note that the here proposed conditions differ significantly from the four sufficient conditions
for self-deception as formulated by Alfred Mele: “1. The belief that p which S acquires is false; 2.
S treats data relevant, or at least seemingly relevant, to the truth-value of p in a motivationally
biased way; 3. This biased treatment is a non-deviant cause of S’s acquiring the belief that p;
4. The body of data possessed by S at the time provides greater warrant for non-p, than for
p.” ([15], 95). In particular, Mele’s fourth condition is loosened in CT so as to incorporate both
intentionalist and non-intentionalist approaches. The core of the condition which constitutes the
point of convergence is exactly the tension that is considered to accompany any self-deceptive act.
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believes that p, and (iii) S is justified in believing that p . Each of these conditions
echoes or insulates the conditions for self-deception to various degrees: condition (i)
opposes CFB, condition (ii) is preassumed by each of the three conditions, and (iii) is
relevant to CT as long as evidence and/or the subject’s set of beliefs have something
to do with her justification for believing p. The satisfaction of CFB necessarily
entails that the knowledge condition (i) is not met: the subject who enters a state
of self-deception does not know that p.

Thus, self-deception amounts to failed knowledge, and such a view offers indi-
cations as to what sort of psychological phenomena might fall within or outside
of the category of self-deception. However, the analysis of self-deception through
the lenses of the epistemologist might improperly fixate our attention on elements,
which are not, after all, structural to its nature and mechanism.

Back to the The Imaginary Invalid case, let’s consider the two following scenarios:
in Scenario 1 we find Monsieur Argan and his adventures as narrated in the original
story by [1]ère, whereas Scenario 2 is an invented continuation of Argan’s story.

Scenario 1: Monsieur Argan acquires and maintains - ‘really and truly believes’
- that he is seriously sick in face of compelling evidence to the contrary, and it is
not the case that he is sick; in fact, Argan is in perfect health7.

Scenario 2: As in Scenario 1, Monsieur Argan acquires and maintains (‘really
and truly believes’) that he is sick in face of compelling evidence to the contrary.
However, unbeknownst to him, as well as to his relatives, doctors and friends, Argan
is sick with a fatal yet totally symptomless disease.

Argan from Scenario 1 successfully enters self-deception given that the three
conjointly sufficient conditions are met: Argan’s acquisition of the belief that he
is sick is motivationally favored (possibly, his fear for death favored his acquisition
of p)8; there is tension between his belief that he is sick and the evidence at his
disposal; he holds a false belief. Not only he is self-deceived, but (if that is at all
relevant in making sense of self-deception) he also has no knowledge that he is sick.

The analysis of Scenario 2 leads to an entirely (at least temporarily) different
conclusion. Both CM and CT are satisfied: as in Scenario 1, Argan acquires the belief
that he is sick under some motivational bias, and his belief contrasts the evidence
at his disposal. However, CFB is not met, since Argan is fatally sick with a disease.
As a result, by adopting the three conditions (CM, CT, and CFB) Argan’s belief that
he is sick does not fully qualify as a self-deceptive belief, and we shall conclude that
Argan, after all, has not fallen victim of self-deception. We might want to further
investigate on whether Argan knows or does not know that he is sick, but this is a
controversial matter, and widely depends upon how we understand justification per
se and its role in knowledge attribution. Within the context of the debate on self-

7For the sake of clarity, let’s assume that here ‘being healthy’ is not a matter of degrees, but a
property which the subject might either possess or not possess.

8Monsieur Argan’s example is a case of twisted self-deception, in which Argan acquires the
unpleasant and undesirable belief that he is sick. At a first glance, cases of twisted self-deception
might be challenging, since it is not obvious what would be the motivations of the subject in
acquiring an unpleasant belief. However, it has also been suggested that ‘fears’ and ‘anxiety’
qualify as motivations [20], [3]: as a general principle a unified account of self-deception, one
which can also explain cases of twisted self-deception, is highly desirable.
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deception, some authors have discussed justification. Annette Barnes, for example,
argues that the motivational biases favoring self-deception automatically rule out
any possibility of belief-justification: "As a result of this bias in the self-deceiver’s
belief-acquisition process, the self-deceiver’s belief that p is never justified" ([3],
78)9.

In sum, the two scenarios only differ in regard to the fact that in the first story
Argan holds a false belief, whereas Argan in the second story holds a true belief, all
other conditions being the same. The three conditions for self-deception are satisfied
in Scenario 1, yet stay unfulfilled in Scenario 2, since Argan holds a true belief and
CFB is not met. Such a result is counterintuitive, as both scenarios appear to revolve
around self-deception: why should we conclude that Argan in Scenario 2 is not
deceiving himself, given that Argan’s (internal and external) behavior, as well the
other features in the story, perfectly matches Scenario 1? A hypochondriac subject,
who firmly believes that she is seriously ill despite evidence to the contrary, does not
cease to be hypochondriacal after her belief becomes accidentally true. Moreover, if
we consider the two scenarios from the perspective of the other subjects populating
the stories - Argan’s relatives and friends - they would still think of Argan as a
victim of self-deception in Scenario 2 as they do in Scenario 1; they dispose of
the same evidence in both scenarios, therefore there is no reason for assuming that
they would believe that Argan is sick in Scenario 2, and that Argan is healthy in
Scenario 110.

If the truth and falsity of Argan’s acquired belief in Scenario 1 and 2, respec-
tively, is not relevant for determining the self-deceptive state, then self-deception
itself seems to behave as a phenomenon insensitive to the belief’s truth-value. Thus,
I suggest to drop CFB, and substitute it with a novel condition, the ‘Deviation Con-
dition’, which better identifies the way in which self-deception attributions are typ-
ically made. From this move we get at least three results: first, CFB-free accounts of
self-deception better match our common intuitions about the phenomenon; second,
it rules out the idea that self-deception is a special instance of ‘failed knowledge’
(this lessens any temptation to treat genuine cases of self-deception as Gettier-
like stories); third, it suggests that the understanding of self-deceptive subjects as
epistemic agents lacking (self-) knowledge is likely inaccurate. Monsieur Argan in
Scenario 2 is deceiving himself in believing that p, and p is ‘accidentally’ true; how-
ever, as shown by Argan’s two scenarios example, in accounting for self-deception
the truth-value of p appears to be fully irrelevant as self-deception occurs indepen-
dently of the truth value of the self-deceptive belief.

4 The Pragmatic Tension of Self-Deception
The proposed CFB-free account of self-deception also includes a further condition
to enhance the set of conjointly sufficient conditions for entering self-deception:

9On the negative relation between motivational bias and justification, see also [14].
10Note that Argan’s friends and relatives potential doubts about Argan’s poor health (‘what if

he is sick?’) given the evidence at their disposal would constitute a typical skeptic maneuver, one
which we would expect to occur in a philosophical context, but not in everyday ordinary life (see,
[22]).
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in addition to CM and CT, I suggest a third condition that I call the ‘Deviation
Condition’ (CD).

1. the subject’s acquired belief p is in tension with the spectators’s acquired
belief non-p.

This further condition ideally grasps the pragmatic and social dimension of self-
deception, which remains underdeveloped in the literature on the topic. What the
social and pragmatic dimension of self-deception amounts to, is revealed by the com-
mon ways in which people attribute self-deceptive beliefs to others, and (sometimes)
to themselves. The social and pragmatic character of self-deception is shown in The
Imaginary Invalid example, where Argan’s friends, relatives and doctors would have
the function of ‘spectators’: notwithstanding the shared evidence, Argan and the
spectators acquire opposite beliefs. In other words, when the process of belief for-
mation of the spectators and of Argan are taken into account, then Argan’s process
represents a deviation from the standard.

As happens in Argan’s case, people deceiving themselves seem to (doxastically)
fail in ways that the others succeed. In other words, in a given circumstance, the self-
deceived subject apparently processes information in a significantly different way
from how she (or the others) would do if she were in the position of a mere spectator.
The sort of tension stemming from the self-deceived subject vs. spectators contrast
differs significantly from the tension involved in CT, as it is of a social and pragmatic
nature, and it is registered over an extended doxastic context, which includes not
only the self-deceived subject - as in the case of CT - but also the spectators. An
extended version of CD can be formulated as follows: let SSD be the self-deceived
subject, SS the spectators, and E the evidence available to any subject within the
wider doxastic context, then given E, SSD acquires p, whereas SS acquire non-p.

Here one essential aspect of self-deception is highlighted: self-deceivers manifest
an abnormal doxastic behavior significantly diverting from the behavior of the oth-
ers. What does such ‘abnormality’ amount to? I intend ‘abnormality’ as a deviation
from the norm, where the norm is the standard doxastic behavior usually observed
in human reasoning. Thus, self-deceptive behaviors can be understood as deviant
doxastic behaviors, which should be ‘measured’ upon the wider doxastic context
constituted by the spectators.

What if the spectators incept the self-deceptive belief? If that happens, the
tension between the self-deceived and the wider doxastic context would be dispelled:
the self-deceptive belief - now shared by both SSD and SS - would not qualify as a
self-deceptive one anymore (within that very same doxastic context). However, the
social and pragmatic tension might characterize the relation between one group of
subjects sharing the same self-deceptive belief, and a wider community of spectators.
That is, the self-deceiver might be either one single individual or one collection of
individuals (a group, a committee, a sect, etc.). In this second case, collective
self-deception11, rather then individual self-deception, is at issue.

11So far, philosophers have been given little attention to collective self-deception. Typically, ac-
counts of self-deception are tailored to individual self-deception alone, and the analysis of collective
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5 Conclusion
The proposed ‘tridimensional’ account of self-deception, via the elimination of the
‘False-Belief Condition’, suggests that occurrences of the phenomenon should not be
understood as epistemic mistakes, or as instances of failed knowledge. Rather, I have
argued, self-deception is better analyzed by attending to its social and pragmatic
dimension, since an acquired belief is ‘self-deceptive’ also because of its tension with
respect to a wider doxastic context. In order to account for its social and pragmatic
dimension, in addition to the ‘Tension Condition’ and ‘Motivation Condition’, I
include a further condition for entering self-deception, the ‘Deviation Condition’,
which is based on the notion of the self-deceiver’s ‘doxastic deviation’ from a wider
doxastic context, with this deviation being a by-product of the pragmatic and social
dimension of self-deception. Besides vindicating the social dimension of the tension
characterizing self-deception, the proposed account offers a unified model, which
applies homogeneously to self-deception, twisted self-deception, as well as collective
self-deception.
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Succeeding in the False Belief Test: Why
Does Experience Matter?

Marco Fenici

abstract. I challenge the view—commonly shared among developmental-
ists—that four-year-olds’ success in the false belief test mostly depends on the
maturation of either computational resource or cognitive processes specific for
mental state attribution. In contrast, available evidence suggests that success
on the task is importantly shaped through conversation and social interaction.
Adult mindreading is not naturally inscribed in our biological endowment, and
social experience has a much more important role than what commonly as-
sumed in its development. KEYWORDS: theory of mind; mindreading; social
cognition; false belief.

1 Introduction
In everyday life, we are apparently very good at attributing mental states to our-
selves as well as to others, and to exploit this ‘mindreading’ capacity—which has
been equated to the possession of a ‘Theory of Mind’—to predict behaviour (Dennet
1987) [14]. In the last thirty years, while most of philosophers have debated about
how to characterise precisely the possession of a ToM (Davies and Stone 1995 [11]),
developmental psychologists have instead focused on mapping the emergence of min-
dreading in infancy and early childhood. To this aim, they have largely employed
the experimental paradigm known as the false belief test (FBT) (Baron-Cohen 1985
[5], Wimmer and Perner 1983 [64]). Research employing FBT has found that it is
not until age four that children consider others’ (false) beliefs to make conscious
predictions about others’ actions (Wellman et al. 2001 [10] and Wellman and Liu
2004 [62]).

Despite recent findings adopting spontaneous-response methodology (see for a
review Baillargeon et al. 2010 [4]), the capacity to pass the traditional (elicited-
response) FBT denotes a robust empirical result (Wellman et al. 2001 [10]) that
resisted many attempts to reduce the difficulty of the task (Wellman et al. 1996
[61], Woolfe et al. 2002 [1]). Thus, it marks an important developmental acquisition
in children’s understanding of others’ minds, which still awaits an explanation.1 In
this article, I aim to improve towards our understanding of this finding by discussing
the contribution of experience to it.

1Accordingly, where the expression is not ambiguous, I will henceforth use ‘FBT’ to refer only
to the traditional elicited-response FBT.
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Following Werker (1989) [63], we can distinguish four models by which experience
may underpin the development of a psychological competence such as the capacity
to pass FBT: (i) maturation characterises the unfolding of a psychological ability
independently of the exposure to environmental features; (ii) in facilitation, experi-
ence affects the rate of development of an ability although it does not influence its
endpoint; (iii) attunement refers to cases in which experience affects the full devel-
opment of an ability including at least partially determining the final state, while
a more basic level of performance develops by mere maturation; (iv) finally, induc-
tion characterises those cases in which the development of a psychological capacity
is entirely structured by the environmental input.

I discuss some accounts relying on the cognitive maturation of ToM capacities in
section 2. Section 3 puts together decisive evidence against both maturation and
facilitation views. Finally, in section 4, I discuss the difference between how social
experience might attune or rather induce ToM abilities, and conclude in favour of
the latter.

2 Cognitive maturation alone does not promote false belief
understanding

It is often assumed that success in FBT indicates the maturation of some cognitive
factor so that younger children’s difficulty with FBT masks a performance problem
(Bloom and German 2000 [7], Fodor 1992 [23]). Nativists about ToM, in particular,
claim that the capacity to attribute mental states has been shaped through natural
selection because of its survival efficacy (Humphrey 1976 [26]), and is underpinned
by dedicated neural processes (Saxe 2004) specific for the social domain (Baillargeon
et al. 2010 [4], Baron-Cohen 1995 [5], Leslie 2005 [29]). This ToM module is sup-
posed to develop in early infancy and to underlie 15-month-olds’ looking behaviour
in spontaneous-response false belief tasks (e.g., Onishi and Baillargeon 2005 [34]).

Because they think that infants already attribute beliefs, ToM nativists con-
tend that younger children’s inability to pass FBT attests performance limitations,
and that four-year-olds’ success in FBT depends on the emergence of additional
computational resources overcoming initial processing constraints. The empirical
plausibility of ToM nativism then depends on the possibility to clarify what cog-
nitive impairments prevent younger children from manifesting their psychological
understanding. I will consider two proposals by Baillargeon (Baillargeon et al. 2010
[4], Scott and Baillargeon 2009 [48]), and Carruthers (Carruthers 2013 [10]).

Baillargeon and colleagues have proposed that the traditional FBT engages at
least three distinct cognitive processes: (i) a process to represent the false beliefs of
other agents, (ii) a process to access and select one’s own representation of another’s
false belief when being asked the test question, and crucially (iii) a process to inhibit
any prepotent tendency from one’s own knowledge to answer questions concerning
others. According to their view, the maturation of inhibitory capacities after age
four motivates children’s late success in the traditional FBT (Leslie 2005 [29]),
Scott and Baillargeon 2009 [48]). Against this proposal, however, findings on several
populations—autistic children (Ozonoff et al. 1991 [36]), children in Asian countries
(see for a review Sabbagh et al. 2013 [44]), deaf children (Schick et al. 2007 [9]),
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and deaf adults (Pyers and Senghas 2009 [39]) — all demonstrate that possessing
mature inhibitory capacities is not sufficient to pass FBT.

Carruthers (2013) [10] also endorses a modularist view about ToM abilities, and
proposes that the traditional FBT imposes a ”triple burden” on the mindreading
system because it requires children (i) to generate the prediction of an action by
processing the mental states of the target agent, (ii) to figure out the communicative
intention underlying the speech of the experimenter, and (iii) to generate a response
that conveys the target agent’s mental states to the experimenter. The collapse of
any of these components under cognitive load, he argues, entails children’s failure
in the task. In contrast, success in FBT indicates some improvement in the interac-
tions between the basic domain-specific component of the mindreading system and
executive, attentional, and planning mechanisms.

Like Baillargeon and colleagues’, also Carruthers’ analysis is unconvincing, though.
Indeed, Carruthers claims that ”it is something about language production (or the
production of communicative actions generally ...) that disrupts successful perfor-
mance in verbal false-belief tasks” (Carruthers 2013 [10], p. 153). But if this was
the case, any task eliminating children’s need to communicate an answer to the
experimenter should be easier than the traditional FBT—a suggestion refuted by
empirical evidence. For instance, de Villiers and de Villiers (2000) [13] told chil-
dren a false belief story with the help of a series of pictures. At the end of the
story, children were requested to select a proper ending by choosing between two
different pictures representing the main character’s emotion. This modification re-
lieved children from the need to communicate with the experimenter but—against
Carruthers’ prediction—did not affect their capacity to pass the task. (See also for
additional evidence Call and Tomasello 1999 [9], Figueras-Costa and Harris 2001
[22], and Woolfe et al. 2002 [1]).

3 Experience does not merely facilitate false belief
understanding

The previous section shows that cognitive factors allegedly responsible for children’s
maturation of false belief understanding—i.e., inhibitory abilities and the capacity
to process communicative intentions—do not account for younger children’s dif-
ficulties with FBT. While the discussion challenges the considered accounts, this
section raises more general and striking doubts that the endogenous maturation of
some cognitive factors can be alone responsible for, or even facilitate false belief
understanding.

As training studies (Rhodes and Wellman 2013 [41]), and scales (Wellman et al.
2006 [60], Wellman and Liu 2004 [62]) attest, children’s knowledge of others’ minds
evolves through distinct conceptual phases. 18-month-olds already understand that
people act on the basis of their desires, which can significantly differ from their own
(Repacholi and Gopnik 1997 [40]). After age three, children also understand that
people’s beliefs may differ from their own and nevertheless guide others’ actions
(as demonstrated by the acquired capacity to pass the diverse belief task, DBT,
(Wellman and Bartsch 1988 [58]), and that people may lack epistemic access to a
situation (as demonstrated in the knowledge access test, KAT, (Pratt and Bryant
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1990 [38]).
DBT and KAT apparently tap some understanding of mental states different

from false beliefs; they seem to pose less difficulties than FBT, are passed before
it and related to children’s performance in it (Rhodes and Wellman 2013 [41]).
However, while children from the United States and Australia pass DBT first and
KAT only later, Chinese and Iranian children reliably pass these two tasks in the
reverse order (Shahaeian et al. 2011 [51], Wellman et al. 2006 [60]). This signifi-
cant cross-cultural variation rejects the possibility that the progressive maturation
of processing capacities may bring children to pass DBT and KAT, first, and FBT
later: if DBT was less demanding than KAT, as attested from Western children’s
developmental trajectory, why would Chinese and Iranian children find it so diffi-
cult and master it only after mastering KAT? The reversed problem appears if we
consider KAT, which seems cognitively demanding for Western children but much
easier for children from Asian countries.

Other studies also provide a final piece of evidence denying that social experience
might merely facilitate children’s capacity to pass FBT—that is, the idea that
social experience may affect, at most, the development of false belief understanding
but not its final acquisition. Rhodes and Wellman (Rhodes and Wellman 2013
[41]) trained Western almost-four-year-olds with false belief situations twice a week
over one month and half. Crucially, after the training period, only those children
who initially passed KAT (and DBT) also improved their success rate in FBT; in
contrast, training was not efficacious for children who did not pass KAT. In addition,
control children who initially passed KAT but were not later included in the training
sessions did not improve their FBT success rate. This shows that children did not
progress in their understanding of false beliefs due to the passage of time alone:
experience with false belief situation in training session was crucial for this.

This experiment corroborates data from comparative studies showing that sub-
ject lacking access to the proper kind of social and conversational experience about
others’ mental states never develop a proper understanding of others’ beliefs as man-
ifested in FBT. Deaf children raised by hearing parents, for instance, are exposed to
limited conversational input, and do not develop complex linguistic abilities as well
as false belief understanding; in contrast deaf children from non-hearing parents,
who are exposed to typical conversational input, present a typical development of
mental state understanding (Schick et al. 2007 [9]). Similarly, Nicaraguan non-
signer deaf adults, who had limited conversational abilities did not equally manifest
good understanding of false beliefs (Pyers and Senghas 2009 [39]). Significantly,
both groups recover their initial limitations as soon as they are thought a sign
language, thereby they acquire a method to represent and gain information about
mental states.

Overall considered, these data exclude that social experience merely facilitates
false belief understanding. If that was the case, one would expect that children
would end passing FBT anyway—although they should pass it earlier when pro-
vided with proper social experience. The cases of deaf children from hearing fami-
lies and Nicaraguan non-signer deaf adults however show that the capacity to pass
FBT remains profoundly impaired when it is not supported by adequate social in-
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teraction. Nevertheless, there is neither predetermined period nor critical threshold
to start succeeding in FBT.

To sum up: the developmental trajectory of children’s understanding of others
mental states is open to, and influenced by cultural influences. This excludes cog-
nitive maturation as a correct model for the process of development underlying
children’s understanding of false beliefs. Neither is facilitation an adequate model:
subjects who do not receive adequate social and conversational experience never get
to the point to pass FBT. Therefore, false belief understanding is very likely con-
strained by cognitive maturation, but it is crucially underpinned by social learning.

4 Experience does not attune false belief understanding
Having discarded two models of the development of social understanding based on
cognitive maturation and the facilitating role of social experience, it remains to
be decided whether social experience attunes or rather induces false belief under-
standing. Scholars embracing cognitive as well as socio-cultural accounts of the
development of social cognition firmly opt for the first possibility (see, for instance,
for some examples from the two perspectives Carruthers 2013 [10], German and
Leslie 2004 [24], San Juan and Astington 2012 [45], Banaji and Gelman 2013 [57]).
However, arguing for the attuning role of social experience on children’s capacity
to pass FBT requires to make two relevant assumptions: (i) that the cognitive
processes specific for belief attribution—for instance, those presupposed by ToM
nativists and allegedly manifested in spontaneous-response FBT—exist already be-
fore the time that children start passing elicited response FBT, and (ii) that it is the
refinement of these processes that specifically promotes false belief understanding
at age four. There would be otherwise no reason to contend that social experience
attunes innate or biological mindreading competences rather than that a novel ca-
pacity to attribute mental states is assembled in the course of development following
social input.

Empirical data as well as theoretical reflection opposes both assumptions. As to
(i), it is undeniable that infants are hardwired to distinguish intentional agents from
physical bodies. Nevertheless, that they selectively respond to other agents’ (false)
beliefs in spontaneous-response tasks does not yet demonstrate that they are also
attributing representational states. Nor it specifies which properties of the agent
infants are sensitive to. Their sensitivity to others’ beliefs might depend on the
capacity to track some simpler properties or features of action that are coextensive
in predictive power with the possession of (false) beliefs.

Following these considerations, some have suggested that infants’ performance
in spontaneous-response tasks actually does not depend on a capacity to attribute
beliefs but on (i) more minimal capacities to track others’ beliefs by responding to
their observable manifestation in overt behaviour (belief-like mindreading accounts,
(e.g., Apperly and Butterfill 2009 [1], Butterfill and Apperly 2013 [8])), or (ii) some
sensitivity to others’ goals and perceptual states (perceptual mindreading accounts,
(e.g., Fenici 2014 [21])), or even (iii) depend on less sophisticated embodied compe-
tences that do not have any direct translation in the vocabulary of folk psychology
(non-mindreading accounts, (e.g., Heyes 2014 [25]).
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More significantly, even if we grant for the sake of the argument that infants’
social cognitive abilities identify a minimal capacity to attribute representational
states, a full defence of the attuning over the inducing role of social experience for
children to pass FBT is also committed—as previously noted—to the additional
claim (ii) that passing elicited-response FBTs essentially exploits the same cogni-
tive processes underlying spontaneous-response FBTs. The attuning role of social
experience would be indeed rejected if there was only marginal overlapping between
the cognitive processes underlying infants’ alleged mindreading abilities and those
granting the capacity to pass elicited-response FBTs.

Empirical evidence supports the latter hypothesis, though. As Fenici (2013)
[20] argued extensively, the development of social cognitive abilities from infancy
to early childhood is discontinuous. Summarizing the discussion, at least three
distinct sets of considerations support the conclusion. A first line of reasoning is
based on the likely existence of a double dissociation between low-level gaze-tracking
and processes tapped in spontaneous-response FBTs and high-level belief-tracking
processes assessed in the traditional FBT (as suggested by Senju et al. 2009 [50]
and 2010 [49]). A second line of argumentation considers evidence showing that
performance on spontaneous- and elicited-response FBTs remain separated even
in adulthood (as suggested by considering together data from a series of studies
(Surtees et al. 2011 [54] and 2012 [53]). Finally, a last piece of evidence supporting
the same conclusion descends from transitional studies assessing the development
of social cognitive abilities from infancy to early childhood (Thoermer et al. 2012
[15]).

Therefore, available evidence seems to reject the view that common belief attribu-
tion capacities at age four actually extend the cognitive abilities underlying infants’
sensitivity to false beliefs as manifested in spontaneous-response FBTs. Rather,
two distinct sets of capacities appear to be at work in spontaneous-response and
elicited response FBTs. This conclusion rejects strict continuity in social cognitive
development from infancy to early childhood thereby denies that social experience
promotes four-year-olds performance in elicited-response FBTs by merely attuning
infants’ basic social cognitive capacities.

5 Conclusions
According to the received view, our capacity to attribute mental states has been
inscribed in our biological endowment by natural selection in the evolution of our
species. It follows that experience has a little role to play in the acquisition of min-
dreading capacities: either it facilitates their acquisition, or it triggers and attunes
their development from more basic pre-existing mindreading abilities. Against such
a view, available evidence shows that (i) children and even adults never come to
understand that people can possess false beliefs when deprived of proper social and
linguistic interaction, and that (ii) the development of social cognition undergoes
important discontinuities between infancy and early childhood. The first point
excludes that experience merely facilitates children’s success in FBT; the second
suggests—against the attunement hypothesis—that four-year-olds’ capacity to pass
FBT does not depend on previous basic mindreading abilities.
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From these considerations, I conclude that four-year-olds’ success in FBT reflects
the acquisition of a novel psychological competence, and that life experience in the
first years is fundamental to induce such an important change in children’s under-
standing of the social world. The conclusion allows integrating current knowledge
about the development of social cognition with both current discussion about the
role of language for the acquisition of a ToM (Astington and Baird 2005 [2], Milligan
et al. 2007 [33], Siegal and Surian 2011 [52]) and data from a number of studies
indicating that success in FBT is affected by social and conversational experience
provided by wider familiar environments (Ruffman et al. 1998 [43]) where parents
are inclined to elaborate the child’s talk (Ensor and Hughes 2008 [17], Ontai and
Thompson 2008 [35]), and frequently discuss about mental states (Dunn et al. 1991
[16] and 2005 [7], Meins et al. 2003 [31], Ruffman et al. 2002 [43], Taumoepeau and
Ruffman 2006 [55]).

What remains an open question, instead, is what specifically social and linguistic
experience provide to children that enables them to pass FBT. On the one hand,
one possibility—compatible with the proposals by Apperly and Butterfill (2009) [1],
de Villiers (2005) [12], Miller and Marcovitch (2012) [12], and Perner (1991) [37] —
is that social and linguistic experience improve domain-general reasoning capacities
and allows new representational abilities (Karmiloff-Smith 1992 [28])(Carruthers
2013 [10]). On the other hand, it may also be that social interaction instructs
children about the use and function of mental state concepts, and that only this
domain-specific knowledge is necessary to pass FBT (Fenici 2011 [18] and 2012 [19],
Hutto 2008 [27]). It is up to future research clarifying which of these options is the
most likely.
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How to Bite the Bullet of Quidditism –
Why Bird’s Argument against Categorical-
ism in Physics fails

Andreas Bartels

abstract. Bird’s [1] a priori argument against Categoricalism with respect
to fundamental physics properties is shown to be ineffective: First, there
are categorical characteristics of fundamental properties of physics which are
not fixed by the causal roles of these properties, but contribute to the iden-
tities of these properties and are thus legitimate candidates for quiddities.
The existence of those substantive quiddities does not give rise to any in-
principle-limitation of our knowledge of properties, but only to familiar sorts
of empirical under-determination. Thus, Quidditism with respect to substan-
tive quiddities does not lead to any unacceptable epistemic consequences,
and therefore does not compromise Categoricalism. Second, the same sort of
under-determination would apply to the dispositional monist’s conception of
properties. Thus the dispositional monist has to bite the bullet too, if there
is any.

1 Introduction
[1] has launched an a priori argument against Categoricalism with respect to fun-
damental properties of physics. The argument is, in short, that Categoricalism
with respect to fundamental properties of physics entails Quidditism, according to
which the identity of a fundamental property is not fixed by its causal roles. But
Quidditism leads, as Bird has argued, to an unacceptable epistemic consequence: if
Quidditism were true, then we could not know in principle the fundamental prop-
erties of nature. Since this in-principle-limitation of knowledge would be forced
upon us, not by any known limitation of human knowledge capacities, but by the
metaphysical postulate of Categoricalism, which has no independent empirical sup-
port, this alleged limitation cannot be accepted. Therefore, Categoricalism cannot
be true. Since Categoricalism is the logical negation of the claim of dispositional
monism, this in turn entails strong a priori support for the thesis of dispositional
monism.

In the following, I will accept the claim that Categoricalism entails Quidditism.
Categoricalism is the thesis that fundamental properties have their causal roles (or:
their ‘powers’), if there are such, not essentially. If Categoricalism is true, then
there might exist two different properties in the same world (for example, in our
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world) that have exactly the same powers.1 Thus Categoricalism implies that the
identity of fundamental properties is not completely fixed by their powers, which is
exactly the claim of Quidditism.

What I will call into question is the claim that Quidditism leads to the conse-
quence that we cannot know in principle the fundamental properties of nature. That
would be true only with respect to primitive quiddities, which are defined to be just
those characteristics the possession of which makes a property to be exactly this
property. With respect to this sort of Quidditism, Lewis has claimed, “Quidditism
is to properties as haecceitism is to individuals.”2 Since different properties which
are distinct only by their respective primitive quiddities cannot – because of their
non-qualitative character – be discerned by any possible empirical consequences,
the existence of properties with primitive quiddities would indeed lead to some in-
principle empirical under-determination with respect to properties: We may know
that some property fulfills a certain causal role defined by a theory, but we could in
principle never know which property it is that actually fulfills this role. This kind of
in-principle limitation of property knowledge has been termed humility3 by Lewis.

Now, Bird’s argument against Quidditism is not only directed against primitive
quiddities, but to all possible sorts of categorical characteristics of properties which
are not causal powers. In the following, I will argue that there are indeed non-
primitive categorical characteristics of fundamental properties of physics which are
not fixed by the causal roles of these properties, but contribute to the identities of
these properties and are thus legitimate candidates for quiddities. Those character-
istics are provided by the mathematical representations of properties within their
specific theoretical backgrounds. They are the substantive quiddities of fundamental
physics properties.

Against Bird, I will argue that, in contrast to primitive quiddities, the exis-
tence of substantive quiddities does not give rise to any in-principle-limitation
of knowledge. Substantive quiddities could rather be involved in phenomena of
under-determination of theoretical properties by their causal effects, which is a
familiar phenomenon that would not cut any ice concerning the Categoricalism-
Dispositionalism-issue. Thus, no inacceptable epistemic limitation concerning the
knowledge of properties follows from the existence of those substantive quiddities.
This blocks the negative conclusion with respect to Categoricalism. Finally, the
point will be further strengthened by the fact that even the dispositional monist
has to face the same sort of empirical under-determination of properties which the
Categoricalist is confronted with: if properties have their identity by their causal

1Cf. [1], 71f.
2[6] (209); on the other hand, Lewis argues, “haecceitism leads to trouble in a way that quid-

ditism does not” (cf. [6] (210). According to [8], the disanalogy between haecceitism and quid-
ditism originates mainly from the worldboundedness of individuals, in contrast to the repeatability
of properties: “Individuals are not repeatable. They are exhausted in one instantiation. That is
why it makes sense to treat them as worldbound. But property types are repeatable. And nothing
in how they repeat poses a barrier to transworld repetition. That is why it makes no sense to treat
them as worldbound” [8] (15).

3Cf. [6] 216. Lewis has commented to this sort of limitation of our knowledge of properties
in some rather relaxed way: “Who ever promised me that I was capable in principle of knowing
everything?” ([6] p. 211).
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roles, then exactly those causal roles are under-determined by their manifestations.

2 Why Bird’s Argument fails
Let us now first consider the dialectics of Bird’s argument, i.e. the way in which
judgment about conflicting metaphysical claims is taken to be dependent on their
respective epistemological consequences. If any metaphysical thesis condemns us
to a necessary lack of knowledge of the fundamental properties of the world, this
is seen by Bird as a legitimate reason to reject that thesis. Limits of knowledge
should be based on facts about the world, either concerning the nature of objects
or the nature of human cognitive capacities, which follow from well-confirmed em-
pirical theories. If we dismiss some commonly accepted epistemological assumption
– namely that there are no in-principle limits for knowledge about fundamental
properties – then this should not happen because of some metaphysical thesis that
has yet to be confirmed by empirical theories. In other words: metaphysical theses,
if not rooted in well-confirmed empirical theories, should not be taken as a decisive
reason to reject commonly accepted epistemology; quite to the contrary, in cases of
conflict, it is commonly accepted epistemology that should decide on the validity of
metaphysical theses.

Even if we accept this general lesson about the dependence of metaphysics on
epistemology, the question remains whether the application of this lesson to the case
of Quidditism is legitimate. Is it really true that, in case the identity of properties
is not completely fixed by its powers, we will in principle be unable to know those
properties? The claim gets some credibility by the assumption that in general the
possibility of knowledge of properties is exhausted by the causal characteristics
of those properties. Now, one could argue, if the identity of a property is not
completely fixed by causal characteristics, there is something contributing to its
identity that has no causal connection to our cognitive apparatus and thus cannot
be known by us.

Indeed, properties of the world have to stand in any causal connection to our
cognitive apparatus, in order to become possible objects of knowledge. On the other
hand, it is a well known fact that there are many properties in the world, for instance
the spin of electrons, the radiation intensity of extragalactic radio sources or the
Quark colors, of which we have knowledge only in some very indirect way. Therefore,
it appears to be inadequate to conceive of the ‘causal roles’ of such properties
as something that could be ‘directly’ observed. The content of our knowledge of
those fundamental properties – what they are and under what conditions they will
be instantiated – is essentially determined by their mathematical representations
within theories. It is not constituted by the observable causal effects, to which those
properties may contribute.

The condition that theoretical representations must fulfill, in order to be ac-
counted for as representations of real empirical properties, is the condition of em-
pirical significance. The condition requires that the instantiation of some property
result in any observable effect that would not appear if the property were absent.
Now, if Quidditism were true in the sense that there are substantive quiddities that
individuate fundamental properties, the most epistemically troublesome situations
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that could appear would be like this: There are two competing theories, TF and TG,
where TF is exactly identical to TG, with the exception that TF includes property
F, whereas in TG, at all places where F occurs in TF, F is replaced by property G.
F and G are supposed to be different just by the substantive quidditas Q: F has
characteristic Q, whereas G lacks Q. Since Q is, by definition, not a power, there is
no causal role that is ascribed to something by the ascription of Q, and therefore, it
may appear that both theories are completely alike with respect to all their observ-
able consequences. The properties F and G are different because of their having or
not having characteristic Q, without there being any observable effect that would
favor the assumption that F is present instead of G or vice versa.

The epistemically troublesome situation, to which Quidditism might give reason,
is that of empirical under-determination: No observable fact following from the
respective theories provides any empirical evidence in favor of one of these theories.
By now, we don’t know whether this under-determination is of an in-principle sort,
i.e. of a sort that does not leave open any revision in the future, or of a familiar sort,
leaving open the possibility of being revised at some later time as a result of theory
developments like discovering new connections to other theories or embeddings into
richer theories with respect to which TF and TG behave differently. The latter case
would imply the possibility that new evidence could become available with respect
to which both theories could be distinguished.

If Q were a primitive quiddity, then the under-determination could, in princi-
ple, never be overcome by any further theory development. The reason is that
Q, as a primitive quiddity, could in no way couple to qualitative properties rep-
resented by other theories (as much as it cannot couple to the other qualitative
properties represented by TF). Thus no observable facts could be made available
by means of any further theoretical connections. On the other hand, in-principle
under-determination based on primitive quiddities would produce only a rather
mild sort of limitation for our knowledge of properties. The aspects of reality that
would then in principle escape our knowledge would in no way be involved in the
qualitative natures of processes in the world.

Esfeld [4] has argued that the epistemic situation following from Quidditism is
“in a certain sense [. . . ] a case of under-determination of theoretical entities by
observable phenomena”4. But that under-determination, according to Esfeld, is
not of the familiar sort; rather, because it rests on the necessary non-observability
of the categorical characteristics that make up the difference between the under-
determined entities, it entails a final verdict about our resources to gain knowledge
about the presence of one or the other entity. Again, Esfeld’s claim is uncontroversial
with respect to categorical characteristics that are primitive quiddities, but it would
not be true of substantial quiddities, if there are such. If there were non-primitive
categorical characteristics of properties that contribute to their identities which turn
out to be observable in principle, then Esfeld’s claim of the in-principle status of
quidditistic under-determination would be undermined.

Thus, the question that we have to tackle now is: Are there really substantive
quiddities? Are there characteristics of fundamental physics properties, beneath

4[4].



How to Bite the Bullet of Quidditism 91

primitive natures, that could provide support to the quidditistic thesis that the
identity of a fundamental property is not completely exhausted by its causal roles
as defined by the best current theory?

The substantive quiddities we look for should be observable characteristics of
properties which are categorical in the sense that ascribing them to objects is
not ascribing a causal role. Brian Ellis [3] has argued that there are indeed well
known examples of substantive observable quiddities, namely paradigmatic cate-
gorical characteristics like localization. In contrast to dispositional characteristics
(“whose identities depend on what they dispose their bearer to do”5), localization
(where in space a property appears) is a characteristics the identity of which de-
pends on what their bearers are6. The ascription of a place to something does not
ascribe to it a causal role. Thus, localization is clearly a categorical characteristic.
Whereas localization is not causally active by definition, it is, according to Ellis,
nevertheless observable.

If, for instance, light is reflected by a surface, a certain particle placed on that
surface reflects the light, because it has a capacity to do so. The place of the particle
does not have any capacity by itself. But it determines, from what direction the
reflected light will reach the eye of the observer. The categorical characteristic
localization thus modifies the causal effects that have been produced by dispositional
characteristics in the first place; it is causally effective in an indirect way, in the sense
that its causal effectiveness depends on the presence of capacities which are causally
efficient in a direct way. Since the localization of a particle with the capacity to
reflect light is connected with causal influences that would not appear if the particle
had been at another place, localization is clearly observable.7

What Ellis supplies us with, is a case of a clearly categorical, observable charac-
teristic. But it is doubtful whether localization is also a quiddity. Quiddities are, by
definition, involved in the individuation of properties. But it seems that the capacity
of a particle to reflect light can be completely understood without any mentioning
of the characteristic of being localized at a certain place, and thus localization does
not participate in the individuation of reflectivity. Furthermore, localization has the
status of being categorical only within a classical theory of space. Within General
Relativity space, or rather spacetime, is represented by a metrical field that is taken
to be essentially causally active. Therefore, we have to search out for other can-
didates for observable quiddities. But, at least two insights of Ellis’ considerations
can be preserved in this search: First, the insight that categorical characteristics are
in principle observable, and second, that their observability comes about in some
indirect way, i.e. it is not the result of some intrinsic activity (as it is the case for
dispositional characteristics), but rests on their influencing and modifying the way
in which intrinsic activities of properties manifest themselves.

Candidates for quiddities that fulfill both of the criteria mentioned above are
the mathematical properties that characterize fundamental properties in physical
theories. One example is the property of “being represented by a scalar (or by

5[3], 136.
6[3], 136.
7Cf. [3], 140.
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a vector/tensor)”. Such mathematical properties are categorical because they are
not individuated by any causal roles. But they are also in principle observable,
if only in some indirect way. If, for instance, a fundamental physical property is
mathematically characterized by a scalar, then certain observable phenomena may
be allowed by the respective theory, which would not be allowed if the correct
representation of that property were realized by a vector.

Think, for example, of Descartes’ scalar theory of momentum that represents mo-
mentum by a scalar and requires conservation for total scalar momentum. Descartes’
theory allows that a lighter body is reflected by a heavier one, keeping on its scalar
momentum during its movement to the opposite direction (whereas the heavier body
does not change its state of motion at all). That sort of phenomenon would not
be allowed by a theory representing momentum by a vector quantity and requiring
a law of conservation for vector momentum that would entail that momentum is
conserved in all possible directions.

Mathematical properties figuring in the representation of fundamental properties
are thus not ‘only’ mathematical properties. The way in which they contribute to
the shape of property representations corresponds to the observable physical behav-
ior of the respective properties. Thus, characteristics like ‘being represented by a
scalar’ have also a physical meaning and they are in principle observable in the same
way in which localization in Ellis’ example is observable. Since these characteris-
tics, despite of their being not definable by causal roles, contribute to the meaning
of physics properties, the meaning of physics properties cannot be exhausted by
causal roles. Moreover, since those mathematical characteristics are involved in the
individuation of fundamental physics properties – what a certain physics property
is depends critically on those mathematical characteristics – they are legitimate
candidates for substantive quiddities. If, as a result of ongoing empirical inquiry,
observable consequences of those substantive quiddities show up, then this does
not in any way diminish their status as quiddities. Even if they have empirical
consequences, they will for sure not be definable by means of these consequences.

In order to avoid misunderstandings, it should be mentioned that the distinction
between quiddities versus powers (causal role-characteristics) does not coincide with
the distinction between simple versus structural properties. Both, quiddities and
powers are ‘structural’ characteristics in the sense that quiddities (like ‘being repre-
sented by a scalar’) just as powers (e.g. the power of gravity to produce gravitational
attraction) turn out to be instantiated by realizations of a given characteristic struc-
ture. In the case of substantive quiddities, the respective structure determines by
which mathematical object the property would be represented, whereas in the case
of powers, the structure determines by which sort of connections to other properties
it would be actualized.

Fundamental physical properties are individuated by means of their specific sub-
stantive quiddities. The powers that can be ascribed to them depend on how the
properties are embedded into specific theory nets. Thus, one and the same property
may be connected to different powers, depending on how connections to other prop-
erties are formed according to the specific theory or theory formulation in which the
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property occurs.8 The case of under-determination of properties F and G within
their respective theories TF and TG, mentioned above, would be a case in which
different properties (distinct by a substantive quiddity Q) share all their powers.
In the following, pairs of properties which are empirically under-determined in that
way I will call Doppelgänger-properties.

Since the quiddities which we are concerned with now, are not primitive, but
substantial observable quiddities, possible cases of empirical under-determination
resulting from the existence of Doppelgänger-properties would be of the familiar
sort of under-determination: Later theoretical development could provide some
extension of the connections to other properties, which in turn could make new
evidence available with respect to which one of those Doppelgänger-properties may
be favored against the other. There is no reason to suspect any in-principle empir-
ical under-determination following from the possibility of Doppelgänger-properties.
Thus, since no principled limitation of knowledge of properties results from such
cases, it would be unreasonable to think that, by allowing them, Categoricalism
would be compromised.

3 Tu quoque: The Under-determination of Causal Roles
The first part of this paper was about how to bite the bullet of Quidditism. We
can bear biting it because the possible epistemological consequences connected to
it turn out to be of a quite familiar sort. The second part will now show that the
dispositional monist will have to bite this bullet too (or, at least a very similar one)
– even if empirical under-determination as a result from the possible existence of
Doppelgänger-properties were undesirable, dispositional monists would necessarily
face exactly the same obstacle. Thus any a priori reason to favor Dispositional
Monism against Categoricalism disappears.

For the sake of argument, let us assume that Dispositional Monism is correct, i.e.
every fundamental property is completely individuated by the causal roles (powers)
characterizing it. But what is it that individuates causal roles?

Take, for example, the fundamental property (within Newtonian gravitation the-
ory) of passive gravitational mass mp. One of the causal roles of this property is to
produce the force W = mp g (weight), where g is the gravitational acceleration at
the place of the body which has mp. The manifestation of this causal role comes
about, when the body with weightW is placed on a balance; a pressure will then be
exerted upon the surface of the balance, and its pointer may show a certain value
of the weight. What individuates the causal role of mp, its weight W? It is not its
manifestations, but the specific way in which the causal influence of mp resulting
in the manifestation by the balance is exerted, namely the coupling of the passive

8For example, the metric in General Relativity is determined by the mathematical (‘categorical’)
characteristics of the metric tensor. The connection of the metric with the affine connection, which
is provided by the field equations, determines what tidal forces (‘powers’) can be ascribed to the
metric. Non-standard formalisms of General Relativity use other sorts of connections between
the metric and the affine structure. According to the Palatini formalism, for instance, the metric
and the affine structure are independent structures. Thus, while the tidal forces can be ascribed
as ‘powers’ to the metric according to the standard theory, this cannot be done according to the
Palatini formalism (cf.[7], [5]).
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gravitational mass to the gravitational field.
The reason that causal roles are not individuated simply by their manifestations

is that causal phenomena like the manifestation of a causal role may be caused in
quite different ways. The occurrence of a certain pressure upon the surface of the
balance may have different sorts of possible causes. As long as we know only the
pressure upon the surface of the balance, it remains absolutely under-determined
which causal role it is that manifests itself by that pressure. The relation between
‘theoretical’ and ‘observational’ properties, where the first are under-determined by
the occurrences of the latter, re-appears now for the relation between causal roles
and their manifestations.

That the under-determination of causal roles by their manifestations is a pos-
sibility that appears within real science will be shown now by the example of a
theoretical alternative that exists concerning the production of the pressure ex-
erted upon the surface of the balance. In the Newtonian theory of gravitation, the
pressure is the result of a coupling between the passive gravitational mass and the
gravitational field. Einstein’s9 thought experiment of a box within gravitation-free
space shows that this pressure could be produced, within the frame of Newtonian
mechanics, by a quite different mechanism. It could be produced in the absence
of a gravitational field as the effect of an acceleration field: If the box were be
accelerated by some acceleration equal to g in the upward direction, relative to the
person in the box, the Newtonian inertial mass of the body of the person inside the
box would produce exactly the same quantity of pressure upon the balance that,
in the first situation, had been produced by the passive gravitational mass (and its
coupling to the gravitational field).

As is well known, Einstein took the fact that the two situations are indistinguish-
able with respect to any empirical effects as indicating that these situations are not
distinct in reality, and thus the different theoretical descriptions corresponding to
them (“gravitational mass” versus “inertial mass”) should be replaced by only one
applying to both of them. But his famous inference to the principle of equivalence
entailing the unification of gravitation and inertia is not in the focus of my interest
at this point.

What the example rather shows is that – within one and the same theoretical
frame – two different theoretical mechanisms exist that produce indistinguishable
observable effects. The causal role which the passive gravitational mass plays –
via the mechanism of coupling to the gravitational field – in producing the pressure
upon the balance is different from the causal role that is fulfilled by the inertial mass
– via its coupling to an acceleration field. Even if, in the case at hand, a unification
program concerning these different causal roles has been successful, it cannot be
guaranteed by any a priori reason that the duality of empirically indistinguishable
causal roles of fundamental physical properties could be overcome by some later
unification in general. The dispositionalist might insist that unification is not an
accident, but a necessity. But, with respect to our example, this would amount
to the claim that Newtonian gravitation theory represents a physically impossible
world. If a theory of properties would imply such an exaggerated consequence,

9[2], p. 44f.
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this would be strong reason for distrust. Einstein’s box thought experiment shows
that there can be observationally indistinguishable, but different causal roles corre-
sponding to different physical properties which are involved in specific mechanisms
as described by a theoretical frame.

The individuation of causal roles, in other words, is not accomplished by observa-
tional effects, but by ways on which those effects are produced. If causal roles were
individuated by their observational effects, then this would amount to a conception
of properties as bundles of causal effects. But the dispositional monist, whose per-
spective we take for granted here for the sake of argument, could not subscribe to
such a conception of properties. Rather, properties are genuine activities accord-
ing to the dispositional monist’s view. They have to be individuated by types of
activities, e.g. by mechanisms or ways of producing observable effects.

Now, mechanisms are themselves theory-dependent: The right answer to the
question whether some mechanism is the same or rather different from another
mechanism depends on whether a theory representing those mechanisms represents
them as being the same or as being different. In our example: what causal role
has been manifested by exerting a certain pressure upon the balance depends on
the theoretical explanation of this causal phenomenon, and thus it depends on the
theoretical concepts that are involved in this explanation.

From that it follows that causal roles may be under-determined by empirical
evidence in just the same way in which this may be true of the Doppelgänger-
properties the possibility of which the categoricalist has to accept. The case of
gravitational versus inertial origin of pressure upon a balance exemplifies this claim.
Thus, the dispositional monist has to take into account – as a consequence of his
conception of properties – just the same sort of empirical under-determination of
our knowledge of properties that the categoricalist has to accept with respect to
his/her conception of properties.

4 Conclusion
Let us summarize: As the first part of the argument shows, the alleged inaccept-
able epistemic consequence of Quidditism – and thus of Categoricalism from which
it follows – turns out to entail nothing more than the possibility of familiar cases
of under-determination of properties by empirical evidence: there are possible cases
in which we don’t know which property is present given our best empirical evi-
dence. Since there is no reason to suspect any in-principle character of that under-
determination, those possible cases cannot ground any basic skeptical conclusion
with respect to our possible knowledge of properties and thus don’t supply strong a
priori reason to reject Categoricalism. The second part of the argument shows that
Dispositional Monism and Categoricalism are completely on a par concerning the
consequences for our knowledge of properties: The dispositional monist faces, with
respect to his/her preferred conception of properties as constituted by causal roles,
the same sort of empirical under-determination for knowledge of properties which
the Categoricalist has to accept with respect to his/her conception of properties.
Thus, as far as our possible knowledge of properties is concerned, there is no a priori
reason to favor Dispositional Monism over Categoricalism or vice versa.
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A Real World Semantics for
Deterministic Dynamical Systems
with Finitely Many Components

Marco Giunti

abstract. This paper shows in detail how it is possible to develop a
real world semantics for models (in contrast with the usual possible worlds
semantics for languages or theories), in the case of a widely used class of
scientific models, namely, deterministic dynamical systems with finitely many
components.

1 Introduction
In general, we take an empirical theory to be any theoretical construct, not neces-
sarily of a linguistic type, which is expressly designed to describe or explain real
phenomena. The exact nature of the semantic relations that an empirical theory
may bear to the real world then depends on how either the theory or the phenomena
are further conceived or analyzed.

According to the syntactic view, an empirical theory consists of an axiomatized
theory—a purely formal system, together with a set of correspondence rules—an
interpretative system (Hempel [11]; [12], sec. 8). The real world reference of the
observational terms is supposed to be fixed, but the interpretative system does not
typically suffice to set the reference of the theoretical ones. Thus, on this wiew,
only observational sentences turn out to be true or false of the real world. As
a consequence, empirical adequacy,1 and not truth, turns out to be the relevant
semantic relation between a theory and the world.

According to standard semantics, a theory is true or false in a possible model,
which essentially is a set with an appropriate mathematical structure. Therefore, if
a theory has to be true of the world in the standard semantic sense, the world itself
must be a model of the theory (Balzer, Moulines, and Sneed [2], p. 2; Bickle [3], p.
62) and, consequently, it must have a full blown mathematical structure. However,
such a strong Platonistic stance may very well seem too high a price to pay.

For van Fraassen ([18], ch. 3), the syntactic view is not adequate even from the
empiricist’s viewpoint, because its notion of empirical adequacy is utterly flawed. In
his view, theories are better conceived semantically, as sets of models, and empirical
adequacy is then analyzed as a relation between a model of the theory and the phe-
nomena it describes. In fact, when a theory is empirically adequate, the structures

1For the syntactic view, a theory is empirically adequate just in case all its observational
consequences (the so called empirical content of the theory) are true.
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of the described phenomena are isomorphic to appropriate substructures empirical
substructures of a model of the theory. Thus, for van Fraassen, phenomena do have a
mathematical structure, but not as rich as the structure of the corresponding model.
Furthermore, phenomenal structures are purely empirical or observational, as well
as the substructures of the model isomorphic to them. In van Fraassen’s view, the
isomorphism between phenomenal structures (also called appearances, [18], p. 45)
on the one hand, and substructures of a model of the theory on the other one, is
the ultimate and most fundamental semantic relation between an empirical theory
and the real world.

Van Fraassen’s suggestion, that the crucial semantic relation is an isomorphism
between model substructures and phenomena, seems to be on the right track. How-
ever, his view leaves at least three important problems unsolved. (a) Are the math-
ematical structures of the world to which a model is related exclusively empirical or
observational, as van Fraassen claims? (b) Are such structures given independently
of the theory, or are they somehow theoretically constructed, as Suppe ([16], pp.
132, 144-147, 150) maintains? And, finally, (c) how are we to precisely identify the
empirical substructures of a model?

In this paper, we are going to delineate an alternative position that does not pre-
suppose any given mathematical structure of the world. This approach elaborates
and develops, within a framework of constructive realism, the essential aspects of
van Fraassen’s view with respect to the relation between models and reality, over-
coming its difficulties.

More precisely, this position is realist in the sense that the representational rela-
tion between a model and the world is intended as a relation of truth (and not just
empirical adequacy), which is based on an identity relation between the mathemat-
ical structure of the phenomenon under investigation and an appropriate substruc-
ture of the relative model. However, both the phenomenal structure and the model
substructure are not independently given, but they are rather constructed by means
of an appropriate interpretation of the model on the phenomenon. This interpre-
tation, which in general is not merely empirical, presupposes, besides the model,
also a low level theoretical element—a functional description, which is constitutive
of the phenomenon itself.

In the subsequent sections, we are going to show in detail how it is possible to
develop a real world semantics for models (in contrast with the usual possible worlds
semantics for languages or theories), in the case of an important class of models,
namely, deterministic dynamical systems with finitely many components.

In the first place, we are going to define an interpretation IDSL,H of a dynamical
system DSL on a phenomenon H. The interpretation IDSL,H will then allow us
to define what it means, for the interpreted dynamical system (DSL, IDSL,H), to
be a true model of H. In the second place, we will show how such interpretation
induces, on the one hand, a mathematical structure on H and, on the other one,
a substructure on DSL. Finally, we will prove that (DSL, IDSL,H) is a true model
of H if, and only if, the structure of H induced by IDSL,H is identical to the
substructure of DSL induced by IDSL,H .
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2 Deterministic dynamical systems with n components
We are now going to define a real world semantics for a widely used class of models—
deterministic dynamical systems whose state space has a finite number n ∈ Z>0 of
components. In general, a deterministic dynamical system can be identified with
a pair DSL = (M, (gt)t∈T ), where M is a state space and (gt)t∈T is a family of
functions from M to M (called state transitions) that satisfy the two conditions
g0(x) = x and gv+t(x) = gv(gt(x)). The index set T is called the time set and each
of its elements is to be thought as the duration of the corresponding state transition.

Durations can be added and, according to the (decreasing) richness of the alge-
braic structure imposed to the addition operation +, the time model L = (T,+)
turns out to be a group or a monoid. The set of the corresponding state transitions
{gt : t ∈ T}, together with the usual operation of function composition ◦, also turns
out to be, respectively, a group or a monoid.

Durations are usually taken to be either continuous or discrete quantities. In
the first case, the time set T is identified with either the set of the reals R or the
non-negative reals R≥0, and the operation + of addition over durations is the usual
addition of two real numbers. In the second case, T is identified with either the set
of the integers Z or the non-negative integers Z≥0, and the operation + of addition
over durations is the usual addition of two integer numbers.

The usual definition of a dynamical system (Arnold [1]; Szlenk [17]; Giunti [8];
Hirsch, Smale, and Devaney [13]) intends to formally render the intuitive concept of
an arbitrary deterministic system, either reversible or irreversible, with continuous
or discrete time or state space. However, Giunti and Mazzola [10] have recently
noticed that this definition is not completely general, for it does not fix the minimal
algebraic structure on the time set T that can still support an adequate notion
of a deterministic dynamics on the state space M . The two authors have argued
that such a minimal structure is a monoid and, consequently, that the most general
definition of a deterministic dynamical system is the following.
Definition 1 (Dynamical system).

DSL is a dynamical system :=

1. (a) L = (T,+);
(b) DSL = (M, (gt)t∈T );

2. (a) + : T × T → T ;
(b) ∀t ∈ T, gt : M →M ;

3. (a) + is associative and
(b) its unity 0 ∈ T exists;
(c) ∀x ∈M, g0(x) = x;
(d) ∀v, t ∈ T, ∀x ∈M, gv+t(x) = gv(gt(x)).

The following are all examples of dynamical systems.
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Example 1 (Dynamical systems with discrete or continuous time set or
state space).

1. Discrete time set (T = Z≥0) and discrete state space: finite state automata,
Turing machines, cellular automata restricted to finite configurations.2

2. Discrete time set (T = Z≥0) and continuous state space: many systems spec-
ified by difference equations, iterated mappings on R, cellular automata not
restricted to finite configurations.

3. Continuous time set (T = R) and continuous state space: systems specified
by ordinary differential equations, many neural nets.

Definition 1 is a formal rendition of the most general notion of a deterministic
dynamical system. However, in this paper, we are going to develop a real world
semantics only for those dynamical systems whose state space can be factorized into
a finite number n ∈ Z>0 of components. For any i (1 ≤ i ≤ n), let Xi be a non-
empty set. An n-component dynamical system is then defined as follows (Giunti
[9], sec. 4.1).
Definition 2 (n-component dynamical system).
DSL is an n-component dynamical system := DSL = (M, (gt)t∈T ) is a dynamical
system and M ⊆ X1 × ...×Xn.
Furthermore, for any i, the set Ci := {xi: for some n-tuple x ∈ M,xi is the i-th
element of x} is called the i-th component of M .3

Example 2 (The 4-component dynamical system DSP ).
A typical example of a 4-component dynamical system is the system DSP (see (2)
below), which is individuated by the equation of motion of a projectile:(

dx(t)
dt = ẋ(t), dy(t)

dt = ẏ(t), dẋ(t)
dt = 0, dẏ(t)

dt = −g
)
, (1)

where g ∈ R is a fixed positive constant. The solutions of this ordinary differential
equation univocally determine the 4-component dynamical system:

DSP = (X × Y × Ẋ × Ẏ , (gt)t∈T ), (2)

where P = (R,+) is the additive group of the real numbers, X = Y = Ẋ = Ẏ =
T = R and, for any t ∈ T , for any (x, y, ẋ, ẏ) ∈ X × Y × Ẋ × Ẏ ,

gt(x, y, ẋ, ẏ) =
(
ẋt+ x, − 1

2gt
2 + ẏt+ y, ẋ, −gt+ ẏ

)
. (3)

2The state space of a cellular automaton is discrete (i.e., finite or countably infinite) if all its
states are finite configurations, that is to say, configurations where all but a finite number of cells
are non-empty. If this condition is not satisfied, the state space has the power of the continuum.

3Let proji be the i-th projection map. Then, Ci = proji(M).
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3 Deterministic dynamical phenomena
In general, we take a deterministic dynamical phenomenon (for brevity, phenomenon)
to be any manifestation of the real world that an n-component dynamical system
can represent.

In more detail, any phenomen H can be thought as a pair (F,BF ) of two distinct
elements, a theoretical part F and a real part BF (Giunti [9], sec. 4.1).

The theoretical part F is a functional description which provides a sufficiently
detailed specification of:

1. the internal constitution and organization, or functioning, of any real system
of a certain type ASF ;

2. a causal scheme CSF of the external interactions of any real system of type
ASF during an arbitrary temporal evolution. In particular, the description of
the causal scheme CSF must include the specification of:

(a) the initial conditions that an arbitrary evolution of any real system of
type ASF must satisfy;

(b) the boundary conditions during the whole subsequent evolution;
(c) and, possibly, the final conditions under which the evolution terminates.

The real part BF is the set of all real or concrete systems which satisfy the
functional description F or, in other words, BF is the set of all real systems of type
ASF whose temporal evolutions are all constrained by the causal scheme CSF . BF
is called the realization domain (or application domain) of H.4 Any real system
bF ∈ BF is called an F-realizer.
Example 3 (The phenomenon of projectile motion).
We refer to the phenomenon of projectile motion by the symbolHp,φθ = (Fp,φθ, BFp,φθ ),
where p is an abbreviation for projectile, while φ and θ are two non-negative real
parameters (on which the functional desciption Fp,φθ depends), whose meaning is
explained below.
Theoretical part—Functional description Fp,φθ

1. Description of any real system of type ASFp,φθ : any medium size body in the
proximity of the earth.

2. Description of the causal scheme CSFp,φθ of the external interactions of any
real system of type ASFp,φθ during an arbitrary temporal evolution;

(a) initial conditions: the body is released at an arbitrary instant, with an
initial velocity and position such that the body hits the earth surface at
a later instant, the maximum vertical distance reached by the body with
respect to the earth surface is not greater than φ, and the maximum
horizontal distance is not greater than θ;

4Since the functional description F typically contains several idealizations (see Example 3,
1 and 2), no real or concrete system exactly satisfies F , but it rather fits F up to a certain degree.
Thus, from a formal point of view, the realization domain BF of a phenomenon H = (F,BF )
would be more faithfully described as a fuzzy set.
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(b) boundary conditions: during the whole motion the only force acting on
the body is its weight;

(c) final conditions: the motion terminates immediately after the impact of
the body with the earth surface.

Real part—Realization domain BFp,φθ
BFp,φθ = the (fuzzy) set of all medium size bodies in the proximity of the earth whose
motions satisfy the causal interaction scheme CSFp,φθ . Any body bFp,φθ ∈ BFp,φθ is
called a projectile.

4 Interpretation of an n-component dynamical system on a
phenomenon

Let us now see how a dynamical system DSL = (M, (gt)t∈T ) with n components
C1, ..., Cn can be interpreted on a phenomenon H = (F,BF ). The key point of
the interpretation consists in establishing a correspondence between the time set
T of the dynamical system and the time magnitude of the phenomenon, as well as
between each component Ci (1 ≤ i ≤ n) of the state space and a different magnitude
of H.

In general, we take a magnitude of a phenomenon H to be a property Mj of
every F -realizer bF ∈ BF such that, at different instants, it can assume different
values. The set of all possible values of magnitude Mj is indicated by V (Mj).5

We further assume that, among the magnitudes of any phenomenon H, there
always is its time magnitude, which we denote by T . The set of all possible values
(instants or durations) of the time magnitude of H is indicated by V (T).

An interpretation IDSL,H ofDSL onH consists in stating that (i) each component
Ci of the state space M is included in, or is equal to, the set V (Mi) of the possible
values of a magnitude Mi of the phenomenon H and (ii) the time set T of DSL
is equal to the set V (T) of the possible values of the time magnitude T of the
phenomenon H. In other words, an interpretation IDSL,H can always be identified
with a particular set of n+ 1 sentences. We thus define:
Definition 3 (Interpretation of a dynamical system on a phenomenon).
IDSL,H is an interpretation of DSL on H := IDSL,H = {C1 ⊆ V (M1), ..., Cn ⊆
V (Mn), T = V (T)}, where Ci is the i-th component of the state space of DSL, Mi

is a magnitude of H, T is the time magnitude of H and, for any i, j (1 ≤ i, j ≤ n),
if i , j, then Mi , Mj .

Once an interpretation IDSL,H has been fixed, the dynamical system DSL pro-
vides us with a representation of the temporal evolutions of the real systems (the
F -realizers) in the realization domain BF of phenomenon H. Hence, the system
DSL together with the interpretation IDSL,H can be thought as a model of phe-
nomenon H. This idea is precisely expressed by the definition below.

5It should be noticed that this definition does not require that the magnitudes of a phenomenon
be observational, or even measurable. Furthermore, the nature of the possible values of a mag-
nitude is not specified as well. This, in particular, means that there may be magnitudes whose
possible values are not real numbers.



A Real World Semantics forDeterministic Dynamical Systemswith Finitely Many Components103

Definition 4 (Model of a phenomenon).
DS is a model of H := H is a phenomenon and DS = (DSL, IDSL,H), where DSL
is an n-component dynamical system and IDSL,H is an interpretation of DSL on
H.

Going back to Example 2, we notice that the 4-component dynamical system
DSP is not usually thought as a pure mathematical system. Instead, it is conceived
together with a largely implicit intended interpretation, which makes it a model of
the phenomenon Hp,φθ of projectile motion (Example 3). This interpretation is
made explicit in the following example.
Example 4 (The intended interpretation of the dynamical system DSP
on the phenomenon Hp,φθ of projectile motion).
We use the symbol IDSP ,Hp,φθ to indicate the intended interpretation of the dynam-
ical system DSP on the phenomenon Hp,φθ of projectile motion. Let us also recall
that, at the end of Example 3, we stipulated that any real system (projectile) in the
realization domain BFp,φθ of the phenomenon Hp,φθ be indicated by bp,φθ. In order
to simplify notation, from now on we are going to refer to an arbitrary projectile
just with b.
The interpretation IDSP ,Hp,φθ can be made explicit as follows. Let rb the point
where the projectile b is initially released. Let us then consider the plane that
contains the initial velocity vector of b and the earth center. On this plane, we fix
the axes X and Y of a Cartesian coordinate system with origin in the earth center,
and whose Y axis passes through rb. We take the positive direction of the Y axis to
be the one from the earth center to the point rb. Accordingly, we call the Y axis
vertical and the X axis horizontal.
Let us then consider the following five magnitudes of Hp,φθ:
X = the horizontal component of the position of b,
Y = the vertical component of the position of b,
Ẋ = the horizontal component of the velocity of b,
Ẏ = the vertical component of the velocity of b,
T = the time magnitude of Hp,φθ.
We can now let the four components X,Y, Ẋ, Ẏ of the state space of DSP and its
time set T correspond to these five magnitudes ofHp,φθ. The intended interpretation
of the dynamical system DSP on the phenomenon Hp,φθ of projectile motion is thus
the following set of five sentences:

IDSP ,Hp,φθ = {X = V (X), Y = V (Y ), Ẋ = V (Ẋ), Ẏ = V (Ẏ )), T = V (T)}.
(4)

Let DSp,φθ = (DSP , IDSP ,Hp,φθ ). By Definition 4, DSp,φθ is thus a model of Hp,φθ.
DSp,φθ is called the projectile model (Giunti [9], sec. 4.2.1).

5 True models of phenomena
Once an interpretation IDSL,H = {C1 ⊆ V (M1), ..., Cn ⊆ V (Mn), T = V (T)}
is fixed, we can define as follows the possible states and the state space of the
phenomenon H = (F,BF ), relative to that interpretation.
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Definition 5 (Possible state of a phenomenon, relative to an interpreta-
tion).
x is a possible state of H relative to IDSL,H := x ∈ V (M1)×, ...,×V (Mn).
Definition 6 (State space of a phenomenon, relative to an interpretation).

M := V (M1)×, ...,×V (Mn) is called the state space of H relative to IDSL,H .
The interpretation IDSL,H also allows us to define the instantaneous state of any

F -realizer of the phenomenon H. Let bF ∈ BF be an arbitrary F -realizer of H, and
j ∈ T an arbitrary instant. Then:
Definition 7 (Instantaneous state of an F-realizer, relative to an inter-
pretation).
x is the state of bF at instant j relative to IDSL,H := x = (x1, ..., xn), where xi is
the value at instant j of magnitude Mi of bF (if, at instant j, such a value exists).

Obviously, if x is the state of bF at instant j relative to IDSL,H , then x ∈ M .
Note, however, that, depending on the instant j, the value of magnitude Mi of bF
may not exist.6 If this happens, the state of bF at instant j relative to IDSL,H is
not defined.

Now, relative to the interpretation IDSL,H , we may define the set CF of all those
possible states of H (if any) that actually are initial states of H.
Definition 8 (The set CF of the initial states of a phenomenon, relative
to an interpretation).
CF := {x : for some bF ∈ BF , for some temporal evolution e of bF , for some j ∈ T ,
j is the initial instant of e and x is the state of bF at j relative to IDSL,H}. CF is
called the set of all initial states of H, relative to interpretation IDSL,H .

Intuitively, the set CF may be thought as the set of all those states in M that
are consistent with the initial conditions specified by the causal scheme CSF and
are in fact initial states of some realizer bF ∈ BF .

Also note that, depending on the interpretation IDSL,H , CF may be empty, or
CF may not be a subset of the state space M of DSL.7 The definition of an
admissible interpretation (Definition 12) will exclude these somewhat pathological
interpretations.
Example 5 (The set CFp,φθ of the initial states of the phenomenon Hp,φθ

of projectile motion, relative to the intended interpretation IDSP ,Hp,φθ).
Let CFp,φθ be the set of the initial states of the phenomenon Hp,φθ of projectile

6If, for some reason, bF no longer exists at instant j ∈ T , then a fortiori the value at j of
magnitude Mi of bF does not exist either. Furthermore, it should be noticed that here we are not
making any assumption about the continuous existence of the values of a magnitude during any
interval of time. Thus, it is always possible that the value of a magnitude Mi of bF exists at some
instant j of bF ’s existence, but does not exist at some other instant k of its existence.

7In fact, by Definition 7, CF is empty if, for any bF ∈ BF and any evolution e of bF , some
magnitude Mi does not have a value at the initial instant of e. Also recall that, according to
interpretation IDSL,H (see Definition 3), each component Ci of the state space M is in general a
subset of V (Mi). Thus, if for some x ∈ CF , its i-th component xi ∈ V (Mi) is not a member of
Ci, then CF *M .



A Real World Semantics forDeterministic Dynamical Systemswith Finitely Many Components105

motion, relative to the intended interpretation IDSP ,Hp,φθ of the dynamical system
DSP on Hp,φθ. By Definition 8, such a set turns out to be:

1. CFp,φθ = {x : for some projectile b ∈ BFp,φθ , for some temporal evolution e of
b, for some j ∈ T, j is the initial instant of e and x is the state of b at instant
j relative to IDSP ,Hp,φθ}.
From the equation above, and by recalling how the interpretation IDSP ,Hp,φθ
is defined (Example 4), we get:

2. CFp,φθ = {x : for some projectile b ∈ BFp,φθ , for some temporal evolution e
of b, for some j ∈ T, j is the initial instant of e and x = (0, y, ẋ, ẏ)}, where
0, y, ẋ, ẏ are the values, at initial instant j, of the horizontal position, vertical
position, horizontal velocity, and vertical velocity of projectile b.

Also note that the three initial values y, ẋ, ẏ are not completely arbitrary because,
according to the causal scheme CSFp,φθ (Example 3, 2), they depend on the two
parameters φ and θ.

Let CF , ∅. Let us now define, with respect to interpretation IDSL,H , the set all
initial instants of the evolutions of a given F -realizer bF ∈ BF , whose initial state
x ∈ CF be fixed. We call this set JbF ,x.
Definition 9 (The set JbF ,x of the initial instants of bF whose initial state
is x, relative to an interpretation).
JbF ,x := {jbF ,x : jbF ,x is the initial instant of some evolution of bF and x is the state
of bF at jbF ,x relative to interpretation IDSL,H}. JbF ,x is called the set of the initial
instants of bF whose initial state is x, relative to IDSL,H .

Note that, for some bF ∈ BF and x ∈ CF , JbF ,x may be empty.8 However, by
the definition of CF (Definition 8), for any x ∈ CF , there is bF ∈ BF such that
JbF ,x , ∅.

As we are assuming that the phenomenon H be deterministic, the existence and
identity of the instantaneous state, at any fixed stage of an evolution of any realizer
bF , is not intended to depend on either the initial instant, or the identity of bF ,
but only on the initial state. Thus, any admissible interpretation IDSL,H should at
least ensure that the condition below holds.

Condition D (Determinism). For any bF , dF ∈ BF , for any x ∈ CF , for any
jbF ,x ∈ JbF ,x, for any kdF ,x ∈ JdF ,x, for any t ∈ T , if t+ jbF ,x is an instant of
the evolution of bF that starts at jbF ,x and the state of bF at instant t+ jbF ,x
exists, then t+ kdF ,x is an instant of the evolution of dF that starts at kdF ,x,
the state of dF at instant t+kdF ,x exists as well, and the state of bF at instant
t+ jbF ,x = the state of dF at instant t+ kdF ,x.

Let CF , ∅. For any initial state x ∈ CF , let us consider the set of all F -realizers
whose initial state is x. This set, denoted by BFx , is in other words the collection
of all F -realizers bF whose set JbF ,x is not empty. Note that also this definition, as
the previous ones, depends on the interpretation IDSL,H .

8In fact, JbF ,x is empty if x is not the state of bF at the initial instant of any of its evolutions.
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Definition 10 (The set BFx of the F-realizers whose initial state is x,
relative to an interpretation).
BFx := {bF ∈ BF : JbF ,x , ∅}. BFx is called the set of the F -realizers whose initial
state is x, relative to interpretation IDSL,H .

We noticed above that, for any x ∈ CF , there is bF ∈ BF such that JbF ,x , ∅.
Therefore, by Definition 10, for any x ∈ CF , BFx , ∅.

Suppose CF , ∅. Then, for any x ∈ CF , for any bF ∈ BFx , for any jbF ,x ∈ JbF ,x,
we define the following set of durations:
Definition 11 (The set of durations qbF ,jbF ,x(x), relative to an interpreta-
tion).
qbF ,jbF ,x(x) := {t : t ∈ T , t + jbF ,x is an instant of the evolution of bF that starts
at jbF ,x, and there is y ∈ M such that y is the state of bF at t + jbF ,x, relative to
interpretation IDSL,H}.

Note that Definition 11, like the previous ones, is relative to the interpretation
IDSL,H . Furthermore, qbF ,jbF ,x(x) , ∅, for 0 ∈ qbF ,jbF ,x(x).

Also note that, whenever Condition D above holds, qbF ,jbF ,x(x) depends on x,
but does not depend on either bF or jbF ,x; therefore, if Condition D holds, we simply
write “qF (x)” instead of “qbF ,jbF ,x(x)”.

By Condition D and Definition 11, for any x ∈ CF , qF (x) is the set of all durations
t that transform the initial state x of an arbitrary F -realizer bF ∈ BFx into some
other state of bF . More briefly, we call qF (x) the set of all durations that trasform
the initial state x of H into some other state.
Example 6 (The set qFp,φθ (x) of all durations that transform the initial
state x of the phenomenon Hp,φθ of projectile motion into some other
state, relative to the intended interpretation IDSP ,Hp,φθ).
We recall (Example 5) that CFp,φθ is the set of the initial states of the phenomenon
Hp,φθ of projectile motion, relative to the intended interpretation IDSP ,Hp,φθ . We
notice that, by 2 of Example 5, CFp,φθ , ∅.
For any projectile b ∈ BFp,φθ and any initial state x ∈ CFp,φθ , we indicate with Jb,x
the set of the initial instants of b whose initial state is x, relative to IDSP ,Hp,φθ (see
Definition 9).
We also notice that the intended interpretation IDSP ,Hp,φθ does ensure that Condi-
tion D holds. Therefore, by Definition 11, for any x ∈ CFp,φθ , we get:

1. qFp,φθ (x) = {t : t ∈ T , t+ jb,x is an instant of the evolution of b that starts at
jb,x, and there is y ∈M such that y is the state of b at t+ jb,x}, where b is an
arbitrary projectile member of BFp,φθx and jb,x ∈ Jb,x is any initial instant of
b whose initial state is x.

Let l(x) be the duration of the evolution of b that starts at instant jb,x in state x. It
is not difficult to show that such a duration does not depend on either the projectile
b or the initial instant jb,x, but only on the initial state x.9 Therefore, presumably,

9Let u(b, jb,x) the final instant of the evolution of b that starts at jb,x in state x, that is to
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Equation 1 above reduces to (5) below (Giunti [9], par. 5.3):

qFp,φθ (x) = {t : t ∈ T and 0 ≤ t ≤ l(x)}. (5)

As we are not interested in any interpretation IDSL,H such that (a) CF = ∅, or
(b) CF *M , or (c) Condition D does not hold,10 we define:
Definition 12 (Admissible interpretation).
IDSL,H is an admissible interpretation of DSL on H := (i) CF , ∅ and (ii) CF ⊆M
and (iii) Condition D holds.
Example 7 (The intended interpretation of DSP on the phenomenon Hp,φθ

of projectile motion is admissible).
We notice first that the intended interpretation IDSP ,Hp,φθ entails CFp,φθ ⊆ M , for
all its component sentences are identities (see Equation (4) above). Second, we have
already seen (Example 6) that CFp,φθ , ∅ and Condition D holds. It thus follows
that IDSP ,Hp,φθ is an admissible interpretation of DSP on Hp,φθ.

We can now precisely state the conditions for an interpretation IDSL,H to be
correct. The intuitive idea is this. We noticed above (sec. 4) that, as soon as an
interpretation IDSL,H is fixed, the dynamical system DSL = (M, (gt)t∈T ) provides
us with a representation of the temporal evolutions of the real systems (F -realizers)
in the realization domain BF of phenomenon H.

In more detail, we should keep in mind that such a representation is provided by
the state transition family (gt)t∈T of dynamical system DSL. The interpretation
IDSL,H will thus turn out to be correct if the representation, provided by (gt)t∈T ,
of all temporal evolutions of all F -realizers of H is correct. This intuitive idea is
formally expressed by the definition below.
Definition 13 (Correct interpretation).
IDSL,H is a correct interpretation of DSL on H := (i) IDSL,H is an admissible
interpretation of DSL on H and (ii) for any x ∈ CF , for any t ∈ qF (x), for any
bF ∈ BFx , for any jbF ,x ∈ JbF ,x, gt(x) = the state of bF at instant t+ jbF ,x relative
to IDSL,H .

The preceding definition finally allows us to define what it means, for an inter-
preted dynamical system (DSL, IDSL,H), to be a true model of H:

say, the instant at which the projectile b hits the earth surface. We can safely assume that the
state of b at u(b, jb,x) exists, because, by the causal scheme of projectile motion (Example 3, 2c),
the motion terminates only after u(b, jb,x). Let then z(u(b, jb,x)) be this state and let l(b, jb,x) :=
u(b, jb,x) − jb,x. Let us assume for reductio that, for some projectile d and initial instant jd,x,
l(b, jb,x) , l(d, jd,x) := u(d, jd,x) − jd,x. Assume l(d, jd,x) < l(b, jb,x). Since z(u(b, jb,x)) is the
state of b at u(b, jb,x) = l(b, jb,x) + jb,x, and Condition D holds, z(u(b, jb,x)) is also the state of
d at instant l(b, jb,x) + jd,x. It follows that u(d, jd,x) is not the final instant of the evolution of d
that starts at jd,x in state x. Analogously for the case l(b, jb,x) < l(d, jd,x).

10If either (a), (b), or (c) does not hold, the interpretation IDSL,H is obviously not corect,
because: if (a) holds, no evolution of any F -realizer bF can be represented by means of the state
transition family (gt)t∈T of DSL = (M, (gt)t∈T ); if (b) holds, some evolution of some F -realizer
bF cannot be represented by (gt)t∈T ; if (c) holds, some evolution of some F -realizer bF cannot be
correctly represented by (gt)t∈T .
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Definition 14 (True model of a phenomenon).
DS is a true model of H := DS = (DSL, IDSL,H) is a model of H and IDSL,H is
a correct interpretation of DSL on H.

We have seen above how, with respect to a given interpretation IDSL,H , it is
possible to define the set CF of the initial states of H and, when Condition D holds,
also the set qF (x) of the durations that transform the initial state of H, x ∈ CF ,
into another state.

We recall that, if IDSL,H is an admissible interpretation, Condition D holds and
CF , besides being the set of the initial states of H, also turns out to be a non-empty
subset of the state space M of DSL. In addition, for any x ∈ CF , any duration
t ∈ qF (x) is both a duration of H and a duration of the time set T of DSL, for
T = V (T), by the interpretation IDSL,H .

We are now going to show how this “double nature” of the initial states x ∈ CF
and the durations t ∈ qF (x) allows IDSL,H to induce, on the one side, a structure
on H and, on the other one, a substructure on DSL. Finally, we will prove that
DS = (DSL, IDSL,H) is a true model of H if, and only if, the structure of H induced
by IDSL,H is identical to the substructure of DSL induced by IDSL,H .

Let IDSL,H be an admissible interpretation of a dynamical systemDSL = (M, (gt)t∈T )
on a phenomenon H = (F,BF ).
Definition 15 (The structure of a phenomenon induced by an admissible
interpretation).
The structure of H induced by IDSL,H := (htx)x∈CF ,t∈qF (x),
where, for any x ∈ CF and t ∈ qF (x), htx is the function from {x} →M defined by:

htx(x) := the state of bF at instant t+ jbF ,x, where bF ∈ BFx and jbF ,x ∈ JbF ,x.
(6)

Note that (6) is well given, for it does not depend on either bF or jbF ,x, as IDSL,H
is an admissible interpretation, and thus Condition D holds.

Let IDSL,H be an admissible interpretation of a dynamical systemDSL = (M, (gt)t∈T )
on a phenomenon H = (F,BF ).
Definition 16 (The substructure of a dynamical system induced by an
admissible interpretation).
The substructure of DSL induced by IDSL,H := (gtx)x∈CF ,t∈qF (x),
where, for any x ∈ CF and t ∈ qF (x), gtx is the restriction to {x} of gt, that is to
say, the function from {x} →M defined by:

gtx(x) := gt(x). (7)

Finally, the preceding definitions allow us to prove the following theorem.
THEOREM 1 (Truth as interpretation induced structure identity).
Let IDSL,H be an admissible interpretation of a dynamical system DSL on a phe-
nomenon H, let DS = (DSL, IDSL,H). Then:
DS is a true model of H iff the structure of H induced by IDSL,H is identical to the
substructure of DSL induced by IDSL,H .
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Proof. The thesis is a straightforward consequence of Definitions 12–16. �

6 Galilean models—Empirical correctness and truth
By Definition 3 the magnitudes M1, ...,Mn,T indicated by an interpretation IDSL,H
not necessarily are measurable, or even observational. In the special case when some
of them are measurable, we will talk of an empirical interpretation. An explicit
definition of this concept is the one below.

An interpretation IDSL,H = {C1 ⊆ V (M1), ..., Cn ⊆ V (Mn), T = V (T)} is called
an empirical interpretation of DSL on H if, and only if, the magnitude time T and
at least one of the magnitudes M1, ...,Mn is measurable.

In addition, a pair DS = (DSL, IDSL,H) is called an empirical model of H if,
and only if, DS is a model of H and the interpretation IDSL,H is empirical.

Finally, DS = (DSL, IDSL,H) is called an empirically correct model of H if, and
only if DS is an empirical model of H and all measurements of the measurable
magnitudes of IDSL,H are consistent with IDSL,H ’s being a correct interpretation of
DSL on H (Giunti [9], par. 4.1). An empirically correct model of H is also called
a Galilean model of H (Giunti [7]; [8], ch. 3, [9], sec. 4.1).

Note that the three preceding definitions and Definition 14 entail that DS =
(DSL, IDSL,H) is an empirically correct model of H if, and only if, DS is an em-
pirical model of H and all measurements of the measurable magnitudes of IDSL,H
are consistent with DS’s being a true model of H.

From a strictly formal point of view, however, the three preceding definitions
are not completely adequate, for in fact they are based on three intuitive, not ana-
lyzed, concepts: (i) measurable magnitudes, (ii) measurements of such magnitudes,
(iii) consistence of such measurements with the correctness of an interpretation or,
equivalently, with the truth of an empirical model.

Nevertheless, the underlying intuitions seem to be sufficiently clear. Furthermore,
as regards the two concepts (i) and (ii), they may very well be analyzed along lines
similar to those proposed by Dalla Chiara and Toraldo di Francia ([4]; [5], ch. 2)
for, respectively, operationally defined magnitudes and physical situations. Once
this analysis is made explicit, also an exact definition of the third concept (i.e.,
consistence between measurements and correctness of an empirical interpretation
or, equivalently, between measurements and truth of an empirical model) may be
provided.

The concept of empirical correctness of a model may call to mind van Fraassen’s
notion of empirical adequacy ([18], ch. 3). Notwithstanding a superficial termino-
logical similarity, the two concepts are in fact very different because, as remarked
above, the definition of empirical correctness presupposes the one of truth, while
van Fraassen’s empirical adequacy is defined independently of the latter.

Empirical correctness of a model is much more similar to Popper’s corroboration,
than to van Fraassen’s empirical adequacy. For Popper, in fact, a hypothesis is
corroborated if no severe test falsifies it or, that is the same, if all severe tests are
consistent with the hypothesis’ being true (Popper [14], sec. 5).

However, giving an adequate definition of consistency between severe tests and
hypothesis truth is a very serious problem for Popper’s falsificationist methodology.
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According to the well known Duhem-Quine thesis (Duhem [6]; Quine [15]) the
requirement that all severe tests be consistent with the truth of a given hypothesis
can always be trivially satisfied, for any putative inconsistency can be ascribed to
some other assumption, taken in conjunction with the hypothesis itself. Since these
auxiliary assumptions are always present, Popper’s concept of corroboration is not
well defined, unless one specifies under what conditions such auxiliary hypotheses
are to be ignored (or considered).

It should be noticed that this problem of the falsificationist methodology depends
on the fact that consistency is intended as a relation between experimental results
and truth of a hypothesis (i.e., a sentence). If, as we maintain, consistency is instead
a relation between measurements and truth of a model, the problem does not arise,
or at least, not in such a way as to block an adequate, formal, development of this
methodology.
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An Embodied-Extended Approach to the
Acquisition of Numerical Skills

Simone Pinna

abstract. An embodied-extended approach to cognition may be useful
for the study of some cognitive activities, like arithmetical skills, which are
generally thought as involving only internal resources. In this article, after
discussing the theoretical assumptions and scopes of such an approach, I will
specify its usefulness for an explanation of some specific arithmetic capacities,
i.e. algorithmic skills. I will, then, formalize a finger counting like procedure
for single-digit additions by using a Bidimensional-Turing machine, which
is a computational model specifically designed for the formal description of
human algorithmic skills. The formal model analysis suggests an hypothesis
on numerical facts learning which will be tested through a neural net model.

Introduction
The development of human arithmetical skills has been associated with some less
specific cognitive capacities such as, among others, spatial skills [27] and finger
gnosia [22]. It seems that recognition of geometrical shapes on the one side and,
on the other, the use of our hands to point objects to be counted or for working
memory offloading — e.g., when we use our fingers to keep trace of the numbers to
be counted — do positively affect learning, memorization and retrieval of numerical
facts.

These results are consistent with an embodied/extended approach to cognition
(EEC), where the role of bodily and/or external features — in our case, hands
and/or object shapes — is considered as important in the economy of a cognitive
skill as the role of internal features — i.e. of the central nervous system. EEC
is philosophically connected — but not identical, as we will see later — to the
Extended-Mind Hypothesis (EMH), which is discussed in the following section.

1 Active externalism
In the famous article “The extended mind” (1998), Andy Clark and David Chalmers
proposed the so-called “parity principle” as a conceptual tool for identifying genuine
cases of extended cognition.

Parity principle:
If, as we confront some task, a part of the world functions as a process which, were it done
in the head, we would have no hesitation in recognizing as part of the cognitive process, then
that part of the world is [...] part of the cognitive process. Cognitive process ain’t (all) in
the head! [12, p.8]
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In such cases we can consider parts of the environment as having causal roles in
cognitive processing. But then, the authors ask, what about the mind? Are there
some cases in which we can say external factors to partly constitute mental states?
The answer, which represents the philosophical core of the Extended Mind Hypoth-
esis (EMH), is that, sometimes, some mental constituents such as beliefs may partly
consist of environmental features. This concept is explained through an example
that would be thenceforth famous. It tells a story about two persons, Inga and
Otto. Inga wants to go to an exhibition at the Museum of Modern Art of New
York, and knows that the museum is on 53rd Street. We can definitely consider
the fact that the MOMA is on that precise address as one of Inga’s beliefs, so the
cognitive task she carries out consists of retrieving that address from her long-term
memory.

Now consider Otto. Otto suffers from Alzheimer’s disease, and like many Alzheimer’s pa-
tients, he relies on information in the environment to help structure his life. Otto carries
a notebook around with him everywhere he goes. [...] For Otto, his notebook plays the
role usually played by a biological memory. Today, Otto hears about the exhibition at the
Museum of Modern Art, and decides to go to see it. He consults the notebook, which says
that the museum is on 53rd Street, so he walks to 53rd Street and goes into the museum.
[12, p.12-13]

The experiment is aimed to convince us that we can think at Otto’s notebook as it
was a container of his dispositional beliefs, namely something that reliably replaces
his compromised long-term memory.

As long as Otto performs the same kind of process as Inga’s by using his note-
book, we have to recognize, in accord to the parity principle, that part of Otto’s
environment, namely his notebook, has a causal role in the cognitive process that
makes him able to access one of his beliefs. Also, we can consider Otto’s notebook
truly as a container of his dispositional beliefs. Hence, insofar as we consider beliefs
as constitutive parts of one’s mind, we can say that in Otto’s case his mind extends
beyond his organism in the sense that it includes, at least, his notebook.

Extended beliefs such as those contained in Otto’s notebook satisfy four condi-
tions, which must be held in all true cases of extended mind [12, p.17]:

Portability. When required, the external resource must be readily accessible.

Constant employment. The external resource is constantly consulted by
its owner.

Reliability. The informational content of the resource is accepted and used
with no hesitation.

Past endorsement. The contents of the resource have been consciously
endorsed in the past and, consequently, externalized.

Clark and Chalmers call the mind’s view implied both in EEC and in EMH cases as
active externalism. The term active is meant to distinguish this variety of external-
ism from the standard Putnam-Burge style externalism [7, 25], which is typically
based on supervenience thought experiments [18] as in “Twin Earth” cases.
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In these cases, the relevant external features are passive. Because of their distal nature, they
play no role in driving the cognitive process in the here-and-now. This is reflected by the
fact that the actions performed by me and my twin are physically indistinguishable, despite
our external differences. [12, p.9]

On the contrary, in active externalism cases
[...] the human organism is linked with an external entity in a two-way interaction, creating a
coupled system that can be seen as a cognitive system in its own right. All the components in
the system play an active causal role, and they jointly govern behavior in the same sort of way
that cognition usually does. If we remove the external component the system’s behavioural
competence will drop, just as it would if we removed part of its brain. Our thesis is that this
sort of coupled process counts equally well as a cognitive process, whether or not it is wholly
in the head. [12, p.8-9]

2 Ontological issues
Critics of the EMH focused their attention mainly on what I call the ontological
question of EMH, namely, the following: Can we say that, sometimes, some “chunks
of the world” may be regarded as ontologically constitutive of the mind, or should
we just consider them as mere auxiliary instruments, given that the true cognitive
processes always take place inside the organism?

In a series of target articles [5, 1, 2, 3, 4], Fred Adams and Ken Aizawa argue that
the EMH falls into a “coupling-constitution fallacy”, where causal relations between
mental activity and external objects or processes (in Otto’s case, for instance, the
association between searching for an information and checking into his notebook)
are confused with constitutive relations (e.g, in the same case, the tenet that the
notebook is part of Otto’s mind). In general, the argument goes, the fact that an
object or process X is coupled with an object or process Y does not imply that X is
a constitutive part of Y. Thus, the fact that Otto performs a cognitive process that
is coupled with the use of his notebook is not sufficient to consider the notebook as
a proper part of Otto’s mind.

Question: Why did the pencil think that 2 + 2 = 4 ? Clark’s answer: Because it was
coupled to the mathematician. That about sums up what is wrong with Clark’s extended
mind hypothesis. [3, p.67]

Adams and Aizawa argue that the four conditions given by Clark and Chalmers
are not sufficient to decide whether some external resource is a proper part of a
cognitive process. In addition to these conditions, we also need some other reliable
“mark of the cognitive”.
Clark replies to this objection by showing that the introduction of such a criterion
is in turn a source of unsolvable problems. For example, in [11] Clark argues that,
as it makes no sense to ask whether a pencil or a notebook is or is not a cognitive
object, the same can be said of any putative part of a cognitive system (such as a
neuron or a set of neurons).

Consider the following exchange, loosely modeled on Adams and Aizawa’s opening “reductio”:
Question: Why did the V4 neuron think that there was a spiral pattern in the stimulus?
Answer: Because it was coupled to the monkey.
Now clearly, there is something wrong here. But the absurdity lies not in the appeal to
coupling but in the idea that a V4 neuron (or even a group of V4 neurons, or even a whole
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parietal lobe) might itself be some kind of self-contained locus of thinking. It is crazy to
think that a V4 neuron thinks, and it is (just as Adams and Aizawa imply) crazy to think
that a pencil might think. [11, p.81]

In Clark’s view, therefore, the problem of determining the boundaries of cognition
arises again and again, no matter where we decide to set those boundaries.

Besides the aforesaid part destruens of their position, Adams and Aizawa propose
also a part costruens, namely a strategy to recognize what may be regarded as a
proper part of a cognitive system. To this purpose, they suggest the “Intrinsic Con-
tent Condition”, according to which properly cognitive states must involve intrinsic,
non-derived content, i.e. non-representational contents.

This proposal have provoked a complex debate, whose reconstruction is beyond
the scopes of this work.1 However, Clark’s ultimate position on this issue is that
Adams and Aizawa’s objection to EMH draws our attention to a probably useless
question, for it is, at least at present, very difficult to be empirically tackled.

Since what is at issue is [...] whether the notebook might now be part of the local super-
venience base for some of Otto’s dispositional beliefs [...] the status of the notebook itself,
as “cognitive” or “noncognitive”, is (to whatever extent that idea is even intelligible) simply
irrelevant. By contrast, the precise nature of the coupling between the notebook and the
rest of the Otto system seems absolutely crucial to how one then conceives of the overall
situation. [11, p.90]

Clark suggests that a more fruitful question on which we should focus concerns the
explanation of the cognitive mechanism that links Otto’s behaviour to its notebook,
and not the ontological status of the single components of the (extended) system
comprising Otto and his notebook. In other terms, this question should be: what
is the function played by the notebook in this kind of extended cognitive system?

3 Explanation of functional roles
In “Supersizing the Mind” (2008) Clark tries to shift the focus to what I call the
functional-explanatory question:

• What is the role of external (with respect to the organism) instruments and
objects for the explanation of the development and performance of specific
kinds of cognitive processes?

Clark discusses how this problem is approached in various studies within current
cognitive science-related fields, such as robotics, dynamical approach, cognitive psy-
chology, connectionism etc. As a consequence of this “field-test” of the theory, he
extends, reviews and re-writes the set of propositions which represents the philo-
sophical core of EMH. Among those propositions, there is one that clearly shows
Clark’s idea that ontological issues about the mind must be subordinated, at least
temporarily, to functional and explanatory questions.

Hypothesis of Organism-Centered Cognition (HOC): Human cognitive processing (some-
times) literally extends into the environment surrounding the organism. But the organism
(and within the organism, the brain/CNS) remains the core and currently the most active
element. Cognition is organism centered even when it is not organism bound. [10, p.39]

1In [21] Menary interestingly reviews this debate from an externalist stance.



An Embodied-Extended Approach to the Acquisition of Numerical Skills 115

This hypothesis may be seen as an attempt to prevent EMH from ontological ob-
jections as those seen in the discussion about the alleged couple-constitution error.
Indeed, the message contained in HOC is exactly that in the field of philosophy of
mind and cognitive science we need, at least temporarily, to abandon ontological
issues. Rather, our attention should be focused on the explanation of the role of
any cognitively relevant resource, be it internal or external to the organism.

This view, while reducing EMH ontological scope, is fully coherent with an
Embodied-Extended approach to Cognition (EEC), according to which the expla-
nation of some cognitive phenomena has to seriously consider the role of bodily
features and external objects. In the following section, I will show the usefulness of
this approach for the explanation of early arithmetic skills development.

4 Use of fingers in early arithmetic and EEC
The use of fingers for counting plays an acknowledged role in the development of
early arithmetic skills [8, 9, 15, 19]. A recent research [26] brings evidences that
finger gnosia, i.e. the correct representation of fingers, is associated on the one
side to a greater probability of finger-use in computation and, on the other side, to
better arithmetical performance in 5 to 7 years old children. Given that relations
between poor finger gnosia and poor arithmetical skills have also been found [22], it
should be interesting to inspect the cognitive mechanism on which this phenomenon
is grounded. Indeed, we have here a cognitive phenomenon that seems well suited
to be investigated through the lenses of EEC.

Nevertheless, some claim that this emphasis on EEC, in the case of numerical
skills acquisition, is somehow exaggerated. In [13] Crollen et al. report many studies
which suggest that, although the use of fingers in computation may help children’s
development of arithmetical abilities, it is not a necessary stage for that develop-
ment. So we face here what seems to be a tough problem for EEC. According to this
approach, indeed, the relevant bodily and external features for the performance of
a given cognitive task are as fundamental for the cognitive system which performs
that task as the internal ones. However, in this specific case the weight to be given
to the external and internal features is not at all the same: we can totally bypass
the external part of the cognitive system and obtain the same result!

An argument like this can really threaten an EEC approach to the explanation
of early counting skills2 if the discussion is focused on what I called the ontological
question of EMH. In this case, the problem would be the cognitive status of finger use
for counting, i.e. whether this use is constitutive for early arithmetic development
or has a mere causal role in some subjects

However, as we have seen before, it is doubtful that this is a meaningful question,
for this kind of ontological approach takes for granted, at least, the existence of a
shared general definition of a cognitive system. But how this definition should be
formulated is far from clear, whether or not we confine a cognitive system to its
internal features [10].

2In the relevant cases for active externalism, indeed, “if we remove the external component the
system’s behavioural competence will drop, just as it would if we removed part of its brain.” [12,
8-9]
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On the other hand, the cited argument against EEC does not seem to threaten
another line of investigation, namely that focused on what I called the functional-
explanatory question of EMH, which represents the real scientific challenge for the
extended-embodied approach to cognition.

I propose a way to answer this last question in the specific case of the acquisition
of numerical skills. We can thus reformulate the functional-explanatory question:
how does finger-use in counting routines affects learning of arithmetical skills?

The hypothesis I will explore is that the use of fingers for counting provides
effective and reliable strategies in order to obtain correct results. Arithmetical
results acquired this way have a high probability to be stored in long term memory
and, hence, to cause the development of a (correct) set of basic arithmetical facts.
In this hypothesis, the crucial role of finger use for counting is identified with its
algorithmic meaning, i.e, with the possibility given by the use of fingers to carry
out simple and effective computations. But how may we verify this hypothesis?

I propose a twofold method to face this question. First, I will formally describe
a finger using counting strategy, in order to isolate its relevant algorithmic features
by using a Turing machine-inspired computational model, namely a Bidimensional
Turing Machine. Through this analysis it could be possible to inspect the relevant
operations at work when performing a finger-using counting routine. The model
should also give some indications about the implicit knowledge necessary to perform
a given counting routine.

Second, the information obtained by the analysis of the BTM model will be useful
for the simulation of learning and retrieval of a set of basic number facts – namely,
the results of single-digit additions (SDA) n + m – through a neural network model.
The network is given different training-sets in order to simulate different ways of
acquisition of SDA results, one of which is modeled on the finger-counting routine.

5 Algorithm formalization
The finger-counting strategy I will focus on will be formalized by using a Bidimen-
sional Turing Machine (BTM), which is a computational model expressly designed
in order to describe human strategies for computation, where the external memory
is able to reliably represent a sheet of squared paper [16]. I cannot give here a
full theoretical and formal account of this computational model. Nevertheless, a
brief description of its main features is necessary for understanding the following
algorithm formalization.

It is supposed that the readers are familiar with the functioning of ordinary
Turing machines (TM). The most visible difference between a BTM and a TM
is that the the latter’s unidimensional tape is replaced in the former with a two-
dimensional grid, as in Two-dimensional Turing machines [14]. Other important
features are sketched above:

1. Similar to an ordinary TM, each single instruction of a BTM is a sequence
of 5 objects (quintuple) of the following types: (i) internal state, (ii) symbol,
(iii) symbol, (iv) movement, (v) internal state. However, the machine table
(set of instructions) of a BTM is more sophisticated than that of a TM. In
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fact, in the general case, each instruction is not just a single quintuple, but a
quintuple schema that typically represents a possibly infinite set of quintuples
of a specified form.

2. Both internal states and movements of a BTM are more complex than those
of a TM, for

a) a generic internal state of a BTM is not a simple unstructured state qi,
but it is an n + 1-tuple (qi, x1, ..., xn), where qi is an element of a finite
set Q of internal states, and any xj is a generic object member of a given
data-type Xj ; the special symbol b (blank) is a member of each data-
type. Any position of the n+1-tuple is called a register. Given a generic
internal state of this kind, any xj may be either full or empty. If each
register of a given generic internal state is empty (namely, consists of the
symbol b), then the internal state reduces to its component qi; all possible
movements from the present head location are legal; any legal movement
is thus represented by a pair of integer numbers, i.e. the coordinates of
the head destination relative to its present location.

b) In ordinary TMs, the only way to refer to a simple internal state qi, to
a symbol sj , or to a movement R (right), L (left), or H (halt) is by
means of the corresponding constants “qi”, “sj”, “R” “L”, or “H”. In
BTMs, by contrast, (complex) internal states, symbols and movements
can be referred to also by means of complex terms, which are formed by
repeated applications of function terms to symbol constants or variables.

3. The admissible domain of each variable is a specified set of either symbols or
nonnegative integers, while each function term stands for a specified function,
which must be computable in the intuitive sense.

4. The syntax of quintuple schemas is so designed that each such function works
as an auxiliary operation, which is called as needed during computation and
executed in just one step.

5. Finally, quintuple schemas may also contain relational terms (n-place pred-
icates) which can be used to express additional conditions. Such conditions
may only refer to the presently read symbol or to the internal state terms.

Now I will describe a BTM (BTMcount-on) that reflects an algorithm for single-
digit addition that is normally carried out with the use of fingers. BTMcount-on
performs the sum of two natural numbers x1 and x2 with 0 ≤ xi ≤ 9 by using a
counting-on strategy, i.e, by starting from the value of the first addend and counting
out the value of the second.

An informal description of the procedure formalized by this machine is the fol-
lowing:

i. in the initial state, two addends with a value between 0 and 9 are held in
internal memory;
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Input Condition Output
internal state read write move internal state
q1, [r1], [r2] s [s , r2] σ(s) (0, 0) q1, [σ(r1)], [r2]
q1, [r1], [r2] s [s = r2] s (0, 0) q1, [r1]
q1, [r1] s [s = r2] s (0, 0) q1, [r1]

Table 1. Machine table BTMcount-on

ii. a cell of the grid contains a counter with initial value 0;

iii. at each step, both the value of the first addend and of the counter is incre-
mented by 1, until the value of the counter is equal to that of the second
addend;

iv. finally, the machine stops, holding the result in its internal memory. If the
value of the second addend is 0, the machine shifts directly to a stop instruc-
tion.

To construct the BTMcount-on we need to define:

a) a set of constants A = {“0”, “1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, “9”} which
constitutes the vocabulary of the grid;

b) two registers R1 and R2, corresponding to two internal states variables r1 and
r2. The data-type correspondent to each register includes all non negative
numbers and the special symbol b (blank), which stands for an empty position.

c) a variable s for the grid. The range of s is the set A;

d) a simple internal state q1;

e) an auxiliary function σ : 0, ..., 17→ Z+ s. t. σ(x) := x+ 1.

f) two auxiliary conditions x = y and x , y, which are the standard relations of
identity and diversity on natural numbers.

The machine table of BTMcount-on is given in table 1.
This BTM starts with 2 numbers 0 ≤ n ≤ 9 held in its internal variables r1 and

r2. The head is positioned on an arbitrary cell of the grid, which is used by the
machine as a counter with initial value 0, and remains on the same cell during the
entire procedure. Then, at each step of the computation, the value of r1 and that
of s is increased by 1 through the function σ, until s is equal to r2. At this point,
the machine stops, holding the result of the sum in its internal variable r1.
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6 Algorithm analysis and net simulation
Assuming that the algorithm carried out by BTMcount-on reflects correctly the
correspondent counting procedure, we can make interesting considerations by paying
attention to some features of the formal model. For example, although this machine
performs a very simple procedure, it needs to use at least one auxiliary function,
namely σ, which is a successor function defined on a finite domain ({0, ..., 17}).
Thus, we could conjecture that a subject which is able to use a finger-counting
procedure for simple additions needs at least to possess this basic knowledge.

Moreover, if a subject is able to use this procedure to perform simple additions,
he would apply it to SDAs presented randomly and not according to a given order
(e.g., first all the 1-digit sums 1 + n, then 2 + n, and so on).

On the basis of these considerations, Pinna and Fumera [24] formulated an hy-
pothesis on the link between use of finger-counting procedures and SDA learning.
According to their hypothesis, SDA results retrieval skills are affected by the or-
der of memorization of SDAs results, and this order is influenced by the counting
procedure used.

To test this hypothesis, they used a feed-forward backpropagation neural network,
designed in order to learn SDAs.3The order of the training-set (TR) examples (con-
sisting of all 100 SDAs) were manipulated as to simulate two alternative training
conditions.

In the first condition (A), which reflected a “rote learning”, the net was trained,
at each epoch, on all the TR, from smaller to larger sums (0 + 1, 0 + 2, ..., 0 + 9, 1 +
1, ..., 1 + 9, ..., 9 + 1, ..., 9 + 9), as if it was following the order of an “addition table”.

The second condition (B) was modeled on the counting-on strategy. To simulate
the knowledge of the successor function the net was, first, trained on the 20 sums
of the form x+1 and 1+x until no error is made on them. Second, all the other
TR examples were given, at each epoch, randomly. This second phase was intended
to reflect that a subject using a counting-on procedure may apply this strategy on
each SDA, independently from the value of its addends.

The results showed an advantage of training condition B in terms of learning
efficiency (see fig.1). However, this fact alone was insufficient to exclude trivial
explanations of this apparent convenience, e.g., if it is only a consequence of the
first training phase of condition B, which gives an initial advantage with respect to
the net trained in condition A, or the effect of the number encoding scheme adopted.
It was then necessary to assess the influence of learning strategies on the net by
checking if and in what conditions it is able to reflect some cognitive phenomenon
related to the simulated arithmetic skill, independently of net properties.

To do this, the net has been tested in order to see if and in what conditions it is
able to simulate a very robust phenomenon in mathematical cognition, namely the
problem-size effect [17, 6, 20, 28, 23]. This effect consists of an increase in reaction
time and error rate in response to arithmetic problems with larger solutions (for
instance, solving 7 + 8 takes longer and is more error-prone than solving 4 + 3).
The net used in this simulation was tested only on one side of the problem-size

3Full technical details of this neural-net model are given in [24].
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Figure 1. Number of errors per epoch. The blue line refers to experiment A, the green line to
experiment B. Each curve is the average of 100 curves obtained in the following way: in experiment
B the learning procedure is repeated 10 times with 10 different orders of presentation of the training
set, randomly chosen, where each time the order of presentation is changed connection weights are
also randomly changed; in experiment A the training set presentation order remains always the
same. Every 10 repetitions, connection weights are randomly changed, and this procedure is then
repeated for 10 times.

effect, namely if, during the training phase, it is more error prone on training set
cases where the solution is larger, for temporal features could not be simulated.

The method used for the verification of the problem-size effect on the net is the
following:

a) The training set has been divided in two subsets:
Small-size problems: the 49 one-digit sums x + y with x; y less than or equal
to 6.
Large-size problems: all the 51 remaining one-digit sums.

b) The percentage of net errors per epoch, with regard of both subsets, has been
verified in training conditions A and B.

Figure 2 shows the percentage of errors committed by the net in each subset
of the training set. Results are quite interesting. The net shows a clear effect of
problem-size in training condition B, while in condition A the effect is not verified.
In this case trivial explanations in terms of net properties may be excluded, for
the net responds very differently according to the learning strategy used. If, for
example, the verification of the problem-size effect in the net were due to the way
it encodes numbers, the training condition would have no impact on this effect.

7 Conclusion
The link between finger use in early arithmetic procedures and development of
advanced arithmetic skills may be investigated through the lenses of an embodied-
extended approach to cognition. In this paper, I tried to justify the utility of this



An Embodied-Extended Approach to the Acquisition of Numerical Skills 121

(a) Experiment A (b) Experiment B

Figure 2. Problem-size effect tested on the same net in different training condition. Curves
represent the percentage of errors (y-axis) per epoch (x-axis) in two subsets of the training set
(blue: large-size problems; red: small-size problems). a) The net is trained as in experiment A. In
the first 200 epochs, no clear effect of problem size is visible. b) The net is trained as in experiment
B. The problem-size effect is evident until the 400th epoch, than the two curves overlap.

approach for the explanation of arithmetic skills development. First, I discussed
the extended mind hypothesis (EMH), with particular regard to the debate on
the “coupling-constitution fallacy”. Then, I proposed that the main troubles of
EMH may be avoided by distinguishing between the ontological question and the
functional-explanatory question about EMH. The arguments presented here were
aimed to show that, while the former is (at this moment, at least) a scientifically
unfruitful question, the latter is perfectly fitted to be a source of novel and promis-
ingly more thorough cognitive explanations. An embodied-extended approach to
cognition, where the role of bodily and/or external features is considered as much
importance in the economy of a cognitive skill as the role of internal features, should
be focused on functional-explanatory issues and avoid, for the moment, any kind of
ontological problems.

On this theoretical basis is grounded the algorithmic approach to the analysis of
arithmetic skills, developed in the second part of the paper. I introduced a formal
model for the analysis of arithmetic procedures and formalized a specific counting
procedure, which is normally used in finger-counting strategies. Then, I proposed
a possible answer to a specific instance of the functional-explanatory question with
regard to the use of fingers in early arithmetic skills development, i.e, that the
memorization of single-digit addition (SDAs) results is affected by the order in
which they are processed, and this order is influenced by the counting procedure
used.

Lastly, I showed the results of a neural net simulation designed to test the effect
of learning strategies on net performances. The training condition suggested by
the analysis of the BTM-model is effectively more convenient for a faster reduction
of net’s errors during the training phase. Also, results on the problem-size effect
showed that the training condition modeled on the finger-counting strategy leads
not only to a faster reduction of errors during the training phase, but also provides
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to the net the ability to reproduce a well-known cognitive effect.
Obviously, it would be difficult to clearly state the verisimilitude of the proposed

hypothesis on the link between counting procedures and general development of
arithmetical knowledge on the basis of the net simulation results. However, these
results are encouraging towards future employment of an algorithmic approach to
cognitive arithmetic, which seems well fitted to give novel explanations on issues
regarding, e.g., the cognitive role of algorithmic schemes (like those generally used
in pen and paper procedures) or the relation between space and number represen-
tations.
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On an Account of Logicality

Massimiliano Carrara and Ciro De Florio

abstract. In [13], Linnebo argues that Boolos’ interpretation of second-
order monadic logic (MSOL) is not logic. His argument starts by proposing
some conditions for logicality (ontological innocence, cognitive primacy, and
universal applicability) and goes on arguing that Boolos’ proposal does not
satisfy them. The problem is that, in our view, Linnebo’s conditions for logi-
cality meet some general difficulties on the very same notion. His formulation
cannot be considered a good test for demarcating what is logic at all. Take
first order logic (FOL): either it does not satisfy the conditions proposed or it
satisfies them trivially. A positive result of our analysis is that an account of
logicality based on independency is better evaluable in a relational setting.

1 Introduction
Is there any way to characterize logicality? Well, there are some well-known ac-
counts of it. A first, standard one, is by permutation invariance: logical notions
are not altered by arbitrary permutations of the domain of discourse.1 The idea
is to demarcate what is logic by isolating specific logical notions or constants via
the above criterion. Moreover, such criterion is often presented as the standard
charachterization of logicality, even if, as Catarina Dutilh Novaes has recently ob-
served, “It is now widely acknowledged that, in its straigtforward formulation, the
criterion is not satisfactory, and many of the analyses propose modifications that
allegedly amend its shortcomings”" [6, 82].

A second, perhaps less standard, account ties logicality to certain proof-theoretic
properties, such as proof-theoretic harmony.2 Consider introduction and elimination
rules for & in FOL:

α β
& -I

α&β
α&β

& -E α
α&β .
β

They are intuitively sound. Moreover, they are perfectly balanced in the sense
that what is required to introduce statements of the form α&β, viz. α and β,
perfectly matches what we may infer from such statements. Following Michael
Dummett’s terminolgy, the introduction and elimination rules for & in FOL are in
harmony. Intuitively, a pair of introduction and elimination rules is harmonious
if the elimination rules are neither too strong (they don’t prove too much), nor

1For a discussion on this account, see e.g. [21], [20], [12], [2], [6]. For a general introduction to
the problem of logical constants, see [10].

2On this account see, e.g., [9], [17], [11], [7], [22].
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too weak (they don’t prove too little). This intuitive idea can be spelled out in a
number of ways. Dummett in [7] (p. 250). defines harmony as the possibility of
eliminating maximum formulae or local peaks, i.e. formulae that occur both as the
conclusion of an introduction rule and as the major premise of the corresponding
elimination rule.

Again, as it is well-known, the account of logicality in terms of proof-theoretic
harmony meets some difficulties.

There is, in general, a certain skeptcism about the possibility of finding a sat-
isfactory account of the logical/non-logical divide. This skeptcism is motivated by
Etchemendy’s reasons for thinking that no satisfactory account of the logical/non-
logical divide can be forthcoming [8].

For Etchemendy any account of the logical/non-logical divide is, if true, neces-
sarily true. And yet, there are counterfactual situations in which any such account
would get things wrong. Etchemendy concludes that any account of the logical/non-
logical can at best accidentally get things right: it cannot in general guarantee
extensional correctness.

In this paper we consider the problem from a different, restricted, point of view.
The aim of this paper is to analyse Linnebo’s conception of logicality, proposed in
[13]. In that paper Linnebo argues that Boolos’ reinterpretation of second-order
monadic logic (MSOL) is not logic because it does not satisfy some standards to
be a logic, i.e. MSOL does not satisfy ontological innocence, cognitive primacy, and
universal applicability.

In the paper we argue that Linnebo’s conditions for logicality meet some general
difficulties and cannot be considered a good test for demarcating what is logic at all.
Following also Etchemendy’s criticism we will show that the proposed conditions
are so narrow that one can argue that even FOL (first-order logic) does not satisfy
them.

Is there a positive result of our analysis? Yes, there is. The moral of our analysis,
briefly sketched in the concluding section of the paper, is that accounts of logical-
ity based on independency – the invariance criterion – are better evaluable in a
relational setting. In the paper we briefly outline a way to expand this idea.

We proceed as follows. In section 2 we briefly resume the principal elements of
Boolos’ reinterpretation of second-order monadic logic in terms of plural quantifi-
cation. Section 3 is devoted to Linnebo’s criterion of logicality. Section 4 is on
Linnebo’s criticisms to Boolos’ proposal. In section 5, 6 and 7 we analyse the three
general requirements Linnebo proposes for logicality (ontological innocence, cogni-
tive primacy, and universal applicability); we argue that they meet some general
difficulties and cannot be considered a good test for demarcating what is logic at
all.

2 Boloos on second order monadic logic
Boolos in ([3], [4]) proposed a reinterpretation of MSOL in terms of plural quantifi-
cation.3 He argued that such interpretation shows – against Quine’s criticim (for
example in [18]) – that MSOL is a genuine logic.

3For an introduction to the topic see [14].
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In a nutshell, his proposal consists in considering second-order variables as rang-
ing not over sets of individuals but over individuals plurally. So, no second order
entity is involved in MSOL. And second order monadic logic – so interpreted – is
logic.

Boolos’ basic idea consists of interpreting the atomic formulas of the form:

Xy,

as

y is one of the Xs,

and the existential formulas having the form

∃X . . .

as

There are some individuals Xs such that. . . .

Boolos gives no explanation of how to refer to an arbitrary plurality of individuals.
He simply treats directly plural existential quantification taking as primitive the
locution:

There are some objects such that. . .

used in natural language for referring to an arbitrary plurality.
Observe, passim, that this passage is problematic. Indeed the meaning of this

locution is somewhat ambiguous, strictly depending on the context of discourse. In
some contexts, it has the same meaning of the first-order expression

There is at least an object such that. . . .

But, when it is not reducible to a first-order quantification, as in the famous
Geach-Kaplan’s proposition

Some critics admire only one another,

it may seem to be just a sloppy way of referring to some class of individuals.4
Boloos provides also a formal semantics for his language in Nominalistic Platon-

ism [4]. It is done restating the Tarskian truth definition by modifying the notion
of assignment. Given a domain D of individuals, he defines as an assignment any
binary relation R between variables and individuals that correlates a unique indi-
vidual with every first order variable, while it is subject to no constraint for second
order variables. So R may correlate a second order variable with no, one or (possi-
bly infinitely) many individuals. The satisfiability relation is inductively defined as
usual, with the following clauses for atomic formulas and second order existential
quantification:

4For a detailed criticism on this passage see [19]. For a survey of the proposal see [5].
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(i) R satisfies the atomic formula Fx iff the correlate of x is one of the correlates
of F ;

(ii) R satisfies ∃FA iff there is a relation R’, differing from R at most for the
correlates of F, such that R’ satisfies A.

Truth is then defined, again as usual, in terms of satisfaction. So the set of the
correlates of F is not involved in the definition of truth. This makes the notion
of plural quantification precise and shows how it yields an alternative semantics
for second order logic. This semantics turns out to be equivalent to the usual one,
according to which the values of second order variables are all sets of individuals.
And since the notion of value of a variable can be made precise only by the definition
of assignment, in Boolos’ perspective the proposed reformulation shows that, using
Quine’s slogan that “to be is to be the value of a variable”, there is no commitment
in second order logic to any entities but individuals.

3 Linnebo on Logicality of Plural Quantification
For Linnebo, Boolos’ theory of plural quantification could be qualified as a logic, if
(at least) the following conditions are satisfied:

Ontological Innocence The basic axioms are not ontologically committed to any
entities beyond those already accepted in the ordinary first-order domain;

Universal Applicability The theory of plural quantification can be applied to
any realm of discourse, no matter what objects this discourse is concerned
with;

Cognitive Primacy The theory of plural quantification presupposes no extra-
logical ideas in order to be understood, but can be understood directly. Our
understanding of it does not consist, even in part, in an understanding of
extra-logical ideas, such as ideas from set theory or from other branches of
mathematics.5

Linnebo, cautiously, avoids to consider the three conditions previously cited as
the last word on logicality. However, for their very nature, these should hold in
principle for every system of logic and not only for second order plural logic. Thus,
we think that it is not wrong to think that these requirements of logicality are not
just locally valid. Indirect supports to this thesis are given by Dulith Novaes in [6].
On permutation invariance she writes:

The main philosophical appeal of permutation invariance as a criterion
for logicality seems to be the generality afforded by it. Another char-
acteristic traditionally attributed to logic, namely its topic-neutrality,
is (prima facie) also captured by the criterion. indeed, if logic is not
concerned with these peculiarities insofar as they are related to different
domains of investigation [6, 85].

5[13], 77.
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Following the above quotation, it is not difficult to notice that two Linnebo’s
constraints – ontological innocence and universal applicability – are in line with the
traditionally accepted conditions for logicality.

Now, given the above three conditions can Boloos’ proposal of plural quantifica-
tion considered as a logic? Linnebo’s main thesis is that Boolos’ interpretation of
plural quantification fails to make the impredicative comprehension principle:

((CP)) ∃X∀x(Xx↔ φ)

(where ’φ’ is a formula in the language of MSOL that contains ’x’ and possibly
other free variables but no occurence of ’X ’. If φ contains no bound second-order
variables, the corresponding comprehension principle is said to be predicative; oth-
erwise it is impredicative) as a genuine logical principle. Linnebo observes that:

Adding the theory of plural quantification to an interpreted first-order
theory involves adopting the plural comprehension axioms, applied to
the domain of his theory. What justifies us adopting these axioms?
Because we want the impredictaive plural comphrensions axioms as well
as the predicative ones, it is not enough to be justified in taking there
to be pluralities corresponding to all predicative substitution instances
for the substitution instances for the plural variables; that is, in taking
there to be pluralities corresponding to the form

a1 and ... and am and the φs,

wherem is a natural number, the ai’s are singular terms, and φ contanins
no bound plural variable. Rather what we need to justify is that there
are pluralities corresponding to all expressions of the form ’the φs’, even
where φ contains bound plural variables. But in order to do this, we
must understand what these bound plural variables range over. This
means that we must understand the notion of a determinate range of
arbitrary sub-pluralities of the original domain.6

According to Linnebo, once such a notion of a determinate range of arbitrary sub-
pluralities of the original domain is adopted we are commit to allow for collecting
together in turn the pluralities so construed, so forming higher-order pluralities.
If so, we would be led by the plural interpretation of second-order logic to larger
and larger extensions of the domain of individuals. So, if second-order logic were
pure logic in virtue of plural quantification, such would be also higher- and higher-
order logics. Linnebo concludes that the plural interpretation fails to make the
impredicative comprehension principle (CP) a genuine logical principle. Allowing
for the iteration of the operation of sub-plurality leads Boolos’ plural logic to the
inexhaustibility of the layers of higher- and higher-order pluralities. If it is so plural
logic would not make us able to talk about all the pluralities there are, violating
the condition of universal applicability.

6[13], 85.
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Moreover, consider the appeal to combinatorics and set theory. It shows, accord-
ing to Linnebo, that Boolos’ plural logic is not even cognitively prior to mathemat-
ics. Indeed, if we want to understand the notion of arbitrary sub-plurality requires
that we need to understand some extra-logical, set-theorethical, ideas. So, Boolos
proposal does not satisfy condition of cognitive primacy either.

Finally, consider the combinatorial feature of the notion of sub-plurality. It is
not problematic per se. But it is problematic if we think that pluralities are entities
of some sort. Linnebo does not take a final stand as for the ontological status of
pluralities. But, one can easily observe that his argument against the logicality
of second-order logic as it is interpreted by Boolos follows only if pluralities are
taken to be entities of some kind (ontological innocence). Consider the following
quotation:

[A defense of Boolos’ position] is based on the idea that only things can
be collected together. If this idea is right, and if Boolos avoids reifying
pluralities, then there will simply be no things available to be collected
together to form higher pluralities. But this defense too is unconvinc-
ing. There is no obstacle to iterating the combinatorial considerations
that give content to our talk about arbitrary sub-pluralities; in partic-
ular, combinatorics has no ontological qualms about collecting together
first-order pluralities so as to form higher pluralities. For instance, from
the point of view of combinatorics, it is no more problematic to arrange
individual Cheerios in the following way: 00 00 00 than it is to arrange
them as: 000000, although the former arrangement is most informatively
described as three pairs of Cheerios – which is a higher order plurality –
whereas the latter arrangement is a mere first-order plurality based on
the same six Cheerios. To whatever extent the more complex arrange-
ment involves additional ontological commitments, these commitments
pose no problem to combinatorics.7

Here, Linnebo seems to implicitly distinguish between things, like for instance
concrete objects, and more general entities, and consider the non-reification of plu-
ralities as the claim that they are not things. In fact, that combinatorics has no
qualms about ontology comes down to the fact that combinatorics is completely
indifferent to the nature of the entities it combines: it may combine things, like
Cheerios in the bowl, and abstract entities, like sets, in a very large variety of ar-
rangements. So, regardless of the kind of entities pluralities are, they are capable
of being combined. It is clear, therefore, that Linnebo shares with other Boolos’
crititcs 8 the view that pluralities are entities of some sort. But, then, plural quan-
tification is not ontologically neutral.

Is Linnebo criterion of logicality applicable to FOL too?
7[13, pp. 87–88].
8See, for example, Parsons in [15] and [16]. Parsons acknowledges that Boolos proposal has the

merit to give a clarification to the notion of manifold. However, he argues, this interpretation is
not ontologically noncommittal. Parsons in [16] criticizes Boolos’ semantics by holding that the
appropriate reading of the locution ‘There are some Xs’ is ‘There is a plurality X’, which unveils
the hidden commitment of plural quantification to pluralities.
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4 Universal Applicability
According to Linnebo, MSOL – in Boolos’ interpretation – has to be universally
applicable. But, what does it mean ‘universally applicable’?

An intuitive, minimal requirement for universal applicability seems to be the
following:

A logic is universally applicable iff its logical truths do not depend on
some extra-logical facts which, inasmuch extra-logical, vary over do-
mains.

If this is what Linnebo thinks about Boolos’ interpretation of MSOL then it is a
criterion hardly satisfied also by FOL.

Etchemendy in [8] has shown how certain ontological questions about cardinality
of the domain are counterfactually relevant for the applicability of FOL.

Let us consider the following sentence:

(Fin) (∀x∀y∀z (Rxy ∧Ryz → Rxz) ∧ ∀x¬Rxx)→ ∃x∀y¬Rxy

(Fin) – in which just R is a non-logical predicate – is true only in models whose
domain has a finite number of elements. Now, (Fin) is not logically true from an
intuitive point of view and, again, it is not true in the model-thoeretic Tarskian
semantics. It is straightforward to find a model where (Fin) is false: take any
model with a infinite number of elements.

However, let us assume that it holds a quite demanding metaphysical assumption:
finitism. In such a case, there would be no model whose domain contains an infinite
number of entities. Then (Fin) would be true in all models and, according to
Tarski’s analysis, it would be logically true. But, observe, we would be forced to
accept that a metaphysical feature of the world – viz. either having a finite number
of entities or not having it – was relevant to establish if a sentence is logically
true. Indeed, facts about the number of objects that can be in the universe are not
logical facts. Moreover, Etchemendy argues that also assuming that the universe
is necessarily infinite will not do. The assumption, equivalent to the assumption
of the Axiom of Infinity, is not logical; so the account would be “influenced by
extra logical facts” [8, p.116]. Once more, the account appears to be conceptually
inadequate.

Etchemendy concludes that (Tarskian) model-theoretic validity of a sentence as
(Fin) has to do with an extra-logical fact, namely, the cardinality of the universe.
And, in his view, this is a good argument for the extensional inadequacy of Tarski’s
semantics. But also for our purpose, it is straightforward that if a logic has to be
universally applicable, then not even FOL can satisfy this requirement; indeed, its
universal applicability seems to depend on the very general metaphysical structure
of the world. One could reply9 that if logic only depends on metaphysical facts
about the world that hold in all domains, then it is universally applicable even if
it makes ontological assumptions. Question: what do we mean with ‘all domains’?

9We thank an anonymous referee for this suggestion.
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Are they “all possible domains”?If so, which is the meaning of the possibility in
question? We can say that they are all logically possible domains; in this case, we
would have metaphysical features which are universally owned. But if the extension
of these metaphysical features is the entire domain of logical possible worlds, how
can we differentiate metaphysical and logical assumptions?

If there is a finite number of entities in the world, then (Fin) would be logically
true. However the universal applicability is not grounded in a logical fact. On the
contrary, it is based on a metaphysical fact. So universal applicability, according to
which a logical theory can be applied to any realm of discourse, no matter what
objects this discourse is concerned with, does not hold. But, even FOL cannot be
applied to any realm of discourse or, at least, it is relevant, to establish what is
logically true, a non logical feature of the domains, that is, their number of objects.

Of course one could conclude this analysis observing, as Dutilh Novaes has done,
that: “Ontological neutrality is never possible anyway”[6, p. 86]. But one can reply
that this is just a different argument against the universal applicability as a criterion
of logicality.

5 Cognitive Primacy
What about cogntive primacy, i.e. the idea that the theory of plural quantification
presupposes no extra-logical ideas in order to be understood?

Consider the following prima facie understanding of the requirement:

If a theory does not presuppose extra-logical ideas, it means that it
does not presupppose ideas, for example, from set theory or from other
branches of mathematics.

So, for example, if a theory is logic it does not presuppose set theory or mathe-
matics. If it is so, it is easy to observe that mathematical notions have a fundamental
role in the epistemology of logic: part of the understanding of a logical system is
constituted by the understanding of the synctactical structure of the language of
the system and it is part of the syntactical structure to refer to mathematical struc-
tures. Take FOL: it implicitly appeals to the notion of denumerable infinity. So,
to understand FOL, we have to understand for example the notion of an infinite
vocabulary (say, with infinitely many individual variables).

In this respect, if the notion of denumerable infinity is mathematical, as it is, then
according to Linnebo’s requirement of cognitive primacy, FOL is not pure logic.

Moreover, consider that – since a language formation is a prerequisite of any
logic, one can conclude – following Linnebo’s request – that, not only FOL but also
propositional logic is not logic!

Now, one may object – and Linnebo can do it – that independence of mathemat-
ical notions concerns just more sophisticated notions like the one in the following
example: let c be a function whose meaning is “the cardinality of...” and ℘ the
powerset operator. So,

(C) ∀x(c(x) , c(℘(x)))
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(C) presupposes the understanding of Cantor’s theorem and other cognate notions.
One can argue that in this example there are extra-logical ideas presupposed but
they are not essential to understanding logic. But now the problem is: when extra-
logical ideas are supposed to play an essential role in our understanding of logic?

An advocate of Linnebo’s position could reply that the use of the notion of a
denumerable infinity to characterize the syntax of FOL does not violate a criterion
of cognitive primacy. Moreover, he can go on by pointing out that theorems of
logic do not presuppose extra-logical facts and, for this reason, the way in which the
language of the theory is framed does not matter.

To this reply, we answer that the content of theorems of a formalized theory
should display the information contained in the axioms and in the relation of con-
sequence connecting axioms with theorems. It is reasonable to claim that there is
not a specific content presupposed by logical notions, at least for propositional and
first-order logic (things are much more complex if we pass to higher-order logic).
Instead, to understand the content of the theorems we need to understand the
logical structure of the language in which they are formulated and the pattern of
deduction from which they are proved. Otherwise, it would be suspect to claim
that we understand a specific theorem in exam. But, to precisely intend this notion
of consequence, we need a pack of mathematical concept as shown before.

So, we can concede to Linnebo that the logic is cognitive prior with respect to any
specific content but – however – we think it presupposes a grasp of mathematical
concepts to adequately capture the meaning of the logical consequences of axioms.

6 Ontological Innocence
Unlike cognitive primacy and universal applicability, Linnebo formulates the onto-
logical innocence requirement in a relational way. Boolos’ interpretation of MSOL
is ontologically innocent iff it is not more committed than another theory assumed
as ontologically innocent.

In this case, our basic theory is FOL. So, the criterion can be specify in the
following way:

• a system S∗ is ontologically innocent iff S∗ is not more committed than S
and

• S is ontologically innocent.

In the following, we shall try to characterize the relation between S∗ and S; then,
on the basis of this characterization, we shall cast some doubts on the ontological
innocence requirement.

Suppose that our system S∗ is not ontologically committed to any entities be-
yond those already accepted in the ordinary system S. Let us call the system S∗
ontologically conservative on S. Ontological conservativity can be intended in, at
least, two ways: as numerical conservativity and as metaphysical conservativity, i.e.:

S∗ is numerically conservative (NumCons) on S iff the intended model
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of S∗ has the same size of the intended model of S.10

S∗ is metaphysically conservative (MetCons) on S iff in the intended
model of S∗ there are no different entities from those accepted in the
domain of S.

The relations between these conditions are:

1. S∗NumCons S =⇒S∗ MetCons S

2. S∗MetCons S =⇒S∗ NumCons S

Ad 1). If S∗ is numerically conservative on S, then it is not introducing anything
new in respect to the entities introduced by S. But this is not unconditionally valid.
Let us assume that the cardinality of the domains of S and S∗ is denumerable. Let
us further assume that S∗ introduces – via a comprehension axiom – a denumerable
class of different entities from those already accepted in the domain of S. In this
case, S∗ is a numerically conservative extension of S but it is not a metaphysical
conservative extension of S. So, (1) holds provided that the cardinality of the
domain is finite.

Ad 2). Let us assume that S∗ is metaphysically conservative on S. Obviously, this
does not say anything on the number of elements S∗ is introducing in addition to
the entities admitted by S. And this holds both for infinite and finite cardinalities.
For instance, consider a system of FOL plus “there is a non denumerable quantity
of individuals”. This system is metaphysically conservative on FOL but it is not
numerically conservative.

We have shown how to unpack Linnebo’s third requirement: ontological inno-
cence can be considered as the union of numerical conservativity and metaphysical
conservativity. But, there is no guarantee that a system satisfying one of the two
sub-criteria will be ontological innocent. Just the first one seems to fit Linnebo’s
intuitions, provided that the cardinality at play is finite. But again, we need to
refer to an extra-logical fact to fully specify a criterion of logicality.

7 Skecth of a concluding proposal
From what previously said the three requirements of ontological innocence, cognitive
primacy, and universal applicability seem to be too restrictive: not even FOL is able
to satisfy them. One can also argue that they coincide with what FOL commits to.
But, then, one can easily argue that they are ad hoc.

Are there any alternatives? One could abandon this path and follow, instead,
one of well known route to logicality mentioned at the beginning of this paper.
Otherwise, one could agree with Tarski, according to which:

10The reference to intended model is necessary since, by Loewenheim-Skolem results, any theory
with a denumerable model has models of any cardinality.
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[I]t would turn out to be necessary to treat such concepts as following
logically, analytic sentence or tautology as relative concept which must
be related to a definite but more or less arbitrary division of the terms
of a language into logical and extra-logical. [21, p. 189].

Just to briefly sketch the train of thoughts of this Tarskian idea: one could keep
fixed the intuition connected to the independence of logic from specific features of
meaning and world but to relativize, at the same time, the very concept of inde-
pendence. That is, once some general norms concerning, for instance, the general
structure of the domain are fixed, it is possible to show that a system is a logical
one iff its notions are universally applicable modulo these general norms previously
stated.11

It is clear that any choice of the above mentioned norms should be justified and
whatever the justification adopted is, this does not seem to affect the grounding
idea according to which the nature of logic has to do with the independence from
specific contents and domains.
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Cyclic Properties: from Linear Logic to
Pregroups

Claudia Casadio and Mehrnoosh Sadrzadeh

abstract. We show that the algebra of pregroups, used in the type gram-
mar recently introduced by the mathematician J. Lambek, exhibits a weak
form of cyclic properties similar to those holding in Non-commutative Multi-
plicative Linear Logic (NMLL). We prove some algebraic inequalities for these
notions and present them in a sequent calculus form. We motivate the ad-
vantages of this approach, both at the theoretical and at the descriptive level,
applying it to the analysis of word order changes in certain natural languages.

Keywords Type grammar, linear logic, pregroup, cyclic rules, word order

1 Introduction
The calculus of pregroups is a type grammar introduced by the mathematician
J. Lambek [20, 21], that has been applied to the logical analysis of many natu-
ral languages like English, German, French, Italian, and others [23]. Similarly to
the Syntactic Calculus [19], the calculus of pregroups is free from structural rules
(weakening, contraction, exchange) to the effect that sequences of formulas are not
necessarily commutative. Non commutativity is a property of particular interest
in the formal study of language, as proven by the extensive work on this subject
[3, 11, 8, 17]. The syntax of natural languages admits, however, changes of word
order like e.g. the patterns of topicalisation and VP-preposing studied by theoret-
ical linguistics [15, 27]. We made this observation precise by developing a novel
approach to pregroups based on the theoretical concept of cyclic rule [31, 1, 3] and
the permutations that can be introduced by means of these rules. Whereas these
notions have been studied for monoids and residuated monoids and associated se-
quent calculi, particularly in the framework of Non-commutative and Cyclic Linear
Logic [18, 2, 4, 28, 29], no one has up to now studied their import in the calculus
of pregroups.

In previous work [13], we showed how cyclic properties can be formulated as meta
rules imposed on the lexicon of a pregroup type grammar, and used these to reason
about word order alternation as a result of clitic movement in natural languages
such as Farsi, Italian, and some examples from French. These rules were external to
the system and did not relate to any internal property of pregroups. More recently
in [14] we showed how pregroups admit certain weaker forms of cyclicity; we referred
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to these by precyclicity and presented some algebraic properties for them, further we
applied these to develop precyclic transformations that allowed us to reason about
word order alternations in Sanskrit.

In this paper, we build on the latter work. We first review the definition and
properties of cyclicity in residuated monoids (which are the basis for the Syntactic
Calculus). Using the known translation between residuated monoids and pregroups,
we then develop definitions for the notions of cyclic and dualizing elements of a
pregroup and prove some properties about them. For instance, we show how the
inequalities of adjunction can be derived from those of precyclicity. We also review
the cyclic properties from a sequent calculus point of view and go through the cor-
responding rules of Non-commutative/Cyclic Multiplicative Additive Linear Logics
of Abrusci and Yetter [1, 2, 4, 31]. We show how the translations of these rules
into the sequent calculus of pregroups, due to Buszkowski [6, 7], are sound. Finally,
we apply these findings to reason about change of word order in natural language,
offering some examples from different languages.

2 Pregroups: algebra and rules
A pregroup P is a partially ordered monoid (P, · , 1,≤, ()l, ()r) : P a set of types,
‘·’ a non commutative multiplicative operation, 1 the unit of the monoid, and each
element p ∈ P has both a left adjoint pl and a right adjoint pr:

pl · p ≤ 1 ≤ p · pl p · pr ≤ 1 ≤ pr · p

The two inequalities on the left side of 1 are referred to as contractions, while the
two at the right side of 1 as expansions; the unit 1 and the multiplication are self
dual [20, 6]:

1l = 1 = 1r (pq)l = qlpl (pq)r = qrpr .

where the (left, right) adjoint of multiplication is the multiplication of adjoints, but
in the reverse order. Some other properties of pregroups are as follows:
- The adjoint operation is order reversing, that is:

p ≤ q =⇒ qr ≤ pr and p ≤ q =⇒ ql ≤ pl

- Composition of opposite adjoints is identity:

(pl)r = (pr)l = p

- Composition of the same adjoints is not identity:

pll = (pl)l , p, prr = (pr)r , p

This leads to the existence of iterated adjoints [20], so that each element of a
pregroup can have countably many iterated adjoints:

· · · , pll, pl, p, pr, prr, · · ·

A pregroup is proper whenever for any of its elements p we have that pl , pr.
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We may read x ≤ y as saying that everything of type x is also of type y. Lin-
guistic applications make particular use of the equation ar` = a = a`r , allowing
the cancellation of double opposite adjoints and of the rules a`` a` → 1 → a` a``
, ar arr → 1 → arr ar , contracting and expanding identical left and right double
adjoints respectively. Just contractions a` a → 1 and a ar → 1 are needed to de-
termine constituent analysis and to show that a string of words is a sentence, while
expansions 1 → a a` , 1 → ara are useful for expressing structural (syntactic and
semantic) properties [23].

3 Algebraic Cyclicity
3.1 Residuated Monoids
A monoid (M, ·, 1) is a set M admitting an associative operation with unit 1. A
monoid is partially ordered whenM is partially ordered and the order preserves the
monoid operation, that is for every a, b, e ∈M :

a ≤ b =⇒ a · e ≤ b · e and e · a ≤ e · b

We denote a partially ordered monoid M by (M, ·, 1,≤). A residuated monoid,
denoted by (M, ·, 1, ,≤, /, \), is a partially ordered monoid in which the monoid
multiplication has a right − \ − and a left −/− adjoint, that is, for a, b, e ∈ M
[19, 23, 26, 4]:

b ≤ a \ e ⇔ a · b ≤ e ⇔ a ≤ e/b

An element c of a partially ordered monoid M is said to be cyclic whenever, for all
a, b ∈M :

a · b ≤ c =⇒ b · a ≤ c

Thus, one can define the notion of cyclicity for partially ordered monoids that are
not necessarily residuated. Whenever a monoid is residuated, the cyclic condition
becomes equivalent to:

c/a = a\c
3.2 Cyclicity in residuated monoids
The notion of cyclicity does not depend on the residuated structure of a monoid,
but only on its underlying partial order. We say that a partially ordered monoid
(residuated or not) is cyclic whenever it has a cyclic element. In a residuated
monoid, one can also define a new notion: that of dualization. An element d of a
residuated monoid is dualizing whenever for all a ∈M we have: (d/a) \ d = a =
d/(a \ d). If the dualizing element of M is also cyclic, we obtain: d/(d/a) = a =
(a \ d) \ d.

These notions were defined by Yetter [31] focusing on residuated lattice monoids
(M, ·, 1, /, \,∨,∧,⊥,>). In such structures, the bottom element of the lattice ⊥ is
dualizing, and it can be used to define two notions of negation: ¬r a := a\⊥ and
¬l a := ⊥/a . If the two negations of a residuated lattice monoid coincide: ¬l a
= ¬r a , then ⊥ is also cyclic. Yetter used these notions to provide an algebraic
semantics for linear logic and called Girard Quantales the structures in which the
two negations coincide, i.e. in which ⊥ is cyclic.
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The passage from residuated monoids (on which Lambek’s Syntaxtic Calculus
is based [19]) to pregroups consists in replacing the two adjoints of the monoid
multiplication with the two adjoints of the elements. If a residuated monoid has
a dualizing object, i.e. an object 0 ∈ M satisfying (0/p) \ 0 = p = 0/(p \ 0)
for p ∈ M , then one can define for each element a left and a right negation as
p0 := p \ 0 and 0p := 0/p. It would then be tempting to think of these negations as
the two pregroup adjoints, i.e. to define p0 = pr and 0p = pl. The problem with this
definition is that the operation ℘ - the linear logic “par" - involved in a\b = a⊥℘ b,
b/a = b ℘ a⊥, is different from the multiplicative operation (a . b) of pregroups. One
can however translate Syntactic Calculus expressions into pregroups provided that
both ℘ and ⊗ of CyMLL are identified with the pregroup unique operation: then
all the a\b (or b/a) types will become arb (or b al) [20].

3.3 Cyclicity in pregroups
By translating the terms and properties of residuated monoids into pregroups, we
investigate whether and how the translations of the above notions may hold in
a pregroup. In particular, we will have the translation of the unit object of a
residuated monoid, which is again the unit object in a pregroup, and the translation
of the definition of a dualizing object of a residuated monoid. Then we show that
the translation of 1 satisfies the translation of the dualizing property, but not the
translation of the cyclic property. By reusing the vocabulary to some extent, one
can summarise this result and say that the unit 1 of a pregorup is a ‘dualizing’
element which is not necessarily ‘cyclic’.

DEFINITION 1. Given an element x of a residuated monoid M , we denote its
translation into a pregroup by t(x). For all a, b ∈ M , this translation is defined as
follows:

t(1) = 1, t(a · b) = t(a) · t(b), t(a\b) = t(a)r · t(b), t(a/b) = t(a) · t(b)l

DEFINITION 2. A pregroup has a dualizing element, whenever the following equal-
ity holds in it:

t((d/a)\d) = t(a) = t(d/(a\d))

for d and a elements of a residuate monoid and d dualizing. If that is the case, we
call t(d) the dualizing element of a pregroup.
DEFINITION 3. The dualizing element t(d) of a pregroup is cyclic whenever we
have

t(d/(d/a)) = t(a) = t((a \ d) \ d)

PROPOSITION 4. The unit of a pregorup is dualizing.

Proof. Recall that t(1) is 1. So we have to show that for all a ∈ P , the translation
of (1/a)\1 = a = 1/(a\1) holds in a pregroup. That is we have to show:

t((1/a)\1) = t(a) = t(1/(a\1))
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For the left hand side we have

t((1/a)\1) = (t(1/a))r ·t(1) = (1 ·t(a)l)r ·1 = ((t(a)l)r ·1)·1 = (t(a)l)r= t(a)

For the right hand side we have

t(1/(a\1))= t(1)·t(a\1)l = 1·(t(a)r ·t(1))l=1·(1·(t(a)r)l) = (t(a)l)r= t(a)

�

PROPOSITION 5. The unit of a proper pregroup is not cyclic.

Proof. We need to show that for all a ∈ P , the following is the case

t(1/(1/a)) , t(a) , t((a \ 1) \ 1)

For the left hand side we have:

t(1/(1/a)) = t(1) · t(1/a)l = t(1) · (t(1) · t(a)l)l = t(1) · t(a)ll · t(1)l = t(a)ll

For the right hand side we have

t((a\1)\1) = t(a\1)r ·t(1) = (t(a)r ·t(1))r ·t(1) = t(1)r ·t(a)rr ·t(1) = t(a)rr

and since the pregroup is proper, it is the case that: t(a)ll , t(a)rr . �

However, as proved in [14], pregroups do admit a weak form of cyclicity, which
we refer to by using the term precyclicity, described below:
PROPOSITION 6. The following hold in any pregroup P , for p, q, r ∈ P

(i) pq ≤ r =⇒ q ≤ prr (ii) q ≤ rp =⇒ qpr ≤ r

(iii) qp ≤ r =⇒ q ≤ rpl (iv) q ≤ pr =⇒ plq ≤ r

As a consequence we obtain:
COROLLARY 7. The following hold in any pregroup P , for any a, b ∈ P :

(1) 1 ≤ ab (ll)=⇒ 1 ≤ ball (2) 1 ≤ ab (rr)=⇒ 1 ≤ brra

Informally, case (1) of the above corollary says that whenever a juxtaposition of
types, e.g. ab, is above the monoidal unit, then so is a permuted version of it, where
a moves from the left of b to the right of it, but as a result of this movement, a gets
marked with double adjoints ll to register the fact that it came from the left. That
is why this property is annotated with (and we thus refer to it by) ll. Case (2) is
similar, except that in this case it is b that moves from the right of a to its left,
hence it is marked with rr. This result can be expressed in different forms, what
follows is one variant:
PROPOSITION 8. For a pregroup P and p, q ∈ P :

(3) 1 ≤ prql =⇒ 1 ≤ qlpl (4) 1 ≤ prql =⇒ 1 ≤ qrpr

(5) pq ≤ 1 =⇒ qllp ≤ 1 (6) pq ≤ 1 =⇒ qprr ≤ 1
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Proof. The properties of the first line are obtained by taking a = pr and b = ql

in the properties of Corollary 3; the properties of the second line are obtained by
taking a = ql and b = pl in the properties of Corollary 3. �

Finally note that another interesting feature of the precyclicity property is the
fact that it can be used to obtain the adjunction inequalities of a pregroup, per-
haps indicating that the precyclic properties can be used a basis for the pregorup
adjunctions properties:
PROPOSITION 9. The pregroup adjunction inequalities follow from precyclicity.

Proof. Consider the inequalities of the left adjoint: for all p in a pregroup P , we
have plp ≤ 1 ≤ ppl. To prove the left hand side inequality, start from p ≤ p, from
which it follows that p ≤ p1, then by inequality (iv) of Proposition 6, it follows
that plp ≤ 1. To prove the right hand side inequality, start from p ≤ p, from which
it follows that 1p ≤ p, then by inequality (iii) of Proposition 6, it follows that
1 ≤ ppl. To prove the inequalities of the right adjoint, that is ppr ≤ 1 ≤ prp, start
from p ≤ p, from this it follows that p ≤ 1p and that p1 ≤ p; from the former
by inequality (ii) of Proposition 6 it follows that ppr ≤ 1, and from the latter by
inequality (i) of Proposition 6 it follows that 1 ≤ prp. �

4 Cyclicity in Sequent Calculi
4.1 Linear Logic
The origins of the cyclic rules in sequent calculi go back to the following (restricted)
form of exchange rule, first introduced by Girard [18]:

` Γ, A
` A,Γ CycExch

To remove the exchange rule (and hence all the structural rules) from Linear Logic,
Abrusci generalised this rule in the following way, referring to its logic as Pure
Non-Commutative Classical Linear Logic (SPNCL′)[1]:

` Γ, A
` ¬r¬rA,Γ Cyc+2

` A,Γ
` Γ,¬l¬lA

Cyc−2

The semantics of this logic is a version of Girard’s phase semantics where ⊥ is
dualizing and it is used to define negations as demonstrated in the previous section,
that is ¬rA := A\⊥ and ¬lA := ⊥/A. Note that Girard’s original Multiplicative
Additive Linear Logic (MALL) [18], has the following exchange rule:

` A1, · · · , An
` Aσ(1), · · · , Aσ(n)

In this rule σ is any permutation of {1, · · · , n}. Later, Yetter restricted this rule so
that σ was not any permutation, but a cyclic permutation. In any case, in these
logics the constant ⊥ is both cyclic and dualizing, whereas in Abrusci’s version of
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the logic (SPNCL′) [1], ⊥ is dualizing but not cyclic. Abrusci also showed that
this logic is equivalent to the system SPNCL, which does not include Cyc+2 and
Cyc−2 but its cut andmultiplicative rules have side conditions. These two logics are
referred to by the umbrella terms NMALL or (CyMALL) for Non-commutative
or Cyclic Multiplicative Additive Linear Logic [3].

4.2 Compact Bi-Linear Logic
The logic of pregroups is called a Compact Bi-Linear Logic [25], that is a Linear
Logic which has two implications (hence the mention of the word bi-linear) and in
which the tensor and par coincide (hence the mention of the word compact). The
first sound and complete cut-free sequent calculus for such a logic is presented in
[7]. The rules of this calculus are as follows, for A,B single formulae and ∆,Γ finite
sequences of formulae:

` Γ,∆
` Γ, 1,∆ 1

` Γ, A,B,∆
` Γ, A ·B,∆

· ` Γ,∆
` Γ, Ar, A,∆ Adjr

` Γ,∆
` Γ, A,Al,∆

Adjl

This calculus admits the following two cut rules:

` A,∆ ` Γ, Al
` Γ,∆ cut l

` Ar,∆ ` Γ, A
` Γ,∆ cut r

As elaborated on in detail in [11, 20], there is a correspondence between this logic
and NMALL: the multiplication operation of a pregroup is the tensor product of
NMALL [11, 20] and the two adjoints of a pregroup correspond to the two negations
of NMALL; in particular we have:

A+2 := Arr A−2 := All

Given such a correspondence, the formulation of a calculus for pregroups can in-
terestingly refer to the tensor fragment of the calculus NMALL, like the one in-
troduced for instance in [1, 3]. For example the pregroup calculus presented in [7]
and the tensor product fragment of NMALL presented in [1] share similar logical
properties. In particular, one can show the following:
PROPOSITION 10. The rules Cyc+2 and Cyc−2 of NMALL are sound in any
pregroup P .

Proof. Using definitions A+2 := All and A−2 := Arr from [11], the rules Cyc+2

and Cyc−2 become as follows in a pregroup setting:

` A,Γ
` Γ, All

(ll) ` Γ, A
` Arr,Γ (rr)

We use the truth-assignment map h : L → P from the formulae of the logic L to a
pregroup P , as given by [6]. A formula A of the logic L is true under h if 1 ≤ h(A),
for 1 the unit in the pregroup P . A sequent ` A1, A2, . . . , An of L is true if the
formula A1 ·A2 · . . . ·An is true. The soundness of the translations of the cyclic rules
in a pregroup then follows from Corollary 3, by taking h(A) = a and h(Γ) = b. �
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5 Changes of word order in natural languages
Natural languages exhibit various kinds of word order changes with respect to the
basic orders admitted by grammatical rules; these patterns are extensively studied
in theoretical linguistics, where they are often referred to as movements of words
or constituents [15, 27].

We obtain here the result of limiting word order changes in natural languages to
the grammatical ones by introducing a set of precyclic transformations and permu-
tations that specify the conditions for obtaining correct (language dependent) word
order patterns. In the paper we consider some critical examples taken from a non
inflectional language, like English, and two inflectional languages like Persian and
Latin. But the procedure presented here can be easily extended to any language
whatsoever. To analyse a natural language we use a pregroup grammar. Similar to
other type-categorial grammars, a pregroup grammar is a free pregroup generated
over a set of basic types together with the assignment of the pregroup types to the
vocabulary of the language. For the purpose of this paper we assume the set of
basic types {n, π, o, s}, representing four basic grammatical categories:

n : noun phrase π : subject o : object s : sentence

The linguistic reading of a pregroup partial order a ≤ b is that a word of type a
is also of type b. We assume the partial orders n ≤ π and n ≤ o, routinely used
in pregroup grammars. The free pregroup generated over the above basic types
includes simple types such as nl, nr, πl, πr, and compound types such as (πrs ol).
A sentence is defined to be grammatical whenever the multiplication (syntactic
composition) of the types of its constituents is less than or equal to the type s.
The computations that lead to deciding this matter are referred to as grammatical
reductions. For example, the assignments of the words of the declarative sentence
‘I saw him.’ and its grammatical reduction are as in the Figure on page 150. The
grammar of a wide range of natural languages have been analysed using pregroup
grammars, see [23]. The computations that lead to type reductions are depicted by
the under-link diagrams, reminescent of the planar proof nets of non-commutative
linear logic, as shown in the calculi developed in [3, 6, 21, 22].

There are grammatical regularities within languages that involve word order
changes: e. g., certain language units within a sentence move from after the verb to
before it, or from before the verb to after it, and the resulting juxtaposition of words
is still a grammatical sentence. Pregroups were not able to reason about change of
word order in a general way and we offer a solution here. We propose to enrich the
pregroup grammar of a language with a set of precyclic transformations that allow
for substituting certain type combinations with their precyclic permutations. These
permutations differ from language to language and express different, language spe-
cific, movement patterns. Within each language, they are restricted to a specific
set so that not all word orders become permissible. More formally, we define:
DEFINITION 11. In a pregroup P , whenever 1 ≤ ab =⇒ 1 ≤ ball or 1 ≤ brra,
then we refer to ball and brra as precyclic permutations of ab and denote this
relationship by ab σ

{ ball and ab σ
{ brra.
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DEFINITION 12. In a pregroup P , for ball and brra precyclic permutations of ab,
and any A,B,C ∈ P , we define the following precyclic transformations1:

(ll)-transformation A ≤ B(ab)C
(ll)
{ A ≤ B(ball)C

(rr)-transformation A ≤ B(ab)C
(rr)
{ A ≤ B(brra)C

DEFINITION 13. A precyclic pregroup grammar is a pregroup grammar with a
set of precyclic transformations.

Reduction Procedure. The idea is that the arguments of certain words and
phrases with complex types, e.g. adjectives and verb phrases, can be moved before
or after them, as an effect of stress or other semantic vs. pragmatic intentions. We
will briefly describe how to extend the existing grammar of a language to include
the word order changes resulting from these movements.

1. First you decide which words or phrases allow which forms of movement and encode
this information about movement in the precyclic permutations of the type of each
such word or phrase w, in the following way:

(a) If w is of type prq, i.e. it requires an argument of type p before it, and p can
be moved after w, then allow for the cyclic permutation prq σ

{ qpl.
(b) Else, if w is of type qpl, i.e. it requires an argument of type p after it, and p

can be moved before w, then allow for the cyclic permutation qpl σ
{ prq.

2. Then you form a precyclic pregroup grammar from the pregroup grammar of a lan-
guage by turning the above permutations into precyclic transformations in the fol-
lowing way:

(a) If w is from step 1(a), add an (ll)-transformation by taking a = pr and b = q
and computing ball = (qpr)ll = qpl.

(b) Else, if w is from step 1(b), add an (rr)-transformation by taking a = q and
b = pl and computing brra = (pl)rrq = prq.

3. A string of words is grammatical, whenever either the types of its words, as assigned
by the pregroup grammar, reduce to s, or their transformed versions do.

To exemplify, consider first English and its different word order patterns, as
discussed in detail by [5]. The basic English word order is SVO (Subject-Verb-
Object), but this order may change as a result of object topicalisation or VP-
preposing. Topicalisation allows for the object to move from after the verb phrase
to before it. VP-preposing allows for the infinitive verb phrase to move from after
the auxiliary or modal verb to before it. These permissible movements are reflected
by the following precyclic transformations:

Moving Unit Permutation Transformation

Object sol
σ
{ ors A ≤ B(sol)C

(rr)
{ A ≤ B(ors)C

Infinitive sil
σ
{ irs A ≤ B(sil)C

(rr)
{ A ≤ B(irs)C

1These transformations prevent us from making isolated assumptions such as 1 ≤ sol and stop
generation of meaningless inequalities such as 1o ≤ (sol)o ≤ s.
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As an example of topicalization, consider the simple transitive sentence ‘I saw
him’, and its topicalized form ‘Him I saw’, which are typed as follows:

I saw him. : π(πrs ol) o ≤ 1(s ol) o ≤ 1 s 1 ≤ s

Him I saw. : o π(πrs ol) ≤ o (s ol)
(rr)
{ o (or s) ≤ s

We are not allowed to reduce the other possible four orderings (him saw I, saw I him,
saw him I, I him saw) to s, since for obtaining similar permutations we need either
the subject to move to after the verb, or subject and object invert their relative
position; in both cases the consequence is that the subject and the verb occur
in configurations like verb-subject (inversion) or subject-object-verb (separate) not
admitted by the English grammar, as pointed out in [5]. Formally, to obtain similar
ungrammatical word orders, we should need transformations based on the following
unlawful permutations, which we have not included into the pregroup grammar:

(∗) πrs σ
{ sπl (∗) πrsol σ

{ solπl (∗) orsπl σ
{ sπlol (∗) πrsol σ

{ orπrs

As another example, consider the sentence ‘He must love her’: here we can have
both topicalisation (case (1) below) and VP-preposing (case (2) below). The type
assignments and derivations of these cases are as displayed on page 151.

Non-permissible combinations like ‘must love her he’ or ‘must love he her’ cannot
be derived, because they require, as before, a transformation corresponding to the
precyclic permutation πrsol σ

{ solπl, in which the subject is expected to occur after
the verb, that has not been included into the pregroup grammar.

For an example of another language, consider Persian which has an SOV (Subject-
Object-Verb) structure. A simple transitive sentence is ‘Man u-ra didam’, (I him
saw) where the object ‘u’ is suffixed by the morpheme ‘ra’, hence this sentence has
a more free word order than in English. As a result, either the subject and object
and the subject-object cluster can move from before the verb to after it. The latter
case will be a case of VP-movement, whereas the former two are cases of topicali-
sation, respectively, for subject and object. The permutations and transformations
reflecting these movements are as follows:

Moving Unit Permutation Transformation

Subject πrs
σ
{ sπl A ≤ B(πrs)C

(ll)
{ A ≤ B(sπl)C

Object orπrs
σ
{ πrsol A ≤ B(orπrs)C

(ll)
{ A ≤ B(πrsol)C

Subject-and-Object (πo)rs σ
{ s(πo)l A ≤ B((πo)rs)C

(ll)
{ A ≤ B(s(πo)l)C

On page 151 one can find the original sentence, its three permissible variations,
their derivations. A fourth less common variation ‘Didam u-ra man’ has two stages
of movement: first the object moves to after the verb, then the subject does the
same. This is derivable by first applying the object permutation orπrs σ

{ πrsol and
then the subject permutation πrs σ

{ sπl. The non-permissible variation ‘U-ra man
didam’ also needs two stages of permutation, but it is not derivable since the second
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stage needs the unlawful permutation sol σ
{ ors. This permutation is preceded by

orπrs
σ
{ πrsol and is meant to place back the moved object to before the verb.

As a third example, consider Latin, in which word order is relatively free, and
position is used to obtain the same effect that in English is secured by emphasis or
stress: the role played by a word in the sentence is shown by its ending and not
by its position. The basic word order, when no particular emphasis is expressed,
is (SOV) like in Persian, but in Latin texts one finds that changes from the basic
order are very frequent, due to the intention of putting emphasis upon some word
or phrase [10]. The first position in the sentence is the most emphatic, and the
position next in importance is the last one; since the subject generally plays the
most important role, it is placed first in the sentence; then the verb is the next in
importance, and is placed in the last position, with the direct object in the middle.
Possessive pronouns and modifying adjectives normally occur after the noun, but
when they are emphatic they are placed before it, or even at the beginning of the
sentence, as in the example on page 152.

In case (1), the adjective parvam and its head noun casam have swapped order.
In cases (2) and (3), parvam has moved to the beginning of the sentence, in (3)
casam has moreover moved to the end of the sentence. The typings of these three
word sequences, after the reduction of ‘Filia’ with ‘mea’ are as follows, where, for
the shake of clarity, we underline the types to which the preciclic transformations
are applied to:

(1) π(oro)o(orπrs)
(ll)
{ π(ool)o(orπs) ≤ πo(orπrs) ≤ s

(2) (oro)πo(orπrs)
(ll)
{ (ool)πo(orπrs)

(rr)
{ (ool)oπrr(orπrs) ≤ oπrr(orπrs)

(ll)
{

πo(orπrs) ≤ s

(3) (oro)π(orπrs)o
(ll)
{ (ool)π(orπrs)o

(ll)
{ (ool)o(π(orπrs))ll ≤ o(π(orπrs))ll

(rr)
{

π(orπrs)o
(ll)
{ π(πrsol) o ≤ s

The permutations and transformations reflecting these movements in the Latin
examples are as follows:

Moving Unit Permutation Transformation

Subject modifier oro
σ
{ o ol A ≤ B(oro)C

(ll)
{ A ≤ B(o ol)C

Object orπrs
σ
{ πrsol A ≤ B(orπrs)C

(ll)
{ A ≤ B(πrsol)C

Subject-and-Object (πo) σ
{ (πo)rr A ≤ B((πo)s)C

(rr)
{ A ≤ B(s(πo)rr)C

6 Conclusions
We have shown that precyclicity, a restricted form of cyclicity, holds in pregroups.
With precyclicity we can reason about movement and word order change in natural
languages. Over-generation is avoided by introducing transformations based on
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precyclic permutations of types of words that allow movement. We have provided
witnesses for this phenomena with examples in English, Persian, and Latin. A
decision procedure, using a cut-free sequent calculus and computing the complexity
of parsing in this setting, constitutes the subject of future work.
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Another way out of the Preface Paradox?

Gustavo Cevolani

1 Introduction
The so called Preface Paradox runs as follows [11]. Suppose you write a book, in
which you advance a great number of claims b1, b2, . . . , bm. Since you can adequately
defend each one of them, it seems rational for you to accept their conjunction, call
it b. Even so, you admit in the preface that your book will contain at least a few
errors. This apparently amounts to say that at least one of the claims in your book
is false, i.e., that you accept the disjunctive statement ¬b1 ∨ ¬b2 ∨ · · · ∨ ¬bm. But
this statement is logically equivalent to ¬b; thus, it seems that you are entitled to
rationally accept both b and its negation. “Rationality, plus modesty, thus forces
[you] to a contradiction” [16, p. 162].

In this note, I explore a possible way out of the Preface Paradox based on the
notion, to be introduced below, of “approximate” belief: i.e., on the idea that, in
some circumstances, you may assert b while believing, in fact, a different statement
h which is “close” to b (in a suitably defined sense). This idea is inspired by a
solution to the Preface Paradox recently put forward by Hannes Leitgeb (“A way out
of the preface paradox?”, Analysis, 2014) which is presented in section 2. Another
relevant suggestion comes from a paper by Sven Ove Hansson [9], who highlights an
interesting link between the Preface Paradox and the logic of belief change. I discuss
this suggestion in section 3, where an account of approximate belief is proposed. I
conclude, in section 4, by briefly discussing the main differences between the present
account and Leitgeb’s solution.

2 What does the author really believe?
According to a well-known definition [16, p. 1], a paradox is a “an apparently un-
acceptable conclusion derived by apparently acceptable reasoning from apparently
acceptable premises”. Thus, solving or dissolving a paradox amounts to showing
that “either the conclusion is not really unacceptable, or else the starting point, or
the reasoning, has some non-obvious flaw” (ibidem). In our case, the line of reason-
ing leading to the Preface Paradox is quite clear. First, some general, background
assumptions are more or less explicitly stated. They are labeled A0–A2 below:

A0. (Rationality) The author of the book is (ideally) rational.

A1. (Conjunctive closure) The beliefs of a rational author are closed under con-
junction; i.e., if the author accepts b1, b2, . . . , bm then he accepts b.
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A2. (Consistency) The beliefs of a rational author are (logically) consistent.

Secondly, the premises of the paradox are presented:

P1. The author accepts b1, b2, . . . , bm.

P2. The author accepts ¬b1 ∨ ¬b2 ∨ · · · ∨ ¬bm.

Then the paradox is easily derived. On the one hand, given A0, it follows from A1
and P1 that the author accepts b. On the other hand, P2 implies, by logic alone,
that the author accepts ¬b. It follows, against A2, that the author accepts both b
and ¬b (and hence their conjunction, again by A0 and A1).

In the attempt to find a way out of the Preface Paradox, most commentators
have questioned either A1 or A2 as the most problematic assumptions [7, 5]. In
his analysis, Leitgeb [10] focuses instead on P1, and challenges the assumption that
the author of the book actually believes b. His idea is that, by publishing the book,
the author doesn’t really accept all the claims b1, . . . , bm in the book. Thus, he
doesn’t believe their conjunction b, but a strictly weaker claim: namely, that “the
vast majority” of these claims are true. This provides a straightforward way out of
the paradox, since this weaker claim is logically compatible with ¬b, i.e., with what
the author states in the preface. More generally, Leitgeb argues that when someone
makes a great number m of assertions, as opposed to one or few claims, what he
really believe is just that most of them are true.

More formally, let k be a natural number not greater than m, but “sufficiently
close” tom.1 According to Leitgeb [10, p. 12], what the author accepts by publishing
the book is not b, but its “statistical weakening” Sk(b), defined as the disjunction
of all the conjunctions of k different sentences among b1, . . . , bm.
EXAMPLE 1. In the following, I’ll repeatedly make use of the toy (and, as such
unrealistic) example where m = 3 and k = 2 [10, p. 12]. In this case, the statistical
weakening of b = b1 & b2 & b3 is

S2(b1 & b2 & b3) = (b1 & b2) ∨ (b1 & b3) ∨ (b2 & b3).

Note that the precise value of k is highly context-dependent and does not need
to be explicitly stated, not even by the author of the book [10, pp. 12, 14]. In any
case, as far as k is smaller than m, Sk(b) is strictly weaker than b in the sense that
b entails Sk(b), but not vice versa. Hence, Sk(b) is compatible with ¬b, so that
the author could accept both of them and still maintain the consistency of what he
believes.

Leitgeb’s solution is interesting also because it naturally suggests a different,
more general account of the Preface Paradox. From a purely logical point of view,
it is clear that any statement h which, like Sk(b), is compatible with ¬b (and hence
doesn’t entail b) provides a way out of the paradox, if h is taken to represent the
“real” content of the author’s beliefs. In this connection, a recent paper by Hansson

1Leitgeb [10, p. 12] assumes 1 ≤ k ≤ m but, given the intended interpretation, it seems safe to
say that k should be not smaller than m

2 .
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[9] provides a potentially fruitful suggestion. Hansson notes, in passing, that the
author in the Preface Paradox apparently faces a problem of “belief contraction”
as studied in the AGM theory of belief revision [9, pp. 1024–1025].2 This means
that our author initially accepts b but has reasons to believe that ¬b is the case;
accordingly, he should give up his belief in b or, in the AGM jargon, he should
perform a contraction of b by b itself, denoted (b−b). This would lead him to accept
a new statement h = (b − b) that is strictly weaker than b and hence compatible
with ¬b. As in the case of Leitgeb’s solution, this would provide a way out of the
paradox.

Hansson’s suggestion, however, adds an important idea to Leitgeb’s strategy of
weakening b in order to solve the paradox. In belief revision theory, in fact, a
relevant caveat applies: belief contraction, and belief change in general, has to be
“conservative” [8, sec. 3.5 and pp. 91 ff.]. This means that, after the change, the
beliefs of the author should be as close as possible to his previous beliefs; in other
words, belief change should be “minimal”, in that it preserves as much as possible
of the content of the original belief state.

This idea of minimal change leads us to the following proposal, inspired by both
Leitgeb’s solution and Hansson’s suggestion. Let say that someone approximately
believes b—or has an approximate belief in b—when, while asserting that b is the
case, he actually accept some other statement h which is “close” to b in some
adequately defined sense (to be clarified in the next section). If h is compatible
with ¬b, but still close to b, this offers a solution to the Preface Paradox in line with
Leitgeb’s strategy. Both Leitgeb’s and Hansson’s proposals can then be recovered
as the special cases where h is, respectively, the statistical weakening Sk(b) of b or
the contraction (b− b). In the former case, “approximation” to b is construed as k
being close to m, i.e., the “vast majority” of the claims b1, . . . , bm being true. In
my proposal, what matters is not the number k of purportedly true claims, but the
overall closeness or similarity of h to b. The following section shows how this notion
of approximate belief can be made precise.3

3 Approximate belief
In this section, we will consider a couple of different ways of formally reconstructing
the notion of approximate belief in the context of the Preface Paradox.
Preliminaries To keep things simple, let’s consider a propositional language Ln
with a finite number n of atomic sentences a1, . . . , an.4 The constituents of Ln are

2The AGM account of belief revision [8] has been developed in the eighties by Carlos Alchourrón,
Peter Gärdenfors, and David Makinson, and is named after them. Note that I’m not suggesting
that Hansson would underwrite the proposal advanced below. Hansson is not proposing a solution
to the Preface Paradox; he just highlights that what is paradoxical in this situation is exactly
that the author “has reasons to contract by [b] but refrains from doing so since such a contraction
would be cognitively unmanageable”, and hence retains his belief in b.

3Philosophers of science are familiar with various notions of approximation in different con-
texts [12]; the need for such notions is increasingly acknowledged also in traditional and formal
epistemology (see, respectively, [1, pp. 327 ff.] and [6]).

4All definitions in this section can be easily generalized to more complex languages, including
monadic and “nomic” languages [12, 13, 4].
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the q = 2n maximally informative conjunctions c1, . . . , cq of Ln. Each constituent
has the form ±a1 & . . . & ±an, where ± can be ¬ or nothing, and can be thought of
as the most complete description of a possible world given the expressive resources
of Ln.

It is well-known that any statement x of Ln can be expressed, in normal form,
as the disjunction of all constituents in its “range”, which is the set of constituents
entailing x: x ≡

∨
ci�x

ci. (For this reason, we abuse notation by letting x denote
both a statement and its range.) Equivalently, one may think of x as the set of pos-
sible worlds in which x is true. It is often instructive to consider what may be called
the “conjunctive statements” of Ln [3]. These are finite, consistent conjunctions of
“basic” statements ±ai, i.e., of atomic sentences or their negations. Constituents
are a special case of conjunctive statements, containing exactly n conjuncts. I will
often refer to conjunctive statements in the examples below.

To make sense of the notion of approximation, one needs to introduce a distance
measure ∆(ci, cj) defined on any pair of constituents ci and cj of Ln, expressing
the similarity or closeness between the two corresponding possible worlds. In the
following, I will assume that ∆(ci, cj) is the normalized Hamming (also known as
Dalal) distance between ci and cj , i.e., the plain number of atomic sentences on
which ci and cj disagree, divided by n.5 There are various ways to define, on the
basis of ∆, the distance between a statement x and a constituent ci. For instance,
the minimum distance ∆min(x, ci) between x and ci is defined as mincj∈x ∆(cj , ci),
i.e., as the distance from ci of the closest constituents of x.
Approximation by minimal belief contraction For our purposes, the following
notion will prove useful [13, p. 171]. Given two statements x and y in normal forms,
the set Dx(y) of the y-worlds closest to x is defined as follows:

Dx(y) = { ci ∈ y : ∆min(ci, x) ≤ ∆min(cj , x) for all cj ∈ y } .

In words, Dx(y) contains all constituents in (the range of) y at minimum distance
from x. In the context of belief revision theory, this immediately provides a defini-
tion of the contraction (x− y) of x by y, as follows (ibidem):

(x− y) =
∨
Dx(¬y) ∨ x

The contraction of x by y thus enlarges the set of possibilities admitted by x with
the set of the ¬y-worlds closest to x (see below for examples).

Now, following Hansson, suppose that the author in the Preface Paradox initially
believes b but decides to give up his belief in b. In this case, the contraction (b−b) will
contain all the possibilities within b, along with all the closest possibilities “around”
b (see figure 1). To see the above definition at work, it is instructive to consider
the special case where the claims b1, . . . , bm in the book are basic statements in the
sense defined before, and hence b is a conjunctive statement. In such case, one can
check that, by giving up b, the author comes to believe that at least m− 1 of his m

5This assumption will significantly simplify the definitions and the examples below, but it is
not essential. See [12, 13] for a more general treatment.
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b ¬b

Figure 1. Each point of the rectangular surface represents a constituent or possible
world. The solid circle represents the range of statement b. The dashed circle in-
cludes the worlds at minimum distance from b; the shadowed area is the contraction
(b− b).

beliefs are true:6

(b− b) = Sm−1(b) (1)

Thus, when b is a conjunctive statement, belief contraction leads to a special case
of Leitgeb’s solution, where the author accepts the strongest possible statistical
weakening of b (with k = m− 1).

EXAMPLE 2. Suppose that b is the conjunctive statement b1 & b2 & b3. Then:

(b− b) = (b1 & b2) ∨ (b1 & b3) ∨ (b2 & b3) = S2(b)

(compare example 1 in section 2).

All other cases admitted by Leitgeb’s solution, and corresponding to values of k
smaller than m − 1, are excluded here since they would result in non-conservative
contractions of b, i.e., statements too distant from b. (With reference to Figure
1, such statements would be represented, for decreasing k, by increasingly larger
circles around b.)
Approximation by distance minimization Up to this point, I followed Hans-
son’s suggestion of reconstructing the Preface Paradox as a problem of belief change.
According to this idea, and in agreement with a special case of Leitgeb’s solution,
the author escapes the paradox by accepting a statement h which is close to b in the
sense that h coincides with a conservative contraction of b. The idea of approximate
belief introduced in section 2 is however more general than this, since h can be close
to b without being a contraction of b. To make sense of this notion in full generality,
one needs to define a measure for the distance between two arbitrary statements x

6Proof. Suppose that b is a conjunctive statement. An arbitrary constituent c belongs toDb(¬b)
iff c disagrees with b (otherwise it would be in the range of b) exactly on one of the conjuncts of
b (otherwise ∆min(c, b) wouldn’t be minimal). It follows that b ∪Db(¬b) contains all constituents
which disagree with b at most on one claim of b. This is the range of the contraction (b− b), which
then says that at least m− 1 claims of b are true.
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x y

Figure 2. The symmetric difference (shadowed) between (the ranges of) x and y.
The minimum distance of an arbitrary constituent of each theory from the other
theory is displayed.

and y of Ln.7 Niiniluoto [12, p. 248] proposes the following normalized measure:

δ(x, y) = α

q

∑
ci∈y\x

∆min(ci, x) + α′

q

∑
cj∈x\y

∆min(cj , y) (2)

where 0 < α,α′ ≤ 1. The distance between x and y is thus based on the symmetric
difference (x \ y) ∪ (y \ x) between (the ranges of) x and y (see section 2). If,
e.g., y is construed as the “target” which x has to approximate, then the worlds
in the symmetric difference between x and y reflect two kind of “errors” of x. The
members of y \x can be construed as the mistaken exclusions of x, i.e., possibilities
admitted by y and wrongly excluded by x; while the elements of x \ y are the
mistaken inclusions of x, i.e., possibilities excluded by y and wrongly admitted by
x (see also [4]). The minimum distances of all errors are then summed up, with
weights α and α′ reflecting the relative seriousness of the two kinds of errors. Note
that δ(x, y) takes is minimal value just in case x and y are the same statement.

The above distance measure can be employed to define a notion of approximate
belief as applied to the case of the Preface Paradox, as follows. Let us say that the
author approximately believes b when he accepts a statement h such that:

h 2 b and δ(h, b) is minimal

This guarantees that the author’s beliefs are both close to b and compatible with
¬b. Thus, any statement h meeting the condition above provides a possible way
out of the paradox.

Note that, in order to be a good approximation of b, h has to include possibilities
which are close to b and exclude possibilities which are far from b. This is guaran-
teed when h is chosen as a subset of b ∪Db(¬b), since Db(¬b) contains the closest
possibilities to b among those excluded by b itself (see again figure 1). Thus, belief
contraction turns out to be the special case where h is chosen as b∪Db(¬b) itself. In

7Different measures of this kind have been studied in the philosophy of science literature con-
cerning verisimilitude or truthlikeness [12, 14]. In fact, note that when x is an arbitrary statement
and y is the true constituent of Ln (describing the actual world, i.e., “the whole truth” about the
domain), the verisimilitude of x can be defined as a decreasing function of the distance between x
and y.
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b ¬b

Figure 3. A statement h (shadowed) at minimum distance from b.

general, however, (b− b) will be too weak a statement to be a good approximation
of b; accordingly, h will typically be stronger than (b− b). More precisely, one can
check that δ(h, b) is minimized when:8

h = b ∪ { ci } where ci ∈ Db(¬b),

i.e., when h includes all worlds in b and exactly one of the worlds at minimum
distance from b (see figure 3).
EXAMPLE 3. Let b be the conjunctive statement b1 & b2 & b3 in L4. Then the
following statements are at minimum distance from b:

b1 & b2 & (b3 ∨ b4),
b1 & b2 & (b3 ∨ ¬b4),
b1 & b3 & (b2 ∨ b4),
b1 & b3 & (b2 ∨ ¬b4),
b2 & b3 & (b1 ∨ b4),
b2 & b3 & (b1 ∨ ¬b4).

In any case, the author will keep believing two of his original claims and will suspend
the judgment on the remaining one. By taking the disjunction of all the statements
above, one finds again the contraction (b− b) of example 2.

The example above shows that there are in general many different statements h
at minimum distance from b. In specific cases, one may think that pragmatic factors
will guide the choice in favor of one or the other of these different approximations
of b. In this connection, contracting b by b can be construed as the safe strategy of
choosing all the best candidate approximations to b. This avoids the problem posed
by their multiplicity and guarantees an unique result, (b − b), which, however, is
not maximally close to b. While sub-optimal in this sense, such a strategy may be
rational, if one recalls that (b− b) is after all a good approximation to b if compared
to other solutions, like Sk(b) for low values of k (cf. figure 1).

8Proof. Distance δ(h, b) is minimal when both addenda in equation 2 are minimal. For fixed
values of α and α′ (and a given choice of Ln), this is guaranteed when both

∑
ci∈b\h

∆min(ci, h)
and

∑
cj∈h\b

∆min(cj , b) are minimized. The former sum is minimized, and equals 0, if h is chosen
such that b � h, since in that case b\h = ∅. On the other hand, if, as required, h 2 b then the latter
sum cannot be zero, since h \ b has to include at least a constituent “outside” b. Thus, δ(h, b) is
minimized if h is chosen to include just one of the closest constituents to b, besides those of b itself.
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b ¬b

Figure 4. The revision (b ∗ ¬b) of b by ¬b (shadowed).

Approximation by minimal belief revision Before concluding, it may be in-
structive to consider still another strategy of determining an unique approximation
h of b. The two solutions considered above share a common feature: both the statis-
tical weakening Sk(b) and the contraction (b−b) are entailed by b. Indeed, it is easy
to check that, in order to minimize the distance from b, h has to be a consequence
of b (since in this case the second addendum in equation 2 is 0). However, also
statements not entailed by b can be quite (although not maximally) close to b. In
particular, it may be the case that h is logically incompatible with b while being
close to b. In this connection, an interesting special case is when h is the revision
of b by ¬b, i.e., the result of accepting ¬b when one believes b. This is also a way
of reconstructing the situation of an author who, having published b in the book,
asserts in the preface that ¬b is actually the case (in line with premise P2 of the
Preface Paradox).

The revision of x by y is defined in general as follows [13, p. 171]:

(x ∗ y) =
∨
Dx(¬y),

i.e., as the set of possibilities admitted by ¬y which are closest to x. In the present
case, the revision of b by ¬b reduces to the worlds “around” b, i.e., at minimum
distance from b (see figure 4).
EXAMPLE 4. If b is the conjunctive statement b1 & b2 & b3 then:

(b ∗ ¬b) = (b1 & b2 &¬b3) ∨ (b1 &¬b2 & b3) ∨ (¬b1 & b2 & b3)

In short, the author believes that exactly one of the claims in the book is false, the
others being true.

As in the case of contraction, revision turns out to be a special case of distance
minimization, where h is chosen as Db(¬b). In general, however, h will differ from
both the contraction and the revision of b (as the foregoing examples show). Still,
contraction and revision provide two instructive illustrations of approximate belief,
especially as far as the Preface Paradox is concerned. These correspond to two
alternative ways of of approximating b through minimal belief changes, which lead
in turn to two alternative ways out of the paradox. The first, contraction-based
solution amounts to choose h such that h entails neither b nor ¬b; this amounts to
questioning both premises P1 and P2 of the paradox, since in this case the author
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believes neither the conjunction of the claims in the book nor its negation.The
second, revision-based solution is to say that h entails ¬b, so that the author indeed
accepts ¬b and rejects b; in turn, this amounts to rejecting P1 while fully endorsing
P2. In this connection, both Leitgeb’s proposal from section 2 and the one based on
distance minimization favor the former, contraction-based solution over the latter.

4 Concluding remarks
In this paper, I followed Leitgeb’s idea that when someone makes a great number
of different claims b1, . . . , bm, he doesn’t actually accept their conjunction b but
some weaker statement h. I also argued that h should be construed as a good
approximation of b, or that h should be close to b. These notions of approximation
and closeness can be made precise once a distance measure among the possibilities
in the logical space is defined. In the case of the Preface Paradox, the author of
the book approximately believes b in the sense that he accepts a statement h which
doesn’t entail b but still is close as possible to b.

As shown in section 3, h doesn’t coincide, in general, with Leitgeb’s statistical
weakening Sk(b) of b, or with the minimal changes of b obtained through contraction
and revision. In fact, h will be closer to b than each of the three statements Sk(b),
(b−b), and (b∗¬b), which are all too weak to be good approximations of b. Still, these
weaker statements, and especially the latter two, may be plausible approximations
of b in some contexts, since they sometimes uniquely determine the actual beliefs
of the author (as in the simple examples from section 3). On the contrary, as
already observed, there are in general many statements h which are maximally
close to b; in this sense, the notion of approximate belief as defined here may be
“cognitively unmanageable” [9, p. 1024] and hence less psychologically plausible
than those alternatives. In other words, the author may be unable to specify the
statement h which he really believes; and this may be the reason why, in the book,
he actually asserts b [10, p. 14].

In any case, the main conceptual difference between the account proposed here
and Leitgeb’s solution has to do with the notion of belief itself. As Leitgeb [10,
p. 14] notes, his solution of the paradox has the advantage of allowing the author
to accept Sk(b) with high confidence, in the sense that the probability of Sk(b) can
be high even if the probability of b is very low. This depends on the fact that Sk(b)
is a much weaker statement than b, and probability is inversely related to logical
strength (in the sense that if x entails y then x cannot be more probable than y).
On the contrary, approximation as defined here is positively correlated with logical
strength at least in the following sense. In order to be a good approximation of b,
h has to hold in roughly the same set of possible worlds (cf. figure 2); this means
that h will entail most of the consequences of b (recall the principle of conservatism
of the AGM theory). Accordingly, as compared to Sk(b), h is much stronger, and
hence a less probable statement.

As a consequence, if belief requires high probability, h (as well as b itself) cannot
be really believed by the author of the book. On the other hand, it is well-known
that the “high probability” view of belief is problematic, and the Preface Paradox
is often used exactly to show that it is untenable [7]. For this reason, it is useful
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to consider other notions of belief or acceptance, compatible with the possibility
of believing also propositions which are not highly probable. One such notion is
adopted within the fallibilist tradition in epistemology and philosophy of science,
according to which even our best beliefs (e.g., scientific hypotheses) are typically
false or highly improbable [15, 12]. The idea of approximate belief defended here
apparently provides an account of the Preface Paradox in line with this tradition
(for a related but different treatment see [2]). While publishing b1, . . . , bm in his
book, the author is conscious of his own fallibility, and, accordingly, doesn’t believe
that b is actually the case. Still, he remains committed to the claim that b is, so to
speak, roughly the case. This situation may be understood by saying that what the
author really believes is a statement h, which, while not highly probable, is a good
approximation of what the author in fact asserts (i.e., b). In this way, this notion
of approximate belief provides another possible solution to the Preface Paradox,
alternative to Leitgeb’s one.
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Characterizing Logical Consequence in
Paraconsistent Weak Kleene

Roberto Ciuni and Massimiliano Carrara

abstract. In this paper we present Parconsistent Weak Kleene (PWK), a
logic that first appeared in the works of Sören Halldén and Arthur Prior, and
we establish a characterization result for PWK-consequence, thus providing
necessary and sufficient conditions for B to be a consequence of Γ in PWK.

1 Introduction
In [7] and [15], Sören Halldén and Arthur Prior independently discuss a logic based
on the following three tenets: (a) there are cases where classical truth value as-
signment is not possible, (b) in such cases, the presence of a third, non-classical,
truth value propagates from one sentence to any compound sentence including it,
and finally, (c) valid inferences go from non-false premises to non-false conclusions.
The so-called Weak Kleene Logic (or Bochvar Logic) is built in accordance with
tenets (a)–(b), but it assumes that classical truth is the only value to be preserved
by valid inference.1 If we endorse (c) and include the non-classical value among the
designated values, we get a paraconsistent counterpart of Bochvar Logic, that we
call Paraconsistent Weak Kleene or PWK for short.2

In this paper, we give a characterization result of the relation of logical conse-
quence in propositional PWK, that is, we provide necessary and sufficient conditions
for a formula B to be the logical consequence of a set Γ of formulas.

There are two main rationales for this result. First, our result has a general
mathematical interest in the areas of three-valued logics. Indeed, few results have
been provided on PWK, but an exploration of the formalism reveals interesting con-
nections with Relevant Logic. Second, our result generalizes a result by Paoli [12],
that considers syntactical restrictions that obtain by imposing the First-Degree-
Entailment (FDE for short) requirements to PWK. It is thus of interest in relation

1For Bochvar Logic, see [4], [10] and [16].
2In this paper, we are using the label ‘paraconsistent Kleene logic’ as short for ‘paraconsis-

tent counterpart of a Kleene Logic’. This use is suggested by the fact that paraconsistent logics
as Priest’s Logic of Paradox LP and the present PWK obtain by keeping the ‘strong matrices’
introduced by [8] and the ‘weak matrices’ by [4] and [8], respectively, and extending the set of
designated elements as to include the non-classical value. Our choice does not presuppose anything
more, since paraconsistency does not belong to the range of applications for which Kleene Logics
have been designed (which included phenomena of underdetermination, by contrast). We use the
label PWK accordingly.
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to existing background.

The paper proceeds as follows: in section 2 we introduce PWK and its relation
of logical consequence. In section 3 we prove the characterization result and in
section 4 we discuss its relevance against existing scientific background. In section 5,
we discuss some features of PWK and we briefly look at its connection with Relevant
Logic.

2 Paraconsistent Weak Kleene
The logic we discuss here dates back to [7] by Sören Halldén, where it is proposed
as a logic of non-sense (an umbrella-term that, in Halldén’s usage, included logical
paradoxes, vagueness, ambiguity).3 Prior used PWK as the propositional fragment
of the modal logic Q (see [15]), that he proposed as a quantified modal logic for
contingently non-existing entities.

Here we will not discuss the cogency of the readings by Halldén and Prior, since
this lies beyond the aim of this paper. Let us just clarify two points, though.

Halldén and Prior do not use the name PWK, and they do not explore much the
formal properties of the apparatus they introduce. However, two points make it
crystal-clear that they are using PWK as their propositional logic. First, they use
the language and the semantics we are going to use to interpret the propositional
connectives, (though they also extend the language with further operators). Second,
they accept (a)–(c). Remarkably, Halldén and Prior do not seem to notice that the
apparatus they are using is paraconsistent, but as we know, in every many-valued
Kleene logic that endorses (c), contradictions are satisfiable. With this said, we can
go to the logic PWK.

The language L of PWK consists of the set {¬,∨,∧} of connectives (negation,
disjunction and conjunction) and the set Atom of atomic sentences {p, q, r . . .}. The
arbitrary formulas A,B,C,D, . . . of PWK are defined by the usual recursive defini-
tion. We denote the set of such formulas by Form and use Greek upper-case letters
Γ,Φ,Ψ,Σ, . . . to denote sets of arbitrary formulas. Given a formula A, we define the
set Atom(A) := {p | p ∈ Atom and p occurs in A} of the atomic sentences (occurring)
in A. We also follow the standard definition of the set Sub(A) := {B | B ∈ Form and
B occurs in A} of the subformulas of A, the set Atom(Γ) := {p | p ∈ Atom(A) for
some A ∈ Γ} of the atoms of formulas in Γ, and the set Sub(Γ) := {B | B ∈ Sub(A)
for some A ∈ Γ} of the subformulas of formulas in Γ. Clearly, Atom(Γ) ⊆ Sub(Γ).

The semantics of PWK comprises a non-classical value n beside the two values
t and f of classical logic CL, as all Kleene logics or paraconsistent counterparts
of them—the label ‘n’ here is indeed short for ‘non-classical’. Formulas of L are
assigned a truth value by the evaluation function V : Atom 7−→ {t,n, f} from atomic
sentences to truth-values. We generalize truth-assignments to arbitrary formulas as
follows:

3See also [16] for the proposal by Halldén.
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DEFINITION 1. A valuation V : Form 7−→ {t,n, f} is the unique extension of a
mapping V : Atom 7−→ {t,n, f} that is induced by the truth tables in Table 1.

Table 1. Truth Tables for PWK
¬A

t f
n n
f t

A ∨B t n f
t t n t
n n n n
f t n f

A ∧B t n f
t t n f
n n n n
f f n f

Table 1 encodes the typical feature of Bochvar’s logic: for every truth function f
corresponding to a connective in the language, if any input of f is the non-classical
value, so is the output. In a nutshell, n transmits from any component B of a for-
mula to the entire formula A, regardless of the connectives appearing in A. Table
1 also reveals that we could have introduced ∧ as a derived symbol: the definition
A∧B := ¬(¬A∨¬B) is adequate, since definiens and definiendum have exactly the
same truth tables (we leave this easy exercise to the reader). A striking feature of
the language is that no conditional is present. We will define a possible candidate
below. Whether such a candidate can fit minimal criteria for the conditional or not,
we will briefly discuss in Remark 6. In any case, we will feel free to take the derived
operator as a notational convenience.

We let VPWK = {V | V : Form 7−→ {t,n, f}} be the set of valuations of PWK.
The following fact will be helpful in what follows:
FACT 2. For all formulas A in L and valuation V ∈ VPWK, V (A) = n iff V (B) = n
for some B ∈ Sub(B) iff V (p) = n for some p ∈ Atom(A).

Proof. The left-to-right (LTR) direction is trivial: as in every three-valued Kleene
logic (or paraconsistent counterpart), if a formula A whatever has the non-classical
value, at least one of its components has it. By applying this line of reasoning,
we reach a smallest possible component, namely an atomic sentence, having the
non-classical value. The right-to-left (RTL) direction immediately follows from the
fact that n transmits from smaller components to entire formulas no matter what
connectives are involved. Also, this feature implies that, if V (p) = n for some
p ∈ Atom(A), then V (A) = n. The interesting point is that this holds no matter
of what V (q) is for any q ∈ Atom(B)/{p}. This will be relevant in the proof of
Theorem 14. �

We let D = {t,n} be the set of the designated values of PWK. With this at hand,
we define satisfaction, dissatisfaction and satisfiability, together with the notion of
the class of valuations that satisfy all formulas in a given set:
DEFINITION 3.

1. An evaluation V ∈ VPWK satisfies a formula A iff V (A) ∈ D.
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2. An evaluation V ∈ VPWK dissatisfies a formula A iff V (A) = f .

3. A formula A is satisfiable iff there exists an evaluation V ∈ VPWK such that
V (A) ∈ D.

4. V(Γ) := {V | V ∈ VPWK and V (A) ∈ D for all A ∈ Γ}

These definitions are standard, but they will prove convenient in what follows.
Logical consequence is defined as usual:
DEFINITION 4 (Logical Consequence).
Γ |=PWK B iff every valuation V ∈ VPWK that satisfies all formulas A ∈ Γ also
satisfies B.

We write A,B |=PWK C for {A,B} |=PWK C, and ‘A is valid’ is defined as
∅ |=PWK B.

Notable failures. As expected by a many-valued logic that designates more
than one value, the relation of logical consequence for PWK (hereafter, PWK-
consequence) does not coincide with that of Classical Logic (since now on, CL-
consequence).4 In particular, PWK shares some failures of cases of CL-consequence
together with the famous Logic of Paradox LP—see [14]—which also designates a
non-classical value and is based on the so-called Strong Kleene Matrix. Let us define
A→ B := ¬A ∨B. We will discuss below whether this connective can really count
as a conditional, but for the time being let us just use it as a convenient device.
Here are some notable failures:

1 A,¬A ∨B 6|= B A,A→ B 6|= B MP
2 ¬B,¬A ∨B 6|= ¬A ¬B,A→ B 6|= ¬A MT
3 ¬A ∨B,¬B ∨ C 6|= ¬A ∨ C A→ B,B → C 6|= A→ C TR →
4 ¬A ∨ (B ∧ ¬B) 6|= ¬A A→ (B ∧ ¬B) 6|= ¬A RAA
5 A ∧ ¬A 6|= B ECQ

As for 1, suppose V (A) = n and V (B) = f . This suffices to have the premises
designated, but the conclusion undesignated. By switching those two values between
A and B, we get a countermodel for 2. The versions with → make it crystal-clear
that the rules failing are Modus Ponens (MP) and Modus Tollens (MT), respectively.
As for 3, suppose V (A) = t, V (B) = n and V (C) = f : we will have the premises
designated and the conclusion false. This is failure of the Transitivity of →, as
is clear by trading → for the appropriate combinations of ¬ and ∨. Coming to
4, V (A) = t and V (B) = n falsifies the rule, which is nothing but Reductio ad
Absurdum (RAA). Finally, any valuation V such that V (A) = n and V (B) = f will
falsify Ex Contradictione Quodlibet, thus making PWK a paraconsistent logic.

A little familiarity with Priest’s Logic of Paradox LP suffices to see that PWK
share failures 1–5 with LP (see [2] and [14]). A distinctive feature of PWK, however,
is failure of Conjunction Simplification (CS):

4See [10, 66].
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6 A ∧B 6|= B CS

V (A) = V (A ∧ B) = n and V (B) = f is enough to falsify CS. This marks a
crucial difference with LP, where CS is a valid rule.

Notable Validities. It is easy to check that the following formulas are valid in
PWK:

7 (A ∧ (A→ B)) → B
8 (¬B ∧ (A→ B)) → ¬A
9 ((A→ B) ∧ (B → C)) → (A→ C)
10 (A→ (B ∧ ¬B)) → ¬A
11 (A ∧ ¬A)→ B
12 (A ∧B)→ B

These formulas are verified by every valuation V ∈ VPWK that assign classical
values (t or f) to their antecedents—this equates with no subformula in the an-
tecedent having value n, as clear by Table 1. If any subformula whatever in the
antecedent is assigned n, the antecedent itself is assigned n (once again, Table 1
suffices to check this). Due to the definition of→ and the truth table of disjunction,
this suffices for the entire conditional to have value n and be designated. But the
two cases above are the only possible in PWK.

The above helps establish that the Deduction Theorem does not hold for PWK:
FACT 5. It is not the case that |=PWK A→ B iff A |=PWK B

Proof. Clearly, |=PWK A→ B can hold and yet A |=PWK B can fail, as is clear from
validities 7–12 and failures 1–6. Of course, one direction of the Deduction Theorem
holds: if A |=PWK B, then |=PWK A→ B. �

REMARK 6 (Conditional in PWK). Whether → can really play the role of a con-
ditional depends on the features we want a conditional to have. Validation of MP is
usually included in the pack, and so failure 1 above, in its →-version, would answer
for the negative. However, some researchers from the many-valued tradition have
recently argued that MP is not meaning-constitutive for the conditional (see [3]).
We will not survey the debate here. Suffice it to say that, no matter what stance
of the two above one takes, lack of a detachable conditional is not fatal to PWK:
as for its kin LP, such a conditional can be added. One way (among many others)
to do that, for example, is to extend the connectives of PWK with the detachable
conditional from RM3, that is a formalism related to Relevant Logic5 and for which

5The acronym RM in the name of the logic points at the result of adding the M ingle Axiom
(A → (A → A)) to (a system of) Relevant Logic. The reason why RM3 cannot be considered
a system of Relevant Logic is that from its mingle axiom the formula ¬(A → A) → (B → B)
is derivable, which does not satisfy the variable sharing properties that in turn defines Relevant
Logic.
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a three-valued semantics is also designed.6 Notice that, by contrast, the reading of
¬ and ∨ as negation and disjunction, respectively, is unproblematic: ¬ inverts clas-
sical values and keeps the non-classical one fixed, as every negation does in Kleene
logics and paraconsistent cognates; ∨ restitutes a designated formula any time one
of its disjunct is designated. Whether ∧ can be read as a conjunction is of course
a natural question, in light of failure 7 (and of Fact 9 below). In order to keep the
presentation compact, we defer the issue to section 5.

3 Characterizing PWK-Consequence
We prove some facts about PWK-consequence before going to the characterization
result. Let us first go through the relations between the tautologies of PWK and
classical tautologies:
FACT 7. |=PWK A iff |=CL A

Proof. Take the class VCL of valuations of CL (or ‘classical valuations’). It is clear
by Table 1 that VCL ⊂ VPWK: in particular, those valuations V ∈ VPWK where no
atomic sentence p is assigned value n will be classical valuations. VCL ⊆ VPWK
proves the LTR direction. As for the RTL direction: take a formula A that is
valid in CL and suppose that it is not valid in PWK. This means that there is a
PWK-valuation V is such that V (A) = f . We can easily construct a corresponding
V ′ ∈ VCL retaining the value of A from V . But this implies that some classical
valuation falsifies A, thus contradiction the initial hypothesis. �

Let us now explore monotonicity. On the one hand, PWK-consequence is mono-
tonic:
FACT 8. If Γ |=PWK B, then Γ, A |=PWK B

Proof. Due to V(Γ ∪ {A}) ⊆ V(Γ). �

On the other hand, we have that
FACT 9. It can be the case that A1, . . . , An |=PWK B and A1 ∧ · · · ∧An 6|= B

Proof. For instance, suppose B is An. All valuations V such that, for all i ∈
{1, . . . , n}, V (Ai) ∈ D suffices to verifyA1, . . . , An |=PWK B, while a valuation where
V (An) = f and V (Aj) = n for all j ∈ {1, . . . , n−1} suffices to have V (A1∧· · ·∧An) ∈
D and V (B) = f , thus implying that A1 ∧ · · · ∧ An 6|= B. This is possible because
the set V({A1, . . . , An}) of valuations satisfying all formulas in {A1, . . . , An} may
not coincide with the set V(A1 ∧ · · · ∧ An)—the latter may also include valuations
where some of A1, . . . , An is undesignated, on condition that at least one of them
has value n. �

6The troubles with adding a detachable conditional to paraconsistent Kleene logics arises only
in the context of paraconsistent truth theory: many of the proposed conditionals are detachable
but also validate absorption, which opens the way for Curry Paradox. But as far as the truth
predicate does not enter the language, many different detachable conditionals will do.
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Fact 9 tells us that conjunction appearing in the language does not behave as the
comma appearing in the metalanguage: the latter releases all the premises, while
the former may not release all the conjuncts. Thus, in the premises of an inference
in PWK, we cannot trade the comma for the conjunction. In sum, the comma proves
stronger than PWK’s conjunction.

3.1 Characterization Result
We now provide necessary and sufficient conditions for a formula B to be a PWK-
consequence of a set Γ of formulas. We call this a characterization of PWK-
consequence and the relative result we call a characterization result. In order to
prove the characterization result, we first go through some preliminary issues and re-
sults. First, we individuate two necessary conditions for B to be a PWK-consequence
of Γ. Let |=CL be the standard relation of classical consequence:
FACT 10. If |=PWK B, then Γ |=PWK B

By Fact 8.
FACT 11. If Γ |=PWK B, then Γ |=CL B

Proof. Suppose it were not so: there would be a classical valuation V ∈ VCL such
that V (B) = f and V (A) = t for every A ∈ Γ. But since VCL ⊂ VPWK, this would
contradict Γ |=PWK B. �

PROPOSITION 12.
If Γ |=PWK B and 6|=PWK B, then there is at least a non-empty set Γ′ ⊆ Γ of formulas
such that Atom(Γ′) ⊆ Atom(B).

Proof. By contraposition. Assume 6|=PWK B and Atom(Γ′) * Atom(B) for all
non-empty sets Γ′ ⊆ Γ. The latter implies Atom(Γ) * Atom(B). We have three
possible cases here:

1. Atom(Γ) ∩ Atom(B) = ∅

2. Atom(Γ) ⊃ Atom(B)

3. Atom(Γ) ∩ Atom(B) , ∅ and Atom(Γ)/Atom(B) , ∅

In the first case, there is a valuation V ∈ VPWK such that V (A) ∈ D for all
A ∈ Γ and V (B) = f . As for the other two cases, take the set Atom(Γ)/Atom(B)—
which is non-empty in both cases. For every A ∈ Γ we have that Atom(A) ∩
Atom(Γ)/Atom(B) , ∅. Indeed, {A} ∈ Γ, and from this and the initial hypoth-
esis, Atom(A) * Atom(B); but since Atom(Γ) = Atom(B) ∪ Atom(Γ)/Atom(B),
Atom(A) * Atom(B) implies Atom(A) ⊆ Atom(Γ)/Atom(B). Since the valuation
of the atoms in Atom(A) ∩ Atom(Γ)/Atom(B) is independent from that of the
atoms in Atom(B), there is a valuation V ∈ VPWK such that V (p) = n for all
p ∈ Atom(A) ∩ Atom(Γ)/Atom(B) and all A ∈ Γ, and such that V (B) = f . By
Fact 2, this valuation is such that V (A) = n for all A ∈ Γ, while V (B) < D.
This proves Γ 6|=PWK B. As a consequence, if Γ |=PWK B and 6|=PWK B, then
Atom(Γ′) ⊆ Atom(B) for at least a set Γ′ ⊆ Γ of formulas. �
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PROPOSITION 13. If Γ |=PWK B and 6|=PWK B, then Γ′ |=CL B for some non-
empty Γ′ ⊆ Γ such that Atom(Γ′) ⊆ Atom(B).

Proof. By contraposition. Take the set Γ+ = {Γ′ | Γ′ ⊆ Γ and Atom(Γ′) ⊆
Atom(B)}, whose existence and non-emptyness are guaranteed by Proposition 12.
Suppose Γ′ 6|=CL B for all Γ′ ∈ Γ+. This implies Γ′ 6|=PWK B for all Γ′ ∈ Γ+. Take
now the set Γ− = {Γ′′ | Γ′′ ⊆ Γ and Atom(Γ′) * Atom(B)}. Clearly, there is a
valuation V ∈ VPWK such that V (B) = f and for all Γ′′ ∈ Γ−, V (p) = n for some
p ∈ Atom(Γ′′)/Atom(B). As a consequence, Γ′′ 6|=PWK B. But of course, there will
also be a valuation V ′ ∈ VPWK such that V ′(B) = f and for all Γ′′′ ∈ Γ+ ∪ Γ−,
V (q) = n for some q ∈ Atom(Γ′′′). But since Γ+ ∪ Γ− = Γ, this implies Γ 6|=PWK B.

�

With this at hand, we are ready to prove our characterization result:
THEOREM 14.

Γ |=PWK B iff Γ |=CL B and


|=PWK B, or
Atom(Γ′) ⊆ Atom(B) for at least a non-empty

Γ′ ⊆ Γ s.t. Γ′ |=CL B.

Proof. The LTR direction immediately follows from Fact 11 and Proposition 13.
As for the RTL direction, we prove it in two steps. Let us first assume that |=PWK B
holds—notice that this suffices to have Γ |=CL B, by Fact 10 and Fact 11. Given the
assumption, we have Γ |=PWK B by Fact 10. Let us now assume 6|=PWK B, Γ |=CL B
and Atom(Γ′) ⊆ Atom(B) for at least a Γ′ ⊆ Γ s.t. Γ′ |=CL B. Then we have two
possible cases: either all the assignments to the premises are classical, or at least
some atom in them has value n. From Γ |=CL B and VCL ⊆ VPWK, for all Γ′ ⊆ Γ
such that Γ′ |=CL B and valuation V such that V (A) = t for all A ∈ Γ′, we will
have V (B) ∈ D. Suppose now that V (A) = n for at least a A ∈ Γ′, where Γ′ ⊆ Γ,
Atom(Γ′) ⊆ Atom(B) and Γ′ |=CL B. By Fact 2, V (A) = n implies V (p) = n for
at least one p ∈ Atom(A), and by this, Atom(Γ′) ⊆ Atom(B) and again Fact 2, we
have that V (B) = n. Thus, we have Γ′ |=PWK B. But this implies that Γ |=PWK B
also holds by monotonicity of PWK-consequence (Fact 8). �

Theorem 14 explains all the failures 1–6: those inferences do not satisfy the nec-
essary and sufficient criteria by the theorem. The paradigmatic case is the failure
of MP: clearly, in such a rule the atomic sentences in the premises are a superset of
the atomic sentences in the conclusion.

Notice that Theorem 14 provides an adequate characterization of logical con-
sequence even in case the set of premises is empty, though in this situation the
characterization will be trivial. Indeed, when Γ = ∅, the condition stated by theo-
rem will reduce to

Γ |=PWK B iff Γ |=CL B and |=PWK B.
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which is guaranteed by Fact 7—the fact characterizing tautologies in PWK. On the
one hand, the collapse holding when Γ = ∅ can make our characterization from The-
orem 14 look odd, but on the other hand, this does not conflict with the adequacy
of the characterization, which has also the virtue of being the most general possible.

Before closing, we focus on the inclusion requirement specified in Theorem 14 for
a (nonempty) subset Γ′ of the set of premises Γ. An interesting feature here is that
the proviso that Γ′ |=CL Γ cannot be dropped without compromising the result. For
instance, take the classically valid inference C ∧ ¬C,A ∨B |=CL (A ∨B) ∧D. The
inference is not valid in PWK—as is easy to check—even though a subset (namely,
A ∨ B) of the set of premises satisfies the inclusion requirement. Theorem 14
implies that, in order to have a case of a PWK-consequence, at least a subset
satisfies the inclusion requirement and is in the relation of classical consequence
with the conclusion. None of the possible subsets of {C ∧ ¬C,A ∨ B} satisfy both
conditions w.r.t. (A ∨B) ∧D. Thus, the proviso that Γ′ |=CL Γ is essential for the
characterization.

This marks an important difference with the characterization proposed by [16]
for logical consequence in Bochvar’s logic (see below).

4 Discussion
Theorem 14 generalizes the result proved by [12]. There, Paoli considers FDE-
formalisms connected to a variety of logics, including PWK. In particular, he
introduces the logic H, which is PWK augmented with the (standardly defined)
entailment connective ⇒ from FDE-formalisms. The logics PWK and H are related
by the fact: (?) |=H A⇒ B iff A |=PWK B, 7 where A⇒ B is a standardly defined
FDE-entailment.8 Paoli proves:

|=H A⇒ B iff A |=CL B and either |=CL B or Atom(A) ⊆ Atom(B).

Due to (?), Paoli’s result9 turns to be a special case of our one. In particular, our
result generalizes Paoli’s in two respects. First, it shows that the same character-
ization can be given if we consider the full language L. Indeed, a straightforward
corollary of Theorem 14 is:
COROLLARY 15.
A |=PWK B iff A |=CL B and either (i) |=PWK B or (ii) Atom(A) ⊆ Atom(B).

Second, Theorem 14 has a wider generality, since it establishes a characteriza-
tion for multiple-premise consequence, while the result in [12] is illuminating just
if we confine ourselves to single-premise consequence. In particular, Paoli’s result
highlights the role of the atom inclusion requirement in PWK-consequence, but it
cannot show how exactly this role is played when we have more than one premise.
Indeed, if we extend our consideration to multiple-premise consequence, then the

7See [12].
8There are many different ways to characterize FDE-logics and -fragments. Here, we find it

natural to follow the one adopted in [12].
9See Theorem 1 of [12].
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simple atom-inclusion condition presented in Corollary 15 and Paoli’s result does
not suffice for a characterization: C,A |=PWK A ∨ B holds, but of course it may
be that Atom({C,A}) * Atom(A ∨ B)—suppose C is p, A is q and B is r. The
condition Atom(Γ) ⊆ Atom(B) alone is not the right one for the multiple-premise
case. And yet atom-inclusion still plays a decisive role in PWK-consequence, as
is proved by A,A → B 6|=PWK B. The methodology underlying our more general
Theorem 14 is indeed to check for a subset Γ′ of the premises that satisfies the atom
inclusion appearing in Corollary 15. Since by Fact 8 consequentiality transmits to Γ,
the theorem allows us to capture the multiple-premise cases of PWK-consequence.
Thus, Theorem 14 offers a full understanding of the atom-inclusion condition and
its impact in determining the class of sets of formulas/formula pairs that are in the
relation of PWK-consequence.

Our theorem proves interesting also in light of established results in Kleene logics
and related systems. The characterization of consequence in Bochvar Logic (|=B)
by [16, Theorem 2.3.1] also includes an inclusion condition: Γ |=A φ iff Γ |=CL A
and every atom in A occurs in some formula from Γ. Thus, the characterization
reverses the atom inclusion condition presented in our Theorem 14. Notice that no
counterpart of the ‘subset condition’ from Theorem 14 is needed for Bochvar Logic,
and thus the two multiple-premise consequence relations are not exact duals.

Finally, containment logics ([13, 6]) also impose a condition of variable inclusion
on logical consequence. The direction of the inclusion is usually the same as in
Bochvar’s logics usually, but a recent paper in this tradition also investigates the
reverse direction, which characterizes PWK-consequences (see [5]).

5 Open Problems and Directions
We close this paper with a look at open problems and directions on the topic
of PWK-conjunction ∧. The connective shares a crucial feature of compatibility
operators, which tell them apart from standard conjunction: compatibility operators
do not simplify, exactly as PWK-conjunction. More precisely, PWK-conjunction
displays some similarity with the fusion operator ◦ from Relevant Logic.10

The interesting point is that, semantics of choice aside, the behavior of ∧ does
not entirely reduce to that of fusion.11 One the one hand, ◦ shares with PWK-
conjunction the failure of CS, and it is easy to proof the both can be introduced
when each of the conjuncts is proved separately. However, there are also notable
differences between ◦ and our ∧. The first is not idempotent, while the second is
(that is, A ◦ A 6|= A and A ∧ A |=PWK A)—see [11, 168].12 Also, Fact 9 does not
hold for ◦ (see again [11, 167]): the connective is indeed introduced to guarantee
an equivalence with the comma of multiple premises (which is lost for standard
conjunction in Relevant Logic). Finally, fusion is intended as a dual of implication

10The provenance of the operator ◦ can be traced out of the tradition of Relevant Logic, and
precisely in [9], where it is explicitly proposed as a compatibility operator.

11Our comparison with fusion is based on [11, 166–168].
12Notice, however, that in the system RM and similar systems closely related to Relevant Logic,

fusion is actually idempotent (see [1]).
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in Relevant Logic, that is A ◦ B := ¬(A → ¬B) where ¬ and → are (some)
relevant negation and conditional, respectively.13 It is easy to see that, in PWK,
we could set A ∧ B := ¬(A → ¬B) for the conditional introduced in section 2;
however, the latter (should it qualify as an acceptable conditional) falsifies the
Deduction Theorem (see Fact 5). It is then questionable that the definition above
characterizes a compatibility/implication pair.

At the same time, A∧B |=PWK A∨B—we leave this to the reader—and together
with CS, this points at the compatibility of A and B and the actual availability of
one of them. The corresponding reading of ∧ would be ‘A and B are compatible
and one of them actually holds’, which also fit with the idempotence of ∧.

Whether PWK-conjunction can really be read as a compatibility operator depends
on the elaboration of an intensional semantics that captures the behavior of ∧ as
defined by the three-valued semantics above, while at the same time providing truth
conditions for ∧ that prove conceptually insightful.14 We believe that this semantics
can be obtained by elaborating on the Routley-Meyer semantics for Relevant Logic,
and we plan to explore this issue in some future research.
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Logic of Implicit and Explicit Justifiers

Alessandro Giordani
abstract. The aim of this paper is to provide an intuitive semantics
for systems of justification logic which allows us to cope with the distinction
between implicit and explicit justifiers. The paper is subdivided into three
sections. In the first one, the distinction between implicit and explicit justifiers
is presented and connected with a proof-theoretic distinction between two
ways of interpreting sequences of sentences; that is, as sequences of axioms in
a certain set and as proofs constructed from that set of axioms. In the second
section, a basic system of justification logic for implicit and explicit justifiers
is analyzed and some significant facts about it are proved. In the final section,
an adequate semantics is proposed, and the system is proved to be sound and
complete whit respect to it.

Keywords: justification logic; epistemic logic; implicit justification; explicit
justification; Fitting semantics.

1 Introduction
Justification logic is one of the most interesting developments of epistemic logic1.
It extends the expressive power of the language of standard epistemic logic by
introducing sentences like t : ϕ, to be intended as ϕ is justified in virtue of t, or
t is a justifier for ϕ. Axioms for systems of justification logic can be introduced
from different points of view. A first approach is to rest on our basic intuitions
concerning how justifiers are related with both propositions and other justifiers.
A slightly different approach is to focus on principles that characterize well-known
systems of logic which are strictly connected with the structure of justification, such
as systems of provability logic2. In fact, in standard systems of provability logic, a
sentence like �ϕ is interpreted as stating that ϕ is provable in some mathematical
base theory, so that there is a proof of ϕ in that theory. Thus, a sentence stating
that t is a justifier for ϕ is intuitively interpreted as stating that t refers to a proof of
ϕ. However, this is not the sole interpretation of a sentence like that. In particular,
if A is a set of logical and non-logical axioms, then two options concerning the way
of interpreting that t is a justifier for ϕ are available.3

1[1], [3], and [10] are excellent introductions to this topic. In these works, a number of applica-
tions of systems of justification logic for the study of the notions of evidence and justification in
epistemology are also provided.

2See [7] for an extensive introduction to systems of provability logic and their representation
in modal logic.

3In what follows, I assume that proofs are constructed in Hilbert style systems where modus
ponens is the only primitive rule.
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Option 1. A sentence stating that t is a justifier for ϕ says that t refers to a proof
of ϕ from A. In this case, t refers to a finite sequence of sentences, with final
sentence ϕ, where every sentence either is some axiom in A or is obtained
from previous sentences by applying modus ponens.

Option 2. A sentence stating that t is a justifier for ϕ says that a proof of ϕ is
obtainable from a sequence t of theorems. In this case, t refers to a finite
sequence of sentences, where every sentence is derivable from axioms in A,
from which a proof of ϕ can be constructed.

Hence, while in the first case t refers to an explicit proof of ϕ, in the second case
it refers to the basic sentences from which such a proof can be constructed and, in
particular, to the basic axioms that can be used to prove it.

The first interpretation gives rise to a general notion of explicit justifier, which is
extremely intuitive, since it is based on the idea that it is possible to identify what
sentences are justified by t by just considering the structure of t. In fact, since t
refers to a proof, all the sentences that are involved in t are certainly justified by t.
In the light of this, I will use the standard notation t : ϕ to say that t refers to a
proof of ϕ. By contrast, the second interpretation gives rise to a general notion of
implicit, or potential, justifier, according to which t is a justifier for all the sentences
that are contained in the logical closure of the axioms contained in t. I will use the
notation [t]ϕ to say that t refers to a sequence of sentences from which ϕ is provable.

Remark 1: The notion of potential justification is to be distinguished from the
notion of possible justification. Indeed, every sentence that is provable from A
has a proof exploiting a certain set of axioms in A, but it is not true that every
sentence that is so provable has a proof exploiting the same set of axioms in A.
Thus, the notion of potential justification is more fine-grained than the notion of
possible justification.

Remark 2: The notion of explicit justification is distinguished from the notion of
potential justification. Indeed, every sentence that is provable from a sequence of
theorems from A is the final sentence in a proof consisting in a sequence of theorems
from A, but it is not true that every sequence of theorems from A gives rise to the
proof of a unique sentence. In general, while t : ϕ implies [t]ϕ, for every t, it is not
true that [t]ϕ implies t : ϕ, for every t.

I find both the first and the second interpretations worth of investigation, even
if only the first one has received a systematic treatment in the current research
on justification logic4. In the following sections, I will develop a system of logic
where both assertions of explicit justification, like t : ϕ, and assertions of implicit
justification, like [t]ϕ, are treated in a unified framework5. In particular, my two

4See [2], [4], and [9], for a survey of different directions in which the logic of justification can
be developed.

5In [5], an interesting analysis of the distinction between implicit and explicit justifiers is
proposed, but the notion of implicit justification is not distinguished from the notion of possible
justification. As a consequence, there is no way of articulating the state described by a sentence
like [t]ϕ. In [11], the distinction between t : ϕ and [t]ϕ is present, but the semantic analysis of
[t]ϕ, as we will see, is not completely satisfactory.
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main aims are to provide an axiomatization of the previous notions and to introduce
a suitable semantics for them. Accordingly, in the next section, a basic system of
justification logic for implicit and explicit justifiers is offered and some significant
facts about it are proved, while in the final section a suitable semantics is proposed,
and the system is proved to be sound and complete with respect to it.

2 Axiomatic characterization
Let us start with introducing an adequate axiomatic system for capturing both the
notion of explicit justification and the notion of implicit justification. Let us call
the basic system IEJ. The standard language of a system of justification logic is
characterized by two set of rules, specifying the set of terms and the set of formulas
of the language.6 The language of IEJ is characterized in the same way. The set
of terms and formulas are defined according to the following grammar.

t := j | c | t+ s | t× s | !t, where j is a variable and c is a constant for justifiers

ϕ := p | ¬ϕ | ϕ ∧ ψ | [t]ϕ | t : ϕ, where p is a variable for propositions

The operators +, ×, and ! are used to construct new justifiers from basic ones. As
usual, t+s is interpreted as a justifier providing justification for all the sentences that
can be justified either by t or by s, while t× s is interpreted as a justifier providing
justification for all the sentences that can be justified by applying modus ponens to
premises justified by t and by s. In addition, ! is a justification checker that returns
a justifier !t for the sentence stating that t is a justifier for ϕ, provided that t is
indeed such a justifier. Finally, a justification sentence like [t]ϕ is interpreted as t is
an implicit justifier for ϕ, whereas a justification proposition like t : ϕ is interpreted
as t is an explicit justifier for ϕ.

2.1 Axioms
The basic system IEJ is constituted by three groups of axioms: the first group is
a standard system for classical propositional logic, while the two other groups are
introduced in order to characterize explicit and implicit justifications. It is worth
noting that axioms are considered as a priori justified, so that any epistemic agent
accepts logical axioms, including the ones concerning justification, as immediately
evident. This intuition is made precise by introducing a constant specification, which
can be construed according to the following definition.

Definition 1: Constant specification.
Let CS! be the set of c : ϕ, such that c is a constant for justifiers and ϕ is

an axiom of IEJ. Then, a constant specification CS is a subset of CS! and an
axiomatically appropriate constant specification is a constant specification where,
for all the axioms ϕ of IEJ, there is a constant c such that c : ϕ ∈ CS.

In particular, we will only work with axiomatically appropriate constant specifi-
cations. In this way, every logical axiom is associated with a justification constant,
witnessing that the axiom is accepted as justified. Thus, let CS be an axiomatically

6See [1], [9], and [10], for a detailed exposition, and [3] for the connection between operators
on justifiers and operators on proofs within the context of the logic of provability.
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appropriate constant specification. Then, IEJ is characterized, relative to CS, by
the following axioms.

Group 1: classical tautologies and modus ponens.

For the notion of explicit justification, let us use the standard axioms provided
in [8] and [10].

Group 2: axioms concerning explicit justification and internalization rule.

EJ1: t : (ϕ→ ψ)→ (s : ϕ→ t× s : ψ)

EJ2: t : ϕ ∨ s : ϕ→ t+s : ϕ

EJ3: t : ϕ→!t : (t : ϕ)

RJ: c : ϕ, where ϕ is an axiom in IEJ such that c : ϕ ∈ CS.

Group 2 includes the axioms which characterize the standard notion of explicit
justification. EJ1 states that, given two justifiers, t and s, a justifier like t × s
provides justification to any sentence that can be derived from implications justified
by t and sentences justified by s by applying modus ponens. The idea is that modus
ponens is the basic deduction rule and that propositional deduction is accepted by
the epistemic agent as providing justification. EJ2 states that given two justifiers,
t and s, a justifier like t + s provides justification to any proposition justified by
either t or s. EJ3 states that justification is internally accessible, so that all justified
propositions can be acknowledged as such. Finally, RJ allows us to have axioms
justified by basic justifiers.

For the notion of implicit justification, I will use the set of axioms provided in
[11].

Group 3: axioms and rules concerning implicit justification.

IJ1: [t](ϕ→ ψ)→ ([s]ϕ→ [t× s]ψ)

IJ2: [t]ϕ ∨ [s]ϕ→ [t+s]ϕ

IJ3: [t]ϕ→ [!t][t]ϕ

IJ4: t : ϕ→ [t]ϕ

IJ5: [c]ϕ→ [t]ϕ, where c is a constant

IJ6: [t× t]ϕ↔ [t+ t]ϕ↔ [!t]ϕ↔ [t]ϕ

Group 3 includes the axioms which characterize an intuitive notion of implicit jus-
tification. The first three axioms state that the notion of implicit justification is
similar to the notion of explicit justification, as far as the basic operations are con-
cerned. In particular, IJ2 captures the idea that the logical closure of a certain set
of sentences is included in the logical closure of any set of sentences that includes
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that first set. IJ4 states that what is explicitly justified by t is implicitly justi-
fied by the same justifier. Indeed, if t refers to a proof of a certain sentence, then
that sentence is certainly contained in the logical closure of the set of sentences
in t. Hence, the idea that any set of sentences is included in its logical closure
is respected. IJ5 states that the axioms, which are a priori justified, are always
implicitly justified by any justifier, since they are contained in the logical closure of
any set of sentences. Finally, IJ6 says that t × t, t + t, !t, and t provide implicit
justification to the same propositions. This axiom captures the idea that what is
implicitly justified by t is precisely what can be inferred from sentences in t, so that
nothing new is implicitly justified when inferences are performed from sentences in
t. Hence, the idea that the logical closure of the logical closure of a set of sentences
is included in the logical closure of that set is respected. In conclusion, the crucial
properties of a logical closure operator Cn

1. X ⊆ Cn(X)

2. Cn(Cn(X)) ⊆ Cn(X)

3. X ⊆ Y ⇒ Cn(X) ⊆ Cn(Y )

are incorporated in the treatment of any implicit justification operator.7

2.2 Theorems
In IEJ, some fundamental theorems are derivable, which concern rules for explicit
and implicit justification. In particular, we get the following crucial rules.

REJ: `IEJ ϕ⇒ `IEJ t : ϕ, for some term t.

The proof is by induction on the length of the derivation.
Suppose ϕ is an axiom. Then, `IEJ c : ϕ, for some constant c, by RJ. Suppose

ϕ is obtained by an application of RJ. Then, ϕ = c : ψ, for some c and some axiom
ψ. Hence, `IEJ !c : (c : ψ), by EJ3, and so `IEJ !c : ϕ. Suppose ϕ is obtained by
an application of modus ponens to ψ → ϕ and ψ. Then, by induction hypothesis,
`IEJ t : (ψ → ϕ) and `IEJ s : ψ, for some t and s. Hence, `IEJ t× s : ϕ, by EJ1.

REJ is a rule of explicit justification, stating that every theorem of IEL is
justified by some justifier. REJ is a version of a non-standard rule of necessitation,
since not every theorem is justified by the same term t. Hence, a modality like t :
is not a standard modality.

RIJ: `IEJ ϕ⇒ `IEJ [t]ϕ, for every term t.

The proof is again by induction on the length of the derivation.
Suppose ϕ is an axiom. Then, `IEJ [t]ϕ, for every term t, by RJ, IJ4 and

IJ5. Suppose ϕ is obtained by an application of RJ. Then, ϕ = c : ψ, for some
7See Tarski [12], chapters V and XII. To be more precise, while property 1 is reflected by axiom

IJ4 and property 2 is reflected by axiom IJ2, property 3 is reflected by [t]ϕ→ [t][t]ϕ, which is a
consequence of axioms IJ3 and IJ6.
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c and some axiom ψ. Hence, `IEJ !c : (c : ψ), by EJ3, `IEJ [!c](c : ψ), by IJ4,
`IEJ [c](c : ψ), by IJ6, and so `IEJ [t](c : ψ), by IJ5. Suppose ϕ is obtained by
an application of modus ponens to ψ → ϕ and ψ. Then, by induction hypothesis,
`IEJ [t](ψ → ϕ) and `IEJ [t]ψ, for every t. Hence, `IEJ [t]ϕ, by IJ1.

RIJ is a rule of implicit justification, stating that every theorem of IEL is jus-
tified by every justifier. RIJ is a version of a standard rule of necessitation, since
every theorem is justified by the same term t. Hence, a modality like [t] might
be a standard modality. In fact, the next proposition shows that [t] actually is a
standard modality.
KIJ: `IEJ [t](ϕ→ ψ)→ ([t]ϕ→ [t]ψ), for every term t.

`IEJ [t](ϕ→ ψ)→ ([t]ϕ→ [t× t]ψ) by IJ1

`IEJ [t](ϕ→ ψ)→ ([t]ϕ→ [t]ψ) by IJ6
Finally, we are also able to obtain the following propositions.
IJ7: `IEJ [s]ϕ→ [t× s]ϕ, for every term s.

`IEJ ϕ→ ϕ axiom in group 1

`IEJ c : (ϕ→ ϕ) by RJ

`IEJ [c](ϕ→ ϕ) by IJ4

`IEJ [t](ϕ→ ϕ) by IJ5

`IEJ [t](ϕ→ ϕ)→ ([s]ϕ→ [ttimess]ϕ) by IJ1

`IEJ [s]ϕ→ [t× s]ϕ by logic

IJ8: `IEJ [t]ϕ→ [t× s]ϕ, for every term s.

`IEJ ϕ→ ((ϕ→ ϕ)→ ϕ) axiom in group 1

`IEJ [t](ϕ→ ((ϕ→ ϕ)→ ϕ)) by IJ1

`IEJ [t]ϕ→ [t]((ϕ→ ϕ)→ ϕ) by KIJ

`IEJ [t]((ϕ→ ϕ)→ ϕ)→ ([s](ϕ→ ϕ)→ [t× s]ϕ) by IJ1

`IEJ [t]ϕ→ ([s](ϕ→ ϕ)→ [t× s]ϕ) by logic

`IEJ [t]ϕ→ [t× s]ϕ by group 1, IJ4 , IJ5, and logic
Hence, by IJ7 and IJ8, a modality like [t× s] is both stronger than t and stronger
than s, in accordance with its intended interpretation.

Now, it is worth noting that, in the light of RIJ and KIJ, every [t] is a standard
modality. This suggests a new semantics for the basic system of logic for explicit
and implicit justification, which is more insightful than the semantics proposed in
[11]. To be sure, the new semantics fits the intuition that, while explicit operators
can be modeled by means of syntactic assignments, implicit operators are to be
modeled by means of conditions on the set of possible epistemic states.
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3 Semantic characterization
The semantic framework for standard systems of justification logic is due to Fitting
[9]. In Fitting semantics, a frame is a tuple 〈W,R, E〉, where W is a non-empty
set of states, R is a transitive relation on W , and E is a function from states
and justifiers to sets of formulas. Within this framework, explicit justification is
modeled by introducing a syntactic function that, given a justifier t and a possible
world w, selects the set of all formulas for which t provides explicit justification at
w. In particular, ϕ ∈ E(w, t) states that, at w, t is a justifier that can serve as
possible evidence for ϕ. In a similar way, we might model implicit justification by
introducing a function that, given a justifier t and a possible world w, selects the
set of all formulas for which t provides implicit justification at w.8 Hence, a frame
is a tuple 〈W,R, E , E∗〉, where

• W is a non-empty set of states

• R ⊆W ×W is transitive

• E is such that E(w, t) is a set of formulas, for every w and t

• E∗ is such that E∗(w, t) is a set of formulas, for every w and t

In addition, E and E∗ must satisfy the following constraints.

1. Conditions on E .
ϕ→ ψ ∈ E(w, t) and ϕ ∈ E(w, s)⇒ ψ ∈ E(w, t× s)

E(w, t) ∪ E(w, s) = E(w, t+ s)

ϕ ∈ E(w, t)⇒ t : ϕ ∈ E(w, !t)

R(w, v)⇒ E(w, t) ⊆ E(v, t)

2. Conditions on E∗.
ϕ→ ψ ∈ E∗(w, t) and ϕ ∈ E∗(w, s)⇒ ψ ∈ E∗(w, t× s)

E∗(w, t) ∪ E∗(w, s) = E∗(w, t+ s)

ϕ ∈ E∗(w, t)⇒ [t]ϕ ∈ E∗(w, !t)

E(w, t) ⊆ E∗(w, t)

E∗(w, c) ⊆ E∗(w, t), for every c

E(w, t× t) = E∗(w, t+ t) = E∗(w, !t) = E∗(w, t)

R(w, v)⇒ E∗(w, t) ⊆ E∗(v, t)

Once these conditions are posed, one can prove a completeness theorem for IEJ.9
To be sure, the conditions on E and E∗ are introduced precisely for ensuring the
soundness of the axioms in group 2 and 3.

8This is the strategy pursued in [11].
9See [11], section 4.2.
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3.1 A new semantics for implicit and explicit justification
An apparent limitation of the previously introduced semantic framework is that
implicit and explicit justifications are modeled in the same way. In particular,
while it is normal to model the set of explicitly justified propositions by means of
a selection function like E , since we do not expect such a set to be closed with
respect to any logical rule, it is not intuitive to model the set of implicitly justified
propositions by means of a selection function like E∗, since, in this case, we do
expect such a set to be closed with respect to the logical rules, and indeed RIJ and
KIJ confirm our expectation. Hence, it should be more appropriate to develop the
logic of implicit justification by means of conditions linking epistemic states, which
are the standard tools for treating implicit epistemic modalities. The rest of this
section is thus dedicated to develop this kind of semantics.
Definition 2: Basic frame for IEJ.
A basic frame for IEJ is a tuple 〈W,S, E〉, where W is a set of epistemic states,

S is a function that assigns to every w ∈W and every term t a set of states S(w, t),
and E is a function that assigns to every w ∈W and every term t a set of formulas
E(w, t). In addition, S and E must satisfy the following conditions.

1. Conditions on S

S1 : S(w, t× s) ⊆ S(w, t) ∩ S(w, s)

S2 : S(w, t+ s) ⊆ S(w, t) ∩ S(w, s)

S3 : S(w, t) ⊆ S(w, c), for all c

S4 : S(w, t× t) = S(w, t+ t) = S(w, !t) = S(w, t)

S5 : v ∈ S(w, t)⇒ S(v, t) ⊆ S(w, t)

2. Conditions on E .

E1 : ϕ,ϕ→ ψ ∈ E(w, t)⇒ ψ ∈ E(w, t)

E2 : E(w, t) ∪ E(w, s) = E(w, t+ s)

E3 : ϕ ∈ E(w, t)⇒ [t]ϕ ∈ E(w, !t)

E4 : v ∈ S(w, t)⇒ E(w, t) ⊆ E(v, t)

Definition 3: Basic model for IEJ.
A model for IEJ is a tuple M = 〈W,S, E , V 〉, where

• 〈W,S, E〉 is a frame for IEJ

• V is such that V (p) ⊆W for any propositional variable p

As usual, a valuation function for propositional variables is introduced as a function
that assigns to each propositional variable a set of epistemic states, which are the
states where the proposition denoted by the variable is true.
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Definition 4: Truth at a world in a model for IEJ.
The notion of truth of a formula is defined as follows:

M,w |= p⇔ w ∈ V (p)
M,w |= ¬ϕ⇔M,w |= ϕ
M,w |= ϕ ∧ ψ ⇔M,w |= ϕ and M,w |= ψ
M,w |= [t]ϕ⇔M,w |= ϕ, for all v such that v ∈ S(w, t)
M,w |= t : ϕ⇔M,w |= ϕ, for all v such that v ∈ S(w, t), and ϕ ∈ E(w, t)

The notions of logical consequence and logical validity are defined as usual.

3.2 Characterization
Let us now show that the previous system can be completely characterized by the
class of basic frames. It is not difficult to show that the axioms in groups 2 are valid
with respect to the class of all frames and that modus ponens preserves validity.10

Let us then focus on the axioms of group 3 and prove their validity.

IJ1:  [t](ϕ→ ψ)→ ([s]ϕ→ [t× s]ψ)

Suppose M,w |= [t](ϕ → ψ) and M,w |= [s]ϕ. Suppose, in addition, that u ∈
S(w, t× s). Since S(w, t× s) ⊆ S(w, t)∩S(w, s), by conditions S1, u ∈ S(w, t) and
u ∈ S(w, s). Since M,v |= ϕ → ψ, for all v such that v ∈ S(w, t), and M,v |= ϕ,
for all v such that v ∈ S(w, s), by the definition of truth, M,u |= ϕ → ψ and
M,u |= ϕ, and so M,u |= ψ. Thus, M,u |= ψ, for all u such that u ∈ S(w, t × s),
and so M,w |= [t× s]ψ.

IJ2:  [t]ϕ ∨ [s]ϕ→ [t+s]ϕ

Suppose either M,w |= [t]ϕ or M,w |= [s]ϕ. Then, either M,v |= ϕ, for all v
such that v ∈ S(w, t), or M, v |= ϕ, for all v such that v ∈ S(w, s). In both cases,
M,v |= ϕ, for all v such that v ∈ S(w, t+ s), since S(w, t+ s) ⊆ S(w, t) ∩ S(w, s),
by condition S2, and so M,v |= ϕ, for all v such that v ∈ S(w, t + s). Hence,
M,w |= [t+ s]ϕ.

IJ3:  [t]ϕ→ [!t][t]ϕ

Suppose M,w |= [t]ϕ, so that M, v |= ϕ, for all v such that v ∈ S(w, t), and
u ∈ S(v, t). Then, S(u, t) ⊆ S(v, t) and S(v, t) ⊆ S(w, t), by condition S5, and
so S(u, t) ⊆ S(w, t). Hence, M,u |= ϕ, for all u such that u ∈ S(v, t), and so
M,v |= [t]ϕ. Since this is so for all v such that v ∈ S(w, t), and S(w, !t) = S(w, t)
by condition S4, M,w |= [!t][t]ϕ.

IJ4:  t : ϕ→ [t]ϕ

Straightforward, by the definition of M,w |= t : ϕ and M,w |= [t]ϕ.

IJ5:  [c]ϕ→ [t]ϕ, where c is a constant

Straightforward, by the definition of M,w |= [t]ϕ and condition S3.
10The proof is a straightforward adaptation of the proof proposed in [9], section 3.
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IJ6:  [t× t]ϕ↔ [t+ t]ϕ↔ [!t]ϕ↔ [t]ϕ

Straightforward, by the definition of M,w |= [t]ϕ and condition S4.

Thus we obtain the following

Theorem 1: IEJ is sound with respect to the class of all basic frames for IEJ.
(relative to a specific constant specification)

The proof of the completeness theorem is more involved. As usual, the proof is
based on a canonicity argument.11 Therefore, let us start by defining the canonical
model for IEJ. Let w/[t] = {ϕ | [t]ϕ ∈ w} and w/t = {ϕ | t : ϕ ∈ w}, for all terms t.
Then, the canonical model is the tuple M = 〈W,S, E , V 〉, where

• W is the set of maximally IEJ-consistent sets of formulas

• S is such that v ∈ S(w, t)⇔ w/[t] ⊆ v

• E is such that E(w, t) = w/t

Corollary 1: v ∈ S(w, t) ∩ S(w, s)⇔ w/[t] ∪ w/[s] ⊆ v.
Straightforward:
v ∈ S(w, t) ∩ S(w, s)⇔v ∈ S(w, t) and v ∈ S(w, s)
v ∈ S(w, t) ∩ S(w, s)⇔w/[t] ⊆ v and w/[s] ⊆ v
v ∈ S(w, t) ∩ S(w, s)⇔w/[t] ∪ w/[s] ⊆ v

Lemma 1: M is a model for IEJ.
We have to show that the conditions on S and E are satisfied.

Part 1: the conditions on S are satisfied.

• S1 : S(w, t× s) ⊆ S(w, t) ∩ S(w, s)

Suppose v ∈ S(w, t × s), so that w/[t × s] ⊆ v, by the definition of S. Since w
is maximal, [t]ϕ ∈ w ⇒ [t × s]ϕ ∈ w, by IJ8, and [s]ϕ ∈ w ⇒ [t × s]ϕ ∈ w,
by IJ7. Thus, ϕ ∈ w/[t] ⇒ ϕ ∈ w/[t × s] and ϕ ∈ w/[s] ⇒ ϕ ∈ w/[t × s].
Therefore, w/[t]∪w/[s] ⊆ w/[t× s], and so w/[t]∪w/[s] ⊆ v. Hence, S(w, t× s) ⊆
S(w, t) ∩ S(w, s), by corollary 1.

• S2 : S(w, t+ s) ⊆ S(w, t) ∩ S(w, s).

Suppose v ∈ S(w, t + s), so that w/[t + s] ⊆ v, by the definition of S. Since w is
maximal, [t]ϕ ∨ [s]ϕ ∈ w ⇒ [t + s]ϕ ∈ w, by IJ2, and so [t]ϕ ∈ w ⇒ [t + s]ϕ ∈ w
and [s]ϕ ∈ w ⇒ [t + s]ϕ ∈ w. Thus, ϕ ∈ w/[t] ⇒ ϕ ∈ w/[t + s] and ϕ ∈ w/[s] ⇒
ϕ ∈ w/[t+ s]. Therefore, w/[t]∪w/[s] ⊆ w/[t+ s], and so w/[t]∪w/[s] ⊆ v. Hence,
S(w, t+ s) ⊆ S(w, t) ∩ S(w, s), by corollary 1.

11See [6], chapter 4, for an introduction to modal completeness and, in particular, completeness
by canonicity. In what follows I will omit the standard parts and definitions, and focus on the
new parts of the proofs.
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• S3 : S(w, t) ⊆ S(w, c).

It is to prove that w/[c] ⊆ v/[t], which follows from IJ5.

• S4 : S(w, t× t) = S(w, t+ t) = S(w, !t) = S(w, t).

It is to prove that w/[t× t] = w/[t+ t] = w/[!t] = w/[t], which follows from IJ6.

• S5 : v ∈ S(w, t)⇒ S(v, t) ⊆ S(w, t).

Since w/[!t] = w/[t], by IJ6, it suffices to prove that, if w/[!t] ⊆ v, then w/[t] ⊆ v/[t].
Suppose w/[!t] ⊆ v and ϕ ∈ w/[t]. Then, [t]ϕ ∈ w, so that [!t][t]ϕ ∈ w, by IJ3 and
w ∈W . Therefore, [t]ϕ ∈ v, and so w/[t] ⊆ v/[t].

Part 2: the conditions on E are satisfied.

The proof of conditions E1, E2, and E3 is well-known.12 We only check E4.

• E4 : v ∈ S(w, t)⇒ E(w, t) ⊆ E(v, t).

Suppose v ∈ S(w, t), so that w/[t] ⊆ v, by the definition of S. Since w is maximal,
t : ϕ ∈ w ⇒!t : (t : ϕ) ∈ w, by EJ3. By IJ4, !t : (t : ϕ) ∈ w ⇒ [!t](t : ϕ) ∈ w.
By IJ6, [!t](t : ϕ) ∈ w ⇒ [t](t : ϕ) ∈ w. Hence, t : ϕ ∈ w ⇒ [t](t : ϕ) ∈ w, and so
t : ϕ ∈ w ⇒ t : ϕ ∈ w/[t] ⊆ v. Therefore, w/t ⊆ v/t, from which the conclusion
follows.

Lemma 2 (Truth Lemma): M,w |= ϕ⇔ ϕ ∈ w.
The interesting cases are the modal ones.

1. M,w |= [t]ϕ⇔ [t]ϕ ∈ w.
M,w |= [t]ϕ⇔M,w |= ϕ, for all v such that v ∈ S(w, t)
M,w |= [t]ϕ⇔ ϕ ∈ w, for all v such that w/[t] ⊆ v, by I.H.
M,w |= [t]ϕ⇔ ϕ ∈ w/[t], since w/[t] is a closed set
M,w |= [t]ϕ⇔ [t]ϕ ∈ w, by the definition of w/[t]

2. M,w |= t : ϕ⇔ t : ϕ ∈ w.

Suppose M,w |= t : ϕ. Then ϕ ∈ E(w, t), by the definition of truth. Thus,
t : ϕ ∈ w, by the definition of E . Suppose now t : ϕ ∈ w. Then [t]ϕ ∈ w, by IJ4.
Thus, M,w |= [t]ϕ, by I.H., and ϕ ∈ E(w, t), by the definition of E .

This concludes the proof. We then obtain the following

Theorem 2: IEJ is complete with respect to the class of all basic frames for
IEJ. (relative to a specific constant specification)

12See, for instance, [9], section 8.
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3.3 Developments
In this paper, I have presented a complete basic system of logic of implicit and
and explicit justification. This work can be extended in at least three different
directions. A first possibility is to introduce a hierarchy of systems of increasing
power based on IEJ. In effect, it is not difficult to see that systems dealing with
consistent and correct justifiers can be obtained by introducing axioms like

EJD: t : ϕ→ ¬(t : ¬ϕ) EJT: t : ϕ→ ϕ
IJD: [t]ϕ→ ¬[t]¬ϕ IJT: [t]ϕ→ ϕ

and modifying the conditions on S so to account for their validity. Along similar
lines, more powerful systems might be developed. A second possibility is to make
the system dynamic, by looking at the connections with recent intuitions proposed
in [13] and [14]. The idea in this case is to interpret t : ϕ as saying that a proof t of
ϕ has been announced, i.e. discovered and published, and to adapt the semantics of
the logic of announcement to the present framework. A final possibility is to connect
the idea of implicit justification involved in modalities like [t] with the more usual
idea of implicit knowledge provided in [5], and to look for an integrated system,
where notions like conclusive evidence and default evidence are also accounted for.
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A System of Proof for Lewis Counterfac-
tual

Sara Negri and Giorgio Sbardolini

abstract. A deductive system for Lewis counterfactual is presented,
based directly on Lewis’ influential generalisation of relational semantics with
ternary similarity relations. This deductive system builds on a method for
enriching the syntax of sequent calculus by labels for possible worlds. The
resulting labelled sequent calculus is shown to be equivalent to the axiomatic
system VC of Lewis. It is further shown to have the structural properties
that are needed for an analytic proof system that supports root-first proof
search. Completeness of the calculus is proved in a direct way, such that for
any given sequent either a formal derivation or a countermodel is provided;
it is also shown how finite countermodels for unprovable sequents can be ex-
tracted from failed proof search, by which the completeness proof turns into
a proof of decidability.

1 Introduction
Kripke’s relational semantics was a decisive turning point for modal logic: earlier
axiomatic studies were replaced by a semantic method that displayed the connec-
tions between modal axioms and conditions on the accessibility relation between
possible worlds. Based on a development of Kripke’s semantic framework, David
Lewis put forward a study of conditionals in the classic work Counterfactuals (1973).
Counterfactual conditionals have long been of interest in Philosophy, for they play
a crucial role in our understanding of scientific laws, causation, metaphysics and
epistemology.

The success of the semantic methods has not been followed by equally powerful
syntactic theories of modal and conditional reasoning: Concerning the former, the
situation was so depicted by Melvin Fitting in his article (2007) in the Handbook of
Modal Logic: “No proof procedure suffices for every normal modal logic determined
by a class of frames”; Concerning the latter, as stated by Graham Priest “there are
presently no known tableau systems” for Lewis’ logic for counterfactuals (2008, p.
93).

In Negri (2005) it was shown how Kripke semantics can be exploited to enrich
the syntax of systems of proof. In particular, a more expressive language turned
out to be crucial, with a formal notation of labels representing possible worlds.
The approach has been extended to wider frame classes in later work (Negri 2016),
and in Dyckhoff and Negri (2015) it was shown how the method can capture any
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nonclassical logic characterized by arbitrary first-order frame conditions in their
relational semantics. Notably, in these calculi, all the rules are invertible and a
strong form of completeness holds for them, with a simultaneous construction of
formal proofs for derivable sequents, or countermodels for underivable ones (Negri
2014a).

The semantics of Lewis’ conditional is interestingly different from standard modal
logics in that counterfactuals are analyzed in terms of a similarity relation among
worlds. Ternary relations of comparative similiarity were proposed by Lewis himself
as a formal account of the topological truth conditions for counterfactuals, in the set-
ting of a sphere semantics, a special form of neighbourhood semantics. Interestingly,
this gives an ∃ ∀-nesting of quantifiers in the truth conditions for the counterfactual
conditional, which makes the determination of the rules of the calculus a challeng-
ing task. The solution presented here makes use of indexed modalities, which allow
to split the semantic clause in two separate parts; correspondingly, the rules for
the counterfactual conditional depend on rules for the indexed modality, which are
standard modal labelled rules. The result is a sequent system, called G3LC below,
which is a sound and complete Gentzen-style calculus for Lewis’ original counter-
factual. The system has all the structural rules (weakening, contraction, and cut)
admissible, and all its rules are invertible. Furthermore, we establish decidability of
the calculus by means of a finitary root-first proof search procedure that for every
sequent yields either a derivation or a countermodel.

We introduce G3LC in the next section. In Section 3, some interesting struc-
tural properties of G3LC are presented, in particular a cut elimination theorem.
For lack of sufficient space some proofs are omitted, others are just sketched.1 In
Section 4, it is shown that Lewis’ axioms and rules are, respectively, admissible and
derivable, which allows to show that the calculus is complete (by soundness and by
Lewis’ own proof of completeness). Finally, Section 5 contains direct completeness
and decidability results. Related literature and further work are discussed in the
concluding section.

2 A sequent calculus for Lewis conditional
We follow precise steps for moving from the meaning of logical constants to se-
quent calculus rules; the method is fully general, and it allows us to internalize
the semantics into the syntax of a good sequent calculus.2 To begin with, the lan-
guage is extended by labelled formulas of the form x : A, and by expressions of the
form xRy. Labelled formulas x : A correspond to the statement that A is true at
node/possible world x; expressions of the form xRy correspond to relations between
nodes/possible worlds in a frame. Then the compositional clauses that define the
truth of a formula at a world are translated into natural deduction inference rules
for labelled expressions; third, such rules are appropriately converted into sequent
calculus rules; fourth, the characteristic frame properties are converted into rules
for the relational part of the calculus following the method of translation of axioms

1Cf. Negri and Sbardolini (2016) for complete proofs and in-depth discussion.
2The details of the procedure are presented for intuitionistic and standard modal logic in Negri

and von Plato (2014).
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into sequent calculus rules introduced and developed in Negri and von Plato (1998,
2001, 2011). In this way, the frame properties are carried over to the calculus by
the addition of rules for binary accessibility relations regarded as binary atomic
predicates with the labels as arguments.In this section, this method is applied to
the case of Lewis’ counterfactual conditional.

The truth conditions for Lewis’ conditional are spelled out in terms of a three-
place similarity relation � among worlds, the intuitive meaning of “x �w y” being
“x is at least as similar to w as y is” (Lewis 1973a, 1973b). The following properties
are generally assumed:

1. Transitivity: If x �w y and y �w z then x �w z,

2. Strong connectedness: Either x �w y or y �w x,

3. L-Minimality: If x �w w then x = w.

Through the conversion method outlined above these turn into the following
sequent calculus rules:
x �w z, x �w y, y �w z,Γ⇒ ∆

x �w y, y �w z,Γ⇒ ∆ Trans
x �w y, ,Γ⇒ ∆ y �w x,Γ⇒ ∆

Γ⇒ ∆ SConn

x = w,Γ⇒ ∆
x �w w,Γ⇒ ∆ LMin

Lewis’ conditional is symbolized by A � B, which intuitively reads “If it had
been the case that A, it would be the case that B”. The truth conditions are as
follows:

w  A� B iff either

1. There is no z such that z  A, or
2. there is x such that x  A and for all y, if y �w x then y  A ⊃ B.

As previously anticipated, the truth condition for A� B has a universal quantifi-
cation in the scope of an existential one, and thus it is not of a form that can be
directly translated into rules following the method of generation of labelled sequent
rules for intensional operators (as expounded in Negri 2005); a more complex for-
malism in the line of the method of systems of rules (Negri 2016) would have to be
invoked to maintain the primitive language.

The rules for the labelled calculus for Lewis’ conditional can be presented fol-
lowing the general method of embedding neighbourhood semantics for non-normal
modal logics into the standard relational semantics for normal modal systems through
the use of indexed modalities.3 Specifically, the relation of similarity is used to define
a ternary accessibility relation

xRwy ≡ y �w x
3The method is formulated in general terms in Gasquet and Herzig (1996) for classical modal

logics and used in Giordano et al. (2008) for a tableau calculus for preference-based conditional
logics.
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In turn, this relation defines an indexed necessity as follows:

x  �wA ≡ ∀y.xRwy → y  A

Then the truth condition for the conditional may be replaced by the following

w  A� B iff either

1. There is no z such that z  A, or
2. there is x such that x  A and x  �w(A ⊃ B).

Observe that the presentation of a calculus formulated in terms of indexed modali-
ties is faithful to Lewis’ original idea of conditional implication as a variably strict
conditional.

The rules for Lewis conditional and for the indexed modality are obtained from
their respective truth conditions following the general method of Negri (2005) for
turning the truth conditions of standard modalities into rules of a labelled sequent
calculus: quantification over worlds is replaced by the condition that certain vari-
ables in the rules (eigenvariables) should be fresh; the right to left direction in the
truth conditions gives the right rule and the other direction gives the left rule. Since
the truth condition for Lewis’ conditional is a disjunction, there are two right rules
(one for each disjunct) and accordingly one left rule with two premisses.

xRwy,Γ⇒ ∆, y : A
Γ⇒ ∆, x : �wA

R�w (y fresh)
xRwy, x : �wA, y : A,Γ⇒ ∆
xRwy, x : �wA,Γ⇒ ∆

L�w

z : A,Γ⇒ ∆, w : A� B

Γ⇒ ∆, w : A� B
R�1 (z fresh)

Γ⇒ ∆, w : A� B, x : A Γ⇒ ∆, w : A� B, x : �w(A ⊃ B)
Γ⇒ ∆, w : A� B

R�2

w : A� B,Γ⇒ ∆, z : A x : A, x : �w(A ⊃ B),Γ⇒ ∆
w : A� B,Γ⇒ ∆

L� (x fresh)

The complete system is presented in Table 1. The system is thus obtained as an
extension of the propositional part of the contraction- and cut-free sequent calculus
G3K for basic modal logic introduced in Negri (2005). In addition there are rules
for the similarity and the equality relation. For the latter, there are just two rules,
reflexivity and the scheme of replacement, ReplAt, where At(x) stands for an atomic
labelled formula x : P or a relation of the form y = z, yRwz, with x one of
y, w, z. Symmetry of equality follows as a special case of ReplAt as well as Euclidean
transitivity which, together with symmetry, gives the usual transitivity.4

Before proceeding to the results, we give a definition of weight of formulas:
4The general reasons for the architecture behind the rules of equality are discussed in Negri

and von Plato (2001, S6.5) for extensions of first-order systems, and the equality rules for labelled
systems are given in Negri (2005) and Negri and von Plato (2011).
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Table1 : Lewis basic counterfactual conditional sequent system (G3LC)
based on ternary similarity

Initial sequents:

x : P,Γ⇒ ∆, x : P

Propositional rules:

x : A, x : B,Γ⇒ ∆
x : A&B,Γ⇒ ∆ L&

Γ⇒ ∆, x : A Γ⇒ ∆, x : B
Γ⇒ ∆, x : A&B R&

x : A,Γ⇒ ∆ x : B,Γ⇒ ∆
x : A ∨B,Γ⇒ ∆ L∨

Γ⇒ ∆, x : A, x : B
Γ⇒ ∆, x : A ∨B R∨

Γ⇒ ∆, x : A x : B,Γ⇒ ∆
x : A ⊃ B,Γ⇒ ∆

L⊃
x : A,Γ⇒ ∆, x : B
Γ⇒ ∆, x : A ⊃ B

R⊃

x :⊥,Γ⇒ ∆ L⊥

Similarity rules:

xRwz, xRwy, yRwz,Γ⇒ ∆
xRwy, yRwz,Γ⇒ ∆ Trans

xRwy,Γ⇒ ∆ yRwx,Γ⇒ ∆
Γ⇒ ∆

SConn (x, y, w in Γ,∆)

x = x,Γ⇒ ∆
Γ⇒ ∆

Ref (x in Γ,∆)
x = y,At(x), At(y),Γ⇒ ∆

x = y,At(x),Γ⇒ ∆
ReplAt

x = w,wRwx,Γ⇒ ∆
wRwx,Γ⇒ ∆ LMin

Conditional rules:

xRwy,Γ⇒ ∆, y : A
Γ⇒ ∆, x : �wA

R�w (y fresh)
xRwy, x : �wA, y : A,Γ⇒ ∆
xRwy, x : �wA,Γ⇒ ∆

L�w

z : A,Γ⇒ ∆, w : A� B

Γ⇒ ∆, w : A� B
R�1 (z fresh)

Γ⇒ ∆, w : A� B, x : A Γ⇒ ∆, w : A� B, x : �w(A ⊃ B)
Γ⇒ ∆, w : A� B

R�2

w : A� B,Γ⇒ ∆, z : A x : A, x : �w(A ⊃ B),Γ⇒ ∆
w : A� B,Γ⇒ ∆

L� (x fresh)
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DEFINITION 1. The weight w(A) of a formula A is defined inductively by the
following:

w(γ) = 1 for γ the constant ⊥, an atomic formula, or a relational atom,
w(A ◦B) = w(A) + w(B) + 1 for ◦ conjunction, disjunction, or implication,
w(�xA) = w(A) + 1,
w(A� B) = w(A) + w(B) + 3.

Notice that since ¬A is defined by A ⊃⊥, w(¬A) ≡ w(A) + 2. Notice also that
w(�x(A ⊃ B)) < w(A� B).

The following lemma is proved by induction on the weight of A:

LEMMA 2. All the sequents of the form x : A,Γ ⇒ ∆, x : A are derivable in
G3LC.

3 Structural properties
The proof of admissibility of the structural rules in G3LC follows the pattern
presented in Negri and von Plato (2011, 11.4). Likewise, some preliminary results
are needed, namely height-preserving admissibility of substitution (in short, hp-
substitution) and height-preserving invertibility (in short, hp-invertibility) of the
rules. Recall that the height of a derivation is its height as a tree, i.e. the length of
its longest branch, and that `n denotes derivability with derivation height bounded
by n in a given system. In what follows, the results are all referred to G3LC. The
following is proved by induction on the height of the derivation:

PROPOSITION 3. If `n Γ⇒ ∆, then `n Γ(y/x)⇒ ∆(y/x).

With a straightforward induction, it follows that:

PROPOSITION 4. The rules of left and right weakening are hp-admissible.

In a way similar to the proof of Lemma 11.7 in Negri and von Plato (2011), a
result of hp-invertibility of the rules of G3LC can be proved next, i.e. for every
rule of the form Γ′⇒∆′

Γ⇒∆ , if `n Γ ⇒ ∆ then `n Γ′ ⇒ ∆′, and for every rule of the
form Γ′⇒∆′ Γ′′⇒∆′′

Γ⇒∆ if `n Γ⇒ ∆ then `n Γ′ ⇒ ∆′ and `n Γ′′ ⇒ ∆′′.

LEMMA 5. All the propositional rules are hp-invertible.

As for invertibility of the rules for the conditional, we have

LEMMA 6. The following hold:
(i) If `n Γ⇒ ∆, x : �wA, then `n xRwy,Γ⇒ ∆, y : A,

(ii) If `n w : A� B,Γ⇒ ∆, then `n x : A, x : �w(A ⊃ B),Γ⇒ ∆.

Observe that Lemma 6(ii) states hp-invertibility of L� with respect to the
second premiss; its hp-invertibility with respect to the first premiss is a special case
of Proposition 4. Therefore, as a general result we have:

COROLLARY 7. All the rules are hp-invertible.

The rules of contraction of G3LC have the following form, where φ is either a
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relational atom of the form xRwy or a labelled formula x : A:

φ, φ,Γ⇒ ∆
φ,Γ⇒ ∆ LC

Γ⇒ ∆, φ, φ
Γ⇒ ∆, φ RC

By simultaneous induction on the height of derivation for left and right contraction,
it follows that:
THEOREM 8. The rules of left and right contraction are hp-admissible.

And finally:
THEOREM 9. Cut is admissible.

Proof. The proof is by induction on the weight of the cut formula and subinduction
on the sum of the heights of derivations of the premisses (cut-height). The cases
pertaining initial sequents and the propositional rules of the calculus are dealt with
as in Theorem 11.9 of Negri and von Plato (2011) and therefore omitted here. Also
the cases with cut formula not principal in both premisses of cut are dealt in the
usual way by permutation of cut, with possibly an application of hp-substitution
to avoid a clash with the fresh variable in rules with variable condition. So, the
only cases to focus on are those with cut formula of the form �wA or A � B
which is principal in both premisses of cut. The former case presents, apart from
the indexing on the accessibility relation, no difference with respect to the case of
a plain modality, so we proceed to analyse the latter. This case splits into two
subcases, depending on whether the left premiss is derived by R�1 or R�2.

In the first case there is a derivation of the form
D1

y : A,Γ ⇒ ∆, w : A � B

Γ ⇒ ∆, w : A � B
R �1

D2
w : A � B,Γ′ ⇒ ∆′, z : A

D3
y : A, y : �w(A ⊃ B),Γ′ ⇒ ∆′

w : A � B,Γ′ ⇒ ∆′
L �

Γ,Γ′ ⇒ ∆,∆′
Cut

This is converted into a derivation with three cuts of reduced height as follows (we
have to split the result of the conversion to fit it in the page): First, a derivation
D4

D1
Γ⇒ ∆, w : A� B

D2
w : A� B,Γ′ ⇒ ∆′, z : A

Γ,Γ′ ⇒ ∆,∆′, z : A Cut

Further, by application of hp-substitution, another derivation D5

D1(z/y)
z : A,Γ ⇒ ∆, w : A � B

D2
w : A � B,Γ′ ⇒ ∆′, z : A

D3
y : A, y : �w(A ⊃ B),Γ′ ⇒ ∆′

w : A � B,Γ′ ⇒ ∆′
L �

z : A,Γ,Γ′ ⇒ ∆,∆′
Cut

The two derivations are then used as premisses of a third cut of reduced weight as
follows

Γ,Γ′ ⇒ ∆,∆′, z : A z : A,Γ,Γ′ ⇒ ∆,∆′

Γ2,Γ′2 ⇒ ∆2,∆′2
Cut

Γ,Γ′ ⇒ ∆,∆′ Ctr∗
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In the second case there is a derivation of the form

D1
Γ ⇒ ∆, w : A � B, x : A

D2
Γ ⇒ ∆, w : A � B, x : �w(A ⊃ B)

Γ ⇒ ∆, w : A � B
R �2

D3
w : A � B,Γ′ ⇒ ∆′, z : A

D4
y : A, y : �w(A ⊃ B),Γ′ ⇒ ∆′

w : A � B,Γ′ ⇒ ∆′
L �

Γ,Γ′ ⇒ ∆,∆′
Cut

The cut is converted into six cuts of reduced height or weight of cut formula as
follows: First, the derivation (call it D5)

D1
Γ⇒ ∆, w : A� B, x : A

D3
w : A� B,Γ′ ⇒ ∆′, z : A

D4
y : A, y : �w(A ⊃ B),Γ′ ⇒ ∆′

w : A� B,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′, x : A Cut

with a cut of reduced height. Then the derivation (call it D6)

D2
Γ ⇒ ∆, w : A � B, x : �w(A ⊃ B)

D3
w : A � B,Γ′ ⇒ ∆′, z : A

D4
y : A, y : �w(A ⊃ B),Γ′ ⇒ ∆′

w : A � B,Γ′ ⇒ ∆′
L �

Γ,Γ′ ⇒ ∆,∆′, x : �w(A ⊃ B)
Cut

D4(x/y)
x : A, x : �w(A ⊃ B),Γ′ ⇒ ∆′

x : A,Γ,Γ′2 ⇒ ∆,∆′2
Cut

with two cuts, the upper of reduced height, and the lower of reduced weight; finally
the derivation

D5 D6

Γ2,Γ′3 ⇒ ∆2,∆′3
Cut

Γ,Γ′ ⇒ ∆,∆′ Ctr∗

with a cut or reduced weight and repeated applications of contraction. �

To ensure the consequences of cut elimination we need to establish another crucial
property of the system. We say that a labelled system has the subterm property if
every variable occurring in any derivation is either an eigenvariable or occurs in the
conclusion.5 Clearly, the rules of G3LC do not, as they stand, satisfy the subterm
property, but we can prove that, without loss of generality, proof search can be
restricted to derivations that have the subterm property.
PROPOSITION 10. Every derivable sequent has a derivation that satisfies the sub-
term property.

Proof. By induction on the height of the derivation. For the inductive step, the
conclusion is clear if the last step is one of the rules in which all the labels in the
premisses satisfy the subterm property. For the other rules (in this specific calculus,
rules Ref and R�1), consider the violating cases in which the premisses contain a
label which is not in the conclusion. Using hp-substitution, it can be replaced to a
label in the conclusion and thus obtain a derivation of the same height that satisfies
the subterm property. �

By the above result, in the following we shall always restrict attention to deriva-
tions with the subterm property.

5This property is called analyticity in Dyckhoff and Negri (2012).
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4 Lewis’ axioms and rules
The axiomatic system for counterfactuals VC, regarded by Lewis as the “official
logic of counterfactuals” (Lewis, 1973a, p. 132), is captured by G3LC since Lewis’
axioms are provable in G3LC and the inference rules of VC are admissible. For
brevity, proofs are here omitted. The results stated in this section, together with a
proof of soundness of G3LC with respect to Lewis’ semantics, provide an indirect
proof of completeness. In Section 5 a direct completeness proof for G3LC with
respect to Lewis semantics is however presented.
PROPOSITION 11. The following rules are admissible in G3LC:

1. Modus Ponens: `A `A⊃B`B
2. Deduction within Conditionals: for any n ≥ 1

` A1& . . .&An ⊃ B
` ((D� A1)& . . .&(D� An)) ⊃ (D� B)

3. Interchange of logical equivalents: if ` A ⊃⊂ B and ` Φ(A) then ` Φ(B),
where Φ is an arbitrary formula in the language.

All the axioms of VC are derivable in G3LC, i.e. for each axiom A the sequent
⇒ x : A is derivable in the calculus where x is an arbitrary label.
PROPOSITION 12. The following axioms are derivable in G3LC:

1. Propositonal tautologies,

2. A� A,

3. (¬A� A) ⊃ (B � A),

4. (A� ¬B) ∨ (((A&B) � C) ⊃⊂ (A� (B ⊃ C))),

5. (A� B) ⊃ (A ⊃ B),

6. (A&B) ⊃ (A� B).

5 Completeness
In this section a direct completeness proof for G3LC with respect to Lewis seman-
tics is presented. The proof has the overall structure of the completeness proof for
labelled systems for modal and non-classical logics given in Negri (2009) and Negri
(2014a), but the semantics is here based on comparative similarity systems rather
than Kripke models.
DEFINITION 13. Let W be the set of variables (labels) used in derivations in
G3LC. A comparative similarity system S is an assignment to every w ∈ W
of a two-place relation �w with the aforementioned conditions:
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1. Transitivity: If x �w y and y �w z then x �w z,

2. Strong connectedness: Either x �w y or y �w x,

3. L-Minimality: If x �w w then x = w.

An interpretation of the labels in W in S a map ~·� : W → S. A valuation of
atomic formulas in S is a map V : AtFrm → P(S) that assigns to each atom P the
set of elements of W in which P holds. Instead of writing w ∈ V(P ), we adopt the
standard notation w  P .

Valuations are extended to arbitrary formulas by the following inductive clauses:
V⊥: x  ⊥ for no x.
V&: x  A&B iff x  A and x  B.
V∨: x  A ∨B iff x  A or x  B.
V⊃: x  A ⊃ B iff if x  A then x  B.
V�w : x  �wA iff for all y, if y �w x then y  A.
V�: x  A� B iff either z  A for no z, or y  A and y  �x(A ⊃ B) for some

y.
DEFINITION 14. A labelled formula x : A (resp. a relational atom xRwy) is
true for an interpretation ~·� and a valuation V in a system S iff ~x�  A (resp.
~y� �~w� ~x�). A sequent Γ ⇒ ∆ is true for an interpretation ~·� and a valuation
V in a system S if, whenever for all labelled formulas x : A and relational atom
xRwy in Γ it is the case that ~x�  A and ~y� �~w� ~x�, then for some w : B in ∆,
~w�  B. A sequent is valid in a system S iff it is true for every interpretation and
valuation in S.
THEOREM 15. (Soundness) If a sequent is derivable in G3LC then it is valid
in every comparative similarity system S.
THEOREM 16. (Completeness) Let Γ ⇒ ∆ be a sequent in the language of
G3LC. If it is valid in every comparative similarity system, it is derivable inG3LC.

Proof. Immediate by Proposition 11, Proposition 12, Theorem 15, and Lewis’ own
completeness proof (Lewis 1973a, pp. 118-134). �

Completeness can be established also as a corollary of the following:
THEOREM 17. Let Γ⇒ ∆ be a sequent in the language of G3LC. Then either it
is derivable in G3LC or it has a countermodel in S.

For brevity, the proof is here omitted.

6 Decidability
In general cut elimination alone does not ensure terminating proof search in a
given calculus. The exhaustive proof search used in the proof of Theorem 17 is
not a decision method nor an effective method of finding countermodels when proof
search fails, as it may produce infinite branches and therefore infinite countermodels.
By way of example, consider the following branch in the search for a proof of the
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sequent ⇒ w : �x¬�xA ⊃ �xB (this is analogous to the case for S4 discussed in
Negri and von Plato 2011, Section 11.5):

...
wRxy, yRxz, wRxz, zRxt, w : �x¬�xA⇒ t : A, z : A, y : B
wRxy, yRxz, wRxz, w : �x¬�xA⇒ z : �xA, z : A, y : B

R�x

wRxy, yRxz, wRxz, w : �x¬�xA, z : ¬�xA⇒ z : A, y : B L⊃

wRxy, yRxz, wRxz, w : �x¬�xA⇒ z : A, y : B
L�x

wRxy, yRxz, w : �x¬�xA⇒ z : A, y : B Trans

wRxy, w : �x¬�xA⇒ y : �xA, y : B
R�x

wRxy, w : �x¬�xA, y : ¬�xA⇒ y : B L⊃

wRxy, w : �x¬�xA⇒ y : B
L�x

w : �x¬�xA⇒ w : �xB
R�x

⇒ w : �x¬�xA ⊃ �xB
R⊃

Clearly the search goes on forever because of the new accessibility relations that are
generated by applications of the right rules for the indexed modalities, together with
Trans. A finite countermodel may nevertheless be exhibited by a suitable truncation
of the otherwise infinite countermodel provided by the completeness proof.

Following the method of finitization of countermodels generated by proof search
in a labelled calculus, presented for intuitionistic propositional logic in Negri (2014a)
and for multi-modal logics in Garg et al. (2012), a saturation condition for branches
on a reduction tree is defined. Intuitively, a branch is saturated when its leaf is not
an initial sequent nor a conclusion of L⊥, and when it is closed under all the rules
except for R�x in case it generates a loop modulo new labelling. To obtain the finite
countermodel, define a partial order through the reflexive and transitive closure of
the similarity relation together with a relation that witnesses such loops. Let ↓ Γ
(↓∆) be the union of the antecedents (succedents) in a branch from the endsequent
up to Γ⇒ ∆.

Let us define the following sets of formulas:

F1
Γ⇒∆(w) ≡ {A |w : A ∈↓Γ} ∪ {�xA | y : �xA, yRxw ∈ Γ}

F2
Γ⇒∆(w) ≡ {A |w : A ∈↓∆}

and let w ≤Γ⇒∆ y iff F iΓ⇒∆(w) ⊆ F iΓ⇒∆(y) for i = 1, 2.
DEFINITION 18. A branch in a proof search up to a sequent Γ⇒ ∆ is saturated
if the following conditions are satisfied:

1. If w is a label in Γ,∆, then w = w and wRxw are in Γ.
2. If wRxy and yRxz are in Γ, then wRxz is.
3. If wRwx is in Γ, then x = w is.
4. If w, x, y are labels in Γ,∆, then either wRxy or yRxw is in Γ
5. There is no w such that w : ⊥ is in Γ.
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6. If w : A&B is in ↓Γ, then w : A and w : B are in ↓Γ.
7. If w : A&B is in ↓∆, then either w : A or w : B is in ↓∆.
8. If w : A ∨B is in ↓Γ, then either w : A or w : B is in ↓Γ.
9. If w : A ∨B is in ↓∆, then w : A and w : B are in ↓∆.
10. If w : A ⊃ B is in ↓Γ, then either w : A is in ↓∆ or w : B is in ↓Γ.
11. If w : A ⊃ B is in ↓∆, then w : A is in ↓Γ and w : B is in ↓∆.
12. If w : �xA and wRxy are in Γ, then y : A is in ↓Γ.
13. If w : �xA is in ↓∆, then either

a. for some y, there is wRxy in Γ and y : A is in ↓∆, or
b. for some y such that y , w, there is yRxw in Γ and w ≤Γ⇒∆ y.

14. If w : A� B is in Γ, then either z : A is in ↓∆ for z in Γ,∆, or for some y,
y : A, y : �w(A ⊃ B) is in Γ.

15. If w : A� B is in ↓∆, then y : A is in ↓Γ and either z : A or z : �w(A ⊃ B)
is in ↓∆ for z in Γ,∆.

Notice that this definition blocks the proof search in the example above when it
produces the formula t : �xA because of clause 13.b (since we then have t ≤Γ⇒∆ z).
The finite countermodel is defined by the sets ↓Γ, ↓∆.
PROPOSITION 19. The finite countermodel defined by the saturation procedure is
a comparative similarity system.

Notice further that by the subterm property the number of distinct formulas
in the sequents of an attempted proof search is bounded. Since duplication of
the same labelled formulas is not possible by hp-admissibility of contraction, the
following holds:
THEOREM 20. The system G3LC allows a terminating proof search.

Proof. Let F be the set of (unlabelled) subformulas of the endsequent and con-
sider a string of labels w0Rxw1, w1Rxw2, w2Rxw3, . . . generated by the saturation
procedure. For an arbitrary xj consider the values of the sets F i(xk) for k < j at
the step in which xj was introduced. Clearly F i(xj) * F i(xk) or else xj would not
have been introduced. So each new label corresponds to a new subset of F × F .
Since the number of these subsets is finite, also the length of each chain of labels
must be finite. �

7 Conclusion
This paper presented G3LC, a Gentzen-style sequent calculus for David Lewis’
logic of counterfactuals VC, and proved it sound and complete with respect to
Lewis’ semantics. In G3LC, substitution of labels and left and right weakening and
contraction are height-preserving admissible and cut is admissible. Moreover, all
the rules are invertible. Finally, a decidability result follows, based on a bounded
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procedure of root-first proof search that for any given sequent either provides a
derivation or a countermodel.

In his book Counterfactuals, Lewis presents a class V of axomatic systems for
conditional logics, among which is VC. A detailed deductive analysis of the entire
class, as well as of conditional logics that are based on alternative versions of Lewis’
semantics, is left for further work.

The first tableau proof systems for counterfactuals have been presented by de
Swart (1983). These systems can be read either as Beth-tableaux systems, with
rules for signed formulas, or as sequent systems, and they cover Stalnaker’s system
VCS and Lewis’s system VC. The primitive connective chosen in de Swart’s work
is ≤, with the formula A ≤ B read as “A is at least as possible as B”. We use
instead the counterfactual conditional A � B, read as “If A were the case, then
B would be the case”. These two connectives are interdefinable, as shown by Lewis,
but a different choice of the primitive connective clearly gives origin to different
proof systems. De Swart gives direct and constructive completeness proofs by using
the calculi for defining a systematic proof search procedure that either gives a
proof or a finite countermodel. Also in our system the completeness proof is direct
and constructive, but the countermodel is constructed directly from the syntactic
elements contained in a failed proof search branch, whereas in the Beth-tableaux
approach the possible worlds are defined by nodes in the open search tree. There are
other important differences which highlight the usefulness of the labelled approach
that we have followed.

De Swart’s system has, in addition to the standard classical propositional rules,
a number m · n of distinct rules F ≤ (m,n) for each m, n, where m and n are
positive integers that denote, respectively, the number of signed formulas of the
form F (A ≤ B) or of the form T (A ≤ B) considered as principal formulas of the
rule. Each such rule has the effect of discarding all the other formulas, which results
in a lack of invertibility. It follows that in the proof search procedure what needs
to be explored is not a single tree, but a set of trees.6 Lastly, in our approach the
rules are motivated through a robust meaning explanation that respects the general
guidelines of inferentialism, as emphasized in Negri and von Plato (2015). On the
contrary, the rules of the unlabelled approach seem to involve a not fully explicable
genesis, being found “by the method of trial and error” (cf. de Swart 1983, p. 6).
The inherent risk in the lack of a full methodological transparency became evident
in a later correction by Gent (1992), who gave an example of a valid formula not
derivable in de Swart’s system and proposed an alternative sound a complete system
for VC, while maintaining the main features of de Swart’s original system.

Also Lellman and Pattinson (2012) present an unlabelled sequent calculus for
Lewis’ logic with the binary connective “at least as possible as” as primitive. The
calculi are obtained through a procedure of cut-elimination by saturation which
consists in closing a given set of rules under cut adding new rules. As a result, an
optimal Pspace complexity and Craig interpolation are established.

6In an example detailed in de Swart (1983, p. 10–11), a proof search for a sequent that contains
only two formulas of the form F (A ≤ B) and F (B ≤ D) results, because of all the combinatorial
possibilities, in the construction of 24 different partial trees.
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The work by Olivetti et al. (2007) presents a labelled sequent calculus for Lewis
conditional logics and is close to the present approach as it follows the methodology
of Negri (2005). However, it rests crucially on the limit assumption. In so far
as Lewis’ preferred interpretation of the counterfactual conditional rejects the limit
assumption (see Lewis, 1973a, pp. 20-21), the strategy followed in the present paper
appears to be a more faithful proof-theoretic analysis of Lewis’ work.
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On the “no deadlock criterion”:
from Herbrand’s theorem to Geometry of
Interaction

Paolo Pistone

abstract. Herbrand’s theorem provides a characterization of first-order
validity which allows, in a sense, to “eliminate” quantifiers: one has to test for
the absence of “deadlocks” in a sequence of unification problems induced by
quantifier-free formulae. Similarly, Geometry of Interaction provides a char-
acterization of validity for linear logic which, in a sense, allows to “eliminate”
logical connectives: one has to test for the absence of “shortcircuits” in the
nets representing possible proofs.

Hence these two interpretations seem to escape the usual circularity affect-
ing definitions of validity, where quantifiers are explained by “meta-quantifiers”,
implications by “meta-implications” etc. We briefly present these two perspec-
tives and discuss an approach to validity based on a “no deadlock criterion”.

1 Introduction
In the philosophy of logic it is often argued (see for instance [Pra71, Dum91, Cel06])
that the usual explanations of the logical constants, as relying on model-theoretic
or proof-theoretic notions of validity, are circular in the following sense: the rules
involved in the explanation are essentially of the same form of the rules to be
explained.

For instance, here’s how Prawitz comments this “shortcoming” in the model-
theoretic explanation of first order quantifiers:

Whether, e.g., a sentence ∃x¬P (x) follows logically from a sentence ¬∀xP (x)
depends according to this definition on whether ∃x¬P (x) is true in any model
(D,S) in which ¬∀xP (x) is true. And this again is the same as to ask whether
there is an element e in D that does not belong to S whenever it is not the
case that every e in D belongs to S, i.e. we are essentially back to the question
whether ∃x¬A(x) follows from ¬∀xA(x). [Pra71]

The conditions for deriving (quantified) consequences from a quantified statement
are stipulated in such a way that one has to derive (quantified) consequences from
a quantified statement in order to verify that such conditions hold. In a word,
quantifiers are explained by appeal to (meta-) quantifiers.

In this paper we do not enter into the epistemological challenges involved in these
remarks; rather, we consider two related interpretations of, respectively, first-order
logic and propositional logic, which seem to escape this circularity.
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The first example is provided by Herbrand’s theorem (1930), which allows to
express the validity conditions for a first-order formula as conditions whose verifi-
cation involves checking the validity of quantifier-free formulae, hence eliminating
quantifiers.

The second example we consider is Geometry of Interaction, launched in 1988
[Gir89b] in order to provide a purely mathematical description of Gentzen’s Haupt-
satz. In GoI correct proofs (i.e. those wirings which represent actual sequent calcu-
lus derivations) can be characterized by a geometrical criterion making no reference
to logical rules.

Both perspectives involve a characterization of validity by means of a “no dead-
lock” or “no shortrip” criterion, i.e. a criterion which demands to check for the
absence of circular dependencies in a possible proofs. This intuition seems to in-
dicate a new approach to validity (that we do not develop here in detail): a valid
formula is one that can be asserted or defended without running into “deadlocks”,
i.e. circular expectations.

2 Herbrand’s theorem
An equivalent of Gentzen’s Hauptsatz Herbrand’s theorem roughly asserts
that a first-order formula A is valid if and only if a certain quantifier-free formula
is a tautology. Herbrand was originally looking for a “finitary” (in the sense of
Hilbert’s program) version of Löwenheim’s theorem, which asserts, again roughly,
that a formula A of first-order logic is not valid if and only if its negation is satisfied
by a countable model.

Herbrand’s result is equivalent to Gentzen’s Hauptsatz, and constitutes, with
it, one of the first structural results in proof-theory. Indeed, if A is valid, then
a proof of A can be recovered from a quantifier-free tautology by means of three
rules corresponding, respectively, to the introduction rules for the quantifiers and
the contraction rule.

As remarked by Van Heijenoort in [VH82],

Le système basé sur les trois règles de Herbrand est, historiquement, le premier
exemple de ce qu’on appelle aujourd’hui les systèmes sans coupure; il jouit
aussi de ce qu’on appelle la propriété de la sous-formule. [VH82]

For a survey of the applications and developments of Herbrand’s theorem in
connection with cut-elimination theorems, see [Kre51, Gir82, Koh08].
Herbrand expansions Let us take a first-order formula in prenex form

A = ∃x1∀y1∃x2∀y2B(x1, x2, y1, y2) (1)

The Herbrandized form AH of A is the formula below

AH = ∀f∀g∃x1∃x2B
(
x1, x2, f(x1), g(x1, x2)

)
(2)

where the universal variables yi are replaced by functional terms containing the
existential variables “above” yi (where an existential variable xj is above a universal
variable yi if the quantifier ∀yi occurs in A in the scope of the quantifier ∃xj).
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This transformation allows to “permute universal quantifiers upwards” as function
quantifiers, preserving validity.

Let T be the first-order language generated by a finite stock of constants (indeed
just one constant 0), variables x, y, z, . . . and a finite stock of symbols for n-ary
functions (in the case above a unary function f and a binary function g).

In order to define sequences of terms of T, one starts with an initial non empty
set CC0 of closed terms of T and, for k ∈ N, defines the set CCk+1 as the set of
the terms formed by applying a function symbol of T to terms in CCk. A “suite
de champ fini” ([Her67]) is a sequence of terms tn such that t0 ∈ CC0 and, for any
k ∈ N, tk+1 ∈ CCk+1 − CCk.

Let A′H be the quantifier-free part of AH , where first-order terms are now taken
in T:

B
(
x1, x2, f(x1), g(x1, x2)

)
(3)

Let n ≥ 1, and let s be a map associating, with every existential variable x, a
“suite de champ fini” sxn; the n-th Herbrand’s expansion AnH,s of A is the quantifier-
free formula

AnH,s := A′H [x1 7→ sx1
0 , x2 7→ sx1

0 ] ∨ · · · ∨A′H [x1 7→ sx1
n , x2 7→ sx2

n ] (4)

In particular, let id be the trivial map associating, with each existential variable x,
the sequence which is constantly equal to x; then we note by AnH the formula AnH,id.

Herbrand’s theorem can now be formulated as follows:
THEOREM 1 (Herbrand’s theorem, 1930). A is valid if and only if, for a certain
p ≥ 1 and a certain s, ApH,s is a tautology.
A recursive interpretation of formulae The proof of Herbrand’s theorem al-
lows, as remarked in [Kre51], to devise a primitive recursive interpretation of first-
order formulae in which quantifiers are not interpreted by means of quantifiers.

A substitution θ is a map from first-order variables to elements of T. Given a
first-order formula A, the formula Aθ is obtained by applying θ to all variables
occurring free in A.

The interpretation of a first order formula A is given by the primitive recur-
sive sequence AnH of quantifier-free formulae. Then, an equivalent formulation of
theorem (1) is the following:
THEOREM 2. A is valid if and only if, for a certain p ≥ 1 and a certain substitution
θ, ApHθ is a tautology.

First remark that, letting cl(A) indicate the universal closure of A (obtained by
closing universally all free variables and function symbols occurring in A), then, for
all n and θ, one can easily derive A from cl(AnHθ) by using only right introduction
rules for the quantifiers and contraction rules.

Hence, in order to assess the validity of A, one has to test whether AnHθ is a
tautology for a certain substitution θ, for n = 0, n = 1, n = 2, . . . . This is where
Herbrand introduces a fortunate idea: for every n, the verification that AnHθ is a
tautology can be done by solving a system of equations over the language T.
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For instance, in order to check whether
(
P (t, u) ∨ ¬P (t′, u′)

)
θ is a tautology for

some θ, where P is an atomic predicate, it suffices to look for a θ equalizing the two
equations

t = t′ (5)
u = u′ (6)

[Her67] contains indeed the first formulation of unification theory ([Rob65]), the
theory which deals with solving systems of equations over first-order terms. A
system of equations E over T is a finite set of equations t1 = u1, . . . , tn = un, where
t1, u1, . . . , tn, un ∈ T. A unifier for E is a substitution θ such that, for all 1 ≤ i ≤ n,
tiθ is syntactically equal to uiθ. The unification problem for a system E is the
problem of finding a unifier for E.

The first algorithm to decide the unification problem was given in [Rob65], though
its main ideas can already be found in [Her67] (p. 96). In particular, given an
equation t = u, one must consider two main cases:

• if t = f(t1, . . . , tn) and u = g(u1, . . . , um) one must verify that f = g (and
hence n = m), and solve the system made of the syntactically simpler equa-
tions t1 = u1, . . . , tn = un;

• if t = x is a variable, then two subcases arise:

1. if the variable x does not occur in u, then one can take the equation as a
definition of x and replace all other occurrences of x in other equations
by u;

2. if the variable x occurs in u, then the system cannot be solved: for
instance, the equation x = f(x, y) cannot be solved. Indeed, it one took
this equation as a “circular” definition of x, then the algorithm would
end into the “deadlock”

x = f(x, y) = f(f(x, y), y) = f(f(f(x, y), y), y) = . . . (7)

when trying to eliminate this equation by applying clause 1.

EXAMPLE 3. The system made of the equation

g(f(x), z) = g(y, g(f(x), y)) (8)

is unifiable: take the substitution θ = (x 7→ x, y 7→ f(x), z 7→ g(f(x), f(x)))
EXAMPLE 4. The system made of the equations

g(f(x), z) = g(y, g(f(x), y))
x = y

(9)

is not unifiable, as it leads to the “deadlock” equation

x = f(x) (10)

In sum, the assessment of the validity of a formula A is obtained, through the
recursive interpretation by means of the sequence AnH , in two steps:
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1. look for a positive integer p such that ApHθ is a propositional tautology, for
some θ, by progressively testing unification problems;

2. if such a p is found, derive A from cl(ApHθ).

If A turns out to be valid, then the two steps above correspond to the two parts
of a cut-free proof of A: first, a propositional (cut-free) derivation of ANH ; second, a
sequence of introduction rules for quantifiers and contraction rules.

For a simple example take the formula D below

D = ∃x∀y(P (x)⇒ P (y)) (11)

The first expansion of D, i.e. the formula D1
H = P (x)⇒ P (f(x)) is not a tautology:

the system
x = f(x) (12)

cannot be solved, as it leads to the deadlock

x = f(x) = f(f(x)) = . . . (13)

However, the second expansion D2
H , i.e. the formula(

P (x)⇒ P (f(x))
)
∨
(
P (y)⇒ P (f(y))

)
(14)

becomes a tautology as soon as one chooses θ(x) = 0 and θ(y) = f(0).
Take now the invalid formula C below

∀x∃yP (x, y)⇒ ∃y∀xP (x, y) (15)

whose Herbrandized (prenex) form is

∀f∀g∃x∃y
(
P (x, f(x))⇒ P (g(y), y)

)
(16)

In order to see that C is not valid, we turn to its first expansion D1
H , which

produces the system

x = g(y) (17)
y = f(x) (18)

which cannot be solved, as it leads to the deadlock

x = g(y) = g(f(x)) = g(f(g(y))) = g(f(g(f(x)))) = . . . (19)

One can then easily show, by induction, that for every n, the n-th expansion Dn
H

produces a deadlock similar to (19).
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Quantifiers explained away? Herbrand’s theorem provides an interpretation of
first-order formulae which assigns them conditions for validity which do not involve
quantifiers in a circular way.

Take the invalid formula C. The model-theoretic refutation of C is obtained by
looking for a counter-model of C, i.e. a model M such that, for every a in the
support M of M, there exists a b ∈ M such that P [a, b] is true in CM but for no
b it holds that for every a P [a, b] is true in M. Hence the condition for verifying
that a model M is a counter-model of C reproduces, in the meta-language, the
quantifiers of C as well as their mutual combination.

The refutation of C that we sketched above, on the contrary, allows to “eliminate
quantifiers” by introducing the function symbols f, g to express the “dependencies”
between variables. The equations (17) express, intuitively, the fact that the wit-
nesses for the variable x might depend on the value assigned to the variable y and
that the witnesses for the variable y might depend on the value assigned to the vari-
able x. Hence a refutation of C is obtained by remarking that these two constraints
are reciprocally incompatible: in order to find a value for x one must keep waiting
for a value for y and, vice-versa, in order to find a value for y one must keep waiting
for a value for x (a typical “deadlock” situation).

3 Geometry of Interaction
Proofs as nets The program of Geometry of Interaction (GoI) was launched in
1989 by Jean-Yves Girard in order to devise a geometrical semantics of proofs, based
on the fine analysis of cut-elimination provided by linear logic ([Gir87]).

At the heart of Girard’s original program there was the consideration of the
centrality of Gentzen’s Hauptsatz for the foundations of logic: whereas Hilbert’s
finitist program failed as it “aimed at an absolute elimination of infinity” ([Gir89b]),
the cut-elimination procedure provides a finite dynamics by which infinite notions
in proofs are progressively eliminated.

Hilbert’s mistake, when he tried to express the infinite in terms of the finite was
of a reductionist nature: he neglected the dynamics. The dynamics coming
from the elimination of infinity is so complex that one can hardly see any
reduction there. But once reductionism has been dumped, Hilbert’s claim
becomes reasonable: infinity is an undirect way to speak of the finite; more
precisely infinity is about finite dynamical processes. [Gir89b]

However, the concrete manipulation of derivations in sequent calculus constitutes
a highly complex and somehow “bureaucratic” task. Whence the idea of developing
a purely mathematical interpretation of sequent calculus derivations, in order “to
find out the geometrical meaning of the Hauptsatz, i.e. what is hidden behind the
somewhat boring syntactical manipulations it involves” [Gir89b].

A decisive step towards a geometrical interpretation of proofs came from the
development, concomitant with the discovery of linear logic, of the notion of proof-
net ([Gir87]), a graph-theoretic representation of sequent calculus derivations. An
important notion associated with that of proof-net is the one of path: a path repre-
sents, intuitively, a way to travel through the graph, which can be though as a net
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or a circuit, the conclusions of the derivation corresponding to its external gates.
Hence a path can “enter” or “exit” the net through one of its gates, as well as
getting stuck moving in circle inside the net (as in the case of a shortcircuit).

The passage from a sequent calculus derivation d to a proof-net D can be defined
inductively along the clauses below (which are limited to the multiplicative case1),
which also define the associated paths:

i. The identity axiom is translated into a graph with two vertices (labeled A and
∼ A) and an arrow between them:

`∼ A,A (Ax) 7→ A ∼ A (20)

The two red arrows indicate the two possible paths along D.

ii. An application of the cut rule to two derivations d1 and d2 is translated into a
graph consisting of D1, D2 and an extra arrow between the vertices labeled
by A and ∼ A:

.... d1
` Γ, A

.... d2
` Γ′,∼ A

` Γ,Γ′
(cut)

7→

D1 D2

A ∼ A

(21)

iii. An application of the left introduction rule for (linear) implication to derivations
d1, d2 is translated into a graph consisting of D1, D2, a new vertex labeled
∼ (A( B) and new arrows linking this vertex to the vertices (respectively of
D1 and D2) labeled A and ∼ B:

.... d1
` Γ, A

.... d2
` Γ′,∼ B

` Γ,Γ′,∼ (A( B)
(( L)

7→

D1 D2
A ∼ B

∼ (A( B) +

D1 D2
A ∼ B

∼ (A( B)

(22)
The two graphs above indicate two distinct ways to define a path along the
same proof-net.

iv. An application of the right introduction rule for (linear) implication to a deriva-
tion d is translated into a graph consisting of D, a new vertex labeled A( B
and new arrows linking this vertex to the vertices labeled ∼ A and B:

1We omit here the treatment of the general case (i.e. full linear logic, allowing to interpret
intuitionistic and classical logic) which requires the introduction of the notion of box (see [Gir87]).
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.... d
` Γ,∼ A,B
` Γ, A( B

(( R) 7→

D

∼ A B

A( B +

D

∼ A B

A( B (23)

Again, the two graphs above indicate two distinct ways to define a path along
the same proof-net.

We defined a map d 7→ D which associates, with a sequent calculus derivation,
a proof-net D and a set PD of paths along D. We obtain then a first definition of
proof-nets:
DEFINITION 5 (proof-net (1)). A proof-net is a graph D which is obtained by
translating a sequent calculus derivation d following the clauses above.

Let, for simplicity, D be a proof-net having exactly one gate A (corresponding to
a derivation d with exactly one conclusion). In the terminology of [Gir87], a path
entering D through gate A and exiting D from A after transiting through every
vertex of D exactly twice (in opposite direction) is called a longtrip; all other paths
(which might enter through gate A and never exit or might never pass through a
gate) are called shortrips and correspond intuitively to “shortcircuits” in the net.

A fundamental property of proof-nets is then that every path in PD is a longtrip.
Hence, one will never be able to design a graph inducing a “shortcircuit” if one
follows, in the construction of the graph, the inductive translation from sequent
calculus.

Starting from this remark, one can generalize as follows: one defines an arbi-
trary graph constructed with the links appearing in the definition above as a proof-
structure. For any such graph G, the set of paths PG is still well-defined. Remark
that not all proof-structures are proof-nets: for instance the proof-structure below

A ∼ A

(24)

does not come from any sequent calculus derivation (as it induces two shortrips).
The property above can now be used to obtain a second definition of proof-net:

DEFINITION 6 (proof-net (2)). A proof-net is a proof-structure G such that every
path in PG is a longtrip.

Thus one has, on the one hand, an inductive definition of proof-net, as the trans-
lation of a sequent calculus derivation, and, on the other hand, a purely geometrical
definition of proof-net, with no reference to sequent calculus. The main theorem
of the theory asserts then that the two definitions (5) and (6) are equivalent: the
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graphs characterized by the “no shortrip” criterion are exactly those which come
from sequent calculus (i.e. that can be “sequentialized”).

Hence this second characterization of proof-nets provides a notion of correctness
for proofs which makes no reference to logical rules: it is rather based on a global
property of their graph-theoretic representation.
The unification semiring Several formulations of GoI exist in the literature
(starting from the original one in [Gir89a], based on C∗-algebras). Here we adopt a
“finitist” formulation, based on Herbrand’s unification, that can be found in [Gir95,
Gir13, ABPS14, Bag14].

Let us take again our first-order language T. A flow is an expression of the form

t ↼ u (25)

where t, u ∈ T are terms having exactly the same variables. Flows are the funda-
mental bricks to build paths. A set of flows is called a wiring. A path is obtained
by composing flows following the law below:

(t ↼ u) · (t′ ↼ u′) = tθ ↼ u′θ θ ∈MGU(u, t′) (26)

where MGU(u, t′) denotes the set of most general unifiers of u, t′2. Remark that,
in caseMGU(u, t) is empty (i.e. u, t′ are not unifiable), then composition fails (this
is indeed a partial operation).

With the partial composition law (26), a product on wirings can be defined by

V · W = {t ↼ u|t ↼ u = (t1 ↼ u1) · (t2 ↼ u2), t1 ↼ u1 ∈ V, t2 ↼ u2 ∈ W} (27)

with neutral element id = {x ↼ x}, inducing a structure of semiring (see [Bag14])3.
Given a derivation d of the sequent ` Γ, we first associate with each occurrence of

formula A in Γ a unary function symbol pA(x) ∈ T. The subformulae of A can then
be defined by means of two unary function symbols l, r, corresponding to “left”
and “right”. For instance, if A = B ( C, then

pB(x) := pA(l(x)) pC(x) := pA(r(x)) (28)

Hence any two distinct occurrences of formulae A,B in the sequents in d correspond
to first-order terms pA(x), pB(x) which are, as the reader can easily verify, not
unifiable4.

2Indeed, a central result on first-order unification is that, if two terms t, u are unifiable (i.e. if
the system {t = u} is unifiable), then they have a most general unifier, i.e. a unifier θ such that
all other unifier θ′ can be decomposed as θ ◦ θ′′, for some substitution θ′′. In a sense, a m.g.u.
is a “mother of all unifiers”. Moreover, all m.g.u. for t, u are equivalent up to a permutation of
variables.

3If once considers flows of the form λ(t ↼ u), where λ is a complex coefficient, then wirings can
be written under the form

∑
i
λi(ti ↼ ui) and form a C∗-algebra (called unification algebra) of

operators acting over the Hilbert space `2(T). This is how one can recover the original formulation
of GoI from this “finitist” version.

4To be more precise, one wants rather these terms to be not matchable. Matching is a variant
of unification where one consider terms “up to permutation of variables”. To achieve this, one must
introduce a new unary function symbol g and replace the term pA(x) by the term qA(x) := pA(g(x))
(see [Gir13]).
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The arrows described in the inductive definition of proof-nets can be replaced by
flows: to an arrow from an occurrence of formula A to an occurrence of formula B
one associates the flow

pA(x) ↼ pB(x) (29)

Hence the definition (5) of a proof-net D immediately induces the definition of a
wiring Wd associated with a derivation d.
Execution and cut-elimination The logic programmer must have noticed that
the composition law (26) for flows is just a particular instance of Robinson’s reso-
lution rule ([Rob65]):

` Γ, A(t) ` Γ′, A(u)
` Γθ,Γ′θ

(Res, θ)
θ ∈MGU(t, u) (30)

In logic programming the execution of a program is obtained by generating all
possible “resolution paths” starting from a finite set of sequents, i.e. by successively
applying resolution wherever possible until a sequent is obtained to which resolution
can no more be applied.

In GoI, given a wiring W, we can generate all paths by successively composing W
with itself (i.e. by tentatively composing each other all flows in W). Hence one can
define an execution operator Ex(W):

Ex(W) = W + W2 + W3 + · · · =
∞∑
n

Wn = (1− W)−1 (31)

which generates all possible paths. Observe that the last equation in (31) holds
just in case the infinite series of the iterates of W is convergent; if this is not the
case then Ex(W) is not defined (diverging executions correspond then to diverging
computations).

Let us consider a cut between two derivations d1, d2:
.... d1

` Γ, A

.... d2
` Γ′,∼ A

` Γ,Γ′
(cut)

(32)

Following definition (5), the wiring W associated with the derivation above is made
of the union of Wd1 , Wd2 and the wiring σ (called a loop) made of the two flows
pA(x) ↼ p∼A(x) and p∼A(x) ↼ pA(x). Similarly to the case above, an execution
operator Ex(W, σ) can be defined, which generates all paths entering and exiting
the net through the gates in Γ ∪ Γ′:

Ex(W, σ) = σW + σWσW + σWσWσW + · · · =
∞∑
n

(σW)n = (1− σW)−1 (33)

Remark that such paths can be arbitrarily long: if a path enters Wd1 through a gate
in Γ and exits it through gate A, then by σ it enters Wd2 through gate ∼ A; at this
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point either it exits the net through a gate in Γ′, either he exits through gate ∼ A,
so that by σ he enters again Wd1 ... Indeed this potentially infinite dynamics encodes
all the computational complexity of cut-elimination.

The connection between cut-elimination and execution is established by the fol-
lowing important property: first observe that a wiring Wd coming from a derivation
d can always be decomposed into the sum W0 + σ, where σ contains all flows com-
ing from cuts in d; now one can prove that, if d reduces to a cut-free derivation
d′, then5 the execution Ex(W0, σ) corresponds exactly to the representation Wd′

of d′. Hence, by computing all paths in the representation of d one obtains the
representation of the normal form of d.
Nilpotency In the language of GoI the Hauptsatz (in its strong version, a.k.a.
strong normalization) corresponds to the fact that the generation of paths breaks
down after a finite number of iterations (in other words, that all paths are finite).
This property is expressed by the nilpotency of the wiring σW , i.e. the fact that,
for a certain positive integer N , (σW)N = 0. If σW is nilpotent, then the execution
Ex(W, σ) is well-defined, as it is given by the finite iteration

σW + σWσW + σWσWσW + · · ·+ (σW)N−1 (34)

In GoI one can prove (see [Gir89a, Gir95]) that, for all wirings W0+σ coming from
sequent calculus derivations, σW0 is nilpotent. This theorem provides a geometrical
counterpart to the Hauptsatz; in particular it implies that execution is well-defined
for wirings coming from sequent calculus.

To give an example, let us consider the following derivation d:

`∼ A,A ` B,∼ B
`∼ A,B,∼ (A(∼ B)

(L()
`∼ C,C

`∼ A,∼ (∼ B ( C), C,∼ (A(∼ B)
(L()

`∼ A,∼ (∼ B ( C),∼ C (∼ (A(∼ B)
(R()

` A(∼ (∼ B ( C),∼ C (∼ (A(∼ B)
(R()

(35)

The paths in Wd can be visualized from the proof-net D:

∼ A ∼ B ∼ C A B C

∼ (∼ B ( C) ∼ (A(∼ B)

A(∼ (∼ B ( C) ∼ C (∼ (A(∼ B) (36)
5This is shown in [Gir89a] for full linear logic in the case d does not contain among its conclusions

formulae of the form ?A or ∃XA.
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Now the nilpotency of Wd (remark that, since there are no cuts, one chooses
σ = id) expresses the fact that, if a path enters through one of the gates of D, it
will not be stuck inside the net (since all paths are finite), and will end up exiting
D through another gate after a finite amount of time. Hence the “no shortrip”
criterion of proof-nets can be expressed by nilpotency6.

One can exploit a “nilpotency criterion” to show that certain wirings do not come
from sequent calculus derivations, and to prove that certain logical principles are not
valid. For instance, the wiring U0 +σ, where U0 = σ = {pA(x) ↼ p∼A(x), p∼A(x) ↼
pA(x)}, arising from the proof-structure

A ∼ A

(37)

is not nilpotent, since, for all n ≥ 1 (σU0)n = σU0 = {pA(x) ↼ pA(x), p∼A(x) ↼
p∼A(x)}.

A more interesting case is given by the “incorrect” proof-structure below, of
conclusion the invalid formula F =

(
A(∼ (B (∼ C)

)
(∼

(
B (∼ (A( C)

)
:

A

∼ B ∼ C C ∼ A

BB (∼ C A( C

∼ (A(∼ (B (∼ C)) ∼ (B (∼ (A( C)) (38)

from the “shortcircuit” in (38) one gets an infinite path in the GoI interpretation,
implying that the associated wiring V0 + σ cannot be nilpotent. Now, since the net
above is the only one with conclusion F , one concludes that F is not valid.
Connectives explained away? We briefly recalled an interpretation of proofs
which allows to characterize correct proofs by means of a geometrical condition.

Take the invalid formula F . The model-theoretic refutation of F is obtained by
looking for a valuation, i.e. an assignment of truth-values to formulae, such that
A ⇒ ¬(¬B ⇒ ¬C)7 turns out true (meaning that, if A is true, then if B is not
true, then C is not true) and ¬(B ⇒ ¬(A⇒ C)) turns out not true (meaning that,
it is not true that, if B is true, then it is not true that, if A is true, then C is true).

6Remember that the shortrip criterion was defined for a net having only one gate. In the case
of the net (36) it suffices to “close” one gate: by gluing together the two paths one obtains a single
longtrip.

7Where linear connectives are (faithfully) translated into classical ones.
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The refutation of F obtained by means of the “no shortrip criterion” (or the
“nilpotency criterion”) allows, on the contrary, to get rid of the circular reference to
connectives: the combination of connectives in the formula provides instructions to
construct paths, though the correctness criterion depends on an abstract property
of such paths, making no reference to their construction. The formula F is invalid
since a possible proof of it would contain a shortcircuit.

4 Conclusion: shortrips and deadlocks
This presentation was thought to highlight some similarities between the idea of
validity by a “no deadlock criterion”8, arising from Herbrand’s interpretation of
quantification and the idea of validity by a “no shortrip criterion”, arising from the
GoI interpretation of proofs.
Quantifier nets A precise connection between the two approaches comes from the
extension of the proof-net interpretation to first-order quantifiers (see [Gir91]). We
do not enter here into the details; the fundamental idea is that, with the introduction
of a universal quantification ∀yA(y), one has to add new paths (called jumps) linking
the gate ∀yA(y) with all vertices in the net in which the eigenvariable y occurs free.
The typical case is the one of a vertex ∼ A(y) which is premiss of a gate ∃x ∼ A(x):
then the jump produces a path from the gate ∀yA(y) to the gate ∃x ∼ A(x) which
closely imitates Herbrand’s “jump” of universal variables over existential variables,
that would be given by an equation of the form

y = f(x) (39)

Remark that the fact of using linear logic (where the contraction rule cannot be
used) eliminates the appeal to the expansions AnH . Hence, in the linear frame, valid-
ity can be directly captured by the “no deadlock criterion” provided by unification.
The deadlocks in the unification problem induced by a formula A are then directly
translated into shortrips in the proof-structures of conclusion A. Hence the two
characterizations of validity coincide in this case.
A “no deadlock” approach to validity The “no deadlock” explanations of
validity here sketched do not rely on properties defined (as usual) by induction over
formulae. Moreover, validity as “absence of deadlocks” cannot be reduced to the
mere “existence” of a proof: both approaches focus rather on the conditions that
must obtain for such a proof to be found.

In Herbrand’s theorem the task of proving a first-order formula is first reduced
to the one of proving one among a sequence of quantifier-free formulae; then, the
latter task is reduced in turn to that of showing a certain system of first-order
equations to be solvable. Indeed, if this is not the case, i.e. if a deadlock occurs
during unification, then a proof can surely not be found, since, in such a proof, the
variables should depend on each other in a circular way.

In the GoI interpretation, one expands the domain of proofs to “pre-proofs” (like
the proof-structures, i.e. syntactic objects that might or might not be proofs): this

8Actually, the expression “deadlock” can be found in the literature on GoI: for instance in
[Gir90] wirings inducing no shortrips are called “deadlock-free”.
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allows to considers also “pre-proofs” in which the dependencies between formulae (or
“gates”) can be circular. Finally one recovers, in an elegant way, those “pre-proofs”
which are actual proofs as those which avoid circular dependencies. Moreover, this
characterization has a dynamical content, as correct proofs are exactly those which
allow for a terminating cut-elimination procedure (made possible by the absence of
“shortrips”).

The development of a systematic “no deadlock” approach to validity, account-
ing for the intuitions suggested in this paper, appears then as an interesting, and
relatively new, direction for future research.
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Wittgenstein’s Struggles with
the Quantifiers

Jan von Plato

abstract. Frege was the first one to see that the proper treatment of
quantifiers in logic requires a rule of generalization. It is shown that Wittgen-
stein never saw this matter, despite its clear presentation in the Principia,
and even interpreted the role of free-variable expressions wrongly. He was led
to avoiding quantifiers, as is shown by his work, only recently understood in
detail, in which the principle of induction in primitive recursive arithmetic is
replaced by a principle of uniqueness of functions defined by recursion. In this
particular case, though, his ban on assumptions with free variables led to a
positive result.

1. From Begriffsschrift to the Tractatus
A careful reader of Wittgenstein’s Tractatus will notice the categorical absence of

any notion of inference or deduction in it. There is instead the semantical method
of truth tables by which it can be determined whether a propositional formula
is a tautology. How the method is to be extended to the quantifiers is nowhere
explained: At 6.1201, the principle of universal instantiation (x)fx ⊃ fa is simply
called a “tautology.”

Frege’s perhaps central discovery was that the proper treatment of the universal
quantifier requires, besides the above instantiation principle, also a rule by which
generality can be concluded, his “illuminating” observation in the Begriffsschrift (p.
21, with Russell’s horizontal notation for formulas in place of Frege’s vertical one):

“It is even illuminating that one can can derive A ⊃ (a)Φ(a) from A ⊃ Φ(a) if A is an
expression in which a does not occur and if a stands in Φ(a) only in the argument places.”

Wittgenstein does not see that this rule is crucial, as is shown by Tractatus 6.1271
where he states that all of logic follows from one basic law, the “conjunction of
Frege’s Grundgesetze.” A rule of inference can be no part of such a conjunction,
and there is no full predicate logic without the rule.

The logic of Frege and Russell was classical and therefore existence could be
defined in terms of universality. To universal instantiation corresponds then the
tautologous implication fa ⊃ (∃x)fx. Now, if one wanted to reason about existence,
a rule of inference would be needed, one that is dual to Frege’s rule of generalization.
It is a rather embarrassing fact that the first formal statement of a rule of existential
instantiation in logic seems to be as late as in the well-known book Grundzüge
der theoretischen Logik of 1928, by Hilbert and Ackermann but apparently mostly
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written by Paul Bernays the discovery of the rule included. It is a direct dual to
Frege’s: If F (a) ⊃ B for an arbitrary a, then (∃x)F (x) ⊃ B. In practice, one would
apply the rule whenever an existential assumption (∃x)F (x) needs to be put into
use: assume an instance F (y) with an eigenvarable y, i.e., one that is generic in the
sense that no assumptions that contain y free have been made, beyond F (y). If now
B follows from F (y), it follows from (∃x)F (x). This intuitive procedure becomes,
when put in terms of Gerhard Gentzen’s natural deduction, the formal rule of
existence elimination, given in a pure form in the sense that it does not involve
other connectives, unlike Frege’s and Bernays’ rules for ∀ and ∃. The corresponding
pure form of generalization is: If A(y) can be derived from assumptions that do not
contain the eigenvariable y free, then ∀xA(x) can be concluded.

Russell tells in the preface to his book The Principles of Mathematics of 1903 that
he had seen Frege’s Grundgesetze der Arithmetik but added that he “failed to grasp
its importance or to understand its contents,” the reason being “the great difficulty
of his symbolism” (p. xvi). Upon further study, he wrote a lengthy appendix with
the title The logical and arithmetical doctrines of Frege (pp. 501–522), though with
just a disappointing half a page dedicated to the formalism of logic. He notes the
appearance of the universal quantifier in Frege (p. 519):

He has a special symbol for assertion, and he is able to assert for all
values of x a propositional function not stating an implication, which
Peano’s symbolism will not do. He also distinguishes, by the use of Latin
and German letters, respectively, between any proposition of a certain
propositional function and all such propositions.

Frege’s Latin and German letters stand for free and bound variables.
The universal quantifier makes its next appearance in Russell’s famous 1908

paper on the theory of types. Its section II is titled All and any. Mathematical
reasoning proceeds through any: “In any chain of mathematical reasoning, the
objects whose properties are being investigated are the arguments to any value of
a propositional function.” Still, reasoning with just free variables would not do.
Next Russell goes on to introduce a formal notation for the universal quantifier,
(x)φx, presumably the first such notation in place of Frege’s notch in the assertion
sign, if we disregard the Πx notation in Schröder’s algebraic logic. The explanation,
though, is a disappointment, for it is stated that (x)φx denotes the proposition “φx
is always true,” a hopeless mixing of a proposition with an assertion that would
never have occurred in Frege. Later, in the more formal section VI of the paper,
this is corrected when the Fregean assertion sign ` is put to use.

Russell’s first example of a quantificational inference is: from (x)φx and (x)(φx
implies ψx) to infer (x)ψx:

In order to make our inference, we must go from ‘φx is always true’ to
φx, and from ‘φx always implies ψx’ to ‘φx implies ψx,’ where the x,
while remaining any possible argument, is to be the same in both.

As can be seen, the rule is applied by which instances can be taken from a universal,
after which the propositional rule of implication elimination can be applied. Then,
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since x is “any possible argument,” ψx is always true, by which (x)ψx has been
inferred. Here we have a clear case of the introduction of a universal quantifier. A
further remarkable feature of Russell’s example is its purely hypothetical character.
He does read the universal propositions in the “is always true” mode, but the argu-
ment begins with: “Suppose that we know (x)φx,” thus, we have here a universal
assumption that is put into use by the rule of universal elimination.

Russell ends his discussion of all and any in section II by praising Frege:

The distinction between all and any is, therefore, necessary to deductive
reasoning and occurs throughout in mathematics, though, so far as I
know, its importance remained unnoticed until Frege pointed it out.

Russell’s final word on logic is contained in the first volume of Principia Math-
ematica that appeared in 1910 and was co-authored with A. Whitehead. I take
Russell to have been the driving force behind the enterprise and refer only to him
even if details of Principia may have originated with Whitehead. The presentation
of logic in Principia is somewhat different from Frege and the 1908 formulation
that followed Frege, in the sense that both quantifiers appear as primitives. The
reason is that Russell wants to have all quantifiers at the head of formulas. To
this end, he uses the rules for prenex normal form as definitions, as in (p. 130):
∼(x)φx ≡ (∃x)∼φx.

Part I, titled “Mathematical logic,” begins with section A on “the theory of
deduction” (pp. 90–126), followed by a “theory of apparent variables,” i.e., of bound
variables (pp. 127–160).

The quantifier axiom is existential introduction: ` φx ⊃ (∃z)φz
The rule of inference is universal generalization (p. 132): “When φy may be

asserted, where y may be any possible argument, then (x)φx may be asserted.” The
arbitrariness of y is further explained by: “if we can assert a wholly ambiguous
value φy, that must be because all values are true.” We see in the latter again, as
in Frege, that the explanation goes from the truth of the universal proposition to
any of its instances, not the other way around.

The first example of quantificational inference is the derivation of the principle
of universal instantiation: ` (x)φx ⊃ φy

Finally, in this summary of Russell’s work, we notice his use of Peano’s notion of
“formal implication” φx ⊃x ψx that is defined in Principia as (p. 139):

φx ⊃x ψx ≡ (x)(φx ⊃ ψx)

The Principia made it clear that the notion of tautology does not extend to
the quantifiers. It is incomprehensible that Wittgenstein didn’t realize this crucial
limitation in the Tractatus by which his early philosophy of logic and mathemat-
ics collapses; the only possible explanation is that the impatient philosopher never
made it as far as to page 132 of the Principia. Russell, in turn, seems to have
lost all interest in and understanding of logic after having finished the Principia:
In the preface to the second edition, in 1927, he makes the embarrassing remark
that Sheffer’s stroke, the single connective by which one can axiomatize classi-
cal propositional logic, is “the most definitive improvement resulting from work in
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mathematical logic during the past fourteen years” (p. xiv). His promotion of the
logically defective Tractatus, equally limited to classical propositional logic, belongs
to the same category of judgments.
2. Generality and existence in later Wittgenstein

Wittgenstein turned back to philosophy around 1928, greatly interested in the
philosophy of mathematics. He went to Cambridge in 1929 and became a lecturer
and later professor, and prepared long manuscripts on the basis of his lectures that
have been published many years after his death in 1951. He also dictated shorter
pieces to his students and friends, such as one known as The Blue and Brown Books,
with several more of these still to be published today.

Wittgenstein’s first works in his “second period” as a philosopher of logic and
mathematics include two specific achievements, both of them somewhat cryptic
and clarified only decades later. The first is a constructivization of Euler’s proof
of the infinity of primes, reconstructed in detail in Mancosu and Marion (2003).
The second discovery derives from Wittgenstein’s careful reading of Skolem’s 1923
paper on primitive recursive arithmetic.

The book manuscripts, such as the Philosophische Grammatik that was written
around 1933, contain lengthy discussions of themes related to logic. Regarding the
quantifiers, it emerges from these discussions that Wittgenstein was at great pains
at understanding them: As in the Tractatus, there is no trace of the rule of universal
introduction, but quantifiers are instead simply logical expressions of a certain form.
Generality is first taken as a “logical product” and existence as a “logical sum,” the
latter written, with f a predicate, as (p. 269): fa ∨ fb ∨ fc ∨ . . .

Generality covers all cases, but its explanation as a “product” of instances be-
comes infinitistic, and that was not acceptable for Wittgenstein (p. 268). In the
absence of a rule of generalization, one gets at most that a universality implies any
of its instances. Likewise, existence cannot be a summing up of all the disjunctive
possibilities for its introduction, because there is an infinity of such. The dual to
universal generalization is existential elimination and in its absence, one gets only
that an instance implies existence.

Wittgenstein’s struggles with the existential quantifier are manifest in the Gram-
matik where he discusses at length an example, in translation the phrase The circle
is in the square, illustrated by a drawing of a rectangle and a circle inside (p. 260).
It is clearly correct to say that there is a circle in the square, but the statement does
not fix which: it is not any one specific circle, so what circle is it? Wittgenstein sees
that there is a generality behind existence and ponders on the matter page after
page; all this because he does not know that there should be a rule of existential
elimination, the one Bernays wrote in an axiomatic form and Gentzen as a pure rule
of natural deduction. Wittgenstein’s “generic circle” is correctly presented through
the eigenvariable of an existential instantiation. The difference to generality in the
rule of universal generalization is subtle: Given ∃xF (x), to assume F (y) for arbi-
trary y is not the same as to assume F (y) provable for arbitrary y, and only the
latter leads to ∀xF (x). One can see that Wittgenstein is at pains at arriving to
an understanding of the example, and of existence more generally (as on p. 243:
“How do I know that (∃x)fx follows from fa?”). After this, dozens of pages of
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the Grammatik (pp. 257–288) are devoted to the dual notion of generality, but the
upshot is: no amount of philosophical reflection in Wittgenstein can replace the
lack of explicit principles of quantificational inference.

3. Indirect existence proofs
A direct statement of the infinity of primes could be: For any n, there is an

m such that m > n and m is prime. The logical form of Euler’s argument is:
Assume that there is a number n such that for any m > n, m is divisible. A
contradiction follows. From Euler’s argument, we could at most infer that for any
n, it is impossible that there should not be a number m such that m > n and m is
prime; Still, no way of actually producing a prime greater than n need have been
given by the proof. Wittgenstein turned the indirect inference into a direct one.
The context was a manuscript of Heirich Behmann’s in which the latter claimed to
be able to convert any classical proof into a constructive one. After criticism by,
inter alia, Gödel, Behmann withdrew publication. The full story of the Behmann
affair is found in Mancosu (2002)

The nature of indirect existence proofs was debated a lot in the 1920s, because
of the intuitionistic criticisms of such classical proofs by Brouwer. Wittgenstein’s
interpretation was that two notions of existence are in fact involved, and that there
is no content in denying the law of excluded middle: One just adapts different rules
of proof and the sense of the theorems is different. One of these could be called
classical existence, the other constructive existence.

So far, so good. However, considering the absence of quantifier rules in Wittgen-
stein, it is not surprising that he got some of the properties of universal and exis-
tential quantification wrong. He certainly understood the law of excluded middle
and the related law of double negation. In the case of indirect existence proofs,
the latter can be put in the form of ¬¬∃xA(x) ⊃ ∃xA(x), a law that fails intu-
itionistically. The properties of intuitionistic logic were not perfectly understood
in the early 1930s in general, and here Wittgenstein seems to have committed a
specific mistake even though I have so far not found it directly in any text of his:
Instead, his pupil Reuben Louis Goodstein followed his lectures in Cambridge in
1931–34 and started work on a topic to which I shall soon turn. In the meanwhile he
published an article titled Mathematical systems, in the well-known philosophical
journal Mind in 1939. It was a statement of what he took to be Wittgenstein’s
philosophy of mathematics. The article contains many exclamations and positions
that should perhaps best be described as silly, but there are even indications that
Wittgenstein was not displeased with it, contrary to some writings of other pupils
of his.

In the paper, Goodstein maintains that the inference from ¬∃x¬A(x) to ∀xA(x)
is intuitionistically legitimate. The converse implication is intuitionistically prov-
able, so with the claimed inference, the universal quantifier could be defined by
the existential one. Instead, this particular argument against intuitionism and for
the “strict finitism” of Wittgenstein and Goodstein is just fallacious: In Goodstein
(1951, p. 49), written under Wittgenstein’s influence around 1940, it is stated that
“some constructivist writers maintain that. . . a ‘reduction’ proof of universality is
acceptable.” In Goodstein (1958, p. 300), we find again that Brouwer rejects indi-
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rect existence proofs, here ¬(∀x)¬P (x)⇒ (∃x)P (x), “whilst retaining the converse
implication ¬(∃x)¬P (x)⇒ (∀x)P (x).” In other words, if (∃x)¬P (x) turns out im-
possible, a reduction gives (∀x)P (x); certainly not anything Brouwer or any other
constructivist thinker would have ever proposed.

The reason for the above misunderstanding is somewhat subtle. The intuition-
istically invalid implication ¬∃x¬A(x) ⊃ ∀xA(x) is perhaps at a first sight rather
close to ¬∃xA(x) ⊃ ∀x¬A(x). The latter is intuitionistically provable, in fact one
of the first examples of intuitionistically correct inference that Gentzen gave when
he presented the calculus of natural deduction in his thesis (1934–35). One could
think that it makes no difference to have ¬A(x) under the negated existence, and
A(x) under the universal, instead of the other way around, but this is not in the
least so: With ¬A(x) in place of A(x), we do get ¬∃x¬A(x) ⊃ ∀x¬¬A(x), but the
double negation cannot be deleted.

Wittgenstein was not alone with his problems: The correspondence between
Arend Heyting and Oskar Becker gives ample illustration of how difficult it was to
get intuitionistic logic right, even for people who tried hard (see Van Atten 2005).

A tentative conclusion can be drawn from this little story: A part of the moti-
vation of Wittgenstein’s refusal of the quantifiers, even the intuitionistic ones, in
favour of a strict finitism, was based on misunderstanding the nature of the intu-
itionistic quantifiers.
4. From induction to recursion

In 1945, there appeared in the Proceedings of the London Mathematical Society a
long article titled “Function theory in an axiom-free equation calculus.” The bear-
ing idea of the work was to recast primitive recursive arithmetic in an even stricter
mould than the quantifier-free calculus of Skolem (1923): Even the venerated princi-
ple of arithmetic induction had to go, replaced by a principle by which two recursive
functions defined by the same equations are the same (p. 407): “If two functions
signs ‘a’, ‘b’ satisfy the same introductory equations, then ‘a = b’ is a proved equa-
tion.” A footnote added to this principle tells the following: “This connection of
induction and recursion has been previously observed by both Wittgenstein and
Bernays.” The author of the paper, this time not in the least silly, was Wittgen-
stein’s student Goodstein. The full story of his paper can be recovered through the
correspondence he had with Paul Bernays. In the opening letter of 29 July 1940,
he writes:

The manuscript which accompanies this letter gives some account of a
new formal calculus for the Foundations of Mathematics on which I have
been working for the past six years.

Unfortunately, the original version of the paper is not to be found. The most we
know are some comments by Bernays such as the following from his first letter to
Goodstein, of 28 November 1940:

Generally my meaning is that your attempt could be quite as well, and
perhaps even better appreciated, if you could deliver it from the polemics
against the usual mathematical logics which seem to me somewhat at-
tackable, in particular as regards your arguments on the avoidability of
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quantifiers. Of course in your calculus, like in the recursive number the-
ory, quantifiers are not needed. But with respect to the “current works
on mathematical philosophy” the thesis that “the apparent need for the
sign ‘(x)’ arose from a confusion of the two different uses . . . of variable
signs” can hardly be maintained.

Bernays mentions also that he had presented in 1928 at the Göttingen Mathematical
Society “the possibility of taking instead of the complete induction the rule of
equalizing recursive terms satisfying the same recursive equations,” a discovery he
left unpublished. Bernays’ first letter to Goodstein is ten pages long, typewritten
single-spaced, and it displays his full command of Goodstein’s calculus. Goodstein
was enormously impressed as can be seen from his letters and thankfully revised
his paper and cleared it of polemics, adding all the references to a literature that
had been unknown to him; quite embarrassingly, even the extensive treatment of
primitive recursive arithmetic in the first volume of the Grundlagen der Mathematik,
Section 7, pp. 287–343 belonged there.

When Wittgenstein’s book manuscript Philosophische Grammatik came out in
1969, one could find his discovery of the way from proof by induction to proof by
recursion equations clearly stated, and developed to some extent mainly through
a few examples (Grammatik, pp. 397–450). The text was written between 1932–
34, the years during which Goodstein attended Wittgenstein’s lectures. The crucial
discovery comes out on the very first page devoted to the topic (Grammatik, p. 397),
where Wittgenstein considers the associative law for sum in elementary arithmetic,
denoted by A:

(a+ b) + c = a+ (b+ c) A
Skolem’s 1923 paper on primitive recursive arithmetic, Wittgenstein’s source for
the topic of elementary arithmetic, gives the standard inductive proof for A, based
on the recursive definition of sum by the recursion equations:

a+ 0 = a
a+ (b+ 1) = (a+ b) + 1

If one counts the natural numbers from 1 on, the second equation gives the base
case of the inductive proof. For the step case, one assumes A for c and proves it for
c+1, i.e., (a+b)+(c+1) = a+(b+(c+1)). The left side is by the recursion equation
equal to ((a+b)+c)+1, then applying the inductive hypothesis to (a+b)+c one gets
((a+ b) + c) + 1 = ((a+ (b+ c)) + 1, and finally by two applications of the recursion
equation in the opposite direction ((a+(b+c))+1 = a+((b+c)+1) = a+(b+(c+1)).

In Grammatik, p. 397, Wittgenstein gives the proof as follows:
What Skolem calls the recursive proof of A can be written as follows:

a+ (b+ 1) = (a+ b) + 1
a+ (b+ (c+ 1)) = a+ ((b+ c) + 1) = (a+ (b+ c)) + 1
(a+ b) + (c+ 1) = ((a+ b) + c) + 1

B

We have to put emphasis on Wittgenstein’s words “can be written,” for this is not
Skolem’s proof by induction, but another proof that Wittgenstein goes on to explain
in the following words:
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In the proof [B], the proposition proved clearly does not occur at all.–
One should find a general stipulation that licenses the passage to it.
This stipulation could be expressed as follows:

α ϕ(1) = ψ(1)
β ϕ(c+ 1) = F (ϕ(c))
γ ψ(c+ 1) = F (ψ(c))

 ϕ(c)
∆
= ψ(c)

When three equations of the forms α, β, γ have been proved, we shall
say: “the equation ∆ has been proved for all cardinal numbers.”

Here we see the essence of the argument: Two functions ϕ and ψ that obey the same
recursion equations, are the same function. Wittgenstein himself writes (Gram-
matik, p. 398):

I can now state: The question whether A holds for all cardinal numbers
shall mean: Do equations α, β, and γ hold for the functions

ϕ(ξ) = a+ (b+ ξ), ψ(ξ) = (a+ b) + ξ

Wittgenstein’s principle can be considered, as in the letter of Bernays quoted above,
a “rule of equalizing recursive terms.” Taken as a rule, it is a derivable rule in
primitive recursive arithmetic. In the other direction, given the premisses of the
induction rule, here ϕ(1) = ψ(1) and ϕ(y) = ψ(y) ⊃ ϕ(y + 1) = ψ(y + 1) for
an arbitrary y, the conclusion by which ϕ(x) = ψ(x) holds for arbitrary x can
be recovered from Wittgenstein’s uniqueness principle for recursion equations (as
shown in von Plato 2014a,b).

Wittgenstein’s book does not reveal the motive for preferring proofs by recur-
sion equations to proofs by induction, but in 1972, Goodstein published a paper
“Wittgenstein’s philosophy of mathematics” in which the matter is explained. In
reference to the Grammatik that had come out three years earlier, Goodstein recalls
Skolem’s inductive proof and then adds (p. 280):

In his lectures Wittgenstein analysed the proof in the following way. He
started by criticizing the argument as it stands by asking what it means
to suppose that (1) [associativity] holds for some value C of c. If we are
going to deal in suppositions, why not simply suppose that (1) holds for
any c.

Goodstein now gives a very clear, intuitive explanation of why Wittgenstein’s
method works: With c = 0, (a + b) + 0 = a + b = a + (b + 0). Thus, the ground
values of Wittgenstein’s ϕ- and ψ-functions are the same, here ϕ(0) = ψ(0) with
the natural numbers starting from 0 instead of 1 as in the 1930s. For the rest,
when c grows by one, ϕ(c) and ψ(c) obtain their values in the same way, here, both
growing by 1, by which (a+ b) + c and a+ (b+ c) are always equal. Wittgenstein’s
cryptic remarks in the Cambridge Lectures of 1939 (ed. Diamond, p. 287) get now
an explanation: He indicates in brief words why his method works, namely by equal
ground value and equal growth of ϕ and ψ.
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As the above-quoted clear recollection on the part of Goodstein shows, Wittgen-
stein was led to propose a finitism that was even stricter than that of Skolem, in
that assumptions with free variables were to be banned. These assumptions are a
crucial component in inductive inference, where one assumes a property A(n) for
an arbitrary natural number n then shows that the successor of n has the property,
expressed as A(n + 1). However, the assumption A(n) is a far cry from assuming,
say in the case of associativity, that the inductive predicate “holds for any c” as
Goodstein suggests at the end of the quote. It is the simplest error in inference with
the quantifiers to assume A(x), then to conclude ∀xA(x): The eigenvariable condi-
tion in universal generalization is that x must not occur free in any assumption on
which its premiss A(x) depends, but here one must keep in mind that if A(x) itself is
an assumption, it depends on itself so to say, thus, x is free in an assumption. More
generally: To assume A(x) is not the same as to assume A(x) provable and only
the latter gives ∀xA(x). No amount of philosophical reflection in Wittgenstein can
replace the command over quantificational inferences that results from Gentzen’s
pure formulation of the quantifier rules in terms of natural deduction.

5. Turing’s scruples
Wittgenstein lectures on the foundations of mathematics in Cambridge during

the first half of 1939 have been reconstructed by Cora Diamond in 1975, on the basis
of four sets of notes by participants. These lectures were graced by the presence
of Alan Turing who, as a reader of the lectures soon notices, had something to
comment on almost every lecture. Turing was to be absent from one lecture for
which reason Wittgenstein announced that “it is no good my getting the rest to
agree to something that Turing would not agree to” (pp. 67–68). The lectures
show no progress on the part of Wittgenstein as regards the understanding of the
principles of quantificational logic. The remarks about generality, existence, and
the circle-in-the-square example are in substance the same as in 1933 (as on pp.
268–269). Moreover, Wittgenstein’s pretense – witnessed by Bernays’ comments
on Goodstein’s lost manuscript – has not changed (p. 270): “If Russell gives an
interpretation of arithmetic in terms of logic, this removes some misinterpretations
and creates others. There are gross misunderstandings about the uses of ‘all’, ‘any’,
etc.” Sad to say, these misunderstandings were all Wittgenstein’s, caused by his
apparent inability to learn from what others had accomplished.

Turing kept, remarkably, silence in front of the multorum ignorantia at the points
of the lectures in which the quantifiers were discussed. His reaction is instead seen
in a manuscript he was working on in the early 1940s. It bears the title The reform
of mathematical notation and phraseology and can be seen in manuscript form on
the pages of the Turing archive. Two of the central points were: 1. “Free and bound
variables should be understood by all and properly respected.” 2. “The deduction
theorem should be taken account of.”

He then gives examples of constants and variables and adds: “The difference
between the constants and the free variables is somewhat subtle. The constants
appear in the formula as if they were free variables, but we cannot substitute for
them. In these cases there has always been some assumption made about the
variable (or constant) previously.”
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The deduction theorem is the main way of handling free variables: “This process
whereby we pass from P proved under an assumption H to ‘If H then P ’ may
be called ‘absorption of hypotheses’. The process converts constants or ‘restricted
variables’ into free variables.”

His example, slightly rephrased, is: Let the radius a and volume v of a sphere be
given. Then v = 4

3πa
3.

The ‘deduction theorem’ states that in such a case, where we have ob-
tained a result by means of some assumptions, we can state the result
in a form in which the assumptions are included in the result, e.g., ‘If a
is the radius and v is the volume of the sphere then v = 4

3πa
3. In this

statement a and v are no longer constants.

There are passages in the manuscript version of Turing (1948), available at the
Turing archives, which suggest that Turing had at least some knowledge of Gentzen’s
system of natural deduction. It is a pity he did not use it in the explanation of free
and bound variables: In the example, there is a typical “Let” phrase about given
a and v, an instance of the form S(x, y) that states that x is the radius and y the
volume of a sphere. Eigenvariables a and v are put in place of x and y to get the
assumption S(a, v) and then the result v = 4

3πa
3 derived. The deduction theorem

introduces the implication S(a, v) ⊃ v = 4
3πa

3 with no assumptions about a or
v left, so that generalization gives ∀x∀y(S(x, y) ⊃ y = 4

3πx
3). The situation is

the same with induction: Once an assumption A(n) has been made and A(n + 1)
proved, implication introduction, or “the deduction theorem” in Turing’s axiomatic
terminology, is used to conclude A(n) ⊃ A(n + 1), no more dependent on the
assumption A(n), so that the second premiss of induction ∀x(A(x) ⊃ A(x+ 1)) can
be inferred. – Here we have it, had Turing just cared to explain the correct use of
free-variable assumptions to Wittgenstein, but there are no comments by anyone
in the last lecture that discusses briefly Wittgenstein’s form of primitive recursive
arithmetic.
6. Conclusion

The quantifiers are as old as logic itself, through Aristotle’s theory of the four
quantifiers every, no, some, and not some, what they mean when prefixed to the
indefinite form of predication A is a B, and what the correct forms of inference
are. Even if Frege was proud to present a formalization of the syllogistic inferences
in terms of predicate logic, as the final example of his new notation in the Be-
griffsschrift, no formal quantifiers in the modern sense are needed for their theory,
ones that would bind variables. Quite amazingly, all of Wittgenstein’s logical dis-
courses remained on a similar pre-Fregean level, unaffected by Frege’s most central
discovery, namely the way inference to generality is made possible.
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Typicality in Statistical Mechanics:
An Epistemological Approach

Massimiliano Badino

abstract. The use of typicality has recently enjoyed an increasing popu-
larity among physicists interested in the foundations of statistical mechanics.
However, it has been the target of a mounting philosophical critique mainly
challenging its explanatory value. After an initial stage of intense dialogue,
the debate seems now to have reached a deadlock of mutual incommunicabil-
ity. Instead of treating typicality as a probabilistic ingredient of an argument,
in this paper I unfold the techniques and mathematical practices related with
this notion and show that typicality works as a way to combine these tech-
niques in a consistent epistemic story of equilibrium.

Keywords: typicality, statistical mechanics, Boltzmann, celestial mechan-
ics, explanation.

1 A Troubled Notion
In recent years, the debate on the foundations of equilibrium statistical mechanics
has increasingly focused upon the notion of typicality (see for example [1], [2],
[3], [4], [5]). Briefly said, typicality is a way to explain the central problem of
statistical mechanics, that is why systems such as gases tend to evolve toward a
state of equilibrium and stay there for indefinitely long periods of time. Intuitively,
one says that a property is typical when it holds in the vast majority of cases or,
alternatively, the cases in which it does not hold are negligible in number. Let Γ
be the set of accessible states of a thermodynamic system and let µ be a measure
function. If it is possible to divide Γ into two disjoint subsets, T1 and T2, such as
(1) only the states in T1 have the property τ , and (2) µ(T1) ≈ 1, while µ(T2) ≈ 0,
then τ is a typical property of the system. The basic argumentative line used by
the upholders of the typicality approach can be summarized as follows:

1. Let Γ the accessible region of a thermodynamic system and let Meq,Mneq

the subsets of the equilibrium and nonequilibrium macrostates, respectively.
These subsets form a partition of Γ.

2. Let x be a microstate and x(t) its trajectory under the dynamics of the system.
In other words, x(t) = x1, x2, x3, . . . where xi ∈ Γ.

3. A certain measure function mL exists, called the Lebesgue measure, such
that mL(Meq) ≈ 1; the microstates in Meq have the property of “being in
equilibrium”, hence this property is typical in the thermodynamic system.



234

4. Also the microstates x(t) = x1, x2, x3, . . . are typically in equilibrium, hence,
the trajectory of an arbitrary state is mainly contained in Meq.

5. Ergo, the system will tend to equilibrium and remain there, because equilib-
rium is typical.

This straightforward argument has enjoyed a large approval among physicists
and aroused an equally large discontent among philosophers. The former like espe-
cially its simplicity and its generality. In fact, it has also been extended to interpret
Bohmian quantum mechanics ([6], [7], [8]). By contrast, the latter consider the
argument above seriously flawed. There are three kinds of criticisms against typi-
cality.

First, the definition of a typical property depends essentially on the size of the
macrostate, which in turn depends on the definition of a suitable measure function
(step (3) in the argument). In statistical mechanics, the convention is to use the
so-called Lebesgue measure. Philosophers object that there is no argument, either
philosophical or physical, to claim that Lebesgue measure must enjoy any preference
and be considered as the “natural” one. Second, until step (4), the argument only
deals with statements concerning measure of macrostates, but the conclusion is a
statement about the physical behavior of observable systems. It seems, that (5) con-
cerns the probability that a system will behave in a certain way, so that the argument
would require a leap from statements about measures to statements about physical
probabilities ([9], [10, 182-191]). Third, no purely measure-theoretical consideration
on the macrostates would ever suffice without some dynamical assumption ([1]). In
the argument presented above, this assumption is expressed in step (4), where it is
supposed that the trajectory contains the same ratio of equilibrium/nonequilibrium
states as in the total accessible region.

The effect of these critiques has been to virtually interrupt the dialogue between
philosophers and physicists. The eminently logical character of the philosophical
analysis has appeared to physicists too detached from their actual foundational
problems in statistical mechanics. Thus, many working scientists tend to consider
this analysis as hairsplitting and uninformative. On the other side, philosophers
have quickly dismissed typicality. From the point of view of traditional philosophical
analysis, typicality appears as mere hand-waving at best, or as circular at worst.

In this paper I argue that the problem is partly due to philosophers’ conception of
explanation. Generally, philosophers working in foundations of statistical mechanics
have deployed a Hempelian model according to which an explanation is an argu-
ment whose conclusion is equilibrium. Most of the philosophical criticisms against
typicality concentrate upon the flaws of arguments containing such notion. I argue,
however, that the Hempelian model does not capture what the physicists mean by
the explanatory value of typicality. Hence, we have to enlarge our conception of
explanation. I submit that typicality provides a satisfactory causal explanation of
the qualitative aspects of equilibrium. Let me spell out this claim by starting with
the final part. By that I mean that typicality only accounts for the general fact that
systems exhibit a tendency toward equilibrium, but does not yield any quantitative
analysis. Second, by causal explanation is mean that typicality gives us:
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1. A set of causal factors for the qualitative aspects of the equilibrium;

2. A formal description of how these factors act.

Here, I adopt Woodward’s theory of causal explanation, [11]: the causal factors
of an event are those factors that, if properly manipulated, would change the event.
Further, condition (2) tells us in which sense we should manipulate the causal factors
to obtain a different result. Finally, the satisfactoriness of an explanation does not
depend on relations between its parts, but on the resources it uses. I claim that a
satisfactory explanation must fulfill the following:

3. Historic-pragmatic value: a sensible use (possibly a reconfiguration) of the
traditional practices and techniques deployed in the field.

This element has been totally neglected in philosophical literature on explana-
tion.1 It is motivated by the almost trivial consideration that explanations do not
happen in a vacuum, but are historically situated. Scientists try to construct (and
value) explanations that make use of traditional techniques and practices, perhaps
providing them with a new meaning and new potentials. Hence, a good explana-
tion must be evaluated relatively to the history of the practices and relatively to the
subculture in which it is accepted. In the following sections, I argue that this model
illuminates the explanatory value of typicality. I quickly summarize the genealog-
ical lines of the mathematical practices related to the use of typicality in physics
(section 2) and I show how these lines converge to the modern approach (section
3).

2 Typicality in Physics: A Genealogy
Current use of typicality is not as clear as many of its supporters would wish. To
understand the roots of this notion, it may be useful to begin with examining three
definitions of typicality adopted in the literature. The first definition comes from a
philosophical paper:

Intuitively, something is typical if it happens in the ‘vast majority’ of
cases: typical lottery tickets are blanks, typical Olympic athletes are
well trained, and in a typical series of 1,000 coin tosses the ratio of
the number of heads and the number of tails is approximately one. [2,
997-998]

The second definition comes from a historical paper:

Generally speaking, a set is typical if it contains an “overwhelming ma-
jority” of points in some specified sense. In classical statistical mechanics
there is a “natural” sense: namely sets of full phase-space volume. [12,
803]

1A note of clarification: the point of requisite (3) is not to provide an explanatory value to
dead and buried theories, but to stress that the explanatory value of any theory depends crucially
on what a certain community can do with them.
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Finally, the third definition comes from one of the most distinguished upholders
of the typicality approach, Joel Lebowitz:

[A] certain behavior is typical if the set of microscopic states [...] for
which it occurs comprises a region whose volume fraction goes to one as
[the number of molecules] N grows. [13, 7]

Apart from the different levels of technicality and their specific aims, these def-
initions point out two traits of typicality. First, it relies on the separation of two
families of events, those which are “almost certain” and those which are “negligible”.
This evaluation depends on the relative sizes of the corresponding families. Second,
Lebowitz’s definition stresses the asymptotic character of typical behaviors: they
tend to a certain maximal size as the number of degrees of freedom of the problem
approaches infinity. The first element is related to the tradition of celestial me-
chanics that goes back to the notorious three-body problem. The second element
is linked to the combinatorial techniques used in statistical mechanics. There are,
as we will see, intersections between these traditions, which explain how they can
both feature in the definitions of typicality.

2.1 Celestial Mechanics and Topology
Since mid-18th century, mathematicians struggled to show that three bodies inter-
acting according to the gravitational law would never undergo catastrophic collisions
or expulsions. The usual strategy to deal with this problem was to solve the equa-
tions of motion by means of trigonometric series and to show that these series do
not contain diverging (secular) terms. After many failed attempts to provide an
explicit solution of the equations of motion, mathematicians grew skeptical that
these solutions would ever be discovered. In the second half of the 19th century, it
became increasingly clear that there was no way to solve the three-body problem
in closed form and other paths were tried.

Instrumental in this change of tack was the adoption of new topological tech-
niques. The undisputed champion of this line of attack was Henri Poincaré [14].
Instead of establishing stability analytically, Poincaré sough for the conditions un-
der which most of the trajectories are stable. This method does not require an
explicit solution of the equations of motion and do not call for any assumption of
randomness. Rather, it aims at classifying trajectories in stable and unstable and
then to show under which circumstances the former outnumber the latter [15].

As an example of this procedure, one can consider the famous recurrence theorem
[16, III, 847-876]. By a very general topological argument, Poincaré showed that
almost all possible mechanical trajectories of a conservative system return, after a
very long time, infinitesimally close to their initial state (or, as Poincaré had it,
they are Poisson-stable). The set of trajectories that do not behave like that is
negligible.

When Poincaré developed his approach, he did not have a precise mathematical
notion of “almost-all” or “negligible”. This notion became available only in the
early 20th century with the development of Henri Lebesgue’s theory of measure.
The combination of topological and measure-theoretical techniques was successfully
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put to work on other important problems of celestial mechanics such as the study
of singularities and perturbations (for a discussion see [17]). It thus comes as no
surprise that contemporary theory of dynamical systems are customarily defined
as the study of typical or generic properties of systems, that is properties that
hold of the vast majority of the possible trajectories. It is important to recognize,
though, that these properties are defined asymptotically. Consider, for example,
the introduction to one of the most complete and authoritative books on the topic:

The most characteristic feature of dynamical theories, which distin-
guishes them from other areas of mathematics dealing with groups of
automorphisms of various mathematical structures, is the emphasis on
asymptotic behavior [...] that is properties related to the behavior as
time goes to infinity. [18, 2]

Typical properties are therefore those properties that come to be recognized as
such only in the long run.

2.2 Statistical Mechanics
Although much younger and very different in subject matter, kinetic theory—the
predecessor of modern statistical mechanics—faced a similar problem as celestial
mechanics. The behavior of a gas composed of many molecules colliding mechan-
ically cannot be predicted by solving the equations of motion. In fact, even the
knowledge of the initial conditions is out of reach. Thus, from the beginning, sta-
tistical mechanics introduced a set of approximation techniques and assumptions
in order to make the problem tractable. For example, the collisions between the
molecules and the walls bring in a disturbing effect in the sequence of elastic colli-
sions between molecules. This is the so-called “wall-effect”. To take into account this
effect in the equations of the problem leads to innumerable formal complications,
therefore it is usually assumed that the container is big enough that the wall effect
remains confined to a negligibly small portion of the whole space. Analogously,
basically all arguments in kinetic theory are cast by supposing ideal conditions such
as the number of molecules grows to infinity, or the duration of a collision tends to
zero and so on.

One of Ludwig Boltzmann’s great insights was that the nature of the problem of
irreversibility is not affected by the use of these approximation techniques based on
asymptotic tendencies. These techniques only cancel out the probabilistic fluctua-
tions and make the results strictly valid. They produce “statistical determinism”.
For this reason, Boltzmann made ample use of probabilistic arguments and tools
constantly framed within asymptotic assumptions [19].

It was clear to Boltzmann that there are two different, albeit related questions:
(1) what is the essence of irreversibility and (2) how to formulate this essence in
terms of the specific microscopic arrangements and dynamical laws of the molecules.
As for the first question, Boltzmann concluded that irreversibility is due to the ex-
tremely large number of molecules in complicate collisions. It is this large number
that justifies an assumption of equiprobability for the microstates and thus a prob-
abilistic procedure that leads to the equilibrium distribution as the largest one:
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The great irregularity of the thermal motion and the multiplicity of
the forces acting on the body from the outside make it probable that
its atoms [...] pass through all the possible positions and velocities
consistent with the equation of energy. [20], [21, I, 284]

He illustrates this point most effectively in his famous 1877 combinatorial theory
[22], [21, II, 164-223]. Boltzmann assumes very many molecules and calculates the
numbers of ways in which energy can be distributed over them. It turns out that the
overwhelming majority of these ways are represented by a bell-shaped distribution.
This is Maxwell’s distribution, which represents the state of equilibrium. It’s by far
the largest in terms of the number of microscopic molecular allocations of energy
compatible with it. The remarkable point is that the dominance of the equilibrium
state depends crucially on the huge number of degrees of freedom of the problem:
the relative size of the equilibrium state respect to the other increases enormously
with the number of degrees of freedom. This behavior is characteristic of asymptotic
probability laws such as the law of large numbers or the central limit theorem. For
this reason, Boltzmann understood the essence of irreversibility as a probabilistic
law valid under suitable asymptotic conditions [19].

The second question was harder. If we assume that molecules obey the laws of
mechanics, we run into the reversibility problem. Mechanical motion can be inverted
and still remain perfectly mechanical, so how are we to understand irreversibility
as a form of mechanical motion? Why a sequence of mechanical collisions leading
the system from an arbitrary state to equilibrium should occur more often than its
reverse, which is matter-of-factly as mechanical? The most important debate on
this question took place on the pages of Nature in 1894-95 and involved, besides
Boltzmann, as distinguished British physicists as Bryan, Burbury, Watson, and
Culverwell. Four possible solutions to this question emerged from the debate.

1. The mechanical reversal of a state violates the formal condition on which
Boltzmann’s theorem of irreversibility was based (H-theorem). This solution
appeared unacceptable to Boltzmann because it emptied the theorem of any
physical meaning and downgraded it to a purely mathematical statement.

2. Mechanical reversal is unstable. The situation is analogous to riding a bicycle
backwards: it is mechanically possible, but any small perturbation will destroy
the equilibrium. Boltzmann liked this option: a reversal presupposes a perfect
coordination between the molecules, which is easy destroyed.

3. In its path from the nonequilibrium state to equilibrium, the trajectory branches
off in many possible states. It is true that for each whole path the reverse
exists, but at each stage there are more ways to go toward equilibrium than
in the opposite direction. This is the idea of the H-curve.

4. Microscopic molecular arrangements are molecularly disordered. This is the
so-called molecular chaos that Boltzmann introduced in the first volume of
his Gastheorie.
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I will dwell especially upon this last point. Boltzmann’s notion of molecular
chaos is profound, but not very clear. His basic point is that molecules must be
arranged and must behave in a way that leaves all theoretical possibilities open.
In other words, any regularity that forces the system out of its typical state of
equilibrium must derive from some specially engineered arrangement that made
probability considerations invalid:

If we choose the initial configuration on the basis of a previous calcula-
tion of the path of each molecule, so as to violate intentionally the laws
of probability, then of course we can construct a persistent regularity.
[23, I, 22]

Thus, in making the reversal, we request the molecules to retrace exactly the
same sequence of collisions as before. This kind of interventions (or “conspiracy”)
on the dynamics of the system leads to atypical results. It is important to note
that all these solutions of the reversibility objection contain traits characteristic
of what is today known as chaos theory. We will see these traits displayed in
Lebowitz’s paper in the next section. Before concluding this section, however, I
want to stress that Boltzmann had clearly in mind also the importance of the notion
of negligibility. Poincaré’s recurrence theorem is based on the concept of integral
invariant, a mathematical technique that Boltzmann had himself introduced and
used, albeit imperfectly, since the end of the 1860s [24], [21, I, 49-96]. In the
Gastheorie he discusses the possibility that a gas, being a conservative and confined
mechanical system, passes through its state again and again as prescribed by the
recurrence theorem. He finds that this can happen only after an enormous interval
of time. He concludes:

One may recognize that this is practically equivalent to never, if one
recalls that in this length of time, according to the laws of probability,
there will have been many years in which every inhabitant of a large
country committed suicide, purely by accident, one the same day, or
every building burned down at the same time—yet the insurance com-
panies get along quite well by ignoring the possibility of such events.
If a much smaller probability than this is not practically equivalent to
impossibility, then no one can be sure that today will be followed by a
night and then a day. [23, II, 254]

Boltzmann was therefore well aware of the topological argument, which aims at
distinguishing between typical and negligible events.

3 The Explanatory Value of Typicality
In the 20h century, the theory of dynamical systems and statistical mechanics took
up and developed the trends outlined above. Measure theory provided a set of
concepts and tools to express typical and negligible events. Furthermore, these tools
were used to prove asymptotic statements like in the case of Emil Borel’s proof of the
law of large numbers (1909). George D. Birkhoff’s 1931 ergodic theorem can also be
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considered a sort of law of large numbers applied to statistical mechanics. Birkhoff
showed that dynamical systems have the propriety of ergodicity (from which many
statistico-mechanical consequences follow) if and only if the set of trajectories that
do not remain in an invariant portion of the phase space is negligible (i.e., it has
measure-0). Properties that holds typically or generically are said to hold “almost-
everywhere” [25].

Another important development of statistical mechanics in the 20th century is
Alexander Khinchin’s asymptotic approach [26], [25]. Khinchin claimed that the
fundamental proposition of statistical mechanics, the irreversible approach to equi-
librium, was just the physical formulation of the central limit theorem. Accord-
ingly, the entire theory could be recast in purely probabilistic terms, leaving aside
any physical assumption. Khinchin proved a theorem that systems for which the
macroscopic parameters can be expressed by particular functions (sum-functions)
reach equilibrium in the long run.

Finally, one of the most successful approach to statistical mechanics focuses on
“large systems”. The basic tenet is that when we examine the behavior of systems
under particular asymptotic circumstances (for example the so-called thermody-
namic limit where the number of molecules, the energy, and the volume tend to
infinity, but the density and the energy density stay finite), we are able to prove
kinetic theorems rigorously [27]. The most impressive result obtained by this ap-
proach is Lanford’s theorem according to which for a particular gas model and in a
particular limit, it is practically certain that the system will reach equilibrium [28],
[29].

The upholders of typicality belong to this tradition. Most of them have worked
within the framework of the large systems approach. Therefore, it is essential to
keep in mind this long-term development to evaluate the meaning of the concept
of typicality. The supporters of the typicality approach inscribe themselves in the
Boltzmannian line of rigorous mathematical arguments framed within an asymptotic
conceptual space where fluctuations become negligible. To illustrate this aspect I
briefly discuss a paper by Joel Lebowitz. There are three points that I want to
emphasize.

First, the notion of typicality serves the general purpose of understanding the
transition from the microscopic to the macroscopic level. Remember the quote
given above: typicality is a feature that emerges when the number of molecules
approaches infinity. Put in other words, typicality discriminates between behaviors
associated with a large number of degrees of freedom and behaviors associated with
less complex systems. The former exhibit time-asymmetry, the latter do not:

The central role in time asymmetric behavior is played by the very large
number of degrees of freedom involved in the evolution of the macro-
scopic systems. It is only this which permits statistical predictions to
become “certain” ones for typical individual realizations, where, after
all, we actually observe irreversible behavior. This typicality is very
robust—the essential features of macroscopic behavior are not depen-
dent on any precise assumptions such as ergodicity, mixing or “equal a
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priori probabilities”, being strictly satisfied by the statistical distribu-
tions. [13, 3]

This is a point often neglected by philosophers. Typicality is not just shorthand
for “very high probability”, i.e., another probabilistic notion subject to probabilistic
conditions. Typicality is a feature of systems with many degrees of freedom, sys-
tems that are handled by certain techniques. More importantly, the high number of
degree of freedom plays a real causal role in Woodward’s sense. Like in Boltzmann’s
combinatorics and in Khinchin’s probabilistic approach, the equilibrium state dom-
inates over the others because there are many particles. Were there just a few of
them, the equilibrium would be not so overwhelmingly more probable. Hence, it is
by manipulating the number of degrees of freedom that we can make an effect on
equilibrium.

The second point is related to the first: Lebowitz introduces a distinction between
the qualitative and the quantitative aspects of irreversibility. As said above, the
qualitative aspect depends only on the large number of degrees of freedom. From
this, the typicality explanation of irreversibility follows. However, this aspect does
not yield the hydrodynamical-like equations to predict the concrete behavior of a
macroscopic system. For this we need more specific microscopic models, which,
however, depend very little on the details of the microscopic dynamics. It is at this
level that we find ergodicity, mixing and chaotic dynamics:

I believe that these models capture the essential features of the transition
from microscopic to macroscopic evolution in real physical systems. In
all cases, the resulting equations describe the typical behavior of a single
macroscopic system chosen from a suitable initial ensemble i.e. there is
a vanishing dispersion of the values of the macroscopic variables in the
limit of micro/macroscale ratio going to zero. [13, 17]

Again, it is crucial to notice that these models lead to time-asymmetric behavior
only because they are applied to a large number of degrees of freedom. As such,
chaotic dynamics or ergodicity are time-symmetric:

This is an important distinction (unfortunately frequently overlooked or
misunderstood) between irreversible and chaotic behavior of Hamilto-
nian systems. The latter, which can be observed in systems consisting
of only a few particles, will not have a uni-directional time behavior in
any particular realization. [13, 25]

The third point concerns Lebowitz’s way of dealing with the reversibility ob-
jection. He argues that a reversal of the microscopic motion is conceivable but
“effectively impossible to do [...] in practice.” To support this claim he uses three
arguments, all related to chaos dynamics. The first is that such reversal would
be unstable under external perturbations. The second is that mechanical reversal
requires a “perfect aiming” and
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[i]t can therefore be expected to be derailed by even smaller imprecisions
in the reversal and/or tiny random outside influences. This is somewhat
analogous to those pinball machine type puzzle where one is supposed
to get a small metal ball into a particular small region. You have to do
things just right to get it in but almost anything you do gets it out into
larger region. [13, 9]

Lebowitz deploys the example of the pinball, but he might as well mention the
example of riding a bicycle backwards: it is the same kind of mechanical situation.
Finally, he points out a hidden assumption in the dynamics for typical behavior:

For the macroscopic systems we are considering the disparity between
relative sizes of the comparable regions in the phase space is unimagin-
ably larger. The behavior of such systems will therefore be as observed,
in the absence of any “grand conspiracy”. [13, 9]

The idea that there must be some artificial intervention for such a system to
exhibit an atypical behavior reminds immediately Boltzmann’s remark about in-
tentional violations of the laws of probability.

These quotes prove the kinship between the typicality approach and the tradition
encompassing celestial mechanics, Boltzmann’s statistical mechanics, and the large
systems approach. But they also allow us to draw a more general philosophical con-
clusion. Typicality provides for a plausible epistemic story of the qualitative aspects
of equilibrium by ascribing it to causal factors i.e., the high number of degrees of
freedom, whose action is described by combinatorics and measure-theoretical con-
cepts. It is not a probabilistic ingredient to be added to an argument, although it
makes use of a probabilistic argumentative pattern (“given a suitable definition of
probability, if the probability of one event is overwhelmingly larger than all alterna-
tives, one can neglect the latter”). More importantly, typicality is a reflective way
to classify, organize, and reconfigure a set of theoretical practices as diverse as topo-
logical methods, approximations procedures and statistical techniques. It derives
from the mathematical practices outlined above and allows to combine them in an
explanation of equilibrium. Part of its popularity is due to its historical-pragmatical
value. Thus, typicality works as an epistemic trope: it is an assemblage of concepts,
methods, and argumentative patterns that organize well-established mathematical
practices into a specific epistemic story of equilibrium.
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Disentangling Context Dependencies in Bi-
ological Sciences

Marta Bertolaso

abstract.
The aim of this paper is to disentangle two different kinds of context de-

pendency in biological explanations by looking at explanations of cancer. One
kind of context dependency is employed as an explanans in the Tissue Field
Organization Theory (TOFT), where cell behavior depend on the field (the
context). The other kind of context dependency—I argue—underlies both sys-
temic and molecular accounts of cancer, and pertains the identification of the
relata of the explanation more than the explanation itself. This double nature
of context dependency creates an interesting unified picture of explanation,
where mechanistic explanations are always possible even though a mechanistic
account of the biological world is not. It also sets the conditions for a partic-
ular kind of compatibility between TOFT and molecular accounts, in which
TOFT is more general and SMT’s molecular accounts—when they work—are
particular cases of TOFT.

Keywords: context dependencies, biological explanations, systems, cancer

1 Introduction
Context dependency is a critical feature of scientific explanation in the biological
sciences. For example, it has been used as an argument against reductionism [7] and
included in an expanded account of mechanisms [9]. Given its deep ontological im-
plications, the notion of context dependency has been caught up in discussions like
those on emergent properties or the criticisms to reductionist-mechanistic accounts
in biological sciences. A way out of these tensions has been to consider the context’s
relevance as a methodological or pragmatic recommendation [18, 5]. However, when
the context is seen as a mere methodological feature of the biological explanation,
mechanistic accounts shift towards multilevel and more complicated accounts in a
never-ending inclusive process of new elements [8]. Systemic accounts notably adopt
a more holistic stance, where the context plays a relevant explanatory role that is
not clarified adequately. My working hypothesis is that different kinds of context
dependencies are at stake in these debates. In particular, we should disentangle
conceptual context dependency from explanatory context dependency in biological
explanation in order to understand how some kinds of biological explanations work
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and how the relata that structure such explanation are mutually dependent.1

2 Molecular accounts vs. systemic accounts of cancer
There are, in scientific literature, different interpretations of cancer that are often
seen as conflicting. To a first approximation, there is a theory that defends the
genetic origin of cancer (Somatic Mutation Theory or SMT [25, 26]) and another
one that claims that cancer is a problem of tissue organization (Tissue Organiza-
tion Field Theory or TOFT [21]). In this paper I will preferably refer to molecular
accounts of cancer, a class of accounts that contains the Somatic Mutation Theory.
Its authors, in fact, appeal to genes and molecules to give an account of the neo-
plastic proper. Such molecules and their functions, instantiate the most relevant
causal elements. The TOFT maintains, instead, an organicist view in which the
environmental context is more relevant than genes in the origin and establishment
of the phenotype of tumour cells. TOFT can be seen as a prototypical systemic
account of cancer, and is often defended as an ‘antireductionist’ position. SMT, on
the other hand, is classified as ‘reductionist’ (and further loaded with the genetic
determinism assumption). I will return on these labels in what follows.
To clarify how these accounts work in scientific practice let’s focus on the question
they aim to answer: Why does a tumour cell behaves like this (and not like that)?
The explanandum is that a neoplastic cell no further proliferates in an integrated
way in its organic environment.
A good example of a molecular account of cancer is the Hierarchical Model of Can-
cer, proposed as an explanatory model for some types of cancer. In this model, a cell
that retains the neoplastic property of proliferating in an aberrant way is framed
categorized as a Cancer Stem Cell (CSC).2 The CSC gives origin to an offspring of
cells that differentiate aberrantly, while only sometimes retaining the tumorigenic
property of their ancestor. In this case the molecular element is the cell itself whose
biological identity is determined by genetic and epigenetic changes.
For the Tissue Organization Field Theory, instead, carcinogenesis is attributable to
a process similar to an organogenesis that does not reach completion. The TOFT
points out that proliferation should be considered the default state of metazoan
cells and the tissue organization the result of a developmental program. The in-
teractions between cells, mediated by membrane proteins that recognize paracrine,
mechanical splices or endocrine signals that act at a distance, are responsible for the
transmission of signals significant for the cells in terms of proliferation and differ-

1[6] suggests to think of ‘mechanism description’ and ‘mechanism explanation’ as two distinct
epistemic acts. This approach is related but still different from the aim of this paper that is much
more focused on how mechanistic and systemic accounts are related in accounting for a biological
multi-level phenomenology. Cf. also [3]. In this paper I am linking up and relating the analysis
and thesis I have presented in Chapters 4 and 5 of that monograph.

2Main proponents of the Hierarchical Model would not probably deny that other cells of the
tumour (non-CSC) are also neoplastic, they just believe that they are clinically irrelevant due to
their short replication potential. This does not change, the relevance for this paper’s argument of
how CSC are actually identified and play an explanatory role. What I am discussing here, in fact,
is an aspect of the stemness concept when applied to tumour cells, not the replication potential of
the (tumour) cells as such as highlighted in the section 3. For further discussion on this point see
also [4].
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entiation. Cell proliferation is thus chronologically removed from the control of the
cell cycle that takes place at the subcellular level in the hierarchical organization of
metazoans. In this view, the malignant tumour phenotype doesn’t have to be un-
derstood as an effect that necessarily follows a causal event (for example, a genetic
mutation). Rather, it should be seen as uncoupling of intrinsic potentialities of the
cells that are, in tumours, executed without adequate contextual control. Cancer-
related mutations can of course have a causal role, but this causal role amounts to
their effects on tissue organization.3 The epilogue of the neoplastic process depends,
most generally, upon the persistence of the same conditions that caused the original
breakdown of the functional organization at the tissue level. In sum, the natural
history of cancer is told from a very different perspective than the molecular one.
The molecular and the systemic accounts share the explanandum—i.e., the aber-
rant behaviour of tumour cells—and they both acknowledge that cancer is not an
event but a process. The explanans seems, instead, to differ: genetic alterations
and tissue organization respectively.

3 Explanatory structures: context in the front vs. context
in the back

Now let us take the two accounts of cancer summarized in the previous section and
focus on the role of context and context dependency therein.
The TOFT has context ‘in the front’. In this systemic approach, the context plays
an important explanatory role–indeed, it is the explanans: cancer is the result of a
disruption in the tissue’s architecture. TOFT acknowledges higher-level effects as
causally relevant to the maintenance of the functional properties of cells. In par-
ticular, the systemic explanation uses time dependencies and context dependencies
specified in terms of compromised relationships among coupled biological rhythms
and long-range spatial interactions, adding an interesting level of systemic analysis
to the overall explanatory account and specifying the relevance of cell interactions
at an organismic level. Accordingly, the functional properties of tumour cells are
addressed in terms of function loss rather than in terms of function acquisition [2].
Molecular accounts strive to neglect context in their explanations, yet context is
somehow there, ‘in the back’. The biological context appears, for example, in the
definition of Cancer Stem Cells: stemness is, in fact, a context-dependent property.
Defining a molecular part entails the contextual dimension. Indeed, in a molecular
account, ‘[B]y simplifying the nature of cancer – portraying it as a cell-autonomous
process intrinsic to the cancer cell – [...] cancer development depends upon changes
in the heterotypic interactions between incipient tumor cells and their normal neigh-
bours" [11, 67]. As evident from this quotation, we may say that the attempt to find
an explanation at the ‘lowest possible level’—either in terms of genes or in more
general molecular-mechanistic terms—fails, and that molecular accounts appear as
moving towards a tissue level.
The atomistic commitment of a strong molecular account strives to focus on es-
sential properties (of the part, of the cell). But cancer (as a complex biological

3This important issue of the field-mediated effects of mutations will be reminded in the closing
part of the paper.
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process) does not primarily affect essential properties of the cells, but relational
ones. it is not enough to tell a stem cell what it has to do, but it is fundamental to
clarify what it has to do in a precise point and not in another one. In fact, there
are very interesting convergences between molecular and systemic accounts. One is
the concept of fields of cancerization. These fields are groups of cells from which
specific morphological structures develop through the mediation of biophysical and
biochemical cues, mainly through epigenetic changes that in cancer are aberrant
[24]. The shared idea is that in cancer the functional stability of such fields is com-
promised.
In contrast, the systemic account replaces essential properties with an ‘essentiality-
by-location’ principle. It conceptualizes dynamic properties of cancer cells more in
terms of capacities than in functional mechanistic terms. Such capacities are jointly
determined by intrinsic features of the cell and by features of its environmental con-
text. We are dealing with relational properties of the cells that do not follow the
rules of what is necessary but of what is possible (the kind of possibility entailed in
the concept of pre-disposition).
The molecular and the systemic account differ by the structure of the explanations.
As mentioned already, TOFT has context in the front, molecular accounts have it
in the back. We could say that, like in the negative and positive of a photo, in
the molecular account the context remains in the back (in the conceptualization of
the relata), in the systemic account it is in the front, playing the explanatory role
too. But what does having context in the back mean? I shall argue that there
is a different kind of context dependency underlying both TOFT and molecular
accounts.

4 The conceptual context dependency
In the previous section I have argued that TOFT and molecular accounts differ
by the role of context in the structures of their explanations. The difference con-
cerns, we may say, a kind of context dependency: explanatory context dependency.
There is another kind of context dependency, which I will call conceptual context
dependency, which has to do with the definition and identity of the relata of the
explanation, more than with the structure of the explanation itself. This kind of
context dependency is the one that is shared between systemic and molecular ac-
counts of cancer.
In an interesting discussion of reductionism with Evelyn Fox Keller [12], John Dupré
[10] distinguishes the problem of the relata identification and definition from the
problem of in what way a reduction can be realized.
The problem of relata identification and definition is the problem of the “dependence
of the identity of parts, and the interactions among them, on higher-order effects".
Dupré insists that “the fact that biology–a science–works with concepts that depend
on the larger systems of which they are part, as well as on their constituents, is a
fatal objection to any attempt to defend a reductionist position about biological
explanation" [10, 38]. Whereas Keller thinks that context and interactions are arti-
ficial distinctions and that the “context is simply all those other factors/molecules
whose interactions with the object or system in question have not been made ex-
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plicit and, hence, have not been included in the description" [12, 30], for Dupré,
instead, context refers ‘to features of an object’s environment that are necessary to
confer on the object a particular capacity [...]. Interactions are simply the exercise
of such capacities with relation to some other entity that will presumably constitute
all or part of that context" [10, 45].
The problem of in what way a reduction can be realized concerns the appropriate
level where explanation should be sought. TOFT’s authors [22] stressed arguments
that to understand a specific biological phenomenon each hierarchical level must
be studied without expecting that the lower levels will necessarily contribute to
our understanding a phenomenon cannot be studied independently from the level
at which it is observed. They also argued that top-down causality is the most ad-
equate assumption to explain complex mechanisms but top-down and bottom-up
accounts respond to two different epistemic concerns.
A way to conceive the difference between explanatory strategies is to say that ex-
planatory strategies rely upon different assumptions about what is fundamental in
explanatory terms. ‘In principle’ claims about what is fundamental in scientific
explanations sound like this: the “analysis of the specific physical and chemical
phenomenology involved in biological processes should, in principle, suffice for an
understanding of what endows biological systems with the properties of life" [12, 21].
Dupré says that if we are interested in ecological systems (i.e. biological systems
from the point of view of their functional organization) what is under analysis are
ultimately systems whose behaviour “is fully determined by the behavior of, and
interactions between, the parts. And hence, the elements of behavior that are not so
determined are what we don’t know when we know everything about the parts and
the way they are assembled" [10, 38]. These are, indeed, ‘in principle’ claims. In
fact, Dupré (cit.) and Keller (cit.) themselves pointed out that there is no obvious
definition of what is fundamental in explanatory terms in biological sciences. The
meaning of fundamental in biology, for example, cannot be clearly equated with
simple, nor is it at all obvious that it should be common to all biological entities’
explanation.
What should be considered more fundamental in explanatory terms is neither logi-
cally derivable from the structure of the explanation nor can it be assumed on the
basis of an ontological commitment. It is related with the intrinsic relationships
that structure the scientific explanations, their relata, and the practical character
of the scientific enterprise.4 Whether or not we can explain biological phenomena
in molecular terms (what Malaterre would call physical monism [15]), we very often
do as a methodological choice. Accordingly, explanatory strategies do not differ by
what they consider fundamental: they differ by their commitment about the right
level at which an explanation should be offered.
Dupré’s distinction of two problems about reductionism (how do parts depend on
the whole and how a reduction should be performed) parallels the two kinds of
context dependency that I have pointed out. Conceptual context dependency is

4See [2, 4] on the identification of the mesoscopic level in scientific explanation, as a strategy
that takes into account all the mentioned constraints and works to identify the explanatory level
that maximizes determinsm for the given explanandum.
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about the weight of the context in the identity and definition of parts and their
interactions. This is a more fundamental ontological problem, and mirrors Dupré’s
issue of the dependence of parts’ identity and interactions among on higher-order
effects. Explanatory context dependency concerns the weight that should be given
to the context in an explanation. This is a problem of explanation structure, just
like Dupré’s problem of how a reduction should be carried out.
So there are at least two dimensions of context dependency that can underlie ex-
planatory endeavours. The first dimension concerns the ‘certain way’ parts are
assembled in the studied systems, and the conceptual dependence of parts on the
larger system. This is the dimension of conceptual context dependency that deter-
mines (a) the level of generalization of the relata, which (b) admits the pragmatic
focus on different contrast classes. These dimensions are partially independent
though related. Moreover, (b) is secondary, from a procedural point of view, to the
former aspect (a). Once this process of identification of the explanatory elements
is acknowledged, the explanatory picture eventually acquires an interesting unity.

5 Mechanism and emergence in biology
I have discussed the structure of explanatory accounts in terms of the explanatory
relevance of context dependency. I will now discuss the issue in the wider context
of explanations in biology.
In philosophy, the “new mechanistic program" is the most updated way to analyze
those scientific approaches that focus on molecular interactions. The new mecha-
nistic program correctly emphasizes that scientists usually explain phenomena by
describing the underlying mechanism. Machamer et al. [14] proposed this stan-
dard philosophical account that offered a general characterization of mechanism
that attempts to capture the way scientists use this word and to show the ways
in which mechanisms are involved in the explanation of phenomena. This ‘mech-
anistic philosophy’, as defined by Skipper and Millstein [20], has developed into a
robust alternative to theory reduction. Unlike the more general idea of a mecha-
nistic worldview, the “mechanismic program" [17] is not primarily concerned with
biological ontology, but with the nature of biological explanations. So that, whereas
mechanicism is closely aligned with the spirit of reductionism and the unity of sci-
ence, the mechanismic program focuses on multilevel explanations given in terms
of causal mechanisms and seemingly with a non-reductive view of science. In the
attempt to reframe functional explanations in mechanistic terms, examples taken
from different domains in the life sciences have been used to support mechanistic
accounts.
The flexibility and pragmatic fertility of such mechanistic explanations count against
any attempt to reject their scientific acceptability. However, mechanistic reductions
in life sciences are clearly challenged by context-dependence of molecular features
and multiple realization of higher-level features, as well as by temporality and dy-
namic stability of biological systems. Some authors [16, 15] highlight that any
attempt of describing biological explanations in mechanistic terms has to face with
the revenant idea of emergence, and that it has been scientific practice, more than
philosophy, to impose such cumbersome re-emergence of emergence. In these dis-
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cussions, emergence comes back, not in vitalistic terms, but in the language of
non-linear dynamical systems, that is in a language of self-causation, bringing to
the fore the systems self-organizing properties. As Silberstein notes [19], such prop-
erties ‘go beyond’ the ‘physical’ interactions among single elements, without being
completely independent from them. The emphasis on those properties enhanced the
arguments of the non-reductive physicalism originally rejected by Kim. As Mitchell
[16] discusses, the complexity of the temporal dimension challenges Kim’s account
of emergence and highlights its limits. In fact, the progressive stratification of func-
tional levels represents the history of the system and such evidence substantiates
the mentioned entanglement of organizational and evolving dimensions.5
Biology has been, since the beginning, the science with most difficulties to define
its object of inquiry. Nevertheless, in a more general sense, biology focuses on the
specific dynamism of living systems, which is minimally definable in terms of self-
organizing and adaptive dynamic processes characterized by a multi-level regulatory
phenomenology. Such conceptualization, because of the very notion of system, refers
to a set of elements in standing relationship (on this point see also [1]). Properties
of biological systems are therefore often seen as emergencies held by an organized
whole and its parts. It is important to remark that both mechanistic and systemic
perspectives have a common root in the challenge of explaining how a biological
system maintains the integrity of its parts in its dynamic evolution. This means
providing an explanation of robust phenomena and understanding their multilevel
regulatory phenomenology. It is therefore the persistence of living systems in space
and time that poses the most relevant philosophical questions regarding the ade-
quateness and the epistemological status of both mechanistic accounts and systemic
explanatory models. This is why in biology we find a particularly strong degree of
conceptual context dependency, which subordinates the parts’ definition on the
wider system they belong to. The wider system holds a normative dimension that
allows a judgment of the physiology/pathology of parts’ behaviour.
In sum, although there are features of the world (and epistemological constraints)
that allow mechanisms to be always found, the world is unlikely to be mechanisti-
cally definable. With this in mind, let us finally tackle the issue of compatibility
between molecular accounts and systemic accounts of cancer.

6 SMT as a particular case of TOFT
Typically, molecular and systemic accounts of cancer are stigmatized, respectively,
as reductionist and antireductionist, and the debate ends up by arguing for a radical
replacement of SMT with TOFT. This is not the only way of framing the polarity
between SMT and TOFT. First, let us clear up some distinctions. My argument
on the two kinds of context dependence and Dupré’s argument on the two different
reductionist issues uncouple the reductionist-antireductionist dichotomy from the
SMT-TOFT dichotomy. SMT and TOFT are two explanatory strategies and, as
such, propose two different kinds of (methodological) reduction, characterized by
different degrees of explanatory context dependency. With their radically differ-

5The concept of “evolving", in this context, is synonymous to change, i.e. change of the func-
tional structure of the system in persistence of its functioning identity.
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ent approaches, these two reductionist strategies overcome the traditional ‘nothing
but’ issue about the definition of biological systems. Fields, cells, genes, are all
implicated in cancer and can be privileged levels for explanation (and hence for
reduction). On the other hand, TOFT also goes along with a conceptual context
dependency claim: an antireductionist reflection on the ‘certain way’ parts are as-
sembled that has epistemological consequences in terms of conceptualization of the
relata and their interactions. This opens a deep rethinking of the nature of biolog-
ical interactions, i.e. on the characterization of the parts-whole relationships.
A possible way of conciliating the two approaches is simply to state that they shed
light on different aspects of the same issue. I argue for a much more precise and
stringent relationship than such mild compatibilism. When focusing on different
levels of the biological organization in explaining carcinogenesis, the SMT and the
TOFT show explanatory independence while being epistemologically interdependent.
I take these terms as introduced by Angela Potochnick [18]. “The coexistence of
distinct explanations for a single event I call explanatory independence. The expla-
nations are independent in the sense that each individually explains the event in
question; indeed, each is the best explanation of the event in the context of certain
research interests" [18, 12, my emphasis]. “By [epistemic interdependence] I mean
that the success of these models depends on diverse sources of information about
causes not explicitly represented—information gathered with the help of other tools
and other fields of science—and that this dependence is mutual" [18, 17].
Another argument to conciliate molecular and systemic approaches is to consider
that the causal relevance (and thus explanatory value) in the process of carcinogen-
esis is found sometimes in genes, and, more often, in cell interactions at the tissue
level. Sporadic cancers are in fact more appropriately explained by TOFT, while
in heritable cancers a genetic account seems inescapable. This is certainly the case,
but I don’t think that the matter should be exhausted in frequentist terms (i.e., by
postulating two mutually exclusive, comparable explanations that are alternatively
true case by case).
My position is, instead, that the TOFT and molecular accounts are two explanatory
strategies and, as such, propose two different kinds of reduction. In addition, TOFT
provides the conditions that discriminate when a molecular account will work and
when it will not. I said earlier that some inherited mutations certainly do play
a causal role in cancer, but I also mentioned that they do so by the effect they
have upon the maintenance (or disruption) of tissue organization. This is what I
mean when I argue that when SMT works (as in the inherited cases of cancer), it is
just as a particular case of TOFT. Thanks to these epistemological considerations,
experimental evidence for a systemic account6 is not trivially against a molecular

6The organismic perspective that characterizes the systemic account, makes sense of some ex-
perimental data overlooked or not satisfactorily explained by a molecular account. Here are some
non-exhaustive examples. The most straghtforward piece of evidence is that inheritance of cancer-
related mutations generally never exceeds 5% of cases (some evidences from studies on APC and
colonrectal cancer seems to fit this interpretation: cf. [13, 25, 23]). Then, spontaneous regression
of tumours has been found in the experiments performed using teratocarcinomas and embryonic
environments highlighting that the regression of the neoplastic phenotype, (i.e. the return to nor-
mality of tumour cells). Regression is contradictory with the assumption (typical of SMT and
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account. The privileged status of the tissue level is linked to the dynamic properties
that characterize this level of the biological organization. On their part, molecular
accounts do not actually omit higher-level causal dependencies. Those causes are
subsumed within the conceptual assumptions of the model.
While any reductionism rightfully focuses on causal interactions among parts of
the system, a deeper message of the systemic approach focuses on the relationships
that make those interactions causally relevant (or less relevant, or irrelevant). In
this sense, relationships have a top-down causal role. They link up in what I call
biological determinations. Biological determinations–usually captured in terms of
higher-order effects–are instantiations of organizational principles that account for
the onset of these higher-level properties, i.e. their robustness.
What TOFT is actually supporting is a theory of fields in biological sciences more
than a claim in favour of a privileged explanatory level in cancer research. TOFT
shows that any explanatory account of biological behaviour conceptually implies a
non-reductionist dimension in the process of identification of the relata of the ex-
planatory account. Even a notion like cancerization field, shared (as we saw above)
by molecular accounts and TOFT, can be proposed with very different ontologi-
cal imports with respect to how the notion of field affects functional definition of
parts and parts’ stability. Looking at the system as a whole and focusing on the
functions that emerge as relational dynamic networks, one sees elements that ac-
quire their specific explanatory relevance depending on the level of discussion and
on the scientific question posed. For this reason, the mutual dependence of SMT
and TOFT has an asymmetry that justifies why TOFT is epistemologically more
powerful and comprehensive than SMT and can be generative of other explanatory
accounts different from the tissue one.

7 Conclusions
In scientific practice what is ‘more fundamental’ is defined by the ‘essentiality-
by-location’ principle, i.e. through the process of conceptualization of dynamic
properties of a biological system’s elements. Once this is acknowledged, different
approaches are possible in cancer research. Different contrast classes can be identi-
fied, but the explanatory models that focus on, for example, TC’s contrast classes
or X’s contrast classes (i.e. in this context the actual event functionally related to
TC and X) are not only not incompatible because they may eventually have differ-
ent explananda, but imply each other through the conceptual context dependency
(i.e. what a thing is) and the explanatory context dependency (i.e. what parts
we select in an explanatory account). The explanans are often molecular parts of

falling squarely in a molecular account) of cancer’s dependency from DNA mutation, since the
dominant feature of such mutations brings with it the necessary and sufficient condition that a
mechanistic explanation requires. Regression from a neoplastic phenotype is, in fact, observed
with a much higher frequency than would be expected were it due to back mutation or secondary
suppressor mutations [23]. Another interesting area of evidence concerns differentiation therapies
(i.e., treatments of malignant cells that lead them resume the process of maturation and differenti-
ation into mature cells). Such therapies are potentially more effective in leukaemia, characterized
by an extraordinary simplification of the tissue (i.e., the blood). Such treatments easily lead to
think of the privileged explanatory status of the tissue level.
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the organism, but are identified by virtue of their relationship with the higher-level
macro property or an end state that specifies the explananda. The non-reductionist
dimension that intrinsically characterizes biological explanations is thus related to
the definition of parts and how we understand the structure of the world that is
not, instead, mechanistically definable although, as shown, there are intrinsic fea-
tures of the world, and of the way we know it, that allow mechanisms to be always
identified.
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Mechanistic Causality and the bottoming-
out problem

Laura Felline

abstract. The so-called bottoming-out problem is considered one of the
most serious problems in Stuart Glennan’s mechanistic theory of causality. It
is usually argued that such a problem cannot be overcome with the acknowl-
edgement of the non-causal character of fundamental phenomena. According
to such a widespread view, in the mechanistic account causation must go all
the way down to the bottom level; a solution to the bottoming-out problem,
therefore, requires an appeal to an ancillary account of causation that cov-
ers fundamental phenomena. In this paper I reconsider the arguments that
led to this conclusion and criticize them. I argue that the no-causality-at-the-
fundamental-level solution is in harmony with the causal anti-fundamentalism
that characterizes the mechanistic theory. Moreover, contrarily to the dualistic
solution put forward by Glennan, the no-causality-at-the-fundamental-level is
not an ad-hoc solution. Finally, I provide the sketch for an account of regular-
ities and counterfactuals at the fundamental level that is consistent with the
singularist and ontologically parsimonious spirit of the mechanistic account.

1 Introduction
The New Mechanistic philosophy promises a fresh perspective on old issues in the
philosophy of science. Among such applications, one of the most interesting has
been within the issue of causation. There are different ways to understand the role
of mechanisms in a theory of causation [21]; here I want to focus on one of the
most straightforward proposals, put forward by Stuart Glennan, that “two events
are causally connected when and only when there is a mechanism connecting them”
([13], 64).
Glennan has originally put forward his account as an answer to Hume’s challenge
that we cannot observe the ’secret connection’ which binds events together, mak-
ing it impossible to distinguish genuine causal connections from pure conjunctions.
According to Glennan, his mechanistic account falls neither within the Humean
approach, which finds such distinction in epistemic criteria, nor within the anti-
Humean, which finds it in the notion of physical necessity.
The problem that is usually illustrated as the most urgent for Glennan’s proposal is
the so-called bottoming-out problem [30], i.e. the problem of accounting for funda-
mental phenomena that are not underpinned by a mechanism. Glennan’s solution
to the bottoming-out problem is to bite the bullet and accept a dualistic theory
of causation, where mechanistic causation covers all higher-level phenomena and
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a different kind of causation takes place only at the fundamental level. There is,
though, another possible solution, which is to acknowledge that mechanistically
fundamental phenomena are not causal phenomena, period. So far such a solution
has never been taken in serious consideration because of the belief that, in order
to be consistent, the mechanistic view requires causation to go all the way down
to the most elementary relations. In this paper I want to reconsider such objection
and the rationale behind it.
A premise might be in order before we start. This paper does not aim at advocating
in general for the adequacy of the mechanistic account of causality – neither per
se, nor against the other competing accounts of causation.1 Nor it is an aim of
this paper to advocate in general for the view that denies causality in fundamental
physics. The limited aim of this paper is to reconsider the reasons that have led to
the widespread conclusion that Glennan’s mechanistic account of causation is not
compatible with a no-causality-at-the-fundamental-level solution and that, there-
fore, it requires an ancillary theory of causation at the fundamental level, where
the mechanistic account is not applicable. If I am right in claiming so, we could
envisage to re-consider a full-fledged solution to the bottoming-out problem that
has been so far too quickly dismissed.
This is the structure of the paper. Section 1 introduces the basic ideas of Glennan’s
mechanistic account of causality and the bottoming-out problem. In S 2 I con-
sider the main arguments for the claim that no-causality-at-the-fundamental-level
is not a viable option within Glennan’s mechanistic account and counter to them.
If there is no causality at the fundamental level, we need an alternative account of
counterfactuals and regularities at the fundamental level, that goes along with the
singularism and ontological parsimony that characterise causality at higher-levels.
In S 3 I put forward an outline of how such accounts might work.

2 Causality and the Bottoming-out Problem: the basics
To begin with, let us first illustrate some salient features of Glennan’s view of
causation. The mechanistic account of causation is proposed in opposition to a
time-honoured view according to which causality is grounded on Laws of Nature.
Accordingly:

Covering Principle: If an event e1 causes an event e2 then there are properties F, G such
that (a) e1 instantiates F, (b) e2 instantiates G and (c) “F instantiations are sufficient for G
instantiations” is a causal law. ([12] p. 64), quoted in [16])

According to Glennan, causal relations are always grounded in an underlying
mechanism: “a mechanical theory of causation suggests that two events are causally
connected when and only when there is a mechanism connecting them” ([13], p. 64),
where:

A mechanism for a behavior is a complex system that produces that behavior by the inter-
action of a number of parts, where the interactions between parts can be characterized by
direct, invariant, change-relating generalizations ([15], p. S344)
1To cite but some of the most recent, dispositional accounts (i.e. [19] and [20]) or process

accounts (e.g. [2])
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In contrast with the above seen quotation by Fodor, which describes a generalist
account of causal relations, Glennan’s account of causal relations is a singularist
one: what grounds causal relations are individual mechanisms, while causal laws
are typically descriptions of the regular behaviour of a mechanism. According to
Glennan, the chief virtue of the mechanistic account is that it makes the issue of
distinguishing between causal connections and accidental conjunctions a scientific
one: in order to show whether two events are genuinely causally connected, it is
sufficient to show that there is a mechanism connecting them.
Mechanisms are hierarchical systems, in the sense that each part of a mechanism
is a mechanism itself and its behavior is therefore explainable with the description
of its components and the interaction between them [16]. This process of regress,
though, is not infinite. At one point one reaches a level where mechanistic reasoning
and mechanistic explanation have no place. This follows, under an atomist stance,
straightforwardly by assumption: if the layers of physical composition have a bot-
tom level, i.e., the level of the most elementary components of the world – then,
by assumption, the behaviour of such elements cannot be explained in terms of
the interaction between its component parts. But regardless of whether or not one
adopts an atomist stance, mechanistic reasoning, and mechanisticexplanations with
it, drastically loses its ubiquitous role at the level of current fundamental physics
[25]. But, since there is a level of fundamental physics, where phenomena are not
underpinned by mechanisms, “how do we explain the causal connection between
events at the level of fundamental physics?” ([13], p. 64)
This is the so-called bottoming-out problem. Glennan’s reaction to it is that “there
should be a dichotomy in our understanding of causation between the case of funda-
mental physics and that of other sciences (including much of physics itself)” ([13], p.
3). However, the acknowledgement of an ancillary account of causation specific for
that domain where the mechanistic account does not work, sounds suspiciously ad
hoc. One might as well ask why someone who thinks that the mechanistic account
successfully captures the essence of causal relations, should not rather acknowledge
that the phenomena which do not fall in this definition are non-causal. In this case,
causation would only characterize higher level phenomena, concerning higher-level
complex systems, whose behaviour depends on the interactions between their com-
ponents. So far, the hypothesis of the non-causality of mechanistically fundamental
phenomena has never been taken in serious consideration because of the shared
belief that, in order to be consistent, the mechanistic view of causation requires
causation to go all the way down to the most elementary relations. In the next
section I will reconsider such arguments and counter to them.

3 Mechanistic Causality without fundamental causality
At this point I should point out that, as a pluralist towards the semantics of cau-
sation, I am not at ease with a universal metaphysical account of causal relations.2
That said, I also think that the dualistic solution is not good for the equilibrium
of the mechanistic account and that the the bottoming-out problem should not be
a reason to reject the mechanistic account of causation. In the rest of this paper

2For an example of a pluralist stance in causation, see for instance [18] and [21].
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I want to outline the basics of a way to tackle the issue of causality in fundamen-
tal physics, by keeping consistency with the mechanistic approach to causality at
higher levels.
Glennan considers the possibility that there is no causation at the fundamental level,
but discards it because he thinks that higher-level causation should be grounded on
causation at the most fundamental level:

This explanation of the role of causal mechanisms is available so long as the generalizations are
mechanically explicable, but here we come to what may seem the key metaphysical issue. If
mechanisms are truly going to explain how one event produces another, all of the interactions
between parts, at all levels in the hierarchy of mechanisms, will need to be genuinely causally
productive. If it were to turn out that these interactions at the fundamental level were not
truly interactions, then none of the putative causal relations mediated by mechanisms would
be genuine. ([17], p. 811)

A first answer to this worry is that the solution no-causality-at-the-fundamental-
level is in harmony with the ’anti-fundamentalist’ spirit at the foundations of the
New Mechanistic philosophy. Fundamentalism is the view, suggested by the tradi-
tional philosophical accounts of causation and causal explanation, that causation
must be grounded in the most fundamental physical processes,3 or that “good ex-
planations can be formulated only at the most fundamental level” ([5], p. 11, n. 13).
But if causation does not need to be grounded in the most fundamental physical
processes, it should be therefore possible to have causation at higher-levels without
causation at the most fundamental level.
In his discussion of Glennan’s proposal, Carl Craver ([5], p. 90-91) anticipates such
a natural appeal to anti-fundamentalism and objects to it. Craver focuses on the
fact that Glennan’s mechanistic account aspires to meet Hume’s challenge of the
non observability of causation, as a secret necessary connection which binds cause
and effect. He therefore takes for granted that any account meeting Hume’s chal-
lenge must describe causation as a necessary connection. As such – the argument
goes – causation must go all the way down to the bottom level.

Suppose that one is trying to understand the necessary connection between X and Y (that
is, X →Y) at one level above the fundamental level. Glennan [13] says that the necessity in
the connection between X and Y should be understood in terms of the connections between
items at the fundamental level, say, X →a →b →Y. Glennan grants that a and b have no
necessary connection between them4 and that talk of causal relevance and manipulation such
3“the mechanical theory of causation rejects a wide-spread assumption about the nature of

causation [...] that whatever causal connections are, they ultimately have something to do with
the most fundamental physical processes. The closer we are to fundamental physics, the more our
statements are about the true causes of things; the further we stray into the higher level sciences,
the more we move away from causal statements and toward mere empirical generalizations.” ([13],
p. 22)

4That there is no necessary connection between a and b follows from the assumption that there
is no causation at the fundamental level” in the following way: since in this context necessity is a
feature of causation, then if there is no causation, there is no necessity. The fact that there might
be necessary connections which are non-causal is here irrelevant – as what Craver is trying to show
is that causal relations (as necessary connections) must be built on causal relations (as necessary
connections). Craver does not need to claim (and would not be justified to claim) that non-causal
connections are always non-necessary because it is irrelevant for the argument he is making. I am
grateful to an anonimous referee for pointing out this possible misunderstanding.
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a connection may be unintelligible. But how can a necessary causal connection between X
and Y be built out of relations in which there is no necessary connection and for which such
talk is unintelligible?

Craver’s argument assumes that causation is a necessary connection. Once such
a characterization is granted, it is hardly deniable that causation at higher level
cannot be built out of more fundamental non-causal connections.
However, it is debatable whether necessity naturally fits in the mechanistic answer
to Hume’s challenge.
First of all, a straightforward consequence of replacing Laws of Nature with mecha-
nisms at the foundations of causation, is exactly that one should give up the concept
of necessity. This is evident in general for those accounts of mechanisms in which
interactions between parts are regulated by ’regular, change-relating generaliza-
tions’ (e.g. [17], but apply also to Craver’s account of mechanisms [5]). Contrarily
to Laws of Nature, regular change-relating generalizations (or, with [5] expression:
’more or less invariant change-relating generalizations’) are not exceptionless and
cannot therefore constitute a necessary connection.
More generally, however, necessity is not part of the natural categorial framework
of the New Mechanistic philosophy. The well-known issues related to the concept
of necessary, exceptionless regularities are in fact among the primary motivations
for replacing the concept of Laws of Nature with the concept of mechanism at the
heart of many discussions in the philosophy of science (e.g. [26], S 3.2). The partial
conclusion of this section is that the arguments typically appealed to in order to
prove that a mechanistic account of causation necessitates causation at the funda-
mental level are ineffective.
At this point it is important to notice that the conjecture that fundamental phe-
nomena are non-causal is far from being an ad hoc hypothesis or a terminological
stratagem, uniquely motivated by the bottoming-out problem. On the contrary,
there are various independent arguments to support such conclusion. First of all,
fundamental phenomena are not only problematic for the mechanistic account, but
also for Woodward’s difference-making account, which is the other most relevant
scientifically informed account of causality.
Moreover, independently of a specific account of scientific causation, fundamental
laws seem to resist causal interpretations, even in the lightest possible characteri-
zation of causality. Of course there are the already well-known arguments to the
conclusion that causal notions play no role in this domain (e.g. most notably [11]
and [29]). But this resistance is particularly striking when one considers the histories
of failed attempts to provide a causal account of fundamental physical phenomena.
Consider for instance, length contraction – which has for decades resisted attempts
to be explained by means of a mechanist explanation based on a more fundamental
theory of matter – the Uncertainty Relations, but also non-local quantum correla-
tions [6] [8] [9] [10].

4 Regularities and counterfactuals
Up to this point I hope I have succeeded in showing that Glennan’s mechanistic ac-
count of causation might be consistent with a no-causality-at-the-fundamental-level
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view. In this last section I tackle the problem of accounting for regular behaviours
and counterfactuals at the fundamental level.
As we have seen, following the mechanistic account, interactions between the com-
ponent parts of a mechanism are characterized by invariant and change-relating
generalizations ([14], p. S344). The regular behaviour related to causal processes is
therefore explained through the robustness of the mechanism’s parts, in the sense
that their behaviour are stable, and it is in principle possible to take out a part of
the mechanism and consider its properties in another context. ([13], p.53) More-
over, mechanisms provide a straightforward understanding of counterfactual claims.
Rather than being characterized by appealing to an abstract notion of similarity be-
tween possible worlds, or unanalysed notions of cause or propensity, counterfactual
claims are justified by our knowledge of the model of a mechanism:

Given a model of a mechanism that exhibits the functional dependence of variables that
represent the mechanism’s parts and their properties, one evaluates a counterfactual claim
by using the model to calculate what would happen if one were to intervene and fix the value
of a variable to the antecedent of the counterfactual. ([17], p. 806).

This section approaches therefore the bottoming-out problem as the problem
of accounting for regularities and counterfactuals at the fundamental level, with-
out appealing to mechanisms and causality and in a way that is consistent with
the mechanistic account of higher-level causality, regularities and counterfactuals.
Once again, I am not going to provide a full fledged account of regularities and
counterfactuals in fundamental physics – the limited aim of the following discus-
sion is to argue that it is possible to account for regularities and counterfactuals
in fundamental physics in a no-causation-at-the-fundamental-level solution to the
bottoming-out problem.

We have seen in S 1 that in contrast with the criterion put forward in Fodor’s
quoted passage (which appeals to the existence of Laws of Nature as universals)
Glennan’s version of the mechanistic account of causation privileges a singularist
view. Mechanisms are, in fact, “particular systems of interacting parts, where these
interactions occur at a particular place and time”. ([17], p. 809) Causality, therefore,
is a relation between individual events and general causal claims are only general-
izations of such individual relations. In order for our solution to be consistent with
the mechanistic account, the former must therefore be coherent with a singularist
stance.
It goes without saying that we cannot appeal to Laws of Nature. This would betray
the spirit of singularism and imply giving up the ontological parsimony featur-
ing Glennan’s account and that represents two of its strengths. Moreover, in the
previous section, I have rejected the characterization of causality as a necessary
connection, in any connotation that goes beyond the robustness and justification of
counterfactuals that are justified by our knowledge of the mechanisms – so, again,
necessity is out of question also at the fundamental level.
Let’s first tackle the problem of regularities in fundamental physics. A first way to
see the problem is to say that if there is no robust mechanism, nor law, then the
fact that different systems in the same initial state behave in the same way calls for
an explanation. According to this view, if, in the spirit of singularism, the evolu-
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tion of a system would only depend on facts that are immanent to such particular
instance, it would be a mystery that systems in the same state behave in the same
way. Thus, it would seem that we need an explanation of this common behaviour,
in the form of some common metaphysical underpinning.
But is it true that we need an explanation in the first place? When can we say
that a phenomenon P requires an explanation? Notice that the question here does
not concern the necessity of a scientific explanation – the explanation of regularities
is not the aim of scientific, but of philosophical investigation – but neither are we
concerned by a generic metaphysical explanation. The question is instead whether
one could expect an explanation of regularities, of the sort one could expect to come
from the domain of the metaphysics of science – a metaphysics which is informed
by scientific issues and knowledge.
On the basis of this, my proposal is that in order to claim that P requires an expla-
nation, without which P would remain an ’unexplainable mystery’, P must create a
tension in our (scientific) representation of the world. This might be either because
P is incoherent with some other element of such representation, or even just because
we have some reasons to expect non-P to be true, rather than P. Is any of this the
case for regularities and the alleged problem of accounting for them philosophically?
Let us therefore say, in the spirit of singularism, that each system’s behaviour de-
pends only on factors that are immanent to the specific situation. Under such an
assumption, I take it that there is nothing logically incoherent in the fact that sys-
tems that are similar in the relevant respect, behave in the same way. Here, ’similar
in the relevant respect’ must be understood in the minimal sense ’the relevant vari-
ables take the same values’. For instance, let’s take a simplified case and say that
I know that a behaviour of system S exclusively depends on the value of variables
A and B of S. Let’s say that the behaviour of S depends on A and B taking the
values a and b in S. There is nothing logically incoherent in the fact that every
other system which is not S, but in which A and B take the values a and b, also
exhibit that behaviour. (Incidentally, I am obviously not arguing here that one can
legitimately infer which variables are relevant for a behaviour, from the analysis of
one single case. The epistemic problems concerning regularities are ignored in this
argument.)
Maybe, however, it might be said that, as a matter of pure ’metaphysical intuition’,
it is more ’natural’ to expect non-regular behaviours in the world, i.e. that systems
that are similar in the same relevant respect, behave (deterministically or stochas-
tically, this is irrelevant) in different ways.
My pure metaphysical intuition, however, does not say so: it is just not clear to me
why one should expect that systems that are similar in the relevant aspects should
behave differently. Indeed, I would find it a mystery, one in need of an explanation,
if such similar systems behaved in different ways! Of course, one might counter-
argue that my metaphysical intuition has been instilled by a life-long experience of
regularities and that this is why I expect similar behaviour in similar systems. This
might be true, however intuition has always the defect of being formed in one way
or another by experience, or, anyway, we have no mean to say how an intuition has
been formed, nor mean to guarantee a purely intuitive metaphysical judgment. The
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same doubt, therefore, applies to the opposite intuition as much as to mine.
Once both the charge of inconsistency and that of counter-intuitiveness are ruled
out, insisting on the requirement for an explanation of regularities in terms of a
metaphysical underpinning seems to me a sort of a ’metaphysical obsession’ – a
question as pertinent to the scope of philosophy of science as questions like: “why
is there change?” or “why is there something rather than nothing?”.
Besides considerations on metaphysical possibilities or intuition, there is a more
epistemically driven consideration that suggests that regularities do not require an
explanation within a metaphysics of science. In real scientific practice, the assump-
tion that similar systems behave in the same way plays the role of an a priori
assumption for theoretical research. Here, one typically starts an inquiry from the
consideration of a regular common behaviour in a set of systems. Such a com-
mon behaviour is then explained by the assumption that the concerned systems are
similar in a relevant respect that determines such behaviour. On the other hand,
anomalies in the behaviour of some systems within an ensemble, are explained by
the assumption that some unknown factor (relevant to the anomalous behaviour)
makes such systems different from the others.
To expect an explanation for the fact that similar systems behave in the same way,
therefore, means turning the logical explanatory order used in science upside down:
you should not try to explain an a priori of your knowledge!
The second issue is to account for counterfactuals. The question is how to account
for counterfactuals at the fundamental level if there is no causation, no mechanism
and no Laws of Nature. Remember that within Glennan’s theory “one evaluates a
counterfactual claim by using the model to calculate what would happen if one were
to intervene and fix the value of a variable to the antecedent of the counterfactual.”
At the fundamental level, the justification of counterfactuals here works exactly as
it does at higher levels, although the functional dependencies are here not provided
by a mechanistic model, but by a mathematical model. The justification of our
counterfactual inferences comes therefore from the justification of the model (more
on the justification of the model, by top-down or bottom-up strategy can be found
in [3]).

5 Conclusions
In this paper I have faced the so-called bottoming-out problem in Stuart Glennan’s
account of causation. In particular, I have argued that a possible solution to the
problem – the no-causality-at-the-fundamental-level solution – has been unjustly
dismissed as a viable option. I have pointed out three questions that have been (or
might be) considered problematic in such an option: how to ground mechanistically
understood causal relations on non-causal relations, how to account for regular be-
haviour, and how to account for counterfactuals without an underlying mechanism
at the fundamental level. With respect to the first of these issues, I have answered
at some standard objections found in the literature. The two other issues are not
explicitly treated in the literature, probably because the first problem has been
usually considered deadly for the no-causality-at-the-fundamental-level hypothesis.
The analysis here proposed of these problems, therefore, is necessarily more at a
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programmatic stage than the first one. However, I hope I have shown that the first,
most straightforward doubts that a no-causality-at-the-fundamental-level solution
might raise with respect to an account of regularities and counterfactuals at a fun-
damental level might be approachable. In particular, on the one hand the approach
to counterfactuals at the fundamental level would be based on the same logic that
applies to mechanisms; on the other hand, the approach to regularities consists in
rejecting the very same request for an explanation.
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Quantity of Matter or Intrinsic Property:
Why Mass Cannot Be Both

Mario Hubert

abstract. I analyze the meaning of mass in Newtonian mechanics. First,
I explain the notion of primitive ontology, which was originally introduced
in the philosophy of quantum mechanics. Then I examine the two common
interpretations of mass: mass as a measure of the quantity of matter and
mass as a dynamical property. I claim that the former is ill-defined, and the
latter is only plausible with respect to a metaphysical interpretation of laws
of nature. I explore the following options for the status of laws: Humeanism,
primitivism about laws, dispositionalism, and ontic structural realism.

1 Primitive Ontology
Any scientific theory must explicitly state what it is about. In particular, every
fundamental physical theory must explain the aspect of the world to which its
mathematical formalism refers. Albert Einstein reminds us of this truism:

Any serious consideration of a physical theory must take into account
the distinction between the objective reality, which is independent of any
theory, and the physical concepts with which the theory operates. These
concepts are intended to correspond with the objective reality, and by
means of these concepts we picture this reality ourselves. (Einstein,
Podolsky and Rosen 1935 [3], p. 777)

This seemingly innocent quote contains a strong metaphysical claim and a non-
trivial epistemological assertion. On the one hand, Einstein presupposes a world
existing in- dependently of any human being. There is an objective reality irrespec-
tive of the way we perceive or make judgments about it. On the other hand, we
can form physical theories in order to account for the behavior of objects in the
world. Physics, in particular, uses mathematics as its central language. And here
lies the challenge physics has to meet, since the mathematical entities, like numbers
or functions, do not refer to anything in the world unless they are interpreted as
doing so. An even greater problem arises when the mathematical entities refer to
objects that cannot be directly perceived by our sense organs, for there is always a
grain of doubt about their existence.

But physical theories, by means of mathematics, are all we have to explain and
predict the behavior of objects, such as electrons, tables, stars, and galaxies. And
not all the mathematical entities of a physical theory stand on an equal footing.
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First, the theory has to postulate basic material entities that are supposed to be
the constituents of all the objects around us. Without this requirement, a physical
theory is empty.

This requirement for any fundamental physical theory started to get lost in the
formation of quantum mechanics. As such, Einstein continued to call attention to it
in his philosophical writings. And more than half a century later, the mathematical
physicists Dürr, Goldstein, and Zanghì formed the notion of a primitive ontology
(original paper from 1992 reprinted in Chap. 2 of Dürr, Goldstein, and Zanghì 2013
[2]) to remind us that quantum mechanics has to postulate certain basic objects in
order to be a meaningful theory.

By definition, a primitive ontology consists of the fundamental building blocks
of matter in three-dimensional space. It cannot simply be inferred from the math-
ematical formalism of the theory. Instead, it must be postulated as its referent. So
all objects, like tables and chairs, are constituted by the elements of the primitive
ontology, and the behavior of these elements determines the behavior of the objects.
Maudlin (2015) [7] emphasizes that with the help of a primitive ontology, a phys-
ical theory establishes a connection between theory and data. In particular, every
measurement-outcome can eventually be explained in terms of a primitive ontology,
and the measurement apparatus has no special status with respect to the measured
system.

So what do the elements of a primitive ontology look like? This depends on
the physical theory we use. In quantum mechanics, for instance, there are three
famous options, which actually lead to three different theories and not only to three
different interpretations of the same theory: Bohmian mechanics presupposes a
particle ontology; GRWm, a continuous distribution of matter; and GRWf, flashes,
that is, a discrete distribution of events in space-time. As in the Bohmian case, the
primitive ontology of Newtonian mechanics consists only of particles.1 Particles are
point-size objects sitting on points of Newton’s absolute space. A point in space
can either be occupied by a particle, or it can stay empty. And therefore two or
more particles cannot share the same point in space at the same time.

In order to account for the behavior of the primitive ontology, a physical theory
has to introduce dynamical entities. The predominant dynamical elements of New-
tonian mechanics are mass and forces. The standard story is that particles have
mass, and in virtue of having mass they exert certain forces between one another.
Mass and forces play a different role to particles. While particles constitute all
physical objects, mass and forces constrain the motion of the particles.

In this paper, I focus on the ontological role of mass—forces will be treated only
in so far as they elucidate the role of mass. There are two standard ways to interpret
the ontological status of mass: it can be the measure of the quantity of matter or
an intrinsic property of particles. I argue in the next section that the quantity
of matter has to be defined in a different way. In Section 3, I explain that the

1I consider Newtonian mechanics an action-at-a-distance theory. Interpreting this theory as
postulating a gravitational field in addition to the particles would open Pandora’s box about the
ontological status of fields in general. A detailed treatment of classical fields is beyond the scope
of this paper.
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status of properties depends on the metaphysics of laws of nature. There are three
predominant positions: Humeanism, primitivism about laws, and dispositionalism.
In each theory mass plays a different ontological role.

2 Mass and Quantity of Matter
Newton starts his Mathematical Principles of Natural Philosophy with a definition
of the quantity of matter:

Definition 1
Quantity of matter is a measure of matter that arises from its density
and volume jointly.
If the density of air is doubled in a space that is also doubled, there is four
times as much air, and there is six times as much if the space is tripled.
The case is the same for snow and powders condensed by compression
or liquefaction, and also for all bodies that are condensed in various
ways by any causes whatsoever. [. . . ] Furthermore, I mean this quantity
whenever I use the term “body” or “mass” in the following pages. It can
always be known from a body’s weight, for—by making very accurate
experiments with pendulum—I have found it to be proportional to the
weight, as will be shown below. (Newton 1999 [17], pp. 403-404)

If mass is defined as density times volume, then the notion of mass has no physical
content or explanatory value, since the density itself is defined as mass per volume.
Ernst Mach harshly criticizes Newton’s definition on this point:

Definition 1 is, as has already been set forth a pseudo-definition. The
concept of mass is not made clearer by describing mass as the product
of the volume into density as density itself denotes simply the mass of
unit volume. The true definition of mass can be deduced only from the
dynamical relations of bodies. (Mach 1919 [14], p. 241)

Newton does not give a definition of density; nor is density examined in the scholium
following the definitions. It seems that Newton assumes that the reader has a pre-
knowledge or an intuition about density such that Definition 1 is more of a rule
showing how mass, volume, and density are related rather than a logical definition.
As Mach correctly states, a definition of mass in the above sense does not work,
which leads to the following two questions:

1. What does “quantity of matter” mean?

2. Is mass connected to the quantity of matter?

Concerning the first question, a primitive ontology of particles allows us to count
the particles in a certain volume, and it is natural to take this as the definition of
quantity of matter without getting into any redundancy. For instance, the quantity
of matter of a table consists then of the number of particles, which form the table.
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Since the particles themselves have no internal structure, it does not make sense
to assign a quantity of matter to each. At least, it is not meaningful to assign
different quantities of matter to particles so that a particle A carries a quantity of
matter a, and particle B carries a quantity of matter b, with a , b.

Besides, physics in general and Newtonian mechanics in particular do not need a
separate or independent notion of quantity of matter in order to be applied to the
world. Statistical mechanics, which relies on counting the number of particles, does
not run into conceptual or empirical problems despite lacking an additional notion
of the quantity of matter. So it is more precise and parsimonious to define quantity
of matter by the number of particles.

Concerning the second question, Newton himself confesses in the last sentence
of the quote above that we only have epistemic access to mass when weighing an
object, and from the weight we can deduce the quantity of matter. Mach goes a step
further, stating that “[t]he true definition of mass can be deduced only from the
dynamical relations of bodies.” In this regard, mass is not related to the quantity
of matter of an object. Instead, its true and only meaning is dynamical.

3 Mass as a Dynamical Property
The dynamical role of mass is captured in Newton’s first and second law of motion.

Law 1
Every body perseveres in its state of being at rest or of moving uniformly
straight forward, except insofar as it is compelled to change its state by
forces impressed.

Law 2
A change in motion is proportional to the motive force impressed and
takes place along the straight line in which that force is impressed. (New-
ton 1999 [17], p. 416)

The first law states that the natural motion of a particle is inertial motion, that is,
either staying at rest or moving with constant velocity in a straight line. The only
thing that can change this motion is the influence of external forces. The second
law then shows exactly how the forces act on the particle: first, the stronger the
force the greater the acceleration, and, second, the acceleration is parallel to the
external force.

Newton’s second law is nowadays mathematically formulated as a differential
equation. Consider N particles P1, . . . , PN at positions ~q1 . . . , ~qN ; their trajectories
~q1(t), . . . , ~qN (t) fulfill the differential equation

~Fi
(
~q1(t), . . . , ~qN (t), ~̇q1(t), . . . , ~̇qN (t), t

)
= mi~̈qi(t), (1)

where ~Fi is the force on the i-th particle, ~̇qi its velocity, ~̈qi its acceleration, andmi its
inertial mass. Clearly, the above differential equation makes precise what Newton
put into words. And it includes the content of his first law, too: the absence of forces
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results in inertial motion. So there is actually only one law of motion that generates
all classical trajectories of particles, namely, the above differential equation (1).

Still, the law of motion is not complete. We need a precise formulation of the
forces involved. On the fundamental level, one important force is gravitation:

~Fi (~q1, . . . , ~qN ) =
∑
j,i

Gmimj
~qj − ~qi
‖~qj − ~qi‖3

(2)

with the gravitational constant G and the gravitational masses mi and mj of the
particles Pi and Pj respectively. The inertial and gravitational masses are a priori
physically distinct quantities: the former is a feature of all particles and must be
considered in all kinds of interactions; the latter is a specific quantity as part of the
law of gravitation (2). It is an empirical fact that inertial mass equals gravitational
mass, and, therefore, we can treat them as one quantity. Note also that in Newton’s
theory there are no massless particles, because equation (1) breaks down if we insert
m = 0. So mass is an essential feature of particles in Newtonian mechanics.

Construed as a dynamical property, there are three ways in which physics de-
scribes mass:

1. mass is an intrinsic property of particles;

2. mass is just a parameter of the laws of motion;

3. mass is a coupling constant.

I claim that these three interpretations can only be made precise with respect to
some metaphysical framework. In what follows, we discuss mass in the framework
of Humeanism, primitivism about laws, and dispositionalism. Finally I interpret
mass within the theory of ontic structural realism, which I regard as an instance of
dispositionalism.

Humean Supervenience
Humean supervenience, the modern form of Hume’s metaphysics, was first posited
by David Lewis:

It is the doctrine that all there is to the world is a vast mosaic of local
matters of fact, just one little thing and then another. [. . . ] We have
geometry: a system of external relations of spatiotemporal distance be-
tween points. Maybe points of spacetime itself, maybe point-sized bits
of matter or aether fields, maybe both. And at those points we have
local qualities: perfectly natural intrinsic properties which need nothing
bigger than a point at which to be instantiated. For short: we have an
arrangement of qualities. And that is all. All else supervenes on that.
(Lewis 1986 [11], pp. ix-x)

The ontology of Humean supervenience is characterized by the contingent distri-
bution of local matters of particular facts: the Humean mosaic. There is a net of
spatiotemporal points that are connected only by external metrical relations, and,
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at those points, certain qualities can be instantiated by at least one of three entities
that Lewis regards as fundamental: space-time itself, particles, or values of fields.
Given some initial distribution of those qualities there is nothing in the ontology
that constrains its further development.

Obviously, our world contains regularities, but on the Humean view this is just
a contingent fact. In order to avoid giving an enormously long list of particular
facts describing these regularities, (Lewis 1994 [12], p. 478) introduces his best
system account of laws of nature. According to his proposal, the laws of nature are
theorems of the best deductive system, which combines or balances simplicity and
strength in describing the temporal development of local matters of particular facts
throughout space and time. A long list of these facts would be highly informative but
very complex, whereas a single law of nature would be very simple but probably not
contain enough information. So the best system comprises a certain finite number
of laws of nature as theorems, which offer the perfect compromise.

In Lewis’s Humeanism, mass can be part of the ontology of the mosaic: in which
case it is a “natural intrinsic property” instantiated at points of space-time. This
move, however, poses a serious metaphysical problem: mass becomes a categorical
property that is defined as independent of the causal role it plays in the world.
Hence, mass has a primitive identity or quiddity, which allows it to play a different
causal role in another possible world. For example, in another possible world mass
could play the role of charge. This would be the very same property that we call
mass, but it would act like charge does in our world.

This seems absurd and leads to the problem—called humility—of our not having
epistemic access to the true identity of mass, because all we can know are the causal
consequences of properties. So, given two worlds that coincide in the temporal
development of all their particles, it would, first, be metaphysically possible for these
worlds to be different with respect to the quiddity of their categorical properties,
and, second, it would be impossible for us to know which world we inhabited. Lewis
bites the bullet and accepts this metaphysical burden in favor of a sparse ontology
with no modal connections.

Ned Hall (see Sec. 5.2 of Hall 2009 [9]) proposes a different strategy for con-
ceptualizing the status of mass. He interprets the Humean mosaic as consisting
solely of point-sized particles standing in certain spatiotemporal relations (see also
Loewer 1996 [13] and Esfeld 2014 [5]). The particles do not have intrinsic prop-
erties, let alone categorical ones, and all non-modal facts about the world are just
the positions of these particles. Mass enters the scene as part of the best system
describing the temporal development of the particles, as part of the fundamental
laws of nature in the Humean sense, and as part of the differential equations that
describe the trajectories of particles. In a description of the history of the world
that balances simplicity and informativeness, mass functions as a parameter in this
best system.

For Newtonian mechanics, restricted to gravitational interaction, the best system
may be interpreted as consisting of the equations (1) and (2). As a way of speak-
ing or as a convenient metaphor, we can ascribe these parameters to the particles
themselves such that every particle Pi is characterized by a magnitude mi. But this
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interpretation of mass does not change or add anything to the ontology. The dis-
tribution of propertyless particles is the entire ontology; everything else, including
mass, supervenes on this mosaic. As such, there are no categorical properties in the
ontology, and the problem of quiddity or humility does not arise in this version of
Humean supervenience.

One general critique attacks Humean supervenience on a point that Humeans
regard as one of its greatest virtues: the sparse ontology that lacks modal connec-
tions. It is unsatisfactory that there are no facts about why we see regularities in
our world. Even the laws of nature as part of the best system cannot explain why
particles follow a Newtonian trajectory. For particles just move as they do, in a
contingent way. All a Humean can do is give a good description or summary of the
regularities, and if the regularities change she has to change her description too.
Consequently, we have to include modal connections in the ontology.

Primitivism about Laws
Primitivism about laws regards the existence of the laws of nature as a primitive
fact, where the laws themselves govern the behavior of the primitive ontology. One
famous adherent of this position is Tim Maudlin:

To the ontological question of what makes a regularity into a law of
nature I answer that lawhood is a primitive status. Nothing further,
neither relations among universals nor role in a theory, promotes a reg-
ularity into a law. [. . . ] My analysis of laws is no analysis at all. Rather
I suggest we accept laws as fundamental entities in our ontology. Or,
speaking at the conceptual level, the notion of a law cannot be reduced to
other more primitive notions. The only hope of justifying this approach
is to show that having accepted laws as building blocks we can explain
how our beliefs about laws determine our beliefs in other domains. Such
results come in profusion. (Maudlin 2007 [7], pp. 17-18)

As stated by Maudlin, the entire ontology is made up of the primitive ontology plus
the laws of nature. It is a primitive fact that there are laws of nature, and that
particles move according to these laws. The task of physics, then, is to discover
these laws. For instance, it is a primitive fact that equations (1) and (2) hold in
a Newtonian universe, and here we come to an answer regarding why a particle
follows a Newtonian trajectory: because there are such laws.

What is the role of mass in this framework, then? It is just a parameter of
the Newtonian laws of motion referring to nothing at all in the primitive ontology.
Mass is not a parameter that results from the best description, as in the Humean
case; rather it is an essential parameter of the laws of nature leading to correct
trajectories.

The notion of a parameter is slightly inappropriate here, because it invites us to
think about mass as being adjusted or altered under certain circumstances. But the
only circumstance available to us is the universe as a whole. There is a primitive
ontology consisting of N particles and the laws of nature. And it happens to be
the case that the law is formulated such that there are N constants m1, . . . ,mN .
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So it seems more appropriate to interpret m1, . . . ,mN as constants of nature on a
par with the gravitational constant G or Planck’s constant ~. Recognizing masses
as constants of nature is clearer and more in the spirit of primitivism than dubbing
them parameters. It is likely that the idea of mass as a parameter came from
the application of Newton’s laws to real life cases, where it had to be adjusted to
describe the physical bodies of a given subsystem.

Similarly to Hall, one can pretend that the parameter mass is “located” at the
particle’s position and speak as if it were an intrinsic property of particles. In this
sense mass still has a purely nomological role, but this way of speaking may aid our
intuition.

Primitivism about laws retrieves modal connections as part of ontology in the
form of laws. Maudlin does not state how laws are connected to the primitive
ontology. There seems to be an intuition that laws “govern” or “direct” the behavior
of particles, but these phrases are purely metaphorical (Loewer 1996 [13], p. 119).
In the above quote, there is no attempt to explain these metaphors: “lawhood
is a primitive status.” Nevertheless, one can ask, “How can a law as an abstract
entity govern anything in the world? How can particles or any material body
‘obey’ these laws?” Primitivism about laws just answers, “It is a primitive fact.”
Nonetheless, one position that tries to answer these questions by introducing an
underlying mechanism is dispositionalism.

Dispositionalism
This strategy tries to recover modal connections by introducing dynamical prop-
erties into physical systems, which are called dispositions or powers (for instance,
Bird 2007 [1]). Accordingly, a physical system behaves the way it does because
it has a certain property or disposition to do so. This idea can be applied to the
primitive ontology of Newtonian mechanics. Mass is then an intrinsic property of
particles. It is intrinsic in the sense that the mass of one particle does not depend
on the masses of other particles.

Mass, interpreted as a disposition, does not give an intrinsic identity to parti-
cles. The identity of particles stems from their location in space. Since Newtonian
mechanics relies on an absolute background space, where every point in space is by
definition distinguished from any other point in space, it is sufficient to ground the
identity of particles on their position in absolute space.2 The role of mass is solely
a dynamical one; that is to say, it constrains the motion of particles.

Moreover, it is essential for mass to have the same causal-nomological role in
all possible worlds; it is not a categorical property, and consequently it does not
bear the problems of either quiddity or humility. This causal-nomological role is
expressed by Newton’s laws (1) and (2). In other words, Newton’s laws are grounded
in the ontology by the intrinsic masses of particles. Our epistemic access to mass as
a disposition is possible through observation of what it does in the world, that is, its
causal-nomological role; and the laws of nature (1) and (2) are a concise expression
of its effects.

2As argued in Esfeld, Lazarovici, Lam and Hubert 2015 [7], this can be already done in a
relational space.
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A crucial feature of dispositions is their need for certain triggering conditions in
order to be manifested in the world. Zooming into Newton’s second law (1) we can
see the following: the manifestation of the mass mj of particle Pj at time t is its
acceleration ~aj(t) given the positions and velocities of all the particles (including Pj)
at time t. So the positions and velocities of all particles are triggering conditions for
the manifestation of mass. In the case of gravitation, the mass mj cancels out on
both sides of (1), and we deduce that the acceleration ~aj(t) does not mathematically
depend onmj . Yet, ~aj(t) is the manifestation of the mass of the j-th particle, though
it is independent of the precise value of mj .

Ontic Structural Realism
The interpretation of mass as a coupling constant does not seem to fit either of
the metaphysical schemes discussed above. What is the ontological status of mass
distinct from its being an intrinsic property of particles or a constant in the laws
of motion? Mass, interpreted as a coupling constant, emphasizes the dynamical
relations between particles. Particles move as they do because they stand in certain
relations described by Newton’s laws (1) and (2), and the role of mass is then to
quantify these relations.

A metaphysical approach that supports this view is ontic structural realism
(OSR). According to the original idea of OSR, the world consists purely of struc-
tures, all the way down to the fundamental level (Ladyman and Ross 2007 [10],
French 2014 [8]). If there happen to be physical objects in the ontology, they are
interpreted as nodes of structures. And this is the weak point of OSR, because the
existence of structures without objects to instantiate them is implausible. Esfeld
(2009) [4] therefore suggests that OSR requires objects as the relata of structures,
and he interprets the structures as being modal. That is to say, they constrain the
temporal development of the objects instantiating them.

Esfeld’s proposal qualifies OSR as an instance of dispositionalism. The only dif-
ference lies in the nature of the dynamical entities. Intrinsic properties are no longer
responsible for the dynamical constraints; this task is fulfilled solely by relations be-
tween the elements of the primitive ontology.

It is now straightforward to apply this idea to Newtonian mechanics. Particles
are the objects that stand in certain spatiotemporal relations resulting from their
positions in absolute space, and in addition to these spatiotemporal relations they
stand in certain dynamical relations. The latter relations are the modal structure.
In the case of gravitation, this structure functions according to (2), and the mani-
festation of this structure is the acceleration of particles according to (1). Note that
the spatial relations between the particles are not modal, because these relations
alone have no causal-nomological role in the dynamical behavior of particles.

So mass cannot be interpreted as an intrinsic property of particles in this frame-
work; rather, it is a parameter that specifies the gravitational structure regarded as
an additive bipartite particle–particle relation according to (2), and, in this sense,
the particles are coupled. In other words, the motion of one particle changes the
motion of other particles in the universe because taken together particles instan-
tiate a dynamical structure. A crucial feature of this dynamical structure is that
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it is reducible to or separable into direct relations between two particles; this re-
duction fails in the quantum case, which requires a non-separable holistic structure
as proposed by Esfeld, Lazarovici, Hubert and Dürr 2014 [6]. In sum, the notion
of a coupling constant points to two aspects of mass: on the one hand, mass is
a constant in the laws of motion, and, on the other hand, this notion anticipates
dynamical relations between particles.

4 Conclusion
The aims of this paper were twofold. First, I showed that the notion of a primitive
ontology can be fruitfully used in classical mechanics. Second, I argued that the
status of mass depends on the metaphysics of the laws of nature. It subsequently
became clear that mass has to be interpreted as a dynamical entity introduced by
Newton’s laws of motion. The metaphysical theories that I discussed allow mass
to be construed in three different ways: it may be regarded as a parameter, as an
intrinsic property, or as a coupling constant. I tried to remain neutral with respect to
the “best” interpretation. A thorough evaluation of the different positions remains
to be undertaken.
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‘Geometry as a Branch of Physics’:
Philosophy at Work in Howard P. Robert-
son’s Contributions to Relativity Theories

Roberto Lalli

abstract. A historical analysis of the epistemological views held by the
mathematical physicist Howard P. Robertson is attempted. The specific fea-
tures of Robertson’s methodological prescriptions to define sound relationships
between geometry and experience will be brought out by comparing Robert-
son’s terminologies with those employed by other thinkers who addressed sim-
ilar issues. It will be shown that Robertson’s explicit epistemological claims
can be better understood as reflections on his daily work in theoretical physics.
The analysis will lead to suggest that Robertson’s ontological commitments
cannot be described as a form of explanatory realism as has been claimed.

1 Introduction
“Is space really curved?” With this question Howard Percy Robertson (1903-1961)
opened his contribution to the anthology Albert Einstein Philosopher-Scientist en-
titled ‘Geometry as a Branch of Physics,’ in which the well-known American math-
ematical physicist and cosmologist summarized his thoughts on the epistemology of
geometry in connection with the theory of general relativity.1

The issue concerning the ontological existence of curved space was of course not
new. The relationship between the theoretical framework of general relativity, its
empirical confirmations and the ontology of space and time had been at the heart
of debates on the philosophical interpretations of general relativity since the the-
ory was first formulated in November 1915. One might legitimately maintain that
Robertson’s eighteen-page paper did not, and could not, add much to the thirty-
year discussion between authoritative philosophers belonging to different traditions
including logical empiricism, neo-Kantianism and realism.2 Yet, Robertson’s essay
is of interest because it was an effort to translate in philosophical language a series

1Howard P. Robertson, “Geometry as a Branch of Physics,” in Albert Einstein: Philosopher-
Scientist, ed. Paul A. Schilpp (Evanston: Library of Living Philosophers, 1949), pp. 315-332.

2For the early philosophical interpretations of relativity theories with specific reference to their
implications for the concepts of space and time, see Michael Friedman, Foundations of Space-
Time Theories: Relativistic Physics and Philosophy of Science (Princeton: Princeton University
Press, 1987); Klaus Hentschel, Interpretationen und Fehlinterpretationen der speziellen und der
allgemeinen Relativitätstheorie durch Zeitgenossen Albert Einsteins (Boston: Birkhäuser, 1990);
and Thomas A. Ryckman, The Reign of Relativity: Philosophy in Physics 1915–1925 (New York:
Oxford University Press, 2005).
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of methodological prescriptions that shaped Robertson’s practice as an expert of
general relativity and group theory. The analysis of Robertson’s essay and a com-
parison between its conclusions and the arguments he actually employed in both
published papers and private letters allows for a historical scrutiny of the intercon-
nections between Robertson’s explicit epistemological positions and his daily work,
intended both as the employment of specific theoretical tools and the choices he
made among different approaches to theory construction, especially in the field of
cosmology.

In order to investigate these interconnections I structure the paper as follows. In
the first section, Robertson’s explicit epistemological positions exposed in his 1949
essay are outlined. To bring out the specific features of Robertson’s methodological
claims, in the second section I compare them to the views held by those authorita-
tive philosophers of the period who addressed the same topic in seemingly similar
manners. In the third section, I will put Robertson’s epistemological stances in
connection with what he actually did in his major contributions to the development
of relativistic cosmology. In the concluding remarks, I maintain that Robertson’s
ontological views cannot be interpreted as a simple form of explanatory realism.

2 Robertson’s methodology of physical geometry
Before going into the details of Robertson’s essay, I recall some of the most im-
portant scientific achievements Robertson accomplished in the course of his rather
short career, which stretched between the late 1920s and the late 1950s. After hav-
ing completed his postdoctoral studies in Göttingen and Munich acquiring a strong
expertise in differential geometry and group theory, in the late 1920s Robertson be-
came one of the most influential experts of general relativity theory and relativistic
cosmology in the United States. His most well-known result is the rigorous deriva-
tion of the so-called Friedmann-LemaÓtre-Robertson–Walker (FLRW) metric (also
called Robertson–Walker metric) between 1929 and 1935, which contains all the
geometries associated with the assumptions of homogeneity and isotropy of three-
dimensional space.3 In 1933, Robertson wrote the long review article ‘Relativistic
Cosmology,’ which promoted the expanding universe as the most reliable model for
a theoretical description of the universe. In doing that, Robertson introduced many
elements that are still part of the standard cosmological model.4 He also served as

3Robertson derived the line element that bears his name in various papers. The most quoted is
Howard P. Robertson, “Kinematics and world structure,” Astrophysical Journal, 82 (1935): 284–
301. In this paper, Robertson did not assume the validity of general relativity, but derived the
metric only from very general hypotheses concerning the isotropy and homogeneity of space. On
the centrality of the FLRW metric in the current standard model of relativistic cosmology see, e.g.,
Steven Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory
of Relativity (New York: Wiley and Sons, 1972), pp. 407-418; George F. R. Ellis, “Standard
Cosmology,” in Cosmology and Gravitation: Proceedings of the 5 th Brazilian School of Cosmology
and Gravitation, ed. M. Novello (Singapore: World Scientific, 1987), pp. 83-151.

4Howard P. Robertson, “Relativistic Cosmology,” Reviews of Modern Physics, 5 (1933): 62-
90. For comments and analyses on its relevance in the history of cosmology, see, George F. R.
Ellis, “The Expanding Universe: A History of Cosmology from 1917 to 1960,” in Einstein and
the History of General Relativity, Einstein Studies, Vol. 1, ed. Don Howard and John Stachel
(Boston: Birkhäuser, 1987), pp. 367-431; and George F. R. Ellis, “Editorial Note: H. P. Robertson,
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the main referee of various American journals for papers concerning general rela-
tivity, unified field theories and cosmology.5 Robertson, eventually, left the world
of pure research in physics, for he became involved in military activities as a sci-
entific advisor during and after World War II. He continued to teach mathematical
physics at Caltech until 1961, when he died due to some complications following a
car accident.6 Historians of physics agree that Robertson held a leadership posi-
tion in the field of general relativity in the period christened by Jean Eisenstaedt
the “low water mark of general relativity,” which roughly went from mid-1920s to
mid-1950s.7

In his essay ‘Geometry as a Branch of Physics,’ Robertson aimed at analyzing
the relationship between deduction and observation in the problem of physical space
from what he defined a “neutral mathematico-physical viewpoint in a form suitable
for incorporation into any otherwise reliable philosophical position.”8 Starting from
the assumption that geometry was a purely deductive science built on a set of axioms
and logical processes, Robertson’s explicit target was to define the methodology
that allowed one to choose the most appropriate geometry for the description of the
physical space in accord with the available empirical data.

At first, Robertson discussed congruence geometries, defined as those geometries
in which the intrinsic relations between elements of a configuration are unaffected by
the position and orientation of the configuration. Referring to the reflections on the
relationship between geometry and experience exposed by Hermann von Helmholtz,
Robertson recognized that congruence geometries had often been considered the
only acceptable choices for the description of the physical space because they entail
the free mobility of rigid bodies without deformation, then giving meaning to the
definition and comparison of distances.9

The nineteenth-century development of non-Euclidean geometries had shown that
Euclidean geometry was only one special case of congruence geometries, each char-
acterized by different values of the constant curvature K. As it is well known, the
intuitive idea of curvature can be grasped by thinking to a two-dimensional surface
embedded in a three-dimensional Euclidean space. The curvature, then, corre-
sponds to the curvature of the surface in the third dimension. Robertson reminded
the reader that starting from the axioms of the congruence geometry it is possible
to derive general formulas that establish exact relationships between mathematical
concepts such as distance, angle, and area, and then to determine the value of the

Relativistic Cosmology,” General Relativity and Gravitation, 44 (2012): 2099-2114.
5The correspondence about the refereeing activities of Howard Percy Robertson is stored in

the archival collection Howard Percy Robertson Papers, Caltech Archives, Pasadena, CA, USA
(hereafter HRP). See, especially, box 7, folders 12, 13, and 14.

6Jesse L. Greenstein, “Howard Percy Robertson (1903-1961),” Biographical Memoirs of the
National Academy of Sciences, 51 (1980): 341-365.

7See, especially, Jean Eisenstaedt, “La Relativité Générale à l’Étiage: 1925–1955,” Archive for
History of Exact Sciences, 35 (1986):115–185; and Jean Eisenstaedt, “Trajectoires et Impasses de
la Solution de Schwarzschild,” Archive for History of Exact Sciences, 37 (1987):275–357.

8Robertson, “Geometry as a Branch” (cit.1), p. 315.
9Robertson is referring to Helmholtz’s epistemology of geometry exposed in Hermann von

Helmholtz, “Über die tatsächlichen Grundlagen der Geometrie,” Nachrichten K. Ges. Wis-
senschaften zu Góttingen, 9 (1868): 193-221.
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curvature by “measurements made on the surface;” namely, without recourse to
the embedding three-dimensional space.10 Robertson’s main aim was to establish
the measurement operations that, extending the formulas previously derived for the
two-dimensional case, restored the “objective aspect of physical space.”11

He labeled neo-Kantian the view according to which the geometry of the physical
space must necessarily be a congruence geometry. In this perspective, the physi-
cist’s problem became to “state clearly those aspects of the physical world which are
to correspond to elements of the mathematical system.”12 In other words, Robert-
son stressed that there exist measurements which allow for a determination of the
constant curvature K, just as there are measurements made on the surface of the
Earth that make us understand that we are not living on an Euclidean plane. The
search for clearly defined relationships between axiomatic geometry and measure-
ments is what Robertson called operational approach to physical geometry. Once
he had outlined his program for congruence geometries, Robertson stressed that
the method should be extended to geometries in which the curvature K varies from
point to point. In this latter case, Robertson’s arguments went, it is possible to
establish in any point P the mean curvature of the space at that point as the mean
of the various hypersurfaces passing through P.

Robertson defined as sound the operational approach above summarized because
it gave the possibility to confer a precise value to the curvature at any point. When
one follows these procedures, Robertson argued, the choice of the physical geome-
try becomes a purely empirical problem. In this sense, geometry can be considered
as a branch of physics, as the title of Robertson’s paper emphasized. Robertson
explicitly put this methodology in contrast to Poincare’s conventionalism on the re-
lationship between experience and geometry.13 For him, the criterion of universality
provided a way to challenge Poincaré’s argument. The theory of general relativity
theory, he concluded, can successfully serve as a universal physical geometry because
the gravitational force acts the same way on all test bodies—a restatement of the
principle of equivalence, which Robertson defined as the empirical finding that the
observed inertial and gravitational mass of any body are “rigorously proportional
for all matter.”14

3 Robertson’s place in the philosophical landscape
Robertson’s overemphasized reference to the operational approach could be inter-
preted as an explicit reference to operationalism—a term that was at the time
broadly employed by physicists and philosophers alike with particular reference to
the views of Percy W. Bridgman.15 As a doctrine, however, operationalism was

10Robertson, “Geometry as a Branch” (cit.1), p. 319.
11Robertson, “Geometry as a Branch” (cit.1), p. 322.
12Robertson, “Geometry as a Branch” (cit.1), p. 322.
13For a critique to Robertson’s opposition to Poincaré’s conventionalism, see Adolf Grünbaum,

“Conventionalism in Geometry,” in The Axiomatic Method, ed. L. Henkin, P. Suppes, and A.
Tarski (Amsterdam: North Holland Publishing, 1959), pp. 204-222, esp. 212-213.

14Robertson, “Geometry as a Branch” (cit.1), p. 329.
15The text where Bridgman first exposed his philosophical thinking is Percy W. Bridgman, The

Logic of Modern Physics (New York: Macmillan, 1927).
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not precisely defined and it was subject to a number of different interpretations.
The most common was the inclination to regard Bridgman’s operational analysis
as a theory of meaning prescribing that the meaning of a concept corresponds to
a set of operations. In Robertson’s employment of the term, instead, “operational
approach” did not refer at all to a prescription to grasp by means of measurement
operations otherwise nebulous concepts. Rather, Robertson focuses on the prac-
tical need to find measurement methods that could soundly link the elements of
mathematical structures to physical phenomena.

More than a commitment to operationalism—as it was usually understood—
Robertson’s philosophical commitments resembled some of the views Hans Reichen-
bach had been elaborating since the early 1920s. Robertson’s statements that it
is possible to choose by means of measurements the appropriate physical geometry
between different axiomatic geometries are similar to Reichenbach’s argument that
once a definition of congruence has been specified “it becomes an empirical ques-
tion which geometry holds for a physical space.”16 In addition, both Robertson and
Reichenbach gave a strong relevance to the notion of universal force. Reichenbach
had introduced a definition of universal forces already in 1924 when he argued that
it is necessary to establish coordinative definitions in order to choose some metrical
indicators of length, where the coordinative definitions had a purely conventional
character.17 A perfectly legitimate choice, Reichenbach argued, is that of rigid in-
finitesimal measuring rods. In taking into account the distorting forces that modify
the length of the infinitesimal rod when it moves from one point of space to an-
other, Reichenbach isolated two kinds of such forces: a) differential forces, which are
forces that act in different ways on different materials (such as the deformation due
to heat); and b) universal forces, which instead affect all the materials the same way.
Reichenbach maintained that employing the rigid measuring rod as the coordinative
definition is equivalent to give value zero to the universal forces. Since gravitation
has the characteristics of a universal force, Reichenbach recognized that putting the
universal gravitational force equal to zero meant that in general relativistic theo-
retical framework gravity was absorbed by the geometry. Here, Reichenbach’s line
of reasoning seems to be equivalent to Robertson’s argument concerning the role of
gravitation as a universal force.

In spite of the various similarities one can uncover between the approach of
Robertson and that of Reichenbach, however, it is not possible to interpret Robert-
son’s views as a simplified version of the more detailed philosophical perspective
developed by the German proponent of logical empiricism. After an initial at-
tempt to elaborate a neo-Kantian perspective that took into account the success
of relativity theories and their implication for physical geometries, Reichenbach
came to accept the conventionalist conception of physical geometry as elaborated
by Poincaré in his philosophical writings at the beginning of the 20th century.18

16Hans Reichenbach, “Philosophical Significance of Relativity,” in Albert Einstein: Philosopher-
Scientist, ed. Schilpp (cit. 1), pp. 289-311, on p. 197.

17Hans Reichenbach, Axiomatik der relativistischen Raum-Zeit-Lehre (Braunschweig: Vieweg,
1924).

18H. Poincaré, La Science et L’Hypothése (Paris: Flammarion, 1902). Michael Friedman argued
that Reichenbach deeply changed his perspective after a correspondence exchange with Moritz
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Robertson, instead, explicitly challenged the conventional approach to the problem
of physical geometry. Indeed, Roberson made no mention of the factorization of the
theory of general relativity between its definitional part and its empirical content.
Nor can one find in Robertson’s account any reference to methodological criteria
that could guide the choice between alternative equivalent geometries. In other
words, Robertson implicitly dismissed the thesis of the relativity of geometry that
became one of the central tenets of Reichenbach’s doctrine of space and time after
Reichenabach began adopting Poincaré’s terminology around 1922.19

4 The impact of Robertson’s scientific work on his
methodological stances

Robertson was not a philosopher. He addressed the issue of the relationship between
geometry and experience from the perspective of the mathematical physicist who
had faced the pressing epistemological problems related to the creation of the new
field of relativistic cosmology. As Robertson himself recognized, the feeble contact
with empirical data made relativistic cosmology a field particularly dependent on
the “general and philosophical predilections of the investigator.”20 The few scientists
who worked in this field had to clearly define the methodological criteria to employ
in the development of cosmological models as well as in drawing the connections
between theories and astronomical observations. As his review article demonstrates,
Robertson was actively involved in the program to establish a standard approach to
relativistic cosmology as an empirically based discipline in contrast to alternative
views of cosmology held by other authoritative scholars.21

Robertson’s major works on relativistic cosmology covered the period from 1928
to 1936. Although Robertson’s methodological approach to relativistic cosmology
evolved through this period, some elements maintained a fairly stable position as
the fundamental points on which to build what Robertson regarded as an acceptable
theory of the universe. Particularly relevant was the role Robertson attributed to
the so-called Weyl principle, which from 1929 onward occupied a central position in
Robertson’s argumentative scheme.22 In the 1933 review paper, Robertson provided

Schlick in the early 1920s. Previously, Reichenbach had exposed a neo-Kantian view that Friedman
labeled “relativized a priori,” in the book Hans Reichenbach, Relativitätstheorie und Erkenntnis
apriori (Berlin: Springer, 1920). M. Friedman, “Geometry, convention, and the relativized a priori:
Reichenbach, Schlick, and Carnap,” in Reconsidering Logical Positivism (Cambridge: Cambridge
University Press, 1999), pp. 59-70.

19For the role of descriptive simplicity in contrast to inductive simplicity in Reichebach’s views
of the relativity of geometry see H. Reichenbach, Philosophie der Raum-Zeit Lehre (Berlin: Walter
de Gruyter, 1928), pp. 8-58. See, also, Friedman “Geometry, convention,” (cit. 19), esp. p. 64.

20Robertson, “Relativistic Cosmology” (cit. 5) p. 62.
21In his private correspondence he strongly criticized the approaches of the English astronomers

and mathematicians Arthur S. Eddington, James H. Jeans and Edward A. Milne, and explicitly
stated that his program was opposed to theirs. See, especially, Robertson to Eric Temple Bell, 15
September 1936, HRP, Box 1, folder 13.

22The genesis and evolution of the Weyl principle has been vastly discussed in the historical
and philosophical literature. It has been emphasized that the meaning of Weyl’s hypothesis, its
connection with empirical evidence and even its status as an independent principle changed with
time. In view of the interpretative disagreement around the Weyl principle and the different his-
torical reconstructions of its genesis and final integration into the standard model of relativistic



Geometry as a Branch of Physics 285

a clear description of what he called “Weyl’s coherency assumption” as the necessary
hypothesis that allowed for a connection between the exact solutions of Einstein’s
field equation for the entire universe and the available astronomical data.23

Robertson stated that Weyl’s assumption according to which in a de Sitter uni-
verse “the world lines of all matter belong to a pencil of geodesics which converges
toward the past” was equivalent to the utterance that there exists in each region of
cosmic space-time a mean motion that represents the actual motion of celestial bod-
ies apart from small and unsystematic deviation.24 For Robertson, this principle
was extrapolated from two distinct astronomical observations: The first empirical
finding was that on the large scale astronomical objects seem to be uniformly dis-
tributed; the second one was that the relative velocity of such objects in a specific
region of space-time is small compared to the velocity of light, and then they might
be considered relatively at rest with respect to the main motion of the region under
consideration.

The Weyl principle, Robertson’s argument went, allowed for a definition of a
coordinate framework in which the geodetic lines x0 =t are chosen in a way that
they represent the mean motion of matter in its neighborhood and the spatial
hypersurfaces of constant t are orthogonal to the congruence of geodesics so defined.
These conditions led to what Robertson defined the “natural” introduction of the
cosmic time t, which corresponds to the proper time measured by observers who co-
move with the mean motion of matter in a certain region.25 The previous empirically
based assumptions could be generalized to an idealized cosmological space-time in
which any three-dimensional space-like hypersurfaces of constant cosmic time are
homogeneous and isotropic.

In order to persuade the reader that these procedures were sound, Robertson
often casted them as “natural.” But what was the exact meaning of naturalness
in Robertson’s epistemology? Which set of ontological commitments and method-
ological prescriptions were hidden behind this, to say the least, ill-defined notion?
Robertson’s introduction of the Weyl principle as an extrapolation from astronom-
ical observations might suggest that the term “natural” was a general expression to
define those methodological procedures that could be considered as representing a
sort of inductive empiricism.

That Robertson was a defender of the use of empiricist methodology in relativis-

cosmology, in this paper I will focus only on the way in which Robertson understood and employed
the principle. For historical analyses of the Weyl principle, see, John D. North, The Invented Uni-
verse: A History of Modern Cosmology (Oxford: Clarendon Press, 1965), pp. 74-185; Pierre
Kerszberg, “Le Principle de Weyl et l’invention d’une cosmologie non-statique,” Archives for His-
tory of Exact Sciences 35 (1987): 1-89; Sergio Bergia and Lucia Mazzoni, “Genesis and Evolution
of Weyl’s Reflections on De Sitter’s Universe,” in The Expanding Worlds of General Relativity, ed.
Hubert Goenner et al. (Boston: Birkhäuser, 1999), pp. 325-342; and Hubert Goenner, “Weyl’s
contributions to Cosmology,” in Hermann Weyl’s Raum-Zeit-Materie and a general introduction
to his scientific work, ed. Erhard Scholz (Basel: Birkhäuser, 2001), pp. 105-137.

23Robertson, “Relativistic Cosmology” (cit. 4) p. 67.
24Robertson, “Relativistic Cosmology” (cit. 4) p. 65.
25For the suggestion to employ cosmic time as a definition of mind-independent temporal be-

coming, see Mauro Dorato, Time and Reality: Spacetime Physics and the Objectivity of Temporal
Becoming (Bologna: CLUEB, 1995), pp. 189-212.
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tic cosmology is confirmed by his attitude toward competitive approaches and in
particular toward the special relativistic cosmological model elaborated by Edward
A. Milne from 1933 onward.26 Robertson strongly challenged Milne’s hypothetico-
deductive epistemology according to which cosmologists could elaborate the model
they prefer and successively draw the possible connections with observations. The
methodological conflict between Robertson and Milne is exemplified by the use
they made of the fundamental assumptions on which they based their model. Milne
started from the “cosmological principle,” which he defined as the assumption that
the descriptions of the universe made by two equivalent observers employing their
own clocks and associated coordinates coincide. While Milne introduced the prin-
ciple as an a priori axiom without any connection with observations, Robertson
considered Milne’s cosmological principle to be nothing but a restatement of what
he had already defined as the empirically derived Weyl postulate.27

Milne argued that from an operational perspective his kinematic model was to
be preferred to general relativistic cosmologies because it referred to measuring
instruments such as clocks, theodolites, and light signals, and not to unobservable
entities such as curved space-time. In 1935-36, Robertson answered to Milne’s
claims with a three-part article called ‘Kinematics and World-Structure.’ In it,
Robertson offered another derivation of the FLRW line elements, which he had
already derived in 1929, and argued that appeal to operational methodology does
not consent to take a final decision between alternative cosmological models. He
did so by contending that general relativistic cosmology was more complete than
Milne’s model, for the latter could be interpreted as a special case of the general
line element already derived.28

Robertson’s reasoning in ‘Kinematics and World-Structure’ had been somewhat
misinterpreted by the philosopher of science George Gale, who claimed that Robert-
son had been converted to Milne’s operational methodology and that Robertson’s
1935 derivation of the FLRW metric was a consequence of this conversion.29 While
it is true that Robertson began to make explicit reference to the operational method-
ology in these writings as a direct response to Milne’s work, private correspondence
shows that Robertson’s agenda aimed at demonstrating that the operational ap-
proach was consistent with relativistic cosmology. He continued to find unaccept-
able the lack of any distinction between mathematical theories and physical laws
in Milne’s approach.30 A clear distinction between mathematics and physics was

26Edward A. Milne, Relativity, Gravitation and World-structure (Oxford: Clarendon Press,
1935).

27Robertson to Eric T. Bell, 15 September 1936, HRP, Box 1, folder 13.
28Robertson, “Kinematics and World-Structure” (cit. 3); Robertson, “Kinematics and World-

Structure II.” The Astrophysical Journal, 83 (1936): 187-201; and Robertson, “Kinematics and
World-Structure III,” The Astrophysical Journal, 83 (1936): 257-271.

29George Gale and John Urani, “E. A. Milne and the origins of modern cosmology: An
essential presence,” in The Attraction of Gravitation: New Studies in the History of Gen-
eral Relativity, ed. John Earman, Michel Janssen, and John D. Norton (Boston: Birkhäuser,
1993), pp. 390-419; and G. Gale, “Cosmology: Methodological Debates in the 1930s and
1940s,” Stanford Encyclopedia of Philosophy (Spring 2014 Edition), ed. Edward Zalta URL =
http://plato.stanford.edu/archives/spr2014/entries/cosmology-30s/ (retrieved 4 July 2014).

30See, e.g., Robertson to Otto Struve, 23 July 1935, HRP, Box 5,Folder 24; Robertson to Edwin
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indeed the starting point of what he later labeled “operational approach” in his
essay ‘Geometry as a Branch of Physics.’

Robertson’s focus on extrapolation from observations and the stress on the mathematics-
physics divide might confirm Gale’s view that Robertson championed an empiricist
methodology. Gale, however, also stressed that this methodology was coupled to a
sort of explanatory realism, which Gale defined in the following way: “if an accepted
theory referred to entity x, then x was acceptable as a genuinely, physically real ob-
ject.”31 However, I have not been able to find any clear evidence that Robertson
was particularly committed to the reality of the theoretical entities he referred to
in his scientific endeavors. Robertson’s long-lasting commitment to the theoretical
tools of differential geometry and group theory suggests instead that this simple
characterization does not completely represent Robertson’s views.

In his review of Milne’s book Relativity, Gravitation and World Structure, Robert-
son criticized the “cumbrousness and obscureness” of Milne’s mathematical expo-
sition, which avoided any employment of group theoretical tools and concepts.32

This neglect was incomprehensible to Robertson on the grounds that “the theory
of groups of automorphisms or motions of a space into itself constitutes the natural
mathematical tool for the investigation of spaces characterized by a priori symme-
try conditions.”33 According to him, the Mach’s principle—which he defined in the
weaker form as implying that “the metric field is causally determined to within
a possible transformation of coordinates by the stress-energy tensor” through the
Einstein field equation—justified the extension of group theory to relativistic cos-
mologist, because the symmetry properties in the material and energetic distribution
could be directly interpreted in terms of the line element of space-time.34

It is worth noticing that in motivating his commitment to a particular mathe-
matical technique Robertson again employed the term “natural.” The question is
then whether we can find any common element underlying the use of the notion
of naturalness to two seemingly distinct aspects of Robertson’s work on relativistic
cosmology; namely, the choice of the Weyl principle to ground the natural defini-
tion of cosmic time and the use of group theory as the natural theoretical tool for
cosmological space-time.

Robertson’s expertise in differential geometry made him able to recognize those
invariant structures of space-time geometry that might be suitable for group theo-
retical analysis. It would have been unfeasible to apply group theory to the entire

P. Hubble, 15 September 1936, HRP, Box 3, Folder 10; Robertson to Leopold Infeld, 28 September
1940, HRP, Box 3, Folder 15.

31Gale, “Methodological Debates,” (cit. 29).
32Robertson, “Review of Milne’s Relativity Gravitation and World-Structure,” Astrophysical

Journal, 83 (1936): 61–66, on p. 65.
33Ibid., emphasis mine.
34Robertson, “Relativistic Cosmology” (cit. 4) p. 63. For the difficulties associated to the

implementation of the Mach’s principle in relativistic cosmology, see Michel Janssen, “‘No Success
Like Failure. . . ’:Einstein’s Quest for General Relativity, 1907–1920,” in The Cambridge Companion
to Einstein, ed. Michel Janssen and Christoph Lehner (Cambridge: Cambridge University Press,
2014), pp. 167–227; for the different definitions of the Mach’s principle, see, Julian Barbour and
Herbert Pfister (eds.), Mach’s Principle: From Newton’s Bucket to Quantum Gravity, (Boston:
Birkhäuser, 1995).
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universe before defining a coordinate system in which the invariant mathematical
objects might be clearly defined. Furthermore, Robertson considered necessary to
establish a physical meaning for the chosen reference system. The fact that obser-
vations fit well within the theoretical needs for the application of group theory was,
as I understand it, the reason that led Robertson to consider these lines of reasoning
as natural.

It is possible to find an example of the same attitude in Robertson’s judgment
that the chief achievement of Einstein’s gravitational theory was the way in which
the theory incorporated the observational equivalence of inertial and gravitational
mass. Robertson found it entirely satisfying from an epistemological perspective
that within the structure of general relativity “the inertial mass is introduced into
the matter-energy tensor and thence automatically seeps into the metrical field
via the field equation, where it shows up as a gravitational mass.”35 The notion of
naturalness one finds in Robertson’s writings may well be considered as a translation
of this feeling that some theoretical structures might account for observations in an
automatic way.

5 Concluding remarks
Coming back to the question with which Robertson opened his 1949 essay: Was
for Robertson space really curved? No doubt, the explicit response Robertson gave
in his essay exhibited some significant similarities with Reichenbach’s discourse
about the philosophy of space and time. Nevertheless, Robertson explicitly rejected
the conventionalist perspective Reichenbach held in his epistemological views of
the relativity of geometry from 1922 onward. To better understand Robertson’s
views on the reality of curved space it is necessary to interpret them in relation
to his daily activity. In his work, Robertson consciously defended an empiricist
methodology of relativistic cosmology as Gale has correctly recognized. In light
of this relation, Robertson’s emphasis on operational approach and universality
appears as an attempt to translate his methodological prescriptions at a different
level that could be suitable for philosophical discussion.

Robertson’s methodological perspective does not seem, however, to justify Gale’s
assertion that Robertson was a naÔf realist about theoretical entities. Neither in
his papers nor in his letters, Robertson exposed opinions that could be assimilated
to the explanatory realism toward theoretical entities as defined by Gale. Robert-
son was deeply fascinated by some features of theories such as general relativity
according to which observational evidence was accounted automatically by general
theoretical structures without adding any further hypothesis. The consonance be-
tween observations and pre-existing theoretical tools acted as a persuasive element
in the choice between different theories and theoretical approaches. For Robert-
son, when a theory—like general relativity—showed those kinds of features that
he labeled as natural, it was philosophically satisfying, and there was no need to
explore other approaches that did not have the same kind of connection with obser-
vations. This fascination about the consonance between theoretical structures and

35Robertson to Subrahmanyan Chandrasekhar, 21 May 1948, HRP, Box 1, Folder 30, emphasis
mine.
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observations, however, did not become a way through which Robertson exposed a
commitment to the reality of the entities described by the theory. Rather, Robert-
son’s discourse always remained anchored at the methodological level without any
explicit reference to the truth content of the theory.





Historical and Philosophical Insights about
General Relativity and Space-time from Par-
ticle Physics

J. Brian Pitts

abstract. Historians recently rehabilitated Einstein’s “physical strategy”
for General Relativity (GR). Independently, particle physicists similarly re-
derived Einstein’s equations for a massless spin 2 field. But why not a
light massive spin 2, like Neumann and Seeliger did to Newton? Massive
gravities are bimetric, supporting conventionalism over geometric empiricism.
Nonuniqueness lets field equations explain geometry but not vice versa. Mas-
sive gravity would have blocked Schlick’s critique of Kant’s synthetic a priori.
Finally in 1970 massive spin 2 gravity seemed unstable or empirically falsified.
GR was vindicated, but later and on better grounds. However, recently dark
energy and theoretical progress have made massive spin 2 gravity potentially
viable again.

1 Einstein’s Physical Strategy Re-Appreciated by GR
Historians

Einstein’s General Relativity is often thought to owe much to his various principles
(equivalence, generalized relativity, general covariance, and Mach’s) in contexts of
discovery and justification. But a prominent result of the study of Einstein’s pro-
cess of discovery is a new awareness of and appreciation for Einstein’s physical
strategy, which coexisted with his mathematical strategy involving various thought
experiments and principles. The physical strategy had as some key ingredients the
Newtonian limit, the electromagnetic analogy, coupling of all energy-momentum
including gravity’s as a source for gravity, and energy-momentum conservation as
a consequence of the gravitational field equations alone [35, 6, 54, 55, 36, 56]. Ein-
stein’s mathematical strategy sometimes is seen to be less than compelling [44, 62],
leaving space that one might hope to see filled by the physical strategy.

It has even been argued recently, contrary to longstanding views rooted in Ein-
stein’s post-discovery claims [22], that he found his field equations using his physical
strategy [36]. Just how the physical strategy led to the field equations is still some-
what mysterious, resisting rational reconstruction [56].
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2 Particle Physicists Effectively Reinvent Physical Strategy
There is, however, an enormous body of relevant but neglected physics literature
from the 1920s onward. In the late 1930s progress in particle physics led to Wigner’s
taxonomy of relativistic wave equations in terms of mass and spin. “Spin” is closely
related to tensor rank; hence spin-0 is a scalar field, spin-1 a vector, spin-2 a sym-
metric tensor. “Mass” pertains to the associated “particles” (quanta) of the field
(assuming that one plans to quantize). (The constants c and ~ are set to 1.) Par-
ticle masses are related inversely to the range of the relevant potential, which for
a point source takes the form 1

r e
−mr. Hence the purely classical concepts involved

are merely wave equations (typically second order) that in some cases also have a
new fundamental inverse length scale permitting algebraic, not just differentiated,
appearance of the potential(s) in the wave equation—basically the Klein-Gordon
equation. Despite the facade of quantum terminology—there is no brief equiva-
lent of “massive graviton”—much of particle physics literature is the systematic
exploration of classical field equations covariant under (at least) the Poincaré group
distinctive of Special Relativity—though the larger 15-parameter conformal group
or the far more general ‘group’ of transformations in General Relativity are not ex-
cluded. Hence drawing upon particle physics literature is simply what eliminative
induction requires for classical field theories.

In this context, Fierz and Pauli found in 1939 that the linearized vacuum Ein-
stein equations are just the equations of a massless spin-2 field [23]. Could Einstein’s
equations be derived from viewpoints in that neighborhood? Yes: arguments were
devised to the effect that, assuming special relativity and some standard criteria
for viable field theories (especially stability), along with the empirical fact of light
bending, Einstein’s equations were the unique result—what philosophers call an
eliminative induction [37, 29, 22, 71, 47, 16, 68, 4]. The main freedom lay in includ-
ing or excluding a graviton mass.

If particle physicists effectively reinvented Einstein’s physical strategy, how did
they get a unique result, in contrast to the residual puzzles found by Renn and
Sauer [56]? The biggest difference is a new key ingredient, the elimination of neg-
ative energy degrees of freedom, which threaten stability. Eliminating negative
energy degrees of freedom nearly fixes the linear part of the theory [68], and fixes
it in such a way that the nonlinear part is also fixed almost uniquely. Technical
progress in defining energy-momentum tensors also helped. Such derivations bear a
close resemblance to Noether’s converse Hilbertian assertion [39]—an unrecognized
similarity that might have made particle physicists’ job easier.

3 How Particle Physics Could Have Helped Historians of
GR

The main difficulty in seeing the similarity between Einstein’s physical strategy and
particle physicists’ spin-2 derivation of Einstein’s equations is the entrenched habits
of mutual neglect between communities. If one manages to encounter both litera-
tures, the resemblance is evident. Particle physics derivations subsume Einstein’s
physical strategy especially as it appears in the little-regarded Entwurf, bringing it
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to successful completion with the correct field equations, using weaker and hence
more compelling premises. Thus the Entwurf strategy really was viable in princi-
ple. In particular, Einstein’s appeal to the principle of energy-momentum conserva-
tion [21, 40, 6] contains the key ingredient that makes certain particle physics-style
derivations of his equations successful [50], namely, that the gravitational field equa-
tions alone should entail conservation, without use of the material field equations.
Later works derived that key ingredient as a lemma from gauge invariance, arguably
following from positive energy, arguably following from stability. Einstein’s equa-
tions follow rigorously from special relativistic classical field theory as the simplest
possible local theory of a massless field that bends light and that looks stable by
having positive energy [68] (or maybe one can admit only a few closely related ri-
vals); van Nieuwenhuizen overstated the point only slightly in saying that “general
relativity follows from special relativity by excluding ghosts” (negative-energy de-
grees of freedom) [68]. Excluding ghosts nearly fixes the linear approximation. If
one does not couple the field to any source, it is physically irrelevant. If a source is
introduced, the linearized Bianchi identities lead to inconsistencies unless the source
is conserved. The only reasonable candidate is the total stress-energy-momentum,
including that of gravity. As a result the initial flat background geometry merges
with the gravitational potential, giving an effectively geometric theory, hence with
Einstein’s nonlinearities [37, 16, 50]. More recently Boulanger and Esole commented
that

it is well appreciated that general relativity is the unique way to con-
sistently deform the Pauli-Fierz action

∫
L2 for a free massless spin-2

field under the assumption of locality, Poincaré invariance, preservation
of the number of gauge symmetries and the number of derivatives [4].

Familiarity with the particle physics tradition would have shown historians of
GR that Einstein’s physical strategy was in the vicinity of a compelling argument
for his ‘correct’ field equations. Hence it would not be surprising if his physical
strategy played an important role in Einstein’s process of discovery and/or jus-
tification. Might historians of GR not thus have re-appreciated Einstein’s physi-
cal strategy decades earlier? Might the apparent tortuous reasoning [56] regard-
ing just how Einstein’s physical strategy leads to Einstein’s equations have been
brought into sharper focus, with valid derivations available to compare with Ein-
stein’s trail-blazing efforts? Let POT be the gravitational potential, GRAV a
second-order differential operator akin to the Laplacian, and MASS be the to-
tal stress-energy-momentum, which generalizes the Newtonian mass density [54].
Whereas the schematic equation GRAV (POT ) = MASS is supposedly innocuous,
particle physics would also expose the gratuitous exclusion of a mass term, which
would require the form GRAV (POT ) + POT = MASS.

4 Massive Gravities?
One might expect that a light massive field of spin-s would approximate a massless
spin-s field as closely as desired, by making the mass small enough. Hugo von
Seeliger in the 1890s already clearly made a similar point; he wrote (as translated



294

by Norton) that Newton’s law was “a purely empirical formula and assuming its
exactness would be a new hypothesis supported by nothing.” [69, 45] With the
intervention of Neumann, which Seeliger accepted, the exponentially decaying point
mass potential later seen as characteristic of massive fields was also available in the
1890s. (No clear physical meaning was available yet, however). It is now known
that this expectation of a smooth massless limit is true for Newtonian gravity,
relativistic spin-0 (Klein-Gordon), spin-1/2 (Dirac), a single spin-1 (de Broglie-
Proca massive electromagnetism, classical and quantized), and, in part, a Yang-
Mills spin-1 multiplet (classically, but not when quantized) [5]. Hence the idea that
gravity might have a finite range due to a non-zero ‘graviton mass’ was not difficult
to conceive. Indeed Einstein reinvented much of the idea in the opening of his
1917 cosmological constant paper [20], intending it as an analog of his cosmological
constant. Unfortunately Einstein erred, forgetting the leading zeroth order term
[32, 14, 45, 30]. Plausibly, Einstein’s mistaken analogy helped to delay conception
of doing to GR what Seeliger and Neumann had done to Newton’s theory.

Particle physicists would not be much affected by Einstein’s mistake, however;
Louis de Broglie entertained massive photons from 1922 [11], and the Klein-Gordon
equation would soon put the massive scalar field permanently on the map as a
toy field theory. Particle physicists got an occasion to think about gravity when a
connection between Einstein’s theory and the rapidly developing work on relativistic
wave equations appeared in the late 1930s [23]. From that time massive gravitons
saw sustained, if perhaps not intense, attention until 1970 [64, 48, 12, 19, 47, 14].

One would expect that anything that can be done with a spin-2, can be done more
easily with spin-0. Thus the Einstein-Fokker geometric formulation of Nordström’s
theory (massless spin-0) is a simpler (conformally flat) exercise in Riemannian ge-
ometry than Einstein’s own theory. There are also many massive scalar gravities
[49], and by analogy [47]. The scalar case, though obsolete, is interesting not only
because it is easy to understand, but also because massive scalar gravities mani-
festly make sense as classical field theories. While massive scalar gravity has not
been an epistemic possibility since 1919 (the bending of light), it ever remains a
metaphysical possibility. Thus the modal lessons about multiple geometries are not
hostage to the changing fortunes of massive spin-2 gravity. Massive scalar gravity
also shows that (pace [38, p. 179] [41]) gravity did not have to burst the bounds of
special relativity on account of Nordström’s theory having the larger 15-parameter
conformal group; massive scalar gravities have just the 10-parameter Poincaré group
of symmetries.

5 Explanatory Priority of Field Equations over Geometry
In GR, the power of Riemannian geometry to determine the field equations tempts
one to think that geometry generically is a good explanation of the field equations.
Comparing GR with its massive cousins sheds crucial light on that expectation.

A key fact about massive gravities is the non-uniqueness of the mass term [47],
in stark contrast to the uniqueness of the kinetic term (the part that has deriva-
tives of the gravitational potentials), which matches Einstein’s theory. The obvious
symmetry group for most massive spin-2 gravities is just the Poincaré group of
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special relativity [47, 14]; the graviton mass term breaks general covariance. If one
wishes nonetheless to recover formal general covariance, then a graviton mass term
must introduce a background metric tensor (as opposed to the numerical matrix
diag(−1, 1, 1, 1) or the like), typically (or most simply) flat.

The ability to construct many different field equations from the same geometrical
ingredients supports the dynamical or constructive view of space-time theories [7, 8].
The opposing space-time realist view holds that the geometry of space-time instead
does the explaining. According to the realist conception of Minkowski spacetime,

(2) The spatiotemporal interval s between events (x, y, z, t) and (X,Y, Z, T )
along a straight [footnote suppressed] line connecting them is a property
of the spacetime, independent of the matter it contains, and is given by

s2 = (t− T )2 − (x−X)2 − (y − Y )2 − (z − Z)2. (1)

When s2 > 0, the interval s corresponds to times elapsed on an ideal
clock; when s2 < 0, the interval s corresponds to spatial distances mea-
sured by ideal rods (both employed in the standard way). [46]

One might worry that the singular noun “[t]he spatiotemporal interval” is worri-
somely ambiguous, as is the adjective “straight.” Why can there be only one metric?
Resuming:

(3) Material clocks and rods measure these times and distances because
the laws of the matter theories that govern them are adapted to the
independent geometry of this spacetime. [46]

But (3) is false for massive scalar gravity, in which matter u sees gµν , not the
flat metric ηµν , as is evident by inspection of the matter action Smatter[gµν , u]
[37],which lacks

√
−η, the volume element of the flat metric. Unlike space-time

realism, constructivism makes room for Poincaré-invariant field theories in which
rods and clocks do not see the flat geometry, such as massive scalar gravities.

Even if one decides somehow that massive scalar gravities, despite being just
Poincaré-invariant, are not theories in Minkowski space-time, thus averting the
falsification of space-time realism, it still fails on modal grounds. It simply takes
for granted that the world is simpler than we have any right to expect, neglecting a
vast array of metaphysical possibilities, some of them physically interesting. Space-
time realism, in short, is modally provincial. Norton himself elsewhere decried such
narrowness in a different context: one does not want a philosophy of geometry to
provide a spurious apparent necessity to a merely contingent conclusion that GR is
the best space-time theory [42, pp. 848, 849]. Constructivism, like conventionalism
[52, pp. 88, 89] [2, 28, 72], does not assume that there exists a unique geometry;
space-time realism, like the late geometric empiricism of Schlick and Eddington,
does assume a unique geometry. It is striking that critiques of conventionalism also
have usually ignored the possibility of multiple geometries [53, 61, 25, 65, 10, 43].
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6 Massive Gravity as Unconceived Alternative
The problem of unconceived alternatives or underconsideration [60, 67, 63] can be a
serious objection to scientific realism. Massive scalar gravity posed such a problem
during the 1910s. Massive spin-2 gravities continued to pose such a problem for
philosophers and general relativists at least until 1972, when the unnoticed threat
went away. C. 1972 a dilemma appeared: massive spin-2 gravity was either em-
pirically falsified in the pure spin-2 case because of a discontinuous limit of small
vs. 0 graviton mass (van Dam-Veltman-Zakharov discontinuity), or it was vio-
lently unstable for the spin 2-spin 0 case because the spin-0 has negative energy,
permitting spontaneous production of spin-2 and spin-0 gravitons out of nothing.
Particle physics gives, but it can also take away. More recently particle physics
has given back, reviving the threat to realism about GR due to unconceived alter-
natives. While underdetermination by approximate but arbitrarily close empirical
equivalence has long been clear in electromagnetism, it is now (back) in business
for gravitation as well.

For philosophers and physicists interested in space-time prior to 1972, or since
2010, not conceiving of massive gravity means suffering from failure to entertain a
rival to GR that is a priori plausible (a decently high prior probability P (T ) if one is
not biased against such theories, and if the smallness of the graviton mass does not
seem problematic), has good fit to data (likelihoods P (E|T ) approximating those
of GR), and, crucially, has significantly different philosophical consequences from
GR.

The underdetermination suggested by massive gravities and massive electromag-
netism is weaker in four ways than the general thesis often discussed: it is restricted
to mathematized sciences, is defeasible rather than algorithmic in generating the
rivals, involves a one-parameter family of rivals that work as a team rather than a
single rival theory, and is asymmetric: the family (typically) remains viable as long
as the massless theory is, but not vice versa.

7 Schlick’s Critique of Kant’s Synthetic A Priori
The years around 1920 were crucial for a rejection of even a broadly Kantian a priori
philosophy of geometry, especially due to Moritz Schlick’s influence [58, 59, 9, 3, 18],
and saw a partial retreat from conventionalism toward geometric empiricism [34, 57,
70]. Schlick argued that GR made even a broadly Kantian philosophy of geometry
impossible because the physical truth about the actual world was incompatible
with it [58, 59, 57, 9]. Coffa agreed, stuffing half a dozen success terms into two
paragraphs in praise of Schlick [9, pp. 196, 197]. That Schlick, brought up as a
physicist under Planck, could, in principle, have done to Nordström’s and Einstein’s
theories what Neumann, Seeliger and Einstein had done to Newton’s, thus making
room for synthetic a priori geometry, seems not to have been entertained. Neither
was the significance of the 1939 work of Fierz and Pauli [23].

Recognizing massive gravities as unconceived alternatives, one views Schlick’s
work in a different light. Schlick argued that General Relativity either falsifies or
evacuates Kant’s synthetic a priori [59]. He then quit thinking about space-time,
and was assassinated in 1936. But post-1939, the flat background geometry present
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in the field equations of massive gravity would leave a role for Kant’s geometrical
views even in modern physics after all. (This multi-metric possibility is not the old
Löze move of retaining flat geometry via universal forces! Such entities cannot be
independently identified, and turn out to be even more arbitrary than one might
have expected due to a new gauge freedom [27, 43]. The observability of the flat
metric, indirect though it is, makes the difference [14]. One can ascertain the
difference between the two geometries, which is the gravitational potential.) More
serious trouble for Kant would arise finally when the van Dam-Veltman-Zakharov
discontinuity was discovered. Hence Kant was viable until 1972, not 1920!—and
maybe again today.

Massive gravities also bear upon Friedman’s claim that the equivalence principle
(viewed as identifying gravity and inertia) in GR is constitutively a priori, that is,
required for this or similar theories to have empirical content [26]. Massive gravi-
ties, if the limit of zero graviton mass is smooth as least (true for spin-0, recently
arguable for spin-2), have empirical content that closely approximates Nordström’s
and Einstein’s theories, respectively, while the massive spin-0 and (maybe) massive
spin-2 sharply distinguish gravity from inertia. The empirical content resides not
in principles or in views about geometry, but in partial differential field equations
[14, 7].

8 Recent Breakthrough in Massive Gravity
In the wake of the seemingly fatal dilemma of 1972, massive gravity was largely
dormant until the late 1990s. Then it started to reappear due to the “dark energy”
phenomenon indicating that the cosmic expansion is accelerating, casting doubt on
the long-distance behavior of GR—the regime where a graviton mass term should
be most evident. A viable massive gravity theory must, somehow, achieve a smooth
massless limit in order to approximate GR, and be stable (or at least not catas-
trophically unstable). That such an outcome is possible is now often entertained.
Massive gravity is now a “small industry” [33, p. 673] and is worthy of notice by
philosophers of science.

Since 2000, Vainshtein’s early argument that the van Dam-Veltman-Zakharov
discontinuity was an artifact of an approximate rather than exact solution proce-
dure was revived and generalized [66, 15, 1]. Thus pure spin-2 gravity might have a
continuous massless limit after all, avoiding empirical falsification. The other prob-
lem was that an exact rather than merely approximate treatment of massive gravity
shows, apparently, all versions of pure spin-2 gravity at the lowest level of approxi-
mation, are actually spin 2-spin 0 theories, hence violently unstable, when treated
exactly [5]. This problem was solved by a theoretical breakthrough in late 2010,
where it was found how to choose nonlinearities and carefully redefine the fields
such that very special pure spin-2 mass terms at the lowest (linear) approximation
remain pure spin-2 when treated exactly [14, 31].

The answers to deep questions of theory choice and conceptual lessons about
space-time theory depend on surprises found in sorting out fine technical details
in current physics literature. Thus philosophers should not assume that all the
relevant physics has already been worked out long ago and diffused in textbooks.



298

Lately things have changed rather rapidly, with threats of reversals [17]. Getting
the smooth massless limit via the Vainshtein mechanism is admittedly “a delicate
matter” (as a referee nicely phrased it) [13].

One needs to reexamine all the conceptual innovations of GR that, by analogy to
massive electromagnetism, one would expect to fail in massive gravity [14]. Unless
they reappear in massive gravity, or massive gravity fails again, then such innova-
tions are optional. Surprisingly many of those innovations do reappear if one seeks
a consistent notion of causality [51], including gauge freedom, making those the
robust and secure conceptual innovations—whether or not massive gravity survives
all the intricate questions that have arisen recently. If massive gravity fails, then
General Relativity’s conceptual innovations are required. If massive gravity remains
viable, then General Relativity’s conceptual innovations are required only insofar
as they also appear in massive gravity. It is striking how the apparent philosophical
implications can change with closer and closer investigation.

BIBLIOGRAPHY
[1] Babichev E., C. Deffayet, and R. Ziour. (2010). “The Recovery of General Relativity in Massive

Gravity via the Vainshtein Mechanism”, in Physical Review D 82:104008. arXiv:1007.4506v1
[gr-qc].

[2] Ben-Menahem Y. (2001). “Convention: Poincaré and Some of His Critics”, in British Journal
for the Philosophy of Science, 52:471–513.

[3] Bitbol M., P. Kerszberg, and J. Petitot, eds. (2009). “Constituting Objectivity: Transcenden-
tal Perspectives on Modern Physics”. n.p.: Springer.

[4] Boulanger N. and M. Esole. (2002). “A Note on the Uniqueness ofD = 4, N = 1 Supergravity”,
in Classical and Quantum Gravity, 19:2107–2124. gr-qc/0110072v2.

[5] Boulware D. G. and S. Deser. (1972). “Can Gravitation Have a Finite Range?”, in Physical
Review D, 6:3368–3382.

[6] Brading K. (2005). A Note on General Relativity, Energy Conservation, and Noether’s
Theorems, in The Universe of General Relativity, edited by Anne J. Kox and Jean Eisenstaedt,
Einstein Studies, volume 11, pp. 125–135. Boston: Birkhäuser.

[7] Brown H. R. (2005). Physical Relativity: Space-time Structure from a Dynamical Perspective.
New York: Oxford University Press.

[8] Butterfield J. N. (2007). “ Reconsidering Relativistic Causality”, in International Studies in
the Philosophy of Science, 21:295–328. arXiv:0708.2189 [quant-ph].

[9] Coffa J. A. (1991). The Semantic Tradition from Kant to Carnap: To the Vienna Station.
Cambridge: Cambridge University Press. Edited by Linda Wessels.

[10] Coleman R. A. and H. Korté. (1990). “ Harmonic Analysis of Directing Fields”, in Journal
of Mathematical Physics, 31:127–130.

[11] de Broglie L. (1922). “ Rayonnement noir et quanta de lumière”, in Journal de Physique et
la Radium, 3:422–428.

[12] de Broglie L. (1943). Théorie Général des Particules a Spin (Method de Fusion). Paris:
Gauthier-Villars.

[13] de Rham C. (2014). “ Massive Gravity”, in Living Reviews in Relativity, vol. 17.
arXiv:1401.4173v2 [hep-th].

[14] de Rham C., G. Gabadadze and A. J. Tolley. (2011). “ Resummation of Massive Gravity”,
in Physical Review Letters 106:231101. arXiv:1011.1232v2 [hep-th].

[15] Deffayet C., G. Dvali, G. Gabadadze, and A. I. Vainshtein. (2002). “ Nonperturbative Con-
tinuity in Graviton Mass versus Perturbative Discontinuity”, in Physical Review D, 65:044026.
hep-th/0106001v2.

[16] Deser S. (1970). “ Self-Interaction and Gauge Invariance”, in General Relativity and Gravi-
tation, 1:9–18. gr-qc/0411023v2.

[17] Deser S. and A. Waldron. (2013). “ Acausality of Massive Gravity”, in Physical Review
Letters 110:111101. arXiv:1212.5835.

[18] Domski M., M. Dickson, and M. Friedman, eds. (2010). Discourse on a New Method:
Reinvigorating the Marriage of History and Philosophy of Science. Chicago: Open Court.



General Relativity and Space-time from Particle Physics 299

[19] Droz-Vincent P. (1959). “ Généralisation des équationes d’Einstein correspondant à
l’hypothèse d’une masse non nulle pour la graviton”, in Comptes rendus hebdomadaires des
séances de l’Académie des sciences, 249:2290–2292.

[20] Einstein A. (1923). “ Cosmological Considerations on the General Theory of Relativity”,
in The Principle of Relativity, edited by H. A. Lorentz, A. Einstein, H. Minkowski, H. Weyl,
A. Sommerfeld, W. Perrett, and G. B. Jeffery. London: Methuen. Dover reprint, New York
(1952). Translated from “Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie,”
Sitzungsberichte der Königlich Preussichen Akademie der Wissenschaften zu Berlin (1917) pp.
142-152.

[21] Einstein A. and M. Grossmann. (1996). “ Outline of a Generalized Theory of Relativity
and of a Theory of Gravitation”, in The Collected Papers of Albert Einstein, Volume 4, The
Swiss Years: Writings, 1912-1914, English Translation, edited by A. Beck and D. Howard,
pp. 151–188. Princeton: The Hebrew University of Jerusalem and Princeton University Press.
Translated from Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der
Gravitation, Teubner, Leipzig (1913).

[22] Feynman R. P., F. B. Morinigo, W. G. Wagner, B. Hatfield, J. Preskill, and K. S. Thorne.
(1995). Feynman Lectures on Gravitation. Reading, Mass.: Addison-Wesley. Original by
California Institute of Technology (1963).

[23] Fierz M. and W. Pauli. (1939). “ On Relativistic Wave Equations for Particles of Arbitrary
Spin in an Electromagnetic Field”, in Proceedings of the Royal Society (London) A 173:211–232.

[24] Freund P. G. O., A. Maheshwari, and E. Schonberg. (1969). “ Finite-Range Gravitation”, in
Astrophysical Journal 157:857–867.

[25] Friedman M. (1983). Foundations of Space-time Theories: Relativistic Physics and Philos-
ophy of Science. Princeton: Princeton University Press.

[26] Friedman M. (2001). Dynamics of Reason: The 1999 Kant Lectures at Stanford University.
Stanford: CSLI Publications.

[27] Grishchuk L. P., A. N. Petrov, and A. D. Popova. (1984). “ Exact theory of the (Einstein)
gravitational field in an arbitrary background space-time”, in Communications in Mathematical
Physics 94:379–396.

[28] Grünbaum A. (1977). “ Absolute and Relational Theories of Space and Space-time”, jn
Foundations of Space-Time Theories, Minnesota Studies in the Philosophy of Science, Volume
VIII, edited by J. Earman, C. Glymour, and J. Stachel, pp. 303–373. Minneapolis: University
of Minnesota.

[29] Gupta S. N. (1954). “ Gravitation and Electromagnetism”, in Physical Review 96:1683–1685.
[30] Harvey A. and E. Schucking. (2000). “ Einstein’s Mistake and the Cosmological Constant”,

in American Journal of Physics, 68 (8): 723–727.
[31] Hassan S. F. and R. A. Rosen. (2012). “ Confirmation of the Secondary Constraint and

Absence of Ghost in Massive Gravity and Bimetric Gravity”, in Journal of High Energy Physics,
1204 (123): 0–16. arXiv:1111.2070 [hep-th].

[32] Heckmann O. (1942). Theorien der Kosmologie. Revised. Berlin: Springer. Reprinted 1968.
[33] Hinterbichler K. (2012). “ Theoretical Aspects of Massive Gravity”, in Reviews of Modern

Physics, 84:671–710. arXiv:1105.3735v2 [hep-th].
[34] Howard D. (1984). “ Realism and Conventionalism in Einstein’s Philosophy of Science: The

Einstein-Schlick Correspondence”, in Philosophia Naturalis, 21:618–629.
[35] Janssen M. (2005). “ Of Pots and Holes: Einstein’s Bumpy Road to General Relativity”, in

Annalen der Physik, 14:S58–S85.
[36] Janssen M. and J. Renn. (2007). “ Untying the Knot: How Einstein Found His Way Back

to Field Equations Discarded in the Zurich Notebook”, in The Genesis of General Relativity,
Volume 2: Einstein’s Zurich Notebook: Commentary and Essays, edited by J. Renn, pp. 839–
925. Dordrecht: Springer.

[37] Kraichnan R. H. (1955). “ Special-Relativistic Derivation of Generally Covariant Gravitation
Theory”, in Physical Review, 98:1118–1122.

[38] Misner C., K. Thorne, and J. A. Wheeler. (1973). Gravitation. New York: Freeman.
[39] Noether E. (1918). “ Invariante Variationsprobleme”, in Nachrichten der Königlichen

Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, pp. 235–
257. Translated as “Invariant Variation Problems” by M. A. Tavel, Transport Theory and
Statistical Physics 1 pp. 183-207 (1971), LaTeXed by Frank Y. Wang, arXiv:physics/0503066
[physics.hist-ph].



300

[40] Norton J. (1989). “ How Einstein Found His Field Equations, 1912-1915”, in Einstein and the
History of General Relativity: Based on the Proceedings of the 1986 Osgood Hill Conference,
edited by D. Howard and J. Stachel, Volume 1 of
emphEinstein Studies, 101–159. Boston: Birkhäuser.

[41] Norton J. D. (1992). “ Einstein, Nordström and the Early Demise of Scalar, Lorentz-
covariant Theories of Gravitation”, in Archive for History of Exact Sciences, 45 (1): 17–94.

[42] Norton J. D.. (1993). “ General Covariance and the Foundations of General Relativity:
Eight Decades of Dispute”, in Reports on Progress in Physics, 56:791–858.

[43] Norton J. D.. (1994). “ Why Geometry Is Not Conventional: The Verdict of Covariance
Principles”, in Semantical Aspects of Spacetime Theories, edited by U. Majer and H.-J. Schmidt,
pp. 159–167. Mannheim: B. I. Wissenschaftsverlag.

[44] Norton J. D.. (1995). “ Eliminative Induction as a Method of Discovery: How Einstein
Discovered General Relativity”, in The Creation of Ideas in Physics: Studies for a Methodology
of Theory Construction, edited by J. Leplin, Volume 55 of
emphThe University of Western Ontario Series in Philosophy of Science, pp. 29–69. Dordrecht:
Kluwer Academic.

[45] Norton J. D.. (1999). “ The Cosmological Woes of Newtonian Gravitation Theory”, in The
Expanding Worlds of General Relativity, edited by Hubert Goenner, Jürgen Renn, Jim Ritter,
and Tilman Sauer, Einstein Studies, volume 7, pp. 271–323. Boston: Birkhäuser.

[46] Norton J. D.. (2008). “ Why Constructive Relativity Fails”, in The British Journal for the
Philosophy of Science, 59:821–834.

[47] Ogievetsky V. I. and I. V. Polubarinov. (1965). “ Interacting Field of Spin 2 and the Einstein
Equations”, in Annals of Physics 35:167–208.

[48] Petiau G. (1941). “ Sur une représentation du corpuscule de spin 2”, in Comptes rendus
hebdomadaires des séances de l’Académie des sciences, 212:47–50.

[49] Pitts J. B. (2011). “ Massive Nordström Scalar (Density) Gravities from Universal Coupling”,
in General Relativity and Gravitation, 43:871–895. arXiv:1010.0227v1 [gr-qc].

[50] Pitts J. B. and W. C. Schieve. (2001). “ Slightly Bimetric Gravitation”, in General Relativity
and Gravitation 33:1319–1350. gr-qc/0101058v3.

[51] Pitts J. B., W. C. Schieve. (2007). “ Universally Coupled Massive Gravity”, in Theoretical
and Mathematical Physics, 151:700–717. gr-qc/0503051v3.

[52] Poincaré H. (1913). “ Science and Hypothesis”, in The Foundations of Science. Lancaster,
Pennsylvania: The Science Press. Translated by George Bruce Halsted, reprinted 1946; French
original 1902.

[53] Putnam H. (1975). “ The Refutation of Conventionalism”, in Mind, Language and Reality:
Philosophical Papers, Volume 2, pp. 153–191. Cambridge: Cambridge University Press.

[54] Renn J. (2005). “ Before the Riemann Tensor: The Emergence of Einstein’s Double Strategy”,
in The Universe of General Relativity, edited by A. J. Kox and J. Eisenstaedt, Einstein Studies,
volume 11, pp. 53–65. Boston: Birkhäuser.

[55] Renn J. and T. Sauer. (1999). “ Heuristics and Mathematical Representation in Einstein’s
Search for a Gravitational Field Equation”, in The Expanding Worlds of General Relativity,
edited by H. Goenner, J. Renn, J. Ritter, and T. Sauer, Volume 7 of Einstein Studies, pp.
87–125. Boston: Birkhäuser.

[56] Renn J. and T. Sauer. (2007). “ Pathways Out of Classical Physics: Einstein’s Double
Strategy in his Seach for the Gravitational Field Equations”, in The Genesis of General Rela-
tivity, Volume 1: Einstein’s Zurich Notebook: Introduction and Source, edited by J. Renn, pp.
113–312. Dordrecht: Springer.

[57] Ryckman T. (2005). The Reign of Relativity: Philosophy in Physics 1915-1925. Oxford:
Oxford University Press.

[58] Schlick M. (1920). Space and Time in Contemporary Physics. Oxford University. Translated
by Henry L. Brose; reprint Dover, New York (1963).

[59] Schlick M. (1921). “ Kritische oder empiristische Deutung der neuen Physik?”, in Kant-
Studien 26:96–111. Translated by P. Heath as “Critical or Empiricist Interpretation of Modern
Physics?” in H. L. Mulder and B. F. B. van de Velde-Schlick, editors, Moritz Schlick Philo-
sophical Papers, Volume I (1909-1922), pp. 322-334. D. Reidel, Dordrecht (1979).

[60] Sklar L. (1985). “ Do Unborn Hypotheses Have Rights?”, in Philosophy and Spacetime
Physics, pp. 148–166. Berkeley: University of California.

[61] Spirtes P. L. (1981). “ Conventionalism and the Philosophy of Henri Poincaré”. Ph.D. diss.,
University of Pittsburgh.



General Relativity and Space-time from Particle Physics 301

[62] Stachel J. (1995). “ ‘The Manifold of Possibilities’: Comments on Norton”, in The Creation of
Ideas in Physics: Studies for a Methodology of Theory Construction, edited by Jarrett Leplin,
Volume 55 of The University of Western Ontario Series in Philosophy of Science, pp. 71–88.
Dordrecht: Kluwer Academic.

[63] Stanford P. K. (2006). Exceeding Our Grasp: Science, History, and the Problem of Uncon-
ceived Alternatives. New York: Oxford University.

[64] Tonnelat M.-A. (1941). “ La seconde quantification dans la théorie du corpuscule de spin
2”, in Comptes rendus hebdomadaires des séances de l’Académie des sciences 212:430–432.

[65] Torretti R. (1996). Relativity and Geometry. New York: Dover. original Pergamon, Oxford,
1983.

[66] Vainshtein A. I. (1972). “ To the Problem of Nonvanishing Gravitation Mass”, in Physics
Letters B, 39:393–394.

[67] van Fraassen B. (1989). Laws and Symmetry. Oxford: Clarendon Press.
[68] van Nieuwenhuizen P. (1973). “ On Ghost-free Tensor Lagrangians and Linearized Gravita-

tion”, in Nuclear Physics B, 60:478–492.
[69] von Seeliger H. (1895). “ Ueber das Newton’sche Gravitationgesetz”, in Astronomische

Nachrichten, 137:129–136. NASA ADS.
[70] Walter S. A. 2010. “ Moritz Schlick’s Reading of Poincaré’s Theory of Relativity”, in Moritz

Schlick: Ursprünge und Entwicklungen seines Denkens, edited by F. O. Engler and M. Iven,
Volume 5 of Schlickiana, pp. 191–203. Berlin: Parerga.

[71] Weinberg S. (1964). “ Derivation of Gauge Invariance and the Equivalence Principle from
Lorentz Invariance of the S-Matrix”, in Physics Letters, 9:357–359.

[72] Weinstein S. (1996). “ Strange Couplings and Space-Time Structure”, in Philosophy of
Science, 63:S63–S70. Proceedings of the 1996 Biennial Meetings of the Philosophy of Science
Association. Part I: Contributed Papers.





Bohmian Classical Limit in Bounded Re-
gions

Davide Romano

abstract. Bohmian mechanics is a realistic interpretation of quantum
theory. It shares the same ontology of classical mechanics: particles following
continuous trajectories in space through time. For this ontological continuity,
it seems to be a great candidate for recovering the classical limit of quantum
theory. Indeed, in a Bohmian framework, the issue of the classical limit re-
duces to show how the classical trajectories can emerge from the Bohmian
ones, under specific classicality assumptions.
In this paper, we shall focus on a technical problem which arises from the dy-
namics of a Bohmian system in bounded regions and we suggest that a possible
solution is supplied by the action of environmental decoherence. However, we
shall show that, in order to implement decoherence in a Bohmian framework, a
stronger condition is required (disjointness of supports) rather than the usual
one (orthogonality of states).

1 Bohmian mechanics and classical limit
Despite the great success of quantum mechanics, a rigorous and general account
of the classical limit has not been reached so far. This means we do not have a
clear explanation for the transition from the quantum regime, which describes the
short-scale world, to the classical regime, which describes our familiar macroscopic
world.
We know that quantum mechanics is a fundamental theory: it applies at every
scale1.The goal of the classical limit, therefore, is to derive classical mechanics from
quantum mechanics, under specific classicality conditions2.
The problem here is not only mathematical, but also conceptual: in standard quan-
tum mechanics (SQM), the physical state of an N-particle system is described by a
state vector, an element of an abstract Hilbert space 3. Moreover, in SQM the state
vector has just a statistical character: for a 1-particle system, the absolute square
of the wave function has the meaning of a probability density to find the particle in
a definite region if we perform a position measurement on the system. Within this

1Indeed, it is possible to have macroscopic quantum effects, like superconductivity.
2The classicality conditions are the physical conditions that allow for the emergence of a clas-

sical regime. For example, in decoherence theory, the classicality condition is the (ubiquitous)
entanglement among quantum systems.

3If the state vector is expressed in the position basis, then we have the wave function of the
system, which is defined over the 3N-dimensional configuration space of the system.
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framework, even if we succeeded in deriving the classical equations of motion for a
quantum system, should we regard this result as a true classical limit? Probably,
we should not. Classical mechanics describes the motion of particles in space, i.e.,
it describes real paths for the systems (trajectories) and not just ’probability am-
plitude’ paths. How can we derive the former dynamical structure (and ontology)
starting from the latter one?4

One option is to consider Bohmian mechanics (BM) as the correct interpretation of
quantum theory. In BM, a quantum system is described by a wave function together
with a configuration of particles, each of them following a continuous trajectory in
3D physical space. Within this framework, both quantum systems and classical
systems are composed by matter particles that follow real paths in 3D space5. So
that the entire issue of the classical limit reduces to the question: under which con-
ditions do the Bohmian trajectories become Newtonian?
However, one could object that classical mechanics is just a high level effective
theory and that the very concept of ’particle’ does not belong to the ontology of
the fundamental physical world. In quantum field theory (QFT), for example, the
concept of particle might play no role6. If we cannot introduce a particle ontology
at the level of QFT, then we might not see the necessity of introducing it at the
non relativistic quantum level either: a characterization of the theory in terms of
the wave function could be enough also for QM. Under this view, the classical limit
is obtained by the description of a narrow wave packet following a classical trajec-
tory7. This is the standard approach we usually find in SQM textbooks 8, known
as Ehrenfest’s theorem.
However, it is worth noting that some specific QFT models with a particle ontol-
ogy have been proposed9, so that the philosophical inquiry about the fundamental
ontology of the physical world is still open.
Nevertheless, Ehrenfest’s theorem alone cannot provide a proper solution for the
quantum to classical transition. First, the wave function of a isolated quantum

4See, for example, Holland (1993, sect. 6.1) about the conceptual difference between a quantum
’trajectory’ and a classical one.

5Of course, in BM there is something more: the wave function. Whether the wave function in
BM is a real physical entity (i.e., a new physical field) or a nomological entity that only describes
how the particles move (the analogy is with the Hamiltonian in classical mechanics) is currently at
philosophical debate. Supporters of the first view are, e.g., Holland (1993) and Valentini (1992);
supporters of the second view are, e.g., Dürr, Goldstein & Zanghì (2013), Goldstein & Zanghì
(2012) and Esfeld et alii (2014).

6See, e.g., Malament (1996)
7We note that, within the SQM framework, this approach seems to miss the conceptual point

of the classical limit problem. In SQM, the wave function is not a real entity, but mainly a
mathematical tool to extract probabilities of the measurement outcomes. Therefore, a narrow
wave packet that follows a classical trajectory simply means that whenever we perform a position
measurement on the system, we will obtain a result which is compatible with a classical trajectory.
Nonetheless, we cannot extract the picture of a real entity following a classical trajectory from that.
In other words, what is problematic is not considering a narrow wave function as a particle, but
the statistical interpretation of the wave function as opposed to a real ontological entity (particle)
following a trajectory in space.

8See, e.g., Merzebacher (1970, ch 4), Shankar (1994, ch. 6), Sakurai (1994, ch. 2). In particular,
Shankar sheds also some light on specific limitations of the theorem.

9See Dürr et alii(2004)
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system generally spreads out in a very short time. Moreover, Ballantine shows that
Ehrenfest’s theorem is neither necessary nor sufficient to obtain a classical dynam-
ical regime for quantum systems10.
The most convincing approach for the analysis of the quantum to classical transition
is actually decoherence theory. So, in order to find out how Newtonian trajectories
can emerge from the Bohmian ones, it seems reasonable to check whether and how
decoherence theory fits into the Bohmian framework.
The aim of the paper is to focus on a technical problem, which arises in the con-
text of BM in the attempt to derive classical trajectories for a pure state system in
bounded regions. The problem follows from the fact that two (or more) Bohmian
trajectories of a system cannot cross in the configuration space of the system. So,
even if we assume that a macroscopic body, satisfying some specific-classicality
conditions (big mass, short wavelength, etc...), starts following at the initial time a
classical trajectory, its motion will become highly non classical if, at a later time,
different branches of the wave function of the body will be about to cross each other
in configuration space.
We argue that a possible solution is offered by the action of environmental deco-
herence on the system11. A relevant point will be clear from the analysis: in order
to implement decoherence in the framework of BM, a stronger condition is required
(disjointness of supports) than the usual one(orthogonality of states) for the systems
describing the environmental particles that scatter off the (macroscopic) Bohmian
system.
In section 2, we will describe the measurement process in BM, focusing on the
emergence of the effective wave function. In section 3, we will present the problem
mentioned above which arises (mainly) in bounded regions. In section 4.1, we will
introduce decoherence theory as the crucial ingredient for the quantum to classical
transition in every physically realistic situation. In section 4.2, we will show how a
simple model of environmental decoherence can solve the problem, thus leading to
the emergence of classical trajectories in bounded regions.

2 Bohmian mechanics
2.1 A short introduction to Bohmian mechanics
Bohmian mechanics is a quantum theory in which the complete physical state of
an N-particle system is described by the pair (Q,Ψ), where Q = (q1, q2, . . . , qN )
is the configuration of N particles, each particle qk(k = 1, 2, . . . , N) living in 3D
physical space12, and Ψ = Ψ(Q, t) is the wave function of the system, which is
defined over the 3N-D configuration space of the system. For a non-relativistic
spinless N-particle system, the dynamical evolution of the Bohmian system is given
by the Schrödinger equation:

i~
∂Ψ(Q, t)

∂t
= −

N∑
k=1

~2

2mk
∇2
kΨ(Q, t) + VΨ(Q, t)

10See Ballantine (1994), (1996), (1998, sect. 14.1).
11This solution has been originally proposed by Allori et alii (2002).
12Thus, the configuration Q is defined over the 3N-D configuration space of the system.
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which describes the time evolution of the wave function, and the guiding equation:

dqk
dt

= ~

mk
Im∇kΨ(Q, t)

Ψ(Q, t) ; with k = 1, 2, . . . , N

which describes the time evolution of each particle position of the total configura-
tion. From the guiding equation, we note the non-local dynamics of the Bohmian
particles: the velocity of a single particle (qk) will depend on the position of all
the other particles of the total configuration (Q = (q1, q2, . . . , qN )). For obtaining
a successful scheme of the quantum to classical transition, we need to explain not
only the emergence of classical trajectories but also the passage from a quantum
(holistic) non-local dynamics to a classical (separable) non-local dynamics13.
Bohmian mechanics introduces quantum probabilities as a measure of subjective
ignorance on the initial conditions of a system (epistemic probabilities): given a
system with wave function ψ, our maximum knowledge about the actual initial
positions of the particles is represented by a statistical distribution of possible con-
figurations, i.e., a classical ensemble, according to the absolute square of the wave
function:

ρ(Q) = |ψ(Q)|2

This is a postulate in BM and it is known as quantum equilibrium hypothesis14.
Moreover, from the Schrödinger equation, it follows that ρ has the property of
equivariance:

if ρ(Q, 0) = |ψ(Q, 0)|2, then ρ(Q, t) = |ψ(Q, t)|2 ; ∀t > 0

Quantum equilibrium and equivariance imply that BM provides the same empirical
predictions of SQM, once assumed that the result of a measurement is always en-
coded in a definite position of a pointer15 and that different positions of a pointer are
always represented by (approximately) non-overlapping supports in configurations
space16.

2.2 Measurement process in Bohmian mechanics
In this section we analyze a typical measurement process in BM, showing, in partic-
ular, how an effective wave function of a Bohmian system does emerge. Then, we
will show that the condition of disjoint supports for different positions of a pointer

13In classical mechanics, the potentials which affect the particle motion decay quadratically with
the distance, so that we can effectively describe the motion of one particle as autonomous and
independent from the motion of a very distant particle (under specific conditions, of course). In
BM, instead, the influence of the “quantum potential” on the particle motion does not decay with
the distance, so that all the particles belonging to the configuration of a system are holistically
related, even if they are located very far each other. See, e.g., Bohm (1987, sect. 3) for a clear
explanation about the difference between quantum (Bohmian) and classical non-locality.

14The justification of the quantum equilibrium hypothesis is a subtle issue. Two main ap-
proaches have been proposed: the typicality approach by Dürr, Goldstein & Zanghì (1992) and
the dynamical relaxation approach by Valentini (1991).

15We call pointer every measurement apparatus that shows a definite outcome after the physical
interaction with a quantum system.

16We will analyze this condition in more detail in the next section.
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is essential for obtaining a clear and definite measurement result.
Let’s consider a system Ψ(x), with actual configurationX, interacting with an appa-
ratus Φ(y), with actual configuration Y 17. We suppose that the degrees of freedom
of the system and the apparatus are respectively m and n, then the support of Ψ(x)
is defined over them-dimensional configuration space of the system and the support
of Φ(y) over the n-dimensional one of the apparatus18. We suppose that the initial
state of the system is a superposition of two wave functions:

Ψ(x) = αψ1(x) + βψ2(x)

with normalization |α|2 + |β|2 = 1.
At the initial time t = 0, the system and the apparatus have not interacted yet, so
the wave function of the total system (system + apparatus) is factorized:

Ψ(x, 0)Φ(y, 0) = (αψ1(x, 0) + βψ2(x, 0))Φ(y, 0)

During the time interval ∆t = (0, T ), the system and the apparatus will evolve
according to the Schrödinger equation: in a typical measurement interaction, thanks
to some coupling term between the two, they will become entangled:

Ψ(x, 0)Φ(y, 0) −→ αΨ1(x, T )Φ1(y, T ) + βΨ2(x, T )Φ2(y, T )

This is the usual formulation of the measurement problem: the physical state of
the total system, after the measurement, represents a coherent superposition of
two macroscopically distinct pointer states. In BM, there is a further ingredient
that permits to (dis)solve the problem: besides the wave function, every Bohmian
system is composed by an actual configuration of particles. So, after the measure-
ment interaction, the macroscopic pointer will show a unique and definite result,
the one embodied by the configuration of particles that compose the pointer. In
other words, it is the evolution of the particles that finally determines which one
of the possible pointer states (described by the evolution of the wave function) has
been realized during the measurement process.
We suppose, for example, that φ1 is the wave function corresponding to the physical
state of the pointer “pointing to the left” and φ2 that of the pointer “pointing to
the right”: at the time t = T , if Y ∈ supp(φ1), then the pointer points to the left, if
Y ∈ supp(φ2), then it points to the right. Since the two supports are (macroscop-
ically) disjoint19, i.e., supp(φ1) ∩ supp(φ2) � ∅ , then the final result is unique and

17The Bohmian systems are always composed by a wave function and real particles, each of
them having a definite position in space. We call actual configuration the configuration of particles
described by their definite positions in space, and mathematically expressed by Q = (q1, q2, ..., qN ).

18A support of a function is the region of its domain in which it is not zero valued.
19It is worth noting that the concept of a perfect disjointness of supports is an idealization:

the support of a wave function is typically unbounded in configuration space. As a first approx-
imation, we can say that two different supports are disjoint if they have negligible overlap in
configuration space. More precisely, we will say that the supports of two different wave functions
are (macroscopically) disjoint when their overlap is extremely small in the square norm over any
(macroscopic) region.
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the superposition disappears20.
Suppose, for example, that, after the interaction between the system and the ap-
paratus, Y ∈ supp(φ1): in this case, the actual configuration of the particles that
compose the apparatus will be so arranged in space to form a physical pointer point-
ing to the left. Moreover, because of the entanglement21 between the system and
the apparatus during the interaction, the actual configuration of the particles that
compose the system will be in the support of ψ1, that is, X ∈ supp(ψ1). In this
case, we will say that ψ1 is the effective wave function (EWF) of the system, i.e.,
the branch of the total superposition which contains and guides the particles of the
system after the interaction, whereas ψ2 is the empty wave function, which can be
FAPP22 ignored after the interaction.
Assuming the quantum equilibrium hypothesis and the condition of disjoint sup-
ports for any two different pointer states, it is easy to show that the probability
distribution of the measurement outcomes is given according to the Born’s rule.
For example, in the case discussed above, we see that the probability to get the
eigenvalue associated to the eigenfunction φ1 in a measurement is23:

P (Y (t = T ) ∈ supp(φ1)) =

=
∫
Rm

dmx

∫
supp(φ1)

dny|αψ1(x, T )φ1(y, T ) + βΨ2(x, T )φ2(y, T )|2 =

=
∫
Rm

dmx

∫
supp(φ1)

dny|αψ1(x, T )φ1(y, T )|2+

+
∫
Rm

dmx

∫
supp(φ1)

dny|βψ2(x, T )φ2(y, T )|2+

+2 Re
∫
Rm

dmx

∫
supp(φ1)

dny αβ∗ψ1(x, T )ψ∗2(x, T )φ1(y, T )φ∗2(y, T ) �

� |α|2

which is in agreement with the Born’s rule24.
In the derivation we have used the quantum equilibrium hypothesis for the first
equation and ∫

supp(φ1)
dny|φ2(y, T )|2 � 0∫

supp(φ1)
dny φ1(y, T )φ2(y, T ) � 0

20The idea is that, since different macroscopic states of the pointer occupy different regions in
3D physical space, the wave functions describing these states will have disjoint supports in the
3N-D configuration space of the pointer.

21During the interaction, the dynamics of the particles of the system is strongly related with
that of the particles of the apparatus, so that if Y ∈ supp(φ1(2)), then X ∈ supp(ψ1(2)).

22For All Practical Purposes (acronym introduced by John Bell)
23We follow here the derivation presented in Dürr & Teufel (2009, sect. 9.1).
24A specular derivation can be done for the other possible outcome of the measurement: in this

case we need to integrate in the support of φ2 and the final probability will be |β|2.
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because supp(φ1)
⋂
supp(φ2) � ∅.

The emergence of the effective wave function of the system ψ1(x, T ) represents a first
step in the transition from a holistic regime to a local one25: after the measurement,
the initial superposition of the total system effectively collapses26 in just one of the
possible branches, which is described by a factorized state between an eigenfunction
of the system and one of the apparatus, e.g., ψ1(x, T )φ1(y, T ). Hence, the dynamics
of the system is now decoupled from that of the apparatus: the further evolution
of the particles of the system will be autonomous and independent from that of
the particles of the apparatus (because now they belong to distinct and factorized
wave functions). Moreover, interference with the empty wave function will result
practically impossible, given the condition of disjoint supports for the wave functions
of different pointer states.
We might say that the EWF describes a local dynamics for the system, since the
particle evolution of the sub-system described by ψ1 does not depend on the position
of the particles of any external system. Whenever an EWF emerges, the holistic
Bohmian non-locality seems, at least temporarily, turned off.
A simple example can help to visualize the situation. Let’s consider a typical EPR
set up: generally, changing some potentials on one wing of the system, say in the
point A, will influence the trajectory of the particle on the other wing, say in the
point B27. Nevertheless, if, as a consequence of a measurement, an effective wave
function emerges (e.g., in the point B), then the trajectory of the particle on the
B-side can be influenced only by potentials on its side (i.e., potentials which are
connected with B by time-like intervals).
Of course, this is only a first step towards the classical world. The other important
step is to show how classical trajectories can emerge starting from the Bohmian
ones28. In section 3, we will discuss a technical problem arising for the Bohmian
classical limit in bounded regions and we will see how decoherence can solve the
problem. In section 4, we will briefly introduce decoherence and, finally, we will
clarify the mathematical conditions for implementing it in the framework of BM.

3 Bohmian classical limit in bounded regions
In this section, we focus on a problem that arises from the dynamics of a Bohmian
system in bounded regions29. The problem has been originally discussed in Allori

25With holistic I mean the quantum (Bohmian) non-locality, with local the classical non-locality.
This terminology has been introduced by Esfeld et alii(2014)(forthcoming).

26In BM, there is never a real collapse of the wave function.
27We suppose that the points A and B are space-like separated.
28In the following, we will not face the problem of the emergence of classical trajectories in

BM. For the interested reader: see, e.g., Rosaler (2014), for a decoherent histories approach to
the Bohmian classical limit; Appleby (1999) and Sanz, Borondo (2004), for the analysis of specific
models where the Bohmian trajectories, implemented in a regime of full decoherence, become
classical.

29For the sake of clarity, the problem can also arise in unbounded regions: indeed, it is a
consequence of a simple mathematical fact, so it is fundamentally independent from the nature
(bounded or unbounded) of the space where the system moves in. Nevertheless, since it is more
likely to happen in bounded regions than unbounded ones, then it seems more natural to set the
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et alii (2002, sect. 8). However, for the sake of completeness, we will briefly restate
it here.
We consider an infinite potential well of size L in one dimension and a 1-particle
Bohmian system in the center of the well. We suppose that the wave function of
the system is a linear superposition of two wave packets with opposite momenta.
In the classical limit model, the position x of the system will be the center of mass
of a macroscopic body whose classical motion we are searching for.
At the initial time t = 0, we suppose that the two packets begin to move classically
in opposite directions30. At the time tR, they (approximately)31 reach the walls
and, for t > tR, they start to converge towards the center. At the time tc = 2tR
(first caustic time), the two wave packets will cross each other in the middle of the
well, but, since the Bohmian trajectories of a system cannot cross32 in the config-
uration space of the system33, the two converging trajectories will not cross each
other: the trajectory coming from the right-hand side will start to come back to
that side after the time tc. In a perfectly symmetric way, the same will happen for
the trajectory coming from the left-hand side of the well. So, for example, if the
particle is contained, at the beginning, into the wave packet that goes to the right,
then it will move in the future only within the right-half part of the well. And this
is clearly not a classical behavior34.
Nevertheless, Allori et alii (2002) claim that, in a realistic model, we also need
to take into account the interaction with the environment and the problem should
vanish. Indeed, an external particle (a neutrino, a photon, an air molecule,. . . ), in-
teracting with the (macroscopic) system before the caustic time tc, will “measure”
the actual position of the center of mass of the system, thus eliminating the superpo-
sition between the two wave packets of the system. In other words, the interaction
between the external particle and the system acts like a position measurement on
the system performed by the “environment”. Consequently, the environmental in-
teraction will select only one of the two wave packets of the system, which becomes
the effective wave function of the system.

problem in a bounded region.
30We suppose to start with classical trajectories for each branch of the wave function, which is

equivalent to assume a classical limit in unbounded regions. On this regard, some partial successful
result has been achieved so far (I briefly indicate the main approach adopted by the authors for each
reference): Allori et alii (2002): quantum potential plus Ehrenfest’s theorem; Holland (1993, ch.
6): quantum potential; Bowman (2005): mixed states plus narrow wave packets plus decoherence;
Sanz & Borondo (2004) and Appleby (1999): decoherence; Rosaler (2014): decoherent histories.

31The velocity field in BM is never bi-valued, so the particle arrives very close to the well, but
without touching it

32Bohmian trajectories cannot cross in configuration space because the guiding equation is a
first-order equation, so to each position x corresponds a unique velocity vector v.

33For a 1-particle system, the configuration space of the system corresponds to the 3D physical
space.

34Note that this situation is completely different from the case of the “surrealistic trajectories”
in BM. In the latter, it is after all not so problematic having odd trajectories, if they finally
match with the empirical predictions of QM. In this case, instead, we want to recover the classical
dynamics of a macroscopic body, so the empirical predictions to match with are the trajectories
of classical mechanics. Thus, every non-classical trajectory of the system cannot match with the
empirical result we expect from a classical limit model.
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Here the original passage:

These interactions –even for very small interaction energy– should pro-
duce entanglement between the center of mass x of the system and the
other degrees of freedom y, so that their effective role is that of “measur-
ing” the positionX and suppressing superpositions of spatially separated
wave functions. (Taking these interactions into account is what people
nowadays call decoherence [...]). Referring to the above example, the
effect of the environment should be to select [...] one of the two packets
on a time scale much shorter than the first caustic time tc. (Allori et
alii, 2002, sect. 8, p. 12)

The solution proposed by Allori et alii (2002) raises a subtle conceptual issue. As we
saw in section 2.2, an EWF emerges in a Bohmian measurement only if the supports
of different pointer states are disjoint in configuration space. When the pointer state
is a macroscopic state of a classical apparatus, this condition is generally fulfilled.
Nevertheless, in the case of the interaction with the environment, the pointer states
of the “apparatus” are the environmental states of the external particle. Therefore,
this solution seems to work only if the supports of different environmental states of
the external particle, after the interaction with the macroscopic system, are disjoint
in configuration space. So, the question becomes: is this condition generally satisfied
or not35? Indeed, in order to have effective decoherence36 in BM, the condition of
disjoint supports for different environmental pointer states has to be satisfied.
It is important to note that this is a stronger condition than the usual one required
by decoherence in the standard framework, that is, orthogonality of states.
In the next section, we will analyze a simple but realistic model of decoherence,
namely environmental decoherence induced by scattering. The analysis will clarify
the difference between the standard condition and the Bohmian one required to
have decoherence.

4 Decoherence approach to the Bohmian classical limit
4.1 A short introduction to decoherence
Decoherence is the local suppression of the phase relations between different states
of a quantum system, produced by the entanglement between the system and its
environment37, the latter also described as a quantum system.
We consider a pure state system |ψ〉 = α |ψ1〉+β |ψ2〉 and a pure state environmental
system |ξ〉: as long as they do not interact, they remain physically independent and
the total wave function is factorized:

|Ψ0〉 = |ψ〉 |ξ〉 = (α |ψ1〉+ β |ψ2〉) |ξ〉
35A related interesting question is: what happens if the relative environmental states do not

have disjoint supports, but they are only (approximately) orthogonal in the Hilbert space of the
environment? At the moment, we have not a rigorous answer to that question.

36With effective decoherence, we mean a decoherence process, within the framework of BM,
which is able to produce an effective wave function for the system.

37In general, the environment can be tought either as external or internal degrees of freedom of
a (macroscopic) system.
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The density operator of the total system can be also factorized into the density
operator of the system and that one of the environment:

ρ̂Ψ0 = |Ψ0〉 〈Ψ0| = |ψ〉 |ξ〉 〈ξ| 〈ψ| = ρ̂ψ ⊗ ρ̂ξ

When the system interacts with the environment, the two systems become entangled
and they form a new pure state system:

|Ψ〉 = α |ψ1〉 |ξ1〉+ β |ψ2〉 |ξ2〉

In a realistic physical model, the system will interact (and, then, become entangled)
with many environmental states |ξi〉38 in a very short time. Tracing out the degrees
of freedom of the environment, we obtain the reduced density operator of the system.
Under the assumption of (approximate) orthogonality of the environmental states,
which is essentially the standard condition for decoherence, the reduced density
operator formally appears as (approximately) describing a mixture of states:

ρ̂ψred = Trξi |Ψ〉 〈Ψ| � |α|2 |ψ1〉 〈ψ1|+ |β|2 |ψ2〉 〈ψ2| if 〈ξi|ξj〉 � δij

Nevertheless, it is worth noting that ρ̂ψred does not represent a proper mixture of
states39, but an improper mixture, for three main reasons:

1. In SQM, the physical state of a system is mathematically represented by the
state vector of the system: in this case, the state vector is assigned only to
the global entangled state between the system and the environment, and we
cannot assign an individual quantum state to a subsystem (ψ) of a larger
entangled system (Ψ).

2. In SQM, the reduced density operator just describes the statistical distribution
of the possible outcomes for an observer who locally performs a measurement
on the system. So, it does not carry information about the physical state of
the (sub)system per se, but only related to the measurements we can perform
on it.

3. Decoherence does not select one particular branch of the superposition. All
the different branches remain equally real after the action of decoherence:
thus, even if the final state of the system looks like a mixture, this is not
a proper mixture that can be interpreted in terms of ignorance about the
actual state of the system. We might call it an improper mixture (see, e.g.,
Bacciagaluppi (2011, sect. 2.2)).

38A good approximation for ’many’ is the Avogadro number NA = 6, 022X1023.
39A proper mixture of states is an epistemic mixture: the system is in one of the states of the

superposition, but we do not know which one of them. An improper mixture, instead, is a mathe-
matical expression that looks like a proper mixture, yet it describes an ontological superposition
of states (See, e.g., Schlosshauer (2007, sect. 2.4)).
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4.2 Environmental decoherence induced by scattering
Taking decoherence as realistic background for the classical limit, we firstly in-
troduce the model of environmental decoherence by scattering40, and, after, we
consider if the Bohmian condition of disjoint supports could reasonably fit into the
model. As for the mathematical presentation of the model, we will mainly follow
Schlosshauer (2007, ch. 3).
We consider a system S that scatters off an external environmental particle, repre-
sented by ξ. At the initial time t = 0, S and ξ are uncorrelated:

ρ̂Sξ(0) = ρ̂S(0)⊗ ρ̂ξ(0)

Representing with |x〉 the initial state of the center of mass of the system, with |χi〉
that of the incoming environmental particle and with Ŝ the scattering operator, we
can represent the effect of the scattering of a single environmental particle on the
system as follows:

|x〉 |χi〉 → Ŝ |x〉 |χi〉 ≡ |x〉 Ŝx |χi〉 ≡ |x〉 |χ(x)〉

where |χ(x)〉 is the final state of the outgoing environmental particle scattered at x
on the system.
From the expression above, we see that if the system is represented by a super-
position of different position eigenstates, for example |x〉 =

∑
i ai |xi〉, then the

environmental state and the system state will become entangled: the scattering
process is a measurement-like interaction, which establishes correlations between
the two systems. The environmental states that scattered off the system can be
considered as pointer states which encode information about the position x of the
system. The scattering process transforms the initial density operator41 of the
composite system:

ρ̂Sξ(0) = ρ̂S(0)⊗ ρ̂ξ(0) =
∫
dx

∫
dx′ρS(x, x′, 0) |x〉 〈x′| ⊗ |χi〉 〈χi|

into the new density operator:

ρ̂Sξ =
∫
dx

∫
dx′ρS(x, x′, 0) |x〉 〈x′| ⊗ |χ(x)〉 〈χ(x′)|

Thus, the reduced density operator of the system after the interaction of a single
scattering of an external particle on the system is:

ρ̂S = Trξρ̂Sξ =
∫
dx

∫
dx′ρS(x, x′, 0) |x〉 〈x′| 〈χ(x′)|χ(x)〉

40The model was originally developed by Joos & Zeh (1985). Recent accounts of the model can
be found in Giulini, Joos et alii (2003, ch. 3) and Schlosshauer (2007, ch. 3).

41In the following, ρ̂ and ρ represents, respectively, the density operator and the density matrix
of a system. In general, the density matrix is the density operator expressed in a particular basis,
usually in the position basis (like in this case).
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Representing the result in the (position basis) density matrix, the evolution of the
reduced density matrix of the system under the action of the scattering event can
be finally summarized as follows:

ρS(x, x′, 0) scattering−→ ρS(x, x′, 0) 〈χ(x′)|χ(x)〉

This is an important result: in the SQMmodel of decoherence induced by scattering,
the condition for the local suppression of the spatial coherence of the system is
given by the orthogonality of the relative environmental states that scattered off
the system:

Standard condition for decoherence: 〈χ(x′)|χ(x)〉 � 0

In a Bohmian model, this condition is not sufficient to have effective decoherence.
Indeed, during the scattering process, the environmental state (the external particle)
becomes entangled with the system (a macroscopic body, in the classical limit), thus
acting like a pointer that measures the position of the center of mass of the system.
Nevertheless, as we saw in section 2.2, a good measurement interaction42 can be
realized in BM only if the wave functions of different states of the pointer have
disjoint supports in configuration space. Therefore, for obtaining a local suppression
of the spatial coherence of the system, BM requires that the supports of relative
environmental states have to be disjoint in configuration space. If |y〉 indicates
a generic position eigenstate of the scattered environmental particle, and Qξ the
configuration space of the environment, then the Bohmian condition to have effective
decoherence induced by scattering is43:

Bohmian condition for (effective) decoherence: 〈χ(x′)|y〉 〈y|χ(x)〉 � 0 ; ∀y ∈ Qξ

or, in terms of the wave function of the scattered environmental particle:

supp(ψχ(x)(y)) ∩ supp(ψχ(x′)(y)) � ∅ ; with supp(ψχ(y)) ∈ Qξ

So, the following question arises: is the condition of disjoint supports verified in a
typical realistic model of environmental decoherence by scattering?
In the case of a “classic” quantum measurement process44, we have at least two
main reasons to believe that the condition of disjoint supports is fulfilled:

42That is, a measurement providing a definite outcome.
43This result is not new: see, e.g., Rosaler (2014, sect. 5, eq. 20) and references therein. What

we are aiming to clarify here is the strong connection between this result and the measurement
process in BM as well as its conceptual consequences in the context of the classical limit in BM.
Moreover, while Rosaler (2014, sect. 5) assumes that the Bohmian condition for decoherence is
always satisfied (Rosaler’s justification mainly relies on the high-dimensionality of Qξ), we actually
don’t see any compelling reason for assuming the condition be satisfied for a typical model of
environmental decoherence (e.g., in the short-wavelength limit, even a few external particles suffice
to produce decoherence, so the high-dimensionality argument of Qξ does not hold in this case).
We think, instead, that this issue might deserve a further analysis, even with the help of some
quantitative results.

44That is, when the pointer states correspond to physical states of a classical apparatus.
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1. A classical apparatus is made of an extremely high number of (Bohmian)
particles, thereby the configuration space of the apparatus is very high di-
mensional (proportional to 1023D). This makes the probability of a significant
overlap between the supports of two different macroscopic pointer states very
small.
(high dimensional configuration space)

2. The wave function of a macroscopic system, like a classical apparatus, is
usually very narrow. Moreover, since different macroscopic pointer states
occupy different regions in 3D physical space, the wave functions representing
these states will be reasonably defined over regions with disjoint supports in
configuration space.
(narrow wave function)

Nevertheless, the situation changes dramatically when the apparatus is not a macro-
scopic object, but a microscopic environmental particle, the latter being either a
photon, an electron, a neutrino, etc... Indeed, the assumptions mentioned above
simply do not apply when the pointer state is a microscopic system:

1. The wave function of a microscopic system is generally not very narrow, and,
moreover, it usually spreads out in configuration space in a very short time.
(wave function spreads out)

2. In some limiting cases, we can send just few particles that scatter off the
system to produce decoherence effects (this is generally true, for example,
in the short-wavelength limit45). In this case, the configuration space of the
environment Qξ is not very high dimensional.
(low dimensional configuration space)

Since the traditional arguments46 for the validity of the condition of disjoint sup-
ports do not apply when the measurement apparatus is a microscopic quantum
system (like an environmental particle), and prima facie we do not have any strong
argument for considering the condition satisfied, the question remains open and
worth for a future work.
Some final (and more speculative) remarks on the conceptual consequences of the
analysis of the conditions for Bohmian decoherence. We note that if the condition
of disjoint supports is generally satisfied in a typical model of environmental deco-
herence, then decoherence fits very well in the framework of BM. Yet, BM could
account for the selection of just one trajectory within the branching linear structure

45See, e.g., Schlosshauer (2007, sect. 3.3.1) and Joos et alii(2003, sect. 3.2.1.1).
46See, e.g., Dürr & Teufel (2009, sect. 9.1). It is worth noting that in section 9.2 these authors

generalize the quantum measurement process, by including the case in which the pointer is a
microscopic system. They affirm that is precisely thanks to decoherence processes that an effective
wave function is produced «more or less all the time, and more or less everywhere». We agree with
them in considering entanglement and decoherence essential for the production of effective wave
functions and for the emergence of a (classical non-) local world. Nevertheless, their arguments
for the validity of the condition of disjoint supports in the case when the pointer is a microscopic
system are pretty qualitative, so they cannot be viewed as a definitive answer on this problem.
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produced by the Schrödinger evolution of open quantum systems without the need
of a real collapse of the wave function at some stage of the process (SQM) or the
introduction of many simultaneous non-detectable existing worlds (Everett, MWI).
On the other hand, if the condition of disjoint supports is not generally satisfied in
those models, then maybe it would be possible to find some regime in which BM
gives different empirical predictions from SQM. Let’s consider, for example, a deco-
herence model in which the condition of orthogonality of states is satisfied, whereas
the condition of disjoint supports is not. Under this model, SQM and BM will
predict different phenomena: according to SQM, we will obtain decoherence effects;
according to BM, we will not. Suppose that we were able to realize an experimental
set up that physically implement this model. Performing the experiment, we will
hypothetically be able to distinguish whether SQM or BM is true, since the two
theories provide different empirical predictions under the same model. Of course,
things might be not simple for many reasons. First, we should write a mathemati-
cal model in which the condition of orthogonality of states and that one of disjoint
supports come apart. Second, the model should be practically implementable into
a real physical set up. In any case, what we find interesting is that, if the condition
of disjoint supports is really necessary for implementing decoherence in BM, then
the possibility is open to find (at least hypothetically) some physical regimes where
the Bohmian empirical predictions are different from the SQM ones.

5 Conclusion
Decoherence theory is the standard framework to show how classical trajectories
and classical states can emerge from the quantum world and it is a crucial ingre-
dient in BM in order to recover the emergence of classical trajectories in bounded
regions.
We showed that, in order to implement an effective decoherence in BM, i.e., a
physical mechanism which gives rise to an effective wave function for a Bohmian
system through the interaction with the environment, a condition stronger than the
standard orthogonality of states is required: the supports of relative environmental
states have to be disjoint in the configuration space of the environment.
Thus, a relevant open issue for recovering the classical limit in BM is to verify
whether this condition is satisfied for typical realistic models of environmental de-
coherence.
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Structural Realism and Algebraic Quantum
Field Theory

Emanuele Rossanese

abstract. The main aim of my paper is to discuss a possible structural
interpretation of algebraic quantum field theory (AQFT). I want also to dis-
cuss the most serious problem for this interpretation in the context of AQFT,
namely the existence of several (unitary) inequivalent representations of the
local algebras of observables for the same physical system.

1 Introduction
According to a Received View, the problems of the particle and field interpreta-
tions seem to suggest that one has to look elsewhere in order to find the correct
interpretation of algebraic quantum field theory (AQFT). On the one hand, the
particle interpretation of AQFT seems to be ruled out by three main arguments.
A particle should be a countable and localizable entity. Moreover, we would like
to have an ontology that does not depend on the choice of the frame of reference.
However, these three requirements (that is, countability, localizability and frame-
invariance) seem to be violated in the context of AQFT. Haag’s theorem and the
Reeh-Schlieder theorem respectively show that is impossible to define a unique to-
tal number operator for both free and interacting quantum field systems and that
a local number operator is also not definable (see Earman and Fraser 2006 [11]
and Reeh and Schlieder 1961 [17]). This undermines the countability requirement.
Malament’s theorem shows that under certain reasonable physical assumptions it
is not possible to have a sharp localization of particles in any bounded region of
space-time (see Malament 1996 [16]). Finally, the Unruh effect seems to show that
the physical content of quantum field systems is observer- or context-dependent
(technically speaking is representation dependent). In particular, an accelerated
observer in a flat space-time would detect a thermal bath of particles exactly when
the quantum field in which she moves is in a vacuum state and should be then devoid
of particles (see Wald 1994 [20])1 . Baker (2009) [1] has also showed that the Fock
space formalism and the wavefunctional formalism that are naturally considered
to respectively ground a particle and a field interpretation are unitarily equivalent.
This means that the problems of the particle interpretation might undermine also

1Of course this is only a brief and sketchy presentation of the problems of the particle inter-
preation of AQFT and it only has the aim to give an idea of what is the Received View. A detailed
discussion of these problems is impossible in the context of this paper. The interested reader can
see Clifton and Halvorson (2001) [3] and (2002) [4] and Ruetsche (2012) [19].
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the field interpretation. For instance, the Unruh effect would show that the phys-
ical description of the inertial and accelerated observer would differ also in a field
interpretation of AQFT: a minimum level of energy in the first case and an ex-
cited state of the field in the second case. Baker then suggests that a structuralist
interpretation might be the most correct interpretation of AQFT. This interpreta-
tion would in fact emerge by elimination from the other interpretative alternatives.
In this paper I want to propose a structuralist interpretation of AQFT in order
to avoid the above mentioned problems. The main idea is that in the search for
the fundamental level, we should look at the level of the mathematical/physical
structures that are the basis of the theory. In other words, mathematical/physical
structures should be considered as the fundamental ontology of the theory. More-
over, these structures seem to be immune from the problems of the particle and
field interpretations briefly described above. In fact, the notion of structure is in
a sense weaker than the notions of particle and field, since it does not display all
the features that we have mentioned concerning, say, the notion of particle (for
instance, the countability and localizability do not apply to the notion of structure).
It is true that also the notion of structure should be clearly defined and has its own
problems as we shall see in the second part of the paper. However, if we consider
the problems of the other interpretations, I think that a structuralist interpretation
of AQFT is the best option avalaible. The paper is structured as follows. In the
second section, I will illustrate the basic features of AQFT formalism. In the third
section, I will discuss some structuralist interpretations of the theory. Finally, in
a conclusive section, I will put forward my personal structuralist interpretation in
terms of the superselection formalism and I will discuss some possible objections of
this interpretation.

2 The Structure of Algebraic Quantum Field Theory
The first thing that we need to mention is that in AQFT the main objects of study
are the algebras of observables rather than the observables themselves. A crucial
concept that we have to define is the important notion of net of algebras. The funda-
mental idea of AQFT is that the physical content of a system described by AQFT is
not encoded in an individual algebra of observables but rather in the mapping O→
A(O) from regions O of Minkowski space-time to algebras of local observables A(O).
Such a mapping determines which observables are localized and then take value in
O. The physical information is contained in the net structure of algebras and not in
the individual algebras. Another important notion here is that of quasilocal algebra
that includes global limits of the local observables as, for example, the total charge
observable. The elements of an algebra represent, roughly speaking, the physical
operations that can be performed in a certain space-time region which is associated
with that algebra. Given that only finite regions of space-time are considered, we
have to work only with local observables and hence with their related local alge-
bras of observables. The latter assumption is justified in order to implement the
principle of locality: measurements in a given spatial region must not rely on any
measurement taken in a different spatial region. According to the Haag-Kastler
formulation, the net of local algebras has to satisfy four axioms that impose certain
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algebraic and physical conditions. These axioms are the following:

(1) Isotony: the mapping O → A(O) is an inductive system. This means that
an observable measurable in the region of space-time O1 is a fortiori measurable
also in a region of space-time O2 containing O1.

(2) Microcausality: if O1 and O2 are space-like separated space-time regions,
then [A(O1), A(O2)] = 0. That is, all observables connected with a space-time
region O1 are required to commute with all observables of another algebra which
is associated with a space-like separated space-time region O2. This axiom is also
called Einstein causality.

(3) Translation covariance: if A is a net of local algebras of observables on an
affine space, it is assumed that there exists a faithful and continuous representation
x → αx of the translation group in the group of AutA of automorphisms of A and
αx(A(O)) = A(O + x), for any space-time region O and translation x.

(4) Spectrum condition: the support of the spectral measure of the operator as-
sociated with a translation is contained in the closed forward light-cone, for all
transaltions. This ensure that negative energies cannot occur.

A final point that is important to mention is the appearance of many (unitary)
inequivalent representations of the same algebra of observables. In the context of
non-relativistic quantum mechanics there is a theorem, the Stone-von Neumann
uniqueness theorem, which proves that the algebra generated by the canonical com-
mutation relations (CCRs) for the position and momentum operators has a repre-
sentation of these two set of operators in Hilbert space up to unitary equivalence.
This means that the specification of the purely algebraic CCRs suffices to describe
a certain physical system. However, the Stone-von Neumann theorem fails in the
context of AQFT, where one has an infinite number of degrees of freedom. The the-
orem is in fact proved only for system with a finite number of degrees of freedom.
In the specific context of AQFT, a representation is a map that associates every
element of an abstract C*-algebra A (in which the theory is formulated) with the
set of all bounded operators acting on an Hilbert space H. This representation has
to be a C*-homomorphism, that is, it has to preserve the algebraic structure of the
original C*-algebra2 .

The resulting Hilbert space H is then called the representation space. We must
also consider the fundamental concept of irreducible representation: a representa-
tion is irreducible if the representation space H has no closed invariant subspaces.

2According to a very general definition, a C*-algebra A is a complex algebra of continuous
(bounded) linear operators defined on a complex Hilbert space, with the following important
proprieties:

(i) A is (topologically) closed in the norm topology of operators;

(ii) A is closed under the operation of taking adjoints of operators.
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An irreducible representation is usually associated with an elementary system. One
of the first results of AQFT is the acknowledgment of the emergence of many (uni-
tarily) inequivalent (irreducible) representations of the same algebra of observables
generated by the CCRs. This means that for any pair of these (unitary) inequiva-
lent (irreducible) representations of the algebra of observables, there is no unitary
operator that can transform one into the other. As we will see in the next section,
the existence of (unitarily) inequivalent (irriducilbe) representations is the most se-
rious problem for a structuralist interpretation of AQFT. Before we conclude this
section, we must list three definitions that complete this very brief discussion of the
basic ideas of AQFT. First, in this specific formalism local observables are defined
as self-adjoint elements in local (non-commutative) von Neumann algebras. Sec-
ond, the state of a physical system is defined as a positive, linear and normalized
function that associates elements of the relevant local algebra of observables to real
numbers. Finally, we have to introduce the notion of GNS-representation. Let ω be
a state on a C*-algebra A. Then there exists a Hilbert space Hω, a representation
πω : A → B(Hω) of the algebra, and a cyclic vector |ξω〉 ∈ Hω, such that for all
A ∈ A, the expectation values that the state ω assigns to the algebraic operator A
is duplicated by the expectation value that the vector |ξω〉 assigns to the Hilbert
space operator π(A). In symbols, ω(A) = 〈ξω|πω(A)|ξω〉 for all A ∈ A. The triple
(Hω, πω, |ξω〉) is a cyclic representation because it contains a cyclic vector and it is
called GNS-representation. It is unique up to unitarily equivalence. That is, if (H,
π) is a representation of A containing a cyclic vector |ψ〉 such that ω(A) = 〈ψ| A|ψ〉,
then (H, π) and (Hω, πω) are unitarily equivalent. A state ω on a C*-algebra A is
pure if and only if its GNS-representation is irreducible; if its GNS-representation
is reducible, the state is a mixed state.

3 Structural Realism and AQFT
The standard basic idea of a structuralist interpretation of a physical theory is that
structures occupy the most fundamental ontological level of the theory. I will not
discuss the debate between different formulations of structural realism. I assume
that a general structural interpretation might be formulated and I focus on how
this can be done in the specific context of AQFT. Different proposals exist of a
structuralist interpretation of AQFT. Haag (1996) [13], for example, notes that the
role of fields in AQFT is just a convenient artefact. Fields have just the role of
coordinating the local algebras of observables. Moreover, the basic fields are only
linked to the charge structure of the local algebra of observables and have no direct
connection with some physically observable entity. Haag then claims that the phys-
ical content of AQFT is linked to local operations that are performed in a certain
region of space-time. Accordingly, a field is just a structure that allows to associate
an algebra of observable operators to a certain region of space-time. In this sense,
a local field is conceived as a local field operator that represents only a physical op-
eration that is performed in that space-time region. Thus, Haag concludes that the
net structure of the local algebras of observable operators provides the most fun-
damental description of what is going on in the context of AQFT. Roberts (2011)
[18] provides a more general analysis of the structural content of quantum theories.
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He defends a group structural realism (GSR) that he defines as follow: The existing
entities described by quantum theory are organized into a hierarchy, in which a par-
ticular symmetry group occupies the top, most fundamental position (see Roberts
2011 [18], p. 5). According to Roberts, this definition of structural realism allows
to have a precise connection to the physical quantities that we actually observe and
measure in the lab (see Roberts 2011 [18], p. 5). This last claim seems to be justifies
by the Wigner’s legacy. Wigner’s analysis of elementary particles in terms of the
classification of the irreducible representations of the Poincaré group is one of the
first attempt to define physical objects by means of a symmetry group. Roberts
then claims that Wigner’s analysis can be considered as one of the first example
of GSR. The main idea behind this interpretation of Wigner’s analysis is that it
has only proved that certain physical quantities (such as mass, spin and parity)
can be identified through the classification of all the irreducible representations of
the Poincaré group. Moreover, Wigner (1939) [21] does not explicitly link these
results to the notion of particle. In fact, Wigner only claims that it is possible to
correlate the values of physical magnitudes (that is, quantum numbers) with certain
parameter labelling group representations. Of course, there are not only space-time
symmetries. For instance, Roberts mentions and briefly discusses the case of Gell-
Mann’s and Ne’eman’s idea of considering the SU(3) as a symmetry group for the
strong nuclear force in the context of particle physics3. This would in turn allow
the definition of a new taxonomy of hadrons classified according to the irreducible
representations of the SU(3) group. Roberts’s GSR is interesting because it stresses
the importance of the symmetries in physical theories and in quantum theories in
particular. With respect AQFT, GSR might be extremely helpful in pointing out
the role of the symmetries that are involved in the superselection formalism, as
we shall see in the next section of the paper. Lam (2013) [7] proposes an explicit
structuralist interpretation of AQFT. According to Lam, the fundamental entities
of AQFT are space-time regions instantiating quantum field-theoretic properties.
These fundamental entities form the basic structure of quantum field systems. Lam
also notes that the Reeh-Schlieder theorem shows that the entanglement is perhaps
the central aspect of AQFT and has some features that are absent in the context
of the non-relativistic quantum mechanics. The Reeh-Schlieder theorem in fact en-
tails that vacuum is actually entangled across many space-like separated regions
and that this result is valid for all bounded energy states; also for non-interacting,
free quantum fields. Moreover, Lam takes into exam the specific algebraic structure
of the net of local algebras. Local algebras in AQFT are type III von Neumann
algebras. This feature entails that any global sate is entangled across any diamond
or double cone space-time regions and its causal complement. In more formal terms,
there is no product state across any type III algebra A⊆B(H) and its commutant
A’⊆B(H). Thus, a state in a type III algebra is intrinsically mixed in the sense
that it cannot be represented as a density operator within the GNS-representation
defined by any pure state. Such intrixically mixed states cannot be then understood
as a probability distribution over pure states. In fact, there are no pure states for
type-III von Neumann algebras. Since the fundamental entanglement of quantum

3See Robert (2011) [18] for details.
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field systems is exemplified by the type III structure of the algebra, Lam therefore
claims that we have to take C*-algebras as the primitive and fundamental structure
of AQFT. Any other structure emerges from the algebraic structure. For instance,
one can argue that the topological, differential and metrical space-time structures
can be derived from those primitive algebras4. However, one can complain that this
proposal is too abstract and does not allow to grasp the real physical content of
AQFT. Moreover, as we shall see in the next section, if we want to specify a more
concrete structure to be the fundamental ontological posit of the theory, this kind
of revised proposal may have some problems concerning the role of inequivalent
representations.

4 Inequivalent Representations and Superselection
French (2012) [12] suggests that AQFT is the most natural ground for a structuralist
interpretation. However, French recognizes that there is a problem in this interpre-
tation that concerns the role of the inequivalent representations of the algebra. As
said, we may have several (unitary) inequivalent irreducible representations of the
same algebra of observables. But if we want to adopt a structuralist interpretation
of AQFT, we should be able to choose the representations that have a clear and
definite physical meaning. If we are not able to do that, we might have a very
abstract algebraic structure that is not informative of what is the physical content
of the system represented by that algebra. French suggests that the superselection
formalism might be a possible solution of this problem. This formalism allows to
classify all the irreducible representations of the algebra of observables and then sort
out all the representations that are not physical. In particular, French suggests to
adopt the DHR superselection theory. Doplicher, Haag and Roberts (DHR) (1969a
[6], 1969b [7], 1971 [8] and 1974 [9]) propose a superselection criterion according to
which the physical representations are those that vary from the vacuum represen-
tation only locally. Thank to this criterion, DHR are able to provide an analysis
of the superselection formalism in terms of equivalence classes of inequivalent rep-
resentations corresponding to charge superselection sectors. They then prove the
following three important results:

(1) It is possible to formulate a composition law of charges in terms of the tensor
product of group representations;

(2) There is a form of conjugation in terms of the complex conjugation represen-

4Dieks (2001) [5] shows how to recover the space-time structure from the net of local algebras
within the context of AQFT. Specifically, he suggests to start from states and operators and distill‚
Minkowski space-time from them. According to Dieks, one can consider the subalgebras of the
total C*-algebra that are partially ordered by a < relation. Then one has several overlapping
sets of algebras and some of them can be identified with space-time points. This would create
a topological space. The general idea is then to define a group of automorphisms on an index
set of the net of algebras, and then interpret this group as the metric-characterising subgroup of
the isometry group of the Minkowski space-time. In this sense, then, space and time properties
are considered as ordering parameters of the fundamental algebraic structure of AQFT. See Dieks
(2001) [5], pp. 237-238 for details.
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tation;

(3) It is possible to assign a sign to each type of charge and this would lead to
the well-known fermionic and bosonic statistics5.

They conclude their analysis proving that a GNS-representation is isomorphic to
an object of the *-category of localized transportable endomorphisms. This category
allows a product, that is, a tensor product obeying to the permutation group. This
result seems to provide a natural representation of the permutation group in the
symmetric *-category (see Doplicher and Roberts 1990 [10])6. French contends that
the DHR analysis proves that all the physical structures that we need in order to
grasp the physical content of AQFT naturally arises from the net of algebras and
their superselection formalism. I believe that French is on the right track and in
the following part of the paper I want to develop a little bit further his idea. DHR
propose the following superselection criterion:

DHR selection criterion

The physical representations are the representations which become unitarily
equivalent to the vacuum in restriction to the causal complement of any diamond
by sufficiently large diameter, π| A(O′) � π0|A(O′)

This criterion entails that there is a vacuum-like appearances for all the states at
very distant regions. In other terms, all the states defined over the algebra of ob-
servables are indistinguishable from the vacuum state at space-like distances. The
first step is to assume a net of von Neumann algebras A(O) of local observables
defined over the set K of all double cones or diamonds O in Minkowski space-time.
It is also assumed that the net of von Neumann algebrasA(O) satisfies the following
conditions:

(1) Isotony;

(2) Relativistic covariance under the action of the Poincaré group;

(3) Local commutativity (i.e., locality).

DHR then suggest to apply their criterion to such an algebraic structure in order
to select all those states and representations that are (only) locally distinguishable
from the vacuum representation. In particular, one has to consider all the GNS-
representations πω corresponding to a certain state ω to be unitarily equivalent to

5If we shift to a 2- or 3-dimensional space-time, we need to substitute the permutation group
with the braid group, which is a larger group and allow the existence of paraparticles. See Halvor-
son and Mueger (2007) [14].

6It is worth noting that the idea of this category-based structuralist interpretation of AQFT
has the same conceptual framework than Roberts’s GSR, for both take symmetry as the main
criterion to select which physical entities need to be considered as invariants.
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the vacuum representation ω0 := π0 in the space-like distance. It is then possible to
define the important notion of local endomorphisms. DHR first proves that a GNS-
representation (π0, H0) corresponding to ω0 satisfies Haag’s duality: π0 (A(O’)’
= π0 (A(O)”. This means that the DHR criterion is equivalent to the existence
of local endomorphisms ρ ∈ End(A) such that πω = π0 · ρ is localized in some
O ∈ K in the sense of ρ(A) = A for all A ∈ A(O’) and ρ has support in O, that
is, supp(ρ) is contained in O (i.e., supp(ρ) ⊆ O). It is also possible to define the
notion of transportability of charges associated with the internal symmetry. For any
translation a R4 , there exists ρa ∈ End(A) with support in O+a and ρ � ρa = Ad
(ua) · ρ with unitary ua ∈ A. It is then possible to denote ∆(O) := ρ ∈ End(A);
ρ is transortable and localizable in O as the category of all the transportable endo-
morphisms. Doplicher and Roberts (1990) [10] goes on to define a DR-category in
the following way. A DR-category is a C*-tensor category 7 consisting of all objects
ρ ∈ ∆ = UO∈k ∆(O) and with morphisms (or arrows) given by intertwiners T ∈
A between ρ, σ ∈ ∆ such that Tρ(A) = σ(A)T. T has a permutation symmetry
due to locality, and is closed under direct sums and sub-objects (due to the property
B following from spectrum condition, locality and weak additivity8 ). Doplicher
and Roberts then proves an important theorem, called DR reconstruction theorem.
This theorem shows that in spite of being an abstract category ρ of local endomor-
phisms on the observable algebra A, the DR-category T determined by the DHR
criterion, is isomorphic to the category RepG of irreducible group representations
with a certain uniquely determined group G to be identified with the global gauge
group. Then, the essential result of the DR reconstruction theorem is the following.
Given the structure of T as a C*-tensor category having the permutation symmetry,
direct sums, sub-objects and conjugates, it is possible to show that a DR-category
assures the existence of a unique internal gauge symmetry group G9 . Moreover,
the DR-category fixes the existence of a unique field algebra F. One starts from the
existence of a field algebra F of operators acting on a Hilbert space H and a gauge
group G of unitary operators on H10 . One supposes also that the Hilbert space H
contains a vacuum state Ω. It is then possible to consider the observable algebra
A as the gauge invariants fields (acting on Ω). As said, in the context of AQFT
we have an abstract reducible representation π of A on H, since the theory admits
several inequivalent irreducible representations of the same algebra of observable.
Thanks to the DHR analysis, it is then possible to consider as physical all the ir-
reducible subrepresentations of π that are superselected via the DHR criterion. In
other terms, the physical representations are the superselection sectors that can be
reached from the vacuum sector through the action of local (unobservable). These
representation are of the form πω = π0 · ρ, where ρ is an endomorphism from the

7See Doplicher and Roberts (1990) [10] for details.
8See Doplicher and Roberts (1990) [10] for details.
9The appearance of group structure here is due to the permutation symmetry encoded in T

coming from the local commutativity in the four dimensional space-time. In the two dimensional
case, the permutation symmetry is to be replaced by the braid group symmetry, as a consequence
of which quantum group symmetry arises instead of the familiar group.

10It is possible to consider the gauge group as the representation of a fundamental symmetry
group, such as SU(2).
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category ∆(O)11. Thus, it is interesting to note that such endomorphisms corre-
spond to the representations that arise by acting on the vacuum representation
with (unobservable) fields. This means that there exists a perfect correspondence
between the algebraic structure and the physical structure described by AQFT.
Moreover, the DR reconstruction theorem proves that the DHR categories are dual
to compact gauge groups. This means that where there is a compact gauge group,
there is also a DHR category and the other way round. In a sense then the anal-
ysis of DHR categories and of compact gauge groups is the same. DHR show that
it is possible to recover all the properties of quantum fields from the analysis of
superselection sectors. As said, they are able to recover the the following struc-
tures: (i) properties of quantum number (baryon number, lepton number, and the
magnitude of generalized isospin); (ii) composition law and conjugation of charge;
(iii) exchange symmetry of identical charges statistics. Interestingly then DHR also
proves that charge quantum number structure is in a one-to-one correspondence to
the labels of (equivalence class) of irreducible representation of a compact gauge
group. Moreover, the composition law is represented by a tensor group of repre-
sentations belonging to this group. The charge conjugation is represented by the
complex conjugate representation. Finally, it is possible to assign a sign to each
type of charge and this allows to describe the fermionic or bosonic nature of the
particle system. However, DHR criterion cannot account for states with electric
charge, since it is possible to determine the electric charge by measuring the total
electric flux through an arbitrarily large sphere surrounding a particle, states with
an electric charge can be discriminated from the vacuum in the causal complement
of any bounded region. Such charges which can be measured at space-like infinity
appear typically in gauge field theories, and to fix terminology we will call them
gauge-charges. (Buchholz and Fredenhagen 1982 [2], pp. 1-2)12 This problem is in
fact due to the Gauss’s law and to the fact that electric charge spread space-like
at infinity due to Coulomb’s law. For this reason, Buchholz and Fredenhagen (BF)
(1982) [2] propose a different criterion where the diamond region O is replaced by
an infinitely extended cone around some arbitrary chosen space-like direction they
introduce then the notion of topological charge. The idea is to consider almost local
algebras and almost local operators in order to have an account of non-localizable
charges, as the electric charge. An almost local algebra is the set of all the elements
which can be approximated by local observables in a diamond of radius r with an
error decreasing in norm faster than any inverse power of r. Then, you can define a
space-like plan, called region C. Starting with a ball around the origin with radius

11It is interesting to note that all the representations of A that are not physical according to
the DHR analysis can be considered as a surplus structure.

12They continue: The example of the electric charge might suggest that gauge-charges are al-
ways connected with long-range forces and the appearance of massless particles. Indeed, this is
generally true in Abelian gauge theories. But in non-Abelian gauge theories, such as quantum
chromodynamics, the argument fails, and the work on lattice gauge theories indicates that states
carrying a gauge-charge may well exist in the absence of massless particles. We shall also see from
our general structural analysis that massive particle states might have weaker localization prop-
erties than normally assumed. This would admit gauge-charges even in purely massive theories.
(Buchholz and Fredenhagen 1982 [2], p. 2) This means that the problems of the DHR analysis are
not limited to the treatment of electric charged particles.
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r, we draw a straight line from origin to infinity and, around the point at distance
r’ from the origin on this line, we take a ball with radius r + γr’ with γ > 0. C is
the union of all these balls for 0 6 r’ > ∞. We also denote by Ac(C) the relative
commutant of the algebra A(C). Now, let O be a diamond space-like separated
from the origin a ∈ R4 an arbitrary point. The region C = a + Uλ > 0 λ · O with
0 6 λ > ∞ is called a space-like cone with apex a. It is then possible to define the
BF selection criterion.

BF selection criterion

The physical representations are the representations which become unitarily
equivalent to the vacuum in restriction to the causal complement of any space-
like cone, π| A(C ′) � π0|A(C ′)

Therefore, they allow as physically relevant representations all those representa-
tions that are unitarily equivalent to the vacuum representation with respect to the
causal complement of any space-like cone as defined above. Physically speaking,
this is justified by the fact that it is impossible to distinguish the states in the
representations π and π0 by measurements in any region C’, because in the region
C one can always bring in particles from space-like infinity or remove them with-
out changing the results of measurements in C’. It is then possible to construct a
composition of sectors, charge conjugation and an exchange symmetry analysis also
in the context of the BF analysis13. In a theory based on a Minkowski space-time,
the results of such analysis are equivalent to those of the DHR analysis. What is
now the moral of this section? Following French, I think that the superselection
formalism provides a solution to the problem of inequivalent representations in the
context of a structuralist interpretation of AQFT. In fact, the superselection formal-
ism shows how one can always superselect the physical representations by sorting
out all the abstract representations that do not represent certain minimal physical
assumptions. Moreover, as said, the superselection formalism allows to derive all
the physically interesting features of a quantum field system by considering only
the algebraic structure of the theory and some minimal physical assumptions. The
main aim of this paper is then to show that French’s proposal is correct in order
to achieve a clear structuralist interpretation of AQFT. However, my suggestion is
to ground this proposal on BF analysis of the superselection sectors rather than on
DHR, since the latter does not allow to consider electric charges, while the former
seems to provide a formal framework broad enough to consider also those charges.
One final remark concerns the fundamenal problem of any structuralist interpreta-
tion, namely the definite distinction between merely formal structures and physical
structures. I believe that in the context of AQFT the superselection formalism does
the job by identifying the class of physical structures among the set of all possible
representations of the algebra of observalbes. We must consider as physical only
those representation (that is, structures) that are picked up by the superselection
formalism and it is remarkable that such a formalism allows also to derive all the

13See Buchholz and Fredenhagen (1982) [2] for details.
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physical characteristics of a quantum field system by the study of the algebraic
properties of the relevant algebraic structure.
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Symmetries, Symmetry Breaking, Gauge
Symmetries

Franco Strocchi

abstract. The concepts of symmetry, symmetry breaking and gauge sym-
metries are discussed, their operational meaning being displayed by the ob-
servables and the (physical) states. For infinitely extended systems the states
fall into physically disjoint phases characterized by their behavior at infinity or
boundary conditions, encoded in the ground state, which provide the cause of
symmetry breaking without contradicting Curie Principle. Global gauge sym-
metries, not seen by the observables, are nevertheless displayed by detectable
properties of the states (superselected quantum numbers and parastatistics).
Local gauge symmetries are not seen also by the physical states; they appear
only in non-positive representations of field algebras. Their role at the La-
grangian level is merely to ensure the validity on the physical states of local
Gauss laws, obeyed by the currents which generate the corresponding global
gauge symmetries; they are responsible for most distinctive physical properties
of gauge quantum field theories. The topological invariants of a local gauge
group define superselected quantum numbers, which account for the θ vacua.
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1 Introduction
The concepts of symmetries, symmetry breaking and gauge symmetries, at the
basis of recent developments in theoretical physics, have given rise to discussions
from a philosophical point of view.1 Critical issues are the meaning of spontaneous
symmetry breaking (appearing in conflict with the Principle of Sufficient Reason)
and the physical or operational meaning of gauge symmetries.

The aim of this talk is to offer a revisitation of the problems strictly in terms
of operational considerations. The starting point (not always emphasized in the
literature) is the realization that the description of a physical system involves both
the observables, identified by the experimental apparatuses used for their measure-
ments, and the states, which define the experimental expectations. Since the pro-
tocols of preparations of the states may not always be compatible, i.e. obtainable
one from the other by physically realizable operations, the states fall into disjoint
families, called phases, corresponding to incompatible realizations of the system.
This is typically the case for infinitely extended systems, where different behaviors
or boundary conditions of the states at space infinity identify disjoint phases due
to the inevitable localization of any realizable operation.

This feature, which generically is not shared by finite dimensional systems, pro-
vides the explanation of the phenomenon of spontaneous symmetry breaking, since
the boundary conditions at infinity encoded in the ground state represent the cause
of the phenomenon in agreement with Curie principle.

The role of the states is also crucial for the physical meaning of gauge symme-
tries, which have been argued to be non-empirical because they are not seen by the
observables. The fact that non-empirical constituents may characterize the theoret-
ical description of subnuclear systems, as displayed by the extraordinary success of
the standard model of elementary particle physics, has provoked philosophical dis-
cussion on their relevance (see [1]). For the discussion of this issue it is important
to distinguish global (GGS) and local gauge symmetries (LGS).

The empirical consequences of the first is displayed by the properties of the states,
since invariant polynomials of the gauge generators define elements of the center of
the algebra of observables A, whose joint spectrum labels the representations of A
defining superselected quantum numbers; another empirical consequence of a global
gauge group is the parastatistics obeyed by the states. Actually the existence of a
gauge group can be inferred from such properties of the states.

At the quantum level, the group of local gauge transformations connected to the
identity may be represented non-trivially only in unphysical non-positive represen-
tations of the field algebra and therefore they reduce to the identity not only on the
observables, but also on the physical states.

From a technical point of view, a role of LGS is to identify (through the pointwise
invariance under them) the local observable subalgebras of auxiliary field algebras
(represented in non-positive representations). LGS also provide a useful recipe for
writing down Lagrangians which automatically lead to the validity on the physical
states of local Gauss laws (LGL), satisfied by the currents which generate the cor-

1An updated and comprehensive account may be found in [1].
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responding GGS. Actually, LGL appear as the important physical counterpart of
LGS representing the crucial distinctive features of Gauge Quantum Field Theories
with respect to ordinary Quantum Field Theory (QFT).

A physical residue of LGS is also provided by their local topological invariants,
which define elements of the center of the local algebras of observables, the spectrum
of which label the inequivalent representations corresponding to the so-called θ
vacua. The occurrence of such local topological invariants explains in particular
the breaking of chiral symmetry in Quantum Chromodynamics (QCD), with no
corresponding Goldstone bosons.

Finally, since only observables and states (identified by their expectations of the
observables [2] [3]) are needed for a complete description of a physical system, and
both have a deterministic evolution, the problem of violation of determinism in
gauge theories looks rather an artificial issue from a physical and philosophical
point of view.
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2 Symmetries and symmetry breaking
For the clarification of the meaning and consequences of symmetries in physics,
from the point of view of general philosophy, a few basic concepts are helpful.

Quite generally, the description of a physical system (not necessarily quantum!)
is (operationally) given [2] [3] in terms of
1) the observables, i.e. the set of measurable quantities of the system, which
characterize the system (and generate the so-called algebra A of observables)
2) their time evolution
3) the set Σ of physical states ω of the system, operationally defined by protocols of
preparations and characterized by their expectations of the observables {ω(A), A ∈
A}.

Operationally, an observable A is identified by the actual experimental apparatus
which is used for its measurement, (two apparatuses being identified if they yield
the same expectations on all the states of the system)

The first relevant point is the compatible realization of two different states, mean-
ing that they are obtainable one from the other by physically realizable operations.
This defines a partition of the states into physically disjoint sets, briefly called
phases, with the physical meaning of describing disjoint realizations of the system,
like disjoint thermodynamical phases, disjoint worlds or universes.

For infinitely extended systems, in addition to the condition of finite energy,
a very strong physical constraint is that the physically realizable operations have
inevitably some kind of localization, no action at space infinity being physically
possible. Thus, for the characterization of the states of a phase Γ, a crucial role
is played by their large distance behavior or by the boundary conditions at space
infinity, since they cannot be changed by physically realizable operations. Typically,
such a behavior at infinity of the states of a given phase Γ is codified by the lowest
energy state or ground state ω0 ∈ Γ, all other states of Γ being describable as
“localized” modifications of it. Thus, ω0 identifies Γ and defines a corresponding
(GNS) representation πΓ(A) of the observables in a Hilbert space HΓ, with the
cyclic ground state vector Ψ0.2

The simplest realization of symmetries is as transformations of the observables
commuting with time evolution, operationally corresponding to the transformations
of the experimental apparatuses which identify the observables (e.g. translations,
rotations). This is more general than Wigner definition of symmetries as transfor-
mations of the states which leave the transition probabilities invariant (adapted to
the case of the unique Schroedinger phase of atomic systems).

Actually, the disentanglement of symmetry transformations of the observables
(briefly algebraic symmetries) from those of the states (Wigner symmetries),
is the crucial revolutionary step at the basis of the concept of spontaneous symmetry
breaking, which comes into play when there is more than one phase.

An algebraic symmetry β defines also a symmetry of the states of a phase Γ (i.e.
a Wigner or unbroken symmetry) iff it may be represented by unitary operators
Uβ in HΓ.

2This point is discussed for both classical and quantum systems in [4], [5].
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An algebraic symmetry β always defines a symmetry of the whole set of states Σ:

ω → β∗ω ≡ ωβ , ωβ(A) ≡ ω(β−1(A)), ∀A ∈ A, (1)

but in general ω and ωβ need not belong to the same phase Γ, i.e. their preparation
may not be compatible, so that the symmetry β cannot be experimentally displayed
in Γ as invariance of transition probabilities, by means of physically compatible
operations (spontaneously broken symmetry). Thus, the breaking of β in Γ
is characterized by the existence of states ω ∈ Γ (typically the ground or vacuum
state ω0) such that ωβ < Γ.

The philosophical issue of symmetry breaking, also in connection with Curie
principle, has been extensively debated often with misleading or wrong conclusions.

A widespread opinion is that symmetry breaking occurs whenever the ground
state is not symmetric, but this is not correct for finite systems, for which (under
general conditions) there is only one (pure) phase Γ, so that both ω0 and ω0 β belong
to Γ and β is described by a unitary operator.

Thus, the finite dimensional (mechanical) models, widely used in the literature
to illustrate spontaneous symmetry breaking, on the basis of the existence of non-
symmetric ground states, are conceptually misleading.3

On the other hand, for a pure phase of an infinitely extended system, thanks to
the uniqueness of the translationally invariant state (implied by the cluster property
which characterizes pure phases), the non-invariance of the ground state ω0 ∈ Γ
under an internal symmetry β (i.e. commuting with space-time translations) implies
that ω0 β cannot belong to Γ and β is broken in Γ. Under these conditions, the non-
invariance of the ground state provides an explanation in agreement with Curie
principle, identifying the cause in non-symmetric boundary conditions at infinity
encoded in the ground state (see [4] pp. 23, 102). The philosophically deep loss
of symmetry requires the existence of disjoint realizations of the system, which is
related to its infinite extension.

The existence of an algebraic symmetry reflects on empirical properties of the
states and may be inferred from them. In fact, an unbroken symmetry implies the
validity of Ward identities, which codify the existence of conserved quantities and
of selection rules satisfied by the states; for continuous symmetries the conservation
laws hold even locally by the existence of current continuity equations implied by the
first Noether theorem ([5], p.146-7). For a continuous symmetry group G broken
in Γ, even if the generators do not exist as operators in HΓ , the existence of
a representation of G at the algebraic level implies symmetry breaking Ward
identities ([4], Chapter 15), which display corrections given by non-symmetric
ground state expectations, called non-symmetric order parameters; an important
empirical consequence is the existence of Goldstone bosons, for sufficiently "local"
dynamics ([4], Chapters 15-17).

3The standard models are a particle in a double well or in a mexican hat potential (see also
[6] [7]). The example of an elastic bar on top of which a compression force is applied, directed
along its axis, exhibits a continuous family of symmetry breaking ground states, but spontaneous
symmetry breaking occurs only in the limit of infinite extension of the bar; otherwise, both in the
classical as well in the quantum case, there is no obstruction for reaching one ground state from
any other.
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3 Global gauge symmetries
For the debated issue of the empirical meaning of global gauge symmetries
(GGS) (which by definition act trivially on the observables), a crucial (apparently
overlooked) point is that a complete complete description of a physical system
involves both its algebra of observables and the states or representations which
describe its possible phases. In fact, even if there is no (non-trivial) transformation
of the observables corresponding to GGS, GGS are strictly related to the existence
of disjoint representations of the observable algebra and their empirical meaning is
to provide a classification of them in terms of superselected quantum numbers [8].
This is clearly illustrated by the following examples.
Example 1. Consider a free massive fermion field ψ transforming as the fundamen-
tal representation of an internal U(2) = U(1) ⊗ SU(2) symmetry with the algebra
of observables defined by its pointwise invariance under U(2). The existence of the
(free) Hamiltonian selects the Fock representation in HF for the field algebra F
generated by ψ and this implies the existence of the generator N of U(1) and of the
Casimir invariant

T 2 ≡
3∑

α=1
(Qα)2, Qα ≡

∫
d3xψ∗(x)Tαψ(x), (2)

with Tα, α = 1, ...3, the representatives of the generators of SU(2). N and T 2 are
invariant under the gauge group U(2) and as such they (or better their exponentials
UN (α) = exp iαN, UT (β) = exp iβT 2, α, β ∈ R) may be taken as elements of the
center Z of the observable algebra A. The eigenvalues n ∈ N of N and
j(j + 1) (j ∈ 1

2N) of T 2 label the representations of A in HF and the fermion
fields ψ∗, ψ act as intertwiners between the inequivalent representations of A, by
increasing/decreasing the numbers n and j.

Had we started by considering only the observable algebra A, we would have
found that its representations are labeled by the (superselected) quantum numbers
n and j(j+1), corresponding to the spectrum of the central elements UN (α), UT (β)
and that the state vectors of the representations of A are obtained by applying
intertwiners to the n = 0, j = 0 representation, consisting of the Fock vacuum.

We would then be led to consider a larger (gauge dependent) algebra F generated
by the intertwiners, to interpret n as the spectrum of the generator N of a U(1)
group and to infer the existence of an SU(2) group with j(j + 1) the eigenvalues
of the associated T 2. Such a reconstructed U(2) group acts non-trivially on the
intertwiners, but trivially on the observables, namely is a global gauge group.
Example 2. A familiar physical system displaying the above structure is the quan-
tum system of N identical particles, even if in textbook presentations the relation
between the gauge structure and the center of the observables is not emphasized.

The standard treatment introduces the (Weyl algebra AW generated by the)
canonical variables of N particles and, by the very definition of indistinguishability,
the observable algebra A is characterized by its pointwise invariance under the
non-abelian group P of permutations, which is therefore a global gauge group.
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As before, its role is that of providing a classification of the inequivalent rep-
resentations of the observable algebra contained in the unique regular irreducible
representation of AW , (equivalent to the standard Schroedinger representation) in
the Hilbert space H = L2(d3Nq), where P is unbroken. H decomposes into ir-
reducible representation of the observable algebra, each being characterized by a
Young tableaux, equivalently by the eigenvalues of the characters χi, i = 1, ...m.[9]
For our purposes, the relevant point is that the characters are invariant functions
of the permutations and, as such, may be considered as elements of the observable
algebra, actually elements of its center Z.

Thus, as before, the gauge group P provides elements of the center of the observ-
ables whose joint spectra label the representations of A defining superselected quan-
tum numbers. Beyond the familiar one-dimensional representations (corresponding
to bosons and fermions) there are higher dimensional representations, describing
parastatistics (i.e. parabosons and parafermions).

Another empirical consequence of a global gauge group is the (observable) statis-
tics obeyed by the states, a parastatistics of order d arising as the result of an unbro-
ken (compact) global gauge group acting on ordinary (auxiliary) bosons/fermions
fields [10], [11]. In the model of Example 1, an observable consequence of the global
gauge group U(2) is that the corresponding particle states are parafermions of order
two (meaning that not more than two particles may be in a state). The quarks have
the properties of parafermions of order three as a consequence of the color group
SU(3) (historically this was one of its motivations).

In conclusion, contrary to the widespread opinion that the gauge symmetries
are not empirical, the global gauge symmetries are displayed by the properties of the
states (superselected quantum numbers and parastatistics) and actually can
be inferred from them.4

It must be stressed that a global gauge symmetry emerges as an empirical prop-
erty of a system by looking at the whole set of its different realizations; in a single
factorial representation, the center of the observables is represented by a multiple of
the identity and its physical meaning in terms of superselected quantum numbers
is somewhat frozen. To reconstruct an operator of the center of A one must look
to its complete spectrum, i.e. to all factorial representations of A.

A continuous global gauge group becomes particularly hidden in those represen-
tations in which the exponentials of localized invariant polynomials of the generators
converge to zero when the radius of the localization region goes to infinity. This
corresponds to the case in which, in the conventional jargon, the global gauge
group is broken.

In a representation HΓ of the field algebra in which the (continuous) gauge group
G is broken, briefly called a G-broken representation, in contrast with the above
examples, the charged fields do no longer intertwine between different representa-
tions of the observable algebra; in fact, they are obtainable as weak limits of gauge
invariant fields in the Hilbert space HΓ (charge bleaching) [12].

4The empirical meaning of the invariant functions of the generators of a global gauge group has
been pointed out in [5], pp.153-8 and later resumed by Kosso and others; (see also [13], Chapter
7).
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Example 4. The Bose-Einstein condensation is characterized by the breaking of
a global U(1) gauge group (acting on the Bose particle field as the U(1) group of
Example 1), as very clearly displayed by the free Bose gas.5 The U(1) breaking
leads to the existence of Goldstone modes, the so-called Landau phonons, and
the existence of such excitations may in turn indicate the presence of a broken U(1)
symmetry.

Finally, the gauge group is also reflected in the counting of the states. In G-
unbroken representations of A, to each irreducible representation of G contained in
the field algebra F , there corresponds a single physical state, whereas in the fully
broken case to each d-dimensional irreducible representation in F , there correspond
d different physical states [14] (for a handy account see [5], Part B, Section 2.6).

4 Local gauge symmetries
Traditionally, a local gauge symmetry group is introduced as an extension of the
corresponding global group G by allowing the group parameters to become C∞
functions of spacetime. It is however better to keep distinct the local gauge group
G parametrized by strictly localized functions (technically of compact support) from
the corresponding global one G, since the topology of the corresponding Lie algebras
is very different and invariance under G does not imply invariance under G (as
displayed by the Dirac-Symanzik electron field, [13], p. 159).

Also from a physical point of view, the two groups are very different, since in
any (positive) realization (of the system) the group of local gauge transformations
connected with the identity is represented trivially, whereas the global gauge group
displays its physical meaning through the properties of the states (see the above
examples). For example, the U(1) global gauge group is non-trivially represented in
Quantum Electrodynamics (QED) by the existence of the charged states, whereas
the local U(1) group reduces to the identity on the physical states ([13], Section 3.2).

Therefore, the natural question is which is the empirical meaning, if any, of a
local gauge symmetry (LGS) G in QFT. From a technical point of view, pointwise
invariance under G may be used for selecting the local subalgebra of observables,
from an auxiliary field algebra F , locality (strictly related to causality [11]) not
being implied by G invariance (e.g. in QED ψ̄(x)ψ(y) is invariant under G = U(1),
but not under G and is not a local observable field).

A deeper insight on the physical counterpart of a LGS is provided by the second
Noether theorem, according to which the invariance of the Lagrangian under a
group of local gauge transformations G implies that the currents which generate the
corresponding global group G are the divergences of antisymmetric tensors

Jaµ(x) = ∂ν Gaνµ(x) Gaµ ν = −Gaν µ. (3)

(local Gauss law ).
This is a very strong constraint on the physical consequences of G (corresponding

to the Maxwell equations in the abelian case). Actually, such a property seems to
catch the essential consequence of local gauge symmetry, since G invariance of the

5For a simple account see [4], p. 106.
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Lagrangian is destroyed by the gauge fixing, whereas the corresponding local Gauss
laws (LGL) keep holding on the physical states, independently of the gauge fixing.6

Moreover, a LGL implies that G invariant local operators are also G invariant.
In the abelian case this implies the superselection of the electric charge ([13],
Sect.5.3)

Thus, it is tempting to downgrade local gauge symmetry to a merely technical
recipe for writing down Lagrangian functions, which automatically lead to LGL for
the currents which generate the corresponding global gauge transformations. 7

The physical relevance of a LGL is that it encodes a general property largely
independent of the specific Lagrangian model and in fact, most of the peculiar
(welcome) features of Gauge QFT, with respect to standard QFT, may be shown
to be direct consequences of the validity of LGL (see [13], Chapter 7):
a) a LGL law implies that states carrying a (corresponding) global gauge charge
cannot be localized; this means that the presence of a charge in the space time
region O can be detected by measuring observables localized in the (spacelike)
causal complement O′; this represents a very strong departure from standard QFT,
where “charges” in O are not seen by the observables localized in O′;
b) LGL provide direct explanations of the evasion of the Goldstone theorem by
global gauge symmetry breaking (Higgs mechanism);
c) particles carrying a gauge charge (like the electron) cannot have a sharp mass
(infraparticle phenomenon), so that they are not Wigner particles;
d) the non-locality of the “charged” fields, required by the Gauss law, opens the
possibility of their failure to satisfying the cluster property with the possibility of a
linearly raising potential, as displayed by the quark-antiquark interaction, otherwise
precluded in standard QFT (where the cluster property follows from locality);
e) a local gauge group may have a non-trivial topology, displayed by components
disconnected from the identity, and the corresponding topological invariants define
elements of the center Z of the local algebra of observablesA; for Yang-Mills theories
such elements Tn(O), localized in O, are labeled by the winding number n and define
an abelian group (Tn(O)Tm(O) = Tn+m(O)); their spectrum {ei2πnθ, θ ∈ [0, π ]}
labels the factorial representations of the local algebra of observables, the corre-
sponding ground states being the θ-vacua. They are unstable under the chiral
transformations of the axial U(1)A and therefore chiral transformations are in-
evitably broken in any factorial representation of A without Goldstone bosons.
Thus, the topology of G alone provides an explanation of chiral symmetry break-
ing in QCD, without recourse to the instanton semiclassical approximation ([13],
Chap. 8).

In conclusion, LGS are not symmetries of nature in the sense that they reduce
to the identity not only on the observables, but also on the states, possibly except
for their local topological invariants. From the point of view of general philosophy,

6A gauge fixing which breaks the global group G involves a symmetry breaking order parameter
and it is consistent only if G is broken (see [13], p. 178 and [15]).

7The fact that LGL represent the distinctive physical property of "local gauge theories" has
been discussed and emphasized in [16], [5], p. 146-149, and later rediscovered, without quoting the
above references.
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they appear in Gauge QFT as merely technical devices to ensure the validity of
local Gauss laws (through a mathematical path which uses an invariant Lagrangian
plus a non-invariant gauge fixing).

By the same reasons, i.e. the realization that the observables and the physical
states are the only quantities needed for the complete description of a physical
system, the issue of violation of determinism in gauge theories does not deserve
physical and philosophical attention, since the observables and the physical states
have a deterministic time evolution.

5 Additional discussion required by the referee
The aim of the paper is to present logical (mathematically sound) arguments and
critical discussion of ideas and proposals which were previously not sufficiently elab-
orated from a philosophical point of view; in particular the paper aim is to criticize
misleading or wrong conclusions drawn from eminent philosophers of physics.

Empirical meaning of symmetries
For the discussion of the empirical meaning of symmetries it is important to take

into account the basic result of (the first) Noether theorem, by which invariance
(of the dynamics) under a continuous one-parameter group of transformations is
equivalent to the existence of a conserved quantity; hence, the empirical meaning
of a symmetry may be provided by the empirical realizations of the symmetry
transformations (e.g. space translations, rotations etc.), as well as by the empirical
meaning of the associated conserved quantity, which represents the generator of
the symmetry. Thus, e.g. the empirical meaning of space translations may be
argued by the actual operational realizability of such transformations (in terms
of translating observable quantities), as well as by the empirical meaning of the
(observable) conserved space momentum. Therefore, it is not appropriate to regard
the second manifestation as of indirect empirical significance (as stated in [17]), since
from an experimental point of view this is by far the more easy way for detecting
the existence of a symmetry, as also argued by Morrison [18] : "Conservation laws
provide the empirical component or manifestation of symmetries".

The peculiarity of a global gauge symmetry is that it cannot be realized as a
group of transformations of the observables (being the identity on them), but nev-
ertheless the associated conserved quantity may have an empirical significance in
terms of empirical properties of the states, as it is clearly displayed in Quantum
Electrodynamics (QED), where the generator of global gauge transformations de-
scribes the electric charge of the states, a very relevant conserved physical property.
We therefore essentially adopt the following criterium for empirical significance,
stated by Earman [19]: "What is objective or real in the world is described by the
behavior of the values of genuine physical magnitudes of the theory", however with
the crucial gloss that genuine physical quantities include both the observables and
the states of the given physical systems.

In conclusion, a symmetry has an empirical significance if it is displayed by prop-
erties of the observables (e.g. by defining automorphisms of the algebra of observ-
ables) or of the physical states (e.g. by providing conserved quantum numbers which
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classify the states). It follows that global gauge symmetries are empirical, since their
generators provide the conserved superselected quantum numbers which label the
physical states, but generally local gauge symmetries are not. To my knowledge, the
above relevant gloss has been missed in the discussions on the empirical significance
of gauge symmetries, even in papers aiming to clarify the philosophical aspects of
gauge symmetries [24].

Empirical meaning of local gauge symmetries
Practically the whole morning section of the meeting (during which the present

paper was presented) was occupied by talks centered on the possible philosophical
meaning of local gauge symmetries, dwelling on the philosophical meaning of invari-
ance under local transformations which reduce to the identity on the observables.
As argued in Section 4, this looks like a metaphysical issue and, as such, does not
deserve scientific attention. The distinction between global and local gauge sym-
metries is crucial for the discussion of the empirical meaning of gauge symmetries,
since only the first have a physical meaning whereas local gauge transformations do
not.

To this purpose, I quote the final conclusion by Elena Castellani in her contri-
bution "Symmetry and equivalence" in "Symmetries in Physics" (Ref.1): "Today
we believe that global gauge symmetries are unnatural...We now suspect that all
fundamental symmetries are local gauge symmetries". In the same book, in the
conclusion of his contribution "The interpretation of gauge symmetry" M. Redhead
writes "The Gauge Principle is generally regarded as the most fundamental corner-
stone of modern theoretical physics. In my view its elucidation is the most pressing
problem in current philosophy of physics".

For the discussion of this problem it is crucial to keep distinct the group of gauge
transformations which differ from the identity only on compact bounded regions,
henceforth called local, and the gauge group of global (i.e. independent from the
point in space time) transformations; englobing both under the name of a local gauge
group is, in my opinion, not convenient and likely misleading, because it hides the
fact that they have a different status about empirical significance and, moreover,
invariance under localized gauge transformations does not imply invariance under
the corresponding global ones. Hence, as argued in my paper, the two groups should
be taken neatly in separate boxes.

Then, the interesting question is what is the role of local gauge symmetries
(equivalently of the Gauge Principle) in the constructions of models of elementary
particles and the answer discussed in Section 4 is that they enter only as intermediate
steps, doomed to lose any operational and philosophical meaning at the end (except
for the related topological invariants, see below). Their merely intermediate role
is to lead to the formulation of a dynamics characterized by the validity (on the
physical states) of local Gauss laws obeyed by the currents which generate the
corresponding global gauge symmetries. Such Gauss laws are not spoiled by the
inevitable gauge fixing, needed for quantization (the proof of their validity on the
physical states is not trivial in general [15], even if it is out of discussion in QED):
they are detectable properties of the physical states and, as discussed in Section
4, they provide the physical and philosophical distinctive characterization of gauge
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quantum field theories.
This pattern is clearly displayed by Quantum Electrodynamics where (one may

prove that): 1) the local gauge group reduces to the identity both on the observables
as well on the physical states, i.e. does not have any empirical meaning, 2) on
the other hand, the local Gauss law (somewhat related to the intermediate use of
the non-empirical local gauge invariance) has an empirical significance, being one
of the Maxwell equations, 3) the global gauge group has an empirical meaning,
since its generator is the electric charge, whose corresponding quantum number is
superselected.

The recognition that local Gauss laws are the characteristic features of gauge
quantum field theories has been argued and stressed in view of quantum theories in
[20] [16] [5] and later reproposed, without quoting the above references, by Karatas
and Kowalski (1990) [21], Al-Kuwari and Taha (1990) [22], Brading and Brown
(2000) [23]. Actually, such papers confine the discussion to the derivation of local
Gauss laws from local gauge invariance (second Noether theorem at the classical
level, with no gauge fixing), missing the crucial fact that at the quantum level local
gauge invariance of the Lagrangian has to be broken by the gauge fixing and it
is devoid of any empirical (and philosophical) significance, whereas the validity of
local Gauss laws keeps being satisfied by the physical states, and it explains the
interesting (revolutionary) properties of gauge theories (as explained in Section 4).

In contrast with global gauge symmetries, local gauge symmetries are only useful
tricks used in intermediate steps (which use an auxiliary unphysical field algebra,
initially a Lagrangian which has local gauge invariance, to be next broken by the
gauge fixing, a redundant space of vector "states", only a subspace of which describes
physical states, on which local gauge symmetries reduce to the identity). The final
emerging picture is a description of the physical system characterized by conserved
(actually superselected) quantum numbers, provided by the generators of the global
gauge symmetry, and by the validity of local Gauss laws (no trace remaining of local
gauge invariance).

In my opinion, from a philosophical point of view, one should invest in the mean-
ing of local Gauss laws rather than on local gauge invariance (or on the so-called
Gauge Principle).

Determinism
The issue of violation of determinism should not even be raised, being discussed

with reference to equation of motions for gauge dependent variables which are de-
prived of objectivity and of reality, the objective description of a physical system
involving only (the properties of) observables and physical states, whose time evo-
lution is deterministic.

Quite generally, all what is needed for the complete description of a physical
system is the determination of the time evolution of its observables and states,
but for the solution of the related mathematical problem one may use tricks and
auxiliary variables in intermediate steps for which there is no need of a physical (and
philosophical) interpretation. Only the final goal and result is relevant and there is a
plenty of examples of such a technical strategy in theoretical physics. Thus, in gauge
theories it is technically convenient to introduce an auxiliary (gauge dependent)
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field algebra with well defined dynamics, i.e. such that the (mathematical) Cauchy
problem for its time evolution is well posed (existence and uniqueness of solutions).
To this purpose one has to introduce a gauge fixing in the Lagrangian, even if it
is not necessary to completely fix the gauge; e.g. in QED the Cauchy problem has
been proved to be well posed in the Feynman-Gupta-Bleuler gauge, in the temporal
gauge, in the Lorentz gauge (all allowing a residual symmetry group of non-constant
gauge transformations). The observables are characterized as the functions of such
auxiliary fields which are invariant under local gauge symmetry and satisfy locality;
this is the (merely) technical role of local gauge symmetry.

In quantum mechanics, once the Hamiltonian H has been defined (as a self-
adjoint operator) the time evolution is described by the unitary one-parameter group
generated by H and therefore the time evolution is automatically deterministic;
thus, for field quantization only those field operator may be introduced which have
a deterministic evolution. This is why the quantization of gauge theories requires the
introduction of a gauge fixing such that the initial value problem of the (auxiliary)
field algebra has a unique solution.

Infinitely extended systems and SSB
In order to be (spontaneously) broken, a symmetry, defined as an automor-

phism/transformation of the observables, must fail to be implementable by unitary
operators acting on the states of a physical realization of the system (otherwise
one has an unbroken, i.e. Wigner symmetry). This is possible only if there exist
disjoint realizations of the system (with the meaning of disjoint phases or worlds)
all described by the same algebra of observables with the same time evolution. The
physical/empirical meaning of disjointness is that configurations or states of the
system belonging to different phases cannot be prepared in the same laboratory,
more generally their protocols of preparation are not compatible. In mathematical
language this amounts to the impossibility of describing states of different phases
by vectors of the same Hilbert space carrying an irreducible or factorial representa-
tion of the algebra of observables. SSB in one realization or phase is explained by,
and actually equivalent to, the instability of the phase under the symmetry, by the
reason that in order to empirically detect the existence of a symmetry one must be
able to operationally compare the behavior of each given configuration with that of
its transformed one.

For quantum systems described by a finite number of canonical variables (under
general regularity conditions, by Stone-von Neumann theorem) there is only one
phase and therefore no SSB, even if there are non-symmetric ground states, in con-
trast with the wrong conclusion drawn from classical finite dimensional models with
non-symmetric ground states. This leaves open a possibility for systems described
by an infinite number of canonical variables, in particular for infinitely extended
systems (which require an infinite number of canonical variables).

Then, the next issue is the existence of disjoint phases for infinitely extended
systems; in this case different behaviors or different boundary conditions at space
infinity of configurations (or states) of the system imply that their preparations
are not compatible, since the inevitable localization of any physically realizable
operation (involved in passing from one preparation to another) precludes to change
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the behavior at infinity. Hence, generically infinitely extended systems exhibit more
than one phase, characterized by the boundary conditions at infinity, which are
generally encoded in the ground state of the given phase, see Proposition 6.3 of
Ref.4) and SSB may occur.

In conclusion, the crucial ingredient for symmetry breaking is the existence of
disjoint phases and this occurs for infinitely extended systems (though not exclu-
sively).

References
One of the referee request was to comment on a list of papers dealing with

overlapping subjects, qualifying the novelties (if any) with respect to them, (a task,
which I will reluctantly try).
1) Brading and Brown [17]. As in all papers by philosophers of physics, which I
know of, the discussion overlooks the important fact that an objective description of
a physical system should exclusively be based on (the properties of the) observables
and states and that the empirical significance of symmetries should be argued in
such terms (e.g. automorphisms of the observables and/or conservation laws obeyed
by the states, as explained above). The missing clear distinction of global versus
local gauge symmetries precludes to immediately reach the conclusion about the
empirical significance of the former and the impossible empirical significance of the
latter. In fact, in that paper local symmetries are identified as those which depend
on "arbitrary smooth functions of space and time"; the lack of any localization
restriction implies that the so defined group of local symmetries contains the group
of global symmetries as a subgroup, since, as every first year student in mathematics
knows, the constant functions satisfy the smoothness condition (a tacitly assumed
localizability would denote a lack of precision without which mathematics as well
as logic do no longer exist).

Had Brading and Brown clearly understood the different status of the two groups
and the general argument that local gauge symmetries reduce to the identity both
on the observables as well as on the states, they might have reduced their paper to
a few lines.

2) Healy 2010 [25]. The paper looks as a rather sketchy account of the common
(heuristic) wisdom about θ vacua, ignoring the critical revisitation of such a subject,
presented in [26] and later further discussed in Ref. [13]. In my opinion, this is not
merely a question of mathematical physics precision, since it is very dangerous and
certainly not satisfactory to ground a philosophical discussion on ideas, which may
have a useful heuristic value, but have serious problems of mathematical and logical
consistency.

The winding number n defined in eq. (10), a crucial ingredient of the discussion,
requires that Ai(x) are continuous functions and therefore it looses any meaning
for relativistic quantum fields, which have been proved to be singular "functions" of
space points (technically operator valued tempered distributions). In fact, in order
to give a possible meaning to such an equation the standard theoretical physics
wisdom is to apply it to regular (euclidean) field configurations in the functional
integral formulation (of quantum field theory), the so-called instantons. However,
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continuity is required and continuous euclidean configurations have zero functional
measure (this problem is well known to the eminent theoretical physicists who con-
tributed to this subject, like Coleman, Weinberg etc.). This consistency problem
was solved in [26] in a way that has strong philosophical consequences; in fact, no
reference is made to the topological structure of the (questionable) semiclassical
instanton approximation (of the functional integral) and the proposed solution ex-
clusively exploits the topological invariants of the (non-abelian) local gauge group.
It is shown that such topological invariants define elements of the center of the
local observable algebra and their spectrum (i.e. the θ angle) characterizes the θ
vacua. From a general philosophical point of view, the conclusion is that even if the
(group of) local gauge transformations connected with the identity reduce to the
identity both on the observables as well as on the physical states, the topological
invariants which classify the other components disconnected from the identity pro-
vide detectable superselected quantum numbers (the θ angles), which classify the
physical states, just as the generators of a global gauge group do. In conclusion,
local gauge symmetries are not empirical except for their topology.

The first sentence of the paper, with the abstract definition of a symmetry as "an
automorphism-transformation that maps the elements of an object onto themselves
so as to preserve the structure of that object" is too loose and imprecise. Which
elements (observables? states?)? Which structure is preserved? This applies also
to the subsequent attempt of formalization (A 1-1 mapping φ : S → S of a set of
situations...) which uses an undefined (vague) concept ("situations").

The merely intermediate role of local gauge symmetries for the validity of local
Gauss laws has been missed.

At the end of Section 3. The last two statements are rather misleading. First,
local gauge transformations, as well as the topological invariants provided by them,
do not relate configurations associated to different vacua; rather the topological
invariants define elements of the center of the observables which label (not relate!)
the vacua. The author seems to overlook the crucial difference between the empir-
ical significance of a symmetry displayed by transformations or relations (between
observables or states) and the empirical significance displayed by the existence of
conservation laws (as argued by Morrison). Similarly, the statement at the end of
Section 4, that "a large gauge transformation represents a change from one physical
situation to another" is conceptually wrong.

Towards the end of Section 5. The "generator" Û of a large gauge transformation
cannot be defined because the group of large gauge transformation is not continu-
ously connected with the identity. What may be defined, as done in [26], are the
elements Tn of the quotient G/G0 of the local gauge group G with the local group
G0 of transformations connected with the identity (having zero winding number).
Such a quotient is an abelian group, whose elements belong to the center of the
local observable algebra and their spectrum (or eigenvalues) are the θ angles.

The paradox raised at the beginning of Section 6: "a global gauge transformation
appears as a special case of a large gauge transformation" is a consequence of the
improper choice of not distinguishing global and local gauge transformations (see
above discussion).
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3) Struyve 2011 [27]. The paper is confined to discussing classical field theories,
which are known to have serious problems about their physical interpretation, in
particular for elementary particles interactions; they may provide some heuristic
mathematical information, but they do not describe nature, (with the possible ex-
ception of classical gravity, which however requires quantum effect for the descrip-
tion of black holes). The most objectionable point is the discussion of SSB in terms
of small perturbations around a non-symmetric ground state. As discussed in Ref.
4, in classical field theory, the set of small perturbations around the ground state
solution is not stable under time evolution and therefore it looses meaning with the
passing of time. The set of "perturbations" of a ground state solution φ0, which are
stable under time evolution are those which define a Hilbert sector or a phase, and
are of the form φ0 + χ, with χ ∈ H1, ∂tχ ∈ L2 (the corresponding theorems are
discussed in [4]; neither χ nor χ̇ remain small!). SSB cannot be identified with the
instability under the symmetry of the set of small perturbations ("When considering
small perturbations around a particular ground state, the equations of motions will
not posses the symmetry of the fundamental equations of motion and one speaks
of SSB.", at the beginning of Section 2.2.). The widespread cheap heuristic ac-
count/explanation of SSB in terms of small perturbations around a non-symmetric
ground state is not (mathematically) correct (as discussed in [4]).

Last but not least, I do not see what the paper significantly add to the gauge
invariant account for the Higgs mechanism, in the full quantum case, given by
Frohlich-Morchio-Strocchi [14], which does not even appears in the references of
Struyve paper.

4) Smeenk 2006, [28]. The paper is well written, but most of the general discussion
of conceptual problems is not novel and largely taken from [4] [5].

The aim of the paper, stated in the Abstract and in the Introduction ("This
article focuses on two problems related to the Higgs mechanism... what is the
gauge invariant content of the Higgs phenomenon? and what does it means to
break a local gauge symmetry?") is superseded by [14], quoted only at the very end,
probably to comply a referee request. The logical and conceptual discussion of the
problems of the Higgs mechanism, together with their solutions, already appeared
in [5] and in the 2005 edition of [4], which are not even mentioned in the references.
E.g. the discussion of SSB in Section 2 heavily relies on [4], in particular for SSB in
classical theories, for the exclusion of SSB in finite-dimensional quantum systems by
Stone-von Neumann theorem, for the role of the infinite extension for SSB in spin
systems. The content of footnote 5 is somewhat misleading, since both in Statistical
Mechanics (SM) as well as in Quantum field theory in order to witness SSB one
must consider pure phases, i.e. ground state representations which satisfy the cluster
property (this may require a decomposition of the representation obtained in terms
of the partition function in SM or of the functional integral in QFT).

In Section 3, the discussion of the Goldstone theorem and the crucial role of
locality, usually overlooked in textbook treatments, relies on [4], Chapter 15, es-
pecially Section 15.2. The general non-perturbative proof that in local gauges the
Goldstone bosons cannot be physical was given in [29], [4], Theorem 19.1, again not
even quoted; the evasion of the Goldstone theorem in the Coulomb gauge due to
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the lack of locality (rather than the lack covariance) is again clearly discussed in the
2005 edition of [4]. The discussion of Elitzur theorem and its consistency with the
occurrence of symmetry breaking in several gauges (like e.g. the Coulomb gauge)
was clarified in [12] and discussed at length in [5], Part C, Chapter II, 2.5, so that
the discussion in Section 5 of Smeenk paper does not seem to add anything new.
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AMetaphysical Reflection on the Notion of
Background in Modern Spacetime Physics

Antonio Vassallo

abstract. The paper presents a metaphysical characterization of spa-
tiotemporal backgrounds from a realist perspective. The conceptual analysis
is based on a heuristic sketch that encompasses the common formal traits of
the major spacetime theories, such as Newtonian mechanics and general rel-
ativity. It is shown how this framework can be interpreted in a fully realist
fashion, and what is the role of background structures in such a picture. In
the end it is argued that, although backgrounds are a source of metaphysical
discomfort, still they make a spacetime theory easy to interpret. It is also sug-
gested that this conclusion partially explains why the notion of background
independence carries a lot of conceptual difficulties.

Keywords: Background structure; spacetime theory; nomic necessity; dy-
namical sameness; principle of reciprocity; substantive general covariance;
background independence.

1 Introduction
Tempus absolutum, verum, & mathematicum, in se & natura sua sine re-
latione ad externum quodvis, æquabiliter fluit [...] Spatium absolutum,
natura sua sine relatione ad externum quodvis, semper manet similare
& immobile [...]
([11], p. 6)

Newtonian absolute space and time are the epitomes of background structures.
Newton’s definitions quoted above beautifully express the idea of a background
spatiotemporal structure as something whose characteristic properties are insensi-
tive to anything else. Such an idea is indeed straightforward but it is also a source
of conceptual discomfort. Starting from the Leibniz/Clarke debate on Newtonian
mechanics (NM), and continuing with the aether problem in classical electrodynam-
ics, it became clearer and clearer that the assumption of absolute structures led to
differences in the physical description that were not inherent in the phenomena.
These conceptual problems justified a “war” on Newtonian backgrounds that ended
victoriously with general relativity (GR), which is quite uncontroversially considered
the first spacetime theory that dispenses with background spatiotemporal structures
- i.e., it is background independent. However, despite the agreement over the fact
that GR is a background independent theory, an uncontroversial definition of this
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feature is still missing. Having in mind the extremely intuitive characterization of
background spatiotemporal structures in NM, we might frown upon this difficulty.
The definition of a background independent theory seems straightforward: it is just
a theory where no (spatiotemporal) structure bears its properties independently of
anything else. Actually, things have proven much more difficult than this, as - for
example - the discussion in [9, 15] convincingly shows. The conceptual difficulties
in spelling out what background independence exactly amounts to lead not only to
interpretational problems for GR (think about the historical debate on the alleged
“generalized” principle of relativity initially proposed by Einstein), but also makes
it difficult to extend this framework to the quantum regime (see [16], for a techni-
cally accessible introduction to the issue of background independence in quantum
gravity).
The aim of this short essay is to contribute a reflection on the problem of background
independence by revising the metaphysical characterization of spatiotemporal back-
grounds under the light of modern spacetime physics. We will start by providing
a heuristic sketch that highlights the formal traits that are common, at least, to
the major spacetime theories such as NM, special relativity (SR), and GR. We will
then discuss a possible way to interpret this unified framework in a straightforward
manner, based on some minimal metaphysical commitments that will be assumed as
working hypotheses. Finally, we will exploit this conceptual machinery to describe
how a background structure would influence the physics of possible worlds where
background dependent theories hold. The hope is that, from a metaphysical analy-
sis of possible worlds might come some hint to develop a better physical description
of the actual one.

2 A Primer on Spacetime Theories
In order to simplify our metaphysical analysis, let us start by providing a simple
formal sketch of a spacetime theory that is able to capture, albeit at a heuristic
level, the theoretical traits that are common to the most important spacetime the-
ories.1 For simplicity’s sake, we agree that a physical theory can be formalized as a
set of relations between mathematical objects, and that each instantiation of such
relations - once suitably interpreted - represents a possible state of affairs.
Our main concern, at this stage, is to propose a theoretically ductile picture of
spacetime. The first step in this direction is to specify what the building blocks of
spacetime are. Again, to keep things simple, we will just say that these primitive
elements are called events. After a theory is interpreted, then such elements will
take a definite physical meaning, such as that of “place-at-a-time”, or “physical
coincidence”. Claiming that spacetime is a set of eventsM is for sure general, but
rather uninformative, which means that we need to add structure to it. The second
step is, then, to equip the set of events with a notion of “surroundings”. This can
be achieved by defining a new set M := (M, τ), which is nothing but our starting
setM together with a family τ of its subsets satisfying the following requirements:

- The empty set andM itself belong to τ .
1The following sketch is based on [7].
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- Any union of arbitrarily many elements of τ is an element of τ .

- Any intersection of finitely many elements of τ is an element of τ .

τ is called a topology onM, and its elements are called open sets in M . A subset
V of M is a neighborhood for an element x ∈ M iff there exists an open set A ∈ τ
such that x ∈ A ⊆ V . Moreover, we require the elements ofM to be topologically
distinguishable and separable, i.e. for any two elements x and y ofM, there exists
a neighborhood U of x and a neighborhood V of y such that their intersection is the
empty set. In this way, we end up with a topological space M with a well-defined
criterion for judging whether any two events are numerically distinct or not.
The structure so defined over M is sufficient to introduce a notion of continuity
of a function, and this lets us apply a further constraint on the characterization
of spacetime, that is, the fact that, locally, it has to appear Euclidean. This con-
straint is implemented by requiring that for any open set A in M there exist a
function h : A → Rn that is bijective, continuous and whose inverse is continu-
ous. A function satisfying these conditions is called a homeomorphism. Roughly
speaking, this condition assures that, for any open set A of M , all elements in A
can be labelled using a n-tuple of real numbers - which usually amounts to saying
that A admits a coordinatization {xi}i=0,...,n−1. Furthermore, we want that, for
each two coordinatizations on overlapping neighborhoods, the transition function
from one coordinatization to the other - which is entirely defined and acting on
Rn - is differentiable in the ordinary sense. If we have shaped our spacetime ju-
diciously then, in general, to any coordinate transformation {xi} → {yi} defined
in a neighborhood A of M corresponds a map f : M → M such that, for each
point P in A, xi(f(P )) = yi(P ). It can be proven that such a map, also called
intrinsic transformation, preserves the structure defined so far on M . The set of
all these structure-preserving transformations is nothing but the group diff(M) of
diffeomorphisms2 acting on M . The reader not much fond of technicalities can just
visualize diff(M) as the group of permutations of elements of M that represent
smooth deformations of this space.
So far we have introduced some kind of “canvas” on which an even richer structure
- consisting in a variety of geometrical objects - can be defined. The most simple
example is that of a (continuous) curve, which is represented by a (continuous)
map σ : I ⊆ R → M . In a given coordinate system {xi}, the curve acquires the
form xi = xi(t), t ∈ I. Another possibility is to define a field-theoretic object Θ
as a map from M to another space X: if X is a space of rank 2 tensors, then Θ
will be a tensor field on M whose components Θij in a coordinate system {xi} will
be the elements of a n × n matrix. These geometrical objects can in general be
transformed by the application of a diffeomorphism. For example, if we have a field
Φ : M → X and we want to apply to this field a transformation f : M → M ,
this is done by defining such “application” as f∗Φ := Φ ◦ f , which, for all x ∈ M ,
means that (f∗Φ)(x) = Φ(f(x)). In case of a map γ : I → M , instead, we have
f∗γ := f ◦ γ ⇒ (f∗γ)(y) = f(γ(y)) for all y ∈ Y. The fact that there is a (nearly)

2That is, those mappings from M to itself which are bijective, continuous and differentiable
together with their inverses.
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one-to-one correspondence between coordinate transition functions and diffeomor-
phisms allows us to switch from the coordinate language to the intrinsic one without
caring for any loss of information.
Among all the geometrical objects definable over M , there is a subgroup of them
that endow M with more structure than just its topology - indeed, they supply M
with a geometry properly said. The most important of these objects are the metric
tensor and the affine connection. The former is a rank-2 tensor g that is symmetric
(i.e. gij = gji in all coordinate systems) and non-degenerate (i.e. the determinant
det|gij | of the matrix |gij | is different from zero in all coordinate systems), and which
makes it possible to define the notion of “length” of a curve on M . The latter is
a derivative operator ∇ (also called covariant derivative) that provides a precise
meaning to the “change of direction” of a curve on M . Hence, for example, a curve
that never changes direction is a straight line or affine geodesic on M . Since also g
permits to define a straight line as the curve of shortest length between two points
of M , we have also a notion of metric geodesic which, in general, does not have to
coincide with the affine one. For this reason, the connection is required to be com-
patible with the metric tensor, i.e. it must always be the case that ∇g = 0. Once
we have a well-defined notion of straight line, we can tell “how much” it corresponds
to the usual straight line of Euclidean geometry; this evaluation is made possible
by the Riemann curvature tensor Riem[g]. If the Riemann tensor is identically
null all over the manifold, then the geodesics of M are exactly those of Euclidean
geometry, and we say that the spacetime is flat, otherwise curved.
Let us now make some concrete cases. The first example is perhaps the simplest
one: the spacetime of special relativity (SR). This theory postulates a spacetimeM
endowed with the Euclidean topology of R4, that is, there exists a homeomorphism
mapping the entire manifold over R4. A metric tensor - the Minkowski metric η
- is defined over M . As expected, this object takes the form of a 4 × 4 matrix in
any coordinate system. Moreover, it is always possible to find a coordinate system
where |ηij | = diag(−1, 1, 1, 1). The Minkowski metric is compatible with a flat
connection that basically overlaps with the usual derivative operator of differential
calculus: this means that, in SR, the geodesics of M are the usual straight lines of
Euclidean geometry.
In NM things are more complicated. We still have thatM is globally homeomorphic
to R4, but the geometric structure of the manifold is that of a bunch of Euclidean
3-spaces piled together by a temporal 1-flow - more compactly we writeM = E3×R.
In order to achieve this structure, we need to postulate a Euclidean 3-metric over
each 3-space plus a temporal metric that labels the succession of these spaces. We
then fix a flat connection compatible with this building and, finally, we single out a
particular class of straight lines that describes the trajectories of bodies at absolute
rest. This class of geodesics fixes a notion of “sameness of place through time”, while
the temporal metric evaluates time intervals in a coordinate-independent manner.
In sum, this is the complicated machinery needed to depict an absolute space en-
during over absolute time.
Finally, in the case of GR, there is no restriction either on the topology of M , or
on the metric tensor g, or on the affine connection ∇. The only conditions are that
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g and ∇ are compatible, and that M is Lorentzian, which means that it is always
possible to find a coordinate system {xi} on a neighborhood A of a point P ∈ M
such that exactly at that point g reduces to the Minkowski metric.
In technical terms, all the spacetimes described above are instances of a n-dimensional
(pseudo-)Riemannian manifold. In all cases we had n = 4, but in general nothing
prevents us from elaborating a theory where the manifold has higher dimensionality.
In the Kaluza-Klein approach, for example, a further spatial dimension is added to
spacetime, which hence is 5-dimensional.
As we have seen from the above examples, the way we fix all the features of M ,
such as dimensionality, topology, geometry, or even further structures, varies from
theory to theory. Some theories fix ab initio just few features, and let the others be
dictated by the dynamics, while others presuppose from the outset rigid spatiotem-
poral structures that are not influenced by the dynamics. Obviously, these possible
choices are relevant in determining whether a theory is background independent or
not, as it will become clear later.
Now that we have given a formal account of spacetime, we are ready to define a
spacetime theory in the following way:
Definition 1. (Spacetime theory) A spacetime theory T is a set of mathematical
relations E involving a set of geometrical objects O defined over a n-dimensional
Riemannian manifold M :

T = T (M,O;E).3 (1)

The power of (1) lies in the fact that this formal unification makes it simpler to spell
out the way a spacetime theory is usually interpreted. M plus its additional geomet-
rical structure is taken to be the spacetime properly called; a curve on M describes
the motion of a point-like particle (so it is called the worldline of that particle), and
a generic material field occupying a spacetime region A is represented by a map
which assigns to each point in A a tensor (or a vector, or even a scalar). Hence,
spacetime is “decorated” by particles’ worldlines, which are more or less straight
depending on the near presence of material fields, such as the electromagnetic one.
If a field is able to bend the worldline of a particle and the particle is able to modify
the configuration of a field, then the two are said to be interacting. All the possible
interactions between physical objects and the resulting motions allowed on M are
expressed in terms of relations encoded in E, which, in a given coordinate system,
take the form of differential equations involving the components of the geometrical
objects. Here, as a working hypothesis, we will stick to this simple reading, which
presupposes a realistic attitude towards the geometric objects of the theory. This
means that we will consider all the geometric objects in O as referring either to real
(or at least possible) objects or to properties born by them. Hence, for example, a
curve on M will commit us to the (possible) existence of point-like particles mov-

3Just to be fair, it is not the case that a theory has to be formulated à la (1) in order to be
considered a spacetime theory. There are, for example, cases of spacetime theories formulated in
Lagragian terms, which cannot be cast in the form (1). However, we do not have to mind this for
the present purposes.
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ing along that worldline. Since, in general, the objects in O are field-theoretic in
nature, we will be also committed to the existence of fields, which, as we have seen,
are further divided into geometric (e.g. metric tensor field) and material (e.g. the
electromagnetic field). This “doubly dualistic” metaphysical stance involving mixed
particle/field and geometry/matter commitments is of course naive and perfectible.
However, the disagreeing reader can just take it as a mere choice of vocabulary,
and still follow the conceptual analysis of background structures we are going to
perform.
A key motivation to adopt a naive realist attitude towards O is that, by doing so,
we have a more or less clear measure of how much structure a spacetime theory pos-
tulates. By claiming this, we accept the line of argument developed in [12], where
it is argued that modern physical theories represent objective physical structures in
terms of geometric field-theoretic objects. Hence, roughly speaking, the larger O,
the more structure is postulated by T .
So far we have agreed to adopt, as a working hypothesis, a naively realistic attitude
towards the geometrical objects O in (1), but this claim by itself is confusing: to
what specific theory are we declaring our commitments? The answer is to all the
theories falling in the scope of definition 1, and this is our second working hypoth-
esis. In order to better spell out this second assumption, we need to introduce
another important definition:

Definition 2. (Model) A model of a spacetime theory T is a (k + 1)-tuple
< M, {Ok}k∈N > - where Oi ∈ O for all i ≤ k - that is a solution of E.

If we think of the space QT whose points represent each a configuration of all the
geometrical objects of the theory - which is in fact called configuration space of the
theory - then E selects a subspace ST ⊂ QT comprising all the physically allowed
configurations of geometrical objects. This is at the root of the usual distinction
between a purely kinematical state of affairs, that is, whatever element of QT , and
a physical (or dynamical) state, which belongs to ST .
Definition 2 concerns “total” or “cosmological” models, which means that, in a
model < M, {On} >, the geometrical objects are spread throughout the entire
manifold M . However, it might be the case that a model admits a subclass of
“partial” models involving a submanifold K ⊂ M and a set of geometrical objects
defined on it.
The concept of model is the most important one for interpretational purposes be-
cause, from a metaphysical point of view, a model of a theory represents a physically
allowed state of affairs. According to our realist attitude, then, a cosmological model
of a given theory T will represent an entire universe where the specific laws of T
hold. In other words, it represents a nomically possible world. By the same token,
a submodel of the same theory will be interpreted as a possible local state of affairs
in a nomically possible world. In order to make the philosophical analysis easier, we
will consider all and only the models of spacetime theories satisfying (1) and we will
assume that this set of models represents a cluster of nomically possible situations.
Each theory, then, individuates a subset of possible worlds where the particular laws
E of that theory are at work. Note that this working hypothesis does not restrict us
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to adopt a particular metaphysical stance neither with respect to possible worlds
(they can be mental constructions as well as existent objects), nor with respect to
laws of nature (E can be either grounded, say, in some genuinely modal feature of
the entities inhabiting a possible world, or can be just a description of regularity
patterns crafted in that possible world).
The last important definition we need to put forward before digging into metaphys-
ical considerations regards the notion of general covariance:
Definition 3. (General covariance - Formal version) A spacetime theory T
is generally covariant iff, for all f ∈ diff(M) and for all M ∈ ST , it is the case
that f(M) ∈ ST . diff(M) is the covariance group of T .

Here we talk of a “formal” version of general covariance - as opposed to a “sub-
stantive” one, which we will encounter later - for the following reason. Since E lives
on the manifold M , i.e., it represents the way the geometrical objects of the theory
are related throughout the manifold, and since diff(M) is the group of the struc-
ture preserving mappings defined over M , then it is trivial to see that, by applying
a diffeomorphism to whatever model of the theory, we obtain another model of the
theory. Moreover, given that formal general covariance is trivially satisfied by any
theory falling in the scope of definition 1, and given that it is possible to formulate
extremely different physical theories in the form (1) - just think about the physical
abyss that lies between NM and GR -, then it is clear that the notion of general
covariance defined above is purely formal and bears no physical import (historically,
[10] was the first to acknowledge this fact).
A legitimate question might arise at this point. Given that radically different space-
time theories can be encompassed by the same formal framework, what is it exactly
that makes them in fact radically different? To give a precise answer to this ques-
tion, we need to say something more about the metaphysics of backgrounds.

3 A Metaphysical Appraisal of Backgrounds
The notion of background structure we are going to introduce draws from the work
of Anderson [1, 2],4 and is based on the distinction made among the elements of
O between dynamical and non-dynamical objects. Such a distinction will become
clearer in a moment. For the time being, let us just say that a background structure
B ∈ O is a geometrical object of the theory that is fixed ab initio and, hence, is
“persistent” throughout the solution space of the theory.
To inform this notion with physics, consider the special relativistic description of
the propagation of a massless scalar field:

�ηφ = 0, (2)

where �η is the d’Alembertian operator with components ηij ∂
∂xi

∂
∂xj in some co-

ordinate system.5 Let us further assume that (2) has two solutions φ1 and φ2.
According to our metaphysical hypotheses, this means that the SR-cluster admits
two possible worlds that are described by the models < η,φ1 > and < η,φ2 >.

4Further refined by Friedman (see [7], in particular chapter II, sections 2 and 3).
5The Einstein convention is applied here.
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It is obvious to claim that these two worlds share a single feature, namely, the
Minkowski metric. The key point is that we can repeat this operation with any
two special relativistic worlds, that is, if we inspect the entire space of models of
SR, we see that all the models of the theory feature η. From our metaphysical
perspective, this translates to the fact that, in all possible worlds belonging to the
SR-cluster, there always exists a Minkowski spacetime. Generalizing, we can think
of characterizing a background structure by means of its metaphysical necessity or,
better, its nomic necessity: a background structure B of a given spacetime theory
T is an object that such a theory deems necessary, i.e., there are no possible worlds
described by T where B does not exist.
Along with this first metaphysical feature of background structures comes a clear
reason to feel uncomfortable with background dependent theories. A theory that
postulates a necessary physical structure is conceptually puzzling, not least because
it tells us that there is just one physical possibility among many conceivable ones.
By the same token, taking a structure as nomically necessary entails that it is phys-
ically impossible for it to change although we can conceive of a process in which the
structure under scrutiny might in fact change. From an epistemic perspective, we
can say that, when a theory accords a nomically necessary status to a spatiotem-
poral structure B, then it is unable to provide a physically justified answer to the
question “why is it B and not otherwise?”. In the case of SR, the theory tells us that
the only physically possible spacetime is the Minkowski one, and the only answer
this theory can provide to the question “why is it not otherwise?” is “because it
is how it is”. Some may object that there is nothing really conceptually puzzling
here, since it is totally reasonable to expect that the chain of physical justifications
provided by a theory stops somewhere - i.e. there always comes a point in which
a theory can just answer “because it is how it is”. This is fair enough. However,
this does not prevent us from putting two claims on the table. The first is: the
fewer objects in O a theory deems nomically necessary, the better. This is because,
then, such a theory is likely to exhibit a deeper explanatory structure than other
spacetime theories that are more metaphysically “rigid”. For example, GR is better
than SR with this regard because it explains why and under what circumstances
spacetime has a Minkowskian structure. Of course, this claim is not sacrosanct, in
the sense that surely some counter-examples can be mounted against it. However,
it still is fairly reasonable if applied to the major spacetime theories we have so far.
The second claim we want to highlight is: it is not impossible that a theory falling
in the scope of definition 1 does not commit us to the nomic necessity of any of the
objects in O. Clearly, this second claim does not entail that such a theory admits
a bottomless structure of physical justification - although many philosophers would
not find anything wrong with that -, but just that the theory fixes ab initio some
features other than (full) spatiotemporal structures.
A second important metaphysical feature of spatiotemporal backgrounds comes
from the following example. Let us focus on the Newtonian cluster of possible
worlds and consider a Newtonian world where there exist a large ship docked on a
calm sea. Inside the ship, shut up in the main cabin below decks, there is a man
- we can call him Salviati - together with an experimental equipment consisting of
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jars of flies, fishes in bowls and dripping bottles.6 Simply speaking, we are dealing
with a global model M, which describes the possible world in its entirety, but we are
magnifying just a portion of it, that is, a submodel m describing just what happens
in the immediate surroundings of the ship. Let us now apply to m a transformation
f that consists in a rigid spatial translation of the ship. The model f∗m will then
depict a situation in which the ship is still on a calm sea without wind, but now it
is located, say, one meter away from the position it had in m. In what dynamical
aspects does m and f∗m differ? None: in both cases the ship is at absolute rest and
Salviati is unable to spot any difference by looking at the equipment on board. This
reasoning can be repeated with rotations. Take f as a 45◦ rotation of the ship with
respect to the original orientation, and again both m and f∗m will depict a ship at
absolute rest, where Salviati’s equipment behaves exactly in the same manner as
the non-rotated one. We then suspect that the notion of sameness for Newtonian
states of affairs is influenced by the underlying background structures. In this case,
since Euclidean space is homogeneous and isotropic, the state of absolute rest of
the ship is insensitive to where the ship is placed or how it is oriented.
As an acid test, consider another situation where f∗m makes Salviati’s ship sailing
over troubled waters. In this case, it is quite obvious that m and f∗m depict radi-
cally different dynamical situations. The ship in f∗m is not in a state of absolute
rest (its worldline is not a geodesic at all, let alone a straight line pointing in the
privileged “rest direction”), and this has quite disruptive observable consequences:
while in m Salviati sits down quietly observing his jars of flies, fishes in bowls and
dripping bottles, in f∗m he7 is shaking in the main cabin among broken glasses,
buzzing flies and asphyxiating fishes.
To sum up, we have individuated another very important metaphysical aspect of
backgrounds, namely, that they fix a notion of sameness of dynamical state through-
out the cluster of possible worlds of the theories they figure into. From a formal
perspective, this means that, if a spacetime theory admits a set of background struc-
tures {Bi}, then for any two models of the theory related by some transformation
f , these two models are said to be dynamically indiscernible iff f∗Bi = Bi, for all
i, that is, iff f is a transformation (called isometry) that leaves all the background
structures invariant. We call this set of isometries iso({Bi}) ⊂ diff(M) the sym-
metry group of the theory.
This definition of symmetry qualifies as “ontic” in the taxonomy put forward in [5].
The author charges this kind of definition with inferential circularity. In his own
words:

But according to an ontic definition of ‘symmetry’, in order to check
whether a given transformation [f ] counts as a symmetry of [dynamical]
laws, I first need to know which physical features fix the data so that I
can check whether [f ] preserves them. And the problem is that, in many
cases, we discover which physical features fix the data by engaging in
symmetry-to-reality reasoning!

6Here, of course, we are referring to the “Gran Naviglio” thought experiment in [8].
7Or, if you want, his counterpart, depending on the particular account of possible worlds

adopted.
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(Ibid, p. 28 )

Although the above issue is a serious one, worth of extensive philosophical discus-
sion, here we just dodge the charge of inferential circularity by appealing to our
naive realist framework. Simply speaking, we do not discover which physical fea-
tures “fix the data” (in our case, the background structures): we just postulate
them ab initio.
At this point, we can go back to the question raised at the end of the previous
section, that is, what is it that renders different spacetime theories in fact different?
The answer is now crystal clear: the background structures in O. It is in fact thanks
to the backgrounds postulated by a theory that we can attribute physical import to
a subset of the covariance group diff(M). We have then different theories depend-
ing on the subset individuated by the backgrounds. For example, we can say that
NM is physically different from SR because the former admits a set of symmetries
which form a group called Galilean, while the symmetries of the latter belong to
the Poincaré group.
However, as in the previous case, also this feature of backgrounds may lead to un-
happy consequences. To see this let us consider again the docked ship on a calm
sea in m, and transform this model in one where the ship is still on a calm sea, but
now it is sailing with uniform velocity. Technically, the transformation f involved
in this case belongs to the so-called Galilean group. Intuitively speaking, while in
m the ship is in a trajectory of absolute rest (straight line pointing in the privileged
direction), f just “inclines” the trajectory of an arbitrary angle without “bending”
it. We are now in a strange situation: from the global perspective of M, m and f∗m
depict different dynamical states - absolute rest vs. motion with uniform absolute
velocity, but from Salviati’s perspective, there is no empirically observable difference
between the two dynamical states! Here, as in the case of nomic necessity, a liberal
metaphysician might claim that we should not worry too much and just accept the
fact that our theory commits us to the existence of dynamically different yet em-
pirically indistinguishable states of affairs. After all, this is just a metaphysical fact
that does not impair in any way the role of physicists. In fact, it is obvious that
whatever empirical question regarding the dynamics that Salviati could ask would
always have an answer, which would be the same irrespective of the fact that the
ship is in a state of absolute rest or absolute uniform motion. Again, we concede
the point that the existence of dynamically distinct yet empirically indistinguishable
states of affairs is not a mortal sin for a theory. But accepting this means accepting
that there can be elements of reality that are totally opaque to physics! This is
a rather embarrassing claim to embrace, especially if we believe that metaphysics
must be motivated and informed by science (and physics in particular). At least, it
is reasonable to invoke some sort of Occamist norm according to which, among two
competing theories with the same empirical consequences, we should prefer the one
that commits us to the least structure. Let us try to apply such a norm to NM.
The evidence that the culprit for the above discussed unwanted situation is absolute
space is given by the fact that the Galilean group is part of the isometries of all
Newtonian background objects except for the class of straight lines that fixes the
notion of “sameness of place through time”. Fortunately, we can reformulate NM
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without privileging any set of geodesics and, hence, giving up the commitment to
absolute space.8 In this new framework this particular problem evaporates since
now the dynamics of the theory does not distinguish anymore states of rest from
states of uniform velocity.
In sum, here lies the second charge against background structures: the more back-
ground structures a theory admits, the more it is likely that the theory will consider
as dynamically distinct some models that, in fact, admit the very same physical ob-
servables.
The last metaphysical feature of a background structure is related to the distinction
between dynamical and non-dynamical objects mentioned at the beginning of the
section. In short, spatiotemporal backgrounds are non-dynamical objects because
they do not enter E as elements subjected to the dynamical laws but, rather, they
represent the support that renders possible the very formulation of such laws. The
problem with the non-dynamicity of background structures is summarized in the
following quote:

[A]n absolute element in a theory indicates a lack of reciprocity; it can
influence the physical behavior of the system but cannot, in turn, be
influenced by this behavior. This lack of reciprocity seems to be funda-
mentally unreasonable and unsatisfactory. We may express the converse
in what might be called a general principle of reciprocity: Each element
of a physical theory is influenced by every other element. In accordance
with this principle, a satisfactory theory should have no absolute ele-
ments.
([1], p. 192)

Anderson effectively summarizes the third peculiarity of backgrounds and the reason
why we should feel uneasy about that. However, few comments are in place. First
of all, the way Anderson enunciates the principle of reciprocity is too strong and
seems to amount to some holistic principle which, most likely, was not the author’s
intention. Perhaps it would have been better to say that each element of a physical
theory can be influenced by some other element. Secondly, the principle as it stands
can be easily challenged on the ground of its vagueness as to how an “element of a
physical theory” has to be understood. To see why it is so, we could just consider
the Lagrangian formulation of NM. In this framework, the behavior of a mechanical
system is fully described by the Lagrange equations: once we fix an appropriate
Lagrangian plus initial conditions, we get the full dynamical history of the system
in the form of a trajectory in configuration space. In a sense, then, the Lagrangian
function is an element of the theory that influences the mechanical system but that
is not influenced back, being it a supporting element of the dynamical description.
Does it imply that the Lagrangian violates the principle of reciprocity? Here, we
are exploiting the vagueness underlying the notion of “element of a physical the-
ory”. The Lagrangian is with no doubt an element of the theory, but it would be
awkward to interpret it as ontologically on a par with the mechanical system: it is
just a descriptive tool that carries dynamical information and, as such, has not to

8As shown, for example, in [7], chapter III, section 2.
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be taken as referring to a concrete object that exists over and above the mechanical
system. Evidently, a too broad characterization of an element of the theory led us
to a category mistake.
Fortunately, the theoretical framework given by definitions 1 and 2 helps us clari-
fying the real intentions behind Anderson’s quote above. If, in fact, we restrict the
scope of the principle of reciprocity to the geometrical objects definable over M , we
can restate the principle as follows: each element of the set O must be subjected to
the dynamical evolution encoded by E. This renders the principle of reciprocity less
vague and highlights in what sense Anderson characterizes background structures
as elements of the theory that violate such a principle. However, we still have the
possibility to scupper this characterization. To do so, it is sufficient to reconsider
the example of the theory with equation (2). As we have seen, this theory features
a background structure, namely the Minkowski metric η. Now, let us add to (2) a
further equation:

Riem[g] = 0. (3)

What have we done here? Leaving aside technical considerations, we have done
nothing but “embedding” the fixing condition of the Minkowski metric into E.
Hence, the solution space of this new theory carries absolutely no more physical
information than the one associated to (2) alone, and the Minkowski metric is still
a background structure satisfying the first two features we have reported. However,
now, we have a theory that challenges the utility of the principle of reciprocity as a
guide in assessing spacetime theories. In the theory (2)/(3) each element of the set
O is subjected to the dynamical evolution encoded by E, but still the theory admits
a background. This example shows that even the amended version of the principle
of reciprocity we have considered is conceptually flawed. Nonetheless, it seems still
evident that Anderson’s quotation captures a salient feature of backgrounds. Per-
haps, we should read this quote in a more straightforward way, and interpret the
talk in term of influences as referring to a very concrete notion of physical interac-
tion. In some sense, here we are shifting the problem to what exactly “interacting”
amounts to in the modern physical jargon. However, just for the sake of argument,
let us assume that an interaction between two elements Θ1 and Θ2 of a theory
amounts to adding to E a coupling relation of the form F (Θ1,Θ2, κ), κ being and
appropriate coupling parameter. If we reconsider the principle of reciprocity under
this light, than it becomes the statement that each field-theoretic object is coupled
with some other. The challenge of the theory (2)/(3) is now defused because the
background role of the Minkowski metric is restored due to the fact that it does not
satisfy this latter version of the principle of reciprocity. Therefore, in the end, we
can say that the third metaphysical feature of spatiotemporal background is the one
already highlighted by Newton’s quotation at the beginning of the paper, namely
that they bear their properties without relation to anything else: this feature can
be reasonably translated in the language of modern spacetime physics as the fact
that they are structures that are not coupled to any material field.
Is this a bad thing, metaphysically speaking? Let us answer with the words of
Brown and Lehmkuhl:
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If there is a questionable aspect of [the principle of reciprocity], it is
less the claim that substances act (how otherwise could their existence
be known to us?) than the notion that they are necessarily acted back
upon, that action must be reciprocal. If all substances act, they do so
in relation to other substances; these other substances therefore cannot
be immune from external influences. Now it might seem arbitrary on
a priori grounds to imagine that the ‘sensitivity’ of such substances is
not universal. That is to say, it might seem arbitrary to suppose that
not all substances react to others. But no such abstract qualms can be
entirely compelling; Nature must have the last say.
([4], pp. 3, 4)

Otherwise said, pursuing the principle of reciprocity is reasonable but not necessary.
To further reflect on this point, let us focus on NM and ask in what sense the
absolute backgrounds of this theory influence the motion of bodies. For example,
what is it that “forces” an isolated point-particle to move in a straight line? The
answer is obviously “nothing”, let alone absolute structures: it is just a primitive
fact - i.e. not further justifiable via a “why” question - that in every Newtonian
world there exists a privileged class of trajectories occupied by bodies in inertial
motion. In this sense, absolute structures define possible motions but do not push
(in an ordinary physical sense) bodies to move that way. Under this light, it does not
seems that conceptually hard to withstand a violation of the principle of reciprocity.

4 Conclusion: How Easily Can We Dispense with
Backgrounds?

In the previous section we have supplied a metaphysical characterization of spa-
tiotemporal backgrounds based on the language of modern spacetime physics. To
recap, we have highlighted three features of background structures in a spacetime
theory:

1. The theory in which they feature treats them as (nomically) necessary struc-
tures.

2. They induce a notion of dynamical sameness among states of affairs through-
out the solution space of the theory.

3. Their dynamical influences are not describable as physical interactions.

As we have discussed, with each of this metaphysical traits comes an associated
conceptual discomfort. However, we have also highlighted that none of these issues
lead to contradictions or physical loopholes. Hence, we are inclined to claim that
whether one wants to renounce background structures depends on one’s own meta-
physical tastes. Otherwise said, one can backup one’s commitment to background
independence with strong and convincing arguments (and, indeed, many of such
arguments can be found in the literature), but she cannot appeal to a requirement
of background independence as a physically necessary one.
However, the realist framework we have put forward has made clear that background



362

structures have not only (mild) metaphysical vices, but also metaphysical virtues.
The most important among them is the possibility to straightforwardly define the
notion of physical symmetry in an ontic manner, without incurring inferential circu-
larity. More generally, once we specify what are the background structures {Bi} of
a theory, the interpretation of such a theory becomes a rather smooth business: this
is because, once the symmetries of a theory are given, we can identify as referring
to real objects or properties those theoretical structures that are invariant under
these symmetries. Once again, we stress that this is possible because we assume
background structures as postulated ab initio as a matter of ontological fact. In
general, in fact, there is no formal criterion that makes an object in O a background
structure, and it can be the case that the very same geometric object can count or
not count as background depending on the particular interpretation of the theory
chosen ([3], section 3.3, discusses in detail the case of such geometrically ambiguous
theories).
So far we have engaged in a conceptual cost-benefit analysis of postulating back-
ground structures in our theory. Suppose, now, that we are inclined to buy into
the view that a background has more costs than benefits and, hence, we wish to
go for background independence. According to our framework, implementing such
a requirement amounts - at least - to constructing a theory whose spatiotemporal
structures do not satisfy the three conditions listed at the beginning of the section.
Here, obviously, we cannot undertake this task, so we will be just content to verify
whether GR, which is usually considered the epitome of background independent
theory, in fact violates the three metaphysical requirements for background struc-
tures.
The dynamical equations of GR have the form G[g] = κT[φ,g], where the left-hand
side of the relation represents the geometry of spacetime (the so-called Einstein
tensor), and the right hand side features the stress-energy tensor, which encodes
information regarding the mass-energy distribution over a region of spacetime. We
can then say that spacetime in GR is not a background in primis because the theory
is about the coupling of the metric field g with the matter field(s) φ and, hence,
the third requirement above is not met. From the form of the dynamical equations,
in the second place, we infer that it is not the case that all the models of the theory
feature the same geometric objects and, hence, in the GR-cluster of possible worlds
there is no field-theoretic structure that counts as nomically necessary.9 It seems,
then, that also the second condition is not fulfilled. As a matter of fact, as we have
hinted at in section 3, there are other features of the models of the theory that bear
a physical significance and that show the “persistence” typical of backgrounds. For
example, all models of GR feature manifolds of dimensionality 4 and Lorentzian
in nature. Hence, although GR does not treat any spatiotemporal structure as
nomically necessary, there are some characteristic traits of these structures that are
nonetheless preserved throughout the solution space of the theory. Hence, strictly
speaking, in GR the spatiotemporal structures do bear at least some properties
without relation to anything external.

9As a matter of fact, some examples might be provided, which challenge this claim (see, e.g.,
[13]). However, since these examples are not disruptive to our analysis, we can set them aside.
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To get rid once and for all of this kind of objections, we can somehow render our
distinction between background dependent and independent theories more flexible.
Up to now, in fact, we have assumed that, in order to consider a theory background
dependent, it is sufficient that it admits at least a background structure. However,
this sort of classification might be too coarse or might deliver an unintuitive picture.
Consider for example a theory whose equations have two classes of models: one fea-
turing, say, a flat metric, and another featuring a curved one. Clearly, these two
metrics would not qualify as backgrounds according to the above characterization,
since they are not nomically necessary objects according to the theory. Still, we
would feel unconfortable with this conclusion, since such a theory would still be
“ontologically rigid”. Perhaps, we can establish a well-defined way to count (i) how
many physical features in general - not only geometric objects in O - are deemed
nomically necessary by the theory and (ii) how often non-nomically necessary fea-
tures appear throughout the solution space of the theory. This would imply that
the distinction between background dependence and independence would not be so
clear-cut, there being different degrees in which they come. If this strategy can be
consistently worked out ([3] makes a concrete proposal along these lines), then we
would have a measure according to which, say, NM is fully background dependent,
while GR is fully background independent modulo minor fixed features.
Finally, let us consider the second requirement and ask, if GR has no background
structures, does it still possess a well-behaved notion of dynamical sameness? We
face a dilemma here: if we answer no, this would imply that GR is a useless theory
incapable of making even the simplest empirical predictions, which is most obvi-
ously not the case; if we answer yes, then we have to face a huge controversy. To
see why it is so, let us back up our affirmative answer with the following argument:

(P1) The physical symmetries of a spacetime theory are those transformations f ∈
diff(M) that are isometries for the background structures {Bi};

(P2) GR has no background structures, i.e. {Bi} = ∅;

Therefore,

(C) In GR, all transformations f ∈ diff(M) are physical symmetries of the the-
ory.

The conclusion of this argument is usually stated as the fact that GR satisfies
the requirement of substantive general covariance, as opposed to the mere formal
version given by definition 3. Note that a similar argument can be mounted, in
which (P2) and (C) are switched. In this way, background independence and sub-
stantive general covariance would become overlapping concepts. The problem with
this line of argument is that it forces us to buy into the view that, trivially, the
transformations in diff(M) are all at once isometries of no background structure
(whatever diffeomorphism applied to nothing does not change anything). But that
seems too loose an appeal because the distinction between the whole diff(M) and
iso({Bi}) requires background structures: if such structures are absent, then we
have no means for making the distinction. By the same token, starting from the
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premise that all diffeomorphisms are physical symmetries of the theory does not
provide a firm enough ground to infer that the theory is background independent,
since we can always disguise background structures as dynamical objects.
Hence, it seems clear that, in order to define substantive general covariance in a
more rigorous way, it is necessary to base the argument for having diff(M) as
the set of physical symmetries on an approach different from the one considered
in this paper. Earman [6], for example, analyzes substantive general covariance in
terms of variational symmetries in the Lagrangian formalism, but this approach does
not help with spacetime theories that cannot be rendered in Lagrangian terms.10

Stachel [17], instead, argues that the problem arises from a wrong way of looking
at the structure of spacetime theories. Very simply speaking, Stachel claims that
the physically relevant information regarding a spacetime theory is not in general
encoded in the manifold M , but in a more complex structure, namely, a triple of
topological spaces - technically called fiber bundle - (X,M,F), with X having locally
the formM×F . In this context, the dynamical equations E become a set of rules for
selecting cross-sections of this fiber bundle.11 Now, the requirement of substantive
general covariance amounts to the fact that all the (geometrical objects referring
to) spatiotemporal structures of the theory live on these cross-sections. If some
structure still lives on the manifold M , then the theory is background dependent.
Stachel’s approach might prove more effective than that represented by (1) in high-
lighting the formal differences between spacetime theories - especially with respect to
considerations regarding background dependence/independence. However, it does
not seem to bring much ontological clarity to the matter. While, in fact, the frame-
work we put forward admits a straightforward interpretation, it is not at all clear
how to spell out the way the structure (X,M,F) refers to real (or possible) physical
structures.
In conclusion, the most important moral we can draw from the analysis developed in
this paper is that background structures, albeit showing some metaphysical vices,
are nonetheless elements that render the formulation and the interpretation of a
spacetime theory sharp and fairly simple. This is why pursuing the requirement of
background independence demands a huge conceptual price to be paid.
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