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The Proceedings of the XIX EBL — 19th
Brazilian Logic Conference, 2019. A

preface

Itala D’Ottaviano (Unicamp), Ricardo Silvestre (UFCG) Leandro
Suguitani (UFBA) Petrucio Viana (UFF)

Guest Editors

The XIX EBL, 19th Brazilian Logic Conference, was held on the premises of the
Hotel Nord Luxxor Tambaú, João Pessoa, PB, Brazil, during May 6-10, 2019. This
venue, as the name indicates, is located in the Tambaú neighborhood, in front of
one of the main beaches of the city.

João Pessoa, or Jampa—as the city is affectionately called by its residents—is the
capital of Paraíba, a state located in the Northeast region of Brazil. Thinking about
the Brazilian Northeast is thinking about beaches, coconut trees and warm weather
all year round. In João Pessoa, the scenery is no different and, in addition to these
attractions, those who visit Jampa can enjoy its natural beauty, a varied cuisine,
rich folklore and precious contact with its friendly residents. All these features made
Jampa the perfect place to hold the EBL 2019, allowing its participants to enjoy a
rich cultural and academic environment.

The 163 participants from 12 countries held several fruitful discussions and ex-
changes that contributed to the success of the conference and to make it truly
international in scope. The 6 keynote talks, 97 communications, 6 tutorials, and 5
round tables provided ample opportunity for discussion.

The six keynote speakers offered plenary lectures intercrossing critical areas of
Logic: Luis Soares Barbosa (U. Minho, Portugal) “What Coalgebra Can Do for
You?”; Mario Benevides (UFRJ, Brazil) “What Makes a Logic Dynamic?”; Mirna
Dzamonja (UEA, United Kingdon) “Logic as a Modelling Tool”; Eberhard Guhe
(Fudan, China) “Defeasible Reasoning in Navya-Nyāya”; Catarina Dutilh Novaes
(UvA, Netherlands) “Paradoxes and Structural Rules from a Dialogical Perspec-
tive”; Elaine Pimentel (UFRN, Brazil) “Modalities as Prices: a Game Model of

Generous financial support for the conference was provided by CNPq. The conference was officially
sponsored and organized by Universidade Federal de Campina Grande (UFCG), Universidade Fed-
eral da Paraíba (UFPB), and Sociedade Brasileira de Lógica (SBL).
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Guest Editors

Intuitionistic Linear Logic with Subexponentials”; Frank Sautter (UFSM, Brazil)
“On Teaching Logic for Undergraduate Philosophy Students”; Edward Zalta (Stan-
ford, EUA) “Logic and Existence: How Logic and Metaphysics are Entangled”.

The 97 communications were split into nine main sections: Algebraic
Approaches; Logic and Computer Science; Logic and Philosophy; Logic Teaching;
Mathematics and Computer Science; Metalogic; Modal Logics; Models and Sets; and
Proofs and Automated Proving. They are listed in the online Book of Abstracts
to be found at https://ebl2019.ci.ufpb.br/assets/Book_of_Abstracts_EBL_
2019.pdf.

As part of the 19th Brazilian Logic Conference — as it has become already tra-
ditional — a Logic School, aimed at advanced graduate students and other people
interested in the study of logic and related areas, was organized. The Logic School
had six tutorials presented in English or Portuguese, covering the most varied as-
pects of the relationships between logic, computation, mathematics, and philoso-
phy: Jean-Yves Beziau (UFRJ, Brazil) “Classical Propositional Logic: A Univer-
sal Logic Approach”; Juliana Bueno-Soler (Unicamp, Brazil) and Walter Carnielli
(Unicamp, Brazil) “Lógica, Probabilidade: Encontros e Desencontros”; Marcelo E.
Coniglio (Unicamp, Brazil) “Semânticas não Determinísticas”; Eberhard Guhe (Fu-
dan, China) “Some Highlights of Indian Logic”; Samuel Gomes da Silva (UFBA,
Brazil) “Uma Miscelânea de Aplicações de Ultrafiltros em Matemática”; Renata
Wassermann (USP, Brazil) “Logics in Artificial Intelligence”.

During the event a posthumous tribute was paid to Giovanni Queiroz, Arley
Ramos Moreno, Oswaldo Porchat Pereira and Carolina Blasio. There was also a book
launching session for the following titles: Paraconsistent Logic: Consistency, Contra-
diction and Negation, by Walter Carnielli and Marcelo Esteban Coniglio (Springer,
2016); Alfred Tarski: Lectures at Unicamp in 1975, by Leandro Suguitani, Jorge
Petrúcio Viana and Itala M. Loffredo D’Ottaviano (Editors) (Unicamp University
Press, 2016); Para além das Colunas de Hércules, uma História da Paraconsistên-
cia: de Heráclito a Newton da Costa (Beyond the columns of Hercules, a history of
paraconsistency: from Heraclitus to Newton da Costa, in Portuguese), by Evandro
Luís Gomes and Itala M. Loffredo D’Ottaviano (Unicamp University Press, 2017).
It also is worth mentioning that the Brazilian Logic Society, in a deliberative assem-
bly, launched the “Aula Magna Itala Maria Loffredo D’Ottaviano”, a lecture to be
delivered in every Brazilian Logic Conference preferably by women.

After the end of the conference, a call for papers was launched, aiming at the pub-
lication of a special issue of The Journal of Applied Logics: IfCoLog Journal of Logics
and their Applications https://www.collegepublications.co.uk/ifcolog/, con-
taining the full versions of the communications presented at EBL 2019. All the ple-
nary speakers and contributing authors were invited to submit a full version of their
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Editorial Preface

EBL 2019 talks and communications, as well as papers of general interest within
the conference themes: Philosophical and Mathematical Logic, and Applications;
History and Philosophy of Logic; Non-classical Logic and Applications; Philosophy
of Formal Sciences; Foundations of Computer Science, Physics, and Mathematics;
Logic Education (Logic Teaching). A total of 28 full papers were submitted and
subjected to a standard double-blind refereeing process. The following 18 articles
were selected for publication in this special volume: Induced morphisms between
Heyting-valued models, by J. Alvim, A. Cahali and H. Mariano; Coalgebra for the
working software engineer, by L. Barbosa; On the order theory for C∞−reduced
C∞−Rings and applications, by J. Berni, R. Figueiredo and H. Mariano; Strong
normalization for Np-Systems via Mimp-Graphs, by V. Costa and E. Haeusler; The
Generalized Continuum Hypothesis and two parametrized families of hit-and-miss
games, by S. G. da Silva; G’3 as the logic of modal 3-valued Heyting algebras, by
A. Figallo-Orellano, M. Coniglio, A. Hernandez-Tello and M. Perez-Gaspar; A log-
ical framework to reason about Reo circuits, by E. Grilo, B. Lopes and D. Toledo;
Defeasible reasoning in Navya-Nyaya, by E. Guhe; Huge normal proofs in M ⊃ are
redundant, by E. Haeusler; Extensive measurement with unrestricted concatena-
tion and no maximal elements, by G. Kyriazis; An algebraic (set) theory of surreal
numbers, I, by H. Mariano and D. Rangel; Horn-geometric axioms to faithfully
quadratic rings, by H. Mariano and H. Ribeiro; On superrings of polynomials and
algebraically closed multifields, by H. Mariano and K. Roberto; Connecting abstract
logics and adjunctions between Institutions and π-Institutions, by H. Mariano, D.
Pinto, G. Rios and D. Souza; Some classical modal logics with a necessity/impos-
sibility operator, by C. Mortari; Logicism in the eyes of the author of Tractatus
Logico-Philosophicus (and of Philosophical Remarks), by P. Noguez; Proof-search,
models, analytic tableaux and counter-models, in huge constructive semantics for
for Minimal and Intuitionistic Propositional Logic, by W. Sanz; A note on Tarski’s
remarks about the non-admissibility of a general theory of semantics, by G. Sar-
mento.

The editors would like to extend their gratitude and appreciation to the referees
whose (necessarily anonymous) efforts helped to select the papers that appear in
this volume and to improve their contents. We think it is important to emphasize
that the entire refereeing process was carried out during the difficult period in which
the world was adapting to the pandemic caused by the Coronavirus (COVID-19).
Within this perspective, authors, editors and reviewers made every possible effort
to ensure that the accepted articles had the necessary quality for publication in The
Journal of Applied Logics: IfCoLog Journal of Logics and their Applications.

Below is some additional information about the Brazilian Logic Conference
(EBL):
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Guest Editors

The Brazilian Logic Conferences. The Brazilian Logic Conference (EBL) is a
traditional event of the Brazilian Logic Society (SBL) http://sbl.org.br. It has
been occurring since 1979. Congregating logicians of different fields and with differ-
ent backgrounds—from undergraduate students to senior researchers—the meeting
is an important moment for the Brazilian and South-American logical community
to gather together and discuss recent developments of the field. The areas of Logic
covered spread over Foundations and Philosophy of Science, Analytic Philosophy,
Mathematics, Computer Science, Informatics, Linguistics and Artificial Intelligence.
The goal of the EBL meeting is to encourage the dissemination and discussion of
research papers in Logic in a broad sense. It usually has among the participants
several invited speakers from different continents. Previous editions of the EBL have
attracted researchers from all over Latin America and elsewhere.

Conference Organisation. The following colleagues from Brazil served at the
scientific and organizing committees, for whom special thanks are due for their
invaluable assistance in organizing, finding funds and granting the high scientific
level of the conference:

Scientific Committee. Alexandre Rademaker (IBM Research); Bruno Lopes Vieira
(UFF); Carlos Olarte (UFRN); Ciro Russo (UFBA); Cláudia Nalon (UnB); Daniele
Nantes Sobrinho (UnB); Edward Hermann Haeusler (PUC-Rio); Gisele Secco
(UFSM); Itala Maria Loffredo D’Ottaviano (Unicamp); João Marcos (UFRN);
Petrucio Viana (UFF); Leandro Oliva Suguitani (UFBA); Luiz Carlos Pereira (PUC-
Rio/UERJ); Marcelo Coniglio (Unicamp); Marcelo Finger (USP); Maurício Ayala-
Rincón (UnB); Nastassja Pugliese (USP); Renata Wassermann (USP); Newton C.
A. da Costa (UFSC); Valeria de Paiva (Nuance Communications); Walter Carnielli
(Unicamp).

Organizing Committee. Ricardo Sousa Silvestre (UFCG, co-chair); Ana Thereza
DÃĳrmaier (UFPB, co-chair); Cezar A. Mortari (UFSC, co-chair); Garibaldi Sar-
mento (UFPB); Samuel Gomes da Silva (UFBA); Lucídio Cabral (UFPB); Wagner
Sanz (UFG); Tiago Massoni (UFCG); Bruno Petrato Bruck (UFPB); Teobaldo Leite
Bulhões Júnior (UFPB); Andrei de Araujo Formiga (UFPB); Pedro Carné (UFCG);
Marcio Kléos Freire Pereira (UFMA).

Acknowledgement
We would like to thank all the people who made this special edition containing the
Proceedings to the EBL 2019 possible.
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Abstract

To the best of our knowledge, there are very few results on how Heyting-
valued models are affected by the morphisms on the complete Heyting algebras
that determine them: the only cases found in the literature are concerning au-
tomorphisms of complete Boolean algebras and complete embeddings between
them (i.e., injective Boolean algebra homomorphisms that preserve arbitrary
suprema and arbitrary infima). In the present work, we consider and explore
how more general kinds of morphisms between complete Heyting algebras H
and H′ induce arrows between V(H) and V(H′), and between their correspond-
ing localic topoi Set(H) (' Sh (H)) and Set(H′) (' Sh (H′)). More specif-
ically: any geometric morphism f∗ : Set(H) → Set(H′) (that automatically
came from a unique locale morphism f : H → H′) can be “lifted” to an ar-
row f̃ : V(H) → V(H′). We also provide some semantic preservation results
concerning this arrow f̃ : V(H) → V(H′).

Keywords: Heyting-valued models; localic topoi; geometric morphisms.

We want to express our gratitude to the referees for their careful reading and valuable suggestions
that have improved the submitted version.
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Introduction

The expression “Heyting-valued model of set theory” has two (related) meanings,
both parametrized by a complete Heyting algebra H:

(i) The canonical Heyting-valued models in set theory, V(H), as introduced in
the setting of complete boolean algebras in the 1960s by D. Scott, P. Vopěnka and
R. M. Solovay in an attempt to help understand the then recently introduced notion
of forcing in ZF set theory developed by P. Cohen ([9], [10], [1]);

(ii) The (local) “set-like” behavior of categories called topoi, particularly in the
case of the (localic) topoi of the form Sh (H) ([4], [2]).

The concept of a Heyting/Boolean-valued model is nowadays a general model-
theoretic notion, whose definition is independent of forcing in set theory: it is a
generalization of the ordinary Tarskian notion of structure where the truth values of
formulas are not limited to “true” and “false”, but instead take values in some fixed
complete Heyting algebra H. More precisely, an H-valued model M in a first-order
language L consists of an underlying set M and an assignment JϕKH of an element
of H to each formula ϕ with parameters in M , satisfying convenient conditions.

The canonical Heyting-valued model in set theory associated to H is the pair〈
V(H), J KH

〉
, where both components are recursively defined. Explicitly, V(H) is the

proper class V(H) := ⋃
β∈On V

(H)
β , where V(H)

β is the set of all functions f such that
dom (f) ⊆ V(H)

α , for some α < β, and img (f) ⊆ H. Whenever H is a complete
boolean algebra

〈
V(H), J KH

〉
is a model of ZFC in the sense that for each axiom

σ of ZFC, JσKH = 1H; more generaly, if H is a complete Heyting algebra, then〈
V(H), J KH

〉
is a model IZF, the intuitionistic counterpart of ZFC.

On the other hand, V(H) may give rise to a localic topos, Set(H), that is equiv-
alent to the (Grothendieck) topos Sh (H) of all sheaves over the locale (= complete
Heyting algebra) H ([1], [2]). The objects of Set(H) are equivalence classes of mem-
bers of V(H) and the arrows are (equivalence classes of) members f of V(H) such that
“V(H) believes, with probability 1H, that f is a function”. A general topos encodes an
internal (higher-order) intuitionistic logic, given by the “forcing-like” Kripke-Joyal
semantics, and some form of (local) set-theory ([2], [4]); a localic Grothendieck topos
is guided by a better behaved internal logic and set theory.

All the considerations above concern a fixed complete Heyting algebra H. How-
ever, to the best of our knowledge, there are very few results on how Heyting-valued
models are affected by the morphisms between their algebras. The only cases found
in the literature ([1]) are concerning automorphisms of complete Heyting algebras
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Induced morphisms between Heyting-valued models

and complete embeddings (i.e., injective Heyting algebra homomorphisms that pre-
serves arbitrary suprema and arbitrary infima). In the present work, we consider and
explore how more general kinds of morphisms between complete Heyting algebras
H and H′ induce arrows between V(H) and V(H′), and between their corresponding
Heyting topoi Set(H) (' Sh (H)) and Set((H′)) (' Sh (H′)). The result is: any ge-
ometric morphism f∗ : Set(H) → Set(H′) (that automatically came from a unique
locale morphism f : H→ H′) can be “lifted” to an arrow f̃ : V(H) → V(H′).

Outline: In Section 1 we provide the main definitions on sheaves over locales (=
complete Heyting algebras), topoi and Heyting-valued models of IZF. Section 2
is devoted to present the equivalent descriptions of the categories of sheaves over a
locale, in particular establishing a connection between the cumulative construction
of Heyting valued models and localic topoi. Section 3 contains the main results of
this work: the “lifting” of all geometric morphisms f∗ : Sh (H)→ Sh (H′) to arrows
f̃ : V(H) → V(H′) and the corresponding semantic preservation results. We end this
work in Section 4 presenting some remarks on possible further developments.

1 Preliminaries

For the reader’s convenience, we provide here the main definitions and results on
topooi and Heyting valued models of set theory. Our main references for category
theory are [11] and [3]; for topos theory [4] and [2] and for Boolean and Heyting
valued models [1].

1.1 Topoi and Grothendieck Topoi

If 〈X,O(X)〉 is a topological space, then the family of sets of continuous functions
(C(U,R))U∈O(X) has the property that, for any open subset U and any open covering
U = ⋃

i∈I Vi every family of continuous functions (fi ∈ C(Vi,R))i∈I that is compatible
(fi|Vi∩Vj

= fj |Vi∩Vj
, ∀i, j ∈ I), has a unique gluing f ∈ C(U,R) (f|Vi

= fi, ∀i ∈ I):
This holds since the property of being continuous is a local property; an analogous
remark holds for the C∞ functions if X is a smooth manifold. Formally, this is
captured by the following:

Definition 1.1. Let 〈X,O(X)〉 be a topological space. Regarding the poset of open
sets (O(X),⊆) as a category, a presheaf on X is a functor F : O(X)op → Set. A
sheaf on X is a presheaf F such that, for every open U ∈ O(X) and every open
covering {Ui ∈ O(X) | i ∈ I} of U , the diagram below is an equalizer:

7
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F (U) ∏
i∈I

F (Ui)
∏

〈i,j〉∈I×I
F (Ui ∩ Uj)

We denote the category of presheaves on X by Psh (X) and the category of
sheaves on X by Sh (X).

Note that the definition of a sheaf depends only on the lattice of opens, therefore
we may define presheaves and sheaves for any locale 〈H,≤〉, i.e. a complete lattice
satisfying the following distributive law:

a ∧
∨

i∈I
ci =

∨

i∈I
a ∧ ci.

Locales are precisely the complete Heyting algebras, where

a→ b =
∨
{c ∈ H : a ∧ c ≤ b}.

It is also possible to define sheaves in more general categories, using Grothendieck
topologies.

Definition 1.2. Let C be a small category. A Grothendieck topology on C is a
function J which assigns to each object c ∈ Obj (C) a family J(c) of sieves on c,
satisfying:

1. Maximal sieve: ⋃
a∈C0
C(a, c) ∈ J(c), for all c ∈ Obj (C);

2. Pullback stability: given c ∈ Obj (C), for every S ∈ J(c) and every arrow
f : a→ c, the pullback f∗S of the sieve S along f is an element of J(a);

3. Transitivity: given c ∈ Obj (C) and S ∈ J(c), if R is a sieve on c such that
f∗R is a sieve on a for every f : a→ c in S, then R ∈ J(c).

We call the pair (C, J) a (small) site.

Every locale (H,≤) gives rise to a Grothendieck topology: if c ∈ H, then J(c) is
the set of all coverings of c that are downward closed. Another important example
is the Zariski topology in algebraic geometry.

Definition 1.3. Let (C, J) be a site and F : Cop → Set a presheaf. We say F is a
sheaf on (C, J) if, for all c ∈ Obj (C), every collection {fi : ai → c | i ∈ I} ∈ J(c)
and every F -compatible family {si ∈ F (ai) | i ∈ I}, there exists a unique s ∈ F (c)
such that F (fi)(s) = si, for all i ∈ I. We denote the category of sheaves on (C, J)
by Sh (C, J).
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A Grothendieck topos is a category that is equivalent to the topos of sheaves
on a site. Apart from categories of sheaves, the category of presheaves is also an
example of a Grothendieck topos.

Some properties of Grothendieck topoi are of particular interest for developing
logic in the context of category theory, such as containing a subobject classifier and
being Cartesian closed.

Definition 1.4. Given a category C with pullbacks, a subobject classifier in C is a
mono > : u� Ω satisfying: for every other mono m : a� b, there exists a unique
χm : b→ Ω such that the following diagram is a pullback:

a >
m

> b

u
∨
>

>
> Ω

χm

∨

Definition 1.5. Let C be a locally small category with binary products. The category
C is called Cartesian closed if, for every b ∈ Obj (C), the product functor −× b has
a right adjoint (the exponentiation functor (−)b).

Both these properties are used to define a more general notion of topos: elemen-
tary topos.

1.2 Localic Topoi
Definition 1.6. A topos is said to be localic if it is equivalent to the topos of sheaves
on a locale.

Theorem 1.7. For a Grothendieck topos T , the following conditions are equivalent:

1. T is a localic topos;

2. the subobjects of the terminal object constitute a family of generators of T .

Theorem 1.8. For a Grothendieck topos T , the following conditions are equivalent:

1. T is a localic and Boolean topos;

2. T satisfies the axiom of choice;

3. T ' Sh (B), for some Boolean algebra B.

9
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A continuous function between topological spaces defines a (∧,∨)-preserving
morphism (i.e., the left adjoint of a morphism of locales) between the locales of
open sets, and a geometric morphism between the corresponding sheaf topoi:

X

X ′

f

∨
7→

O(X)

O(X ′)

f−1

∧
7→

Sh (O(X))

Sh
(O(X ′)

)

ϕ∗

∨
ϕ∗

∧

That is, (ϕ∗, ϕ∗) is a pair of functors such that ϕ∗ a ϕ∗ and ϕ∗ preserves finite limits.
This mapping from the category of topological spaces to the category of topoi

and geometric morphisms is not full nor faithful. However, the mapping from the
category of locales to the category of topoi and geometric morphisms is fully faithful:

Theorem 1.9. The mapping below, given by ϕ∗(F ) = F ◦ f∗, for every sheaf F on
H,

H

H′

f∗

∨
f∗ (∧,∨)

∧

7→

Sh (H)

Sh
(
H′
)

ϕ∗

∨
ϕ∗

∧

defines a fully faithful functor Sh : Loc→ Toposgeo.

1.3 Locale-Valued Models

Definition 1.10. Locale-Valued Model
We define, for a locale H, the universe of H-names by ordinal recursion. Given

an ordinal α let

V(H)
α =

{
f ∈ HX | ∃β < α,X ⊆ V(H)

β

}

It is readily seen that V(H)
α ⊂ V(H)

α+1 and that for limit ordinals it is simply the
union of the earlier stages. So we let the (proper class) V(H) be defined as:

V(H) =
⋃

α∈On
V(H)
α

10
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Furthermore, we define for elements of this universe V(H) a function % (x) defined
as:

% (x) = min
{
α ∈ On | x ∈ V(H)

α

}

Which is trivially well-founded.

Definition 1.11. Atomic Formulas’ Values
We endow this class with two1 binary functions on H, namely J· ∈ ·K and J· = ·K

defined by simultaneous recursion on a well-founded relation.
Given a locale H define first:

〈x, y〉 ≺ 〈u, v〉 ⇐⇒ (x = u ∧ y ∈ dom (v)) ∨ (x ∈ dom (u) ∧ y = v)

We will later see that this is a well-founded relation on V(H)×V(H). By recursion
on ≺, define for pairs of elements in V(H), the following:

J· ∈ ·K : V(H) ×V(H) −→ H

〈x, y〉 7−→
∨

u∈dom(y)
y(u) ∧ Jx = uK

J· 3 ·K : V(H) ×V(H) −→ H

〈x, y〉 7−→
∨

v∈dom(x)
x(v) ∧ Jv = yK

J· = ·K : V(H) ×V(H) −→ H

〈x, y〉 7−→
∧

u∈dom(y)
v∈dom(x)

(y(u)→ Jx 3 uK) ∧ (x(v)→ Jv ∈ yK)

We call these the H-values of the membership, co-membership and, equality, re-
spectively. Where ambiguity may arise, we make a distinction between valuations of
different locale-valued models by subscripting J K with the relevant locale, or by sim-
ply placing a prime symbol over one of the otherwise ambiguous evaluation function:
“J K′”.
Proposition 1.12. The relation ≺ is well-founded.

1Technically three.

11



Alvim, Cahali and Mariano

Proof. Firstly, define %′ (x, y) = min {% (x) , % (y)}. Take any subclass X of V(H) ×
V(H) and consider its image under %′. For one, it has a minimum, due to the well-
orderedness of On, let us call this minimum value α and one pair in X such that it
attains value α we name 〈x, y〉. Without loss of generality, we assume % (x) = α.

Suppose now there is some 〈f, g〉 such that 〈f, g〉 ≺ 〈x, y〉. By definition:

(f ∈ dom (x) ∧ g = y) ∨ (f = x ∧ g ∈ dom (y))

Breaking the disjunction we realize that the value of 〈f, g〉 under %′ must be no
more than α:

f ∈ dom (x) ∧ g = y

%′ (f, g) ≤ %′ (x, y)
f = x ∧ g ∈ dom (y)
%′ (f, g) ≤ %′ (x, y)

%′ (f, g) ≤ %′ (x, y)

But since α is minimal, it follows that they must be the same. Therefore, f can’t
be in the domain of x, for then it would have a smaller rank than α. One is forced
to conclude that, under this assumption, 〈f, g〉 ≺ 〈x, y〉 → g ∈ dom (y), and since
it is necessary that f = x. Consequently, because the relation (· ∈ dom (·)) is well-
founded, one is forced to concede that if a descending ≺-chain does not stabilize, so
too will a descending (· ∈ dom (·))-chain, a contradiction.

We are thus entitled to make the definition of those H-values as we previously
claimed. The definitions of H-values are then extended to the class of the language
of L∈-formulas enriched with constant symbols for each member of the class V(H):

Definition 1.13. H-valuation of Formulas
We define the value of a L∈H-formula ϕ which is the language L∈ extended

by constant symbols for each element of V(H) the valuation JϕK inductively on the
complexity of ϕ.

JϕK : (VarsL∈H → V(H))→ H

For an atomic formula ϕ involving only constants symbols as terms, JϕK is simply
the value of the corresponding function defined earlier, that is if ϕ ≡ aRb then, its
valuation is the constant function:

JϕK = JaRbK
For atomic formulas with free variables, the valuation is a function of the lan-

guage’s variable symbols. Given a function that assigns values to its free variables,

12
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it yields the value of the corresponding valuation, i.e. if ϕ ≡ xiRxj for variable
symbols xi, xj.

JϕK :
(
VarsL∈H → V(H)

)
→ H

v 7→ Jv(xi)Rv(xj)K

If ϕ has mixed constants and variable symbols, the definition is analogous but
fixing the constants.

When ϕ has free variables, we often write Jϕ(x, y · · · )K to denote the function on
its free variables, rather than writing JϕK (· · · ). For complex formulas, we define,
for negation:

J¬ϕK = JϕK→ ⊥
For a binary connective ∗ among →, ∧, ∨:

Jϕ ∗ ψK = JϕK ∗ JψK

Given xi a variable symbol and x ∈ V(H) and a function

v : VarsL∈H → V(H)

Define now, the function

v[xi|x](s) =
{
v(s), if s 6= xi

x, otherwise

For quantifiers:

J∀xi : ϕK :
(
VarsL∈H → V(H)

)
→ H

v 7→
∧

x∈V(H)

JϕK
(
v[xi|x]

)

And dually,

J∃xi : ϕK :
(
VarsL∈H → V(H)

)
→ H

v 7→
∨

x∈V(H)

JϕK
(
v[xi|x]

)

13
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If two functions f, g : VarsL∈H → V(H) coincide on freeϕ, then JϕK (f) = JϕK (g),
then the sentences are constant functions — and we will often omit the fact that
these valuations are indeed functions of the values we assign to the variable symbols
of the formulas and concern ourselves with sentences, which correspond to values in
H.

We won’t distinguish between the constant symbols corresponding to elements of
V(H) and the elements they correspond to.

We simply state the following results without proof — as they can be straight-
forwardly adapted from those on [1].

Theorem 1.14. Properties of Formula valuation

1. Jx = xK = 1.

2. ∀x ∈ dom (y) : y(x) ≤ Jx ∈ yK.

3. Jx = yK = Jy = xK.

4. Jx ∈ yK = Jy 3 xK.

5. Jx = yK ∧ Jy = zK ≤ Jx = zK.

6. Jx = yK ∧ Jy ∈ zK ≤ Jx ∈ zK.

7. Jx ∈ yK ∧ Jy = zK ≤ Jx ∈ zK.

8. Jx = yK ∧ x(u) ≤ Ju ∈ yK.

9. Jx = yK ∧ Jϕ(x)K = Jy = xK ∧ Jϕ(y)K.

10. J∃u ∈ x : ϕ(u)K = ∨
u∈dom(x) x(u) ∧ Jϕ(u)K

11. J∀u ∈ x : ϕ(u)K = ∧
u∈dom(x) x(u)→ Jϕ(u)K

Where Qu ∈ x : ϕ(u) is the usual shorthand for either [∀u : u ∈ x → ϕ(u)] or
[∃u : u ∈ x ∧ ϕ(u)] for Q standing for “ ∀” or “ ∃”.

We then must define a “localic semantic”, or a notion of truth for that structure
so that we may claim that it actually models some form of set theory.

Definition 1.15. H-Semantic / H-Validity / Localic Semantic
We define a Tarskian-like � for each H to say:

V(H) � ϕ ⇐⇒ JϕK = >

14



Induced morphisms between Heyting-valued models

Since JϕK is a function in disguise, to properly make this comparison, it either
must be constant or we must convert > to the constantly tautological function. The
latter allows us to interpret formulas with free variables, and will assign them truth
if they are always true under any valuation.

Hence, we extend the notion for, given σ : VarsL∈H → V(H),

V(H) �σ ϕ ⇐⇒ JϕK (σ) = >

Proposition 1.16. Some properties of the localic �

1. V(H) �σ ϕ and V(H) �σ ψ ⇐⇒ V(H) �σ ϕ ∧ ψ

2. V(H) �σ ∀x : ϕ(x) ⇐⇒ for all X, V(H) �σ[x|X] ϕ(x)

3. For some X, V(H) �σ[x|X] ϕ(x) ⇒ V(H) �σ ∃x : ϕ(x)

4. V(H) �σ ¬ϕ ⇒ V(H) 6�σ ϕ

5. V(H) �σ ϕ or V(H) �σ ψ ⇒ V(H) �σ ϕ ∨ ψ

6. V(H) �σ ψ or V(H) �σ ¬ϕ ⇒ V(H) �σ ϕ→ ψ

Furthermore, modus ponens; generalization; instances of intuitionistic tautology
(or classical tautologies if H is Boolean) and the intuitionistic first order logic axioms
are all valid under the eyes of our H-validity.

In fact, H-� is sound with respect to `.

Remark. The difference between the Tarskian and this Localic semantic is that some
equivalences that hold for Tarski’s do not hold in Localic semantic (in the nontrivial
cases, i.e., H 6= {0} or H 6= 2). Also, there is very little reason – a priori – to expect
there to be a witness to an existential formula, as it is the arbitrary supremum of
values of other formulas.

The supremum in existential formulas may be attained by witnesses, but this re-
lies on the additional property of H being Boolean, otherwise only a weaker statement
holds.

There is, in fact, a canonical representation of elements of our universe V and
the many universes V(H). For the case H = 2 = {0, 1}, this canonical representation
establishes a sort of model equivalence, has a good left inverse and is onto modulus
V(H)-equality with value >.
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Definition 1.17. Immersion of V in V(H)

Define, ∈-recursively:

x̂ = {〈ŷ,>〉 | y ∈ x}

Also, for x ∈ V(2) define (· ∈ dom (·))-recursively:

x̌ = {y̌ | y ∈ dom (x) ∧ x(y) = >}

Proposition 1.18. The following hold:

1. ∀x, y : x ∈ y ↔ Jx̂ ∈ ŷK = 1

2. ∀x′, y′ ∈ V(2) : x̌′ ∈ y̌′ ↔ Jx′ ∈ y′K = 1

3. ∀x, y : x = y ↔ Jx̂ = ŷK = 1

4. ∀x′, y′ ∈ V(2) : x̌′ = y̌′ ↔ Jx′ = y′K = 1

5. ∀x : ˇ̂x = x

6. ∀x′ ∈ V(2) :
s

ˆ̌
x′ = x′

{
= 1

Corollary 1.19. Suppose H 6= {0}.

1. V �σ ϕ ⇐⇒ V(2) �_̂◦σ ϕ

2. ϕ ∈ Σ0 ⇒
[
V �σ ϕ ⇐⇒ V(H) �_̂◦σ ϕ

]

3. ϕ ∈ Σ1 ⇒
[
V �σ ϕ⇒ V(H) �_̂◦σ ϕ

]

Theorem 1.20. V(H) are models of Intuitionistic Set Theory. Furthermore, if H is
Boolean, it validates classical set theory and the Axiom of Choice (provided the base
universe already did).

This is to say, for all ϕ axioms of the appropriate theory:

V(H) � ϕ

Again we provice no proof since this result is well established ([1]).
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2 V(H) and Equivalent Descriptions of Sh (H)
In this section, that is based on [1] and [4], we present some equivalent descriptions of
the category of sheaves of a complete Heyting algebra H, Sh (H) ' H-Set ' Set(H).
This is not only for the reader’s convenience, but also because we will later need a
detailed description of the equivalence H-Set ' Set(H), which is only sketched in
the appendix of [1]. We start by providing the definitions of these categories.

Definition 2.1. Consider the equivalence relation in V(H) given by f ≡ g if, and
only if, Jf = gK = 1. The category Set(H) is defined as:

Obj
(
Set(H)

)
··= V(H)

�≡

Set(H) ([x], [y]) ··=
{

[φ] ∈ Set(H)
∣∣∣ Jfun (φ : x→ y)K = 1

}

The arrows do not depend on the choice of representative of the equivalence classes
[x] and [y]. The composition and identity are defined as in Set(H) but with the
quotient being taken.

Definition 2.2. An H-set is a pair 〈X, δ〉 such that X is a set and δ : X ×X → H
satisfies, for every x, y, z ∈ X,

1. δ(x, y) = δ(y, x);

2. δ(x, y) ∧ δ(y, z) ≤ δ(x, z).

Definition 2.3. A morphism φ : 〈X, δ〉 → 〈X ′, δ′〉 of H-sets is a function φ :
X ×X ′ → H such that, for all x, y ∈ X e x′, y′ ∈ X ′:

1. δ′(x′, y′) ∧ φ(x, y′) ≤ φ(x, x′);

2. δ(x, y) ∧ φ(x, y′) ≤ φ(y, y′);

3. φ(x, x′) ∧ φ(x, y′) ≤ δ′(x′, y′);

4. ∨
z′∈X′

φ(x, z′) = δ(x, x).

A morphism of H-sets, then, can be understood as an H-valued functional relation.

Given morphisms φ : 〈X, δ〉 → 〈X ′, δ′〉 and ψ : 〈X ′, δ′〉 → 〈X ′′, δ′′〉 of H-sets,
their composition ψ ◦ φ is given by:

(ψ ◦ φ)(x, x′′) =
∨

x′∈X′
φ(x, x′) ∧ ψ(x′, x′′)
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for all x ∈ X,x′′ ∈ X ′′. The identity morphism id〈X,δ〉 is the function such that:

id〈X,δ〉(x, y) = δ(x, y), for all x, y ∈ X

Thus, we can define the category H-Set, of H-sets and their morphisms. One result
on H-sets morphisms will be particularly useful later on:

Proposition 2.4. Given morphisms φ, ψ : 〈X, δ〉 → 〈X ′, δ′〉 of H-sets, the following
conditions are equivalent:

1. φ = ψ;

2. φ(x, x′) ≤ ψ(x, x′), for all x ∈ X and x′ ∈ X ′.

Definition 2.5. A singleton of an H-set 〈X, δ〉 is a mapping σ : X → H such that,
for every x, y ∈ X,

1. σ(x) ∧ σ(y) ≤ δ(x, y);

2. σ(x) ∧ δ(x, y) ≤ σ(y).

Note that, given x ∈ X, the function σx : X → H such that σx(y) = δ(x, y), for all
y ∈ H, defines a singleton.

Definition 2.6. Consider σ(X) the collection of singletons of an H-set 〈X, δ〉.
〈X, δ〉 is said to be complete if the function Υ : X → σ(X), given by Υ(x) = σx, for
all x ∈ X, is bijective. We denote the full subcategory of complete H-sets by cH-Set.

There is also an alternative description of complete H-sets:

Proposition 2.7. cH-Set is isomorphic to the category whose objects are complete
H-sets and arrows are functions f : X → X ′ such that:

1. δ(x, y) ≤ δ′(f(x), f(y));

2. δ(x, x) = δ′(f(x), f(x));

for all x, y ∈ X. The composition is given by usual function composition, and the
identity arrow is the identity function.

Theorem 2.8. Let 〈X, δ〉 be an H-set. Define the H-set 〈σ(X), σ(δ)〉 where

σ(δ)(ρ, τ) =
∨

x∈X
ρ(x) ∧ τ(x), for all (ρ, τ) ∈ σ(X)× σ(X)

Then, 〈σ(X), σ(δ)〉 is complete and isomorphic to 〈X, δ〉.
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The inverse isomorphisms φ : 〈X, δ〉 → 〈σ(X), σ(δ)〉 e ψ : 〈(σ(X), σ(δ)〉 → 〈X, δ〉
are given by:

φ(x, ρ) = ρ(x), for all (x, ρ) ∈ X × σ(X)
ψ(ρ, x) = ρ(x), for all (ρ, x) ∈ σ(X)×X

Corollary 2.9. There is an equivalence of categories: H-Set ' cH-Set.

We can thereby define the functor Γ : Sh (H)→ cH-Set by:

Γ(F ) = 〈XF , δF 〉 , for every sheaf F on H, where XF ··=
∐

a∈H
F (a) and

δF is given by 〈(s, b), (t, c)〉 7→
∨{

d ≤ b ∧ c | s�bd = t�cd
}

Γ(η) : Γ(F )→ Γ(G), for every natural transformation η : F ⇒ G

in Sh (H) ,where Γ(η)(s, b) = (ηb(s), b), for all (s, b) ∈ Γ(F )

Theorem 2.10. The functor Γ : Sh (H) → cH-Set defined above is fully faithful,
and for all complete H-set 〈X, δ〉 there exists a sheaf F on H such that 〈X, δ〉 ∼= Γ(F ).
Therefore, Γ defines an equivalence of categories Sh (H) ' cH-Set.

Finally, to show the equivalence between H-Set and Set(H)2, we will need two
constructions on V(H):

Let 〈X, δ〉 be an H-set. For each x ∈ X, define ẋ ∈ V(H) as:

dom (ẋ) ··= {ẑ | z ∈ X} and ẋ(ẑ) ··= δ(x, z), for all z ∈ X

Then, define X† ∈ V(H) as

dom
(
X†
)
··= {ẋ | x ∈ X} and X†(ẋ) ··= δ(x, x), for all x ∈ X

Similarly, given a morphism φ : 〈X, δ〉 → 〈X ′, δ′〉 of H-sets, we may consider ϕ† ∈
V(H) given by:

dom
(
φ†
)
··=
{〈
ẋ, ẋ′

〉(H)
∣∣∣ x ∈ X,x′ ∈ X ′

}

φ†
(〈
ẋ, ẋ′

〉(H)) ··= φ(x, x′), for all x ∈ X,x′ ∈ X ′

Since V(H) |= fun
(
φ†
)
, we may define a functor Φ : H-Set → Set(H) by tak-

ing Φ(X, δ) =
[
X†
]
, for every H-set 〈X, δ〉, and Φ(φ) = φ†, for every arrow φ ∈

Arr (H-Set).
2Here we follow [1], but we provide a more complete and accurate description.
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On the other hand, given u ∈ V(H), define Xu ··= dom (u) and δu : Xu×Xu → H
as

δu(x, y) ··= Jx ∈ uK ∧ Jx = yK ∧ Jy ∈ uK , for all x, y ∈ Xu

Observe, however, that Ju = u′K = 1 does not imply Xu = dom (u) = dom (u′) =
Xu′ , and that we may not define an H-set using [dom (u)] since this class is not a set
(later we will show that

{
u′ ∈ V(H) | Ju = u′K = 1

}
is a proper class). In that case,

we will use Scott’s trick to define a functor Ψ : Set(H) → H-Set.
Firstly, if Ju = u′K = 1, then 〈Xu, δu〉 ∼= 〈Xu′ , δu′〉. Indeed, define λu,u′ :

〈Xu, δu〉 → 〈Xu′ , δu′〉 such that

λu,u′(x, x′) ··= Jx ∈ uK ∧
q
x = x′

y
∧

q
x′ ∈ u′

y
, for all x ∈ dom (u) , x′ ∈ dom

(
u′
)

We verify this is a morphism of H-sets. Let x, y ∈ Xu and x′, y′ ∈ Xu′ .

1. δu′(x′, y′) ∧ λu,u′(x, y′) ≤ λu,u′(x, x′). Indeed,

δu′(x′, y′) ∧ λu,u′(x, y′) =
=

q
x′ ∈ u′

y
∧

q
x′ = y′

y
∧

q
y′ ∈ u′

y
∧ Jx ∈ uK ∧

q
x = y′

y
∧

q
y′ ∈ u′

y

≤
q
x′ ∈ u′

y
∧

q
x′ = y′

y
∧ Jx ∈ uK ∧

q
x = y′

y

≤ Jx ∈ uK ∧
q
x = x′

y
∧

q
x′ ∈ u′

y

= λu,u′(x, x′)

2. δu(x, y) ∧ λu,u′(x, y′) ≤ λu,u′(y, y′). Indeed,

δu(x, y) ∧ λu,u′(x, y′) =
= Jx ∈ uK ∧ Jx = yK ∧ Jy ∈ uK ∧ Jx ∈ uK ∧

q
x = y′

y
∧

q
y′ ∈ u′

y

≤ Jx = yK ∧ Jy ∈ uK ∧
q
x = y′

y
∧

q
y′ ∈ u′

y

≤ Jy ∈ uK ∧
q
y = y′

y
∧

q
y′ ∈ u′

y

= λu,u′(y, y′)

3. λu,u′(x, x′) ∧ λu,u′(x, y′) ≤ δu′(x′, y′). Indeed,

λu,u′(x, x′) ∧ λu,u′(x, y′) =
= Jx ∈ uK ∧

q
x = x′

y
∧

q
x′ ∈ u′

y
∧ Jx ∈ uK ∧

q
x = y′

y
∧

q
y′ ∈ u′

y

≤
q
x = x′

y
∧

q
x′ ∈ u′

y
∧

q
x = y′

y
∧

q
y′ ∈ u′

y

≤
q
x′ ∈ u′

y
∧

q
x′ = y′

y
∧

q
y′ ∈ u′

y

= δu′(x′, y′)
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4. ∨
z′∈Xu′

λu,u′(x, z′) = δu(x, x). Indeed, using that δu(x, x) = Jx ∈ uK,

• on one hand, for every z′ ∈ Xu′ ,

λu,u′(x, z′) = Jx ∈ uK ∧
q
x = z′

y
∧

q
z′ ∈ u′

y
≤ Jx ∈ uK

Therefore, ∨
z′∈Xu′

λu,u′(x, z′) ≤ δu(x, x);

• on the other hand, for every z ∈ Xu′ ,

u′(z′) ∧
q
z′ = x

y
=

q
x = z′

y
∧ u′(z′) ∧

q
z′ = z′

y
≤

≤
q
x = z′

y
∧

 ∨

t′∈Xu′

u′(t′) ∧
q
t′ = z′

y

 =

q
x = z′

y
∧

q
z′ ∈ u′

y

Thus,
q
x ∈ u′

y
=

∨

z′∈Xu′

u′(z′) ∧
q
z′ = x

y
≤

∨

z′∈Xu′

q
x = z′

y
∧

q
z′ ∈ u′

y

But observe that Ju = u′K = 1 implies Jx ∈ uK = Jx ∈ u′K, so:

Jx ∈ uK = Jx ∈ uK ∧
q
x ∈ u′

y

≤ Jx ∈ uK ∧

 ∨

z′∈Xu′

q
x = z′

y
∧

q
z′ ∈ u′

y



=
∨

z′∈Xu′

Jx ∈ uK ∧
q
x = z′

y
∧

q
z′ ∈ u′

y

That is, δu(x, x) ≤ ∨
z′∈Xu′

λu,u′(x, z′).

Finally, we verify that λu,u′ is an isomorphism, with inverse morphism λ−1
u,u′ =

λu′,u : 〈Xu′ , δu′〉 → 〈Xu, δu〉. For all x, y ∈ Xu,

(λu′,u ◦ λu,u′)(x, y) =
∨

x′∈Xu′

λu,u′(x, x′) ∧ λu′,u(x′, y) =

=
∨

x′∈Xu′

Jx ∈ uK ∧
q
x = x′

y
∧

q
x′ ∈ u′

y
∧ Jy ∈ uK ∧

q
y = x′

y
∧

q
x′ ∈ u′

y
≤

≤ Jx ∈ uK ∧ Jx = yK ∧ Jy ∈ uK = δu(x, y)
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Therefore, using Proposition 2.4, we conclude that λu′,u ◦ λu,u′ = id〈X,δ〉. Analo-
gously, it can be verified that λu,u′ ◦ λu′,u = id〈X′,δ′〉.

Now, for each [u] ∈ Set(H), let I [u] be the category given by:

Obj
(
I [u]

)
··= [u]m Arr

(
I [u]

)
··= [u]m × [u]m

where [u]m is the equivalence class of the elements with minimum rank. Consider
the functor F [u] : I [u] → H-Set such that

F [u](u′) ··= 〈Xu, δu〉 , for all u′ ∈ [u]m
F [u](u′, u′′) ··= λu′,u′′ : 〈Xu′ , δu′〉 → 〈Xu′′ , δu′′〉 , for all u′, u′′ ∈ [u]m

At last, we may define the functor Ψ : Set(H) → H-Set as Ψ([u]) = lim
u′∈[u]m

F [u](u′).
This functor can also be described more explicitly. The product of a family

of H-sets {〈Xi, δi〉 | i ∈ I} is given by 〈P, δ〉, where the set is simply the Cartesian
product P = ∏

i∈I
Xi and δ : P × P → H is given by:

δ
(
〈xi〉i∈I ,

〈
x′i
〉
i∈I
)

=
∧

i∈I
δ(x, x′)

The projections πj : P ×Xj → H are given by

πj
(
〈xi〉i∈I , x′j

)
= δj(xj , x′j)

for each j ∈ I (see [4], exercise 2.13.15). The equalizer of two morphisms φ, ψ :
〈X, δ〉 → 〈X ′, δ′〉 of H-sets is 〈X, τ〉, where

τ(x, y) =
∨

x′∈X′
φ(x, x′) ∧ ψ(y, x′)

(see [4], exercise 2.13.16).
We can then use the construction of limits by products and equalizers (see [3],

Theorem 2.8.1), denoting Ψ([u]) by limF [u]:
〈Xu′′ , δu′′〉

limF [u] E
>

∏

u′∈[u]m
〈Xu′ , δu′〉

α
>

β
>

π
′
u
′′

>

∏

(u′,u′′)∈I[u]
1

〈Xu′′ , δu′′〉

<
π ′′(u ′,u ′′)

〈Xu′ , δu′〉

π′u′

∨ λu′,u′′
> 〈Xu′′ , δu′′〉

π′′(u′,u′′)

∨
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where π′, π′′ are the projections (of the corresponding products) and 〈limF,E〉 is
the equalizer of α and β, which are the morphisms that make the diagram commute.
That is,

π′′(u′,u′′) ◦ α = π′u′′ π′′(u′,u′′) ◦ β = λu′,u′′ ◦ π′u′

We can proceed similarly for the arrows of the category. For each f ∈ V(H) such
that Jfun (f : u→ v)K = 1, define λf : 〈Xu, δu〉 → 〈Xv, δv〉 as:

λf (x, y) = Jx ∈ uK ∧ J(x, y) ∈ fK ∧ Jy ∈ vK

Now, given f ′ ∈ V(H) such that Jfun (f ′ : u′ → v′)K = 1 and Jf = f ′K = 1 (which
already implies u ≡ u′ and v ≡ v′), we obtain the following commutative diagram:

〈Xu, δu〉 >
λu,u′

>> 〈Xu′ , δu′〉

〈Xv, δv〉

λf

∨
>
λv,v′

>> 〈Xv′ , δv′〉

λf ′

∨

Thus, we may define an arrow Ψ([f ]) : lim
u′∈[u]m

F (u′)→ lim
v′∈[v]m

F (v′).

Theorem 2.11. The functors Φ,Ψ constructed above define an equivalence of cat-
egories: H-Set ' Set(H).

3 Induced morphisms in Heyting valued models
Previously, we saw (see Definition 1.17) an injection V → V(B) given by ·̂ which
preserves the truth values of Σ1 formulas (see Corollary 1.19). Currently, it is known
that if φ : A → B is a complete (that is, preserving arbitrary suprema and infima)
and injective morphism of Heyting algebras, we can define a map φ̃ : V(A) → V(B)

that is injective and such that: for all x, y ∈ V(A),

φ Jx = yKA =
q
φ̃(x) = φ̃(y)

y
B

φ Jx ∈ yKA =
q
φ̃(x) ∈ φ̃(y)

y
B

For ∆0 formulas, the equality, trivially, still holds. One gets the following in-
equality for any Σ1 formula ψ:

φ Jψ(x1, · · · , xn)KA ≤
q
ψ(φ̃(x1), · · · , φ̃(xn))

y
B
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It is relatively straightforward to relax these conditions to injective functions that
preserve only arbitrary suprema and finite infima3 to obtain the useful inequalities:

φ Jx = yKA ≤
q
φ̃(x) = φ̃(y)

y
B

φ Jx ∈ yKA ≤
q
φ̃(x) ∈ φ̃(y)

y
B

And we still have the inequality for Σ1 formulas.
Our efforts were in providing a possible generalization of this construction for

non-injective maps that preserve arbitrary suprema and finite infima. In this section,
we focus on that and on some difficulties we faced in the process.

The reason for our search is that it is taken as a fact that the category of
Heyting/Boolean valued models is related to other categories endowed with these
morphisms. Despite us having a horizontal connection between models and topoi

H V(H)  Set(H) ' H-Set

the vertical connections between arrows from H→ H′, V(H) → V(H′), etc. does not
seem to have been widely explored in the literature. The only studied cases were
automorphisms of complete Boolean algebra, complete monomorphisms between
complete Boolean algebras (see exercise 3.12 in [1]) and retractions associated to
those morphisms (see chapter 3 of [7]).

This constitutes one of our main motivations to study if (and how) we could
induce arrows between models from more general arrows between complete Heyting
algebras. The other one is purely categorical: can geometric morphisms between
localic topoi be lifted to morphisms between their associated Heyting value models?

Here we present the main results of our work: we consider and explore how
more general kinds of morphisms between complete Heyting algebras H and H′
induce arrows between V H and V H′ , and between their corresponding Heyting topoi
Set(H)(' Sh (H)) and Set(H′)(' Sh (H′)).

In the remainder of the section, H and H′ will denote complete Heyting algebras,
and f : H → H′ shall be a locale morphism (notation: f ∈ Loc(H,H′)), i.e., f is a
function that preserves arbitrary suprema and finite infima.

3.1 Induced morphisms
Definition 3.1. (First proposal) We recursively define a family

{
f̃α : V(H)

α ⇀ V(H′)
α

∣∣∣ α ∈ On
}

3Geometric morphisms or Locale morphisms, which are related to Topoi and Sheaves over
Locales.
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Induced morphisms between Heyting-valued models

where ⇀ indicates that f̃α are “semi-functions". That is, for all x ∈ V(H)
α , there

exists x′ ∈ V(H′) such that 〈x, x′〉 ∈ f̃α in the following way: for every α ∈ On and
every 〈x, x′〉 ∈ V(H)

α × V(H′), 〈x, x′〉 ∈ f̃α if, and only if, there exists a surjection
ε : dom (x) � dom (x′) such that 〈u, ε(u)〉 ∈ f̃%(x) for all u ∈ dom (x), and the
following diagram commutes:

dom (x)
x

> H

dom
(
x′
)

ε

∨∨ x′
> H′

f

∨

Under these conditions, we say that ε witnesses 〈x, x′〉 ∈ f̃α. Note that, if we
suppose (by induction) that f̃β is defined for every β < α, then the semi-function
f̃%(x) : V(H)

%(x) ⇀ V(H′)
%(x) is defined, therefore dom (x′) ⊆ V(H′)

%(x) and x′ ∈ V(H′)
α .

Thus, we define f̃ ··=
⋃

α∈On
f̃α and

dom
(
f̃
)

=
⋃

α∈On
dom

(
f̃α
)

=
⋃

α∈On
V(H)
α = V(H)

so that f̃ is also a semi-function f̃ : V(H) ⇀ V(H′).

Proposition 3.2. If f is injective, then, for all α ∈ On, f̃α is an injective function.

Proof. By induction. Suppose that f̃β is an injective function for all β < α and
let 〈x, x′〉 ∈ f̃α. Then, ε = f̃%(x)� : dom (x) � dom (x′) is a bijection, because it’s
surjective by definition, and, since 〈u, ε(u)〉 ∈ f̃%(x) for all u ∈ dom (x), the induction
hypothesis implies that ε = f̃%(x)� is injective. Therefore, using the commutative
diagram from the definition, x′ is uniquely determined by x′ = f ◦ x ◦ ε−1, that is,
f̃α is a function. Besides, if x 6= y (in V(H)

α ), then f being injective implies

f̃α(x) = f ◦ x ◦ ε−1 6= f ◦ y ◦ ε−1 = f̃α(y)

so that f̃α is also injective.

Hence, this function covers the result stated in [1], exercise 3.12.

Remark. Naive attempts to extend this initial proposal are fated to fail, for, in the
absence of injectivity, the defined relation is not a function.
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In fact, note that Definition 3.1 presents a serious problem: it does not guarantee
that dom

(
f̃
)
α

= V(H)
α , for each α ∈ On. For example, consider the Boolean algebras

2 = {0, 1} and 4 = {0, a,¬a, 1} (with 0 6= a 6= 1) and the function f : 4 → 2 given
by f(a) = 0 and f(¬a) = 1. Firstly,

V(4)
0 = ∅ V(2)

0 = ∅
V(4)

1 = {∅} V(2)
1 = {∅}

V(4)
2 =

{{(∅, 0)}, {(∅, 1)}, {(∅, a)}, {(∅,¬a)}} V(2)
2 =

{{(∅, 0)}, {(∅, 1)}}

Let x ··=
{( {(∅, 0)} , 0)}, ( {(∅, a)} , 1)}, u ··= {(∅, 0)} and v ··= {(∅, 1)}. It can be

easily verified that x is such that 〈u, x〉 , 〈v, x〉 ∈ f̃2.
We’d like to show that x makes the relation pathological. Thus, consider x′ ∈ V(2)

and suppose there exists some ε : dom (x)� dom (x′) such that 〈u, ε(u)〉 , 〈v, ε(v)〉 ∈
f̃2, i.e. ε(u) = ε(v) = {(∅, 0)}. But in this case, we cannot guarantee the diagram
in the definition commutes, since we would have:

0 = ϕ(x(u)) = x′(ε(u)) = x′(ε(v)) = ϕ(x(v)) = 1

Therefore, there exists no such x′ ∈ V(2) for which 〈x, x′〉 ∈ f̃3.

To deal with this issue, we add more elements to the image of the semi-function,
closing it by the equivalence relation ≡ (another option would be to close the images
only for the equivalent members with minimum rank).

Definition 3.3. Generalized Connection between V(H)s
Let f ∈ Loc(H,H′). Define the following compatible family of relations by ordinal

recursion:

x f̃α y ⇐⇒ ∃(ε : dom (x)� dom (y)) : (y ◦ ε = f ◦ x)∧
∀u ∈ dom (x) : ∃v ∈ V(H′) : ∃β < α : (u f̃β v) ∧ Jv = ε(u)K = 1

f̃ =
⋃

α∈On
f̃α

This definition in particular was used because of the following: the requirement
of the existence of a surjective function is due to our need that every object that is
related to x has its (domain’s) elements determined by elements of (the domain of) x.
This is true in the injective case, where the function is the witness of this existential.
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In the non-injective case, ε “essentially”4 is going to be a “piece” or “fragment” of
f̃ that happens to be a function and behaves similarly to how f̃ would if f was
injective.

We demand that y ◦ ε = f ◦ x, to extend the original idea of the construction
by injective morphisms to more general ones: f̃(x)(f̃(u)) = (f ◦ x)(u), u ∈ dom(x).
If y is related to x, then there is a function fragment of f̃ which makes the above
commute.

It is, however, not enough to ask only this, since one such y could be chosen ad
hoc without the members of its domain being related to the members of x’s. There
is no hope for us to attain the imposed conditions of inequalities of atomic formulas,
which depend recursively on the domains of the involved objects, if we do not impose
some similarly recursive demands on the relation.

Thus, the final condition says that for every member u of x’s domain, there was
some u in some previous step which to which it was related. Surely f̃ is only very
rarely a function, but after taking the quotient by J· = ·K-equivalence it is a function.

Were we to remove Jv = ε(u)K = 1, and simply require that u f̃β ε(u), the
definition would coincide for injective functions, but in general the domain of f̃ as
a relation would not be total, i.e. it wouldn’t be all of V(H).

Theorem 3.4. f̃ ’s domain is total
This is: for all morphism f : H→ H′,

∀x ∈ V(H) : ∃x′ ∈ V(H′) : x f̃ x′

Proof. The proof follows from the 2 facts below:

Fact 3.5. Suppose that ∀u ∈ dom (x) : ∀κ ∈ On : ∃(u′ : κ� V(H′)) : ∀α < κ : u f̃
u′α. In this case, it is trivial to see that there is an X ′ ⊂ V(H′) such that there is a
bijection ε : dom (x)→ dom (x′) = X ′ such that ∀u ∈ dom (x) : u f̃ ε(u).

Thus, let x′ = f ◦ x ◦ ε−1. It is evident that x f̃ x′. Therefore, if there exists a
proper class of elements to the right of every member of the domain of x, then there
is some x′ such that x f̃ x′.

Fact 3.6. Suppose that x 6= ∅ and that ∃x′ ∈ V(H′) : x f̃ x′. Let u ∈ dom (x),
u ∈ dom (x′) such that u f̃ u′ and consider ε : dom (x)� dom (x′) witnessing x f̃ x′.

Trivially,

∃α ∈ On : ∀ξ > α : ∀t′ :=
[
u′ ∪

{〈
ξ̂, 0
〉}]
→

q
t′ = u′

y
= 1

4Up to J· = ·K = 1-equivalence.
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Simply because we are adding some object which was not in the domain of u′
whose value under t will be 0, and in the equality, the 0 will be in the antecedent of
the implication.

So, for each ordinal bigger than α, we obtain a different set which is equal to u′
with “probability” 1, and thus, x must have a proper class of elements y such that
x f̃ y.

Joining the previous results, we have:

∀x ∈ V(H) : x 6= ∅ → ([∀u ∈ dom (x) : ∃u′ : u f̃ u′]→ ∃x′ : x f̃ x′)
As the consequent is true when x = ∅ — for ∅ f̃ ∅ — we have:

∀x ∈ V(H) : [∀u ∈ dom (x) : ∃u′ : u f̃ u′]→ ∃x′ : x f̃ x′

By regularity:
∀x ∈ V(H) : ∃x′ : x f̃ x′

Alternatively, we could assume in the Definition 3.1 that 〈x, x′〉 ∈ f̃α if, and only
if, there exists a witness ε : dom (x)� dom (x′) as in the original definition, and, for
all u ∈ dom (x), there exists u′ ∈ V(H′) such that 〈u, u′〉 ∈ f̃%(x) and Jε(u) = u′K′ = 1′.

We choose the first condition mentioned for our final definition, however all are
equivalent in the quotient by ≡.
Definition 3.1. (Amended version) Adding to the original definition, we also
assume that if 〈x, x′〉 ∈ f̃α (that is, there exists a witness for that) and Jx′ = y′K′ = 1′,
then 〈x, y′〉 ∈ f̃α.

Remark. We observe that V(H) is a proper class (for H 6= {0}), since there exists an
injection V � V(H). It can also be shown that, for all x ∈ V(H), {y ∈ V(H) | Jx = yK
= 1} is a proper class. Indeed, for all Σ ⊆ V(H) such that Σ ∩ dom (x) = ∅, we may
define yΣ : dom (x) ∪ Σ→ H as:

yΣ(u) =
{
x(u) , if u ∈ dom (x)
0 , if u ∈ Σ

so that Jx = yΣK = 1.

Finally, we show that f̃α does actually have the desired domain; the argument
is similar to the one used above to prove the injective case.

Proposition 3.7. For all α ∈ On, dom
(
f̃α
)

= V(H)
α (and its image is closed by ≡).
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Proof. By induction: suppose that, for all β ∈ On, with β < α, dom
(
f̃β
)

= V(H)
β .

Let x ∈ V(H)
α , and notice that, for all u ∈ dom (x) ⊆ V(H)

%(x), the image of f̃%(x)({u}) is
a proper class, since it is non-empty and closed by ≡ (by definition). Therefore, using
the axiom of replacement, we may define an injection ε : dom (x)� V(H′) satisfying
〈u, ε(u)〉 ∈ f̃%(x), which we may restrict to a bijection τ : dom (x) → ε(dom (x)).
Hence, just take x′ ∈ V(H′) as x′ : ε(dom (x)) → H′ given by x′ ··= f ◦ x ◦ τ−1, so
that 〈x, x′〉 ∈ f̃α, and thus dom

(
f̃α
)

= V(H)
α .

Note that with this new definition, for all x ∈ V(H)
α there exists x′ ∈ V(H′) such

that 〈x, x′〉 ∈ f̃α is witnessed by a bijection τ : dom (x) → dom (x′) (not only a
surjection). In fact, we could have assumed the existence of a bijective witness
in the definition of f̃α, and again that would be equivalent to the other possible
definitions in the quotient by “J· = ·K = 1” equivalence relation.

3.2 Semantical preservation results

Theorem 3.8. For all 〈x, x′〉 , 〈y, y′〉 , 〈z, z′〉 ∈ f̃ ,

f (Jy ∈ xK) ≤′
q
y′ ∈ x′

y′ and f (Jx = zK) ≤′
q
x′ = z′

y′

Proof. The proof is by induction on the well-founded relation

〈u, x〉 ≺ 〈v, y〉 ⇐⇒ (u = v and x ∈ dom (y)) or (u ∈ dom (v) and x = y)

Let ε : dom (x)� dom (x′) satisfying the conditions of 3.1. Then:

f (Jy ∈ xK) =

= f


 ∨

u∈dom(x)
x(u) ∧ Ju = yK


 (by definition)

=
′∨

u∈dom(x)
f(x(u)) ∧′ f (Ju = yK)

(
since f preserves ∧,

∨)

≤
′∨

u∈dom(x)
f(x(u)) ∧′

q
ε(u) = y′

y (
induction hypothesis 〈u, ε(u)〉 ∈ f̃)

)

=
′∨

u∈dom(x)
x′(ε(u)) ∧′

q
ε(u) = y′

y (
using that

〈
x, x′

〉
, 〈u, ε(u)〉 ∈ f̃

)
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=
′∨

u′∈dom(x′)
x′(u′) ∧′

q
u′ = y′

y
(since ε is surjective)

=
q
y′ ∈ x′

y′ (by definition)

Now, since H is a Heyting algebra, note that the fact that f preserves meets implies
that f is increasing, and also implies that f(a→ b) ≤ f(a)→ f(b), for all a, b ∈ H.
With that, let τ : dom (z)� dom (z′) satisfying the conditions of 3.1. Then:

f (Jx = zK) =

= f




∧

u∈dom(x)
v∈dom(z)

(x(u)→ Ju ∈ zK) ∧ (z(v)→ Jv ∈ xK)




(by definition)

≤
′∧

u∈dom(x)
v∈dom(z)

f (x(u)→ Ju ∈ zK) ∧′ f (z(v)→ Jv ∈ xK)

(f is increasing)

≤
′∧

u∈dom(x)
v∈dom(z)

(
f(x(u))→′ f (Ju ∈ zK)) ∧′ (f(z(v))→′ f (Jv ∈ xK))

(comments above)

≤
′∧

u∈dom(x)
v∈dom(z)

(
f(x(u))→′

q
ε(u) ∈ z′

y′) ∧′
(
f(z(v))→′

q
τ(v) ∈ x′

y′)

(comments below)

=
′∧

u∈dom(x)
v∈dom(z)

(
x′(ε(u))→′

q
ε(u) ∈ z′

y′) ∧′
(
z′(τ(v))→′

q
τ(v) ∈ x′

y′)

(they are elements of f̃)

=
′∧

u′∈dom(x′)
v′∈dom(z′)

(
x′(u′)→′

q
u′ ∈ z′

y′) ∧′
(
z′(v′)→′

q
v′ ∈ x′

y′)

(ε, τ are surjections)
=

q
x′ = z′

y′
(by definition)
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In the fourth step, we use that the implication is increasing in the second coordinate,
and that by the induction hypothesis we have:

f (Ju ∈ zK) ≤
q
ε(u) ∈ z′

y′ and f (Jv ∈ xK) ≤
q
τ(v) ∈ x′

y′

This result easily extends to positive formulas (with only ∧,∨) with bounded
quantifiers (of the form ∃u ∈ x and ∀u ∈ x), using that corollary 1.18 from [1] gives
us that:

J∃u ∈ x ϕ(u)K =
∨

u∈dom(x)
x(u) ∧ Jϕ(u)K

J∀u ∈ x ϕ(u)K =
∧

u∈dom(x)
x(u)→ Jϕ(u)K

Corollary 3.9. Let ϕ be a positive formula with bounded quantifiers. Then, for all
〈a1, a′1〉 , ..., 〈an, a′n〉 ∈ f̃ , we have:

f (Jϕ(a1, ..., an)K) ≤′
q
ϕ(a′1, ..., a′n)

y′

Proof. By induction in the complexity of the formula. The initial case, for atomic
sentences, was shown in the previous theorem, and the cases with ∧ and ∨ are
immediate from the fact that f preserves finite meets and joins. For quantifiers, the
proof is similar to last theorem’s proof. Let 〈x, x′〉 ∈ f̃ with witness ε : dom (x) �
dom (x′). Then:

f (J∃u ∈ x ϕ(u)K) =

= f


 ∨

u∈dom(x)
x(u) ∧ Jϕ(u)K


 (by definition)

=
′∨

u∈dom(x)
f(x(u)) ∧′ f (Jϕ(u)K)

(
since f preserves ∧,

∨)

≤
′∨

u∈dom(x)
f(x(u)) ∧′ Jϕ(ε(u))K

(
assumption and 〈u, ε(u)〉 ∈ f̃)

)

=
′∨

u∈dom(x)
x′(ε(u)) ∧′ Jϕ(ε(u))K

(
using

〈
x, x′

〉
, 〈u, ε(u)〉 ∈ f̃

)

=
′∨

u′∈dom(x′)
x′(u′) ∧′

q
ϕ(u′)

y
(since ε is surjective)
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=
q
∃u′ ∈ x′ ϕ(u′)

y′ (by definition)

Similarly, we have

f (J∀u ∈ x ϕ(u)K) =

= f


 ∧

u∈dom(x)
x(u)→ Jϕ(u)K


 (by definition)

≤
′∧

u∈dom(x)
f (x(u)→ Jϕ(u)K) (since f is increasing)

≤
′∧

u∈dom(x)
f(x(u))→′ f (Jϕ(u)K) (since f(a→ b) ≤ f(a)→ f(b))

≤
′∧

u∈dom(x)
f(x(u))→′ Jϕ(ε(u))K′ (induction hypothesis)

=
′∧

u∈dom(x)
x′(ε(u))→′ Jϕ(ε(u))K′ (using that

〈
x, x′

〉 ∈ f̃)

=
′∧

u′∈dom(x′)
x′(u′)→′

q
ϕ(u′)

y′ (since ε is surjective)

=
q
∀u′ ∈ x′ ϕ(u′)

y′ (by definition)

3.3 Functorial properties
Another consequence of the previous theorem is that, if Jx = zK = 1H , then, since
1H = ∧ ∅, we obtain:

f (Jx = zK) = f(1H) = 1H′ ≤
q
x′ = z′

y′

that is, Jx′ = z′K′ = 1H′ . Therefore, when we take the quotient by ≡, the semi-
function f̃ defines an object mapping f : Set(H) → Set(H′).

Proposition 3.10.

1. idH = idSet(H) : Set(H) → Set(H);

2. if f ′ : H′ → H′′ preserves finite meets and arbitrary joins, then f ′ ◦ f = f ′ ◦ f :
Set(H) → Set(H′′).
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Proof.

1. We show that, for all α ∈ On, if 〈x, y′〉 ∈ (ĩdH)α, then Jx = y′K = 1. Suppose,
inductively, that this is the case for all β < α, and let ε : dom (x)� dom (x′)
(with Jx′ = y′K = 1) witness 〈x, y′〉 ∈ (ĩdH)α. Then, x′ ◦ ε = idH ◦ x = x, and
for all u ∈ dom (x), 〈u, ε(x)〉 ∈ (ĩdH)%(x), thereby Jε(u) = uK = 1 (using the
induction hypothesis). Thus, for all u ∈ dom (x), since ε is surjective we have:

x(u) = x′(ε(u)) = x′(ε(u))∧Jε(u) = uK ≤
∨

w′∈dom(x′)
x′(w′)∧

q
w′ = u

y
=

q
u ∈ x′

y

Similarly, for all v′ ∈ dom (x′), there exists v ∈ dom (x) such that ε(v) = v′,
and

x′(v′) = x′(ε(v)) = x(v) = x(v)∧Jε(v) = vK ≤
∨

w∈dom(x)
x(w)∧

q
w = v′

y
=

q
v′ ∈ x

y

Observe that x(u) ≤ Ju ∈ x′K if, and only if, 1 ≤ x(u) → Ju ∈ x′K, for all u ∈
dom (x); that is, ∧

u∈dom(x)
x(u)→ Ju ∈ x′K = 1. Analogously, x′(v′) ≤ Jv′ ∈ x′K

for all v′ ∈ dom (x′) is equivalent to ∧
v′∈dom(x′)

x′(v′)→ Jv′ ∈ xK = 1. Therefore:

q
x = x′

y
=

∧

u∈dom(x)

(
x(u)→

q
u ∈ x′

y) ∧
∧

v′∈dom(x′)

(
x′(v′)→

q
v′ ∈ x

y)
= 1

Finally, since Jx = x′K = 1 = Jx′ = y′K, we may conclude that Jx = y′K = 1, as
desired.

Now, by the definition of ≡, Jx = y′K = 1 if, and only if, [x] = [y′]. As a result,
taking the quotient, 〈[x], [y′]〉 ∈ idH if, and only if, [x] = [y′], hence idH is the
identity in Set(H).

2. Let 〈[x], [z′′]〉 ∈ f ′ ◦ f , i.e., there exists [y′] ∈ Set(H) such that 〈[x], [y′]〉 ∈ f
and 〈[y′], [z′′]〉 ∈ f ′. Consider ε : dom (x)� dom (x′), with x′ ∈ [y′], a witness
of 〈[x], [y′]〉 ∈ f , and ε′ : dom (x′) � dom (y′′), with y′′ ∈ [z′′], a witness of
〈[y′], [z′′]〉 = 〈[x′], [z′′]〉 ∈ f ′. Then, ε′ ◦ ε : dom (x) → dom (y′′) witnesses
〈[x], [z′′]〉 ∈ f ′ ◦ f . That is, we have shown that f ′ ◦ f ⊆ f ′ ◦ f , and since both
are functions, we obtain f ′ ◦ f = f ′ ◦ f .
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At last, using that f (Jy ∈ xK) ≤′ Jy′ ∈ x′K′, it can be shown that, if we have
Jfun (h : x→ y)K = 1, then

r
fun

(
f̃(h) : f̃(x)→ f̃(y)

)z
= 1′, and:

f̃(idx) = idf̃(x) : f̃(x)→ f̃(x) and
r
fun

(
f̃(idx) : f̃(x)→ f̃(x)

)z′
= 1′

Besides, if Jfun (g : y → z)K = 1, then:

f̃(g ◦ h) = f̃(g) ◦ f̃(h) : f̃(x)→ f̃(z) and
r
fun

(
f̃(g ◦ h) : f̃(x)→ f̃(z)

)z′
= 1′

That is, by taking the quotient, f : Set(H) → Set(H′) actually defines a functor.
As we saw in the first section, a (∧,∨)-preserving function between Heyting

algebras induces a functor between the corresponding sheaf topos which preserves
finite limits and arbitrary colimits (the left adjoint of a geometric morphism). More
precisely, using the natural equivalences H-Set ' Sh (H) and H′-Set ' Sh (H′),
such a function f : H→ H′ gives rise to a functor ϕf : H-Set→ H′-Set given by:

〈X, δ〉 〈X, f ◦ δ〉

7−→

〈Y, τ〉

φ

∨
〈Y, f ◦ τ〉

f ◦ φ
∨

where f ◦ φ : X × Y → H′. Thus, we investigate how f̃ may induce a morphism of
H′-sets.

Proposition 3.11. Let 〈x, x′〉 ∈ f̃ with ε : dom (x)� dom (x′) as witness. Consider
the function εH′ : dom (x)× dom (x′)→ H′ given by:

εH
′(u, v′) ··= f (Ju ∈ xK) ∧′

q
ε(u) = v′

y′ ∧′
q
v′ ∈ x′

y′

for all 〈u, v′〉 ∈ dom (x) × dom (x′). Then, εH′ defines a morphism of H-sets εH′ :
(dom (x) , f ◦ δx) → (dom (x′) , δx′) which does not depend on the choice of witness,
where

δx(u, v) ··= Ju ∈ xK ∧ Ju = vK , for all u, v ∈ dom (x)
δx′(u′, v′) ··=

q
u′ ∈ x′

y′ ∧′
q
u′ = v′

y′
, for all u′, v′ ∈ dom

(
x′
)

Note that δx and δx′ are exactly the ones used in the equivalence H-Set ' Set(H)

because, since Ju ∈ xK ∧ Ju = vK ≤ Jv ∈ xK, we have:

Ju ∈ xK ∧ Ju = vK ∧ Jv ∈ xK = Ju ∈ xK ∧ Ju = vK
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Proof. We verify the four conditions that define a morphism of H-sets. Let u, v ∈
dom (x) and u′, v′ ∈ dom (x′).

1. δx′(u′, v′) ∧′ εH′(u, v′) ≤ εH′(u, u′). Indeed,

δx′(u′, v′) ∧′ εH′(u, v′) =
=

q
u′ ∈ x′

y′ ∧′
q
u′ = v′

y′ ∧′ f (Ju ∈ xK) ∧′
q
ε(u) = v′

y′ ∧′
q
v′ ∈ x′

y′

≤ f (Ju ∈ xK) ∧′
q
ε(u) = u′

y′ ∧′
q
u′ ∈ x′

y′

= εH
′(u, u′)

2. (f ◦ δx)(u, v) ∧′ εH′(u, v′) ≤ εH′(v, v′). Indeed,

(f ◦ δx)(u, v) ∧′ εH′(u, v′) =
= f (Ju ∈ xK ∧ Ju = vK) ∧′ f (Ju ∈ xK) ∧′

q
ε(u) = v′

y′ ∧′
q
v′ ∈ x′

y′

≤ f (Jv ∈ xK) ∧′ Jε(u) = ε(v)K′ ∧′
q
ε(u) = v′

y′ ∧′
q
v′ ∈ x′

y′

≤ f (Jv ∈ xK) ∧′
q
ε(v) ∈ v′

y′ ∧′
q
v′ ∈ x′

y′

= εH
′(v, v′)

3. εH′(u, u′) ∧ εH′(u, v′) ≤ δx′(u′, v′). Indeed,

εH
′(u, u′) ∧ εH′(u, v′) =

= f (Ju ∈ xK) ∧′
q
ε(u) = u′

y′ ∧′
q
u′ ∈ x′

y′ ∧′ f (Ju ∈ xK)∧′

∧′
q
ε(u) = v′

y′ ∧′
q
v′ ∈ x′

y′

≤ f (Ju ∈ xK) ∧′
q
u′ = v′

y′ ∧′
q
u′ ∈ x′

y′ ∧′
q
v′ ∈ x′

y′

≤
q
v′ ∈ x′

y′ ∧′
q
u′ = v′

y′

= δx′(u′, v′)

4.
′∨

w′∈dom(x′)
εH

′(u,w′) = (f ◦ δx)(u, u). Indeed,

• for all w′ ∈ dom (x′), using that f preserves 1, we have:

εH
′(u,w′) = f (Ju ∈ xK) ∧′

q
ε(u) = w′

y′ ∧′
q
w′ ∈ x′

y′

≤ f (Ju ∈ xK) ∧′ 1H′ = f (Ju ∈ xK) ∧′ f(1H)
= f (Ju ∈ xK) ∧′ f (Ju ∈ uK) = f (Ju ∈ xK ∧ Ju = uK)
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= (f ◦ δx)(u, u)

thus,
′∨

w′∈dom(x′)
εH

′(u,w′) ≤ (f ◦ δx)(u, u);

• on the other hand, since ε(u) ∈ dom (x′),

′∨

w′∈dom(x′)
εH

′(u,w′) ≥ εH′ 〈u, ε(u)〉 =

= f (Ju ∈ xK) ∧′ Jε(u) = ε(u)K′ ∧′
q
ε(u) ∈ x′

y′

= f (Ju ∈ xK) ∧′ 1H′ ∧′
q
ε(u) ∈ x′

y′

= f (Ju ∈ xK) ∧′
q
ε(u) ∈ x′

y′

≥ f (Ju ∈ xK) ∧′ f (Ju ∈ xK) = f (Ju ∈ xK)
= f (Ju ∈ xK ∧ 1H) = f (Ju ∈ xK ∧ Ju = uK)
= (f ◦ δx)(u, u)

Therefore,
′∨

w′∈dom(x′)
εH

′(u,w′) ≥ (f ◦ δx)(u, u).

Finally, note that this result does not depend on the choice of witness: let 〈u, v′〉 ∈
dom (x) × dom (x′) and τ : dom (x) � dom (x′) be a witness of 〈x, x′〉 ∈ f̃ . Then,
since u ∈ dom (x), we have 〈u, ε(u)〉 ∈ f̃ e 〈u, τ(u)〉 ∈ f̃ ; and since 1 = Ju = uK, the
previous theorem gives us:

1′ = f(1) = f (Ju = uK) ≤ Jτ(u) = ε(u)K′

Thus,

εH
′(u, v′) = f (Ju ∈ xK) ∧′

q
ε(u) = v′

y′ ∧′
q
v′ ∈ x′

y′ =
= f (Ju ∈ xK) ∧′ 1H′ ∧′

q
ε(u) = v′

y′ ∧′
q
v′ ∈ x′

y′

= f (Ju ∈ xK) ∧′ Jτ(u) = ε(u)K′ ∧′
q
ε(u) = v′

y′ ∧′
q
v′ ∈ x′

y′

≤ f (Ju ∈ xK) ∧′
q
τ(u) = v′

y′ ∧′
q
v′ ∈ x′

y′

= τH
′(u, v′)

thereby εH′(u, v′) ≤ τH
′(u, v′). The proof that τH′(u, v′) ≤ εH

′(u, v′) is analogous.
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Remark. The idea now would be to show that such morphisms εH′ are isomor-
phisms, which could be used to build a natural isomorphism between f and ϕf . To
show that, a possibility would be to use the characterization of monomorphisms and
epimorphisms in H-Set (see [4], Propositions 2.8.8 and 2.8.7), that is, to show that
for all u, v ∈ dom (x) and u′ ∈ dom (x′):

• εH′(u, u′)∧ εH′(v, u′) ≤ (f ◦ δx)(u, v) (which is equivalent to εH′ being monic);

• ∨
w∈dom(x)

εH
′(w, u′) = δx′(u′, u′) (which is equivalent to εH′ being epic);

and, since H-Set is a topos, εH′ would be an isomorphism.
Now, expanding the definitions,

εH
′(u, u′) ∧ εH′(v, u′) =

= f (Ju ∈ xK) ∧′
q
ε(u) = u′

y′ ∧′
q
u′ ∈ x′

y′ ∧′ f (Jv ∈ xK) ∧′
q
ε(v) = u′

y′ ∧′
∧′

q
u′ ∈ x′

y′

≤ f (Ju ∈ xK) ∧′
q
ε(u) = u′

y′ ∧′
q
ε(v) = u′

y′

≤ f (Ju ∈ xK) ∧′ Jε(u) = ε(v)K′
and we want to show that ≤ f (Ju ∈ xK ∧ Ju = vK) = (f ◦ δx)(u.v)

∨

w∈dom(x)
εH

′(w, u′) =

=
∨

w∈dom(x)
f (Jw ∈ xK) ∧′

q
ε(w) = u′

y′ ∧′
q
u′ ∈ x′

y′

=
∨

w∈dom(x)
f (Jw ∈ xK) ∧′ Jε(w) = ε(t)K′ ∧′

q
ε(t) ∈ x′

y′ (ε is surjective)

≥ f (Jt ∈ xK) ∧′ Jε(t) = ε(t)K′ ∧′
q
ε(t) ∈ x′

y′

and we want to show that =
q
u′ ∈ x′

y′ = δx′(u′, u′)

(the other inequality for the epimorphism condition is trivial, because of the meet’s
properties).

These inequalities can be achieved whenever f preserves meets and preserves
strictly the values of atomic formulas that is: if 〈x, x′〉 , 〈y, y′〉 , 〈z, z′〉 ∈ f̃ , then

f (Jx ∈ yK) =
q
x′ ∈ y′

y′
f (Jx = zK) =

q
x′ = z′′

y′

Therefore, observing the proof of the aforementioned theorem, note that we may
obtain these inequalities (and, thus, that εH′ is iso) at least in the case that f : H→
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H′ preserves (strictly) the implication and both arbitrary meets and joins. With
that hypothesis, we could also adapt the corollary to the theorem to obtain the strict
preservation of H-values of all formulas with bounded quantifiers.

4 Final Remarks and Future Works
Remark. The categorical and semantical correspondences between local set theories
(= topoi, see [2]) and cumulative (constructions in) set theories has been studied
since the late 1970s : [6], [8], [5], [13], [14]. It will be interesting to determine
in what level this semantical correspondence is compatible with the change of basis
given by a locale morphism f : H→ H′.
Possible extensions of this correspondence to other kinds of categories associated to
other complete lattices (eventually endowed with additional structure [LT15]) could
give us a clue of what are the “right semantical notions" of the less structured side
of the correspondence ( i.e., the cumulative construction), since the notion of H-set
can be extended to more general algebras ([12]).

Remark. In a different direction, another aspect that could be analysed is if the
“lifting property" through V(H) � Sh (H) also holds for other natural topoi mor-
phisms, such as the logical functors. Since logical functors and (the left part of)
geometric morphism coincide only trivially ( i.e. iff when both are equivalences of
categories), this will be in fact a new direction to pursue.

Note that the “conceptual orthogonality" between the two kind of functors between
Sh (H) and Sh (H′) occurs already in the algebraic level for arrows H → H′. More
precisely, given a non-trivial complete Boolean algebra (B,≤) and the unique injective
morphism i : 2 ↪→ B (where 2 = {0, 1}), we get three kinds of morphisms B→ 2:

• l : B→ 2 is the left adjoint of i (given by l(x) = 0⇔ x = 0): it preserves only
the suprema;

• r : B → 2 is the right adjoint of i (given by r(x) = 1 ⇔ x = 1): it preserves
only the infima;

• U : B → 2 is the quotient by an ultrafilter U , that preserves 0, 1, negation,
implication, finite sups and finite infs.

On the other hand, note that a logical functor Sh (H) → Sh (H′) induces a
Heyting algebra morphism H → H′ (since H ∼= Subobj(1)). Therefore, we would
expect to be able to establish a correspondence between other kind of morphisms
H → H′ and the logical functors Sh (H) → Sh (H′) and ask how they are related to
some alternative notion of induced arrow V(H) → V(H′).
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In particular, it seems be natural to consider the connections between the vari-
ous “forcing relations" (according the previous remark), classical and intuitionistic,
related to the canonical morphisms between complete Boolean algebras associated to
a complete Heyting algebra Reg(H) ↪→ H and H� H

〈x↔ ¬¬x〉 .
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Abstract

Often referred to as ‘the mathematics of dynamical, state-based systems’,
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the notions of transition, behaviour, or observational equivalence, modalities in
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properties of their behaviours can be expressed and verified.
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1 Introduction
1.1 Coalgebra ...
To define an (inductive) data structure, as typically taught in a first undergraduate
course on programming, one essentially specifies its ‘assembly process’. For example,
one builds a sequence in a data domain D, either by taking an empty list or by
adjoining a fresh element to an existing sequence. Thus, declaring a sequence data
type yields a function ζ : 1 +D×U −→ U , where U stands for the data type being
defined. The structured domain of function ζ captures a signature of constructors
(nil : 1 −→ U , cons : D×U −→ U), composed additively (i.e. ζ = [nil, cons]). The
whole procedure resembles the way in which an algebraic structure is defined.

Reversing an ‘assembly process’ swaps structure from the domain to the codo-
main of the arrow, which now captures the result of a ‘decomposition’ or ‘observation’
process. In the example at hand this is performed by the familiar head and tail
selectors joined together into

α : U −→ 1 +D × U (1)

where α = ∗ � empty? � ⟨head, tail⟩ either returns a token ∗, when observing an
empty sequence, or its decomposition in the top element and the remaining tail1.

This reversal of perspective also leads to a different understanding of what U
may stand for. The product D × U captures the fact that both the head and the
tail of a sequence are selected (or observed) simultaneously. In fact, once one is no
longer focused on how to construct U , but simply on what can be observed of it,
finiteness is no longer required: both finite or infinite sequences can be observed
through the process above. Therefore, U can be more accurately thought of as a
state space of a machine generating a finite or infinite sequence of values of type D.
Elements of U , in this example, can no longer be distinguished by construction, but
should rather be identified when generating the same sequence. That is to say, when
it becomes impossible to distinguish them through the observations allowed by the
‘shape’ structuring the codomain of α.

Function (1) is an example of a coalgebra. Its ingredients are: a carrier U (intu-
itively the state space of a machine), the shape of allowed observations, technically a
functor F(X) = 1 +D×X, and the observation dynamics given by function α, i.e.
the machine itself. Formally, a F-coalgebra is a pair ⟨U,α⟩ consisting of an object
U and a map α : U −→ F U . The latter maps states to structured collections of
successor states. By varying F , i.e. the shape of the underlying transitions, one may

1Notation e denotes the constant function λ x.e; the conditional ‘if b then a else c’ is written
a � b � c.
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capture a large class of semantic structures used to model computational phenomena
as (more or less complex) transition systems. Going even further, F is not restricted
to be an endofunctor in Set, the category of sets and functions. For example, as
we will see later, the category of topological spaces emerges as the natural host for
coalgebras modelling continuous systems. The study of the common properties of
all these systems is the subject of Universal Coalgebra, as developed systematically
by a number of authors from the pioneering work of J. J. M. M. Rutten [61].

A morphism between two F-coalgebras, ⟨U,α⟩ and ⟨V, β⟩, is a map h between
carriers U and V which preserves the dynamics, i.e. such that β · h = F h · α. As
one would expect, F-coalgebras and their morphisms form a category CF where
both composition and identities are inherited from the host category C. Along this
paper, C will always be Set, but in a few explicitly mentioned cases.

This sets Coalgebra as a suitable mathematical framework for the study of dy-
namical systems in both a compositional and uniform way. The qualifier uniform
requires some extra explanation: coalgebraic concepts (i.e. models, constructions,
logics, and proof principles) are parametric on, or typed by, the functor that charac-
terises the underlying transition structure. The point is that, in Mathematics as in
Software Engineering, going parametric allows us to focus on the abstract structure
of a problem such that, on solving it, what we actually solve is a whole class of prob-
lems. The obvious limits of human reasoning make such an economy of resources
the hallmark of rational thinking. And so we are back to Engineering.

This paper aims at introducing Coalgebra as a (conceptual) tool for the working
software engineer. The title is borrowed from Saunders Mac Lane’s famous book
Categories for the working mathematician first published in 1971. Category theory
is the study of mathematical structures focussed on the ways they interact rather
than on what they pretend to be. Roughly speaking, categories deal with (typed)
arrows and their composition, in the same sense that sets deal with elements, their
aggregation and membership. The theory uncovers universal properties, through
which whole families of arrows can be factored out in essentially unique ways, char-
acterises constructions uniformly applicable to structures and their transformations,
and unveils dual universes by simply reversing arrows.

Coalgebras are arrows in a category. Their theory brings to scene a mathemati-
cal space in which key ingredients of computational systems find their place: state,
behaviour, observation, interaction. Objects, automata, state-based components,
services, processes are part of our vocabulary to talk about systems which compute
by reacting to contextual stimuli received along their overall computation. Typically,
reactive systems rely on the cooperation of distributed, heterogeneous, often anony-
mous components organised into open software architectures prepared to survive in
loosely-coupled environments and adapt to changing application requirements. In a
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sense, the object of Software Engineering is nothing more than the (emergent) be-
haviour of computing systems, for which Coalgebra provides a suitable foundation.
As Robin Milner put it in his Turing Award Lecture [50],

From being a prescription for how to do something – in Turing’s terms a
‘list of instructions’, software becomes much more akin to a description
of behaviour, not only programmed on a computer, but also occurring by
hap or design inside or outside it.

Indeed, the origins of Coalgebra, in its applications to Computer Science, may be
traced back to Peter Aczel’s attempt [1] to characterise bisimulation and providing
a precise semantics to Milner’s calculus of communicating systems.

1.2 ... for the working software engineer
This paper is not a systematic presentation of coalgebra theory, let alone a tutorial.
My aim is much humbler: to make a case for Coalgebra in relation to three main
topics unavoidable in any roadmap to Software Engineering – systems’ models, ar-
chitectures, and properties. Each of them will give me the opportunity to introduce
a number of concepts and constructions in Coalgebra, as well as to provide a brief
illustration based on current research developed by my research team.

Models. Models are pervasive in the engineering practice, and the software domain
is not an exception. Irrespective of the myriad of (textual, diagrammatic, formal,
etc.) notations used in practice, models should always be understood in the sense
they are in e.g. school physics problem-solving. There, once a problem is understood,
a mathematical model is built as an appropriate abstraction, on top of which one
reasons about the behaviour of the system until a ‘solution’ is found. We will
discuss how several variants of transition systems can be modelled coalgebraically.
The characterisation of systems’ behaviour, and the definition of suitable notions of
equivalence for state-based systems will also be addressed. As an illustration, we
will revisit recent results on modelling hybrid automata as coalgebras.

Architectures. Software architecture emerged as a proper discipline within Soft-
ware Engineering from the need to explicitly consider, in the development of in-
creasingly larger and more complex systems, their overall structure, organisation,
and emergent behaviour. As a model, an architecture acts as an abstraction of a sys-
tem that suppresses details of its constituents, except for those which affect the ways
they use, are used by, relate to, or interact with other components. This topic will be
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illustrated by revisiting an architectural calculus of state-based software components
framed as generalised Mealy machines, in which the strict deterministic discipline is
relaxed to capture more complex behavioural patterns. In particular, we will men-
tion the interplay between the two basic modes in which software can be composed:
sequentially and concurrently, i.e. along a temporal or a spatial dimension, respec-
tively. This leads to particular instances of what is known in Mathematics as an
interchange law. Again, some aspects will be instantiated for the less regular case of
components which, like sensors in a network, exhibit forms of continuous evolution.

Properties. A plethora of logics is used in Software Engineering to support the
specification of systems’ requirements and properties, as well as to verify whether,
or to what extent, they are enforced in specific implementations. Broadly speak-
ing, the logics of dynamical systems are modal, i.e. they provide operators which
qualify formulas as holding in a certain mode. In mediaeval Scholastics such modes
represented the strength of assertion (e.g. ‘necessity’ or ‘possibility’). In temporal
reasoning they can refer to a future or past instant, or a collection thereof. Simi-
larly, one may express epistemic states (e.g. ‘as everyone knows’), deontic obligations
(e.g. ‘when legally entitled’), or spatial states (e.g. ‘in every point of a surface’).
Regarding dynamical systems as transformations of state spaces according to spe-
cific transition shapes, i.e. as coalgebras for particular functors, such modes refer to
particular configurations of successor states as defined, or induced, by the coalgebra
dynamics. Again, Coalgebra provides a uniform characterisation by letting functor
F induce ‘canonical’ notions of modality and the corresponding logic. General ques-
tions in modal logic, such as the trade-off between expressiveness and computational
tractability, or the relationship between logical equivalence and bisimilarity, can be
addressed at this (appropriate) level of abstraction. We will revisit modal logic from
a coalgebraic perspective and illustrate this discussion mentioning a logic to express
properties of n-layered, hierarchical transition systems.

Paper structure. Models, architectures and properties are revisited, from a coal-
gebraic viewpoint, in the following sections. We will try to substantiate the claim
that Coalgebra is the right mathematics to model and reason about state-based sys-
tems. On the other hand, we will argue that the coalgebraic approach is generic and
compositional: constructions, techniques and tools apply to a large class of applica-
tion areas and can be combined in a modular way. Finally, section 5 concludes with
a brief discussion of current research directions and of what the future might bring
for this area.

45



L. S. Barbosa

2 Models
2.1 State and behaviour
Although information technology became ubiquitous in modern life long before a
solid scientific methodology, let alone formal foundations, has been put forward, the
ultimate goal of a software engineering discipline is the development of methods,
techniques and tools for formal – and preferably automatic – analysis and verifi-
cation of computational systems. Analysis and verification are usually performed
on suitable abstractions of the real systems, rather than on the systems themselves.
Coalgebra provides a framework to build such abstractions, or models, as state-based
transition systems parametric on a transition shape, or type, given by an endofunctor
F in a host category. The choice of F determines not only the expressivity of the
model, but also a canonical notion of behaviour and observational equivalence.

Consider, for example, an elementary model of an object whose internal state is
observable through an attribute at : U −→ B and may evolve by reacting to external
stimuli through a method2 m : U −→ UA. This defines a coalgebra

p =̂ ⟨m, at⟩ : U −→ UA ×B

for the functor F X = XA ×B, known in the literature as a Moore machine. A bit
of syntactic sugar recovers the usual transitional notation:

u
a−→p u

′ ⇔ mu a = u′ and u ↓p b ⇔ atu = b

The notion of a coalgebra morphism h : p −→ p′ boils down to the following com-
muting diagram

U
p
//

h

��

UA ×B
hA×id
��

V
p′
// V A ×B

or, avoiding exponentials, U
at //

h
��

B

id
��

V
at′
// B

U ×A m //

h×id
��

U

h
��

V ×A m′
// V

because

⟨m′, at′⟩ · h = (hA × id) · ⟨m, at⟩
⇔ { products}
⟨m′ · h, at′ · h⟩ = ⟨hA · m, at⟩

⇔ { structural equality}
2Notation f stands for the curried version of a function f .

46



Coalgebra for the working software engineer

m′ · h = hA · m ∧ at′ · h = at
⇔ { exponentials}

m′ · (h× id) = h · m ∧ at′ · h = at
⇔ { curry is a bijection}

m′ · (h× id) = h · m ∧ at′ · h = at

The behaviour of p, denoted in the sequel by [(p)], at a state u ∈ U , is revealed by
successive observations (or experiments) triggered by the input of different sequences
s = [a0, a1, . . . ] in A∗:

at u, at (m u a0), at (m (m u a0) a1), . . .

which entails the following recursive definition of [(p)]:

[(p)]u nil =̂ atu and [(p)]u (cons ⟨a, t⟩) =̂ [(p)] (m ⟨u, a⟩) t .

Therefore, behaviours are elements of BA∗ , and can be thought of as rooted trees
whose branches are labelled by sequences of inputs in A and leaves by values in B.
Moreover, they organise themselves into a Moore machine over BA∗ ,

ωF =̂ ⟨mω, atω⟩ : BA∗ −→ (BA∗)A ×B .

where

atω f =̂ f nil i.e. the value of the attribute before any input
mω f a =̂ λ s . f(cons⟨a, s⟩) i.e. input determines subsequent evolution

The coalgebra ωF whose states are the F-behaviours themselves plays a specific
role: it is final among all F-coalgebras. Actually, for any p = ⟨m, at⟩, [(p)] is the
unique morphism [(p)] : p −→ ωF . Note that

atω · [(p)] = at
⇔ { introduction of variables }

atω⟨[(p)]u⟩ = atu
⇔ { definition of atω }
⟨[(p)]u⟩nil = atu

⇔ { definition of [(p)] }
true

mω · ([(p)]× id) = [(p)] · m
⇔ { introduction of variables and application }

mω⟨[(p)]u, a⟩ = [(p)](m ⟨u, a⟩)
⇔ { definition of mω }

λ s . [(p)]u (cons ⟨a, s⟩) = [(p)](m ⟨u, a⟩)
⇔ { introduction of variables and application }

[(p)]u (cons ⟨a, t⟩) = [(p)] (m ⟨u, a⟩) t
⇔ { definition of [(p)] }

true
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with uniqueness being easily established. In general, denoting by ωF : ΩF −→
F(ΩF ) the final coalgebra for a functor F , finality can be expressed as a universal
property by the following equivalence:

k = [(p)] ⇔ ωF · k = F(k) · p (2)

Finality is a powerful tool. For example, the assertion that any two states from
coalgebras p and q connected by an arbitrary morphism h : p −→ q generate the
same behaviour, i.e. [(p)] = [(q)] · h, is a direct consequence of uniqueness (the right
to left implication in equivalence (2)) as depicted in the diagram below3.

ΩF
ωF // F(ΩF )

V
q
//

[(q)]

OO

F(V )

F([(q)])
OO

U

[(p)]

::

p
//

h

OO

F(U)

F(h)
OO

Similarly, existence (the dual, left to right implication) provides a definition
principle for operators over behaviours. Each of those has its source equipped with
coalgebra structure p specifying the ‘one-step’ dynamics. Then [(p)] gives the rest:
the operator becomes defined by specifying its output under all different observers
as recorded in functor F .

An important observation is that the dynamics of the final coalgebra is an iso-
morphism. Isomorphisms being self-dual, this also entails that the initial algebra of
a functor is an isomorphism as well, which was the original statement of this result
known as Lambek’s lemma. The proof relies on the universal property and, in this
sense, is illustrative of a proof by coinduction presented equationally.

One starts by assuming the existence of an inverse αF to ωF , which entails
αF · ωF = idΩF and ωF · αF = idF(ΩF ). Then, one of these requirements is used to
conjecture a definition for αF (an engineer would say an ‘implementation’ ...). Note
the use of the fact that [(ωF )] = idΩF , entailing a ‘reflection’ law, to introduce, rather
than eliminate, the behaviour morphism in the calculation. Finally, one checks the
validity of the conjecture above by verifying with it the remaining requirement.

3The diagram captures a fusion property useful in behaviour reasoning.
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Putting both arguments side by side, the proof goes as follows:

αF · ωF = idΩF
⇔ { reflection }

αF · ωF = [(ωF )]
⇔ { universality }

ωF · αF · ωF = F(αF · ωF ) · ωF
⇔ { F preserves composition }

ωF · αF · ωF = F(αF ) · F(ωF ) · ωF
⇐ { cancel ωF ; universality }

αF = [(F(ωF ))]

ωF · αF
= { replace by derived conjecture }

ωT · [(F(ωF ))]
= { [(F(ωF ))] is a morphism }
F([(F(ωF ))]) · F(ωF )

= { F preserves composition }
F([(F(ωF ))] · ωF )

= { just proved }
F(idΩF )

= { F preserves identities }
idF(idΩF )

Lambek’s lemma characterises both initial algebras and final coalgebras for a functor
F as fixed points of equation X = F(X). The terminology comes from an analogy
with what happens in a partial order ⟨P,≤⟩ seen as a category. A functor is then
just a monotone function, and therefore a coalgebra is an element x of P such that
x ≤ F(x). The final coalgebra is, then, an element m ≤ F(m) such that, for all
x ∈ P , x ≤ F(x) ⇒ x ≤ m, which, by Tarski’s theorem, is the greatest fixpoint of
F with respect to ≤.

Whenever final coalgebras exist, which is the case for every bounded Set endo-
functor, they provide a canonical, often intuitive interpretation of behaviour. Even
when this is not the case, behaviours can be approximated by an ordinal indexed se-
quence of objects such that each element bα encodes behaviour that can be generated
(or exhibited) in α steps.

As mentioned before, varying the functor F one obtains different models, with
tuned notions of morphism and behaviour. For example, making B = 2 in F char-
acterises deterministic automata on the alphabet A, whose behaviours are identified
with the recognised languages. Actually, the state space of ωF becomes 2A∗ , i.e. each
state is a subset of A∗, and its dynamics is given by ⟨mω, atω⟩ : 2A∗ −→ (2A∗)A× 2,
where

atω s = nil ∈ s and mω s = λ a . {cons⟨a, x⟩ | x ∈ s} .
Variants of Moore machines can be obtained by specifying a particular behavioural
effect T :

p : U −→ T (U)A ×B
thus enforcing a particular branching structure upon p. For example T (X) = X+ 1
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makes the automata partial, whereas T = P , for P− the finite, covariant powerset
functor, introduces non-determinism.

Another classical distinction concerns whether the ‘output’ B depends on the
‘input’ A. For example, a generic Mealy machine would be specified by a coalgebra

p : U −→ T (U ×B)A .

Both Moore and Mealy machines are examples of what are usually called reactive
transition systems, due to the explicit presence of an ‘input’ universe. A coalgebra
for F(X) = T (B×X), on the other hand, stands for a so-called generative model, as
values are produced, rather than consumed, on transitions. For example, processes
in a process algebra are typically modelled as a (the final) coalgebra for F(X) =
P(B ×X). Probabilistic automata are based on the distribution functor D(X) =
{µ : X −→ R≥0 |

∑
x∈X µx = 1}. The large collection of variants of automata

capturing some form of probabilistic evolution was systematically studied by Ana
Sokolova [66] in a coalgebraic setting. Examples of a reactive probabilistic automata
and a stratified one, in which Markovian and regular transitions may alternate, are
depicted in diagrams (a) and (b) below.

•
a[ 1

3 ]

}}

a[ 2
3 ]
��

b[1]

!!•
b[1]
��

• •
a[1]
��• (a) •

•
1
2

}}

3
4

!!•
x

��

y

��

•
1
2
��

1
2

��• • (b) • •

The relevant functors are, respectively, F(X) = (D(X) + 1)A and F(X) =
D(X)+(B×S)+1. More complex transitions come from combining different effects.
For example a Segala probabilistic automata is a coalgebra p : U −→ P(B ×D(U)).
Note than more than one transition may be chosen non-deterministically from a
given state, but once the choice is made outcomes with different probabilities are
possible. Specified in a common coalgebraic setting, all such variants can be anal-
ysed and their expressivity compared through the identification of suitable natural
transformations between the ‘shape’ functors; moreover, one typically obtains more
general results and shorter proofs. Later, in subsection 2.3, recent work in my group
on a similar exercise for hybrid automata will be commented. First, however, an
essential ingredient for a modelling discipline is still missing: a notion of model
equivalence.
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2.2 Equivalences
The comparison, replacement and reuse of models entails the need for suitable no-
tions of equivalence. In a coalgebraic setting, this is observational: two states u ∈ U
and v ∈ V in F-coalgebras p : U −→ F(U) and q : V −→ F(V ), are identified
if they cannot be distinguished by observations as allowed by F . Actually, in this
case they generate the same behaviour. For example, equivalent states in a Moore
machine p : U −→ UA × 2, i.e. a deterministic automaton, do recognise the same
language.

Whenever F admits a final coalgebra ωF , the notion of observational equivalence,
represented in the sequel as ≡F , can be made precise is the obvious way:

u ≡F v ⇔ [(p)]u = [(q)]v (3)

If that is not case, the definition can be generalised by requiring the existence of a
coalgebra ξ : S −→ F(S) and a (epic) cospan p

r1−→ ξ
r2←− q in CF (or equivalently

a epic cospan in the host category C whose legs lift to F-coalgebra morphisms, as
depicted in diagram (a) below) such that r1u = r2v.

S

ξ

��

U

p

��

r1

;;

V

q

��

r2

cc

FS

F(U)

Fr1

;;

(a) F(V )

Fr2

cc

R
p2

##

p1

{{
ρ

��

U

p

��

V

q

��

FR
Fp2

##

Fp1

{{

F(U) (b) F(V )

It is worthwhile to stress that the way ξ : S −→ F(S) is defined is dual to the one
used in Algebra (the other, perhaps more familiar, half of the universe) to give a
congruence. Indeed, a congruence is an equivalence relation compatible with the
constructors in the algebra signature, captured by a functor G. This means that
there exists an algebra ζ : G(A) −→ A and a (monic) span a

p1←− ζ
p2−→ b to G-

algebras a and b. Not surprisingly, thus, ξ is called a cocongruence: congruent terms
in Algebra have cocongruent behaviours as a counterpart in Coalgebra.

Interestingly enough, indistinguishability by observation is often given in terms
of bisimilarity, i.e. the existence of a bisimulation containing the pair of states under
consideration. A bisimulation is defined as the analogue, rather than the dual, to
a compatible relation in Algebra, i.e. as a (monic) span p

p1←− ρ
p2−→ q in CF as
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depicted in (b). In Set, R is a relation in U × V whose projections p1, p2 lift to
coalgebra morphisms, which is the original definition of bisimulation given by Aczel
and Mendler [2]. We write u∼F v if there exists a bisimulation R such that u = p1t
and v = p2t for a t ∈ R, and say that u and v are bisimilar states.

U

p

��

Gh

γ

��

p1
oo

p2
// V

q

��

F(U) F(Gh)F(p1)
oo

F(p2)
// F(V )

A rather obvious example of a bisimulation is provided by the graph of any coalgebra
morphism. Indeed, let h : p −→ q and Gh = {⟨u, hu⟩ | u ∈ U}, as usual. Taking, in
the diagram on the right, γ = F(p1)◦ · p · p1, both squares commute because

p · p1 = F(p1) · γ
⇔ { definition of γ }

p · p1 = F(p1) · F(p1)◦ · p · p1
⇔ { converse }

p · p1 = p · p1

q · p2 = F(p2) · γ
⇔ { definition of γ }

q · p2 = F(p2) · F(p1)◦ · p · p1
⇔ { h = p2 · p◦

1, functors }
q · p2 = F(h) · p · p1

⇔ { h is a morphism }
q · p2 = q · h · p1

⇔ { h = p2 · p◦
1 }

q · p2 = q · p2

Conversely, whenever a graph Gh is a bisimulation, then h is a coalgebra morphism.
Since p1 is bijective, so is its converse p◦1. Thus, composition h = p2·p◦1 is a morphism.

There is an alternative definition of bisimulation which is closer to the intuitive
interpretation as a binary relation over states which is closed for the coalgebra
dynamics. It reads: R is a bisimulation if

⟨u, v⟩ ∈ R ⇒ ⟨pu, qv⟩ ∈ F(R) (4)

where F(R) is the so-called a relation lifting of R through functor F . This can be
defined inductively for a wide class of functors, including all mentioned up to now
in this paper, but a more general definition, applicable to any Set endofunctor, can
be given as the image of F(R) under the split ⟨F(p1),F(p2)⟩, where p1 and p2 are,
as before, the projections of R onto U and V , respectively; thus,

F(R) = {⟨F(p1) t,F(p2) t⟩ | t ∈ F(R)} .
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For example, applying (4) to the functor used above to specify Moore machines,
leads to the following definition of bisimulation:

⟨u, v⟩ ∈ R ⇒ atp u = atq v and ⟨mp u a,mq v a⟩ ∈ R, for all a ∈ A .

This means that all states related by R support identical observations and enforce
that their successor states are also related by R.

The two definitions of bisimulation discussed here are indeed equivalent. This
is shown in [41] taking F as a functor in a category whose objects are relations
and morphisms the corresponding spans4. The Aczel-Mendler definition has a wider
application for functors in arbitrary categories. The one based on relation lifting,
on the other hand, is closer to the intuitive notion in Process Algebra [58] that a
bisimulation is a closed relation.

Whatever definition one uses, the fact is that in Coalgebra bisimulation, just as
behaviour, acquires a shape given by F . Moreover, all folklore results from Process
Algebra hold for coalgebraic bisimulations. In particular, the set of bisimulations
linking two coalgebras forms a complete lattice for relation inclusion with joins given
by unions. The largest bisimulation in this lattice is the bisimilarity relation denoted
by ∼F . This is actually the greatest fixed point of a map R 7→ {⟨u, v⟩ | ⟨pu, qv⟩ ∈
F(R)}, from a direct application of the Knaster–Tarski theorem, based on F :
P(U × V ) −→ P(F(U)×F(V )) being monotone. Bisimulations are closed for union
and converse, but not necessarily for relational composition.

Bisimilarity, however, is strictly weaker than observation equivalence. Actually,
the choice of a concept that is an analogue of, rather than a dual to, a congruence
is largely motivated by historical reasons [62]. Moreover, unlike ≡, bisimulations
may be constructed iteratively, and therefore is amenable to automation. Quite
efficient algorithms for checking bisimilarity are indeed available. For most functors
of interest in current applications to Software Engineering, both notions coincide. It
is instructive, however, to take a while to understand what is indeed required from
the ‘shape’ functor in order to guarantee such a coincidence.

First of all notice it is not difficult to see that ∼ ⊆≡. Consider again F-
coalgebras p : U −→ F(U) and q : V −→ F(V ). Now form the pushout (S, r1, r2) of
a bisimulation R and its projections as depicted in the following diagram:

4Regarding F as a relator in the category of sets and relations leads to a very compact proof
[9] of this result.
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R
p2
//

p1
��

V

r2
�� Fr2·q

��

U

Fr1·p ++

r1 // S

ξ

!!

FS
Then, arrows F(r1) · p : U −→ F(S) and F(r2) · q : V −→ F(S) determine a unique
coalgebra ξ such that F(r1) · p = ξ · r1 and F(r2) · q = ξ · r2 as required. Suppose
now that u ≡ v, i.e. that there is an epic cospan p r1−→ ξ

r2←− q in CF as depicted in
the fore square of the cube in the diagram below.

F(U) F(r1)
// F(S)

U

p
??

r1// S

ξ
??

F(R)
F(p2)

//

F(p1)

OO

F(V )

F(r2)

OO

R

σ
;C

p2
//

p1

OO

V

q

??

r2
OO

Form its pullback, with R = {⟨u, v⟩ ∈ U × V | r1u = r2v}. The lifting of this
square through F is represented in the back square of the cube.

Coalgebras p, q and ξ link both squares. Observe that the following two paths
from R to F(S), depicted with curly arrows in the cube, coincide:

F(r1) · p · p1

= { r1 : p −→ ξ is a coalgebra morphism }
ξ · r1 · p1

= { the pullback square commutes }
ξ · r2 · p2

= { r2 : q −→ ξ is a coalgebra morphism }
F(r2) · q · p2

If F(R), together with F(p1) and F(p2), is also a pullback, then, given the equality
just proved, there exists a coalgebra σ : R −→ F(R) and coalgebra morphisms
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p1 : σ −→ p and p2 : σ −→ q. This means that R is a bisimulation. Notice there is
no need for σ to be unique, therefore all one has to require from functor F is that
it preserves weak pullbacks.

Under this apparently weird condition, bisimilarity and observational equivalence
coincide. That is to say, two states generate the same behaviour if and only if they
are bisimilar. Therefore, every bisimulation over the final coalgebra is a coreflexive,
i.e. a subset of the identity relation. Furthermore this condition guarantees that the
relational composition of two bisimulations is still a bisimulation, as one is used to
from the (well-behaved) domain of Process Algebra.

Most Set endofunctors useful for the software engineer, which do indeed preserve
weak pullbacks, belong to the class of extended polynomial functors

F ∋ Id | K | IdK | P | F × F | F + F | F · F

where K is a set, and P is the finite, covariant powerset functor. The distribution
functor D, mentioned above, is also often considered, as well as the star functor and
other solutions of datatype equations.

Bisimilarity provides a technique for coinductive proofs, i.e. a sound tool to
establish observational equivalence, which is complete for the class of functors pre-
serving weak pullbacks. To establish equality of the behaviour generated by two
state values it is enough to build a bisimulation containing them. This corresponds
to the following procedure: i) iteratively strengthen the statement to be proved
(from equality u = v to a larger set containing the pair ⟨u, v⟩), and then ii) ensure
that such a set is closed for the coalgebra dynamics (i.e. it forms a bisimulation).
Actually what is going on underneath is an unfolding process which, typically, does
not terminate, but reveals longer and longer prefixes of the result: every element
in the result gets uniquely determined along this process. Inductive reasoning re-
quires that, by repeatedly unfolding the definition, arguments become smaller, i.e.
closer to the elementary constructors of the algebra. In Coalgebra our attention
shifts from argument’s structural shrinking to the progressive construction of the
behaviour which becomes richer in informational contents.

2.3 Illustration: Hybrid automata
Hybrid automata were proposed more than two decades ago as a family of mod-
els capturing the interaction of discrete (computational) systems with continuous
(physical) processes. Essentially, they are finite state machines with a finite set of
continuous variables whose values are typically described by a set of ordinary differ-
ential equations. Since the publication of T. Henzinger seminal paper [36] in 1996,
several different characterisations emerged independently. They were often driven
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by applications, seeking to capture a specific feature or property of the system to
be modelled.

As has happened before, for example in the case of probabilistic automata [66],
Coalgebra helps to organise the landscape by characterising hybrid automata, and
associated notions of bisimulation, in a uniform way, parametric on the concrete
functor expressing the specific variant of interest. The coalgebraic perspective pro-
motes a ‘black-box’ view where discrete transitions are kept internal to the automa-
ton and continuous evolutions make up the external, observable behaviour. This is
in contrast with the traditional representation in which both discrete steps and con-
tinuous evolutions are joined in the same transition relation.Therefore, the general
shape for these models are coalgebras typed as

p : U −→ G(U)×H(O) (5)

whereH captures the continuous evolution of a quantity O over time. FunctorH was
introduced in a recent paper [55] as an endofunctor in the category Top of topological
spaces and continuous functions. In broad terms, working in Top is motivated by
the key role that continuity plays in this setting, and by the possibility to handle,
within the coalgebraic framework, classical properties of dynamical systems. For
example, a notion of robustness (a system is robust if small changes in the input
lead to very similar evolutions) can be addressed by varying the topology on the
space of inputs. The topic, however, will not be pursued in detail here.

The functor H is defined as

H(X) =̂ { ⟨f, d⟩ ∈ XT × D | f ·⋏d = f } and H(h) =̂ hT × id (6)

where T abbreviates R≥0, D = [0,∞] is the one-point compactification of R≥0 and
hT f = h · f . Condition f ·⋏d = f , for ⋏d =̂ id � (≤d) � d, means that f becomes
constant after time instant d.

To illustrate this model, consider a bouncing ball dropped at some positive height
and with no initial velocity. Due to the gravitational pull, it will fall into the ground
but then bounce back up, losing, of course, part of its kinetic energy in the process.

This can be seen as a hybrid component whose (continuous) observable behaviour
is the evolution of its spacial position (P ), whereas the internal memory records the
initial velocity (V ) and position updated at each bounce:

b : V × P −→ (V × P )×H(P )

The discrete behaviour bd : V ×P → V ×P (which updates the discrete state, i.e. the
initial velocity and position pair) is computed by multiplying the current velocity
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by the coefficient of restitution to obtain the new initial velocity for the next bounce
and updating position to 0. Formally,

bd ⟨v, p⟩ =̂ ⟨velg⟨v, zposg⟨v, p⟩⟩ × −0.5, 0⟩

where 0.5 is the coefficient of restituion, and current velocity is computed as vela⟨v, t⟩
=̂ v − at. Function zposa (v, p) =̂

√
2ap+v2+v

a returns the time needed to reach
the ground, given a positive height and a current velocity. On the one hand, the
continuous part bc : V × P → HP is computed by

bc =̂ ⟨posg(v, p), zposg⟩ ,

where posa : V ×P −→ P T is given by posa ⟨v, p⟩=̂ λ t. (p+ vt− 1
2at

2), and g is the
gravitational constant. Putting both components together

b =̂ ⟨bd, bc⟩ .

The behaviour of a (−×H(O))-coalgebra p at a state u ∈ U , is a function that
computes a stream of (observable) continuous evolutions generated by p from state
u. Actually, the functor −×H(O) has a final coalgebra, i.e. the following diagram
commutes uniquely

H(O)ω ω // H(O)ω ×H(O)

U

[(p)]

OO

p
// U ×H(O)

[(p)]×id
OO

where Xω denotes the set of streams over X, and ω =̂ ⟨tail, head⟩ is the dynamics
of the final coalgebra.

For the bouncing ball, assuming the initial velocity and position pair is ⟨0, 5⟩,
the plot below depicts the first three elements of the generated stream.
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Varying G in (5), one is able to capture different variants of hybrid automata and
compute the corresponding notions of behaviour and bisimulation. For example,
instantiating G to P or D, leads to non-deterministic or reactive Markov hybrid
automata. More complex variants, already studied in the literature [28], combine
non-determinism with probabilities, in the sense that, at each transition, a distribu-
tion function over states is non-deterministically chosen. They come up as coalgebras
p : U −→ PD(U)×H(O). Another interesting case makes G(U) = KU , for K a set
of weights, thus associating costs to discrete transitions. New types of hybrid au-
tomata can also be studied in this setting. For example, G = ∆, for ∆ the diagonal
functor, gives rise to arrows of type p : U −→ ∆U ×H(O), explored in [54]. These
correspond to deterministic hybrid automata able to replicate themselves at each
discrete transition to capture, for example, cellular replication when an organism
reaches a specific saturation.

3 Architectures
3.1 Composition and refinement
Coalgebra provides a uniform framework for modelling state-based systems. The
architectural problem in Software Engineering addresses the ways in which such
systems can be composed. Composition has a ‘geometrical’ flavour: components
have boundaries (i.e. interfaces) and organise themselves in two dimensions, tempo-
ral and spatial, as in a Cartesian plane, as depicted below. The boundary shared
by vertically composed components represents handling control from one, which is
terminating a particular execution thread, to another which is launching a new one.
Dually, horizontal composition corresponds to concurrent evolutions being juxta-
posed or eventually interacting through exchange of values or a common involvement
in shared actions.

space
//

time

OO

The ways in which these two basic forms of
composition are defined certainly varies. For
example, if components are terminating imper-
ative programs, vertical interfaces are often re-
alised through shared, global state variables.
On the other hand, horizontal boundaries may
represent the history of recorded interactions.
In components modelled coalgebraically [7, 10],
vertical composition is a form of pipelining (in-
terfacing through shared output-input types),
whereas horizontal composition is realised by
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some form of parallel paired evolution.
At this abstract level, architectural calculi build on these two forms of composi-

tion, hereby represented by ; and �, respectively. Associativity of both operators is
clearly expected, as the ‘geometry’ is invariant for the ways parentheses are placed.
Commutativity of � conforms to the intuition that parallel composition is unordered,
but this conceptual assumption may be differently interpreted by different tensors.
A similar observation applies to idempotency: it would be expected when � encodes
a choice between alternative components, but less so for a synchronous product. The
interaction between the temporal and the spatial dimensions is captured by distri-
bution, which follows the same pattern of an interchange law in category theory,

(p� q) ; (p′ � q′) = (p ; p′) � (q ; q′) . (7)

The law is rather familiar. For example, taking � as parallel composition in a
process algebra and ; as action prefixing, it introduces interleaving on moving from
the right to the left hand side.

In practice, software architectures are described through a myriad of concrete
languages and formalisms, often of a graphical nature which may allow for rather
flexible coordination patterns. Coalgebra has been used to provide semantics to
some of these formalisms, from classical process algebra [11] and the π-calculus [51] to
statecharts [29] and different UML diagrams. In each context, composition operators
to build new (coalgebraic models of) components from old, like variants of � and
;, are specified and their properties studied. A concrete component calculus will
be reviewed below to illustrate a possible application of Coalgebra to architectural
design. Before that, however, we would like to address two main issues on this
discussion.

The first one concerns composition of components modelled coalgebraically. To
make things concrete, and already anticipating the illustration section, consider
generalised Mealy machines

p : U × I −→ T (U ×O) (8)

which can be seen as coalgebras for F(X) = T (X×O)I . This provides an elementary
model of state-based software components characterised by

• an internal state space,

• input and output observation universes to ensure the flow of data,

• the possibility of interaction with other components during the overall com-
putation,
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• a behavioural effect which specifies their branching structure.

We have already seen some possible variants for T . However, if one wants to com-
pose this sort of components and define a calculus to reason about their inter-
connection, the first step is to enforce extra structure upon T , namely that of a
strong monad. Reacting to an input i, the coalgebra will not simply produce an
output and a continuation state, but a T -structure of such pairs. The monadic
structure provides tools to handle the ‘nesting’ of such computations. Unit (η) and
multiplication (µ) correspond, respectively, to a value embedding and a ‘flatten’
operation to reduce nested behavioural effects. The latter is the key element to
define effect-aware composition, which, as discussed below, is based on composition
in the Kleisli category for T . Recall, for future reference, the definition: the com-
position of two monadic arrows m : I −→ T (Z) and n : Z −→ T (O), is given by
n • m =̂ µ · T (n) · m. Therefore, in this setting, the abstract operator ; builds
on composition in the universe of T -computations, i.e. in the corresponding Kleisli
category, whereas � will be a tensor in this category. Strength, either in its right
(τr : U × T (V ) −→ T (U × V )) or left (τl) version, handles context information. A
sort of distributive law δ : T (U)×T (V ) −→ T (U×V ) is obtained by composing the
right and left strengths. Whenever the order in which this composition is performed
does not matter, the monad is said to be commutative. As one may guess this will
impact on commutativity of tensors � connecting such models.

The second comment which is in order concerns the interpretation of the equal-
ity symbol in equation (7). In a coalgebraic setting the obvious choice is observa-
tional equality for the relevant functor T . In engineering practice, however, one is
sometimes interested in establishing weaker relationships. For example, (7) may be
presented as an inequation to convey the intuition that a sequential computation is
a special case of a parallel one, as in concurrent Kleene algebra [37].

This opens an important issue in architectural design – refinement – that we will
briefly review from two different perspectives.

In data refinement, there is a ‘recipe’ to identify a refinement situation: look for
an abstraction function to witness it. In other words: look for a morphism in the
relevant category from the ‘concrete’ to the ‘abstract’ model such that the latter
can be recovered from the former up to a suitable notion of equivalence, though
typically not in a unique way. In a coalgebraic framework, however, some extra
care is in order. The reason is obvious: coalgebra morphisms entail bisimilarity.
Therefore one has to look for a somewhat weaker notion of a morphism between
coalgebras.

The first approach to be mentioned here [68] works for extended polynomial
endofunctors in Set and resorts to the notion of a preorder ≤ on a functor T . This
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is itself a functor which makes the following diagram commute:

PreOrd

��

⟨T (V ),≤T (V )⟩_
��

Set T
//

≤T
77

Set i.e. V � //
,

55

T (V )

This means that for any function h : V −→ U , T (h) preserves the order, i.e. in a
pointfree formulation, T (h)· ≤T (V ) ⊆ ≤T (U) · T (h).

Given two T -coalgebras β : V −→ T (V ) and α : U −→ T (U), one may now
define, with respect to a preorder ≤, the notions of a preserving and a reflecting
morphism as a function h from V to U such that

T (h) · β .
≤ α · h and α · h .

≤ T (h) · β ,

respectively. The notation
.
≤ is used for the pointwise lifting of the preorder ≤ to the

functional level, i.e. f
.
≤ g⇔∀x . f x ≤ g x ,or, equivalently, f

.
≤ g⇔f ⊆≤ · g. The

names chosen for these morphisms come from the fact that indeed they respectively
preserve and reflect state transitions induced by coalgebras, i.e.

v −→β v
′ ⇒ h v −→α h v

′ and h v′ −→α u′⇒ ∃v′∈V . v −→β v
′ ∧ u′ = h v′

where u′ −→α u⇔ u′ ∈T α u is an instance of datatype membership [38], defined
inductively for the class of relevant functors [8] and verifying

h · ∈T = ∈T · T h (9)

for any function h.
A refinement preorder is a preorder ≤ on an endofunctor T satisfying the fol-

lowing compatibility condition with the membership relation: for all x ∈ X and
x1, x2 ∈ T (X),

x ∈T x1 ∧ x1 ≤ x2 ⇒ x ∈T x2

or, again in a pointfree formulation,

∈T · ≤ ⊆ ∈T . (10)

It is easy to see that reflecting morphisms form a category and similarly for the
dual case. The point, however, is that the exact meaning of a refinement assertion
p ≤ q above depends on the concrete refinement preorder adopted. But what do we
know about such preorders?

Condition (10) is equivalent to ≤ ⊆ ∈T \ ∈T by direct application of the Galois
connection which defines relational division, i.e. R ·X ⊆ S ⇔ X ⊆ R\S. Clearly,
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this provides an upper bound for refinement preorders, the lower bound being the
identity. Note that ∈T \ ∈T corresponds to the lifting of ∈T to (structural) inclusion,
i.e. x (∈T \ ∈T ) y ⇔ ∀e∈T x . e ∈T y. Different refinement preorders have been
studied [8] and will not be detailed here. In broad terms, refinement based on
preserving morphisms generalises the usual axis of non-determinism reduction in a
functorial way. On the other hand, reflecting morphisms witness a similar functorial
generalisation of definition increase.

The second approach, developed along a series of papers by I. Hasuo [31, 35,
69, 70], plays a similar game but in a different category. It applies to coalgebras
U → T (F(U)) where T is a monad in Set, capturing the branching behavioural
effect, F is a functor which determines the linear-time behaviour, and a distributive
law, i.e. a natural transformation λ : FT =⇒ T F is assumed to hold. Thus, a T F-
coalgebra in Set corresponds to a F-coalgebra in the Kleisli category Kleisli(T ) for
monad T . Functor F is the canonical lifting of F to Kleisli(T ) which coincides with
F on objects and maps an arrow h : U −→7 V to F(h) = λV · F(h) : F(U) −→7 F(V ).
Notice that notation U −→7 V stands for an arrow in Kleisli(T ), i.e. a Set function
U → T (V ).

Once this setting is defined, all one has to do is to play the coalgebraic game
as usual. In particular, reflecting and preserving morphisms as introduced above,
emerge now as lax and oplax morphisms, renamed in this context to forward and
backward simulations. However, rather than defining what we have called above
refinement preorders, essentially based on the functor structure, the novelty of this
approach is to build on the fact that, for the class of functors considered, the homsets
in the Kleisli catagory are dcpo⊥-enriched, therefore carrying a notion of order. This
means that the set of arrows, say from U to V in Kleisli(T ) forms a dcpo with a
minimum element ⊥. The crucial observation is that in such circumstances an initial
F-algebra in Set yields a final F-coalgebra in Kleisli(T ). Actually, this comes from
Smyth and Plotkin’s classical work on limit-colimit coincidence [65].

The basic result is as follows: An initial F-algebra ζ : F(W ) −→ W in Set
lifts to an initial F-algebra in Kleisli(T ), ηW · ζ, which coincides with the final
F-coalgebra. Its dynamics is given by

ω = ηF(W ) · ζ◦ : W −→7 F(W )

in Kleisli(T ).
Coinduction in the Kleisli category works as expected, entailing a unique be-

haviour map from any other F-coalgebra p : U −→7 F(U) as depicted in the diagram
below.
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W � ω // F(W )

U � p
//

_
trp

OO

F(U)
_
F(trp)=λ·F(trp)

OO

This behaviour map in the the Kleisli cat-
egory, denoted by trp, corresponds to the trace
semantics of the original coalgebra in Set. Just
to build up intuition, let us compute trp for a
non-deterministic automaton, i.e. a coalgebra
p : U −→ P(1 +A× U).

Notice that T = P and F = 1 + A × −.
The carrier of the final F-coalgebra is W = A∗, as [nil, cons] : 1 +A×A∗ −→ A∗ is
the initial F-algebra in Set. Therefore, trp : U −→ P(A∗) is such that

{
nil ∈ trpu ⇐ u = ß1∗
cons⟨a, s⟩ ∈ trpu ⇐ u = ß2⟨a, u′⟩ and s ∈ trpu′

where ß1, ß2 are the coproduct injections, which corresponds to the language ac-
cepted by the automaton p.

This example drives us in the right direction: the behaviour of a coalgebra in
the Kleisli of the monad capturing the intended behavioural effect gives its trace
semantics. Forward and backward simulations computed in exactly the same set-
ting, as indicated above, entail notions of refinement which are sound with respect
to trace inclusion (and even complete for a combination of both kinds of simula-
tion). The point to stress, however, is that, just as the genericity of Coalgebra
makes bisimulation acquire the shape of the relevant functor, it does the same to
trace semantics. Similarly, different notions of simulation, e.g. for probabilistic and
weighted coalgebras, have been extensively studied [69].

This construction of trace semantics, of which reference [35] gives a detailed
account, is limited to the family of functors mentioned above. For example, it
does not apply to T = D which induces a trivial order in the Kleisli homsets; the
subdistribution functor

D≤(X) = {µ : X −→ R≥0 |
∑

x∈X
µx ≤ 1}

can be used instead – the software engineer may think of what is missing to 1, in
each transition, as the probability of some sort of ‘systemic’ failure, such as deadlock,
to occur. On the other hand, although the finite powerset monad can serve as T
in several contexts, it cannot, for example, in combination with F(X) = A × X,
because the initial algebra is then the empty set, thus yielding a trivial trace.

A recent, alternative path [42] to compute coalgebraic trace semantics based
on determinisation, rather that on order enrichment, seems particularly fruitful.
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The idea is borrowed from automata theory where determinisation refers to the
algorithmic construction of the deterministic equivalent to a non-deterministic au-
tomata. The latter often provides a smaller representation of the problem at hand
but its processing is computationally harder. A similar process converts a partial
into a total automaton. Both of them have a common shape: more transitions are
added but the behaviour of the non-deterministic or the partial automata is given
in terms of the deterministic, total case. The coalgebraic generalization is based
on a different decomposition, studying coalgebras of type U → F(T (U)), rather
than U → T (F(U)). It puts new conditions on the functors of interest and lifts
the constructions not to the Kleisli, but to the Eilenberg-Moore category of the
behavioural effect monad. Interestingly enough, it captures cases that fail to have
dcpo⊥-enriched Kleisli homsets . One such example concerns coalgebras

p : U −→M(1 +A× U)

whereM(X) = NX is the multiset monad, and corresponds to a quite general form
of weighted transition systems.

3.2 Illustration: Variants of a component calculus
My first contact with Coalgebra, in the context of my own doctoral studies, focused
on the development of a calculus for software components modelled as monadic
Mealy machines [7], typed as (8) above. A component model in such a setting is a
pointed coalgebra

p =̂ ⟨up ∈ Up, ap : Up −→ T (Up ×O)I⟩ (11)
where up is the initial state and the coalgebra dynamics is captured by currying a
state-transition function ap : Up × I −→ T (Up ×O).

The basic architectural operator is pipeline – a form of sequential composition
which amounts to the Kleisli composition for monad T of its arguments suitably
extended to each other’s state space. It is worthwhile to detail the construction.
Given ap : Up × I −→ T (Up ×O), its (left) state extension to X is computed as

aX|p =̂ (X × Up)× I a◦
−−−−→ X × (Up × I) id×ap−−−−→ X × T (Up ×O)

τr−−−−→ T (X × (Up ×O)) T (a)−−−−→ T ((X × Up)×O)
where a is the associativity natural isomorphism and τr the right strength for T .
The right state extension, p|X, is defined similarly. Therefore, for components with
dynamics ap : Up × I −→ T (Up × Z) and aq : Up × Z −→ T (Up ×O), their pipeline
is defined as

p ; q =̂ ⟨⟨up, uq⟩, ap;q⟩ with ap;q =̂ aUp|q • ap|Uq
. (12)
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Having defined generic components as (pointed) coalgebras, one may wonder
how do they get composed and what kind of calculus emerges from this framework.
Actually, interfaces are sets representing the input and output range of a compo-
nent. Consequently, components are arrows between interfaces and arrows between
components are arrows between arrows. Formally, this leads to the notion of a bicat-
egory5 to structure our reasoning universe. We take interfaces (i.e. sets modelling
observation universes of components) as objects of a bicategory Cp, whose arrows
are pointed coalgebras. For each pair ⟨I,O⟩ of interface objects, a (hom-)category
Cp(I,O) is defined, whose arrows h : ⟨up, ap⟩ −→ ⟨uq, aq⟩ satisfy the expected mor-
phism and initial state preservation conditions:

aq · h = T (h×O)I · ap and h (up) = uq . (13)

Composition is inherited from Set and the identity 1p : p −→ p on component p is
defined as the identity idUp on its carrier. Next, for each triple of objects (I,K,O),
a composition law is given by a functor

;I,K,O : Cp(I,K)× Cp(K,O) −→ Cp(I,O)

whose action on objects p and q was given above.
The action of ; on 2-cells reduces to h ; k = h × k. Finally, for each object K, an
identity law is given by a functor

copyK : 1 −→ Cp(K,K)

whose action on objects is the constant component

⟨∗ ∈ 1, acopyK ⟩

with acopyK =̂ η1×K . Similarly, the action on morphisms is the identity on 1.
The fact that, for each strong monad T , components form a bicategory amounts

not only to a standard definition of the two basic combinators ; and copyK of a
component calculus, but also to setting up its basic laws. Recall that the graph of
a morphism is a bisimulation. Therefore, the existence of an initial state-preserving

5Basically a bicategory [13] is a category in which a notion of arrows between arrows is addi-
tionally considered. This means that the the space of morphisms between any given pair of objects,
usually referred to as a (hom-)set, acquires itself the structure of a category. Therefore the standard
arrow composition and unit laws become functorial, since they transform both objects and arrows
of each hom-set in a uniform way. A typical example is Cat itself: the category whose objects are
small categories, arrows are functors and arrows between arrows, or 2-cells as they are often called,
correspond to natural transformations.
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morphism between two components makes them bisimilar, leading to the following
laws, for appropriately typed components p, q and r:

copyI ; p ∼ p ∼ p ; copyO and (p ; q) ; r ∼ p ; (q ; r)
The dynamics of a component specification is essentially ‘one step’: it describes

immediate reactions to possible state/input configurations. Its temporal extension
becomes the component’s behaviour. Formally, the behaviour [(p)] of a component
p is computed by coinductive extension, i.e. [(p)] = [(ap)] up. Behaviours organise
themselves in a category Bh, whose objects are sets and arrows b : I −→ O are
elements of the carrier of the final coalgebra ωI,O for functor T (Id × O)I . Thus,
composition inBh is given by a family of combinators, for each I, K andO, ;I,K,OBh :
Bh(I,K)×Bh(K,O) −→ Bh(I,O), such that ;I,K,OBh =̂[(ωI,K ;ωK,O)]. On the other
hand, identities are given by copyKBh : 1 −→ Bh(K,K) and copyKBh =̂ [(acopyK )] ∗,
i.e. the behaviour of component copyK , for each K.

The basic observation is that the structure of Bh mirrors whatever structure Cp
possesses. In fact, the former is isomorphic to a sub-(bi)category of the latter, whose
arrows are components defined over the corresponding final coalgebra. Alternatively,
we may think of Bh as constructed by quotienting Cp by the greatest bisimulation.
However, as final coalgebras are fully abstract with respect to bisimulation, the
bicategorical structure collapses. Moreover, as discussed in [7], some tensors in
Cp become universal constructions in Bh, for particular instances of T . This also
explains why properties holding in Cp up to bisimulation, do hold ‘on the nose’ in
the behaviour category. For example, the ; laws above may be rephrased as

copyI ; b = b = b ; copyO and (b ; c) ; d = b ; (c ; d)
for suitably typed behaviours b, c and d, in Bh. It is easy to check that Bh is a
category and [( )] is a 2-functor from Cp to Bh. Indeed,

b ; copyO = [(ωI,O ; copyO)] ⟨b, ∗⟩ = [(ωI,O)] b = b

(b ; c) ; d = [((ωI,K ; ωK,L) ; ωL,O)] ⟨⟨b, c⟩, d⟩ =
= [(ωI,K ; (ωK,L ; ωL,O))] ⟨b, ⟨c, d⟩⟩ = b ; (c ; d)

On the other hand, note that [(copyKCp)] = copyK
Bh and

[((p ;Cp q))] = [(ap;q)](⟨up, uq⟩)
= [(ωI,K ; ωK,O)] · ([(ap)]× [(aq)]) ⟨up, uq⟩
= ;Bh · ([(ap)]× [(aq)]) ⟨up, uq⟩
= ;Bh ⟨[(ap)] up, [(aq)] uq⟩
= [(p)] ;Bh [(q)]
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Some detail put above in describing the structure of Cp and Bh aims at emphasis-
ing an important aspect from the architectural point of view: behaviour descriptions
are compositional in a sense that is compatible with composition at the (state based)
component level. Such compatibility comes exactly from the bicategorial structure.
Or, as put by I. Hasuo, C. Heunen, B. Jacobs and A. Sokolova [33], as a manifes-
tation of the microcosm principle which states that the same algebraic structure is
carried by a category and by one of its objects which assumes a prototypical role.
Examples abound in the literature on ‘categorification’ [4], a typical one is that of
a monoid object inside a monoidal category. It is interesting that the same kind of
phenomena arises in our context.

A whole component calculus, parametric on a behaviour monad T , can be de-
veloped on Cp. The relevant structure lifts naturally to Bh defining a particular
(typed) ‘process’ algebra. We will not go into detail here, but to mention the basic
ingredients considered in all approaches documented in the literature [7, 10, 33, 32].

The first one is the representation of functions in Cp: A function f : A −→ B
is lifted to a component ⌜f⌝ =̂ ⟨∗ ∈ 1, a⌜f⌝⟩ over 1 whose action is given by the
currying of

a⌜f⌝ =̂ 1×A id×f
// 1×B

η(1×B)
// T (1×B)

Up to bisimulation, function lifting is functorial, that is, for g : I −→ K and
f : K −→ O functions, one has

⌜f · g⌝∼ ⌜g⌝ ; ⌜f⌝ and ⌜idI⌝∼ copyI

Actually, lifting canonical Set arrows to Cp is a simple way to explore the struc-
ture of Cp itself. For instance, ?I : ∅ −→ I keeps its naturality as, for any p : I −→ O,
the corresponding diagram below commutes up to bisimulation, because both ⌜?I⌝
and ⌜?O⌝ are the inert components: the absence of input makes reaction impossible.
Formally,

⌜?I⌝ ; p ∼ ⌜?O⌝ (14)

I
p
// O

∅
⌜?I⌝

OO

⌜?O⌝

?? I
p
//

⌜!I⌝
��

O

⌜!O⌝��

1

Naturality is lost, however, in the lifting of !I :
I −→ 1: the diagram fails to commute for non
trivial T (e.g. the finite powerset monad).

Components over 1 defined from identities
and structural properties of the underlying cat-
egory are called wires. Typical examples, in-
clude the liftings of canonical isomorphisms –
e.g. associativity, a, or commutativity, s – which leads to bisimilarity up to an iso-
morphic rearranging of the interface, as well as liftings of embeddings, projections,
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codiagonals and diagonals, the latter used to merge input and replicate output types,
as in, for example, ⌜▽⌝ ; p ; ⌜△⌝ : I + I −→ O ×O.

The pre- and post-composition of a component with Cp-lifted functions can be
encapsulated into a unique combinator, called wrapping, which is reminiscent of
the renaming connective found in process calculi. It is defined as functor −[f, g] :
Cp(I,O) −→ Cp(I ′, O′), for f and g suitably typed, which is the identity on mor-
phisms and maps component ⟨up, ap⟩ into ⟨up, ap[f,g]⟩, where

ap[f,g] =̂ Up × I ′ id×f−−−−→ Up × I
ap−−−−→ T (Up ×O) T (id×g)−−−−−→ T (Up ×O′)

Typical properties are, as one could expect,

p[f, g] ∼ ⌜f⌝ ; p ; ⌜g⌝ and (p[f, g])[f ′, g′]∼ p[f · f ′, g′ · g]

Components can be aggregated in a number of ways, besides the ‘pipeline’ com-
position discussed above. Several tensors have been introduced in the literature
[7, 33, 52] corresponding to choice, parallel and concurrent composition. We will
briefly detail the first one which provides a form of additive composition defined as a
lax functor ⊞ : Cp×Cp −→ Cp. It consists of an action on objects given by I⊞J =
I + J and a family of functors ⊞I,O,J,R : Cp(I,O)×Cp(J,R) −→ Cp(I + J,O +R)
yielding

p⊞ q =̂ ⟨⟨up, uq⟩ ∈ Up × Uq, ap⊞q⟩ and ap⊞q =̂ dr◦ • (ap|Uq
+ aUp|q) • dr◦ ,

where dr is the right distributivity isomorphism, and mapping pairs of arrows ⟨h1, h2⟩
into h1 × h2. When interacting with p⊞ q, the environment chooses either to input
a value of type I or one of type J , triggering the corresponding component, p or q,
respectively. The following laws arise from the fact that ⊞ is a lax functor in Cp:

(p⊞ p′) ; (q ⊞ q′) ∼ (p ; q)⊞ (p′ ; q′)
copyK⊞K′ ∼ copyK ⊞ copyK′

⌜f⌝ ⊞ ⌜g⌝ ∼ ⌜f + g⌝ .

Moreover, up to isomorphic wiring, ⊞ is a symmetric tensor product in each hom-
category, with nil = ⌜id∅⌝ as unit, i.e.

(p⊞ q)⊞ r ∼ p⊞ (q ⊞ r)
nil ⊞ p ∼ p and p⊞ nil ∼ p

p⊞ q ∼ q ⊞ p .
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The construction of architectural calculi based on generalised Mealy machines
initiated in [6], was furhter developed by a several authors. V. Miraldo and J. N.
Oliveira [52] focused on lifting the whole calculus to the Kleisli category of the
relevant behaviour monad T , under the motto ‘keep definition, change category’.
Some of these categories are paradigmatic universes for dealing, namely, with non-
determinism and probabilistic evolution. In the first case the calculus is ‘instan-
tiated’ in the category of sets and binary relations, i.e. the Kleisli for the finite
powerset functor. In the second, in the category of (sub-)stochastic matrices, the
Kleisli of the (sub-)distribution functor. In both cases, calculation takes advantage
of a well-studied universe of typed relations and matrices, respectively [57]. The
programme is not straightforward, namely in what concerns the lifting of theories
(e.g. of behavioural equivalence), further than just the definition of combinators and
the preservation of monadic strength on moving from the original to the Kleisli cat-
egory. Again, a somehow heavy requirement is found here: monad T should induce
a dcpo⊥-enriched Kleisli category (as pointed out above when discussing trace se-
mantics for coalgebras) and should itself be symmetric monoidal, i.e. commutative.

These two requirements appear again in the approach developed by B. Jacobs,
I. Hasuo, C. Heunen and A. Sokolova, in a series of papers [33, 32, 34]. The whole
work is done in the context of a symmetric monoidal category C, equipped with
coproducts + and ∅ over which the tensor ⊗ distributes. The behaviour monad T is
assumed to be commutative, with a distributive law δ : T (U)×T (V ) −→ T (U×V ).
Instead of building on a bicategorial structure as before, components are taken as
objects in a category with fixed input/output universes. This entails the need for the
introduction of an indexing mechanism, similar to the one underlying relabelling in
process algebra. Actually, the calculus works directly with arrows U×I → T (U×O)
which lift to coalgebras if C is Cartesian closed. This is not assumed in general,
leading to a very general setting; for example state extension discussed above arises
simply as an action of the monoidal category on a category of components. A very
interesting connection links components in C to Freyd categories [60], which further
correspond to J. Hughes’ notion of an arrow [39], a construction which, like that of
a monad, is used to model structured computations in functional programming.

But what is really new in this approach is the introduction of a trace operator in
the architectural calculus, which provides a formalisation of the notion of a ‘loop’ in
a diagram of components. Semantically, this brings to scene a feedback construction
with respect to the additive structure of C, embodying a form of iteration. Mathe-
matically, the operator is a trace in the sense of A. Joyal, R. Street and D. Verity
[43].

The development of these ideas can be summed up as follows: whenever C has
countable coproducts and the behaviour monad T is commutative and, as before,
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induces a Kleisli category whose homsets are dcpo⊥ enriched, Kleisli(T ) is traced
monoidal with respect to coproduct as a monoidal structure. This means that, to
each arrow h : I+Z −→ T (O+Z) corresponds a traced arrow TrKl(h) : I −→ T (O),
where operator TrKl( ) satisfies the canonical properties for a trace [43]. This lifts
to a trace operator in the category of components which also obeys those properties,
although only up to isomorphism. Thus, given a component p = ⟨up ∈ Up, ap⟩ :
I +Z −→ O+Z the trace operator builds a new one where output in Z is fed back
to p:

Tr(p) =̂ ⟨up ∈ Up, aTr(p)⟩ : I −→ O with aTr(p) =̂ TrKl(T (dr◦) • ap • dr)
Note that T (dr◦) • ap • dr is typed as Up × I + Up × Z → T (Up × O + Up × Z) in
Kleisli(T ).

The requirements on the behaviour monad mentioned above seem to be recurrent
when aiming at a richer structure for the development of architectural calculi. They
are not met, however, by the functor H introduced in section 2.3 and intended to
capture continuous behaviour.

The functor H, however, extends to a strong monad (both in Set and Top)
which means that most of the calculus discussed above can be developed to address
components with continuous evolutions both in their output and state space, i.e.
built as coalgebras for F(X) = H(U×O)I . Basically, all the calculus is kept, but for
an additive trace and the interchange law with respect to a tensor capturing parallel
evolution. There is, however, a notion of iteration, which, under some circumstances
[55], induces a fixed point to give semantics to infinite loops.

In any case, it seems that H-based coalgebras will play a relevant role in general-
ising the component calculus to the continuous domain, to reason e.g. about sensor
networks and IoT configurations. Therefore, I’ll close this section introducing the
associated monadic structure. Recall the definition of H in (6), section 2.3. The
monad structure adds a multiplication, µ : H ·H =⇒ H and its unit η : Id =⇒ H.
The latter produces trivial evolutions with duration 0. Formally, ηX x =̂ ⟨x, 0⟩.
Multiplication is a bit more complex. Let ⟨f, d⟩ ∈ (XT × D)T × D. Then, the
‘flattened’ system, µX ⟨f, d⟩, will return, at each instant ti, the value (f ti)0 until,
and if, d is reachead. After that, if d ̸=∞, it will evolve according to fd = ⟨g, e⟩ for
the remaining duration e− d. Formally,

µX ⟨f, d⟩ =̂
{
⟨θX · f, d⟩ ++ (f d) if d ̸=∞
⟨θX · f, ∞⟩ otherwise

where θ : H =⇒ Id is given by θ ⟨f, d⟩ =̂ f 0 and ⟨f, d⟩ ++ ⟨g, e⟩ =̂ ⟨f ++d g, d+ e⟩
with f ++d g =̂ f � (≤d)� g ( _ − d). Note that θ is an Eilenberg-Moore H-algebra:
indeed, θ · η = id and θ · µ = θ ·Hθ.
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It is worthwhile to see what composition means in Kleisli(H). Let c1 : I −→7
K, c2 : K −→7 O, and assume ci = ⟨fi, di⟩, for i = 1, 2. Thus6,

(µ ·Hc2 · c1) x
= { c1 = ⟨f1, d1⟩, and let d = d1 x }

(µ ·Hc2) ⟨f1 x, d⟩
= { definition of H }

µ ⟨c2 · (f1 x), d⟩
= { definition of µ}
⟨θ · c2 · (f1 x), d⟩ ++ (c2 · (f1 x)) d

= { definition of ++ }
⟨ (θ · c2 · (f1 x)) ++d f2 ((f1 x) d), d+ π2(c2((f1 x) d)) ⟩

= { definition of ++d }
⟨ θ · c2 ((f1 x) _ ) � (≤d) � f2 ((f1 x) d) ( _ − d), d+ π2(c2((f1 x) d)) ⟩

Two different cases must be considered. In the first one suppose that c2 in (c2•c1)
is pre-dynamical in the standard sense that θ · c2 = id (or, at least, an inclusion). In
this case composition yields sequencing: for the duration of c1x, (c2 • c1)x evolves
first according to c1, and then, on its termination, according to c2, which receives
as input the endpoint of f1x. Otherwise it yields a form of modulation: the second
component acts upon the first one.

This behaviour may be illustrated through the following example. Suppose the
temperature of a room is to be regulated as follows: start at 10 ◦C, seek to reach
and maintain 20 ◦C, but in no case surpass 20.5 ◦C. The system is realised by three
elementary components that have to work together: component c1 to raise the tem-
perature to 20 ◦C, component c2 to maintain a given temperature, and, finally, c3
to ensure the temperature never goes over 20.5 ◦C. Formally,

c1 x = ⟨ (x+ _ ), 20⊖ x ⟩
c2 x = ⟨ x+ (sin _ ), ∞ ⟩
c3 x = ⟨ x � (x ≤ 20.5) � 20.5 , 0 ⟩

where ⊖ is truncated subtraction (i.e. x ⊖ y is x − y if x > y or 0 otherwise).
Composing c2 • c1 yields a component which reads the current temperature, raises
it to 20 ◦C, and then keeps it stable, as exemplified by the plot below (left). If,

6I’ll omit the simpler, but similar case dealing with infinite durations.
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however, temperatures over 20.5 ◦C occur, composition c3 • (c2 • c1) puts the system
back into the right track as illustrated by the plot in the right.
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Clearly, c3 can be regarded as a supervisor system that, for the sake of efficiency,
only acts when temperatures exceed the threshold, using just enough power to keep
the temperature below the limit. Actually, note that c3 is able to play a supervisory
role precisely because it is not pre-dynamical.

Recent research [55] unveiled most of the structure of an H-based architectural
calculus. In particular, H is shown to be strong in Top, its Kleisli category to
inherit colimits from Top, as expected, and moreover to preserve pullbacks (a little
bit harder to prove). A concrete description of the final coalgebra can be done, as well
as the systematic definition of old and new combinators for H-based components.

4 Properties

4.1 From invariants to modalities

Requirements, architectural properties, interface specifications, business rules, etc.
are common designations for (different kinds of) properties recurring in the practice
of Software Engineering. To be unambiguously stated, compared, and even verified
against the models of interest, they need to be expressed in suitable logics, preferably
equipped with some form of mechanically supported verification framework.

To a great extent, in software design one is interested in properties that are pre-
served along the system’s evolution, the so-called ‘business rules’, as well as in ‘future
warranties’, stating that e.g. some desirable outcome will be eventually produced.
Both classes are examples of modal assertions, i.e. properties that are to be inter-
preted across a transition system capturing the software dynamics. The relevance of
modal reasoning in computing is witnessed by the fact that most university syllabi
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in the area include some incursion into modal logic, in particular in its temporal
variants.

The novelty is that, as it happens with the notions of transition, behaviour,
observational equivalence or refinement, modalities in Coalgebra also acquire a shape.
That is, their definitions become parametric on whatever type of behaviour seems
appropriate for addressing the problem at hand.

Let me start with the notion of an invariant – a predicate7 which is supposed
to hold in all states of a system, thus configuring what is classically called a safety
property. If the system dynamics is described by a coalgebra α : U −→ F(U), a
predicate ϕ over state space U is an invariant if it holds on the ‘current’ state and
on its ‘successor’ states, which are of course obtained by execution of α. This entails
the need to lift ϕ from U to F(U).

In a relational setting, i.e. regarding predicate ϕ as a coreflexive relation and F as
a relator8, the informal definition of an invariant can be captured by the statement

∀u∈U . u ϕ u ⇒ (α u)F(ϕ) (α u)

which, by eliminating variables, is equivalent to

ϕ ⊆ α◦ · F(ϕ) · α (15)

Clearly, just as bisimulations are preserved by the coalgebra transitions, so are
invariants. But what is more, the right hand side of expression (15) defines a ‘box’
modality over the transition system entailed by coalgebra α:

2ϕ =̂ α◦ · F(ϕ) · α (16)

which rewrites (15) as: ϕ is invariant whenever ϕ ⊆ 2ϕ. The crucial observation,
however, is that the modal operator 2 is parametric on the coalgebra α and, of
course, on the functor F . Moreover, invariants induce invariants because, 2 being
monotonic,

ϕ ⊆ 2ϕ ⇒ 2ϕ ⊆ 22ϕ .

It is instructive to unfold the definition of the 2 modality for specific cases.
Taking F(X) = P(X), for example, one gets

2ϕ = {u ∈ U | (α u) P(ϕ) (α u)}
7In the sequel we will resort, with no change of notation, to two equivalent representations of

a predicate over a set X: as a subset of X or as a coreflexive binary relation, i.e. a subset of the
identity over X. Thus, x ∈ ϕ iff x ϕ x.

8I’ve already mentioned relators in footnote 5. The concept of a relator [27] extends that of a
functor to relations: F(R) is a relation from F(U) to F(V ) provided R is a relation from U to V .
Relators are monotone and commute with composition, converse and the identity.
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which, regarding predicates as sets, takes the more familiar form

2ϕ = {u ∈ U | α u ⊆ ϕ}

which corresponds to the standard interpretation of the 2 modality in Kripke se-
mantics. As another example consider the functor F(X) = 1 +X. Clearly,

2ϕ = {u ∈ U | α u = ι2 u
′ ⇒ u′ ∈ ϕ} .

The whole construction of a modal logic relative to a coalgebra α can be pursued
along similar lines. Such a programme is often referred to as the temporal logic
of coalgebras [41]. Actually, not only a diamond modality is defined, as usual, by
duality, ⋄ϕ =̂¬2¬ϕ, but ‘temporal extensions’ of these modalities can be obtained as
fixed points. Consider, for example, the definition of �ϕ, the henceforth ϕ operator
which extends the validity of ϕ over all states computed by successive application of
α:

�ϕ(x) =̂ ∃ψ . ψ is invariant ∧ ψ ⊆ ϕ ∧ ψ x

Regarding predicates ϕ and ψ as coreflexives and making explicit the supremum
implicit in the existential quantification one gets,

�ϕ =
⋃
{ψ | ψ ⊆ 2ψ ∧ ψ ⊆ ϕ}

= { ∩-universal}
⋃
{ψ | ψ ⊆ 2ψ ∩ ϕ}

= { intersection of coreflexives is relational composition }
⋃
{ψ | ψ ⊆ ϕ · 2ψ}

which leads to a greatest (post)fixed point definition:

�ϕ = νψ (ϕ · 2ψ)

4.2 Coalgebraic logic
The modalities induced by a coalgebra α and considered so far are relative to the
‘global’ dynamics of α. Depending on applications, however, one may be interested
in other types of modalities. For example, suppose α is a coalgebra for functor
F(X) = A × X × X. Then, it may be relevant to have modalities to take care of
just the right or the left successors.
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For another, popular example consider F(X) = PXA, the ‘shape’ of a non-
deterministic transition system. In this case one may be interested in one ‘box’
operator per each action a ∈ A dealing only with transitions labelled by a. Thus,
predicate ϕ over U has to be lifted in a specific way to P(U)A, for each a ∈ A. The
corresponding modality will build on such ‘user-defined’ lifting.

To proceed, a more general notion of predicate lifting is in order. Fortunately,
the definition is straightforward [47]: A predicate lifting is simply a natural trans-
formation γ : 2− =⇒ 2F(−), where 2− is the contravariant powerset functor. Then,
a modality 2, with respect to a coalgebra α : U −→ F(U) and a predicate lifting γ,
is defined as

2 =̂ 2U γU // 2F(U) α−1
// 2U

where f−1 denotes the inverse image of function f , i.e. f−1 Z = {u ∈ U | f u ∈ Z}9.
Thus,

2ϕ = {u ∈ U | α u ∈ γUϕ} . (17)

For the example above, one specifies a family {γa : 2− =⇒ 2P(−)A | a ∈ A} of
predicate liftings

γaU ϕ =̂ {s ∈ P(U)A | s a ⊆ ϕ}
which induces a corresponding family of 2-like modalities

[a]ϕ = {u ∈ U | (α u) a ⊆ ϕ} .

As one would expect, those are exactly the indexed modalities of Hennessy–Milner
logic [67].

The ‘global’ modality given by equation (16) in the previous section, can be
framed in this more general setting by defining the predicate lifting γX ϕ =̂ {s ∈
F(X) | s F(ϕ) s}.

For the general case one may proceed as follows. As a first step define a signature
Σ of modal operators ⋇ : Xn −→ X, each one with its arity. Then, the syntax of
the logic is given by the set of formulas

φ ∋ p | φ ∧ φ | ¬φ | ⋇(φ, · · · , φ)

for p ∈ Prop, a countable set of propositional variables.
A model M for the logic consists of a coalgebra α : U −→ F(U), a valuation

V : Prop −→ P(U), and, for each n-ary modal symbol ⋇, an n-ary predicate lifting
γ⋇ : (2−)n =⇒ 2F(−). Formulas are interpreted over a model inductively: Forgetting

9Equivalently, regarding set Z as a function from U to the two element set 2, f−1 = 2f , with
2f Z = Z · f .
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the modal operators for a while, the result is the standard interpretation over the
Boolean algebra P(U). For example, [[p]] = V (p) and [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]], as
expected. Each n-ary modal operator, on the other hand, is interpreted as

[[⋇(φ1, · · · , φn)]] = α−1(γ⋇U ([[φ1]], · · · , [[φn]]))

as in equation (17).
As a final example suppose α is a coalgebra over U for the multiset functor

M(X) = NX , typically used to capture weighted transition systems. A modal
operator ⋇N could be defined to deal with those successor states that are reachable
with a cost (measuring e.g. resources or time units used) limited to N . Thus,

[[⋇N φ]] = {u ∈ U | ∀u′∈U . (α u) u′ ≤ N ⇒ u′ ∈ [[φ]]} .

The corresponding predicate lifting is γ⋇N
X ϕ=̂ {s ∈ NX | ∀x∈X . s x ≤ N⇒ x ∈ ϕ}.

This is similar to what is called in modal logic a graded modality, although this
qualifier originally refers to a restriction on the cardinality of outgoing transitions
from a state, rather than on their weights. Further examples, most useful in software
design, are obtained with coalgebras for the distribution monad, for example, to
address transitions with a some type of bound on the probability of occurrence.

Of course, the satisfaction relation |=M for a model M pops out easily. For
example,

u |=M ⋇Nφ ⇔ ∀u′∈U . (α u) u′ ≤ N ⇒ u′ ∈ [[φ]] .
The crucial point is the assignment of a specific predicate lifting to each modal
operator in Σ. There is no restriction on how such a lifting is defined but the
naturality requirement: This is what ensures that the meaning of the operator will
not depend on the state space of the particular coalgebra in a possible model. From
the working software engineer perspective, this provides the freedom to define the
most suitable logic for the problem at hand.

Such a freedom has an obvious drawback: The definition of the logic along the
strategy outlined above is not fully parametric on the functor F . It requires the
definition of a set of predicate liftings, one for each modal operator, to give the way
in which, for each case, a property over the state space is lifted to an F-structured
collection of states. The approach sketched above, however, is the most popular
in coalgebraic logic [59]. Actually, it can be formulated in a more abstract setting
[48] by first extending the signature Σ to an endofunctor in the category of Boolean
algebras, and then interpreting the propositional logic, extended with the operators
in Σ, as an algebra for such a functor, i.e.

Σ(2U ) γU // 2F(U) α−1
// 2U .
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Actually, moving from the powerset Boolean algebra to an arbitrary one is possible
because, on extending the propositional calculus, one may always identify proposi-
tionally equivalent formulas and equip the corresponding quotient with a Boolean
algebra structure.

An alternative approach, historically the first to be proposed, builds on L. Moss’s
original idea [53] of considering functor F himself as a syntax constructor, therefore
leading to a logic which is fully parametric on the functor encoding the system’s
behaviour. This framework is slightly less general, in the sense that F is required to
preserve weak pullbacks. The main disadvantage, however, from the point of view of
Software Engineering applications, is the cumbersome, unintuitive syntax it entails.

In both approaches, however, coalgebraic logic emerges as a powerful, generic
theory [25], rather than a way to put together a number of curious examples. The
framework is parametric, as discussed, and compositional – a most relevant feature
in Computer Science which often requires non trivial combinations of logics. But
the hallmark of coalgebraic logic resides in the way most properties one expects to
discuss in Logic can be formulated and analysed in this abstract, parametric setting.

A typical example, and most relevant from the applications point of view, con-
cerns the so-called Hennessy–Milner theorem. A modal logic has the Hennessy–
Milner property whenever the induced logical equivalence distinguishes between
non-bisimilar states and only those. The same applies, in general, to coalgebraic
logics. In modal logic, the ‘only if’ part of the theorem (i.e. that logical equivalence
entails bisimilarity) requires the underlying Kripke frame to be finitely branching.
This is mirrored in the coalgebraic setting through the separability condition which
basically says that the logic allows enough predicate liftings to distinguish between
all elements in F(U). The definition of suitable Hilbert calculi as well as the study
of expressivity, soundness, completeness and decidability can also be carried out in
the abstract setting [59, 47]. In this sense, going coalgebraic seems the right way to
do modal logic.

4.3 Illustration: Reasoning about hierarchical designs

Hierarchical transition systems are a popular mathematical structure to represent
state-based software applications in which different layers of abstraction are captured
by interrelated state machines. The decomposition of high-level states into inner sub-
states, and of their transitions into inner sub-transitions, is a common refinement
procedure adopted in a number of specification formalisms. The diagram below
depicts a high level behavioural model of a strongbox controller in the form of a
transition system with three states.
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get access openclosed

w1
0 w2

0 w3
0

The strongbox can be open, closed, or going through an authentication process. The
model can be formalised in some sort of modal logic, so that state transitions can
be expressed, possibly combined with hybrid features to refer to specific, individual
states. The qualifier hybrid [15] refers to an extension of modal languages with
symbols, called nominals, which explicitly refer to individual states in the underlying
Kripke frame10. A satisfaction operator @iφ stands for φ holding in the state named
by nominal i.

For example, in propositional hybrid logic [23] and assuming

Nom = {closed, get access, open}

as a set of nominals, a number of properties of the the diagram above can be ex-
pressed, e.g.

• the state get access is accessible from the state closed: @closed3get access,

• or the state open is not directly accessible from closed: 3open→ ¬closed.

This high level vision of the strongbox controller can be refined by decomposing not
only its internal states, but also its transitions. Thus, each ‘high-level’ state gives
rise to a new, local transition system, and each ‘upper-level’ transition is decomposed
into a number of ‘intrusive’ transitions from sub-states of the ‘lower-level’ transition
system corresponding to the refinement of the original source state, to sub-states of
the corresponding refinements of original target states. For instance, the (upper)
close state can be refined into a (inner) transition system with two (sub) states:
one, idle, representing the system waiting for the order to proceed for the get access
state, and another one, blocked, capturing a system which is unable to proceed with
the opening process (e.g. when authorised access for a given user was definitively
denied). In this scenario, the upper level transition from closed to get access can
be realised by, at least, one intrusive transition between the closed sub-state idle
and the get access sub-state identification, in which the user identification is to be
checked before proceeding. This refinement step is illustrated in the diagram below

10Notice the same adjective was used in the previous sections with a totally different meaning:
to refer to software components with both discrete and continuous behaviour. The designation
cyber-physical is also used in the later case with a similar meaning.

78



Coalgebra for the working software engineer

(left). Still the specifier may go even further. For example, she may like to refine
the get access sub-state authorisation into the more fine-grained transition struc-
ture depicted on the right hand side of the diagram. This third-level view includes
a sub-state corresponding to each one of the possible three attempts of password
validation, as well as an auxiliary state to represent authentication success.

get access openclosed

timeout

stopwatch

time init

authorization

identification

blocked

idle

w1
0

w2
0 w3

0

w1
1

w2
1

w3
1

w4
1

w6
1

w5
1

w7
1

att1

att2

att3

authorization

w4
1

w1
2

w3
2

w4
2w2

2

Such a hierarchical way to design a system is quite natural and somehow in-
herent to well-known design formalisms such as D. Harel’s statecharts [29] and the
subsequent UML hierarchical state machines, among others. This sort of systems
have been studied in my own research group in the context of reconfigurable soft-
ware architectures [49]. In particular, a hierarchical hybrid logic was proposed to
express (and reason about) requirements that typically involve transitions between
designated states in different local transition systems.

The whole programme can actually be carried out in a coalgebraic setting. The
first observation is that a measure of maturity of coalgebraic logic is its ability to
incorporate extensions which are already classical in the modal logic literature. We
have briefly mentioned how new ‘temporal’ operators can be defined through fixed
points, as in the modal µ-calculus [46]. Hybrid logic is also easily accommodated
in a way which is quite similar to what is done in modal logic with classical Kripke
semantics. In particular, the set of formulas is extended with

φ ∋ · · · | i | @i φ

for i ∈ Nom, a set of nominals. The original valuation is extended to V : Prop ∪
Nom −→ P(U) with the restriction that V i is a singleton for each nominal i, i.e. a
nominal identifies a unique state in the state space. The interpretation of the hybrid
operators is the classical one: [[@iφ]] = {u ∈ U | V i ∈ [[φ]]} and [[i]] = V i. The
only aspect one needs to take into account is the interplay between the satisfaction
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operators and the modalities induced (or built over) the coalgebra. For example,
one has to specify that a formula like @i φ must be valid either in the whole model
or nowhere. In an Hilbert calculus this can be achieved through an extra axiom, for
each modal operator ⋇:

@iφ ⇒ (⋇(φ1, · · · , φk) ⇔ ⋇(φ1 ∧@iφ, · · · , φk ∧@iφ)

capturing the intended validity of @iφ irrespective to the interpretation of each φj .
In the definition of a model for this logic the family of accessibility relations

considered in [49] is replaced by a family of coalgebras for the same endofunctor,
each of which captures the dynamics of the appropriate layer.

Signatures are n-families of disjoint, possible empty, sets of symbols

∆n =
(
Propk,Nomk

)
k∈{0,··· ,n} .

For example, to specify the strongbox above, one considers a signature ∆2 for the
three layers presented. 0-level symbols consist of the set of nominals

Nom0 = {closed0, get_access0, open0}

and a set of propositions Prop0. The 1-level signature introduces a set of nominals

Nom1 = {idle1, blocked1, identification1, authorization1, time_init1,
stopwatch1, time_out1}

and, again, a set of propositions Prop1. Level 3, finally, introduces att12, att22 and
att32 in Nom2. The set of formulas Fm(∆n) is the n-family recursively defined, for
each k, by

φ0 ∋ i0 | p0 | ¬φ0 | φ0 ∧ φ0 | @i0φ0 | 20φ0

φb0 ∋ i0 | p0 | @i0φ0 | 20φ0

where superscript b qualifies the basic formulas, and

φk ∋ φbk−1 | ik | pk | ¬φk | φk ∧ φk | @ikφk | ⋄k φk

where for any k ∈ {1, . . . , n}, the basic formulas are defined by

φbk−1 ∋ ik−1 | pk−1 | φbk−2 | @ik−1φk−1 | 2k−1φk−1

for k ∈ {2, · · · , n}, pk ∈ Propk and ik ∈ Nomk.
This language is able to express quite different properties. For instance, inner-

outer relations between named states, e.g. @idle1closed0 or @att12open0, as well
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as a variety of transitions. Those include, for example, the layered transition
@get_access0 ⋄0 open0, the 0-internal transition @identification1 ⋄1 authorisation1 or
intrusive transitions like @idle1 ⋄1 authorisation1 and get_access0 → ⋄1open0.

The definition of a model is parameterised by a family of coalgebras defined for
the same functor, i.e. exhibiting the same type of behavioural effect. A n-layered
model M ∈ Modn(∆n) is a tuple

M = ⟨Wn, Dn, αn, V n⟩

where Wn = (Wk)k∈{0,··· ,n} is a family of disjoint sets of states, and Dn ⊆W0×· · ·×
Wn is a definition predicate that singles out the chains of states across the n levels
which are considered meaningful ‘global’ states. Denoting by Dk the k-restriction
Dn|k to the first k + 1 columns, for each k ∈ {0, · · · , n}, it is the case that

Wk = {vk|Dk⟨w0, · · · , wk−1, vk⟩, for some w0, · · · , wk−1 st Dk−1⟨w0, · · · , wk−1⟩} .

Then, comes the ‘dynamics’: αn =
(
αk : Dk −→ F(Dk))k∈{0,··· ,n} is a family of F-

coalgebras specifying the system’s evolution at each level in the hierarchy. Finally,
V n = (V Prop

k , V Nom
k )k∈{0,··· ,n} is a family of pairs of valuations defined as one could

expect:

• V Prop
k : Propk → P(Dk), and

• V Nom
k : Nomk →Wk.

The satisfaction relation takes a similar shape as a family of relations

|=n = (|=k)k∈{0,··· ,n}

defined, for each wr ∈ W r, r ∈ {0, · · · , k}, k ≤ n, such that Dk⟨w0, · · ·wk⟩.
The case of interest in the context of this paper is the one for modalities, i.e.
Mk, w0, · · · , wk |=k 2kφk iff

∀v0∈W0,··· ,vk∈Wk
. ⟨v0, · · · , vk⟩ ∈ αk⟨w0, · · · , wk⟩ implies M, v0, · · · , vk |=k φk .

The hybrid part is given by

• Mk, w0, · · · , wk |=k ik iff wk = V Nom
k (ik) and Dk⟨w0, · · · , wk−1, V

Nom
k (ik)⟩ ,

• Mk, w0, · · · , wk |=k @ikφk iff Mk, w0, · · ·wk−1, V
Nom
k (ik) |=k φk and

Dk⟨w0, · · ·wk−1, V
Nom
k (ik)⟩ .

The Boolean part, finally, is defined as usual, just taking care of the definability
interdependence captured by Dn. Thus,
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• Mk, w0, · · · , wk |=k φ
b
k−1 iff Mk−1, w0, · · · , wk−1 |=k−1 φ

b
k−1 ,

• Mk, w0, · · · , wk |=k pk iff ⟨w0, · · · , wk⟩ ∈ V Prop
k (pk) ,

• Mk, w0, · · · , wk |=k φk ∧ φ′k iff Mk, w0, · · · , wk |=k φk and Mk, w0, · · · , wk |=k

φ′k ,

• Mk, w0, · · · , wk |=k ¬φk iff it is false that Mk, w0, · · · , wk |=k φk .

The resulting logic is quite expressive. Notions of n-layered bisimilarity and refine-
ment can be introduced [49] along the lines already discussed in this paper, and a
Hennessy–Milner theorem proved.

A specific, particularly well-behaved class of layered models, is called hierarchi-
cal: it requires that the restriction of a coalgebra αk to the state space of αk−1
coincides with the latter. This ensures that the elements in the family of coalgebras
are compatible.

The example sketched here is clearly an hierarchical model. Examples of non-
hierarchical layered models can be achieved by removing some 0-transitions de-
picted in the diagram above (e.g. the one linking the named states closed0 and
get_access0). This hierarchical condition can be expressed as a naturality condi-
tion as follows. Define πk : Dk −→ Dk−1 by πk ⟨w0, · · · , wk−1, wk⟩ =̂ ⟨w0, · · · , wk−1⟩.
Then, the model is hierarchical if, for all k, the following diagram commutes11.

Dk
αk //

πk

��

F(Dk)

F(πk)
��

Dk−1
αk−1

// F(Dk−1)

For F = P this means, for example, that the transitions depicted in the diagram

⟨w1
0, w

1
1⟩

⟨w0
0, w

0
1⟩

00

.. ⟨w1
0, w

2
1⟩

exist at level 1 iff a transition w0
0 // w1

0 exists at level 0.
11This basically means that the family αn of coalgebras in a model of a hierarchical system,

can be regarded as a coalgebra in the category of pre-sheaves [n, Set], where n is the total order
corresponding to the initial n-segment of natural numbers. Such a coalgebra is, of course, a natural
transformation.
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As another example consider F = D. In an hierarchical (probabilistic) system
the 1-level transitions in the left of the diagram below exist if the 0-level transitions
depicted on the right exist as well.

⟨w1
0, w

1
1⟩

⟨w0
0, w

0
1⟩

0.5 //

0.3 //

0.2 //

⟨w1
0, w

2
1⟩

⟨w2
0, w

3
1⟩

w1
0

w0
0

0.8
00

0.2 .. w2
0

5 Concluding
This paper revisited a few themes in elementary, i.e. Set-based, Coalgebra in con-
nection with what may be regarded as the kernel activities of a software engineer:
modelling complex systems, architecting their composition and reasoning about their
behaviour. Models, architectures and properties were therefore the buzzwords cho-
sen to guide this exercise.

As a design discipline, Software Engineering is currently challenged by continuous
technological evolution towards very large, heterogeneous, highly dynamic comput-
ing systems, which require innovative approaches to master their complexity. Sys-
tems whose behaviour cannot be simply characterised in terms of a relation between
input and output data, but expresses a continued interaction with their external
(computational or physical) and internal (sub-systems) contexts. In this sense, they
can be classified as reactive, to use a term coined by A. Pnueli and D. Harel [30]
in the 1980s. Furthermore, concurrent composition is the norm, rather than the
exception.

Developing such systems correctly is very difficult, because it involves not only
mastering the complexity of building and deploying large applications on time and
within budget, but also managing an open-ended structure of autonomous com-
ponents, typically distributed, often organised in loosely coupled configurations,
and highly heterogeneous. Additional difficulties arise with the need to take into
account a plethora of issues such as real-time responsiveness, dynamic reconfigura-
tion, QoS-awareness, self-adaptability, security, dependability, under-specification of
third-party components, among many others.

Unfortunately, software technology is still pre-scientific in its lack of sound math-
ematical foundations to provide an effective basis to predict and certify computa-
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tionally generated behaviour. In a sense, compared to other Engineering disciplines,
we are just living our 17th century, seeking for the right foundations, methods and
calculi to move from ad hoc to systematic and accountable engineering practices.

My purpose was to explore one of those mathematical frameworks which has the
potential to address a large class of computational systems. Indeed, we would suggest
Coalgebra as a, probably the, mathematics for dynamical, state-based systems.

The essence of the coalgebraic method boils down to a very basic observation:
that from a suitable characterisation of the type of a system’s dynamics, canoni-
cal notions of behaviour, observational reasoning (equational and inequational) and
modality can be derived in a uniform (i.e. parametric) way.

This setting may sound familiar to the working software engineer: the object of
her practice, if not of her study, is precisely the ubiquity of the computing phenom-
ena along and across universes of typed arrows. Arrows may stand for functions,
algorithms, services or components, programs fulfilling a specification contract, re-
lationships in a UML diagram, processes through mobile ambients, evolutions in a
sensor network, links in a software architectural description, circuits coordinating
loosely coupled agents, or whatever structures our domain. The type of a coalgebra,
an endofunctor, is itself an arrow, and so is, moreover, the coalgebra itself.

In a brief historical overview of the trends and results predating the emergence
of Coalgebra in Computer Science, B. Jacobs [41], referring to the work of Arbib,
Manes, Goguen, Adamek and others in the late 1970s, on categorical approaches to
systems theory, comments: Their aim was to place sequential machines and control
systems in a unified framework which (...) led to general notions of state, behaviour,
reachability, observability, and realisation of behaviour. Jacobs remarks, however,
that the reason why Coalgebra did not emerge directly from this work was probably
because the setting of modules and vector spaces from which this work arose provided
too little categorical infrastructure (especially: no cartesian closure). The quick
expansion of Coalgebra, its techniques and applications, and the capacity shown to
capture in a uniform, parametric way a myriad of state-based systems, as well as its
mathematical elegance, offers evidence we may be on the right track.

The development of Coalgebra and its application to Computer Science stemmed
from different sources, from P. Aczel’s non well-founded set theory, accommodating
infinitely descending ∈-chains, to the study of infinite data types and the theory of
behavioural specification [40] and satisfaction [14]. Still, it remains an area of active
research, with a growing impact not only on the foundations of computing semantics,
but also on very concrete programming techniques. Actually, there is a growing
interest on the potential of coalgebraic techniques in algorithm understanding and
derivation, often based on rediscovering and generalising specific algorithms, for
example from automata theory [21, 17, 22, 26]. Unsurprisingly, going generic in the
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theory often leads to efficient computational solutions. Striking developments on
coinductive proof methods, notably the recent work on up-to techniques [18, 19], go
in a similar direction.

Without trying to be exhaustive, we would still like to mention a few other
current research directions which will certainly have an impact in the coming decade.
The first concerns the combination of algebraic and coalgebraic techniques and the
discovery of compatible patterns described by distributive laws [45], which, as shown
in D. Turi and J. J. M. M. Rutten landmark work, in the late 1990’s, correspond to
specification formats in operational semantics. The impact of such laws in several
constructions, for example in the formulation of trace semantics, as mentioned above,
but also in combining monadic and comonadic effects [12] and logic, suggests we are
dealing with some sort of very fundamental structures.

Another direction addresses the challenge of quantitative (weighted, probabilis-
tic, continuous) reasoning, once again driven by the broadening spectrum of Soft-
ware Engineering problems. This is not only pushing the development of Coalgebra
within categories different from Set [16, 44, 55], but also leading a lot of results
on behavioural metrics as an alternative to equivalences [24, 3, 5]. Actually, in the
context of e.g. probabilistic or hybrid systems, working with equivalences entailing
the need for exact matching of real numbers is unrealistic. Metrics, on the other
hand, can measure how close two systems are and conclude whether they should be
taken as equivalent.

But the impact of Coalgebra can also be recognised at a more ‘syntactical’ level.
The work of A. Silva, a former student of this University, on the derivation of spec-
ification languages from the functor typing the coalgebra dynamics [64, 63] should
be mentioned here. In a more general setting, the points of contact between Coal-
gebra and current research on graphical languages in which diagrams, syntax and
interpretations, are generated as arrows in special families of monoidal categories
[71, 20], seem most promising, with applications ranging from the ‘re-interpretation’
of classical control theory to the design of diagrammatic languages to express, e.g.,
software architectures.

I’m not sure whether this paper was able to raise the interest of the working
software engineer in Coalgebra, or, on the other hand, that of the logician who may
find in Computer Science a huge domain for the fruitful application of her methods
and tools. In 1967, Anthony Oettinger [56], speaking as President of the ACM,
recognised that the expression Software Engineering
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seems strange to classical engineers and to classical mathematicians alike,
because, you know, why would a mathematician think of engineering with
symbols and, by the same token, why would somebody who thinks of engi-
neering in terms of things we do with pieces of metal or transistors, think
of an operation that takes place on paper with pencils and erasers as en-
gineering.

Almost 50 years later, there is still a need to push back this discipline to where
it actually belongs. Fortunately, to continue with A. Oettinger’s speech, there is
no question but that the study of symbol systems, of effective algorithms, of effi-
cient algorithms, of the structure of algorithms, is a mathematical discipline. And,
moreover, there is, in this realm, enough elegance to attract anybody who wants a
challenge.

Doing Software Engineering in lighter, more informal ways, brings to my mind
a quotation attributed to Vlad Patryshev in a slightly different context: It’s like
talking about electricity without using calculus. Good enough to replace a fuse, not
enough to design an amplifier.

Acknowledgements. Sections 2.3, 3.2 and 4.3 illustrate, through three concrete applica-
tions, the potential Coalgebra may have for the working software engineer with respect to
each of the topics chosen for this paper: models, architectures and properties. These appli-
cations come from current research along which I had the privilege of collaborating with a
number of colleagues. In particular, the coalgebraic treatment of hybrid systems was devel-
oped by Renato Neves, who introduced the H monad and a number of exciting results still
emerging at the time of writing. The remaining ‘illustrations’ are also in debt to ongoing
collaboration with José Nuno Oliveira, on formal approaches to software architecture, Sun
Meng, on coalgebraic refinement, and both Alexandre Madeira and Manuel A. Martins, on
hybrid logics for reconfigurable systems.
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Introduction
Given a smooth manifold, M , the set C8pM,Rq supports a far richer structure

than just of an R-algebra: it interprets not only the symbols for real polynomial
functions but for all smooth real functions Rn Ñ R, n P N. Thus, C8pM,Rq is a
natural instance of the algebraic structure called C8-ring.

It was not until the decades of 1970’s and 1980’s that a study of the abstract (al-
gebraic) theory of C8-rings was made, mainly in order to construct topos models for
“Synthetic Differential Geometry” ([12]). The interest in C8-rings gained strength
in recent years, mainly motivated by the differential version of ‘Derived Algebraic
Geometry” (see [11]).

In this paper we address the study of the order theory of C8�reduced C8�rings,
presenting a useful characterization of the “natural order” of a C8�ring, introduced
by Moerdijk and Reyes in [16]: given any C8-ring A � pA,Φq, this canonical strict
partial order   is given by:

pa   bq ðñ pDu P A�qpb� a � u2q.
Since this natural binary relation given on a generic C8-ring involves invertible

elements, we should first analyze these elements of a C8-ring. In order to do so,
we shall restrict ourselves to the case of the C8-reduced C8-rings. This is carried
out in two steps: first proving the results for finitely generated C8-rings and then
proving them for arbitrary ones.

Since any C8-ring can be expressed as the quotient of a free object – C8pREq,
for some set E – by some (ring-theoretic) ideal, it is appropriate to characterize the
equality between their elements by making use of these ring-theoretic ideals. We
show that in this context the canonical strict partial order of a generic C8-ring,
say C8pREq{I, can be characterized by properties concerning filters of zerosets of
functions in I.

In [16], Moerdijk and Reyes prove that every C8-field is real closed (cf. Theo-
rem 2.10). This suggests that the class of C8-fields is “well behaved” with respect
to its model theory.

We apply, in particular, some results on the order theory of C8-fields – e.g.,
every such field is real closed (cf. Theorem 2.10 in [16]). – to present another
approach to the order theory of general C8-rings, introducing the so-called “smooth
real spectra” (see [5]). This suggests that a model-theoretic study of the class of
C8-fields could be interesting and also useful to provide the first steps towards the
development of the “Real Algebraic Geometry” of C8-rings in the vein of [19].

Overview of the paper: In the first section we present some preliminary
notions and results that are used (implicitly or explicitly) throughout the paper, such
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as the basic concept of C8�ring and some features of the category of C8�rings,
C8�fields, C8�rings of fractions, C8�radical ideals, C8�reduced C8-rings and
some facts about the smooth Zariski spectrum. Section 2 is devoted to present some
results that (dually) connect subsets of RE to quotients of C8pREq: we present the
characterizations of equalities and inequalities between elements of C8�reduced
C8�rings, i.e., C8�rings of the form A � C8pREq

I with 8
?
I � I, by means of the

filter of zerosets of functions of I, and we use a Galois connection between filters of
zerosets of RE and ideals of C8pREq to show that there are bijections between the
set of maximal filters on RE and the set of maximal ideals of C8pREq. In Section
3 we develop a detailed study of the natural strict partial ordering   (introduced
first by Moerdijk and Reyes) defined on a non-trivial C8-reduced C8-ring, with
the aid of the results established in the previous sections (see Theorem 3.7 ).
Section 4 presents some interesting results on C8�fields based on the results from
Section 3: for instance, every C8-field has   as its unique (strict) total ordering
compatible with the operations � and �, thus being a Euclidean field, cf. Theorem
4.4 , (in fact, it is a real closed field); this is useful to analyse the concept of “real
C8�spectrum of a C8�ring”, which seems to be the suitable notion to deal with
a smooth version of Real Algebraic Geometry. Finally, Section 5 brings some
concluding remarks, pointing some possible applications of the order structure of a
C8�reduced C8�ring to its model theory.

1 Preliminaries
In this section we present the ingredients of the theory of C8-rings needed in

the sequel of this work for the reader’s convenience: we present the class of C8-
rings as the class of models of an algebraic theory, and we describe the main notions
of “Smooth Commutative Algebra of C8-rings": smooth rings of fractions, C8-
radicals, C8-saturation and the smooth Zariski spectra. The main references used
here are [16], [17], [3], [4].

1.1 On the Algebraic Theory of C8-Rings
In order to formulate and study the concept of C8�ring, we use a first order

language L with a denumerable set of variables (VarpL q � tx1, x2, � � � , xn, � � � u),
whose nonlogical symbols are the symbols of all C8�functions from Rm to Rn, with
m,n P N, i.e., the non-logical symbols consist only of function symbols, described
as follows.

For each n P N, we have the n�ary function symbols of the set C8pRn,Rq,
i.e., Fpnq � tf pnq|f P C8pRn,Rqu. Thus, the set of function symbols of our language
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is given by:
F �

¤
nPN

Fpnq �
¤
nPN

C8pRnq

Note that our set of constants is R, since it can be identified with the set of all
0�ary function symbols, i.e., ConstpL q � Fp0q � C8pR0q � C8pt�uq � R.

The terms of this language are defined in the usual way as the smallest set which
comprises the individual variables, constant symbols and n�ary function symbols
followed by n terms (n P N).

Before we proceed, we give the following:

Definition 1.1. A C8�structure on a set A is a pair A � pA,Φq, where:

Φ :
�
nPN C8pRn,Rq Ñ �

nPN Func pAn;Aq
pf : Rn C8Ñ Rq ÞÑ Φpfq :� pfA : An Ñ Aq ,

that is, Φ interprets the symbols of all smooth real functions of n variables as
n�ary functions on A. Given two C8-structures, A � pA,Φq and B � pB,Ψq, a
C8�structure homomorphism is a function φ : AÑ B such that for any n P N
and any f : Rn C8Ñ R the following diagram commutes:

An

Φpfq
��

φpnq // Bn

Ψpfq
��

A
φ // B

i.e., Ψpfq � φpnq � φ � Φpfq. The class of C8�structures and their morphisms
compose a category that we denote by C8Str.

We call a C8�structure A � pA,Φq a C8�ring if it preserves projections and
all equations between smooth functions. Formally, we have the following:

Definition 1.2. Let A � pA,Φq be a C8�structure. We say that A (or, when there
is no danger of confusion, A) is a C8�ring if the following is true:

 Given any n, k P N and any projection pk : Rn Ñ R, we have:

A |ù p@x1q � � � p@xnqppkpx1, � � � , xnq � xkq
 For every f, g1, � � � gn P C8pRm,Rq with m,n P N, and every h P C8pRn,Rq

such that f � h � pg1, � � � , gnq, one has:

A |ù p@x1q � � � p@xmqpfpx1, � � � , xmq � hpgpx1, � � � , xmq, � � � , gnpx1, � � � , xmqqq
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Given two C8�rings, A � pA,Φq and B � pB,Ψq, a C8-homomorphism
is just a C8-structure homomorphism between these C8�rings. The category of
all C8�rings and C8�ring homomorphisms make up a full subcategory of C8Str,
that we denote by C8Rng.

Remark 1.3 (cf. Sections 2, 3 and 4 of [3]). Since C8Rng is a “variety of
algebras” (it is a class of C8�structures which satisfy a given set of equations),
it is closed under substructures, homomorphic images and products, by Birkhoff’s
HSP Theorem. Moreover:
 C8Rng is a concrete category and the forgetful functor, U : C8Rng Ñ Set

creates directed inductive colimits. Since C8Rng is a variety of algebras, it has all
(small) limits and (small) colimits. In particular, it has binary coproducts, that is,
given any two C8�rings A and B, we have their coproduct A ιAÑ Ab8B

ιBÐ B again
in C8Rng;
 Each set X freely generates a C8-ring, LpXq, as follows:
- for any finite set X 1 with 7X 1 � n we have LpX 1q � C8pRX 1q � C8pRn,Rq,

which is the free C8-ring on n generators, n P N;
- for a general set, X, we take LpXq � C8pRXq :� limÝÑX 1�finX

C8pRX 1q, with
transition maps induced by restriction from RX2 to RX 1 for X 1 � X2 �fin X;
 Given any C8�ring A and a set, X, we can freely adjoin the set X of variables

to A with the following construction: AtXu :� Ab8 LpXq. The elements of AtXu
are usually called C8�polynomials;
 The congruences of C8�rings are classified by their “ring-theoretical” ideals;
 Every C8�ring is the homomorphic image of some free C8�ring determined

by some set, being isomorphic to the quotient of a free C8�ring by some ideal.

Moreover, since C8Rng is a variety of algebras, the Fundamental Theorem
of Homomorphism holds (Theorem 3 of [3]). We register this result here, for
the benefit of the reader:

Fact 1.4. (Fundamental Theorem of the C8�Homomorphism) Let pA,Φq
be a C8�ring and R � A � A be a C8�congruence. For every C8�ring pB,Ψq
and for every C8�homomorphism φ : pA,Φq Ñ pB,Ψq such that R � kerpφq, that
is, such that:

pa, a1q P Rñ φpaq � φpa1q,
there is a unique C8�homomorphism:

rφ :
�
A

R
,Φ


Ñ pB,Ψq
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such that the following diagram commutes:

pA,Φq
q
��

φ // pB,Ψq

�
A

R
,Φ

 rφ

77

that is, such that rφ � q � φ, where Φ is the canonical C8�structure induced on the
quotient A

R .

Within the category of C8�rings we can perform a construction that is similar
to the “ring of fractions” in Commutative Algebra, as well as define a suitable notion
of “radical ideal”. We analyze these concepts in the following section.

1.2 On C8-Rings of Fractions and C8-Radical Ideals

In order to extend the notion of the ring of fractions to the category C8Rng, we
make use of the universal property a ring of fractions must satisfy in Ring- except
that we must deal with C8�rings and C8�homomorphisms instead of rings and
homomorphisms of rings.

Definition 1.5. Let A � pA,Φq be a C8�ring and S � A be a subset. The
C8�ring of fractions of A with respect to S is a C8�ring AtS�1u, together with
a C8�homomorphism ηS : AÑ AtS�1u satisfying the following properties:

(1) p@s P SqpηSpsq P pAtS�1uq�q

(2) If φ : A Ñ B is any C8�homomorphism such that for every s P S we have
φpsq P B�, then there is a unique C8�homomorphism rφ : AtS�1u Ñ B such
that the following triangle commutes:

A
ηS //

φ

((

AtS�1u
rφ
��
B

By this universal property, the C8�ring of fractions is unique, up to (unique)
isomorphisms.
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The existence of smooth rings of fractions can be guaranteed by a combination
of constructions:
 first consider the addition of 7S-variables to the C8-ring A:

Atxs|s P Su :� Ab8 C8pRSq,
and let jS : AÑ Atxs|s P Su be the (left) canonical morphism;
 now consider the ideal xtxs �ιApsq�1|s P Suy of A generated by txs �ιApsq�1|s P

Su, and take the quotient:

Atxs|s P Su
qS↠ Atxs|s P Su
xtxs � ιApsq � 1|s P Suy .

Finally, define:

AtS�1u :� Atxs|s P Su
xtxs � ιApsq � 1|s P Suy ;

and

ηS :� qS � jS : AÑ AtS�1u.
It is not difficult to see that such a construction satisfies the required universal

property.

Example 1.6. Let φ P C8pRnq and consider the (closed) subset Zpφq � tx⃗ P Rn :
φpx⃗q � 0u � Rn. Then C8pRnqtφ�1u � C8pRn�1q{xty � φ � 1uy � C8pRnzZpφqq
together with the restriction map C8pRnq Ñ C8pRnzZpφqq is a C8-homomorphism
that satisfies the universal property of ηtφu.

Now we analyze the concept of the “C8�radical ideal” in the theory of C8�
rings, which plays a similar role to the one played by radical ideals in Commutative
Algebra. This concept was first presented by I. Moerdijk and G. Reyes in [16] in
1986, and explored in more detail in [17].

Unlike many notions in the branch of Smooth Rings such as C8�fields (C8-
rings whose underlying rings are fields), C8�domains (C8-rings whose underlying
rings are domains) and local C8�rings (C8-rings whose underlying rings are local
rings), the concept of a C8�radical of an ideal cannot be brought from Commu-
tative Algebra via the forgetful functor. This happens because when we take the
localization of a C8-ring by an arbitrary prime ideal, it is not always true that we
get a local C8�ring (see Example 1.2 of [17]). In order to get a local C8�ring
we must require an extra condition, that we are going to see later on.
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Recall, from Commutative Algebra, that the radical of an ideal I of a commu-
tative unital ring R is given by:

?
I � tx P R|pDn P Nqpxn P Iqu.

There are several characterizations of this concept, among which we highlight
the following ones:

?
I �

£
tp P Spec pRq|I � pu �

"
x P R|

�
R

I



rpx� Iq�1s � 0

*
.

The latter equality is the one which motivates our next definition.

Definition 1.7. (cf. p. 329 of [16]) Let A be a C8�ring and let I � A be a proper
ideal. The C8�radical of I is given by:

8
?
I :�

"
a P A|

�
A

I



tpa� Iq�1u � 0

*
Definition 1.8. (cf. Definition 2.1.5 of [2]) Given a C8-ring A and a subset
S � A, we define the C8�saturation of S by:

S8�sat :� ta P A | ηSpaq P A�u.
Example 1.9. Given φ P C8pRnq, we have tφu8�sat � tψ P C8pRnq | Zpψq �
Zpφqu.

The concept of C8�saturation is similar to the ordinary (ring-theoretic) concept
of saturation in many aspects (for a detailed account of this concept, see Section
3.1 of [4]). In particular, we use it to give a characterization of the elements of
C8�radical ideals.

Proposition 1.10. [ Proposition 3.48 of [4]] Let A be a C8�ring and let I � A
be any ideal. We have the following equalities:

8
?
I � ta P A|pDb P Iq&pηapbq P pAta�1uq�qu � ta P A|I X tau8�sat � ∅u

where ηa : AÑ Ata�1u is the C8�homomorphism of fractions with respect to tau.
In ordinary Commutative Algebra, given an element x of a ring R, we say that

x is a nilpotent infinitesimal if and only if there is some n P N such that xn � 0.
Let A be a C8�ring and a P A. D. Borisov and K. Kremnizer in [6] call a an
8�infinitesimal if, and only if Ata�1u � 0. The next definition describes the notion
of a C8�ring being free of 8�infinitesimals - which is analogous to the notion of
“reducedness”, of a commutative ring.
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Definition 1.11. A C8�ring A is C8�reduced if, and only if, 8
ap0q � p0q.

Example 1.12. The simplest example of C8�reduced C8�rings is the free C8�
ring on any set of generators E (cf. Proposition 4.47 of [4]).

Next we register some useful results on C8�radical ideals and C8�reduced
C8�rings.

Proposition 1.13 (Proposition 4.33, [4]). Let A1, B1 be two C8�rings and ȷ :
A1 Ñ B1 be a monomorphism. If B1 is C8�reduced, then A1 is also C8�reduced.

Proposition 1.14. Let A be a C8�ring. We have:

(a) An ideal J � A is a C8�radical ideal if, and only if, A
J

is a C8�reduced
C8�ring.

(b) A proper prime ideal p � A is C8�radical if, and only if, A
p

is a C8�reduced
C8�domain.

Proof. See Corollary 4.31 of [4].

Next we present some properties of C8�radical ideals of a C8�ring A regarding
some “operations” such as the intersection, the directed union and the preimage by
a C8�homomorphism of C8�radical ideals. To simplify the notation, given a
C8�ring A, we denote by I8A the set of all its C8�radical ideals. The proofs of
the results given in the next proposition can be found in [4].

Proposition 1.15 (Proposition 4.42 of [4]). The following results hold:

(a) Suppose that p@α P ΛqpIα P I8A q. Then
�
αPΛ Iα P I8A , that is, if p@α P ΛqpIα P

I8A q, then:

8

d£
αPΛ

Iα �
£
αPΛ

Iα �
£
αPΛ

8
a
Iα

(b) Let tIα|α P Σu an upwards directed family of elements of I8A . Then
�
αPΣ Iα P

I8A .

(c) Let A,B be C8�rings, f : A Ñ B a C8�homomorphism and J � B any
ideal. Then:

8
a
f%rJs � f%r 8

?
Js.
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(d) Let A,B be C8�rings, f : AÑ B be a C8�homomorphism and J � B be a
C8�radical ideal. Then f%rJs is a C8-radical ideal of A.

(e) Given any two C8�radical ideals of a C8�ring A, I, J P I8A , we have:

8
?
I � J � 8

?
I X J

For a more comprehensive account of C8�radical ideals and C8�reduced C8-
rings, we refer the reader to sections 3 and 4 of [4].

1.3 On the Smooth Zariski Spectrum
Recall that the spectrum of a commutative unital ring R consists of all prime

ideals of R, together with a spectral topology - given by its “distinguished basic
sets”, its Zariski topology. Recall, also, that in ordinary Commutative Algebra,
every prime ideal is radical - and that the C8�version of this implication is false in
the context of Smooth Commutative Algebra (not every prime ideal of a C8�ring
is C8�radical). At this point it is natural to look for a C8�analog of the Zariski
spectrum of a commutative unital ring. Keeping in mind the definitions of the
previous subsection, we give the following definition, that can be found in [17]:

Definition 1.16. For a C8�ring A, we define:

Spec8 pAq � tp P Spec pAq|p is C8 � radicalu

equipped with the smooth Zariski topology defined by its basic open sets:

D8paq � tp P Spec8 pAq|a R pu

Proposition 1.17. For every C8�ring A, Spec8 pAq is a spectral space. Given
two C8�rings A,A1 and a C8�homomorphism f : AÑ A1, The function:

f� : Spec8 pA1q Ñ Spec8 pAq
p ÞÑ f%rps

is a spectral map.

Proof. For a detailed proof that Spec8 pAq is a spectral space for any C8�ring A
we refer the reader to Theorem 5.16 of [4]. For a detailed proof that for any
C8�rings A,A1 and any C8�homomorphism f : A Ñ A1, the map f� is spectral,
we refer the reader to Proposition 5.19 of [4].
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Theorem 1.18. (Separation Theorems, [5]) Let A be a C8�ring, S � A be a
subset of A and I be an ideal of A. Denote by xSy the multiplicative submonoid of
A generated by S. We have:

(a) If I is a C8�radical ideal, then:

I X xSy � ∅ ðñ I X S8�sat � ∅

(b) If S � A is a C8-saturated subset, then:

I X S � ∅ ðñ 8
?
I X S � ∅

(c) If p P Spec8 pAq, then Azp � pAzpq8�sat

(d) If S � A is a C8-saturated subset, then:

I X S � ∅ ðñ pDp P Spec8 pAqqppI � pq&ppX S � ∅qq.

(e) 8
?
I � �tp P Spec8 pAq|I � pu

Proof. See Theorem 4.49 of [4].

A more detailed account of the smooth Zariski spectrum containing detailed
proofs can be found in Section 5.1 of [4].

2 On Smooth Spaces and Smooth Algebras

Every (finite dimensional) smooth manifold M can be embedded as a closed
subspace of some Rn (Whitney’s Theorem) and determines a C8-ring, C8pMq.
This mapping, M ÞÑ C8pMq, extends to a full and faithful contravariant functor
into the category of C8-rings (see for instance Theorem 2.8 of [18]). In this
section we present some results that (dually) connects subsets of RE and quotients of
C8pREq. More precisely, we present some very useful characterizations of equalities
and inequalities between elements of C8�reduced C8�rings, i.e., C8�rings of the
form A � C8pREq

I with 8
?
I � I, by means of the filter of zerosets of functions of I.
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2.1 The Finitely Generated Case
We start by recalling an important fact about the relation between closed subsets

of Rn and zerosets of C8-functions.

Fact 2.1. (essentially Lemma 1.4 of [18]) For each open subset U � Rn there is
a smooth function χ : Rn Ñ R such that:

• p@x P Rnqpχpxq ¥ 0q
• p@x P Rnqppχpxq � 0q ðñ px R Uqq.

Definition 2.2 (smooth function). Let X � Rn. A function f : X Ñ R defined
over X is smooth if there is an open subset U � Rn such that X � U and a
C8-extension of f , rf : U Ñ R, such that rf ↾X� f .

Fact 2.3 (Smooth Tietze Theorem). Let F � Rn be a closed set and let f P
C8pF q. Then there is a smooth function rf P C8pRnq such that rf ↾F� f . Moreover:

• If p@x P F qpfpxq � 0q, then we can choose a C8-extension rf of f and an open
subset U � Rn such that F � U and p@x P Uqp rfpxq � 0q.

• If p@x P F qpfpxq ¡ 0q, then we can choose a C8-extension rf of f such that
p@x P Rnqp rfpxq ¡ 0q.

Proposition 2.4. Let A � C8pRnq
I be a C8�reduced C8�ring, so 8

?
I � I. Given

f, g P C8pRnq, we have:

pqIpfq � f � I � g � I � qIpgqq ðñ pDφ P Iqp@x P Zpφqqpfpxq � gpxqq.

Proof. Suppose qIpfq � f � I � g � I � qIpgq, so g � f P I. It suffices to take
φ � g � f , so:

p@x P Zpφqqpgpxq � fpxq � 0q
and

p@x P Zpφqqpfpxq � gpxqq
Conversely, if there is some φ P I such that p@x P Zpφqqpfpxq � gpxqq, then
Zpφq � Zpg�fq and φ ↾RnzZpg�fqP C8pRnzZpg�fqq� � C8pRnqtpg � fq�1u� (see
Example 1.6). It follows that g � f P 8

?
I � I and f � I � g � I.

Now we characterize the invertible elements of a C8-reduced C8-ring.
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Proposition 2.5. Let A � C8pRnq
I be a C8�reduced finitely generated C8�ring,

so 8
?
I � I. Given f P C8pRnq we have:�
qIpfq � pf � Iq P

�
C8pRnq

I


��
ðñ pDφ P Iqp@x P Zpφqqpfpxq � 0q.

Proof. Suppose, first, that pf � Iq P
�

C8pRnq
I

	�
, so there is some h � I P C8pRnq

I

such that:
pf � Iq � ph� Iq � 1� I

qIpfq � qIphq � qIp1q

f � h� 1 P kerpqIq

φ � f � h� 1 P I,
One has:

p@x P Zpφqqpfpxq � hpxq � 1 � 0q
and thus:

p@x P Zpφqqpfpxq � 1
hpxq � 0q

Conversely, suppose that f P C8pRnq is such that there is some φ P I with
p@x P Zpφqqpfpxq � 0q. Since f is a continuous function, there is an open subset
U � Rn such that Zpφq � U and p@x P Uqpfpxq � 0q.

We define:
g : U � Rn Ñ R

x ÞÑ 1
fpxq

Thus g ↾Zpφq is smooth on Zpφq and by Smooth Tietze’s Theorem (Fact
2.3), one is able to construct a C8-function rg : Rn Ñ R such that rg ↾Zpφq� g ↾Zpφq.

Since we have:
p@x P Zpφqqpfpxq � rgpxq � 1 � 0q

it follows, by Proposition 2.4, that f � rg � 1 P I, so:

pf � Iq � prg � Iq � 1� I

and f � I P
�

C8pRnq
I

	�
.
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Combining the previous proposition with Proposition 2.4, we obtain the fol-
lowing:

Corollary 2.6. Let A � C8pRnq
I be a finitely generated C8�reduced C8�ring, so

8
?
I � I. Given f P C8pRnq, are equivalent:

1. pDu P C8pRnqqpppf � Iq � pu2 � Iqq&pu� I P
�

C8pRnq
I

	�
qq

2. pDu P C8pRnqqpDψ P Iqp@x P Zpψqqpfpxq � u2pxq � 0q

3. pDψ P Iqp@x P Zpψqqpfpxq ¡ 0q

2.2 The General Case
We know that every closed subset of Rn is the zeroset of some smooth function

f : Rn Ñ R (see Fact 2.1). We now expand the notion of zero set to RE , where E
is not necessarily a finite set.

Definition 2.7. Let E be any set. Consider RE � tv : E Ñ R|v is a functionu and
denote F pREq :� tf : RE Ñ R|f is a functionu. For every D � E, we have the
canonical projection:

πED : RE Ñ RD
v ÞÑ v ↾D: D Ñ R

and this induces a function:

µDE : F pRDq Ñ F pREq
f ÞÑ µDEpfq :� f � πED

Definition 2.8. Let E be any set. Define:

C8pREq :� tf P F pREq | pDE1 �fin EqpDf 1 P C8pRE1qqpf � f 1 � πEE1qu.

Thus, by a smooth function on RE we mean a function f : RE Ñ R that factors
through some projection πEE1 : RE Ñ RE1 and a smooth function rf P C8pRE1q, for
some E1 �fin E. I.e., given f P F pREq we have:

f P C8pREq ðñ pDE1 �fin EqpD rf P C8pRE1qpf � rf � πEE1q.
It is not hard to see that for every E1, E2 �fin E with E1 � E2, the following

diagram commutes:
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C8pREq

C8pRE1q

µE1E

88

µE1E2
// C8pRE2q

µE2E

ff

Moreover, notice that C8pREq � limÝÑE1�finE
C8pRE1q, where for every

E1, E2 �fin E such that E1 � E2, the following triangle commutes:

limÝÑE1�finE
C8pRE1q

C8pRE1q

ℓE1
66

µE1E2
// C8pRE2q

ℓE2
hh

where the morphisms ℓE1 , ℓE2 are defined as in Section 3 of [3].

Definition 2.9. Let E be any set. A subset X � RE is a zeroset if there is some
φ P C8pREq such that X � Zpφq, where

Zpφq :� φ%rt0us � tx⃗ P RE : φpx⃗q � 0u

The set ZE :� tZpφq P ℘pREq : φ P C8pREqu denotes the set of all zerosets in
RE.

Remark 2.10.  Let E be an arbitrary set and φ P C8pREq. Select E1 �fin E and
φ1 P C8pRE1q such that φ � φ1 � πEE1. Then Zpφq � π%EE1rZpφ1qs.
 If E is a finite set, then by Fact 2.1, ZE � Closed pREq � ℘pREq thus it is

stable under finite unions and arbitrary intersections; in particular, H � �H and
RE � �H are in ZE.
 In general, for an arbitrary set E, the subset ZE � ℘pREq is stable just under

finite unions and finite intersections.

Definition 2.11. If I � C8pREq is an ideal, then I 1 � µ%E1ErIs is an ideal of
C8pRE1q. We define:

pI � tF � RE | pDE1 �fin EqpDf P I 1 � µ%E1ErIsqpF � π%EE1rZpfqsqu.

Proposition 2.12. Let A � C8pREq
I be a C8�reduced C8�ring, so 8

?
I � I. Given

f, g P C8pREq, we have:

pqIpfq � f � I � g � I � qIpgqq ðñ pDφ P Iqp@x P Zpφqqpfpxq � gpxqq.
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Proof. Given f, g P C8pREq such that qIpfq � f � I � g � I � qIpgq, by definition
there are finite subsets Ef , Eg � E and pf P C8pREf q, pg P C8pREgq such that
f � µEf

p pfq � pf � πEf
P C8pREf q and g � µEgppgq � pg � πEg P C8pREgq. Then

Ef Y Eg �fin E. Let rf � µEf ,EfYEgp pfq P C8pREfYEgq and rg � µEg ,EfYEgppgq P
C8pREfYEgq. By hypothesis, f � I � g � I, so f � g P I and µEfYEg ,Ep rfq �
µEfYEg ,Eprgq P I. We have, thus, p rf � rgq P µ%EfYEg ,E

rIs � 8

b
µ%EfYEg

rIs, since I
is a C8�radical ideal (see Proposition 1.15.(d)). By the finitely generated case
(Proposition 2.4), since rf, rg P C8pREfYEgq and rf � µ%EfYEg

rIs � rg � µ%EfYEg
rIs,

it follows that there is some rφ P µ%EfYEg
rIs such that:

p@y P Zprφqqp rfpyq � rgpyqq.
Taking φ � µEfYEg ,Eprφq � rφ � πE,EfYEg P I, we have:

p@x P Zpφqqpfpxq � rf � πEfYEgpxq � rg � πEfYEgpxq � gpxqq.

On the other hand, suppose f, g P C8pREq are such that pDφ P Iqp@x P
Zpφqqpfpxq � gpxqq. Thus, for such φ there is a finite Eφ � E and pφ P C8pREφq
such that φ � pφ � πE,Eφ , and there are also some finite Ef , Eg � E and somepf P C8pREf q, pg P C8pREgq such that f � µEf ,Ep pfq and g � µEg ,Eppgq. Letrφ � µEφ,EφYEfYEgppφq, rf � µEf ,EφYEfYEgp pfq and rg � µEg ,EφYEfYEgppgq. By the
finitely generated case (Proposition 2.4), since rf, rg, rφ P C8pREφYEfYEgq, p@x P
Zprφqqp rfpxq � rgpxqq and

8

b
µ%EφYEfYEg ,E

rIs � µ%EφYEfYEg ,E
rIs,

it follows that rf � rg P µ%EφYEfYEg ,E
rIs, so f � g � µEφYEfYEg ,Ep rf � rgq P I, and

f � I � g � I.

Proposition 2.13. Let E be any set and I � C8pREq be a C8-radical ideal. We
have, for every f P C8pREq:

pf � I P
�

C8pREq
I


�
q ðñ pDφ P Iqp@x P Zpφqqpfpxq � 0q

Proof. Given f P C8pREq such that qIpfq � f � I is invertible, let h, φ P C8pREq
such that

pf � h� 1q � φ P I.
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As in the proof of previous proposition, we can select E1 �fin E and f 1, h1, φ1 P
C8pRE1q such that f � µE1Epf 1q, h � µE1Eph1q, φ � µE1Epφ1q. Then

pf 1 � h1 �1 1q � φ1 P I 1 :� µ%E1ErIs.
Thus

p@x1 P RE1qpx1 P Zpφ1q ñ f 1px1q � 0q.
Since Zpφq � π%EE1rZpφ1qs and f � f 1 � πEE1 , then

p@x P REqpx P Zpφq ñ fpxq � 0q.
Conversely, let f, φ P C8pREq such that φ P I and

p@x P REqpx P Zpφq Ñ fpxq � 0q.
Select E1 �fin E and f 1, φ1 P C8pRE1q such that f � µE1Epf 1q, φ � µE1Epφ1q.

Then I 1 :� µ%E1ErIs is a C8-radical ideal of C8pRE1q, φ1 P I 1 and

p@x1 P RE1qpx1 P Zpφ1q Ñ f 1px1q � 0q.
By the finitely generated case (Proposition 2.5), f 1� I 1 P pC8pRE1q{I 1q�. Let

h1 P C8pRE1q such that

pf 1 � I 1qph1 � I 1q � 1� I 1 P C8pRE1q{I 1.
Now define h :� µEE1ph1q. Then

pf � Iqph� Iq � 1� I P C8pREq{I

Proposition 2.14. Let E be any set. If I � C8pREq is an ideal, then:pI :� tX P ℘pREq | pDf P IqpX � Zpfqqu � ℘pZpREqq
is a filter of zerosets in RE.

Proof. Note first thatpI � tF � RE | pDE1 �fin EqpDf 1 P I 1 � µ%E1rIsqpF � π%EE1rZpfqsqu � ℘pZ pREqq
Note that RE is a zeroset: RE � Zp0Eq, where

0E : RE Ñ R
x ÞÑ 0 .
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Note that 0E P C8pREq: choose any finite D � E and consider the C8-function

0D : RD Ñ R
x ÞÑ 0 ,

so 0E � µDEp0Dq P C8pREq.
Given G1, G2 P pI � RE , let g1, g2 P I � C8pREq such that Gi � Zpgiq for

i � 1, 2. There are finite E1, E2 � E, f1 P µ%E1ErIs � C8pRE1q, f2 P µ%E2ErIs �
C8pRE2q such that g1 � f1 � πEE1 , g2 � f2 � πEE2 . Thus π%EE1rZpf1qs � G1 and
π%EE2rZpf2qs � G2, where πEE1 : RE Ñ RE1 and πEE2 : RE Ñ RE2 are the canonical
projections (restrictions). Consider:

RE1YE2

πE1YE2,E1

zz

πE1YE2,E2

$$
RE1 RE2

where:

πE1YE2,E1 : RE1YE2 Ñ RE1

v ÞÑ v ↾E1 : E1 Ñ R
and

πE1YE2,E2 : RE1YE2 Ñ RE2

v ÞÑ v ↾E2 : E2 Ñ R
We have the commutative diagram:

RE
πEE1

��

πE,E1YE2

��
πEE2

��

RE1YE2

πE1YE2,E1

vv

πE1YE2,E2

((
RE1 RE2

Define rf1 � f1 � πE1YE2,E1 : RE1YE2 Ñ R and rf2 � f2 � πE1YE2,E2 : RE1YE2 Ñ R,
so �F1 � π%E1YE2,E1rZpf1qs � rf1

%rt0us � Zp rf1q � RE1YE2 and�F2 � π%E1YE2,E2rZpf2qs � rf2
%rt0us � Zp rf2q � RE1YE2 are zerosets.

Note that �F1X�F2 is also a zeroset, namely �F1X�F2 � Zp rf1
2� rf2

2q, with rf1
2� rf2

2 P
µ%E1YE2,ErIs. In fact, we have the commutative diagram:
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C8pREq

C8pRE1YE2q

µE1YE2,E

OO

C8pRE1q

µE1E

44

µE1,E1YE2

77

C8pRE2q

µE2E

jj

µE2,E1YE2

gg

Since the diagram commutes, we have µE1,E1YE2pf1q � f1 � πE1YE2,E1 � rf1 P
µ%E1YE2rIs and µE2,E1YE2pf2q � f2 � πE1YE2,E2 � rf2 P µ%E1YE2,ErIs, so rf1

2 � rf2
2 P

µ%E1YE2,ErIs.
Then g2

1 � g2
2 P I and

π%E,E1YE2r�F1 X�F2s � π%E,E1YE2rZp rf1
2 � rf2

2qs � Zpg2
1 � g2

2q � G1 XG2.

Let G P pI and H P Z pREq such that G � H. Then there are g P I, h P C8pREq
such that G � Zpgq, H � Zphq P Z pREq. Now select E1 �fin E and g1, h1 P
C8pRE1q such that µE1Epg1q � g, µE1Eph1q � h; thus π%EE1rZpg1qs � π%EE1rZph1qs and
g1 P I 1 :� µ%E1ErIs. Let G1 � Zpg1q, H 1 � Zph1q P Z pRE1q, then G1 � H 1. Since
we are dealing with C8pRE1q with E1 finite, the Smooth Tietze Theorem (Fact
2.3) gives us a smooth function, χH 1 P C8pRE1q such that H 1 � ZpχH 1q. We have
Zph1q � H 1 � G1 XH 1 � Zpg1q X ZpχH 1q � Zpg1.χH 1q and, since I 1 � µ%E1ErIs is an
ideal, g1.χH 1 P I 1.

Since H � π%EE1rH 1s, H 1 � Zpg1.χH 1q, g1.χH 1 P I 1 and

pI � tF � RE | pDE1 �fin EqpDf 1 P I 1 � µ%E1rIsqpF � π%EE1rZpfqsqu � ℘pZ pREqq,

we have H P pI.

Proposition 2.15. Let E be any set. If Φ � ℘pZ pREqq is a filter of zerosets in
RE, then: qΦ :� tf P C8pREq | Zpfq P Φu � C8pREq
is an ideal of C8pREq.
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Proof. Note first that

qΦ � tf P C8pREq | pDE1 �fin EqpDf 1 P C8pRE1qqppµE1Epf 1q � fq&
&pπ%EE1rZpf 1qs P Φqqu � C8pREq.

It is easy to see that 0E P qΦ. In fact, Zp0Eq � RE P Φ.
Given f P qΦ � C8pREq and h P C8pREq. Select E1 �fin E and f 1, h1 P C8pRE1q

such that µE1Epf 1q � f, µE1Eph1q � h. Then h � f � µE1Eph1 � f 1q P C8pREq and
Zph.fq � Zphq Y Zpfq � Zpfq P Φ. Thus h � f P qΦ.

Let f, g P qΦ. Select E1 �fin E and f 1, g1 P C8pRE1q such that µE1Epf 1q �
f, µE1Epg1q � g. Thus π%EE1rZpf 1qs, π%EE1rZpg1qs P Φ and f � g � µE1Epf 1 � g1q P
C8pREq. Since Zpf � gq � Zpfq X Zpgq P Φ, we obtain f � g P qΦ.

Proposition 2.16. Consider the partially ordered sets:

F � ptΦ � ℘pZ pREqq | Φ is a filteru,�q

and
I � ptI � C8pREq | I is an ideal of C8pREqu,�q

The following functions:

_ : F Ñ I

Φ ÞÑ qΦ
^ : I Ñ F

I ÞÑ pI
form a covariant Galois connection, ^ % _ , that is:

(a) Given Φ1,Φ2 P F such that Φ1 � Φ2, then |Φ1 � |Φ2;

(b) Given I1, I2 P I such that I1 � I2 then pI1 � pI2;

(c) For every Φ P F and every I P I we have:

pI � Φ ðñ I � qΦ
Moreover, the mappings p_,^q establish a correspondence between:
(1) ℘pZ pREqq and C8pREq;
(2) Proper filters of pF,�q and proper ideals of pI,�q.
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Proof. Items (a), (b), (c) follows directly from the definitions.
Suppose that Φ � ℘pZ pREqq. Then qΦ � tf P C8pREqq | f P ℘pZ pREqqu, thusqΦ � C8pREq.
Suppose that I � C8pREq. Then pI � tZpfq P ℘pZ pREqq | f P Iu, thuspI � ℘pZ pREqq.
Suppose that Φ is a proper filter. If f P C8pREq is such that Zpfq � ∅ R Φ,

then f P C8pREq� and f R qΦ � C8pREq. Thus qΦ � C8pREq is a proper ideal.
Suppose that I is a proper ideal. So f R I whenever f P C8pREq�, i.e. whenever

Zpfq � H. Thus H R pI, i. e. pI is a proper filter.

Remark 2.17. As in any (covariant) Galois connection, we have automatically:

 I � qpI; Φ � pqΦ
 pI � pqpI; qΦ � qpqΦ
The following result gives a more detailed information on these compositions.

Proposition 2.18. Let I � C8pREq be any ideal and Φ � ℘pZ pREqq be a filter of
zerosets. Then:

1. pqΦ � tX � pREq | Df P C8pREqpX � Zpfq, Zpfq P Φqu � Φ.

2. qpI � tg P C8pREq | Df P C8pREqpf P I, Zpgq � Zpfqqu � 8
?
I.

Proof. Item (1) and the first equality in item (2) follow directly from the definitions.
We will show that

tg P C8pREq | pDf P C8pREqqpf P I, Zpgq � Zpfqqu � 8
?
I

Note that: 8
?
I � tg P C8pREq | pDf P Iqppηgpfq P C8pREqtg�1u�qu �

tg P C8pREq | pDE1 �fin EqpDrg P C8pRE1qqpD rf P µ%E1ErIsqpg � rg � πEE1q&pη
rgp rfq P

C8pRE1qtrg�1u�qu
Given g P qpI, there is some finite E1 � E, some rg P C8pRE1q with g � rg�πEE1 and

some rf P µ%E1ErIs such that π%EE1rZprgqs � Zpgq � Zpfq � π%EE1rZp rfqs. Since πEE1 :
RE Ñ RE1 is surjective, we have Zprgq � πEE1rπ%EE1rZprgqss � πEE1rπ%EE1rZp rfqss �
Zp rfq. It follows that rf ↾RE1zZprgqP C8pRE1zZprgqq� and, by Example 1.6, η

rgp rfq P
C8pRE1qtrg�1u�. Since there is rf P µ%E1ErIs such that η

rgp rfq P C8pRE1qtrg�1u�, it
follows that g P 8

?
I.
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Conversely, given g P 8
?
I, there is some finite E1 �fin E, some rg P C8pRE1q

and some rf P µ%E1ErIs such that g � rg � πE1 and η
rgp rfq P C8pRE1qtrg�1u�. Sorf ↾RE1zZprgqP C8pRE1zZprgqq�, Zp rfq � Zprgq and π%EE1rZp rfqs � π%EE1rZprgqs. Since

π%EE1rZp rfqs P pI and pI is a filter, we have Zpgq � π%EE1rZprgqs P pI, so g P qpI.

Remark 2.19. The item (2) in the previous proposition ensures that the C8�
radical of any ideal of a C8�ring is an ideal.

Proposition 2.20. Let E be any set, and consider A � C8pREq. The Galois
connection ^ % _ establishes bijective correspondences between:

(a) The poset of all (proper) filters of zerosets of RE and the poset of all (proper)
C8�radical ideals of C8pREq, I8 � tI P I | 8

?
I � Iu;

(b) The set of all maximal filters of pF,�q and the set of all maximal ideals of
pI,�q;

(c) The poset of all prime (proper) filters of pF,�q and the poset of all prime
(proper) C8-radical ideals of pI,�q.

Proof. We saw in Proposition 2.16, that the functions p_,^q restricts to maps
between proper filters of zerosets of RE and proper ideals of C8pREq. Thus the
additional parts in items (a) and (c) are automatic.

Ad (a): Let Φ be a filter of zerosets in RE , then by Proposition 2.18.(1)
Φ � pqΦ. Let I be a C8-radical ideal in C8pREq, then by Proposition 2.18.(2)
and Remark 2.17,

qpqpI � qpI � 8
?
I � I

Thus, since pI � pqpI and qΦ � qpqΦ, the (increasing) mappings p_,^q establish a
bijective correspondence between the poset of all filters of zerosets of RE and the
poset of all C8�radical ideals of C8pREq.

Ad (b): First of all, note that, by a combination of previous results, if I is a
proper ideal of C8pREq, then 8

?
I is also a proper ideal of C8pREq. Thus if I is a

(proper) maximal ideal of C8pREq, then I � 8
?
I.

Now, by item (a), the increasing mappings p_,^q establishes a bijective corre-
spondence between the poset of all proper filters of zerosets of RE and the poset
of all proper C8�radical ideals of C8pREq. Thus the mappings p_,^q restrict to
a pair of inverse bijective correspondence between the set of all maximal filters of
zerosets of RE and the set of all maximal ideals of C8pREq.
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Ad (c): By the bijective correspondence in item (a), it is enough to show that
the mappings p_,^q restricts to a pair of mappings between the set of all prime
filters of zerosets of RE and the set of all C8-radical prime ideals of C8pREq.

Let Φ be a prime filter of zerosets of RE . If f, g P C8pREq are such that f �g P qΦ,
then Zpf � gq � Zpfq Y Zpgq P Φ, so we have Zpfq P Φ or Zpgq P Φ. Thus, f P qΦ or
g P qΦ, so qΦ is a prime ideal of C8pREq; moreover, by item (a), qΦ is C8-radical.

Let I be a C8-radical prime ideal of C8pREq, that is, if f, g P C8pREq are such
that f � g P I then f P I or g P I. We need to show that pI � tZphq|h P Iu is a prime
filter of zerosets of RE .

Let F � Zpfq, G � Zpgq, H � Zphq be zerosets of RE such that F YG � H P pI,
h P I. Select E1 �fin E and f 1, g1, h1 P C8pRE1q such that f � µE1Epf 1q, g �
µE1Epg1q, h � µE1Eph1q. Let F 1 � Zpf 1q, G1 � Zpg1q, H 1 � Zph1q � RE1 then F 1 Y
G1 � H 1 P pI 1, where h1 P I 1 :� µ%E1ErIs. Since I is a C8-radical prime ideal of
C8pREq, then I 1 is a C8-radical prime ideal of C8pRE1q, see Proposition 1.15.(d).
If we show that pI 1 is a prime filter of zerosets of RE1 then, we may assume w.l.o.g.
that Zpf 1q � F 1 P pI 1 and f 1 P 8

?
I 1 � I 1 � µ%E1ErIs; thus f � µE1Epf 1q P I and

F � Zpfq P pI, finishing the proof.
We will prove that pI 1 is a prime filter. We have Zpf 1.g1q � Zpf 1q Y Zpg1q �

F 1 Y G1 � H 1 � Zph1q, where h1 P I 1. Then, f 1.g1 P 8
?
I 1 � I 1. Since I 1 is a prime

ideal, f 1 P I 1 or g1 P I 1. Thus F 1 � Zpf 1q P pI 1 or G1 � Zpg1q P pI 1.

3 The Order Theory of C8-Reduced C8-Rings
The results established in the previous section are fundamental to develop an

order theory over a broader class of C8-rings. In fact, in order to get nice results,
we need to assume some technical conditions: the C8-rings must be non-trivial (i.e.
0 � 1) and C8- reduced (see Section 1).

The fundamental notion here is the following (see p. 328 of [16]):

Definition 3.1. Let A be a C8�ring. The canonical relation on A is

 A� tpa, bq P A�A | pDu P A�qpb� a � u2qu

Remark 3.2. Note that the canonical relation is preserved by C8-homomorphism.
In more detail: let A,A1 be C8-rings and h : A Ñ A1 be a C8-homomorphism.
Then for each a, b P A:

a  A b ñ hpaq  A1 hpbq.
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Proposition 3.3. Let A be any C8�ring. The canonical relation on A,  A, is
compatible with the sum and with the product of A.

Proof. Let a, b P A such that a   b and let c P A� such that pb� a � c2q.
Given any x P A, we have:

pb� xq � pa� xq � b� a � c2,

thus a� x   b� x.
Given x P A such that 0   x, one has pDd P A�qpx � d2q. We have, thus:

b � x� a � x � pb� aq � x � c2 � d2 � pc � dq2.

Since both c amd d are invertible, it follows that c � d is invertible, and a � x  
b � x.

Proposition 3.4. If A is a non trivial C8-ring, then  , defined as above, is ir-
reflexive, that is,

p@a P Aqp pa   aqq.
Proof. Suppose there is some a0 P A such that a0   a0. By definition, this happens
if, and only if there is some c P A� such that 0 � a0 � a0 � c2, so 0 would be
invertible and 0 � 1.

In order to obtain further information about the canonical relation  A, we need
to pass to its specific “spatial” characterizations, by the aid of the results developed
in the previous section. We start this enterprise by the following:

Proposition 3.5. Let A � C8pRnq
I be a finitely generated C8�reduced C8�ring.

Then   equals:#
pf � I, g � Iq P C8pRnq

I
� C8pRnq

I
| pDh P

�
C8pRnq

I


�
qpg � f � I � h2 � Iq

+

pf � I   g � Iq ðñ ppDφ P Iqp@x P Zpφqqpfpxq   gpxqqq.
Proof. Despite this is a direct application of Corollary 2.6, we register here a
detailed proof, since it stresses the centrality of the C8�reducedness hypothesis.

Suppose f � I   g� I, so there is some h� I P
�

C8pRnq
I

	�
such that g�f � I �

h2� I. Since h� I is invertible, by Proposition 2.5 there is some ψ P I such that:
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p@x P Zpψqqphpxq � 0q
Since g � f � I � h2 � I, by Proposition 2.4, there is some ϕ P I such that:

p@x P Zpϕqqpgpxq � fpxq � h2pxqq,
that is, such that:

p@x P Zpϕqqpgpxq � fpxq � h2pxqq
Taking φ � ϕ2 � ψ2 P I we have, for every x P Zpψq X Zpϕq � Zpφq both:

gpxq � fpxq � h2pxq
and

h2pxq ¡ 0

Hence,

p@x P Zpφqqpfpxq   gpxqq
Conversely, suppose f, g P C8pRnq are such that there is some φ P I with

satisfying:

p@x P Zpφqqpfpxq   gpxqq.
Since f and g are continuous functions, there is an open subset U � Rn such

that Zpφq � U and

p@x P Uqpfpxq   gpxqq.
The C8-function:

m : Rn Ñ R
x ÞÑ gpxq � fpxq

is such that p@x P Uqpmpxq ¡ 0q. Thus m ↾Zpφq is smooth and p@x P Zpφqqpmpxq ¡
0q, so by Fact 2.3 there is a smooth function rm P C8pRnq such that rm ↾Zpφq�
m ↾Zpφq and p@x P Rnqprmpxq ¡ 0q.

Now the function h :�
?rm : Rn Ñ R is a smooth function and since h P

pC8pRnqq�, by Proposition 2.5,
Since I � 8

?
I, by Proposition 2.4 it follows that pg � fq � I � h2 � I with

h� I invertible. Thus, f � I   g � I.
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Proposition 3.6. Given any C8�reduced C8�ring A. Then there is a directed
system of its finitely generated C8�rings pAi, αij : Ai Ñ AjqiPI

i¤j
such that:

1. A � limÝÑiPI
Ai;

2. For each i, j, if i ¤ j then αij : Ai Ñ Aj and αi : Ai Ñ A are injective;

3. For each i P I, Ai is a C8-reduced C8�ring;

4. For each a, b P A, a  A b iff Di P I, Dai, bi P Aipαipaiq � a, αipbiq � b and
ai  Ai biq.

Proof. Note that any C8-reduced C8-ring can be presented as A � C8pREq{I,
where I � 8

?
I and the latter can be described as a directed colimit of finitely

generated C8-reduced C8-rings. Indeed, we have that

C8pREq{I � p limÝÑ
E1�finE

C8pRE1qq{I � limÝÑ
E1�finE

pC8pRE1q{µ%E1,ErIsq.

It is clear that αE1 : C8pRE1q{µ%E1,ErIs Ñ C8pREq{I is injective, for each E1 �fin

E. Thus if E2 � E1 �fin E, then αE2E1 : C8pRE2q{µ%E2,ErIs Ñ C8pRE1q{µ%E1,ErIs
is injective too.

We combine the results in Proposition 1.14.(a) and Proposition 1.15.(d) to
conclude that C8pRE1q{µ%E1,ErIs is a C8-reduced C8-ring.

Now item (4) follows directly from the definition of canonical relation, since for
each f, g P C8pREq:

Du P C8pREqppg � fq � I � u2 � I;u� I P pC8pREq{Iq�q
iff DE1 �fin E, Df 1, g1, u1 P C8pRE1q, µE1,Epf 1q � f, µE1,Epg1q � g, µE1,Epu1q � u

such that:

pg1 � f 1q � µ%E1,ErIs � u12 � µ%E1,ErIs and u1 � µ%E1,ErIs P pC8pRE1q{µ%E1,ErIsq�q.

We are ready to state and proof the following (very useful) general characteriza-
tion result of  :

Theorem 3.7. Let A � C8pREq
I be a “general" C8�reduced C8�ring. We have:

pf � I   g � Iq ðñ ppDφ P Iqp@x P Zpφqqpfpxq   gpxqqq.
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Proof. Suppose f � I   g � I, so there is some h � I P
�

C8pRnq
I

	�
such that

g � f � I � h2 � I. Since h � I is invertible, by Proposition 2.13 there is some
ψ P I such that:

p@x P Zpψqqphpxq � 0q.
Since g � f � I � h2 � I, by Proposition 2.12, there is some ϕ P I such that:

p@x P Zpϕqqpgpxq � fpxq � h2pxqq,
Taking φ � ϕ2 � ψ2 P I we have, for every x P Zpψq X Zpϕq � Zpφq both

gpxq � fpxq � h2pxq and h2pxq ¡ 0. Thus,

p@x P Zpφqqpfpxq   gpxqq.
Conversely, suppose f, g P C8pREq are such that there is some φ P I with

satisfying:

p@x P Zpφqqpfpxq   gpxqq.
Pick E1 �fin E and f 1, g1, φ1 P C8pRE1q such that f � µE1Epf 1q, g � µE1Epg1q,

φ � µE1Epφ1q.
Then I 1 :� µ%E1ErIs is a C8-radical ideal of C8pRE1q, φ1 P I 1 and

@x1 P RE1px1 P Zpφ1q Ñ f 1px1q   g1px1qq.

By the finitely generated case (i.e. Proposition 3.5),

f 1 � I 1   g1 � I 1.

By (the proof of) Proposition 3.6.(4) we obtain

f � I   g � I.

Now, having available a characterization of the canonical relation  , we can
establish many of its properties.

Proposition 3.8. Let A be any C8-reduced C8�ring. The canonical relation  A

is transitive.
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Proof. The C8-reduced C8-ring A can be presented as A � C8pREq{I, for some
set E and some C8-radical ideal I � 8

?
I � C8pREq. Thus let f, g, h P C8pREq

such that f � I   g � I   h� I.
Now apply the characterization Theorem 3.7 and consider α, β P I such that

fpxq   gpxq,@x P Zpαq and gpxq   hpxq,@x P Zpβq.
Then γ :� α2 � β2 P I and Zpγq � Zpαq X Zpβq.
Thus fpxq   gpxq   hpxq,@x P Zpγq and since γ P I, applying again the Theo-

rem 3.7 we obtain f � I   h� I.

Proposition 3.9. Let A be any non-trivial C8-ring and a, b P A. Then the relation
 A is asymmetric, i.e. it holds at most one of the following conditions: a   b,
b   a.

Proof. Suppose that holds simultaneously both the conditions: a   b, b   a. Since
  is transitive (Proposition 3.8) we have a   a, but this contradicts Proposition
3.4, since A is non-trivial.

By a combination of Propositions 3.4, 3.8 (and 3.9), the canonical relation
  on every C8-ring A that is non-trivial and C8-reduced is is irreflexive, transitive
(and asymmetric) bynary relation on A : thus it defines a strict partial order. This
motivates the following:

Definition 3.10. Let A be a non-trivial, C8-reduced C8�ring. Then the canonical
bynary relation on A,  A, (Definition 3.1) will be called the “canonical strict
partial order on A”.

Moreover, by Proposition 3.3, it holds:

Theorem 3.11. Let A be any non-trivial C8�reduced C8�ring. The canonical
partial order on A,  A, is compatible with the sum and with the product of A.

Note that, due to the above result, to prove the trichotomy of   it suffices to
prove that holds the “restricted form of trichotomy”: given any a P A one has either
a � 0, a   0 or 0   a. But, clearly, this is not true in general:

Example 3.12. Let A � C8pRnq and consider the C8-function:

fpx1, � � � , xnq :� epx1�����xnq � 1.
If x1 � � � � � xn ¡ 0, then fpx1, � � � , xnq ¡ 0; if x1 � � � � � xn � 0, then

fpx1, � � � , xnq � 0 and if x1 � � � � � xn   0, then fpx1, � � � , xnq   0. Thus the
assertion (f   0 or f � 0 or 0   f) is false.
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On the other hand, the restricted trichotomy holds for invertible members of
some classes of C8-reduced C8-ring:

Proposition 3.13. Given a C8-reduced C8-ring, A, one has:

A� � pA�q2 Y p�A�q2

provided A satisfies some of the conditions below:

1. A is a free C8-ring;

2. A is a C8-reduced C8-domain.

Proof. This hols trivially if 0 � 1. We will prove that for a non trivial C8-reduced
C8-ring, A, the non obvious inclusion: A� � pA�q2 Y p�A�q2 holds.

Item (1): First recall that any free C8-ring is C8-reduced (see Example 1.12).
Let f P C8pREq�, then there is E1 �fin E and f 1 P C8pRE1q� such that f �
µE1Epf 1q � f 1 � πEE1 . Since f 1 : RE1 Ñ R is continuous and RE1 is connected,
then rangepfq � rangepf 1q is a connected subset of R, so it is an interval. Since
0 R rangepfq, then exactly one of the following alternatives holds: (i) rangepfq �
s � 8, 0r or (ii) rangepfq �s0,8r. If (i) holds then f P �pC8pREq�q2 and if (ii)
holds then f P pC8pREq�q2.

Item (2): We take a presentation of A as A � C8pREq{I, for some set E and
some (ring theoretical) ideal I P Spec8pAq. Let f P C8pREq such that pf � I P
C8pREq

I

�

q. By Proposition 2.13, there exists φ P I such that:

p@x P REqpx P Zpφq Ñ fpxq � 0q.

Let E1 �fin E such that φ � φ1 � πEE1 and f � f 1 � πEE1 , for some φ1, f 1 P
C8pRE1q. Then

p@x1 P RE1qpx1 P Zpφ1q Ñ f 1px1q � 0q.
Thus,

Zpφ1q � rf 1 ¡ 0s Y r�f 1 ¡ 0s,
where: r�f 1 ¡ 0s :� tx1 P RE1 : �f 1px1q ¡ 0u.

Note that:

Zpφ1q X r�f 1 ¥ 0s � Zpφ1q X r�f 1 ¡ 0s
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Since f 1 is a continuous function, r�f 1 ¥ 0s � p�f 1q%rr0,8rs is a closed subset
of RE1 , and by Fact 2.1, there is some χ� P C8pRE1q such that

Zpχ�q � r�f 1 ¥ 0s.
Thus,

Zpφ1q � Zpφ1q X RE
1 � Zpφ1q X pZpχ�q Y Zpχ�qq �

� pZpφ1q X Zpχ�qq Y pZpφ1q X Zpχ�qq � Zpφ12 � χ2
�q Y Zpφ12 � χ2

�q.
Since I is a C8-radical (proper) prime ideal of C8pREq, then I 1 :� µ%E1ErIs �

C8pRE1q is a C8-radical (proper) prime ideal of C8pRE1q (see Proposition
1.15.(d)).

By Proposition 2.20, I 1 corresponds to a prime filter (of zero sets) pI 1 and
since Zpφ12 � χ2

�q Y Zpφ12 � χ2
�q � Zpφ1q and φ1 P I 1, then some of the subsets

Zpφ12�χ2
�q, Zpφ12�χ2

�q belong to the C8-radical ideal I 1. By Proposition 2.18:qpI 1 � 8
?
I 1 � I 1, thus some of the functions pφ12 � χ2

�q, pφ12 � χ2
�q belongs to I 1.

Now recall that:

Zpφ12 � χ2
�q � Zpφ1q X Zpχ�q � Zpφ1q X r�f 1 ¥ 0s � Zpφ1q X r�f 1 ¡ 0s

and consider α� :� pφ12 � χ2
�q � πEE1 P C8pREq.

Then some of the alternatives holds:

(i) α� P I and p@x P Zpα�qqp�fpxq ¡ 0q;

(ii) α� P I and p@x P Zpα�qqpfpxq ¡ 0q.

Applying Theorem 3.7, if (i) holds then f � I P �ppC8pREq{Iq�q2 and if (ii)
holds then f � I P ppC8pREq{Iq�q2.

This establishes the desired inclusion A� � pA�q2 .Y p�A�q2.

There is another natural way to consider that a partial order ¨ (where a ¨ b iff
a   b or a � b) is compatible with sums: if 0 ¨ x and 0 ¨ y, then 0 ¨ x� y. This
one also holds, as it follows (directly) from the results obtained below.
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Proposition 3.14. Given any C8-reduced C8-ring A, denote by pA�q2 � A2 X
A� � pA2q�. Then the following hold:

1.
�°

A2�XA� � pA�q2

2. pA�q2 �°A2 � pA�q2

3.
°pA�q2 � pA�q2

Proof. First equality:
One easily checks that: �¸

A2
	
XA� � A2 XA�,

so we only need to prove the opposite inclusion.

We know thatA � C8pREq
I

for some set E and some C8-radical ideal 8
?
I � I �

C8pREq. Let f P C8pREq such that qIpfq � f � I P
�° C8pREq

I

2�
X C8pREq

I

�

.

Since qIpfq P
�

C8pREq
I


�
, by Proposition 2.13, there is some φ P I such that:

p@x P Zpφqqpfpxq � 0q

and since qIpfq P
° C8pREq

I

2
, by Proposition 2.12, there are f1, � � � , fk P

C8pREq and ψ P I such that:

p@x P Zpψqqpfpxq � f1pxq2 � � � � � f2
k pxq ¥ 0q,

Thus φ2 � ψ2 P I and

p@x P Zpφ2 � ψ2q � Zpφq X Zpψqqpfpxq � f2
1 pxq � � � � � f2

k pxq ¡ 0q.

Applying Theorem 3.7, we have:

0� I   f � I,

so f � I � u2� I, for some u P
�

C8pREq
I


�
, establishing the equality in item (1).

Second and third equalities:
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One easily checks that:

pA�q2 �
¸
A2 �

¸
pA�q2 � pA�q2,

so, to establish the items (2) and (3), we only need to prove that

pA�q2 �
¸
A2 � pA�q2.

Present A as A � C8pREq
I

for some set E and some C8-radical ideal 8
?
I �

I � C8pREq. Let f P C8pREq such that qIpfq � f � I P
�

C8pREq
I

�
�2

��° C8pREq
I

2�
. I.e., there are g, h1, � � � , hk P C8pREq such that f �I � pg2�h2

1�

� � �h2
kq � I and g � I P

�
C8pREq

I

�
�

.

Applying Proposition 2.12 and Proposition 2.13, we conclude that there is
θ P I such that:

p@x P Zpθqqpfpxq � gpxq2 � h1pxq2 � � � � � h2
kpxq and gpxq � 0q

Thus
p@x P Zpθqqpfpxq ¡ 0q.

Since θ P I, applying Theorem 3.7, we have:

0� I   f � I,

so f�I � u2�I, for some u P
�

C8pREq
I


�
, establishing the desired inclusion.

From the second equality above, it follows directly the:

Corollary 3.15. Every C8-ring A has the “weak bounded inversion property” (def-
inition 7.1. in [7]), i.e. 1�°A2 � A�.

4 On the Order Theory of C8-Fields and Applications
In this section we present concrete examples of finitely generated C8�fields and

some important facts about general C8�fields. Then we use these facts, along
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with the results presented in the previous section, to deepen the study of the order
theory of C8-fields initiated by Moerdijk and Reyes in [16]. We address some results
concerning C8-fields that will be useful in the sequel.

Now we consider two explicit situations where we have finitely generated C8�
fields.

Example 4.1. Let M be a smooth manifold. By Theorem 2.3 of [18], C8pMq �
C8pRkq

J for some k P N and some finitely generated ideal J . Thus, for any ideal
I � C8pMq, C8pMq{I is a finitely generated C8�ring.

Note that for each x P M , mx � tf P C8pMq | fpxq � 0u is a maximal ideal in
C8pMq.

Now suppose that M is compact. If I � C8pMq is a maximal ideal of C8pMq,
then I � mx for some unique x PM . In fact, given any ideal I � C8pMq, one has
either I � mx for some (unique) x PM or I � C8pMq.

Suppose it is not the case that there is some x P M such that I � mx, i.e.,
p@x P MqpI ⊈ mxq. For every x P M we can find a function fx P I such that
fxpxq � 0. Consider the open covering tMzf%x rt0us | x P Mu of M , which has a
finite sub-covering, say tMzf%x1rt0us, � � � ,Mzf%xr

rt0usu. We obtain, thus, the function
f � f2

x1 � � � � � f2
xr
P I such that p@x PMqpfpxq ¡ 0q. Hence, f P I XC8pMq� and

I � C8pMq.
As for the uniqueness of x P M , suppose that I � mx and let y P M be such

that x � y. By the Smooth Tietze’s Theorem, there is some f P C8pMq such
that fpxq � 0 (so f P I and f P mx) and fpyq � 1, so f R my. Thus mx � my and
I � my.

It follows that whenever I is a maximal ideal of C8pMq - where M is a compact
manifold - there is a unique x P M such that I � mx � C8pMq. Since I is a
maximal ideal, then I � mx.

Thus, for every maximal ideal I � C8pMq, C8pMq{I � R using the fact that
the C8�homomorphism:

evx : C8pMq Ñ R
f ÞÑ fpxq

is surjective and the Fundamental Theorem of the C8�Homomorphism that:

C8pMq
mx

� C8pMq
ker evx

� R

Hence, every C8�field obtained as a quotient C8pMq{I is isomorphic to R.

However, not every finitely generated C8�field is isomorphic to R, as we see in
the following:
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Example 4.2. Consider C8pRq together with the ideal of all compactly supported
functions:

I � tf P C8pRq | supppfq � R is compactu
Naturally the constant function 1 does not belong to I, so there is a maximal

ideal pI � C8pRq such that I � pI. Also, note that for every x P R, I � mx. In
fact, for every x P R, the smooth characteristic function χsx�1,x�1r : R Ñ R is a
compactly supported function which does not belong to mx. Since I � pI, pI � mx for
every x P R.

Now, since pI is a maximal ideal different from mx for every x P R, C8pRq{pI � F
is a finitely generated C8�field that is different from R.

An explicit description is given as follows. Let U � ℘pNq be a non-principal
ultrafilter and let:

pI � tf P C8pRq | tn P N | fpnq � 0u P Uu � C8pRq
It is straightforward to check that pI is an ideal of C8pRq. Since U is a non

principal ultrafilter, U contains all cofinite subsets of N. Thus, given any f P I -
that is, any f P C8pRq with compact support, K � supp pfq, since K is limited
there is some n0 P N such that K � r�n0, n0s, so p@n ¡ n0qpfpnq � 0q. Hence
tn P N | fpnq � 0u � N is cofinite and f P pI. Thus I � pI.

Finally, in order to show that pI is a maximal ideal, we show that C8pRq{pI is a
C8-field.

In fact, if f � pI � 0� pI, then f R pI and tn P N | fpnq � 0u R U . Since U is an
ultrafilter, we have tn P N | fpnq � 0u P U .

Now, since N � R is discrete, we can take, for every n P N such that fpnq � 0,
the open neighbourhood sn� 1

2 , n� 1
2 r with the smooth characteristic function:

χsn� 1
2 ,n�

1
2 r

: R Ñ R

x ÞÑ
#
e

1� 1
1�4px�nq2 , if x Psn� 1

2 , n� 1
2 r

0, otherwise

and then glue them up to get the smooth function:

h : R Ñ R

x ÞÑ
#
χsn� 1

2 ,n�
1
2 r
pxq, if x Psn� 1

2 , n� 1
2 r and fpnq � 0

0 otherwise
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y

x

1

n

n � 1
2

0

pn � 2q � 1
2n � 1

2

n� 1 n� 1 n� 3
pn � 1q � 1

2

n� 2

Now consider:

g : R Ñ R

x ÞÑ
$&%
hpxq
fpnq , if x Psn� 1

2 , n� 1
2 r and fpnq � 0

0 otherwise

y

x

1
fpn�1q

n

n � 1
2

0

pn � 2q � 1
2n � 1

2

n� 1 n� 1 n� 3

1
fpnq

1
fpn�2q

1
fpn�3q

pn � 1q � 1
2

n� 2

and note that g P C8pRq.
Also, note that for every n such that fpnq � 0, we have hpnq � 1, so gpnq �

1{fpnq. Thus, since tn P N | fpnq � gpnq � 1 � 0u P U � ℘pNq (for tn P N |
fpnq � gpnq � 1 � 0u is cofinite), it follows that:

f � g � 1 P pI,
so f � pI P pC8pRq{Iq�. It follows that C8pRq{pI is a finitely generated C8�field
which is not isomorphic to R.

Proposition 4.3. Let A be a C8�ring.

1. If A is a C8�field, then A is a C8�reduced C8�domain (see Proposition
4.6 of [4]).
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2. If A is a C8�reduced C8�domain, then AtpAzt0uq�1u is a C8-field, ηAzt0u :
A ↣ AtpAzt0uq�1u is an injective C8-homomorphism and ηAzt0u is univer-
sal among the injective C8-homomorphisms from A into some C8-field (see
Proposition 4.51 of [4]).

3. A is isomorphic to a C8-subring of a C8-field if, and only if A is a C8�
reduced C8�domain (see Corollary 4.36 and Proposition 4.51 of [4]).

4. For every proper prime ideal p � A that is C8�radical, we have a canonical
C8-field kppAq :� A

p
tqprAzps�1u and a canonical C8-morphism with kernel

p, A
qp↠ A

p

ηqprAzps

↣ kppAq (see p. 102 of [4]).

Now we are ready to turn our attention to the order theory of C8-fields.
By Corollary 3.15, every C8-reduced C8-ring A satisfies the relation 1 �°
A2 � A�. In particular, every C8-field A is formally real, i.e. �1 R °A2, thus

it can be endowed with some linear order relation compatible with its sum and
product. In fact, since a C8-field is a non-trivial C8-reduced C8-ring, we have a
distinguished linear order relation in A that is compatible with its sum and product:

Theorem 4.4. Let A be a C8�field and  A be the canonical strict partial order on
A, cf. Definition 3.10. Then pA,¨q is a totally/linearly ordered field, i.e., ¨ is a
reflexive, transitive and anti-symmetric binary relation in A that is compatible with
sum and product and, moreover, it holds the trichotomy law, i.e., for every a, b P A
we have exactly one of the following a � b or a   b or b   a. Moreover, 0 ¨ a iff
a � b2 for some b P A.

Proof. Since a ¨ b iff a   b or a � b, it follows directly from Theorem 3.11 that ¨
is a reflexive, transitive and anti-symmetric binary relation in A that is compatible
with sum and product.

By the compatibility of   with the sum, to obtain the trichotomy law it is enough
to show that for every f P Azt0u we have either p0   fq or pf   0q.

Since A is a C8-field, A� � Azt0u and the result follows directly from Propo-
sition 4.3.(1) and Proposition 3.13.(2): A� � pA�q2 Y p�A�q2.

In general, a field could support many linear orders compatible with its sum and
product. A field is called Euclidean if it has a unique (linear, compatible with
�, �) ordering: these fields are precisely the ordered fields such that every positive
member has a square root in the field. It is clear from the definition of   and by
Theorem 4.4 that every C8-field is Euclidean.

128



Order Theory of C8�Reduced C8�Rings and Applications

Now recall that a totally ordered field pF,¤q is real closed if it satisfies the
following two conditions:

(a) p@x P Fqp0 ¤ xÑ pDy P Fqpx � y2qq (i.e. it is an Euclidean field);

(b) every polynomial of odd degree has, at least, one root;

Equivalently, a totally ordered field pF,¤q is real closed if, and only if it satisfies
the conclusion of intermediate value theorem for all polynomial functions h :
FÑ F.

As pointed out in Theorem 2.10 of [16], it holds the following:

Fact 4.5. Every C8�field, A, together with its canonical order   is a real closed
field.

In fact, a stronger property holds for every C8-field. We have the C8�analog
of the notion of “real closedness”:

Fact 4.6 (Theorem 2.10’ of [16]). Let pF, q be a C8�field. Then pF, q is
C8�real closed. I.e., it holds:

p@f P Ftxuqppfp0q � fp1q   0q&p1 P xtf, f 1uy � Ftxuq Ñ

pDα Ps0, 1r� Fqpfpαq � 0qq
Note that the class of C8-fields is an L -elementary (proper) class, where all

structures have cardinally at least 2ℵ0 .
The notion of C8-field is also useful to analyze the order theory of a C8-reduced

C8-ring:

Remark 4.7. Consider A � C8pRnq. The inclusion i : C8pRnq ãÑ FuncpRn,Rq �
RRn obviously preserves and reflects the equality relation (=) and the canonical strict
partial order ( ). Note that, by Example 4.1, this inclusion can be factored through
the C8-homomorphism:

A
pqmqmÑ

¹
mPMaxpAq

A

m

Thus, the family of all C8-fields tA
m

: m P MaxpAqu encodes the canonical
relation  A on A.

The family of all C8-fields tkppAq : p P Spec8pAqu also encodes the canonical
relation  A on A.
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Consider the canonical C8-homomorphism cA : A Ñ ±
pPSpec8 pAq kppAq, given

by:

A
pqpqpÑ

¹
pPSpec8 pAq

A

p

pηqprAzpsqp
↣

¹
pPSpec8 pAq

kppAq

By Proposition 4.3.(4), kerpcAq �
�

pPSpec8 pAq p. Thus, by Theorem
1.18.(e), kerpcAq � 8

ap0q � t0u and cA is an injective C8-homomorphism, i.e., it
preserves and reflects the equality relation. We will see that cA also preserves and
reflects the canonical relation  .

The C8-homomorphism cA preserves   (see Remark 3.2). Note that, to es-
tablish that cA : AÑ±

pPSpec8 pAq kppAq reflects   it suffices to guarantee that:

A
pqmqmÑ

¹
mPMaxpAq

A

m

reflects  . In fact, since p@m P MaxpAqqpA
m
� kmpAqq, the inclusion MaxpAq �

Spec8 pAq (this holds by Proposition 4.3.(1)) induces a canonical “projection":

πA :
¹

pPSpec8 pAq

kppAq↠
¹

mPMaxpAq

A

m

and, obviously,

pqmqm � πA � cA,
Thus, if a, b P A are such that a ⊀ b, implies pqmqmpaq ⊀ pqmqmpbq, then also

holds cApaq ⊀ cApbq.

Now we will apply the results on C8-fields to describe another approach of the
order theory of (general) C8-rings.

Definition 4.8. Let A be an arbitrary C8-ring. Let F be the (proper) class of all
the C8�homomorphisms of A to some C8�field, that is:

F �
¤

FPObj pC8�Fldq
HomC8�Rng pA,Fq

We define the following relation R: given h1 : A Ñ F1 and h2 : A Ñ F2, we
say that h1 is related with h2 if, and only if, there is some C8�field rF and some
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C8�fields homomorphisms C8 f1 : F1 Ñ rF and f2 : F2 Ñ rF such that the following
diagram commutes:

F1
f1

&&
A

h1

77

h2
''

rF
F2

f2

88

The relation R defined above is symmetric and reflexive.

The above considerations prove the following:

Proposition 4.9 (see Proposition 6.11 of [4]). If h1 : AÑ F1 and h2 : AÑ F2
be two C8�homomorphisms from the C8�ring A to the C8�fields F1,F2 such that
ph1, h2q P R, then kerph1q � kerph2q.
Definition 4.10. Let A be a C8�ring. A C8�ordering in A is a subset P � A
such that:

(O1) P � P � P ;

(O2) P � P � P ;

(O3) P Y p�P q � A

(O4) P X p�P q � p P Spec8 pAq
Fact 4.11. Let ΣpAq :� tpp, Qq : p P Sper8 pAq, Q P Spec8 pkppAqqu. The mapping
P P Spec8 pAq ÞÑ ppP , QP q P ΣpAq, where pP :� P X p�P q (or simply p) and
QP :� tηqprAzpspa � pq.pηqprAzpspb � pqq�1 : b R p, a.b P P u is a bijection (this is the
analog of Proposition 5.1.1 in [13]).

Definition 4.12. Let A be a C8�ring. Given a C8�ordering P in A, the C8�
support of A is given by:

supp8pP q :� pP � P X p�P q
Definition 4.13. Let A be a C8�ring. The C8�real spectrum of A is given by:

Sper8 pAq � tP � A|P is an ordering of the elements of Au
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together with the (spectral) topology generated by the sets:

H8paq � tP P Sper8 pAq|a P P zsupp8 pP qu
for every a P A. The topology generated by these sets will be called “smooth Harrison
topology”, and will be denoted by Har8.

Remark 4.14. The suitable notion of prime spectrum of a C8-ring A, Spec8pAq,
appeared for the first time in [17]: this is the main spatial notion to develop “Smooth
Algebraic Geometry". On the other hand, in [2] was introduced the notion of smooth
real spectrum of a C8-ring A, Sper8pAq: this seems to be the suitable spatial notion
for the development of “Smooth Real Algebraic Geometry".

Fact 4.15. Given a C8�ring A, we have a function given by:

supp8 : pSper8pAq,Har8q Ñ pSpec8 pAq,Zar8q
P ÞÑ P X p�P q

which is spectral, and thus continuous, since given any a P A, we have:

supp8%rD8paqs � H8paq YH8p�aq.
Unlike what happens in ordinary Commutative Algebra, we have the following

(and stronger) result in "Smooth Commutative Algebra", as a consequence of the
fact that every C8-field is (C8-)real closed1 and some separation theorems (see [5]
or Theorem 6.22 of [4]):

Theorem 4.16. For each C8�ring A, the mapping

supp8 : pSper8pAq,Har8q Ñ pSpec8 pAq,Zar8q
is a (spectral) bijection.

5 Concluding Remarks and Future Works
Remark 5.1. It is natural to ask if the class of C8-fields is model-complete in
the language of C8-rings or even admits elimination of quantifiers (possibly in the
language expanded by a unary predicate for the positive cone of an ordering). If
the former holds, then the relation R between pairs of morphisms with the same
source and target C8-fields, that encodes Sper8, is already a transitive relation (as
it occurs in the algebraic case).

1In fact, to obtain this result it is enough to know that every C8-field is Euclidean.
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Remark 5.2. If the class of C8-fields admits quantifier elimination (over a reason-
able language), then it is possible to adapt the definition and results provided in [19]
on “Model-theoretic Spectra” and describe “logically” the spectral topological spaces
Spec8pAq and/or Sper8pAq as certain equivalence classes of homomorphisms from
A into models of a “nice” theory T . Moreover, since the techniques in this work pro-
vide structural sheaves of “definable functions”, we could compare them with other
ones previously defined and determine other new natural model-theoretic spectra in
C8-structures.

Remark 5.3. Another evidence that a systematic model-theoretic analysis of C8-
rings, (not only under real algebra perspective but also under differential algebra per-
spective), should be interesting and deserves a further attention is indicated in [10].
In that work the first steps were taken towards a model-theoretic connection between
three kinds of structures: o-minimal structures, Hardy fields and smooth rings. This
triple is related to another one – Hardy fields, surreal numbers and transseries –
studied in [1]: these are linked by the notion of H-field which provides a common
framework for these structures. They present a model-theoretic analysis of the cat-
egory of H-fields, e.g. the theory of H-closed fields is model complete, and relate
these results with the latter triple, that according the authors M. Aschenbrenner, L.
v. Dries and J. v. Hoeven ([1]): “...are three ways to enrich the real continuum by
infinitesimal and infinite quantities. Each of these comes with naturally interacting
notions of ordering and derivative”.
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Abstract

Proof systems such as Frege, Hilbert, Tableaux, Sequent Calculus and Nat-
ural Deduction, as well as Resolution, represent (or structure) their proofs ei-
ther as trees of formulas or as sequents/clauses. Some results show a signifi-
cant computational reduction of time and space in proofs structured as graphs.
Mimp-graph is a particular type of direct graph to represent proofs/derivations
whose vertices and edges are labelled. A proof in mimp-graph requires fewer
nodes than its Natural Deduction-tree-like representation. Besides its ability
to provide compact representation for Natural Deduction proofs/derivations,
the usage of mimp-graph has shown that some proof-theoretical investigations
may be more straightforward in it than in usual Natural Deduction. For ex-
ample, strong-normalization for the implicational fragment of Minimal Logic is
simpler as a mimp-graph than it is in typical Natural Deduction tree-like. Np-
imp is a propositional fragment of the Natural Deduction system that uses the
Peirce rule instead of the classical absurd rule. The implicational fragment of
the Np-system is decidable has normalization and a kind sub-formula principle,
but lacks strong normalization. In this article, we show that Np-system impli-
cational fragment represented as mimp-graph has strong normalization. This
new theoretical result attests to the feasibility of building theorem provers that
employ only the implication symbol.

The authors gratefully acknowledge the partial financial support by CAPES, CNPq, UFG/UFCat,
PUC-Rio, FAPEG and FAPERJ.
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1 Introduction
Deductive systems usually structure their proofs as trees. However, studies have

shown that a significant reduction of computational time and space in proofs struc-
tured as direct acyclic graphs [3, 5, 8, 9].

In [5], we present methods to reduce the weight and the size of proofs when
switching from traditional tree-structured to graphs; such reduction occurs by adding
unification substitutions. As example, it is presented a logarithmic reduction for the
proof of the pigeonhole principle, known to be exponential [1].

In [8] the authors present the mimp-graphs structure. Mimp-graph is a special
type of direct graph to represent logical proofs with labeled edges and vertices. In
mimp-graph, one can distinguish two parts, one representing the proofs derivations
and the other the formulas.

Furthermore, proofs representation in mimp-graph requires fewer nodes than a
tree representation, and it is possible to represent any natural deduction tree-like
proof in mimp-graph-like. Additionally, the minimal formula representation, which
separates introducing and eliminating of implication rules, a crucial feature of mimp-
graph, allow us to quickly determine the upper bounds on the length of reductions
to produce a normal proof.

A normalization process using mimp-graphs structure can be found in [8] for full
propositional logic. The normalization procedure consists in identify the number of
maximal formulas in the full graph derivation, choose any minimal formula (detailed
in the article) and eliminate the minimal formula chosen, repeating this until there
is no minimal formula.

In [6] one can find the definition and main results evolve Np-system, it is a nat-
ural deduction system that uses the Peirce rule instead of the classical absurd rule.
The implicational fragment of Np-system is complete and normalizable. Moreover,
it has a kind of sub-formula principle that allow us to implement a theorem prover
using only the implication symbol, leaving the classical part, the Peirces rules, ex-
clusively at the end of the derivation. However, the system does not have strong
normalization.

Some studies show the feasibility of translating the Np-system into mimp-graphs
structure [3].

In this work, we present the gains from this translation; in particular, we show
strong normalization for Np-systems structured as mimp-graph, what, as showed
in [6], is not possible in tree representation.

One of the motivations of this work is to improve the quality of the theorem
prover under development by the TecMF team [4].

The present paper is organized into sections as follows: in section 2 it is presented
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a review of the mimp-graph structure, in section 3 it is reviewed of Np-system . In
section 4, it is presented the Np-system to mimp-graph translation. In section 5,
it is presented the main result of the paper, the strong normalization proof of NP-
imp-graph. Finally, section 6 presents the conclusions of the paper.

2 Mimp-graphs

In [9], a graphical representation for proofs is presented, called mimp-graph,
idealized, among other objectives, to extract theoretical proof properties from a
proof system.

Mimp-graphs are directed-graphs whose nodes and edges are labelled, in such a
way that one can distinguish two parts, one representing the proof inferences, and
other the formulas that take part in it. By convention, we use continuous lines
to represent formulas in the graph and dotted lines to represent derivations in the
proof.

The representation of proof in mimp-graph allows to reuse derivations and for-
mulas by referencing instead of copying. In figure 1 one can see a representation of
a propositional variable p and the formula (p → q) → (p → q).

p

(a) Propositional variable l r

l r

p q

→2

→1

(b) (p → q) → (p → q)

Figure 1: Formulas representation in mimp-graph

Formulas, in mimp-graph, may occur only once and subformulas are indicated
by outgoing edges with labels l (left) and r (right).

For each rule in natural deduction there is a associate rule in mimp-graph. In
figure 2 is depicted the rules of →.
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M m

c

→ E

Minor Prem.

Concl.

Major Prem.
p

c

disc

→ I

Concl.

Prem.Closed assump.
p

c

→ Iv

Prem.

Concl.

Figure 2: → rules

In the rules vertices, the premises are indicated by ingoing edges and there are
edges from the rule vertices to the conclusion formulas. The vacuo discharging of
hypotheses is represented by a disconnected graph, where the discharged formula
vertex is not linked to the conclusion of the rule by any directed path.

For the purposes of alphabetical reading, we extracted from [9] the main defini-
tions and properties of mimp-graph, as follows.

Definition 2.1. L is the union of the four sets of labels types:

• R-Labels is the set of inference labels: {→In/n ∈ Z} ∪ {→Em/m ∈ Z},

• F-Labels is the set of formula labels: {→i /i ∈ N} and the propositional letters
{p, q, r, ...},

• E-Labels is the set of edge labels: {l (left), r (right), conc (final conclu-
sion), hyp (hypothesis)} ∪ {pj (premise)/j ∈ Z} ∪ {mj (minor premise)/j ∈
Z} ∪ {Mj (major premise)/j ∈ Z} ∪ {cj (conclusion)/j ∈ Z} ∪ {discj

(discharge)/j ∈ Z},

• D-Labels is the set of delimiter labels: {Hk/k ∈ Z} ∪ {C}.

Definition 2.2. A mimp-graph G is a directed graph ⟨V, E, L, lV , lE⟩ where: V is a
set of vertices, E is a set of edges, L is a set of labels, ⟨v ∈ V, t ∈ L, v′ ∈ V⟩, where
v is the source and v′ the target, lV is a labeling function from V to R∪F-Labels, lE
is a labeling function from E to E-Labels.

Mimp-graphs are defined recursively as follows:

Basis If G1 is a formula graph with root vertex αm
1, then the graph G2 is defined

as G1 with the delimiter vertices Hn and C and the edges (αm, conc, C) and
(Hn, hyp, αm) is a mimp-graph.

1We will use the terms αm, βn and γr to represent the principal connective of the formula α, β
and γ respectively.
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→E If G1 and G2 are mimp-graphs, and the graph (intermediate step) obtained by
G1 ⊕G2 2 contains the edge (→q, l, αm) and the two vertices →q and αm linked
to the delimiter node C, then the graph G3 is defined as G1 ⊕ G2 with

1. the removal of the ingoing edges in the node C which were generated in
the intermediate step (see Figure 3, dotted area in G1 ⊕ G2);

2. a rule vertex →Ei at the top level;
3. the edges: (αm, mnew, →Ei), (→q, Mnew,→Ei), (→Ei, cnew, βn) and

(βn, conc, C), where new is a fresh (new) index considering all edges of
kind c, m and M ingoing and/or outgoing the formula-vertices αm, βn

and →q,

is a mimp-graph (see Figure 3).

conc
l r

conc

l r

conc

conc

l

r

Mnew

cnew

mnew

conc

αm

C

G1

αm

→q

βnC

G2

→q

αm
βn

C

→q

αm

βn

→ Ei

C

G1 ⊕ G2 G3

Figure 3: The →E rule of mimp-graph

→I If G1 is a mimp-graph and contains a vertex βn linked to the delimiter node C
and the node αm linked to the delimiter node Hk, then the graph G2 is defined
as G1 with

1. the removal of the edges: (βn, conc, C);
2. a rule vertex →Ij at the top level;
3. a formula vertex →t linked to the delimiter node C by an edge (→t

, conc, C);
4. the edges: (→t, l, αm), (→t, r, βn), (βn, pnew, →Ij), (→Ij, cnew, →t), and

(→Ij, discnew, Hk), where new is a fresh index concerning ingoing and
outgoing edges of type c and p of the formula-vertices βn, →t and αm,

2By definition G1 ⊕ G2 equalizes the vertices of G1 with the vertices of G2 that have the same
label, and equalizes edges with the same source, target and label into one.
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is a mimp-graph (see Figure 4; the αm-vertex is discharged).

→I-v 3 If G1 is a mimp-graph, and G is a formula graph with root vertex αm, and
G1 contains a vertex βn linked to the delimiter vertex C, then the graph G2 is
defined as G1 ⊕ G with

1. the removal of the edge: (βn, conc, C);
2. a rule vertex →Ij at the top level;
3. a formula vertex →t linked to the delimiter node C by an edge (→t

, conc, C);
4. the edges: (→t, l, αm), (→t, r, βn), (βn, pnew, →Ij) and (→Ij, cnew, →t),

where new is an index under the same conditions of the previous case,

is a mimp-graph (see Figure 5).

hyp

conc

l

r

discnew

cnew

pnew

conc

hyp

C βn

αm

Hk

...

αm

βn

→t C

→ Ij

Hk

G1 G2

Figure 4: The →I rule of mimp-graph

conc

conc
l r

cnew

pnew

conc

βnC

G1

αm

G

βn

αm

C

...

αm

βn

→t C

→ Ij

G1 ⊕ G G2

Figure 5: The →I-v rule of mimp-graph

3the “v” stands for “vacuous”, this case of the rule →I discharges a hypothesis vacuously. This
means that αm has no ingoing Hyp-edge
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Example 2.3. A derivation of (p → r) → (p → r) from (p → q) in natural
deduction can be represented as the following mimp-graph:

[p]1 p → q
q [q → r]2

r (→ E2)
p → r (→ I3, 1)

(q → r) → (p → r) (→ I4, 2)

▽

hyp

hyp

hyp

c

l r l r
r

l

r

l

disc disc

m M c m M c

p

c

p c

→ I3

→ E2→ E1

→ I4

p →1 q →2 r →4→3

H1

H3

H2

C

Also in [9] there is a proof that every natural tree-like minimal proof has a mimp-
graph representation, as state in theorem 2.5. The definition of inferential order for
mimp-graphs (see definition 2.4) is used as a mesure to proof the theorem.

Definition 2.4 (Inferential Ordering). Let G be a mimp-graph. An inferential order
> on vertices of G is a partial ordering of the rule vertices of G, such that, n < n′,
iff, n and n′ are rule vertices, and there is a formula vertex f , such that, n l1−→ f
l2−→ n′ and l1 is c and l2 is m, or , l1 is c and l2 is M , or, l1 is c and l2 is p.

Theorem 2.5 (F-minimal representation). Every standard tree-like natural deduc-
tion Π has a uniquely determined (up to graph-isomorphism) F-minimal mimp-like
representation GΠ, i.e. such a one that satisfies the following four conditions.

1. GΠ is a mimp-graph whose size does not exceed the size of Π.

2. Π and GΠ both have the same (set of) hypotheses and the same conclusion.

3. There is graph homomorphism h : Π → GΠ that is injective on R-Labels.

4. All F-Labels occurring in GΠ denote pairwise distinct formulas.
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There is a nomalization process, as such as in Natural Deduction tree-like rep-
resentarion, for mimp-graph-like.

A maximal formula in mimp-graphs is a →-I followed by a →-E of the same
formula graph.

Definition 2.6. A maximal formula m in a mimp-graph G (see Figure 6) is a
sub-graph of G consisting of:

1. the formula nodes αm, βn, →q, the rule node →Ii and the delimiter node Hu;

2. the rule node →Ej at the top level;

3. the edges: (→q, l, αm), (→q, r, βn), (βn, p, →Ii), (→Ii, c, →q), (Hu, hyp, αm),
(→Ii, disc, Hu), (αm, m, →Ej), (→q, M, →Ej) and (→Ej , c, βn);

Π1
α

[α]u
Π2
β

u
α → β

β

Π3

⇒

hyp

l

r

m

M

cp

disc

c

H α

→q

β

→ I → E

Π1

Π2 Π3

Figure 6: Maximal formula in mimp-graphs

The process of normalization transforms a mimp-graph G into another mimp-
graph G′ by dropping rule vertices and increasing by one the order of those vertices
that have the conclusion as a major premise. The complete proof of such a process
is available in [9]. Roughly speaking, the elimination process of a maximal formula
that does not has maximal formula between the rule vertices → I and → E uses the
following operations:

1. If the edge (→Ii, c, →q) is the only ingoing edge to →q and the edge (→q

, M, →El) is the only outgoing edge from →q then remove the edges to and
from the formula node →q, and the formula node →q.

2. Remove the edges to and from the nodes →Ii, →El and Hu.
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3. Remove the nodes →Ii, →El and Hu.

4. Apply the re-ordination operation described in [9] resulting a mimp-graph.

Example 2.7. The mimp-graph in figure 6 is transformed, after applying the re-
duction process above, into the graph represented in the figure 7.

Π1

Π2

Π3

α

β

Figure 7: The result of a mimp-graph reduction process.

3 Np-imp system
Np is a Natural Deduction system that uses the Peirce rule instead of classical

absurd [2]. Restricting the Natural Deduction system to the three rules depicted in
figure 8 generates the minimal implicational Peirce system, denoted by Np-Imp.

[α → β]n....
α
α n P − rule

Π1
α

Π2
α → β

β
→ E

[α]....
β

n

α → β n → I

Figure 8: Np-Imp deductive system.

As shown in [6], the Np-imp fragment is complete, normalizable and has a kind
of sub-formula principle. These properties allow us to implement a theorem prover
that uses only the implication symbol. Moreover, in Np-imp one can deals with the
classical part, composed of Peirce rules, at the end of the derivation focusing only
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on the atomic formulas that occur in the formula to be proved. This strategy for
proving theorems in Np-imp is a consequence of theorem 3.1.
Theorem 3.1. Let {p1, . . . , pn} be the set of atomic formulas that occur in a formula
α. So, ⊢Np−Imp α if, and only if, ⊢Np−Imp (α → p1) → ((α → p2) . . . ((α → pn) →
α) . . .).

Theorem 3.1 resembles Glivencko’s theorem [10, p. 166], in the sense that, a set
of propositional formulas is intuitionistically consistent if and only if it is classically
satisfiable.

The normalizations prove of the NP-Imp and, consequently, the theorem 3.1,
in [6], uses the reductions RED1, RED2, RED3 and RED4, respectively, fig-
ures 9, 10, 11 and 12.
Remark 3.2. The expression reduction, used here, has its origin in Prawitz’s work
on the inversion theorem for natural deduction [7, p. 35 ].

Reductions were used by Prawitz, as well as in the present work, to invert rules
in the proof’s deviation process [7, p. 51 ].

[β → γ]p [α]n
Π1
β

β
p

α → β
n

�

[β]r
α → β [(α → β) → γ]q

γ

β → γ
r

[α]n
Π1
β

α → β
n

α → β
q

Figure 9: RED1

Π1
α

[(α → β) → γ]p
Π2

α → β

α → β
p

β �

Π1
α

Π1
α [α → β]q

β [β → γ]p
γ

(α → β) → γ
q

Π2
α → β

β

β
p

Figure 10: RED2
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[α → γ]r
Π1
α
α r

Π2
α → β

β �

[α]q
Π2

α → β

β [β → γ]p
γ

α → γ
q

Π1
α

Π2
α → β

β

β
p

Figure 11: RED3

[α → γ1]p1 · · · [α → γn]pn

Π1
α
α

p1
.... P-rules
α
α

pn

[(α → β) → δ]pn+1

Π2
α → β

α → β

β

▽

[α → γ1]p1 · · · [α → γn]pn

Π1
α
α

p1
.... P-rules
α
α

pn

[α]r1 [α → β]q
β [β → γ1]q1

γ1
α → γ1

r1 · · ·

[α]rn [α → β]q
β [β → γn]qn

γn
α → γn

rn

Π1
α [α → β]q

β [β → δ]pn+1

δ
(α → β) → δ

q

Π2
α → β

β

β
q1

.... P-rules
β

β
qn

β
pn+1

Figure 12: RED4

As shown in [2], the Np-imp system has not strong normalization and, although
it seems to be redundant, it is necessary the use of RED4 to achieve normalization
(see example 3.3 ), since it controls the proper order to descend Pierce’s rules when
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they occur in both derivation’s branches.

Example 3.3 (Np strong normalization counter-example, cf. [2]). Consider the
following derivation Π of α → α:

[α]1
α → α [(α → α) → α]p

α [α → α]p1

α
α

p1

α → α 1
α → α

p

[α]1∗

α → α
(α → α) → (α → α) [((α → α) → (α → α)) → α]p∗

1

α [α → α]p∗

α
α p∗

α → α 1∗

(α → α) → (α → α)
(α → α) → (α → α)

p∗
1

α → α

Notice that in derivation of the minor premise there is an →I rule application
between two Peirce’s rule applications. The correct strategy for normalizing the
derivation is to apply RED4 after RED1. However, if one tries to apply RED2 and
RED3 in an alternating way will produce the derivation Π′ below.

[α]1
α → α

[α → α]2∗

Γ1
Π1

(α → α) → (α → α)
α → α [(α → α) → α]p4

α
(α → α) → α

2∗

α [α → α]p1

α
α

p1

α → α 1

[α]1∗

α → α
(α → α) → (α → α)

Γ2
Π2

α → α [(α → α) → α]p3

α
((α → α) → (α → α)) → α

3

α [α → α]p∗

α
α p∗

α → α 1∗

(α → α) → (α → α)
α → α
α → α

p3

α → α
p4

Where

Γ1
Π1

(α → α) → (α → α), for Γ1 = {(α → α), (α → α) → α} is as follow:

[α]1∗

α → α
(α → α) → (α → α)

[α → α]2∗ [(α → α) → (α → α)]3∗

α → α [(α → α) → α]p3

α
((α → α) → (α → α)) → α

3∗

α [α → α]p∗

α
α p∗

α → α 1∗

(α → α) → (α → α)

And

Γ2
Π2

(α → α), for Γ2 = {(α → α) → (α → α), (α → α) → α} is:
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[α]1
α → α

[α → α]2 [(α → α) → (α → α)]3
α → α [(α → α) → α]p4

α
(α → α) → α

2

α [α → α]p1

α
α

p1

α → α
1 [(α → α) → (α → α)]3

(α → α)

Observe that Π′ has more than four P-rule applications above r(Π′). If we proceed
by applying RED1 to permute down only one P-rule from each branch, we can apply
RED2 and RED3 again in order to produce a derivation with four P-rules above
the lowest →E. Evolving this way, the reduction process does not terminate.

4 The Np-imp-graph System

In section 2 was presented the translation from natural deduction to a proof-
graph representation. Therefore, to carry out a translation from Np-imp to mimp-
graph, it remains only to present the translation of Peirce’s rule, that is showed in
figure 13.

[α → β]n....
α
α n P − rule

cp

disc
Pr

Figure 13: Peirce rule in mimp-graph.

From now on, it will be used Np-imp-graph to denote the Np-sytems as a mimp-
graph structure.

Example 4.1. Below is a translation of the derivation presented in example 3.3
into natural deduction for mimp-graph.
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r

l

r

l

r

l

r

l

c
p

c

M
m

Mcm

cp

disc

disc

c

p

disc

c p
p

c
p

c

M

m
c

M

m

c

disc
p

c

disc

p c

p c

disc

c
p

p

c

→2 →3→1α →4

→ Iv1

Hp

→ E1

→ E2

Hp1
Pr1

H1

→ I2

Pr2 → Iv2

→ Iv3

Hp2

→ E3

Hp3

→ E4

Pr3

→ I3H2

→ Iv4

Pr4

→ E5

C

The formal definition of Np-imp-graph follows directly from definitions 2.1 and
2.2. In fact, it is necessary to add to such definitions the proper labels types and
the recursive process to build up a Peirce reduction, as follows:

Definition 4.2. L is the union of the F-Labels, E-Labels and D-Labels presented
in definition 2.1 with the modified R-labels:

• R-Labels is the set of inference labels: {→ In/n ∈ Z} ∪ {→ Em/m ∈ Z} ∪
{Prk/k ∈ Z},

Definition 4.3. A Np-imp-graph G is a directed graph ⟨V, E, L, lV , lE, ⟩ where:
V is a set of vertices, E is a set of edges, L is a set of labels, ⟨v ∈ V, t ∈ L,
v′ ∈ V⟩, where v is the source and v′ the target, lV is a labeling function from V to
R∪F-Labels, lE is a labeling function from E to E-Labels.

Np-imp-graphs are defined recursively as follows:

• Basis, →E, →I and → Iv are the same as in definition 2.2, switching the word
mimp-graph to Np-imp-graph.

• Pr:
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If G1 is a Np-imp-graph and contains a vertex αm linked to the delimiter vertex
C and the edge (→q, l, αm) linked to the delimiter vertex Hk, then the graph
G2 is defined as G1 with

1. a rule node Prk at the top level;
2. the edges: (Hk, pnew, P rk), (Prk, discnew, Hk) and (Prk, cnew, αm), where

new is a fresh index considering all edges of kind c and p ingoing and/or
outgoing the formula-nodes αm, and →q,

is a mimp-graph (see Figure 14).

hyp

conc

rl

r

l

discnewpnew
hyp

conc

cnew

→qαm βn

Hk

αmC

...

G1

Prk

Hk

C

→q

βm

αm

G2

Figure 14: The Pr rule of Np-imp-graph

4.1 Np-imp-graph reductions
The reduction RED1 in NP-imp, cf. figure 9, moves down 4 the Peirce rule that

was introduced below a implication introduction. The purpose of RED1 is to lower
the Peirce rules that are neither a minor premise nor a major premise of a maximal
formula. Since the goal of the paper is to eliminate maximal formulas, there is
no need to present the RED1 translation for Np-imp-graph. The representation of
RED1 in Np-imp-graph is depicted in figure 15.

RED2 and RED3 are associated with maximal formulas introduced by Peirce
rule. This is:

1. RED2, cf. figure 10, moves down the Peirce rule that was introduced in
the major premise branch. Contrary to what happens in the Np system’s
reduction, the translation to RED2’s Np-imp-graph does not duplicate de
derivation Π1 (see figure 16).

4More details about the expression "moves down" in the next section when it will be explained
the conclusion distance.
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2. RED3, cf. figure 11, moves down the Peirce rule that was introduced in the
minor premise branch before been eliminated. Similar to what happens with
the RED2 reduction, the translation of RED3 to NP-mimp-graph also does
not duplicate the derivation Π2, cf. figure 17.

rl l r

pc
disc

c p

disc

α →2 β γ→1

Hn

HpPr

→I

C

Π1

�

r l

l

rr l

pc m

Mc

pc

disc

p

c

disc c

p

disc

β →3 γ→1α →2

→ Iv

→ E1

Hr → I1

Hn → I2 HqPr

C

Π1

Figure 15: RED1 in Np-imp-graph.

l r

r

l
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disc

m
M

c

→1α β →2 γ

Pr H

→E

C

Π1

Π2

�

r l r l

r

l

m M

c
m

M
c

p c

disc

m

M
c

c p

disc

β →2 γ→1α →3

→ E1 → E2 → IHq
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Figure 17: RED3 in mimp-graph

Remark 4.4. Since the only purpose of RED4 was to control the order of the
application of other reductions, to prove strong normalization, it is mandatory that
such control no longer exists—this is the reason for not presenting a translation for
RED4.

5 Strong Normalization for Np-imp-graph
A maximal formula in Np-imp-graphs is a → I followed by a → E of the same

formula graph (see Definition 5.8). It is the same notion of maximal formulas that is
being used in natural deduction derivations. The normalization process used here is
similar to the one presented by Prawitz, which consists of eliminating the maximum
formulas using reductions. However, here we are dealing with Np-imp-graphs that
have Peirce rules which also contribute to the inclusion of formulas in the proof. As
already said, the Np-system is normalizable but not strong normalizable. On the
other hand, the mimp-graph system is strongly normalizable.

In this section, we will show the normalization procedure for NP-imp-graph. We
want to reduce the original formula by dropping down the vertices and edges that are
involved with Pierce rules and then apply the normalization process for maximum
formulas for mimp-graphs. As the process of eliminating a maximal formula on
mimp-graphs always ends in the elimination of at least one maximal formula, and
with the decrease in the number of vertices of the graph, to use the normalization
for mimp-graph before or after the reduction of pierce rules in Np-imp-graph will
produce a normal formula when the two processes are combined.

Definition 5.1 (Path and branch).

151



Costa, V. G. and Haeusler, E. H.

1. For ni ∈ V , a p-path in a proof-graph is a sequence of vertices and edges of the
form: n1

l1−→ n2
l2−→ ...

lk−2−−−→ nk−1
lk−1−−−→ nk, such that n1 is a hypothesis formula

vertex, nk is the conclusion formula node, ni alternating between a rule node
and a formula vertex. The edges li alternate between two types of edges: the
first is lj ∈ {m, M, p} and the second lj = c.

2. A branch is an initial part of a p-path which stops at the conclusion formula
node or at the first minor premise whose major premise is the conclusion of a
rule node.

The definition 5.2 presents the metric used in the process of descending the Pierce
rules in a Np-imp-graph derivation.
Definition 5.2 (Conclusion Distance). Let Π be a Np-imp-graph derivation from a
set o hypotheses H and conclusion C. A conclusion distance from a vertex rule R to
C, denoted by C(R), is the number of edges of the p-path’s part from R to C.
Example 5.3. In the derivation depicted in figure 18.

hyp

hyp hyp

conc
l

r l r

r

l

r

l

disc

disc

m

M c m M c p

c
p

c

→ I3

→ E2→ E1 → I4
p

→1 q →2 r →4

→3

H1

H3 H2

C

Figure 18: Derivation of (q → r) → (p → r) from p e p → q.

The conclusion distance C(→ E1) is 8, since the p-path’s part from vertex → E1
to vertex C has 8 edges. As shown in figure 19.

conc

c m c p

c
p

c

→ I3

→ E2→ E1 → I4

q r →4

→3

C

Figure 19: Distance rule in Np-imp-graph.
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Definition 5.4 (RED1 reducible). A Π derivation in mimp-graph is said to be
reducible by RED1 if there is a formula node that is the conclusion of a Peirce rule
and the premise of an implies introduction.

The figure 20 shows a derivation fragment that is RED1 reducible.

c

p

pc

disc disc

Pr→ I→

Figure 20: RED1 reductible in Np-imp-graph.

Definition 5.5 (RED2 reducible). A Π derivation in mimp-graph is said to be
reducible by RED2 if there is a formula node that is the conclusion of a Peirce rule
and the major premise of an implies elimination.

The figure 21 shows a derivation fragment that is RED2 reducible.

M

c

p m

c

→

→EPr

Figure 21: RED2 reductible in Np-imp-graph.

The figure 22 shows a derivation fragment that is RED3 reducible.

Definition 5.6 (RED3 reducible). A Π derivation in mimp-graph is said to be
reducible by RED3 if there is a formula node that is the conclusion of a Peirce rule
and the minor premise of an implies elimination.

c m

l

r

M
p

c

Pr →E

→

Figure 22: RED3 reductible in Np-imp-graph.

Lemma 5.7 (Reduction lemma 1). Let Π be a Np-imp-graph derivation RED1-
reducible and Π′ the derivation derived from Π after applying RED1. If Pr is the
Peirce rule in Π reducible by RED1 then:
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1. The number of Peirce rules in Π′ is less than or equal to the number of Peirce
rules in Π;

2. If Pr′ is the Peirce rule in Π′ associated with RED1 over Π then C(Pr′) ≤
C(Pr).

3. The number of vertices rule’s in Π′ is equal to that of Π plus 3.

Proof. In fact, looking at the derivation produced by RED1, cf. figure 15, Π1 is
maintained in the new derivation and the associated Peirce rule Pr′ has conclusion
distance equals to 1, which is less than the distance of Pr in Π which is 3. Since
Π1 is kept in both derivations, the amount of rule vertices in Π is 2 while in Π′ it
becomes 5.

Definition 5.8. A maximal formula m in Np-imp-graph G is a sub-graph o G
consisting of:

Traditional The maximal formula that is → I followed by a → E of the same
formula graph, according to definition 2.6.

RED2 type (Graph representation similar to the left side graph of figure 16):

1. the formulas vertices α, β, →m and →n, the rule Pr and the delimiter
vertex Hu;

2. the rule vertex → E at the top level;
3. the edges: (→m, l, α), (α, m, → E), (→m, r, β), (β, conc, C), (Pr, c, →m),

(→m, M, → E), (→ E, c, β), (→m, p, Pr), (Pr, disc, Hu), (Hu, hyp, →n),
(→n, l, γ) and (→n, r, →m);

4. If a branch will be separated from the inferential order then the C(Pr)
must diminish, i.e. the conclusion distance of the pierce rule in the new
derivation must be less than the conclusion distance from the old Peirce
rule in G.

RED3 type (Graph representation similar to the left side graph of figure 17):

1. the formulas vertices α, β, →m, tøn, the rule Pr and the rule delimiter
Hu;

2. the rule vertices → E at the top level;
3. the edges: (→m, l, α), (→m, r, β), (α, m, → E), (→ E, c, β), (β, conc, C),

(α, p, Pr), (Pr, c, α), (Pr, disc, Hu),(Hu, hyp, →n, ),(→n, l, α), (→n, r, γ),
and (→m, M, → E);
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4. If a branch will be separated from the inferential order then the C(Pr)
must diminish, i.e. the conclusion distance of the pierce rule in the new
derivation must be less than the conclusion distance from the old Peirce
rule in G.

Definition 5.9. Given a Np-imp-graph G with a maximal formula m, eliminating
a maximal formula is the following transformation of a Np-imp-graph, where the
maximal formula m satisfies the following requirements:

Traditional

1. Between the rule nodes →Ii and →El there are zero or more maximal
formulas with inferential orders within the range of these rule nodes.

2. There is an edge (→Ii, c, →q), and, the formula node →q has zero or more
ingoing edges.

3. There is an edge (→q, M, →El), and, the formula node →qis the premise
of zero or more of another rule nodes.

4. If a branch will be separated from the inferential order this branch must
be insertable in the following branch, according to the order, i.e. the
conclusion of this separated branch is the premise in the following branch.

RED2 type

1. Between the rule vertices Pr and → Ei there are zero or more maximal
formulas of type RED2 with inferential orders within the range of these
rule nodes.

2. There is an edge (Pr, c, →q), and, the formula node →q has zero or more
ingoing edges.

3. There is an edge (→q, M, → Ei), and, the formula vertice →q is the
premisse of zero or more of another rule vertex.

RED3 type

1. Between the rule vertices Pr and → Ei there are zero or more maximal
formulas of type RED3 with inferential orders within the range of these
rule nodes.

2. There is an edge (Pr, c, α), and, the formula node →q has zero or more
ingoing edges.

3. There is an edge (α, m, → Ei), and, the formula vertice →q is the premisse
of zero or more of another rule vertex.
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Lemma 5.10 (Reduction lemma 2). Let Π be a Mp-imp-graph derivation RED2-
reducible and Π′ the derivation derived from Π after applying RED2. If Pr is the
Peirce rule in Π reducible by RED2 then:

1. The number of Peirce rules in Π′ is less than or equal to the number of Peirce
rules in Π;

2. If Pr′ is the Peirce rule in Π′ associated with RED2 over Π then C(Pr′) ≤
C(Pr).

3. The number of rule vertices in Π′ is equal to that of Π plus 3.
Proof. Analogous to proof of the lemma 5.7.

Lemma 5.11 (Reduction lemma 3). Let Π be a Np-imp-graph derivation RED3-
reducible and Π′ the derivation derived from Π after applying RED3. If Pr is the
Peirce rule in Π reducible by RED3 then:

1. The number of Peirce rules in Π′ is less than or equal to the number of Peirce
rules in Π;

2. If Pr′ is the Peirce rule in Π′ associated with RED3 over Π then C(Pr′) ≤
C(Pr).

3. The number of rule vertices in Π′ is equal to that of Π plus 3.
Proof. Analogous to proof of the lemma 5.7.

The mimp-graph is normalizable as stated in theorem 5.12.
Theorem 5.12 (mimp-graph Normalization). Every mimp-graph G can be reduced
to a normal mimp-graph G′ having the same hypotheses and conclusion as G. More-
over, for any standard tree-like natural deduction Π, if G := G(Π) (the mimp-like
representation of Π), then the size of G′ does not exceed the size of G, and hence
also Π.

The proof of theorem 5.12 can be found in [9]. However, it is worth mentioning,
that the maximal formula elimination process on mimp-graphs always ends in the
elimination of at least one maximal formula, and with the decrease in the number
of vertices on the graph.
Theorem 5.13 (Normalisation Np-imp-graph). Every Np-imp-graph G can be re-
duced to a normal Np-imp-graph G′ having the same hypotheses and conclusion as
G. Moreover, for any standard NP-imp deduction Π, if G := GΠ (the Np-imp like
representation of Π), then the size of G′ exceed the size of G in at most O(n), and
hence also Π.
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Proof. The preservation of the premises and conclusions of the derivation is assured
by theorem 5.12, when maximal formula does not involve Peirce rule, and by 5.10
or 5.11 involve Peirce rules, that is, when the minor premiss of the maximal formula
is the conclusion of pierce rule vertex or when the major premiss of the maximal
formula is the conclusion of Peirce rule vertex.

In addition, the demonstration of this theorem has two primary requirements.
First, to guarantee that through the application of RED2 and RED3 in the Np-imp-
graph, it is generate more maximal formulas. The second requirement is to guarantee
that during the normalization process, the normalization measure adopted is always
reduced.

The first requirement is easily verifiable through an inspection of each one of the
lemmas 5.10 and 5.11, in the case involve Peirce rules, and for the theorem 5.12,
in the case that not involves.

The second requirement is established through the normalization procedure and
demonstrated by analyzing the existing cases in the elimination of maximal formulas
in Np-imp-graph. It is adopted a measure of complexity the Conclusion Distance of
the Peirce rules, C(Pri). Besides, working with mimp-graph representations we can
use as optional inductive parameter the ordinary size of Np-imp-graph.

Each application of RED2 or RED3 increases the Np-imp-graph’s size in 3 ver-
tices, i.e., G′ increases by O(n).

5.1 Normalization Process

An Np-imp-graph G can have one or more maximal formulas reducible either by
RED2, RED3 or by the tradicional way, named by P1, ..., Pn. Thus, the normaliza-
tion procedure is described by the followings steps:

1. Choose a maximal formula Pk.

2. Identify the respective conclusion distance C(Pk).

3. Apply the associate reduction method: Theorema 5.12, lemma 5.10 and lemma
5.11.

(a) When the maximal formula has the either the minor premiss or the major
premiss as conclusion of Peirce rule, C(Pk) decreases and the size of the
graph increases in only 3 new vertices.

(b) When the major premiss of the maximal formula is the conclusion of a
introduction rule C(Pk) keeps zero and the size of the decreases.
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Example 5.14. Considering the proof graph presented in the example 4.1, if we
choose the Peirce rule Pr1 we find 7 rules that use the conclusion of Pr1 as a
premise, namely, → I2, → Iv1, → E1, → I3, → E4, → Iv2 and Pr3. Being a minor
premise for → E1 and → E4.

The reduction lemmas make no distinction as to which of the rules can be applied.
Let us first consider → Iv1. In this case, we must apply RED1. Below is the graph
before applying the rule and the graph generated.
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As one can see, the conclusion of Pr1 is no longer the premise of → Iv.
Likewise, if someone chooses another rule, instead of → Iv1, based on the theo-

rem 5.13 conclusion, a similar result is obtained.

6 Conclusion
Thus, Np-imp-graph was introduced through definitions and examples, preserv-

ing the ability to represent Np-system’s proofs.
As presented in [6], Np-system is not strong normalizable and for achieving

normalization it is mandatory to use four reductions rules, one of those needed for
control the rule’s applications order (see example 3.3).

In contrast, the mimp-graph structure has a key feature of representing the
normal derivations since it is easy to determine maximal formulas and upper bounds
in the length of reduction sequences.

A translation from the Np-system to mimp-graph is feasible and, as shown in
the present work, also improves the proof process since it adds strong normalization
to the system that only had normalization.

To proof the normalization theorem for Np-imp-graph, we measure the distance
to the conclusion of the Peirce rules in the original derivation. The strong nor-
malization property result is a direct consequence of such normalization, and the
normalization process of mimp-graphs [9] since the application of any reduction
decreases the corresponding measures of derivation complexity.

We have gone one step further in the process of ensuring that a graph-based
theorem prover can be more efficient, in computational terms of execution time and
storage space, than traditional tree-based one’s.
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Abstract

In this note, we show that for every infinite cardinal κ the statement 2κ = κ+

is equivalent to say that two of certain hit-and-miss games with parameter κ
are equally complex. The games we are dealing with (which are formalized as
objects of certain categories) involve elements as much as ⩽ κ-sized subsets of
sets of size 2κ, where κ ranges over all infinite cardinals. If one assumes, for
any κ, that those ⩽ κ-sized subsets should be regarded as “very small” with
respect to the corresponding 2κ-sized set then it is easily arguable that the
intuitive outcome regarding the complexity of those two parametrized types
of games should not coincide at any level. Therefore, GCH (the Generalized
Continuum Hypothesis) has been shown to be equivalent to a kind of infinitary
conjunction of a certain indexed-by-all-infinite-cardinals list of counterintuitive
(and possibly surprising) statements.

Keywords: Generalized Continuum Hypothesis; complexity; Dialectica Categories.

1 Introduction
In what follows, we work in ZFC (which is Zermelo-Frankel Axiomatic Set Theory
ZF with the addition of the Axiom of Choice, AC), meaning that all results in
this paper are theorems of ZFC. All set-theoretical terminology and notation are
standard, see e.g. [6]. The cardinality of a set A is denoted by |A|. The family of
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all functions from a set A into a set B is denoted by AB. If κ ⩽ |A|, we denote
by [A]⩽κ the family of all subsets of A whose cardinality is not greater than κ; it is
well-known that |[A]⩽κ| = |κA| := |A|κ. The cardinality of the real line, |R| = 2ℵ0 ,
is denoted by c and is referred to as the continuum. CH denotes the Continuum
Hypothesis, which is the statement “c = ℵ1” . GCH denotes the Generalized Con-
tinuum Hypothesis, which is the statement “For every infinite cardinal κ one has
2κ = κ+” – or, equivalently, “For every ordinal α one has 2ℵα = ℵα+1”. Both CH
and GCH are known to be independent of ZFC.

In our previous paper [13], two families of incidence problems were investigated.
Those families were denoted by C1 and C2 and problems from both families involved
real numbers as much as countably infinite subsets of the set R of all real numbers.
Each one of those problems could also be stated (assuming the context of a thought
experiment where randomness and arbitrariness are identified) as a sort of challenge
– or as some kind of one-round hit-and-miss game between two players, on which the
second player wins if his/her random move solves the proposed problem. Stated in
the language of games, instances of C1 were as follows: the move of the first player is
a real number x, and the move of the second player is a randomly taken countably
infinite set of reals A. The second player wins if, and only if, the real number x is
an element of A (that is, the solution for the instance x of C1 is a countably infinite
set of reals A such that x ∈ A – say, A should be such that x hits A). Instances of
C2 were as follows: the move of the first player is a countably infinite set of reals A,
and the move of the second player is a randomly taken real number x. The second
player wins if, and only if, the real number x is not an element of A (that is, the
solution for the instance A of C2 is a real number x such that x /∈ A – say, x should
be such that x misses A). As pointed out in [13], our intuition tends to accept that
games from C2 are much more likely to be won by the second player than games
from C1 – or, in terms of complexity, problems of C2 are easier to be solved than
problems of C1. The two main results of [13] were the following (working within
the ZFC setting): on one hand (and after a suitable formalization), problems of C2
were shown to be at least as easy to solve as problems of C1. On the other hand,
the statement “Problems of C1 have the exact same complexity of problems of C2”
was shown to be an equivalent of the Continuum Hypothesis.

In this note, we generalize the results from [13] by exhibiting two classes of
parametrized types of problems, which will be denoted by C1 and C2, whose pa-
rameters will be given by all infinite cardinals, and we show that the Generalized
Continuum Hypothesis (GCH) is equivalent to a level-by-level equality between the
complexities of the problems from each class. As in [13], the comparison of com-
plexities of problems will be done using GT -reductions (i.e., morphisms) between
objects of the dual Dialectica category Dial2(Sets)op.
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Dial2(Sets)op is the dual of the simplest case of the Dialectica Categories in-
troduced by Valeria de Paiva in her PhD Thesis ([8],[9]). The morphisms between
objects of this category are usually referred to as Galois-Tukey connections; this
terminology is due to Peter Vojtáš (see [14]). Applications of such morphisms in Set
Theory – mostly to prove inequalities between cardinal invariants of the continuum
– were studied (in a large series of papers) by Andreas Blass in the 90’s (see e.g.
[1],[2]), and, more recently, were also investigated by the author ([11],[12],[13]).

The objects of Dial2(Sets)op are triples (A,B,E), where A,B and E are sets and
E is an usual set-theoretic binary relation E from A to B, i.e. E ⊆ A×B. Next, we
introduce certain parametrized versions of the usual category PV (see [13]). For each
infinite cardinal κ we will consider a subcategory PVκ of the category Dial2(Sets)op,
whose objects are those which satisfy the following conditions (which will be called
the MHDκ conditions – where MHD stands for: Moore, Hrušák and Džamonja,
[7]):

(1) 0 < |A|, |B| ⩽ 2κ.

(2) (∀a ∈ A)(∃b ∈ B)[aEb]

(3) (∀b ∈ B)(∃a ∈ A)[¬ (aEb)]

The morphisms between objects of PVκ are, precisely, the morphisms of the cate-
gory Dial2(Sets)op – that is, given objects o1 = (A1, B1, E1) and o2 = (A2, B2, E2) of
PVκ, a PVκ morphism from o2 to o1 is a pair of functions (φ,ψ), where φ : A1 → A2
and ψ : B2 → B1 should satisfy the following requirement:

(∀a ∈ A1) (∀b ∈ B2) [φ(a)E2 b −→ aE1 ψ(b)].

Morphisms of PVκ induce the so-called (parametrized) Galois-Tukey pre-
order ⩽GT,κ , which is defined in the following way: if o1 = (A1, B1, E1) and o2 =
(A2, B2, E2) are objects of PVκ, then we have

o1 ⩽GT,κ o2 ⇐⇒ There is a PVκ morphism from o2 to o1.
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The diagram below represents the situation where o1 ⩽GT,κ o2:

aA1

φ

��

E1 B1ψ(b)

φ(a)A2 E2 B2 b

ψ

OO

Of course, the usual category PV coincides with PVℵ0 . Similarly, o1 ⩽GT o2
means o1 ⩽GT,ℵ0 o2.

Given an object o = (A,B,E) of PVκ, its dual object is given by o∗ = (B,A,E∗),
where bE∗a means that ¬(aEb). A contrapositive argument shows that:

If o1 ⩽GT,κ o2, then o∗
2 ⩽GT,κ o∗

1.

The GT -connections are also referred to as GT -reductions, accordingly to Blass.
In fact, Blass’ view on those morphisms corresponds to a notion of reduction between
problems. More precisely, Blass (see [1]) gives to each object o = (A,B,E) the
following interpretation: the object o stands for a certain problem (or a type of
problem); A is the set of all instances of the problem represented by o; B is the set
of all possible candidates to solve the corresponding problem; and E is the relation
“is solved by” – so, aEb says that “b solves a” .

As explained in [13], within this interpretation we have that the Galois-Tukey
pre-order corresponds to a measure of complexity: if o1 ⩽GT,κ o2 then the problems
of o1 are not more complicated to solve than problems of o2. This can be said
because instances in o1 are at least as simple to be solved as instances of o2 – since
every instance in o1 may have its solution reduced to the solution of an instance in
o2 – more precisely, the act of solving an instance of a problem of o1 may be reduced
to the act of solving a (corresponding) instance of a problem of o2. Indeed: assume
o1 ⩽GT,κ o2. Then, if b ∈ B2 is a solution for the instance φ(a) of o2 then ψ(b) ∈ B1
is a solution for the instance a of o1.

We will present our parametrized families of problems using directly the language
of ideals (thus, our presentation is slightly different from that initially done at [13]).
A family I of subsets of a non-empty set X is said to be an ideal of subsets of X
if it is a proper, non-empty subfamily of P(X) which is closed under taking subsets
and under taking finite unions.
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Definition 1.1. Let κ be an infinite cardinal. We denote by Iκ the ideal of ⩽ κ-sized
subsets of κκ, that is:

Iκ = {A ⊆ κκ : |A| ⩽ κ}.

By elementary cardinal arithtmetic, one has |Iκ| = |[κ]⩽κ| = κκ = 2κ for every
infinite cardinal κ.

The link between ideals and the categories PVκ is given by the notion of norms
(or evaluations) of objects. If o = (A,B,E) be an object of PVκ, its norm is the
cardinal number ||o|| = ||(A,B,E)|| given by

||o|| = min{|Y | : Y ⊆ B and (∀a ∈ A)(∃b ∈ Y )[aEb]}.
Notice that such cardinal is well-defined by MHD condition (2) – and, moreover,

MHD condition (3) ensures that the norm of the dual object o∗ is well-defined as
well.

The so-called method of morphisms to prove inequalities between cardinal in-
variants of the continuum is, arguably, the more important application of Dialectica
categories in Set Theory. As Blass once said ([1]), it is an empirical fact that proofs of
inequalities between cardinal characteristics of the continuum usually proceed by rep-
resenting the characteristics as norms of objects in PV and then exhibiting explicit
morphisms between those objects. The existence of morphisms imply inequalities
between norms because of the following “folklore” result (mentioned in [2]):

If o1 ⩽GT o2 then ||o1|| ⩽ ||o2||.

So, in fact o1 ⩽GT o2 implies both ||o1|| ⩽ ||o2|| and ||o∗
2|| ⩽ ||o∗

1||. More details
(and proofs) on the above results may be found in [4] and [11]. It is easy to see that
the analogous results for ⩽GT,κ hold for any infinite cardinal κ.

When it comes to ideals, certain cardinal invariants associated to ideals can also
be expressed in terms of norms of objects of PVκ.

Definition 1.2 (Cardinal invariants related to ideals). Let I be an ideal of subsets
of an infinite set X.

(i) add(I) (the additivity of I) is the smallest size of a subfamily of I whose union
is not in I – that is,

add(I) = min{|A| : A ⊆ I and
⋃

A /∈ I}.
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(ii) cov(I) (the covering number of I) is the smallest size of a subfamily of I which
covers X – that is,

cov(I) = min{|A| : A ⊆ I and
⋃

A = X}.

(iii) non(I) (the uniformity of I) is the smallest size of a subset of X which is not
in I – that is,

non(I) = min{|A| : A ⊆ X and A /∈ I}.
(iv) cof(I) (the cofinality of I) is the smallest size of a subfamily of I which is
cofinal in I – that is,

cof (I) = min{|A| : A ⊆ I and (∀I ∈ I)(∃A ∈ A)[I ⊆ A]}.

One can easily check that, given an ideal I of ideals over an infinite set X, the
following equalities hold:

add(I) = ||(I, I, ̸⊇)||,
non(I) = ||(I, X, ̸∋)||,
cov(I) = ||(X, I,∈)||,
cof(I) = ||(I, I,⊆)||.

In the following section, we present our parametrized families of problems C1
and C2 and it will be clear that one of the implications of our main theorem may
be proved using no more than the language of ideals.

2 A level-by-level equivalence with GCH
In this section, we generalize the main results of [13]. Differently from the paper
referred to, the language of ideals will be directly used in certain proofs (and not sim-
ply presented as a way to state “possible reformulations”). The apparent adequacy
of using ideals in this context will be object of further research.

Our parametrized families of problems are given by the following definition. In
what follows, let CARD denote the class of all infinite cardinals.

Definition 2.1 (The parametrized families C1 and C2). We set the classes of prob-
lems

C1 = {C1,κ : κ ∈ CARD}
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and
C2 = {C2,κ : κ ∈ CARD},

where, for each infinite cardinal κ, problems of C1,κ and C2,κ are as follows:

(i) Instances of C1,κ are functions f : κ → κ and a solution for a given instance f
is an element A of Iκ such that f ∈ A.

(ii) Instances of C2,κ are elements A of Iκ and a solution for a given instance A is
a function f : κ → κ such that f /∈ A.

Of course, one may rephrase the preceding problems in the language of hit-and-
miss games between two players, in the very same spirit of [13] – that is, the first
player gives the initial data and the second player wins if he gives a random response
which solves the problem. Wondering on an oriented thought experiment, we could
think of our two players standing in front of two jars – one of the jars contains
all functions from κ into κ and the other jar contains all ⩽ κ-sized subsets of κκ,
and the moves of the players correspond to arbitrary (thus, random in the ad hoc
identification proposed in [13]) pickings of elements of the jars, in accordance with
the description of the problems.

Notice that, under Blass’ interpretation, we may identify C1,κ and C2,κ, respec-
tively, with the objects (κκ, Iκ,∈) and (Iκ, κκ, ̸∋) of PVκ. The same way as in [13],
our intuition tends to accept that problems of C2,κ are easier to be solved than
problems of C1,κ – since ⩽ κ-sized subsets of a set of size 2κ are often understood as
being “very small”. Indeed, as the cofinality of 2κ is larger than κ (by the well-known
König’s Lemma), we can prove within ZFC that the comparison of inequalities co-
incide with our intuition in the mentioned direction.

Proposition 2.2. Let κ be any infinite cardinal. Then, there is a GT -reduction
witnessing

(Iκ, κκ, ̸∋) ⩽GT,κ (κκ, Iκ,∈).

Equivalently: There is a GT -reduction which shows that problems of C2,κ are at
least as simple to be solved as problems of C1,κ.

Proof: Enumerate κκ = {fα : α < 2κ}. We associate to each A ∈ Iκ the ordinal
γ(A) < 2κ given by

γ(A) = sup{α < 2κ : fα ∈ A} + 1.

The preceding function is well-defined, by the previously mentioned König’s
Lemma on the cofinality of 2κ. Notice that, for each A ∈ Iκ, γ(A) is not the
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index of an element of A and, moreover, it is the smallest ordinal ζ for which we are
sure that the final segment [ζ, 2κ[ is disjoint from {α < 2κ : fα ∈ A}.

Let φ : Iκ → κκ be defined in the following way: for every A ∈ Iκ,

φ(A) = fγ(A).

Notice that, as [γ(A), 2κ[ is surely disjoint from A (identifying, of course, A with
its ordinal indexes), every element of A has its ordinal index strictly smaller than
the ordinal index of φ(A).

Now, we consider the pair of functions given by (φ,φ). In what follows, we check
that such pair constitute a morphism of PVκ showing that the solution of instances
of (Iκ, κκ, ̸∋) may be reduced to the solution of instances of (κκ, Iκ,∈) (since it is a
morphism of PVκ from the object (κκ, Iκ,∈) to the object (Iκ, κκ, ̸∋) ).

A Iκ

φ

��

̸∋ κκ fγ(B)

fγ(A)
κκ ∈ Iκ B

φ

OO

To verify the claim, one has only to notice that if A,B are elements of the
ideal of ⩽ κ-sized subsets of κκ which satisfy φ(A) = fγ(A) ∈ B then necessarily
γ(A) < γ(B), and this clearly implies fγ(B) = φ(B) /∈ A. ■

Notice that, as a consequence of the preceding proposition, one can say that,
level-by-level, problems of C2 are, indeed, simpler to solve than problems of C1.

Now we check that, for a fixed infinite cardinal κ, the existence of a GT, κ-
reduction in the opposite direction is equivalent to a consistent statement from
cardinal arithmetic1.

Theorem 2.3. Let κ be an infinite cardinal. Then, the following statements are

1However, despite of its consistency, item (iii) could be argued to be a very counterintuitive
mathematical statement under Blass’ interpretation of comparison of complexities – since if one
accepts that κ should be considered “very small” in comparison with 2κ, then the corresponding
intuitive outcome would be in the direction of problems of C2,κ being regarded as easier to solve
(by far) than problems of C1,κ.
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equivalent:

(i) The Generalized Continuum Hypothesis holds at κ – i.e., 2κ = κ+.

(ii) (κκ, Iκ,∈) ⩽GT,κ (Iκ, κκ, ̸∋).

In words: There is a GT -reduction which shows that problems of C1,κ are at
least as simple to be solved as problems of C2,κ.

(iii) (κκ, Iκ,∈) ∼=GT,κ (Iκ, κκ, ̸∋).

In words: There are GT -reductions (in both directions) which show that
problems of C1,κ have the exact same complexity of problems of C2,κ.

Proof. The equivalence between (ii) and (iii) is a consequence of the preceding
absolute ZFC proposition – so, it suffices to prove (i) ⇒ (ii) and (iii) ⇒ (i).

Proof of (i) ⇒ (ii): By hypothesis we have 2κ = κ+ and therefore we may enumerate
κκ as

κκ = {fα : α < κ+}.
As κ+ is precisely the set of all ordinals whose size is not larger than κ, we are able
to define φ : κκ → Iκ by putting, for every α < κ+,

φ(fα) = {fξ : ξ ⩽ α}.

Now we pick ψ = φ, i.e., we consider the pair of functions (φ,φ) and we show
that such pair is a morphism from (Iκ, κκ, ̸∋) to (κκ, Iκ,∈).

fα κκ

φ

��

∈ Iκ
φ(fβ)

φ(fα) Iκ ̸∋ κκ fβ

φ

OO

To check this, fix arbitrary f, g ∈ κκ, say f = fα and g = fβ for α, β < κ+ and
notice that if fβ /∈ φ(fα) = {fξ : ξ ⩽ α} then β > α – thus, fα ∈ {fζ : ζ ⩽ β} =
φ(fβ), and so we are done.

Proof of (iii) ⇒ (i): In [13], the proof of the implication for R and [R]ℵ0 – which
corresponds to the proof for κ = ℵ0, in the notation and terminology of the present
paper – was given by a contrapositive argument which shows that no pair of functions
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(φ,ψ) constitutes a morphism as required. Such argument resembles Freiling’s proof
of a certain equivalence of ¬CH in the celebrated paper on throwing darts at the
real line ([3]). In fact, one could say that the argument is due to Sierpiński, since
it is openly recognized in Freiling’s paper itself that the mathematical content of
this part of [3] comes from the classical Sierpiński’s monograph on CH ([10]). We
refrain for presenting a similar contrapositive argument here, since the language of
ideals is enough to prove the desired implication. Indeed, the method of morphisms
gives us

(κκ, Iκ,∈) ∼=GT,κ (Iκ, κκ, ̸∋) ⇒ ||(κκ, Iκ,∈)|| = ||(Iκ, κκ, ̸∋)||

and, as we have already mentioned that the above norms correspond to specifical
cardinal invariants of the ideal Iκ, it follows that, in ZFC, the following implication
holds:

(κκ, Iκ,∈) ∼=GT,κ (Iκ, κκ, ̸∋) ⇒ cov(Iκ) = non(Iκ).

However, the absolute ZFC values of cov(Iκ) and non(Iκ) are, precisely, 2κ and
κ+. The equality non(Iκ) = κ+ is obvious, and for the other case notice that if
λ < 2κ then the union of a family of λ subsets of size ⩽ κ of κκ has size not larger
than max{λ, κ} < 2κ. ■

The following corollary (which comes by simply applying the preceding theorem
for all infinite cardinals) is the main result of this paper:

Corollary 2.4. The Generalized Continuum Hypothesis is equivalent to the exis-
tence of a level-by-level equality between the complexities of the problems from the
parametrized families C1 and C2.

3 Notes and Questions
Our main result shows that GCH is equivalent to a kind of infinitary conjunction of
certain indexed-by-all-infinite-cardinals list of counterintuitive (and even surprising)
statements. In this sense, it corresponds, in the level of intuition, to a very strong
failure of GCH. Indeed, in one hand, the existence of a single infinite cardinal κ
for which the complexities of the problems C1,κ and C2,κ do not coincide was shown
to be enough to refute GCH. On the other hand, our intuition (nourished by the
general belief that κ is always “very small” in size when compared to 2κ) tends to
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accept that the mentioned complexities do not coincide at any level. In a similar
way as done in [13], we will not go further on the philosophical discussion of whether
the main result of this paper should be understood (or not) as an evidence against
GCH – but we believe that it is an interesting discussion.

We finish this paper by presenting some “generalized versions” of questions and
problems posed in [13]. Some of these problems are related to the precise role of
the Axiom of Choice in the presented results. Notice that we have defined several
constituent functions of morphisms using enumerations (essentially, well-orderings)
of the set κκ (with order type 2κ or κ+, depending on the specifical hypotheses in
each case). In a different way, the morphism which has shown to hold in all models
of ZFC (which is (Iκ, κκ, ̸∋) ⩽GT,κ (κκ, Iκ,∈)) also strongly depends on the Axiom
of Choice – since the argument is based on the inequality cf(2κ) > κ, which is a
consequence of the well-known theorem of König on sums and products of cardinals
– and such classical theorem may be rephrased into an equivalent of the Axiom of
Choice.

Question 3.1. Consider the results involving the families of problems C1 and C2
which have been proved in this paper. Is it possible to recover them, if one avoids
AC ? I.e., what happens if we restrict ourselves to ZF ?

The above line of investigation seems very promising, and one of the reviewers
has insisted that results of this kind would be very appealing. Further research is
needed here.

It is also interesting to investigate what happens if one considers that “having
size less than 2κ" corresponds to a reasonable notion of “smallness" for subsets of
κκ. Let I<2κ denote the ideal of subsets of κκ whose size is less than 2κ (for a given
infinite cardinal κ). Then (κκ, I<2κ ,∈) ⩽GT,κ (I<2κ ,κ κ, ̸∋) would follow, in ZF, from
a well-ordering of κκ, and, in ZFC, the morphism in the opposite direction would
follow from the statement “2κ is regular” , which is easily seen to be consistent.

Problem 3.2. Determine the precise deductive strengths of
(i) ∀κ ∈ CARD[(κκ, I<2κ ,∈) ⩽GT,κ (I<2κ , κκ, ̸∋)], relatively to ZF.
(ii) ∀κ ∈ CARD[(I<2κ , κκ, ̸∋) ⩽GT (κκ, I<2κ ,∈)], relatively to ZFC.

The set κκ may be endowed with the so-called bounded topology and thus become
what is nowadays referred to as the Generalized Baire Space – and this new line of
research has attracting the attention of several set theorists. One can generalize the
notion of Borel sets for the Generalized Baire Space as the smallest collection con-
taining the open sets in the bounded topology on κκ and closed under complements
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and unions of size ⩽ κ. Background and information on this subject may be found
in the recent survey [5]. It is known that well-orderings of R are not Borel functions
in the usual sense, and this had justified the very last question of [13]. The following
question is the natural generalization of it.

Question 3.3. What happens if one requires the constituent functions of all mor-
phisms (in the context of the results of this paper) to be Borel functions (in the above
described generalized sense of the Generalized Baire Space κκ) ?
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Abstract

In 2001, W. Carnielli and Marcos considered a 3-valued logic in order to
prove that the schema φ∨ (φ → ψ) is not a theorem of da Costa’s logic Cω. In
2006, this logic was studied (and baptized) as G′

3 by Osorio et al. as a tool to
define semantics of logic programming. It is known that the truth-tables of G′

3
have the same expressive power than the one of Łukasiewicz 3-valued logic as
well as the one of Gödel 3-valued logic G3. From this, the three logics coincide
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up-to language, taking into acccount that 1 is the only designated truth-value
in these logics.

From the algebraic point of view, Canals-Frau and Figallo have studied the
3-valued modal implicative semilattices, where the modal operator is the well-
known Moisil-Monteiro-Baaz ∆ operator, and the supremum is definable from
this. We prove that the subvariety obtained from this by adding a bottom el-
ement 0 is term-equivalent to the variety generated by the 3-valued algebra of
G′

3. The algebras of that variety are called G′
3-algebras. From this result, we

obtain the equations which axiomatize the variety of G′
3-algebras. Moreover,

we prove that this variety is semisimple, and the 3-element and the 2-element
chains are the unique simple algebras of the variety. Finally an extension of G′

3
to first-order languages is presented, with an algebraic semantics based on com-
plete G′

3-algebras. The corresponding soundness and completeness theorems
are obtained.

1 Introduction and preliminaries

In 2001, W. Carnielli et al. [4] considered a 3-valued logic in order to prove that
the schema φ ∨ (φ → ψ) is not a theorem of da Costa’s logic Cω. In 2006 this logic
was studied (and baptized as G′

3) by Osorio et al. [7] as a tool to define semantics
of logic programming. They define the connectives → and ¬ of G′

3 logic in terms
of some connectives of the three-valued logic of Łukasiewicz Ł3. Conjunction and
disjunction, ∧ and ∨ respectively, are defined as minimum and maximum. It is
known that the truth-tables of G′

3 have the same expressive power than the ones of
Łukasiewicz 3-valued logic Ł3 –hence, to the ones of Gödel 3-valued logic G3. From
this, the three logics coincide up-to language, taking into account that 1 is the only
designated truth-value in these logics.

The three-valued Gödel logic G3, which is also equivalent to G′
3 and Ł3, is

well-suited to express the Stable Model Semantics. G′
3, besides being very close to

G3, can be used to express non-monotonic reasoning. It is worth mentioning that
the negation of G3 can be reconstructed from connectives of G′

3 by virtue of the
formula:

¬G3 φ = φ →G′
3

(¬G′
3
φ ∧G′

3
¬G′

3
¬G′

3
φ)

where the subscripts indicate the underlying logic.

Two different Hilbert-style systems for G′
3 were introduced in [11] and [10], re-

spectively. However, in both approaches it was assumed the validity of the Deduction
Theorem in the proposed Hilbert calculi for G′

3. As it will discussed in Remark 2.3
below, the Deduction Theorem does not hold in G′

3. This issue in the previous
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axiomatic approaches to G′
3 justifies proposing a new Hilbert calculus for G′

3, as it
will be done in Section 2. Taking into account that G′

3 was introduced as a model
of da Costa’s logic Cω, it seems reasonable to define a Hilbert calculus for G′

3 which
contains the calculus Cω.

The paper is organized as follows. In the next section, we present a new Hilbert
calculus for G′

3 called G′
3h, as an extension of Cω. In Section 3 we consider the

class of G′
3-algebras, proving the soundness and completeness theorem of G′

3h w.r.t
the class of G′

3-algebras. After this, in Subsection 3.1 we connect the class of
G′

3-algebras with the variety of 3-valued modal implicative semilattices studied by
Canals-Frau and Figallo. It will be proved that the subvariety of 3-valued modal
implicative semilattices with bottom is term-equivalent to the class of G′

3-algebras.
From the latter, we obtain the equations that characterize the class of G′

3-algebras
as a variety. From this algebraic analysis, we prove in Subsection 3.2 a second
adequacy theorem G′

3h w.r.t. the class of G′
3-algebras. Finally, in Section 4 we

present first-order version of G′
3h logic using algebraic tools developed in [5] (see,

also, [6]) and our algebraic results of the class of G′
3-algebra presented in the above

section.

2 A new Hilbert-style axiomatization of G′
3

Consider from now on the propositional signature Σ = {∧,∨,→,¬}. First of all, let
us recall the 3-valued semantics for G′

3 logic. It is obtained from the logical matrix
M = ⟨D,A3⟩, where D = {1} and A3 = ⟨V, σ⟩ is the 3-valued algebra over Σ with
domain V = {0, 1

2 , 1} such that σ interprets the connectives of Σ as follows:

∧ 0 1
2 1

0 0 0 0
1
2 0 1

2
1
2

1 0 1
2 1

∨ 0 1
2 1

0 0 1
2 1

1
2

1
2

1
2 1

1 1 1 1

→ 0 1
2 1

0 1 1 1
1
2 0 1 1
1 0 1

2 1

x ¬x
0 1
1
2 1
1 0

The set of well-formed formulas, denoted by LΣ, is constructed as usual from a
given denumerable set V ar = {p0, p1, . . .} of propositional variables. As usual, the
bi-implication ↔ can be defined in G′

3 by φ ↔ ψ
def= (φ → ψ) ∧ (ψ → φ). Its

truth-table is displayed below.
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↔ 0 1
2 1

0 1 0 0
1
2 0 1 1

2
1 0 1

2 1

The consequence relation of G′
3 induced by the logical matrix M will be denoted

by |=G′
3
. Thus: Γ |=G′

3
φ if and only if, for every valuation h (that is, for every

homomorphism h : LΣ → A3 of algebras over Σ), if h(ψ) = 1 for every ψ ∈ Γ then
h(φ) = 1.

A formal axiomatic system for G′
3 called G′

3h over the signature Σ will be defined
below (see Definition 2.1). Previous to this, some motivations will be given. The
implication above is a particular case (n = 3) of the family of implicative systems
LCn proposed by Thomas in [12]. This implication, together with Thomas’s axiom
for 3-valued systems

(Tho) ((φ → ψ) → γ) → (((γ → φ) → γ) → γ)

was used by L. Monteiro in [8] to introduce the class of 3-valued Heyting algebras.
As we shall see, the logic G′

3 is closely related to L. Monteiro’s 3-valued Heyting
algebras. Because of this, axiom (Tho) for 3-valued systems will be considered in
G′

3h. In addition, axiom

(CF) (((ψ → ¬¬ψ) → (φ → ¬¬φ)) → ¬¬(φ → ψ)) ↔ (¬¬φ → ¬¬ψ)

which is adapted from an axiom introduced by Canals-Frau and Figallo in [2] to
axiomatize the variety of 3-valued implicative semilattices, will be also considered
by reasons which will be clear in Section 3.1 below.

Definition 2.1. The Hilbert calculus G′
3h over Σ is defined as follows:

Axiom schemas:
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(Ax1) φ → (ψ → φ)
(Ax2) (φ → (ψ → γ)) → ((φ → ψ) → (φ → γ))
(Ax3) (φ ∧ ψ) → φ
(Ax4) (φ ∧ ψ) → ψ
(Ax5) φ → (ψ → (φ ∧ ψ))
(Ax6) φ → (φ ∨ ψ)
(Ax7) ψ → (φ ∨ ψ)
(Ax8) (φ → γ) → ((ψ → γ) → ((φ ∨ ψ) → γ))
(Ax9) φ ∨ ¬φ
(Ax10) ¬¬φ → φ
(Ax11) ¬φ → (¬¬φ → ψ)
(Ax12) ¬¬(φ ∨ ψ) → (¬¬φ ∨ ¬¬φ)
(Ax13) ¬¬(φ → ψ) ↔ ((φ → ψ) ∧ (¬¬φ → ¬¬φ))
(Tho) ((φ → ψ) → γ) → (((γ → φ) → γ) → γ)
(CF) (((ψ → ¬¬ψ) → (φ → ¬¬φ)) → ¬¬(φ → ψ)) ↔ (¬¬φ → ¬¬ψ)

Inference Rules:

(MP) φ φ → ψ

ψ
(imp) φ → ψ

¬ψ → ¬φ
It is worth noting that axioms (Ax1)-(Ax8) plus (MP) constitute a Hilbert calcu-
lus sound and complete for Positive Intuitionistic Propositional Logic IPL+. This
means that IPL+ is contained in G′

3h (this fact will be used later). In addition,
the calculus formed by axioms (Ax1)-(Ax10) plus (MP) is exactly da Costa’s
logic Cω. Thus, G′

3 is an extension of Cω, in accordance with the original intuitions
mentioned in Section 1.

Definition 2.2. Let Γ ∪ {φ} ⊆ LΣ be a set of formulas. A derivation of φ from Γ
in G′

3h is a finite sequence φ1 · · ·φn of formulas in LΣ such that φn = φ and for
1 ≤ i ≤ n, it holds:

1. φi is an instance of some axiom in G′
3h, or

2. φi ∈ Γ, or

3. there exist some j, k < i such that φi follows from φj and φk by applying MP,
or

4. there exist some j < i such that φi follows from φj by applying imp.

We say that φ is derivable from Γ in G′
3h, denoted as Γ ⊢G′

3h
φ (or simply Γ ⊢ φ),

if there exists a derivation of φ from Γ in G′
3h.
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Remark 2.3. It is easy to see that the Deduction Theorem does not hold G′
3:

indeed, p,¬p ⊨G′
3
q for every propositional variables p and q with p ̸= q.1 However,

̸⊨G′
3
p → (¬p → q): it is enough to consider a valuation h such that h(p) = 1

2 and
h(q) = 0. Alternatively, the failure of the Deduction Theorem in G′

3 can be seen
by observing that p ⊨G′

3
¬¬p for every propositional variable p, but ̸⊨G′

3
p → ¬¬p:

it suffices to consider a valuation h such that h(p) = 1
2 . From this, the Deduction

Theorem should not be valid in G′
3h (since G′

3h is intended to be adequate to G′
3).

This fact will be proven in Corollary 3.28.

Despite this, a restricted version of the Deduction Theorem holds in G′
3h:

Proposition 2.4 (Restricted Deduction Theorem (RDT)). Let Γ ∪ {φ,ψ} be a set
of formulas in LΣ. Assume that Γ, φ ⊢G′

3h
ψ such that there is a derivation in G′

3h
of ψ from Γ∪{φ} in which the inference rule imp is not used. Then, Γ ⊢G′

3h
φ → ψ

without using imp.

Proof. It follows from the fact that, in such derivation of ψ from Γ ∪ {φ} in G′
3h,

axioms Ax1 and Ax2 are available, and MP is the only inference rule used there.
Under these circumstances, the Deduction Theorem holds (see, for instance, [9]).
Hence, Γ ⊢ φ → ψ without using imp.

A different form of the Deduction Theorem will be obtained in Theorem 3.13 below.
A direct consequence of Proposition 2.4 is the Restricted Proof by Cases property:

Proposition 2.5 (Restricted Proof by Cases (RPC)). Let Γ ∪ {φ,ψ} be a set of
formulas in LΣ. Then, the following holds in G′

3h:
If Γ, φ ⊢G′

3h
γ and Γ, ψ ⊢G′

3h
γ without using imp, then Γ, φ ∨ ψ ⊢G′

3h
γ without

using imp.
In particular,
If Γ, φ ⊢G′

3h
γ and Γ,¬φ ⊢G′

3h
γ without using imp, then Γ ⊢G′

3h
γ without using

imp.

Proof. The first part is a direct consequence of Proposition 2.4, (Ax8) and (MP).
The second part follows from the first one by using (Ax9) and (MP).

1By structurality, φ,¬φ ⊨G′
3
ψ for every formulas φ and ψ. Hence, the negation ¬ is explosive

in G′
3, so this logic is not paraconsistent w.r.t. ¬.
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Proposition 2.6. The following schemas are derivable in G′
3h:

(1) (α → β) → ((β → γ) → (α → γ));
(2) (γ → α) → ((γ → β) → (γ → (α ∧ β)));
(3) (α → α′) → ((β → β′) → ((α ∧ β) → (α′ ∧ β′)));
(4) (α → (β → γ)) → ((α ∧ β) → γ);
(5) (α′ → α) → ((β → β′) → ((α → β) → (α′ → β′))).

Proof. It follows from the fact that all these schemas are provable in positive intu-
itionistic propositional logic IPL+, which is contained in G′

3h.

Proposition 2.7. The following rules

(Dneg) φ

¬¬φ (exp) φ ¬φ
ψ

are derivable in G′
3h.

Proof. For (Dneg), observe firstly that (φ → φ) → ¬¬(φ → φ) is a theorem in
G′

3h. Indeed, since both (φ → φ) → (¬¬φ → ¬¬φ) and (φ → φ) → (φ → φ) are
derivable in G′

3h (by IPL+), so is (φ → φ) → (φ → φ) ∧ (¬¬φ → ¬¬φ). Hence
(φ → φ) → ¬¬(φ → φ) follows from this by using (Ax13). Now, consider the
following derivation in G′

3h:

1. φ Hyp.
2. (φ → φ) → φ IPL+

3. ¬¬(φ → φ) → ¬¬φ (imp), 2 (two times)
4. (φ → φ) → ¬¬(φ → φ) Observation above
5. (φ → φ) → ¬¬φ IPL+, 4,3
6. ¬¬φ IPL+, 5

For (exp), consider the following (meta)derivation in G′
3h:

1. φ Hyp.
2. ¬φ Hyp.
3. ¬¬φ (Dneg), 1
4. ¬φ → (¬¬φ → ψ) (Ax11)
5. ¬¬φ → ψ (MP), 2,4
6. ψ (MP), 3,5

Proposition 2.8. The following schemas are derivable in G′
3h:

(1) ¬¬(φ ∧ ψ) ↔ (¬¬φ ∧ ¬¬ψ);

181



Coniglio, Figallo-Orellano, Hernández-Tello and Pérez-Gaspar

(2) ¬¬(φ ∨ ψ) ↔ (¬¬φ ∨ ¬¬ψ)
(3) ¬¬¬φ ↔ ¬φ.

Proof.
(1) From (Ax5) and (Dneg) it follows that ¬¬(φ → (ψ → (φ ∧ ψ))) is a theorem
of G′

3h. Using (Ax13), (Ax3), (Ax4), Proposition 2.6 items (1), (4) and (MP) it
follows that (¬¬φ ∧ ¬¬ψ) → ¬¬(φ ∧ ψ))). The converse is proved analogously.
(2) Analogously to the proof of item (1) (but now using (Ax6) and (Ax7)) it is
proved that ¬¬(φ ∨ ψ) → (¬¬φ ∨ ¬¬ψ) is a theorem of G′

3h. The converse is just
(Ax12).
(3) By (Ax10) it follows that ¬¬¬φ → ¬φ is a theorem of G′

3h. In addition,
¬φ,¬¬φ ⊢G′

3h
¬¬¬φ without using imp (just by using (Ax10) and (MP)), and

also ¬φ,¬¬¬φ ⊢G′
3h

¬¬¬φ without using imp (by Definition 2.2). Then, ¬φ ⊢G′
3h¬¬¬φ without imp, by Proposition 2.5. Hence, ⊢G′

3h
¬φ → ¬¬¬φ by Proposi-

tion 2.4.

Instead of proving directly the soundness and completeness of G′
3h w.r.t. G′

3, in
the next section an algebraic semantics for G′

3h will be proposed, based on a new
class of algebras called G′

3-algebras. After proving the adequacy of G′
3h w.r.t. this

algebraic semantics, in Section 3.1 it will be proved that the class of G′
3-algebras is

in fact a variety (that is, it can be axiomatized by means of equations) which is term-
equivalent to a subvariety of a variety already studied in the literature ([2]). This
allows us to show that the algebra underlying the 3-valued matrix of G′

3 generates
the variety of G′

3-algebras (see Corollary 3.23). The completeness of G′
3h w.r.t. G′

3
will be obtained easily from this (see Theorem 3.27).

3 The class of G′
3-algebras

Recall that Σ = {∧,∨,→,¬} is the propositional signature for logic G′
3, and that LΣ

is the algebra of formulas of G′
3 generated over Σ by V ar. Let ΣI = {∧,∨,→,0,1}

be the signature of Heyting algebras and let Σ+ = {∧,∨,→,¬,0,1}.

Definition 3.1. A G′
3-algebra is an algebra A = ⟨A,∧,∨,→,¬, 0, 1⟩ of type

(2, 2, 2, 1, 0, 0) such that

(i) The reduct HA = ⟨A,∧,∨,→, 0, 1⟩ is a 3-valued Heyting algebra (see [8]). That
is, HA is a Heyting algebra such that, for every x, y, z ∈ A:

((x → y) → z) → (((z → x) → z) → z) = 1;
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(ii) x ∨ ¬x = 1, for every x;

(iii) ¬x ∧ ¬¬x = 0, for every x;

(iv) ¬¬x → x = 1, for every x;

(v) (¬¬(x ∨ y) → (¬¬x ∨ ¬¬y)) = 1, for every x, y;

(vi) ¬¬(x → y) = (x → y) ∧ (¬¬x → ¬¬y), for every x, y;

(vii) (((y → ¬¬y) → (x → ¬¬x)) → ¬¬(x → y)) = (¬¬x → ¬¬y), for every x, y;

(viii) for every x, y: if x → y = 1 then ¬y → ¬x = 1.

The class of G′
3-algebras will be denoted by AG′

3.

Proposition 3.2. Let A be a G′
3-algebra. Then, for any x, y ∈ A:

(1) ¬¬(x ∧ y) = (¬¬x ∧ ¬¬y);
(2) ¬¬(x ∨ y) = (¬¬x ∨ ¬¬y);
(3) ¬¬¬x = ¬x;
(4) ¬¬x → 0 = ¬x;
(5) ¬0 = 1, ¬¬0 = 0, ¬1 = 0 and ¬¬1 = 1;
(6) (¬¬x → ¬¬y) → ¬¬x = ¬¬x;
(7) If ¬¬x ≤ y → z then ¬¬x ≤ ¬¬y → ¬¬z;
(8) ¬¬x → ¬¬y = ¬y → ¬x.

Proof. Straightforward, taking into account that A is an implicative lattice, hence:
x ≤ y iff x → y = 1.

Definition 3.3. Let A be a G′
3-algebra. The logical matrix induced by A is

MA
def= ⟨A, {1}⟩.

A valuation over MA is any homomorphism h : LΣ → A.2 If Γ ∪ {φ} is a set of
formulas in LΣ we say that φ is a consequence of Γ w.r.t. the logical matrix MA,
written as Γ |=MA φ, if the following holds: for every valuation h over MA, h(φ) = 1
whenever h(γ) = 1 for every γ ∈ Γ.

Definition 3.4. Let Γ ∪ {φ} be a set of formulas in LΣ. Then φ is said to be a
consequence of Γ w.r.t. G′

3-algebras, denoted by Γ |=AG′
3
φ, if Γ |=MA φ for every

matrix MA and every G′
3-algebra A.

2To be rigorous, h is a homomorphism from LΣ to the Σ-reduct of A.
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Now, the adequacy of G′
3h with respect to the G′

3-algebras semantics |=AG′
3

will be
proved.

Theorem 3.5 (Soundness of G′
3h w.r.t. G′

3-algebras). Let Γ ∪ {φ} be a set of
formulas in LΣ. Then, Γ ⊢G′

3h
φ implies that Γ |=AG′

3
φ.

Proof. It is easy to see that every axiom in G′
3h is valid in any G′

3-algebra, that is:
for every A ∈ AG′

3 and for every valuation h over A, h(φ) = 1 for every instance φ
of every axiom of G′

3h. In addition, satisfaction is preserved by the inference rules.
Indeed, suppose that h is a valuation over A such that h(φ) = h(φ → ψ) = 1.
Then 1 = h(φ) → h(ψ) = 1 → h(ψ) = h(ψ) (recall that, in any Heyting algebra,
1 → x = x for every x). In addition, if h is a valuation such that h(φ → ψ) =
h(φ) → h(ψ) = 1 then h(¬ψ → ¬φ) = ¬h(ψ) → ¬h(φ) = 1, by Definition 3.1(viii).
Using this, the result follows by induction on the length of derivations.

In order to prove the completeness of G′
3h with respect to G′

3-algebras, some pre-
vious definitions and results are needed.

Definition 3.6 (Tarskian Logic). A logic L is Tarskian if it satisfies the following
properties, for every set of formulas Γ ∪ Υ ∪ {α}:

(i) if α ∈ Γ then Γ ⊢ α;

(ii) if Γ ⊢ α and Γ ⊆ Υ then Υ ⊢ α;

(iii) if Υ ⊢ α and Γ ⊢ β for every β ∈ Υ then Γ ⊢ α.

The logic L is finitary if it satisfies the following property:

(iv) if Γ ⊢ α then there exists a finite subset Γ0 of Γ such that Γ0 ⊢ α.

Definition 3.7. Let L be a Tarskian logic. A set of formulas Γ is closed in L if,
for every formula ψ: Γ ⊢ ψ iff ψ ∈ Γ.

Definition 3.8. Let L be a Tarskian logic, and let Γ ∪ {φ} be a set of formulas.
The set Γ is maximal non-trivial w.r.t. φ in L, or φ-saturated in L, if Γ ⊬ φ but
Γ, ψ ⊢ φ for any ψ ̸∈ Γ.

It is easy to prove that any φ-saturated set of formulas in a Tarskian logic is closed.
Recall now the following classical result (see [13, Theorem 22.2]):
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Theorem 3.9 (Lindenbaum-Łoś). Let L be a Tarskian and finitary logic, and let
Γ ∪ {φ} be a set of formulas such that Γ ⊬ φ. Then, there exists a set of formulas
Υ such that Υ is φ-saturated in L and Γ ⊆ Υ.

Remark 3.10. Clearly G′
3h is Tarskian and finitary, then Theorem 3.9 applies to

it. Observe that, if Υ is a φ-saturated set in G′
3h then, for every formula β: β ∈ Υ

iff ¬¬β ∈ Υ.

Theorem 3.11 (Completeness of G′
3h w.r.t. G′

3-algebras). Let Γ ∪ {φ} be a set of
formulas in LΣ. Then, Γ |=AG′

3
φ implies that Γ ⊢G′

3h
φ.

Proof. Suppose that Γ ⊬G′
3h
φ. By Theorem 3.9 and Remark 3.10 there exists a set

Υ which is φ-saturated in G′
3h such that Γ ⊆ Υ. Define the following relation in LΣ:

β ≡Υ γ iff Υ ⊢G′
3h
β ↔ γ. By the properties of IPL+, including the ones listed in

Proposition 2.6, it is easy to prove that ≡Υ is a congruence over LΣ with respect to
the connectives ∧, ∨ and →. Moreover, AΥ

def= LΣ/≡Υ is an implicative lattice with
such operations. In addition, it has a bottom element given by 0 = [¬β ∧ ¬¬β]Υ for
any formula β, where [ψ]Υ denotes the equivalence class of the formula ψ w.r.t. ≡Υ.
This means that AΥ is a 3-valued Heyting algebra, by virtue of (Tho). Note also
that ¬[β]Υ

def= [¬β]Υ is a well-defined operation in AΥ, because of (imp). It is
immediate to see that AΥ satisfies properties (ii)-(viii) of Definition 3.1. Hence, A is
a G′

3-algebra such that [γ]Υ = 1 iff Υ ⊢G′
3h
γ iff γ ∈ Υ. Consider now the function

hΥ : LΣ → AΥ given by hΥ(γ) = [γ]Υ. It is easy to see that hΥ is a valuation
over MAΥ such that hΥ(γ) = 1 iff γ ∈ Υ. Therefore, hΥ is a valuation over MAΥ
such that hΥ(γ) = 1 for every γ ∈ Γ but hΥ(φ) ̸= 1, since φ /∈ Υ. This shows that
Γ ̸|=AG′

3
φ.

As a corollary of the completeness theorem above, a special and useful form of the
Deduction Theorem can be obtained (see Theorem 3.13 below). Previously, some
results must be stated.

Lemma 3.12. Let Γ ∪ {φ,ψ, γ} be a set of formulas in LΣ.
(1) If Γ ⊢G′

3h
¬¬φ → ψ and Γ ⊢G′

3h
¬¬φ → (ψ → γ) then Γ ⊢G′

3h
¬¬φ → γ.

(2) If Γ ⊢G′
3h

¬¬φ → (ψ → γ) then Γ ⊢G′
3h

¬¬φ → (¬γ → ¬ψ).

Proof. (1) It follows by using the hypothesis together with the theorems (¬¬φ →
ψ) → ((¬¬φ → (ψ → γ)) → (¬¬φ → (ψ ∧ (ψ → γ))) and (ψ ∧ (ψ → γ)) → γ of
G′

3h, taking also into account Proposition 2.6(1).
(2) Supposse that Γ ⊢G′

3h
¬¬φ → (ψ → γ). Then Γ |=AG′

3
¬¬φ → (ψ → γ), by
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Theorem 3.5. Let h be a valuation over a matrix MA, for a given G′
3-algebra A,

such that h(δ) = 1 for every δ ∈ Γ. Then, h(¬¬φ → (ψ → γ)) = 1. Let x = h(φ),
y = h(ψ) and z = h(γ). Then ¬¬x ≤ y → z and so ¬¬x ≤ ¬¬y → ¬¬z = ¬z → ¬y,
by Proposition 3.2 items (7) and (8). That is, h(¬¬φ → (¬γ → ¬ψ)) = 1. This
shows that Γ |=AG′

3
¬¬φ → (¬γ → ¬ψ). By Theorem 3.11, Γ ⊢G′

3h
¬¬φ → (¬γ →

¬ψ).

Theorem 3.13 (Special Deduction Theorem (SDT)). Let Γ ∪ {φ,ψ} be a set of
formulas in LΣ. Then, Γ, φ ⊢G′

3h
ψ if and only if Γ ⊢G′

3h
¬¬φ → ψ.

Proof.
(Only if part). Suppose that Γ, φ ⊢G′

3h
ψ. By induction on the length n of a

derivation φ1 · · ·φn of ψ from Γ∪{φ} in G′
3h, it can be proven that Γ ⊢G′

3h
¬¬φ → φi

for every 1 ≤ i ≤ n, and so Γ ⊢G′
3h

¬¬φ → ψ (for i = n). To do this, it must taken
into account the fact that Γ ⊢G′

3h
¬¬φ → ψ if either ψ ∈ Γ∪{φ} or ψ is an instance

of an axiom (for the base step), and Lemma 3.12 (to deal with the inference rules
from the induction hypothesis). The details of the proof are left to the reader.
(If part). Suppose that Γ ⊢G′

3h
¬¬φ → ψ, and let φ1 · · ·φn = ¬¬φ → ψ be a

derivation of ¬¬φ → ψ from Γ in G′
3h. Consider now the following (meta)derivation

of ψ from Γ ∪ {φ} in G′
3h:

1. φ1
...

...
n. φn = ¬¬φ → ψ
n+ 1. φ Hyp.
n+ 2. ¬¬φ (Dneg), n+1
n+ 3. ψ (MP), n, n+2

This shows that Γ, φ ⊢G′
3h
ψ.

3.1 G′
3-algebras as a variety

The aim of this section is proving that G′
3-algebras are three-valued modal implica-

tive semilattices (see [2]) with a bottom element. From this, and from the results
obtained in [2], together with Theorem 3.11, the completeness of G′

3h w.r.t. the
matrix G′

3 will follow easily (see Theorem 3.27 below).
As mentioned in the Introduction, Canals-Frau and Figallo have studied in [2]

the reduct {∧,→,△, 1} of the three-valued MV-algebras, where → is a three-valued
Heyting implication, and △ is a Moisil operator from the three-valued Łukasiewicz-
Moisil algebras (or, equivalently, △ is a Monteiro-Baaz Delta-operator). They also
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consider the operator ∇x = (x → ∆x) → ∆x. This reduct can be defined as follows:

Definition 3.14 (See [2]). An algebra A = ⟨A,∧,→,△, 1⟩ of type (2, 2, 1, 0) is a
three-valued modal implicative semilattice (a MIS3-algebra, for short) if it satisfies
the following identities, for every x, y, z ∈ A:

(IS1)
(
x → x

)
= 1,

(IS2)
(
(x → y) ∧ y

)
= y,

(IS3)
(
x → (y ∧ z)

)
=

(
(x → z) ∧ (x → y)

)
,

(IS4)
(
x ∧ (x → y)

)
=

(
x ∧ y

)
,

(T)
(
(x → y) → z) → (((z → x) → z) → z

)
= 1,

(M1)
(△x → x

)
= 1,

(M2)
((

(y → △y) → (x → △△x)
) → △(x → y)

)
=

(△x → △△y
)
,

(M3)
(
(△x → △y) → △x

)
= △x.

It is worth mentioning that any MIS3-algebra is an ordered structure if we consider
x ≤ y if and only if x → y = 1 (if and only if x ∧ y = x). Moreover, in [5] it was
proved that any MIS3-algebra A is a distributive lattice where the supremum is
given by x ∨ y

def= ((x → y) → y) ∧ ((y → x) → x) for x, y ∈ A.
Recall (see the beginning of Section 2) that A3 = ⟨V, σ⟩ is the 3-valued algebra of

G′
3 with domain V = {0, 1

2 , 1}. Let B3 = ⟨V, σ′⟩ be the 3-valued algebra over {∧,→
,△,1} with domain V such that σ′ interprets the connectives as follows: σ′(1) = 1;
σ′(∧) and σ′(→) coincide with the corresponding operators of A3; and σ′(△) is
defined by the truth-table below.3

x △x

0 0
1
2 0
1 1

It is easy to see that the induced operator x∨ y def= ((x → y) → y) ∧ ((y → x) → x)
coincides with the ∨-operator of A3. In addition, 0 ≤ 1

2 ≤ 1. On the other hand,
∇x = 0 if x = 0, and 1 otherwise.

The following fundamental results can be found in [2] (see also [5]).

3As usual, we identify σ′(c) with c, for any connective c.
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Definition 3.15. Let A be a MIS3-algebra and let D ⊆ A. D is said to be deductive
system if 1 ∈ D, and if x, x → y ∈ D imply y ∈ D. Also, we say that D is modal,
if x ∈ D implies △x ∈ D. Besides, we denote by Dm(A) the set of modal deductive
systems and by Con(A) the set of congruence relations.

Lemma 3.16. ([2]) For a given MIS3-algebra A, the poset Dm(A) is lattice-
isomorphic to Con(A).

Now, for a given MIS3-algebra A, a deductive systems D of A is said to be a
maximal if for every deductive system M such that D ⊆ M implies M = A or
M = D.

Theorem 3.17. ([2]) Let M be a non-trivial maximal modal deductive system of
MIS3-algebras A. Let us consider the sets M0 = {x ∈ A : ∇x /∈ M} and
M1/2 = {x ∈ A : x /∈ M,∇x ∈ M}, and the map h : A −→ V defined by

h(x) =





0 if x ∈ M0

1/2 if x ∈ M1/2
1 if x ∈ M.

Then, h is a MIS3-homomorphism h : A → B3 such that h−1({1}) = M .

Theorem 3.18. ([2]) The variety of MIS3-algebras is semisimple and it is gener-
ated by the 3-valued algebra B3.

Remark 3.19. The above theorem states that an equation s = t holds in every
MIS3-algebra iff it holds in B3. For instance, since △△x = △x holds in B3 for
every x ∈ V, it follows that, for every MIS3-algebra A, △△x = △x for every
x ∈ A.

The next step is to connect the variety of MIS3-algebras with the class of G′
3-

algebras introduced in Definition 3.1. Firstly, observe that any G′
3-algebra has a

bottom element 0. This suggest the following definition:

Definition 3.20. An algebra A = ⟨A,∧,→,△, 0, 1⟩ of type (2, 2, 1, 0, 0) is a three-
valued modal Heyting algebra (a MIS0

3 -algebra, for short) if its reduct ⟨A,∧,→
,△, 1⟩ is a MIS3-algebra and, for every x ∈ A:

(IS5)
(
0 → x

)
= 1.

Observe that the expansion B0
3 = ⟨V, σ′⟩ of B3 to the signature {∧,→,△,0,1} such

that σ′(0) = 0 is a MIS0
3 -algebra. Moreover, the following result holds:
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Theorem 3.21. The variety of MIS0
3-algebras is generated by the 3-valued algebra

B0
3.

Proof. According to Theorem 3.18, there is a non-empty set X and a homomorphism
h : A → BX3 for every MIS3-algebra A. Besides, it is clear that h verify h(x ∨ y) =
h(x) ∨ h(y). Thus, in particular, this representation holds for every MIS0

3 -algebra
A. Thus, taking into account axiom (IS5), it is clear that h(0) ≤ h(x) for every
x ∈ A. But A3 is a subdirectly irreducible algebra of the variety of MIS3-algebras.
Therefore, every canonical projection qi : h(A) → B3 is onto and so, qi(h(0)) ≤
qi(h(x)) for every x ∈ A, in particular qi(h(0)) ≤ 0. Therefore, qi(h(0)) = 0 for
every i ∈ X and thus, h(0) = 0, which completes the proof.

Theorem 3.22. The class AG′
3 of G′

3-algebras and the variety of MIS0
3-algebras

are term-equivalent via △x
def= ¬¬x, on the one hand; and ¬x def= △x → 0 and

x ∨ y
def= ((x → y) → y) ∧ ((y → x) → x), on the other.

Proof. Let A = ⟨A,∧,→,△, 0, 1⟩ be a MIS0
3 -algebra, and define the following op-

erators:
¬x def= △x → 0 and x ∨ y

def= ((x → y) → y) ∧ ((y → x) → x), for every
x, y ∈ A.
Let A¬ def= ⟨A,∧,∨,→,¬, 0, 1⟩. It is immediate to see that ⟨A,∧,∨,→, 0, 1⟩ is a
3-valued Heyting algebra. This follows from the fact that B0

3 satisfies the equations
characterizing such class of algebras, and then by using Theorem 3.21. Moreover,
by using the same argument it can be proven that A¬ satisfies properties (ii)-(vii)
of Definition 3.1. Finally, suppose that x ≤ y. Then, △x ≤ △y (see [2] and [5]).
From this, ¬y = △y → 0 ≤ △x → 0 = ¬x. Hence, A¬ satisfies property (viii)
of Definition 3.1. This means that any MIS0

3 -algebra can be transformed into a
G′

3-algebra by using appropriate terms.
Conversely, let A = ⟨A,∧,∨,→,¬, 0, 1⟩ be a G′

3-algebra and define the following
operation: △x

def= ¬¬x, for every x ∈ A. Consider the algebra A△ def= ⟨A,∧,→
,△, 0, 1⟩. We shall prove that A△ is a MIS0

3 -algebra. Observe that A△ satisfies
properties (IS1)-(IS4) and (T) of Definition 3.14, as well as property (IS5) of Def-
inition 3.20. The algebra A△ satisfies properties (M1) and (M2) since A satisfies
properties (iv) and (vii) of Definition 3.1, and since ¬¬¬¬x = ¬¬x, by Propo-
sition 3.2(3). Finally, A△ satisfies property (M3), by Proposition 3.2(6). This
means that any G′

3-algebra can be transformed into a MIS0
3 -algebra by means of

a suitable term. This shows that the class AG′
3 of G′

3-algebras and the variety of
MIS0

3 -algebras are term-equivalent via the proposed terms.
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Let A0
3 = ⟨V, σ⟩ be the expansion of A3 (recall the beginning of Section 2) to the

signature Σ+ such that σ(0) = 0

Corollary 3.23. The class AG′
3 of G′

3-algebras is generated by the 3-valued algebra
A0

3.

Proof. If follows immediately form theorems 3.22 and 3.21.

Corollary 3.24. Let φ be a formula. Then |=AG′
3
φ if and only if |=G′

3
φ.

Corollary 3.25. The class AG′
3 of G′

3-algebras is a variety defined by the following
equations:

(G′
31)

(
x → x

)
= 1,

(G′
32)

(
(x → y) ∧ y

)
= y,

(G′
33)

(
x → (y ∧ z)

)
=

(
(x → z) ∧ (x → y)

)
,

(G′
34)

(
x ∧ (x → y)

)
=

(
x ∧ y

)
,

(G′
35)

(
(x → y) → z) → (((z → x) → z) → z

)
= 1,

(G′
36)

(¬¬x → x
)

= 1,
(G′

37)
(¬x → ¬¬¬x)

= 1,
(G′

38)
(
((y → ¬¬y) → (x → ¬¬x)) → ¬¬(x → y)

)
=

(¬¬x → ¬¬y)
,

(G′
39)

(
(¬¬x → ¬¬y) → ¬¬x)

= ¬¬x,
(G′

310)
(
x ∨ y

)
=

(
((x → y) → y) ∧ ((y → x) → x)

)
,

(G′
311)

(
x ∨ ¬x)

= 1,
(G′

312)
(¬x ∧ ¬¬x)

= 0,
(G′

313)
(
0 → x

)
= 1.

Proof. By Definition 3.1 and by Corollary 3.23, it follows that any G′
3-algebra

satisfies the equations (G′
31)-(G′

313). Conversely, let A be an algebra satisfying
(G′

31)-(G′
313), and define △x

def= ¬¬x. Then △△x = △x for every x ∈ A, and
so A△ def= ⟨A,∧,→,△, 0, 1⟩ is a MIS0

3 -algebra. By the proof of Theorem 3.22,
the algebra (A△)¬ is a G′

3-algebra. It will be shown that (A△)¬ = A. In-
deed, the negation in (A△)¬ is given by ¬′x def= △x → 0 = ¬¬x → 0. But
¬¬x → 0 = ¬x. The proof of this fact is analogous to the one given for Proposi-
tion 3.2(4) above. Using this, it follows that ¬′x = ¬x. In addition, the disjunction
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x∨′ y def= ((x → y) → y)∧ ((y → x) → x) in (A△)¬ coincides with x∨y, by (G′
310).

This shows that (A△)¬ = A, hence A is a G′
3-algebra, by Theorem 3.22.

3.2 Adequacy of G′
3h w.r.t. G′

3

Finally, we can prove the adequacy of the Hilbert calculus G′
3h with respect to the

intended 3-valued semantics G′
3. Firstly, a technical result will be stated:

Proposition 3.26. If φ |=G′
3
ψ then |=G′

3
¬¬φ → ψ.

Proof. Supose that φ |=G′
3
ψ, and let h be a valuation over G′

3. If h(φ) = 1
then h(ψ) = 1, by hypothesis, hence h(¬¬φ → ψ) = 1 → 1 = 1. Otherwise, if
h(φ) ̸= 1 then h(¬¬φ) = 0 and so h(¬¬φ → ψ) = 0 → h(ψ) = 1. In any case,
h(¬¬φ → ψ) = 1. This shows that |=G′

3
¬¬φ → ψ.

Theorem 3.27 (Soundness and completeness of G′
3h w.r.t. G′

3). For every finite
set Γ ∪ {φ} ⊆ LΣ:

Γ ⊢G′
3h
φ if and only if Γ |=G′

3
φ.

Proof.
Only if part (Soundness): It follows from Theorem 3.5 and the fact that A0

3 is a
G′

3-algebra.
If part (Completeness): Suppose that Γ |=G′

3
φ. If Γ = ∅ then |=AG′

3
φ, by Corol-

lary 3.24. From this, ⊢G′
3h
φ, by Theorem 3.11. Otherwise, if Γ = {ψ1, . . . , ψn} for

n ≥ 1 let ψ = (. . . ((ψ1 ∧ ψ2) ∧ ψ3) ∧ . . .) ∧ ψn if n > 1, and ψ = ψ1 if n = 1. Since
ψ |=G′

3
φ then |=G′

3
¬¬ψ → φ, by Proposition 3.26. From this |=AG′

3
¬¬ψ → φ,

by Corollary 3.24. Then ⊢G′
3h

¬¬ψ → φ, by Theorem 3.11. By Theorem 3.13,
ψ ⊢G′

3h
φ. By using the properties of the conjunction in G′

3h it follows from here
that Γ ⊢G′

3h
φ.

Corollary 3.28. The Deduction Theorem does not hold in G′
3h.

Proof. It is an immediate consequence of Remark 2.3 and Theorem 3.27.

4 The first-order G′
3-logic

In this section, a first-order version of G′
3, called QG3′, will be proposed. The

semantics will be given by structures defined over G′
3-algebras which are complete

(as lattices), in order to interpret the quantifiers.
Recall that Σ denotes the propositional signature {∧,∨,→,¬} for G′

3.
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Definition 4.1. Consider the symbols ∀ (universal quantifier) and ∃ (existential
quantifier), together with commas and parentesis as the punctuation marks. Let
IV ar = {v1, v2, . . .} be a denumerable set of individual variables. A first-order
signature is a triple Θ = ⟨C, {Fn}n∈N, {Pn}n∈N⟩ such that:

- C is a set of individual constants;

- for each n ≥ 1, Fn is a set of function symbols of arity n,

- for each n ≥ 1, Pn is a set of predicate symbols of arity n.4

The notions of bound and free variables inside a formula, closed terms, closed
formulas (or sentences), and of term free for a variable in a formula are defined as
usual (see, for instance, [9]). We denote by TerΘ and FmΘ the set of terms and the
set of first-order formulas over Θ (by using the connectives in Σ), respectively. Given
a formula φ, the formula obtained from φ by substituting every free occurrence of a
variable x by a term t will be denoted by φ(x/t).

Definition 4.2. Let Θ be a first-order signature. The logic QG3′ over Θ is defined
by the Hilbert calculus obtained by extending G′

3 expressed in the language FmΘ by
adding the following:

Axiom schemas:
(Ax14) φ(x/t) → ∃xφ if t is a term free for x in φ
(Ax15) ∀xφ → φ(x/t) if t is a term free for x in φ

Inference Rules:

(∃ − In) φ → ψ

∃xφ → ψ
where x does not occur free in ψ

(∀ − In) φ → ψ

φ → ∀xψ where x does not occur free in φ

Definition 4.3. A Θ-structure for QG3′ is a triple A = ⟨U,A, ·A⟩ such that U is
a non-empty set, A is a complete G′

3-algebra and ·A is an interpretation map which
assigns:

- to each individual constant c ∈ C, an element cA of U ;

4It will be assumed, as usual, that Θ has at least one predicate symbol, in order to have a
non-empty set of formulas.
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- to each function symbol f of arity n, a function fA : Un → U ;

- to each predicate symbol P of arity n, a function PA : Un → A.

Given a Θ-structure A for QG3′, an assignment over A is a function s : IV ar → U .
Given s and a ∈ U let s[x → a] be the assignment such that s[x → a](x) = a and
s[x → a](y) = s(y) for every x ̸= y. A Θ-structure A and an assignment s induce
an interpretation map [[·]]As for terms and formulas defined as follows:

[[x]]As = s(x) if x ∈ IV ar,
[[c]]As = cA if c ∈ C,
[[f(t1, . . . , tn)]]As = fA([[t1]]As , . . . , [[tn]]As ), if f ∈ Fn,
[[P (t1, . . . , tn)]]As = PA([[t1]]As , . . . , [[tn]]As ), if P ∈ Pn,
[[ϕ#φ]]As = [[ϕ]]As #[[φ]]As for # ∈ {∧,∨,→},
[[¬φ]]As = ¬[[φ]]As ,
[[∀xφ]]As = ∧

a∈U
[[φ]]As[x→a],

[[∃xφ]]As = ∨
a∈U

[[φ]]As[x→a].

We say that A and s satisfy a formula φ, denoted by A ⊨ φ[s], if [[φ]]As = 1. On the
other hand, φ is true in A if A ⊨ φ[s] for every s. We say that φ is a semantical
consequence of Γ in QG3′, denoted by Γ ⊨QG3′ α, if, for any structure A: if every
ψ ∈ Γ is true in A then α is true in A. Observe that, if A is a structure and φ
is a closed formula, then [[φ]]As = [[φ]]As′ , for every assignments s and s′. This being
so, either A ⊨ φ[s] for every s or A ⊭ φ[s] for every s. Thus, if Γ ∪ {φ} is a set of
sentences then: Γ ̸⊨QG3′ φ iff there is a structure A such that every ψ ∈ Γ is true in
A but A ⊭ φ[s] for any assignment s.

In order to prove the soundness of QG3′ w.r.t. the given semantics, an important
technical result, the substitution lemma, must be established:

Proposition 4.4 (Substitution lemma). Let φ be a formula, t a term free for x in
φ, A an structure and s and assignment. Then: [[α]]A

s[x→[[t]]As ] = [[α(x/t)]]As .

Proof. It is easily proved by induction on the complexity of the formula α.

Theorem 4.5 (Soundness of QG3′). Let Γ ∪ {φ} ⊆ FmΘ. If Γ ⊢QG3′ φ then
Γ ⊨QG3′ φ.

Proof: Consider a given structure A = ⟨U,A, ·A⟩. It is enough to prove the follow-
ing facts: the new axioms (Ax14) and (Ax15) are true in A, and the new inference
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rules (∃ − In) and (∀ − In) preserve trueness in A.
(Ax14) and (Ax15): Suppose that φ is α(x/t) → ∃xα, and let s be an as-
signment. Then, by Proposition 4.4, [[φ]]As = [[α]]A

s[x→[[t]]As ] → [[∃xα]]As . It is clear
that [[α]]A

s[x→[[t]]As ] ≤ ∨
a∈U

[[α]]As[x→a], hence [[α(x/t)]]As ≤ [[∃xα]]As . Therefore [[α(x/t) →

∃xα]]As = 1. The validity of (Ax15) is proved analogously.
(∃− In) and (∀− In): Let α → β such that x is not free in β, and let φ = ∃xα → β.
Suppose that that [[α → β]]As = 1 for every s, and fix an assignment s. By definition,
[[φ]]As = [[∃xα]]As → [[β]]As = ∨

a∈U
[[α]]As[x→a] → [[β]]As . By hypothesis, [[α]]As′ ≤ [[β]]As′ for

every s′. In particular, [[α]]As[x→a] ≤ [[β]]As[x→a] = [[β]]As for every a ∈ U , since x is not
free in β. So, ∨

a∈U
[[α]]As[x→a] → [[β]]As = [[∃xα → β]]As = [[φ]]As = 1. The preservation of

trueness by the rule (∀ − In) is proved analogously. □

Now, let us consider the relation ≡ defined by α ≡ β iff ⊢QG3′ α → β and ⊢QG3′

α → β. Then, we have that the algebra FmΘ/≡ is a G′
3-algebra (the proof is exactly

the same as in the propositional case). It is clear that the algebra of formulas is an
absolutely free algebra generated by the atomic formulas. The equivalence class of
a formula α w.r.t. ≡ will be denoted by α.

It is clear that QG3′ is a Tarskian logic, see Definition 3.6. Besides, it is possible
to consider the notion of set of formulas maximal non-trivial w.r.t to some formula
φ (see Definition 3.8) and the notion of closed theories is defined in the same way as
the propositional case, see Definition 3.7. Therefore, we have that the Lindenbaum-
Łoś’s Theorem holds for QG3′. Then, we have the following

Lemma 4.6. Let Γ ∪ {φ} be a set of formulas with Γ maximal non-trivial w.r.t. φ
in QG3′. Let Γ/≡ = {α : α ∈ Γ} be a subset of G′

3-algebra FmΘ/≡, then:

1. If α ∈ Γ and α = β, then β ∈ Γ. If α ∈ Γ/≡, then ∀xα,∃xα ∈ Γ/≡.

2. Γ/≡ is a modal deductive system of FmΘ/≡. Also, if φ /∈ Γ/≡ then, for any
closed modal deductive system D containing properly to Γ/≡, it is the case that
φ ∈ D.

Proof. Suppose that α ∈ Γ and α ≡ β. Then, ⊢QG3′ α → β and ⊢QG3′ β → α.
Therefore, β ∈ Γ. It is not hard to see that the conditions of Definition 3.15 are
verified by Γ/≡.

On the other hand, let D ⊆ FmΣ/≡ be a closed modal deductive system that
properly contains Γ/≡ and so, there is γ ∈ D such that γ /∈ Γ/≡. Now, we have that
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γ /∈ Γ and therefore, Γ∪{γ} ⊢QG3′ φ. From the latter and taking D = {α : α ∈ D},
we can infer that D ⊢QG3′ φ. Now, since D is closed we obtain that φ ∈ D.

It is worth mentioning that item 2. of last lemma states that Γ/≡ is a maximal
modal deductive system. Besides, we know that FmΘ/≡ is a G′

3-algebra, and for
every Γ maximal non-trivial w.r.t. φ we have that Γ/≡ is a maximal modal deductive
system of FmΣ/≡. Then, from Theorems 3.17 and 3.21, there is a homomorphism
h : FmΘ/≡ → B0

3 such that h−1({1}) = Γ/≡. Thus, if we consider the canonical
projection π : FmΘ → FmΘ/≡, there is a homomorphism f : FmΘ → B0

3 defined by
f = h ◦ π such that f−1({1}) = Γ. Observe that f(α) = h(α).

Proposition 4.7. Let Γ be a set of formulas which is maximal non-trivial w.r.t. φ
in G′

3. Let FmΘ/≡Γ be the quotient algebra obtained by the following congruence:
α ≡Γ β iff (α ↔ β) ∈ Γ. Then FmΘ/≡Γ is isomorphic to a subalgebra of B0

3 and so
is a simple G′

3-algebra.

Proof. Let π̄ : FmΘ → FmΘ/≡Γ be the canonical projection. By considering the
homorphism f : FmΘ → B0

3 defined above and by adapting the first isomorphism
Theorem from Universal Algebra (see [1]), there is a monomorphism f̄ : FmΘ/≡Γ →
B0

3 such that f̄ ◦ π̄ = f . This means that FmΘ/≡Γ is isomorphic to a subalgebra of
B0

3; that is to say, FmΘ/≡Γ is a simple algebra.

Observe that f̄([α]Γ) = f(α) = h(α), where [α]Γ denotes the equivalence class of α
in FmΘ/≡Γ . Since B0

3 is finite, we have the following:

Corollary 4.8. Let Γ be a set of formulas which is maximal non-trivial w.r.t. φ in
G′

3. Then, FmΘ/≡Γ is finite, hence it is a complete lattice.

In fact, FmΘ/≡Γ is isomorphic to either the 2-element chain {0, 1} or the 3-element
chain B0

3.

Theorem 4.9 (Completeness (for sentences) of QG3′ ). Let Γ ∪ {φ} be a set of
closed formulas over Θ. Then: Γ ⊨QG3′ φ implies that Γ ⊢QG3′ φ.

Proof. Let us suppose that Γ ̸⊢QG3′ φ. Then, there is M maximal non-trivial w.r.t.
φ such that Γ ⊆ M . Hence, α ∈ M for every α ∈ Γ and φ /∈ M . Now, let us consider
the algebra A := FmΘ/≡M defined by the congruence α ≡M β iff (α ↔ β) ∈ M . By
Corollary 4.8, A is a complete G′

3-algebra. It is easy to see that [α]M ≤ [β]M iff
α → β ∈ M .
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Now, let us consider the canonical structure A = ⟨U,A, ·A⟩ such that U is the
set TerΘ of terms over Θ and A is as above, for every term t we consider its name
t̂ as a constant of Θ. Assume that, if t̂ is a constant then t̂ A := t, and if f ∈ Fn

then fA(t1, . . . , tn) := f(t1, . . . , tn). From this, it follows that, for any t ∈ U and
any assignment s, [[t]]As = t. On the other hand, if P ∈ Pn, assume that the mapping
PA is defined as follows: PA(t1, . . . , tn) = [P (t1, . . . , tn)]M . By induction on the
complexity of the formula, it can be proven that, for every closed formula α and
every s, [[α]]As = [α]M . Indeed, the case for α atomic holds by definition of A. The
cases α = β#ψ and α = ¬β hold by induction hypothesis, the definition of [[·]]As and
the definition of the operations in the G′

3-algebra A; moreover, it is not hard to see
that for every formula ψ(x) and every term t we have that [[ψ(x/t̂)]]As = [[ψ(x/t)]]As .

Suppose now that α is ∃xβ. By axiom (Ax14), for every t ∈ U , β(x/t̂) → α ∈ M
and so [β(x/t̂)]M ≤ [α]M . By induction hypothesis, we have that [β(x/t̂)]M =
[[β(x/t̂)]]As = [[β(x/t)]]As (by Proposition 4.4). Thus, [β(x/t)]M ≤ [α]M , for every
t ∈ U . Now, let ψ be a sentence such that [β(x/t)]M ≤ [ψ]M for every term t ∈ U
and so [β(x/t̂)]M ≤ [ψ]M for every term t ∈ U . In particular, [β(x/x̂)]M ≤ [ψ]M
and then, [β(x)]M ≤ [ψ]M . This means that β(x) → ψ ∈ M . Since x does not
occur free in ψ then, by (∃ − In), α → ψ ∈ M . This means that [α]M ≤ [ψ]M and
so [α]M = ∨

t∈U
[β(x/t)]M . Analogously, but now by using (Ax15) and (∀ − In), it

is proved that [[α]]As = [α]M for α = ∀xβ. This shows that [[α]]As = [α]M for every
closed formula α and every s.

Thus, A is a Θ-structure for QG3′ such that, for every closed formula α, α is
true in A iff α ∈ M . From this we have that Γ ̸⊨QG3′ φ.

Given a formula α such that the set of variables occurring free in α is {x1, . . . , xn}.
The universal closure of α is the closed formula (∀α) given by α (if n = 0) or
∀x1 . . . ∀xnα otherwise. Then, the completeness theorem of QG3′ for arbitrary
formulas can now be easily obtained from the last result:

Theorem 4.10 (Completeness of QG3′). Let Γ ∪ {φ} be a set of formulas over Θ.
Then: Γ ⊨QG3′ φ implies that Γ ⊢QG3′ φ.

Proof. By (Ax15) and (∀−In) it is easy to prove that α ⊢QG3′ (∀)α and (∀)α ⊢QG3′

α, for every formula α. On the other hand, by definition of ⊨QG3′ , it is immediate
to see that α ⊨QG3′ (∀)α and (∀)α ⊨QG3′ α, for every formula α. Then, for every
Γ ∪ {φ}: Γ ⊢QG3′ φ iff (∀)Γ ⊢QG3′ (∀)φ, and Γ ⊨QG3′ φ iff (∀)Γ ⊨QG3′ (∀)φ, where
(∀)Γ = {(∀)β : β ∈ Γ}. From this, the desired result follows immediately from
Theorem 4.9.
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Abstract

Reo is a graphic-based coordination modelling language which aims to cap-
ture and model the interaction between pieces of software, using structures
known as channels. The fact that Reo has been used to model many real-world
situations, from software components to Smart Cities entities, has attracted at-
tention from researchers, resulting in a great effort directed in its formalization
in order to verify and certify properties of Reo circuits. This work presents
a constructive formalization in Coq of Reo’s formal semantics (based on Con-
straint Automata) and a formalization in the nuXmv model checker, both with
a composition operation and with tools to automate the process. We describe
the formalizations and present some usage examples with experimental results.

1 Introduction
In recent years, many software developers have researched new techniques on how to
develop software. Technologies and methods have emerged since the nineties, such
as service-oriented computing [35] and model-driven development [9], where the first
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approach advocates the idea of composing software out of other software and the
latter, developing software based on previous models.

Reo [3, 4] is a graphical-based coordination modelling language which aims to
capture and model the interaction between pieces of software, using structures known
as channels. A Reo connector may be built from one or more channels and its goal is
to integrate these communicating entities. Each channel has its predefined behavior
and may be combined with other channels to build more complex Reo models. Reo’s
main objective is to provide a model of the code regarding how the integrated entities
within a Reo connector interact between themselves, generating the model of the
code which coordinates this interaction, known as “glue-code”. Reo has proven to
be successful in modeling the orchestration of concurrent systems’ interaction, being
employed in a wide range of applications, from process modeling to Web-Services
integration [6, 39].

The usage of channel-based models is considered an alternative to advocating
model-driven development of such “glue code”. A Reo channel is an entity that
connects two distinct ends with its unique behavior. Channels can be seen as prim-
itives for modelling concurrent systems. The usage of channel-based models brings
several advantages by efficiently modelling primitives of concurrent systems (remote
function calls, message passing, and shared memory, to name a few), enabling the
capture of properties like the efficiency of how messages are exchanged.

The advent of formal techniques in software development such as proof assistants
and model checkers led to a new way of dealing with formal verification of software.
Proof assistants’ advantages include reducing the human effort involved in the proof-
construction process and reducing human errors that could be introduced in such
proof, such as invalid proof steps, thus making the task of building up a proof easier
to perform. Model checkers enable the verification of properties by exploring all
possible states of a model in order to assure that the model indeed satisfies some
property, returning a counterexample if the model is fully verified and fails to satisfy
such property.

Modelling software components as Reo connectors may bring some advantages,
namely a modelling approach that may bring better insights on how the involved
components interact with each other and the usage of one of its formal semantics [24]
to formally certify Reo models. Constraint Automata [12] is the first operational
formal semantics for Reo [24], proposed by the language’s creators and it is the
formal semantics employed in the present work.

Constraint Automata enable users to extend Reo connectors to suit their needs,
given that their corresponding automaton is supplied. It also allows the model and
verification of properties regarding connectors’ scenarios and how they change their
configuration when data flows through them, by interpreting their states as the
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connector’s configuration, and their transitions as “how the connector itself changes
its configuration”. While Timed Data Streams (TDS) provide an intuitive way to
understand data flow between Reo connectors, Constraint Automata provides more
suitable means to analyze these connectors [24], giving an overview on “how data
flowing through the connector changes its configuration”.

To verify whether a system complies with its requirements may be a hard task.
Certifying liveness, absence of deadlocks and that any important constraint is ful-
filled may demand a huge effort that may not solvable by standard test or simulation
techniques. Employing Constraint Automata as a formal semantics for Reo leads
to the possibility of reducing the verification of Reo circuits to the satisfiability
problem.

Given a Reo circuit R we provide a translation R Coq===⇒ R′ and also propose a

translation R SMV====⇒ R′′ to logic-based models. Using R′ it is possible to use an In-
teractive Theorem Prover (namely Coq,1 detailed in Section 5.1) to prove properties
about the circuit, compare the behaviour of two circuits through bisimulation, and
extract certified code. Verifying if some constraint C is complied by R′′ is equiva-
lent to the problem R′′ |= C, where |= is the usual logical entailment relation. This
model checking process is performed by nuXmv,2 a symbolic model checker capable
of providing counterexamples (detailed in Section 5.2).

This paper proposes an automatic approach to model, reason, and certify Reo
circuits by means of proof theory employing Coq, and perform model checking evalu-
ations using nuXmv, providing logic-based models. We provide an automatic frame-
work which compiles a textual representation of Reo circuits (denoted by a subset of
Treo [20] language) which takes as input Reo connectors and port names denoting
the interfaces they connect and generate both Coq and nuXmv models. Then, one
may use all tooling available to automatically generate models in both systems for
reasoning and compile certified code corresponding to the given Reo circuit sup-
ported by its formal semantics. We also present a Graphical User Interface to model
and apply all of these translations.

The organization of this paper is as follows. Section 2 presents the related works
available in the literature pointing out their main features and Section 3 gives an
overview of the formal background used in this work. Reo’s characteristics and
formal semantics are presented in Section 4 followed by the presentation of the
translations and their implementations in Section 5, with usage examples. Section 6
discuss the final remarks and ongoing work.

1https://coq.inria.fr
2https://nuxmv.fbk.eu/
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2 Related work
The fact that Reo can be used to model many real-world situations has attracted
attention from researchers all around the world, resulting in a great effort directed
in formalizing means in order to verify properties of Reo models [25,26,28,31,32,37].
Reo’s formal studies also resulted in the proposal of many formal semantics for this
modelling language [24].

The approach presented by Klein et al. [25] provides a platform to reason about
Reo models using Vereofy,3 a model checker for component-based systems, while
Pourvatan et al. [37] employ Constraint Automata in reasoning about Reo models
by means of symbolic execution. Kokash & Arbab [26] formally verify Long-Running
Transactions (LRTs) modelled as Reo connectors using Vereofy, enabling expressing
properties of these connectors in logics such as Linear Temporal Logic (LTL) or a
variant of Computation Tree Logic (CTL) named Alternating-time Stream Logic
(ASL). Kokash et al. [28] encode Reo in mCRL2 model checker using Constraint
Automata and its main variants, encoding their behaviour as mCRL2 processes
and enabling the expression of properties regarding deadlocks and data constraints
which depend upon time. Mouzavi et al. [32] propose an approach based on Maude
in order to model checking Reo models, encoding Reo’s operational semantics of the
connectors, and Li et al. [31] propose a real-time extension to Reo, implementing
new channels and relying on Stochastic Timed Automata for Reo (STA) as its formal
semantics, also providing a translation of STA to PRISM4 for model checking. UP-
PAAL 5 model checker has also been employed in the verification of Reo connectors
employing the usage of Timed Constraint Automata [5] to build the corresponding
UPPAAL model, and in the simulation of Hybrid Reo Connectors [8].

Among the tools used by researchers to formally reason about Reo connectors,
proof assistants are employed towards this objective [29, 30, 34, 38, 40, 41]. When
restricting these implementations to the formalization of Constraint Automata as
Reo’s formal semantics, only a few approaches aim to implement them, although
no implementation of such formalism in a proof assistant as Coq was found in the
literature.

The approaches adopted by Li et al. [29,40] are among the ones that employ Coq
to verify Reo models formally. The first work formalizes four of the Reo canonical
connectors along with an LTL-based language defined as an inductive type in Coq.
While the latter proposes the formalization of some of the channels depicted by Fig-
ure 1 as logical propositions in Coq, where their behavior are defined as conjunctions

3http://www.vereofy.de
4https://www.prismmodelchecker.org
5http://www.uppaal.org/
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regarding data and time constraints on streams denoting input and output of the
automaton. Both formalizations implement the notion of Timed Data Streams as it
is the first formalization of semantics of Reo connectors [24].

The implementation proposed by Li et al. [29] enables the verification of timed
properties of connectors: such properties may be proven considering the data flow
a connector takes as input. The formalized LTL-based language enables bounded
model checking on these connectors. Although, it lacks any automatic composition
operation for formalized connectors. Therefore, complex channels may be manually
written. The approach employed by Li et al. [40] implements composition of Reo
connectors employing logical conjunction of connectors’ behaviour, denoted by their
respective TDS.

The usage of Constraint Automata as formal semantics for Reo is advantageous
when considering a systematic notion of a Reo connector. One can use the fact that
states of an automaton are its possible configurations to validate certain properties.
Informally, Constraint Automata enables one to see “How the system behaves in-
ternally”. When not considering only Reo, Constraint Automata provides a formal
basis to reason about general coordination modeling languages, not only Reo [12].
Although Constraint Automata does not suit the verification of timed properties of
connectors as well as Timed Data Streams, the fact that Constraint Automata can
be interpreted as TDS-language acceptors and the notion of acceptance regarding
Timed Data Streams can be used to prove timed properties regarding the connector
(considering the input Timed Data Stream) and possible configurations that the
connector can achieve (considering the Constraint Automata itself). More specifi-
cally, implementing such formalism in a system such as Coq enables the automatic
generation of certified code from the model to languages such as Haskell, Scheme or
OCaml.

The adopted approach in here proposed is twofold. This paper presents (i) a
framework to model and reason about Reo circuits by means of the construction of
a proof-theory in Coq which leads to certifying and compiling Reo code and (ii) a
detailed and compacted translations to a nuXmv model, which has many optimiza-
tions to achieve a competitive performance. The Coq and nuXmv formalizations
deviates from existing ones by encoding the Automata model, enabling deductive
and also explicit reasoning on states, taking advantage of operations like the product
construction to build more complex models, and also making notions of bisimulation
more natural by implementing them.
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3 Background
This section is bound to give an overview of core aspects regarding the employed
systems and their logical background. We discuss the main aspects regarding CTL,
nuXmv and Coq and show usage example of these systems.

3.1 Computation Tree Logic
Computation Tree Logic (CTL) [17] is a branching-time modal logic where the
modalities refer to time. In CTL, time is modeled as a tree-like structure in which
the future is not determined, there are different paths in the future, which any of
those might become the actual path that is realized. CTL’s syntax is presented in
Definition 3.1.

Definition 3.1 (CTL’s formulae). A formula in CTL is φ ::= p | ⊤ | φ ∧ φ |
¬φ | EG φ | EX φ | E φ U φ | AG φ | AX φ | A φ U φ, where p ∈ Φ is
an atomic proposition, E denotes for the existence of a path were some property φ
holds Globally, in the neXt state or Until some other property holds. The analogous
for all paths is achieved replacing E for A.

We use the standard abbreviations ⊥ ≡ ¬⊤, φ ∨ ϕ ≡ ¬(¬φ ∧ ¬ϕ), φ → ϕ ≡
¬(φ ∧ ¬ϕ), EF φ ≡ E ⊤ U φ.

A CTL model is a transition system M = ⟨S,R, V ⟩ where S is an enumerable
set of states, R ⊆ S × S is a binary relation and V : S → 2Φ is a valuation function.
A formula φ is satisfied in a state s ∈ S of a model M (says M,s |= φ) iff

• M,s |= p iff p ∈ V (s)

• M,s |= ⊤ always

• M,s |= ¬φ iff M,s ̸|= φ

• M,s |= φ ∧ ψ iff M,s |= φ and M,s |= ψ

• M,s |= EG φ iff there exists sRs1, · · · , sn−1Rsn such that in all M,si |= φ

• M,s |= EX φ iff there exists sRs1 such that M,s1 |= φ

• M,s |= E φ U ψ iff there exists sRs1, · · · , sn−1Rsn such that in allM,si |= φ
until that M,sn |= ψ

• M,s |= AG φ iff for every sRs1, · · · , sn−1Rsn in all M,si |= φ

• M,s |= AX φ iff for every sRs1 M,s1 |= φ
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• M,s |= A φ U ψ iff for every sRs1, · · · , sn−1Rsn in all M,si |= φ until that
M,sn |= ψ.

3.2 nuXmv
Model checkers are tools used to verify the properties of systems formally modeled.
That verification is done exploring all of the model states [11], in other words, the
checker examines each possible system scenario to systematically verify that the
property holds in the model.

Those properties to be verified can represent safety characteristics, that is, prop-
erties that should always hold so that something undesirable never happens, for
example, the absence of deadlocks. They can also represent liveness characteristics
that guarantee the program evolution, that is, they define what the system must do
to execute.

nuXmv is a symbolic model checker [13] that extends NuSMV [15], having all of
its functionalities. NuSMV combines Binary Decision Diagram (BDD) verification
with SAT-based verification. nuXmv extends NuSMV in two major directions: it
improves finite models verification with state of the art SAT-based algorithms; with
infinite models, it presents verification techniques based on Satisfiability Modulo
Theory (SMT).

As a model checker, nuXmv was used in various projects such as AUTOGEF [1],
validating aerospace critical systems, EuRailCheck [14] was a project that devel-
oped a tool to formalize and validate specifications for The European Train Control
System (ETCS).

One of the ways in which nuXmv verifies a model is based on BDD. Binary De-
cision Diagrams are directed, acyclic and rooted graphs [2] that represent a boolean
function. The other way of verification is based on the Propositional Satisfiability
Problem (SAT). That problem consists of finding any interpretation that satisfies a
given boolean formula. The notion of using SATsolvers in model checking [16] to
solve the state explosion problem exists since the years 2000. As the SAT problem is
NP-complete, various implementations minimizes its costs in different ways, nuXmv
uses both zChaff6 and MiniSat7 implementations.

A nuXmv program is structured as a list of MODULEs in which one of those is the
main, which is from where the model will begin. A MODULE declaration is where the
variables and transitions are declared. Those declarations follow a block structure,
as follows:

6http://www.princeton.edu/~chaff/index.html
7http://minisat.se/Main.html
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MODULE encapsulates others declarations, it is declared as MODULE identifier
(module parameters), where identifier is the MODULE identifier and mo-
dule parameters are the optional MODULE parameters.

VAR encapsulates the list of variables in the MODULE. A variable is declared as i-
dentifier : type specifier;, where identifier is its identifier, type -
specifier is its type. A MODULE can be used as a variable type, that way, it
is possible to instantiate a MODULE as a variable.

FROZENVAR encapsulates a variable list declared as above, the difference is that
these variable will not have its first value changed.

ASSIGN encapsulates the attribution list, an attribution can be as init(identi-
fier) := simple expr, where the variable with the identifier receives the
simple expr as its initial value; or as next(identifier) := simple expr,
where identifier will receive simple expr in the next state.

TRANS encapsulates a transitions list, those transitions are declared as boolean
expressions that must contain the next() attribution.

INVAR encapsulates a list of boolean expressions that restrict the model states.

CTLSPEC encapsulates a CTL expression to be verified in the model.

LTLSPEC encapsulates a LTL expression to be verified in the model.

Listing 1 presents an example of a nuXmv model, MODULE has a VAR block where
variable a is declared as a boolean and b as a instance of foo that receives a as a
parameter. MODULE foo receives a variable as a parameter and initializes it with the
TRUE value in its ASSIGN block.

Listing 1: nuXmv model example
1 MODULE main
2 . . .
3 VAR
4 a : boolean ;
5 b : foo ( a ) ;
6 . . .
7 MODULE f oo ( x )
8 ASSIGN
9 i n i t ( x ) := TRUE;
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3.3 Coq
Coq [21] is a proof assistant based on an implementation of Calculus of Inductive
Constructions, a type theory based on Calculus of Constructions [18]. It is a powerful
system which aims at representing both functional programs and proofs in higher-
order logic using only one programming language named Gallina [36]. Terms of
Gallina can represent programs as well as properties of these programs and proofs
of these properties.

Coq offers a centralized environment to write programs, algorithms, and prove
properties regarding these objects. All expressions formalized in Coq are named
terms, and all terms have a type. Hence, every object handled in Coq is typed. There
are types for propositions, programs (or functions), data types (natural numbers,
booleans, lists, pairs, and many others). The types of types are called sort. All
sorts have a type, and there is an infinite well-founded typing hierarchy of sorts,
whose base sorts are Prop, Set and Type, to avoid inconsistencies [19].

Coq provides a built-in language to work both with program definitions and with
the proof process. In what follows some of its keywords are briefly introduced. For
more insights regarding these keywords, we suggest the reader refer to the system’s
reference manual.8

Lemma id : Prop denotes the binding of the type of a proposition to the variable id,
enabling the interactive proving of id by employing Coq tactics.

Qed/Defined. Qed defines the proof term in Coq as an opaque term (a term which
can be unfolded in tactic applications), whereas the usage of Defined closes
the proof term as a transparent term, enabling it to be unfolded in posterior
programs.

Inductive ident : type := {| ident : type} defines an inductive type whose
constructors are defined by each {| ident : type} clause. The type of ident is
type (which can be omitted as Coq’s type checker is capable of deducting the
term’s type from its constructors). Inductive definitions are closed by types
(i.e., their constructors have the same type of the definition) and they can be
parametrized.

Definition id lets their users bind functions, theorems, (co-)inductive definitions
and the evaluation of an expression (basically any well-typed term) to a vari-
able named id.

8https://coq.inria.fr/distrib/current/refman/
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Record ident : sort? := ident? { ident binders : type } defines a macro
which constructs records as in many programming languages, similar to C’s
“struct” keyword. The first identifier ident is the name of the defined record.
The keyword sort? is the record’s type (which may be omitted), ident? is an
optional identifier which defines the record’s constructor. A record may have
one or more fields (denoted by the ident within the curly brackets) separated
by “;”.

Fixpoint param {struct id} is the command that allows the definition of func-
tions by pattern-matching over an inductive structure which is one of the
param provided, defining recursive functions in Coq. These definitions need to
meet syntactical criteria on an argument called decreasing argument. Thus,
the idea of the criteria is to have a structure that tells Coq such definitions
always terminate. The decreasing argument can be specified by using struct
id or automatically guessed by Coq.

Instance id class id binders : type := { id := term} declares a class in-
stance identified by id, with non-obligatory parameters binders and the fields
declared within the scope of {id := term}.

Extraction id enables the extraction of definition id to either Haskell, OCaml or
Scheme. Variants like Extraction “file.v" destFile extracts all definitions within
the file file.v (where .v is Coq’s source code file extension) to the specified target
language in a file named destFile. This language can be set with the command
Extraction Language lang, where lang is either Scheme, Haskell or OCaml
(the default extraction language).

A simple yet representative usage example is introduced as follows. One can use
Coq to obtain certified code in other languages, such as Haskell or Scheme. Suppose
one would like to formalize weekdays and then reason about the next day. This
can be achieved by formalizing weekdays as an inductive type with its constructors
denoting days of the week.

Inductive weekdays :=
| monday | tuesday | wednessday | thursday | friday | saturday | sunday.

Then nextDay is a function that takes a weekday and returns the next day
according to the current calendar.

Definition nextDay (day : weekdays) : weekdays :=
match day with
| monday ⇒ tuesday| tuesday ⇒ wednessday| wednessday ⇒ thursday
| thursday ⇒ friday| friday ⇒ saturday| saturday ⇒ sunday
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| sunday ⇒ monday
end.

Properties about nextDay can then be formalized, proved and the specified al-
gorithm can be extracted to the aforementioned target languages.

Lemma nextDayMonday : ∀ day: weekdays, nextDay day = monday ↔ day =
sunday.
Proof.
split.
- intros. destruct day. all: inversion H . reflexivity.
- intros. rewrite H . reflexivity.
Defined.

The extraction of these definitions may be done with the command Extraction
Language Scheme, given that the desired target extraction language is Scheme.
By formalizing these definitions within a module named example, the command
Extraction example usageEx generates a .scm file named usageEx, containing all
the aforemetioned definitions as Scheme code.

4 Reo
In this section, a succinct overview of Reo [3, 4] is presented, considering its main
characteristics with two usage examples. We also briefly introduce the main aspects
of one popular formal semantics for Reo, Constraint Automata as proposed by Baier
et al. [12] We employ Constraint Automata as the formal semantics employed in the
presented framework as means to reason about Reo connectors. We also introduce
two usage examples of Reo, which will later be discussed in Section 5, bound to
show how one can formalize and certify Reo circuits employing Coq and nuXmv.

4.1 The modelling language
Reo plays a central role in integrating software components, especially considering
Component Based Software Engineering, where it is expected that software compo-
nents are independent of each other, being more adapted to the environment they
were conceived for. In recent times, software development has shifted from building
large, single instances of a system to building systems by reuse of already existing
pieces of software, where the full application (system) itself is generated by means
of the orchestrated interaction of these software components, where Reo may be
adequate in orchestrating such interaction.

As a coordination model, Reo focuses on connectors, their composition and how
they behave, not focusing on particular details regarding the entities that are con-
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nected, communicate and interact through those connectors. Connected entities
may be modules of sequential code, objects, agents, processes, web services and any
other software component where its integration with other software can be used to
build a system [3]. Such entities are defined as component instances in Reo.

Component instances are defined as a non-empty set P that denotes a set of
entities involved in an instance (process, services, actors, usually denoted by capital
letters) and a predefined set of I/O operations associated with each of those entities,
where they only interact with each other by the channel that connect these instances.
A software component is a software implementation which may execute in physical or
logical devices. Therefore, software components are abstract entities that describes
the behavior of its instances.

Channels in Reo are defined as a point-to-point link between two distinct nodes,
where each channel has its unique predefined behavior. Each channel in Reo has
exactly two ends, which can be of the following types: the source end, which accepts
data into the channel, and the sink end, which disperses data out of the channel.
Channels are used to compose more complex connectors, being possible to combine
user-defined channels amongst themselves and with the canonical connectors pro-
vided by Baier et al. [12]. Figure 1 shows the basic set of connectors as presented
by Kokash et al. [28].

A B

(a) Sync

A B

(b) LossySync

A B

(c) FIFO

A B

(d) SyncDrain

A B

(e) AsyncDrain

A B

(f) Filter

A B

(g) Transform

A

B
C

(h) Merger

A
B

C

(i) Replicator

Figure 1: Canonical Reo connectors

A node in Reo is defined as a logical organization denoting the structure of how
channel ends are linked to each other in Reo connectors. Nodes composing channel
ends in Reo can be either source nodes, sink nodes or mixed nodes. Source nodes
are nodes that accept data into the channel, i.e., nodes that serve as a gateway to
data flow into the channel, while sink nodes are nodes where data flows out of the
channel and mixed nodes are nodes that act both as source nodes and sink nodes.
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Channel ends can be used by any entity to disperse/receive data, given that the
entity belongs to an instance that knows these ends. In other words, entities may use
channels only if the instance they belong to is connected to one of the channel ends,
enabling either sending or receiving data (depending on the kind of the channel end
the entity has access to).

The bound between a software instance and a channel end is a logical connec-
tion which does not rely on properties such as the location of the involved entities.
Channels in Reo have the sole objective to enable the data exchange by means of
I/O operations predefined for each entity in an instance. A channel can be known
by zero or more instances at a time, but its ends can be used by at most one entity
at the same time.

Figure 2 presents a variant of a Reo circuit that models a Sequencer.9 Such
circuit models the sequencing of processes which are interconnected by means of
this connector. Therefore, properties such as how data flow between the connected
entities can be stated and proven using its corresponding constraint automaton.

A B C

Figure 2: Modelling of a variant of the Sequencer in Reo

Figure 3 models a simplification of a scenario containing two Smart traffic lights
A and B in a crossroad [23]. Their default functioning follows a timed schedule:
while one of them is green, the other is red. In addition to this timed behaviour, a
controlling station have a sensor (i.e., a camera, denoted by the upper dot) which
monitors the crossroad and identifies whether there is a heavy traffic waiting for the
green light on one of the traffic lights.

Intuitively, The circuit controls the effective time a traffic light may be green or
red depending on the amount of cars waiting to pass. This may be done by verifying
which data item is coming from both the timer and the sensor, and when is these
data incoming. The circuit filters this data, in order to mutually exclude one of the
traffic lights. The destination node (denoted by the leftmost dot in Figure 3) will
receive the data item (0 or 1) and, based on this item decide which traffic light gains
the priority to go green.

The data incoming from the uppermost dot denotes a property which the sensor
has detected (i.e., many cars waiting for the traffic light to be green), while d is a data

9http://reo.project.cwi.nl/v2/#examples-of-complex-connectors
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A
/B

!d
d

Figure 3: A Reo model for Smart traffic lights and a controller of a crossroad

item denoting that the semaphores will alternate between open and closed, enabling
the interchange of which traffic light will be either open or closed (the interchange
between d and !d forced by the circuit renders unable the scenario where one of the
traffic lights is always open).

The analysis of Reo circuits by means of its semantics enable the verification
of properties employing already existing mathematical theories and tools. By mod-
elling them as constraint automata, one can state that a circuit contains properties
regarding specific data flows (i.e., given a TDS, we want to prove that it correctly
describes the circuit or not) or even to guarantee that specific scenarios never hap-
pen (by assuring that some desired TDS will not be accepted by the automaton).
Besides these properties, one may also guarantee that the circuit itself satisfies prop-
erties regarding its structure (i.e., in order to some port “B” to have data flow, it will
always require that the same data have to flow another port “A”). Such properties
can be reflected into real-world requirements, such as liveness and synchronization
between software.

4.2 Formal semantics
Constraint Automata [12] are defined as the most basic operational models for Reo,
although there are many other formal semantics for Reo [24]. The present work
focuses on Constraint Automata as proposed by Reo creators as it is the first op-
erational semantics to reason about Reo connectors [24]. Proposed as a formalism
to denote and reason about coordination models (mainly described as Reo mod-
els), Constraint Automata can be seen as a variation of Finite Automata where the
transitions are influenced by ports containing data and data constraints over those
ports.

Constraint Automata essentially capture the semantics of communication be-
tween interconnected entities on a Reo connector, mainly enabling reasoning over
specific communication patterns and which piece(s) of data flow to/from each con-
nected entity. Specific properties such as timed behaviour, actions taken by some
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entity or even probability of communication between entities to happen are not
captured by standard CA and require more expressive formalisms, such as Timed
Constraint Automata [5], Action Constraint Automata [27] or Probabilistic Con-
straint Automata [10], respectively.

Constraint automata compose a basis on modeling and verifying the specification
of such coordination mechanisms by the usage of formal methods (e.g., by means
of model checking against temporal-logic specifications [33]). By using Constraint
Automata as formal semantics for Reo, automata states depict the possible con-
figurations of a channel (e.g., the data within a connector at a given time), while
transitions of the automaton denote how data in the connector flow and how it
changes the configuration of the automaton.

Definition 4.1 (Constraint Automata). A Constraint Automaton (CA) is a tuple
A = (Q,Names,→, Q0) where

Q is a finite set of states, denoting possible configurations of A

Names is a finite set of port names,

→ ⊆ Q× 2Names ×DC ×Q is the transition relation with DC a set of (proposi-
tional) Data Constraints, and

Q0 ⊆ Q is the set of initial states.

Constraint automata are seen as Timed Data Stream (TDS) acceptors. To un-
derstand how constraint automata relate to Timed Data Streams, we recover the
main definitions from Baier et al. [12] regarding Timed Data Streams and Constraint
Automata.

Let A be any set. Streams are defined as a set Aω containing all infinite se-
quences over A. Therefore, Aω = {α | α : {0, 1, 2, . . . } → A}. Individual streams are
described as α = α(0), α(1), α(2), . . . and the derivative of a stream α is denoted
as the stream initiating in the next value, namely α′ = α(1), α(2), α(3), . . .. α(i) de-
notes the i-th derivative, where α′(k) = α(k + 1) and α(i)(k) = α(i+ k),∀i,∀k > 0.
Hence, TDS are composed by a stream α ∈ Dataω, Data a non-empty finite set and
a time stream a ∈ Rω+ as a stream of increasing positive real numbers.

The behavior of Reo channels modeled as Timed Data Streams (TDS) [7] intro-
duces the notion of a channel node’s behavior being a relation R ⊆ TDS × TDS.
TDS are composed of two streams, one denoting the data items that will flow
through a given port and the other one denoting the time instant that the port
observes this data flow. TDS are used to model how data flows through a Reo
connector by discriminating the flow through the relation R. TDS are formally
presented by Definition 4.2.
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Definition 4.2 (Timed Data Streams).
A Timed Data Stream is defined as a pair of functions (α, a) as follows.
TDS = {(α, a) ∈ Dataω × Rω+ : ∀k ≥ 0: a(k) ≤ a(k + 1) and limk→∞ a(k) =∞}

Hence, TDS are composed by a stream α ∈ Dataω with Data as a non-empty
finite set and a time stream a ∈ Rω+, a stream of increasing positive real numbers.
A TDS can be intuitively seen as a “controller” which denotes, for each data item
α(k), the moment a(k) it is flowing.

In order to formalize the concept of input/output behavior of Constraint Au-
tomata by means of TDS, a set of names Names is used, where Names consists of
a finite set of names A1,A2, . . . ,An used to identify the input/output ports that con-
nect different components or a whole system within the environment it is inserted.
For each port Ai ∈ Names, a TDS is defined. Intuitively, each TDS depicts the
behavior of how data flow in a port denoted by a port name A ∈ Names. Defini-
tion 4.3 formalizes the notion of TDSNames as the set of all TDS-tuples containing
one TDS for each port.

Definition 4.3 (TDSNames).
TDSNames = {((α1, a1), (α2, a2), . . . , (αn, an)) : (αi, ai) ∈ TDS, i = 1, 2, . . . , n,

with Names = A1, A2, . . . , An. }

A Data Assignment denotes which data element is in each port that belongs
to a non-empty subset of ports N ⊆ Names. Hence, Data Assignments for ports
are defined as functions δ : N → Data, and Definition 4.4 presents the notation’s
definition.

Definition 4.4 (Data Assignment).
A Data Assignment δ describes the assignment of some data item δA ∈ Data to a
port name A ∈ Names. Shortly, δ = [A 7→ δA : A ∈ N ]

By defining θ = ((α1, a1), (α2, a2), . . . , (αn, an)) : (αi, ai)) ∈ TDSNames, θ.time
is defined in Definition 4.5 as the time stream obtained by merging all timed streams
a1, a2, . . . , an increasingly. At each iteration, θ.time’s value is recalculated as the
minimum time value obtained by such merging, considering θ’ as the derivative of
θ.

Definition 4.5 (θ.time(k)). The merging of time streams in increasing order de-
notes θ.time(k) as

θ.time(0) = min{ai(0) : i = 1, 2, . . . , n},

θ.time(m+ 1) = min{ai(k) : ai(k) > θ.time(m), i ∈ 1, 2, . . . , n, k ∈ 1, 2, . . .}.
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With θ.time(k) as the k-th minimum time in where data starts to flow in a port,
the next definition captures the idea of selecting all ports that are in θ.time(k),
θ.N = θ.N(0), θ.N(1), θ.N(2), . . ., as a stream over 2Names as follows.

Definition 4.6 (θ.N(k)). θ.N(k) denotes all ports that contains data in time instant
θ.time(k):
θ.N(k) = {Ai ∈ Names : ai(l) = θ.time(k) for some l∈{0, 1, 2, . . .}, i = 1, 2, . . . , n}.

The first derivative of θ is written θ′ as the TDS-tuple that is obtained by
calculating the derivatives of all TDS (αi, ai) with its associated port Ai ∈ θ.N(0).
Then, it can be inductively defined as streams’ derivatives [12]. As an example, let
θ = ((α1, a1), (α2, a2), (α3, a3)). If θ.N(0) = {A1}, θ′ = (α′1, a′1), (α2, a2), (α3, a3).

Following the same idea presented in Definition 4.6, the concept of a stream over
the data flow in ports in θ.time is defined as θ.δ = θ.δ(0), θ.δ(1), θ.δ(2), . . . as a
stream over the set of data assignments for each port Ai ∈ θ.N . Intuitively, θ.δ(k)
holds all observed data flow at time instant θ.time(k) and is defined as follows.

Definition 4.7 (θ.δ(k)). The stream θ.δ(k) over the set of Data Assignments is
defined as
θ.δ(k) = [Ai 7→ αi(li) : Ai ∈ θ.N(k)]
where li ∈ [0, 1, 2, . . .] is the unique index with ai(li) = θ.time(k).

A TDS language (for Names) denotes any subset of TDSNames where TDS
languages are used as a formalism to describe the possible data flow of a coordination
model (namely, data flow of a Reo circuit).

Constraint Automata uses a finite set Names, where Names can be a set as
{A1, A2, . . . , An }, and the i-th name stands for a I/O port of a Reo connector or
component. As depicted by Definition 4.1, transitions of Constraint Automata are
labeled with pairs containing a non-empty subset N ⊆ Names and a data constraint
g. Data constraints are seen as a symbolic representation of data assignments in
the sense of denoting which data item may be observed at a given port, being
propositional formulae built from atomic propositions such as dA = d, meaning “at
port A the data item observed must be d”, with A ∈ Names and d ∈ Data. Hence,
Definition 4.8 formally introduces the grammar to describe data constraints.

Definition 4.8 (Data constraints). A data constraint (DC) g is formally defined by
the following grammar:

g ::= true | dA = d | g1 ∨ g2 | ¬g.

We follow the same notation presented by Baier et al. [12], where a transition is
denoted by q N,g−−→ p rather than (q,N, g, p) ∈→, q, p ∈ Q are states of the automaton,
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g a data constraint which must be satisfied to enable the transition, and N ⊆
Names. Given θ, a transition q

N,g−−→ p can be fired at the k-th iteration iff N ̸= ∅
and g is satisfiable by θ.δ(k) (i.e., θ.δ(k) |= g, where |= stands for the satisfaction
relation for classical propositional logic).

The intuitive meaning of Constraint Automata as formal semantics for Reo mod-
els can be understood by interpreting the states as the configuration of the connec-
tor and the transitions as how the connector’s behavior can change in a single step.
Hence, q0

N,g−−→ q1 means that, in order for the automaton to change its configuration
from q0 to q1, it must have data flow only in ports A ∈ N , where such data flow
must satisfy the data constraint denoted by g, while in the other ports Names \N
there must not have any data flow (i.e., Names \N ⊈ θ.N(k)).

Hence, the idea of Constraint Automata being TDS acceptors can be interpreted
as follows. Given a TDS-tuple θ ∈ TDSNames as input to a Constraint Automaton
A, the automaton tries to figure out whether θ denotes a possible data flow of A the
same way a finite automaton would get as input a finite word and decides whether it
describes an accepting run. Nevertheless, since Constraint Automata does not have
final states as a criterion for acceptance, all accepting runs are infinite runs since θ
is infinite.

Formally, an accepting run in a Constraint Automaton is defined as follows.

Definition 4.9 (Accepting runs on Constraint Automata).
Given a TDS-tuple θ ∈ TDSNames as input, an accepting infinite run on a constraint
automaton A is denoted by the stream q = q0, q1, q2, . . . over Q where:

(i) There exists a transition q0
N,g−−→ q1, q0 ∈ Q0;

(ii) N = θ.N(0);

(iii) θ.δ(0) |= g;

(iv) q′ (an infinite stream initiating from the resulting state obtained from (i)) is
an accepting q1-run on θ′ in A;

Therefore, Definition 4.9 respectively states the following: it is necessary to have
at least one transition that can be fired from the actual state in the run, the other
ports other than the ones involved in a firing transition contains data, the data on
those ports must satisfy g, and that these conditions may hold for the remainder
of θ, denoted by its derivative θ′. Such conditions establish the notion of accepting
runs on Constraint Automata. Alternatively, Definition 4.10 formally introduces the
notion of rejecting runs on Constraint Automata.
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Definition 4.10 (Rejecting runs on Constraint Automata).
Given a TDS-tuple θ ∈ TDSNames as input, a finite rejecting run of a constraint
automaton A is denoted by a finite sequence q = q0, q1, q2, . . . , qn over Q where either
one of the following conditions hold:

(i) from q0 there is no transition q0
N,g−−→ q1 with N = θ.N(0) and θ.δ(0) |= g;

(ii) from qn there is a transition q0
N,g−−→ q1 with N = θ.N(0) and θ.δ(0) |= g, and

q1, q2, . . . , qn denotes a rejecting run in A with initial state q1;

(iii) n=0 and there is no transition from q0 to any state.

Subsuming Definitions 4.9 and 4.10, an accepting run for θ in an automaton A
is an infinite run which satisfies Definition 4.9 starting at some initial state q0 ∈ Q0,
while a rejecting run is a run for θ in A where at some point k there is no transition
to be fired.

Arbab [3] provides the canonical set of Reo connectors that may be used to
compose more complex channels. Because Constraint Automata are a theory that
provides a formal semantics for Reo connectors, a constraint automaton for each
canonical connector (depicted in Figure 1) is also provided, each following its re-
spective channel’s behavior. Table 1 summarizes basic channels provided by Arbab
and their corresponding Constraint Automata. The label depicted above the edges
between {} are the ports that can “observe" data for the transition to be fired,
while the label below it stands for (possible) data constraints upon observed data.
The absence of this second label means that there are no data constraints for this
transition.

The idea of compositionally building out more complex Reo connectors out of
canonical ones is to join source nodes in Reo with other nodes (sink, source or mixed)
by the usage of a product construction between automata. Thus, the natural join of
two languages L1 and L2, respectively the languages of Constraint Automata A1 and
A2 is done by composing the product automata of A1 and A2 as a product operation.
This natural join is analogue to the operation defined for relational databases [12].
Definition 4.11 summarizes such operation.

Definition 4.11 (Product Automata). Given two Constraint Automata:
A1 = (Q1,Names1,→1, Q0,1) and A2 = (Q2,Names2,→2, Q0,2), the Product Au-
tomaton A1 ▷◁ A2 is formally defined as A1 ▷◁ A2 = (Q1×Q2,Names1∪Names2,→
, Q0,1 ×Q0,2), where → is the resulting transition relation, defined by the following
rules.
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(i) q1
N1,g1−−−→ p1, q2

N2,g2−−−→ p2, N1 ∩Names2 = N2 ∩Names1

(q1, q2) N1∪N2,g1∧g2−−−−−−−−→ (p1, p2)

(ii) q1
N,g−−→ p1, N ∩Names2 = ∅
(q1, q2) N,g−−→ (p1, q2)

(iii) q2
N,g−−→ p2, N ∩Names1 = ∅
(q1, q2) N,g−−→ (q1, p2)

Intuitively, the rules for constructing the resulting product automaton’s transi-
tions as the natural join of languages of both automata is expressed as follows. Let
A1 and A2 constraint automata. The product of A1 with A2 generates a product
automaton which joins transitions from both automata where its behavior affect
equally both automata (rule (i))), or are disjoint transitions (rules (ii) and its sym-
metric, (iii)).

Baier et al. [12] also define bisimulation for constraint automata. In this con-
text, we are interested in the TDS languages that are induced by Reo circuits (and
consequently by their constraint automata). As Baier et al. [12] state, bisimula-
tion defines an alternative to verify whether two automata are language equivalent,
or if the language of an automaton is included in another automaton’s language.
Therefore, Definition 4.12 introduces bisimulation for constraint automata.

Definition 4.12 (Bisimulation). Let A = (Q,Names,→, Q0) be a constraint au-
tomaton. An equivalence relation R on Q is a bisimulation if, for all pairs of states
(q1, q2) ∈ R, for all N ⊆ Names, and for every R-equivalence classes P ∈ Q/R:

dc(q1, N, P ) ≡ dc(q2, N, P ).
where dc(q,N, P ) is a notation to denote the disjunction of all data constraints

of a N -transition from q to some state p ∈ P , defined as follows:
dc(q,N, P ) = ∨{g : q N,g−−→ p, p ∈ P}.

Following Definition 4.12, the notion of bisimulation is defined for constraint
automata as follows. Let two constraint automata with the same set of port names
A1 = (Q1, N,→1, Q0,1) and A2 = (Q2, N,→2, Q0,2). They are bisimulation-equiva-
lent (notation : A1 ∼ A2) iff, for all initial states q0,1 ∈ Q0,1, there exists an initial
state q0,2 ∈ Q0,2 where q0,1 and q0,2 are bisimilar, and vice versa.
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Channel Reo Constraint automaton

Sync A B q0
{A,B}
dA = dB

LossySync A B q0
{A,B}
dA = dB

{A}

FIFO A B q0p1 p0

{A}
dA = 1

{A}
dA = 0

{B}
dB = 1

{B}
dB = 0

SyncDrain A B q0 {A,B}

AsyncDrain A B q0 {A}{B}

Filter A B

q0
{A}
¬P (dA)

{A,B}
P (dA) ∧ dA = dB

Transform A B q0
{A,B}

f(dA) = dB

Merger
A

B
C q0

{A,C}
dA = dC

{A,B}
dA = dB

Replicator A
B

C
q0

{A,B,C}
dA = dB ∧ dA = dC

Table 1: Basic Reo channels and their respective constraint automata
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5 Formalizing and reasoning about Reo circuits
This Section presents ReoXplore: a modelling and reasoning framework for Reo cir-
cuits. We present the formalization of concepts presented in Section 4 in Coq, an
interactive proof-assistant, and nuXmv, a symbolic model checker for the analysis
of synchronous finite-state and infinite-state systems. The development forks Reo
Graphical Editor10 in order to provide a Graphical User Interface (GUI) to graph-
ically model Reo circuits, compile them to the aforementioned logic-based models,
and compile it to Haskell code.

We present two usage examples as the formalizations of Figure 2 and Figure 3.
We show examples of properties that may be verified and show an example of the
generation of certified code of a model by means of Coq, along with experimental
results concerning execution time and memory.

5.1 A constructive formalization of Constraint Automata in Coq
The formalization of this theory in an environment such as Coq leads to the possibil-
ity of certifying instances of models which formal semantics relies on Constraint Au-
tomata (namely Reo connectors), considering its desired properties and consequently
retrieve certified code using Coq’s extraction mechanism. Besides formalizing the
aspects presented in Section 4.2, we also have deployed a C program which takes
as input a textual representation of a Reo connector and returns the corresponding
Coq model, with all of its necessary definitions.

Constraint Automata in Coq are introduced by Definition 5.1 as a Record which
maps the formalism presented by Definition 4.1. Q, N , T and Q0 are, respectively,
the set of states, set of port names, transition relation and the set of initial states of
the automaton. Variables state and name stand for the type of states and the type
of port names of the automaton.

Definition 5.1. Constraint Automata in Coq
Record constraintAutomata : Type := CA {

Q : set state;
N : set name;
T : state → set (set (name) × DC × state);
Q0 : set state;

}.

The definition of an automaton’s transition relation slightly deviates from the
one provided by Baier et al. [12] (depicted by Definition 4.1): instead of formalizing

10https://github.com/ReoLanguage/reo-graphical-editor
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T ⊆ (Q × 2Names ×DC ×Q), it is defined as a function state → set (set (name)
× DC × state) only to ease automata specifications, and to enable modelling of
non-determinism straightforward.

5.1.1 Timed Data Streams

The formalization of Reo connectors in Coq enables reasoning on these connectors
using their corresponding constraint automata. Properties regarding the connector’s
structure or how data may be exchanged between entities in different scenarios may
be carried on employing Coq’s proof mechanism. Though, it may also be useful to
reason about specific data flow on a Reo connector, which may denote possible real
scenarios this connector may face.

We define inputs for constraint automata the same way Definition 4.2 and Def-
inition 4.3 formalize. While Definition 5.2 formalizes a single TDS in Coq, input θ
are seen as a set containing tuples of TDS formalized as tds. It is a Coq record which
respectively contains the automaton’s port name to which it refers to, data and time
streams, a proof that its time stream is always crescent, and a field used to calculate
its derivative. As far as the authors know, there is no constructive representation of
real numbers in Coq (by default). Therefore, we denote time streams as a function
N→ Q rather than depicted by Definition 4.2.

Definition 5.2. Timed Data Streams in Coq
Record tds := mktds {

id : name;
dataAssignment : nat → data;
timeStamp : nat → QArith base.Q ;
tdsCond : ∀ n:nat, Qle (timeStamp n) (timeStamp (S n));
index : nat

}.

5.1.2 Data Constraints

Data constraints (DCs) are formalized in Coq mapping Definition 4.8 to an inductive
type which encapsulates logical constraints’ definitions. They will be later evaluated
to Coq’s boolean datatypes in runtime. By defining Data Constraints as DC , a way
to evaluate DCs in Coq is needed in order to verify whether a given port A has a
data item d (the propositional formula dA = d) and the composite data constraints.
This is provided by the following definitions.

The definition of evalCompositeDc provides boolean semantics for the inductive
type DC . Its objective is to evaluate data constraint of transitions either to “true”
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or “false” by decomposing data constraints which are conjunctions or disjunctions,
to recover data constraints dA = d, f(da) = d and P (dA) = d.

Definition evalDC provides the evaluation of whether a given port po has the
data item d. The reason for po to be of type option port is that Coq needs a way to
ensure that every function always terminate, where for retrievePortFromInput, Coq
also considers the case where no port matching an existing port in the automaton
is found. From Baier et al. [12], input θ ∈ TDSNames for constraint automata must
not be empty; therefore, retrievePortFromInput’s usage always have an non-empty
set provided as input.

The evaluation of eqDc by means of evalCompositeDc relies on the idea of travers-
ing the input TDS θ in order to check whether the ports in eqDc contains the same
data item at the k-th step in a run on constraint automata. Therefore eqDataPorts
is a function that, given two port names n1 , n2 and a set of TDS tuples tds, it
returns true if both ports n1 and n2 have the same data item at the same moment.
This definition evaluates data constraints dn1 = dn2 .

DCs formalized by means of trDc are evaluated by transformDC , a function that
given a transformation function transform, two port names n1 and n2 and a set of
ports s, it relies on retrievePortFromInput to retrieve TDSs defined for port names
n1 and n2 . Then transformDC returns true if the data item flowing in n2 is equal
to the data item flowing in n1 with transform applied to it, and false otherwise. In
short, it evaluates data constrains f(dn1) = dn2 .

5.1.3 θ.time

The next step in the formalization process is to formalize θ.time as depicted by
Definition 4.5. We formalize means to retrieve the possible values from each port’s
time stream in order to return θ.time. We start with the function getThetaTime-
Candidate which returns the current time stamp of a TDS p calculated on its index.

Then getAllThetaTimes is defined as a function that, with a set of ports s, it
returns all θ.time candidates for the current step, retrieving all time stamps of each
port p ∈ s by means of getThetaTimeCandidate.

The last function used to formalize θ.time is minimum, a function that returns
the smallest timestamp in the set of θ.time candidates l by means of returnSmaller-
Number . It compares the first element of the set of θ.time candidates with the rest
of its elements employing hd, a function which takes as parameters a default value
and a set, returning the first element of the list if it is not empty, and the default
value otherwise.

Therefore, θ.time denoted by Definition 4.5 is nextTime as the minimum value
of all time stamps of TDS in θ.
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Definition nextTime (theta:set tds) := minimum(getAllThetaTimes s).

5.1.4 θ.N

The formalization of θ.N as represented by Definition 4.6 begins with the definition
of timeStampEqThetaTime, a function that with a set of TDS theta and a single
TDS a returns true if a’s current time equals nextTime(theta).

θ.N is then formalized by means of thetaN as follows. This function takes as
input theta and theta2 as the automaton’s input θ. The first theta is used by
TimeStampEqThetaTime in order to traverse the whole input with each TDS Ai ∈ θ,
retrieving all port names N ∈ θ.time with their corresponding TDS’s time stamp
equals θ.time, following Definition 4.6.

Fixpoint nextNames (theta: set tds) (theta2 :set tds) : set name :=
match theta2 with
| a::t ⇒ if (timeStampEqThetaTime theta a) then id a :: thetaN theta t

else thetaN theta t
| [] ⇒ []
end.

The function thetaN is a function that takes a set of TDS tuples theta as the
input θ and calculates θ.N(k) by means of nextNames. This function is necessary
to assure that the ports which can fire at the k-th iteration are indeed the ones with
their timestamp equal to theta.time(k).

Definition thetaN (theta: set tds) := nextNames (theta) (theta).
We define θ.δ similarly to the definitions presented above. nextData is a func-

tion that implements the same idea as nextNames, but returning pairs (portName,
portData) instead of only the port name.

5.1.5 Manipulating Timed Data Streams

With the basic definitions required to relate constraint automata with TDS, some
functionalities for Constraint Automata, such as runs were formalized. Therefore,
the notion of derivative of a TDS now formalized follows the one proposed by Baier
et al. [12]: we define the calculus of derivative of a single TDS, only calculating
the entire derivative θ′ of θ in runtime (considering the port names p ∈ θ.N). Intu-
itively, a derivative of a TDS p is p evaluated (i.e., p’s streams) in its next index. The
function derivative returns a TDS with its updated index (i.e., the same way Defi-
nition 4.2 introduces derivative for TDS), incrementing its value by one. Function
mktds is a constructor of the record tds.

Definition derivative (p: tds) := mktds (id p) (dataAssignment p)
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(timeStamp p)(tdsCond p) (S (index p)).
This definition will later be used in order to calculate the derivative of TDS used

in each transition during a run. This is done with derivativePortInvolved, a function
that takes a set of names s and a TDS a, verifying whether a’s port identifier id
matches one of the names in s. If it does, then it calculates a’s derivative.

Then, allDerivativesFromPortsInvolved is a function that extends the behav-
ior denoted by derivativePortInvolved to a set of ports port. Hence, allDeriva-
tivesFromPortsInvolved with a set of names names and a set of ports ports applies
derivativePortInvolved for each port a ∈ port.

Definition allDerivativesFromPortsInvolved (names: set name) (theta:set
tds) : set tds := flat map (derivativePortInvolved names) theta .

5.1.6 Runs

By formalizing all concepts so far, definitions regarding runs can now be formalized.
We incrementally define runs through auxiliary functions. The first auxiliary defini-
tion is step’ , a function that with theta as input θ, a set of port names portNames,
and transitions as the transitions of an automaton, step’ verifies whether the tran-
sitions a ∈ transitions are eligible to be fired. For each fired transition, the reached
state of the transition is returned.

The idea of step’ is to store all possible paths from a single state at a k-th iteration
of a run. It defines how a single step in a run works: exploring all transitions
departing from a state, step’ will verify whether the following requirements are
fulfilled:

• the transition has its name set equal to the name set given as parameter (which
will later be supplied with the name set returned by thetaN , denoting the name
of ports with data in θ.N(k));

• the data constraint depicted in the transition is currently satisfied by the
available data at the ports.

The topics mentioned above are necessary to a transition to fire according to Def-
inition 4.9. The requirement that no other ports outside a transition’s set of port
names N must have data at θ.time(k) is guaranteed by the first item. Hence, the
function step’ is defined as below.

Fixpoint step’ (theta : set tds) (portNames: set name)
(transitions: set(set name × DC × state)) : set state :=

match transitions with
| [] ⇒ []
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| a::t ⇒ if (set eq (portNames)((fst(fst(a))))) && (evalCompositeDc (theta)
(snd(fst(a))))

then snd(a)::step’ theta portNames t
else step’ theta portNames t

end.
A single step comprising the automaton’s current configuration is defined by step,

which takes a Constraint Automaton ca, a set of states s denoting the automaton’s
current configuration, and the automaton’s input θ, and applies stepa with its name
set parameter as the name set of ports portNames ⊆ θ.N(k), which are the ports
that currently have their k-th time stamp equal to θ.time. stepa is a function that
applies step’ to a set of states, considering ca’s transition relation, returning a pair
(portNames,states), where states are the states reached by step’ . Intuitively, step
extends step’ ’s behavior considering a set of states and its corresponding transitions
by means of stepa, a definition which applies step’ to a set of states and with port
names as thetaN .

Definition step (ca:constraintAutomata) (s: set state) (theta: set tds) : set
name × data := stepa ca s theta (thetaN theta).

The idea behind run’ ’s implementation is to implement (finite) runs on con-
straint automata, where a run may last k iterations. In each iteration, it applies
step with the same parameters as provided to run (which in turn calls run’ with
its parameters), storing the resulting states obtained with step in trace, calculating
the derivatives of all ports involved in the transition fired by means of derivative-
PortsInvolved before recursively calling run. Parameter theta denotes the input θ an
automaton takes, while k denotes the number of iterations a bounded run will last,
currentStates are the current states considered to discover and fire transitions at the
current step, and trace denotes the execution trace (all states a run has reached).

Definition run’ (ca:constraintAutomata) :
set tds → nat → set state → set (set state) → set (set state) :=
fix rec theta k currentStates trace :=

match k with
| 0 ⇒ trace
| S m ⇒ trace ++ [snd (step ca currentStates theta)]

| > rec(flat map(derivativePortInvolved(fst
((step ca currentStates theta)))) theta) m (snd (step ca cur-

rentStates theta))
end.

Therefore, bounded runs on constraint automata are achieved by run, a function
that, with a constraint automaton ca, theta as the TDS θ and a natural number
k denoting the number of steps of a (finite) run, calls run’ with its respective pa-
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rameters: both the set of states denoted by currentStates and trace with ca’s initial
states, which respectively denote the ones where a run may start and the automa-
ton’s starting states as the first reached states of a run.

Definition run (ca:constraintAutomata) (theta: set tds) (k : nat) :=
run’ ca theta k (Q0 ca) [Q0 ca].

It is important to point out that the notion of runs in constraint automata
formalized above is slightly different from the one discussed in Definition 4.9. Baier et
al. [12] define runs in constraint automata as infinite. Roughly speaking, a (bounded)
run is an accepting run if the input TDS θ ∈ TDSNames always fire at least one
transition in the automaton during the run, and it is a rejecting run otherwise (if
it reaches a state where no transitions can be fired). By algorithmic aspects, run
formalizes the notion of a finite run bounded to k steps. Infinite runs can be specified
upon a TDS and how it always satisfies conditions presented by Definition 4.9 as
Coq propositions.

This framework allows the reasoning over infinite runs by following the idea
depicted by Definition 4.9: given a TDS-tuple θ ∈ TDSNames as input, it denotes
an accepting infinite run in a CA if the CA can always fire a transition, for some
sequence of states reached during its execution, satisfying the required conditions in
Definition 4.9. Intuitively, for all indexes k, for some state of the automaton, θ(k) as
the k-th derivative of the input θ must trigger at least one transition in the current
state of the automaton.

Reasoning over infinite runs may require a bit of extra effort for the user, as it
will require the user to provide the property to reason about a specific connector and
its input θ. An example of how this can be achieved is denoted in Section 5.1.12.
The idea is to define a property which verifies that, for all index k and considering all
states of the automaton, a transition can be fired (i.e., at any step of an execution,
the k-th derivative θ(k) fires a transition. To help this definition, we provide an
additional Coq definition which generalizes the index k of a TDS as follows, basically
copying the TDS with a new index k.

Definition calcIndex (k: nat) (p : tds) := mktds (id p) (dataAssignment p)
(timeStamp p)(tdsCond p) (k).

A more generic definition of this property might rely on an external definition
which generates its corresponding Coq code, considering the TDS-tuples in θ and all
possible combinations of different indexes k for each TDS-tuple in θ, thus verifying
all possibilities of indexes of ports at the k-th derivative of θ in a fashion similar to
the one below.

Definition accepting (ca: constraintAutomata) (theta1: tds) (theta2): tds)
. . . (thetan: tds) :=
∀ q,∀ k1,k2, . . . kn, stepAux ca [(calcIndex k1 theta1); (calcIndex k2 theta2);. . . ;
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(calcIndex kn thetan)] (thetaN [(calcIndex k1 theta1); (calcIndex k2 theta2);. . . ;
(calcIndex kn thetan)) q ̸= [].

The idea behind accepting is to provide a means to reason over infinite runs
considering each possible ki index of each TDS-tuple, hence considering all possible
scenarios by induction on these indexes. The reasoning may proceed over each index,
showing that it holds for each possible combination of each TDS-tuple’s derivative.
Such reasoning may take advantage of the behavior of the connector, limiting its
analysis to only relevant cases of the derivatives and consequently easing the process.
By employing stepAux, we employ step’ with the automaton’s transitions for a state
of the automaton.

Definition stepAux (ca:constraintAutomata) (theta:set tds) (portNames:set
name) (s: state) : set state := step’ theta portNames (T ca s).

Conversely, following Definition 4.10 an infinite run is a rejecting one if, at some
point of the execution (i.e., a state qn and at θ’s k-th derivative), there are no
transitions that can be fired, yielding a finite execution trace. A possible means
to denote this property is to state that there is a number k denoting the actual
execution step in which the absence of valid transitions is detected. This idea is
captured by the following definitions, in which lastReachedStates is a function that
returns the last set of states reached by run. If its return is an empty set of states,
it is as a consequence that no transitions were fired in this execution step.

Definition rejecting (ca: constraintAutomata) (theta: set tds) : Prop :=
∃ k, (lastReachedStates ca theta k) = [].

5.1.7 Bisimulation

We also formalize the definition to build the equivalence relationR which denotes the
bisimulation of two constraint automata A1 and A2 as introduced by Definition 4.12.
Our formalization provides the bisimilar states relation if it exists. We compute the
relation on both a1 and a2 ’s set of states as the candidate relation R which is
a bisimulation. The procedure follows the definitions of the required operations
following Definition 4.12. We first compute R as the candidate relation. Then,
we compute Q/R in order to compute if the required conditions to R to be an
bisimulation on Q1 and Q2 as the set of states of a1 and a2 are met.

We define a function that effectively returns the set containing pairs of equivalent
states through bisimulationAux as a definition that takes two constraint automata
ca1 and ca2 , and returns the corresponding relation R. We recall that the current
implementation of bisimulation requires that two automata to be compared to have
the same type for their states. The first usage of iterateOverA1States is bound to
compute the subset of the bisimulation relation from a1 to a2 , while the latter does
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the same from a2 to a1 .
Definition bisimulationAux (ca1 : constraintAutomata)
(ca2 : constraintAutomata) :=
(iterateOverA1States ca1 ca2 (ConstraintAutomata.Q0 ca1 )
(ConstraintAutomata.Q0 ca2 ) []) ++ (iterateOverA1States ca2 ca1 (Constrain-

tAutomata.Q0 ca2 ) (ConstraintAutomata.Q0 ca1 ) []).
By means of bisimulationAux, we define bisimulation as the definition that re-

turns the bisimulation if R is an equivalence relation on Q. Definition isBisim is a
function that computes whether R is a bisimulation, returning an empty relation if
it fails to be. This empty relation means there is no relation R that is a bisimilar
relation on (Q1, Q2) as respectively the states of a1 and a2 .

Definition bisimulation (ca1 : constraintAutomata) (ca2 : constraintAutomata)
:= isBisim (bisimulationAux ca1 ca2 ).

Based on R, it is possible to compute the set Q \ R as the partition that con-
tains states q ∈ Q that are related through R. This is needed to calculate the
equivalence of data constraints of transitions that leave a state q with a set of port
names N arriving on states p ∈ P, P ⊆ Q \ R, following the notation introduced by
Definition 4.12.

We formalize the same notation (dc(q,N, P )) presented by Definition 4.12 as
follows. Function dcsOfState takes a constraint automaton ca, a state q, a set of
port names portNames, and a set of states P returns the disjunction of all transitions
departing from q to some state p ∈ P.

We also define functions that provide a means to iterate over R considering
all possible set of port names N ⊆ 2Names(compareDcBisimPortName), all R-
equivalence classes P (compareDcBisimPartition), and to iterate over all pairs of
states (q1, q2) ∈ R where the last one is compareBisimStates, the top-level definition
which employs compareDcBisimPartition and compareDcBisimPortName to calcu-
late dc(q1, N, P ) ≡ dc(q2, N, P ) by means of dcsOfState as Definition 4.12 requires.

The last auxiliary function is checkBisimilarity which takes two constraint au-
tomata ca1 and ca2 , a set of pairs of states bisimRelation (to which will be supplied
the relation R obtained by bisimulation), returning true if both automata have the
same set of port names N and are bisimilar, and false otherwise. The names-space
check is done in order to avoid unnecessary computation of whether a1 and a2 are
bisimilar (as they cannot be bisimilar if their set of port names are different).

Definition checkBisimilarity (ca1 : constraintAutomata)
(ca2 : constraintAutomata) (bisimRelation : set (state × state)) :=
if (set eq (ConstraintAutomata.N ca1 ) (ConstraintAutomata.N ca2 ))
then compareDcBisimStates ca1 ca2 (powerset (ConstraintAutomata.N
ca1 )) (getQrelR (bisimRelation)) (bisimRelation)
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else false.
Using checkBisimilarity, we deploy a definition that may be used to check if a1

and a2 are bisimilar. This definition may be useful to validate whether two Reo
connectors are bisimilar (i.e., if their corresponding constraint automaton recognize
the same language), which may bring advantages in the sense that it is possible to
exchange more complex Reo circuits by simpler ones [12]. Function areBisimilar
takes two constraint automaton ca1 and ca2 , returning true if they are bisimilar
(and consequently, language-equivalent) and false otherwise.

Definition areBisimilar (ca1 : constraintAutomata) (ca2 : constraintAutomata)
:= checkBisimilarity ca1 ca2 (bisimulation ca1 ca2 ).

5.1.8 Basic Connectors Formalization in CACoq

We also provide the formalization of the default behavior of canonical constraint
automata as depicted by Baier et al. [12]. Then we provide means to parametrize
automata definitions. Function ReoCABinaryChannel introduces the parametric
definition of binary canonical Reo connectors, as a function that takes two-port
names, a set of states to be the set of states of the automaton, a set of initial
states which maps to the automaton’s initial state, and its transition relation, while
ReoCATernaryChannel similarly builds ternary Reo connectors, but expecting three
port names instead of two.

An example of the formalization of constraint automata for the canonical Reo
connectors through CACoq can be obtained as Table 2 shows. Regarding the basic
channels, we provide transitionRelation as their constraint automaton’s transition
relation as Table 1 shows.

The transitions of an automaton rely on the data type of the data to be observed
by the ports, the automaton’s state, and port names types. A brief explanation on
the definition of the canonical connectors’ constraint automata as presented in Ta-
bles 2 is given as follows, respectively regarding their states, port names, transition
relation, and formalization. For the sake of simplicity, we explain only the formaliza-
tion of the LossySync connector. The same idea is replicated to each Reo connector.
Their formalization can be found at the project’s repository in file “ReoCa.v”.

LossySync The LossySync channel enables the modelling of data synchronization
between two entities (denoted by two Reo ports having the same data item
simultaneously), and the modelling of scenarios where data was lost on its
way from the source to the sink node (in this scenario, only the source node
has data). In short, it models synchronization as well as scenarios where data
may not reach the destination Reo node. This is the idea implemented by
lossySyncCaBehavior which is
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Reo Channel Constraint automaton in CACoq

Sync,LossySync,FIFO,
SyncDrain,AsyncDrain,
Filter,Transform

Variable name state data: Set.
Definition ReoCABinaryChannel (a b: name)
(states: set state) (initialStates : set state)
(transitionRelation : state → set (set name × Con-
straintAutomata.DC name data × state)):= {|

ConstraintAutomata.Q := states;
ConstraintAutomata.N := [a;b];
ConstraintAutomata.T := transitionRelation;
ConstraintAutomata.Q0 := initialStates |}.

Merger,Replicator

Definition ReoCATernaryChannel (a b c: name)
(states: set state) (initialStates : set state)
(transitionRelation: state → set (set name × Con-
straintAutomata.DC name data × state)) := {|

ConstraintAutomata.Q := states;
ConstraintAutomata.N := [a;b;c];
ConstraintAutomata.T := transitionRelation;
ConstraintAutomata.Q0 := initialStates |}.

Table 2: CA formalized in Coq for the canonical Reo connectors

Inductive lossySyncStates : Type := q0 .
Inductive lossySyncPorts : Type := A | B.
Definition lossySyncCaBehavior (s: lossySyncStates) : set
(set lossySyncPorts × ConstraintAutomata.DC lossySyncPorts nat ×

lossySyncStates) :=
match s with
| q0 ⇒ [([A;B] , ConstraintAutomata.eqDc nat A B, q0 );

([A], (ConstraintAutomata.tDc lossySyncPorts nat), q0 )]
end.

Definition paramLossySync := ReoCa.ReoCABinaryChannel A B [q0 ] [q0 ]
lossySyncCaBehavior .

5.1.9 Product Automata

We also formalize the product operation proposed by Baier et al. [12] and presented
in Definition 4.11. This implementation is done within a section/module named Pro-
ductAutomata, following a similar approach used in the formalization of Constraint
Automata.

Product automata are also constraint automata. Therefore, the same record
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defined for constraint automata will be the product automaton’s definition. From
Definition 4.11, a product automaton is a tuple A1 ▷◁ A2 = (Q1 × Q2,Names1 ∪
Names2,→, Q0,1 ×Q0,2). In what follows, let A1 be a1 and A2 as a2 , and a1 and
a2 as constraint automata introduced by Definition 5.1. Variables state name, data,
and state2 have type Set. We parametrize both state and state2 respectively as the
type of states of A1 and A2, enabling the formalization of different automata with
different state types that can be used in the composition process.

The set of states Q1 ×Q2 and Q0,1 ×Q0,2 are formalized respectively by means
of statesSet and initialStates. Both functions take two constraint automata A1 and
A2, where statesSet returns the product set of A1’s set of states with A2’s set of
states, and initialStates returns the product set of A1’s set of initial states with A2’s
set of initial states by means of list prod, a function from Coq’s standard library
that computes the product of two lists.

The implementation of Names1×Names2 is obtained with nameSet, a function
that with two constraint automata a1 and a2 returns the union of the set of names
of a1 with the set of names of A2 by means of set union, a function that denotes
the union of two sets defined in library ListSet.

The resulting transition relation is more complex to obtain than other compo-
nents of a product automaton. Its implementation is split into several functions that
comprehend the process of deriving the transition rules as depicted in Definition 4.11,
ending with the function that enables the usage of the produced set of rules as a
function with the same support as Definition 4.1’s transition relation. We develop a
few auxiliary functions to traverse the set of states of the automaton, applying the
product rules introduced in Definition 4.11. Section 5.1.10 describes the implemen-
tation of the first product rule, and Section 5.1.11 discuss the implementation of the
second and third rules.

5.1.10 First rule

The condition test required in order to calculate whether two transitions (one from
a1 and the other from a2 ) satisfy the necessary conditions is formalized as condR1 ,
which takes as arguments two transitions t1 and t2 (respectively denoting a single
transition of a1 and a2 ), and two set of port names names1 and names2 (respec-
tively depicting the set of port names of a1 and a2 ), and returns true if the inter-
section of the port names of a1 with the port names of t2 equals the intersection of
the port names of t1 equals the port names of a2 .

The creation of a single transition regarding the first product rule employs
condR1 in order to verify whether the required conditions are met: given two states
Q1 and Q2 , transition1 and transition2 denoting a single transition of A1 and
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A2 respectively names1 and names2 denoting respectively the name set of A1 and
A2, singleTransitionR1 returns a single transition as denoted by the first rule in
Definition 4.11.

Definition singleTransitionR1 (Q1 : state) (Q2 : state2 )
(transition1 : (set (name) × DC × (state))) (transition2 : (set (name) × DC
× (state2 ))) (names1 : set name) (names2 : set name) :

(set (state × state2 × ((set name × DC ) × (state × state2 )))) :=
if (condR1 (transition1 ) (transition2 ) (names1 ) (names2 )) then

[((Q1 ,Q2 ),(((set union equiv dec (fst(fst(transition1 )))
(fst(fst(transition2 )))),ConstraintAutomata.andDc
(snd(fst(transition1 ))) (snd(fst(transition2 )))),(snd(transition1 ),
(snd(transition2 )))))]

else [].
Now we need to extend the aforementioned idea to traverse the set of states of

both a1 and a2 . The next definition is moreTransitionsR1 , which follows the idea of
applying the first product rule on a transition set employing singleTransitionR1 with
its corresponding parameters, where transition2 is now a set of transitions instead
of a single transition. Intuitively, moreTransitionsR1 pins a single transition of a1 ,
while iterating over another set of transitions, namely all transitions departing from
a single state of a2 .

We then extend moreTransitionsR1 to traverse all transitions of a1 depart-
ing from q1 as transitionsForOneStateR1 , iterateOverA2R1 as a function that em-
ploys transitionsForOneStateR1 considering a single state q1 of a1 and all states of
a2 , and allTransitionsR1 as the auxiliary function that applies transitionsForOn-
eStateR1 to a1 ’s set of states.

These definitions culminate in transitionsRule1 as the function used to build the
transition relation (regarding the first rule) with data incoming from a1 and a2 .
Therefore transitionsRule1 takes two constraint automata a1 and a2 and returns a
set containing all created product transitions regarding the first rule of the product
automaton’s transition relation.

5.1.11 Second and third rules

Because the second and third rules are symmetrical, we provide details regarding
only the second rule’s implementation. All definitions now presented have also been
similarly formalized for the third rule. We opted to formalize separate functions for
each rule to support automata with states of different types.

The following steps formalize a procedure that builds transitions according to the
second rule. We formalize the condition test of this rule directly from Definition 4.11

232



A logical framework to reason about Reo

as condR2 , which considers a single transition from a1 (denoted by tr) and a set of
port names names2 denoting a2 ’s set of port names.

The next step towards this formalization is achieved by a definition that com-
prises the notion of constructing a resulting transition’s origin state as denoted by
Definition 4.11. The resulting state (as depicted in the second product rule) for a
transition of a1 that leaves a state q1 to p1 will be (q1, q2) and (p1, q2), ∀q2 ∈ Q2
where Q2 is a2 ’s states set. In order to build the resulting transition rule as depicted
by Definition 4.11, we need to bind the states q2 ∈ Q2 in the resulting states of the
newly built transition.

The function singleTransitionR2 is conceived as the definition that has the afore-
mentioned idea driving it. Hence singleTransitionR2 , with a state q1 as a single
state of a1 , a set of transitions transitions, a set of states of states Q2 of a2 denoted
by a2States and a set of names a2Names that stands for a2 ’s names set, it returns
a set containing resulting a single transition as the second rule in Definition 4.11 by
applying this rule with q1.

Fixpoint singleTransitionR2 (q1 :state) (transition : (set (name) × DC
× (state))) (a2States : set state2 ) (a2Names: set name)
: set (state × state2 × ((set name × DC ) × (state × state2 ))) :=
match a2States with
| [] ⇒ []
| q2 ::t ⇒ if (condR2 (transition) (a2Names)) then

((q1 ,q2 ),((fst(transition)), ( (snd(transition)), (q2 ))))::
singleTransitionR2 q1 transition t a2Names
else singleTransitionR2 q1 transition t a2Names

end.
Similar to the formalization discussed in Section 5.1.10, we employ transitionR2

to traverse all transitions of a1 considering a single state q1 , which will be used by
allTransitionsR2 in order to iterate over all states of a2 . Finally, transitionsRule2
is the top-level function that creates all transitions regarding the second rule.

The set of transitions of the resulting product automata A1 ▷◁ A∈ is then pro-
duced by buildTransitionRuleProductAutomaton, which with a1 and a2 builds the
resulting transition relation by means of transitionsRule1 , transitionsRule2 , and
transitionsRule3 .

Definition buildTransitionRuleProductAutomaton
(a1 : constraintAutomata) (a2 : constraintAutomata) :=
(transitionRule1 a1 a2 )++(transitionsRule2 a1 a2 )++(transitionsRule3 a1

a2 ).
Recall that states in the resulting product automaton have type (state × state2 ).

Then, the resulting transition relation for product automata is TA1▷◁A2 : (state ×
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state2) → set(set(name) × DC × (state × state2). In this context, recoverResult-
ingStatesPA is a function that takes a state st (st ∈ QA1▷◁A2) and a set of transitions
t, returning the set of transitions that origins in st.

Fixpoint recoverResultingStatesPA (st: (state × state2 ))
(t:set (state × state2 × ((set name × DC ) × set (state × state2 )))):=
match t with
| [] ⇒ []
| a::tx ⇒ if st == fst((a)) then (snd((a))::recoverResultingStatesPA st

tx)
else recoverResultingStatesPA st tx

end.
The actual transition relation of the resulting product automaton is denoted by

transitionPA, a function that, with a state of type (state × state2) as its input s,
returns all transitions that origins in s, where the set of transitions is computed by
buildTransitionRuleProductAutomaton.

Definition transitionPA (a1 : constraintAutomata) (a2 : constraintAutomata2 )
(s: (state × state2 )) := Eval compute in recoverResultingStatesPA s (buildTransi-
tionRuleProductAutomaton a1 a2 ).

Definition 5.3 introduces the product automaton. It is created as a constraint au-
tomaton, using CA as the alias of the constructor of the Record constraintAutomata
(as depicted in Definition 4.1). Therefore, buildPA takes two constraint automaton
a1 and a2 creating a product automaton based on resultingStatesSet, resulting-
NameSet, transitionPA and resultingInitialStatesSet, which respectively builds the
set of states, set of names, the transition relation and the set of initial states of the
resulting automaton as Definition 4.11 presents.

Definition 5.3. Product Automata in Coq
Definition buildPA (a1: constraintAutomata)(a2:constraintAutomata2) :=

ConstraintAutomata.CA (statesSet a1 a2) (nameSet a1 a2)
(transitionPA a1 a2) (initialStates a1 a2).

We also have developed a C program which compiles a textual representation of
Reo to ease the modelling process. Therefore, a textual file containing primitives
regarding the connectors’ structure will generate the corresponding Reo circuit code
in Coq as its constraint automaton’s model. Listings 2 and 4 denote sample files
regarding their respective usage examples. Some instances formalized in Coq v. 8.9.1
and nuXmv v. 1.1.1 are executed on a machine equipped with an Intel i7-5930k with
3.50GHz, and 32GB of RAM memory under Ubuntu GNU/Linux kernel 4.15.0-72.
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5.1.12 Introducing a basic Reo connector

This first example introduces the definition of a Reo connector in the proposed
framework in some detail. It is in the project’s repository in file "SyncCA.v". We
start by defining a TDS-tuple and an input θ for its constraint automaton. From
Table 1, the Sync connector sends data over a channel from an entity to another
entity. Its constraint automaton holds a transition where both port names must
have the same data flow at the same time to fire. In what follows we define the
required items to formalize a TDS in this framework.

We proceed by formalizing the states of the automaton as automatonStates and
its corresponding port names as automatonPorts.

Inductive automatonStates := q0 .
Inductive automatonPorts := A | B.
The definition of a data stream and a time stream can be done respectively as

follows.
Definition dataAssignmentA (n:nat) :=
match n with
| 0 ⇒ 1
| 1 ⇒ 1
| 2 ⇒ 0
| S n ⇒ 0
end.

Definition timeStampAutomatonA (n:nat) : QArith base.Q :=
match n with
| 0 ⇒ 1#1
| 1 ⇒ 5#1
| 2 ⇒ 8#1
| 3 ⇒ 11#1
| 4 ⇒ 14#1
| 5 ⇒ 17#1
| S n ⇒ Z.of nat (S n) + 19#1
end.

The notation “a # b” is a shorthand to construct rational numbers in Coq by
using the standard library QArith base. The following definition states that timeS-
tampAutomatonA is a crescent (and consequently, divergent) time stream. This
is required by Definition 4.2 and captured by Definition 5.2 to denote that time
streams are always crescent. Its proof may employ a lemma named orderZofnat
which is available in file "CaMain.v" and available after compiling this file. Qlt is
the definition of “lesser than” relation for rational numbers in QArith base.
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Lemma timeStampAutomatonAHolds : ∀ n,
Qlt (timeStampAutomatonA n) (timeStampAutomatonA (S n)).

A TDS denoting the port name A is defined as follows. A TDS for B may
be defined by following the same steps. The transition relation of this constraint
automaton can be formalized as automatonTransition.

Definition portA := {|
ConstraintAutomata.id := A;
ConstraintAutomata.dataAssignment := dataAssignmentA;
ConstraintAutomata.timeStamp := timeStampAutomatonA;
ConstraintAutomata.tdsCond := timeStampAutomatonAHolds;
ConstraintAutomata.index := 0 |}.

Definition automatonTransition (s:automatonStates):=
match s with
| q0 ⇒ [([A;B], (ConstraintAutomata.eqDc nat A B), q0 )]
end.

The automaton is defined as reoSync, employing the definitions to ease connec-
tors’ construction introduced in Section 5.1.8. Its input θ as a set of TDS-tuples can
be formalized as theta.

Definition reoSync := ReoCa.ReoCABinaryChannel A B [q0 ] [q0 ] automaton-
Transition.

Definition theta := [portA;portB].
We may then carry out a finite execution over theta, stating that this is an

accepting execution for 11 iterations or even reason over theta to verify that it
denotes an infinite run in this constraint automaton as the following two definitions
state.

Eval compute in ConstraintAutomata.run reoSync theta 11.
Theorem acceptingRun : accepting reoSync theta.
The idea behind accepting is a property which employs the idea denoted in the

final lines of Section 5.1.6 to reason about infinite runs, in which we formalize the
idea that a transition can always be fired, given that the required conditions for a
transition to fire are indeed satisfied by any of θ’s derivative. In this example, we
take advantage of the Sync semantics to write a shorthand for the presented idea,
considering only the cases where the derivatives of each TDS-tuple in θ are the same,
which is the only possible scenario in Sync.

Definition accepting (ca: constraintAutomata) (theta: set tds) :=
∀ q,∀ k, stepAux ca (map(calcIndex k) (theta)) (thetaN (map(calcIndex k)

(theta))) q ̸= [].
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5.1.13 Sequencing entities’ communication with Reo

As another example, we recover and model the Reo connector depicted in Figure 2.
We only provide details to the leftmost FIFO-sync connector, namely the Sync
containing A as its sink node. Its corresponding source code can be found in the
project’s repository in file “Sequencer.v”. We focus on the first FIFO-Sync pair of
connectors of Figure 2 to simplify the modelling explanation. This idea is extended to
the whole circuit to obtain its corresponding constraint automaton. In this example,
we also show how one can generate Haskell code from the certified Coq model using
Coq’s extraction mechanism.

Listing 2: Treo representation of Figure 2
1 f i f o 1 (d , e )
2 sync ( e , a )
3 f i f o 1 ( e , f )
4 sync ( f , b )
5 f i f o 1 ( f , g )
6 sync ( g , c )

Definition dToEFIFOrel (s:sequencerStates) :=
match s with
| q0a ⇒ [([D], (ConstraintAutomata.dc D 0), p0a);

([D], (ConstraintAutomata.dc D 1), p1a)]
| p0a ⇒ [([E ], (ConstraintAutomata.dc E 0), q0a)]
| p1a ⇒ [([E ], (ConstraintAutomata.dc E 1), q0a)]
| s0 ⇒ []
end.

Definition dToEFIFOCA := ReoCa.ReoCABinaryChannel D E
([q0a;p0a;p1a]) ([q0a]) (dToEFIFOrel).

Definition syncEACaBehavior (s: sequencerStates) :=
match s with
| s0 ⇒ [([E ;A] , ConstraintAutomata.eqDc nat E A, s0 )]
| ⇒ []
end.

Definition EAsyncCA := ReoCa.ReoCABinaryChannel E A ([s0 ])
([s0 ]) syncEACaBehavior .

As an example of a desired property, the sequencer may hold the data item first
before distributing to its interconnected nodes. Concerning the initial state, there
is no way that one of the sink nodes (A, B, and C ) will receive data before it passes
through the first FIFO (which source node is denoted by D). In short, data need to
flow into the circuit to the connected entities to receive data.
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Lemma firstPortToHavaDataIsD : ∀ state, In (state) (ConstraintAutomata.Q0 re-
sultingSequencerProduct) → In (state) (ConstraintAutomata.Q resultingSequencer-
Product) ∧In (D) (ConstraintAutomata.portsOfTransition resultingSequencerProd-
uct state) ∧ ¬ In (A) (ConstraintAutomata.portsOfTransition resultingSequencer-
Product state) ∧ ¬ In (B) (ConstraintAutomata.portsOfTransition
resultingSequencerProduct state) ∧ ¬ In (C )
(ConstraintAutomata.portsOfTransition resultingSequencerProduct state).

We may also reason on specific data flow for a Reo circuit by means of its
constraint automaton. Therefore, let us use resultingSequencerProduct and single-
ExecInput as an input θ ∈ TDSNames for resultingSequencerProduct and, as an
example, suppose one would like to verify if a given scenario (depicted by singleEx-
ecInput) is modelled by the connector. In what follows, run1 denotes a bounded
run on resultingSequencerProduct which at least one transition could be fired. The
input θ in run1 denotes a flow which sequentially distributes the data item to the
connected entities. It also depicts that certain configurations were reached (namely,
the ones that denote that data would go to each one of the connected entities).

Lemma acceptingRunAllPortsWData : ¬ In [] (run1 ) ∧ In [(p1a, s0 , q0a, s0 , q0a,
s0 )] (run1 ) ∧ In [(q0a, s0 , p1a, s0 , In [(q0a, s0 , q0a, s0 , p1a, s0 )] (run1 ).

Conversely, we can reason over data flows which must not be accepted by the
connector. This modelling may be useful to state that the connector is free of
undesired properties or unwanted scenarios. We define run2 as an run on an input θ
denoting a scenario where both ports A and B are the ones which initially have data
(i.e., A,B ∈ θ.N(0)), a situation which cannot be described by this connector. The
following lemma states that this run is not accepted by the circuit’s corresponding
constraint automaton. The existence of an empty set of states in the resulting trace
denotes that at a specific set of states (i.e., a configuration of the connector), no
transitions could be fired.

Lemma nonAcceptingRun : In [] (run2 ).
We can also state that a run described by input θ as secondExinput is a rejecting

run following the idea explained in section 5.1.6. Indeed, there is a index when
executing this automaton with secondExInput in which the data flow do not trigger
a transition to fire, due to its TDS failing to satisfy the required conditions.

Lemma rejectingRun : ConstraintAutomata.rejecting resultingSequencerProduct
secondExInput.

When the required properties are met by the model, it is possible to use Coq’s
code extraction apparatus to retrieve certified code regarding it, in languages such
as Haskell or Scheme. The following sequence of commands returns a file containing
all definitions which resultingSequencerProduct relies on, to a Haskell source code file
named “SequencerCertified”. Listing 3 presents the definition of the corresponding
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product automaton in Haskell.
Require Extraction.
Extraction Language Haskell.
Extraction “SequencerCertified” resultingSequencerProduct.

Listing 3: Haskell counterpart for resultingSequencerProduct
1 re su l t ingSequence rProduct : : ConstraintAutomata
2 ( Prod ( Prod ( Prod ( Prod ( Prod SequencerStates SequencerStates )
3 SequencerStates ) SequencerStates )
4 SequencerStates ) SequencerStates ) SequencerPorts
5 Nat re su l t ingSequencerProduct = buildPA sequencerPortsEq
6 ( pair_eqdec ( pair_eqdec ( pair_eqdec ( pair_eqdec sequencerStatesEq

sequencerStatesEq ) sequencerStatesEq ) sequencerStatesEq ) sequencerStatesEq
) sequencerStatesEq f i f o 4 P r o d u c t hCsyncCA

5.1.14 Smart crossroads’ modelling in Coq

We also recover the Reo circuit depicted by Figure 3 and model it by means of the
process described by Section 5.3. Its generated Treo code is depicted by Listing 4.
This generates the whole Coq code of the example, which can be found in the
repository in a file named “trafficLights.v“. The formalization of its rightmost Reo
channel (a Merger) can be done as follows.

Listing 4: Treo representation of Figure 3
1 merger ( a , b , y )
2 sync (y , x )
3 sync (x , i )
4 sync (x , j )
5 sync ( i , k )
6 t rans fo rmer ( j , l )
7 sync ( l ,m)
8 f i f o 1 (k , n)
9 merger (m, n , c )

Definition merger1Automaton := {|
ConstraintAutomata.Q := [q0 ];
ConstraintAutomata.N := [a;y;b];
ConstraintAutomata.T := merger1rel;
ConstraintAutomata.Q0 := [q0 ]

|}.
The only state of this automaton is denoted by q0 , while a, y, and b are port

names of the automaton. Our C program that generates the model’s code creates an
inductive type containing all port names of all automata that compose the circuit.
The formalization of both the type of states and port names are shown as follows.
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Inductive merger1StatesType : Type := q0
Inductive modelPortsType := Inductive modelPortsType :=

a | y | b | x | i | j | l | k | m | n | c.
Definition merger1rel is the automaton’s transition relation, namely the Merger

channel’s behavior reflected as a constraint automaton’s transition relation. This is
achieved as follows.

Definition merger1rel (s: merger1StatesType) :=
match s with

| q0 ⇒ [([a;y], ConstraintAutomata.eqDc nat a y , q0 );([b;y],
ConstraintAutomata.eqDc nat b y , q0 )]

end.
We formalize the constraint automaton of the Reo circuit depicted by Figure 3

by employing the aforementioned idea to obtain the remainder of corresponding
constraint automata for each Reo channel that compose the circuit. Then, the
composition operation is done between every two automata. It will comprehend all
automata, which result in the product automata of the whole Reo Circuit. Definition
buildPA is the top-level function that takes two automata and returns their product.

We present the formalization of one of the connectors below (the others are anal-
ogous). The full model of this example contains 8 automata, and we briefly discuss
their formalization as follows. merger1Automaton models the rightmost data trans-
mission, controlling the data input of the circuit. The rest of the circuit is denoted
by sync2Automaton and sync3Automaton as the channel that replicates data incom-
ing from merger1Automaton, sync4Automaton is the Sync channel parallel to the
transformer channel (transformer5Automaton). Then, sync6Automaton is the Sync
that connects the Transformer to the last node, and fifo8Automaton the channel
that connects the Sync parallel to the Transform channel. Lastly, sync7Automaton
joins the sink node of the FIFO with merger12Automatom, linking the circuit with
the data receiver as the controller that decides which traffic light may be green,
based on data transmitted.

Definition merger1sync2Product := ProductAutomata.buildPA
merger1Automaton sync2Automaton.

In this scenario, it is interesting to validate properties regarding how the in-
teraction of the traffic lights may affect both cars and pedestrians passing by this
crossroad. We may certify that this model is free from situations that one of the
traffic lights is always open, by means of the sensor (denoted by port name a in the
rightmost node). As an example, the following Coq lemmas state respectively that,
from any initial state, the automaton always change its configuration to another
state if data has departed from the sensor and arrived at the controller, and that
from any state of the automaton, this always holds.
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Lemma possibleTrafficLightToBeOpenedNotTheSame : ∀ state,∀ transition,
In (state) (ConstraintAutomata.Q0 fifo8merger9Product) ∧
In (transition) (ConstraintAutomata.T fifo8merger9Product state) ∧
In (a) (fst(fst(transition))) ∧ In (c) (fst(fst(transition))) →
snd(transition) ̸= (q0 ,q1 ,q2 ,q3 ,q4 ,q5 ,q6 ,q7 ,q8 ).
Lemma possibleTrafficLightToBeOpenedNotTheSame2 : ∀ state,∀ transition,

In (state) (ConstraintAutomata.Q fifo8merger9Product) ∧
In (transition) (ConstraintAutomata.T fifo8merger9Product state) ∧
In (a) (fst(fst(transition))) ∧ In (c) (fst(fst(transition))) →
snd(transition) ̸= (state).
By executing the following commands, Coq generates a Haskell file named “traf-

ficLightsCertified”, containing all definitions which the resulting automaton
(fifo8merger9Product) relies on. Listing 5 presents the resulting automaton of the
whole circuit as Haskell source code. Line 1 builds the resulting automata and the
following lines denotes the construction of the transitions.

Require Extraction.
Extraction Language Haskell.
Extraction "trafficLightsCertified" replicator1merger12Product.

Listing 5: Haskell counterpart for replicator1merger12Product
1 f i f o8merger9Product =
2 buildPA modelPortsEqDec
3 ( pair_eqdec ( unsafeCoerce pair_eqdec
4 ( pair_eqdec ( pair_eqdec ( pair_eqdec ( pair_eqdec ( pair_eqdec (\_ _ −>

merger1EqDec ) (\_ _ −> sync2EqDec ) )
5 (\_ _ −> sync3EqDec ) ) (\_ _ −> sync4EqDec ) ) (\_ _ −>
6 transformer5EqDec ) ) (\_ _ −> sync6EqDec ) ) (\_ _ −> sync7EqDec ) )
7 f i fo8EqDec ) (\_ _ −> merger9EqDec ) sync7 f i f o8Pro duct merger9Automaton

5.1.15 Connectors’ equivalence by bisimilarity

Let us define a 2-bounded FIFO connector as a single Reo connector itself, manually
defining its corresponding constraint automaton as follows. This example may be
found in the project’s repository in file "2-boundedFIFO.v".

Definition twoBoundedFIFOrel (s:(fifoStates × fifoStates)) :set (set fifoPorts
× ConstraintAutomata.DC fifoPorts (option nat) ×(fifoStates × fifoStates)) :=

match s with
| (q0a, q0a) ⇒ [([A], (ConstraintAutomata.dc A (Some 0)), (p0a,p0a));

([A], (ConstraintAutomata.dc A (Some 1)), (p1a,p1a))]
| (p0a,p0a) ⇒ [([B], (ConstraintAutomata.dc B (Some 0)), (q0b,q0b))]
| (p1a,p1a) ⇒ [([B], (ConstraintAutomata.dc B (Some 1)), (q0b,q0b))]
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| (q0b,q0b) ⇒ [([B], (ConstraintAutomata.dc B (Some 0)), (p0b,p0b));
([B], (ConstraintAutomata.dc B (Some 1)), (p1b,p1b))]

| (p0b,p0b) ⇒ [([C ], (ConstraintAutomata.dc C (Some 0)), (q0b,q0b))]
| (p1b,p1b) ⇒ [([C ], (ConstraintAutomata.dc C (Some 1)), (q0b,q0b))]
| ⇒ []
end.

Definition twoBoundedFIFOCA:= {|
ConstraintAutomata.Q := [(q0a,q0a);(p0a,p0a);(p1a,p1a);(q0b,q0b);(p0b,p0b);

(p1b,p1b)];
ConstraintAutomata.N := [A;B;C ];
ConstraintAutomata.T := twoBoundedFIFOrel;
ConstraintAutomata.Q0 := [(q0a,q0a)]
|}.
The definition of the states of twoBoundedFIFOCA as a pair of states (qa, qb) is

required to use the bisimilarity notions formalized in this framework (as it requires
both automata to have the same state type) as the product construction will yield
states as (q1, q2). This does not affect the whole behavior at all, merely serving as
a label for the states of the automaton above.

The same connector’s automaton can be obtained by "attaching" two 1-bounded
FIFO connectors (as Table 1 presents), where the corresponding constraint automa-
ton can be obtained by means of the product operation.

Definition oneBoundedFIFOrel (s:fifoStates) :
set (set fifoPorts × ConstraintAutomata.DC fifoPorts (option nat) × fifoS-

tates) :=
match s with
| q0a ⇒ [([A], (ConstraintAutomata.dc A (Some 0)), p0a) ;

([A], (ConstraintAutomata.dc A (Some 1)), p1a)]
| p0a ⇒ [([B], (ConstraintAutomata.dc B (Some 0)), q0a)]
| p1a ⇒ [([B], (ConstraintAutomata.dc B (Some 1)), q0a)]
| q0b | p0b | p1b ⇒ []
end.

Definition oneBoundedFIFOCA:= {|
ConstraintAutomata.Q := [q0a;p0a;p1a];
ConstraintAutomata.N := [A;B];
ConstraintAutomata.T := oneBoundedFIFOrel;
ConstraintAutomata.Q0 := [q0a]
|}.
Definition oneBoundedFIFOrel2 (s:fifoStates) :=
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match s with
| q0b ⇒ [([B], (ConstraintAutomata.dc B (Some 0)), p0b) ;

([B], (ConstraintAutomata.dc B (Some 1)), p1b)]
| p0b ⇒ [([C ], (ConstraintAutomata.dc C (Some 0)), q0b)]
| p1b ⇒ [([C ], (ConstraintAutomata.dc C (Some 1)), q0b)]
| q0a | p0a | p1a ⇒ []
end.

Definition oneBoundedFIFOCA2 := {|
ConstraintAutomata.Q := [q0b;p0b;p1b];
ConstraintAutomata.N := [B;C ];
ConstraintAutomata.T := oneBoundedFIFOrel2 ;
ConstraintAutomata.Q0 := [q0b]
|}.
Definition twoBoundedFifo := ProductAutomata.buildPA oneBoundedFIFOCA

oneBoundedFIFOCA2 .
We proceed by employing the bisimilarity apparatus to check that they indeed

yield the same behavior as expected as follows. The execution of the below code
returns true, denoting that both automata are indeed bisimilar.

Eval compute in ConstraintAutomata.areBisimilar twoBoundedFifo twoBound-
edFIFOCA.

The performance of the usage examples are measured in Table 3. We calculate
the average time and the amount of RAM memory employed of 10 executions of
each of the code regarding the usage examples, which contains the definitions and
properties evaluated.

Usage example Execution time (s) Max used memory (KB)
Sequencer 152.373 450,306.4
Smart Crossroads 13.242 564,254.8

Table 3: Time and memory used in processing the usage examples

5.2 Model checking Reo circuits with nuXmv
Model checkers are powerful tools used to verify properties of logically modeled
systems. That verification is made exploring every possible state of the model.
nuXmv is a symbolic model checker used for the analysis of synchronous systems [13]
which, among others, suports CTL logic [22].

The model translation in here proposed is automatized by a compiler available

243



Grilo et al.

at https://github.com/frame-lab/Reo2nuXmv. This compiler translates Reo cir-
cuits to Constraint Automata in nuXmv following a representation where a MODULE
will represent a CA condensing its states and transitions representations.

The states are denoted by a variable and the transitions determine how that
variable can change. nuXmv has a VAR block, where the variables are declared;
those variables are cs, which represents the current state, and ports, which is a
instance of the MODULE that models the ports. There is also a TRANS block, where
transitions for those variables are declared and an ASSIGN block, where the variables
can be initialized with a value.

The canonical channels are modeled and Listing 6 presents the Sync channel, the
circuit in which the data on both ports must be the same. The constraint automaton
that models it consists of one state and one transition, so line 4 declares cs with
only one possible value. Line 6 models the transition, stating that the data on both
ports must be equal and can’t be NULL. Notice that the model states are equal to
all states from the CA, and only them, similar to the transitions.

Listing 6: nuXmv MODULE that represents the Sync channel
1 MODULE sync1 ( time )
2 VAR
3 por t s : portsModule ;
4 cs : {q0 } ;
5 TRANS
6 ( ( cs = q0 & port s . a [ time ] != NULL & port s . a [ time ] = por t s . b [ time ] ) <−> next (

cs ) = q0 ) ;

Listing 7 represents the lossySync channel, it has the same rule as the sync
channel plus the behavior where the data can be lost. Its CA has one state and two
transitions, in line 4 the cs is declared with only one possible value. The transition
in line 7 is the same as the one in the sync MODULE, the first transition in line 6
represents the behavior where the data in the first port is lost, it says that the
second port has no data while the first one has. Hence, all of the automaton states
are represented, and all of its transitions are also modeled, and nothing more is
added.

Listing 7: nuXmv MODULE that represents the LossySync channel
1 MODULE l o s sySync1 ( time )
2 VAR
3 por t s : portsModule ;
4 cs : {q0 } ;
5 TRANS
6 ( ( cs = q0 & port s . b [ time ] = NULL & port s . a [ time ] != NULL)
7 | ( cs = q0 & port s . a [ time ] != NULL & port s . a [ time ] = por t s . b [ time ] ) <−> next

( cs ) = q0 ) ;
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The other connectors modelling are analogous. In addition to the canonical
Reo channels’ models, the compiler can also create models of more complex circuits
using the composition of those channels (product automata). The result of the
product operation is also modeled in a nuXmv MODULE but, as another option,
the compiler also provides a fully-described model where each application of the
product gives rise to a MODULE. Despite this second option leads to a more
complex and with more states model, it allows traceability: during reasoning, it is
possible to recover the Reo channel that has some observed behavior by checking on
the verification of the corresponding CA of the basic Reo connector.

As an example, Listing 8 presents the compact model and the components
model from the Sequencer in Figure 2. In the components model, it is possible
to trace the state of each channel that was composed in the product. In the com-
pact representation, it is only represented the circuit state q0q0q0q0q0q0 and in
the components representation we have the circuit state in finalAutomata.cs =
q0q0q0q0q0q0 but we can also check that this state is composed from the state of
it’s components seen in finalAutomata.prod1.cs and finalAutomata.prod2.cs
and finalAutomata.prod1.cs is composed from it’s components and so on.

Another advantage of the components model is that it can reason about the
canonical channels. If it is required to infer that the last FIFO of the Sequencer
never reaches it’s state p1, in the compact model it would be:
AG(automato.cs!= q0q0q0q0p1q0 & automato.cs != q0q0p1q0p1q0 &
automato.cs != p0q0q0q0p1q0 & automato.cs != p0q0p0q0p1q0 &
automato.cs != p0q0p1q0p1q0 & automato.cs != p1q0q0q0p1q0 &
automato.cs != p1q0p0q0p1q0 & automato.cs != p1q0p1q0p1q0)
covering every state of the final circuit where the corresponding state of the final
FIFO is p1; whilst in the components model it could simply be:
AG(finalAutomata.prod1.prod2.cs != p1),
directly referencing the last FIFO model.

Listing 8: Snapshot of a state from the components product and it’s similar im the
compact product

1 −−Components
2 f inalAutomata . prod1 . prod1 . prod1 . prod1 . prod1 . cs = q0
3 f inalAutomata . prod1 . prod1 . prod1 . prod1 . cs = q0q0
4 f inalAutomata . prod1 . prod1 . prod1 . prod2 . cs = q0
5 f inalAutomata . prod1 . prod1 . prod1 . cs = q0q0q0
6 f inalAutomata . prod1 . prod1 . cs = q0q0q0q0
7 f inalAutomata . prod1 . prod2 . cs = q0
8 f inalAutomata . prod1 . cs = q0q0q0q0q0
9 f inalAutomata . prod2 . cs = q0

10 f inalAutomata . cs = q0q0q0q0q0q0
11 −−Compact
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12 automato . cs = q0q0q0q0q0q0

The later model is generated following Algorithm 1, which takes two automata as
input which are already modeled in nuXmv, and provides the necessary restrictions
to build the nuXmv model of their product following the Constraint Automata
product rules.

Lines 2 to 4 initialize with empty sets the resulting ones. The loop in line 5
iterates over the states of the first automaton and the one in line 6 over the second
automaton. Those iterations are used to generate the product states in line 7 and
line 8 checks if both states are initial states; if so then the product state will also be
an initial state.

The loop in line 11 iterates over the generated product states, line 12 initializes
the set of unreachable states of that product state with the states of the product
minus the current state. Line 13 is a loop that iterates over every transition of the
first automaton that starts with the first part of the product state. Similarly, line 14
iterates over every transition of the second automaton that starts with the second
part of the product state.

Line 15 has the verification of the first rule that gives the product transitions,
and if that holds, then the endpoint of both transitions will be removed from the
unreachable states, line 16. Line 17, following the first rule of transition, creates a
new transition and adds it to the set of new transitions.

Line 20 verifies the second rule of the transition, and if it holds then the state that
represents the endpoint of that transition is removed from the unreachable states.
Observe that the transition is not added to the set of new transitions, that happens
because the product will use the transition already modeled in the component. But
if the condition does not hold, then line 21 blocks the transition in the component.

Line 23 iterates over the transitions of the second component that starts with
the second part of the product state, line 24 verifies the third rule of the transition,
and similarly to the previous case, if it holds, the endpoint state is removed from
the set of unreachable states, and if it is not, line 25 blocks that transition.

The algorithm generates a set that denotes the states of the product, a set that
defines the initial states of the product, a set of new transition rules that need to be
modeled in the product MODULE, and a set of sets, that represents the unreachable
states for each state of the product. Those sets will be used to create the MODULE of
the result of the product.

Listing 9 is an example of a product result of a Sync channel with a FIFO channel.
It shows the composition of the Sync channel and the FIFO channel, the MODULE
of the composition is finalAutomata and it instantiates its components through the
variables prod1 and prod2. The set of states of cs inside the MODULE is equal

246



A logical framework to reason about Reo

Algorithm 1: Generation of the product model from two automata
Data: A1 = (Q1,Names1,→1, Q0,1) and A2 = (Q2,Names2,→2, Q0,2)
Result: Qp: Product automaton states; Q0,p: Product automaton initial

states; Transp: New transitions created following the product
transitions rules; Qinalc(q1q2): Unreacheable states from each state
q1q2 of product automaton;

1 begin
2 Qp ← ∅;
3 Q0,p ← ∅;
4 Trasnp ← ∅;
5 foreach q1 ∈ Q1 do
6 foreach q2 ∈ Q2 do
7 Qp ← Qp ∪ {q1q2};
8 if (q1 ∈ Q0,1) ∧ (q2 ∈ Q0,2) then Q0,p ← Q0,p ∪ {q1q2} ;
9 end

10 end
11 foreach q1q2 ∈ Qp do
12 Qinalc(q1q2)← Qp \ {q1q2};
13 foreach q1

N1,g1−−−→ p1 ∈→1 do
14 foreach q2

N2,g2−−−→ p2 ∈→2 do
15 if (N1 ∩Names2) = (N2 ∩Names1) then
16 Qinalc(q1q2)← Qinalc(q1q2) \ {p1p2};
17 Transp ← Transp ∪ q1q2

N1∪N2,g1∧g2−−−−−−−−→ p1p2
18 end
19 end
20 if (N1∩Names2 = ∅) then Qinalc(q1q2)← Qinalc(q1q2)\{p1q2} ;
21 else g1 ← FALSE;
22 end
23 foreach q2

N2,g2−−−→ p2 ∈→2 do
24 if (N2 ∩Names1) = ∅) then

Qinalc(q1q2)← Qinalc(q1q2) \ {q1p2} ;
25 else g2 ← FALSE;
26 end
27 end
28 end
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to the set of states created from the composition rule. The transitions generated by
the first rule of the product transition are in the TRANS block. Rule 2 and its
symmetric of the transition will be carried over from the product components, such
that to fulfill the model, all of the components transitions that do not follow these
rules were removed from the model. The INVAR block guarantees consistency
between the product and components.

Listing 9: nuXmv model of the composition of Sync with FIFO
1 MODULE sync1 ( time )
2 VAR
3 por t s : portsModule ;
4 cs : {q0 } ;
5
6 MODULE f i f o 2 ( time )
7 VAR
8 por t s : portsModule ;
9 cs : {q0 , p0 , p1 } ;

10 ASSIGN
11 i n i t ( cs ) := {q0 } ;
12 TRANS
13 ( ( cs = p1 & port s . a [ time ] = NULL & port s . b [ time ] = NULL & port s . d [ time ] = 1)
14 | ( cs = p0 & port s . a [ time ] = NULL & port s . b [ time ] = NULL & port s . d [ time ] =

0) <−> next ( cs ) = q0 ) &
15 ( ( cs = p0 ) −> ( ( next ( cs ) != p1 ) ) ) &
16 ( ( cs = p1 ) −> ( ( next ( cs ) != p0 ) ) ) ;
17
18 MODULE f inalAutomata ( time )
19 VAR
20 prod1 : sync1 ( time ) ;
21 prod2 : f i f o 2 ( time ) ;
22 por t s : portsModule ;
23 cs : {q0q0 , q0p0 , q0p1 } ;
24 ASSIGN
25 i n i t ( cs ) := {q0q0 } ;
26 TRANS
27 ( ( cs = q0q0 & port s . d [ time ] = NULL & port s . a [ time ] != NULL & port s . a [ time ] =

por t s . b [ time ] & por t s . b [ time ] = 0) <−> next ( cs ) = q0p0 ) &
28 ( ( cs = q0q0 & port s . d [ time ] = NULL & port s . a [ time ] != NULL & port s . a [ time ] =

por t s . b [ time ] & por t s . b [ time ] = 1) <−> next ( cs ) = q0p1 ) &
29 ( ( cs = q0p0 ) −> ( ( next ( cs ) != q0p1 ) ) ) &
30 ( ( cs = q0p1 ) −> ( ( next ( cs ) != q0p0 ) ) ) ;
31 INVAR
32 ( ( ( prod1 . cs = q0 ) & ( prod2 . cs = q0 ) ) <−> ( cs = q0q0 ) ) &
33 ( ( ( prod1 . cs = q0 ) & ( prod2 . cs = p0 ) ) <−> ( cs = q0p0 ) ) &
34 ( ( ( prod1 . cs = q0 ) & ( prod2 . cs = p1 ) ) <−> ( cs = q0p1 ) ) ;

The MODULE portsModule is a representation of the circuit ports, in which
each port of the circuit is represented as an array. The value of each port in a
given time instance can also be represented there, that way, we can have control
over the values of the ports to represent an specific TDS. Those values can be
omitted, allowing the model to check for any possible TDS over the possible values.
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Besides that, both Filter and Transformer representations are parameterized, but
the current version does not support passing the predicate in the Treo model, the
user must manually add the predicate to the nuXmv model by replacing the FALSE
statement.

The example of Figure 3 was modeled using the compiler, passing each of the Reo
channels that compose the circuit (described in Treo representation). Hence those
channels were composed in pairs that resulted in the finalAutomata that models
the whole circuit. Two models were generated, one where the components are repre-
sented as in Listing 9 (this way all the transitions will be modeled in its MODULE,
leading to traceability) and the other where the result of the composition is modeled
(with fewer states, requiring less computational resources to verify).

The model allows verification of possible TDS combinations and other properties.
As an example, it is possible to verify that the automaton will only leave its initial
state if one of its input ports has data or the output port has data through the follow-
ing CTL specification “A [automato.cs = q0q0q0q0q0q0q0q0q0q0q0q0q0q0q0 U
(automato.ports.a[time]!=NULL | automato.ports.b[time]!=NULL)] ” where
A denotes a global verification that the current state is the defined Until the input
ports have some not null value. The model in figure 2 was also modeled. Table 4
presents a comparison of the verification of the specifications run time and memory
usage between compact and components models considering the average result of
ten executions. Notice that the compact model takes way less time and memory to
reason.

Usage example Execution time (s) Max used memory (KB)
Smart crossroads (compact) 0.05 40,229.2
Smart crossroads (components) 1.937 182,794
Sequencer (compact) 0.09 44,652
Sequencer (components) 0.21 69,785.6

Table 4: Experimental results of compact and components based models

5.3 A Graphical User Interface to integrate ReoXplore
All of the framework tools are unified by a graphical interface (extending the Reo
Graphical Editor), composing ReoXplore framework, developed using Node JS11.
The source code and installation instructions are available at https://github.
com/frame-lab/ReoXplore.

11https://nodejs.org/
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ReoXplore allows the construction of Reo circuits graphically and their conver-
sion to a nuXmv model, a Coq model, or a Haskell program. Figure 5 presents
ReoXplore’s interface. In the center of the GUI there is a canvas where the circuit
can be graphically modeled. On the left side, there is a text area, denoting a textual
version of the Reo circuit (using a subset of Treo language [20]) generated from the
graphical model. The right menu consists of a list of buttons with each Reo channel
and several options to export the model, either as Coq, nuXmv code, or even images.

The framework is conceived to be used in a flow summarized in Figure 4 and
detailed below:

(i) The user can graphically model a Reo connector by drawing and linking the
channels using the GUI Figure 5 displays. One can also directly write the
corresponding code in the text area in the leftmost part of the GUI, where
the Treo code is automatically generated from the graphical model. It can be
exported as a text or image file.

(ii) The inputted model in the above step can be converted to its counterpart in
Coq or nuXmv code employing the framework described in Sections 5.1 and
5.2.

(iii) The converted model to CA in the desired framework is generated: The Coq
model can be downloaded, and the same model can be generated as code in
Haskell using the Coq code extraction mechanism. The nuXmv code generation
enables the user to either:

• use the export option “Compact nuXmv", which executes the ZZZ com-
piler and returns a SMV file of the compact product for download.

• use the export option “Components nuXmv", which does the same as the
“Compact nuXmv" option but returns the components’ product.

Each button triggers a HTTP request to the server, sending the Treo model gen-
erated in the GUI. Depending on the action triggered, a specific method is executed,
returning the target file based on the button’s action. All export buttons can be
used right away, except for the Haskell code generation, which requires Coq to be
installed (version 8.9+) as it relies on the Coq code extraction mechanism.

6 Conclusions and future work
This work presented ReoXplore: a framework to model and reason about Reo cir-
cuits. ReoXplore’s background uses (i) Coq for proof-theoretical reasoning and
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Reo

CA in Coq

CA in nuXmv

Haskell

compact nuXmv

components nuXmvImage/Text

Figure 4: Framework execution schema

Figure 5: Sequencer modelled in ReoXplore GUI

generation of certified Haskell code, (ii) nuXmv for symbolic model checking Reo
circuits, and extends (iii) Reo Graphical Editor to use a canvas for modelling Reo cir-
cuits (also converted to a variant of Treo language) and integrate all of the presented
subsystems. We present some experimental results concerning time and memory
used in the reasoning process.

The proof-theoretical subsystem is depicted in a Coq model, employing a con-
solidated system to verify and prove properties of Reo connectors using Constraint
Automata. Coq specifically lets their users extract certified code to programming
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languages and also check for bisimilarity. This formalization is followed by the mod-
elling in nuXmv with the product pre or post-processed. The pre-processed version
provides a smaller nuXmv model; the post-processed creates a bigger model, but
allows better traceability. It leads to a simpler way for identifying some channel in
question. Some usage examples are presented and performance issues are discussed
concerning time and state-space.

Further work includes the adoption of coalgebric models aiming a more expressive
formalization of systems. Concerning the implementations, the integration with the
representation of finite and infinite (by means of functions) Timed Data Streams
(TDS) to compose the input data of the system to be incorporated in nuXmv and
Coq generated models (ongoing work).
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Abstract

The present paper is about affinities between John L. Pollock’s theory of
defeasible reasoning and the doctrine of the so-called upādhi in Navya-Nyāya, a
school of classical Indian philosophy. We will show that the defeasible character
of the five-membered inferences (anumāna), which Navya-Naiyāyikas regard
as a knowledge source, can be explained in terms of enumerative induction
and nomic generalization. Moreover, our analysis of an upādhi’s function as a
“vitiator” (dūs.an. a) and of Navya-Nyāya definitions of the concept of upādhi
will give a clue to relations between upādhis and “defeaters” in the sense of
Pollock’s theory.

Although the Navya-Nyāya doctrine of upādhi can be assimilated to Pol-
lock’s theory of defeasible reasoning, upādhis should not be confused with de-
featers. upādhis are objects of the domain. The equivalents of defeaters in the
Navya-Nyāya doctrine of upādhi are rather certain propositions which can be
gleaned from definitions of the upādhi and from specifications of an upādhi’s vi-
tiating function in Navya-Nyāya sources. Some of these propositions are only re-
butters and some are rebutters and undercutters with respect to different prima
facie reasons which are involved in a five-membered inference. It is important
to note that the defeater-related vitiating function of an upādhi, which aims
at overruling an inference, applies only to the so-called “ascertained upādhis”
(niścitopādhi). The so-called “dubious upādhis” (sam. digdhopādhi) are relevant
to situations which Pollock describes as “collective defeat”. We will see that the
distinction between a skeptical and a credulous reasoner can help to understand
in what sense this type of upādhi is also regarded as a vitiator in Navya-Nyāya.

Keywords: Indian Logic, Navya-Nyāya, upādhi, defeasible reasoning, Pollock
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1 Introduction
The idea that the Navya-Nyāya concept of upādhi is somehow akin to John L.
Pollock’s concept of a defeater hails from Stephen Phillips’ groundbreaking study
of Gaṅgeśa’s Upādhivāda (cf. [13]). The defeasible character of the five-membered
inferences (anumāna) which Navya-Naiyāyikas regard as a knowledge source (pramā-
n. a) is owing to an inductive leap in the third member. Although Navya-Naiyāyikas
clearly refer to induction as a method of identifying the so-called “pervasion” (vyāp-
ti), a relation between two properties functioning as probans (hetu or sādhana) and
probandum (sādhya) in an inference, it should not be overlooked that induction is not
accepted as a knowledge source sui generis in Navya-Nyāya. From a Navya-Nyāya
point of view it is perception (pratyaks.a) in combination with multiple observation
(bhūyodarśana) and the resulting mental impressions (sam. skāra) which functions
as a knowledge source for the cognition of a pervasion. Nevertheless, the procedure
involves an extrapolation from known cases of a co-presence (anvaya) and a co-
absence (vyatireka) of probans and probandum. As noted by Matilal (cf. [10]: 17f),
the reference to agreeing and disagreeing instances (sapaks.a and vipaks.a) in the
third member of a five-membered inference is reminiscent of Mill’s “Joint Method
of Agreement and Difference” (cf. [11]: 402f). Since the Navya-Naiyāyikas were well
aware that the cognition of a pervasion is fallible, they became keenly interested in
the upādhi as a vitiator which targets precisely this weak point of a five-membered
inference.1

2 A Recap of Pollock’s Theorie of Defeasible Reasoning

2.1 Nondefeasible (Conclusive) Reasons, Defeasible (Prima Facie)
Reasons and Defeaters

“There are two kinds of reasons – defeasible and nondefeasible. Nondefeasible reasons
are those reasons that logically entail their conclusions. For instance, (P&Q) is
a nondefeasible reason for P . Such reasons are conclusive reasons. Everyone has

1Although Phillips is well aware that an upādhi is not the same as a defeater in the sense of
Pollock’s theory, his translation of upādhi as “undercutting condition” can easily give rise to the
misunderstanding that the vitiating function of an upādhi consists merely in undercutting, not in
rebutting. Literal translations like “associate condition” ([10]: 166) or “adjunct” ([3]: 5) might work
with reference to theories according to which the upādhi’s function of vitiating is intertwined with
the function of a corrector. However, as noted by Phillips, Gaṅgeśa’s concept of upādhi cannot be
adequately captured by means of these translations, since Gaṅgeśa conceives of an upādhi merely
as a vitiator. In order to avoid the impression of an undue narrowness in our presentation of the
Navya-Nyāya doctrine of upādhi, we will leave the term upādhi untranslated.
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always recognized the existence of nondefeasible reasons, but defeasible reasons are
a relatively new discovery in philosophy, as well as in allied disciplines like AI.
Focusing first upon reasons that are beliefs, P is a defeasible reason for Q just in
case P is a reason for Q, but adding additional information may destroy the reason
connection. Such reasons are called ‘prima facie reasons’.” ([14]: 484) The additional
information which destroys the reason connection is called a “defeater”.

“For example, somethingâĂŹs looking red to me may justify me in believing that
it is red, but if I subsequently learn that the object is illuminated by red lights and
I know that that can make things look red when they are not, then I cease to be
justified in believing that the object is red.” ([14]: 481) In this example “X (= the
object referred to) looks red” is a prima facie reason, “X is red” is the conclusion.
“X is illuminated by red light” is a defeater.

Definition (Prima facie reason): “P is a prima facie reason for S to believe Q if
and only if P is a reason for S to believe Q and there is an R such that R
is logically consistent with P but (P & R) is not a reason for S to believe Q.”
([14]: 484)

The purpose of the consistency condition is to ensure that the existence of such
an R would not be trivially fulfilled. If R would not have to be consistent with P , one
might, e.g., choose R ∶↔ ¬P . In this case P & R is false and then it is trivially not
a reason for S to believe Q. Hence, without the consistency condition every reason
would be a prima facie reason.

Definition (Defeater): “R is a defeater for P as a prima facie reason for Q if and
only if P is a reason for S to believe Q and R is logically consistent with P
but (P & R) is not a reason for S to believe Q.” ([14]: 484)

2.2 Rebutter and Undercutter
Definition (Rebutting defeater): “R is a rebutting defeater for P as a prima facie

reason for Q if and only if R is a defeater and R is a reason for believing ∼ Q.”
([14]: 485)

Definition (Undercutting defeater): “R is an undercutting defeater for P as a prima
facie reason for S to believe Q if and only if R is a defeater and R is a reason
for denying that P wouldnâĂŹt be true unless Q were true.” ([14]: 485)

Denying that P wouldnâĂŹt be true unless Q were true means to claim that P
can be true, even though Q is false. In Pollock’s “red light”-example the defeater is

257



Guhe

an undercutter: “This is a defeater, but it is not a reason for denying that X is red
(red things look red in red light too). Instead, this is a reason for denying that X
wouldn’t look red to me unless it were red.” ([14]: 485)

3 Defeasible Reasoning in Navya-Nyāya

3.1 What Is Navya-Nyāya?

Navya-Nyāya (âĂĲNew LogicâĂİ?) is a school of classical Indian philosophy, which
succeeded the earlier Nyāya School (prāc̄ınanyāya). The beginnings of Navya-Nyāya
date back to the 12th or 13th century with authors such as Śaśadhara and Man. i-
kan. t.ha Miśra. There is, however, good reason to believe that the advent of Navya-
Nyāya is already foreboded in the works of Udayana (11th century), who is mostly
still considered to be a representative of the old Nyāya School (however, cf. [25]: 9f).
GaṅgeśaâĂŹs magnum opus Tattvacintāman. i (14th century) was seminal for the
development of the typical style of the Navya-Naiyāyikas’ approach to logical and
epistemological issues. In order to define their concepts with utmost precision they
designed an ideal language, a kind of Leibnizian characteristica universalis based
on a canonical form of Sanskrit, which serves to explicate the objective content of
verbalized and unverbalized cognitions and to disambiguate sentences formulated
in ordinary Sanskrit. The school reached its peak in the works of authors such as
Raghunātha Śiroman. i (16th century), Jagad̄ıśa and Gadādhara (17th century) and
has remained active through to the present day, although the scholarly work of
contemporary Navya-Naiyāyikas is mostly confined to exegetical endeavours.

3.2 The Navya-Nyāya Theory of Inference

3.2.1 The Five-Membered Inference

According to the theory of inference in late Nyāya and in Navya-Nyāya the ver-
balized form of an inference (anumāna) consists of five members, a thesis, three
members which are supposed to corroborate the claim formulated in the thesis, and
a conclusion which restates the thesis as a result of the inference. We will study this
type of inference with special regard to the third member, which seems to contain an
inductive leap. Deductive components are involved in the five-membered inference as
well, although from a Navya-Nyāya perspective the logical framework is essentially
inductive.

In the case of a valid inference the content of each of the five members must
be a veridical awareness (pramā), where truth is usually understood in the sense
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of correspondence to facts. However, we will see that accepting the third member
as true might involve a pragmatic concept of truth as an evidentially constrained
property.

Although Indian logicians did not symbolize the components of a correct five-
membered inference, it is clear that they conceived of it as an instance of formally
valid reasoning, since all the components are identified by certain technical terms and
the way they are related to each other and the order in which they are supposed to
appear is strictly determined. In Keśava Miśra’s Tarkabhās.ā, a work which according
to Dineśchandra Bhattacharya dates from the 12th century A.D. (cf. [2]: 64), one
can find the following stock example of a valid five-membered inference:

[1] parvato ’yam agnimān
[2] dhūmavattvāt.
[3] yo dhūmavān so ’gnimān yathā mahānasah. .2
[4] tathā cāyam.
[5] tasmāt tathā. ([22]: 40, 2f)

[1. Thesis (pratijñā)] This mountain possesses fire.
[2. Reason (hetu)] For, it possesses smoke.
[3. Example (dr.s. t.ānta)] Whatever possesses smoke, possesses fire, like the

kitchen.
[4. Application (upanaya)] This [mountain] is so (i.e., it possesses smoke as a

token of fire).
[5. Conclusion (nigamana)] Therefore, [it is] so (i.e., the mountain possesses

fire).

In this example the mountain functions as the subject of the inference (paks.a).
Fire is the probandum (sādhya), a property which according to the first member
can be proved to be present on the subject of the inference. Smoke is the probans or
prover (hetu or sādhana), a property whose presence on the subject of the inference is
an established fact according to the second member of the inference (which happens
to be called hetu as well). The probans functions as an indicator of the probandum.
According to the third member this is possible, because there is a universal relation

2A few lines later Keśava Miśra adds the following to the third member: evam. yatrāgnir nāsti
tatra dhūmo ’pi nāsti yathā mahāhrada iti vyatireken. a vyāptih. . ([22]: 40, 8f) – “Similarly, ‘Wherever
there is no fire, there is also no smoke, such as in a big lake.’ [This] is pervasion in terms of the
negative correlation.”
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called “pervasion” (vyāpti) between the probans and the probandum in the sense that
every locus of the probans is a locus of the probandum. The reference to examples in
the third member indicates that the cognition of a pervasion involves an inductive
generalization. The cognition is supported by wide experience of positive correlations
such as smoke and fire on a kitchen hearth and negative correlations such as absence
of smoke on a lake where there is absence of fire. Thus, the cognition of a pervasion is
the result of an extrapolation from certain known cases, i.e., it involves an inductive
leap to all unobserved cases, past, present and future, including the case at issue
in an inferential situation. Due to an epistemic process called “reflective grasping”
(parāmarśa), which is indicated in the fourth member, the probans’s presence on the
subject of an inference is associated with the pervasion relation and it is this that
finally gives rise to the “inferential awareness” (anumiti), the conclusion expressed
in the fifth member, i.e., the cognition that the probandum is present on the subject
of the inference.

3.2.2 The Third Member as an Instance of Enumerative (as Opposed
to Statistical) Induction

An adequate interpretation of the third member needs to warrant the universality
of the pervasion at issue without compromising the requirement that in the case of a
valid inference a reasoner needs to have cognitive access to the truth of a pervasion
in some sense. A possible solution to this problem is to interpret the pervasion at
issue as the conclusion of a rule, viz. the rule of enumerative induction. (The precise
definition will be given below.)

The conclusion of this type of induction is a so-called “nomic generalization”.
Pollock’s concept of a nomic generalization (cf. section 3.2.3) seems to be a close
approximation to what Navya-Naiyāyikas understand by “pervasion”. In contrast
to generics like “Birds fly” nomic generalizations are not compatible with the exis-
tence of exceptions. At this point a formal explication is still expendable. We will
rather make do with informal renderings like “All loci of the probans are loci of the
probandum” and tacitly assume that even future instances of the probans and the
probandum fall within the scope of such formulations. Hence, the following first-order
formalization is only a prima facie approximation to what the Navya-Naiyāyikas ac-
tually understand by pervasion:

(Vpf
1 ) ∀x(Hx → Sx) (where Hx translates into “x is a locus of the probans” and

Sx translates into “x is a locus of the probandum”)3

3Since Naiyāyikas conceive of pervasion as a relation (sam. bandha), one might object that the
denotatum of (Vpf

1 ) is not a relation, but a proposition, which expresses a condition on the in-
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Our interpretation of the third member of a five-membered inference in the
sense of an application of the rule of enumerative induction settles the question
how a cognitive agent can reasonably regard a pervasion as an object of a veridical
awareness, even without being able to check whether every locus of the probans
is a locus of the probandum. According to the rule of enumerative induction the
evidential support provided by the examples is a reason for a cognitive agent A
to believe that all H’s are S, in fact that even future H’s are S. This would be
impossible if A knew about counterexamples, or if A had any strong reasons to
believe that there will be counterexamples in the future. (The defeasible character
of the rule admits only the logical possibility of there being counterexamples.) Hence,
the pervasion at issue as the conclusion of an enumerative induction can be said to
be true in a pragmatic sense, inasmuch as sustained inquiry leads to a dependable
final verdict.4 In this case cognitive access to the truth of the pervasion at issue

stantiating pairs. However, it is also customary in Nyāya to talk about pervasion in the sense of
a proposition. Thus, Jinavardhana Sūri, a commentator on ŚivādityamiśraâĂŹs Saptapadārth̄ı, de-
fines pervasion as follows: vyāptir yatra yatra sādhanam. tatra tatra sādhyam, yatra sādhyam. nāsti
tatra sādhanam api nāst̄ıtilaks.an. ā. ([20]: 69, 24) – “Pervasion is defined as: ‘Wherever there is the
probans, there is the probandum. Wherever there is not the probandum, there is not the probans
either’.” Hereafter, we will use the term “pervasion” with reference to a relation and to propositions
alike. If necessary, the context will help to disambiguate the intended meaning.
Although expressions like “the pervasion of smoke by fire” seem to suggest that pervasion should

be construed as a second-order relation, it is also common in Nyāya to regard the relata as objects of
the domain, which includes properties. Thus, the property “being a locus of smoke” (dhūmavattva)
is said to be pervaded by the property “being a locus of fire” (vahnimavattva), so that pervasion can
be construed as a first-order relation. In George Bealer’s property theories properties are expressed
by means of special terms (cf. [1]: 43f). Instead of the predicates S (“. . . is a locus of smoke”) and
F (“. . . is a locus of fire”) the terms [Sx]x (“being an x such that x is a locus of smoke”) and[F x]x (“being an x such that x is a locus of fire”) can be regarded as denotations of relata of
the pervasion relation. However, instead of construing pervasion as a first-order relation, Navya-
Naiyāyikas rather conceive of it as a “relation-in-intension” (cf. [9]: 170f). Hence, a semi-formal
representation by means of Bealer’s formalization methods, such as [x is pervaded by y]xy (“being
an x and a y such that x is pervaded by y”), comes closer to the Navya-Nyāya understanding of
pervasion as a relation.

4According to one version of pragmatism, which attempts to preserve truth’s objectivity, truth
is what will be accepted in the end of inquiry. This approach identifies “being true with being
warrantedly assertible under epistemically ideal conditions” ([18]: 220). Such a pragmatic concept
of truth, which Putnam had advocated at least for some time, seems to be close to what Pollock
understands by “warrant”: “In contrast to justification, warrant is what the system of reasoning
is ultimately striving for. A proposition is warranted in a particular epistemic situation iff (if and
only if), starting from that epistemic situation, an ideal reasoner unconstrained by time or resource
limitations would ultimately be led to believe the proposition. Warranted propositions are those
that would be justified ‘in the long run’ if the system were able to do all possible relevant reasoning.
A proposition can be justified without being warranted, because although the system has done
everything correctly up to the present time and that has led to the adoption of the belief, there may
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does not depend on verifying empirically whether every locus of the probans is, has
always been and forever will be a locus of the probandum.5

Enumerative induction is an inference relation between a prima facie reason and
a conclusion. In our formal reconstruction of the third member of a five-membered
inference the claim of evidential support in the form of positive or negative exam-
ples functions as a prima facie reason and the pervasion at issue functions as the
conclusion.

Enumerative induction has to be distinguished from statistical induction: “The
simplest kind of induction is enumerative induction, which proceeds from the ob-
servation that all members of a sample X of A’s are B’s, and makes a defeasible
inference to the conclusion that all A’s are B’s. This is what is known as the Nicod
Principle. Goodman [1955] observed that the principle requires a projectibility con-
straint. With this constraint, it can be formulated as follows:

(7.1) If B is projectible with respect to A, then ⌜X is a sample of A’s all of which
are B’s⌝ is a prima facie reason for ⌜All A’s are B’s⌝.” ([17]: 77)

“Enumerative induction has been a favorite topic of philosophers, but statistical
induction is much more important for the construction of a rational agent. It is rare
that we are in a position to confirm exceptionless universal generalizations. Induction
usually leads us to statistical generalizations that either estimate the probability of
an A being a B, or the proportion of actual A’s that are B’s, or more simply, may
be further reasoning waiting to be done that will mandate the retraction of the belief. Similarly, a
proposition can be warranted without being justified, because although reasoning up to the present
time may have failed to reveal adequate reasons for adopting the proposition, further reasoning
may provide such reasons. Analogously, reasoning up to the present may mandate the adoption
of defeaters which, upon further reasoning, will be retracted. So justification and warrant are two
importantly different notions, although they are closely related.” ([16]: 5)

5Pragmatic theories focus on what people are doing when describing statements as true.
They link truth to verifiability, assertibility, usefulness, or long-term durability. The author of the
Upādhidarpan. a, an unpublished anonymous pre-Gaṅgeśa Navya-Nyāya manuscript (cf. [2]: 167),
seems to refer to such a pragmatic theory of truth when he explains in what sense an inference can
be accepted as valid, even though an acquaintance with all loci of the probans which are involved
in the pervasion relation is beyond the scope of a reasoner’s limited cognitive abilities: j̄ıvanavilopa-
prasaṅgāt. pratidinam āhārārthina āhārasya hitasādhanatām. vijñāya samanantaram. bhāvino ’pi tad
anumāyaiva pravartate. anyathā pravr. ttivirodhaprasaṅgāt. yas tv anumānam. nāṅḡıkaroti sa katham.
prativād̄ıbhavet. ([24]: 4b, 14f) – “[Proponent of the right view:] [Inferences which are not based
on the knowledge of all substrates of a positive or negative correlation can also be valid], because
[otherwise] there would be the undesirable consequence of a disturbance of everyday life. Observ-
ing day by day that for someone who seeks food eating brings about benefit, one thereupon acts
[in accordance with that] after having inferred that also for the future. Because, otherwise, there
would be an obstacle to active life. Who, however, does not agree to [this] inference, how should he
respond?”
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lead us to the conclusion that most A’s are B’s. Such statistical generalizations
are still very useful, because the statistical syllogism enables a cognizer to make
defeasible inferences from them to nonprobabilistic conclusions.” ([17]: 78)

Since according to Pollock the conclusion of an enumerative induction is a nomic
generalization, this type of induction is preferable to statistical induction for the
purpose of a formal explication of the third member. Nevertheless, some refinement of
the enumerative inductive inference pattern seems appropriate in order to assimilate
it to the theory of inference in Navya-Nyāya. Since the Navya-Naiyāyikas also take
into account negative examples of a co-absence of probans and probandum, one
might want to include a second sample of negative examples in the prima facie reason.
Thus, the prima facie reason would be the claim of evidential support in the form of
a sample X exemplifying the co-presence of the properties “being an H” and “being
an S” and of a sample Y exemplifying the co-absence of “being an H” and “being
an S” (cf. the kitchen hearth as a locus of smoke and fire and the lake as a locus
of the co-absence of smoke and fire in the above-mentioned smoke/fire-example).
However, such a set Y does not exist in cases in which the probandum is a property
whose presence in all loci other than the inferential subject is warranted. Thus,
the above-mentioned smoke/fire-example should not be taken to be representative
of all kinds of five-membered inferences. Moreover, there are cases in which the
occurrence of the probandum is confined to the inferential subject, so that only the
previously observed instances of a co-absence of “being an H” and “being an S”
can serve as an inductive support for the inferential subject’s being H and S. Thus,
from the perspective of Navya-Nyāya it seems desirable to have three enumerative
induction principles, one for anvayavyatirekyanumānas, i.e., inferences with positive
and negative inductive support (EI±), one for kevalānvayyanumānas, i.e., inferences
with only positive inductive support (EI+), and one for kevalavyatirekyanumānas,
i.e., inferences with only negative inductive support (EI−).6
(EI±) If S is projectible with respect to H, then ⌜There is a set X of HâĂŹs, and

all the members of X are S, and there is a set Y of things which are not S
and they are all not H⌝ is a prima facie reason for ⌜All HâĂŹs are S⌝.

6Here are two examples which Navya-Naiyāyikas regard as shortcuts of valid inferences with
only positive inductive support (1) and only negative inductive support (2):

(1) ghat.o ’bhidheyah. prameyatvāt. ([23]: 40) – “The pot is nameable, because it is knowable.”
(2) pr. thiv̄ıtarebhyo bhidyate gandhavattvāt. (ibid.) – “Earth is different from other things (than

earth), because it possesses smell.”

Interpreting (1) and (2) as examples of inductive inferences seems rather odd at first sight.
However, in section 3.2.3 we will see that such an interpretation stands to reason if we take into
account the strong realist footing of Navya-Nyāya epistemology.
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(EI+) If S is projectible with respect to H, then ⌜There is a set X of HâĂŹs, and
all the members of X are S⌝ is a prima facie reason for ⌜All HâĂŹs are S⌝.

(EI−) If S is projectible with respect to H, then ⌜There is a set Y of things which
are not S and they are all not H⌝ is a prima facie reason for ⌜All HâĂŹs are
S⌝.

The projectibility constraint is actually well noted by Navya-Naiyāyikas. In
Gaṅgeśa’s Upādhivāda and in the UD there are long discussions about the pos-
sibility of admitting “being different from the inferential subject” (paks.etaratva) as
an inductively inferable property of all things exhibiting the probandum. If this
property were projectible with respect to the probandum, it would undermine all
sound inferences based on (EI±). Since the probandum of such inferences is supposed
to occur in other loci than the inferential subject as well, there will always be a set
X of examples which exhibit the probandum and the property “being different from
the inferential subject”. Hence, by (EI+) every locus of the probandum would be
different from the inferential subject, i.e., the inferential subject would not be an
instance of the probandum.

3.2.3 Pervasion as a Nomic Generalization

In Navya-Nyāya pervasion is an ontological relation. It can be an ordinary causal
relation as in the case of the smoke/fire-example. Since the Navya-Naiyāyikas are
realists, they also regard a pervasion relation as ontological in cases in which it is
based on a genus-species relationship. Waterness, e.g., was supposed to be pervaded
by substanceness: Whatever is a locus of waterness, i.e., whatever is water, is a
locus of substanceness, i.e., it is a substance. In this case probans and probandum
were conceived of as universals, the ontological correlates of the terms “water” and
“substance”.

“Realism is important along every dimension of Nyāya epistemology. A pervasion
is held to obtain in nature, and for this reason, strictly speaking, one could be
grasped from a single exhibited connection. For example, from a single instance of
sight of smoke rising from fire, the pervasion, wherever smoke there fire, could be
grasped, or from viewing a horse and a cow, one could know that a horse is not
a cow and (to express the pervasion, here a negative one) whatever is a cow is
not a horse and conversely. In other words, inductive generalization may proceed
from a single instance, what we might call extrapolation (Fs as generally G from
a single observation of an F as a G). However, repeated experience of the relation
(along with no experience of an F as not a G) is said normally to be necessary for
a firm impression to take hold in one’s memory, an impression capable of informing
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or guiding an action including speech. In any case, recurrent experience normally
means an increase in epistemic confidence.” ([13]: 7f)

Since the relata of a genuine pervasion were always supposed to be grounded in
the empirical world, all statements of pervasion relations could be regarded as posi-
tive statements that can be tested, amended or rejected by referring to the available
evidence. Thus, all five-membered inferences could be regarded as inductive, not only
those based on causal pervasion relations. According to some interpreters Gaṅgeśa
even seems to have construed pervasion relations in general as causal relations, al-
though in cases like, e.g., the pervasion of waterness by substanceness this seems
possible only if we considerably extend our ordinary understanding of causality be-
yond the limits (cf. [13]: 11 and 99f and [3]: 217).

A pervasion relation is a law-like relation in the sense that due to ontological
regularities every locus of the probans is, has always been and forever will be a locus
of the probandum. The presence of the probans necessarily entails the presence of
the probandum. In order to formalize this kind of invariable concomitance, we can
rely on the standard way of expressing metaphysical necessity, viz. by means of an
S5 ◻-operator. By prefixing it to (Vpf

1 ) we obtain the following more accurate prima
facie formalization:

(Vpf
2 ) ◻∀x(Hx→ Sx)
Pollock’s formalization of a nomic generalization is a bit more complex, because

it is designed to be applicable to certain cases which are probably not relevant to an
adequate formal explication of the concept of pervasion, viz. so-called “counterlegal
nomic generalizations”, i.e., nomic generalizations whose antecedents are counterle-
gal (cf. [15]: 43 and [5]: 432f). Newton’s First Law is an example:

(N) All objects unaffected by an outside force travel in a straight line at a constant
velocity.

According to Newton’s Law of Gravitation all objects exert a gravitational force
on all other objects (albeit a small one for objects far from each other). Hence,
there are no objects which are unaffected by an outside force. However, (N) is not
vacuously true, because it is not equally true that an object which is unaffected by an
outside force would not travel in a straight line at a constant velocity. Moreover, an
adequate formalization of counterlegal nomic generalizations should be compatible
with our intuition that “laws” like (N∗) are false:

(N∗) All objects unaffected by an outside force turn into a hippopotamus.
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According to Pollock (N) and (N∗) can be formalized as . . .

(Nf) ◇p∃xFx > ◻p∀x(Fx→ Gx) and

(N∗
f ) ◇p∃xFx > ◻p∀x(Fx→Hx), where . . .

. . .Fx, Gx and Hx translate into “x is unaffected by an outside force”, “x trav-
els in a straight line at a constant velocity” and “x turns into a hippopotamus”,
respectively, “>” is a counterfactual conditional, and “◇p” and “◻p” are S5 modal-
ities translating into “It is physically possible that” and “It is physically necessary
that”, respectively (cf. [15]: 43).

Pollock regards nomic generalizations (including counterlegal ones) as counter-
factuals, i.e., he reads (N) and (N∗) as: “If objects unaffected by an outside force
did possibly exist, it would necessarily be the case that they travel in a straight line
at a constant velocity (or: that they turn into a hippopotamus).” According to this
explication (N) can reasonably be regarded as true and (N∗) as false.

The semantics of Pollock’s counterfactual conditional “>” is similar to that of
David Lewis’ “◻→”-conditional: Pollock adopts Lewis’ sphere conception in order to
model the intuition that the accessible worlds are the most similar worlds at which
the antecedent is true. However, according to Pollock similarity is cashed out in
terms of consistency with the laws of nature, whereas for Lewis it is a comparative
overall similarity which accounts for the fact that a world w′ is regarded as more
(or less) similar to a world w than a world w′′ (cf. [15]: 41 and [8]: 91).

The idea of a counterlegal nomic generalization was by no means alien to the
Naiyāyikas. Chakrabarti notes the following example: “An eternal entity that is
independently productive is productive for ever.” ([3]: 40) However, the instances of
pervasion which Navya-Naiyāyikas take into account are normally non-counterlegal
nomic generalizations. Gaṅgeśa, e.g., explicitly excludes counterlegal pervasions by
including the constraint of existential import in his definition of pervasion, i.e., the
requirement that the probans should be instantiated at the actual world (cf. [6]:
109). Hence, according to Gaṅgeśa pervasion should rather be formalized as . . .

(V) ◻∀x(Hx→ Sx) ∧ ∃xHx

. . . , where the quantifiers should be understood in an actualist sense (cf. [5]: 249
and 252f). A possibilist reading of the existential quantifier in the second conjunct
would strip the constraint of existential import of its ontological commitment, which
is surely associated with it. Thus, an interpretation of (V) by means of a varying
domain model (cf. [5]: 254f and [7]: 274f) seems to be preferable to a constant domain
approach, which presupposes a single domain (consisting of actual as well as possible
objects) as the range of quantification.
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A formalization of pervasion as a nomic generalization which is equivalent to (V)
can be obtained from (V) by replacing the first conjunct by ◇∃xHx > ◻∀x(Hx →
Sx), the corresponding formula for counterlegal and non-counterlegal nomic gener-
alizations alike:

(V′) (◇∃xHx > ◻∀x(Hx→ Sx)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶↔∶H⇒S

) ∧ ∃xHx

Since the present modal framework is S5, ∃xHx→◇∃xHx. Moreover, according
to Pollock’s Theorem (3.15) ◇∃xHx → ((H ⇒ S) ↔ ◻∀x(Hx → Sx)) (cf. [15]:
44), where H ⇒ S is used as an abbreviation of ◇∃xHx > ◻∀x(Hx → Sx). The
“⇒” between predicate symbols is Pollock’s standard way of abbreviating nomic
generalizations.

The utility of a (V)- or (V′)-like pervasion in an inferential situation becomes
obvious if we take into account that in S5 ◻∀x(Hx→ Sx)→ ∀x(Hx→ Sx), or that
nomic generalizations entail material generalizations, i.e., (H ⇒ S)→ ∀x(Hx→ Sx)
(cf. [15]: 36). Hence, a (V)- or (V′)-like pervasion and the second member of a five-
membered inference entail that the inferential subject is a locus of the probandum.
In a particular inferential situation the material implication ∀x(Hx → Sx) gives a
clue to the probandum’s occurrence on the inferential subject, since the latter is
an element of the domain of existing objects. Thus, the following wff (Vact) can
be regarded as the adaptation of the pervasion at issue to a contextually relevant
application:

(Vact) ∀x(Hx→ Sx) ∧ ∃xHx

The quantifiers in (Vact) are to be understood in the same way as in (V) and
(V′), i.e., in an actualist sense. Since (Vact) is a relativization of (V) and (V′) to the
actual state of affairs, we will refer to (Vact) as “the actualized concept of pervasion”.
Fig. A is its representation as a Venn diagram:

H S

x

Fig. A
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(V), (V′) and (Vact) are all conjunctions with the same conjunct ∃xHx. Hence,
the “non-pervasion” (avyāpti) of “being an H” by “being an S” might be said to
apply to a case in which only this conjunct is false. From the perspective of the
actual world, the region with a cross in Fig. A would have to be shaded and H
would be an empty term then:

H S

Fig. B

However, Navya-Naiyāyikas normally understand “non-pervasion” in the sense
of a “deviation” (vyabhicāra) of the probans from the probandum, i.e., in the sense
of the existence of a counter-example to the pervasion relation at the actual world.
Thus, the non-pervasion of “being an H” by “being an S” can be expressed as the
negation of (Vpf

1 ), i.e., as . . .

(Vneg) ∃x(Hx ∧ ¬Sx)
. . . , where the quantifier should be read in an actualist sense, i.e., the domain Dw0

of objects at the actual world w0 has to be regarded as the range of quantification,
represented as a box in the corresponding Venn diagram Fig. C:

x

H S

Fig. C
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3.3 The Doctrine of upādhi in Navya-Nyāya

3.3.1 An Example

An upādhi is said to be a “vitiator” (dūs.an. a) of assailable pervasions and, hence,
of assailable inferences. However, the vitiating function is rather attributed to the
upādhi’s absence in certain loci. Here is a classical example: Although smoke is sup-
posed to be pervaded by fire, the putative pervasion of fire by smoke is unwarranted.
The sample from which this pseudo-pervasion might be extrapolated turns out to
be not a fair one if we find out that in the case of all hitherto observed instances of
fire the co-occurrence with smoke was owing to the presence of an upādhi, viz. wet
fuel. Wherever there is fire without wet fuel, as in the case of molten metal, there is
no smoke. Of course, the identification of a counter-example would suffice to refute
the universality of a putative pervasion. The upādhi is supposed to account for the
existence of counter-examples: The reason why there are loci of fire without smoke
is that fire produces smoke only in the presence of wet fuel.

3.3.2 The upādhi’s Function of Vitiating

In the above-mentioned stock example of an upādhi the absence of the upādhi in
a locus of the probans entails the absence of the probandum. However, an upādhi
may also vitiate in the sense that its absence in a locus of the probans is a reason
to doubt the presence of the probandum. Two basic senses of “vitiating” have to be
distinguished:

1.) Vitiating in the sense of “overruling”: We will see that in the case of the
so-called ascertained upādhi (niścitopādhi) the claim of its absence in certain loci
can be regarded as a defeater in the sense of Pollock’s theory. A putative pervasion
or inference are overruled by means of an ascertained upādhi.

2.) Vitiating in the more general sense of “blocking an inference”: A dubious
upādhi (sam. digdhopādhi) or rather its absence in certain loci vitiates in the sense
that it prevents us from drawing a conclusion if there are equally good reasons for and
against denying the thesis of the inference or the universality of a putative pervasion
relation. Thus, the Navya-Naiyāyika’s way of resolving epistemic ties dovetails with
the behaviour of a skeptical reasoner who acknowledges epistemic ignorance and
withholds belief rather than choosing randomly like a credulous reasoner.

On the surface, an upādhi seems to be similar to a so-called “undercutting de-
feater” in the sense of Pollock’s theory of defeasible reasoning. Stephen Phillips
translates upādhi as “undercutting condition”, although he is well aware that there
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are differences between an upādhi and an undercutting defeater in the sense of Pol-
lock’s theory (cf. [13]: 14f): An upādhi is an object of the domain such as, e.g., wet
fuel, whereas Pollock’s defeater is a mental state. In most cases it is a belief. If we
identify a belief with its propositional content, the equivalents of a defeater in the
Navya-Nyāya doctrine of upādhi can be said to be certain propositions, which are
true of an upādhi, and not all of them are undercutters. Some of them are rebutters
and some of them are rebutters and undercutters with respect to different prima facie
reasons. These defeaters can be gleaned from specifications of an upādhi’s vitiating
function and from the UD’s so-called “specific defining characteristic” (viśes.alaks.a-
n. a) of an upādhi, which serves to determine whether a certain property is an upādhi
relative to a specific pair of probans and probandum. In the strict sense of Pollock’s
terminology it is inappropriate to say that in the case of the putative pervasion of
fire by smoke smoke is a prima facie reason, which is defeated by wet fuel, or that the
property “looking red to me” is a prima facie reason for the property “being red”,
which is defeated by the property “absence of red light”.7 If we want to assimilate
the theory of the upādhi to his theory of defeasible reasoning, it cannot be done in
quite the same way as Stephen Phillips suggests.

A prima facie reason in Pollock’s sense cannot be the probans of an assumed
pervasion. There are actually two other candidates for a prima facie reason which
Navya-Naiyāyikas seem to take into account and which can be said to be veritable
prima facie reasons in Pollock’s sense:

(R1) There is evidential support for the pervasion at issue in the form of a sample{e1, . . . , en} of positive or negative examples. (This claim of evidential support
is part of the third member of a five-membered inference.)

(R2) The inferential subject is a locus of the probans.´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=the second member

∧

(R1) ∧ ((R1) is a prima facie reason for “All H’s are S”.)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=the third member

The pervasion at issue (“All H’s are S”) can be regarded as the conclusion drawn
from (R1). The thesis of an inference (Ss: “The inferential subject is a locus of the
probandum.”) can be regarded as the conclusion drawn from (R2).

7The counterpart of wet fuel in the smoke/fire-example is the absence of red light in Pollock’s
example, since the absence of the absence of red light, i.e., the presence of red light, is a vitiator in
his example, in the same way as the absence of wet fuel functions as a vitiator in the smoke/fire-
example.
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In the Navya-Nyāya doctrine of upādhi we find also genuine equivalents of a
defeater in the sense of Pollock’s theory. Let us look again at Pollock’s “red light”-
example: Apart from the defeater-proposition (marked as D

√
. . . below) it contains

a piece of background information (marked as B
√

. . . below), which warrants the
latter’s functionality as a defeater:

(E0) “For example, somethingâĂŹs looking red to me may justify me in believing
that it is red, but if I subsequently learn that D√the object is illumi-
nated by red lights and I know that B√that can make things look red
when they are not, then I cease to be justified in believing that the object
is red.”

Similar propositions can be identified in Navya-Nyāya specifications of the vi-
tiating function of an upādhi. Two propositions are involved in such specifications,
viz. the statement of the upādhi’s absence in a locus of the probans, which in an
inferential situation may be identical to the inferential subject (also marked as D

√
. . .

below), and the statement that the absence of the upādhi in a locus of the probans
entails the absence of the probandum (also marked as B

√
. . . below).

Gaṅgeśa defines an upādhi according to its “essence” (svarūpa) as follows:

(E1) yad vā yah. sādhanavyabhicār̄ı sādhyavyabhicāronnāyakah. , sa upādhih. . ([4]: 13,
19f) – “ B

√
What indicates the deviation (of the probans) from the proban-

dum8 if D√it has the probans as something deviating from it, that is an upā-
dhi.”

Gaṅgeśa cites also Man. ikan. t.ha, whose definition expresses basically the same:
anye tu yadvyāvr. ttyā yasya sādhanasya sādhyam. nivartate, sa dharmas tatra hetāv
upādhih. . ([4]: 14, 30f) – “Others, however, [say]: ‘That property on account of whose
absence the probans is lacking the probandum is an upādhi for that probans.’ ” We
can paraphrase this as follows:

(E2) “If D√the upādhi is absent from a locus of the probans, B√its absence there
entails the absence of the probandum.”

The UD specifies the vitiating function of an upādhi with respect to an inferential
context:

8According to the “If”-clause, i.e., the D
√-part, this can be explicated as: “What indicates the

absence of the probandum due to its own absence in a locus of the probans, . . . ”
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(E3) asmin paks.a upādhāv avidyamāne tannis. t.havyāpyatvahetor viruddhavyabhicā-
risādhāran. abhūtasādhyābhāvasādhakatvam. tadvyatirekasya paryavasyat̄ıti
([24]: 7b, 20f) – “If D√an upādhi is not present on this inferential subject, then
it (i.e., the property of being a vitiator) amounts to the fact that the absence
of that (= the absence of the upādhi on the inferential subject) is like an
incoherent deviating [pseudo-probans] and proves the absence of the proban-
dum (from the inferential subject),9 because of the pervadedness (by the ab-
sence of the probandum) resident in that (absence of the upādhi, i.e., because
B√the absence of the upādhi is pervaded by the absence of the probandum in
the range of the probans).”

By means of first-order formalization techniques and the symbolization key . . .

Hx: “x is a locus of the probans”
Sx: “x is a locus of the probandum”
Ux: “x is a locus of the upādhi”
s: “the inferential subject”

. . . we can render the B
√

. . .-proposition in (E1) – (E3) as . . .

(B) ∀x(Hx ∧ ¬Ux→ ¬Sx)10

. . . and the D
√

. . .-proposition as . . .

(D1) ∃x(Hx ∧ ¬Ux)
. . . in the case of (E1) and (E2) and as . . .

(D2) Hs ∧ ¬Us

9The “incoherent” (viruddha) probans is a special type of “pseudo-probans” (hetvābhāsa). In
Nyāya a probans is called “incoherent” if “it is in contradiction to something which the proponent
has already accepted or is known to hold” ([12]: 98), such as the probans in the inference “Sound
is eternal, because it is produced”. This is “a hetu which is constantly accomapanied (sic!) by the
absence of the sādhya” (ibid.: 115). The absence of the upādhi is related to the probandum in the
same way as an incoherent probans is related to the probandum in an invalid inference. If the upādhi
pervades the entire probandum, every locus of the absence of the upādhi is a locus of the absence of
the probandum. According to Gaṅgeśa’s defining characteristic of the upādhi (cf. section 3.3.3), the
latter needs to pervade the probandum only in the range of the probans. In this case every locus of
the absence of the upādhi in the range of the probans is a locus of the absence of the probandum.

10(D1) and (D2) (cf. below) ensure that the quantification in (B) is not vacuous. Hence, (B) is
an adequate rendering of the actualized concept of pervasion expressed in the B√. . .-proposition in
(E3).
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. . . in the case of (E3).
If (D1) and (D2) are conjoined with (B), they actually function as defeaters

of the prima facie reasons (R1) and (R2). (D1) and (D2) rebut (R1), because the
conjunction of each of them with (B) entails ∃x(Hx ∧ ¬Sx), which means that the
conclusion drawn from (R1) is false, i.e., that the purported pervasion relation does
not hold:

⊢ ∃x(Hx ∧ ¬Ux) ∧ ∀x(Hx ∧ ¬Ux→ ¬Sx)→ ∃x(Hx ∧ ¬Sx)
⊢Hs ∧ ¬Us ∧ ∀x(Hx ∧ ¬Ux→ ¬Sx)→ ∃x(Hx ∧ ¬Sx)

The rebutting function of (D1) and (D2) with respect to (R1) can be represented
as follows:

claim of evidential support´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
prima facie reason (R1)

// pervasion´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
conclusion

∃x(Hx ∧ ¬Ux)/Hs ∧ ¬Us

rebuts in combination with ∀x(Hx ∧ ¬Ux→ ¬Sx)OO

(R2) is rebutted by (D2), because the conjunction with (B) entails ¬Ss, which
means that the conclusion drawn from (R2), viz. the thesis of the inference, is false:

⊢Hs ∧ ¬Us ∧ ∀x(Hx ∧ ¬Ux→ ¬Sx)→ ¬Ss

(R2) is undercut by (D1), because the conjunction of (D1) and (B) only implies
that ∃x(Hx ∧ ¬Sx). So, Ss may be true or false. (R2) is just not a proper reason
for Ss. The rebutting function of (D1) and the undercutting function of (D2) with
respect to (R2) can be represented as follows:

second member ∧ third member´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
prima facie reason (R2)

// thesis²
conclusion

Hs ∧ ¬Us

rebuts in combination with ∀x(Hx ∧ ¬Ux→ ¬Sx)OO

second member ∧ third member´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
prima facie reason (R2)

// thesis²
conclusion

∃x(Hx ∧ ¬Ux)undercuts in combination with ∀x(Hx ∧ ¬Ux→ ¬Sx)OO

273



Guhe

The following chart outlines the ways in which (D1) and (D2) are related to (R1)
and (R2):

rebuts undercuts
(D1) (R1) (R2)
(D2) (R1), (R2) –

(D2) can only be a rebutter, whereas (D1) can be a rebutter and an undercut-
ter, but with respect to different prima facie reasons. Since (D2) implies (D1), (D2)
rebuts everything that (D1) rebuts. If we understand an undercutter as a proposition
which can be true, while the conclusion may be true or false, only (D1) can be an
undercutter, because (D1) does not give a clue to the locus of the deviation of the
probans from the probandum. Hence, (D1) is not a reason to deny the conclusion
drawn from (R2).

Let us look at an example: We assume that an agent A observes fire on a distant
mountain in the dark and concludes that there is also smoke hidden in the dark. A’s
pseudo-inference involves the pseudo-pervasion of fire by smoke. In this situation A
might get to know from a reliable source that there is no wet fuel on the mountain,
and A knows that the absence of wet fuel entails the absence of smoke. The fire on
the mountain actually emanates from a red-hot iron ball. Thus, the proposition that
the mountain is a locus of fire without wet fuel is a (D2)-like rebutter, because it is
for A a reason to deny (i) the thesis of the inference as the conclusion drawn from
an (R2)-like prima facie reason and (ii) the universality of the putative pervasion of
fire by smoke as the conclusion drawn from an (R1)-like prima facie reason.

Now, let us assume that A gets to know from a reliable source that there are
loci of fire without wet fuel, and A knows that the absence of wet fuel entails the
absence of smoke. However, A does not know whether the mountain is a locus of
the absence of wet fuel. In this situation the proposition that there is a locus of fire
without wet fuel is a (D1)-like rebutter, because it is for A a reason to deny (ii).
Moreover, it is a (D1)-like undercutter, because it is for A a reason to deny that (R2)
would not be true unless the thesis of the inference were true. The mountain may
well be a locus of the probans and there may well be a sample of positive or negative
examples providing evidential support for the pervasion at issue. Nevertheless, the
thesis of the inference may be false, because the sample providing evidential support
might not be a fair one.

It is important to note that a (D1)-like undercutter attacks only the connection
between (R2) and the conclusion, viz. the thesis of the inference. The latter may
be true or false. Thus, (D1) can also function as an undercutter with respect to a
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pseudo-inference whose thesis is undeniably true. If, e.g., an agent A argues that a
pot is produced, because it is nameable like a piece of cloth etc., one might refute
the argument by defeating A’s choice of a sample for drawing the conclusion that
whatever is nameable is also produced. Although the thesis of the inference is un-
controversial, A’s sample is apparently not a fair one, since only things which are
nameable and non-eternal are produced. The proposition expressing the absence of
the property “being non-eternal” in a locus of the property “nameability” functions
here as a (D1)-like undercutter.

The types of rebutting and undercutting defeaters which we are distinguish-
ing here correspond to different characterizations of an upādhi’s vitiating functions
which are discussed by Gaṅgeśa in the Tattvacintāman. i. Gaṅgeśa prefers to char-
acterize this vitiating function as “leading to the fallacy of the conditional probans
(i.e., a type of pseudo-probans which only in combination with an upādhi allows us
to infer the probandum)” (vyāpyatvāsiddhyāpādaka). This might be understood as a
portrayal of (D1)’s and (D2)’s function of rebutting (R1) and of (D1)’s function of un-
dercutting (R2). Alternatively, these rebutting and undercutting functions might be
characterized as “indicating a deviation” (vyabhicāronnāyaka), i.e., indicating that
the purported universality of the pervasion at issue is unwarranted. Moreover, (D2)’s
function of rebutting (R2) might be characterized as “amounting to [the affirmation
of] the counter-thesis” (pratipaks.aparyavasāna).

It should be noted that the rebutting or undercutting function of (D1) and (D2)
depends essentially on an appropriate background information. If (B) is true, (D1)
and (D2) fulfill the criteria of a rebutting or undercutting defeater according to
Pollock’s definition. First of all, they are defeaters of (R1) and (R2), because . . .

a) they are consistent with (R1) and (R2): Due to (B), the absence of the upādhi
in a locus of the probans entails the absence of the probandum. But despite the
absence of the probandum (from the inferential subject or from any other locus of
the probans) there might be a sample of instances of a co-presence or co-absence of
probans and probandum (in accordance with (R1)). Moreover, despite the absence of
the probandum (from the inferential subject or from any other locus of the probans)
the inferential subject might be a locus of the probans and one might reasonably
claim that a sample of instances of a co-presence or co-absence of probans and
probandum provides inductive support for the pervasion at issue (in accordance
with (R2)).

b) (R1) & (D1) and (R1) & (D2) are no reasons to believe that all H’s are S,
and (R2) & (D1) and (R2) & (D2) are no reasons to believe that Ss, since due to
(B) the absence of the upādhi in a locus of the probans entails the absence of the
probandum.
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Finally, (D1) and (D2) are rebutters for (R1), because due to (B) they are a
reason for believing that not all H’s are S. (D2) is a rebutter for (R2), because due
to (B) it is a reason for believing ¬Ss. (D1) is an undercutter for (R2), because
due to (B) it is a reason to deny that (R2) would not be true unless the conclusion
Ss were true. (s might be a locus of the probans and there might be a sample X
which provides positive or negative inductive support for the pervasion at issue.
Nevertheless, the sample might not be a fair one, since the H’s in X are S, only
because they are all U . However, s might be an H which is not U and in that case¬Ss due to (B).)

It is important to note that (B) is sufficient, but not necessary for (D1)’s and
(D2)’s functionality as defeaters. (D2), e.g., could also function as an undercutter
for (R2) if the absence of the upādhi in a locus of the probans co-occurs with both,
the absence and the presence of the probandum, i.e., in the case of . . .

(B′) ∃x(Hx ∧ ¬Ux ∧ ¬Sx) ∧ ∃x(Hx ∧ ¬Ux ∧ Sx).
Due to (B′) (D1) is also a reason to deny that (R2) would not be true unless the

conclusion Ss were true. However, if the upādhi is related to probans and probandum
in the sense of (D1) and (B′), it is only a so-called “apparent upādhi” (upādhyābhā-
sa) according to Gaṅgeśa, since he insists that the absence of the upādhi in a locus
of the probans entails the absence of the probandum. Although the Navya-Nyāya
doctrine of an upādhi can be assimilated to Pollock’s theory of defeasible reasoning
in the manner outlined here, the latter is applicable to a far wider range of defeasible
inferences. Thus, Pollock’s example, the inference of “X is red” from “X looks red”,
is rather based on a defeasible rule of thumb than on an inductive generalization.
Even if we regard “looking red” in this example as a probans and “being red” as
a probandum, the object which comes closest to an upādhi here, viz. “the absence
of red light”, is only an apparent upādhi, since “looking red”, “being red” and “the
absence of red light” are related to each other in terms of (D1) and (B′). (B) is not
warranted in this case, because red light (= the absence of the apparent upādhi,
i.e., the absence of the absence of red light) co-occurs with both, the absence of the
probandum and the presence of the probandum: “Red objects look red in red light
too.” ([14]: 485)

3.3.3 The Definition of the Concept of an upādhi

The definition of the upādhi is a controversial topic in Navya-Nyāya. Let us com-
pare (D1) to the following adaptation of Gaṅgeśa’s definition of the upādhi to the
canonical form of a specific defining characteristic which defines an upādhi’s relation
to probans and probandum in terms of pervasion and non-pervasion:
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(G1) The upādhi does not pervade the probans and

(G2) it pervades the probandum in the range of the probans.11

If we understand pervasion in terms of the actualized concept of pervasion (cf.
(Vact)), (G1) and (G2) can be formalized as follows:

(G1
′) ∃x(Hx ∧ ¬Ux)

(G2
′) ∀x(Hx ∧ Sx→ Ux) ∧ ∃x(Hx ∧ Sx ∧Ux)

(G1
′) is identical to (D1). In (G2

′) the first conjunct is equivalent to (B), i.e.,∀x(Hx ∧ ¬Ux → ¬Sx). From (B) and (G1
′) we can conclude that ∃x(Hx ∧ ¬Sx).

Hence, the first conjunct of (G2
′) warrants the rebutting or undercutting function

of (G1
′). The second conjunct, which serves to warrant existential import for the

universally quantified formula, is merely collateral to the formulation of the first
conjunct of (G2

′) in terms of the pervasion relation. Thus, Gaṅgeśa’s specific defining
characteristic of an upādhi implies that (G1

′) is a (D1)-like rebutting or undercutting
defeater in the sense of Pollock’s theory.

Fig. D below is a diagrammatic representation of this definition. The next dia-
gram, Fig. E, represents the classical fire/smoke/wet fuel-example. It shows that in
this case the upādhi fulfills the criteria (G1) and (G2).

11Gaṅgeśa actually formulates his defining characteristic in a different way: yadvyabhicāritvena
sādhanasya sādhyavyabhicāritvam. sa upādhih. . ([4]: 12 [§6], 36 = [13]: 80) – “That is an upādhi due
to whose deviation (from the probans) the probans deviates from the probandum.” The difference
between (G1) and (G2) and Gaṅgeśa’s original formulation is, however, rather a matter of form
than of content. Gaṅgeśa expresses (G1) in terms of a “deviation” (vyabhicāra). As indicated by
the instrumental yadvyabhicāritvena, this deviation entails the deviation of the probans from the
probandum. Phillips understands Gaṅgeśa’s formulation in the sense of ∀x(Hx∧¬Ux→Hx∧¬Sx),
which is equivalent to (∗) ∀x(Hx ∧ Sx → Ux) (cf. ibid. 80f). One might object that there is still a
difference in meaning between (∗) and (G2), since (∗) does not express the requirement of existential
import which is associated with a pervasion. However, in the Upādhivāda-section where Gaṅgeśa
distinguishes between ascertained and dubious upādhis he explicitly attaches the credibility criterion
involved in this distinction to the non-pervasion condition and the pervasion condition in a defining
characteristic of the upādhi (cf. [4]: 15 [§8], 7f). Hence, it seems plausible that he understands the
entailment between the two deviations in his own defining characteristic in the sense of (G2).
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x
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Fig. D
H = the class of loci of the probans
S = the class of loci of the probandum
U = the class of loci of the upādhi

x

x

H S

U

x

Fig. E
H = the class of loci of the probans “fire”
S = the class of loci of the probandum “smoke”
U = the class of loci of the upādhi “wet fuel”

molten metal ∈ H ∖(S∪U); a locus of wet fuel which is not ignited ∈ U ∖(H ∪S);
a locus of fire + smoke + wet fuel ∈ H ∩ S ∩U

The fire/smoke/wet fuel-example matches also Udayana’s specific defining char-
acteristic of an upādhi:

(U1) The upādhi does not pervade the probans and
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(U2) it pervades the probandum.

x

H S

U

Fig. F12

In symbols:

(U1
′) ∃x(Hx ∧ ¬Ux) and

(U2
′) ∀x(Sx→ Ux) ∧ ∃x(Sx ∧Ux)

As indicated by the “x” ∈ H ∖S∪U in Fig. F, (U1) and (U2) entail that ∃x(Hx∧¬Sx), and thus that an original apparent inference fails. In other words, the upādhi
vitiates the apparent inference by showing that the required pervasion does not hold.

It is not difficult to see how Udayana might have derived his definition. In order to
satisfy the condition of existential import, let us assume that the classes of the loci of
the probans and the probandum, which we will symbolize as H and S, respectively,
are non-empty. Then the material generalization involved in a pervasion can be
expressed set-theoretically as:

H ⊆ S

Now, the equivalence . . .

H ⊆ S ↔ ∀U(S ⊆ U →H ⊆ U)
. . . is easily provable: The direction from left to right follows from the transitivity

of the pervasion relation. The direction from right to left can be obtained by applying

12The bar indicates non-emptiness of a compound region (cf. [19]: 79f).
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the rule of universal instantiation: If S ⊆ U →H ⊆ U is true of all U , it is especially
true of S. Now, let us negate both sides of the equivalence:

H ⊆ S ↔ ∀U(S ⊆ U →H ⊆ U)∴H /⊆ S ↔ ∃U(S ⊆ U ∧H /⊆ U)
Hence, there is no pervasion iff there is an upādhi in the sense of Udayana’s

definition.
For Gaṅgeśa this definition is too narrow, because it does not include cases where

the upādhi does not pervade a probandum except in conjunction with a putative
probans. Consider the following example of an assumed inference: The child to be
born will be dark-complexioned, since it is MitrāâĂŹs child. (“Mitrā” is the name
of a woman.) An appropriate upādhi would be “being prenatally nourished on veg-
etables”. This is actually a dubious upādhi, since the non-pervasion-condition and
the pervasion-condition are supposed to be uncertain. The example will be analyzed
in greater detail in section 3.3.4. In order to simplify matters, we will treat both
conditions here as if they were ascertained. Thus, we are to imagine that Mitrā has
five sons who are all dark-complexioned, because Mitrā’s diet during her previous
pregnancies consisted of vegetables, which is a necessary and sufficient cause for a
human baby’s dark complexion. Only in the case of her sixth son Mitrā did not stick
to her vegetable diet, so that he is not going to be dark-complexioned. It is then
easy to see that the example matches Gaṅgeśa’s definition, whereas it is beyond
the scope of Udayana’s definition, since in Fig. G an unbaked pot is ∈ S ∖ (H ∪U),
whereas in the Venn diagram for Udayana’s definition the corresponding segment is
shaded.

x x

x

H S

U

x
x

Fig. G
H = the class of loci of the probans mitrātanayatva (“being a son of Mitrā”)
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S = the class of loci of the probandum śyāmatva (“being dark-complexioned”)
U = the class of loci of the upādhi śākādyāhāraparin. atipūrvakatva (“being prena-

tally nourished on vegetables etc.”)
Mitrā’s 6th son ∈ H ∖ (S ∪ U); Mitrā’s first 5 sons ∈ H ∩ S ∩ U ; an unbaked

pot ∈ S ∖ (H ∪ U); someone else’s dark-complexioned son prenatally nourished on
vegetables ∈ (S ∩U) ∖H; a white rabbit (śvetaśaśa) ∈ U ∖ (H ∪ S)

In Fig. D and Fig. F the segment corresponding to (H ∩ U) ∖ S is not shaded.
So, according to Gaṅgeśa’s and Udayana’s definitions the putative probans and the
upādhi can co-occur in a locus where the probandum is absent. But this should
not happen if the upādhi is supposed to be a corrector. In order to make sure that
the upādhi functions as a corrector which secures the probandum in an assumed
inference, the author of the UD adds a requirement to (G2), the pervasion-condition
of an upādhi: The upādhi should not only pervade the conjunction of probandum
and putative probans (i.e., ∀x(Hx ∧ Sx→ Ux), as in (G2)). The conjunction of the
upādhi and the putative probans should also be pervaded by the probandum (i.e.,∀x(Hx ∧Ux → Sx)). Thus, the pervasion relation between upādhi and probandum
has to be symmetrical in the range of the putative probans. There should be a
“coextensive pervasion” (samavyāpti) between both relata.

3.3.4 Ascertained vs. Dubious upādhis

According to the UD an attack on (R1) or (R2) by means of the corresponding UD-
like defeater is successful if it is based on an ascertained upādhi, i.e., if the upādhi
at issue is known to fulfill the criteria of the specific defining characteristic. The
proposition “There are loci of fire without wet fuel”, e.g., actually rebuts the claim
of evidential support consisting in a sample of co-occurring instances of fire and
smoke as a prima facie reason for the putative pervasion of fire by smoke as the
conclusion, because a locus like molten metal provides evidence for the existence of
a locus of fire without wet fuel. So, the probans “fire” is actually not pervaded by
the upādhi “wet fuel”. Moreover, the probandum “smoke” is actually pervaded by
the upādhi in the range of the probans, i.e., wherever there is both, fire and smoke,
there is wet fuel, which is equivalent to: Wherever there is fire devoid of wet fuel,
there is not smoke. This is the background information which in combination with
the defeater “There are loci of fire without wet fuel” rebuts the prima facie reason
for the pseudo-pervasion of fire by smoke.

A doubt may arise if the required upādhi’s absence in a locus of the probans is an
open issue. Another occasion for doubt is the upādhi’s pervasion of the probandum.
The Mitrā-example, of which we presented a simplified version above, is under-
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stood by Gaṅgeśa in such a way that both, the non-pervasion of the probans by the
probandum and the pervasion of the conjunction of probans and probandum by the
upādhi, are dubious (cf. [4]: 59 and [13]: 19f and 111f). It is assumed that eating veg-
etables during pregnancy is a sufficient cause for the baby’s dark complexion. Hence,(H ∩U)∖S = Ø in both diagrams in Fig. H, i.e., the pervasion of the upādhi by the
probandum in the range of the probans is warranted. However, the vegetable diet
is not a necessary condition for the baby’s dark complexion. The dark complexion
may as well be genetically determined by the father’s dark complexion. Moreover,
Mitrā may or may not have eaten vegetables while she was pregnant with her first
five sons. Therefore, her first five sons, who are dark-complexioned, are ∈ (H∩S)∖U
or ∈ H ∩ S ∩ U (cf. the bar across the boundary between the corresponding areas
in Fig. H, which indicates an alternative). We are also not sure about Mitrā’s diet
during her current pregnancy. Mitrā might not have eaten vegetables during her
current pregnancy, or she has so far eaten vegetables, but will not stick to her diet,
until she gives birth to her sixth son. Thus, the unborn sixth son may turn out
to be fair-complexioned (cf. the leftmost diagram in Fig. H). If he turns out to be
dark-complexioned (cf. the rightmost diagram in Fig. H), he is like the other sons∈ H ∩ S. Following a convention introduced by Shin, we connect the two diagrams
by means of a straight line, which encodes disjunctive information. It is reminiscent
of the bar across the boundary of two adjacent regions as a means to express that
at least one of them is non-empty (cf. [21]).

x x

x

H S

U

x

x

x

H S

U

x

Fig. H
H = the class of loci of the probans mitrātanayatva (“being Mitrā’s son”)
S = the class of loci of the probandum śyāmatva (“being dark-complexioned”)
U = the class of loci of the associate condition śākādyāhāraparin. atipūrvakatva (“be-

ing prenatally nourished on vegetables etc.”)
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Mitrā’s 6th son is fair-complexioned and ∈ H∖(S∪U), or he is dark-complexioned
and ∈ H ∩ S; Mitrā’s first 5 sons ∈ H ∩ S; an unbaked pot ∈ S ∖ (H ∪ U); someone
else’s dark-complexioned son nourished on vegetables ∈ (S ∩U) ∖H; a white rabbit∈ U ∖ (H ∪ S)
3.3.5 Credulous vs. Skeptical Reasoning

The UD agrees with Gaṅgeśa that if there is a tie between the alternatives involved
in the doubt concerning the criteria of the defining characteristic of an upādhi, the
latter can still vitiate. Thus, being faced with the alternatives between drawing
the conclusion that Mitrā’s unborn sixth son is dark-complexioned or not doing so,
Gaṅgeśa and the UD hold that a rational agent would not choose randomly, i.e.,
they would distance themselves from what a credulous reasoner would do. Their
position clearly coincides with that of a skeptical reasoner, i.e., they argue that the
upādhi prevents us from drawing any conclusion. This is a situation which Pollock
describes as “collective defeat” ([17]: 62). A typical example is the Nixon diamond,
with two arguments “Nixon is a pacifist, because he is a Quaker” and “Nixon is not
a pacifist, because he is a Republican”. If there are no grounds for preferring one
argument over the other, they intuitively defeat each other:

pacifist99 ff

�

Quakeree Republican77

Nixon

The Mitrā-example can also be understood along the lines of the situation of
collective defeat. We will assume that Mitrā may well refrain from eating the veg-
etables during her current pregnancy and that not eating them may well have the
effect that the baby turns out to be fair-complexioned. In this case the following
diamond can be said to represent a collective defeat:
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dark-
complexioned88 hh

�

being M.’s sonhh
not being prenatally
nourished on veggies55

the 6th son
According to Gaṅgeśa and the UD, choosing randomly does not seem to be an op-

tion for responding to epistemic ignorance. Similarly, Pollock argues that a rational
agent would rather resolve epistemic ties skeptically and withhold belief when there
are equally good reasons for and against a conclusion: “The preceding considerations
suggest that the controversy over skeptical and credulous reasoning stems from a
confusion of epistemic reasoning with practical reasoning. In practical reasoning, if
one has no basis for choosing between two alternative plans, one should choose at
random. The classical illustration is the medieval tale of Buridan’s ass who starved to
death standing midway between two equally succulent bales of hay because he could
not decide from which to eat. This marks an important difference between prac-
tical reasoning and epistemic reasoning. An agent making practical decisions must
first decide what to believe and then use those beliefs in deciding what to do, but
these are two different matters. If the evidence favoring two alternative hypotheses
is equally good, the agent should record that fact and withhold belief. Subsequent
practical reasoning can then decide what to do given that epistemic conclusion. In
some cases it may be reasonable to choose one of the hypotheses at random and act
as if it is known to be true, and in other cases more caution will be prescribed. But
what must be recognized is that the design of the system of practical reasoning is
a separate matter from the design of the system of epistemic reasoning that feeds
information to the practical reasoner. Epistemic reasoning should acknowledge ig-
norance when it is encountered rather than drawing conclusions at random. This is
what the principle of collective defeat mandates.” ([17]: 64)

From the point of view of a skeptical reasoner an upādhi which is dubious in
the sense that the upādhi’s non-pervasion of the probans or its pervasion of the
probandum is dubious can still vitiate, insofar as it blocks an inference. However,∃x(Hx ∧ ¬Ux) and Hs ∧ ¬Ss might not rebut if they are dubious. The rebutter
should be a reason to believe the negation of the conclusion drawn from the rebutted
prima facie reason. For a skeptical reasoner a doubt attached to these propositions
incapacitates their rebutting force if there are equally good reasons for the conclusion
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that the probans is pervaded by the probandum or that the inferential subject is
a locus of the probandum. Moreover, if ∃x(Hx ∧ ¬Ux) is dubious and there are
equally good reasons for the conclusion that the inferential subject is a locus of the
probandum, a skeptical reasoner would not rely on ∃x(Hx ∧ ¬Ux) as a reason to
deny that (R2) would not be true unless the thesis of the inference were true. So,
for a skeptical reasoner ∃x(Hx ∧ ¬Ux) is not an undercutter in this case.

Even if they are ascertained, the propositions ∃x(Hx∧¬Ux) and Hs∧¬Ss might
not be able to function as defeaters, because their role as a rebutter or undercutter
depends on the background information ∀x(Hx ∧ ¬Ux → ¬Sx), which follows from
the second criterion of the defining characteristic. If the latter is dubious, there might
again be equally good reasons for the conclusion that the probans is pervaded by
the probandum or that the inferential subject is a locus of the probandum.

Thus, due to the dubiety of either of the two criteria of an upādhi’s defining
characteristic, viz. its non-pervasion of the probans or its pervasion of the proban-
dum, ∃x(Hx ∧ ¬Ux) and Hs ∧ ¬Ss may lose their rebutting or undercutting force.
Nevertheless, the upādhi can still vitiate in a situation of collective defeat. Instead
of overruling an inference, it blocks an inference, i.e., it prevents a skeptical reasoner
from drawing any conclusion.
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Abstract

We estimate the size of a labelled tree by comparing the amount of (labelled)
nodes with the size of the set of labels. Roughly speaking, an exponentially big
labelled tree, is any labelled tree that has an exponential gap between its size,
number of nodes, and the size of its labelling set. The amount of sub-formulas
from a formula is linear on its size. Thus, exponentially big proofs have a
size an, where a > 1 and n is the size of its conclusion. In this article, we
show that any linearly height labelled tree whose size have an exponential gap
with the size of their labelling set possess at least one sub-tree that occurs
exponentially many times in them. Natural Deduction proofs and derivations
in minimal implicational logic (M⊃) are essentially labelled trees. By the sub-
formula principle any normal derivation of a formula α from a set of formulas
Γ = {γ1, . . . , γn} in M⊃, establishing Γ ⊢M⊃ α, has only sub-formulas of the
formulas α, γ1, . . . , γn occurring in it. By this relationship between labelled
trees and derivations in M⊃, we show that any normal proof of a tautology
in M⊃ that is exponential on the size of its conclusion has a sub-proof that
occurs exponentially many times in it. Thus, any normal and linearly height
bounded proof in M⊃ is inherently redundant. Finally, we briefly point out
how this redundancy leads us towards a highly efficient compression method
for propositional proofs. We also provide some examples that serve to convince
us that exponentially big proofs are more frequent than one can imagine.
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1 Introduction
The estimation of the size of a labelled tree can proceed by comparing the amount of
(labelled) nodes with the size of the set of labels. Roughly speaking, an exponentially
big labelled tree, is any labelled tree that has an exponential gap between its size,
number of nodes, and the size of its labelling set. Labelled trees can be the underlying
structure of logical proofs, Natural Deduction (ND) proofs, for example. Thus,
exponentially big labelled trees are the underlying structure of exponentially big
proofs or derivations1. The exponentially big proof are natural candidates of what we
can call “huge proofs”, or “huge validity certificates” in the context of computational
complexity. The minimal propositional purely implicational logic, denoted by M⊃
in this article, is PSPACE-complete for tautology checking. Moreover, M⊃ can
polynomially simulate Classical and Intuitionistic provability. Two polynomial maps
yield M⊃ formulas from formulas in the full language {⊃,⊥∨,∧} preserving Classic
and Intuitionistic provability. See [17], or [12] for a general approach to propositional
logics complexity and their relation to M⊃. Due to this, we can state that M⊃ is
the hardest propositional logic among the three mentioned2.

In conclusion, a good computational implementation of M⊃ provide us with
good implementations for the other propositional logics. An efficient implementa-
tion should take into account the size of the proofs that it is dealing with. This
investigation is important from the theoretical point of view, NP = PSPACE
is related to the question whether every M⊃ tautology has a short (polynomial)
proof or not, while, any investigation on “huge proofs” in M⊃ can shed some light
on how to deal with them, including problems of storing exponential objects in a
computational environment. In this article, we show that any “huge proof”, under
some conditions that are not so restrictive, is highly redundant, i.e., has at least one
subproof that repeats at least exponentially many times in it. As a consequence,
we obtain an important result from Proof-Theory. Almost all article is devoted to
proving this result. However, at section 6, we give an idea how, in [11], we can use
the main result in this paper to obtain a compressing method that overtakes the
superexponential feature of M⊃ by compressing every M⊃ proof into a subexponen-
tial DAG proof. This introductory section shows the main reasons for having the
redundancy for huge proofs and a more technical justification on why to carry on
an investigation on Natural Deduction in the realm of binary labelled trees.

1Following the usual terminology of proof-theory for Natural Deduction, a proof is a derivation
that has no open assumption occurrence. Every assumption occurrence in the proof is discharged
by some rule application in it.

2In [12] we show that it is the hardest propositional logic among the logics that satisfy a general
form of the subformula principle.
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The amount of sub-formulas from a formula α is linear on the size of α. A
(super)exponentially big proof, for example, has a size at least an, where a > 1 and
n is the size of its conclusion. In this article, we show that the linearly height labelled
trees whose sizes have an exponential gap with the size of their labelling sets posses
at least one sub-tree that occurs at least exponentially many times in them. The
main reason for this is that Natural Deduction proofs and derivations in minimal
implicational logic (M⊃) are essentially labelled trees. By the sub-formula principle
any normal derivation of a formula α from a set of formulas Γ = {γ1, . . . , γn} in M⊃,
establishing Γ ⊢M⊃ α, has only sub-formulas of the formulas α, γ1, . . . , γn occurring
in it. By this relationship between labelled trees and derivations in M⊃, we show
that any normal proof of a tautology in M⊃ that is exponential on the size of its
conclusion has a sub-proof that occurs exponentially many times in it. Thus, any
normal and linearly height bounded proof in M⊃ is inherently redundant.

Natural Deduction system, as conceived by Gentzen ([5]), is given by a set of
rules that settle the concept of a deduction for some (logic) language. The system of
Natural Deduction, as used and considered here, is determined by the logic language
and this set of rules also called inference rules. Language and inference rules can be
viewed as a logical calculus, as defined by Church ([1]). In contrast with the main
formulations of logical calculus for some logics by Hilbert ([14]), Natural Deduction
does not have axioms. Moreover, Natural Deduction implements in the level of
the logical calculus the (meta)theorem of deduction, namely from Γ, A ⊢ A ⊃ B,
employing the discharging mechanism. The introduction rule for the ⊃ application,
as it follows, shows how this discharging mechanism implements in the logic calculus
the deduction theorem.

[A]
Π
B ⊃-Intro

A ⊃ B

We embrace, with []s, some of the top-formula occurrences A in a derivation
Π means that we are discharging these occurrences from Π. To embrace formula
occurrences in a proof means that from the application of the ⊃-Intro rule applied
down to the conclusion of the derivation, the inferred formulas do not depend any-
more on these embraced occurrences of A. The choice of which formula occurrences
an application of a ⊃-Intro embraces, as a consequence of an application of a ⊃-
intro rule, is arbitrary. The range of this choice goes from every occurrence of A
until none of them. The derivations in figure 1 show two different ways of deriving
A ⊃ (A ⊃ A). Observe that in both deductions or derivations, we use numbers to
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indicate which is the application of the ⊃-Intro that discharged the marked formula
occurrence. For example, in the right derivation, the upper application discharged
the marked occurrences of A, while in the left derivation, it is the lowest application
that discharges the formula occurrences A. There is a third derivation that both ap-
plications do not discharge any A, and the conclusion A ⊃ (A ⊃ A) keep depending
on A. This third alternative appears in figure 2. Natural Deduction systems can
provide logical calculi without any need to use axioms. In this article, we focus on
the system formed only by the ⊃-Intro rule and the ⊃-Elim rule, as shown below,
also known by modus ponens. The logic behind this logical calculus is the purely
minimal implicational logic, M⊃.

A A ⊃ B ⊃-Elim
B

One thing to observe is that we can substitute liberal discharging mechanism by
a greedy discipline of discharging that discharges every possible formula occurrence
whenever the ⊃-Intro is applied. Observe that, in this case, the derivation in fig-
ure 2 would not be possible anymore. Completeness regarding derivability would be
lost. However, when considering proofs, i.e., derivations with no assumption undis-
charged, the greedy version of the ⊃-Intro is enough to ensure the demonstrability
of valid formulas.

[A]1
A ⊃ A 1

A ⊃ (A ⊃ A)

[A]1 1
A ⊃ A

A ⊃ (A ⊃ A)

Figure 1: Two diferent derivations that discharge assumptions in different ways

A
A ⊃ A

A ⊃ (A ⊃ A)

Figure 2: Two vacuous ⊃-Intro applications

With the sake of providing simpler proofs of our results, we take Natural De-
duction as trees. From any derivation in ND, there is a binary tree having nodes
labelled by the formulas and edges linking premises to conclusion, such that the root
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of the tree would be the conclusion of the derivation, and the leaves are its assump-
tions. For example, the derivation in figure 3 has the tree in figure 4 representing
it. The set of labels (formulas) that label formula of u depends on the label formula
of v labels the edge from a node v to a node u. This set of formulas is called the
dependency set of the label of u from the label of v. In this way, the ⊃-intro, in
fact, its greedy version, removes the discharged formula from the dependency set, as
shown in figure 4. Note that due to this labelling of edges by dependency sets, we
need one more extra edge and the root node. The dependency set of the conclusion
labels this new edge. That is the reason for the edge linking the conclusion to the
dot in figure 4.

[A]1 A ⊃ B

B B ⊃ C
C1

A ⊃ C

Figure 3: A derivation in M⊃

As a matter of computational representation of ND proofs as trees, we use bit-
strings induced by an arbitrary linear ordering of formulas in order to have a more
compact representation of the dependency sets. Taking into account that only sub-
formulas of the conclusion can be in any dependency set, we only need bitstrings of
the size, i.e. length, of the formula that it is the conclusion of the proof. In figure 4b
we show this final form of the tree representing the derivation in figure 3 and 4a
when the linear order ≺ is A ≺ B ≺ C ≺ A ⊃ B ≺ B ⊃ C ≺ A ⊃ C.
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.

A ⊃ C

C

B

A A ⊃ B

B ⊃ C

{A ⊃ B, B ⊃ C}

{A, A ⊃ B, B ⊃ C}

{B ⊃ C}{A, A ⊃ B}

{A ⊃ B}{A}

(a)

.

A ⊃ C

C

B

A A ⊃ B

B ⊃ C

000110

100110

000010100100

000100100000

(b)

Figure 4: (a) The tree representing derivation in figure 3 and (b) the tree with
bitstrings representing the same derivation.

The previous paragraphs describe how to get rid of the need of explicitly repre-
senting the discharge function relative to ⊃-Intro applications in Natural Deduction
proofs for M⊃. We consider the representation of Natural Deduction proofs in M⊃
using labelled trees with bitstrings labelling the edges. In this article, we consider
this representation, such that, the results obtained for labelled trees can be extended
to Natural Deduction proofs accordingly. Without any generality loss, in what fol-
lows, most of the results will be stated and proved for labelled trees. The mention
of Natural Deduction proofs and derivation will be explicit only when the result is
worth for logic or proof-theory.

Proof-theory is the branch of logic, the foundation of Mathematics and Computer
Science that studies proofs. It has a well-established set of results3 and tools devoted
to formal proofs and consistency proofs of formalized mathematical theories and
metatheories. However, because of the scope of this paper, we only briefly list the
minimal results and definitions in the next section, such that the reader can make the
connections between trees and Natural Deduction proofs needed to understand the
main result of this article. We briefly explain, in the next paragraph, the intuition
that motivates our result.

The Natural Deduction system for M⊃ satisfies the subformula principle. It
states that if Γ ⊢M⊃ α then there is a derivation in Natural Deduction, for M⊃, of

3The proof of the consistency of Arithmetic by Gentzen in the ’30s is one of the champion
results.
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α from Γ′ ⊆ Γ and every formula in this derivation is either a subformula of α or
some γ ∈ Γ′. In the particular case of α being a tautology, there is a proof, i.e. a
derivation without open assumptions, of α having only occurrences of sub-formulas
of α in it. The subformula for Natural Deduction is a corollary of the Normalization
theorem for Natural Deduction (see [16], page 42, corollary I) a central result, and
tool of proof-theory. Well, M⊃satisfies the normalization and hence the sub-formula
principle. The normalization for M⊃is a particular case of the normalization for
Classical, and Intuitionistic logic as well. Only ⊃-reductions are applied in a non-
normal derivation to obtain a normal one. The inductive measure and strategy of
critical derivation used in the Classical Logic case are enough, see Theorem 2, page
4, in [16].

We note that the amount of sub-formulas of any formula is linear on its size.
Instead of the denomination ‘exponentially big proofs’ we use the denomination
‘huge proofs’ merely. We consider a proof huge when its size is larger than or equal
to any exponential on the size of its conclusion. However, this is not the correct
denomination4. Thus, if a proof is exponentially big, i.e., huge, its corresponding
labelled tree is also exponential. That is, it is at least of size an, a > 1 and n is the
size/length of the formula5 that labels its root. We remind that each sub-formula
is a possible label node in the tree. We have then that an exponentially big normal
proof of size an, a > 1 is labelled with n labels only. We remember that n is the
size/length of the string that labels its root or conclusion. This configuration allows
us to say that at least one label repeats exponentially many times in the tree under
the additional consideration that the tree is linearly-height bounded. We show that
this repetition happens in a way that a sub-tree repeats exponentially many times.

The additional hypothesis on the linear bound on height of the proof of M⊃tauto-
logies can be taken into account without loss of generality if we consider the com-
plexity class CoNP (see appendix A). Moreover, in [7], we show that any tautology
in M⊃has a Natural Deduction normal proof of height bound by the square of the
size of this tautology. However, it is not easy to extend the reasoning in this article
to the case of polynomially height-bound trees.

In the next section, Section 2, we provide the main terminology and definitions
used in the article. Section 3 presents some useful properties regarding normal proofs
and syntax trees of formulas and their size. Section 4 examines three examples of
classes of huge proofs and shows concrete cases of the redundancy in huge proofs.

4If we follow Cook-Karp conjecture that says that computationally easy to verify and compute
objects are of polynomial-size, huge proofs include the hard proofs for verification, namely, the
super-polynomial ones.

5The size/length of a formula is the length of it viewed as a string, the number of occurrences
of characters in it.
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These examples serve to convince us that exponentially big proofs are more frequent
than we can imagine. Section 5 states and proves the main lemma. Section 6 provides
the sketch on the compression method and its main properties. Finally, section 7
discusses the consequences of what we show here and the method for compressing
propositional proofs.

2 Terminology and definitions
In this article the notation i = 1, k denotes i ∈ {1, 2, . . . , k}. Following the usual
terminology in Natural Deduction and proof-theory, we briefly describe what we use
in this article.

The left premise of a ⊃-Elim rule is called a minor premise, and the right premise
is called the major premise. We should note that the conclusion of this rule, as well
as its minor premise, are sub-formulas of its major premise. We also observe that the
premise of the ⊃-Intro is the sub-formula of its conclusion. A derivation is a tree-like
structure built using ⊃-Intro and ⊃-Elim rules. We have some examples depicted
in the last section. The conclusion of the derivation is the root of this tree-like
structure, and the leaves are what we call top-formulas. A proof is a derivation that
has every top-formula discharged by a ⊃-Intro application in it. The top-formulas
are also called assumptions. An assumption that it is not discharged by any rule
⊃-Intro in a derivation is called an open assumption. If Π is a derivation with
conclusion α and δ1, . . . , δn as all of its open assumptions then we say that Π is a
derivation of α from δ1, . . . , δn.

Definition 1. A branch of a derivation or proof Π is any sequence β1, . . . , βk of
formula occurrences in Π, such that:

• β1 is a top-formula, and;

• For every i = 1, k − 1, either βi is a ⊃-Elim major premise of βi+1 or βi is a
⊃-Intro premise of βi+1, and;

• βk either is the conclusion of the derivation or the minor premise of a ⊃-Elim.

A normal derivation/proof in M⊃is any derivation that does not have any for-
mula occurrence that is simultaneously a major premise of a ⊃-Elim and the con-
clusion of a ⊃-Intro. A formula occurrence that is at the same time a conclusion
of a ⊃-Intro and a major premise of ⊃-Elim is called a maximal formula. In [16]
there is the proof of the following theorem for the Natural Deduction for the full6

6The full propositional fragment is {∨, ∧, ⊃, ¬, ⊥}.
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propositional fragment of minimal logic. The proof of this theorem uses a strategy
of application of a set of reduction rules that eliminates maximal formulas. It is
out of the scope of this article to provide more details on the proof of the normal-
ization theorem. Except for the observation that the normalization proof for the
full language of minimal logic, as we can found in [16], obtains a normalization for
the language with ⊃ only by solely restricting the reductions to ⊃. The inductive
measure keeps unchanged.

Theorem 1 (Normalization). Let Π be a derivation of α from ∆ = {δ1, . . . , δn}.
There is a normal proof Π′ of α from ∆′ ⊆ ∆.

In any normal derivation/proof, the format of a branch is essential and provides
worth information on why huge proofs are redundant, as we will see in the next sec-
tions. Since no formula occurrence can be a major premise of ⊃-Elim and conclusion
of a ⊃-Intro rule in a branch we have that the conclusion of a ⊃-Intro can only be
the minor premise of a ⊃-Elim, premise of an ⊃-Intro or it is not a premise at all.
In this last case, it is the conclusion of the derivation. In any case, it is the last
formula in the branch. Any conclusion of a ⊃-Intro, if it is a premise of an ⊃-Elim
rule, it is the minor premise of this rule, and hence the last formula in the branch,
otherwise it is the premise of an ⊃-Intro. Hence, any branch in a normal deriva-
tion is divided into two parts (possibly empty). The Elim-part begins the branch
with the top-formula and, every formula occurrence in it is the major premise of
a ⊃-Elim. There is a formula occurrence that is the conclusion of a ⊃-Elim and
can be premiss of a ⊃-Intro rule that is called minimal formula of the branch. The
minimal formula begins the I-part of the branch. In the I-part, every formula is the
premise of a ⊃-Intro, except for the last formula of the branch. From the format
of the branches, we can conclude that the sub-formula principle holds for normal
proofs in Natural Deduction for M⊃, in fact, for many extensions of it.

Corollary 2 (Sub-formula principle). Let Π be a normal derivation of α from the
set ∆ = {δ1, . . . , δm}. It is the case that for every formula occurrence β in Π, β is
a sub-formula of either α or of some of δi.

This corollary ensures that without loss of generality, any Natural Deduction
proof of a M⊃tautology has only sub-formulas of it occurring in it. Normal proof-
s/derivations offer the EOL-tree abstraction in forms of the trees associated with
derivations in Natural Deduction for M⊃as we show in the sequence. The definition
of EOL-tree facilitates the proof of the main result of this article. With labelled
trees, we can focus on the combinatorial aspects rather than the proof-theoretical
ones.
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We assume the standard definition of a tree and a (possibly) incomplete binary
tree. The size of a, possibly incomplete, tree ⟨V, E⟩ is |V |, the number of vertexes
of the tree. As a tree is a simple graph, the number of edges is upper-bounded by
|V |2. The root of a tree is the unique node r ∈ V , such that, there is no v ∈ V ,
such that ⟨v, r⟩ ∈ E. Given a tree T = ⟨V, E⟩, the level of the node v, lev(v), is the
number of nodes in the path from v to the root of the tree. This can be defined in
a recursive/inductive way as: (basis) lev(r) = 0; (rec) if lev(u) = n and ⟨u, v⟩ ∈ E
then lev(v) = n + 1.

Natural Deduction derivation trees for M⊃inspire the following definition of
trees. When applying lemma 11 below, we can think of Natural Deduction deriva-
tion trees in M⊃. We reinforce that a vertex with two children plays the role of
an instance of a ⊃-Elimination role application having it as the conclusion, and
a vertex with one child plays the role of an instance of ⊃-Introduction with it as
the conclusion. The leaves are either hypothesis, also called open assumptions, of
the derivation or discharged assumptions. In this section scope, we remember that
there is no representation for the discharging function attached to each instance of
⊃-Introduction application. In the concrete case, the labels of the nodes, set B
below, are formulas and the order may be the sub-formula ordering between propo-
sitional implicational formulas. We advise the reader to not confuse this partial
ordering abstracted from the sub-formula ordering, with the linear and arbitrary
ordering that the bitstrings mentioned at the introduction uses. For the sake of
simplicity, we consider an arbitrary partial order in the main results below. Consid-
ering an arbitrary partial order facilitates the reading and lastly can be applied to
the concrete.

If A is a set, then we use card(A) to denote the number of elements in A.

Definition 2 (EOL-Binary tree). An edge-ordered-labelled binary tree T is a
structure ⟨V, EL ∪ ER ∪ EU , ℓ, B⟩, where:

1. ⟨V, EL ∪ ER ∪ EU ⟩ is a (possibly incomplete) binary tree and;

2. ℓ : V → B is the labeling function, with B a finite and partially ordered set of
labels, with a partial operation ⊙ and;

3. EL, ER and EU are mutually disjoint, and;

4. Whenever ⟨v, v1⟩ ∈ ER and ⟨v, v2⟩ ∈ ER then v1 = v2;

5. Whenever ⟨v, v1⟩ ∈ EL and ⟨v, v2⟩ ∈ EL then v1 = v2;

6. ⟨v, v1⟩ ∈ EL, if and only if, ⟨v, v2⟩ ∈ ER, v2 ̸= v1, and;

296



Exp. Huge N.D. proofs are Redundant

7. If ⟨v, v′⟩ ∈ EU and ⟨v, v′′⟩ ∈ EU then v′ = v′′, and;

8. If ⟨v, v1⟩ ∈ EL and ⟨v, v2⟩ ∈ ER then ℓ(v) ≺B ℓ(v2) and ℓ(v1) ≺B ℓ(v2) and
for each ℓ(v2), such that, ℓ(v) ≺B ℓ(v2), there is only one b ∈ B, such that
b⊙ ℓ(v) is equal to ℓ(v2). This b should be equal to ℓ(v1);

9. If ⟨v, v′⟩ ∈ EU then there is q ∈ B, such that, q ⊙ ℓ(v′) = ℓ(v) and, of course,
ℓ(v′) ≺B ℓ(v)

Given a tree T , the height of T , denoted as h(T ), is the length of the longest
path linking a leaf of T to the root of T . In this article, we are interested in the kind
of EOL-tree that is linearly-bounded on the height regarding the size of its labelling
set. That is, T is linearly bounded on the height when h(T ) ≤ k × card(B(T )), for
some 0 < k ∈ R where h(T ) is the height of the tree T 7. We call these trees linearly
height B-labelled trees or linear-height EOL-trees. In section 5, we prove that for
any linearly-height B-labelled tree of exponential or bigger size, there is a tree that
occurs exponentially many times as a subtree in it. The content of lemma 11 states
this. In the sequel, we provide more definitions that we use. In section 5, we also
comment on the non-triviality of the extension of this main result to polynomially
height bounded EOL-trees.

A skeletal-tree is defined as any non-empty B-labelled edge-labelled tree with
edge labels U, L and R. In the sequel, we ask the reader to remind herself (himself)
the concept of injective tree-mapping from labelled trees into labelled trees (see any
book on graph theory or theory of computation, for example, [4]).

Definition 3 (Skeletal-tree occurrence). A skeletal-tree instance S occurs in a
B-labelled tree T = ⟨V, E, l, B⟩, iff, there is an injective B-labelled tree mapping f
from S into T , such that, for each v, u ∈ VS , if ⟨v, u⟩ ∈ Eλ then ⟨f(v), f(u)⟩ ∈ Eλ,
λ = U, L, R; ℓ(v) = ℓ(f(v)) and ℓ(u) = ℓ(f(u)).

Whenever a skeletal tree instance S occurs in a tree T , we say that there is a
sub-tree of the skeletal form S in the tree. We also say simply that S is a sub-
tree occurring in T . We can conclude that any sub-tree of an instance of a skeletal
occurring in a tree is also a skeletal sub-tree instance of this first tree. A skeletal-tree
occurrence/instance is full whenever if it is not possible to extend it to other sub-tree
by adding any contiguous vertex from the tree to it. Sometimes we use the term
”Skeletal-tree instance’, instead of “skeletal-tree occurrence”. When a Skeletal-tree
instance Y ′ of Y occurs in a tree T and Y’s root is at level k then we say that Y
occurs at level k in T .

7We can say also that h(T ) ∈ O(B(T )).
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Concerning the computational complexity of propositional proofs, we count the
size of proof as to the number of symbol occurrences used to write it. If we put all the
symbol occurrences used to write a Natural Deduction derivation Π side by side in a
long string then the size of the derivation, denoted by |Π|, is the length of this string.
The function | | : Strings −→ N, the size-of-string function, denotes the mapping
of strings to their corresponding sizes8. For derivations α from ∆ = {δ1, . . . , δn} we
estimate the complexity of the derivation by means of a function of |α|+ ∑

i=1,n |δi|
into the size of the derivation itself. Thus, we should not take the complexity of a
derivation individually. It is taken together with the set of all derivations.

A set S of EOL-trees is unlimited, if and only if, for every n > 0 there is T ∈ S,
such that, |T | > n.

Definition 4. An unlimited set S of EOL-trees is huge (exponentially big or EB for
short) iff there are a ∈ R, a > 1, n0, p ∈ N, p > 1, c ∈ R, c > 0, such that, for every
n > n0 and for every T ∈ S, if card(B(T )) = n then |T | ≥ c× anp.

In this article, we use an alternative, equivalent, and more applicable definition
for use in the demonstration of our result than the above one. We use the following
auxiliary definitions to define it.

Definition 5. Let S be an unlimited set of EOL-trees and | | the size-of-string
function. The function lenS : S → N is the defined as lenS(T ) = |T |.

In the definition above, we advise the reader that the size of the alphabet used
to write the strings is at least 2. Unary strings cannot be consistently used in
computational complexity estimations, since its use trivializes9 the conjecture NP =
P . We use to call an alphabet reasonable whenever it has at least two symbols.

Definition 6. A function f : N −→ N is exponential or bigger if and only if there
are a ∈ R, a > 1, n0, p ∈ N, c ∈ Q, p > 1, c > 0, such that, ∀n > n0, f(n) ≥ c×anp.

Technically, the above definition says that a function is exponential or bigger
whenever it has a tight exponential lower bound.

Consider a property Φ(x) on EOL-trees. This property is used to select, from a
set S, all the EOL-trees satisfying it. This defines a subset {T ∈ S : Φ(T )} of S.
As an example we can set a particular ΦΓ,α(x), where Γ is a set of labels and α is
a label, to be true only on EOL-trees T , such that leaves(T ) = Γ and r(T ) = α.
Thus, given a set S of EOL-trees, the set {T ∈ S : ΦΓ,α(T )} is the subset of all

8Some authors use the term length instead of size.
9If there is a NP-complete Formal Language L ⊆ Σ⋆, where Σ is a singleton, then NP = P , see

for example [3] (theorem 5.7, page 87).
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trees from S that have Γ as labelling the leaves and α labelling the respective root
of each of them. We use properties as ΦΓ,α(x) to specify the set of all trees that
correspond to Natural Deduction derivations of a formula α from a set of hypothesis
Γ. We further refine this to get the set of all minimal trees (derivations) of α from
Γ. For example

MinS(Γ, α) = {T ∈ S : ΦΓ,α(T ) ∧ ∀T ′(ΦΓ,α(T ′) → |T | ≤ |T ′|)}

is the set of all smallest EOL-trees satisfying ΦΓ,α(x). We can see these EOL-
trees as Natural Deduction derivations in M⊃, having then the set of all smallest
derivations of α from Γ in M⊃. In the general case, where the predicate Φ(x) is
arbitrary, we denote the set above by MinS(Φ), that is:

MinS(Φ) = {T ∈ S : Φ(T ) ∧ ∀T ′(Φ(T ′) → |T | ≤ |T ′|)}

Definition 7. Let S be an unlimited set of EOL-trees. Let Φ(x) represent a property
on EOL-trees of S and let ΦS,m(x) be defined as (x ∈ S ∧ Φ(x) ∧ card(B(x)) ≤ m)
with 0 < m ∈ N. We define the function FS,Φ : N −→ N that associates do each
natural number m the size of a minimal tree satisfying ΦS,m(x).

FS,Φ(m) =
{

0 if m = 0
|T | T ∈MinS(ΦS,m) if m > 0

We point out that depending on Φ, the above function FS,Φ can be quite un-
interesting. For example, if Φ is satisfiable by every tree in S then FS,Φ(m) = 1,
for every m > 0. Any tree T with only one node, such that, it is labelled by any
element of B(T ), is a smallest10 tree that satisfies Φ. On the other hand, we can
have ΦS,Φ(m) true only when T is a tree that represents a proof of a M⊃tautology
α, m = |α| and Φ(T ) is true whenever T is a tree representing a proof of α.

The following proposition points out an alternative and more adequate defini-
tion for a family of exponential or bigger sized trees as already previously mentioned.
Observe that if A is the set of all EOL-trees and Φ(x) is a property defining a subset
S of A and ΦS,m is defined as in definition 7 then S = Φ(A) = ⋃

m∈N ΦA,m(A). The
reader should note that we use Φ(A) as an abbreviation of {T : Φ(T ) ∧ T ∈ A}. Ob-
serving what is discussed in the last paragraphs, we have the following proposition.

Proposition 3. Let S ⊂ A be an unlimited set of EOL-trees. Let Φ(x) be the defin-
ing property of S. We have then that S is EB if and only if FA,Φ is an exponential
or bigger function from N in N.

10We do not take the null tree in this work since it represents no meaningful representation of
data in our case.
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We note that the size of an EOL-tree considers the representation of it when
coded in a string under a reasonable alphabet11.

The following definition is quite useful in the statement of the main lemma of
this article.

Definition 8 (Set of nodes at level i labelled with q). Given an EOL-tree T =
⟨V, EL ∪ ER ∪ EU , l, B⟩, a natural number i ∈ N and a label q ∈ B(T ). We use the
notation V i,q

T to denote:

{v ∈ V (T ) : levT (v) = i and lT (v) = q}

Definition 9. Let S be an unlimited set of EOL-trees and | | the size-of-string
function. The functions occi,q

S : S → N, i ∈ N, and q ∈ SY MB, are defined below,
where SY MB = ⋃

T∈S B(T ) is the symbol set12 that labels the trees in S:

occi,q
S (T ) =

∣∣∣V i,q
T

∣∣∣

Note that for any T ∈ S, if i > h(T ) then occi,q
S (T ) = 0 and that for any

q ̸∈ B(T ), occi,q
S (T ) = 0 too.

The following lemma is essential in the proof of the results shown in this article.

Lemma 4 (Super-Exponential Pigeonhole Principle). Let k : N −→ N be a polyno-
mial and let fi : N −→ N be a function, for each i ∈ N.Consider m ∈ N and the
function gm : N −→ N defined as:

gm(n) =
∑

i≤k(m)
fi(n)

For each m, if gm is EB on m then there is 0 ≤ j ≤ k(m), such that, fj is EB, on
m, too.

Proof. Consider some m ∈ N and suppose that there is no j, 0 ≤ j ≤ k(m), such
that fj is exponential or bigger than it on m. Thus, for every j, fj is polynomially
bounded. Since any polynomial sum of polynomials is a polynomial too, we conclude
that gm, for this m, is polynomially bounded, that is a contradiction.

11An alphabet is reasonable if it has more than one symbol.
12We allow the existence of an infinite set of symbols, but this is not essencial at this point of

our formalization.
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3 Some useful properties in normal proofs in M⊃

In this section, we show some definitions and properties used in section 4 to prove
that every exponential tree has a subtree that is repeated exponentially many times
in the original tree. For example, the parsing tree helps to relate the size of formula
in M⊃, the number of atomic propositions in a formula and the height of it. Here
we also relate the lenght of elimination parts in proofs with the lenght of branchs in
the parsing tree. We show in the sequel these facts.

Definition 10. Let α be a formula in M⊃, the abstract syntax tree of α is the tree
Tα defined by induction as:

• If α is a propositional letter A then TA = A, and;

• If α is α1 ⊃ α2 then Tα is
⊃

Tα1 Tα2

It is easy to see that, for every α in M⊃, Tα is a full binary tree13. For example,
below we can find the abstract syntax trees of ((A ⊃ B) ⊃ A) ⊃ A) and (A ⊃ B) ⊃
((B ⊃ C) ⊃ (A ⊃ C)) respectively.

⊃

⊃

⊃

A B

A

A

⊃

⊃

A B

⊃

⊃

B C

⊃

A C

We remind the reader that A ⊃ (B ⊃ C) can be written A ⊃ B ⊃ C under
the convention that the parenthesis is associative to the right. We also observe that
the tree representation seems to be fully adequate to be used here in this work on
computational complexity analysis of the size of proofs. We only have to observe that
for any α, the length of α is, in general, larger than the number the subformulas of α.
When α has parenthesis, they hold positions that do not determine any subformula
from α. On the other hand, each node in Tα determines a subformula from α.
Instead of estimating the size of a proof as a function of the length of the formula α,
we take into account the size of the abstract parsing tree |Tα|, i.e., how many nodes
it has.

13A binary tree, such that, every node that is not a leaf has two childrens.
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Given a tree T , the height of T , denoted by h(T ), is the length of the longest
path, in T , from the root of T to its leaves. It is well-known that the height of a
balanced tree with a size of n is log(n). On the other hand, the longest path from
the root to any leaf in a tree T is bounded by

⌊ |T |
2

⌋
. For example, when T is the

abstract syntax tree of a1 ⊃ (a2 ⊃ (a3 . . . (an ⊃ b)) . . .), as shown in the tree in
figure 5a. Another thing to observe is that, because of the way the implications are
nested by the right, we can consider the right-hand side of the rightmost implication
as being a propositional variable. This is summarized in observation 1

⊃

a1 ⊃

a2 ⊃

a3 ...

⊃

an b
(a) A totally right-unbalanced ab-
stract syntax tree

⊃

...

⊃

⊃

a1 a2

a3

an

(b) A totally left-unbalanced abstract syntax
tree

Figure 5

Observation 1. For every tree T , ⌊log(|T |)⌋ ≤ h(T ) ≤
⌊ |T |

2

⌋

In any normal proof Π of a formula α, the subformulas of it that can be top-
formulas of some branch in Π are antecedents of α. We observe that any formula
α in M⊃ is of the form α1 ⊃ (α2 ⊃ . . . (αn ⊃ q) . . .), with q being a propositional
variable. Moreover, the antecedents of α are, hence, αi, i = 1, n. These are the
formulas that can be the top-formula of the main branch, due to the fact that in
order to prove α, some ⊃-introductions can be needed, and one of them has to
discharge an assumption αj , for some j, that it is top-formula of the main branch.
For the secondary branches, each of them is determined by an antecedent of the top-
formula αj of the main branch, and, that is the minor premise of the corresponding
⊃-Elim application that has a subformula derived from αj , or itself in the topmost
⊃-Elim application, as the major premise.

In virtue of theorem 1 and definition 1, any branch in a normal proof has an
Elim-part, where there are only ⊃-Elim rule application rules, and an Intro-part,
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containing only ⊃-Intro rule applications. The minimal formula in the branch is
the conclusion of the last ⊃-Elim rule and premise of the first ⊃-Intro rule if any
of them. This fact shows us that the Elim-part of any branch in proof of Tα, i.e.
proof of α, is a sequence of subformulas of the respective top-formula of this branch.
Any branch in Tα can be identified by its level and its top-formula. Moreover, the
sequence of formulas of the Elim-part of this branch is the sequence of subformulas
of the top-formula that appears in the abstract syntax tree Tα. Thus, we have the
following proposition.

Proposition 5. In a normal proof of α, the Elim-part of any branch is uniquely
determined by the formula β that is the major premiss of the topmost ⊃-Elim rule
application of this branch. Any subtree Tβ of Tα determines each formula occurrence
in this Elim-part of the branch. These formulas are the sequence of right descendants
of β in Tβ.

A corollary of the proposition 5 is that there is a one-to-one correspondence
between sub-formulas of α and possible Elim-parts of the branches that occur in
any normal proof of α. This is stated by the following lemma.

Lemma 6. Let Π be a normal proof of α. Then each Elim-part of a branch in Π is
the sequence of formulas occurring in the right-branch of Tβ, where β is the major
premise of the topmost Elim-rule application in the branch.

One last thing to observe is that the number of formulas in a normal proof of
α that is a major premise in a topmost Elim-rule application in a branch is upper-
bounded by |Tα|

3 , since the major premise of a ⊃-Elim rule must be of degree at least
3.

4 Examining some huge normal proofs and their inher-
ent redundancy

The following sets can be seen as examples of EB sets of EOL-trees, whenever we
take Natural Deduction derivations in the format of EOL-trees.

4.1 A family of huge proofs in M⊃: Fibonacci numbers

We use the notation




ϕ1
...

ϕk


 ⊃ α to denote the formula ϕ1 ⊃ (ϕ2 ⊃ (. . . (ϕk ⊃

α) . . .)))
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We show here a family of formulas that have only huge proofs as least normal
proofs. Consider the following formulas.

• η = A1 ⊃ A2

• σk = Ak−2 ⊃ (Ak−1 ⊃ Ak), k > 2.
In this section, if Π is a M⊃ ND proof then len(Π) denotes its length or size.

Any normal proof Π of χn =




η
σ3
...

σn




A1 ⊃ An is such that |Π| ≥ Fibonnaci(n). In

what follows, due to have a more economical presentation, we omit all, but the first,
⊃-Intro applications in the I-part of the main branch of the proofs. Thus, we have
the following derivation of A1 ⊃ An from η, σ1, . . . , σn. The formulas η, σ1, . . . , σn
that are discharged by n+1 ⊃-rules to complete the proof of χn from this derivation
are omitted. With the sake of a more elegant presentation on the size of the proofs
of χn we call the derivation of A1 ⊃ An from η, σ1, . . . , σn as Πn. Note that Π1 is
A1 Π2 is η, and for Πk, k > 2, we have the derivation shown below. We have that:

[A1]
A1 ⊃ A2

A1 ⊃ (A2 ⊃ A3)
Π3
A3

[A1] A1 ⊃ A2

A2 A2 ⊃ (A3 ⊃ A4)
A3 ⊃ A4

A4

[A1]
A1 ⊃ A2

A1 ⊃ (A2 ⊃ A3)
Π3
A3 A3 ⊃ (A4 ⊃ A5)

A4 ⊃ A5
A5

A1 ⊃ A5

In general, for each 3 ≤ k

[A1]
η

σ3, . . . , σk−1
Πk−1
Ak−1

[A1]
η

σ3, . . . , σk−2
Πk−2
Ak−2 Ak−2 ⊃ (Ak−1 ⊃ Ak)

Ak−1 ⊃ Ak

Ak

A1 ⊃ Ak

So we have that:
len(Π2) = 1
len(Π3) = len(Π2) + 1
len(Πk) = len(Πk−2) + len(Πk−1) + 2
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Thus, by a well-known fact about Fibonacci14 numbers, we see that:

ϕk

√
5
≈ Fibonacci(k) ≤ len(Πk)

where ϕ = 1.618
Thus, the proof of χn has size len(Πn) + n, that is lower-bounded by an expo-

nential function on n, as above. From definitions in Section 2, the set Fib of all
trees that correspond with the proofs of A1 ⊃ An is a EB set of trees. A fascinating
phenomenon that happens with this set of huge proofs concerns the main result of
this article. Almost all of these proofs have levels, above the level of the minimal
formula of the main branch, where there are exponentially (or more) many repeti-
tions of a formula, labelling a node of the underlying tree, and these formulas are
conclusions of sub-trees that occurs exponentially (or more) many times in these
underlying trees.

We have the following proposition on these derivations.

Proposition 7. Let Πn be the derivation of An, we drop-off the ⊃-Intro last rule,
from η and σk, k = 3, n. We have thus that occ

l,An−l

F ib (Πn) = Fibonacci(l + 1), for
l = 0, n− 1

Proof. By induction on n:
(Basis) n = 1, Π1 = A1 and occo,A1

F ib (Π1) = 1 = Fibonacci(1) and for n = 2 we
have that

A1 A1 ⊃ A2
A2

and hence occ0,A2
F ib (Π2) = 1 = Fibonacci(1) and occ1,A1

F ib (Π2) = 1 = Fibonacci(2)
(Inductive step) Let n > 2 and 0 ≤ l < n− 1. Πn is the following derivation:

Πn−1
An−1

Πn−2
An−2 An−2 ⊃ (An−1 ⊃ An)

An−1 ⊃ An

An

For l = 0, l = 1 and l = 2 it is straightforward, consider l > 2 then

occ
l,An−l

F ib (Πn) = occ
l−1,An−1−(l−1)
F ib (Πn−1) + occ

l−2,An−2−(l−2)
F ib (Πn−2)

14The Fibonacci numbers, Fib(n), or Fibonacci(n), are defined according the following recursive
definition: F ib(0) = F ib(1) = 1 and F ib(n + 2) = F ib(n + 1) + F ib(n).
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what is, by inductive hypothesis:

occ
l,An−l

F ib (Πn) =
Fibonacci((l − 1) + 1) + Fibonacci((l − 2) + 1) =
Fibonacci(l) + Fibonacci(l − 1) = Fibonacci(l + 1)

We also can prove by induction that h(Πn) = n and that B(Πn) = 4×(n−1), for
n > 2. Thus this set Fib of proofs is a set of huge proofs, linear height bounded. By
the proposition 7 for almost all derivations in Fib, there is at least one sub-derivation
that occurs exponentially (or more) many times in it. To see that, observe that
almost all Πn, which are of exponential size on n, in fact, are of exponential-size on
|B(Πn)| = 4× (n− 1) too. Of course, all of Πn are normal derivations in M⊃.

4.2 Proving in M⊃ that a graph is not Hamiltonian

In Appendix A we remember that a well-known propositional coding of the hamilto-
nianicity of graphs can be used, in purely implicational propositional logic, to have a
Natural Deduction proof for the non-hamiltonianicity of graphs, by negating the pre-
vious statement. For any non-hamiltonian graph G the sentence ¬αG is a certificate
for its non-hamiltonianicity. The set of all derivations αG for G non-hamiltonian is
a set of huge proofs. These derivations are linearly height bounded in M⊃ as we
demonstrate in the appendix. By counting formulas instead of symbols, if a simple
non-hamiltonian graph G has n nodes, then the normal proof of αG showing that
it has no Hamiltonian cycle has nn formulas, in the worst case. Of course, the size
of the normal proof depends on the topology of the graph. For the Petersen graph,
for example, the size is approximately 1010. Petersen graph has ten nodes. We call
this set of huge normal proofs NHam, for Non-hamiltonian.

NHam has proofs Pi that has sub-derivations that repeats exponentially many
times in Π. The reason for that relies on the fact that NHam is the set of naive proofs
of non-hamiltonianicity. These proofs consider all possible paths. In a graph of n
nodes, a (possible) path is any sequence of n positions. The proof is an upside-down
decision tree that checks the consistency of each possible path for being a correct.
Well, we have many repetitions of sub-paths, so the proof reflects this repetition
too. We invite the reader to see this in detail in the Appendix. We included this
material as a matter of completeness and illustration. It firstly appears in [10].
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4.3 Normal Proofs that need exponentially many assumptions
In [13] we show a family of purely implicational formulas ξn, such that, each of
them needs 2n assumptions of the same formula, we have to discharge at the end
of the proof, in their proofs. Almost all of the normal proofs of ξn are hence of
exponential. All of them are linearly height bounded. This set of huge proofs,
denoted by Exp also has the property that almost every proof in it has sub-proofs
that are polynomially many times repeated, in a level of the normal proof of ξn, let
us say, in it. This is one more concrete example of what we prove in the next section
and as the main result of the article. Moreover, moving from M⊃to classical logic
does not always work to get subexponential classical versions of any M⊃theorems.
There are counter-examples, many of them based on the exponential lower-bound for
Normal Proofs of the implicational version of the Pigeonhole Principle that comes
from Haken’s lower-bound for the resolution system. In conclusion, section 7, we
briefly comment on general reasons that turn the moving from M⊃to Classical logic
ineffective as a basis to compressing proofs in M⊃.

5 Huge proofs are redundant
In this section, we show the main result of this article, roughly stated as “Almost
every linearly height-bounded huge proof is redundant”. We show that for any
unlimited set S of EOL-trees if S is EB then for almost all trees T ∈ S, there is a
subtree T ′ of T that occurs exponentially (or more) many times at the same level in
T . The formal statement of this assertion is lemma 11. The following lemma is an
initial step in the proof of lemma 11. We need one more auxiliary definition before.
The function OCC l,q

A (m) provides the least number of occurrences of the label q in
the level l among the trees in A that are labelled with at most m labels. The function
OCC l(m) is the maximum number of occurrences among all the OCC l,q

A (m) for all
q’s. They are used to count the number of repetitions of occurrences of subtrees.
This counting is used to characterize when the amount of subtrees is comparable to
the size of the tree, in lemma 8.
Definition 11. Let A be a set of EOL-trees and occl,q

A as in definition 9. We define
the function
OCC l,q

A : N −→ N as:

OCC l,q
A (m) = Min({occl,q

A (T ) : card((B(T )) = m ∧ (occl,q
A (T ) > 0)})

A straightforward consequence of the definition above is that for every tree T ∈
A, for every m ∈ N, for every l ≤ h(T ), if card(B(T )) = m then for every q ∈ B(T ),
OCC l,q

A (m) ≤ occl,q
A (T ).
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Observation 2. We first observe that for all trees, the first levels have few nodes,
starting with level 1 that has at most two nodes, 2 with at most 4, and so on. That
is, for every tree T , there is at least one level i ≤ h(T ) and 0 < p ∈ N, such that,
for all sets V i,q(T ) ≤ card(B(T ))p, for each q ∈ B(T ), obviously with V i,q(T ) ̸= ∅.

Definition 12. Considering the conditions in definition 11, we define:

OCC l
A(m) = Max({OCC l,q

A (m) : card(B(T )) = m ∧ q ∈ B(T )}

In contrast with the observation above, huge proofs have levels i, such that
V i,q(T ), for some q ∈ B(T ), is lower-bounded by an exponential or faster-growing
function. The proof of this resembles the proof of lemma 4.

Lemma 8. Let A be the set of all EOL-trees and Φ(T ) the predicate that holds
only when T is linearly height-bounded, on card(B(T )), tree. If Φ(A) is EB then
OCC l

Φ(A) is EB , on the argument (m in the definition 11) that bounds card(B(T ))
for almost all l ∈ N.

Proof. Since Φ(A) is EB then by proposition 3 FA,Φ is an exponential or faster
growing function from N into N. We observe that, for any tree T ,

|V (T )| =
∣∣∣∣∣∣

⋃

i≤h(T )

⋃

q∈B(T )
V i,q

T

∣∣∣∣∣∣

, hence, we have that

|V (T )| =
∑

i≤h(T )

∣∣∣∣∣∣
⋃

q∈B(T )
V i,q

T

∣∣∣∣∣∣
=

∑

i≤h(T )

∑

q∈B(T )

∣∣∣V i,q
T

∣∣∣

The above equality holds for T ∈ Φ(A) and for all m, such that card(B(T )) = m.
Thus, we have |V (T )| ≥ |MinS(ΦS,m)|. By the fact that h(T ) is linearly bounded
by card(B(T )) we have that h(T ) is linearly bounded by m. Let k × m be such
bound. Hence, we have that:

FA,Φ(m) ≤
∑

i≤h(T )

∑

q∈B(T )

∣∣∣V i,q
T

∣∣∣ =
∑

i≤k(m)

∑

q∈B(T )

∣∣∣V i,q
T

∣∣∣

for almost all m, and almost all T . In the right-hand side (RHS) of the last equation
we have to remember card(B(T )) = m, so the inner summation is linearly bounded

308



Exp. Huge N.D. proofs are Redundant

by m. Moreover, by hypothesis, Φ(A) is EB. Thus, FA,Φ is EB and there are a ∈ Q,
a > 1, and, c ∈ Q, c > 0, such that:

acm ≤
∑

i≤k(m)

∑

q∈B(T )

∣∣∣V i,q
T

∣∣∣

for almost all m and all T , such that card(B(T )) = m. The above RHS can be
seen as a function from Φ(A) × N into N. If for almost all m, for all l ≤ k × m
and q ∈ B(T ), with card(B(T )) ≤ m we have that V i,q

T is polynomially bounded
then we have that the mentioned RHS is polynomially bounded also. Hence, there
must be i ≤ k ×m and q ∈ B(T ), with card(B(T )) = m, such that

∣∣∣V i,q
T

∣∣∣ > acm.
Thus, occl,q

A (T ) > acm, for almost all m and all T with card(B(T )) = m. Then, by
definition 11, there is m0, such that for all m > m0, there are k, l, l ≤ k ×m, such
that acm ≤ OCC l

Φ(A)(m). So OCC l
Φ(A) is EB too.

The above lemma is, indeed, stronger than what we need to show that almost
all normal proof is redundant. However, from it, we can start our reasoning on the
intrinsic redundancy of huge proofs. It states that any huge proof T has a level
i ≤ h(T ) and a label q ∈ B(T ) such acm ≤

∣∣∣V i,q
T

∣∣∣, for m = card(B(T )), and some
a > 1 and c > 0, a, c ∈ Q. In fact, there is an m0, such that for all m > m0, the
previous statement holds.

We know that acm = 2cm log(a) Before we prove the main result of this article, we
need one more lemma.

Lemma 9. Let q be a label node in an EOL-tree T = ⟨V, EL ∪ ER ∪ EU , l, B⟩
derived from a normal proof of some formula α, such that B(T ) is the set of formulas
associated to each subtree (non-leaf) Tα. Let

Label2suc(q) = {(c, d) : ⟨u, v1⟩ ∈ EL, ⟨u, v2⟩ER, ℓ(u) = q, ℓ(v1) = c or ℓ(v2) = d}

be as above. Then
∣∣Label2suc

∣∣ < 1
3 × card(B(T ))

Proof. By the definition of EOL-trees, whenever we have three nodes u, v1, v2, such
that, ⟨u, v1⟩ ∈ EL and ⟨u, v2⟩ ∈ ER, we have that ℓ(u) ≺ ℓ(v2) and ℓ(v1) is the
unique label such ℓ(v1)⊙ ℓ(u) = ℓ(v2). Since T is derived from a normal proof, ℓ(v2)
is ℓ(v1) ⊃ ℓ(u) and by lemma 6 there are at most 1

3 × card(B(T )) different possible
branches from any u to the topmost associated to the major premise of the topmost
binary rule in T .

Using the above lemma, we can draw the following result.
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Lemma 10. Let S be a set of EOL-trees. Suppose that there are a ∈ R, a > 1,
n0, p ∈ N, c ∈ Q, p > 1, c > 0, such that, ∀n > n0, for all T ∈ S, If card(B(T )) = n

then there is a level i > 0 in T and a label q ∈ B(T ), such that,
∣∣∣V i,q

T

∣∣∣ ≥ c×anp, i.e.,
V i,q

T has exponentially many elements on card(B(T )). Thus, there is at least one
pair of labels l1, l2 ∈ B(T ), such that l2 = l1⊙q, and

∣∣∣V i+1,l1
T

∣∣∣ =
∣∣∣V i+1,l2

T

∣∣∣ ≥ (a a−1
a )np.

Moreover, for every u1 ∈ V i+1,l1
T there is only one u2 ∈ V i+1,l2

T and only one u ∈ V i,q
T ,

such that, ⟨u, u1⟩ ∈ EL(T ) and ⟨u, u2⟩ ∈ ER(T ).

Proof. By the hypothesis of the lemma, we have that for all n > n0, and, for every
T ∈ S, such that card(B(T )) = n, there are i and q, such that,

∣∣∣V i,q
T

∣∣∣ ≥ c×anp , with
a > 1, c > 0, p > 1. By lemma 9, there are at most 1

2 × card(B(T )) = 1
2 ×n possible

different pairs of labels, i.e., the sets Left = {v : ⟨u, v⟩ ∈ EL(T ) and u ∈ V i,q
T } and

Right = {v : ⟨u, v⟩ ∈ ER(T ) and u ∈ V i,q
T } have the same cardinality :
∣∣∣V i,q

T

∣∣∣
n
2

This is lower-bounded by c×anp

n
2

, that is the same of (2c)anp

n , that is equal to

(2c) anp

a loga n = (2c)a(np−loga n). Since, for all n > a, we have that na > an, thus
loga na < loga an = n < np, and hence, loga n < np

a . Thus np − loga n > np − np

a ,
and finally

∣∣∣V i,q
T

∣∣∣
n
2

> (2c)a(np−loga n) > (2c)a(np−np

a
) = (2c)a

a−1
a

np = (2c)( a
√

a
a−1)np

We observe that as a > 1 then a
√

a
a−1

> 1.

Finally, by the last observation above, we can conclude that if there is an un-
limited set of trees that each tree has a level and a label that repeats exponentially
often, then in the levels above this level there are labels that repeat exponentially
often too. We have, hence, the main lemma below.

Lemma 11 (Every linear height bounded huge tree is inherently redundant). Let A
be the set of all EOL-trees and Φ(T ) the predicate that only holds when T is of linear
height, on card(B(T )), bounded tree. If Φ(A) is EB then, for almost all T , such
that Φ(T ), there is a sub-tree T ′ of T , and a level i ≤ h(T ), such that occi,ℓ(r(T ′)) is
EB, and there is no level j < i such that occj,q is EB; for any q ∈ B(T ).
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Proof. The essential reasoning in this proof is to use the observation 2 together with
lemma 8 above. The observation and lemma contribute to proving that the set of
levels that has no label repeated exponentially or more many times is not empty.
The lemma 8 encapsulate this reasoning. A first observation is that by lemma 8 for
almost all trees T ∈ A there is a level i ≤ h(T ), such that ∑

q∈B(T ) V i,q is exponential.
The last phrase is a kind of abuse of language, but it facilitates the understanding of
the argumentation. Formally, we had to state that given an exponential lower-bound
acm, we prove that there is i, such that, acm ≤ ∑

q∈B(T ) V i,q, from the hypothesis,
that acm ≤ V (T ), but we can use the lemma to infer this existence directly.

Turning back to the proof, since ∑
q∈B(T ) V i,q is exponential (or longer than),

using lemma 4 we can conclude that there is q ∈ B(T ) , such that, V i,q
T is exponential

or longer than exponential. We choose, i and q among the least possible values.
Thus, any level j, j < i, does have sub-exponentially many nodes labelled by each
label q′ ∈ B(T ). Any node v in level i, with ℓ(v) = q, can belong to one and only one
of three disjoint sets Bin, Un and Zero, according if it has two, only one, or none
children in T . Since V i,q

T = Bin+Un+Zero is exponentially lower-bounded, then by
lemma 4 at least one of them is exponentially lower-bounded too. Of course, more
than one can be exponentially lower-bounded, but we proceed the proof, without
generality loss, for each case separately. We prove by induction of the minimal
distance of the elements of V i,q

T .

• The basis case is when one of the subsets of V i,q
T is the set Zero. In this case,

the distance is 0, for the elements of Zero are leaves themselves. Then, the
sub-tree T ′ is formed by each v ∈ Zero itself, labelled with q. They occur
exponentially or more than exponentially many times in T .

• The subset, provided by lemma 4 is Un, hence the set Un− defined as
{u : ⟨v, u⟩ ∈ E(T ) and v ∈ Un} is exponentially or longer too, by the item 9
of definition 2. Thus, by the inductive hypothesis, there is a sub-tree T ′′ that
has the elements of Un− as roots. Thus, we have exponentially or longer many
sub-trees of the form T ′′ occurring in T , with roots in level i + 1. By adjoining
the nodes in Un to these trees, we obtain exponentially or longer many trees
T ′ occurring in T . We remind the induction value of Un− is smaller than the
induction value of Un.

• The case when Bin is an exponentially bigger subset of V i,q
T is analogous to

the above. There are at most 1
3

∣∣∣V i,q
T

∣∣∣ right-handed branches Tright of formulas
labelled by q in level i. By using iterated inductive hypothesis, in each of the
levels of Tright, we obtain sub-trees Tleft that occurs exponentially, or more,
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many times in T in the level i + 1. We join them in trees with root in the level
of i. We obtain the desired trees occurring with roots in i that repeat at least
exponentially. We have only to observe the use of lemma 6 to be sure about
the fact that there are only linearly many possible labels for the children of
the nodes in Bin and lemma 10 does all the job.

Using Lemma 11 we obtain the following Theorem, the main result of this article.

Theorem 12. Every huge proof in M⊃ is redundant. There is a sub-derivation of
it that repeats at least exponentially many times in some level i of the proof.

Proof. The proof is an application of Lemma 11 on EOL-trees derived from Natural
Deduction proofs. All conditions for being a valid EOL-tree hold on the derived
trees from ND of M⊃. Including the fact that the ⊙ concrete operation is such
that l1 ⊙ l2 = l1 ⊃ l2. We only have to observe that a sub-derivation of a Natural
Deduction proof/derivation is any full sub-tree of the underlying tree of the Natural
Deduction derivation.

6 Using Theorem 12 to obtain subexponential proofs
This section contains a brief explanation of the application of Theorem 12 to show
that every tautology in M⊃ that has a superexponentially sized proof with height
linearly bounded has DAG-based proof that it is subexponential on the size of its
conclusion. The proof of the following proposition and some of the companion results
listed here are in [11]. In this section, we argue in favour of their validity. For a
complete, formal and detailed definitions and proofs see [11]. We notice that the
DAG-proofs are rooted, and, the conclusion.is labels the root node

Proposition 13. Let α be a M⊃ tautology that has a superexponential normal
proof of height linearly bounded by |α|. There is a DAG-like proof of α of size
subexponential on |α|.

Proof. Sketch of the Proposition 13. The production of a DAG-like proof obtains
through the method described by algorithm 1. DAG-like proofs, rooted by their
respective conclusions, are proofs that are the result of the Collapse of two or more
identical full subtrees of them. Its root completely determines a full subtree of a
DAG-like proof. Given a root r, the set of vertexes reachable from r is the set of
nodes of the subtree. In line 3 is where Lemma 11 is called to return the list of
subtrees of T that occurs exponentially many times in the lowest level possibles.
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That is, if l is the lowest level of occurrence of exponentially many instances of the
same subtree, then below l in T there is no occurrence of a root of a subtree that
occurs exponentially many times in T . We have the operation Collapse(D,Y, DY),
where Y is a list of nodes, each of them is the root of an instance of the subtree CY
that occurs in the same level ofD, the ambient DAG-like proof. The rooted DAG-like
proof DY is the result of the application of Compress() to CY , a statment executed
in line 8. The procedure Collapse() links the root of DY to the respective targets of
each y ∈ Y in (D− (⋃y∈Y CY)) ∪⋃

y∈Y{y}. We obtain the linking in a way that the
path from the premisses to conclusion remains unchanged regarding the previous
instance of CY . The result of the Collapse is such that, all of the instances of CY are
compressed and replaced by their respective instances in D. Obviously, the size of
the new construction is smaller. This operation is depicted in figures 6 and 7, original
from [11]. In the algorithm 1, c(T ) is the conclusion of the proof/derivation T , h(T )
is the height of T , |s| is the length of the string representation of s. An r-DagProof
is a rooted DAG-proof, formally defined in [11]. We have then the following results
proved and state in [11]. We can see, by the definition of Algorithm 1, that this
proposition is proved by induction on the number of recursive calls to Compression.
The basis is when the size of the proof-tree is smaller than any exponential on a > 1,
a ∈ Q. In each recursive call, the size of the new recursive argument is smaller than
the current one, regarding the fixed m, determined at the starting call and fixed as
a global value. Thus, for any starting argument, T , Compress(T ) is defined, i.e.,
it halts as a running sequence of statements. Last but not least, we can prove that
the tree that remains when we remove all the subtrees returned by the statement
in line 3 of algorithm 1 is subexponential. Denote by T0 the tree resulted when we
cut out all the subtrees in LocalLowestLevels from T . We remember that the
removal of a subtree includes the removal of the root of the removed tree. Thus, if
T0 is exponential, then we can apply Lemma 11 to it, and we have a list of subtrees
that occurs exponentially many times in T0. However, all of them are below the
respective least occurrences in T that we removed to obtain T0. By the hypothesis,
i.e., previous application of Lemma 11 to T , we have a contradiction. So T0 is
subexponential.

We have only to remember that the sub-trees may not be sub-proofs, for the
discharging of assumptions is below them. One last, but not least, thing to remind
the reader is the fact that since the sub-trees are the same, the edges have the
same dependency set. The bitstring that is used to represent, formally, of Natural
Deduction proofs and derivation in as EOL-trees do not even need to be altered or
manipulated in the demonstrations we made in this article.

We have the following proposition that it is proved by induction on the number
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of recursive calls to Compress(), analogous to the above proof. In the proof below
we use a lemma that states that each application of Collapse(D,Y, DY) produces a
valid DAG proof/derivation of the root of D from valid DAG proofs/derivations of
DY . The validity notion is the usual semantics for M⊃.

Proposition 14. Let α be a M⊃ tautology that has a superexponential normal proof
T of height linearly bounded by |α|. The DAG-like proof of Compress(T ) is a DAG-
like valid proof of its conclusion (root)

Finally, there is an algorithm, that runs in linear time on the size of a rooted
DAG-proof D that verifies whether D is valid or not. Due to space limits, we cannot
detail this anymore, and, we refer to [11].

Algorithm 1 Compress a normal proof T using repeatly Lemma 11.
Precondition: Uses the global variable m with value |c(T )| and a > 1, a ∈ Q
Precondition: T is a normal proof, h(T ) ≤ |c(T )| and |T | > am

Ensure: a r-DagProof D proving c(T ) of size subexponential in |c(T )|
1: Function Compress(T )
2: if (|T |) > am then
3: LocalLowestLevels←MinLevel(Lemma 11(T ))
4: D ← T
5: for lev ∈ LocalLowestLevels upwards h(T ) do
6: L← ExpSubP roofs(T , lev)
7: for ⟨Y, CY ⟩ ∈ L do
8: DY ← Compress(CY )
9: D ← Collapse(D,Y, DY )

10: end for
11: end for
12: ReturnD
13: else
14: ReturnT
15: end if
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Figure 6: Some instances of the matrix C in the ambient r-DagProof D
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Figure 7: Three DetachLink were applied in the ambient r-DagProof D of fig. 6

7 Conclusion
In this article, we proved that redundancy is an inherent property of huge normal
proofs in Natural Deduction for M⊃. The extension of this result to the full language
of propositional logic seems to hold. The proof of this result, however, can be more
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complicated and may not be so relevant as what we have proved. [17, 12] provides
a translation of any formula α from the full language of propositional logic, namely
{∧,∨,¬,⊃,⊥}, to a purely implicational formula α∗, such that |α∗| ≤ |α|3 and
⊢M⊃ α∗ if and only if ⊢Int α. Moreover, given a proof Π of α of height h(Π) in the
intuitionistic Natural Deduction, there is a proof Π∗ of α∗, in M⊃, such that h(Π∗) ≤
3×h(Π). Thus, any intuitionistic tautology α that has a huge normal proof and it is
linearly height-bounded has an implicational translation α∗, equiprobable, that has
a highly redundant proof too. We conclude that some huge certificates (proofs) for
the validity of Intuitionistic tautologies, based on Natural Deduction proofs, can be
chosen to be (highly redundant). It seems easier to obtain shorter proofs/certificates
of validity from redundant proofs than from non-redundant ones. In [13], we have
shown that in some particular cases, the use of Classical reasoning, i.e., to move to a
Classical Logic Natural Deduction system, can shorten an exponentially sized proof
to the linear size. The cases reported in [13] are of linear hight, and hence the proofs
are highly redundant. Moving to the Classical Logic system does have nothing to
do with the redundancy of the proofs. It has to do with the fact that what makes
the proofs shown in [13] exponentially big, in this specific case, is a weaker form of
the iterated Peirce formula, that needs at least exponentially many assumptions in
the smallest normal proofs.

The compression of M⊃ normal ND proofs, in the general case, is not only a
matter of moving to Classical Logic as it is in [13]. We notice that we have examples
of exponentially sized Natural Deduction proofs, with linear height, in Classical
logic itself. In the appendix A we show a class of Classical tautologies that lies in
this case. However, we can use the inherent redundancy property from this article.
The compression of implicational minimal proofs uses a device that we firstly have
shown in ref [7] and improved in [8]. In [7], we collapse all nodes, in each level, of a
linearly height-bounded proof-tree that have the same label (formula), from bottom
up. The collapse of nodes in the way we just mentioned is what we call Horizontal
Collapse (HC). Using HC in exponentially sized and linear height proofs we provide
a sequence of arbitrary NP-approximations for a PSPACE-complete problem, and
in [8], we prove that NP=SPACE by using a certificate to verify that the DAG
obtained by HC. HC produces DAG-proofs of polynomial-size, and the certificates
to verify that these DAG-proofs are correct are of polynomial-size too. That is, for
each implicational proof that is exponentially sized and of linear-bounded height, we
provide a pair of certificates, i.e., a double certificate, for the M⊃-tautology that it
proves. By a result proved in [7], that shows that any M⊃-tautology has a proof in
Natural Deduction that has the height linearly bounded, and, since M⊃ is PSPACE-
complete, we have a proof that NP = PSPACE. We advise that the technique
used in [7] and [8] does not rely on the normality of the huge linearly height-bounded
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proof, the huge proof can be non-normal. Thus, the range of a compression method
based on the inherent redundancy theorem is narrower than what we have in [7] and
[8]. However, we can observe that the use of the technique of collapsing sub-trees
in any huge proof Π in the set NHam (see section 4 and appendix A) produces a
sub-exponential certificate by compressing Π into a Dag-proof, as shown in section 6.
For all proofs in NHam are normal and linearly height-bounded. This application
proves the existence of sub-exponential certificates for any CoNP -complete problem
since NHam is a CoNP -complete problem. The algorithm 1 describes the main
steps in a recursively defined compression. In [9] we have a preliminary version
of the redundancy theorem for super-polynomially sized proofs that are linearly
height-bounded. With [9] and an analogous compression method, we can provide
an alternative proof of NP = CoNP by providing polynomial certificates for every
member of NHam.

There are other reasons to consider an alternative compression method based
on the inherent redundancy theorems. Firstly, the use of a short double certificate,
as in [8], to prove the validity of M⊃ tautology indeed introduces additional com-
plexity in finding or building short DAG-based proofs of them. The definition of an
automatic prover that always provides short DAG proofs (certificates) is a natural
continuation of the investigations reported in [7, 8]. We do not want to consider
a prover that applies the compression after obtaining a, possibly huge, proof as an
efficient propositional prover. The provision of a simpler compression algorithm that
does not produce a double certificate can be a step towards automatic generation of
short proofs. A more straightforward compression method, i.e., one that produces a
single certificate, can be based on the collapse of sub-derivations, instead of nodes.
This method would provide us with a mathematically simpler proof of the soundness
of the compressed proof or certificate than its double certificate counterpart proof
of soundness. The definition of an automatic prover to generate shorter proofs of
M⊃ tautologies based on the existence of the single short certificates seems to be
easier to define than its double certificate counterpart.

A Proofs of non-hamiltonicity in ND

In this appendix, we show how to use M⊃ to generate certificates of the non-
hamiltonicity, non-existence of a Hamiltonian cycle, employing Natural Deduction
proofs that are linear height-bound.

A simple directed graph is a directed graph having no multiple edges, that is,
for every pair of nodes (v1, v2) from the graph there is at most one edge from v1 to
v2. Given a simple directed graph G = ⟨V, E⟩, with card(V ) = n, a hamiltonian
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path in G is a sequence of nodes v1v2 . . . vn, such that vi ∈ V , i = 1, n, and for each
i, j ∈ V , if vi = vj then i = j, i.e, a path has no repetition of nodes. Moreover, if
vivi+1 is in the path then exists the edge (vi, vi+1 ∈ E. The (decision) problem of
knowing whether there is or not a hamiltonian path in a graph is known to be NP-
complete. Thus, given a graph ⟨V, E⟩, with card(V ) = n, to verify that a sequence
of n nodes is a hamiltonian path it is enough to verify that: (1) There is no repeated
node in the sequence; (2) No element v ∈ V is out of the sequence, and; (3) For
each pair vivj in the sequence there is an edge (vi, vj) ∈ E. We can see that these
verifications require polynomial time on the size of the graph and that any path is
linearly bounded by n. Thus any sequence of nodes of a graph can be viewed as a
polynomially verified certificate for this graph hamiltonicity. Consider the following
reduction of a Hamiltonian path to SAT, quite well-known from the literature in
computational complexity (see [4]).

Definition 13. Given G = ⟨V, E⟩, card(V ) = n > 0. Let Xi,v, i = 1, n e v ∈ V
be the proposicional language. Intuitively, Xi,v express that the vertex v is visited in
the step i in a path on G. Consider the formulas in the following definition:

1. A = ∧
v∈V (X1,v ∨ . . . ∨Xn,v) indicating that every vertex can be visited in any

step in a hamiltonian path/cycle;

2. B = ∧
v∈V

∧
i ̸=j(¬(Xi,v∧Xj,v)) indicanting that there are no repetitions in any

hamiltonian path/cycle;

3. C = ∧
i=1,n

∨
v∈V Xi,v that says that in each step one vertex should be visited;

4. D = ∧
v ̸=w

∧
i=1,n ¬(Xi,v ∧Xi,w) that indicates that each step can visit at most

one vertex, and;

5. E = ∧
(v,w)̸∈E

∧
i=1,n−1(Xi,v ⊃ ¬Xi+1,w) that indicates that if there is no edge

from v to w then w cannot be visited immediately after v;

We can see that G has a hamiltonian path if and only if αG = A∧B∧C ∧D∧E
is satisfiable. Any hamiltonian path v1 . . . vn induces a truth-assignment T , such
that T (Xi,w) = true if and only if w = vi, that satisfies αG. Conversely, any truth-
assignment that satisfies αG induces a hamiltonian path in G. If we denote SATCla

the set of satisfiable formulas for the classical propositional logic and as TAUTInt

the set of tautologies for the intuitionistic propositional logic, we can observe that
the following statements are equivalent:

(1)G is not hamiltonian if and only if αG ̸∈ SATCla
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(2)G is not hamiltonian if and only if αG is unsatisfiable

(3)G is not hamiltoniano if and only if ¬αG ∈ TAUTCla

(4)G is not hamiltonian if and only if ¬αG ∈ TAUTInt

Hence, G is non-hamiltonian graph if and only if there is an intuitionistic proof
(positive certificate) for ¬αG. Such proof is a certificate for non-hamiltonicity of
graph G. To go from statement (3) to (4), we use Glyvenko theorem. In [17,
12] it is described a translation from formulas in the full language {⊥,¬,∧,∨,⊃}
to the purely implicational formulas, .i.e, formulas containing only the constant
symbol ⊃ and propositional variables. From any formula γ, the formula γ⋆ from
purely implicational minimal logic is provable in the minimal logic if and only if γ
is provable in intuitionistic logic. Moreover, concerning the sizes of the formulas,
we have that size(α⋆) ≤ size3(α) ([12]). The main idea described in [17, 12] is
the use of implicational schemata that simulate the introduction and elimination of
Natural Deduction rules. This simulation employs the use of new/fresh propositional
variables. For example, for each pair of formulas A and B, we add the propositional
variable qA∨B and the formulas A ⊃ qA∨B, B ⊃ qA∨B are used to simulate the
∨-introduction rules. Hence, any application of the rule:

A
A ∨B

is replaced by the following derivation in ND⊃

A A ⊃ qA∨B
qA∨B

In this way, the new derivation is normal too. Remember that the changing of
language, i.e., replacing the formula A ∨ B by qA∨B occurs in all formulas of the
original derivation. The formulas (A ⊃ β) ⊃ ((B ⊃ β) ⊃ (qA∨B ⊃ β)), for each β
sub-formula from ¬α, simulate the ∨-elimination. The fact that the original deriva-
tion is normal ensures that any application of an ∨-elimination has minor premisses
as sub-formulas of the hypotheses or the conclusion, for the sub-formula principle
holds for normal derivation. The ND proofs that we show here, for hamiltonicity,
use a more economic translation, as we see below.
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A (normal) proof of ¬αG, where G is a non-hamiltonian graph, is a proof of
⊥ from αG. Since αG is a conjunction we can consider the certificate of non-
hamiltonicity as any proof of ⊥ from the set of formulas that form the compo-
nents of the conjunctions. Thus, we consider (A) the disjunctions of the form
(X1,v∨. . .∨Xn,v), with v ∈ V , from the item 1 of the definition of αG; (B) the formu-
las ¬(Xi,v∧Xj,v), with i = 1, n and v ∈ V , from item 2; (C) the formulas ∨

v∈V Xi,v,
with i = 1, n, from item 3; (D) the formulas ¬(Xi,v ∧ Xi,w), i = 1, n and w ∈ V ,
from item 4, and; (E) finally, the formulas Xi,v ⊃ ¬Xi+1,w, with i = 1, n − 1 and
(v, w) ̸∈ E, from item 5. Let us examine a bit more the proof of ¬α⋆ as a proof of ⊥
from this set of formulas SG just detailed above. A naive proof of non-hamiltonicity
considers every possible path starting with every possible node of the graph, and
then, considering every possible node of the graph to be visited at the second step
and so on. Of course, as G has no hamiltonian path, every possible choice ends up in
a contradiction. Either there is no unvisited node possible to be visited, and we use
formulas from the conjunctions in B, and D to obtain the absurdity ⊥ or there is
no node to visit at all, and we use conjunctions from E to prove the ⊥. Each step’s
choice accomplishes a ∨ elimination having a disjunction from the formulas A or C
as major premises. The proof is a kind of decision tree upwards-down. It is upper-
bounded by nn, while its height is linear on n. We observe that each ∨-elimination
is replaced by a combination of ⊃-Introductions and ⊃-eliminations. This combi-
nation increases the height of the tree by two for each application of ∨-elimination.
See schematic proof below. There is no need for ∨-introduction. There is no need of
the ⊥ intuitionistic rule. The translation in [17] that replaces the ⊥ by a new/fresh
propositional variable q is used formally with the sake of uniformity.

Summing up, for each non-hamiltonian simple and directed graph G, with n
nodes, there is a set of formulas SG with complexity (length) at most n3 and proof
of size nn rules and height at most 3n rules that have q as the conclusion. This
proof is the certificate of non-hamiltonicity of G. This proof is also a normal proof,
as defined by Gentzen and Prawitz. Hence, it satisfies the sub-formula principle.

A.1 Normal ND⊃ proofs of non-hamiltonicity of simple directed
graphs

The material in this subsection is taken from [10] and a short version of it also
appears in an addendum to the article [8], to appear, eventually. In this addendum,
and here, it has the purpose of pointing out a way to prove that NP = CoNP
without using a translation from linearly height-bounded Sequent Calculus proofs
to linearly height-bounded Natural Deduction proofs, but not necessarily normal
proofs. The redundancy theorem does not apply to non-normal proofs, but it applies
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to normal proofs of non-hamiltonicity of graphs as described in the sequel. The goal
is to obtain compressed and polynomial certificates of validity (proofs, or DAG-
proofs) for non-hamiltonicity. Here, in this paper, we reach only subexponential
certificates.

Consider a non-hamiltonian graph G = ⟨V, E⟩ and the formula ¬αG as stated in
the previous section. Thus, αG = A∧B∧C∧D∧E, with A, B, C, D and E as defined
in items 1 until 5 from definition 13. Let p be any sequence of nodes from V of length
card(V ). From p we have the set {X1,p[1], . . . , Xn,p[n]} of propositional variables from
the language of αG. This set, as the sequence p, represents a potential path in the
graph G, namely, the path that starts by visiting vertex p[1], this is X1,p[1] holds,
visits vertex p[2], i.e. X2,p[2] holds, until ending with the visit of p[n]. However, this
sequence is not checked as a valid path. The set {X1,p[1], . . . , Xn,p[n]} is a valid path
if and only if it does not inconsistent with the formula αG. As G does not have any
hamiltonian path then we known that {X1,p[1], . . . , Xn,p[n]} is inconsistent with α.
We consider a mapping that given a sequence p the set Xp = {X1,p[1], . . . , Xn,p[n]} is
inconsistent with alphaG, p 7→ Xp. Thus, for any p, there is a derivation of ⊥ from α
in Natural Deduction by completeness. Using the translations described in [17, 12]
we have a normal derivation of q from alpha⋆

G and the set Xp. This is the content
of lemma 15. Considering the set P of all sequences of length n and the lemma 15
we have a set of normal proofs {Πp : p ∈ P}, where each Πp is of the form:

Xp

Πp

q

where sometimes we use Πp to denote the above derivation. Moreover, in order to
have an easier understanding, the derivation Πp is taken as depending from the whole
set Xp even when not every formula Xi,p[i], i = 1, n, occurs in Πp. We consider the
set of nodes (vertexes) ordered as in {v1, . . . , vk}, where k = card(V ). We introduce
the following notations:

Definition 14. Given a sequence of vertexes p : {1, . . . , n} 7→ V , we denote the sub-
sequence p[1] . . . p[j] of p as p[1..j], where j ∈ {1, . . . , n}. Of course, p[1] = p[1..1]
and p[1..n] = p. Moreover, we denote by p[−j] the sub-sequence p[1..n−j], j ≤ n−1.
Obviously, p[−(n− 1)] = p[1]. The concatenation of sequences p and q is denoted by
p; q.

In the sequel, given a set Xp = {X1,p[1], . . . , Xn,p[n]}, we denote by Xp[−1] the set
{X1,p[1], . . . , Xn−1,p[n−1]}. When dealing with sets of formulas A, the union A∪ {β}
can be denoted by A, β.
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Consider now the following derivations Πp[−1], for each sequence p ∈ P , that use
the set of normal proofs {Πp : p ∈ P} defined as above.

Πp[−1]=

Xn,v1 ∨ . . . ∨Xn,vn

Xp[−1],Xn,v1

Πp[−1];Xn,v1
q . . .

Xp[−1],Xn,vn

Πp[−1];Xn,vn

q
q

If we consider that each Πp is a derivation in ND⊃, cf. lemma 15, then the following
derivation is the derivation Πp[−1] translated to purely implicational minimal logic
Natural Deduction, i.e. ND⊃. We used, here, an n-ary version of the ∨-elimination
rule, with the sake of a shorter presentation.

Πp[−1]=

ORXn

Xp[−1],[Xn,v2 ]

Πp[−1];Xn,v2
q

Xn,v2 ⊃ q

Xp[−1],[Xn,v1 ]

Πp[−1];Xn,v1
q

Xn,v1 ⊃ q (Xn,v1 ⊃ q) ⊃ ((((Xn,v2 ⊃ q) ⊃ . . . ((Xn,vn ⊃ q) ⊃ (ORXn ⊃ q)))
(. . . (Xn,v2 ⊃ q) . . . ((Xn,vn ⊃ q) ⊃ (ORXn ⊃ q)))

(. . . (Xn,v3 ⊃ q) . . . ((Xn,vn ⊃ q) ⊃ (ORXn ⊃ q)))
...

ORXn ⊃ q
q

The propositional variable ORXn is the translation os the disjunction Xn,v1∨. . .∨
Xn,vn , as indicated by the translations schemata described in [17] and [12]. Moreover,
we can see that the derivations Πp[−1], for each p ∈ P are normal derivations in
ND⊃. We build proof of non-hamiltonicity from the last step to the first. The j-th
element in the sequence p is related to the choice of visiting vertexes of the graph
during step n − j + 1. The following derivation is, in analogy with the previous
derivation, regarded to this j-th choice in the sequence, and is denoted by Πp[−j].
Use use k = n− j + 1 to have a cleaner derivation. Observe that the propositional
variables ORXn to ORXk were introduced as the translations of the corresponding
disjunctions Xn,v1 ∨ . . . ∨Xn,vn to Xk,v1 ∨ . . . ∨Xk,vn .

Πp[−j]=
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ORXk

ORXn,
. . . ,

ORXk+1,
Xp[−j],[Xk,v2 ]

Πp[−j];Xk,v2
q

Xk,v2 ⊃ q

Xp[−j],[Xk,v1 ]

Πp[−j];Xk,v1
q

Xk,v1 ⊃ q (Xk,v1 ⊃ q) ⊃ ((((Xk,v2 ⊃ q) ⊃ . . . ((Xk,vn ⊃ q) ⊃ (ORXk ⊃ q)))

(. . . (Xk,v2 ⊃ q) . . . ((Xk,vn ⊃ q) ⊃ (ORXk ⊃ q)))

(. . . (Xk,v3 ⊃ q) . . . ((Xk,vn ⊃ q) ⊃ (ORXk ⊃ q)))

...
ORXk ⊃ q

q

The derivation that is our goal is the application of the schemata above to the
first step. We can see that there are only n p[−(n − 1)] sequences, and by the
recursive definitions we used above, there are only n derivations Πp[−(n−1)] normal
derivations of q. Finally, by the last application of the implicational schema for the
∨-elimination, we obtain a proof of q. q is the (new) propositional variable used
to translate the ⊥, from ORX1 to ORXn that are in fact parts of A and from the
formulas D, E and B used by lemma 15 in producing the derivations Πp, for each
p ∈ P . Now, by an iterated application of a series of ⊃-introduction rules, we obtain
a proof the translation of the formula ¬α in the purely implicational minimal logic
Natural Deduction.

Lemma 15. Let G = ⟨V, E⟩ be a simple and directed non-hamiltonian graph and
p = p[1] . . . p[n] be a sequence of vertexes from V . Then there is a (not necessarily
unique) derivation

Xp

Πp

q

where Xp = {X1,p[1], . . . , Xn,p[n]} in ND⊃.

The above derivation mentioned in the above lemma can use, and must use at
least one of, the formulas B, C, D and E from items 2,3 and 4 from definition 13

Proof of the lemma: Since the graph G is not hamiltonian then any sequence
of n vertexes cannot be a valid path. So using one of the formulas B to D , in
their purely implicational form, we derive q (the translation of the absurdity logical
constant). Since p is not a valid path on G, then at least one of the items must hold
abut p:

Visiting a vertex more than once There are i, j, 1 ≤ i < j ≤ n, such that
p[i] = p[j] = v ∈ V . In this case consider i1 and i2 the least pair, i1 < i2, such
that p[i1] = p[i2]. Πp is the following derivation:
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Xi2,v

Xi1,v Xi1,v ⊃ (Xi2,v ⊃ q)
Xi2,v ⊃ q

q

where Xi1,v ⊃ (Xi2,v ⊃ q) is the translation of (¬(Xi1,v ∧ Xi2,v) to purely
implicational minimal logic. Observe that {Xi1,v, Xi2,v} ⊂ Xp and (¬(Xi1,v ∧
Xi2,v) is a component of the conjunction B from α.

Visiting a vertex without any linking edge There is i, 1 ≤ i < n, such that
p[i] = y ∈ V , p[i + 1] = z ∈ V and there is no (y, z) ∈ E. In this case consider
j the least number 1 ≤ j < n such that p[j] = y, p[j + 1] = z and (y, z) ̸∈ E.
Πp is the following derivation:

Xj+1,z

Xj,y Xj,y ⊃ (Xj+1,z ⊃ q)
Xj+1,z ⊃ q

q

where Xj,y ⊃ (Xj+1,z ⊃ q) is the translation of Xj,y ⊃ ¬Xj+1,z to purely
implicational minimal logic. Observe that {Xj,y, Xj+1,z} ⊂ Xp and Xj,y ⊃
¬Xj+1,z is a component of the conjunction E from α.

Since the two items above are the only two possible reasons for a sequence p, with
lengh n = card(V ), not being a valid path, we are done.
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Abstract

First-order predicate logic is consistently used here to prove the represen-
tation theorem for extensive measurement with unrestricted concatenation and
no maximal elements stated by P. Suppes in his 1951 article “A set of inde-
pendent axioms for extensive quantities.” Suppes regarded as unnecessary to
present a detailed proof of the theorem. He limited himself to showing that a
function for any structure satisfying his axioms exists that satisfies the desired
properties. He added that its proof follows along standard lines, as given, for
instance, by O. Hölder in 1901. Our proof here follows where feasible Hölder’s
arguments and requires an Archimedean axiom which is slightly different from
that provided by Suppes. Dedekind’s theory of irrational numbers, simplified
and described in great detail by E. Landau, is adopted because it is the most
convenient for our purposes.

1 Introduction
Three parallel research mainstreams before 1950 were the abstract work on the
part of mathematicians concerned with the axiomatic foundations of geometry, in
special [6] (English version of that article available in [10]), the logical analysis of
empirical procedures of measurement by philosophers of science, in particular [2],
and the work on scale types and transformations by psychologists, in special [12].
Suppes showed in [13] that the ratio scale listed in [12] can be derived from purported
qualitative laws about observed relations among certain entities, some of those laws
already advanced in [2], thus unifying the three research mainstreams.

The general framework requires that a representation theorem, which provides
an exact analysis of how we may infer quantitative assertions from fundamentally
qualitative observations, and a uniqueness theorem, which specifies the conditions
for regarding such inferences as unique, be both stated and proved [4] [7] [11] [15].
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Suppes’ approach in [13] differs in some ways from Hölder’s in [6], including the
axioms which were weakened to apply to both denumerable and nondenumerable
relation structures, the fact that it covers the case where equivalence is not identity,
and the use of “modern” abstract algebra to express the results. He regarded as
unnecessary to present a detailed proof of the representation theorem. He limited
himself to showing that a function for any structure satisfying his axioms exists that
satisfies the desired properties. He added that its proof follows along standard lines,
as given, for instance, in [6].

First-order predicate logic [3] [5] [14] is consistently used here to prove the rep-
resentation theorem for the measurement of extensive quantities with unrestricted
concatenation and no maximal elements. Dedekind’s theory of irrational numbers,
simplified and described in great detail in [8], is adopted because it is the most conve-
nient for our purposes. Our proof follows where feasible Hölder’s arguments and re-
quires an Archimedean axiom which is slightly different from [13]. The Archimedean
condition adopted here is essentially the one used by Behrend in [1]. Incidentally,
Behrend’s work also does not cover the case where equivalence is not identity.

The article is organized as follows. The axioms are presented and discussed in
section 2. Elementary lemmas are listed and proved in an abbreviated way in section
3. The representation theorem is stated and proved in section 4. The uniqueness
theorem is stated and proved in section 5. An outline is given in section 6. The
conclusions are drawn in section 7.

2 Axioms
Definition 1. A structure ⟨K,Q, ◦⟩, where K is a nonempty set of arbitrary ele-
ments x, y, z, . . ., Q is a binary relation defined over K, and ◦ is a binary operation
from K×K to K, is an empirical extensive structure if it satisfies the following six
axioms for all x, y, and z:

A.I. xQy ∧ yQz → xQz

A.II. (x ◦ y) ◦ zQx ◦ (y ◦ z)
A.III. xQy → x ◦ zQz ◦ y
A.IV. ¬xQy → ∃z(xQy ◦ z ∧ y ◦ zQx)
A.V. ¬x ◦ yQx
A.VI. ∃n(¬nxQy), where the notation nx is defined recursively below.

Notation 1. Let 1x = x and nx = (n− 1)x ◦ x, where n is a positive integer.

Consider for instance the comparison of masses of material objects x, y, and
z. When x and y are placed respectively on each pan of a two-pan, equal-arm
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balance, the expression xQy symbolizes the observation that the pan containing x
stabilizes itself at least as low as that containing y. The concatenation operation
x ◦ y symbolizes the observation that both x and y are placed on the same pan.
The axioms express qualitative laws about observable relations among the objects.
The first axiom describes the relation as transitive. The second axiom asserts that
the relation does not depend on the arrangement we choose to place the objects on
the pans. The third axiom says the relation between x and y is preserved when
z is simultaneously placed on both pans together with the existing objects. The
fourth axiom asserts that if x stabilizes at a lower level than y, then an object z
can be found which placed together with y exactly balances x. The fifth axiom says
every object has a positive mass; that is, the pan containing both x and y stabilizes
at a lower level than that containing only x. The sixth axiom is the Archimedean
property which differs slightly from

xQy → ∃n(yQnx),

which was provided in [13]. The version of the Archimedean property utilized here
is essentially the one used by Behrend in [1]. We shall see that its use is required
to obtain a proof of the representation theorem that follows where feasible Hölder’s
arguments in [6]. Some theorems that will be proved in the next sections refer to
corresponding sections of that Hölder’s article. We recommend the reader to follow
the referred sections of [6] (or [10]) when reference to his article is made in the next
sections.

3 Elementary lemmas
All lemmas and theorems in this article assume that all elements are in K. Proofs
in this section are abbreviated due to lack of space. Lemmas 1 to 5 are respectively
equivalent to Ths. 1 to 5 listed in [13] and proofs of those theorems are given therein.
In particular, the proof of Th. 3 in [13] was corrected in a republished version of
that article in [16].

Lemma 1. xQx

Lemma 2. x ◦ yQy ◦ x

Lemma 3. xQy ∧ uQv → x ◦ uQy ◦ v

Lemma 4. x ◦ (y ◦ z)Q(x ◦ y) ◦ z

Lemma 5. xQy ∨ yQx
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Lemma 6a. x ◦ uQy ◦ u → xQy (see Th. 6 in [13] for a proof of this lemma).
Full proofs are given for the following two lemmas, where T denotes one of those

tautologies listed in [14] and C.P. denotes conditional proof.

Lemma 6b. xQy → x ◦ uQy ◦ u

Proof.

1. xQy Hypothesis
2. uQu Lemma 1
3. xQy ∧ uQu 1, 2 T
4. x ◦ uQy ◦ u 3 Lemma 3
5. Lemma 6b 1, 4 C.P.

Q.E.D.

Lemma 6c. xQy → u ◦ xQu ◦ y

Proof.

1. uQu Lemma 1
2. xQy Hypothesis
3. uQu ∧ xQy 2, 1 T
4. u ◦ xQu ◦ y 3 Lemma 3
5. Lemma 6c 2, 4 C.P.

Q.E.D.

Lemmas 7 and 8 are not used here; they are listed just to follow where feasible
the numbering of theorems adopted in [13].

Lemma 7. y ◦ zQu ∧ xQy → x ◦ zQu

Lemma 8. uQx ◦ z ∧ xQy → uQy ◦ z
A full proof of Lemma 9 is given below since it requires Lemma 4 instead of

Lemma 6 (see proof of Th. 9 in [13] where reference is made to Th. 6).
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Lemma 9. mx ◦ nxQ(m+ n)x

Proof. We use mathematical induction on n.

1. mx ◦ xQmx ◦ x Lemma 1
2. mx ◦ 1xQmx ◦ x 1 Notation 1
3. mx ◦ 1xQ(m+ 1)x 2 (n = 1)
4. mx ◦ kxQ(m+ k)x Hyp. (n = k)
5. xQx Lemma 1
6. mx ◦ kxQ(m+ k)x ∧ xQx 4, 5 T
7. (mx ◦ kx) ◦ xQ(m+ k)x ◦ x 6 Lemma 3
8. mx ◦ (kx ◦ x)Q(mx ◦ kx) ◦ x Lemma 4
9. mx ◦ (kx ◦ x)Q(m+ k)x ◦ x 8, 7 A. I.
10. mx ◦ (k + 1)xQ(m+ k + 1)x 9 Notation 1
11. mx ◦ kxQ(m+ k)x → mx ◦ (k + 1)xQ(m+ k + 1)x 4, 10 C.P.
12. Lemma 9 3, 11

Q.E.D. (may repeat mathematical induction for m)

Lemmas 10 to 17 are respectively equivalent to Ths. 10 to 17 listed in [13] and
summarized proofs of those theorems are given therein.

Lemma 10. (m+ n)xQmx ◦ nx

Lemma 11. n(mx)Q(nm)x

Lemma 12. (nm)xQn(mx)

Lemma 13. n(x ◦ y)Qnx ◦ ny

Lemma 14. nx ◦ nyQn(x ◦ y)

Lemma 15. xQy → nxQny

Lemma 16. nxQny → xQy

Lemma 17. m ≤ n → mxQnx
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Lemma 18a. ¬xQz ∧ yQz → ¬xQy

Proof. Assume xQy. Using hypothesis, namely ¬xQz ∧ yQz, and A. I. we arrive at
a contradiction. Q.E.D.

Lemma 18b. ¬xQz ∧ ¬zQy → ¬xQy

Proof. Assume xQy. Using hypothesis, namely ¬xQz ∧ ¬zQy, and Lemma 18a, we
get: ¬xQz ∧ ¬zQx, which contradicts Lemma 5. Q.E.D.

Lemma 18c. ¬zQx ∧ zQy → ¬yQx

Proof. Similar to Lemma 18a. Q.E.D.

Lemma 19. ¬xQy ∧ ¬uQv → ¬x ◦ uQy ◦ v

Proof. Using hypothesis, namely ¬xQy ∧ ¬uQv, and the contraposition of Lemma
6a, we get: ¬x ◦ uQy ◦ u and ¬u ◦ yQv ◦ y. Then using Lemma 2, Lemma 18c and
Lemma 18a on these, we get: ¬y ◦ uQy ◦ v and, with Lemma 5, y ◦ vQy ◦ u. Finally,
using Lemma 18a on ¬x ◦ uQy ◦ u and y ◦ vQy ◦ u, we get lemma. Q.E.D.

4 Representation theorem
The exact formulation and proof of the representation theorem requires a remark on
the notion of equivalence classes or cosets. For x in K, we define the C-equivalence
class, x, in the standard manner, (see [14], §10.4, or [15]), as the class of all elements
which stand in the relation C to x. Intuitively, x is the class of all elements whose
magnitude is equivalent to that of x. Every element of K must belong to one and
only one such coset; and K is the set of all such cosets, or the partition of K into C-
equivalence classes. We define relations among equivalence classes of K (e.g., Q∗, ◦∗)
corresponding to all the primitive and defined relations among elements of K. Thus,
we say that xQ∗y if and only if every element of x stands in the relation Q to every
element of y. Similarly we say that x ◦∗ y if and only if for every x1, y1, if x1 ∈ x and
y1 ∈ y, then x1 ◦ y1. It is an immediate consequence of these definitions that every
such relation between equivalence classes of K holds if and only if the corresponding
elementary relation holds between the elements of K which generate the equivalence
classes so related. For example, we can show that x ◦∗ y if and only if x ◦ y. Hence,
to every of the original definitions, axioms and lemmas in sections 2 and 3, there
corresponds a coset definition, axiom or lemma. To avoid repetition in the proof,
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we have adopted the convention that when the number of any definition, axiom
or lemma is prefixed by the letters “CS” the designation is to be understood as
referring to the coset definition, axiom or lemma corresponding respectively to the
numbered definition, axiom or lemma. Thus “CS Lemma 6c” names the coset lemma
corresponding to Lemma 6c, namely CS Lemma 6c asserts: xQ∗y → u ◦∗ xQ∗u ◦∗ y.

Definition 2. Let xCy if xQ∗y ∧ yQ∗x

Lemma 20a. xCy ∧ xQ∗z → yQ∗z

Proof. Use hypothesis, namely xCy ∧ xQ∗z, Def. 2 and CS A. I. Q.E.D.

Lemma 20b. xCy ∧ ¬yQ∗z → ¬xQ∗z

Proof. Use hypothesis, namely xCy∧¬yQ∗z, Def. 2 and CS Lemma 18c. Q.E.D.

Lemma 20c. xCy ∧ ¬xQ∗z → ¬yQ∗z

Proof. Similar to Lemma 20b. Q.E.D.

Lemma 20d. xCz ∧ ¬yQ∗z → ¬yQ∗x

Proof. Similar to Lemma 20b. Q.E.D.

Lemma 20e. xCy ∧ yCz → xCz

Proof. Use hypothesis, namely xCy ∧ yCz, Def. 2, CS A. I. and Def. 2. Q.E.D.

Lemma 21. (x ◦∗ y) ◦∗ zCx ◦∗ (y ◦∗ z)

Proof. Use CS A. II., CS Lemma 4 and Def. 2. Q.E.D.

Lemma 22. xCy → z ◦∗ xCz ◦∗ y

Proof. Use hypothesis, namely xCy, Def. 2, CS Lemma 6c and Def. 2. Q.E.D.
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Lemma 23. ¬xQ∗y → ∃z(xCy ◦∗ z)

Proof. Use hypothesis, namely ¬xQ∗y, CS A. IV. and Def. 2. Q.E.D.

Definition 3. Let N be a nonempty set of cuts, i.e., of positive real numbers. Let ≤
be the usual numerical binary relation and + the usual numerical binary operation of
addition, both relations restricted to the set N . Then we call ⟨N,≤,+⟩ a numerical
extensive structure if N is closed under addition and subtraction of smaller numbers
from larger numbers, that is, if ξ, ψ ∈ N and ξ > ψ, then (ξ+ψ) ∈ N and (ξ−ψ) ∈
N .

We now give the formal statement of the representation theorem. The formu-
lation of the representation theorem in terms of cosets and their relations has the
advantage that elements of K are mapped into N in a one-one correspondence.

Definition 4. An ordered triple ⟨K, Q∗, ◦∗⟩ is isomorphic to a numerical extensive
structure ⟨N,≤,+⟩ if, and only if, for each z in K there is a function fz such that

(i) fz maps K into N (Ths. 1a to 1d);
(ii) fz(x ◦∗ y) = fz(x) + fz(y) (Th. 1e);
(iii) fz is a one-one function (Th. 1f);
(iv) xQ∗y ↔ fz(x) ≤ fz(y) (Th. 1g).

Theorem 1. (Representation theorem) If ⟨K,Q, ◦⟩ is an empirical extensive struc-
ture, then there is a numerical extensive structure ⟨N,≤,+⟩ which is isomorphic to
⟨K, Q∗, ◦∗⟩.

Proof. We prove first isomorphism condition (i) (see [6], or [10], §10). Let the two
magnitudes x and z be given. Consider the comparison between x and z. We need
to prove that the set of all rational numbers m/n such that ¬nxQ∗mz is a cut. If
we wish to show that a set of rational numbers is a cut, we need only to show the
following (see comments to Th. 120 in [8]):

(a) The set is not empty (Th.1a);
(b) There is a rational number not belonging to it (Th. 1b);
(c) With every number it contains, the set also contains all numbers smaller than

that number (Th. 1c);
(d) With every number it contains, the set also contains a greater one (Th. 1d).
Full proofs are given for the following four theorems, where T denotes one of

those tautologies listed in [14], C.P. denotes conditional proof, C. contraposition, EI
existential instantiation, EG existential generalization, and UI universal instantia-
tion. The proofs of Ths. 1a, 1b and 1d are the only ones where the Archimedean
axiom is employed in this article.
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Theorem 1a. ∃m∃n(¬nxQ∗mz)

Proof.
1. ∃n(¬nxQ∗z) CS A. VI.
2. ∃n(¬nxQ∗1z) 1 CS Notation 1
3. Theorem 1a 2 EG

Q.E.D.

Theorem 1b. ∃n∃m(nxQ∗mz)

Proof.
1. ∃m(¬mzQ∗x) CS A. VI.
2. ¬rzQ∗x 1 EI
3. rzQ∗x ∨ xQ∗rz CS Lemma 5
4. xQ∗rz 2, 3 T
5. ∃m(xQ∗mz) 4 EG
6. ∃m(1xQ∗mz) 5 CS Notation 1
7. Theorem 1b 6 EG

Q.E.D.

Theorem 1c. ¬nxQ∗mz ∧ (m′/n′ < m/n) → ¬n′xQ∗m′z

Proof.
1. ¬nxQ∗mz ∧ (m′/n′ < m/n) Hypothesis
2. ¬nxQ∗mz 1 T
3. m′/n′ < m/n 1 T
4. m′n < mn′ 3
5. (m′n)xQ∗(mn′)x 4 CS Lemma 17
6. ¬m′(nx)Q∗m′(mz) 2 CS Lemma 16 (C.)
7. m′(nx)Q∗(m′n)x 6 CS Lemma 11
8. ¬(m′n)xQ∗m′(mz) 6, 7 CS Lemma 18c
9. (m′m)zQ∗m′(mz) CS Lemma 12
10. ¬(m′n)xQ∗(m′m)z 8, 9 CS Lemma 18a
11. ¬(mn′)xQ∗(m′m)z 10, 5 CS Lemma 18c
12. m(m′z)Q∗(mm′)z CS Lemma 11
13. m(m′z)Q∗(m′m)z 12
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14. ¬(mn′)xQ∗m(m′z) 11, 13 CS Lemma 18a
15. (mn′)xQ∗m(n′x) CS Lemma 12
16. ¬m(n′x)Q∗m(m′z) 14, 15 CS Lemma 18c
17. ¬n′xQ∗m′z 16 CS Lemma 15 (C.)
18. Theorem 1c 1, 17 C.P.

Q.E.D.

Hölder proved instead the following version of Theorem 1c (see [6], or [10], §10):
n′xQ∗m′z∧¬nxQ∗mz → (m/n < m′/n′). One may easily prove that Hölder´s version
entails Th. 1c.

Theorem 1d. ¬nxQ∗mz → ∃n′∃m′(¬n′xQ∗m′z ∧ (m′/n′ > m/n))

Proof.
1. ¬nxQ∗mz Hypothesis
2. ∃w(nxQ∗mz ◦∗ w ∧mz ◦∗ wQ∗nx) 1 CS A. IV
3. nxQ∗mz ◦∗ α ∧mz ◦∗ αQ∗nx 2 EI
4. nxQ∗mz ◦∗ α 3 T
5. mz ◦∗ αQ∗nx 3 T
6. l(nx)Q∗l(mz ◦∗ α) 4 CS Lemma 15
7. l(mz ◦∗ α)Q∗l(nx) 5 CS Lemma 15
8. l(mz ◦∗ α)Q∗l(mz) ◦∗ lα CS Lemma 13
9. l(mz) ◦∗ lαQ∗l(mz ◦∗ α) CS Lemma 14
10. l(nx)Q∗l(mz) ◦∗ lα 6, 8 CS A. I.
11. l(mz) ◦∗ lαQ∗l(nx) 9, 7 CS A. I.
12. l(mz)Q∗(lm)z CS Lemma 11
13. (lm)zQ∗l(mz) CS Lemma 12
14. lαQ∗lα CS Lemma 1
15. l(mz) ◦∗ lαQ∗(lm)z ◦∗ lα 12, 14 CS Lemma 3
16. (lm)z ◦∗ lαQ∗l(mz) ◦∗ lα 13, 14 CS Lemma 3
17. l(nx)Q∗(lm)z ◦∗ lα 10, 15 CS A. I.
18. (lm)z ◦∗ lαQ∗l(nx) 16, 11 CS A. I.
19. (ln)xQ∗l(nx) CS Lemma 12
20. l(nx)Q∗(ln)x CS Lemma 11
21. (ln)xQ∗(lm)z ◦∗ lα 19, 17 CS A. I.
22. (lm)z ◦∗ lαQ∗(ln)x 18, 20 CS A. I.
23. (lm+ 1)zQ∗(lm)z ◦∗ z CS Lemma 10
24. (lm)z ◦∗ zQ∗(lm+ 1)z CS Lemma 9
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25. (lm)z ◦∗ lαC(ln)x 22, 21 Def. 2
26. (lm+ 1)zC(lm)z ◦∗ z 23, 24 Def. 2
27. ∃n(¬nαQ∗z) CS A. VI
28. ¬rαQ∗z 27 EI
29. ∃u(rαCz ◦∗ u) 28 Lemma 23
30. rαCz ◦∗ β 29 EI
31. (rm)z ◦∗ rαC(rm)z ◦∗ (z ◦∗ β) 30 Lemma 22
32. (rm)z ◦∗ (z ◦∗ β)C((rm)z ◦∗ z) ◦∗ β Lemma 21
33. (rm)z ◦∗ rαC((rm)z ◦∗ z) ◦∗ β 31, 32 Lemma 20e
34. ¬((rm)z ◦∗ z) ◦∗ βQ∗(rm)z ◦∗ z CS A. V.
35. ¬(rm)z ◦∗ rαQ∗(rm)z ◦∗ z 33, 34 Lemma 20b
36. (rm)z ◦∗ rαC(rn)x 25 UI
37. ¬(rn)xQ∗(rm)z ◦∗ z 36, 35 Lemma 20c
38. (rm+ 1)zC(rm)z ◦∗ z 26 UI
39. ¬(rn)xQ∗(rm+ 1)z 38, 37 Lemma 20d
40. r′ = rn Def.
41. s′ = rm+ 1 Def.
42. ¬r′xQ∗s′z 39-41 T
43. s′/r′ > m/n 40, 41
44. ¬r′xQ∗s′z ∧ (s′/r′ > m/n) 42, 43 T
45. ∃n′∃m′(¬n′xQ∗m′z ∧ (m′/n′ > m/n)) 44 EG
46. Theorem 1d 1, 45 C.P.

Q.E.D.

For each given magnitude z in K we may then define a function fz which maps K
into N . The element of N will be denoted fz(x) when belonging to the comparison
between x and z. One can also call the cut, fz(x), the measured (numerical) value
obtained when magnitude x is compared with magnitude z, in which case z is called
the unit. The cut belonging to the comparison between x and x represents the
number 1.

Now we prove isomorphism condition (ii) (see [6], or [10], §12). Let the three
magnitudes x, y and z be given. The comparison between magnitudes x and z defines
the first cut, fz(x), namely, the set of all rational numbers m/n such that ¬nxQ∗mz.
The comparison between magnitudes y and z defines the second cut, fz(y), namely,
the set of all rational numbers m′/n′ such that ¬n′yQ∗m′z. From [8], Th. 129 and
Def. 34, these two cuts determine a third cut which is their sum, fz(x)+fz(y), namely,
the set of all rational numbers m/n+m′/n′ such that ¬nxQ∗mz ∧ ¬n′yQ∗m′z.
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Every rational number of the third cut can be represented by m/n + m′/n′ =
(n′m+nm′)/nn′, where m/n and m′/n′ are rational numbers of the first and second
cuts, respectively.

Lemma 24. ¬nxQ∗mz ∧ ¬n′yQ∗m′z → ¬(nn′)(x ◦∗ y)Q∗(n′m+ nm′)z

Proof.

1. ¬nxQ∗mz ∧ ¬n′yQ∗m′z Hypothesis
2. ¬nxQ∗mz 1 T
3. ¬n′yQ∗m′z 1 T
4. ¬n′(nx)Q∗n′(mz) 2 CS Lemma 16 (C.)
5. (n′m)zQ∗n′(mz) 3 CS Lemma 16 (C.)
6. (n′m)zQ∗n′(mz) CS Lemma 12
7. (nm′)zQ∗n(m′z) CS Lemma 12
8. ¬n′(nx)Q∗(n′m)z 4, 6 CS Lemma 18a
9. ¬n(n′y)Q∗(nm′)z 5, 7 CS Lemma 18a
10. n′(nx)Q∗(n′n)x CS Lemma 11
11. n(n′y)Q∗(nn′)y CS Lemma 11
12. ¬(n′n)xQ∗(n′m)z 8, 10 CS Lemma 18c
13. ¬(nn′)yQ∗(nm′)z 9, 11 CS Lemma 18c
14. ¬(n′n)x ◦∗ (nn′)yQ∗(n′m)z ◦∗ (nm′)z 12, 13 CS Lemma 19
15. (n′n)x ◦∗ (nn′)yQ∗(nn′)(x ◦∗ y) CS Lemma 14
16. ¬(nn′)(x ◦∗ y)Q∗(n′m)z ◦∗ (nm′)z 14, 15 CS Lemma 18c
17. (n′m+ nm′)zQ∗(n′m)z ◦∗ (nm′)z CS Lemma 10
18. ¬(nn′)(x ◦∗ y)Q∗(n′m+ nm′)z 16, 17 CS Lemma 18a
19. Lemma 24 1, 18 C.P.

Q.E.D.

Lemma 24 asserts nothing more that every rational number for the third cut is
also a rational number for the cut defined by the comparison between magnitudes
x ◦∗ y and z. The latter cut is the set of all rational numbers (n′m+ nm′)/nn′ such
that ¬(nn′)(x ◦∗ y)Q∗(n′m+ nm′)z.

Every rational number which is not contained in the third cut can be expressed in
the form r/s+r′/s′ = ((s′r+sr′))/(ss′), where r/s and r′/s′ are rational numbers not
contained in the first and second cuts, respectively. From [8], Th. 129, no number
of the third cut can be written in the form r/s+ r′/s′ where sxQ∗rz ∧ s′yQ∗r′z.
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Lemma 25. sxQ∗rz ∧ s′yQ∗r′z → (ss′)(x ◦∗ y)Q∗(s′r + sr′)z

Proof. Similar to Lemma 24, except that CS Lemma 15, CS Lemma 11, CS A. I., CS
Lemma 12, CS A. I., CS Lemma 3, CS Lemma 13, CS A. I., CS Lemma 9, and CS
A. I. are substituted for CS Lemma 16 (contraposition), CS Lemma 12, CS Lemma
18a, CS Lemma 11, CS Lemma 18c, CS Lemma 19, CS Lemma 14, CS Lemma 18c,
CS Lemma 10, and CS Lemma 18a, respectively. Q.E.D.

Lemma 25 implies that every rational number which is not contained in the third
cut is also not contained in the cut defined by the comparison between magnitudes
x ◦∗ y and z.

Taking the cut corresponding to the comparison between magnitudes x ◦∗ y and
z as the fourth cut, fz(x ◦∗ y), then what has been shown so far is that any rational
number for the third cut is also a rational number for the fourth, and every rational
number which is not contained in the third cut is also not contained in the fourth.

Theorem 1e. fz(x ◦∗ y) = fz(x) + fz(y)

Proof. From [8], Th. 123, exactly one is the case:
(a) fz(x) + fz(y) = fz(x ◦∗ y)
(b) fz(x) + fz(y) > fz(x ◦∗ y)
(c) fz(x) + fz(y) < fz(x ◦∗ y)
From [8], Def. 30, case (b) means that there exists a rational number for the

third cut which is not contained in the fourth. But this contradicts the conclusion
of Lemma 24. From [8], Def. 31, case (c) means that there exists a rational number
not contained in the third cut which is a rational number of the fourth. But this
contradicts the conclusion of Lemma 25. Therefore, the third cut is identical with
the fourth and consequently, from [8], Th. 117, the fourth cut is identical with the
third. Q.E.D.

The cut corresponding to the comparison between magnitudes x ◦∗ y and z is the
sum of the cuts belonging to the comparisons between x and z and between y and z.
Put in other words this means: The measured (numerical) value of the concatenation
of magnitudes x and y, x ◦∗ y, is the arithmetical sum of the measured (numerical)
values of x and y, provided that x, y and x ◦∗ y are all measured relative to the same
arbitrary unit z.

Then we prove isomorphism condition (iii) (see [6], or [10], §12 and §15).
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Lemma 26. ¬nxQ∗mz ∧ xCy → ¬nyQ∗mz

Proof. Use hypothesis, namely ¬nxQ∗mz ∧ xCy, Def. 2, CS Lemma 15, Def. 2, and
Lemma 20c. Q.E.D.

Lemma 26 asserts nothing more that if xCy, then every rational number for the
first cut is also a rational number for the second.

Lemma 27. sxQ∗rz ∧ xCy → syQ∗rz

Proof. Similar to Lemma 26, except that Lemma 20a is substituted for Lemma 20c.
Q.E.D.

Lemma 27 implies that if xCy, then every rational number which is not contained
in the first cut is also not contained in the second.

Lemma 28. xCy → fz(x) = fz(y)

Proof. Use Lemma 26, Lemma 27 and a rationale similar to that adopted in Th. 1e
to prove that the first cut is identical with the second. Q.E.D.

Lemma 29. ¬xQ∗y → fz(x) > fz(y)

Proof. Using hypothesis, namely ¬xQ∗y, Lemma 23 (and EI) and Lemma 28, we
get: fz(x) = fz(y ◦∗ α). Then using Th. 1e, we get lemma. Q.E.D.

Lemma 30. fz(x) ≤ fz(y) → xQ∗y

Proof. Contraposition of Lemma 29. Q.E.D.

Theorem 1f. ¬xCy → fz(x) ̸= fz(y)

Proof. Use hypothesis, namely ¬xCy, Def. 2 and Lemma 29. Q.E.D.

Theorem 1f implies that, for each given magnitude z in K, the function fz which
maps K into N is one-one. Put in other words this means: if the unit is fixed, then
there is exactly one cut for each given magnitude and there is exactly one magnitude
for each given cut.

Finally, we prove isomorphism condition (iv) (see [6], or [10], §12).
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Lemma 31. yQ∗x ∧ ¬xQ∗y → fz(x) > fz(y)

Proof. Obvious from Lemma 29. Q.E.D.

Lemma 32. xQ∗y → fz(x) ≤ fz(y)

Proof. Using hypothesis, namely xQ∗y, and the excluded middle assumption, we
may write xQ∗y ∧ (¬yQ∗x ∨ yQ∗x), so that (xQ∗y ∧ ¬yQ∗x) ∨ (xQ∗y ∧ yQ∗x). Then
use Def. 2, Lemma 31 and Lemma 28. Q.E.D.

Theorem 1g. xQ∗y ↔ fz(x) ≤ fz(y)

Proof. Obvious from Lemma 30 and Lemma 32. Q.E.D.

Theorem 1g implies that, for each given magnitude z in K, the function fz which
maps K into N is order preserving.

Theorem 1 then follows from Theorems 1a-1g. Q.E.D.

5 Uniqueness theorem

This theorem is equivalent to saying that in the measurement of extensive quantities
only the choice of a unit is arbitrary (see [6], or [10], §13; see also [13] for an
alternative proof).

Let the three magnitudes x, y and z be given. Consider two numerical extensive
structures, ⟨N1,≤,+⟩ and ⟨N2,≤,+⟩, isomorphic to ⟨K, Q∗, ◦∗⟩. From Theorem 1,
we may define a function fz which maps K into N1. The measured (numerical) value
of x relative to z as a unit defines the first cut, fz(x), namely, the set of all rational
numbers m/n such that ¬nxQ∗mz. We may also define a function gy which maps
K into N2. The measured (numerical) value of z relative to y as a unit defines the
second cut, gy(z), namely, the set of all rational numbers k/l such that ¬lzQ∗ky.
From [8], Th. 141 and Def. 36, these two cuts determine a third cut which is their
product, fz(x)gy(z), namely, the set of all rational numbers (m/n)(k/l) such that
¬nxQ∗mz ∧ ¬lzQ∗ky.

Every rational number of the third cut can be represented by (m/n)(k/l) =
mk/nl, where m/n and k/l are rational numbers of the first and second cuts, re-
spectively.
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Lemma 33. ¬nxQ∗mz ∧ ¬lzQ∗ky → ¬(ln)xQ∗(mk)y

Proof.

1. ¬nxQ∗mz ∧ ¬lzQ∗ky Hypothesis
2. ¬nxQ∗mz 1 T
3. ¬lzQ∗ky 1 T
4. ¬l(nx)Q∗l(mz) 2 CS Lemma 16 (C.)
5. ¬m(lz)Q∗m(ky) 3 CS Lemma 16 (C.)
6. (lm)zQ∗l(mz) CS Lemma 12
7. (mk)yQ∗m(ky) CS Lemma 12
8. ¬l(nx)Q∗(lm)z 4, 6 CS Lemma 18a
9. ¬m(lz)Q∗(mk)y 5, 7 CS Lemma 18a
10. l(nx)Q∗(ln)x CS Lemma 11
11. m(lz)Q∗(ml)z CS Lemma 11
12. ¬(ln)xQ∗(lm)z 8, 10 CS Lemma 18c
13. ¬(ml)zQ∗(mk)y 9, 11 CS Lemma 18c
14. ¬(lm)zQ∗(mk)y 13
15. ¬(ln)xQ∗(mk)y 12, 14 CS Lemma 18b
16. Lemma 33 1, 15 C.P.

Q.E.D.

Lemma 33 asserts nothing more that every rational number for the third cut
is also a rational number for the cut defined by the comparison between magni-
tudes x and y. The latter cut is the set of all rational numbers mk/nl such that
¬(ln)xQ∗(mk)y.

Every rational number which is not contained in the third cut can be expressed in
the form (m′/n′)(k′/l′) = (m′k′)/(n′l′), where m′/n′ and k′/l′ are rational numbers
not contained in the first and second cuts, respectively. From [8], Th. 141, no number
of the third cut can be written in the form (m′/n′)(k′/l′) where n′xQ∗m′z∧ l′zQ∗k′y.

Lemma 34. n′xQ∗m′z ∧ l′zQ∗k′y → (l′n′)xQ∗(m′k′)y

Proof. Similar to Lemma 33, except that CS Lemma 15, CS Lemma 11, CS A. I., CS
Lemma 12, CS A. I. and CS A. I. are substituted for CS Lemma 16 (contraposition),
CS Lemma 12, CS Lemma 18a, CS Lemma 11, CS Lemma 18c and CS Lemma 18b,
respectively. Q.E.D.
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Lemma 34 implies that every rational number which is not contained in the third
cut is also not contained in the cut defined by the comparison between magnitudes
x and y.

Taking the cut corresponding to the comparison between magnitudes x and y as
the fourth cut, gy(x), then what has been shown so far is that any rational number
for the third cut is also a rational number for the fourth, and every rational number
which is not contained in the third cut is also not contained in the fourth.

Lemma 35. gy(x) = fz(x)gy(z)

Proof. Use Lemma 33, Lemma 34 and a rationale similar to that adopted in Th. 1e
to prove that the fourth cut is identical with the third. Q.E.D.

The cut corresponding to the comparison between magnitudes x and y is the
product of the cuts belonging to the comparisons between x and z and between z
and y. Put in other words this means: the measured (numerical) value of x relative
to y as a unit is obtained when the measured (numerical) value of x relative to unit
z is multiplied by the measured (numerical) value of z relative to unit y.

Putting Lemma 35 in this form,

fz(x) = gy(x)/gy(z)

allows the calculation of the measured (numerical) value of any magnitude x relative
to any magnitude z chosen as unit, provided that the measured (numerical) values
of both magnitudes relative to any other unit y are known.

Theorem 2. (Uniqueness theorem) If an ordered triple ⟨K,Q, ◦⟩ is an empirical
extensive structure, then any two numerical extensive structures, ⟨N1,≤,+⟩ and
⟨N2,≤,+⟩, isomorphic to ⟨K, Q∗, ◦∗⟩ are related by a similarity transformation.

Proof. Since gy(z) is a constant for fixed y and z, Theorem 2 follows from Lemma
35. Q.E.D.

6 Outline
Some comments about the axioms listed in section 2 are in order. First, note that
axiom A. V. together with axiom A. I. and the definition of ◦ as an operation from
K×K to K imply that the set K is infinite. In measuring mass with a pan balance,
one obviously cannot concatenate freely without either damaging the balance or
running out of space. A generalization of [13] which eliminates this defect and also
considers the existence of a maximal element is discussed in [9].
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Second, note that axioms A. II., A. III., A. V., and many lemmas in section
3 have no empirical meaning, since the same object cannot be placed at the same
time on the two pans of the balance, except if x, y, and z are to be regarded as
equivalence classes as discussed in section 4.

Note also that axiom A. IV. essentially assumes that K contains arbitrary small
objects so that an object z can be found which placed together with y exactly
balances x. It is assumed here that the existence of such objects in the empirical set
is a necessary requirement for the construction of a “system of standards” sufficiently
refined to permit the exact measurement of extensive quantities. An alternative set
of axioms which weakens this condition is given in [4].

As a last comment, note that the relation Q must be a perfectly transitive
relation, which entails that the measuring instrument used to determine whether or
not two objects stand in the relation Q must possess infinite resolution and perfect
stability. It is beyond the scope of the present article to discuss the ways proposed
in the literature to circumvent this limitation.

7 Conclusion

There are two fundamental problems for an analysis of any procedure of measure-
ment: the representation theorem and the uniqueness theorem. The first problem
requires the characterization of the formal properties of empirical operations and
relations used in the procedure and the proof that they are isomorphic to appro-
priately chosen numerical operations and relations. We solved it here for extensive
quantities with unrestricted concatenation and no maximal elements. In particular,
the following was proved:

• For each given magnitude in the set of all magnitudes, we may define a function
which maps that set into the set of cuts or positive real numbers. One can call the
cuts the measured (numerical) values obtained when magnitudes are compared with
the given magnitude, in which case the given magnitude is called the unit.

• The measured (numerical) value of the concatenation of two magnitudes is the
arithmetical sum of the measured (numerical) values of each magnitude, provided
that each magnitude and their concatenation are all measured relative to the same
arbitrary unit.

• For each given magnitude in the set of all magnitudes, the function which
maps that set into the set of cuts is one-one. Put in other words this means: if the
unit is fixed, then there is exactly one measured (numerical) value for each given
magnitude and there is exactly one magnitude for each given measured (numerical)
value.
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• For each given magnitude in the set of all magnitudes, the function which
maps that set into the set of cuts is order preserving.

The second problem is to determine the scale type of the measurements resulting
from the procedure. We also solved it here for extensive quantities with unrestricted
concatenation and no maximal elements. In particular, the following was proved:

• Consider three magnitudes: the first, the second and the third. The measured
(numerical) value of the first magnitude relative to the third as a unit is obtained
when the measured (numerical) value of the first magnitude relative to the second
as a unit is multiplied by the measured (numerical) value of the second magnitude
relative to the third as a unit. This allows the calculation of the measured (numeri-
cal) value of any magnitude relative to any magnitude chosen as unit, provided that
the measured (numerical) values of both magnitudes relative to any other unit are
known. This is the familiar rule for converting units of extensive quantities.

• In the measurement of extensive quantities only the choice of a unit is arbitrary.
There are other ways of stating this result: (a) the measurement of extensive quanti-
ties is unique up to multiplication by a positive number (the number corresponding
to an arbitrary choice of unit), (b) the measurement of extensive quantities is unique
up to a similarity transformation, or (c) the measurement of extensive quantities is
on a ratio scale.

First-order predicate logic was consistently used here to prove the representa-
tion theorem for the deterministic measurement of extensive quantities assuming
unrestricted concatenation and no maximal elements. Though being a highly ideal-
ized problem, its solution yields the familiar results routinely used by those directly
involved with the measurement of extensive quantities.
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Abstract

The notion of surreal number was introduced by J.H. Conway in the mid
1970’s: the surreal numbers constitute a linearly ordered (proper) class No
containing the class of all ordinal numbers (On) that, working within the back-
ground set theory NBG, can be defined by a recursion on the class On. Since
then, have appeared many constructions of this class and was isolated a full ax-
iomatization of this notion that has been subject of interest due to large number
of interesting properties they have, including model-theoretic ones. Such con-
structions suggests strong connections between the class No of surreal numbers
and the classes of all sets and all ordinal numbers.

In an attempt to codify the universe of sets directly within the surreal num-
ber class, we have founded some clues that suggest that this class is not suitable
for this purpose. The present work, that expounds parts of the PhD thesis of
the first author ([28]), establishes a basis to obtain an “algebraic (set) theory
for surreal numbers” along the lines of the Algebraic Set Theory - a categorial
set theory introduced in the 1990’s based on the concept of ZF-algebra: to es-
tablish abstract and general links between the class of all surreal numbers and
a universe of “surreal sets” similar to the relations between the class of all ordi-
nals (On) and the class of all sets (V ), that also respects and expands the links
between the linearly ordered class of all ordinals and of all surreal numbers.

In the present work we introduce the notion of (partial) surreal algebra
(SUR-algebra) and we explore some of its category theoretic properties, includ-
ing (relatively) free SUR-algebras (SA, ST ).

We want to express our sincere gratitude to the referee for his/her careful reading and valuable
suggestions that have improved significantly this revised version.
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In a continuation of this work ([29]) we will establish links, in both directions,
between SUR-algebras and ZF-algebras (the keystone of Algebraic Set Theory)
and develop the first steps of a certain kind of set theory based (or ranked) on
surreal numbers, that expands the relation between V and On.

Keywords: Surreal numbers; Algebraic Set Theory; SUR-algebras.

Introduction
The notion of surreal number was introduced by J.H. Conway in the mid 1970’s: the
surreal numbers constitute a linearly ordered (proper) class No containing the class
of all ordinal numbers (On) that, working within the background set theory NBG,
can be defined by a recursion on the class On. Since then, have appeared many
constructions of this class and was isolated a full axiomatization of this notion.

Surreal numbers have been subject of interest in many areas of Mathematics due
to large number of interesting properties that they have:
- In Algebra, through the concept of field of Hahn series and variants (see for instance
[27], [11], [30], [14], [24]);
- In Analysis (see the book [2]);
- In Foundations of Mathematics, particularly in Model Theory, since the surreal
number line is, for proper class linear orders, what the rational number line Q is
for the countable linear orders: surreal numbers are the (unique up to isomorphism)
proper class Fraïssé limit of the finite linearly ordered sets, they are set-homogeneous
and universal for all proper class linear orders.

The plethora of aspects and applications of the surreals maintain the subject
as an active research field. To emphasize this point, the 2016 edition of the “Joint
Mathematics Meetings AMS” –the largest Math. meeting in the world– have counted
14 talks in its “AMS-ASL Special Session on Surreal Numbers”.
http://jointmathematicsmeetings.org/meetings/national/jmm2016/
2181_program_ss16.html

Here we try to develop, from scratch, a new (we hope!) and complementary
foundational aspect of the Surreal Number Theory: to establish, in some sense, a
set theory based on the class of surreal numbers.

Set/class theories are one of the few fundamental mathematical theories that
holds the power to base other notions of mathematics (such as points, lines, and
real numbers). This is basically due to two aspects of these theories: the first is
that the basic entities and relations are very simple in nature, relying only on the
primitive notions of set/class and a (binary) membership relation (“X ∈ Y ”), the
second aspect is the possibility that this theory can perform constructions of sets
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by several methods. This combination of factors allows to achieve a high degree of
flexibility, in such a way that virtually all mathematical objects can be realized as
being of some kind of set/class, and it has the potential to define arrows (category)
as entities of the theory. In particular, the set/class theories traditionally puts as a
principle (the Axiom of Infinity) the existence of an “infinite set” - the smallest of
these would be the set of all natural numbers - thus, such numbers are a derived (or
a posteriori) notion, which encodes the essence of the notion of “to be finite”, that
is apparently more intuitive.

The usual set/class theories (as ZFC or NBG) have the power of “encode” (syn-
tactically) its Model Theory: constructions of models of set theory by the Cohen
forcing method or through boolean valued models method are done by a convenient
encoding of the fundamental binary relations ∈ and =.

Let us list below some other fundamental theories:
• Set theories with additional predicates for non-Standard Analysis, as the E.

Nelson’s set theory named IST.
• P. Aczel’s “Non-well-founded sets” ([1]), where sets and proper classes are

replaced by directed graphs (i.e., a class of vertices endowed with a binary relation).
• K. Lopez-Escobar “Second Order Propositional Calculus” ([25]), a theory with

three primitive terms, that encodes the full Second Order Intuitionistic Propositional
Calculus also includes Impredicative Set Theory.
• Toposes, a notion isolated in the 1970’s by W. Lawvere and M. Tierney, provide

generalized set theories, from the category-theoretic point of view.
• Algebraic Set Theory (AST), another categorial approach to set/class theory,

introduced in the 1990’s by A. Joyal and I. Moerdijk ([8]).
Algebraic Set Theory replaces the traditional use of axioms on membership by cat-
egorial relations, proposing the general study of “abstract class categories” endowed
with a notion of “small fibers maps”. In the same way that the notion of “ being
finite ” is given a posteriori in ZFC, after guaranteeing an achievement of the Peano
axioms - which axiomatizes the algebraic notion of free monoid in 1 generator - the
notions of “to be a set” and “be an ordinal” are given a posteriori in AST. The class
of all sets is determined by a universal property, that of ZF-free algebra, whereas the
class of all ordinals is characterized globally by the property of constituting ZF-free
algebra with inflationary/monotonous successor function. In the same direction, the
(small fibers) rank map, ρ : V → On, is determined solely by the universal property
of V , and the inclusion map, i : On→ V , is given by an adjunction condition.

In the present work we introduce the notion of (partial) surreal algebra (SUR-
algebra) and we explore some of its category theoretic properties, including (rela-
tively) free SUR-algebras (SA, ST ).

In a continuation of this work ([29]) we will establish links, in both directions,
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between SUR-algebras and ZF-algebras (the keystone of Algebraic Set Theory) and
develop the first steps of a certain kind of set theory based (or ranked) on surreal
numbers, that expands the relation between V and On.

The main aim of these works is to obtain an “algebraic theory for surreals”
along the lines of the Algebraic Set Theory: to establish abstract and general links
between the class of all surreal numbers and a universe of “surreal sets” similar to
(but expanding it) the (ZF-algebra) relations between the classes On and V , giving
the first steps towards a certain kind of (alternative) “relative set theory” (see [21]
for another presentation of this general notion).

In more details:
We want to perform a construction (within the background class theory NBG)

of a “class of all surreal sets”, V ∗, that satisfies, as far as possible, the following
requirements:
• V ∗ is an expansion of the class of all sets V , via a map j∗ : V → V ∗.
• V ∗ is ranked in the class of surreal numbers No, in an analogous fashion that

V is ranked in the class of ordinal numbers On. I.e., expand, through the injective
map j : On → No, the traditional set theoretic relationship V

ρ

⇄
i

On to a new

setting V ∗
ρ∗

⇄
i∗

No.
Noting that:

(i) the (injective) map j : On → No, is a kind of “homomorphism”, partially
encoding the ordinal arithmetic;
(ii) the traditional set-theoretic constructions (in V ) keep some relation with its
(ordinal) complexity (e.g., x ∈ y → ρ(x) < ρ(y), ρ({x}) = ρ(P (x)) = ρ(x) + 1,
ρ(⋃i∈I xi) = ⋃

i∈I ρ(xi));
then we wonder about the possibility of this new structured domain V ∗ determines
a category, by the encoding of arrows (and composition) as objects of V ∗, in an
analogous fashion to the way that the class V of all sets determines a category, i.e.
by the encoding of some notion of “function” as certain surreal set (i.e. an objects
of V ∗); testing, in particular, the degree of compatibility of such constructions with
the map j∗ : V → V ∗ and examining if this new expanded domain could encode
homomorphically the cardinal arithmetic.

We list below three instances of communications that we have founded in our
bibliographic research on possible themes relating surreal numbers and set theory:
we believe that they indicate that we are pursuing a right track.

(I) The Hypnagogic digraph and applications
J. Hamkins have defined in [22] the notion of “hypnagogic digraph”, (Hg, ⇀), an
acyclic digraph graded on (No, <), i.e., it is given a “rank” function v : Hg → No
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such that for each x, y ∈ Hg, if x ⇀ y, then v(x) < v(y). The hypnagogic digraph
is a proper-class analogue the countable random Q-graded digraph: it is the Fraïssé
limit of the class of all finite No-graded digraphs. It is simply the On-saturated No-
graded class digraph, making it set-homogeneous and universal for all class acyclic
digraphs. Hamkins have applied this structure, and some relativized versions, to
prove interesting results concerning models of ZF set theory.

(II) Surreal Numbers and Set Theory
https://mathoverflow.net/questions/70934/surreal-numbers-and-set-theory
Asked July 21, 2011, by Alex Lupsasca:
I looked through MathOverflow’s existing entries but couldn’t find a satisfactory answer to
the following question:
What is the relationship between No, Conway’s class of surreal numbers, and V , the Von
Neumann set-theoretical universe?
In particular, does V contain all the surreal numbers? If so, then is there a characterization
of the surreal numbers as sets in V ? And does No contain large cardinals?
I came across surreal numbers recently, but was surprised by the seeming lack of discussion
of their relationship to traditional set theory. If they are a subclass of V , then I suppose that
could explain why so few people are studying them.

(III) Surreal Numbers as Inductive Type?
https://mathoverflow.net/questions/63375/surreal-numbers-as-inductive-type?rq=1
Asked in April 29, 2011, by Todd Trimble:
Prompted by James Propp’s recent question about surreal numbers, I was wondering whether
anyone had investigated the idea of describing surreal numbers (as ordered class) in terms
of a universal property, roughly along the following lines.
In categorical interpretations of type theories, it is common to describe inductive or recursive
types as so-called initial algebras of endofunctors. The most famous example is the type of
natural numbers, which is universal or initial among all sets X which come equipped with
an element x and an function f : X → X. In other words, initial among sets X which come
equipped with functions 1 + X → X (the plus is coproduct); we say such sets are algebras of
the endofunctor F defined by F (X) = 1 + X. Another example is the type of binary trees,
which can be described as initial with respect to sets that come equipped with an element and
a binary operation, or in other words the initial algebra for the endofunctor F (X) = 1+X2.
In their book Algebraic Set Theory, Joyal and Moerdijk gave a kind of algebraic description of
the cumulative hierarchy V . Under some reasonable assumptions on a background category
(whose objects may be informally regarded as classes, and equipped with a structure which
allows a notion of “smallness”), they define a ZF-structure as an ordered object which has
small sups (in particular, an empty sup with which to get started) and with a “successor”
function. Then, against such a background, they define the cumulative hierarchy V as the
initial ZF-structure, and show that it satisfies the axioms of ZF set theory (the possible back-
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grounds allow intuitionistic logic). By tweaking the assumptions on the successor function,
they are able to describe other set-theoretic structures; for example, the initial ZF-structure
with a monotone successor gives On, the class of ordinals, relative to the background.
Now it is well-known that surreal numbers generalize ordinals, or rather that ordinals are
special numbers where player R has no options, or in different terms, where there are no
numbers past the “Dedekind cut” which divides L options from R options. In any case, on
account of the highly recursive nature of surreal numbers, it is extremely tempting to believe
that they too can be described as a recursive type, or as an initial algebraic structure of some
sort (in a background category along the lines given by Joyal-Moerdijk, presumably). But
what would it be exactly?
I suppose that if I knocked my head against a wall for a while, I might be able to figure it
out or at least make a strong guess, but maybe someone else has already worked through the
details?

Overview of the paper:
Section 1:

This initial section establishes the notations and contains the preliminary results
needed for the sequel of this work. It begins establishing our set theoretic back-
grounds – that we will use freely in the text without further reference – which is
founded in NBG class theory, and contains mainly the definitions and basic re-
sults on some kinds of binary relations, in particular on well-founded relations, and
“cuts” as certain pairs of subsets of a class endowed with a binary irreflexive relation.
The second subsection is dedicated to introduce the linearly ordered class of surreal
numbers under many equivalent constructions and to present a characterization and
some of its main structure, including its algebraic structure and its relations with
the class (or ZF-algebra) of all ordinal numbers.

Section 2:
Motivated by properties of the linearly ordered class (No, <), we introduce in this
section the notion of Surreal Algebra (SUR-algebra): an structure S = (S, <, ∗,−, t),
where < is an acyclic relation on S, ∗ is a distinguished element of S, − is an
involution of S and t is a function that chooses an intermediary member between each
small (Conway) cut in (S, <), satisfying some additional compatibility properties
between them1. Every SUR-algebra turns out to be a proper class. We verify that
No provides naturally a SUR-algebra and present new relevant examples: the free
surreal algebra (SA) and the free transitive SUR-algebra (ST ).

Section 3:

1Recently, we came across with a study of surreal (sub)structures [5], that explores the theme
under a different perspective.
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This section is dedicated to a generalization of this concept of SUR-algebra: we
introduce the notion of partial SUR-algebra and consider two kinds on morphisms
between them. This relaxation is needed to perform constructions as products, sub
partial-SUR-algebra and certain kinds of directed colimits. Some more examples are
provided.

Section 4:
As an application of the partial SUR-algebras theory previously worked out, we are
able to prove in this section some universal properties satisfied by SA and ST (and
generalizations), that justifies its names of (relatively) free SUR-algebras.

Section 5:
In this final section, we briefly comment on the sequel of this paper ([29]) and present
a list of questions that have occurred to us during the elaboration of the work that
we intend to address in the future.

1 Preliminaries
This section establishes the notations and contains the preliminary results needed
for the sequel of this work. It begins establishing our set theoretic backgrounds –
that we will use freely in the text without further reference – which is founded in
NBG class theory, and contains mainly the definitions and basic results on some
kinds of binary relations. After, we present the class of surreal numbers, and some
of its main structure, under many equivalent constructions.

1.1 Set theoretic backgrounds
This preliminary subsection is devoted to establishing our set theoretic backgrounds
which is founded in NBG class theory2, and contains mainly the definitions and
basic results on the binary relations that will appear in the sequel of this work as:
(strict) partial order relations, acyclic relations, extensional relations, well founded
relations, and “cuts” as certain pairs of subsets of a class endowed with a binary
irreflexive relation.

1.1.1 NBG

In this work, we will adopt the (first-order, with equality) theory NBG as our back-
ground set theory, where the unique symbol in the language is the binary relation
∈. We will use freely the results of NBG, in the sequel, we just recall below some

2In some parts of this article, we will need some category-theoretic tools and reasoning, thus
we will use an expansion of NBG by axioms asserting the existence of Grothendieck universes.
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notions and notations. We recall also the basic notions and results on some kinds
of binary relations needed for the development of this work. Standard references of
set/class theory are [9] and [10].

1. On NBG:
Recall that the primitive concept of NBG is the notion of class. A class is

improper when it is a member of some class, otherwise the class is proper. The
notion of set in NBG is defined: a set is a improper class.

We will use V to denote the universal class – whose members are all sets –; On
will stand for the class of all ordinal numbers and Tr denote the class of all transitive
sets. On ⊆ Tr ⊆ V and all the three are proper classes.

Given classes C and D, then C is a subclass of D (notation: C ⊆ D), when all
members of C are also members of D. Classes that have the same members are
equal. Every subclass of a set is a set.
∅ stands for the unique class without members. ∅ is a set.
Given a class C, denote Ps(C) the class whose members are all the subsets of C.

If C is a set, then Ps(C) is a set too. There is no class that has as members all the
subclasses of a proper class3.

Given classes C and D, and a function f : C → D, then the (direct) image
f [C] = {d ∈ D : ∃c ∈ C, d = f(c)} is a subset of D, whenever C is a set.

Since NBG satisfies the axiom of global choice (i.e., there is a choice function on
V \{∅}) and then every class (proper or improper) can be well-ordered, which implies
nice cardinality results: as in ZFC, any set X is equipotent to a unique cardinal
number (= initial ordinal), called the its cardinality of X (notation: card(X));
moreover, all the proper classes are equipotent – we will denote card(C) = ∞ the
cardinality of the proper class C – ∞ can be seen as a representation of the well-
ordered the proper class On. □

2. Binary relations:
A relation R is a class whose members are ordered pairs4. The domain (respect.,

range) of R is the class of all first (respect., second) components of the ordered
pair in the relation. The support of the relation R (notation: supp(R)) is the class
obtained by the reunion of its domain and range. We will say that a binary relation
is defined on/over its support class.

A relation R is reflexive when (x, x) ∈ R for each x in the support of R; on the
other hand, R is irreflexive, when (x, x) /∈ R for each x in the support of R. We

3This is a “metaclass” in NBG, i.e., an equivalence class of formulae in one free variable, modulo
the NBG-theory: any such formula is not collectivizing.

4In the sequel, we will use both notations for an ordered pair: (x, y) and ⟨x, y⟩, but we have
some preference on the second notation to denote a “cut”, see 6 below.
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will use <,≺, ◁ to denote general irreflexive relations; ≤,⪯,⊑ will stand for reflexive
relations.

A pre-order is a reflexive and transitive relation. A partial order is a antisym-
metric pre-order. A strict partial order is a irreflexive and transitive relation. There
are well known processes of: obtain a strict partial order from a partial order and
conversely.

Let R be a binary relation and let s, s′ ∈ supp(R). Then s and s′ are R-
comparable when: s = s′ or (s, s′) ∈ R or (s′, s) ∈ R. A relation R is total or linear
when every pair of members of its support are comparable.

Every pre-order relation ⪯ on a class C gives rise to an equivalence relation ∼
on the same support: for each c, c′ ∈ C, c ∼ c′ iff c ⪯ c′ and c′ ⪯ c.

Let n ∈ N, a n-cycle of the relation R is a n + 1-tuple (x0, x1, · · · , xn) such that
xn = x0 and, for each i < n, (xi, xi+i) ∈ R. A relation is acyclic when it does not
has cycles. Every acyclic relation is irreflexive. A binary relation is a strict partial
order iff it is a transitive and acyclic relation. Note that a binary relation is acyclic
and total iff it is a strict linear order. □

3. Induced binary relations:
Given a binary relation R on a class C. For each c ∈ C, denote cR := {d ∈ C :

(d, c) ∈ R}.
Define a new binary relation on C: for each c, c′ ∈ C, c ⊑R c′ iff holds ∀x((x, c) ∈

R→ (x, c′) ∈ R) or, equivalently, cR ⊆ c′R. Clearly, ⊑R is pre-order relation on C.
Denote ≡R, the equivalence relation associated to the pre-order ⊑R . We will

say that the binary R is extensional when ≡R is the identity relation on C or,
equivalently, when ⊑R is a partial order. The axiom of extensionality in NBG
ensures that (V,∈↾V×V ) is a class endowed with an extensional relation and, since
members of ordinal numbers are ordinal numbers5 □

1.1.2 Well founded relations

In this subsection we recall basic properties and constructions concerning general
well-founded relations. Also, we introduce a special kind of well-founded relation
suitable for our purposes.

4. On well-founded relations:
Recall that a binary relation ≺ on a class C is well-founded when:

(i) The subclass x≺ = {y ∈ C : y ≺ x} is a set.

5If α ∈ On, then α∈ = {β ∈ On : β ∈ α} = {x ∈ V : x ∈ α} = α.), then (On, ∈↾On×On) is class
endowed with an extensional relation.
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(ii) For each X ⊆ C that is a non-empty subset, there is u ∈ X that is a ≺-minimal
member of X (i.e., ∀v ∈ C, v ≺ u⇒v /∈ X).6

Let ≺ be an well-founded relation on a class C. Since for each n ∈ N, the (non-
empty) subset {x0, · · · , xn} ⊆ C has a ≺-minimal member, then ≺ is an acyclic
relation and, in particular, ≺ is irreflexive.

If D ⊆ C, then (D,≺↾D×D) is an well-founded class.
An well-founded relation that is a strict linear/total order is a well-order relation.
The axiom of regularity in NBG, guarantees that the binary relation ∈ over the

universal class V is an well-founded relation. (On,∈) is an well-ordered proper class.
Let ≺ be an well-founded relation on a class C. Then it holds:

The induction principle: Let X ⊆ C be a subclass. If, for each c ∈ C, the
inclusion c≺ ⊆ X entails c ∈ C, then X = C.
The recursion theorem: Let H be a (class) function such that H(c, g) is defined
for each c ∈ C and g a (set) function with domain c≺. Then there is a unique (class)
function F with domain C such that F (c) = H(c, F↾c≺), for each c ∈ C. □

5. Rooted well-founded relations:
Remark: Let (C,≺) be a well-founded class; the subclass root(C) of its roots

has as members its ≺-minimal members. Note that:
• If C is a non-empty class, then root(C) is a non-empty class.
• If⊑ denotes the pre-order on C associated to≺ (i.e., c ⊑ d iff ∀x ∈ C(x ≺ c⇒x ≺ d),
then: root(C) = {a ∈ C : a ⊑ c, for all c ∈ C}.

Definition: A well-founded class (C,≺) will be called rooted, when it has a
unique root Φ. If it is the case, then the structure (C,≺, Φ) will be called a rooted
well-founded class.

If ≺ is an extensional well-founded relation on a non-empty class C, then (C,≺)
is rooted: indeed, if r, r′ ∈ root(C), then r ⊑ r′ and r′ ⊑ r, thus r = r′. However, to
emphasize the distinguished element in a structure of rooted well-founded class, we
will employ the redundant expression “rooted extensional well-founded class”.

Examples and counter-examples:
(V,∈, ∅) is a rooted extensional well-founded class
(On,∈, ∅) is a rooted extensional well-ordered class.
Every well-ordered set (X,≤) gives rise to a rooted extensional well-ordered

set (X, <, Φ), where Φ = ⊥ is the least element of X and the strict relation, <,
associated to ≤, is an well-founded relation, since for each x, y ∈ X, x< ⊆ y< iff
x ≤ y.

6By the global axiom of choice (for classes), this condition is equivalent of a apparently stronger
one:
(ii)’ For each X ⊆ C that is a non-empty subclas, there is u ∈ X that is a ≺-minimal member of X.
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(N,≤, 0) is a well-ordered set, thus it gives rise to a rooted extensional well-
ordered set. (N \ {0}, |, 1) is determines a rooted well-founded set that is not exten-
sional. Note that (N \ {0, 1}, |) is an well-founded set that is not rooted since its
subset of minimal elements is the infinite set of all prime numbers. □

1.1.3 Cuts and densities

Many useful variants of the concept of Dedekind cut were already been defined on the
setting strict linear order on a given set (see for instance [2]). In this preliminary
subsection we present expansions of these notions in two different direction: we
consider binary relations that are only irreflexive (instead of being a strict linear
order) and defined on general classes instead of improper classes (= sets). We also
generalize the notions of density a la Hausdorff to this new setting.

Through this subsection, C denote a class and < stands for a irreflexive binary
relation whose support is C.

6. Cuts
A Conway cut in (C, <) is a pair ⟨A, B⟩ of arbitrary subclasses7 of C such that

∀a ∈ A,∀b ∈ B, a < b (notation A < B). Since < is a irreflexive relation on C, then
A ∩ B = ∅. A Conway cut ⟨A, B⟩ will be called small, when A and B are subsets
of C. We can define in theory NBG the class Cs(C, <) := {⟨A, B⟩ ∈ Ps(C)× Ps(C) :
A < B}, formed by all the small Conway cuts in (C, <).

A Cuesta-Dutari cut8 in (C, <) is a Conway cut ⟨A, B⟩ such that A ∪B = C.
Note that ⟨∅, C⟩ and ⟨C, ∅⟩ are always Cuesta-Dutari cuts in (C, <). On the other
hand, if C is a proper class, then the class CDs(C, <) of all small Cuesta-Dutari cuts
in (C, <) is the empty class.

A Dedekind cut in (C, <) is a Cuesta-Dutari cut ⟨A, B⟩ such that A and B
are non-empty subclasses. If C is a set, then ⟨A, B⟩ is a Dedekind cut in (C, <) iff
⟨A, B⟩ is a Conway Cut such that the set {A, B} is a partition of C. □

7. Densities
Let α be an ordinal number. Then (C, <) will be called an ηα-class, when for

each small Conway cut (A, B) in (C, <), such that card(A), card(B) < ℵα, there is
some t ∈ C such that ∀a ∈ A,∀b ∈ B, (a < t, t < b) (notation: A < t < B).

Let (C, <) be an ηα-class. Taking cuts (∅, {c}) (respec. ({c}, ∅)), for all c ∈ C, we
can conclude that an ηα-class (C, <) does not have <-minimal (respec. <-maximal)

7A and/or B could be the empty set.
8The spanish mathematician Norberto Cuesta Dutari (1907-1989) constructed his career on

studies of generalized real numbers, continuum and order theory.
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elements. Taking cuts (∅, X) (or (X, ∅)), for all X ⊆ C such that card(X) < ℵα, we
see that an ηα-class (C, <) has card(C) ≥ ℵα.

An η0-class (C, <) is just a “dense and without extremes” class.
If (C, <) is an ηα-class and β ∈ On is such that β ≤ α, then clearly (C, <) is an

ηβ-class.
(C, <) will be called an η∞-class, when it is an ηα-class for all ordinal number

α: this means that for each small Conway cut (A, B) in (C, <) there is some t ∈ C
such that A < t < B. Every η∞-class is a proper class. We will see that the strictly
linearly ordered proper class of all surreal numbers (No, <) is η∞. We will introduce
in Section 2 the notion of SUR-algebra: every such structure is a η∞-class. □

From now on, we will use the notion of Conway cut (respectively,
Cuesta-Dutari cut) only in the small sense.

1.2 On Surreal Numbers
This subsection is dedicated to present the class of surreal numbers – a concept in-
troduced by J.H. Conway in the mid 1970’s – under many (equivalent) constructions
within the background set class theory NBG, its order and algebraic structure and
its relations with the class (or the ZF-algebra) of all ordinal numbers.

1.2.1 The Conway’s construction formalized in NBG

We begin with the Conway’s construction following the appendix his book [6], in
which he gave a more formal construction.

We start defining, recursively, the sets Gα in order to define class of games.

(i) G0 = {⟨∅, ∅⟩}

(ii) Gα = {⟨A, B⟩ : A, B ⊆
⋃

β<α

Gβ}

The class G of Conway games is given by G = ⋃
α<On Gα.

If x = ⟨A, B⟩ ∈ G, it is usual to write xL (respectively xR) to denote a member
of the left side (respectively, right side) of x.

We can define a preorder ⩽ in G:

x ⩽ y iff no xL satisfies xL ⩾ y and no yR satisfies x ⩾ yR.

The second step of the construction is the definition of the class of pre-numbers.
We will again define the ordinal steps Pα recursively:
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• P0 = {⟨∅, ∅⟩}

• Pα = {⟨A, B⟩ : A, B ∈
⋃

β<α

Pβ and B ̸> A}

The class P of the pre-numbers is given by P =
⋃

α<On
Pα.

Finally, the class No is defined as the quotient of the class of pre-numbers by
the equivalence relation induced by ⩽. To avoid problems with equivalence classes
that are proper classes, we can make a Scott’s Trick.

Following Conway’s notation, we will denote a class ⟨X, Y ⟩/∼ by {X|Y } and
given a surreal number x, we will denote x = {Lx|Rx}, where ⟨Lx, Rx⟩ is a pre-
number that represents x. We will also use the notation xL for an element of Lx

and xR for an element of Rx.
The birth function b is defined as b(x) = min{α : ∃(L, R) ∈ Pα x = {L|R}}
We can also define, for any ordinal α, the sets Oα, Nα and Mα (“old”, “made”

and “new”):
• Oα = {x ∈ No : b(x) < α}
• Nα = {x ∈ No : b(x) = α}
• Mα = {x ∈ No : b(x) ⩽ α}

To end this subsection we will now define, recursively, the operations +,−, · in
P :
• x + y = {xL + y, x + yL|xR + y, x + yR};
• xy = {xLy+xyL−xLyL, xRy+xyR−xRyR|xLy+xyR−xLyR, xRy+xyL−xRyL};
• −x = {−xR| − xL};
• 0 = {∅|∅};
• 1 = {0|∅}.

Proposition 8.With this operations, No is a real-closed field. In addition, every
(set) field has an isomorphic copy inside No. If Global Choice is assumed, this is
valid also for class fields.

1.2.2 The Cuesta-Dutari cuts construction

Given an order (T, <), we can make a Cuesta-Dutari “completion” of T , denoted by
χ(T ), which is defined by

χ(T ) = (T ∪ CDs(T ), <′),

with <′ defined as follows:
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(i) If x, y ∈ T , then the order is the same as in T ;

(ii) If x = (L, R), y = (L′, R′) ∈ CDs(T ), then x <′ y if L ⊊ L′;

(iii) If x ∈ T and y = (L, R) ∈ CDs(T ), then x <′ y if x ∈ L or y <′ x if x ∈ R.

The idea of that construction is basically the iteration of the Cuesta-Dutari
completion starting from the empty set until the we obtain a ηOn class.

By recursion we define the sets Tα:

• T0 = ∅;

• Tα+1 = χ(Tα);

• Tγ =
⋃

β<γ

Tβ.

And finally we have
No =

⋃

α∈On
Tα

In that construction, the birth function b is given by the map that assigns to
each surreal number x, the ordinal b(x) which corresponds to the set Tb(x) that x
belongs.

Note that in this construction the sets “old”, “made” and “new” can be presented
in a simpler way:
• Oα =

⋃

β<α

Tα

• Mα =
⋃

β⩽α

Tα

• Nα = Tα

1.2.3 The binary tree construction or the space of signs construction

Consider the class Σ = {f : α → {−, +} : α ∈ On}. We can define in this class an
relation < as follows:
• f < g ⇐⇒ f(α) < g(α), where α is the least ordinal such that f and g differs,
with the convention − < 0 < + (f(α) = 0 iff f is not defined in α).

With this relation, Σ is a linearly ordered class isomorphic to (No,⩽).
In this construction, the birth function is given by the map b : Σ → On, f 7→

dom f .
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1.2.4 The axiomatic approach

It is an well-known fact that the notion of real numbers ordered field can be com-
pletely described (or axiomatized) as a certain structure –of complete ordered field –
and every pair of such kind of structure are isomorphic under a unique ordered field
isomorphism (in fact, there is a unique ordered field morphism between each pair of
complete ordered fields and it is, automatically, an isomorphism). In this subsection,
strongly based on section 3 of the chapter 4 in [2], we present a completely analogous
description for the ordered class (or ordered field) of surreal numbers.

Definition 9. A full class of surreal numbers is a structure S = (S, <, b) such that:
(i) (S, <) is a strictly linearly ordered class;
(ii) b : S → On is a surjective function;
(iii) For each Conway cut9 (L, R) in (S, <), the class IS(L, R) = {x ∈ S : L <
{x} < R} is non-empty and its subclass mS(L, R) = {x ∈ IS(L, R) : ∀y ∈ S, b(y) <
b(x)→ y /∈ IS(L, R)} is a singleton;
(iv) For each Conway cut (L, R) in (S, <) and each ordinal number α such that
b(z) < α, ∀z ∈ L ∪R, b({L|R}) ⩽ α, where {L|R} its unique member of mS(L, R).

□

Remark 10. Let S = (S, <, b) be a full class of surreal numbers.
• Condition (ii) above entails that S is a proper class.
• Condition (iii) above guarantees that (S, <) is a η∞-class.
• Since the order relation in On is linear (is an well-order), according the notation
in condition (iii), mS(L, R) = {x ∈ IS(L, R) : ∀y ∈ S, y ∈ IS(L, R)→ b(x) ≤ b(y)}.
• By condition (iv), b({∅|∅}) = 0. □

As mentioned in section 3 of chapter 4 in [2], by results proven in Conway’s book
[6], the constructions of surreal numbers classes presented above (by Conway cuts,
by Cuesta-Dutari cuts and by the space of sign-expansions), endowed with natural
“birthday” functions, are all full classes of surreal numbers. It is a natural question
ask if these constructions are equivalent in some sense.

Definition 11. Let S = (S, <, b) and S ′ = (S′, <′, b′) be full classes of surreal
numbers. A surreal (mono)morphism f : S → S ′ is a function f : S → S′ such that:
(i) ∀x, y ∈ S, x < y ↔ f(x) <′ f(y);
(ii) ∀x ∈ S, b′(f(x)) = b(x). □

Remark 12. Let S = (S, <, b) and S ′ = (S′, <′, b′) be full classes of surreal num-
bers.

9Recall our previously established convention that all cuts are assumed to be small.
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• Since < and <′ are linear order, a surreal morphism is always injective and con-
dition (i) is equivalent to:
(i)’ ∀x, y ∈ S, x < y → f(x) <′ f(y).
• Naturally, we can define a (“very-large”) category whose objects are the full classes
of surreal numbers and the arrows are surreal morphisms, with obvious composition
and identities. Clearly, an isomorphism in such category is just a surjective mor-
phism. □

Proposition 13. Let S = (S, <, b) and S ′ = (S′, <′, b′) be full classes of surreal
numbers. Then:
(i) There is a unique surreal (mono)morphism f : S → S ′ and it is an isomorphism.
(ii) For each ordinal number α, b−1([0, α)) is a set. Or, equivalently, b is a locally
small function.
(iii) The function (L, R) ∈ Cs(S, <) t7→ {L|R} ∈ S is surjective. □

In particular, all the constructions of surreal numbers classes presented in our
Subsection 3.1, endowed with natural birthday functions, are canonically isomorphic,
through a unique isomorphism.

In the section 4 of chapter 4 in [2], named “Subtraction in No”, we can find the
following result:

Proposition 14. Let S = (S, <, b) be a full class of surreal numbers. Then there is
a unique function − : S → S such that:
(i) b(−x) = b(x),∀x ∈ S;
(ii) −(−x) = x, ,∀x ∈ S;
(iii) x < y ↔ −y < −x, ∀x, y ∈ S;
(iv) −{L|R} = {−R| − L},∀(L, R) ∈ Cs(S, <). □

Remark 15. Let S = (S, <, b) be a full class of surreal numbers.
• In the presence of condition (ii), condition (iii) is equivalent to:
(iii)’ x < y → −y < −x,∀x, y ∈ S.
• By condition (iii), condition (iv) makes sense, since L < R⇒−R < −L.
• By condition (iv), −{∅|∅} = {∅|∅}. □

We finish this Subsection registering the following useful results whose proofs
can be found in [2], pages 125, 126.

Fact 16. Let S = (S, <, b) be a full class of surreal numbers. Let A, A′, B, B′, {x},
{x′} ⊆ S be subsets such that A < B and A′ < B′ and x = {A|B}, x′ = {A′|B′}.
Then:
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(a) If A and A′ are mutually cofinal and B and B′ are mutually coinitial, then
{A|B} = {A′|B′}.

(b) Suppose that (A, B) and (A′, B′) are timely representations of x and x′ re-
spectively, i.e b(z) < b(x), ∀z ∈ A∪B and b(z′) < b(x′),∀z′ ∈ A′∪B′. If x = x′ then
A and A′ are mutually cofinal and B and B′ are mutually coinitial. □

1.2.5 Ordinals in No

The results presented in this Subsection can be found in the chapter 4 of [2].
The ordinals can be embedded in a very natural way in the field No. The

function that makes this work is recursively defined as follows:

Definition 17.j(α) = {j[α]|∅}, α ∈ On.

The following result establishes a relation between the function j and the birth-
day function:

Proposition 18.b ◦ j = idOn

That map j encodes completely the ordinal order into the surreal order:

Proposition 19.α < β iff j(α) < j(β), ∀α, β ∈ On.

We have also that j(0) = 0, j(1) = 1. In fact, that embedding preserves also some
algebraic structure. Although the sum and product of ordinals are not commutative,
we have alternative definitions sum and product in On closely related to the usual
operations that are commutative:

Remark 20. Recall that there is another (natural) ordinal arithmetic given by
the Hessenberg sum and product of ordinals α and β. These operations have the
advantage that they are associative and commutative, and product distributes over
sum.

A simple way to define the Hessenberg sum and product of two ordinals α and β
is to use their Cantor normal forms: consider sequence of ordinals γ0 > · · · > γn−1
and two sequences (a0, · · · , an−1) and (b0, · · · , bn−1) of natural numbers (including
zero) such that

α = ωγ0 · a0 + · · ·+ ωγn−1 · an−1

β = ωγ0 · b0 + · · ·+ ωγn−1 · bn−1.

The Hessenberg sum of α and β is the ordinal:

α⊕ β := ωγ0 · (a0 + b0) + · · ·+ ωγn−1 · (an−1 + bn−1).
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The Hessenberg product, denoted by α ⊙ β, is defined to be the ordinal arising
by multiplication (using distributive and associative laws) from the Cantor normal
forms of α and β and by using the rule:

ωγ ⊙ ωδ := ωγ⊕δ

to multiply powers of ω.

Fact 21. The Hessenberg sum and products of ordinals are mapped by j to the
surreal sum and product.

In other words, the semi-ring (On, +̇, ×̇, 0, 1) has an isomorphic copy in No given
by the image of j.

2 Introducing Surreal Algebras
Motivated by structure definable in the class No of all surreal numbers, we intro-
duce in this section the notion of surreal algebra (SUR-algebra) as a (higher-order)
structure S = (S, <, ∗,−, t), satisfying some properties where, in particular, < is an
acyclic relation on S where t : Cs(S)→ S is a function that gives a coherent choice
of witness of η∞ density of (S, <). Every SUR-algebra turns out to be a proper
class. Besides the verification of No, endowed with previously mentioned structure,
is an instance of a SUR-algebra, we have defined two distinguished SUR-algebras
SA and ST , respectively the “free surreal algebra” and the “free transitive surreal
algebra” that will be very useful in the sequel of this work ([29]).

2.1 Axiomatic definition
Definition 22. A surreal algebra (or SUR-algebra) is an structure S = (S, <, ∗,−, t)
where:
• < is a binary relation in S;
• ∗ ∈ S is a distinguished element;
• − : S → S is a unary operation;
• t : Cs(S)→ S is a function, where Cs(S) = {(A, B) ∈ Ps(S)× Ps(S) : A < B}.

Satisfying the following properties:

(S1) < is an acyclic relation.

(S2) ∀x ∈ S, −(−x) = x.

(S3) −∗ = ∗.
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(S4) ∀a, b ∈ S, a < b iff −b < −a.

(S5) ∀(A, B) ∈ Cs(S), A < t(A, B) < B.

(S6) ∀(A, B) ∈ Cs(S), −t(A, B) = t(−B,−A).

(S7) ∗ = t(∅, ∅).
□

Remark 23.
• The choice of the ingredients in the structure and the constrains imposed by the
axioms in the definition above are largely inspired by the properties of the structure
on the class No of all surreal numbers, where we retain only the ingredients that
does not strongly depends on the linearity of <. The “correct” balance seems to
be the choice of < as an acyclic relation, that is a requirement between assuming
a irreflexive relation and a strict partial order relation. This acyclicness require-
ment is also an weak form of well-foundness and is inspired on the idea that the
complex term t(A, B) is determined by simpler terms, A, B, with A < B; moreover
A < t(A, B) < B also suggests that we are dealing with a some kind of “ternary
membership relation”, where t(A, B) is determined by information from below (by
A) and from above (by B).
• Let (S, <) be the underlying relational structure of a surreal algebra S. Then <
is an irreflexive relation, by condition (S1), and by (S5), (S, <) is a η∞-relational
structure. As a consequence S is a proper class: see 7 in the Subsection 1.1.3. The
other axioms establish the possibility of choice of witness for the η∞ property satis-
fying additional coherence conditions.
• Note that (S3) follows from (S7) and (S6) : −∗ = −t(∅, ∅) = t(−∅,−∅) = t(∅, ∅) =
∗.
• Axiom (S7) establish that the SUR-algebra structure is “an extension by defini-
tions” of a simpler (second-order) language: without a symbol for constant ∗.
• In the presence of (S2), condition (S4) is equivalent to:
(S4)’ ∀a, b ∈ S, a < b ⇒ −b < −a.
• By condition (S4), condition (S6) makes sense, since A < B⇒− B < −A (and if
A, B are sets, then −A, −B are sets). □

A morphism of surreal algebras is a function that preserves all the structure on
the nose. More precisely:

Definition 24. Let S = (S, <,−, ∗, t) and S ′ = (S′, <′,−′, ∗′, t′) be SUR-algebras.
A morphism of SUR-algebras h : S → S ′ is a function h : S → S′ that satisfies the
conditions below:
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(Sm1) h(∗) = ∗′.
(Sm2) h(−a) = −′h(a), ∀a ∈ S.

(Sm3) a < b =⇒ h(a) <′ h(b), ∀a, b ∈ S.

(Sm4) h(t(A, B)) = t′(h[A], h[B]), ∀(A, B) ∈ Cs(S).10

□
Definition 25. The category of SUR-algebras:

We will denote by SUR− alg the (“very-large”) category such that Obj(SUR−
alg) is the class of all SUR-algebras and Mor(SUR− alg) is the class of all partial
SUR-algebras morphisms, endowed with obvious composition and identities. □
Remark 26.

Of course, we have the same “size issue” in the categories ZF − alg, of all ZF-
algebras, and in SUR− alg: each object can be (respect., is a) proper class, thus it
cannot be represented in NBG background theory this “very large” category. The
mathematical (pragmatical) treatment of this question , that we will adopt in the
present work, is to assume a stronger background theory: NBG (or ZFC) and also
three Grothendieck universes U0 ∈ U1 ∈ U2. The members of U0 represents “the
sets”; the members of U1 represents “the classes”; the members of U2 represents
“the meta-classes”. Thus a category C is: (i) “small”, whenever C ∈ U0; (ii) “large”,
whenever C ∈ U1 \ U0; (iii) “very large”, whenever C /∈ U2 \ U1. □

2.2 Examples and constructions
2.2.1 The surreal numbers as SUR-algebras

The structure (No, <, b) of full surreal numbers class, according the Definition 9
in the Subsection 1.2.4, induces a unique structure of SUR-algebra (No, <,−, ∗, t),
where:
• The function t : Cs(No, <)→ No is such that (A, B) 7→ t(A, B) := {A|B};
• The distinguished element ∗ ∈ No is given by ∗ := {∅|∅};
• The function − : No → No is the unique function satisfying the conditions in
Proposition 14 and Remark 15.

This SUR-algebra has two distinctive additional properties:
• t is a surjective function;
• < is a strict linear order (equivalently, since < is acyclic, < is a total relation).

10Note that, by property (Sm3), (A, B) ∈ Cs(S) =⇒ (h[A], h[B]) ∈ Cs(S′), thus (Sm4) makes
sense.
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2.2.2 The free surreal algebra

We will give now a new example of surreal algebra, denoted SA11, which is not
a linear order and satisfies a nice universal property on the category of all surreal
algebras (see Section 4). The construction is based on a cumulative Conway’s cuts
hierarchy over a family of binary relations. 12

We can define recursively the family of sets SAα as follows:
Suppose that, for all β < α, we have constructed the sets SAβ and <β, binary

relations on SAβ, and denote SA(α) = ⋃
β<α SAβ and <(α)= ⋃

β<α <β . Then, for
α we define:

• SAα = SA(α) ∪ {⟨A, B⟩ : A, B ⊆ SA(α) and A <(α) B}.13

• <α=<(α) ∪{(a, ⟨A, B⟩), (⟨A, B⟩, b) : ⟨A, B⟩ ∈ SAα \ SA(α) and a ∈ A, b ∈ B}.

• The class SA14 is the union SA := ⋃
α∈On SAα.

• <:= ⋃
α∈On <α is a binary relation on SA.

Fact: Note that that:
(a) SA(0) = ∅, SA(1) = SA0 = {⟨∅, ∅⟩} and SA1 = {⟨∅, ∅⟩, ⟨∅, {⟨∅, ∅⟩}⟩, ⟨{⟨∅, ∅⟩}, ∅⟩}.
By simplicity, we will denote ∗ := ⟨∅, ∅⟩ = 0, −1 := ⟨∅, {∗}⟩ and 1 := ⟨{∗}, ∅⟩ thus
SA1 = {0,−1, 1}.
(b) <0= ∅ and <1= {(−1, 0), (0, 1)}.
(c) −1 and 1 are <-incomparable.
(d) SA(α) ⊆ SAα, α ∈ On.
(e) SAβ ⊆ SAα, β ≤ α ∈ On.
(f) SA(β) ⊆ SA(α), β ≤ α ∈ On.
(g) <(α)=<α ∩SA(α) × SA(α), α ∈ On (by the definition of <α).
(h) <β=<(α) ∩SAβ × SAβ, β < α ∈ On.
(i) <β=<α ∩SAβ × SAβ, β ≤ α ∈ On (by items (g) and (h) above).
(j) <α=< ∩SAα × SAα, α ∈ On.
(k) Cs(SAα, <α) = Cs(SA, <) ∩ Ps(SAα)× Ps(SAα), α ∈ On (by item (j)).
(l) Cs(SA(α), <(α)) = Cs(SA, <) ∩ Ps(SA(α))× Ps(SA(α)), α ∈ On.

11The “A” in SA is to put emphasis on acyclic.
12Starting from the emptyset, and performing a cumulative construction based on Cuesta-Dutari

completion of a linearly ordered set, we obtain No: see for instance [2].
13The expression ⟨A, B⟩ is just an alternative notation for the ordered pair (A, B), used for the

reader’s convenience.
14Soon, we will see that SA is a proper class.
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We already have defined < and ∗(= ⟨∅, ∅⟩) in SA, thus we must define t :
Cs(SA) → SA and − : SA → SA to complete the definition of the structure SA:
this will be carry out by recursion on well-founded relations on SA and Cs(SA)15

that will be defined below.

For each x ∈ SA, we define its rank as r(x) := min{α ∈ On : x ∈ SAα}. Since
for each β < α, SAβ ⊆ SA(α) ⊆ SAα, it is clear that r(x) = α iff x ∈ SAα \ SA(α).

Following Conway ([6], p.291), we can define for the SA setting the notions of:
“old members”, “made members” and “new members”. More precisely, for each
ordinal α:
• The set of old members w.r.t. α is the subset of SA of all members “born before
day α”. O(SA, α) := SA(α);
• The set of made members w.r.t. α is the subset of SA of all members “born on
or before day α”. M(SA, α) := SAα;
• The set of new members w.r.t. α is the subset of SA of all members “born on
day α”. N(SA, α) := SAα \ SA(α).

We will denote x ≺ y in SA iff r(x) < r(y) in On.

Claim 1: ≺ is an well-founded relation in SA.
Proof. Let y ∈ SA and let α := r(y). Given x ∈ SA, r(x) < α iff x ∈ O(SA, α) =
SA(α). Therefore, the subclass {x ∈ SA : x ≺ y} is a subset of SA.
Now let X be a non-empty subset of SA. Then r[X] is a non-empty subset of On
and let α := minr[X]. Consider any a ∈ r−1[{α}]∩X, then clearly a is a ≺-minimal
member of X. □

We have an induced “rank” on the class (of small <-Conway cuts) Cs(SA) =
{(A, B) ∈ Ps(A)× Ps(B) : A < B} R(A, B) := min{α ∈ On : A ∪B ⊆ SA(α)}. We
can also define a binary relation on the class Cs(SA):
(A, B) ◁ (C, D) in Cs(SA) iff R(A, B) < R(C, D) in On.

Claim 2: ◁ is an well-founded relation in Cs(SA).
Proof. Let (C, D) ∈ Cs(SA) and let α := R(C, D). Given (A, B) ∈ Cs(SA),
R(A, B) < α iff ∃β < α, A ∪ B ⊆ O(SA, β) = SA(β). Therefore, the subclass
{(A, B) ∈ Cs(SA) : (A, B) ◁ (C, D)} is a subset of Cs(SA).
Now let Y be a non-empty subset of Cs(SA). Then R[Y ] is a non-empty subset

15From now on, we will omit the binary relation on a class when it is clear from the setting.
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of On and let α := min(R[Y ]). Consider any (A, B) ∈ R−1[{α}] ∩ Y , then clearly
(A, B) is a ◁-minimal member of Y . □

Let H be the (class) function H(p, g) where, for each p = (C, D) ∈ Cs(SA)
and g a (set) function with domain p◁ := {(A, B) ∈ Cs(SA) : (A, B) ◁ p}, given
by H(p, g) := ⟨C, D⟩ (i.e., H is just first coordinate projection). Then H is a class
function and we can define by ◁-recursion a unique (class) function t : Cs(SA)→ SA
by t(p) = H(p, t↾p◁), i.e. t(C, D) = ⟨C, D⟩. The range of t is included in SA: since
A and B are subsets of SA such that A < B, there exists α ∈ On such that
A, B ⊆ SA(α); since < is the reunion of the increasing compatible family of binary
relations {<β: β ∈ On}, then we have that A <(α) B, thus ⟨A, B⟩ ∈ SAα ⊆ SA.

Claim 3: ∀α ∈ On, M(SA, α) = Cs(O(SA, α)). Thus N(SA, α) = Cs(SA(α)) \
SA(α).
Proof. Since M(SA, α) = O(SA, α) ∪ Cs(O(SA, α)), we just have to prove that,
SA(α) ⊆ Cs(SA(α)), for each α ∈ On. Suppose that SA(β) ⊆ Cs(SA(β)) for each
β ∈ On such that β < α. By the assumption, we have SA(α) = ⋃

β<α SAβ =⋃
β<α Cs(SA(β)). Since SA(β) ⊆ SA(α) and <(β)=<(α) ∩(SA(β) × SA(β))16, we

have Cs(SA(β)) ⊆ Cs(SA(α)), thus ⋃
β<α Cs(SA(β)) ⊆ Cs(SA(α)). Summing up, we

conclude that SA(α) ⊆ Cs(SA(α)) and the result follows by induction. □

Claim 4: Cs(SA) = SA and t : Cs(SA) → SA is the identity map, thus, in
particular, t is a bijection.
Proof. By items (k) and (l) in the Fact above, Cs(SA, <) = ⋃

α∈On Cs(SAα, <α) =⋃
α∈On Cs(SA(α), <(α)). By Claim 3 above, SAα = Cs(SA(α), <(α)),∀α ∈ On, thus⋃
α∈On Cs(SA(α), <(α)) = ⋃

α∈On SAα = SA. Summing up, we obtain Cs(SA) =
SA. Then t : Cs(SA)→ SA, given by (A, B) 7→ ⟨A, B⟩ is the identity map. □

For each x ∈ SA, denote (Lx, Rx) ∈ Cs(SA) the unique representation of x: in
fact, x = (Lx, Rx).

Claim 5: r ◦ t = R.
Proof. The functional equation is equivalent to:
∀(A, B) ∈ Cs(SA), ∀γ ∈ On, ⟨A, B⟩ ∈ SAγ iff A ∪B ⊆ SA(γ).
If (A, B) ∈ Cs(SA) and A ∪ B ⊆ SA(γ) then, since A < B we have A <(γ) B,

16The non trivial inclusion <(β)⊇<(α) ∩(SA(β) × SA(β)) holds since for every pair (x, y) in
the right side there are δ < β and γ < α (that we can assume γ ≥ δ) such that (x, y) ∈<γ

∩SAδ × SAδ =<δ⊆<β .
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thus ⟨A, B⟩ ∈ SAγ by the recursive definition of SAγ . On the other hand, if
(A, B) ∈ Cs(SA) and ⟨A, B⟩ ∈ SAγ , then by Claim 3 above, (A, B) ∈ Cs(SA, <
) ∩ Cs(SA(γ)), <(γ)) = Cs(SA(γ)), <(γ)), thus A ∪B ⊆ SA(γ). □

Claim 6: Let (A, B) ∈ Cs(SA) and α ∈ On, then: ∀a ∈ A,∀b ∈ B, r(a), r(b) <
α iff r(t(A, B)) ≤ α. In particular: ∀a ∈ A,∀b ∈ B, r(a), r(b) < r(t(A, B)).
Proof. The equivalence is just a rewriting of the equivalence proved above:
A ∪B ⊆ SA(α) iff ⟨A, B⟩ ∈ SAα. □

Claim 7: ∀x, y ∈ SA, x < y ⇒ r(x) ̸= r(y). In particular, the relation < in
SA is irreflexive.
Proof. Suppose that there are x, y ∈ SA such that x < y and r(x) = r(y) = α ∈ On.
Thus x, y ∈ SAα \ SA(α) and, since x, y ∈ SAα and (x, y) ∈<, we get (x, y) ∈<α

\ <(α). Thus (x, y) = (a, (Ly, Ry)) for some a ∈ Ly ⊆ SA(α) or (x, y) = ((Lx, Rx), d)
for some d ∈ Rx ⊆ SA(α). In both cases we obtain x = a ∈ SA(α) or y = d ∈ SA(α),
contradicting our hypothesis. □

Claim 8: Let A, B ⊆ SA be subclasses such that A < B, then r[A] ∩ r[B] = ∅.
Proof. Suppose that A < B and that there are a ∈ A and b ∈ B such that
r(a) = r(b) ∈ r[A] ∩ r[B]. Then a < b and r(a) = r(b), contradicting the Claim 7
above. □

Claim 9: Let (A, B), (C, D) ∈ Cs(SA). Then ⟨A, B⟩ < ⟨C, D⟩ iff ⟨A, B⟩ ∈ C
(then r(⟨A, B⟩) < r(⟨C, D⟩)) or ⟨C, D⟩ ∈ B (then r(⟨C, D⟩) < r(⟨A, B⟩)).
Proof. (⇐) If ⟨A, B⟩ = c ∈ C and r(⟨C, D⟩) = α, then (c, ⟨C, D⟩) ∈<α⊆<, thus
⟨A, B⟩ < ⟨C, D⟩. The other case is analogous.
(⇒) Suppose that ⟨A, B⟩ < ⟨C, D⟩. By Claim 7 above we have α = r(⟨A, B⟩) ̸=
r(⟨C, D⟩) = γ. If α < γ we have SAα ⊆ SA(γ) and ⟨C, D⟩ ∈ SAγ \ SA(γ), thus
(⟨A, B⟩, ⟨C, D⟩) ∈<γ \ <(γ) and we have ⟨A, B⟩ ∈ C. If γ < α we conclude, by an
analogous reasoning, that ⟨C, D⟩ ∈ B. □

Claim 10: Let (A, B), (C, D) ∈ Cs(SA). Then A < ⟨C, D⟩ < B and R(A, B) ≤
R(C, D) iff A ⊆ C and B ⊆ D.
Proof. (⇐) Let R(C, D) = α, then ∀c ∈ C,∀d ∈ D, (c, ⟨C, D⟩), (⟨C, D⟩, d) ∈<α⊆<.
If A ⊆ C and B ⊆ D, then A < ⟨C, D⟩ < B and A ∪ B ⊆ C ∪ D ⊆ SA(α), i.e.
R(A, B) ≤ α = R(C, D).
(⇒) Let A < ⟨C, D⟩ < B and suppose that there is a ∈ A \ C, then ⟨La, Ra⟩ = a <
⟨C, D⟩. Since ⟨La, Ra⟩ /∈ C, then by Claim 9 above, we have ⟨C, D⟩ ∈ Ra, thus:

370



An algebraic (set) theory of surreal numbers, I

R(C, D) =Claim5 r(⟨C, D⟩) <Claim6= r(⟨La, Ra⟩) = r(a) < r(⟨A, B⟩) = R(A, B).
Analogously, if A < ⟨C, D⟩ < B and B \D ̸= ∅, we obtain R(C, D) < R(A, B). □

Claim 11: For each (A, B) ∈ Cs(SA, <), A < ⟨A, B⟩ < B. In particular,
(SA, <) is a ηinfty proper class.
Proof. By Claim 7 above, < is an irreflexive relation. By Claim 10 above, for each
(A, B) ∈ Cs(SA, <), A < ⟨A, B⟩ < B, thus (SA, <) is a ηinfty class. It follows
from 7 in the Subsection 1.1.3, that SA is proper class. □

Claim 12: For each (A, B) ∈ Cs(SA, <) and each z ∈ SA such that A < z < B,
then r(t(A, B)) ≤ r(z).
Proof. Suppose that the result is false and let α the least ordinal such that there
are (A, B) ∈ Cs(SA) and z ∈ SA such that A < z < B, but r(z) < r(t(A, B)) =
R(A, B) = α: thus α > 0. By a simple analysis of the cases α ordinal limit and α
successor, we can see that there are A′ ⊆ A, B′ ⊆ B such that R(A′, B′) = α′ < α
and A′ < z < B′, contradicting the minimality of α17. □

Define, by recursion on the well-ordered proper class (On, <), a function s :
On→ SA by s(α) := ⟨s[α], ∅⟩, α ∈ On.

Claim 13: r ◦ s = idOn. In particular, the function r : SA → On is surjective
and SA is a proper class.
Proof. We will prove the result by induction on the well-ordered proper class
(On, <). Let α ∈ On and suppose that r(s(β) = β, for all ordinal β < α. Then:
r(s(α)) = r(⟨s[α], ∅⟩) = r(t(s[α], ∅)) =Claim 5 R(s[α], ∅) = min{γ ∈ On : s[α] ∪ ∅ ⊆
SA(γ)}.
By the induction hypothesis, we have:
(IH) s(β) ∈ SAβ \ SA(β), for all ordinal β < α.
Since s(β) ∈ SAβ, we have s(β) ∈ SA(α), ∀β < α. If s[α] ∪ ∅ ⊆ SA(γ) for some
γ < α, then s(γ) ∈ SA(γ), in contradiction with (IH). Summing up, we conclude
that r(s(α) = α, and the result follows by induction. □

Claim 14: There is a unique function − : SA→ SA, such that:
(i) ∀x ∈ SA, r(−x) = r(x);
(ii) ∀x ∈ SA,−(−x) = x;
(iii) ∀x, y ∈ SA, x < y iff −y < −x;
(iv) ∀(A, B) ∈ Cs(SA),−t(A, B) = t(−B,−A).
Proof. Let z ∈ SA and suppose that a function − is defined for all x, y ∈ SA,

17Hint: in the case α = γ + 1, use Claim 7.
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such that x, y ≺ z, satisfying the conditions (i)–(iv) adequately restricted to the
subset SA(α), for α := r(z) ∈ On. Then z = ⟨Lz, Rz⟩ = t(Lz, Rz) ∈ SAα \ SA(α)

for a unique (Lz, Rz) ∈ Cs(SA) (Claim 4) and α is the least γ ∈ On such that
Lz ∪ Rz ⊆ SA(γ) (Claim 5), thus ∀x ∈ Rz ∪ Lz, r(x) < r(z). Then −x is defined
∀x ∈ Lz ∪Rz, satisfying the conditions (i)–(iv) restricted to the subset SA(α). Since
x < y, ∀x ∈ Lz∀y ∈ Rz, it holds, by condition (iii), −y < −x then −Rz < −Lz

and since −Rz,−Lz are the images of a function on sets, (−Rz,−Lz) ∈ Cs(SA).
Moreover, by condition (i), α is the least γ ∈ On such that −Rz ∪−Lz ⊆ SA(γ), i.e.
t(−Rz,−Lz) = ⟨−Rz,−Lz⟩ ∈ SAα \ SA(α). Define −z := t(−Rz,−Lz).
Now we will prove that the conditions (i)–(iv) still holds for all members in SAα ⊋
SA(α).
(i) Let x ∈ SAα. If x ∈ SA(α), this condition holds by hypothesis. If x ∈ SAα\SA(α),
then by the recursive definition above, −x = ⟨−Rx,−Lx⟩ ∈ SAα \ SA(α), thus
r(−x) = α = r(x). Thus (i) holds in SAα.
(ii) Let x ∈ SAα \ SA(α), then −x,− − x ∈ SAα \ SA(α) (by the validity of con-
dition (i) on SAα established above). −(−x) = −(−t(Lx, Rx)) = −t(−Rx,−Lx) =
t(−(−Lx),−(−Rx)) = t(Lx, Rx) = x, since by hypothesis the conditions (iii) and
(ii) holds for members of SA(α). Thus (ii) holds in SAα.
(iii) We suppose that ∀x, y ∈ SA(α), x < y iff −y < −x. Let x, y ∈ SAα such that
x < y. If both x, y ∈ SA(α) then, by hypothesis −y < −x. Otherwise, by Claim
7, there is exactly one between x, y that is a member of SAα \ SA(α). By Claim
9: if r(y) < r(x) = α then y ∈ Rx; if r(x) < r(y) = α then x ∈ Ly. Thus: if
r(y) < r(x) = α then −y ∈ −Rx = L−x, thus −y < −x; if r(x) < r(y) = α then
−x ∈ −Ly = R−y, thus −y < −x. Then we have proved that ∀x, y ∈ SAα, x < y
⇒ −y < −x. Since the conditions (i) and (ii) have already be established on SAα,
we also have ∀x, y ∈ SAα, −y < −x ⇒ x = −(−x) < −(−y) = y.
(iv) Suppose that t(A, B) = ⟨A, B⟩ = ⟨−B,−A⟩ = t(−B,−A) holds for all (A, B) ∈⋃

β<α Cs(SA) ∩ Ps(SA(β)) × Ps(SA(β)) = ⋃
β<α Cs(SA(β)) = ⋃

β<α SAβ = SA(α).
We must prove that the condition still holds for all (C, D) ∈ Cs(SA) ∩ Ps(SA(α))×
Ps(SA(α)) = Cs(SA(α)) = SAα. Let z = (C, D) = ⟨C, D⟩ = t(C, D) ∈ SAα \ SA(α).
Then just by the recursive definition of −z, we have −z = −t(A, B) = t(−B,−A),
as we wish. □

Finally, we will prove that SA satisfies all the 7 axioms of SUR-algebra:

(S7) ∗ = t(∅, ∅).
This holds by our definition of ∗.

(S5) ∀(A, B) ∈ Cs(SA), A < t(A, B) < B.
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This holds by the Claim 10 above.

(S6) ∀(A, B) ∈ Cs(SA), −t(A, B) = t(−B,−A).
This holds by Claim 14.(iv).

(S3) −∗ = ∗.
Since −∗ = −t(∅, ∅) = t(−∅,−∅) = t(∅, ∅) = ∗.

(S2) ∀x ∈ SA, −(−x) = x.
This holds by Claim 14.(ii).

(S4) ∀a, b ∈ SA, a < b iff −b < −a.
This holds by Claim 14.(iii).

(S1) < is an acyclic relation.
Suppose that < is not acyclic and take x0 < ... < xn < x0 a cycle in (SA, <)
of minimum length n ∈ N. Since < is an irreflexive relation (see the Claim 7),
n > 0. Let α = max{r(xi) : i ≤ n} and let j be the least i ≤ n such that
r(xj) = α.
If j = 0: Since x0 < x1 and xn < x0, then by Claim 7, r(x1), r(xn) < r(x0).
Writing x0 = ⟨Lx0 , Rx0⟩ (since, by Claim 4, SA = Cs(SA)), we obtain from
Claim 9 that xn ∈ Lx0 and x1 ∈ Rx0 . As Lx0 < Rx0 , we have xn < x1 and
then x1 < ... < xn < x1 is a cycle of length n− 1 < n, a contradiction.
If j > 0: Then define j− := j − 1 and j+ := j + 1 (respec. j+ = 0), if j < n
(respec. j = n).
Then by Claim 7, r(xj−), r(xj+) < r(xj) and by Claim 9: xj− ∈ L(xj) and
xj+ ∈ Rxj . As Lxj < Rxj , we have xj− < xj+ and then we can take a sub-
cycle of the original one omitting xj : this new cycle has of length n − 1 < n,
a contradiction.

2.2.3 The free transitive surreal algebra

We will give now a new example of surreal algebra, denoted ST 18, which is a strict
partial order19 that is not linear and satisfies a nice universal property on the cat-
egory of all transitive surreal algebras (see Section 4). The construction is similar
to the construction of SA in the previous subsection: it is based on a cumulative
Conway’s cuts hierarchy over a family of binary (transitive) relations.

We can define recursively the family of sets STα as follows:
18The “T” in ST is to put emphasis on transitive.
19Recall that a binary relation is that is a strict partial order iff it is a transitive and acyclic

relation.
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Suppose that, for all β < α, we have constructed the sets STβ and <β, binary
relations on STβ, and denote ST (α) = ⋃

β<α STβ and <(α)= ⋃
β<α <β . Then, for α

we define:

• STα = ST (α) ∪ {⟨A, B⟩ : A, B ⊆ ST (α) and A <(α) B}.

• <α= the transitive closure of the relation <′α, where <′α:=
(<(α) ∪{(a, ⟨A, B⟩), (⟨A, B⟩, b) : ⟨A, B⟩ ∈ STα \ ST (α) and a ∈ A, b ∈ B}).

• The (proper) class ST is the union ST := ⋃
α∈On STα.

• <:= ⋃
α∈On <α is a binary (transitive) relation on ST .

The following result is straightforward an completely analogous to the corre-
sponding items in the Fact in the previous subsubsection on SA:

Fact 1: Note that that:
(a) ST (0) = ∅, ST (1) = ST0 = {⟨∅, ∅⟩}. By simplicity, we will denote 0 := ⟨∅, ∅⟩,
1 := ⟨∅, {0}⟩, −1 := ⟨{0}, ∅⟩. Thus: ST0 = {0}, SA1 = {0, 1,−1}.
(b) <0= ∅, <1= {(−1, 0), (0, 1), (−1, 1)}.
(c) −1 < 0 < 1, −1 < ⟨{−1}, {1}⟩ < 1, but 0, ⟨{−1}, {1}⟩ are <-incomparable.
(d) ST (α) ⊆ STα, α ∈ On.
(e) STβ ⊆ STα, β ≤ α ∈ On.
(f) ST (β) ⊆ ST (α), β ≤ α ∈ On. □

Analogously to in the SA case, we can define rank functions r : ST → On20 and
R : Cs(ST )→ On that induces well-founded relations on ST and on Cs(ST ).

The results below are almost all (the exception are the items (m), (n), (o))
analogous to corresponding items in the Fact in the previous subsection on SA.
However, the techniques needed in the proofs are different than in SA case and
deserve a careful presentation.

Fact 2:
(g) <(α)=<α ∩SA(α) × SA(α), α ∈ On.
(h) <β=<(α) ∩SAβ × SAβ, β < α ∈ On.
(i) <β=<α ∩SAβ × SAβ, β ≤ α ∈ On.
(j) <α=< ∩SAα × SAα, α ∈ On.
(k) Cs(STα, <α) = Cs(ST, <) ∩ Ps(STα)× Ps(STα), α ∈ On.

20For each x ∈ ST , r(x) = α ∈ On iff x ∈ STα \ ST (α).

374



An algebraic (set) theory of surreal numbers, I

(l) Cs(ST (α), <(α)) = Cs(ST, <) ∩ Ps(ST (α))× Ps(ST (α)), α ∈ On.
(m) ∀α ∈ On, <α is a transitive and a acyclic relation on STα.
(n) < is a transitive and acyclic relation (or, equivalently, it is a strict partial order)
on ST .
(o) Let x, y ∈ ST and denote α := max{r(x), r(y)}. Then are equivalent:
• x < y.
• Exists n ∈ N, exists {z0, · · · , zn+1} ⊆ STα such that: x = z0, y = zn+1; zj ∈ Lzj+1

or zj+1 ∈ Rzj , for all j ≤ n; {z1, · · · , zn} ⊆ ST (α).
Proof. Item (i) follows from items (g) and (h). Items (k) and (l) follows from item
(j). Items (n) and (o) are direct consequences of item (m), since <= ⋃

α∈On <α.
(g) Clearly <(α) ⊆ <α ∩SA(α) × SA(α). To show the converse inclusion let

x, y ∈ SA(α) be such that x <α y and let x = x0 <′α ... <′α xn = y be a sequence
in (STα, <′α) with the number k = card({i ⩽ n : r(xi) = α} being minimum. We
will show that k = 0, thus the sequence is just x = x0 <(α) ... <(α) xn = y and
then x <(α) y because <(α) is a transitive relation (since <β, β ∈ On is a transitive
relation, by construction). Suppose, by absurd, that k > 0 and let j be the least
i ≤ n such that r(xj) = α. By our hypothesis on x, y we have 0 < j < n. Since
xj−1 <′α xj <′α xj+1, we have r(xj−1), r(xj+1) < r(xj) = α and xj−1 ∈ L(xj),
xj+1 ∈ Rxj . As Lxj <(α) Rxj , we have xj−1 <(α) xj+1 and then we can take a
sub-cycle of the original one omitting xj : this new cycle has k − 1 < k members
with rank α, a contradiction.

(h) We only prove the non-trivial inclusion. Let x, y ∈ SAβ be such that x <(α) y.
Since <(α)= ⋃

γ<α <γ , let β′ be the least γ < α such that x <β′ y. We will prove
that β′ ≤ β, thus we obtain x <β y, as we wish. Suppose, by absurd, that β′ > β.
Then (x, y) ∈<β′ ∩SA(β′) × SA(β′), and by the item (g) proved above (x, y) ∈<(β′).
Thus there is some γ < β′ such that x <γ y, contradicting the minimality of β′.

(j) Let x, y ∈ SAα be such that x < y. Since <= ⋃
γ∈On <γ , let α′ be the least

γ ∈ On such that x <α′ y. We will prove that α′ ≤ α, thus we obtain x <α y, as
we wish. Suppose, by absurd, that α′ > α. Then (x, y) ∈<α′ ∩SA(α′) × SA(α′), and
by the item (g) proved above (x, y) ∈<(α′). Thus there is some γ < α′ such that
x <γ y, contradicting the minimality of α′.

(m) By definition of <γ , <γ is a transitive relation, ∀γ ∈ On.
Suppose that the statement is false and let α ∈ On be the least ordinal such that
(STα, <α) has some cycle. Then ∀β < α, <β is an acyclic relation but <α has some
cycle (or, equivalently, <′α has some cycle). Let x0 <′α ... <′α xn <′α x0 be a cycle
in (STα, <′α) with the number k = card({i ⩽ n : r(xi) = α} being minimum. Note
that k > 0, otherwise x0, ..., xn ∈ SA(α) and the cycle is x0 <(α) ... <(α) xn <(α) x0,
thus there is a β < α and a cycle x0 <β ... <β xn <β x0 in (STβ, <β), contradicting
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our hypothesis.
Let j be the least i ≤ n such that r(xj) = α.
If j = 0: Since x0 <′α x1 and xn <′α x0, then r(x1), r(xn) < r(x0) = α. Writing
x0 = ⟨Lx0 , Rx0⟩, we have that xn ∈ Lx0 and x1 ∈ Rx0 . As Lx0 <(α) Rx0 , we have
xn <(α) x1, and then x1 <′α ... <′α xn <′α x1 is a cycle in (STα, <′α) with k − 2 < k
members with rank α, a contradiction.
If j > 0: Then define j− := j − 1 and j+ := j + 1 (respect. j+ = 0), if j < n
(respect. j = n).
Then r(xj−), r(xj+) < r(xj) = α and: xj− ∈ L(xj), xj+ ∈ Rxj . As Lxj <(α) Rxj ,
we have xj− <(α) xj+ and then we can take a sub-cycle of the original one omitting
xj : this new cycle has k − 1 < k members with rank α, a contradiction. □

Since the harder part was already done, we just sketch the construction of the
SUR-algebra structure (ST, <,−, ∗, t):
• As in the SA case, from the well founded relation on Cs(ST ) we can define
recursively a function with range ST , t : Cs(ST ) → ST by t(A, B) = ⟨A, B⟩. We
can prove, by induction, that STα = Cs(ST (α)), α ∈ On. Thus t is a bijection (is
the identity function). Moreover, if (A, B) ∈ Cs(ST ), then A < t(A, B) < B.
• We define ∗ := 0 = t(∅, ∅).
• As in the SA case, we can define (recursively) the function − : ST → ST by
−⟨A, B⟩ := ⟨−B,−A⟩.

The verification of the satisfaction of the SUR-algebra axioms (S2)–(S7) are
analogous as in the SA case. The satisfaction of (S1) was proved in item (m) of Fact
2 above.

2.2.4 The cut surreal algebra

In this subsection we present a generalization of the SA, ST constructions. Given a
surreal algebra S, we can define a new surreal algebra whose domain is Cs(S) with
the following relations and operations:

Definition 27.Let (S, <,−, ∗, t) be a surreal algebra. Consider the following struc-
ture in Cs(S)
• ∗′ = (∅, ∅)
• −′(A, B) = (−B,−A)
• (A, B) <′ (C, D) ⇐⇒ t(A, B) < t(C, D)
• t′(A, B) = (t[A], t[B])
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Proposition 28.With this operations (Cs(S), <′,−′, ∗′, t′) is a surreal algebra.

Proof.

(S1) <′ is acyclic because any cycle (A0, B0) <′ ... <′ (An, Bn) induces a cycle
t(A0, B0) < ... < t(An, Bn) in S, which is acyclic.

(S2) −′ −′ (A, B)) = −′(−B,−A) = (−−A,−−B) = (A, B).

(S3) −′∗′ = −′(∅, ∅) = (−∅,−∅) = (∅, ∅).

(S4) (A, B) <′ (C, D) iff t(A, B) < t(C, D) iff−t(C, D) < −t(A, B) iff t(−D,−C) <
t(−B,−A) iff (−D,−C) <′ (−B,−A) iff −′(C, D) <′ −′(A, B).

(S5) Let (A, B) ∈ Cs(Cs(S)). Then A <′ B and thus t[A] < t[B]. Since S satisfies
(S5), t[A] < t(t[A], t[B]) < t[B]. By the definition of <′, A <′ (t[A], t[B]) <′ B
and then A <′ t′(A, B) <′ B.

(S6) −′t′(A, B) = −′(t[A], t[B]) = (−t[B],−t[A]) = (t[−′B], t[−′A]) = t′(−′B,−′A)

(S7) t′(∅, ∅) = (t[∅], t[∅]) = (∅, ∅) = ∗′

□
Some properties of X are transferred to Cs(X) as we can see in the above propo-

sition:

Proposition 29.

(a) If X is transitive then Cs(X) is transitive.

(b) If X is linear then Cs(X) is pre-linear, i.e., denote ∼t the equivalence relation
on Cs(S) given by (A, B) ∼t (C, D) iff t(A, B) = t(C, D). Then it holds exactly
one between of the alternatives: (A, B) <′ (C, D); (A, B) ∼t (C, D); (C, D) <′

(A, B).

Proof.

(a) Suppose that we have (A1, B1), (A2, B2), (A3, B3) ∈ Cs(X) satisfying (A1, B1) <′

(A2, B2) <′ (A3, B3). Then, by definition, t(A1, B1) < t(A2, B2) < t(A3, B3).
Since < is transitive, we have that t(A1, B1) < t(A3, B3) and then (A1, B1) <′

(A3, B3).

(b) Is straightforward.

If follows almost directly by the definition of the structure in Cs(S) that:
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Proposition 30.t : Cs(S)→ S is a morphism of surreal algebras.

Remark 31. In the case of the three principal examples of SUR-algebras we have
that t : Cs(SA)→ SA and t : Cs(ST )→ ST are bijections and t : Cs(No)→ No is
a surjection. □

Proposition 32.If f : S → S′ is a morphism then Cs(f) : Cs(S) → Cs(S′) :
(A, B) 7→ (f [A], f [B]) is a morphism.

Proposition 33.Cs determines Cs(f)(A, B) = (f [A], f [B]) a functor from SUR to
SUR, and t determines a natural transformation t : IdSUR−alg → Cs

From a direct application of the Proposition 29, we obtain the following:

Proposition 34.Let S = (S, <,−, ∗, t) a SUR-algebra.

1. If S is an initial object in the category SUR− alg then the following diagram
commutes:

(S !→ Cs(S) t→ S) = (S idS→ S)

2. If S is an object of full subcategory SURT−alg ↪→ SUR−alg, of all transitive
SUR-algebra, and is an initial object in the this (sub)category SURT−alg, then
the following diagram commutes:

(S !→ Cs(S) t→ S) = (S idS→ S)

Remark 35. Note that: Cs(SA) = SA and Cs(ST ) = ST .

3 Partial Surreal Algebras and morphisms
In several recursive constructions, the intermediate stages play an important role in
the comprehension of the object constructed itself. As we have seen in the Subsection
2.1, all surreal algebra is a proper class but, on the other hand, the intermediate
stages of the constructions of No, SA, ST are sets. To gain some flexibility and
avoid technical difficulties, we introduce in this Section the (more general and flex-
ible) notion of partial surreal algebra: every SUR-algebra is a partial SUR-algebra
and this new notion can be supported by a set. Besides simple examples, that con-
tains in particular the intermediate stages of No, SA, ST , and a relativized notion
of Cut (partial) SUR-algebra, we are interest on general constructions of partial
SUR-algebras: for that we will consider two kinds on morphisms between them.
We will perform general constructions as products, sub partial-SUR-algebra and
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certain kinds of directed colimits. As an application of the latter construction, we
are able to prove some universal properties satisfied by SA and ST (and natural
generalizations), that justifies its names of (relatively) free SUR-algebras.

Definition 36. A partial surreal algebra (pSUR-algebra) is a structure S =
(S, ∗,−, <, t) where S is a class (proper or improper), ∗ ∈ S, − is an unary function
in S, < is a binary relation in S and t : Ct

s(S) → S is a partial function, i.e.,
Ct

s(S) ⊆ Cs(S), satisfying:

(pS1) < is an acyclic relation.

(pS2) ∀x ∈ S, −(−x) = x

(pS3) −∗ = ∗.

(pS4) ∀a, b ∈ S, a < b iff −b < −a

(pS5) If (A, B) ∈ Ct
s(S), then A < t(A, B) < B.

(pS6) If (A, B) ∈ Ct
s(S), then (−B,−A) ∈ Ct(S) and −t(A, B) = t(−B,−A).

(pS7) (∅, ∅) ∈ Ct
s(S) and ∗ = t(∅, ∅).

□

Note that (pS1), (pS2), (pS3) and (pS4) coincide, respectively, with the SUR-
algebra axioms (S1), (S2), (S3) and (S4). The statements (pS5), (pS6) and (pS7)
are relative versions of, respectively, the SUR-algebra axioms (S5), (S6) and (S7).
SUR-algebras are precisely the pSUR-algebras S such that Ct

s(S) = Cs(S).

Definition 37. Let S = (S, <,−, ∗, t) and S ′ = (S′, <′,−′, ∗′, t′) be partial SUR-
algebras. Let h : S → S′ be (total) function and consider the conditions below:

(Sm1) h(∗) = ∗′.

(Sm2) h(−a) = −′h(a), ∀a ∈ S.

(Sm3) a < b =⇒ h(a) <′ h(b), ∀a, b ∈ S.

(pSm4) (A, B) ∈ Ct
s(S) =⇒ (h[A], h[B]) ∈ Ct′

s (S′) and h(t(A, B)) = t′(h[A], h[B]),
∀(A, B) ∈ Ct

s(S).

(fpSm4) (A, B) ∈ Cs(S) =⇒ (h[A], h[B]) ∈ Ct′
s (S′) and h(t(A, B)) = t′(h[A], h[B]),

∀(A, B) ∈ Ct
s(S).
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We will say that h : S → S ′ is:
• a partial SUR-algebra morphism (pSUR-morphism) when it satisfies:
(Sm1), (Sm2), (Sm3) and (pSm4);
• a full partial SUR-algebra morphism (fpSUR-morphism) when it satisfies:
(Sm1), (Sm2), (Sm3) and (fpSm4). □

Remark 38.

• Note that the property (Sm3) entails: (A, B) ∈ Cs(S) =⇒ (h[A], h[B]) ∈
Cs(S′).

• The conditions (Sm1), (Sm2) and (Sm3) are already present in the definition
of SUR-algebra morphism. The property:

(Sm4) h(t(A, B)) = t′(h[A], h[B]), ∀(A, B) ∈ Cs(S);
completes the definition of SUR-algebra morphism.

• Every full partial SUR-algebra morphism is partial SUR-algebra morphism.

• Let S, S′ be partial SUR-algebras and h : S → S′ is a map. Suppose that S or
S′ is a SUR-algebra, then h is a pSUR morphism iff h is a fpSUR-morphism.

• If S is a partial SUR-algebra, then: idS : S → S is a pSUR-morphism and
idS : S → S is a fpSUR-morphism iff S is a SUR-algebra.

• Let h : S → S′, h′ : S′ → S′′ be pSUR morphisms:
• Then f ′ ◦ f is a pSUR-morphism.
• If f is fpSUR-morphism, then f ′ ◦ f is a fpSUR-morphism. In particular,
the composition of fpSUR-morphisms is a fpSUR-morphism.

□

Definition 39. The category of partial SUR-algebras:
We will denote by pSUR−alg the (“very-large”) category such that Obj(pSUR−

alg) is the class of all partial SUR-algebras and Mor(pSUR−alg) is the class of all
partial SUR-algebras morphisms, endowed with obvious composition and identities.

□

Remark 40.
(a) Of course, we have in the category pSUR−alg the same “size issue” presented

in the categories of ZF − alg and SUR − alg: we will adopt the same “solution”
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explained in Remark 26. An alternative is to consider only “small” partial SUR-
algebras (and obtain “large” category –instead of very large– pSURs−alg, of all small
partial SUR-algebras) since we will see that there are set-size partial SUR-algebras:
we will not pursue this track because our main concern in considering partial SUR-
algebras is get flexibility to make (large indexed) categorial constructions with small
partial SUR-algebras to obtain a total SUR-algebra as a (co)limit process, i.e., we
want pSUR ⊇ SUR.

(b) We saw above that, even if the class of full morphism of partial SUR-algebras
is closed under composition, it does not determines a category under composition,
since it lacks the identities for the small partial SUR-algebras. However this no-
tion will be useful to perform constructions of total SUR-algebra as colimit of a
large diagram small partial SUR-algebras and fpSUR-morphisms between them (see
Subsection 3.4). □

41. Denote Σ-str the (very large) category such that:
(a) The objects of Σ-str are the structures S = (S, ∗,−, <, t) where S is a class,

∗ ∈ S, − is an unary function in S, < is a binary relation in S and t : Dt → S is a
function such that Dt ⊆ Ps(S)× Ps(S).

(b) Let S = (S, <,−, ∗, t) and S ′ = (S′, <′,−′, ∗′, t′) be partial SUR-algebras. A
Σ-morphism, h : S → S ′, is a (total) function h : S → S′ satisfying the conditions
below:

(Σm1) h(∗) = ∗′.

(Σm2) h(−a) = −′h(a), ∀a ∈ S.

(Σm3) a < b =⇒ h(a) <′ h(b), ∀a, b ∈ S.

(Σm4) (h× h)[Dt] ⊆ Dt′ and h(t(A, B)) = t′(h[A], h[B]), ∀(A, B) ∈ Dt.

(c) Endowed with obvious composition and identities, Σ-str is a very large cate-
gory and

SUR− alg ↪→ pSUR− alg ↪→ Σ− str

are inclusions of full subcategories. □

3.1 Simple examples

In this short subsection we just present first examples of partial SUR-algebras and
its morphisms.
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Example 42. Let (G, +,−, 0, <) be a linearly ordered group. For each and select
a ∈ G such that a ≥ 0 (respect. a ∈ G∪{∞} such that a > 0) then Xa := [−a, a] ⊆
G (respect. Xa :=] − a, a[⊆ G), is a partial SUR-algebra, endowed with obvious
definitions of ∗,−, < and such that:
(1) Ct

s(Xa) := {(x<, x>) : x ∈ Xa}, t(x<, x>) := x ∈ Xa (t is bijective);
or, alternatively,
(2) Ct

s(Xa) := {(L, R) ∈ Cs(Xa) : ∃(!)x ∈ Xa L≤ = x<, R≥ = x>}, t(L, R) := x ∈
Xa (t is surjective).

Note that if b ≥ a, then the inclusion Xa ↪→ Xb is a pSUR-morphism, if Xa, Xb

are endowed with the second kind of t-map. □

Another simple (and useful) class of examples are given by the ordinal steps of
the recursive constructions of the SUR-algebras SA, ST and No.

Example 43. For any ordinal α we have that the Σ-structure (SAα, <α,−α, ∗α, tα)
is a partial SUR-algebra with the above definitions:

• ∗α = ∗

• −α = − ↾SAα

• <α=<↾SAα×SAα

• Ct
s(SAα) = Cs(SA(α)) and tα = t ↾Cs(SA(α))

□

Just like in the previous example, we have:

Example 44.

• ∗α = ∗

• −α = − ↾STα

• <α=<↾STα×STα

• Ct
s(STα) = Cs(ST (α)) and tα = t ↾Cs(ST (α))

□

Example 45. For any given α ∈ On, the Σ-structure (Noα, ∗α,−α, <α, tα) is a
partial SUR-algebra with the operations defined above:

382



An algebraic (set) theory of surreal numbers, I

• ∗α = 0

• −α = − ↾Noα

• <α=<↾Noα×Noα

• Ct
s(Noα) = Cs(No(α)) and tα = t ↾Cs(No(α))

□

Remark 46.
• Note that in the three examples above S = SA, ST, No, the inclusion Sα ↪→

Sβ is a pSUR-morphism, where α ≤ β ≤ ∞ are “extended” ordinals, with the
convention S∞ := S.
• We can also define partial SUR-algebras on the sets SA(α), ST (α), No(α), for

each α ∈ On \ {0} (this is useful!).
• Note that iα : SA(α) ↪→ SAα is a fpSUR-algebra morphism, for each α ∈

On \ {0}. It can be established, by induction on α ∈ On \ {0} that for each γ < α
iγα : SAγ ↪→ SAα is a fpSUR-morphism. An analogous situation occurs to the
partial SUR-algebras STγ ↪→ ST (α) ↪→ STα. □

3.2 Cut partial Surreal Algebras
In this short subsection we present an adaption/generalization of the notion of “Cut
Surreal Algebra”, introduced in the Subsection 2.4, to the realm of partial SUR-
algebra.

Definition 47. Let S = (S, <,−, ∗, t) be a partial SUR-algebra. The Cut structure
of S is the Σ-structure S(t) = (S′, <′,−′, <′, t′), where:

1. S′ := Ct
s(S)

2. ∗′ := (∅, ∅)

3. −′(A, B) := (−B,−A)

4. (A, B) <′ (C, D) ⇐⇒ t(A, B) < t(C, D)

5. ∀α, β ⊆ Ct
s(S), (α, β) ∈ dom(t′) iff α <′ β and (t[α], t[β]) ∈ dom(t)

6. t′ : Ct′
s (Ct

s(S))→ Ct
s(S), (α, β) 7→ t′(α, β) := (t[α], t[β])

□
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The list below a sequence of results on Cut Partial SUR-algebras that extend
the results presented in the Subsection 2.4 on Cut SUR-algebras: its proofs will be
omitted.

Proposition 48. Let S = (S, <,−, ∗, t) be a partial SUR-algebra. Then:
(a) S(t) = (S′, <′,−′, ∗′, t′) as defined above is a partial SUR-algebra. More-

over, if S is a SUR-algebra, i.e. Ct
s(S) = Cs(S), then S(t) is a SUR-algebra, i.e.

Ct′
s (Ct

s(S)) = Cs(Cs(S)).
(b) t : Ct

s(S) → S is a morphism of partial SUR-algebras. Moreover, if S is a
SUR-algebra, then t is a fpSUR-algebra morphism. □

Proposition 49. Let S = (S, <,−, ∗, t) be a partial SUR-algebra. Then:
(a) If S is transitive, then Ct

s(S) is transitive.
(b) If S is linear, then Ct

s(S) is pre-linear21. □

Proposition 50.
(a) If f : S → S ′ is a morphism of partial SUR-algebras then Ct

s(f) : Ct
s(S) →

Ct
s(S′), given by: (A, B) 7→ (f [A], f [B]) is a morphism of partial SUR-algebras.

(b) The cut partial SUR-algebra construction determines a (covariant) functor
Ct

s : pSUR→ pSUR:

(S f→ S′) 7→ (Ct
s(S) Ct

s(f)→ Ct
s(S′))

(c) The t-map determines a natural transformation between functors on pSUR−
alg, t : IdpSUR−alg → Ct

s. □

3.3 Simple constructions on pSUR
In this subsection, we will verify the full subcategory pSUR−alg ↪→ Σ−str is closed
under some simple categorial constructions: as (Σ-)substructure and non-empty
products. We also present some results on initial objects and (weakly) terminal
objects.

We can also define a notion of substructure in the category pSUR:

Definition 51. Let S = (S, <,−, ∗, t) and S ′ = (S′, <′,−′, ∗′, t′) be Σ-structures. S
will be called a Σ-substructure of S whenever:
(s1) S ⊆ S′;
(s2) <=<′↾S×S

;
21I.e., denote ∼t the equivalence relation on Ct

s(S) given by (A, B) ∼t (C, D) iff t(A, B) =
t(C, D). Then it holds exactly one between of the alternatives: (A, B) <′ (C, D); (A, B) ∼t (C, D);
(C, D) <′ (A, B).
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(s3) − = −′↾S×S
;

(s4) ∗ = ∗′;
(s5) dom(t) = t′−1[S] ∩ (Ps(S) × Ps(S)) := {(A, B) ∈ dom(t′) ∩ (Ps(S) × Ps(S)) :
t′(A, B) ∈ S} ⊆ dom(t′) and t = t′↾ : dom(t)→ S. □

Remark 52.
(a) The inclusion i : S ↪→ S′ determines a Σ-morphism.
(b) By conditions (s1) and (s2) above note that Cs(S, <) = Cs(S′, <′)∩ (Ps(S)×

Ps(S)).
(c) By item (b): if dom(t′) ⊆ Cs(S′, <′), then dom(t) ⊆ Cs(S, <).
(d) By the results presented in the Subsections 2.2 and 2.3, for any two extends

ordinals α ≤ β ≤ ∞ we have:
• SAα is a Σ-substructure of SAβ.
• STα is a Σ-substructure of STβ.

(e) An useful generalization of the notion of Σ-substructure is the notion of Σ-
embedding: a Σ-morphism j : S → S ′ is a Σ-embedding when:
(e1) it is injective;
(e2) ∀a, b ∈ S, (a < b⇔j(a) <′ j(b));
(e3) ∀(A, B) ∈ Ps(S)× Ps(S), ((A, B) ∈ dom(t)⇔t′(j[A], j[B]) ∈ range(j)).

(f) An inclusion i : S ↪→ S′ determines a Σ-embedding precisely when S is a
Σ-substructure of S ′. Note that the Σ-embeddings j : S → S ′ are precisely the Σ-
morphisms described (uniquely) as j = i ◦ h, where i : Sj ↪→ S ′ is a Σ-substructure
inclusion and h : S → Sj is a Σ-isomorphism.

(g) For technical reasons, we consider an even more general notion: a
Σ-morphism j : S → S ′ is a Σ−quasi-embedding whenever it satisfies the conditions
(e1) and (e3) above. □

By a straightforward verification we obtain the:

Proposition 53. Let j : S → S ′ be a Σ-embedding of Σ-structures. If S ′ is a partial
SUR-algebra, then S is a partial SUR-algebra. □

Definition 54. Given a non-empty indexed set of partial Σ-structure Si = (Si, <i

,−i, ∗i, ti), i ∈ I, we define the Σ-structure product S = (S, <,−, ∗, t) as follows:
Let S = (S, <,−, ∗, t) and S ′ = (S′, <′,−′, ∗′, t′) be Σ-structures. S will be called a
Σ-substructure of S whenever:
(a) S = ∏

i∈I Si;
(b) <= {((ai)i∈I , (bi)i∈I) : ai <i bi,∀i ∈ I};
(c) −(ai)i∈I = (−iai)i∈I ;
(d) ∗ = (∗i)i∈I ;
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(e) dom(t) = ⋂
i∈I(πi × πi)−1[dom(ti)] = {((Ai)i ∈ I, (Bi)i∈I) ∈ Ps(S) × Ps(S)) :

(Ai, Bi) ∈ dom(ti),∀i ∈ I} and t((Ai)i ∈ I, (Bi)i∈I)) = (ti(Ai, Bi))i∈I . □

Note that: For each i ∈ I, the projection πi : S → Si is a Σ-structure morphism.
By a straightforward verification we obtain:

Proposition 55. Keeping the notation above.
(a) The pair (S, (π)i∈I) above defined constitutes a(the) categorial product in Σ-

str. I.e., for each diagram (S ′, (fi)i∈I) in Σ-str such that fi : S ′ → Si, ∀i ∈ I, there
is a unique Σ-morphism f : S ′ → S such that πi ◦ f = fi,∀i ∈ I.

(b) Suppose that {Si : i ∈ I} ⊆ pSUR-alg. Then S ∈ pSUR-alg and (S, (π)i∈I)
is the product in the category pSUR-alg. □

Proposition 56. Let f : S → S ′ be a pSUR-alg morphism. If (S, <) is strictly
linearly ordered, then:
(a) ∀a, b ∈ S, a < b ⇐⇒ f(a) <′ f(b);
(b) f is an injective function.

Proof. If a < b, then f(a) <′ f(b), since f is a Σ-structure morphism. Suppose
that f(a) <′ f(b) but a ̸< b, then a = b or b < a, thus f(a) = f(b) or f(b) <′ f(a).
In the case, we get a contradiction with f(a) <′ f(b), since <′ is an acyclic relation.
This establishes item (a). Item (b) is similar, since < satisfies trichotomy and <′ is
acyclic. □

The result above yields some information concerning the empty product (= ter-
minal object) in pSUR-algebras.

Proposition 57. If there exists a weakly terminal object22 S1 in the category pSUR-
alg then S1 must be a proper class.

Proof. Suppose that S1 is an weakly terminal object in pSUR-alg. Since the
(proper class) SUR-algebra No is strictly linearly ordered, then by Proposition 56
above anyone of the existing morphisms f : No → S1 is injective. Then S1 (and
Ct

s(S1)) must be a proper class. □
If we consider the small size version of pSUR, we can guarantee by an another

application of Proposition 56, that this (large but not very-large) category does
not have (weakly) terminal objects: there are small abelian linearly ordered abelian
groups (or even the additive part of a ordered/real closed field) of arbitrary large
cardinality, and we have seen in Example 42 how to produce small pSUR-algebras
from that structures.

22Recall that an object in a category is weakly terminal when it is the target of some arrow
departing from each object of the category.
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Concerning initial objects we have the following:

Proposition 58.
(a) Consider the Σ-structure S0 = (S0, ∗,−, <, t) over a singleton set S0 := {∗},

with <:= ∅, Dt = dom(t) := ∅ (thus S0 /∈ pSUR − alg) and with − : S0 → S0 and
t : Dt → S0 the unique functions available. Then S0 is the (unique up to unique
isomorphism) initial object in Σ-str.

(b) Consider the Σ-structure Sp
0 = (S0, ∗,−, <, tp) over a singleton set S0 := {∗},

with <:= ∅, Dtp = dom(tp) := {(∅, ∅)} ⊆ Cs(S0, <) and with − : S0 → S0 and
tp : Dtp → S0 the unique functions available. Then Sp

0 is the (unique up to unique
isomorphism) initial object in pSUR-alg.

Proof.
(a) Let S ′ be a Σ-structure and let h : {∗} → S′ be the unique function such

that h(∗) = ∗′ ∈ S′, then clearly h is the unique Σ-structure morphism from S0 into
S ′: note that (h× h)↾ : dom(t) = ∅ → dom(t′) is such that t′ ◦ (h× h)↾ = h ◦ t.

(b) It is easy to see that Sp
0 is a partial SUR-algebra. Let S ′ be a partial SUR-

algebra and let h : {∗} → S′ be the unique function such that h(∗) = ∗′ ∈ S′, then
clearly h is the unique Σ-structure morphism from S0 into S ′: since (∅, ∅) ∈ dom(t′),
note that (h× h)↾ : dom(tp) := {(∅, ∅)} → dom(t′) is such that t′ ◦ (h× h)↾ = h ◦ t.

□

3.4 Directed colimits of partial Surreal Algebras
One of the main general constructions in Mathematics is the colimit of an upward
directed diagram. In the realm of partial SUR-algebras this turns out to be essential
for the constructions of SUR-algebras and to obtain general results about them. We
can recognize the utility of this process by the cumulative constructions of our main
examples: No, SA, ST . Thus we will be concerned only with the colimit of small
partial SUR-algebras, but over a possibly a large directed diagram.

This subsection is completely technical: we provide only some proofs, for the
readers convenience. On the other hand, its consequences/applications are very
interesting: see the entire Section 4.

Recall that:
• Given a regular “extended” cardinal κ (where a “card(X) = ∞” means that

X is a proper class23), a partially ordered class (I,≤) will be κ-directed, if every
subclass I ′ ⊆ I such that card(I ′) < κ admits an upper bound in I.

23Recall that in NBG, all the proper classes are in bijection, by the global form of the axiom of
choice.
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• pSURs − alg denotes the full subcategory of pSUR− alg determined by of all
small partial SUR-algebras and its morphisms (then SUR−alg∩pSURs−alg = ∅).
Analogously, we will denote Σs-str the full subcategory of Σ-str determined by of
all small partial Σ-structures and its morphisms.

59. The (first-order) directed colimit construction: Let (I,≤) is a ω-directed
ordered class and consider D : (I,≤)→ Σs−str, (i ≤ j) 7→ (Si

hij→ Sj) be a diagram.
Define:
• S∞ := (⊔i∈ISi)/ ≡, the set-theoretical colimit, i.e. ≡ is the least equivalence
relation on the class ⊔i∈ISi such that (ai, i) ≡ (aj , j) iff there is k ≥ i, j such that
hik(ai) = hjk(aj) ∈ Sk;
• hj : Sj → S∞, aj 7→ [(aj , j)];
• ∗ := [(∗i, i)] (= [(∗j , j)], ∀i, j ∈ I);
• −[(ai, i)] = [(−iai, i)];
• [(ai, i)] < [(aj , j)] iff there is k ≥ i, j such that hik(ai) <k hjk(aj) ∈ Sk □

With the construction above, it is straightforward to verify that (S∞, <,−, ∗) is
the colimit in the appropriate category of first-order (but possibly large) structures24,
with colimit co-cone (hj : Sj → S∞)j∈I and, if D : (I,≤)→ pSURs − alg, then the
same (colimit) co-cone is in the “first-order part” of the category pSUR − alg, i.e.,
it satisfies the properties [pS1]–[pS4] presented in Definition 36. However, to “com-
plete” the Σ-structure (respect. pSUR-algebra) we will need some extra conditions25

as below:

Proposition 60. Let D : (I,≤) → Σs − str, (i ≤ j) 7→ (Si
hij→ Sj) be a diagram

such that:
(i) (I,≤) is a ω-directed ordered class and hij : Si → Sj is a injective Σ-morphism,
whenever i ≤ j;
or;
(ii) (I,≤) is a ∞-directed ordered class (e.g. (On,≤)),
then S∞ := (⊔i∈ISi)/ ≡ is a (possibly large) partial Σ-structure and (hj : Sj →
S∞)j∈I is a colimit cone in the category Σ− str. □

Proposition 61. If D : (I,≤)→ pSURs − alg, (i ≤ j) 7→ (Si
hij→ Sj) is a diagram,

where:
24I.e., we drop the second-order part of the Σ-structure: the map t : dom(t) ⊆ Ps(S∞) ×

Ps(S∞) → S∞.
25These extra conditions are sufficient to obtain directed colimits in pSUR − alg and are also

the technical conditions that we will need in the sequel to establish some interesting results (see
Theorem 69).
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(i) (I,≤) is a ω-directed ordered class and hij : Si → Sj is a injective pSUR-
morphism, whenever i ≤ j;
or;
(ii) (I,≤) is a ∞-directed ordered class (e.g. (On,≤))
then S∞ is a (possibly large) partial SUR-algebra and (hj : Sj → S∞)j∈I is a colimit
cone in the category pSUR− alg.

Proof. It is ease to describe a candidate for the pSUR-colimit over S∞:
• dom(t) := ⋃

i∈I(hi × hi)[dom(ti)], hi(ti(Ai, Bi)) = t(hi[Ai], hi[Bi]), i.e. Ct
s(S∞)

= ⋃
i∈I{(hi[Ai], hi[Bi]) : (Ai, Bi) ∈ Cti

s (Si)}
• t(hi[Ai], hi[Bi]) := hi(ti(Ai, Bi)), for each (Ai, Bi) ∈ Cti

s (Si) and each i ∈ I.
Supposing that the last rule truly determines a function t : Ct

s(S∞)→ S∞, then
is straightforward to check that: (S∞, <,−, ∗, t) is a pSUR-algebra; hi : Si → S∞ is
a pSUR-algebra morphism and (S∞, (hj : Sj → S∞)j∈I) is a colimit co-cone of the
diagram D : (I,≤)→ pSURs − alg.

Thus, it remains only to verify that, under the hypothesis (i) or (ii), the as-
signment t(hi[Ai], hi[Bi]) := hi(ti(Ai, Bi])) determines a function t : Ct

s(S∞)→ S∞.
Suppose that (hi[Ai], hi[Bi]) = (hj [Aj ], hj [Bj ]) for some i, j ∈ I and (Ai, Bi) ∈
Ct

s(Si), (Aj , Bj) ∈ Ct
s(Sj). We have to show that hi(ti(Ai, Bi)) = hj(tj(Aj , Bj)).

Case (i):
Since (I,≤) is a ω-directed poset, select k ∈ I such that k ≥ i, j. Then hi = hk ◦hik

and hj = hk ◦ hjk and (hk[hik[Ai], hk[hik[Bi]]) = (hk[hjk[Aj ], hk[hjk[Bj ]]). Since
the transition morphisms in the diagram are injective, we have that the co-cone
morphisms hl : Sl → S∞ are injective too, thus (hik[Ai], hik[Bi]) = (hjk[Aj ], hjk[Bj ]).
Then: hik(ti(Ai, Bi)) = tk(hik[Ai], hik[Bi]) = tk(hjk[Aj ], hjk[Bj ]) = hjk(tj(Aj , Bj)
and, composing with hk, we obtain hi(ti(Ai, Bi)) = hj(tj(Aj , Bj)), as required.

Case (ii):
Since (I,≤) is ω-directed, for each a ∈ Ai, a′ ∈ Aj such that hi(a) = hj(a′), let
kaa′ ∈ I such that kaa′ ≥ i, j and hikaa′ (a) = hjkaa′ (a′) ∈ Skaa′ . Since (I,≤) is ∞-
directed and Ai, Aj are small, selected k ≥ kaa′ for each pair (a, a′) as above. Then
hik(a) = hjk(a′) and hik[Ai] = hjk[Aj ]. An analogous reasoning with the sets Bi, Bj

guarantees the existence of l ∈ I such that (hil[Ai], hil[Bi]) = (hjl[Aj ], hjl[Bj ]).
Then: hil(ti(Ai, Bi)) = tl(hil[Ai], hil[Bi]) = tl(hjl[Aj ], hjl[Bj ]) = hjl(tj(Aj , Bj) and,
composing with hl, we obtain hi(ti(Ai, Bi)) = hj(tj(Aj , Bj)), as required. □

Proposition 62. The subclass of morphisms fpSUR ⊆ pSUR is closed under
non-trivial directed colimits in the cases (i) and (ii) described in the Proposition
above. More precisely: if D : (I,≤) → pSURs − alg is a ω-directed diagram where
(I,≤) does not have maximum and satisfying (i) or/and (ii) above and such that
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hij : Si → Sj is a fpSUR-morphism, whenever i < j, then the colimit co-cone ∀j ∈ I,
(hj : Sj → S∞)j∈I is a formed by fpSUR-algebra morphisms. Moreover:
(a) If (I,≤) is ∞-directed and without maximum, then S∞ is a SUR-algebra (thus
it is a proper class);
(b) If the transition arrows (hij)i≤j are injective (respect. Σ − quasi-embedding,
Σ-embedding), then the cocone arrows (hj)j∈I are injective (respect. Σ − quasi-
embedding, Σ-embedding);
(c) If ti : Cti

s (Si) → Si is injective (respect. surjective/bijective), ∀i ∈ I, then
t∞ : Ct∞

s (S∞)→ S∞ is injective (respect. surjective/bijective).

Proof. If D : (I,≤) → pSURs − alg is a ω-directed diagram satisfying (i) or/and
above and such that hij : Si → Sj is a fpSUR-morphism, whenever i < j, then it is
clear from the commutative condition in a co-cone that for each j ∈ I \ {max(I)},
hj : Sj → S∞ and for each (Aj , Bj) ∈ Cs(Sj) then (hj [Aj ], hj [Bj ]) ∈ Ct

s(S∞). Note
that if there is ⊤ = max(I), then h⊤ : S⊤

∼=→ S∞.
We will only provide a proof of item (a), the other items are left to the reader.
Let (A, B) ∈ Cs(S∞), then for each a ∈ A, b ∈ B, we have a < b. Since (I,≤)

is ω-directed, let iab ∈ I such that a = hiab
(a′), b = hiab

(b′) where a′, b′ ∈ Siab

and a′ <iab
b′. Since A, B are small and (I,≤) is ∞-directed, there is a k ∈ I

such that k ≥ iab, for each (a, b) ∈ A × B and thus, there is ak, bk ∈ Sk such that
a = hk(ak), b = hk(bk) and ak <k bk. Forming subsets Ak, Bk ⊆ Sk from the
selection of the ak, b − k as above, then (Ak, Bk) ∈ Cs(Sk). Since (I,≤) does not
have a top, select k′ ∈ I such that k′ > k and then (hkk′ [Ak], hkk′ [Bk]) ∈ Ct

s(Sk′).
Thus (A, B) = (hk′ [hkk′ [Ak]], hk′ [hkk′ [Bk]]) ∈ Ct

s(S∞), finishing the proof. □

Example 63.
We have noted in Remark 46 that for each sequence of ordinal γ < β < α,

iγβ : SAγ ↪→ SAβ is fpSUR-algebra morphism. It is also a Σ-embedding. Then,
for each α > 0, SA(α) ∼= colimγ<αSAγ as a pSUR-algebra and i

(α)
γ : SAγ ↪→

SA(α) determines a colimit co-cone of an ω-directed diagram26 formed by fpSUR-
algebras embeddings. Moreover SA = SA∞ ∼= colimγ∈OnSAγ and i∞γ : SAγ ↪→ SA
determines a colimit co-cone a ∞-directed diagram over formed by fpSUR-algebras
embeddings.

Analogous results holds for ST (α) ∼= colimγ<αSTγ , α > 0, and
ST ∼= colimγ∈OnSTγ . □

26In fact it is κ directed diagram, where κ is any regular cardinal such that κ ≤ α + ω.
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4 Universal Surreal Algebras
In this section, we present some categorical-theoretic universal properties27 concern-
ing SUR-algebras and partial SUR-algebras. We will need notions, constructions
and results developed in the previous sections to provide, for each small partial
SUR-algebra I, a “best” SUR-algebra over I, SA(I), (respect. a “best” transitive
SUR-algebra over I, ST (I)). As a consequence of this result (and its proof) we will
determine the SUR-algebras SA and ST in the category of SUR by universal prop-
erties that characterizes them uniquely up to unique isomorphisms: these will justify
the adopted names “SA = the free surreal algebra” and “ST = the free transitive
surreal algebra”.

We start with the following

64. Main construction: Let I = (I, ∗,−, <, t) be a partial SUR-algebra. Consider:
(a) The set-theoretical pushout diagram over (I t← Ct

s(I) incl
↪→ Cs(I)):

Ct
s(I)

Cs(I)

I

(I ⊔ Cs(I))/ ∼

-

-

66

incl i0

t

i1

Note that:
• (I ⊔ Cs(I))/ ∼, is the vertex of the set-theoretical pushout diagram, where ∼
is the least equivalence relation28 on I ⊔ Cs(I) such that (x, 0) ∼ ((A, B), 1) iff
(A, B) ∈ Ct

s(I) and x = t(A, B).
• If I is small, then I+ is small.
• ∀(A, B), (C, D) ∈ Cs(I) \ Ct

s(I), ((A, B), 1) ∼ ((C, D), 1) iff (A, B) = (C, D) (by
induction on the number of steps that witness the transitive closure).
• ∀x, y ∈ I, (x, 0) ∼ (y, 0) iff x = y (by induction on the number of steps needed in
the transitive closure).

27An analysis of model-theoretic universal properties of the “first-order part” of (partial) SUR-
algebras, and its possible connections with categorial-theoretic universality presented here, will be
theme of future research, see Section 5 for more details.

28Recall that the least equivalence relation on a set X that contains R ⊆ X ×X is obtained from
R adding the opposite relation R−1 and the diagonal relation ∆X , and then taking the transitive
closure trcl(R ∪ R−1 ∪ ∆X) = R(eq,X).
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• Since Ct
s(I) ↪→ Cs(I) is injective function, then i0 : I → (I ⊔ Cs(I))/ ∼, x 7→

[(x, 0)] is an injective function (see above) and (i0)+ : (Ps(I) × Ps(I)) 7→ (A, B) 7→
(i0[A], i0[B]) is an injective function.

(b) I+ := (I+, ∗+,−+, <+, t+) the Σ-structure defined below:
• I+ := (I ⊔ Cs(I))/ ∼.
• ∗+ := [(∗, 0)] = [((∅, ∅), 1)].
• −+[(x, 0)] := [(−x, 0)];
−+[((A, B), 1)] := [((−B,−A), 1)].
• Define <+ by cases (only three):
[(x, 0)] <+ [(y, 0)] iff x < y;
[(x, 0)] <+ [((A, B), 1)] iff x ∈ A, whenever (A, B) ∈ Cs(I) \ Ct

s(I);
[((A, B), 1)] <+ [(y, 0)] iff y ∈ B, whenever (A, B) ∈ Cs(I) \ Ct

s(I).
Note that Cs(i0) = (i0)+

↾ : Cs(I) → Cs(I+), (A, B) 7→ (i0[A], i0[B]), is an injective
function with adequate domain and codomain.
• Define Ct+

s (I+) := range(Cs(i0)) ⊆ Cs(I+) (thus Cs(I) ∼= Ct+
s (I+)) and t+ :

Ct+
s (I+)→ I+, (i0[A], i0[B]) 7→ t+(i0[A], i0[B]) := [((A, B), 1)].

Note that (A, B) ∈ dom(t) iff t+(i0[A], i0[B]) ∈ range(i0).

Thus we obtain another set-theoretical pushout diagram that is isomorphic to
the previous pushout diagram:

Ct
s(I)

Ct+
s (I+)

I

I+

-

6

-

6

(i0 × i0)↾ i0

t

t+

□

We describe below the main technical result in this section:

Lemma 65. Let I = (I, ∗,−, <, t) be a (small) partial SUR-algebra and keep the
notation in 64above. Then

(a) I+ = (I+, ∗+,−+, <+, t+) is a (small) partial SUR-algebra.
(b) i0 : I → I+ is a Σ-embedding and full morphism of partial SUR-algebras.
(c) If t : Ct

s(I)→ I is injective (respect. surjective/bijective), then t+ : Ct+
s (I+)

→ I+ is injective (respect. surjective/bijective).
(d) If S ′ = (S′, ∗′,−′, <′, t′) is a partial SUR-algebra, then for each fpSUR-algebra

morphism f : I → S ′ there is a unique pSUR-algebra morphism f+ : I+ → S ′
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such that f+ ◦ i0 = f . In particular, if S is a SUR-algebra, then f and f+ are
automatically fpSUR-algebras morphisms. Moreover:
• If t′ is injective, then f is a Σ− quasi-embedding iff f+ is a Σ− quasi-embedding.

Proof. Items (a), (b) and (c) are straightforward verifications. We will just sketch
the proof of the universal property in item (d).

Candidate and uniqueness:
Suppose that there is a pSUR-algebra morphism f+ : I+ → S ′ such that f+◦i0 = f .
Since f : I → S is a full partial SUR-algebra morphism, we have (f × f)↾ :
Cs(I)→ Ct′

s (S′). Then (f+ × f+)↾ : Ct+
s (I+)→ Ct′

s (S′) : (Γ, ∆) = (i0[A], i0[B]) 7→
(f+[Γ], f+[∆]) = (f [A], f [B]) ∈ Ct′

s (S′) and f+(t+(Γ, ∆)) = t′(f+[Γ], f+[∆]) =
t′((f [A], f [B])) ∈ S′. Since range(i0) ∪ range(i1) = S+, the function f+ is deter-
mined by f :
• f+(z) = f(x) ∈ S′, whenever z = [(x, 0)] ∈ range(i0);
• f+(z) = t′((f [A], f [B])) ∈ S′, whenever z = ([(A, B), 1)] ∈ range(i1).

Existence:
Since f : I → S is a full partial SUR-algebra morphism, we have (f × f)↾ : Cs(I)→
Ct′

s (S′), then the arrows
(Cs(I) t′◦(f×f)↾−→ S′

f←− I)
yields a commutative co-cone over the diagram

(I t← Ct
s(I) incl

↪→ Cs(I)).

By the universal property of set-theoretical pushout, there is a unique function
f+ : I+ → S′ such that:
• f+ ◦ i0 = f ;
• f+ ◦ i1 = t′ ◦ (f × f)↾.
Thus it remains only to check that f ′ : I+ → S′ is a pSUR-algebra morphism:
• f+(∗+) = f+([∗, 0]) = f(∗) = ∗′;
• f+(−+[(x, 0)]) = f(−x) = −′f(x) = −′f+([(x, 0)]);
f+(−+[((A, B), 1)]) = t′((f × f)↾(−B,−A)) = t′(f [−B], f [−A]) = −′t′(f [B], f [A])
= −′f+([((A, B), 1)]).
• If [(x, 0)] <+ [(y, 0)], then x < y thus f+([(x, 0)]) = f(x) <′ f(y) = f+([(y, 0)]);
If (A, B) ∈ Cs(I) \ Ct

s(I):
- if [(x, 0)] <+ [((A, B), 1)], then x ∈ A and f(x) ∈ f [A]. Since(f [A], f [B]) ∈ Ct′

s (S′),
thus f+([(x, 0)]) = f(x) <′ t′(f [A], f [B]) = f+([((A, B), 1)]);
- if [((A, B), 1)] <+ [(y, 0)], then y ∈ B and f(y) ∈ f [B]. Since (f [A], f [B]) ∈
Ct′

s (S′), thus f+([((A, B), 1)]) = t′(f [A], f [B]) <′ f(y) = f+([(y, 0)]).
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• If (Γ, ∆) = (i0[A], i0[B]) ∈ Ct+
s (I+), then (f+[Γ], f+[∆]) = (f [A], f [B]) ∈ Ct′

s (S′)
and
f+(t+(Γ, ∆)) = f+(t+((i0[A], i0[B])) = f+([((A, B), 1)]) = t′ ◦ (f × f)↾([((A, B), 1)])
= t′(f [A], f [B]) = t′(f+[i0[A]], f+[i0[B]]) = t′(f+[Γ], f+[∆]). □

Remark 66.
In the setting above, we can interpret the Conway’s notions in a very natural

way:
• Old(I) := i0[I] ∼= I;
• Made(I) := I+;
• New(I) := I+ \ i0[I] = New(I).

Note that if t : Ct
s(I) → I is surjective (e.g. I = No(α), SA(α), ST (α), α ∈

On \ {0}), then t+ : Ct+
s (I+) → I+ and every “made member” is represented buy

a Conway cut in of “old members”. This representation is unique, whenever t :
Ct

s(I)→ I is bijective (e.g., I = SA(α), ST (α), α ∈ On \ {0}).
When I = SA(α), α ∈ On \ {0} and Ct

s(I) = {(A, B) ∈ Cs(SA(α), <(α)) :
t(A, B) = ⟨A, B⟩ ∈ SA(α) (t : Cs(I) → I is bijective), then t+ : Ct+

s (I+) → I+

can be identified with the (bijective) map Cs(SA(α), <(α))→ SAα. □

A slight modification in the construction of the Σ-structure presented in 64 above,
just replacing <+ by <+

(tc):= trcl(<+), yields the following:

Lemma 67. Let I = (I, ∗,−, <, t) be a (small) partial SUR-algebra and keep the
notation in 64 above. Then

(a) I+
(tc) = (I+, ∗+,−+, <+

(tc), t+) is a (small) transitive partial SUR-algebra.
(b) i0 : I → I+

(tc) is a Σ−quasi-embedding (see Remark 52.(f)) and full morphism
of partial SUR-algebras. Moreover, if I is a transitive SUR-algebra, then i0 : I →
I+

(tc) is a Σ-embedding.
(c) If t : Ct

s(I)→ I is injective (respect. surjective/bijective), then t+ : Ct+
s (I+)

→ I+ is injective (respect. surjective/bijective).
(d) If S ′ = (S′, ∗′,−′, <′, t′) is a partial transitive SUR-algebra, then for each

fpSUR-algebra morphism f : I → S ′ there is a unique pSUR-algebra morphism
f+ : I+ → S ′ such that f+ ◦ i0 = f . In particular, if S is a transitive SUR-algebra,
then f and f+ are automatically fpSUR-algebras morphisms. □

When I = ST (α), α ∈ On \ {0} and Ct
s(I) = {(A, B) ∈ Cs(ST (α), <(α)) :

t(A, B) = ⟨A, B⟩ ∈ ST (α) (t : Cs(I) → I is bijective), then t+ : Ct+
s (I+

(tc)) → I+
(tc)

can be identified with the (bijective) map Cs(ST (α), <(α))→ STα.
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Remark 68.
Note that applying the construction ( )+ to the SUR-algebra SA we obtain

(SA)+ ∼= Cs(SA) = SA.
Applying both constructions ( )+ and ( )+

(tc) to the SUR-algebra ST we obtain
(ST )+ = (ST )+

(tc)
∼= Cs(ST ) = ST . □

Now we are ready to state and prove the main result of this section:

Theorem 69. Let I be any small partial SUR-algebra. Then there exists SUR-
algebras denoted by SA(I) and ST (I), and pSUR-morphisms jA

I : I → SA(I) and
jT

I : I → ST (I) such that:
(a)

(a1) jA
I is a fpSUR-morphism and a Σ-embedding;

(a2) If t : Ct
s(I)→ I is injective (respect. surjective/bijective), then

t∞ : Ct∞
s (SA(I)) → SA(I) is injective (respect. surjective/bijective);

(a3) jA
I : I → SA(I) satisfies the universal property: for each SUR-algebra S and

each pSUR-morphism h : I → S, there is a unique SUR-morphism hA : SA(I)→ S
such that hA ◦ jA

I = h. Moreover:
• If t′ is injective, then h is a Σ− quasi-embedding iff hA is a Σ− quasi-embedding.

(b)
(b1) jT

I is a fpSUR-morphism and a Σ − quasi-embedding, that is a Σ-embedding
whenever I is transitive;
(b2) If t : Ct

s(I)→ I is injective (respect. surjective/bijective), then t∞ : Ct∞
s (ST (I))

→ ST (I) is injective (respect. surjective/bijective);
(b3) jT

I : I → ST (I) satisfies the universal property: for each transitive SUR-
algebra S and each pSUR-morphism h : I → S, there is a unique SUR-morphism
hT : ST (I)→ S such that hT ◦ jT

I = h.

Proof.
Item (a): based on based on Lemma 65 and Proposition 62, we can define,

by transfinite recursion a convenient increasing (compatible) family of diagrams
Dα : [0, α]→ pSUR− alg, α ∈ On, where:
(D0) D0({0}) = I;
(D1) For each 0 ≤ γ < β < α, Dα(γ, β) = Dβ(γ, β) : Dβ(γ) → Dβ(β) is Σ-
embedding and a fpSUR-morphism;

Just define Dα(α) = (D(α)
α )+, where D

(α)
α := colimβ<αDα(β) and take, for

β < α, Dα(β, α) = (hα
β)+ : Dα(β) → (colimβ<αDα(β))+ be the unique pSUR-

morphism –that is automatically a fpSUR-morphism and a Σ-embedding, whenever
hα

β satisfies this conditions (see Lemma 65.(d))– such that (hα
β)+◦i0 = hα

β , where i0 :
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(colimβ<αDα(β))→ (colimβ<αDα(β))+ and where hα
β : Dα(β)→ (colimβ<αDα(β))

is the colimit co-cone arrow: by the recursive construction and by Proposition 62
hα

β is a fpSUR-morphism and a Σ-embedding. This completes the recursion.
Gluing this increasing family of diagrams we obtain a diagram D∞ : On →

pSUR− alg.
By simplicity we will just denote:

• SA(I)α := D∞(α), α ∈ On;
• SA(I)∞ := colimα∈OnSA(I)α;
• Dα(β, α) = jA

β,α, for each 0 ≤ β ≤ α ≤ ∞ (since the family (Dα)α is increasing,
we just have introduce notation for “new arrows”).

Then we set: SA(I) := SA(I)∞ and jA
I := jA

0,∞.
The verification that SA(I) is a SUR-algebra that satisfies the property in item

(a2) and that jA
I satisfies item (a1)29, follows the recursive construction of the dia-

gram and from a combination of Proposition 62 and Lemma 65.
By the same Lemma and Proposition combined, it can be checked by induction

that for each α ∈ On, there is a unique pSUR-morphism hα : SA(I)α → S such
that hα ◦ jA

0,α = h and such that hα is injective (respect. Σ− quasi-embedding, Σ-
embedding), whenever h is injective (respect. Σ− quasi-embedding, Σ-embedding).
By applying one more time the colimit construction, we can guarantee that there is
a unique pSUR-morphism hA := h∞ : SA(I)∞ → S such that hA ◦ jA

I = h and that
it satisfies the additional conditions.

The proof of item (b) is analogous to the proof of item (a): basically we just have
to replace to use of technical Lemma 65 by other technical Lemma 67. In general,
we can on guarantee that jT

β,α is a Σ-embedding and a fpSUR-morphism only for
0 < β < α ≤ ∞. □

In particular, taking I = S0 as the initial object in pSUR-alg (see Proposition
58 in Subsection 3.3), we have that SA ∼= SA(I) and ST ∼= ST (I), and they satisfy
corresponding universal properties:

Corollary 70.
(a) SA is universal (= initial object) over all SUR-algebras, i.e. for each SUR-

algebra S, there is a unique SUR-algebra morphism fS : SA→ S.
(b) ST is universal (= initial object) over all transitive SUR-algebras, i.e. for

each transitive SUR-algebra S ′, there is a unique SUR-algebra morphism hS′ :
ST → S ′.

29In fact, jA
β,α is Σ-embedding whenever 0 ≤ β ≤ α ≤ ∞ and jA

β,α is a fpSUR-morphism whenever
0 ≤ β < α ≤ ∞.
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Proof. Item (a): Since for each each SUR-algebra S there is a unique pSUR-
morphism uS : S0 → S then, by Theorem 69.(a) above, SA(S0) is a SUR-algebra
that has the required universal property, thus we only have to guarantee that
SA ∼= SA(S0). Taking into account the Remark 66 and the constructions performed
in the proof of the item (a) in Theorem above, that we have a (lage) family of com-
patible pSUR-isomorphisms STα

∼= SA(I)α, ∀α ∈ On. Thus SA = ⋃
α∈On SAα

∼=
colimα∈OnSA(S0)α = SA(S0)∞ = SA(S0).

For item (b) the reasoning is similar: note that I = S0 = {∗} is a transitive
partial SUR-algebra to conclude that ST (S0) has the required universal property
and note that by the proof of item (b) in Theorem 69 above, that ST = ⋃

α∈On STα
∼=

colimα∈OnST (S0)α = ST (S0)∞ = ST (S0). □

This Corollary describes, in particular, that SA and ST are “rigid” as
Σ-structures and :
• SA and Cs(SA) are isomorphic SUR-algebras and the universal map SA →
Cs(SA) is the unique iso from SA to Cs(SA);
• ST and Cs(ST ) are isomorphic SUR-algebras and the universal map ST → Cs(ST )
is the unique iso from ST to Cs(ST ).

We finish this section with an application of the Corollary 70 above: we obtain
some non-existence results.

Corollary 71.
(i) Let L be a linear SUR-algebra, i.e., < is a total relation (for instance take
L = No). Then there is no SUR-algebra morphism h : L → ST .
(ii) Let T be a transitive SUR-algebra, i.e., < is a transitive relation (for instance
take T = ST, No). Then there is no SUR-algebra morphism h : T → SA.

Proof. (i) Suppose that there is a SUR-algebra morphism h : L → ST . Since the
binary relation < in L is acyclic and total, it is a strictly linear order, in particular
it is transitive. Let a, b ∈ L, since L is linear, a < b in L ⇔ h(a) < h(b) in ST .
Now, by the universal property of ST (see Theorem above) there is a unique SUR-
algebra morphism u : ST → L and then h ◦ u = idST . Summing up, h : (L, <) →
(ST, <) is an isomorphism of structures, thus (ST, <) is a strictly ordered class,
but the members of ST 0 and ⟨{−1}, {1}⟩ are not comparable by Fact 1.(c) in the
Subsubsection 2.2.3, a contradiction.

(ii) Suppose that there is a SUR-algebra morphism h : T → SA. Since the
binary relation < in T is transitive, by the universal property of ST there is a
(unique) SUR-algebra morphism v : ST → T , thus we get a SUR-algebra morphism
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g = h◦v : ST → SA. By the universal property of SA there is a unique SUR-algebra
morphism u : SA → ST (u is a inclusion) and then g ◦ u = idSA. Thus, for each
a, b ∈ SA, a < b in SA ⇔ u(a) < u(b) in ST , but the members of SA denoted by
−1 and 1 are not related (see Fact.(c) in the Subsubsection 2.2.2) and u(−1) < u(1)
in ST (by Fact 1.(c) in the Subsubsection 2.2.3), a contradiction. □

5 Final remarks and future works
The present work is essentially a collection of elementary results where we develop,
from scratch, a new (we hope!) and complementary aspect of the Surreal Number
Theory. In a continuation of the present work ([29]) we will establish links, in both
directions, between SUR-algebras and ZF-algebras (the keystone of Algebraic Set
Theory) and develop the first steps of a certain kind of set theory based (or ranked)
on surreal numbers, that expands the relation between V and On.

In the sequel, we briefly present a (non-exhaustive) list of questions that have
occurred to us during the elaboration of this work that we intend to address in the
future.

Questions directly connect with the material presented in this work:

• We have described some general constructions in categories of partial SUR-
algebra (with at least two kinds of morphisms): initial object, non-empty products,
substructures and some kinds of directed inductive (co)limits. There are other gen-
eral constructions available in these categories like quotients and coproducts? A
preliminary analysis was made and indicates that the characterizations of the con-
ditions where such constructions exists is a non trivial task.
• A specific construction like the (functor) cut surreal for SUR-algebras and

its partial version turns out to be very useful to the development of the results of
the (partial) SUR-algebra theory: the situation is, in some sense, parallel to the
specific construction of rings of fractions construction in Commutative Algebra and
Algebraic Geometry. There are other natural and nice specific constructions of
(partial) SUR-algebra that, at least, provide new classes of examples?
• We have provided, by categorial methods, some universal results that char-

acterizes the SUR-algebras SA and ST , and also some relative versions with base
(“urelements”) SA(I), ST (I ′) where I, I ′ are partial SUR-algebra satisfying a few
constraints. There is an analog result satisfied by the SUR-algebra No? There are
some natural expansions of No by convenient I ′′ are partial SUR-algebra, No(I ′′),
that also satisfies a universal property that characterizes it up to a unique isomor-
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phism?

Future Works:

“Algebraic set theory” (AST) is a categorical approach to Set Theory (see [8])
based on universal properties satisfied by “relatively” free ZF-algebras: this is the
primitive notion of the theory that allows to define (a posteriori) the notions of “be
a set”, “be an ordinal”, or “be a member”.

If V is the class of all sets, note that: Ps(V ) is a “large” small-complete lattice;
V = Ps(V ); u : V → P (V ) x 7→ {x} is an endofunction; x ∈ y iff u(x) ⊆ y in
(Ps(V ),⊆).

A ZF-algebra is (L,
∨

, L
s→ L), L is a “large” small-complete lattice. Examples:

(V,
⋃

, u) is the free ZF-algebra; (On,
⋃

, (−)+) is the free ZF-algebra among the ones
with increasing/inflationary “sucessor function”.

There is a “derived” set theory: the theory of the free model (= free ZF-algebra)
V , where xεy is defined as s(x) ≤ y.

In [29], a sequel of present work, we have defined relations (in both directions)
between certain class of equipped SUR-algebras (called anchored SUR-algebras) and
certain class of ZF-algebras (called standard ZF-algebras), that “explains” and “ex-

pands” the relations On
j

⇄
b

No.

a) The ZF-algebras V, On above described are standard ZF-algebras. In every
standard ZF-algebra, the induced membership relation (as above) is well-founded.

b) Given a standard ZF-algebra and an operation on binary relations (e.g. “iden-
tity”, “transitive closure”, etc) we can build a corresponding Sur-algebra space of
signs. (e.g. Sig(V ) ∼= SA, Sig(On) ∼= No).

c) We say that a function β : S → C from a SUR-algebra S onto an well-founded
class (C,≺) is an anchor, when it satisfies some convenient properties (SA, ST, No
are naturally anchored; the birth function b : No→ On is an anchor). This induces:
- an well-founded relation ≺β in S;
- a recursively-defined subclass of HPβ(S) ⊆ S of “hereditary positive” members,
with an induced ZF-algebra structure (e.g. HP (SA) ∼= V, HP (No) ∼= On).

d) Every SUR-algebra “space of signs” is naturally equipped with a anchor on
its underlying standard ZF-algebra.

There are relationships, summarized by the diagram below, between the free
SUR-algebra (SA), the class of all sets (V ), the class of all ordinal numbers and the
class of the surreal numbers:
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On

V

No

SA

-�

� -

?

6

?

r i r∗

j

b

b∗

j∗

• The arrow r is the universal ZF-algebra morphism: the rank function.
• The arrow i is the inclusion On ⊆ V .
• The arrows b and j are as described in the Subsection 1.2; b : No → On is a

anchor.
• r∗ is universal SUR-algebra arrow.
• j∗(x) = ⟨j∗[x], ∅⟩ (defined by recursion)
• b∗(⟨A, B⟩) = b∗[A] ∪ b∗[B] (defined by recursion); b∗ : SA→ V is an anchor.

We have the diagramatic relations (established by inductions):
• r ◦ i = idOn, b ◦ j = idNo, b∗ ◦ j∗ = idV

• j = r∗ ◦ j∗ ◦ i, r∗ ◦ j∗ = j ◦ r, b ◦ r∗ ≤ r ◦ b∗

Notation: x, y, z ∈ V , u, v, w ∈ SA. From the relation above we can derive:
• u ≺ v iff b∗(u) ∈ b∗(v) (well founded relation)
• u < v ⇒ u ≺ v or v ≺ u
• x ∈ y ⇒ j∗(x) ≺ j∗(y) and j∗(x) < j∗(y).
• x ∈ y ⇔ j∗(x) < j∗(y)
These, in turn, suggests that SA, can encode an expansion of the class V , not

only in a diagrammatic sense, but also according a set-theoretical viewpoint: In
SA, an object x = ⟨A, B⟩ is “extensionally determined by simpler objects” since
A = {y ∈ SA : y ≺ x, y < x} and B = {z ∈ SA : z ≺ x, x < z}

Requirements for a theory “be” a set theory:
(a) Have the potential to define arrows (category) as entities of the theory, through
some fundamental relation(s).
(b) Be the “internal theory” of a free object in a category (like in ZF-algebra setting).
(c) The derived internal category is “topos-like”.

For instance Set = cat(V ), the topos of all sets and functions, is the category as-
sociated to the Zermelo-Fraenkel set theory (as usual), that, in turn, is the (classical)
theory derived from the free ZF-algebra V .
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In fact, in [29], we provide a first construction over SA that fulfills the three
natural requirements above. However, trying to maintain determination by “binary”
membership, we were limited to use only the subclass Pos(SA) ⊆ SA of the “positive
members” of SA and obtain a category cat(Pos(SA)) that turns out to be equivalent
to Set = cat(V ).

Motivated by the comments above, we finish this work with some questions that
will deserve future investigations:
• Can we obtain a wider (but still natural) expansion cat(V )→ cat(SA) through

construction on full SA by a ternary “incidence relation” m(x, y, z) (i.e. x < y < z
and x, z ≺ y)? This seems a natural question to pose about SA, since if A < B,
then a < ⟨A, B⟩ < b and a, b ≺ ⟨A, B⟩, for each a ∈ A, b ∈ B.
•We saw that the free/initial SUR-algebra SA is, in many senses, an expansion of

the free/initial ZF-algebra V and its underlying set theory. Relatively constructions
are available for SUR-algebras and for ZF-algebras (see [8]). In particular, it can be
interesting examine possible natural expansions of set theories:
- with urelements B, V (B), to some convenient relatively free SUR-algebra SA(B̂);
- obtained from the free transitive SUR-algebra ST → No
• A combination of the lines of research above mentioned can be a interesting

(“second-order”) task: it will be a line of development of general relative set theories
that are genuinely “base independent”.
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Abstract

We present explicit Horn-geometric axiomatization for the theory of Faith-
fully Quadratic Rings, answering a question posed in [4].

Keywords: Quadratic Forms, Special Groups, Faithfully Quadratic Rings, Horn-
Geometric sentences

Introduction
The classical theory of algebraic quadratic forms over fields of characteristic ̸= 2

started in the late 1930’s with E. Witt and was put foward in the late 1960’s by A.
Pfister. In the decade of 1980’s, appeared the first abstract approach to quadratic
forms theory as Marshall’s abstract space of orderings ([5]). Only in early 1990’s
that arise a (finitary) first-order theory that generalizes, simultaneously, the reduced
and non-reduced theory of quadratic forms called special groups ([2] and Definition
1).

In [4], the theory of Special Groups is employed to generalize results on quadratic
forms over fields to a wide class of (commutative, unitary) rings, therein named faith-
fully quadratic rings, that includes rings with many units, reduced f-rings (herein
rings of continuous real-valued functions) and strictly representable rings. If A is

The authors would like to thank the anonymous referee for his/her valuable suggestions that sub-
stantially improved our presentation.
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a T -faithfully quadratic ring and GT (A) is its associated special group, then T -
isometry and T -representation in the ring A are faithfully encoded by isometry and
representation in GT (A). In fact, the theory can be extended to pairs (S, T ) where
T is a quadratic set and S is a T -subgroup (cf. Definition 6 below), which generalize
Definition 2.2, p.10, of [4], and gives a unified treatment to the subject.

By a combination of results in [4], the first-order theory of T -faithfully quadra
tic rings is both Horn and geometric. By Corollary 5.6, p.58, in [4], the theory
of T -faithfully quadratic rings has a Horn axiomatization -which involves a non-
constructive model-theoretic result of Keisler, Galvin and Shelah ([1], Theorem
6.2.5)- while Theorem 5.2, p. 54, in [4] shows that T -faithfully quadratic rings
is a geometric theory. The question posed is if explicit Horn-geometric axioms could
be provided for that theory (cf. paragraph right after the proof of Corollary 5.6, p.
58). It should be remarked that Horn-geometrical axioms for faithfully quadratic
rings, in the case were T is the set of all squares of the ring, appears in Theorem
5.2.(a), p. 54, of [4].

In this work we provide a complete and explicit list of Horn-geometric axioms for
T -quadratic faithfullness (Theorem 19). In the case where T is not necessarily the
set of all squares of the ring, the contribution of our short work is the equivalence
between T -isometry (Definition 2.17, p. 18, [4]) and the notion of T -congruence,
introduced in Definition 12 of the paper, allowing the elimination of the disjunc-
tion appearing in underlined formula in p.56 of [4] and yielding a Horn-geometric
axiomatic for the theory of Faithfully Quadratic Rings.

In all that follows: the word “ring” stands for a commutative unitary ring A,
wherein 2 is a unit.

1 Preliminaries
LetA be a set and ≡ a binary relation onA2. We extend ≡ toAn, n ≥ 3, by induction
as follows: given a1, . . . , an, b1, . . . , bn ∈ A, we say that ⟨a1, . . . , an⟩ ≡n ⟨b1, . . . , bn⟩
if there are α, β, z3, . . . , zn ∈ A such that

⟨a1, α⟩ ≡ ⟨b1, β⟩
⟨a2, . . . , an⟩ ≡n−1 ⟨α, z3, . . . , zn⟩
⟨b2, . . . , bn⟩ ≡n−1 ⟨β, z3, . . . , zn⟩.

For n = 1, we adopt the convention ⟨a⟩ ≡1 ⟨b⟩ ⇔ a = b. In general, the subscript
of ≡n is omitted and we use just ≡. This extension of ≡ comes from the inductive
characterization of the quadratic forms isometry relation over fields of characteristic
̸= 2.
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Definition 1 (Def. 1.9, [4]). A proto-special group (abbreviation: π-SG) is triple
(G,−1,≡G) where G is a group of exponent 2, −1 ∈ G (denote: −x for −1 · x,
∀x ∈ G) and ≡G is a binary relation on G×G satisfying for all a, b, c, d, x ∈ G:

SG-0 ≡G is an equivalence relation.

SG-1 ⟨a, b⟩ ≡G ⟨b, a⟩.

SG-2 ⟨a,−a⟩ ≡G ⟨1,−1⟩.

SG-3 ⟨a, b⟩ ≡G ⟨c, d⟩ ⇒ ab = cd.

SG-5 ⟨a, b⟩ ≡G ⟨c, d⟩ ⇒ ⟨xa, xb⟩ ≡G ⟨xc, xd⟩.

A π-SG is called reduced (π-RSG) if it satisfies red below and −1 ̸= 1 (i.e. it
is formally real).

red ⟨a, a⟩ ≡G ⟨1, 1⟩ ⇒ a = 1.

Furthermore, a π-SG (G,≡G,−1) is called pre-special group (pSG) if for all
a, b, c, d ∈ G

SG-4 ⟨a, b⟩ ≡G ⟨c, d⟩ ⇒ ⟨a,−c⟩ ≡G ⟨−b, d⟩

and is a special group (SG) if satisfies SG− 4 and

SG-6 The extension of ≡G to G3 is a transitive relation.

Remark 1. i) The axiom SG-6 of Special Group definition seems to be very spe-
cific but it implies that for all n ≥ 1, the extended relation ≡n is an equivalence
relation. See Theorem 1.23 of [2] for a proof of this fact.

ii) A n-form over G is a tuple φ = ⟨a1, . . . , an⟩, where n ∈ N and a1, . . . , an ∈ G.

Definition 2 (Def. 1.3, [2]). Let (G,≡,−1) a π-SG and φ = ⟨a1, . . . , an⟩ a form
over G. The set of elements represented by φ is

DG(φ) = {x ∈ G : there are b2, . . . , bn ∈ G such that ⟨x, b2, . . . , bn⟩ ≡ φ}.

Example 3. • Let K be a field of characteristic ̸= 2. Consider G(K) =
K×/K×2, where K× = K \ {0} is the set of all units of K, and the binary
relation in G(K) given by ⟨a, b⟩ ≡ ⟨c, d⟩ iff ab = cd in G(K) and a = cx2 +dy2

for some x, y ∈ K̇. Then (G(K),≡,−1) is a special group (Theorem 1.32 of
[2]).
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• The above construction can be generalized to a broad class of rings that satisfies
the conditions of Definition 15 below: this includes the rings with many units,
reduced f-rings (herein rings of continuous real-valued functions) and strictly
representable rings. For more details, see [4].

Definition 4 (Def. 1.4, [4]). Let L a first-order language.

i) A formula φ is positive-primitive (pp-formula) if it is equivalent to ∃vψ(v)
where ψ(v) is a conjunction of atomic formulas.

ii) A formula φ is called Horn-geometrical in the free variables t if it is the
negation of an atomic formula or of the form ∀vψ1(v, t) → ψ2(y, t) where ψ1, ψ2
are pp-formulas.

Example 5. • The theory of commutative unitary rings is Horn-geometrical.

• The theory of (reduced) special groups is Horn-geometrical.

The next definition sets the grounds to the theory of faithfull quadratic rings and
slightly generalize the Definition 2.2, p.10, of [4], introducing the (unifying) notion
of quadratic set.

Definition 6. Let A be a ring.

• A subset T ⊆ A is called quadratic if it is multiplicative (i.e., it closed under
the ring product) and A2 ⊆ T .

• Given a quadratic set T ⊆ A, a set S ⊆ A× is called T -subgroup if it is
multiplicative and T× ∪ {−1} ⊆ S. When T = A2, the A2-subgroups are called
q-subgroups.

Let T ⊆ A be a quadratic set and S ⊆ A× be a T -subgroup. Given a, b ∈ S, the
valued-represented mod T (p. 11, [4]) by ⟨a, b⟩ is

Dv
S,T (a, b) = {c ∈ S : there are t, t′ ∈ T such that c = at+ bt′}.

Moreover, if Dv
S,T (1, a) is multiplicative, for every a ∈ S, then (S, T ) is called a

quadratic pair.

Remark 2. Let A be a ring.

• If T = A2 or T is a preorder in A (i.e., if A2 ⊆ T, T ·T ⊆ T, T +T ⊆ T ), then
T is a quadratic set in A.
Let T be a quadratic set in the ring A.
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• The smallest T -subgroup is T× ∪ −T× and the largest is A×.

• If S is a T -subgroup, then S is a subgroup of A×.

• Since 0, 1 ∈ T , {a, b} ⊆ Dv
S,T (a, b).

Remark 3. Let A be a ring, T be a quadratic set in A and S be a T -subgroup.

• If (S, T ) is a quadratic pair, then Dv
S,T (1, a) ⊆ S is a subgroup for all a ∈ S.

In fact, 1 ∈ Dv
S,T (1, a) and given x ∈ Dv

S,T (1, a), let u, v ∈ T such that x =
u + av. Then x−1 = x−2x = ux−2 + avx−2 ∈ Dv

S,T (1, a). Since Dv
S,T (1, a) is

multiplicative, it follows that Dv
S,T (1, a) ⊆ S is a subgroup.

• If (S, T ) is a quadratic pair and S′ ⊆ S is another T -subgroup, then (S′, T ) is
also a quadratic pair. In particular, if (A×, T ) is a quadratic pair, then every
T -subgroup determines a quadratic pair.

• A very interesting class of examples of quadratic pairs (S, T ) is given in The-
orem 2.3 in [3]: they are able to represent all reduced special groups i.e., for
each special group G, there exists a quadratic pair (S, T ) such that G ∼= GT (S).
In more details: AG := C(XG,R), where XG is the (boolean) space of all SG-
morphisms G → {−1, 1} and T = A2

G.

In the field case, there is a useful criteria to determine a SG-subgroup (Definition
1.28 and Lemma 1.29, p.21, [2]). In the ring case, an analogous strategy works to
obtain quadratic pairs.

Proposition 7. Let A be a ring, T ⊆ A quadratic set and S ⊆ A× a T -subgroup.
Suppose that for all p, q, u, v ∈ T and a ∈ S, exists x ∈ A such that

(pua2 + qv − xa) ∈ T and (pv + qu+ x) ∈ T. (*)

Then (S, T ) is a quadratic pair. In particular, if T = A2 or T is a preorder, then
(S, T ) is a quadratic pair.

Proof. Let s, t ∈ Dv
S,T (1, a), a ∈ A. Take p, q, u, v ∈ T with

s = pa+ q and t = ua+ v.

Then st = (pua2 + qv) + (pv + qu)a. By hypothesis, exists x ∈ A such that
(pua2 + qv − xa) ∈ T and (pv + qu+ x) ∈ T . Then

st = (pua2 + qv − xa) + (pv + qu+ x)a ∈ Dv
S,T (1, a).
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If T is closed under sums (preorder), then (∗) is satisfied with x = 0 for all a ∈ A.
If T = A2, then p = p2

1, q = q2
1, u = u2

1, v = v2
1; if we take x = 2(p1q1u1v1), then

(pua2 + qv− xa) = (p1u1a− q1v1)2 ∈ T and (pv+ qu+ x) = (p1v1 + q1u1)2 ∈ T .

The next lemma is a version of Lemma 2.6, p.11, [4] for quadratic pairs and
gives some properties for the valued-represented set of a 2-form. Note that the
proofs follows without any major change.

Lemma 8. Let A be a ring and (S, T ) a quadratic pair. Let x, y, u, v ∈ S and
t, w ∈ T×.

i) uDv
S,T (x, y) = Dv

S,T (ux, uy) and Dv
S,T (x, y) = Dv

S,T (tx, wy).

ii) u ∈ Dv
S,T (x, y) ⇒ ut ∈ Dv

S,T (x, y).

iii) x ∈ Dv
S,T (1, y) ⇒ Dv

S,T (x, xy) = xDv
S,T (1, y) = Dv

S,T (1, y).

iv) u ∈ Dv
S,T (x, y) ⇔ Dv

S,T (u, uxy) = Dv
S,T (x, y).

v) Assuming xy = uvt, the following are equivalent:

(a) Dv
S,T (x, y) = Dv

S,T (u, v);
(b) Dv

S,T (x, y) ∩Dv
S,T (u, v) ̸= ∅

Proof. Items i) and ii) are straightforward. For the statement iii), the first equality
is a direct consequence of i). For the last, since (S, T ) is a quadratic pair, the set
Dv
S,T (1, a) ⊆ S is a subgroup (Remark 3) and thus

xDv
S,T (1, a) ⊆ Dv

S,T (1, a) and x−1Dv
S,T (1, a) ⊆ Dv

S,T (1, a),

which establishes the equality.

iv) Since u ∈ Dv
S,T (u, uxy), the direction ⇐ is immediate. For the reverse, note that

if u ∈ Dv
S,T (x, y), then by item i) we have ux ∈ Dv

S,T (x2, xy) = Dv
S,T (1, xy) and

thus by item ii) one can see that Dv
S,T (ux, ux2y) = Dv

S,T (1, xy). Multiplying
this equation by x we obtain

Dv
S,T (u, uxy) = xDv

S,T (ux, ux2y) = xDv
S,T (1, xy) = Dv

S,T (x, y).

v) The direction a) ⇒ b) is immediate. For the other, assume that z ∈ Dv
S,T (x, y)∩

Dv
S,T (u, v). Then by item iv) one has

Dv
S,T (x, y) = Dv

S,T (z, zxy) = Dv
S,T (z, zuvt) = Dv

S,T (z, zuv) = Dv
S,T (u, v).
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Following the Chapter 2 of [4], fixed a quadratic pair (S, T ), a candidate for
special group is associated to the pair (S, T ) in the following way:

• The group is given by GT (S) = S/T×. Since A2 ⊆ T , the group GT (S)
has exponent 2. Furthermore, the distinguished element in GT (S) is −1 (in
general, denoted just by -1).

• For a, b, c, d ∈ GT (S), the 2-isometry is given by

⟨a, b⟩ ≡S,T ⟨c, d⟩ ⇔ ab = cd and Dv
S,T (a, b) = Dv

S,T (c, d).

Note that by Lemma 8.(i), the last equality of valued-represented sets it does
not dependent of a particular choice of members in the equivalence classes.

The main properties of GT (S) are summarized below.
Proposition 9. Let A be a ring and (S, T ) a quadratic pair.

i) The triple (GT (S),≡S,T ,−1) is a π-SG. Furthermore, for x, y, z ∈ S,

z ∈ Dv
S,T (x, y) ⇔ z ∈ DGT (S)(x, y).

ii) If (S, T ) is 2-transversal, that is, for all x, y ∈ S,

Dv
S,T (x, y) = {c ∈ S : there are u, v ∈ T× : c = ux+ vy},

then GT (S) is a pre-special group.

iii) GT (S) is reduced π-SG if, and only if, −1 /∈ T and (T + T ) ∩ S ⊆ T . In
particular, if T is a proper preorder, then GT (S) is reduced.

Proof. The proof follows by very similar arguments of Lemma 2.7, p. 13, [4], which
consists in an application of Lemma 8.

2 Main Result
From now on, (S, T ) will denote a quadratic pair in a ring A, unless explicitly
stated otherwise. A tuple φ = ⟨a1, ..., an⟩, ai ∈ S, is called a n-form over S; also
let M(φ) = M((ai)i≤n) be the n × n diagonal matrix whose non-zero elements are
precisely the diagonal with a1, ..., an, in this order. The notion of T -isometry appears
in Definition 2.17, p. 18, [4]. The definition of T-congruence, to be shown equivalent
to T-isometry, is introduced in order to yield a Horn-geometric axiomatization of
the theory of T -faithfully quadratic rings.
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Definition 10. Let φ = ⟨a1, ..., an⟩ and ψ = ⟨b1, ..., bn⟩ be two n-forms over S.

• The forms φ,ψ are simply T -isometric, written φ ≈∗
S,T ψ, if there are

t1, ..., tn ∈ T× such that bi = tiai or N ∈ GLn(A) such that NM(φ)N t =
M(ψ).

• φ and ψ are simply T -congruent, written φ ∼=∗
S,T ψ, if there are N ∈ GLn(A)

and x1, ..., xn, y1, ..., yn ∈ T× such that

NM((xi)i≤n)M(φ)N t = M((yi)i≤n)M(ψ).

Proposition 11. The relations ≈∗
S,T (simply T -isometry) and ∼=∗

S,T (simply T -
congruence) over the set of n-forms, n ≥ 1, are reflexive and symmetric.

Proof. Let φ = ⟨a1, . . . , an⟩, ψ = ⟨b1, . . . , bn⟩ be forms over S.

• Reflexivity: Since ai = 1 · ai for all i = 1, . . . , n, φ ≈∗
S,T φ.

Similarly, we have Idn(A)Idn(A)M(φ)Idn(A)t = Idn(A)M(φ) and so φ ∼=∗
S,T

φ.

• Symmetry: Assume that φ ≈∗
S,T ψ. If there are t1, . . . , tn ∈ T× with bi = tiai,

then ai = t−1
i bi and t−1

i = t−2
i ti ∈ T×; so ψ ≈∗

S,T φ. If there is N ∈ GLn(A)
such that NM(φ)N t = M(ψ), then P = N−1 satisfies PM(ψ)P t = M(φ); so
ψ ≈∗

S,T φ.
Now suppose that φ ∼=∗

S,T ψ. Then there are xi, yi ∈ T×, i = 1, . . . , n, and
N ∈ GLn(A) such that NM((xi)i≤n)M(φ)N t = M((yi)i≤n)M(ψ). Thus,
P = N−1 satisfies PM((yi)i≤n)M(ψ)P t = M((xi)i≤n)M(φ) and therefore
ψ ∼=∗

S,T φ.

Definition 12. Let φ,ψ be two n-forms, n ≥ 1, over S.

• The forms φ,ψ are said to be T -isometric, written φ ≈S,T ψ, if there are
n-forms φ0, . . . , φk such that φ0 = φ,φk = ψ and φi ≈∗

S,T φi+1 for all i =
0, . . . , k − 1.

• The forms φ,ψ are T -congruent, written φ ∼=S,T ψ, if there are n-forms
φ0, . . . , φk such that φ0 = φ,φk = ψ and φi ∼=∗

S,T φi+1 for all i = 0, . . . , k− 1.
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Note that the relations ≈S,T and ∼=S,T are, respectively, the transitive closure of
the relations ≈∗

S,T and ∼=∗
S,T thus, by Proposition 11, they are equivalence relations

on the set of n-forms over S.
The following (easily established) result is fundamental to obtain our main con-

tribution.

Proposition 13. Let φ = ⟨a1, ..., an⟩ and ψ = ⟨b1, ..., bn⟩ be two n-forms over S.
Then φ ≈S,T ψ iff φ ∼=S,T ψ.

Proof. It’s enough to show that 1) φ ≈∗
S,T ψ ⇒ φ ∼=S,T ψ and 2) φ ∼=∗

S,T ψ ⇒ φ ≈S,T

ψ.
1) Follows easily from definitions.
2) Assuming φ ∼=∗

S,T ψ, take x1, ..., xn, y1, ..., yn ∈ T× and N ∈ GLn(A) such that
NM((xi)i≤n)M(φ)N t =M((yi)i≤n)M(ψ). Then we have

φ ≈∗
S,T ⟨x1a1, ..., xnan⟩ ≈∗

S,T ⟨y1b1, ..., ynbn⟩ ≈∗
S,T ψ.

Definition 14 (Def. 2.24, [4]). Let A be a ring and (S, T ) a quadratic pair. Let S
be T -subgroup. Let φ = ⟨a1, . . . , an⟩ be a form over S and φ = ⟨a1, . . . , an⟩ be the
corresponding form in GT (S).

a) DS,T (φ) = {x ∈ S : there are b2, . . . , bn ∈ S such that φ ≡GT (S) ⟨x, b2, . . . , bn⟩} is
the set of elements of S isometry-represented mod T by φ in GT (S).

b) Dv
S,T (φ) = {x ∈ S : there are x1, . . . , xn ∈ T such that x = ∑n

i=1 xiai} is the set
of elements of S value-represented mod T by φ.

c) Dt
S,T (φ) = {x ∈ S : there are x1, . . . , xn ∈ T× such that x = ∑n

i=1 xiai} is the
set of elements of S transversely represented mod T by φ.

d) The set DS,T (φ) of elements of S inductively represented mod T by φ is
defined as follows:

• If n = 1, then DS,T (φ) = {a1};
• If n = 2, then DS,T (φ) = Dv

S,T (φ);
• If n ≥ 3, then

DS,T (φ) =
n⋂

k=1

⋃
{Dv

S,T (ak, u) : u ∈ Dv
S,T (a1, . . . , ǎk, . . . , an)}.
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Remark 4. Consider the notation from Definition 14. For all forms φ over S, the
following is satisfied without any further assumptions:

• DS,T (φ) ⊆ Dv
S,T (φ);

• Dt
S,T (φ) ⊆ Dv

S,T (φ);

• DS,T (φ) ⊆ Dv
S,T (φ);

• If dim(φ) ≤ 3, then DS,T (φ) ⊆ DS,T (φ).

If T = A2 or T is pre-order, Lemma 2.26 in [4], contains a proof of these statements.
An analogous reasoning establishes the inclusions in the general case of quadratic
pairs.

Definition 15 (Def. 3.1, [4]). Let A be a ring and (S, T ) a quadratic pair. The
T -subgroup S is called T -faithfully quadratic if the following are satisfied:

i) For all a, b ∈ S,
Dv
S,T (a, b) = Dt

S,T (a, b);

ii) For all form φ with dimension n ≥ 2,

DS,T (φ) = Dv
S,T (φ);

iii) For all forms φ,ψ of same dimension and for all a ∈ S

⟨a⟩ ⊕ φ ≈S,T ⟨a⟩ ⊕ ψ ⇒ φ ≈S,T ψ.

Definition 16 ([4], p. 27). Let A be a ring and T ⊆ A a quadratic set. The ring A
is called T -faithfully quadratic ring if

• The pair (A×, T ) is quadratic;

• The T -subgroup A× is T -faithfully quadratic.

In the case T = A2, a A2-faithfully quadratic is simply called faithfully quadratic
ring.

The next result illustrates the potential of T -faithfully quadratic notion in pro-
vide a special group that faithfully represent the T -isometry and T -representation
of a ring.
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Theorem 17. Let A be a ring and (S, T ) a quadratic pair. Assume that S is T -
faithfully quadratic. Let φ,ψ be forms over S of same dimension.

i) Dv
S,T (φ) = Dt

S,T (φ), that is, an element in S is valued-represented iff it is
transversally represented.

ii) Dv
S,T (φ) = DS,T (φ), that is, the set of valued-represented elements coincide with

those isometry-represented in GT (S).

iii) If φ = φ1 ⊕ · · · ⊕ φk, then

Dv
S,T (φ) =

⋃
{Dv

S,T (u1, . . . , uk) : ui ∈ Dv
S,T (φi), i = 1, . . . , k}.

iv) φ ≈S,T ψ if, and only if, φ ≡GT (S) ψ.

v) (GT (S),≡GT (S),−1) is a special group.

Proof. The proof in the case T = A2 or T is a preorder can be found in Theorems
3.3, 3.5 and 3.6 of [4] with emphasis in which axioms of faithfully quadratic pairs
are needed to obtain each of above results. Very similar arguments entails the proof
in for quadratic pairs. In 3.7, [4], there is a fruitful discussion about the reason and
utility of faithfully quadratic rings to obtain a rich theory of quadratic forms over
invertible coefficients.

Proposition 18. Let A be a ring and (S, T ) a quadratic pair. Assume that S is
T -faithfully quadratic. Given two forms φ and ψ of same dimension n ≥ 2 such that
φ ∼=S,T ψ, then it is possible to find φ0, ..., φl(n), l(n) = 2n−1 − 1, φ0 = φ,φl(n) = ψ
such that φi ∼=∗

S,T φi+1 for every i < l(n).

Proof. This can be obtained from a simple adaptation of the proof of Proposition
5.1, p.53, [4], combined with the Proposition 13. The proof of Lemma 2.21, p.20,
[4], shows that l(2) = 1. The remaining of the proof follows essentially from The-
orem 17.(iv) together with the inductive description of isometry in special groups
(described before Definition 1).

In Theorem 5.2, p.54, [4] is proved that the theory of faithfully quadratic rings
is Horn-geometric and in Remark 5.3 of [4] is discussed how to adapt the proof of
Theorem 5.2 to obtain a Horn-geometric axiomatization to faithfully quadratic q-
subgroup. This result can be generalized to pre-orders and even for quadratic pairs.
This is the content of next theorem.
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Theorem 19. The theory of quadratic pairs (S, T ) such that S is T -faithfully
quadratic is Horn-Geometrical in the language L = {+, ·, 0, 1,−1, S, T}, where S, T
are unitary relational symbols.

Proof. First of all, note that when (S, T ) is a quadratic pair, S∩T = T×. So we will
use the formula T×(a) as an abbreviation to the pp-formula S(a)∧T (a). To simplify
the formulas below, we should also note that a ∈ A× is equivalent to T×(a2) and so
a ∈ A× is also a conjunction of atomic formulas. With this, for n ≥ 2, we define:

• Let (ϕn)vS,T (a, b1, ..., bn) be the formula in n+ 1 free variables given by

∃t1, ..., tn(
n∧

i=1
(S(bi) ∧ T (ti)) ∧ S(a) ∧ a =

n∑

i=1
tibi).

Note that this formula is a pp-formula and it express a ∈ Dv
S,T (b1, ..., bn).

• Let (ϕn)tS,T (a, b1, ..., bn) be the formula in n+ 1 free variables given by

∃t1, ..., tn(
n∧

i=1
(S(bi) ∧ T×(ti)) ∧ S(a) ∧ a =

n∑

i=1
tibi).

Note that this formula is a pp-formula and it encodes a ∈ Dt
S,T (b1, ..., bn).

Thus, fixed n ≥ 2, let l = l(n) from Proposition 18. Consider (ψn)S,T (a, b) to
be the formula in 2l variables given by

∃c0, ..., cl, N1, ..., Nl, x1, ..., xl, y1, ..., yl

(
l∧

i=1
(det(Ni) ∈ A×1) ∧

l∧

i=1
(T×(xi) ∧ T×(yi) ∧ S(ci)) ∧ c0 = a ∧ cl = b

∧
l∧

i=1
(Ni ·M((xi)i≤n) ·M((ci−1)i≤n) ·N t

i = M((yi)i≤n) ·M((ci)i≤n))

This formula is a pp-formula and it express ⟨a1, ..., an⟩ ∼=S,T ⟨b1, ..., bn⟩.

Now, a possible set of axioms to the theory of faithfully quadratic rings can be
given by

1Note that the phrase “the determinant of Ni is an invertible element of A” can be encoded by
a pp-formula in the language L.
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i) axioms ensuring that {A,+, ·, 0, 1,−1} is a commutative ring with unity with
2 ∈ A×;

ii) ∀a, b (T (a) ∧ T (b) ⇒ T (ab));

iii) ∀a (T (a2));

iv) ∀a (S(a) ⇒ ∃u au = 1);

v) ∀a, b (S(a) ∧ S(b) ⇒ S(ab));

vi) ∀a, u (T (a) ∧ au = 1 ⇒ S(a));

vii) S(−1);

viii) ∀a, x, y ((ϕ2)vS,T (x, 1, a) ∧ (ϕ2)vS,T (y, 1, a) ⇒ (ϕ2)vS,T (xy, 1, a));

Until now the axioms basically express that (S, T ) is a quadratic pair in the ring
A with 2 ∈ A×. Now we describe the axioms for S to be T -faithfully quadratic:

ix) ∀a, b, x ((ϕ2)vS,T (x, a, b) ⇒ (ϕ2)tS,T (x, a, b));

For each n ≥ 2,

x) ∀a1, ..., an, x ((ϕn)vS,T (x, a1, ..., an) ⇒ ∧n
i=1 ∃u ((ϕn−1)vS,T (u, a1, ..., ǎi, ..., an) ∧

(ϕ2)vS,T (x, ai, u)));

xi) ∀a, a1, ..., an, b1, ..., bn ((ψn+1)S,T (a, a, a, b) ⇒ (ψn)S,T (a, b)).

Let T be the theory determined by the sentences including in the itens i) − xi)
above. Note that T is a Horn-geometric theory. An argument analogous to that
given in the end of the proof of Theorem 5.2, p. 56, in [4], will show that a ⟨A,S, T ⟩
is a model of T iff A is a ring with 2 ∈ A×, (S, T ) is quadratic pair and S is T -
faithfully quadratic. Furthermore, note that it is possible to require additionally
that 1 ̸= −1 in GT (S) by adding the axiom ¬T (−1), which is yet a Horn-geometric
formula.

Remark 5. In the above theorem, if the T -subgroup S can be described by a pp-
sentence in the language {+, ·, 0, 1,−1, T}, then minor adaptations in the proof also
yields a Horn-geometric theory without the symbol S in the language. This is the
case when S = A× or S = T× ∪ −T×.
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Introduction

The concept of multialgebraic structure – an “algebraic like” structure but en-
dowed with multiple valued operations – has been studied since the 1930’s; in par-
ticular, the concept of hyperrings was introduced by Krasner in the 1950’s.

Some general algebraic study has been made on multialgebras: see for instance
[9] and [17].

More recently the notion of multiring have obtained more attention: a multiring
is a lax hyperring, satisfying an weak distributive law, but hyperfields and multifields
coincide. Multirings has been studied for applications in abstract quadratic forms
theory ([12], [8]) and tropical geometry ([10]); a more detailed account of variants
of concept of polynomials over hyperrings is even more recent ([10], [4]).

In the present work we start a model-theoretic oriented analysis of multialgebras
introducing the class of algebraically closed and providing variant proof of quantifier
elimination flavor, based on new results on superring of polynomials as an Euclidean
algorithm of division.

Overview of the work. In section 1 we develop the preliminaries results needed
for the paper. Section 2 is devoted to a detailed account of the construction of
supperring of polynomials ([4]) and to present some new results as the Euclidean
algorithm of division for the superring of polynomials with coefficients over a hyper-
field. Section 3 contains the main contributions of this paper: we introduce some
concept of the algebraically closed hyperfield and give the first steps on a model
theory of this class with a kind of quantifier elimination procedure. We finish the
work in section 4 presenting some possible future developments.

1 Preliminaries

Our goals in this section are to develop the preliminary results needed for the work,
and to provide a brief dictionary on multialgebras and hyperrings. We split it in two
subsections, the first one contains general definitions and results on multialgebraic
structures and the second one is focused specially on rings-like multi structures.
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1.1 On Multialgebras

There are several definitions of multialgebra in the literature, considering that each
multialgebra application in a specific area of Mathematics (mainly Algebra and
Logic) requires a particular adaptation. Here, we adapt the notion of multialgebra
used in [5]; the identity theory here presented is close to the exposed in [17].

Definition 1.1. A multialgebraic signature is a sequence of parwise disjoint sets

Σ = (Σn)n∈N,

where Σn = Sn ⊔Mn, which Sn is the set of strict multi-operation symbols and Mn

is the set of multioperation symbols. In particular, Σ0 = S0 ⊔ M0, F0 is the set of
symbols for constants and M0 is the set of symbols for multi-constants. We also
denote

Σ = ((Sn)n≥0, (Mn)n≥0).

Definition 1.2. Let A be any set.

i - A multi-operation of arity n ∈ N over a set A is a function

An → P∗(A) := P(A) \ {∅}.

ii - A multi-operation of arity n ∈ N over a set A, An → P∗(A), is strict, whenever
it factors throuth the singleton function sA : A ↣ P∗(A), a 7→ sA(a) := {a}.
Thus it can be naturally identified with an ordinary n-ary operation An → A.

A 0-ary multi-operation (respectively strict multi-operation) on A can be identi-
fied with a non-empty subset of A (respectively a singleton subset of A).

Definition 1.3. A multialgebra over a signature Σ = ((Sn)n≥0, (Mn)n≥0), is a set
A endowed with a family of n-ary multioperations

σAn : An → P∗(A), σn ∈ Sn ⊔Mn, n ∈ N,

such that: if σn ∈ Sn, then σAn : An → P∗(A) is a strict n-ary multioperation.

Remark 1.4.

i - Every algebraic signature Σ = (Fn)n∈N is a multialgebraic signature where
Mn = ∅, ∀n ∈ N. Each algebra

(A, ((An fA

→ A)f∈Fn)n∈N)
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over the algebraic signature Σ can be naturally identified with a multi-algebra

(A, ((An fA

→ A
sA↣ P∗(A))f∈Fn)n∈N)

over the same signature.

ii - Every multialgebraic signature Σ = ((Sn)n∈N, (Mn)n∈N) induces naturally a
first-order language

L(Σ) = ((Fn)n∈N, (Rn+1)n∈N)

where Fn := Sn is the set of n-ary operation symbols and Rn+1 := Mn is the
set of (n+1)-ary relation symbols. In this way, multi-algebras

(A, ((An σA

→ P∗(A))σ∈Sn⊔Mn)n∈N)

over a multialgebraic signature Σ = (Sn ⊔ Mn)n∈N can be naturally identified
with the first-order structures over the language L(Σ) that satisfies the L(Σ)-
sentences:

∀x0 · · · ∀xn−1∃xn(σn(x0, · · · , xn−1, xn)), for each σn ∈ Rn+1 = Mn, n ∈ N.

Now we focus our attention into a more syntactic aspect of this multi-algebras
theory. We start with a (recursive) definition of multi-terms:

Definition 1.5. A (multi-)term on a multialgebra A of signature

Σ = ((Sn)n≥0, (Mn)n≥0)

is defined recursively as:

i - Variables xi, i ∈ N are terms.

ii - If t0, · · · , tn−1 are terms and σ ∈ Sn ⊔Mn, then σ(t0, · · · , tn−1) is a term.

We will call a multi-term t strict, whenever it is composed only by combination of
strict multi-operations and variables. The notion of occurrence of a variable in
a term is as the usual. We will denote var(t) as the (finite set of variables) that
occurs in the term t.

To define an interpretation for terms, we need a preliminary step. Given

σ ∈ Sn ⊔Mn,
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we “extend” σA : An → P∗(A) to a n-ary operation in P∗(A),

σP∗(A) : P∗(A)n → P∗(A),

by the rule:

σP∗(A)(A0, · · · , An−1) :=
⋃

a0∈A0

· · ·
⋃

an−1∈An−1

σA(a0, · · · , an−1).

Definition 1.6. The interpretation of a term t on a multialgebra A over a
signature Σ = ((Sn)n≥0, (Mn)n≥0) is a function tA : Avar(t) → P∗(A) and is defined
recursively as follows:

i - The interpretation of a variable xi, xAi : A{xi} → P∗(A) is essentialy the
singleton function of A:

xAi : A{xi} ∼= A↣ P∗(A), is given by the rule (â : {xi} → A) 7→ {a}.

ii - If t = σ(t0, · · · , tn−1) is a term and σ ∈ Sn ⊔ Mn, denote T = var(t) and
Ti = var(ti). Then T = ⋃

i<n Ti. Consider tiAT : AT → P∗(A) the composition

AT
projT

Ti↠ ATi
tAi→ P∗(A),

where projTTi
is the canonical projection induced by the inclusion Ti ↪→ T . Then

tA : AT → P∗(A) is the composition

AT
(tiA

T )i<n−→ (P∗(A))n σP∗(A)
−→ P∗(A).

Definition 1.7. Let A be a multialgebra A over a signature Σ = ((Sn)n≥0, (Mn)n≥0)
and let t1, t2 be Σ-terms. We say that A realize that t1 is contained in t2, (notation:
A |= t1 ⊑ t2) whenever tA1 (ā) ⊆ tA2 (ā), for each tuple ā : var(t1) ∪ var(t2) → A.

Apart from the notion of atomic formulas the definition of Σ-formulas for multi-
algebraic theories is similar to the (recursive) definition of first-order L(Σ)-formulas:

Definition 1.8. The formulas of Σ are defined as follows:

i- Atomic formulas are the formulas of type t ⊑ t′, where t, t′ are terms.

ii- If ϕ, ψ are formulas, then ¬ϕ and ϕ ∨ ψ, ϕ ∧ ψ, ϕ → ψ, ϕ ↔ ψ are formulas.
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iii- If ϕ is a formula and xi is a variable, then ∀xiϕ, ∃xiϕ are formulas.

The notion of occurrence (respec. free occurrence) of a variable in a formula is as
the usual. We will denote fv(ϕ) as the (finite) set of variables that occurs free in
the formula ϕ.

We use t1 =s t2 to abbreviate the formula (t1 ⊑ t2) ∧ (t2 ⊑ t1): this means that
t1 and t2 are "strongly equal terms".

Definition 1.9. The definition of interpretation of formulas ϕ(x̄) where

fv(ϕ) ⊆ x̄ ⊆ {xi : i ∈ N}

under a valuation of variables v : x̄ → A (or we will denote simply by v = ā) is:

i- A |=v t(x̄) ⊑ t′(x̄) iff tA(ā) ⊆ t′A(ā)

ii- The case of complex formulas (given by the connectives ¬, ∨, ∧, →, ↔, and
quantifiers ∀,∃) is as satisfaction of first-order L(Σ)-formulas in L(Σ)-structure
on a valuation v.

Remark 1.10.

i- The theory of multi-algebras entails that for each term t, and each strict term
t′,

t ⊑ t′ iff t =s t
′.

ii- In [17] contains a development of the identity theory for multialgebras, with
another primitive notion: t(x̄) =w t

′(x̄); a Σ-multialgebra A satisfies the "weak
identity" above iff there is some ā ∈ Avar(t)∪var(t

′) such that tA(ā) ∩ t′A(ā) ̸= ∅.
This will not play any role in this work but is useful for applications of multi-
algebraic semantics for complex logical systems ( [9]).

There are many ways of define morphism for multialgebras. Follow below our
choice:

Definition 1.11. Let A and B be multialgebras of signature Σ = ((Sn)n≥0, (Mn)n≥0)
and φ : A → B be a function.

i - φ is a partial morphism if for every n ≥ 0, every σ ∈ Sn and every
a1, ..., an ∈ A, we have

φ(σA(a1, ..., an)) ⊆ σB(φ(a1), ..., φ(an)).
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ii - φ is a morphism if for every n ≥ 0, every σ ∈ Sn ⊔Mn and every a1, ..., an ∈
A, we have

φ(σA(a1, ..., an)) ⊆ σB(φ(a1), ..., φ(an)).

iii - φ is a strong morphism if for every n ≥ 0, every σ ∈ Sn ⊔ Mn and every
a1, ..., an ∈ A, we have

φ(σA(a1, ..., an)) = σB(φ(a1), ..., φ(an)).

Remark 1.12.

i - Let A,B be Σ-multialgebras. If B is a strict multilagebra (i.e. σBn (b̄) is unitary
subset of B, for each σ ∈ Σ and each tuple b̄ in B), then the morphisms A → B
coincide with the strong morphisms A → B.

ii - There is a full and faithful concrete embedding of the category of ordinary
algebraic structures over a signature Σ and homomorphisms into the category
of Σ-multialgebras and (strong) morphisms: the image of this embedding is the
class of strict multialgebras over Σ.

iii - The correspondence Σ 7→ L(Σ) induces a concrete isomorphism between the
category of Σ-multialgebras and the category of L(Σ)- first order structures
satisfying suitable ∀∃ axioms. It is ease to see that this correspondence induces
a bijection between injective strong embeddings of Σ-multialgebtras and L(Σ)-
monomorphisms of first-order structures.

We finish this subsection with two illustrative examples of multialgebras derived
from an algebraic structure and from a first-order structure.
Example 1.13. Let (R,+, ·, 0, 1) be a commutative ring with 1 ̸= 0. Given n ≥ 1,
define an (n+ 1)-ary multioperation ∗n by the rule:

d ∈ a0 ∗n a1 ∗n a2 ∗n ... ∗n an ⇔ there is some t ∈ R such that
d = a0 + a1t+ a2t

2 + ...+ ant
n.

The idea here, is that a0 ∗n a1 ∗n a2 ∗n ... ∗n an “analyze” the values taken in R
by the polynomial p(X) = a0 + a1X + a2X2 + ... + anX

n ∈ R[X]. ∗n will be called
The streching multialgebra of degree n over R.
Example 1.14. Let L = {0, 1,+, ·,≤} the language of ordered fields. Consider R
as an ordered field. We can look at the ordering relation as a multioperation of arity
1. In agreement with our notation, we have

≤ (a) := {x ∈ R : a ≤ x} = [a,+∞).
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From now on, all multi-algebras considered in this work will contain only oper-
ations of arities 0, 1, 2. They will have strict constants and strict unary operations;
the binary operations maybe strict or multivalued.

1.2 Multirings and Superrings

Now, we will get closer to the subject of our work.

Definition 1.15 (Adapted from definition 1.1 in [12]). Let Σ = ((Sn)n≥0, (Mn)n≥0)
be a multialgebraic signature where S0 = {1}, S1 = {r}, Sn = ∅ for all n ̸= 0, 1
and M2 = {·}, Mn = ∅ for all n ̸= 2 . A multigroup is a Σ-structure (G, ·, r, 1)
where G is a (non-empty) set, 1 is an element of G, r : G → G is a function,
· : G×G → P∗(G), that satisfies the following formulas:

i - G |= 1 · x =s x.

ii - G |= x · 1 =s x.

iii - G |= [(x · y) · z] =s [x · (y · z)].

iv - G |= (z ⊑ x · y) → [(x ⊑ z + ·r(y)) ∧ (y ⊑ r(x) · z)].

A multimonoid is a multialgebra such that S1 = {1}, M2 = {·} and the other sets
of symbols are empty, that satifies axioms (i), (ii), (iii) above.

A multimonoid/multigroup will said to be commutative (or abelian) if satisfy:

G |= x · y =s y · x.

For multigroups, axiom (iii) can be replaced by the (apparently weaker) version:

G |= [(x · y) · z] ⊑ [x · (y · z)]

In other words, an abelian multigroup is a first-order structure (G, ·, r, 1) where
G is a non-empty set, r : G → G is a function, 1 is an element of G, · ⊆ G×G×G
is a ternary relation (that will play the role of binary multioperation, we denote
d ∈ a · b for (a, b, d) ∈ ·) such that for all a, b, c, d ∈ G:

M1 - If c ∈ a · b then a ∈ c · (r(b)) ∧ b ∈ (r(a)) · c. We write a − b to simplify
a+ (−b).
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M2 - b ∈ a · 1 iff a = b.

M3 - If ∃x(x ∈ a · b ∧ t ∈ x · c) then ∃ y(y ∈ b · c ∧ t ∈ a · y).

M4 - c ∈ a · b iff c ∈ b · a.

Example 1.16.

a- Suppose that (G, ·, ( )−1, 1) is a ordinary group. Defining a ∗ b = {a · b} and
r(g) = g−1, we have that (G, ∗, r, 1) is a multigroup.

b- ( [17]) Let (G, ·, ( )−1, e) be an ordinary group and let S ⊆ G be a subset such that
e ∈ S and S−1 ⊆ S, define a binary relation a ∼S b iff b · a−1 ∈ S . This is a
reflexive and symmetric relation. Then take ∼t

S be the transitive closure of ∼S

(note that if S is a subgroup of G, then ∼S=∼t
S). Then G/ ∼t

S with the inherit
structure is a multigroup. In particular if G is a commutative group and S is
a subgroup of G, then G/ ∼t

S with the inherit structure is an ordinary abelian
group.

Definition 1.17 (Adapted from definition 2.1 in [12]). A (commutative, unital)
multiring is a multialgebraic structure (R,+, ·,−, 0, 1) where (R,+,−, 0) is a com-
mutative multigroup, (R, ·, 1) is a commutative (strict) monoid and that also satisfies
the following axioms:

• R |= [x · 0] =s 0 (zero is absorving).

• R |= [z.(x+ y)] ⊑ [z.x+ z.y] (weak or semi distributive law).

A multidomain is a non-trivial multiring without zero-divisors and a multifield is a
non-trivial multiring such that every nonzero element is invertible.

A multiring is an hyperring if it satifies the full distributive law:

R |= [z(x+ y)] =s [zx+ zy].

Of course, we extend this terminology for hyperdomains and hyperfields.

In other words, a multiring is a tuple (R,+, ·,−, 0, 1) where R is a non-empty
set, · : R × R → R and − : R → R are functions, 0 and 1 are elements of R,
+ ⊆ R×R×R is a relation. We denote d ∈ a+ b for (a, b, d) ∈ +. We require that
(R,+,−, 0) is a commutative multigroup and that all these satisfying the following
properties for all a, b, c, d ∈ R:
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M5 - (a · b) · c = a · (b · c).

M6 - a · 1 = a.

M7 - a · b = b · a.

M8 - a · 0 = 0.

M9 - If d ∈ a+ b then cd ∈ ca+ cb.(weak distributivity) c.(a+ b) ⊆ c.a+ c.b

Example 1.18.

a - Every ring, domain and field is gives rise naturally to a strict multiring, mul-
tidomain and multifield, respectively. It is ease to see that the class of multifields
and of hyperfields coincide.

b - ( [12]) Q2 = {−1, 0, 1} is multifield (of signals) with the usual product (in Z) and
the multivalued sum defined by relations





0 + x = x+ 0 = x, for every x ∈ Q2

1 + 1 = 1, (−1) + (−1) = −1
1 + (−1) = (−1) + 1 = {−1, 0, 1}

This is a hyperfield of characteristic 0 (we will define the characteristic in 1.26).

c - ( [10]) Let K = {0, 1} with the usual product and the sum defined by relations
x+0 = 0+x = x, x ∈ K and 1+1 = {0, 1}. This is a multifield called Krasner’s
multifield. Obviously, it has characteristic 2.

d - ( [19])In the set R+ of positive real numbers, we define

a▽ b = {c ∈ R+ : |a− b| ≤ c ≤ a+ b}.

We have R+ with the usual product and ▽ multivalued sum is a multifield, called
triangle multifield. We denote this multifield by T R+. Observe that T R+ is not
“double distributive”:

(2 ▽ 1) · (2 ▽ 1) = [1, 3] · [1, 3] = [1, 9]

and
2 · 2 ▽ 2 · 1 ▽ 1 · 2 ▽ 1 · 1 = 4 ▽ 2 ▽ 2 ▽ 1 = [0, 9].
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Example 1.19 (Kaleidoscope, Example 2.7 in [18]). Let n ∈ N and define Xn =
{−n, ..., 0, ..., n}. We define the n-kaleidoscope multiring by (Xn,+, ·, 0, 1), where
+ : Xn ×Xn → P(Xn) \ {∅} is given by the rules:

a+ b =





{sgn(ab) max{|a|, |b|}} if a, b ̸= 0
{a} if b = 0
{b} if a = 0
{−a, ..., 0, ..., a} if b = −a

,

and · : Xn ×Xn → P(Xn) \ {∅} is is given by the rules:

a · b =
{

sgn(ab) max{|a|, |b|} if a, b ̸= 0
0 if a = 0 or b = 0

.

In this sense, X0 = {0} and X1 = {−1, 0, 1} = Q2.

Example 1.20 (H-multifield, Example 2.8 in [18]). Let p ≥ 1 be a prime integer
and Hp := {0, 1, ..., p−1} ⊆ N. Now, define the binary multioperation and operation
in Hp as follow:

a+ b =





Hp if a = b, a, b ̸= 0
{a, b} if a ̸= b, a, b ̸= 0
{a} if b = 0
{b} if a = 0

a · b = k where 0 ≤ k < p and k ≡ ab mod p.

(Hp,+, ·,−, 0, 1) is a multifield such that for all a ∈ Hp, −a = a. For example,
considering H3 = {0, 1, 2}, using the above rules we obtain these tables

+ 0 1 2
0 {0} {1} {2}
1 {1} {0, 1, 2} {1, 2}
2 {2} {1, 2} {0, 1, 2}

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1
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In fact, these Hp is a kind of generalization of K, in the sense that H2 = K.

Here is a lemma stating the basic properties concerning multirings:

Lemma 1.21. Any multiring R satisfies the formulas:

a - −(0) =s 0.

b - −(−(x)) =s x.

c - z ⊑ x+ y ↔−(y) ⊑ (−(x)) + (−(z)).

d - −(xy) =s (−x)y =s x(−y).

The general definition of the concepts of morphisms and strong morphisms for
multialgebraic structures take the following form in the case of multirings:

Definition 1.22 (Definition 2.9 in [18]). Let A and B multirings. A map f : A → B
is a morphism if for all a, b, c ∈ A:

i - c ∈ a+ b ⇒ f(c) ∈ f(a) + f(b);

ii - f(−a) = −f(a);

iii - f(0) = 0;

iv - f(ab) = f(a)f(b);

v - f(1) = 1.

f is a strong morphism if is a morphism and for all a, b ∈ A, f(a + b) =
f(a) + f(b).

For multirings, there are types of “substructure” that can be considered. Let
f : A → B a multiring morphism. If f is injective and a strong morphism, we say
that A is strongly embedded in B. If f is injective, strong morphism and for all
a, b ∈ A and c ∈ B if c ∈ f(a) + f(b), then c ∈ Im(f), then A is a submultiring of
B. Note that in the rings case, all these notions coincide.

To the best of our knowledge, the concept of superring first appears in ([4]). There
are many important advances and results in hyperring theory, and for instance, we
recommend for example, the following papers: ([1]), ([3]), ([4]), ([2]), ([13]), ([16]),
([15]), ([14]).
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Definition 1.23 (Definition 5 in [4]). A superring is a structure (S,+, ·,−, 0, 1)
such that:

i - (S,+,−, 0) is a commutative multigroup.

ii - (S, ·, 1) is a commutative multimonoid.

iii - 0 is an absorbing element: a · 0 = {0} = 0 · a, for all a ∈ S.

iv - The weak/semi distributive law holds: if d ∈ c.(a + b) then d ∈ (ca + cb), for
all a, b, c, d ∈ S.

v - The rule of signals holds: −(ab) = (−a)b = a(−b), for all a, b ∈ S.

A superdomain is a non-trivial superring without zero-divisors in this new context,
i.e. whenever

0 ∈ a · b iff a = 0 or b = 0
A superfield is a non-trivial superring such that every nonzero element is invertible
in this new context, i.e. whenever

For all a ̸= 0 exists b such that 1 ∈ a · b.

A superring is strong if for all a, b, c, d ∈ S, d ∈ c · (a+ b) iff d ∈ ca+ cb.

Definition 1.24. Let A and B superrings. A map f : A → B is a morphism if for
all a, b, c ∈ A:

i - c ∈ a+ b ⇒ f(c) ∈ f(a) + f(b);

ii - c ∈ a · b ⇒ f(c) ∈ f(a) · f(b);

iii - f(−a) = −f(a);

iv - f(0) = 0;

v - f(1) = 1.

f is a strong morphism if is a morphism and for all a, b ∈ A, f(a+b) = f(a)+f(b)
and f(a · b) = f(a) + f(b).

The reader interested in Logic but not familiar with multialgebras may have some
troubles with the terminology "multi, hyper, super" used in the multialgebra context.
For their benefit, we propose the following dictionary that, in particular emphasize
the number of multioperations in the structure at sight:
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Definition 1.25 (Dictionary).

i - 0Ring will be denote the (traditional) category of commutative rings with unit;
its objects will be called 0-rings.

ii - 1Ring will be denote the category of commutative multirings; its objects will be
called 1-rings. 1FRing will be denote the category of commutative hyperrings;
Its objects will be called full 1-rings.

iii - 2Ring will be denote the category of commutative superrings; its objects will
be called 2-rings. 2FRing will be denote the category of strong commutative
superrings; its objects will be called full 2-rings.

In this sense, 0Ring = 0FRing. These definitions can (and will be) carried to
subcategories: for example, 1Field is the category of multifields (and we have that
1Field = 1FField).

From now on, we will use the conventions just above.
Let (R,+, ·,−, 0, 1) be a 2-ring, p ∈ N and a p-tuple (a0, a1, ..., ap−1).
We define the finite sum by:

x ∈
∑

i<0
ai iff x = 0,

x ∈
∑

i<p

ai iff x ∈ y + ap−1 for some y ∈
∑

i<p−1
ai, if p ≥ 1.

The finite product is given by:

x ∈
∏

i<0
ai iff x = 1,

x ∈
∏

i<p

ai iff x ∈ y · ap−1 for some y ∈
∏

i<p−1
ai, if p ≥ 1.

Thus, if (⃗a0, a⃗1, ..., a⃗p−1) is a p-tuple of tuples a⃗i = (ai0, ai1, ..., aimi), then we
have the finite sum of finite products:

x ∈
∑

i<0

∏

j<mi

aij iff x = 0,

x ∈
∑

i<p

∏

j<mi

aij iff x ∈ y + z for some y ∈
∑

i<p−1

∏

j<mi

aij

and z ∈
∏

j<mp−1

ap−1,j , p ≥ 1.
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Now, we translate some basic facts that holds in rings (0-rings) to 2-rings. Before,
we need some terminology:
Definition 1.26.

i - An ideal of a 2-ring A is a non-empty subset a of A such that a + a ⊆ a and
Aa ⊆ a. An ideal p of A is said to be prime if 1 /∈ p and ab ⊆ p ⇒ a ∈ p or
b ∈ p. An ideal m is maximal if it is proper and for all ideals a with m ⊆ a ⊆ A,
then a = m or a = A. We will denote Spec(A) = {p ⊆ A : p is a prime ideal}.

ii - The characteristic of a 2-ring is the smaller integer n ≥ 1 such that

0 ∈
∑

i<n

1,

otherwise the characteristic is zero. For full 2-domains, this is equivalent to
say that n is the smaller integer such that

For all a, 0 ∈
∑

i<n

a.

iii - A polynomial expression in the variables xij, is a multiterm of the form
∑

i<p

∏

j<mi

xij .

iv - Let S be a subset of a 2-ring A. We define the ideal generated by S as
⟨S⟩ := ⋂{a ⊆ A ideal : S ⊆ a}. If S = {a1, ..., an}, we easily check that

⟨a1, ..., an⟩ =
∑

Aa1 + ...+
∑

Aan, where
∑

Aa =
⋃

n≥1
{Aa+ ...+Aa︸ ︷︷ ︸

n times
}.

Note that if A is a full 2-ring, then ∑
Aa = Aa.

Lemma 1.27. Let A be a 2-ring.

i - For all n ∈ N and all a0, ..., an−1 ∈ A, the sum a0 + ... + an−1 and product
a0 · ... · an−1 does not depends on the order of the entries.

ii - For every term t(y1, ..., yn) on the 2-ring language, exists variables xij such
that A satisfies the formula

t(y1, ..., yn) ⊑
∑

i<p

∏

j<mi

xij .

Moreover, if A is a full 2-ring, it satisfies the formula

t(y1, ..., yn) =s

∑

i<p

∏

j<mi

xij .
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Proof.

i - There is nothing to prove if n = 0, 1. If n = 2 this is just the commutativity of
+ and ·. For n ≥ 3, the result follows by induction, using the commutativity
and the associativity of + and ·.

ii - This follows by induction on the complexity of the term by the repeated use
of associativity of + and · and the weak/semi distributivity law. If A is a full
2-ring, the proof use the full distributivity law instead of its weak version.

2 Multipolynomials

This section is devoted to a detailed account of the construction of supperring of
polynomials.

Even if the rings-like multi-algebraic structure have been studied for more than 70
years, the idea of considering notions of polynomial in the rings-like multialgebraic
structure seems to have considered only in the present century: for instance in
[10] some notion of multi polynomials is introduced to obtain some applications to
algebraic and tropical geometry, in [4] a more detailed account of variants of concept
of multipolynomials over hyperrings is applied to get a form of Hilbert’s Basissatz.

Our main result in this section is the Theorem 2.6 that provides a Euclidean
division algorithm for 2-rings of multipolynomials in one variable with coefficients
in a 1-field.

Here we will stay close to [4] perspective: let (R,+,−, ·, 0, 1) be a 2-ring and set

R[X] := {(an)n∈ω : ∃ t ∀n(n ≥ t → an = 0)}.

Of course, we define the degree of (an)n∈ω to be the smallest t such that n ≥ t →
an = 0. Now define the binary multioperations +, · : R[X] × R[X] → P∗(R[X]), a
unary operation − : R[X] → R[X] and elements 0, 1 ∈ R[X] by

(cn)n∈ω ∈ (an)n∈ω + (bn)n∈ω iff ∀n(cn ∈ an + bn)
(cn)n∈ω ∈ ((an)n∈ω · (bn)n∈ω iff ∀n(cn ∈ a0 · bn + a1 · bn−1 + ...+ an · b0)

−(an)n∈ω = (−an)n∈ω
0 := (0)n∈ω
1 := (1, 0, ..., 0, ...)
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For convenience, we denote elements of R[X] by a = (an)n∈ω. Beside this, we denote

1 := (1, 0, 0, ...),
X := (0, 1, 0, ...),
X2 := (0, 0, 1, 0, ...)

etc. In this sense, our “monomial” aiXi is denoted by (0, ...0, ai, 0, ...), where ai is
in the i-th position; in particular, we will denote b = (b, 0, 0, ...) and we frequently
identify b ∈ R↭ b ∈ R[X].

The properties stated in the lemma below it immediately follows from the defi-
nitions involving R[X]:

Lemma 2.1. Let R be a 2-ring and R[X] as above and n,m ∈ N.

a - {Xn+m} = Xn ·Xm.

b - For all a ∈ R, {aXn} = a ·Xn.

c - Given a = (a0, a1, ..., an, 0, 0, ...) ∈ R[X], with with deg a ≤ n and m ≥ 1, we
have

aXm = (0, 0, ..., 0, a0, a1, ..., an, 0, 0, ...) = a0X
m + a1X

m+1 + ...+ anX
m+n.

d - For a = (an)n∈ω ∈ R[X], with deg a = t,

{a} = a0 · 1 + a1 ·X + ...+ at ·Xt = a0 +X(a1 + a2X + ...+ anX
t−1).

e - cXk.(a + b) = cXk.a + cXk.b.

Fact 2.2.

i - R[X] is a 2-ring.

ii - The map a ∈ R 7→ a = (a, 0, · · · , 0, · · · ) defines a strong injective 2-ring homo-
morphism R↣ R[X].

iii - For an ordinary ring R (identified with a strict suppering), the 2-ring R[X] is
naturally isomorphic to (the 2-ring associated to) the ordinary ring of polyno-
mials in one variable over R.

Remark 2.3. If R is a full 2-ring, does not hold in general that R[X] is also a full
2-ring. In fact, even if R is a 1-field, there are examples, e.g. R = K,Q2, such that
R[X] is not a full 2-ring (see [4]).
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Definition 2.4. R[X] will be called the 2-ring of polynomials with one vari-
able over R. The elements of R[X] will be called (multi)polynomials. We denote
R[X1, ..., Xn] := (R[X1, ..., Xn−1])[Xn].

Theorem 2.5. R[X] is a 2-domain iff R is a 2-domain.

Proof. We just need to prove that R[X] is a 2-domain iff R is a 2-domain, since
the rest is consequence of this. (⇐) Let (an)n∈ω, (bn)n∈ω ∈ R[X] such that 0 ∈
(an)n∈ω · (bn)n∈ω. Suppose a0 ̸= 0. Since R is a superdomain, we have b0 = 0. Now,
we have 0 ∈ a0b1 +a1b0, and since b0 = 0, we conclude 0 ∈ a0b1 +0, and so 0 ∈ a0b1.
Since a0 ̸= 0, we have b1 = 0. Repeating this process t steps, when t is the maximum
of degrees involved we have that (bn)n∈ω = 0.

(⇒) Immediate, since R↣ R[x] is an injective strong 2-ring homorphism.

Now we are read to state and prove the main result in this section.

Theorem 2.6 (Euclid’s Division Algorithm). Let K be a 1-field. Given polynomials
a, b ∈ K[X] with b ̸= 0, there exists q, r ∈ K[X] such that a ∈ qb + r, with
deg r < deg b or r = 0.

Proof. Let n = deg a and m = deg b. We proceed by induction on n. Note that
if m ≥ n, then is sufficient take q = 0 and r = a., so we can suppose m ≤ n.
If m = n = 0, then a = (a0, 0, ...0, ...) and b = (b0, 0, ..., 0, ...) are both non zero
constants, so is sufficient take q = (a0/b0, 0, 0, ..., 0, ...) and r = 0.

Now, suppose n ≥ 1. Write a = a0 + X(a1 + ... + anX
n−1) = a0 + Xa′ and

b = b0 + X(b1 + ... + bmX
m−1) = b0 + Xb′, with an, bm ̸= 0 and deg a′ < n,

deg b′ < m. Then

a − a0 · 1 ∈ Xa′

b − b0 · 1 ∈ Xb′.

Then (a − a0 · 1) − (b − b0 · 1) ⊆ Xa′ −Xb′ = X(a′ − b′). Since all polynomials
in a′ − b′ have degree < n, by induction we can write

a′ − b′ ⊆ qb′ + r
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with deg r < deg b′ < m− 1 or r = 0. Substuting we obtain

(a − a0 · 1) − (b− b0 · 1) ⊆ X(qb′ + r) ⇒
(a − a0 · 1) − (b− b0 · 1) + (b− b0 · 1) ⊆ X(qb′ + r) + (b− b0 · 1) ⇒

(a − a0 · 1) ⊆ X(qb′ + r) + (b− b0 · 1) ⇒
a + (a0 · 1 − a0 · 1) ⊆ X(qb′ + r) + (b− b0 · 1 + a0 · 1) ⇒

a ⊆ X(qb′ + r) + (b− b0 · 1 + a0 · 1).

On the other hand,

X(qb′ + r) + (b− b0 · 1 + a0 · 1) ⊆ X(qb′ + r) + (b− b0 · 1 + a0 · 1) + q · b0 − q · b0

= q(Xb′ + b0) + (Xr − q · b0 + a0 · 1 − b0 · 1)
= qb + (Xr − q · b0 + a0 · 1 − b0 · 1).

So a ⊆ qb + (Xr − q · b0 +a0 · 1 − b0 · 1) with deg(Xr − q · b0 +a0 · 1 − b0 · 1) < deg b,
as desired.

Remark 2.7.

i - Note that the polynomials q and r of Theorem 2.6 are not unique in general:
if a ∈ bq + r, then a ∈ b(q + 1 − 1) + r and a ∈ bq + (r + 1 − 1), then, if
{0} ≠ 1 − 1, we have many q’s and r’s.

However, if R is a ring (or 0-ring, in agreement with our notation), then
Theorem 2.6 provide the usual Euclid Algorithm, with the uniqueness of the
quotient and remainder.

ii - The Theorem 2.6 above gives immediately another proof of Theorem 6 in [4].
i.e. every ideal in K[X] is a principal ideal: for a non zero ideal I ⊆ K[X]
select a nonzero polynomial b(x) ∈ I with minimal degree, then I = F [X].b(x).

3 Beginning the model theory of algebraically closed
multifields

This section contains the main contributions of this paper: we introduce some con-
cept of the algebraically closed 1-field and give the first steps on a model theory of
this class with a kind of quantifier elimination procedure.
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3.1 On algebraically closed multifields

Let R,S be 2-rings and h : R → S be a morphism. Then h extends naturally to the
2-rings multipolynomials hX : R[X] → S[X]:

(an)n∈N ∈ R[X] 7→ (h(an))n∈N ∈ S[X]

Now let s ∈ S we have the h-evaluation of s at a ∈ R[X], degree(a) ≤ n by

ah(s) = evh(s,a) = {s′ ∈ S : s′ ∈ h(a0) + h(a1).s+ h(a2).s2 + ...+ h(an).sn}.

In particular if T ⊇ R is a 2-ring extension and α ∈ T , we have the evaluation
of α at a ∈ R[X] by

a(α) = ev(α,a) = {b ∈ T : b ∈ a0 + a1α+ a2α
2 + ...+ anα

n}.

A root of a in T is an element α ∈ T such that 0 ∈ ev(α,a). A 2-ring R is
algebraically closed if every non constant polynomial in R[X] has a root in R.

Observe that, if F is a field, the evaluation of F [X] as a 1-ring coincide with the
usual evaluation. Therefore, if F is algebraically closed as 1-field and 2-field, then
will be algebraically closed in the usual sense.

Unfortunately, in dealing with multipolynomials, strange situations appears:

Example 3.1 (Finite Algebraically Closed 1-Field). The 1-field K = {0, 1} is alge-
braically closed. In fact, if p = a0 + a1X + a2X2 + ...+ anX

n ∈ K[X], with an ̸= 0,
then p(1) = K, since 1 + 1 = {0, 1}.

3.2 A quantifier elimination procedure

Instead of these "anomalies", we have a quantifier elimination procedure for any
infinite algebraically closed 1-fields. We will describe this (that is a variation of
Theorem 9.2.1 in [7]) after the following technical lemma:

Lemma 3.2 (Reduction Lemma). Let A be a 2-ring, t1(x̄), t2(x̄) be terms on the
full 2-ring language and let v = ā : x̄ → A

i - tA1 (ā) ⊆ tA2 (ā) iff 0 ∈ (t2 − t1)A(ā).

ii - Given any atomic formula, t1(x̄) ⊑ t2(x̄), there is a polynomial term p(x̄) ∈
R[x̄] such that

A |=v (t1(x̄) ⊑ t2(x̄)) ↔ (0 ⊑ p(x̄)).
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Proof. Item (i) follows immediately from the axiom M1 of superrings. Item (ii)
follows from item (i) above, the item (ii) of Lemma 1.27 and by a repeated use of
Theorem 2.5.

Let L be the language of 1-rings. For each 1-ring R, let L(R) be the language
extending L by adding all elements of R as strict constant symbols. Let Γ′ be the
1-ring axioms. Let extend Γ′ by (in)equalities and relations of the form

a0 ̸= b0; c1 = a1.b1; c2 ∈ a2 + b2; ai, bi, ci ∈ R

that are true in R ("the diagram of R"). Denote the set of formulas obtained by
Γ′(R). A model of Γ′(R) is a 1-ring that contains a subset R = {a : a ∈ R} and R
is an isomomorphic copy of R inside this model.

If R = K is a 1-field and Γ is the 1-field axioms, then a model of Γ(K) is a 1-field
that contains a subset K = {a : a ∈ K} and K is a 1-field isomorphic to K. Then
a model of Γ(K) is (up to a isomorphism) a 1-field containing K.

Now, we extend Γ(K) to a new set of axioms Γ̃(K) adding

∀ z0...∀ zn ∃x[0 ∈ z0 + z1x+ ...+ zn−1x
n−1 + xn], n ≥ 1. (AC)

and because the counter Example 3.1, we add also the family of axioms

∃z0...∃zn−1
∨

i<j<n

[zi ̸= zj ], n ≥ 2.

A model F of Γ(K) is also a model of Γ̃(K) iff F is infinite and algebraically
closed. Our aim is to describe a quantifier elimination procedure for Γ̃(F ). By the
reduction Lemma 3.2, F regards every atomic formula as equivalent modulo Γ(K)
to a polynomial “equation” 0 ∈ f(X1, ..., Xn).

Since K[X̄] is a 2-domain (by an iteration of Theorem 2.5), a conjunction of
inequations

m∧

i=1
[0 ̸= gi(X̄)]

is equivalent to the “inequation" 0 /∈ g1(X̄)...gn(X̄). Then, to obtain a quantifier
elimination for Γ̃(K) is sufficient eliminate Y from the formula

∃Y [0 ∈ f1(X̄, Y ) ∧ ... ∧ 0 ∈ fm(X̄, Y ) ∧ 0 /∈ g(X̄, Y )] (1)

with f1, ..., fm, g ∈ R[X1, ..., Xm, Y ].
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Theorem 3.3 (Quantifier Elimination Procedure). Let K be an infinite 1-field and
φ(X1, ..., Xn, Y ) the formula in 1. Then φ(X1, ..., Xn, Y ) is equivalent modulo Γ̃(R)
to a boolean combination of atomic formulas ψ(X1, ..., Xr), r ≥ n.

Proof. The proof consists in three parts:

A - Reduction to the case that only one of f1, ..., fm involves Y .
Move each conjunction that appears in (1) and that does not involve Y to the

left of ∃Y according to the rule “∃Y [φ∧ψ] ≡ φ∧ ∃Y [ψ] if Y does not appear in φ”.
Thus we assume degY (fi(X̄, Y )) ≥ 1, i = 1, ...,m and m ≥ 2.

We now perform an induction on ∑ degY (fi(X̄, Y )):
Let p(X̄, Y ) and q(X̄, Y ) be multipolynomials with coefficients in R such that

0 ≤ degY p(X̄, Y ) ≤ degY q(X̄, Y ) = d. Write p(X̄, Y ) in the form

p(X̄, Y ) = ak(X̄)Y k + ak−1(X̄)Y k−1 + ...+ a0(X̄) (2)

with aj ∈ R[X̄]. For each j with 0 ≤ j ≤ k let

pj(X̄, Y ) = aj(X̄)Y j + aj−1(X̄)Y j−1 + ...+ a0(X̄)

If 0 /∈ aj(X̄), division of q(X̄, Y ) by pj(X̄, Y ) produces qj(X̄, Y ) and rj(X̄, Y ) in
R[X̄, Y ] for which

aj(X̄)dq(X̄, Y ) ⊆ qj(X̄, Y )pj(X̄, Y ) + rj(X̄, Y ), (3)

and degY (rj) < degY (pj) ≤ d.
Let F be a model of Γ(K). If x1, ..., xn, y are elements of F such that 0 ∈ al(x̄)

for l = j + 1, ..., k and 0 /∈ aj(x̄), then [0 ∈ p(x̄, y) ∧ 0 ∈ q(x̄, y)] is equivalent in F
to [0 ∈ pj(x̄, y) ∧ 0 ∈ rj(x̄, y)]. Therefore, the formula [0 ∈ p(X̄, Y ) ∧ 0 ∈ q(X̄, Y )] is
equivalent modulo Γ(K) to the formula




k∨

j=0
[0 ∈ ak(X̄) ∧ ... ∧ 0 ∈ aj+1(X̄) ∧ 0 /∈ aj(X̄) ∧ 0 ∈ pj(X̄, Y ) ∧ 0 ∈ rj(X̄, Y )]




∨[0 ∈ ak(X̄) ∧ ... ∧ 0 ∈ a0(X̄) ∧ 0 ∈ q(X̄, Y )].
(4)

Apply the outcome of (4) to f1(X̄, Y ) and fm(X̄, Y ) (of 1). With the rule “ ∃Y [φ∨
ψ] ≡ ∃Y φ ∨ ∃Y ψ” we have replaced (1) by disjunction of statements of form (1)
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in each which the sum corresponding to ∑ degY (fi(X̄, Y )) is smaller. Using the
induction assumption, we conclude that m may be taken to be at most 1.

B - Reduction to the case that m = 0.
Continue the notation of part A which left us at the point of considering how to

eliminate Y from p(X̄, Y ) in

∃Y [0 ∈ p(X̄, Y ) ∧ 0 /∈ g(X̄, Y )]. (5)

Consider a model F of Γ̃(K) and elements x1, ..., xn ∈ F . If 0 /∈ p(x̄, Y ) then (since
F is algebraically closed) the statement

F |= ∃Y [0 ∈ p(x̄, Y ) ∧ 0 /∈ g(x̄, Y )]

is equivalent to the statement

p(x̄, Y ) does not divide g(x̄, Y )k in F [X].

Therefore, with q(X̄, Y ) = g(X̄, Y )k and in the notation of (2) and (3), formula (5)
is equivalent modulo Γ̃(K) to the formula




k∨

j=0
[0 ∈ ak(X̄) ∧ ... ∧ 0 ∈ aj+1(X̄) ∧ 0 /∈ aj(X̄) ∧ ∃Y [∈ rj(X̄, Y )]]




∨[0 ∈ ak(X̄) ∧ ... ∧ 0 ∈ a0(X̄) ∧ ∃Y [0 ∈ g(X̄, Y )]]

a disjunction of statements of form (1) with m = 0.

C - Completion of the proof.
By part B we are in the point of removing Y from a statement of the form

∃Y [0 /∈ al(X̄)Y l + al−1(X̄)Y l−1 + ...+ a0(X̄)].

Since models of Γ̃(K) are infinite 1-fields, this formula is equivalent modulo Γ̃(K)
to

0 /∈ al(X̄) ∨ ... ∨ 0 /∈ a0(X̄),

completing the quantifier elimination procedure.

Remark 3.4.
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i- The previous result subsumes the usual one, i.e., if K is a ordinary algebraically
closed field then it is an infinite algebraically closed (strict) 1-field and Theorem
3.3 is just the usual quantifier elimination result.

ii- In general, when the translate the Theorem 3.3 to a result on first-order rela-
tional structures (see Remark 1.12) we get that the theory of algebraically closed
1-fields perceives that some formulas are always equivalent to some ∀∃-formulas:
but this results seems not so ease to have a previous and direct intuition (and
consequent proof), i.e. without the use of the language of multialgebras and its
results.

4 Final remarks and future works

We finish the work presenting here some possible future developments.

• It could be interesting describe and explore an alternative notion of alge-
braically closed multifield based on an alternative notion of of root of a poly-
nomial, taking in account factorizations, for example, if p(x) ∈ (x − b)q(x)
for some q(x), then b can be seem as a root of p(x): by Theorem 7 in [4],
this in fact coincide with the other notion of root of a polynomial p(x) ∈ F [x]
whenever F is a hyperfield.

• It is true that any full 1-field has a kind of algebraic closure?

• In what sense the theory of algebraically closed 1-fields could be considered a
model completion of the 1-field theory?

• We gave a first step in model theory of 1-fields. It will be interesting con-
sider, in the same line, the model theory of 1-fields endowed with some extra
structure: orderings ([12], valuations ([11], etc.

• The Theorem 3.3 could be adapted for real closed and henselian 1-fields?

• In [17] was started the development of a identity theory and a universal al-
gebra like theory for multi structures. However, a full model theory of multi
structures, in the vein of chapter 1 of [6], should be an object of interest (as
the present work suggests) and it is seems to be unknown.
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Abstract
In the present work, a natural sequel to [17], we further discuss the existence

of adjunctions between categories of institutions and of π-institutions. This is
done at both a foundational and an applied level. Firstly, we reformulate and
conceptually clarify such adjunctions in terms of the 2-categorical data involved
in the construction of categories of institution-like structures. More precisely, we
remark that the process used for passing from rooms to institutions ([10]) can be
extended, due to its 2-functoriality, to more general room-like and institution-
like structures in such a way that the aforementioned adjunctions are all seen
to arise from simpler adjunctions at the room-like level. Secondly, and mostly
independently, we provide some applications of such adjunctions to abstract
logics, mainly to the setting of propositional logics and filter pairs ([2]); we also
generalize the process of skolemization, a classical device from predicate logic,
to the institutional setting.
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Introduction

The concept of institution was introduced by J. A. Goguen and R. M. Burstall
(see [13]) in order to present a unified mathematical formalism for the notion of a
formal logical system, i.e. it provides a “...categorical abstract model theory which
formalizes the intuitive notion of logical system, including syntax, semantic, and
satisfaction relation between them...” ([10]). This means that it encompasses the
abstract concept of universal model theory for a logic: it contains a satisfaction
relation between models and sentences that is “stable under change of notation”.
The are several natural examples of institutions, and a systematic study of abstract
model theory based on the general notion of institution is presented in Diaconescu’s
book [10].

A proof-theoretical variation of the notion of institution, the concept of π-
institution, was introduced by Fiadeiro and Sernadas in [12]: it formalizes the notion
of a deductive system and “...replace the notion of model and satisfaction by a prim-
itive consequence operator (à la Tarski)”. Categories of propositional logics endowed
with natural notions of translation morphisms provide examples of π-institutions.
Voutsadakis has developed an intensive study of abstract algebraic logic based on
the concept of π-institution, see for instance [21].

Certain relations between institutions and π-institutions were established in [12]
and [21]. On the other hand, it seems that the explicit functorial connections be-
tween the category of institutions (with comorphisms) and that of π-institutions
(with comorphisms) first appeared in [17]: indeed, the category of π-institutions
is isomorphic to a full coreflective subcategory of the category of institutions. In
the present (ongoing) work, we expand the study initiated in [17] by establishing
new adjunctions concerning categories of institution-like structures and sketching
new connections between these and abstract logics. Thus the goal of the article is
twofold: firstly, a categorical analysis in the setting of the abstract theory of models
(respectively, theory of proof) given by institution theory (respectively, π-institution
theory); secondly, applications to presentations of propositional logics (abstract log-
ics, filter pairs) and abstract predicate logic devices (skolemization).

Overview of the paper:
In Section 1 we recall, for the reader’s convenience, the definitions of institution

and of π-institution, as well as their respective notions of (co)morphism. In Section
2 we expand the work in [17] by presenting new adjunctions involving categories of
categories, diagrams, institutions, and π-institutions. Section 3 is devoted to ex-
tending the construction of the category of rooms � as presented in [10] � in a way
that applies to more general categories of institution-like structures. This is done
by applying classical 2-categorical machinery (such as the 2-Yoneda embedding and
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the Grothendieck construction) and, although being relatively straightforward from
a technical point of view, its 2-functoriality allows us to provide a crucial conceptual
simplification of the aforementioned adjunctions between categories of institution-
like structures: they are seen to arise as images (under a 2-functor of institutional
realization) of adjunctions between their generating categories of room-like struc-
tures. In Section 4, we present some institutions and π-institutions of abstract
propositional logics, not only the ones obtained by the former adjunctions, useful
for establishing an abstract Glivenko’s theorem for algebraizable logics regardless of
their signatures associated ([19]). We have also defined a institution for each filter
pair -general and finitary version (see [2])- in fact, we provide a functor from the
category of filter pairs to the category of institutions that can be restricted to a
functor from the category of propositional logics to the category of institutions and,
moreover, that can be extended to a functor from the “multialgebraic” setting (logics
and filter pairs), useful to deal with complex logics, as Logics of Formal Inconsis-
tency (LFIs) ([7]), thought non-deterministic semantics of matrices ([4]). Section
5 introduces a new institutional device: skolemization; which is applied to get, by
borrowing from FOL, a form of downward Löwenheim-Skolem for the setting of mul-
tialgebras. Section 6 finishes the paper presenting some remarks and perspectives
of future developments.

1 Preliminaries: categories of institutions and π-insti-
tutions

In this first section we recall, for the reader’s convenience, the definition of in-
stitution and π-institution with their respective notions of morphisms and comor-
phisms, consequently defining their categories. We also add a subsection recalling
the main results in [17]: the adjunction between the categories of institutions and
π-institutions endowed with its comorphisms.

1.1 Categories of institutions
Definition 1.1. An institution I � pSig, Sen,Mod, |ùq consists of

Sig
Mod

{{

Sen

!!
pCatqop |ù Set

1. a category Sig, whose the objects are called signature,
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2. a functor Sen : Sig Ñ Set, for each signature a set whose elements are called
sentence over the signature

3. a functor Mod : pSigqop Ñ Cat, for each signature a category whose the objects
are called model,

4. a relation |ùΣ� |ModpΣq| � SenpΣq for each Σ P |Sig|, called Σ-satisfaction,
such that for each morphism h : Σ Ñ Σ1, the compatibility condition

M 1 |ùΣ1 Senphqpϕq if and only if ModphqpM 1q |ùΣ ϕ

holds for each M 1 P |ModpΣ1q| and ϕ P SenpΣq

Example 1.2. Let Lang denote the category of languages L � ppFnqnPN, pRnqnPNq,
– where Fn is a set of symbols of n-ary function symbols and Rn is a set of symbols
of n-ary relation symbols, n ¥ 0 – and language morphisms1. For each pair of
cardinals ℵ0 ¤ κ, λ ¤ 8, the category Lang endowed with the usual notion of
Lκ,λ-sentences (= Lκ,λ-formulas with no free variable), with the usual association of
category of structures and with the usual (tarskian) notion of satisfaction, gives rise
to an institution Ipκ, λq.

Definition 1.3. Let I and I 1 be institutions.

(a) An institution morphism h � pΦ, α, βq : I Ñ I 1 consists of:

Sig

Ô

rr

Sen

��

pModqop

��
Ö

++Φ ��
Set Sig1

Sen1
oo

Mod1op
// Catop

 a functor Φ : Sig Ñ Sig1

 a natural transformation α : Sen1 � Φ ñ Sen

 a natural transformation β : ModñMod1 � Φop

Such that the following compatibility condition holds:

m |ùΣ αΣpφ
1q iff βΣpmq |ù

1
ΦpΣq φ

1

For any Σ P Sig, any Σ-model m and any ΦpΣq-sentence φ1.
1That can be chosen “strict" (i.e., Fn ÞÑ F 1

n, Rn ÞÑ R1
n) or chosen be “flexible" (i.e., Fn ÞÑ

tn� ary � termspL1qu, Rn ÞÑ tn� ary � atomic� formulaspL1qu).
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(b) A triple f � xϕ, α, βy : I Ñ I 1 is a comorphism between the given institutions
if the following conditions hold:

 ϕ : Sig Ñ Sig1 is a functor.
 natural transformations α : Sen ñ Sen1 � ϕ and β : Mod1 � ϕop ñ Mod

satisfying:
m1 |ù1

ϕpΣq αΣpφq iff βΣpm
1q |ùΣ φ

For any Σ P Sig, m1 PMod1pϕpΣqq and φ P SenpΣq.

Given comorphisms f : I Ñ I 1 and f 1 : I Ñ I2, notice that f 1  f :� xϕ1 � ϕ, α1 
α, β1  βy defines a comorphism f 1  f : I Ñ I2, where pα1  αqΣ � α1ϕpΣq � αΣ and
pβ1  βqΣ � βΣ � β

1
ϕpΣq. Let IdI :� xIdSig, Id, Idy : I Ñ I. It is straightforward to

check that these data determines a category2. We will denote by Insco this category
of institution comorphisms. Of course, using analagous methods one can also define
Insmor—the category of institution morphisms.

Example 1.4. Given two pairs of cardinals pκi, λiq, with ℵ0 ¤ κi, λi ¤ 8, i � 0, 1,
such that κ0 ¤ κ1 and λ0 ¤ λ1, then it is induced a morphism and a comorphism
of institutions pΦ, α, βq : Ipκ0, λ0q Ñ Ipκ1, λ1q, given by the same data: Sig0 �
Lang � Sig1, Mod0 � Mod1 : pLangqop Ñ Cat, Seni � Lκi,λi

, i � 0, 1, Φ �
IdLang : Sig0 Ñ Sig1, β :� Id : Modi ñMod1�i, α :� inclusion : Sen0 ñ Sen1.

1.2 Categories of π-institutions
Definition 1.5. A π-institution J � xSig, Sen, tCΣuΣP|Sig|y is a triple with its first
two components exactly the same as the first two components of an institution and,
for every Σ P |Sig|, a closure operator CΣ : PpSenpΣqq Ñ PpSenpΣqq, such that, for
every f : Σ1 Ñ Σ2 PMorpSigq, the following holds:

SenpfqpCΣ1pΓqq � CΣ2pSenpfqpΓqq, for all Γ � SenpΣ1q.

Definition 1.6. Let J and J 1 be π-institutions.

(a) A morphism between J and J 1 is a pair xΦ, αy such that:

 Φ : Sig Ñ Sig1 is a functor

2As usual in category theory, the set theoretical size issues on such global constructions of
categories can be addressed by the use of at least two Grothendieck universes.
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 α : Sen1Φ ñ Sen is a natural transformation

And, for all ΓY tφu � Sen1pΦΣq, the following holds:

φ P CΦΣpΓq ñ αΣpφq P CΣpαΣpΓqq

(b) xΦ, αy : J Ñ J 1 is a comorphism between π-institution if:

 Φ : Sig Ñ Sig1 is a functor
 α : Senñ Sen1Φ is a natural transformation

Such that, for all ΓY tφu � SenpΣq, we have:

φ P CΣpΓq ñ αΣpφq P CΦΣpαΣpΓqq

Given π-institution morphisms (respec. comorphisms) xF, αy : J Ñ J 1 and
xG, βy : J 1 Ñ J2, g � f is defined as xGF,α � βF y (respec. xGF, βF � αy), routine
calculations show the composition is well defined. The identity morphism and co-
morphism are both given by x1Sig, 1Seny. These remarks lead us to define πInsmor
and πInsco the categories of, respectively, institution morphisms and comorphisms.

Remark 1.7. It is easy to see that π-institution can be equivalently described by
a triple xSig, Sen, t$ΣuΣP|Sig|y where the first two components are simply the ones
used for π-institutions and the third component is a family, indexed by Σ P |Sig|, of
tarskian consequence relations $Σ � PpSenpΣqq�SenpΣq such that for every arrow
f : Σ1 Ñ Σ2 in Sig the induced function Senpfq : SenpΣ1q Ñ SenpΣ2q P MorpSetq
is a logical translation, i.e. for each ΓY tφu � SenpΣ1q

Γ $Σ1 φ ñ SenpfqrΓs $Σ2 Senpfqpφq

1.3 An adjunction between Insco and πInsco
For the reader’s convenience, we recall here the adjunction between Insco and

πInsco established in [17]; thus all the proofs will be omitted.
Let I � xSig, Sen,Mod, |ùy be an institution. Given Σ P |Sig|, consider

Γ� � tm PModpΣq; m |ùΣ φ for all φ P Γu and

M� � tφ P SenpΣq; m |ùΣ φ for all m PMu

for any Γ � SenpΣq and M �ModpΣq. Notoriously, these mappings establish a
Galois connection. Thus CIΣpΓq :� Γ�� defines a closure operator for any Σ P |Sig|
([21]). We can now define the first part of our adjunction:
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Insco πInsco

I xSigI , SenI , tCIΣuΣP|Sig|y

J xSigJ , SenJ , tCJΣuΣP|Sig|y

F

xϕ,α,βy xϕ,αy

For the other side of the adjunction consider the application:

πInsco Insco

J xSigJ , SenJ ,ModJ , |ùJy

J 1 xSigJ 1 , SenJ 1 ,ModJ
1
, |ùJ

1
y

G

xϕ,αy xϕ,α,α�1y

Where:

• ModJ is taken as:

Sigop Cat

Σ tCΣpΓq : Γ � SenpΣqu

Σ1 tCΣ1pΓq : Γ � SenpΣ1qu

ModJ

f Senpfq�1

With ModJpΣq being viewed as a “co-discrete category”3.

• For each Σ we let |ùJΣ� |ModpΣq| � SenpΣq as the relation:

m |ùJΣ φ iff φ P m

For any m PModpΣq and φ P SenpΣq

3I.e., a class of objects C endowed with the trivial groupoid structure of all ordered pairs, C�C.
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Theorem 1.8. The functors F : Insco Ñ πInsco and G : πInsco Ñ Insco defined
above establish an adjunction G % F between the categories Insco and πInsco. More-
over, F �G � IdπInsco and the unity of this adjunction, the natural transformation
η : IdπInsco Ñ F � G, is the identity. Thus the category πInsco can be seen to be a
full coreflective subcategory of Insco.

2 Adjunctions between Inst, π-Inst, Cat, Diag

In this section we continue and expand the analysis of categorical relations be-
tween categories whose objects are categories endowed with some extra structure like
categories of (π-)institutions, categories of categories and categories of Set-based di-
agrams.

2.1 An adjunction between Insmor and πInsmor
It is natural to ask whether we could achieve a similar adjunction considering

morphisms instead of comorphisms, that is, taking Insmor and πInsmor instead of
Insco and πInsco. In this subsection, we sketch a proof that the category of π-
institutions and morphisms is isomorphic to a full coreflective subcategory of the
category of institutions and morphisms: this is a natural variant of the results in
[17] which were recalled in subsection 1.3.

Let I � xSig, Sen,Mod, |ùy be an institution. Given Σ P |Sig| let:

Γ� :� tm PModpΣq : m |ùΣ φ for all φ P Γu

and

M� :� tφ P SenpΣq : m |ùΣ φ for all m PMu

for any Γ � SenpΣq and M � |ModpΣq|. These mappings cleary define a Galois con-
nection between PpSenpΣqq and Pp|ModpΣq|q. Therefore, ConIΣpΓq :� Γ�� defines
a closure operator on PpSenpΣqq for any Σ P |Sig|.

Lemma 2.1. Let xϕ, α, βy : I Ñ I 1 be an arrow in Insmor and σ P |Sig|. Given
Γ � SenpΣq and M � |ModpΣq| the following holds:

• βΣrpαΣrΓsq�s � Γ�

• αΣrpβΣrM sq
�s �M�
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Proof: The proof is similar to the one of Lemma 2.8 in [17]

Consider now the following functor:

F : Insmor Ñ πInsmor
I ÞÑ xSig, Sen, tConIΣuΣP|Sig|y

The proof that F is well defined on objects can be found on [17]. The action on
morphisms is defined as follows:

I
xϕ,α,βy
ÝÝÝÝÑ I 1

F pIq
xϕ,αy
ÝÝÝÝÑ F pI 1q

Consider now the following application,

G : πInsmor Ñ Insmor
J Ñ xSig, Sen,ModJ , |ùJy

Where:

• ModJ : Sigop Ñ Cat is defined as:

Σ f
ÝÑ Σ1 ÞÑ tCΣ1pΓ1q : Γ1 � SenpΣ1qu

Senpfq�1
ÝÝÝÝÝÝÑ tCΣpΓq : Γ � SenpΣqu

• For each Σ P |Sig|, |ùJΣ� |ModJpσq| � SenpΣq is defined such that, give m P
|ModpΣq| and φ P Senpσq, m |ùJΣ φ iff φ P m.
The proof that ModJ is well defined and that GpJq satisfies the compatibility
condition and is indeed an institution can be found in [17]

Given a morphism f � xϕ, αy : J Ñ J 1 in πInsmor define, for Σ P |Sig| and m P
|ModJpΣq|, βΣpmq :� α�1

Σ pmq. Let us prove that βΣ : ModJpΣq ÑModJ
1
pϕpΣqq.

PpSenpΣqq PpSen1pϕpΣqqq
α�1

Σoo

PpSenpΣ1qq

Senpfq�1

OO

PpSen1pϕpΣ1qqq
α�1

Σ1

oo

Senp1ϕpfqq�1

OO
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Let us register prove the compatibility condition for morphisms. Given Σ P |Sig|,
m PModJpΣq and φ P SenpϕpΣqq we have:

m |ùJΣ αΣpφq ðñ αΣpφq P m

ðñ φ P α�1
Σ pmq

ðñ φ P βΣpmq

ðñ βΣpmq |ù
J 1

ϕpΣq φ

It follows that Gpfq � xϕ, α, βy is a morphism of institutions. To prove G a functor
simply notice that, given f � xϕ, αy : J Ñ J 1 and f 1 � xϕ1, α1y : J 1 Ñ J2 in πInsmor,
Gpf 1 � fq � xϕ1 � ϕ, α1 � αϕ, pα1 � αϕq�1y � xϕ1 � ϕ, α1 � αϕ, α�1ϕ � α1�1y � Gpf 1q �Gpfq
and, for any π-institution J, routine calculations show Gp1Jq � 1GpIq.

In fact, as in [17], we have the following:

Theorem 2.2. The functors Insmor πInsmor
F

G
establish and adjunction G %

F . Moreover, since F �G � IdπInsmor and the unity of this adjunction, the natural
transformation η : IdπInsmor Ñ F � G, is the identity. Thus the category πInsmor
can be seen as a full coreflective subcategory of Insmor.

2.2 Adjunctions between CAT and πInsco
In this section we detail left and right adjoints for the forgetful functor from

πInsco to CAT. Something of notice here is the similarity between the functors
shown here and the adjoints to the forgetful functor from Top to Set. Indeed, we de-
scribe a left adjoint that associates categories to their “discrete" π-institution, where
every set is closed, and a right adjoint that maps to their “codiscrete" π-institution,
where the only closed sets are the empty set and the entire set of formulas. The
place of these two constructions in the theory of π-institutions is then similar to
the place of the “(co)discrete" topology in point set topology. That is to say, as
illustrative examples of pathologies.

Let us commence by the right adjoint. We begin by defining an action on the
objects of CAT; given a category A let JA :� xA, �, tConcuaP|A|y where � : A Ñ Set
is the constant functor to the singleton set and, for each object a in A and Γ � t�u,
we define ConapΓq � t�u. It is clear that Cona is closure operator on t�u. Moreover,
for any arrow a

f
ÝÑ a1 in A and Γ � t�u, we have that �fpConapΓqq � Cona1p�fpΓqq

and thus JA is a π-institution.
We can now extend J to morphisms. Given some functor F : A Ñ B, we see that

there is a unique ! : � ñ �F ; furthermore, routine calculations show φ P ConapΓq ñ
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!apφq P ConFap!apΓqq for tφuYΓ � t�u. Define then JF � xF, ! y the remarks above
showing it a comorphism between JA and JB.

To prove that J behaves functorially notice, firstly, that the lone arrow � ñ �
is 1� so Jp1Aq � x1A, 1�y � 1JA. Finally, the below diagram guarantees that the
composition is well behaved.

�c //

��

�Fc //

��

�GFc

��
�c1 // �Fc1 // �GFc1

Theorem 2.3. Let U : πInsco Ñ CAT the forgetful functor, taking each π-
institution to its signature category and each comorphism to its first coordinate.
The functors J : CAT Ñ πInsco and U : πInsco Ñ CAT establish an adjunction
J $ U with counit ηA � 1A.
Proof: Given some a π-institution J and a functor F : SigJ Ñ A, consider the
below diagram:

A UJA JA

SigJ J

1A

F
F xF,αy

Where α is the single arrow Sen ñ �F . Given tφu Y Γ � SenpΣq we have that
φ P CΣpΓq ñ αΣpφq � �. As ConFΣpαΣpΓqq � t�u it follows that φ P CΣpΓq ñ
αΣpφq P ConFΣpαΣpΓqq and thus xF, αy is indeed a comorphism between J and
DA. As xF, αy is clearly the only arrow that makes the diagram commute, the
result follows.

We can now describe the left adjoint. Consider the following functor:

K : CAT πInsco

A xA,H, pConaqaP|A|y

B xB,H, pConbqbP|B|y
F xF,! y

Where H is the constant functor to the empty set, Cona is the single closure
operator on the empty set and ! is the unique natural transformation H ñ HF .
By vacuity, xF, ! y satisfies the comorphism condition. Proving that K is indeed a
functor uses similar arguments to the ones given above.

455



G. B. Rios, D. A. Souza, D. C. Pinto, H. L. Mariano

Theorem 2.4. Let U as above. The functors K and U establish an adjunction
K % U with unit ϵA � 1A.

Proof: Given some a π-institution J and a functor F : A Ñ SigJ , consider the
below diagram:

A UKA KA

SigJ J

1A

F
F xF,αy

Where α is the only natural transformation H ñ SenJF . We argue by vacuity
to show that xF, αy is a comorphism. Since xF, αy it is clearly the only arrow that
makes the diagram commute, the result follows.

Remark 2.5. It is easy to see how one would go on defining the πInsmor versions
of the functors J and K. This, of course, prompt us to question if these functors
still define an adjunction. Routine calculations show that the directions would be
reversed, that is, in the πInsmor case we have: K $ U $ J

Remark 2.6. Let us consider a generalization of πInsco for a moment. Given a
concrete category C, i.e. a faithful functor | � | : C Ñ Set, a C�π�institution is a
triple of the form xSig, Sen : Sig Ñ C, pCΣ : P|SenpΣq| Ñ P|SenpΣq|qΣP|C|y where
Sig is a category, Sen a functor and CΣ a closure operator on P|SenpΣq| satisfy-
ing structurality; furthermore, one can easily generalize a version of comorphisms
for C�π�institutions. Consider then C�πInsco— the category of C�π�institution
comorphisms.
Let 1 a terminal object in the concrete category C. We can now define a functor
JC : CAT Ñ C�πInsco as

A F
ÝÑ B ÞÑ xA, 1, pConaqaPObpAqy

xF,αy
ÝÝÝÑ xB, 1, pConbqbPObpBqy

Where 1 is the constant functor to the terminal object, ConapΓq � |Senpaq| for each
a P ObpAq and Γ � |Senpaq| and α is the unique 1 ñ 1F . Using the methods
analogous we see that JC $ forgetful. Suppose now that C had a initial object 0,
one can easily see how to define KC — the left adjoint to the forgetful — mimicking
K.
It is common, specially when dealing with propositional logics, to define the syntax as
an algebraic structure instead of a set. This remark could be of use in that scenario.
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2.3 Adjunctions Diagco ⇆ πInsco
We begin this section by describing DiagcopCq and DiagmorpCq, the categories

of diagrams for a given category C. Diagrams for Set can be initially seen as
π-institutions minus the consequence relation and the 2-categorially minded will
recognize diagrams for C as the Grothendieck construction for CATp�, Cq. After
this introduction, we proceed to obtain right and left adjoints to the the forgetful
DiagcopSetq Ñ πInsco. Finally, we further this result to categories adjoint to Set.
In this sense the purpose of this section is twofold:

• Firstly, it may serve as a path to the theory of “generalized" π-institutions,
that is, π-institutions having sentence functors over any arbitrary category,
not only Set. This practice of taking sentences in categories different of Set is
common in logic, a notorious example being that of propostional logic where
sentences are taken as free algebras.

• Secondly, it introduces, albeit tacitly, the 2-categorial ideas which will be used
in the next section. Indeed, the idea of diagrams will be explored again in
section 3.2.

Let C be a category. Denote DiagcopCq the category whose objects are pair
pA,F q, where F : AÑ C is a covariant functor and such that HomppA,F q, pA1, F 1qq
is the (meta)class of all pairs pT, αq where T : A Ñ A1 is a functor and α : F Ñ
F 1 � T is a natural transformation. Let idpA,F q :� pidA, idF q and if pT 1, α1q P
HomppA1, F 1q, pA2, F 2qq, then pT 1, α1q  pT, αq :� pT 1 � T, α1T � αq. DiagmorpCq de-
notes the category with the same objects as DiagcopCq and, for arrows, pT, αq P
HomppA,F q, pA1, F 1qq iff T : A Ñ A1 is a functor and α : F 1 � T Ñ F is a nat-
ural transformation; identities are the same as in DiagcopCq and compositions are
adapted accordingly: pT 1, α1q  pT, αq :� pT 1 � T, α � α1T q.

Now consider the category πInsco and the obvious forgetful functor U : πInsco Ñ
DiagcopSetq given by:

πInsco DiagcopSetq

xSig, Sen, pCΣqΣP|Sig|y xSig, Seny

xSig1, Sen1, pC 1
ΣqΣP|Sig|y xSig1, Sen1y

U

xF,αy xF,αy
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The main result of this subsection is that U has a left adjoint L : DiagcopSetq Ñ
πInsco and a right adjoint R : DiagcopSetq Ñ πInsco. Thus U : πInsco Ñ
DiagcopSetq preserves all limits and all colimits.

We will provide just the definitions of the functors, since the proof of the universal
properties are straightforward.

L : DiagcopSetq Ñ πInsco is given by: LpA,F q :� pA,F, pCmina qaP|A|q, where
Cmina : P pF paqq Ñ P pF paqq is such that:

Γ P P pF paqq ÞÑ Cmina pΓq :� Γ

It is ease to see that LpA,F q satisfies the coherence condition in the definition
of π-institution.

The action of L on morphisms is very simple:

LpppA,F q
pT,αq
Ñ pA1, F 1qq � pA,F, pCmina qaP|A|q

pT,αq
Ñ pA1, F 1, pC 1min

a1 qa1P|A1|q;

this clearly determines a morphism of π-institutions.
For each pA,F q P |DiagcopSetq|, we have the identity arrow idpA,F q : pA,F q Ñ

UpLpA,F qq and this is a initial object in the comma category pA,F q Ó U . Thus L
is left adjoint to U and we have just described the component pA,F q of the unity of
this adjunction.

Similarly, we have a functor R : DiagcopSetq Ñ πInsco with action RpA,F q :�
pA,F, pCmaxa qaP|A|q, where Cmaxa : P pF paqq Ñ P pF paqq is such that:

Γ P P pF paqq ÞÑ Cmaxa pΓq :� F paq

With the obvious action on arrows, R becomes the right adjoint to U .

Remark 2.7. Given category C and a functor C E
ÝÑ Set with left adjoint Set L

ÝÑ C

(respec. right adjoint Set R
ÝÑ C) we can form DiagcopCq

Ẽ
ÝÑ DiagcopSetq and

DiagcopSetq L̃
ÝÑ DiagcopCq by composing:

ẼppT, αq : pA,F q Ñ pA1, F 1qq � pT,Eαq

and likewise for L̃ (respec. R̃). It is straightforward that Ẽ has as left adjoint L̃
(respec. right adjoint R̃). We can then compose this adjunction with the one obtained

above to obtain πInsco DiagcopCq.
Ẽ�U

L�R̃
J (respec. DiagcopCq πInsco

R�Ẽ

L̃�U
J ).
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We summarize below the adjunctions previously presented. It can be described
an analogous diagram for “morphisms” instead of “co-morphism”.

Instco

��
CAT // π � Instco

OO

oo

��
DiagcopSetq

OO OO

//
// DiagcopCqoo

3 Adjunctions at the level of room-like structures
Accordding to [10], page 47,
“The presentation of institutions as functors was given already in [13] and the

2-categorical structure of the category of institutions has been studied in [9] ."
This section aims at describing how a standard construction from 2-category the-

ory � the Grothendieck construction, which associates a fibration to a pseudofunctor
in a 2-functorial way � allows us to reformulate the above adjunctions between cat-
egories of institution-like structures in a way which is general and systematic, and
which provides conceptually clearer equivalent descriptions of the same phenomena.
This is done in two main steps:

1. We borrow from [10] the definition of the category of rooms, denoted by Room
� which can be used to provide a concise description of the category of
institutions4 � and generalize it in a straightforward way (to categories of
room-like structures), so as to obtain analogous reconstructions of categories
of institution-like structures.

2. By using the (non-trivial) facts that (a) the process of associating fibrations to
pseudofunctors defines a 2-categorical equivalence, and (b) the 2-categorical
Yoneda embedding is 2-fully faithful, we are able to conclude that the 2-
functorial procedure (described below) which sends categories of room-like
structures to categories of institution-like structures is also 2-fully faithful. As
a corollary, any 2-categorical connections between categories of institution-like
objects can be "pulled-back" to a corresponding construction at the level of
room-like structures. For the purposes of this paper, we shall only be con-

4In [10], this description is used to show that Insmor is a complete category.

459



G. B. Rios, D. A. Souza, D. C. Pinto, H. L. Mariano

cerned with the particular case of recovering instutition-level adjunctions in
terms of much simpler room-level adjunctions.

The definition of categories of room-like objects is illustrated in terms of three
archetypal examples: for institutions (as usual), for π-institutions (a direct analo-
gous), and for the category of small categories (which turns out to be an extremal
example).

It should also be remarked that the aforementioned procedure comes naturally,
and quite generally, in two variants: one suitable for describing morphisms be-
tween institution-like structures, and one suitable for describing comorphisms be-
tween them.

Before introducing the actual definitions, we outline as follows the background
to be considered: as described in [10], the category of institutions and morphisms
can be obtained by means of a standard categorical construction often referred to
as the Grothendieck construction. There, a central role is played by the so-called
category of rooms, denoted by Room: individually, an institution having Sig as its
category of signatures corresponds to a functor Sig ÝÑ Room; on the other hand,
(co)morphisms of institutions should also take into account base-change functors
between different categories of signatures. The Grothendieck construction provides
an adequate framework for studying this kind of phenomena. More precisely, given a
1-category C (regarded as a strict 2-category with trivial 2-cells), the Grothendieck
construction, which we shall denote by �7, associates to each pseudofunctor F :
C ÝÑ CAT a 1-category F 7 together with a structure (projection) functor F 7 ÝÑ C
onto the base category. Most importantly, it constitutes a pseudofunctor

�7 : rC,CATs ÝÑ CAT{C,
where:

• rC,CATs denotes the 2-category of pseudofunctors C ÝÑ CAT, pseudonatural
transformations, and modifications.

• CAT{C denotes the slice 2-category defined in the obvious way.

Our main interest will be the case where C is Cat, the 1-category of categories.
We shall also need to consider the 2-categorical Yoneda (pseudo)functor

Y : C ÝÑ rCop,CATs
c ÞÝÑ Cp�, cq
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associated to a (possibly weak) 2-category C, and variations thereof. A pseudo-
functor equivalent to one of the form Cp�, cq is called a representable 2-presheaf. We
will be concerned with (restrictions to CAT of) 2-presheaves on a (suitably large)
2-category of categories which are represented by variations of Room. For instance,
Insco is described in [10] as the Grothendieck construction CATp�op,Roomq7 of the
Yoneda-like 2-presheaf CATp�op,Roomq on CAT. Our goal in this section will be
to provide an alternative description of the above adjunctions between categories
of institution-like structures (such as institutions and π-institutions), by noticing
that (i) it is easy to describe Room-like categories from which other categories
of institution-like structures can be obtained through a similar Yoneda-followed-
by-Grothendieck procedure, and (ii) the notion of adjunction is available for any
2-category, and adjunctions in this sense are preserved by pseudofunctors.

As for categorical prerequisites, we restrict ourselves to providing quick (and
mostly ad-hoc) descriptions of some of the necessary constructions from 2-category
theory, including the Grothendieck construction; hence the reader is strongly en-
couraged to have a prior basic knowledge on these topics. For that purpose, we refer
to [10] and [20] for a brief introduction, and to [14] for a more detailed discussion.

The present section does not aim at completeness; instead, it consists in a brief
introduction, including basic constructions a few functioning examples, to the idea of
canonically producing new (resp. recovering well-known) 2-categorical information
on categories of institution-like structures in terms of their simpler counterparts:
categories of room-like structures.

3.1 2-categorical preliminaries

We start by fixing some notations and defining the 2-categorical constructions
alluded to above. The basic language of 2-category theory will be freely used. Unless
otherwise specified, by a 2-category we mean a strict 2-category. If C is a 1-category,
we regard it as a 2-category whenever necessary. We denote by CAT the 2-category
of categories, functors, and natural transformations, and by Cat the 1-category of
categories and functors. Given 2-categories C and D, we denote by rC,Ds the cor-
responding category of pseudofunctors, pseudonatural transformations, and modifi-
cations. If C is a 2-category, we denote by Cop (resp. Cco, Ccoop) the 2-category
obtained by reversing the 1-cells (resp. 2-cells, both 1-cells and 2-cells). By a con-
travariant pseudofunctor from C to D we mean a pseudofunctor Cop ÝÑ D. By a
2-presheaf (resp. category of 2-presheaves) we mean a pseudofunctor Cop ÝÑ CAT
(resp. a 2-category rCop,CATs).
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3.1.1 The Grothendieck construction

The Grothendieck construction can be defined in two similar versions: taking
as input either a contravariant CAT-valued pseudofunctor (i.e. a 2-presheaf), or a
covariant one.

Definition 1. (Grothendieck construction for contravariant pseudofunctors)

Let C be a 1-category. Given a pseudofunctor F : Cop ÝÑ CAT, we define
its Grothendieck construction or Grothendieck category, denoted by F 7, as the 1-
category given by the following data:

• Its objects are pairs pc, xq, where c P ObpCq and x P ObpF pcqq.

• An arrow pc, xq ÝÑ pd, yq is a pair pf, ϕq, where f P Cpc, dq and
ϕ P F pcqpx, Ffpyqq.

• The composite of morphisms pf, ϕq : pc, xq ÝÑ pd, yq and pg, ψq : pd, yq ÝÑ
pe, zq is defined as

pg � f , αf,gz � F pfqpψq � ϕq,

where αf,g is the natural isomorphism (associated to F by the definition of a
pseudofunctor) F pfq � F pgq ùñ F pg � fq. See

x Ffpyq FfpFgpzqq�pFf � Fgqpzq F pg � fqpzq.
ϕ Ffpψq αf,g

z

The reader will be able to check that composition is associative and that each
object possesses an identity arrow (by using the natural isomorphisms αc : 1F pcq ùñ
F pidcq). The category F 7 is canonically endowed with a (projection) functor F 7 ÝÑ
C given by pc, xq ÞÝÑ c and pf, ϕq ÞÝÑ f .

Now, suppose given a 1-cell in rCop,CATs, i.e. a pseudonatural transformation
η : F ùñ G. We define a functor η7 : F 7 ÝÑ G7 as follows:

• η7ppc, xqq � pc, ηcpxqq for each pc, xq P ObpF 7q.

• For each pf, ϕq : pc, xq ÝÑ pd, yq in F 7, we define η7ppf, ϕqq : pc, ηcpxqq ÝÑ
pd, ηdpyqq as

pf , γfy � ηcpϕqq,
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where γf is the natural isomorphism (associated to η by the definition of a
pseudonatural transformation) as in

F pdq Gpdq

F pcq Gpcq.

ηd

F pfq
γf

Gpfq

ηc

See

ηcpxq ηcpF pfqpyqq Gpfqpηdpyqq.
ηcpϕq γf

y

The reader will be able to check that η7 is indeed a functor. Also, it is clear
that it is compatible with the projections F 7 ÝÑ C and G7 ÝÑ C, so that we
can regard η7 as a 1-cell in the slice 2-category CAT{C.

Finally, suppose given a 2-cell in rCop,CATs, i.e. a modification µ : η ⇛ χ
between pseudonatural transformations η, χ : F ùñ G. We define a natural
transformation µ7 : η7 ùñ χ7 as follows: for each pc, xq P ObpF 7q, we take

µ7pc,xq : η7ppc, xqq � pc, ηcpxqq ÝÑ χ7ppc, xqq � pc, χcpxqq

to be pidc, βcχcpxq
� pµcqxq, where βc is the natural isomorphism (associated to G

by the definition of a pseudofunctor) 1Gpcq ùñ Gpidcq. See

ηcpxq χcpxq Gpidcqpχcpxqq.
pµcqx βc

χcpxq

The reader will be able to check that µ7 is indeed a natural transformation.
Furthermore, it can be verified that by sending a pseudofunctor F to a category F 7,
a pseudonatural transformation η : F ùñ G to a functor η7 : F 7 ÝÑ G7, and a
modification µ : η ⇛ χ to a natural transformation µ7 : η7 ùñ χ7, we have defined
a pseudofunctor

�7 : rCop,CATs ÝÑ CAT{C.

Definition 2. (Grothendieck construction for covariant pseudofunctors)
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Let C be a 1-category. Given some pseudofunctor F : C ÝÑ CAT, we define
its Grothendieck construction or Grothendieck category, denoted by F7, as the 1-
category given by the following data:

• Its objects are pairs pc, xq, where c P ObpCq and x P ObpF pcqq.

• An arrow pc, xq ÝÑ pd, yq is a pair pf, ϕq, where f P Cpc, dq and
ϕ P F pdqpFfpxq, yq.

• The composite of morphisms pf, ϕq : pc, xq ÝÑ pd, yq and pg, ψq : pd, yq ÝÑ
pe, zq is defined as

pg � f , ψ � F pgqpϕq � pαf,gx q
�1q,

where αf,g is the natural isomorphism (associated to F by the definition of a
pseudofunctor) F pfq � F pgq ùñ F pg � fq. See

F pg � fqpxq pFg � Ffqpxq � FgpFfpxqq Fgpyq z.
pαf,g

x q�1 Fgpϕq ψ

The reader will be able to check that composition is associative and that each
object possesses an identity arrow (by using the natural isomorphisms αc : 1F pcq ùñ
F pidcq). As in the previous definition, F7 has a canonical projection functor F7 ÝÑ C
given by pc, xq ÞÝÑ c and pf, ϕq ÞÝÑ f . (Here, the reader might recognize it as what
is called in the literature an opfibration, or that it realizes F7 as an opfibered category
over C).

Suppose given a 1-cell in rC,CATs, i.e. a pseudonatural transformation η :
F ùñ G. We define a functor η7 : F7 ÝÑ G7 as follows:

• η7ppc, xqq � pc, ηcpxqq for each pc, xq P ObpF7q.

• For each pf, ϕq : pc, xq ÝÑ pd, yq in F7, we define η7ppf, ϕqq : pc, ηcpxqq ÝÑ
pd, ηdpyqq as

pf , ηdpϕq � pγ
f
x q

�1q,

where γf is the natural isomorphism (associated to η by the definition of a
pseudonatural transformation) as in
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F pdq Gpdq

F pcq Gpcq.

ηd

F pfq Gpfq

ηc

γf

See
Gpfqpηcpxqq ηdpF pfqpxqq ηdpyq.

pγf
x q

�1 ηdpϕq

The reader will be able to check that η7 is indeed a functor. Again, it is clearly
compatible with the projections F7 ÝÑ C and G7 ÝÑ C, so that we can regard
η7 as a 1-cell in the slice 2-category CAT{C.

Suppose given a 2-cell in rC,CATs, i.e. a modification µ : η ⇛ χ between
pseudonatural transformations η, χ : F ùñ G. We define a natural transformation
µ7 : η7 ùñ χ7 as follows: for each pc, xq P ObpF7q, we take

pµ7qpc,xq : η7ppc, xqq � pc, ηcpxqq ÝÑ χ7ppc, xqq � pc, χcpxqq

to be pidc, pµcqx � pβcηcpxq
q�1q, where βc is the natural isomorphism (associated to

G by the definition of a pseudofunctor) 1Gpcq ùñ Gpidcq. See

Gpidcqpηcpxqq ηcpxq χcpxq.
pβc

ηcpxq
q�1

pµcqx

The reader will be able to check that µ7 is indeed a natural transformation. As
before, it can be verified that by sending a pseudofunctor F to F7, a pseudonatural
transformation η : F ùñ G to η7 : F7 ÝÑ G7, and a modification µ : η ⇛ χ to
µ7 : η7 ùñ χ7, we have defined a pseudofunctor

�7 : rC,CATs ÝÑ CAT{C.

3.1.2 Representable pseudofunctors

Let C be a 2-category. For each c P ObpCq, we define a pseudofunctor (in fact,
a strict 2-functor) Cp�, cq : Cop ÝÑ CAT as follows:

• Each d P ObpCq is sent to the hom-category Cpd, cq.

• Each 1-cell f : d ÝÑ e in C is sent to the functor Cpf, cq : Cpe, cq ÝÑ Cpd, cq
given by precomposition of both 1-cells and 2-cells with f .
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• Each 2-cell η : f ùñ g between 1-cells f , g : d ÝÑ e is sent to the natural
transformation

Cpη, cq : Cpf, cq ùñ Cpg, cq

given by precomposition with η, that is, by associating to each 1-cell h : e ÝÑ c
(i.e. object of Cpe, cq) the 2-cell (i.e. morphism of Cpd, cq)

Cpη, cqh � h � η : h � f ÝÑ h � g.

Next, given a 1-cell p : c ÝÑ c1 in C, we define a pseudonatural transformation
(in fact, a strict 2-natural transformation) Cp�, pq : Cp�, cq ùñ Cp�, c1q as
follows:

• To each d P ObpCq we associate the functor (i.e. 1-cell in CAT) Cpd, pq :
Cpd, cq ÝÑ Cpd, c1q given by postcomposition of both 1-cells and 2-cells with
f .

• As we are only dealing with strict 2-categories, composition of 1-cells in C is
strictly associative, hence we can fill the square diagrams thus obtained with
identity natural transformations.

Given a 2-cell η : p ùñ p1 between p, p1 : c ÝÑ c1, we define a modifica-
tion Cp�, ηq : Cp�, pq ⇛ Cp�, p1q by associating to each d P ObpCq the natural
transformation Cpd, ηq : Cpd, pq ùñ Cpd, p1q given on each f P ObpCpd, cqq by
Cpd, ηqf � η � f : p � f ÝÑ p1 � f .

Routine diagram chasing shows that the above constructions define a strict 2-
functor C ÝÑ rCop,CATs, which we denote by YC and call the Yoneda embedding
associated to C.

Remark 3.1. The above constructions can be adapted to produce a Yoneda embed-
ding for any weak 2-category C. In this case, YC will in general only be a (non-strict)
pseudofunctor. Also, the term embedding used here may be misleading in that the
2-categorical statement analogous to the Yoneda lemma, although true, is not nearly
immediate from the above discussion. An elementary but not-so-short proof is given
in [5].
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3.1.3 Adjunctions in a 2-category

Definition 3. Let C be a 2-category. An adjunction in C is a quadruple pf, g, η, εq,
where:

• f and g are 1-cells in C of the form f : c ÝÑ d, g : d ÝÑ c.

• η and ε are 2-cells of the form η : idc ùñ g � f , ε : f � g ùñ idd.

• These satisfy the identities pεfq � pfηq � 1f and pgεq � pηgq � 1g.

We denote the existence of such an adjunction by f % g.

For our purposes, the crucial property of adjunctions in 2-categories is that they
are (up to isomorphism) preserved by any pseudofunctor:

Lemma 4. Let F : C ÝÑ D be a pseudofunctor, and pf, g, η, εq an adjunction in
C. Then F induces an adjunction pF pfq, F pgq, η̄, ε̄q in D.

Proof. Let f : c ÝÑ d, g : d ÝÑ c. Take η̄ : idF pcq ùñ F pgq � F pfq to be the
composite

idF pcq
αc

ùñ F pidcq
F pηq
ùñ F pg � fq

pαg,f q�1
ùñ F pgq � F pfq,

where αc and αg,f are the 2-cells associated to F as a pseudofunctor. Analo-
gously, take ε̄ : F pfq � F pgq ùñ idF pdq to be the composite

F pfq � F pgq
αf,g

ùñ F pf � gq
F pεq
ùñ F piddq

pαdq�1
ùñ idF pdq.

Now, notice that

pε̄F pfqq � pF pfq � η̄q � pppαdq�1F pεqαf,gqF pfqq � pF pfqppαg,f q�1F pηqαcqq

is given by the following composite of 2-cells:

F pfq
F pfqαc

ùñ F pfq�F pidcq
F pfqF pηq
ùñ F pfq�F pg�fq

F pfqpαg,f q�1
ùñ F pfq�F pgq�F pfq ùñ

αf,gF pfq
ùñ F pf � gq � F pfq

F pεqF pfq
ùñ F piddq � F pfq

pαdq�1F pfq
ùñ F pfq.
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On the other hand, the equality pεfq � pfηq � 1f implies (by functoriality of
Cpc, dq ÝÑ DpF pcq, F pdqq) F pεfq � F pfηq � 1F pfq. The left-hand side equals the
composite of 2-cells

F pfq
F pfηq
ùñ F pf � g � fq

F pεfq
ùñ F pfq,

which (by expanding idF pf�g�fq through the coherence laws of F as a pseudo-
functor) can be rewritten as

F pfq
F pfηq
ùñ F pf � g � fq

pαf,g�f q�1
ùñ F pfq �F pg � fq

F pfqpαg,f q�1
ùñ F pfq �F pgq �F pfq ùñ

αf,gF pfq
ùñ F pf � gq � F pfq

αf�g,f

ùñ F pf � g � fq
F pεfq
ùñ F pfq.

Again by using the coherence laws of F , it can be shown (as the reader will be
able to do in detail) that the following equalities hold:

pF pfqF pηqq � pF pfqαcq � pαf,g�f q�1 � F pfηq : F pfq ùñ F pfq � F pg � fq,

ppαdq�1F pfqq � pF pεqF pfqq � F pεfq � αf�g,f : F pf � gq � F pfq ùñ F pfq.

It follows that the two composites of 2-cells above are equal, so that pε̄F pfqq �
pF pfq � η̄q � 1F pfq, which is the first desired identity. The second one can be shown
analogously.

3.2 Categories of institutions as Grothendieck categories
[10] describes a procedure to recover Insmor as a Grothendieck category. It is

done by introducing the so-called category of rooms, denoted by Room (see below),
so that Insmor is canonically equivalent (isomorphic, in fact) to CATpp�qop,Roomq7.
Before recalling this construction, it will be convenient to define (or better, to fix
notation for) a general notion of Room-like category which can be applied to produce
other categories of institution-like objects.

468



Connecting abstract logics and adjunctions

Definition 5.

Let C be a 1-category. We say that a 1-category R is a category of rooms for C
if there exists an equivalence of categories C � CATp�op, Rq7, where the right-hand
side denotes the category obtained as in

CAT rCATop,CAT1s rCatop,CAT1s CAT1{Cat

P P P P

R CATp�op, Rq CATp�op, Rq CATp�op, Rq,7

where we denote by CAT1 a 2-category of categories defined in a Grothendieck
universe larger than that of CAT. As discussed in the previous subsection, both the
Yoneda embedding for 2-categories and the Grothendieck construction are pseudo-
functorial. It is then immediate that the above construction gives rise to a pseudo-
functor (in fact, a strict 2-functor)

CAT ÝÑ CAT1{Cat
R ÞÝÑ CATp�op, Rq7.

It will be denoted by ins and called institutional realization.
It often happens that the right Grothendieck construction to be used is that from

Definition 2, for covariant pseudofunctors. We say that R is a category of co-rooms
for C if there exists an equivalence of categories C � pCATp�op, Rq7qop. See

CAT rCATop,CAT1s rCatop,CAT1s CAT1{Catop CAT1co{Cat

P P P P P

R CATp�op, Rq CATp�op, Rq CATp�op, Rq7 pCATp�op, Rq7q.op

Once again, we obtain a pseudofunctor (in fact, a strict 2-functor)

CAT ÝÑ CAT1co{Cat
R ÞÝÑ pCATp�op, Rq7qop,

which we denote by coins and call institutional co-realization.
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Remark 3.2. It is clear that CAT plays no distinguished role in this construction
besides being a 2-category. The inner op as in CATp�op, Rq and pCATp�op, Rq7qop
corresponds (see Example 6) to the fact that we wish the functors sending signatures
to categories of models to be contravariant. The outer op as in pCATp�op, Rq7qop
(as well as its absence from CATp�op, Rq) corresponds to the fact that we wish any
morphism between institution-like objects to have the same direction as its corre-
sponding functor between signature categories. The co as in CAT1co{Cat is due to
the fact that the pseudofunctor taking a category to its opposite reverses the direc-
tion of natural transformations, but not of functors. Since left-right adjunctions in
CAT1 correspond to right-left adjunctions in CAT1co, Lemma 4 implies that coins
sends left-right adjunctions in CAT to right-left adjunctions in CAT1co{Cat.

We list below some examples of room categories for some categories of institution-
like objects. Proofs will not be given, but the reader will be able to provide them
without difficulty.

Example 6. (Room, a room category for Insmor and Insco)

Define a category Room as follows:

• Its objects are triples xS,M, pRmqmPObpMqy, where S is a set, M is a category,
and, for each m P ObpMq, Rm : S Ñ 2 � t0, 1u is a function.

• A morphism xS,M, pRmqmPObpMqy
pσ,µq
ÝÝÝÑ xS1,M 1, pR1

m1qm1PObpM 1qy consists of a
function σ : S1 Ñ S and a functor µ : M Ñ M 1 such that R1

µmpsq � Rmσpsq
for every m P ObpMq and s P ObpSq.

• Composition is given by pσ1, µ1q � pσ, µq � pσ � σ1, µ1 � µq.

It is clear that Room is indeed a category. Then, in the terminology introduced
above, we have

Insmor � inspRoomq,

Insco � coinspRoomq.

Both projections inspRoomq ÝÑ Cat and coinspRoomq ÝÑ Cat recover the
underlying category of signatures of an institution. For more on this example, we
refer the reader to [10].

Example 7. (πRoom, a room category for πInsmor and πInsco)
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Define a category πRoom as follows:

• Its objects are pairs xS,Cy, where S is a set and C : 2S ÝÑ 2S is a closure
operator (we give 2S � PpSq the canonical ordering).

• A morphism xS,Cy
σ
ÝÑ xS1, C 1y consists of a function σ : S1 ÝÑ S such that

σ� � C � C 1 � σ�, where σ� : 2S ÝÑ 2S1 is the function given by pulling back
along σ (or by taking preimages).

• Composition is given by σ1 �πRoom σ � σ �Set σ
1.

It is clear that πRoom is indeed a category. It is easily shown that

πInsmor � inspπRoomq,

πInsco � coinspπRoomq.
Both projections inspπRoomq ÝÑ Cat and coinspπRoomq ÝÑ Cat recover the

underlying category of signatures of a π-institution.
Example 8. (The terminal category, a room category for Cat)

Let 1 � t�u denote the terminal category. It is immediate that both insp1q
and coinsp1q are canonically isomorphic to Cat via the projections provided by the
Grothendieck construction.
Example 9. (Institution-like structures versus diagrams)

ins and coins are essentially the same, respectively, as the constructions of
categories of diagrams Diacmor and Diagco given (in an ad hoc way) in Section 2.
Indeed, for any category C there are canonical isomorphisms of categories

inspCq � DiagmorpCopq,
coinspCq � DiagcopCopq,

both given on objects by sending a pair pA, F : A Ñ Cq to pA, F op : A Ñ Copq.
Moreover, for each C we have an isomorphism

DiagmorpCq � DiagcopCopq
also given by sending a pair pA, F : A Ñ Cq to pA, F op : A Ñ Copq. It then follows
that for each C we have a sequence of isomorphisms

inspCq � DiagmorpCopq � DiagcopCq � coinspCopq.
An immediate corollary of this is:
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• Roomop (resp. πRoomop) is a category of rooms for Insco (resp. πInsco).

• Roomop (resp. πRoomop) is a category of co-rooms for Insmor (resp. πInsmor).

Although the constructions of categories of diagrams and of institutional realiza-
tions are equally expressive, ins and coins fit better into the institutional framework,
while Diagmor and Diacco would be more natural from a general categorical point
of view.

3.3 Recovering adjunctions between categories of (π-)institutions
Lemma 4 ensures us that ins preserves adjunctions, and that coins reverses

adjunctions. As a result, the adjunctions between categories of institution-like ob-
jects described in the previous sections can be given a simple and uniform treatment
as images under ins or coins of certain adjunctions between the room categories
attributed to them in the previous subsection.

Example 10. (Insmor and πInsmor)

Define functors F : Room ÝÑ πRoom and G : πRoom ÝÑ Room as follows:

• For each object r � xS,M, pRmqmPObpMqy of Room, we define F prq as xS,Cry,
where Cr : PpSq ÝÑ PpSq is given by sending each S1 � S to

ts P S such that Rmpsq � 1 for every m P ObpMq such that RmpS1q � t1uu.

A morphism xS,M, pRmqmPObpMqy
pσ,µq
ÝÝÝÑ xS1,M 1, pR1

m1qm1PObpM 1qy is sent to σ.

• For each object r�xS,Cy of πRoom, we define G prq as
xS,PpSq, pχmqmPObpPpSqqy, where PpSq is given the structure of a co-discrete
category, and for each m � S, χm : S ÝÑ 2 is the characteristic function of
m.
A morphism xS,Cy

σ
ÝÑ xS1, C 1y is sent to pσ, σ�q, where σ� : PpSq ÝÑ

PpS1q is the functor between co-discrete categories given on objects by taking
preimages.

One can then easily describe an adjunction G % F and show that G is fully
faithful (hence it realizes πRoom as a coreflective subcategory of Room). It fol-
lows from Lemma 4, and from the fact that pseudofunctors preserve isomorphisms
between 1-cells, that the functors
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inspF q : inspRoomq � Insmor ÝÑ inspπRoomq � πInsmor,
inspG q : inspπRoomq � πInsmor ÝÑ inspRoomq � Insmor

satisfy inspG q % inspF q, and that inspG q realizes inspπRoomq (resp. πInsmor)
as a coreflective subcategory of inspRoomq (resp. Insmor).
Example 11. (Insco and πInsco)

Let F and G be as in the previous example. The same argument shows that the
functors

coinspF q : coinspRoomq � Insco ÝÑ coinspπRoomq � πInsco,
coinspG q : coinspπRoomq � πInsco ÝÑ coinspRoomq � Insco

satisfy coinspF q % coinspG q, and that coinspG q realizes coinspπRoomq (resp.
πInsco) as a reflective subcategory of coinspRoomq (resp. Insco).
Example 12. (Categories of (π-)institutions and Cat)

We leave to the reader the exercise of defining adjoints (left, right, or both) to
the terminal functors Room Ñ 1 and πRoom Ñ 1 using the methods described
here, in order to produce several canonical adjunctions between Cat and categories
of (π-)institutions.
Example 13. (Categories of (π-)institutions and categories of diagrams)

Any adjunction of the form

Room Cop

R

L

%

induces two adjunctions: one between Insmor � inspRoomq and
inspCopq � DiagmorpCq, and one between Insco � coinspRoomq and coinspCopq �
DiagcopCq. Analogously, an adjunction of the form

Room C
R

L

%

induces an adjunction between Insmor � inspRoomq and inspCq � DiagcopCq, and
another one between Insco � coinspRoomq and coinspCq � DiagmorpCq. Analo-
gously for πRoom (or any category whatsoever) in place of Room, and for R % L in
place of L % R.
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4 Propositional logics and (π-)institutions
In this section, we present several different ways of connecting abstract proposi-

tional logics to institutions and π-institutions.
In subsection 4.1 we have described the π-institutions associated to categories of

abstract propositional logics and some forms of translation morphisms, as developed
in [17]. This naturally lead us to search an analogous “model-theoretical" version
of it that is different from the canonical one i.e., that obtained by applying the
functor G : πInsco Ñ Insco (see subsections 1.3 and 2.1). This is achieved in
section 4.2, based on the development made in the section 3.1 of [19]: we provide
(another) institutions for each category of propositional logics, through the use of
the notion of a matrix for a propositional logic. It should be mentioned that the use
of institutional-theoretic devices are useful for establishing an abstract Glivenko’s
theorem for algebraizable logics regardless of their particular signatures associated
(see [19]).

In [2] was introduced the concept of (finitary) filter pair, that can be seem as a
categorial presentation of a propositional logic, in fact the category of logics is iso-
morphic to a coreflective subcategory of the category of filter pairs. In the subsection
4.3 we present a functor Fi Ñ Insmor, from the category of filter pairs, Fi, to the
category of all institutions and morphisms, Insmor. This is qualitatively different
connection from the obtained in subsections 4.1 and 4.2 between propositional logic
and (π-)institution. From the adjunctions between the categories of logics and of
filter pairs, L⇆ Fi, and the adjunction between the categories of institutions and of
π-institutions, π� Insmor ⇆ Insmor, we obtain directly functors: FiÑ π� Insmor,
L Ñ Insmor, L Ñ π� Insmor. We finish this section with some remarks, indicating
some generalizations concerning the use of multialgebras (a concept that will appear
again in Section 5) in the setting of abstract propositional logic, including a natural
generalization of the notion of filter pairs.

4.1 A π-institution for the abstract propositional logics
Here we describe the π-institutions associated to categories of abstract proposi-

tional logics and some forms of translation morphisms, as developed in [17].
In [1], [11] and [16] are considered some categories of propositional logics, namely

Ls and Lf , where:

• the objects are of the form l � pΣ,$q, where Σ � pΣnqnPN is finitary signature,
FormpΣq � FmΣpXq is the absolutely free Σ-algebra of formulas on a fixed
enumerable set of variables X and $� P pFormpΣqq � FormpΣq is a tarskian
consequence operator;
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• the morphisms f : pΣ,$q Ñ pΣ1,$1q are of the form f : Σ Ñ Σ1 with the
former category having “strict" (n-ary symbol to n-ary symbol) morphisms
and the latter “flexible" (n-ary symbol to n-ary term) morphisms.

To the category Lf is associated an π-institution Jf in the following way:

• Sigf :� Lf ;

• Senf : Sigf Ñ Set is given by pg : pΣ,$q Ñ pΣ1,$qq ÞÑ pĝ : FormpΣq Ñ
FormpΣ1qq, where ĝ is the usual expansion to formulas;

• For each l � pΣ,$q P |Sigf | and Γ � FormpΣq, we define ClpΓq :� tϕ P
FormpΣq : Γ $l ϕu.

An analogous process is used to form Js from Ls.

In [16], the “inclusion" functor p�qL : Ls Ñ Lf induces a comorphism (and also a
morphism) on the associated π-institutions p�q :� pp�qL, α�q : Js Ñ Jf , where, for
each l � pΣ,$q P Sigs � Ls, α�plq � IdFormpΣq : FormpΣq Ñ FormpΣq. The paper
also presents a right adjoint p�qL : Lf Ñ Ls to the “inclusion" functor. Essentially
this fuctor sends a signature Σ to its derived one p�qLΣ :� pFormpΣqrnsqnPN . We
have also a comorphism of π-institutions associated to this functor. Notice that
given some logic l � pΣ,$q, we have Sensp�qLplq � Formpp�qLΣq � FormpΣq. So
the fuctor p�qL induces a comorphism pp�qL, α

�q where α� is the identity between
formulas. It will be interesting understand the role of these adjoint pair of functors
between the logical categories (Lf ,Ls) at the π-institutional level (Jf , Js).

4.2 An institution for the abstract propositional logics
We now present an alternative institutionalization of propositional logic. This

assignment is used in [19] to establish an abstract Glivenko’s theorem for algebraiz-
able logics.

Let l � pΣ,$q be a logic and M P Σ � Str. A subset F of M is a l-filter is for
every ΓY tφu � FormpΣq such that Γ $ φ and every valuation v : FormpΣq Ñ A,
if vrΓs � F then vpφq P F . The pair xM,F y is then said to be a matrix model of
l. The class of all matrix model of l is denoted by Matrl.This class is the class of
objects of a category, also denoted by Matrl: a morphism h : xM,F y Ñ xM 1, F 1y is
a Σ-homomorphism h : M ÑM 1 such that h�1rF 1s � F ; composition and identities
are inherited from Σ� Str.

From to the category of logics Lf (also to Ls), we define:
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• Sig :� Lf , the category of propositional logics l � pΣ,$q and flexible mor-
phisms.

• Sen : Sig Ñ Set where Senplq � PpFormpΣqq � FormpΣq and given f P
MorSigpl1, l2q then Senpfq : Senpl1q Ñ Senpl2q is such that SenpfqpxΓ, φyq �
xf rΓs, fpφqy. It is easy to see that Sen is a functor.

• Mod : Sig Ñ Catop where Modplq � Matrl and given f P MorSigpl1, l2q,
Modpfq : Matrl2 Ñ Matrl1 such that ModpfqpxM 1, F 1yq � xf�pM 1q, F 1y.
Here f� : Σ1�str Ñ Σ�str is a functor that “commutes over Set” induced by
the morphism f where the interpretation of connectives are: cf�M 1

n :� fpcnq
M 1

for all cn P Σ (more details in [19]).

• Given l � pΣ,$q P |Sig|, xM,F y P |Modplq| and xΓ, φy P Senplq define the
relation |ùl� |Modplq| � Senplq as:

xM,F y |ùl xΓ, φy iff for all v :FormpΣq ÑM, if vrΓs � F, then vpφq P F.

In [19], section 3.1, it is proven that this construction defines indeed an institu-
tion.

It should be noted that this institution and the π-institution described in the
previous subsection, shares the same Sig (� Lf ), but are not connected by the
canonical relation (adjunction) between institutions and π-institutions.

4.3 Filter pairs as institutions
The notion of (finitary) filter pair, introduced in [2], can be seem as a categorical

presentation of a propositional logic. Here we recall the precise definition of this
notion and associate an institution to the category of all filter pairs.

Definition 4.1. Let Σ be a signature. A Filter Pair over Σ is a pair pF, iq,
consisting of a contravariant functor F : Σ�str op Ñ CLat, from Σ-structures to
complete lattices, and a collection of maps i � piM : F pMq Ñ pPpMq,�qqMPΣ�str
such that is a natural transformation.

M

f

��

F pMq
iFM // pPpMq;�q

N F pNq

F pfq

OO

iFN

// pPpNq;�q
f�1

OO
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Remark 4.2. Let pF, iq be a filter pair and X be a set. The relation
$� PpFmΣpXqq�FmΣpXq such that for any ΓYtφu � FmΣpXq, Γ $ φ iff for any
a P F pFmΣpXqq if Γ � iFmΣpXqpaq then φ P iFmΣpXqpaq is a tarskian consequence
relation. Then we have a propositional logic associated with the filter pair pF, iq such
that the set of variables is X.

Below is the definition of a finitary filter pair so that its associated propositional
logic is finitary.

Definition 4.3. Let Σ be a signature. A finitary filter pair over Σ is a filter pair
pF, iq which F is a functor from Σ-structures to algebraic lattices such that for any
M P Σ�str, iM preserves arbitrary infima (in particular iM pJq � M) and directed
suprema.

Definition 4.4. The category of Filter Pairs: Consider the category Fi defined
in the following manner:

• Objects: Filters pairs pF, iF q.

• Morphisms: Let pF, iF q be a filter pair over a signature Σ and pF 1, iF
1
q be a

filter pair over a signature Σ1. A morphism pF, iF q Ñ pF 1, iF
1
q is a pair pH, jq

such that H : Σ1�str Ñ Σ�str is a signature functor and j : F 1 ñ F �H is a
natural transformation such that given M 1 P ObjpΣ1�strq,

iFHpM 1q � jM 1 � iF
1

M 1 .

Σ1�str
H //

P
,,

F 1

��

Σ�str

P
rr

F




CLat

• Identities: For each signature Σ and each filter pair pF, iF q over Σ, IdpF,iF q :�
pIdΣ�str, IdF q.

• Composition: Given morphisms pH, jq, pH 1, j1q in Fi.

pH 1, j1q  pH, jq � pH �H 1, j  j1q

Where pj  j1qM2 :� jH 1pM2q � j
1
M2.
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Observe that
iFH�H 1pM2q � ppj  j

1qM2q � iF
2

M2

Indeed:

iFH�H 1pM2q � ppj  j
1qM2q � iFH�H 1pM2q � pjH 1pM2q � j

1
M2q

� piFH�H 1pM2q � jH 1pM2qq � j
1
M2

� iF
1

H 1pM2q � j
1
M2

� iF
2

M2

It is straightforward to check that the composition is associative and that iden-
tity laws hold.

In [2] was defined a category of finitary filter pairs and presented it as functorial
encoding of the category of all (finitary, propositional) logics: in fact the category
of propositional logics and flexible morphisms can be represented as a coreflective
full subcategory of the category of filter pairs.

Fact 4.5.

• For any signature functor H : Σ1 � Str Ñ Σ � Str, there is a signature
morphism mH : Σ Ñ Σ1, such that mHpcnq � ηHpXqpcnpx0, ..., xn�1qq, where
ηHpXq : FormΣpXq Ñ HpFormΣ‘pXqq (see Lemma 3.17 of [2]). We consider
the functor

L : Fi Ñ Lf
pG, iGq lG
Ó pH, jq ÞÑ Ó mH

pG1, iG
1
q lG1

• The functor F : L Ñ Fi

F : Lf Ñ Fi
l pFil, ιq

h Ó ÞÑ Fphq Ó
l1 pFil1 , ι

1q

where Fphq � ph�, j�q and the natural transformation j� : Fil1 ñ Fil � h
� is

given by a family of inclusions, i.e., let M 1 P Σ1 � str and F 1 P Fil1pM
1q, then

j�M 1pF 1q :� F 1.

478



Connecting abstract logics and adjunctions

• The functor F : L Ñ Fi is full, faithful, injective on the objects and is left
adjoint to the functor L. By a well known result of category theory, the unity
of this adjunction is an isomorphism. Moreover it is easy to see that the
components of the natural transformation that is the unity of this adjunction
is given, for each logic l P ObjpLf q, by the identity idl : lÑ L � Fplq � l.
The components of the counit of this adjunction is given by, for each signature
Σ and each filter pair pG, iGq over Σ:

pIdΣ�Str, j
Gq : pFilG , ιq Ñ pG, iGq

where jGM : GpMq Ñ FilGpMq is the unique factorization of iGM : GpMq Ñ
℘pMq through ιM : FilGpMq ãÑ P pMq. Thus for each logic l1, jG induces by
composition a (natural) bijection:

FipFpl1q, pG, iGqq � Lf pl1,LpG, iGqq.

• The same constructions of the above functors provide a more general adjunc-
tion relating the category of filter pairs and propositional logics which are non-
finitary.

Proposition 4.6. Every filter pair pF, iq over a signature Σ determines an institu-
tion IpF,iq where:

• SigI � Σ�str;

• pSigI
SenIÝÝÝÑ Setq = pΣ�str forgetful

ÝÝÝÝÝÝÑ Setq;

• pSigopI
ModIÝÝÝÑ CATq � pΣ�strop F

ÝÑ CLat↣ CATq;

• for each M P ObpSigIq � ObpΣ�strq, define
|ùM� ObpModIpMqq � SenIpMq � F pMq � |M | as:

t |ùM m iff m P iM ptq

Moreover, when iM preserves arbitrary infima, the π-institution PpF,iq cannoni-
cally associated to IpF,iq is such that for each M P ObpSigIq � ObpΣ�strq, CM :
P pSenIq Ñ P pSenIq is given by

pX � |M |q ÞÑ iM ptXq,

where tX :�
�
tt P F pMq : X � iM ptqu
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Proof: SigI , SenI and ModI associated with a filter pair pF, iq are well defined.
It remains to prove the compatibility condition. Let h : M Ñ M 1 be a morphism
in SigI � Σ�str and a P F pM 1q such that a |ùM 1 hpmq. So hpmq P iM 1paq and
since i is a natural transformation we have m P h�1 � iM 1paq � iM � F phqpaq. Then
F phqpaq |ùM m.

The associated π-instituion takes X � P pUpMqq into iM pTXq � iM p
�
tT P

F pMq : X � iM pT qu �
�
tiM pT q : X � iM pT qu

Proposition 4.7. (Every morphism of filter pair induces a institution mor-
phism.) Given morphism pF, iq

pH,jq
ÝÝÝÑ pF 1, i1q then IpF,iq

pH,Id,jq
ÐÝÝÝÝÝ IpF 1,i1q is a insti-

tution morphism.

Proof: We just need to prove that pH, Id, jq satisifies the compatibility condition.
Let M 1 P Σ1�str, m1 P F 1pM 1q and φ P HpM 1q.

m1 |ùM 1 IdM 1φ ðñ φ P i1M 1pm1q

ðñ φ P iHpM 1q � jM 1pm1q

ðñ jM 1pm1q |ùHpM 1q φ

The result follows

Using propositions 4.6 and 4.7 we can now define the (contravariant) functor:

Fi Insmor

pF, iq IpF,iq

pF 1, i1q IpF 1,i1q

D

pH,jq pH,Id,jq

Verifying functoriality is straightforward.

Remark 4.8. • From the adjunction Insmor ⇄ π� Insmor described in section
2.1, we obtain directly a functor FiÑ π � Insmor.

• From the adjuction Lf ⇄ Fi, recalled in Fact 4.5, we obtain functors Lf Ñ
Insmor and Lf Ñ π � Insmor.
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4.4 Generalizations
In this final subsection we provide a kind of generalization of the previous sub-

sections: we explore the extension of the category of propositional logics by the
category of filter pairs to “extend” the (π-)institution of logics to a (π-)institution
of filter pairs; we extend the concept of filter pairs allowing multialgebras as the do-
main of a filter pair and thus we extend the functor from filter pairs to the category
of institutions to a funtor from the category of multifilter pairs to institutions.

Remark 4.9. The institution (respec. π-institution) associated to the abstract
propositional logics as described in subsection 4.2 (respec. 4.1) can be “extended”,
through the adjunction pF,Lq : Lf ⇄ Fi (see Fact 4.5) to a institution (respec.
π-institution) for the filter pairs (apart from size issues):

• * Sig1 � Fi;
* Sen1 : Sig Ñ Set is given by ppH, jq : pG, iGq Ñ pG1, iG

1
qq ÞÑ pηHpXq :

FmΣpXq Ñ HpFmΣ1pXqqq, where G : Σ � Strop Ñ CLat and G1 : Σ1 �
Strop Ñ CLat;
* For each pG, iGq P |Sig| and Γ � FmΣpXq, we define C 1

pG,iGqpΓq :� tϕ P

FmΣpXq : Γ $LpG,iGq ϕu.
Denoting pSig, Sen, pCqq the π-institution of propositional logics (subsection
4.1), note that:
* Sen1 � F � Sen.
* For each pΣ,$q P |Lf |, C 1

FpΣ,$q � CpΣ,$q.

Thus pF, idSenq is, simultaneously, a morphism and a comorphism of π-insti-
tutions pSig, Sen, pCqq Ñ pSig1, Sen1, pC 1

qq.

• * Sig1 � Fi;
* Sen1 : Sig1 Ñ Set where Sen1pG, iGq � PpFmΣpXqq � FmΣpXq and given
pH, jq PMorSig1ppG, i

Gq, pG1, iG
1
qq then SenpH, jq : SenpG, iGq Ñ SenpG1, iG

1
q

is such that SenpH, jqpxΓ, φyq � xηHpXqrΓs, ηHpXqpφqy.
* Mod1 : Sig1 Ñ Catop where Mod1pG, iGq � MatrLpG,iGq and given pH, jq P
MorSig1ppG, i

Gq, pG1, iG
1
qq, Mod1pH, jq : MatrLpG1,iG1 q Ñ MatrLpG,iGq such

that Mod1pH, jqpxM 1, F 1yq � xHpM 1q, F 1y.
* Given pG, iGqq P |Sig1|, xM,F y P |Mod1pG, iGq| and xΓ, φy P Sen1pG, iGq
define the relation |ù1

pG,iGq� |Mod1pG, iGq| � Sen1pG, iGq as:
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xM,F y |ù1
pG,iGq xΓ, φy iff for all FmΣpXq

v
ÝÑM, vpφq P F for vrΓs � F

Denoting pSig, Sen,Mod, p|ùqq the institution of propositional logics (subsec-
tion 4.2), note that:
* Sen1 � F � Sen.
* Mod1 � F �Mod

* For each l � pΣ,$q P |Lf |, each xΓ, φy P Senplq and each xM,F y P |Modplq|

xM,F y |ù1
Fplq xΓ, φy iff xM,F y |ùl xΓ, φy.

Thus pF, idSen, idModq is, simultaneously, a morphism and a comorphism of
institutions pSig, Sen,Mod, p|ùqq Ñ pSig1, Sen1,Mod1, p|ù1

qq.

The institution obtained above can be extended to the case of multialgebras and
that this also extends the institution for N-matrix semantics to propositional logic
([4]) allowing us to use the institution theory in order to analyze logical properties
of non-algebraizable logics. Moreover, another work in progress, we are trying,
using filter pairs, to establish a multialgebraic semantics for propositional logics that
are not algebraizable, for example Logic of Formal Inconsistency (LFI’s) ([7]), and
possibly to obtain a kind of transfer theorem between metalogical and multialgebraic
properties.
Remark 4.10 (Multialgebras).

• A n-ary multioperation on a set A is a function F : An Ñ P�pAq, where
P�pAq � AztHu. To each ordinary n-ary multioperation on A, f : An Ñ A
is associated a (strict) n-ary operation on A : F : An Ñ P�pAq given by
F :� sA � f , where sA : AÑ P�pAq, x ÞÑ sApxq � txu.

• A multialgebraic signature is a sequence of pairwise disjoint sets Σ � pΣnqnPN,
where Σn � Sn\Mn, where Sn is the set of strict multioperation symbols and
Mn is the set of multioperation symbols. In particular, Σ0 � S0\M0, F0 is the
set of symbols for constants and M0 is the set of symbols for multiconstants.
We also denote Σ � ppSnqn¥0, pMnqn¥0q.

• A multialgebra over a signature Σ � ppSnqn¥0, pMnqn¥0q, is a set A endowed
with a family of n-ary multioperations

σAn : An Ñ P�pAq, σn P Sn \Mn, n P N,

such that: if σn P Sn, then σAn : An Ñ P�pAq is a strict n-ary multioperation.
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• If A and B are Σ-multialgebras, then a Σ-morphism from A to B is a function
h : AÑ B such that for each n P N, each σn P Sn\Mn and each a0, � � � , an�1 P
A

hrσApa0, � � � , an�1qs � σBphpa0q, � � � , hpan�1qq.

• Σ-morphisms between Σ-multialgebras can be composed in a natural way and
they form a category Σ-Malg. It is clear that Σ-alg, the category of ordinary
Σ-algebras is isomorphic to the a full subcategory of strict Σ-multialgebras.
s : Σ�Alg ãÑ Σ�Malg.

• Every algebraic signature Σ � pFnqnPN is a multialgebraic signature where
Mn � H,@n P N. Each algebra pA, ppAn fA

Ñ AqfPFnqnPNq over the algebraic
signature Σ can be naturally identified with a multialgebra pA, ppAn fA

Ñ A
sA↣

P�pAqqfPFnqnPNq over the same signature.

• Every multialgebraic signature Σ � ppSnqnPN, pMnqnPNq induces naturally a
first-order language LpΣq � ppFnqnPN, pRn�1qnPNq where Fn :� Sn is the set
of n-ary operation symbols and Rn�1 :� Mn is the set of (n+1)-ary relation
symbols. In this way, multialgebras pA, ppAn σA

Ñ P�pAqqσPSn\MnqnPNq over a
multialgebraic signature Σ � pSn\MnqnPN can be naturally identified with the
first-order structures over the language LpΣq that satisfies the LpΣq-sentences:
@x0 � � � @xn�1Dxnpσnpx0, � � � , xn�1, xnqq, for each σn P Rn�1 �Mn, n P N. 5

• Now we focus our attention into a more syntactic aspect of this multialgebras
theory. We start with a (recursive) definition of (multi)terms: variables xi, i P
N are terms; if t0, � � � , tn�1 are terms and σ P Sn \Mn, then σpt0, � � � , tn�1q
is a term.

• To define an interpretation for terms, we need a preliminary step. Given
σ P Sn \Mn, we “extend” σA : An Ñ P�pAq to a n-ary operation in P�pAq,
σP�pAq : P�pAqn Ñ P�pAq, by the rule:

σP�pAqpA0, � � � , An�1q :�
¤

a0PA0

� � �
¤

an�1PAn�1

σApa0, � � � , an�1q.

In this way, P�pAq is an ordinary Σ-algebra. Moreover

σP�pAqpta0u, � � � , tan�1uq � σApa0, � � � , an�1q.

5We will address this correspondence in Example 5.2.
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• The association above determines a functor p : Σ�Malg Ñ Σ� alg and, the
family of singleton maps sA : A Ñ ps � pqpAq, A P |Σ �Malg|, is a natural
transformation.

Remark 4.11 (Multifilter pairs and institutions).

• It is straightfoward to extend the notion of filter pair pG, iGq, where the domain
of the functor G is the category Σ�alg to the concept of multifilter pair, where
the domain of the functor G is the category Σ�Malg. With a natural notion
of morphism of mult-filter pair we obtain a category mFi of multifilter pairs.

• The previously described functors s : Σ�alg Ñ Σ�Malg and p : Σ�Malg Ñ
Σ� alg provide a pair of functors Fi⇄ mFi.

• The functor FiÑ Insmor can be extended to a funtor mFiÑ Insmor.

We summarize below some of the functors previously presented.

π � Instmor

��
Lf //

&&

Instmor

OO

Fi

ff OO

//
mFioo

ff

5 Skolemization, a new institutional device

Skolemization is an important tool of classical model theory, this section seeks
to develop it in the context of institutions. We also prove a borrowing theorem
and apply it to obtain a form of downward Löwenheim-Skolem for the setting of
multialgebras.

Given an institution I, we say that xI, S, pIΣqΣP|Sig|, pτΣqΣP|Sig|y is an skolemiza-
tion for I iff:
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• S is a functor of the form

pModq7 pModPresq7

xΣ,My xpΣS , SΣq,MSΣy

xΣ1, Ny xpΣ1
S , SΣ1q, NSΣ1y

S

xf,uy xg,vy

Where 7 denotes the Grothendieck construction. We refer to S as the skolem
functor.

• For each Σ P |Sig|, Σ τΣÝÑ ΣS is an arrow in Sig satisfying MSΣ ↾τΣ� M for
all M P |ModpΣq|. Given M P ModpΣq we say that M 1 P ModpΣSq is a
skolemization of M if M 1 ↾τΣ�M and M 1 |ùΣS

SΣ

• For each signature Σ, IΣ is an inclusion system in ModpΣSq such that, if
the ΣS-models M 1 and N 1 are skolemizations of M and N respectively and
M 1

ãÑ N 1 then M� � N�. 6

Example 5.1. FOL1

Let FOL1 stand for the institution of unsorted first order logic and consider the
functor:

pModq7 pModPresq7

xΣ,My xpΣS , SΣq,MSΣy

xΣ1, Ny xpΣ1
S , SΣ1q, NSΣ1y

Skolem

xf,uy xf 1,uy

Where ΣS and SΣ are, respectively, the skolem expansion and theory of Σ and MSΣ is
any skolemization of M with the same underlying set. Let FΣ

ψ be the skolem function
of the Σ-formula ψ and define f 1 as follows: if x P Σ simply let f 1pxq � fpxq, else
we have x � FΣ

ψ for some ψ in SenpΣq and then we let f 1pxq � FΣ1

Sen fpψq.
For each first order signature Σ, let IΣ be the usual inclusion system on

ModFOL1
pΣq and define τΣ : Σ Ñ ΣS as τΣpxq � x. It is easy to see that

xFOL1, Skolem, pIΣqΣP|SigFOL1 |, pτΣqΣP|SigFOL1 |y

6Given M P |ModpΣq|, define M� :� tφ P SenpΣq : M |ùΣ φu
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is a skolemization for FOL1.

Theorem 14. Let I institution with skolemization xI, S, pIΣqΣP|SigI |, pτΣqΣP|SigI |y.
Given an institution J and a morphism xϕ, α, βy : J Ñ I if:

• ϕ is fully faithful,

• For each Σi P |SigI | there is some Σj P |SigJ | such that ϕpΣjq � pϕΣiqS in
SigI . Let iΣi : pΣjq Ñ pΣiqS denote the isomorphism arrow,

• Each βΣ is an isomorphism, and

• Each αΣ is semantically surjective, that is, for every φ P SenJpΣq there is
some ψ P αΣrSen

IpϕΣqs such that φ� � ψ�.

Then xJ, S1, pI 1ΣqΣP|SigJ |, pτ
1
ΣqΣP|SigJ |y has a skolemization where

• If IϕΣ � xI, Ey then I 1Σ � xI 1, E1y where I 1 and E1 are the images of
β�1
qΣ
ModIiϕΣ restricted to I and E respectively,

• For each Σ, τ 1Σ is the unique arrow satisfying ϕpτ 1Σq � i�1
ϕΣ � τϕΣ.

Proof: Consider the application

m : pModJq7 pModIϕq7

xΣ,My xϕpΣq, βΣpMqy

xΣ1, Ny xϕpΣ1q, βΣ1pNqy

xf,uy xϕpfq,βΣpuqy

Let us prove that m is a functor. Given arrows xΣ,My xf,uy
ÝÝÝÑ xΣ1, Ny

xg,vy
ÝÝÝÑ

xΣ2,W y in pModJq7 we have:

mpxg, vy � xf, uyq � mpxgf,ModJfv � uyq

� xϕpgfq, βΣpModJfv � uqy

� xϕpgq � ϕpfq, pβΣModJfqpvq � βΣpuqy

� xϕpgq � ϕpfq, pModIϕpfqβΣ1qpvq � βΣpuqy

mpxg, vyq �mpxf, uyq � xϕpgq, βΣ1pvqy � xϕpfq, βΣpuqy
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As m clearly satisfies the identity laws we have that m is well defined.
Consider now the functors pModIϕq7

J
ãÝÑ pModIq7

S
ÝÑ pModPres

I
q7. Composing:

pModJq7 pModPres
I
q7

xΣ,My xppϕΣqS , SϕΣq, pβΣpMqqSϕΣy

xΣ1, Ny xppϕΣ1qS , SϕΣ1q, pβΣ1pNqqSϕΣy

SJm

xf,uy xψ,vy

We now have what we need to define a functor S1 : pModJq7 Ñ pModPres
J
q7.

Given xΣ,My P |pModJq7|, let S1pxΣ,Myq :� xpqΣ, S
qΣq,MqΣy where:

• qΣ is an object in SigJ such that there is an isomorphism iϕΣ : ϕpqΣq �
ÝÑ pϕΣqS

in SigI

• S
qΣ :� α

qΣpSen
Ii�1
ϕΣpSϕΣqq

• |M :� β�1
qΣ
ModIiϕΣppβΣqSϕΣq

And, given an arrow xf, uy in pModJq7, let S1pxf, uyq :� x qψ, qvy, where:

• ϕp qψq is the lone arrow that makes the below square commute

pϕΣqS
ψ //

�
��

pϕΣ1qS

�
��

ϕpqΣq
ϕp qψq

// ϕp qΣ1q

• qv :� β�1
qΣ
pModIiϕΣpvqq

First, let us prove that S1pxf, uyq is a morphism in pModPres
J
q7.

SenIψpSϕΣq � SϕΣ1

α
|Σ1pSen

Ii�1
ϕΣ1pSen

IψpSϕΣqq � α
|Σ1pSen

Ii�1
ϕΣ1pSϕΣ1qq
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As α
|Σ1 � Sen

Ii�1
ϕΣ1 � SenIψ � α

|Σ1 � Sen
Iϕ qψ � SenIi�1

ϕΣ � SenJ qψ � α
qΣ � Sen

Ii�1
ϕΣ it

follows that SenJ qψpS
qΣq � S

|Σ1 .
Now, we prove that S1 is functorial. It is clear that S1x1Σ, 1My � x1

qΣ, 1|My �
1S1xΣ,My and, given a pair of arrows

xppϕΣqS , SϕΣq, pβΣMqSϕΣy
xψ1,wy
ÝÝÝÝÑ xppϕpΣ1qqS , SϕpΣ1qq, pβ

1
ΣNqSϕpΣ1qy

and

xppϕpΣ1qqS , SϕpΣ1qq, pβ
1
ΣNqSϕpΣ1qy

xψ2,yy
ÝÝÝÝÑ xppϕpΣ2qqS , SϕpΣ2qq, pβ

2
ΣW qSϕpΣ2qy

We have:
pϕΣqS pϕΣ1qS pϕΣ2qS

ϕpqΣq ϕp qΣ1q ϕp|Σ2q

�

ψ1 ψ2

� �

ϕp|ψ1q ϕp|ψ2q

Notice that, by definition, ϕp�ψ2 � ψ1q is the unique arrow that makes the outer
rectangle commute. It follows that ϕp�ψ2 � ψ1q � ϕp|ψ2q�ϕp|ψ1q and so, by faithfulness,�ψ2 � ψ1 � |ψ2 �|ψ1.

Moreover, let  and � stand for the composition of the second coordinate in,
respectively, pModJq7 and pModPres

J
q7. We then have:

qw � qy �ModJ|ψ1β
�1
|Σ1
ModIiϕΣpwq � β

�1
qΣ
ModIiϕΣpyq

� β�1
qΣ
ModIϕ|ψ1ModIiϕΣ1pwq � β�1

qΣ
ModIiϕΣpyq

� β�1
qΣ
ModIiϕΣModJψ1pwq � β

�1
qΣ
ModIiϕΣpyq

~w  y � β�1
qΣ
ModIiϕΣpModJψ1pwq � yq

We now have a functor S1 : pModJq7 Ñ pModPres
J
q7. Finally, let us prove that

S1 indeed forms a skolemization.
First, notice that i�1

ϕΣ � τϕΣ P SigIpϕΣ, ϕqΣq. Define then τ 1Σ as the arrow in
SigJpΣ, qΣq satisfying ϕpqτq � i�1

ϕΣ � τ . Given some M P |ModJΣ| we have:

|M ↾
qτ �ModJqτ � β�1

qΣ
ModIiϕΣppβΣpMqqSϕΣq

� β�1
Σ pModIϕqτModIiϕΣppβΣpMqqSϕΣqq

� β�1
Σ pModIτppβΣpMqqSϕΣq

M � β�1
Σ pβΣpMqq
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Now given IϕΣ � xU , Ey we define I 1Σ � xU 1, E1y as:

• For any object i in U , β�1
qΣ
ModIiϕΣpiq is an object of U 1

For any arrow a in U , β�1
qΣ
ModIiϕΣpaq is an arrow of U 1

• For any object e in E, β�1
qΣ
ModIiϕΣpeq is an object of E1

For any arrow b in E, β�1
qΣ
ModIiϕΣpbq is an arrow of E1

Routine calculations show I 1Σ is an inclusion system in ModJ qΣ.
Finally, suppose that the qΣ-models M 1 and N 1 are skolemizations of, respec-

tively, the Σ-models M and N and that M 1
ãÝÑ N 1. Clearly then pβ

qΣpM
1qq ↾i�1

ϕΣ
ãÝÑ

pβ
qΣpN

1qq ↾i�1
ϕΣ

. Moreover, using structurality and the morphism compatibility con-
dition we have that:

M 1 |ù
qΣ S

qΣ ðñ M 1 |ù α
qΣpSen

Ii�1
ϕΣpSϕΣqq ðñ ModIi�1

ϕΣβqΣpM
1q |ùpϕΣqS SϕΣ

It follows then that

ppβ
qΣpM

1qq ↾i�1
ϕΣ�τ

q� � ppβ
qΣpN

1qq ↾i�1
ϕΣ�τ

q�

Or equivalently,

ppβ
qΣpM

1qq ↾i�1
ϕqτ
q� � ppβ

qΣpN
1qq ↾i�1

ϕqτ
q�

By naturality,

pβΣpModIqτpM 1qqq� � pβΣpModIqτpN 1qqq�

Since M 1 and N 1 are skolemizations, we have that M 1 ↾
qτ� M and N 1 ↾

qτ� N .
Now notice that

M |ù αΣpφq ðñ βΣpMq |ù φ ðñ βΣpNq |ù φ ðñ N |ù αΣpφq

As αΣ is semantically surjective the result follows.

As an illustration of the previous theorem we present the following:
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Example 5.2. (Multialgebras have the Downward Löwenheim-Skolem pro-
perty)
We now describe MA—the institution of (unsorted) multialgebras7. As signatures
we simply use (unsorted) first order signatures. The intuition here is that function
symbols are to be interpreted as functions and relations as multioperations.
Let us describe the syntax. The terms are built in a first order manner with the caveat
that relation symbols can too be used to form terms, that is, functions are allowed
to take relations as arguments and we can compose relations. For the formulas,
we have two atoms: t ¡ t1, interpreted as set inclusion, and t

.
� t1, interpreted as

(deterministic) equality. The full set of formulas is built by using quantification and
Boolean connectives, the sentences being the formulas without free variables. For
the semantics we let the category of models of given signature be the category of
multialgebras of that signature. A more detailed characterization of this institution
can be found in [15].
We can now describe a morphism MA xϕ,α,βy

ÝÝÝÝÑ FOL1:

• We start by defining the functor

ϕ : SigMA SigFOL1

xpFiqi ω, pMiqi ωy xpFiqi ω, pRiqi ωy

xpF 1
iqi ω, pM1

iqi ωy xpF 1
iqi ω, pR1

iqi ωy

f f

Where Ri�1 :� trm : m PMiu. It is easy to see that ϕ is well defined and fully
faithful. Moreover, we have that the functor is essentially surjective.

• Given Σ P |SigMA| we define αΣ : SenFOL1
pϕΣq Ñ SenMApΣq recursively:

αΣpxiq � xi

αΣpfpt1 � � � tnqq � fpαΣpt1q � � �αΣptnqq

αΣpt � t1q � αΣptq
.
� αΣpt

1q

αΣprmpt1 � � � tn�1qq � mpαΣpt1q � � �αΣptnqq ¡ tn�1

αpA^Bq � αΣpAq^αΣpBq; αΣp Aq �  αΣpAq; αΣpDxipAqq � DxipαΣpAqq

7Here we consider a wide sense of n-ary multioperation on a set A: this is just a function
F : An Ñ PpAq, allowing H in the range.
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Elementary induction shows that α is indeed a natural transformation.
Notice that the set αΣrSen

FOL1
pϕΣqs consists of formulas built of terms where

there is no composition with multioperations. The idea we use to show that αΣ
is semantically surjective is simple: suppose we have the formula
fpx1 � � �mpy1 � � � ykq � � �xnq

.
� xn�1 where mpy1 � � � ykq happens in the j-th pla-

ce, we simply introduce a new variable and restrict its domain, i.e., we consider
the formula @xjpmpy1 � � � ykq ¡ xj^fpx1 � � �xj � � �xnqq

.
� xn�1. Using a similar

technique for inclusion8 and proceeding by induction on nested formulas the
proof follows.9

• Given some signature Σ consider the functor

βΣ : ModMApΣq ModFOL1
pϕΣq

xW, pFiqi ω, pMiqi ωy xW, pFiqi ω, pRiqi ωy

xW 1, pF 1
i qi ω, pM

1
iqi ωy xW 1, pF 1

i qi ω, pR
1
iqi ωy

h h

Where rm � tx1x2 � � �xi�1 PM i�1 : xi�1 P mpx1 � � �xiqu and
Ri�1 :�

�
mPMi

rm. It is easy to see that βΣ is well defined and that
pβΣqΣP|SigMA| ensemble into a natural transformation. Furthermore simple
arguments show that xϕ, α, βy indeed forms an institution morphism.
Finally, we define an inverse for βΣ

ModMApΣq ModFOL1
pϕΣq : β�1

Σ

xW, pFiqi ω, pMiqi ωy xW, pFiqi ω, pRiqi ωy

xW 1, pF 1
i qi ω, pM

1
iqi ωy xW 1, pF 1

i qi ω, pR
1
iqi ωy

h h

Where mrpx1 � � �xiq :� txi�1 PW : rpx1 � � �xi�1qu and Mi :�
�
rPRi�1

mr.
8For example, if f and g are function symbols and m is a multioperation, then the formula

fpmpxqq ¡ gpyq is equivalent to Dzppmpxq ¡ zq ^ pfpzq
.
� gpyqqq

9Note that the full proof would have to address equalities between multioperations and inclusions
between functions. The former being equivalent to K and the latter to an equality, for instance,
fpxq ¡ gpyq and fpxq

.
� gpyq
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This proves that MA has a skolemization. Observe that the inclusion system of this
skolemization is the standard one, that is, an inclusion simply means a subalgebra.
Using this fact and a similar technique to skolem hulls one can now easily prove a
downward Löwenheim-Skolem result for multialgebras.

6 Final remarks and future works
We finish the present work presenting some perspectives of future developments.

Remark 6.1. The adjunctions obtained in Section 2 lead us to research about the
relationship between the types of representations of propositional logics and their
institutions and π-institution developed in Section 4:

1. The result of these analyzes may provide us with a way to study metalogi-
cal properties of abstract propositional logics and their algebraic or categorical
properties, for instance, the relation between Craig’s interpolation in an ab-
stract logics and the amalgamation properties of its algebraic or categorical
semantic. In particular, it could be interesting examine the possibility of gen-
eralize the work in [3], describing a Craig interpolation property for institu-
tions associated to multialgebras: this is a natural (non-deterministic) matrix
semantics for complex logics as the LFI’s, the logics of formal inconsistencies
(see [8]).

2. By a convenient modification of this matrix institution, is presented in section
3.2 of [19] an institution for each “equivalence class" of algebraizable logic: this
furnished technical means to apply notions and results from the theory of insti-
tutions in the propositional logic setting and to derive, from the introduction
of the notion of “Glivenko’s context", a strong and general form of Glivenko’s
Theorem relating two “well-behaved" logics.

Remark 6.2. Another interesting discussion � already suggested in [10] � which
can be posed is how to repeat the whole discussion of Section 3 with a version of the
Grothendieck construction for indexed 2-categories in order to directly produce the 2-
category of institutions, as well as related 2-categories of institution-like structures.
The technical categorical devices necessary for developing this idea are presented in
[6], for example.

Remark 6.3. The borowing result presented in section 5 leads us to question which
institutions have the skolemization property in a non-trivial way. Furthermore, in
predicate logic skolemization is deeply related to the idea of indiscernibles, which
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leads the authors to question if an institution-independent formalization of this idea
is possible. Another question is if whether skolemization of an institution I implies
the skolemization of PresI ; if so, then in any skolemizable institution every theory
would admit some expansion to a model-complete theory.
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Abstract
In this paper we examine modal logics in which the modal operator 2 can

be read as necessity, or impossibility, or both. Consider classical modal logics,
for example; that is, the logics closed under the following rule of inference:
A ↔ B / 2A ↔ 2B. Here 2 usually represents necessity. But it also can be
read as possibility, impossibility, contingency, non-necessity, and even negation.
On the other hand, in the rule A → B / 2B → 2A the 2 operator can no
longer be read as necessity, or possibility — but it makes sense to read it as
impossibility or negation: if A implies B and B is impossible, so is A.

In this paper we will deal with only the necessity/impossibility readings of
2. We consider several modal formulas and, using neighborhood semantics,
identify, on frames, conditions corresponding to them. We consider several
logics obtained by adding one or more of these formulas as axioms, and prove
determination theorems for them. Besides the preliminary results presented in
this paper, we conclude indicating some topics for further research.

Keywords: classical modal logics; neighborhood semantics; impossibility operator.

1 Introduction
This work was inspired by an old paper of Richard Sylvan’s ([6]) on relational seman-
tics for some strict classical modal logics. In that paper, Sylvan intended to present
relational semantics for all well-known systems of modal logic of Lewis, Lemmon
and Fey’s, considering relational frames that included, in addition to normal worlds,
one or more sets of non-normal ones. The non-normal worlds considered in that
paper had the following conditions for formulas with the necessity operator (where
x is some world):

Thanks to the anonymous referees for many helpful corrections and suggestions. Thanks also to
the audience at the Brazilian Logic Conference.
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∗ opposite: 2A is true at x iff A is false at every world accessible to x;

∗ contrary: 2A is true at x iff A is false at some world accessible to x;

∗ perverse: 2A is true at x iff A is true at some world accessible to x;

∗ rafferty: 2A is arbitrarily true or false at x.

As we know, Sylvan’s proposed semantics did not work for some of the systems he
had in mind, but the logics characterized by frames with non-normal worlds remain
interesting in their own right. Being non-normal, they can find applications in the
areas of epistemic and deontic logic (where, for instance, usual inference rules such
as necessitation are deemed too strong).

In [5] we examined the logics of relational frames with one or more kinds of non-
normal worlds. Among the logics there considered, the smallest was one in which
the interpretation of 2 was neutral with regard to necessity, impossibility, possibility
or non-necessity. So we had a set of formulas that were valid no matter how 2 was
interpreted.

In this paper, we intend to examine, from the point of view of neighborhood
semantics, some logics in which the interpretation of 2 can be either necessity or
impossibility (further work will deal with other readings). By a necessity interpreta-
tion (or reading) of 2 we mean the following: 2A is true at a world x if and only if
A is true at every world accessible to x. An impossibility interpretation (or reading)
of 2 means: 2A is true at a world x if and only if A is false at every world accessible
to x.1 Using relational frames for the semantics, this would give us the case where
the set of worlds in a frame is split into only normal and opposite worlds. However,
weaker systems can be devised resorting to neighborhood semantics and considering
classical modal logics as a starting point.

A modal logic is classical if it is closed under the following rule of inference:
RE. A ↔ B / 2A ↔ 2B.

Now 2 usually represents a necessity operator, but it can have several inter-
pretations, like possibility, but also non-necessity, impossibility, contingency, non-
contingency, and even negation. This means that we can read 2 in many different
ways, and only additional requirements (syntactic and/or semantic) will fix some
interpretation as necessity, or impossibility, and so on.

Thus, in this paper we will consider classical modal logics in which the interpre-
tation of 2 is either necessity or impossibility.

1Of course, this still leaves room for different interpretations of necessity and impossibility:
logical, metaphysical, epistemic, deontic, temporal and so on.
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2 Preliminaries
We will work in a basic modal language consisting of a countable set Φ of proposi-
tional variables (for which we will use p, q etc.), the propositional constant ⊥, and
the primitive operators ¬, ∧ and 2. The standard operators ∨, →, ↔, 3, and the
constant ⊤ are defined in the usual way. We will also use A, B etc. as meta-variables
for formulas.

All logics considered in this paper will be extensions of classical propositional
logic, so they include the set PL of all tautologies, as well as being closed un-
der modus ponens (MP) and uniform substitution of variables (US). Thus, for the
purposes of this paper, a logic can be seen as a set of formulas that includes all
tautologies of classical propositional logic and is closed under modus ponens (MP)
and uniform substitution (US). A logic is closed under some rule of inference iff it
contains the conclusion of the rule whenever it contains the rule’s hypotheses. If all
instances of some schema belong to a logic, or if the logic is closed under some rule
of inference, we say that it has or provides that schema or rule.

Logics can also be presented axiomatically, and by a theorem of a logic we un-
derstand a formula which is provable in an axiom system for that logic. Inference
rules are then to be understood in the folowing sense: if the premisses of a rule are
theorems, so is its conclusion.

As said above, a modal logic is classical if it is closed under the rule RE:

RE. A ↔ B / 2A ↔ 2B.

The smallest classical modal logic, E, can be axiomatized by

PL. A, if A is an instance of a tautology of classical propositional logic,

and the inference rules MP (modus ponens), US (uniform substitution), and RE. As
we know, E has no theorems of the form 2A; as examples of E-theorems we have
2p ↔ ¬¬2p (which is an instance of a tautology) and 22p ↔ 2¬¬2p (which is
obtained from the previous theorem by applying RE).

E can be extended by several different axioms schemes. Two well-known ones
are the following:

M. 2(A ∧ B) → (2A ∧ 2B)

C. (2A ∧ 2B) → 2(A ∧ B)

If, as usual, we read 2 as a necessity operator, both formulas are acceptable: a
conjunction is necessary if and only if both of its elements are. M is also acceptable
if we read 2 as possibility (if A ∧ B is possible, so are A and B). Schema C, on the
other hand, turns out to be false under this reading: A and B can be individually
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possible, but if one excludes the other, their conjunction is impossible. However, C
is again acceptable if we read 2 as impossibility: if A is impossible, and so is B, then
the conjunction A ∧ B is also impossible. Actually, if either A or B is impossible,
their conjunction is impossible, too, what we could express using this formula (which
we will call W′ for reasons below):

W′. (2A ∨ 2B) → 2(A ∧ B)
Since we are only considering extensions of E by means of formulas which are

acceptable when 2 is read as necessity or impossibility, we will start with the fol-
lowing three groups of axiom schemes (some other schemas will be discussed later
on).

(I) M. 2(A ∧ B) → (2A ∧ 2B)
M′. (2A ∨ 2B) → 2(A ∨ B)
Y. 2(A ∧ B) → (2A ∨ 2B)
N. 2⊤

(II) W. 2(A ∨ B) → (2A ∧ 2B)
W′. (2A ∨ 2B) → 2(A ∧ B)

Z. 2(A ∨ B) → (2A ∨ 2B)
O. 2⊥

(III) C. (2A ∧ 2B) → 2(A ∧ B)
V. (2A ∧ 2B) → 2(A ∨ B)

Formulas in the first group are acceptable under a necessity reading, but not
impossibility. That is, if the truth conditions for 2A are the usual ones (2A is true
at x iff A is true at every accessible world x′), all these formulas come out intuitively
true. But not impossibility: if 2A is true at x iff A is false at every accessible world
x′, then obviously 2⊤ will come out false as well. And the same goes for M, M′

and Y. Notice, by the way, that Y is a weaker form of M — it follows from it by
propositional logic alone. And we will prove later that M and M′ are deductively
equivalent with regard to E.

On the second group, we have it the other way round: these formulas are accept-
able under an impossibility reading (2 meaning ‘false at every accessible world’),
but not necessity. Z is a weaker form of W, and W and W′ will be proven equivalent.

Finally, formulas on the third group are neutral, so to speak: they admit both
readings.
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The role played by the schemes listed above can also be played by some inference
rules. Consider, for instance, the inference rule RM:

RM. A → B / 2A → 2B

A well-known result (see [2]) is that a logic L has RM iff it has RE and M. We
will show, with regard to our candidate axioms, that the following inference rules,
divided into three groups as well, can be employed in place of them to generate a
logic.

(I) RM. A → B / 2A → 2B

RM′. (A ∨ B) ↔ C / (2A ∨ 2B) → 2C

RY. A ↔ (B ∧ C) / 2A → (2B ∨ 2C)
RN. A / 2A

(II) RW. A → B / 2B → 2A

RW′. A → (B ∧ C) / (2B ∨ 2C) → 2A

RZ. (A ∨ B) ↔ C / 2C → (2A ∨ 2B)
RO. ¬A / 2A

(III) RC. (A ∧ B) ↔ C / (2A ∧ 2B) → 2C

RV. (A ∨ B) ↔ C / (2A ∧ 2B) → 2C

Let us now establish some facts about the connections between these axioms and
rules. First, as said before, M and M′, and W and W′, are equivalent: a logic has
one of them iff it has the other. This is also the case for RM and RM′, and RW and
RW′.

Theorem 2.1. Let L be a logic. Then:
(a) L has RE and M iff it has RM iff it has RM′ iff it has RE and M′;
(b) L has RE and W iff it has RW iff it has RW′ iff it has RE and W′.

Proof. We prove case (b); the first part of (a) is a known result, and the demon-
stration of the rest follows similar lines. In what follows, we use PL to indicate that
something follows by classic propositional logic.

First, suppose that L has RE and W, and that A → B is a thesis. Then
so are B ↔ (A ∨ B) by PL, and 2B ↔ 2(A ∨ B) by RE. Using W, that is,
2(A ∨ B) → (2A ∧ 2B), we get 2B → 2A again by propositional logic, so L has
RW.
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Suppose now that it has RW, and that A ↔ B is a thesis. Then so are 2A → 2B
and 2B → 2A. Two applications of RW and propositional logic give us 2A ↔ 2B,
so L has RE. For W, since A → (A ∨ B) and B → (A ∨ B) are tautologies, RW gives
us 2(A ∨ B) → A, 2(A ∨ B) → B, and W follows immediately.

To prove that L has RW′, if it has RE and W′, suppose that A → (B ∧ C) is a
thesis. Then so are A → B and A → C, from what A ↔ (A ∧ B) and A ↔ (A ∧ C)
follow by PL. Using RE we obtain 2A ↔ 2(A ∧ B) and 2A ↔ 2(A ∧ C), and it
follows that 2(A∧B) ↔ 2(A∧C) is also a thesis. Consider now these two instances
of W′: (2A ∨ 2B) → 2(A ∧ B) and (2A ∨ 2C) → 2(A ∧ C). By PL we obtain
(2B ∨ 2C) → 2A, so L has RW′.

Suppose now that L has RW′. Since (A ∧ B) → (A ∧ B) is a tautology, RW′

gives us immediately (2A ∨ 2B) → 2(A ∧ B), which is W′. That L also has RE is
easily shown.

We prove now that L has RW iff it has RW′. So suppose L has RW and that
A → (B ∧ C) is a thesis. Then so are A → B and A → C. Using RW we obtain
2B → 2A and 2C → 2A, from what we get, by PL, (2B ∨ 2C) → 2A, so L
has RW′. For the other direction, suppose that L has RW′, and that A → B is a
thesis. Then so are A → (B ∧ B) (by PL) and (2B ∨ 2B) → 2A, using RW′. Now
2B → 2A follows by PL, so L has RW.

Corollary 2.2. A classical logic has M iff it has M′, and it has W iff it has W′.

Accordingly, we will only consider M and W in building our logics. As for other
axioms and rules, we can prove the following equivalences.

Theorem 2.3. Let L be a logic. Then:

(a) L has RY iff it has RE and Y;
(b) L has RZ iff it has RE and Z;
(c) L has RC iff it has RE and C;
(d) L has RV iff it has RE and V.

Proof. Proofs of above results are not difficult; we show (c) as an illustration. So
suppose L has RC. Since (A ∧ B) ↔ (A ∧ B) is a tautology and so a theorem, one
application of RC gives us (2A ∧ 2B) → 2(A ∧ B), so we have C. To show that L
has RE, consider:
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1. A ↔ B hypothesis
2. (A ∧ A) ↔ B 1 PL
3. (2A ∧ 2A) → 2B 2 RC
4. 2A → 2B 3 PL
5. (B ∧ B) ↔ A 1 PL
6. (2B ∧ 2B) → 2A 5 RC
7. 2B → 2A 6 PL
8. 2A ↔ 2B 4,7 PL

For the other direction, suppose L has RE and C, and that (A ∧ B) ↔ C is
a theorem. Applying RE we obtain 2(A ∧ B) ↔ 2C From this and C, that is,
(2A ∧ 2B) → 2(A ∧ B), we otain (2A ∧ 2B) → 2C by propositional logic.

Some further results are:

Theorem 2.4. Let L be a classical logic. Then:

(a) if L has M, then it has Y and V;
(b) if L has W, then it has Z and C;
(c) L has RN iff it has N, and has RO iff it has O.

Proof. So suppose L is a classical logic; we prove cases (a) and (b) as examples.
(a) Suppose L has M. Since (2A ∧ 2B) → (2A ∨ 2B) is a tautology, L has Y. For
V, since A → (A ∨ B) and B → (A ∨ B) are tautologies, using RM (which L has
since it has M) we get both 2A → 2(A ∨ B) and 2B → 2(A ∨ B), and V, that is,
(2A ∧ 2B) → 2(A ∨ B), follows immediately by propositional logic.
(b) Now suppose L has W. Then Z follows from W by propositonal logic alone. Now
both (A∧B) → A and (A∧B) → B are tautologies; using RW we get 2A → 2(A∧B)
and 2B → 2(A ∧ B), from which C follows by propositional logic.

3 Extending E
Having now listed some candidate axiom schemas and rules, let us see which logics
we get combining them. We will start with axioms of group III only, that is, the
core logics where 2 admits, indifferently, a necessity or an impossibility reading. Our
candidate axioms (from this group) are C and V (and of course the corresponding
rules). Besides the minimal classical logic E, we obtain EV, EC, and EVC. That they
are all different from each other will be shown later, after we introduce frames and
models. So, initially, EVC is the strongest logic where 2 still can be read either as
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Figure 1: Some logics

necessity or impossibility. If we now add axioms from the two remaining groups, I
and II, we will force the interpretation of 2 in one or the other direction.

Combinations of M, C, and N yield the usual eight classical modal logics pre-
sented in Brian Chellas’s book [2]. Analogously, if we take combinations of W, V,
and O we get eight systems (E being one of them). Combinations of most of these
schemes (with the exception of N and O) give us the logics depicted in Figure 1,
where, at the center, we have E and three of its extensions in which 2 can be read
either as necessity or impossibility.

For the other logics, let us start with the necessity reading. Adding Y to the four
center logics gives us four other systems. Now, if a logic has M, then it has Y and
V, so adding M to E gives us an extension of EVY. Finally, if we add C to EM, we
get them all, so EMC extends all other logics in the diagram which have a necessity
reading of 2. And naturally we can add N to these logics, getting known classical
logics like EN or EMN. EMCN, in particular, is another name for the smallest normal
logic, K.

Going in the other direction, let us take the core logics and extend them with
axioms (and/or rules) from group II. We arrive at a similar picture on the right of
Figure 1. First, we have four Z extensions of the four center logics. And since a logic
has Z and C if it has W, we have EW and finally EWV, the strongest logic in the
diagram in which 2 means impossibility. We can also extend these logics with O;
in this case, EWVO will be the smallest normal logic with 2 meaning impossibility.
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The logics in the diagram are all distinct, but to show that, we need first to talk
about semantics.

4 Frames and models
Definition 4.1. A frame is a structure F = ⟨U, S⟩, where U is a nonempty set, the
universe of the frame, and S is a function that associates to each x ∈ U a set of
subsets of U (that is, S(x) ⊆ P(U)).

A valuation V on U is a function from the set Φ of propositional variables to
P(U).

Definition 4.2. Let F = ⟨U, S⟩ be a frame and V a valuation in U . A model is a
pair M = ⟨F, V ⟩; we say that M is based on F.

Definition 4.3. Let M = ⟨U, S, V ⟩ be a model and x an element of U . A formula
A is true at the point x, what is denoted by M, x ⊩ A, when:

M, x ⊩ p iff x ∈ V (p), for p ∈ Φ;

M, x ⊮ ⊥;

M, x ⊩ ¬A iff M, x ̸⊩ A;

M, x ⊩ A ∧ B iff M, x ⊩ A and M, x ⊩ B;

M, x ⊩ 2A iff ∥A∥M ∈ S(x), with ∥A∥M = {y ∈ U : M, y ⊩ A}.

The set ∥A∥M from the above definition is called the truth set of A in M. When
there is no risk of confusion, we will drop the superscript and write simply ∥A∥.

Definition 4.4. A formula A is true in a model M = ⟨U, S, V ⟩, what we denote by
M ⊩ A, if it is true at every x ∈ U . A formula A is valid at a point x in a frame F,
what we denote by F, x ⊩ A, if it is true at x in every model based on F. A formula
A is valid in a frame F if it is valid at every point of the frame, and valid in a class
C of frames, what we denote by C ⊩ A, if it is valid in every frame of the class.

We say that a formula B is a tautological consequence of a set A1, . . . , Am of
formulas, for (m ≥ 0), iff (A1 ∧ . . . ∧ Am) → B is an instance of a tautology of
classical propositional logic. (Of course, if m = 0, (A1 ∧ . . . ∧ Am) → B is just B.)

Lemma 4.5. Let C be any class of frames. Then:
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(i) if B is a tautological consequence of A1, . . . , Am , for (m ≥ 0), and C ⊩ A1,
. . . , C ⊩ Am, then C ⊩ B;

(ii) if C ⊩ A ↔ B, then C ⊩ 2A ↔ 2B.

Proof. (i) The proof is straightforward, owing to the fact that every tautology is
valid in every state of every frame, and that modus ponens preserves validity.
(ii) Suppose C ⊩ A ↔ B. Thus C ⊩ A iff C ⊩ B, and it follows that, for every model
M = ⟨U, S, V ⟩ based on a frame in C, ∥A∥M = ∥B∥M. Hence, for every x ∈ U ,
∥A∥M ∈ S(x) iff ∥B∥M ∈ S(x). So M, x ⊩ 2A iff M, x ⊩ 2B, from what it follows
that C ⊩ 2A ↔ 2B.

5 Soundness
The logic of a class C of frames is the set of all formulas valid in every frame of that
class. With no restrictions imposed on the frames, the logic of the class of all frames
is the minimal classical modal logic knwon as E.

To obtain determination (that is, soundness and completeness) theorems for the
other logics we need to define the corresponding property of each of the schemas
M, Y, N, C, V, W, Z, and O, which, as can be easily shown, are not valid in the
class of all frames. For some of them the properties are well-known in the literature
(see [2]).

Let M = ⟨U, S⟩ be a frame, x an element of U , and X and Y subsets of P(U).
We consider the following natural conditions:

(I) (m) if X ∩ Y ∈ S(x), then X ∈ S(x) and Y ∈ S(x);

(y) if X ∩ Y ∈ S(x), then X ∈ S(x) or Y ∈ S(x);

(n) U ∈ S(x);

(II) (w) if X ∪ Y ∈ S(x), then X ∈ S(x) and Y ∈ S(x);

(z) if X ∪ Y ∈ S(x), then X ∈ S(x) or Y ∈ S(x);

(o) ∅ ∈ S(x);

(III) (c) if X ∈ S(x) and Y ∈ S(x), then X ∩ Y ∈ S(x);

(v) if X ∈ S(x) and Y ∈ S(x), then X ∪ Y ∈ S(x).

For M′ and W′, the conditions would be:

(m′) if X ∈ S(x) or Y ∈ S(x), then X ∪ Y ∈ S(x);
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(w′) if X ∈ S(x) or Y ∈ S(x), then X ∩ Y ∈ S(x).

But we will not use them, since, as shown before, in classical logics M′ and W′ are
equivalent to M and W, respectively.

A known result is that condition (m) is equivalent to closure under supersets,
that is:

(m*) if X ∈ S(x) and X ⊆ Y , then Y ∈ S(x).

That is, if a set X is in S(x), for some x ∈ U , then all its supersets are, too.
Analogously, we can show that (w) is equivalent to closure under subsets, that is:

(w*) if X ∈ S(x) and Y ⊆ X, then Y ∈ S(x).

That is, is a set X belongs to S(x), then all its subsets belong, too.
The following lemma establishes a correspondence between axiom schemas and

their corresponding condition.

Lemma 5.1. The schemas M, Y, N, C, V, W, Z and O are valid in a frame F iff
F satisfies the conditions (m), (y), (n), (c), (v), (w), (z), and (o), respectively.

Proof. The results for M, C, and N are already known (see [3] for instance).
We show W and Z as examples. Let F = ⟨U, S⟩ be a frame in which (w) holds,

M a model based on F, A and B formulas, and x an element of U such that x ⊩
2(A ∨ B). It follows that ∥A ∨ B∥ ∈ S(x) and, since (what can easily be shown)
∥A∨B∥ = ∥A∥∪∥B∥, that ∥A∥∪∥B∥ ∈ S(x). Given that (w) holds in M, it follows
that S(x) contains ∥A∥ and ∥B∥. But then x ⊩ 2A and x ⊩ 2B, from what it
follows that W is valid in a frame satisfying (w).

Let now F be a frame in which (w) does not hold. That is, there is a u ∈ U
and subsets X and Y of U such that X ∈ S(u), Y ⊆ X, but Y /∈ S(u). Let M

be a model based on F such that V (p) = X, V (q) = Y . Clearly X ∪ Y = X, so
u ⊩ 2(p ∨ q), since ∥p ∨ q∥ = X and X ∈ S(u). We also have that u ⊩ 2p. However,
since Y /∈ S(u) and ∥q∥ = Y , u ⊮ 2q. Now this models falsifies 2(p ∨ q) → 2p ∧2q,
an instance of W.

For Z, let F = ⟨U, S⟩ be a frame in which (z) holds, M a model based on F, A
and B formulas and x an element of U such that x ⊩ 2(A ∨ B). It follows that
∥A ∨ B∥ ∈ S(x) and, since ∥A ∨ B∥ = ∥A∥ ∪ ∥B∥, that ∥A∥ ∪ ∥B∥ ∈ S(x). Given
that (z) holds in M, it follows that S(x) contains either ∥A∥ or ∥B∥. But then either
x ⊩ 2A or x ⊩ 2B, so x ⊩ 2A ∨ 2B, from what it follows that Z is valid in in a
frame satisfying (z).

For the other direction, let now F be a frame in which (z) does not hold. That
is, there is a u ∈ U and subsets X and Y of U such that X ∪ Y ∈ S(u), but neither
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X nor Y are in S(u). Let M be a model based on F such that V (p) = X, V (q) = Y .
Clearly X ∪ Y = X, so u ⊩ 2(p ∨ q), since ∥p ∨ q∥ = X ∪ Y and X ∪ Y ∈ S(u).
However, we also have that u ⊮ 2p and u ⊮ 2q, since neither ∥p∥ = V (p) nor
∥q∥ = V (q) are in S(u). Hence, this models falsifies 2(p∨q) → 2p∨2q, an instance
of Z.

The following general soundness result, proven in [2], holds for our logics in
Figure 1.

Theorem 5.2 (Soundness). Let S1, . . . , Sn be schemas valid respectively in classes
of frames Ci satisfying the corresponding condition (si), for 1 ≤ i ≤ n. Then the
logic is sound with respect to the class C1 ∩ . . . ∩ Cn.

We can now show some results to the effect that some axiom schema does not
follow from certain others. The strategy is the usual one: find a model for the
strongest logic without some specific schema, and show that the schema fails in that
model. For instance, consider C, (2A ∧ 2B) → 2(A ∧ B), and take a look at the
diagram in Figure 1. It is known that C is not a thesis of EM (see [2]). We need to
show that it is not a thesis of EVZ, too.

In fact, we can prove the following theorem, establishing the distinctness of all
logics in Figure 1.

Theorem 5.3. The logics depicted in Figure 1, as well as their extensions with N
or O, are all distinct.

Proof. Let us consider each of our axiom schemas.
[N and O]. Consider the model where U = {1}, S(1) = ∅, and V (p) = ∅ for all p ∈ Φ.
Conditions (m), (y), (c), (v), (w) and (z) hold trivially, so this is both an EMC and
an EWV model, what makes it a model of every logic below EMC and EWV in the
diagram of Figure 1. However, since neither ∅ nor U are in S(1), both 2⊤ and 2⊥
are false in 1. Thus, all systems on the diagram are distinct from their N and O
extensions.
[C.] The two strongest logics without C are EM and EVZ. That C is not a thesis
of EM is a known result (see [2]). Now consider the model where U = {1, 2},
S(1) = S(2) = {{1}, {2}, {1, 2}}, and V (p) = {1}, V (q) = {2}. Condition (v) is
easily verified, since the union of any two sets in S(1) belongs to S(1). (m) and (z)
also hold, so this is both an EM-model and an EVZ-model, as well as a model for all
their sublogics. However, 1 ⊩ 2p, 1 ⊩ 2q, but 1 ⊮ 2(p ∧ q), since ∥p ∧ q∥ = ∅, and
∅ /∈ S(1). So C fails. Thus EM, EVZ and all their sublogics are distinct from their
C-extensions.
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[Z.] EMC is the strongest logic without Z. Consider the model where U = {1, 2},
S(1) = S(2) = {{1, 2}}, V (p) = {1}, V (q) = {2}. Conditions (m) and (c) are
verified. Now 1 ⊩ 2(p ∨ q), since ∥p ∨ q∥ = {1, 2} and {1, 2} ∈ S(1), but 1 ⊮ 2p and
1 ⊮ 2q, so this model falsifies an instance of Z. Recall that W entails Z, and notice
that this model falsifies W as well. Hence EMC and its sublogics are distinct from
EZ and its extensions up to EWV.
[Y.] EWV is the strongest logic without Y. Consider the model where U = {1, 2},
S(1) = S(2) = {∅}, V (p) = {1}, V (q) = {2}. Conditions (w) and (v) are satisfied
(two sets belong to S(1) iff their union belongs, too). However, 1 ⊩ 2(p ∧ q), since
∥p ∧ q∥ = ∅, but 1 ⊮ 2p and 1 ⊮ 2q, falsifying an instance of Y. Since M entails
Y, this model falsifies M as well. Hence EWV and its sublogics are distinct from EY
and its extensions up to EMC.
[W.] EMC and EZVC are the strongest logics without W. We have shown above that
Z is not a theorem of EMC and, since W entails Z, neither is W. Now consider the
model where U = {1, 2}, S(1) = S(2) = {{1}}, V (p) = {1}, V (q) = ∅. Notice that
conditions (c), (v), and (z) are all satisfied, so this is an EZVC-model, as well as a
model for all its sublogics. However, 1 ⊩ 2(p ∨ q), since ∥p ∨ q∥ = {1}, but 1 ⊮ 2q,
since ∅ /∈ S(1). Hence W fails, and EW is distinct from EMC, EZVC, and all their
sublogics.
[M.] EWV and EYVC are the strongest logics without M. We have shown above that
Y is not a theorem of EWV and, since M entails Y, neither is M. Consider now the
model where U = {1, 2}, S(1) = S(2) = {{1}}, V (p) = {1}, V (q) = ∅. Notice that
conditions (y), (c), and (v) are all satisfied, so this is an EVCY-model, as well as a
model for all its sublogics. However, 1 ⊩ 2(p ∧ q), since ∥p ∧ q∥ = {1}, but 1 ⊮ 2q,
so M fails. Hence EM is distinct from EWV, EYVC, and all their sublogics.
[V.] EW and EYC are the strongest logics without V. Consider first the model U =
{1, 2}, S(1) = S(2) = {∅, {1}, {2}}, V (p) = {1}, V (q) = {2}. (w) is satisfied, so
this is an EW-model. Now 1 ⊨ 2p and 1 ⊩ 2q, but 1 ⊮ 2(p ∨ q), since ∥p ∨ q∥ = U
and U /∈ S(1). Hence V is falsified in an EW-model. Consider now the model where
U = {1, 2, 3}, S(1) = S(2) = S(3) = {{1, 2}, {2}, {2, 3}}. Conditions (y) and (c) are
satisfied, so we have a model for EYC. We see that 1 ⊨ 2p, 1 ⊩ 2q, but 1 ⊮ 2(p∨ q),
since ∥p ∨ q∥ = U and U /∈ S(1). Hence V is falsified in an EYC-model. Thus EW,
EYC and all their sublogics are distinct from their V-extensions.

6 Completeness
Being fond of canonical models, we will use them to demonstrate completeness
theorems for several of the logics considered here. We start with a few definitions
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and lemmas (where L is any of our logics).

Definition 6.1. A set Γ of formulas is L-inconsistent if there is a finite subset of
formulas {α1, . . . , αn} ⊆ Γ such that ⊢L ¬(α1 ∧ . . .∧αn); otherwise Γ is L-consistent.

If Γ is finite, i.e., Γ = {γ1, . . . , γn}, Γ is L-consistent if and only if ⊬L ¬(γ1 ∧ . . .∧
γn). And a singleton {α} is L-consistent, of course, if and only if ⊬L ¬α.

Definition 6.2. Let Γ be a set of formulas and α a formula. We say that Γ ⊢L α if
there is a finite subset of formulas {α1, . . . , αn} ⊆ Γ such that ⊢L (α1∧. . .∧αn) → α.

Definition 6.3. A set Γ of formulas is maximal if, for every formula α, either α ∈ Γ
or ¬α ∈ Γ. Γ is a maximal consistent set (MCS) if it is maximal and consistent.

The proofs of the following lemmas are standard, so we will omit them.

Lemma 6.4. Let ∆ be an MCS, and α and β any formulas. Then:
(i) ⊥ /∈ ∆
(ii) α ∈ ∆ iff ¬α /∈ ∆;
(iii) α ∧ β ∈ ∆ iff α ∈ ∆ and β ∈ ∆;
(iv) α ∨ β ∈ ∆ iff α ∈ ∆ or β ∈ ∆;
(v) α → β ∈ ∆ iff α /∈ ∆ or β ∈ ∆;
(vi) α ↔ β ∈ ∆ iff α ∈ ∆ and β ∈ ∆, or α /∈ ∆ and β /∈ ∆;
(vii) if α ∈ ∆ and α → β ∈ ∆ then β ∈ ∆.

Lemma 6.5 (Lindenbaum). Let Γ be a consistent set of formulas. Then there is an
MCS ∆ such that Γ ⊆ ∆.

Lemma 6.6. ⊢L α iff for every L-MCS Γ, α ∈ Γ.

Where L is a logic, let SL be the set of all maximal consistent sets (MCSs) of
formulas in L. Let |A|L = {Γ ∈ SL : A ∈ Γ}. The set |A|L is called the proof set
of A in L. A subset X of SL a called a proof set if X = |A|L for some A. Notice
that there are subsets of SL which are not proof sets of any formula; such sets will
be called non-proof sets.

Definition 6.7. Let L be a classical modal logic. We say that ML = ⟨UL, SL, VL⟩
is a canonical model for L iff it satisfies the following conditions:
(i) UL = SL;
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(ii) |A|L ∈ SL(Γ) iff 2A ∈ Γ, for all Γ ∈ UL and every A;
(iii) VL(p) = |p|L, for every p ∈ Φ.

Now a logic L does not have just one canonical model, even though the universe
of a canonical model always is the set SL of all maximal L-consistent sets. The
reason is the following: a proof set |A|L belongs to S(Γ), for some Γ ∈ UL, if and
oly if 2A ∈ Γ. However, S(Γ) can also contain any number of non-proof sets. We
can, thus, have several different canonical model constructions for a logic, from the
smallest canonical model (S(Γ) contains only the proof sets of formulas A such that
2A ∈ Γ) to the largest one (S(Γ) contains in addition all non-proof sets).

Lemma 6.8. Let M be a canonical model for a logic L. Then, for every wff A and
every Γ ∈ UL, M, Γ ⊩ A iff A ∈ Γ.

Proof. By induction on formulas. Let Γ be some element of UL.
(a) A = p, for some p ∈ Φ. By definition, Γ ⊩ p iff Γ ∈ VL(p) iff Γ ∈ |p|L. By
construction of |p|L, Γ is a set in |p|L iff p ∈ Γ.
(b) A = ⊥. By definition, Γ ⊮ ⊥. And since every element of U is a consistent set,
⊥ /∈ Γ.
(c) A = ¬B. By definition, Γ ⊩ ¬B iff Γ ⊮ B. By the inductive hypothesis, Γ ⊩ B
iff B ∈ Γ, so Γ ⊮ B iff B /∈ Γ. Now B /∈ Γ iff ¬B ∈ Γ. Thus Γ ⊩ ¬B iff ¬B ∈ Γ.
(d) A = B ∧ C. By definition, Γ ⊩ B ∧ C iff Γ ⊩ B and Γ ⊩ C. By the inductive
hypothesis, Γ ⊩ B iff B ∈ Γ, and Γ ⊩ C iff C ∈ Γ. Now B ∈ Γ and C ∈ Γ iff
B ∧ C ∈ Γ. Thus Γ ⊩ B ∧ C iff B ∧ C ∈ Γ.
(e) A = 2B. Suppose that Γ ∈ UL. By definition, Γ ⊩ 2B iff ∥B∥M ∈ SL(Γ). By
the inductive hypothesis, for every ∆ ∈ U we have that ∆ ⊩ B iff B ∈ ∆; that
is, ∥B∥M = |B|L. So ∥B∥M ∈ SL(Γ) iff |B|L ∈ SL(Γ). Now, by definition of SL,
|B|L ∈ SL(Γ) iff 2B ∈ Γ. Hence, Γ ⊩ 2B iff 2B ∈ Γ.

From this lemma it follows immediately that:

Theorem 6.9 (Completeness for E). Let Γ be an E-consistent set of formulas. Then
Γ has a model.

Proof. Suppose that Γ is E-consistent. By a standard Lindenbaum argument we can
show that there exists an E-MCS ∆ such that Γ ⊆ ∆. Since ∆ is an E-MCS, ∆ is a
state in a canonical model ME for E. By the previous lemma, ME, ∆ ⊩ A, for every
A ∈ ∆. Since Γ ⊆ ∆, Γ has a model.

As a consequence, E is determined by the class of all frames. With regard to the
other logics, we need to show that they have canonical models satisfying the needed
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conditions, because not every canonical model does. As an example, take EM. To
show that this logic is determined by the class of all frames satisfying condition
(m), we need to show that there is a canonical model whose frame belongs to that
class. However, a well-known result is that the smallest EM-canonical model does
not satisfies (m), and this is why: let |A| the proof set of some atomic formula A,
Γ some point in the smallest canonical model, and suppose |A| ∈ S(Γ). Let now X
be any non-proof set such that |A| ⊆ X. If condition (m) were satisfied, X should
belong to S(Γ), but it doesn’t, because, in the smallest canonical model, only proof
sets belong to S(Γ).

Let us begin with logics regarding which the smallest canonical model is all we
need.

Proposition 6.10. Let L be any logic that has N or O. Then the smallest L-
canonical model satisfies the corresponding (n) or (o) condition.

Proof. We show (o) as an example. Let ML = ⟨UL, SL, VL⟩ be a canonical model
for a logic that has O. Then, since 2⊥ ∈ Γ for every Γ in UL, |⊥|L ∈ SL(Γ). Since
|⊥| = UL, UL ∈ SL(Γ).

Proposition 6.11. Let L be one of the logics E, EC, EV, EVC, or their exten-
sions with N or O. Then the smallest L-canonical model satisfies the corresponding
conditions.

Proof. For E, EC, EN and ECN the result is known. As an example, consider the
smallest canonical model for EV. Let X and Y be subsets of U such that X ∈ S(Γ)
and Y ∈ S(Γ). But then there are formulas A and B such that X = |A| and Y = |B|.
By the definition of a canonical model, 2A ∈ Γ and 2B ∈ Γ, and it follows by V
that 2(A ∧ B) ∈ Γ. So |A ∧ B| ∈ S(Γ). And since, what can easily be shown,
|A ∧ B| = |A| ∩ |B|, X ∩ Y ∈ S(Γ) and condition (v) is verified.

For some other logics, the largest canonical model will do the job.

Proposition 6.12. Let L be a logic.
(a) If L is EY, EZ, or their extensions with N or O, the largest L-canonical model

satisfies the corresponding conditions.

Proof. Consider the largest EY-canonical model. Let X and Y be subsets of U such
that X ∩Y ∈ S(Γ), for some Γ ∈ U . If either X or Y is a nonproof set, then trivially
X or Y is in S(Γ). So suppose both X and Y are proof sets. For some A and B,
X = |A| and Y = |B|. Then X ∩ Y = |A| ∩ |B| = |A ∧ B|. But then 2(A ∧ B) ∈ Γ,
from what it follows that 2A or 2B are in Γ, so either X or Y belong to S(Γ).

For the other logics, the proof is analogous.
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How do we proceed, then, to obtain the desired canonical models for the other
logics? The trick consists in taking the smallest model and adding enough non-proof
sets to SL(Γ), for every Γ ∈ UL, so the model will satisfy the desired condition—and
still be a canonical model for the logic in question. For EM and EMC there is a
well-known solution: supplementation (see, for instance, [2]).

Here the details. Let M = ⟨U, S, V ⟩ be the smallest canonical model for a logic
L. The supplementation of M is the model M+ = ⟨UL, S+, VL⟩, such that, for every
Γ ∈ UL and every X ⊆ UL,

X ∈ S+
L (Γ) iff Y ⊆ X for some Y ∈ SL(Γ).

That is, S+
L (Γ) = {X ⊆ UL : X ⊆ |A|L for some 2A ∈ Γ}. Obviously, for every

Γ ∈ UL, SL(Γ) ⊆ S+
L (Γ).

Of course, we need to show that the supplemention is indeed a canonical model.
This, and the proof of the next proposition, are done in [2], ch. 9, but see the proof
of Proposition 6.14 below, which is analogous.

Proposition 6.13. Let L be one of the logics EM, EMC, EMN, EMCN. Then the
supplementaion of the smallest L-canonical model satisfies the corresponding condi-
tions.

For EW, EWV and their extensions with O, we can use a similar construction.
Let M = ⟨U, S, V ⟩ be the smallest canonical model for a logic L. The anti-
supplementation of M is the model M−

L = ⟨UL, S−
L , VL⟩ be the model where, for

every Γ ∈ UL and every X ⊆ UL,

X ∈ S−
L (Γ) iff X ⊆ Y for some Y ∈ SL(Γ).

That is, S−
L (Γ) = {X ⊆ UL : X ⊆ |A|L for some 2A ∈ Γ}. Obviously, for every

Γ ∈ UL, SL(Γ) ⊆ S−
L (Γ).

Proposition 6.14. Let L be one of the logics EW, EWV, EWO, EWVO. Then the
anti-supplementation of the smallest L-canonical model satisfies the corresponding
conditions.

Proof. Suppose W is a theorem of L. We have to prove that the anti-supplementation
M−

L is a canonical model for L. To do is, it is enough to show that condition (ii) of
the definition is satisfied, that is, for every A and every Γ ∈ UL,

|A|L ∈ S−
L (Γ) iff 2A ∈ Γ.

If 2A ∈ Γ then |A|L ∈ SL(Γ), since ML is canonical for L, and so |A|L ∈ S−
L (Γ).

For the other direction, suppose that |A|L ∈ S−
L (Γ). Thus, for some Y ⊇ |A|L,
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Y ∈ SL(Γ). Since ML is the smallest canonical model, this means that, for some
B, Y = |B|L. It follows that |A|L ⊆ |B|L, and 2B ∈ Γ. Now this means that
⊢L A → B, and it follows by RW (which L has, if it has W) that ⊢L 2B → 2A.
Hence, 2B ∈ Γ.

So M−
L is a canonical model for L. We show that is satisfies the required condi-

tions. (That (o) is verified was already shown above.)
[EW.] Let Γ be an element of UL, and X and Y be subsets of UL such that X ∪ Y ∈
S−

L (Γ). By construction, there must be some formula A such that |A|L ∈ S(Γ) and
X ∪ Y ⊆ |A|L. But obviously X ⊆ X ∪ Y and Y ⊆ X ∪ Y , so X ⊆ |A|L, Y ⊆ |A|L
and, again by construction, X ∈ S−

L (Γ) and Y ∈ S−
L (Γ).

[EWV.] Let Γ be an element of UL, and X and Y be subsets of UL such that both X
and Y are in S−

L (Γ). Then there are formulas A and B such that X ⊆ |A|, Y ⊆ |B|,
and both |A| and |B| are in S(Γ). Hence 2A and 2B are in Γ, from what it follows
by V that 2(A ∨ B) ∈ Γ, and hence that |A ∨ B| ∈ S(Γ). Given that X ⊆ |A| and
Y ⊆ |B|, X ∪ Y ⊆ |A ∨ B|. Thus, X ∪ Y ∈ S−

L (Γ).
[EWO and EWVO.] Since 2⊥ is a theorem of these logics, 2⊥ belongs to every MCS
Γ in the canonical model, so |⊥| ∈ S(Γ).

This leaves us with logics having Y or Z, and also in these cases the smallest
canonical model will not work.

For logics having Y, we can define the following construction, a kind of weak
supplementation. Consider the smallest L-canonical model ML = ⟨UL, SL, VL⟩, and
let M∗

L = ⟨UL, S∗
L, VL⟩ be the model where, for every Γ ∈ UL and every X ⊆ UL,

X ∈ S∗
L(Γ) iff X ∈ SL(Γ) or X is a non-proof set and,

for some Y ∈ SL(Γ), Y ⊆ X.

Since only non-proof sets are added to SL(Γ), M∗
L is a canonical model for L.

For logics having Z, we can define a similar construction, a kind of weak anti-
supplementation. Consider the smallest L-canonical model ML = ⟨UL, SL, VL⟩, and
let M⋆

L = ⟨UL, S⋆
L, VL⟩ be the model where, for every Γ ∈ UL and every X ⊆ UL,

X ∈ S⋆
L(Γ) iff X ∈ SL(Γ) or X is a non-proof set and,

for some Y ∈ SL(Γ), X ⊆ Y .

Since only non-proof sets are added to SL(Γ), M⋆
L is a canonical model for L.

Proposition 6.15. Let L be a logic.
(a) If L is EY, EYC, EVY,EYVC, or their extensions with N or O, the weak supple-

mentation of the smallest L-canonical model satisfies the corresponding condi-
tions.
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(b) If L is EZ, EZC, EVZ,EZVC, or their extensions with N or O, the weak anti-
supplementation of the smallest L-canonical model satisfies the corresponding
conditions.

Proof. We show case (b); (a) is analogous.
Suppose that Z is a theorem of L, and let X and Y be any subsets of UL such

that X ∪ Y ∈ S⋆
L(Γ). If X and Y are proof sets then, for some A and B, X = |A|

and Y = |B|. But then X ∪ Y = |A| ∪ |B| = |A ∨ B|, so 2(A ∨ B) ∈ Γ. Given that
Z is a theorem, then 2A ∨ 2B ∈ Γ, and then either |A| ∈ S⋆

L(Γ) or |B| ∈ S⋆
L(Γ), so

(z) holds.
Suppose now that X and Y are non-proof sets, and that X ∪Y is a non-proof set,

too. Then, for some A such that |A| ∈ SL(Γ), X ∪ Y ⊆ |A|. Now, since X ⊆ X ∪ Y ,
we have that X ⊆ |A|, so by construction X ∈ S⋆

L(Γ) and (z) holds. If X ∪ Y is a
proof set, again X ∈ S⋆

L(Γ) and (z) holds.
If now one of X, Y is a proof set and the other not, the argument is analogous.
We can also show that, if C or V are theorems, that conditions (c) or (v) holds.

From all of the above results, determination theorems follow for all logics in Fig-
ure 1 and their extensions with N or O. (Decidability should follow using filtrations,
but this would be a subject for another paper.)

7 More on neutral readings
In the previous sections, we discussed only four logics (E, EV, EC, and EVC) in which
2 can be read either as necessity or impossibility. But there are more.

Consider the following schemes:

K. 2(A → B) → (2A → 2B)

X. (2(A → B) ∧ 2(B → C)) → 2(A → C)

X1. (2(A → B) ∧ 2(B → C)) → 2⊤
K is a standard axiom in normal modal logics, and X and X1 are discussed in

[3], a paper by B. Chellas and K. Segerberg where prenormal modal logics were
introduced.

The reader familiar with [3] may wonder why we are listing both X and X1 as
candidate axioms. They are equivalent in prenormal logics, but this does not in
general. A logic is said prenormal if it provides the following schema:

nK. 2⊤ → (2(A → B) → (2A → 2B)).
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Now if a logic is prenormal, it has X iff it has qX, which is the following:

qX. 3⊥ → (
(2(A → B) ∧ 2(B → C)) → 2(A → C)

)
.

In [3], Chellas and Segerberg show that qX is equivalent to X1, and also that a
prenormal logic has X iff it has qX. This result does not carry to classical modal
logics which are not prenormal. It is easily shown that if a classical logic has X, then
it has qX (or X1 for that matter), but we can have (and will exhibit later) models
in which X1 is true but X is false.

The role of K and X1 can also be played by the following inference rules.

RK′. A ↔ (B → C) / 2A → (2B → 2C)

RX1. A ∨ B / (2A ∧ 2B) → 2⊤
A word about nomenclature. RX1 is called RqX in [3]. And for consistency, RK′

should be named simply RK. However, RK is already standard for the following,
much stronger inference rule:

RK. (A1 ∧ . . . ∧ An) → B / (2A1 ∧ . . . ∧ 2An) → 2B, for n ≥ 0.

In fact, a logic closed under RK is a normal modal logic, having M, C, X and N
as theorems.

Let us now establish some facts about the connections between these axioms and
rules.

Theorem 7.1. Let L be a classical logic. Then:

(a) L has RK′ iff it has K;
(b) L has RX1 iff it has X1.

Some further results are:

Theorem 7.2. Let L be a classical logic. Then:

(a) if L has V, then it has X1;
(b) if L has V and K, then it has X;
(c) if L has M, then it has C iff it has K iff it has X;
(d) if L has W, then it has K;
(e) if L has W and X1, then it has X;
(f) if L has X, C, and Y, then it has V;
(g) L has X iff it has X1 and K.
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Figure 2: More Group III logics

Proofs of these results are not difficult, sometimes pretty much straightforward,
so we will omit them here. As a first example, we show that if a classical logic has V
and K, then it has X. If L has V, then it has RV. Now, since (A → B) ∨ (B → C) is
a tautology, so is ((A → B) ∨ (B → C)) ↔ ⊤. By RV, we get 2(A → B) ∧ 2(B →
C) → 2⊤, that is, X1 which is equivalent to Chellas and Segerberg’s qX. If now L
also has K, then it has nK and is prenormal, in which case it has qX iff it has X.
Thus, if L has V and K, it has X. As a second example, if a classical logic L has X,
then it follows easily that it has X1 and K. For the other direction, if L has K then
it is prenormal and, having X1, also has X.

So if we take K, X1, and X in consideration, we obtain the twelve logics (shown
in Figure 2) in which 2 can be read either as necessity or impossibility, instead of
the four we started with.

We can show that they are all distinct. For this, we need the natural conditions
corresponding to axiom schemas K, X1 and X. They are the following:

(k) if −X ∪ Y ∈ S(x) and X ∈ S(x), then Y ∈ S(x);
(x1) if X ∈ S(x), Y ∈ S(x), and X ∪ Y = U , then U ∈ S(x);
(x) if −X ∪ Y ∈ S(x) and −Y ∪ Z ∈ S(x), then −X ∪ Z ∈ S(x);

A note on the conditions (x1) and (x). In [3], Chellas and Segerberg present the
following condition for qX, an axiom equivalent to X1:

(qx) if X ∈ S(x) and Y ∈ S(x), then X ∪ Y ̸= U .

And they state (p. 22, fn. 13) that (qx) and (x) are equivalent conditions. Now this
is not in general the case, but (qx) and (x1) are equivalent in [3] because Chellas and
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Segerberg work with frames having normal and queer points, having an acessibility
relation (for truth conditions in normal points) and a neighborhood function (for
queer points). They also require, of their frames, for every queer point x ∈ U , that
U /∈ S(x). It is also worth noticing that, for their (prenormal) frames, (qx) and
(x1) are equivalent. Since we are not requiring that U /∈ S(x), we can show that
these conditions are not equivalent. Of course, if a frame satisfies (x), then it also
satisfies (x1), and (qx). For suppose that two subsets X and Y of U are such that
that X ∈ S(x), Y ∈ S(x), If we also have that X ∪ Y = U , then Y = −X ∪ Y , and
X = −Y ∪ X. Assuming that (x) holds, if −X ∪ Y and −Y ∪ X are in S(x), the so
is −X ∪ X — but this is just U .

The following is an example of a model in which (x1) holds, but (x) fails.
Let M = ⟨U, S, V ⟩ be such that U = {1, 2, 3, 4} and S such that for all x ∈ U ,

S(x) =
{{2, 3, 4}, {1, 4}, U

}
, V such that V (p) = {1, 2}, V (q) = {2, 3}, and V (r) =

{4}. First, ∥p → q∥ = −∥p∥ ∪ ∥q∥ = {2, 3, 4}, and ∥q → r∥ = −∥q∥ ∪ ∥r∥ = {1, 4}.
So, for instance, 1 ⊩ 2(p → q) and 1 ⊩ 2(q → r). However, 1 ⊮ 2(p → r), since
∥p → r∥ = −∥p∥ ∪ ∥r∥ = {3, 4}, and {3, 4} /∈ S(1). On the other hand, (x1) holds:
for every x ∈ U , {2, 3, 4} ∈ S(x), {1, 4} ∈ S(x), {2, 3, 4}∪{1, 4} = U , and U ∈ S(x).
(Incidentally, this is also an EV-model, so X is not a theorem of EV.)

The correspondence between axiom schemas and their natural conditions is show
below.

Lemma 7.3. The schemas K, X1, and X are valid in a frame F iff F satisfies the
conditions (k), (x1), and (x), respectively.

Soundness results follow easily from this.

Theorem 7.4. The twelve logics shown in Figure 2 are all distinct.

Proof. Some of the results were already proven in Theorem 5.3; others (like EC and
EK being distinct logics) are known in the literature (see [2]). We need to show that
K (hence X) fails in an EVC-model, that X1 (hence X) fail in an ECK-model, and
that V fails in an ECX-model.
[For K.] Consider the model where U = {1, 2, 3}, S(1) = {{1}, {1, 2}, U}, V (p) =
{1}, V (q) = {1, 3}. Conditions (c), and (v) are satisfied, so this is an EVC-model.
However, K is falsified. We see that 1 ⊩ 2p and also that 1 ⊢ 2(p → q) (since
∥p → q∥ = −∥p∥ ∪ ∥q∥ = U), but 1 ⊮ 2q.
[For X1.] Consider the model where U = {1, 2}, S(1) = {∅, {1}, {2}}, V (p) = {1}.
This model is closed under intersections, so (c) is verfied. Condition (k) also holds.
So this is an ECK-model. However, 1 ⊩ 2p and 1 ⊩ 2¬p. Since p ∨ ¬p is a
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tautology, (2p ∧2¬p) → 2⊤ should be true at 1, but it is not, since {1} ∪ {2} = U ,
but U /∈ S(1), so X1 (and hence X) fails.
[For V.] Consider now the model where U = {1, 2, 3}, S(1) = S(2) = S(3) =
{{1}, {2}, ∅}, V (p) = {1}, V (q) = {2}. This model is closed under intersections, so
(c) is verified. Since no union of sets belonging to S(1) is equal to U , (x) is also
vacuosly verified. So this is an ECX-model. However, V is falsified, since 1 ⊩ 2p,
1 ⊩ 2q, but 1 ⊮ 2(p ∨ q), given that ∥p ∨ q∥ /∈ S(1).

For completeness, we need to find a canonical model for a logic satisfying the
required conditions.

Proposition 7.5. For EX1 and EX1C, the smallest canonical model satisfies the
corresponding conditions.

Proof. We already know that (c) is verified in the smallest canonical model of a logic
having C. So consider X1, some Γ in the smallest canonical model, and suppose X
and Y are sets in S(Γ) such that X ∪ Y = U . But then there are formulas A and
B such that X = |A| and Y = |B|. This implies that |A| ∪ |B| = |⊤| and A ∨ B is
a theorem, from what we obtain 2A ∧ 2B → 2⊤. Now we have that 2A and 2B
are in Γ, so |⊤| = U is in S(Γ), and condition (x1) is verified.

For the remaining logics we will need some constructions introduced by Roy
Benton in an (unfortunately still) unpublished paper of 1975 (see [1]).2 Completeness
for EK and ECK was proven in [1] using another canonical model construction,
overlay canonical models. An overlay canonical model is a model where

X ∈ SL(Γ) iff there are formulas A and B such that: |A|L ⊆ X ⊆ |B|L and,
for every C, if |A|L ⊆ |C|L ⊆ |B|L then 2C ∈ Γ.

Proposition 7.6. For EK, ECK, EX, ECX, EVX, and EVXC, overlay canonical
models satisfy the corresponding conditions.

Proof. Since a logic has X iff it has X1 and K, it is enough to show that overlay
canonical models verify (x1) and (k). We know ([1]) that they satisfy both (k) and
(c). To see that (x1) is verified, suppose there are sets X and Y belonging to S(Γ),
for some Γ ∈ UL, such that X ∪ Y = U . Then there are formulas A, B, C and D
such that |A| ⊆ X ⊆ |B| and |C| ⊆ X ⊆ |D|. Obviously |B| ∪ |D| = U , so B ∨ D is
a theorem and, since by definition 2B and 2D are in Γ, 2⊤ ∈ Γ and U ∈ S(Γ).

So an overlay canonical model satisfies conditions (k) and (x1).
2Thanks to Prof. B. Chellas for putting me in contact with Prof. Roy Benton, and many thanks

to Prof. Benton for kindly providing me a copy of his paper.
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(v) Suppose there are setx X and Y belonging to S(Γ), for some Γ ∈ UL, such that
X ∪ Y = U . Then there are formulas A, B, C and D such that |A| ⊆ X ⊆ |B|
and |C| ⊆ X ⊆ |D|. Two uses of V give us that |A ∨ B| and |C ∨ D| are in S(Γ).
Thus we have |A ∨ B| ⊆ X ∪ Y ⊆ |C ∨ D|. Let E be a formula such that |A ∨ B| ⊆
|E| ⊆ |C ∨ D|. We need to show that 2E ∈ Γ. Now clearly |E| = |E| ∩ (|B| ∪ |D|),
that is, |E| = (|E| ∩ |B|) ∪ (|E| ∩ |D|). But since |A| ⊆ (|E| ∩ |B|) ⊆ |B| and
|C| ⊆ (|E| ∩ |D|) ⊆ |D|, we have that 2(E ∧ B) and 2(E ∧ D) are in Γ, so 2E ∈ Γ
and we are done.

This is not the end of the story, however. In [3], Chellas and Segerberg present
an hierarchy of Cresswell logics, that is, logics having the Cresswell rule:

RCn. A0 ∨ . . . ∨ An−1 / (2A0 ∧ . . . ∧ 2An−1) → 2⊤, for n ≥ 2.

Notice that in all these logics 2 still can be read as impossibility. And a good
question is how far can we still go adding more axioms without having to commit to
one of the readings of 2. In (previous work), using relational frames with normal and
opposite worlds, and no conditions on the accessibility relation, we presented a logic
which extends the strongest Cresswell logic PXω. Extensions of this logic obtained
by imposing conditions (like reflexivity) on the accessibility relation remain to be
investigated.

Finally, logics in which 2 can be read either as necessity or impossibility are nat-
ural candidates for (weak?) noncontingency logics, a topic also worth investigating.

8 Final remarks
In this final section, we discuss some further results and point directions to additional
research on the topic of this paper.

8.1 Mixing the readings
If we look again at the diagram on Figure 1, we see that, on the left side, we have
EMC and its sublogics, down to E, logics in which 2 can (or must, if the logic contains
M) be read as necessity. We also have extensions of these logics adding N (2⊤) as a
thesis. On the right side, we have EWV and its sublogics, down to E, logics in which
2 can (or must, if the logic contains W) be read as impossibility. We also have the
extensions of these logics by adding O (2⊥) as a thesis. Now, what would happen
if we mix things up? For instance, suppose we add O to EMC, or N to EWV?

Take, for instance, EM plus O, and consider a model for this logic. Conditions
(m) and (o) will have to hold. So, for every x ∈ U , ∅ ∈ S(x) — this is (o). Now
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(m) is equivalent to closure under supersets, so, for every x ∈ U , and every X ⊆ U ,
X ∈ S(x). As a result, for every formula A, 2A turns out to be valid. For similar
reasons, adding N to EW will give us the same result. So EMO, EMCO, EWN and
EWVN are all the same logic — the normal system called Ver in [4], which we obtain
adding, to the smallest normal logic K, 2A as an axiom.

A somewhat weaker logic is what we get combining EMC and EWV. Since W
entails C in E, and M entails V, this logic is just EMW. Having conditions (m)
and (w) on our models gives us the following picture: for every x ∈ U , either
S(x) = ∅, or S(x) = P(U), where P(U) is the power set of U . So either nothing is
necessary/impossible, or everything is.

Weaker logics can be obtained, say, by adding Z to EY or EM, and so on.

8.2 Some thoughts on negation

Consider again the schemes below:

Y. 2(A ∧ B) → (2A ∨ 2B)

W. 2(A ∨ B) → (2A ∧ 2B)

W′. (2A ∨ 2B) → 2(A ∧ B)

V. (2A ∧ 2B) → 2(A ∨ B)

Replacing 2 with ¬ we get the four cases of De Morgan’s Laws:

Y¬. ¬(A ∧ B) → (¬A ∨ ¬B)

W¬. ¬(A ∨ B) → (¬A ∧ ¬B)

W′
¬. (¬A ∨ ¬B) → ¬(A ∧ B)

V¬. (¬A ∧ ¬B) → ¬(A ∨ B)

Now this suggests that we could add one or more of the axioms above to E
to obtain logics with an additional, non-classical negation represented by 2 — for
instance, a paraconsistent one. As we proved before, W and W′ are equivalent in
classical modal logics, so this leaves us with only Y, W and V. Considering now that
Z and C are theses, if W is, the only schemes that do not admit a negation reading
are M and N: ¬(A ∧ B) → (¬A ∧ ¬B) and ¬⊤ are intuitively false. As a result, the
only two logics in the diagram of Figure 1 that do not admit a negation reading of
2 are EM and EMC (as well as extensions of other logics with N). The remaining
logics can be seen as encoding different properties of a non-classical negation.
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What happens now to standard formulas involving negation like ¬¬A → A,
A → ¬¬A and A ∨ ¬A? Neither 22A → A, A → 22A, nor A ∨ 2A are theses of
E, as simple semantical arguments will show.

Take excluded middle, for instance: A∨2A (remember we are reading 2 here as
negation). Consider now a model ⟨U, S, V ⟩ such that U = {1}, S(1) = ∅, V (p) = ∅.
Since 1 /∈ V (p), 1 ⊮ p. Now ∅ /∈ S(1), so 2p is false at 1. Hence 1 falsifies p ∨ 2p.

If we wish to add A ∨ 2A as a thesis, we will have to consider models based on
frames satisfying the condition (for x ∈ U and X ⊆ U):

(3e) x ∈ X or X ∈ S(x).
And we can show that:

Proposition 8.1. E + A ∨ 2A is determined by the class of frames in which (3e)
holds.

Proof. Let x be an element of U , and suppose x ⊮ A∨2A. Then x ⊮ A and x ⊮ 2A.
So x /∈ ∥A∥ and, since (3e) holds, ∥A∥ ∈ S(x). But then x ⊩ 2A, a contradiction.

To show completeness, we take the largest canonical model, that is, the canonical
model in which, for every Γ ∈ UL, S(Γ) also contains, in addition to proof sets, all
X ⊆ U which are non-proof sets. We show that (3e) holds in the largest canonical
model for E + A ∨ 2A. So let Γ ∈ UL and X ⊆ UL. If Γ ∈ X, we are done. So
suppose Γ /∈ X. Now, if X is a proof set, then, for some A, X = |A|. Since Γ /∈ |A|,
Γ ∈ −|A| = |¬A|, so ¬A ∈ Γ, from what it follows that 2A ∈ Γ and |A| ∈ S(Γ).
And if X is not a proof set, then X ∈ S(Γ), since we are in the largest canonical
model. Hence (3e) holds.

Further work can be done investigating the logics obtained by adding A → 22A,
22A → A and other schemes involving negation (like contraposition principles) to
the logics in Figure 1 which admit a negation reading of 2.

To sum it up, we presented some preliminary results about logics in which 2

can be read as necessity, impossibility, or both. Further work is being done, also
regarding other interpretations of 2: contingency, non-necessity, and non-classical
negations. We hope to deal with these topics in further work.
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Abstract

Along his philosophical development, Wittgenstein struggled in different
ways to reconcile two guiding principles: (i) letting psychological investigations
aside when asking for the nature of meaning, truth, and number; (ii) not going
beyond what was in each time regarded as “the limits of language”, i.e., not
speaking nonsense. As he inherited principle (i) from Frege and Russell, his
continuous critique to logicism can come in aid of an evaluation of whether
principle (ii)’s being launched against that doctrine was or wasn’t in conflict
with (i). In this paper, I argue that even though psychological investigations
played no role in Wittgenstein’s early account of propositional content, propo-
sitional content was construed by him on traditional assumptions about how
meaningful thought can be conveyed by us through the intentional use of sym-
bols. These assumptions about how thoughts get their meaningfulness are the
grounds for principle (ii). Since Frege’s and Russell’s theses about the reduc-
tion of arithmetic to Logic made appeal to no such assumptions, I conclude that
Wittgenstein’s critique of logicism fails to cope with (i) by virtue of stronger,
psychologistic committment with (ii).
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It has already been argued that two main aims guided Wittgenstein’s philosoph-
ical development 1.One aim was to try to avoid introducing psychological investi-
gations into his speculations on the nature of meaning, truth, and arithmetic. The
second one was to try to avoid speaking what he himself regarded as nonsense in
each phase of his thought. Since rejection of psychologism in the philosophy of logic
is a position that Wittgenstein directly inherited from both Frege and Russell, then,
since Wittgenstein rejects logicism as well, one should expect to find some connec-
tion between what he regarded as nonsense to speak, on the one hand, and what he
thought the logicists were trying to do. There are some suspicions, however, that
Wittgenstein’s thoughts on what would be nonsense to speak reveal, in spite of his
second-order beliefs about psychologism, that he was in fact subordinating the laws
of Wahrsein or, of being true, to the laws of Fürwahrhalten or of to be held as true.
In this paper, I argue that such suspicions are sound. 2

Wittgenstein started to think about the essence of descriptions when he was
thinking the thoughts expressed in the Tractatus Logico-Philosophicus. It would not
be an exaggeration, I think, to claim that all there was to his doctorate thesis was
an act of defiance toward Frege’s and (mainly) Russell’s claim that mathematical
content is but Logical content in disguise 3 . The great German master and the
English friend of Wittgenstein’s had quite different views on how this reduction was
to be carried out and demonstrated. In any case, for both of them the fundamental
subject-matter of mathematics (including elementary number theory, geometry 4,
and higher analysis), the natural numbers, were to be construed as sets, of equinu-
merous sets, of things which in turn are truly said to be thus and so. “To be thus
and so” can take as multiple forms as there are concepts, for Frege, or propositional
functions, for Russell: both concepts and propositional functions articulate truths
(and falsities) with some individuals, (ordered) pairs of individuals, and so on. And
so each concept or propositional function determines an extension, and Frege and
Russell demonstrated that, with a few assumptions concerning extensions in general,
numbers can be understood as sets of equinumerous extensions, to the effect that,
thus construed, they satisfy Peano’s axioms for the series of natural numbers.

Furthermore, the logicist construal of numbers was a way of complying with two
philosophical intuitions. One of them, already stated, was that applying mathemat-
ics in other branches of science, as well as in ordinary discourse (part of what an

1See, for instance, [5]
2I refer the reader to [8], p.35, to see how else, besides the way I put it, the author of the

Tractatus might be deemed as unsuccessful in guarding himself against psychologism.
3I like to use the capital ’L’ to distinguish what Frege and Russell regarded as that to which

arithmetic was a part, “the laws of Truth” from what we today call ’logic’.
4Frege actually fell short of defending that geometrical truths were analytic (FA, §89).
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explanation of the nature of number is supposed to address) consists of verifying
properties of that which is commonly true about each element of some set of things,
as Frege was already trying to show in his Grundlagen der Arithmetik. The second
philosophical intuition was that whether a given number belongs to some “to be thus
and so” is so much independent from any feature of our minds as the facts that such
and such things are thus and so. The latter desideratum is what anti-psychologism
is all about: not drawing conclusions about what the content of a proposition (from
mathematics or otherwise) is, from considerations about the nature of mind.

In §63 of Foundations of Arithmetic, Frege introduced the cardinality operator
for concepts which, nowadays we read as

Nx:Fx

The definition of this operator was based on Hume’s Principle, according to
which the cardinalities of two concepts Fx and Gx are identical if and only if there
is a one-one correlation between the elements of the extensions of F and G, or,

F ≈ G ↔ Nx : Fx = Nx : Gx.

Hume’s Principle provides the criterion for either distinguishing or identifying
attributable cardinalities to any two given concepts, preserving symmetry, transi-
tivity and reflexivity to the relation of identity. Fx and Gx are equinumerous if and
only if there is a relation R such that every object of the extension of Fx holds R to
one and only one object of the extension of Gx, and every object of the extension of
Gx holds R to one and only one object of the extension of Fx.

In order to express same-cardinality relations between concepts from Hume’s
Principle we need the notion of unicity,

∃!xHx = def∃x(Hx ∧ ∀y(Hy → (y = x)),

so that the complete definition of equinumerosity reads

F ≈ G = def∃R((∀x(Fx → ∃!y(Gy ∧ Rxy)) ∧ (∀x(Gx → ∃!y(Fy ∧ Rxy))).

And thus Frege defines, in FA’s §73, the notion of number of a concept as “class of
equinumerous classes”:

Nx : Fx = defG : G ≈ F
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But Hume’s Principle is a biconditional. So being, it could indicate either that
numbers are fundamentally classes of equinumerous classes or that classes of equinu-
merous classes are fundamentally numbers. As it happens, though, as much for Frege
as for Russell, it is not possible to make reference to numbers without making refer-
ence to classes of objects (and, thus, to objects); at least not once Hume’s Principle
is assumed alongside the thesis that every natural number is the number of a con-
cept (or propositional function). On the other hand, given both assumptions, it is
possible to make reference to objects, concepts and propositional functions without
making reference to numbers. For one-one correlations among extensions, which
ground the concept of number, are by their turn grounded on the relation of sub-
sumption that holds between objects and functions, and subsumption is grounded
on facts of reality, not on a concept’s extension. As the serial notion of number
emerges abstractly from the differences in size of extensions, the objects of study of
arithmetic ground themselves on the objects of study of Logic broadly understood,
not the opposite.

Frege and Russell claimed that Logic was a Science 5. For it assumed not only
the rules that governed the construction of well-formed formulas, plus axioms and
postulates that allow one to derive new formulas afresh. Logic, as a Science, dealt
also with sets of things, and memberhood in any of the sets of things dealt with by
Logic – and therefore the identity of these sets – should be conceived of as delimited
by nothing less than all possible shapes that truth itself can take: the only sets
admissible by Logic are extensions of predicates, of some “to be thus and so”. Thus
Logic does not oppose form to propositional content by excluding the latter (as most
today might be inclined to characterize logic), but rather purports to deal with such
content through the knowledge of its form: the context of logicism’s foundational
enterprise is that of grounds of justification alone, no care for how we discover it 6.
It concerns not the legitimacy of attributing a number to a concept, but rather the
would-be grounds for the legitimacy of any numerical attribution, inside or outside of
pure mathematics. As Russell states in the Introduction to Principia Mathematica,

Most mathematical investigation is concerned not with the analysis of
the complete process of reasoning, but with the presentation of such an
abstract of the proof as is sufficient to convince a properly instructed
mind. For such investigations the detailed presentation of the steps in
reasoning is of course unnecessary, provided that the detail is carried far
enough to guard against error. In this connection it may be remembered

5For Frege’s expression of this viewpoint, see Basic Laws of Arithmetic, vol. I, Foreword, p. xv.
For Russell’s, see Introduction to Mathematical Philosophy, Chap. XVI, p. 169.

6See [3], p. 65
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that the investigations of Weierstrass and others of the same school have
shown that, even in the common topics of mathematical thought, much
more detail is necessary than previous generations of mathematicians
had anticipated. (PM, Introduction, p. 03)

This much is sufficient for us to understand how arithmetic was, to the logicist
view, a science that investigated a subset of the laws concerning all that which is
either true or false. Also, we can see how such topic would not be subordinated to
psychological laws or metaphysical assumptions about the mind, according to which
the mind relates to it. For the classes that constitute the fundamental subject-
matter of arithmetic are extensions, and these are determined independently of any
trace of the human mind. It is correct, to a certain extent, to identify what Logic
thus construed deals with, with semantics 7 : the only qualification needed, not
to misguide oneself here is that symbols, or language for that purpose, played a
merely auxiliary and heuristic role: namely, for the logicist derivations to be shown
and surveyed. Thoughts, propositions, and their derivative notions of propositional
function, concept, argument, and classes, were not essentially linked to symbols as
far as Frege and Russell were concerned with them.

The science of Logic as a human enterprise would have been a very special one,
because of the absolute generality of its concerns; but that would not be enough to
qualify it as a completely different kind of science: as any science, it made assump-
tions that it could not prove. For instance, that there are at least as many logical
objects (things that fill argument-places in first-order propositional functions) as
there are natural numbers. For suppose it is true that every number is a class of
equinumerical extensions of propositional functions. In that case, what if any gen-
eral state of the world was determined by the distribution and mutual relations of
some 1020 objects? Then we would have to admit that, for our inconvenience, an
equation such as

1020 + 1 = 1020.10

is correct, because any number above 1020 would denote a class of classes which
ones would contain a proper subset with the necessary amount of members to be
on-one correlated with any class denoted by 1020 , while also containing one or more
remaining members, which is impossible if there are only 1020 objects. So all classes
that were defined as exceeding the class-members of 1020 by any number would be
identical to the null class, and, therefore, for any numbers n, m such that

77 See [3].
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1020 < n < m,

we would have

n = m,

which is more than just an inconvenient result, but rather a contradiction. Hence,
if natural numbers are to be regarded as classes of extensions at all, there must be
extensions to each of all magnitudes. And, of course, they must be extensions, i.e.,
there must be at least one propositional function defining the classes that will be
encompassed by each and all natural numbers.

This much of unprovable assumptions was seen as a deep mistake of logicism in
the eyes of the author of the Tractatus: to claim that a priori formal sciences received
their content from such matters that could only be decided by experience (if at all)
would be to claim that we can in some sense anticipate experience through calculus
(TLP, 5.552-5.5541). In Wittgenstein’s view, there was no sense in speaking of
meaning and truth while ignoring the way we potentially come up with meaningful,
sometimes truthful acts by mastering the use of symbols. It is we who make ourselves
pictures of facts (TLP, 2.1), and such pictures must share the form, the possibilities
of their elements’ arrangements with one another, with the elements of facts. Taking
seriously what saying something must be if we do make such pictures, and keeping
silent on the actual, unthinkable multiplicity of the elements that are respective
to worldly, thought-like, and language-like states of affairs, Wittgenstein purported
otherwise to explain the very notions with which Frege and Russell had concerned
themselves.

As Juliet Floyd says, “[Wittgenstein’s] denial that numerals are names, that
numbers are objects or (second-order) properties, is best read as recasting the whole
idea of what the drawing of categorial or logical distinctions can accomplish.” ([7],
p.312) The drawing of categorial distinctions, such as those of function and argu-
ment, would, according to Wittgenstein, be relevant for us to understand the nature
of whatever bears truth or falsity, but only at the level of its possibility: for that
alone is what can be anticipated with a priori certainty. We have all rights to
speculation at this level because there can be no illogical thoughts (TLP, 3.02-03,
5.4731). The actual, deep, structure of thought, however, cannot be anticipated lest
through logical analysis, i.e., through the application of the symbolic normativity
of mathematical logic (as a formal system) to language, that would render explicit
what is logically essential to the expression of thoughts, leaving aside the superficial
clothing that thoughts ordinarily wear (TLP, 4.002). In his view, all that can be

528



Logicism in the eyes of the author of Tractatus

accomplished by the complete regimentation of the way we express our thoughts
is this: a regimentation of our descriptive practices, such that all that we mean in
thinking will become clearest am Symbol allein and will not request for further elu-
cidation, nor for philosophical theses of any kind (TLP, 6.52, 6.521). If this is all we
can do through the application of formal systems, however, then what right do we
have, to say anything determinate about how many “logical atoms” there must be
in the world? None, for sure. This is Wittgenstein’s negative stand against logicism,
insofar as the latter thesis relies on assumptions about (i) the logical multiplicity of
the world, and (ii) which kinds of concepts or propositional functions grounding the
existence of extensions there are. For logicism to get off the ground it is necessary,
first, that (i) “the logical multiplicity of the world” (i.e., of the set of individuals of
which something might be true) is at least aleph-zero. Second, (ii) that the range
of second order variables admits a standard interpretation, so that it is equal to the
power set of the set of individuals, thence there being no class without a correspond-
ing concept or propositional function 8. Yet neither (i) nor (ii) are subject-matters
about which any form of calculus alone can reveal to us how things actually are.

TLP 5.551: Our fundamental principle is that every question that can
be decided at all by logic can be decided off-hand.
(And if we get into a situation where we need to answer such a problem
by looking at the world, this shows that we are on a fundamentally wrong
track.)

The next step is to see that anything that can be thought to exist can also
be said to exist. As far as the possibility of truth and falsity of propositions, and
of existence or non-existence of states of affairs, is concerned, there is a triad of
language, thought, and the world, which defines the only logically admissible form
of possibility. Whereas whatever can be said or thought to be the case can be either
true or false, this is matched by the world by the transcendentally established space
of possibilities, of existence or non-existence, of each state of affairs (TLP, 4.023,
4.032, 6.13). Each proposition, a possible representation by any means, will be
either true or false as soon as it is actually presented, i.e. said, depending on the
existence or non-existence, at such time, of the state of affairs it represents (TLP,

8A well-known alternative to the predicative “restrictions” on the range of second-order variables
is the admission of Ramsey’s propositional functions in extension, which we will not have time to
discuss here (see [11]). Although Ramsey claimed to be vindicating the logicist project, he was just
moving away from it in a direction that was the Platonist opposite from that of Wittgenstein’s.
After all, Ramsey’s numbers would not be anything that resembled properties of concepts: classes
and propositional functions in extension would exist on their own.
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4.2). Finally, we have a picture of what the sense of a proposition is: it is the state
of affairs it represents, regardless of whether the latter exists or not (TLP, 4.1). If
the state of affairs the proposition represents does exist when the proposition is said,
the proposition will be true; if it does not, the proposition will be false. Further,
by just inverting this relation of truth of a proposition to existence of the state of
affairs it represents, we know also what the sense of the negation of a proposition is
(TLP, 4.06-4.062).

The way propositions (symbols, thoughts) manage to represent states of affairs
regardless of whether the latter exist or not is because a proposition must in essence
be an articulation of symbols that are not themselves articulated, but that rather
stand for those parts of reality which by transcendental necessity exist. And so we
have names on the side of language and thought, and objects, the substance of the
world, on the latter’s side (TLP, 2.021, 4.21-4.221). Since an articulation of names
implies comparability with an articulation of objects, and thus the former’s truth or
falsity, if the elements that constitute the ultimate analysis of propositional sense
were themselves articulate, then the sense of a proposition would ultimately rely
on the truth of another,and the study of propositional sense could not, on its turn,
rely solely on that which can be anticipated a priori. One doesn’t learn anything
by knowing that objects exist, because there could be no thought if they didn’t:
objects are the nods of the structure of any fact (therefore, of anything we can think
of); when a state of affairs doesn’t exist, it is because its nods are in fact composing
another structure.

But here is where Wittgenstein arrives to a surprising problem to which his as-
sumptions led him, and to which only he has thought of a solution (a situation before
which I think any philosopher should at least pause): the problem of saying that a
situation is possible. If saying that a situation s is possible is itself possible, then
there must be a proposition, true or false as far as we can tell from our armchairs,
that represents the state of affairs of s’s being possible. Call it “P(s)”. The problem
is that, if P(s) were false, then s itself would have been impossible. However, as we
saw above, a situation’s being possible amounts to the existence of the objects that
would constitute it in accord (i.e., accordingly articulated) if the situation obtained.
And this, by its turn, is regarded by Wittgenstein as sufficient grounds for holding
that, however unprecisely distinguished am Symbol allein, there are names within
the essential repertoire of thought corresponding to each of those objects, whereas
one of the possible articulations of these names is the one which will turn out true
if s obtains. Since this one possible articulation of the right names is what the sense
of the proposition p, expressing the obtainment of s, is, then, if P(s) were false, p,
the proposition that says that s exists, would have no sense. And P(s) itself would
be nonsense, since it would be saying of nothing that it is possible.
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The great solution to the problem, How do we say that a situation is possible?,
is in part to declare that it is not possible to say it, but also that it doesn’t matter,
because it shows itself that a situation s is possible by there being a proposition (some
picture one can make) which is able to depict s (TLP, 4.1212, 4.022). There can be
no novelties (nor relevant questions) concerning what can exist in reality, because
the whole space of worldly possibilities are met through their correspondents right
in the head (TLP, 4.024, 4.116).

Any proposition p can be negated, resulting in a new proposition, ∼ p, that
will be a truth- function of p. That is to say, instead of rendering ∼ p true, the
existence of the state of affairs depicted by p will render it false, and vice-versa.
The appearance of conflict with the demand that the sense of a proposition cannot
depend on the truth of another is dissolved by attention to the fact that it is still
a comparison of p to the world that will determine whether ∼ p is true. Hence any
proposition which is the negation of another has no sense of its own, but only the
sense of the negated proposition with inverted “truth-poles”, i.e., an inverted relation
of dependence of its (inessential) presentation’s truth-value to the existence of the
state of affairs depicted by the negated proposition. In other words, if the logical
space were initially composed of only three propositions p, q, r, then their respective
negations, ∼ p, ∼ q, ∼ r, would not be further possible thoughts, representing further
possible situations. Truth and falsity, as well as existence and non-existence come
in pairs within the space of logical possibilities (TLP, 4.06-4.064).

Hence from our brief interlude into the distinction between what can be said
and what shows itself, we arrive at another distinction, that of what is essential
to the sense of a proposition to what is accidental to it. We already saw that the
essence of the sense of ∼ p is the sense of p. It follows that it would be misleading
to treat the sign ’∼ ’ as a propositional function, because, whereas the fulfillment of
the argument-places of first-order propositional functions such as f(x) yield propo-
sitions that add up to the general sum of the logical space, the fulfillment of ∼ (x),
with x ranging over propositions, yields no such additions, whatever proposition x is
substituted for. Instead of treating negation as a propositional function, therefore,
Wittgenstein labeled it a “truth-operation” (TLP, 5.2341, 5.254), that of symbol-
ically expressing the inversion of truth-poles of a given proposition, resulting in a
new propositional sign, but not in a new propositional sense – the formal difference
between the old and the new propositions is the fruit of our choice in expressing
ourselves, and is no part of the essence of propositions; only, the possibility of thus
operating on symbolic expression is (TLP, 4.51). As for those propositions whose
symbols are not obtained out of truth-operations, and that therefore directly express
only the essence of a propositional sense, we shall call them “elementary proposi-
tions”, which are truth-functions of themselves (TLP, 5).
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Because any of the other logical connectives, ’∧’, ’∨’, ’→’, can be reduced to dif-
ferent ways of applying the operation of joint negation (TLP, 5.502), represented by
N’(ζ) – where ζ can stand for any sum of elementary propositions – the conclusion
is that all propositions are truth-functions of elementary propositions (TLP, 5.3).
Or, what amounts to the same thing, all propositions result from a finite number of
applications of truth-operations on elementary propositions (TLP, 5.5- 5.502). As a
special case, there will be propositions of the kind of T = N’(N’((N’p), p)) – same as
p or ∼ p – which are true on the sole basis of how the truth-operations were applied
to p, whatever proposition p is. Propositions such as T are tautologies. Since no
situations’ obtaining is accountable for its truth, a tautology is a proposition whose
presentation says nothing; it has no sense (TLP, 5.142). Still, and precisely because
of that, a tautology is necessarily true. A further application of negation on a tau-
tology yields a contradiction, which again says nothing, but this time is necessarily
false. The presentation of tautologies, though able to reveal interesting symbolic
properties, can deliver no further insights on the essence of propositions, much less
about the extension of any concept. The essence of propositions, their general form
as truth-functions of elementary symbolic arrangements, is already the essence of
the world (TLP, 5.47-472). Finally we have, at the level that precedes all empirical
or contingent concerns, the notions of possibility, necessity, and impossibility. The
final touch of the Tractarian view is to say that these modal notions are the only
ones with which we are entitled to deal (TLP, 5.132-5.1361, 6.37).

The question to be made is: is the meaning of what we think or say a thing that
must be grasped in its entirety in order to be grasped at all? If it is, then the facts
that, first, we indeed think propositions, and, second, that we understand them,
will be crucial ones for us to understand what meanings are, just as Wittgenstein
seems to have thought. For we cannot hold at the same time, both that nothing is
left undetermined by meaning as we grasp it, and that some empirical discovery will
reveal what we meant in the past. Hence,

TLP, 4.1121 Psychology is no nearer related to philosophy than is any
other natural science.
The theory of knowledge is the philosophy of psychology.
Does not my study of symbolism correspond to the study of thought
processes which philosophers held to be so essential to the philosophy of
logic? Only they became entangled more often than not in inessential
psychological investigations, and there is an analogous danger for my
method.

At this point, if not already earlier, we can appreciate how Wittgenstein’s early
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reflections about the essence of descriptions did involve a psychologistic conception
of that which bears truth or falsity. Thoughts’ logical compositionality – or, in other
words, the construal of thought and psychological processes in general as being con-
stitutively inferential, and of psychological states as true or false representations
– is to this day a largely shared philosophical (and scientific) point of departure
in investigating the nature of mind 9 . It is nevertheless (even if disregarding all
but assertive states of mind) a claim about acts through which we depict to our-
selves, pictures of facts, and not about the contents of possible judgments per se. If
Wittgenstein equates these things, then that’s precisely where he lets psychological
considerations bear on his account of propositional contents. The fact that no psy-
chological investigations were allowed within the course of Wittgenstein’s reflections
about propositions (no doubt about that) offers no support to the supposition that
he shared Frege’s and Russell’s stance against psychologism – again, in spite of what
Wittgenstein himself might have thought he was doing. For a priori speculations
about the relation that our minds bear to propositional contents are just as irrele-
vant for determining what are propositional contents as empirical results about the
workings of our minds.

As the premises that allowed the logicist thesis to be established went beyond the
assumptions that could be made solely on a priori grounds, Wittgenstein imbued
himself with the task of offering a new account for the formal sciences. Such account
should preserve their intimate connection with all the sciences but, at the same time,
should present Logic, in particular, as a “totally different kind than another science”
([20], p.10): its generality would not come from its interest in the laws of Wahrsein,
but rather from its interest on the (transcendental) laws of Fürwahrhalten, that is,
of saying, thinking, which indeed pervades every scientific enterprise. Since his prin-
ciple was that we must sharply distinguish what can be anticipated through pure
reason from that which cannot (TLP, 5.551), he tried to develop a way to draw all
relevant logical distinctions (such as function, argument, and the logical connectives)
that were needed to account for any form of inference without, nevertheless, assum-
ing that inference-permissions among statements should be grounded on extensions
of concepts. As we saw, the problem for him was not our inability to tell which are
the extensions (this is too obviously outside the scope of Logic), but rather that we
are unable to tell a priori even what kinds of extensions there are (hence, we are
unable to tell even whether arithmetic could be grounded on Logic).

In the 1930’s, shortly after Wittgenstein’s return to philosophy, he continued
to criticize logicism, this time using arguments that appeared more ostensibly than

9See [19], and also [16] for evaluating the pervasiveness of the notion of mental representation
within the domain of cognitive science, as well as its predicaments and alternatives. See also [2],
who links such paradigm to its Kantian roots.
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ever to to inculcate psychological constrains on the investigation of the nature of
number. Wittgenstein argued that the mere possibility of there being a one-one
correlation between elements of two extensions – e.g., the set of spoons and the
set of cups to be arranged on a table – presupposed the determination of each
concept’s number, implying that numbers cannot be defined through correlations
among concepts’ extensions. Explaining to Waismann and Schlick what he meant
by saying that there are as many spoons as cups, Wittgenstein said:

What I mean is obviously this: I can allot the spoons to the cups because
there is the right number of spoons. But to explain this I must presup-
pose the concept of number. It is not the case that a correlation defines
number; rather, number makes a correlation possible. This is why you
cannot explain number by means of correlation (equinumerosity). You
must not explain number by means of correlation; you can explain it by
means of possible correlation, and this precisely presupposes number. 10

According to [12], Wittgenstein’s argument above consisted in claiming that the
logicist definition would be an epistemologically defective one, because it would
explain number by one-one correlation, whereas we cannot know that there is a
one-one correlation without knowing which number is the number of each correlated
extension. So Wittgenstein’s argument above would in sum be that the content of a
numerical attribution to some set (say, to the set of spoons) is irreducible to that of
a statement of possible correlation with another set (like the set of cups) because, in
order to know that the content of the latter statement is true, one must first of all
know that the content of the former is. As Goldfarb states in his defence of logicism
against the attacks of Poincaré, however, one has to remember that the logicist
thesis presupposes a clear distinction between “the mental or physical conditions
under which a person comes to understand, appreciate, or believe a proposition and
the ultimate rational basis of the proposition” ([6], p. 67). Was Wittgenstein so
carelessly allowing psychological investigations to interfere with his thoughts about
the relation of Logic to mathematics?

A better defense of Wittgenstein’s argument quoted above is provided by An-
derson Nakano ([15]), who supposes that in the 1930’s Wittgenstein still held the
Tractarian thesis according to which the possibility of a situation is shown by the
existence of a proposition depicting it, i.e., by the possibility of thinking the situa-
tion. A one-one correlation between two classes can be stated in two ways: either
by giving each one in extenso, as in

10Cited from [12], p. 64. See also [21], §118
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{a, b} ≈ {c, d}

,

or by intentionally defining them as the extensions of concepts F and G, thus, as we
put it before,

F ≈ G

In the first case, the existence of a correlation would be expressed as

∃R((aRc ∧ bRd) ∨ (aRd ∧ bRc)),

and, were it not for the sameness of number of classes a, b and c, d, a disjunction
like the one above could not even be written, whereas we know in advance that if
they do have the same number of elements, then the expression of their correla-
tion will contain n! disjuncts. The possibility of depicting such a correlation (i.e.,
the existence of a Tractarian proposition that represents it) presupposes, therefore,
sameness of number of the two classes.

The second case, however, is the one that should most interest us, since it was
the logicist thesis that numbers are classes of intentionally defined equinumerous
extensions that Wittgenstein had in mind when speaking to his Viennese retinue.
The Tractarian line of reasoning Nakano ([15]) attributes to Wittgenstein is the
following. The existence of a one-one correlation between the elements of the exten-
sions of F and G would mean that there is a proposition,

∃R((∀x(Fx → ∃!y(Gy ∧ Rxy)) ∧ (∀x(Gx → ∃!y(Fy ∧ Rxy))),

whose truth would imply that F and G have the same amount of elements in their
respective extensions. However, as Nakano points out, “the possibility of an one-one
correlation, shown by the existence of [the proposition that represents the correla-
tion] cannot be used to define sameness of number, since sameness of number is said
by [the above’s indicated logical consequence] and what can be shown, cannot be said
(4.1212).” (Nakano, [15], p. 14, my emphasis)

That is to say, when Wittgenstein said that “You must not explain number by
means of correlation; you can explain it by means of possible correlation, and this
precisely presupposes number”, he meant that, either way, the possibility of there
being a possible correlation should be understood as the existence of a proposition
that depicts it, and there isn’t any such proposition if there is no sameness of num-
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ber. However, should there be such a proposition, sameness of number between
conceptual extensions would show itself in it; hence, it could not be said. The rea-
son I think this is a more charitable reading of Wittgenstein’s argument than that
of Marion and Okada ([12]) is that, were Wittgenstein to hold that the definition of
number served the purpose of finding out what one needs to know, prior to obtaining
the knowledge of a correct numerical attribution, Wittgenstein’s misunderstanding
of the logicist thesis would be far more profound than if he were merely equating the
existence of a (possibly thought, written, or spoken) proposition with the possibility
of the situation it depicts.

Even though there is considerable doubt as to how much of Tractarian ideas
were still held by Wittgenstein when he wrote Philosophical Remarks and had his
conversations with members of the Vienna Circle, probably the relation between
possibilities and existence of respective propositions was not yet thrown away, as is
shown by this passage:

What sort of an impossibility is the impossibility, e.g., of a 1-1 correlation
between 3 circles and 2 crosses? (...) That a 1-1 correlation is possible
is shown in that a significant proposition, true or false, asserts that it
obtains. And that the correlation discussed above is not possible is shown
by the fact that we cannot describe it. ([21], §119)

As we saw earlier, the dependence of the sense of a proposition on the truth
of another would mean that if the latter proposition were false, the former would
yield no sense. Possibilities show themselves by our being able to think them, i.e.,
by our being able to say they are true (which is not to say that the possibility of a
situation requires someone to actually think them) 11 . As a consequence, the only
pair of coupled presuppositions of logic, the ascription of sense to propositions and
reference to names (TLP, 6.124), had to be determined once and for all, and all there
would be to “Logic” to investigate was what already lied in front of us, that showed
itself. This, that was the sense of propositions, was earlier characterized as what
would be the case if the proposition were true; in the PR, not only what would be
the case, but also the phenomenological frame it would have to be discovered to be
true in, mattered. But the determination of sense before truth was still imperative,
and for the same old reason that all that is necessary for truth to be possible must
enter into the constitution of some of our doings, i.e., sayings.

PR, §28 Expecting is connected with looking for: looking for something
presupposes that I know what I am looking for, without what I am

11I am grateful to one of the anonymous reviewers of this paper for having me warned against
this possible misinterpretation.
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looking for having to exist.
Earlier I would have put this by saying that searching presupposes the
elements of the complex, but not the combination that I was looking for.
And that isn’t a bad image: for, in the case of language, that would be
expressed by saying that the sense of a proposition only presupposes the
grammatically correct use of certain words.

Following the Tractarian lead, every proposition is a possible symbolic manip-
ulation inside a system (language) whose logical multiplicity, however occluded by
lack of perspicuity, matches that of the world (TLP, 5.555). What is said through
symbols is how things are, and both how things are and how things can be is outside
the reach of our control (TLP, 6.124). Nevertheless, we manage to express it. The
idea that “If you exclude the element of intention from language, its whole function
then collapses” (PR, §20) is not stated in Wittgenstein’s early aphorisms; even so,
the idea that a proposition is the result of an activity, like making ourselves pictures
of facts (TLP, 2.1) or using perceptible signs as a projection of a state of affairs
(TLP, 3.11), is – and surely saying is no unintentional activity.

Wittgenstein did not mistake thoughts for mental images, nor did he ground the
necessity of tautologies on empirically discovered psychological laws. But some of
our intentional actions were, for him (at least until the early 1930’s), intrinsically
contentful, in such a way that all knowledge concerning contents of possible judg-
ments lied within the reach of one’s armchair. Known without observation 12, the
descriptions under which some actions are propositions (are that which one says)
would describe the only rightful bearers of truth or falsity, and the supposition that
any form of calculus (either arithmetical or logical) bore some form of content should
be dismissed, if only because such supposition would get in conflict with the determi-
nateness of what is a priori knowable. Therefore, Wittgenstein’s decisive refusal of
Frege’s and Russell’s views on the content of arithmetical theorems (the claim that
the very question about it would be nonsense) is directly drawn from substantial
assumptions about our mental powers, which concerned how we know what we mean
when we think.

TLP, 4.411 It seems plausible even at first sight that the introduction of
elementary propositions is fundamental for the understanding of other
kinds of propositions. Indeed, the understanding of general propositions
depends paupably on that of elementary propositions.

The “postulate of the determinateness of sense”, same as “the postulate of the
possibility of simple signs” (TLP, 3.24) is not so much about sense, but about our

12I’m relying on [1] account of the concept of intention.
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minds. It is the postulate of the a priori knowability of sense. Assumption of the
mind’s fit to formal treatment, in order to elucidate its own thoughtful activities was
an essential part to Wittgenstein’s argument against logicism, for it was a premise to
his conclusions about what the content of a proposition is. The non-conceptual basis
of elementary propositions, from which all ordinary concepts would be constructible
through further and further applications of the N operation (primarily) upon sets of
such elementary basis, is a requirement of the world-mirroring thesis on the mind’s
workings. It is also the ground on which rests the distinction between what can
be said and what shows itself in it, which as we saw is the best line of defense we
can attribute (as far as I know) to Wittgenstein’s rehearsal of critiques to logicism
in the middle of his career. Postulating the possibility of simple sings in line with
TLP, 3.24 is no dirtying one’s hands with psychological research, but this is it for
Wittgenstein’s anti- psychologism, (under the best interpretative efforts) both in the
Tractatus Logico-Philosophicus and in the Philosophical Remarks. For assuming
a thesis about the nature of mind – even if not through empirical research – in
order to carry out conclusions about what the sense of a proposition is, is no better
compliance with anti-psychologism than doing research. For both Frege and Russell,
such would not be surprising grounds to object to their theories, as they shew (for
those who had eyes to see it), respectively, in the Vorwort to the Grundgesetze der
Arithmetik and in the Preface to Principia Mathematica:

As to the question, why and with what right we acknowledge a logical
law to be true, logic can respond only by reducing it to other logical laws.
Where this is not possible, it can give no answer. Stepping outside logic,
one can say: our nature and external circumstances force us to judge,
and when we judge we cannot discard this – law of identity, for example
– but have to acknowledge it if we do not want to lead our thinking
into confusion and in the end abandon judgement altogether. I neither
want to dispute nor to endorse this opinion, but merely note that what
we have here is not a logical conclusion. What is offered here is not a
ground of being true but of our taking to be true. ([10], p. xvii)

In mathematics, the greatest degree of self-evidence is usually not to
be found quite at the beginning, but at some later point; hence the
early deductions, until they reach this point, give reasons rather for
believing the premises because true consequences follow from them, than
for believing the consequences because they follow from the premises.
([18], p. v)
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Abstract

The aim is to show how to obtain models and counter-models in Hypo
semantics for Intuitionistic Propositional Logic (IPL). The case of Minimal
Propositional Logic (MPL) is a byproduct. Hypo is an alternative construc-
tive proof-theoretical semantics where the concept of hypothetical consequence
assumes a protagonist role in place of the usual semantical concept of construc-
tive proof or of any other semantical value. The paper starts by examining
proof-search in a handy LJ propositional sequent calculus (hLJp) and it goes
on to show how the rules orienting this search are a natural consequence of
Hypo semantics. Then, a refutation procedure for the so-called antisequents is
presented. Finally, counter-models for the validity of a sentence in IPL and
MPL are briefly exemplified and compared to the usual Kripke counter-models.

1 Introduction
From a philosophical point of view, a semantical clause for a logical constant is
supposed to contain a clarification of meaning in terms of its constituents via a basic
primitive predicate/relation. A model theory is then obtained by adding stipulations
of how this basic predicate/relation applies in the case of atomic sentences.

Hypo semantics [10] and [11] has been proposed as a new alternative constructive
semantics for Intuitionistic Propositional Logic (IPL) and Minimal Propositional
Logic (MPL). The objective is to show how to obtain models and counter-models

We wish to express our gratitude to two anonymous referees that made valuable suggestions for the
present article.
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within it. Its models and counter-models are distinct of those presented in [7],
since Hypo has distinct clauses for disjunction and implication. Nonetheless, the
counter-model search has some similarities in both semantics.

Hypo models are entirely motivated on proof-theoretical grounds, deduction be-
ing conceived under a hypothetical paradigm as discussed by [3] and [12]. On the
other hand, the traditional paradigm conceives validity of inferences to be a matter
of preserving truth or, in the constructive case, preserving provability. In Hypo,
the relation of consequence assumes the basic semantical role. Truth preservation
becomes a derived property. The starting point for the exposition below is the prob-
lem of proof-search in a sequent calculus for IPL and MPL under the hypothetical
paradigm.

Gentzen’s Untersuchungen paper [5] is the original source of the sequent calculus.
It contains a proof of equivalence between sequent calculus, the axiomatic calculus
and the natural deduction calculus, for both Intuitionistic and Classical Logic. The
hauptsatz, or main theorem, just proves the cut elimination property for sequents.
The paper brings, as a corollary to this theorem, the procedure of proof-search for
the Sequent System of Intuitionistic Propositional Logic (LJp). And, since minimal
logic is embedded in intuitionistic logic, the same procedure works for the Sequent
System of Minimal Propositional Logic (LMp). The novelty in the procedures to
be presented below lies in its relation to Hypo clauses.

Analytic tableaux are well known methods for searching the refutation of a sen-
tence. They have a close connection with proof-search. They were investigated by
some of the leading researchers in logic as in [1] and [13]. For the particular case of
IPL the tableau method is intimately connected with Kripke semantics [7] for this
logic. A full exposition can be found in [4].

The exposition starts with a definition of a handy sequent system for IPL and
MPL. The handy system enjoys a kind of cut elimination property which is proved
in a very short and direct way. As it contains neither contraction nor thinning, this
system reveals itself as a nice ground for proof-search.

Proof-search is illuminated by Hypo semantical clauses. Actually, the search
corresponds to an analytic reading of its clauses. Antisequents are the constructive
negation of sequents, and a refutation procedure for antisequents is going to be
obtained through an analytic reading of the antisequent clauses derived from Hypo
clauses. Together, these procedures constitute the ground for obtaining models and
counter-models in Hypo semantics.

Besides [7] and [4], [8] is another important antecedent concerning the construc-
tion of counter-models for non-theorems of IPL in the setting of proof-theoretic
semantics, although they use the Kripke model framework. These authors proposed
a calculus CRIP which they use as a basis in the "proof-search" for antisequents
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offering then a non-looping method for building Kripke trees refuting non-theorems
of IPL. However, as we see it, once Hypo semantics is well understood, it becomes
unnecessary to define any antisequent system, if counter-models are the objective.
Also, some simplification in the resulting counter-models can be achieved.

More recently [9] also presented a sequent system for the implicational frag-
ment of MPL over which they define how to prove sequents and how to obtain
counter-models. They employ new sequent structures containing “bags” of formu-
las, remaining in the framework of Kripke counter-models.

Finally, we briefly compare Kripke counter-models and the new Hypo way of
establishing counter-models. One of the intuitions behind Hypo models is adapted
from the work of Pinto and Dyckhoff, the definition of a Hypo basis.

The important point to be highlighted is that, different from Kripke semantics,
Hypo is a truly motivated proof-theoretical semantics.

From now on we use the device of giving a second reading in a context by using
brackets, like in the heading below. The expression in brackets are supposed to
substitute the expression coming before.

2 A Handy Intuitionistic [Minimal] Sequent Calculus
Assume a recursively defined sentential language L containing one distinguished
atomic sentence for the absurd "⊥" and no sentential parameters or variables.1 We
use capital Latin letters C, D, etc., to represent sentences of L and small Latin letters
c, d, etc., to represent sentences belonging to atL, the subset of atomic sentences of
L. The Latin letters are metaparameters for sentences. Multisets are sets admitting
multiple copies of an element. We use capital Greek letters Γ and ∆ to represent
finite multisets of L, including the empty one. Small Greek letters γ and δ are
used to represent finite multisets of atL, including the empty one. Greek letters are
metaparameters for finite multisets of sentences.

"Γ ⊢ C" represents sequents. The left side of the sequent contains a multiset
of hypotheses indicated by Γ, the right side contains only one sentence C, the con-
sequentia. Negation is defined as: ¬C := C → ⊥. The symbols “⇐”, “⇒” and
“⇔” are metalinguistic constants representing inference from right to left, inference
from left to right and inference in both directions, respectively, all of them should
be constructively interpreted. The linear presentation of rules is just a shorter way
of giving the usual vertical presentation of inferences in sequent calculus.

1Sentence and proposition are roughly equivalent concepts if one does not care for philosophical
distinctions. In any event, it should be reiterated that, from a constructive point of view, truth-
values are not acceptable as the interpretation of propositions.
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Definition 2.1. The handy LJ Sequent System for propositional logic (hLJp) con-
sists of the following initial sequents and sequent rules, hLMp is equal to hLJp
without the (absurd) initial sequent:
Initial sequents
(basic) : Γ, C ⊢ C

(absurd) : Γ, ⊥ ⊢ C

Inference rules
Structural2 (MP ) : (⊢ C and ⊢ C → D) ⇒⊢ D

Left Side (LS)
(∧) : Γ, C ∧ D ⊢ E ⇐ Γ, C, D ⊢ E

(∨) : Γ, C ∨ D ⊢ E ⇐ (Γ, C ⊢ E and Γ, D ⊢ E)
(→) : Γ, C → D ⊢ E ⇐ (Γ, D ⊢ E and Γ ⊢ C)
Right Side (RS)
(∧) : Γ ⊢ C ∧ D ⇐ (Γ ⊢ C and Γ ⊢ D)
(∨) : Γ ⊢ C ∨ D ⇐ (Γ ⊢ C or Γ ⊢ D)3

(→) : Γ ⊢ C → D ⇐ Γ, C ⊢ D

A system having some resemblance with hLJp and designed for proof-search is
LJT∗ by [8, p. 2]. LJT∗ contains neither thinning nor contraction like hLJp, but it
contains four left introduction implication rules. [9] when dealing with proof-search
defined their LMp system with a left implication introduction rule having a stronger
condition than the one in hLJp.

Lemma 2.2. The axioms of IPL [MPL] are provable in hLJp [hLMp], that is:4
(i) ⊢ C → (C ∧ C); (ii) ⊢ (C ∧ D) → (D ∧ C); (iii) ⊢ (C → D) → ((C ∧ E) →
(D ∧ E)); (iv) ⊢ ((C → D) ∧ (D → E)) → (C → E); (v) ⊢ C → (D → C); (vi)
⊢ (C ∧ (C → D)) → D; (vii) ⊢ C → (C ∨ D); (viii) ⊢ (C ∨ D) → (D ∨ C); (ix)
⊢ ((C → E) ∧ (D → E)) → ((C ∨ D) → E); (x) ⊢ (C → ⊥) → (C → D) (only in
IPL); (xi) ⊢ ((C → D) ∧ (C → (D → ⊥))) → (C → ⊥).

Proof. Notice that the axioms can be proved without using (MP ). We give the
proof of axiom (iv) ⊢ ((C → D) ∧ (D → E)) → (C → E) in linear fashion, the
others are not more difficult. C ⊢ C and C, D ⊢ D by (basic). C, C → D ⊢ D, by

2The usual role of the cut rule is fulfilled by (MP )
3This is a shorter way of writing: (Γ ⊢ C ∨ D ⇐ Γ ⊢ C) and (Γ ⊢ C ∨ D ⇐ Γ ⊢ D).
4See [6, pp. 105–106]
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(→ LS). C, C → D, E ⊢ E by (basic). By (→ LS), C, C → D, D → E ⊢ E. By
(→ RS), C → D, D → E ⊢ C → E. By (∧LS), (C → D) ∧ (D → E) ⊢ C → E.
Finally, ⊢ ((C → D) ∧ (D → E)) → (C → E) by (→ RS).

Theorem 2.3. All theorems of IPL [MPL] are provable in hLJp [hLMp].

Proof. The modus ponens rule of IPL [MPL] holds in hLJp [hLMp] as (MP ).
Therefore, any axiomatic proof in IPL [MPL] can be translated into a proof in
hLJp [hLMp], since, by Lemma 2.2, all axioms of IPL [MPL] are provable in
hLJp [hLMp].

We assume acquaintance with LJ [LM ] sequent calculus for propositional logic
as presented in [5], it is called in our context as LJp [LMp].5 Gentzen had already
proved the equivalence of IPL [MPL] in axiomatic presentation with LJp [LMp].6
We notice that the following rules belong to LJp [LMp], but they are absent in
hLJp [hLMp] as also in Pinto and Dyckhoff’s system mentioned above:

(thinning) : Γ ⊢ C ⇒ Γ, D ⊢ C

(contraction) : Γ, D, D ⊢ C ⇒ Γ, D ⊢ C

(cut) : (Γ ⊢ C and C, ∆ ⊢ D ⇒ Γ ⊢ D

1.C → D ⊢ ¬C ∨ D✓
↙ ↓ ↘ R2 ∗ (1)

2.C → D ⊢ ¬C 3.C → D ⊢ D 4.C → D✓ ⊢ ¬C ∨ D✓

↓ R3(2) ↓ L3 ∗ (3) ↓ L3 ∗ (4)
5.C → D, C ⊢ ⊥ 6.D ⊢ D (ini) 9.D ⊢ ¬C ∨ D

7. ⊢ C ⊗ 10. ⊢ C ⊗
↓

12.D, C ⊢ ⊥ ⊗
13.C ⊢ C (ini)

Proof-search asks which rule might have been applied last in a putative proof of
a sequent. hLJp proofs contain neither contractions nor thinnings. We cal it the
the-last-sequent-introduced question. Also, as will be shown below, (MP ) can be

5Gentzen does not employ the absurd constant "⊥", he uses negation "¬". Hypotheses are given
as finite lists, which would then require the interchange rule–Γ, E, F, ∆ ⊢ C ⇒ Γ, F, E, ∆ ⊢ C.
See [5, pp. 83–85]

6See [5, pp. 103–105].
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disregarded. Hence, if every provable sequent can be proved without using thinnings,
contractions or cuts, then both: (i) no sentence occurrence disappears in a proof; (ii)
no occurrence is multiplied inside a sequent in the process of proof-search. The search
will then only examine subsentences of the occurrences in the sequent. Therefore,
hLJp offers a suitable ground for effecting proof-search by means of a case analysis
depending on which side of the sequent the logical constant is placed.

Theorem 2.4. All inference rules of hLJp [hLMp] are derivable in Gentzen’s LJp
[LMp] including the basic and the absurd sequents.

Proof. This is immediate for each (LS) and (RS) rule of hLJp [hLMp], as also
for (basic) and (absurd) sequents. Finally, (MP ) is derivable in hLJp [hLMp] by
using the (cut) rule in LJp [LMp], given that C, C → D ⊢ D is provable in LJp
[LMp].

Corollary 2.5. If a sequent Γ ⊢ C is provable in hLJp [hLMp], then it is provable
in LJp [LMp].

Proof. Immediate from Theorem 2.4.

Theorem 2.6. hLJp [hLMp] and LJp [hLMp] are equivalent.

Proof. Every sequent provable in hLJp [hLMp] is provable in LJp [LMp] accord-
ing to Corollary 2.5. Every theorem in axiomatic IPL [MPL] is provable in hLJp
[hLMp] according to Theorem 2.3. Since LJp [LMp] and IPL [MPL] are equiv-
alent, as Gentzen proved in his hauptsatz paper [5] section V, then hLJp [hLMp]
and LJp [LMp] are equivalent.

Lemma 2.7. If a sequent Γ ⊢ C is provable in hLJp and Γ is nonempty, then the
last rule used in the proof of Γ ⊢ C is not an instance of (MP ).

Proof. Immediate by observing that the form of (MP ) in hLJp does not admit a
conclusion containing hypotheses.

A sentence occurrence in a sequent inside a proof in hLJp [hLMp] is a main
occurrence with respect to an inference if the sequent is either the conclusion of
a (LS) or (RS) rule and the occurrence is introduced by this inference, or if the
sequent is a premise of a (LS) or (RS) rule and the occurrence is the explicit
condition for applying it. All occurrences of a (MP ) rule are main occurrences. All
other occurrences are called side occurrences with respect to the inference, that is,
they belong to the context.
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Lemma 2.8. If, for an atomic sentence e not occurring in either Γ or C, a sequent
e, Γ ⊢ C is provable in hLJp [hLMp], then no rule in the proof is (MP ).

Proof. By induction on the number of proof steps. The basis is trivial. Suppose
that the proof has n + 1 steps. Suppose that for proofs containing n steps or less
the assertion holds. It is clear that the n + 1 step must be either an (LS) rule
or an (RS) rule, since (MP ) does not admit hypotheses, according to Lemma 2.7.
Additionally, the hypothesis e was not introduced in the n+1 step since it is atomic.
Hence it is a side occurrence in the conclusion. Also, it has to be a side occurrence
in the premises. Remind that it occurs neither in Γ nor C. The result follows by
the induction hypotheses.

Theorem 2.9. For every proof of Γ ⊢ C in hLJp [hLMp], there is a (MP )-free
proof of it.7

Proof. According to Corollary 2.5, if a sequent Γ ⊢ C is provable in hLJp [hLMp],
then it is also provable in LJp [LMp]. Let e be an atomic sentence not occurring
in Γ ⊢ C. By thinning the sequent e, Γ ⊢ C is also provable in LJp [LMp]. By
Theorem 2.6, e, Γ ⊢ C is provable in hLJp [hLMp]. By Lemma 2.8, the proof of
e, Γ ⊢ C is (MP )-free. Since e is atomic, it occurs only as a side occurrence in the
hypotheses of any sequent in the proof, so it can be erased in all of them.

This seems to be one of the shortest proofs of a property that is connected to
Gentzen’s hauptsatz.8 It means that rule (MP ) can be disregarded in proof-search
inside hLJp [hLMp]. Theorem 2.9 has two immediate interesting consequences.
From now on, “Γ ⊬ C” means that Γ ⊢ C is not provable in a constructivist sense.
It is called antisequent in [8]. In our article it is equivalent to say that: (Γ ⊢ C) ⇒ ⊥,
where ⊥ is the absurd constant in the metalanguage.

Corollary 2.10. (i) hLJp [hLMp] is consistent, that is, ⊬ ⊥; (ii) ⊢ C ∨ D ⇒ (⊢ C
or ⊢ D).

Proof. By considering what would be the last inference rule in a (MP )-free proof
according to Theorem 2.9.

3 Metaprinciples for LJp [LMp]
The following metaequivalences make explicit the meaning of the logical constants
either as a hypothesis or as a consequentia in a sequent inside LJp [LMp].

7It is contraction-free and cut-free.
8That (MP ) is related to the (cut) rule means, at least, that both express a transitivity property.
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Theorem 3.1. It holds for the logical constants of LJp [LMp] that:
Left side, as a hypothesis
L1 : Γ, C ∧ D ⊢ E ⇔ Γ, C, D ⊢ E

L2 : Γ, C ∨ D ⊢ E ⇔ Γ, C ⊢ E and Γ, D ⊢ E

L3 : Γ, C → D ⊢ E ⇔ for any ∆ ⊇ Γ, (∆, C ⊢ D ⇒ ∆ ⊢ E)
Right side, as consequentia:
R1 : Γ ⊢ C ∧ D ⇔ Γ ⊢ C and Γ ⊢ D

R2 : Γ ⊢ C ∨ D ⇔ for any E, ((Γ, C ⊢ E and Γ, D ⊢ E) ⇒ Γ ⊢ E)
R3 : Γ ⊢ C → D ⇔ Γ, C ⊢ D

Proof. L1, L2, R1 and R3 can be proved straightforwardly in a first step. We con-
sider the cases of L3 and R2 and their proofs in a second step. L3 is proved as
follows. Direction ⇒. Suppose Γ, C → D ⊢ E. Suppose that ∆, C ⊢ D for ∆ ⊇ Γ.
Clearly, ∆ ⊢ C → D by R3. Thus, Γ, ∆ ⊢ E by (cut). By (contractions), ∆ ⊢ E.
Direction ⇐. Suppose that, for any ∆ ⊇ Γ, (∆, C ⊢ D ⇒ ∆ ⊢ E). By instantiation,
(Γ, C → D, C ⊢ D) ⇒ (Γ, C → D ⊢ E). C → D ⊢ C → D is a basic sequent.
By R3, C → D, C ⊢ D. Therefore, Γ, C → D ⊢ E. Now we consider R2, which
is proved as follows. Direction ⇒. Suppose Γ ⊢ C ∨ D. Suppose Γ, C ⊢ E and
Γ, D ⊢ E for an E whatever. By L2, Γ, C ∨ D ⊢ E. By (cut), Γ ⊢ E. Direction ⇐.
Suppose that, for any E, ((Γ, C ⊢ E and Γ, D ⊢ E) ⇒ Γ ⊢ E). By instantiation,
(Γ, C ⊢ C ∨ D and Γ, D ⊢ C ∨ D) ⇒ Γ ⊢ C ∨ D. Γ, C ∨ D ⊢ C ∨ D is basic. By L2,
Γ, C ⊢ C ∨ D and Γ, D ⊢ C ∨ D. Therefore, Γ ⊢ C ∨ D.

Double inference rules were anticipated by Došen in a series of writings, from [2]
to [3]. For him, the meaning of each logical constant can be described in a structural
way by double inferences, as those presented in Theorem 3.1. This is clearly the case
when they do not involve quantification. But, in two cases, this meaning explanation
is one sided. Disjunction on the right side and implication on the left side cannot
be presented as regular inference rules because of the second order quantification
in them. Hence, only the use of the constant in the other side follows the pattern
of double inferences. The explicitation of meaning in those two cases require a
quantification that cannot be circumvented. If it can be completely described in
structural terms or not is then a question of defining what should we understand by
the concept of a structural description.

In our perspective, the meaning explanation for logical constants should pay
attention to two distinct behaviors of logical constants: the behavior as a hypothesis
and the behavior as a consequentia.
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As can be seen, most of hLJp [hLMp] inferences can then be read bidirectionally.
Only (MP ), (→ LS) and (∨RS) cannot. Proof-search development employs the
necessary condition inference attached to each logical constant. That is, it employs
the reading from left to right in L1 to R3. This is the analytic or decompositional
reading of the rule and it presents the strict necessary conditions attached to the
elimination of the logical constant in the respective side. From right to left we
have the synthetic reading, and it presents the strict sufficient conditions for the
introduction of the logical constant in the respective side.

The left to right reading of (→ LS) and (∨RS) cannot be used owing to the fact
that the condition in these rules is not strictly necessary and sufficient.

Theorem 3.2. (→ LS) and (∨RS) are consequences of the synthetic reading of L3
and R2 above in LJp [LMp], respectively.

Proof. First (→ LS). Suppose that Γ ⊢ C and Γ, D ⊢ E. Suppose that, for a ∆ ⊇ Γ,
∆, C ⊢ D. By (thinnings), Γ, ∆, C ⊢ D and Γ, ∆, D ⊢ E. Hence, Γ, ∆, C ⊢ E, by
(cut) and (contractions). By (thinnings), Γ, ∆ ⊢ C. Thus, again, by (cut) and some
(contractions) Γ, ∆ ⊢ E. Therefore, Γ, C → D ⊢ E by L3. Second, (∨RS). Suppose
Γ ⊢ A. Suppose that Γ, A ⊢ E and Γ, B ⊢ E. By (cut) and some (contractions),
Γ ⊢ E. The other case is similar.

4 Proof-search in hLJp [hLMp]
As already pointed, proof-search is done through an analysis of complex sentences,
through the so called decompositional reading. The analysis goes on until an initial
sequent is reached or until all sentences in the sequent are atomic. In two cases
the analytic readings involve quantification and, thus, a dependence on an endless
number of sequents, according to L3 and R2. Thus, a guiding heuristics has to be
employed. It consists in asking the the-last-sequent-introduced question.

When searching for a proof, if either an implication in the left side or a disjunction
in the right side comes under analysis, then either (→ LS) or (∨RS) had to be
employed in case the occurrence was the last one introduced. But, it might also be
the case that it was not the last. Then, another complex occurrence should be the
last. Hence, the analysis should take another alternative. The occurrence discarded
as being the last is marked and it should not undergo analysis again, as in the
following implications:

Γ, C → D ⊢ E ⇒ ((Γ, D ⊢ E and Γ ⊢ C) or Γ, C → D✓ ⊢ E)

Γ ⊢ C ∨ D ⇒ ((Γ ⊢ or Γ ⊢ D) or Γ ⊢ C ∨ D✓)
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This left to right quasi-analytic reading is fortunate because the following equiva-
lences hold, as can be easily verified.

Theorem 4.1. It holds for the logical constants of LJp [LMp] that:9

L3∗ : Γ, C → D ⊢ E ⇔ ((Γ, D ⊢ E and Γ ⊢ C) or Γ, C → D ⊢ E)
R2∗ : Γ ⊢ C ∨ D ⇔ ((Γ ⊢ C or Γ ⊢ D) or Γ ⊢ C ∨ D)

Proof. Immediate.

Proof search is going to be based on L3∗ and R2∗ together with L1, L2, R1 and
R3 under a controlling strategy for preventing the procedure from going into a loop.
It might be the case that the respective occurrences–implication in the left side or
disjunction in the right side–were not the last introduced in the sequent. However,
since at least one of the occurrences has to be the last in case there is a proof of
the sequent, only a finite amount of analysis must be effected over the occurrences
inside that sequent in the worst case scenario.10 If, after examining each occurrence,
no proof could be found, then the sequent is not provable. Actually, things are
better than this scenario since in other cases we can employ the analytical reading.
The development can be assumed to be definitive because provability, as well as
refutability, will be preserved. Observe, additionally, that there is no alternative
branching in L1, L2, R1 and R3, only in L3∗ and R2∗.

For showing a sequent to be provable it is enough to exhibit at least one correct
finished path in a search-tree. If all sequents in a path were analyzed, then the path
is finished. An initial sequent is considered immediately analyzed. A non-initial
sequent which contains no more than atomic sentences is considered analyzed and
closed. It is marked with "⊗". A path is closed if it contains at least one closed
sequent. A finished non-closed path contains a proof. For abreviating the proof-
search procedure, we can assume, when convenient, that a closed sequent turns
finished the path to which it belongs. Other sequents are analyzed as follows.

Definition 4.2. STRATEGY for proof-search – It consists in developing all non-
finished paths going through a non-analyzed sequent picked at will by choosing one
of its non-marked non-atomic sentence occurrences at will and applying the analytic
reading of the rules in Theorem 4.1 or the other rules in Theorem 3.1, depending on
which side of the sequent the sentence occurs, such that the development must take
care of marked formulas as described below:

9Of course, now the reading from right to left is no longer the statement of a strict sufficient
condition for the logical constant in question.

10The worst case scenario is that where all the hypotheses are implications and the consequentia
is a disjunction: C1 → D1, . . . , Cn−1 → Dn−1 ⊢ Cn ∨ Dn.
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Left Rules Right rules

Γ, C ∧ D ⊢ E Γ ⊢ C ∧ D

L1
...

... R1
↓ ↓

Γ∗, C, D ⊢ E∗ Γ∗ ⊢ C
Γ∗ ⊢ D

Γ, C ∨ D ⊢ E Γ ⊢ C ∨ D✓

L2
...

... R2∗
↓ ↙ ↓ ↘

Γ∗, C ⊢ E∗ Γ∗ ⊢ C Γ∗ ⊢ D Γ∗ ⊢ C ∨ D✓

Γ∗, D ⊢ E∗

Γ, C ⊃ D✓ ⊢ E Γ ⊢ C ⊃ D

L3∗ ...
... R3

↓ ↘ ↓
Γ∗, D ⊢ E∗ Γ, C ⊃ D✓ ⊢ E Γ∗, C ⊢ D

Γ∗ ⊢ C

Γ∗ and E∗ are the result of erasing any marks "✓" that might occur in Γ and E. If
there is none, then Γ∗ = Γ and E∗ = E.11 The rightmost branch in the rules L3∗
and R2∗ with a repetition is going to be written down only if there is left either a
right implication or a right disjunction unmarked in the sequent developed noticing
that the formula occurrence being developed has been marked "✓" and it cannot again
be the object of analysis in this rightmost path of R2∗ or L3∗. Any developed sequent
is considered analyzed. END of STRATEGY

When a sequent is developed by rules L1, L2, R1 or R3, the conjunction of the
sequents written down in the path is equivalent to the sequent developed–according
to the decompositional reading. If it is developed by L3∗ or by R2∗, there will
be alternative paths. The disjunction of the conjunction of sequents in each path
is equivalent to the analyzed sequent. Therefore, no information is lost through
developments.

11This is going to be the case only if the sequent developed belongs to the rightmost path in L3∗
and R2∗. Any other development erases the marks.
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The rightmost branch in L3∗ and R2∗ develops the supposition of being the last
for every occurrence of either a left implication or a right disjunction in a given
sequent.

Example 4.3 illustrates a successful proof-search. The path has a proof when
read bottom-up. It is finished and open, that is, not-closed:

1.¬C ∨ D ⊢ C → D
↓ R3(1)

2.¬C ∨ D, C ⊢ D
↓ L2(2)

3.¬C✓, C ⊢ D
4.D, C ⊢ D (initial)

↓ L3 ∗ (3)
5.⊥, C ⊢ D (initial)

6.C ⊢ C (initial)

Example 4.3.

Example 4.4 below shows the case of an unsuccessful proof-search. Every path
is closed. Although sequent 8 could still be developed, the procedure stops since the
path contains the closed atomic sequent 9.

1.C → D ⊢ ¬C ∨ D✓
↙ ↓ ↘ R2 ∗ (1)

2.C → D ⊢ ¬C 3.C → D✓ ⊢ D 4.C → D✓ ⊢ ¬C ∨ D✓

↓ R3(2) ↓ L3 ∗ (3) ↓ L3 ∗ (4)
5.C → D✓, C ⊢ ⊥ 6.D ⊢ D (ini) 8.D ⊢ ¬C ∨ D

7. ⊢ C ⊗ 9. ⊢ C ⊗
↓ L3 ∗ (5)

10.D, C ⊢ ⊥ ⊗
11.C ⊢ C (ini)

Example 4.4.

Theorem 4.5. STRATEGY is a finite procedure.

Proof. Each sequent Γ ⊢ C in a path has a degree that is the sum of the degrees
of each sentence occurring in the sequent–its number of connectives–, noticing that
the absurd is atomic and has degree 0. All occurrences in the new sequents are
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subformulas that descend from occurrences in the developed sequent. The number
of sequents resulting from a development through L1, L2, R1 or R3 is finite and their
degree is less than the degree of the sequent developed. Sequents resulting from a
development by L3∗ and R2∗ are finite in number and of a lesser degree than the
sequent developed, with the exception sometimes of one third rightmost path in
which the developed sequent is repeated. However, if repeated, it is repeated only
a finite number of times until all left implications and right disjunction occurrences
are marked. Hence, the procedure is finite. It is impossible to go on endlessly.

All rules L1, L2, L3∗, R1, R2∗, R3, are such that if one side of the equivalence is
provable [refutable], then the other side must also be provable [refutable] . Therefore,
when looking for a proof of a sequent inside hLJp [hLMp], if the sequent undergoes
a transformation according to one of the rules, then at least in one path all sequents
written down in a development are provable if, and only if, the former sequent was
provable.

Theorem 4.6. There is a proof of Γ ⊢ C in hLJp [hLMp] if, and only if, there is
a finished open path in the proof-search STRATEGY for Γ ⊢ C.

Proof. (i) Left to right. Suppose we have a proof of Γ ⊢ C in hLJp [hLMp]. There-
fore by Theorem 2.9 there is a proof of it that does not contain (MP ). This proof
corresponds to an open finished path of STRATEGY read bottom up, since each
(LS) or (RS) introduction rule corresponds to a development by analysis through
L1, L2, L3∗, R1, R2∗ and/or R3. (ii) Right to left. Suppose the proof-search STRAT-
EGY gives us a finished open path for Γ ⊢ C. All sequents in this path are analyzed,
and those that contain no more than atomic occurrences are initial. They are im-
mediately provable in hLJp [hLMp]. Any non-initial sequent in the path is the
consequence of the synthetic readings of L1, L2, L3∗, R1, R2∗ and/or R3, depending
on which was the development effected. Now, all synthetic readings are (LS) or (RS)
inference rules of hLJp [hLMp], with the exception of two cases. Those two cases are
either Γ, C → D ⊢ E ⇐ Γ, C → D✓ ⊢ E using rule L3∗ or Γ ⊢ C ∨D ⇐ Γ ⊢ C ∨D✓

using rule R2∗. In both cases, the inference can be erased since its premise and
conclusion are identical.

Corollary 4.7. Decidability - Γ ⊢ C is decidable in hLJp [hLMp].

Proof. By Theorems 4.6 and 4.5, we have a decision procedure for hLJp [hLMp].

Corollary 4.7 is not yet sufficient to guarantee a strong tertium non datur in
which negation is understood in a constructive sense. Only after defining what are
bases the conditions for such assertion are fullfilled, in Theorem 5.9.
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5 Hypo semantics
The proof-search procedure was established without major considerations concerning
the semantics of IPL or MPL with exception of the explanation clauses in Theorem
3.1. They are the basis of Hypo semantics in [10] and [11]. Rules L1 to R3 state
the necessary and sufficient conditions for the use of a logical constant, either as a
hypothesis or as a consequentia inside a sequent.

5.1 Semantical clauses
To the above clauses in Theorem 3.1 some others must be added in order to obtain
a full semantics.

5.1.1 Complementing Hypo semantical principles for intuitionistic [mi-
nimal] propositional logic

Let’s use ⊤ as an abreviation for representing any constructive tautology in the
metalanguage.

Theorem 5.1. Equivalences for ⊥ in LJp (but not in LMp):
L4 : Γ, ⊥ ⊢ c ⇔ ⊤ (c is atomic)
R4 : Γ ⊢ ⊥ ⇔ for any atomic e, Γ ⊢ e

Proof. L4 is easy. Now R4. Direction ⇐ first. From the supposition that, for any
atomic e, Γ ⊢ e, by instantiation, we have Γ ⊢ ⊥ since ⊥ is atomic. Direction ⇒,
suppose Γ ⊢ ⊥. However, ⊥ ⊢ e for any atomic sentence e in LJp. By (cut), for any
atomic e, Γ ⊢ e.

Besides clauses for logical constants, there must be principles laying out how to
operate with hypotheses. Actually, we have been using their syntactical counterpart
in the proofs of equivalence above. Although sequent structural rules are usually
read as syntactical principles, we claim that they have semantical content. This
must be the case in Hypo semantics since consequence is its fundamental relation.
Below, small Latin letter c represents an atomic sentence.

Definition 5.2. Hypo structural principles for LJp [LMp]:
(atomicIdempotence) : c ⊢ c

(Load) : Γ ⊢ C ⇒ Γ, D ⊢ C

(atomicDrop) : (Γ ⊢ c and c, Γ ⊢ E) ⇒ Γ ⊢ E

554



Hypo models and counter-models for IPL and MPL

Theorem 5.3. The full (Drop) principle and the full (Idempotence) principle hold
in Hypo, that is:12

(Drop) : (Γ ⊢ C and C, Γ ⊢ E) ⇒ Γ ⊢ E
(Idempotence) : C ⊢ C.

Proof. (Drop) is proved by induction on the degree of C. Degree 0 (zero) is imme-
diate from (atomicDrop). Induction step, suppose that C is of degree n. By the
induction hypothesis (IH), full (Drop) holds for degrees less than n. There are three
cases: (a), (b) and (c). (a) C = F ∧G. Suppose Γ ⊢ F ∧G. By R1, Γ ⊢ F and Γ ⊢ G.
By (Load), Γ, G ⊢ F . Suppose F ∧ G, Γ ⊢ E. By L1, F, G, Γ ⊢ E. By (IH), (Drop)
holds for F , hence Γ, G ⊢ E. And again, it holds for G, thus Γ ⊢ E. (b) C = F ∨ G.
Suppose Γ ⊢ F ∨G. By R2, for any E, ((Γ, F ⊢ E and Γ, G ⊢ E) ⇒ Γ ⊢ E). Suppose
F ∨ G, Γ ⊢ E. By L2, F, Γ ⊢ E and G, Γ ⊢ E. By meta modus ponens, Γ ⊢ E. (c)
C = F → G. Suppose Γ ⊢ F → G. By R3, Γ, F ⊢ G. Suppose F → G, Γ ⊢ E. By
L3, for any ∆ ⊇ Γ, (∆, C ⊢ D ⇒ ∆ ⊢ E). By instantiation, Γ, F ⊢ G ⇒ Γ ⊢ E.
By meta modus ponens, Γ ⊢ E. (Idempotence) is also proved by induction on the
degree of C.

5.2 Atomic bases and Hypo models
The traditional semantical values of constructive provability or of classical truth
have no role in Hypo semantics. The consequence relation, which the sequents are
supposed to express, constitutes the basic semantical brick. Now, a basis consists in
establishing this relation among basic hypotheses and atomic consequentia.

Let the set of positive atoms be defined as A+ = {d|d ∈ atL−{⊥}}, and negative
atoms as the set A− = {d → ⊥|d ∈ atL−{⊥}}. In both cases we say that the atomic
sentence d is the core of the atom. Basic hypotheses are of two kinds: positive and
negative atoms. In LMp bases, negative atoms are omitted and ⊥ is irrelevant
in the language, so it can be disregraded. In LJp bases, both kinds of atoms are
needed. Let M = {ω ∪ δ|ω is a multiset ⊆ A+ and δ a multiset ⊆ A−}. We say
that γ ∈ M is normal iff no negative atom in γ has the same core of a positive atom
in γ. Let H = {γ ∈ M|γ is finite and normal} be the set of basic hypotheses. Let
P = {< γ, c > |γ ∈ H and c ∈ atL} be the set of basic pairs of L. Let RB

⊕ and
RB

⊖ be both defined constructively such that RB
⊕ ⊆ P and RB

⊖ ⊆ P − RB
⊕.

The atomic consequence relation on basis B over L is defined as follows:

γ ⊢B c if < γ, c >∈ RB
⊕ and γ ⊬B c if < γ, c >∈ RB

⊖

12The (Cut) rule is easily provable from (Drop) and (Idempotence).
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The reason for considering sentences of the form e → ⊥ as basic (negative)
hypotheses for LJp is that not all suppositions are of the form “suppose that e were
the case”. They can also be of the form “suppose that e were not the case”. These
should have space in a proof-theoretic semantics under the hypothetical paradigm,
since we are taking hypotheses to be a primitive notion in our environment.

We follow the usual constructive practice of representing that e is not the case
as e → ⊥. Constructively speaking, it might occur that ⊬B e for some atomic
sentence e and, at the same time, e → ⊥ ⊢B ⊥, from which it follows that ⊢B ¬¬e
given the usual definitions of negation and the clauses for implication. This relation
e → ⊥ ⊢B ⊥ has then to be established at a basic level, in a basis B for intuitionistic
logic.

An atomic basis B′ is an extension of the atomic basis B whenever, for all
< γ, c >∈ P, (γ ⊢B c ⇒ γ ⊢B′

c).
Decidable atomic bases B are those in which RB

⊕ ∪ RB
⊖ = P.

The empty basis (∅) is the atomic basis over P such that, for every < γ, c >:
γ ⊢∅ c ⇔ c ∈ γ. This basis is the ground basis for LMp and it can be extended
to other bases. The atomic sequents valid in the empty basis are all initial sequents
of LMp. The extension absurd-empty basis (abs∅) is such that γ ⊢abs∅ c ⇔ (c ∈ γ
or ⊥ ∈ γ). It is the ground basis for LJp and it can also be extended. The atomic
sequents valid in abs∅ are exactly those that are initial in LJp. We are going to
refer to both bases as the empty basis when there is no risk of confusion.

Given an atomic basis B, an intuitionist [minimal] model MB is the closure of
B by the sequent rules of LJp [LMp] if B extends abs∅ [∅]. It contains all valid
sequents in basis B.

Theorem 5.4. Any sequent valid in the empty basis is also valid in any extension
of it. Conversely, any sequent invalid in an extension of the empty basis is invalid
in the empty basis.

Proof. According to the definitions of empty basis and of model.

Theorem 5.5. ⊢[abs]∅ C ∨ D ⇔ (⊢[abs]∅ C or ⊢[abs]∅ D).

Proof. By rule (∨RS) the right to left direction is proved. If there is a proof of the
disjunction in the empty basis, given that the basis validates only the atomic initial
sequents of hLMp [hLJp], then by Corollary 2.10 (ii) there is a proof of one of the
disjuncts, which then proves the left to right direction component.

The semantical principles of Hypo are now complete. The (atomicDrop) princi-
ple establishes the condition under which an atomic hypothesis can be disregarded.
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Notice that there is no semantical principle corresponding to contraction, hypotheses
are being considered as given through multisets.

Atomic bases are the ground for presenting models and counter-models for cons-
tructive logical constants.

Sets of hypotheses can be contradictory.13 We say that a multiset Γ of sentences
is inconsistent14 if, and only if, Γ ⊢∅ ⊥; and a multiset Γ is trivial if, and only if, for
all atomic e, Γ ⊢∅ e. The definition of the absurd above states that it follows from
a set of hypotheses when this set is trivial in intuitionistic logic.

Now, there is a procedure for obtaining models in which a given set of sentences
holds. Different paths of a tree generated by STRATEGY give us a basis that serves
as a model.

Definition 5.6. Model-search - Given a proof-search tree according to definition 4.2
for Γ ⊢ C where all sequents are fully analyzed, a model for Γ ⊢ C is given either
by: (i) the empty basis in case the tree contains a non-closed finished path (i.e., a
proof); or (ii) the basis obtained by extending the empty basis with all non-initial
atomic sequents belonging to a given closed path.

1. ⊢ (C → D) → D
↓ R3(1)

2.C → D✓ ⊢ D
↓ L3 ∗ (2)

3.D ⊢ D (initial)
4. ⊢ C ⊗

Example 5.7.

Concerning example 5.7, a basis proving ⊢ C is enough for proving ⊢ (C →
D) → D according to the path in example 5.7. If C and D are atomic, then we
obtained a definition for a basis, that is, for the basis B = {⊢ C} extending the
empty basis. It holds for it that ⊢B (C → D) → C. If they are not, then ⊢ C has
to be further analyzed by means of STRATEGY.15

The same procedure for finding a basis can be used for the case of a finite set of
sequents, all then being put at the beginning of the path starting the tree.

Now, a basis can be trivial, in the sense that it proves any atomic sentence. For
example, any intuitionistic model whose basis contain rules ⊢ a and a ⊢ ⊥. Hence,

13That is, it contains a sentence and its contradictory negation.
14Another concept that can be defined this way is the concept of an impossible multiset.
15We remember that, according to the observation already made above, it might be the case that

e → ⊥ ⊢B ⊥ but ⊬B e for a certain basis B.
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Hypo models are not assumed to be consistent by definition, they must be proved
to be so.

Theorem 5.8. The empty bases are not trivial: ⊬[abs]∅ ⊥.

Proof. Immediate from their definitions.

Theorem 5.9. Tertium non-datur for consequence in the empty basis - either
Γ ⊢[abs]∅ C or Γ ⊬[abs]∅ C in hLMp [hLJp].

Proof. According to 4.7 there is a procedure for determining for any sequent if it
is provable or not by the STRATEGY procedure. In the empty basis, any atomic
sequent is decidable according to the definition of a basis. STRATEGY develops
sequents according to one of the rules L1, L2, L3∗, R1, R2∗ or R3 of Theorems 4.1
and 3.1. Each development is an equivalence. This equivalences have the form of a
disjunction of conjunctions. Thus, after completely analyzing all sequents in a path
through STRATEGY, if all paths are closed, that is, if none is a proof, then there is in
each conjunctive expression (sentences in the same path) of a disjunction (alternative
paths) one atomic sequent that is not provable. Any atomic non-provable sequent is
in fact refutable inside the empty basis. Therefore, the initial sequent of the tree is
also refutable, since in each path there is at least one refutable atomic sequent.

6 Antisequents and non-consequence
Next, negations of hLJp [hLMp] sequents, that is, antisequents representing unpro-
vability in the empty basis and its extensions are examined. Since proof-search
has already been established for hLJp, a refutation procedure for antisequents is
investigated without formulating any new formal system. From a certain perspective,
this is dispensable if the objective is to decide when an antisequent holds or not.

6.1 Antisequents and analytic tableaux
"⊥" represents the absurd in the metalanguage.

Theorem 6.1. It holds for the empty basis with LMp [LJp] that:
Left side, as a hypothesis
(L1) : Γ, C ∧ D ⊬[abs]∅ E ⇔ Γ, C, D ⊬[abs]∅ E

(L2) : Γ, C ∨ D ⊬[abs]∅ E ⇔ (Γ, C ⊬[abs]∅ E or Γ, D ⊬[abs]∅ E)
(L3) : Γ, C → D ⊬[abs]∅ E ⇔ (for any ∆ ⊇ Γ : (∆, C ⊢[abs]∅ D ⇒ ∆ ⊢[abs]∅ E)) ⇒ ⊥
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Right side, as consequentia:
(R1) : Γ ⊬[abs]∅ C ∧ D ⇔ (Γ ⊬[abs]∅ C or Γ ⊬[abs]∅ D)
(R2) : Γ ⊬[abs]∅ C ∨ D ⇔ (for any E((Γ, C ⊢[abs]∅ E and Γ, D ⊢ E) ⇒ Γ ⊢[abs]∅

E)) ⇒ ⊥.

(R3) : Γ ⊬[abs]∅ C → D ⇔ Γ, C ⊬[abs]∅ D

Proof. By using Theorems 3.1 and 5.9, remaining constructive in the metatheory,
recalling that Γ ⊬[abs]∅ C means that (Γ ⊢[abs]∅ C) ⇒ ⊥.

Similar to L3 and R2, L3 and R2 involve an endless number of cases. One
possible solution is to consider the contraposition of rules (LS →) and (RS∨):

Γ, C → D ⊬[abs]∅ E ⇒ (Γ ⊬[abs]∅ C or Γ, D ⊬[abs]∅ E)

Γ ⊬[abs]∅ C ∨ D ⇒ (Γ ⊬[abs]∅ C and Γ ⊬[abs]∅ D)

They are enough for effecting the analysis of the antisequents. In fact, the following
equivalences hold:

Theorem 6.2.
(L3∗) : Γ, C → D ⊬[abs]∅ E ⇔ ((Γ ⊬[abs]∅ C or Γ, D ⊬[abs]∅ E) and Γ, C → D ⊬[abs]∅

E)
(R2∗) : Γ ⊬[abs]∅ C ∨ D ⇔ ((Γ ⊬[abs]∅ C and Γ ⊬[abs]∅ D) and Γ ⊬[abs]∅ C ∨ D)

The extra condition in the right to left reading contains too much to serve as
an explanation of the logical constant. And yet, without them, the right to left
inference would be incorrect, as illustrated by the following examples: (i) c →
d, (c → d) → e ⊬[abs]∅ e ⇐ ((c → d) → e ⊬[abs]∅ c or (c → d) → e, d ⊬[abs]∅ e); (ii)
e ∧ (c ∨ d) ⊬[abs]∅ c ∨ d ⇐ (e, (c ∨ d) ⊬[abs]∅ c and e, (c ∨ d) ⊬ d). Together with the
above antisequent principles, the following also holds.

Theorem 6.3.
(antiLoad) : Γ, D ⊬ C ⇒ Γ ⊬ C

(antiDrop) : Γ ⊬ E ⇒ (Γ ⊬ C or C, Γ ⊬ E)

Proof. (antiLoad) and (antiDrop) are the contrapositions of (Load) and (Drop)
respectively.

Theorem 6.4. If C → ⊥ ⊬abs∅ E, then C → D ⊬abs∅ E.
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Proof. Suppose C → ⊥ ⊬abs∅ E. By (antiDrop), either C → ⊥ ⊬abs∅ C → D or
C → D, C → ⊥ ⊬abs∅ E. Clearly, C → ⊥ ⊢abs∅ C → D. Hence C → D, C →
⊥ ⊬abs∅ E. By (antiLoad), C → D ⊬abs∅ E.

Corollary 6.5. For any atomic c, d and e: c → d ⊬abs∅ e.

Proof. By Theorem 6.4 since c → ⊥ ⊬abs∅ e, given that < c → ⊥, e > is a basic
pair.

Analytic tableaux can be seen as the result of an analysis searching to establish
⊬[abs]∅ C for a sentence C. In case all different paths in the tableau are shown to
be impossible, i.e., closed, then it is impossible to establish ⊬[abs]∅ C. That is, the
supposition that ⊬[abs]∅ C holds is absurd. Given that Γ ⊢[abs]∅ C or Γ ⊬[abs]∅ C
for LMp [LJp] according to Theorem 5.9, then ⊢[abs]∅ C. Otherwise, if at least one
path is finished and open, then ⊢[abs]∅ C is unprovable.

In order to improve visual accuracy, from now on we avoid the superscript for
bases. The reader can adequately fulfill it in the right places.

The searching procedure for antisequents to be presented below is inspired in
STRATEGY. In STRATEGY, any attempt at a development considers the sentence
picked as if it were the last occurrence introduced in a putative proof of the sequent,
this guiding heuristics keeps orienting the search. Adapted for the context, it is going
to be assumed that the occurrence chosen for development in the given antisequent
could not be the last sentence occurrence introduced in a proof.16 Most of the cases
are immediately analyzed. Exceptions are the left implication and right disjunction
cases, which oblige us to consider other alternatives when picking an occurrence.

The search procedure takes the complementary action of STRATEGY in each
situation. As before, if all antisequents in a path were analyzed, then the path is
finished. An antisequent of form Γ, C ⊬ C [or form Γ, ⊥ ⊬ C], that is the negation
of an initial sequent, in the empty basis of LMp [LJp], is considered immediately
analyzed.17 If a path contains such kind of sequents, then it is closed, otherwise it
is open. Any path in which such an antisequent occurs contains an impossibility.
Any antisequent that is a basic pair is considered immediately analyzed. An open
finished path indicates how the antisequent under examination is obtainable from
antisequents for basic pairs in the empty basis.

Definition 6.6. ANTISTRATEGY – Take any non marked occurrence of any non
fully analyzed antisequent and develop it in all open paths going through the antise-
quent according to the following rules:

16If it were, then the antisequent would not be correct.
17In order to spare search steps, a path containing such a sequent can be considered finished

even if not all antisequents in the path were analyzed.
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Left Rules Right rules

Γ, C ∧ D ⊬ E Γ ⊬ C ∧ D

L1
...

... R1
↓ ↓ ↘

Γ∗, C, D ⊬ E∗ Γ∗ ⊬ C Γ∗ ⊬ D

Γ, C ∨ D ⊬ E Γ ⊬ C ∨ D✓

L2
...

... R2∗
↓ ↘ ↓

Γ∗, C ⊬ E∗ Γ∗, D ⊬ E∗ Γ∗ ⊬ C
Γ∗ ⊬ D

Γ, C ⊃ D✓ ⊬ E Γ ⊬ C ⊃ D

L3∗ ...
... R3

↓ ↘ ↓
Γ∗, D ⊬ E∗ Γ ⊬ C Γ∗, C ⊬ D

When the analysis is done through R2∗ or L3∗, the occurrence picked receives a
mark "✓", but the sequent developed is not regarded as (fully) analyzed, unless all
of its left implications and its right disjunction occurrences (in case there is one)
become all marked. When the analysis is made through the other rules, the sequent
is always considered fully analyzed. All new sequents written down contain only
unmarked occurrences. The procedure goes on until all paths are finished. END of
STRATEGY

Now, consider example 6.7, for atomic sentences c and d:18

18From now on we omit the superscript for the empty basis in order to improve visual accuracy.
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1.c → d✓ ⊬ ¬c ∨ d✓

↓ R2∗(1)
2.c → d ⊬ ¬c
3.c → d ⊬ d

↓ R3(2)
4.c → d✓, c ⊬ ⊥

↙ ↘ L3∗(4)
5.d, c ⊬ ⊥ 6.c ⊬ c ⊗

↓ ↘ L3∗(1)
7.d ⊬ ¬c ∨ d 8. ⊬ c

↓ R2∗(7)
9.d ⊬ ¬c

10.d ⊬ d ⊗

Example 6.7.

The antisequent 1 has been analyzed into two separated steps, one is given in antise-
quents 2 and 3, the other in antisequents 7 and 8. Each development picks one
occurrence which becomes then marked. The antisequent becomes completely an-
alyzed in the second development. Antisequent 3 does not require further analysis
given what is stated in Corollary 6.5. Antisequents 6 and 10 close the path (no need
to develop antisequent 9). There is only one open path finishing in antisequent 8.
Thus, the starting antisequent holds; that is, it is not refutable. The development
of antisequent 4 shows that c → d could not be introduced for proving c → d, c ⊢ ⊥.
It further means that the first development of antisequent 1 cannot be proved, oth-
erwise the paths starting in such development would all be closed, which they are
not. Then the procedure goes back to antisequent 1 in order to effect the second
development.

Theorem 6.8. ANTISTRATEGY is finite.

Proof. In the worst scenario, each new antisequent written down after a development
is of a lower degree. The degree of an antisequent is the sum of the degrees of
all occurrences in the antisequent, assuming that the absurd constant is atomic
and has degree 0. With two exceptions, the antisequent developed is considered
analyzed. In antisequents developed through L3∗ or R2∗ at least one formerly non-
marked formula becomes marked and, since the number of complex occurrences in
the antisequent is finite, after a finite number of developments it has to become
analyzed, either because the rule applied leaves it fully analyzed or because all
complex sentences are marked. Hence, the process cannot go on indefinitely.
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Now, if an antisequent holds, ANTISTRATEGY returns at least one non-closed
finished path.

Consider example 6.9, for the atomic sentence c:

1. ⊬ c ∨ ¬c✓

↓ R2 ∗ (1)
2. ⊬ c

3. ⊬ ¬c
↓ R3(3)

4.c ⊬ ⊥

Example 6.9.

That is, both, c and ¬c for atomic c, do not hold in the empty basis, and this
explains why the third middle excluded is not valid in LJp even if this logic is
decidable. Actually, it is not even necessary to appeal to decidability in order to see
that the search has returned a counter-model. c ⊬abs∅ ⊥ is a basic or ground fact in
the empty basis. This is going to be examined in the next section.19

Now, in order to realize that ANTISTRATEGY generates closed search trees
only for provable sequents of hLJp [hLMp] it is enough to realize that the rules in
ANTISTRATEGY are complementary to the rules of STRATEGY.

Theorem 6.10. STRATEGY contains an open finished branch for Γ ⊢ C in hLJp
[hLMp] if, and only if, all finished paths obtained through ANTISTRATEGY for
Γ ⊬ C are closed.

Proof. From left to right. Suppose STRATEGY contains an open finished branch
for Γ ⊢ C in hLJp [hLMp]. By Theorem 4.6, Γ ⊢ C is provable in hLJp [hLMp].
The ANTISTRATEGY tree for Γ ⊬ C is finite according to Theorem 6.8, all its
paths are finished. Suppose there is a non closed path for Γ ⊬ C obtained through
ANTISTRATEGY. Then, no antisequent in this path is of the form Γ, D ⊬ D or
also of form Γ, ⊥ ⊬ D in the case of hLJp. Since Γ ⊢ C is provable, then Γ ⊬ C is
refutable, because hLJp [hLMp] is consistent according to Corollary 2.10. And every

19When asking if ⊢ C ∨ ¬C holds, this has to be read as: it is the case that, for any C,
⊢ C ∨ ¬C. And, if the instance obtained by substituting an atomic sentence in place of C were not
a constructive tautology, then the universal closure cannot be a constructive tautology at all, which
explains why the example we are considering uses an atomic c whatever. From Kripke semantics
perspective, the sentence does not hold in general if there is a world α in a model in which α ⊭ c∨¬c.
Then, according to the disjunction clause in this semantics, α ⊭ c and α ⊭ ¬c. But, in order to have
α ⊭ ¬c there must be another world β different from α, but accessible from α, such that β ⊨ c and
β ⊭ ⊥.
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sequent in the path has also to be refutable according to the barred rules L1 to R3,
since they are equivalences. Hence, there is at least one atomic refutable antisequent
in the path. It is atomic because otherwise the path would not be finished. As it
has to be refutable, it is of the form γ, e ⊬ e or also of form γ, ⊥ ⊬ e in case of
hLJp. However, this contradicts the assumption that there was no antisequent of
forms Γ, D ⊬ D or also of form Γ, ⊥ ⊬ D. Now, from right to left. Suppose all
finished paths for Γ ⊬ C are closed. It means that each one contains a sequent of
the form Γ, C ⊬ C in the case of a search in hLMp or also of form Γ, ⊥ ⊬ C in the
case of a search in hLJp. Since the set of alternative paths constitutes the whole set
of alternative developments for Γ ⊬ C, and since each sequent in a path is implied
by Γ ⊬ C, then Γ ⊬ C is absurd, refutable. According to Theorem 5.9, Γ ⊢ C. By
Theorem 4.6 again, there is an open finished path for Γ ⊢ C.

As pointed out in the introduction, an antisequent system for IPL had already
been proposed in [8]. It is called CRIP . As we saw above, there are two cases
where the rules for introducing logical constants in antisequents involve a secnd order
quantification: implication in the left side and disjunction in the right side. CRIP
uses sequents with multiple conclusions for dealing with the case of disjunction in
the right side. It is the following (we use their original numbers):

(6) Γ ⊬ C, D, ∆ ⇒ Γ ⊬ C ∨ D, ∆

Multiple conclusions at the right render the calculus and the search procedure more
complex. For dealing with left implication, the authors use now four distinct rules:

(7) Γ, p, B ⊬ ∆ ⇒ Γ, p, p → B ⊬ ∆

(8) Γ, C → B, D → B ⊬ ∆ ⇒ Γ, (C ∨ D) → B ⊬ ∆

(9) Γ, C → (D → B) ⊬ ∆ ⇒ Γ, (C ∧ D) → B ⊬ ∆

(10) Γ, B ⊬ ∆ ⇒ Γ, (C → D) → B ⊬ ∆.

In a proof search, those four CRIP rules above provide an analysis that simplifies
the implication in the left. However, it is not guaranteed that the analysis can go
further when the antecedent is atomic. The problem is then managed in the axiom
of this system in Figure 2 of [8, p. 227]. Naturally, CRIP ’s axiom constitutes the
starting point of a derivation for any antisequent. This axiom has offered us a good
clue for the formulation of Hypo bases, in particular the notion of a basic pair. The
antisequents for basic pairs in Hypo are just a little bit simpler than their axiom, in
view of Theorem 6.4 and Corollary 6.5.
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CRIP ′s antisequents admitt in the right side sets of sentences. Thus, for dealing
with implication in the right side, the authors are obliged to offer the complex rule
(11) in Figure 2 of [8, p. 227]. When the right side allows only single conclusions,
the rule for right introduction of ANTISTRATEGY –Γ, C ⊬ D ⇒ Γ ⊬ C → D–is
simpler.

Now, two conclusions are to be extracted from what was just said, concerning
the search in ANTISTRATEGY. Maybe it could be simplified in view of those four
CRIP rules for left implication. In contrast, we achieved some simplification and
systematization with rules L3/L3∗ and R3 with respect to CRIP ′s axiom and rule
(11).

6.2 How to obtain Hypo models and counter-models?

Models for sequents and for antisequents can be extracted, respectively, from trees
obtained by STRATEGY and ANTISTRATEGY. A model for an antisequent is
obtained by collecting all basic pairs belonging to a fully analyzed non-closed path of
ANTI-STRATEGY. A model for an antisequent is a counter-model for the associated
sequent, like example 5.

Let us examine some cases of counter-model production in Hypo and in Kripke
semantics. In what follows, antisequents and sequents continue to be used even if
the subject matter is semantics.

Example 6.9 contains a model for the antisequent ⊬ c ∨ ¬c. The empty basis is
the model since: ⊬abs∅ c and c ⊬abs∅ ⊥. That is, the empty basis gives a counter-
model for the validity of c ∨ ¬c. ANTISTRATEGY generates a sequence of sets of
hypotheses that is similar to a counter-model for c ∨ ¬c in Kripke semantics.

Examining ANTISTRATEGY from the perspective of possible worlds, the search
in example 5 starts by considering what happens in “worlds” of hypotheses. An-
tisequent 1 is being considered in the world α of no hypotheses. Next, because of
R2∗, antisequents 2 and 3 must also be the case in α. The clause for implication
in Kripke semantics requires that all further accessible worlds be such that, if the
antecedent is forced on it, then the consequent has also to be forced. Then, since
negation is defined via implication, this definition has to be employed for the case of
antisequent 3. Hypo semantics also requires the consequent to hold in every world
of hypotheses in which the antecedent holds. Worlds in Hypo are just finite sets of
hypotheses. Translating the example 5 into the language of worlds, antisequent 4 is
the case in a world β where the atomic hypothesis c is forced but the absurd is not,
that is, in any world where c is forced but absurd is not forced.

In Kripke semantics no world forces the absurd, all of them are ab initio con-
sistent worlds. In Hypo semantics, sets of hypotheses can be inconsistent. In each
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world of a Kripke model either an atomic sentence is forced or it is not. In each
"world of hypotheses" in Hypo either a sentence is derivable from a set of hypothe-
ses or it is not, according to Corollary 4.7 if the basis is decidable. Bases in Hypo
semantics can be undecidable. The empty basis is decidable.

A major difference between Hypo and Kripke semantics concerns disjunction.
The following example illustrates it. We put side by side a Hypo structure in the
empty basis, based on ANTISTRATEGY, with the corresponding Kripke counter-
model. What happens when looking for counter-models for (c → (d ∨ e)) → ((c →
d) ∨ (c → e))?

Examples 6.11 and 6.12 illustrates what happens in a Kripke and a Hypo model
respectively.

Kripke model

9.1.δ ⊨ d ∨ e 9.2.γ ⊨ d ∨ e
8.1.δ ⊨ d 8.2.γ ⊭ d
7.1.δ ⊭ e 7.2.γ ⊨ e
6.1.δ ⊨ c 6.2.γ ⊨ c

↖ ↗
5.β ⊭ c → d
4.β ⊭ c → e

3.β ⊭ (c → d) ∨ (c → e)
2.β ⊨ c → (d ∨ e)

↑
1.α ⊭ (c → (d ∨ e)) → ((c → d) ∨ (c → e))

Example 6.11.

Example 6.12. See example at the end of the paper.

Observe that the formula is not intuitionistically valid.20 Does 1 hold in the no
hypotheses set of the Hypo model (Hm) in the empty basis? Does 1 hold in an α
world of a Kripke model (Km)? It holds in the empty set of hypotheses of Hm only
if in a successor set of hypotheses 3 holds. In Km, 1 holds in α if, on the supposition
that 2 holds in β, 3 is the case in β. In Hm the sequent corresponding to step 2 of
Km c → (d∨e) ⊢ c → (d∨e) trivially holds. Now according to R2∗, first alternative,
3 holds in Hm only if both 4 and 5 hold in Hm, which corresponds to world β in

20Same numbers indicate similar steps in each model of example 6.
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Km. In Km, 4 requires us to look for a world δ where 7.1 is the case when 6.1
holds. And 5 requires a world γ where 8.2 is the case when 6.2 holds. Notice that
in 6.1 and 6.2 the atomic sentence being considered is the same! Disjunction clauses
in Kripke and Hypo semantics are different. Kripke semantics requires that at least
one of the disjuncts hold in the same world in which the disjunction holds. This is
not the case in Hypo, just consider that 7 and 8 hold in Hm. Observe that 8.1 and
7.2 are required in Km, otherwise 2 would not be the case.

The construction of a Kripke counter-model stops at δ and γ. Hypo needs
some few worlds more, but none of the steps 2, 6.1, 6.2 or 9 is required.21 A
world, in Kripke semantics, is defined by a special kind of “valuation” for atomic
sentences: either it is forced or it is not forced in that world, tertium non datur.
As a consequence, because of the semantical clauses, any sentence is either forced
or not forced. Hence, worlds δ and γ force hypotheses c and c → (d ∨ e). Kripke
strategy cannot be used in general for obtaining a Hypo counter-model. Any Kripke
“valuation” forcing these two hypotheses should force c and force either d or e.22

This is not the case in Hypo model in the example and it is not the case of Hypo in
general.

Developing ANTISTRATEGY for the antisequent ⊬ (c → (d ∨ e)) → ((c →
d) ∨ (c → e)), we discovered that it holds in a basis where the following antisequents
for basic pairs hold: 10 :⊬ c; 16 : c, d ⊬ e; 17 : c, e ⊬ d. But, of course, those three
antisequents hold in the empty basis. Therefore, ANTISTRATEGY gives the empty
basis as a counter-model for the sequent ⊢ (c → (d ∨ e)) → ((c → d) ∨ (c → e)).
That is, the sentence is not logically valid in intuitionistic or minimal logic.

[8] obtain counter-models similar to Kripke counter-mo-dels by using the antise-
quent system CRIP . They were close to discover a new semantics for intuitionistic
logic, but missed it by a few steps. The idea of taking worlds as finite sets of hy-
potheses is already in their work. However, since their antisequents have multiple
conclusions, the corresponding Kripke models became complex trees, one for each
conclusion in the multiset.

The previous example was of an admissible non-valid formula in intuitionistic
logic. Let’s consider now a non-valid and non-admissible formula in example 6.13:

Example 6.13.

According to ANTISTRATEGY, any basis in which c ⊬ d holds gives a counter-
example to Peirce axiom. This is the case again of the empty basis. Also, in this
basis, for the empty set of hypotheses: ⊬ d. Thus, d would only be derived if some

21Thirteen lines in Km against eleven in Hs.
22The Kripke counter-model is successful only if no contradiction arises in the forcing.
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Hypo model Kripke model

7.c ⊬ d from 4 7.γ ⊭ d from 5
6.γ ⊨ c from 5

↑
5.β ⊭ c → d from 2 and 3

3.(c → d) → d ⊬ d from 1 3.β ⊭ d from 1
2.β ⊨ (c → d) → d from 1

↖ ↗ ↑
1. ⊬ ((c → d) → d) → d 1.α ⊭ ((c → d) → d) → d

4. ⊬ c → d from 3

extra hypothesis were called in. However, (c → d) → d ⊬ d since ⊬ c → d, given
that c ⊬ d.

Summing up, Hypo counter-models for a sequent are obtained by using ANTI-
STRATEGY over the corresponding antisequent. The models involve a basis, usually
the empty basis, and a structure of worlds of hypotheses. These structures are not
identical to Kripke models, although they have some similarities. Models for a
sequent can be directly read from the tree developed by STRATEGY.

The major divergences among Kripke and Hypo semantics are in the implication
and the disjunction clauses. We proved that Hypo clauses for disjunction and im-
plication are metaproperties of LJp. Kripke clauses for disjunction and implication
are not or, at least, its adequacy is proved by completness using classical princi-
ples. This is an important reason, among others, for asserting that Hypo is a truly
proof-theoretical semantics.

7 Conclusion
In the above we presented proof-search for sequents and refutation-search for antise-
quents in intuitionistic logic and minimal logic. They were based on a handy sequent
system for both logics. This system has neither contraction nor thinning rules.
Additionally, we proved that rule (MP ) is eliminable from proofs in this system–
like (cut) eliminability–what makes the proof-search direct from sentences to sub-
sentences. The proof showing the (MP ) elimination property is remarkably concise.

The rules of the handy system, with two exceptions, correspond to the synthetic
reading of the clauses in Hypo semantics. The clauses of the semantics have been
presented and proved as metaproperties of sequents in Gentzen’s LJp [LMp]. The
analytical readings of the clauses are the basis for searching a proof of sequents in
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the handy system via STRATEGY. The contraposition of the clauses is the basis
on which refutation of antisequents via ANTISTRATEGY is built.

Finally, Hypo bases and models are introduced and briefly discussed. Models are
directly read from STRATEGY. On the other hand, counter-models are obtained
by using ANTISTRATEGY. The structure of sets of hypotheses in a Hypo counter-
model has been compared with Kripke counter-models. There are some similarities
among them, but they are not equal. A counter-model for the provability of a
sequent in Hypo is given by the empty basis model. Above we gave reasons why
we claim Hypo semantics to be a proof-theoretical semantics, and different from
Kripke semantics. We also noticed that once the search procedure for antisequents
is defined there is no need of characterizing a system for antisequents like [8] CRIP.

References
[1] Evert Beth. The foundations of mathematics - a study in the philosophy of science.

North-Holland, Amsterdam, 1959.
[2] Kosta Došen. Logical constants: an essay in proof theory. PhD thesis, University of

Oxford, 1980.
[3] Kosta Došen. Inferential semantics. In Thomas Piecha and Peter Schroeder-Heister,

editors, Advances in proof-theoretic semantics, volume 43 of Trends in Logic, pages
147–162. Springer, Dordrecht, 2016.

[4] Melvin Fitting. Intuitionistic logic model theory and forcing. North-Holland, Amster-
dam, 1969.

[5] Gerhard Gentzen. Investigations into logical deduction. In M.Szabo, editor, The col-
lected papers of Gerhard Gentzen, pages 68–131. North-Holland, 1969.

[6] Arendt Heyting. Intuitionism: an introduction. In L.Brouwer et alli, editor, Studies in
logic and the foundations of mathematics. North-Holland, Amsterdam, 1956.

[7] Saul Kripke. Semantical analysis of intuitionistic logic i. In J.N. Crossley and M.A.E.
Dummett, editors, Formal systems and recursive functions, volume 40 of Studies in
logic and the foundations of mathematics, pages 92–130. Elsevier, 1965.

[8] Luis Pinto and Roy Dyckhoff. Loop-free construction of counter-models in intuition-
istic propositional logic. In M Behara et alli, editor, Conference A: mathematics and
theoretical physics I, pages 225–231. De Gruyter, 1995.

[9] Jefferson Santos, Bruno Vieira, and Edward Haeusler. A unified procedure for prov-
ability and counter-model generation in minimal implicational logic. Electronic notes
in theoretical computer science, 324:165–179, 2016.

[10] Wagner de Campos Sanz. Hypo: a simple constructive semantics for intuitionistic sen-
tential logic, soundness and completeness. In Enrique Alonzo et alli, editor, Aventuras
en el mundo de la lógica: ensayos en honor a Maria Manzano, pages 377–410. College,
London, 2019.

569



Sanz, W.

[11] Wagner de Campos Sanz. Hypo: a simple constructive semantics for intuitionistic
sentential logic; soundness and completeness. In Proof-theoretic semantics: assessment
and future perspectives. Proceedings of the third Tübingen conference on proof-theoretic
semantics, 27–30 March 2019, pages 153–178, 2019.

[12] Peter Schroeder-Heister. Proof-theoretical semantics. In Edward Zalta et alli, editor,
Stanford encyclopedia of philosophy. Metaphysics research lab center for the study of
language and information stanford university, 2012.

[13] Raymond Smullyan. First order logic. Dover, New York, 1995.

570



Hypo models and counter-models for IPL and MPL

Ex
am

pl
e

6.
12

H
yp

o
m

od
el

(o
ve

r
th

e
em

pt
y

ba
sis

)

8.
c,

c
→

(d
∨

e)
⊬

d
R

3/
5

7.
c,

c
→

(d
∨

e)
⊬

e
R

3/
4

↑
15

.c
,d

∨
e
⊬

d
L

3∗
/
8

5.
c

→
(d

∨
e)

⊬
c

→
d

R
2∗

/3
17

.c
,e

⊬
d

L
2/

15
16

.c
,d

⊬
e

L
2/

14
14

.c
,d

∨
e
⊬

e
L

3∗
/7

4.
c

→
(d

∨
e)

⊬
c

→
e

R
2∗

/3
3.

c
→

(d
∨

e)
⊬

(c
→

d
)∨

(c
→

e)
R

3/
1

↖
↑

↑
↗

1.
⊬

(c
→

(d
∨

e)
)→

((
c

→
d
)∨

(c
→

e)
)

10
.
⊬

c
L

3∗
/3

Received 16 January 2020571





A note on Tarski’s remarks about the
non-admissibility of a general theory of

semantics

Garibaldi Sarmento
Departamento de Filosofia, Universidade Federal da Paraiba

garibaldi.sarmento@academico.ufpb.br

Abstract

Taking Tarski’s semantic theory as a starting point, we can formulate a hy-
pothesis about the construction of a generalized semantics theory for recursive
arithmetic, so that it is possible to prove Tarski’s conjecture (i.e., there is no
general semantics for all transfinite languages for recursive arithmetic).

Key-words: general semantics, recursive arithmetic, recursive ω-rule.

1 Introduction
Leibniz and other philosophers had cogitated on what would be the strict construc-
tion for the universal language of mathematics, a mathesis universalis, or a uniquely
logical and mathematical language.

In the lecture “Remarks before the Princeton Bicentennial Conference on Prob-
lems in Mathematics” Gödel observes that: “Tarski has stressed in his lecture (and I
think justly) the great importance of the concept of general recursiveness (or Turing’s
computability). It seems to me that this importance is largely due to the fact that
with this concept one has for the first time succeeded in giving an absolute definition
of an interesting epistemological notion, i.e., one not depending on the formalism
chosen.” [My italics] 1. Likewise, I note that Tarski’s metatheorem (see Theorem
2.3.1)—by expressing that ‘the notion of arithmetical truth is not arithmetically
definable in its own consistent arithmetical language’—also has an absolute charac-
ter in the sense of Gödel. Since the argument in Tarski’s metatheorem applies to

1See p. 84 in [1].
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any formal language suitable for arithmetic. This theorem can be employed as an
epistemological principle for demarcating the construction of a universal language
for mathematics.

In this essay I take into account some remarks of Tarski [7] concerning the non-
admissibility of a generalized semantics.

According to Tarski [7]:

In particular it would be incorrect to suppose that the relativization
of the concept of truth— ... —would open the way to some general
theory of this concept which would embrace all possible or at least all
formalized languages. ... The language of the general theory of truth
would then contain a contradiction for exactly the same reason as does
colloquial language. [My italics].

To explain this statement, it will be helpful to consider the main problem below,
which we shall call Tarski’s Conjecture (T.C.).

Accordingly with Tarski’s definition [see [7]] the concept of truth is relative to
a given formal language L (the concept of ‘truth-in-L’) in which L is constant. A
general semantics metatheory consists of a theory for which the formal language L
(with respect to the ‘trans-linguistic’ concept of ‘truth-in-L’) is variable, by ranging
through the formalized languages of a class of linguistic structures. It is arguable
whether, according to Tarski’s theory, a generalized semantics theory is admissible
or not.

A general semantics is admissible if, and only if, the class of (formalized) lan-
guages CL does not contain all possible languages with respect to this general theory.

Now we can formulate the following (semantic-)metamathematical problem.

Main problem. Would a general semantics metatheory for RA be admissible?
More precisely, a general theory in which it is allowable to express and prove all
true arithmetic sentences in a transfinite higher system, so that the concept of truth
for such a theory is definable in a transfinite language for recursive arithmetic?

Suppose that there exists a transfinite sequence of transfinite sequences of ax-
iomatic systems for recursive arithmetic expressed of the following form:

〈
A(i)

j

〉
i,j

=
⋃

i≤ε0

⋃

j<τ

A(i)
j ,

with τ ≤ ωωω and ε0 = lim
n→∞ ωn, by defining: ω0 = ω and ωn+1 = ωωn .

574



A note on Tarski’s remarks

In
〈
A(i)

j
〉

i,j
the subscript symbol i denotes the order of the language L(i) for the

axiomatic system Aj, with j < τ , such that:

1. A(i)
0 = RAi, i.e., recursive arithmetic of ith-order;

2. A(i)
k+1 consists of A(i)

k added to all sentences PrA(i)
k

(φ) → φ where PrA(i)
k

(φ) de-

notes an (ith-order) arithmetical sentence expressing that φ is provable in A(i)
k ;

3. A(i)
k =

⋃

j<k
A(i)

j , if k is a limit ordinal.

Now we can state the following hypothesis for a general metatheory of (ϑ-order)
recursive arithmetic:

Hypothesis H : let A be the general metatheory for RA such that:

A :=
〈
A(i)

j

〉
i,j

⋃
{ generalized version of Tarski’s ω − rule }2

representable in the language of transfinite order L(ε0).

Admitting this hypothesis, it is possible to show that, in fact, there is not a
unique maximal language for a transfinite higher order system containing all proofs
for every true (ϑ-order) arithmetic sentence.

We can symbolize the sketch of the argument for that solution as follows: if
H : A + Φ, where Φ stands for the principle of transfinite induction in ϑth-order
recursive arithmetic RA(ϑ) (ϑ ≤ ε0), then H =⇒ T. C. via Theorem 2.3.1.

The structure of the argumentation is given as follows.
Section 2 deals with the main results that constitute the metamathematical basis

of the statement H.
Section 3 contains the solution to the main problem, i.e., that H implies Tarski’s

Conjecture.
Section 4 contains: a brief discussion of the philosophical consequences of Tarski’s

Conjecture for the foundations of arithmetic and a (possible) non-immediate meta-
mathematical consequence with respect to Hilbert’s Program.

2See Definition 3.1.1 of the generalized version of Tarski’s ω-rule.
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2 Metamathematical results for establishing hypothesis
H

In this section we consider some remarks and semantic assumptions for defining a
general truth theory for recursive arithmetic in a transfinite hierarchy of higher-order
languages.

The Hypothesis H is implied by the following results:

1. Gentzen’s proof [3] of the consistency of first-order recursive arithmetic RA1

[via transfinite induction];

2. theorem of Shoenfield-Feferman [2]: all true sentences of elementary num-
ber theory are provable in the recursive progression Ak based on the reflec-
tion principle: Ak+1 consists of Ak together with all sentences of the form
(∀x)PrAk(ϕ(nmx)) → (∀x)ϕ(x); in which PrAk(ϕ(nmx)) expresses that the re-
sult of substituting the (x + 1)-st numeral in ϕ is provable in Ak [via restricted
(or recursive) ω-rule];

3. Tarski’s undefinability theorem for formalized languages of infinite order.

2.1 Remarks about Gentzen’s consistency proof of arithmetic
According to Mostowski [6]:

An adequate formulation of the principle of transfinite induction in
its full generality is possible only in set theory. Gentzen ... used a much
more restricted principle which can be expressed in purely arithmetical
terms. His principle has the form

(∗) ∧y
[ ∧x

(
x ≺ y → A(x)

) → A(y)
] → ∧xA(x)

where A is any arithmetical formula and ≺ an arithmetically definable
well-ordering of integers. As compared with the set-theoretical transfi-
nite induction this principle is limited in a twofold way: First, we do
not speak of sets and we use the principle only to show that all integers
satisfy an arithmetical formula A. Secondly, we do not formulate the
principle for any well-ordering (which would require a certain amount
of set theory) but only for the very special well-orderings that can be
defined arithmetically for integers.
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For many formulae defining well-orderings of integers the formulae (∗)
is provable in Peano’s arithmetic; hence by Gödel’s second undecidability
theorem such special cases of (∗) cannot yield the consistency proof.
Gentzen’s discovery was that there is a formula x ≺ y which defines a
well-ordering of integers of the type ε0 = ω + ωω + ωωω + . . . and which
has the property that the induction principle (∗) for this well-ordering
allows us to prove the consistency of arithmetic. It follows that for such
a well-ordering ≺ the principle (∗) is not provable in arithmetic.

... The general idea [of Gentzen’s proof] is that to each formal proof
there is defined a transfinite number α ≺ ε0 called the height of the proof;
it is shown that if this proof would have as its end formula 0 ̸= 0, then so
would also a proof with a lesser height. Hence the existence of a formal
inconsistency would violate the induction principle. [My italics]3.

As observed in Mostowski’s excerpt Gentzen’s theory obtained by adding (quan-
tifier-free) transfinite induction principle (∗) to (first-order) primitive recursive arith-
metic RA1 demonstrates the consistency of (first-order) Peano arithmetic (PA1).
Nonetheless, RA1 does not contain PA1 because of all instances of induction schema
are axioms of PA1. By another hand, Gentzen’s theory is not contained in PA1,
since by Gödel’s [4] incompleteness result the well-ordering of integers of the type
ε0, i.e., the limit of the sequence: ω, ωω, ωωω

, . . ., is not provable in PA1.
It should be observed that the formal system A (see hypothesis H above) con-

trasts sharply with Gentzen’s theory, for we apply the set-theoretical transfinite
induction for ordinal numbers and for any well-ordering via definability in terms of
ordinals in a higher order system.

2.2 On Feferman’s result
Suppose we firstly construct the axiom system Ak where k is an ordinal number
and such that the set of numbers of formulae deducible from Ak let be given by the
formula Dk.4 According to Feferman we can define a formula Γφ

k , for every φ(x) (with
one free variable) by expressing : if φ(n) is demonstrable from Ak for all symbols
(term-names) n of natural numbers, then (∀x)φ(x) is true.5.

Thus, it is possible to define the following transfinite recursive (countable) se-
quence of axiomatic systems:

3See pp.49-50.
4Feferman [2] shows how Dk is defined for an appropriate (countable) sequence of ordinals with

limit k ≤ ωωω

.
5Feferman [2] provides a recursive procedure for defining Γφ

k explicitly.
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Ak+1 = Ak

⋃
{Γφ

k : for all φ}

Aλ =
⋃

k<λ

Ak, if λ is a limit ordinal.

Now we can state Feferman’s Theorem.

Theorem 2.2.1. All true formulae in RA1 are deducible from
⋃

k<τ

Ak, with τ ≤ ωωω .

Proof: See [2].
Remark. Feferman [2] points out how this theorem can be extended to recursive

arithmetic formalized in higher order systems.

2.3 Tarski’s metatheorem
We conclude Section 2 by stating Tarski’s metatheorem for infinite order languages.
Let L be an infinite order language and let TL be a truth theory in L, i.e., TL is
constituted by metatheory axioms in addition to the every instance of convention T
[or schema T] for any sentence of L. It should be remarked that, by presupposing the
consistency of the metatheory, such extension is consistent [see Tarski [7], theorem
III, §5, pp. 256-257].

According to Tarski we can introduce in TL a rule of infinite induction [ω-rule].

Definition 2.3.1. Let be given φ1, . . . , φn, . . . a list of all sentences of L. If each
one of the following formulae F(φ1), . . . ,F(φn), . . . will be provable in TL, where F(ζ)
denotes a metalinguistic expression whatsoever, then

TL ⊢ ∧i∈ωF(φi).

Remark. Let T ω
L := TL ∪ {ω − rule}. Tarski has proved that T ω

L is categorical,
but the ConT ω

L
is an open problem.

According to Tarski:

The metalanguage then becomes a language of higher order and thus
one which is essentially richer in grammatical forms than the language
we are investigating . ... But now we are in a position to define the
concept of truth for any language of finite or infinite order, ... . It is
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impossible to give an adequate definition of truth for a language in which
the arithmetic of the natural numbers can be constructed, if the order of
the metalanguage in which the investigations are carried out does not
exceed the order of the language investigated. [My italics]6

We can establish the following version of Tarski’s metatheorem of truth undefin-
ability for infinite order languages:

Theorem 2.3.1. Tarski’s Metatheorem. Assuming the consistency of the meta-
theory, then the concept of truth in any infinite order language is undefinable from
primitive concepts of the metatheory.

Proof: See [7].

3 Hypothesis H implies Tarski’s Conjecture
Considering the transfinite hierarchy of formal systems A we have a correlative
transfinite hierarchy of concepts of truth definability according Tarski’s Theory.

3.1 Completeness of A
Now by replacing respectively the truth theory TL for A and the metalinguistic for-
mula F for the principle of transfinite induction Φ in ϑth-order recursive arithmetic
RA(ϑ), ϑ ≤ ε0, in which the following statement is true in L(ϑ+1):

Φ(φ(ϑ)) :
∧

k

( ∧

λ

(
λ ≺ k → φ(ϑ)(λ)

) → φ(ϑ)(k)
) →

∧

k

φ(ϑ)(k)

where λ ≺ k (λ, k ∈ On) is a schema of sentences which defines a well-ordering of
ordinal numbers into type ε0, and φ(ϑ) denotes a ϑth-order arithmetic formula
(quantifier-free) in RA(ϑ).

Therefore, we can state the following generalized version of Tarski’s ω-rule in A.

Definition 3.1.1. If Φ(φ(ϑ)
i ) is provable in A for any sentence φ

(ϑ)
i ∈ L(ϑ), then

A ⊢
∧

i∈ω

Φ(φ(ϑ)
i ) with i = 1, 2, . . .

6See [7], p.272.
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We shall call this generalized ω-rule of transfinite ϑ-rule, with ϑ ≤ ε0.

Remark. Note that for ϑ = 1, this transfinite ϑ-rule is reducible to Schoenfield’s
recursive 7ω-rule. Moreover, Φ(φ(1)

i ), i = 1, 2, . . ., is the first-order (transfinite) in-
duction principle.

Suppose that the principle of transfinite induction Φ is true in the language
L(ε0+1) (Φ is provable in RA(ε0)), then any proof for a RA(ϑ) theorem, ϑ ≤ ε0, in
the higher order language L(ϑ+1) is replaceable by a proof from such principle Φ via
transfinite ϑ-rule.

Hence, for such concept of demonstrability, we can formulate the following
‘strong’ completeness theorem.

Theorem 3.1.1. Completeness Metatheorem. Every arithmetic sentence φ(ϑ)

of RA(ϑ) (ϑ ≤ ε0) is decidable from Φ(φ(ϑ)) in the general metatheory A.

Proof. It follows of the definition of A and transfinite ϑ-rule applied to Φ(φ(ϑ)) for
any φ(ϑ) ∈ RA(ϑ) with ϑ ≤ ε0.

3.2 H =⇒ T. C.
Now we can establish the main result of this study. We are going to show how, by
means of Tarski’s semantic, may be proved that A has the necessary closure condition
by introducing the concept of truth for the transfinite language L(ϑ), ϑ ≤ ε0.

Suppose that ConA, i.e., the consistency of the metatheory A, let CA
L be defined

as follows:

CA
L :=

⋃

ϑ≤ε0

L(ϑ)

where CA
L denotes the class of all transfinite languages of ϑ-order for recursive arith-

metic (1 ≤ ϑ ≤ ε0) such that A is the general metatheory.
Thus, there exists (at least) a transfinite language L(ξ), with ε0 < ξ, in which the

concept of truth for A is definable and such that L(ξ) /∈ CA
L by Tarski’s metatheorem.

We can take, without lost of generality, ξ = ε0 + 1 because the semantic closure of

7Given an axiomatic set A we shall define the set Rs(ω)(A) as the least set of sentences Γ (closed
under logic deduction) in which if there exists a recursive function suppling a proof in Γ for each n
of every sentence φi(n), then it contains (∀x)φi(x).
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L(ε0) can not be contained in L(ε0), otherwise the truth of Φ(φ(ξ)) should be derived
in L(ε0), contradiction.8

4 Concluding Remarks
In this section we consider some philosophical consequences of Tarski’s Conjecture
in the framework of mathematical foundations. If we accept the following criterion
for a foundational approach:

(F) The foundation should be expressible like as a formal system;

then, the epistemological analysis of T. C. entails that there is a metamathematical
limit to formalize a basis for arithmetic that satisfies criterion F .

Thus, no formalized universal language could contain the whole theory of num-
bers and, therefore, the arithmetic presupposes a limitedness transfinite sequence of
higher order languages.

Nonetheless, if it is possible to translate system A into the axiomatic system
developed by Gödel [5] whose smallest model consists of primitive recursive func-
tionals with the strong schema of induction Φ(φ(ϑ)) [which has the same strength as
PA1], then the completeness metatheorem [see Theorem 3.1.1] allows to take into
account a new approach for a metamathematical program analogous to Hilbert’s
Program.
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