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Editorial Note to the Special Issue on
Multiple-Valued Logic

The year 2022 seems to finally bring a glimpse of post-COVID-19 life with hope to
return to a less isolated situation. While the COVID-19 was winding down, quantum
computing has been advancing in certainly giant steps. Between solid state quantum
computers to processors of up to thousands of qubits, the next generation beyond
NISQ devices seems to be behind the door. Multiple valued quantum qubits have
also been shown of great use and future quantum computers are very likely to use
for specific purpose more than two values. In parallel to quantum computers other
emerging technologies have been advancing in particular when related to the machine
learning applications, general purpose quantum computing and several technologies
related o high speed parallel massive data processing. Therefore this year’s special
issue on Multiple-Valued Logic includes papers from various areas of logic, logic
design, circuits and emerging technologies.

The first paper entitled Implementation of CMOS invertible logic on Zynq-SoC
Platform : A Case Study of Training BNN discusses the usage and implementation of
binarized neural networks on a FPGA simulator. In particular the article addresses
an invertible implementation: an alternative probabilistic computational model al-
lowing to provide bi-directional operations using stochastic computing. The paper
focuses on accelerating the PC to FPGA transfer latency by proposing to transfer
the data by using the AXI interface. The results show a considerable improvement.

The second paper entitled Efficient PAM-4 Symbol Estimation Using Soft Clus-
tering introduces multi-valued data transmission using four-level pulse amplitude
modulation (PAM-4) for the reduction bandwidth limitation in interconnects. The
quality of the transmitted signal is measured using an eye-opening monitor that uses
statistical properties of PAM-4. The results and simulations show the feasibility of
adaptive equalization for PAM-4 signaling.

The third paper entitled Data-Classification-Based Determination for Ophtal-
mological Examination Categories Using Machine Learning discusses a method for
determining examination categories using machine learning. The data classified are
patient hand-filled questionnaires. The paper is concerned with in particular the
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comparison of combination of word splitting approaches, word representation and
classification methods. As a result the paper shows that for this particular problem
the best combination is Sudachi, One Hot encoding and CatBoost.

The fourth paper entitled Construction Algorithms for Ternary Bent Functions
Derived from Their Particular Properties studies the algorithmic construction of
ternary bent functions. The proposed method is based on the information contained
in the value vector of bent functions resulting in six classes of ternary bent function.
To design bent functions within a class by permutation matrices with a specific
block structure. As a consequence, bent functions can be transformed to matrix
and vector representation of smaller length and therefore allow a faster generation
of new bent functions by permutation matrices on these shorter representations.

The fifth paper entitled Quantum Machine Learning, Logic Minimization, and
Circuit Design By Optimizing Ternary-Input Binary-Output Kronecker Reed-Muller
Forms the authors propose new spectral transform for ternary-input binary-output
functions that generalizes the binary Kronecker Reed-Muller forms. The authors
generalize past quantum Grover-based algorithms presented for the binary Fixed-
Polarity Reed-Muller and Kronecker Reed-Muller transforms. The algorithm can
be applied to incompletely specified functions, thus, introducing a new approach to
quantum Machine Learning.

In the next paper entitled DNA Technology for Multi-Valued Data Storage Using
Read Only Memory the authors present a multiple valued ROM architecture based
on the principles of DNA based computers. The high parallelism and the higher
radix of the DNA computing system allows to increase storage capacity.

The last paper entitled Ternary Functions with Bent Reed-Muller-Fourier Spectra
studies ternary functions which have a bent Reed-Muller-Fourier spectrum. The
studied 2-place functions are described in six classes and are shown to be related
by spectral invariance operations. Such ternary bent functions that have the same
value vector as their RMF bent spectra known as fixed points are generalized in this
paper to rotational fixed points. As a result a method to generate n-place ternary
functions with bent RMF spectrum when n > 2 is proposed.

I hope that you will find this year’s special issue exciting and motivating your
next advances in the exciting area of Multiple-Valued Logic and emerging Technolo-
gies

Martin Lukac Shinobu Nagayama
Nazarbayev University Hiroshima City University

Kazakhstan Japan
Guest Editors

Received May 2022652
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Abstract
In this article, we introduce a prototype of a Zynq system-on-chip

(SoC)-based hardware platform for complementary metal-oxide-semiconductor
(CMOS) invertible logic. CMOS invertible logic realizes probabilistic bidirec-
tional operations (forward and backward) using stochastic computing. Using
this unique feature, CMOS invertible logic hardware for several challenging
problems, such as factorization and the training of neural networks, can be im-
plemented on field-programmable gate arrays (FPGAs). However, a problem
with conventional FPGA-based implementations is the latency of data transfer
between the PC and the FPGA because of the universal asynchronous receiver-
transmitter (UART) interface, which can transmit only one byte of information
at once. The SoC-based CMOS invertible hardware proposed in this work is
implemented on a Xilinx Zynq-7000, and it communicates with the embedded
CPU (ARM Cortex-A9) via an Advanced eXtensible Interface (AXI); thus, the
data transfer latency is much less than that of a UART interface. For per-
formance evaluation, the proposed SoC-based training hardware was used to
train a 2-layer binarized convolutional neural network (BCNN) model using a
simplified dataset based on the Modified National Institute of Standards and
Technology (MNIST) database as the training dataset, and the results were
compared with those of a conventional FPGA implementation. The proposed
implementation achieved 14.4x lower data transfer latency.
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1 Introduction

Invertible logic provides the ability to perform probabilistic bidirectional operations
(in both forward and backward modes), which are difficult to realize in typical
binary logic gates [1]. In forward mode, an invertible logic circuit produces outputs
corresponding to given inputs, similar to a typical binary logic circuit. In contrast, in
backward mode, the circuit probabilistically determines the inputs that correspond
to a given output. This unique feature is derived from a Boltzmann machine [2]
and a probabilistic nanomagnetic device model [3]. The capability of bidirectional
operations is realized by driving the energy of a network to converge to the global
minimum under noise signals.

However, invertible logic as described in [1] is difficult to implement in hard-
ware because the device model is designed using a magnetic tunnel junction [4].
In complementary metal–oxide–semiconductor (CMOS) invertible logic [5], the de-
vice model is approximated by means of stochastic computing [6]. Through such
approximation, invertible logic circuits can be implemented on field-programmable
gate arrays (FPGAs) or application-specific integrated circuits (ASICs). Thus, with
CMOS invertible logic, hardware solutions can be easily implemented for several
challenging problems, such as integer factorization [5] (invertible multipliers), com-
binational optimization, and the training of binarized convolutional neural networks
(BCNNs) [7, 8]. For example, training hardware based on CMOS invertible logic
[9, 8] can achieve a training process latency of 0.067 s, which is approximately 40x
faster than training on a CPU. However, the total latency including data transfer
is 1.92 s; hence, data transfer represents a major bottleneck. Conventional CMOS
invertible logic circuits are implemented on FPGAs, and such a circuit sends and
receives data using a universal asynchronous receiver-transmitter (UART) interface.
A UART interface can transmit only one byte of information at once; thus, the
latency of data transfer constitutes most of the latency of the entire process for
conventional CMOS invertible logic hardware. These FPGA-based implementations
are not suitable for applications that require the processing of enormous amounts of
data, such as the training of a BCNN.

In this paper, we present the design flow of a system-on-chip (SoC)-based CMOS
invertible logic platform for efficient data transfer. A Xilinx Zynq SoC FPGA board
has an embedded processor and uses the Advanced Microcontroller Bus Architec-
ture (AMBA) Advanced eXtensible Interface (AXI) specification for communication
between a programmable logic (PL) circuit and the embedded processor (PS). By
using an AXI interface, such a SoC-based CMOS invertible logic circuit can realize
faster data transfer than an FPGA-based implementation. As a case study, training
hardware for a 2-layer BCNN model was implemented on a Xilinx Zynq-7000 chip
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Implementation of CMOS Invertible Logic on Zynq-SoC Platform

(a) (b)

Figure 1: (a) Example of an invertible logic XNOR gate. In forward mode, the
output (m4) is calculated from the given inputs (m1 and m2). In backward mode,
the inputs corresponding to a fixed output are obtained. (b) The Hamiltonian
configuration of an invertible XNOR gate. m1 and m2 correspond to the inputs to
the XNOR gate, and m4 corresponds to the output. m3 is arbitrary.

and used to train a BCNN model using a simplified dataset based on the Modified
National Institute of Standards and Technology (MNIST) database [10]. The data
transfer latency of the proposed SoC-based training hardware is 0.128 s, which is
approximately 14.4x lower than that of FPGA-based training hardware for the same
amount of data [8].

The rest of this paper is organized as follows. Section 2 reviews CMOS invertible
logic and its applications. Section 3 describes the design flow of the prototype
SoC-based CMOS invertible logic circuit for BCNN training hardware. Section 4
evaluates the cognition accuracy and the training speed and compares them with
those of FPGA-based training hardware based on CMOS invertible logic. Section 5
concludes the paper.

2 Preliminaries

2.1 CMOS invertible logic

CMOS invertible logic enables CMOS digital circuits to perform probabilistic bidi-
rectional operations [5]. Fig. 1 (a) illustrates an example of bidirectional operations
using an invertible XNOR gate. In forward mode, the inputs (m1 and m2) are fixed
and an output (m4) is computed, similar to a typical binary logic gate. In backward
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Truth table Node states
m1 m2 m3 m4 m1 m2 m3 m4 E Validity
0 0 0 0 -1 -1 -1 -1 -2 Invalid
1 0 0 0 +1 -1 -1 -1 4 Invalid
0 1 0 0 -1 +1 -1 -1 4 Invalid
0 0 1 0 -1 -1 +1 -1 -2 Invalid
0 0 0 1 -1 -1 -1 +1 -4 Valid
1 1 0 0 +1 +1 -1 -1 14 Invalid
1 0 1 0 +1 -1 +1 -1 -4 Valid
1 0 0 1 +1 -1 -1 +1 -2 Invalid
0 1 1 0 -1 +1 +1 -1 -4 Valid
0 1 0 1 -1 +1 -1 +1 -2 Invalid
0 0 1 1 -1 -1 +1 +1 4 Invalid
1 1 1 0 +1 +1 +1 -1 -2 Invalid
1 1 0 1 +1 +1 -1 +1 4 Invalid
1 0 1 1 +1 -1 +1 +1 -2 Invalid
0 1 1 1 -1 +1 +1 +1 -2 Invalid
1 1 1 1 +1 +1 +1 +1 -4 Valid

Table 1: The truth table of an XNOR gate and the table of the node states. The
gate has 4 nodes; thus, there are 24 possible state combinations in total. When every
state corresponds to the correct behavior of an XNOR gate, h and J are determined
such that the energy is minimal. -1 means a logical value of ‘0’, and +1 means ‘1’.
The minimal energy is -4 in the case of an XNOR gate.

mode, the output (m4) is fixed, and the possible combinations of inputs correspond-
ing to a fixed output are probabilistically determined. For instance, if m4 is fixed
to ‘1’, the inputs are determined to be (m1, m2) = (1, 0) or (0, 1), which are the
possible input combinations for an XNOR gate. A CMOS invertible logic circuit is a
network of nodes based on a Boltzmann machine [2]. A network configuration for an
invertible XNOR gate, as shown in Fig. 1 (b), consists of four nodes categorized as
input nodes (m1 and m2), an output node (m4), and an arbitrary node (m3). Each
node has a bias (hi), and it is connected to each other node with corresponding in-
teraction weights (Jij). The values of hi and Jij are determined by the Hamiltonian
H, which is the energy of the network and is defined as follows:

H = −
∑

i

himi −
∑

i<j

Jijmimj , (1)
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Implementation of CMOS Invertible Logic on Zynq-SoC Platform

where mi ∈ [−1, 1] represents the output of a node (a node state). In Eq. (1), mi

can take values of -1 and +1, where -1 corresponds to a logical value of ‘0’ and
+1 corresponds to a logical value of ‘1’. The Hamiltonian of a basic logic gate,
such as an XNOR gate or an AND gate, is obtained by ground-state spin logic
[11, 12]. In ground-state spin logic, the energy is at the global minimum when
all nodes are in valid states for the function that is to be computed via invertible
logic. For example, [m1,m2,m3,m4] = [0, 0, 0, 1] are valid states for an embedded
XNOR gate; thus, the energy is at the global minimum. In contrast, the energy
is greater than the global minimum when some nodes are not in valid states. The
Hamiltonian of an XNOR gate involves four nodes, as illustrated in Fig. 1 (b),
although the XNOR gate itself has only two inputs and one output. This is because
a Hamiltonian that contains only three nodes cannot represent the global minimum
when all nodes are in valid states for an XNOR gate [12]. With the addition of an
arbitrary node, the Hamiltonian becomes able to represent the global minimum for
an XNOR gate. Table 1 shows the truth table for an XNOR gate and the node
states in the Hamiltonian of the XNOR gate. Based on ground-state spin logic, hi
and Jij of the invertible XNOR gate are determined as follows:

mi =
[
m1 m2 m3 m4

]
,

hi =
[
−1 −1 +2 +1

]
, (2a)

Jij =




0 −1 +2 +1
−1 0 +2 +1
+2 +2 0 −2
+1 +1 −2 0


 . (2b)

Fig. 2 shows an example of the landscape of a Hamiltonian. The Hamiltonian is
designed to reach its global minimum when all nodes are in valid states for the de-
sired function. Therefore, bidirectional operation of a CMOS invertible logic circuit
is realized by converging the Hamiltonian (energy) to the global minimum. When a
CMOS invertible logic circuit is operating, the energy is driven to converge by fluctu-
ations in the unfixed nodes. For instance, when an invertible XNOR gate operates in
backward mode, the output node (m4) is fixed, while the input and arbitrary nodes
(m1, m2, and m3) fluctuate. The unfixed nodes are driven to fluctuate using noise
signals (nrnd) to prevent the energy from becoming trapped in a local minimum.
The details of these noise signals are introduced in the next subsection.

In CMOS invertible logic, the probabilistic behavior of the nodes can be approx-
imated using CMOS digital circuits by means of stochastic computing [6]; thus, such
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Figure 2: The energy convergence of the Hamiltonian. In invertible logic, the energy
is driven by noise signals (nrnd) to converge to the global minimum, when all nodes
take valid states.

Figure 3: The multiplication of binary and integer stochastic bit streams (y = a · s).
Multiplication in stochastic computing can be realized using a multiplexer.

circuits can be easily implemented on FPGAs or ASICs [5]. In stochastic computing,
values are represented by frequencies of ‘1’s in random bit streams. Let us denote
by x ∈ {0, 1} a stochastic bit stream, and let the probability of the appearance of a
‘1’ in this bit stream be denoted by Px. In binary stochastic computing, in which
the range of the represented values X is -1 to +1, X is defined as X = 2 · Px − 1.
On the other hand, integer stochastic computing requires the representation of real
values X ∈ [−r,+r], where r ∈ {1, 2, ...}, using several stochastic bit streams [13].
Stochastic computing has recently been used in several applications to achieve area-
efficient hardware implementations [14, 15]. The behavior of a node is defined using
stochastic computing as follows:

mi(t+ τ) ≈ sgn(tanh(Ii(t+ τ))), (3a)

Ii(t+ τ) ≈ hi +
∑

Jijmj(t) + nrnd · sgn(rnd(−1,+1)), (3b)
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Implementation of CMOS Invertible Logic on Zynq-SoC Platform

(a) (b)

Figure 4: (a) Block diagram of a spin gate. In CMOS invertible logic, the nodes are
implemented using CMOS digital circuits called ‘spin gates’. (b) The FSM of the
saturated bit counter in the spin gate. The tanh function is approximated to Stanh,
which is implemented in the FSM. The number of states is determined by the noise
parameter MVAL.

where nrnd is a parameterized noise signal and t and τ are cycle times. The tanh
function in Eq. (3a) is approximated to Stanh (the stochastic tanh function) using
stochastic computing [15]. The details of the approximation in stochastic computing
are described in the next subsection. Fig. 3 shows the multiplication of a binary
stochastic bit stream and an integer stochastic bit stream using a multiplexer. The
output of a node, mi(t), is a binary stochastic bit stream; therefore, the multiplica-
tions of Jij and mj(t) can be computed by multiplexers [6, 14].

2.2 Hardware implementation based on CMOS invertible logic
The probabilistic node operations defined in Eq. (3a) and Eq. (3b) are implemented
by a ‘spin gate’ using a CMOS digital circuit [5]. Fig. 4 (a) shows a block diagram of
a spin gate. The output of the spin gate, mi, is either “-1” or “+1” in Eq. (3a) and
Eq. (3b); however, mi is represented as taking logical values of ‘0’ or ‘1’. Therefore,
hi and Jij are modified to be consistent with a spiking neuron model, and LKi and
Wij are given as follows:

LKi = hi −
∑

j

Jij , (4a)

Wij = Jij . (4b)
Using this spiking neuron model, multiplications and summations of the interaction
weights can be implemented using multiplexers. The tanh function is approximated
to Stanh, which is realized as a finite state machine (FSM), as shown in Fig. 4 (b).
The Stanh function is given as follows:

Stanh(MVAL, x) ≈ tanh(x ·MVAL/2). (5)
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Figure 5: Example of a parameterized noise signal. The noise signal is controlled by
5 noise parameters, namely, RW, RS, T, MVAL, and α.

The number of FSM states is determined to be 2 ·MVAL, where MVAL is a noise
parameter. The spin gate computes its output mi when the output is not fixed;
otherwise, it delivers only a fixed input value.

The energy of a CMOS invertible logic circuit is driven to convergence using
parameterized noise signals nrnd. Fig. 5 shows an example of such a noise signal,
including the noise parameters. The parameterized noise signal is controlled by five
parameters, namely, RW, T, RS, MVAL, and α. RW is the magnitude of the noise
signal, and T is the cycle time for which the noise magnitude remains constant.
RS represents a reduction in the noise signal; the noise signal decreases by RS over
RS cycles. If RS is 0, the magnitude of the noise signal remains constant over 2T
cycles. α is a scaling factor of the noise signal; the noise signal scaled by α is given
as follows:

n′
rnd = 2α · nrnd. (6)

Such a scaled noise signal is applied to a node that needs stronger noise than other
nodes. As mentioned before, MVAL is a parameter of the FSM shown in Fig. 4 (b).

CMOS invertible logic has recently been adopted in several applications, such as
an invertible multiplier (factorization) [5] and training hardware for BCNNs [7, 8].
These hardware designs were implemented on ASICs or FPGAs, and they achieved
fast operation times and high power efficiency. For example, in our previous work,
training hardware for a 2-layer BCNN model achieved a training time of 0.067 s when
using 100 training samples. However, the entire training time, including the latency
of data transfer, was 1.92 s, of which the hardware operation time accounted for
only 3.5%. This training hardware for BCNNs was implemented on an FPGA, and
it received the noise parameters and the training dataset through a UART interface
[16]. A UART data frame is only 8 bits in length, and this is not suitable for training
neural networks because such training requires enormous amounts of data.
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Implementation of CMOS Invertible Logic on Zynq-SoC Platform

Figure 6: Block diagram of the SoC-based CIL hardware prototype. The pro-
grammable logic (PL) part contains a CIL core, which is designed based on the
Hamiltonian; a controller for the CIL core; and AXI interfaces. The embedded
ARM Cortex-A9 (PS) transmits the fixed input and noise parameters through AXI
interfaces. The CIL core informs the processor through an interrupt signal that the
operation for the given fixed input has been completed.

3 Design flow of the SoC-based invertible logic proto-
type

Fig. 6 shows the architecture of our SoC-based CMOS invertible logic (CIL) hard-
ware prototype. The PL part contains a CIL core, a controller for the CIL core, and
an AXI slave interface to communicate with the embedded processing system (PS).
When the hardware operates, the CIL core receives the noise parameters and the
fixed input data from the processor via the AXI interface, and then, the controller
initiates the bidirectional operation of the CIL core by means of a comp enable sig-
nal. If a correct output for the given input is obtained, the CIL core notifies the
controller that the operation has been completed by means of a comp finish signal,
and then, the controller informs the processor using an interrupt signal. Finally, the
output obtained from the bidirectional operation is transmitted by the AXI interface
to the processor. The prototype hardware is composed of the PS part and the PL
part; thus, each part of the hardware requires a proper design flow.

3.1 PL design flow

The design flow of the PL part of the prototype is shown in Fig. 7 (a). The CIL core
shown in Fig. 6 is designed based on the Hamiltonian converted from the function
that is to be computed via CIL. However, it is difficult to obtain a Hamiltonian
with a complex structure, such as the Hamiltonian for training hardware, using
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(a)

(b)

Figure 7: (a) Design flow of the PL part. The CIL hardware is designed based
on the Hamiltonian converted from a desired function. (b) Block diagram of the
CIL core. The node block is designed based on the Hamiltonian. The XOR-shift
generator generates random noise signals, and the node block controller controls the
magnitude of the noise signals and the operation of the node block.

ground-state spin logic. Therefore, the final complex Hamiltonian is obtained by
combining smaller Hamiltonians, such as the Hamiltonians of individual logic gates
[17]. Fig. 8 (a) and (b) illustrate the process of combining Hamiltonians. The
example circuit contains two XNOR gates (XNOR1 and XNOR2), and the output
of XNOR1 (m4) is used as an input to XNOR2. The Hamiltonian of each XNOR
gate can be represented as a matrix, as shown in Fig. 8 (b). m4 is a common node
in both Hamiltonians, and the Hamiltonian of the entire example circuit can be
represented as a single matrix, as shown in Fig. 8 (b). Additionally, the biases are
combined by summing the biases of the common nodes. The network representation
of the Hamiltonian is converted into a SystemVerilog model. The CIL core consists
of a node block, an XOR-shift generator [18], and a node block controller, and its
block diagram is shown in Fig. 7 (b). The node block, which is a main component of
the CIL core, consists of spin gates (p-bits) in accordance with the network structure
of the Hamiltonian. The Hamiltonian is represented as a vector and the weight map
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(a)

(b)

Figure 8: Example of the combination of Hamiltonians. (a) A logic circuit diagram
of two XNOR gates (XNOR1 and XNOR2). The output (m4) of XNOR1 is used as
an input to XNOR2. (b) The combination of the Hamiltonians of the two XNOR
gates. m3 and m6 are arbitrary nodes, m1 and m2 are the input nodes of XNOR1,
and m4 is its output node. m4 is used as an input to XNOR2.

for assignment to the spin gates in the Verilog design. The Verilog snippet for the
example circuit shown in Fig. 8 (a) is given below:
module node_block
#(parameter i n t e g e r WEIGHT_WIDTH = . . . ) ; // Parameter d e c l a r a t i o n .
( output_signals , i n p u t _ s i g n a l s , . . . ) ; // I /O d e c l a r a t i o n .
// Number o f nodes .
parameter i n t e g e r N = 7 ;
parameter i n t e g e r NUM_WEIGHTS = 1 2 ;
parameter i n t e g e r NS [ 0 : N−1] = ’ { 3 , 3 , 3 , 6 , 3 , 3 , 3 } ;
// B i a s e s .
parameter i n t e g e r LEAKS [ 0 : N−1] = ’{1 ,1 , −8 ,2 ,1 , −8 ,1};
// I n t e r a c t i o n weights .
parameter i n t e g e r WEIGHTS [ 0 :NUM_WEIGHTS−1] = ’{ −2 ,4 , −2 ,4 , −2 ,4 , −2 ,4 , −2 ,4 , −2 ,4};
parameter i n t e g e r WEIGHT_MAP [ 0 : N−1] [ 0 : 6 − 1 ] =

’{ ’{0 ,1 ,2 , −1 , −1 , −1} ,
’{0 ,3 ,4 , −1 , −1 , −1} ,
’{1 ,3 ,5 , −1 , −1 , −1} ,
’ { 2 , 4 , 5 , 6 , 7 , 8 } ,
’{6 ,9 ,10 , −1 , −1 , −1} ,
’{7 ,9 ,11 , −1 , −1 , −1} ,
’{8 ,10 ,11 , −1 , −1 , −1}};

parameter i n t e g e r OUT_MAP [ 0 : N−1] [ 0 : 6 − 1 ] =
’{ ’{1 ,2 ,3 , −1 , −1 , −1} ,

’{0 ,2 ,3 , −1 , −1 , −1} ,
’{0 ,1 ,3 , −1 , −1 , −1} ,
’ { 0 , 1 , 2 , 4 , 5 , 6 } ,
’{3 ,5 ,6 , −1 , −1 , −1} ,
’{3 ,4 ,6 , −1 , −1 , −1} ,
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’{3 ,4 ,5 , −1 , −1 , −1}};
// . . .
f o r ( i =0; i<N; i ++) begin

wire [ NS [ i ] − 1 : 0 ] p b i t _ i n p u t _ s i g n a l s ;
wire s i g n e d [WEIGHT_WIDTH−1:0] pbit_weight_vector [ 0 : NS [ i ] − 1 ] ;

f o r ( j =0; j<NS [ i ] ; j++) begin
a s s i g n pbit_weight_vector [ j ] = pbit_weight_dout [WEIGHT_MAP[ i ] [ j ] ] ;
a s s i g n p b i t _ i n p u t _ s i g n a l s [ j ] = pbit_output_signals [OUT_MAP[ i ] [ j ] ] ;

end
// Assign i n t e r a c t i o n weights to p−b i t u s i n g WEIGHTS and WEIGHT_MAP.
p b i t #( p b i t parameters ) p b i t _ i n s t ( . weights ( pbit_weight_vector ) ) ;
a s s i g n o u t p u t _ s i g n a l s [ i ] = pbit_output_signals [ i ] ;

end
endmodule

The XOR-shift generator generates random numbers for the noise signals, and the
node block controller controls the operations of the node block, including controlling
the noise signals. Following the design of the CIL core, a custom IP core based on
the CIL core is generated through FPGA design tools, such as Xilinx Vivado, for
hardware/software codesign. The Verilog snippet for the CIL core is given below:
module CIL_core

#(parameter i n t e g e r WEIGHT_WIDTH = . . . ) ; // Parameter d e c l a r a t i o n .
( output_signals , i n p u t _ s i g n a l s , . . . ) ; // I /O d e c l a r a t i o n .

// AXI i n t e r f a c e d e c l a r a t i o n from the X i l i n x vivado AXI example .

node_block node_inst ( . . . ) // Node b l oc k i n s t a n c e
ctr_mult c t r _ i n s t ( . . . ) // Node bl ock c o n t r o l l e r i n s t a n c e
x o r s h i f t prng_inst ( . . . ) // XOR s h i f t i n s t a n c e

endmodule

By means of this IP core, the CIL core can be merged easily with the IP core
of the Zynq processor or the AXI interface. Finally, the bitstream file for imple-
mentation is generated from the entire PL design, comprising the IP cores for the
embedded processor and the CIL core.

3.2 PS design flow
Fig. 9 (a) shows the design flow of the proposed SoC-based CIL hardware. The
operating system (OS) of the prototype hardware is Linux, and Das U-Boot is used
as the bootloader. While booting the Linux system, a device tree [19] file is required
for Linux to correctly recognize the CIL core, and it is generated by the Xilinx
Hardware Software Interface (HSI) tool. Additionally, to utilize the custom IP in
the system, a device driver is needed. In general, a device driver runs in the kernel
space of a Linux system; however, the driver of the CIL core is run in the userspace
through a Universal I/O (UIO) interface [20]. The UIO framework enables the
development of drivers similar to those of software applications. Thus, it is easy
to adapt to custom devices such as the CIL core. Additionally, the SoC-based CIL
hardware introduced in this paper is a prototype, so a UIO driver is suitable for
further improvements. The UIO driver allows access directly to the registers of
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(a) (b)

Figure 9: (a) The design flow of the PS. The OS is Linux, including the bitstream
from the PL part. After the OS is built, the device driver is built using a UIO
driver. Finally, a Python application is prepared to use the CIL hardware. (b)
The structure of the PS including the PL part. In general, device drivers run in a
kernel space; however, the driver for the CIL core, which is a custom IP, runs in the
userspace through the UIO interface.

the hardware and device files through a device file located in ‘/dev/uio0’ on the
Linux system. As mentioned before, when the CIL core completes its operations,
an interrupt signal is sent from the controller in the PL part. With a UIO driver,
the processor can handle this interrupt signal by reading the device file. A Python
application transmits the input data to the CIL core (PL) and receives the result
from the CIL core. Additionally, the noise parameters are transmitted from the
application. When the application is operating, it communicates with the CIL core
by assigning the addresses of registers through the AXI interface. A simple example
of the Python application using a register address is given below:
from l i b . u i o import Uio

c l a s s Pl :
MSHOT_REGS = 0 x00
RW_REGS = 0 x04
# . . .
W1_REGS = 0x2C
RESET_REGS = 0 x44

d e f __init__ ( s e l f ) :
s e l f . u io = Uio ( ’ uio0 ’ , l e n g t h=0x1000 )
s e l f . r e g s = s e l f . u i o . r e g s ( )

p l = Pl ( )

# Write 1 to RESET r e g i s t e r .
p l . r e g s . write_word ( Pl .RESET_REGS, 1)
# Read from W1 r e g i s t e r .
out_W1 = p l . r e g s . read_word ( Pl .W1_REGS)

Through this design flow, the PS architecture of the SoC-based CIL hardware is
described as shown in Fig. 9 (b).
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Figure 10: The 2-layer BCNN model used to test the proposed training hardware.
It contains two binarized convolutional layers. The filter size of BC1 and BC2 is 5x5
pixels.

(a) (b)

Figure 11: (a) The computation block for a binarized convolutional layer and the
activation function of the BCNN model. (b) The configuration of the Hamiltonian
for the training hardware. The nodes are categorized into input nodes, label nodes,
weight nodes, and arbitrary nodes. On the basis of this Hamiltonian, the design of
the CIL core is determined.

4 Evaluation

4.1 Case study: BCNN training hardware

For performance evaluation, we implemented training hardware for a 2-layer BCNN
model [8] as a SoC-based prototype. Fig. 10 shows the 2-layer BCNN model that
was used for the evaluation. It contains 2 binarized convolutional layers (BC1 and
BC2) without biases, and its activation function is a threshold function. A training
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dataset was organized by selecting ‘0’, ‘1’, and ‘5’ from the MNIST dataset [10],
reducing the size of the images from 28x28 pixels to 9x9 pixels, and binarizing them.
The details of the trained model and the dataset are described in [8].

The proposed training hardware for the 2-layer BCNN model is based on CIL;
thus, the BCNN model must be converted into a Hamiltonian. The 2-layer model
consists of binarized convolutional layers, so its inference computations can be imple-
mented in logic circuits [21]. Fig. 11 (a) shows the computation block for a binarized
convolutional layer and the activation function, which contains XNOR gates, a bit
counter, and a threshold function. The components of this computation block can be
converted into the corresponding Hamiltonian using ground-state spin logic. Thus,
the Hamiltonian of the training hardware is obtained by combining the Hamilto-
nians of the components using the method shown in Fig. 8 (b). The Hamiltonian
structure of the training hardware is shown in Fig. 11 (b); it consists of 2645 nodes,
which are categorized into input nodes (x), label nodes (t), weight nodes (W ), and
arbitrary nodes. For the prototype training hardware based on CIL, the CIL core
in the PL part was designed in accordance with this Hamiltonian.

When the training hardware operates, the input and label nodes are fixed as the
training data and the true labels, respectively. Then, the weight and arbitrary nodes
are driven to fluctuate by noise signals, and eventually, they reach stability when
the energy converges to the minimum. The Hamiltonian of the training hardware
is designed to take its minimum value when all nodes are in valid states, so the
states of the weight nodes will correspond to the valid weights for the training data.
However, the weights obtained in this way will be valid for only the one training
data sample used to set the input and label nodes, not the entire dataset. The
training hardware performs this process for each training sample to determine the
final weights for the entire dataset. Let us use w to denote the individual weights
from each training sample and N to denote the number of training samples in the
dataset. The final weights for the entire dataset, W , are calculated as follows:

W =
∑N
n wn
N

. (7)

4.2 Test environment
The prototype hardware was implemented on a Xilinx Zynq-7000 ZC706 SoC FPGA
board, and the embedded processor was an ARM Cortex-A9. Fig. 12 shows the test
environment of the proposed SoC-based training hardware on the ZC706 FPGA
board and the Python application on the embedded processor. The PL design was
written in SystemVerilog and synthesized using Xilinx Vivado 2018.3. The power
dissipation of the PL part is 0.732 W with a clock frequency of 12.5 MHz, and that
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Figure 12: Test environment of the SoC-based CIL hardware.

Work This work FPGA-based hardware [8]
Clock frequency 12.5 MHz

Utilization of LUTs 176501 / 218600 (80.74%) 170317 / 203800 (83.57%)
Utilization of FFs 43170 / 437200 (9.87%) 42951 / 407600 (10.54%)

Power dissipation of PS 1.566 W -
Power dissipation of PL 0.732 W 0.913 W

Table 2: FPGA resource and power dissipation comparisons between the proposed
SoC-based training hardware and the FPGA-based hardware.

of the PS is 1.566 W with a clock frequency of 667 MHz. The FPGA resource
utilization and the power dissipation of the SoC-based hardware are summarized in
Table 2, and they are compared with those of the FPGA-based hardware. Although
the model trained here is only a 2-layer BCNN and the training dataset is quite small,
the implemented Hamiltonian consists of 2,645 nodes, and both the SoC-based and
FPGA-based training hardware implementations utilize almost all of the resources
of the FPGA board. To implement training hardware for larger neural network
models, such as LeNet-5, it would be necessary to convert from the neural network
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Figure 13: Comparisons of the data transfer latency between SoC-based and FPGA-
based CIL training hardware implementations for a 2-layer BCNN model. The la-
tencies of the FPGA-based hardware are estimates except for the case of training
on 100 data samples. The data transfer latency of the SoC-based hardware is ap-
proximately 14.4x lower than that of the FPGA-based hardware.

model to a Hamiltonian that contains fewer nodes. The total power dissipation (PS
+ PL) of the SoC-based training hardware is higher than that of the FPGA-based
hardware; however, the FPGA-based hardware also requires a processor, such as a
PC, to execute the application. Therefore, in practice, the actual power dissipation
of the FPGA-based hardware is higher than that of the SoC-based hardware.

The OS on the processor is Ubuntu 16.04, and the UIO driver and the application
were written in Python 3.5. The SoC-based hardware is compared with the hardware
from our previous work, which was implemented on a Digilent Genesys2 FPGA
powered by a Xilinx Kintex-7. The clock frequency of this FPGA-based training
hardware is 12.5 MHz, and it receives the training data via a UART interface.

4.3 Performance comparisons

The PL design of the SoC-based training hardware is the same as that of the FPGA-
based training hardware; thus, we mainly compare the latency of data transfer. The
training hardware treats a process spanning 2T + RS clock cycles as one shot in
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regard to the noise signals [8]. Therefore, the number of clock cycles for which the
hardware operates is given as follows:

Ncycle = Nshot ∗ (2T + RS), (8)

where Ncycle is the number of cycles and Nshot is the number of shots. The FPGA-
based hardware was used to train the model on 100 data samples in 7883 shots, and
the combination of noise parameters was [RW,RS,T,MVAL, α] = [17, 0, 53, 18, 2].
In this case, the hardware operation time calculated from the number of clock cycles
for which the hardware operates is 0.06685 s. However, the entire training time
including data transfer is 1.92 s, indicating that the latency of data transfer is 1.85
s. In contrast, under the same conditions, the data transfer latency of the SoC-
based hardware is 0.128 s, which is approximately 14.4x lower than that of the
FPGA-based hardware. For training on one sample of training data, the training
hardware receives a 9x9-pixel input image and a 3-bit true label and returns a 100-
bit set of trained weights. The FPGA-based hardware communicates using a UART
interface; therefore, data communication is performed 23 times. On the other hand,
the proposed SoC-based hardware uses an AXI interface, which can handle 32 bits of
data at once, so data communication is performed only 6 times. Thus, the SoC-based
CIL hardware reduces the number of data communications and is more suitable for
applications that need larger amounts of data.

The proposed training hardware based on CIL achieves a maximum cognition
accuracy of 87.97% when using 100 training samples. The maximum accuracy of
conventional training using backpropagation is 90.89%. Thus, the accuracy of the
CIL-based training hardware is slightly reduced compared to that of conventional
training. However, conventional training requires training on 10,800 samples of
data 10 times to reach the maximum accuracy (max epochs = 10). Accordingly, the
training time for conventional training is 2.68 s, which is 13.7x the training time of
the proposed hardware.

Fig. 13 shows comparisons of the data latency between the SoC-based training
hardware and the FPGA-based training hardware. The latency of the FPGA-based
hardware is estimated except for the case of training on 100 data samples. When the
FPGA-based hardware is used to train the model on 1000 samples, the data transfer
latency is 18.5 s, which already represents a considerable bottleneck although the
size of this training set is small compared to general datasets for training neural
networks. In contrast, the measured latency of the SoC-based hardware in the case
of training on 1000 data samples is 1.65 s, indicating that the SoC-based hardware
suppresses the latency increase. Therefore, it is obvious that the SoC-based hardware
is more suitable for data-consuming applications, such as training neural networks.
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5 Conclusion
In this paper, we have introduced the prototyping of SoC-based CIL hardware for
data-consuming applications, such as the training of BCNNs. FPGA-based CIL
hardware receives its input data and noise parameters via a UART interface, which
results in slow data transfer. Because the presented SoC-based hardware communi-
cates with the embedded processor on the Zynq board, this enables suppression of
the increase in the data transfer latency with an increasing amount of data to be
communicated. The PL part of the SoC-based hardware was designed using a cus-
tom IP core, so it is easy to integrate into a SoC system. Additionally, the proposed
hardware is a prototype, and the device driver was developed using a UIO interface,
making it easy to modify. For performance comparisons, the SoC-based training
hardware was implemented on a Xilinx ZC706 SoC board, and its data transfer la-
tency was compared with that of an FPGA-based training hardware implementation.
The SoC-based training hardware achieved approximately 14.4x faster data transfer
than the FPGA-based hardware. Currently, the SoC-based hardware prototype has
been implemented for training BCNNs. In the future, we will apply SoC-based CIL
hardware not only for training BCNNs but also for other applications in which CIL
is used.
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Abstract

Multi-valued data transmission using four-level pulse amplitude modulation
(PAM-4) is promising for alleviating the bandwidth limitation of interconnects.
To evaluate the received signal quality during data transmission when using
adaptive coefficient settings for a PAM-4 equalizer, we propose an eye-opening
monitor method based on statistics of PAM-4 symbol transition. The pro-
posed statistical eye-opening monitor is based on soft clustering and enables
efficient PAM-4 data transmission under closed-eye conditions. Simulation re-
sults demonstrate the feasibility of symbol classification using the proposed
statistical evaluation method.

1 Introduction
The rapid evolution of 5G mobile communications and cloud computing demands an
exponential growth in data traffic, requiring ever-faster electrical interconnections
between chips and underlying systems. However, owing to the increase in data rates,
signal distortion due to intersymbol interference (ISI) and noise substantially limit
the input/output (I/O) bandwidth. An electrical link with four-level pulse ampli-
tude modulation (PAM-4) is often adopted to achieve high spectral efficiency and
support the ever-increasing demands for data bandwidth. By conforming to next-
generation high-speed data transmission standards such as IEEE 802.3bs, PAM-4 is
a promising approach to support data transmission at rates up to 400 Gb/s (i.e.,
8-lane transmission at 50 Gb/s) [1].
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(a) NRZ Waveform (b) PAM-4 Waveform

Figure 1: Transmitter waveforms of NRZ and PAM-4 signaling (UI, Unit Interval).

As shown in Fig. 1, PAM-4 can represent two consecutive binary non-return-to-
zero (NRZ) bits using one symbol. Hence, PAM-4 can achieve a half symbol rate
compared with NRZ for a given transmission rate. Although PAM-4 signaling can
transmit data at the same baud rate using a twice-slower symbol rate, four-level
signaling is more sensitive to the ISI and noise amplitudes than the NRZ signal.

To suppress ISI and improve the signal-to-noise ratio (SNR) at the receiver, var-
ious waveform shaping techniques are used in high-speed data transmission systems.
A feed-forward equalizer (FFE) is a typical signal processing technique that can
mitigate ISI at the transmitter [2]-[4]. To mitigate ISI at the receiver, analog-to-
digital converter (ADC)-based PAM-4 receivers and equalization have recently been
applied to perform flexible control using signal processing in the digital domain,
as illustrated in Fig. 2 [5]-[7]. As this solution can be implemented using digital
circuitry, the circuit parameters can be adaptively adjusted according to the ISI for
the transmission line characteristics.

Accordingly, machine learning has been applied to statistical eye-opening mon-
itors (EOM) for symbol detection from deteriorated transmitted PAM-4 signals to
adjust the adaptive FFE coefficients [8]-[12]. Furthermore, using statistical methods
may establish a new concept for symbol determination.

We propose a flexible symbol detection method based on the estimated symbol
distributios. The proposed technique is introduced to demonstrate the feasibility of
a new countermeasure for symbol deterioration. In conventional symbol detection
based on threshold discrimination, it is difficult to correctly identify symbols under
severe ISI, which causes the closed-eye condition. In [11], we estimated each symbol
distribution for PAM-4 at a receiver using soft clustering. By obtaining the symbol
distribution, a new symbol discrimination concept can be established. To detect
a symbol correctly, we introduce PAM-4 symbol detection based on the symbol
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Figure 2: Overview of ADC-based PAM-4 receiver (CTLE, continuous-time linear
equalizer; AGC, automatic gain controller; DSP, digital signal processor).

distribution estimation under closed-eye conditions [13]. Each symbol distribution
of PAM-4 is first classified using a Gaussian mixture model (GMM), and then the
detection of PAM-4 symbols is performed using soft clustering.

The remainder of this paper is organized as follows. Section 2 outlines the effects
of waveform distortion on PAM-4 signals. In Section 3, we detail the proposed
statistical EOM based on statistical characteristics of PAM-4 symbol transition.
Section 4 presents the evaluation results of simulations to demonstrate the feasibility
of the proposed EOM and the implementation analysis. Finally, Section 5 concludes
the paper.

2 ISI in PAM-4 and statistical evaluation
2.1 ISI effect on PAM-4 signaling
As PAM-4 incorporates four signal levels, the amplitude per level is 1/3 of a binary
signal. Therefore, the effect of ISI on PAM-4 is higher than that on NRZ signal-
ing with an increasing symbol rate. Moreover, transmitter linearity is important
for PAM-4 signaling because nonlinear characteristics affect the equality of symbol
distance at the receiver.

Figure 3 shows simulation results of eye diagrams for both NRZ and PAM-4
signaling at 1.0 Gb/s. An eye diagram allows to quantitatively evaluate the signal
integrity using the eye height and width. The eye height and width correspond to
the vertical and horizontal opening of the eye diagram, respectively. In addition,
the eye aperture ratio can be evaluated using the eye height and width.

In simulations, we used the measured impulse response of a 2-m microstrip line
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(a) Eye diagram of NRZ (b) Eye diagram of PAM-4

Figure 3: Simulated eye diagram of NRZ and PAM-4 signaling at 1.0 Gb/s on 2-m
MSL.

(a) Minimum height of open eye (b) Minimum height of closed eye

Figure 4: Minimum eye height in open and closed eye.

(MSL). As PAM-4 can transmit 2 bits per symbol, 1.0 Gb/s PAM-4 corresponds
to a symbol rate of 0.5 GS/s (giga-symbol/sec). Therefore, PAM-4 can decrease
the Nyquist frequency to half of that required for NRZ signaling. Despite the de-
creasing Nyquist frequency, the eye height of PAM-4 signaling is deteriorated to
approximately 1/3 (−9.5 dB) compared with that of NRZ signaling. As the closed
eye corresponds to zero eye height, the minimum eye height, which is the worst
case for an open eye, is important for symbol estimation. For a closed eye, the
received eye diagram closes theoretically because the minimum eye height becomes
zero, impeding symbol classification using three threshold values (th1, th2, and th3).

In PAM-4 signaling, the minimum eye height is affected by the symbol transition
patterns. The minimum eye height of NRZ signaling is determined by two transitions
(i.e., 0−1 and 1−0), whereas that of PAM-4 signaling is more complex. As shown
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(a) Eye diagram at receiver (b) Histogram of received signal

Figure 5: Simulation results of PAM-4 at 1.0 Gb/s on 2-m MSL.

(a) Eye diagram at receiver. (b) Histogram of received signal

Figure 6: Simulation result of PAM-4 at 2.0 Gb/s on 2-m MSL.

in Fig. 4, the minimum PAM-4 eyes depend on six symbol transition patterns (i.e.,
00−01, 00−10, 00−11, 11−00, 11−10, and 11−01). Therefore, the minimum
eye height between symbols 10 and 11 is determined by transition patterns 00−11
and 11−10. These patterns are the most affected in eye height between symbols 10
and 11. On the other hand, in the minimum eye height between symbols 10 and
01, symbol transition patterns 00−10 and 11−01 are the most affected.

The minimum eye height is important for accurate symbol classification. To
classify a symbol correctly by threshold discrimination, a suitable minimum eye
height must be guaranteed, and the eye aperture ratio should be improved. Hence,
waveform shaping is necessary for closed-eye conditions to improve the minimum
eye height to compensate for the channel loss, which increases with the data rate.
However, when the eye is completely closed, quantitatively ISI evaluation is difficult
at the receiver by using an eye-opening ratio, hindering waveform shaping.
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2.2 Statistical evaluation using GMM

To evaluate ISI in closed-eye conditions, a statistical evaluation method using sym-
bol distribution of the received signals has been proposed [13]. Figure 5 shows the
eye diagram and histogram of received symbols for 1.0 Gb/s PAM-4. Using the
histogram of the received symbol, ISI can be evaluated from the distribution of each
symbol. The normalized histogram with a bin width of 0.1 V is shown according to
the amplitude of the received signal. ISI can be characterized by the standard devia-
tions and mean values of each symbol. Under mild ISI (Fig. 5(a)), the histogram has
four separated distributions, and the symbol distributions are adequately separated,
as shown in Fig. 5(b). Hence, when the eye is open at the receiver, each symbol
(i.e., 00, 01, 10, and 11) can be classified correctly by using adequate thresholds.
In addition, ISI can be statistically evaluated by measuring the mean and standard
deviation from the histogram. In contrast, under severe ISI, it is difficult to distin-
guish each symbol due to the closing eye (Fig. 6(a)). As shown in Fig. 6(b), there
is no space between contiguous distributions for 2.0 Gb/s PAM-4.

To evaluate the symbol distribution in the closing eye, soft clustering is intro-
duced. Although it is difficult to judge the symbol correctly by threshold judgment
in closed eye condition, it is possible to obtain the received symbol distribution
by using soft clustering. Therefore, using the Gaussian mixture model, ISI can be
evaluated quantitatively by estimating the symbol distribution using a GMM in the
closing eye [11]. Assuming that the distribution of each symbol can be approxi-
mated as a Gaussian distribution, we can estimate four Gaussian distribution from
the histogram of the received symbol. In this case, the distribution of the received
PAM-4 signals is expressed as follows:

p(x) = Σ3
k=0πkN(x|µk, σk)

= π0N(x|µ0, σ0) + π1N(x|µ1, σ1)
+π2N(x|µ2, σ2) + π3N(x|µ3, σ3), Equation1 (1)

where N(x|µk, σk) is a Gaussian distribution with mean µk and standard deviation
σk, and πk is the mixing coefficient corresponding to the weight for each Gaussian
distribution. The sum across πk (Σ3

k=0πk1) is 1. For example, N(x|µ0, σ0) indicates
the distribution of symbol 00 with mean µ0 and standard deviation σ0. As shown
Eq. (1), the symbol distribution of PAM-4 can be expressed by the summation
of four Gaussian distributions. Each symbol distribution of PAM-4 is estimated
from the received signals by fitting Eq. (1) to the histogram of the received PAM-4
symbols.
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Figure 7: Eye-opening monitor using GMM evaluation.

(a) Eye diagram at receiver (b) Histogram (bars) and GMM estimation
(curves)

Figure 8: GMM estimation result of PAM-4 at 1.0 Gb/s on 2-m MSL.

As shown in Fig. 7, by fitting each symbol distribution from the histogram of
sampling data at the receiver, ISI can be characterized statistically according to the
standard deviation and mean of the distributions even when the eye is closed. In this
study, we obtained the GMM parameters by applying the expectation-maximization
(EM) algorithm [14].

Figure 8 shows the eye diagram and histogram of received symbols for 1.0 Gb/s
PAM-4. In Fig. 8(b), the curves show the GMM fitting, with the left and right axes
showing the normalized histogram and probability density function (PDF) for a bin
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(a) Eye diagram at receiver (b) Histogram (Bar) and GMM estimation
(curves)

Figure 9: GMM estimation result of PAM-4 at 2.0 Gb/s PAM-4 on 2-m MSL.

width of 0.1 V, respectively. The GMM provides the distribution of each symbol.
Figure 9 shows the eye diagram and histogram of received symbols for 2.0 Gb/s PAM-
4. Although it is difficult to separate each symbol and evaluate each distribution,
ISI can be estimated by fitting the symbol distributions using the histogram. By
obtaining the distributions, ISI can be evaluated statistically according to standard
deviation σk and mean µk of each distribution even when the eye is closed. The
σk value indicates the ISI effect on each symbol. Moreover, the linearity of the
transmitter can be evaluated using the µk value. Values σk and µk in Fig. 9(b) are
{σ0, σ1, σ2, σ3} = {0.350, 0.418, 0.422, 0.340} and {µ0, µ1, µ2, µ3} = {-1.644, -0.473,
0.656, 1.726}.

3 Symbol classification using statistical evaluation for
PAM-4 signaling

3.1 Symbol classification using statistical evaluation with closed
eye

To achieve symbol classification with closed eye, symbol detection using the symbol
transition pattern based on GMM fitting is proposed. Although a symbol cannot
be accurately classified by thresholding in closed eye owing to severe ISI, it can be
classified under certain conditions by considering the PAM-4 characteristics.

Figure 9 shows that if symbol distributions overlap, classification errors may
occur because multiple candidates coexist in the overlapping region. On the other
hand, symbols can be correctly classified in nonoverlaping regions. For limited over-
lap, only adjacent symbols are mixed, and they can be detected as two candidates
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Figure 10: PAM-4 symbol transition at minimum eye height below 0 (solid lines,
indistinguishable symbols; dashed line, classifiable symbols).

according to the PAM-4 characteristics.
As shown in Fig. 10, although the PAM-4 eye aperture ratio is zero owing

to ISI, symbol transitions 01-11, 10-11, and 11-11 can be separated from other
transitions in this case. Therefore, a received symbol can be determined to be 11
with an adequate threshold. On the other hand, it is difficult to separate 00-11
from 11-10. Similarly, symbol identification is possible for other symbol transitions
when the eye aperture ratio is zero and the previous symbol is other than 00 or 11,
even for a minimum eye height below 0 with a certain influence of ISI.

Figure 11 shows the simulation results of symbol detection for 2.0 Gb/s PAM-
4, which corresponds to the eye diagram shown in Fig. 9(a). In the simulation,
the PRBS13Q symbol pattern was transmitted, and a micro-strip line with 16.0 dB
attenuation at 1.0 GHz was used. In addition, the simulation was used to evaluate
the ISI effect on the transmission line characteristics without additive noise. Using
the impulse response of the transmission line, received waveform is simulated by data
analysis software Igor Pro. In this simulation, no specific target and application were
set, and the thresholds were determined to intermediate values between adjacent
symbols.

These thresholds were calculated considering the junction points of the GMM
curves shown in Fig. 9(b), obtaining thresholds th1, th2, and th3 of −1.08, 0.09, and
1.23 V, respectively. As shown in Fig. 11, although most symbols can be detected
correctly, some errors occur. Figure 11 shows that the symbol patterns of these errors
are transitions from symbol 00 or 11, whose patterns are strongly affected by ISI.
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(a) Symbol detection with received waveform

(b) Magnified view

Figure 11: Simulation results of symbol detection for 2.0 Gb/s PAM-4 (blue square,
correct classification; red cross, incorrect classification).

As shown in Fig. 11(b), received symbol A (transmitted symbol 11) is incorrectly
identified as 10 by thresholding owing to symbol transition 00-11 because it is
impossible to classify between symbol patterns 00-11 and 11-10. Similarly, received
symbol B (transmitted symbol 01) is incorrectly identified as 10 by thresholding
owing to symbol transition 11-01 because it is hard to classify between symbol
patterns 11-01 and 00-10. In these examples, there are two candidates near the
thresholds.

Nevertheless, the symbols can be correctly identified when the previous symbol
is known, that is, 00-11 and 11-10 can be classified for previous symbol 00 or 11.
Specifically, when only adjacent distributions overlap in the receiver symbol distri-
bution, the symbol can be determined if the previous symbol is known to be positive
or negative, as illustrated in Fig. 10. Therefore, it is possible to identify the correct
symbol from two candidates by using the information of the previous symbol. In

10684



PAM-4 Symbol Estimation Using Soft Clustering

(a) Symbol distribution with overlapping adja-
cent distributions

(b) Symbol detection using previous signal
with overlapping symbol distributions

Figure 12: Diagram of symbol detection.

contrast, when distributions overlap beyond adjacent symbols, three or more symbol
candidates exist. Consequently, symbol identification is impossible in principle. For
example, if the symbol distribution of 00 overlaps with the distributions of 01 and
10, three symbol candidates can appear.

3.2 Symbol detection
The symbol distribution of PAM-4 can be divided into seven regions, a-g, as shown
in Fig. 12(a). If signals within regions a, c, e, and g are received, the symbols are
classified as 00, 01, 10, and 11, respectively. On the other hand, if signals within
regions b, d, and f are received, the symbols should be identified according to the
previous signal. As shown in Fig. 12(b), if received signal Si is in region f, the
symbol is decided depending on previous signal Si−1. Specifically, Si is symbol 11
if Si−1 < 0, and Si is symbol 10 if Si−1 > 0.

4 Simulation results and discussion
Figure 13 shows the simulation results of symbol detection with and without the
proposed method for 2.0 Gb/s PAM-4. In [13], regions a-g were defined by µk ± σk

according to the values from the GMM. In Fig. 12, each region a-g was decided
by thk at the junction points of the GMM distributions. We introduce adjustment
parameter α for each region to be set to thk ± α as shown in Fig. 12(a).

Figure 13 shows the simulation results for α = 0.1, 0.2, and 0.3. Values th1,
th2, and th3 were −1.08, 0.09, and 1.23 V, respectively. Compared with the results
shown in Fig. 11, the proposed method can correctly detect ambiguous symbols
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(a) Symbol detection and received waveform for α = 0.1

(b) Symbol detection and received waveform for α = 0.2

(c) Symbol detection and received waveform for α = 0.3

Figure 13: Simulation results of proposed symbol detection for 2.0 Gb/s PAM-4
(blue square, correct classification; red cross, incorrect classification.
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(a) System overview (b) Symbol mapping table for ADC with
8-bit resolution

Figure 14: Overview of proposed symbol detection system (MSB, most significant
bit).

with two candidates. Symbol errors occur in conventional thresholding, as shown
Fig. 11, but they are substantially mitigated using the proposed symbol detection
method without requiring waveform shaping. As shown in Fig. 13(c), symbol error
is suppressed for α = 0.3. The coarse range of each region is set using thk, and the
fine range can be adjusted by tuning α.

Figure 14 shows an overview of the proposed symbol detection system. The
received signal is converted into a digital signal by an ADC, and symbol conversion
is performed using digital processing according to the most significant bit (MSB)
of the previous signal. As shown in Fig. 14(a), the MSB determines whether the
previous symbol is the lower or upper two by setting the intermediate value of
the input range of the ADC to the center value of the received waveform. Next,
the received symbols are determined using a mapping table (Fig. 14(b)) based on
regions a-g of the symbol distributions. In regions b, d, and f, the output symbol
corresponds to the MSB of the previous symbol, indicating whether previous signal
Si−1 is Si−1 < 0 or Si−1 > 0. In regions a, c, e, and g, the output symbol is decided
regardless of the previous signal.
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5 Conclusion

We proposed a novel concept for PAM-4 symbol estimation based on soft cluster-
ing of the symbol distribution. Using a GMM the threshold levels can be suitably
set for classifying each PAM-4 symbol under unknown transmission characteristics.
Moreover, we introduce PAM-4 symbol detection using previous symbol informa-
tion. Owing to the optimization of the threshold levels, simulation results show
classification of every symbol even when the eye is closed.

The proposed method can improve symbol detection without requiring waveform
shaping techniques, such as pre-emphasis. Thus, the hardware implementation bur-
den can be mitigated, and energy efficiency and bit error performance can be further
improved by introducing waveform shaping.

To implement the proposed method, various aspects should be considered. For
instance, to obtain an accurate GMM, the resolution of the ADC should be properly
selected. In future work, we will conduct benchmark tests comparing various symbol
detection methods and similar studies[15, 16]. In addition, experimental evaluation
will be performed to determine the method performance regarding factors such as
high-speed transmission rates.
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Abstract

In this paper, a method for determining examination categories is proposed
for ophthalmology patients, using machine learning. It is assumed that the ex-
aminations are classified into four categories. The discrimination models con-
structed using machine learning are applied to determine which group each pa-
tient’s medical questionnaire belongs to. The target to be classified is Japanese
sentences handwritten by the patients in their questionnaires. The proposed
method mainly consists of morphological-analysis step, vector-preparation step,
and machine-learning step. In the first step, either MeCab or Sudachi is em-
ployed to decompose character strings into parts of speech. In the second step,
one of the following means are conducted to assign values to elements in the
vectors corresponding to the questionnaires: One Hot Encoding, Bag of Words,
and Word2Vec. In the final step, one of the following machine-learning schemes
is conducted: Support Vector Machine, CatBoost, and Neural Networks. Ex-
perimental results show that a combination of Sudachi, One Hot Encoding and
CatBoost is favorable to achieve the highest accuracy in determining the exam-
ination category.
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1 Introduction

Recently, medical institutions in Japan have faced problems on the long waiting
time imposed on outpatients for consultations and/or examinations, and the long
sojourn time that outpatients must consume at them. Such problems seem to be
one of reasons why outpatients hesitate to attend medical institutions. Besides, it
is considered that shortening the waiting time and sojourn time is one of the key
factors that strongly affect rating for medical institutions.

As a countermeasure for overcoming the problem associated with the waiting
time and sojourn time, the approach introducing electronic medical records [1], [2]
and the approach based on the queuing theory [3] are proposed to directly shorten
them. Utilizing the waiting time effectively is considered to be another countermea-
sure. For example, examinations for which medical doctors are not required to be
there are imposed on outpatients during their waiting time at many medical institu-
tions. Medical doctors can generally give directions on examinations, which should
be imposed on outpatients when they will next attend medical institutions, using
their medical records, in the cases where they keep attending the institutions. On the
other hand, new outpatients must consume the extra time until their examinations
start, in addition to the waiting time imposed on outpatients that keep attending
the institutions. This is because medical doctors must determine examinations that
should be imposed on the new outpatients after they read medical questionnaires
that the new outpatients filled out. The rate of the length of effectively available
time compared to the total length of waiting time thus tends to decrease for the new
outpatients. If it is possible to automatically determine examinations necessary for
the new patients according to the information written by them in the medical ques-
tionnaires, the above extra time required for the doctors to read the questionnaires
can be drastically reduced. The system determining examinations as mentioned
above will make it possible to remarkably decrease the amount of stress that both
medical doctors and outpatients feel.

In this paper, a method of determining examination categories is proposed for
ophthalmology patients filling out their medical questionnaires. It focuses on sen-
tences in the questionnaires handwritten by the patients to be examined, and pre-
pares data, which are presented to discrimination models constructed by machine
learning, from the sentences. It considers that examinations valid for representative
eye diseases can be divided into four examination categories, and that the patients
absolutely take examinations belonging to one of the four categories. The trained
models classify the data corresponding to the questionnaires. The proposed method
thus copes with the determination of examination categories as the classification of
the questionnaires. To decompose the handwritten sentences into parts of speech, it
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applies either MeCab [4] or Sudachi [5], which is known as tool for the morphologi-
cal analysis. It next assigns values to the words, which are picked up by the above
analysis tool and considered to be elements useful in characterizing the sentences
handwritten by each patient, conducting one of the following means: One Hot En-
coding, Bag of Words, and chiVe [6] considered to be Word2Vec in which Sudachi
is utilized. To construct discrimination models, it is assumed that one of machine
leaning algorithms, support vector machine (SVM for short) [7], CatBoost [8], or
neural network (NN for short) [9], is available in the proposed method. A model is
trained with the data prepared in the above manner. When the examination cate-
gory for some patient is determined, his/her data, which is prepared in the manner
similar to the preparation of training data, is presented to the trained model. In
this paper, the choices of morphological analysis tools, vector preparation manners,
and machine learning algorithms are examined to acquire the powerful capability in
determining examination categories.

The methods of determining examination categories using data prepared from
medical questionnaires are also proposed in [10] and [11]. SVM learning and NN
learning are applied in [10] and [11], respectively. From experimental results, it is
finally revealed that a combination of Sudachi, One Hot Encoding, and CatBoost
is useful in achieving the high accuracy in the case where a small-scale dataset is
available.

2 Preliminaries

2.1 Classes of medical questionnaires

The proposed method determines types of examinations, referring to sentences hand-
written in medical questionnaires. In Saneikai Tsukazaki Hospital, eye diseases di-
agnosed by ophthalmologists are divided into thirteen categories. There however
exists cases where some type of examinations is required to two or more eye diseases
belonging to separate categories. In this paper, all of the eye diseases are catego-
rized into four groups as shown in Table 1, and it is assumed that an outpatient
filling out his/her medical questionnaire takes examinations belonging to one of the
groups in Table 1. In other words, it can be considered that the number of classes
of medical questionnaires is four as shown in Table 1. Note that Table 1 shows the
correspondence between the class and representative eye diseases belonging to it.

The proposed method employs keyboard input to generate computerized infor-
mation on sentences handwritten in medical questionnaires. Revisions are then
conducted according to the following policies.
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Table 1: Relationships between classes and diseases

1. Clear typographical errors appearing in handwritten sentences are revised.

2. Words associated with inconsistent dates are revised.

3. There are cases where two or more different Chinese characters (i.e., kanji)
have the same meaning. For example, two kanji characters are available to
express “eye.” In such cases, the usage of characters is unified with the identical
character chosen from them.

2.2 Tools for morphological analysis
Sentences written in Japanese and Chinese generally have no word boundaries. If
these sentences are analyzed, it is not easy to estimate the size of an output sequence.
This is a quite large difference between Japanese sentences and sentences written in
other languages in labeling sequences for the morphological analysis. Determining
word boundaries is thus of importance in analyzing Japanese sentences.

In this paper, two tools known as MeCab and Sudachi are applied for the morpho-
logical analysis. MeCab employs conditional random fields (CRF for short), which
are the model for recognition developed to label sequences. Using CRF makes it pos-
sible to conduct learning so that right sequence labeling can be discriminated from
other candidates of sequence labeling. Sudachi is the tool disclosed in 2017. Since
it is a newcomer compared with MeCab, it has the new dictionary available for the
powerful different notation normalization. As an example of the different notation
normalization, “syumilation,” which is often used by Japanese people wrongly, is
converted to “simulation.” kanji characters are often used in the substitute for other
kanji characters having the same pronunciation. For example, “fuzoku” meaning the
word “be attached to” in English has two types of notations using kanji characters.
The dictionary for Sudachi also copes well with such cases. Similar sounding/dif-
ferent character cases often appear in handwritten sentences to be treated in this
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paper. The notation normalization made by Sudachi seems to work well for the
proposed method.

2.3 Discrimination models

In this paper, the following three types of machine learning are discussed to con-
struct discrimination models: SVM, CatBoost, and NN. There are big differences
among them in terms of algorithm structures. SVM learning constructs discrimi-
nation models according to the margin maximization principle. It basically chooses
the hyperplane running through the middle points between two-class data among
planes that can perfectly divide the data into the two groups. This gives the pow-
erful generalization capability to constructed discrimination models. When SVM
learning is conducted on condition that the Lagrange multiplier is used, the learning
process results in solving the two-dimensional optimization problem. The frequency
of producing the local minimum for SVM learning therefore tends to be low com-
pared with that for CatBoost learning and NN learning. In this paper, the nonlinear
SVM based on radial basis function (RBF for short) kernel is applied.

Catboost learning consecutively generates decision trees as weak learners. Figure
1 illustrates examples of such decision trees. It is considered that Catboost learning
is one of the gradient boosting algorithms, which can combine inference results of
the weak learners. In other words, the gradient boosting algorithm generates a new
decision tree, referring to a dataset and the result of decision tree that has been the
most recently generated. Since an approximate gradient value is then acquired from
the same dataset, it is possible that the difference between the actual probability
distribution and the probability distribution on predicted gradient values occurs as
the prediction shift. Catboost learning employs ordered boosting, which samples a
new dataset each time decision trees are generated, to overcome the prediction-shift
problem and to reduce overfitting.

In this paper, a simple fully connected NN as shown in Figure 2 is introduced. A
numerical vector is presented from the “Input” located in the left-most part, while
the right-most part “Output” produces a numerical vector. “FC” means a fully
connected layer. The first FC consists of 128 neurons. The number of neurons in
the second FC is 4. This number is equal to the number of classes shown in Table
1. Note that u = 128 and u = 4 denote numbers of neurons. Rectified linear unit
(ReLU) activation function and Softmax activation function are denoted by “Relu”
and “Softmax,” respectively. Besides, to reduce overfitting, the dropout scheme is
employed in the proposed method. The dropout scheme randomly and temporarily
deletes one of the neurons in the intermediate layer to cut the signal propagation
during learning. “r = 0.9” in Figure 2 means the dropout rate to be 0.9.
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Figure 1: Decision trees generated by Catboost

Figure 2: Structure of NN

3 Determination of examination categories using ma-
chine learning

There are the following three types of characters in Japanese: hiragana, katakana,
and kanji. In addition, some conjugations are available. The character types and
conjugations have generally made it more complicated to apply the morphological
analysis in Japanese. For example, when some character string is easily decom-
posed into parts of speech, synonymous words (e.g., the verb “miru,” which is trans-
lated as “see,” written with hiragana characters solely and the verb “miru” written
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Figure 3: Example of differences that depend on lists

with hiragana characters together with a kanji character) are often considered to
be independent words. The similar failures in decomposing strings often occur for
differences caused by their conjugations (e.g., “iku” translated as “go” and “itta”
translated as “went”). The proposed method simultaneously generates the following
three word lists: the list having results only acquired using the morphological analy-
sis tools, the list having archetypes associated with conjugations of results acquired
using the morphological analysis tools, and the list having the archetypes which are
transformed from results of the morphological analysis and written using katakana
characters. The first, second, and third lists are hereinafter referred to as the level
1, level 2, and level 3 lists, respectively. Let us briefly discuss the difference that
occurs in the cases where these lists are employed, using “me ni bohru ga atatta”
as an example. This sentence written in Japanese has kanji characters (i.e., “me”
and “ata”), hiragana characters (i.e., “ni,” “ga,” and “tta”) and katakana characters
(i.e., “bohru”), and it is translated as “the ball hit my eye.” When the level 1 list
is employed, it is decomposed as follows: “me, ni, bohru, ga, atattu, ta” expressed
with kanji, hiragana, and katakana characters. Employing the level 2 list results in
“me, ni, bohru, ga, ataru, ta.” The decomposition result is also expressed with kanji,
hiragana, and katakana characters. In the case of employing the level 3 list, we have
“me, ni, bohru, ga, ataru, ta” expressed with katakana characters solely. Figure 3
illustrates the above.

To construct discrimination models for medical questionnaires using machine
learning, it is necessary to prepare numerical vectors from sentences handwritten
in them. The proposed method eventually employs one of the following means:
One Hot Encoding, Bag of Words, and Word2Vec. When employing either One Hot
Encoding or Bag of Words, the proposed method prepares a two-dimensional matrix
with N rows and d columns, using the above lists, and considers element values in
each of the rows to be one of the data presented to the discrimination models. A
row then corresponds to a medical questionnaire. The number of patients for which
examination categories have been known is therefore equal to N. On the other hand,
the columns are for members of a word set specified by the above lists in addition
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to the age of each of the N patients. The proposed method thus characterizes a
medical questionnaire with a d-dimensional vector. Note that the age of the patient
is given to the element corresponding to it without processing.

Let us explain the case where One Hot Encoding is employed for the matrix
with N rows and d columns. When a word appears (or does not appear) in the
sentences handwritten in some medical questionnaire, the value of 1 (or 0) is given
to the element where the row and the column respectively corresponding to the
questionnaire and the word cross. On the other hand, in the case of employing Bag
of Words, the numbers of appearance are given as element values for words. For
example, when some word is handwritten two times in some questionnaire, the value
of 2 is given to the element where the row and the column respectively corresponding
to the questionnaire and the word cross. Note that the value of 0 is given to any
element for words not appearing in the questionnaire.

Word2vec transforms a word according to a distributed vector representation
with its specific dimensionality. In this paper, chiVe, which is considered to be
advanced Word2vec based on the skip-gram algorithm [12], is employed. The skip-
gram algorithm solves a problem on predicting words appearing around a given word,
and learns distributed representations for every word. If either One Hot Encoding
or Bag of Words is employed, the number of elements in each of the data tends to
be large, because it severely depends on the number of words involved in the list.
On the other hand, employing Word2vec makes it possible to reduce the number of
elements, compared with employing the above two means. Besides, since learning is
completed with a large-scale sentence set in advance for Word2vec, Word2vec seems
to adequately transform the words, which only appear in the questionnaires to be
classified to determine examination categories.

The proposed method produces a hundred-dimensional vector for each of the
words, employing chiVe. It then uses archetypes of the words. The archetypes
are obtained by Sudachi that chiVe utilizes for learning. The amount of sentences
handwritten in medical questionnaires clearly differ from each other. If a word is
always converted to a hundred-dimensional vector, the dimension number of a vec-
tor corresponding to a questionnaire is equal to the number of words appearing
in it multiplied by a hundred. This causes much of a difference in the amount of
characteristics between vectors corresponding to questionnaires. To overcome this
problem, the proposed method introduces four schemes. The first scheme estimates
the mean values for each of element values in hundred-dimensional vectors corre-
sponding to the words appearing in each questionnaire. This estimation prepares a
hundred-dimensional vector for a questionnaire, and the vector is used in machine
learning as data for the corresponding questionnaire. This data-preparation scheme
is hereinafter referred to as Word2Vec-mean. The second (or third) scheme obtains
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the maximum (or minimum) value for each of element values in hundred-dimensional
vectors corresponding to the words appearing in each questionnaire, and prepares a
vector with the maximum (or minimum) values of a hundred elements for a ques-
tionnaire. The second (or third) preparation scheme is hereinafter referred to as
Word2Vec-max (or Word2Vec-min). The fourth scheme uses a pair of vectors pre-
pared by Word2Vec-max and Word2Vec-min. In other words, it concatenates them
to prepare a two-hundred-dimensional vector for a questionnaire. It is hereinafter
referred to as Word2Vec-minmax.

The proposed method is evaluated, while changing a combination of morpho-
logical-analysis tools, word lists, and machine learning algorithms. Let us consider
the case where Word2vec is not employed. The following choices are then available:
MeCab or Sudachi for morphological analysis, level 1, level 2, or level 3 for word list,
One Hot Encoding or Bag of Words for preparing a dataset (i.e., a two-dimensional
matrix with N rows and d columns), and SVM, CatBoost, NN for the learning
algorithm. The total number of combinations for the above choices is 36. The
method proposed in [11] corresponds to the determination of examination categories
using MeCab, level 3 list, One Hot Encoding and NN. On the other hand, in the case
of employing Word2vec, Sudachi and chiVe are employed for morphological analysis
and word-list generation, respectively. The following choices are then available:
Word2Vec-mean, Word2Vec-max, Word2Vec-min, Word2Vec-minmax for preparing
a dataset, and SVM, CatBoost, NN for the learning algorithm. The total number
of combinations is therefore 12, when Word2vec is employed. Figure 4 depicts the
above combinations used in the proposed method.

4 Experimental results
4.1 Machine-learning-based classification of medical questionnaires
As mentioned above, thirty-six approaches are available when Word2vec is not em-
ployed, whereas the number of available approaches is 12 when Word2vec is em-
ployed. In this section, forty-eight approaches are evaluated in terms of accuracies
of determining examination categories. If SVM is chosen as a learning algorithm, the
grid search is applied to determine parameters associated with the kernel function.
For the NN structure shown in Figure 2, AMSgrad is applied as an optimizer algo-
rithm. Besides, learning rate, batch size, and epoch number are set to 0.001, 128,
and 250, respectively. The ten trials of evaluation are conducted, while randomly
changing initial parameters of a discrimination model every trial.

The sentences handwritten in medical questionnaires were provided from Depart-
ment of Ophthalmology in Saneikai Tsukazaki Hospital. They are for outpatients
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Figure 4: Combinations used in proposed method

that first visited Tsukazaki Hospital for the period from May through November
2010. The data were prepared from the handwritten sentences, and were divided
into a training dataset and a test dataset. The breakdown of members in the datasets
is tabulated in Table 2. Note that class numbers 1 through 4 correspond to those in
Table 1, and that a member in the dataset corresponds to data prepared from sen-
tences handwritten in a medical questionnaire. The classification results for members
in the test dataset are used in evaluating discrimination models.

The evaluation results are tabulated in Table 3. Each of the entries in Table 3
is the percentage of the number of test data of which classes are correctly judged,
compared to the total number of test data. The proposed method achieves the
most favorable accuracy, 76%, under the combination of Sudachi for morphological
analysis, level 2 list, Bag of Words for vector preparation, and SVM learning to con-
struct discrimination models. Detailed classification results under this combination
are tabulated in Table 4. The entry value appearing in the cell where the row of
actual class i and the column of judged class j cross is equal to the percentage of
the number of data judged as class j compared with the number of data actually
belonging to class i.
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Table 2: Breakdown of members in datasets

Table 3: Results for test data shown in Table 2

4.2 Comparison with other determination methods

Let us briefly explain the determination of examination categories proposed in [10].
The method in [10] employs level 1 list, MeCab for morphological analysis and
SVM learning to construct discrimination models. It defines prohibited words as
the words not to be included in the word list. It also defines appearance rate as
the number associated with appearances of words, and MD-designated words as
words that ophthalmologists consider to be included in the word list. In addition
to MD-designated words, the method in [10] adds the words with 5.5% or more as
appearance rates to the word list. It basically prepares a two-dimensional matrix
with N rows and d columns, according to Bag of Words. It then weights all entries

Table 4: Detailed classification results when best accuracy is achieved
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Table 5: Detailed classification results obtained by method in [10]

Table 6: Detailed classification results obtained by method in [11]

on some columns if words corresponding to the columns are either MD-designated
words or words fulfill the conditions specified by the appearance rates. The matrix
has a column corresponding to ages of the outpatients. If the age of some outpatient
is less than 11 years-old, the value of 0 is given to the element where the row
corresponding to the outpatient and the column cross. If the age belongs to the
range [11, 45], the value of 6 is given. If the age is over 46, the value of 12 is given.
For SVM learning, RBF function is employed as the kernel function, and parameters
are determined by the grid search. The detailed classification results obtained by
the method in [10] are tabulated in Table 5. Recall that the method in [11] is based
on the combination of MeCab, level 3 list, One Hot Encoding, and NN. The detailed
classification results obtained by the method in [11] are tabulated in Table 6.

To estimate the judgements conducted by ophthalmologists, quizzes were intro-
duced as follows in [10]. The seven ophthalmologists working at Saneikai Tsukazaki
Hospital determined the examination categories for the outpatients handwriting sen-
tences in medical questionnaires, which correspond to test data in Table 2, after
reading the sentences. Note that the number of quizzes is 100. The results were
averaged for the seven ophthalmologists. The averaged accuracies are tabulated
in Table 7. The value averaged for four entries in Table 7 is equal to 55.7. In a
department of ophthalmology, results of consultation and various examinations are
employed in addition to medical questionnaires, finally to estimate disease names
and to fix treatment plans. Though medical questionnaires are of importance, they
are one of the ophthalmologist’s decision tools. To determine examination categories
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Table 7: Averaged classification results achieved by seven ophthalmologists in [10]

on the basis of only reading the handwritten sentences seems to be a very hard task
for the ophthalmologists. This is why comparatively low results appear in Table 7.

Let us first compare entries in Table 4 with those in Table 5. Note that each
of the entries on diagonal lines in Tables 4-6 equals the accuracy for each class.
The proposed method using Sudachi, level 2 list, Bag of Words, and SVM learning
achieves higher accuracy for every class than the method in [10]. In [10], MD-
designated words, appearance rates, and weighting values on some columns are
introduced according to the knowledge of ophthalmologists. While the proposed
method drastically reduces the usage of the medical knowledge, it improves the
averaged accuracy by 5% or more compared with the method in [10]. Note that the
difference between class-1 and class-4 accuracies in Tables 4 and 5 is comparatively
small. It seems that the strategies of defining prohibited words, weighting all entries
on some columns in a two-dimensional matrix, and setting appearance rates work
well for checking test data actually belonging to classes 1 and 4. On the other hand,
such strategies would affect the classification for the test data to be classified as
class 2. The method in [10] thus has difficulty of appropriately using the medical
knowledge. It is specially hard to choose adequate MD-designated words.

The entries in Table 4 are next compared with those in Table 6. Though the
class-4 accuracy achieved by the proposed method is lower than that achieved by
the method in [11], the former achieves favorable accuracies for the other classes
compared to the latter. Comparing the accuracies in Table 4 with those in Table
7 finally clarify that the former accuracies are higher than the latter accuracies for
all classes. Note that the similar advantage also applies to other methods in [10]
and [11] in terms of accuracies averaged for all classes. As mentioned in Section
1, medical doctors must determine examinations that outpatients first visiting their
hospitals must take, after the doctors read medical questionnaires filled out by the
new outpatients. Since the classification made by the proposed method is almost as
high as that made by an average ophthalmologist, it is expected that the proposed
method can reduce the time that the average ophthalmologist requires to read the
questionnaire and to determine the examination category, if the proposed method
is applied. On the other hand, the classification results tabulated in Table 4 are so
low that the proposed method can never be applied to diagnose diseases.
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4.3 Evaluation based on cross-validation

For Tables 3-6, the proposed method is evaluated on condition that both training
data and test data are fixed as shown in Table 2. Besides, the amount of data leaves
much to be desired. It is therefore possible that the discrimination models overfit the
fixed dataset with the breakdown shown in Table 2. In this subsection, the proposed
method is evaluated using the five-fold cross-validation. The total number of data
is 580. Note that it equals the number of data in Table 2. The five combinations
each of which consists of 464 training data and 116 test data were generated, and
accuracies averaged for the five trials using them were acquired as results using the
five-fold cross-validation. For the evaluations in this subsection, the parameters on
learning are equal to those determined for the evaluations discussed in Subsects.
4.1 and 4.2. The averaged results are tabulated in Tables 8-11. Each of entries in
Table 8 is the percentage of the number of test data of which classes are correctly
judged, compared to the total number of test data. In other words, Table 8 corre-
sponds to Table 3. The most favorable accuracy, 64.3%, was estimated under the
combination of Sudachi for morphological analysis, level 3 list, One Hot Encoding
for vector preparation, and CatBoost-based discrimination model. Detailed classifi-
cation results under this combination is tabulated in Table 9. In addition, detailed
classification results obtained by the methods in [10] and [11] are tabulated in Tables
10 and 11, respectively. In them, note that the entry appearing in the cell where the
row of actual class i and the column of judged class j cross is equal to the percentage
of the number of data judged as class j compared with the number of data actually
belonging to class i.

Let us discuss the comparison of entries in Tables 9 and 10. The accuracies
achieved by the proposed method are slightly lower than those achieved by the
method in [10] for classes 1 and 3, while the proposed method is superior to the
method in [10] on accuracies for classes 2 and 4. The proposed method therefore
copes well with determining examination categories compared with the method in
[10] in terms of the accuracy averaged for all classes by 5% or more.

The similar advantage applies when entries in Table 9 are compared with those
in Table 11. In other words, though class-1 and class-3 accuracies achieved by the
proposed method are lower than those achieved by the method in [11], employing
the proposed method makes it possible to achieve high class-2 and class-4 accuracies
compared with employing the method in [11]. As a result, the proposed method
improves the accuracy averaged for all classes by about 3% compared with the
method in [11].

The direct comparison in terms of accuracies between the seven ophthalmologists
and the proposed method seems to be unfair, because the proposed method was
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Table 8: Results using five-fold cross-validation

Table 9: Detailed classification results when best accuracy is achieved under five-fold
cross-validation

evaluated using cross-validation and the ophthalmologists were tested using the fixed
dataset. Though this unfairness is taken into account, let us dare to compare entries
in Table 7 with those in Table 9. The difference between the ophthalmologists and
the proposed method is large in terms of the class-3 accuracy. The accuracies shown
in Table 9 are substantially higher than those in Table 7 for each of the other classes.
The accuracy averaged for all classes estimated from Table 9 therefore exceeds that
from Table 7.

5 Discussions

The accuracies achieved by the proposed method for classes 1-4 are 72%, 76%, 96%,
and 60%, respectively, as shown in Table 4. Thus, the proposed method specially
works well with the class-3 test data. Let us briefly discuss the characteristics of
members in the class-3 test dataset. The average number of words appearing in
questionnaires corresponding to test data to be classified as classes 1, 2, 3, and 4 are
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Table 10: Detailed classification results obtained by method in [10] under five-fold
cross-validation

Table 11: Detailed classification results obtained by method in [11] under five-fold
cross-validation

15.52, 16.24, 11.16, and 16.68, respectively. In addition, the following three words
can be picked up by exploring words included in all test data in terms of frequen-
cies of their appearance: “ryokunaisho,” “hakunaisho,” and “nen.” Note that the
first, second, and third words are translated as “glaucoma,” “cataract,” and “year,”
respectively. The word “glaucoma” and/or the word “hakunaisho” appear seven,
eleven, zero, and two times in questionnaires corresponding to classes 1, 2, 3, and 4
test data, respectively. The outpatients handwriting sentences in questionnaires to
be classified as classes 1, 2, and 4 generally have past medical histories, and hence
there are many cases where such patients tend to describe concrete disease names
in the questionnaires. The word “nen” appears seven, two, zero, and two times in
questionnaires corresponding to classes 1, 2, 3, and 4 test data, respectively. The
outpatients often handwrites it to describe past points in time when their symp-
toms occurred (e.g., “san nen mae” translated as “three years ago”). The number
of words expressing concrete matters such as disease names and symptoms is thus
smaller in questionnaires to be classified as class 3 than that of words handwritten
in questionnaires to be classified as any other class. The above seem to be the reason
why the proposed method can achieve very high accuracy for class-3 test data.

The proposed method is evaluated in Subsect. 4.2, subject to using fixed datasets
as shown in Table 2, while the five-fold cross-validation is introduced for the eval-
uation in Subsect. 4.3. Let us first compare the combination making it possible
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to achieve the highest accuracy in Subsect. 4.2 with that in Subsect. 4.3. Recall
that, on condition of using the fixed datasets in Subsect. 4.2, the proposed method
achieves the highest accuracy, 76.0%, averaged for all classes under the following
combination: Sudachi, level 2 list, Bag of Words, and SVM learning. The five-
fold cross-validation results in 56.7% as the averaged accuracy when the proposed
method is conducted under the same combination. The difference between the case
of using the fixed datasets and that of introducing the cross-validation is about 20%.
It seems that the degree of overfitting becomes heavier as this difference becomes
larger. The method based on the combination of Sudachi, level 2 list, Bag of Words,
and SVM learning would be useless in reducing the overfitting situation.

On the other hand, for the cross-validation-based evaluation, a combination of
Sudachi, level 3 list, One Hot Encoding, and CatBoost learning seems to be the
most promising. The accuracy averaged for all classes is then equal to 64.3%, and
it is high compared with the accuracy calculated under any other combination. The
proposed method using this promising combination, however, constructs a discrim-
ination model with 72.0% as the accuracy averaged for all classes when members in
the fixed test dataset are presented. This accuracy is not the highest but seems to
be reasonably high, and the difference between the case of using the fixed datasets
and that of introducing the cross-validation is substantially low. From the above, it
is revealed that employing the method based on a combination of Sudachi, level 3
list, One Hot Encoding, and CatBoost learning is comprehensively favorable in con-
structing a discrimination model with high capability of the examination-category
determination.

The scale of datasets treated in this paper is comparatively small, and hence the
model constructed under the combination of Sudachi, level 3 list, One Hot Encoding,
and CatBoost learning would be suited for ophthalmology clinics with difficulty of
preparing a large-scale dataset. Let us discuss determining examination categories
using NNs. In Tables 3 and 8, accuracies achieved by models that NN learning
constructs are somewhat disappointing. It seems that low accuracies associated
with NN models were caused by using the above small-scale dataset. The detailed
evaluation should be made for the proposed method using NN learning with a large-
scale dataset.

6 Conclusions

In this paper, a method of determining examination categories was proposed for oph-
thalmology patients. It depends on classification capabilities of models constructed
by machine learning, and data presented to discrimination models are prepared from

707



Morita et al.

sentences handwritten in medical questionnaires. The handwritten sentences must
be transformed into numerical vectors. The proposed method chooses either MeCab
or Sudachi to decompose character strings into parts of speech and to specify words
characterizing symptoms and conditions of the patients. To assign values to ele-
ments corresponding to the specified words, the proposed method chooses one of
the following means: One Hot Encoding, Bag of Words, and Word2Vec. For ma-
chine learning to the model construction, SVM, CatBoost, and NN are considered
to be available. The proposed method tries to fix the combination of the above
choices to acquire the powerful capability of determining the categories. The pro-
posed method was evaluated using the five-fold cross-validation with 580 data. As
a result, the discrimination model achieved 64.3% as the highest accuracy on aver-
age under the combination of Sudachi, One Hot Encoding, and CatBoost learning.
The accuracy is then improved by 3% or more compared with the cases of con-
ducting other methods. It was thus established that the proposed method based on
the above combination copes well with the examination-category determination for
comparatively small-scale datasets.

Outpatients visiting ophthalmology tends to handwrite words with similar mean-
ings when they fill out their questionnaires. In this case, it seems that employing
Word2Vec recently presented is preferable to employing Bag of Words producing
simple vectors. This intuition, however, does not apply to determination of exam-
ination categories. It is therefore necessary to theoretically analyze this issue to
improve the accuracy. Besides, introducing BERT [13] for vector preparation seems
to be promising to realize powerful discrimination models. Ophthalmologists use
not only questionnaires but also the results of visual acuity and intraocular pressure
tests to accurately diagnose diseases. We will introduce the results of such tests as
data for machine learning.
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Abstract

Bent functions, either binary or multiple-valued, are mathematical objects
attractive for studying since besides highest non-linearity as their primary char-
acteristic, express some other interesting properties, some of which can be used
to devise construction algorithms for bent functions. In particular, binary bent
functions have a strictly specified number of non-zero values. In the same way,
ternary bent functions satisfy certain requirements on the distribution of values
of elements of their value vectors. These requirements can be used to specify six
classes of ternary bent functions. Classes are mutually related by encoding of
function values. Functions within a class are mutually related by permutation
of elements in their function vectors. Given a basic ternary bent function, other
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functions in the same class can be constructed by permutation matrices having
a block structure similar to that of the factor matrices appearing in the Good-
Thomas decomposition of the Cooley-Tukey Fast Fourier transform and related
algorithms. Conversion of function vectors into matrices or equivalent matrix-
valued vectors of smaller length leads to the redistribution of space complexity
of related manipulation algorithms. In this matrix representations, construction
of other bent functions from a given known bent function is performed by using
either properties of bent functions or by manipulation of such representations in
terms of FFT-like permutation matrices of dimensions smaller than the length
of the function vector of the initial bent functions.

1 Introduction
There are different approaches in the study of bent functions and solving of many
challenging tasks related to bent functions. Construction of bent functions is cer-
tainly among them, since it is important for possible applications. An approach
to the construction of bent functions consist of manipulating known bent func-
tions [?], [?], [?]. The considerations presented below belong to that area. In this
context, reducing or redistributing the complexity of construction procedures is im-
portant to make them feasible in practice. The paper discloses an attempt towards
that based on certain properties of bent functions and by using matrix manipulation
of known bent functions.

2 Certain Peculiar Properties of Bent Functions
Boolean and multiple-valued functions are defined as mappings f : {0, 1}n → {0, 1}
and f : {0, 1, . . . , p− 1}n → {0, 1, . . . , p− 1}, respectively. To provide methods and
algorithms for handling such functions some algebraic structures are imposed on
the domain and the range sets with suitably defined operations over their elements.
Usually, the structure of a group is assumed for the domain and of a field for the
range. Therefore, these functions are viewed as discrete functions defined on finite
groups taking values in a field. In this way, powerful mathematical methods from
signal processing can be applied to these functions. In particular, when viewed in
this way, they can be processed by Fourier transforms on these groups [?]. Moreover,
properties of the corresponding Fourier coefficients can be used in the definition or
specification of certain classes of binary and multiple-valued functions, as is the case
for example for bent functions, as will be discussed below.

In order to make the binary and multiple-valued functions compatible with basis
functions in terms of which Fourier transforms are defined, the corresponding encod-
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ing is performed when computing their Fourier spectra. It means, function values
are encoded by the values that basis functions in Fourier representations can take,
i.e., by the elements appearing in the corresponding Fourier transform matrices.
For the Boolean and multiple-valued functions, these are the Walsh transform and
the Vilenkin-Chrestenson transform, respectively [?]. In what follows, this is called
complex encoding. For ternary functions, the elements of the Vilenkin-Chrestenson
matrix are 1, e1, e2, where e1 = −1

2(1 − i
√

3), e2 = e∗
1 = −1

2(1 + i
√

3), and the
complex encoding is the mapping (0, 1, 2) → (1, e1, e2). Further, the Hadamard or-
dering of basis functions in the Fourier transforms appears convenient since matches
the structure of the assumed domain groups resulting in the Kronecker product
representable transform matrices [?], [?], [?].

The restriction imposed on the range of function values results in corresponding
restrictions in the spectral domain. This ensures that the inverse transform will
produce a Boolean or multiple-valued function from the spectrum. For example, the
maximal absolute value of a Walsh coefficient of a Boolean function is 2n [?], [?].
This can be used as a feature defining linear Boolean functions. A Boolean function
is linear if its Walsh spectrum has a single non-zero coefficient with absolute value
2n, while all other coefficients are 0. Binary bent functions, defined as functions
achieving maximal non-linearity, have a Walsh spectrum in which the maximal value
of a coefficient is minimal and is equal 2n/2. Since all other coefficients have the
same absolute value, the Walsh spectrum of a bent function is flat. Along with the
requirement for maximal non-linearity, this feature is used to generalize the concept
of bentness to ternary functions as well as other generalized bent functions in terms of
the Fourier transform on the corresponding domain group [?], [?], [?], [?]. Therefore,
an alternative definition of ternary bent functions is the following. A ternary function
is bent if, after complex encoding, its Vilenkin-Chrestenson spectrum is flat, i.e., all
the Vilenkin-Chrestenson coefficients have the absolute value 3n/2 [?].

This requirement for ternary bent functions in the spectral domain, imposes two
properties in the original domain

1. Except for n = 1, all three values 0, 1, 2 must appear in the function vector of
a function to be bent.

2. The number of appearances of different values in the function vector of a bent
function is strictly specified as a triple D = (d0, d1, d2) called the distribution
of function values.

Table ?? shows the distributions for ternary bent functions for n = 1, 2, 3, 4, 5, 6, 7
[?].
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n Distributions
1 D = (0, 1, 2)
2 D = (5, 2, 2), D = (1, 4, 4)
3 D = (6, 9, 12)
4 D = (33, 24, 24), D = (21, 30, 30)
5 D = (72, 81, 90)
6 D = (225, 252, 252), D = (261, 234, 234)
7 D = (702, 729, 756)

Table 1: Distribution of function values in ternary bent functions.

Notice that the distribution shows how many times different values appear in
the function vector, but does not state which values repeat a given number di,
i ∈ {0, 1, 2}, of times. Therefore, functions with the same distributions differ up
to the encoding. If we determine the distribution for a given bent function, we get
its composition C = (c0, c1, c2) which shows how many times each ternary value
appears in its function vector. Functions with the same composition differ up to
the permutation of values in their function vectors. In the present paper, we use
this feature to construct several other bent functions from an initial bent function
by using first properties of the Vilenkin-Chrestenson spectra as in Examples ?? and
??, and then permutation matrices preserving bentness [?], [?] in Examples ??, ??.

3 FFT-like Permutation Matrices

As noticed above, ternary bent functions with identical compositions have function
vectors with permuted elements. It follows that some other bent functions can be
constructed from a given bent function by permuting elements of its function vector.
However, not every permutation of the function vector preserves the bentness, sim-
ilarly as any combination of even integers can not be used as the Walsh spectrum
of Boolean functions. It is a rather very restricted set of permutations that can be
used, since the portion of bent functions out of all ternary functions for a given num-
ber of variables is very small. The restriction comes from the requirements in the
original and spectral domain that should be simultaneously satisfied for a function
to be bent. A set of allowed permutations is determined in [?] by referring to the
spectral invariant operations since they preserve flateness of the spectrum, in other
words, bentness of the functions.
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In [?], four basic permutation matrices are defined, which map ternary functions
in a single variable with the same composition to each other. These matrices are

Q1 =




0 1 0
1 0 0
0 0 1


 , Q2 =




1 0 0
0 0 1
0 1 0


 ,

X1 =




0 0 1
1 0 0
0 1 0


 , N1 =




0 0 1
0 1 0
1 0 0


 .

(1)

The basic permutation matrices for n = 1 permit constructing FFT-like per-
mutation matrices for any larger n by an analogy with the application of basic
transform matrices in defining factor matrices of the Good-Thomas factorisation of
the Cooley-Tukey FFT [?].
Definition 1. An FFT-like permutation matrix is defined as

P(n) =
n⊗

i=1
Pj(1), Pj(1) =

{
q(1) for i = j,
I(1) for i 6= j,

(2)

where q(1) is any of the basic permutation matrices Q1, Q2, X1, N1, or XT
1 , and

I(1) is the (3× 3) identity matrix.
Notice that except for X1, which is orthogonal, the basic permutation matrices

are self-transpose, i.e., they are symmetric and self-inverse.
Since FFT-like permutation matrices are derived from factor matrices in the

FFT, it is ensured that they perform a permutation of spectral coefficients corre-
sponding to certain spectral invariant operations. Therefore, their application en-
sures preserving bentness. The correspondence between these permutation matrices
and spectral invariant operations is reviewed in [?]. For invariance of the spectrum
with respect to permutations, we refer to [?].

4 Matrices Derived from Function Vectors
The function vector F = [f(0), f(1), . . . , f(3n − 1)]T specifies a ternary function in
n variables by enumerating its values in all the points of the domain. Such vectors
can be written as (3k × 3r) matrices Q obtained by writing successive subvectors
of length 3k of F as their rows, where k = 1, 2, . . . , (n − 1). Different choices of
parameters k and r lead to matrices of different dimensions.

This representation of bent functions is a basis for construction of bent functions
due to the observations discussed below.
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5 Construction of Ternary Bent Functions through Ma-
trices

Transposition of a matrix means permuting of its row and column indices. If the
matrix is build from the function vector of a bent function, then the transposition
induces a permutation of the arguments of the function, which is a spectral invari-
ant operation and ensures that bentness is preserved. From there, the following
procedure immediately follows.

For a ternary bent function we represent the number of variables as n = k + r
where k = 1, 2, . . . , (n−1), and r = n−k. Then, we rewrite its function vector F as
(3k × 3r) matrices Q for different values of k by writing subvectors of length 3k as
rows of Q. If we take the transpose matrix of Q for a value of k, and concatenate
its rows, the obtained function is also bent. The reason is that the transposition
corresponds to the permutation of variables defined as the cyclic shift for (n − k)
positions to the left.

Example 1. Consider a function of n = 3 variables. For simplicity, we write just
indices of elements in its function vector

F = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 1, 18, 19, 20, 21, 22, 23, 24, 25, 26]T .

We write this function vector as a (9× 3) matrix



0 1 2
3 4 5
6 7 8
9 10 11
12 13 14
15 16 17
18 19 20
21 22 23
24 25 26




.

The transpose (3× 9) matrix is



0 3 6 9 12 15 18 21 24
1 4 7 10 13 16 19 22 25
2 5 8 11 14 17 20 23 26


 .
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By concatenating the rows of this matrix, we obtain the function vector

Fnew = [0, 3, 6, 9, 12, 15, 18, 21, 24, 1, 4, 7, 10, 13, 16, 19,

22, 25, 2, 5, 8, 11, 14, 17, 20, 23, 26]T

This is the vector which corresponds to the permutation of variables x1x2x3 →
x2x3x1.

If we first convert F into a (3× 9) matrix,



0 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26




the transposition of it will produce the (9× 3) matrix



0 9 18
1 10 19
2 11 20
3 12 21
4 13 22
5 14 23
6 15 24
7 16 25
8 17 26




.

Concatenation of rows of this matrix produces the vector

Fnew = [0, 9, 18, 1, 10, 19, 2, 11, 20, 3, 12, 21, 4, 13, 22, 5,

14, 23, 6, 15, 24, 7, 16, 25, 8, 17, 26]T ,

which corresponds to the permutation of variables x1x2x3 → x3x1x2.
It follows that we obtain other bent functions for different values of k. The

dimensions of rows and columns can be mutually exchanged which produces further
possibilities for other bent functions. The method can be applied to bent functions
in any number of variables and independently of their degree.
Example 2. Consider the bent function in four variables of degree three f = x1x2⊕
x3x4 ⊕ x1x2

4 ⊕ x1x3. Its function vector is

F = [0, 0, 0, 0, 1, 2, 0, 2, 1|0, 0, 0, 0, 1, 2, 0, 2, 1|0, 0, 0, 0, 1, 2, 0, 2, 1|
0, 1, 1, 1, 0, 1, 2, 2, 1|1, 2, 2, 2, 1, 2, 0, 0, 2|2, 0, 0, 0, 2, 0, 1, 1, 0|
0, 2, 2, 2, 2, 0, 1, 2, 1|2, 1, 1, 1, 1, 2, 0, 1, 0|1, 0, 0, 0, 0, 1, 2, 0, 2]T .
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For k = 2, it is r = 2 and we convert this function into the (32 × 32) matrix

Q =




0 0 0 0 1 2 0 2 1
0 0 0 0 1 2 0 2 1
0 0 0 0 1 2 0 2 1
0 1 1 1 0 1 2 2 1
1 2 2 2 1 2 0 0 2
2 0 0 0 2 0 1 1 0
0 2 2 2 2 0 1 2 1
2 1 1 1 1 2 0 1 0
1 0 0 0 0 1 2 0 2




.

By concatenating the rows of QT , we obtain the function vector

F1 = [0, 0, 0, 0, 1, 2, 0, 2, 1|0, 0, 0, 1, 2, 0, 2, 1, 0|0, 0, 0, 1, 2, 0, 2, 1, 0|
0, 0, 0, 1, 2, 0, 2, 1, 0|1, 1, 1, 0, 1, 2, 2, 1, 0|2, 2, 2, 1, 2, 0, 0, 2, 1|
0, 0, 0, 2, 0, 1, 1, 0, 2|2, 2, 2, 2, 0, 1, 2, 1, 0|1, 1, 1, 1, 2, 0, 1, 0, 2]T

of the function

f1 = x1x2 ⊕ x3x4 ⊕ x2
2x3 ⊕ x1x3,

which is also bent. This function corresponds to the cyclic shift of variables in f for
r = 2 places to the left. Thus, x1, x2, x3, x4 → x3, x4, x1, x2.

If the initial function f is converted into a (27 × 3) matrix, and its transpose
determined, the produced bent function has the functional expression as

f2 = x2x4 ⊕ x2x3 ⊕ x1x4 ⊕ x2
1x2.

This function corresponds to the shift of variables in f for r = 1 places to the left.
The matrix (3× 27) produces the function with the functional expression

f3 = x1x4 ⊕ x2x3 ⊕ x4x2
3 ⊕ x2x4.

This function corresponds to the shift of variables in f for r = 3 places to the left.

Example 3. Consider the function in 6 variables

f = 1⊕ x1x2 ⊕ x3x4 ⊕ 2x5x6 ⊕ x2
2x4x5 ⊕ x6.

It is clear that this function is of degree 4, and by computing its Vilenkin-Chrestenson
spectrum, after its complex encoding, it can be determined that it is bent.
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The function vector is of length 36 = 729, and can be converted into matrices of
the dimensions (27×27), (9×81), (3×243), (81×9), (243×3). After transposition
and re-converting into function vectors, these matrices produce, respectively, five
bent functions

f1 = 1⊕ x4x5 ⊕ x3 ⊕ 2x2x3 ⊕ x1x6 ⊕ x1x2x2
5,

f2 = 1⊕ x5x6 ⊕ x4 ⊕ 2x3x4 ⊕ x2x3x2
6 ⊕ x1x2,

f3 = 1⊕ x5 ⊕ 2x4x5 ⊕ x2x3 ⊕ x1x6 ⊕ x2
1x3x4,

f4 = 1⊕ x5x6 ⊕ x3x4 ⊕ x2 ⊕ x1x2
4x6 ⊕ 2x1x2,

f5 = 1⊕ x4x5 ⊕ x2
3x5x6 ⊕ x2x3 ⊕ x1 ⊕ 2x1x6.

These functions correspond to the cyclic shift of variables for r = n − k places to
the left. Therefore, the cyclic shift is for 3, 4, 5, 2, 1 places to the left. There are 3n

linear ternary functions to which any of two constants 1 and 2 can be added to get
affine ternary functions. We can add 3n+1 = 37 affine functions in 6 variables to
any of these bent functions and in this way obtain more bent functions [?].

The following example illustrates that depending on the initial bent function, the
number of produced bent functions is not necessarily equal to the number of possible
matrices of different dimensions to be transposed. In certain cases, transposition of
matrices of different dimensions might produce the same bent functions or functions
equal to the initial functions.

Example 4. Consider the function represented as a sum of disjoint product of
variables

f = x1x2 ⊕ x3x4 ⊕ x5x6.

This function is often considered as the basic bent function in 6 variables for the
distribution D = (225, 252, 252). The conversion into a (27× 27) matrix and trans-
position of it produces

fnew,27 = x4x5 ⊕ x2x3 ⊕ x1x6.

The (9 × 81) matrix after transposition produces the initial function f . The
(3 × 243) matrix after transposition produces the function equal to that obtained
from the (27× 27) matrix.

Example 5. The function represented by the sum of squares of variables

f = x2
1 ⊕ x2

2 ⊕ x2
3 ⊕ x2

4 ⊕ x2
5 ⊕ x2

6.
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is often considered as the basic bent function in 6 variables for the distribution D =
(261, 234, 234). Any of the three possible matrices after transposition produces the
initial function f . This is due to the fact that f is symmetric.

The procedure to construct bent functions by manipulating a known bent func-
tions used in the above examples can be formalized into an algorithm as follows.

Algorithm 1. 1. Given a ternary bent function in n variables specified as a func-
tion vector F of length 3n.

2. Split F into subvectors of length 3k, for k = 1, 2, . . . , (n− 1).

3. Write the subvectors in Step 2 as rows of a (3k × 3n−k) matrix Q.

4. Determine QT , the transpose of Q.

5. Concatenate rows of QT to produce the function vector of a bent function fnew.

6. Check if the constructed function already exists in the list of obtained functions
for different parameters k and r. If Y es, return to Step 2, if No add fnew to
the list, and then return to Step 2.

As noticed above, in certain cases, depending on the patterns in the function
vector of the initial function, the functions produced by the transposition for certain
choices of k and r, might be identical to either the initial function or to the functions
obtained for different choices of the parameters, as can be seen in Examples ?? and
??. In such cases, another approach presented in the next section based on matrix-
valued equivalents of bent functions can be tried.

Transposition of matrices is an operation widely used in many computing and
related application oriented algorithms and its implementation is well studied in-
cluding hardware realizations. For an example of such circuits for transposition of
matrices, we refer to Example 6.14 in [?].

The algorithm presented above immediately implies a challenging task of design-
ing hardware for construction of ternary bent functions. If based on this algorithm,
the required hardware reduces to a circuit performing the transposition of matrices.
The circuit should be a reconfigurable circuit in order to accommodate different
choices for the parameters k and r.

6 Matrix-valued Ternary Bent Functions
A possible approach towards redistribution of complexity of computing related to
processing of large function vectors is to convert them into shorter matrix-valued
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n 2 3 4 5 6 7 8
k 1 1 1, 2 1, 2 1, 2, 3 1, 2, 3 1, 2, 3, 4
r 1 3 9, 1 27, 3 81, 9, 1 243, 27, 3 739, 81, 9, 1

Table 2: Possible decompositions of function vectors into matrix-valued elements.

vectors [?]. In this way, the representation of functions and required computing
with large vectors is converted into representations and computing with vectors of
smaller length and their matrix-valued elements. The size of vectors and matrices
used as their elements can be varied depending on concrete applications and available
computing resources.

In [?], matrix-valued equivalents of ternary bent functions are defined and used
for classification of bent functions in terms of patterns appearing in the correspond-
ing matrix-valued coefficients. In this section, we use the matrix-valued equivalents
of bent functions as a basis to construct bent functions from the given bent functions.
We split the function vector into subvectors of length 3k, k = 1, 2, . . . , d(n − 1)/2e,
where dae is the smallest integer greater or equal to a, and write them as (3k × 3k)
matrices. In this way, the function vector F of length 3n is converted into a matrix-
valued equivalent function vector of r = 3n−2k elements. A function vector is recon-
structed from the matrix-valued equivalent by concatenating the rows of its elements
starting from the first element and by processing elements successively. It means
that we first concatenate the rows of the first element, then the rows of the second
element, and continue in the same way.

Table ?? shows the possible dimensions and the number of matrix-valued ele-
ments for n = 2, 3, 4, 5, 6, 7, 8. For simplicity, the considerations and examples in
this section are given for k = 1, i.e., the matrix-valued elements of function vectors
are (3×3) matrices. All the statements and observations are valid for other possible
decompositions.

Remark 1. For a matrix-valued equivalent of a bent function for all the choices of
parameters k and r, the determinant of matrix-valued elements is equal to 0.

Example 6. Consider function f1324(x1, x2, x3, x4) = x1x3 ⊕ x2x4 and write its
function vector into the form of a vector of 9 elements whose entries are (3 × 3)
matrices obtained by arranging triples of successive elements into rows of these ma-
trices. Thus, this function is represented as
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F1324 = [a0, a1, a2, a3, a4, a5, a6, a7, a8]T ,

where

a0 =




0 0 0
0 0 0
0 0 0


 a1 =




0 1 2
0 1 2
0 1 2


 a2 =




0 2 1
0 2 1
0 2 1




a3 =




0 0 0
1 1 1
2 2 2


 a4 =




0 1 2
1 2 0
2 0 1


 a5 =




0 2 1
1 0 2
2 1 0




a6 =




0 0 0
2 2 2
1 1 1


 a7 =




0 1 2
2 0 1
1 2 0


 a8 =




0 2 1
2 1 0
1 0 2


.

We determine a matrix-valued function with elements obtained as qi = X1ai,
where X1 is the basic permutation matrix. Therefore,

F132412 = [v0, v1, v2, v3, v4, v5, v6, v7, v8]T

where

v0 =




0 0 0
0 0 0
0 0 0


 v1 =




0 1 2
0 1 2
0 1 2


 v2 =




0 2 1
0 2 1
0 2 1




v3 =




2 2 2
0 0 0
1 1 1


 v4 =




2 0 1
0 1 2
1 2 0


 v5 =




2 1 0
0 2 1
1 0 2




v6 =




1 1 1
0 0 0
2 2 2


 v7 =




1 2 0
0 1 2
2 0 1


 v8 =




1 0 2
0 2 1
2 1 0


.

This matrix-valued function defines, after concatenating the rows of matrix-
valued elements, a function with the function vector

F12 = [0, 0, 0, 0, 0, 0, 0, 0, 0|0, 1, 2, 0, 1, 2, 0, 1, 2|0, 2, 1, 0, 2, 1, 0, 2, 1|
2, 2, 2, 0, 0, 0, 1, 1, 1|2, 0, 1, 0, 1, 2, 1, 2, 0|2, 1, 0, 0, 2, 1, 1, 0, 2|
1, 1, 1, 0, 0, 0, 2, 2, 2|1, 2, 0, 0, 1, 2, 2, 0, 1|1, 0, 2, 0, 2, 1, 2, 1, 0]T
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and whose functional expression is

f12 = f1324(x1, x2, x3, x4)⊕ 2x1 = x1x3 ⊕ x2x4 ⊕ 2x1.

This function is bent since the linear term 2x1 is added to f1324.
We now construct another function the elements of which are obtained from the

corresponding coefficients in the initial function as si = XT
1 ai, Therefore,

F1324122 = [s0, s1, s2, s3, s4, s5, s6, s7, s8]T ,

where

s0 =




0 0 0
0 0 0
0 0 0


 s1 =




0 1 2
0 1 2
0 1 2


 s2 =




0 2 1
0 2 1
0 2 1




s3 =




1 1 1
2 2 2
0 0 0


 s4 =




1 2 0
2 0 1
0 1 2


 s5 =




1 0 2
2 1 0
0 2 1




s6 =




2 2 2
1 1 1
0 0 0


 s7 =




2 0 1
1 2 0
0 1 2


 s8 =




2 1 0
1 0 2
0 2 1


.

From matrix-valued coefficients, we derive the function vector of another bent
function whose function vector is

F1324122 = [0, 0, 0, 0, 0, 0, 0, 0, 0|0, 1, 2, 0, 1, 2, 0, 1, 2|0, 2, 1, 0, 2, 1, 0, 2, 1|
1, 1, 1, 2, 2, 2, 0, 0, 0|1, 2, 0, 2, 0, 1, 0, 1, 2|1, 0, 2, 2, 1, 0, 0, 2, 1|
2, 2, 2, 1, 1, 1, 0, 0, 0|2, 0, 1, 1, 2, 0, 0, 1, 2|2, 1, 0, 1, 0, 2, 0, 2, 1]T .

This function is bent which can be seen from its Vilenkin-Chestenson spectrum, and
its functional expression is

f1324122 = f1234(x1, x2, x3, x4) = x1x3 ⊕ x2x4 ⊕ 2x1x2
2.

In this case, the term 2x1x2
2 is added.

Example 7. In the present example, we first label elements of the matrix-valued
function derived from the initial function by 0, 1, 2, 3, 4, 5, 6, 7, 8 and obtain a function
vector F1324,e = [0, 1, 2, 3, 4, 5, 6, 7, 8]T . We permute it by the permutation matrix
Px,i = X1 ⊗ I(1) defined in (??) [?] and produce a function vector Fx,i,q,1324,e =
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[6, 7, 8, 0, 1, 2, 3, 4, 5]T . The replacement of entries in this vector by the corresponding
matrix-valued elements of F1324 produces the matrix-valued function as follows

Fx,i,q,1324,e = [w0, w1, w2, w3, w4, w5, w6, w7, w8]T ,

where

w0 =




0 0 0
2 2 2
1 1 1


 w1 =




0 1 2
2 0 1
1 2 0


 w2 =




0 2 1
2 1 0
1 0 2




w3 =




0 0 0
0 0 0
0 0 0


 w4 =




0 1 2
0 1 2
0 1 2


 w5 =




0 2 1
0 2 1
0 2 1




w6 =




0 0 0
1 1 1
2 2 2


 w7 =




0 1 2
1 2 0
2 0 1


 w8 =




0 2 1
1 0 2
2 1 0


.

Conversion into a function vector produces a function that is bent and its function
vector is

Fx,i,q,1324 = [0, 0, 0, 2, 2, 2, 1, 1, 1|0, 1, 2, 2, 0, 1, 1, 2, 0|0, 2, 1, 2, 1, 0, 1, 0, 2|
0, 0, 0, 0, 0, 0, 0, 0, 0|0, 1, 2, 0, 1, 2, 0, 1, 2|0, 2, 1, 0, 2, 1, 0, 2, 1|
0, 0, 0, 1, 1, 1, 2, 2, 2|0, 1, 2, 1, 2, 0, 2, 0, 1|0, 2, 1, 1, 0, 2, 2, 1, 0]T .

This function is bent and has the functional expression as

fx,i,q,1324 = x1x3 ⊕ x2x4 ⊕ 2x3.

If the encoded function vector F1324,e is reordered by the permutation Pi,x = I(1)⊗
X1, we get the function vector Fi,x,q,1324,e = [2, 0, 1, 5, 3, 4, 8, 6, 7]T . The replacement
of entries by the matrix-valued elements of F1324 produces

Fe,i,x,q,1324 = [d0, d1, d2, d3, d4, d5, d6, d7, d8]T ,

where
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d0 =




0 2 1
0 2 1
0 2 1


 d1 =




0 0 0
0 0 0
0 0 0


 d2 =




0 1 2
0 1 2
0 1 2




d3 =




0 2 1
1 0 2
2 1 0


 d4 =




0 0 0
1 1 1
2 2 2


 d5 =




0 1 2
1 2 0
2 0 1




d6 =




0 2 1
2 1 0
1 0 2


 d7 =




0 0 0
2 2 2
1 1 1


 d8 =




0 1 2
2 0 1
1 2 0


.

Conversion into a function vector produces

Fi,x,q,1324 = [0, 2, 1, 0, 2, 1, 0, 2, 1|0, 0, 0, 0, 0, 0, 0, 0, 0|0, 1, 2, 0, 1, 2, 0, 1, 2|
0, 2, 1, 1, 0, 2, 2, 1, 0|0, 0, 0, 1, 1, 1, 2, 2, 2|0, 1, 2, 1, 2, 0, 2, 0, 1|
0, 2, 1, 2, 1, 0, 1, 0, 2|0, 0, 0, 2, 2, 2, 1, 1, 1|0, 1, 2, 2, 0, 1, 1, 2, 0]T .

This is a function which is bent and has the functional expression as

fe,i,x,q,1324 = x1x3 ⊕ x2x4 ⊕ 2x4.

If the entries of Fi,x,q,1324 = [2, 0, 1, 5, 3, 4, 8, 6, 7]T are replaced by the matrix-
valued elements of F132412, thus, by elements of F1324 permuted by X1, we get

Fi,x,q,132412,e = [h0, h1, h2, h3, h4, h5, h6, h7, h8]T ,

where

h0 =




0 2 1
0 2 1
0 2 1


 h1 =




0 0 0
0 0 0
0 0 0


 h2 =




0 1 2
0 1 2
0 1 2




h3 =




2 1 0
0 2 1
1 0 2


 h4 =




2 2 2
0 0 0
1 1 1


 h5 =




2 0 1
0 1 2
1 2 0




h6 =




1 0 2
0 2 1
2 1 0


 h7 =




1 1 1
0 0 0
2 2 2


 h8 =




1 2 0
0 1 2
2 0 1


.

Conversion into a function vector produces

Fi,x,q,132412 = [0, 2, 1, 0, 2, 1, 0, 2, 1|0, 0, 0, 0, 0, 0, 0, 0, 0|0, 1, 2, 0, 1, 2, 0, 1, 2|
2, 1, 0, 0, 2, 1, 1, 0, 2|2, 2, 2, 0, 0, 0, 1, 1, 1|2, 0, 1, 0, 1, 2, 1, 2, 0|
1, 0, 2, 0, 2, 1, 2, 1, 0|1, 1, 1, 0, 0, 0, 2, 2, 2|1, 2, 0, 0, 1, 2, 2, 0, 1]T ,
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This function is bent and has the functional expression

fi,x,q,132412 = x1x3 ⊕ x2x4 ⊕ 2x1 ⊕ 2x4.

This function is bent since the linear term 2x1 ⊕ 2x4 is added.

Example 8. Consider the function fsquare = x2
1 ⊕ x2

2 ⊕ x2
3 ⊕ x2

4. Its function vector
is

Fsquare = [0, 1, 1, 1, 2, 2, 1, 2, 2|1, 2, 2, 2, 0, 0, 2, 0, 0|1, 2, 2, 2, 0, 0, 2, 0, 0|
1, 2, 2, 2, 0, 0, 2, 0, 0|2, 0, 0, 0, 1, 1, 0, 1, 1|2, 0, 0, 0, 1, 1, 0, 1, 1|
1, 2, 2, 2, 0, 0, 2, 0, 0|2, 0, 0, 0, 1, 1, 0, 1, 1|2, 0, 0, 0, 1, 1, 0, 1, 1]T .

The corresponding matrix-valued function is

Fsquare = [r0, r1, r2, r3, r4, r5, r6, r7, r8]T ,

where

r0 =




0 1 1
1 2 2
1 2 2


 r1 =




1 2 2
2 0 0
2 0 0


 r2 =




1 2 2
2 0 0
2 0 0




r3 =




1 2 2
2 0 0
2 0 0


 r4 =




2 0 0
0 1 1
0 1 1


 r5 =




2 0 0
0 1 1
0 1 1




r6 =




1 2 2
2 0 0
2 0 0


 r7 =




2 0 0
0 1 1
0 1 1


 r8 =




2 0 0
0 1 1
0 1 1


.

We first perform the encoding of matrix-valued elements of Fsquare as Fe,square =
[0, 1, 2, 3, 4, 5, 6, 7, 8]T . Then, we apply the FFT-like permutation matrix Qi,xT =
I(1) ⊗ XT

1 . The reordered function is Fe,square,new = [1, 2, 0, 4, 5, 3, 7, 8, 6]T . We
re-assign the matrix-valued elements to the reordered function as

Fe,square,new = [y0, y1, y2, y3, y4, y5, y6, y7, y8]T ,

where
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y0 =




1 2 2
2 0 0
2 0 0


 y1 =




1 2 2
2 0 0
2 0 0


 y2 =




0 1 1
1 2 2
1 2 2




y3 =




2 0 0
0 1 1
0 1 1


 y4 =




2 0 0
0 1 1
0 1 1


 y5 =




1 2 2
2 0 0
2 0 0




y6 =




2 0 0
0 1 1
0 1 1


 y7 =




2 0 0
0 1 1
0 1 1


 y8 =




1 2 2
2 0 0
2 0 0


.

When converted into a vector, we obtain the function vector

Fsquare = [1, 2, 2, 2, 0, 0, 2, 0, 0|1, 2, 2, 2, 0, 0, 2, 0, 0|0, 1, 1, 1, 2, 2, 1, 2, 2|
2, 0, 0, 0, 1, 1, 0, 1, 1|2, 0, 0, 0, 1, 1, 0, 1, 1|1, 2, 2, 2, 0, 0, 2, 0, 0|
2, 0, 0, 0, 1, 1, 0, 1, 1, 2, 0, 0, 0, 1, 1, 0, 1, 1|1, 2, 2, 2, 0, 0, 2, 0, 0]T .

of a bent function whose functional expression is

f = 1⊕ 2x2 ⊕ x2
1 ⊕ x2

2 ⊕ x2
3 ⊕ x2

4.

If we permute the matrix-valued elements in the reordered vector Fe,square,new

by any of the elementary permutation matrices, some other bent functions are con-
structed. For example, by Q1, we obtain another bent function whose matrix-valued
function vector is

Fsquare,new,permuted = [g0, g1, g2, g3, g4, g5, g6, g7, g8]T ,

where

g0 =




2 0 0
1 2 2
2 0 0


 g1 =




2 0 0
1 2 2
2 0 0


 g2 =




1 2 2
0 1 1
1 2 2




g3 =




0 1 1
2 0 0
0 1 1


 g4 =




0 1 1
2 0 0
0 1 1


 g5 =




2 0 0
1 2 2
2 0 0




g6 =




0 1 1
2 0 0
0 1 1


 g7 =




0 1 1
2 0 0
0 1 1


 g8 =




2 0 0
1 2 2
2 0 0


.
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When expanded, we obtain the function vector of a bent function whose function
vector is

Fsquare = [2, 0, 0, 1, 2, 2, 2, 0, 0|2, 0, 0, 1, 2, 2, 2, 0, 0|1, 2, 2, 0, 1, 1, 1, 2, 2|
0, 1, 1, 2, 0, 0, 0, 1, 1|0, 1, 1, 2, 0, 0, 0, 1, 1|2, 0, 0, 1, 2, 2, 2, 0, 0|
0, 1, 1, 2, 0, 0, 0, 1, 1|0, 1, 1, 2, 0, 0, 0, 1, 1|2, 0, 0, 1, 2, 2, 2, 0, 0]T .

and the corresponding functional expression is

f = 2⊕ 2x2 ⊕ x3 ⊕ x2
1 ⊕ x2

2 ⊕ x2
3 ⊕ x2

4.

This example illustrates that unlike the Algorithm ??, the method based on matrix-
valued equivalents produces different bent functions also in the case of functions rep-
resented by the sum of squares of variables.

The permutation of matrix-valued elements can be performed by any of the basic
transform matrices. Moreover, splitting into matrix-valued coefficients of different
dimensions can be done, and in this case, FFT-like permutation matrices of the
corresponding dimensions are used. In this way, certain other bent functions are
obtained for different dimensions of matrix-valued coefficients.

The procedure presented in the above examples, can be summarised in the fol-
lowing algorithm.

Algorithm 2. 1. Given a ternary bent function in n variables by its function
vector F of length 3n.

2. Split F into subvectors of length 3k, for k = 1, 2, . . . , dn/2e, and write as a
matrix-valued equivalent Fmv with r = 3n−2k elements which are (3k × 3k)
matrices.

3. Do encoding of elements of Fmv by integers 0, 1, . . . , r − 1 and produce Fmv,e.

4. Permute the encoded vector Fmv,e by an (r× r) permutation matrix P defined
in (??), i.e., by P(n− 2k).

5. Re-assign to elements of Fmv,e the corresponding matrix-valued elements of
Fmv.

6. Concatenate the rows of matrix-valued elements of Fmv,e into the function
vector of a bent function fnew.

7. Permute each matrix-valued element of Fmv by the same (3k×3k) permutation
matrix defined in (??).
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8. Repeat the Steps 5, 6, and 7.

9. Repeat the Step 4 for a different permutation matrix, and then repeat Steps 5,
6, and 7.

7 Closing Remarks

An alternative definition of ternary bent functions states that these are functions
with flat Vilenkin-Chrestenson spectra meaning that all the spectral coefficients take
the same absolute value equal to 3n/2, where n is the number of variables. Therefore,
in constructing bent functions, preserving bentness reads as preserving flatness of
the spectrum. Thus, operations allowed in manipulating function vectors of bent
functions reduce to the so-called spectral invariant operations, which permute the
spectral coefficients or change their sign, but not their absolute values.

Permutations in the spectral domain, i.e., permutations of spectral coefficients,
can be equivalently expressed as certain permutations of function values in the orig-
inal domain. Some of the possible permutations are expressed by the FFT-like
permutation matrices introduced for binary and ternary functions in [?], and [?],
respectively.

We point out that changing the phase of the Vilenkin-Chrestenson coefficients for
bent functions, which preserves their bentness, can be expressed in terms of trans-
position of matrices derived from their function vectors. In this way, bent functions
can be constructed by matrix transposition which in practical implementation re-
duces to reading of function values in a particular exactly determined order. The
space complexity of the procedure is proportional to the space required to store the
known initial bent functions for the procedure. Further, this approach paves a way
for the usage of the hardware for matrix transposition to construct bent functions.

Another approach to the redistribution and due to this possibly also reduction of
space complexity of the construction procedure is through conversion of known bent
functions into matrix-valued equivalents. In this way, a function vector of length
3n is converted into a considerably shorter matrix-valued vector. The length of this
vector and the dimension of matrix-valued coefficients can be chosen in different ways
leading to different bent functions. These functions are obtained by permuting either
or both reduced size matrix-valued function vectors and matrix-valued coefficients by
FFT-like permutation matrices introduced for binary and ternary functions in [?],
and [?], respectively. Matrix based construction algorithms are useful since they
produce bent functions as sequences, which is more convenient for their possible
applications instead of functional expressions.
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We believe that algorithms presented above raise some tasks for further research
works. First, devising reconfigurable hardware for construction of bent functions
by starting from the hardware for transposition of matrices seems as a challenging
task. Then, matrix based algorithms are in general suitable for the implementation
on the contemporary GPU hardware. Implementation of the proposed algorithms
may lead to interesting programming tasks.
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Abstract

This paper introduces a new spectral transform for ternary-input binary-
output functions that generalizes the well-known binary Kronecker Reed-Muller
forms. The two binary Davio Expansions are generalized to 27 ternary-input
Davio Expansions. The new Hybrid Kronecker Reed-Muller spectrum has 28n

expansions for n ternary variables. By creating an oracle for this problem,
we generalize past quantum Grover-based algorithms presented for the binary
Fixed-Polarity Reed-Muller and Kronecker Reed-Muller transforms. Our quan-
tum algorithm is for different variants of ternary-input binary-output forms
realized on Grover’s Algorithms with either binary or binary/ternary control
variables. We create several variants of expansions including binary and ternary
control variables, which leads to a modification of Grover’s Algorithm for term
minimization in the new expressions. The algorithm can be applied to in-
completely specified functions, thus, introducing a new approach to quantum
Machine Learning. The results of the binary Grover’s Algorithm simulation in
Qiskit are presented.
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1 Introduction
The need to find the minimal expression of a certain function commonly arises in
both circuit minimization and in some Machine Learning (ML) approaches [4,12,22].
Several ML problems can be formulated as the minimization of expressions for an
unspecified Multiple-Valued (MV) function, binary being a special case.

L. Li, M. Thornton, and M. Perkowski [15] used Grover’s Search Algorithm to
create a quantum algorithm using a quantum circuit oracle to minimize polynomial
expressions for binary Boolean functions in the family of all Fixed-Polarity Reed-
Muller (FPRM) forms. The algorithm gave a quadratic complexity speedup with
respect to the classical algorithm and selected the least expensive expansion form
(expression) out of 2n forms for a function of n variables. B. Lee and M. Perkowski
[13] have expanded [15] to Grover’s Algorithm with ternary control variables and the
binary Kronecker Reed-Muller (KRM) expansions for incompletely specified binary
data characteristic for Machine Learning. The best KRM form was selected out of
3n forms with quadratic speedup based on quantum parallelism inherent to Grover’s
Algorithm. Additionally, [13] applied these methods to the learning of a humanoid
robot HR-OS1.

The ternary-input binary-output forms that generalize FPRM and KRM, the
simplest possible generalization of the Reed-Muller family of transforms to multi-
valued logic, were not discussed in the literature. The goal of this paper is to
do the same as [15] and [13] has done for ternary-input, binary-output functions,
but for completely specified and incompletely specified ternary-input, binary-output
functions. We call these new forms the Hybrid Kronecker Reed-Muller Expansions.
The total number of these new forms is 28n for ternary-input functions of n variables
(the proof is given in Section 3.3.1). This creates a complicated kernel of butterfly,
therefore, we also created algorithm variants for some smaller subsets of expansions.
The binary-encoded variant selects 23 = 8 expansions out of 28 expansions. These
expansions were selected for their simplest circuits. Similarly, the ternary-encoded
variant is for two variables and it has 32 = 9 expansions. For each variable; the
ternary variant includes 9 expansions.
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2 Machine learning, Reed-Muller expansions, and but-
terfly circuits

This section reviews the minimum necessary background on ML and binary logic
expansions used in reversible circuits and quantum computing.

2.1 Machine Learning

One approach to ML, emphasized, for instance, in Sum-of-Products Minimiza-
tion [8], Exclusive-Sum-of-Products Minimization [23], Ashenhurst-Curtis Decom-
position [16], Rule Based Extraction (AQ of Michalski [18] and CN2 of Clark and
Niblett [5]), and Rough Set Approaches [14], is based on function minimization and
number of variables minimization [19] to satisfy the logical principle, Occam’s Ra-
zor. For instance, an ML classifier design problem can be formulated as minimizing
a highly unspecified discrete function, often with multi-valued input but with binary
output. Occam’s Razor is satisfied by minimizing the complexity of the circuit. The
input vectors of a multiple-input, single-output function represent samples of the
data set, while the output of either a 0 or 1 represents the classification of the data
into two categories based on the input features in a supervised type of learning.
Given features of the data and knowledge of how some of the data are classified
(supervised learning), the ML problem is to find the simplest Boolean expression
that encompasses the training data, which is then used to classify new data (the
testing phase of validation). Thus, this expression becomes a classifier, realized in
software or in hardware. When the expression is realized as a reversible circuit with
permutative (reversible) gates such as the generalized Toffoli, it becomes an oracle.
Measurement gates are added on outputs. Thus, this oracle, trained on binary data,
can produce learned results on arbitrary initializing quantum states instead of only
basic binary states of Hilbert Space.

Don’t-cares in logic design are called don’t-knows in ML. Learning consists of
converting the don’t-knows to care values of 0s or 1s. When multiple completely
satisfied learned functions meet the requirement of correct classification, by Occam’s
Razor, the simplest one will likely make the best predictions with which to replace
the don’t-knows of the initial specification. This paper describes a method of finding
such a minimal expression given the set of samples (ternary minterms) with labels
0s and 1s in the learning data set.
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2.2 Binary logic expansions
A binary function can be described by its true minterms (1s) and false minterms (0s).
Any binary function with a single output can be written as a canonical Exclusive-OR
Sum-of-Products (ESOP) of minterms. A binary function of three variables is given
in Equation (1),

f(x1, x2, x3) = m0x̄1x̄2x̄3 ⊕m1x̄1x̄2x3 ⊕m2x̄1x2x̄3 ⊕m3x̄1x2x3⊕

m4x1x̄2x̄3 ⊕m5x1x̄2x3 ⊕m6x1x2x̄3 ⊕m7x1x2x3 (1)

where xi ∈ {0, 1} are binary input variables of the completely specified function, the
bar denotes the NOT operator, and mi ∈ {0, 1} are the minterms of the function.
Again, this expansion is canonical, and it is useful only as the initial specification of
the minimization problem. The corresponding general model of the classifier is an
EXOR of arbitrary products of literals, called a general ESOP.

In binary logic, literals are variables or negated variables, wherein it being pos-
itive or negative denotes the polarity. Thus, for every canonical ESOP we can find
ESOPs with smaller costs by modifying variable polarities and applying the ESOP
tautology equivalence rules. ESOP expressions are fundamental in the synthesis
of quantum circuits, especially in oracles. [15] and [13] describe restricted cases of
ESOP expressions which are Fixed-Polarity Reed-Muller (FPRM) and Kronecker
Reed-Muller (KRM) forms. Because finding the minimum ESOP for many variables
is very difficult, computer scientists and engineers use algorithms to minimize FPRM
and KRM expressions as convenient approximations. Every binary function can be
expanded in one of three different ways for every variable to yield new representa-
tions of the function. The Shannon expansion, which is the simplest of these three,
is given in Equation (2),

f(x1, x2, . . . , xn) = xfx ⊕ x̄fx̄ (2)

where x is some input variable of the function and fx and fx̄ are called the positive
and negative cofactors of variable x. They are equivalent to the function evaluated
for x = 1 and x = 0, respectively. In Equation (3), the Positive Davio (pD) expansion
is obtained by substituting x̄ = x⊕ 1 in the Shannon expansion.

f(x1, x2, . . . , xn) = x(fx ⊕ fx̄)⊕ fx̄ (3)

Likewise, applying the equality x = x̄ ⊕ 1 to the Shannon Expansion produces the
Negative Davio (nD) expansion, which is given in Equation (4).

f(x1, x2, . . . , xn) = x̄(fx ⊕ fx̄)⊕ fx (4)
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Applying the pD expansion to every variable of a function produces the Positive
Polarity Reed-Muller (PPRM) form, in which every variable is represented with
non-complemented (positive) literals. To specify other forms of a function, we use
polarity notation to denote the type of expansion— pD, nD, or Shannon— on each
of the variables. Numbers that denote the polarity of a variable symbolize pD as
0 and nD as 1. Polarity 2 for Shannon is represented only in KRM forms. For
example, Polarity x1x2x3 denotes a three-variable function, where xi is the integer
representative of the order of the expansions applied on each variable. Regardless
of the number of variables, there is only one binary vector of polarities where the
polarities of all the variables are positive. A two-variable Boolean function in PPRM
can be denoted as Polarity 00, where the 0 in the zeroth index represents the first
pD expansion on a variable, and the next 0 represents a pD expansion on the second
variable of the Boolean expression resulting from the first expansion.

Next, choosing to apply either pD or nD to each variable yields Fixed Polarity
Reed-Muller forms, in which each variable is represented with either complemented
or non-complemented literals, but not both. Negative polarity is obtained by ap-
plying the nD expansion on a variable. For example, Polarity 110 reveals negative
polarity on the first variable, negative polarity on the second variable, and positive
polarity on the third. Since each variable can be expanded to either pD or nD in
FPRM, there are 2n possible FPRM polarities for a Boolean function of n variables.

Finally, choosing one of the three expansions to apply to each variable of a
function produces a Kronecker Reed-Muller form. Applying a Shannon expansion
on a variable results in mixed polarity, typically including both complemented and
non-complemented literals. Because there are three different ways to expand each
variable, there are 3n possible KRM expansions for a function of n variables.

Problems of finding the minimum binary FPRM and KRM forms are difficult.
Often, a complete search through all the forms is necessary if the exact minimum
form is expected. This problem is especially challenging for incompletely specified
functions. An incompletely specified function is described as in Equation (1) but the
values of minterms mi can be 0, 1, and either âĂĲ-âĂĲ or âĂĲXâĂİ (which denotes
a don’t-know value). Don’t-knows correspond to incomplete information, formally
extending from Boolean functions to Boolean relations. There are no algorithms in
existence that would find the exact minimum FPRM, KRM or ESOP solutions to
incomplete functions for data of practical size, especially data from ML benchmarks.
No problem formulation for hybrid ternary/binary forms is also known. In this
paper we formulate the optimal hybrid classifier design problem and solve it using
a ternary Grover’s Algorithm. Binary Grover’s Algorithm is a well-known quantum
algorithm especially useful for problems in which only exhaustive search is possible.
This is relevant for incomplete functions, because EXORing don’t-known values
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with known values (cares) in butterfly diagrams [13,20] creates various constrained
combinations that are propagated through the diagram. All these combinations
should be investigated by backtracking when an exact minimum cost solution is
attempted [13,15]. Therefore, the new quantum spectral approaches to MV learning
and circuit design problems become good research candidates because of the property
of quantum parallelism resulting from superposition, particularly in the case that
one looks for the exact minimum solution or a small complexity solution. Although
our approach is of only theoretical value for the current binary quantum computers
with small numbers of qubits, it may become practical when quantum computers
with many qubits or especially qudits (multivalued quantum units of information)
will become available.

Observe also, that minimizing expressions in the EXOR domain [23] is one of
the standard methods used in all quantum algorithms to realize binary reversible
quantum circuits, specifically to create oracles for Grover’s Algorithm [2,4,9,12,13,
16]. In the future, these methods will be also used to realize ternary and hybrid
circuits and oracles. Therefore, interestingly we use here an extended Grover’s
Algorithm to create oracles for future extended Grover’s Algorithms.

2.3 Binary butterfly diagrams and circuits
Spectral transforms are well known in spectral analysis, digital image processing,
Machine Learning, and logic synthesis. The best-known transforms are Fourier,
Sine, Cosine, Walsh, and Haar. For many of these spectral transforms, there exist
butterfly diagrams. In this paper, a new type of butterfly diagram is introduced
for ternary-input, binary-output functions. Butterfly diagrams are used to find the
spectral coefficients of a certain KRM or FPRM expansion given the minterms of the
function. The spectral coefficients correspond to products of literals of the resulting
function after the expansion process. Our goal is to find the expression with the
minimum number of products of literals terms.

Figure 1 illustrates the three binary KRM expansions’ butterfly kernels. A but-
terfly kernel represents the calculation of an expansion on a single variable function.

Figure 1: Butterfly kernels of the pD, nD, and Shannon expansions respectively.
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mi, the minterms, and si, the spectral coefficients, all hold values of either 1
or 0. To find the set of spectral coefficient values, also referred to as the spectral
coefficient values vector from a set of minterm values, horizontal lines in Figure 1
carry the value of the minterm across, while the intersection of two lines indicates
an EXOR of the two minterm values on the ends of these lines. The subscripts of s
reveal the symbolic representation of spectral coefficients these spectral coefficient
values represent, which correspond to some product of literals.

In this paper, we refer to the set of minterm values as simply the set of minterms,
however, we distinguish the spectral coefficients into two parts: their values are
contained in a spectral coefficient values vector, and their symbolic representations
are referred to in their symbolic names of spectral coefficients vector (product of
literals).

Parallels can be drawn between a binary expansion’s canonical expansion formula
and butterfly diagram [15]. For example, in Equation (3) x acts as the coefficient
of fx ⊕ fx̄ while 1 is the coefficient for the other literal fx̄. The expanded Boolean
function is achieved from an EXOR on the resulting terms after multiplying each
spectral coefficient value with its representative product of literals. Notice that
when the spectral coefficient value is 0, the term is omitted from the resulting
equation. These similarities between butterfly kernels and their respective expansion
formulas are present in the nD and Shannon expansions as well. In highlighting this
correspondence, it becomes clear how we can derive the ternary-input binary-output
butterfly kernel— and therefore reversible circuit— given the expansion’s complete
equation and vice versa.

Kernels only act on a function of a single variable. For functions with more
variables, the kernels can be consecutively implemented, called butterfly diagrams
[13, 15, 20]. Variable columns, each corresponding to a transformation on a certain
variable of the function, are arranged in reverse order to how they are applied on the
original function. Therefore, x1 is transformed in the second column of the diagram,
x2 in the first.
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(a) (b)

(c) (d)
Figure 2: All FPRM forms of a two-variable binary function. (a) Polarity 00; (b)
Polarity 01; (c) Polarity 10; (d) Polarity 11.

In Figure 2, there are four minterms for two variables, where one kernel connects
two minterms, so two kernels are present in each column. Assume the distance
between each minterm as a single unit. In the first column, the first kernel is
stretched 20 unit, from m0 to m1. In the second column, the first kernel is stretched
from m0 to m2, or 21 units. The stretching distance increases by 2k with each
column, where k is the number of columns away from the unstretched kernels.

After transforming the set of minterms to its corresponding set of spectral coef-
ficient values, the product of literals corresponding to each coefficient value in the
formula must be determined to construct the resulting Boolean expression. De-
termining product literals for multiple variables is more challenging than simply
referring to the expansion formula as done with a single variable. However, the
same concepts can still be used. Notice how the subscripts of s in Figure 1, the set
of coefficients can be written as polarity(coefficient) vectors: [1, x] for pD, [x̄, 1] for
nD, and [x̄, x] for Shannon. Applying Tensor (Kronecker) products to the polarity
vectors results in a symbolic names of spectral coefficients vector that encompass all
the variables. To find the symbolic names of spectral coefficients vector for Polarity
00 of Figure 2: [1, x1]⊗ [1, x2] = [1 · 1, 1 · x2, x1 · 1, x1 · x2] = [1, x2, x1, x1x2].

Choosing to use either the pD, nD, or Shannon kernels in each column yields
different expansions on each variable. As an example, let us evaluate the function
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in Equation (5)
F (a, b, c) = abc⊕ c̄ (5)

on Polarity 012— first algebraically, then using butterfly diagrams. From its polarity
notation, we can recognize pD will be used to expand the variable a, then nD on
variable b, and finally Shannon expansion on variable c.

To algebraically expand the Boolean function, we first expand pD on variable
a. Instead of the variable x in Equation (3), the positive and negative cofactors
will be derived in respect to a. This can be calculated by substituting a = 1 and
a = 0 into Equation (5). After simplifying with some ESOP rules, Fa = bc⊕ c̄ and
Fā = c̄. Thus, we can assemble F1 = a((bc⊕ c̄)⊕ c̄)⊕ c̄, which is Equation (5) after
a pD expansion on variable a. Here, we refer to Equation (4): x now refers to the
variable b. Undergoing a similar process as to the previous expansion, the positive
cofactor is calculated by substituting b = 1 into F1, while the negative cofactor is
calculated by substituting b = 0 into it instead. This results in Fb = ac ⊕ c̄ and
Fb̄ = c̄, respectively. Therefore, Equation (5) after having undergone a pD expansion
on variable a and nD on variable b is F2 = b̄((ac⊕ c̄)⊕ c̄)⊕ (ac⊕ c̄). Finally, mixed
polarity is applied to variable c through Shannon. In Equation (2), x now refers to
the variable c. After substituting c = 1 and c = 0 into F2 to find the cofactors of c,
we find that Fc = ab̄⊕ a and Fc̄ = 1. These literals in the Shannon formula become
F3 = c(ab̄⊕ a)⊕ c̄(1), simplified to

F3 = ab̄c⊕ ac⊕ c̄ (6)

as the resulting function from expanding Equation (5) on Polarity 012.
This same process can be replicated through evaluating a butterfly diagram. The

minterms (inputs to the butterfly diagram) of Equation (5) are shown in Figure 3.

Figure 3: Karnaugh Map of F (a, b, c) = abc⊕ c̄.

The three columns of the butterfly diagram represent the three variables. Since
the minterms are transformed in reverse from which variables are expanded alge-
braically, the first column consists of four unstretched butterfly kernels represen-
tative of a Shannon expansion. The second column consists of four stretched nD
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kernels. The third column consists of pD kernels stretched even further. The setup
is as illustrated in Figure 4.

(a) (b)
Figure 4: (a) Butterfly diagram of Polarity 012 on an arbitrary three-variable func-
tion. (b) Evaluated butterfly diagram of Polarity 012 on F (a, b, c) = abc⊕ c̄

Values of minterms in natural order are at the left of the butterfly diagram and
the values and symbols of spectral coefficients at the right. The symbolic names of
spectral coefficients vector in Figure 4 is calculated in Equation (7).

[1, a]⊗ [b̄, 1]⊗ [c̄, c] = [b̄c̄, b̄c, c̄, c, ab̄c̄, ab̄c, ac̄, ac] (7)

Then, we multiply the vector of spectral coefficient values with its respective sym-
bolic names of spectral coefficients vector.

0 · b̄c̄⊕ 0 · b̄c⊕ 1 · c̄⊕ 0 · c⊕ 0 · ab̄c̄⊕ 1 · ab̄c⊕ 0 · ac̄⊕ 1 · ac (8)

simplify, and we obtain:
F (a, b, c) = c̄⊕ ab̄c⊕ ac (9)

as the final function of transforming the minterms of Equation (5) on Polarity 012
using a butterfly diagram. When comparing the resulting expressions from the
two methods, it becomes clear they are equivalent. Additionally, realize that the
expression from Equation (9) is more expensive than Equation (5).

Most authors realize butterflies in software, however, [15] and [13] realize butter-
flies in reversible circuits that are used inside the Grover’s Algorithm oracle. This
raises the idea that any type of butterfly diagram can be incorporated into a quan-
tum oracle that can be used inside a quantum algorithm. This algorithm can be
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the Grover’s Algorithm or a Grover’s Algorithm generalized to MV logic. It can be
also a Quantum Walk Algorithm [1] or another quantum search algorithm such as
many existing generalizations of Grover’s Algorithm. Following these two references,
we also realize butterflies as reversible circuits. For example, a single kernel of pD
realized as a reversible circuit is shown in Figure 5.

Figure 5: A single pD kernel realized as a reversible circuit.

This is just for pD, but if we want to select either pD or nD, then we will need
to do as is done in Figure 6: when the polarity line pa is equal to 0, nD is chosen,
when it is one, pD is chosen.

Figure 6: Both expansions are realized in this circuit, and one or the other can be
chosen using the control line, pa.

This circuit realizes all FPRM expansions of a single variable function. If the
polarity line is ternary, the control value of 2 represents the Shannon expansion,
and all KRM expansions can be realized. Butterfly diagrams for functions of more
than one variable can be realized by repeating and stretching this circuit. For every
variable, a qubit will need to be added for control of polarity selection. These
controlled variable columns are called partial kernels. Figure 7 shows a circuit much
like that in Figure 6, but for a function of two variables. It also utilizes ternary
polarity lines so that 0 may represent the pD expansion, 1 the nD expansion, and 2
the Shannon expansion.
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Figure 7: This circuit realizes either pD, nD, or Shannon expansions on each of two
variables of the function specified by the binary minterms (mjk). The polarity lines
pa and pb are ternary, therefore, a different notation for these control qubits is used
to distinguish ternary from binary qubits used in the binary minterms.

The first column of the Kronecker Reed-Muller expansion forms are controlled
by pb and transforms variable b, while the second set, controlled by pa does so for
a. Because no transformation is applied during the Shannon expansion, no gates
are activated when both polarity lines have a value of 2. The two ternary polarity
lines are used to choose one of the 32 possible KRM expansions. The outputs of this
circuit are the polarity vector [pa, pb] and the vector of spectral coefficient values
[sj , sk, sl, sm]. Figure 7 can be expanded to an arbitrary number of variables, using
the butterfly diagrams to determine the structure.

744



Quantum Machine Learning . . .

3 Algorithm for ternary-input KRM expression mini-
mization

In past designs of KRM minimization and in our design, Grover’s Algorithm has a
quantum oracle that uses the so-called âĂĲKronecker Reed-Muller ProcessorâĂİ or
KRM Processor [13, 15]. The oracle used for finding the minimal expansion on a
given ternary-input binary-output function is the core of our design and is described
in this section. All other aspects of the algorithm are standard and will be reviewed,
as well as how the algorithm works with our oracle, in Section 4.

3.1 Ternary-input KRM Processor

In here and in Section 3.1.1, we will first go over the ternary generalizations of the
Shannon and Davio expansions. Then, in 3.1.2 we will look at the corresponding
butterflies, individual circuits, and how these can be used to create the ternary-input,
binary-output KRM Processor.

The Shannon expansion for a ternary-input, binary-output function with respect
to variable xi can be written as in Equation (10):

f(x1, x2, . . . , xn) = x0fx0 ⊕ x1fx1 ⊕ x2fx2 (10)

This is a generalization of the binary Shannon expansion: all the function’s (disjoint)
cofactors times corresponding literals combined by EXORs. Some papers use the
matrix representation of these equations to discuss the KRM expansions, which
our ternary-input expansions can be written in as well. This notation is most well-
known in matrix programming language MATLAB [11], but is also used in numerical
computation language GNU Octave [7]. The Karnaugh Map matrix of Equation 10
is: 


1 0 0
0 1 0
0 0 1


 (11)

where the argument variables are ternary and the function values (as shown) are
binary. Notice that these matrices communicates the same information as our afore-
mentioned polarity/coefficient vectors, so the discussion of matrices to our ternary
expansions will only be covered briefly in this paper.

In ternary logic, we have constant 1 and six literals.
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Figure 8: Table of all vectors of ternary literals.

In Figure 8, the ternary literals are depicted as x0, x1, x2, x01, x02, x12 and
1. This contrasts binary logic, which has two polarities— x and x̄. Equation (12)
denotes examples of how these literals can be substituted for each other.

x0 ⊕ x1 =




1
0
0


⊕




0
1
0


 =




1
1
0


 = x01

x12 = x1 ⊕ x2 = 1⊕ x0

(12)

3.1.1 How many expansions do we need for ternary-input binary-output
logic?

To create the oracle for Hybrid KRM, we need to know all equivalents of the Davio
and Shannon expansions. Because of the increased number of polarities, there will
be 27 polarities of ternary-input, binary-output generalized Davio expansions plus
one Ternary Shannon Expansion. We can represent each literal as a binary vector.
Finding all possible polarities of expansions becomes a problem of finding sets of
three vectors for which corresponding indices can be combined with EXORs to yield
those used in the Ternary Shannon Expansion. Furthermore, these sets must be
linearly independent. A set is linearly independent if no vector in the set can be
obtained by a linear combination of other vectors. Therefore, in the case of our
28 expansions, all sets of three linearly dependent vectors, those in which one can
be reached by a linear combination of two others, will only contain ones in two
positions. This leaves no way to obtain a 1 by EXOR in the final position. All
linearly independent sets of vectors will have at least a single 1 in every position. If
every vector contains a 1 in the same position, a 0 in that position can always be
reached by the EXOR of two 1s. Therefore, by finding every linearly independent set
of vectors, we were able to create every possible out of 27 ternary Davio expansions.
We now derive these expansions.

Theorem. In ternary-input, binary-output logic there are 28 expansions (in-
cluding the original Ternary Shannon).

Proof. We begin by dividing the vectors for every ternary-input variable into
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three types:
1|A0, A1, A2|A01, A02, A12 (13)

A will be used to indicate a generalization to all variables. This A refers to the
variable name x if there is one variable, but A can also be a, b, x2, and y in this
paper. The first is the 1 vector. We will call the second and third types of vectors
Type 1 and Type 2 vectors. We start counting sets of vectors with those that include
the 1 vector. From here, we first count those with only 1 and Type 1 vectors, and
those with only 1 and Type 2 vectors, as none of these sets will be linearly dependent.
We get Equation (14).

[1, A1, A2], [1, A0, A2], [1, A0, A1] (14)

Next, Equation (15).

[1, A01, A02], [1, A01, A12], [1, A02, A12] (15)

Now we look at those with 1, one Type 1 vector, and one Type 2 vector. Simply
listing all the vectors that fit this description will give some that are linearly depen-
dent, so some must be omitted. First, we list each combination of 1 and a Type 2
vector. For every Type 1 and Type 2 vector, there exists one Type 1 vector that
cannot be the third member of the set because it will create a linearly dependent
set. Equation (16) is a total of six transformation forms.

[A0, A01, 1], [A01, A1, 1], [A0, 1, A02], [A02, 1, A2], [1, A1, A12], [1, A12, A2] (16)

Now we count those with two Type 1 vectors and one Type 2 vector. This is done
in Equation (17) in a similar way to the previous group. We get six transforms.

[A0, A1, A02], [A0, A1, A12], [A01, A1, A2], [A02, A1, A2], [A0, A01, A2], [A0, A12, A2]
(17)

Then we look at sets of two Type 2 vectors and one Type 1. No matter which pair
of Type 2 vectors we chose, we can add any of the three Type 1 vectors to it. We
get 9 transformations in Equation (18).

[A01, A02, A0orA1orA2], [A01, A02, A0orA1orA2], [A01, A12, A0orA1orA2] (18)

The final two sets in Equation (19) are simple.

[A0, A1, A2], [A01, A02, A12] (19)
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Counting the vectors, we get total combinations= 3 + 3 + 6 + 6 + 9 + 2 = 29.
Because the matrix must be non-singular, the transformation [A01, A02, A12] is

excluded. Thus, we have a total of 28 expansions for Ternary-Input, Binary-Output
Kronecker Polarity Reed-Muller Expansions.

The reader is advised to compare Equation (14) âĂŞ Equation (19) above with
coefficient vectors, partial butterfly kernels, and circuits in Table 12, which are
multiplexed to create a combined single variable oracle kernel (Figure 14(a)). For
convenience, we will now refer to these vectors of literals as the result of polarities,
or coefficient vectors, by their equation number as in the order of how they were
realized above (these names are restated in Table 12). Equation (14)a and Equation
(19)b are examples of coefficient vectors.

Other proof method. Because the columns of such matrices must be linearly
independent, the matrices must be invertible. Furthermore, the order of the rows
in the matrices does not matter. Changing this order does not alter the expansion
that the matrix performs, only changes the order of its outputs. The number of
generalized expansions, including Shannon, is the number of invertible binary ma-
trices of size 3×3 divided by the number of possible arrangements of rows of a 3×3
matrix. Given that the number of invertible, binary, square matrices of a given size
can be found using the equation: ∏n−1

k=0(2n − 2k). Where n is the size of the ma-

trix, the number of generalized expansions can be written:
∏3−1

k=0(23−2k)
6 = 28. This

is the base of our expansions. A good base means every function realized in one
unique way. Thus, for a function of n variables there are 27n ternary-input FPRMs
and 28n ternary-input KRMs. They are constructed analogously as the binary case
from [15] and [13], using respective butterfly diagrams, decision diagrams or other
representation methods.

3.1.2 The procedure to find the minimal quantum circuit for every equa-
tion.

First, let us discuss the expansions for a completely specified function of a single
ternary variable. Once we have formulated the sets of literals, the expansion can
be written by substituting the A0, A1, and A2 literals of the Ternary Shannon
Expansion with EXORs of other literals.

For example, using the set [A0, A1, 1], which we refer to in this paper as Equa-
tion (14)c, we can write the expansion as f(x1, x2, . . . , xn) = x0fx0 ⊕ x1fx1 ⊕
(x0 ⊕ x1 ⊕ 1)fx2 simplified to f(x1, x2, . . . , xn) = x0(fx0 ⊕ fx2)⊕x1(fx1 ⊕ fx2)⊕fx2

where fx0 , fx1 and fx2 are cofactors of f with respect to selected variable xi. Their
binary values are denoted as m0,m1,m2 in Table 12 and x0,x1,x2 are literals (of the
selected variable).

748



Quantum Machine Learning . . .

We can find realizations of all the kernels for a single variable in the same way as
in [15] and [13]. Therefore, the ternary butterfly acts the same way, only its size and
shape are different than in the binary case. Remembering that the combination of
cofactors computes the spectral coefficients, the previous expansions Equation (14)
âĂŞ Equation (19) can be used to create all of the 27 single-variable ternary FPRM
butterfly kernels. Figure 9 illustrates the butterfly kernel and reversible circuit for
Equation (14)c. Referring to Figure 9, Figure 11, and Figure 12, mi and fxi are
equivalent for a one variable butterfly kernel, they are just in different notation.

a) b)
Figure 9: a) The butterfly kernel of Equation (14)c. b) The reversible circuit of
Equation (14)c.

Following the pattern of the binary expansions, the EXOR of cofactors in the
equation produce an intersection point in the butterfly kernel. This intersection
translates to a controlled-NOT gate in the reversible circuit.

Figure 10: A more detailed and systematic approach to realizing the complete
ternary expansion equation for Equation (15)a, or [1, A01, A02], from Ternary Shan-
non.
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a) b)
Figure 11: a) The butterfly kernel of Equation (15)a. b) The reversible circuit of
Equation (15)a.

The 3 expansions, defined by the groups of literals, [1, A01, A02], [1, A01, A12]
and [1, A12, A02], have more complicated reversible circuits because they utilize more
Toffoli gates. However, we have developed this systematic approach that can still
as simply realize equation, butterfly kernel, and reversible circuit. In Figure 12, we
realize all 29 linearly independent polarity vectors to their corresponding expansion
equations, butterfly kernels, and reversible circuits in this way.
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Table 12: All ternary expansion equations and their respective coefficient polarity
vectors, butterfly kernels, and reversible circuits for partial kernels.
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As with binary, we can realize the butterflies as binary circuits that operate on
literals which convert from ternary to binary. The butterflies for all 28 KRM expan-
sions are shown in Table 12. These are ternary counterparts of binary butterflies
and kernels from [13]. The minterms of the Karnaugh Map, m0,m1,m2, are binary
values for a ternary-input, binary-output function, as they completely characterize
the function. The polarity coefficients are placed within the butterfly kernel and
reversible circuit next to their corresponding cofactors as they are in the expansion
equation. In [13], the partial kernel circuits for the binary Positive Davio, Negative
Davio and Shannon expansions were combined to a single quantum kernel circuit.
Here we do the same, but we have to combine 27 partial kernels for FPRM-like
expansions and 28 partial kernels for KRM-like ternary expansions. We combine
all single-expansions partial kernels to a single one-variable kernel, in which the top
control lines control the polarity expansion of each variable. This is called a quantum
multiplexer.

In the binary FPRM circuit we need just one qubit to control one of two ex-
pansions. In KRM we need a ternary control because we have three expansions.
However, now with 27 or 28 expansions the design of the controller becomes com-
plicated. It can be formulated as a new type of encoding problem to minimize the
complete one-variable kernel. This problem is a separate research topic, so in this
paper we select simplified solutions based on ternary/binary controls and simple
encoding based on quantum multiplexers [20]. A ternary reversible multiplexer is
discussed in [1].

Realizing the ternary FPRM kernel is still relatively easy. 33 = 27, thus we need
three ternary qudits (called qutrits) to select the expansion type and its correspond-
ing partial kernel linear circuit. As the controls are ternary the Grover’s Algorithm
uses Chrestenson’s gates instead standard Hadamard for these variables [13].

When one wants to find the exact minimum KRM the design becomes more
complicated, as there are 28 possible expansions, including Ternary Shannon. The
control line for every variable can be hypothetically a 28-valued qudit, but this is
unrealistic in current quantum technologies. Thus, control of each combined target
kernel for a variable is constructed here from 5 binary control lines (25 = 32 >
28). In the presented design we use a reversible multiplexer that uses 28 out of 32
combinations, but this circuit can be optimized further in several ways, which is not
a topic for this paper.

3.2 Examples of oracles

Here, we create oracles with our ternary-input binary-output butterfly kernels follow-
ing the structure of their complete butterfly diagrams as was described previously
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in binary logic. As a simple example, a butterfly diagram for two ternary-input
variables a, b is shown in Figure 13. This butterfly has coefficient (polarity) vector
[1, A1, A2] for variable a and coefficient vector [A0, 1, A2] for variable b. This size is
the most of what we can simulate right now because of the limited power of quantum
simulators.

Figure 13: Butterfly for two ternary variables, with expansions with coefficient vec-
tors [1, A1, A2] for variable a and [A0, 1, A2] for variable b (See Equation (20)).

Equation (20) demonstrates how to find the expression of the ternary-input form
from arbitrary minterms in Figure 13:

F (a, b) = 1 · b0 ⊕ 0 · 1⊕ 1 · b2 ⊕ 0 · a1b0 ⊕ 1 · a1 ⊕ 1 · a1b2 ⊕ 0 · a2b0 ⊕ 0 · a2 ⊕ 1 · a2b2

F (a, b) = b0 ⊕ b2 ⊕ a1 ⊕ a1b2 ⊕ a2b2 (20)

This expression is realized as a ternary-input binary-output reversible circuit which
can also be interpreted as our learned classifier model.
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(a)

(b)

(c)
Figure 14: (a) One-variable âĂĲKRMâĂİ multiplexer with 5 binary controls to
realize all 28 ternary-input binary-output expansions, and 4 throwaway bit combi-
nations: "11100", "11101", "11110", and "11111". By throwaway bit combination, we
mean some combination of bits is not selecting any gate in our multiplexer, therefore
it selects the Ternary Shannon expansion. (b) One-variable âĂĲFPRMâĂİ multi-
plexer with 3 ternary controls to realize all Davio-like ternary-input, binary-output
expansions. (c) Two-variable multiplexer to realize all 6 kernels from Equation (17)
expansions with one ternary and one binary control for each variable.

Quantum multiplexers can be made for ternary expansions as they were made for
binary in [15] and [13]. Figure 14(a) presents the kernel for a single-variable ternary
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KRM and assumes Grover’s Algorithm. It has 5 binary controls which create 32
combinations out of which 4 are not used to control partial kernels. These throwaway
bits will be evaluated to Ternary Shannon, since its kernel indicates no gates. Figure
14(b) is for single-variable ternary FPRM and assumes ternary Grover’s Algorithm.
Figure 14(c) shows the butterfly for two ternary variables representing a subset of
all ternary FPRM expansions— here, only 6 partial kernels are included in final
one-variable kernel for simplification. Partial kernels are stacked as in Figure 6 and
Figure 7, and papers [15] and [13] elaborate more on how to create butterfly circuits
inside the quantum oracle.

Observe that these circuits realize reversible functions with no ancilla qudits.
Therefore, to minimize such circuits, methods very similar to those from [20] can
be used, however, with extending the target reversible functions from one to more
qudits. Another interesting observation is this. From the perspective of circuit
realization, the forms such as FPRM and KRM have no sense as ESOP is always
better. They are still discussed in the literature. The same can happen in case of our
hybrid forms: because of the complexity problem, maybe the simplified butterflies,
as those from Figure 14(c) will still be useful, although such restricted butterflies
are theoretically inferior to the full butterflies as those from Figure 14(a), Figure
14(b).

3.3 Grover’s Search Algorithm and the Quantum Oracle

Grover’s Algorithm is a quantum algorithm which can be used to find the input
for which an unknown Boolean function outputs a 1 with O(

√
N) complexity given

N possible elements in the solution space, whereas classical algorithms can do so
with O(N) complexity. A classical algorithm for this problem must check each of
the N elements of the solution space (each of the 2n minterms of the corresponding
Boolean function) using a classical oracle until this oracle returns a 1. The fame of
Grover’s Algorithm comes from hundreds of practical and important problems that
can be reduced to it— including [6, 9, 16, 17, 21]— and giving a quadratic speedup
to each.

The Grover’s Algorithm puts the search space into an equal superposition of
all potential solutions, then increases the probability that one of the solutions (1s
of the Boolean function) will be chosen. Because of space restriction we refer the
reader to explanation of Grover’s Algorithm and details of oracle components in
[6, 9, 10, 13, 15–17, 21, 22]. The algorithm consists of three main steps. First, the
solution space is initialized by creating an equal superposition of all its elements.
This is done using Hadamard gates for binary and Chrestenson’s gates for ternary
control qudits. In general, all these MV gates can be called Generalized Hadamards
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as their role is to create maximum equal superpositions. The qudit upon which the
oracle acts is initialized to |1〉 and then it goes to a Hadamard gate, the minterms
will be initialized to their corresponding values, and all other qubits initialized to
|0〉. Then, the Grover’s Loop Operator, which consists of the Quantum Oracle and
Diffusion Operator, is repeated O(

√
N) times for problems with one solution. How

we can deal with more than one solution is elaborated more in [15] and [13] and
in Section 4.3. Note that the Grover’s Diffusion Operator is placed only on the
qubits we want to find the answer to and therefore want to measure, which are the
polarity and don’t knows lines. Finally, the polarity control and don’t know lines
are measured.

The setup of the complete Grover’s Algorithm for a minimum KRM of a ternary-
input binary-output function with two variables is shown in Figure 15 and Figure
16.

Figure 15: Block diagram of Grover’s Algorithm for completely specified minterms.
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Figure 16: Block diagram of Grover’s Algorithm for Machine Learning with incom-
pletely specified minterms where m21 and m22 are don’t knows. Hadamard gates
are placed on m21 and m22 to indicate don’t knows. Notice also the change in the
diffusion operator and measurement lines.

In Figure 15 and Figure 16, Px and Py, which both start in |0〉, are controls for
variables x and y respectively. If one wants to have exact solution for all possible
expansions, these controls are 28-valued and all 28 expansion kernels are imple-
mented in the combined kernel of the KRM Processor. 9 minterms are denoted
as m00 to m22 at the left. These minterms are constants 0, 1, and, if we want to
include Machine Learning, don’t-knows. Observe that the don’t-know means 0 or
1, whichever is better. A don’t-know for minterm mjk is naturally created for this
class of algorithms as Hadamard gates in inputs m21 and m22 are placed on the
left in Figure 16. Cost Counter and Comparator serve to remove solutions that are
not equal to a selected threshold value. This way, the supervising algorithm calls
Grover’s Algorithm several times with modified values of the threshold, which will
be described in Section 4. The Constraint Satisfaction Problems solved by Grover’s
Algorithm are extended to any Optimization Problems, solved by repeated use of
Grover’s Algorithm [9,20].

We now present the method for the oracle of arbitrary size and type for our Ma-
chine Learning problem, which refers to the schematic in Figure 16. First, all known
minterms are filled in. Don’t-knows in minterms are put into equal superposition
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by initializing them to |0〉, then applying Hadamard gates. Next, all polarity lines
are placed into equal superposition. If these lines are multivalued, they will be put
into superposition using respective Generalized Hadamard gates. The Quantum Or-
acle evaluates the function, reversing the phases of states that will produce function
representations with spectral coefficients equal to the threshold value. The states
are reversed about the mean, and the Grover’s Loop Operator is repeated O(

√
N)

times. Finally, the polarity vector and lines with don’t knows are measured. In the
case of binary qubits, the binary operator is used; in the case of ternary qutrits a
ternary measurement operator is used [17]. Though Grover’s Algorithm provides a
statistically high chance of measuring a representation that is equal to the threshold
value, it does not guarantee one. Because of this, the function representation found
by the algorithm is checked using only the KRM Processor reversible circuit initial-
ized to the predicted polarity and values for don’t knows as found by the Grover’s
Algorithm. If a representation was correctly found, the classical computer control-
ling the quantum computer will lower the threshold value some set amount, and the
Grover’s Algorithm will be repeated. When no cheaper solutions are found, the last
valid solution will be the exact minimal Hybrid KRM representation of the function.

Figure 17 shows the schematic for the Quantum Oracle on two ternary variables.

Figure 17: The schematic diagram of the Quantum Oracle for two ternary variables
and 9 minterms each either initialized to 0, 1, or the superposition of 0 and 1 for
a don’t-know. Qudits Px and Py are the control lines. In includes the YES/NO
function for output (Out).

Qudits Px and Py are hypothetically 28-valued. The Quantum Oracle checks
whether a given expansion satisfies the constraint of the cost being equal to some
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pre-set threshold value T . The circuit is made of the KRM Processor and its inverse,
as well as the cost counter and its inverse. Each block is composed of many multi-
controlled-NOT (Generalized Toffoli) gates. In the middle of the Quantum Oracle,
between the counter and the inverse counter, there is the comparator: a Generalized
Toffoli gate surrounded by inverters with its target on the Out qubit. Further
discussion of this comparator is found in Section 4. As Grover’s Loop runs the
oracle many times, the inverse circuits are needed to return the input variables to
their original values so that they may be used in the next iteration of the Grover’s
Loop. The inverse blocks, called mirrors, are created by reversing the order of the
gates in the original circuits. The first block, the KRM Processor, acts on the
minterms of a given function (mxy), changing them to the spectral coefficients of an
expansion specified by the polarity vector [Px, Py] where the meaning of every qubit
m00 to m22 is now a binary value of a corresponding spectral coefficient. The second
block, the Cost Counter and Comparator, counts the number of "1" valued spectral
coefficients for a given polarity and compares the number to the threshold value T .
The result of this comparison is given to the output line (Out). If the number of
1s in the spectral coefficient values F is equal to the binary number T , this line
will output a 1. Otherwise, Out will remain 0. For simplification, this explanation
assumes the sequential creation of spectral coefficients in the oracle but of course
we remember that in reality, this is done in parallel thanks to the superposition of
all sets of spectral coefficients.

This optimization method is general [6, 9, 16, 17]. Grover’s Algorithm as it is
solves decision (satisfaction) problems. Therefore, it must be called repeatedly with
different threshold values to solve optimization problems. For Grover’s Algorithm
to solve the problem of expression minimization, it searches for an expansion equal
to the threshold value, determining the cost by the number of spectral coefficient
values equal to 1. If such an expansion is found, the threshold value is lowered, and
the algorithm is run again. This process is repeated until no expansion is found that
is cheaper than the current threshold value. The last expansion found that satisfies
Grover’s Algorithm is the cheapest expansion. This quantum spectral optimization
idea can be generalized to many similar optimization problems. Unfortunately, the
number of mi qubits quickly increases with the addition of every ternary variable to
the butterfly.
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4 Implementation of an algorithm for the minimal
ternary-input, binary-output FPRM forms and a dis-
cussion of simulated results

Here, we implement and simulate the search of the minimal ternary-input binary-
output polarity on two variables. Hypothetically, the algorithm we propose works
on all 28 ternary expansions. But due to the increased length, processing time,
and complexity of a circuit that would encompass all ternary-input binary-output
expansions, only 8 expansions were chosen to be simulated by Qiskit, a software
developed by IBM specifically for quantum machines [21]. An argument can be
made that, similarly as a binary FPRM does not include all the binary expansions
but is still popularly used by computer scientists and engineers, selecting only some
and not all of the ternary expansions in our circuit simulation, though not generating
the exact minimal results, will still be sufficient for optimization. Therefore, we have
programmed an algorithm that utilizes all binary controls. In addition, the method
can be repeated many times with the selection of various subsets of polarity kernels
in variables.

4.1 Cost counter and comparator

The purpose of the cost counter and comparator is as follows: to count the number
of âĂĲ1âĂİ spectral coefficient values (counter) and compare this cost to a pre-set
threshold value (comparator).

Figure 18: The schematic circuit for the counter.
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4.1.1 Counter

Figure 18 reveals the schematic circuit for a 4-bit counter to be implemented after
the two-variable KRM Processor. sj−r are the spectral coefficient values found by
the KRM Processor, F3F2F1F0 (F ) is the (binary) number of spectral coefficient
values equivalent to 1, where F0 is the least significant bit and F3 is the most. If the
spectral coefficient value is 1, we iterate F by 1 with a (+1) gate. The (+1) gate
(generalization of the Peres gate) consists of n Toffoli gates of decrementing degrees
of control qubits followed by a Feynman (Controlled-NOT) gate, where n is the size
of the counter – 1.

(a) (b)
Figure 19: (a) (+1) gate for a 3-qubit counter. If the c control is 1, Gin2Gin1Gin0

increments Gout2Gout1Gout0 by 1. For example, if c = 1 and Gin2Gin1Gin0 = 000
then Gout2Gout1Gout0 = 001. (b) (+1) gate for 5-qubit counter.

As demonstrated in Figure 19, the pattern of adding Toffoli gates to increase
the number of qubits can be generalized to counters of any number of qubits. The
simulated oracle includes 32 = 9 minterms. Therefore, we need a 4-qubit gate, but
F will only reach 1001 (binary 9) if all spectral coefficient values are 1. The 4-qubit
(+1) gate is controlled by iterating through the spectral coefficients as in Figure 18.
Although this design uses Toffoli and Feynman gates, the optimized counter uses
Peres gates built from not only CV, but also CW and other roots of NOT [2]. CV
is controlled-

√
NOT .

4.1.2 Equality Comparator

The design of the comparator is as follows: to compare each qubit of F in a 4-qubit
controlled Toffoli gate. NOT gates are placed where the control is 0. Figure 20
illustrates the circuit of the equality comparator of cost 1, then 2, respectively. The
value we compare to F is called the threshold value.
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(a) (b)
Figure 20: (a) 1-Equality Comparator (with mirrors). (b) 2-Equality Comparator
(with mirrors).

Satisfaction of the comparator is evaluated on qubit Out, which in Grover’s
Algorithm will contribute to the negative phase. For example, if F3F2F1F0 is 0010,
the comparator in Figure 20(a) will not be satisfied because the control qubit on
F0 of the generalized Toffoli gate will not take inputs of 0, and if we input 1 into
F1, the NOT gate will negate 1 to 0 which also does not satisfy the generalized
Toffoli. However, with the comparator in Figure 20(b), 0010 for F will satisfy the
generalized Toffoli.

The threshold value is changed with each run of Grover’s Algorithm. For our
specific oracle of two ternary-input variables, the largest minimal cost of any possible
function is 3. Therefore, we would only need to compare each set of arbitrary
minterms with 1-, 2-, and 3-Equality Comparators— any more would be redundant.
However, we include in Table 26 an example where this is not the case.

4.2 Qiskit KRM Processor

A fully binary oracle was simulated in language Qiskit. This oracle selects 8 Hy-
brid Reed-Muller expansions for every variable and has a total of 6 binary control
variables for two-variable functions. The polarities are encoded into the controls of
the multiplexer in correspondence to Table 21. Each variable can choose from the
selection of Equation (17) polarities (6 polarities) and two Equation (14) polarities
(Equation (14)a, Equation (14)b. Details of their kernels are found in Table 12.
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Table 21: The encoding of eight polarities of a single variable and their corresponding
polarity equation numbers from Table 12.

(a)

(b)
Figure 22: Drawings obtained from Qiskit software for a butterfly kernel of selected
eight polarities: (a) first variable column, y; (b) second variable column, x. These
arrangements are each repeated 3 times on various qubits.
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Figure 22 illustrates, in Qiskit, kernels of the multiplexer for this oracle. Figure
22(a) illustrates an unstretched kernel in the first column of the butterfly diagrams.
Following the pattern of Figure 14(c), but selecting different polarities, q3, q4, and
q5 are the controls for the second variable to be expanded on, which we call y. This
figure is then repeated, with q3, q4, and q5 each three qubits larger, and repeated
for a second time in the same procedure. Then, we add the second variable column
as in Figure 18(b), with the same repetition as the previous kernel but this time
starting on q6, q9, q12. In total, the complete multiplexer/ KRM Processor uses 15
qubits, from q0 to q14.

In total our Grover’s program utilizes 20 qubits: 6 for the polarities, 9 for the
minterms, 4 for the counter, and 1 for the output qubit. Following the schematic
design of Figure 15, Figure 16, and Figure 17, we utilize q15 to q18 (not shown
in Figure 22) for the counter and comparator, and the last qubit q19 (not shown
in Figure 22) becomes the output qubit. As it is standard in Grover’s Algorithm,
Hadamard gates are placed on q0 to q5, and q19 is initialized to the âĂĲcatâĂİ state
negative phase before the oracle and diffusion operators.

4.3 Qiskit Grover’s Diffusion Operator and Grover’s Loop

Figure 23: Grover’s Diffusion Operator on six qubits.

In functions with completely specified minterms, we want to use Grover’s Algo-
rithm to find and measure polarities on q0 to q5 only. Therefore, standard diffusion
operators will span across these qubits.

Figure 23 illustrates the diffusion oracle for this oracle. Design and discussion
of how the diffusion operator works, which is not the purpose of this paper, were
presented in [9, 13,15–17,21].

However, in this paper we introduce a new variation of the diffusion operator for
Machine Learning that was not shown correctly in [13].
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Figure 24: Grover’s Diffusion Operator for minterms 1XXXXX0XX. Minterm m00
has a constant value 1 (qubit q6) and m20 (qubit q12) has a constant value 0 so the
diffusion operator does not operate on the qubits q6 and q12.

In Figure 24, which corresponds to incomplete functions and thus to ML, the
diffusion operator encompasses the lines with don’t knows. It becomes obvious then,
that the diffusion operator is unique to the minterms.

Additionally, the Grover’s Loop is repeated in Grover’s Algorithm as an ap-
proximation of the iteration formula π

4

√
N
M ,where N is the total number of possible

solutions and M is the number of correct solutions. For completely specified func-
tions Grover’s Loop number is approximated to N = 26 = 64 while assuming one
solution. Therefore, for completely specified functions Grover’s Loop is repeated
6–7 times. In instances of incompletely specified functions Grover’s Loop is more
complicated, as it is dependent on the the number of don’t knows and approximate
number of solutions. It is also far more difficult to evaluate the number of solutions
in case of more than one solution. When determining the approximate number of
repetitions of Grover’s Loop for ML, we have omitted the π

4 from the formula as it
is negligible. The method to evaluate M in this paper is good for a rather small
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number of variables.

4.4 Experimental procedure

Here, we describe the procedure of collecting results. The equality comparator is
pre-set first to cost 3 (T = 3). We input arbitrary minterms into Grover’s Algorithm
and set the diffusion operator in respect to the minterms. An approximate number
of repetitions for Grover’s Loop is calculated as well. Then, we measure the polarity
and don’t know lines after running the entire algorithm 1000 times. Running the
algorithm many times partially solves the problem related to the unknown number
of solutions. We obtain the increased probabilities of solutions. The Qiskit QASM
simulator histogram displays all probabilities of each selected polarity, where it can
be determined if the Grover’s Algorithm is successful. If so, T is decremented, and
we run the algorithm again. When we find the smallest T in which the algorithm
is still successful, the polarity vector with the largest probabilistic value for 1000
repetitions of the complete Grover’s Algorithm is selected. Then, the polarity and
minterms (with the predicted values for the don’t knows) are inputted into a separate
program with just the KRM Processor, where we measure the spectral coefficient
values to verify the correct polarity. Since these are small examples, we were able
to verify these spectral coefficients by hand on Marquand Charts for two-variable
ternary-input binary-output functions.

(a) (b)
Figure 25: Qiskit histogram examples on minterms 111010100 of: (a) (Success-
ful) Grover’s Algorithm that satisfies the 3-equality comparator; (b) (Unsuccessful)
Grover’s Algorithm that does not satisfy the 2-equality comparator. In instances of
(a) where there are multiple polarity solutions, only one is recorded.
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4.5 Analysis of simulated results

Table 26: Minimal forms of two-variable expressions found by Qiskit for the selected
8 Hybrid Reed-Muller Forms.

Table 27: Minimal form of two-variable expressions found by Qiskit for the selected 8
Hybrid Reed-Muller Forms for Machine Learning (Hadamard gates for don’t-knows).

771



Bao, Powers, and Perkowski

Table 26 depicts polarity and spectral coefficient results for functions with com-
pletely specified minterms, and the calculated corresponding expressions. Table 27
illustrates polarity results and the completed minterms as predicted by our algo-
rithm. These completed minterms are not to be confused with the spectral coeffi-
cients, which are not included in Table 27. However, the spectral coefficients are
obtained and used to calculate the corresponding expressions which are included in
the table.

The expressions were calculated by hand by applying the given polarity to each
variable as encoded (see Table 21). As described in previous sections of this paper,
a tensor product of the coefficient vectors produces the symbolic names of spectral
coefficients vector. These coefficient (polarity) vectors can be referred to in Table 12.
Referring to Ex.2 in Table 26, the polarity is described as âĂĲ000000âĂİ, which,
from Table 21 translates to Polarity Equation (14)b on variable x, and Polarity
Equation (14)b on variable y. This symbolic names of spectral coefficients vector
can be calculated as in Equation (21),

[x0, 1, x2]⊗ [y0, 1, y2] = [x0y0, x0, x0y2, y0, 1, y2, x2y0, x2, x2y2] (21)

which, when multiplied with the spectral coefficient values vector 100010000 found
through the Grover’s Algorithm simulation, produces the expression x0y0 ⊕ 1. We
can verify this example on a Marquand Chart as depicted in Figure 28(a). As shown,
the grouping satisfies all minterms of this example.

(a) (b)
Figure 28: (a) Marquand Chart of Table 26 Ex.2 minterms with grouping x0y0 ⊕ 1.
(b) Marquand Chart of Table 26 Ex.11 minterms with grouping x01y2 ⊕ x1 ⊕ x2y0.

For another example, Equation (22) calculates the vector of corresponding names
of spectral coefficients from Table 26 Ex.11,

[x01, x1, x2]⊗ [y0, 1, y2] = [x01y0, x01, x01y2, x1y0, x1, x1y2, x2y0, x2, x2y2] (22)

so the resulting expression becomes x01y2 ⊕ x1 ⊕ x2y0. Figure 29(b) verifies this
expression.
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Most example solutions selected by the simulated algorithm produce the minimal
number of groupings (spectral coefficients) of their minterms. However, as only 8
of the 28 possible hybrid forms were simulated in this variation of the oracle, all
forms with two out of the A01, A12, A02 variable literals (present in Equation (15)
and Equation (18) polarities) were excluded. This exclusivity becomes evident in
Table 26 Ex.10 and 12, both of whom could have the most minimal grouping cost
of 2, but instead selected 3 and 4 spectral coefficients equivalent to a value of 1,
respectively. Figure 29(a) verifies the groups on Table 26 Ex.10’s Marquand Chart
with four spectral coefficients, while Figure 29(b) realizes these minterms with only
two groups.

(a) (b)
Figure 29: Marquand Chart of Table 26 Ex.10: (a) grouping x0y0⊕x0y2⊕x12y0⊕x12

selected by the simulated algorithm; (b) most minimal grouping with x0y01 ⊕ y12

(which is obviously better than the grouping in (a)).

In ML instances, these groups are used to make predictions for don’t-knows.
Figure 30 illustrates Table 27 Ex.7, a mostly completely specified set of minterms.

Our Grover’s Algorithm can produce distinguishable polarity results that, when
verified by the KRM Processor, yields at least one solution of spectral coefficients
that corresponds to T . A solution given by the simulation is grouped on Marquand
Charts in Figure 30.

Figure 30: Marquand Charts of the Table 27 Ex.7 quantum ML prediction given by
Grover’s Algorithm.
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Through the ML process, our incomplete minterms become completely specified.
To calculate the expression and find the groupings, we place the completely specified
minterms the KRM Processor once more to obtain the spectral coefficients values.
Figure 31 illustrates the grouping to Table 27 Ex.7 as x0y12.

Figure 31: Marquand Charts with grouping x0y12 of the quantum ML predictions
for Table 27 Ex.7.

It is determined that the quantum ML method on Grover’s Algorithm proposed
by [13] creates accurate cost restriction results only for nearly completely specified
discrete functions. Thus our algorithm is an improvement from [13] because it creates
accurate cost-restricted predictions for any number of don’t knows in our minterms.
The difference is that our diffusion operator encompasses the don’t knows, and
we measure the don’t know lines along with the polarity to obtain the predicted
values. The simple rule for this new type of Grover’s Algorithm is the following: for
any unknown piece of data there must be a qubit for a don’t care which means a
Hadamard gate initialized to |0〉, a diffusion qubit in a diffusion circuit (as in Figure
24), and a respective measurement gate.

As an example of a highly incomplete set of minterms, refer to Table 27 Ex.9
with minterms 1XXXXX0XX.

The minterms are inputs to Grover’s Algorithm with Hadamard gates placed
to indicate don’t knows, the threshold value T is set to 1, the diffusion operator is
drawn as in Figure 23, and Grover’s Loop is repeated 37 times after approximating
that N = 213 and M = 6. After running the algorithm and measuring the polarity
and don’t know lines 1000 times, the algorithm produces the histogram shown in
Figure 32.
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Figure 32: Probability histogram of 1000 runs of Grover’s Algorithm on Table 27
Ex.9 with T = 1 and Grover’s Loop repeated 37 times.

As expected for a large number of don’t knows, there are many possible solutions
even with the limited 8 expansions we programmed into our oracle. As is done with
completely specified minterms, the set of polarity and don’t know values with the
largest probability as shown in the histogram is selected, and verified by Marquand
Charts. However, for this example we have verified the many other solutions as
good predictions to the don’t knows as well. Since Figure 32 is extremely condensed
and difficult to read, we have taken all the solutions that out of the 100 runs of
Grover’s Algorithm were selected more than 10 times and placed them in a separate
probability histogram in Figure 33.

Figure 33: Probability histogram on Table 27 Ex.9 with correct solutions only.
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Figure 33 shows the results of this example with solutions that were selected
greater than 10 times out of 1000 total runs. Qubits are measured in reverse order,
so for the rightmost probability bar, 101001 will be the polarity vector and 1111100
will be the predicted values of the don’t knows in respective order to the index of
the minterms. Thus the Marquand Chart is filled with the predicted values as in
Figure 34.

Figure 34: Marquand Chart of Table 27 Ex.9 with quantum ML 1111100 predictions
from Grover’s Algorithm.

Placing these minterms into the KRM Processor, we obtain the vector of spectral
coefficient values 100000000, so therefore the grouping is x01. Figure 35 shows the
grouping to the minterms with the predicted values.

Figure 35: Marquand Chart with grouping x01 of quantum ML predictions for Table
27 Ex.9.

Finally, some results have the same âĂĲcostâĂİ as we have determined in this
paper to be the number of spectral coefficients with value 1, but the expression has
a different number of literals and therefore also complicates cost calculation. Future
optimization research includes designing a counter and comparator that determines
the cost in respect to the number of literals.

Other variants will use a comparator of order (such as less than) rather than a
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comparator of equality which will allow us to reduce the number of repetitions of
Grover’s Algorithm in an optimization loop.
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5 Conclusion
Papers [15] and [13] presented methods to realize quantum algorithms to find exact
solutions to binary FPRM and KRM minimization problems. In this paper, we
formulated equivalent problems with ternary inputs and presented methods to build
Grover’s oracles for them. Grover’s Algorithm gives quadratic speedup. When there
are many solutions, the efficiency of Grover’s Algorithm improves. With the arrival
of quantum computers with more qudits, the results of this paper will become more
practical. Because our future circuits will also include ternary qutrits, we will be
not able to simulate them in Qiskit. Therefore, we will work on a GNU Octave
(MATLAB) simulator for such circuits.

Even some of our oracles discussed in this paper assume ternary controls [17].
Ternary circuits are already possible with existing quantum realization technologies.
Although our method can currently be applied only to functions with 2 variables in
language Qiskit [21], with the development of quantum computers of more qubits, as
well as with qudits that will have more values, the multi-valued variants of the pre-
sented method will become more practical. It is worthy to add that building ternary
quantum circuits based on qutrits is already possible and thus ternary quantum
computers will perhaps appear some day. In the past, the only practically realized
multi-valued computers were the two ternary classical computers built in Russia [3].
Synthesizing ternary quantum circuits using quantum computers, as proposed in a
very preliminary way in this paper, will hopefully be used in the future to design
ternary quantum computers. Another interesting aspect of our work is a natural
way of dealing with don’t-knows: using our trick with superpositions for don’t cares
and don’t knows is possible in quantum algorithms and rather difficult to program
in classical algorithms.

In the future, we will work on other minimization methods that will make use of
Grover’s oracles based on butterflies for other spectral transforms, such as Pseudo-
Kronecker Reed-Muller [4,12]. The open problem is how to optimally encode hypo-
thetical 28-valued variables to sets of small arity qudits. We were not able to find
papers about quantum circuit encoding, although there are plenty of papers about
various encoding problems for binary classical circuits. The only available paper
is [6], but this paper only compares various encodings for Grover’s Algorithm and
does not create a good encoding method.
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Abstract
DNA (Deoxyribose Nucleic Acid) computing has the features of parallel pro-

cessing and large storage capability that make it special from other conventional
computing systems. It is a type of biomolecular programming where different
types of reactions are used to perform basic operations and the processing in-
formation is stored in nucleic acids and proteins. The traditional ROM (Read
Only Memory) is a slower memory. Thus, the multi-valued DNA computing
enables the creation of new types of computers which is capable of operating
multiple sequences as input states by increasing storage capacity. In this pa-
per, a multi-valued DNA-based ROM architecture is designed using proposed
algorithms of multi-valued DNA-based operations.

keywords : DNA computing, parallel processing, Biomolecular programming,
ROM architecture, Multi-valued.

1 Introduction
Modern computers work on the basis of binary logic where everything is represented
using 0 and 1. Boolean gates take input as 0 or 1 and generate output in a bi-
nary form. signal transduction uses the principle of binary logic which is controlled
by molecular switches [1]. Though binary logic uses just two logics true or false,
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sometimes uncertainty and imprecision are occurred by the logic gates. To get rid
of these problems, multi-valued logic is introduced where switching can be possible
in more than two states. Besides, higher information densities are allowed by the
multi-valued logic using the increasing number of distinguishable states [2].
Different types of molecular computing systems are introduced using DNA computa-
tional systems which may work with or without enzymes [3]. The genetic information
of biological organisms is encoded by DNA (deoxyribonucleic acid) [4]. It is made
up of polymer chains, often known as DNA strands. Each strand is made up of
nucleotides, or bases, that are connected to a sugarphosphate “backbone”. Adenine,
guanine, cytosine, and thymine are the four DNA nucleotides, abbreviated as A, G,
C, and T, respectively. The 5’ end of one sequence pairs with the 3’ end of the cor-
responding sequence in an antiparallel fashion in DNA. The reverse complement is
seen right to left when complementary sequences are written in the 5’ -> 3’ manner.
The capacity to generate short DNA sequences artificially allows these sequences to
be used as inputs for algorithms. DNA has properties that allow it to be used to
simulate classical logic processes. DNA prefers to be in double stranded form, while
single stranded DNA naturally migrate towards complementary sequences to form
double stranded complexes.

In 1994, Leonard Adleman developed the first DNA computer prototype. This
developed prototype can solve the Hamiltonian path problem using DNA polymerase
and ligase [5].
After that restriction toe-hold exchange [6], endonuclease [7], [8], deoxyribose [9]
have been used to develop DNA-based computing machines. The toe-hold exchange
plays a promising role to perform DNA computing which is based on a seesaw gate
motif [10]. In neural network computations, DNA seesaw circuits have been used
[11], [12]. DNA computing has some good properties which make it more useful and
more efficient than traditional computing systems [13].
The merits of DNA computing are given as follows:

• Vast parallelism is the key feature of DNA computing that enables it to perform
millions of operations at a time [14]. If we make it operational sequentially
then it will lose its edge [15].

• DNA could store data for a long time in which data storage capacity is also
gigantic [16].

• DNA computing works on base-pair computing which provides unique error
correction techniques like the RAID 1 array [17].

• Unless it faces harsh, DNA is a stable molecule. The mutation is quite difficult
in DNA [18].
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A number of works based on DNA and molecule computing have been done at
present time. Gupta et al. [19] introduced a DNA-based model to perform logical
and arithmetic operations. Operations execute in this model in linear or serial-
parallel models. Based on deoxyribozyme-based logic gates, Stojanovic et al. [9]
proposed a half adder logic circuit. On the other hand, Lederman [20] designed a
full adder using DNA basic gates where three oligonucleotides are used as inputs,
and the final outputs are obtained after the reactions of fluorgenic-cutting. A half
subtractor has been developed by Pe’rez-Inestrosa et al. [21] utilizing the combina-
tion of INHIBIT and XOR gates.
Continuous technological advancement – driven by Moore’s Law - electronic gadgets
and their linked memory systems have been able toward becoming simultaneously
smaller and more efficient. Current storage capacity and other cognitive mech-
anisms on the other hand consume more energy. Furthermore, internal thermal
resistance and other restrictions may hinder further memory storage advancements
even as worldwide demand for enhanced data storage and retrieval capabilities con-
tinues to expand. So, the main concern is to provide low-cost, robust, high-density,
reliable, and energy-efficient memory technologies through designing multi-valued
DNA-based ROM. This technology has the ability to be written on, read from, and
erased rapidly, and not deteriorate with time.

2 Background Study
In this section, the basics of multi-valued computing, multi-valued DNA computing,
multi-valued DNA basic gate operations with algorithms, and multi-valued DNA
ROM are discussed in detail.

2.1 Multiple-Valued Basic Operations
In ternary logic [22], [23], a third value is acquainted with binary logic. In this
paper, false, undefined, and true are defined as 0, 1, and 2, respectively [24].

The basic operations of ternary logic can be defined as follows [25], [26]:

YOR = max(x, y) (1)

YNOR = max(x, y) (2)

YAND = min(x, y) (3)

YNAND = min(x, y) (4)

YXOR = diff(x, y) (5)
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YXNOR = diff(x, y) (6)
Where, x,y=0,1,2

The truth table of Ternary AND, NAND, OR, NOR, XOR, and XNOR logic
gates for ternary logic operations presents in Table 1. For AND logic gate its output
value depends on the minimum value of its inputs. Similarly, in the case of the OR
logic gate, its output value depends on the maximum value of its inputs. For the
XOR gate, its output value is the difference of the value of its inputs. Finally, the
outputs of NAND, NOR, and XNOR logic gates become the inverted of AND, OR
and XNOR logic gates.

Input1 Input2 AND NAND OR NOR XOR XNOR

0 0 0 2 0 2 0 2

0 1 0 2 1 1 1 1

0 2 0 2 2 0 2 0

1 0 0 2 1 1 1 1

1 1 1 1 1 1 0 2

1 2 1 1 2 0 1 1

2 0 0 2 2 0 2 0

2 1 1 1 2 0 1 1

2 2 2 0 2 0 0 2

Table 1: Truth Table for Ternary AND, NAND, OR, NOR, XOR, and XNOR

2.2 Multiple-Valued DNA Computing
A ternary or three-valued logic function is one that has two inputs that can assume
three states (say 0, 1 and 2) and generates one output signal that can have one of
these three states. Two DNA sequences are utilized as inputs and one DNA sequence
is used as output in ternary DNA computing. The sequence ACCTAG is considered
as “0,” the sequence CAAGCT strands as “1,” and TGGATC as “2” in this proposed
ternary DNA computing.
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In this Ternary DNA computing, the fluorescent level is used to detect the DNA
sequence. Fluorescence is the temporary absorption of electromagnetic wavelengths
from the visible light spectrum by fluorescent molecules, and the subsequent emission
of light at a lower energy level. When it occurs in a living organism, it is sometimes
called biofluorescence. This causes the light that is emitted to be a different color
than the light that is absorbed. Stimulating light excites an electron, raising energy
to an unstable level.

Fluorescent dyes can attach to nucleotide sequences via the sugar ring, the phos-
phate backbone, or the nucleotide itself. To identify the sequence composition, the
sequence must be run through a laser that can differentiate each of the fluorescently
labeled nucleotide bases in a chromatogram. A chromatogram is a graph of each
component’s intensity as a function of time. As a result, one fluorescent color will be
high intensity at each place in the sequence, while the other three fluorescent colors
will be low intensity. The high intensity colors in a chromatogram, for example,
are red, black, red, red, green, red, blue, blue, black, blue, which correlates to the
nucleotide sequence TGTTATCCGC[27].

2.3 Multiple-Valued DNA Basic Operations

In this section, multi-valued DNA basic gates are explained with the algorithm.

2.3.1 DNA Ternary Inverter

In a Ternary Inverter or NOT gate, it obtains an inverted output of its input value.
The design procedure of DNA Ternary NOT Gate is quite easy. DNA Ternary
NOT Gate or inverter is illustrated in Figure 1. During DNA Ternary computing,
sequence ACCTAG is considered as “0”, sequence CAAGCT strands as “1” and
TGGATC stands as “2”. So, for doing NOT operation in DNA Ternary Inverter,
one of the sequences is inserted into the tube. The fluorescent level is used here to
detect the sequences and logical value of the sequences. Finally, this proposed DNA
Ternary Gate gives the inverted output of the input sequence.

Based on the operating principle, a General Ternary Inverter (GTI) can be of
three types: Negative, Positive, and Standard. A GTI is represented by Equation
(1), Equation (2) and Equation (3), where x is the input and y0, y1 and y2 are
the outputs that represent a Negative Ternary Inverter (NTI), a Positive Ternary
Inverter (PTI) and a Standard Ternary Inverter (STI), respectively [28]. The truth
table that represents the functions y0, y1, and y2 which is shown in Table 2. Our
work is based on Standard Ternary Inverter (STI). Table 3 shows the truth table
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Figure 1: Illustration of a DNA Ternary NOT Operation.

of DNA Ternary NOT Gate (STI). The fluorescent level is used here to detect the
sequences and logical value of the sequences.

y0 =
∫ 2,x=0

0,x 6=0
(7)

y1 =
∫ 2,x 6==2

0,x=2
(8)

y2 = x′ = 2− x (9)

Input 1 NTI(y0) PTI(y1) STI(y2)

0 2 2 2

1 0 2 1

2 0 0 0

Table 2: Truth Table representing NTI, PTI and STI

In Table 3, when input sequence is ACCTAG, the gate generates the output
TGGATC. If the input sequence is CAAGCT, then the gate generates the output
CAAGCT. When the input sequence is TGGATC, the gate generates the output
ACCTAG. Table 3: Truth Table of DNA Ternary NOT Gate (STI)
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Input 1 Output

ACCTAG TGGATC

CAAGCT CAAGCT

TGGATC ACCTAG

Table 3: Truth Table of DNA Ternary NOT Gate (STI)

2.3.2 DNA Ternary AND Operation

DNA Ternary AND gate consists of two ternary inputs and one ternary output.
A DNA Ternary AND gate is obtained using two inputs and one output. The lower
logical sequence value from the input sequences is considered as the output of DNA
Ternary AND Gate and when the input sequences have the same logical value, one
of them is considered as the output. The fluorescent level is used here to detect the
sequences and logical value of the sequences.Figure 2 shows the DNA Ternary AND
gate operation.
Ternary AND function is also similar to the Binary “MINIMUM OF” function. The
Algorithm 1 shows the working procedure of DNA multi-valued AND operation.
The following equation helps to get the DNA AND gate output from the ternary
inputs:

YAND = min(x, y) (10)

2.4 Read Only Memory

Read-only memory (ROM) is a type of non-volatile memory used in computers and
other electronic devices. Data stored in ROM cannot be electronically modified after
the manufacture of the memory device. It’s used to store the start-up instructions
for a computer, also known as the firmware. Most modern computers use flash-based
ROM. It is part of the BIOS chip, which is located on the motherboard. Obtain the
function output F1 and F2 in sum of minterms form, F1 and F2 = Σ (0, 1, 2, 3, 4,
5, 6, 7, 8) [29]. An architecture of a ROM is shown in Figure 3 and Figure 4 shows
the circuit diagram of a ROM.
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Figure 2: Illustration of a DNA Ternary AND Operation.

Algorithm 1 Multiple-Valued DNA-based AND Gate
Input: X, Y
Output: ACCTAG, CAAGCT, TGGATC
Begin
procedure DO_MV _DNA_AND(X, Y )

if XequalY then
Do_Result(X);

else if X < Y then
Do_Result(X);

else if X > Y then
Do_Result(Y );

end if
end procedure
procedure Do_Result(Q)

P ← fluorescent_get_value(Q);
if P equals 0 then

return ACCTAG
else if P equals 1 then

return CAAGCT
else if P equals 2 then

return TGGATC
end if

end procedure
End
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Figure 3: ROM Architecture.

Figure 4: Circuit Diagram of ROM Architecture.

3 Multi-Valued ROM Design Using DNA Computing

In this 9 to 2 multivalued DNA based ROM has two inputs DNA sequences A and B
with three states A (ACCTAG = 0, CAAGCT =1, TGGATC = 2) and B (ACCTAG
= 0, CAAGCT =1, TGGATC = 2) and two output functions F1 and F2. Though
2 inputs can take 9 values and produce 2 outputs it is known as 9 to 2 multivalued
ROM.

Thus it will perform with DNA sequences so it is called DNA multivalued ROM.
In this ternary DNA computing, the fluorescent level is used to detect the DNA
sequence. Fluorescence is defined as fluorescent molecules temporarily absorbing
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Figure 5: General Organization of multi-valued DNA 9-to-2 ROM .

electromagnetic wavelengths from the visible light spectrum and then emitting light
at a lower energy level.
An architecture of a ROM is shown in Figure 3 and Figure 4 shows the circuit di-
agram of a ROM architecture. General Organization of multi-valued DNA 9-to-2
ROM is depicted in Figure 5.
Based on Figure 5, firstly DNA structure of multivalued Decoder with Block Dia-
gram of multivalued DNA OR operations is illustrated in Figure 6. Secondly, using
Figure 7 the Block Diagram of multivalued DNA Decoder with DNA structure of
multivalued OR operations is depicted.

To perform multi-valued DNA ROM, we need a 2 to 9 decoder and minterms of
decoder output as the OR gates input to produce desire multivalued ROM output
functions F1 and F2. The design procedure of the proposed multi-valued DNA ROM
is explained by the following steps:
Step 1:
First draw two input DNA sequence A and B. Three possible states for a DNA input
sequence are the states ACCTAG, CAAGCT and TGGATC. These 3 will produce
9 combination of 2 input DNA sequence.
Step 2:
For each input, we need a ternary decoder for the selection of input values combina-
tions. For example, if any input is A then three value can be performed as A0, A1
and A2. So the ternary decoder will select combinations from the values of inputs
[30].
Step 3:
After the ternary decoder operations for input A and B, we will found A0, A1, A2
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Figure 6: DNA structure of multivalued Decoder with Block Diagram of multivalued DNA
OR operations.
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Figure 7: Block Diagram of multivalued DNA Decoder with DNA structure of multivalued
OR operations.
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and B0, B1, B2.
Step 4:
With the each input values of step 3, we need to perform AND operations that will
produce 9 combination of 2 input sequences and enable any one output line. Step 5:
From each combination of AND operations in Step 4, draw multivalued DNA OR
gates with (D0, D1), (D2, D3), (D4, D5), (D6, D7).
Step 6:
From each outputs sequences of Step 5, again combine them with multivalued DNA
OR gates, (D0, D1, D2, D3), (D4, D5, D6, D7).
Step 7:
From each outputs sequences of Step 6, again combine them with multivalued DNA
OR gates as (D0, D1, D2, D3, D4, D5, D6, D7).
Step 8:
Finally, perform multivalued DNA OR operations with D8 and the output of step 7
to produce desired multivalued 9-to-2 DNA ROM for output functions F1 and F2.
Truth Table of 9-to-2 DNA ROM is given in Table 4.

A B F1 F2

ACCTAG ACCTAG TGGATC TGGATC

ACCTAG CAAGCT TGGATC TGGATC

ACCTAG TGGATC TGGATC TGGATC

CAAGCT ACCTAG TGGATC TGGATC

CAAGCT CAAGCT TGGATC TGGATC

CAAGCT TGGATC TGGATC TGGATC

TGGATC ACCTAG TGGATC TGGATC

TGGATC CAAGCT TGGATC TGGATC

TGGATC TGGATC TGGATC TGGATC

Table 4: Truth Table of 9-to-2 DNA ROM

The multivalued decoder operation is performed by nine multivalued AND gates
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which are “MINIMUM OF” sequences respectively. So, with the two input DNA
sequences and each of three states. From these combination, the corresponding
multivalued AND operation outputs are the minimum of input sequence states.
Ternary logic functions are those functions which have significance if a third value
is acquainted with the binary logic. In this paper, ACCTAG, CAAGCT and TG-
GATC denote the ternary levels for basic logic gates to represent sequence ACCTAG
is considered as “0”, sequence CAAGCT strands as “1” and TGGATC stands as “2”.
For multivalued 2:9 decoder 9 outputs. D0, D1, D2, D3, D4, D5, D6, D7, D8 and
two input A, B.
For input sequences A, B= ACCTAG, ACCTAG
a. To perform value of input A0, A will go through the NOT (NTI), and produces
TGGATC in the A0.
b. To perform value of input A2, A will go through the NOT (PTI) and produce
TGGATC then go though NOT (NTI) and produces ACCTAG in the A2.
c. To perform value of input A1, the value of A0 and A2 go through DNA NOR
(OR, NOT) Operations and produces ACCTAG in the A1.
d. To perform value of input B0, B will go through the NOT (NTI), and produces
TGGATC in the B0.
e. To perform value of input B2, B will go through the NOT (PTI) and produce
TGGATC then go though NOT (NTI) and produces ACCTAG in the B2.
f. To perform value of input B1, the value of B0 and B2 go through DNA NOR
(OR, NOT) Operations and produces ACCTAG in the B1.

ACCTAG = |0> CAAGCT =|1> TGGATC = |2
A= A0, A1, A2 = 2, 0, 0 and B= B0, B1, B2= 2, 0, 0. With this input combinations,
only input A0 and B0 is true. Thus the A0 and B0 are connected to output line D0
so only the D0 will TGGATC and rest of the gates will produce ACCTAG.
To perform 9 to 2 multivalued DNA ROM functions outputs,

1. For input sequences D0, D1 = TGGATC, ACCTAG, the multivalued OR gates
will perform maximum operations of input sequences. So the output sequence
of TGGATC.

2. For input sequences D2, D3 = ACCTAG, ACCTAG, the multivalued OR gates
will perform maximum operations of input sequences. So the output sequence
of ACCTAG.

3. For input sequences D4, D5 = ACCTAG, ACCTAG, the multivalued OR gates
will perform maximum operations of input sequences. So the output sequence
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of ACCTAG.

4. For input sequences D6, D7 = ACCTAG, ACCTAG the multivalued OR gates
will perform maximum operations of input sequences. So the output sequence
of ACCTAG.

5. Combine the output sequences TGGATC, ACCTAG from [i] and [ii] respec-
tively as input sequences, the multivalued OR gates will perform maximum
operations of input sequences. So the output sequence of TGGATC.

6. Combine the output sequences ACCTAG, ACCTAG from [iii] and [iv] respec-
tively as input sequences, the multivalued OR gates will perform maximum
operations of input sequences. So the output sequence of ACCTAG.

7. Combine the output sequences ACCTAG, ACCTAG from [iii] and [iv] respec-
tively as input sequences, the multivalued OR gates will perform maximum
operations of input sequences. So the output sequence of ACCTAG.

8. Combine the output sequences TGGATC, ACCTAG from [v] and [vi] respec-
tively as input sequences, the multivalued OR gates will perform maximum
operations of input sequences. So the output sequence of TGGATC.

9. Finally, Combine the output sequence TGGATC from [vii] and D8 (ACCTAG)
as input sequences, the multivalued OR gates will perform maximum opera-
tions of input sequences. So the output sequence of TGGATC for the both
functions output F1 and F2 multivalued 9 to 2 DNA ROM.

For input sequences A, B= ACCTAG, CAAGCT
A= A0, A1, A2 = 2, 0, 0 and B= B0, B1, B2= 0, 2, 0. With this input combinations,
only input A0 and B1 is true. Thus the A0 and B1 are connected to output line D1
so only the D1 will TGGATC and rest of the gates will produce ACCTAG.
For Functions F1 and F2, perform OR operations among all decoder (D0-D8) out-
puts. So, max (D0, D1, D2, D3, D4, D5, D6, D7, D8) = max (0,2,0,0,0,0,0,0,0) = 2
will produce as the functions outputs F1 and F2 of multivalued 9 to 2 DNA ROM.
For input sequences A, B= ACCTAG, TGGATC
A= A0, A1, A2 = 2, 0, 0 and B= B0, B1, B2= 0, 0, 2. With this input combinations,
only input A0 and B2 is true. Thus the A0 and B2 are connected to output line D2
so only the D2 will TGGATC and rest of the gates will produce ACCTAG.
For Functions F1 and F2, perform OR operations among all decoder (D0-D8) out-
puts. So, max (D0, D1, D2, D3, D4, D5, D6, D7, D8) = max (0,0,2,0,0,0,0,0,0) = 2
will produce as the functions outputs F1 and F2 of multivalued 9 to 2 DNA ROM.
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For input sequences A, B= CAAGCT, ACCTAG
A= A0, A1, A2 = 0, 2, 0 and B= B0, B1, B2= 2, 0, 0. With this input combinations,
only input A1 and B0 is true. Thus the A1 and B0 are connected to output line D3
so only the D3 will TGGATC and rest of the gates will produce ACCTAG.
For Functions F1 and F2, perform OR operations among all decoder (D0-D8) out-
puts. So, max (D0, D1, D2, D3, D4, D5, D6, D7, D8) = max (0,0,0,2,0,0,0,0,0) = 2
will produce as the functions outputs F1 and F2 of multivalued 9 to 2 DNA ROM.
For input sequences A, B= CAAGCT, CAAGCT
A= A0, A1, A2 = 0, 2, 0 and B= B0, B1, B2= 0, 2, 0. With this input combinations,
only input A1 and B1 is true. Thus the A1 and B1 are connected to output line D4
so only the D4 will TGGATC and rest of the gates will produce ACCTAG.
For Functions F1 and F2, perform OR operations among all decoder (D0-D8) out-
puts. So, max (D0, D1, D2, D3, D4, D5, D6, D7, D8) = max (0,0,0,0,2,0,0,0,0) = 2
will produce as the functions outputs F1 and F2 of multivalued 9 to 2 DNA ROM.
For input sequences A, B= CAAGCT, TGGATC
A= A0, A1, A2 = 0, 2, 0 and B= B0, B1, B2= 0, 0, 2. With this input combinations,
only input A1 and B2 is true. Thus the A1 and B2 are connected to output line D5
so only the D5 will TGGATC and rest of the gates will produce ACCTAG.
For Functions F1 and F2, perform OR operations among all decoder (D0-D8) out-
puts. So, max (D0, D1, D2, D3, D4, D5, D6, D7, D8) = max (0,0,0,0,0,2,0,0,0) = 2
will produce as the functions outputs F1 and F2 of multivalued 9 to 2 DNA ROM.
For input sequences A, B= TGGATC, ACCTAG
A= A0, A1, A2 = 0, 0, 2 and B= B0, B1, B2= 2, 0, 0. With this input combinations,
only input A2 and B0 is true. Thus the A2 and B0 are connected to output line D6
so only the D6 will TGGATC and rest of the gates will produce ACCTAG.
For Functions F1 and F2, perform OR operations among all decoder (D0-D8) out-
puts. So, max (D0, D1, D2, D3, D4, D5, D6, D7, D8) = max (0,0,0,0,0,0,2,0,0) = 2
will produce as the functions outputs F1 and F2 of multivalued 9 to 2 DNA ROM.
For input sequences A, B= TGGATC, CAAGCT
A= A0, A1, A2 = 0, 0, 2 and B= B0, B1, B2= 0, 2, 0. With this input combinations,
only input A2 and B1 is true. Thus the A2 and B1 are connected to output line D7
so only the D7 will TGGATC and rest of the gates will produce ACCTAG.
For Functions F1 and F2, perform OR operations among all decoder (D0-D8) out-
puts. So, max (D0, D1, D2, D3, D4, D5, D6, D7, D8) = max (0,0,0,0,0,0,0,2,0) = 2
will produce as the functions outputs F1 and F2 of multivalued 9 to 2 DNA ROM.
For input sequences A, B= TGGATC, TGGATC
A= A0, A1, A2 = 0, 0, 2 and B= B0, B1, B2= 0, 0, 2. With this input combinations,
only input A2 and B2 is true. Thus the A2 and B2 are connected to output line D8
so only the D8 will TGGATC and rest of the gates will produce ACCTAG.
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For Functions F1 and F2, perform OR operations among all decoder (D0-D8) out-
puts. So, max (D0, D1, D2, D3, D4, D5, D6, D7, D8) = max (0,0,0,0,0,0,0,0,2) = 2
will produce as the functions outputs F1 and F2 of multivalued 9 to 2 DNA ROM.
Algorithm 2 represents the working procedure of DNA-based multi-valued ROM.
Here, A and B are the inputs and the final outputs are F1 and F2. As A, B, F1, and
F2 are multi-valued variables, ACCTAG or CAAGCT or TGGATC can be a value
of individuals.

The temperature necessary to break the bonds between each pair of nucleotides is
known as the melting point temperature of a sequence. Melting point temperatures
rise in a nonlinear manner as the nucleotide sequence lengthens. The frequency of
dinucleotides is used to calculate the melting point temperature. In this work we
give and prove Theorems 1 to 3 based on [31].

Theorem 1. The minimum melting temperature of a length 6 DNA sequence is 5
◦C Celsius.

Proof: The Melting of DNA sequences is an essential part of DNA computing.
Using the modified method of Marmur Doty formula [31], the melting tempera-
ture (Tm) is calculated. This formula perfectly works for the short length oligonu-
cleotides. The value of Tm is obtained using the following equation:

Tm = 2(A + T ) + 4(C + G)− 7; (11)

where
Tm = Melting temperature in ◦C;
A = Total Number of adenosine nucleotides in the given sequence;
T = Total Number of thymidine nucleotides in the given sequence;
C = Total Number of cytosine nucleotides in the given sequence;
G = Total Number of guanosine nucleotides in the given sequence; and
-7 = Correction factor In ACCTAG sequence, the number of A=2, C=2, T=1, and
G=1.
So, Tm = 2(3) + 4(3)− 7 = 11

In TGGATC, the number of A=1, C=1, T=2, and G=2. Thus,
Tm = 2(3) + 4(3)− 7 = 11
When the combination of an oligonucleotide is length 6 sequence consisting of only
C and G nucleotides, the (Tm) will be Tm = 2(0) + 4(6)− 7 = 17
On the other hand, when the combination of an oligonucleotide is length 6 sequence
consisting of only A and T nucleotides, the (Tm) will be Tm = 2(6) + 4(0)− 7 = 5
So it is clear that the minimum melting temperature of a length 6 DNA sequence is

797



Babu et al.

Algorithm 2 Multi-Valued DNA-Based ROM
Input: A, B
Output: F1, F2;
The value of A, B, F1, and F2 can be ACCTAG or CAAGCT or TGGATC
Begin
while i <= n do

P = DO_DNA_Decoder(Ai, Bi); . Decoder generates D0-D8
P0← DO_DNA_Multiple_OR(D0, D1);
P1← DO_DNA_Multiple_OR(D2, D3);
P2← DO_DNA_Multiple_OR(D4, D5);
P3← DO_DNA_Multiple_OR(D6, D7);
P4← DO_DNA_Multiple_OR(P0, P1);
P5← DO_DNA_Multiple_OR(P2, P3);
P6← DO_DNA_Multiple_OR(P4, P5);
F1, F2← DO_DNA_Multiple_OR(P6, D8);

end while
procedure DO_DNA_Multiple_OR(X, Y )

if X equals Y then
Do_Result(X);

else if X < Y then
Do_Result(Y );

else if X > Y then
Do_Result(X);

end if
end procedure
procedure Do_Result(Q)

P ← fluorescent_get_value(Q);
if P equals 0 then

return ACCTAG
else if P equals 1 then

return CAAGCT
else if P equals 2 then

return TGGATC
end if

end procedure
End
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5 ◦C Celsius.

Theorem 2. If a short-length DNA sequence consists of only A and T nucleotides,
then the required melting temperature is Tm=2x-7, where x is the total number of
nucleotides.

Proof: The modified method of Marmur Doty formula [31] helps to calculate the
melting temperature of a DNA sequence. The melting temperature of calculation
equation is given as follows:
Tm = 2(A + T ) + 4(C + G)− 7 Here,
Tm = Melting temperature in ◦C;
A, T, C, and G are the number of adenosine, thymidine, cytosine and guanosine
nucleotides in the given sequence, sequentially.
-7 = Correction factor
Let A+T=x and C+G=y.
Then Equation (10) can be expressed as follows:
Tm = 2x + 4(y)− 7(11) When a sequence consists of only A and T nucleotides, the
value of y=0. In that case, Equation (11) will be
Tm = 2x + 4(0)− 7 = 2x− 7
So, it is clear that if a short-length DNA sequence consists of only A and T nu-
cleotides, then the required melting temperature is Tm=2x-7, where x is the total
number of nucleotides.

Theorem 3. If a short-length DNA sequence consists of only C and G nucleotides,
then the required melting temperature is Tm=4y-7, where y is the total number of
nucleotides.

Proof: The modified method of Marmur Doty formula [31] helps to calculate the
melting temperature of a DNA sequence. The equation of melting temperature is
given below.
Tm = 2(A + T ) + 4(C + G)− 7;
where Tm = Melting temperature in ◦C; and
A, T, C and G are the number of adenosine, thymidine, cytosine and guanosine
nucleotides in the given sequence, sequentially, where
-7 = Correction factor.
Let A+T=x and C+G=y.
Then Equation (10) can be expressed as follows:
Tm = 2(x) + 4(y)− 7(12)
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When a sequence consists of only A and T nucleotides, the value of y=0. In that
case, Equation (12) will be
Tm = 2(0) + 4(y)− 7 = 4y − 7
So, it can say that if a short-length DNA sequence consists of only C and G nu-
cleotides, then the required melting temperature is Tm=4y-7, where y is the total
number of nucleotides.
Table 7 shows the melting temperature of different length’s DNA sequences con-
sisting of A and T. Table 6 and Table 7 show the melting temperature of different
length’s DNA sequences consisting of “C and G” and “A,T, C, and G”, respectively.
For the sequences consisting of C and G require the maximum melting temperature
and the sequences consisting of A and T require the minimum melting temperature.

4 Conclusions
Security experts have identified a bug in Intel’s read-only memory that they be-
lieve is unfixable, leaving all Intel devices. The fact is that once an attacker has a
static circuit, it is just a matter of time before they can reverse engineer with its
configuration. As a result, dynamic ROM (Read Only Memory) configurations are
required, and biological multi-valued methods have been invented to imitate exist-
ing vulnerable static technologies in order to ensure reliable storage. Multi-valued
DNA (Deoxyribose Nucleic Acid) computing introduces an approach for generating
information that can be stored and retrieved reliably within such a DNA sequence.
In this paper, a multi-valued DNA ROM architecture is designed with the help of
proposed multi-valued DNA operations algorithms. This multi-valued DNA ROM
has the capability of long-life storage, low-cost fabrication, and higher memory den-
sity. Researchers at UC Davis, the University of Washington and Emory University
have developed a memory technology that applies DNA bases to encode information
directly. The researchers have demonstrated the capability to create DNA-based
ROM that is programmable and can interface seamlessly with current electronic
devices. The technology applies the self-assembly and electrical conductance prop-
erties of DNA to create crosswire (X-wire) nanostructures that simulate the “ones
and zeroes” that currently form the basis for electronic storage of digital information
[13], [32].
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Abstract

Ternary functions which have a bent Reed-Muller-Fourier (RMF) spectrum
are introduced. Necessary conditions for a function to have this property are
established. A classification of ternary 2-place functions having a bent RMF
spectrum in 6 classes is given and it is shown that these classes are related by
spectral invariance operations. Moreover, a compact database of those ternary
functions with bent RMF spectra is provided. Ternary bent functions having
the same value vector as their respective RMF bent spectra are known as fixed
points. The paper generalizes this concept to rotational fixed points when the
value vector of a function equals its spectra shifted by a constant. Finally,
a method is introduced to generate n-place ternary functions with bent RMF
spectrum when n > 2.
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1 Introduction

A preliminary step towards the Reed-Muller-Fourier transform, (short RMF trans-
form) was introduced in [18], where the convolution product of Gibbs [2] was ex-
tended to the multiple-valued case. The RMF transform was introduced then in
1993 [19] for the multiple-valued domain, preserving important features of the bi-
nary Reed-Muller transform, like the Kronecker product structure as well as being
self-inverse, and the lower triangular structure of the Discrete Fourier transform.
The RMF transform generates a bijection in the set of p-valued functions: the RMF
spectrum of a p-valued function is also a p-valued function. Particular properties of
the RMF transform have been studied in [9] – [12], [20] – [24] and [27] - [29].

Bent functions were introduced in 1976 [16], as the most non-linear binary func-
tions. This attracted the interest of people working in Coding Theory, and in Cryp-
tography. See e.g. [1]. The extension of bent functions to the multiple-valued domain
was introduced almost a decade later [5]. Much work has been done on multiple-
valued bent function considered as challenging mathematical objects, see e.g. [6], [8]
and Chapter 15 of [25].

2 Formalisms

The following notation will be used in this paper.
Let f : (Zp)n → Zp denote a p-valued function. F will denote its value vector.

If no confusion arises, F may also be called âĂĲfunctionâĂİ. If p = 3, then f will
be called ternary. Let T denote the RMF transform matrix and let Rf denote the
RMF spectrum of f . Similarly, Sf will denote the Vilenkin-Chrestenson spectrum
of the complex encoding of f as defined below. Furthermore, if Q denotes a ternary
vector, then 1Q will denote a column vector of the same length as Q, with all entries
equal to 1. Similarly for 0Q and 2Q. If the length of Q should be explicitly given,
a numerical exponent will be used. Moreover, let 1q denote a row tuple of 1âĂŹs
of length = ((length of Q)− 1) and similarly for 0q. Finally, if A is a matrix, then
vec(A) concatenates the columns of A to build a vector [3].

2.1 The RMF transform

Definition 1. [18]
The Gibbs convolution product (×) of multiple-valued functions when n = 1 is given
as follows:
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


2 0 0
2 1 0
2 2 2


 ,




3 0 0 0
3 1 0 0
3 2 3 0
3 3 1 1


 ,




4 0 0 0 0
4 1 0 0 0
4 2 4 0 0
4 3 2 1 0
4 4 4 4 4



,




8 0 0 0 0 0 0 0 0
8 1 0 0 0 0 0 0 0
8 2 8 0 0 0 0 0 0
8 3 6 1 0 0 0 0 0
8 4 3 4 8 0 0 0 0
8 5 8 1 4 1 0 0 0
8 6 3 2 3 6 8 0 0
8 7 6 8 1 3 2 1 0
8 8 8 2 2 2 8 8 8




.

Figure 1: Matrices X3RMF (1), X4RMF (1), X5RMF (1), and X9RMF (1).

Let f, g : Zp → Zp such that (f × g)(0) = 0, and for x > 0:

(f × g)(x) =
x−1∑

s=0
f(x− 1− s) · g(s) mod p.

Definition 2. [19]
The fundamental basis for the RMF transform is the following: [x∗0x∗1 · · ·x∗(p−1)],
where x∗0 is defined to be the constant p − 1 for all x, and for 1 ≤ j ≤ p − 1, the
powers x∗j are calculated as the jth-fold Gibbs product of x∗0 with itself.

Preserving the original notation [19], the matrix version of the basis in Defini-
tion 2 is called XpRMF (1). Fig. 1 shows the matrices for p = 3, 4, 5 and 9.

It is simple to show that the matrices are self-inverse in the ring (Zp,+, ·).
From Fig. 1 it may be noticed that the matrices are lower triangular and, ad-

ditionally, if p is a prime, that XpRMF (1) is skew-symmetric (i.e. symmetric with
respect to the diagonal with positive slope). Notice that if p = 9 the bottom row
of the matrix is 8 8 8 2 2 2 8 8 8 , i.e. it is not enough that p is odd to
achieve skew-symmetry.
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Definition 3. Let T(n) denote the RMF transform matrix compatible with functions
in n variables and preserving the distribution of values indicated in Definition 2.
Then:

T(n) = (p− 1)n+1(XpRMF (1))⊗n mod p (1)

where the exponent ⊗n indicates the n-fold Kronecker product of XpRMF (1) with
itself and (p− 1)n+1 is a normalizing factor. If n is odd, it is simple to realize that
the matrix XpRMF (1) mod p is lower triangular and that its first column is a column
with all entries equal to p−1 as in Definition 2. Furthermore, the normalizing factor
becomes (p− 1)even ≡ 1 bmod p. If n is even, the matrix XpRMF (1) mod p is lower
triangular and its first column is a column with all entries equal to (p−1)n ≡ 1 mod
p. However, the normalizing factor becomes (p− 1)odd ≡ (p− 1) mod p. Therefore,
the transform matrix follows the values distribution as in Definition 2.

Recall that XpRMF (1) is self-inverse. From the fact that the inverse of the Kro-
necker product of matrices equals the Kronecker product of the inverse of the ma-
trices [3], with (1) follows that T(n) is also self-inverse.

Example 1. Let p = 3. Then, X3RMF (1) mod 3 =




2 0 0
2 1 0
2 2 2


. With (1):

T(2) = 23 ·




2 0 0
2 1 0
2 2 2




⊗2

mod 3 = 2 ·




1 0 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 0 0 2 0 0 0 0 0
1 2 0 2 1 0 0 0 0
1 1 1 2 2 2 0 0 0
1 0 0 1 0 0 1 0 0
1 2 0 1 2 0 1 2 0
1 1 1 1 1 1 1 1 1




=




2 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0
2 2 2 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0
2 1 0 1 2 0 0 0 0
2 2 2 1 1 1 0 0 0
2 0 0 2 0 0 2 0 0
2 1 0 2 1 0 2 1 0
2 2 2 2 2 2 2 2 2




.
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The matrix obtained for T(2) is conform with Definition 2.

Notice that the above is not just a particular property of the ternary transform.
For any p, XpRMF (1) starts with a column whose entries have the value p−1. Recall
that for any n, T(n) = (p− 1)n+1(XpRMF (1))⊗n mod p. It is simple to see that the
n-fold Kronecker product of XpRMF (1) with itself will produce a lower triangular
matrix with a first column with entries equal to (p−1)n. Since the normalizing factor
is (p− 1)n+1, all entries of the first column will become (p− 1)2n+1 = (p− 1)odd ≡
(p− 1) mod p. The transform matrix becomes conform with Definition 2.

Lemma 1. For any positive integers m and n, T(m+n) = (p−1)(T(m)⊗T(n)) mod
p.

Proof: With (1),

(p− 1)(T(m)⊗T(n)) = (p− 1)
[
〈(p− 1)m+1(XpRMF (1))⊗m〉

⊗〈(p− 1)n+1(XpRMF (1))n〉
]

mod p

= (p− 1)m+n+3〈(XpRMF (1))⊗m〉 ⊗ (XpRMF (1))⊗n〉
= (p− 1)m+n+1(XpRMF (1))⊗m+n mod p.

The assertion follows, since the last expression represents T(m + n) according to
(1).

The RMF transform has found applications e.g. in Signal Processing [21], [23]
and in Pattern Analysis [12]. Moreover, it has been shown [7] that the RMF trans-
form applied to the value vector of a ternary function, preserves any permutation
of the arguments of the function. The RMF transform applied to Rotational-
Symmetric ternary functions was studied in [13]. Other properties of the RMF
transform have been studied in [27], [28], [29].

2.2 Bent Functions
From the mathematical point of view, some of the main tasks related to ternary bent
functions are: generation, characterization, classification, and counting. Generation
of ternary bent functions has been considered in e.g. [8], [15], [22], [24], [25], and
classification of ternary bent functions in e.g. [14], [24]. The number of ternary bent
functions for n = 1, (18), and for n = 2, (486), has been given in [8]. These "small"
numbers have allowed to give proof of some properties simply by exhaustive search.
Large numbers of ternary bent functions for some classes when n = 3 have been
reported in [17]. Exhaustive search starts reaching its practical limits. Recall that
the total number of ternary functions when n = 3 is 327 ≈ 7.6 · 1012.
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Definition 4. Let ξ = exp(2πi/3), where i =
√
−1, be a primitive cubic root of

unity and let h : {0, 1, 2} → {1, ξ, ξ2}, where ξ2 = ξ∗, the complex conjugate of ξ.
The function h is known as the complex encoding function.

Definition 5. The Vilenkin-Chrestenson functions [4], [26] in matrix form are given
by columns of the matrix

C(n) = (C(1))⊗n where C(1) =




1 1 1
1 ξ ξ2

1 ξ2 ξ


 . (2)

The exponent ⊗n indicates the n-fold Kronecker product of C(1) with itself. The
Vilenkin-Chrestenson transform matrix is defined as the complex-conjugate of C(n).

With respect to characterization of ternary bent functions, it is known [8], [25]
that if an n-place ternary function is bent, then the Vilenkin-Chrestenson spectrum
of its complex encoding is "flat", meaning that the absolute value of all its spectral
coefficients equals 3n/2.

Definition 6. Given a ternary function f in n variables, its Vilenkin-Chrestenson
spectrum Sf is calculated as follows:

Sf = C∗(n) · h(F), (3)

where the complex encoding function h is applied to each of the elements of the value
vector F.

3 Bent RMF spectra of ternary functions
In [10], ternary functions with a bent Reed-Muller spectrum were studied. The
present paper follows a similar line, but now related to Reed-Muller-Fourier spectra.
Since the RM transform for ternary functions is not self-inverse, sequences of appli-
cations of the RM-transform could be applied until recovering the initial function.
These "cycles" could have different lengths and meaning. Since the RMF transform
is self-inverse, cycles become trivial and have length of 2. Therefore, the focus of
the present study is oriented to the classification and characterization of ternary
functions which exhibit a bent RMF spectrum.

Definition 7. Given a ternary function f in n variables, with value vector F, its
RMF spectrum is calculated as follows:

Rf = T(n) · F mod 3. (4)
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Lemma 2. A necessary condition for a ternary 1-place function to have a bent RMF
spectrum is that f(2) 6= 0.

Proof:

T(1) · F =




2 0 0
2 1 0
2 2 2


 ·



f(0)
f(1)
f(2)


 =




2f(0)
2f(0) + f(1)

2(f(0) + f(1) + f(2))


 .

The complex encoding of




2f(0)
2f(0) + f(1)

2(f(0) + f(1) + f(2))


 is




ξ2f(0)

ξ2f(0)+f(1)

ξ2(f(0)+f(1)+f(2))


 = ξ2f(0)




1
ξf(1)

ξ2(f(1)+f(2))


 . (5)

The coefficient S(0) of its Vilenkin-Chrestenson spectrum is computed as ξ2f(0)(1 +
ξf(1) + ξ2(f(1)+f(2))).

i) If f(1) = 0, |S(0)| = |2 + ξ2f(2)|. If f(2) = 0, then |S(0)| = 3, however, should
the spectrum be bent, then |S(0)| should equal

√
3.

If f(2) 6= 0, then ξf(2) = ξ or ξ2; |S(0)| = |2 + ξ| = |2 + ξ2| =
√

3.

ii) If f(1) 6= 0 and f(2) = 0, then (1+ξf(1)+ξ2(f(1)+f(2))) = (1+ξf(1)+ξ2f(1)) = 0,
and therefore, |S(0)| = 0.

iii) If f(1) = f(2) 6= 0, then (1 + ξf(1) + ξ2(f(1)+f(2))) = (1 + 2ξf(1)) and
|(1 + 2ξf(1))| =

√
3.

If f(1) = 2f(2) 6= 0, then (1 + ξf(1) + ξ2(f(1)+f(2))) = (2 + ξf(1)) and
|(2 + ξf(1))| =

√
3.

To be flat, the absolute value of all spectral coefficients should be
√

3. Therefore
f(2) should not be 0. �

Lemma 3. The RMF transform preserves the sum mod 3 of two vectors (of the same
length), the scaling by 2 of a function as well as (up to normalization) the Kronecker
product of two vectors of not necessarily the same length. The RMF transform does
not preserve the tensor sum � of two vectors. (The tensor sum [8] is also known as
Kronecker sum [3]).

Proof:
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i) Let f and g be ternary functions in n variables. The following holds:

T(n) · (F⊕G) = (T(n) · F)⊕ (T(n) ·G) = Rf ⊕Rg.

ii) Let G = 2 · F. Then T(n) ·G = T(n) · 2 · F = 2 · (T(n) · F). It follows that
Rg = 2Rf .

iii) Let f and g be ternary functions in m and n variables, respectively. From
Lemma 1, the following holds:

T(m+ n) · (F⊗G) = (p− 1)(T(m)⊗T(n)) · (F⊗G)
= (p− 1)[(T(m) · F)⊗ (T(n) ·G)]
= (p− 1)(Rf ⊗Rg).

iv) Recall that [8]

(F � G) = (F⊗ 1G)⊕ (1F ⊗G). (6)

Then: 1

T(m+ n) · (F � G) = (p− 1)(T(m)⊗T(n)) · ((F⊗ 1G)⊕ (1F ⊗G))
= (p− 1)(T(m)⊗T(n)) · (F⊗ 1G)

⊕(p− 1)(T(m)⊗T(n)) · (1F ⊗G)) (7)
= (p− 1)[T(m) · F⊗T(n) · (1G)

⊕T(m) · (1F )⊗T(n) ·G]
= (p− 1)[Rf ⊗ [1,0g]T ⊕ [1,0f ]T ⊗Rg].

It is simple to see that Eqs. 6 and (7) have a different structure. Eq. (7) does
not represent Rf �Rg. The RMF transform preserves the Kronecker product,
but it does not preserve the tensor sum of ternary functions. �

Lemma 4. There are 18 1-place ternary functions, which have a bent RMF spec-
trum. 12 of them are bent, 2 are fixed points and 6 are rotational fixed points.
Proof: Exhaustive search. �

Table 1 shows the value vectors of 9 1-place ternary functions and their bent
RMF spectra. Scaling by 2 gives the other 9 functions, since scaling by 2 is a
spectral invariance operation and preserves bentness [17]. Moreover, as shown in
Lemma 2, the RMF transform preserves a scaling by 2.

1To make the representation of equations more compact here and mostly in what follows, ele-
ments of vectors will be separated by commas instead of spaces.
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Ternary 1-place function Bent RMF spectra n = 1 Function class

[0 0 2]T [0 0 1]T rotational fixpoint

[0 1 2]T [0 1 0]T

[0 2 2]T [0 2 2]T fixpoint

[2 2 2]T [1 0 0]T

[2 2 1]T [1 0 1]T bent

[2 0 1]T [1 1 0]T

[2 0 2]T [1 1 2]T bent

[2 1 2]T [1 2 1]T rotational fixpoint

[2 1 1]T [1 2 2]T rotational fixpoint

Table 1: Value vector of ternary 1-place functions and their bent RMF spectra.

Definition 8. If F is a bent function and Rf = 2F, or equivalently F = 2Rf , this
constitutes a rotational fixpoint.

Lemma 5. The condition of Lemma 2, that f(2) 6= 0, is necessary and sufficient.

Proof: There are 33 = 27 ternary 1-place functions. There are 32 = 9 ternary
1-place functions such that f(2) = 0, which from Lemma 2 are not bent. There are
18 remaining ternary 1-place functions such that f(2) 6= 0, which from Lemma 2 are
bent. The assertion follows. �

Lemma 6. A necessary condition for a 2-place ternary function to have a bent
Reed-Muller-Fourier spectrum is that f(5) = f(7) = f(8) = 0.

Proof: By inspection of a database. (See Table 3). �

Lemma 7. There are 16 ternary bent functions on two variables that have also a
bent RMF spectrum. 2 of them are fixed points. 4 of them are rotational fixed points.
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Bent function Bent RMF spectrum

[0 1 0 2 2 0 1 0 0]T [0 1 2 2 1 0 0 0 0]T

[0 1 2 2 1 0 0 0 0]T [0 1 0 2 2 0 1 0 0]T

[ 0 1 1 2 0 0 2 0 0]T [ 0 1 1 2 0 0 2 0 0 ]T

[ 2 0 1 2 1 0 0 0 0]T [ 1 1 0 0 2 0 2 0 0]T

[2 2 0 0 1 0 1 0 0]T [1 0 2 1 2 0 0 0 0]T

[2 2 1 0 2 0 2 0 0]T [1 0 1 1 1 0 2 0 0]T

[ 2 1 0 1 2 0 0 0 0]T [ 1 2 0 2 1 0 0 0 0]T

[ 2 1 1 1 0 0 1 0 0]T [ 1 2 2 2 0 0 2 0 0]T

Table 2: Value vectors of ternary 2-place bent functions with bent RMF spectra.
(In bold, a fixed point; in bold-italics, rotational fixed-points).

Proof: Exhaustive search. (See Table 3). �
Table 2 shows one half of the 2-place ternary bent functions with bent RMF

spectra. The other half may be obtained after scaling all entries by 2.

Definition 9. Let f and g be ternary functions in m and n variables, respectively.
Then:

F�G := (F⊗ [1,0g]T )⊕ ([1,0f ]T ⊗G). (8)

This operation � will be called restricted tensor sum. (Notice the relative simi-
larity with the tensor sum (6)).

Lemma 8. Let f and g be ternary functions in m and n variables, respectively,
such that Rf and Rg are bent. Then the RMF spectrum of F�G is bent.
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Proof:

T(m+ n) · (F�G) = T(m+ n) · (F⊗ [1,0g]T ⊕ [1,0f ]T ⊗G)
= T(m+ n) · (F⊗ [1,0g]T )

⊕ T(m+ n) · ([1,0f ]T ⊗G) (9)
= (p− 1)〈(T(m) · F)⊗T(n) · [1,0g]T

⊕ T(m) · [1,0f ]T ⊗T(n) ·G〉
= (p− 1)〈Rf ⊗ 1G ⊕ 1F ⊗Rg〉
= (p− 1)(Rf � Rg).

Since Rf and Rg are bent, then Rf � Rg is also bent [8]. Furthermore, scaling
by (p− 1) preserves the bentness. The assertion follows. �.

Example 2. Let f and g be ternary functions of 1 and 2 variables, respectively and
let their value vectors be F = [1 1 2]T and G = [0 2 1 0 1 0 2 0 0]T . (Their RMF
spectra are Rf = [2 0 2]T and Rg = [0 2 0 0 1 1 1 1 0]T .) It will be shown that the
RMF spectrum of F�G is bent.

F�G = F⊗ [1,0g]T ⊕ [1,0f ]T ⊗G
= [1 1 2]T ⊗ [1,0g]T

⊕[1,0f ]T ⊗ [0 2 1 0 1 0 2 0 0]T

= [1 0g 1 0g 2 0g]T ⊕ [0 2 1 0 1 0 2 0 0 0fG]T

= [1 2 1 0 1 0 2 0 0 1 0g 2 0g]T .

Let

H =




1 2 1 0 1 0 2 0 0
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0




T

.

Then F�G = vec(H).
The RMF spectrum of F � G is given by T(3) · (F � G) mod 3. The direct

calculation gives:

RH =




2 1 2 2 0 0 0 0 2
0 2 0 0 1 1 1 1 0
2 1 2 2 0 0 0 0 2




T

.
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It is simple to prove that vectorizing this matrix one obtains Rf � Rg, and
since these spectra are bent, then, the RMF spectrum of F�G is bent [8]. Further-
more, the calculation of the absolute value of the spectral coefficients of the Vilenkin-
Chrestenson spectrum of RH after its complex encoding, gives 3

√
3 = 31.5 = 3n/2

since n = 3. This spectrum is flat. Hence, the RMF spectrum of F�G is bent.

Lemma 9. The operation � is associative.

Proof:
From Eq. (8) it may be seen that:

length(F�G) = length(F⊗ [1,0g]T ) = length(F⊗G) (10)
= length(F) · length(G).

Let V denote the value vector of a ternary function with not necessarily the
same number of variables as F and G. Let

l1 = length(F�G)− 1 and l2 = length(G�V)− 1. (11)

Let

Q1 = (F�G)�V and Q2 = F� (G�V). (12)

i)

Q1 = 〈F⊗ [1,0g]T ⊕ [1,0f ]T ⊗G〉 �V
= 〈F⊗ [1,0g]T ⊕ [1,0f ]T ⊗G〉 ⊗ [1,0v]T ⊕ [1,0l1 ]T ⊗V
= F⊗ [1,0g]T ⊗ [1,0v]T ⊕ [1,0f ]T ⊗G (13)

⊗[1,0v]T ⊕ [1,0l1 ]T ⊗V
= F⊗ [1,0v,0gV ]T ⊕ [1,0f ]T ⊗G⊗ [1,0v]T ⊕ [1,0l1 ]T ⊗V.

ii)

Q2 = F� 〈G⊗ [1,0v]T ⊕ [1,0g]T ⊗V〉
= F⊗ [1,0l2 ]T ⊕ [1,0f ]T ⊗ 〈G⊗ [1,0v]T ⊕ [1,0g]T ⊗V〉 (14)
= F⊗ [1,0l2 ]T ⊕ [1,0f ]T ⊗G⊗ [1,0v]T ⊕ [1,0g,0fG]T ⊗V.

Notice that

[1,0f ]T ⊗ [1,0g]T = [1,0g,0fG]T = [1,0fG+g]T

= [1,0fG+G−1]T = [1,0G(f+1)−1]T (15)
= [1,0GF −1]T = [1,0l1 ]T .
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Similarly

[1,0g]T ⊗ [1,0v]T = [1,0l2 ]T . (16)

Introducing (15) and (16) in (13) and (14), respectively, it becomes clear that
Q1 = Q2, which proves that � is associative. �

Remark 1. : It should be noticed that Lemma 8 (as shown in the example) opens an
iterative procedure to generate functions of a high number of variables, which exhibit
a bent RMF spectrum. For example let f , g, and k be ternary functions with bent
RMF spectra. Let J = F�G. From Lemma 8, Rj is bent. If Z = F�G�K then
Z = J�K, (since � is associative) and from Lemma 8, Rz will be bent.

4 Classification and Characterization
The set of 486 ternary bent functions on two variables [8], which in this study are
interpreted as bent RMF spectra, may be partitioned in six classes of 81 spectra
each. Let the first class be called Σ01 comprising spectra which exhibit a 0âĂę1
prefix, e.g.
[0 0 0 0 1 2 0 2 1]T , and [0 1 2 2 2 2 2 1 0]T .

The second class, called Σ12 comprises all spectra obtained by adding the con-
stant vector 19, (of length 9), to spectra of the class Σ01, e.g. [1 1 1 1 2 0 1 0 2]T ,
and [1 2 0 0 0 0 0 2 1]T , obtained from the spectra of the former class.

Adding 1 mod 3 is a spectral invariance operation [17], which preserves bentness.
Notice that spectra in this class have the prefix 1âĂę2 as underlined in the two
examples. This explains the index of Σ12.

The third class is obtained by complementing all spectra of the class Σ12. The
ternary complement preserves the value 1 and exchanges the values 0 and 2. There-
fore, this class will be called Σ10. If F is the value vector of a ternary function, the
value vector of the complement of F is given by 2F⊕ 29. Spectra in this class, cor-
responding to the previous examples are e.g. [1 1 1 1 0 2 1 2 0]T and
[1 0 2 2 2 2 2 0 1]T .

There are no repetitions of spectra of the class Σ12. Let R be a bent spectrum
in the class Σ01. Then R ⊕ 19 will belong to Σ12 and its complement may formally
be expressed as 2(R⊕19)⊕29 = 2R⊕29⊕29 = 2R⊕19. This is not the structure
of the spectra in Σ12. Spectra in this class have the prefix 1âĂę0, as may be seen
in the examples. Therefore, complementing the spectra in Σ12 generates a disjoint
class. Moreover, 2R⊕ 19 is bent since both scaling by 2 and adding 1 in mod 3 are
spectral invariance operations that preserve bentness. The remaining three classes
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are obtained scaling by 2 all entries of the previous three classes. Recall that scaling
by 2 is a spectral invariance operation and the RMF transform preserves scaling
(Lemma 2, ii). Table 3 shows the ternary functions and the corresponding RMF
bent spectra associated to the class Σ01. The following question will be studied
below. Which is the relationship among the ternary functions whose bent RMF
spectra belong to the classes described above?

Definition 10. The sum mod 3 of all elements of the value vector of a ternary
function is called its modular weight possibly in analogy to the Hamming weight of
Boolean functions.

Lemma 10. Let F0 be the value vector of a 2-place ternary function which has a bent
RMF spectrum Rf0 in the class Σ01. If the bent spectrum Rf0 ⊕ 19 is constructed
and its generating function is called F1, this function will belong to the Σ12 class.
The following holds:

F1 = F0 ⊕ 2 · [1,08]T . (17)

Proof:

F1 = T(2)(Rf0 ⊕ 19) = T(2)Rf0 ⊕T(2)19

= F0 ⊕T(2) · 19 = F0 ⊕




2 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0
2 2 2 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0
2 1 0 1 2 0 0 0 0
2 2 2 1 1 1 0 0 0
2 0 0 2 0 0 2 0 0
2 1 0 2 1 0 2 1 0
2 2 2 2 2 2 2 2 2




·




1
1
1
1
1
1
1
1
1




= F0 ⊕ 2 · [1,08]T mod 3.

Corollary 1. If F0 is a bent function, then F1 is not bent, since a necessary condi-
tion for a 2-place ternary function to be bent is that its modular weight is congruent
with 0 in mod 3 [8]. This condition is obviously not satisfied by F1.

Lemma 11. Let F0 be the value vector of a 2-place ternary function which has a
bent RMF spectrum Rf0 in the class Σ01. If the complement of the bent spectrum
Rf0 ⊕ 19 is constructed and its generating function is called F2, this function will
belong to the class Σ10. The following holds:

F2 = 2 · F0 ⊕ 2 · [1,08]T . (18)
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Proof:

F2 = T(2)〈2(Rf0 ⊕ 19)⊕ 29〉 = T(2)〈2Rf0 ⊕ 29 ⊕ 29〉 = T(2)〈2Rf0 ⊕ 19〉
= 2T(2)Rf0 ⊕T(2)19 = 2F0 ⊕ 2 · [1,08]T .

Corollary 2. If F0 is a bent function, then F2 is not bent, for the same reasons as
in Corollary 1.

Bentness of functions in the first three classes is preserved in the last three classes,
since these classes are obtained scaling by 2 all entries of the former ones and this
scaling represents a spectral invariance operation that preserves bentness. In this
case, the bentness of a function and the bentness of its RMF spectrum. Moreover,
the RMF spectrum preserves scaling by 2. There is no direct relationship among
bent functions belonging to the first three classes or to the last three classes. A
weak relationship is the following: let f0 belong to Σ01 and let its modular weight
be 2. If f0 is used to generate a function f1 in Σ12, then, with Eq. (19), the modular
weight of f1 will be 0. Since this is a necessary condition for bentness, then f1 is
only a candidate to be bent. Similarly, if f0 has a modular weight 1 and is used to
generate a function f2 in the class Σ10, then, with Eq. (20) the modular weight of
f2 will be 0, from where f2 becomes only a candidate to be bent.

Lemma 12. A necessary condition for a 2-place ternary function f to be both bent
and have a bent RMF spectrum is the following:

f(6)⊕
4⊕

i=0
f(i) ≡ 0 mod 3. (19)

Proof: Follows from the above Lemma 6 and the modular weight condition men-
tioned in Corollary 1. �

Lemma 13. If in Table 3 two ternary functions differ only in f(6) and the difference
is k ∈ {1, 2}, then their RMF bent spectra only differ by 2k in R(6), R(7), and R(8).

Proof:
Let F1 and F2 be ternary functions in Table 3, and let

K = [ 0 0 0 0 0 0 k 0 0 ]T ,

where k ∈ {1, 2}. If F2 = F1 ⊕K, then (with Lemma 3), Rf2 = Rf1 ⊕T(2) ·K.
A direct calculation shows that:
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T(2) ·K = (T(2) · [ 0 0 0 0 0 0 k 0 0 ]T )

=




2 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0
2 2 2 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0
2 1 0 1 2 0 0 0 0
2 2 2 1 1 1 0 0 0
2 0 0 2 0 0 2 0 0
2 1 0 2 1 0 2 1 0
2 2 2 2 2 2 2 2 2




·




0
0
0
0
0
0
k
0
0




= [ 0 0 0 0 0 0 2k 2k 2k ]T .

Calculations in mod 3. The assertion follows. �
It may be noticed that the situation considered in Lemma 12 occurs quite fre-

quently between neighbor functions in the Σ01 class, as may be seen in Table 3. In
this table, shown in bold, are elements of the value vector of bent functions. In
italics and bold, a fixpoint.

5 Conclusions
Ternary functions which have a bent RMF spectrum have been studied. Necessary
conditions that ternary functions of 1 and 2 variables must satisfy to have bent RMF
spectra are given. If n = 2, there are 486 RMF bent spectra, but only 16 ternary
bent functions satisfy the conditions to have a bent RMF spectrum. 2 of them are
fixed points and 4 are rotational fixed points. Recall that in the general case (i.e.
not necessarily bent ternary RMF spectra) if n = 2 there are 243 fixed points and
if n = 3 there are 313 fixed points [11]. The study of the ternary functions having
a bent RMF spectrum gave origin to the concept of rotational fixed points. Two
rotational fixed points were found in the class Σ12. This will again appear when
this class is scaled by 2. These fixed points will not appear again in the second and
third class since the spectra will be shifted by 1 and 2, but according to Lemmas 10
and 11, the functions have a different transformation. Extending the present study
to the case of 3-place ternary functions can hardly be based on exhaustive search,
as done for n = 1 and n = 2, since when n = 3, there are e.g. 303, 264 ternary bent
functions (of degree 3) [17]. However, Lemma 8 provides an iterative construction
method to obtain ternary functions on a large number of variables, such that their
respective RMF spectra are bent.
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ternary function bent RMF spectrum ternary function bent RMF spectrum
0 0 0 0 2 0 0 0 0 0 0 0 0 1 2 0 2 1 0 1 2 2 0 0 2 0 0 0 1 0 2 0 2 2 0 2
0 0 0 0 2 0 2 0 0 0 0 0 0 1 2 1 0 2 0 1 2 2 2 0 1 0 0 0 1 0 2 1 1 0 0 1
0 0 0 0 2 0 1 0 0 0 0 0 0 1 2 2 1 0 0 1 2 2 2 0 0 0 0 0 1 0 2 1 1 1 1 2
0 0 0 1 1 0 2 0 0 0 0 0 1 0 2 0 1 2 0 1 2 2 1 0 1 0 0 0 1 0 2 2 0 0 2 2
0 0 0 1 1 0 1 0 0 0 0 0 1 0 2 1 2 0 0 1 2 2 1 0 0 0 0 0 1 0 2 2 0 1 0 0
0 0 0 1 1 0 0 0 0 0 0 0 1 0 2 2 0 1 0 1 1 0 1 0 0 0 0 0 1 1 0 0 2 0 2 0
0 0 0 1 2 0 2 0 0 0 0 0 1 2 0 0 2 1 0 1 1 0 1 0 2 0 0 0 1 1 0 0 2 1 0 1
0 0 0 1 2 0 1 0 0 0 0 0 1 2 0 1 0 2 0 1 1 0 0 0 2 0 0 0 1 1 0 1 1 1 2 2
0 0 0 1 2 0 0 0 0 0 0 0 1 2 0 2 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 2 0 0
0 0 2 0 0 0 2 0 0 0 0 1 0 0 1 1 1 2 0 1 1 0 2 0 0 0 0 0 1 1 0 2 0 0 0 2
0 0 2 0 0 0 1 0 0 0 0 1 0 0 1 2 2 0 0 1 1 0 2 0 2 0 0 0 1 1 0 2 0 1 1 0
0 0 2 0 2 0 0 0 0 0 0 1 0 1 0 0 2 2 0 1 1 1 2 0 2 0 0 0 1 1 1 0 1 0 0 2
0 0 2 0 2 0 1 0 0 0 0 1 0 1 0 2 1 1 0 1 1 1 2 0 0 0 0 0 1 1 1 0 1 2 2 1
0 0 2 0 1 0 0 0 0 0 0 1 0 2 2 0 1 0 0 1 1 1 1 0 2 0 0 0 1 1 1 1 0 0 2 0
0 0 2 0 1 0 1 0 0 0 0 1 0 2 2 2 0 2 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 2 1 2
0 0 2 1 1 0 1 0 0 0 0 1 1 0 0 1 2 1 0 1 1 1 0 0 2 0 0 0 1 1 1 2 2 0 1 1
0 0 2 1 1 0 0 0 0 0 0 1 1 0 0 2 0 2 0 1 1 1 0 0 1 0 0 0 1 1 1 2 2 1 2 2
0 0 2 1 0 0 2 0 0 0 0 1 1 1 2 0 0 1 0 1 1 2 0 0 1 0 0 0 1 1 2 0 0 0 1 1
0 0 2 1 0 0 1 0 0 0 0 1 1 1 2 1 1 2 0 1 1 2 0 0 2 0 0 0 1 1 2 0 0 2 0 0
0 0 2 1 2 0 1 0 0 0 0 1 1 2 1 1 0 0 0 1 1 2 2 0 0 0 0 0 1 1 2 1 2 1 1 0
0 0 2 1 2 0 0 0 0 0 0 1 1 2 1 2 1 1 0 1 1 2 2 0 2 0 0 0 1 1 2 1 2 2 2 1
0 0 2 2 2 0 1 0 0 0 0 1 2 0 2 0 2 2 0 1 1 2 1 0 0 0 0 0 1 1 2 2 1 1 0 1
0 0 2 2 2 0 0 0 0 0 0 1 2 0 2 1 0 0 0 1 1 2 1 0 2 0 0 0 1 1 2 2 1 2 1 2
0 0 2 2 1 0 1 0 0 0 0 1 2 1 1 0 1 0 0 1 0 0 1 0 0 0 0 0 1 2 0 0 0 0 2 1
0 0 2 2 1 0 0 0 0 0 0 1 2 1 1 1 2 1 0 1 0 0 1 0 2 0 0 0 1 2 0 0 0 1 0 2
0 0 2 2 0 0 1 0 0 0 0 1 2 2 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 2 0 0 0 2 1 0
0 0 2 2 0 0 2 0 0 0 0 1 2 2 0 2 2 0 0 1 0 0 2 0 0 0 0 0 1 2 0 2 1 0 0 0
0 1 2 0 1 0 0 0 0 0 1 0 0 0 1 0 2 2 0 1 0 0 2 0 2 0 0 0 1 2 0 2 1 1 1 1
0 1 2 0 1 0 1 0 0 0 1 0 0 0 1 2 1 1 0 1 0 0 2 0 1 0 0 0 1 2 0 2 1 2 2 2
0 1 2 0 0 0 2 0 0 0 1 0 0 1 0 1 2 1 0 1 0 1 2 0 2 0 0 0 1 2 1 0 2 0 0 0
0 1 2 0 0 0 1 0 0 0 1 0 0 1 0 1 2 1 0 1 0 1 2 0 1 0 0 0 1 2 1 0 2 0 0 0
0 1 2 0 2 0 0 0 0 0 1 0 0 2 2 0 0 1 0 1 0 1 2 0 2 0 0 0 1 2 1 0 2 2 2 2
0 1 2 0 2 0 1 0 0 0 1 0 0 2 2 0 0 1 0 1 0 1 1 0 2 0 0 0 1 2 1 0 2 2 2 2
0 1 2 1 2 0 1 0 0 0 1 0 1 0 0 1 1 2 0 1 0 1 1 0 1 0 0 0 1 2 1 1 1 1 0 2
0 1 2 1 2 0 0 0 0 0 1 0 1 0 0 2 2 0 0 1 0 1 1 0 0 0 0 0 1 2 1 1 1 2 1 0
0 1 2 1 1 0 1 0 0 0 1 0 1 1 2 1 0 0 0 1 0 2 2 0 1 0 0 0 1 2 2 1 0 0 0 0
0 1 2 1 1 0 0 0 0 0 1 0 1 1 2 2 1 1 0 1 0 2 2 0 0 0 0 0 1 2 2 1 0 1 1 1
0 1 2 1 0 0 2 0 0 0 1 0 1 2 1 0 1 0 0 1 0 2 2 0 2 0 0 0 1 2 2 1 0 2 2 2
0 1 2 1 0 0 1 0 0 0 1 0 1 2 1 1 2 1 0 1 0 2 1 0 1 0 0 0 1 2 2 2 2 0 2 1
0 1 2 2 0 0 1 0 0 0 1 0 2 0 2 0 1 0 0 1 0 2 1 0 0 0 0 0 1 2 2 2 2 1 0 2
0 1 2 2 0 0 2 0 0 0 1 0 2 0 2 2 0 2

Table 3: Value vectors of 2-place ternary functions and their bent RMF spectra in
the class Σ01.

821



Moraga, Stanković, and Stanković

Finally, it should be recalled that the RMF transform for the binary case was
introduced by J.E. Gibbs in 1977 [2] under the name Instant Fourier transform. The
term Fourier was justified by the properties of the transform corresponding to the
properties of the Fourier representations in classical mathematical analysis. The
term Instant came from the simplicity of computing this transform by a network
consisting of AND and EXOR gates as it was illustrated by an example in [2]. The
RMF and the RM transform in the binary case coincide [4], although this was not
observed in [2], since the research leading to these concepts came from different areas
and was driven by fairly separate motivations.
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