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Special Issue on Foundations, Applications,
and Theory of Inductive Logic

Martin Adamčík
Assumption University, Thailand

maths38@gmail.com

Matthias Thimm
Artificial Intelligence Group, University of Hagen, Germany

matthias.thimm@fernuni-hagen.de

Inductive reasoning is one of the most important reasoning techniques for hu-
mans and formalises the intuitive notion of “reasoning from experience”. It has thus
influenced both theoretical work on the formalisation of rational models of thought
in Philosophy as well as practical applications in the areas of Artificial Intelligence
and, in particular, Machine Learning.

This special issue is a follow-up to the First International Conference on Founda-
tions, Applications, and Theory of Inductive Logic (FATIL2022) that took place on
October 12-14, 2022, in Munich, Germany.1 It aimed at bringing together experts
from all fields concerned with inductive reasoning. This included in particular the
following aspects:

• Foundations of many of our best theories crucially depend on inductive logic
and more widely induction. Uncertainty is ubiquitous in our lives and the
philosophical problem arises to make sense of probabilities and to act sensibly
in the face of uncertainties. General philosophy of science is much interested
in (the reconstruction of) rational inference in general and in science, in par-
ticular, in cases with inconclusive evidence.

• Theory of inductive inference can be developed within several traditions such as
pure inductive logic or inductive logic based on the maximum entropy principle.

• Applications have sprung from foundational thinking on induction in computer
and data science. This includes aspects such as knowledge representation in
multi-agent settings and machine learning approaches (such as inductive logic
programming).

1http://fatil2022.krportal.org
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Adamčík and Thimm

The special issue welcomed contributions in all areas dealing with inductive reason-
ing. We specifically welcomed extended versions of works presented at FATIL2022,
but the call was open for further works as well. Topics of interest included, but were
not limited to:

• Foundational works about inductive reasoning, inductive logic, and induction,
in particular critical examinations of existing principles.

• Computational approaches to inductive reasoning, in particular non-monotonic
and other non-classical logics.

• Computational approaches to reasoning under uncertainty.

• Machine learning approaches taking inductive reasoning into account such as
inductive logic programming.

This special issues features three contributions from areas described above.
The first contribution “An intuitive introduction to information geometry” by

Martin Adamčík introduces traditional information geometry, and in particular the
convergence of the alternating minimisation procedure, from a position of an in-
ductive logician. It discusses geometrical principles that one would find reasonable
when asked to merge several conflicting beliefs of rational agents or information
sources. This is done in an entirely abstract setting without references to heavy
theory, and it should be accessible to anyone in the target audience of the Journal
of Applied Logics. Traditional and more technical Euclidean and Hilbertian settings
are presented towards the end of the paper.

The second contribution is “Analogical proportion-based induction: From classi-
fication to creativity” by Henri Prade and Gilles Richard. Here, analogical inference
is considered as a specific form of inductive reasoning, and similarities of and dif-
ferences between these modes of reasoning are discussed. Analogical proportions
are used as a technical framework to implement analogical reasoning and the paper
further analyses analogical proportions-based classification as a specific application
problem. Further, matters of creativity are discussed by considering analogical pro-
portions as an instance of logical properties and the paper discusses the latter in
depth. This could perhaps draw attention of the wider analogical reasoning com-
munity towards logic, while it provides an interesting topic for the readers of this
journal.

The final contribution is “Inductive Reasoning, Conditionals, and Belief Dynam-
ics” by Gabriele Kern-Isberner and Wolfgang Spohn. The authors consider inductive
reasoning as a special case of belief revision with epistemic states, the latter being
implemented by both probability distributions as well as ranking functions. The

2
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framework allows for reasoning with conditional information and the incorporation
of background knowledge. In their presentation, the authors take perspectives of
both Artificial Intelligence and Philosophy into account.

The editors are grateful to all the authors, and equally to the reviewers, for their
contribution. Special thanks go to Jürgen Landes for making the conference, and
thus this special issue, possible.

Received January 20243





An Intuitive Introduction to Information
Geometry

Martin Adamčík∗

Assumption University of Thailand
maths38@gmail.com

Abstract

In this paper, we recover some traditional results in the geometry of probabil-
ity distributions, and in particular the convergence of the alternating minimisa-
tion procedure, without actually referring to probability distributions. We will
do this by discussing a new general concept of two types of points: admissible
and agreeable, inspired by multi–agent uncertain reasoning and belief merging.
On the one hand, this presents a unique opportunity to make traditional results
accessible to a wider audience as no prior knowledge of the topic is required.
On the other hand, it allows us to contemplate how a group of rational agents
would seek an agreement given their beliefs without necessarily expressing it
in terms of probability distributions, focusing instead on logical properties. Fi-
nally, we recover Euclidean and Hilbertian settings of discrete and continuous
probability distributions.

Keywords: Information geometry, Divergence, Uncertain reasoning, Belief merging,
Fixed point, Alternating minimisation procedure, Bregman divergence, L2 space

1 Introduction
The inspiration for the information geometry presented in this paper is the problem
of merging several conflicting beliefs of rational agents or information sources. The
key application that will be further elaborated once we develop the necessary theory
is one of combining several medical studies. Combining more information sources
presents an advantage over basing medical recommendations on a single study but

∗Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) —
432308570. Thanks also go to anonymous referees who helped to improve the paper, and to Jürgen
Landes and Matthias Thimm who organised the First International Conference on Foundations,
Applications, and Theory of Inductive Logic, where this work was first presented.
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Adamčík

presents a challenge of dealing with conflicting information and complex knowledge;
rarely are two studies set exactly in the same way. Once complex aspects that are
related but go beyond the original scope of the study are considered, each individual
study’s findings become constraints on what is admissible. We may then assign
a mathematical object to represent the complex knowledge of all the studies. The
practical examples, however, demonstrated that it would be unlikely that say a fixed
probability distribution of patients (across some mutually exclusive and exhaustive
categories) is found admissible by all of the studies.

Nevertheless, we would hope that by developing some geometry of these math-
ematical objects, we establish a procedure to find a point that could be called an
agreement. Not in an arbitrary way, as there are a plethora of random choices that
we can make, but in an intuitive way where the geometry is built from principles
that we find reasonable. This is pretty much how the traditional axiomatic geometry
was developed because only the intuitive approach gives us hope that we build a
theory that resembles our world.

In fact, there are axiomatic frameworks in information geometry that fully cap-
ture the notions of cross–entropy (Shore and Johnson, [27]) and entropy (Paris and
Vencovská, [25]), and intuitive principles that postulate how we should merge con-
flicting beliefs of several rational agents or information sources in a propositional
setting (Konieczny and Pino–Pérez, [22]) and a probabilistic setting (Wilmers, [30]).
The main feature that distinguishes this paper from the previous axiomatic frame-
works of information geometry is the absence of any reference to probability distri-
butions and that we also deal with conflicting information. On the other hand, our
emphasis on information geometry is what differentiates our properties from those
mentioned in the earlier approaches to inconsistent belief merging.

Yet the geometry that we will develop is not just geometry, but it is the informa-
tion geometry of alternating minimisation procedure due to Csiszár [12, 13], which
has been generalised in literature many times [8] and that also stands behind the
motivating application of combining several real medical studies from [4].

Our approach, where the usual Euclidean and Hilbertian discrete and continuous
probability distributions are introduced only after the main results are derived,
provides a simple and captivating introduction to information geometry that will
only progressively get more challenging. Section 2 can be read by anyone regardless
of mathematical specialisation, while Section 5 will present results where familiarity
with function spaces might be required.

More specifically, in Section 2 we will introduce information geometry on an en-
tirely abstract concept of admissible and agreeable points. No reference will be made
to usual Euclidean or Hilbertian space settings: to discrete or continuous probability
distributions. This presents a unique point of view, inspired by multi–agent uncer-
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An Intuitive Introduction to Information Geometry

tain reasoning and belief merging, that does not seem to have yet appeared in the
literature and which promises to be a fun introduction to the subject.

In Section 3 we will increase the difficulty by adding a metric topology to intro-
duce a key procedure of information geometry: the alternating minimisation proce-
dure. This procedure kept appearing in various forms before and after Csiszár [12,
13], who was perhaps the first to state the most general form of it and at the same
time, write a completely correct proof for it. The procedure presented here is likewise
not more general; it is merely a different presentation of the famous result.

Section 4 will give us an opportunity to explain how the geometry works in the
Euclidean setting of discrete probability distributions and reference some literature.
While a traditional paper would have this section right at the beginning, we did
not want to discourage a potential reader from fields of logic and philosophy with
unnecessary terminology when presenting the results of previous sections. There, we
wished to present information geometry as driven by reason and logical principles
as opposed to something hidden in mathematical formalism. The section, however,
contains a further explanation of the real practical application of information geom-
etry and the alternating minimisation procedure that we have mentioned and should
not be omitted by anyone interested in applying information geometry.

Finally, Section 5 contains a Hilbertian space setting, where all results are proven
and not referenced as in Section 4, and these proofs can also be easily modified to
supply proofs omitted in Section 4. While general information geometric approaches
focus on a whole Hilbertian space setting [10] or a general function space setting [14],
we will work here in the L2 space setting, which is the intersection of the two. This
will simplify things, going well with the overall spirit of the paper, and the author
is not aware that the provided proofs have yet appeared in this form elsewhere.

2 Information geometry
2.1 Intuition

“A point is that which has no part.”

Euclid of Alexandria, [20]

Whenever we build a mathematical theory, we need to consult our intuition.
Should we not do it, we may end up building a theory that little resembles the
world we are living in and which is equally inapplicable. In this section, we will
start building an intuitive framework that deals with information. We will need to
confer with our intuition in the form of our experience on how information is used
and how conflicting statements are dealt with.

7
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Our first notion will indeed be the point. As in the Euclidean definition that
starts this section, it is a building block that is further indivisible. Our point is,
however, introduced to represent information rather than the position in a three–
dimensional world. We think of several different beliefs on a particular matter; each
different belief can be represented as a point. We are not concerned with what
further constitutes the belief and we disregard any knowledge concerning the origins
of the belief; it is simply an indivisible entity to us.

The points, which we have just introduced, can have any of the two following
properties in this paper:

1. They can represent an admissible (i.e., consistent with the knowledge) col-
lective point of view of a given group of rational agents or a collection of
information sources, shortly called simply an admissible point,

2. and to represent an agreement of the group (resolving potentially conflict-
ing nature of knowledge possessed by distinct agents or information sources),
shortly called an agreeable point.

Now, intuitively, an admissible point is meant only to represent the state of collective
knowledge, individual members of the group could well disagree and there could
be no, what we call, agreeable point. An example following this paragraph will
illustrate this. An agreeable point is thus an idealised point where all agents or
sources agree with each other, despite practically such a point would often not be
consistent with given knowledge. This collective framework of belief merging, that
deals with individually consistent but jointly possibly inconsistent beliefs of a group
of rational agents, was pioneered by Wilmers [30], and we are directly extending it
here. An illustration is in Figure 1.

Example. To illustrate, one scientific study could suggest that the proportion of
people that develop a particular disease is somewhere between 10% and 30% while
the other study could indicate that this value is between 20% and 50%. One way of
constructing a point is to specify an ordered pair of individually admissible propor-
tions such as (25%, 40%), where the first number is admissible according to the first
study and the second number is admissible according to the second study. Agree-
able admissible points in this particular representation will be the points (x, x),
x ∈ [20%, 30%], clearly representing the proportions on which the studies agree at
the same time. There are other agreeable points that are not admissible, such as
(35%, 35%), (50%, 50%), (0%, 0%), and so on.

The example above illustrates the kind of details we will need to go into before the
intuitive concept that we develop here can be applied, but at this stage, working out

8



An Intuitive Introduction to Information Geometry

admissible points

agreeable points

points

agreeable admissible points

Figure 1: An illustration of the set of all points.

the details would only obstruct the general idea and the intuition behind it. We have
therefore moved all technical examples and relevant references to Section 4. Here
we only point out that our illustration fits Paris–Vencovská framework of uncertain
reasoning as in [24] and that while the example above does not constitute the only
line of application, representing agreeable points as those where all agents or sources
agree is typical, and we will see this in Section 4.

The previous example was also straightforward enough in establishing agreeable
points, but the following questions naturally arise:

1. What shall we do if admissible points contain no agreeable points?

2. How should we measure some kind of distance between an admissible point
and an agreeable point in an effort to find the closest points of agreement?

3. Which intuitive principles such a notion of distance should satisfy?

These questions reflect the intuition that not all agreements, among those that a
rational agent does not find admissible, are equally undesirable. With a notion of
distance, we will be able to quantify this.

2.2 Information divergence
In the previous section, we saw the need for expressing some sort of information
distance between two points, let us denote the set of all points as X, but we would

9
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not want to require much from this notion at this early stage. In particular, there
is no apparent need for it to be a metric.

A metric is a symmetric distance between a pair of elements x and y of a set.
It assigns to each pair (x, y) a non–negative real number d(x, y), this number is
independent of the order of elements, it is zero if and only if the elements are
identical and it satisfies the triangular inequality: d(x, z) ≤ d(x, y) + d(y, z).

Instead, we will consider a much weaker notion of information divergence, a
mapping D that assigns an ordered pair of points in X a non–negative real number:

D : X × X → R, and D(x, y) ≥ 0.

We say that D(x, y) is the D information divergence from x to y. Since symmetry
is not required, the D information divergence from y to x could be different and
therefore we do not call it a distance but a divergence.

Now, let W ⊆ X be the set of all admissible points and V ⊆ X be the set of
agreeable points. Throughout the paper, we will assume that they are both non–
empty, but we will not specifically require anything else from them before we reach
Section 3. Formally, W and V are simply subsets of X, nothing more.

Let ∆(W ) ⊆ V be the set of all those agreeable points v that are such that
D(v, w) is minimal subject to v ∈ V and w ∈ W :

∆(W ) =
{

arg min
v∈V

D(v, w): subject to w ∈ W
}

.

In other words, we are looking here at all pairs (v, w), v ∈ V and w ∈ W , estab-
lishing the minimal D(v, w) if it exists, and collecting all those v from V that give
this minimal divergence into ∆(W ). The purpose of the set ∆(W ) is to determine
those agreeable points that have the smallest D information divergence from them
to admissible points and to use them as representatives of the set of all admissible
points W . In other words, ∆(W ) ⊆ V represents W ; it is the agreement of a group
of rational agents or a collection of information sources. We will call the points in
∆(W ) representative points. See Figure 2 for an illustration.

Intuitively, if W ∩ V ̸= ∅; i.e., there are agreeable admissible points as in the
example in the previous section, we expect the representation ∆(W ) ⊆ V of W to be
formed only by agreeable admissible points, although this intuition is not universally
accepted. Williamson in [29] argues that such a principle is too strong as several
rational agents may find an agreeable point to be admissible for inconsistent reasons.
Nevertheless, as these reasons are in our setting unknown, it would not be rational
to use them as an argument against our intuition. The following property of D
guarantees that the above is the case:

10
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w

W

V

∆(W )

points

D(v, w)

v

Figure 2: An illustration of the representative points. The direction of the arrow
indicates that we consider here the divergence from v to w. We should not, however,
mistake this with the direction of ∆: It takes W and finds its (set) image in V .

Property 1 (Consistency). Let v and w be any two points in X. Then

D(v, w) = 0 if and only if v = w.

The meaning of v = w for points is that v and w are identical: they denote the
same point in X. In illustrations, if we draw two different points then they are not
identical. For example, in Figure 2 we have that w ̸= v.

Observation 1. Let D be such that it satisfies the consistency property. If there are
agreeable admissible points then agreeable admissible points form all representative
points;

if W ∩ V ̸= ∅ then ∆(W ) = W ∩ V .

Proof. First, if v ∈ W ∩ V then by the consistency property D(v, v) = 0. We
conclude that v ∈ ∆(W ) as v minimises D(v, w) subject to v ∈ V and w ∈ W .
(Note that D(v, v) cannot be smaller than zero by definition.) Hence ∆(W ) ⊇
W ∩ V .

Second, assume that W ∩ V ̸= ∅ and v ∈ ∆(W ) ⊆ V is such that v ̸∈ W . Then
D(v, w) = 0 for some w ∈ W , which by the consistency principle gives v = w.
Hence ∆(W ) ⊆ W ∩ V .

The consistency property above is formulated more strongly than it is needed to
prove Observation 1. Rather than considering any points v and w, we could have
required it only for v ∈ V and w ∈ W . The reason for our choice is that we will
need the stronger version later on.

11
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In contrast, if v = w implies D(v, w) = 0 but there are v ̸= w such that
D(v, w) = 0, it could be possible to have W ∩V ̸= ∅ and ∆(W ) ' W ∩V , so further
weakening of the consistency property would be undesirable.

2.3 Projections
Our notion of an information divergence is too general to have further useful proper-
ties on its own; in particular, if there are no agreeable admissible points, we cannot
even say that the set of all representative points is always non–empty. We will keep
adding assumptions concerning both D and sets of agreeable and admissible points
V and W based on what appears rational to us in the context of information geom-
etry. At some point, however, we will need to show that the list of our assumptions
is consistent; we will need to find a particular information divergence, and sets W
and V , that satisfy all those assumptions.

In this section, we will require D to have the following properties:
Property 2 (Projection). Assume that v is a given agreeable point. Then there is a
unique admissible point w such that D(v, w) is minimal among all D(v, y) subject
to y ∈ W .

The unique point w from the previous property will be denoted πW (v); it is the
D–projection of v into W . An illustration is in Figure 3.

πW (v)

v

W

V

points

D(v, πW (v))

Figure 3: An illustration of the D–projection. The arrow again indicates the direc-
tion of the divergence. It happens that this direction coincides with the direction of
the projection, but this is actually incidental as we will shortly see.

Property 3 (Conjugated Projection). Assume that w is a given admissible point.
Then there is a unique agreeable point v such that D(v, w) is minimal among all
D(x, w) subject to x ∈ V .

12
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The unique point v from the previous property will be denoted π̂V (w); it is the
conjugated D–projection of w into V . An illustration is in Figure 4.

w

π̂V (w)

W

V

points

D(π̂V (w), w)

Figure 4: An illustration of the conjugated D–projection. Note that the direction of
the divergence remains unchanged from Figure 3. We always consider a divergence
from an agreeable point to an admissible point and not the other way around.

Intuitively, if we present a group of rational agents with a point of agreement,
we expect them to find a single point among those they consider admissible as their
personal opinion in view of the presented agreement. On the other hand, we should
be able to establish agreement regardless of which specific admissible point the
group presents to us. The required uniqueness of the projection and the conjugated
projection contrasts with the possibility of finding multiple representative points,
which are the solutions to a similar but more complex optimisation problem: We
minimise D(x, y) subject to x ∈ V and y ∈ W , being able to change two, not one
variable freely.

Taking this further, we do not expect rational agents to solve complex optimi-
sation problems at once. Instead, the following process taken from [1] and inspired
by an earlier version of [30] could resemble a real–life agreement seeking:

Example. Consider a group of rational agents with their set of admissible points W ,
which represents their individual knowledge or beliefs. The group elects a committee
whose task is to find a single agreeable point from the set V : to merge their knowledge
or beliefs. Naturally, the committee presents the group with their personal opinion
or any other provisional starting point v0 that they see appropriate. The group then
decides which point from those they consider admissible must have been the case
to reach the conclusion suggested by the committee; they project the committee’s
point to their set W . At this stage, being present with a single admissible point,
it is now possible for the committee to determine the conjugated projection of that

13
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admissible point to the set V : finding the corresponding agreeable point v1 of the
group. Now, it is not at all necessary that v1 = v0. Nevertheless, the committee
would be compelled to iterate the whole process until the above process stabilises on
a single agreeable point. Otherwise, when they present the group with the conclusion
(an agreeable point), the group would identify a different admissible point than the
one that actually led the committee to make this conclusion.

The points of interest from the previous example, although at this stage it is
not clear if they even exist, will be called fixed points. More explicitly, an agreeable
point v ∈ V is a fixed point if

π̂V (πW (v)) = v.

The set of all fixed points will be denoted Θ(W )⊆ V . See Figure 5 for an illustration.

πW (v)

W

V

Θ(W )

points

v = π̂V (πW (v))

Figure 5: An illustration of the fixed points.

The example above is of course only one possible way of finding an agreement,
although we argue that it is a rational one. An interesting question is how this way
relates to previously suggested information divergence D minimisation, which yields
the set ∆(W ). There could be something:

Observation 2. Let D be such that it satisfies the projection and conjugated pro-
jection properties. Then representative points are also fixed points:

∆(W ) ⊆ Θ(W ).

Proof. If ∆(W ) = ∅, which well could be the case, the statement holds trivially. So
we investigate the case when ∆(W ) ̸= ∅. Let v ∈ ∆(W ), and let d be the smallest
D information divergence among all D(x, y) subject to x ∈ V and y ∈ W . Such a

14



An Intuitive Introduction to Information Geometry

real number exists by the definition of ∆(W ), if this set is indeed non–empty, and
note that in this paper we always assume that both V and W are non–empty.

Clearly, D(v, πW (v)) ≥ d. Now assume that D(v, πW (v)) > d so there must
be w ∈ W such that D(v, πW (v)) > D(v, w). But this contradicts the definition of
πW (v). So it must be that

D(v, πW (v)) = d.

Now, assume that π̂V (πW (v)) ̸= v. Nevertheless,

D(π̂V (πW (v)), πW (v)) = D(v, πW (v)) = d,

otherwise we would contradict the definition of π̂V (πW (v)). Finally, the equation
above implies that both x = v and x = π̂V (πW (v)) minimise D(x, πW (v)) subject
to x ∈ V for a given πW (v). Such a minimiser is, however, by the conjugated
projection property required to be unique, thus

π̂V (πW (v)) = v.

It seems that after concluding this section we have more questions than answers:

1. What properties should we require from an information divergence D, and sets
W and V , so that ∆(W ) = Θ(W )? If fixed points resemble real life agreement
seeking, we would intuitively hope that they coincide with our representative
points. But is it possible?

2. If we iterate the process from the example above; i.e., create a sequence {vi}∞
i=0,

where vi+1 = π̂V (πW (vi)), what properties should we require from the infor-
mation divergence D, and sets W and V , so that we find an agreement in that
way?

We shall find answers in the following sections.

2.4 Obdurate committee
“The point is that we are not ignoring the dynamics, and we are not
getting something from nothing, (. . . ) for these all circumstances that
are not under the experimenter’s control must, of necessity, be irrelevant.
(. . . ) Solution by the Maximum Entropy Principle is so unbelievably
simple just because it eliminates those irrelevant details right at the
beginning of the calculation by averaging over them.”
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Edwin T. Jaynes, [18]

In this section, we further illustrate the setting by considering an obdurate com-
mittee that stubbornly refuses to iterate the process v1 = π̂V (πW (v0)), which we
discussed in the previous section, after its first iteration. This will help us to connect
our setting with some traditional concepts of information geometry.

First, we postulate the existence of the prior agreeable point o in the set of
agreeable points V . This is an agreement that we would be compelled to select in
the absence of any other information; of course, we have presented no justification
as to why such a point should exist in our general context, we have only postulated
it. However, the maximum entropy principle from the citation above gives such
a justification in a more specific context [18]. Second, the group finds πW (o), a
unique admissible point that has the smallest D–divergence from o. If we wanted
to represent W by a single admissible point, this is the most natural option as, with
respect to D, it has the least ‘distance’ to o among the admissible points.

This generalises the concept of the famous most entropic point (also known as
MaxEnt); we recover the usual concept if we choose a specific information divergence
D and a specific concept of the point. We will elaborate on the details in Section 4.
We only mention that the group is not ignoring the dynamics of the set of admissible
points W by selecting that single point there as well as the experimenter is not doing
so in the citation above. If the dynamics were laboriously worked out, we would
have obtained this solution anyway.

Let us denote πW (o) by MED(W ), and call it the most entropic point in W (with
respect to D). Now, the committee wishes to find the corresponding agreeable point
(if it is not already an agreeable admissible point). To that end, π̂V (MED(W )) is
picked, and we denote O(W ) = {π̂V (MED(W ))} the singleton containing it. An
illustration is in Figure 6.

This obdurate point need not be a fixed point; and even less a representative
point, considering Observation 2 on Page 14. It would indeed be a stubborn com-
mittee not to iterate the process further but be content with it. The committee
would argue that the advantage of O is that it contains a single point. We would
point out that O(W ) ̸= W ∩ V = ∆(W ), if W ∩ V ̸= ∅ and W ∩ V has at least two
elements (given D satisfies the consistency property), as shown in Observation 1 on
Page 11. Nevertheless, starting the whole iteration process from the prior agreeable
point appears a well justified idea (what other point should the committee start
with other than the ‘prior’, given such a point exists) that indeed might lead to a
unique point as investigated in Section 3.2, and that has been practically applied as
explained in Section 4.3.

Finally, let us point out the following obvious statements.
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W

V

points

π̂V

πW

MED(W )

{v} = O(W )o

Figure 6: An illustration of an obdurate committee.

Observation 3. If W is a singleton, then

O(W ) = ∆(W ).

Observation 4. If W ⊆ V , then

O(W ) ⊆ ∆(W ).

The prior follows from Property 3, while the latter follows from Observation 1.

2.5 Pythagorean properties
The following property informally says that a group might establish the divergence
of their agreement to an arbitrary admissible point by adding the divergence of their
agreement to the conjugated projection of that admissible point and the divergence
of the conjugated projection to the admissible point concerned.

Property 4 (Pythagorean for Agreeable Points). Let v ∈ V be an agreeable point
and w ∈ W be an admissible point. Then

D(v, π̂V (w)) + D(π̂V (w), w) = D(v, w).

This property is counter–intuitive from the point of view of the classical Eu-
clidean distance. Although it does not violate the triangular inequality, it is cer-
tainly not a property of the distance we are used to. On the other hand, it quite
closely resembles how squares taken over the sides of a right–angled triangle behave
in Euclidean geometry (hence the name), see Figures 7 and 8 for an illustration.
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points

V

D(v, π̂V (w)) + D(π̂V (w), w) = D(v, w)

w

π̂V (w)
v

Figure 7: An illustration of the Pythagorean property for agreeable points.

α

a

b

c

if α = 90◦ then a2 + b2 = c2

Figure 8: How squares behave in Euclidean geometry.

Intuitively, using an analogy from Euclidean geometry, we expect the set of
agreeable points with respect to the conjugated D–projection to behave as a flat
space into which we project admissible points. Something rather similar happens
in least–squares linear regression, where a data vector is projected to a flat space
defined by the linear model. Although this is clearly not an unusual idea, it is quite
a strong requirement; we would not want to be so harsh on the set of admissible
points. The following property will make admissible points to behave as a convex
set.

Property 5 (Pythagorean for Admissible Points). Let v ∈ V be an agreeable point

18
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and w ∈ W be an admissible point. Then

D(v, πW (v)) + D(πW (v), w) ≤ D(v, w).

While the Pythagorean naming convention here is now well established and used
by Csiszár [12], who is the standard reference in the field, we may note that Shore
and Johnson called the property above the triangular property in their work [27].

This property is similar to the Pythagorean property for agreeable points but it
is weaker. And if the inequality from the statement actually holds in some cases for
a particular D then this information divergence D is not a metric because it would
not satisfy the triangular inequality. This is possibly the reason why the naming by
Shore and Johnson did not catch up. See Figures 9 and 10 for an illustration.

πW (v)

v

w

points

W

D(v, πW (v)) + D(πW (v), w) ≤ D(v, w)

Figure 9: An illustration of the Pythagorean property for admissible points.

The following observation gives us something that also follows from the consis-
tency property on Page 11, but without assuming it.

Observation 5. Let D be such that it satisfies the projection and conjugated projec-
tion properties, and the Pythagorean properties for agreeable and admissible points.
If v ∈ V is a fixed point then D(v, v) = 0 and D(πW (v), πW (v)) = 0.

Proof. By the Pythagorean property for agreeable points

D(v, π̂V (πW (v))) + D(π̂V (πW (v)), πW (v)) = D(v, πW (v)).

But since v is fixed, the above is equivalent to

D(v, v) + D(v, πW (v)) = D(v, πW (v)),
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a

b

c

α

if 90◦ ≤ α ≤ 180◦ then a2 + b2 ≤ c2

Figure 10: How squares behave in Euclidean geometry.

which is possible only if D(v, v) = 0.
Similarly, by the Pythagorean property for admissible points

D(v, πW (v)) + D(πW (v), πW (v)) ≤ D(v, πW (v)),

which is possible, due to non–negativity of information divergence, only if

D(πW (v), πW (v)) = 0.

2.6 Fixed points are representative points
The following natural property says that the D information divergence from one
admissible point to another admissible point should not be smaller than the D
information divergence from and to the corresponding agreeable points. Intuitively,
seeking an agreement should not take us further apart, see Figure 11. Please notice
that we do not require that this takes us closer: equality is permitted.

Property 6 (Convexity). Let w, u ∈ W . Then

D(w, u) ≥ D(π̂V (w), π̂V (u)).

We now have all the tools sufficient to prove that fixed points are also represen-
tative points, if there is actually a representative point.

20



An Intuitive Introduction to Information Geometry

W

V

points

D(w, u) ≥ D(π̂V (w), π̂V (u))

w u

π̂V (w) π̂V (u)

Figure 11: An illustration of the convexity property.

Theorem 1 (Characterisation). Let D be such that it satisfies the projection and
conjugated projection properties, the Pythagorean properties for both admissible and
agreeable points, and the convexity property. If a representative point exists then the
set of fixed points and the set of representative points are equal:

∆(W ) = Θ(W ).

Proof. By Observation 2 on Page 14 we already know that ∆(W ) ⊆ Θ(W ), so it is
sufficient to show that ∆(W ) ⊇ Θ(W ).

Because we have assumed that a representative point exists and we already
know that every representative point is also a fixed point, we may assume that
π̂V (w) ∈ ∆(W ), for some w ∈ W . To make the argument, we now also assume that
v ∈ Θ(W ) and show that v ∈ ∆(W ) in what follows.

The Pythagorean property for agreeable points

D(v, π̂V (w)) + D(π̂V (w), w) = D(v, w)

and the Pythagorean property for admissible points

D(v, w) ≥ D(v, πW (v)) + D(πW (v), w)

give
D(v, π̂V (w)) + D(π̂V (w), w) ≥ D(v, πW (v)) + D(πW (v), w), (1)

see Figure 12 for an illustration.
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Since v is a fixed point and hence v = π̂V (πW (v)), by the convexity property

D(v, π̂V (w)) ≤ D(πW (v), w). (2)

Now, (1) and (2) give
D(π̂V (w), w) ≥ D(v, πW (v)).

Since π̂V (w) ∈ ∆(W ), the above must hold with equality and therefore v ∈ ∆(W ).

The proof above was based on ideas from [2].

W

V

points

D(π̂V (w), w)

πW (v)

v

w

π̂V (w)

Figure 12: An illustration of the proof for Theorem 1.

Observation 6. Let D be such that it satisfies the projection and conjugated projec-
tion properties, the Pythagorean properties for both admissible and agreeable points,
and the convexity property. Let v, u ∈ ∆(W ) = Θ(W ) be otherwise arbitrary. Then

D(v, u) = D(πW (v), πW (u)).

Proof. Looking at (1) in the previous proof, which employed identical assumptions,
and taking u = π̂V (w), we obtain

D(v, u) + D(u, w) ≥ D(v, πW (v)) + D(πW (v), w).

Since, following the previous theorem, we now know that u is also a fixed point,
we can write w = πW (u). Furthermore, because both v and u are representative
points, we have D(u, w) = D(v, πW (v)) and the above becomes

D(v, u) ≥ D(πW (v), w).
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Finally, by the convexity property,

D(v, u) = D(π̂V (πW (v)), π̂V (w)) ≤ D(πW (v), w)

so the above is possible only with the equality.

3 Convergence
3.1 Enter metric topology

“Every reasonable non–pathological space in topology will turn out to
be a metric space. On the other hand, developments (. . . ) showed there
was a need to study a more general class of spaces than merely Euclidean
spaces.”

Donald W. Kahn, [21]

Thus far, we have avoided the need to introduce any topological structure on the
set of all points, but this is going to change in this section. First, let us reintroduce
a symbol for the set of points here considered as X. Then, let us equip the set of
points X with a metric d(x, y), where x and y are any points. Recall that the notion
of metric was discussed on Page 10.

We say that a sequence {vi}∞
i=1 of points converges to a point v if for any real

number ϵ > 0 there is j such that d(vi, v) < ϵ for all i > j. We call such a v a limit
point.

What we need to establish now is a connection between the metric d and the
divergence D, which is a mapping from a Cartesian product X × X to R:

D : X × X → R.

Therefore, we need to have a metric on the product, say a product metric

dp((x1, y1), (x2, y2)) =
(
[d(x1, x2)]p + [d(y1, y2)]p

) 1
p ,

where 1 ≤ p < ∞, in place. Then we can define that a mapping f : X × X → R
is continuous, if for any real number ϵ > 0 there is δ > 0 such that whenever
dp((x1, y1), (x2, y2)) < δ we have |f(x1, y1) − f(x2, y2)| < ϵ. The last expression
is just the standard metric on R, and our definition follows the usual definition of
continuity of a mapping between metric spaces. The connection we were looking for
is then the following.
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Property 7 (Continuity). D is continuous.

Intuitively, the property above says that if two pairs of points are close to each other
in the product metric, then D does not rip them apart in R.

The following is a straightforward and intuitive consequence of D being contin-
uous, and it is how we will employ continuity to obtain future results.

Observation 7. Let D satisfy the continuity property. Assume that a sequence of
agreeable points {vi}∞

i=1 converges to v and a sequence of admissible points {wi}∞
i=1

converges to w. Then the sequence

{D(vi, wi)}∞
i=1

converges to D(v, w).

Proof. For any ϵ > 0 we are tasked with finding j such that |D(vi, wi)−D(v, w)| < ϵ
for all i > j. Since D is continuous, for any ϵ > 0 there is δ > 0 such that whenever

(
[d(vi, v)]p + [d(wi, w)]p

) 1
p

< δ

we have |D(vi, wi) − D(v, w)| < ϵ. Now we simply select j so that [d(vi, v)]p +
[d(wi, w)]p < δp for all i > j. This is always possible since {vi}∞

i=1 converges to v
and {wi}∞

i=1 converges to w.

Since we operate in a metric space, we can define that a subset of points X is
compact if every sequence that can be constructed from its elements has a convergent
subsequence and the limit point of this convergent subsequence lies in this subset.
In other words, it has the Bolzano–Weierstrass property, which in metric spaces is
equivalent to compactness.

Observation 8. If V and W are compact, and D satisfies the continuity property,
then a representative point exists.

Proof. Consider the set of all real numbers D(v, w) such that v ∈ V and w ∈ W .
This set is bounded from below, so it also has the greatest lower bound (a basic
property of real numbers). Let us denote it b.

Now, for every ϵ > 0 there are v ∈ V and w ∈ W such that

ϵ + b > D(v, w) ≥ b,

otherwise b would not be the greatest lower bound. Therefore, we can construct
a sequence {D(vi, wi)}∞

i=1 that converges to b. Now, due to the compactness of V
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the sequence {vi}∞
i=1 has a convergent subsequence, say {vij }∞

j=1. Let {wij }∞
j=1 be

the corresponding sequence in W , which is also compact, so it also has a convergent
subsequence. Let w ∈ W be its limit point and let v ∈ V be the limit point of
{vij }∞

j=1. Then, due to Observation 7

D(v, w) = b,

so v must be a representative point.

Looking now at the statement of Theorem 1 on Page 21 we can replace the
requirement for the existence of a representative point by requiring compactness of
V and W , and asking D to satisfy the continuity property.

3.2 Alternating minimisation procedure

The following property will be needed to prove that a representative point can be
reached by an iterative process.

Property 8 (Four Points). Let w, u ∈ W and v ∈ V . Then

D(π̂V (w), u) ≤ D(w, u) + D(v, u).

The four point property is illustrated in Figure 13. The name comes from Csiszár
and Tusnády, who gave a motivating example in [13, Page 213].

W

V

points

w

π̂V (w)

u

v

D(π̂V (w), u) ≤ D(w, u) + D(v, u)

Figure 13: An illustration of the four point property.
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Thus far, we had one property that linked the concept of divergence D and the
metric topology given by d: it was the continuity property. Here we provide another
one, which somewhat goes in the opposite direction. This connection is important
as convergence results must be established using the metric; a divergence, in general,
does not even generate a topology [12].

Property 9 (Connectivity). If {D(vi, v)}∞
i=1 converges to zero then so does

{d(vi, v)}∞
i=1.

If D is continuous, then {d(vi, v)}∞
i=1 → 0 implies {D(vi, v)}∞

i=1 → 0. The
property above gives the opposite implication. It also implies that if {D(vi, v)}∞

i=1
converges to zero then v is the limit point of {vi}∞

i=1. We will use this in the following
theorem.

Theorem 2 (Convergence). Let D be such that it satisfies the projection and con-
jugated projection properties, the Pythagorean properties for both admissible and
agreeable points, and the consistency, convexity, continuity, four point and connec-
tivity properties. Let v0 ∈ V . Define a sequence {vi}∞

i=0 recursively by vi+1 =
π̂V (πW (vi)). If V and W are compact then the sequence {vi}∞

i=0 converges to a
fixed point.

Proof. First, notice that by the projection and conjugated projection properties

D(vi, πW (vi)) ≥ D(π̂V (πW (vi)), πW (vi)) ≥

≥ D(π̂V (πW (vi)), πW (π̂V (πW (vi)))),

so the sequence of non–negative real numbers D(vi, πW (vi))∞
i=0 converges and its

limit point exists (the closed interval [0, D(v0, πW (v0))] is compact in R equipped
with the standard metric). We will denote this limit information divergence λ.

Furthermore, due to the compactness of V and W the sequences {vi}∞
i=0 and

{πW (vi)}∞
i=0 have both a convergent subsequence with a corresponding limit point,

we denote these limit points v ∈ V and w ∈ W respectively. Therefore, by Obser-
vation 7 on Page 24,

D(v, w) = λ.

What we need to prove at this stage is that the whole sequence {vi}∞
i=0, not just

its subsequence, converges to v. We will do this considering Figure 14.
By the four point property

D(vi, w) ≤ D(πW (vi−1), w) + D(v, w).
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and by the Pythagorean property for admissible points

D(vi, πW (vi)) + D(πW (vi), w) ≤ D(vi, w).

Since
D(vi, πW (vi)) ≥ D(v, w)

it follows that
D(πW (vi), w) ≤ D(πW (vi−1), w).

However, we already know that a subsequence of {πW (vi)}∞
i=0 converges to w, so

this means that {D(πW (vi), w)}∞
i=0 converges, by Observation 7, to D(w, w), which

is by the consistency property 0. Finally, using the connectivity property, the whole
sequence {πW (vi)}∞

i=0 must converge to w.
By the convexity property D(πW (vi), w) ≥ D(π̂V (πW (vi)), v) for all i so also

{D(vi, v)}∞
i=1

converges to zero which in turn means, making the same argument as above, that
{vi}∞

i=0 converges to v as desired.
However, in order to apply the convexity property above, we need first to estab-

lish that π̂V (w) = v. For a contradiction, let us assume that v ̸= π̂V (w). By the
Pythagorean property for agreeable points

D(π̂V (w), π̂V (wi)) + D(π̂V (wi), wi) = D(π̂V (w), wi),

for all i. Since {wi}∞
i=1 converges to w, and {vi}∞

i=1 has a subsequence converging
to v (so we focus only on it), and by Observation 7, we can also write

D(π̂V (w), v) + D(v, w) = D(π̂V (w), w).

By the assumption and the consistency property D(π̂V (w), v) > 0, so we have that
D(v, w) < D(π̂V (w), w). But this is not possible, a contradiction.

Finally, we need also to establish that πW (v) = w, which will give us together
with the above that v is a fixed point. For a contradiction, let us assume that
w ̸= πW (v). By the Pythagorean property for admissible points

D(vi, πW (vi)) + D(πW (vi), πW (v)) ≤ D(vi, πW (v)),

for all i. Since {vi}∞
i=1 converges to v and {πW (vi)}∞

i=1 converges to w, and by
Observation 7, we can also write

D(v, w) + D(w, πW (v)) ≤ D(v, πW (v)).

By the assumption and the consistency property D(w, πW (v)) > 0, so we have that
D(v, w) < D(v, πW (v)). But this is not possible, a contradiction.

Therefore v = π̂V (πW (v)) and v is a fixed point.
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Finally, considering Theorem 1 on Page 21 and Observation 8 on Page 24, we
may claim that the fixed point from the theorem above is also a representative point.

W

V

points

w

vvi

πW (vi−1)
πW (vi)

Figure 14: An illustration of the proof of Theorem 2. The arrows here indicate the
direction of divergences as defined earlier, and they should not be interpreted as
information propagation.

The algorithm (and in fact the idea of the proof presented above) is due to
Csiszár and Tusnády [13], who developed it for a particular information divergence
and it is known as an alternating minimisation procedure. The algorithm was then
generalised many times in the literature, see e.g. [8], and the version above can be
considered as another variant. Nevertheless, it is still the same idea developed before
1984 in many attempts, perhaps the first successful being [12].

3.3 Remarks

We have now achieved the goal as initially stated: we have introduced information
geometry without actually specifying the exact nature of admissible and agreeable
points we worked with. However, the paper is far from finished. First, we will
formally establish the geometry in the Euclidean setting and mention a real practical
application of such geometry.

Second, as this aspired to cover also non–Euclidean generalisation of information
geometry, we will find a non–trivial and different formalisation of the intuitive con-
cept. This is exciting as we recover information geometry on mathematical objects
that are not as deeply connected with geometry as Euclidean space.
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4 Euclidean space setting
4.1 Points

“One could not see the forest for the trees.”

A Common Proverb

In this paper, we have accumulated a large number of properties that we require
from an information divergence D and from the sets of agreeable and admissible
points. Naturally, we should ask the following question: Is it actually possible to
satisfy them all? In this section, we show particular examples that satisfy all the
properties, but we will need some additional notions to define them.

We start with the J–dimensional Euclidean space, which is a set of all ordered
J–tuples

v = (v1, . . . , vJ),

where every vj is a real number. In other words, v ∈ RJ . A (J − 1)–dimensional
probabilistic simplex DJ , J ≥ 2, is a subspace of the J–dimensional Euclidean space
defined as those v ∈ RJ that satisfy

J∑

j=1
vj = 1.

We will confine ourselves to the case when vj > 0, for all 1 ≤ j ≤ J , to avoid any
pathological cases, which makes DJ an open set. Such a defined discrete probability
distribution v could perhaps represent a probabilistic opinion that an individual may
have about the world, and thus it plays a central role in inductive logic, uncertain
reasoning and belief merging [24, 30]. More recently, in [4] they have been used to
represent the results of individual medical studies.

We say that a subset W of points in RI is convex if for any two v, w ∈ W we
have that also

(λ · v1 + (1 − λ) · w1, . . . , λ · vI + (1 − λ) · wI) ∈ W ,

for all λ ∈ [0, 1]. We say that a subset W of points in RI is closed if the limit point
of every convergent sequence constructed from the elements of W has its limit inside
W , with respect to the standard Euclidean metric.

Now, let us consider a closed convex set of points

W ⊆ DJ × . . . × DJ
︸ ︷︷ ︸

n

.
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Note that I = Jn (in the definition of convexity above) and w(i) ∈ W is of the
form w(i) = (w(1), . . . , w(n)), where each w(i) ∈ DJ , 1 ≤ i ≤ n, is a probability
distribution admissible by the member i of a group of n individuals. It might be
helpful to think of w(i) as a discrete function {1, . . . , n} → DJ . The set W will be
an example of a set of admissible points discussed earlier in the paper.

Finally, let
V ⊆ DJ × . . . × DJ

︸ ︷︷ ︸
n

be such that in each v ∈ V all members are in agreement: v = (v(1), . . . , v(n)),
where v(1) = . . . = v(n). With some abuse of notation, we will often write v in place
of every v(i). This set V is not closed yet (because DJ is not), but we will fix a
sufficiently small ϵ > 0 and ask every vj > ϵ, 1 ≤ j ≤ J . A suitable ϵ exists (in the
sense that W ⊆ V must be possible), since W is assumed closed. Such a closed set
V will be an example of a set of agreeable points discussed earlier in the paper.

Clearly, it could be that there are some agreeable points in W (when w(1) =
. . . = w(n) for some w(i)), but V and W could be disjoint as well. In any case,
W is assumed non–empty, while V is non–empty by definition. Both W and V are
defined as closed and bounded, and hence in this Euclidean setting they are both
compact. Note that compactness was required in Observation 8 on Page 24, and
Theorem 2 on Page 26.

4.2 Divergences
After we have introduced the points, let us now define a divergence from one point
to another. In [5], the following divergence from v ∈ V to w(i) ∈ W based on the
Rényi entropy [26] was defined:

Dr(v, w(i)) =
n∑

i=1
λi

J∑

j=1
[(w(i)

j )r − (vj)r − r(w(i)
j − vj)(vj)r−1],

where 2 ≥ r > 1; and ∑n
i=1 λi = 1 represents fixed positive weights that we wish to

assign to different agents or sources of information.
For r = 2 this divergence becomes a weighted sum of the well known squared

Euclidean distances

D2(v, w(i)) =
n∑

i=1
λi

J∑

j=1
(vj − w

(i)
j )2,

exceptionally a symmetric divergence. If w(i) is an agreeable point, in this case
we simply write w = w(1) = . . . = w(n), the above actually becomes the squared
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Euclidean distance:

D2(v, w(i)) = D2(v, w) =
J∑

j=1
(vj − wj)2.

Additionally, we should note that in this case

d(v, w) =
√

D2(v, w)

is the standard Euclidean metric. The proof that the set of representative points
∆Dr (W ) based on the Rényi entropy is well defined is in [1].

Another way to define the divergence D from v ∈ V to w(i) ∈ W is to take the
Kullback–Leibler divergence (also known as cross–entropy)

KL(v, w(i)) =
n∑

i=1
λi

J∑

j=1
w

(i)
j log

w
(i)
j

vj
.

Again, this becomes the usual Kullback–Leibler divergence if all components of w(i)
agree, in which case we write w in place of w(i) and

KL(v, w) =
J∑

j=1
wj log wj

vj
.

In literature, it is common to write the arguments the other way around as KL(w∥v),
but we wanted to stick here with the more intuitive notation adopted earlier in this
paper. Also, our choice of V avoids the usual headache of defining the above when
v is permitted to be zero in some coordinates.

A limit theorem relating the set of representative points ∆Dr (W ) based on the
Rényi entropy to the set of representative points ∆KL(W ) based on the Kullback–
Leibler divergence has been proven in [5]:

∅ ≠ lim
r↘1

∆Dr (W ) ⊆ ∆KL(W ).

Whether or not the above holds with equality is an open problem.
The proofs that the divergences defined above satisfy all Properties 1 to 9 dis-

cussed in this paper are scattered in [1] and [2], and they are all special cases of
general convex Bregman divergences [9]. As those represent another increase in
difficulty, we will mention them in more detail later in Section 5.2.

What we discussed in this paper now gives us

∆Dr (W ) = ΘDr (W ), and ∆KL(W ) = ΘKL(W ),

31



Adamčík

the representative and fixed points are the same points, and we can get a repre-
sentative point by iterating projections and conjugated projections; in other words,
using the alternating minimisation procedure.

4.3 Applications
Regardless of which of the above mentioned divergences is taken for D, the conju-
gated D–projection of an admissible point w(i) = (w(1), . . . , w(n)) ∈ W to the set
of agreeable points (w, . . . , w︸ ︷︷ ︸

n

) ∈ V in fact gives

w =
n∑

i=1
λiw(i),

where ∑n
i=1 λi = 1 is a fixed positive weighting, and

w = 1
n

n∑

i=1
w(i)

if the weights are equal. Recall that, with some abuse of notation, we write w to
denote both the component computed by the formulas above and the whole n–tuple
in the set V . This will allow us to greatly simplify the notation of the next section,
making everything more intuitive.

For example, for a given w(i),

arg min
x∈V

D2(x, w(i)) = arg min
x∈V

n∑

i=1
λi

J∑

j=1
(xj − w

(i)
j )2,

gives after differentiation 2 ∑n
i=1 λi(xj − w

(i)
j ) = 0, which is equivalent to xj =

∑n
i=1 λiw

(i)
j , for all 1 ≤ j ≤ J . The claim can now be established using the fact

that the function is strictly convex. A proof for other divergences can be derived
by proving a Euclidean analogy to Observation 9 on Page 41, and this Euclidean
analogy can also be found in [2, Page 6343].

In short, we have obtained above the ordinary (weighted) arithmetic mean ap-
plied to J coordinates respectively. This result, as the expected value, has also been
established in terms of random variables by Banerjee, Guo and Wang [7] in 2005. In
the literature, this arithmetic mean operator is known as the linear pooling operator,
see [16]. It is a common choice of representing different opinions w(1), . . . , w(n) ∈ DJ

of n individuals as a single point in DJ , a natural agreeable point. We should note
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that there are also other pooling operators, and even arguments against using the
linear pooling operator in uncertain reasoning and belief merging, see [30] for one
based on the so–called locality principle.

Now, define the prior agreeable point

o = (v, . . . , v︸ ︷︷ ︸
n

) ∈ V

using the uniform probability distribution

v =
( 1

J
, . . . ,

1
J

)
∈ DJ .

Then MEKL(W ), discussed in Section 2.4 on Page 15 as the KL–projection of o,
is the usual most entropic point in W . For every i, it is defined as that w(i) that
maximises the Shannon entropy

−
J∑

j=1
w

(i)
j log w

(i)
j .

An obdurate committee would then take this most entropic point and find the
conjugated KL–projection in the set of agreeable points V , which we now know to
be equivalent to applying the linear pooling operator, and be content with it. We
suggest that a rational committee would iterate the whole process endlessly until a
representative point in ∆KL(W ) = ΘKL(W ) ⊆ V is reached, which will happen by
Theorem 2 on Page 26.

Exactly this procedure, starting with the prior agreeable point and using the
Kullback–Leibler divergence, was applied in [4] to combine several medical studies
investigating the one–year incidence in the diagnosis of cancer in patients with un-
provoked venous thromboembolism. This condition is a formation of a blood clot in
a vein or lungs without an apparent reason, and we are interested in the proportion
of patients that are subsequently diagnosed with cancer and how we should detect
it. The particular studies investigated in [4] were presenting some linear constraints
on how patients are distributed over several mutually exhaustive and exclusive cat-
egories made of different screening outcomes and cancer diagnosis results. While
these constraints across all studies were jointly conflicting, each individual study
gave rise to a non–empty closed convex set of discrete probability distributions. The
Cartesian product of these sets defines an example of a set of admissible points W .

The weights λi, 1 ≤ i ≤ n, associated with each study (as a source of information)
were given by the corresponding study sample sizes:

λi = (study i sample size)
(pooled sample size) .
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Should the constraints given by each study provided the full information and resulted
in a single probability distribution w(i), then the result of the above procedure would
simply be the weighted arithmetic mean of the individual probability distributions

w =
n∑

i=1
λiw(i),

as there would be only one point w(i) = (w(1), . . . , w(n)) in the set W . However, that
was not the case and the alternating minimisation procedure was iterated a thousand
times to approach a point in ∆KL(W ). A combinatorial argument in favour of using
∆KL(W ) in a context of merging heterogeneous studies (i.e., they are reporting
results that are more different than statistically expected), where this heterogeneity
is unexplained, and with large sample sizes was presented in [3]. Reference [4]
argues that these assumptions on heterogeneity and sample sizes were in this case
satisfied, and it thus presents a real and seemingly justified application of information
geometry and of the alternating minimisation procedure introduced to the reader in
this paper.

It is important to note that if the assumption of unexplained heterogeneity is
not satisfied, the method is not justified. If we know what is causing the studies to
be more different than statistically expected then we need to use this information
(this is the same requirement as when the maximum entropy principle is applied).
In contrast, in the described application, we do not judge the quality of information
coming from different sources other than by the provided sample size: the higher
the relative sample size, the higher the weight.

On the other hand, should there be only one agent (or one source of information)
n = 1, then W = ∆KL(W ) = ΘKL(W ) ⊆ V , so there would be no need to iterate
the process as MEKL(W ) would be trivially, see Observation 4 on Page 17, a fixed
point. This would correspond to the classical most entropic solution when there are
no conflicting sources of information.

5 Hilbertian space setting
5.1 L2 space
In the previous section, we worked with the Euclidean space equipped with the inner
product ⟨v, w⟩ = ∑J

j=1 vjwj . A natural generalisation of the Euclidean space is a
Hilbert space equipped with a real inner product ⟨·, ·⟩ : H × H → R. Csiszár and
Tusnády suggested this setting for the alternating minimisation procedure already
in their 1984 paper [13].
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In the following, we will be working in the L2 space, which is a non–Euclidean
Hilbert space. A reader unfamiliar with function spaces can have a look at [15], or
perhaps [11], for an introduction. Elements of this space are Lebesgue measurable
functions

w : [0, 1] → R,
where

⟨v, w⟩ =
∫ 1

0
vwdµ

is a Lebesgue integral and µ is a Lebesgue measure, and we will require
∫ 1

0
wdµ = 1 (3)

on top of the usual condition that
√∫ 1

0
(w)2dµ < ∞.

Again, a reader unfamiliar with the Lebesgue measure could consider reading [23]
first.

The idea here is to move from discrete probability distributions of the Euclidean
setting to continuous probability distributions, that is the reasoning behind (3). As
in the previous section, we will try to avoid pathological cases by requiring w to be
non–zero in the domain, with the exception of a set with Lebesgue measure zero.

Now, considering a discrete number of n individuals seeking agreement as in
the Euclidean setting, let us denote their respective functions w(i), 1 ≤ i ≤ n. An
exciting line of research could be instead changing the function w(t) continuously
with time t ∈ [0, 1] and using the mean value function as the agreement, which
would invite us to think of a single agent changing its mind about the continuous
probability distribution w. Although much of what follows would be similar in this
set up, there are some complications that we are not prepared to deal with and thus
we will not discuss this idea further.

We say that a subset Wi of functions in L2 is convex if for any two v, w ∈ Wi

we have that also
λ · v + (1 − λ) · w ∈ Wi,

for all λ ∈ [0, 1]. We say that a subset Wi of points in L2 is closed if the limit point
of every convergent sequence constructed from the elements of Wi has its limit inside
Wi, with respect to the standard L2 metric.

We take a Cartesian product W of closed convex sets Wi of bounded L2 functions
w(i), satisfying (3) and non–zero in the domain (with the exception of a set of
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Lebesgue measure zero) for every 1 ≤ i ≤ n, as our set of admissible points. This
is consistent with what we did in the Euclidean setting (Section 4). Each member
of the set W will be denoted by w(i) = (w(1), . . . , w(n)), but if all the components
agree we will simply write w = (w, . . . , w). For a small price of accepting this
confusion, we will be shortly rewarded with more intuitive formulas.

This set W is not necessarily compact, but compactness was needed in our key
result: Theorem 2 on Page 26. For compactness, and since a Hilbert space is a
complete metric space, we need the union of all Wi to be totally bounded, see [11].
A necessary and sufficient condition for an Lp space to be totally bounded is given
by the Kolmogorov—Riesz theorem, see [17]. Informally, we need every Wi to be
bounded and a small change in the argument of its functions should make a uniformly
small change in the function values (across all functions in Wi, 1 ≤ i ≤ n): For all
ϵ > 0 there is δ > 0 such that for all w ∈ Wi, all 1 ≤ i ≤ n and all |h| < δ we have

∫ 1

0
[w(x + h) − w(x)]2dµ < ϵ. (4)

We could get an agreement from w(i) = (w(1), . . . , w(n)) ∈ W say as its weighted
arithmetic mean

w =
n∑

i=1
λiw(i),

where ∑n
i=1 λi = 1 is a fixed positive weighting (a motivation was outlined in Sec-

tion 4.3: we typically assign weights to different medical studies proportionally to
their sample sizes), and then with some abuse of notation write w = (w, . . . , w) to
make the agreement the same kind of object as the admissible points are.

Clearly, the resulting function satisfies (3), because w(i) satisfies (3) for every
1 ≤ i ≤ n. It is also non–zero in the domain with the exception of a set with Lebesgue
measure zero. This is because w(i) ≥ 0, 1 ≤ i ≤ n, so whenever ∑n

i=1 λiw(i) is zero
for some x it must be that all w(i) are zero at that x. If this happens on a set
with non–zero Lebesgue measure, then all w(i) would have the same property: a
contradiction. Additionally, since all w(i), 1 ≤ i ≤ n, are bounded, the weighted
arithmetic mean is also bounded. For a given W , we indeed define the set of agreeable
points V as the corresponding set of weighted arithmetic means.

Finally, if W is compact, then V is compact as well: We need to prove that for
all ϵ > 0 there is δ > 0 such that for all ∑n

i=1 λiw(i) ∈ V and |h| < δ we have

∫ 1

0

[ n∑

i=1
λiw(i)(x + h) −

n∑

i=1
λiw(i)(x)

]2
dµ < ϵ.
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We can find this δ as the one assumed to exist in (4), since that one exists uniformly
for all 1 ≤ i ≤ n: The quadratic function is a convex function so using Jensen’s
inequality for integrals [19] (which is valid only for probability measures:

∫ 1
0 dµ = 1)

together with (4) we obtain

ϵ =
n∑

i=1
λiϵ ≥

n∑

i=1
λi

( ∫ 1

0
[w(i)(x + h) − w(i)(x)]2dµ

)
≥

≥
∫ 1

0

[ n∑

i=1
λiw(i)(x + h) −

n∑

i=1
λiw(i)(x)

]2
dµ

as required.

5.2 Bregman divergences
“A functional Bregman divergence acts on functions or distributions, and
generalizes the standard Bregman divergence for vectors and a previous
pointwise Bregman divergence that was defined for functions. A recent
result showed that the mean minimizes the expected Bregman diver-
gence. The new functional definition enables the extension of this result
to the continuous case to show that the mean minimizes the expected
functional Bregman divergence over a set of functions or distributions.”

Béla A. Frigyik, Santosh Srivastava and Maya R. Gupta, [14]

Recall that a functional f : L2 → R is Fréchet differentiable [15] if there exists a
bounded linear operator A : L2 → R such that

lim
∥h∥→0

|f(v + h) − f(v) − A(h)|
∥h∥ = 0,

where ∥ · ∥ is the norm in the L2 space.
Every Fréchet differentiable functional has its Gâteaux differential (but not the

other way around):
δf(v; h) = lim

h→0

f(v + hh) − f(v)
h

. (5)

The differential is at v in the direction of h. Since f is Fréchet differentiable, the
functional δf(v; ·) : L2 → R is equal to the Fréchet derivative and thus it is a
bounded linear functional. By the Riesz representation theorem [6] we can then
represent it by an inner product for a given ∇f(v) ∈ L2:

δf(v; ·) = ⟨·, ∇f(v)⟩.
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With some abuse of notation ∇f(v) is often called the Fréchet derivative of f at v.
Now we define a rather general divergence based on the Bregman divergence [9]:

Df (v, w(i)) =
n∑

i=1
λi

∫ 1

0
f(w(i)) − f(v) − ⟨w(i) − v, ∇f(v)⟩dµ,

where f : L2 → R is a strictly convex, continuous and continuously Fréchet differ-
entiable functional and ∑n

i=1 λi = 1 is a fixed positive weighting. In literature, it
is common to write the arguments the other way around as Df (w(i)∥v), but we
wanted to stick here with the more intuitive notation adopted earlier in this paper.
We should also note that v as well as w(i) is considered a Cartesian product, but
whenever all its components agree we will drop the index. Similarly, if in addition
all components of w(i) agree, we may even drop the sum entirely.

Looking at existing literature, the geometry of Bregman divergences and con-
vergence conditions for alternating minimisation procedures in Hilbert spaces have
already been developed by Burachik and Iusem [10] in 1998. Bregman divergences
over Lp function spaces, among them L2 is the only Hilbert space, were introduced
by Frigyik, Srivastava and Gupta [14] in 2008. We are confined here to the L2 space
setting, which lies in the intersection of the two more general approaches.

If we take a very specific choice of f(x) =
∫ 1

0 (x)2dµ in the definition above, then

δf(v; h) = lim
h→0

∫ 1

0

(v + hh)2 − (v)2

h
dµ =

= lim
h→0

∫ 1

0

2hhv + h2(h)2

h
dµ =

∫ 1

0
h(2v)dµ = ⟨h, 2v⟩. (6)

Therefore,

Df (v, w(i)) =
n∑

i=1
λi

∫ 1

0
[w(i)]2 − (v)2 − ⟨w(i) − v, 2v⟩dµ =

n∑

i=1
λi

∫ 1

0
[w(i)]2 − (v)2 − (w(i) − v)2vdµ =

n∑

i=1
λi

∫ 1

0
[w(i) − v]2dµ.

This divergence corresponds to what the squared Euclidean distance was in the
Euclidean setting. This is because ∥v∥ =

√
⟨v, v⟩ defines in a Hilbert space the norm,

and the above corresponds thus to ∑n
i=1 λi∥w(i) − v∥2, which in the Euclidean set-

ting was a weighted sum of squared Euclidean distances, and d(v, w(i)) = ∥w(i) −v∥
is the standard L2 metric. Should the reader find working with the general di-
vergence above difficult to grasp, confining the considerations to D(v, w(i)) =
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∑n
i=1 λi[d(v, w(i))]2 would be sufficient to illustrate this non–Euclidean setting. Nev-

ertheless, the motivation to use the more general Bregman divergence is that it
encompasses many other popular divergences. The Kullback–Leibler divergence is
among the most prominent ones, and it is significant to us as it has been utilised in
the motivating example elaborated in Section 4.3.

We can put the above simplified setting already in use when we investigate
whether Property 1 (consistency) is satisfied. This property asks for any two v and
w that Df (v, w) = 0 be equivalent to v = w. Nevertheless, we get Df (v, w) = 0
even for those v and w that differ on a set with Lebesgue measure zero. What
we then want to work with are actually equivalence classes of Lebesgue measurable
functions, and we shall never consider them outside integrals.

Another requirement of a divergence is that Df (v, w(i)) > 0 for different v and
w(i). Of course, this holds for the special example of Df above, but in general one
establishes this by observing that the argument of the integral in the definition of
Df is positive for all µ and i where v and w(i) are different, as depicted in Figure 15.
As long as they are different at a set that has a non–zero Lebesgue measure, the
resulting integrals and the sum are positive as well.

We use similar reasoning to establish that Df satisfies Property 9 (connectivity):
If {Df (vi, v)}∞

i=1 → 0, then

lim inf
i→∞

∫ 1

0
f(v) − f(vi) − ⟨v − vi, ∇f(vi)⟩dµ = 0,

where, without loss of generality, we assumed that all components of the Cartesian
products agree and dropped the sum. Since we have already established that the
argument of the integral is positive, we can use Fatou’s lemma to establish that also

∫ 1

0
lim inf

i→∞
[f(v) − f(vi) − ⟨v − vi, ∇f(vi)⟩]dµ = 0.

Looking at Figure 15, we again know that if limi→∞ d(vi, v) > 0 then

lim inf
i→∞

[f(v) − f(vi) − ⟨v − vi, ∇f(vi)⟩]

would be a function (the limit is defined for each function argument separately) non–
zero on a set with a non–zero Lebesgue measure. That would be a contradiction.

The argument is more straightforward for the special case of

f(x) =
∫ 1

0
(x)2dµ,

when Df (vi, v) = [d(vi, v)]2 and we get the connectivity property straight away.
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x

f(x)

vw(i)

T (x) = f(v) + ⟨x − v, ∇f(v)⟩
f(w(i)) − T (w(i))

Figure 15: A single–dimensional impression of the integral argument in a Bregman
divergence Df is depicted below. T (x) = f(v) + ⟨x − v, ∇f(v)⟩, where ∇f(v) is the
Fréchet derivative, is in this single–dimensional impression the tangent line to f at v
in direction to w(i). The divergence from v to w(i) is then given by integrating the
difference f(w(i)) − T (w(i)), which is explicitly shown above, over µ and summing
the results across i with corresponding weights λi.

Lemma 1. For any v, u and w, and a Bregman divergence Df we have

Df (v, w) = Df (v, u) + Df (u, w) + ⟨w − u, ∇f(u) − ∇f(v)⟩.

Proof. First, we rewrite the right–hand side in detail:

Df (v, u) + Df (u, w) + ⟨u − w, ∇f(w) − ∇f(v)⟩ =

=
∫ 1

0
f(w) − f(u) − ⟨w − u, ∇f(u)⟩dµ+

+
∫ 1

0
f(u) − f(v) − ⟨u − v, ∇f(v)⟩dµ+

+⟨w − u, ∇f(u) − ∇f(v)⟩. (7)

Now, using the linearity of Lebesgue integration, (7) becomes

=
∫ 1

0
f(w) − f(u) − ⟨w − u, ∇f(u)⟩ + f(u) − f(v)−

−⟨u − v, ∇f(v)⟩ + ⟨w − u, ∇f(u) − ∇f(v)⟩dµ,
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which, using the linearity of the real inner product, can be rewritten as
∫ 1

0
f(w) − f(u) − ⟨w, ∇f(u)⟩ + ⟨u, ∇f(u)⟩ + f(u) − f(v)−

−⟨u, ∇f(v)⟩ + ⟨v, ∇f(v)⟩ + ⟨w, ∇f(u)⟩ − ⟨u, ∇f(u)⟩−
−⟨w, ∇f(v)⟩ + ⟨u, ∇f(v)⟩dµ.

After simplifying, we obtain what is on the left–hand side:
∫ 1

0
f(w) − f(v) + ⟨v, ∇f(v)⟩ − ⟨w, ∇f(v)⟩dµ =

=
∫ 1

0
f(w) − f(v) − ⟨w − v, ∇f(v)⟩dµ = Df (v, w).

The lemma above was noted in [14] for Bregman divergences in Lp spaces, and
it was called a generalized Pythagorean inequality. We will use this lemma above in
the proof of the following key observation, and it will indeed lead to our Pythagorean
properties. Recall that the sets W and V for the considered L2 space setting were
defined in Section 5.1.
Observation 9. Let w(i) = (w(1), . . . , w(n)) ∈ W , w = ∑n

i=1 λiw(i) and v ∈ V ,
and Df be a Bregman divergence. Then

Df (v, w) + Df (w, w(i)) = Df (v, w(i)).

Proof. By Lemma 1, applying it to each summand in the weighted sum,

Df (v, w(i)) = Df (v, w) + Df (w, w(i)) +
n∑

i=1
λi⟨w(i) − w, ∇f(w) − ∇f(v)⟩,

so we wish to prove that
n∑

i=1
λi⟨w(i) − w, ∇f(w) − ∇f(v)⟩ =

n∑

i=1
λi

∫ 1

0
(w(i) − w)(∇f(w) − ∇f(v))dµ

is zero. Since ∇f(w) − ∇f(v) is independent of i, the above is
∫ 1

0
(∇f(w) − ∇f(v))

[ n∑

i=1
λi(w(i) − w)

]
dµ =

=
∫ 1

0
(∇f(w) − ∇f(v))[0]dµ = 0

as required, since w = ∑n
i=1 λiw(i) by its definition.
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This observation proves that w = ∑n
i=1 λiw(i) is the conjugated Df –projection

of w(i) into V . If there was another point giving a smaller divergence, we could
substitute it in place of v in the statement of the observation and since the divergence
is always non–negative, we would have obtained a contradiction.

If the conjugated projection was not unique, repeating the same procedure we
would obtain Df (v, w) = 0, which is possible only if they differ at most at a set
that has Lebesgue measure zero. So the projection would not need to be unique if
we were not actually working with equivalence classes, but we do.

Writing w = π̂V (w(i)), which is our notation for the unique conjugated projec-
tion, Observation 9 gives us the statement of the Pythagorean property for agreeable
points. Indeed, for the special Df where f(x) =

∫ 1
0 (x)2dµ,

n∑

i=1
λi⟨w(i) − w, ∇f(w) − ∇f(v)⟩ =

n∑

i=1
λi⟨w(i) − w, 2w − 2v⟩ =

= 2
n∑

i=1
λi⟨w(i) − w, w − v⟩ = 0,

where we have used (6) on Page 38, gives for every i orthogonality of vectors w(i)−w
and w − v in a Hilbert space, and the observation becomes the usual Pythagorean
identity of a Hilbert space.

5.3 Projections in Hilbert spaces
Since Wi defined in Section 5.1 are closed convex sets in L2, a Hilbert space, by the
Hilbert projection theorem [6] there is a unique w(i) ∈ Wi such that

w(i) = arg min
y(i)∈Wi

d(v, y(i)) = arg min
y(i)∈Wi

∥y(i) − v∥

for a given v. Since ∥w(i) −v∥2 < ∥y(i) −v∥2 is equivalent to ∥w(i) −v∥ < ∥y(i) −v∥,
there exists also a unique Df –projection πW (v) if f(x) =

∫ 1
0 (x)2dµ and

Df (v, y(i)) =
n∑

i=1
λi[d(v, y(i))]2.

In the following, we will assume that Df is such that the Df –projection of
every v ∈ V into W exists (above we have established that this is the case for our
special divergence corresponding to the squared Euclidean distance), and having
this assumption in place we can establish the Pythagorean property for admissible
points.
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Observation 10. Let u(i) ∈ W and v ∈ V , w(i) = πW (v) exist and be unique, and
Df be a Bregman divergence. Then

Df (v, w(i)) + Df (w(i), u(i)) ≤ Df (v, u(i)).

Proof. By Lemma 1 on Page 40, applying it to each summand in the weighted sum,

Df (v, u(i)) = Df (v, w(i)) + Df (w(i), u(i)) +
n∑

i=1
λi⟨u(i) − w(i), ∇f(w(i)) − ∇f(v)⟩,

so we wish to prove that
n∑

i=1
λi⟨u(i) − w(i), ∇f(w(i)) − ∇f(v)⟩ =

=
n∑

i=1
λi

∫ 1

0
(u(i) − w(i))(∇f(w(i)) − ∇f(v))dµ ≥ 0.

Let us consider the convex combination of w(i) and u(i): λu(i)+(1−λ)w(i) ∈ W ,
λ ∈ [0, 1], since W was assumed to be a convex set. If w(i) = πW (v) is the Df –
projection of v into W , then

d

dλ
Df (v, λu(i) + (1 − λ)w(i))

∣∣∣
λ=0

≥ 0.

Spelling out the divergence we get

d

dλ

n∑

i=1
λi

∫ 1

0
f(λu(i) + (1 − λ)w(i)) − f(v) − ⟨λu(i) + (1 − λ)w(i) − v, ∇f(v)⟩dµ,

which is by the Leibniz integral rule [28] (f is continuous and continuously differen-
tiable by the assumption)

n∑

i=1
λi

∫ 1

0

d

dλ
f(λu(i) + (1 − λ)w(i))

∣∣∣
λ=0

−
〈 d

dλ
[λu(i) + (1 − λ)w(i)]λ=0, ∇f(v)

〉
dµ =

=
n∑

i=1
λi

∫ 1

0
⟨u(i) − w(i), ∇f(w(i))⟩ − ⟨u(i) − w(i), ∇f(v)⟩dµ =

=
n∑

i=1
λi

∫ 1

0
⟨u(i) − w(i), ∇f(w(i)) − ∇f(v)⟩dµ ≥ 0,

as required. Note that the last equality is due to the linearity of an inner product.
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Having the Pythagorean and projection properties established, we turn our atten-
tion to Property 6 (Convexity). Let us first make the following simple observation.

Lemma 2. For a given v ∈ V , Df (v, ·) is a convex function.

Proof. Due to the monotonicity of the Lebesgue integral (i.e., f ≤ g implies
∫ 1

0 fdµ ≤∫ 1
0 gdµ) and since f is a convex function, for a convex combination of w1 and w2:

λw1 + (1 − λ)w2, we have

D(v, λw1 + (1 − λ)w2) =

=
∫ 1

0
f(λw1 + (1 − λ)w2) − f(v) − ⟨λw1 + (1 − λ)w2 − v, ∇f(v)⟩dµ ≤

≤
∫ 1

0
λf(w1) + (1 − λ)f(w2) − [λ + (1 − λ)]f(v)−

−λ⟨w1 − v, ∇f(v)⟩ + (1 − λ)⟨w2 − v, ∇f(v)⟩dµ =

= λ

∫ 1

0
f(w1) − f(v) − ⟨w1 − v, ∇f(v)⟩dµ+

+(1 − λ)
∫ 1

0
f(w2) − f(v) − ⟨w2 − v, ∇f(v)⟩dµ =

= λD(v, w1) + (1 − λ)D(v, w2).

Note that in the above we have used the linearity of an inner product.

Even in Euclidean space, Bregman divergences are not necessarily convex in the
other argument. Please note again that our order of arguments is opposite to how
it is usually written in the literature, so by this other argument they would mean
the second and not the first argument as we do.

In what follows, we will need to consider only those Df that are convex functions
in both arguments. Again, the choice f(x) =

∫ 1
0 (x)2dµ gives us such a function.

The following lemma then establishes the convexity property for such Bregman
divergences.

Lemma 3. Let w(i), u(i) ∈ W , and w = ∑n
i=1 λiw(i) and u = ∑n

i=1 λiu(i). We
assume that Df (·, ·) is a convex function (jointly in both arguments). Then

Df (w(i), u(i)) ≥ Df (w, u).
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Proof. Since Df (·, ·) is a convex function, using Jensen’s inequality for integrals we
obtain

n∑

i=1
λiDf (w(i), u(i)) ≥ Df

( n∑

i=1
λiw(i),

n∑

i=1
λiu(i)

)
.

However, the left–hand side is just Df (w(i), u(i)), which is

Df (w(i), u(i)) =
n∑

i=1
λi

∫ 1

0
f(u(i)) − f(w(i)) − ⟨u(i) − w(i), ∇f(w(i))⟩dµ,

because for each fixed i

Df (w(i), u(i)) =
∫ 1

0
f(u(i)) − f(w(i)) − ⟨u(i) − w(i), ∇f(w(i))⟩dµ

for the same reason as

Df (v, w) =
∫ 1

0
f(w) − f(v) − ⟨w − v, ∇f(v)⟩dµ.

Finally, as the right–hand side is by the definition Df (w, u), the statement of the
lemma follows.

At this point, we have proven all properties needed to establish Theorem 1 on
Page 21 for a convex Bregman divergence Df in the L2 space setting.

Corollary 1. Let Df be a convex Bregman divergence such that Df –projections to
W exist and are unique. If a representative point exists then the set of fixed points
and the set of representative points are equal:

∆(W ) = Θ(W ).

5.4 Four point property
Df (v, ·) : L2 → R is Gâteaux differentiable in its second argument if there exists a
functional δw(i)Df (v, w(i); ·) : L2 → R such that

δw(i)Df (v, w(i); h(i)) = lim
h→0

Df (v, w(i) + hh(i)) − Df (v, w(i))
h

.

Since, by the linearity of the real inner product,
n∑

i=1
λi

∫ 1

0
f(w(i) + hh(i)) − f(v) − ⟨w(i) + hh(i) − v, ∇f(v)⟩dµ−
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−
n∑

i=1
λi

∫ 1

0
f(w(i)) − f(v) − ⟨w(i) − v, ∇f(v)⟩dµ =

=
n∑

i=1
λi

∫ 1

0
f(w(i) + hh(i)) − f(w(i)) − h⟨h(i), ∇f(v)⟩dµ,

we have that Df (v, ·) is indeed Gâteaux differentiable (and continuous), and

δw(i)Df (v, w(i); h(i)) = lim
h→0

n∑

i=1
λi

∫ 1

0

f(w(i) + hh(i)) − f(w(i))
h

− ⟨h(i), ∇f(v)⟩dµ =

=
n∑

i=1
λi

[
δf(w(i); h(i)) − ⟨h(i), ∇f(v)⟩

]
=

=
n∑

i=1
λi

[
⟨h(i), ∇f(w(i))⟩ − ⟨h(i), ∇f(v)⟩

]
, (8)

where in the second equality we have used Gâteaux differentiability of f from (5)
on Page 37. Recall once again that due to the assumed Fréchet differentiability of
f and the Riesz representation theorem [6] we can express the above differential
as an inner product. As this real inner product is linear, the same is true for the
differential so it is also Fréchet differentiable.

The special choice f(x) =
∫ 1

0 (x)2dµ gives a symmetric Df (·, ·), so this divergence
is continuous and Fréchet differentiable in both arguments. In order to prove the four
point property for a general Df , we will need to impose such a strong assumption
on its differentiability:

Observation 11. Let w(i), u(i) ∈ W , and w = ∑n
i=1 λiw(i) and v ∈ V . Assume

that Df (·, ·) is Fréchet differentiable (and hence continuous) and convex (jointly in
both arguments). Then

Df (w, u(i)) ≤ Df (w(i), u(i)) + Df (v, u(i)).

Proof. Since Df is a Fréchet differentiable convex function, we can write

Df (v, u(i)) ≥ Df (w, w(i))+

+δwDf (w, w(i); v − w) + δw(i)Df (w, w(i); u(i) − w(i)).

Using (5.4), the above becomes

Df (v, u(i)) ≥ Df (w, w(i))+
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+δwDf (w, w(i); v − w) +
n∑

i=1
λi⟨u(i) − w(i), ∇f(w(i)) − ∇f(w)⟩. (9)

By Lemma 1 on Page 40,

Df (w, u(i)) = Df (w, w(i))+Df (w(i), u(i))+
n∑

i=1
λi⟨u(i) −w(i), ∇f(w(i))−∇f(w)⟩,

so replacing Df (w, w(i)) in (9) with this we obtain

Df (v, u(i)) ≥ Df (w, u(i)) − Df (w(i), u(i))+

+δwDf (w, w(i); v − w). (10)

Finally, since x = w = ∑n
i=1 λiw(i) = π̂V (w(i)) minimises Df (x, w(i)) subject

to x ∈ V for a given w(i), the Gâteaux differential in (10) must be non–negative
and the observation follows.

In the above observation we have established the four point property in a Hilber-
tian space setting, see Figure 16 for an illustration. We have done that however only
under the further assumption that Df is a Fréchet differentiable convex function
(jointly in both arguments), which also implies that Df satisfies the last property
that we have not touched so far: Property 7, continuity.

W

V

L2

w(i)

w

u(i)

v

D(w, u(i)) ≤ D(w(i), u(i)) + D(v, u(i))

Figure 16: An illustration of the four points property in a Hilbertian space setting.

At this point, we have proven all properties needed to establish Theorem 2 on
Page 26 for a convex Fréchet differentiable Bregman divergence Df in the L2 space
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setting. Recall that conditions needed for compactness of sets W and V for the
considered L2 space setting were spelt out in Section 5.1 starting on Page 34.

Corollary 2. Let Df be a convex Fréchet differentiable Bregman divergence such that
Df –projections to W exist and are unique. Let v0 ∈ V . Define a sequence {vi}∞

i=0
recursively by vi+1 = π̂V (πW (vi)). If V and W are compact then the sequence
{vi}∞

i=0 converges to a fixed point.

Let us repeat that Df where f(x) =
∫ 1

0 (x)2dµ satisfies all the requirements
above.

6 Conclusion
In this paper we have provided an introduction to information geometry inspired
by uncertain reasoning and belief merging (Section 2), explained the alternating
minimisation procedure (Theorem 2 on Page 26) and an application to merging study
findings (Section 4.3), and proven related results in the L2 space setting (Section 5).
The main aim was to make this paper accessible to logicians and philosophers, and
to that end, a concept of admissible and agreeable points was invented. Consider
how many readers would have been lost should the L2 space setting of Section 5
were to be presented first.

We hope that this paper contributes to education, inspires logicians and philoso-
phers to combine information geometry and logical principles, and covers what ap-
pears to be a lack of related proofs in the intersection of two more popular general
approaches: Hilbertian and function space settings. After all, mathematics was al-
ways about working in the right set up. And the L2 space setting is just fairly
intuitive.

Finally, we should also admit that the results presented in Sections 2 and 3 were
somewhat easy; we imposed enough properties so that the proofs of Theorems 1
and 2 went through. The hard job is the opposite: What properties are necessary?
For the notions of cross–entropy and entropy this has been achieved by Shore and
Johnson [27], and Paris and Vencovská [25], respectively. In our context, the question
of axiomatising the alternating minimisation procedure remains open for now and
we would like to encourage other researchers to investigate it.
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Abstract

The first aim of this article is to position analogical inference (or at least a partic-
ular form of it) in relation to induction. After a brief reminder on the induction of
plausible conclusions in a probabilistic, logical, possibilistic settings, and with J. S.
Mill’s methods of induction, we turn our attention to analogical inference, based on
analogical proportions. Analogical proportions that hold between Boolean vectors are
emphasized as a matter of pairs belonging to the same equivalence class. Then the
mechanism of analogical proportions-based classification is explained and the main
algorithms and results obtained so far are surveyed. After which, steps towards a logic
of creativity are presented. The approach starts from the observation that analogical
proportions belong to a larger set of quaternary relations called logical proportions.
The six logical proportions giving birth to an equivalence relation between pairs are
identified. This includes two important cases: i) a logic of conditional events known
as being a basis for non monotonic reasoning (which is a form of plausible deduction);
ii) a logic of ordered pairs preserving positive changes, closely related to analogical
proportions. Within this framework, we revisit the creative nature of analogical pro-
portions and introduce a creative inference mechanism that works on the basis of a
specific situation and a collection of ordered pairs representing possible changes.
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1 Introduction

As it is well-known, Charles Sanders Peirce [44] distinguished between three main forms
of reasoning: deduction (for deriving necessary consequences), induction (for extrapolating
and generalizing from facts), and abduction (for finding out an hypothesis explaining a
particular situation).

Peirce [45] was viewing analogical reasoning as a composite form of reasoning that
combines induction and abduction (or retroduction, using Peirce’s word). Roughly speak-
ing, the idea is to see the fact of relating a given situation to another known situation as a
kind of abduction, and the fact of projecting / extrapolating what happens in the latter situa-
tion onto the given situation (in order to predict something about it) as a form of induction.
In fact, Peirce did not detail the way the two modes of reasoning are combined in analogical
reasoning; see [41] and [42] for different understandings of Peirce’s suggestion that may
also involve deduction.

Indeed analogical reasoning involves drawing a plausible inference that a property found
(or holding) in one situation is likely to also apply/hold to/in a second situation when there
are significant similarities between the two situations. Such a parallel between two situa-
tions is also the starting point of Gentner [27]’s structure-mapping theory, where analogy
is viewed as a mapping from one source domain to a target domain which conveys that a
system of relations which holds among the source entities also holds among the target en-
tities. Such a view was also proposed in [57]. A restricted rendering of this idea, stated in
logical terms, making a parallel between two entities x and y, amounts to infer Q(y) from
P (x), Q(x), and P (y) (where P and Q are predicates applicable to situations x and y).
Such an inference is clearly an “analogical jump”, which offers no guarantee on the con-
clusion. Some authors [14, 54] looked for what could be added to such premises in order
to ensure the truth of the conclusion. But this view is too demanding since it amounts to
reduce analogical inference to a form of deduction.

This view of the “analogical jump” pattern of inference is not so far from case-based
reasoning [25]. Indeed in this pattern, a “case” y under consideration where P is true is
related to a known “case” x where P is true as well1 (i.e., we have a perfect similarity be-
tween x and y) as well as another property Q also true for x. So as in case-based reasoning,
this suggests that Q may be true as well for y.

In this paper, we use a slightly different view of analogical inference that is based on
analogical proportions. Analogical proportions are statements of the form “a is to b as c
is to d”, as for instance, “a calf is to a cow as a foal is to a mare”. Although it involves
four items, we can observe that a calf and a cow are bovids, which corresponds to a first
situation, while a foal and a mare are equids, which is the second situation. In each sit-

1Note that P may be a compound property involving a number of elementary properties.
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uation, properties or relation such as “young”, “adult”, “mother” apply to the entities put
in correspondence by the analogical proportion. More generally the pair (a, b) with all the
properties and relations attached to items a and b is paralleled with the pair (c, d) with all the
properties and relations attached to items c and d. A philosopher, Mary Hesse [30], pointed
out and discussed the link between analogy viewed as a parallel between two situations and
analogical proportions.

In the following, we shall use an inference based on analogical proportions. Although
its link with the “analogical jump” pattern (as a particular instance) has been established [8],
this inference is different from the one in case-base reasoning where the known cases in the
repertory are considered one by one in isolation [50]2. In contrast, in analogical proportion-
based inference, the case under consideration, say d, is related to a triplet a, b, c of known
cases, each case being described by a set of attribute values [36]. .

Analogical inference is known to be useful in a wide range of applications [28], from
aiding explanation [5] to aiding creativity, e.g., in mathematics [47]. In this paper, we shall
review how analogical proportion-based inference can be applied to classification tasks, and
we shall advocate a new view of analogical proportions that will lead us to propose some
elements of a new logic that manipulates ordered pairs of vectors, and that may be used in
a creativity task.

The paper is organized as follows. Section 2 discusses analogical inference as a form of
induction, together with a brief review of some non conventional form of induction. Sec-
tion 3 provides a formal survey of analogical proportions. It emphasizes a new view of
(Boolean) analogical proportions that express an equivalence relation between two ordered
pairs of vectors describing items in terms of Boolean features. Section 4 recalls analogical
inference (based on analogical proportions) and the main results obtained with this infer-
ence in classification. Section 5 first briefly restates the general setting of so-called logical
proportions, to which analogical proportions belong. We focus on those logical propor-
tions that define equivalence relations. We thus identify two families of such proportions,
one which defines equivalences between “conditional objects” and which is at the basis of
nonmonotonic reasoning, and the other which is related to analogical proportions and from
which we outline a logic of ordered pairs, applicable to creativity issues.

2 Analogical inference and transduction

Induction is classically opposed to deduction. While deduction applies generic knowledge
(represented by general rules (“all men are mortal”) to factual information (“Socrate is a

2Usually in case-based reasoning the case under consideration y is put in similarity relation with several
known cases x1, · · · , xk where each xi leads to a partial conclusion for y (provided that the similarity between
xi and y is judged sufficient), and the partial conclusions have then to be combined in some way.
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man”)3, induction works in the opposite direction, attempting to infer general laws from a
limited set of observed facts. Mathematical models of induction predominantly stem from
probability and statistics theories. Sometimes what is covered by the word ‘induction’ also
includes the deductive step which corresponds to the application of the general laws induced
to a factual situation.

But there is another form of induction named transduction [26] that directly infers a par-
ticular factual conclusion from a set of data. A well-known transduction-based mechanism
is the k-nearest neighbor method where the prediction for a new item is only based on the
observation of closed neighbors. It is also known as lazy learning. In both cases, induction
is a form of inference that provides plausible conclusions, unlike deduction, which provides
safe conclusions.

Let us consider a classification problem. Given a set of items or entities (objects, situa-
tions, profiles, ...) that are all described in terms of the values of a collection of observable
attributes applicable to all of them, and that belong to a known class, the classification
problem amounts to assign a class to a new item whose class is unknown. More formally,
let S be a set of m items, each one a⃗i is represented by a vector of n attribute values
a⃗i = (ai

1, ai
2, · · · , ai

n) i = 1, ..., m, together with its class/label cl(a⃗i) ∈ C, where C
is a finite set of labels: for instance C = {good, bad}, or C = {bovid, equid, canid}.
The set of attributes used to describe an observable piece of data is fixed: for instance
{color, age, weight, position, . . .}. Thus, a class gathers items of the same kind in a cate-
gorization process. Each class C ∈ C divides the set of items into the a⃗i’s that are examples
of C if a⃗i ∈ C , and those that are counter-examples for C (and examples of other classes).
In general, attributes can take into account values of various types, such as integers, real
numbers, words, and more. In a context of binary attributes (i.e., attributes with values
belonging to {0, 1}), attributes can be regarded as properties, for instance, representing
whether an observable individual is wealthy (1 for ‘rich,’ 0 for ‘not rich’).

Given a new item a⃗⋆ = (a⋆
1, a⋆

2, · · · , a⋆
n) /∈ S, the problem is then to predict its class.

When applying Bayesian classification with the assumption that the attributes are sta-
tistically independent of each other given the class, we calculate, for each C ∈ C:

Prob(C|a⃗⋆) = Prob(a⃗⋆|C) · Prob(C)
Prob(a⃗⋆)

= 1
Prob(a⃗⋆)

· Prob(C) ·
n∏

k=1
Prob(a⋆

k|C)

and a⃗⋆ is assigned to the class C ∈ C providing the highest value for Prob(C|a⃗⋆).
The probabilistic approach is the prevailing viewpoint for induction and transduction.

Still there exist other options. Let us briefly review them.

3Even if deduction can also infer new generic rules from given rules.
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Possibility theory [19] also has a Bayesian-like rule, which writes [20],

Π(C|a⃗⋆) ⊛ Π(a⃗⋆) = Π(a⃗⋆|C) ⊛ Π(C)

where ⊛ = min or ⊛ = product. These two options separate the theories of qualitative and
quantitative possibilities where conditioning is based on min and product respectively [19].
In case of product-based conditioning on obtains the expression

Π(C|a⃗⋆) = Π(a⃗⋆|C)
maxj:Cj∈C Π(a⋆|Cj)

under the hypothesis of no prior information, i.e., Π(C) = 1. More generally ∀j, Π(Cj) =
1, since Π(a⃗⋆) = maxj Π(a⋆|Cj) · Π(Cj). The result is very close to Edwards’ notion of
likelihood [22], who advocates a non-Bayesian view, i.e., without priors. See, for instance,
[7] for experiments with possibilistic classification.

If we use the min-based qualitative conditioning, i.e., ⊛ = min, assuming that class C
is fully possible (no prior, i.e., Π(C) = 1), and taking Π(a⃗⋆) = 1, the equality Π(C|a⃗⋆) ⊛
Π(a⃗⋆) = Π(a⃗⋆|C) ⊛ Π(C) reduces to Π(C|a⃗⋆) = Π(a⃗⋆|C) and finally with an hypothesis
of non-interactivity (logical independence) of attributes we obtain

Π(C|a⃗⋆) =
n

min
k=1

Π(a⋆
k|C)

It expresses that C is all the more a possible class for a⃗⋆ as all its attribute values are possible
in class C, or better that the less possible is one of the attribute values for the class C, the
less possible class C is for a⃗⋆. We then come closer to a logical analysis of data that we
examine now.

Considering a particular class C ∈ C, a simple logical reading for Boolean data sets can
be done from the sets of examples EC and counter-examples E ′

C . Let φ(C) be a logical
formula that describes class C, i.e., φ(C) is true for the description of any item belonging
to φ(C). Then we have [21]

∨

i:a⃗i∈E
(ai

1 ∧ ai
2 ∧ · · · ∧ ai

n) |= φ(C) |=
∧

j:a⃗′j∈E ′

(¬a′j
1 ∨ ¬a′j

2 ∨ · · · ∨ ¬a′j
n )

This means that the description of any example in terms of the n Boolean attributes
makes φ(C) true, and that any model of φ(C) falsifies at least one attribute value of any
counter-example. Provided that the data are not noisy, this provides a consistent bracketing
of φ(C). This looks like the version space approach [43] where the hypotheses space is
bracketed between a lower and an upper bound computed from the examples and counter-
examples, except that here no representation bias is introduced.
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In such a view, examples and counter-examples are exploited one by one. This is also the
case for the possibilistic approach, although differently. In other words, the informational
contributions made by each example (or counter-example) are combined, but no comparison
of examples belonging to the same class, or to different classes, is made. This contrasts,
as already mentioned in the introduction, with the analogical proportion-based inference
where items are handled three by three ; see Sections 3 and 4 for details. For their part,
k-nearest neighbors methods [24, 55], which are based on ideas similar to the ones at work
in case-based reasoning, also handle examples one by one (even if there is some cumulative
counting across the k examples considered).

The XIXth English philosopher, logician and economist, John Stuart Mill is known,
among many other things, for his “methods of induction”. He indeed proposed five meth-
ods of induction in his 1843 treatise of logic [40]. Strictly speaking, it is a matter of ab-
duction rather than induction, but it was long before Charles Sanders Peirce distinguished
between the two notions! Indeed these “induction” methods look for the simplest and most
likely hypothesis that explains some observations. But what contrasts Mill’s methods with
the previously reviewed approaches to induction is that they heavily rely on the ideas of
agreement and difference, which makes them somewhat similar in that respect to analogical
proportion-based inference, where examples are compared within pairs, as we shall see in
Section 3.

We cite here only the two main methods. The first one, called the (Direct) Method of
Agreement is stated like that [40]:

ABCD occur together with wxyz

AEFG occur together with wtuv
—————————————————–
Therefore A is the cause, or the effect, of w

Mill is not at all precise about what the letters in his induction patterns refer to. However
the causality flavor suggests to regard letters as properties or attributes that characterize
circumstances and their consequences (hence the use of two kinds of letters). The number
of attributes involved in the two first statements that differ from one to the other has no
particular meaning here. What is important here is that two states of affairs ABCDwxyz
on the one hand and AEFGwtuv on the other hand are compared.

In other words, what {A, B, C, D} and {A, E, F, G} have in common, i.e., {A}), cor-
responds to what {w, x, y, z} and {w, t, u, v} have in common, i.e., {w}.

A similar analysis applies to the Method of Difference, which reads [40]:

ABCD occur together with wxyz

BCD occur together with xyz
——————————————————————————-
Therefore A is the cause, or the effect, or a part of the cause of w
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Observe in the second pattern of inference that the set differences between {A, B, C, D}
and {B, C, D} correspond to the set differences between {w, x, y, z} and {x, y, z}.

Still Mill was making no link between his Methods of Difference and Agreement and his
view of analogy, although he considered that analogical reasoning (viewed according to the
pattern discussed in the introduction) was also a form of induction. The reader is referred
to [4] for some further discussions on links between Mill’s methods of induction and the
analogical proportions-based inference that we are going to present in the next section.

3 Analogical proportions

This section provides a refresher on Boolean-valued analogical proportions together with a
new view in terms of an equivalence relation between pairs.

3.1 Postulates

Generally speaking, analogical proportions are statements of the form “a is to b as c is to
d” linking four entities, which are supposed to satisfy the following postulates, according
to a long tradition that dates back to Aristotle. These postulates were inspired by a parallel
with numerical proportions, namely, arithmetic proportions (a − b = c − d) and geometric
proportions (a

b = c
d ) which equalize differences and ratios respectively. Thus, proportions

operates a double comparison (inside, and between, pairs) as also suggested by the expres-
sion of an analogical proportion “a is to b as c is to d”. Such a proportion, considered here
as a relation between 4 items, is denoted by a : b :: c : d.

These postulates, which are the only ones classically associated to an analogical pro-
portion, are:

P1 reflexivity: a : b :: a : b ;

P2 symmetry: a : b :: c : d ⇒ c : d :: a : b;

P3 stability under central permutation: a : b :: c : d ⇒ a : c :: b : d.

As immediate consequences, an analogical proportion also satisfies

• a : a :: b : b (sameness) ;

• a : b :: c : d ⇒ d : b :: c : a (external permutation);

• a : b :: c : d ⇒ b : a :: d : c (internal reversal);

• a : b :: c : d ⇒ d : c :: b : a (complete reversal).
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It is also worth noticing that the 3 postulates do not allow for other permutations such
that a : b :: c : d ⇒ b : a :: c : d, or a : b :: c : d ⇒ c : b :: a : d. In particular, a : b :: b : a
is not supposed to hold. Thus one cannot say that “black is to white as white is to black”
(even if this might be advocated on the basis that the relation of opposition between ‘black’
and ‘white’ is the same as the one between ‘white’ and ‘black’; see [37] for a discussion of
a relation-based view of analogical proportions, maybe closer to natural language practice.

The entities involved in an analogical proportion can be of different natures: it may
be numbers, words, drawings, images, sentences, ... [52]. This may lead to question the
validity of the central permutation postulate, and to replace it by a weaker postulate such as,
e.g., the internal reversal property ; see [37, 2] for discussions.

It is assumed in this article that the entities considered can be represented by vectors of
Boolean feature values. Moreover, we require that the features used in the representation
are applicable to the four entities involved in the analogical proportions we deal with.4 Note
that in this paper we are primarily interested in the inference mechanism associated with the
logical modeling of analogical proportions between Boolean-valued vectors. Even if we use
some analogical proportion stated in natural language for illustration, we do not intent to
discuss analogical proportions between words in ordinary language here ; see [37] on this
point.

Thus, any entity is represented here by a vector a⃗ = (a1, ..., an) where ai is the value
of feature (or attribute) i. We define the analogical proportion relation among n-tuples by
applying it componentwise. Namely,

a⃗ : b⃗ :: c⃗ : d⃗ if and only if ∀i ∈ [1, n], ai : bi :: ci : di

We need now to recall the definition of an analogical proportion for four Boolean vari-
ables ai, bi, ci, di representing the value of some feature i for four distinct items.

3.2 Boolean proportions

The reflexivity postulate a : b :: a : b forces a Boolean analogical proportion to be true for
any values of a and b in {0, 1}, and therefore an analogical proportion a : b :: c : d is true
for the valuations (0, 0, 0, 0), (0, 1, 0, 1), (1, 0, 1, 0), and (1, 1, 1, 1). The unique minimal
Boolean model that satisfies the three postulates P1, P2, P3 is made up of the 6 valuations
shown in Table 1, where the valuations (0, 0, 1, 1), (1, 1, 0, 0) are added due to P3. As can
be seen the 6 patterns are symmetrical (i.e., satisfy P2). The 24 − 6 = 10 other valuations

4This assumption excludes analogical proportions such as “beer is to the English what wine is to the
French” where two different conceptual universes are present (beverages and people, in the example). Note
that the central permutation does not hold for such analogical proportions, which require a more sophisticated
modeling [3].
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a b c d

0 0 0 0
1 1 1 1
0 0 1 1
1 1 0 0
0 1 0 1
1 0 1 0

Table 1: Minimal Boolean model of a : b :: c : d

are excluded, namely a : b :: c : d is false for (0, 1, 1, 0), for (1, 0, 0, 1), for the 4 valuations
with only one 0, and for the 4 valuations with only one 1 [51]:

There are several remarkable quaternary logical formulas for an analogical proportion
a : b :: c : d, all of which are logically equivalent. Thus, they are all true only for the 6
valuations of Table 1 (and false for the 10 remaining valuations). The first formula uses
dissimilarity indicators only, inside pairs (a, b) and (c, d). Indeed we have [39]:

a : b :: c : d = ((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((¬a ∧ b) ≡ (¬c ∧ d)) (1)

It precisely expresses that “a differs from b as c differs from d and b differs from a as d
differs from c” (and “when a and b do not differ, c and d do not differ”).

A second formula, logically equivalent to expression (1), is [39]:

a : b :: c : d = ((a ∧ d) ≡ (b ∧ c)) ∧ ((¬a ∧ ¬d) ≡ (¬b ∧ ¬c)) (2)

It uses similarity indicators only and can be read as “what a and d have in common (posi-
tively or negatively) b and c have it also”5.

Another expression, equivalent to the two above logical formulas [51], which is closer
to the description of the contents of Table 1, is given by

a : b :: c : d = ((a ≡ b) ∧ (c ≡ d)) ∨ ((a ≡ c) ∧ (b ≡ d))

Beyond the three postulates P1, P2, P3 and their consequences, the minimal Boolean model
of an analogical proportion (described in Table 1) also satisfies two noticeable properties
[48]:

• code independence: a : b :: c : d ⇒ ¬a : ¬b :: ¬c : ¬d ;
5It also says that “when a and d differ (one is true, the other is false) then b and c also differ”! Rewriting it

as a : b :: c : d = ((a ∧ d) ≡ (b ∧ c)) ∧ ((a ∨ d) ≡ (b ∨ c)), emphasizes that the conjunctions of the extremes
and of the means are equivalent, as well as their disjunctions.
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• transitivity: (a : b :: c : d) ∧ (c : d :: e : f) ⇒ a : b :: e : f .

The first property expresses that any feature can be encoded positively or negatively without
harming the analogical proportion.

The second property that expresses transitivity does not follow from the postulates ei-
ther, but is true for Boolean variables.6. It has an important consequence (together with
reflexivity and symmetry properties): The analogical proportion a : b :: c : d defines an
equivalence relation between the ordered pairs (a, b) and (c, d) in the Boolean setting.

The description of items may involve nominal attributes, i.e., attributes with a finite
domain A whose cardinality is larger than 2. Then a : b :: c : d holds for nominal variables
if and only if (as first suggested in [46])

(a, b, c, d)∈{(s, s, s, s), (s, t, s, t), (s, s, t, t) | s, t ∈ A} (3)

When the cardinality of A is equal to 2, we retrieve the Boolean model. As can be checked,
(3) is the unique nominal model that satisfies P1, P2, and P3. All the properties discussed
above still hold for nominal attributes.

Let us take the example mentioned in the Introduction “a calf is to a cow as a foal is
to a mare”. The animals there can be described in terms of attributes such as mammal,
carnivore, young, adult, ruminant, single-toed, or family (the last at-
tribute being nominal). The vector describing each animal is given horizontally in Table
2. We can see vertically that a perfect analogical proportion holds component by compo-
nent.

mammal carnivore young adult ruminant single-toed family
calf 1 0 1 0 1 0 bovidae
cow 1 0 0 1 1 0 bovidae
foal 1 0 1 0 0 1 equidae
mare 1 0 0 1 0 1 equidae

Table 2: A calf is to a cow as a foal is to a mare

6Some readers might object that analogical proportions may not be transitive. In a general context, their
observation is valid, and this issue becomes more apparent when dealing with multiple attributes. Specifically
a⃗ : b⃗ :: c⃗ : d⃗ may hold with respect to some attributes and c⃗ : d⃗ :: e⃗ : f⃗ may hold with respect to a different set
of attributes leading to a failure of transitivity, as in the following abstract example. Assume a⃗, b⃗, c⃗, d⃗, e⃗, f⃗ can
be described in terms of 4 Boolean attributes i1, i2, i3, i4, and a⃗ = (1, 1, 0, 0), b⃗ = (1, 1, 1, 0), c⃗ = (1, 0, 0, 0),
d⃗ = (1, 0, 1, 1), e⃗ = (1, 1, 1, 0), and f⃗ = (1, 1, 1, 1). Let us denote by (⃗a : b⃗ :: c⃗ : d⃗)S the fact that
the analogical proportion holds componentwise for all attributes i ∈ S. Then it can be easily checked that
(⃗a : b⃗ :: c⃗ : d⃗){i1,i2,i3} holds as well as (c⃗ : d⃗ :: e⃗ : f⃗){i1,i2,i4}, while (⃗a : b⃗ :: e⃗ : f⃗){i1,i2,i3,i4} does not
hold. Still, it can be observed that here transitivity is preserved if we restrict ourselves to the set S = {i1, i2}.
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Note that as soon as a⃗, b⃗, c⃗, d⃗ have at least two components, a⃗ : b⃗ :: c⃗ : d⃗ can hold with
4 distinct vectors: for instance, in dimension 2, a⃗ = (0, 0), b⃗ = (0, 1), c⃗ = (1, 0), d⃗ = (1, 1)
build a proper analogical proportion.

3.3 Analogical proportions in terms of sets

As already said, the entities or items involved in analogical proportions that we consider are
represented by vectors of Boolean values, such as a⃗ = (a1, ..., an), and analogical propor-
tions between vectors are defined componentwise:

a⃗ : b⃗ :: c⃗ : d⃗ ⇔ ∀i ∈ {1, · · · , n}, ai : bi :: ci : di

To a vector a⃗ = (a1, ..., an) where ∀i, ai ∈ {0, 1}, one can associate the set of features A =
{i ∈ {1, · · · , n} | ai = 1} possessed by a⃗. Clearly, A and a⃗ are equivalent representations.
In the same way, we associate b⃗, c⃗ and d⃗ with B, C and D. The set representation provides
a maybe more intuitive view of an analogical proportion.

Indeed, it has been noticed [56] (see also [3]) that A : B :: C : D holds if and only if it
exists non overlapping subsets U , V , X , Y , and Z, such that

• A = U ∪ X ∪ Z;

• B = U ∪ Y ∪ Z;

• C = V ∪ X ∪ Z;

• D = V ∪ Y ∪ Z.

This makes clear that A \ B = C \ D = X and B \ A = D \ C = Y , which is in agreement
with equation (1). Note also that A\C = B \D = U and C \A = D\B = V in agreement
with the stability under central permutation.7

Moreover, with this set representation, it can be easily checked that an analogical pro-
portion A : B :: C : D holds as soon as

A: made of what is common to A and C together with what is common to A and B
B: made of what is common to B and D together with what is common to A and B
C: made of what is common to A and C together with what is common to C and D
D: made of what is common to B and D together with what is common to C and D.

7This is also in agreement with equation (2) since A ∩ D = B ∩ C = Z and A ∪ D = B ∪ C =
U ∪ V ∪ X ∪ Y ∪ Z.
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where ‘made of’ refers to union operation and “what is common” to intersection operation.
Interestingly enough, the four descriptions of A, B, C, D above make a perfect analogical
proportion, term by term (applying nominal definition (3))!

Remark. The set-based view of analogical proportion allows us to better suggest a
relationship between Mill’s rules of induction and analogy. If we reconsider Mill’s pattern
of (Direct) Method of Agreement as the analogical proportion (keeping the notations of
Section 2) “A = ABCD is to B = wxyz as C = AEFG is to D = wtuv” (where ‘is
to’ is understood as ‘co-occurs with’), we can observe that indeed A \ C = C \ A = A
co-occurs with B \ D = D \ B = w. Mill’s Method of Difference could be read similarly
in an analogical proportion manner in spite of the presence of items of two different natures
in those patterns.

3.4 Analogical proportions as equivalence relations between pairs

Analogical proportions are a matter of i) comparing items inside an ordered pair, and then.
ii) pairing pairs (⃗a, b⃗) and (c⃗, d⃗). Let us examine these two steps.

Let a⃗ = (a1, ..., an), b⃗ = (b1, ..., bn), etc. be items described by means of n Boolean
attributes or features. Given two vectors a⃗, b⃗, their comparison leads to consider the subsets
of attributes where they are equal (to 1 or to 0), and the subsets of attributes where they
differ (by going from 0 to 1, or from 1 to 0), when we go from a⃗ to b⃗. This leads to define

Equ0(⃗a, b⃗) = {i | ai = bi = 0},

Equ1(⃗a, b⃗) = {i | ai = bi = 1},

Equ(⃗a, b⃗) = {i | ai = bi} = Equ0(⃗a, b⃗) ∪ Equ1(⃗a, b⃗),
and

Dif10(⃗a, b⃗) = {i | ai = 1, bi = 0},
Dif01(⃗a, b⃗) = {i | ai = 0, bi = 1},
Dif (⃗a, b⃗) = {i | ai ̸= bi} = Dif01(⃗a, b⃗) ∪ Dif10(⃗a, b⃗).

This allows us to state the following result:

a⃗ : b⃗ :: c⃗ : d⃗ if and only if





Equ(⃗a, b⃗) = Equ(c⃗, d⃗)
Dif10(⃗a, b⃗) = Dif10(c⃗, d⃗)
Dif01(⃗a, b⃗) = Dif01(c⃗, d⃗)

We see that what matters in an analogical proportion is the orientation of the differences,
whereas it does not matter with which value the equality is realized. Table 3 highlights the
structure of an analogical proportion, in three subsets of attribute(s), one where the 4 items
are equal, one where they are equal within the pairs, but not in the same way, and finally the
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subset of attribute(s) whose value(s) change(s), in the same direction, from a⃗ to b⃗ and from
c⃗ to d⃗.

items All equal Equality by pairs Change (Dif)
a⃗ 1 0 1 0 1 0
b⃗ 1 0 1 0 0 1
c⃗ 1 0 0 1 1 0
d⃗ 1 0 0 1 0 1

Table 3: The 3 parts of analogical proportion and the associated valuations

As shown in Table 3, the set of attributes with which the four items involved in an
analogical proportion a : b :: c : d are supposed to be represented can be partitioned in three
subsets corresponding to the way the attribute values are possibly modified from an item to
another item. As we can see, the central permutation of b⃗ and c⃗ exchanges the content of
the columns “Equality by pairs" and “Change" (but does not affect the “All equal" column).
Neither of these two subsets must be empty if we want the analogical proportion to be non-
trivial, i.e., a⃗, b⃗, c⃗, d⃗ are distinct vectors (for n = 2, a⃗ = (1, 1), b⃗ = (1, 0), c⃗ = (0, 1),
d⃗ = (0, 0) realize an analogical proportion with distinct vectors, as already said). Besides,
the subset of attribute(s) “All equal” can be empty. If the subset “Equality by pairs” or the
subset “Change” is empty, then a⃗ = c⃗ and b⃗ = d⃗ or a⃗ = b⃗ and c⃗ = d⃗ respectively.

Besides, analogical proportions are implicitly present when comparing two items rep-
resented with the same set of n attributes (n ≥ 2): From a formal viewpoint, for any two
distinct vectors a⃗ and d⃗ differing on at least two attributes, there exist two other distinct
vectors b⃗ and c⃗ such as a⃗ : b⃗ :: c⃗ : d⃗ [12]. This does not mean that these two vectors b⃗ and c⃗
represent items existing in the real world.

As already noticed when dealing with one component, analogical proportions express
an equivalence relation between two ordered pairs. Given four distinct vectors a⃗, b⃗, c⃗, d⃗, we
have the following result:

Two ordered pairs (⃗a, b⃗) and (c⃗, d⃗) are in the same equivalence class if and only if8

1. Dif (⃗a, b⃗) = Dif(c⃗, d⃗) ;

2. ∀j ∈ Dif (⃗a, b⃗) aj = cj and bj = dj .

Condition 1 ensures that the change concerns the same attributes in both pairs, condition
2 that the change applies in the same direction in both pairs. It is clear that any two pairs
(⃗a, b⃗) and (c⃗, d⃗) taken in the same equivalence class together form an analogical proportion

8A further condition should be added, namely Dif (⃗a, b⃗) ̸= ∅ and ∃i ai ̸= ci in case the vectors might not
be distinct.
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a⃗ : b⃗ :: c⃗ : d⃗. This notion of equivalence class is similar to the idea of “analogical cluster”
introduced in [34] in a context of computational linguistics.

4 Analogical proportions-based inference and classification

In the Boolean and nominal cases, analogical inference relies on the solving of analogical
equations, i.e. finding x⃗ such that a⃗ : b⃗ :: c⃗ : x⃗ holds, working component by component.9.
This kind of extrapolation is a counterpart of the “rule of three” based on geometric propor-
tions x = b·c

a (its arithmetic counterpart is x = b + c − a).
Since a triplet a, b, c ∈ {0, 1}3 may take 23 = 8 values, while a : b :: c : d is true only

for six distinct 4-tuples, there are cases where the equation a : b :: c : x in the Boolean case
has no solution. Indeed, the equations 1 : 0 :: 0 : x and 0 : 1 :: 1 : x have no solution. It
is easy to prove that the Boolean analogical equation a : b :: c : x is solvable if and only if
(a ≡ b) ∨ (a ≡ c) holds true. In that case, the unique solution is given by x = a ≡ (b ≡ c);
thus x = b if a = c and x = c if a = b.

The situation in the nominal case is quite similar: s : t :: t : x has no solution (for
s ̸= t). Only the equations s : t :: s : x and s : s :: t : x are solvable, with unique
solution x = t. In the nominal case, where s, t, u can take more than 2 values, the equation
s : t :: u : x is also not solvable as soon as s, t, u are distinct.

Analogical proportion-based inference, as described by the inference rule (4), applies
to classification and relies on a simple principle: in the Boolean or nominal cases, if four
vectors a⃗, b⃗, c⃗ and d⃗ make a valid analogical proportion component-wise for each 4-tuple of
values pertaining to the same attribute, then it is expected that their class labels also make a
valid proportion ([58], see also [9]).

a⃗ : b⃗ :: c⃗ : d⃗

cl(⃗a) : cl(⃗b) :: cl(c⃗) : cl(d⃗)
(4)

Assuming that the class labels for vectors a⃗, b⃗ and c⃗ are known (i.e., they belong to the
sample set), the classification of a new Boolean or nominal vector d⃗ is only possible i) when
the equation cl(⃗a) : cl(⃗b) :: cl(c⃗) : x is solvable (since a Boolean or a nominal equation
may have no solution if the equation is of the form s : t :: t : x or s : t :: u : x), and ii) the
analogical proportion a⃗ : b⃗ :: c⃗ : d⃗ holds true on all components. If these two conditions are
met, we take cl(d⃗) as the unique solution for x.

Clearly, the inference rule (4) offers no guarantee on the truth of the prediction for
cl(d⃗); this prediction may be only regarded as a plausible conclusion, just as in the case of

9The three other equations x⃗ : b⃗ :: c⃗ : d⃗, a⃗ : x⃗ :: c⃗ : d⃗, a⃗ : b⃗ :: x⃗ : d⃗ can be equivalently stated in the above
form (with x in d position), applying internal and complete reversal properties.
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the “analogical jump” inference (recalled in the introduction), of which (4) can be shown
to a particular instance [9]. Note that this inference rule is a transduction rule that infers a
factual conclusion about the class of a new item from a set of items and their class. It is an
extrapolation process [35].

However as already said, there is no guarantee that the conclusion of the inference rule
is not erroneous, and it may happen that different predictions coexist for cl(d⃗) as shown in
Table 4, where three pairs (⃗a, b⃗), (c⃗, d⃗), (a⃗′, b⃗′), belonging to the same equivalence class
(since each pair has the same Dif -pattern) are put in parallel leading to divide the equal-
ity part of the pairs into four subparts Equsss, Equsst, Equsts, Equstt corresponding to the
different possible arrangements of these equality parts while preserving analogical propor-
tions between the first two pairs and between the last two.10 Indeed, on the one hand, one
can check that a⃗ : b⃗ :: c⃗ : d⃗ holds, and the analogical inference yields cl(d⃗) = cl(⃗b) = t;
on the other hand, it can be seen that a⃗′ : b⃗′ :: c⃗ : d⃗ holds also, and the analogical inference
then gives cl(d⃗) = cl(c⃗) = s. This takes place in spite of the fact the pairs (⃗a, b⃗) and (a⃗′, b⃗′)
are in the same class of equivalence.

case Equsss Equsst Equsts Equstt Dif class

a⃗ s1 s2 s3 s4 s5 s

b⃗ s1 s2 s3 s4 t5 t

c⃗ s1 s2 t3 t4 s5 s

d⃗ s1 s2 t3 t4 t5 t / s

a⃗′ s1 t2 s3 t4 s5 s

b⃗′ s1 t2 s3 t4 t5 s

Table 4: Inconsistent prediction

This situation of inconsistent predictions is very general. The unique exception (where
the situation is impossible) is when the classification function is a linear function in case of
Boolean attributes [11], or is quasi-linear in case of nominal attributes [13]. Still this does
not mean that those special cases are the only cases where the analogical proportion-based
inference can be used. Indeed, even if there is some inconsistent predictions, one may just
retain the prediction made by the majority of the triplets.

Thus, the brute-force algorithm consists in looking for all triplets (⃗a, b⃗, c⃗) for which
the corresponding analogical equation on class is solvable, and which makes an analogical
proportion with the item d⃗ for which one wants to predict the class. This has a clear cu-
bic complexity, and is costly. However, the accuracy results are good enough on real data

10In Table 4, each of the 5 columns from Equsss to Dif stands for a subset of attributes and the corre-
sponding sk is here a sub-vector of Boolean or nominal attribute values.
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Figure 1: Example of a visual analogical proportion to be completed

benchmarks to be compared with other more classical approaches [38, 9]. It is worth notic-
ing that it is possible to make an offline pre-compilation of pairs, to focus on pairs which
are differing on a few attributes only, and to choose c⃗ as a close neighbor of d⃗, without harm
for the accuracy results [9].

Moreover, a natural idea for restricting the number of triplets is to look only for those
triplets involving “competent” pairs. Competent pairs are those in an equivalence class
whose pattern for the class is in the majority. For instance, in Table 4, the pairs (⃗a, b⃗) and
(a⃗′, b⃗′) are in the the same equivalence class ; their respective pattern for the class are (s, t)
and (s, s); the pairs whose pattern for the class is is in the majority in the equivalence class
will be considered as “competent” for extrapolating cl(d⃗) on the basis of such a pair and
a c⃗ forming an analogical proportion a⃗ : b⃗ :: c⃗ : d⃗ with d⃗. The use of competent pairs
has proved to be experimentally interesting in terms of accuracy and computational cost
[35, 21].

5 Towards a logic of creativity

Analogical reasoning has long had a reputation for creativity [47, 17, 29]. First, let us ex-
plain in what limited sense we can talk about creativity in the case of analogical proportion-
based inference.

For doing that, we use a simple IQ test-like example11. The problem is to find, among
a given set of candidate solutions, the figure X that gives the best fit to the analogical
proportion “A is to B as C is to X”. This kind of problem was successfully addressed very
early in artificial intelligence by Thomas Evans [23].

In the following, we show that it can be solved without the knowledge of candidate so-
lutions. Let us consider the example of Figure 1. The figures in this example of Figure 1 can
be encoded with 5 Boolean predicates, namelyhasRectangle(hR),hasBlackDot(hBD),

11More difficult tests, like Raven IQ tests where a series of instances having the format of a 3×3 matrix
whose cells contain diverse geometric figures, except the last cell which is empty and has to be completed by
selecting a solution among 8 candidates, can be also solved by analogical proportion-based reasoning without
the help of candidate solutions [10].
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hR hBD hT hC hE

a 1 1 0 0 1
b 1 1 0 1 0
c 0 1 1 0 1
x ? ? ? ? ?

Table 5: Solving the example: x = (0, 1, 1, 1, 0)

hasTriangle(hT ), hasCircle(hC), and hasEllipse(hE). They appear in that order in
Table 5, where the example is encoded.

It can be observed that the description of figure x, namely, hR = 0, hBD = 1, hT = 1,
hC = 1, hE = 0 can be obtained by solving the analogical equation in each column, which
in this example, has a solution for each feature. Thus, from three items a⃗, b⃗, c⃗, we are able to
build (create!) a novel item d⃗ different from the three others. Since in the above example we
have not encoded the position of the figures in a picture, each figure could be drawn inside,
outside or intersecting the other ones. We could also take care of the positions with respect
to, e.g., the basis of the rectangles and triangles, by using more attributes. Thus, for instance,
the Black Dot will remain at the same place in the different figures. But what is important
in the handling of such riddles is to use independent attributes in the representation; but
simple relationships, such as “the black dot is outside the ellipse”, “the black dot is inside
the rectangle” could be also coded directly; see [10] for more discussions.

This form of creativity can be summarized by the following inference pattern (remember
≡ is associative), where a⃗, b⃗, c⃗ are vectors of Boolean attribute values defined on the same
set of attributes:

a⃗, b⃗, c⃗

d⃗ = (⃗a ≡ b⃗ ≡ c⃗)
(5)

This pattern of inference has been considered a fundamental element of human creativ-
ity [32]. However, note that we consider this pattern as valid only if on each feature i the
Boolean analogical equation ai : bi :: ci : xi is solvable, which requires that

(⃗a ≡ b⃗) ∨ (⃗a ≡ c⃗)

holds true for each vector component.

Remark 1. Strictly speaking, we might accept the inference pattern (5) without any re-
striction, since a⃗ ≡ b⃗ ≡ c⃗ is always defined. Such a view was defended by S. Klein [31]
who was a forerunner of the Boolean modeling of analogical proportions used here. But
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this leads to debatable consequences. Indeed Klein’s view of analogy was deeply influ-
enced by his anthropological interest in cultural devices such as Navaho sand paintings or
mandalas [31]. Such paintings upon the ground have a square structure and can be con-
templated from any side (there is no top or bottom); it makes natural a property such as
a⃗ : b⃗ :: c⃗ : d⃗ ⇒ b⃗ : c⃗ :: d⃗ : a⃗, where a⃗, b⃗, c⃗, d⃗ refer to the descriptions of the four corners
of a sand painting. If we iterate the property, namely, b⃗ : c⃗ :: d⃗ : a⃗ ⇒ c⃗ : d⃗ :: a⃗ : b⃗, we
see it entails symmetry. But while this property preserves 0 : 0 :: 0 : 0 and 1 : 1 :: 1 : 1,
exchanges 0 : 1 :: 0 : 1 and 1 : 0 :: 1 : 0, it changes 0 : 0 :: 1 : 1 into 0 : 1 :: 1 : 0 and
1 : 1 :: 0 : 0 into 1 : 0 :: 0 : 1, thus introducing two patterns excluded by the condition
(⃗a ≡ b⃗) ∨ (⃗a ≡ c⃗). This latter condition preserves strict analogical proportions (otherwise
the undesirable property a⃗ : b⃗ :: c⃗ : d⃗ ⇒ b⃗ : a⃗ :: c⃗ : d⃗ would hold, and break the oriented
nature of the comparisons inside the analogical proportion).

Our aim in the following is to investigate what consequence relation could be defined
between ordered pairs. This relation, once symmetrized, must give rise to an equivalence
relation between ordered pairs, which must therefore be reflexive, symmetrical and transi-
tive. In a Boolean framework, such a relation corresponds to a logical connector between
four variables (two per pair). Analogical proportions are a particular case of logical propor-
tions. This is why we first start by a short journey among logical proportions [48] in the
next subsection, looking for those proportions that are reflexive, symmetrical and transitive
when considered as operators on pairs. The contents of the rest of this section expands the
presentation of a logic outlined in [53].

5.1 Logical proportions

The logical proportions [48] offer a framework, in propositional logic, of quaternary con-
nectors expressing relations between pairs. It is from this Boolean framework, the essence
of which we now recall, that we start our investigations.

In the Boolean framework, we have four comparison indicators to relate two variables
a to b.

• Two indicators express similarity, either positively as a ∧ b (which is true if a and b
are true), or negatively as ¬a ∧ ¬b (which is true if a and b are false).

• The other two are indicators of dissimilarity ¬a ∧ b (which is true if a is false and b
is true) and a ∧ ¬b (which is true if a is true and b is false).

Definition 1. A logical proportion T (a, b, c, d) is the conjunction of two equivalences be-
tween an indicator for (a, b) and an indicator for (c, d).

The expression ((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((a ∧ b) ≡ (c ∧ d))
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provides an example of a logical proportion, where the same dissimilarity operator and the
same similarity operator are applied to both pairs. As can be seen, it expresses that “a dif-
fers from b as c differs from d” and that “a is similar to b as c is similar to d”. It seems to
refer to the comparison of the elements within each ordered pair, but we shall see that this
is not in the sense of an analogical proportion.

It has been established [48] that there are 120 syntactically and semantically distinct
logical proportions. Because of the way they are built, all these proportions share a remark-
able property: They are true for exactly 6 patterns of abcd values among 24 = 16 candidate
patterns. For instance, the above proportion is true for 0000, 1111, 1010, 0101, 0001, and
0100. The interested reader is invited to consult [48, 49] for in-depth studies of the different
types of logical proportions.

Among all 120 logical proportions T , only 6 are reflexive (i.e., T (a, b, a, b) holds true)
[48].

Proposition 1. Only 6 logical proportions are reflexive. They are
- the analogical proportion

A(a, b, c, d) = a : b :: c : d = ((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((¬a ∧ b) ≡ (¬c ∧ d))

- the so-called paralogy
P(a, b, c, d) = ((a ∧ b) ≡ (c ∧ d)) ∧ ((¬a ∧ ¬b) ≡ (¬c ∧ ¬d))
- and the 4 following conditional logical proportions
((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ ¬b) ≡ (c ∧ ¬d)) ;
((a ∧ b) ≡ (c ∧ d)) ∧ ((¬a ∧ b) ≡ (¬c ∧ d)) ;
((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((¬a ∧ ¬b) ≡ (¬c ∧ ¬d)) ;
((¬a ∧ b) ≡ (¬c ∧ d)) ∧ ((¬a ∧ ¬b) ≡ (¬c ∧ ¬d)).

The paralogy expresses that “what a and b have in common (positively or negatively), c
and d also have, and vice versa". This proportion is (only) true for 0000, 1111, 1010, 0101,
1001, and 0110. It can be checked that P(a, b, c, d)) ⇔ A(c, b, a, d). It has been already
mentioned in subsection 3.2 that A(a, b, c, d) is equivalent to P(a, d, b, c). The reason of the
name “conditional logical proportions” will appear in next subsection.

These 6 logical proportions are also among the 12 logical proportions that are symmet-
rical (T (a, b, c, d) ⇔ T (c, d, a, b)) and among the 54 logical proportions that are transitive
(T (a, b, c, d), T (c, d, e, f) ⇒ T (a, b, e, f)) [48].

Proposition 2. A, P and the 4 conditional logical proportions of Proposition 1 are the only
logical proportions that define equivalence relations between ordered pairs.
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It should be also clear that while the 6 above logical proportions satisfy the first two
postulates P1 and P2 (reflexivity and symmetry), only the analogical proportion is stable
under central permutation (i.e., satisfies P3). The paralogy P(a, b, c, d)) is stable under
the permutation of the first two items (or the last two, due to symmetry), i.e., we have
P(a, b, c, d)) ⇔ P(b, a, c, d)). The last 4 logical proportions are not stable for any permu-
tation of two items. This shows that these logical proportions are quite different and serve
different purposes.

Indeed it turns out that this result covers two important cases:
- the logic of conditional events which is a basis of non monotonic reasoning, recalled in

the next subsection, and which will also be a source of inspiration for the rest of the paper,
- a logic of ordered pairs preserving positive changes, which may contribute to a “con-

trolled” creativity process, outlined in the rest of the section.
We first recall the logic associated with the conditional logical proportions, since the

way a logic is associated with these proportions will guide us for building a logic associated
with the analogical proportion, and another one associated with the paralogy proportion
(which will be only briefly mentioned, since out of the analogical scope of the paper).

5.2 Conditional events as a basis of non monotonic reasoning

Let us consider the 4 conditional proportions which are related to our subject, since they are
reflexive, symmetrical and transitive. Let us first explain the word “conditional". It comes
from the fact that these proportions express equivalences between conditional statements.
Indeed, it was pointed out in [18] that a rule “if a then b” can be considered as a three-
valued entity referred as a “conditional object" or a “conditional event", and denoted b|a.
This entity is tri-valued [15] as follows:

• b|a is true if a ∧ b is true. The elements which make true a ∧ b are the examples of
the rule “if a then b";

• b|a is false if a ∧ ¬b is true. The elements which make true a ∧ ¬b are the counter-
examples of the rule “if a then b";

• b|a is undefined if a is false. The rule “if a then b” is then not applicable.

Consider the conditional proportion appearing in Proposition 1 and which was our first
example of a logical proportion:

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ ¬b) ≡ (c ∧ ¬d)) (6)

The above logical proportion can then be denoted b|a :: d|c by combining the notation of
conditional objects with that of the analogical proportion. Indeed, the proportion b|a :: d|c
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expresses a semantic equivalence between the two rules “if a then b” and “if c then d” by
stating that:

• they have the same examples, i.e., (a ∧ b) ≡ (c ∧ d);

• they have the same counter-examples, i.e., (a ∧ ¬b) ≡ (c ∧ ¬d);

• if b|a is not applicable, i.e., a is false, then necessarily c is false (otherwise (6) would
be false), which means that d|c is not applicable.

The logical consequence relation between conditional objects b|a ⊨ d|c is defined as
[15]:

a ∧ b ⊨ c ∧ d and c ∧ ¬d ⊨ a ∧ ¬b (7)

which expresses that the examples of the first conditional object are examples of the second
one, and the counter-examples of the second conditional object are counter-examples of the
first one. This entailment is naturally associated with the conditional proportion b|a :: d|c,
since

b|a :: d|c ⇔ b|a ⊨ d|c and d|c ⊨ b|a.

The transitivity of the 4 conditional proportions of the Proposition 1 reflects the fact that
they express equivalences between conditional objects (and thus between rules), namely re-
spectively b|a :: d|c, a|b :: c|d, a|¬b :: c|¬d, and b|¬a :: d|¬c.

The conditional object b|a must therefore be thought of as a rule “if a then b". A rule
may have exceptions. That is, we can have at the same time the rule “if a then b” and a
rule “if (a ∧ c) then ¬b”. The two conditional objects b|a and ¬b|(a ∧ c) do not lead to a
contradiction in the presence of the facts a and c (unlike a modeling of rules by material
implication), in the setting of a tri-valued logic where the conjunction & is defined by [18]:

b|a & d|c ≜ ((a → b) ∧ (c → d))|(a ∨ c)

where → is the material implication (a → b ≜ ¬a ∨ b) and with the following semantics:
val(o1&o2) = min(val(o1), val(o2)) where the three truth values are ordered as follows:
undefined > true > false.12

It can be shown that this quasi-conjunction ‘&’ (that is its name) is associative. It
expresses that the set constituted by the two rules “if a then b” and “if c then d” is triggerable
if a or c is true, and in this case the triggered rule behaves like the material implication. This
logic constitutes the simplest semantics [6] of the system P of non-monotonic inference of
Kraus, Lehmann, and Magidor [33]. The reader can consult [18, 6] for more details.

12The negation is defined by ¬(b|a) = (¬b|a); ¬(b|a) is undefined if and only if b|a is.
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Although nonmonotonic reasoning only yields plausible conclusions, it is not clear that
it might be considered as a special form of induction. Indeed nonmonotonic reasoning is
here a two steps-process. First from a set of conditional events representing a set of default
rules, we deduce a new conditional event whose condition part corresponds exactly to our
knowledge of the current situation under consideration, and then - second step - we apply
the new default rule thus inferred to the current situation.

We now consider the two other logical proportions that define an equivalence relation
between ordered pairs, namely the analogical proportion and the paralogy, and we try to
identify what consequence relations can be associated with them.

5.3 A new consequence relation between ordered pairs

In the following subsections, we try to identify some elements of a comparative logic of
ordered pairs. The items to be compared are described by vectors of attribute values (here
Boolean). When ai = 1 (resp. ai = 0) we understand it as item a⃗ has (resp. has not) feature
/ property i.

As usual, logical connectives extend to vectors componentwise:
1. ¬a⃗ = (¬a1, ..., ¬an);
2. a⃗ ∧ b⃗ = (a1 ∧ b1, ..., an ∧ bn);
3. a⃗ ∨ b⃗ = (a1 ∨ b1, ..., an ∨ bn).
Taking inspiration from the case of conditional logical proportions (namely definition

Definition 7), we are led to define the following, new logical consequence relation between
pairs (still denoted ⊨) from the definition of an analogical proportion:

(⃗a, b⃗) ⊨ (c⃗, d⃗) ⇔ ¬a⃗ ∧ b⃗ ⊨ ¬c⃗ ∧ d⃗ and c⃗ ∧ ¬d⃗ ⊨ a⃗ ∧ ¬⃗b (8)

When we deal with pairs, the valuation (ai, bi) = (0, 1) can be understood as when we
go from a⃗ to b⃗, we acquire feature i. Thus the meaning of entailment (8) is the following:
features that are acquired when going from a⃗ to b⃗ remain acquired when going from c⃗ to d⃗.
Moreover if when going from c⃗ to d⃗ a feature is lost, it was already the case when going
from a⃗ to b⃗.13

Proposition 3. We have the following equivalence:

(⃗a, b⃗) ⊨ (c⃗, d⃗) and (c⃗, d⃗) ⊨ (⃗a, b⃗) iff A(⃗a, b⃗, c⃗, d⃗)

13The choice of definition (8), rather than (⃗a, b⃗) ⊨ (c⃗, d⃗) ⇔ a⃗ ∧ ¬⃗b ⊨ c⃗ ∧ ¬d⃗ and ¬c⃗ ∧ d⃗ ⊨ ¬a⃗ ∧ b⃗, is
governed by the need here to privilege the acquisition of features rather than their loss. Indeed the alternative
definition given in this footnote says that features that are lost when going from a⃗ to b⃗ remain lost when going
from c⃗ to d⃗, and that if when going from c⃗ to d⃗ a feature is acquired, it was already the case when going from a⃗
to b⃗.
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Proof: Let us see the precise meaning of this definition for pairs. Because we are
working componentwise, it is enough to consider the consequence of this definition on one
component. Two cases have to be considered:

• Case a = b (representing 8 valuations among the 16 candidates for a, b, c, d). Because
¬a ∧ b and a ∧ ¬b are 0, the only constraint is that c ∧ ¬d = 0 which is valid
only if (c, d) ̸= (1, 0), eliminating (0010) and (1110) as valid valuations, leaving 6
valuations still valid.

• Case a ̸= b (representing the 8 remaining valuations): if (a, b) = (1, 0), there is no
constraint on (c, d). If (a, b) = (0, 1), only (c, d) = (0, 1) is valid eliminating 3
valuations among the 8: (0100), (0110), (0111)

Having both (⃗a, b⃗) ⊨ (c⃗, d⃗) and (c⃗, d⃗) ⊨ (⃗a, b⃗) leads to the truth table of A(a, b, c, d) with
exactly 6 valid valuations. 2

Because when (⃗a, b⃗) ⊨ (c⃗, d⃗), the 5 valuations (0010), (1110), (0100), (0110), (0111)
are forbidden for each (ai bi ci di), this means that

• (ai, bi) = (0, 1) ⇒ (ci, di) = (0, 1); (a property acquired from a⃗ to b⃗ has to be
acquired from c⃗ to d⃗)

• ai = bi ⇒ (ci, di) ̸= (1, 0) (when there is no acquisition or loss from a⃗ to b⃗, there
cannot be a loss from c⃗ to d⃗)

Similarly, we have (c⃗, d⃗) ⊨ (⃗a, b⃗) ⇔
{

(ai, bi) = (1, 0) ⇒ (ci, di) = (1, 0)
ai = bi ⇒ (ci, di) ̸= (0, 1)

which forbids the 5 valuations (1000), (1001), (1011), (0001), (1101).

Thus we have, as expected, (⃗a, b⃗) ⊨ (c⃗, d⃗) and (c⃗, d⃗) ⊨ (⃗a, b⃗) ⇔ A(⃗a, b⃗, c⃗, d⃗).

Table 6 exhibits the situations where the entailments (defined by (8) (a, b) ⊨ (c, d) and
(c, d) ⊨ (a, b) are true. The relation ⊨ is a clear weakening of the analogical proportion
when viewed as a relation between pairs. To support the intuition of the entailment, let us
consider the case where a, b, c, d are just Boolean values. As previously explained:

• (0, 1) has 1 consequence (0, 1),

• (0, 0) has 3 consequences (0, 0), (0, 1), (1, 1),

• (1, 1) has 3 consequences (0, 0), (0, 1), (1, 1),
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a b c d (a, b) ⊨ (c, d) (c, d) ⊨ (a, b) a : b :: c : d

0 0 0 0 1 1 1
0 0 0 1 1 0 0
0 0 1 0 0 1 0
0 0 1 1 1 1 1
0 1 0 0 0 1 0
0 1 0 1 1 1 1
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 1 1 1
1 0 1 1 1 0 0
1 1 0 0 1 1 1
1 1 0 1 1 0 0
1 1 1 0 0 1 0
1 1 1 1 1 1 1
nb of values ‘true’ 11 11 6

Table 6: Entailments defined by (8) vs. analogical proportion

• (1, 0) has 4 consequences (0, 0), (0, 1), (1, 0), (1, 1).

A compact way to put it would be to order the set of Boolean pairs such as (1, 0) <
{(0, 0), (1, 1)} < (0, 1) and to consider that any pair entails all pairs at the same level
and higher.

Thus, if we consider a pair (⃗a, b⃗) of vectors of dimension 4 where a⃗ = (0, 0, 1, 1) and
b⃗ = (0, 1, 0, 1), we see that this pair has 3×1×4×3−1 = 35 distinct logical consequences
in the sense of ⊨ defined by (8).

5.4 Logical combinations of ordered pairs

One may think of defining conjunctive or disjunctive combinations of ordered pairs, but
these combinations should agree with the consequence relation (8) and make sense with re-
spect to the interpretation of pairs. Natural componentwise definitions, including negation,
seem to be:

(⃗a, b⃗) ∧ (c⃗, d⃗) = (⃗a ∧ c⃗, b⃗ ∧ d⃗);

(⃗a, b⃗) ∨ (c⃗, d⃗) = (⃗a ∨ c⃗, b⃗ ∨ d⃗).
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¬(⃗a, b⃗) = (¬a⃗, ¬⃗b)

Note that ¬(⃗a, b⃗) ̸= (⃗b, a⃗) in general. However, an involutive operation such as

⟲ (⃗a, b⃗) = (⃗b, a⃗)

looks more interesting, as we shall see, since it reverses the order of comparison in the pair.
Besides, as a consequence of the above definitions, we have

(⃗a, b⃗) ∧ (⃗a, b⃗) = (⃗a, b⃗) = (⃗a, b⃗) ∨ (⃗a, b⃗)

But unfortunately one can check that

(⃗a, b⃗) ∧ (c⃗, d⃗) ̸⊨ (⃗a, b⃗) ̸⊨ (⃗a, b⃗) ∨ (c⃗, d⃗).

This failure is simply due to the fact that a feature acquired from a⃗ ∧ c⃗ to b⃗ ∧ d⃗ may not
be a feature acquired from a⃗ to b⃗. Indeed starting with (ai, bi, ci, di) = (1, 1, 0, 1), we get
(ai ∧ ci, bi ∧ di) = (0, 1) and (0, 1) ̸⊨ (1, 1).14

However, this should not come as a surprise. Indeed, here ⊨ preserves pairs of the form
(0, 1), while the conjunction of pairs preserves (0, 1) if it appears in both places of the
conjunction, but also when one of the pairs is equal to (1, 1) for some feature. This leads us
to introduce a new operation ∧∨ mixing conjunction and disjunction:

(⃗a, b⃗) ∧∨ (c⃗, d⃗) = (⃗a ∧ c⃗, b⃗ ∨ d⃗)

Obviously, this operator ∧∨ is commutative and associative by construction. As much as the
logical consequence relation between pairs defined by (8) makes sense, the intuition might
seem more fragile for the conjunction / disjunction of pairs. However note that (ai ∧ ci, bi ∨
di) = (1, 0) only if (ai, bi) = (ci, di) = (1, 0). By contrast, if (ai, bi) or (ci, di) = (0, 1),
(ai ∧ ci, bi ∨ di) = (0, 1).

In a dual manner, one can define

(⃗a, b⃗) ∨∧ (c⃗, d⃗) = (⃗a ∨ c⃗, b⃗ ∧ d⃗).

Indeed there is a De Morgan duality with respect to the operation ⟲ between ∨∧ and ∧∨,
namely

⟲(⟲ (⃗a, b⃗) ∨∧ ⟲(c⃗, d⃗)) = (⃗a, b⃗) ∧∨(c⃗, d⃗).
14There are two other cases of violation when (ai, bi) = (1, 0), (ci, di) = (0, 0) or (ci, di) = (0, 1), we

get (ai ∧ ci, bi ∧ di) = (0, 0), and (0, 0) ̸⊨ (1, 0). Besides, (⃗a, b⃗) ̸⊨ (⃗a, b⃗) ∨ (c⃗, d⃗) due to three possible
situations: i) (ai, bi) = (0, 0), (ci, di) = (1, 0) and (0, 0) ̸⊨ (1, 0); ii) & iii) (ai, bi) = (0, 1), (ci, di) =
(1, 1) or (ci, di) = (1, 0), and (0, 1) ̸⊨ (1, 1).
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Note that (ai ∨ ci, bi ∧ di) = (0, 1) only if (ai, bi) = (ci, di) = (0, 1). But, if (ai, bi) or
(ci, di) = (1, 0), (ai ∧ ci, bi ∨ di) = (1, 0). Then it can be checked that ∨∧ behaves like a
conjunction, and ∧∨ like a disjunction, in the sense that:

Proposition 4.
(⃗a, b⃗) ∨∧ (c⃗, d⃗) ⊨ (⃗a, b⃗) ⊨ (⃗a, b⃗) ∧∨ (c⃗, d⃗)

where ⊨ is defined by (8).

Proof. We should first show that (a ∨ c, b ∧ d) ⊨ (a, b). Indeed it holds since we have
1. ¬(a ∨ c) ∧ b ∧ d ⊨ ¬a ∧ b; 2. a ∧ ¬b ⊨ (a ∨ c) ∧ ¬(b ∧ d).

It remains to show that (a, b) ⊨ (a ∧ c, b ∨ d). Indeed it can be checked that we have 1.
¬a ∧ b ⊨ ¬(a ∧ c) ∧ (b ∨ d); 2. a ∧ c ∧ ¬(b ∨ d) ⊨ a ∧ ¬b. 2

Remark. Lines for further research
The conditional events involved in the conditional logical proportions have a tri-valued

semantics. From an analogical proportion point of view, a natural way to associate a tri-
valuation to an ordered pair of Boolean vectors, is to compute their difference to get a vector
belonging to {−1, 0, 1}n: valA(⃗a, b⃗) = a⃗ − b⃗ = (a1 − b1, ..., an − bn) ∈ {−1, 0, 1}n.

Then one can check that A(⃗a, b⃗, c⃗, d⃗) is true if and only if valA(⃗a, b⃗) = valA(c⃗, d⃗).
Moreover, if A(⃗a, b⃗, c⃗, d⃗) is true, we have

(⃗a ∧ c⃗) − (⃗b ∧ d⃗) = a⃗ − b⃗ = c⃗ − d⃗ = (⃗a ∨ c⃗) − (⃗b ∨ d⃗).

This means that A(⃗a, b⃗, c⃗, d⃗) entails A( ⃗a ∧ c⃗,
⃗

b ∧ d⃗, a⃗∨ c⃗, b⃗∨ d⃗), but the converse is wrong.15

While the analogical proportion insists on the identity of the differences existing in
each pair, the paralogy expresses rather a parallel between the pairs at the level of shared
properties, positively or negatively. This is reflected in the following result, dual to that for
analogy:

P (⃗a, b⃗, c⃗, d⃗) iff





Dif (⃗a, b⃗) = Dif(c⃗, d⃗)
Equ1(⃗a, b⃗) = Equ1(c⃗, d⃗)
Equ0(⃗a, b⃗) = Equ0(c⃗, d⃗)

We could also define an entailment starting from paralogy, such that
(⃗a, b⃗) ⊨P (c⃗, d⃗) ⇔ a⃗ ∧ b⃗ ⊨ c⃗ ∧ d⃗ and ¬c⃗ ∧ ¬d⃗ ⊨ ¬a⃗ ∧ ¬⃗b,
or alternatively (⃗a, b⃗) ⊨′

P (c⃗, d⃗) ⇔ ¬a⃗ ∧ ¬⃗b ⊨ ¬c⃗ ∧ ¬d⃗ and c⃗ ∧ d⃗ ⊨ a⃗ ∧ b⃗,
depending if we privilege the persistence of properties shared positively inside the pairs, or
shared negatively, when going from the pair (⃗a, b⃗) to the (c⃗, d⃗).

15Indeed A( ⃗a ∧ c⃗,
⃗

b ∧ d⃗, a⃗ ∨ c⃗, b⃗ ∨ d⃗) is also true for (a b c d) = (0 1 1 0) or (1 0 0 1).
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Moreover, the tri-valuation naturally associated with a pair, from the point of view of
paralogy, would be valP (⃗a, b⃗) = (a1 + b1, ..., an + bn) ∈ {0, 1, 2}n. Indeed it can be
checked that P (⃗a, b⃗, c⃗, d⃗) holds true if and only if valP (⃗a, b⃗) = valP (c⃗, d⃗).

We leave these entailments associated with the paralogy, and the tri-valued logics asso-
ciated with the analogical proportion and the paralogical proportion for a further study.

5.5 Creative inference

Given a set S of existing items, each represented by a set of Boolean attribute values, cre-
ativity may amount to produce an item not in S, but described by the same set of attributes.
Viewed like that, creativity is an easy game: we have just to choose at random the attribute
values and to check if the result is not already in S. However with such a process we have
no control on the the attribute values that might be desirable. In the following, we present
a creative inference process that attempts to improve a particular item or entity, taking ad-
vantage of a set of ordered pairs of existing items, using an analogical proportion-based
mechanism. However, we certainly do not claim that every form of creative analogical
inference, taken in the broadest sense, could be captured by the mechanism we propose.

More precisely, let us suppose we have a sample set S of items from which a set P of
k ordered pairs (⃗aj , b⃗j) with j ∈ {1, . . . , k} has been extracted where the a⃗j’s and b⃗j’s are
in S. Each vector in S is a Boolean representation of an object/profile/situation belonging
to a real world universe, and then, each pair of vectors (⃗aj , b⃗j), all of the same dimension
n, represents legitimate, feasible / allowed changes from a⃗j to b⃗j .

Then given a current fixed item represented by a vector c⃗ ∈ S one may wonder what
new item(s) d⃗ could be obtained by applying some change existing in the base of pairs. This
item could be the representation of a plausible item in the real world.

A first option is to consider the set of solutions (when the solution exists)

d⃗ ∈ {x⃗ | ∃(⃗aj , b⃗j) ∈ P, j ∈ {1, . . . , k} such that A(⃗aj , b⃗j , c⃗, x⃗) holds} (9)

This is the approach followed in [1]. When there is no solution or when the values found for
d⃗ are not considered satisfactory enough, we have to consider other options. One idea would
be to consider the entailment (8) between pairs associated to the analogical proportion, and
then to look for the d⃗’s such that:

d⃗ ∈ {x⃗ | ∃(⃗aj , b⃗j) ∈ P, j ∈ {1, . . . , k} such that (⃗aj , b⃗j) ⊨ (c⃗, x⃗)}

But this option has two drawbacks. First, the d⃗’s obtained depend on a unique pair (⃗aj , b⃗j).
Second, ⊨ is quite permissive and the number of pairs (c⃗, x⃗) obtained is likely to be rather
large as seen in subsection 5.3 and there is a risk of losing control.
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What seems to be a better idea is to enlarge the initial base of pairs by computing new
pairs belonging to the closure of operation ∧∨ introduced in the previous subsection 5.4.
This operation has the merit of “cumulating” the acquisition of features16. Extending the
initial set P of pairs gives us more chance to find a plausible d⃗, perhaps with more desirable
features. More precisely we apply (9) where P is replaced by P ′ = {(ak, bk)| (ak, bk) =
(ai, bi) ∧∨(aj , bj) such that ((ai, bi), (aj , bj)) ∈ P2}. We may apply this enlargement of P
recursively to P ∪ P ′ and so on. This process ensures that i) the d⃗ obtained are new, and ii)
they are obtained from an existing c⃗ on the basis of already existing changes, since observed
on pairs of existing items. Is d⃗ thus obtained, valuable ? This a completely different issue.

Note that this way of reasoning parallels non monotonic reasoning with conditional ob-
jects, where from a base of default rules “if aj then bj” represented by a set of conditional
objects bj |aj , one deduces a new conditional object d|c, using entailment (7) and conjunc-
tion &, where c corresponds to everything we know in the current context, for which we
then conclude d [18].

6 Example and first experiments

Before giving some statistics about the behaviour of our mechanism, we start with a simple
example.

6.1 An example freely inspired from a simplified Kaggle dataset

To avoid the creation of a completely artificial dataset, we start by using a Kaggle dataset.
Kaggle is a platform renowned for hosting data science competitions, collaborative projects,
and educational resources, accessible at https://www.kaggle.com/.

The targeted dataset [16] encompasses the details of 1000 users, characterized by 32
attributes. The final column denotes whether they purchased a bike, forming the basis for a
binary classification task. Following the exclusion of rows with missing data, 952 complete
rows remain.

In order to facilitate the understanding of our process, we narrow our focus to the first
6 attributes of this dataset, creating a simplified universe where objects are represented as
Boolean vectors of dimension 6. In the initial dataset, these 6 first features are Marital Sta-
tus, Gender, Income, Children, Education, Occupation, but, more generally, each attribute
has to be viewed as an individual feature describing an object.

By limiting our analysis to the first 6 attributes, we inevitably encounter duplicates.
Depending on the random shuffle of the initial dataset comprising 952 items, we end up

16However note that (0, 0)∧∨ (1, 1) = (1, 1)∧∨ (0, 0) = (0, 1), which may create some unfeasible change;
in such a case the generated pair(s) should not be considered in the further process.
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with less than 26 = 64 distinct elements from which we must select pairs.
Consequently, we consider only two pairs for the need of our example, denoted (a⃗1, b⃗1),

(a⃗2, b⃗2) that respect the following constraints:

• The Hamming distance hamming(a⃗i, b⃗i) is equal to 2 because a pair should represent
a realistic perturbation of a⃗ into b⃗.

• We do not loose any option when moving from a⃗i to b⃗i, i.e., we forbid to have an
attribute j such that aj = 1 and bj = 0. All other combinations are allowed.

At this stage of this experiment, the two pairs are selected in a random manner w.r.t. the
previous constraints, from the candidate pairs, since we currently lack specific informa-
tion about the entire universe. However, in practical scenarios, prior knowledge about the
universe could result in more suitable selections. Here is an example of the two pairs con-
stituting P:
- (a⃗1, b⃗1) = ([0, 0, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1])
- (a⃗2, b⃗2) = ([0, 0, 0, 0, 1, 0]), [1, 0, 0, 0, 1, 1])
When we extend P with operator (∧∨ but without doing the full closure), we add to P the
following pair:
- (a⃗3, b⃗3) = ([0, 0, 0, 0, 1, 0], [1, 1, 0, 0, 1, 1])
just because (a⃗3, b⃗3) = (a⃗1, b⃗1) ∧∨ (a⃗2, b⃗2)
Because, a⃗1 = a⃗2, obviously a⃗1 = a⃗3 but this is not necessary. Starting from c⃗ =
[0, 0, 0, 1, 0, 0], we observe in Table 7 that the 3 corresponding analogical equations are
solvable. The solution of the third equation is then a new object, which is distinct from the
5 existing vectors a⃗1, b⃗1, b⃗2, x⃗1, x⃗2.

This approach only makes practical sense when considering Boolean representations of
relatively large dimensions. That is why we give in the following subsection some figures
about what can be expected in higher dimensions.

6.2 Higher dimensions

Indeed, in the context of Boolean vectors with high dimension (let us say larger than
10), the available data S are generally scarce compared to the whole universe: this is a well-
known consequence of the curse of dimensionality. For instance, for vectors of dimension
30, the space of possible profiles is of size 230 ∼ 109.

Considering P as the set of pairs built from two distinct elements from S , we can first
inquire about the existence, within P , of pairs (c⃗, d⃗) that are logical consequences of another
pair (⃗a, b⃗) (in the sense of (8)) in P .

To answer this question, we conducted experiments in dimension 10 and 30 (with rea-
sonable execution times) while varying the size of the sample S. From a practical perspec-
tive, when given a pair (⃗a, b⃗) in P , we determine the quantity of pairs (c⃗, d⃗) in P that are
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Opt1 Opt2 Opt3 Opt4 Opt5 Opt6
a⃗1 0 0 0 0 1 0
b⃗1 0 1 0 0 1 1
c⃗ 0 0 0 1 0 0

x1 0 1 0 1 0 1
Opt1 Opt2 Opt3 Opt4 Opt5 Opt6

a⃗2 0 0 0 0 1 0
b⃗2 1 0 0 0 1 1
c⃗ 0 0 0 1 0 0

x2 1 0 0 1 0 1
Opt1 Opt2 Opt3 Opt4 Opt5 Opt6

a⃗3 0 0 0 0 1 0
b⃗3 1 1 0 0 1 1
c⃗ 0 0 0 1 0 0

x3 1 1 0 1 0 1

Table 7: Example in dimension 6

logical consequences of (⃗a, b⃗). Additionally, we distinguish in this count the pairs that form
an analogical proportion (⃗a, b⃗) :: (c⃗ : d⃗). We calculate the average of these two numbers
across the total number of pairs (⃗a, b⃗) within P . Finally, we present the average values from
these calculations in Table 8 based on 10 tests (or 10 samples S). Obviously, as soon as

Dim Size S # pairs # tests # analogies std. dev # log. cons. std. dev
10 50 1225 10 0 0 20 4
10 100 4950 10 0 0 113 18
30 100 4950 10 0 0 0 0
30 200 19900 10 0 0 0 0

Table 8: Number of pairs that are logical consequences inside S

the random sample set S has a small size w.r.t. the whole universe size, it is very unlikely
to get inside S, four vectors a⃗, b⃗, c⃗, d⃗ such that a⃗ : b⃗ :: c⃗ : d⃗. Additionally, we notice that
as the dimension increases, we also fail to discover any logical consequence within P that
can be seen as a relaxation of analogical proportion. This lack of logical consequences
can be attributed to the fact that a global solution is only acceptable if there is a solution
for each individual component. When the number of components increases, the number of
constraints also increases, thereby decreasing the probability of obtaining a global solution.
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And the size of the sample S, from which P is derived, cannot compensate these increasing
constraints.

If we have a sample S of size 1000, it is natural to be interested in a “reasonable” ex-
tension of the sample. This is where the analogy with analogical extension comes into play,
which involves completing the set of initial examples, as seen, for instance, in [11]. But if
the analogical extension does not provide enough new elements, we could then implement,
initially, the logical consequence of pairs, seen as a way to weaken the analogical constraint
as follows:

• Every pair (⃗a, b⃗) from the sample represents a potential variation of the profiles.

• Any pair (c⃗, d⃗) such that (⃗a, b⃗) ⊨ (c⃗, d⃗) can potentially be regarded as the description
of a candidate variation of the profiles.

In the absence of an efficient algorithm, the task of generating logical consequences can
prove to be very complex. So, instead of trying to generate via brute force the set of logical
consequences, another option is to try to solve the equation (⃗a, b⃗) ⊨ (c⃗, d⃗) where a⃗, b⃗, c⃗ are
in S: in that context, instead of looking for a pair (c⃗, d⃗) we just look for at least one element
d⃗, if it exists, that is not in S and satisfying (⃗a, b⃗) ⊨ (c⃗, d⃗). Once again:

• Every pair (⃗a, b⃗) from the sample represents a potential variation of the profiles.

• Given another profile c⃗ from S , a profile d⃗ /∈ S such that (⃗a, b⃗) ⊨ (c⃗, d⃗) can be
considered plausible and added to the initial sample.

First of all, given a pair (⃗a, b⃗) ∈ P , we compute the average number over c⃗ ∈ S of d⃗ /∈ S
satisfying (⃗a, b⃗) ⊨ (c⃗, d⃗). This number tells us the likelihood of creating a new profile d⃗
when solving the equation (⃗a, b⃗) ⊨ (c⃗, d⃗) starting from 3 elements a⃗, b⃗, c⃗ ∈ S. Then for
a given sample S, we can compute the average number of profile d⃗ that can be generated
from pairs in P = S × S with the help of a third element c⃗ ∈ S. Finally, we average this
computation on 10 tests and show the result in Table 9 showing the number of d⃗ /∈ S with
the average standard deviation as last column. We conducted experiments in dimensions
10, 30, and 50 with various sample sizes. Table 9 shows that, in general, the equation
(⃗a, b⃗) ⊨ (c⃗, d⃗) where d⃗ is the unknown, and a⃗, b⃗, c⃗ ∈ S does not have a solution. As it is
the case for Table 8, this might be understood because a global solution d⃗ is acceptable only
if there is a solution componentwise. Augmenting the number of components (from 10 to
30 to 50) increases the number of constraints and reduce the likelihood to having a global
solution.

The previous experiments suggest that the use of ∧∨ operator as a pair creator might be
more productive. We will count in Table 10 how many completely new pairs are created
when applying the ∧∨ operator to all pairs derived from the sample S. We display the
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Dim. Size S # pairs # tests # d⃗ /∈ S std. dev.
10 50 1225 10 0.3 0.2
10 100 4950 10 0.23 0.21
30 100 4950 10 0.03 0.03
30 200 19900 10 0.03 0.04
50 100 4950 10 0.01 0.02
50 200 19900 10 0.007 0.006

Table 9: Number of vectors d⃗ solutions of the equation

average value on 10 tests with the standard deviation. At this stage, we do not eliminate
pairs where at least one component appears as (0, 0) ∧∨ (1, 1) or (1, 1) ∧∨ (0, 0). See
footnote number 8.

Dim. Size S # pairs # tests # new pairs std dev.
10 50 1225 10 333 34
10 100 4950 10 552 28
30 100 4950 10 9423 65
30 200 19900 10 Not Avail. Not Avail.

Table 10: Number of deduced pairs built with vectors not in S

Since the resulting pairs are only retained if both constituting vectors are not in S, we
have constructed at least #newpairs new vectors (a new vector may appear in multiple
new pairs).

It is widely admitted that analogical reasoning only leads to plausible consequences. Its
application to creativity does not escape this rule. It will certainly be useful in practice to
verify, in one way or another, the feasibility of the new pairs obtained.

7 Conclusion

This paper has discussed analogical reasoning based on analogical proportions. We have
first singled out this inference as a special form of induction, more precisely of transduction,
where comparisons between examples take place. After providing a refresher on analogical
proportions defined between entities represented by means of Boolean or nominal features,
we have emphasized that, in this case, analogical proportions define equivalence relations
between ordered pairs of entities.
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We have then surveyed how analogical proportions-based inference can be used for clas-
sification tasks, before contrasting this use with the generation of a novel entity from three
known entities under some conditions. Taking advantage of the belonging of analogical
proportions to the setting of logical proportions, we have found out that there exist only
two small subsets of logical proportions that define equivalence relations between ordered
pairs: the analogical proportion together with a related proportion called paralogy on the
one hand, and four conditional logical proportions between conditional events on the other
hand.

Taking lessons from the logic of conditional events and its key role in nonmonotonic
inference, we have defined an entailment relation between ordered pairs (in agreement with
analogical proportions) and appropriate conjunction and disjunction of ordered pairs. Then,
we have described a creative inference process using these entailment and operations. First
experiments with them have been also reported. However, it should be clear that, in our for-
mal setting, we only capture a particular form of “creative” inference, which is not intended
to cover every type of creative analogical inference.

It is clear that the new logic of ordered pairs outlined in the second half of this paper is
still in its infancy and many aspects remain to be developed, as well as its possible use in
a creative machinery for controlling the derivation of new items from a given entity on the
basis of a set of ordered pairs reporting feasible changes between entities. Moreover, we
have focused on analogical proportions between entities described by means of Boolean or
nominal values, the case of numerical values already investigated in classification, remains
to be considered in creativity. Finally, the pairs involved in analogical proportions can be
seen as describing changes resulting from actions, which suggests studying relationships
with the logic of action.
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Abstract

This paper presents a broad view on inductive reasoning by embedding it
in theories of epistemic states, conditionals, and belief revision. More precisely,
we consider inductive reasoning as a specific case of belief revision on epistemic
states which include conditionals as a basic means for representing beliefs. We
present a general framework for inductive reasoning from conditional belief
bases that also allows for taking background beliefs into account, and illustrate
this by probabilistic reasoning based on optimum entropy as well as by ranking-
theoretic reasoning based on so-called c-revision. We explain the philosophical
perspective behind our approach, and we illustrate its constructive usefulness
as well as its integrating power.

1 Introduction
In a familiar sense, inductive reasoning means deriving general knowledge from given
examples in a way that completes the example-based information concisely to make it
applicable to other situations. In this paper, we take a bit broader view on inductive
reasoning: we pursue the idea that inductive reasoning should be able to generate any
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Wolfgang Spohn, and "Inductive reasoning, conditionals, and belief revision" by Gabriele Kern-
Isberner) there merged nicely.

Vol. 11 No. 1 2024
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications



Kern-Isberner and Spohn

kind of new beliefs from given beliefs and, ideally, complete the beliefs of a human
being as far as possible. This is a very common and basic problem in the area of
knowledge representation in artificial intelligence. Here, it is usually assumed that
knowledge and beliefs of a human being, or an agent, respectively, can be represented
by a knowledge base, i.e., a finite set of formulas in a suitable logic, and that more
knowledge and beliefs can be inferred from this base. In artificial intelligence, the
view on the distinction between knowledge and beliefs is a pragmatic one, because
its main goal is to model knowledge and behaviour of agents. So, knowledge often
means only subjective knowledge which is more or less the same as belief. Here,
we avoid discussing the precise nature of knowledge and belief and use the terms
“knowledge” and “belief” interchangeably, just as the term “epistemic state”, the
Greek origin of which refers to knowledge, stands for any kind of belief state.1

So, inductive reasoning should be able to extend the beliefs of a belief base in
a non-trivial, principled way. Of course, the logic framework in which beliefs are
represented plays a crucial role here. In the simple case of propositional logic, de-
duction, or more generally, a Tarski consequence operator would satisfy the general
requirements of an inductive reasoning operator, and similarly for first-order pred-
icate logic. Beyond classical logics, non-monotonic logics using so-called default
rules, or rules with exceptions, provide more powerful inference operators, promi-
nent approaches here are Reiter’s default logic [49] and answer set programming [19].
Both are symbolic and able to infer formulas from belief bases of facts and rules.
In quantitative logical settings, probability theory offers a rich semantic framework
for nonmonotonic reasoning, and the principle of maximum entropy [26, 40] yields
a most powerful inductive inference operator from probabilistic belief bases. There
are also popular approaches using qualitative structures like (total) preorders, or
semi-quantative methodologies based on Spohn’s ordinal conditional functions, also
called ranking functions [53, 55], like system Z [21] that allow for reasoning from
conditional belief bases.

This paper aims at describing inductive reasoning in a broader context and in
a more unified way, elaborating on connections to conditionals and belief change
theory distinguishing clearly between background, or generic, beliefs and evidential,
or contextual, information, a feature that is listed in [12] as one of three basic re-
quirements a plausible exception-tolerant inference system has to meet. We build
upon previous works, in particular [29, 33], and elaborate a general vision of induc-
tive reasoning in the context of belief revision. While it has been well known that
nonmonotonic reasoning and belief revision are “two sides of the same coin” [18],

1Philosophers are used to sharply distinguish knowledge and belief and have intensely discussed
this distinction for more than 60 years. They mostly deny that knowledge is merely true belief or
even merely justified true belief, see [25].
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the focus here is on inductive reasoning as a concept that merges techniques from
both areas to bring forth a methodology in which reasoning and revision can interact
in various ways and which represents inductive reasoning from different background
beliefs and under different contextual information. A core move in this methodology
is to equip epistemic states with meta-structures supporting reasoning and revision,
and to use conditionals for expressing beliefs in the first place.

Our approach allows for taking plausible propositional beliefs into account as
well, namely by identifying a conditional (A|⊤), where ⊤ is a tautology, with the
plausible belief A. Note that the statement “A is plausible” is not the same as saying
“A is a (certain) fact”, both from an epistemological and a knowledge representation
point of view. While the latter statement is considered as factual evidence and takes
only models of A into account, the first one also considers models of ¬A, but as less
plausible, reflecting a more generic perspective. We show that our framework can
indeed make a difference here.

Interestingly, total preorders on possible worlds are meta-structures that provide
a solid foundation for reasoning, revision, and conditionals, and indeed, they are a
basic requirement for AGM revision [28]. So, we build upon AGM revision but go
far beyond that by addressing iterative revision and conditional revision. Ranking
functions implement total preorders by assigning natural numbers to the different
layers of a total preorder and thus allow for calculating differences as a measure of
plausibility which make it possible to reason in a way that is similar to probabilistic
reasoning. As a proof of concept, we illustrate our formal framework in a probabilis-
tic environment by the entropy principles, and in a qualitative/semi-quantitative
environment by ranking functions and c-revision.

The outline of the paper is as follows: After recalling basic definitions and nota-
tions in Section 2, we discuss, in Section 3, the nature of epistemic states and their
dynamics or revision and their fundamental connections to argumentation, inductive
reasoning, and conditionals. We explain both, the philosophical perspective as well
as how this perspective allows a detailed view of the interactions between inductive
reasoning and belief revision. Section 4 then specifies our approach in probabilistic
terms via the principles of optimum entropy and in ranking-theoretic terms via the
method of so-called c-revision. In section 5, we want to exemplify the integrative
power of our approach by comparing inductive reasoning as developed here with the
so-called method of focusing that says how to apply beliefs to specific situations.
Section 6 provides a brief conclusion.
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2 Basics and notations
The propositional language L with formulas A, B is defined in the usual way by
virtue of a finite signature Σ with atoms a, b, . . . and junctors ∧, ∨, and ¬ for con-
junction, disjunction, and negation, respectively. The ∧-junctor is mostly omitted,
so that AB stands for A ∧ B, and negation is usually indicated by overlining the
corresponding proposition, i.e. A means ¬A. Literals are positive or negated atoms.
The set of all propositional interpretations over Σ is denoted by ΩΣ. As the ignature
will be fixed throughout the paper, we will usually omit the subscript and simply
write Ω. Possible worlds are understood as a synonym for interpretations, and are
usually represented by a complete conjunction of the corresponding literals, i.e., a
conjunction mentioning all atoms of the signature such that exactly those atoms are
negated that are evaluated to false. Also the satisfaction relation |= between worlds
and formulas is defined in the usual way: ω |= A iff ω evaluates A to be true. In this
case, we say ω is a model of A. The set of all models of A is denoted by Mod (A).
Then, A |= B for two formulas A, B ∈ L if Mod (A) ⊆ Mod (B).

L is extended to a conditional language (L | L) by introducing a conditional
operator |: (L | L) = {(B|A) | A, B ∈ L}. (L | L) is a flat conditional language, no
Boolean combinations or nestings of conditionals are allowed. Conditionals (B|A)
with antecedent (or premise) A and consequent B are basically considered as three-
valued entities in the sense of de Finetti [9] which can be verified (ω |= AB), falsified
(ω |= AB), or simply not applicable (ω |= A) in a possible world ω. So, they have
to be interpreted within richer semantic structures such as epistemic states like
probability distributions, or ranking functions [53]. In this paper, we choose both
of these semantic frameworks to exemplify our approach.

Probability distributions in a logical environment can be identified with proba-
bility functions P : Ω → [0, 1] with ∑

ω∈Ω P (ω) = 1. The probability of a formula
A ∈ L is given by P (A) = ∑

ω|=A P (ω). Since L is finite, Ω is finite, too, and we
only need additivity instead of σ-additivity. Conditionals are interpreted via condi-
tional probabilities, so that P (B|A) = P (AB)

P (A) for P (A) > 0, and P |= (B|A) [x] iff
P (A) > 0 and P (B|A) = x (x ∈ [0, 1]).

Ranking functions, also known as ordinal conditional functions (OCFs), κ : Ω →
N ∪ {∞} with κ−1(0) ̸= ∅, were first introduced by Spohn [53]. They express
degrees of plausibility of propositional formulas A by specifying degrees of disbeliefs
of their negations A. More formally, we have κ(A) := min{κ(ω) | ω |= A}, so
that κ(A ∨ B) = min{κ(A), κ(B)}. Hence, due to κ−1(0) ̸= ∅, at least one of
κ(A), κ(A) must be 0. Note that expressing absolutely certain beliefs is also possible
by assigning the rank ∞ to all worlds falsifying those beliefs. A proposition A is
believed if κ(A) > 0 (which implies κ(A) = 0). Degrees of plausibility can also be

92



Inductive Reasoning, Conditionals, and Belief Dynamics

assigned to conditionals by setting κ(B|A) = κ(AB) − κ(A). Moreover, ranking
functions can also be conditioned by propositions A via κ|A(ω) = κ(ω) − κ(A),
yielding a ranking function on the models of A. A conditional (B|A) is accepted in
the epistemic state represented by κ, written as κ |= (B|A), iff κ(AB) < κ(AB),
i.e. iff AB is more plausible than AB.2 Ranking functions can be considered as
qualitative counterparts of probability distributions. Their plausibility degrees may
be taken as logarithmic order-of-magnitude abstractions of probabilities (cf. [20, 21]).

In the following, we take the concept of epistemic states for granted and elab-
orate on general notations that we use throughout this paper. So, in general, let
Ψ be any epistemic state, specified by some structure that is found appropriate to
express conditional beliefs from a suitable conditional language (L | L)∗, in which
conditionals may be equipped with quantitative degrees of belief, according to the
chosen framework. For instance, for probability functions, (L | L)∗ = (L | L)prob =
{(B|A)[x] | A, B ∈ L, x ∈ [0, 1]}, and in qualitative environments, e.g., for ranking
functions, (L | L)∗ = (L | L). Moreover, an entailment relation |= is given between
epistemic states and conditionals; basically, Ψ |= (B|A)∗ means that (B|A)∗ is ac-
cepted in Ψ, where acceptance is defined suitably. Let E∗ = E∗

Σ denote the set of all
such epistemic states using (L | L)∗ for representation of (conditional) beliefs. More-
over, epistemic states are considered as (epistemic) models of sets of conditionals
∆ ⊆ (L | L)∗: Mod ∗(∆) = {Ψ ∈ E∗ | Ψ |= ∆}. As usual, ∆ ⊆ (L | L)∗ is consistent
iff Mod ∗(∆) ̸= ∅, i.e., iff there is an epistemic state which is a model of ∆.

3 Inductive reasoning based on epistemic states and
their revision

In this section, we develop our general approach to inductive reasoning as a special
case of epistemic belief revision. Epistemic states serve as a mediator between
reasoning and revision by providing both an epistemic background for reasoning
and an ideal outcome of induction from and revision by (conditional) belief bases.
So, in Subsection 3.1, we first discuss the general relation between arguments and
inductive reasoning on the one hand and the dynamics of epistemic states on the
other, emphasizing the crucial role of conditionals in this context. In a kind of
digression in Subsection 3.2, we more carefully distinguish between inference and
arguments and argue that the latter build on relevance relations, which, however,
play no further role in this paper. Subsection 3.3 discusses the relation between
epistemic dynamics and inductive reasoning in a bit more detail. Subsection 3.4

2The full definition here is κ |= (B|A) iff κ(AB) < κ(AB), or A ≡ ⊥. For sake of simplicity, we
exclude conditionals including contradictions from consideration here.

93



Kern-Isberner and Spohn

forms the constructive core of this section. It spells out the various forms the
interaction between inductive reasoning and belief revision may take, with particular
emphasis on the background beliefs in the form of conditionals which are previously
accepted and on the role of a principle called Coherence guiding iterated change.
The discussion of epistemic dynamics or belief revision as a framework for inductive
reasoning must include the issue where this dynamics may start from. This refers
us back to some initial epistemic state as pondered in Subsection 3.5. So, our
philosophical tour is topped off by a discussion how we might conceive of such
initial epistemic states. It will turn out that we can do so very much in line with
our previous discussion of background beliefs.

3.1 Arguments, reasoning, epistemic states and conditionals

Let us start with looking at what happens in arguing with one another. When
we give an argument, we start from some hopefully shared premises and infer a
conclusion, which is then hopefully shared as well. Or the argument may be only
hypothetical, where the epistemic status of the premises is left open. An inference
proceeds in the very same way from premises to a conclusion. Or we may say that
we reason from the premises to the conclusion. Then we might call the premises the
reasons for the conclusion. These are equivalent ways of describing what is going on
in an argument.

We should slightly restrict our topic right away. When we talk about argu-
ments, we refer only to descriptive, factual, or empirical reasoning, where premises
as well as conclusion are descriptive or truth-evaluable. However, we believe that
everything we discuss here applies mutatis mutandis to normative, deontic, or eval-
uative reasoning, where premises and conclusions may be normative sentences the
truth-evaluability of which is at least doubtful. We indeed think that there are close
parallels, see [58]. However, this is a different large field we do not enter here.

We know well enough what a deductive argument, inference or reason is. There
are computational or syntactic and semantic versions. Their mark is (guaranteed)
truth preservation. We know how the versions work and we understand their rela-
tion. The problem is: most of our inferences and arguments are not deductive or
truth-preserving. They are inductive, nonmonotonic, or defeasible. As mentioned,
we use “inductive” as a general term for all these kinds of reasoning. When deduc-
tive logic dominated formal philosophy, there was the idea that inductive arguments
are simply elliptic. They reduce to deductive arguments when implicit premises are
made explicit. However, this idea is definitely misguided. We must engage in the-
ories of inductive reasoning on their own, because inductive reasoning involves also
defeasible and tentative, even creative processes. It explores the field of rationality
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beyond deductive logic.
We emphasize that we use “inductive” as a general term for all these kinds of

reasoning. In the 19th century, the ’inductive method’ referred to an inference from
the particular to the general, the paradigmatic inference being so-called enumerative
induction. However, we need all kinds of non-truth-preserving inferences, we need
all possible ways to infer what the world is like beyond of what we observe. These
ways often include an inductive inference in the traditional sense, an inference from
the particular to the general. But we must not presuppose that it is always so.
E.g., our forecast of the results of the next election are not based on any putative
generalizations of voters’ behavior. So, we are well advised to accept our broad sense
of inductive reasoning.

The traditional offers accounting for inductive reasoning are not so rich. There
is a long strand of grasping probabilistic inductive reasoning, culminating perhaps
in Carnap’s inductive logic [6, 7]. Of course, Bayesian methods are by now well
entrenched in all of our scientific canons. Enumerative induction – it indeed looks
simplistic– was rather criticized than explicated (but see [56]). The strongest historic
attempt at explicating inductive reasoning beyond probabilistic methods are John
Stuart Mill’s methods of induction. However, only with the rise of conditional
logic, default logic, etc. do we see attempts at grasping inductive reasoning beyond
probabilistic methods.

Alas, in the meantime, there is a plethora of diverging, incompatible, or incom-
mensurable accounts of inductive reasoning, forming a large and confusing field that
is very difficult to evaluate. Let us try to state some guidelines helping to steer clear
in this field.

How might we approach the topic? We take the following observation to be basic:
When we give an argument or provide reasons, we try to convince our interlocutors
of the conclusion of the argument or of what the reasons entail, not by talking them
into the conclusion, but by appealing to their reasoning capacities that make them
hopefully infer the same conclusion as we infer. So, the point of giving arguments
or providing reasons is to induce rational belief change. This includes the limiting
case of stabilizing or confirming, i.e., not changing the epistemic state. In short,
reasoning is about the dynamics of belief or about epistemic dynamics in general.

The social dimension, however, is not really essential in our view. Of course,
arguing is a social activity, just as language in general. However, for a theory of
inductive reasoning, this dimension seems negligible. Sure, one does not argue with
oneself, but one is engaged in reasoning or making inferences by oneself all the time.
Giving arguments and reasons to others presupposes to have reasons and to have
worked them out by oneself, to be convinced by one’s own arguments. And the
latter is about individual rational belief change or revision.
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There is also a hypothetical variant. When I argue from some assumed premises,
I work out what to rationally infer from them, i.e., what to believe given the premises.
So, arguments are about conditional belief or, more neutrally, about conditional
epistemic states. Indeed, conditional epistemic states and the dynamics of epistemic
states are closely related. In simple conditionalization (which can be stated for
various epistemic formats) they are even the same; the posterior epistemic state
after an input is the same as the prior epistemic state conditional on this input. (It
is not always this simple. Still, any other rule of epistemic change we know of is
based on the notion of a conditional epistemic state, e.g., conditional probabilities,
conditional ranks, or whatever.)

The Ramsey test utilizes this observation for the semantics of the conditional.
Indeed, one might say that the semantics of the conditional is the focal point of all
our theories of inductive reasoning. All of this establishes a fundamental and close
relation between arguments, reasoning and inference on the one hand and epistemic
states, their dynamics, and conditionals on the other hand. The direction of the
relation – is one relatum more basic than the other? – is still open. We will discuss
this.

In the context of inductive reasoning and belief revision we are discussing, we
want to take a pragmatic view on epistemic states. We assume the representation
of epistemic states to be equipped with some meta-structures allowing to perform
reasoning and belief revision in suitable logical frameworks, and we expect them
to be complete in the sense that answers to all possible queries (in the respective)
framework can be generated, to the best of the human’s beliefs, i.e., no further
thinking in the sense of exploiting given beliefs and information more deeply would
yield a better result. Note that we use the term “revision” here in a general sense, as
a synonym for any kind of epistemic dynamics integrating new information to one’s
current beliefs, i.e., as a super-concept also including update [28] or focusing [12].
When the specific change operator called revision in the AGM theory [1] is meant,
we speak of “AGM revision”, or specify this explicitly.

The Ramsey test directly utilizes the tight connection between reasoning and
belief dynamics for stating a semantics of the conditional. A conditional is accepted
in an epistemic state if after acceptance of the antecedent the consequent is accepted
as well. In the meantime there are many variations of the Ramsey test. Thereby,
we presuppose that epistemic states can evaluate conditionals to be accepted or
not accepted. This is a crucial feature of modelling human’s beliefs going beyond
classical logic. We avoid saying that a conditional is true in an epistemic state,
because we have above introduced conditionals not as binary but three-valued, and
more importantly, because in the commonsense context of reasoning considered here
conditionals do not work truth-functionally at all. Rather, to accept a conditional,
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humans would expect a meaningful connection between antecedent and consequent.
This is crucial for our approach to inductive reasoning because this connection can
be used for reasoning in a way that captures human-like thinking.

In this paper, we pursue the following well-established variant of the Ramsey
test: A conditional (B|A) is accepted if its verification AB is deemed to be more
plausible, or probable, than its falsification AB. The inherent connection between
antecedent and consequent is taken into account by considering A and B resp. A and
B jointly when assessing plausibility, or probability. Beyond plain comparison, also
degrees of plausibility, or probability, can be assigned to verification and falsification,
thereby measuring the strength of a conditional, if allowed by the respective semantic
framework. (In section 2, we have already provided a notation for this measure.)

All in all, it seems appropriate to say that the semantics of the conditional is
the focal point of all our theories of inductive reasoning. To resume, our remarks
establish a fundamental and close relation between (i) arguments, reasoning and
inference, (ii) epistemic states and their dynamics, and (iii) the logic of conditionals.
The direction of the relation – is one relatum more basic than the other? – is still
open. We will discuss this.

Formally, the upshot of our informal discussion is that in symbolic resp. qualita-
tive frameworks, the fundamental connection between epistemic states, conditionals,
plausibility, (inductive) reasoning, and belief revision on which this paper relies can
be roughly expressed by the following equivalences:

Ψ |= (B|A) iff AB ≺Ψ AB iff A |∼ ΨB iff Ψ ∗ A |= B, (1)

where Ψ is an epistemic state in E∗, ⪯Ψ is a suitable relation expressing plausibility
(or probability)3, |∼ Ψ is an inference relation based on Ψ, and ∗ is an epistemic
(or iterative) revision operator that takes an epistemic state and a proposition and
returns again an epistemic state (in the sense of [8]). In quantitative frameworks,
degrees of beliefs must be suitably added. More generally, we assume that ∗ can also
deal with more complex beliefs given by sets of conditionals ∆ such that Ψ∗∆ ∈ E∗.
We also adopt the success postulate of AGM theory [1], i.e., we presuppose that
Ψ ∗ ∆ |= ∆, meaning that Ψ ∗ ∆ |= δ for all conditionals δ in ∆. This also includes
the case of revision by a (plausible) proposition A via identifying A with (A|⊤), as
assumed above. Equation (1) reveals that both epistemic states and conditionals

3Note that in qualitative semantic environments, e.g., ranking functions, lesser means more
plausible, and this also complies with the readings in nonmonotonic preferential inference. Hence
we stick to this tradition here. Of course, for probabilities and also, e.g., possibilities, the scales are
inverted, so ⪯Ψ must be interpreted via the numerical >-relation. Technically, A ≺Ψ B iff A ⪯Ψ B
and not B ⪯Ψ A.
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are also carriers of strategic information that become effective for reasoning and
revision.

3.2 Arguments, inference, and relevance
In arriving at equation (1) we have more or less equated arguments and inference
or reasoning. But, as a kind of digression, we might be a bit more careful here. The
aim of inference is establishing a conclusion from given premises. If the conclusion
is not established with certainty given the premises, as it is in deductive inference,
it should at least be more plausible as its opposite. This is what guides equation
(1). However, at least intuitively, an argument does more. It provides a reason for
the conclusion.

Let, e.g., B be the proposition that we will not reach the climate target of keeping
global warming below 1,5 degrees. B is highly plausible according to our present
epistemic state Ψ, much more plausible than its opposite that we do reach this
target. Now let A = “Tom Cruise wins a special Oscar award”, which is epistemically
entirely irrelevant to B and does not influence the plausibility of B. According to
(1), we then have A |∼ ΨB. We might still say that B follows from A, because B
holds anyway. But it would be odd to say that A is a reason or an argument for B.
Or let A = “the US build fifty solar power plants”, which is epistemically negatively
relevant to B. It diminishes the plausibility of B a little bit, but certainly not far
enough to make it less plausible than its opposite. We think that much stronger
measures would be needed to reach the climate target. So, according to (1), we still
have A |∼ ΨB. But now it would be even odder to say that A is an argument or a
reason for B. Rather, it is an argument or a reason against B, though too weak to
undermine B.

Hence, let us define that A is an epistemic reason for B iff A is epistemically
positively relevant4 to B iff A raises the plausibility of B iff (B|A) ≺Ψ (B|A), where
⪯Ψ is suitably lifted to conditionals. And the point is that arguments must provide
reasons in this sense. That is, an argument is a structure with a premise or premises
and a conclusion such that the premise or the conjunction of the premises is positively
relevant to the conclusion.5. How does this relate to our basic equation (1)?

4Relevance is a multiply ambiguous notion. It is clear that in our context epistemic relevance
as defined is the only pertinent kind of relevance.

5More precisely, this is the structure of a single argument. In order to assess a chain of ar-
guments, we would have to study the conditions under which positive relevance spreads along the
chain. And in order to study the interaction of arguments, how they defeat, rebut or undermine
one another, we would have to study how positive relevance behaves under the augmentation of
premises. Here, we do not pursue this study. However, the remark is to express our skepticism that
this interaction can be studied in the abstract, as is done in argumentation theory, e.g., according
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There are two ways to respond. First, we might discriminate between inference
and arguments and still stick to (1) concerning inductive inference, while assigning
this explication of an argument to the realm of argumentation theory. This is what
we shall do here. Second we might strengthen our notion of inference and our
semantics of conditionals by adding the positive epistemic relevance condition. Then
we would define Ψ |= (B|A) and A |∼ ΨB as AB ≺Ψ AB and (B|A) ≺Ψ (B|A).
Thereby we enter the topic of so-called relevance conditionals, which were recently
studied in great detail, see, e.g., [51, 47, 50, 48]. However, we do not pursue here
this line of thought.

Is positive epistemic relevance a good explication of the notion of a reason? In
any case, it is a subjective explication, entirely dependent on the subject’s epis-
temic state. For the majority of philosophers this is insufficient. They seek to gain
a more objective notion of a reason, even of a good reason. For them, rational
epistemic dynamics is driven then by those preconceived good reasons. However,
they were constructively quite poor in specifying what good reasons are. And the
history of inductive skepticism teaches that this might not be easy. With the sub-
jective understanding, we have at least a workable precise explication of that notion
suitable for theorizing. We approximate “good reason” here in an abstract way by
considering logic-based reasoning methodologies that are equipped with qualitative
meta-information allowing for expressing what is good and what is not. And it is still
true that epistemic reasons drive epistemic dynamics. Indeed, our definition entitles
us to reversely say that epistemic reasons are whatever drives rational epistemic
dynamics.

3.3 Inductive reasoning and epistemic dynamics
So much about a possible amendment of the basic equivalence (1) by positive rele-
vance considerations. In the sequel, however, let us just develop that equivalence.
It still leaves open how precisely to understand the relation between arguments and
inductive reasoning on the one hand and epistemic dynamics and belief revision on
the other. In particular, it raises an issue of primacy: Are we first to spell out
inductive logic and rational reasoning? And are we thereby to ground an account of
rational epistemic dynamics? Or is it the other way around?

We are skeptical of substantially implementing the first direction. It has an ob-
jectivistic flair: there is a correct inductive logic, and our epistemic states have to
follow it. However, in the tradition of inductive skepticism this objectivism is dis-
credited. The chief witness is perhaps the decline of Carnap’s program of inductive

to [14].
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logic, which became weaker and weaker till it became almost indistinguishable from
de Finetti’s subjectivism; see [6, 7].6

We therefore favor the second direction: a theory of rational doxastic dynamics
should be provided first, from which then an account of inductive reasoning should
be derived. This is our first important specification of (1). This entails that any
account of inductive reasoning must be based on a specific conception of epistemic
states and their rational dynamics. This is made explicit here by using the symbol
|∼ Ψ for the inference relation. Not all accounts pay heed to this maxim. Still, a
variety of potentially suitable accounts remain.

A further observation is that the equivalences in (1) presuppose that epistemic
states must be conceived as coming in grades that are (partially, weakly, or strictly)
ordered. That is, an epistemic state Ψ must provide a plausibility ordering ⪯Ψ in
the sense that there are faithful assignments (similar to [28, 8]) that associate suit-
able meta-structures with an epistemic state. This may exclude further candidate
accounts (e.g., the representation of an epistemic state plainly as a set of beliefs or
as a propositional knowledge base). Hence, the derivation of an account of inductive
reasoning from a conception of epistemic states entails some substantial constraints.

Let us be a bit more specific concerning what we expect from the meta-structures
associated with an epistemic state. A purely qualitative preorder might be a suit-
able meta-structure that is associated with an epistemic state. Of course, there are
more sophisticated representation frameworks, such as possibility theory, ranking
functions, and probability functions. But also modal logical frameworks seem to be
good candidates for representing epistemic states, or heterogeneous structures con-
sisting of different components (with reasonable interactions between them) might
prove useful. This is not necessarily a question of numerical or symbolic represen-
tation, both types of frameworks can be fine.

But when it comes to numbers, it should be clear that the crucial point here
is not just their potential for a richer semantics. Rather, they definitely provide
richer structures that computations for information processing might utilize. And
this makes them quite distinguished candidates for epistemic states in the con-
text of reasoning and belief change. It is not by accident that probability theory
with its two independent arithmetic operators (addition and multiplication, both
full group operations) have played a major role here. Although AGM might have
marked the beginning of symbolic belief revision and of devising rational postulates
for belief change, actually performing belief change has been done for a much longer
time within the probabilistic framework. The first belief change operator ever is

6However, we should at least point to the efforts of Williamson [60]. See also our discussion in
section 3.5.

100



Inductive Reasoning, Conditionals, and Belief Dynamics

probabilistic conditioning, and Jeffrey’s rule [41] shows a possible way of incorpo-
rating even uncertain evidence. So, it is not because of the numbers that we should
value probability theory, but because of the rich arithmetic structure that provides
a powerful apparatus to express and process information (cf. also [41]). Via the
multiplication operator, (conditional) independencies (and hence monotonic infer-
ence behaviour) can be expressed, and its inverse operator, division, allows to easily
transform one distribution into another at the occurrence of new information via
conditioning. Furthermore, the addition operator takes care of disjunctive propo-
sitional information, e.g., to allow for reasoning by cases in a way that takes the
probabilities of all cases into account. Having once adopted such basic techniques,
information processing becomes easy. However, ranking functions show similarly
good properties, here we have the (group operation) addition instead of multiplica-
tion, and the minimum of ranks instead of addition of probabilities. The minimum
is weaker than the addition, it is not a group operation and does not allow for ex-
ploiting numerical relationships in a way that addition does. For instance, consider
two atoms A, B and the propositions A ∧ B, A ∧ ¬B, ¬A ∧ B. In probability the-
ory, if we know P (A) = P (B), we can conclude P (A ∧ ¬B) = P (¬A ∧ B) because
P (A ∧ B) + P (A ∧ ¬B) = P (A) = P (B) = P (A ∧ B) + P (¬A ∧ B). But from
min{κ(A ∧ B), κ(A ∧ ¬B)} = κ(A) = κ(B) = min{κ(A ∧ B), κ(¬A ∧ B)}, we cannot
conclude κ(A ∧ ¬B) = κ(¬A ∧ B). Technically, this has significant effects on rea-
soning and revision. On the other hand, evaluating minima is computationally and
cognitively less demanding, which might be seen even as an advantage of ranking
functions.

We have to clarify the relation between inductive reasoning and the dynamics of
epistemic states and thus to specify (1) still further. There is a distinction regarding
this dynamics that is often neglected, but seems important to us. On the one hand,
there is an internal dynamics which takes place without any external stimulus or
input. It consists in thinking, reasoning, calculating, working out consequences,
etc. All this in some sense amounts to a temporary or only hypothetical change of
an epistemic state. Inference rules then tell us how the internal dynamics should
proceed. On the other hand, there is an external dynamics which is driven by some
external input, information, evidence, experience, not merely in the sense that such
external input somehow stimulates the internal dynamics – of course, it does –, but in
the sense that the input demands a change of the prior into the posterior epistemic
state, however and however incompletely this change is computationally realized.
Rules of doxastic change then tell us what the posterior state should be depending
on the prior state and the input. Note that the internal dynamics belongs to the
external statics. Thinking, etc. does not count as doxastic change in the external
sense. According to the internal dynamics, an epistemic state records the current
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state of computation. According to the external dynamics, an epistemic state is an
ideal entity which sets a computational goal and may or may not be fully reached
by the computations in internal dynamics. Typically, logics, in their many variants,
deal with the internal dynamics, by specifying calculi, inference rules, etc., on the
syntactic level. By contrast, Bayesianism, belief revision theory, etc. are about the
external dynamics. Their dynamic rules specify the relation between prior state,
input, and posterior state on a semantic level. Their primary point is not to give
computational advice, even if this can often be easily derived.

The connection between the two dynamics is this: The internal dynamics works
towards reaching the goal set by the external dynamics, i.e., the posterior state
necessitated by the input. Again, the connection may be construed in two opposite
ways. Either the input initiates an internal dynamics, the completion of which results
in some posterior state, which is then the one the external dynamics aims at. Given
the internal dynamics, we can say what completion means (roughly, that any query
can be answered in a most informed way so that further thinking or computation
does not result in further internal change). Or the input necessitates an external
change which then governs the internal dynamics (as being one the completion of
which leads to the necessitated result).

We think that the second construal is the one to be preferred. This is our second
important specification of (1). For, how could the inference rules be justified within
the first construal? By being consistent? By intuition? By some model theory
unrelated to epistemic dynamics? No, the justification lies in fixing the goal of
computation by specifying a rational external dynamics. The internal dynamics
then serves this goal; it is only a means to this end.7

We admit that the distinction is often subtle. Conditionalization rules directly
tell how to compute the posterior state from the prior state and the evidence to
condition on. Or: What is the difference between Rational Monotony (an axiom of
conditional logic and nonmonotonic inference) and the postulate K*8 (also called
subexpansion and crucial in AGM belief revision theory)? Via the Ramsey Test,
they are directly intertranslatable. Still, they have different places in the overall
picture of doxastic dynamics.

Let us summarize our two important claims so far: When we want to get a
hold on inductive logic, we must start from an account of the rational dynamics of

7The work of Pollock [43] is characteristic for this opposition. [42] specifies argument types,
and [43] then states rules for the interaction of arguments like the weakest link principle or the
no-accrual-of-reasons principle. All of this belongs to the internal dynamics in our sense. From
this, an account of belief revision, of the external dynamics, is inferred precisely by running this
mechanism of argument types and rules of interaction on the new input till it comes to rest (if it
does); see [44]. For a detailed criticism of the entire procedure in the direction indicated see [54].
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epistemic states, which in turn presupposes a graded notion of a conditional doxastic
state. Indeed, we must start from an account of the rational external dynamics of
epistemic states, which sets the goal for the internal dynamics and thus for inference,
reasoning, and argumentation.

3.4 The interaction of inductive reasoning and belief revision
If we understand inductive reasoning as completing partial (conditional) beliefs (as
specified in a belief base ∆) as best as possible, then its result should be an epistemic
state Ψ∆:

Ψ∆ = ind(∆), (2)

where ind is some inductive reasoning mechanism; we also say that ∆ is inductively
represented by Ψ via ind, or that ∆ inductively generates Ψ. For instance, ∆ may be
a set of conditionals, and ind might be specified by system Z [21], or c-representations
[32], associating to each consistent set of conditionals a ranking function [53]. In-
ductive reasoning from ∆ is then implemented by reasoning from Ψ = ind(∆) via
the conditionals being accepted in Ψ. That is, ind realises model-based inductive
reasoning.

But this cannot be the end of the story. The mind of a human being is always
evolving and changing by learning, or receiving new information I in general, where
I can just be a fact, more complex contextual information possibly including con-
ditionals (e.g., when we enter a new country, different compliance rules apply), or
even trigger some deeper learning processes.

Starting a new inductive reasoning process each time when we receive new in-
formation would make our beliefs incoherent, Ψ = ind(∆) and Ψ′ = ind(I) might
be completely unrelated (except for that they have been built up by the same in-
ductive reasoning formalism). Integrating new information I into existing beliefs
represented by an epistemic state Ψ is exactly the task of (epistemic or iterated)
belief revision [8], returning a new epistemic state Ψ′ after revising Ψ by I:

Ψ∆ ∗ I = ind(∆) ∗ I = Ψ′ (3)

Note that we use ∗ here in a generic sense as a placeholder for a suitable change
operator. What can we say about this change operator ∗, i.e., about the rational
dynamics of epistemic states?

The most natural and the most wide-spread picture is that this dynamics is a kind
of Markov process: The prior doxastic state and the (total) evidence (in between)
determine the posterior doxastic state – according to rules of doxastic change that
count as rationally justified. This is Markovian in the general sense that the prior
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state is supposed to encode a history of changes and hence this history can influence
the current change process only through that prior state.

There is a very rich discussion about the rules governing rational epistemic
change. In probability and ranking theory, there are rules of conditionalization,
simple, generalized Jeffrey, and auto-epistemic conditionalization. There are reflec-
tion principles governing doxastic change in both theories. There is minimization of
relative entropy, which has an analogue in ranking theory. And so on. We will see
that our approach based on equations (1), (2), and (3) leads to formal constraints
on doxastic change and its interaction with inductive reasoning that narrows down
the range of suitable epistemic frameworks.

Let us add just three general remarks: First, there are many proposals for mod-
elling epistemic states; we have mentioned a few of them in the course of this paper.
In probability theory and also in ranking theory the discussion about rules of epis-
temic change is most elaborate. It would be desirable that it is carefully worked out
also within other models, since stating a dynamics is imperative for any representa-
tion of epistemic states.

Second, doxastic states are not only about ’eternal’ or context-independent
propositions, which are usually taken as the only objects of epistemic states, but
also, indeed essentially, about indexical or context-dependent propositions, which
use, e,g„ "I", "now", and "here", the reference of which can only be determined in
context. How do rules of doxastic change apply to them, and how do they interact
with rules for ’eternal’ propositions? These questions seem to receive only local at-
tention. See, e.g., [57] and [15]. In our approach, indexical information can be part
of the contextual beliefs, while ’eternal’ information in the sense of generic beliefs
would be part of the background beliefs.

Third, all the rules we mentioned concern learning or improving one’s epistemic
state. This is perhaps the only case that is relevant for the sciences. Still, it is a
restriction. There are other kinds of epistemic change, and a theory of rationality
should attend to them, too. In particular, we are thinking here of forgetting. As
such, forgetting befalls us, there are not rational and irrational ways of forgetting.
But there are rational ways of responding to forgetting. Not anything goes after
having forgotten something; see, e.g., [57]. Some conceptual considerations and
technical results about the role that ranking functions can play in the context of
forgetting can be found, e.g., in [34, 35, 3]. However, in the present context which is
about the basic connection between epistemic dynamics, induction, and conditionals,
this is just a side remark.

So much about the change or revision operator ∗ by itself. Let us return to
this basic connection. Given that Ψ∆ = ind(∆) has been built up inductively
from a belief base ∆, and that I will usually be only partial information about
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some current context, the following questions arise immediately: How do ind and
∗ interact? Which (maybe completely different) roles do Ψ∆, ∆ and I play in this
scenario?

We first focus on the second question by analysing different qualities of beliefs
with respect to the roles they play in the reasoning process. Roughly, we can dis-
tinguish between background, or generic, and evidential, or contextual knowledge,
as well as between explicit and implicit beliefs. From background or generic knowl-
edge, the agent takes beliefs which hold in general and of which she can make use
of in different situations. For instance, the current beliefs of an agent getting up
on a usual Monday morning might be different from those on a usual Sunday, but
presumably his generic background has not changed much. The evidential resp.
contextual information I she receives might include that it is Monday and raining,
and that due to new construction areas she has to take some detours when going
to work. We prefer the attribute “contextual” to “evidential” in the following, since
this information may relate not only to a specific situation and can be much more
complex than some evidential facts. For instance, the temporal scope of context
may be one hour or one week, the scope may refer to a specific house or to a whole
country, or it may contain information on abstract contexts, such as holidays or
working environments.

Let us now look more closely at the first question, the interaction between ind
and ∗. Assuming that Ψ∆ = ind(∆) expresses background beliefs, incorporating
contextual information cannot be done simply via the “union” of Ψ∆ and I (whatever
this might be), or by the union of ∆ and I because this would ignore the different
natures of background beliefs and contextual information. The agent’s new epistemic
state should rather arise from the adaptation of Ψ∆ to contextual information. This
is expressed by (3), but only as a base case when we start reasoning from a belief
base including our core background beliefs. However, this process must be iterative,
i.e., Ψ = Ψ∆ may more generally be the result of such a revision Ψ = Ψprior ∗ Iprior,
or new information I ′ arrives that triggers a new change process (Ψ∆ ∗ I) ∗ I ′, so
that (3) evolves to the iterative change problem

(Ψ∆ ∗ I) ∗ I ′ = (ind(∆) ∗ I) ∗ I ′. (4)

And here, three essentially different reasoning resp. revision scenarios are possible
(note that the ∗-operators are just placeholders to be specified adequately):

• First, the context to which I refers has evolved, and I ′ is information on
this new context for which, however, I is still relevant. This scenario is often
referred to as updating. Then the two ∗-operators in (4) would be of the
same type, and Ψ∆ ∗ I would be changed to (Ψ∆ ∗ I) ∗ I ′. A modification
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of this scenario applies if the contexts to which I and I ′ refer are completely
unrelated, but the agent uses the same background beliefs Ψ∆ for reasoning,
then we would end up with Ψ∆ ∗ I ′.

• Second, I ′ refers to the same context as I. In this case, I and I ′ should
be considered to be on the same level, and we would obtain Ψ∆ ∗ (I ∪ I ′).
This is a typical case of belief revision in the AGM-sense that we will call
conservative revision because more prior information (i.e., I) is preserved.
Note that conservative revision generalizes Jeffrey’s rule [27] to the case where
several observations are processed at the same time, without presupposing that
the observations are exclusive.

• Third, I ′ enriches or modifies background beliefs, i.e., it affects the basis from
which reasoning with the information I is performed. This is what happens in
learning. In the first case, if I ′ is fully compatible with ∆, ind(∆∪I ′)∗I would
be a proper solution. If I ′ contradicts (parts of) ∆, then Ψ∆ ∗I ′ = ind(∆) ∗I ′

would provide suitable background beliefs, and (ind(∆) ∗ I ′) ∗ I would be the
result of the revision problem.

Therefore, we argue that the distinction between revision and update [28], and also
the relation between belief change and learning is not just a technical issue, but has
to be made on a conceptual and modelling level. The involved revision operators ∗
might respect such differences, but from the discussion above it becomes clear that
one might also discriminate different ways of applying one and the same revision op-
erator ∗ in different scenarios, also involving inductive reasoning. While (3) claims
that involving belief revision is necessary for a coherent perspective of inductive rea-
soning, the third of the cases elaborated above shows how inductive reasoning can
affect belief revision: Changing ind(∆) to ind(∆ ∪ I ′) makes the revision of back-
ground beliefs possible. For more formal investigations of the differences between
conservative revision and update, and for a reconciliation with AGM theory, see [33].

So, starting from an induction perspective, we developed scenarios which are
similar to the ones considered in [10] for belief revision: Belief Revision as Defeasible
Inference (BRDI), considering a specific case at hand, can be realized as conditioning
in our framework, or more generally, via an update where the context has changed.
Belief Revision as Prioritized Merging (BRPM), which collects several pieces of
uncertain evidence about a case, is realized via conservative revision; please note
that it is also possible to apply merging operators instead of simple set union if
one wishes to do so. And finally, Revision of Background Knowledge by Generic
Information (RBKGI), where the background knowledge is modified by new pieces
of (generic) information often in the form of conditionals is also dealt with extensively
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in Section 3.4.
However, and in contrast to that paper, a main point of our approach is that

these “scenarios of belief revision” are not unrelated, but can be realized coherently
and naturally (with many interactions) in a rich framework of epistemic revision
(see Section 3.4). Our approach is not about technical artefacts that coincidentally
bring forth useful results but is grounded on philosophical considerations that clearly
show that (inductive) nonmonotonic reasoning and belief revision are not just “two
sides of the same coin”, but that inductive reasoning is an integral part of epistemic
revision in a conditional framework where principles of inductive reasoning follow
more general principles of revising epistemic states by conditional beliefs.

Elaborating further on this intimate connection between inductive reasoning and
belief revision, we might even envisage inductive reasoning involving background
beliefs expressed by an epistemic state Ψbk, i.e., Ψ = indΨbk

(∆), and then inductive
reasoning from ∆ might be realised by revision:

Ψ = indΨbk
(∆) = Ψbk ∗ ∆. (5)

And when no background beliefs are available or relevant, we might assume some
uniform epistemic state Ψu as a starting point (but see also the discussion on prior
and initial states in Section 3.5 below):

ind = indΨu . (6)

This implements inductive reasoning from epistemic states thoroughly via epistemic
belief revision because this approach yields

Ψ∆ = ind(∆) = Ψu ∗ ∆. (7)

This means that each epistemic revision operator that is able to handle complex
information ∆ induces an inductive inference operator. This makes inductive rea-
soning perfectly coherent with the revision operator and allows us to embed inductive
reasoning in a richer methodology.

This embedding has two further important advantages: First, revision method-
ologies may immediately yield mechanisms of inductive reasoning and suitable qual-
ity criteria. Second, splitting up inductive reasoning clearly into its inductive mech-
anism, its involved background beliefs, and context-based beliefs makes formalisms
more explicit and more broadly (and flexibly) applicable. However, only very few
approaches to epistemic revision with sets of conditionals exist; in Section 4, we
briefly present the principle of minimum cross-entropy for probabilities and, a bit
more extensively, the c-revisions for ranking functions as suitable methodologies on
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the base of which inductive reasoning in the respective semantic frameworks can be
realised in a straightforward way.

Our approach to inductive reasoning via belief revision sketched above also dis-
tinguishes between explicit beliefs in a belief base, and implicit beliefs derivable in
an epistemic state. The necessity of such a distinction is quite obvious in a belief
change scenario, since implicit resp. derived beliefs are more easily changed than
explicit beliefs. Having to give up explicit beliefs not only needs more effort, but
it is quite a different thing. Formally, if Ψ∆ = ind(∆), and the new information I
is in conflict with ∆, e.g., ∆ ∪ I is inconsistent, then we are still able to perform
revision in the sense of updating via Ψ∆ ∗ I = ind(∆) ∗ I, whereas conservative
revision via ind(∆ ∪ I) would not be possible. If the agent comes to know that an
explicit belief is (presumably) false, she might react more reluctant to incorporate
it, trying perhaps to collect more evidence etc. If finally, she is ready to believe the
new information, there are three possibilities: In the first case, the new information
I might contradict the derived beliefs in Ψ∆ but is nevertheless consistent with ∆,
conservative revision ind(∆ ∪ I) would be a suitable option. In the second case,
the agent acknowledges that her previous explicit beliefs were erroneous before, in
which case she has to perform a proper belief base change by applying merging
techniques which are able to resolve conflicts, i.e., we would have Ψ∆ ∗ (I ◦ I ′) with
a merging operator ◦. This would give rise to a variant of conservative revision
which is neither truly conservative nor prioritized, we leave this for future work. In
the third case, the agent admits that the current context has changed, and she has
to adapt her beliefs to these changes, in which case one would find some updating
process appropriate. Summarizing, our approach to inductive reasoning is able to
deal with (and properly distinguish between) generic, background and contextual
beliefs, on the one hand side, and explicit and implicit beliefs, on the other. This is
made possible by considering inductive reasoning within belief revision frameworks,
and provides perfect grounds for a richer methodology that ensures coherence over
different reasoning scenarios.

Furthermore, we mention an axiom for iterated revision that is particularly suit-
able to express coherence in the above sense, but which was considered only in very
few of the current belief revision frameworks and introduced under the name Coher-
ence in [29], where it plays a crucial role for characterizing the principle of minimum
cross entropy, but actually goes back to [52]

(Coherence) Ψ ∗ (∆1 ∪ ∆2) = (Ψ ∗ ∆1) ∗ (∆1 ∪ ∆2).8

8Coherence of revision corresponds to path independence of contraction, which was introduced
by [24]. Both postulates deal with the iterated revision resp. contraction by sets of propositions
where one set is a subset of the other. They express how the overall result can be computed from
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(Coherence) demands that adjusting any intermediate epistemic state Ψ ∗ ∆1 to
the full information ∆1 ∪ ∆2 should result in the same epistemic state as adjusting
Ψ by ∆1 ∪ ∆2 in one step. The rationale behind this axiom is that if the new
information drops in in parts, changing any intermediate state of belief by the full
information should result unambigously in a final belief state. So, it guarantees the
change process to be coherent.

Note that (Coherence) does not claim that (Ψ∗∆1)∗∆2 and (Ψ∗∆1)∗(∆1 ∪∆2)
are the same. On the contrary, these two revised epistemic states will usually differ in
general, because the first is not supposed to maintain prior contextual information,
∆1, whereas the second should do so, according to success. However, (Coherence)
can help ensuring independence of parts of the history that serves as background
beliefs for inductive reasoning. In the situation described by (5) where we reason
inductively from ∆ with background (or prior) beliefs Ψbk, imagine that we still are
aware of the last conditional information ∆0 that shaped Ψbk, i.e., Ψbk = Ψ1 ∗ ∆0,
which would be mandatory to be able to distinguish among the different scenarios
sketched above. But in general, it will be the case that Ψbk and ∆0 do not determine
Ψ1 uniquely, so that there may be a different Ψ2 satifying also Ψbk = Ψ1 ∗ ∆0 =
Ψ2 ∗ ∆0. For updating Ψbk, this is irrelevant because only Ψbk matters. However,
for conservative revision, we would like to compute Ψbk ∗ ∆ = Ψ1 ∗ (∆0 ∪ ∆), but
also Ψ2 ∗ (∆0 ∪ ∆) would be a suitable candidate. Here (Coherence) guarantees that
the resulting epistemic state would be the same:

Ψ1 ∗ (∆0 ∪ ∆) = (Ψ1 ∗ ∆0) ∗ (∆0 ∪ ∆) = (Ψ2 ∗ ∆0) ∗ (∆0 ∪ ∆) = Ψ2 ∗ (∆0 ∪ ∆).

This makes clear that in our conceptual framework of inductive reasoning in
the context of belief revision, integrating background beliefs and different pieces
of information can be done in different, but coherent ways. This means, having
to deal with different pieces of information, the crucial question is not whether
one information is more recent than others, but which pieces of information should
be considered to be on the same level, i.e., belonging to the same type of belief
(background vs. contextual), or referring to the same context (which may, but is not
restricted to be, of temporal type). Basically, pieces of information on the same level
are assumed to be compatible with one another, so simple set union will return a
consistent set of formulas (please see also our remarks on merging on p. 20). Pieces
of information on different levels need not be consistent; here later or more reliable
ones may override those on previous levels.

intermediate results, i.e., from intermediate points on the revision resp. contraction path.
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3.5 Prior, initial and a priori epistemic states
The above picture of doxastic dynamics does not only appeal to rules of change, it
also generates a regress to earlier doxastic states. Even allowing background and
context to do their work only reiterates the regress. We reason forward from a
certain background and in a certain context. But background and context generate
an epistemic state from a still more prior state. So, where does this regress lead to?
After all, the epistemic states do not come from an infinite past. Let us say that
the regress comes to an end at an initial epistemic state from where the dynamics
starts. But this is only a label. The question is whether we can characterize the
initial state in some reasonable way.

The initial state is crucially important, because it and the course of experience
fixes all further doxastic states, at least when the learning rules are deterministic.
All our rational learning strategies are already encapsulated in this initial state. So,
what can we say about it? This is an old and intriguing philosophical issue. In an
absolute sense, 17th century philosophy spoke of innate ideas. This was the kind
of preformation of our mind discussed between empiricism and rationalism in those
times. The talk of innate ideas can certainly not be taken literally. They did not
refer to the newborn baby’s doxastic state. The discussion advanced with Kant. He
may be taken to suggest that the initial state in an absolute sense consists of a priori
knowledge. For him, apriority was an epistemological, not a genealogical category. In
today’s terminology, we may call the initial state conceived in this absolute way the
all-embracive ur-prior. Alternatively, we may have a low-key relative understanding
of the initial state. Then it is just posited to be initial for a given application at
hand, where we are at the beginning of an invesigation, and not intended as an
all-purpose ur-prior. Let us call this an application-relative conception of initiality.
It is definitely closer to current practice, but perhaps not the foundational response
we are looking for.

There is a philosophical debate whether the initial state is rationally unique or
whether various initial states may be rationally permitted.9 The opposition is not
designed for an application-relative understanding of the initial state. Prima facie,
any kind of constraints on the initial state may be imposed depending on the appli-
cation at hand, and so the issue of Uniqueness does not really arise. Philosophers
rather discuss the issue regarding the absolute ur-prior. No doubt, Uniqueness may
look attractive. Sometimes, the debate between Uniqueness and Permissiveness is
taken to be a symmetric one. Each side has to advance arguments for its claim.
In our view, however, the burden of proof is only on the defenders of Uniqueness.
It’s not that the defenders of Permissiveness have to positively show that various

9See, e.g, [23] and [37].
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ur-priors are equally rational. They only see no reason to be presently convinced
of Uniqueness. Given the fate of Carnap’s inductive logic [6, 7], the constructive
outlook of Uniqueness is indeed dim. Carnap started as a defender of Uniqueness.
However, he immediately recognized that his so-called Wittgenstein function was a
total failure. Then he came up with his so-called λ-continuum of inductive methods,
and in [6, 7], he ended up with some symmetry principles, which were still extremely
permissive.

Note also that Uniqueness would entail an alternative picture of the doxastic
dynamics. Any doxastic state is then only a function of the total evidence since the
initial time. We only need to take stock of the accumulating evidence. References
to any intermediate doxastic states are no longer required. This picture is no longer
Markovian. This is how objective Bayesianism as propounded by Williamson [60,
38] conceives of inductive logic. He certainly pursues only a modest application-
relative understanding of the initial state, but he thoroughly applies maximum-
entropy reasoning both to the initial state as well as to how the total evidence
changes the initial state. (The evidence need not be propositional, but can provide
any kind of constraints on the posterior state.) Objective Bayesianism is certainly
the most constructive attempt to establish Uniqueness. However, let’s not further
discuss its prospects.

Let us rather look a bit more closely at the initial state by ourselves. We men-
tioned its relation to the a priori, if taken in the absolute sense. However, so far
we referred only to the Kantian a priori. In Kantian terms it is characterized by
absolute necessity and generality. We better do not engage into Kant exegesis. A
better and indeed fitting characterization is in the present terms of belief dynamics:
A priori propositions are just those believed under any circumstances, whatever the
evidence. Therefore, it is apt to call them unrevisably a priori. Certainly, every
initial state must respect this kind of apriority. However, it cannot fully character-
ize initiality, since it is inductively barren. It cannot tell anything about inductive
inference and thus misses what we are after here.

There are strong suggestions in the literature that there are also weaker relative
or contextual notions of apriority (see, e.g., [45, 16]). One idea is to relativize
apriority to the concepts we have. E.g., Kant may have been right about the apriority
of Euclidean geometry, but only as long as there was no other conception of physical
space.10 This kind of apriority may be aptly called defeasible. Such are the beliefs
or, in general, the features of initial doxastic states before any evidence, which may
change afterwards. Apriority in this sense does not entail truth, such beliefs may
turn out to be false. The historically first clear example for defeasible apriority is the

10This is the suggestion of Putnam (1962, pp. 372f.)
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so-called principle of ignorance dictating symmetric or uniform probabilities, which
are defeasible, sensitive to experience. Of course, we know by now how elusive the
principle of ignorance is. If uniformity, as assumed in (6), is a feature of the initial
epistemic state, it may need heavy qualification.

So far, though, defeasible apriority is just another label for the initial epistemic
state. Let us at least give some hints how we might say a bit more about it. Above
we said that a background may contain, or a context may provide, a lot of conditional
information, which is then used for inductive inference. We have indicated how this
may technically work in Section 3.4, where we also showed that the property of
(Coherence) allows for reducing the impact of the concrete form of the initial state
on future revisions significantly. We suggest that the same is true for the initial
state. The idea is this:

A subject’s doxastic state, however modelled, operates on a given algebra of
propositions which are generated from a given conceptual field. This field need not
consist of all concepts the subject possesses. It may be a small field just grasping the
application at hand. But the subject must master those concepts; she cannot have
doxastic attitudes towards propositions she does not understand. Then we might
conceive of an initial doxastic state about (an algebra of propositions generated by)
a given conceptual field as consisting just of what is required to master this field,
but without any further information or evidence concerning those propositions. This
would explicate the phrase that the initial state (concerning this field) is one the
subject is in before acquiring any (relevant) evidence.

Of course, the explication can’t mean that the subject has had no experience
whatsoever in such an initial state. She needs a lot of experience in order to acquire
any concept at all. However, it is hard to say how much information exactly she
must have gathered in order to count as possessing a certain concept. Therefore,
the explication is bound to be vague. Still, we think that the notion of a stereotype
introduced by Putnam [46] is useful here. One must have learned the relevant
stereotype in order to be said to possess a concept. One masters the concept of a
dog only if one believes that some (ostensive) paradigms are dogs, that dogs have a
certain variable size and shape, that they bark, that they have four legs and a tail,
and so on. All this is not unrevisably a priori, it may turn out false in specific cases.
But it comes along with the concept of a dog and may thus be called defeasibly a
priori.

Such stereotypes are ubiquitous. Our prime examples are dispositional concepts.
Reduction sentences, e.g., “an object, when put in water, is soluble if and only
if it dissolves”, are stereotypes. A disposition typically shows its manifestation.
But it may be present, while the manifestation fails, and the other way around.
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Thus, reduction sentences are defeasibly a priori conditionals11. This is now not
just an application-relative a priori, but more strictly a concept-relative a priori.
And it promises to answer our quest for a characterization of initiality. Formally,
however, it works like any presupposed background or contextual information, be
it in conditional or unconditional form. This is how the present point connects up
with the explanations in the previous sections.

4 Proofs of concept: Reasoning on optimum entropy
and with ranking functions

In a purely qualitative setting, epistemic states can be represented by systems of
spheres [39], or simply by a preorder on L (which is mostly induced by a preorder
on worlds). However, for this type of epistemic states, no methodologies are avail-
able to date which can handle the complex scenarios of inductive reasoning and
belief revision that we sketched in Section 3. Therefore, we choose probabilities and
ranking functions as illustrations of our general concept. We briefly describe two
well-known revision methodologies in these two frameworks which induce approaches
to inductive reasoning from conditional belief bases that have also attracted much
attention: The probabilistic principle of minimum cross-entropy (with the princi-
ple of maximum entropy as the method for inductive reasoning), and c-revisions of
ranking functions (with c-representations allowing for inductive reasoning). Since
there is already a vast literature on the entropy principles while ranking functions
and c-revisions are less well-known, we focus on the latter approach here. Note
that c-revisions have been introduced in a more general form in [30, 32], for the
sake of ease of notation, we only use a simplified version of c-revisions here which is
nevertheless able to capture all aspects of our approach.

Both revision operators are linked by the property that they both satisfy the
principle of conditional preservation, as specified e.g. in [30, 32]. This principle
makes use of the arithmetic structures underlying probabilities and rankings and
allows a very accurate and precise handling of conditional information under belief
change. We do not go into technical details here, but the structural similarity
between the operators is obvious (see equations (8) and (9) below, keeping in mind
that ranks can be understood as logarithmic order-of-magnitude abstractions of
probabilities, hence exponents become factors, and products turn into sums when
going from probabilities to rankings).

11The point is elaborated in [55], sect. 13.3.
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4.1 Reasoning on optimum entropy
The principles of maximum entropy and minimum cross-entropy are powerful method-
ologies for inductive reasoning and belief revision in probabilistics. Due to lack of
space, we cannot rehearse them fully here but refer in particular to [40, 29, 32]. For
a (consistent) set of probabilistic conditionals ∆, the principle of maximum entropy
selects the unique probability distribution ME(∆) with maximum entropy, and if
prior information P is given, then the principle of minimum cross-entropy selects
(under mild consistency conditions) a unique probability distribution P ∗ME ∆ that
is a model of ∆ and has minimal information distance to P , thus realizing proba-
bilistic belief revision. We refer to both principles as the ME-principles. The crucial
equation for understanding and analyzing ME-revision is given by

P ∗ME ∆(ω) = α0P (ω)
∏

1⩽i⩽n
ω|=AiBi

α1−xi
i

∏

1⩽i⩽n

ω|=AiBi

α−xi
i , (8)

with the αi’s being exponentials of the Lagrange multipliers, one for each conditional
in ∆, and have to be chosen properly to ensure that P ∗ME ∆ satisfies all conditionals
in ∆ with the associated probabilities. α0 is simply a normalizing factor. For a
complete axiomatization of the principle of minimum cross-entropy within the scope
of probabilistic revision by conditional-logical postulates, see [29]. If Pu is a suitable
uniform distribution, both ME-principles are related via ME(∆) = Pu ∗ME ∆. This
means that ME is an inductive reasoning mechanism derived from a belief revision
operator in the sense of (7), and ∗ME realises inductive reasoning from general
background beliefs P in the sense of (5). Let us further note that ME-revision also
satisfies (Coherence) [52]. Hence the ME-methodology is quite a perfect example
to illustrate all concepts and relationships presented in this paper in a probabilistic
framework.

4.2 Ordinal c-revision
Transferring the basic ideas underlying the ME-principles to the framework of rank-
ing functions brings us to c-revisions and c-representations [32].

A(n ordinal) c-revision operator ∗c returns for each ranking function κ and each
consistent set ∆ of conditionals a ranking function κ ∗c ∆ that satisfies the principle
of conditional preservation, as specified in [30, 32].

Again, by applying the c-revision approach to the uniform prior, i.e., the rank-
ing function κu with κu(ω) = 0 for all ω ∈ Ω, we obtain quite easily very well-
behaved inductive inference operations on default (or conditional) bases called c-
representations.
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Formally, the c-revision methodology12 provides approaches to revision of rank-
ing functions by sets of conditionals, and inductive reasoning from conditional belief
bases (also by taking background beliefs into account) according to (7) and (5) via
the following schemata:

κ ∗c ∆(ω) = κ0 + κ(ω) +
∑

1⩽i⩽n

ω|=AiBi

κ−
i (9)

such that

κ−
i > min

ω|=AiBi

(κ(ω) +
∑

j ̸=i

ω|=Aj Bj

κ−
j ) − min

ω|=AiBi

(κ(ω) +
∑

j ̸=i

ω|=Aj Bj

κ−
j ) (10)

for revision and inductive reasoning with background beliefs, and

κ∆(ω) =
∑

1⩽i⩽n

ω|=AiBi

κ−
i (11)

such that
κ−

i > min
ω|=AiBi

(
∑

j ̸=i

ω|=Aj Bj

κ−
j ) − min

ω|=AiBi

(
∑

j ̸=i

ω|=Aj Bj

κ−
j ) (12)

for inductive reasoning ind(∆) = κ∆. Because the principle of conditional preser-
vation constitutes the main building principle for both the ME-principles and the
c-revision methodology, c-representations resp. c-revisions can be considered as suit-
able translations of the ME-principles to the framework of ranking functions (see
also [20, 5]). Note that c-revisions also satisfy Coherence, when considering the
whole family of c-revisions of a specific revision problem; for technical details, please
see [36]. The paper [36] also elaborates on relations to other properties of iterated
revision, in particular to the Darwiche-Pearl postulates [8].

For representing an epistemic state or revising it, any c-representation resp. c-
revision of a conditional belief base may be chosen, all of them share the same good
properties, see, e.g., [32, 2]. For practical applications, c-representations resp. c-
revisions with pareto-minimal parameters κ−

i are usually chosen, which however are
not uniquely determined in general. C-representations generalize the approach of
system Z∗ [20] which is defined only for so-called minimal-core knowledge bases,
without relying on a probabilistic foundation. For minimal-core knowledge bases,
minimal c-representations are unique and coincide with system Z∗.

12We consider a simplified version here which is sufficient for the purposes of this paper.
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This framework of c-revisions resp. inductive c-representations usually takes
plausible beliefs in the form of conditionals (which also cover plausible facts by
identifying (A|⊤) with a plausible fact A) but can also deal with certain information
by assigning ∞ to all falsifying worlds. We illustrate this for the case of c-revising
κ with a certain fact which we denote by A∞. According to (9), we obtain

κ ∗c A∞(ω) = κ0 + κ(ω) +
{

0 if ω |= A
∞ if ω ̸|= A

with κ0 = − min{minω|=A κ(ω), ∞} = − min{κ(A), ∞} = −κ(A), hence

κ ∗c A∞(ω) =
{

κ|A(ω) if ω |= A
∞ if ω ̸|= A.

(13)

Therefore, κ ∗c A∞ can be considered as an extension of Spohn’s conditioning of
ranking functions [53]. If a certain fact A∞ is part of a belief base, this can be
handled similarly by the general approach via (9) and (10) by assigning ∞ to all
models of A. Note that this might influence the minima in (10) and lead to a
different revision result, please see also Section 5.

The following example illustrates inductive reasoning and all three change scenar-
ios from Section 3.4 – update, conservative revision, and learning – via the c-change
methodology in the framework of ranking functions and qualitative conditionals.

Example 1. Suppose we have the propositional atoms f - flying, b - birds, p -
penguins, w - winged animals, k - kiwis, d - doves. Let the set ∆ consist of the
following conditionals:

∆ : r1 : (f |b) birds fly
r2 : (b|p) penguins are birds
r3 : (f |p) penguins do not fly
r4 : (w|b) birds have wings
r5 : (b|k) kiwis are birds
r6 : (b|d) doves are birds

Moreover, we assume strict knowledge, i.e., absolute certainty of the fact that pen-
guins, kiwis, and doves are pairwise exclusive, which amounts to considering only
those worlds as possible that make at most one of {p, k, d} true; all other worlds
have infinite rank.

As initial epistemic state, we represent inductively ∆ via a c-representation (11)
obtaining κ∆ = κu ∗c ∆ as current epistemic state (cf. Figure 1). The calculation
of the parameters κ−

i according to (12) is straightforward: For each ri with i ∈
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ω κ∆(ω) ω κ∆(ω) ω κ∆(ω) ω κ∆(ω)

pk dbfw 2 pkdbfw 0 pkdbfw 0 pk dbfw 0
pk dbfw 3 pkdbfw 1 pkdbfw 1 pk dbfw 1
pk dbfw 1 pkdbfw 1 pkdbfw 1 pk dbfw 1
pk dbfw 2 pkdbfw 2 pkdbfw 2 pk dbfw 2
pk d bfw 4 pkd bfw 1 pkdbfw 1 pk d bfw 0
pk d bfw 4 pkd bfw 1 pkdbfw 1 pk d bfw 0
pk d b fw 2 pkd b fw 1 pkdb fw 1 pk d b fw 0
pk d b fw 2 pkd b fw 1 pkdb fw 1 pk d b fw 0

Figure 1: Epistemic state κ∆ as result of inductive reasoning from ∆ in Example 1

{1, 4, 5, 6}, and for each of the two minima occurring in (12), respectively, we can
choose worlds that do not falsify any (other) conditional from ∆; e.g., for r1, choose
pkdbfw for the first minimum over the models of bf , and pk dbfw for the second
minimum over the models of bf . So for each of these κ−

i , both minima are evaluated
to 0, and we have κ−

i > 0. We choose all parameters minimally, so we obtain

κ−
i = 1 for i ∈ {1, 4, 5, 6}.

The calculation of κ−
2 , κ−

3 is a bit more complicated. First note that due to p, k, d
being exclusive, only the models in the leftmost column of Figure 1, i.e., the penguin
worlds, are relevant for this calculation. For κ−

2 , we compute

κ−
2 > min{κ−

3 , κ−
3 + κ−

4 , κ−
1 , κ−

1 + κ−
4 } − min{κ−

3 , 0}
= min{κ−

3 , κ−
1 } − 0,

and because we set κ−
1 = 1, we have κ−

2 > min{κ−
3 , 1}. Similarly, for κ−

3 we obtain
κ−

3 > min{κ−
2 , 1}. From both inequalities, we can conclude that each of κ−

2 , κ−
3 must

be at least 1, and choosing them minimally yields

κ−
2 = κ−

3 = 2.

Using these parameters defines κ∆ according to (11).
It can be checked easily that κ∆ yields the conditional beliefs that penguin-birds do

not fly (κ∆ |= (f |pb) because of κ∆(pbf) = 1 < 2 = κ∆(pbf)), and that also penguins
are expected to have wings (κ∆ |= (w|p) because of κ∆(pw) = 1 < 2 = κ∆(pw)). So,
c-representations do not suffer from the so-called drowning problem, particularly a
problem of system Z [21]. Moreover, also both kiwis and doves inherit the property
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of having wings from their superclass birds, due to κ∆(kw) = 0 < 1 = κ∆(kw) and
κ∆(dw) = 0 < 1 = κ∆(dw).

Suppose now that the agent gets to know that this is false for kiwis - kiwis do
not possess wings - and we want the agent to adopt this new information which has
escaped her beliefs before. So, the agent wants to change her beliefs about the world,
but the world itself has not changed. Hence conservative revision is the proper belief
change operation and amounts to computing a new inductive representation for the
set ∆′ = {(f |b), (b|p), (f |p), (w|b), (b|k), (b|d)} ∪ {(w|k)}, i.e. a c-revision of κu by
∆′ has to be computed: κ∆′ = κu ∗c ∆′. Note that the new information (w|k) is
not consistent with the prior epistemic state κ∆ but with the context information ∆
which is refined by (w|k).

Alternatively, let us suppose that the agent (with current epistemic state κ∆)
learned from the news, that, due to some mysterious illness that has occurred recently
among doves, the wings of newborn doves are nearly completely mutilated. She wants
to adopt her beliefs to the new information (w|d). Obviously, the proper change
operation in this case is an update operation as the world under consideration has
changed by some event (the occurrence of the mysterious illness).

The updated epistemic state κ∗ = κ∆ ∗c {(w|d)} is a c-revision of κ∆ by {(w|d)}
and can be obtained from κ∆ via (11) by setting κ∗(ω) = κ∆(ω) + 2 for any ω with
ω |= dw and setting κ∗(ω) = κ∆(ω) otherwise.

While the conservatively revised state κ∆′, by construction, still represents the
six conditionals that have been known before (and, of course, the new conditional),
it can be verified easily that the updated state κ∗ only represents the five conditionals
(f |b), (b|p), (f |p), and (w|b), (b|k), but it no longer satisfies (b|d) because κ∗(bd) =
κ∗(bd) = 1 - since birds and wings have been plausibly related by the conditional
(w|b), the property of not having wings casts (reasonably) doubt on doves being birds.
Moreover, the agent is now also uncertain about the ability of doves to fly, as also
κ∗(fd) = κ∗(fd) = 1. This illustrates that explicitly stated prior beliefs are kept
under conservative revision, but might be given up under update. It can be easily
checked that these effects would have been the same when c-revising κ∆′ instead of
κ∆, since the agent’s beliefs on kiwis and doves do not interfere. Moreover, note
that if the agent became aware of having missed to represent the conditional belief
(w|k) in the new world after the occurrence of the mysterious illness, still κ∆′ ∗c(w|b)
would be the most adequate result, because here background beliefs are affected, the
agent has learned (w|k) by conservatively revising κ∆.

118



Inductive Reasoning, Conditionals, and Belief Dynamics

5 Focusing and Conditioning
Focusing means applying generic knowledge to a reference class appropriate to de-
scribe the context of interest (cf. [12]). As this reference class is assumed to be
specified by factual information and indicates a shift in context (to that reference
class), focusing should be performed by updating the current epistemic state to fac-
tual information which is certain. It can easily be shown that both for ME-change
and for ordinal c-change, updating with such information results in conditioning the
prior epistemic state (see Propositions 2 and 3 below), and indeed, conditioning is
usually considered to be the proper operation for focusing. We share this view in
this paper, i.e., in our framework, focusing is done via conditioning resp. updating
with certain facts.

However, conditioning has been used for revision, too [17, 12]. So revision and
focusing are often supposed to coincide though they differ conceptually: revision
is not only applying knowledge, but means incorporating a new constraint so as to
change knowledge. Due to this conceptual mismatch, paradoxes have been observed.
Gärdenfors investigated imaging as another proper probabilistic change operation
[17]. Dubois and Prade argued that the assumption of having a uniquely determined
probability distribution to represent the available knowledge at best is responsible
for that flaw, and they recommend to use upper and lower probabilities to permit a
proper distinction (cf. [12]).

However, we will show that in our framework, it is easily possible to treat revi-
sion as different from focusing without giving up the assumption of having a single,
distinguished epistemic state as a result of revision and a base for inferences. Making
use of ME-revision for probabilities, and c-revisions for ranking functions, respec-
tively, it is indeed possible to realize this conceptual difference appropriately. To
make this clear, we have to consider belief changes induced by some certain informa-
tion A, that is, we learn proposition A with certainty. For probabilities, this means
that we assign probability 1 to A, while for ranking functions, we assign rank ∞
to A, see (13) (which implies particularly that A has rank 0). The following two
propositions reveal the difference between revision by a certain information A, as
realized according to (8) resp. (9) and (10), and focusing to A by conditioning; the
proofs are straightforward but tedious, using the mentioned equations.

Proposition 2. Let P be a distribution, ∆ ⊆ (L | L)prob a (P -consistent13) set of
probabilistic conditionals, and suppose A[1] to be a certain probabilistic fact.

(i) Focussing on A, i.e., updating P with A[1] via ME-revision is done by condi-
tioning and yields P ∗ME {A[1]} = P (·|A); in particular, (P ∗ME ∆)∗ME A[1] =

13∆ is P -consistent if there is a distribution Q with Q |= ∆ and Q(ω) = 0 whenever P (ω) = 0.
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(P ∗ME ∆)(·|A).

(ii) Conservatively revising P∗ME∆ with A[1] yields P∗ME(∆∪{A[1]}) = P (·|A)∗ME
∆.

An analogical statement holds for focussing and conservative revision for ranking
functions.

Proposition 3. Let κ be a ranking function, ∆ ⊆ (L | L) a (κ-consistent14) set of
conditionals, and suppose A to be a certain fact.

(i) Focussing κ on A, i.e., updating κ with the certain fact A via c-revision is
done by conditioning and yields κ ∗c A∞(ω) = κ|A(ω) for models ω of A; in
particular, (κ ∗c ∆) ∗c A∞ = (κ ∗c ∆)|A on the models of A.

(ii) Conservatively revising κ∗c ∆ with the certain fact A yields κ∗c (∆∪{A∞}) =
(κ ∗c A∞) ∗c ∆ (which coincides with (κ|A) ∗c ∆ on the models of A) if the
same parameters κ−

i are chosen for both c-revisions.

We present a ranking function adaptation of a probabilistic example from [33].

Example 4. A psychologist has been working with addicted people for a couple of
years. His experiences concerning the propositions

a : addicted to alcohol
d : addicted to drugs
y : being young

can be summarized by the ranking function κ as given in (14), serving as the initial
epistemic state of the psychologist here.

ω κ(ω) κ∗
1(ω) κ ∗c y∞(ω) κ∗

2(ω) κ∗
3(ω)

ady 4 4 3 2 2
ady 4 4 ∞ ∞ ∞
ady 3 3 2 1 1
ady 0 0 ∞ ∞ ∞
ady 1 6 0 3 4
ady 4 9 ∞ ∞ ∞
ady 2 2 1 0 0
ady 3 3 ∞ ∞ ∞

(14)

14∆ is κ-consistent if there is a ranking function κ′ with κ′ |= ∆ and κ′(ω) = ∞ whenever
κ(ω) = ∞.

120



Inductive Reasoning, Conditionals, and Belief Dynamics

The following conditionals can be entailed from κ:

(d|a), (a|d), (a|y), (a|y), (d|y), (d|y).

These conditionals express that when focussing on drugs and/or alcohol, usually,
people are not addicted to both, and that young people are usually addicted to drugs
but not to alcohol, while for older people, it is the other way round.

Now the psychologist is going to change his job: He will be working in a clinic
where addictions to both alcohol and drugs are not uncommon, more precisely, people
being addicted to drugs tend to also being addicted to alcohol. So, when starting to
work in the new environment, the psychologist c-revises his initial epistemic state κ
by ∆1 = {(a|d)}, yielding κ∗

1 = κ ∗c ∆1 (with minimal parameter).
After having spent a couple of days in the new clinic, the psychologist realized

that this clinic is for young people only, i.e., he has overlooked the certain fact y
that only young people are present in his new working context. He conservatively
revises κ∗

1 by y∞, yielding κ∗
2 = κ ∗c ∆2 with ∆2 = {(a|d), y∞}. Hence, according to

Proposition 3, he obtains κ∗
2 = (κ ∗c y∞) ∗c ∆1.

Note that κ∗
2 is different from the ranking function that the psychologist would

have obtained by focusing his beliefs represented by κ∗
1 on a young person; in that

case, he would have updated κ∗
1 by y∞, yielding κ∗

3 = κ∗
1 ∗c y∞ (which coincides with

κ∗
1|y on the models of y). Clearly, κ∗

2 and κ∗
3 are different (though the differences

are only small).

Propositions 2 and 3, as well as Example 4 show that, in a (generalized) frame-
work of inductive reasoning including belief revision, a proper distinction between
focusing and revision is not only possible, but even mandatory. This difference is akin
to the one between “conditioning” and “constraining” elaborated by Voorbraak [59]
for classes of probability functions (for a criticism of conditioning sets of probability
measures, cf. [22]). It is interesting to note that this difference between focusing and
(genuine) revision that is possible in our framework also allows for making a basic
difference between revising by factual evidence vs. revising by more generic pieces
of information. Example 4 nicely illustrates this difference when incorporating the
information “all people are young” (κ∗

2) vs. “a specific person is young” (κ∗
3).

However, a proper distinction between focusing and (general) revision is hard to
make in most frameworks. For instance, in probabilistics, conditioning is often per-
ceived as the main operation for adjusting to new information (revision) in Bayesian
approaches, and hence coincides with focusing, which may lead to unintuitive re-
sults. We illustrate this by discussing an example from [13] below. In that paper,
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a Baysian analysis was performed with conditioning as the major (and only) prob-
abilistic change operation, and it was argued that modelling ignorance via uniform
distributions can lead to counter-intuitive results. From that example, we extract
the main points for modelling it in the frameworks considered here to highlight the
erroneous effects that conditioning may have when applied too plainly.

Example 5 (adapted from [13]). Peter, Paul, and Mary are killers one of whom has
been hired by Big Boss to commit a murder. Police Inspector Smith knows that Big
Boss has first tossed a coin to decide whether it should be a man (Peter or Paul), or a
lady (Mary), but he does not know about the outcome of the tossing. So, initially, the
explicit beliefs of Smith are given by ∆1 = {(Peter ∨Paul)[0.5], Mary[0.5]}, and his
initial epistemic state can be calculated via the principle of maximum entropy: P1 =
ME(∆1). It is straightforward to see that P1(Mary) = 0.5, P1(Paul) = P1(Peter) =
0.25.

Now Smith comes to know that Peter has been arrested right before the murder,
so he could not have committed the crime. This piece of information can be encoded
by R2 = {¬Peter[1]}. When incorporating ∆2 by conditioning (which corresponds
to the usual Bayesian update), the new epistemic state would be P2 = P1(·|¬Peter),
and hence the new beliefs concerning Paul and Mary would be P2(Mary) = 2

3 , and
P2(Paul) = 1

3 . This seems to be unintuitive, as it gives undue precedence to Mary.
However, this (admittedly) unintuitive result is neither an argument against uni-

form priors, nor against maximum entropy or probability theory in general, but
caused by the confusion between focusing and revision. Incorporating ∆2 by con-
ditioning would be seen as focusing in our framework, which seems unappropriate
because we do not focus on (the reference class of) Peter not being the culprit, but
should understand ∆2 as an additional piece of information on the same level as
∆1 because both refer to exactly the same context, namely, the murder, and deliber-
ating on possible delinquents. This is exactly what conservative revision does. So,
the correct change operation here would be conservative revision instead of condi-
tioning, which results in computing P3 = ME(∆1 ∪ ∆2). Now, in fact, we obtain
P3(Mary) = P3(Paul) = 0.5, as expected.

Therefore, our approach shows that the problem addressed in the paper [13] is
not with uniform priors but with reducing probabilistic belief revision to Bayesian
conditioning, and that the problem can be solved within probabilistic reasoning if the
context of information (not necessarily only temporal meta-information) is properly
taken into a account and if a richer epistemic framework of revision is used where
inductive reasoning is an integral part of.

122



Inductive Reasoning, Conditionals, and Belief Dynamics

6 Conclusion
The central claim of this paper was that inductive reasoning can be considered as
a special case of epistemic belief revision. We should study the latter in order to
deliver an account of the former. This allowed us to present a general, abstract
framework based on epistemic states and conditionals and to show how a coher-
ent and homogeneous approach to inductive reasoning is possible realizing different
forms of inductive reasoning via conservative revision, updating, and focusing, where
all change operations are realized via the same revision operator, but applied in dif-
ferent ways. In particular, we could describe inductive reasoning from conditional
belief bases in a rich epistemic framework that takes epistemic states and condition-
als as basic encodings of information. We could thus capture how to inductively
reason from background beliefs in the form of belief bases or epistemic states. We
illustrated our ideas both for ordinal and probabilistic environments and finally
showed how commonly known paradoxes can be avoided in our framework.

We presented two semantical frameworks that allow for implementing these ideas
as a proof of concept: the principles of optimum entropy in probabilistics, and c-
representations/c-revisions for ranking functions. For future work, it would be inter-
esting to see what other semantical frameworks can be used resp. extended to realize
the cornerstones of our framework as described in Section 3, in particular in Section
3.4. Possibility theory [11] seems to be a most promising candidate here because
it is similar to ranking functions, at least in its product-based form [4]. First steps
towards elaborating this have been taken in [31, 30] but more needs to be done to fill
out the complete framework. Moreover, we mentioned Gärdenfors’ imaging [17] as
another probabilistic change operation that has interesting applications. However,
it is still not clear how imaging can be integrated in our approach, this is also part
of our ongoing work.
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