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Preface
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Germany
thimm@uni-koblenz.de

This Special Issue of IfCoLog Journal of Logics and their Applications is ded-
icated to a set of papers that, with other additional contributions, will be part
of the second volume of the Handbook of Formal Argumentation. The Handbook
represents a continuation of the community effort to produce a series of volumes
containing survey articles and personal views of recognized researchers of the field
to promote work in the area. As such, a central goal favored by this endeavor is to
help students and researchers interested in contributing to Formal Argumentation
to access both state-of-the-art and future research perspectives in the field. The aim
is to stimulate the work in the area by addressing progress in existing research lines,
describing open problems, and presenting emerging topics.

In preparation for this second volume, the authors met in Bertinoro, Italy, at
the Bertinoro international Center for informatics (BiCi) in a workshop to discuss
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Gabbay et al.

“Current Trends in Formal Argumentation”, November 4-6, 2019. During the work-
shop, the attendants presented drafts of the contents of the future chapters giving
rise to many suggestions and improvements in the coordination among the topics to
be covered, completing the process of envisioning the new volume in the series.

The papers have been reviewed and the final versions presented here have con-
sidered the suggestions made by the specialists. The reviewers’ feedback repre-
sented an essential contribution to improving the final versions, culminating with
the manuscripts submitted by the authors in the winter of 2020/21, and offered here.

The papers accepted can be broadly thought of as part of the general area of
formal argumentation, being related to extensions to abstract argumentation, dy-
namics and dialogues, and meta investigations. Next, we provide summaries of the
papers that are part of this special issue.

In Higher-Order Interactions (Bipolar or not) in Abstract Argumentation: a State
of the Art, C. Cayrol, A. Cohen, M-C. Lagasquie-Schiex, start recalling the essential
elements of abstract argumentation, then introducing higher-order attacks and sum-
marizing five existing approaches for these attacks. They continue with a brief in-
troduction to traditional bipolar argumentation frameworks and their three variants
related to the three possible types of support. Using the different frameworks pre-
sented, the authors introduce extended frameworks using higher-order interactions
and analyze some contributions in structured argumentation. The computational
issues and applications are also described and analyzed, and a comparative synthesis
of all the presented approaches is included.

The article Joint Attacks and Accrual in Argumentation Frameworks, A. Bikakis,
A. Cohen, W. Dvořák, G. Flouris, and S. Parsons, considers the case when multiple
arguments jointly attack another, introduced as “joint attacks". This possibility of
analyzing joint attacks represents an extension of abstract argumentation with added
expressive power. Various works considering joint attacks are analyzed from various
perspectives, which include abstract and structured frameworks. Also, guidelines
for future research considering current research on the subject are presented.

In Collective Acceptability in Abstract Argumentation, D. Baumeister, D. Neuge-
bauer, J. Rothe explore and survey the various approaches to collective acceptability
in multi-agent argumentation, which is related to the problem of collective decision-
making in the field of computational social choice that collects contributions from
social choice theory, theoretical computer science, and artificial intelligence. Also,
the paper describes practical methods for structural aggregation of argumentation
frameworks and presents their properties.

Value-based Argumentation, by K. Atkinson and T. Bench-Capon, presents an
extension of abstract argumentation known as Value-based Argumentation Frame-
work (VAF), its motivations, a formal description, and its properties. The notion of
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Audience-Specific VAF that incorporates to the framework the focus in an audience
is presented. Also, an argumentation scheme and its associated critical questions and
some of the applications of value-based argumentation that have been implemented
are included.

In Weighted Argumentation, S. Bistarelli and F. Santini introduce Weighted Ar-
gumentation Frameworks (WAFs), summarizing different critical points of their for-
malization; developing weight-related concepts such as relaxation of attacks, new
semantics based on weighted acceptability and relaxation, and real-world applica-
tions related to information coming from social networks and reviewing platforms.

Enforcement in Formal Argumentation by R. Baumann, S. Doutre, J-G. Mailly,
and J. P. Wallner, offers an overview of the notion of enforcement in abstract ar-
gumentation. The authors center their presentation on extension enforcement, its
general characterization, and how it can be algorithmically achieved. The premise
assumed is that the various changes applied to the structure of the argumentation
framework, and to the semantics associated, should be minimal. The complexity of
enforcement, and associated algorithms, and a discussion on the feasibility of this
approach are presented.

In Strategic Argumentation, G. Governatori, M. Maher, F. Olivieri, study games
where players have perfect information of the moves players make; however, the
information on the possible moves (arguments) that other players have available is
incomplete. The authors look at games using logically structured arguments and
games using abstract arguments, showing that playing these games can be compu-
tationally hard. Also, they consider how corruption can affect the argumentation
games, and examine forms of countering it.

On the Incremental Computation of Semantics in Dynamic Argumentation by G.
Alfano, F. Parisi, S. Greco, G. I. Simari, and G. R. Simari, examines the efficiency
of recomputing extensions of abstract argumentation frameworks and warranted lit-
erals from defeasible knowledge bases in dynamic environments. An incremental
algorithmic solution is presented, making use of an initial extension of a framework
and an update with the aim of identifying a subset of the framework enough to
compute an extension after the update. The incremental technique for the compu-
tation of extensions of abstract argumentation frameworks is considered, exploring
how transferred concepts can be employed in the computation of warranted literals
in Defeasible Logic Programming.

In Logic-Based Approaches to Formal Argumentation, O. Arieli, A. Borg, J.
Heyninck, and C. Strasser, the logical foundations of Dung-style argumentation
frameworks are presented. Two perspectives on logic-based methods in the context
of argumentation theory are offered. First, a survey of logic-based instantiations
of argumentation frameworks is introduced, along with their properties and rela-
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tions, and then logical methods for studying argumentation dynamics are reviewed.
The work is focused to Tarskian logics, based on propositional languages and the
associated constructive semantics or syntactic rule-based systems.

In closing, we would like to thank the authors of this special issue for their
contributions, the reviewers, and the colleagues for their valuable help in providing
comments, suggestions, critiques, and encouragement during the development. The
papers included have accomplished our two essential objectives by first providing
material for the researcher that is coming to the area of argumentation, and also
facilitating their acquisition of the elements to have a good view of the work at the
forefront of research, our second goal. Finally, we would like to give special thanks to
College Publications and, in particular, to Jane Spurr for her unwavering continued
support.

Dov M. Gabbay
Massimiliano Giacomin

Guillermo R. Simari
Matthias Thimm
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A State of the Art

Claudette Cayrol
IRIT, Université Toulouse 3
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Abstract

In Dung’s seminal work, an argumentation framework was defined by a set
of abstract arguments and a binary (and also abstract) relation between these
arguments, called attack relation and expressing conflicts between arguments.
Due to its simplicity and the power of its abstraction, this representation has
been intensively used by the community for over 25 years. Another advan-
tage of this approach is the ease with which we can extend the framework,
weighting arguments or attacks, using priorities or pre-orderings on the sets of
arguments, considering that these interactions are no longer binary ones over
the set of arguments (e.g. collective attacks), adding new kinds of interactions
(e.g. supports), and proposing that the targets of these interactions can also be
interactions themselves (i.e. higher-order interactions).

These last two points are the core of this chapter, in which we present a
survey of the proposed approaches existing around the notion of higher-order
interactions (attacks and supports) in an abstract argumentation framework.

Vol. 8 No. 6 2021
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a α b

β

c

Figure 1: An acyclic recursive framework: arguments are vertices in circles, attacks
are directed edges labelled by their name in squares

1 Introduction
Argumentation has become an essential paradigm for knowledge representation and,
especially, for reasoning from contradictory information [4; 51] and for formalizing
the exchange of arguments between agents in, e.g. , negotiation [6] (see [88] for a
general overview on the role of argumentation in AI). Formal abstract frameworks
have greatly eased the modelling and study of argumentation. For instance, a Dung’s
argumentation framework (AF) [51] consists of a collection of arguments interacting
with each other through an attack relation, enabling to determine “acceptable” sets
of arguments called extensions.

A natural generalization of Dung’s argumentation frameworks consists in allow-
ing higher-order attacks (also called recursive attacks in the relevant literature) that
target other attacks. Here is an example from the legal domain, borrowed from [8].

Example 1 ([8]). The lawyer says that the defendant did not have intention to
kill the victim (Argument b). The prosecutor says that the defendant threw a sharp
knife towards the victim (Argument a). So, there is an attack from a to b, denoted
by α. And the intention to kill should be inferred. Then, the lawyer says that the
defendant was in a habit of throwing the knife at his wife’s foot once drunk. This
latter argument (Argument c) is better considered as attacking the attack from a to b,
rather than argument a itself (so there is now another attack from c to α, denoted by
β). Now the prosecutor’s argumentation seems no longer sufficient for proving the
intention to kill. This example is represented as a recursive framework in Figure 1.

The idea of encompassing attacks to attacks in abstract argumentation frame-
works was first considered in [13] in the context of an extended framework handling
argument strengths and their propagation. Then, a semantics for recursive frame-
works was introduced in [69], motivated by the fact that attacks to attacks come
from preferences between conflicting arguments. More recently, recursive frame-
works have been studied in [11] under the name of AFRA (Argumentation Frame-
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work with Recursive Attacks), extending Modgil’s work by considering higher-order
attacks and not only second-order attacks (interactions can be either attacks between
arguments or attacks from an argument to another attack at any level). Then, the
AFRA has been extended in order to handle recursive support interactions together
with recursive attacks [44; 45]. Another variant of AFRA, called RAF has been
proposed in [29] and extended in turn to take into account for support interac-
tions. Similar works have proposed to handle recursive frameworks through the
definition of a Meta-Argumentation Framework. The idea goes back to [17; 19; 56;
57].

A common point of all these approaches for taking into account higher-order
attacks, and then higher-order supports, is the fact that they somehow change the
role that attacks play in Dung’s frameworks. Moreover, in addition to accounting
for the acceptance status of arguments in the framework, some of these works go
further by also extending the traditional notion of extension from Dung’s AFs to also
account for the acceptance of sets of interactions (either attacks or supports). In
this chapter many different approaches are presented, trying to highlight their key
points and establishing comparisons between them. In order to do this presentation,
some choices have been made.

The first one is to present each approach using the main definitions and results
given in its seminal paper. Sometimes it occurs that, for a same line of research,
many other variants are produced (for completing something that was missing, for
adapting it to a specific context, for correcting some undesired behaviours, etc). In
such cases, the presentation of each variant is not detailed. Indeed, in this survey,
we want to give the most synthetic point of view of each approach (to the extent we
can) in order to compare them.

The second choice is the presentation frame we follow for each approach with
higher-order interactions: first the definition of the framework (the basic compo-
nents), second its semantics (extension-based then labelling-based, when provided)
and finally some other elements that may exist, such as translation mechanisms;
moreover, some comparison points with the approaches presented previously in the
chapter will also be given. Of course, this presentation frame will be adjusted
since the degree of attention received from the scientific community varies depend-
ing on the approach (for instance, labelling-based semantics do not exist for some
approaches whereas for others there is no translation mechanism, and so on).

The third choice is the organization of the chapter itself.

• In Section 2, we first recall the cornerstone of the abstract argumentation, the
first-order abstract argumentation framework defined by Dung.

• Section 3 describes the main contributions on abstract argumentation frame-
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works using higher-order attacks. In this section the reader can find the EAF
proposed by Modgil, the HLAF discussed by Gabbay, the AFRA defined by
Baroni et al, the inductive approach introduced by Hanh et al and the RAF
presented by Cayrol et al. Section 3 ends with a succinct subsection summariz-
ing all the comparison points between the five approaches that are presented
throughout this section.

• Section 4 contains a succinct presentation of bipolar first-order argumentation
frameworks with three variants: the general support (Cayrol et al), the nec-
essary support (Nouioua et al) and the evidential support (Oren et al). A
short subsection is included at the end of this section, linking the first-order
argumentation frameworks presented there with other approaches: structured
argumentation systems that take supports into account; also, works using sup-
port relations for performing legal reasoning, for mining arguments and rela-
tions from debates, and for identifying arguments and their relations in an
empirical study.

• Then, the works taking into account higher-order attacks and supports are pre-
sented in Section 5. In this section, another kind of support (the deductive one)
is discussed since it is directly introduced as a component in an higher-order
framework by Boella et al; then, for the necessary support, two approaches are
presented: the ASAF and the RAFN respectively defined by Cohen et al and
Cayrol et al; and finally, we study the REBAF defined by Cayrol et al for the
evidential support. As in Section 3, Section 5 ends with a succinct subsection
that summarizes all the comparison points between the four approaches that
can be found throughout this section.

• Section 6 is dedicated to some computational issues and applications.

• A comparative synthesis is presented in Section 7 covering all the presented
approaches.

• Finally, we conclude in Section 8.

Figure 2 shows how the reader can explore the presentation of each type of
approach among the sections of the chapter.
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HOBAF (Section 5)

HOAF (Section 3) BAF (Section 4)

AF (Section 2)

Figure 2: Roadmap for this chapter (HO: Higher-Order, AF: argumentation frame-
work, BAF: bipolar AF)

2 Dung’s approach:
a first-order abstract argumentation framework

In this section, we will introduce the abstract argumentation framework proposed
in [51], the corner stone of most of the developments in abstract argumentation for
the past 25 years.

As defined in [51], an (abstract) argumentation framework is characterized by a
set of abstract entities called arguments and a conflict relation among them.

Definition 1 (Def. 2 in [51]). An argumentation framework (AF) is a pair 〈Ar , att〉,
where Ar is a set of arguments and att ⊆ Ar ×Ar .

For any two arguments a, b ∈ Ar , the meaning of (a, b) ∈ att is that a attacks b or,
equivalently, that a is an attacker of b. Also, an AF can be graphically represented
through a directed graph, where the nodes depict the arguments and the edges
correspond to the attack relation.

Dung then moves forward to formally characterizing the outcome of an AF ,
expressed in terms of sets of accepted arguments or extensions. As different outcomes
may be obtained under different criteria, referred to as semantics, Dung started by
proposing some basic semantic notions.

Definition 2 (Defs. 5 and 6 in [51]). Let 〈Ar , att〉 be an AF and S ⊆ Ar :

• S is conflict-free iff there are no arguments a, b ∈ S such that (a, b) ∈ att.

• An argument a ∈ Ar is acceptable w.r.t. S iff for each argument b ∈ Ar such
that (b, a) ∈ att, there exists an argument c ∈ S such that (c, b) ∈ att.

• S is admissible iff it is conflict-free and each argument in S is acceptable
w.r.t. S.

To illustrate these notions, let us consider the following example.
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Example 2. The AF 〈{a, b, c, d, e, f}, {(a, b), (b, a), (c, a), (e, d), (d, e), (e, f)}〉 can
be represented by the graph illustrated below:

c a b d e f

Some examples of conflict-free sets of this AF are ∅, {a}, {b}, {c}, {d}, {e},
{f}, {b, c}, {d, f} and {a, e}.

Regarding the notion of acceptability, for instance, argument c is acceptable
w.r.t. any set of arguments since it is unattacked. Also, arguments d and f are
acceptable w.r.t. the set {d}. Then, since the set {d, f} is conflict-free, it is also an
admissible set of AF . In contrast, the set {a} is not admissible because, even though
it is conflict-free and it defends a against the attack from b, it does not defend a
against the attack from c.

As part of the definition of acceptability semantics for AF , [51] introduced the
characteristic function, FAF : 2Ar 7→ 2Ar , where FAF (S) = {a | a is acceptable
w.r.t. S}. Then, the complete, preferred, grounded and stable semantics for AF s
are defined using the notion of extension as follows.
Definition 3 (Defs. 7, 13, 20 and 23 in [51]). Given AF =
〈Ar , att〉 and S ⊆ Ar :
• S is a preferred extension of AF iff it is a maximal (w.r.t. set inclusion)
admissible set of AF .

• S is a stable extension of AF iff it is conflict-free and ∀a ∈ Ar\S, ∃b ∈ S such
that (b, a) ∈ att.

• S is the grounded extension of AF iff it is the least fixed point of FAF .

• S is a complete extension of AF iff it is an admissible set and ∀a ∈ Ar such
that a is acceptable w.r.t. S, a ∈ S.

A series of results surrounding the basic semantic notions and the characteri-
zation of the different semantics are formalized in [51], some of which establish a
relationship between sets of extensions obtained under different semantics. On the
one hand, Dung’s Fundamental Lemma shows that given any two arguments a and
a′ which are acceptable w.r.t. an admissible set S, the set S′ = S ∪ {a} is also ad-
missible, and a′ is acceptable w.r.t. S′. Then, it is also shown that the characteristic
function of an AF is monotonic (w.r.t. set inclusion). Then, amongst the results
over the different semantics, we can highlight the following:
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• Each preferred extension is also a complete extension, but not vice-versa.

• Every stable extension is also a preferred extension but not vice-versa.

• A complete extension is a fixed point of the characteristic function of AF .

• The grounded extension is the least (w.r.t. set inclusion) complete extension.

• Every argumentation framework possesses a grounded extension and at least
one preferred extension. This is not the case for stable extensions.

The different semantics proposed in [51], as well as some of their relationships,
are illustrated below.
Example 2 (cont’d) The grounded extension of AF is {b, c}, whereas the preferred
(also, stable) extensions are {b, c, d, f} and {b, c, e}.

Finally, it is worth mentioning that many additional semantics for AF s have
been proposed in the literature, as well as alternative characterizations in terms of
labellings (see [9] for an overview). However, in this chapter we will focus on the
complete, preferred, stable and grounded semantics (referred to as the Dung seman-
tics or the classical semantics) since they are the ones covered by the approaches to
higher-order interactions considered in this chapter.

3 The premises for higher-order interactions:
higher- order argumentation frameworks

To our best knowledge, the first work in which the idea of higher-order interac-
tions appears has been presented is [13]. In that article, generalized argumentation
networks are presented considering the following points: nodes are arguments, ar-
rows are interactions with two possible cases (attacks or supports), each element
of these networks (nodes and arrows) are valued, and the interactions are used in
order to propagate these values. Note that the notion of support used in that work
is not clearly defined and seems not to correspond to any of the types of support
presented in Section 2. In this context, higher-order interactions (from an argu-
ment to an interaction)1 are introduced only in order to influence the value of the
target interaction; such a propagation process is described through some examples.
Nevertheless, no semantics (extension-based or labelling-based) is formally defined.

1Note that the possibility of having an attack as a source of an attack is also evoked in [13] but
not really used.
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Following this seminal work, many different approaches have been developed
with, at least at the beginning, a focus on higher-order attacks (so without taking
into account the support relation) and a strong link to the notion of “valuation” (in
the most general sense, so values or preferences). This is for instance the case of the
Extended Argumentation Framework (EAF ) that is proposed in [67; 69].

3.1 The Extended Argumentation Framework (EAF )
The aim of this approach is to explicitly represent the impact of the preferences be-
tween arguments in the argumentation framework by the introduction of attacks that
target other attacks. These “second-order attacks” are then used in the definition of
the defeat relation (the attack relation refined by preferences between arguments),
that is in turn used in the computation of semantics. The formal definition of an
EAF issued from [69] is the following:

Definition 4 (Def. 4 in [69]). An Extended Argumentation
Framework (EAF ) is a tuple 〈Ar , att, att2 〉 such that:

1. Ar is a set of arguments,

2. att ⊆ Ar × Ar is a set of “simple attacks” (i.e. binary attacks between argu-
ments),

3. att2 ⊆ Ar × att is a set of attacks targeting simple attacks,

4. if (a, (b, c)) and (a′, (c, b)) ∈ att2 then (a, a′) and (a′, a) ∈ att.

As in Dung’s framework, an EAF can be represented using a directed graph
in which nodes correspond to arguments, and edges to attacks (solid arrows for
simple attacks – elements of att – and double-pointed arrows for attacks to attacks
– elements of att2 –).

This definition can be illustrated using an example also issued from [69]:

Example 3 (Introduction example in [69]). Consider two people exchanging
arguments about the weather forecast:

Argument a: Today will be dry in London since the BBC forecast sunshine.

Argument b: Today will be wet in London since CNN forecast rain.

Argument c: But the BBC are more trustworthy than CNN.

Argument c′: However, statistically CNN are more accurate forecasters than the
BBC.
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Argument e: And basing a comparison on statistics is more rigorous and rational
than basing a comparison on your instincts about their relative trustworthiness.

Here, c and c′ do not attack a nor b. They attack the attacks between a and b: c by
saying that a is preferred to b, and c′ by saying that b is preferred to a. Moreover,
the same behaviour occurs with e, which attacks the attack from c to c′ (by saying
that c′ is preferred to c). This example can be represented by the following EAF :

c′

b a e

c

Then, using the att2 relation, the notion of conflict-freeness can be refined and
the notion of defeat, related to a given set of arguments, can be introduced:

Definition 5 (Defs. 5 and 6 in [69]). Let 〈Ar , att, att2 〉 be an EAF and S ⊆ Ar .
S is conflict-free iff ∀a, b ∈ S, if (a, b) ∈ att, then (b, a) 6∈ att and ∃c ∈ S such

that (c, (a, b)) ∈ att2 .
The argument a defeats the argument b w.r.t. S (denoted by a→S b) iff (a, b) ∈

att and there exists no argument c ∈ S such that (c, (a, b)) ∈ att2 .

Note that each unattacked attack originates a defeat w.r.t. any set. Another
interesting point is the fact that an argument and its attacker can belong to the same
conflict-free set if the attack between them is not a symmetrical one and is attacked
by an element of the set. Moreover, even if the notion of defeat is not directly used
in the definition of conflict-free sets, both notions are related: a conflict-free set
cannot contain elements involved in a defeat.

In order to refine the concept of acceptability, an additional notion is introduced
in [69]: the reinstatement set (informally, the set of defeats that is able to reinstate
a given defeat using a given set of arguments).

Definition 6 (Def. 7 in [69]). Let 〈Ar , att, att2 〉 be an EAF and S ⊆ Ar .
Consider the set of defeats RS = {a1 →S b1, . . . , an →S bn}. RS is a reinstate-

ment set for the defeat c→S d iff :

1. c→S d ∈ RS,
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2. for i = 1 . . . n, ai ∈ S,

3. ∀ai →S bi ∈ RS, ∀b′ such that (b′, (ai, bi)) ∈ att2 , ∃a′ →S b′ ∈ RS.

Then, semantics for EAF are defined in much the same way as for Dung’s
framework but using the defeat relation in place of the attack relation and also the
reinstatement set for defining the notion of acceptability.

Definition 7 (Defs. 8 and 9 in [69]). Let 〈Ar , att, att2 〉 be an EAF and S ⊆ Ar .
An argument a ∈ Ar is acceptable w.r.t. S iff ∀b such that b→S a, ∃c ∈ S such

that c→S b and there is a reinstatement set for c→S b.
Let S be a conflict-free set of arguments, then:

• S is an admissible extension iff every argument in S is acceptable w.r.t. S.

• S is a preferred extension iff S is a ⊆-maximal admissible extension.

• S is a complete extension iff each argument which is acceptable w.r.t. S is in
S.

• S is a stable extension iff ∀b 6∈ S, ∃a ∈ S such that a→S b.

Example 3 (cont’d) With this example, we can illustrate the previous definitions.
Considering the notion of defeat, there are 4 possible defeats (one for each element
of att):

• b→S a with any S that does not contain c (i.e. if S contains c, then the attack
from b to a is not a defeat w.r.t. that set).

• a→S b with any S that does not contain c′.

• c→S c′ with any S that does not contain e.

• c′ →S c with any S, since the attack (c′, c) is never attacked.

Note that e is never defeated, since it is never attacked. Note also that the two-length
cycle between c and c′ has been “broken” by the attack issued from e: the attack from
c′ to c is always a defeat, whereas the attack from c to c′ is a defeat only w.r.t. sets
that do not contain e. The same thing occurs for the two-length cycle between a and
b, since these attacks become defeats w.r.t. sets with different constraints.

Concerning the notion of conflict-freeness, some examples follow. The set {a, b}
(resp. {c, c′}) is not conflict-free since there is a symmetrical attack between these
arguments; whereas the set {e, c, a} is conflict-free since there is no attack between
these arguments.
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The notion of acceptability w.r.t. a given set can be illustrated using the set
S = {e, c′, b}: e (resp. c′) is acceptable w.r.t. S since it is unattacked (resp. since
there is no defeat targeting c′ w.r.t. S which contains e); c (resp. a) is not acceptable
w.r.t. S since c′ cannot be attacked by a defeat w.r.t. S (resp. since b cannot be
attacked by a defeat w.r.t. S).

And finally, following Definition 7, one can conclude that the set S = {e, c′, b}
is an admissible, preferred, complete and stable extension of the EAF .

The particular case of an EAF with an empty att2 relation easily shows that
EAF s are a conservative generalization of AF s. Indeed, if att2 = ∅, then the
defeat and attack relations coincide and the reinstatement set can be reduced to a
singleton (the attack used for defending the acceptability of the argument against a
given attack).

Of course, when the att2 relation is not empty, and even if EAF s can inherit
some properties from AF s (for instance, the fact that preferred extensions are also
complete but not vice-versa, see [81]), they also have some specifics in terms of
semantics: the characteristic function of EAF is not, in general, monotonic and so
the definition of the grounded extension differs.

Definition 8 (Defs. 10-11 in [69]). Let EAF = 〈Ar , att, att2 〉, S ⊆ Ar , and 2ArC

denote the set of all conflict-free subsets of Ar . The characteristic function FEAF
of EAF is defined as follows:

FEAF : 2ArC 7→ 2Ar

FEAF (S) = {a | a is acceptable w.r.t. S}

For any EAF 〈Ar , att, att2 〉 the following sequence of subsets of Ar can be de-
fined:

• F0 = ∅

• Fi+1 = F(Fi)

Then, the grounded extension of an EAF can be defined in terms of the sequence
in the preceding definition as long as the EAF is finitary:

Definition 9 (Defs. 11-12 in [69]). Let EAF = 〈Ar , att, att2 〉. EAF is said to
be finitary iff ∀a ∈ Ar the set {b | (b, a) ∈ att} is finite, and ∀(a, b) ∈ att the set
{c | (c, (a, b)) ∈ att2} is finite.

If EAF is finitary and F0 = ∅, Fi+1 = F(Fi), then ⋃∞i=0(Fi) is the grounded
extension of EAF .
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Example 3 (cont’d) The EAF corresponding to the weather example is clearly
finitary. Then, F1 = {e}, since e is the only unattacked argument. Now, as shown
previously, c′ →S c w.r.t. any set of arguments, in particular, F1 = {e}. In contrast,
c does not defeat c′ w.r.t. F1 = {e}, and c′ has no other attackers. As a result, c′ is
acceptable w.r.t. {e} and F2 = {e, c′}. Then, since a does not defeat b w.r.t. F2 =
{e, c′}, and b has no other attackers, it holds that F3 = {e, c′, b} is the grounded
extension of EAF .

Note that some of the previous definitions were slightly improved since the pub-
lication of [69] in order to take into account some new constraints or to correct some
undesired behaviours (see for instance the definition of conflict-freeness given in Def.
13 of [72], where the authors establish a link between structured argumentation sys-
tems and EAF s).

As shown in the literature, Dung’s acceptability semantics can also be defined
through labellings [9]. Briefly, a labelling assigns exactly one label to each argument:
either in, out, or undec. The arguments labelled in constitute an extension E under
a given semantics; out arguments are defeated by arguments in E, and arguments
labelled undec are neither in the extension nor defeated by E. For an EAF =
〈Ar , att, att2 〉, since attacks on attacks and the reinstatement of attacks may affect
the acceptability of arguments, labels are also assigned to attacks in att, so that if
(x, y) ∈ att is in (resp. out), then this denotes that the attack (x, y) is successful
(resp. unsuccessful). Also, analogously to the labellings for arguments, attacks
can be labelled as undec. As a result, whereas the attacks at the argument level
(i.e. those in the att relation) are labelled, second order attacks (i.e. those in the
att2 relation) are not. Formally:

Definition 10 (Def. 7 in [68]). A labelling for an EAF 〈Ar ,
att, att2 〉 is a pair of total functions (LAr ,Latt) such that:

1. LAr : Ar 7→ {in, out, undec}

2. Latt : att 7→ {in, out, undec}

For S ∈ {in, out, undec} : S(LAr) = {x ∈ Ar | LAr(x) = S}; S(Latt) = {(x, y) ∈
att | Latt((x, y)) = S}

Definition 11 (Def. 8 in [68]). Let L = (LAr ,Latt) be a labelling for an EAF
〈Ar , att, att2 〉. ∀x ∈ Ar :

1. x ∈ out(LAr) is legally out iff ∃(y, x) ∈ att such that LAr(y) = in and
Latt((y, x)) = in.
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2. x ∈ in(LAr) is legally in iff ∀(y, x) ∈ att, either LAr(y) = out or Latt((y, x)) =
out.

3. x ∈ undec(LAr) is legally undec iff :

(a) @(y, x) ∈ att such that LAr(y) = in and Latt((y, x)) = in; and
(b) it is not the case that: ∀y ∈ Ar , (y, x) ∈ att implies LAr(y) = out or
Latt((y, x)) = out.

∀(x, y) ∈ att :

1. (x, y) ∈ out(Latt) is legally out iff ∃(z, (x, y)) ∈ att2 such that LAr(z) = in.

2. (x, y) ∈ in(Latt) is legally in iff ∀(z, (x, y)) ∈ att2 , LAr(z) = out.

3. (x, y) ∈ undec(Latt) is legally undec iff :

(a) @(z, (x, y)) ∈ att2 such that LAr(z) = in; and
(b) it is not the case that: ∀z ∈ Ar , (z, (x, y)) ∈ att2 implies LAr(z) = out.

For S ∈ {in, out, undec} :

• An argument x ∈ Ar is said to be illegally S iff x ∈ S(LAr), and it is not legally
S.

• An attack (y, x) is said to be illegally S iff (y, x) ∈ S(Latt), and it is not legally
S.

Then, the admissible, preferred and stable EAF labellings are defined in [68] as
follows:

Definition 12 (Def. 9 in [68]). Let L = (LAr ,Latt) be a labelling for an EAF
〈Ar , att, att2 〉.

• L is admissible iff :

1. no x ∈ Ar is illegally in or illegally out;
2. no (y, x) ∈ att is illegally in or illegally out; and
3. ∀x, y ∈ in(Latt), it is not the case that (y, x) ∈ att and (x, y) ∈ att.

• L is preferred iff it is admissible and there is no admissible labelling L′ such
that in(LAr) ⊂ in(L′Ar).

• L is stable iff it is admissible, undec(LAr) = ∅ and undec(Latt) = ∅.
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Then, Modgil shows that the admissible, preferred and stable extensions of an
EAF are in one-to-one correspondence with the corresponding labellings of their
arguments. Specifically, for E ∈ {admissible, preferred, stable}, E is a σ-extension
of EAF iff there exists a σ-labelling (LAr ,Latt) of EAF such that in(LAr) = E.
Example 3 (cont’d) The only preferred and stable labelling corresponding to the
EAF of the weather example is (LAr ,Latt), where in(LAr) = {e, c′, b}, out(LAr) =
{a, c}, in(Latt) = {β, η} and out(Latt) = {α, ε}.

The line of work on EAF was extended in different ways. For instance, in [70; 69],
a specific class of EAF has been defined (the hierarchical EAF ). This kind of frame-
work is stratified so that attacks at some level i are only attacked by arguments that
belong to the next level up. For instance, the EAF of Example 3 could be partitioned
into 3 levels: level 1 corresponding to ({a, b}, {(a, b), (b, a)}, {(c, (b, a)), (c′, (a, b))}),
level 2 corresponding to ({c, c′}, {(c, c′), (c′, c)}, {(e, (c, c′))}) and level 3 correspond-
ing to ({e}, {}, {}). Note that there are always two kinds of attacks in these hierar-
chical EAF s, so second-order attacks exist.

In [70; 69], the Value-based Argumentation Frameworks introduced by Bench-
Capon in [14] (V AF )2 are translated into hierarchical EAF s.

Another version of hierarchical EAF which accounts for attacks originating in a
set of arguments is also used in [72] in order to establish links with ASPIC+ [85].
These links allow the introduction of structured EAF s that satisfy the postulates
proposed in [26].

Moreover, EAF s can be considered as meta-argumentation frameworks, i.e. frame-
works able to argue about the argumentation process itself. Indeed, the relation att2
given in EAF can be viewed as a “meta-element” expressing information about the
argumentation process (how to take into account the attacks between two arguments
when preferences exist). In [15], a study of meta-argumentation is presented with a
methodology and some techniques, among them a flattening technique that trans-
forms an EAF into a Dung argumentation framework introducing meta-arguments;
in fact, this flattening gives good results in the case of a hierarchical EAF , see [82].
An application of this technique to the EAF is given in the following definition,
which simplifies Def. 10 of [15] in order to avoid some irrelevant meta-arguments
and attacks.

Definition 13 (Def. 10 in [15]). Let 〈Ar , att, att2 〉 be an EAF . The flattened
version of this EAF is the AF defined by:

2Value-based Argumentation Frameworks have been introduced for persuasion situations. They
take into account valued arguments and audiences.
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acc(c′)

Yab Xab Xc′c Ycc′

acc(b) acc(a) acc(e)

Xba Yba Yc′c Xcc′

acc(c)

Figure 3: The flattened EAF for Example 3

• the set of arguments = {acc(a)|a ∈ Ar} ∪ {Xab, Yab|(a, b) ∈ att}

• the binary attack relation =
{(Xab, Yab)|(a, b) ∈ att} ∪
{(Yab, acc(b))|(a, b) ∈ att} ∪
{(acc(a), Xab)|(a, b) ∈ att} ∪
{(acc(c), Yab))|(c, (a, b)) ∈ att2}

Example 3 (cont’d) See in Figure 3, the flattening of this EAF .
Then with Dung semantics, the preferred (and also stable and complete) exten-

sion of this flattened EAF is the set that contains acc(e), acc(c′), acc(b) and does
not contain acc(a), acc(c).

Note that several other flattening processes are proposed in literature:

• In [18], an EAF is proposed in order to argue about coalitions of agents. Even
though the starting point used in that study is only semi-formal and so not
completely abstract (the definition of coalitions is done using agents, goals,
. . . ), the built EAF is abstract considering that arguments are coalitions, and
attacks represent either attacks between coalitions (for instance because they
have the same goal) or the impact of some preferences over these attacks. The
flattening process proposed in order to take into account this EAF is very
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similar to the one defined in [15]: only names for the meta-arguments are
different. Thus, the same resulting argumentation framework is produced.

• In [71], another flattening process for EAF is proposed. It is not similar to the
previous ones defined in [18; 15] in the sense that the structure of the graph is
not the same (more nodes and more edges). Nevertheless, it is shown in [97]
that all of them correspond to the same “argumentation pattern”, i.e. to the
same behaviour of the second-order attacks.3

Note that, in [71, Section 5], some similarities are exhibited between EAF and
other approaches, but no formal comparison is done. These approaches are the
AFRA (see Section 3.3) and Gabbay’s approach (see Section 3.2).

3.2 The Higher-Level Argumentation Frame (HLAF )
Gabbay pursued his study of “higher-level networks” introduced in [13] through
several papers [56; 57], using the idea of meta-argumentation. These networks are
more general than EAF s since one can find attacks to attacks at any level (and not
only second-order attacks); moreover, other kinds of attacks can be found in these
networks. For instance:

• attacks whose source is either a set of elements (joint or conjunctive attacks),
or another attack,

• attacks whose target is a set of elements (disjunctive attacks).

Gabbay’s aim was to define a framework rich enough to generalize all the existing
networks (including the use of a support relation, but supports are not accounted
for in those papers). In the argumentation context, the following basic definition
for Higher-Level Argumentation Frames (HLAF ) considers only attacks from one
argument to another argument or another attack:

Definition 14 (Def. 1.1 in [57]). Let Ar be a set of arguments. Level (0, n) argu-
mentation frames are defined as follows:

1. A pair (a, b) ∈ Ar ×Ar is called a level (0, 0) attack.

3In [97], an argumentation pattern is defined as a multi-labelling of a set of arguments associated
to a propositional formula reflecting constraints about this labelling. For instance, the EAF defined
by three arguments a, b and c with an attack from a to c and a second-order attack from b to (a, c)
is characterized by the constraint:

[(Lab(c) = in)→ (Lab(a) = out ∨ Lab(b) = in)] ∧
[(Lab(a) = in ∧ Lab(b) = out)→ (Lab(c) = out)].
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2. If c ∈ Ar and α is a level (0, n) attack then (c, α) is a level (0, n+ 1) attack.

3. A level (0, n) argumentation frame is the pair 〈Ar , att〉, where att contains
level (0,m) attacks for 0 ≤ m ≤ n.

It is obvious to see that an EAF can be viewed as a particular case of HLAF :
it is a level (0, 1) argumentation frame with a specific constraint about the sources
of level (0, 1) attacks (see Item 4 of Definition 4):
Example 3 (cont’d) The level (0, 1) argumentation frame corresponding to the
weather example is:

• Ar = {a, b, c, c′, e}

• att = {(a, b), (b, a), (c, c′), (c′, c), (c, (b, a)), (c′, (a, b)), (e, (c, c′))}, the 4 first at-
tacks being level (0, 0) attacks and the 3 last ones being level (0, 1) attacks.

Then, two kinds of approaches are proposed in order to take into account these
networks: labelling-based semantics and flattening processes.4

For the first approach, Gabbay proposed the following labelling-based semantics
as in Caminada’s works [25; 27]:

Definition 15 (Def. 2.2 in [57]). Consider 〈Ar , att〉 a level (0, n) argumentation
frame. Let Lab : Ar ∪ att → {in, out, undec}. Lab is a complete labelling if, for
every β ∈ Ar ∪ att, it holds that:

1. Lab(β) = in if there is no a such that (a, β) ∈ att.

2. Lab(β) = out if there exists a such that (a, β) ∈ att, Lab(a) = in and
Lab((a, β)) = in.

3. Lab(β) = in if for all a such that (a, β) ∈ att, Lab(a) = out or Lab((a, β)) =
out.

4. Lab(β) = undec if for all a such that (a, β) ∈ att, either (Lab(a) = out or
Lab((a, β)) = out), or (Lab(a) = in and Lab((a, β)) = undec), or (Lab(a) =
undec and Lab((a, β)) = in), or (Lab(a) = Lab((a, β)) = undec). And more-
over, for some a such that (a, β) ∈ att, either Lab(a) = undec or Lab((a, β)) =
undec.

4A third approach is also evoked in Gabbay’s works: the translation into logical formalisms
(logic programming in [56] and intuitionistic logic in [58]). Nevertheless, this approach will not be
developed here due lack of space.
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Example 3 (cont’d) The set of elements that must be labelled is: Ar ∪ att =
{a, b, c, c′, e, (a, b), (b, a), (c, c′), (c′, c), (c, (b, a)), (c′, (a, b)), (e, (c, c′))}.

And the corresponding complete labelling in the sense of Definition 15 is:

• the elements labelled in: e, c′, b, (e, (c, c′)), (c, (b, a)), (c′, (a, b)), (c′, c),

• the elements labelled out: c, a, (c, c′), (a, b), (b, a),

• the elements labelled undec: nothing.

That gives the following “complete extension”:
{e, c′, b, (e, (c, c′)), (c, (b, a)), (c′, (a, b)), (c′, c)}

It is interesting to note that attacks are also labelled and so can be viewed as
belonging to the corresponding “extensions”, in contrast to the semantics defined in
the EAF approach (see Definition 7).

The translation approach for HLAFs has been already described in the previ-
ous section, consisting of a translation into a Dung’s AF . Indeed, Definition 13
exactly corresponds to Gabbay’s flattening process applied to the EAF case. How-
ever, Gabbay considers that the translation process described in Definition 13 is not
enough in order to represent generalized Higher-Level Argumentation Frames and,
in particular, attacks whose source is another attack. Indeed, in such a case, joint
attacks must be used in order to capture the real meaning of those attacks (see
the discussion in [56, Section 2]). Notwithstanding this, following the translation
approach it is easy to see that Gabbay’s HLAF s can be considered as a conservative
generalization of AF s.

In [57] some comparisons are presented between HLAFs and EAF (see Sec-
tion 3.1), inductive defense semantics proposed by [62] (see Section 3.4) and AFRA
(see Section 3.3), but they remain only informal. Nevertheless, using some exam-
ples, Gabbay shows that all these approaches do not coincide. Example 4 illustrates
this point by comparing HLAF and EAF (the comparison with [62]’s work can be
found in Section 3.4, whereas the one with AFRA is given in Section 3.3).

Example 4 (See Figure 3 in [57]). Consider for instance the following example.

c c1

c2

a b b1
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In this example, using the EAF semantics, the complete extension is {a, c, c1}. With
Gabbay’s approach, at least two complete labellings exist, corresponding to the sets of
arguments {a, c, c1} and {c, c1}. Indeed, in the HLAF , argument b1 can be labelled
either out or undec.

Note that Gabbay’s ideas can also be applied in structured argumentation. In-
deed, a recent work [7] proposes a structured vision of argumentation by “blocks”
(an argument being viewed as an argumentation). So, in that work, since each
block is an argumentation graph and interactions exist between blocks, a kind of
“recursivity” can be identified as it has been done in Gabbay’s works.

3.3 Argumentation Frameworks with Recursive Attacks (AFRA)
In [10; 11] the authors proposed the Argumentation Framework with Recursive At-
tacks (AFRA) as a generalization of the AF , where attacks are allowed to target
other attacks as well as arguments. The recursiveness of their approach relies on
the fact that these attacks on attacks can appear at any level, thus allowing for
higher-order attacks.

As argued by the authors, from a conceptual view, such a generalization sup-
ports a straightforward representation of reasoning situations which are not easily
accommodated within Dung’s framework. In particular, as part of their motivation
and similarly to [69], the authors propose an example where higher-order attacks are
partly used to encode preferences between conflicting arguments. However, as also
stated by the authors in [11], further levels of recursive attacks can be considered in
the area of modelling decision processes.

Definition 16 (Def. 3 in [11]).
An Argumentation Framework with Recursive Attacks (AFRA) is a pair 〈Ar , att〉,
where Ar is a set of arguments and att ⊆ Ar × (Ar ∪ att) is an attack relation.

Given an attack α = (a,X) ∈ att, a is said to be the source of α, denoted as
s(α) = a, and X is the target of α, denoted as t(α) = X. Moreover, the authors
introduce an abbreviated notation for recursive attacks, avoiding to explicitly show
all the recursive steps implied in their definition; for instance, an attack (a, (b, c))
can be expressed as (a, α), where α = (b, c). Then, as in Dung’s framework, the
authors introduce a graph-like notation for the AFRA where nodes correspond to
arguments and edges represent attacks that are labelled with their associated Greek
letters.
Example 3 (cont’d) The AFRA corresponding to the weather example can be
defined by the sets:
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• Ar = {a, b, c, c′, e}, and

• att = {α, β, γ, δ, ε, η, θ}, where α = (a, b), β = (b, a), γ = (c′, α), δ = (c, β),
ε = (c, c′), η = (c′, c), θ = (e, ε).

The graphical representation for this AFRA is given below, where arguments are
in circles and the Greek letters labelling attacks are within squares:

c′

γ

α

b a η ε θ e

β

δ

c

A key difference between the AFRA and the other approaches discussed in the
previous subsections is that the authors of [10; 11] conceive an attack as an entity
able to affect any other entity (be it an argument or an attack) rather than just
a by-product of how arguments relate to each other. Consequently, all semantic
notions for AFRA are defined following Dung’s methodology, except for the fact
that attacks are included as first-class elements in those definitions. As a result,
similarly to Gabbay’s approach where attacks are labelled (see Section 3.2), the
extensions of an AFRA may not only include arguments, but also attacks.

As a starting point different types of defeat are defined, which regard attacks
(rather than their source arguments) as the subjects able to defeat arguments or
other attacks. This is also coherent with the fact that an attack can be made
ineffective by attacking the attack itself. Moreover, according to the idea that an
attack is strictly related to its source, a defeat over an attack also occurs in a
situation where the source of the attack is itself defeated.

Definition 17 (Defs. 4, 5 and 6 in [11]). Let 〈Ar , att〉 be an AFRA, α ∈ att and
X ∈ Ar ∪ att. α defeats X, denoted α →R X, if t(α) = X (direct defeat), or
X = β ∈ att and t(α) = s(β) (indirect defeat).

Then, based on this notion of defeat, the notions of conflict-freeness, acceptabil-
ity, admissibility and extensions under different semantics are introduced.
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Definition 18 (Defs. 7, 8, 10 in [11]). Let 〈Ar , att〉 be an AFRA, S ⊆ Ar ∪ att:

• S is conflict-free iff @α,X ∈ S such that α→R X.

• X ∈ S is acceptable w.r.t. S iff ∀α ∈ att such that α→R X, ∃β ∈ S such that
β →R α.

• S is admissible iff it is conflict-free and each element of S is acceptable w.r.t. S.

Note that, whereas [10] just considered the preferred semantics, [11] extended the
results to also cover the complete, grounded, stable, semi-stable and ideal semantics.
Nonetheless, as mentioned before, in this chapter we will only focus on the four
classical semantics since they are the ones covered by most approaches. For the
purpose of defining the grounded semantics, [11] defines the characteristic function
analogously to [51].

Definition 19 (Def. 9 in [11]). The characteristic function of AFRA = 〈Ar , att〉
is defined as follows:

FAFRA : 2Ar∪att 7→ 2Ar∪att

FAFRA(S) = {X ∈ Ar ∪ att | X is acceptable w.r.t. S}

Definition 20 (Defs. 11 to 14 in [11]). Let AFRA = 〈Ar , att〉 and S ⊆ Ar ∪ att:

• S is a complete extension of AFRA iff S is admissible and every element of
Ar ∪ att which is acceptable w.r.t. S belongs to S (i.e. FAFRA ⊆ S).

• S is the grounded extension of AFRA iff it is the least fixed point of FAFRA.

• S is a preferred extension of AFRA iff it is a maximal (w.r.t. set inclusion)
admissible set.

• S is a stable extension of AFRA iff S is conflict-free and ∀X ∈ Ar ∪ att, if
X /∈ S then ∃α ∈ S such that α→R X.

Example 3 (cont’d) The preceding definitions can be illustrated on the weather
example as follows. On the one hand, each attack in att originates a direct defeat
on its target, namely, α →R b, β →R a, γ →R α, δ →R β, ε →R c′, η →R c and
θ →R ε. On the other hand, the indirect defeats are: α→R β, β →R α, ε→R η and
η →R ε. Then, for instance, the set {a, b} is conflict-free even though a and b are
the source and target of the attack α (also, the target and source of the attack β).
As discussed before, this is because defeats can only be originated by attacks; hence,
for instance, any set containing just arguments will be conflict-free in the AFRA.
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Note that, similarly to what occurs in the EAF , the defeat from θ to ε breaks the
two-length attack cycle involving arguments c and c′. Hence, The two-length cycle
involving arguments a and b is also broken. Consequently, e.g. , {e, θ, c′, η, γ, b, β} is
an admissible set of this AFRA. Moreover, this set is the only complete extension,
thus being the grounded extension and the only preferred extension of the framework,
which is also stable. Once again, note that this result aligns with the result obtained
for the EAF , whose corresponding extension was {e, c′, b}.

In contrast, we can highlight a difference between the result for the AFRA and
the one obtained for Gabbay’s level (0, n) argumentation frame: whereas the attack
(c, (b, a)) was labelled as in in the HLAF , δ (the corresponding attack in the AFRA)
does not belong to the extension. This is because the attack η, which is defended
against ε by the undefeated attack θ, directly defeats c and therefore, indirectly defeats
δ. Consequently, b belongs to the AFRA extension while it does not belong to the
corresponding extension of the HLAF .

Another simpler example allows to compare Gabbay’s approach with AFRA.

Example 5. Consider the following very simple framework.

a α b β c

In this case, with the AFRA semantics, the set {α, c} is admissible (the attack from
b to c is made ineffective by α), whereas with Gabbay’s approach c cannot be labelled
in without a being labelled in.
Another difference appears for the complete semantics: in the AFRA, the only com-
plete extension is the set {a, α, c} (since α defeats β), whereas in the HLAF the
complete labelling is the set {a, α, c, β} (there is no link between α and β).
In both cases, the difference is due to the notion of defeat adopted by the AFRA (see
Definition 17), which accounts for indirect defeats.

In addition to proposing several argumentation semantics, [11] shows that many
properties satisfied by Dung’s AF also hold for the AFRA. First, the characteristic
function of the AFRA is shown to be monotonic w.r.t. set inclusion (differently from
the EAF ’s). Then, the authors prove that stable extensions of the AFRA are also
preferred extensions but not vice-versa. In addition, they include results showing
that every preferred extension is a complete extension but not vice-versa, that the
grounded extension is the least complete extension, and that every AFRA possesses
at least one preferred extension.

As another set of results, [11] formally shows that when an AFRA coincides with
an AF (when no higher-order attacks occur) the generalized notions for the AFRA
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are compatible with the ones for the AF . There exists a correspondence at the level
of acceptability semantics (e.g. grounded, preferred, stable, complete semantics)
but there is no correspondence between more basic semantic notions. Consequently,
this means that AFRAs are not a conservative generalization of AF s since, among
other things, the notion of conflict-freeness does not coincide at the AFRA and AF
level (see for instance the fact that the set {a, b} on Example 5 is conflict-free in an
AFRA but not in an AF ).

Also, a flattening method is proposed to express an AFRA as an AF , drawing
the relevant correspondences concerning the different semantic notions and argu-
mentation semantics. Then, following the flattening technique, the extensions of the
AFRA are the extensions of its associated AF .

Definition 21 (Def. 10 in [11]). Let AFRA = 〈Ar , att〉, the corresponding argu-
mentation framework is AF = 〈ArAF , attAF 〉, where:

ArAF = Ar ∪ att
attAF = {(α,X) | α ∈ att, X ∈ (Ar ∪ att), α→R X}

Example 5 (cont’d) Applying the AFRA-AF flattening from Definition 21 we
obtain the following AF :

a α b β c

Here, we have that the only complete extension of the associated AF is {a, α, c} (in
accordance with the result obtained by directly applying the acceptability semantics
on the AFRA).

[11] formally shows that the two approaches for determining acceptability in
the AFRA (i.e. the direct computation approach and the flattening approach) are
equivalent. As remarked by the authors, this kind of correspondence is very useful as
it allows one to reuse or adapt, in the context of AFRA, the large corpus of results
and implementations available for Dung’s framework. In particular, as will be shown
in Section 6, the flattening of an AFRA into an AF is exploited for implementing a
reduction-based approach to compute the AFRA extensions.

Finally, [11] draws a detailed comparison between the AFRA and Modgil’s EAF ,
highlighting four points: the fact that EAF only allows for second-order attacks
whereas the AFRA allows for higher-order attacks at any level; the differences in
the definition of conflict-freeness; the non-monotonicity of Modgil’s characteristic
function for the general case of EAF s versus the monotonicity of the AFRA char-
acteristic function; and, related to the previous point, the fact that the grounded
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extension of the EAF is not the least complete extension of an EAF in the general
case (whereas this relationship does hold for the AFRA).

3.4 The inductive semantics for HLAF

In [62] the authors proposed a new inductive semantics for Gabbay’s Higher-Level
Argumentation Frames (HLAF )5 introduced in Section 3.2. The authors argued
that their semantics, based on an inductive defense relation, is sceptical and
grounded towards the acceptability of attacks in a sense that an attack is “accept-
able” w.r.t. a set of arguments S only if it is inductively defended by S, but could
be credulous towards the acceptability of arguments. They motivated their seman-
tics by stating that Gabbay’s approach, as well as Modgil’s approach, may yield
counter-intuitive results in some cases, such as the one illustrated by the example
below.

Example 6 (Introduction Ex. in [62]). Consider a framework like the one depicted
below, consisting of attacks α1 = (a, a) and αi+1 = (a, αi) for i ≥ 1:

a α1 α2 α3 α4 . . .

In this figure, each attack αi
is represented by an “arrow”
that goes from its source (a)
to its target (a or αi−1)
“across the box” αi that just
gives the name of the attack.

The authors state that they find it rather hard to imagine any practical interpre-
tation of this framework. Then, they state that as a sceptical reasoner one would
not want to draw any conclusion (as a result, not accept a). This is because an
agent arguing for a has to rely on an infinite line of defense α2, α4, . . .. Then, they
argue that the semantics for HLAF introduced in Section 3.2, as well as the corre-
sponding AFRA semantics from Section 3.3 will yield a unique preferred extension
{a, α2, α4, . . .}, and they find this result counter-intuitive.

In order to avoid undesired results like the one mentioned above, [62] proposes
the inductive semantics of HLAF s which, in a situation like the one corresponding
to Example 6, will yield the empty set as the only extension. For simplicity, the
authors define their semantics for bounded HLAF s, but mention that their results
could be easily generalized for the case of unbounded HLAF . Briefly, a HLAF

5In [62] the authors referred to Gabbay’s formalism as the Extended Argumentation Framework
(EAF ); however, in order not to confuse it with Modgil’s EAF (see Section 3.1) here we will keep
Gabbay’s naming for HLAF .
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〈Ar , att〉 is said to be bounded if each argument or attack in the framework has a
finite number of attacks against it.

They start by defining the notion of inductive defense, which captures a sceptical
attitude of rational agents towards the acceptance of attacks.

Definition 22 (Def. 3.1 in [62]). Given HLAF = 〈Ar , att〉, S ⊆ Ar and β ∈ att:

• S inductively defends (for short, i-defends) β within 0-steps iff there is no
argument c ∈ Ar such that (c, β) ∈ att.

• S i-defends β within (k + 1)-steps iff either: S i-defends β within k-steps; or
for each c ∈ Ar , if (c, β) ∈ att, then there exists d ∈ S such that:

– (d, c) ∈ att and S i-defends (d, c) within k-steps, or
– (d, (c, β)) ∈ att and S i-defends (d, (c, β)) within k-steps.

Example 3 (cont’d) Given the HLAF corresponding to the weather example, it
holds that γ, δ, η and θ are i-defended by any set of arguments within 0-steps (thus,
within k-steps for k ≥ 1) since they are not attacked by any argument in the frame-
work.

Then, it holds that β is i-defended by the set S = {c′} within 1-steps because
for the only argument c such that (c, β) = δ ∈ att, there exists c′ ∈ S such that
(c′, c) = η ∈ att and S i-defends η within 0 steps.

In contrast, α and ε are not i-defended by any set; moreover, they are respectively
attacked by γ and θ, which are i-defended by any set within 0-steps.

Then, accounting for this notion of inductive defense, they characterize the new
acceptability semantics of HLAF as follows.

Definition 23 (Defs. 3.2 to 3.5 in [62]). Given HLAF = 〈Ar , att〉 and S ⊆ Ar :

• S is i-conflict-free iff @a, b ∈ S such that (a, b) ∈ att and S i-defends (a, b)
(within any number of steps).

• An argument a ∈ Ar is i-acceptable w.r.t. S iff for each b ∈ Ar such that
(b, a) ∈ att, there exists c ∈ S such that:

– (c, b) ∈ att and S i-defends (c, b); or
– (c, (b, a)) ∈ att and S i-defends (c, (b, a)).

• S is i-admissible iff it is i-conflict-free and every argument in S is i-acceptable
w.r.t. S.
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• The characteristic function based on i-defense is defined as follows:

FI : 2Ar 7→ 2Ar

FI(S) = {a ∈ Ar | a is i-acceptable w.r.t. S}

• S is an i-preferred extension iff it is a maximally (w.r.t. set inclusion) i-
admissible set .

• S is an i-complete extension iff it is an i-admissible set and each argument
that is i-acceptable w.r.t. S belongs to S.

• S is the grounded i-extension iff it is the least fixed point of FI .

The semantic notions of HLAF based on i-defense can be illustrated on the
weather example.
Example 3 (cont’d) Given that e is an unattacked argument, it holds that FI(∅) =
{e}. Then, FI({e}) = {e, c′} since, as shown before, there exists c′ ∈ Ar such
that (c′, c) = ε ∈ att but (e, ε) = θ ∈ att, where θ is i-defended by {e}. Finally,
FI({e, c′}) = {e, c′, b} since the attack α = (a, b) is itself attacked by γ = (c′, α)
and γ is i-defended by {e, c′}. Moreover, {e, c′, b} is the least fixed point of the
characteristic function and a maximal i-admissible set; thus, it corresponds to both
the i-grounded extension and the only i-preferred extension of HLAF . As a result,
the outcome in this case coincides with that obtained for Modgil’s EAF . In addition,
the outcome aligns with that obtained for the AFRA (the extension obtained here is
contained in the extension obtained for the AFRA), which was shown to differ from
the one obtained with Gabbay’s semantics for HLAF .

Another example illustrates the differences between Gabbay’s approach and in-
ductive defense semantics.
Example 4 (cont’d) Recall that, with Gabbay’s approach, at least two complete la-
bellings are possible corresponding to the sets {a, c, c1} and {c, c1}. Let us now con-
sider the i-defense semantics for HLAF. Given that c and c1 are the only unattacked
arguments, it holds that FI(∅) = {c, c1}. Then, we have FI({c, c1}) = {c, c1}. Note
that a /∈ FI({c, c1}) because, even though c attacks b (the only attacker of a), a is
not acceptable w.r.t. {c, c1} since the attack (c, b) is not i-defended by {c, c1} (within
any number of steps); the only attacks i-defended by {c, c1} are (c2, c2), (c2, b1),
(b, (c1, b1)), (b1, (c, b)) and (b, a) (all of which are, in particular, i-defended within 0
steps). Consequently, {a, c, c1} cannot be an extension using the inductive semantics
of [62].

In [62] the authors formally showed that their inductive semantics preserves
the key properties of well-established semantics for abstract argumentation, such
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as the Fundamental Lemma and the monotonicity of the characteristic function.
Furthermore, it is obvious to see that, in the case of a HLAF with no higher-order
attacks, all attacks in the framework will be i-defended; thus, i-conflict-freeness turns
into Dung’s conflict freeness, and the same holds for acceptability, admissibility, etc.
And so this approach is a conservative generalisation of Dung’s approach.

Moreover, in [62], some links were also established with other higher-order ap-
proaches. It was shown that any extension obtained with Modgil’s EAF semantics,
Gabbay’s HLAF semantics or the AFRA semantics contains a sceptical part cor-
responding to an extension obtained under the i-defense semantics, in addition to a
credulous part resulting from the credulousness towards the acceptance of attacks.
Formally, that corresponds to: let S be an extension obtained with Modgil’s EAF
semantics, Gabbay’s HLAF semantics or the AFRA semantics, S contains a great-
est (w.r.t. set-inclusion) i-extension T (for the homonym semantics), i.e. T ⊆ S and
∀U being an i-extension (for the same semantics), if U ⊆ S then U ⊆ T . This result
is derived differently following the other higher-order approaches that are studied
in [62].

• First, the authors stated that inductive defense semantics could be viewed as a
sceptical approach to the semantics of Gabbay; in that way, for instance, the g-
grounded6 extension corresponds to the union of the i-grounded extension and
the set of attacks i-defended by it. Then, they state that the truly sceptical part
of any g-complete extension can be characterized by an i-complete extension;
here, they again highlight that the difference in the complete extensions results
from the credulousness of Gabbay’s approach w.r.t. the acceptance of attacks.

• Then, regarding the relationship between [62]’s semantics and the AFRA se-
mantics, the authors state that they differ in the conditions imposed over
acceptable attacks, and is related to the existence of indirect defeats in the
AFRA (see Definition 17). In that way, an attack will be acceptable in the
AFRA only if both the attack and its source argument are defensible. Never-
theless, despite this difference, the authors establish a correspondence between
i-complete extensions and bcgg-complete7 extensions: a bcgg-complete exten-
sion is equal to the union of an i-complete extension and the set of attacks
coming from arguments in the i-complete extension that are i-defended by it.

• And finally, as to the relationship between [62]’s semantics and Modgil’s se-
6The grounded extension according to Gabbay’s semantics. In the remainder of this section, we

will refer to the extensions obtained under Gabbay’s σ semantics as the g-σ extensions.
7Similarly to the notation for Gabbay’s approach, these denote the complete extensions obtained

by the AFRA semantics.
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mantics for the EAF , the authors remark the following: whereas Modgil’s
EAF could be viewed as a special case of general extended frameworks such
as the HLAF , its semantics are based on the underlying intuition that attacks
against attacks represent preferences between conflicting arguments (thus mo-
tivating the last clause of Definition 4). Therefore, this insight suggests that
different intuitions and applications could lead to different classes and differ-
ent semantics for extended argumentation frameworks (as also evidenced by
the non-monotonicity of Modgil’s characteristic function for the general case
of EAF ). In spite of these differences, the authors in [62] argue that their
i-grounded semantics captures the most sceptical part of Modgil’s grounded
semantics since, as shown in [69], the characteristic function of hierarchical
and preference symmetric frameworks is monotonic (where in the former case,
the hierarchical restriction essentially ensures that any defense of an attack
is inductive). Then, they enforce i-admissible sets by requiring m-conflict-
freeness,8 characterizing the notion of mi-admissibility.9 As a result, they
show that mi-admissibility could be viewed as a sceptical part in the credu-
lous semantics of Modgil. In other words, that any m-preferred10 extension
contains a maximal (w.r.t. set inclusion) mi-admissible set.

To end this section it is worth mentioning that the line of work on inductive
defense semantics started by [62] was recently continued in [65]. There, the authors
defined a new semantics for HLAF accounting for infinite inductive defense, since
the notion of i-defense characterized in [62] is only inductively defined for finite
steps. For that purpose, they defined a notion of renovation sets to recognize “valid
attacks”, similarly to the “i-defense of an attack” in [62]. Then, they formally
showed the relationship between the notion of i-defense and their renovation sets:
an attack α is i-defended by a set of arguments S within k-steps iff there exists a
finite renovation set of α w.r.t. S, which renovates α within k-steps. In that way,
they state that the semantics of [62] can also be expressed with finite renovation
sets.

3.5 The Recursive Argumentation Framework (RAF )
In [29], another framework that allows representing both simple and higher-order
attacks (i.e. attacks from an argument to either another argument or another attack)

8That is, conflict-freeness as defined in Definition 5 by Modgil.
9“mi-admissibility” means that this notion is defined mixing notions given in Modgil’s work

and [62].
10Like before, m-preferred extension is used to denote a preferred extension obtained with Mod-

gil’s semantics for EAF .
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is considered.

Definition 24 (Def. 4 in [29]). A Recursive Argumentation Framework (RAF ) is
a tuple 〈Ar , att, s, t〉 where Ar is a finite and non-empty set of arguments, att is a
finite set disjunct from Ar representing attack names, s is a function from att to Ar
mapping each interaction to its source, and t is a function from att to (Ar ∪ att)
mapping each interaction to its target.

Note that a RAF can be graphically represented in the same way as an AFRA
(see Section 3.3).

Acceptability semantics for argumentation frameworks with higher-order attacks
have been defined in a direct way in [29]. The idea is to specify the conditions
under which the arguments are considered as accepted directly on the extended
framework, without translating the original framework into an AF . Moreover, due to
the defeasible nature of attacks (attacks may be affected by other attacks), conditions
under which the attacks are accepted must also be specified. Indeed, some attacks
may not be “valid”, in the sense that they cannot defeat the argument or attack
they are targeting. So, acceptability conditions for arguments should be given with
respect to valid attacks and, conversely, attacks should be declared valid with respect
to other arguments or attacks. For instance, the fact that two arguments may
be conflicting depends on the validity of the attack between them. Hence, the
traditional notion of extension defined in terms of a set of arguments is replaced by
a pair of a set of arguments and a set of attacks, called a “structure”.

Definition 25 (Def. 5 in [29]). Consider RAF = 〈Ar , att, s, t〉. A structure of
RAF is a pair (S,Γ) with S ⊆ Ar and Γ ⊆ att.

Intuitively, given a structure U = (S,Γ), S contains the arguments that are
accepted “owing to” U and Γ contains the attacks which are valid “owing to” U (the
meaning of “owing to” depending on the considered semantics).

In the following, we recall the acceptability conditions for structures, and the
definitions of the semantics that are given in [29]. The key notion is the fact that a
set of arguments (resp. attacks) can be “defeated” (resp. “inhibited”) w.r.t. a given
structure.

Definition 26 (Equations (1) – (4) in [29]). Consider RAF = (Ar , att, s, t). Let
U = (S,Γ) be a structure of RAF , a ∈ Ar and α ∈ att.

• a is defeated w.r.t. U iff there is β ∈ Γ with s(β) ∈ S and t(β) = a,

• α is inhibited w.r.t. U iff there is β ∈ Γ with s(β) ∈ S and t(β) = α.
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Def(U) (resp. Inh(U)) denotes the set of arguments (resp. attacks) that are de-
feated (resp. inhibited) w.r.t. U .

Then semantics for RAF are defined as follows:

Definition 27 (Defs. 6, 7 in [29]). Consider RAF = 〈Ar , att, s, t〉. Let U = (S,Γ)
be a structure of RAF .

• U is conflict-free iff S ∩Def(U) = ∅ and Γ ∩ Inh(U) = ∅.

• Let a ∈ Ar and α ∈ att. a (resp. α) is acceptable w.r.t. U iff for each β ∈ att
with t(β) = a (resp. t(β) = α), either β ∈ Inh(U) or s(β) ∈ Def(U). Acc(U)
denotes the set of all arguments and attacks that are acceptable w.r.t. U .

• U is admissible iff it is conflict-free and for each x ∈ (S ∪ Γ), x is acceptable
w.r.t. U .

• U is complete iff it is conflict-free and Acc(U) = S ∪ Γ.

• U is stable iff it is conflict-free and satisfies Ar \ S ⊆ Def(U) and att \ Γ ⊆
Inh(U).

• U is preferred iff it is a ⊆-maximal admissible structure.

• U is grounded iff it is the ⊆-minimal conflict-free structure U = (S,Γ) satis-
fying Acc(U) ⊆ S ∪ Γ.11

Example 3 (cont’d) The structure ({b, c′, e}, {β, δ, γ, η, θ}) is the grounded, com-
plete, preferred and stable structure of the RAF corresponding to the weather exam-
ple. At this point we can remark an important difference with AFRA: whereas η
defeats δ (because it defeats its source c) in AFRA, η does not inhibit δ w.r.t. this
structure in RAF . Hence, we obtain different results for the grounded, complete,
preferred and stable semantics, where δ is left out of the AFRA extension, but is
included in the corresponding RAF structure.

The notion of structure has been strengthened in order to obtain a conserva-
tive generalization of Dung’s frameworks for the conflict-free, admissible, complete,
stable and preferred semantics. It is worth noting that in an AF , each attack is
considered as valid, in the sense that it may affect its target. The next definition
strengthens the notion of structure by adding a condition on attacks that will force
every acceptable attack to be valid.

11The definition for the grounded structure was given in [33], which is an extended version of [29].
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Definition 28 (Defs. 11 to 13 in [29]). Consider RAF = 〈Ar , att, s, t〉.

1. A d-structure on RAF is a structure U = (S,Γ) such that (Acc(U)∩ att) ⊆ Γ.

2. A conflict-free (resp. admissible, complete, preferred, stable) d-structure is a
conflict-free (resp. admissible, complete, preferred, stable) structure which is
also a d-structure.

This result has also been extended to the grounded semantics in [33]. The
conservative generalization proved in [29; 33] relies upon a correspondence between
a Dung’s framework (and its extensions) and a “non-recursive” RAF (and its d-
structures), where a non-recursive RAF is a RAF in which no attack targets another
attack.

Another one-to-one correspondence has been proved in [29]. Indeed the RAF
and the AFRA approaches give similar results for complete, preferred and stable
semantics but, once again, it is not the case when we consider conflict-freeness and
admissibility (see Propositions 2 to 5 in [29]). Moreover this correspondence needs to
apply some constraints on the semantics results (it is not a direct one). Example 5,
already used for comparing Gabbay’s approach with AFRA, can also be used for
illustrating these points.
Example 5 (cont’d) First, the set {α, β} cannot be conflict-free in AFRA (since
α defeats β), whereas the structure (∅, {α, β}) is conflict-free in RAF .

Moreover, recall that {c, α} is an admissible set of the AFRA, whereas the struc-
ture ({c}, {α}) is not admissible with the RAF approach. Indeed, in AFRA, α de-
feats β (or b) despite the absence of its source while, in RAF , an attack whose source
is not accepted cannot defeat other arguments or attacks.

Consider now the semantics level, for instance for the preferred semantics. With
the RAF approach, the preferred structure is ({a, c}, {α, β}) whereas with the AFRA
approach, the preferred extension is {a, c, α}. In that case, if we want to obtain a
RAF structure from an AFRA extension, we need to add to the structure all those
attacks whose only reason for being defeated, according to AFRA, is because of the
attacks towards their source (here β). Conversely, the AFRA extension is obtained
from the RAF structure by the removal of attacks whose source is not in the structure
(here β, too).

Note that, on Example 5, RAF produces results similar to Gabbay’s approach.
This is also the case when we consider Example 4.
Example 4 (cont’d) In this example, considering the complete labellings obtained
with Gabbay’s approach and the structures of the RAF approach, the same results
are obtained: first a, c, c1, and all attacks are labelled in and are in the same
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structure; second c, c1, and all attacks except (c, b) and (c1, b1) are labelled in and
are in the same structure.

These two examples show some correspondences between RAF and Gabbay’s
higher-level argumentation frames. Nevertheless, these correspondences remain to
be proven, particularly because between labellings and structures a main difference
exists: the undec value.

3.6 Comparison between Higher-order approaches: a first and suc-
cinct summary

Throughout Section 3 we highlighted many differences and similarities in order to
compare the five approaches introduced in this section (EAF–Section 3.1–, HLAF–
Section 3.2–, AFRA –Section 3.3–, i-semantics for HLAF–Section 3.4–and RAF–
Section 3.5). These comparison points were introduced when pertinent (depending
on the definitions and examples that were discussed at that point in the text). So, in
order to facilitate the reading and the understanding of this chapter, we just recall
here the main comparison points between all these approaches.

• First of all, these approaches have been compared with Dung’s framework and
generally they are a conservative generalization of the latter when no higher-
order attacks are present. Nevertheless, this result does not hold for the AFRA
when we consider some basic notions such as conflict-freeness (see Example 5
in Section 3.3).

• An EAF can be viewed as a particular case of HLAF (a level (0, 1) argumen-
tation frame with a specific constraint), but EAF and HLAF do not coincide
from a semantics point of view (see Example 4 in Section 3.2).

• Examples 3 and 5 in Section 3.3 illustrate the same results between HLAF
and AFRA: HLAF and AFRA do not coincide from a semantics point of
view.

• Moreover, a detailed comparison between AFRA and EAF can be found in [11]
highlighting the fact that EAF and AFRA do not coincide from a semantics
point of view.

• Another comparison is available concerning HLAF , EAF and i-semantics,
yielding once again the same result: HLAF , EAF and i-semantics do not
coincide (see Examples 3 and 4 in Section 3.4 and the text given at the end of
Section 3.4).
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• No comparison exists between RAF and the other higher-order approaches,
except for AFRA. In this case, Example 5 in Section 3.5 can be used for
illustrating the fact that RAF and AFRA do not coincide from a semantics
perspective.

Note that a more complete analysis and comparison of these approaches can be
found in Section 7.

4 Different variants of first-order bipolar argumentation
frameworks

In this section we will present some bipolar argumentation frameworks, which are
amongst the most-widely used in the literature and inspired the approaches from
Section 5. Then we will end this section by briefly discussing the links between
the developments on bipolar argumentation frameworks and works in structured
argumentation that also account for a notion of support, as well as mentioning
other works that contemplate the existence of support relations for performing legal
reasoning, for mining arguments and relations from debates, and for identifying
arguments and their relations in an empirical study.

Bipolar Argumentation Frameworks (BAF s) were firstly introduced in [63; 95;
5] and further developed in [34], where the authors discuss the use of bipolarity
in argumentation, analyzing how it appears under different forms in each step of
the argumentation process. Briefly, a BAF extends Dung’s AF by considering two
independent interactions between arguments, with diametrically opposed nature: an
attack relation and a support relation. Over the years, different interpretations for
the notion of support were proposed in the literature, leading to the formalization
of variants of BAF s.

In this section, we will start by introducing the characterization of BAF given
in [34], where a general notion of support is considered (i.e. a support relation that
does not impose constraints on the arguments it relates, other than expressing a
positive relationship between them). Then, we will introduce the Argumentation
Framework with Necessities (AFN) originally proposed in [78], whose support re-
lation is interpreted as necessity, meaning that if an argument a supports another
argument b, then the acceptance of a is required to get the acceptance of b. Finally,
we will present the approach of [80], where an evidential interpretation of support is
considered to capture a particular notion: an argument cannot be accepted unless
it is supported by evidence. For each of these approaches, we will only provide the
basic definitions of the framework and the types of attack they consider, without
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entering into details about the different methods they propose for determining the
accepted arguments of the framework.

As mentioned before, other interpretations for the notion of support such as
deductive [16] or backing [43] have been considered in the literature (we refer the
reader to [39; 46] for a full account of support in abstract argumentation). Note
that the deductive approach will be introduced in Section 5.1 since it accounts for
higher-order interactions.

4.1 The General Bipolar Argumentation Framework

As briefly mentioned at the beginning of this section, a Bipolar Argumentation
Framework (BAF ) extends Dung’s AF by incorporating a support relation that is
defined independently from the attack relation. Formally:

Definition 29 (Def. 1 in [34]).
A Bipolar Argumentation Framework (BAF ) 〈Ar , att, sup〉 consists of a set Ar

of arguments, a binary relation att called an attack relation, and another binary
relation sup called a support relation.

Similarly to Dung’s AF , a BAF can also be represented by a directed graph,
with two kinds of edges: solid arrows for the attack relation and double arrows
for the support relation. The notion of BAF and its graphical representation are
illustrated by the following example, taken from [46] (in turn, inspired on [87; 37]):

Example 7 (Introduction example in [46]). Consider the following arguments
exchanged during the meeting of the editorial board of a newspaper:

Argument i: Information I concerning person P should be published.

Argument p: Information I is private, so P denies publication.

Argument s: I is an important information concerning P ’s son.

Argument m: P is the new prime minister, so everything related to P is public.

It is clear that some conflicts appear during the discussion. That is the case of
the conflict between arguments p and i, and between arguments m and p. On the
other hand, there is a relation between arguments p and s, which is clearly not a
conflict. Moreover, s provides a new piece of information enforcing argument p.

This discussion can be represented by a BAF as the one depicted below:
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s p i

m

Given the coexistence of the support and attack relations in a BAF , [34] intro-
duce the notions of supported and secondary12 attack, which combine a sequence of
supports with a direct attack.

Definition 30 (Def. 3 in [34]). Given a BAF = 〈Ar , att, sup〉 and a, b ∈ Ar . A
supported attack from a to b exists iff there exists a sequence of arguments a =
a1, . . . , an = b (n ≥ 3) such that (ai, ai+1) ∈ sup, with (1 ≤ i ≤ n − 2), and
(an−1, an) ∈ att.

A secondary attack from a to b exists iff there exists a sequence of arguments
a = a1, . . . , an = b (n ≥ 3) such that (a1, a2) ∈ att and (ai, ai+1) ∈ sup, with
(2 ≤ i ≤ n− 1).

By extension, the authors in [34] state that a sequence of two arguments a, b such
that (a, b) ∈ att (i.e. a direct attack) is also considered to be a supported attack.
Example 7 (cont’d) Given the BAF from this example, we have the direct attacks
specified by the attack relation (which are also considered to be supported attacks),
and a supported attack from s to i. On the other hand, no secondary attacks exist.

Having established the conflicts that arise from the coexistence of the attack
and support relations, the authors of [34] turn to establish the conditions under
which the acceptable arguments of a BAF can be identified. For that, several al-
ternatives were proposed in [34; 35; 38], ranging from the direct characterization
of the classical semantics for BAF (in particular, considering a wider range of ad-
missible sets and preferred extensions, by imposing additional constraints related
to the support relation), to the characterization of a Dung-like AF associated with
BAF , called the Coalition Argumentation Framework (CAF ), where arguments cor-
respond to coalitions of arguments from the BAF that are linked by the support
relation. Since the aim of this section is just to introduce the basic formalization
of the BAF , focusing on the interpretation of support it adopts, we will not go
into further details about these approaches and refer the interested reader to [39;
46]; this also applies to the approaches to be introduced in the following subsections.

12In [34] the authors use the terminology indirect attack; however, in later works they adopted
the terminology secondary.
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4.2 The Argumentation Framework with Necessities
In [78] the authors firstly introduced the Argumentation Framework with Necessities
(AFN), an extension of Dung’s AF that incorporates a specialized kind of support
relation between arguments: the necessity relation. Briefly, the necessity relation
establishes that if an argument a supports another argument b, then a is necessary
to obtain b. In that way, “if b is accepted then a is also accepted” and, conversely,
“if a is not accepted then b cannot be accepted” either. The authors continued their
work on AFNs in [79; 20; 77]; in particular, in [79] they proposed a generalization
of their framework to account for sets of supporting arguments. In this section we
will introduce the basic notions surrounding the formalization of AFN as proposed
in [79] and [20], since these are the ones that inspired some of the developments
presented later in Section 5.

Definition 31 (Def. 4 in [20]). An Argumentation Framework with Necessities
(AFN) is defined by 〈Ar , att, sup〉, where Ar is a set of arguments, att ⊆ Ar × Ar
is a binary attack relation and sup ⊆ Ar × Ar is a binary irreflexive and transitive
relation, called the necessity relation.

The authors in [20] state that the irreflexive and transitive nature of sup excludes
any risk to have a cycle of necessities. In particular, they state that such cycles are
undesirable because they correspond to a kind of fallacy (begging the question).

Given the intended meaning of the support relation in AFN , which specializes
the general support relation in BAF , positive relationships like the one illustrated
on Example 7 might not be well captured by the necessity relation. That is, given
arguments s and p such that s supports p, it is neither the case that s is necessary
for p, nor that p is necessary for s. Hence, this relation cannot be accommodated
within the AFN support relation. The necessity relation of the AFN is illustrated
by the following example, partly taken from [96].13

Example 8 (Ex. from [96]). Consider the following
(partial) argument exchange during a degree committee meeting:

Argument a (Prof1): Student X cannot apply for a PhD on May

Argument b (Student X): I will graduate on March

Argument c (Prof2): X is missing a grade in the logics course

Argument d (Prof3): On the academic transcript, there is no grade in the logics
course

13The complete example will be introduced later in Section 5.1.
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Argument e (Student X): The professor of the logics course said I passed the
exam

This informal exchange could be represented by the AFN depicted below, where
attacks are depicted by single arrows and supports are depicted by double arrows:

d

e c b a

Here, among other relationships, we can highlight the fact that argument c is
necessary for argument d.

In [79] the authors argued that, unlike a general support relation like the one
introduced in Section 4.1, the necessity relation has the advantage to ensure that
its interaction with the attack relation generates new attacks having exactly the
same nature as the direct ones. These extended attacks are defined by combining a
sequence of supports with a direct attack.

Definition 32 (Def. 2 in [79]). Let 〈Ar , att, sup〉 be an AFN and a, b ∈ Ar . There
is an extended attack from a to b iff there exists c ∈ Ar such that either: (a, c) ∈ att
and (c, b) ∈ sup, or (c, b) ∈ att and (c, a) ∈ sup. The direct attack (a, b) ∈ att is
considered to be a particular case of extended attack.

Example 8 (cont’d) Here, in addition to the direct attacks expressed in the attack
relation att, there exists an extended attack from e to d, and an extended attack from
d to b.

It should be noted that the first kind of extended attack presented in Definition 32
coincides with the secondary attacks from the BAF (see Definition 30). This kind
of extended attack is meant to enforce the acceptability constraint derived from the
necessity interpretation of support; specifically, an extended attack of the first kind,
where a attacks c and c supports b, is meant to enforce the constraint that if c is
not accepted (in particular, in a case where a is accepted), then b should not be
accepted either.

On the other hand, the second kind of extended attack is somewhat irrelevant.
To illustrate this, let us consider the situation on Example 8. There, there is an
extended attack of the second kind from d to b, expressing that if d is accepted, then
b must not be accepted. In particular, given the constraint imposed by the necessary
support relation, if d is accepted, then c must also be accepted (since c is necessary
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for d). Then, because of the attack from c to b, in such a case b will not be accepted.
Hence, the extended attack from d to b seems a little bit useless. Nevertheless, it
can be noted that the second kind of extended attack was introduced in [79] in order
to highlight the duality between the necessary interpretation of support and the
deductive interpretation of support originally proposed in [16]14. For a full account
of the duality between necessary support and deductive support we refer the reader
to [39; 46].

Regarding the acceptability calculus in AFN , different approaches were proposed
in the literature, similarly to the case of the BAF . On the one hand, the authors
provided a direct characterization of the classical semantics for AFN . On the other
hand, they introduced an alternative approach for obtaining the extensions of an
AFN by characterizing an associated AF , obtained by considering the arguments
of the original AFN and the extended attacks among them (hence, including also
the direct attacks).

Finally, [79] also proposed an extension of the AFN in which the necessity rela-
tion can express the fact that a given argument requires at least one element among
a set of arguments. The resulting framework is called Generalized Argumentation
Framework with Necessities (GAFN), introduced below.

Definition 33 (Def. 8 in [79]). A GAFN is defined by a tuple 〈Ar , att, sup〉 where
Ar is a set of arguments, att ⊆ Ar ×Ar is an attack relation and sup ⊆ ((2Ar\∅)×
Ar) is a necessity relation.

In particular, the support relation in a GAFN encodes the following constraint:
given S ⊆ Ar and a ∈ Ar , (S, a) ∈ sup means that the acceptance of a requires the
acceptance of at least one of the arguments in S; in other words, “if a is accepted,
then there exists b ∈ S such that b is also accepted”. This generalization of the AFN
was then considered in [77], where a characterization of additional semantics directly
on the GAFN were given following the extension-based approach, in addition to
introducing labelling-based semantics for the framework. In particular, as will be
shown in Section 5.2, the formalization of the AFN and the GAFN inspired the
characterization of different argumentation frameworks with recursive attacks and
necessary supports.

4.3 The Evidential Bipolar Argumentation Framework
In argumentation theory it is usually assumed that the premises (thus, the arguments
they belong to) always hold since argumentation frameworks represent a snapshot

14Recall that the approach to deductive support will be introduced later in Section 5 (specifically,
in Section 5.1) since it also accounts for higher-order interactions.

1376



Higher-Order Interactions in Abstract Argumentation

of the arguments and relations involved on the reasoning process. However, alterna-
tive approaches like [80] consider that arguments should be backed up by evidence.
Evidential reasoning involves determining which arguments are applicable based on
some evidence. In that way, the approach to evidential support proposed in [80]
intends to capture a particular notion: an argument cannot be accepted unless it is
supported by evidence.

The Evidential Argumentation System was firstly introduced in [80], extending
Dung’s AF by incorporating a specialized support relation to capture the notion of
evidential support; this line of work was later continued in [84]. Despite the original
naming of their system, for uniformity purposes with other approaches to bipolar
abstract argumentation, from hereon we will refer to this system as the Evidential
Bipolar Argumentation Framework (EBAF ).

The support relation in the EBAF enables to distinguish between prima-facie
and standard arguments. On the one hand, prima-facie arguments do not require
support from other arguments to stand, whereas standard arguments must be linked
to at least one prima-facie argument through a chain of supports. Given the evi-
dential interpretation of support, an argument in the EBAF will be accepted only
if it is supported through a chain of arguments, each of them being itself supported.
At the beginning of this chain of supporting arguments there is a special argument
η that represents support from the environment (i.e. the existence of supporting
evidence).

Definition 34 (Def. 3.1 in [84]). An EBAF is a tuple 〈Ar , att, sup〉, where Ar is a
set of arguments, att ⊆ (2Ar\∅)×Ar is the attack relation, and sup ⊆ (2Ar\∅)×Ar is
the support relation. A special argument η ∈ Ar is distinguished, such that @(X, y) ∈
att where η ∈ X; and @X where (X, η) ∈ att or (X, η) ∈ sup.

Since the environment requires no support, η cannot appear as the second ele-
ment of a member of sup; moreover, it cannot be attacked by any set of arguments.
In addition, since any argument attacked by the environment will be unconditionally
defeated it makes no sense to include such arguments, therefore prohibiting the en-
vironment from appearing in a set originating an attack. Also note that, differently
from the previous approaches, and inspired on [74], the attack relation is not binary.
Given X ⊆ Ar and a ∈ Ar , (X, a) ∈ att reads as follows: “if all the arguments
in X are accepted, then a cannot be accepted”. Then, for the evidential support
relation, (X, a) ∈ sup reads as: “the acceptance of a requires the acceptance of all
the arguments in X”; furthermore, accepted arguments need to trace back to the
special argument η.

Since the core idea of the EBAF is that valid arguments (in particular, attackers)
need to trace back to the environment, the authors define the notion of evidence
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supported attack (e-supported attack) as follows.

Definition 35 (Def. 3.2 and 3.4 in [84]). Let 〈Ar , att, sup〉 be an EBAF , a ∈ Ar
and S ⊆ Ar :

• a has evidential support (e-support) from S iff a = η or there is a non-empty
S′ ⊆ S such that (S′, a) ∈ sup and ∀b ∈ S′, b has e-support from S\{a}.

• a has minimal e-support from S if there is no S′ ⊂ S such that a has e-support
from S′.

• S carries out an evidence-supported attack (e-attack) on a iff (S′, a) ∈ att
where S′ ⊆ S, and for all s ∈ S′, s has e-support from S.

• an e-supported attack by S on a is minimal iff there is no S′ ⊂ S that carries
out an e-supported attack on a.

Finally, semantics for EBAF have been characterized in [80] and then reformu-
lated in [84]. In addition, [84] formally established a correspondence between EBAF
and GAFN and identified correspondences between the properties of both of these
systems to the properties obtained in Dung’s argumentation framework. Briefly, the
translation is such that unsupported arguments in the GAFN will correspond to
arguments supported by η in EBAF . Then, each attack from a to b in GAFN will
be translated into an attack from {a} to b in EBAF . Then, the generalized support
relation of GAFN is translated in a way such that all sets of supporting arguments
for a given argument a in GAFN are combined into different sets of supporting
arguments for a in EBAF . Formally:

Definition 36 (Transl. 1 in [84]). Let 〈Ar , att, sup〉 be a GAFN . The correspond-
ing EBAF 〈Ar ′, att ′, sup′〉 is created as follows:

• Ar ′ = Ar ∪ {η}.

• For every two arguments a, b ∈ Ar such that (a, b) ∈ att, put ({a}, b) in att ′.

• Let a ∈ Ar and Z = {Z1, . . . , Zn} be a collection of all sets Zi such that
(Zi, a) ∈ sup. If Z is empty, then put ({η}, a) in sup′; otherwise, for all
Z ′ ∈ (Z1 × . . . × Zn), add (Z ′S , a) to sup′, where Z ′S is the set of all elements
in Z ′.

Following the preceding translation we can model the AFN from Example 8 as
an EBAF .
Example 8 (cont’d) The arguments and interactions exchanged during the degree
committee meeting can be represented by the EBAF 〈Ar , att, sup〉, where:
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• Ar = {a, b, c, d, η}

• att = {({e}, c), ({c}, b), ({b}, a)}

• sup = {({η}, e), ({η}, c), ({η}, b), ({η}, a), ({c}, d)}

This EBAF is depicted below where, for simplicity, the special argument η is
omitted. Instead, prima-facie arguments (i.e. arguments supported by η) are repre-
sented using solid outlines whereas standard arguments are represented with dashed
outlines. So, the only standard argument in this example is d. Also, since every
attack and support in the EBAF originates from a singleton set, the solid arrows
(resp. the double arrows) directly depart from the argument originating the attack
(resp. the support).

d

e c b a

Here, every attack in att corresponds to a minimal e-supported attack.

4.4 Links with Support in Structured Argumentation and Others
Most research on bipolar argumentation systems has been carried out at the abstract
level. Notwithstanding this, there exist other works tackling the issue of dealing with
the notion of support in other contexts. In this section we will briefly comment on
some of them, divided into two groups.

The first group of works addresses the notion of support in three of the major
structured argumentation systems: ASPIC+ [73], Assumption-Based Argumenta-
tion (ABA) [48] and Defeasible Logic Programming (DeLP ) [60]. On the one hand,
[86] and [47] studied different forms of support in ASPIC+ and analyzed whether
they correspond to any of the existing interpretations of support at the abstract
level, showing that ASPIC+ sub-argument relation is a special case of necessary
support, and can be considered as a special case of evidential support. On the other
hand, [49] studied necessary support, deductive support, and the coalitions approach
for BAF in the context of ABA. In particular, they proved that the aforementioned
interpretations of support in BAF s correspond, under the (respective) admissible
and preferred semantics (where defined), to the admissible and preferred seman-
tics of a restricted kind of ABA frameworks, called bipolar. Finally, [42] extended
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DeLP by incorporating a new kind of rules and arguments, corresponding to Toul-
min’s notion of backing [93]. Then, the authors showed that this extended version
of DeLP can be used to instantiate the bipolar abstract argumentation framework
that adopts the backing interpretation of support originally proposed in [43].

The second group of works we consider contemplates the existence of support re-
lations in different ways: using BAF s to perform legal reasoning, mining arguments
and support relations, and providing an empirical study showing the usefulness of
support relations. [64] proposes a transformation from PROLEG [89] to a BAF
where the support relation is originated in a set of arguments, and gives a semantics
for that BAF in a way that guarantees that a PROLEG answer set coincides with
the set of accepted arguments in the BAF ; as stated by the authors, their aim is
that the meaning of legal reasoning is preserved by their proposed semantics. The
work by Cabrio and Villata [24] discusses and evaluates, on a sample of natural
language arguments extracted from Debatepedia, the support and attack relations
among arguments in BAF s adopting different interpretations of support (general,
necessary, deductive) with respect to the more specific notions of textual entailment
and contradiction. They investigated the distribution of those attacks in the debates,
showing that all these interpretations of support (and the corresponding attacks) are
verified in human debates, though with different frequency. Finally, [83] describes
the results of an experiment in which participants were asked to judge dialogues in
terms of agreement and structure. Among other findings, the data they collected
supports the use of BAF s, since the notion of defence does not necessarily account
for all of the positive relations between the statements viewed by the participants.

The works accounted for in this subsection serve to establish a connection be-
tween the developments on bipolar argumentation at the abstract and structured
levels, as well as providing an empirical justification for using BAF s, their applica-
tion in the legal domain, and the mining of support relations. Nevertheless, it should
be noted that none of the approaches discussed above accounts for the existence of
higher-order or recursive interactions (neither attack nor support). Consequently, in
principle, they would not be suitable to instantiate the approaches to higher-order
interactions that will be addressed in this chapter. A deeper study on how to accom-
modate these structured approaches to fit the existing literature about higher-order
interactions in abstract argumentation is certainly of interest. However, since this
chapter is meant to focus on recapping the state of the art on higher-order interac-
tions in abstract argumentation, such study is out of scope and will be addressed on
future works.
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5 Different supports, so different higher-order bipolar
approaches

The works presented in this section respect the typology of the support relation:
deductive, necessary and finally evidential support.

5.1 Higher-order deductive supports
In [16; 96], the authors pursued their previous work presented in [15] by the intro-
duction of supports in the same meta-argumentation framework. They only consid-
ered deductive supports: “a deductively supports b” means that “if a is accepted
then b is also accepted”. In fact, this is also the first work in which this notion of
deductive support is formally defined and used; so, we can consider that Bipolar Ar-
gumentation Frameworks with Deductive Support (BAFDs) are introduced in [16].
Moreover, in order to take into account “defeasible supports” (supports that can be
attacked), [16; 96] use second-order interactions with different constraints following
the nature of the interaction:

• the attack relation att and the support relation sup are binary relations over
the set of arguments (they are called simple attacks and supports);

• a second attack relation att2 targets either a simple attack, or a simple support
(second-order attack);

• the source of a second-order attack is either an argument or a simple attack.

This “second-order bipolar argumentation framework” can be flattened using
Def. 9 in [16]. Note that, since the second-order attacks cannot be attacked, this
original definition can be simplified as follows:15

Definition 37. Let 〈Ar , att, sup, att2 〉 be a second-order argumentation framework
defined with:

• Ar being the set of arguments,

• att : Ar ×Ar being the set of simple attacks,

• sup : Ar ×Ar being the set of simple deductive supports,

• att2 : (Ar ∪ att)× (att ∪ sup) being the set of second-order attacks.

15Note that Definition 37 extends Definition 13 given in Section 3.1.
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The flattened version of this framework is the Dung argumentation framework
defined by:

• the set of arguments =
{acc(a)|a ∈ Ar} ∪ {Xab, Yab|(a, b) ∈ att} ∪ {Zab|(a, b) ∈ sup}

• the binary attack relation =
{(Xab, Yab)|(a, b) ∈ att} ∪
{(Yab, acc(b))|(a, b) ∈ att} ∪
{(acc(a), Xab)|(a, b) ∈ att} ∪
{(acc(c), Yab))|(c, (a, b)) ∈ att2 and (a, b) ∈ att} ∪
{(Zab, acc(a))|(a, b) ∈ sup} ∪
{(acc(b), Zab)|(a, b) ∈ sup} ∪
{(acc(c), Zab))|(c, (a, b)) ∈ att2 and (a, b) ∈ sup} ∪
{(Ycd, Yab))|((c, d), (a, b)) ∈ att2 and (a, b) ∈ att}16

As argued by the authors in [16], the coexistence of attacks and supports towards
arguments in their framework leads to the existence of new attacks, which reinforce
the acceptability constraints imposed by the deductive support relation. Specifically,
they consider supported attacks (like in Definition 30 for the BAF ) and mediated
attacks, defined as follows.

Definition 38 (Def. 7 in [16]). Let 〈Ar , att, sup, att2 〉 be a second-order argumen-
tation framework and a, b ∈ Ar . A mediated attack from a to b exists if there
is a sequence of arguments b = a1, . . . , an (1 < n) such that for all 1 ≤ i < n,
(ai, ai+1) ∈ sup and (a, an) ∈ att.

In [96], this approach has also been extended taking into account prioritized
supports and has been applied to structured argumentation and to the Abstract
Dialectical Framework (ADF ) developed by Brewka and Woltran (see [23] for an
overview).

The following example illustrates Definition 37.
Example 8 (cont’d) Consider the following additional arguments exchanged during
the degree committee meeting:

Argument f (Student X): I was in hospital in the date of the logics exam

Argument g (Prof1): There is no record of your stay in the hospital

16In [16], the authors consider that the source of an attack that targets a support must always
be an argument. Nevertheless, this constraint does not appear in Def. 9 given in [16].
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Argument h (Student X): The professor of logics was ill and could not register
my exam

The exchange accounting for every argument and interaction can be represented
by the following directed graph in which one can find, among other things, that d
supports c (under the deductive interpretation of support, the direction of the arrow
previously representing the necessary support from c to d is now reversed), h attacks
the support (d, c), and f attacks the attack (c, b):

d

h

e c b a

g f

(attacks are represented with solid arrows and supports with double arrows)
Here, there exists a supported attack from d to b and there exists a mediated

attack from e to d.
This framework can be flattened into a simple AF (only arguments and simple

attacks) as follows:

acc(d)

Zdc acc(h)

acc(e) Xec Yec acc(c) Xcb Ycb acc(b) Xba Yba acc(a)

acc(f)

acc(g) Xgf Ygf
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The arguments b, d, e, g and h are acceptable in this AF and belong to any
classical extension (grounded, preferred, stable, . . . ). Moreover, if we consider that
the meta-arguments Y (resp. Z) represent the attacks (resp. the support), we can
also conclude that the attacks (e, c), (g, f), (b, a) and of course, since they cannot be
attacked, (f, (c, b)) and (h, (d, c)) are acceptable in this AF and belong to any classical
extension. In contrast, the attack (c, b) and the support (d, c) are not acceptable in
this AF .

Note that d is acceptable since the support (d, c) is invalidated by the attack
coming from h. Otherwise, in the case the argument h is not considered, the existence
of this support and the fact that c is not acceptable would imply that d would also
not be acceptable.

Considering the used flattening process and the fact that the semantics in these
second-order deductive bipolar frameworks are defined as in AF , it is obvious to see
that these frameworks are a conservative generalization of AF , of BAFD17 and of
EAF . And so considering the differences between EAF and the other approaches
(Gabbay’s approach, AFRA and RAF ), it is also obvious to see that there is no
one-to-one correspondence between second-order deductive bipolar frameworks and
these approaches.

5.2 Higher-order necessary supports
Throughout this section, recall that “a necessary supports b” means that “if b is ac-
cepted then a is also accepted” (duality between necessary and deductive supports).

5.2.1 ASAF approach

In [44] the authors firstly proposed the Attack-Support Argumentation Framework
(ASAF ) taking its basis from the AFRA and the AFN (see Sections 3.3 and 4.2).
Specifically, the ASAF features a necessary support relation and an attack relation
allowing for attacks and supports between arguments, as well as attacks and supports
from an argument to the attack and support relations, at any level. This line of
work was further pursued in [45] and [61], where the latter consolidates the previous
works showing different (and equivalent) alternatives for addressing the acceptability
calculus in the ASAF , and showing the relationship w.r.t. the frameworks it is
inspired on.

As stated in [61], the intuition behind the existence of a higher-order support
in the ASAF (i.e. a support targeting an attack/support) is that the supporting

17Indeed, BAFD corresponds to these second-order deductive bipolar frameworks without any
second-order attacks.
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argument provides the context under which the targeted interaction holds. Hence,
for instance, given a support β from an argument a to an attack or a support X,
argument a should be accepted in order for the interaction X to hold. Similarly,
extending the intuition behind the existence of a recursive attack relation (e.g. as
in the EAF to model preferences), higher-order attacks in an ASAF (i.e. attacks
targeting an attack/support) capture the intuition that the attacking argument pro-
vides a context under which the targeted interaction should not hold.

Definition 39 (Def. 11 in [61]). An Attack-Support Argumentation Framework
(ASAF ) is a tuple 〈Ar , att, sup〉 where Ar is a set of arguments, att ⊆ Ar × (Ar ∪
att∪sup) is an attack relation and sup ⊆ Ar×(Ar ∪att∪sup) is a necessary support
relation. It is assumed that sup is acyclic and att ∩ sup = ∅.

Since in ASAF attacks and supports can be attacked or supported, abbreviated
notations for the interactions are proposed (similarly to what is done in the AFRA,
see Section 3.3, or in the RAF , see Section 3.5), making use of s(·) and t(·) for
identifying the source and target of an interaction. Then, for instance, an attack
from an argument a to a support from b to X (with X being an argument, an attack
or a support) will be represented by a pair α = (a, β) in the attack relation att of
the ASAF , where β = (b,X) is a pair belonging to the support relation sup of the
ASAF ; in this case, it holds that s(α) = a, t(α) = β, s(β) = b and t(β) = X.

Given the duality between the necessary and deductive interpretations of sup-
port discussed in Section 4.2, we can represent the discussion held during the degree
committee meeting with an ASAF , since the only support involves arguments c and
d. Nonetheless it should be noted that, for deductive supports targeting an interac-
tion, a necessary support cannot be obtained directly by reversing the support since
that would imply that the resulting necessary support originates in an interaction
(and this is not allowed in the ASAF ).
Example 8 (cont’d) The complete exchange of arguments can be represented by
the following ASAF . Similarly to before, arguments are depicted in circles, attacks
are depicted using solid arrows, supports are depicted using double arrows, and at-
tacks/supports are labelled with Greek letters in squares:
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d

δ ε h

e γ c β b α a

π

g µ f

In [61] the authors provided a characterization of the ASAF semantics directly
on the framework. In order to do that, the authors followed the same methodol-
ogy applied for the AFRA (see Section 3.3) which consists on first identifying the
different kinds of defeat that can occur in the ASAF and then define some basic
semantic notions to finally characterize the complete, preferred, stable and grounded
semantics of the framework.

Definition 40 (Defs. 12 - 18 in [61]). Let ASAF = 〈Ar , att, sup〉, α ∈ att, X ∈
(Ar ∪ att ∪ sup) and S ⊆ sup.

• α unconditionally defeats X, denoted α udef X iff either (α,X) ∈ att, or
X ∈ att and (α, s(X)) ∈ att.

• α conditionally defeats X given the set S, denoted α cdef X given S iff there
exists a sequence of arguments [a1, . . . , an] (n ≥ 2) such that for every ai (1 ≤
i < n), (ai, ai+1) ∈ sup, and it holds that t(α) = a1 and either: an = X, or
an = s(X) and X ∈ att; the set S is the union of the supports (ai, ai+1) ∈ sup.

Note that the preceding definition allows arguments, attacks or supports to be
defeated. In the first bullet, if (α,X) ∈ att, a defeat reminiscing the direct defeat of
the AFRA would occur; on the other hand, if (α, s(X)) ∈ att with X ∈ att, a defeat
akin to the indirect defeat of the AFRA takes place. Then, in the second bullet, if
an = X (and t(α) = a1), a defeat corresponding to the first kind of extended attack
of the AFN occurs; on the other hand, if an = s(X) with X ∈ att (and again,
t(α) = a1) we have a new kind of defeat, which combines the behavior of the first
kind of extended attack from the AFN and the indirect defeat from the AFRA.

Then, based on these defeats, the notions of conflict-freeness, acceptability and
admissibility for ASAF are defined as follows:

Definition 41 (Defs. 19–21 in [61]). Let ASAF = 〈Ar , att, sup〉 and S ⊆ (Ar ∪
att ∪ sup).
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• S is conflict-free iff @α,X,∈ S, @S′ ⊆ S such that either α udef X or α cdef
X given S′.

• X ∈ (Ar ∪ att ∪ sup) is acceptable w.r.t. S iff it holds that:

1. ∀α ∈ att such that α udef X: ∃β ∈ S, ∃S′ ⊆ S such that β udef α or
β cdef α given S′.

2. ∀α ∈ att, ∀T ⊆ sup such that α cdef X given T : ∃β ∈ S, ∃S′ ⊆ S,
∃γ ∈ {α} ∪ T such that β udef γ or β cdef γ given S′.

From the semantic notions defined in Definition 41, the complete, preferred,
stable, and grounded extensions of the ASAF can be defined.

Definition 42 (Def. 22 in [61]). Let ASAF = 〈Ar , att, sup〉 and S ⊆ (Ar ∪ att ∪
sup).

• S is a complete extension of ASAF iff it is admissible and ∀X ∈ (Ar ∪ att ∪
sup), if X is acceptable w.r.t. S, then X ∈ S.

• S is a preferred extension of ASAF iff it is a maximal (w.r.t. ⊆) admissible
set of ASAF .

• S is a stable extension of ASAF iff it is conflict-free and ∀X ∈ (Ar ∪ att ∪
sup)\S, ∃α ∈ S, ∃S′ ⊆ S such that α udef X or α cdef X given S′.

• S is the grounded extension of ASAF iff it is the smallest (w.r.t. ⊆) complete
extension of ASAF .

Example 8 (cont’d) The only complete, preferred and stable extension of this
ASAF , which is also its grounded extension, is {e, γ, d, ε, h, g, µ, b, α}. In particular
note that, even though γ cdef d given {δ}, it holds that ε udef δ. Consequently, d is
acceptable w.r.t. the set {ε}; moreover, note that the set {γ, d} is conflict-free because
it does not contain δ (the support required for the existence of the conditional defeat
of γ on d). More generally, every set of arguments, attacks and supports from the
ASAF that does not include all the necessary elements for the existence of a defeat
(either unconditional or conditional) is conflict-free; again, this characteristic is
inherited from the AFRA.

Recently, [1] proposed labelling-based semantics for the ASAF .18 Briefly, a labelling
for an ASAF 〈Ar , att, sup〉 is a total function L : (Ar∪att∪sup) 7→ {in, out, undec}.

18Note that [1] provides all the corresponding definitions in inline text; thus, we maintain inline
definitions in this chapter.
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Given a labelling L, we define in(L) = {X | L(X) = in}, out(L) = {X | L(X) =
out}, and undec(L) = {X | L(X) = undec}. Also, when convenient, a labelling L
can be represented by the triple (in(L), out(L), undec(L)).

Then, the complete labellings are defined in [1] as follows. L is a complete labelling
of an ASAF 〈Ar , att, sup〉 iff for every X ∈ (Ar ∪ att ∪ sup) it holds that: (1)
L(X) = in iff ∀α ∈ att,∀S ⊆ sup such that α cdef X given S, ∃Y ∈ ({α} ∪ S)
such that L(Y ) = out; and (2) L(X) = out iff ∃α ∈ att, ∃S ⊆ sup such that
α cdef X given S and ∀Y ∈ ({α} ∪ S), L(Y ) = in.

In other words, for X to be labelled as in by a complete labelling of an ASAF
the following conditions must be satisfied: for every set of elements originating a
defeat on X, one of the elements in the set is labelled as out (i.e. either the attack
or one of the supports, if they exist). Analogously, for X to be labelled as out, it
must be the case that there exists a set of elements originating a defeat on X where
every element in the set (i.e. the attack and every support) is labelled as in. Finally,
if X is neither labelled as in nor as out, it is labelled as undec.

[1] mentions that there exists a one-to-one correspondence between complete
extensions and complete labellings of an ASAF . Specifically, they state that each
complete extension E is in one-to-one correspondence with a complete labelling L =
(E,E+, (Ar∪att∪sup)\(E∪E+)), where E+ = {X ∈ (Ar∪att∪sup) | ∃α ∈ E,∃S ⊆
E such that α cdef X given S}. That is, the complete labelling L corresponding to a
complete extension E of an ASAF is given by the triple (in(L), out(L), undec(L)),
where in(L) = E, out(L) = E+, and undec(L) = (Ar ∪ att ∪ sup)\(E ∪ E+)).

Then, as argued by the authors in [1], the preferred, stable and grounded la-
bellings of an ASAF can be defined in terms of the complete labellings of the
framework: L is a preferred (resp. stable, grounded) labelling of ASAF iff it is a
complete labelling such that in(L) is a preferred (resp. stable, grounded) extension
of ASAF .
Example 8 (cont’d) The only complete labelling of the ASAF (also, its grounded
labelling and its only preferred and stable labelling) is ({e, γ, d, ε, h, g, µ,
b, α}, {c, δ, f, π, β, a},∅).

Finally, in [44] the authors proposed to translate an ASAF into an AF in order
to be able to determine the extensions of the framework. In that way, they first
translated the ASAF into its associated AFN and finally, translated the AFN into
an AF . The translation given in [44] was later refined in [61] and is shown below.

Definition 43 (Defs. 23, 24, 9 and 10 in [61]). Let ASAF = 〈Ar , att, sup〉.
The AFN associated with ASAF is 〈ArAFN , attAFN , supAFN 〉, where:
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ArAFN = Ar ∪ att ∪ sup ∪ {β+, β− | β ∈ sup}
attAFN = {(α,X) | α ∈ att, t(α) = X} ∪

{(b, β−), (β−, Y ) | β ∈ sup, s(β) = b, t(β) = Y }
supAFN = {(a, α) | α ∈ att, s(α) = a} ∪

{(β, β+), (β, β−), (b, β+) | β ∈ sup, s(β) = b}
The AF associated with ASAF is 〈ArAF , attAF 〉, where:

ArAF = ArAFN
attAF = attAFN ∪

{(a, b) | ∃c ∈ ArAFN with (a, c) ∈ attAFN , (c, b) ∈ supAFN}

Note that the second set of attacks added to attAF in Definition 43 exactly
corresponds to the first kind of extended attack in the AFN , as described in Def. 32.
Then, as mentioned before, extensions of an ASAF can be obtained from extensions
of its AF as follows:

Definition 44 (Defs. 25 - 27 in [61]). Let ASAF = 〈Ar , att, sup〉 and AF =
〈ArAF , attAF 〉 be its associated argumentation framework. If S is an extension of AF
under the complete, preferred, stable or grounded semantics, then S′ = S\{β+, β− |
β ∈ sup} is an extension of ASAF under the same semantics.

Example 8 (cont’d) The AF associated with the ASAF , obtained with Defini-
tion 43, is depicted below:

d

δ−

δ ε h

δ+

e γ c β b α a

π

g µ f
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Here, the only complete extension (also, the grounded extension and the only pre-
ferred and stable extension) of the associated AF is {e, γ, g, µ, b, α, h, ε, d}; further-
emore, this is also the only complete, grounded, preferred and stable extension of
the ASAF . Note that the resulting extension differs from the one obtained in the
deductive case: the attack π (corresponding to the attack (f, (c, b)) in the deductive
approach) does not belong to the ASAF extension because of the indirect defeat com-
ing from µ; this is due to the fact that the ASAF approach takes AFRA as basis.

In [28] an alternative translation of an ASAF into an AF was proposed with
the aim of addressing the acceptability calculus of the framework. This alterna-
tive translation also accounts for an intermediate translation into an AFN and is
driven by three features that can be identified in interactions involved in a recursion:
groundness, validity and activation; following this translation, interactions have to
be active in order to be included in the extensions of an ASAF . Specifically, as pro-
posed in [28], an interaction is considered to be grounded if its source is accepted.
The validity of an interaction is determined by looking at the interactions that may
affect it, that is, interactions attacking and supporting it. Finally, an interaction is
considered to be active if it is both grounded and valid; then, for instance, an inter-
action that is attacked by another interaction that is active will not be considered
as valid. The translation of [28] follows:

Definition 45 (Defs. 4 and 8 in [28]).
Let ASAF = 〈Ar , att, sup〉. The AFN associated with ASAF is 〈ArAFN ,

attAFN , supAFN 〉, where:
ArAFN = Ar ∪ {α | α = (a,X) ∈ att} ∪ {β | β = (b, Y ) ∈ sup}
attAFN = {(α,X) | α ∈ att, t(α) = X}
supAFN = {(a, α) | α ∈ att ∪ sup, s(α) = a}∪

{(α,X) | α ∈ sup, t(α) = X}
The AF associated with ASAF is 〈ArAF , attAF 〉, where:

ArAF = ArAFN ∪ {NXY | (X,Y ) ∈ supAFN}
attAF = {(α,X) | (α,X) ∈ attAFN} ∪

{(α,NXY ) | (α,X) ∈ attAFN , α ∈ att, X ∈ sup, t(X) = Y } ∪
{(X,NXY ), (NXY , Y ) | (X,Y ) ∈ supAFN} ∪
{(NXY , NY Z) | (X,Y ) ∈ supAFN , X ∈ sup, Y ∈ sup, t(Y ) = Z}

As proposed in [28], extensions of the ASAF can be obtained from extensions of
its AF obtained through Definition 45 by just filtering out the NXY arguments.19

19Note that [28] provides no formal definition as to how to obtain the correspondence between
extensions of the ASAF and extensions of its associated AF .
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Figure 4: AF associated with the ASAF of Example 8, following Definition 45

Example 8 (cont’d) The AF associated with the ASAF , obtained with Defini-
tion 45, is depicted in Figure 4. The only complete extension (also, the grounded
extension and the only preferred and stable extension) of the associated AF is
{e, γ,Ncβ, Ncδ, g, µ,Nfπ, b, α, h, ε, d}. As a result, by filtering out the N -arguments,
the only complete, grounded, preferred and stable extension of the ASAF is {e, γ, g,
µ, b, α, h, ε, d}.

It should be noted that, although the same outcome was obtained for Example 8
when considering the translations of Definition 43 and Definition 45, this does not
hold for the general case. The reason for this difference relies on the fact that,
differently from [61], for a support to be accepted in [28] it must be the case that
its source is also accepted. This difference is illustrated by the following example.

Example 9. Consider the ASAF depicted below:

c β a α b

With the translation of Definition 43 we obtain the following associated AF :
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c β a α+ α− b

α

On the other hand, with the translation of Definition 45 we obtain the associated
AF depicted below:

c Ncβ β a Naα α Nαb b

In the former case, the only complete, grounded, preferred and stable extension
of the associated AF is {c, β, α−, α} and thus, the only complete, grounded, pre-
ferred and stable extension of the ASAF would be {c, β, α}. In the latter case,
the only complete, grounded, preferred and stable extension of the associated AF
is {c, β,Naα, Nαb}; consequently, the only complete, grounded, preferred and stable
extension of the ASAF would be {c, β}.

Note that a one-to-one correspondence exists between ASAF without support
and RAF (indeed RAF and AFRA approaches give similar results for semantics
level, and ASAF are a conservative generalization of AFRA). Nevertheless, it is
not the case when we consider ASAF with support (so ASAF that are not only
AFRA).

5.2.2 RAFN approach

In [31; 32], the authors pursued their works about RAF , presented in [29] (see
Section 3.5), by the definition and the study of an extension, called Recursive Ar-
gumentation Framework with Necessity (RAFN), that is able to take into account
higher-order necessary supports. The approach presented in [31; 32] is similar to the
one used in [29]: formalization of RAFN and direct definition of semantics.

Note that, differently from the ASAF approach, the source of a necessary sup-
port in RAFN can be a set of arguments; on the other hand, like in the ASAF ,
this is not the case for an attack.

Definition 46 (Def. 17 in [31]). A Recursive Argumentation Framework with Ne-
cessity (RAFN) is a tuple 〈Ar , att, sup, s, t〉, where Ar , att and sup are three pair-
wise disjunct sets respectively representing arguments, attacks and supports names,
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s is a function from (att ∪ sup) to (2Ar \∅) mapping each interaction to its source,
and t is a function from (att ∪ sup) to (Ar ∪ att ∪ sup) mapping each interaction to
its target. It is assumed that ∀α ∈ att, s(α) is a singleton.

RAFN semantics are defined using the extension of the notion of “structure”
for RAF (see Definition 25 in Section 3.5): A structure of the RAFN is a triple
U = (S,Γ,∆) such that S ⊆ Ar , Γ ⊆ att and ∆ ⊆ sup. Intuitively, the set S
represents the set of “acceptable” arguments w.r.t. the structure U , while Γ and
∆ respectively represent the set of “valid attacks” and “valid necessary supports”
w.r.t. U .

In order to define the structures corresponding to each semantics, some additional
notions are introduced. Intuitively, an element x (argument, attack or support) can
be defeated w.r.t. U iff there is a “valid attack” w.r.t. U that targets x and whose
source is “acceptable” w.r.t. U . Concerning the notion of supported elements w.r.t. a
structure, elements (arguments, attacks, supports) which receive no necessary sup-
port do not require any support, so they are supported w.r.t. any structure; and an
element x is supported w.r.t. a given structure U if for each support α (which can
be regarded as supported), the source of α contains at least one argument of U that
can be regarded as supported. An element of a RAFN is considered as being still
supportable as long as for each non-defeated support, there exists at least one argu-
ment in its source, which is non-defeated and regarded as supportable. And finally,
elements that are defeated or that are unsupportable are said to be unacceptable
(they cannot be accepted). Then an attack α ∈ att is unactivable20 (such an attack
cannot be “activated” in order to defeat the element that it is targeting) iff it is
either unacceptable or its source is unacceptable. The following notation is used in
the next definitions: let E ⊆ (Ar ∪ att ∪ sup), E = (Ar ∪ att ∪ sup) \ E.

Definition 47 (Defs. 18 to 20 in [31]). Let RAFN = (Ar , att, sup, s, t). Given a
structure U = (S,Γ,∆):

1. For X ∈ {Ar , att, sup}, DefX(U) = {x ∈ X|∃α ∈ Γ, s(α) ∈ S and t(α) = x}.
Def(U) = DefAr(U) ∪Defatt(U) ∪Defsup(U) denotes the set of all defeated
elements w.r.t. U .

2. Supp(U) = {x|∀α ∈ ∆ such that t(α) = x, if α ∈ Supp(U−x) then s(α)∩ (S ∩
Supp(U−x)) 6= ∅} with U−x = U \ {x}. U is self-supporting iff (S ∪ Γ ∪∆) ⊆
Supp(U).

3. UnSupp(U) = Supp(U ′) denotes the set of unsupportable elements w.r.t. U .
20This is the word used in [31] and a neologism. It expresses the impossibility of activating an

attack.
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4. UnAcc(U) = Def(U)∪UnSupp(U) denotes the set of unacceptable elements
w.r.t. U .

5. UnAct(U) = {α ∈ att|α ∈ UnAcc(U) or s(α) ⊆ UnAcc(U)} denotes the set
of unactivable attacks w.r.t. U .

Note that the set of elements supported by a structure are defined using a self-
reference. Indeed one wants to avoid the situation in which an element x would be
supported only because x is supported.

Then semantics can be defined as follows.

Definition 48 (Defs. 21 and 22 in [31]). Let RAFN
= (Ar , att, sup, s, t). Given a structure U = (S,Γ,∆):

• x ∈ Ar ∪ att ∪ sup is acceptable w.r.t. U iff (i) x ∈ Supp(U) and (ii) for each
attack α ∈ att with t(α) = x, α ∈ UnAct(U).
Acc(U) denotes the set of all elements that are acceptable w.r.t. U .

• U is conflict-free iff S ∩DefAr(U) = ∅, Γ ∩Defatt(U) = ∅ and
∆ ∩Defsup(U) = ∅.

• U is admissible iff it is conflict-free and (S ∪ Γ ∪∆) ⊆ Acc(U).

• U is complete iff it is conflict-free and (S ∪ Γ ∪∆) = Acc(U).

• U is preferred iff it is a ⊆-maximal complete structure,

• U is stable iff it is complete and (S ∪ Γ ∪∆) = UnAcc(U).

• U is grounded iff it is a ⊆-minimal complete structure.

All the definitions can be illustrated using Example 8.
Example 8 (cont’d) The graphical representation for the RAFN corresponding to
this example is the same as the one given for the ASAF in Section 5.2.1.

In this example, using the previous definitions, there is only one structure that
is grounded, preferred and stable: ({b, d, e, g, h}, att,∅). Here the only interaction
that is not acceptable is the support (d, c) (its attacker ε being acceptable). This is
one difference between this approach and the approaches presented in Sections 5.1
and 5.2.1. Here, the attack β (i.e. (c, b)) is acceptable since its attacker (π) is
unactivable (even if it is acceptable), the source of π being unacceptable.

The next examples illustrate further differences between the ASAF and the
RAFN approach. Indeed several differences can be outlined (even if we exclude
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cycles of necessary supports, and assume that interactions are binary ones). First,
in ASAF , attacks and supports are combined to obtain extended (direct or indirect)
defeats and these defeats are used in the definition of conflict-freeness. In contrast,
in RAFN , the notions of support and attack are dealt with separately.

Example 10 (Ex. 16 in [31]). Consider the simple argumentation framework with
only 2 necessary supports (so without any higher-order interaction).

b α1 a α2 c

As for acceptability, following the ASAF semantics defined directly over the
framework (see Section 5.2.1), an element is acceptable w.r.t. a set of elements
whenever it can be defended against each defeat. So, in the particular case when
there is no attack, each element of the framework would be acceptable w.r.t. any set,
and the sets {a, α1, α2}, {a, b, α1, α2}, {a, c, α1, α2} (among others) are admissible.

In contrast, RAFN acceptability explicitly requires a support. So, the structures
({a}, ∅, {α1, α2}), ({a, b},∅, {α1, α2}) and ({a, c},∅, {α1, α2}) are not admissible
with RAFN semantics.

Another difference was already pointed out in [29], where correspondences have
been provided between a RAF and an ASAF without support. Indeed, in an ASAF ,
an attack is not acceptable whenever its source is not acceptable.

Example 11 (Ex. 15 in [31]). Let RAFN be the following argumentation frame-
work:

e α3 c β b

α2 α1

d γ a

With RAFN semantics, β is not attacked and not supported so β must belong
to each complete structure.

With ASAF semantics, if β is acceptable w.r.t. a set S, then c must also be
acceptable w.r.t. S. If S is a complete extension, S contains a, γ, α1, α2 and α3.
As c is defeated by γ given {α2}, it cannot be the case that c is acceptable w.r.t. S.
So β cannot belong to any complete extension.

Note also that the RAFN is a conservative generalization of the GAFN (see
Section 4.2 in [31]).
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Moreover, since RAFN are obviously a conservative generalization of RAF ,
they inherit a one-to-one correspondence with AFRA in the case of the complete,
preferred and stable semantics but only when there is no support (so when RAFN
are reduced to RAF ).

5.3 Higher-order evidential supports
In [30], the RAF is extended with the introduction of evidential supports. Recall
that, as presented in Section 4.3, the evidential understanding of the support relation
introduced in [80] allows to distinguish between two different kinds of arguments:
prima-facie and standard arguments. Prima-facie arguments were already present
in [95] as those that are justified whenever they are not defeated. On the other
hand, standard arguments are not directly assumed to be justified and must inherit
support from prima-facie arguments through a chain of supports.

This extension of RAF , called Recursive Evidence-Based Argumentation Frame-
work (REBAF ), can be defined as follows:

Definition 49 (Def. 13 in [30]). A recursive evidence-based argumentation frame-
work (REBAF ) is a sextuple 〈Ar , att, sup, s, t, PF 〉 where Ar , att and sup are three
(possible infinite) pairwise disjunct sets respectively representing arguments, attacks
and supports names; PF ⊆ Ar ∪ att ∪ sup is a set representing the prima-facie el-
ements that do not need to be supported; functions s : (att ∪ sup) −→ 2Ar \∅ and
t : (att ∪ sup) −→ (Ar ∪ att ∪ sup) respectively map each attack and support to its
source and its target.

Then the definition of REBAF semantics uses similar notions and techniques to
the ones used in [31] for the RAFN . For instance, the notion of structure in REBAF
and, given a structure U , the sets Def(U) and DefX(U) exactly correspond to the
equivalent notions in RAFN . The other notions are of course adapted to account for
the constraints emerging from the evidential interpretation of the support relation:

Definition 50 (Sec. 3.2 in [30]). Let 〈Ar , att, sup, s, t, PF 〉 be a REBAF . Let
U = (S,Γ,∆) be a structure of REBAF .

• Supp(U) = PF ∪ {t(α)|∃α ∈ ∆ ∩ Supp(U−t(α)), s(α) ⊆ S ∩ Supp(U−t(α))}
with21 U−t(α) = U\{t(α)}.

• UnAcc(U) = Def(U) ∪ Supp(U ′) with U ′ = (DefAr(U), att, Defsup(U)).

• UnAct(U) = {α ∈ att|α ∈ UnAcc(U) or s(α) ∩ UnAcc(U) 6= ∅}.
21By abuse of notation, we write U\X instead of (S\X,Γ\X,∆\X) with X ⊆ (Ar ∪ att ∪ sup).
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Note that the notion of self-supporting structure in REBAF is the same as the
one given for RAFN . Then using these notions, the definitions for acceptability,
admissibility, conflict-freeness and also for the complete semantics given for RAFN
(see Definition 48) can be reused. Some differences appear for the preferred and sta-
ble semantics; furthermore, no definition is given in [30] for the grounded semantics,
but a definition is proposed in [41]:

Definition 51. (Defs. 16 in [30] and 2.14 in [41]) Let REBAF = 〈Ar , att, sup,
s, t, PF 〉. Let U = (S,Γ,∆) be a structure of REBAF .

• U is preferred iff it is a ⊆-maximal admissible structure,

• U is stable iff (S ∪ Γ ∪∆) = UnAcc(U).22

• U is grounded iff it is a ⊆-minimal complete structure.

f be illustrated on Example 8.
Example 8 (cont’d) First of all, we must choose the set of prima-facie elements.
Indeed, without prima-facie elements, most semantics will yield an empty set. Like
for EBAF , elements that are not the target of a support are assumed to be prima-
facie (the prima-facie elements are represented using solid outlines whereas standard
elements are represented with dashed outlines). So, the only standard element is the
argument d.

d

δ ε h

e γ c β b α a

π

g µ f

Note that the structure ({b, e, g, h}, att,∅) is the only complete, grounded, pre-
ferred and stable structure, as in the RAFN case. Here, d is not acceptable since it
is not supported (its support being attacked: both δ and its source c are attacked).

In [30], several links with other approaches have been proven:
22Note that this already implies conflict-freeness.
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• In Section 4 in [30]): REBAF are a conservative generalization of RAF , and
so inherit a one-to-one correspondence with AFRA in the case of the complete,
preferred and stable semantics but only when there is no support and when
each element is prima-facie.

• In Section 5 in [30]): a one-to-one correspondence between REBAF and fi-
nite EBAF ; this correspondence does not work when we consider non-finite
EBAF .

• In Section 4 in [30]): since the type of support used in ASAF (necessary
support) is different from the one used in REBAF (evidential support), no
correspondence can be established. And the same result occurs with BAFD
(deductive support).

• In Section 6 in [30]): REBAF are a conservative generalization of AF consid-
ering the notion of d-structure (see Definition 28).

5.4 Comparison between Higher-order bipolar approaches: a first
and succinct summary

Throughout Section 5, many differences and similarities were highlighted in order
to compare the four approaches introduced in this section (Higher-order deduc-
tive framework–Section 5.1–, ASAF –Section 5.2.1–, RAFN–Section 5.2.2– and
REBAF–Section 5.3); moreover some links with the higher-order approaches from
Section 3 were also given. All these comparison points have been introduced when it
was pertinent (depending on the definitions and examples discussed at that point in
the text). So in order to facilitate the reading and the understanding of this chapter,
the main comparison points are recalled here.

• First of all, as for the higher-order approaches from Section 3, most of the
presented higher-order bipolar approaches are a conservative generalization of
Dung’s framework when neither higher-order nor bipolar interactions exist.
The only (partial) exception is the ASAF since it is inspired on the AFRA
and so it inherits the same problem: the generalization holds only at the
semantics level but not for the basic semantic notions (such as, for instance,
conflict-freeness).

• Second, since each presented higher-order bipolar approach is built upon a
specific higher-order approach, the bipolar version is a conservative general-
ization of the framework it is based on when no supports exist. So this link
exists between the higher-order deductive framework and the EAF , between
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the ASAF and the AFRA, and between the RAFN or the REBAF and the
RAF . Of course, the same result holds (with some nuances) when we com-
pare a higher-order bipolar approach and the bipolar framework it is based
on, when no higher-order interactions exist.

• Third, because of the three types of support they consider, it is difficult to
establish links between all higher-order bipolar approaches. So higher-order
deductive frameworks are not comparable with ASAF , RAFN or REBAF ;
ASAF or RAFN are not comparable with the higher-order deductive frame-
work or REBAF ; and the REBAF is not comparable with the three other
frameworks.

• And finally, in [31], a comparison between ASAF and RAFN has been carried
out, yielding the same results as the ones between AFRA and RAF : these two
approaches do not coincide even if there exists a one-to-one correspondence.

Another point of comparison, not addressed by any of the higher-order bipolar
approaches, regards the way in which they treat support cycles: whether they pre-
vent them in the definition of the framework, whether they allow them but reject
them in the definition of the semantics, etc.

As it can be noted in Definition 39, the ASAF requires the support relation
to be acyclic. As argued by the authors in [61], this restriction is inspired on the
restrictions placed on the support relation of the AFN (see Def. 31), in which the
support relation is required to be irreflexive and transitive. On the one hand, by
being acyclic, the support relation of the ASAF is also irreflexive; on the other hand,
the transitive nature of necessary support is captured in the ASAF by explicitly
considering a sequence of supports in the definition of the conditional defeats. In
contrast, we can note that neither the BAFD with second-order attacks, the RAFN
nor the REBAF impose restrictions on the support relation of the framework.

Given the deductive interpretation of support adopted by the BAFD, we can
note that the existence of support cycles would be resolved by the corresponding
Dung semantics in the translated AF . If we take the simplest odd-length support
cycle, we can consider a self-supporting argument a; in such a case, the translated
AF would be such that an even-length attack cycle between a and Zaa. Similarly,
a two-length support cycle between two arguments a and b would yield an even-
length attack cycle in the translated AF , namely: b→ Zab, Zab → a, a→ Zba and
Zba → b. In both cases (odd-length and even-length support cycles), the resulting
attack cycle in the AF would be of even length. Consequently, unless the cycle
is broken, the arguments involved in the support cycle would be rejected by the
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grounded semantics, and possibly accepted by the complete, preferred or stable
semantics.

At last, the treatment of support cycles in RAFN and REBAF is analogous.
Both frameworks allow support relations originating in a set of arguments. Then,
they define the set of supported elements by a structure, in which they prevent
an element from being supported by itself (by considering U−x in Definition 47
and U−t(α) in Definition 50). Consequently, since the acceptable elements w.r.t. a
structure have to be supported by the structure, this prevents the semantics from
accepting an argument that is just supported by itself (either directly or indirectly).

A more complete analysis of the four higher-order bipolar approaches is given in
Section 7.

6 Computational issues and some applications
This section starts by introducing computational approaches that implement alter-
native semantics for some of the frameworks discussed in Sections 3 and 5. Then,
we briefly discuss some applications of these frameworks or their underlying ideas to
solve problems such as finding solutions to the liar paradox [55] and the construction
of deductive mathematical proofs.

6.1 Computational issues
Several works concern the semantics computation for higher-order frameworks. They
describe either logical approaches, or the use of dialectical proofs, or some more
direct algorithms.

6.1.1 ASP Encodings for EAF and AFRA

As discussed in [53], and also evidenced by the different editions of the International
Competition on Computational Models of Argumentation (ICCMA),23 reduction-
based approaches for the implementation of argumentation related problems have
become very popular. Among others, reductions to Answer Set Programming (ASP)
[66; 75] and propositional logic became suitable for the relevant reasoning prob-
lems [92; 59].

In [53] the authors proposed an ASP reduction-based approach to compute ac-
ceptability in Modgil’s EAF . For that purpose, they proposed an alternative (but
equivalent) characterization for the acceptance of arguments in an EAF , which al-
lowed them to design succinct ASP encodings for all standard semantics of the EAF .

23http://argumentationcompetition.org
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Briefly, the new characterization of acceptability for EAF given in [53] relies on the
consideration of a single reinstatement set for the defeats. As shown by the authors,
since the union of two reinstatement sets for the same set of arguments S is also a
reinstatement set, there exists a unique maximal reinstatement set.

Based on the new definitions, they proposed ASP encodings for EAF . Briefly,
the answer-sets of the combination of an encoding for a semantics σ with an ASP
representation of an EAF are in one-to-one correspondence to the set of σ-extensions
of this EAF . The encoding is partitioned into several modules, and they begin
with an input database for a given EAF = 〈Ar , att, att2 〉. Next we introduce the
facts encoding an EAF ; for further details and a full description of the encodings,
including the definition of modules for each semantics, we refer the reader to [53]:

ÊAF := {arg(x). | x ∈ Ar} ∪
{att(x, y). | (x, y) ∈ att} ∪
{d(x, y, z). | (x, (y, z)) ∈ att2}

It is worth mentioning that their proposed encodings were incorporated within
ASPARTIX - Answer Set Programming Argumentation Reasoning Tool,24 an ASP-
based argumentation system for representing and evaluating Dung’s AF semantics
and some of its extended frameworks, such as Modgil’s EAF . In particular, the
evaluation of semantics over an EAF is provided in the web-interface GERD -
Genteel Extended argumentation Reasoning Device.25 Figure 5 illustrates the use of
the GERD tool on the EAF of Example 3, where argument c′ is denoted as cp.

As mentioned before, different ASP encodings for Dung’s framework exist (see
e.g. [54]). Then, based on the encodings for Dung’s framework and its semantics,
ASPARTIX also offers the possibility to evaluate the AFRA semantics. In order to
be able to use those, an AFRA is encoded by an ASP encoding similar to the one
provided for the EAF , with the addition of some predicates allowing to translate the
AFRA into an AF (following the translation described at the end of Section 3.3).
The corresponding encoding provided in the ASPARTIX website26 is shown below.

An AFRA is encoded by a sequence of statements where each statement either
encodes an argument, or an attack between arguments, or an attack towards another
attack. The facts representing AFRA = 〈Ar , att〉 are:

ÂFRA := {afraA(x). | x ∈ Ar} ∪ {afraR(α, x, y). | α = (x, y) ∈ att}
Finally, the ASP implementation of the translation from an AFRA into an AF

is shown in Figure 6.
24http://www.dbai.tuwien.ac.at/research/argumentation/aspartix
25http://gerd.dbai.tuwien.ac.at
26https://www.dbai.tuwien.ac.at/research/argumentation/aspartix/afra.html
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Figure 5: Screenshot of GERD illustrating the EAF of Example 3 and its preferred
extension {e, c′, b}.

% arguments
arg(X)← afraA(X).
arg(R)← afraR(R,X, Y ), afraA(X).

% direct defeat
att(V,W )← afraR(V,X,W ), arg(W ), afraA(X).

% indirect defeat
att(V,A)← att(V,W ), afraR(A,W,X), afraA(W ).

Figure 6: ASP encoding to translate an AFRA into an AF .
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6.1.2 Logical encoding of REBAF and RAF

Another logical approach is presented in [40; 41]. In these works, the authors use
a three-sorted logic with equality in order to encode several variants of argumenta-
tion frameworks (AF , RAF and REBAF ). With that work, the authors want to
characterize in a logical way the meaning of each type of interaction, to encode the
acceptance condition for arguments and interactions and then provide a computa-
tional issue for the semantics of these argumentation frameworks.

In this logic, the three sorts are: arg a sort for arguments, att a sort for attacks
and esup a sort for evidential supports. Two function symbols s and t can be applied
to objects of the sort att or esup to capture source and target of these interactions.
The target can be either of sort arg or of sort att or of sort esup and the source
can only be of sort arg. Note that this encoding takes into account only the case of
interaction sources that are singletons.

Different unary predicates are also used for encoding each element of the argu-
mentation framework: For a node a of the argumentation graph, Acc(a) expresses
the status of being accepted, whereas Nacc(a) expresses that a cannot be accepted
(implicitly: w.r.t. a given semantics); in other words, the meaning of Nacc(a) is
stronger than “a is not accepted". The language also admits atoms of the form
V al(α) for attack or support names (intuitively, V al(α) means that the interaction
named α is valid w.r.t. a given argumentation semantics). There is also the predi-
cate symbol PrimaFacie for denoting prima-facie elements (so for arguments and
interactions).

Since one purpose is to obtain a logical characterization of structures, and so
of acceptability, some additional unary predicate symbols are given: Supp for de-
noting supported elements (arguments, attacks or supports), UnSupp for denoting
unsupportable elements and eAcc (resp. eV al) for denoting acceptability for ar-
guments (resp. for interactions, i.e. attacks or supports). Note that eAcc(x) (“x
is e-accepted”) can be understood as “x is accepted and supported” and similarly
eV al(α) (“α is e-valid”) can be understood as “α is valid and supported”.

Using this vocabulary, the formulae describing a given argumentation framework,
for instance a REBAF , can be partitioned in two sets:

• The first set contains the formulae describing the general behaviour of each
interaction, possibly recursive, i.e. how an interaction interacts with arguments
and other interactions related to it.

• The second set contains the formulae encoding the specificities of the current
framework (enumeration of the arguments and interactions that belong to this
framework).
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Then, several formulae are introduced for encoding the different principles that
govern argumentation semantics. There are formulae for capturing the defence prin-
ciple, the reinstatement principle and the stability principle.27 Then extensions
under a given semantics (admissible, complete, preferred, grounded, or stable) can
be characterized by models of logical theories obtained by combining some of these
formulae.

Note that, if we consider finite argumentation frameworks, all the previous formu-
lae can be rewritten in propositional logic and a SAT solver is enough for computing
the structures resulting from REBAF semantics.

Next we provide a very simple example in order to illustrate these ideas and
notions, and present its complete encoding.

Example 12 (Ex. 1.2 in [41]).
Consider the following REBAF .

a α b

β

c

The set of formulae describing this REBAF is the following:
Σ(REBAF ) = {(eV al(β) ∧ eAcc(c))→ ¬V al(α),
Supp(a),
Supp(c),
Supp(α),
Supp(β),
(eAcc(a) ∧ eV al(α))→ Supp(b),
(Supp(a) ∧Acc(a))↔ eAcc(a),
(Supp(b) ∧Acc(b))↔ eAcc(b),
(Supp(c) ∧Acc(c))↔ eAcc(c),
(Supp(α) ∧ V al(α))↔ eV al(α),
(Supp(β) ∧ V al(β))↔ eV al(β) }

The following ideas are used for obtaining Σ(REBAF ): first, a prima-facie
element is supported. Second, an element is e-accepted if and only if it is accepted
and supported. Third, if an attack and its source are e-accepted, then its target
cannot be accepted (resp. valid). And finally, if a support and its source are e-
accepted, then its target is supported.

27Note that the first set describes the conflict-freeness principle.
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Then, the set of formulae Σss(REBAF ) describing the notion of supported/un-
supportable element is obtained from Σ(REBAF ) by adding formulae among which:

Supp(b)→ (eAcc(a) ∧ eV al(α))
¬UnSupp(a)
¬UnSupp(c)
¬UnSupp(α)
¬UnSupp(β)
Unsupp(b)↔

(
(eV al(β) ∧ eAcc(c)) ∨ UnSupp(a) ∨ UnSupp(α)

)

The first formula in Σss(REBAF ) expresses the fact that if the target of a sup-
port is supported, then this support and its source are e-accepted. The other formulae
correspond to the unsupported status: first, a prima facie element is not unsupported;
second, if the target of a support is unsupported, then this support is not valid, or
this support or its source are unsupported.

The set of formulae Σd(REBAF ) describing the principle of defence is obtained
from Σss(REBAF ) by adding formulae among which:

V al(α)→ (UnSupp(β) ∨ UnSupp(c))
The previous formula describes the defense of α: if α is defended (so valid) then

its attacker β or the source of β are unsupported (here, this is the only way to
invalidate the attack on α since neither β nor its source are in turn attacked).

The principle of reinstatement is expressed using the set of formulae Σr(REBAF )
obtained from Σss(REBAF ) by adding the formulae:

Acc(a)
Acc(b)
Acc(c)
V al(β)
(UnSupp(c) ∨ UnSupp(β))→ V al(α)

The four first formulae correspond to the case of an unattacked element: it does
not need a defense for being accepted or valid. The last formula gives the condi-
tion for the reinstatement of an element that is the target of an attack (the reverse
condition of the one given for the defense).

And finally, Σs(REBAF ) describing the stability principle is obtained from
Σss(REBAF ) by adding the formulae:

Acc(a)
Acc(b)
Acc(c)
V al(β)
¬V al(α)→ eV al(β) ∧ eAcc(c)
¬Supp(x)→ UnSupp(x) for x ∈ {a, c, α, β}
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The formulae in Σs(REBAF ) give the impact of either non-accepted/non-valid
elements, or non-supported elements. For instance, if α is not valid, then its attacker
β and the source of β are in the extension (so resp. e-valid and e-accepted).

From Σd(REBAF ) it can be deduced that ¬V al(α) then ¬eV al(α), ¬Supp(b)
and ¬eAcc(b). That corresponds to the fact that no admissible structure contains b
(resp. α, though being supported).
Moreover, there is a model of Σd(REBAF ) satisfying eAcc(a), eAcc(c) and eV al(β).
That corresponds to the fact that ({a, c},∅, {β}) is an admissible structure. This
is also a ⊆-maximal model. That corresponds to the fact that ({a, c}, {β},∅) is a
preferred structure; this is also a complete structure (since it corresponds to a model
of Σd(REBAF ) ∪ Σr(REBAF )) and a stable structure (since it corresponds to a
model of Σs(REBAF )).

6.1.3 Dialectical proof procedure for Modgil’s EAF

In addition to characterizing labellings for the EAF , in [68] the author defined a
dialectical framework for EAF game proof theories, allowing to establish the justified
status of an argument to be tested, and providing a basis for algorithmic development
of EAF semantics. Analogously to dialectical proof procedures for Dung’s AF , such
theories consider a dialogue between two players: P (proponent) and O (opponent),
each of which are referred to as the other’s counterpart. A game begins with P
moving an initial argument x to be tested. Then, O and P take turns in moving
arguments that attack their counterpart’s last move, where attacks can be either
on an argument or an attack posed by their counterpart; alternatively, the players
can also backtrack to a counterpart’s previous move and initiate a new dialogue. In
particular, Modgil’s approach assumes the use of a finite EAF containing a finite
number of arguments (thus, a finite number of attacks).

Then, a legal move function φPC is defined, which places restrictions on the
players’ moves, for the preferred credulous game (i.e. for determining whether an
argument belongs to some preferred extension of the corresponding EAF ). As ar-
gued by the author, since every admissible set of an EAF is a subset of a preferred
extension, it suffices to show membership to an admissible set in order to show mem-
bership to a preferred extension. Briefly, the φPC game is a tree of φPC-dialogues
whose root is P’s initial move of an argument. Also, the φPC function is such that
it prevents O from moving arguments and attacks that have already been attacked
by P in a dialogue d, since P will have already fulfilled its burden of defense with
respect to these arguments/attacks. In addition, P can only move an argument x in
d if: 1) x does not attack itself; 2) no argument y, and no attack (y, x) or (x, y) has
been moved by P; and 3) x does not symmetrically attack some y moved by P.
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Next, we illustrate Modgil’s approach on the weather example:
Example 3 (cont’d) Given the EAF representing the weather example, three φPC
winning strategies for b are depicted below. The different moves in each strategy are
identified by the argument put forward, the player introducing the argument, and a
number indicating the order in which they are played. Also, the notation a→ means
that argument a attacks the previous argument, and the notation c � means that
argument c attacks the attack between the two previous arguments:

eP5 cO4 c′P3 aO2 bP1

c′P5 cO4 c′P3 aO2 bP1

c′P5 cO4 bP3 aO2 bP1

It should be noted that each winning strategy for b consists of a single dia-
logue. This is because the opponent O has no alternatives to counter-attack the
arguments/attacks put forward by the opponent P. Also, each strategy corresponds
to an admissible set of EAF , from top to bottom: {e, c′, b} and {b, c′} (the admissible
set for the last two strategies coincides). Hence, b is (credulously) accepted w.r.t. the
only preferred extension {e, c′, b} of EAF .

6.1.4 Dialectical proof procedure for i-defense semantics of HLAF

In [62] the authors introduced a dialectical proof procedure for their inductive defense
semantics ofHLAF (see Section 3.4) based on [52; 91], where two unified frameworks
of dialectical proof procedures were proposed.

Similarly to Modgil’s approach discussed in the previous section, [62] proposes
to evaluate the acceptability of arguments by resolving disputes between two players
identified as proponent and opponent. They propose to represent disputes through
dispute derivations, in which tuples ti = 〈Pi, Oi, SPi, SOi〉 summarizing the history
of the dispute up to step i are successively constructed by expanding the previous
one. Given HLAF = 〈Ar , att〉, the set Pi ⊆ Ar ∪ att in each tuple represents the
set of arguments and attacks put forward by the proponent (up to step i) that have
not been defended by the proponent and hence are open to attacks by the opponent.
Also, SPi ⊆ Ar is the set of all arguments presented by the proponent (up to step
i). Consequently, the proponent does not need to re-defend arguments in SPi\Pi.
On the other hand, Oi ⊆ att is a set of attacks of the opponent against arguments
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presented by the proponent in previous steps that are not yet counter-attacked by
the proponent. Thus, an attack α = (a, b) ∈ Oi needs to be counter-attacked by the
proponent on either a or α. In addition, SOi ⊆ att is the set containing attacks by
the opponent (up to step i) that have been counter-attacked by the proponent.

Thus, a dispute derivation for an argument a is a sequence of the tuples described
above, satisfying the following conditions:

• Pi ⊆ Ar ∪ att; SPi ⊆ Ar ; and Oi, SOi ⊆ att.

• P0 = SP0 = {a}, and O0 = SO0 = Pn = On = ∅.

• At step i, an element X is selected from either Pi (i.e. an argument or attack
put forward by the proponent that has to be defended) or from Oi (i.e. an
attack from the opponent that has to be counter-attacked). The sets corre-
sponding to the next tuple (i+ 1) are obtained as follows:

– if X ∈ Pi: Pi+1 = Pi\{X}, Oi+1 = Oi ∪ {α | α = (Y,X) ∈ att},
SPi+1 = SPi and SOi+1 = SOi; or

– if X ∈ Oi: Oi+1 = Oi\{X}, SOi+1 = Oi∪{X}, Pi+1 augments Pi with an
attack α targeting X and with the source of α (as long as the latter does
not already belong to SPi), and SPi+1 augments SPi with the source of
attack α (if not already present).

It should be noted that, since at each step the selection can be made from Pi or Oi,
the sequence of steps does not necessarily correspond to alternating moves by the
different players. Consecutive selections from Pi would correspond to consecutive
plays by the opponent (searching to attack the selected proponent’s argument or
attack), whereas consecutive selections from Oi would correspond to consecutive
plays by the proponent (searching to counter-attack the opponent’s selected attack).

Then, the authors showed that if 〈P0, O0, SP0, SO0〉 . . . 〈Pn, On, SPn, SOn〉 is a
dispute derivation for an argument a, then SPn is an i-admissible set that contains
a. Let us now illustrate the construction of a dispute derivation on the weather
example.
Example 3 (cont’d) The construction of a dispute derivation for b is depicted
in Figure 7, where the notation X means that X is selected in the corresponding
step, and AttackX = {α ∈ att | α = (a,X)}. The sequence 〈P0, O0, SP0, SO0〉 . . .
〈P9, O9, SP9, SO9〉 is a dispute derivation showing that b is acceptable w.r.t. its con-
structed i-admissible set SP9 = {b, c′, e} which, in particular, is the only i-preferred
extension of the HLAF .
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〈P0, O0, SP0, SO0〉: b | | b |

Attackb = {α} α = (a, b)

〈P1, O1, SP1, SO1〉: | α | b |

Attacka ∪Attackα = {β, γ} β = (b, a); γ = (c′, α)

(b is not added to P2 since b ∈ SP1)

〈P2, O2, SP2, SO2〉: β | | b | α

Attackβ = {δ} δ = (c, β)

〈P3, O3, SP3, SO3〉: | δ | b | α

Attackc ∪Attackδ = {η} η = (c′, c)

〈P4, O4, SP4, SO4〉: c′, η | | b, c′ | α, δ

Attackc′ = {ε} ε = (c, c′)

〈P5, O5, SP5, SO5〉: η | ε | b, c′ | α, δ

Attackη = ∅

〈P6, O6, SP6, SO6〉: | ε | b, c′ | α, δ

Attackc ∪Attackε = {η, θ} η = (c′, c); θ = (e, ε)

〈P7, O7, SP7, SO7〉: e, θ | | b, c′, e | α, δ, ε

Attacke = ∅

〈P8, O8, SP8, SO8〉: θ | | b, c′, e | α, δ, ε

Attackθ = ∅

〈P9, O9, SP9, SO9〉: | | b, c′, e | α, δ, ε

Figure 7: Construction of a dispute derivation for argument b corresponding to the
HLAF of Example 3 (arrows represent transitions between steps)
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Finally, the authors in [62] stated that a proof procedure for i-defense semantics
can be reduced to a procedure searching for dispute derivations, which could be
directly implemented by means of, for instance, base derivations defined in [91].

6.1.5 Algorithmic approaches for computing extensions of argumenta-
tion frameworks with higher-order interactions

In this section we will briefly discuss different approaches proposed in the literature
for computing the extensions of argumentation frameworks that include higher-order
interactions.

• In [76] the authors proposed a series of algorithms allowing to enumerate the
extensions of frameworks with higher-order attacks, such as the ones discussed
in Section 3. In particular, they take the AFRA as a case-study and propose
algorithms for enumerating the preferred, stable, complete stage, semi-stable,
ideal and grounded semantics of the framework. For illustration purposes, we
will next describe the algorithm for obtaining the preferred extensions of an
AFRA = 〈Ar , att〉, and show its application on Example 3.
Briefly, the algorithm considers five labels: IN, OUT, MUST_OUT, BLANK and
UNDEC. The BLANK label is the initial label for all arguments and attacks.
In each iteration, a BLANK attack α ∈ att is labelled IN to indicate that α
might be in a preferred extension. As a selection rule, attacks whose target
is the source of the larger number of attacks are chosen first. Every time an
attack is labelled IN, the labels of some attacks and arguments might change
accordingly. An argument a ∈ Ar is labelled OUT iff there is α ∈ att with the
label IN such that t(α) = a. An attack β ∈ att is labelled OUT iff there is
α ∈ att with the label IN such that t(α) ∈ {β, s(β)}. A BLANK argument a
is labelled IN, implying that a might be in a preferred extension, iff there is
α ∈ att with the label IN such that s(α) = a, or for each β ∈ att such that
t(β) = a, the label of β is OUT. Then, each attack β ∈ att with the label
BLANK or UNDEC is labelled MUST_OUT iff there is α ∈ att with the label
IN such that t(β) ∈ {α, s(α)}; finally, if some problem arises at this point
(inconsistency between the labels assigned), the chosen attack α is labelled
UNDEC to try to find a preferred extension excluding it.
Figure 8 exemplifies the algorithm to enumerate the preferred extensions on
the AFRA from Example 3, where attacks are selected to be labelled as IN in
the following order: η, β, γ, θ.

• In [3] the authors proposed an algorithm for efficiently recomputing the ex-
tensions of BAFDs with or without second-order attacks (see Section 5.1)
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Figure 8: Application of the algorithm to enumerate the preferred extensions of the
AFRA corresponding to Example 3. The final labelling corresponds to the only
preferred extension {e, θ, c′, η, γ, b, β}
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after an update on the framework has been performed. Briefly, an update
consists of the addition or removal of an argument, an attack or a support;
however, as highlighted in [3], updates concerning an argument can be eas-
ily performed without requiring to recompute an extension. Their algorithm
builds on the incremental approach proposed for Dung’s AF in [2] and, given
an initial BAFD, a semantics, an initial extension for it under the chosen
semantics and an update, it computes an extension of the updated BAFD.
This is achieved by introducing a meta-argumentation translation (analogous
to the one proposed in Definition 37) according to which an initial BAFD, as
well as its extension and an update, are transformed into a Dung’s AF with a
suitable initial extension and update.
In addition, the authors identify different conditions under which an update
over a BAFD is irrelevant, in the sense that the original input extension is
still an extension of the updated framework; for this, only the stable and
preferred semantics are considered. In other words, irrelevant updates are
still applied on the input framework, yielding an updated framework; what
occurs in those cases is that the extension of the updated framework does not
need to be recomputed. Whereas the conditions characterizing the irrelevant
updates are defined in [3] in terms of labellings for the BAFD, no formal
definition of labellings for BAFD is given; instead, the extensions-labellings
correspondence proposed for Dung’s AF (see [27]) is exploited.
Finally note that, even though the algorithm of [3] was envisioned for com-
puting an extension of an updated BAFD, it could also be iteratively used
for computing an extension of a static BAFD in the following way: start with
the BAFD containing all arguments and no attacks nor supports as initial
framework, and the set of all arguments as the initial extension; then, add
the attacks and supports one-by-one by considering them as updates, with the
restriction that the second-order attacks have to be added after adding the
interactions they target.

• In line with the work discussed in the previous item, [1] proposed an incremen-
tal approach for efficiently computing extensions of an ASAF after performing
an update, considering the complete, preferred, stable and grounded seman-
tics. Differently from the previous approach for BAFD, labellings for the
ASAF were formally characterized in [1] (see Section 5.2.1) and accounted for
in the developed algorithm.
The approach of [1] also relies on a transformation of an ASAF into a Dung’s
AF which, as argued by the authors, improves the one proposed in Defini-

1412



Higher-Order Interactions in Abstract Argumentation

tion 43 from two standpoints: i) it is direct, meaning that it does not require
the two-step process of [61] which first obtains an AFN and then an AF ; and
ii) the size of the resulting AF is smaller than that of the one obtained by
applying Definition 43. Notwithstanding this, as shown in [1], the transla-
tion they proposed yields equivalent extensions to those of the corresponding
ASAF under the considered semantics.

In addition, the authors formally characterized the irrelevant updates for an
ASAF , for which an extension E of an updated ASAF can be directly ob-
tained without requiring its overall computation. Note that, like in the case
of BAFD, irrelevant updates are still applied on the input ASAF , yielding
an updated ASAF . However, differently from the case of BAFD, an ASAF
extension may also contain attacks and supports; therefore, in the presence
of irrelevant updates, the updated extension will not necessarily coincide with
the original extension but could easily be obtained without requiring its overall
recomputation. On the one hand, for an irrelevant update deleting an attack
or a support, an extension of the updated ASAF can be simply obtained by
deleting the corresponding interaction from the original extension. On the
other hand, for an irrelevant update corresponding to an addition of an attack
or a support, the situation depends on the nature of the interaction: whereas
a support will always be added to the extension of the updated ASAF , an
attack will only be added to the extension in cases where its source argument
belonged to the original extension.

Finally note that, like in the case of the BAFD, the incremental algorithm
for the ASAF could be used for obtaining an extension of the framework in
the static case. Furthermore, as argued by the authors in [1], their proposed
translation from an ASAF into an AF could be used for obtaining ASAF ’s
extensions even in the static case, where updates are not considered (and the
same would hold for their translation of a BAFD into an AF ).

6.1.6 The Grafix tool

Several tools have been developed by the argumentation community, each of them
having its specificities (see for instance, the web-interface GERD evoked in Sec-
tion 6.1.1). Among them, the Grafix tool has been proposed for creating and
handling enriched abstract argumentation graphs, in particular those with higher-
order interactions (RAF , REBAF and RAFN), following some of the approaches
described in this chapter [29; 31; 32; 30; 40].
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Figure 9: Vizualization of the REBAF version of Example 8 with Grafix Argu-
ments are numbered as follows: 1 for a, . . . , 8 for h. Attacks (resp. supports) are
represented with red (resp. green) arrows.

Grafix is a graphical tool28 encoded in Java language (see [36]). It allows for
the definition and the visualization of many kinds of argumentation graphs and the
execution of some treatments on these graphs. Among these treatments, there is
the computation of the well-known acceptability semantics. Another example of
treatment is the translation of argumentation graphs into logical bases and the use
of these bases for computing some acceptability semantics.

Figure 9 is a screenshot corresponding to the creation of Example 8 with this
tool.

Then, Figure 10 shows the corresponding preferred structure computed with
the Grafix tool when we consider that this framework is a REBAF and that all
elements except from argument d are prima-facie.

6.2 Applications
In the literature, higher-order frameworks are used for representing and solving
different problems. Here, we present two examples of such applications.

• [50] proposed the Extended Explanatory Argumentation Framework (EEAF ),
28The visualization part of the tool is realized thanks to the GraphStream library (see [94]).
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Figure 10: The preferred structure of the REBAF version of Example 8 with
Grafix (all elements except d, numbered 4 in the figure, are prima-facie). Ele-
ments that belong to the preferred structure are in bold.

which extends the Explanatory Argumentation Framework of [90] by incorpo-
rating recursive attacks, joint attacks and a support relation. As argued by
the authors, they apply the meta-argumentation methodology in order to in-
corporate these elements. The key feature of these frameworks is the existence
of a set of explananda (scientific phenomenons of which, unlike arguments,
the acceptability is not being questioned) and an explanatory relation relating
arguments to other arguments or to explanandum, suitable for modelling the
interaction between explanation and argumentation in scientific debates.

Definition 52 (Def. 18 in [50]). An Extended Explanatory Argumentation
Framework (EEAF ) is a tuple
〈Ar ,X , att, exp, inc, sup〉, where Ar is a set of arguments, X is a set of ex-
plananda, att ⊆ (2Ar ∪exp∪att)×(Ar∪exp∪att∪sup) is a higher-order attack
relation, exp ⊆ (Ar×Ar)∪ (Ar×X) is an explanatory relation, inc ⊆ Ar×Ar
is an incompatibility relation, and sup ⊆ Ar ×Ar is a support relation.

Note that the attack relation att not only allows for joint attacks and higher-
order attacks, but also for attacks originating in other attacks. On the other
hand, the incompatibility relation is used to identify opposing theories, as
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scientists usually do not accept multiple explanations of a given phenomenon
at the same time.
Then, as argued by the authors in [50], the semantics of their EEAF are
defined by flattening their framework into an Explanatory Argumentation
Framework. An Explanatory Argumentation Framework is a tuple 〈Ar ′, att ′,
X ′, exp′, inc′〉 (i.e. it has the same structure as the EEAF minus the support
relation), with the restriction that the attack relation att ′ is defined over pairs
of arguments.
This translation is such that the set of arguments of the flattened Explana-
tory Argumentation Framework is comprised of: meta-arguments acc(a) and
rej(a) for each argument in the EEAF , meta-arguments Xa,b and Ya,b for each
attack (a, b) ∈ att, meta-arguments Pa,b and Qa,b for each pair (a, b) ∈ exp, a
meta-argument e(S) for each joint-attack having S as its set of originating ar-
guments, and a meta-argument Za,b for each pair of arguments a, b ∈ Ar . Also,
the set of explananda in the flattened Explanatory Argumentation Framework
is the same as the set of the corresponding EEAF . Then, the different relations
of the EEAF are mapped into the relations of its corresponding Explanatory
Argumentation Framework by using the meta-arguments listed above.
Finally, the authors illustrate the applicability of the EEAF on an example
which focuses on two groups of solutions to the liar paradox. As stated by the
authors, the arguments they considered are extracted from the book Saving
Truth from Paradox [55].

Example 13 (Ex. from [50]). Given the following arguments:

ep: This explanandum represents the paradox.
a: The paracomplete, paraconsistent and semi-classical solutions which provide

explanations for the paradox by weakening classical logic.
b: The underspill and overspill solutions which provide their own explanation

of the paradox by suggesting that for some predicates F , F is true of some
objects that are not F or vice-versa.

c: We did not change logic to hide the defects in other flawed theories such as
Ptolemaic astronomy, so why should we change the logic simply to hide
these paradoxes?

d: There is no known way of saving these flawed theories such as Ptolemaic
astronomy and even if there was, there is little benefit to doing so.

f : We have worked out the details of the new logics and they allow us to
conserve the theory of truth.
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g: Changing the logic implies changing the meaning.
h: Change of meaning is bad.
i: The change is mere.
j: This is no “mere” relabelling.
k: Change of truth schema is a change of the meaning of “true”.
l: The paradox forces a change of meaning.

[50] proposed to model the knowledge in this discussion through the EEAF
depicted below, where attacks (including joint attacks) are depicted using solid
arrows, the support is depicted using a double arrow, the explanatory relation
is depicted using dashed arrows, and the incompatibility relation is depicted
with a dotted line:

d c a ep

b

l k

f

g h

j i

The flattened Explanatory Argumentation Framework corresponding to this
EEAF is depicted in Figure 11 taken from [50]; as argued by the authors, less-
relevant auxiliary arguments are omitted in the figure for the sake of visibility
(e.g. the rej(X) meta-arguments that do not attack other meta-arguments, and
the ZX,Y meta-arguments for which no support (X,Y ) ∈ sup exists).
Then, two argumentative core extensions are identified: {a, c, d, f, g, j, k, l} and
{b, c, d, f, g, j, k, l}, each of which corresponds to the two rivaling solutions (be-
cause a and b are incompatible). As explained in [50], this is due to the fact
that even though the author in [55] might have a preference for one solution
or the other, in the excerpt being analyzed, he is merely defending the solu-
tions represented in a from attacks, and making no argument which attacks
the solutions represented in b.
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acc(d) acc(c) Xc,a Yc,a acc(a) ep

rej(d) e(d, f) e(g, h) acc(b)

rej(f) Pf,a acc(l) rej(g) rej(h) e(h, k) rej(k)

acc(f) Qf,a acc(g) acc(h) Zi,h acc(k)

acc(j) acc(i)

Figure 11: Explanatory Argumentation Framework corresponding to the EEAF of
Example 13

• Among the existing applications of higher-order frameworks, [21; 22] proposes
an application to the domain of deductive mathematical proofs. This ap-
plication has been implemented under the form of a tool, named CLEAR
(Constructing and evaLuating dEductive mAthematical pRoofs), designed for
students that take mathematics and logics courses. It allows students to build
deductive proofs collaboratively using a structured argumentative debate and
allows teachers to evaluate these proofs. A light structure is used for mod-
elling the logical arguments: a pair (∆, α) such that α is a conclusion safely
obtained from ∆. Then, the classical notions of rebuttal and undercutting can
be used in order to define the attacks (see [12, Chapter 9]). The higher-order
framework used is the one presented in [28] (see Section 5.2.1), with reversed
supports, since the meaning of the support relation used in the tool is the
deductive one, whereas [28] uses the necessary one. Note that the duality
between deductive and necessary support can be used in CLEAR since the
support relation cannot target another interaction (Definition 12 in [22]).

So the support relation stands for deduction, and the attack (defeat) relation
stands for conflict, this last one being a higher-order relation (targets can
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be arguments or other relations). Moreover, the tool gives the possibility to
aggregate two or more arguments in order to create a “collective support” to
another argument.
The following example illustrates the kind of argumentation framework we can
build with CLEAR.

Example 14 (from [22]). Consider the following theorem that must be proven:
“Let ABC be a right triangle in A. Consider that AB = 4 and BC = 5 and
prove that AC = 3.”
The following propositions are available in order to build this proof:
ABC is a right triangle in A AB2 = BC2 +AC2

BC2 = AC2 +AB2 AC2 = BC2 −AB2

AB2 = 16 BC2 = 25
AC2 = 9 BC = 5
AB = 4 AC = 3

The (simplified) debate between students is shown below. On the one hand,
some informal arguments are given. On the other hand, the debate reflects
the exchanges between students about the building of the proof; hence, some
arguments, deductions or attacks are sometimes “surprising”:

a1: If ABC is a right triangle in A then BC2 = AC2 +AB2.
a2: No, if ABC is a right triangle in A then AB2 = BC2 + AC2 (and so a2

attacks a1).
ainf1: (informal argument) Argument a2 is false (and so ainf1 attacks a2).
ainf3: (informal argument) a2 cannot attack a1 since a1 is correct. This rela-

tion must be removed. So ainf3 attacks the attack from a2 to a1.
a3: (deduced from a1) If BC2 = AC2 +AB2 then AC2 = BC2 −AB2.
ainf2: (informal argument) Applying the Pythagorean Theorem, BC2 = AC2+

AB2 (that gives another way for deducing a3).
ainf5: (informal argument) ainf2 is redundant with a1 (and so ainf5 attacks

ainf2).
a4: If AC2 = BC2 − AB2 and AB2 = 16 and BC2 = 25 then AC2 = 9.

Moreover a4 can be deduced from a2.
ainf4: (informal argument) No, a2 does not allow the deduction of a4. This

relation must be removed. So ainf4 attacks the support from a2 to a4.
a5: if BC = 5 then BC2 = 25.
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a6: if AB = 4 then AB2 = 16. And so the aggregation of a3, a5 and a6 allows
the deduction of a4.

a7: (deduced from a4) If AC2 = 9 then AC = 3.

An additional argument a8 can be created in order to represent the aggregation
of a3, a5 and a6 that must be used together for deducing a4 (joint support).
And so the corresponding higher-order argumentation framework with deduc-
tive supports can be represented as follows:

ainf4 a3

a7 a1 ainf2

ainf3

a4 a2 ainf5

a8 ainf1

{a3, a5, a6}

Note that the link between a3 and a8 does not really appear in the graph (but
it is recorded in the tool and can be used in the final steps). In the same way,
a5 and a6 are not depicted in the figure; they are isolated and their only role
is to be involved in the creation of a8. The corresponding ASAF can be rep-
resented with the same graph in which the direction of the support edges has
been reversed. And then, using the ASAF semantics, the preferred extensions
can be computed. Of course, we are interested in the extensions that contain
argument a7 that corresponds to the conclusion we try to prove. These exten-
sions will be used for building “proof graphs” for a7, and then these graphs will
be presented to the teachers for evaluation and discussion.
Here, a proof graph for a7 is: from a1 one can deduce a3; from a3, a5 and a6
one can deduce a4; from a4 one can deduce a7.
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7 Analysis
In this chapter, at least ten different approaches are presented and, clearly, a syn-
thetic point of view is needed. This is the aim of this section.

First, Table 1 describes the kind of interaction that is taken into account by the
different approaches. As we can see in this table, many different possibilities exist
regarding the type of interaction (attacks and/or supports, with at least 4 “types”
of support), regarding the “order” of these interactions (no interaction, first-order,
second-order, and at any level), and regarding the form of their source or their
target (one element or a set of elements). No approach is general enough to take
into account all these possibilities. But in fact, the question arises whether it would
be interesting to have such an approach.

Then, for each approach (except from [13], which does not propose semantics),
Table 2 gives the method followed for defining semantics, whereas Table 3 presents
the type of results produced by these semantics. The interesting point here is the
fact that almost all approaches have developed semantics in a direct way, some of
them also proposing a transformation of their framework into a Dung-like meta-
argumentation framework. This transformation facilitates the understanding of the
framework and the use of the existing solvers in computational issues. So, for the
approaches that do not propose this transformation, it could perhaps be interesting
to identify the associated meta-argumentation framework. Concerning the semantics
results, four alternatives exist and our personal opinion is that, since interactions
can be attacked or supported, they should also appear as outputs of the semantics.

Table 4 synthesizes the links between all approaches answering to the question:
Who extends who? Clearly, all the proposed frameworks extend Dung’s framework;
then, they differ, either on the type of support that is taken into account, or on
the way in which they take into account the higher-order attacks. So, three distinct
families appear:
• the first one is issued from the seminal work [13] and the EAF ,

• the second family follows Baroni et al’s work around the AFRA,

• and the last family follows Cayrol et al’s work with the notion of RAF .
Note that the first two families also follow ideas of the meta-argumentation approach.

And finally, Table 5 lists the known links between these approaches in terms of
their semantics (and the associated properties). Considering two approaches i and
j, several links can exist:
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[13] any any U no no no no
EAF 2 0 NC no no no no
[62] any 0 NC yes yes yes yes
[57] any 0 NC yes yes yes yes
AFRA any 0 NC no no no no
RAF any 0 NC no no no no
[16] 2 1 D no no no yes
ASAF any any N no no no no
RAFN any any N no yes no no
REBAF any any E yes yes no no

Table 1: Interactions taken into account (NC means “Not Concerned”)

• First i is a conservative generalization of j (denoted by i B j). That corre-
sponds to the fact that, when the approach i is used on an argumentation
framework corresponding to the approach j, all results are strictly identical
(for all notions involved in semantics: conflict-freeness, acceptability, admissi-
bility, . . . ). So this link appears only when i is an extension of j. However, it
can be the case that i extends j but i is not a conservative generalization of j
(see e.g. the relationship between AFRA and AF ).

• Other links can appear between two approaches, allowing to relate frame-
works of the same kind (e.g. two approaches using a set of arguments and a
set of higher-order attacks) or frameworks with a different structure (e.g. one
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Approach Directly After transformation into an AF
[13] No semantics definition
EAF yes yes (meta-arg+flattening)
[62] yes no
[57] yes yes (meta-arg+flattening)
AFRA yes yes (meta-arg+flattening)
RAF yes no
[16] no yes (meta-arg+flattening)
ASAF yes yes (meta-arg+flattening)
RAFN yes no
REBAF yes no

Table 2: Semantics definition

Approach Set of
arguments labellings arguments + arguments +

arg+int interactions meta-arg
[13] No semantics definition
EAF yes yes no yes
[62] yes no no no
[57] no yes no yes
AFRA no no yes yes
RAF no no yes no
[16] no no no yes
ASAF no yes yes yes
RAFN no no yes no
REBAF no no yes no

Table 3: Semantics output, defined in terms of a set of: arguments, labellings of
arguments, arguments + interactions or arguments + meta-arguments

approach that considers a set of arguments and higher-order attacks and sup-
ports, and another considering a set of arguments and first-order attacks and
supports). We identify four cases:

– either there is a complete one-to-one correspondence between the ap-
proaches i and j (denoted by i = j): i and j give exactly the same
results (for all notions involved in semantics: conflict-freeness, accept-
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[13] X X(U)
EAF X
[62] X X
[57] X X
AFRA X
RAF X
[16] X X(D) X
ASAF X X(N) X
RAFN X X(N) X
REBAF X X(E) X
Let i (resp. j) be the approach given on the line (resp. column).
iXj means that i is an extended argumentation framework issued
from j.

Table 4: Who extends who?

ability, admissibility, . . . ); in this case, i and j are applied on the same
data, whereas in the case of B, the link exists only if i is applied on the
more simple data corresponding to the scope of j;

– or there is a partial one-to-one correspondence between the approaches i
and j (denoted by i ≈ j): i and j give the same results (for all notions
involved in semantics: conflict-freeness, acceptability, admissibility, . . . )
if we consider some constraints either on i, or on j;

– or there is a partial one-to-one correspondence between the approaches i
and j but only at the semantics level (denoted by i ∼ j): i and j give the
same results if we only consider semantics such as complete, grounded,
preferred or stable (and so the results differ when we consider some other
notions as, for instance, conflict-freeness or acceptability); sometimes,
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some constraints must also to be considered (for instance, if i is applied
on the more simple data corresponding to the scope of j);

– or there is no one-to-one correspondence between the approaches i and
j (denoted by i 6= j): i and j do not give the same results for some
semantics, even if some constraints are given on i or j.

Of course, there is also the trivial case that no link can exist between i and j only
because they correspond to frameworks of different nature (for instance i takes into
account evidential supports, whereas j takes into account necessary supports). This
case will be denoted by NC (“Not Concerned”) in Table 5. Here the main point
is that, even if some links have already been established, a lot of work remains to
be done in order to completely compare all these approaches. Note also that no
approach is strictly equivalent to another one (there is no i, j such that i = j). That
means that each approach has its own peculiarities and meets special needs. That
also explains why it is difficult to unify these approaches.

8 Conclusion
It is now time to conclude this long chapter. Its aim was to propose a state of
the art on higher-order abstract bipolar argumentation frameworks, i.e. abstract
argumentation frameworks that allow interactions targeting other interactions, these
interactions being either attacks or supports. This survey is as exhaustive as possible,
but, since this topic is currently a very hot topic, it is possible, even probable, that
some works are missing.

Nevertheless, considering all the works presented here, we can at least conclude
on some points:

• the study of higher-order interactions (bipolar or not) in abstract argumenta-
tion is clearly an important topic since it allows an enriched representation of
knowledge;

• many distinct approaches addressing this topic were proposed since the seminal
work published in [13];

• these approaches can be partitioned into a smaller number of “families”;

• even if there exist some links between these families, it is not so simple to unify
them into a single general approach because they address different needs and
use different methods, or even adopt different interpretations for the notion of
support;
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[16] B B (D) B 6= 6= 6=
ASAF ∼ ∼ (N) B ∼ NC
RAFN B B (N) ∼ B NC 6=
REBAF B ≈ (E) ∼ B NC NC NC

Let i (resp. j) be the approach given on the line (resp. column).

• i B j means that i is a conservative generalization of j (i
gives exactly the same results that j when we consider the
restriction of i to j).

• i ≈ j means that there exists a one-to-one correspondence,
but with some constraints (depending of the case).

• i ∼ j means that there exists a one-to-one correspondence,
but only at the semantics level (sometimes with constraints).

• i 6= j means that no one-to-one correspondence can exist
between i and j.

• NC means “Not Concerned”.

Table 5: Links between approaches in terms of semantics and associated properties
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• and so, a lot of work remains to be done in this topic: for an eventual unifica-
tion, but also for computational issues (study of complexity, algorithms);

• in order to boost this last point, the introduction of some dedicated tracks in
the ICCMA competition could be of great help.
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Abstract
While modelling arguments, it is often useful to represent “joint attacks”,

i.e., cases where multiple arguments jointly attack another (note that this is
different from the case where multiple arguments attack another in isolation).
Based on this remark, the notion of joint attacks has been proposed as a useful
extension of classical Abstract Argumentation Frameworks, and has been shown
to constitute a genuine extension in terms of expressive power. In this chapter,
we review various works considering the notion of joint attacks from various per-
spectives, including abstract and structured frameworks. Moreover, we present
results detailing the relation among frameworks with joint attacks and classi-
cal argumentation frameworks, computational aspects, and applications of joint
attacks. Last but not least, we propose a roadmap for future research on the
subject, identifying gaps in current research and important research directions.
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1 Introduction
As many have already pointed out, the work of Dung [40] is a cornerstone, arguably
the cornerstone, of current work on computational argumentation. It was the work
that introduced the notion of abstract argumentation and the idea that argumenta-
tion could be modelled just as a set of arguments and attacks between them, and it
provided an initial set of semantics — complete, grounded, preferred and stable —
for the evaluation of a set of arguments and attacks. As such, it is the work on which
all subsequent work on abstract argumentation has been built. In addition, because
many structured argumentation systems adopt the Dung semantics as a means of
establishing which arguments are acceptable, these systems are also built upon [40].

Much of the appeal of [40] lies in its elegant simplicity. The approach relies on
just two concepts — arguments and attacks — and yet these simple components
can capture a complex range of types of reasoning, reflected in the large set of se-
mantics that have been defined for abstract argumentation systems. However, this
very simplicity means that abstract argumentation has limitations in terms of what
it can represent. The limitations of representing arguments as atomic entities is
widely recognised, and is addressed by work on structured argumentation1. How-
ever, there are also limitations in the way that [40] handles interactions between
arguments. Attacks are binary, so that a given attack is from a single argument to a
single argument. Attacks are also atomic in the sense that their impact is assessed
independently of other attacks. To use the terminology of [6], an argument will be
out as soon as it is attacked by a single in argument, regardless of any other attacks
that may exist. The evaluation of an argument does not, even where arguments
have different strengths, take account of whether there are multiple attacks on it.
Where strengths are taken into account, it is, effectively, only the strongest attacker
that matters.

These limitations, and in particular how they may be overcome, is the subject
of this chapter. We are primarily interested in the extension of the [40] model
of abstract argumentation to allow non-binary, or “joint” attacks. In particular, we
consider the “sets of attacking arguments” (SETAF) approach first suggested in [84].
In this approach it is possible to model situations in which two or more arguments
jointly attack a single argument, and we explore this approach in depth. This focus
also leads us to consider bipolar argumentation frameworks, where joint attacks are
a key element, and these frameworks, in turn, lead us to consider joint supports
between arguments. We also briefly discuss how joint attacks might be modelled in

1In some systems of structured argumentation, ASPIC+ [81] for example, it is possible to cleanly
“lift” a set of abstract arguments from a set of structured arguments in such a way that Dung-style
semantics can be applied. In other systems, DeLP [65] for example, this is not possible.
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structured argumentation, and touch on the rather neglected topic of accrual, which
models situations in which the strength of sets of independent attacking arguments
is an aggregate of the strengths of the arguments it contains.

The rest of this chapter is structured as follows. Section 2 motivates the study
of joint attacks. Section 3 is perhaps the most central section of the chapter. It
introduces the formal model of SETAFs, relates the model to classical abstract
argumentation models, considers the computational aspects of SETAFs, and looks
at alternative formulations for set-based attacks. Section 4 looks at the uses of joint
attacks in bipolar argumentation frameworks, and considers the models of joint
support that occur in those frameworks as well, while also discussing the use of joint
attacks to model higher-order interactions. Section 5 then briefly covers the related
topic of accrual, the combination of arguments for or against a given claim. Finally
Section 6 looks at future lines of work on joint attacks, and Section 7 provides a
brief summary and draws some conclusions.

2 Motivating the need for joint attacks
There are a number of possible motivations for work on joint attacks. One comes
from a purely formal consideration of [40]. Dung [40] considers argumentation frame-
works that take the form of a directed graph, with nodes being arguments and edges
being attacks between arguments. It is natural to consider a generalisation of these
frameworks to ones where the directed graph becomes a directed hypergraph. In its
most general form, such a framework would have nodes that represent sets of argu-
ments, and edges that represent attacks between sets of nodes2. What we study here
is a less general representation in which nodes represent single arguments, and edges
represents attacks where the attackers can be a set, but the attackee is constrained
to be a singleton. Though less general than the representation just sketched, this is,
as we discuss below, a genuine extension of the Dung argumentation framework.

This representation can also be motivated by considering knowledge that is most
elegantly represented in a formalism that allows for joint attacks. For example, taken
from [60], consider the following aspects of the UK laws governing marriage and civil

2[84] briefly considers explicitly representing the most general case of sets of arguments as both
attacker and attackee, before settling on the SETAF formalism that we describe below. As [84]
points out, SETAFs were originally devised during work that allowed arguments about Bayesian
networks — work summarised in [83] — and not only is the SETAF approach able to capture
attacks of sets of arguments on sets of arguments (by attacking each member of the attackee set
separately), but it also mirrors the structure of a Bayesian network where conditional probability
distributions capture multiple parents affecting a common child, but do not capture a single parent
affecting multiple children.
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partnerships3 (as of early 2020). One is not allowed to enter into a marriage or civil
partnership if

(a) you are under 16;

(b) you are closely related to your partner;

(c) you are not single; or

(d) you are under 18 and do not have permission to marry from your parents or
guardians.

Much of this can be represented in a standard Dung argumentation framework, with
an argument to represent the right to get married or enter a civil partnership (M),
which is attacked by arguments that represent being under 16 (A16), being closely
related (R), and not being single (NS). One might also represent case (d) with
a single argument, but this single argument captures both being under 18 and not
having permission — let’s call this argumentMWP (for minor without permission).
That is fine on its own, but now consider adding additional information about the
UK legal system into the framework, [60] again, this time on voting rights. In
the UK you are allowed to vote4, unless you are under 18, and the natural way to
capture this is with an argument (V ) representing the right to vote, which is attacked
by an argument (A18) representing being under 18. How, then, do we capture
the relationship between MWP , which incorporates the fact that the individual in
question is under 18, and A18? We would argue that a natural and elegant way to
do this is by replacing MWP by the argument NP , representing the fact that there
is no parental permission, and having A18 and NP jointly attack M . The resulting
SETAF is shown in Figure 1.

Just to make the point that this example of a joint attack is not contrived,
Figure 1 contains some other arguments that are found in UK legislation and have
a natural representation as a SETAF. (These all reflect the age of majority in the
UK, which, as one might expect, crops up a lot in the law.) For example, consider
the law around alcohol consumption5. In the UK, one is allowed to consume alcohol
in public (Alc), unless one is under 16, or one is under 18 and not accompanied by
an adult (NA), or one is under 18 and not having a meal (NM).

Of course, we are not claiming that using joint attacks is the only way to repre-
sent the above information. As we mentioned, it is possible to capture all of this in
a standard abstract argumentation framework, using what are effectively compound

3https://www.gov.uk/marriages-civil-partnerships
4https://www.gov.uk/elections-in-the-uk
5https://www.gov.uk/alcohol-young-people-law

1440



Joint Attacks and Accrual in Argumentation Frameworks

M

V

Alc

R NS

A16

A18

NP

NA

NM

Legend for arguments
M : allowed to marry
V : allowed to vote

Alc: allowed to drink alcohol in public
A16: aged under 16
A18: aged under 18

NP : no parent permission
R: related

NS: not single
NA: not accompanied by an adult

NM : not having a meal

Figure 1: Example of a SETAF, encoding a part of UK legislation.

arguments such as “under 18 and not accompanied by an adult”. Indeed, [60] shows
that it is always possible to represent a SETAF as a standard abstract argumenta-
tion framework, albeit at the cost of a possibly substantial increase in the number of
arguments. In addition to this potential cost, a cost both representational and com-
putational, we echo the sentiment expressed in [84], that using standard frameworks
rather than SETAFs in cases like that of Figure 1 tends to muddle the distinction
between arguments and attacks which is the essence of the abstract argumentation
approach.

3 Modelling joint attacks

In this section, we provide formal considerations associated with the use of collective
attacks in argumentation frameworks. These are meant to provide the basic tools
towards further formal results on the issue.

More specifically, in Section 3.1, we provide the basic formal definitions associ-
ated with SETAFs, as well as their semantics (provided both in terms of extensions,
and in terms of labellings). Moreover, a series of formal results on extensions, la-
bellings and their relations are presented, most of which are a direct adaptation of
similar results from the standard AF setting.
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Section 3.2 studies the relationship among AF and SETAF, and provides answers
to the fundamental question of whether SETAFs constitute a more expressive tool
than AFs for describing arguments and their relationships.

Section 3.3 provides various computational complexity results related to SETAFs,
for different problems pertaining to different semantics. Moreover, algorithms and
system implementations that address these problems are considered, including re-
duction-based approaches.

Further, in Section 3.4 we discuss various alternative models of abstract and
structured argumentation accounting for collective attacks, i.e., attacks where a
group (i.e., set) of arguments can act either as the attacker, or as the attackee.

3.1 Definitions and semantics

We start our description with the formal definition of SETAFs, including their se-
mantics. In this subsection, we formally describe various types of semantics that
have been proposed in the literature, as well as relevant results that should form
the formal background and toolbox of anyone aiming to study SETAFs and their
properties.

3.1.1 AFs and AF semantics: A brief reminder

An AF was defined in [40] as a pair AFD = 〈Ar , att〉 consisting of a (possibly infinite)
set of arguments Ar and a binary attack relation att on this set. In principle, an
AF is a directed graph, whose nodes correspond to arguments and whose edges
correspond to attacks, which essentially represent the fact that a certain argument
invalidates another. AFs are given semantics through extensions, which are sets of
arguments (nodes) that are non-conflicting (i.e., they do not attack each other) and,
as a group, “shield” themselves from attacks by other arguments (which are not in
the extension). The exact formal meaning given to the term “shield” gives rise to a
multitude of different semantics (complete, preferred, stable, etc.) which have been
considered in the literature (e.g., see [6]).

Informally, a set of arguments S ⊆ Ar is: (i) a conflict-free extension of AFD iff
it contains no arguments attacking each other; (ii) an admissible extension iff it is
conflict-free and defends all its elements (i.e., for each argument a ∈ Ar attacking an
argument in S, there is an argument in S attacking a); (iii) a complete extension iff
it is admissible and contains all the arguments it defends; (iv) a grounded extension
iff it is minimal (w.r.t. set inclusion) among the complete extensions; (v) a preferred
extension iff it is maximal among the complete extensions; (vi) a stable extension
iff it is conflict-free and attacks all the arguments that it does not contain (i.e., all
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arguments in Ar \ S); (vii) a naive extension iff it is maximal among the conflict-
free extensions; (viii) a semi-stable extension iff its union with the set of arguments
it attacks is maximal among the complete extensions; (ix) an eager extension iff
it is maximal among the complete extensions that are subsets of every semi-stable
extension; (x) an ideal extension iff it is maximal among the complete extensions
that are subsets of every preferred extension; and (xi) a stage extension iff its union
with the set of arguments it attacks is maximal among the conflict-free extensions.

3.1.2 A formalism for joint attacks (SETAFs)

To formally represent the notion of joint attacks, Dung’s definition for argumentation
frameworks was extended in [84] for the case where an argument can be attacked by
a set of other arguments:

Definition 3.1. A Framework with Sets of Attacking Arguments (SETAF for
short) is a pair AFS = 〈Ar , .〉 such that Ar is a set of arguments and . ⊆ (2Ar \
{∅})×Ar is the attack relation.

It is interesting to note the asymmetry in Definition 3.1: a group of arguments
can be the attacker, but not the recipient of an attack. The reason for this asymmetry
is justified in [84], where it is shown that allowing a set of arguments to be jointly
attacked by another does not add to the expressiveness of the proposed model.
Indeed, there can be two ways in which a many-to-many attack (say {a1, . . . , an} .
{b1, . . . , bm}) can be interpreted:

1. The first, called “collective defeat” in [104], states that no bi is accepted when-
ever all of a1, . . . , an are accepted. This case can be easily modelled in the
setting of Definition 3.1 by creating m attacks of the form {a1, . . . , an} . bi.

2. The second, called “indeterministic defeat” in [104], states that at least one of
bi should not be accepted whenever all of a1, . . . , an are accepted. This case
can also be modelled in the setting of Definition 3.1, by creating m attacks of
the form {a1, . . . , an, b1, . . . , bi−1, bi+1, . . . , bm} . bi.

Nevertheless, for simplicity, the attack relationship . of Definition 3.1 can be
extended to apply among sets of arguments. Formally, we say that a set of arguments
S attacks another set of arguments T (denoted by S I T ) iff there exist U ⊆ S, a ∈ T
such that U . a. Note that we used a different symbol for the extended relation,
to avoid confusion. Importantly, I does not change the semantics of the attack
and does not generalise it to attacks among sets of arguments; it is just a syntactic
shorthand.
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We will write S 6. a when it is not the case that S . a, and S 6I T when it is not
the case that S I T . For singleton sets, we often write S I a to denote S I {a}.
We say that S defends an argument a from a set of arguments T that attacks a, iff
S I T .

An interesting note for SETAFs, is that certain attacks may be redundant. In
particular, if we have that S . a and S′ . a, for S ⊆ S′, then the latter attack is
implied by the former and is thus redundant (can be removed from the AFS without
change of semantics). This is also evident from the definition of I, which is, in a
sense, the “closure” of ..

3.1.3 Semantics (extensions) for SETAFs

With regards to semantics, it is easy to extend the definitions provided for the AF
setting (e.g., in [40; 6]) so as to apply for the case of SETAFs (see [84; 60]). In all
the following definitions, we consider a fixed SETAF AFS = 〈Ar , .〉 and a set of
arguments S ⊆ Ar .

Definition 3.2. S is said to be conflict-free iff it does not attack itself. Formally,
S is conflict-free iff S 6I S.

Definition 3.3. An argument a ∈ Ar is said to be acceptable with respect to S, iff S
defends a from all attacking sets of arguments in Ar . Formally, a is acceptable with
respect to S iff S I T for all T ⊆ Ar such that T I a. S is said to be admissible iff
it is conflict-free and each argument in S is acceptable with respect to S. Formally,
S is admissible iff S 6I S and S I T for all T ⊆ Ar such that T I S.

In [40], a characteristic function FAFD was defined to return the arguments
acceptable by a set of arguments in an argumentation framework AFD. This can
be easily extended for SETAF (say AFS) as follows: FAFS : 2Ar 7→ 2Ar , such that:
FAFS (S) = {a | a is acceptable with respect to S}.

Note that admissible extensions can (equivalently) be defined in terms of the
characteristic function FAFS as any conflict-free set such that S ⊆ FAFS (S).

Definition 3.4. An admissible set S is called a complete extension of AFS , iff all
arguments that are acceptable with respect to S are in S. Formally, S is a complete
extension of AFS iff all the following conditions hold: (a) S 6I S; (b) S I T for all
T ⊆ Ar such that T I S; (c) If, for some a ∈ Ar , S I T for all T ⊆ Ar such that
T I a, then a ∈ S.

Obviously, complete extensions (of both AFs and SETAFs) can also be equiva-
lently defined using the characteristic function: a conflict-free set S is a complete
extension if and only if FAFS (S) = S.
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Definition 3.5. S is called a preferred extension of AFS , iff it is a complete ex-
tension and there is no other complete extension T such that S ⊂ T .

In other words, a preferred extension is a maximal complete extension. In the
standard AF setting, it has been shown that preferred extensions can be equivalently
defined as maximal admissible extensions (see, e.g., [6]). It can be easily shown that
the same holds true in the SETAF setting [55].

Definition 3.6. S is called a grounded extension of AFS , iff it is a complete ex-
tension and there is no other complete extension T such that T ⊂ S.

Essentially, grounded extensions are minimal complete extensions. Following
similar results in the AF setting ([6]) we can easily show that the following are
equivalent also in the SETAF setting:

• S is a grounded extension

• S is the complete extension such that {a ∈ Ar | S . a} is minimal

• S is the complete extension such that Ar \ (S ∪ {a ∈ Ar | S . a}) is maximal

Using the characteristic function, another equivalent characterisation can be for-
mulated, namely that S is a grounded extension if and only if it is the least fixed
point of FAFS (see also [40]).

Definition 3.7. S is called a stable extension of AFS , iff it is conflict-free and
attacks all arguments in Ar \ S.

Equivalently, S is stable if and only if S = {a | S 6I a}. Also, for a stable
extension S it holds that S ∪ {a | S . a} = Ar .

Moreover, we can easily show that stable extensions are also preferred, complete
and admissible (see also [60] and Figure 4), thus S is a stable extension if and only
if S is a preferred, complete or admissible extension that attacks all arguments in
Ar \ S.

Example 3.8. Consider the SETAF shown in Figure 2, whose extensions are shown
in Table 1. Let us consider in more detail the complete extensions, which are: ∅,
{a1}, {a2, a3, a5}. Note that, for example, {a2, a3} is admissible and conflict-free but
not complete, because it leaves out a5, which is acceptable with respect to {a2, a3}.
Similarly, {a1, a2} is not a complete extension because it is not conflict-free, whereas
{a5} and {a1, a5} are not complete extensions because they are not admissible (a5 is
not acceptable with respect to the corresponding set in either case).
Further, the minimal of the complete extensions (namely ∅) is also grounded, whereas
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a1
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a4
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Figure 2: An example SETAF; set attacks are represented as arrows with multiple
sources (e.g., {a2, a3} I a4); its extensions are shown in Table 1

Extension type Extensions
Conflict-free ∅, {a1}, {a2}, {a3}, {a4}, {a5}, {a6}, {a1, a4}, {a1, a5},

{a1, a6}, {a2, a3}, {a2, a3, a5}, {a2, a3, a6}, {a2, a4}, {a2, a5},
{a2, a6}, {a3, a4}, {a3, a5}, {a3, a6}

Admissible ∅, {a1}, {a2}, {a3}, {a2, a3}, {a2, a3, a5}
Complete ∅, {a1}, {a2, a3, a5}
Preferred {a1}, {a2, a3, a5}
Grounded ∅
Stable {a2, a3, a5}
Naive {a1, a4}, {a1, a5}, {a1, a6}, {a2, a4}, {a2, a6}, {a3, a4},

{a3, a6}, {a2, a3, a5}
Semi-stable {a2, a3, a5}
Eager {a2, a3, a5}
Ideal ∅
Stage {a2, a3, a5}

Table 1: Extensions for the SETAF of Figure 2

the maximal ones ({a1}, {a2, a3, a5}) are also preferred. The latter ({a2, a3, a5}) is
also stable, because it attacks all other arguments.
Looking at the SETAF illustrated in Figure 3, we note that it also has three com-
plete extensions (namely, {a1}, {a1, a2, a5}, {a1, a3, a4}), the first of which is also
the grounded one ({a1}), whereas the other two are the preferred ones {a1, a2, a5},
{a1, a3, a4}). However, there is no stable extension, because none of the complete
extensions attacks all other arguments in the SETAF.
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Definition 3.9. S is called a naive extension of AFS , iff it is conflict-free and is
maximal w.r.t. set inclusion among the conflict-free subsets of Ar .
Example 3.10. Returning to the SETAF shown in Figure 2, we note that it has
several naive extensions (see Table 1), which are essentially all the maximal subsets
of Ar that do not attack themselves. On the other hand, the SETAF of Figure 3 has
three naive extensions, namely {a2, a4}, {a1, a2, a5}, {a1, a3, a4}.
Definition 3.11. S is called a semi-stable extension of AFS , iff it is a complete
extension and the set S ∪ {a ∈ Ar | S I a} is maximal w.r.t. set inclusion among
all complete extensions of AFS .

Essentially, semi-stable semantics give up the strict requirement of stable seman-
tics that S ∪ {a ∈ Ar | S I a} = Ar , and require just that S ∪ {a ∈ Ar | S I a} is
maximal.

Just like in stable extensions, semi-stable extensions are also preferred, complete
and admissible (see also [60] and Figure 4), so the following are equivalent [55]:
• S is a semi-stable extension

• S is an admissible extension and the set S ∪ {a ∈ Ar | S I a} is maximal
w.r.t. set inclusion among all admissible extensions of AFS .

• S is a preferred extension and the set S∪{a ∈ Ar | S I a} is maximal w.r.t. set
inclusion among all preferred extensions of AFS .

Example 3.12. For the SETAF illustrated in Figure 2, where a stable extension
exists, this is also the (only) semi-stable extension of the SETAF (see Table 1). How-
ever, in the SETAF of Figure 3, where no stable extension exists, one can find two
semi-stable extensions, namely: {a1, a2, a5}, {a1, a3, a4}. Each of these semi-stable
extensions attack (or contain) all arguments except one (a6 and a7 respectively).
Definition 3.13. S is called an eager extension of AFS , iff it is a maximal (with
respect to set inclusion) complete extension that is a subset of each semi-stable ex-
tension of AFS .

The maximality requirement implies that we can replace the completeness re-
quirement regarding S with admissibility, i.e., S is an eager extension of AFS , iff it
is a maximal (with respect to set inclusion) admissible extension that is a subset of
each semi-stable extension of AFS (see [55]).
Example 3.14. For the SETAF shown in Figure 2, there is only one semi-stable
extension, so this is also the eager extension. In the SETAF of Figure 3, where there
are two semi-stable extensions, the only eager extension is their intersection, i.e.,
{a1}.
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Figure 3: An example SETAF; set attacks are represented as arrows with multiple
sources (e.g., {a1, a2} I a4); its extensions are shown in Table 2

Definition 3.15. S is called an ideal extension of AFS , iff it is a maximal (with re-
spect to set inclusion) complete extension that is a subset of each preferred extension
of AFS .

Extension type Extensions
Complete {a1}, {a1, a2, a5}, {a1, a3, a4}
Preferred {a1, a2, a5}, {a1, a3, a4}
Grounded {a1}
Stable (none exists)
Naive {a2, a4}, {a1, a2, a5}, {a1, a3, a4}
Semi-stable {a1, a2, a5}, {a1, a3, a4}
Eager {a1}
Ideal {a1}
Stage {a1, a2, a5}, {a1, a3, a4}

Table 2: Extensions for the SETAF of Figure 3

Again, we can replace the requirement of S being complete, with S being pre-
ferred, or admissible (see [55]). Moreover, since an ideal extension is a subset of
all preferred ones, it is not attacked by any preferred extension, and is in fact the
largest complete extension (and admissible set) with this property. Using similar
arguments, we can show that an ideal extension is the largest admissible set not
attacked by any admissible set, and the largest admissible set not attacked by any
complete extension [55].

Example 3.16. For the SETAF shown in Figure 2, the two preferred extensions
have an empty intersection, and ∅ happens to be a complete extension, so the only
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ideal extension is ∅. Similarly, for the SETAF of Figure 3, there are two preferred
extensions, whose intersection is equal to {a1}, and this happens to be a complete
extension, so it is also ideal.

Definition 3.17. S is called a stage extension of AFS , iff it is conflict-free and
S ∪ {a ∈ Ar | S I a} is maximal among all conflict-free subsets of Ar .

Apparently, a stage extension is also naive (see also Figure 4), and, in fact, a
stage extension can be equivalently defined as a naive extension such that S ∪ {a ∈
Ar | S I a} is maximal among all naive extensions of Ar .

Example 3.18. For the SETAF shown in Figure 2, which has a stable extension, the
(only) stage extension is the stable one, i.e., {a2, a3, a5}. For the SETAF illustrated
in Figure 3, which has no stable extension, there are two stage extensions, which
happen to be the same as the semi-stable ones, namely {a1, a2, a5}, {a1, a3, a4}. As
explained in Example 3.12, each of these semi-stable extensions attack (or contain)
all arguments except one (a6 and a7 respectively).

3.1.4 Relationships among extensions

The various extensions are related, in the sense that certain types of extensions are
stronger than others (e.g., a preferred extension is also complete, but not vice-versa).
Moreover, some types of extensions are guaranteed to exist, others are not, and some
extensions are unique. These results have been shown in various works for standard
AFs, but [60] recast them for the SETAF case.

Figure 4 summarises these results. Each arrow in the graph pointing from se-
mantics σ to σ′ indicates that every σ-extension of a SETAF is also a σ′-extension
of the same SETAF (e.g., every stable extension is also a stage extension). The
number (possibly followed by +) that appears next to each semantics indicates the
multiplicity of extensions for the specific semantics (e.g., every SETAF has at least
one preferred extension). Similarly to Dung-style AFs, for certain semantics, the
multiplicity of extensions is different for finite and infinite SETAFs, i.e., SETAFs
with finite (respectively infinite) number of arguments. All such arrows are strict,
i.e., no semantics is equivalent to another. Note also that in [60] the relationship
among stage and naive semantics is missing.

3.1.5 Labellings

The semantics of AFs can be alternatively defined through labellings, as proposed
in [27]. A labelling is formally defined as a function from arguments to the set
{in, out, undec}. Intuitively, an argument belongs to the extension iff it is labelled
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Conflict-free (1+)

Naive (1+)
Admissible (1+)

Complete (1+)

Preferred (1+) Grounded (1) Eager (1+, 1 for finite) Ideal (1)

Semi-stable (0+, 1+ for finite)Stage (0+, 1+ for finite)

Stable (0+)

Figure 4: Inclusion relations and multiplicity of extensions for SETAF acceptability
semantics

as in, whereas arguments labelled out are those attacked by the ones labelled in.
Finally, the undec labelling is reserved for arguments that are not accepted, but
are not attacked by an accepted argument either. Although labellings have been
originally defined for AFs only [27], an adaptation for the SETAF case appears
in [60]. Formally, a labelling is a function as follows:

Definition 3.19. Consider a SETAF AFS = 〈Ar , .〉. A labelling for AFS is a
total function Lab : Ar 7→ {in, out, undec}.

Note that the labellings of a SETAF are defined over arguments (just like in
AFs [27]), not sets of arguments.

Special classes of labellings can be defined (e.g., conflict-free labellings, admis-
sible labellings, complete labellings, etc) and formally shown to correspond to the
respective extensions (conflict-free, admissible, complete, etc). The correspondence
is realised through two functions (Ext2Lab, Lab2Ext), which determine how to gen-
erate an extension given a labelling, or vice-versa. It can be shown that, if Lab is
a labelling of a certain type (e.g., complete), then Lab2Ext(Lab) is an extension of
the same type, and, vice-versa, if S is an extension of a certain type (e.g., complete),
then Ext2Lab(S) is a labelling of the same type.

In this section, we illustrate these ideas, dealing with complete labellings only,
and refer to [27] and [60] for further details. We start with the definition of the
functions Lab2Ext, Ext2Lab:
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Definition 3.20. Consider a SETAF AFS = 〈Ar , .〉, and let E be the set of all
possible extensions that can be created over AFS , L be the set of all possible labellings
that can be created over AFS . Then:

Ext2Lab: We define the function Ext2Lab : E 7→ L such that, for S ∈ E, Lab =
Ext2Lab(S):

• Lab(a) = in for all a ∈ S
• Lab(a) = out for all a /∈ S, S I a

• Lab(a) = undec for all a /∈ S, S 6I a

Lab2Ext: We define the function Lab2Ext : L 7→ E such that, for Lab ∈ L,
Lab2Ext(Lab) = {a ∈ Ar | Lab(a) = in}.

Clearly, both Ext2Lab and Lab2Ext are well-defined. Moreover, note that
Ext2Lab(S) essentially labels in those arguments that are in S, out those arguments
attacked by S, and undec the rest. On the other hand, Lab2Ext(Lab) contains only
the arguments that are labelled in by Lab.

Now, we can define complete labellings as follows:

Definition 3.21. Let AFS = 〈Ar , .〉 be a SETAF. A labelling Lab : Ar 7→ {in, out,
undec} of AFS is called complete iff for all a ∈ Ar :

1. Lab(a) = in if and only if ∀S I a,∃b ∈ S : Lab(b) = out

2. Lab(a) = out if and only if ∃S ⊆ Ar such that S I a and Lab(b) = in for all
b ∈ S

The next step is to prove that complete labellings correspond to complete ex-
tensions and vice-versa. The following two theorems prove these points:

Theorem 3.22. Let AFS = 〈Ar , .〉 be a SETAF and S ⊆ Ar a complete extension
of AFS . Then, Ext2Lab(S) is a complete labelling of AFS .

Theorem 3.23. Let AFS = 〈Ar , .〉 be a SETAF and Lab : Ar 7→ {in, out, undec}
a complete labelling of AFS . Then, Lab2Ext(Lab) is a complete extension of AFS .

The above theorems show that complete labellings and complete extensions are
essentially analogous ways to define the semantics of a SETAF. Similar theorems
hold for the other types of extensions/labellings (see [60], Theorems 5.10, 5.11).
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Complete extensions Complete labellings
S1 = ∅ Lab1(a1) = undec, Lab1(a2) = undec, Lab1(a3) = undec,

Lab1(a4) = undec, Lab1(a5) = undec, Lab1(a6) = undec
S2 = {a1} Lab2(a1) = in, Lab2(a2) = out, Lab2(a3) = out,

Lab2(a4) = undec, Lab2(a5) = undec, Lab2(a6) = undec
S3 = {a2, a3, a5} Lab3(a1) = out, Lab3(a2) = in, Lab3(a3) = in,

Lab3(a4) = out, Lab3(a5) = in, Lab3(a6) = out

Table 3: Complete extensions and complete labellings for the SETAF of Figure 2.

Example 3.24. Table 3 shows the complete labellings that correspond to the SETAF
of Figure 2. Comparing complete extensions with complete labellings, we see that,
e.g., the third labelling explicitly rejects a6 (because it is attacked by a5, which is
accepted), but the second one makes no explicit decision on a6, as the agent cannot
make up its mind on how to resolve the cyclic attack among a4, a5, a6. This dis-
tinction cannot be made with the corresponding complete extensions (first column of
Table 3).
Moreover, we can easily verify that:

• the labellings can be generated through the corresponding extensions, using
Definition 3.20;

• the labellings are all complete labellings (under Definition 3.21);

• the extensions could be generated from the labellings, using Definition 3.20.

Another interesting point to note is that, for complete extensions and labellings,
the relationship established by Ext2Lab, Lab2Ext, is bijective. In other words, for
every labelling Lab and extension S of a SETAF, it holds Ext2Lab(Lab2Ext(Lab)) =
Lab and Lab2Ext(Ext2Lab(S)) = S. This is true for most, but not all, types of
labellings; e.g., for admissible labellings, several different labellings may correspond
to the same extension through Lab2Ext. A complete analysis of this phenomenon
can be found in [60], where the concept of proper labellings is introduced to settle
this question. Moreover, a rich set of results showing various properties of labellings
can be found in [5; 6]. Although these results have been shown for AFs, recasting
them for SETAFs is in most cases easy. Further details on the above are omitted,
and the reader is referred to [5; 6; 60; 27] for more information.
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3.2 Relating models for joint attacks with classical AFs
One of the obvious questions regarding SETAFs is whether they constitute a genuine
extension of standard AFs (with more expressive power), or whether they are just
a shorthand, i.e., syntactic sugar for knowledge that can be anyway represented in
the standard Dung setting.

This is a very important question, because, if it turns out that AFs can be used to
represent SETAFs, then we would be able to use the more intuitive SETAF formal-
ism for modelling the attacks among arguments, while at the same time exploiting
implementations and tools (and complexity results) developed for simple AFs to
perform reasoning over the SETAF, by exploiting these translations. In the oppo-
site case, SETAFs should be viewed as a separate, and more expressive branch of
computational argumentation, and would require a different set of tools to support
reasoning over them.

Interestingly, different works have addressed this problem, and answers have
been given from different perspectives. In the rest of this section, we analyse four
such works, namely:

• [48], who characterise the expressive power of AFs and SETAFs based on the
notion of signatures [44], showing that SETAFs are strictly more expressive
than AFs for the most popular semantics.

• [60], who circumvent the negative result of [48] by considering an exponential-
sized translation of SETAFs to AFs and appropriate mappings among their
semantics, for various semantics.

• [94], who applies an approach similar to [60], considering various alternative
(and more condensed) translations with similar results (for the most popular
semantics).

• [20], who consider the problem of translating Abstract Dialectical Frameworks
(ADFs) [22] to AFs; given that SETAFs are a special case of ADFs, this result
can be applied for the purposes of this chapter as well, albeit for a limited set
of semantics.

3.2.1 Characterising the expressive power using signatures

The approach of [48] is based on signatures of different semantics (namely complete,
grounded, preferred, stable, semi-stable, stage and naive [40; 24; 105; 19]) for AFs
and SETAFs. Signatures have been originally defined in [44] as a way to characterise
the expressive power of an AF, by way of conditions under which a candidate set of
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subsets of arguments are “realistic”, i.e., they correspond to the extensions of some
argumentation framework AF for a semantics of interest.

The idea has been extended to other types of argumentation frameworks (e.g.,
in [77; 98; 99; 100] for the ADF case [22]), and employed heavily as a means to
compare the expressiveness of different argumentation frameworks with, e.g., normal
logic programs and propositional logic [99; 100].

Formally, given a set of extensions (i.e., a set of sets of arguments) E , E belongs
to the signature ΣAF

σ iff there is an AF framework whose set of extensions, under
σ-semantics, is E . Similarly, one can define Σk

σ, where k corresponds to a SETAF
that admits only attacks where the attacking set has arity at most k (note that Σ1

σ

coincides with ΣAF
σ and Σ∞σ coincides with the generic SETAF framework ΣSETAF

σ ).
By definition, the notion of a signature expresses exactly the sets of extensions that
can be constructed given a certain framework type, and for a certain semantics.

The focus of [48] is to compute the signatures Σk
σ for the considered semantics

and for different k. As an example, they define the notion of an incomparable
set of sets, where a set of sets E is incomparable iff all elements of E are pairwise
incomparable, i.e., for T,U ∈ E , T ⊆ U implies T = U . Then, they prove that the
set comprising all stable extensions of a SETAF is incomparable, i.e., Σ∞ST = {E | E
is incomparable}.

Signatures are a powerful tool for determining expressive power. Larger signa-
tures imply that the corresponding framework type is more flexible (and thus more
expressive). In particular, if E /∈ Σ1

σ, then this means that one cannot construct an
AF whose σ-extensions are exactly the ones in E . Thus, by comparing Σk

σ for vari-
ous k ∈ {1, 2, ...,∞}, we can determine the relative expressive power of the different
framework types.

Using this reasoning, the main conclusion of the paper is that, for all the consid-
ered semantics, and for all k > 0, SETAFs that allow for collective attacks of k + 1
arguments are more expressive than SETAFs that only allow for collective attacks
of at most k arguments, because Σk

σ ⊂ Σk+1
σ . As a corollary, SETAFs are strictly

more expressive than AFs, even if restricted to attacks of at most 2 arguments.
It is important however to interpret the above results under the correct lens.

In particular, the results of [48] tell us that certain sets of extensions that can
be constructed using SETAFs, cannot be directly constructed through AFs. More
specifically, for a given E ∈ ΣSETAF

σ \ ΣAF
σ , we know that one can create a SETAF

whose set of σ-extensions is exactly E ; moreover, there is no AF whose set of σ-
extensions is exactly E .

However, if we don’t insist on the direct construction, one may be able to succeed
in constructing E through some AF, but in another, indirect way. In particular, one
could define an appropriate mapping (algorithm) among sets of extensions (say f),
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and then construct an AF AFD whose set of extensions is, say, E ′, where f(E ′) = E .
For generality, one should also define a generic way to construct AFD from the
original SETAF AFS , via some other mapping (algorithm), say g. By the results
of [48], this transformation cannot be a simple rearrangement of the attacks among
the existing arguments of the SETAF, but should necessarily involve new, artificial
arguments that would somehow encode the “collectivity of attacks”.

3.2.2 An exponential translation to encode collectivity of attacks

This approach of “expanding” the SETAF with new arguments in order to get rid
of collective attacks (and thus result in an AF) is followed in [60]. In that pa-
per, a rather straightforward translation is followed, where, for any given SETAF
AFS = 〈Ar , .〉, one constructs a so-called generated AF AFD = 〈Ar ′, att〉, whose
“arguments” are all the non-empty sets of arguments of the original SETAF (i.e.,
Ar ′ = 2Ar \ {∅}). The corresponding attack relation att follows in the obvious
manner from .. In the above terminology, this is the mapping g.

Then, the authors go on to identify the relationship among the σ-extensions of
the AFS and its corresponding generated AFD, as well as how one can identify
the σ-extensions of AFS through the σ-extensions of AFD, and vice versa (i.e., the
mapping f and its inverse).

Various different semantics are considered, including the ones originally defined
in [40] (conflict-free, admissible, complete, grounded, preferred, stable), but also
naive [19], semi-stable [24], eager [25], ideal [41] and stage [105].

The conclusion of the above analysis is that many of the semantics (namely,
complete, preferred, grounded, stable and ideal) admit a very simple one-to-one
correspondence among the semantics of the SETAF and the generated AF. In par-
ticular, a set of arguments S ⊆ Ar of the SETAF (AFS) is a σ-extension if and only
if the set 2S \ {∅} is a σ-extension of the generated AF (recall that an argument in
AFD is a set of arguments from AFS).

For conflict-free and admissible extensions, the situation is similar, except that
there are some additional σ-extensions of AFD which do not follow this exact pat-
tern. This has effects on the correspondence among naive extensions as well (recall
that a naive extension is a maximal conflict-free set). Further, more convoluted
correspondences exist for semi-stable, stage, and eager semantics, where the charac-
terisations are complicated by the requirement of maximality (see [60] for details).

Complexity of characterisations put aside, the work of [60] shows that one can
model a SETAF as an AF in a way that “preserves” the semantics, in the sense that
one can determine the σ-extensions of the SETAF by just looking at the AF (and
vice-versa). Alas, the proposed transformation for achieving this effect, results to
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an AF with an exponentially larger number of arguments compared to the SETAF.
Note that if we count the size of a SETAF in terms of the number of arguments plus
the number of attacks, then we may not get an exponential increase (if a sufficiently
large number of attacks exist), although the exponential increase is still true in the
worst-case scenario.

3.2.3 Considering more compact translations

A similar, but less extreme “expansion” scheme is followed in [94], where the problem
of translating SETAFs to AFs is considered, among other things. The considered
semantics are the standard Dung semantics, i.e., conflict-free, admissible, complete,
preferred, grounded and stable [40].

To perform the translation, two translation schemes (and variations thereof) are
considered: one is inspired by the so-called coalition approach and the other by the
so-called defender approach. Both have a polynomial size compared to the SETAF
(assuming that the size of the SETAF is considered to be equal to the number of
attacks plus the number of arguments).

The coalition approach is similar to the one proposed in [60], where an argument
in the AF is a set of arguments from the SETAF. However, in [94] a “condensed”
version of the translation is considered, where not all subsets of Ar are included
in the generated AF, but only those that are actually the initiators of an attack.
Different ways to translate the attack relation are then considered, with different
results with respect to the correspondence among the semantics of the SETAF and
the corresponding AF.

The second translation scheme is inspired by [80], and uses arguments in the
translated AF that represent “statements” regarding an argument in the SETAF
(e.g. whether it is accepted, justified, rejected etc). More precisely, for every argu-
ment a in the SETAF, two arguments are included in the AF: the argument itself (a),
as well as a′ which stands for “a is rejected”. Moreover, every attack in the SETAF
is represented as an argument in the AF (these are called auxiliary arguments).

Then, appropriate attacks are introduced in the new framework. Namely, each
argument a attacks its corresponding a′, and a′ attacks the auxiliary arguments rep-
resenting an attack involving a as an attacker. The auxiliary arguments representing
attacks, attack the corresponding recipient of the attack. In this way, a defends the
auxiliary arguments it is involved in, so if a is not accepted, the attack itself (i.e.,
the auxiliary argument representing it) will not be accepted, and thus the recipient
of the attack will be unaffected by the attack. Using this trick, the semantics of the
SETAF can be appropriately captured by the AF.

For both translations, the correspondences provided among the σ-extensions of
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the SETAF and its generated AF are generally elegant, and quite similar to the
correspondences of [60] (note however that the more complex cases of semi-stable,
stage and eager semantics are not considered by [94]).

Despite that, a strong statement is made in [94] that no full exact SETAF-AF
translation can be created. This statement is based on the idea of signatures, and
follows similar lines of reasoning as in [48]. Therefore, it should be interpreted in the
sense of a direct translation, as explained also in our analysis of the results of [48].

3.2.4 An indirect translation path, through ADFs

Another interesting translation results as a corollary of the work in [20]. In that
paper, the authors do not study SETAFs, but ADFs [22]. An ADF is similar to an
AF, except that the acceptance of an argument is determined by an acceptance con-
dition (expressed as a propositional formula) over the acceptance of all its attackers.
Thus, for example, one could say that an argument is accepted iff no more than two
of its attackers are accepted, or that an argument is accepted iff all of its attackers
are accepted.

Note that the expressive power of acceptance conditions allows ADFs to model
various different types of relations among arguments, including attack, support, joint
attacks or supports, as well as hybrid cases. In particular, it is easy to see that AFs
and SETAFs are special cases of ADFs [93; 77].

Three different types of semantics have been defined for ADFs in [22], namely
models, well-founded models and stable models. In the special case where an ADF is
used to describe an AF (or a SETAF), models of the ADF correspond to the stable
extensions of the AF (or SETAF) and well-founded models of the ADF correspond
to the grounded extensions of the AF (or SETAF). Moreover, for this special case,
stable models of the ADF and models of the ADF coincide (see [50], Proposition 1),
so stable models of the ADF also correspond to stable extensions of the AF (or
SETAF). It should be noted here that stable models have been retrospectively re-
defined in [23], but this redefinition does not break the above correspondences (see
Theorem 4 in [23]).

In [20], the authors show that, given an ADF, one can generate an AF such
that the stable extensions of the AF correspond (in a formal manner made clear
in the paper) to the models of the ADF. A similar correspondence is also shown
among the grounded extensions of an AF and the well-founded models of the ADF,
as well as among the stable extensions of the AF and the stable models of the ADF.
Although SETAFs were not in the scope of the work of [20], the fact that SETAFs
are a special case of ADFs, allows us to apply their results to the case considered
in this chapter. Moreover, [20] show that the proposed translations are polynomial
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in size, and can also be computed in polynomial time, where the size of the original
ADF (corresponding to a SETAF) is computed as the number of arguments plus the
size of the acceptance conditions of the arguments.

3.3 Computational considerations
In this section we give an overview on complexity results of SETAFs and discuss
implementation approaches for evaluating SETAFs. As discussed in [47] under-
standing the inherent complexity of the reasoning tasks is crucial towards efficient
implementations of argumentation systems. In particular, problems on different lev-
els of complexity have different limits concerning scalability and require different
techniques to be implemented in a scalable manner. We first introduce the compu-
tational tasks we are interested in, then discuss their complexity, and finally discuss
algorithms and reduction-based approaches for these tasks.

3.3.1 Computational Problems

The standard problems studied in computational (abstract) argumentation are the
tasks of computing extensions of a given semantics and computing the credulous
or skeptical consequences under a given semantics [36; 47; 35]. These tasks are
investigated in the literature on algorithms, systems, and complexity of abstract
argumentation, and are the basis for the different tracks of the International Com-
petition on Computational Models of Argumentation (ICCMA)6 [101; 64]. In the
following we provide formal definitions of these computational problems in the con-
text of SETAFs. To this end we will use σ(AFS) to denote the σ-extensions of a
SETAF AFS . We start with the function problems of computing one or all of the
extensions of a SETAF w.r.t. a semantics σ:

• Some Extension SEσ: Given SETAF AFS , compute an extension E ∈ σ(AFS).

• Enumerate Extensions EEσ: Given SETAF AFS , compute the extension-set
σ(AFS).

Beside these function problems we consider decision problems whose output is
either yes or no. These problems are of particular interest as they are well-suited for
being analysed with the techniques of complexity theory. To this end we consider
the skeptical acceptance of an argument, i.e., an argument is skeptically accepted
if it is contained in each extension, and credulous acceptance of an argument, i.e.,
an argument is credulously accepted if it is contained in some extension (for a given
semantics σ):

6http://argumentationcompetition.org/
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• Credulous Acceptance Credσ: Given SETAF AFS = 〈Ar , .〉 and an argument
a ∈ Ar , is a contained in some E ∈ σ(AFS)?

• Skeptical Acceptance Skeptσ: Given SETAF AFS = 〈Ar , .〉 and an argument
a ∈ Ar , is a contained in each E ∈ σ(AFS)?

Moreover, we consider the frequently-studied problems of verifying a given ex-
tension, deciding whether a SETAF has at least one extension, and deciding whether
a SETAF has a non-empty extension. These problems are of some interest on their
own but are in particular relevant as frequent sub-tasks of reasoning procedures. We
next provide the formal definitions of these problems:

• Verification of an extension Verσ: Given SETAF AFS = 〈Ar , .〉 and a set of
arguments S ⊆ Ar , is S ∈ σ(AFS)?

• Existence of an extension Existsσ: Given SETAF AFS = 〈Ar , .〉, is σ(AFS) 6=
∅?

• Existence of a non-empty extension Exists¬∅σ : Given SETAF AFS = 〈Ar , .〉,
does there exist a set E 6= ∅ such that E ∈ σ(AFS)?

3.3.2 Complexity results for SETAFs

We next discuss the computational complexity of the decision problems introduced
in the previous section. The rationale behind the focus on decision problems is that
tools of complexity theory are better suited for decision problems than for function
problems and that, when chosen carefully, the complexity of the decision problems
is also a good indicator for the complexity of the corresponding function problem.
In computational argumentation the credulous and skeptical acceptance decision
problems together are considered to be a good indicator for the complexity of a
semantics.

In this section we assume the reader to have basic knowledge in computational
complexity theory.7 We will consider the following complexity classes: L (logarithmic
space), P (polynomial time), NP (non-deterministic polynomial time), coNP (com-
plement of a NP problem), ΘP

2 (polynomial time with non-adaptive NP-oracle calls),
ΣP

2 (non-deterministic polynomial time with NP-oracle calls), ΠP
2 (complement of a

ΣP
2 problem), and DP

2 (intersection of a ΣP
2 and a ΠP

2 language).

7For a gentle introduction into complexity theory in the context of argumentation the reader is
referred to [47]).
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We have the following relations between these complexity classes:

L ⊆ P ⊆ NP
coNP ⊆ ΘP

2 ⊆
ΣP

2
ΠP

2
⊆ DP

2

We follow [49] and start our complexity analysis with the observation that
SETAFs generalize Dung AFs and thus all the decision problems are at least as
hard as the corresponding problem for Dung AFs (cf. [47, Table 1]). Interestingly,
one can also obtain the same upper bounds (see Table 4) as we discuss below. These
results for SETAFs show the same complexity as the corresponding Table for Dung
AFs (cf. [47, Table 1]8). However, there is a subtle difference between the com-
plexity results for Dung AFs and SETAFs. In both cases the complexity is stated
w.r.t. the size of the input framework, which in case of Dung AFs is often interpreted
as w.r.t. the number of arguments |Ar | in the input framework. This interpretation
is not valid for SETAFs where the number of attacks |. | can be exponentially larger
than the number of arguments |Ar | (this even holds for normal forms where re-
dundant attacks are removed). Thus, one has to consider the complexity w.r.t. the
number of arguments plus the representation size of the attacks .. The latter is
bounded bound by |Ar | · | . |, i.e., is polynomially bounded in |Ar | + | . |. We can
thus interpret the complexity results for SETAFs in Table 4 as w.r.t. |Ar |+ | . | 9.

The crucial observation towards the upper bounds is that checking basic prop-
erties of a set of arguments, although it is more evolved than in Dung AFs, can still
be performed in L. First, to test whether a set S is conflict-free one can iterate over
all attacks (T, a) ∈ . and check that T ∪ {a} 6⊆ S. Second, to test S I T one can
iterate over all attacks (U, b) ∈ . and test whether U ⊆ S and b ∈ T . Finally, a
simple algorithm for testing that a set S defends an argument a iterates over all
attacks (T, a) ∈ . and for each of these attacks checks that S I T . That is, for all
three problems we just need to store a small number of pointers to the input which
can be done in logarithmic space.
Proposition 3.25. Given a SETAF AFS = 〈Ar , .〉, a set of arguments S ⊆ Ar ,
and an argument a ∈ Ar , deciding whether S is conflict-free, deciding whether S I a,
and deciding whether a ∈ FAFS (S) are in L.

Notice that most of the complexity upper bounds for Dung AFs are based on
the fact that these three problems can be solved in polynomial-time, and thus these

8Notice that [47, Table 1] includes CF2 semantics which has not yet been generalised to SETAFs
and is thus not included in Table 4. On the other hand, we include eager semantics which has not
been considered in [47, Table 1] (see [45, Table 2] for the complexity results of eager semantics in
Dung AFs).

9For a more fine-grained analysis of algorithms for SETAFs one might take into account the
actual representation size of the attacks, cf. [53].
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upper bounds also apply to SETAFs (cf. Table 4). We next exemplify this for the
credulous acceptance problem of stable semantics.

Proposition 3.26. We have that VerST ∈ L and CredST is NP-complete.

Proof. First, consider the verification problem VerST and an arbitrary SETAF
AFS = 〈Ar , .〉. We can verify that a given set S is a stable extension of AFS
by (a) checking that S is conflict-free and (b) checking that for each a ∈ Ar \ S we
have S I a. As both can be done in L, we obtain the L membership of VerST .

Now consider the credulous acceptance problem CredST . The NP-hardness is by
the corresponding result for AFs. For the upper bound consider an arbitrary SETAF
AFS = 〈Ar , .〉 and an argument a ∈ Ar . We can decide the credulous acceptance
of a in AFS by a standard guess & check algorithm. That is, one first uses the
non-determinism to guess a set E and then use a deterministic part to verify that
E is a stable extension and contains the argument a. This gives an NP procedure
for CredST .

Next, let us consider the complexity of ideal semantics, as it is the only case
where the upper bound for Dung AFs [43] does not directly apply to SETAFs. Recall
that the ideal extension can be characterised as the maximal admissible set that is
not attacked by any other admissible set (Definition 3.15). In order to compute
the ideal extension we thus use NP-oracle queries that for each argument ask (a)
whether it is credulously accepted w.r.t. preferred semantics and (b) whether it is
attacked by some admissible set. We then consider the set E0 of all arguments that
are credulously accepted but not attacked by an admissible set. Notice that E0 is
conflict-free by construction and it is an over-approximation of the ideal extension.
We then compute the maximal admissible subset of E0 by iteratively computing
sets Ei+1 by removing arguments that are not defended by Ei until we reach a
fixed-point E. We then have that E is the ideal extension. We have that the NP-
oracle queries of the above procedure are independent of each other and thus can
be executed in parallel. Moreover, each iteration of the fixed-point computation
is in polynomial-time and the fixed-point is reached after at most n/2 iterations,
i.e., one can compute the fixed-point in polynomial time. Thus the above is a ΘP

2 -
algorithm for computing the ideal extension. Hence, we obtain ΘP

2 upper bounds
for all reasoning tasks of ideal semantics.

3.3.3 Algorithms for SETAFs

The field of algorithms for SETAFs is rather under-explored with the exception
of [82]. The former studies algorithmic ideas for preferred semantics. We recapitulate
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σ Credσ Skeptσ Verσ Existsσ Exists¬∅σ
Conflict-free in L trivial in L trivial in L
Naive in L in L in L trivial in L
Grounded P-c P-c P-c trivial in L
Stable NP-c coNP-c in L NP-c NP-c
Admissible NP-c trivial in L trivial NP-c
Complete NP-c P-c in L trivial NP-c
Ideal ΘP

2 -c ΘP
2 -c ΘP

2 -c trivial ΘP
2 -c

Eager ΠP
2 -c ΠP

2 -c DP
2 -c trivial ΠP

2 -c
Preferred NP-c ΠP

2 -c coNP-c trivial NP-c
Semi-stable ΣP

2 -c ΠP
2 -c coNP-c trivial NP-c

Stage ΣP
2 -c ΠP

2 -c coNP-c trivial in L

Table 4: Complexity of SETAFs (C-c denotes completeness for class C).

their main observations in terms of a simple algorithm (see Algorithm 1) in the style
of today’s labelling-based algorithms ([36; 35]).

The rough idea of labelling-based algorithms is to start with all arguments un-
labelled, in each step pick an argument and then consider two branches: one where
we add the argument to the extension, i.e., labelled in; and one where we decide
that the argument is excluded from the extension, i.e., labelled out or undec (cf.
Section 3.1.5). When all arguments are labelled, one tests whether the labelling is
valid w.r.t. the considered semantics and, if so, it is added to the output. By that
procedure we would consider all possible candidates for valid labellings and thus also
obtain all the extensions. In order to design an efficient algorithm one aims to cut
off branches that do not lead to valid labellings as soon as possible. One approach
are the so-called label propagation rules, i.e., one uses the already fixed labels of
the arguments to conclude that other arguments have to obtain a certain label and
by that avoids unnecessary branching in the algorithm. For instance, for preferred
semantics, given the set of arguments Labin labelled in by a partial labelling Lab we
can conclude that all arguments in the set Lab+

in, i.e., arguments a with Labin I a,
must be labelled out. Moreover, for attacks that target Labin and have only one
argument outside of Lab+

in we have that this argument has to be labelled out. This
is captured by the set Lab←in defined as Lab←in = {a ∈ Ar | Labin∪{a} I Labin}. This
propagation of out labels is implemented in Line 8 of Algorithm 1 and triggered
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whenever a new argument is labelled in. Another observation is that we cannot la-
bel an argument in if this would cause a conflict in the set Labin. Many cases where
this could happen are already covered by the propagation rules for out labels, but
these rules do not cover attacks (S∪{a}, a) ∈ . with S ⊆ Labin. This propagation is
implemented by the if condition on Line 4, which prevents the algorithm from start-
ing the branch where the argument a is added to the extension. Finally, when an
argument a is already defended by Labin then, due to the maximality of preferred
extensions, we know that this argument is in each preferred extension containing
Labin and thus we must label a by in. This propagation is implemented by the if
condition on Line 12, which prevents the algorithm from starting the branch where
the argument a is excluded from the extension.

We obtain that Algorithm 1 returns the preferred labellings of a given SETAF
AFS . Notice that the algorithm can be easily adapted to compute complete la-
bellings, by removing the maximality check on Line 16, or admissible sets, by remov-
ing the maximality check on Line 16 and the if condition on Line 12. We can roughly
estimate the running time of these algorithms by O(exp(|Ar |) · poly(|Ar |, | . |)). No-
tably only the polynomial part depends on the number of attacks while the expo-
nential part solely depends on the number of arguments. Finally, recent work [53]
suggests to not just label arguments but also label the attacks of a SETAF. It then
studies possible label propagation-rules for stable and complete semantics and pro-
vides a linear time algorithm (linear w.r.t. the representation of the SETAF) for
grounded semantics.

3.3.4 Systems and Reduction-based Approaches

Reduction-based approaches have been successfully applied in the design of argumen-
tation systems, most prominently by systems that are based on modern SAT-solver
technology or answer-set programming [35]. For SETAFs the only system discussed
in the literature, i.e., the SETAF module of the ASPARTIX10 system [49], is based
on answer-set programming.

Reduction to Answer-set Programming. Answer-set programming (ASP)
[79; 85] is a declarative problem solving paradigm with its roots in logic program-
ming and non-monotonic reasoning. Today’s answer-set systems [66; 75] support
a rich language and are capable of solving hard problems efficiently. Thus, ASP
is a convenient formalism to implement argumentation systems. The ASPARTIX
approach [57] to argumentation problems relies on a query-based implementation

10https://www.dbai.tuwien.ac.at/research/argumentation/aspartix
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Algorithm 1 pref-lab(AFS)
Require: SETAF AFS = 〈Ar , .〉, global variable L
Ensure: L is the set of preferred labellings
1: L = ∅, Lab = 〈∅, ∅, ∅〉
2: pref-lab(AFS ,Lab)

3: function pref-lab(F,Lab)
Require: SETAF F =〈A,R〉, partial labelling Lab, global variable L

4: if there is an argument a ∈ A not labeled by Lab then
5: a← pick some unlabeled argument
6: if Labin ∪ {a} ∈ CF(F ) then
7: Lab′in = Labin ∪ {a},
8: Lab′out = Labout ∪ Lab′+in ∪ Lab′←in
9: Lab′undec = Labundec \ Lab′out

10: pref-lab(AFS , 〈Lab′in,Lab′out,Lab′undec〉)
11: end if
12: if {a} /∈ FF (Labin) then
13: pref-lab(AFS , 〈Labin,Labout,Labundec ∪ {a}〉)
14: end if
15: else
16: if Labin ∈ AD(F ) and Labin ⊆-max among {Labin | Lab ∈ L} then
17: L = L ∪ {Lab}
18: end if
19: end if
20: endFunction

where the argumentation framework is provided as an input database, and one pro-
vides fixed queries encoding the different argumentation semantics and reasoning
tasks.

Here we briefly highlight the main differences between the ASP encodings of
Dung AFs [57] and SETAFs [49]. To this end, we first briefly recall the basic termi-
nology for logic programs (for rigorous definitions see [35] or [36]). A logic program
(under the answer-set semantics) is a set of disjunctive rules r of the form

a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm

where a1, . . . , an and b1, . . . , bm are atoms, and not stands for default negation. We
refer to a as a positive literal, while we refer to not a as a default negated literal.
The head of r is the set {a1, . . . , an} and the body of r is {b1, . . . , bm}, and a rule
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a

b

c

arg(a). arg(b). arg(c).
att(r1, c). mem(r1, a). mem(r1, b).
att(r2, b). mem(r2, a). mem(r2, c).
att(r3, a). mem(r3, b). mem(r3, c).

πsetaf (AFS)

Figure 5: The SETAF AFS = 〈{a, b, c}, {({a, b}, c), ({a, c}, b), ({b, c}, a)}〉 and its
ASP-encoding πsetaf (AFS).

in(Y )← arg(Y ),not out(Y ).
out(Y )← arg(Y ),not in(Y ).

blocked(R)←mem(R,X),out(X).
← in(X),att(R,X),not blocked(R).

πCF in(Y )← arg(Y ),not out(Y ).
out(Y )← arg(Y ),not in(Y ).

blocked(R)←mem(R,X),out(X).
← in(X),att(R,X),not blocked(R).

defeated(R)← att(R,X),mem(R, Y ),
att(R2, Y ),not blocked(R2).

← in(X),att(R,X),not defeated(R).

πAD

Figure 6: ASP Encodings πCF , πAD for CF and AD semantics of SETAFs.

r is a constraint if n = 0. A fact is a ground rule without disjunction (n = 1) and
with an empty body. An input database is a set of facts.

In order to evaluate SETAFs with ASP, in a first step, we have to encode SETAFs
as an input database for the ASP-program. We introduce three predicates arg,
att, and mem to encode a SETAF AFS = 〈Ar , .〉. The predicate arg is used
to encode arguments, the latter two to encode the set attacks, i.e., att encodes
which argument is attacked by an attack and mem encode which arguments are
required to attack that argument. Notice that, this encoding uses a unique identi-
fier for each attack in .. The encoding of a SETAF AFS = 〈Ar , .〉 is then given
by πsetaf (AFS) = {arg(a). | for a ∈ Ar} ∪ {att(r, x). | for r ∈ . and r = (S, x)} ∪
{mem(r, y). | for r ∈ ., r = (S, x), and y ∈ S} (cf. Figure 5). While arguments are
represented in the same way as in Dung AFs, Dung AFs allow for a simpler represen-
tation of attacks. That is, the encoding of AFs ([35]) only uses one binary predicate
att to encode the attacks, containing the attacker and the attacked argument of
each attack, and does not use identifiers for attacks.

When it comes to the encoding of semantics one uses predicates in(·), out(·)
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to guess whether an argument is in the extension or not (in the same way as for
AFs). Notice that the predicate out(·) encodes that an argument is not in the
extension and does not correspond to the label out. This guess builds up all possible
subsets of arguments which are then filtered by adding constraints that reflect the
specific semantics. Here the SETAF encodings differ from the AF encodings as they
explicitly define statuses of attacks. First, we call an attack (T, a) ∈ . blocked
w.r.t. a set E ⊆ Ar if T 6⊆ E. Second, we consider an attack (T, a) ∈ . to be
defeated by a set E iff E I T . We will exemplary discuss the encodings πCF , πAD
for conflict-free sets and admissible sets respectively (cf. Figure 6). In the encoding
of the conflict-freeness, with the first two rules one guesses a subset of arguments, the
third rule computes the blocked attacks, and the constraint in the fourth line rules
out all sets that contain an argument X and have a non-blocked rule attacking X.
That is, if we compute the answer-sets of the combined program πsetaf (AFS)∪ πCF
the answer-sets correspond to the conflict-free sets, i.e., the conflict-free sets are
given by the in(·) predicate in the answer-sets. Next, we further extend πCF to an
encoding πAD for admissible semantics. That is, we add a rule that computes the
defeated attacks and a constraint that rules out sets where an argument of the set
is attacked by an undefeated attack. Thus, if we compute the answer-sets of the
combined program πsetaf (AFS)∪ πAD the answer-sets correspond to the admissible
sets.

Other Reduction-based Approaches. For Dung AFs and their generalisations,
several reduction-based approaches have been studied in the literature and often
resulted in argumentation systems [36]. In particular, systems based on modern
SAT-solving systems have been successful [101; 64]. Beside ASP, none of these ap-
proaches have been considered in the literature on SETAFs so far. However, very
recently a first version of the SAT-based SETAF system joukko appeared online11.
Thus, one approach towards an efficient SETAF system would be to extend exist-
ing approaches that have been successful for AFs to SETAFs. Another approach
is to translate SETAFs to AFs or ADFs and use one of the existing systems for
these formalisms to evaluate SETAFs. Translations from SETAFs to AFs have been
presented in [94] and [60](see also Section 3.2 in this chapter). However, when us-
ing these translations one is faced with an exponential blow-up in the arguments
and thus these translations are not well-suited for computational matters. Recall,
that algorithms for SETAFs scale polynomially w.r.t. the number of attacks and
exponentially w.r.t. the number of arguments. Thus translating attacks to argu-
ments and using AFs tools can results in a serious computational overhead. Con-

11https://bitbucket.org/andreasniskanen/joukko
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cerning the latter, there are rather simple translations of SETAFs into ADFs [77;
93] (see Section 3.2.4) which do not increase the number of arguments. That is, one
can efficiently encode a SETAF as an ADF and then use one of the existing systems
for ADFs, e.g., k++ADF12 [76], YADF13 [21], or DIAMOND14 [58], to evaluate the
SETAF. The attentive reader may argue that the computational complexity of ADFs
is higher than that of SETAFs and thus such a reduction might result in significant
overheads. However, modern ADF systems are sensitive to the actual complexity
of the acceptance conditions in the processed ADF and thus the overheads when
processing ADFs with acceptance conditions generated from SETAFs probably will
not be as high as one would expect from the worst-case complexity gap.

3.4 Alternative models for attacks involving sets of arguments
SETAFs have not been the only attempt to formalise collective attacks15 in argu-
mentation systems. There have been earlier or more recent related approaches, both
in abstract and structured argumentation, each of which captures a slightly different
notion of collective attack and with a different aim.

One of the earliest approaches to formalise collective attacks in abstract argu-
mentation was the collective argumentation theories proposed by [18]. These are
generalisations of Dung’s abstract argumentation frameworks aimed at the repre-
sentation of the semantics of disjunctive logic programs, but also, more generally, at
the description of “reasoning situations in which the conflict between incompatible
views or theories is global and cannot be reduced to particular claims made by these
theories”. [18] proposes a four-valued semantics, i.e., each argument is assigned
a subset of 2{t,f} and attacks occur among sets of arguments (e.g. S ↪→ T ) and
are interpreted as “at least one of the arguments in the attacked set (T ) should be
rejected whenever all the arguments from the attacking set (S) are accepted”.

[33] introduced the notion of coalitions of arguments to represent sets of non-
conflicting arguments that are related via the support relation in a bipolar argu-
mentation framework (BAF). Using this notion, a bipolar argumentation framework
AFB can be translated into a Dung-style meta-argumentation framework C(AFB),
called “Coalition AF”, in which the arguments represent coalitions of arguments
of AFB and the attacks among arguments (called c-attacks) correspond to attacks
among elements of the corresponding coalitions: S c-attacks T in C(AFB), iff there

12https://www.cs.helsinki.fi/group/coreo/k++adf/
13http://www.dbai.tuwien.ac.at/proj/adf/yadf/
14http://diamond-adf.sourceforge.net/
15We use the term collective to refer to any kind of attack relation that involves sets of arguments,

either as attackers or as targets of an attack, or both.
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exist arguments a, b ∈ AFB such that a ∈ S, b ∈ T and a attacks b in AFB. All
arguments belonging to a coalition are then treated in the same way when comput-
ing the acceptable arguments: an argument a is acceptable (under the preferred,
stable or grounded semantics) in AFB iff it is a member of a coalition S, which is
acceptable (under the same semantics) in C(AFB).

The framework proposed in [63] also considers sets of arguments, but as recipients
of disjunctive attacks from single arguments. In this framework, the result of an
attack from an argument a that is labelled in, to a set of arguments S, is that at
least one of the arguments in S must be labelled out. Definition 2.8 and Theorem
2.9 of the same paper show how a finite disjunctive framework can be converted to
a Dung-style AF with the same set of extensions, which, combined with the results
on the relationship between SETAF and AF that we present in Section 3.2, provide
a way to associate SETAF with disjunctive argumentation frameworks. Note also
that [84] also provides a way to model disjunctive attacks using SETAFs, using the
notion of “indeterministic defeat” [104] (see Section 3.1 for details).

CumulA [103; 104] is an example of a structured argumentation model that
supports collective attacks. In this model, arguments are tree-like structures that
represent how a conclusion is supported. In order to support situations where a set
of arguments should be collectively defeated (collective defeat) or at least one of the
arguments in a set should be defeated (indeterministic defeat), it uses compound
defeaters, i.e., attack relations where either the source or the target of the attack
(or both) are sets of arguments. The meaning of a compound defeater is different
than that of joint attacks in SETAFs: if all arguments in the attacking set are
undefeated, the arguments in the attacked set are defeated as a group unless one of
the arguments in the attacked set has already been defeated by another defeater. In
the latter case the compound defeater becomes inactive.

Another structured argumentation formalism that incorporates the notion of
collective attacks is the Abstract Argumentation Systems (AAS) from [106]. An AAS
is defined as a triple (L,R,≤), where L is a language containing the symbol ⊥, which
represents a contradictory proposition, R is a set of (strict and defeasible) inference
rules, and ≤ is a preorder on the set of arguments, called order of conclusive force,
and determining “the relative difference in strength among arguments”. Arguments
are defined as chains of rules organised as trees. The notion of defeat in AAS is
used to capture and resolve conflicts among groupwise incompatible arguments: a
set of arguments X defeats an argument a if X ∪ {a} is incompatible (there is a
strict argument b that is based on the conclusions of X ∪{a} and has conclusion ⊥)
and X is not undermined by a (there is no c ∈ X such that a < c).

Defeasible Logic [89], which, as shown in [69] has an argumentation-theoretic
semantics, also supports a type of collective attacks, called team defeat. This logic
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includes a rule priority relation, which is used to resolve conflicts between rules with
contradictory conclusions. An attack on a rule r with conclusion p from a rule r′
with conclusion ¬p can be invalidated by another rule r′′ also with conclusion p
that is superior to r′. In this case, we say that r and r′′ team defeat r′. Using
this feature, we conclude that p is true if for every applicable rule that supports
¬p, there is a superior rule for p; in other words, if the rules for ¬p are team
defeated by the rules for p16. In order to support this feature, the argumentation-
theoretic characterisation of Defeasible Logic defines arguments as sets of proof
trees supporting the same conclusion and team defeat as a relation between two
arguments with opposite conclusions, and requires that an argument team defeats
all its attacking arguments to become acceptable. Team defeat is also supported
by other rule-based non-monotonic logics, which use preferences on rules, such as
Courteous Logic Programs [70] and Order Logic [73]. An interesting problem is to
study the possibility of mapping Defeasible Logic, or any of the other rule-based
non-monotonic logic that supports team defeat, to SETAF by defining arguments as
proof trees and by representing team defeat, between a set of rules R supporting the
same conclusion and a rule s supporting the opposite conclusion, as a joint attack
from the set of arguments that have a top rule in R to each argument that has s as
its top rule.

[10] recently introduced a semi-structured formalism for argumentation, called
LAF -ensembles, capturing a set of essential features of structured arguments, such
as their conclusion, their “attackable elements” and their subarguments. They also
defined a family of abstract argumentation frameworks, called set-based (as their
nodes correspond to sets of arguments instead of individual arguments), which are
appropriate for representing LAF -ensembles at the abstract level. In set-based ar-
gumentation frameworks, the attacks occur at the set level. The main differences
between set-based frameworks and SETAFs are that the former allow attacks on sets
of arguments and attacks where the source is the empty set; the latter are useful
to capture inconsistencies of the theory at the language level (e.g., incompatible
subsets of the language in Vreeswijk’s AAS [106]).

Finally, it should be noted that, as also explained in Section 3.2 and shown in [93],
ADFs are generalisations of SETAFs and can therefore model the type of collective
attacks used in SETAFs. This is done by setting the following acceptance condition
for each argument a: at least one argument from each of the sets of arguments
attacking a should be rejected.

16For a more detailed discussion on team defeat, see [17]
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4 Applications of joint attacks and models for
joint supports

The ideas behind the characterisation of abstract argumentation frameworks with
joint attacks, as those described in Section 3, have also been applied in other con-
texts. In this section we will focus on applications of joint attacks in Bipolar Ar-
gumentation Frameworks (BAFs) and argumentation frameworks with higher-order
interactions17.

Briefly, BAFs extend Dung’s AF by incorporating a support relation intended
to model a positive interaction between the elements it relates. The first works
accounting for bipolarity in abstract argumentation conceived the support relation
as a binary relation over the set of arguments in the framework (see [34; 37] for
an overview on BAFs). However, later approaches adopted a different view of the
support relation, to also account for joint supports (i.e., support relations whose
source is a set of arguments) or, more generally, higher-order supports (i.e., support
relations that can target other interactions, either attacks or supports), in addition
to arguments.

In this section we will consider approaches to bipolar abstract argumentation
that make use of joint attacks, joint supports or both. Finally, we will discuss the
possibility of using joint attacks for modelling higher-order attacks and supports
(i.e., interactions whose target is another interaction) and the generalised necessary
support relation proposed in [88] and also accounted for in [31].

4.1 Flat bipolar argumentation frameworks with joint attacks or
joint supports

In [91] the authors used the SETAF as the underlying framework for representing
evidence against an argument in order to allow for evidence-based reasoning. They
introduced the Evidential Argumentation System (EAS) which further extended the
definition of SETAF by incorporating a specialised support relation to capture the
notion of evidential support. The support relation in the EAS enables to distinguish
between prima-facie and standard arguments; the former arguments do not require
support from other arguments to stand, whereas the latter must be linked to at
least one prima-facie argument through a chain of supports. Moreover, the prima-
facie arguments are supported by a special argument η denoting support from the
environment or the existence of supporting evidence. Also, analogously to the attack
relation, the support relation in an EAS allows for supports to be originated on sets

17The latter are the subject of study in Chapter 1 of this handbook [29].
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of arguments. Formally:

Definition 4.1. An EAS is a tuple 〈Ar , att, sup〉, where Ar is a set of arguments,
att ⊆ (2Ar\∅) × Ar is the attack relation, and sup ⊆ (2Ar\∅) × Ar is the support
relation. A special argument η ∈ Ar is distinguished, such that @(X, y) ∈ att where
η ∈ X; and @X where (X, η) ∈ att or (X, η) ∈ sup.

The attack relation in an EAS is interpreted in the same way as the attack
relation in the SETAF. Given X ⊆ Ar and a ∈ Ar , (X, a) ∈ att reads as follows: if
all the arguments in X are accepted, then a cannot be accepted. In contrast, the
evidential support relation is interpreted as follows. Given X ⊆ Ar and a ∈ Ar ,
(X, a) ∈ sup reads as: “the acceptance of a requires the acceptance of every argument
in X”.

Since the core idea of the EAS is that valid arguments (in particular, those
originating attacks) need to trace back to the environment, the authors define the
notion of evidence supported attack (e-supported attack). Then, based on this
notion, semantics for the EAS have been characterized in [91] and then reformulated
in [95], following Dung’s methodology.

The Generalised Argumentation Frameworks with Necessities (GAFNs)
[88] (directly referred to as AFNs in [87]) are another kind of bipolar argumen-
tation frameworks that account for interactions between single arguments and sets
of arguments but in a different way: a necessity relation between a set of arguments
S and an argument a means that the acceptance of a requires the acceptance of at
least one argument in S.

To illustrate the support relation of GAFNs, let us consider the following exam-
ple. Suppose that in order to be awarded with a scholarship (s) a student is required
to obtain a Bachelor’s degree with honours (bh) or justify modest income (mi). In
addition, suppose that the student has a bad mark (bm), and that having a bad
mark prevents the student from obtaining the honours (regardless of the average
of marks). We can represent this scenario by a GAFN with arguments s, bh, mi
and bm. On the other hand, there exists an attack from bm to bh, and there exists
a necessary support from the set {bh,mi} to argument s. It is important to note
that, even though the attack from bm to bh will result in bh not being accepted, this
does not prevent s from being accepted (in other words, the student will obtain the
scholarship). This is because the support towards s is originated in the set {bh,mi},
where each argument within this set provides an alternative condition for obtaining
the scholarship.

Generalised Argumentation Frameworks with Necessities are formally defined as
follows:
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Definition 4.2. A Generalised Argumentation Framework with Necessities
(GAFN) is defined by a tuple 〈Ar , att, sup〉 where Ar is a set of arguments, att ⊆
Ar ×Ar is an attack relation and sup ⊆ ((2Ar\∅)×Ar) is a necessity relation.

In [87] the author proposed a characterisation of semantics for the GAFN, in
addition to those given in [88]. Finally, it should be noted that in [95] the authors
provided a translation allowing the transformation of a GAFN into an EAS. Briefly,
this translation is such that unsupported arguments in the GAFN will be arguments
supported by η in the EAS; on the other hand, all sets of supporting arguments in
the GAFN are combined into different sets of supporting arguments in the EAS by
accounting for their Cartesian product. Finally, for the attack relation it suffices to
map the attacking arguments in the GAFN into singleton sets of attacking arguments
in the EAS. Then, [95] formally established a correspondence between the EAS and
the GAFN in terms of their semantics, and identified correspondences between the
properties of both frameworks and properties of Dung’s AF.

Example 4.3. Consider the GAFN 〈Ar , att, sup〉, where:

• Ar = {a, b, c, d, e, f}

• att = {(b, a), (e, a), (c, d)}

• sup = {({b}, e), ({d, f}, e), ({a}, d)}

This AFN could be translated into the EAS 〈Ar ′, att ′, sup′〉, where:

• Ar ′ = Ar ∪ {η}

• att ′ = {({b}, a), ({e}, a), ({c}, d)}

• sup′ = {({b, d}, e), ({b, f}, e), ({a}, d), ({η}, a), ({η}, b), ({η}, c), ({η}, f)}

For details about the characterisation of semantics for EAS and GAFN we refer
the reader to [91] and [88; 87], respectively.

4.2 Bipolar argumentation frameworks with joint attacks or joint
supports and higher-order interactions

The ideas adopted by the EAS and the GAFN described in the previous section
were further exploited in [30] and [31], where the authors introduced the Recursive
Evidence-Based Argumentation Framework (REBAF) and the Recursive Argumen-
tation Framework with Necessity (RAFN). Briefly, these frameworks extend Dung’s
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AF by accounting for attack and support relations that can target not only argu-
ments, but also attacks or supports at any level18. As a result, the REBAF adopts
the evidential interpretation for the support relation of [91], whereas the RAFN
adopts the generalised necessity interpretation of support proposed in [88]. The
formal definitions of these frameworks are included below:

Definition 4.4. A Recursive Evidence-Based Argumentation Framework (REBAF)
is a tuple 〈Ar , att, sup, s, t, PF 〉 where Ar , att and sup are pairwise disjoint sets
respectively representing the names of arguments, attacks and supports, and PF ⊆
Ar ∪att∪sup is a set representing the prima-facie elements of the framework that do
not need to be supported. The functions s : (att∪sup) 7→ 2Ar \∅ and t : (att∪sup) 7→
(Ar ∪att ∪ sup) respectively map each attack and support to its source and its target.

Definition 4.5. A Recursive Argumentation Framework with Necessity (RAFN) is a
tuple 〈Ar , att, sup, s, t〉, where Ar , att and sup are pairwise disjoint sets respectively
representing the names of arguments, attacks and supports. The function s : (att ∪
sup) 7→ 2Ar \∅ and t : (att∪sup) 7→ (Ar ∪att∪sup) respectively map each attack and
support to its source and its target. It is assumed that ∀α ∈ att, s(α) is a singleton.

Note that, according to Definition 4.4, attacks and supports in a REBAF can
have a set of arguments as their source. In contrast, by Definition 4.5, the attack
relation of a RAFN is restricted to only allow for arguments as the source of attacks.
Then, in both cases, an attack or a support can also be the target of an interaction.
Consequently, since these frameworks allow to reason about interactions in addition
to arguments, the attacks and supports are also accounted for in the acceptability
calculus.19

Semantics of REBAF and RAFN are defined using a notion of structure, defined
as a triple U = (S,Γ,∆) such that S ⊆ Ar , Γ ⊆ att and ∆ ⊆ sup. Then, the
notions of conflict-freeness, acceptability and admissibility as well as the subsequent
semantics are defined over these structures, with the idea that the set S represents
the set of “acceptable” arguments w.r.t. the structure U , and the sets Γ and ∆
respectively represent the sets of “valid attacks” and “valid supports” w.r.t. U . For
details about the definition of semantics for REBAF and RAFN, we refer the reader
to [30] and [31], respectively, or to Chapter 1 of this handbook [29].

18The REBAF and the RAFN are studied in more detail in Chapter 1 of this handbook [29].
19This feature is also shared by other frameworks such as the AFRA and the ASAF, discussed

in Section 4.3.
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4.3 Using joint attacks to model higher-order interactions and gen-
eralised necessary supports

Gabbay [62] proposed the Higher-Level Argumentation Frames (HLAFs), which ex-
tend Dung’s framework by allowing for attacks from arguments targeting not only
arguments, but also attacks at any level. A HLAF can be defined as follows:

Definition 4.6. Let Ar be a set of arguments. Level (0, n) argumentation frames
are defined as follows:

1. A pair (a, b) ∈ Ar ×Ar is called a level (0, 0) attack.

2. If c ∈ Ar and α is a level (0, n) attack then (c, α) is a level (0, n+ 1) attack.

3. A level (0, n) argumentation frame is the pair 〈Ar , att〉 where att contains only
level (0,m) attacks for 0 ≤ m ≤ n.

Note that, although the level of HLAFs is expressed in terms of pairs (0, n) with
possibly different values for n, the first component of the pair denoting the level
is always 0 (the part of the level associated with the set of arguments). In partic-
ular, [62] proposed different kinds of approaches in order to define the semantics
of HLAFs: the first option consists in translating a HLAF into a Dung’s AF; the
second alternative corresponds to the characterisation of labellings for HLAF, sim-
ilarly to the labellings for AFs [6]; finally, in the third approach Gabbay proposed
to translate a HLAF into a logic program. In the following, we will consider the
first translation approach, which consists of obtaining a Dung’s AF corresponding
to a HLAF. Specifically, a HLAF 〈Ar , att〉 can be translated into an AF 〈Ar∗, att∗〉,
where:

• Ar∗ = Ar ∪ {xβ, yβ | β = (a, α) ∈ att}.

• att∗ = {(a, xβ), (xβ, yβ), (yβ, α) | β = (a, α) ∈ att}.

The new arguments x(a,α) and y(a,α) associated with an attack from a to α respec-
tively represent that the attack is ‘live’ or ‘dead’; moreover, Gabbay argued that the
translation of attacks as in the second bullet above is sufficient for attacks which
are under attack. This translation is illustrated in Figure 7, where two attacks
α = (a, b) ∈ att and β = (c, α) ∈ att are considered.

Then, given a set of extensions E+
1 , E

+
2 , . . . , E

+
n of the associated AF, the corre-

sponding extensions of the HLAF are E+
i ∩Ar , (i = 1, . . . , n).

In spite of proposing the translation described above, [62] argued that an attack
(a, b) ∈ att should be viewed as an independent unit, the attack of a on b, which can
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Figure 7: (LHS) HLAF with attacks α = (a, b) and β = (c, α); and (RHS) the
translation into a series of AF attacks
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Figure 8: (LHS) Graphical representation of the joint attack by a and α on b,
corresponding to an attack α = (a, b); and (RHS) its translation into a sequence of
AF attacks.

be itself attacked. In particular, he stated that the preceding translation does not
serve its purpose for modelling more general situations, such as attacks originated
in other attacks (although the latter are not allowed in the frameworks of Defini-
tion 4.6). In that way, the author suggested that an attack (a, b) ∈ att should be
a unit kept ‘live’ unless attacked itself. Consequently, he proposed an alternative
solution making use of joint attacks: an attack α = (a, b) is translated in a way such
that the argument b is jointly attacked by two arguments a and α Then, both a and
α must be ‘live’ in order for b to be ‘dead’. The graphical representation of a joint
attack by a and α on b, corresponding to an attack α = (a, b) is shown in Figure 8
on the left.

Given this notion of joint attack, [62] proposed a further translation of joint
attacks into attacks in a Dung’s AF. This translation has some similarities with the
one introduced before for directly translating a HLAF into an AF, and is illustrated
in Figure 8 on the right for the case of a joint attack by a and α on b.

Alternatively to the translation of joint attacks into attacks at the argument
level in a Dung’s AF, [62] introduced the frames with joint attacks:
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Definition 4.7. A frame with joint attacks has the form 〈Ar , att〉, where Ar is the
set of arguments and att ⊆ Ar × Ar × Ar is a ternary relation. We understand
(x, y, z) ∈ att as saying that the two arguments x and y are mounting a joint attack
on z.

The author remarked that single attacks can still appear in a frame with joint
attacks; these would be attacks of the form (x, x, y) ∈ att. It is important to note
that, following Definition 4.7, the frames with joint attacks are a particular case
of the SETAFs, where the set of arguments originating an attack is restricted to
a maximum of two elements. Consequently, the algorithms and reduction-based
approaches for SETAFs discussed in Section 3.3 could also be applied to the frames
with joint attacks.

Then, Gabbay introduced definitions analogous to those of [84], characterising
the extensional semantics of these frameworks. Finally, he proposed a translation
from HLAFs into frames with joint attacks, so that extensions of the former corre-
spond to extensions of the latter.

Definition 4.8. Let 〈Ar , att〉 be a HLAF. The corresponding frame with joint at-
tacks 〈Ar ′, att ′〉 is defined as follows:

• Ar ′ = Ar ∪ att

• att ′ = {(a, α, β) | α = (a, β) ∈ att}
Following this approach, for instance, the HLAF illustrated in Figure 9 on the

top can be translated into a frame with joint attacks (or a SETAF) like the one
depicted in Figure 9 at the bottom.

Next, we will discuss the possibility of using joint attacks for modelling attacks,
including higher-order attacks, through Gabbay’s Frames with Joint Attacks (a par-
ticular case of SETAFs) in frameworks such as the AFRA [7] or the ASAF20 [68].
We will start by briefly recalling the definition of these frameworks, as proposed by
their authors. As mentioned before, these frameworks are studied in another chapter
of this book. Thus, for more details, we refer the interested reader to Chapter 1 of
this handbook [29].

The Argumentation Framework with Recursive Attacks (AFRA) [7] generalises
Dung’s AF by incorporating a recursive attack relation where attacks are allowed to
target other attacks as well as arguments, and the attacks can occur at any level.

Definition 4.9. An Argumentation Framework with Recursive Attacks (AFRA) is
a pair 〈Ar , att〉 where:

20In the case of the ASAF, initially, without supports (where such an ASAF would be an AFRA).
The means for modelling supports through joint attacks will be discussed later.
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Figure 9: (Top) A HLAF with a higher-order attacks, where Greek letters denote
the labels of the attacks; and (Bottom) its corresponding frame with joint attacks

• Ar is a set of arguments;

• att is a set of attacks, namely pairs (a,X) such that a ∈ Ar and (X ∈ Ar or
X ∈ att).

Given an attack α = (a,X) ∈ att, a is said to be the source of α, denoted as
s(α) = a, and X is the target of α, denoted as t(α) = X. Moreover, similarly to the
notation used before for Gabbay’s HLAF, [7] introduces an abbreviated notation for
recursive attacks in the AFRA; for instance, an attack (c, (a, b)) can be expressed
as (c, α), where α = (a, b).

Then, [7] establishes the different kinds of defeat that can occur between the
elements of an AFRA. A key aspect of their formalisation is that they regard attacks
(not their source arguments) as the subjects able to defeat arguments and other
attacks. Then, an attack can be made ineffective (in other words, defeated) either
by attacking the attack itself or by attacking its source. The notions of direct defeat
and indirect defeat are introduced in [7] as follows:
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Definition 4.10. Let 〈Ar , att〉 be an AFRA, α ∈ att and X ∈ Ar ∪ att. It is said
that α defeats X, denoted α→R X if one of the following conditions holds:

• t(α) = X (direct defeat); or

• X = β ∈ att and t(α) = s(β) (indirect defeat).

Then, based on this notion of defeat, the notions of conflict-freeness, acceptabil-
ity, admissibility and extensions under different semantics are introduced following
Dung’s methodology. Consequently, the extensions of an AFRA will not only contain
the accepted arguments under the corresponding semantics, but also the accepted
attacks.

Example 4.11. The arguments and attacks depicted at the top in Figure 9 corre-
spond to the AFRA 〈Ar , att〉, where Ar = {a, b, c, d, e} and att = {α, β, γ, δ}, with
s(α) = a, t(α) = b, s(β) = b, t(β) = c, s(γ) = c, t(γ) = d, s(δ) = e, t(δ) = α.

Here, the direct defeats are: α→R b, β →R c, γ →R d and δ →R α. On the other
hand, the indirect defeats are: α→R β and β →R γ. Consequently, β reinstates d, α
reinstates c and γ, and δ reinstates α and b. As a result, for instance, the AFRA has
only one complete extension (which is also its grounded and only preferred and stable
extension), namely {a, e, δ, b, β, d}. In contrast, if we apply the SETAF semantics
on the framework depicted at the top on Figure 921, we have that the only complete
extension is {a, e, δ, b, β, γ, d}.

The difference in the result obtained by applying the AFRA semantics, compared
to the one obtained by translating the AFRA into a SETAF and then applying the
SETAF semantics, has to do with the fact that the translation proposed in [62] does
not take into account the indirect defeats. In particular, in the above example, the
indirect defeat by β on γ is not captured, leaving γ as an accepted attack22. This
suggests that we need to establish a different translation of AFRAs into SETAFs, in
order to account for the effect of indirect defeats. An alternative translation of an
AFRA into a SETAF could be:

Definition 4.12. Let 〈Ar , att〉 be an AFRA. The corresponding SETAF 〈Ar , .〉 is
defined as follows:

Ar = Ar ∪ att
. = {({a, α}, X) | α = (a,X) ∈ att} ∪

{({a, α}, α′) | α = (a,X) ∈ att, α′ ∈ att, s(α′) = X}
21As stated before, the frames with joint attacks are a particular case of SETAFs.
22The indirect defeat by α on β is not captured either; however, since α is not accepted (because

it is directly defeated by δ) it does not affect the outcome.
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Figure 10: SETAF corresponding to the AFRA from Example 4.11

The AFRA from Example 4.11, corresponding to the framework depicted at the
top of Figure 9, can be translated following Definition 4.12 to obtain the SETAF
depicted in Figure 10. Then, applying the SETAF semantics on that framework, the
only complete extension coincides with the one obtained with the AFRA semantics
in Example 4.11.

Let us now consider the formalization of the Attack-Support Argumentation
Framework (ASAF) [68]. Briefly, the ASAF extends Dung’s AF by incorporating
bipolar higher-order interactions. In that way, the ASAF allows for the representa-
tion and reasoning with attack and support relations not only between arguments,
but also targeting the attack and support relations themselves. In particular, the
support relation of the ASAF is interpreted as necessity [88]. That is, the necessary
support relation in the ASAF imposes the following acceptability constraints on the
elements it relates: if a supports b, then the acceptance of b implies the acceptance
of a; equivalently, the non-acceptance of a implies the non-acceptance of b. Note
that the support relation in the ASAF is set to be binary, differently from the neces-
sary support relation of the GAFN introduced in Section 4.1. Some of the following
definitions are taken from [2], where the background for the ASAF was succinctly
introduced.

Definition 4.13. An Attack-Support Argumentation Framework (ASAF) is a tuple
〈Ar , att, sup〉 where Ar is a set of arguments, att ⊆ W is the attack relation, and
sup ⊆W is the support relation, with W being the set iteratively defined as follows:
W = Ar ×Ar (basic step) and W = Ar ×W (iterative step). It is assumed that sup
is acyclic and att ∩ sup = ∅.
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Similarly to the case of the AFRA, an attack (a, b) ∈ att will be denoted as
α1 = (a, b); analogously, a support (b, c) ∈ sup will be denoted as β1 = (b, c). Then,
for instance, an attack from d to α1 will be denoted as α2 = (d, α1). In general,
given an attack α = (a,X) ∈ att, a is called the source of α, denoted s(α) = a,
and X is called the target of α, denoted t(α) = X. Analogously, given a support
β = (b, Y ) ∈ sup, b is called the source of β, denoted s(β) = b, and Y is called the
target of β, denoted t(β) = Y .

Like in the AFRA, different kinds of defeat that can occur between the elements
of an ASAF. Specifically, they correspond to the two kinds of defeat identified for
the AFRA, plus two additional kinds of defeat that arise from the coexistence of the
attack and support relations.

Definition 4.14. Let ∆ = 〈Ar , att, sup〉 be an ASAF, α ∈ att, X ∈ (Ar ∪att ∪ sup)
and S ⊆ sup. We say that α defeats X (given S), denoted α def X given S (or
simply α def X whenever S = ∅) iff one of the following conditions holds:

• there exists a (possibly empty) support path from t(α) to X, whose correspond-
ing set of supports is S; or

• X ∈ att and there exists a (possibly empty) support path from t(α) to s(X),
whose corresponding set of supports is S.

To illustrate these notions, let us consider the following example. Similarly to
Dung’s AF or the AFRA, an ASAF can be graphically represented using a graph-
like notation where two kinds of edges are considered: → for the attack relation
and ⇒ for the support relation. In addition, attacks and supports are labelled with
greek letters, following the convention that attacks are labelled with α (possibly
with subscripts) and supports are labelled with β (again, possibly with subscripts).

Example 4.15. Consider the ASAF 〈Ar , att, sup〉, where Ar = {a, b, c, d, e, f,
g, h}, att = {α1, α2, α3, α4} and sup = {β1, β2, β3}, with α1 = (a, b), α2 = (c, e),
α3 = (g, f), α4 = (h, α3), β1 = (b, c), β2 = (c, d) and β3 = (f, β1). This framework is
depicted in Figure 11, and the following defeats occur: α1 def b, α2 def e, α3 def f ,
α4 def α3, α1 def c given {β1}, α1 def α2 given {β1}, α1 def d given {β1, β2},
α3 def β1 given {β3}.

The semantics of the ASAF are also defined following Dung’s methodology, ac-
counting for the notions of conflict-freeness, acceptability and admissibility, to later
characterise the complete, preferred, stable and grounded semantics of the frame-
work. It should be noted that, since the defeats in the ASAF may involve a set of
supports, these notions cannot be directly defined by considering the definitions for
AFs (see Section 3.1 and Definition 4.14).
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Figure 11: ASAF from Example 4.15

Definition 4.16. Let ∆ = 〈Ar , att, sup〉 be an ASAF and S ⊆ (Ar ∪ att ∪ sup).

• S is conflict-free iff @α,X ∈ S, @S′ ⊆ (S ∩ sup) such that α def X given S′.

• X ∈ (Ar ∪ att ∪ sup) is acceptable w.r.t. S iff ∀α ∈ att, ∀T ⊆ sup such
that α def X given T: ∃Y ∈ ({α} ∪ T), ∃α′ ∈ S, ∃S′ ⊆ (S ∩ sup) such that
α′ def Y given S′.

• S is admissible iff it is conflict-free and for all X ∈ S, X is acceptable w.r.t.
S.

Definition 4.17. Let ∆ = 〈Ar , att, sup〉 be an ASAF and S ⊆ (Ar ∪ att ∪ sup).

• S is a complete extension of ∆ iff it is an admissible set and ∀X ∈ (Ar ∪att ∪
sup), if X is acceptable w.r.t. S, then X ∈ S.

• S is a preferred extension of ∆ iff it is a maximal (w.r.t. ⊆) complete extension
of ∆.

• S is a stable extension of ∆ iff it is a complete extension of ∆ and ∀X ∈
(Ar ∪ att ∪ sup)\S, ∃α ∈ S, ∃S′ ⊆ (S ∩ sup) such that α def X given S′.

• S is the grounded extension of ∆ iff it is the smallest (w.r.t. ⊆) complete
extension of ∆.

The ASAF from Example 4.15 has only one complete extension, which is also
the grounded extension and the only preferred and stable extension of the frame-
work: {a, e, f, g, h, α1, α4, β1, β2, β3}. In particular, it can be noted that whereas
α3 def β1 given {β3}, the support β1 is reinstated by α4, since α4 def α3. Then, the
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defeats from α1 on c and α2 given {β1} are also reinstated, as well as the defeat
from α1 on d given {β1, β2}.

As shown in [68], an ASAF without support is an AFRA. So, when applying the
AFRA semantics on ASAFs without supports we obtain the same outcome as the
one obtained under the ASAF semantics. Consequently, the translation of an AFRA
into a SETAF could also be applied to the ASAF; nevertheless, some adjustments
need to be made in order to account for the defeats involving a set of supports. A
possible translation of an ASAF into a SETAF is given below.

Definition 4.18. Let 〈Ar , att, sup〉 be an ASAF. The corresponding SETAF 〈Ar , .〉
is defined as follows:

Ar = Ar ∪ att ∪ sup ∪ {β∗ | β ∈ sup}
. = {({a, α}, X) | α = (a,X) ∈ att} ∪

{({a, α}, α′) | α = (a,X) ∈ att, α′ ∈ att, s(α′) = X} ∪
{({a, α}, X∗) | α = (a,X) ∈ att, X ∈ sup} ∪
{({a, β}, β∗), ({β∗}, X) | β = (a,X) ∈ sup} ∪
{({β∗}, X∗) | β ∈ sup, X ∈ sup, t(β) = X} ∪
{({β∗}, α) | β ∈ sup, α ∈ att, t(β) = s(α)}

The ASAF from Example 4.15, corresponding to the framework depicted in Fig-
ure 11, can be translated following Definition 4.18 to obtain the SETAF depicted in
Figure 12. Then, applying the SETAF semantics on that framework, the only com-
plete extension coincides with the one obtained with the ASAF semantics, namely
{a, e, f, g, h, α1, α4, β1, β2, β3}.

Finally, we will briefly discuss the possibility of using joint attacks to model the
generalised necessity relation proposed in [88] adopted in frameworks such as the
RAFN (see Section 4.2).

Let us recall the example introduced in Section 2, represented using the SETAF
from Figure 2. There, we can think of the argument NP as providing a context
under which A18 attacks M ; that is, a person aged under 18 is not allowed to
marry whenever parent permission is not provided. So, we could think of this sit-
uation as corresponding to the existence of an attack α1 = (A18,M) and a gener-
alised necessary support β1 = ({NP}, α1). Similarly, given the restriction to drink
alcohol, arguments NA and NM can be considered as providing alternative con-
texts under which A18 attacks Alc. Therefore, we could think of representing this
situation through an attack α2 = (A18, Alc) and a generalised necessary support
β2 = ({NA,NM}, α2). This is because, in this situation, it suffices to have either
NA or NM accepted in order to be able to accept α2 (i.e., in order for the attack
from A18 to Alc to hold).
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Figure 12: SETAF corresponding to the ASAF from Example 4.15

The preceding example suggests that joint attacks (as those in the SETAF from
Figure 2) may be suitable for modelling the generalised necessary support relation
in the case of higher-order supports targeting an attack. However, for instance, if
there exists another interaction (say, an attack α3) targeting β1, we should be able
to model on the SETAF the fact that if α3 is accepted then β1 no longer holds and,
consequently, that NP does not provide a context under which the attack α1 from
A18 to M holds. Nevertheless, if the support β1 from NP to α1 is modeled by a
joint attack from NP and A18 as in Figure 2, we cannot model the attack from α3
towards β1 in the SETAF, since β1 is not made explicit in this representation.

5 Accrual

A parallel line of research in computational argumentation studies the accrual of
arguments, i.e., how arguments supporting or refuting the same claim can be com-
bined. The main differences between accrual and joint attacks (at least under the
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type of joint attacks used in SETAFs) is that, in joint attacks, the strength of an
argument or a combination of arguments is not considered when evaluating the effec-
tiveness of attacks, and each argument participating in a joint attack is an essential
element of it (in other words if an argument is missing then the attack is ineffective),
while in accrual the strength of each argument is taken into account, and adding an
argument to an accrual makes the accrual stronger, or more generally it changes its
strength and the effectiveness of its attacks (or supports).

A seminal study on the accrual of arguments [96] set out three principles for
accrual:

1. An accrual is sometimes weaker than its accruing elements. This is due to the
possibility that the accruing reasons are not independent.

2. An accrual makes its elements inapplicable. More generally, any ‘larger’ ac-
crual that applies makes all its ‘lesser’ versions inapplicable. This is because
an accrual is meant to consider all available information, while the individual
arguments it consists of take only part of the information into account.

3. Flawed reasons or arguments may not accrue. Any treatment of accrual should
capture that when an individual reason or argument turns out to be flawed, it
does not take part in the accrual.

Prakken also described two general ways to formalise accrual: (a) the knowledge
representation (or else KR) approach, which requires formulating a separate rule
for each possible combination of the accruing reasons; (b) the inference approach,
where the accrual is part of the inference process, i.e., after all individual reasons
have been constructed, those that attack or support the same claim are somehow
aggregated and some mechanism is then used to resolve any conflicts between the
conflicting sets of reasons. He also proposed a formalisation of accrual using the
inference approach, according to which the conclusion of each individual defeasible
inference step is labelled with the premises of the applied defeasible inference rule:

φ, φ⇒ ψ |∼ ψ{φ,φ⇒ψ}

and a new defeasible inference rule is introduced that takes any set of labelled
versions of a certain formula and produces the unlabelled version:

φl1 , · · · , φln |∼ φ

The attack relationships among arguments are adjusted as follows: rebuttal requires
that the two arguments support opposite conclusions that are labelled in the same
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way, while undercut requires that the attacking arguments have unlabelled conclu-
sions. Finally, the following rules ensure that when a set of reasons accrues, any
subset of it is inapplicable:

φl1 , · · · , φln |∼ ¬dφl1 , · · · , φln−1e
The proposed formalisation satisfies all principles of accrual, but has a compu-

tational drawback: it requires considering all possible accruals for every conclusion,
which may lead to an exponential increase in the number of arguments.

The idea of combining arguments for and against a claim, albeit under the name
“aggregation” rather than “accrual” was studied by argumentation researchers before
[96]. One line of work, that of Fox and colleagues, goes back at least as far as [90],
where the idea of symbolically weighing evidence is formalised in what recognisably
is a structured argumentation framework, and arguably as far back as [61] where the
idea was first applied. The formal development of that work came to a conclusion
with [72] and [59]. The former paper describes a model that links the simple form
of accrual from [90], which effectively just looks at the numbers or arguments for
and against a claim23, with forms of accrual which connect to probabilistic models.
The latter uses the same model to develop a hierarchy of notions of acceptability,
coming close to Dung’s work at about the same time that work was first published
[39].

CumulA [103; 104] was another structured argumentation model that dealt with
accrual. Additionally to the notion of compound defeaters, which we discussed in
Section 3.4, it also includes the notions of coordination and narrowings of arguments.
Different arguments supporting the same conclusion can be combined in a coordi-
nated argument, while the narrowing of a coordinated argument a is an argument b
supporting the same conclusion as a but containing a subset of the arguments com-
bined in a (or narrowings of them). CumulA deals with accrual using compound
defeaters and the following acceptability condition for arguments: if the narrowing
of an argument a is in (meaning that the argument is accepted), then a should be
in too. As shown in [96], CumulA satisfies all three principles of accrual but the
second one (i.e. that an accrual makes its elements inapplicable) is satisfied in a way
that is too strong. Because of the acceptability condition described above, which
implies that if an accrual is out then all its narrowings are out, it cannot capture a
situation where an accrual is defeated because of subargument defeat so that some
of its narrowings can be undefeated.

More recently, [16] developed another account of accrual, based on their logic-
based approach to argumentation, though again they do not describe it as such. In

23Before dismissing such a simple model, consider how effective such simple models can be [38].
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[16], lines of discussion about a particular claim— the argument for it, the arguments
against it, the arguments against those arguments, and so on — are brought together
into an argument tree. Then, all argument trees for or against a claim are assembled
into an argument structure. An argument structure thus gathers everything that
is relevant to whether or not a claim should be accepted. This, of course, is not
much different to what one would get from assembling all of the arguments in a
structured framework like ASPIC+ or DeLP that bear on a specific formula into
some super-structure. However, whereas most structured frameworks summarise
this higher level structure in a notion of acceptability, [16] defines a “categoriser”
which maps a structure to a number, and this can be thought of as the accrued value
of the set of arguments in the structure.

[78] proposed an approach for formalising the accrual of arguments in Defeasible
Logic Programming using the notion of a-structure, a special kind of argument
which subsumes different chains of reasoning that provide support for the same
conclusion, and partial attacks among a-structures, where the attacking a-structure
generally affects only the narrowing of the attacked a-structure containing exactly
the arguments affected by the conflict. A binary preference relation on a-structures
is used to determine the relevant strength of conflicting a-structures and whether
an attack succeeds (in which case it constitutes a defeat). To deal with combined
attacks (situations where two or more a-structures simultaneously attack the same a-
structure), they define a process, called bottom-up sequential degradation, according
to which the defeats are applied in sequence with the “deeper” ones applied first. The
described framework satisfies all three principles of accrual. Its main difference with
the formalisation proposed in [96] is that when analysing a theory to determine the
accepted (undefeated) a-structures, it only considers maximal accruals (a-structures)
and not all possible accruals for a conclusion.

[67] proposed the use of argument weighing functions as a way to model different
types of argument schemes, including some types of argument accrual, in Carneades,
a structured argumentation framework. In this framework, an argument is defined
as a tuple (s, P, c, u) where s is the scheme that the argument instantiates; P , the
premises of the argument, is a finite subset of the underlying logical language L; and
c, its conclusion, and u, its undercutter, are elements of L. Its semantics is defined
in terms of a labelling, which assigns a value from {in, out, undec} to each element
of L and a weighing function, which assigns a value from [0, 1] to each argument
and 0 to all arguments such that their undercutter is in. Gordon also provided
several examples of weighing functions, some of which are appropriate for modelling
different types of accrual. To simulate convergent arguments, i.e., arguments that
at least one of its premises must be in to support their conclusion, he defined a
weighing function that assigns 1 to an argument if at least one of its premises is in
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and its undercutter is not in, and 0 otherwise. A weighing function that simulates
cumulative arguments, i.e., arguments whose strength increases with the number of
their acceptable premises, assigns the percentage of the premises of the argument
that are in to every argument whose undercutter is not in. Cumulative arguments
are a special type of accrual that does not satisfy Prakken’s second principle, since
cumulation can only increase the strength of an argument. Another weighing func-
tion that simulates accrual takes into account all factors (statements) that need
to be considered when evaluating the arguments for a certain issue. It does so by
assigning to each argument the proportion of its factors that are premises of the
argument and are labelled in. One limitation of this framework with respect to ac-
crual is that although it handles various forms of accrual at the level of statements,
e.g., premises or factors of an argument, it does not provide a way to handle accrual
of multiple arguments.

[97] proposed a formalisation of accrual for ASPIC+, a structured argumentation
framework where arguments are tree-like structures constructed from a knowledge
base, which is a subset of an underlying logical language L, and a set of inference,
strict or defeasible, rules. In this framework, there are two ways to attack an ar-
gument a: either at the top inference rule r of a (undercut) or at the conclusion of
r (rebuttal)24 - in both cases r must be defeasible, otherwise a cannot be attacked.
[97] extended ASPIC+ with the notion of accrual sets, which are defined relative to
a labelling of the set of arguments S. An accrual set for a literal φ ∈ L, denoted
as sl(φ), is the set of arguments with conclusion φ satisfying the following two con-
ditions: (i) for any argument in sl(φ) no immediate subargument of a is out and
no undercutter of a is in; (ii) any argument with conclusion φ whose undercutters
are out and its immediate subarguments are in must be in sl(φ). The extended
framework also includes a preference relation ≤ on the power set of S, such that
any set of arguments containing a strict argument is at least as preferred as ev-
ery other subset of S. It also includes a new defeat relation on arguments, called
l-defeat, which takes into account accruals: an argument a l-defeats an argument
b iff a undercuts b; or a rebuts b, and for some accrual sets for the conclusions
of a, sl(Conc(a)), and b, sl(Conc(b)), it holds that sl(Conc(a)) ≮ sl(Conc(b)). A
characteristic function F is used to compute the labelling of a framework, which
satisfies the following conditions: an argument a is in iff all arguments that l-defeat
a are out and all immediate subarguments of a are in; a is out iff it is defeated
by an argument that is labelled in or one of its immediate subarguments are out.

24Note that these definitions are different from the standard ASPIC+ where arguments can also
be attacked on their subarguments. As explained in [97], in the version of ASPIC+ considered
in this paper, arguments are constructed recursively and the recursion takes care of subargument
attacks.
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The proposed framework satisfies all principles of accrual and preserves some of the
properties of Dung’s AFs, such as the existence of complete and preferred labellings
and the relations between grounded, complete, stable and preferred semantics.

In the field of abstract argumentation, the most relevant approaches are the
frameworks with graded semantics (e.g., see [11] for an overview and a study of their
properties) or ranking semantics and social argumentation frameworks (e.g., see [74;
12; 92]). Such frameworks provide methods for assessing the strength of an argument
based on the aggregate strength of its attackers and the aggregate strength of its
supporters (and in some cases the initial valuation of the argument), capturing the
main idea of accrual. Some of their general properties are: (i) the larger the set of the
attackers on an argument, the lower the strength of the argument under attack; (ii)
the larger the set of supporters or defenders of an argument, the higher the strength
of the argument they support or defend; and (iii) an argument with 0 strength does
not have an effect on the strength of the arguments it attacks or supports. The last
property satisfies the third principle of accrual (i.e., that flawed arguments do not
accrue), while by considering the aggregate strength of the attackers or supporters
of an argument, they essentially satisfy the second principle, i.e., that an accrual
makes its elements inapplicable. Properties (i) and (ii), however, violate the second
principle, since they imply that an accrual is always stronger than the individual
accrued arguments.

6 Proposals for future work on joint attacks

In this section we highlight some emerging topics for future research on joint attacks
and accrual.

There are several interesting directions for further research concerning semantics
of SETAFs. Standard semantics of AFs have been generalised to SETAFs and their
basic properties and relations are settled. However, several prominent semantics
have not yet been generalised and analysed on SETAFs, e.g., cf2 [8], strong admis-
sibility [9; 26] and weak admissibility [14]. Recently, a first approach to transfer
also ranking-based semantics to SETAFs has been undertaken [108]. Properties of
AF semantics have been studied in versatile aspects [102; 13] beyond the existing
analysis for SETAFs. For instance, generalising the principle-based approach for
analysing and comparing semantics to SETAFs would be valuable for the selection
of the right argumentation semantics, and understanding the different notions of
equivalence also on SETAFs is fundamental for using SETAFs in dynamic settings.
Concerning the latter, a first investigation of strong equivalence notions for SETAFs
has been done in [54].
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As another research direction one could consider enhancing the expressiveness
of SETAF by extending its basic model with features similar to the ones used in
extensions of the AF model, such as the introduction of a joint support relation,
weights on (joint) attacks, values promoted by (sets of) arguments, or a preference
relation among (sets of) arguments. This would allow associating SETAFs with
the corresponding AF extensions, i.e., frameworks for bipolar argumentation [3;
32], graded [71] or weighted argumentation [46], value-based [15], or preference-
based argumentation [4] respectively. A related but somehow orthogonal research
direction is the investigation of the relations of SETAFs and other extensions of AFs
concerning their expressiveness. Existing investigations in that direction are the
embedding of SETAFs in ADFs [77] and translations between SETAFs and claim-
augmented AFs [56].

The translations from SETAF to AFs discussed in Section 3.2 either had the
weakness that they might increase the size exponentially or only supported a selec-
tion of the semantics. For future research one could investigate alternative transla-
tion schemes in order to avoid this pitfall. Ideally, we would like to have a transfor-
mation that applies for all semantics and causes a polynomial increase in the size
of the framework (in the sense of [20]), while at the same time resulting in elegant
correspondences for all the semantics (unlike [60], where this is true only for some
of the semantics). Recall, that [94] provide a translation that satisfies the latter
two properties but only for a selection of the semantics, i.e., the semantics based on
complete extensions, with the exception of semi-stable semantics. Also notice that
a polynomial increase in the size of the framework can still result in an exponential
increase in the number of arguments. Thus, another open question is whether such
a potential exponential increase in the number of arguments can be avoided.

On the computational side there are several open challenges. From the theo-
retical perspective one would be interested in identifying classes of instances that
provide milder complexity than general SETAFs. One approach that has been ex-
tensively studied for AFs are the so called tractable fragments [42], i.e., special
graph classes like acyclic or bipartite, that allow for efficient reasoning procedures.
A more general approach are graph parameters and techniques for parametrised
complexity theory that allow for algorithms which are only exponential w.r.t. a
graph parameter but polynomial in the size of the AF [51; 52]. From a more
practical view one would be interested in efficient labelling-based algorithms [86;
36] for SETAFs as well as systems that extend methods that have been successfully
applied for AFs [35]. An important step to boost the development of such systems
would be to establish standard formats to share SETAF instances and standard
benchmark sets.

Regarding the application of joint attacks, the ideas discussed in Section 4.3 could
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be further explored. As shown in Section 4.3, the translations from an AFRA [7] or
an ASAF [68] into a SETAF yield the same outcomes as those obtained directly by
applying the AFRA or ASAF semantics, respectively. However, this was only shown
for the examples illustrated in that section. A formal analysis of this correspondence
for the general case of an arbitrary ASAF or AFRA is left for future work. In
addition, the brief discussion at the end of Section 4.3 can also be the subject of
future work, also considering the translations discussed in Section 3.2. Specifically,
studying the possibility of using the SETAF for modelling the generalised support
relation of frameworks like the RAFN [30; 31], accounting for all cases: first-order
supports, higher-order supports targeting attacks and supports, and higher-order
supports which can be themselves attacked.

Finally, the potential of collective attacks in structured models of argumentation
is rather unexplored. Consider an instantiation scheme like ASPIC+ [97], or instan-
tiations for logic programs [28] or assumption-based argumentation [1] that construct
AFs from a knowledge base. Using SETAFs instead of AFs as target formalism can
significantly reduce the number of arguments and, in certain cases one can even
ensure that each statement has a unique argument supporting that statement [56].
A first investigation in that direction is [107; 109] where SETAFs are instantiated
from Datalog knowledge bases. There is also scope for relating this kind of approach
to work on accrual and the other models that collect related arguments such as the
argument trees of [16] and the coalitions of [33].

The accrual of arguments is a less studied problem compared to joint attacks.
As we discussed in Section 5 most existing approaches are focused on structured
argumentation and only few of them satisfy all three principles proposed in [96].
There are a lot of interesting future research directions in this area such as the sys-
tematic comparison and evaluation of the frameworks that support accrual and the
development of methods for handling accrual in abstract argumentation. The latter
could rely on the recently proposed graded semantics for abstract argumentation
or may require the development of a new abstract argumentation framework that
explicitly models accrual. Another interesting direction, which could also lead to a
solution for this problem, is to study the relation between current approaches for
accrual and collective attacks and the mapping between the frameworks that deal
with these two different problems.

7 Conclusions

In this chapter we have studied different formalisms that account for joint attacks (or
more generally, collective attacks) in abstract argumentation. Also, we discussed the
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consideration of joint attacks in the literature of structured argumentation as well
as the application of joint attacks (and joint supports) in other frameworks such as
bipolar argumentation frameworks or argumentation frameworks with higher-order
interactions. We also touched upon works on argument accrual which, although
not strictly related to the existing models of joint attacks, can be considered as a
related topic. In particular, the SETAF [84] framework along with its computa-
tional complexity, algorithms and applications, was the main subject of study in
this chapter.

In Section 3.1 the basic definitions of the framework were provided, followed by
the presentation of extension-based semantics of the SETAF and the relationships
between them, as well as the introduction of labelling-based semantics for the frame-
work. Then, in Section 3.2 the expressive power of the SETAF was compared against
that of Dung’s AF [40]. For this purpose, the results and analyses reported in [48;
60; 94; 20] were accounted for. On the one hand, the characterisation of the expres-
sive power using signatures was discussed, to then consider exponential and compact
translations of SETAFs into AFs, and later discuss an indirect translation path con-
sisting of a translation of a SETAF into an ADF [22] and a translation of the latter
into an AF. The main conclusion here is that, although SETAFs could be represented
by means of Dung’s AFs, the SETAF indeed increases the expressive power of the
AF. Moreover, as discussed in Section 3.3, the translations from a SETAF into an
AF lead to an exponential blow-up in the arguments, making them not well-suited
for computational matters.

In Section 3.3 different computational problems for SETAFs were characterised,
following the definition of function problems and decision problems for Dung’s AFs
(cf. [36; 47; 35]). In particular, the decision problems include determining the credu-
lous or skeptical acceptance of an argument under a given semantics, the verification
of an extension, or determining the existence of a (non-empty) extension. Then, the
computational complexity of these decision problems is addressed, and the results
are linked to the existing results for decision problems in a Dung’s AF. The conclu-
sion here is that the complexity of decision problems for SETAFs is the same as the
complexity of the corresponding problems for Dung’s AFs. Notwithstanding this,
we should note that although in both cases the complexity is stated w.r.t. the size of
the input framework, the size is interpreted differently for AFs and SETAFs. On the
one hand, the size of an AF is often interpreted in terms of the number of arguments
of the input framework. On the other hand, since the number of attacks in a SETAF
may be exponentially larger than the number of arguments in the framework (due
to the existence of attacks by sets of arguments), the size of a SETAF should be
interpreted in terms of the number of arguments plus the number of attacks.

Also, Section 3.3 briefly discussed the ideas behind labelling-based algorithms for
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SETAFs, illustrating the algorithm for labelling enumeration under the preferred
semantics. Moreover, as mentioned before, different reduction-based approaches
for computing the extensions of a SETAF were presented. The former consists of
encoding the SETAF and its semantics in Answer-set programming [79; 85], whereas
the latter rely on translations of a SETAF into a Dung’s AF or an ADF. While the
drawbacks of the translations into AFs were pointed out above, we should note
that the translation into an ADF offers the possibility of using existing systems for
ADFs [76] without incurring significant overheads.

Section 3.4 recalled alternative models of abstract and structured argumentation
which account for attacks involving sets of arguments. While in SETAF, a set of
arguments can only be the source of an attack, in other models sets of arguments are
only considered as a potential target of an attack (e.g. see [63]); or as both potential
sources or targets of an attack (e.g. see [18; 33; 103]). The different models also differ
in how the arguments within a set are treated. For example, while in the framework
of [33], all arguments in a coalition are treated in the same way, i.e. they are all
either accepted or rejected, in other frameworks, such as the ones proposed in [18;
63], a successful attack on a set of arguments has as a result that at least one of the
arguments in the attacked set is rejected. Although the different approaches have
different aims, an interesting problem is to study the extent to which they can be
mapped to each other and whether there is a more general model that captures their
different features.

Section 4 addresses the application of models for joint attacks in the context
of Bipolar Argumentation Frameworks (BAFs) and argumentation frameworks with
higher-order interactions such as those addressed in Chapter 1 [29]. First, BAFs
that make use of joint attacks, joint supports, or both are recalled, highlighting the
constraints they impose on the attack and support relations, as well as the adopted
interpretations for the notion of support. Then, generalisations of these BAFs are
presented, which incorporate higher-order interactions in order to allow for attacks
and supports targeting other attacks or supports. Later, an analysis of the possibility
of using joint attacks to model higher-order interactions is performed.

On the one hand, Section 4 considered the work by Gabbay on Higher-Level Ar-
gumentation Frames [62], as well as the proposed translations of HLAFs into Frames
with Joint Attacks (a particular case of SETAF). Then, Gabbay’s ideas are taken in
the context of the AFRA [7] and the ASAF [68], two abstract argumentation frame-
works allowing for binary higher-order interactions. Our findings are that, when
applying the translation proposed by Gabbay to obtain the SETAF associated with
an AFRA or an ASAF without supports, and then applying the SETAF semantics,
the corresponding extensions might not be as expected (since the translation does
not account for the existence of indirect defeats). Then, translations for obtaining
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a SETAF corresponding to an AFRA or an ASAF are proposed, and illustrated
through examples; their formalisations for the general case of an AFRA or an ASAF
are left for future research. Moreover, the possibility of using the SETAF to model
generalised necessary supports is briefly analysed in Section 4, leaving an in-depth
discussion for future work.

In Section 5 different works addressing the topic of argument accrual were dis-
cussed, both at the abstract and structured levels of argumentation. As discussed
there, the main difference between the approaches studying argument accrual and
those accounting for joint attacks (e.g., as in SETAFs) is that the strength of the
arguments combined to originate a joint attack is not accounted for when evaluating
the effectiveness of attacks; notwithstanding this, each argument originating a joint
attack is an essential element in the sense that the attack becomes ineffective when-
ever one of its source arguments is missing. In contrast, in accrual, the strength of
each argument is taken into account, and adding an argument to an accrual causes
changes in the strength and the effectiveness of its attacks (or supports).

Finally, as stated in Section 6, many open challenges remain for research on joint
attacks, in addition to those mentioned above.
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Abstract

This chapter highlights the collective acceptability problem in multiagent
argumentation, which is related to the problem of collective decision making
in the field of computational social choice at the intersection of social choice
theory, theoretical computer science, and artificial intelligence. Specifically, the
chapter surveys various approaches to collective acceptability and showcases
useful methods for structural aggregation of argumentation frameworks and
their properties.

1 Introduction
In this chapter, we will be concerned with collective decision making in multiagent
scenarios, specifically focusing on how methods from computational social choice
(COMSOC) can be employed to solve the problem of collective acceptability in
multiagent argumentation. Computational social choice (see the textbooks edited
by [23] and [74]) is an interdisciplinary area at the interface of social choice theory,
computer science, and (distributed) artificial intelligence. A core research stream
in COMSOC is the study of voting. While voters have individual preferences over
alternatives among which they seek to determine the best choices, called the winners
of the election, in argumentation theory we are faced with agents who have individual
views on the arguments and on the attack relation among arguments and who seek to
determine the best choices of arguments, i.e., acceptable sets of arguments, according
to certain semantics. Just as preference aggregation through voting rules has been
studied in COMSOC, various ways of aggregating argumentation frameworks (AFs)
of different types have been proposed.

We will survey the latter through the COMSOC lens, paying particular attention
to how methods and concepts originally designed for COMSOC have been applied
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in the context of argumentation. For example, axiomatic properties of voting mech-
anisms have been thoroughly studied in social choice theory and also in COMSOC,
and in Section 3 we will present what is known about the axiomatic properties of
methods used to aggregate AFs. In Section 4, we will turn to specific aggrega-
tion methods for AFs. In particular, we will present existing aggregation operators
and their properties that make use of partial, incomplete, and value-based AFs, the
former two being related to uncertainty and incomplete information about the ar-
gumentation at hand and the latter being related to the impact a ranking of values
assigned to arguments may have on the argumentation process.

Uncertainty can occur both in voting and in argumentation, even though due
to distinct sources of incomplete information. In voting, we may be faced with
“noisy” elections [72; 82; 25], for example due to incorrect vote counts, either by
accident or with malicious intent, or with voters who are simply too lazy to rank
all the alternatives [10; 66]. In argumentation, dynamic changes in a given AF [27],
different and changing individual views and beliefs of the involved agents [26], or
uncertainty in the underlying knowledge base used to instantiate the AF [67] all may
lead to uncertainty about the status of an AF [31; 13; 69; 77].

Central concepts used for voting with uncertainty are the notions of possible and
necessary winner, proposed by [58] and studied in more depth by, e.g., [83], [29], and
14 [14, 15]. Intuitively, assuming that the voters’ preferences over the alternatives
are incomplete, a possible winner is an alternative that can be made win for some
complete extension of the voters’ preferences, whereas a necessary winner is an
alternative that must win for every complete extension of the voters’ preferences.
These notions are so important that they could be beneficially applied in other areas
as well, such as in fair division by [21], [7], and [61]; in algorithmic game theory by
[57] and [75]; and in judgment aggregation by 8 [8, 9].

As mentioned earlier, at the intersection of computational social choice and for-
mal argumentation lies the problem of collective acceptability. Acceptability in the
standard argumentation model means that we are looking at a single representation
of an argumentation and try to determine which arguments are acceptable under
a certain semantics. Collective acceptability, on the other hand, is concerned with
acceptability in a set of several related, but potentially different representations of
a single argumentation. Problems of collective acceptability can arise in various
applications. When individual agents each create their personal representation of
the argumentation from a private knowledge base, different or missing information
in these knowledge bases will have the effect that the argumentation representations
will be different. Determining argument acceptability in the individual views will
have limited significance, while collective acceptability with regard to all individ-
ual views can incorporate all information available to the agents and produce more
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AFm

AF2
AF1

agg(AF1, . . . , AFm)

σ(AFm)

σ(AF2)
σ(AF1)

σ(agg(AF1, . . . , AFm))
agg(σ(AF1), . . . , σ(AFm))

individual views collective view

argum
entation

acceptability

Figure 1: Schematic overview of different approaches to collective acceptability in
formal argumentation, where σ is a general placeholder for some kind of acceptability
criterion on AFs, and agg is a general placeholder for some aggregation operator on
AFs.

meaningful results. In strategic scenarios, arguments known to all agents (and thus
present in all individual views) may represent arguments that were already given in
a shared discussion, while arguments known only to some, but not all agents may
represent arguments that these agents could still bring forward. Here, collective
acceptability may help anticipate which arguments might become acceptable in the
further progress of the discussion, and which of the available arguments should be
brought forward to improve an agent’s position in the argumentation.

There are two fundamentally different approaches to collective acceptability in
the literature. In the survey by [20], these are called the argument-wise and the
framework-wise approach. The argument-wise approach determines acceptability
in the individual views using standard methods, and then defines semantic aggre-
gation methods—e.g., voting procedures—to aggregate the individually accepted
arguments into a single collectively acceptable set of arguments. The framework-
based approach defines structural aggregation methods to aggregate individual views
into a collective representation first, and then determines acceptability in the collec-
tive representation, either by standard methods or by dedicated methods for that
representation.

Figure 1 illustrates these two approaches to the problem of collective acceptabil-
ity. The elements in the top-left corner represent the individual views of m agents.
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Semantic evaluation on the individual views (left arrows going down) produces indi-
vidually acceptable outcomes (bottom left), which can be aggregated using semantic
aggregation (bottom arrows going right) into a collectively acceptable outcome. Al-
ternatively, structural aggregation on the individual views (top arrows going right)
produces a single collective representation of the argumentation (top right), which
can be semantically evaluated (right arrow going down) for a collectively acceptable
outcome.

Semantic aggregation is suitable for applications where the outcome of the indi-
vidual views (i.e., the accepted arguments) is considered to be the most important
part of the views, overshadowing the importance of the underlying structure of the
argumentation. This might be the case when agents have created their individual
argumentations with the specific purpose to support the acceptability of certain key
arguments. The agents might not be very interested in finding a collective view
of the argumentation that is close to their individual view, but they are highly in-
terested in having collectively accepted arguments that are close to the accepted
arguments in their view. Semantic aggregation is applied by [36] via merging ex-
tensions, and by [24] and [5] via merging labelings. A related research problem to
the argument-wise approach to collective acceptability is the problem of realizability
[44] or synthesis [70], where sets of accepted arguments are given as input, and the
goal is to find an AF whose sets of accepted arguments are the same as, or as close
as possible to, the given sets. These methods can be used to augment the results of
semantic aggregation methods to not only obtain collectively acceptable arguments
as a result, but also an AF that produces these. Additional constraints can be used
to make sure that the AF created is as close as possible to the input AFs. Relatedly,
the enforcement problem asks whether a given set of arguments can be enforced
as an acceptable set by a finite number of elementary changes to a given AF. The
original definition by [6] allows the addition of single arguments along with incident
attacks, while subsequent work allows the addition and deletion of attacks [81], or
both simultaneously [33].

The second approach of structural aggregation is suitable when the structure in
the individual views is more important than their accepted arguments. For example,
this might be the case when each agent has access to a limited part of the informa-
tion on a subject matter, so the significance of which arguments are accepted in the
individual views is rather limited. Merging the individual fragments of the informa-
tion into an aggregated representation of the argumentation creates a better basis
for semantic evaluation in such situations. In this chapter, we focus on structural
aggregation.
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a “Everybody needs access to medical supplies for personal pro-
tection.”

b “Medical supplies are not sufficient, so hospitals must have pri-
ority access to medical supplies.”

c “Medical supplies are sufficient for all.”
d “The disease problem must be solved by government health

officials, the population should stay out of it.”
e “Everybody has a right to know how dangerous the disease

really is.”
f “Information about the dangers of the disease may cause a

panic in the population, leading to hoarding of medical sup-
plies and thus a shortage of these.”

g “If people know enough about the disease, they can effectively
protect themselves without the need of medical supplies.”

Table 1: Arguments used in the AF shown in Figure 2

2 Preliminaries
We recall the model of abstract argumentation frameworks due to [42].

Definition 2.1. An argumentation framework (AF) is a pair AF = 〈Ar , att〉 con-
sisting of a finite set Ar of arguments and a binary attack relation att ⊆ Ar ×Ar .

As an example, consider the set of arguments, Ar = {a, b, c, d, e, f, g}, displayed
in Table 1. These arguments might be given in the context of a virus disease that is
spreading in a population, and they make different suggestions on how to react to
the disease. We will use this argumentation as a running example throughout this
chapter.

Arguments a and b mutually attack each other, and so do d and e, as well as f
and g. Further, argument c attacks b, argument f attacks c and e, and argument g
attacks b and d. This is formally captured by the attack relation

att = {(a, b), (b, a), (c, b), (d, e), (e, d), (f, e), (f, c), (g, d), (f, g), (g, b), (g, f)}.

Figure 2 gives a graph representation of this AF, 〈Ar , att〉.
An argumentation semantics σ maps a given argumentation framework AF to

the set of σ-extensions of AF , which are the sets of arguments that are acceptable in
AF with respect to σ. A set S of arguments is called conflict-free (CF) if there are no
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a
b

c

d

ef
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Figure 2: Graph representation of the AF used in our running example, where
arguments are displayed as nodes and attacks as directed edges

attacks among arguments in S. A conflict-free set S is admissible (AD) if it defends
each of its arguments, where we say S ⊆ Ar defends a ∈ Ar if for each argument
b ∈ Ar attacking a, there is an argument c ∈ S attacking b. A maximal (with respect
to set inclusion) admissible set S is said to be preferred (PR). A conflict-free set S
is stable (ST ) if every argument outside of S is attacked by some argument in S.
An admissible set that is closed under defense—i.e., that includes every argument
that it defends—is called complete (CO). The unique minimal complete set is the
grounded extension (GR).

In this chapter, we consider aggregation operators on argumentation frame-
works, which are mappings that aggregate a set of argumentation frameworks into
a collective representation. We use the following general notation. Let AF denote
the universe of all possible argumentation frameworks. An aggregation operator
agg : AFm → 2AF for argumentation frameworks is a mapping from a set of m input
argumentation frameworks (which may represent the individual views of m agents)
to a set of aggregate argumentation frameworks. An aggregation operator is called
resolute if it always outputs a singleton, i.e., if |agg(P )| = 1 for all profiles P ∈ AFm,
and irresolute otherwise. Generalized aggregation operators may use an extended
target format that goes beyond standard argumentation frameworks.

3 Axiomatic Properties of Aggregation Methods
in Argumentation

In social choice theory, mechanisms for collective decision making are studied with
respect to various axioms. Such axioms express desirable behavior of these mech-
anisms. Unfortunately, there is a number of impossibility results such as Arrow’s
Theorem ([3]) and the Gibbard–Satterthwaite Theorem ([53]; [76]) showing that it is
impossible to fulfill some of the most basic criteria simultaneously. Similar questions
arise in collective argumentation, especially when different views of agents should
be aggregated. This is, for example, the case when agents have different opinions
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about the attack relation. An important question is then which properties of the
individual attack relations will be preserved by a given aggregation rule. In the
case of argumentation, these properties will be specifically related to the various
semantics. In this section, we will review results by [28] about the preservation of
semantic properties in the aggregation of abstract argumentation frameworks. This
work focuses on the case where all agents consider the same set of arguments but
have different opinions on the attacks among them. However, a generalization where
the argument sets may differ for each agent would also be possible.

The general setting we consider is a common finite set of arguments Ar and a
set N = {1, . . . , n} of agents. The individual view of agent i ∈ N is represented
as an argumentation framework AFi = 〈Ar , atti〉. The profile P = (att1, . . . , attn)
consist of all individual attack relations. Additionally, NP

r = {i ∈ N | r ∈ atti} is
the set of supporters of attack r in profile P . To aggregate these individual views,
we use aggregation rules. For a fixed number of n agents, they are formally defined
as a function

F : (Ar ×Ar)n → Ar ×Ar .

One class of aggregation rules often used in the context of judgment aggregation
are quota rules that have been introduced by [38] and further studied by, e.g.,
8 [8, 9]. The idea is that an element will be included in the aggregated outcome
if the agreement exceeds some given quota. According to [28], the definition is as
follows in the context of argumentation frameworks.

Definition 3.1 (Quota Rule). For q ∈ {1, . . . , n} and a profile P , the quota rule
Fq is defined as

Fq(P ) = {r ∈ Ar ×Ar | |NP
r | ≥ q}.

Hence, all attacks that are supported by at least q agents are accepted.

Prominent examples are the majority rule Fq with quota q = dn2 e and the nom-
ination rule F1 with quota 1. The latter rule requires only one nomination of every
attack that is included in the aggregated argumentation framework, which is a rea-
sonable choice especially in argumentation where conflicts should be taken seriously.
Another example of a rule is the dictatorship of a specific agent. The outcome for the
dictatorship of agent i ∈ N is always the individual AF of this agent. In contrast
to the quota rules defined above, this rule does not take into account the attack
relations of all agents.

Example 3.2. Recall our running example from Table 1 and Figure 2 in Section 2.
We consider a profile consisting of the attack relations (as shown in Figures 3a–3c)
of the three individual AFs AF1, AF2, and AF3 representing the individual views

1509



Baumeister, Neugebauer, Rothe

a
b

c

d

ef

g

(a) Individual view AF1
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(b) Individual view AF2
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(c) Individual view AF3
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(d) Aggregating via the majority rule
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(e) Aggregating via the nomination rule

Figure 3: Graph visualizations for Example 3.2

of three agents over the same set of arguments. When using the majority rule, all
attacks with at least two supporters will be included in the aggregated AF. The result
is shown in Figure 3d. Under the nomination rule, all attacks that are present in
at least one individual AF are contained in the aggregated outcome, as shown in
Figure 3e.

Other rules that are used in voting or judgment aggregation may also be trans-
ferred to abstract argumentation. For example, rules that minimize the distance to
the individual votes or the individual judgments (for one of the common types of
distance between preferences or judgment sets), like the Kemeny rule in voting [56;
54] and in judgment aggregation [35; 34], can also be used for the aggregation of
argumentation frameworks. They will not be considered here, though.

An important property of aggregation rules is the existence of agents with veto
power. These are agents which may not be ignored, and hence only attacks that
exist in their individual attack relation may be included in the aggregated outcome.

Definition 3.3 (Veto Power). Agent i ∈ N has veto powers under aggregation rule
F if for every profile P , it holds that

F (P ) ⊆ atti.

It is obvious that under the majority and nomination rules, no agent has veto
powers. In a dicatorship, the dictator has veto powers.

The most basic axioms in social choice are anonymity and neutrality. Their
intuitive meaning in the context of voting rules is that all voters and all candidates,
respectively, are treated equally, which are quite basic fairness criteria. This can be
directly transferred to agents and attacks for AF aggregation rules.
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Definition 3.4 (Anonymity and Neutrality).

• An aggregation rule F is anonymous if for all profiles P and all permutations
π : N → N , it holds that

F (P ) = F (attπ(1), . . . , attπ(n)).

• An aggregation rule F is neutral if for all profiles P and all attacks a, a′ with
NP
a = NP

a′ , it holds that

a ∈ F (P )⇔ a′ ∈ F (P ).

From the definition of quota rules it follows that they are anonymous and neutral.
However, there may also be reasons for AF aggregation rules that are not anonymous.
This is for example the case when some agents are considered to be experts and
their view (maybe on a subset of the arguments) should have more weight in the
aggregated outcome. An example for such rules are so-called qualified majority rules,
where a subset of the agents has veto powers. The acceptance of an attack depends
on acceptance by a weak majority and by the agents that have veto powers. Similar
reasons can justify aggregation rules that are not neutral, since some arguments may
be more important than others. Properties of qualified majority rules, which are not
anonymous, have been studied by [79]. A dictatorship is obviously not anonymous
and not neutral.

In social choice theory, there are many different formulations for independence
axioms. The common idea is that the choice between two alternatives should only
depend on their relation and not on other (“irrelevant”) alternatives. For the ag-
gregation of AFs, we require that the acceptance of an attack only depends on the
supporters of this attack.

Definition 3.5 (Independence). An aggregation rule F is independent if for all
profiles P, P ′ and all attacks a with NP

a = NP ′
a , it holds that

a ∈ F (P )⇔ a ∈ F (P ′).

As the definition of quota rules relies only on the number of supporters for the
attacks, they satisfy independence. Again, dictatorships violate independence. As
for anonymity and neutrality, there may be reasons to consider AF aggregation rules
that are not independent. If additional structural relations between the arguments
are considered that have to be respected in the aggregated outcome, it may be
useful to consider non-independent aggregation rules. The situation in judgment
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aggregation is similar, but here the relation between the different issues are present
through the given formulas. However, independence is a key axiom for several im-
possibility results in judgment aggregation. [78] provide a recent study of alternative
formulations for independence in judgment aggregation.

A very intuitive property for aggregation mechanisms is that additional support
should not be harmful. This is captured by the monotonicity axiom. Violation of
this axiom is considered to be a serious disadvantage, as stated, for example, by [49].
A prominent example of a voting rule violating monotonicity is the Dodgson rule
(see [41]), as shown by [49] for five alternatives and by [50] even for four alternatives;
see also [22].

For the aggregation of argumentation frameworks, monotonicity requires that a
selected attack will never be rejected if it receives more support from the agents.

Definition 3.6 (Monotonicity). An aggregation rule F is monotonic if for all pro-
files P, P ′ and all attacks a with NP

a ⊆ NP ′
a and NP

a′ = NP ′
a′ for all attacks a′ 6= a,

it holds that
a ∈ F (P )⇒ a ∈ F (P ′).

Similarly to the other axioms, monotonicity is satisfied by quota rules but vio-
lated by dictatorships.

The last two properties we consider are unanimity and groundedness. We will
follow [28] who write: “Note that, in line with the existing literature in argumenta-
tion theory on the one hand and social choice theory on the other, we use the term
‘grounded’ in two unrelated ways (grounded extension vs. grounded aggregation
rules).” It will always be clear from the context whether we use the term grounded
in the sense of argumentation theory or social choice theory.

While unanimity requires that an aggregation rule has to follow a unanimous
decision on an attack, groundedness requires that at least one supporter must exist
for an attack to be selected.

Definition 3.7 (Unanimity and Groundedness).

• An aggregation rule F is unanimous if for all profiles P , it holds that

F (P ) ⊇ att1 ∩ · · · ∩ attn.

• An aggregation rule F is grounded if for all profiles P , it holds that

F (P ) ⊆ att1 ∪ · · · ∪ attn.
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The quota lies between 1 and the number of agents. Hence all quota rules are
unanimous and grounded. Dictatorships are also grounded, since all attacks are
contained in the individual AF of the dictator, but unanimity is obviously violated.
To summarize, quota rules satisfy all introduced basic axioms: anonymity, neutrality,
independence, monotonicity, unanimity and groundedness.

A very important concept in social choice theory is collective rationality (see
[3]) with respect to some given property. In the case of transitive preferences of
individuals, collective rationality would imply that the aggregated preference is also
transitive. The Condorcet paradox [30] shows that this is not the case for the
pairwise majority comparison between alternatives. Collective rationality has also
been studied in judgment aggregation by [64] and in graph aggregation by [47]. For
AF-aggregation, [28] define collective rationality with respect to some AF-property
Prop ⊆ 2Ar×Ar , which is the set of all attack relations that satisfy Prop.

Definition 3.8 (Preserving a Property). Given an aggregation rule F and some AF-
property Prop, we say that F preserves Prop if for every profile P with atti ∈ Prop,
i ∈ N , it holds F (P ) ∈ Prop.

Two basic AF-properties are acyclicity and coherence. They are very attractive
because they reduce the number of possible extensions. If the attack relation of
an AF is acyclic, the grounded, stable, preferred, and complete extension coincide,
and hence there is exactly one. Coherent AFs are those where preferred and stable
semantics coincide. An aggregation rule F preserves acyclicity (coherence) if for
every profile consisting of acyclic (coherent) individual AFs the outcome of F is also
an acyclic (coherent) AF. Obviously, acyclicity is stronger than coherence; however,
the results show that preserving acyclicity is easier than preserving coherence.

Theorem 3.9. [[28]]

• Let |Ar | ≥ |N |. Then for any neutral and independent aggregation rule F that
preserves acyclicity, there is at least one agent that has veto powers.

• Let |Ar | ≥ 4. Then any unanimous, grounded, and independent aggregation
rule F that preserves coherence is a dictatorship.

[79] showed that already qualified majority rules preserve acyclicity. Since these
rules include an agent with veto powers, this is a special case of the result above.
In quota rules, which are independent, no agent has veto powers, hence they do
not preserve acyclicity. As an example for the majority rule, consider the simple
case of three arguments {a, b, c} and three agents with the attack relations att1 =
{(a, b), (b, c)}, att2 = {(b, c), (c, a)}, and att3 = {(c, a), (a, b)}. It holds that all
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individual AFs are acyclic, but the outcome of the majority rule includes the three
attacks {(a, b), (b, c), (c, a)} which actually form a cycle. Since all quota rules satisfy
the basic axioms, they do not preserve coherence.

When considering the basic semantics, the grounded semantics is the only one
that always has a unique solution. In this case, an interesting question is also the
preservation of the membership property under the grounded semantics, i.e., whether
any argument that is contained in the grounded extension of each individual AF is
also contained in the grounded extension of the aggregated AF. For the study of
semantics with nonunique extensions, there are different ways to formulate argument
acceptability appropriately.

Let σ be the stable, preferred, or complete semantics, F an aggregation rule, and
P = (att1, . . . , attn) a profile. We say F preserves credulous argument acceptability
under σ if for all arguments a ∈ Ar that belong to some extension under σ for every
AFi, i ∈ N , there is some σ-extension of F (P ) that contains a. On the other hand,
F is said to preserve sceptical argument acceptability under σ if for all arguments
a ∈ Ar that belong to all extensions under σ for every AFi, i ∈ N , all σ-extensions
of F (P ) contain a. Since the grounded extension is unique, both notions coincide
for this extension.

Unfortunately, argument acceptability in either form is not compatible with a
set of very basic axioms, unless we allow dictatorships.

Theorem 3.10. [[28]] Let |Ar | ≥ 4 and σ be the stable, preferred, complete, or
grounded semantics. Then any unanimous, grounded, and independent aggregation
rule F that preserves either credulous or sceptical argument acceptability under σ is
a dictatorship.

The proof of this theorem relies on similar results on graph aggregation obtained
by [47]. This result shows that no quota rule preserves argument acceptability.

Example 3.11. Consider again the individual attack relations as shown in Fig-
ures 3a–3c. The grounded extension for AF1, AF2, and AF3 is {a, c, e, g}. Thus
argument a is contained in the grounded extension for every individual agent. How-
ever, for the argumentation framework resulting from the majority rule (see Fig-
ure 3d) the grounded extension is {b, c, e, g} and thus does not contain argument a.
This shows that the majority rule does not preserve argument acceptability under
grounded semantics.

The next properties do no longer focus on single arguments but on sets of ar-
guments. Let P be a profile. An aggregation rule F preserves conflict-freeness
(admissibility) if for all sets of arguments A ⊆ Ar that are conflict-free (admissible)
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for all AFi, i ∈ N , it holds that A is also conflict-free (admissible) in F (P ). In con-
trast to the previous impossibility result (Theorem 3.10), the results here are more
positive. For conflict-freeness there is a very general result, whereas for admissibility
there is at least one reasonable rule that satisfies some basic criteria.

Theorem 3.12. [[28]]

• Every aggregation rule that is grounded preserves conflict-freeness.

• Let |Ar | ≥ 4. The nomination rule is the only unanimous, grounded, anony-
mous, neutral, independent, and monotonic aggregation rule that preserves
admissibility.

A counter-example for the majority rule and the preservation of admissibility
rule is given in the following example.

Example 3.13. Recall the example shown in Figures 3a–3c. It holds that {a, c, e, g}
is admissible for AF1, AF2, and AF3. However, for the framework that results from
a majority aggregation (see Figure 3d) {a, c, e, g} is not admissible since a is not
defended. This means, the majority rule does not preserve admissibility.

In addition to preservation of admissibility and conflict-freeness, the question of
preservation under a given semantics is interesting. Formally, an aggregation rule F
preserves extensions under the stable (complete, grounded, preferred) semantics if for
all sets A ⊆ Ar that are stable (complete, grounded, preferred) for all AF i, i ∈ N ,
it holds that A is also stable (complete, grounded, preferred) in F (P ). The results
here differ, depending on the semantics considered. For the case of the complete,
preferred, and grounded semantics, there is again a negative result that builds up
on known results by [47] on graph aggregation. On the other hand, the result for
the stable semantics is more positive, as the nomination rule indeed preserves stable
extensions.

Theorem 3.14. [[28]]

• Let |Ar | ≥ 5. Then any unanimous, grounded, and independent aggregation
rule F that preserves either complete or preferred extensions is a dictatorship.

• Let |Ar | ≥ 4. Then any unanimous, grounded, and independent aggregation
rule F that preserves grounded extensions is a dictatorship.

• The nomination rule preserves stable extensions.

The following example shows that the majority rule does not preserve extensions
under the grounded, stable, preferred, or complete semantics.
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Example 3.15. Consider again the individual argumentation frameworks shown
in Figures 3a–3c. Note that all three attack relations are acyclic, and hence the
grounded, stable, preferred, and complete semantics coincide. As mentioned before,
the grounded extension for all three argumentation frameworks is {a, c, e, g}. How-
ever this is not preserved under majority aggregation, since in the resulting argumen-
tation framework the grounded extension is {b, c, e, g}. Since all attack relations are
acyclic, the same example shows that the majority rule does not preserve grounded,
stable, preferred, or complete extensions.

A different view on the preservation of extensions has been taken by [46], who
consider different variants of these problems from the point of view of computational
complexity. Following their work, [37] propose specific AF aggregation rules.

4 Specific Aggregation Methods in Argumentation
In this section, we survey different specific structural aggregation operators for ab-
stract argumentation frameworks from the literature, starting with the pioneering
work on AF aggregation by [31], who use partial argumentation frameworks as a
supporting notion for a framework of parameterized aggregation operators. Next,
we show how the model of incomplete argumentation frameworks due to [13] is
used to implement a simple, very general structural aggregation operator. Finally,
we present the work of [1], who employ value-based argumentation frameworks due
to [18] as a target formalism of structural aggregation operators, using different val-
ues associated with arguments as a possible explanation for the differences in the
input AFs. A less in-detail, but broader overview of aggregation operators in formal
argumentation can be found in the survey by [20].

4.1 Partial Argumentation Frameworks
[31] introduced the notion of partial argumentation framework specifically as an
intermediate format for the implementation of aggregation operators on argumen-
tation frameworks.

Definition 4.1 (Partial Argumentation Framework (PAF)). A partial argumenta-
tion framework (PAF) is a triple PAF = 〈Ar , att, ign〉 and consists of

• a set Ar of arguments,

• an attack relation att ⊆ (Ar ×Ar) specifying attacks known to exist,
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• and an ignorance relation ign ⊆ (Ar × Ar) specifying attacks whose existence
is not known.

It is assumed that att ∩ ign = ∅. A third relation is the non-attack relation non =
(Ar ×Ar) \ (att ∪ ign), which is implicitly given by the other two.

Aggregating several individual AFs via PAFs is a two-step process. First, each
AF is expanded to incorporate the information that is present in the other AFs.
An expansion must include the union of all arguments from all AFs. On the other
hand, an expansion must respect the information that is present in the original AF;
in particular, all arguments and all attacks of the original AF must be present in
the expanded AF, too, and also every attack that does not exist in the original AF
must be non-existent in the expanded AF. However, this still leaves a lot of freedom,
allowing for many different expansion operators. Expansion operators use PAFs as
their target format in order to be able to represent ignorance about the existence of
attacks.

Definition 4.2 (Expansion Operator). Let PAF denote the universe of all par-
tial AFs. We consider mappings exp : AFm → PAF that map an argumenta-
tion framework AF = 〈Ar , att〉 and a profile P = (AF1, . . . ,AFm−1) with AF i =
〈Ar i, atti〉 of other individual AFs to an expanded PAF representation exp(AF ;P ) =
〈Ar ′, att ′, ign′〉 of AF , that incorporates the information given by the other individ-
ual AFs AF i. More formally, exp is called an expansion operator if it satisfies the
following conditions:

• Ar ′ = Ar∪⋃m−1
i=1 Ar i, i.e., all arguments from all individual views are included;

• att ′ ⊇ att, i.e., all known attacks from AF are preserved; and

• non′ ⊇ (Ar ×Ar) \ att, i.e., all non-attacks from AF are preserved.

Every agent may choose their own expansion operator, it is not required that all
agents use the same one in an aggregation process. In their paper, [31] focus on the
consensual expansion operator, which is defined as follows.

Definition 4.3 (Consensual Expansion). The consensual expansion operator expC
maps an AF = 〈Ar , att〉 and a profile P = (AF1, . . . ,AFm−1) with AF i = 〈Ar i, atti〉
to a PAF 〈Ar ′, att ′, ign′〉 with

• Ar ′ = Ar ∪⋃m−1
i=1 Ar i (as required),

• att ′ = att ∪
((⋃m−1

i=1 atti \ conf (AF,P )
)
\ non

)
, and
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(f) Consensual expansion
expC(AF3; AF1,AF2)

Figure 4: Graph visualizations for the consensual expansion in Example 4.4, where
attacks in an ignorance relation igni are drawn as dashed arrows

• ign′ = conf (AF,P ) \ (att ∪ non).

The helper function conf (AF,P ) = (att ∪⋃m−1
i=1 atti)∩ (non ∪⋃m−1

i=1 noni) identifies
those attacks for which there is a conflicting opinion in the input AFs about whether
or not they exist.

An agent that uses the consensual expansion operator is confident to include
new attacks in their set att ′ of attacks known to exist, when all other agents that
have both incident arguments in their individual view agree on the existence of
the attack. Likewise, when all other agents that know both incident arguments of
an attack agree that it does not exist, the agent is confident to include it in their
set non′ of attacks known to not exist. All other new attacks are included in the
ignorance relation ign′.

Example 4.4. Recall our running example from Table 1 and Figure 2 in Section 2.
Consider three individual AFs (AF i = 〈Ar i, atti〉)i∈{1,2,3} that each represent the
subjective views of a participant in the example discussion, where
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Ar1 = {b, c, d, e, f, g},

Ar2 = {a, b, c, d, e, g},

Ar3 = {a, b, c, d, e, f, g},

att1 = {(c, b), (d, e), (e, d), (f, e), (f, c),
(g, d), (g, b), (g, f)},

att2 = {(a, b), (b, a), (c, b), (d, e), (e, d),
(g, d), (g, b)},

att3 = {(a, b), (c, b), (d, e), (e, d), (f, e),
(f, c), (g, d), (f, g), (g, b), (g, f)}.

These individual AFs are illustrated in Figures 4a, 4b, and 4c, respectively. The sta-
ble extensions are {c, e, g} for AF1, {a, c, e, g} for AF2, and {a, c, e, g} and {a, d, f}
for AF3.

When all individual views are expanded using consensual expansion, we obtain the
PAFs PAF1 = expC(AF1; AF2,AF3), PAF2 = expC(AF2; AF1,AF3), and PAF3 =
expC(AF3; AF1,AF2) that are visualized in Figures 4d, 4e, and 4f.

A profile of expanded individual views can now be aggregated using the fusion
step. Fusion operators identify a single AF or a set of AFs that is “as close as
possible” to all expanded individual views. To implement the notion of “closeness,”
a fusion operator is parameterized by a pseudo-distance d : PAF2 → R+ on PAFs—
satisfying d(PAF1,PAF2) = d(PAF2,PAF1) and d(PAF1,PAF2) = 0 ⇔ PAF1 =
PAF2—and an aggregation function ⊗ : Rm → R that is used to aggregate m
distances into a single score.

As an example, [31] define an edit distance on PAFs, which penalizes outright
disagreement about the existence of a relation r ∈ (Ar ×Ar) with an increase of the
distance by 1, while if one of the two PAFs has r in its ignorance relation and the
other does not, this is penalized with an increase of 0.5.

Definition 4.5 (Edit Distance on PAFs). The edit distance de : PAF2 → R+ on
PAFs is defined as follows:

de(〈Ar , att1, ign1〉, 〈Ar , att2, ign2〉) =
∑

r∈(Ar×Ar)
1 · (1att1∩non2(r) + 1non1∩att2(r))

+ 0.5 · (1ign1∩att2(r) + 1ign1∩non2(r) + 1att1∩ign2(r) + 1non1∩ign2(r)
)
,

where 1X denotes the indicator function for a set X, defined by 1X(x) = 1 if x ∈ X,
and 1X(x) = 0 otherwise.

We are now ready to define fusion operators.
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Definition 4.6 (Fusion Operator). Let m ∈ N, d be a pseudo-distance on PAFs, and
⊗ be an aggregation function on Rm. The fusion operator fusiond,⊗ : PAFm → 2AF
maps a profile (PAF1, . . . ,PAFm) of partial AFs obtained through expansion to the
set of AFs that minimize the aggregated distance (with respect to d and ⊗) to all
input PAFs, i.e.,

fusiond,⊗(PAF1, . . . ,PAFm) =

{〈Ar∗, att∗〉 | Ar∗ =
m⋃

i=1
Ar i, att∗ ⊆ (Ar∗ ×Ar∗),

and 〈Ar∗, att∗〉 minimizes ⊗mi=1 (d(〈Ar∗, att∗〉,PAF i))}.

An aggregation operator is now obtained by chaining m expansion operators and
a fusion operator together.

Definition 4.7 (PAF Aggregation Operator). Let m ∈ N. For a profile exp =
(exp1, . . . , expm) of m expansion operators, for a given pseudo-distance d on PAFs,
and for a given aggregation function ⊗ on Rm, the aggregation operator aggpafs

exp,d,⊗ :
AFm → 2AF is defined as

aggpafs
exp,d,⊗(AF1, . . . ,AFm) = fusiond,⊗(exp1(AF1; AF2, . . . ,AFm),

. . . , expm(AFm; AF1, . . . ,AFm−1)).

In general, PAF aggregation operators are irresolute, i.e., they may return a set
of aggregates instead of a single aggregate, since the fusion operator may find several
AFs that share the lowest aggregated distance to the expanded individual views.

Example 4.8. We continue our example. The expanded views PAF1, PAF2, and
PAF3 that we obtained through consensual expansion all share the same set {a, b, c, d,
e, f, g} of arguments, have ignorance relations ign1 = {(b, a)}, ign2 = {(f, g)}, and
ign3 = ∅, and the following attack relations:

att1 = {(a, b), (c, b), (d, e), (e, d), (f, e), (f, c), (g, d), (g, b), (g, f)},
att2 = {(a, b), (b, a), (c, b), (d, e), (e, d), (f, e), (f, c), (g, d), (g, b), (g, f)},
att3 = {(a, b), (c, b), (d, e), (e, d), (f, e), (f, c), (g, d), (f, g), (g, b), (g, f)}.

For better readability, we display the expanded individual views again in Figures 5a,
5b, and 5c.

For the fusion operator, we use the edit distance de, and as an aggregation func-
tion we use the maximum function max. The operator fusionde,max identifies all
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(d) Fusion outcome: All AFs AFA, AFC , and AFD that share the lowest maximum edit
distance to all expanded individual views

Figure 5: Graph visualizations for the fusion in Example 4.4, where attacks in an
ignorance relation igni are drawn as dashed arrows

argumentation frameworks 〈{a, b, c, d, e, f, g}, att〉 for which the maximum of the
edit distances to each expanded individual view PAF1, PAF2, or PAF3 is mini-
mal. Among all candidates 〈{a, b, c, d, e, f, g}, att〉, we only need to consider those
that share the attacks and non-attacks that all PAF i agree on, because any devi-
ation would increase the distance to every individual view. The only relations for
which there is disagreement among the PAF i are (b, a) and (f, g). This leaves four
candidates AFA, AFB, AFC , and AFB with attack relations:

attA = {(a, b), (c, b), (d, e), (e, d), (f, e), (f, c), (g, d), (g, b), (g, f)},
attB = {(a, b), (b, a), (c, b), (d, e), (e, d), (f, e), (f, c), (g, d), (g, b), (g, f)},
attC = {(a, b), (c, b), (d, e), (e, d), (f, e), (f, c), (g, d), (f, g), (g, b), (g, f)},
attD = {(a, b), (b, a), (c, b), (d, e), (e, d), (f, e), (f, c), (g, d), (f, g), (g, b), (g, f)}.

The edit distances are as follows:

• de(AFA,PAF1) = 0.5, de(AFA,PAF2) = 1.5, de(AFA,PAF3) = 1,

• de(AFB,PAF1) = 0.5, de(AFB,PAF2) = 0.5, de(AFB,PAF3) = 2,

• de(AFC ,PAF1) = 1.5, de(AFC ,PAF2) = 1.5, de(AFC ,PAF3) = 0,

• de(AFD,PAF1) = 1.5, de(AFD,PAF2) = 0.5, de(AFD,PAF3) = 1,

AFB has an edit distance de(AFB,PAF3) = 2 to PAF3, while the other three
AFs share a maximum distance of 1.5 to any of the PAFs. Therefore, the result of
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the fusion step is

fusionde,max(PAF1,PAF2,PAF3) = {AFA,AFC ,AFD}.

These AFs are visualized in Figure 5d. AFA has {a, c, e, g} as its only stable ex-
tension, AFC has stable extensions {a, c, e, g} and {a, d, f}, and AFD has stable
extensions {a, c, e, g}, {a, d, f}, and {b, d, f}. In particular, we can observe that the
aggregate has an extension where argument b is accepted, although b is not accepted
in any of the individual views.

The fact that the aggregation results can have acceptable (sets of) arguments
that are not acceptable in any individual view bears some similarities with the dis-
cursive dilemma from judgment aggregation theory,1 where a profile of individually
consistent judgment sets can be aggregated into a single judgment via some major-
ity criterion such that this aggregated judgment contains a conclusion that is not
accepted in any of the individual judgments. Since we are concerned with framework-
based structural aggregation, we regard the information provided by the individual
views (i.e., the existing arguments and attacks) as primarily relevant, overshadowing
the outcome (i.e., extensions and accepted arguments) of the individual views. Like
premise-based aggregation rules in judgment aggregation (see [60], [39]), structural
aggregation operators for AFs allow the outcome of the aggregate to have precedence
over the aggregation of the outcomes.

4.2 Incomplete Argumentation Frameworks
Incomplete Argumentation Frameworks (IAFs) further generalize PAFs and can rep-
resent uncertainty about the existence of individual arguments [17], uncertainty
about the existence of individual attacks [11], or both simultaneously [13].

Definition 4.9 (Incomplete Argumentation Framework). An incomplete argumen-
tation framework (IAF) is a quadruple IAF = 〈Ar ,Ar?, att, att?〉 and consists of

• a set Ar of definite arguments known to exist,

• a set Ar? of uncertain arguments of which each may or may not exist,

• a set att ⊆ (Ar ∪ Ar?) × (Ar ∪ Ar?) of (conditionally) definite attacks that
exist if and only if both incident arguments exist, and

1Generalizing the doctrinal paradox due to [59], [71] introduced the discursive dilemma; both
are discussed by [68] in more detail.
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• a set att? ⊆ (Ar ∪ Ar?)× (Ar ∪ Ar?) of uncertain attacks of which each may
or may not exist, but only if both incident arguments exist.

We assume that Ar ∩Ar? = ∅ and att ∩ att? = ∅.

An IAF is a compact representation of a set of possible worlds—namely, all the
standard AFs that can be obtained from it by deciding for each uncertain element
whether or not it should be included. Each such AF is called a completion of the
IAF.

Definition 4.10 (Completion). Let IAF = 〈Ar ,Ar?, att, att?〉 be an incomplete AF.
An AF AF ∗ = 〈Ar∗, att∗〉 is called a completion of IAF if it satisfies

Ar ⊆ Ar∗ ⊆ Ar ∪Ar? and

att|Ar∗ ⊆ att∗ ⊆
(
att ∪ att?

)
|Ar∗ .

That is, every completion of IAF must include each of its definite arguments and
may include any of its uncertain arguments. Attacks can only be included if both
incident arguments are included (indicated by the restriction operator att ′|Ar ′ = att ′∩
(Ar ′ × Ar ′)). Every conditionally definite attack that has both incident arguments
present in a completion, must be included in that completion. Uncertain attacks may
be included, but only if both incident arguments are included.

Incomplete AFs define acceptability criteria for sets of arguments or for individ-
ual arguments, which are derived from the standard AF criteria of extensions and
credulous/skeptical acceptance in the completions of an IAF.

Definition 4.11 (Acceptability in IAFs). Let IAF = 〈Ar ,Ar?, att, att?〉 be an in-
complete AF and let σ be a semantics.

• A set S ⊆ Ar ∪ Ar? of arguments in IAF is accepted possibly (respectively,
necessarily) for semantics σ if S is a σ extension in some completion of IAF
(respectively, in all completions of IAF)2. This notion of acceptability is de-
rived from the verification problem (σ-Ver) for standard AFs and formalized
via the problems of possible verification (σ-PV) and necessary verification (σ-
NV) by [13] and [48].

2This is a revised definition due to [48], who point out some problematic behavior of the initial
definition by [13], where it was only required that S ∩ Ar∗ (instead of S) is a σ extension in some
completion of IAF in order for S to be accepted in that completion. In this chapter, we focus on
the revised definition.
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Figure 6: Incomplete AF and corresponding completions for Example 4.12

• A single argument a ∈ Ar ∪ Ar? in IAF is possibly credulously accepted (re-
spectively, necessarily credulously accepted) for semantics σ if a is a member
of some σ extension S in some completion of IAF (respectively, in all com-
pletions of IAF). Similarly to verification, this notion is derived from the
credulous acceptance problem (σ-CA) for standard AFs and formalized via the
problems of possible credulous acceptance (σ-PCA) and necessary credulous
acceptance (σ-NCA) by [12].

• A single argument a ∈ Ar ∪ Ar? in IAF is possibly skeptically accepted (re-
spectively, necessarily skeptically accepted) for semantics σ if a is a member of
all σ extensions S in some completion of IAF (respectively, in all completions
of IAF). Again, this notion is derived from the skeptical acceptance problem
(σ-SA) for standard AFs and formalized via the problems of possible skeptical
acceptance (σ-PSA) and necessary skeptical acceptance (σ-NSA) by [12].

Note that the problems of possible/necessary acceptability in IAFs can be re-
stricted to definite targets (i.e., S ⊆ Ar for sets of arguments or a ∈ Ar for single
arguments) without changing their complexity: For “necessary” problem variants,
we get a trivial “no” answer if (part of) the target is uncertain, since then it cannot
be present in all completions. For “possible” problem variants, we can disregard all
completions that do not contain all target arguments, since they cannot produce
“yes” answers. The remaining cases constitute exactly the original problem where
all target arguments are definite.

Example 4.12. Consider an incomplete AF IAF = 〈Ar ,Ar?, att, att?〉 with three
definite arguments in Ar = {a, b, c}, an uncertain argument in Ar? = {d}, three
(conditionally) definite attacks in att = {(a, b), (b, c), (d, c)}, and two uncertain at-
tacks in att? = {(a, c), (c, d)}. Its graph representation is given in Figure 6a, where
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uncertain elements are distinguished by dashed lines, and all its completions are
given in Figure 6b.

When we determine the stable extensions of the completions, we see that comple-
tion (i) has {a, c} as its only stable extension, completion (iii) has {a, c} and {a, d}
as its stable extensions, completion (iv) has {a} as its only stable extension, and
all other completions—namely, (ii), (v), and (vi)—have {a, d} as their only stable
extension. For the stable semantics, this means that:

• {a}, {a, c}, and {a, d} are possibly accepted, while no other set of arguments
is possibly accepted, and no set of arguments is necessarily accepted.

• Argument a is necessarily skeptically accepted, since it is a member of every
stable extension in every completion.

• Argument b is not possibly credulously accepted, since it is not a member of
any stable extension in any completion.

• Argument c is possibly skeptically accepted, since in completion (i), c is a
member of all stable extensions. However, c is not necessarily credulously
accepted, since there are completions—e.g., (iv)—where c is not included in
any stable extension.

The computational complexity of decision problems that capture these notions of
acceptability was analyzed by [13] and [48] for sets of arguments and by [12] and [69]
for individual arguments.3 Table 2 gives an overview of the complexities compared to
the respective complexity of the base problem for standard AFs without uncertainty.
Results marked with ♠ are by [42], marked with ♣ are by [13], marked with • are by
[48], marked with F are by [40], marked with � are by [12], marked with N are by [32],
marked with H are by [69], marked with † are by [73], and marked with ‡ are by [43].
Results marked with an asterisk (∗) are straight-forward and are not formally proven.
We can observe various cases where the computational hardness is not increased by
the introduction of uncertainty—in particular, for necessary verification (σ-NV).
Further, experimental results by [69] indicate that even the hard cases (i.e., those
problems that are complete for NP, coNP, or a class even higher in the polynomial
hierarchy) may be tamed in practice through suitable encodings.

Even though incomplete AFs were conceived as a very general representation
of various different kinds of structural uncertainty in AFs, in particular they can
serve as a target formalism for structural aggregation of different individual AFs.

3We mention in passing that similarly to the way [13] study possible and necessary variants of
the verification problem, [77] have done so for the existence problem.
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σ σ-Ver σ-PV σ-NV
CF ∈ P ♠ ∈ P ♣ ∈ P ♣

AD ∈ P ♠ ∈ P • ∈ P ♣

ST ∈ P ♠ ∈ P • ∈ P ♣

CO ∈ P ♠ ∈ P • ∈ P ♣

GR ∈ P ♠ ∈ P • ∈ P ♣

PR coNP-c. F Σp
2-c. ♣ coNP-c. ♣

σ σ-CA σ-PCA σ-NCA
CF ∈ P ∗ ∈ P � ∈ P �

AD NP-c. F NP-c. � Πp
2-c. �

ST NP-c. F NP-c. � Πp
2-c. �

CO NP-c. N NP-c. � Πp
2-c. �

GR ∈ P ∗ NP-c. � coNP-c. �

PR NP-c. F NP-c. � Πp
2-c. �

σ σ-SA σ-PSA σ-NSA
CF 6=∅ ∈ P H ∈ P H ∈ P H

AD 6=∅ coNP-c. † Σp
2-c. H coNP-c. †

ST coNP-c. F Σp
2-c. � coNP-c. �

CO ∈ P N NP-c. � coNP-c. �

GR ∈ P ∗ NP-c. � coNP-c. �

PR Πp
2-c. ‡ Σp

3-c. � Πp
2-c. �

Table 2: Overview of the computational complexity of decision problems in standard
and incomplete argumentation frameworks for the six original semantics. The results
are grouped into verification variants (top), credulous acceptance variants (center),
and skeptical acceptance variants (bottom). Each block has the semantics in the
left-most column, the base problem for standard AFs in the second column, and
the “possible” and “necessary” variants of the base problem in the third and fourth
column, respectively. For a complexity class C, we write C-c. to denote completeness
for C. For the problem σ-SA and its generalizations, only nonempty conflict-free
(CF 6=∅) and nonempty admissible (AD 6=∅) sets are considered, since these problems
are trivial for general CF or AD sets.
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In the following, we define and illustrate the aggregation operator from sets of AFs
to a single IAF as introduced by [13]. This aggregation operator is very liberal
and imposes only a single condition: When all individual AFs agree on the existence
(respectively, nonexistence) of an element, then this element must exist (respectively,
cannot exist) in the aggregate. Arguments or attacks for which there is disagreement
are included as uncertain elements, thus allowing to include or exclude them via
completions.
Definition 4.13 (IAF Aggregation Operator). Denote with IAF the universe of all
incomplete argumentation frameworks. For every m ∈ N, the aggregation operator
agginc : AFm → IAF maps any set {AF1, . . . , AFm} with AF i = 〈Ar i, atti〉 of m
individual AFs to IAF = 〈Ar ,Ar?, att, att?〉 with

Ar =
m⋂

i=1
Ar i,

Ar? =
(
m⋃

i=1
Ar i

)
\Ar ,

att ={(a, b) ∈ (Ar ∪Ar?)× (Ar ∪Ar?) |
(∀i ∈ {1, ...,m}) [a, b ∈ Ar i ⇒ (a, b) ∈ atti]},

att? =
(
m⋃

i=1
atti

)
\ att.

That is, every argument that occurs in every individual AF is included as a
definite argument, and all other arguments that occur in individual AFs are included
as possible arguments. An attack is included as (conditionally) definite attack if
it occurs in every individual AF that includes both incident arguments, and as a
possible attack otherwise.
Example 4.14. Again, we use our running example with the same three individual
AFs (AF i = 〈Ar i, atti〉)i∈{1,2,3} that each represent the subjective views of a partici-
pant in the example discussion, where

Ar1 = {b, c, d, e, f, g},

Ar2 = {a, b, c, d, e, g},

Ar3 = {a, b, c, d, e, f, g},

att1 = {(c, b), (d, e), (e, d), (f, e), (f, c),
(g, d), (g, b), (g, f)},

att2 = {(a, b), (b, a), (c, b), (d, e), (e, d),
(g, d), (g, b)},

att3 = {(a, b), (c, b), (d, e), (e, d), (f, e),
(f, c), (g, d), (f, g), (g, b), (g, f)}.

For better readability, the individual AFs are illustrated again in Figures 7a, 7b,
and 7c. The stable extensions are {c, e, g} for AF1, {a, c, e, g} for AF2, and {a, c, e,
g} and {a, d, f} for AF3.
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Figure 7: Graph representation of the individual AFs in Example 4.14

Aggregating these AFs with the method of Definition 4.13 yields the IAF IAF =
〈Ar ,Ar?, att, att?〉 displayed in Figure 7d, with:

Ar = {b, c, d, e, g},
Ar? = {a, f},
att = {(a, b), (c, b), (d, e), (e, d), (f, e), (f, c), (g, d), (g, b), (g, f)},

att? = {(b, a), (f, g)}.

Arguments a and f do not occur in every individual AF and are therefore uncertain
arguments, all other arguments are definite arguments. For the attacks, we have
three different cases: Everyone agrees on the existence of the attacks (c, b), (d, e),
(e, d), (g, d), and (g, b), so these are definite attacks. For the attacks (a, b), (f, e),
(f, c), and (g, f), not all individual AFs include both incident arguments, but those
that do, agree on their existence, so these are conditionally definite attacks (which,
like definite attacks, are included in the set att, but they might vanish alongside
incident uncertain arguments in a completion). For the remaining attacks (b, a)
and (f, g), there is disagreement about their existence among individual views who
include both incident arguments, so these are uncertain attacks.

IAF has the following nine completions.

• One includes neither of the arguments a or f and has {c, e, g} as its only stable
extension.
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• Two include argument a, but not f , and both have {a, c, e, g} as their only
stable extension.

• Two include argument f , but not a, both have {c, e, g} as a stable extension,
and one of them has {b, d, f} as a second stable extension.

• The remaining four completions include bot arguments a and f . All have
{a, c, e, g} as a stable extension, two of them have {a, d, f} as a second stable
extension, and one of these two has {b, d, f} as a third stable extension.

As in the example used in the previous section, we can again observe that IAF has
completions where argument b is accepted (i.e., b is possibly credulously accepted in
IAF), even though b is not accepted in any of the individual views.

Since the IAF aggregation operator produces a single IAF as its output, and
every IAF is a compact representation of a set of AFs, the operator can be seen as
an irresolute AF aggregation operator. However, the existing acceptability semantics
for IAFs make it unnecessary to resolve the remaining ambiguity through some sort
of fusion, since collective acceptability can already be determined at this stage.
One could say that the IAF aggregation operator circumvents the issues inherent to
aggregation by skipping the actual aggregation altogether. Instead of being a single
aggregate, an IAF that represents a set of individual AFs can be seen as a kind
of convex closure of those individual views. Every reasonable structural aggregate
of the individual views will lie within that closure (i.e., will be a completion of the
IAF). As such, the acceptability semantics for the IAF provide a way to define a very
cautious collective acceptability for the individual views, which avoids the deliberate
choice of a specific aggregate AF.

4.3 Value-Based Argumentation Frameworks
[18] proposed the notion of (audience-specific) value-based argumentation framework
(see also Chapter 5 of this handbook [4]).

Definition 4.15 (Value-Based Argumentation Framework).
An audience-specific value-based argumentation framework (AVAF) is a quintuple
VAFα = 〈Ar , att, V, val,�α〉, where

• 〈Ar , att〉 is an AF (without self-attacks, i.e., att is supposed to be irreflexive),

• V is a nonempty set of (social or moral) values,

• val : Ar → V is a mapping assigning values to arguments, and
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• �α is a transitive and asymmetric (thus, in particular, irreflexive) relation
reflecting the value preferences of audience α on V .

A value-based argumentation framework (VAF) is similarly defined as a quintu-
ple 〈Ar , att, V, val,�〉, where Ar , att, V , and val have the same meaning as above
but � is the set of all possible audiences, i.e., of all possible preferences on V .

If V is a singleton, or if no preferences among the values in V are expressed, an
AVAF degenerates to an ordinary AF. In an AVAF, each audience α can be identified
with its preference relation �α over values in V , and while the function val mapping
arguments to values is fixed for everyone, the preferences �α over values are specific
to this particular audience (or agent) α. The point is that an attack in an AVAF
succeeds only if the attacked argument is not preferred to the attacking argument
by the audience: From α’s point of view, an argument of lower (social or moral)
value cannot defeat an argument of higher value. Note that if both arguments are
assigned the same value, or if there is no preference between two values, an attack
between such arguments does succeed.

Definition 4.16 (Defeat Relation). Let VAFα = 〈Ar , att, V, val,�α〉 be an AVAF.
An argument a ∈ Ar α-defeats an argument b ∈ Ar if and only if a attacks b in
〈Ar , att〉 and not val(b) �α val(a).

Example 4.17. For illustration, we extend the AF 〈Ar , att〉 from our running ex-
ample (recall Table 1 and Figure 2 in Section 2) as follows. Suppose that

• the arguments a and g are mapped to the value PERSONAL SAFETY (repre-
sented by white vertices in Figure 8);

• the arguments b, c, d, and f are mapped to the value COLLECTIVE SAFETY
(represented by gray vertices in Figure 8); and

• the argument e is mapped to the value RIGHT TO BE INFORMED (repre-
sented by a black vertex in Figure 8).

The six graphs displayed in Figure 8 show the six AVAFs resulting from each
possible complete, strict preference ranking of these three values in

� = {�α,�β,�γ ,�δ,�η,�ζ},

where the arguments are vertices and a directed edge from x to y in VAFψ with
�ψ ∈ � means that x ψ-defeats y.
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Figure 8: Defeat relation in six AVAFs for Example 4.17.

For example, audience α ranks these values by black �α gray �α white, so the
attacks (a, b), (d, e), (f, e), (g, b), (g, d), and (g, f) do not succeed in VAFα because
the attackers have lower value than the attackees in these cases and thus they do not
defeat them.

The α-defeat relation from Definition 4.16 is an irreflexive binary relation on Ar ,
just as an attack relation on Ar . Therefore, an AVAF VAFα = 〈Ar , att, V, val,�α〉
induces another AF 〈Ar , α-defeat〉 with α-defeat being a subrelation of att.

We thus can define the same semantics that were introduced for AFs in Section 2
for AVAFs as well. For example, a set S of arguments is said to be conflict-free for
audience α if no argument in S α-defeats any other argument in S: For any two
arguments a, b ∈ S, if a attacks b then val(b) �α val(a).4 Further, S is admissible
for audience α if it is conflict-free for α and for each argument a ∈ S and for each
argument b ∈ Ar such that b α-defeats a, there is an argument c ∈ S that α-defeats b.

4 This definition of conflict-free sets in preference-based AFs—i.e., AFs which feature a defeat
relation derived from the attack relation and some preference over arguments—has been criticized
by [2] and [67], who argue that sets of arguments that attack each other should not be considered
conflict-free, even when none of the internal attacks succeed, i.e., are defeats. Following the work
on rationalizability by [1], however, in this chapter we stick to the original definition.
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If S is a maximal (with respect to set inclusion) admissible set for audience α, it is
said to be preferred by audience α. And S is stable for audience α if it is conflict-free
for α and every argument outside of S is α-defeated by some argument in S.

Note that for any AVAF VAFα having no cycle in which all arguments are
assigned the same value, the associated AF 〈Ar , α-defeat〉 will have no cycle (as any
cycle would be broken when an argument of lower value attacks an argument of
higher value).5 In such cases, there exists a unique, nonempty preferred extension
for audience α.

Example 4.18. Continuing Example 4.17, the six AVAFs from Figure 8 have the
following preferred extensions for their audiences:

• {b, e, f } for Figure 8a with value preference black �α gray �α white;

• {a, c, e, g} for Figure 8b with value preference black �β white �β gray, Fig-
ure 8e with value preference white �ε black �ε gray, and Figure 8f with value
preference white �ζ gray �ζ black; and

• {b, d, f } for Figure 8c with value preference gray �γ black �γ white and
Figure 8d with value preference gray �δ white �δ black.

Note that none of the arguments in the AVAFs of Example 4.18 is preferred by
every audience, yet they all are preferred by some audience. [18] refers to these
properties as objective and subjective acceptability:

Definition 4.19 (Objective and Subjective Acceptability).
Let 〈Ar , att, V, val,�〉 be a VAF. An argument a ∈ Ar is

• objectively acceptable if a is contained in a preferred extension of every audi-
ence in �;

• subjectively acceptable if a is contained in a preferred extension of some au-
dience in �; and

• indefensible if a is neither objectively nor subjectively acceptable (e.g., in case
a is attacked by an objectively acceptable argument with the same value).

5Indeed, [18] argues that single-valued cycles in a VAF indicate that the reasoning giving rise
to them must be flawed. He further points out that, while in standard AFs even cycles are in fact
required (in particular, two-cycles help to deal with uncertain and incomplete information) and
odd cycles are at least plausible [42], cycles should be avoided in value-based argumentation: Odd
cycles in VAFs are like paradoxes indicating that nothing can be believed, and even cycles are like
dilemmas requiring a choice between alternatives to be made.
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For AVAFs having no single-valued cycle, the preferred extension can be effi-
ciently computed, as it is unique (which greatly simplifies the situation because,
recalling Definition 4.11, there is no difference between skeptical and credulous ac-
ceptance). For VAFs, however, with no audience specified, all possible audiences
need to be taken into account for the problem of determining whether an argument
is objectively acceptable, subjectively acceptable, or indefensible. [18] discusses this
problem, focusing on certain simple cases, such as when the number of values is two.

Let us have a look at Figure 8 again. We know that all six AVAFs displayed there
result from one and the same AF 〈Ar , att〉, each according to another audience. We
started from 〈Ar , att〉 and then created the six AVAFs by removing certain attacks
(namely, those attacks where the attacked argument had a higher value than the
attacking argument).

Now, let us ask the converse question: Suppose we are given (or observe) a
number of AFs, not necessarily over the same set of arguments and each with its
own attack relation. Suppose further that these attack relations are, in fact, defeat
relations (i.e., the observed AFs, in fact, are each associated with an AVAF in the
way described after Example 4.18). The question is whether these AVAFs can be
rationalized, i.e., whether they can be explained in terms of a single common master
AF, a common set of values, and a common value function, together with a profile
of individual preference orders, one for each agent. This rationalizability problem
has been introduced and studied by [1]. We now define their notion more formally;
in fact, we define an entire class of rationalizability problems, parameterized by a
set of constraints that the solutions are required to fulfill.
Definition 4.20 (Rationalizability).
A profile 〈〈Ar1, 1-defeat〉, 〈Ar2, 2-defeat〉, . . . , 〈Arn, n-defeat〉〉 of AFs6 is said to be
rationalizable by an AVAF for a given set of constraints (some to be specified below)
if there are
• an attack relation att on Ar = ⋃n

i=1 Ar i,

• a nonempty set V of (social or moral) values,

• a mapping val : Ar → V assigning values to arguments, and

• a profile 〈�1,�2, . . . ,�n〉 of preference orders on V ,7 each meeting the given
constraints,

6For notational convenience, we from now on use numbers 1, 2, . . . , n instead of Greek letters
to denote agents or audiences.

7Unlike [18], [1] use preorders (which are reflexive, transitive binary relations) or weak orders
(which, in addition, are complete) for the agents’ value preferences. The strict part of a preorder is
denoted as �.
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such that for all agents i, 1 ≤ i ≤ n, and for any two arguments a, b ∈ Ar i, a
i-defeats b if and only if a attacks b in 〈Ar , att〉 and not val(b) �i val(a).

For a given rationalizable profile, 〈Ar , att〉 is referred to as its master AF and
att as its master attack relation.

Examples of types of constraints considered by [1] are:

• the master attack relation att may be required to be fixed,

• the set V of values and the value function val : Ar → V may be required to
be fixed,

• the number of values in V may be bounded by some constant, and

• the value preferences �i may be required to be weak orders.

[1] study the question of whether it is possible, given some set of constraints,
to characterize the class of profiles of AFs that can be rationalized by an AVAF
for these constraints. They also investigate the computational complexity of the
rationalizability problem that asks whether a given profile of AFs is rationalizable
by an AVAF for a given set of constraints.

They start with the case of a single agent (where profiles contain just a single AF)
and first observe that every single AF is rationalizable when there are no constraints,
so rationalizability is trivial in this case. Next, they show that the single-agent
rationalizability problem can be solved efficiently in many cases.

Theorem 4.21. [[1]] For a single agent, the rationalizability problem can be solved
in (deterministic) polynomial time whenever any of the following sets of constraints
is given:

• the master attack relation is fixed;

• the master attack relation, the set of values, and the value function are fixed;
and

• the master attack relation, an upper bound on the number of values is given,
and the agent has a weak preference order.

For multiple agents, however, the situation is more complicated. For example,
the easy observation that every single AF is rationalizable in the absence of con-
straints does not carry over to profiles with more than one agent, as [1] demonstrate
with the following example.
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Example 4.22. Suppose there are two agents, 1 and 2, discussing three arguments,
a, b, and c. While agent 1 thinks they form a cycle, a 1-defeating b, b 1-defeating c,
and c 1-defeating a, agent 2 believes that the three arguments are isolated, i.e., the 2-
defeat relation is empty. Of course, for this profile to be rationalizable by any AVAF
(without any constraints), a master attack relation would have to include at least the
attacks from a to b, from b to c, and from c to a. However, for agent 2 to be able to
remove these attacks in her 2-defeat relation, 2’s preference would have to include at
least the comparisons val(a) �2 val(c), val(c) �2 val(b), and val(b) �2 val(a), which
by transitivity of �2 implies val(a) �2 val(a), a contradiction. Hence, even when
there are no constraints whatsoever, this profile is not rationalizable by any AVAF.

While the rationalizability problem is not trivial when there are no constraints
in the multiagent case, [1] show that it can still be solved efficiently in this case and
also when the only constraints are that the master attack relation and/or the value
set and value function are fixed. In their proof, they show that any multiagent ratio-
nalizability problem can be decomposed into a set of n single-agent rationalizability
problems that can be solved independently of each other by Theorem 4.21.

It follows that, among the constraints they consider, a true multiagent rationaliz-
ability problem can be obtained only when an upper bound on the number of values
is given. For this problem in general, they have the following result that is obtained
by a reduction from the 3-colorability problem, one of the standard NP-complete
problems [52].

Theorem 4.23. [[1]] For multiple agents, the rationalizability problem is NP-
complete whenever a fixed master attack relation and an upper bound of at least
three on the number of values are given.

Whether Theorem 4.23 also holds for an upper bound of at least two values, or
whether the rationalizability problem becomes tractable in this case, is an interesting
open problem. However, when the agents share a common set of arguments, we
obtain an efficiently solvable special case of the general problem.

Theorem 4.24. [[1]] For multiple agents, the rationalizability problem can be solved
in (deterministic) polynomial time whenever a fixed master attack relation is given
and there are at most two values.

As a recommendation for further reading, [63] study two approaches for agents
with individual AVAFs to arrive at a common consensus: They may either seek to ag-
gregate their preferences on values (making use of preference aggregation techniques
such as voting [16]), or they may seek to aggregate their defeat graphs (making
use of the graph aggregation techniques proposed by [47]). Exploring the strengths
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and limitations of both approaches separately, [63] also propose a third option that
combines these two approaches and thus avoids some drawbacks that they may have
on their own.

5 Conclusion and Outlook
In this chapter, we highlighted the problem of collective acceptability in formal ar-
gumentation and its relations to computational social choice theory. We formally
defined structural aggregation for abstract argumentation frameworks, surveyed ax-
iomatic evaluation criteria for aggregation operators, and showcased three specific
structural aggregation methods from the literature in more detail.

Beyond the structural aggregation operators covered here, there are some that
employ numerical weights to implement the aggregation. [37] define an aggregation
operator using weighted AFs [45] with weights on attacks as a refinement of the
PAF aggregation operator by [31]. [51] propose an aggregation operator for AFs
that uses weights on arguments and attacks to fuel a system of equations that
determines the collectively most acceptable arguments. [55] recently initiated the
study of aggregation operators for probabilistic AFs [62].

[80] goes beyond the purely abstract perspective of AFs and proposes con-
straints on aggregation operators that can incorporate information which has been
abstracted away in the AF representation.

It is an interesting open task to verify axiomatic properties for structural AF ag-
gregation operators—e.g., the properties presented in Section 3—for the aggregation
methods presented in Section 4.
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Abstract
Value-based argumentation is concerned with recognising, accounting for,

and reasoning with, the social purposes promoted by agents’ beliefs and actions.
Value-based argumentation frameworks extend Dung’s abstract argumentation
frameworks by ascribing an additional property to arguments, representing the
values they promote, and recognising audiences. Values are ordered accord-
ing to the preferences of an audience (different audiences will have different
preferences) and an attack is successful only if the value of the attacked ar-
gument is not preferred to its attacker by its audience. Arguments can be
related to values through the use of an argumentation scheme, thus enabling us
to structure value-based argumentation. We describe the motivation of value-
based argumentation, its formal description and properties, the argumentation
scheme and its associated critical questions and some of the applications to
which value-based argumentation has been put.

1 Philosophical motivations for value-based
argumentation

The formal models of value-based argumentation that are presented in this chapter
are intended to capture various philosophical concepts that are reflected in everyday
human reasoning. In this section we explain the key philosophical accounts that
motivated the development of the computational models of value-based argument.

1.1 Values and audiences
The inspiration for value-based argumentation originally came from the book New
Rhetoric of Perelman [70]. The key insight of the New Rhetoric was that the ac-
ceptability of an argument depended not only on the argument itself, or on available
counterarguments, but on the audience to which it was addressed. For an argu-
ment to be accepted, its audience has to accept it. In subsequent work on this topic
Perelman says:
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If men [sic] oppose each other concerning a decision to be taken, it is not
because they commit some error of logic or calculation. They discuss
apropos the applicable rule, the ends to be considered, the meaning to
be given to values, the interpretation and characterisation of facts. [69],
p150.

Perelman’s academic roots were in jurisprudence and he drew on legal disputes
to support his argument:

Each [party] refers in its argumentation to different values [...] the judge
will allow himself to be guided in his reasoning by the spirit of the system:
i.e. by the values which the legislative authority seeks to protect and
advance. [69], p152.

Consideration of this had also been noted in AI and Law. In their highly influ-
ential paper, [43] discussed what should happen in factor-based reasoning with cases
[29] when there were no precedents to allow the case to be decided. They argued
that in such cases the decision should be made according to which social purposes
would be promoted by deciding for the plaintiff and which would be promoted by
deciding for the defendant, and the decision made according to which would better
serve the prevalent social values. Note that this means that different arguments can
be accepted in different jurisdictions (attitudes to the death penalty in Georgia and
Minnesota were very different in the 1970s), and at different times (“stare decisis
would bow to changing values”1).

Thus there seems something missing from a purely logical view: sometimes the
logic will fail to compel, and we will need to make a choice on other grounds. Since
the situation occurs in important arenas like law, we do not want the choice to be
arbitrary: we want to provide rational grounds for such choice. As Perelman puts
it:

Logic underwent a brilliant development during the last century when,
abandoning the old formulas, it set out to analyze the methods of proof
used effectively by mathematicians.. . . One result of this development
is to limit its domain, since everything ignored by mathematicians is
foreign to it. Logicians owe it to themselves to complete the theory of
demonstration obtained in this way by a theory of argumentation. [70],
p10.

1Justice Marshall in Furman v Georgia 408 U.S. 238 (1972).
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The situation is reflected in Dung’s abstract argumentation. Sometimes, the ac-
ceptability of an argument will not be unequivocally determined by the framework.
Given a dilemma (cycles with even length in standard argumentation frameworks
[28]) the restrictive grounded semantics will allow neither horn to be embraced,
whereas the more permissive preferred semantics will allow either proposition to
be believed, but offer no reason to opt for one rather than the other. Value-based
argumentation attempts to offer reasons for this choice as part of a “theory of argu-
mentation”.

1.2 Direction of fit
The other key influence on value-based argumentation was the work of John Searle
on practical reasoning and his notion of direction of fit [73]. Searle wrote

Assume universally valid and accepted standards of rationality, assume
perfectly rational agents operating with perfect information, and you will
find that rational disagreement will still occur; because, for example, the
rational agents are likely to have different and inconsistent values and
interests, each of which may be rationally acceptable. [73], p. xv.

Searle’s idea was that such rational disagreement was possible because of direc-
tion of fit. There is only a single actual world, and a single history of that world,
and so our beliefs about the present and the past have to match that actual world.
Because there is only one actual world, there is a right answer to questions of fact,
and while there may be disagreement, this is something that should be capable of
resolution, given complete information. Values, interests and aspirations can play
no part in such theoretical reasoning: that would be to indulge in wishful thinking.

The future is, however, a different matter. There are many possible futures, and
we can, through our actions, play a part in determining which will come to pass.
In practical reasoning, reasoning about what we should do, we attempt to fit the
world to our desires, so that our actions will bring about the future that we prefer.
But here different values, interests, aspirations and even tastes, may be a legitimate
source of rational disagreement. Some may find it strange if someone prefers vanilla
ice cream to chocolate, but it is not irrational. Of course, these aspirations can
affect deeper matters: in politics a desire for tax rises may exhibit a preference for
equality over economic growth. Such a preference is not a matter of rationality, but
of the values that one wishes to be expressed in a society.

Thus in practical reasoning, rational disagreement is to be expected [42]. The
notion of direction of fit, however, applies not only to actions, but to the law.
Disagreement is at the heart of law, and even at the highest level judges differ as to
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the proper outcome of a case. Five-to-four decisions occur in almost a fifth of cases
heard by the US Supreme Court2. Not only is disagreement common, it is expected:
that is why appeal courts typically comprise an odd number of judges, and why the
more important the court the more the judges, so that the US Supreme Court has
nine3. Nor can judicial disagreement be considered irrational: after all, the minority
will produce an opinion stating their reasons for their views. To a certain extent
the judges are trying to fit their view of the current cases to the existing law: the
doctrine of stare decisis means that their decision should be consistent with past
decisions. For a logical analysis of precedential constraint, see [56]. However, it
is often the case that the precedents do not fully constrain the decision: it may
be that all of them can be distinguished according to some features of the current
case. For such cases the judges are free to decide for either party. Here they try
to fit the law as it will be after their decision (for the current case will serve as a
precedent for future cases) to the way they desire the law should be. That is, they
consider which decision will promote the purposes of the law better, as described in
[43]. Therefore, as in practical reasoning, the values and aspirations of the judges
will determine their decision [10]. The justification is that the majority opinion of a
properly appointed court should reflect the prevailing values of its society.

1.3 Value-based argumentation
To reflect the situation where the dispute is about how best to fit the world to our
desires it is clear that a basic assumption of Dung’s argumentation frameworks, that
attacks always succeed in defeating the argument they attack, must be relaxed. As
an example, while it is true that Sarah will not be able to go on holiday if she buys
a new car, this attack can simply be ignored if Sarah prefers the holiday: she can
continue to make do with her current car. For a different person, however, perhaps a
petrol-head like Jeremy, the attack will be decisive and the holiday plans abandoned.

Thus to reflect debates where values, aspirations and tastes matter, not only in
everyday practical reasoning, but in important areas such law, politics and ethics as
well, a method of augmenting Dung’s framework with a notion of values was needed.
Values was the term used to cover these subjective preferences. It is a term widely
understood in this sense in popular media, and the notion of a value premise is a
key part of the Lincoln-Davis debate format used throughout the USA as the basis

2Between 2000 and 2018, according to the US Supreme Court as reported in The Washington
Post https://www.washingtonpost.com/news/posteverything/wp/2018/06/28/those-5-4-decisions-
on-the-supreme-court-9-0-is-far-more-common/. Last accessed February 2020.

3Nine is the traditional number. As we write, in the run up to the 2020 Presidential election,
there is speculation that this may be increased.
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for competitive debating in a number of leagues4. Thus the general notion of values
is felt to be widely understood. For example, the French Republic was based on the
three values of liberty, equality and fraternity. In value-based reasoning there have
been many different sets of values used for different problems. Generally it is held
that the identification of the relevant set of values is part of the formulation of the
problem to be discussed [13]. Some attempts have been made to provide a basis
for the identification of values: e.g. [75] used Schwartz Value Theory [72] and [30]
used Maslow’s hierarchy of needs [61]. Often, however, it seems that a very general
account is not best suited to a particular problem, and the use of problem specific
value sets remains common.

2 Values in abstract argumentation frameworks
Value-based argumentation first appeared in the context of an extension to Dung’s
abstract argumentation framework, first in [24] and later in the journal version [25].
The basic idea was to extend Dung’s notion of an augmentation framework as pair
of a set of arguments and a set of the attacks between them, 〈Ar, att〉 by adding
a set of values, V , a function mapping the members of Ar onto V , val, and a set
of audiences P , expressed as orderings on V . Note that P might contain all the
factorially many possible orderings on V , or only a selection of them. This might be
to represent a particular set of agents with specific preferences, or some constraint on
the ordering itself. For example, in order to represent facts, theoretical arguments
are typically related to the value truth. Then to avoid wishful thinking, truth must
be the most preferred value for every audience.

2.1 Extending Dung’s argumentation frameworks with values
Accordingly, a value-based argumentation framework (VAF) is defined as an exten-
sion of a Dung-style argumentation framework (AF).

Definition 2.1 (Value-Based Argumentation Framework (VAF)). A value-based
argumentation framework is a 5-tuple V AF = 〈Ar, att, V, val, P 〉 where Ar is a finite
set of arguments, att is an irreflexive binary relation on Ar, V is a nonempty set
of values, val is a function which maps from elements of Ar to elements of V and

4Including the National Speech and Debate Association, or NSDA (formerly known as the Na-
tional Forensics League, or NFL) competitions, and related debate leagues such as the National
Christian Forensics and Communication Association, the National Catholic Forensic League, the
National Educational Debate Association, the Texas University Interscholastic League, Texas Foren-
sic Association, Stoa USA and their affiliated regional organizations.
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P is the set of possible audiences (represented as orderings on V). We say that an
argument a ∈ Ar relates to a value v ∈ V if accepting a promotes or defends v: The
value in question is given by val(ar). For every ar ∈ Ar, val(ar) ∈ V .

Note that if there is a single value, (perhaps truth), a VAF is equivalent to a
standard Dung AF. If every argument maps to its own distinct value, we have a
similar situation to the Preference Based Frameworks of Amgoud and Cayrol [3]
and [4], except that Preference Based Argumentation uses only a single ordering so
that P has only one member, and there is only a single audience.

In order to evaluate the status of arguments with respect to an audience we
produce an audience specific value-based argumentation framework.

Definition 2.2 (Audience-Specific VAF (AVAF)). An audience-specific VAF is a
5-tuple AV AF = 〈Ar, att, V, val, V alprefa〉, where Ar, att, V and val are as for a
VAF, a is an audience, a ∈ P , and V alprefa is a preference relation (transitive,
irreflexive and asymmetric), V alprefa ⊆ V × V , reflecting the value preferences of
audience a. The AVAF relates to the VAF from which it is derived in that Ar, att,
V and val are identical, and V alprefa is the set of preferences derivable from the
ordering a ∈ P in the VAF.

Our purpose in introducing VAFs is to allow us to distinguish between one argu-
ment attacking another, and that attack succeeding, so that the attacked argument
may or may not be defeated. Whether the attack succeeds depends on the value
order of the audience considering the VAF. We therefore define the notion of defeat
for an audience:

Definition 2.3 (Defeat for an Audience). An argument ar defeatsa an argument
br for audience a, (defeatsa(ar, br)), in an AVAF 〈Ar, att, V, val, V alprefa〉 if and
only if both attacks(ar, br) ∈ att and not valpref(br, ar) ∈ V alprefa.

We can now define audience specific versions of the notions standardly associated
with AFs:

Definition 2.4 (Acceptable to an Audience). An argument ar ∈ Ar is acceptable to
an audience a with respect to set of arguments S, (acceptablea(ar, S)) if: ∀(x)(x ∈
Ar ∧ defeatsa(x, ar)→ ∃(y)(y ∈ S ∧ defeatsa(y, x))

Definition 2.5 (Conflict Free for an Audience). A set S of arguments is conflict
free for an audience a if:
∀(x)∀(y)(x ∈ S ∧ y ∈ S) → (¬(attacks(x, y) ∈ att) ∨ (valpref(val(y), val(x)) ∈

V alprefa))
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Definition 2.6 (Admissability for an Audience). A conflict free for an audience a set
of arguments S is admissible for the audience a if: ∀(x)(x ∈ S → acceptablea(x, S)

Definition 2.7 (Preferred Extension for an Audience). A set of arguments S in a
value-based argumentation framework 〈Ar, att, V, val, V alprefa〉 is a preferred exten-
sion for audience-a, (preferreda), if it is a maximal (with respect to set inclusion)
admissible for audience a subset of Ar.

A practical way of evaluating the status of arguments in an AVAF is to re-
move from the VAF all the unsuccessful attacks, those for which valpref(br, ar)
∈ V alprefa, whereupon it can be treated as a standard AF. Thus for any AVAF,
vafa = 〈Ar, attavaf , V, val, valprefa〉 there is a corresponding AF, afa = 〈A, attaf 〉
such that for (x, y) ∈ attavaf , (x, y),∈ attaf if and only if defeatsa(x, y). The pre-
ferred extension of afa will contain the same arguments as the preferred extension
for audience a of the VAF. Note that if the original VAF does not contain any cycles
in which all arguments pertain to the same value, afa will contain no cycles, since
every cycle will be broken at the point at which the attack is from an inferior value
to a superior one for audience a. Hence both afa and vafa will have a unique,
non-empty, preferred extension for such cases.

Theorem 2.8. Every AVAF with no single-valued cycles has a unique
nonempty preferred extension.

PROOF. Let avaf be an AV AF , and let af be the standard argumentation
framework resulting from removing all failing attacks. If avaf is cycle-free, then af
is cycle free and hence by Theorem 2.6 of [25] it has a unique, not-empty preferred
extension. But suppose avaf has a cycle. We know that this contains at least two
values. Let v be the least preferred value in the cycle, and arg be the final argument
in a chain relating to this value. The attack from arg to the next argument in the
cycle will fail. Therefore this attack will not appear in af and the cycle will be broken
at this point. This applies to all cycles in avaf. Therefore af is cycle free, and so
has a unique, non-empty, preferred extension. QED

Moreover, since the AF derived from an AVAF contains no cycles, the grounded
extension coincides with the preferred extension for this audience, and so there is a
straightforward polynomial-time algorithm to compute it, given in [25].

For the moment we will restrict consideration to VAFs which do not contain
any cycles in a single value. For such VAFs, the notions of sceptical and credulous
acceptance are of no relevance, since any given audience will accept only a single
preferred extension. These preferred extensions may, and typically will, however,
differ from audience to audience. We therefore introduce two useful notions: objec-
tive acceptance, arguments which are acceptable to all audiences irrespective of their
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Figure 1: VAF with values red and blue

particular value order, and subjective acceptance, arguments which can be accepted
by audiences with the appropriate value order.

Definition 2.9 (Objective Acceptance.). Given a VAF 〈Ar, att, V, val, V alpref〉, an
argument a ∈ A is objectively acceptable if and only if for all valpref ∈ V alpref , a
is in every valpref .

Definition 2.10 (Subjective Acceptance.). Given a VAF 〈Ar, att, V, val, V alpref〉,
an argument a ∈ A is subjectively acceptable if and only if for some valpref ∈
V alpref , a is in that valpref .

An argument which is neither objectively nor subjectively acceptable (such as
one attacked by an objectively acceptable argument with the same value) is said to
be indefensible.

All arguments which are not attacked will, of course, be objectively acceptable.
Otherwise, objective acceptance typically arises from cycles in two or more values.
For example, consider a three-cycle in two values, say two arguments with V1 and
one with V2. The argument with V2 will either resist the attack on it when it is
preferred to V1, or, when V1 is preferred, fail to defeat the argument it attacks which
will, in consequence, be available to defeat its attacker. Thus the argument with V2
will be objectively acceptable, and both the arguments with V1 will be subjectively
acceptable. A more elaborate example is shown in Figure 1.

There will be two preferred extensions, according to whether red > blue, or
blue > red. If red > blue, the preferred extension will be {e, g, a, b}, and if
blue > red, {e, g, d, b}. Now e, g and b are objectively acceptable, but d, which
would have been objectively acceptable if e had not attacked d, is only subjectively
acceptable (when blue > red), and a, which is indefensible if d is not attacked, is
also subjectively acceptable (when red > blue). Arguments c, f and h are indefen-
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sible. Results characterising the structures which give rise to objective acceptance
are given in [6].

The question now arises as to whether it is possible to determine to which audi-
ences an argument is acceptable. This question is fully explored in [35].

2.2 Computational complexity results of value-based argumenta-
tion frameworks

Not long after VAFs were first proposed in the literature, a study was conducted
on a number of decision problems in VAFs [50]. In that paper it was shown that,
for a given audience, those decision questions which are typically computationally
hard in the standard Dungian AF setting, actually admit efficient solution methods
in the value-based setting. The paper also highlighted a number of questions that
arise solely in value-based frameworks that lack efficient decision processes.

The two key questions addressed in the paper concern the decision problems in
VAFs of subjective and objective acceptance, as set out in Definitions 2.9 and 2.10
above. Concerning the decision problem of subjective acceptance, it is shown in [50]
that the complexity of this problem is NP-complete, and for objective acceptance,
the decision problem is shown to be CoNP-complete. The paper also considers
decision problems related to determining subjective acceptance by attempting to
identify which pair-wise orderings are “critical” in that a given ordering will admit
an audience for which an argument is subjectively accepted, whereas reversing this
order will yield a situation in which the argument of interest is never accepted.
Full results and their proofs are given in [50]. Extrapolating from the results, they
demonstrate that the identification of an argument as subjectively or objectively
acceptable is just as hard as the corresponding problems of determining credulous
and sceptical acceptance in standard argumentation frameworks; see [49] for a full
discussion of this point. Further complexity results, especially those concerning
which audience can accept a given argument, can be found in [35].

Further studies on computational complexity problems were later reported in
[48]. By considering properties of the directed graph structure defined by taking
those values involved in conflicting arguments, Dunne identified an extensive class
of argumentation systems for which the subjective and objective decision problems
admit polynomial time solutions.

More recently, [66] examined specific questions in abstract argumentation frame-
works under preferred semantics. They looked at the acceptance problem in standard
argumentation frameworks, deciding whether a specific argument is in at least one
preferred extension (i.e. it is credulously accepted) or in all such extensions (i.e. it
is skeptically accepted). The paper presents an algorithm that enumerates all pre-
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ferred extensions and builds algorithms that decide the acceptance problem without
requiring explicit enumeration of all extensions. The improvements in efficiency
brought about by the algorithms are achieved through a number of mechanisms:
introduction of new labels for arguments’ status, introduction of a new mechanism
for pruning the search space so that transitions leading to dead ends are avoided at
an early stage, and introduction of a cost-effective heuristic rule that yields earlier
identification of arguments for transitions that might reach a goal state designating
a preferred extension. The techniques developed for the acceptance problem in AFs
are then used analogously to solve decision problems in VAFs, specifically deciding
subjective and objective acceptance. Algorithms to solve these problems are defined
and full proofs of the soundness and completeness of these algorithms is given in
[66].

The studies referenced above set out properties of VAFs with a view to demon-
strating their viability for use in domain applications. We now turn to considering
how values are captured in accounts of structured argumentation.

3 Values in structured argumentation
In the previous section we showed how abstract value-based argumentation could
be used to account for the subjective preferences which come into play when we are
reasoning about how to make the world fit our desires. But the question arises: how
do values become attached to arguments? The discussion in section 1 suggested that
arguments for which value preferences are relevant are likely to arise in practical
reasoning, reasoning about what to do. We will therefore begin our search for the
link between arguments and values by looking at practical reasoning.

3.1 Practical syllogism
Practical reasoning was identified as different from theoretical reasoning by Aristo-
tle in his Nicomachean Ethics, The discussion was revived by [6] and [57]. Kenny’s
example of a practical syllogism is

K1: I’m to be in London at 4.15.
If I catch the 2.30 train, I’ll be in London at 4.15.
So, I’ll catch the 2.30 train.

Although Aristotle attempted to present the practical syllogism as a deduction,
this position proved difficult to maintain, and Kenny’s abductive presentation is now
more common. It still has, however, a number of peculiarities.
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• The conclusion is not really a prediction. Whether or not I actually catch
the train is contingent on a number of things beyond my control. Rather it
is a resolution, a decision to try to catch the train. The result of practical
reasoning should not be a belief, but an action or a plan of action which will
realise the desires one has decided to pursue.

• The truth of the premises is not enough to determine the decision. There may
be earlier trains, and I may decide to catch one of those to be on the safe side.
There may be many other ways of achieving the goal. Like any abduction, its
soundness depends on it being the best (for me, in my current circumstance)
way to achieve the goal.

• If I do catch the train, there will be many things that I cannot do. If I in fact
prefer to do one of these things to being in London, then I may choose one of
these other activities.

• There may be a number of other consequences of catching the train which are
not desirable. These may be sufficiently undesirable that I decide not to catch
the train.

These aspects are somewhat reflected in Searle’s formulation in [73]:

S1: I want, all things considered, to achieve E.
The best way, all things considered, to achieve E is to do M.
So, I will do M.

In order to act on the basis of an argument such as K1, therefore, we need
to consider alternative actions, alternative goals and any additional consequences,
and then choose the best of these alternative goals and actions. Note the element
of choice here: we can choose which of our goals we will seek to realise, and which
actions to undertake to realise these goals. In order to decide which is best, I need to
go beyond the goals themselves, and consider why these states of affairs are wanted.
This is where values come in. It is our values that make certain states of affairs
goals, because these states of affairs promote our values. In [21] there was a detailed
discussion of how values give rise to a number of types of goal such as maintenance
goals, achievement goals, avoidance goals and removal goals.

It is the values associated with these goals that determines which of them should
be considered best by a particular person. Which is best will be determined by the
preference ordering on values, and so may vary from person to person. Whether I
decide to catch the train in K1 depends on the value served by being in London,
and the values served by possible alternatives.
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In order to assist with the formulation of a computational version of practical
reasoning, we decided to propose an argumentation scheme, in the manner of [76].

3.2 Argumentation schemes

Walton’s notion of an argumentation scheme is that it is a means of presumptive
reasoning: if the premises are true, then we may presumptively draw the conclusion,
subject to satisfactorily dealing with critical questions characteristic of the scheme.

Walton [76] proposes two schemes relating to practical reasoning. The first is
the necessary condition scheme

W1: G is a goal for agent a.
Doing action A is necessary for agent a to carry out goal G.
Therefore agent a ought to do action A.

The other was quite similar: the sufficient condition scheme.

W2: G is a goal for agent a.
Doing action A is sufficient for agent a to carry out goal G.
Therefore agent a ought to do action A.

Walton associates four critical questions with each of these schemes:

• WCQ1: Are there alternative ways of realising goal G?

• WCQ2: Is it possible to do action A?

• WCQ3: Does agent a have goals other than G which should be taken into
account?

• WCQ4: Are there other consequences of doing action A which should be taken
into account?

Although these arguments are fair reflections of the practical syllogisms K1 and
S1, they have no link to values. As we saw above, values are essential for evaluation.
Thus if critical question WCQ1 is posed, and it proves that there is an alterna-
tive action, say A2, without values we have no reason to say that this is a better
alternative, and so choose to realise G with A2 rather than A.

For this reason we introduced an argumentation scheme which did have the re-
quired link to values. This scheme was first presented in [16] and was more fully
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reported in [17]. The scheme was stated in [7] as:

AS1: In the circumstances R
we should perform action A
to achieve new circumstances S
which will realise some goal G
which will promote some value V.

In [7] and [17] sixteen critical questions were identified:

• CQ1: Are the believed circumstances true?

• CQ2: Assuming the circumstances, does the action have the stated conse-
quences?

• CQ3: Assuming the circumstances and that the action has the stated conse-
quences, will the action bring about the desired goal?

• CQ4: Does the goal realise the value stated?

• CQ5: Are there alternative ways of realising the same consequences?

• CQ6: Are there alternative ways of realising the same goal?

• CQ7: Are there alternative ways of promoting the same value?

• CQ8: Does doing the action have a side effect which demotes the value?

• CQ9: Does doing the action have a side effect which demotes some other value?

• CQ10: Does doing the action promote some other value?

• CQ11: Does doing the action preclude some other action which would promote
some other value?

• CQ12: Are the circumstances as described possible?

• CQ13: Is the action possible?

• CQ14: Are the consequences as described possible?

• CQ15: Can the desired goal be realised?

• CQ16: Is the value indeed a legitimate value?
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In [13] a seventeenth CQ was added:

• CQ17: Can others act so as to take us to a state other than S?

This scheme allowed arguments for actions to be related to values: instantiating
the scheme would give such an argument. Instantiating the critical questions would
provide a means of attacking such arguments. This process of reasoning is illustrated
in [32] and [13].

3.3 Semantics for structured value-based argumentation
In order to provide a semantic underpinning for this argument scheme and critical
questions, use was made of the notion of Action Based Alternating Transition Sys-
tems (AATS) with values (AATS+V). These were introduced in [11] and more fully
reported in [13].

An AATS is a type of state transition diagram, introduced in [79], formally based
on Alternating-time Temporal Logic [2]. In an AATS the states and transitions can
be used to represent the current and future situations and the actions which will
lead between them. In fact these transitions represent joint actions5, that is, the
cumulative effect of every agent relevant to the situation performing one action
each. This means that a given action of a particular agent will appear in several
transitions, depending on what the other agents do, and an agent may consequently
not be in full control of the state that will be reached by using that action.

The definition of an AATS is:

Definition 3.1 (AATS ([79])). .
An Action-based Alternating Transition System (AATS) is an (n + 7)-tuple S

= 〈Q, q0, Ag, Ac1, ... , Acn, ρ, τ,Φ, π〉, where:

• Q is a finite, non-empty set of states;

• q0 ∈ Q is the initial state;

• Ag = {1,...,n} is a finite, non-empty set of agents;

• Aci is a finite, non-empty set of actions, for each agi ∈ Ag where Aci ∩ Acj

= ∅ for all agi 6= agj ∈ Ag;

• ρ : Acag → 2Q is an action pre-condition function, which for each action α ∈
Acag defines the set of states ρ(α) from which α may be executed;

5No suggestion of cooperation is intended here: the actions are joint solely in the sense that
they are performed simultaneously.
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• τ : Q × JAg → Q is a partial system transition function, which defines the
state τ(q, j) that would result by the performance of j from state q. This
function is partial as not all joint actions are possible in all states;

• Φ is a finite, non-empty set of atomic propositions; and

• π : Q → 2Φ is an interpretation function, which gives the set of primitive
propositions satisfied in each state: if p ∈ π(q), then this means that the
propositional variable p is satisfied (equivalently, true) in state q.

As presented in [79], AATS have no values. Therefore they were extended in
[13] to include values, giving an AATS+V in which the transitions are additionally
labelled with the values promoted or demoted by that transition. The additional
definitions are:

Definition 3.2 (AATS+V ([13])).
Given an AATS, an AATS+V is defined by adding two additional elements as

follows:

• V is a finite, non-empty set of values.

• δ : Q × Q × V → {+, –, =} is a valuation function which defines the status
(promoted (+), demoted (–) or neutral (=)) of a value vu ∈ V ascribed to the
transition between two states: δ(qx, qy, vu) labels the transition between qx

and qy with one of {+, –, =} with respect to the value vu ∈ V.

With this definition it is possible to describe the practical reasoning argumen-
tation scheme and critical questions in terms of the extended AATS+V. This gives
us:
AS2 In the initial state q0 = qx ∈ Q,

Agent i ∈ Ag should participate in joint action jn ∈ JAg where jni = αi,
Such that τ(qx, jn) is qy,
Such that pa ∈ π(qy) and pa /∈ π(qx), or pa /∈ π(qy) and pa ∈ π(qx),
Such that for some vu ∈ Avi, δ(qx, qy, vu) is +.

We may now state the critical questions in these terms also.

• CQ1: q0 6= qx and q0 /∈ ρ(αi).

• CQ2: τ(qx, jn) is not qy.

• CQ3: pa /∈ π(qy).
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• CQ4: δ(qx, qy, vu) is not +.

• CQ5: Agent i ∈ Ag can participate in joint action jm ∈ JAg, where jn 6= jm,
such that τ(qx, jm) is qy.

• CQ6: Agent i ∈ Ag can participate in joint action jm ∈ JAg, where jn 6= jm,
such that τ(qx, jm) is qy, such that pa ∈ π(qy) and pa /∈ π(qx) or pa /∈ π(qy)
and pa ∈ π(qx).

• CQ7: Agent i ∈ Ag can participate in joint action jm ∈ JAg, where jn 6= jm,
such that τ(qx, jm) is qz, such that δ(qx, qz, vu) is +.

• CQ8: In the initial state qx ∈ Q, if agent i ∈ Ag participates in joint action
jn ∈ JAg, then τ(qx, jn) is qy, such that pb ∈ π(qy), where pa 6= pb, such that
δ(qx, qy, vu) is –.

• CQ9: In the initial state qx ∈ Q, if agent i ∈ Ag participates in joint action jn
∈ JAg, then τ(qx, jn) is qy, such that δ(qx, qy, vw) is –, where vu 6= vw.

• CQ10: In the initial state qx ∈ Q, if agent i ∈ Ag participates in joint action
jn ∈ JAg, then τ(qx, jn) is qy, such that δ(qx, qy, vw) is +, where vu 6= vw.

• CQ11: In the initial state qx ∈ Q, if agent i ∈ Ag participates in joint action
jn ∈ JAg, then τ(qx, jn) is qy and δ(qx, qy, vu) is +. There is some other joint
action jm ∈ JAg, where jn 6= jm, such that τ(qx, jm) is qz, such that δ(qx, qz,
vw) is +, where vu 6= vw.

• CQ12: qx /∈ Q.

• CQ13: jn /∈ JAg.

• CQ14: τ(qx, jn) /∈ Q.

• CQ15: pa /∈ π(q) for any q ∈ Q.

• CQ16: vu /∈ V.

• CQ17: jni = jmi, jn 6= jm and τ(qx, jn) 6= τ(qx, jm).

This formal account of the practical reasoning argumentation scheme and critical
questions enable them to be used in agent systems designed to model practical
reasoning scenarios; examples of these are provided in Section 4.
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3.4 Dialogue interactions: values in persuasion and deliberation

In the previous sections we have considered reasoning with a specific audience which
can determine the value order and evaluate the arguments accordingly. Often, how-
ever, values are crucial in dialogues where we have two or more audiences each
with their own value order. Two distinct types of such dialogue are persuasion and
deliberation [77].

In persuasion it is the person being persuaded who determines the value order
[42], since people will accept an argument only if it is acceptable on their own
value ordering. Thus the proponents may not be able to use the arguments which
convinced them because these will be acceptable on their value order, but perhaps
not on the value order of the person they wish to persuade. Thus in a persuasion
dialogue it is often necessary to elicit the value order of the other person, so that
arguments acceptable to them can be found. Sometimes, however, it will not be
possible to find arguments acceptable to the other, in which case the persuader must
first try to get them to accept a value ordering and then to accept the argument
which is the topic of the dialogue. Such dialogues are modelled in [36]. A strategy
for efficient persuasion in dialogues is given in [9].

Deliberation is different in that while the value orders may well differ, neither
party can determine what it should be. Therefore one purpose of a deliberation
dialogue is to find a value ordering which will be acceptable to all concerned, so that
a solution corresponding to this order can be found, which should be acceptable
to all the parties. A set of speech acts to support dialogues based on this view of
deliberation is given in [20] and a tool showing how these speech acts can be used
to generate persuasion and deliberation dialogues in agent systems is described in
[58].

4 Key applications of value-based argumentation

In this section we will illustrate the use of value-based argumentation in a number
of domains.

4.1 General practical reasoning

We will begin by looking at the use of value-based argumentation in general practical
reasoning. Our example will be that used in [13], which adapts a well known brain
teaser. AI students may be familiar with it as it is often used to illustrate search
problems.
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The situation is that a farmer is returning from market with a chicken (C), a bag
of seeds (S) and his faithful dog (D). He needs to cross a river, and there is a boat
(B) but it can only carry the farmer and one of his possessions. He cannot leave
the chicken and seeds together because the chicken will eat the seeds. Similarly, he
cannot leave the dog and the chicken unattended together because the dog will eat
the chicken. His problem is how to organise his crossing.

We will represent the states by two lists, one for the items on the right bank,
and one for items on the left. Thus [BCDS, _] will be selected from Q as the initial
state, q0. The complete set of states is shown in Figure 2

The transitions will be formed by various joint actions. We will assume that the
animals will eat if they can, and so ignore the possibility of, for example, leaving
the dog and chicken alone, and the dog doing nothing. This gives us the following
six joint actions.

j1: All do nothing

j2: Farmer rows alone, chicken eats seeds if possible, dog eats chicken if possible

j3: Farmer rows seeds, dog eats chicken if possible

j4: Farmer rows dog, chicken eats seeds if possible

j5: Farmer rows chicken, animals do nothing

j6: All continue their journey home.

We can also identify a number of possible values6:

P : Progress - Promoted when farmer moves one of his possessions to the right
side of the river. It is demoted when a state is revisited (through the always
undesirable “goal” of repetition), and, to a lesser extent, when a possession is
rowed from the right bank to the left (Pr). Rowing an item back is preferred
to repetition, since repeating a state cannot be progress, whereas reaching a
new state by returning an item to the left bank might be on a solution path,
even though a prima facie backwards step.

S: Farmer has seeds - demoted when farmer loses seeds.

C: Farmer has chicken - demoted when farmer loses chicken.

6Some labels for values are the same as the propositions used in the state description. The
context makes it clear which is intended.
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F : Friendship - promoted when farmer travels with dog (it was for this compan-
ionship that he brought the dog with him).

We assume that the farmer values his possessions most, then wishes to make
progress, and then have the joys of companionship. His value order is thus

C, S > P > Pr > F

We can now apply the joint actions to q0 and label the transitions according to
how they promote or demote the values. Initially five of the six actions are available,
since the preconditions for j6 are not satisfied. The result is shown as the first layer
of Figure 2.

We can see that the only action which promotes a value without demoting a
preferred value is j5, and so the farmer will row the chicken, using the following
argument:

• Farmer should row the chicken to promote Progress.

From q2 three actions are possible. But two of them demote progress by reaching
previous states, so the argument is

• Farmer should not row the seeds, or do nothing, as that would demote progress.
So Farmer should row alone.

Having reached q6, there are two actions which promote progress, rowing the
seeds, and rowing the dog. But rowing the dog additionally promotes friendship,
and so that will be chosen. From q8 the only harmless action is to row the chicken
to reach q10. From q10 progress can be promoted by rowing the seeds, while all other
actions demote a value. From here the only neutral action is to row alone to reach
q13. From here the farmer can promote progress by rowing the chicken. Now at last
everything is on the right bank, and progress can be made by them all proceeding
home.

This example shows how the puzzle can be solved by simply considering how
to best promote values at every move. No look ahead is needed. In the standard
puzzle, heuristic search gives two solutions, since rowing either the dog or the seeds
in q6 will achieve the goal. In the practical reasoning version this is resolved because
in q6 the farmer chooses to row the dog, to promote friendship as well as progress.
For another example of practical reasoning, deciding whether to travel by aeroplane
or train, see [31].
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Figure 2: AATS+V for the farmer’s river crossing problem. Note that when seeds
and chicken are eaten, they no longer appear in the state descriptions.

4.2 Domain-specific application: law

A domain in which value-based argumentation has been widely used is law, and
in that domain arguing with values precedes abstract value-based argumentation
and the formal modelling of structured argument with values by over a decade.
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The notion of values was in introduced to AI and Law by [43]7. In that paper
Berman and Hafner noted that when using factor-based reasoning [29], often there
were factor-based arguments for both sides which needed to be chosen between.
Factor-based reasoning as proposed in HYPO [71] and CATO [1], however, offered
no rationale for choosing between them. The answer given in [43] was that the
arguments which better served the purposes of the law should be accepted. This
idea was elaborated into a more formal theory of reasoning with cases as theory
construction, in which value preferences were derived from precedents which were
then applied to new cases, in [40] and [41], which was was the basis of the CATE
[46] and AGATHA [45] systems. In [54] it was proposed that the argumentation
scheme for practical reasoning, described in [17] and discussed above, could be used
to generate the case based arguments required by factor-based reasoning and link
them to values. The wild animals cases of [43] had been modelled as a Dung style
argumentation framework in [23]. These various strands were brought together in
[32], which added values to the AF of [23], and evaluated the arguments according
to the resulting VAF.

In [43] the example cases were some well known property law cases (often used as
an introduction to property law in US law schools) concerning wild animals. That
paper discussed three cases:

• Keeble v Hickergill (1707). This was an English case in which Keeble rented a
duck pond, to which he lured ducks, which he shot and sold for consumption.
Hickergill, out of malice, scared the ducks away by firing guns. The court found
for Keeble. Two arguments for Keeble are possible: that he was engaged in
an economically valuable activity, and that he was operating on his own land.
The former reading is adopted in [43], but others, e.g. [39], prefer the latter.

• Pierson v Post (1805). In this New York case, Post was hunting a fox with
hounds. Pierson intercepted the fox, killed it with a handy fence rail, and
carried it off. The court found for Pierson. The argument was that Post
had never had possession of the fox. The argument that hunting vermin is
a useful activity which needs protection and encouragement formed the basis
of the minority opinion. In this case, because of its legal setting, the original
complainant, Post, whose role corresponds to the plaintiff in the other cases,
is named second. We shall, however, refer to Post as the plaintiff and Pierson
as the defendant to maintain consistency of role with the other cases.

• Young v Hitchens (1844). In this English case, Young was a commercial fish-
7Berman and Hafner used purposes rather than values, but they functioned in the same way.

We will use purpose and value promoted as synonymous.
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erman who spread a net of 140 fathoms in open water. When the net was
almost closed, Hitchens went through the gap, spread his net and caught the
trapped fish. The case was decided for Hitchens. The basis for this was that
Young had never had possession of the fish, and that it was not part of the
court’s remit to rule as to what constituted unfair competition.

Later work [39] also included four other cases in the discussion:

• Ghen v Rich (1881). In this Massachusetts case, Ghen was a whale hunter
who harpooned a whale which subsequently was not reeled in, but was washed
ashore. It was found by a man called Ellis, who sold it to Rich. According to
local custom, Ellis should have reported his find, whereupon Ghen would have
identified his lance and paid Ellis a fee. The court found for Ghen.

• Conti v ASPCA8 (1974). In this New York case, Chester, a parrot owned by
the ASPCA, escaped and was recaptured by Conti. The ASPCA found this
out and reclaimed Chester from Conti. The court found that they were within
their rights to do so.

• New Mexico vs Morton (1975) and Kleepe vs New Mexico (1976). These two
cases concerned the ownership of unbranded burros normally present on public
lands, which had temporarily strayed off them. Both were won by the state.

These seven cases were formalised as a Dung style AF in [23] and this was also
used in [32]. It is shown in Figure 3.

The twenty six arguments, the arguments they attack and the values associated
with them in [32] are shown in Table 1.

The basic approach in [23] was to remove the arguments not applicable to a
particular case and then consider preferred extensions. Then if argument A was
sceptically acceptable, the plaintiff would win, but otherwise the defendant would
win (the burden of proof is on the plaintiff). This, however, is not straightforward
in the Dung style AF since there are even-length cycles in the AF, and so there will
be multiple preferred extensions, some with A and some without.

The cycles in question are:

• the two-cycle M-O, which arises in Pierson

• the four-cycle B-T-S-E, which arises in Young

• the four-cycle B-T-S-F, which arises in Young
8The American Society for the Prevention of Cruelty to Animals.
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Figure 3: Dung style AF for wild animals cases, as given in [23]

This is precisely the situation for which Berman and Hafner commended the
use of values: we need to choose between M , which promotes clarity, and O which
promotes useful activity. In the actual case of Pierson, clarity was chosen, so that
M was able to resist the attack of O, and so A was not in the preferred extension.

In the case of the two four-cycles that appeared in Young, the case was in fact
resolved by the acceptance of U , which claimed that deciding what constituted
unfair competition was outside the remit of the court. With T defeated, S defeats
F , and so defends B. Similarly, S also defeats E and so B is acceptable. Now
B defeats A and so the defendant won. Note that V was absent from Young. It
was, however, present in Ghen, which concerned whaling, an industry long governed
by clear conventions. Here the courts felt that just as it was not in their remit
to determine what was unfair competition, neither could they overturn established
conventions on the matter. Thus V was able to defeat U and B and so enable the
plaintiff to win. This was forced in the standard AF, but in a VAF the attack from U
to T can be resisted by preferring the value of economic activity to that promoted by
restricting the court’s remit, which would enable Young to win, even in the absence
of an applicable convention. Such a shift in attitude may well occur (attitudes to
regulation of competition swing back and forth), and so Young may at some future
time be overturned. This illustrates a feature of value-based argumentation in law:
because value preferences can change, the outcome of a case may be different at
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CL = Clear law, UA = Useful activity, PR = Protect property rights, EA = Economic
activity, CR = The court should not make law

ID Argument Attacks Values
A Pursuer had right to animal claim
B Pursuer not in possession A, T CL
C Owns the land so possesses animals C PR
D Animals not confined by owner C
E Effort promising success made to secure ani-

mal made by pursuer
B, D CL

F Pursuer has right to pursue livelihood B EA
G Interferer was trespassing S PR
H Pursuer was trespassing F PR
I Pursuit not enough (Justinian) E CL
J Animal was taken (Justinian) I CL
K Animal was mortally wounded (Puffendorf) I CL
L Bodily seizure is not necessary (Barbeyrac),

interpreted as animal was brought within cer-
tain control (Tompkins)

I UA

M Mere pursuit is not enough(Tompkins) E, O CL
N Justinian is too old an authority (Livingston) J
O Bodily seizure is not necessary (Barbeyrac),

interpreted as reasonable prospect of capture
is enough (Livingston)

I, M UA

Q The land was open G, H, C PR
S Defendant in competition with the plaintiff E, F EA
T Competition was unfair S EA
U Not for courts to regulate competition T CR
V The iron holds the whale is an established con-

vention of whaling
B, U CR

W Owners of domesticated animals have a right
to regain possession

B PR

X Unbranded animals living on land belong to
owner of land

D PR

Y Branding establishes title B
Z Physical presence (straying) insufficient to

confer title on owner
C CL

Table 1: Arguments in the Wild Animal Cases.

different times and in different jurisdictions. This captures the essence of the role
of values in this kind of legal reasoning. A more elaborate discussion in [32] also
investigates the role of intermediate concepts [60] in moving from facts to legal
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conclusions.
Further discussions of value-based reasoning in the wild animals cases can be

found in [26] and [12]. In [80] an additional case, Popov v Hayashi [8] was included.
This celebrated case9, concerned a record breaking home run baseball hit by Barry
Bonds of the San Francisco Giants. There was a struggle amongst crowd members
over its possession. Popov first laid his glove on the ball, but Hayashi emerged from
the ensuing melee with the ball. The wild animals cases were cited in the case,
analogies being drawn between the hunted animals and the “fugitive baseball” [52].
This case and the wild animals cases were further discussed in [27].

4.3 Domain-specific application: e-participation
Another domain in which value-based argumentation has proved effective is e-partici-
pation. Political disputes often turn on disagreement as to values, and so this is a
natural way to model such disputes. In PARMENIDES [18], a policy was presented
for critique by members of the public through a software tool. The policy was pre-
sented as an instantiation of the practical reasoning scheme AS1 given above. Thus
the policy was presented in terms of an understanding of the current situation and
what it was meant to achieve in terms of facts, goals and values. The user was then
given the opportunity to critique the policy in terms of relevant critical questions
characteristic of the scheme10. In this way disagreement with the policy could be
made precise, and different motives for disagreement identified. For example, dif-
ferent people might doubt whether the current situation was indeed as suggested,
others might doubt that the policy would achieve its ends, and yet others might
oppose these ends because rejecting the values they promote. PARMENIDES was
further developed in [44] and later PARMENIDES formed the basis for the devel-
opment of the Structured Consultation Tool (SCT) [34], produced as part of the
IMPACT project11. The SCT enabled not only a policy proposal to be critiqued,
but also for the users to make proposals of their own, which could be automatically
critiqued by instantiating critical questions [78].

We will base our example in this chapter on that of [22], which was also used in
[81]. The example is an issue in UK Road Traffic policy. The number of fatal road
accidents is an obvious cause for concern, and in the UK there are speed restrictions

9It was the subject of the 2004 comedy documentary film Up for Grabs
https://www.imdb.com/title/tt0420356/

10Not all critical questions were used: for example, those relating to the components of the model
were not appropriate.

11Integrated Method for Policy Making Using Argument Modelling and Computer Assisted Text
Analysis, in the European Framework 7 project (Grant Agreement No 247228) in the ICT for
Governance and Policy Modeling theme (ICT-2009.7.3).
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on various types of road, in the belief that excessive speed causes accidents. The
policy issue which we will consider is how to reduce road deaths. One option is to
introduce speed cameras to discourage speeding.

Following [13] the first step is to build a model. In [22] there was an extensive
discussion of how to construct the model on the basis of responses received to a Green
Paper12. Like [81] we will focus on the final refinement of the model presented in
[22], which includes responses from road safety organisations, motoring lobby groups,
representations about financial constraints and civil liberties groups.

We now present the AATS+V. States are composed from the propositions con-
sidered relevant. In the model of [22] the propositions that were considered are
(given as pairs of positive and negative propositions):

R: The number of road deaths is acceptable; There are more road deaths than
there should be.

S: Many motorists break the speed limits; Speed limits are generally obeyed.

P: Privacy is respected; There are additional intrusions on privacy.

These three propositions give rise to, potentially, eight states. We may, if we
wish, exclude one or more of these as impossible. For example, if we believe that it
is impossible that the number of road deaths is acceptable and yet many motorists
break the speed limits, we may introduce constraints on states to filter it out. In [81],
we specify all the possible states available for consideration. One state is designated
as the current state:

• Many motorists break the speed limits ∧ There are more road deaths than
there should be ∧ Privacy is respected.

We consider the impact of changes of state in terms of three values:

L: human life (Life);

B: the financial cost to the Government (Budget); and

F: the impact on civil liberties (Freedom). Here the principal concern is the
impact on privacy.

12A Green Paper is a Government publication issued as part of a consultation process that details
specific issues, and then points out possible courses of action in terms of policy and legislation in
order to receive feedback from interested parties.
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The main agents involved are the Government (G), and Motorists (M), each
considered as a body. In some cases the consequences of action are indeterminate
(or at least cannot be determined using the elements we are modelling). To account
for this we introduce a third agent, termed Nature (N). The action ascribed to Nature
determines the outcomes of the actions of the other agents, where these outcomes are
uncertain or probabilistic. We take the Government to be the independent agent,
the one attempting to fulfill its values, while the actions of the Motorists and Nature
are relative to its choices.

The Government has three actions: introducing speed cameras (G1), educating
motorists (G2), or doing nothing (G3). Motorists may reduce their speed or do
nothing. Nature has two actions according to which fatal accidents are or are not
reduced as a result of the Government and motorist actions. Actions are assumed to
be always carried out together with other agents, represented as joint actions. The
joint actions available are:

j0: Government does nothing, motorists do nothing and nature does nothing.

j1: Government introduces cameras, motorists do nothing and nature does noth-
ing.

j2: Government introduces cameras, motorists reduce speed and nature reduces
accidents.

j3: Government introduces cameras, motorists reduce speed and nature does noth-
ing.

j4: Government educates motorists, motorists reduce speed and nature reduces
accidents.

j5: Government educates motorists, motorists do nothing and nature reduces ac-
cidents. (Being more skilled, the drivers can cope with their excessive speed).

Finally, we have transitions, which relate a source state, a destination state, a
joint action, a list of values promoted, and a list of values demoted. The joint action
can only be carried out where, in some sense, the conditions for doing the action
are met (e.g. where motorists are not speeding, then they cannot reduce speed) and
result in a state that also makes sense (e.g. where motorists reduce speed and nature
reduces accidents, then motorists are not speeding and accidents are reduced). We
can presume that accidents are always reduced when motorists are educated since
either they do not speed or can control their vehicles better. The transitions from q0
are shown in Table 2. We are not interested in what happens in subsequent states.
The whole AATS+V is shown as Figure 4.
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j0 j1 j2
q0 〈q0,_,_〉 〈q0,+B,-F〉 〈q5,+L+C,-F〉

j3 j4 j5
q0 〈q6,+C,-F〉 〈q2,+L+C,-B〉 〈q3,+L,-B〉

Table 2: Final Transition matrix.

q0

q2

q1+C

+B

+L +C −B

q3

 +L −B

q4

q5

q6

−F

+L +C

−F

−F

j0

j1

j2

j3

j4

j5

r, s, −p

−r, −s, p

r, −s, p

−r, −s, −p

r, −s, p−r, s, −pr, s, p 

Figure 4: AATS+V for speed camera debate, as given in [22]

On the basis of this model, it seems that introducing speed cameras is a reason-
able proposal. The hope is that this would induce motorists to cut their speed, and
that the number of accidents would fall, so that j2 is performed and q5 is reached.
This can be expressed in the form of AS1:

The current state is: Many motorists break the speed limits ∧ There are more
road deaths than there should be ∧ Privacy is respected.

The action is: The government should introduce speed cameras.

The destination state is: Speed limits are generally obeyed ∧ The number of
road deaths is acceptable ∧ There are additional intrusions on privacy.
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The values promoted are: Life, Compliance

Note that the Government is expressing a preference for Life and Compliance
over Freedom, which is demoted by the action.

This proposal can now be the subject of criticisms. For example,

CQ1 There might be disagreement as to the current situation: it would be possible
to deny that many motorists broke the speed limits, or to claim that the
number of road deaths was, in fact, acceptable.

CQ2 It might be argued that the action would not have the stated effects. Intro-
ducing speed cameras could reach q4 or q6 which would fail to promote one or
both of our values.

CQ9 The action may demote a value. For example, freedom is demoted by the
proposal.

CQ11 Other values can be promoted. There is no ground for this criticism in our
example.

CQ13 It might be argued that the model is flawed and the proposed action is not pos-
sible. For example, it might be argued that the installation of speed cameras
on the scale proposed was simply infeasible.

CQ17 Perhaps one or other of the agents will not perform the hoped for outcome.
For example, it might be argued that reducing speed will not in fact reduce
accidents and so the joint action will be j3 leading to q5 and so failing to
promote life.

Using these methods to generate arguments, we can perform a full analysis.
There are five arguments to perform an action from instantiating AS1.

PR1 We should perform G1 to reach q5 to promote L

PR2 We should perform G1 to reach q5 or q6 to promote C

PR3 We should perform G1 to reach q4 to promote B

PR4 We should perform G2 to reach q2 or q3 to promote L

PR5 We should perform G2 to reach q2 to promote C

Two arguments to refrain from an action are generated by a contrapositive form
of AS1:
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NPR1 We should not perform G1 to avoid q5 and q6 since this would demote F

NPR2 We should not perform G2 to avoid q2 and q3 since that would demote B

We accept that q0 is the current state, and that other features of the model are
correct. But we still have CQ17, which gives rise to three objections:

Ob1 Motorists may choose M0 not M1: attacks PR1, PR2 and PR5.

Ob2 Reducing speed may not reduce accidents and deaths. Attacks PR1.

Ob3 Motorists may choose M1 not M0: attacks PR3.

We now reach the final stage, when we weigh the merits and demerits of com-
peting options, which requires us to identify the attacks between arguments. One
source of attack is that a value is demoted: thus NPR1 attacks PR1, PR2 and PR3,
and NPR2 attacks PR4 and PR5. Another source of attack, giving rise to symmetric
attacks, is an alternative way of promoting the same value: thus PR1 and PR4 mu-
tually attack, and PR2 and PR5 mutually attack. Finally we have different actions
promoting different values: PR1 and PR5 and PR2 and PR4 mutually attack in this
way. Finally we can have attacks which question the motive put forward: if PR1 is
advanced to justify speed cameras, some may argue that the real expectation is that
q4 will be reached and that the real motive is to save money, rather than lives. This,
however, does not challenge the action, but the justification, and we will not include
these attacks here. Finally we have arguments representing the actual responses of
motorists and nature to the introduction of speed cameras. These will form two
two-cycles. We can now evaluate the arguments using a VAF. The VAF is shown in
Figure 5.

On the left of the diagram are the two epistemic questions that need to be
resolved. In default of anything better let us assume that, on the best evidence
available, it is reasonable to expect that motorists will in fact reduce their speed,
and that reducing speed will indeed lessen accidents and deaths. Having resolved
these two cycles, we have answered the attacks from Ob1 and Ob2, while Ob3 is no
longer attacked and will defeat PR3. When arguments are defeated, we can remove
them and their attacks (and attacks on them) from the VAF to obtain the simpler
VAF, as shown in Figure 6. Note that if we had made different assumptions about
the epistemic questions then a different VAF, and ultimately a different position,
would result from this simplification. When an argument is not defeated, but its
attack is resisted by a preferred argument, we mark it as ineffective. We cannot
ignore it, since we have no argument to defeat it, but we will not act upon it. There
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Figure 5: VAF for speed camera debate

Figure 6: VAF for speed camera debate after epistemic choices
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Figure 7: VAF with preferences L > F > C

are no such arguments as yet, since we have not yet exercised preferences, but only
chosen between different factual assumptions.

We next consider the two negative arguments based on PRAS2; once we have
reached Figure 5 by resolving the epistemic questions, these are unattacked. These
arguments will therefore succeed in defeating the arguments they attack unless the
value of the attacked argument is preferred to that of the attacker. For NPR1 we
must therefore consider Privacy/Freedom against Life to resolve the attack on PR1,
and against Compliance to resolve the attack on PR2. A reasonable order would
seem to be L > F > C: saying that intrusion on privacy is a necessary evil to save
lives, but would not be acceptable simply to ensure compliance with speed limits
without other gains. NPR1 thus becomes ineffective, which we show in the diagram
by shading the argument node. This yields the VAF in Figure 7.

The final question to resolve is whether PR4 can be accepted given NPR2: that
is, can we prefer L to B? Unfortunately we are regarding budget as a hard con-
straint and so we must answer that B > L. This means that PR4 falls, leaving a
preferred extension for an audience of B > L > F > C comprising: the two factual
assumptions, that motorists will reduce their speed, and that less speed means fewer
accidents and deaths; the accepted course of action to install cameras to save lives;
and two other considerations, that privacy must unfortunately be lessened (repre-
sented by the undefeated but ineffective argument), and that budgetary constraints
preclude education as an alternative (represented by Obj3). Of course similar rea-
soning with different assumptions and different value orders would produce different

1574



Value-based Argumentation

results. If we assumed that motorists would continue to speed with the same value
order, we would still install the cameras, but this time on the basis of PR3. If we
made the original assumptions but used the value order B > F > L > C, we could
do nothing, since we would have no way of saving lives without infringing privacy
that we could afford, and if we had the value order F > B > L > C, we would
educate motorists rather than install cameras.

Finally, if we prefer life to freedom, but money is available so that it was possible
to prefer L to B, we would have two equally valued arguments, PR1 and PR4, neither
attacked except by each other. In this case we should be inclined to choose PR4,
since this would mean that the undefeated NPR1 would no longer have to coexist
with an argument it attacks, so that it no longer need be regarded as ineffective13. In
this way we are able to respect the value of privacy, even though F is not preferred
to L.

Considerations of these varied alternatives allow us to see how the policy posi-
tions favoured depend very critically on how we rank values: the acceptability of a
proposal will often depend on whether the public mood has been correctly judged
in this respect.

4.4 Domain-specific application: behavioural economics
Value-based reasoning has also been used to explore two “games” used in behavioural
economics, the Dictator Game [51] and the Ultimatum Game [68]. Classical eco-
nomic theory assumes that people will behave in the manner of “economic man”
described as follows by John Stuart Mill [62]:

[Economics] is concerned with him solely as a being who desires to possess
wealth, and who is capable of judging the comparative efficacy of means
for obtaining that end.

However experiments performed in behavioural economics cast doubt on this key
assumption. In the Dictator Game one player is given a sum of money and is then
asked to give the second player as much or as little of it as he wishes. Classical
economics would suggest that the player will give nothing, so maximising his own
return. Experimentally, however, the results suggest otherwise: most players will
give something to the other, sometimes as much as half. No studies report that the
canonical model was observed. In one typical study [53], given $10 to distribute, 79%
of participants gave away a positive amount, with 20% giving away half. The mode

13One disadvantage of the approach of [5] in which arguments which resist their attacks also
defeat them is that it fails to distinguish between defeated arguments and those which must be
acknowledged even though not followed.
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sum given away in that study was $3. The explanation is that other values come into
play here: suggestions include concern for the other, simple generosity, concern for
image (no one likes to be thought selfish). This game was thoroughly explored using
value-based reasoning in [33]: here we will discuss the more interesting Ultimatum
Game.

In the Ultimatum Game the first player is also given a sum of money and asked
to decide how much he wishes to offer to the other player. But this time the second
player can refuse, in which case both get nothing. Now classical economics suggests
that the first player will offer the smallest amount possible and the second player
will accept it because, for economic man, anything is better than nothing. As with
the Dictator Game, these expectations are not borne out in practice. For example,
Nowak and colleagues report that the majority of proposers offer 40âĂŞ50% and
about half of responders reject offers below 30% [67]. These results are robust, and,
with some variations, are replicated in all the many studies. Oosterbeek et al [68]
report a meta-analysis of 37 papers with 75 results from Ultimatum Game exper-
iments, which have an average of 40% offered to the responder. The experiments
of [55], carried out over 15 small-scale societies in 12 countries over five continents,
report mean offers between 26% and 58%, and note that in some societies there is
considerable variation in which offers are rejected: however, again, none suggests
that the canonical model is followed by those making and responding to offers. The
Ultimatum Game was modelled in [33] and [15].

First we must model the game as an AATS+V. Obviously the states must include
the money held by the two agents. We also wish to represent the reactions of the two
players. When the offer is made, it is important whether the second player perceives
it as fair, or as insulting. We therefore use a proposition which is true when the
second player is annoyed by the offer made. At the end of the game we can consider
the reaction of the first player. In particular, if the offer is rejected, a first player
who made an ungenerous offer is likely to feel regret that he did not offer more. We
therefore use a fourth proposition to record whether the first player feels regret.

Next we turn to actions. Obviously we need that the first player can offer n%
of the available sum to the second player and that the second player can accept or
reject it. The reception the offer receives will, however, depend critically on the size
of n. We will therefore distinguish four cases: where n > 50, where n = 50, where
n > 0 but < 50 and where n = 0. We should also recognise that the two actions are
not chosen simultaneously, and that the choice to accept or reject will depend on
how the second player reacts to the offer of the proposer. We therefore introduce a
third action, in which the second player chooses a threshold, t, above which he will
regard the offer as just, and below which he will feel insulted. We will assume that
t > 0 and t < 50, discounting players who will not be satisfied with even an equal
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share. While the second player accepts and rejects, the first player can do nothing.
This gives the set of joint actions shown in Table 3.

Joint Ac-
tion

Player 1 Player 2

j1 A1:Offer > 50 B1:Set t < 50
j2 A2:Offer 50 B1:Set t < 50
j3 A3:Offer n < 50 and >

0
B1:Set t < n

j4 A3:Offer n < 50 and >
0

B1:Set t > n

j5 A5:Offer n = 0 B1:Set t > 0
j6 A4:Do nothing B2:accept
j7 A4:Do nothing B3:reject

Table 3: Joint Actions in the Ultimatum Game

Now we must identify some values and the transitions which promote and demote
them. First there is economic value, the money, which we shall call M. This can
be promoted in respect both of player 1 (M1) and in respect of player 2 (M2).
These values are promoted to different degrees according to the size of the player’s
share. From the literature it appears that some people seem to value fairness, which
we shall call E for equality. This is either promoted or not. Third we have the
value of generosity (G), which again has been identified as a motivation by various
experimenters. Whereas M will be promoted to varying degrees according to the
amount of money, E is either promoted or not. What of G? Experimental evidence
suggests that the impact of G does not increase as the amount given increases: we
will therefore consider that G, like E, is either satisfied or not, and that any effect
of the size of the gift is reflected in M2. Finally either player may be content with
the outcome, and we represent this as C1 and C2. Again we will not model degrees
of contentment. The AATS+V is shown in Figure 8.

Here will focus on the decision of the second player: the first player needs to
think about this since the main aim of an offer is to have it accepted. The VAF for
the second player is shown in Figure 9.

What the second player will do will depend on how it orders its values. Thus an
offer above 50, or below 50 but above the second player’s threshold of acceptability
(states q1 and q3), will only be rejected if the player prefers equality to both its own
and the other player’s, money: E > M1,M2. Given the set of values we have used,
we would expect any player to accept an offer of half the sum, since rejecting in
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100−n,n,0,0

50,50,0,0

100−n,n,0,0

100−n,n,1,0

100,0,1,0

0,0,0,1
0,0,0,0q0

q1

q2

q3

q4

q5

q6+M1 +M2 + G

n > 50

50 > n > t

50 > t > n

+M1 +M2

+M1 +M2

+G 

+G +E
j1

j6

j6

j4

j6

j7

+M1 −C2

j5

+M1 +M2

−C2

j7

−M1 +C2 −C1+E

j7

+C2 −C1+E

j2

j7
j6

j6

j3

j7

−M1 −M2

−M1 −M2 −C1

Figure 8: AATS+V for Ultimatum Game, as given in [33]

q2 promotes nothing and demotes money for both players. If the second player is
insulted by a non-zero offer and so is in q4, however, he has a choice of whether to
punish the first player and so restore its own pride, or to take the money. Normally
we would expect that the player will prefer its own money and its own contentment to
the money and contentment of the other agent, and so require M2 > C2 > M1, C1
for acceptance, or C2 > M2 > M1, C1 for rejection. If E is preferred to both M2
and C2 the second player will also reject the offer, but here motivated by a desire
for equality, rather than the insult. Finally if a zero offer is made we would expect
rejection, either because of the insult, or because equality is desired. Indeed a zero
offer will only be accepted if the second player prefers the others player’s money
or contentment to its own contentment: C1,M1 > C2. This would be an extreme
example of altruism, and we would expect it to be rare. This ordering would also
lead to acceptance in q4.

What the second player will do is crucial. In [15] the Ultimatum Game was used
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ArgS1a

ArgS2a

ArgS3a

ArgS4a

ArgS5a

Accept
no value

Obj:

Obj:

C1

Demotes

M1
Demotes

M2
Demotes

Obj:

E

no value

E

C2, E

C2, E

Figure 9: VAF for second player in Ultimatum Game, as given in [33]

to explore how an agent can take account of the expected actions of others. There
the three actions of our above model were compressed into a set of joint actions as
shown in Table 4.

There we say that player one can make a very high offer (vho) of more than half,
an equal offer (eo) of half, a fair offer (fo) at the threshold for the second player, or a
low offer (lo), below that threshold. All of these may be accepted or rejected by the
second player, giving eight joint actions, promoting and demoting values as shown.
Note that equality cannot be promoted, since the initial state is one of equality.
From this table we can see why most players will make at least a fair offer: only
if the first player is desperate to “get one over” the other will a low offer be made,
since only a low offer promotes C1 but carries with it a high probability of demoting
M1 and C1. How high the offer will go depends on how much the player values the
wealth and happiness of the other, and whether it values a feeling of generosity.

In [55] 15 small scale societies from various parts of the world were studied, and
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Joint
Action Proposal Response Promoted Demoted

j1 vho accept M1,M2,G, C2 E
j2 vho reject G M1,C1
j3 eo accept M1,M2,G,C2
j4 eo reject G M1,C1
j5 fo accept M1,M2 E
j6 fo reject M1
j7 lo accept M1,M2,C1 E,C2
j8 lo reject M1,C1

Table 4: Value promotion and demotion in the Ultimatum Game

it emerged that different groups behave differently. It was suggested that the differ-
ent societies’ actions in the Ultimatum Game could be accounted for in terms of the
degree of cooperation and degree of commercial exchange found in daily life. We
can relate these characteristics to a value profile. Suppose we associate the value of
generosity with the cooperative groups such as the whale hunting Lamelara, and the
recognition of C2 (the need to maintain good relations with the other) with com-
mercial exchange. Those who do not engage in cooperative or exchange activities,
we term solitary. In [15] it was found that using value profiles representing these
three life styles predicted offers and rejections that are very close to the empirical
results of [55].

4.5 Other applications

As well as these examples, value-based reasoning has been demonstrated using exam-
ples in medicine [19], health advice [75] and [47], ontology alignment [59] and [74], an
account of the emergence of norms [37] and discussions of ethics [14]. Most recently
in [30] value-based reasoning has been used as the basis of a novel computational
account of virtue ethics in agent systems.

In general, value-based reasoning can be used to model argumentation and rea-
soning in any domain where the direction of fit is from an agent’s desires or needs to
the world; any situation in which reasoning about action is required. Such reason-
ing is pervasive, covering many of the most important aspects of life: from everyday
choices such as where to eat or how to travel, to law and politics, and fundamental
questions of how we should live.
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Figure 10: Value-based conflict in extended argumentation framework, as given in
[64]

5 Value-based reasoning at the meta-level

Modgil [63] introduced an elegant and general way of handling preferences: instead
of assigning different strengths to arguments, he permitted attacks to themselves be
attacked. Such frameworks he termed Extended Argumentation Frameworks (EAF).
This meant that an attack was unsuccessful not according to whether it was attacking
a stronger argument, but according to whether it was itself defeated by some other
argument.

The relation between VAFs and EAFs was explored in [64]. A conflict between
two arguments is shown as an EAF in Figure 10. There the value preferences are
represented as arguments, attacking attacks which require the other preference to
succeed. These value preference arguments will, of course, mutually attack. The
desired audience represented as an ordering on the values will attack one of these
attacks, resolving the framework.

Frameworks of the sort shown in Figure 10 can now be rewritten as standard
Dung-style argumentation frameworks using meta level arguments. If we replace
arguments by the fact that they are acceptable, e.g. A by A holds, and introduce
arguments that arguments do not hold (A) and that one argument defeats another
(−−→AB), we can rewrite Figure 10 as Figure 11.

Now an attack −−→AB may fail in two ways: either A may be defeated so that A
defeats it, or there may be a preference argument that defeats it. There are clear
simplifications in this rewriting in that standard AFs can be used instead of the
more complicated VAFs and EAFs. The use of EAFs in value-based reasoning was
discussed in [31], and its application to the representation of norms in [38]. A full
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Figure 11: Meta level rewriting of Figure 10 to get a standard AF, as given in [64]

discussion of meta level argumentation can be found in [65].

6 Concluding remarks

In this chapter we have discussed value-based reasoning. Philosophically it models
reasoning where the direction of fit is from an agent’s desires to the world: that
is where an agent is choosing how to act in order to promote its values, and this
covers all domains involving an element of practical reasoning, reasoning about what
should be done.

Value-based reasoning was originally presented as a form of abstract argumenta-
tion extending Dung’s original framework by giving arguments the additional prop-
erty of promoting a value, and evaluating the arguments according to an ordering
on those values.

Although there are some theoretical results, the main motivation for value-based
reasoning was always applications, especially law where [43] had drawn attention to
the role of values in legal decisions, and [41] had incorporated values into theories of
case law for particular areas of law. This emphasis on applications was facilitated by
the development of a means of doing structured value-based argumentation, based
on an argumentation scheme and critical questions semantically underpinned by a
form of state transition diagram, AATS+V.

Because of the importance of applications, we have devoted much of this chapter
to a detailed discussion of four application domains: general problem solving, law,
e-participation and behavioural economics.

Extended argumentation frameworks [63] offer a means of generalising argumen-
tation involving preferences. Value-based argumentation frameworks fit very well
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with this framework, since they can be systematically rewritten as standard AFs us-
ing meta level arguments describing the status of arguments in the VAF, the value
preferences, and the audience concerned. Moving to meta level argumentation, how-
ever, does not remove the need for structured value-based argumentation, which is
still needed to generate the arguments and attacks. This combination is used in [31].

The theory of value-based argumentation is fairly well understood, but its po-
tential for modelling applications continues. As a means of representing problems in
areas where values are crucial, such as ethics, law and politics, value-based reasoning
offers a tried and tested solution.
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Abstract

When dealing with Abstract Argumentation, having preference values on
arguments/attacks clearly brings more information to a framework, which can
be considered as a directed graph. One of the advantages is the possibility to
define a different notion of defence, checking also if the associated preference is
stronger than the preference of the considered attack. In the real-world, such
values can be represented by “likes” in social-networks, or generic votes in favour
of attacks. We focus on qualitative/quantitative preference values on attacks,
which indicate their (relative) strength and can measure an argument-pair in-
consistency degree. Once assembled, also by moving values from arguments to
attacks, it is then possible to redefine semantics, relax the notion of weighted
acceptability, and check well-known properties as in Dung’s frameworks, e.g., if
a framework is well-founded.

1 Introduction and Motivations
In the approach presented in this paper, we recognise that not all arguments or
attacks in an Abstract Argumentation Framework (AF) [28] are equal in strength.
As we will see in the following, considering these strength degrees under the form
of “weights” (or values) brings a new perspective when searching for collections of
arguments to be considered as collectively acceptable. The reason is that a weighted
framework overcomes some natural limitations of the classical frameworks elaborated
by P.M. Dung [28], where several extensions for a given semantics may be provided,
but with nothing to distinguish between them. If a attacks b and vice-versa, both
{a} and {b} are admissible solutions, but if the attack from a to b is stronger, then
{b} may not be considered as acceptable anymore. Consider the example where:

a: The price of this car is too much expensive for us: we cannot afford it.
b: This is the car I always dreamed of: we should buy it.
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In this case, according to Dung’s approach, both arguments are credulously
accepted, neither is sceptically accepted, and the grounded extension is empty.1
Hence, the classical analysis is not very useful, and the degree of uncertainty is
high: no argument can be always selected without any doubt. However, from what
arguments imply in the example above, we can probably derive that attacks are not
equal in strength. Reality rules over dreams, and a rational agent cannot go in the
direction of buying the desired car because of its price: {a} is preferable than {b},
at least without any additional argument suggesting for a loan. If the attack from
a to b is stronger than the inverse attack, then uncertainty can be reduced and {a}
can be “more acceptable” than {b}.

In its original formulation [28], a framework AF is represented by a pair 〈Ar , att〉
consisting of respectively a set of arguments and a binary relationship of attack
defined among them. Given a framework, it is possible to examine the question on
which set(s) of arguments can be accepted, hence collectively surviving the conflict
defined by att. Answering this question corresponds to defining an Argumentation
semantics. The key idea behind extension-based semantics is to identify some sets
of arguments (called extensions) that survive the conflict “together”.

In order to better frame the scope of this paper, we first clarify the meaning
of weights (on attacks) for us. As pointed out in [30], in this paper we consider
three possible interpretations: weights can be seen as i) the number of votes in
favour of an attack, ii) as a measure of the inconsistency of argument-pairs, or iii)
as rankings of different types of attack. Note that the first interpretation lays a
link between Argumentation and Social Choice theory [30]. On the other hand, we
will not here survey frameworks where weights represent something different from
the above approaches, as for example probabilities: this is for example the topic
of [36]. In practice, we here consider weights as a basic strength-value, which may
represent various issues like votes provided by users [31], importance degree of a
value it promotes [9], or trustworthiness of its source [27]. Therefore, in all such
divergent cases, the basic strength may be expressed by a numerical value, leading
to Weighted Argumentation Frameworks, or simply WAF s in the following of the
paper.

The approaches we survey implement both quantitative (e.g., [30], [38], [26], and
[15]) and qualitative approaches (e.g., [41], [22], and [15]).2 Quantitative approaches

1The idea behind the grounded extension is to accept only those arguments that one cannot
avoid to accept, to reject only the arguments that one cannot avoid to reject, and abstaining as
much as possible. Hence, it represents the most sceptical (or “least committed”) semantics among
those based on complete extensions [6, Chapter 4].

2Note that by using a parametric algebraic structure (i.e., c-semirings, see Section 4), the work
in [15] is capable or representing both the preference systems.
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Figure 1: An example of WAF .

require to specify a numeric value for each attack, that is 0.7 or 9, for example.
Qualitative frameworks express preferences via generic qualitative (usually partial)
preference relations over attacks.

There is an established trend in the literature on the formalisation of Argumen-
tation towards considering the strength of arguments/attacks: a summary of the
bibliography is given also in Section 2. A shared motivation among some of these
proposals is the observation that not all the arguments are equal, and that the rel-
ative strength of the arguments needs to be taken into account somehow. In this
paper, we focus on weighted attacks: if there is an attack att(a, b), then a relation
w(a, b) = s returns the weight (s) associated with that directed attack.3 Hence the
definition of an AF needs to include a further relation w. Other works (e.g., [39]
and [5]) focus on preference values associated with arguments instead, and offer a
different view on a strictly related problem.

The idea of explicitly adding weights to attacks, instead of arguments, was pro-
posed by [7] for the first time. Considering a strength value on attacks allows us to
consider a richer and more finer-grained model of frameworks than having weights
on arguments. Richer because attacks are usually more than arguments in a frame-
work, i.e., up to |Ar |2 if a framework is a complete directed graph (or digraph) with
self-attacks: consequently, weights are more than weights on arguments, and such a
model can provide richer details. The weight-on-attacks model is also finer-grained,
since it is possible to derive a finer definition of acceptability for an extension, which
specifies a required level of defence of any argument in an extension: the strength
of an argument impacts on all of its neighbours, while the strength on attacks only
impacts on the adjacent corresponding argument [30].

Having motivated the use of Weighted Abstract Argumentation as an extension
of the model designed by P.M. Dung, and the use of weights on attacks, Figure 1
reports an example of WAF as we intend it in this paper.

Outline of the Paper. This paper is structured as follows: Section 2 briefly
surveys the related approaches. Most of these works mainly concern priority-based

3With the purpose to lighten the notation, we will use w(a, b) in place of w(att(a, b)).
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rules or values associated with arguments. Even if outside the immediate scope of
this paper, these approaches need to be mentioned because they are strictly related
to what presented in the following.

In Section 3 we present the main techniques in the literature to translate pref-
erence values on arguments into weights on attacks: since this paper is focused on
the latter, in this way we suggest a possible bridge towards such two families of
frameworks.

Section 4 presents the most important valued-structures where to draw weights
from and perform operations. These systems are very specific to single proposals
(e.g., weights are in R), or they are more general and can be parametric, such as
c-semirings [13].4

Section 5 introduces how novel definitions of acceptability can be derived when
using weights. As advanced in Section 1, the presence of numerical values enriches
the model conceived in [28] and allows for reducing uncertainty, simply because
more information than just arguments and attacks is embedded in the model. An
argument is now defended if the strength of the defence is stronger than the attack
strength, by using different aggregation functions on the considered weights. This
section also describes the relationships (e.g., implications) among different accept-
ability notions.

In Section 6 we show how weighted systems can be relaxed; the motivation
behind it is dual. On one side, it is related to the notion of defence so that it
becomes possible to weaken the condition that defence needs to be stronger than
attack: accordingly, weighted defence can be reduced up to the notion of plain
defence given by P.M. Dung, which in fact does not consider weights. On the other
side, the conflict-freeness required by most semantics can be broken, and an amount
of internal inconsistency can be tolerated.

Section 7 shows how classical extension-based semantics in Dung’s Argumen-
tation are revised according to i) the different notions of weighted acceptability
presented in Section 5, ii) and also the relaxations in Section 6.

Section 8 summarises how the property of a framework to be well-founded [28]
changes in presence of weighted systems.

Section 9 presents tools and real-world applications of weighted Argumentation.
All these applications are related to information coming from online social and re-
viewing platforms, such as Twitter.com and Amazon.com.

Finally, Section 10 proposes possible future lines of research in the direction
outlined in this paper, and it provides final thoughts and discussion.

4C-semirings have been used for the first time to associate a preference value with a soft con-
straint, and find the best solutions of Soft Constraint Satisfaction Problems [13].
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2 Related Approaches
This section reports a summary of similar approaches in the literature that concern
the use of preference values on arguments (instead of attacks) and the use of priority-
based rules, by starting from the second approach.

There have been a number of proposals for extending Dung’s framework in order
to allow for more sophisticated modelling and analysis of conflicting information.
A common theme among some of these proposals is the observation that not all
arguments are equal, as we introduced in Section 1. Hence, the relative strength of
arguments needs to be taken into account somehow. Such a preference/strength-
/priority can be modelled in several ways, which we will inspect in the following.

A first well-studied use of preferences in the non-monotonic logic literature is
based on the use of priority orderings over formulae in the language or defeasible
inference rules. Such methods are usually proposed for structured approaches, in-
stead of the abstract framework of Dung we investigate in this paper. The strength
of arguments is inferred from the strength of the rules from which the arguments
are constructed: in this case, priority orderings need to be “lifted” to preferences
over arguments. There exist several proposals [45; 44; 29], and some well-known
instantiations are represented for example by ASPIC+ [43] and Defeasible Logic
Programming [35], which comes with strict (high priority) and defeasible (low pri-
ority) rules.

In the literature it is possible to find many proposals where arguments (and
not attacks, as in this paper) are associated with a value or preference. Two
of the most well-known proposals are respectively given by [9] with Value-based
AF s (VAFs), and [4] with Preference-based AF s (PAFs). A VAF is a five-tuple
〈Ar , att,V , val, valpref 〉, where Ar is a finite set of arguments, att is an irreflexive
binary relation on Ar (i.e., 〈Ar , att〉 is a standard AF ), V is a non-empty set of
values, val is a function which maps elements of Ar into elements of V , and valpref
is a preference relation (transitive, irreflexive and asymmetric) on V × V . We say
that an argument a relates to value v if accepting a promotes or defends v: the
value in question is given by val(a), for every a ∈ Ar , val(a) ∈ V . When a VAF is
considered by a particular audience, the value ordering is fixed.

A PAF is a triplet 〈Ar , att,Pref 〉 where Pref is a partial pre-ordering (reflexive
and transitive binary relation) on Ar × Ar . The notion of defence changes accord-
ingly: let a and b be two arguments, b attacks a if-and-only-if att(b, a) and not a > b,
i.e, a is not (qualitatively) preferred in the partial pre-ordering.

In [42] the author extends Dung’s theory of Argumentation to integrate a meta-
level Argumentation concerning preferences. Dung’s level of abstraction is preserved,
so that arguments expressing preferences are distinguished by being the source of a
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second attack relation. This abstractly characterises the application of preferences
by attacking attacks between the arguments that are subject to preference claims.
By proposing a meta-level, the work in [42] also concerns higher-order models [39].

A quantitative study is proposed in [40], where the authors define Social Abstract
Argumentation Frameworks, which basically associate positive and negative votes to
each argument. Afterwards, a semantics is essentially given by fix-points of a set
of equations that assign, for each argument a, a value that is based on its social
support and on how strong the attack a is being subjected to is. This framework
has been extend in [31] by considering weights on attacks as well.

In [25] the authors survey the works in [4], [22], and [38], focusing on how to
relate preference-values and weights, on either arguments or attacks (see Section 3).

One more recently-popular framework is represented by ranking-based seman-
tics, whose aim is to elicit a preference score for each argument by considering the
structure of a given AF . In case of non-weighted AF s, the scores are extracted
by considering properties related to attacks with respect to each argument, as the
number of attack/defence paths and their length [20].

Two other works where preference values are elicited from the framework are
[10] and [24]. Furthermore, some works extract a preference from frameworks where
arguments are already labelled with a strength score: in this case, such semantics
consider both the original weights and the structure of an AF [3].

3 From Weights on Arguments to Weights on Attacks

As introduced in Section 1, this paper concerns weighted attacks. Others proposals
in the literature deal with values assigned to arguments instead. For this reason,
in this section we fill the distance with those works by showing how to pass from
values on arguments to values on attacks.

A first possible view is to have numbers associated with arguments: we call a
framework like this as WAFAr , in order to distinguish them from the WAF s in
the rest of this paper, which have weights on attacks instead. A WAFAr can be
described by a triple 〈Ar , att, w〉, where w : Ar → R: w(a) is the value associated
with an argument in aWAFAr . Such a framework can be straightforwardly encoded
to a PAF following the rule: a is better/equal than b iff w(a) ≥ w(b) [25].

In [37] the authors define an Argumentation Framework with Varied-strength
defeat (AFV ) as a triplet 〈Ar , att,Vdef 〉, where besides the set of arguments and
the attack relationship, Vdef is a function from att to the interval [0, 1]. Vdef (a, b)
represents the certainty degree of the statement “a attacks b”. The authors present
how to translate WAFArs to PAFs and AFV s. The intuition is that, the larger
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the preference of argument a over argument b, the stronger the attack from a to
b. Below we report different alternative approaches (all quantitative) the authors
propose for both schemes:

PAF 1. Vdef (a, b) = 0 if b is better than a.
2. Vdef (a, b) = 0 if b is better than a, 1 if a is better than b, 0 otherwise.

WAFAr 1. Vdef (a, b) = 0 if w(b) > w(a).
2. Vdef (a, b) = max(w(a)− w(b), 0).
3. Vdef (a, b) = 1−max(w(b)− w(a), 0).

Hence, most of the definitions for Vdef lead to the suppression of the attacks
att(a, b) for which b is strictly preferred to a.5 With the third proposal above instead,
an attack from a to b is removed when w(b)− w(a) = 1.

The work [25] elaborates on [37]. They consider quantitative as well as qualitative
approaches for expressing these preferences. The goal is to translate PAFs and
WAFArs to Argumentation Frameworks with attacks of Various Strength (AFVS),
formally 〈Ar ,ATT ,−→�〉. Differently from [37], besides the sets of arguments Ar ,
ATT is a finite set of attack relations over Ar ,6 and −→� is a binary relation over
ATT : it expresses a relative strength between the different attack relations in ATT .
From PAFs to AFVSs, ATT and −→� are assembled by respecting some principles
considering a qualitative scheme:

P1 The initial set of attacks between arguments in PAF must not be modified (no
attack appears/disappears).

P2 An attack between two equivalent arguments must be strictly stronger than
an attack between two incomparable arguments.

P3 An attack from a to b with a strictly preferred to b must be strictly stronger
than an attack between two equivalent or incomparable arguments.

P4 Consider an attack from a to c and an attack from b to c of the same class.
If a is strictly stronger than b, the attack (a, c) must be strictly stronger than
the attack (b, c).

P5 Consider an attack from a to c and an attack from a to b of the same class.
If b is strictly stronger than c, the attack (a, c) must be strictly stronger than
the attack (a, b).

5Vdef (a, b) = 0 is equivalent to (a, b) 6∈ att.
6We use ATT for a set of attack relations, and att for a single attack relation.
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P2 and P3 together induce the partitioning of att into four classes of attacks
{ 1−−→, 2−−→, 3−−→, 4−−→}, respectively depending on a better/equivalent/incomparable/-
worse than b in PAF .7

The quantitative approach in [25] is instead focused on translating a generic
WAFAr with values on arguments to an AFVS. The authors assume a function w :
Ar → [0, 1], and a function f : [0, 1]×[0, 1]→ R: the strength of att(a, b) is quantified
by f(w(a), w(b)). As in the aforementioned qualitative scheme from PAFs, even in
this case some principles impose conditions on the relationship between the weights
on arguments and the strength value on derived attacks:

P4’ If the weight of a is greater than the weight of b, then the higher the difference
of the weights, the stronger the attack from a to b.

P5’ If the weight of a is lower than the weight of b, then the higher the difference
of the weights, the weaker the attack from a to b.

From P1, P2, P4’, and P5’ it is possible to derive some conditions on a weight-
ing translation function f :

Definition 3.1 (Weighting translation f). A weighting translation function is a
function f : [0, 1]× [0, 1]→ R such that: ∀x, y, z, t ∈ [0, 1],

• if x > y and t > z then f(x, y) > f(y, y) > f(z, t).

• f(x, x) = f(y, y).

• if x− y > z − t > 0, then f(x, y) > f(z, t).

• if x− y < z − t < 0, then f(x, y) < f(z, t).

An example of a such a function respecting the above constraints is ∀x, y ∈
[0, 1], fαβ(x, y) = α(x − y) + β, with α > 0 and β > 0; α amplifies the difference
between x and y, while β represents a bias when the difference is 0. For example,
if att(a, b), w(a) = 0.7, w(b) = 0.6, and f1 1(x, y) = (x− y) + 1, then the weight on
this attack is 1.1.

To recap, Figure 2 represents how different mapping of weights can be translated
one to another (edge direction means “from-to”), with respect to different proposals
having a preference on either arguments (WAFAr , VAF , and PAF), or attacks
(AFV , AFVS). Note that a PAF can be translated to a class of VAFs [21], and
for this reason such an encoding is not represented in Figure 2. Each VAF can be
however translated into a unique PAF instead (grey edge in Figure 2).

7These are exactly the same four classes used in [41], as reported in Section 4.
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VAF PAF WAFAr

AFVS AFV

Figure 2: The edges in this graph describe how the different weighting systems
proposed in this section (and VAF in Section 2) can be translated to others. Plain
edges are explained in [25], dotted edges in [37]. The grey edge points to the fact
that a unique PAF can associated with a VAF [21].

Note that in the following we will often refer to the work in [41], which is a
variant of the AFVS explained in this section. However, the translations to AFVS
described above and in [25] are more general, and can lead to more than just four
classes of preference among attacks as proposed in [41] instead (see Section 5).8

4 Frameworks and Structures to Represent Weights
In the literature, a WAF is a classical AF equipped with a structure to represent
weights and some operations to aggregate weights and compare them and prefer one
or another. In the following of this section we show how different authors design
such a framework of values.

In [30], a weighted argument system is a triple 〈Ar , att, w〉 where 〈Ar , att〉 is a
Dung-style abstract argument system, and w : att −→ R> is a function assigning
real valued weights to attacks. R> denotes the real numbers greater than 0, hence
attacks are required to have a positive non-zero weight, since an attack could be
discarded at no cost otherwise. The aggregation operator is the arithmetic sum,
and values are composed in order to compute a relaxation threshold for disregarding
attacks (see Section 6). The preference operator is simply ≤ : for example, 4 is less
strong than 5.

A WAF in [41] is a triplet 〈Ar ,ATT , R〉 where Ar is a set of arguments, ATT
is in general a set of n binary attack relations { 1−−→, 2−−→, . . . , n−−→} defined over Ar ,
and R is a binary relation defined over ATT . The relation R ⊆ ATT × ATT

8For this reason, such translations are not supposed to maintain the defence notion and seman-
tics from PAF or WAF to the work in [41].
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denotes an order of strength between argument conflicts.9 The paper proposes four
classes of precedence, that is � (and �), ≈, and ?: att(a, b) � att(b, a) means
that the former attack is stronger than the latter (vice-versa, a weaker attack).
Equivalent and incomparable classes are considered as well, i.e, att(a, b) ≈ att(b, a)
and att(a, b)?att(b, a), respectively. This is accordingly reflected by the definition of
defence, where considering att(a, b) and att(c, a) we can have that c is a strong, weak,
normal, or an unqualified defender of b. Therefore, an argument b is defended by T if,
and only if, for any argument a such that att(a, b), there is an argument c ∈ T such
that att(c, a), and according to the desired defence strength, att(c, a) � att(a, b),
att(c, a)� att(a, b), att(c, a) ≈ att(a, b), and att(c, a)?att(a, b). In such a framework
there is an implicit aggregation operator: the attack strength corresponds to the
strongest weight among all the counter-attacks. In order to show an example using
the notation in [41], given a 1−−→ b

2−−→ c, a is a strong defender of c if we suppose
1−−→ � 2−−→; the labels on attacks thus represent a class of attacks.
A WAF in [26] is a triple 〈Ar , att, w〉 where 〈Ar , att〉 is a Dung-style Abstract

Argumentation Framework, and w : Ar ×Ar −→ N is a function assigning a natural
number to each attack (i.e. w(a, b) > 0 iff (a, b) ∈ att, and a null value otherwise
(i.e, w(a, b) = 0 iff (a, b) 6∈ att). With respect to [30], the authors of [26] state
that in most situations natural numbers are enough, and this simplifies some of the
definitions to come.

In [26] the authors define σ�-extensions, where σ is one of the given semantics
(e.g., admissible), and � is an aggregation function of weights from Nn to N, that
is the set of natural numbers. To be valid, � needs to satisfy three properties: i)
non-decreasingness (if xi ≥ x′i, then �(x1, . . . , xi, . . . , xn) ≥ �(x1, . . . , x′i, . . . , xn)),
ii) minimality (�(x1, . . . , nn) = 0 if ∀i, xi = 0), and iii) identity (�(x) = x). In
[26] the authors focus on + and max to simplify the presentation, but several other
aggregation functions can be considered as well (e.g., leximin or leximax). The
preference operator, since N is always used, is simply given by ≤: 5 is stronger than
4.

Finally, some other works adopt an algebraic structure named c-semiring to rep-
resent weights, originally defined in [13]; they derive from algebraic semirings and
are characterised by two operators as well, that is ⊗ and ⊕. In practice, c-semirings
are commutative (⊗ is commutative) and idempotent (i.e., ⊕ is idempotent) semir-
ings, where ⊕ defines a complete lattice: every subset of elements have a least upper
bound, or lub, and a greatest lower bound, or glb. In fact, c-semirings are semirings
where ⊕ is used as a preference operator, while ⊗ is used to compose preference-
values together.

9A WAF is in this case an AFVS as proposed in Section 3.
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Definition 4.1 (C-semirings [13]). A c-semiring is a tuple S = 〈S,⊕,⊗,⊥,>〉 such
that S is a set, >,⊥ ∈ S, and ⊕,⊗ : S × S → S are binary operators making the
triples 〈S,⊕,⊥〉 and 〈S,⊗,>〉 commutative monoids (semi-groups with identity),
satisfying i) ∀s, t, u ∈ S, s ⊗ (t ⊕ u) = (s ⊗ t) ⊕ (s ⊗ u) (distributivity), and ii)
∀s ∈ S, s⊗⊥ = ⊥ (annihilator). If ∀s, t ∈ S, s⊕ (s⊗ t) = s, the c-semiring is said
to be absorptive. In short, c-semirings are commutative and absorptive semirings.

The idempotency of ⊕ leads to the definition of a partial ordering ≤S over the
set S (S is a poset). Such partial order is defined as s ≤S t if and only if s⊕ t = t,
and ⊕ returns the lub of s and t (defined also as t, while the glb is defined by u).
This means that t is “better” than s.

Some more properties can be derived on c-semirings [13]: i) both ⊕ and ⊗ are
monotone over ≤S, ii) ⊗ is intensive (i.e., s⊗ t ≤S s), and iii) 〈S,≤S〉 is a complete
lattice. ⊥ and > respectively are the bottom and top elements of such a lattice.
When also ⊗ is idempotent, i) ⊕ distributes over ⊗, ii) ⊗ returns the glb of two
values in S, and iii) 〈S,≤S〉 is a distributive lattice.

Well-known instances of c-semirings are: Sboolean = 〈{false, true},∨,∧, false,
true〉, Sfuzzy = 〈[0, 1],max,min, 0, 1〉, Sbottleneck = 〈R+ ∪ {+∞},max,min, 0,∞〉,
Sprobabilistic = 〈[0, 1], max,×, 0, 1〉 (also called the Viterbi semiring), Sweighted =
〈R+∪{+∞},min,+,+∞, 0〉.10 Note that c-semiring can also deal with non-numeric
preference values: for instance, using a c-semiring set S = {bad, fair, good}, a
total ordering as bad ≤S fair ≤S good, and an aggregation operator for which
bad ⊗ fair = bad.

A c-semiring basedWAF , i.e., aWAFS, is a quadruple 〈Ar , att, w,S〉, where S is
a c-semiring 〈S,⊕,⊗,⊥,>〉, Ar is a set of arguments, att the attack binary-relation
on Ar , and w : Ar×Ar −→ S is a binary function: given a, b ∈ Ar and att(a, b), then
w(a, b) = s means that a attacks b with a weight s ∈ S. Moreover, it is required that
att(a, b) iff w(a, b) <S >. Note that the Boolean c-semiring can be used to model
classical Dung’s Argumentation [15].

Differently from all the other proposals in this section, a c-semiring is parametric
with respect to both the aggregation operator (i.e., ⊗) and the preference operator
(i.e., ⊕), and it is not bound to a single set of values as R or N. One more advantage is
that a Cartesian product of c-semirings (which is still a c-semiring) can model multi-
criteria weights, and in general, c-semirings can model partially-ordered preference
values besides to totally-ordered ones.

10Note that when considering the Weighted c-semiring, it happens that 7 ≤S 3 even if 7 ≥ 3, i.e.,
lesser means better.
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5 Weighted Acceptability
A weighted acceptability notion extends the original one given in [28] by considering
the two strength levels of attack and defence. For example, only if the defence weight
is stronger, then an argument is successfully defended. For this reason, the notion
of defence becomes more constrained than the unweighted one, which only considers
edges in a digraph. We start by recalling the notion acceptability of an argument b
in [28], with respect to a set of arguments T .

Definition 5.1 (DDung). An argument b is acceptable w.r.t. T ⊆ Ar (or T defends
b) iff for any argument a ∈ Ar s.t. att(a, b), then ∃c ∈ T s.t. att(c, a).

Three different definitions of weighted defence are presented in [41], [26], and
[15]. In the following, we condense their main features and we show how they differ.

We start by presenting the notion of acceptability given in [41]. When requiring
a preference level [�,≈] (see Section 4), for each attacker a of b there must be either
a strong or a normal defender c ∈ T . In Definition 5.2 we report the defence in [41]
by using [�,≈].

Definition 5.2 (DMart́inez et al.). Given a WAF 〈Ar ,ATT , R〉 as formalised in
[41], with R = [�,≈], a, b, c ∈ Ar , T ⊆ Ar , then b is acceptable w.r.t. T iff
∀att(a, b), ∃c ∈ T s.t. att(c, a)� att(a, b) or att(c, a) ≈ att(a, b).

In practice, only one argument c ∈ T counter-attacking a with an equal or
stronger level is needed to defend an argument b. This defence is typical of Argumen-
tation Frameworks with attacks of Various Strength, i.e, the AFVS (see Section 3).
A different approach along the same line is [22]. Hence the notions of defence of
these two works are strictly connected.

Note also that the intuition for extending the notion of defence is the same
in both AFVSs and AFVs (Section 3 and [38]). The only difference is due to the
preference relation over attacks: an AFVS uses a pre-ordering (thus allowing for
incomparable attacks), whereas in an AFV the preference relation is based on a
function with values on a linearly ordered scale, e.g., the interval [0, ..1], providing
a total ordering over attacks.

On the contrary, the idea in [26] is to aggregate all the weights of counter-attacks,
and to check if they are stronger than the considered attack:

Definition 5.3 (DCoste−Marquis et al.). Given aWAF 〈Ar , att, w〉 as defined in [26],
an argument b is acceptable w.r.t. a subset of arguments T iff ∀a ∈ Ar s.t. att(a, b),
we have that w(T, a) ≥ w(a, b), where w(T, a) is a shortcut for �c∈Tw(c, a).
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Thus, an argument b is acceptable if for each attack from a ∈ Ar against b, the
aggregated weight of the collective defence of b is greater than w(a, b).11

Finally, we report the definition of acceptability in [15], parametrically given for
a c-semiring S = 〈S,⊕,⊗,⊥,>〉:
Definition 5.4 (DBistarelli et al.). Given a WAFS 〈Ar , att, w,S〉 as defined in the
work [15], T ⊆ Ar defends b ∈ Ar (or b is w-acceptable) iff ∀a ∈ Ar such that
att(a, b), we have that w(a, T ∪ {b}) ≥S w(T ∪ {b}, a), where w(a, T ∪ {b}) is a
shortcut for ⊗c∈(T∪{b})(a, c) and w(T ∪ {b}, a) is a shortcut for ⊗d∈T∪{b}(d, a).

Besides aggregating the weights of all the counter-attacks as in [26], Definition 5.4
also aggregates the weights of all the attacks from a to d ∪ {b}: in this case, all the
attacks from any argument in Ar towards a set T plus the argument to be accepted
need to be considered.

In [15] the authors use c-semirings to represent the other two proposals reported
in this section, that is [41] and [26], as WAFS. This allows for discovering the
relationships among such defences, as described in Section 5, and to easily show an
example on how they differ, as highlighted in Figure 3. All three of them aggregate
weights (in different ways) towards the same argument d to check if {e, f} defends
c from it: that is, c is defended if w({e, f}, d) ≤S w(d, {c}). Only DBistarelli et al.
also aggregates all the weights on the attacks from the same attacker to the set
of arguments to be defended: to check if d defends {a, b} from c, we need that
w({d}, c) ≤S w(c, {a, b}).

Properties of Defence. By comparing all the notions of acceptability in the
same c-semiring based framework [15], it is possible to catch their relationships as,
for example, the implications among them:

• DMart́inez et al.,DCoste−Marquis et al.,DBistarelli et al. ⇒ DDung

• DBistarelli et al. ⇒ DCoste−Marquis et al.

• DMart́inez et al. ⇒ DCoste−Marquis et al.

Moreover, if we replace the original structure to represent weights in [26] and [41]
with different c-semirings, we obtain further interesting relationships. We recall from
Section 4 that 〈[0, 1],max,min, 0, 1〉 is the Fuzzy c-semiring and 〈{true, false},∨,∧,
false, true〉 is the Boolean c-semiring:

• If S = 〈[0, 1],max,min, 0, 1〉, then DMart́inez et al. ⇔ DCoste−Marquis et al.

11Such a phrasing of defence is also equivalent to the work in [16].
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DMart́inez et al.

DCoste−Marquis et al.

DBistarelli et al.
DBistarelli et al.

Figure 3: The three notions of defence on the right of this figure aggregate attack
weights to check if c is defended from d, while only DBistarelli et al. also aggregates
all the weights on the attacks from the same attacker to a set of arguments to be de-
fended (i.e., in this case {a, c}). Using the Weighted c-semiring, {e, f} defends c from
d according to DCoste−Marquis et al. and DBistarelli et al., since (2+1) ≤Weighted 3, but
not according to DMart́inez et al., since 2 6≤Weighted 3 and 1 6≤Weighted 3. Moreover, d
defends {a, b} from c according to DMart́inez et al. and DCoste−Marquis et al., but not
according to DBistarelli et al. since 3 6≤Weighted (3 + 2).

• If S = 〈[0, 1],max,min, 0, 1〉, then DBistarelli et al. ⇒ DMart́inez et al.

• If S = 〈{true, false},∨,∧, false, true〉, then DDung ⇔ DBistarelli et al. ⇔
DMart́inez et al. ⇔ DCoste−Marquis et al..

The last item states that, when dropping weights, the way these defences combine
attacks and counter-attacks is irrelevant: they all flatten to the classical acceptability
in [28].

6 Relaxations
The two main works that deal with internal relaxations are [30] and [15]. In both
of them, the goal is to relax constraints represented by attacks: by tolerating some
of them, it is possible to allow some inconsistency level with respect to the original
considered framework, where all the attacks are always considered instead.

The main motivation is to obtain progressively more solutions, as one increases
the inconsistency level to be tolerated. In this way, it is possible to return non-
trivial solutions (e.g., stable extensions) in case conventional (unweighted) AF s have
none. Clearly, the cost of such a relaxation represents a preference ordering over the
obtained sets of arguments: indeed it is better to prefer extensions that are found
with a milder relaxation than others, i.e., extensions on AF s that are closer to the
original one.
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The key idea in [30] is to consider an inconsistency budget, β ∈ R≥, which is used
to characterise how much inconsistency one is prepared to tolerate. The intended
interpretation is that, given an inconsistency budget β, it is possible to disregard
attacks up to a total weight of β. By doing so, one obtains several AF s on which
to compute the desired semantics (or other typical problems in Argumentation).
Classical AF s implicitly assume an inconsistency budget of 0, since it is not possible
to disregard any attack. By allowing larger inconsistency budgets and consequently
dropping more attacks, one can obtain progressively more frameworks and then
solutions. The proposed disregard approach applies to all the classical semantics,
hence obtaining e.g., β-admissible or β-complete extensions. For instance, the set of
β-complete extensions is given by the union of all β-complete extensions on all the
AF s obtained by disregarding attacks up to a total of β.

However, the main goal in [30] is to find alternatives when the single most scep-
tical (or least committed) semantics among all, i.e., the grounded one, returns an
empty-set solution: different approaches to relax scepticism correspond to the design
of different (unweighted) semantics, as the ideal and eager ones [6, Ch. 4].

Note that the work in [26] is inspired by the same relaxation as in [30]. Extensions
are named as σβ�-extensions: β is exactly the same inconsistency budget, but instead
of only arithmetic sum, the aggregation of weights is via a parametric operator �,
as explained in Section 5.

In the second relaxation approach that we consider, i.e., [15], given a WAFS =
〈Ar , att, w,S〉, a subset of arguments T ⊆ Ar is α-conflict-free iff w(T, T ) ≥S α,
where

w(T, T ) =
⊗

a∈T,b∈T
w(a, b)

means that we aggregate (using ⊗) all the weights associated with attacks in T .
This approach is different from [30]: only the original framework is considered,
hence no further AF or WAF is derived by disregarding attacks. The relaxation is
obtained by tolerating an amount of attacks by breaking the conflict-free condition:
an extension may contain attacks up to a threshold of α on the aggregation (i.e., ⊗)
of their weights.

Figure 4 reports an example ofWAF taken from [30]. Table 1 shows β-preferred
and α-preferred extensions (using the Weighted c-semiring) on that WAF . On this
example, both approaches return the same extensions when using the same α/β.

Table 2 shows the difference between β-grounded and α-grounded extensions.
The approach in [30] aims to find several results, while the approach in [15] is
more adherent to the original proposal in [28], and always returns a single grounded
extension (which in this specific example is always the empty-set).
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Figure 4: An example of weighted framework taken from [30].

α/β PR in [30] PR in [15]
0 {{a, b, d, f}, {c, e, g, h}} {{a, b, d, f}, {c, e, g, h}}
1 {{a, b, d, f}, {c, e, g, h}} {{a, b, d, f}, {c, e, g, h}}
2 {{a, b, d, f}, {c, e, g, h}} {{a, b, d, f}, {c, e, g, h}}
3 {{a, b, d, f}, {c, e, g, h}, {a, b, d, e, g, h}} {{a, b, d, f}, {c, e, g, h}, {a, b, d, e, g, h}}

Table 1: Considering the WAF in Figure 4, the sets of β-preferred and α-preferred
extensions correspond while increasing α/β.

Relaxing Defence. The two works in [30] and [15] can be used to drop attacks
in a given framework. All the weighted acceptability notions presented in Section 5
aggregate weights to understand if a defence is stronger than an attack: in general,
if the defence strength is higher, then a set of arguments is effectively defended,
otherwise the attack is predominant. In this section, we survey two methods that
relax the concept of defence by tolerating arguments that are defended at a “milder”
level.

A first approach can be found in [41]. From this work, the attack scenario
[T ⊆ arguments,P = {�}] includes only strongly-defended arguments, since the
defence condition is �. A scenario with defence condition P can be expanded
into another scenario using a different defence condition Q, through the concept of
defence upgrade and an expansion operator ].

Definition 6.1 (Defence upgrade). Let p = [T,P] be an attack scenario, and let

α/β GR in [30] GR in [15]
0 {∅} ∅
1 {∅, {c, e, g, h}} ∅
2 {∅, {c, e, g, h}, {a, b, d, f}} ∅
3 {∅, {c, e, g, h}, {a, b, d, f}, {a, b, d, e, g, h} ∅

Table 2: Considering the WAF in Figure 4, β-grounded and α-grounded extensions
differ on the same α/β.
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a b

9

8

Figure 5: a defends itself according to DBistarelli et al. because the attack weight (9)
is stronger than the defence weight (8), but for the same reason b only 1-defends
itself: the defence is one unit less than what is really needed for a proper weighted
defence (i.e., 9− 8), that is considering w-defence in Section 5.

Q be a set of defence conditions. The expansion of p according to Q is defined as
p]Q = [T ′ ∪T,P ∪Q], where T ′ = {a ∈ Ar | a is acceptable with respect to [T,Q]}.

Hence, if Q is [�,≈], new arguments can be accepted in T ′, thus extending the
set of accepted arguments T ′ ∪ T .

The second approach is in [15]. There, the notion of weighted defence can be
relaxed in order to be equal to[26] (see Section 5), and also to the classical defence
given by [28]: this leads to completely ignoring weights. The γ-defence (or also Dγ)
in [15] is parametrised on a given c-semiring (see Section 4) and on a threshold-value
γ: such a γ is used to consider arguments that are not “fully” defended according
to DBistarelli et al., i.e., for which w(a, T ∪ {b}) �S w(T, a):

Definition 6.2 (γ-defence). Given 〈Ar , att, w,S = 〈S,⊕,⊗,⊥,>〉〉 and γ ∈ S,
T ⊆ Ar γ-defends b ∈ Ar iff ∀a ∈ Ar such that att(a, b) we have that w(T, a) 6= >
and (

w(a, T ∪ {b})� w(T, a)
)
≥S γ

Definition 6.2 states that T defends b from a if the difference between the aggre-
gation of the attack weights from a to T (union b) and the one from T to a is better
than γ. The � operator is the inverse of ⊗ (e.g., the arithmetic − in case ⊗ is the
arithmetic plus). A simple example is given in Figure 5: a defends itself, while b
only 1-defends itself, since 9− 8 ≥S 1, if we consider S as the Weighted c-semiring.

Clearly, by progressively increasing γ we consequently relax the constraint that
defence needs to be equal or stronger than attack, and we obtain more and more
extensions. This motivation is a leitmotif of the whole section.

Note that, if γ is chosen as the ⊥ of the considered c-semiring, γ-defence is
equivalent to the original definition of defence given by P.M. Dung [15]: Dγ ⇔ DDung.
On the other hand, if γ = >, then we have Dγ ⇔ DBistarelli et al..

When all a ∈ Ar attack one argument only, γ-defence is equivalent to the de-
fence defined in [26], that is DCoste−Marquis et al. ⇔ Dγ . Finally, by properly choos-
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ing γ, it is always possible to obtain a defence that is implied by the one in [26]:
DCoste−Marquis et al. ⇒ Dγ .12

7 Semantics in WAFs
Clearly, the concepts of weighted defence and relaxation advanced in Section 5
and Section 6 are not stand-alone, but they are the basis to elaborate on classi-
cal extension-based semantics [28].

As introduced in Section 5, in [30] the authors mainly focus on the β-grounded
semantics, with the purpose to find alternatives when the unweighted one ([28]) is
equal to empty-set, which is not very informative. Nevertheless, also the other β-
semantics are briefly presented: they correspond to the union of the extension sets
found on all the AF s obtained by disregarding an attack amount up to β.13

In [41], only the preferred and grounded semantics (or better, scenarios) are
explicitly defined; they can be both captured by the use of the expansion operator
]. For example, Let p = [T,P] be an admissible scenario. If p ] Q = [T,P ∪ Q]
for any condition Q, then T is a (classic) preferred extension: T ⊆ Ar cannot be
expanded. The grounded scenario is instead defined as the least fix-point of ] using
a defence condition P.

The semantics defined in [26] follow two distinct paths, whose definitions we
report below from the original paper. Definition 7.1 is used to consider an inconsis-
tency budget β exactly as in [30]; in this case, however, � is a more general operator
to aggregate weights to find β than the arithmetic sum adopted in [30].

Definition 7.1 (σβ�-extensions). Given a WAF = 〈Ar , att, w〉, a semantics σ,
an aggregation function �, and a budget β, the set of σβ�-extensions, denoted as
E�,βσ (〈Ar , att, w〉), is defined as E�,βσ (〈Ar , att, w〉) = {E ∈ Eσ(Ar , att \ att ′) | att ′ ∈
Sub(att, w, β)}, where the function Sub(att, w, β) returns the set of subsets of att
whose total aggregated weight does not exceed β.

The σβ�-grounded semantics may return several extensions, as in [30]. After-
wards, the same authors propose how to refine them by removing the empty-set
from such a set of extensions, with the purpose to not trivialise the sceptical ac-
ceptance of arguments: the presence of an empty-set among the results impedes an
argument to be sceptically accepted.

12We remind that Dγ is a relaxation of DBistarelli et al., which on the contrary implies the notion
of defence in [26] (see Section 5).

13An example of β-preferred extensions is reported in Table 1.
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The second path in [26] completely drops the β-budget and only focuses on
defining semantics that use a weighted notion of acceptability based on �, that is
�-acceptability. Semantics are simply named as �-semantics, which are straight-
forwardly derived from their counterpart in [28]: for example, T is a �-complete
extension iff T is conflict-free and every argument a ∈ Ar , which is �-acceptable
with respect to T , belongs to T . In this case, the �-grounded semantics returns a
single extension.

The approach in [15] is the only one that allows for contemporarily disregarding
an “amount” of attacks (also accomplished in [30] and [26]) and requiring defence
to be stronger than an attack (also proposed in [26] and [41]). Moreover, it also
permits to relax this latter constraint on defence, up to not considering weights at
all.

Therefore, semantics are equipped with two thresholds: αγ-semantics come with
an internal inconsistency budget α (see Section 5), and a threshold γ on the defence
relaxation (see Section 6).

Their definition is summarised in the following, given aWAFS = 〈Ar , att, w,S =
〈S,⊕,⊗,⊥,>〉〉 and α, γ ∈ S.

• A subset of arguments T ⊆ Ar is α-conflict-free iff w(T, T ) ≥S α. Note that
γ is not considered in this semantics, since only the conflict internal to an
extension is measured.

• An α-conflict-free set T ⊆ Ar is αγ-admissible iff the arguments in T are
γ-defended by T from the arguments in Ar\T .

• An αγ-admissible T ⊆ Ar is αγ-complete iff each argument b ∈ Ar that is
γ-defended by T and s.t. w(T ∪ {b}, T ∪ {b}) ≥S α is in T (i.e., b ∈ T ).

• An αγ-preferred extension is a maximal (with respect to set inclusion) αγ-
admissible subset of Ar .

• An αγ-admissible set T is also an αγ-stable extension iff ∀a 6∈ T, ∃b ∈ T then
w(b, a) 6= >, and T ∪ {a} is not αγ-admissible.

Both approaches in [15] and [26], that is αγ-semantics and �-semantics re-
spectively, preserve some of the formal properties of the unweighted semantics in
[28]: for example, the implications stable ⇒ preferred ⇒ complete ⇒ admissible ⇒
conflict-free.
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8 Well-founded WAFs
The goal of this section is to show how the well-foundedness property of frame-
works [28] extend to WAF s. We commence by revising the notion of well-
foundedness, then we show how it can be adapted to WAF s and how also well-
founded WAF s have a single complete/preferred/stable/grounded extension. In
this case, the considered framework always provides the same single solution in any
these scenarios, consequently eliminating all the possible uncertainty. Since in [15]
the authors showed how acceptability in [41] and [26] can be represented as aWAFS,
we will consider such frameworks in the following of this section in order to propose
a single and unitary point of view.

P.M. Dung defines the sufficient conditions behind well-foundedness in AF s in
his pioneering work [28]. A well-founded AF is an AF without an infinite defeating
sequence of arguments.

Definition 8.1 (Well-foundedDung AFs). An AF is well-founded iff there exists no
infinite sequence a1, a2, . . . , an, . . . (with ai ∈ Ar) such that for each i, att(ai+1, ai).

In case of a finite number of arguments, a framework is well-founded if it is
acyclic. However, the notions of weighted defence presented in Section 5 consider
sets of arguments to check the aggregation strength of attacks and counter-attacks:
Definition 8.1 is not enough anymore to capture the aggregation of weights from/to
sets, since it is based on plain sequences of arguments.

Because of these reasons, in Definition 8.2 we redefine the notion of sequence of
arguments into a sequence of sets, or better, set-maximal attack (SMA) sets. All the
remainder of this section is inspired by the work in [19], definitions and theorems
included.

Definition 8.2 (Set-maximal attack (SMA) sets). Given WAFS = 〈Ar , att, w,S〉
and T,U ⊆ Ar , then T is a set-maximal attack on U , iff

i) T is conflict-free;

ii) ∀b ∈ T, ∃c ∈ U s.t. att(b, c);

iii) there exists no T ′ s.t. conditions i) and ii) hold and T ( T ′.

Example 8.3. Figure 6 (right) shows a fragment of an infinite sequence of SMA
sets, obtained on the WAF represented in Figure 6 (left); it starts from set {f}.
The sequence is: T1-T2-T3-T4-. . . (it continues as T2-T3-T4 for an infinite number
of times).
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Figure 6: Left: an example of WAF ; right: a fragment of an infinite sequence of
SMA sets on the framework on the left. T5 is identical to T2 and the sequence
infinitely continues from it.

Definition 8.4 generalises the well-foundedness property on different notions of
(weighted) defence: for example, the ones in Section 5. Therefore, well-foundedness
becomes parametric with respect to the chosen c-semiring and the selected defence.
Other weighted defences may directly inherit from the definition to check the con-
ditions under which they allow for a well-founded framework.

Definition 8.4 (Generalisation in WAFS). Given a WAFS = 〈Ar , att, w,S〉, if
there does not exist an infinite sequence ω of SMA sets T1, T2, . . . , such that for
every Ti+1, Ti, and Ti−1 we have that Ti+1 defends Ti−1 from each a ∈ Ti according
to a generic weighted defence D, then WAFS is well-founded w.r.t. D.

Hence, besides looking at infinite cycles as in [28] (in this case of sets, and not
just of arguments), in WAF s there is one more constraint: to be infinite, this chain
of SMA sets needs to respect the constraint imposed by weighted defences: Ti+1
has to defend Ti−1 from each a ∈ Ti. Therefore, a framework has less chances to
be well-founded when considering weighted defences, since the absence of infinite
sequences of SMA sets is not sufficient.

Example 8.5. Still supposing theWAF in Figure 6 (left), we see that by considering
it as a classical framework (dropping weights), the framework is not well-foundedDung
because there exists an infinite sequence of arguments given by the cycle f ← e ←
c← f ← . . . .

Moreover, considering it as a WAFS, the related infinite sequence in Figure 6
does not respect the defence conditions of DMart́inez et al.: T4 cannot defend T2 from
T3 because there is no attack from T4 to c (whose values are 3, 2, 1), which is at
least as strong as the attack from c to d in T2 (i.e., 4 is stronger). Consequently,
the framework in Figure 6 (left) is not well-founded when using DMart́inez et al., in
accordance with Definition 8.4.
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As accomplished for acceptability notions, we can relate the property of a frame-
work to be well-founded by considering the three proposals in Section 5. Since Defi-
nition 8.4 is parametrically based on a generic definition of weighted defence, we can
plug the three notions directly in: e.g. wfdMart́inez et al. is defined on DMart́inez et al..
We also consider the classical well-founded property in [28], that is wfdDung, by sim-
ply removing weights from a WAFS, while keeping the same Ar and att.

Theorem 8.6 (Implications and well-foundedness). Given a WAFS, the follow-
ing implications hold (where wfd∗ is the well-founded property as derived from the
defence notion described in the paper indicated by ∗):

1. wfdDung ⇐ wfdBistarelli et al., wfdDung ⇐ wfdMart́inez et al., wfdDung ⇐
wfdCoste−Marquis et al..

2. wfdCoste−Marquis et al. ⇐ wfdBistarelli et al..

3. wfdCoste−Marquis et al. ⇐ wfdMart́inez et al..

4. With the Fuzzy c-semiring, wfdMart́inez et al. ⇔ wfdCoste−Marquis et al.,
wfdMart́inez et al. ⇒ wfdw.

5. With the Boolean c-semiring, wfdBistarelli et al. ⇔ wfdMart́inez et al. ⇔
wfdCoste−Marquis et al..

The well-foundedness property is interesting because it points to a framework
where there exists only one set of arguments that is worth to be considered under
any semantics. According to [28], every well-founded AF has exactly one complete
extension, which is also grounded, preferred, and stable. The same result is preserved
also in each of the weighted approaches in Section 5. Theorem 8.7 formalises this
result.

Theorem 8.7 (Uniqueness of extensions). Given a notion of weighted acceptability,
any well-founded WAF where the grounded extension is also complete, has exactly
one complete extension, which is also grounded, preferred, and stable.

Note there is an additional condition with respect to [28]: it is related to the
(weighted) grounded extension, which needs to be also complete according to The-
orem 8.7. This condition is required by the fact that WAF s may have several
grounded extensions, as in fact it may happen in [30], [41], [26], and [15]. This is
in general not desirable, since the grounded extension should represent the most
sceptical unique point of view. The multiplication of the grounded extensions is due
to having several derived frameworks by disaggregating attacks ([30] and [41]), or
to imposing additional constraints on weighted acceptability ([41] and [15]).
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Uniqueness of the Grounded Extension. It could be interesting to relax the
grounded extension in case it corresponds to the empty-set because it does not bring
so much information. Nevertheless, it is also to maintain its unicity. In fact, the
idea behind the grounded extension is to represent a core set of “least questionable”
arguments, being composed of only non-attacked arguments and arguments defended
by them (directly and indirectly). For this reason, having several of these least
questionable positions makes them not so least questionable anymore.

For example, let us consider a WAFS with arguments Ar = {a, b, c, d}, and
att(a, b), att(b, c), att(b, d), all with a weight of 1 (using the Weighted c-semiring):
w(a, b) = 1, w(b, c) = 1, w(b, d) = 1. The set of weighted complete-extensions (wcom
for short) in [15] is {{a, c}, {a, d}}, and then there is no single least element with
respect to set inclusion: in a classical formulation of this semantics, we would have
two wgrd extensions.14

Concerning the approach in [15], the authors of [18] re-obtain a single wgrd exten-
sion, which however is not always also wcom.15 The wgrd extension is there defined
as the maximal, w.r.t. set inclusion, wadm extension included in the intersection of
wcom extensions. They follow the same approach used in [8] to alternatively define
the ideal and eager semantics.

Definition 8.8 (Weighted grounded). Given a WAFS, F = 〈Ar , att, w,S〉, an ex-
tension T = wgrd(F ), iff T ∈ wadm(F ), and T ⊆ ⋂wcom(F ), and @T ′ ∈ wadm(F )
satisfying T ′ ⊆ ⋂wcom(F ) s.t. T ( T ′.

Some of the derived properties in [18] are also reported in the three propositions
below.

Proposition 8.9 (Existence and unicity). wgrd(F ) always exists and is unique.

Proposition 8.10. If S is the Boolean c-semiring then wgrd(F ) is equivalent to the
classical grounded extension [28].

Proposition 8.11. wgrd(F ) corresponds to the set of sceptically accepted arguments
in wcom(F ).

Considering the initial example in this paragraph, wgrd(F ) = {a} is not wcom
but only wadm.

14According to [28] instead, the grounded extension is {a, c, d} in this case. In order to differen-
tiate them from their original formulation, in this paragraph we will use wcom, wadm, and wgrd
to point to weighted complete, admissible, and grounded respectively.

15This possibility motivates the additional condition in Theorem 8.7.
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9 Tools and Applications
We split this section in two parts. First we describe software tools that can be used
as solvers of the weighted problems described in this paper, and then we show two
applications on online platforms, Twitter.com and Amazon.com.

9.1 Tools
In the following we focus on ConArg and ConArgLib, respectively a solver and library
based on the former stand-alone solver. Such tools can be used to compute both
classical and weighted extensions, and write C++ programs that can implement
decision-making procedure using them, for instance.

ConArg16 [17; 14] is an Argumentation reasoner based on Gecode17, which is an
open, free, and efficient C++ library where to develop constraint-based applications.
ConArg is able to find all the classical extensions on a given classical AF [28] and
using one of the following semantics: conflict-free, admissible, complete, stable,
grounded, preferred, semi-stable, eager, stage, and ideal. In addition, it can check
the credulous or sceptical acceptance of a given argument with respect to semantics.
Besides classical (unweighted) problems, ConArg also deals with WAF s, being able
to solve αγ-conflict-free, αγ-admissible, αγ-complete, αγ-preferred, αγ-stable, and
αγ-grounded extensions (as presented in Section 7). The solver is offered to users as
a command-line executable, or through a Web-interface. ConArg has been extended
to deal with probabilities [12] and ranking-based semantics [11].

ConArgLib is a C++ library implemented to help developers solve some problems
related to extension-based Abstract Argumentation. ConArgLib represents one of
the first attempts to provide a fast implementation of a library to support the
solution of problems in Abstract Argumentation. A developer can use it as the basic
brick to directly develop her own applications, instead of interfacing to an external
solver: as an example, solving the existence of a non-empty extension, and the
credulous/sceptical acceptance of arguments can be used to set-up a decision-making
procedure by ranking arguments, and then selecting the decision supported by the
strongest ones. ConArgLib solves all the problems solved by ConArg. Moreover, it
extends it in two different ways: i) a developer may now choose different branching
strategies (branching defines the shape of the search tree), and ii) can start a parallel
search, using more than one thread at the same time.

16http://www.dmi.unipg.it/conarg/.
17http://www.gecode.org.
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9.2 Applications

The most popular applications of WAF s are addressed to online social platforms,
as social networks and e-commerce/reviewing portals. In this case weights can be
extracted from different sources: e.g., the number of repetitions the same (or similar)
argument has been proposed by different users, the number of likes, the number of
shares, etc. In the following sections we show two applications, both using ConArg
as the underlying engine.

A further application, using VAFs to help the analysis of Twitter.com discussions,
is presented in [1].

9.2.1 Microdebates

Microdebates [34] are inspired by Twitter.comâĂŹs microblogging. A microdebate
is a stream of tweets where users annotate their messages by using some special
tags. Posts contain terms called hashtags, i.e. a # symbol followed by a text string,
representing the stream of news the tweet belongs to. There may be more than one
hashtag per post (in case the same post is related to multiple streams).

In such an application, a hashtag identifies the discussion (e.g., #debateName):
as customary, this ensures that the tweet will appear in the right stream (a microde-
bate). Moreover, a user may take advantage of two additional special tags: $ and !$.
$opinionName specifies the opinion a tweet supports, while !$opinionName specifies
the opinion a tweet counters.

The Microdebates App is distributed via Google Play [46]. The application has
a client-server architecture: the server runs a background process that manages the
interaction with Twitte.comr. It maintains a MySQL database containing all the
information that is shown on the client side: tweets, topics, word clouds, and other
data extracted from the tweets, such as attacks and weights, needed to compute the
extensions. In the Microdebates application, weights are determined by counting
the tweets that express a given attack. The server retrieves from Twitter.com all
new tweets about the topics listed in the database using a Java library for the
Twitter.com API. To compute the extensions, the server process invokes ConArg
methods for α-preferred extensions.

On the client side, the purpose is to provide the user with an interface to en-
ter new tweets and, mainly, to navigate through microdebates. Microdebates uses
computational (weighted) Argumentation to rank opinions and drive the visualisa-
tion. The result is a visual summary of the debate that takes into account semantic
information such as explicit attack relations that link arguments together. If an
argument a belongs to an α-preferred extension T (see Section 7), we know two
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Figure 7: Two WAF s obtained with the Microdebates App, assembled through an
experiment with real users (figure taken from [46]).

things: i) a can peacefully coexist with the other arguments in T , the inconsistency
within T being at most α, and ii) for every tweet attacking it, there exists at least
another tweet that counters the attack. So, it is reasonable to give arguments in T
the status of “popular” argument.

The authors of [46] conducted microdebates experiments with ten participants in
the 25-34 age group. Each group was given a topic, and a 40-minute time frame to
discuss the topic by using Microdebates App. At the end of 40 minutes a two-hour
break was given, and then a different topic was proposed, for a total of four different
topics The first two topics were “Are occupy protest movements justified?” (#mdoc-
cupy) and “Is nuclear energy justified and should it be expanded?” (#mdnuke),
whose related WAF s are represented in Figure 7.

The first microdebate has three 1-sceptically preferred arguments (contained in
all the extensions) displayed in white, and five 1-credulously preferred arguments
(contained in at least one extension) displayed in grey. The second microdebate
has two 3-sceptically preferred arguments (white), four 3-credulously preferred ar-
guments (grey), and two losing arguments (black).

9.2.2 Amazon.com Reviews

In [32] and [33] the authors consider 253 reviews of a selected product (a ballet tutu
for kids), extracted from the “Clothing, Shoes and Jeweller” section of Amazon.com.
They manually extract abstract arguments from such reviews, and they study how
their characteristics, e.g., the distribution of positive (in favour of purchase) and
negative ones (against purchase), change through a period of four years. Among
other results, they discover that negative arguments tend to permeate also positive
reviews. As a second step, by using such observations and distributions, we suc-
cessfully replicate the reviewers’ behaviour by simulating the review-posting process

1614



Weighted Argumentation

from their basic components, i.e., the arguments themselves.
Reviews are in the period between January 2009 and July 2014. A total of 24

positive and 20 negative claims are manually identified. Arguments with the same
claim are grouped together, and the number in each group represents the weight
associated with them: for example, “The kid loved it” is a positive claim with a
strength of 78, while “The tutu has a bad quality” is a negative claim with a weight
of 18. Also attacks were manually extracted and the resulting AF is represented in
Figure 8.

The set of classical stable (and semi-stable) extensions counts 256 different in-
stances, which exactly correspond also to the set of preferred extensions. Complete
extensions are 6, 651. Since all such information is complicated to be somehow anal-
ysed and interpreted (attacks are almost all symmetric), the authors switch to using
the weighted Argumentation approach and the relaxation described in Section 6. In
this case, it is necessary to relax defence to γ = 22 in order to obtain more than
zero 0γ-stable extensions, i.e., 16 in this case. Hence, we obtain a small subset of
stable extensions with no internal conflict, but able to counter-attack better than
the attack they receive. This set represents a refined subset of the original 256 stable
extensions obtained when considering the graph as unweighted.

10 Summary and Future Research

In this paper we have surveyed Weighted Argumentation Frameworks, or WAF s for
short. More in particular, we summarised different key-points of their formalisation,
relaxation, semantics, and applications. Such frameworks can be useful when a more
fine-grained level of detail is necessary to measure the acceptability of arguments by
looking at the strength of attacks.

Preference systems, both qualitative and quantitative, are used in this paper to
refine the notion of defence: different preference systems are used in the literature,
from simple values in R to more general and parametric structures as c-semirings,
which also deal with partially-ordered attacks. Having weights as labels allows for
tolerating a certain amount of attack among arguments: some works name this
inconsistency budget α or β, which is the “sum” of the disregarded weights. Be-
sides such an internal (with respect to extensions) relaxation, also defence can be
mitigated by thus allowing more arguments to be defended by the same set: a com-
plete relaxation brings to totally ignore the difference between attack and defence
weights, consequently leading to classical defence [28]. In addition, extension-based
semantics can be revised according to previous concepts, and it is then possible to
define weighted complete, preferred-extensions, and so on. Having redefined AF s
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to WAF s, also classical properties of frameworks need to be revised, as for exam-
ple whether a framework is well-founded or not: in well-founded frameworks, the
grounded extension as well as the complete/preferred/stable extensions coincide.
Finally, we have presented how WAF s naturally find an application to the world
of social-media, where information is rated by users, and such scores can be easily
converted to preference values for what posted.

Future research. Despite the quite large number of proposals in the literature,
there is still a considerable number of open research lines concerning WAF s. For
example, a few works go beyond the definition of weighted semantics and investigate
if well-established properties that hold for classical frameworks in [28] also hold in
WAF s. Section 8 explores well-founded frameworks, but other properties, such as
for example, the existence of (weighted) stable extensions, or the uniqueness of a
(weighted) preferred extension, need to be generalised as well. First steps towards
formalising these results initiated in [19].

In addition, considering Section 3, the different translation methods of weights
from arguments to attacks are not proven to maintain the semantics between the
original framework and the destination one. The relations among these approaches
need to be examined further.

Moreover, complexity results are only clearly stated in [30]: the β versions of
the decision problems are in fact no harder (although of course no easier) than the
corresponding unweighted decision problems, except for the grounded extension: in
[30] there are several grounded extensions, and consequently the computation of e.g.
the sceptical acceptance of an argument is coNP-complete, instead of being trivial
as in [28]. More general results along this direction are needed, considering also the
other presented approaches.

One additional path to investigate concerns Weighted Bipolar Argumentation
Frameworks [23], where the set of edges in a graph is bipartite into support and
attack relationships. For example, the proposal in [2] adopts weights on arguments:
it will be interesting to check how compensating defence and attack techniques can be
adapted to support and attack edges, and how the relaxation presented in Section 6
can be used in bipolar settings. Along the same line, we can study weighted Higher-
order Argumentation Frameworks, where attacks may target attacks, and they are
in turn associated with a weight.

Finally, existing applications prove that weighted frameworks are really use-
ful when paired to social platforms as Twitter.com or Amazon.com, because such
systems natively encourage users to rate posts or reviews. We reckon that the de-
velopment of Argument Mining techniques on social platforms and the analysis of
threads via WAF s can foster the use of such platforms (or dedicated “rooms” in
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them) as debating systems, undermining the effect of fake news and summarising
how the discussion is structured.
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Abstract

Within argumentation dynamics, a major strand of research is concerned
with how changing an argumentation framework affects the acceptability of
arguments, and how to modify an argumentation framework in order to guar-
antee that some arguments have a given acceptance status. In this chapter, we
overview the main approaches for enforcement in formal argumentation. We
mainly focus on extension enforcement, i.e., on how to modify an argumenta-
tion framework to ensure that a given set of arguments becomes (part of) an
extension. We present different forms of extension enforcement defined in the
literature, as well as several possibility and impossibility results. The question
of minimal change is also considered, i.e., what is the minimal number of mod-
ifications that must be made to the argumentation framework for enforcing an
extension. Computational complexity and algorithms based on a declarative
approach are discussed. Finally, we briefly describe several notions that do not
directly fit our definition of extension enforcement, but are closely related.
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1 Introduction
At the beginning of the 2010s several problems regarding dynamic aspects of abstract
argumentation have been addressed in the literature [30; 38; 28; 65]. One much cited
problem among these is the so-called enforcing problem dealing with changing the
acceptability of certain arguments [17]. Over the years, the problem gained more
and more attention which finally leads to the writing of this chapter. In its very
first version the problem can be briefly summarized as the question whether it is
possible, given a specific type of syntactic changes, to modify a given AF such that a
desired set of arguments becomes (a subset of) an extension. Consider the following
snapshot of a dialogue among agents A and B depicted in Figure 1. Assume it is
A’s turn and her desired set of arguments is E = {a1, a2, a3}. Furthermore, A and
B are discussing under preferred semantics, which selects maximal conflict-free and
self-defending sets of arguments.

a1 a2 a3

b1 b2 b3

c

jkj jkjklll
c b2 b3

d

?

Figure 1: Snapshot of a dialogue

In order to enforce E, agent A may come up with new arguments which interact
with the old ones (for example through introducing an argument d which attacks
b2 and b3) and/or question old arguments or attacks between them, respectively
(for example through questioning the self-attack of c). Please note that first, in
this scenario, enforcing is possible and second, that there are at least two different
possibilities to achieve that. This insight leads to a further well-studied issue, namely
the so-called minimal change problem firstly introduced in [13]. This problem is
defined as a generalization of the classical enforcing problem since one is not only
interested in whether enforcements are possible, but also in the effort needed to
enforce a set of arguments. One numerical measure which is frequently used for this
effort corresponds to the number of additions or removals of attacks to reach such an
enforcement. The main motivation behind this measure is that adding or removing
an isolated argument does not contribute at all to solving or increasing a given
conflict, i.e. the conflicting information remains the same. This means, the decrease

1624



Enforcement in Formal Argumentation

or increase of a conflict is directly linked to upcoming or disappearing attacks and
thus, counting attacks only is a reasonable approach. Regarding the introductory
example we obtain a minimal effort of 1 if allowing arbitrary modifications.

In this chapter we give an overview over main variants of enforcement studied
in the literature. We give a particular focus on strict and non-strict extension
enforcement, whose aim is to modify an AF such that a desired set of arguments
becomes exactly (or part of) an extension, under a semantics. A main distinguishing
factor among the family of operators for extension enforcement is how an AF may be
modified. We highlight here changes corresponding to expansions, i.e., additions of
arguments and attacks such as the addition of argument d above, or local updates,
i.e., modifying only the attack structure such as questioning the self-attack of c, but
also discuss modifications to AFs more broadly, as well. Additionally, we consider
as an instance of a change that does not affect the structure of the framework,
modifications of the chosen semantics, in order to enforce a set of arguments.

We present main formal properties of extension enforcement derived in the lit-
erature, e.g., for impossibility and possibility results, and results for the minimal
change problem of extension enforcement. We further survey results regarding the
complexity of reasoning on enforcement and present algorithms based on declarative
approaches to implement enforcement.

The chapter starts off with recalling formal preliminaries of AFs (Section 2) in-
cluding types of modifications on AFs. The main section on extension enforcement
is Section 3, which first introduces enforcement as a general problem, and focuses
on the extension enforcement variant. In this section, we present expansion-based
extension enforcement and extension enforcement based on locally updating an at-
tack structure without modifying the set of arguments. Further, minimal change,
semantics change, complexity results, and algorithms, are presented. In Section 4
we survey related notions to enforcement, and we close with a discussion of related
works (Section 4.5) and with conclusions (Section 5).

2 Formal Preliminaries
In order to keep the chapter self-contained we review all relevant definitions. We
start with the basic notions of Dung’s abstract argumentation theory [54].

2.1 Argumentation Frameworks and Semantics
An abstract argumentation framework (AF) is just a directed graph F = (A,R)
where a node a ∈ A is called an argument and a pair (a, b) ∈ R ⊆ A × A is in-
terpreted as an attack from argument a to argument b. We require that any AF
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F = (A,R) possesses arguments from a fixed reference set U , i.e. A ⊆ U . More-
over, in this chapter we restrict ourselves to finite AFs, i.e. any AF consists of
finitely many arguments and attacks only. Note that this is a common restric-
tion in the literature although actual and potential infinite AFs play an impor-
tant role in practical applications as well as theoretical considerations (cf. [8; 22;
16] for more information). At the heart of Dung’s abstract argumentation theory
are argumentation semantics which formalize intuition of what should be acceptable
in the light of conflicts. Two main approaches to argumentation semantics can be
found, namely so-called extension-based and labelling-based versions (cf. [7] for an
introduction and [10, Sections 2.2, 4.4] for further relations). In this chapter we
concentrate on the former only. Consider the following generic definition. The set
F refers to all considered AFs.

Definition 2.1. A semantics is a total function

σ : F → 22U F = (A,R) 7→ σ(F) ⊆ 2A.

A set of arguments E ∈ σ(F) is called a σ-extension. Moreover, we say that
a semantics σ is universally defined if each AF admits at least one extension with
respect to this semantics, i.e. for any F ∈ F , |σ(F)| ≥ 1. Furthermore, a semantics
σ is said to be uniquely defined if always exactly one set of arguments is returned,
i.e. |σ(F)| = 1 for any F ∈ F .

Before presenting the relevant semantics for this chapter we have to introduce
some further notation. Given an AF F = (A,R) and a set E ⊆ A. We use E+

F ,
or simply E+, for {b | (a, b) ∈ R, a ∈ E}. Moreover, E⊕F , or simply E⊕, is called
the range of E and stands for E+ ∪ E. Analogously, E−F (or simply E−) stands for
{b | (b, a) ∈ R, a ∈ E}, and E	F (or simply E	) corresponds to E−∪E. An argument
a is defended by E (in F) if for each b ∈ A with (b, a) ∈ R, b is attacked by some
c ∈ E. Finally, ΓF : 2A → 2A with I 7→ {a ∈ A | a is defended by I} denotes the
so-called characteristic function (of F).

Besides conflict-free and admissible sets (abbreviated by cf and ad) we con-
sider a large number of well-known semantics, namely naive, stage, stable, semi-
stable, complete, preferred, grounded, ideal, and eager semantics (abbreviated by
na, stg, stb, sst, co, pr , gr , id, eg, respectively).

Definition 2.2. Let F = (A,R) be an AF and E ⊆ A.
1. E ∈ cf (F) iff for no a, b ∈ E, (a, b) ∈ R,

2. E ∈ na(F) iff E is ⊆-maximal in cf (F),

3. E ∈ stg(F) iff E ∈ cf (F) and E⊕ is ⊆-maximal in {I⊕ | I ∈ cf (F)},
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4. E ∈ stb(F) iff E ∈ cf (F) and E⊕ = A,

5. E ∈ ad(F) iff E ∈ cf (F) and E ⊆ ΓF (E),

6. E ∈ sst(F) iff E ∈ ad(F) and E⊕ is ⊆-maximal in {I⊕ | I ∈ ad(F)},

7. E ∈ co(F) iff E ∈ cf (F) and E = ΓF (E),

8. E ∈ pr(F) iff E is ⊆-maximal in co(F),

9. E ∈ gr(F) iff E is ⊆-minimal in co(F),

10. E ∈ id(F) iff E is ⊆-maximal in {I | I ∈ ad(F), I ⊆ ⋂ pr(F)},

11. E ∈ eg(F) iff E is ⊆-maximal in {I | I ∈ ad(F), I ⊆ ⋂ sst(F)}.

It has been shown that any of the introduced semantics is universally defined
except the stable one and moreover, grounded, ideal and eager semantics are even
uniquely defined (cf. [21] for an overview). In order to get familiar with the intro-
duced definitions consider the following example taken from [15].

Example 2.3. Consider the AF F = (A,R) with A = {a, b, c, d, e, f} and R =
{(a, b), (a, d), (b, c), (c, a), (d, d), (e, d), (e, f), (f, e)}. The graphical representation of
F is given below.

cb

a d e f

The evaluation of F w.r.t. the introduced semantics is given in the following
table. The entry “X" in row “σ" and line “E" stands for E ∈ σ(F).
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dstbp dsstp dstgp dprp dadp dcop dgrp didp degp dnap

X X X X

X X X X X

X X X

X X

X

X

X

X

X

X

X

X

∅

{e}

{f}

{a, e}

{b, e}

{c, e}

{a, f}

{b, f}

{c, f}

Table 1: Evaluation table of F

The AF F is an example for a collapse of stable semantics, i.e. stb(F) = ∅. The
non-existence of stable extensions in F implies the occurrence of odd-length cycles
like the 3-cycle [a, b, c, a] or the self-loop [d, d]. More precisely, in case of finite AFs
we have that being odd-cycle free is sufficient for warranting at least one stable
extension [54; 81].

As already indicated in Table 1 there are several well-known subset relations
between the considered semantics. For instance, for any AF F we have, stb(F) ⊆
sst(F) ⊆ pr(F) ⊆ co(F) ⊆ ad(F) and stb(F) ⊆ stg(F) ⊆ na(F).

2.2 Acceptance Modes and Structural Changes

In the following we present several acceptance modes and structural changes, that
is, changes on the structure (addition or removal of arguments and attacks) of the
AF, which can be used to specify a certain type of enforcement.

So-called credulous and sceptical acceptance are the most common reasoning
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types for abstract argumentation semantics. They are usually defined for single
arguments only. We present their definitions for sets of arguments where the classical
single argument acceptance can be obtained by considering the singleton of the
argument in question. Moreover, since a non-universally defined semantics σ may
return no σ-extension for a given AF F we consider so-called non-empty sceptical
reasoning which avoids the (possibly) unintended situation that every argument
is sceptically accepted due to the emptiness of σ(F). A further frequently used
acceptance mode is the requirement to be contained in at least one extension, so-
called covered acceptance1. This notion plays a central role in the field of enforcement
and is located in-between non-empty sceptical and credulous acceptance.

Definition 2.4. Given a semantics σ, an AF F = (A,R) and a set E ⊆ A. We say
that E is

1. credulously accepted w.r.t. σ if E ⊆ ⋃σ(F),

2. sceptically accepted w.r.t. σ if E ⊆ ⋂σ(F),

3. non-empty sceptically accepted w.r.t. σ if E ⊆ ⋂σ(F) and σ(F) 6= ∅,

4. covered accepted w.r.t. σ if there is an E′ ∈ σ(F), s.t. E ⊆ E′.

For convenience we introduce the following unified notation. We write E ∈
cred(F , σ), E ∈ scep(F , σ), E ∈ scep 6=∅(F , σ) or E ∈ cov(F , σ) for E is credulously,
sceptically, non-empty sceptically or covered accepted, respectively. Moreover, for
any given reasoning type r we use E ∈ rs(σ,F) to indicate that there is an equality
instead of a subset relation only, e.g. there is an E′ ∈ σ(F), s.t. E = E′ in the case
of covered acceptance (or, said otherwise, E ∈ σ(F)). In this case we say that the
considered set E is strictly accepted. If E is non-empty sceptically accepted w.r.t.
σ then E is covered accepted w.r.t. σ (since E must be part of all σ-extensions and
there is at least one), and the latter implies that E is credulously accepted w.r.t. σ
(since the witness for being covered accepted is a witness for credulous acceptance).

Let us proceed with the running AF exemplifying several acceptance modes.

Example 2.5 (Example 2.3 cont.). Let σ = stb. Since stb(F) = ∅ we obtain⋃ stb(F) = ∅ and ⋂ stb(F) = U . Hence, any set E ⊆ U is sceptically, but not
non-empty sceptically accepted, i.e. E ∈ scep(F , stb) and E /∈ scep 6=∅(F , stb). More-
over, E is neither credulously, nor covered accepted, i.e. E /∈ cred(F , stb) and

1We mention that this notion is sometimes called credulous acceptance [55, p. 704]. This is
due to the fact that that there are at least two options if generalizing credulous acceptance from
arguments to sets of arguments.
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E /∈ cov(F , stb).
Consider now σ = pr . Since pr(F) = {{e}, {f}} we have ⋃ pr(F) = {e, f} and⋂ pr(F) = ∅. Thus, {e, f} is credulously strict but neither sceptically nor non-empty
sceptically accepted, i.e. {e, f} ∈ creds(F , pr), {e, f} /∈ scep(F , pr) and {e, f} /∈
scep 6=∅(F , pr). Moreover, {e, f} is not covered accepted whereas {e} and {f} are and
this acceptance is even strict, i.e. {e, f} /∈ cov(F , pr) and {e}, {f} ∈ covs(F , pr).

We now introduce typical structural changes. The most general form of dy-
namic scenarios are so-called updates where arguments and attacks can be deleted
and added. If we do not delete any information we call the structural change an
expansion [17; 76; 12]. The following kinds of expansions have received particular
attention in the literature. Normal expansions add new arguments and possibly
new attacks which concern at least one of the fresh arguments. Moreover, local
expansions do not introduce any new arguments but possibly new attacks among
the old arguments. Both types of expansions naturally occur in the context of
instantiation-based argumentation [27; 35]. For instance, adding a new piece of
information to the underlying knowledge base corresponds to a normal expansion
on the AF level. Furthermore, changing the considered notion of attack left the
constructed arguments untouched and results in a local expansion. Two further
subconcepts of normal expansions are usually considered, so-called strong and weak
expansions. Their names refer to properties of the additional arguments, namely
arguments which are never attacked by former arguments (strong arguments) and
arguments which do not attack former arguments (weak arguments). The former
type typically occurs in a debate if one tries to strengthen the own point of view via
rebutting the opponents arguments. Note that weak expansions seem to be more
an academic exercise than a task with practical relevance with regard to real-world
argumentation. However, they do play a decisive role in the context of splittings [11;
19; 6].

Consider the formal definition of the discussed types of expansions.

Definition 2.6. An AF G is an expansion of AF F = (A,R) (for short, F �E G) iff
G = (A ∪ B,R ∪ S) for some (maybe empty) sets B and S, s.t. A∩B = R∩S = ∅.
An expansion is called

1. normal (F �N G) iff ∀ab ((a, b) ∈ S → a ∈ B ∨ b ∈ B),

2. strong (F �S G) iff F �N G and ∀ab ((a, b) ∈ S → ¬(a ∈ A ∧ b ∈ B)),

3. weak (F �W G) iff F �N G and ∀ab ((a, b) ∈ S → ¬(a ∈ B ∧ b ∈ A)),

4. local (F �LG) iff B = ∅.
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Example 2.7. Consider the following simple AF F . The presented AFs FX rep-
resent examples for F �X FX . This means, FN is a normal expansion of F . Note
that grey-highlighted arguments or attacks represent added information.

aF : b aFE : b

c d

aFN : b

c d

aFS : b

c d

aFW : b

c d

aFL : b

Figure 2: Different kinds of expansions

The natural counter-parts to expansions are so-called deletions where no further
arguments and attacks are added [30; 28; 14]. We consider two sub-classes of dele-
tions representing the inverse operations to normal and local expansions, namely
normal and local deletions. Normal deletions retract arguments and their corre-
sponding attacks. Such a kind of structural change occurs in the instantiation-based
context if we delete information from the underlying knowledge base. Changing to a
more restrictive notion of attack corresponds to a local deletion where only attacks
are discarded.

In order to present the precise formal meaning of deletions we have to introduce
some operations on directed graphs first. First, we use F t H for the pointwise
union of two AFs. In Definition 2.8, such an union is used in order to represent the
addition of information (encoded in H ) to an initial AF (F). Secondly, the restriction
of F = (A,R) to a set B ⊆ A abbreviated as F |B is given via (B,R ∩ (B ×B)).

Definition 2.8. Given an AF F = (A,R), a set of arguments B and a set of attacks
S as well as a further AF H . The AF

G = (F \ [B,S]) tH :=
(
(A,R \ S)|A\B

)
tH

is called an update of F (for short, F �U G). An update is called a

1. deletion (F �D G) iff H = (∅, ∅),

2. normal deletion (F �ND G) iff F �D G and S = ∅,
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3. local deletion (F �LD G) iff F �D G and B = ∅.

Let us take a closer look at the definition of G = (F \ [B,S]) t H . The AF
H plays the role of added information, i.e. it contains new arguments and attacks.
Consequently, for all kind of deletions we have H = (∅, ∅) which leaves us with
G = F \ [B,S]. The set B contains arguments which have to be deleted. Since
attacks depend on arguments, we have to delete the attacks which involve arguments
from B too. This operation is formally captured by the restriction of F to A \ B.
Furthermore, the set S contains particular attacks which have to be deleted. This
means, the pair [B,S] does not necessarily have to be an AF. Therefore we use [B,S]
instead of (B,S). If clear from context we use B and S instead of [B, ∅] or [∅, S], i.e.
we simply write F \B as well as F \S for normal or local deletions, respectively. Note
that the different kinds of expansion presented in Definition 2.6 can be captured by
setting B = S = ∅. Deletions and expansions are dual concepts: F �E G if and
only iff G �D F , and similarly for the normal or local versions.

Example 2.9. The AF F represents the initial situation. An update as well as
arbitrary, normal or local deletion of it are given by FU , FD, FND and FLD. Grey-
highlighted arguments or attacks represent added information in contrast to dotted
arguments and attacks which represent deleted objects.2 More formally, in accor-
dance with Definition 2.8 we have that FU = (F \ [B,S]) t H , FD = F \ [B,S],
FND = F \B, FLD = F \ S where the set of arguments B = {c}, the set of attacks
S = {(b, a)} and the AF H = ({b, d, e, f}, {(d, b), (e, f), (f, d)}).

aF : b

c d

aFU : b

c d

e

f

aFD : b

c d

aFND : b

c d

aFLD : b

c d

Figure 3: An update and different kinds of deletions

2This convention will be used throughout the whole chapter.
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3 Enforcement
3.1 The General Setup
The starting point of any extension enforcement case is:

• an AF F ,

• a semantics σ,

• a certain desired set of arguments E, together with

• a reasoning, acceptance mode r, e.g. credulous, sceptical, non-empty sceptical,
covered, with a strict or non-strict goal achievement (cf. Section 2.2).

In addition, parameters indicating the way of achieving the enforcement can be
specified, namely:

• allowed types of structural changes like update, expansion and deletion (cf.
Section 2.2),

• allowed types of semantic changes, if any (cf. Section 3.2.4), and

• whether these changes would have to be minimal, and in which sense (cf.
Section 3.2.3).

For illustrative purposes let us assume that r stands for credulous acceptance.
Consequently, enforcement is needed if and only if E is not credulously accepted
w.r.t. σ in F , i.e. E /∈ cred(F , σ). This is why we often speak of the desired set of ar-
guments E since we want to fix the defect of non-acceptance. In order to achieve this
goal we have two main options, namely structural changes and/or semantic changes.
More precisely, we are looking for changes of AFs, from F to G, and/or semantics,
from σ to τ , s.t. E is credulously accepted w.r.t. τ in G, i.e. E ∈ cred(G, τ). The
way of how to perform the structural change is fixed in advance. For instance, one
may require that only local expansions of F are allowed, i.e. F �L G. The same
applies to the semantic change. One may allow changes to any kind of semantics
or to admissibility-based ones only. Another option would be to completely forbid
semantic changes, i.e. τ = σ. In the following definition, we call a modification type
M ⊆ F × F a relation such that (F ,G) ∈ M iff, when F is an initial AF, then G
is a possible result of modifying F . For instance, M = �L means that only local
expansions are authorized.

Consider the following formal definition of an enforcement.
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Definition 3.1. Given two AFs F and G, two semantics σ and τ , a modification
type M ⊆ F × F , a set of argument E, and a reasoning mode r. A pair (G, τ) is
called an (F , σ,M, r)-enforcement of E if

1. (F ,G) ∈M and

2. E ∈ r(G, τ).

Moreover, we call G the τ -enforcing AF and we say that E is τ -enforced by G.

The different kinds of expansions and deletions presented in Definitions 2.6, 2.8
are captured by settingM ∈ {�E ,�N ,�S ,�W ,�L,�U ,�D,�ND,�LD}. Note that
F �N G can be equivalently rewritten as (F ,G) ∈ �N since �N is formally a binary
relation over F , i.e. �N ⊆ F ×F . Whenever F , σ, M and r are clear from context
we simply speak of enforcements of E. If the set in question is strictly accepted
we speak about a strict enforcement (for instance, r = covs), otherwise non-strict
(for instance, r = cov). Moreover, we distinguish between conservative (σ = τ)
and liberal enforcements (σ 6= τ). The latter may be interpreted as a change of
proof standard or paradigm shift. Imagine a judicial proceeding. Here it is vitally
important whether you are accused on the base of criminal or civil law. The required
evidence is different and hence the acceptable sets of arguments differ.

Consider the following two examples taken from [17].

Example 3.2 (liberal, strict). Given F as presented below, σ = stb, M = �U ,
r = covs and the desired set E = {a1, a3}.

a1 a2 a3 a4 a5

Since stb(F) = {{a1, a4}} we have E /∈ covs(stb,F). How to enforce E? De-
fine an enforcement (G, τ) of E with F = G and τ = pr . Note that pr(G) =
{{a1, a3}, {a1, a4}} justifies the claim because E ∈ covs(G, pr) holds. The consid-
ered enforcement is strict and liberal and F is the pr-enforcing AF.

Example 3.3 (conservative, non-strict). Given σ = gr , M = �S, r = cov, E =
{a2} and F = ({a1, a2, a3} , {(a1, a2), (a2, a1), (a2, a3)}) as presented below.

a1 a2 a3b1
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Note that gr(F) = {∅}. Hence, E /∈ cov(gr ,F). In this example we allow
strong expansions only. Is it possible to enforce E? The answer is “yes". Consider
the enforcement (G, τ) of E with G defined as depicted above and τ = σ. Since
gr(G) = {{b1, a2}} we deduce E ∈ cov(G, gr). The considered enforcement is non-
strict and conservative and G is the gr-enforcing AF.

3.2 Extension Enforcement with Structural Change
We start with a review of one of the most prominent enforcement operators in
the literature, named extension enforcement [17; 13; 43; 52; 85; 60]. Extension
enforcement refers to a family of enforcement operators that all deal with covered
acceptance, i.e., the enforcement goal is to modify a given AF such that a desired
set of arguments becomes an extension, or becomes part of an extension, under a
semantics. Both strict and non-strict variants were studied.

The main distinguishing aspect of various extension enforcement operations is
what kind of modification type is permitted. Concretely, we look at extension en-
forcement allowing only expansions (Section 3.2.1), permitting only local modifica-
tions (Section 3.2.2), i.e., changing the attack structure, restricting change to be
minimal (Section 3.2.3), and changing semantics (Section 3.2.4).

3.2.1 Expansion-based enforcement

In this section we consider conservative (non-)strict enforcements w.r.t. covered
reasoning mode under different forms of expansions. More precisely, for a given
AF F = (A,R), a semantics σ and a desired set of arguments E ⊆ A we look
at pairs (G, σ) being (F , σ,M, cov) enforcements of E. We allow M ∈ {�E ,�N ,
�S ,�W }, i.e. arbitrary, normal, strong, and weak expansions are considered. In the
following, for the sake of brevity, we do not explicitly mention the covered acceptance
mode as well as the conservativeness.

We have already seen a case of non-strict extension enforcement under strong
expansions in Example 3.3. We now exemplify some properties of extension enforce-
ment under expansions.

Example 3.4. Let us consider an AF F = (A,R) with A = {a, b, c, d} and an attack
relation as shown in Figure 4. Say we want to enforce E = {b, d} to be part of an
admissible extension in a non-strict manner, and allowing arbitrary expansions. An
AF G that ad-enforces these constraints is shown, as well, in Figure 4. That is,
expanding by two arguments e and f and adding attacks (b, f), (f, d), and (e, c)
results in {e, b, d} ∈ ad(G), and thus E is non-strictly enforced to be part of an
admissible extension by G. Note that adding the single attack (d, c) only wouldn’t
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do the job since we are interested in non-strict enforcements. However, there are
many more ways to non-strictly enforce the desired set E. We encourage the reader
to find other witnessing ad-enforcing expansions.

a b c d

e

f

Figure 4: AF and expanded AF from Example 3.4

The preceding example illustrates the existence of enforcements. However, in
general, desired enforcements might not exist. Consider the following example.
Example 3.5. Consider again the AF F = (A,R) of Figure 4. We illustrate now
three different sources for the impossibility of enforcements.

1. Assume we aim to strictly ad-enforce E = {b, d} under normal expansions.
While non-strict enforcement of E was possible (cf. Example 3.4), strict en-
forcement is impossible under normal expansions. The intuition is that {b, d}
is not admissible in the original AF F (the attack from c to d is not defended)
and this fact remains true in any normal expansion G of F . The reason is
simply that any new attack in G involves at least one new argument and thus,
E can not defend d in G. However, E can be strictly enforced when allowing
arbitrary expansions, e.g. adding a defending attack (b, c) is an option.

2. Another reason for impossibility of enforcement occurs when considering en-
forcement of sets like {a, b} under any semantics σ that preserves conflict-
freeness, i.e. σ ⊆ cf . The reason is that {a, b} is conflicting in F and thus, it
remains conflicting regardless the considered type of expansion.

3. Even if the set E to be enforced is conflict-free and defends all its elements,
enforcement is, under specific semantics, not always possible. Consider the
aim to strictly co-enforce E = {c} under weak expansions. In F the singleton
E is not complete since it defends a and a /∈ E. Now, weak expansions do not
raise new attacks onto existing arguments which implies that former defense
relations survive. Thus, for any weak expansion G of F we have E still defends
a preventing it from being complete in G.
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The previous observations have been firstly formalized in [17, Proposition 1] and
later considered further in [43, Proposition 1]. In the following we recall some results
and generalize them to other semantics considered in this article.

Proposition 3.6. Given an AF F = (A,R) and E ⊆ A.

• If E 6∈ ad(F ) and σ ⊆ ad, then there is no AF G strictly σ-enforcing E under
normal expansions.

• If E /∈ cf (F ) and σ ⊆ cf , then there is no AF G (non-)strictly σ-enforcing E
under arbitrary expansions.

• If E does not contain all defended arguments in F and σ ⊆ co , then there is
no AF G that strictly σ-enforcing E under weak expansions.

• If σ ∈ {ad, cf ,na, stb} and E /∈ σ(F ), then there is no AF G strictly σ-
enforcing E under normal expansions.

Despite several cases being impossible to enforce, there are interesting conditions
under which an enforcement is always possible. As an illustration, consider the
following example.

Example 3.7. Say we desire to non-strictly ad-enforce E = {b, d} under strong
expansions. This means, we want E to be a strict subset of an admissible extension
of the expanded framework. An example AF G ad-enforcing {b, d} is shown in
Figure 5. Here the new argument e is added which defends both b and d. Since {e}
is admissible in G we obtain via the famous Fundamental Lemma [54, Lemma 10]
that {e, b, d} is admissible as desired.

a b c d

e

Figure 5: AF from Example 3.7

The observation from the example was generalized to further semantics [17, The-
orem 4]. The main construction method is to extend the initial framework with a
new argument which attacks all undesired arguments. We extend the already proven
theorem to all semantics considered in this article.
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Theorem 3.8. Given an AF F , a desired set E ∈ cf (F) and a semantics σ ∈
{ad, stb, pr , co, gr , id sst, eg,na, stg}. There is a strong expansion G of F non-strictly
σ-enforcing E.

Since strong expansions are particular cases of normal expansions as well as
arbitrary expansions, we may state the following corollary.

Corollary 3.9. Given an AF F , a desired set E ∈ cf (F) and a semantics σ ∈
{ad, stb, pr , co, gr , id sst, eg,na, stg}. There are arbitrary as well as normal expan-
sions G of F non-strictly σ-enforcing E.

What about local expansions? Is it possible to (non-)strictly enforce a desired
set E with local manipulations only? For most of the existing semantics we may act
as follows: given the conflict-freeness of E we attack all remaining arguments first
(this is sufficient for σ ∈ {ad, stb, pr , co, sst,na, stg}) and secondly, add self-loops to
the remaining arguments (we additionally cover σ ∈ {id, eg}).

Theorem 3.10. Given an AF F , a desired set E ∈ cf (F) and a semantics σ ∈
{ad, stb, pr , co, id sst, eg,na, stg}. There is a local expansion G of F strictly σ-
enforcing E.

Note that grounded semantics is not included since it requires unattacked argu-
ments which can not be “produced" with the help of local expansions. However, if
there is an unattacked argument in the desired set E, then this unattacked argument
can be used to attack all the arguments outside the directed set, leading to the strict
gr-enforcement of E. Any unattacked argument in the AF can have a similar role
for non-strict enforcement.

Theorem 3.11. Given an AF F and a desired set E ∈ cf (F), if there is an
unattacked argument a ∈ E (respectively a ∈ A), then there is a local expansion
G of F strictly (respectively non-strictly) enforcing E under the grounded seman-
tics.

Let us turn now to a different aspect of enforcing, namely how exactly existing σ-
extensions may change when expanding an AF. In general, the change is very much
non-monotone: this means, arguments accepted earlier may become unaccepted,
others become accepted; the number of extensions may shrink or increase, depending
on the new arguments. For instance, it is easy to verify that we obtain a total
collapse of stable extensions if we revise an AF by adding a self-defeating argument.
Nevertheless, there are a few exceptions as illustrated in the following example taken
from [15, Example 3.11]
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Example 3.12. Consider the weak expansion G of F as depicted below. In Exam-
ple 2.3 we already observed that pr(F) = {{e}, {f}} = {E1, E2}.

cb

a d e f n m

For the weak expansion G we find pr(G) = {E1 ∪ {n}, E1 ∪ {m}, E2 ∪ {m}}.
Consequently, the following interrelations hold:

1. the number of extensions increased

2. every old belief set is contained in a new one

3. every new belief set is the union of an old one and a new argument

The previous example contrasts with the general observation that adding new
arguments and attacks may change the outcome of an AF in a nonmonotonic fashion.
Such a behaviour allows for reusing already computed extensions and has useful
implications w.r.t. justification states. The following theorem [15, Theorem 3.2]
shows that the class of weak expansions and semantics satisfying the directionality
principle guarantee monotonic evolvements. Roughly speaking, the directionality
criterion captures the idea that the evaluation of a certain argument should only be
affected by its attackers and the attackers of its attackers and so on [9].

Theorem 3.13. Given an AF F = (A,R) and a semantics σ satisfying direction-
ality, then for all weak expansions G = (B,S) of F we have:

1. |σ(F)| ≤ |σ(G)|, (cardinality)

2. ∀E ∈ σ(F) ∃E′ ∈ σ(G) ∃C ⊆ B \A, s.t. E′ = E ∪ C and (subset)

3. ∀E′ ∈ σ(G) ∃E ∈ σ(F) ∃C ⊆ B \A, s.t. E′ = E ∪ C. (representation)

It is well-known that admissible, complete, preferred, grounded and ideal se-
mantics satisfy directionality (cf. [83] for an overview). Having the above theorem
at hand we obtain the following relations regarding acceptance modes stating that
credulously, sceptically as well as covered accepted sets persist.

Proposition 3.14. Given an AF F = (A,R) and σ ∈ {ad, co, pr , gr , id}. For any
weak expansions G of F we have:
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• cred(F, σ) ⊆ cred(G, σ),

• scep(F, σ) ⊆ scep(G, σ) and

• cov(F , ad) ⊆ cov(G, ad)

3.2.2 Attack-based enforcement: Argument-fixed and Local Expansion-
based Enforcement

We now turn to extension enforcement under a different kind of modifications to
a given AF. In contrast to the previous section on expansion-based enforcement
where expansion of the set of arguments and attacks, under certain conditions, was
presented, we here look at changes that do not modify the set of arguments, but
exclusively focus on updates of the attack structure.

Definition 3.15. Let F = (A,R) be an AF. We say that G is a local update of F ,
denoted by F �L G, if there is an AF G ′ such that F �L G ′ and G ′ �LD G.

In words, an AF G = (AG , RG) is a local update of F = (AF , RF ) if there is
an intermediate AF G ′ = (AG′ , RG′) that is a local expansion of F (i.e., AG′ = AF
and RF ⊆ RG′) and G is a local deletion of G ′ (i.e., AG′ = AG and RG′ ⊇ RG).
Put differently, G is a local update of F if the set of arguments stays the same, i.e.,
AG = AF , and the attack structure was changed arbitrarily: RG = (RF \ R) ∪ R′
for some R,R′ ⊆ AF ×AF .

In this section we consider extension enforcement under local updates [43]. An
intuition of a local update is that the arguments are unmodified, but some new
attacks are revealed (e.g., in presence of new information), and some attacks are
disputed and discarded (e.g., due to the defeasibility of attacks). Modifying the
attacks between existing arguments can also be seen as an update of the preferences
between arguments [2].3

Example 3.16. Let us look at the same AF F from the preceding section that we
used to exemplify expansion-based enforcement. We recall this AF in Figure 6a.

We begin with looking at enforcement of the set {b, d}. Say, we desire to have this
set of arguments being part of an admissible extension. In F the set {b, d} is conflict-
free but not admissible: the attack from c onto both b and d is not countered. A local
update, in fact a local expansion, that enforces {b, d} to be part of an admissible
extension is shown in Figure 6b. An attack from b to c suffices to have {b, d} defend
both b and d.

3Recall that in preference-based argumentation, the “success" of an attack (a, b) depends on the
fact that b is not preferred to a.
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a b c d a b c d

a b c d a b c d

(a) (b)

(c) (d)

Figure 6: Enforcement by local updates

A different case is exhibited by aiming to have {a, b} being admissible: this set
neither is conflict-free nor defends its arguments. A possible local update is shown in
Figure 6c that enforces {a, b} to be exactly an admissible extension, i.e., realizes strict
extension enforcement under local updates and admissibility. Here, the conflicts
between a and b are removed, to ensure conflict-freeness, and the attack from b to c
is added, to ensure defense.

Finally, consider strict enforcement of {c} under complete semantics. The set
{c} is admissible, yet defends a in F . A possible local update (local expansion) is
shown in Figure 6d. Here one attack from c to a ensures that {c} does not defend
a.

Inspection of the preceding example reveals that several impossible cases, when
requiring certain expansions (see previous section), are, in fact, possible under local
updates. This is no coincidence: enforcement under local updates is possible for all
main semantics of AFs: if E 6= ∅ is to be enforced, for a given AF F = (A,R) there
is the (trivial) local update G = (A,R′) with R′ = {(a, b) | a ∈ E, b ∈ A \ E} (i.e.,
in G, every argument in E is non-attacked, and every argument in A\E is attacked
by all arguments in E). We have E ∈ gr(G), and since the graph structure of G is
acyclic4, most semantics coincide with the grounded semantics.

This observation is formalized next [43, Proposition 4].

Proposition 3.17. Let F = (A,R) be an AF and E ⊆ A be a non-empty set of
arguments. There exists a local update G that enforces E (non-)strictly to be (part
of) a σ-extension, for all σ considered in this chapter.

4In the case of finite AFs, acyclicity corresponds to the well-foundedness property defined by
[54], which implies the coincidence of grounded, stable, preferred and complete semantics. We also
refer the reader to [7] for more details on this topic.
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Obviously, when E = ∅, it can always be non-strictly enforced with local updates,
since E is included in any set of arguments. It is also the case that E can be strictly
enforced with local update.5 Indeed, for a given AF F = (A,R) we can define the
(trivial) local update G = (A,R′) with R′ = {(a, a) | a ∈ A} (i.e., in G, every
argument is self-attacking). In this case, the empty set is the only conflict-free set,
and thus the only extension for most semantics.

We have seen that enforcing a set of arguments with local updates is possible
in general. Both the addition and the removal of attacks are necessary for this
results. Indeed, if only local expansions are possible (i.e. removing attacks is not
permitted), then a conflicting set E cannot be enforced under any semantics that
requires conflict-freeness. Similarly, local deletions are not sufficient for strictly
enforcing a set of arguments in all cases. As a matter of example, let us consider
again the AF F = (A,R) given at Figure 6a. The set {c} cannot be enforced as
a stable extensions by only deleting attacks: initially {c}⊕ = {b, c, d} 6= A, and
removing attacks cannot add arguments to the range of {c}.

3.2.3 Extension Enforcement and Minimal Change

Minimal change is an important topic in other domains of artificial intelligence, like
belief change [1; 63]. In the context of extension enforcement, the question asked is
“how much effort will it cost to perform the enforcement?". This effort is defined
by [13] as the number of attacks that are modified (i.e. either added or removed).
Formally,

Definition 3.18. Given F = (A,R) and G = (A′, R′), the distance between F and
G is d(F ,G) = |(R \R′) ∪ (R′ \R)|.

In general, there may be several ways to enforce an extension, even for a fixed
type of modification. In that case, minimal change enforcement consists in choosing
one result that minimizes the distance d between the initial AF and the new one.

Example 3.19. Figure 7 presents two examples of strong expansions of an AF
F = (A,R), with A = {a, b, c, d, e} and R = {(b, a), (c, a), (d, b), (d, c), (e, d)}. This
AF has a single stable extension: stb(F) = {{b, c, e}}. Both expansions succeed
in non-strictly enforcing the set {a} as a stable extension. However, we observe a
difference in the number of attacks that have been added. The first one, F1 (on the
left side), adds two attacks, one from the new argument f1 to c, and another one
from f2 to b; it has a single stable extension stb(F1) = {{a, e, f1, f2}}. The second

5Except for the stable semantics, since the empty set can never be a stable extension of a
non-empty AF.
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expansion, F2 (on the right side), adds a single attack (f3, e), and it also has a single
stable extension: stb(F2) = {{a, d, f3}}. With d(F ,F1) = 2 and d(F ,F2) = 1, F2
seems to be a more desirable result.

ab

cde f1

f2F1 = ab

cde

f3F2 =

Figure 7: An example of (non-)minimal change

The question of minimal change in enforcement is studied in [13]. More specif-
ically, it concerns the minimal change in non-strict enforcement based on normal
expansions, as well as the special cases of strong and weak expansions. To do so, he
defines the notion of characteristic of a set of arguments S, with respect to an AF F
and a modification typeM ⊆ F×F . This characteristic corresponds to the minimal
distance between F and an AF G such that S is included in an extension of G, and
G is a possible result for the enforcement (i.e. (F ,G) ∈M). Strict enforcement can
be considered as well [52].

Definition 3.20. Given a semantics σ, a modification type M ⊆ F×F , x ∈ {s, ns}
meaning strict or non-strict, and an AF F = (A,R), the (σ,M, x)-characteristic of
a set S ⊆ A is:

NF ,x
σ,M (S) =





0 if x = s, S ∈ σ(F)
0 if x = ns, ∃S′ ∈ σ(F) s.t. S ⊆ S′
k if k = min({d(F ,G) | (F ,G) ∈M,NG,x

σ,M (S) = 0})
+∞ otherwise

Intuitively, the characteristic of a set of arguments S is 0 if this set is already
(included in) an extension, k if k is the minimal distance between the initial AF and
some AF that enforces S, and +∞ if S cannot be enforced (under the the specified
semantics and modification type).

Then, [13] introduces the notion of value function, that gives a constructive
definition of how to compute the characteristic in a finite number of steps, based on
properties of the initial AF. We use V F ,x

σ,M (S) to denote this value function.
We start with the case of non-strict enforcement under weak expansion. Bau-

mann shows that for most semantics, either the set S is already included in an
extension, or it is impossible to enforce it with a weak expansion [13, Theorem 6].
Formally,
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Proposition 3.21. For σ ∈ {stb, ad} a semantics, F = (A,R) and AF and S ⊆ A a
set of arguments, the value function for non-strict enforcement under weak expansion
and the semantics σ is

V F ,ns
σ,�W

(S) =
{

0 if ∃S′ ∈ σ(F) s.t. S ⊆ S′
+∞ otherwise

Then, NF ,ns
stb,�W

(S) = V F ,ns
stb,�W

(S) and NF ,ns
σ,�W

(S) = V F ,ns
ad,�W

(S) for σ ∈ {ad, co, pr}.
Now, we turn to (non-strict) enforcement under strong expansion., i.e. we focus

on defining V F ,ns
σ,�S

(S). This case is slightly more involved than the previous one, and
it requires additional definitions.

Definition 3.22. Given F = (A,R) an AF and X ∈ cf (F),

• ad(F , X) = X	 \X⊕;

• stb(F , X) = A \X⊕.
Intuitively, these sets correspond to the arguments that should be defeated in

order to make X an admissible (respectively stable) extension of F . They can
be used to define the value function for enforcement under strong expansion, for
σ ∈ {stb, ad}. Interestingly, these value functions can be used also for enforcing a
set of arguments under normal expansion or general expansions, as stated by [13,
Theorem 9].

Proposition 3.23. For σ ∈ {stb, ad} a semantics, F = (A,R) and AF and S ⊆
A a set of arguments, the value function for non-strict enforcement under strong
expansion and the semantics σ is

V F ,ns
σ,�S

(S) = min({|σ(F , S′)| | S ⊆ S′ and S′ ∈ cf (F)})

Then, NF ,ns
stb,M (S) = V F ,ns

stb,�S
(S) and NF ,ns

σ,M (S) = V F ,ns
σ,�S

(S) hold for σ ∈ {ad, co,
pr} and M ∈ {�E ,�N ,�S}.

This means that authorizing more kinds of modifications than the addition of
strong arguments is useless regarding the issue of minimal change.

Then, an interesting result [13, Proposition 11] states that enforcement is always
possible if arbitrary updates are permitted, i.e. attacks can also be deleted (contrary
to expansions, where attacks can only be added).

Proposition 3.24. For σ ∈ {stb, sst, pr , co, ad} and any F = (A,R),

NF ,ns
σ,U (S) ≤ |R ∩ (S × S)|+ |A \ S|
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Intuitively, it says that we can enforce S as (a subset of) an extension by making
it conflict-free (i.e. removing the attacks in R∩(S×S)) and attacking every argument
that is not in S (i.e. adding attacks from fresh arguments to arguments inA\S). This
finite upper bound guarantees that non-strict enforcement under arbitrary updates
is always possible. But a more precise evaluation of the characteristics is given by
this value function [13, Theorem 12]:

Proposition 3.25. For σ ∈ {stb, ad} a semantics, F = (A,R) and AF and S ⊆ A
a set of arguments, the value function for non-strict enforcement under arbitrary
updates and the semantics σ is

V F ,ns
σ,U (S) = min({|R ∩ (S′ × S′)|+ |σ(F , S′)| | S ⊆ S′ ⊆ A}

with ad(F , S′) and stb(F , S′) as in Definition 3.22. Then, NF ,ns
stb,U (S) = V F ,ns

stb,U (S)
and NF ,ns

σ,U (S) = V F ,ns
σ,U (S) hold for σ ∈ {pr , co, ad}.

Finally, [52] presents characteristics for enforcement under local updates, i.e.
when the set of arguments has to remain the same, but attacks between them can
be added or deleted. The results are reminiscent of the ones described in this section.

3.2.4 Semantics-based Enforcement

Extension enforcement is usually defined as an operation where the target semantics
is given as an input. We call it conservative enforcement when the target semantics
is the same as the initial semantics, and liberal enforcement otherwise. On the
contrary, [52] proposes to generalize enforcement, by enhancing operators with a set
Σ of possible target semantics. Then, the chosen semantics is the one that allows to
enforce the set of arguments with minimal change on the graph. More formally:

Definition 3.26. For F = (A,R) an AF, S ⊆ A the set of arguments to be enforced
and Σ a set of semantics, a strict (resp. non-strict) enforcement of S in F under a
given modification type M ⊆ F ×F , is a pair (G, σ′) such that

1. (F ,G) ∈M ;

2. σ′ ∈ Σ and S ∈ σ′(G) (resp. S ⊆ S′ ∈ σ′(G));

3. ∀σ′′ ∈ Σ, V F ,x
σ′,M (S) ≤ V F ,x

σ′′,M (S) (with x ∈ {s, ns}).

This means that the new semantics is chosen in a way that guarantees that the
change on the graph is minimal. Since the characteristics can be the same for several
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semantics σ′, additional criteria can be used in order to select the new semantics,
like the distance between σ′ and the initial semantics σ [51].

Finally, we already mentioned that [17, Section 3.1] discusses the tool of chang-
ing semantics in order to enforce a desired set. The authors presented two involved
impossibility theorems specifying properties of initial extensions and desired sets,
initial and target semantics as well as the considered type of structural change. Re-
garding the semantic change we have that possible target semantics were restricted to
semantics satisfying well-known abstract criteria like admissibility or reinstatement
(cf. [83] for an exhaustive overview). The mentioned theorems show either limi-
tations for exchanging accepted arguments with formerly unaccepted ones (under
normal expansions) or limitations for eliminating arguments of existing extensions
(under weak expansions).

3.3 Complexity and Algorithms

We review complexity of enforcement problems, in particular expansion-based en-
forcement, and enforcement based on local updates [85; 43].

In several cases enforcement is, computationally speaking, straightforward if the
task consists in checking whether there exists a modified AF that enforces a set
of arguments under certain parameters. For instance, extension enforcement under
normal expansions for admissible semantics is always possible if the set E to enforce
is conflict-free in the given AF (see Section 3.2.1). That is why we look at extension
enforcement that aims at minimizing the change induced by an enforcing AF. Con-
cretely, given an AF F = (A,R) we aim at finding an enforcing AF G = (A′, R′)
such that the distance d(F ,G) between them is minimal (see Definition 3.18).

Another important aspect for expansion-based enforcement is how many argu-
ments shall be added. That is, if G = (A′, R′) is an expansion of F = (A,R), how
to confine |A′| − |A|? This is important from a computational perspective, since
allowing for unbounded expansions may complicate computation. We consider here
only bounded expansions.

We define the computational problems next, for extension enforcement under
bounded expansions and local updates. For local updates no bound is needed, since
if the number of arguments |A| does not change, the number of modifications to R
is bounded quadratically by |A|.

For studying complexity of problems that are inherently optimization problems,
such as enforcement when the goal is to find an enforcing AF with a minimum
number of modifications to the attack structure, there are several ways to formally
approach such problems. One standard way to reveal inherent complexities of opti-
mization problems is to consider a natural decision variant: for a given integer k ≥ 0,
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we ask whether there is an enforcing AF with at most k many modifications. We
note that another way to study complexity of optimization problems is to consider
functional problems instead of decision problems, which is an approach that may
give more detailed complexity results (see, e.g., [64]). However currently no such
analysis was carried out for enforcement.

First, we define a decision problem for extension enforcement under bounded
expansions.

Extension enforcement under bounded expansions
Instance: an AF F = (A,R), E ⊆ A, set A′, integer k ≥ 0, and a semantics
σ.
Question: Does there exist an expansion G = (A ∪ A′, R′) of F such that
∃E′ ∈ σ(G) with E ⊆ E′ and d(F ,G) ≤ k?

In more words, given an AF F , a set E ⊆ A of arguments to enforce, a set of
arguments A′, an integer k ≥ 0 and a semantics σ, the task is to decide whether
there exists an expansion G of F that enforces E non-strictly under σ, and, more-
over, makes at most k many modifications to the attack structure. Note that the
expansion G is bounded in the sense that the expanded arguments are already given
beforehand, i.e., G has A ∪ A′ as its arguments. The above definition gives a de-
cision problem for non-strict enforcement. As before, we define strict enforcement
analogously by replacing ∃E′ ∈ σ(G) and E ⊆ E′ with E ∈ σ(G).

Next, we look at a decision problem variant for extension enforcement under
local updates.

Extension enforcement under local updates
Instance: an AF F = (A,R), E ⊆ A, integer k ≥ 0, and a semantics σ.
Question: Does there exist a local update G = (A,R′) of F such that ∃E′ ∈
σ(G) with E ⊆ E′ and d(F ,G) ≤ k?

Strict enforcement is again defined as above.
We consider as fragments of these two enforcement problems those sub problems

where a semantics is fixed, i.e., extension enforcement under bounded expansions
(local updates) under a specific semantics σ, instead of having σ as part of the
instance.

Finally, before delving into complexity results from the literature, we provide
background on complexity classes used here, and related problems useful to under-
standing complexity of enforcement. For thorough introductions to computational
complexity see, e.g., [3; 77]. We assume that the reader is familiar with concepts
like complexity classes, reductions, completeness, and oracles. Complexity class P is
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composed of all decision problems which can be decided in polynomial time by a de-
terministic algorithm. Class NP contains all decision problems that can be decided
by a non-deterministic polynomial time algorithm. Class coNP contains all problems
that are complementary to a problem in NP. Class ΣP

2 contains all decision problems
which can be decided via a non-deterministic polynomial time algorithm that can
access an NP oracle. Class ΠP

2 contains all problems that are complementary to
some problem in ΣP

2 .
Two reasoning tasks on AFs in a static, i.e., non-dynamic setting, are useful to

understand the complexity of enforcement. The first one is usually referred to as
the Verification problem.

Verification
Instance: an AF F = (A,R), E ⊆ A, and a semantics σ.
Question: Does E ∈ σ(F) hold?

That is, the task is to check whether a given set E is a σ-extension. Another
useful problem is credulous acceptance of arguments in AFs.

Credulous acceptance
Instance: an AF F = (A,R), a ∈ A, and a semantics σ.
Question: Does {a} ∈ cred(F , σ) hold?

In words, an argument is credulously accepted in case there is a σ-extension of
a given AF that contains the queried argument.

Complexity of verification and credulous acceptance was established; we sum-
marize complexity results for the main semantics in Table 2.

semantics σ verification credulous acceptance
cf in P in P
ad in P NP-complete
co in P NP-complete
stb in P NP-complete
pr coNP-complete NP-complete

Table 2: Complexity of verification and credulous reasoning in AFs (for an overview
see [57])

3.3.1 Complexity of Enforcement

We illustrate two ways of showing complexity bounds that turn out to be tight in
many, but not all, cases.

1648



Enforcement in Formal Argumentation

For an upper bound (i.e. membership in a complexity class), consider the fol-
lowing non-deterministic algorithm (sketch) given an AF F , a set E to enforce, and
a semantics σ:

1. non-deterministically construct an AF G = (A′, R′) that is a bounded expan-
sion (or local update) of F ;

2. non-deterministically construct an E′ ⊆ A′ (for non-strict enforcement only);
and

3. verify whether E′ ∈ σ(G) and E ⊆ E′ (for non-strict enforcement) or E ∈ σ(G)
(for strict enforcement).

In case the last step succeeds, then it holds that G enforces E to be a σ-extensions
(non-)strictly. As can be seen from this algorithm sketch, a complexity upper bound
can be derived from the complexity of the verification problem under σ. Take σ = ad,
i.e., the verification problem under admissibility which is polynomial-time decidable.
It follows that extension enforcement under bounded expansions (resp. local updates)
is in NP under admissibility. The reason is that the above algorithm sketch directly
witnesses membership in NP: one (resp. two) non-deterministic construction(s) and
a check in polynomial time show membership for σ = ad. In the non-deterministic
construction of the above algorithm the bound on the expansion is crucial, otherwise
a non-bounded, and thus potentially non-polynomially bounded, structure would be
constructed. However, this does not imply that enforcement under non-bounded
expansions requires large expansions.

There is a similar approach to show lower bounds. Here we distinguish more
between strict and non-strict variants. In particular, extension enforcement under
bounded expansions (resp. local updates) and σ is C-hard

• if verification under σ is C-hard and the enforcement variant is strict; or

• if credulous acceptance under σ is C-hard and the enforcement variant is non-
strict.

The underlying reason is as follows. One can reduce the verification problem to strict
extension enforcement and the credulous acceptance problem to non-strict extension
enforcement.

For the verification problem under σ, i.e., given an AF F and a set E, consider
the extension strict enforcement problem under σ with F , E, and k = 0 as input
(and A′ = ∅ for expansion-based). Then we are not allowed to make modifications
to F , and, therefore, F enforces E to be a σ-extension iff E ∈ σ(F) iff this is a
positive instance of the verification problem.
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Similarly, the credulous acceptance problem under σ, with F and an argument
a as input, is reduced to an instance of non-strict extension enforcement with input
F , E = {a}, and k = 0 (and again A′ = ∅). It follows that F enforces E non-strictly
if there is an E′ ⊇ E with E′ ∈ σ(F), implying a positive instance of the credulous
acceptance problem.

In several cases the two approaches to show upper and lower bounds yield tight
bounds. However, there are notable exceptions.

Let us look first at results obtained for enforcement under bounded expansions,
see Table 3. In this case only the non-strict variant was studied [85]. It can be
observed that the complexity of this enforcement variant matches complexity of
credulous reasoning in static AFs, i.e., the above approaches to show complexity
bounds directly result in tight bounds. We remark that complexity of enforcement
under conflict-free sets was not presented in [85], however it can be straightforwardly
obtained: if the set is conflict-free then enforcement is trivial (and can be checked in
polynomial time by scanning the input AF), otherwise, if the given set to enforce is
conflicting, no expansion can remove such conflicts, and enforcement is impossible.
Since (by definition) any conflict-free set is included in some naive extension, this
result also holds for σ = na.

semantics σ non-strict
cf in P
na in P
ad NP-c
co NP-c
stb NP-c
pr NP-c

Table 3: Complexity of non-strict extension enforcement under bounded expansions
[85]

Let us turn to complexity of enforcement under local update [85; 43], summarized
in Table 4. We see that complexity of non-strict enforcement, again, has the same
complexity as credulous reasoning in static AFs, except for grounded semantics.
Before discussing grounded semantics, let us turn to strict enforcement first.

To some extend surprising are the results for strict extension enforcement, which
diverge from non-strict enforcement. For instance, for both admissible and stable
semantics strict extension enforcement under local expansions is decidable in poly-
nomial time. The underlying reason is that if E is to be an admissible set (a stable
extension), then all conflicts inside the set have to be removed, and each attack
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semantics σ strict non-strict
cf in P in P
na in P in P
ad in P NP-c
co NP-c NP-c
gr NP-c NP-c
stb in P NP-c
pr ΣP

2 -c NP-c
sst ΣP

2 -c ΣP
2 -c

stg coNP-hard and in ΣP
2 ΣP

2 -c

Table 4: Complexity of extension enforcement under local updates [85;
43]

from outside countered (each argument outside attacked). The latter means that
one can choose an argument inside E to counter non-attacked attackers (to achieve
defense) or remove the incoming attack. In both cases, it is sufficient to make at
least one modification, however one modification is sufficient: adding an attack to
counter an attacker (removing an incoming attack might not be sufficient if there are
more incoming attacks). For stable semantics, similarly, one attack on unattacked
arguments outside E is both necessary and sufficient, only the origin in E is flexi-
ble. Overall, this procedure sketches a polynomial-time deterministic algorithm (one
can impose an ordering on arguments to make the choice of attacking arguments
deterministic).

Finally, let us look at grounded semantics, for which NP-completeness was es-
tablished for both non-strict and strict extension enforcement under local updates
and complete semantics for the strict variant. Recall that both verification and
credulous acceptance under grounded semantics is in P, and also verification for
complete semantics is in P (Table 2). This means, the lower bounds established
by the algorithms above do not result in tight bounds. The intuition behind this
“complexity jump” for the strict variant under complete and grounded semantics is
that when enforcing some set of arguments E to be complete, one has to be careful
about what E defends. That is, enforcing E to be admissible is not the underlying
reason for NP hardness, but to avoid having arguments defended that one desires
to avoid being defended (as specified by strict enforcement, nothing outside the set
E may be defended by E). In brief, addition or removal of attacks can make E
admissible, but implying further arguments being defended. Finding an optimal as-
signment that accomplishes both having E admissible and nothing outside E being
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defended by E faces non-deterministic choices. However, the hardness construction
to show NP-hardness is somewhat involved.

Finally, for grounded semantics and non-strict enforcement, the intuition for NP-
completeness is a bit more direct: there could be a place in the AF to modify such
that the grounded extension is significantly expanded and includes the desired E.
However, choosing an adequate place in such a way is not direct to find.

Further semantics have been analyzed in [85].

3.3.2 Declarative Algorithms

Main approaches to compute optimal enforcing for AFs rely on declarative pro-
gramming paradigms based on constraints, in particular maximum Satisfiability
(MaxSAT) [68], answer set programming (ASP) [69; 58], and pseudo Boolean opti-
mization (particularly integer linear programming [80]).

We present here some of the main ideas for algorithmic approaches to exten-
sion enforcement, focusing on the MaxSAT approach [85]. Enforcement via pseudo
Boolean optimization is presented in [43], and via ASP in [74]. Systems using the
MaxSAT approach are presented in [73; 43]. We present here encodings and an algo-
rithm for some semantics, for further semantics and details we refer to the original
papers.

We briefly recall background on MaxSAT. A literal is either a positive Boolean
variable x or a negated Boolean variable ¬x. A clause is a disjunction of literals
l1 ∨ · · · ∨ ln and a propositional formula is in conjunctive normal form (CNF) if the
formula π = c1 ∧ · · · ∧ cm is a conjunction of clauses. Whenever convenient, we will
view clauses as a set of literals and a formula in CNF as a set of clauses.

A truth assignment τ assigns either true (1) or false (0) to the Boolean variables.
As usual, a truth assignment τ satisfies a variable x if τ(x) = 1. Satisfaction
is extended in the usual way to compound formulas, e.g., τ satisfies a literal l if
τ(x) = 1 and l = x or τ(x) = 0 and l = ¬x. A clause is satisfied by τ if at least one
literal of the clause is satisfied, and a formula in CNF is satisfied if each clause is
satisfied.

An instance of the partial MaxSAT problem is a pair φ = (φh, φs) with both
φh and φs Boolean formulas in CNF (sets of clauses). The former is the set of
hard clauses, while the latter is the set of soft clauses. A truth assignment τ is a
solution to the partial MaxSAT instance if τ satisfies φh (the hard clauses). The
cost of τ w.r.t. the instance φ is cost(φ, τ) = ∑

c∈φs
1− τ(c), i.e., the number of soft

clauses not satisfied. A solution τ to φ is optimal if there is no solution τ ′ to φ with
cost(φ, τ ′) < cost(φ, τ). We refer to partial MaxSAT simply as MaxSAT.

We focus on an illustration of a MaxSAT approach to extension enforcement
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on the variant with local updates. Encoding extension enforcement under local
updates can be achieved by encoding an AF, possible modifications, and semantics
in MaxSAT. Before delving into encoding this enforcement variant, we recall an
encoding of admissible semantics of static AFs similar as in [26]. Given an AF
F = (A,R) we define

φcf (F) =
∧

(a,b)∈R
¬a ∨ ¬b.

We use here arguments as Boolean variables and vice versa. Satisfying truth assign-
ments of this formula correspond directly to conflict-free sets of F in the way that
E ∈ cf (F) iff τ(x) = 1 for x ∈ E and τ(y) = 0 if y /∈ E satisfies φcf . Admissibility
can be encoded as follows:

φad(F) = φcf (F) ∧
∧

a∈A
(a→ (

∧

(b,a)∈R
(
∨

(c,b)∈R
c)))

In words, if an argument a is in an admissible set (true in a satisfying assignment)
then for each attacker b at least one defender c must be part of the admissible set
(true in the assignment), as well, which directly captures the definition of admissi-
bility.

Non-strict extension enforcement under local updates can be encoded by in-
cluding variables for attacks. We first focus on how to encode constraints for the
semantics, which we encode as hard clauses φh. For notation, for the encodings
of conflict-free sets and admissible extensions above we used φ, for enforcement
formulas we use ψ.

ψcf (F) =
∧

a,b∈A
(ra,b → (¬a ∨ ¬b))

In words, a new variable ra,b for each pair of arguments a, b is introduced denoting
whether there is an attack from a to b. That is, a truth assignment includes now an
assignment on the attacks, as well.

Moving on to enforcement under admissibility, which we encode as

ψad(F) = ψcf (F) ∧
∧

a,b∈A
((a ∧ rb,a)→

∨

c∈A
(c ∧ rc,b)).

That is, if a is assigned to be true and there is an attack (b, a), then this attack has
to be defended against, by some c and the corresponding attack (c, b).

Let F = (A,R), E ⊆ A be given as an instance of the non-strict extension
enforcement problem under local updates and admissibility. Defining a MaxSAT
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instance
φ = (ψad ∧

∧

a∈E
a, φs(F))

with
φs(F) =

∧

(a,b)∈R
ra,b ∧

∧

(a,b)/∈R,a,b∈A
¬ra,b

results in optimal truth assignments τ to φ corresponding to AFs locally updated
from an original AF F = (A,R) with a minimum number of modifications that
enforce S to be part of an admissible set. To see this, any solution to φ satisfies
the hard clauses, implying that a truth assignment satisfying ψad ∧

∧
a∈E a assigns

to true all variables (arguments) in E and possibly more arguments, and further
assigns some of the attacks to be true (present in a modified AF) such that the
argument variables assigned to true form an admissible set, thus enforcing E.

For strict extension enforcement under local updates, more variables can be fixed,
since the set E to be enforced must be exactly a σ-extension, not just be part of
one. That is, we can focus on variables only for attacks, since the other variables
can be fixed (true for argument variables in E and false otherwise, i.e. ∧a6∈E ¬a can
be added to the hard part of the MaxSAT instance).

For instance, strict enforcement under conflict-free sets can be encoded as follows.

ψscf (F) =
∧

a,b∈E
¬ra,b

In more words, there cannot be any attack in the set S to be enforced, all other
attacks remain unconstrained for conflict-free sets. Admissible extensions can be
encoded by

ψsad(F) = ψscf (F) ∧
∧

a∈E

∧

b∈A\E
(ra,b →

∨

c∈E
rc,b).

The MaxSAT instance is complete by setting

φ = (ψsad(F) ∧
∧

a∈E
a ∧

∧

a∈A\E
¬a, φs(F)).

We proceed to algorithmic approaches for problems “beyond NP”, e.g., strict ex-
tension enforcement under local updates and preferred semantics. One approach to
such complex problems is to develop an algorithm that uses SAT solvers as subpro-
cedures, and possibly calls a SAT solver multiple times (i.e., an iterative SAT-based
procedure). We present an approach based (inspired by) the well-known CEGAR
approach [40; 41] approach, where CEGAR stands for counterexample guided ab-
straction refinement. We remark that the term CEGAR is not used unambigously
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in the literature, and in some communities the term may refer to different concepts.
Here, a CEGAR based algorithm works on an abstraction (approximation) of a so-
lution space from which iteratively candidates are drawn. Importantly, due to the
approximation, some solutions may be spurious. A SAT call determines whether
a candidate is a solution or a spurious solution. In the latter case, the spurious
solution is a “counterexample” which is used to refine the approximated solution
space (removing as many as possible of the spurious solutions from the space) and
a next candidate is produced, until a solution is reached.

For strict extension enforcement under local updates and preferred semantics,
the solution space is approximated by considering initially strict extension enforce-
ment under local updates and admissible or complete semantics. It holds that if
an AF G enforces a set S strictly under preferred semantics, then G also enforces
S strictly under admissible or complete semantics (since a preferred extension is
complete and admissible). However, importantly, optimality is not guaranteed this
way: an optimal solution to strict extension enforcement under local updates and
preferred semantics might not be an optimal solution AF for admissible or complete
semantics (since less modifications might be sufficient for admissible or complete se-
mantics, but not for preferred semantics). Nevertheless, strict extension enforcement
under complete or admissible semantics can act as an approximation. We focus for
illustration on admissible semantics here.

The CEGAR-style algorithm is presented as Algorithm 1. When the loop is en-
tered the first time, the MaxSAT call returns an optimal solution for strict extension
enforcement under local updates and admissible semantics. To check whether the
AF extractable from the truth assignment τ is a solution also under preferred se-
mantics, we call a SAT solver to determine whether S is a preferred extension in the
candidate AF. If so, we return this AF. Otherwise, we found a counterexample and
the abstraction is refined. For correctness of the overall algorithm, it is important
that a refinement does not remove (all) optimal solutions AFs for strict enforcement
under local updates and preferred semantics. We refine here by removing the solu-
tion found in the MaxSAT call, i.e., by removing exactly τ from consideration when
looking for the next candidate. This is a straightforward refinement. More sophisti-
cated refinements are possible, but require care when designing them (e.g., in order
not to violate correctness) [70]. For instance, in some cases refinements can be based
on foundational results whether changes on AFs induce changes on semantics [31;
30].

The definitions for Algorithm 1 are as follows. From a truth assignment τ we
can extract an AF by Extract(A, τ) = (A,R) with R = {(a, b) | τ(ra,b) = 1}. The
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Algorithm 1 Strict extension enforcement under local updates and preferred se-
mantics
1: ϕh ← ψ′ad(F)
2: ϕs ←

∧
(a,b)∈R ra,b ∧

∧
(a,b)/∈R,a,b∈A ¬ra,b

3: while true do
4: τ ← MaxSAT(ϕh, ϕs)
5: result ← SAT(Check(τ, S))
6: if result = unsatisfiable then return τ
7: else φh ← φh ∧Refine(τ)
8: end while

formula
Check(τ, E) = φad(F ′) ∧

∧

a∈S
a ∧

∨

b∈A\S
b

can be used for checking whether an admissible extension E is a preferred extension
of the modified AF: we guess a superset and check admissibility by the above sub
formulas. Refinement is specified via

Refine(τ) =
∨

(a,b)∈R′
¬ra,b ∨

∨

(a,b)∈(A×A)\R′
ra,b.

In words, we exclude in a subsequent search for a solution candidate exactly the
currently found candidate AF.

Example 3.27. Consider the AF F from Figure 8(a). That is, we have a chain
of attacked arguments from a to b to c, and c attacks both d and e. Further, f is
unattacked and does not attack an argument. The unique preferred extension of F is
{a, c, f}. Say we want to strictly enforce {b, f} to be exactly a preferred extension,
and use Algorithm 1 in order to achieve that. Initially, we solve, via MaxSAT,
strict enforcement under admissible semantics to have {b, f} being admissible. Say
the result is as shown in Figure 8(b), i.e., an attack from f to a is added, resulting
in {b, d, e, f} being the unique preferred extension, and {b, f} being admissible. As
the SAT solver call in the algorithm verifies, this AF candidate is not a solution,
since, e.g., {b, d, e, f} is an admissible superset of {b, f}, implying that {b, f} is
not preferred. We exclude, via the refinement step, this candidate AF, and call the
MaxSAT solver again. Note that the hard clauses refute the previous candidate AF
(i.e., any truth assignment simulating that AF does not satisfy the hard clauses).

In the next steps of the algorithm, all AFs that enforce {b, f} to be admissible
are checked which make at most one modification (in the above simple refinement).
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Figure 8: Example candidate AFs for Algorithm 1

After that it is verified that no modified AF with at most one modification (local
update) achieves the strict enforcement under preferred semantics.

For two possible modifications, say the MaxSAT call returns an assignment cor-
responding to the AF in Figure 8(c). Due to the definition of the MaxSAT instance,
we know that {b, f} is admissible in this candidate AF, which is like the previous
one, except for removal of the attack from b to c. Here {b, f} is again admissible,
and the unique preferred extension is {b, c, f}, which is again verified not to be a
solution. After checking all AFs that enforce {b, f} to be admissible with at most one
modification, the algorithm proceeds to at most three modifications, where a possible
solution can be found, as illustrated in Figure 8(d).

4 Related Notions to Enforcement

In this section, we overview several notions that are closely related to the enforcement
setting described previously.
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4.1 Update Using Logical Translations
YALLA (Yet Another Logic Language for Argumentation) [45] is a first-order logical
language that allows to describe argumentation frameworks and their semantics.
Then, operations related to enforcement can be defined through belief change theory,
especially belief update [62].

Let us briefly describe the syntax and semantics of YALLA formulas. It is
assumed that argumentation frameworks are built from a given universe FU =
(AU , RU ). This means that for any AF F = (A,R), A ⊆ AU and R ⊆ RU ∩ (A×A).
We write k = |AU | the number of arguments in the universe. A YALLA formula (or
more precisely, YALLAU ) is a well-formed first order logic formula such that:

• the set of constant symbols is Vconst = {c⊥, c1, . . . , cp} where p = 2k − 1;

• the set of function symbols is Vfunc = {union2};

• the set of predicate symbols is Vpred = {on1, .2,⊆2}.

The semantics of YALLA is defined through a structure associated with an AF
F = (A,R) built on the universe FU . The domain of this structure is D = 2AU , and
it is associated with an interpretation such that:

• the constant symbol c⊥ is associated with the empty set; each constant symbol
ci (i ∈ {1, . . . , 2k − 1}) is associated with a different non-empty element of D;

• the union function symbol is associated with the binary set-theoretic union
over D;

• the on predicate symbol is associated to the characterization function of subsets
of A, i.e. on(S) is true if and only if S ⊆ A;

• the predicate symbol . is associated with the set-attack relation induced by
R, i.e. S1 . S2 if and only if S1 ⊆ A, S2 ⊆ A, and ∃a1 ∈ S1, a2 ∈ S2 such that
(a1, a2) ∈ R;

• the predicate symbol ⊆ is associated with the classical inclusion relation over
D.

Some axioms are added to the theory in order to guarantee the meaning of the
YALLA formulas. For instance, if a set S1 is included in A, then any subset of S1
is included in A as well: this is formalized by ∀x, y, (on(x) ∧ y ⊆ x)⇒ on(y). A full
description of the YALLA axioms is out of the scope of this chapter; we refer the
interested reader to [45] for more details on this topic.
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An argumentation framework F = (A,R) can be described with the formula

ΦF = on(A) ∧
∧

x∈AU\A
¬ on({x}) ∧

∧

(x,y)∈R
({x} . {y}) ∧

∧

(x,y)∈RU\R
¬({x} . {y})

Then, the principles underlying extension-based semantics can also be encoded
as YALLA formulas. Given the structure associated with an AF F = (A,R),

• the term t is conflict-free if the formula Φcf
t = on(t) ∧ ¬({t} . {t}) is valid;

• the term t1 defends the term t2, denoted by t1 ..t2, if the formula
∀t3, ((singl(t3)∧ t3 . t2)→ (t1 . t3)) is valid, where singl(t) is a formula that is
valid if t is a singleton.

The combination of these formulas allows to characterize the admissible sets (i.e. the
terms that satisfy of Φad

t = Φcf
t ∧(t..t)). This is the basics of YALLA encoding for the

classical Dung’s semantics. Additional constraints in the formulas yield encodings
Φσ
t for the other semantics.
Then, belief update rationality postulates and operators [62] are adapted to

take into account the universe FU = (AU , RU ). A set of authorized transitions
(corresponding to what we call a modification type) is T ⊆ ΓU × ΓU , where ΓU is
the set of all AFs built on the universe FU . Then, roughly speaking, an update
operator �T is such that, if φ is a YALLA formula characterizing an AF F , then for
any formula α, φ �T α characterizes an AF G such that (F ,G) ∈ T .6

Finally, enforcing an extension in an AF F can be achieved by updating the
formula ΦF :

ΦF �T Φσ
ci

characterizes the AFs that enforce Si in F , under the modification type T and the
semantics σ, where ci is the YALLA constant symbol that corresponds to the set of
arguments Si, and Φσ

t is valid if and only if the term t corresponds to a σ-extension
(similarly to the way Φcf

t , described previously, characterizes conflict-free sets).
Another logic-based approach is that of [48], which proposes to translate the

argumentation framework and the semantics into logic, to perform the enforcement.
In this case, the Dynamic Logic of Propositional Assignments (DL-PA) by [5], is
used to represent update operators as executable programs. The piece of informa-
tion which causes the update is a formula about acceptance statuses, which should
be satisfied by at least one extension of the result (credulous enforcement of the
formula) or by each extension of the result (sceptical enforcement of the formula).

6This is actually slightly more subtle than that, since YALLA formulas can characterize sets of
AFs.
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Forbus’ update operator is used to change minimally the attack relation such that
the extensions of the new argumentation framework comply with the expected en-
forcement. An extension of [48] is proposed by [50], which considers also addition
and removal of arguments, and by applying the framework to an access control case.
Then, [49] generalizes the previous two approaches.

Let us mention that these kinds of approaches based on a belief update oper-
ation allow richer forms of enforcement, since complex information about the sets
of arguments and the attacks in the AFs can be described. Also, other kinds of
belief change operations (e.g. belief revision [63] or belief contraction [36]) could be
defined in these contexts. We refer the interested reader to [53] for more details on
the relation between belief change and argumentation.

4.2 Status Enforcement
Status enforcement [72] is defined as an operator where two sets of arguments are
provided as input, that must be respectively positively and negatively enforced.
This operation does not fit the framework described previously, since it is supposed
that there is only one set of arguments given in input, that must have exactly one
acceptance status with respect to some reasoning mode (see Definition 3.1).

Formally, given an AF F = (A,R), P and N two subsets of A such that P ∩N =
∅, and σ a semantics,
• the AF G = (A,R′) is a credulous status enforcement of (P,N) in F with

respect to σ if P ⊆ ⋃σ(G) and N ∩⋃σ(G) = ∅;
• the AF G = (A,R′) is a sceptical status enforcement of (P,N) in F with
respect to σ if P ⊆ ⋂σ(G) and N ∩⋂σ(G) = ∅.

In words, status enforcement consists in finding G such that every argument in P
is credulously (respectively sceptically) accepted in G, and every argument in N is
not credulously (respectively sceptically) accepted in G.

Complexity issues for optimal status enforcement, i.e. finding G such that
d(F ,G) = |(R \ R′) ∪ (R′ \ R)| is minimal, have been investigated by [72]. Sim-
ilarly to complexity for optimal extension enforcement (Section 3.3), the complexity
results concern a decision problem related to the optimization problem under con-
sideration.

Credulous status enforcement
Instance: an AF F = (A,R), P ⊆ A and N ⊆ A s.t. P ∩ N = ∅, integer
k ≥ 0, and a semantics σ.
Question: Does there exist an AF G = (A,R′) such that P ⊆ ⋃σ(G) and
N ∩⋃σ(G) = ∅ and d(F ,G) ≤ k?
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N = ∅ N unrestricted
semantics σ credulous sceptical credulous sceptical

cf in P trivial in P trivial
ad NP-c trivial ΣP

2 -c trivial
co NP-c NP-c ΣP

2 -c NP-c
gr NP-c NP-c NP-c NP-c
stb NP-c ΣP

2 -c ΣP
2 -c ΣP

2 -c
pr NP-c ΣP

3 -c ΣP
2 -c ΣP

3 -c

Table 5: Complexity of status enforcement

Sceptical status enforcement
Instance: an AF F = (A,R), P ⊆ A and N ⊆ A s.t. P ∩ N = ∅, integer
k ≥ 0, and a semantics σ.
Question: Does there exist an AF G = (A,R′) such that P ⊆ ⋂σ(G) and
N ∩⋂σ(G) = ∅ and d(F ,G) ≤ k?

Two cases are considered: the general case, and the restricted case where N = ∅
(i.e. only positive arguments must be enforced). Table 5 presents the complexity of
these problems for various semantics.

MaxSAT and CEGAR based algorithms in the same spirit as algorithms for
extension enforcement (Section 3.3.2) are also provided.

4.3 Control Argumentation Frameworks
Now we introduce a concept that can be interpreted as a variant of enforcement
under uncertain information. Control Argumentation Frameworks (CAFs) [46] are
AFs where arguments and attacks are split in three distinct parts:

• the fixed part is made of arguments and attacks that are unquestionably in
the system;

• the uncertain part is made of arguments and attacks that may belong to the
system, as well as “undirected" attacks: in this case there is for sure a conflict
between arguments, but the actual direction is uncertain;

• the control part is made of arguments and attacks that may be used by the
agent.

The sets of fixed, uncertain and control arguments are disjoint, as well as the various
sets of attacks. Roughly speaking, the fixed part corresponds to certain knowledge,
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i.e., elements that cannot be influenced neither by the agent nor by its environ-
ment (we use “environment" in a wide sense, it also includes other agents). On
the contrary, the uncertain part models the agent’s knowledge (and beliefs) about
the environment (and the other agents); in realistic scenarios, this knowledge is
by nature uncertain. Finally, the control part corresponds to the agent’s possible
actions. When the agent selects a subset of the control arguments and attacks
(called a configuration), then it defines a configured CAF, that is the same CAF
where the control arguments (and the associated attacks) that have not been se-
lected have been removed. The uncertain part of the CAF induces a set of com-
pletions, i.e. classical AFs that are compatible with the knowledge encoded in the
CAF. This notion is borrowed from Incomplete Argumentation Frameworks [42; 23;
25].

The notion of controllability of a CAF, with respect to a given target set of
arguments, is directly related to enforcement. This target is defined as a subset of
the fixed arguments, that is expected to belong to each (or some) extension of each
completion. The agent needs to find a configuration that reaches this target. Let us
exemplify these concepts.

Example 4.1. Figure 9 describes a CAF, where the set of fixed arguments is
{f1, f2, f3, f4, f5}, the only uncertain argument is u (dashed square argument), and
the control arguments are {c1, c2, c3} (bold square arguments). The plain arrows rep-
resent fixed attacks (e.g. (f2, f1) is fixed); the dotted arrow (f5, f1) means that it is
uncertain whether f5 actually attacks f1 or not; the symmetric dashed arrow (u, f4)
means that there is for sure a conflict between u and f4, but the actual direction is
uncertain (it could be (u, f4), or (f4, u), or both at the same time). Finally, the bold
arrows represent control attacks, they are related to the control arguments that can
be selected by the agent.

We suppose that the target T = {f1} must belong to each stable extension. With-
out control arguments, this is not possible: there are, for instance, completions where
f5 attacks f1, and in this case f1 is not defended. However, with the configuration
{c1, c3}, f1 will be defended against every possible threat coming from the uncertain
part: c1 defends f1 against f5, and c3 defends f1 against u (that is an undirect
threat, since u may defeat f4, making then f2 and f3 acceptable). Similarly, {c2}
is a valid configuration, since it allows to guarantee that {f1} is included in every
stable extension of every completion.
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f1 f2

f3 f4

f5

u

c1

c2

c3

Figure 9: An example of control argumentation framework

Controlling a CAF can be seen as enforcing (non-strictly) an extension in pres-
ence of uncertainty. Intuitively, for an AF F = (A,R) and a set of arguments E to
be enforced through strong expansion, we can define a CAF that is controllable with
respect to E if and only if it is possible to enforce E in F . Indeed, the arguments
A and attacks R correspond to the fixed part of the CAF, while the uncertain part
is empty. Then, for each a ∈ A, a control argument ca with a control attack (ca, a)
is added. If E can be enforced in F , then the CAF is controllable (where the con-
figuration to be chosen consists in the set of control arguments that do not attack
E). On the opposite, if E cannot be enforced through a strong expansion, then the
CAF is not controllable: indeed, the CAF configured by a control configuration is a
strong expansion of F , thus E cannot be accepted in this configured CAF. We give
a simple example of this transformation.

Example 4.2. Let F = (A,R) be the AF given at Figure 10a. We consider the
grounded semantics: gr(F) = {∅}. Let E1 = {a} be a set of arguments to be
(non-strictly) enforced through a strong expansion. This enforcement is possible:
for instance, the AF G that is a strong expansion of F where a new argument
attacks b yields the expected result. Such an AF G corresponds to the CAF (given at
Figure 10b) after it has been configured by {cb} (i.e. the argument ca and the attack
(ca, a) are removed). So we observe that this CAF is controllable with respect to E1
and the grounded semantics. On the opposite, E2 = {a, b} cannot be enforced in F
with strong enforcement (since it is not conflict-free), and similarly there is no way
to configure the CAF with respect to E2 and the grounded semantics.

a b ca a b cb

(a) (b)

Figure 10: Transforming an AF into a CAF
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In the previous example, we show how non-strict enforcement under strong ex-
pansion can seen as controlling a CAF. But more generally, since control arguments
can attack each others, non-strict enforcement under a normal expansion can also
be “translated" in controlling a CAF. On the opposite, configuring a CAF for con-
trolling a target T can be interpreted as enforcing T in all the completions of the
CAF with the same normal expansion (where the added arguments and attacks are
chosen in the control part).

Let us also briefly mention that detailed complexity results and algorithms for
reasoning with CAFs have been provided in [71], and [66] defines a weaker form of
controllability, that relies on one completion instead of the whole set.

Applying CAFs to Automated Negotiation Let us briefly described how en-
forcement (or more precisely, CAFs) has been used in a context of automated negoti-
ation [47]. The idea is to represent the (uncertain) knowledge of an agent about her
opponent with a CAF. Indeed, negotiation has more chance to reach an agreement
if agents have some knowledge about each other; however it is unrealistic to consider
that opponent modelling can be done without incomplete or uncertain information.
The theory of a negotiating agent is thus made of two parts: a classical AF that
represents the agent’s personal knowledge, and a CAF that represents her knowledge
about her opponent.

It is supposed that agents negotiate about a set of (mutually exclusive) offers
O. Each offer may be supported, in AF1 (the personal knowledge of agent 1), by
0, 1 or several practical arguments, i.e. arguments whose conclusions correspond to
actions or decisions. The other arguments are epistemic arguments, they support
knowledge and beliefs. The knowledge of agent 1 about agent 2 is represented in
CAF 2

1 . The fixed and uncertain parts are supposed to be built from the actual AF
of agent 2: the assumption is made that there can be uncertainty (represented in
the CAF), ignorance (some arguments or attacks of agent 2 may not appear in the
CAF at all), but no mistake (there is no attacks or arguments that appear in CAF 2

1
but not in the personal AF of agent 2). Finally, the control part of CAF 2

1 is made
of arguments and attacks chosen in AF1, that are supposed to be used by agent 1
in order to make its target accepted. Similarly, AF2 is the personal knowledge of
agent 2, and CAF 1

2 represents the (uncertain) knowledge of agent 2 about agent 1.
Each agent selects its preferred offer o ∈ O according to its personal knowledge:

o has to be supported by a practical argument that is accepted in AF1; if several
offers can be chosen, an assumption is made that the agent has a preference ranking
over offers. When the preferred offer o of agent 1 is chosen, she uses her knowledge
about agent 2 in order to persuade her to accept o: agent 1 searches for a practical
argument in CAF 2

1 that supports o. If such an argument a exists, then three options
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are possible:

• if a is accepted in each completion of CAF 2
1 without using any control argu-

ments, then agent 1 makes an offer to agent 2 (offer o, supported by argument
a);

• otherwise, if a is accepted with the use of some control arguments c1, . . . ,
ck, then agent 1 can again make an offer (offer o, supported by argument a,
that is accepted because of c1, . . . , ck);

• in the last case, a is not accepted even with control arguments, then agent 1
searches for another argument that supports offer o in CAF 2

1 .

In the first two cases, if agent 2 accepts the argument a (with, or without control
arguments), then the negotiation is a success: offer o is accepted. Otherwise, agent
2 gives to agent 1 the reasons why she rejects a (for instance, she knows some
arguments that agent 1 does not know). If agent 1 knows other arguments that
support o in CAF 2

1 , the process is repeated. Otherwise, this is the end of the round:
agents switch their roles, and now agent 2 will choose her preferred offer o′, and use
her CAF in order to persuade agent 1 to accept o′.

The whole process goes on, until either the agents agree on some offer (in that
case, the negotiation is a success), or they do not have available offers (the negotia-
tion fails).

Let us illustrate the process, with an example borrowed from [47].
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Figure 11: Initial theories of agents 1 and 2
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Example 4.3. Figure 11 describes the negotiation theories of two agents. More
precisely, the AFs AF1 and AF2 (respectively Figure 11a and Figure 11c) corre-
spond to the personal knowledge of (respectively) agent 1 and agent 2, while CAF 2

1
(Figure 11b) represents the (uncertain) knowledge of agent 1 about agent 2, and
vice-versa for CAF 1

2 (Figure 11d). We suppose that both agents use the stable se-
mantics for reasoning, and that there is one offer o, that is supported by arguments
x and y. Before starting the negotiation, agent 1 has no reason to accept the offer
o (since its supporting argument x is rejected in AF1), while agent 2 accepts o since
y is accepted in AF2. If agent 1 starts the negotiation, she has no offer to propose
(since there is no accepted argument in AF1 that supports some offer), so the token
has to go to agent 2.

Agent 2 can make an offer. The goal of agent 2 is to persuade agent 1 to accept
the offer o, using arguments that agent 1 already knows. This means that she needs
to make agent 1 modify her AF in order to accept x (since x is the only argument
that supports the offer o in CAF 1

2 ). This persuasion phase goes first through a
step that do not use the control part of the CAF: if x is accepted in the CAF with
no control argument, agent 2 can send to agent 1 the message “offer o, supported
by the accepted argument x". In the present example, this is not the case: there
are completions where x is rejected (for instance, the ones where the attack (b, x)
exists). So, in the next step, agent 2 searches for a control configuration that allows
to make x accepted in each completion. Here, the configuration is the full set of
control arguments {d, f}. Agent 2 can then send the message “offer o, supported by
the argument x, that is accepted because d attacks b and f attacks e".

Receiving this message triggers some updates in agent 1’s knowledge. First, she
can add the arguments d and f (as well as the attacks (d, b) and (f, e)) in CAF 2

1 .
Moreover, while argent b was initially uncertain in the CAF, it can now become
a fixed argument: since agent 2 sends a message about the argument b, it certainly
means that agent 2 knows this argument. Then, agent 1 can also add these arguments
and attacks in her AF. The updated AF1 and CAF 2

1 are shown at Figure 12. Since
in the update AF1, the argument x is accepted, agent 1 can stop the negotiation by
accepting the offer o.

Let us suppose that agent 1 has, e.g., some argument i attacking d, then instead
of accepting the offer o, she sends the message “reject the offer, because i attacks d".
Then agent 2 updates her CAF, and the process continues as illustrated previously
until reaching the negotiation success (if some offer can be accepted by both agents) or
failure (if no offer can be accepted by both agents, even when exchanging arguments
for defending them).

Experiments [47] have shown that control arguments and attacks help to increase
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Figure 12: The updated theory of agent 1

the agreement rate, even when the percentage of uncertainty in CAFs is high.

4.4 Enforcement under Constraints
We have already seen several approaches to enforcement, and variants to enforce-
ment. Common to many approaches are restrictions on the allowed modifications,
such as allowing only expansions, local updates, other types of modifications, or
defining allowed modifications via formulas, such as in YALLA.

More broadly, one can impose constraints on enforcements. Such constraints
can have many different shapes or forms (expansions, deletions, specification as a
formula, etc.). In general, constraints can be very useful for applications of enforce-
ment operators. Going into a slightly different direction from before in this chapter,
consider the following example.

Example 4.4. Say we have knowledge about two arguments a and b, and we wish
to enforce non-acceptability of a, e.g., because argument a counters a desirable argu-
ment. An expansion by c and attack (c, a) does the trick. However, say, in addition,
that a is a sub argument of argument b, when inspecting the contents of the argu-
ments. In such a case it seems adequate to require that c attacks the super argument
of a, as well, i.e., we want also to add the attack (c, b).

As suggested by the example, in some situations we may be faced with circum-
stances that may require specific expansions, or rather ruling out certain expansions.
For instance, only considering those expansions that satisfy the condition that if an
attack from some argument onto a is added, so must the same attacker also attack
b.

Such conditions are not directly captured by the main types of modifications
represented in this chapter, but can be incorporated into enforcement, as well.
In [84], several families of constraints are considered, and the survey [53] discusses
constraints of dynamics in argumentation, in general. We refer the reader for de-
tails to these papers, but highlight a particular type of constraint: implications of
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presence of arguments and attacks. By allowing constraints that take the form
of implications, e.g., of the form mentioned above for attacks, one can specify
that attacks on sub arguments must “propagate” to super arguments, which is
present in many instances of formal approaches to structured argumentation [44;
67].

4.5 Other related works

Beside extension enforcement, adding or removing arguments or attacks to an AF
can be seen as another form of enforcement, on the structure of the AF. This relates
to dynamic aspects of argumentation. As already mentioned, [30; 38] are among the
first approaches that studied the changes implied by such structural enforcements.
Other similar approaches are detailed by [53].

In [82] the authors studied the question of how to repair an AF if nothing is cred-
ulously/sceptically accepted. More precisely, the main aim is to restore consistency
via removing certain (minimal) sets of arguments or attacks. Note that enforcing a
certain non-empty set can be seen as a special kind of repairing given that we are
faced with no credulously accepted arguments. The notion of C-restricted semantics
[20] is related to enforcement too. It can be shown that a set of arguments is a C-
restricted extension if and only if it can be (non-strictly) enforced with a restricted
form of expansion.

Normal expansions of AFs have been used for other purposes related to en-
forcement. For instance, [33] describes a framework where an agent’s knowledge is
represented by an AF F and a propositional formula φ that represents an integrity
constraint about the complete labellings of the AF. The agent’s knowledge is said
to be inconsistent if none of the complete labellings satisfies the constraint. Two
approaches are proposed for restoring consistency. The first one is a direct use of a
normal expansion: the authors have proven that there exists a normal expansion of
F that is consistent with φ (under some minimal assumption about the consistency
of φ). The second approach also uses normal expansion, but only after a first step
that consists in revising [63] the complete labellings of F by φ, in order to com-
pute the so-called fallback beliefs of the agent. Then, a normal expansion allows
to obtain a new AF that is consistent with the fallback beliefs. Contrary to the
first approach (based only on an expansion), this one guarantees that the agent’s
complete labellings are as close as possible to the initial complete labellings.

Quite recently, the inverse problem to extension enforcement was studied, namely
the problem of extension removal [18]. That is: given an AF F and a set of extensions
E , identify an AF H that is as close as possible to F but has none of the extensions
in E . In the same way as enforcement shifts revision to the level of extensions,
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extension removal shifts contraction to the level of extensions.
The approach by [56] aims at checking if a set E of sets of arguments can be the

set of extensions of any argumentation framework F with respect to a given seman-
tics σ. This property is named realizability of E with respect to σ. Realizability
can be seen as a form of enforcement, where a set of extensions has to be enforced,
and all the necessary structural changes on the argumentation framework (nothing
is known about beforehand) can be done to achieve this.

A further related approach to enforcement is that of learning AFs or synthesis
of AFs [79; 78; 75]. In brief, the aim is to construct an AF from certain information
available. Different from deterministic logical approaches that construct an AF
from a knowledge base (see structured argumentation approaches, e.g., in [6]), in
AF learning or synthesis the information available might not uniquely determine an
AF. In the AF synthesis problem [75], for instance, information about the semantics
is given, and the task is to construct an AF that as best as possible matches the
given semantic information. In this way, AF synthesis is related to realizability (see
above), as well.

5 Conclusion

This chapter has offered an overview of the notion of enforcement in abstract, formal
argumentation. A focus has been done on extension enforcement, on its general
characterization, and on how it can be achieved: the various changes that can be
applied to the structure of the argumentation framework, and/or to the semantics,
considering that these changes should be minimal. Results about the complexity
of enforcement, and algorithms, showing the feasibility of this approach, have also
been presented.

If a general context and a number of specific approaches have been described,
many additional proposals exist and keep on being proposed, showing the liveliness
of the field. Applications of these formal approaches have also been outlined, and
they should be developed in the future.

Regarding future work, several lines of research appear intriguing. Regarding
formal foundations, we surveyed the state of the art, yet several directions are open,
such as considering further argumentation semantics and their effect on possibility,
impossibility, or (computational) cost of (optimal) enforcement. Moreover, different
types of modifications can be considered as well, reflecting different updates on the
given argumentation.

Beyond Dung’s classical argumentation framework, the notion of enforcement
can be defined and applied to any enriched argumentation framework, such as value-
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based argumentation frameworks (see Chapter 5 [4]), or frameworks with higher-
order bipolar interactions (see Chapter 1 [37]), or with quantitative additions like
probabilistic argumentation (see Chapter 7 [61]). The notion can also be extended to
semantics other than extension-based, for instance their labelling-based counterparts
[34], or ranking-based semantics [32].

Chapter 4 [24] studies (among other notions) Incomplete Argumentation Frame-
works (IAFs), that are strongly related to CAFs described in this Chapter. Moreover,
the possibility of enforcing a set of arguments can be intuitively associated with the
notion of possible acceptance in IAFs.

Enforcement is also related to the notion of dialogue (see Chapter 9 [29]), where it
can be put in practice, and to that of strategic argumentation (see Chapter 10 [59]).
To go further, an empirical cognitive study of enforcement might be conducted, as
it has been done for other argumentation notions (see Chapter 14 [39]).
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Abstract

Dialogue games are a dynamic form of argumentation, with multiple parties
pooling their arguments with the intention of settling an issue. Such games
can have a variety of structures, and may be collaborative or competitive,
depending on the motivations of the parties. Strategic argumentation is a class
of competitive dialogue games in which two players take turns in contributing
their arguments, each attempting to have an issue settled in the way that they
would prefer. Thus strategic argumentation games are less about discovering a
joint truth than about a player imposing their view on an opponent. They are
reflective of legal argumentation.

In the games we study, players have perfect information of the moves players
make, but incomplete information on the possible moves (arguments) that other
players have available to them. We look both at games using logically structured
arguments and games using abstract arguments. We show that playing these
games can be computationally hard. We also examine issues of corruption in
such games, and discuss approaches to foiling it.

1 Introduction
When two or more parties are engaged in a debate, it is often the case that each
party has some information they are not willing to disclose to the other parties. Also,
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in some cases, the disclosure of some piece of information by one party could prove
detrimental for the party, in the sense that the information could be used to prevent
the party to reach their aim in the debate, or some of the information disclosed can
help the other party to achieve their goal. Accordingly we can provide the following
(informal) definition of strategic argumentation.

Definition 1.1. Strategic argumentation is the problem of determining what argu-
ments (pieces of information) to disclose during a debate in order to achieve the aim
a party has in the debate and to prevent the other party from gaining an undesired
advantage.

To illustrate the issue, consider the following argument exchange, first proposed
in [124]:

Example 1.2. Let Pr and Op be the players involved in the following argumentation
dialogue (Pr and Op denote, respectively, the proponent and the opponent):

Pr0 : “You killed the victim.”
Op1 : “I did not commit murder! There is no evidence!”
Pr1 : “There is evidence. We found your ID card near the scene.”
Op2 : “It is not evidence! I had my ID card stolen!”
Pr2 : “It is you who killed the victim. Only you were near the scene at the time

of the murder.”
Op3 : “I did not go there. I was at facility A at that time.”
Pr3 : “At facility A? Then, it is impossible to have had your ID card stolen since

facility A does not allow a person to enter without an ID card.”

We can easily represent arguments of this example with a rule-based formalism
as follows. We have rules R:

rPr0 : ⇒ murderer(X)
r′Op1

: ⇒ ¬evidence_Against(X)
r′′Op1

: ¬evidence_Against(X) ⇒ ¬murderer(X)
rPr1 : ID(X)_at_crime_scene ⇒ evidence_Against(X)
rOp2 : ID(X)_stolen ⇒ ¬evidence_Against(X)
r′Pr2

: ⇒ only(X)_at_crime_scene
r′′Pr2

: only(X)_at_crime_scene ⇒ murderer(X)
rOp3 : at_facility_A(X) ⇒ ¬only(X)_at_crime_scene
rPr3 : at_facility_A(X) ⇒ ¬ID(X)_stolen

and a priority relation >= {rOp2 > rPr1}, where the notation ri : A(r) ⇒ C(r)
identifies that ri is the name of the rule, A(r) is the set of antecedents (possibly empty)
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while C(r) is the conclusion, symbol ⇒ denotes that the conclusion may be defeated
by contrary evidence, as for instance the conflict between rOp2 and rPr1, resolved by
> (the superiority relation) which allows us to conclude that ¬evidence_Against(X)
is the case.

A feature of this dialogue is that the exchange of arguments reflects an asymmetry
of information between the two parties. Each player does not know the other player’s
knowledge, thus they cannot predict which arguments will be attacked, nor which
counterarguments may be employed for attacking their own arguments. In addition,
the private information disclosed by a party might eventually be used by the adversary
to construct and play justified counterarguments. Thus, Pr3 attacks Op2, but only
after Op3 has been given. Thus, the attack Pr3 of the proponent is possible only
when the opponent discloses some private information through the move Op3 (in this
setting, after Op let Pr know that Op was at facility). If we assume that Pr wishes
to expose Op’s guilt, and Op wishes to hide it, then we can view this dialogue as a
game, where a move consists of stating an argument.

This example illustrates a scenario where some of the information disclosed by a
party could be detrimental to their aim. This is a common phenomenon in many
applications that are suitable to be formally represented by argumentation such as
negotiation [117], brokering [10], and in the legal domain [114; 63]. In a negotiation,
the other party could use the information to gain some advantage either on the issue
of the negotiation (e.g., price of an item) or on some side effects; in a legal proceeding
the opposite party could use the information to win the case. Hence, players in such
an argumentation game must be strategic in what arguments they expose, to put
themselves in the best position. We refer to such games as strategic argumentation
games.

Furthermore, in such applications the parties can be represented by agents acting
and debating on behalf of their clients, but these agents might not have their client’s
best interests at heart. This can corrupt the dialogue. For example, suppose the
agent for Pr was bribed by Op to omit the claim Pr2. Then Op3 would have remained
private, and Op’s lie would be undiscovered. Similar issues occur whenever we employ
an agent, whether human or software.

Technically, games involving privacy are called games of incomplete information.
As argued in [67], argument games with incomplete information can be modelled by
stating that each player has a logical theory, constituting their private knowledge,
and which is unknown by the opposite party, and there is an additional theory shared
by all parties with the information that is public. A player may build an argument
that supports their claim by using some of their private knowledge and the common
information; in turn, the other party may construct new arguments by re-using
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the adversary’s disclosed information (along with other pieces of their own private
knowledge) in order to defeat the opponent’s arguments. In a legal proceeding, we can
distinguish between two types of information: the norms in force in the underlying
jurisdiction, which are assumed to be known by both parties, and the information,
private to each party, on the facts of the case. Accordingly, the legal proceeding can
be modelled by three theories, a public one with the common knowledge, encoding
the norms of the underlying jurisdiction, plus two private theories: one for each
party.

When working with logically structured arguments, the different logical theories
are represented by sets of rules (which may include unconditional facts). So, the set
R of all rules used to build arguments is partitioned into three (distinct) subsets:
a set RCom known by both players, and two subsets RPr and ROp corresponding,
respectively, to Pr’s and Op’s private knowledge. While the game is evolving, at each
turn, a party discloses some of their private arguments and, by doing so, the player
reduces their private information (RPr/ROp decreases) with what now becomes part
of the new common knowledge base (RCom increases). Consider a setting where
F = {a, d, f} is the known set of facts (categorical statements), RCom = F (the facts
are common knowledge), and the players have the following sets of rules:

RPr = {r0 : a⇒ b; r1 : d⇒ c; r2 : c⇒ b} ROp = {r3 : c⇒ e; r4 : e, f ⇒ ¬b}.

If Pr’s intent is to prove b and plays {a ⇒ b}, then Pr wins the game. In fact, Op
has no way to prove e and thus r4 is not active. If, on the other hand, Pr plays
{d⇒ c, c⇒ b} (or even the whole RPr), this allows Op to succeed. Here, a minimal
subset of RPr is successful. The situation can be reversed for Pr. Replace the sets of
private rules with

RPr = {a⇒ b; d⇒ ¬c} ROp = {d, c⇒ ¬b; f ⇒ c}.

Playing {a⇒ b} is now not successful for Pr, while the whole RPr ensures victory.
Example 1.2 brings out the issues we will address in this chapter: formalizing

such dialogues as strategic argumentation games, addressing the difficulty of making
a move in a game, and examining the possibility of corruption in such games and
means to foil it. We will look at both defeasible logics [6] and ASPIC-style structured
argumentation [2; 111] as languages for expressing arguments. We will also show that
the same issues arise if we formulate strategic argumentation in terms of abstract
arguments [41]. In looking at corruption, we consider two forms: espionage and
collusion. To counter these possibilities, we examine the use of standards and audit
to limit the ability of players to behave corruptly, and the idea of computational
resistance to corruption to discourage corruption.
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The layout of this chapter is as follows. Section 2 describes the general setting of
argumentation and dialogue games. Section 3 provides some technical background on
computational complexity, elements of abstract argumentation [41], and a framework
for argumentation with logically structured arguments. Section 4 outlines Defeasible
Logic and its four main variants. Section 5 presents an instance of the strategic
argumentation game with Defeasible Logic as the basis for argumentation, and proves
the computational difficulty of playing the game. It extends this result to an instance
of structured argumentation under the grounded semantics. Section 6 extends the
idea of strategic argumentation further, to abstract argumentation over a variety of
semantics. Section 7 investigates how corruption can affect argumentation games,
and how it can be countered. Section 8 discusses related work and Section 9 considers
possible future directions of this research. Section 10 ends the chapter.

2 Argumentation and Dialogue Games
In this section we briefly describe a general setting of argumentation and dialogue
games. In doing so we will not bind concepts such as argument, aim, acceptance or
extension to a specific meaning, nor specify all details of concepts like argumentation
framework. They will be specified more precisely later.

Definition 2.1 (Argumentation framework). An argumentation framework AF is
a tuple (A,R), where A is a set of arguments, and R is a collection of relations over
A.

The literature in argumentation theory flourishes with different frameworks
describing what arguments are, where the two main school of thoughts see them as
either monads (with no internal structure), or structured (made of sub-parts). We
will address both schools. For now, we are only interested in saying that there is a
function mapping arguments to elements of the language, referred to as conclusions
(or theses, claims).

Definition 2.2 (Conclusions). Given an argumentation framework AF and a lan-
guage of expressions L, the function conc : A 7→ 2L maps each argument to a set of
elements of L. If cA ∈ conc(A), then we call cA a conclusion of argument A.

In the monadic view, each argument might have a single, distinct conclusion. In
that case, conclusions add nothing to the argumentation framework. In the structured
view, an expression might be a conclusion of several arguments, and its negation
might also be a conclusion of arguments. Any structured argumentation framework
with conclusions can be abstracted to a monadic argumentation framework by simply
ignoring its internal structure (and retaining the conclusion function).
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For the purposes of this chapter, a semantics maps an argumentation framework to
a set of extensions. Each semantics implicitly expresses a criterion for how arguments
can coherently be adjudicated together, given an argumentation framework. Each
extension in the semantics represents a “reasonable” adjudication, according to that
criterion, of the arguments in the argumentation framework. We leave open the
details of what an extension is and how it might be represented, but commonly it is
a set of arguments or a labelling for arguments (see Section 3.2 for more details of
these common representations).

Definition 2.3 (Semantics). A semantics is a function σ mapping argumentation
frameworks to a set of extensions.

There is a rich array of interactions that are considered dialogues in the argumen-
tation literature [24] but, as can be seen from the introduction, we have a specific
kind of dialogue in mind. We define a dialogue as the exchange of arguments between
two (or more) parties. We talk of dialogue games when we want to analyse the formal
properties of the dialogue, using criteria from game theory.

At the beginning of a dialogue game, each agent starts with a private set of
arguments but they also share a (possibly empty) set of arguments that are common
knowledge1 to all players. This shared knowledge among the agents will be enriched
throughout the game with the arguments played at each turn, as will be clear in the
following.

Each player also has an aim, the details of which we leave open. Aims might be
to have a particular argument accepted in at least one extension, under a particular
semantics, or to have the cardinality of each extension, under a given semantics, be
a prime number2.

Our dialogue games consist of a state and possible changes of state.

Definition 2.4 (Dialogue Game State). Given a set of agents Pl1, . . . , P ln (referred
to as players), a dialogue game state is an argumentation framework (A,R) where
R contains unary relations ξ1, . . . ξn on A, one for each player, as well as ξCom and,
possibly, other relations.

Each unary relation ξi defines a subset Si of A: Si = {a | a ∈ A, ξi(a)}. Similarly,
SCom = {a | a ∈ A, ξCom(a)}. SCom is the set of arguments that are common
knowledge to all players, while Si is the additional set of arguments that player Pli
knows, but other players don’t know she knows (they are private).

1 By common knowledge we mean, not only that all players have knowledge of the arguments,
but also each player knows that the others know, and each knows that the others know that she
knows, and so on. [49]

2 Admittedly, the latter example is not likely to arise in practice.
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Thus, a dialogue game state can equally be viewed as a split argumentation frame-
work (A, SCom, S1, . . . , Sn,R′), where SCom∩(∪ni=1Si) = ∅ and R′ is R\{ξCom, ξ1, . . . ,
ξn}.

A dialogue game is a collection of players, each with their own aim, making
moves, in turn, to achieve their aim3.

Definition 2.5 (Dialogue Game). Given a set of players Pl1, . . . , P ln and an aim
for each player, a dialogue game consists of an initial dialogue game state in the form
of a split argumentation framework (A, SCom, S1, . . . , Sn,R), and state transition
rules (or moves) defined below.

1. Players take turns, meaning that only a single player can act at a given turn4.

2. At a given turn k, player Pli advances a subset T of its private arguments in
order to achieve their aim. If Sk−1

Com and Sk−1
i denote, respectively, the common

shared argumentation framework and Pli’s private argumentation framework
at turn k − 1, then

• SkCom = Sk−1
Com ∪ T

• Ski = Sk−1
i \ T

• Skj = Sk−1 for j 6= i

3. The game ends at turn k+1, when either: (i) the aim of each player is satisfied,
so no player has an incentive to change the state of the game, or (ii) no player
with an unsatisfied aim is able to satisfy that aim by making a move.

The state of the dialogue game after turn k is (A, SkCom, S
k
1 , . . . , S

k
n,R). The

common argumentation framework at that point is CAF k = (SkCom,R).

According to the typology of argumentation games in [128], these dialogue
games have a dialectical argumentation mechanism and players have no awareness of
other players’ arguments; agent type is not specified. The games we define below
(Definitions 2.6 and 2.7) have an indicator agent type.

3Many different types of dialogue have been classified and many protocols have been provided
for them; we refer to Chapter 9 of the present volume [24] for in depth analysis of the various
alternatives. In this chapter we restrict ourselves to a minimal and limited view of dialogue games,
suitable to define strategic argumentation.

4We shall not dwell on the details of how/which players are selected to act at a given turn, as it
is outside the scope of this chapter. [128] discusses some other possibilities.
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If we ignore turn-taking, our dialogue games are memoryless: the permitted
moves are determined by the current dialogue state, independent of how that state
was reached. Other forms of dialogue game may not have this property.

Note that, although the set of common arguments increases monotonically, this
game is non-monotonic, meaning that, at any given turn, aims that were satisfied at
the previous turn might now be unsatisfied.

Also note that we are considering the relations R to have a fixed meaning, inde-
pendent of player’s beliefs or perceptions. The omniscient argumentation framework
corresponding to a dialogue game is (A,R).

We now formulate a specific type of dialogue games, namely strategic argumenta-
tion dialogues. In a strategic argumentation dialogue game, we have only two players,
who take turns in exchanging arguments to accept/reject a topic ϕ, where ϕ ∈ L. We
name one player Proponent (Pr), and the other Opponent (Op). We shall consider
two variants of the strategic argumentation dialogue game: the symmetric, and the
asymmetric strategic argumentation dialogue game. In the symmetric variant, both
parties have the burden of proof, that is, the proponent has to establish ϕ, where
the opponent has to establish ¬ϕ. (With ¬ϕ, we denote the contrary of ϕ.) In the
asymmetric variant, the proponent still has to establish ϕ, whereas the opponent
aims to prevent this.

In the symmetric variant, at one turn, either ϕ, or ¬ϕ, is accepted. If ϕ is
accepted, then it is the opponent’s turn; if ¬ϕ is accepted, then is the proponent’s
turn. At a given turn, the player has two possible courses of action. First, they
play a subset of their private argumentation framework (i.e., a non-empty set of
arguments). By doing so, they increment the shared argumentation framework with
the arguments just played. Second, they pass and admit defeat. This happens when
they are not able to change the status of the conclusion. The game ends when a
player passes.

Definition 2.6 (Symmetric Strategic Argumentation Dialogue Game). Consider
two players, a proponent Pr and an opponent Op, an expression ϕ ∈ L, a dialogue
game state in the form of a split argumentation framework (A, SCom, SPr, SOp,R),
and a conclusion function conc. Suppose that there is an argument a ∈ SPr such that
ϕ ∈ conc(a).

Let SkCom, SkPr, and SkOp denote, respectively, the common knowledge arguments,
Pr’s private arguments and Op’s private arguments after turn k. (In particular,
S0

Com = SCom, S0
Pr = SPr, and S0

Op = SOp.)
We define a symmetric strategic argumentation dialogue game as a dialogue game

where:

1. The players take turns; if ϕ is accepted by CAF 0 under semantics σ, then Op
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begins; otherwise Pr does so.

2. At turn k, if ¬ϕ is accepted in CAF k−1, then it is Pr’s turn to play, as follows

• Pr advances a subset of its private arguments T ⊆ Sk−1
Pr so that ϕ is

accepted in CAF k. As a result
– SkCom = Sk−1

Com ∪ T ;
– SkPr = Sk−1

Pr \ T .
– SkOp = Sk−1

Op

3. At turn k, if ϕ is accepted in CAF k−1, then it is Op’s turn to play, as follows

• Op advances a subset of its private arguments T ⊆ Sk−1
Op so that ¬ϕ is

accepted in CAF k. As a result
– SkCom = Sk−1

Com ∪ T ;
– SkPr = Sk−1

Pr
– SkOp = Sk−1

Op \ T .

4. The game ends at turn k + 1, when either (i) it is Pr’s turn and there is no
move for Pr such that CAF k+1 accepts ϕ, in which case Op wins, or (ii) it
is Op’s turn and there is no move for Op such that CAF k+1 accepts ¬ϕ, in
which case Pr wins.

The only difference in the asymmetric variant with respect to the symmetric
one is that, the opponent no longer has the burden of proof: during her turn, Op
proposes arguments in order to prevent acceptance of ϕ, rather than to accept ¬ϕ
(see point 3).

Definition 2.7 (Asymmetric Strategic Argumentation Dialogue Game). Consider
two players, a proponent Pr and an opponent Op, an expression ϕ ∈ L, a dialogue
game state in the form of a split argumentation framework (A, SCom, SPr, SOp,R),
and a conclusion function conc.

Let SkCom, SkPr, and SkOp denote, respectively, the common knowledge arguments,
Pr’s private arguments and Op’s private arguments after turn k. (In particular,
S0

Com = SCom, S0
Pr = SPr, and S0

Op = SOp.)
We define an asymmetric strategic argumentation dialogue game as a dialogue

game where:

1. The players take turns; if ϕ is accepted by CAF 0 under semantics σ, then Op
begins; otherwise Pr does so.
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2. At turn k, if ϕ is not accepted in CAF k−1, then it is Pr’s turn to play, as
follows

• Pr advances a subset of its private arguments T ⊆ Sk−1
Pr so that ϕ is

accepted in CAF k. As a result
– SkCom = Sk−1

Com ∪ T ;
– SkPr = Sk−1

Pr \ T .
– SkOp = Sk−1

Op

3. At turn k, if ϕ is accepted in CAF k−1, then it is Op’s turn to play, as follows

• Op advances a subset of its private arguments T ⊆ Sk−1
Op so that ϕ is not

accepted in CAF k. As a result
– SkCom = Sk−1

Com ∪ T ;
– SkPr = Sk−1

Pr
– SkOp = Sk−1

Op \ T .

4. The game ends at turn k + 1, when either (i) it is Pr’s turn and there is no
move for Pr such that CAF k+1 accepts ϕ, in which case Op wins, or (ii) it is
Op’s turn and there is no move for Op such that CAF k+1 does not accept ϕ,
in which case Pr wins.

Thus both variants are dialogue games between two players arguing about a
conclusion ϕ on the basis of their common argumentation framework. They leave
open the notion of acceptance and the details of the set of relations R, but specify
more precisely the aims of the players. From now on, we will use the abbreviations
SSA for Symmetric Strategic Argumentation, and AsSA for Asymmetric Strategic
Argumentation.

The asymmetric game can be seen in situations where the parties have different
proof standards. For example, in a criminal proceeding the prosecution must prove
its case “beyond a reasonable doubt”, while the defence has only to prevent this. An
asymmetric dialogue game was presented in [48].

The problems that the players must solve in order to move vary slightly according
to the kind of game played (SSA vs. AsSA) and the players (Pr and Op). We
formulate them as decision problems as follows:
SSA Problem under Semantics σ

Let (A, SkCom, S
k
Pr, S

k
Op,R) be the split argumentation framework as in Defini-

tion 2.6 after turn k, and ϕ ∈ L be the content of the dispute.
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Pr’s instance for turn k + 1: A split argumentation framework
(A, SkCom, S

k
Pr, S

k
Op,R) and an expression ϕ ∈ L.

Question: Does there exist a subset T of SkPr such that ϕ is accepted
by CAF k+1 under semantics σ?

Op’s instance for turn k + 1: A split argumentation framework
(A, SkCom, S

k
Pr, S

k
Op,R) and an expression ϕ ∈ L.

Question: Does there exist a subset T of SkOp such that ¬ϕ is accepted
by CAF k+1 under semantics σ?

Analogously, we can formalise the AsSA Problem.
AsSA Problem under Semantics σ

Let (A, SkCom, S
k
Pr, S

k
Op,R) be the split argumentation framework as in Defini-

tion 2.7 after turn k, and ϕ ∈ L be the content of the dispute.

Pr’s instance for turn k + 1: A split argumentation framework
(A, SkCom, S

k
Pr, S

k
Op,R) and an expression ϕ ∈ L.

Question: Does there exist a subset T of SkPr such that ϕ is accepted
by CAF k+1 under semantics σ?

Op’s instance for turn k + 1: A split argumentation framework
(A, SkCom, S

k
Pr, S

k
Op,R) and an expression ϕ ∈ L.

Question: Does there exist a subset T of SkOp such that ϕ is not accepted
by CAF k+1 under semantics σ?

In Section 5, we will give an implementation of the strategic argumentation game
with Defeasible Logic (DL) [104] as the underlying logical framework, and assess the
complexity of these problems.

3 Background
In this section we outline the concepts we use involving computational complexity,
abstract and structured argumentation. This is not intended to be an introduction
to these topics, it is simply a sketch of the concepts, assuming a familiarity with
the more common elements. Those with less familiarity with these topics might
want to read an introduction first, such as [75; 45] for computational complexity, [13;
12] for abstract argumentation, and [112] for structured argumentation.
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NP Σp
2

⊆ ⊆ ⊆ ⊆
P Dp ⊆ Θp

2 ⊆ ∆p
2 Dp

2 ⊆ ∆p
3 ⊆ · · ·

⊆ ⊆ ⊆ ⊆
coNP Πp

2

· · · ⊆ PH ⊆ PPP ⊆ NPPP ⊆ PNPPP ⊆ NPNPPP · · · ⊆ PSPACE

Figure 1: Some complexity classes in the polynomial counting hierarchy, ordered by
containment.

3.1 Complexity Classes
When addressing computational complexity we will focus on decision problems,
because of their more familiar complexity classes, rather than their functional
counterparts, which are more appropriate for many of the computational tasks we will
address. We assume familiarity with the polynomial time complexity hierarchy but
we will introduce some other complexity classes that we will need, and computational
problems that are complete for each class. As is usual, DC denotes the class of
problems that can be solved with complexity D if given an oracle for a problem in C.

Within the polynomial hierarchy, a complete problem for Σp
n (Πp

n) is the satisfia-
bility of quantified Boolean formulas (QBF) with quantifiers in the form ∃∀∃ · · · ∃
(respectively, ∀∃∀ · · · ∃) with n alternations of quantifiers. PSPACE is the class of
decision problems solvable in polynomial space. It contains the entire polynomial
hierarchy PH. A complete problem for PSPACE is satisfiability of all quantified
Boolean formulas.

Dp is the complexity class of problems that can be expressed as the conjunction
of a problem in NP and a problem in coNP. A complete problem for Dp asks, given
Boolean formulas φ and ψ, is φ unsatisfiable and ψ satisfiable? NPDp = Σp

2. Similarly
Dp

2 is the conjunction of problems in Σp
2 and Πp

2.
Θp

2 is the class of decision problems solvable by a deterministic polynomial
algorithm with O(log n) calls to an NP oracle. It is equal to PNP

|| , the class of
problems solvable by a deterministic polynomial algorithm with non-adaptive calls to
an NP oracle. Non-adaptive refers to the restriction that oracle calls cannot depend
on the outcome of previous calls. NPΘp

2 = Σp
2.

∆p
2 is equal to PNP. A complete problem for ∆p

2 is, given a Boolean formula ψ,
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does the lexicographically last satisfying assignment for ψ end with a 1?
PP is, roughly, the class of decision problems that have more accepting paths

than rejecting paths. It can be thought of as a decision problem version of the more
familiar counting complexity class #P, which addresses absolute counting, while PP
addresses relative size of counts. We have P#P = PPP and NP#P = NPPP. The
entire polynomial hierarchy is contained within NPPP. A complete problem for PP,
called MAJSAT, is to decide whether a given Boolean formula is satisfied by more
than half of the assignments to its variables. This can be expressed via a “counting”
quantifier C as satisfying CX ψ. Similarly, a complete problem for NPPP, called
E-MAJSAT is satisfying formulas ∃XCY ψ. And so on.

The counting polynomial hierarchy [137] extends the polynomial hierarchy by
incorporating PP, PPP, NPPP, coNPPP, etc. Figure 1 displays containment relations
among relevant complexity classes. In addition to the containments displayed,
Θp

2 ⊆ PP ⊆ PPP.

3.2 Abstract Argumentation
Definition 3.1 (Abstract Argumentation Framework). An abstract argumentation
framework is a pair (A,�) where A is a set of arguments and � is a subset of
A×A, where (a, b) ∈� denotes that a attacks b.

An abstract argumentation framework can be represented as a directed graph,
where each vertex is an argument, and a directed edge from a to b if a attacks b. An
argumentation framework is acyclic if the corresponding directed graph is acyclic.

For the purposes of this chapter, a semantics maps an argumentation framework
to a set of extensions, each extension being a set of arguments (the set of arguments
accepted in that extension)5. When representing the state of an argument in an
extension, we will use the labelling approach (see, for example, [13; 12]) in which
the argument is labelled either in, out, or undec. That is, an extension E is defined
as a function LabE : A → {in, out, undec}. Then we can define an extension E as
{a ∈ A | LabE(a) = in}.

Given an argumentation framework AF = (A,�), an argument a is said to be
accepted in an extension E if LabE(a) = in, rejected in E if LabE(a) = out, and
undecided in E if LabE(a) = undec. An extension E is conflict-free if no accepted
argument is attacked by an accepted argument. An argument a is defended by E
if every argument that attacks a is attacked by some argument accepted in E. An
extension E of AF is stable if it is conflict-free and for every argument a ∈ A\E

5 Thus we will not address the gradual and ranking semantics discussed in [15; 1].
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there is an argument in E that attacks a. An extension E of AF is complete if it is
conflict-free and, a ∈ E iff a is defended by E.

The set of complete extensions forms a lower semi-lattice under the containment
ordering, and many semantics can be defined directly in terms of this semi-lattice.
The least complete extension under the containment ordering exists and is called
the grounded extension. The preferred extensions are the maximal complete exten-
sions under the containment ordering. The semi-stable extensions are the complete
extensions where the set of arguments labelled with in or out is maximal under
the containment ordering. The ideal extension is the maximal complete extension
contained in all preferred extensions. Similarly, the eager extension is the maximal
complete extension contained in all semi-stable extensions. These are not necessarily
the original definitions of these extensions, but they are equivalent definitions.

We will use GR to denote the grounded semantics, ST for the stable semantics,
CO for the complete semantics, PR for the preferred semantics, ST for the stable
semantics, SST for the semi-stable semantics, EA for the eager semantics, and ID
for the ideal semantics.

We say a semantics is completist if every argumentation framework is mapped to
a set of complete extensions. These semantics will be our main focus. A semantics
is strongly completist if it is completist and the set of extensions is determined
by the semi-lattice structure of the complete extensions. Among the completist
semantics are the grounded, preferred, stable, semi-stable, ideal, eager, and complete
semantics. All except the stable semantics are strongly completist. Stable extensions
are defined by a property of the individual extension, rather than by a structural
property within the semi-lattice of complete extensions, and it turns out there is
no equivalent structural definition [90]. Stable semantics is also exceptional in that
some argumentation frameworks have no stable extensions.

Each semantics implicitly expresses a criterion for what arguments can coherently
be accepted together, given an argumentation framework. Each extension in the
semantics represents a “reasonable” adjudication, according to that criterion, of the
arguments in the argumentation framework.

Our restriction to completist semantics is, then, an implicit requirement that
reasonable adjudications are conflict-free, defend all the accepted arguments, and
accept all the defended arguments.6 Each of the semantics, except (obviously)
the complete semantics, imposes extra requirements, reflecting different emphases:
the grounded semantics is highly sceptical, requiring a minimal set of accepted
arguments7; the preferred semantics requires maximal sets of accepted arguments;

6 However, we make this restriction in this chapter only for simplicity, and not on the basis that
this implicit requirement is justified.

7 Or, equivalently, accepting only arguments that are accepted in all complete extensions.

1692



Strategic Argumentation

the stable semantics requires that no argument is left undecided; the semi-stable
semantics requires minimal sets of undecided arguments; the ideal semantics requires
accepting only arguments that are accepted in all preferred extensions, and accepting
as many of these as possible; the eager semantics requires accepting only arguments
that are accepted in all semi-stable extensions, and accepting as many of these as
possible.

The grounded, ideal and eager semantics are unitary: they contain exactly one
extension. Such semantics limit, somewhat, the range of possible strategic aims of
players in strategic argumentation, as we will see later.

Structural properties of an argumentation framework can influence the relationship
between various semantics, which can make proving the computational complexity
of some problems easier. An argumentation framework is well-founded if there is
no infinite sequence of arguments a1, a2, . . . , ai, ai+1, . . . such that, for each i, ai+1
attacks ai. Such argumentation frameworks have a single complete extension which
must be the grounded extension [41], in which every argument is either accepted or
rejected. Every completist semantics for such argumentation frameworks consists of
this single extension.

An argument framework is coherent if every preferred extension is stable. An
argument b indirectly attacks an argument a if there is a path of odd length from b to
a, and indirectly defends a if there is a path of even length from b to a. An argument
b is controversial wrt a if b indirectly attacks a and indirectly defends a. An argument
is controversial if it is controversial wrt some argument. An argument framework
is uncontroversial if there is no controversial argument. An argument framework is
limited controversial if there is no infinite sequence of arguments a1, a2, . . . , ai, . . . such
that ai−1 is controversial wrt ai. Dung shows that (Theorem 33 of [41]) every limited
controversial argument framework is coherent, and every uncontroversial argument
framework is also relatively grounded. An argument framework is relatively grounded
if intersection of all preferred extensions coincides with the grounded extension.

3.3 Structured Argumentation
Argumentation takes place over a language of expressions, most commonly a language
of literals. For definiteness, in this chapter we consider propositional literals.

Definition 3.2 (Language). The language L of expressions consists of a set of
literals. Given a set PROP of propositional atoms, the set of literals is Lit =
PROP ∪ {¬p | p ∈ PROP}. We denote with ∼p the complementary of literal p; if p
is a positive literal q, then ∼p is ¬q, and if p is a negative literal ¬q, then ∼p is q.

Rules are built out of these expressions. Rules have labels to name them, but
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these are completely separate from labels used in abstract argumentation.

Definition 3.3 (Rules). Let Lab be a set of rule labels. A rule r with r ∈ Lab
describes the relation between a set of expressions, called the antecedent (or body or
the premise) of r and denoted by A(r) (which may be empty) and an expression, called
the consequent, or head, of r and denoted by C(r). Three kind of rules are allowed:
strict rules of the form r : A(r)→ C(r), defeasible rules of the form r : A(r)⇒ C(r),
and defeaters of the form r : A(r) ; C(r).

A strict rule is a rule in the classical sense: whenever the antecedent holds, so
does the conclusion. We call a strict rule without antecedent a fact, but we often
distinguish facts from “true” strict rules that have an antecedent. A defeasible rule is
allowed to assert its conclusion unless there is contrary evidence to it. A defeater is a
rule that cannot be used to draw any conclusion, but can provide contrary evidence
to complementary conclusions. A defeater in this sense [102] can be considered an
instance of the general notion of defeater in epistemology: evidence that counts
against a belief.

Definition 3.4 (Argumentation Theory). An argumentation theory D is a structure
(R,>), where R is a (finite) set of rules and >⊆ R × R is a binary relation on R
called the superiority relation.

The relation > describes the relative strength of rules, that is to say, when
a single rule may override the conclusion of another rule, and is required to be
irreflexive, asymmetric, and acyclic (i.e., its transitive closure is irreflexive). To
simplify discussion, we assume no strict rule is inferior to another rule. We use the
following abbreviations on R: the set of strict rules in R is denoted by Rs, the set of
strict and defeasible rules in R by Rsd, the set of defeasible rules by Rd, the set of
defeaters by Rdft, and R[q] is the set of rules in R whose head is q.

To demonstrate these definitions, we look at a time-honoured example of defeasible
reasoning.

Example 3.5. Consider an argumentation theory consisting of the following rules

r1 : bird(X) ⇒ fly(X)
r2 : penguin(X) ⇒ ¬fly(X)
r3 : penguin(X) → bird(X)
r4 : injured(X) ; ¬fly(X)
f : penguin(tweety)
g : bird(freddie)
h : injured(freddie)

1694



Strategic Argumentation

and a priority relation r2 > r1.
Here r1, r2, r3, r4, f are labels and r3 is (a reference to) a strict rule, while r1 and

r2 are defeasible rules, r4 is a defeater, and f, g, h are facts. Thus Rs = {r3, f, g, h}
and Rsd = R = {r1, r2, r3} and > consists of the single tuple (r2, r1). The rules
express that birds usually fly (r1), penguins usually don’t fly (r2), that all penguins
are birds (r3), and that an injured animal may not be able to fly (r4). In addition, we
are given the facts that tweety is a penguin, and freddie is an injured bird. Finally,
the priority of r2 over r1 expresses that when something is both a bird and a penguin
(that is, when both rules can fire) it usually cannot fly (that is, only r2 may fire, it
overrules r1).

By combining the rules in a theory, we can build arguments (we adjust the
definition in [112] to meet Definition 3.4). In what follows, for a given argument
A, Conc returns its conclusion, Sub returns all its sub-arguments, Rules returns all
the rules in the argument and, finally, TopRule returns the last inference rule in the
argument.

Definition 3.6 (Argument). Let D = (R,>) be an argumentation theory and
V∈ {→,⇒,;}. An argument A constructed from D has the form A1, . . . , An Vr ψ,
where

• Ak is an argument constructed from D, for 1 ≤ k ≤ n, and

• r : Conc(A1), . . . ,Conc(An) V ψ is a rule in R.

The set of arguments constructed from D is the smallest set of arguments satisfying
this condition.

With regard to argument A, the following holds:

Conc(A) = ψ
Sub(A) = Sub(A1) ∪ · · · ∪ Sub(An) ∪ {A}
TopRule(A) = r : Conc(A1), . . . ,Conc(An) V ψ
Rules(A) = Rules(A1) ∪ · · · ∪ Rules(An) ∪ {TopRule(A)}
(Rules(A1) ∪ · · · ∪ Rules(An)) ∩Rdft = ∅

If Rules(A) ⊆ Rs then argument A is strict, otherwise A is defeasible. If Rules(A) ∩
Rdft 6= ∅ then argument A is non-supportive, otherwise it is supportive.

Conflicts between contradictory argument conclusions are resolved on the basis
of preferences over arguments using a simple last-link ordering. An argument A is
stronger than another argument B (written A > B) iff B is defeasible, and either A
is strict or TopRule(A) is stronger than TopRule(B) (TopRule(A) > TopRule(B)).
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Definition 3.7 (Attacks). An argument B attacks an argument A iff ∃A′ ∈ Sub(A)
such that Conc(B) = ∼Conc(A′), and A′ 6> B.

We can now define the argumentation framework that is determined by an
argumentation theory.

Definition 3.8 (AF determined by an argumentation theory). Let D = (R,>) be
an argumentation theory. The argumentation framework determined by D is (A,�),
where A is the set of all arguments constructed from D, and � is the attack relation
defined above.

Given this definition of argumentation framework, if D is an argumentation
theory, we can abuse notation somewhat and write GR(D) to denote the grounded
extension of the argumentation framework determined by D.

Definition 3.9 (Justified Conclusion). Given an argumentation theory D, we say
a conclusion ψ is justified by D under the grounded semantics iff there exists a
supportive argument a in GR(D) such that Conc(a) = ψ.

The following example illustrates the notions just introduced.

Example 3.10. Using the rules from Example 3.5, we have arguments:

A1 : →f penguin(tweety) (strict argument)
A2 : A1 →r3 bird(tweety) (strict argument)
A3 : A2 ⇒r1 fly(tweety) (defeasible argument)
A4 : A1 ⇒r2 ¬fly(tweety) (defeasible argument)

among others.
If we consider the argument A3, we have

Conc(A3) = fly(tweety)
Sub(A3) = {A1, A2, A3}
TopRule(A3) = r1
Rules(A3) = {f, r1, r3}

A4 attacks A3 because the two arguments have contradictory conclusions and
r1 6> r2. On the other hand, A3 does not attack A4 because r2 > r1.

In the argumentation framework determined by this theory there is no argument
attacking A4. Hence A4 appears in the grounded extension. Since A4 is a supportive
argument, its conclusion ¬fly(tweety) is justified under the grounded semantics.
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4 Defeasible Logic
Defeasible Logic (DL) [103] is a rule-based sceptical approach to non-monotonic
reasoning. It is based on a logic programming-like language and is a simple, efficient
but flexible formalism capable of dealing with many intuitions of non-monotonic
reasoning in a natural and meaningful way [4].

Defeasible rule languages like defeasible logic have been shown to be useful in
representing legal documents and reasoning [113; 9; 118; 68; 66; 74; 72]. There are a
variety of defeasible logics, which have been argued to represent the different proof
standards that apply in legal systems [62; 64].

Defeasible logics have much in common with argumentation, but there is only
little work substantiating the relationship. [65] characterizes inference in two defeasi-
ble logics in terms of argumentation. [62] maps proof in Carneades [59] at a given
proof standard into proof in a defeasible logic. [79] showed how to map one instance
of ASPIC+ into a defeasible logic. [93] gave two embeddings of abstract argumenta-
tion frameworks AF into a small subset of defeasible rule languages, implying, in
particular, that acceptance in the grounded extension of AF can be implemented in
a wide variety of defeasible logics and other concrete defeasible reasoning formalisms.

In this section we define two defeasible logics, but first we introduce defeasible
logic in general.

4.1 Defeasible logic

The language of DL consists of literals and rules. To avoid notational redundancies,
we use the same definitions of PROP, Lit, complementary literal, and the same rule
types, structure and notation as already introduced in Definition 3.2.

A defeasible theory D is a triple (F,R,>), where F ⊆ Lit is a set of indisputable
statements called facts, R is a (finite) set of rules, and > ⊆ R×R is a superiority
relation on R as introduced in Definition 3.4.

A derivation (or proof ) is a finite sequence P = P (1), . . . , P (n) of tagged literals
of the type +∆q (q is definitely provable), −∆q (q is definitely refuted), +d q (q is
defeasibly provable) and −d q (q is defeasibly refuted). The proof conditions below
define the logical meaning of such tagged literals. Given a proof P , P (n) denotes
the n-th element of the sequence, and P (1..n) denotes the first n elements of P . ±∆
and ±df are called proof tags. Given # a proof tag, the notation D ` ±#q means
that there is a proof P in D such that P (n) = ±#q for an index n.

In the remainder, we only present the proof conditions for the positive tags: the
negative ones are obtained via the principle of strong negation. This is closely related
to the function that simplifies a formula by moving all negations to an inner most
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position in the resulting formula, and replaces the positive tags with the respective
negative tags, and the other way around [5].

The proof conditions for +∆ describe just forward chaining of strict rules.

+∆: If P (n+ 1) = +∆q then either
(1) q ∈ F or
(2) ∃r ∈ Rs[q] s.t. ∀a ∈ A(r). + ∆a ∈ P (1..n).

Literal q is definitely provable if either (1) is a fact, or (2) there is a strict
rule for q, whose antecedents have all been definitely proved. Literal q is definitely
refuted if (1) is not a fact and (2) every strict rule for q has at least one definitely
refuted antecedent. Conceptually, strict derivations are much stronger than defeasible
ones: the superiority relation plays no part in them. If we have two strict rules for
opposite conclusions whose antecedents are all proven, then the logic will derive both
conclusions, which signals an inconsistency within the theory itself.

The conditions to establish a defeasible proof +d have a structure similar to
arguments, and are formalised by the following schema.

+d: If P (n+ 1) = +d q then either
(1) +∆q ∈ P (1..n) or
(2) (2.1) −∆∼q ∈ P (1..n) and

(2.2) ∃r ∈ Rsd[q] s.t. r is applicable, and
(2.3) ∀s ∈ R[∼q]. either

(2.3.1) s is unsupported, or
(2.3.2) s is defeated.

Intuitively, a rule is applicable if all the literals in the antecedent have previously
been proven. Clause (2.3) considers the possible counter-arguments. To derive q,
each such counter-argument must be either unsupported, or defeated. A rule is
unsupported if it is not possible to give a (valid) justification for at least one of the
premises of the rule. The degree of provability of the conclusion we want to obtain
determines the meaning of valid justification for a premise. This could vary from a
derivation for the premise to a simple chain of rules leading to it. Finally, a rule is
defeated if there is an applicable rule stronger than it.

By instantiating the abstract definitions of applicable, supported and defeated,
the above structure defines several variants of DL. In particular, we address the
distinction between ambiguity blocking and ambiguity propagation. A literal q is
ambiguous if (i) there is a chain of reasoning that supports a conclusion q, (ii) one
(chain) supporting the complementary conclusion ∼q, and (iii) the superiority relation
does not resolve this conflict.
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Example 4.1. Consider the defeasible theory D = (∅, R, ∅), such that

R = {r1 : ⇒ a, r2 : ⇒ b, r3 : ⇒ ¬a, r4 : a⇒ ¬b}.

Here a is ambiguous since both r1 and r3 are applicable, and there is no superiority
between them.

In what follows we shall introduce two variants of DL, the first one supporting
ambiguity blocking, and the second one supporting ambiguity propagation. We
explain the intuitions behind the two variants by referring to Example 4.1, where a
is ambiguous. In a setting where ambiguity is blocked, b is not ambiguous because
rule r2 for b is applicable, whilst r4 for ¬b is not, since we cannot prove a. On the
other hand, in an ambiguity propagating setting, b is ambiguous because a is not
disproved, and so the applicability of r4 is not denied. In this way, the ambiguity is
propagated to b.

The ambiguity blocking and ambiguity propagation is a clash in intuitions in
non-monotonic reasoning [130]. However, [62] argues that the distinction can be used
to characterise different proof standards, where ambiguity blocking corresponds to the
proof standard of preponderance of evidence while ambiguity propagation captures the
beyond reasonable doubt proof standard. Furthermore, there are scenarios where both
intuitions are needed (for different conclusions), and the reasoning for conclusions
requiring one of the two proof standard depends on conclusions obtained using the
other proof standard. See [64] for the details and how to combine the two intuitions.

In the remainder, we shall use ∂ for the proof tag to indicate that a conclusion is
defeasibly provable (refutable) under ambiguity blocking, and δ for the corresponding
notions under ambiguity propagation.

4.2 Ambiguity Blocking Defeasible Logic
The ambiguity blocking variant of DL was introduced in [7] and is captured by the
following instantiation of +d:

+∂: If P (n+ 1) = +∂q then either
(1) +∆q ∈ P (1..n) or
(2) (2.1) −∆∼q ∈ P (1..n) and

(2.2) ∃r ∈ Rsd[q] s.t. ∀a ∈ A(r) + ∂a ∈ P (1..n) and
(2.3) ∀s ∈ R[∼q] either

(2.3.1) ∃a ∈ A(s) s.t. −∂a ∈ P (1..n) or
(2.3.2) ∃t ∈ Rsd[q] s.t.

∀a ∈ A(t) + ∂a ∈ P (1..n) and t > s.
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To prove +∂q, we have to show that either (1) q is already definitely provable, or
(2.2) there is an applicable rule for q and (2.3) for very rule attacking q either (2.3.1)
at least one antecedent has been defeasibly refuted, or (2.3.2) the rule is defeated by
a (stronger) rule for q.

In other terms, a rule is applicable if all the elements of the body are defeasibly
provable. A rule is unsupported if there is an element of the body that is defeasibly
refuted. A rule is defeated if it is weaker than an applicable rule. We use DL(∂) to
denote the ambiguity blocking defeasible logic variant.

4.3 Ambiguity Propagating Defeasible Logic
Ambiguity propagation describes a behaviour where ambiguity of a literal is propa-
gated to dependent literals. This is achieved in DL by separating the invalidation of
a counterargument from the derivation of tagged literals. To do so, another kind of
conclusion, called support and denoted by Σ, is introduced [8].

+Σ: If P (n+ 1) = +Σq then either
(1) +∆q ∈ P (1..n) or
(2) (2.1) −∆∼q ∈ P (1..n) and

(2.2) ∃r ∈ Rsd[q] s.t.
(2.2.1) ∀a ∈ A(r) + Σa ∈ P (1..n) and
(2.2.2) ∀s ∈ R[∼q] either

∃a ∈ A(s) s.t. −δa ∈ P (1..n), or s 6> r.

The condition for +d is thus instantiated as follows:

+δ: If P (n+ 1) = +δq then either
(1) +∆q ∈ P (1..n) or
(2) (2.1) −∆∼q ∈ P (1..n) and

(2.2) ∃r ∈ Rsd[q] s.t. ∀a ∈ A(r) + δa ∈ P (1..n) and
(2.3) ∀s ∈ R[∼q] either

(2.3.1) ∃a ∈ A(s) s.t. −Σa ∈ P (1..n) or
(2.3.2) ∃t ∈ Rsd[q] s.t.

∀a ∈ A(t) + δa ∈ P (1..n) and t > s.

The idea is that a conclusion q is supported if (2.1) there is a rule for q such that
(2.2.1) all the elements in the antecedent are (at least) supported, and that (2.2.2) all
rules for the opposite conclusion have (at least) one premise that has been refuted, or
such a rule is not stronger than the rule for q. This means that there is an undefeated
argument supporting the conclusion. Then to affirm that a conclusion is provable,
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we have to provide an argument/rule where all the antecedents are provable, and
there is no argument/rule for the opposite that is at least supported. We refer to
the ambiguity propagating variant by using DL(δ).

Example 4.1 (Continued). Consider, again, the theory D = (∅, R, ∅), where

R = {r1 : ⇒ a, r2 : ⇒ b, r3 : ⇒ ¬a, r4 : a⇒ ¬b}.

By definition of +∂, we obtain the following conclusions from D: −∂a, −∂¬a, +∂b,
−∂¬b, capturing the ambiguity blocking behaviour of DL(∂). On the other hand, if
we compute the consequences of D by using the proof conditions for Σ and δ, we
obtain +Σa, +Σ¬a, +Σb, +Σ¬b and thus also −δa, −δ¬a, −δb and −δ¬b. In this
way, we capture the ambiguity propagation feature of DL(δ).

4.4 Team or Individual Defeat?
The defeasible logics defined above have the property of team defeat: the rules for a
literal q are compared with the rules for ∼q. If each applicable rule for ∼q is inferior
to some applicable rule for q, then the rules for q, as a team, overcome the rules
for ∼q. Thus, q is inferred. In comparison, under individual defeat there must be
an applicable rule for q that is superior to all applicable rules for ∼q in order to
overcome the rules for ∼q and infer q. Clearly, any time individual defeat overcomes
the rules for ∼q, so does team defeat.

To get some intuition about these two forms of defeat we use a variation of an
example from [7].

Example 4.2. Consider some rules of thumb about animals and, particularly, mam-
mals. An egg-laying animal is generally not a mammal. Similarly, an animal with
webbed feet is generally not a mammal. On the other hand, an animal with fur is
generally a mammal. Finally, the monotremes are a subclass of mammal. These
rules are represented as defeasible rules below.

Furthermore, animals with fur and webbed feet are generally mammals, so r2
should overrule r4. And monotremes are a class of egg-laying mammals, so r1 should
overrule r3.

Finally, it happens that a platypus is a furry, egg-laying, web-footed monotreme.
Is it a mammal? (That is, is mammal(platypus) a consequence of the defeasible
theory below?)

r1 : monotreme(X) ⇒ mammal(X) r3 : laysEggs(X) ⇒ ¬mammal(X)
r2 : hasFur(X) ⇒ mammal(X) r4 : webFooted(X)⇒ ¬mammal(X)
r1 > r3 r2 > r4
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monotreme(platypus) laysEggs(platypus)
hasFur(platypus) webFooted(platypus)

It is obvious that all four rules are applicable to the question of mammal(platypus).
Under team defeat, each rule for ¬mammal(platypus) is overcome by some rule for
mammal(platypus), so mammal(platypus) is inferred. However, there is no single
rule for mammal(platypus) that overcomes all rules for mammal(platypus), so un-
der individual defeat we cannot infer mammal(platypus) (nor ¬mammal(platypus)).

Thus, we see that team defeat can be useful in making a justified inference that
otherwise would not be made. On the other hand, most expressions of structured
argumentation employ individual defeat.

Fortunately, it is easy to adjust the inference conditions for the two logics defined
above to obtain individual defeat: we simply replace the sub-conditions (2.3.2) by
r > s. We denote the individual defeat logics by DL(∂∗) and DL(δ∗). For more
discussion of the four variants of defeasible logic discussed here, see [23].

Finally, we consider the relationship between these logics. A series of papers [84;
85; 86; 87] investigates the relative expressiveness of variants of Defeasible Logic.
In brief, two (defeasible) logics L1 and L2 have the same expressiveness iff the two
logics simulate each other (where a defeasible logic L2 simulates a defeasible logic
L1 if there is a polynomial time transformation T that transforms a theory D1 of
L1 in a theory D2 = T (D1) of L2 such that, for any addition of facts A, all strict
and defeasible conclusions of D1 ∪ A are the same as those of D2 ∪ A in L1). [84;
85] provide polynomial time transformations between each of the four logics defined
above.

Theorem 4.3. [85] Each of DL(∂), DL(δ), DL(∂∗), and DL(δ∗) simulates the others.

5 Strategic Argumentation for Defeasible Logic and
Structured Argumentation

We now propose a Defeasible Logic instantiation of the games introduced in Section 2.
We shall hence specialise Definitions 2.6 and 2.7 for the instance at hand, and then
proceed with the formulation of two problems.

Given a defeasible theory D = (F,R,>), we define the corresponding split
defeasible theory as SD = (FCom, FPr, FOp, RCom, RPr, ROp, >) with F = FCom∪FPr∪
FOp and R = RCom ∪ RPr ∪ ROp. We call the content of dispute discussed by the
players the critical literal, and note that the arguments brought about by the players
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will be in the form of defeasible derivations. We assume that each player is informed
about the restriction of > to their private rules,

We will have three instances of the definitions of Section 2, owing to the extra
expressivity of defeasible logic. Defeasible logic offers the following three ways to
express a contrary to D ` +d q: the negation of q can be proved (D ` +d∼q); within
the logic we can prove that that +d q cannot be proved (D ` −d q); and, we cannot
prove +d q (D 6` +d q). Thus, if Pr wants to prove q, Op has three possible levels of
opposition. The first will lead to a symmetric game, and the third to an asymmetric
game. The second falls somewhere in between, and we will call it a semi-symmetric
game. In the semi-symmetric game Op shoulders a burden of proof, but only to
prove that Pr’s aim cannot be proved, not to prove the negation of q.

If we consider the asymmetric case corresponds to the Scottish verdict of not
proven8 and the symmetric case corresponds to not guilty, then what is the semi-
symmetric case? Technically, in defeasible logic, the distinction between semi-
symmetric and asymmetric opposition is caused by a circularity or infinite regress in
an argument. Abstractly, it might represent unknowability, or an incapacity of the
proceedings/inference rules – inability to decide that l is not provable, even though l,
in fact, is not provable (a little bit like Gödel’s incompleteness theorem).

The game rules discussed in Section 2 are instantiated as follows. The parties
start the game by choosing the critical literal l. Pr has the burden to prove +d l by
using the remainder of its private rules along with those that currently have been
played; Op’s final aim is to prove +d ∼l in the symmetric version of the game, to
prove −d l in the semi-symmetric game, and simply to prevent the proof of +d l in
the asymmetric game.

Note that, when putting forward an argument, the players: (1) may propose,
along with a subset of their private rules, a subset of their private facts to support
such rules (see Example 5.2 at the end of this section), and (2) may play an argument
whose terminal literal differs from l or ∼l (with the aim to attack/disprove one of
the premises of a rule in the proof proving l/∼l).

As the semi-symmetric and asymmetric games differ from the symmetric one only
in Op’s final aim, to avoid pedantic redundancies we shall provide a single definition
for the three games.

Definition 5.1 (SSA (SSSA, AsSA) Game for Defeasible Logic). Consider two
players, a proponent Pr and an opponent Op, a split defeasible theory SD =

8 Roughly, under this verdict the jury considers the prosecution has not made the case for
“guilty”, beyond a reasonable doubt, but the defence has not made the case for “innocent”. A verdict
of guilty is given when the jury considers the prosecution has made its case, and not guilty when the
defence has made its case. See [11] or the Wikipedia entry for Not proven.
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(FCom, FPr, FOp, RCom, RPr, ROp, >), and a critical literal l ∈ L.
Let F kCom, RkCom, F kPr, RkPr, F kOp, and RkOp denote, respectively, the common

(knowledge) facts and rules, Pr’s private facts and rules, and Op’s private facts
and rules, after turn k. (In particular, F 0

Com = FCom, R0
Com = RCom, F 0

Pr = FPr
R0

Pr = RPr, F 0
Op = FOp, and R0

Op = ROp.) The common defeasible theory at that
point is Dk = (F kCom, R

k
Com, >).

We define a symmetric (resp. semi-symmetric, asymmetric) strategic argumenta-
tion game for Defeasible Logic as a dialogue game where:

1. The players take turns. If D0 ` +d l then Op begins; otherwise Pr does so.

2. At turn k, if Dk−1 ` +d ¬l (resp. Dk−1 ` −d l for the semi-symmetric version,
Dk 6` +d l for the asymmetric version), then it is Pr’s turn to play, as follows

• Pr advances a subset of its private facts Φ ⊆ F k−1
Pr and rules ρ ⊆ Rk−1

Pr so
that Dk ` +d l. As a result
– F kCom = F k−1

Com ∪ Φ and RkCom = Rk−1
Com ∪ ρ;

– F kPr = F k−1
Pr \ Φ and RkPr = Rk−1

Pr \ ρ;
– RkOp = Rk−1

Op .

3. At turn k, if Dk−1 ` +d l, then it is Op’s turn to play, as follows

• Op advances a subset of its private Φ ⊆ F k−1
Op and rules ρ ⊆ Rk−1

Op so that
Dk ` +d ¬l (resp. Dk ` −d l for the semi-symmetric version, Dk 6` +d l
for the asymmetric version). As a result
– F kCom = F k−1

Com ∪ Φ and RkCom = Rk−1
Com ∪ ρ;

– RkPr = Rk−1
Pr ;

– F kOp = F k−1
Op \ Φ and RkOp = Rk−1

Op \ ρ.

4. The game ends at turn k+1, when either (i) it is Pr’s turn and there is no move
for Pr such that the common defeasible theory Dk+1 ` +d l, in which case Op
wins, or (ii) it is Op’s turn and there is no move for Op such that the common
defeasible theory Dk+1 ` +d ¬l (resp. Dk+1 ` −d l for the semi-symmetric
version, Dk 6` +d l for the asymmetric version), in which case Pr wins.

The corresponding decision problems are as follows.
SSA (SSSA, AsSA) Problem for Defeasible Logic

Let SDk be a split defeasible theory as in Definition 5.1 after turn k, Dk+1 be the
corresponding common defeasible theory after turn k + 1, and l ∈ L be the critical
literal.

1704



Strategic Argumentation

Pr’s instance for turn k + 1: Let F kPr and RkPr be, respectively, the
set of Pr’s private facts and rules after turn k, and that the common
defeasible theory assume Dk ` +d ¬l (resp. Dk ` −d l and Dk 6` +d l for
the semi-symmetric and asymmetric problems).
Question: Do there exist Φ subset of F kPr and ρ subset of RkPr such that
the common defeasible theory Dk+1 ` +d l?

Op’s instance for turn k + 1: Let F kOp and RkOp be, respectively, the
set of Op’s private facts and rules after turn k, and assume that the
common defeasible theory Dk ` +d l.
Question: Do there exist Φ subset of F kOp and ρ subset of RkOp such
that the common defeasible theory Dk+1 ` +d ¬l (resp. Dk+1 ` −d l
and Dk+1 6` +d l, for the semi-symmetric and asymmetric problems)?

We explore how these games are played through an example theory that shows
how different moves by the players may lead to different result of the game in the
symmetric and semi-symmetric/asymmetric variants.

Example 5.2. Consider SD = (FCom, FPr, FOp, RCom, RPr, ROp, >) such that

• FCom = {a} and RCom = ∅;

• FPr = {d} and RPr = {r1 : a⇒ p, r2 : b, d⇒ p};

• FOp = {b, c} and ROp = {r3 : c⇒ ¬p, r4 : b⇒ ¬p}; and

• > {(r4, r1), (r2, r4)}.

The critical literal is p. Pr starts the game and can only advance r1; the fact that b is
not proven makes r2 unsupported. Consequently, for both variants, SD1 ` +d p. We
now detail the different scenarios for Op wrt the symmetric, semi-symmetric, and
asymmetric games.

Symmetric variant. Op considers playing r3 but realises that is not a legal
move. In fact, as r3 is neither stronger than r1 nor r2, by playing it Op would not
prove +d ¬p. By playing r4, Op must also advance r4’s only premise, b (SD2 ` +d ¬p
and SD2 ` +d b). This makes r2 applicable and allows Pr to play it and win the
game.

Semi-symmetric variant. For this variant of the game, Op has the burden to
prove −d p and plays, again, r4 (SD2 ` +d ¬p and +d ¬p implies −d p). Pr can
again play r2 leading to SD3 ` +d p, but now if Op plays r3 (along with c), then
SD4 ` −d p. Pr has no more rules to play and this time Op wins.
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Asymmetric variant. This variant of the game unfolds in the same way as
the semi-symmetric variant because, for every k, SDk ` −d p implies SDk 6` +d p.

We can modify the above example to demonstrate the distinction between the
semi-symmetric and asymmetric games.

Example 5.3. Consider the modification of Example 5.2 where r3 in ROp is replaced
by

r3 : c,¬p⇒ ¬p
Symmetric variant. This variant unfolds in exactly the same way as Exam-

ple 5.2. Op does not play r3.
Semi-symmetric variant. For this variant of the game, Pr plays r1, Op plays

r4, and Pr plays r2, just as in the symmetric variant. At this stage Op would like to
play r3 but, again, this is not a legal move: playing it would not achieve SD4 ` −d p.
Thus Pr wins.

Asymmetric variant. Again, Pr plays r1, Op plays r4, and Pr plays r2. How-
ever, in this variant Op can play r3, because then SD3 6` +d p. Pr has no more
moves, so Op wins. Alternatively, Op could simply play r3 on her first move, to
which Pr has no response. Thus Op wins without exposing r4 and b (and without
inducing Pr to expose r2 and d).

We end this subsection with a brief discussion of fact-based strategic argumenta-
tion [88], a refinement of the strategic argument games where players can only play
facts. That is, strategic argument games where RPr = ∅ and ROp = ∅. While general
strategic argumentation can be a model for legal argumentation in general, this
refinement reflects argument about whether regulations have been adhered to. The
players are the party subject to the regulations, and the enforcement body for the
regulations. RCom represents the regulations, which are fixed. The players can only
generate arguments by marshalling facts that support the applicability of clauses
in the regulations (i.e. rules) that, in turn, support the player’s contentions. This
refinement could also be considered a crude partial model for pleadings in civil law
(in that it elicits claimed facts from parties), although different in many ways from
Gordon’s Pleadings Game [58].

Although this refinement appears to simplify the reasoning required to play the
game, in one sense it is no simpler [88]. Any general strategic argumentation game
SD = (FCom, FPr, FOp, RCom, RPr, ROp, >) can be reduced to the “simpler” game as
follows: for each rule ri : β V ϕ in RPr we add the rule ri : β, α(ri) V ϕ to RCom and
add the fact α(ri) to FPr, where α(ri) is a new proposition. And similarly for Op.
Every move in the resulting game SD′ = (FCom, F ′Pr, F

′
Op, R

′
Com, ∅, ∅, >) corresponds

to a move of SD, and vice versa.
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5.1 Computational Results

We are now ready to show that deciding what arguments to play at a given turn
of a dialogue game under Dung’s grounded semantics is an NP-complete problem
even when the problem of deciding whether a conclusion follows from an argument is
computable in polynomial time.

[67] proved that this problem is NP-complete for DL with ambiguity blocking,
i.e., DL(∂). We present here an outline of the proof in [88]. Theorem 5.4 is provided
from the viewpoint of Pr. The same result holds for Op.

Theorem 5.4. The SSA Problem under DL(∂) is NP-complete.

Proof. First, the SSA Problem is polynomially solvable on non-deterministic machines.
Consider a dialogue game with sets R0

Com, R0
Pr, R0

Op and the defeasible theory Di−1 =
(∅, Ri−1

Com, >), the theory at turn i− 1 of a dialogue game. An oracle guesses a set of
rules Ri ⊆ Ri−1

Pr , we compute the consequences of the argumentation theory Di =
(∅, Ri−1

Com ∪Ri, >), and we check whether the critical literal is a positive or negative
consequence. The computation of consequences can be done in polynomial time [83;
23].

Second, we reduce 3SAT to the SSA Problem, proving therefore that the problem
is NP-hard. Consider a 3SAT formula ϕ = ∧n

j=1Cj such that Cj = ∨3
k=1 x

k
j . Ri is

defined as follows:

1. For each proposition x occurring in ϕ, Ri−1
Pr and Ri−1

Op both contain

tx : ⇒ x

t¬x : ⇒ ¬x.

2. For each clause Cj , Ri−1
Com contains

rkj : xkj ⇒ cj

where xkj is either a positive literal (x), or a negative literal (¬x).

3. Ri−1
Com also contains

rsat : c1, . . . , cn ⇒ sat.
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For any assignment θ of values to the Boolean variables in ϕ, let Sθ be the set of
x literals that evaluate to true under θ. And for any consistent subset S of x literals,
let θS be an assignment that evaluates all elements of S to true. We leave it for the
reader to verify that if θ satisfies ϕ then choosing the move Sθ wins for Pr, and if S
is a winning move for Pr then S is consistent and θS satisfies ϕ.

The same result holds for the semi-symmetric and asymmetric games.

Theorem 5.5. The SSSA and AsSA problems under DL(∂) is NP-complete.

Proof. The proof is essentially the same as that of Theorem 5.4 except for the case
when, at turn i, Op must play. In that case, the reduction is identical to the one
proposed above, with the only difference that Point 3. now also adds to RiCom the
following rule

rnsat : ⇒ ¬sat

It is trivial to prove that an interpretation satisfies ϕ iff rsat is applicable iff
sat and ¬sat are ambiguous. Thus ϕ is satisfied iff −∂ sat is proved iff ¬sat is not
proved.

While it is possible to define DL(∂) in terms of an argumentation semantics,
the logic corresponding to Dung’s grounded semantics is ambiguity-propagating [65;
79].

The next step is to determine the computational complexity of the problem at
hand for the ambiguity propagating variant of DL. The NP-completeness of the
strategic argumentation problem under DL(δ∗) follows immediately from Theorems
4.3, 5.4, and 5.5.

Theorem 5.6. The SSA, SSSA, and AsSA problems under DL(δ∗) are NP-complete.

We have the same results for DL(∂∗) and DL(δ).
In [79], it is shown that the conclusions of an ASPIC+ argumentation theory

under grounded semantics are the same as those in DL(δ∗) (after minor changes to
the superiority relation).

Theorem 5.7. [79] Given an ASPIC+ argumentation theory AT , there is a defea-
sible theory T (AT ) such that p is derived under the grounded semantics from AT
iff +δ∗p can be derived from T (AT ). Furthermore, all consequences of AT can be
computed in time polynomial in the size of AT .
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Thus we can use implementations of DL(δ∗) to implement ASPIC+ argumen-
tation theories that employ the last-link ordering of arguments and the grounded
semantics.

We can solve the strategic argumentation problem by non-deterministically
choosing a set Ri of rules and then verifying whether the critical literal p is justified
in the argumentation framework determined by Di, or not. Further, the literals
justified by the grounded semantics are computable in polynomial time, as shown
above. The strategic argumentation problem is thus in NP.

Now, from Theorems 5.6 and 5.7, we obtain the following result.

Theorem 5.8. The strategic argumentation problems under the grounded semantics
are NP-complete.

6 Strategic Abstract Argumentation
In this section we look beyond the grounded semantics to a wide range of other
semantics for abstract argumentation frameworks. After exploring the range of
dialogue games that can be played in the context of abstract argumentation, we
investigate the possibilities for player aims, and identify the complexity of two
computational problems related to playing strategic abstract argumentation games,
for selected aims and semantics.

6.1 Strategic Argumentation in the Abstract
We formulate a split argumentation framework in this abstract sense as a tuple
(A,ACom,APr,AOp,�) where ACom is a set of abstract arguments that are common
knowledge to the players, APr (AOp) is the set of arguments known to Pr (Op),
and � is the attack relation over all arguments. Each player knows � restricted
to the set of arguments the player knows. For example, Pr knows � restricted to
(ACom ∪ APr)× (ACom ∪ APr). Each player has a strategic aim or desired outcome
(the two terms will be treated as equivalent) that expresses their desired property of
the state of the argument framework at the end of the strategic argumentation game.

A strategic abstract argumentation game consists of alternating moves by Pr
and Op until one player cannot make a move. In that case the other player wins.
Pr starts the game by playing a set of arguments, including a mutually agreed
critical argument which is the subject of the two players’ strategic aims9. By
“playing a set of arguments” we refer to the transfer of a set of arguments from the
player’s set of arguments to ACom such that the revised common argumentation

9 Aims will be discussed in the next subsection.
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framework (ACom,�) satisfies the player’s strategic aim. Thus a move by Pr
replaces a split argument framework (ACom,APr,AOp,�) by a new framework
(ACom ∪X,APr\X,AOp,�), where X ⊆ APr is the set of arguments played by Pr in
that move, and the new framework achieves Pr’s strategic aim. Similarly, a move by
Op transfers arguments from AOp to ACom. Clearly, if APr or AOp is finite then the
game terminates. We will only consider games where ACom, APr and AOp are finite.

Thus, a strategic abstract argumentation game is a dialogue game played by two
players (Pr and Op). Let conc map arguments to distinct propositions, and let ϕ be
the conclusion of the critical argument. Then the game is an asymmetric strategic
argumentation game, as defined in Definition 2.7, where “ϕ is accepted” is defined
as: Pr’s aim wrt the critical argument is satisfied.

We assume that the players agree on what is an argument, and whether one
argument attacks another. This is implicit in the formulation as a split argumentation
framework. But, in theory, there is no reason why the two players should employ
the same semantics when they play a strategic argumentation game. For example,
Pr might formulate her aim in terms of the preferred semantics, while Op’s aim
is expressed in terms of the eager semantics. Indeed, it is quite reasonable that
different players might perceive the world differently. This is no impediment to the
players playing a strategic argumentation game, since the definition of the game only
describes moves a player may make, and not the interpretation she puts on the game.

However, there has not been any work on such situations. This is not so surprising
when we consider that strategic argumentation is primarily treated as an adversarial
game. Real world situations that are modelled by strategic argumentation may need
the presence of an adjudicator to enforce any conclusions that result from the game.
Such an adjudicator might bring their own perceptions and semantics to the game.
Thus, playing in a common semantics could be considered as both players adopting
the adjudicator’s view of the world.

Similarly, there is no prima facie reason why the two players should focus on a
single critical argument, rather than have individual, separate foci. The literature
has rarely addressed this possibility ([71] is an exception). However, once we assume
that the players agree on a focus, the use of a single critical argument for each player
implies no loss of generality. Straightforward constructions can map a disjunction or
conjunctions of arguments to a single argument in most semantics10. In particular,
the arguments supporting the same conclusions can be united in a single argument.

In any case, many of the computational issues discussed in this and the next
section depend only on the semantics and the player’s aim, and so are still applicable
to these less-well-studied forms of strategic argumentation.

10 For example, see Proposition 2 of [90].
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Finally, even when addressing the same semantics and critical argument, there is
some freedom in the strategic aims of the two players. At one extreme the players
might have the same aim and, on the other extreme, have diametrically opposed
aims. In between these extremes the players might have different but compatible
aims, or have incompatible aims. Aims are discussed in detail in the next subsection.
In this chapter we assume that the two players have incompatible aims: it is not
possible for both players to achieve their aims simultaneously.

In previous sections we have discussed both symmetric and asymmetric forms
of strategic argumentation. In abstract argumentation there is no explicit notion
of conclusion and, therefore, no notion of an argument supporting the negation of
the conclusion of another. Consequently, symmetric strategic argumentation is not
available, in general. We will focus on asymmetric strategic argumentation. That is,
whatever Pr’s aim is, Op’s aim is to prevent it.

In summary, a strategic abstract argumentation dialogue game consists of a split
abstract argumentation framework, a critical argument, an abstract argumentation
semantics, and aims for both Pr and Op. The play of the game is a sequence of moves
such that each player leaves the game in a state where her strategic aim is satisfied.

6.2 Players’ Aims
The range of strategic aims a player might have is limited under the grounded
semantics. But once we consider semantics with multiple extensions a player has a
much wider range.

Initially, work on abstract argumentation focussed on credulous and skeptical
acceptance. An argument a in argumentation framework AF under semantics σ is
credulously accepted if it is labelled in in at least one σ-extension. a is skeptically
accepted if it is labelled in in every σ-extension. These two statuses were inherited
from the field of non-monotonic reasoning.

[142] extended this work with the notion of justification status. The justification
status of an argument a in an argument framework AF is the set of labels a receives
in complete extensions. Thus a justification status is a subset of {in, out, undec}.
In general this might lead to 23 = 8 different statuses, but only 6 are possible for
the complete semantics [142]. Obviously, this approach can be extended to any
extension-based semantics [44].

[91; 90] further extended the range of argument statuses to the following, casting
these as possible aims of a proponent

1. Existential: a is labelled in in at least one σ-extension

2. Universal: a is labelled in in all σ-extensions
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3. Unrejected: a is not labelled out in any σ-extension

4. Uncontested: a is labelled in in at least one σ-extension and is not labelled
out in any σ-extension

5. Plurality: a is labelled in in more σ-extensions than it is labelled out

6. Majority: a is labelled in in more σ-extensions than it is not labelled in

7. Supermajority: a is labelled in in at least twice as many σ-extensions than
it is not labelled in

The last three are called counting aims, distinct from the first four which are based
on zero/non-zero number of labels, like the justification statuses11. In addition, the
negation of such conditions and their dual (exchanging the role of in and out), which
are plausible aims for the opponent, have also been considered [90].

But clearly there are many more possibilities. Each of the first four strategic aims
can be formulated as a disjunction of justification statuses. So we might consider
any disjunction of justification statuses as a potential strategic aim. This would
give us 28 = 256 strategic aims. Many of these will be unrealizable under some
semantics and/or unrealistic in practice. Under the stable semantics, aims that the
argumentation framework has at least one extension or has no extension are also
sensible. Further possibilities are aims such as: a is accepted in at least 2 extensions
or is universally accepted. There are also many variations possible for the counting
aims. For example, [91] contemplates a weighting on all extensions, with the arguer’s
aim that the sum of the weights of extensions in which a is labelled in is greater
than the sum of weights of the remaining extensions.

Some of the aims seem similar to the ideas behind proof standards that are
formalized in [60], although those proof standards are formalized in a very different
setting. The Existential aim is similar to a scintilla of evidence, the Majority and
Supermajority correspond to preponderance of the evidence and clear and convincing
evidence, respectively, while the Uncontested aim is like beyond a reasonable doubt.12

The Universal aim corresponds to beyond a doubt, in the phrasing of [51].
There are some obvious close relationships between these different concepts. a

is skeptically accepted iff a has justification status {in} iff a satisfies the Universal
aim. Similarly, a is credulously accepted iff a’s justification status contains in iff

11 A counting utility function was defined in [128], but it counts the number of desired conclusions
that appear in all σ-extensions rather than counting the number of σ-extensions in which a conclusion
appears.

12 The Uncontested aim is also similar to the notion of argumentative inference in paraconsistent
reasoning from maximally consistent sets [20].
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GR ST CO PR SST EA ID
Existential in P NP-c NP-c NP-c Σp

2-c Πp
2-c in Θp

2
Universal in P coNP-c in P Πp

2-c Πp
2-c Πp

2-c in Θp
2

Unrejected in P coNP-c coNP-c coNP-c Πp
2-c Σp

2-c in Θp
2

Uncontested in P coNP-c Dp-c Dp-c Dp
2-c Πp

2-c in Θp
2

Plurality in P PP-c PP-c in PPNP in PPNP Πp
2-c in Θp

2
Majority in P PP-c PP-c in PPNP in PPNP Πp

2-c in Θp
2

Supermajority in P PP-c PP-c in PPNP in PPNP Πp
2-c in Θp

2

Table 1: Complexity of Aim Verification problem for selected strategic aims and
semantics [90]. For a complexity class C, C-c denotes that the problem is complete
for C.

a satisfies the Existential aim. a satisfies the Unrejected aim iff a has justification
status {in}, {undec} {in, undec}, or ∅. a satisfies the Uncontested aim iff a has
justification status {in} or {in, undec}. Also, a satisfies the Uncontested aim iff a
satisfies the Existential and Unrejected aims.

Furthermore, when a semantics consists of a single extension (in particular, the
grounded semantics) credulous and skeptical acceptance are identical, there are only
three possible justification statuses for an argument ({in}, {undec}, and {out}),
and all but the Unrejected aim, of those listed, are identical. In summary, a unitary
semantics greatly simplifies analysis of player aims.

Thus, as we consider a wider range of semantics we must also address a wider
range of player aims.

6.3 Computational Problems

We can break down the play of a game into two computational problems: recognising
whether (or not) an argumentation framework satisfies a given aim, which is called
the Aim Verification problem, and determining what arguments to play in order to
leave the game in a state where the given aim is satisfied, the decision form of which
is called the Desired Outcome problem. These problems will be different for the
different players, because they have different aims.

The problem of verifying that an aim is satisfied by some state of strategic
argumentation is a fundamental part of each move in a game.

The Aim Verification Problem
Instance A split argumentation framework (ACom,APr,AOp,�), an argumenta-
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tion semantics, a critical argument a ∈ ACom, and an aim.
Question Is the aim concerning the critical argument satisfied under the given

semantics by the argumentation framework (ACom,�)?

The complexity of this problem, for a selection of semantics and aims, is presented
in Table 1. Given Pr’s aim, the complexity of verifying Op’s aim is the complement
of the complexity of Pr’s aim.

These results are derived from existing work on the complexity of credulous and
skeptical acceptance in abstract argumentation frameworks for the various semantics
(see, for example, [43; 141]), and relations between the different aims (Proposition
3 of [90]). For example, the Uncontested aim is the conjunction of Existential and
Unrejected, where the latter is the dual of the negation of Existential. Under the
(say) preferred semantics, credulous acceptance is NP-complete. Thus the complexity
of Uncontested is a conjunction of NP and coNP, which gives us Dp. Completeness
is a straightforward reduction.

For the counting aims, clearly the complexity is in PPV , where V is the complexity
of verifying that a set of arguments forms an extension of the appropriate type13.
The lower bound for the stable semantics is obtained by reduction from the MAJSAT
problem, and the complete semantics is treated by reduction from the stable semantics.

Table 1 only addresses a selected set of strategic aims. When a player has such
an aim, their opponent will usually have a quite different aim, one not mentioned
in the table. Since we are considering only games where the opponent’s aim is the
complement of the proponent’s aim, the complexity of the Aim Verification problem
for Op is the complement of the complexity of the Aim Verification problem for
Pr. Thus, for example, under the complete semantics, if Pr has the Existential aim
then aim verification for Pr is NP-complete, and aim verification for Op is coNP-
complete. In general, though, when the opponent’s aim is not the complement of the
proponent’s, the complexity of the two problems is not so directly related.

The Desired Outcome problem [91] is the problem that a player must solve at
each step of a strategic abstract argumentation game. It involves identifying that
the player has a legal move, leaving the state of the game in a desired state.

The Desired Outcome Problem for Pr
Instance A split argumentation framework (ACom,APr,AOp,�) an argumenta-

13 There has been some work done on counting extensions, both on the complexity of counting and
identifying tractable cases [14; 53]. These works focus on absolute counting, rather than comparing
counts (as in the counting aims), so the results are presented in terms of #P rather than PP.
Nevertheless, the complexity results are comparable to those for the counting aims in the Aim
Verification problem.

1714



Strategic Argumentation

GR ST CO PR SST EA ID
Existential NP-c NP-c NP-c NP-c Σp

2-c Σp
3-c Σp

2-c
Universal NP-c Σp

2-c NP-c Σp
3-c Σp

3-c Σp
3-c Σp

2-c
Unrejected NP-c Σp

2-c Σp
2-c Σp

2-c Σp
3-c Σp

2-c Σp
2-c

Uncontested NP-c Σp
2-c Σp

2-c Σp
2-c Σp

3-c Σp
3-c Σp

2-c
Plurality NP-c NPPP-c NPPP-c NPPP-c NPPP-c Σp

3-c Σp
2-c

Majority NP-c NPPP-c NPPP-c NPPP-c NPPP-c Σp
3-c Σp

2-c
Supermajority NP-c NPPP-c NPPP-c NPPP-c NPPP-c Σp

3-c Σp
2-c

Table 2: Complexity of the Desired Outcome problem for Pr, for selected aims and
semantics [91; 90; 89]. For a complexity class C, C-c denotes that the problem is
complete for C.

tion semantics, a critical argument a ∈ ACom, and an aim for Pr.
Question Is there a set I ⊆ APr such that Pr’s aim with respect to the critical

argument is achieved in the argumentation framework (ACom ∪ I,�)?

This problem is a generalization of the strategic argumentation problem, as
defined in Section 2, which is restricted to accepting the critical argument under the
grounded semantics.

It is not difficult to see that the Desired Outcome problem can be solved by a
non-deterministic algorithm with an oracle for the Aim Verification problem with
Pr’s aim. The complexity of this problem, for a selection of semantics and aims, is
presented in Table 2.

The complement of this problem decides when Pr does not have a next move. The
complexity of this complement problem is clearly the complement of the complexity
of the Desired Outcome problem.

We can define the Desired Outcome problem for Op similarly, based on Op’s aim.
The complexities of the Desired Outcome problems for Pr and Op are not as directly
related as is the case for aim verification.

Showing the presence of the Desired Outcome problem in the appropriate com-
plexity class is comparatively straightforward, but showing it is complete in the class
requires the construction of argumentation frameworks that extend those used for
credulous or skeptical acceptance. An example construction for the Desired Outcome
problem with the Universal aim under the stable semantics is shown in Figure 2.
In this case the problem is Σp

2-complete, so we reduce the satisfiability of ∃X∀Y ψ
(where ψ is in DNF) formulas to this problem. The diagram has three parts: on the
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Ip I¬p

Ap A¬p

Np Bp

Aq A¬q

Aψ

A¬ψ

AD1 AD2

Figure 2: Example construction for the Desired Outcome problem with the Universal
aim under the stable semantics

left is the representation of a variable p in X, in the middle is the representation of
ψ, and on the right is the representation of a variable q in Y .

In the diagram, the grey nodes are arguments in ACom, and the white nodes
(Ip and I¬p) are arguments in APr. � is described by the directed edges. (AOp
is irrelevant to this problem.) Intuitively, an argument As (where s is a literal)
accepted in a stable extension corresponds to the literal s being true. The critical
argument is Aψ, and Pr must move so that Aψ is accepted in all stable extensions.
The construction ensures that if Pr plays either both Ip and I¬p or neither Ip nor I¬p
then either Bp or Np is accepted and Aψ is rejected in all stable extensions. Thus,
Pr must play only one argument for each p, and this ensures only one of Ap and A¬p
can be accepted. This part of the construction is common to all reductions.

In the diagram, the formula is ∃p∀q ¬p ∨ (p ∧ ¬q). It is represented in a slightly
roundabout way. The treatment of variables q in Y ensures that both stable extensions
containing Aq (i.e. q is true) and stable extensions containing A¬q (i.e. q is false) are
generated. A more formal description of this construction is in the proof of Theorem
7 of [91].

Given a specific game, we write AVPr (AVOp) for the Aim Verification problem for
Pr’s (respectively, Op’s) aim. Similarly, DOPr (DOOp) denotes the Desired Outcome
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problem for Pr (respectively, Op).
Play begins by Pr playing a set of arguments, including the critical argument, and

proceeds by Op and Pr alternately solving their Desired Outcome problem and playing
the corresponding set of arguments. Play can extend for, at most, min(|APr|, |AOp|)
rounds before play terminates, when one player does not make a move. Thus, play
for Pr, over the entire game, has a computational cost in PDOPr while the cost of
play for Op is in PDOOp [90].

The Aim Verification problem is of little interest for the concrete forms of
strategic argumentation discussed in Section 5. In those cases the inference problem
is polynomial [83; 23]. Consequently, verifying any of the aims or justification statuses
is also polynomial. The Desired Outcome problem corresponds to the SSA, SSSA
and AsSA problems in Section 5: they represent the computational cost of making a
move, in their respective games. In the case of structured arguments, conceptually
the argumentation theory gives rise to an argumentation framework, which can
then be interpreted in a chosen semantics. However, this does not mean that the
NP-completeness for grounded semantics in Table 2 can be used to prove Theorem 5.8.
The difficulty is that there might be greater than polynomially many arguments
generated from the argument theory.

7 Corruption in Argumentation

When a game such as strategic argumentation is a model of a real-world situation,
we must acknowledge the extra forces and influences that operate upon a player,
beyond those of the specific role they have in the game. Often a player is assumed
to have no motivations beyond performing their role and conforming to the rules of
the game, but this is a rather simplistic view. While games do have rules, we need
to consider the possibility that a player breaks the rules, or “cheats”.

The context of the game is important in this regard. Organizations have many
mechanisms to discourage the risk of corruption of their processes by the individuals
performing these processes: managerial oversight, transparency through audit trails,
the presence of co-workers, random inspections, etc. Society, as a whole, provides
an entire justice system to enforce the rules the society considers important, and
to detect and punish violations. When these mechanisms are not available, or are
limited, how can we discourage rule-breaking?

[16] proposed an answer to this question in the case of vote manipulation: if
the computational difficulty of determining what an individual must do to alter the
result of an election is too great, a potential vote manipulator may be discouraged
from the manipulation, even though he has the opportunity to do it. They called this
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concept computational resistance to strategic manipulation. This insight has spawned
a whole subfield of computational social choice [29]. In this section we describe the
application of these ideas to strategic argumentation.

Throughout this section, we consider that players are engaged by a client to
play the game. A player is expected to adhere to the rules of the game and, in
particular, play the game to win for her client. However, while the client is invested
in winning the game, the player has various competing incentives. These are the
source of the corruption we consider. A player might cheat on behalf of her client,
or might sacrifice her client’s chances for other incentives. This issue is known in
management theory as the principal-agent problem or the agency problem [47].

7.1 Corruption and Resistance
Strategic argumentation has relatively few rules, though some are implicit rather
than explicitly stated. The players must take turns, but violations of this rule are
obvious and, anyway, offer no advantage to the players. A player must make a move
if one is available to her. This rule is implicit in the assumption that the player will
play her role properly. Such a rule is difficult to enforce without knowledge of the
player’s arguments. The player’s arguments are assumed to be private, but this is
also difficult to enforce. We will focus on violations of this privacy14.

We consider two forms of corruption. The first, collusion, arises when one player
induces the other to let her win. Such behaviour on its own is straightforward,
though illicit, and does not, as such, appear in the game. But it is complicated by the
desire of the guilty parties not to be detected. Thus, colluding players must not only
ensure the “right” player wins, they must also make sure that an external observer
cannot distinguish the collusive play from normal play. If the work to ensure this
is computationally more difficult than simply playing the game honestly, then we
consider the game to be resistant to collusion.

The following example is an instance of collusion.

Example 7.1. Consider the strategic argument game depicted in Figure 3, where
vertices are arguments (grey if they can be played by Pr, white for Op) and edges are
attacks of one argument on another. For concreteness, we assume that we employ the
grounded semantics and Pr’s strategic aim is that argument A is accepted. Normal
play would proceed as follows: Pr plays A, Op plays B1 (thus defeating A), Pr plays
C (restoring A by defeating B1), and Op plays D (defeating C, and allowing B1 to
defeat A). Thus, normally, Pr loses.

14 Earlier works that consider privacy include [32] and [105], which have a focus on minimizing
the exposure of a player’s arguments during play, rather than the loss of privacy by corruption.

1718



Strategic Argumentation

A B1

B2

C

D

Figure 3: A strategic argumentation game. An argument is grey if it can be played
by Pr and white if it can be played by Op.

However, Pr and Op might collude to ensure Pr wins by playing as follows: Pr
plays A, Op plays B1 and B2, and Pr plays C (restoring A). Pr now wins because Op
has no effective move: to play D would have no effect because it is defeated by B1.

This example also serves to show the difference between collusion and an om-
niscient argumentation framework (ACom ∪ APr ∪ AOp,�). Under any completist
semantics, A is accepted in the omniscient argumentation framework, but if Pr and
Op collude to ensure Op wins they can do so by following the normal play above.

The second form of corruption, espionage, occurs when, through some means,
one player gains knowledge of the other player’s arguments. Again, this act is not
apparent in the game, but it requires work to develop a strategy, based on that
knowledge, to defeat the other player. If this is computationally more difficult than
playing the game honestly, then we consider the game to be resistant to espionage.

In Example 7.1, the corrupt sequence of moves might also occur if Op committed
espionage on Pr in order to ensure Pr wins.

For both forms of resistance, we need to clarify what “computationally more
difficult” means. Computational difficulty will be measured in terms of a hierarchy
of complexity classes where, although one class might be contained in another, it is
often not known that the two classes are distinct. However, if the two classes were
equal then part of the (say) polynomial complexity hierarchy would collapse, and this
is commonly believed by complexity theorists not to happen. Thus “computationally
more difficult” is subject to this commonly-believed assumption. For counting
aims we are dealing with the counting polynomial hierarchy, and the corresponding
assumption is messier. The topic is less investigated and there are some collapses
known within the counting hierarchy. However, those collapses do not affect the
containments

PPP ⊆ NPPP ⊆ PNPPP ⊆ NPNPPP ⊆ · · · ⊆ PSPACE
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The assumption that these containments are strict is the basis of resistance for
counting aims.

Inherent in the resistance approach to corruption is the assumption that players
will be effectively penalised if their corruption is detected. This assumption relies on
issues of governance, lasting identification of the players, and enforcement and scale
of penalties, among others. But these issues depend on the context of the game and
are beyond the scope of this chapter.

7.2 Computational Problems

We now consider the computational problems that must be solved by players in order
to exploit corruption.

Colluders need to to construct an alternating sequence of moves that ends with
Pr winning, that is, with Op unable to make a move. This is formalized as follows.
The Winning Sequence Problem for Pr

Instance A split argumentation framework (ACom,APr,AOp,�) and a desired
outcome for Pr.

Question Is there a sequence of moves such that Pr wins?

A similar problem arises when the colluders wish to ensure that Op wins.
The problem for Pr can be solved by nondeterministically generating a sequence

of moves, verifying that each move achieves the aim for its player, and verifying that
Op has no further move. That is, it can be solved in NP with oracles for AVPr, AVOp
and (the complement of) DOOp. AVOp = coAVPr, since we assume Pr and Op have
complementary aims, so the larger of NPAVPr and NPDOOp is an upper bound for this
problem.

In the case of espionage, one player, say Pr, knows her opponent’s arguments
AOp and desires a strategy that will ensure Pr wins, no matter what moves Op
makes. A strategy for Pr in a split argumentation framework (ACom,APr,AOp,�) is
a function from a set of common arguments to the set of arguments to be played in
the next move. A sequence of moves S1, T1, S2, T2, . . . resulting in common arguments
APr,1
Com,A

Op,1
Com,A

Pr,2
Com,A

Op,2
Com, . . . is consistent with a strategy s for Pr if, for every j,

Sj+1 = s(AOp,j
Com,APr). A strategy for Pr is winning if every valid sequence of moves

consistent with the strategy is won by Pr.

The Winning Strategy Problem for Pr
Instance A split argumentation framework (ACom,APr,AOp,�) and a desired

outcome for Pr.
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GR ST CO PR SST EA ID
Existential Σp

2-c Σp
3-c Σp

3-c Σp
3-c Σp

4-c Σp
3-c Σp

3-c
Universal Σp

2-c Σp
2-c Σp

2-c Σp
3-c Σp

3-c Σp
3-c Σp

3-c
Unrejected Σp

2-c Σp
2-c Σp

2-c Σp
2-c Σp

3-c Σp
4-c Σp

3-c
Uncontested Σp

2-c Σp
2-c Σp

3-c Σp
3-c Σp

4-c Σp
3-c Σp

3-c
Plurality Σp

2-c NPNPPP -c NPNPPP -c NPNPPP -c NPNPPP -c Σp
3-c Σp

3-c
Majority Σp

2-c NPNPPP -c NPNPPP -c NPNPPP -c NPNPPP -c Σp
3-c Σp

3-c
Supermajority Σp

2-c NPNPPP -c NPNPPP -c NPNPPP -c NPNPPP -c Σp
3-c Σp

3-c

Table 3: Complexity of the Winning Sequence problem for Pr for selected aims and
semantics [90].

Question Is there a winning strategy for Pr that satisfies the standards?

There is also, of course, the corresponding problem for Op which arises when Op
conducts the espionage.

The following result shows that the Winning Strategy problem is PSPACE-
complete for all completist semantics and all the aims discussed in this chapter. This
is not surprising since, as a result of the espionage, Pr is essentially playing a complete
knowledge game and such games are known to be PSPACE-hard, in general.

Theorem 7.2. [90] Consider any completist semantics for abstract argumentation,
and any of the above aims for Pr.

The Winning Strategy problem is PSPACE-complete.

This theorem applies both to espionage by Pr and espionage by Op. The con-
structed argumentation framework for this proof is well-founded. Consequently the
construction serves for all completist semantics.

7.3 Audit: Standards and Compliance
To investigate collusion, we need to understand what “normal play” looks like and
how to recognise it. [92] proposes that we view this as a matter of audit, with
an external body setting standards for play and testing for compliance. In this
view there can be multiple standards. We have already seen one standard: that
a player must make a move, if she has one (we will call this the compulsory move
standard). Consequently, colluding players must arrange their play to ensure that
the designated loser has no possible moves at the end of the game. Earlier work [91;
90; 89] implicitly operated under this standard.
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However, this standard fails to address obvious collusion, like that in Example 7.1.
Thus, additional standards are required. However, a standard can only be justified if
it does not interfere with honest play. That is, a player should never face a choice
between following the standard and improving her chances of winning. Otherwise,
any violation of the standard can be explained away as an attempt to improve those
chances.

It is clear that the problem in Example 7.1 stems from Op playing B2. But it
is not clear what is an appropriate standard that would prevent this move. Several
possibilities suggest themselves:

(1) A player should not play an argument that attacks one of her own (unplayed)
arguments, thus causing a self-inflicted injury.

(2) A player should play the smallest number of arguments to achieve her aim15.

(3) A player should play a subset-minimal set of arguments that achieve her aim.

(1) is clearly too strong to be a standard. If, in Example 7.1 (Figure 3), B1
also attacked B2 then following this standard would cause Op to lose immediately.
However, when the omniscient argumentation framework is known to a player, [128]
prove that this standard (which they call the overcautious selection function) is
dominant. Unfortunately, a player cannot be expected to know the omniscient
argumentation framework.

(2) is more plausible, but consider the following example from [92].

Example 7.3. Consider the strategic argumentation game in Figure 4, and play
that proceeds as follows: Pr plays A, Op plays B1 and B2, and Pr plays C1 and C2.
At this stage O must attack both C1 and C2, and she has two alternatives: (1) play
E, which attacks both C1 and C2, or (2) play both D1 and D2, each attacking one
of the C arguments. Clearly (1) is the minimum cardinality move. However, Pr
then responds with F, and wins. In (2), the play of F is insufficient for Pr, since B2
remains undefeated. Hence Op wins.

Thus minimum cardinality is not suitable as a standard, because it can prevent a
winning move.

However, [92] showed that (3) is compatible with normal play: every non-minimal
move is dominated by a minimal move16. Thus the requirement to play only subset-
minimal moves is a suitable standard. It remains open whether there are other
standards that could be applied.

15 This is similar to the heuristic of [105], though the details of the game are different.
16 Previous work addressing redundancy or relevance in argumentation includes [54; 98].
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A

B1

B2

C1

C2

D1

D2

F

E

Figure 4: Split argumentation framework demonstrating non-dominance of minimum
cardinality moves.

In addition, we need to consider how play can be verified as compliant with a
standard. This involves issues of which data need to be accessed by the auditor, as
well as the computational difficulty of verifying compliance

In terms of accessibility, all that an auditor needs for subset-minimality is an
ability to inspect the initial ACom, the sequence of moves, and � restricted to the
current ACom, all of which can be considered public information. On the other hand,
to verify the compulsory move standard requires knowledge of the player’s arguments,
which is private. Thus an auditor verifying both standards needs access to all aspects
of a split argumentation framework. (However, each client might be in a position to
audit the compulsory move standard, which would allow the player’s arguments to
be kept private from the auditor.)

For the auditor, the cost of verifying compliance with the subset-minimality
standard involves polynomial many solutions of the Minimal Move problem (see
next subsection) for Pr, and the same for Op. In comparison, the compulsory move
standard requires a coDOL check, where L is the loser of the game, to verify that
there is no move for L left to play.

For the players, compliance with the subset-minimality standard increases the
difficulty of making a move. Not only must they find a move, they must also verify
that it is minimal. It also increases the cost to players exploiting collusion: they
must arrange the game so that their designated player wins, but also ensure that
each move is minimal. Furthermore, one easy avenue for exploiting collusion has
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A B C D

E F

G H

Figure 5: A strategic argumentation game demonstrating weakness of the compulsory
move and subset-minimality standards.

been eliminated. Consequently, there are games (like Example 7.1) where compliance
with both standards ensures that exploitation of collusion cannot be disguised as
normal play.

This leads to some questions. Are these two standards sufficient to prevent the
disguise of collusion? If not, can we add standards to achieve this goal? Unfortunately,
the answer to the first question is no, as the following example shows.

Example 7.4. Consider the strategic argument game depicted in Figure 5, where
arguments in APr are grey and arguments in AOp are white, and A is the critical
argument. If Pr refrains from playing H then Pr will win, since the two arguments
attacking A (B and E) can be attacked by Pr’s arguments F and G, which cannot
be attacked by Op. For example, the sequence of moves: A,B,F,E,G results in Pr
winning.

On the other hand, the sequence of moves: A,E,H,B,C,D results in Op winning.
Thus, Pr and Op can collude to ensure Op wins.

This example suggests that a variation of (1) above might be needed to detect
collusion more thoroughly. Which leads us to the second question: is it possible to
impose enough justified standards that no collusion can be disguised as compliant
play? Again the answer is no.

Consider the argumentation game in Figure 6 under the grounded semantics,
where A is the critical argument. After Pr plays A, Op has the choice of playing B or
C. Depending on this choice, either Pr or Op will win. If Pr and Op collude they can
determine the outcome, but any real restriction imposed by a standard will restrict
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A

B

C D

Figure 6: A strategic argumentation game demonstrating that no accumulation of
justifiable standards can make all collusion detectable.

to one possible outcome, so it cannot be a justified standard. Thus any collusion in
this game cannot be detected by imposing justified standards.

Hence, we see that collusion cannot be prevented simply by imposing more and
more standards. We must continue to rely on computational difficulty to discourage
corruption.

We now take a stab at formalizing these considerations. A standard is a restriction
on moves a player may make. More precisely, a standard is a function from a player’s
aim, her private set of arguments (APr or AOp), a proposed move (a subset of her
private arguments), and the set of arguments ACom, that are common knowledge, to
the set {permitted, not_permitted}. The standard is complied with by a player in
the play of a game if each move by the player is permitted by the standard.

A set of standards is justified if, for every argumentation game, if for every
unpermitted move that achieves the player’s aim there is a better (or equal) permitted
move that achieves the player’s aim. A move m by a player is considered better or
equal to another move m′ if, for every behaviour of the opposing player, the player
can achieve a better or equal outcome of the game by playing m, rather than playing
m′. Note that a set of standards might be unjustified even though each standard,
individually, is justified. However the combination of the compulsory move and
subset-minimality standards is justified.

We say that a strategic argumentation game played under a given finite set of
standards has detectable collusion if any occurrence of collusion that affects the
outcome of the game violates a standard. The set of standards must be finite because
an infinite set of standards creates difficulties for compliance verification, both for
the players and the auditor. The best that could be done is checks on a random
subset of standards. On the face of it, this might be sufficient for the auditor, but if
the player has no way to verify her move is compliant with all standards then the

1725



Governatori, Maher, Olivieri

auditor cannot reliably infer collusion or incompetence from her failure to comply.
We say that a strategic argumentation game played under a given set of standards

is determined if all compliant plays of the game lead to the same winner. It appears
that collusion is detectable iff the game is determined.

These considerations are similar to the issues in game-theoretic mechanism design
(see, for example, [57]) where the aim of the design is to achieve some social good,
such as fairness, honesty, ..., despite the self-interest of the parties involved. Thus
there is a strong focus is on a strategy-proof mechanism, where there is no advantage
to players in deviating from socially good behaviour. A classic example of mechanism
design is two-person cake-cutting, where the mechanism specifies that one player
cuts the cake in two, and the other chooses a piece. This mechanism encourages
fairness in the division of the cake.

In an argumentation setting, [116] addresses a version of strategic abstract argu-
mentation (with multiple players) where all players simultaneously play a selection
of their arguments, aiming for their focal argument to be accepted. The social
good desired is that the arguments accepted after all moves are those that would
be accepted if all arguments were available (the omniscient view of the split argu-
mentation framework). That is, roughly, the social good is that arguments are not
hidden17. Other work, such as [126; 122], also considers hiding of arguments as unfair
or dishonest.

This is a different attitude than in strategic argumentation, which treats argument
hiding as an inherent feature of adversarial argumentation. [116] characterize when
their game is strategy-proof, that is, when there is no advantage to players from
hiding arguments. It is only in very restrictive circumstances that honesty is the
best policy. Their focus is on the game itself. In particular, the self-interest players
have derives from their goals within the game. This is in common with most work
on mechanism design. In contrast, the work in this section aims at aligning the
self-interest of players with their clients, where that self-interest extends beyond the
game itself. The introduction of standards is an instance of mechanism design, but
we have seen that there is no mechanism that allows strategic play and prevents all
collusion. Consequently, computational resistance serves as a back-stop, to discourage
collusion.

17 An argument a is hidden if it is not played, even though a player has it available to play.
Sometimes, more specifically, it refers to an argument a that defeats an argument b, but is not
played when b is played.
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GR ST CO PR SST EA ID
Existential Res Res Res Res Res Res
Universal Res Res Res
Unrejected Res Res Res
Uncontested Res Res Res Res Res
Plurality Res Res Res Res Res Res
Majority Res Res Res Res Res Res
Supermajority Res Res Res Res Res Res

Table 4: Resistance to collusion to ensure Pr wins, for several aims and semantics
[90]. Res denotes that the combination of aim and semantics is computationally
resistant to collusion, while a blank denotes that it is not resistant.

7.4 Resistance to Corruption
Recall that resistance to collusion is based upon the relative computational difficulty
of exploiting the corruption, while disguising it, versus the difficulty of playing the
game honestly. In other words, we compare the complexity of the Winning Sequence
problem with the complexity of normal play as described at the end of subsection
6.3. This comparison is presented in Table 4. While not all combinations of aim and
semantics show computational resistance, many do. However, it is notable that three
of the aims under the stable semantics do not have resistance to collusion.

This comparison, however, deals only with the initial standard: that a player
must play if she has a move. We need to recalculate both the computational cost
of normal, honest play and the complexity of the Winning Sequence problem under
both standards, in order to determine resistance to collusion when both standards
apply. Hence, we need to consider the computational cost of verifying compliance
with the subset-minimality standard. The Minimal Move Problem is to verify that a
given move is a subset-minimal move.

The Minimal Move Problem for Pr
Instance A split argumentation framework (ACom,APr,AOp,�), an argumen-

tation semantics, an aim for Pr, and a move M ⊆ APr that achieves the aim for
Pr.

Question Is M a minimal set that achieves the aim under the given semantics?
That is, is there no subset N ⊂M such that Pr’s desired outcome is achieved in the
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argumentation framework (ACom ∪N,�)?

It is clear that the complement of this problem can be solved by a non-deterministic
algorithm that guesses N and uses an oracle for the Aim Verification problem. Thus
the Minimal Move Problem is in coNPAV , where AV is the complexity of the Aim
Verification problem. The complexity of the Minimal Move problem for Pr and Op
(denoted by MMPr and MMOp) for selected aims (of Pr) and the grounded and
stable semantics is given in Table 5. This is also the work that an auditor must do
to verify compliance with the subset-minimality standard. All aims for the grounded
semantics lead to the same complexity, so these results have been condensed to a
single row.

Honest (i.e. non-corrupt) play under both standards consists of a polynomial
number of moves, each involving the search for an effective move, incorporating a
verification that the aim is satisfied and the move is minimal. The cost of a single
move for Pr is DOMPr, which is in NP{AVPr,MMPr} and the total cost of honest play
is PDOMPr , and similarly for Op. The total cost of honest play for each player, under
the two standards, is shown in Table 5. In some cases the complexity of play has
increased as a result of the additional standard, but in other cases it remains the
same.

Finally, we must recalculate the cost for collusive play (assuming the players
want Pr to win), denoted by WSM . This is the cost of solving the Winning
Sequence problem when each player is constrained by the standard to play only
subset-minimal moves. The players must search for a sequence of effective min-
imal moves, and ensure Op has no effective move remaining. Thus WSM is in
NP{AVPr,MMPr,AVOp,MMOp,coDOOp}. The complexity of WSM is also given in Table 5.
In most cases the additional standard does not change the complexity of solving the
Winning Sequence problem.

We can see from the table that, once the subset-minimality standard is incorpo-
rated, all aims under the stable semantics are resistant to collusion, an improvement
(compare with Table 4).

While the additional standard may increase the cost of playing a strategic
argumentation game, it is still not comparable to the cost of solving the Winning
Strategy problem. Hence all the completist semantics and all the aims remain
resistant to espionage.

Of all the semantics that have been investigated, the naive semantics has an
interesting property – it is corruption-proof, at least for the non-counting aims
[89]. Under this semantics the extensions are the maximal conflict-free sets. It is
corruption-proof because the outcome is determined by the arguments the players
have, if they comply with the compulsory move standard. In this sense, the game is
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MMPr MMOp HonMin
Pr HonMin

Op WSM

Grounded semantics coNP-c coNP-c ∆p
2-c ∆p

2-c Σp
2-c Res

Stable semantics
Existential coNP-c Πp

2-c ∆p
2-c ∆p

3-c Σp
3-c Res

Universal Πp
2-c coNP-c ∆p

3-c ∆p
2-c Σp

3-c Res
Unrejected Πp

2-c coNP-c ∆p
3-c ∆p

2-c Σp
3-c Res

Uncontested Πp
2-c coNP-c ∆p

3-c ∆p
2-c Σp

3-c Res
Plurality/Majority coNPPP-c coNPPP-c PNPPP -c PNPPP -c NPNPPP -c Res
Supermajority coNPPP-c coNPPP-c PNPPP -c PNPPP -c NPNPPP -c Res

Table 5: Complexity of Minimality problems and normal play with the minimality
standard (for Pr and Op), Winning Sequence problems (for Pr), and resistance to
collusion (to ensure Pr wins), under the grounded and stable semantics, for selected
aims (of Pr) [92].

strategy-proof. Consequently, if the game has an outcome different from the expected
one, we detect corruption/incompetence. But, since every game is determined, this
is not a suitable semantics in which to do strategic argumentation.

7.5 Concrete Argumentation Systems

As we saw in Section 5, the SSA, SSSA, and AsSA problems for DL(∂) and DL(δ) are
NP-complete, as are the problems for the ASPIC-like language under the grounded
semantics. These correspond to the Desired Outcome problem. It was shown in [88]
that the Winning Strategy problem is PSPACE-complete and the Winning Sequence
problem is Σp

2-complete for DL(∂); hence, argumentation in DL(∂) is resistant to
corruption. These results relied on careful constructions and proofs reliant on the
specific logic.

There are many concrete languages, beyond those discussed in Section 5, that
can be used to express arguments. There is a wide variety of defeasible logics [23;
96; 95; 22; 94], languages incorporating inheritance in logic programming [78; 28],
other logic programming-based languages [139; 140; 76; 123], languages inspired by
argumentation [38; 135], as well as primitive systems like non-monotonic inheritance
networks [129]. Unlike systems such as ASPIC [2; 112; 143] and assumption-based
argumentation [26], these languages are designed independently from – and sometimes
prior to – abstract argumentation. Thus the results of this section do not apply
directly to such languages, and following the approach of [88] to establish resistance
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to corruption would be time-consuming.
However, it was shown in [93] that many of these concrete languages can encode

abstract argumentation frameworks under appropriate semantics. Most of the
languages employ the grounded semantics, while DefLog [135], ASPDA [140] and a
version of NDL [95] employ the stable semantics. Similarly, defeasible logics defined
in the framework of [5] for a range of logic programming semantics can encode
corresponding abstract argumentation frameworks under the corresponding (in the
sense of [31]) completist semantics. As a result, the hardness complexity results for
these semantics are carried over to the concrete languages. Consequently, many of
these languages are shown to be resistant to corruption. See [91] for details.

8 Related Work

Dialogue games for argumentation describe systems where two opponents argue about
the tenability of one or more claims (and thus are in the class of persuasion dialogues
[138]). Persuasion dialogues are typically substantive: the participants provide
substantive reasons for their claims [81]. As a consequence, the information available
during the game evolves, each participant discovering new pieces of information each
time the opponent makes new claims.

A structural difference between strategic argumentation and many persuasion
dialogues lies within the nature of the reply/counter-argument a player may present:
in our setting a participant never asks a why? question to a previous opponent’s
claim. In fact, the answer to the why? question is already provided at the very
moment a claim is made: every and each claim is justified/supported by the argument
proving it (all the rules in the proof of which the claim is the conclusion). Dialogue
systems have been classified based on their structural properties, that is whether a
player can make a single or multiple moves in one turn, and whether she is allowed to
reply only once or multiple times to the other player’s moves. In our game, the turn
shifts immediately after a player’s move, but this is nonetheless a relaxed constraint
given that, during such a move, the player may advance a set of arguments, and not
just a single one. Moreover, the player is not obliged to respond to the opponent’s
last move but she may attack any argument proposed so far (possibly her own if
this can prove her claim). It is nonetheless true that our framework is a a sort of
unique/move protocol (a hybrid version): a player can respond only once before the
turn passes to the other player even if, as we have shown, such a response is not
limited to a single argument.

We do not allow argument retractions (also known as withdrawals): once an
argument is played, it will remain as part of the common rules/knowledge base till
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the end of the game. But it is clear that such a constraint does not prevent a player
attacking one of her previously played arguments. We force a replying move to be
structurally relevant, that is it must be capable of changing the dialogical status
of the critical literal/argument (except for the surrendering move which, instead,
gives the victory to the adversary). Even allowing retraction in our framework, the
computational complexity does not change: a retraction operation would choose a set
of rules/arguments to be discarded; thus there is still a choice to be made. However,
retraction would change the nature of the game: in the game of Figure 6, Op would
not lose. Furthermore, retraction requires restrictions to ensure games terminate.

On the other hand, within our framework a player is not committed to the
arguments she plays. Commitments typically require that moves do not contradict
or challenge previous commitments/statements; in our framework, players have
commitments only towards the claim at dispute as they may, at any time, advance
arguments contradicting their own previous statements.

Our turn-taking is in line with the notion of [109; 82] where “when a player is to
move, s/he keeps moving until s/he has changed the status of the initial move his or
her way”. The sole difference is that we consider the playing of more arguments as a
single move, but the essential idea is that even in our framework the player must
change the status of the initial claim (the critical literal/argument).

The structure of the arguments defined by our framework is in line with [109].
The idea of an argumentation theory is that of containing all the arguments that are
constructible on the basis of a certain theory or knowledge base.

Our framework is sound and fair according to definitions given in [109]. It is
sound because if the proponent wins the game, then the current theory actually
proves the critical literal. (Symmetrically, if the opponent wins, the theory either
fails to prove the critical literal, disproves it, or proves the opposite, depending on
the game variant.) The framework also satisfies fairness given that if, at a given turn,
the theory proves the critical literal, then proponent is winning the game. (Again,
depending on the type of game, we have that if the theory either fails to prove the
critical literal, disproves it, or proves the opposite at a given turn, then the opponent
is winning the game.)

The conceptual basis of our formalisation that an argument moved at some
earlier stage might be a legal counterargument against some later arguments is not a
novelty in the literature of the field, and has been adopted in many frameworks [108;
109].

Our dialogues are coherent (in the sense proposed by [109, Section 7.1]) since we
do not allow players to retract their claims. A participant can play a set of arguments
conflicting with some of the moves she has put forward in previous steps, if this helps
her in taking advantage of information disclosed by the adversary.
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[36] describe a rigorous persuasion dialogue game RPDGD obtained by adapting
the game RPD0 of [138], replacing propositional logic as the underlying information
carrier with abstract argumentation. It has some features in common with strategic
argumentation, including private arguments, alternating moves and strategic play.
On the other hand, each move is a single locution, which may be a statement,
challenge, or question; the only semantics considered is the grounded semantics; and
the roles of Pr and Op are quite different from each other, in comparison to strategic
argumentation. [36] analyse strategies for their game but it is unclear whether they
could be adapted to strategic argumentation.

In game-theoretic terms, a player in a strategic argumentation game has per-
fect information of the structure of the game, the history of the game, and the
effects of each move. On the other hand, the players have incomplete information
of the arguments – and, hence, the possible moves – of adversaries. Most games
in the argumentation literature are games of perfect information, while many as-
sume complete information of the adversary, or don’t care. For dialogues that are
collaborative, seeking to find a joint truth18, privacy/incomplete information would
seem not to matter; for those designed to provide an operational characterization
(or proof theory) for specific semantics19, again it would seem that privacy does
not matter. Many works seeking to apply game-theoretic solution concepts, such
as Nash equilibria, to argumentation games [120; 115; 97; 50] assume players have
complete information about an adversary’s possible moves, since that is an underlying
assumption of Nash equilibria. On the other hand, many argumentation games in
the literature are incomplete information games, for example [121; 107; 116; 125; 27;
69].

One way of analysing argumentation games of incomplete information is to frame
them as Bayesian extensive games with observable actions [106, chap. 12]: this is
possible because every player observes the move of the other player and uncertainty
only derives from an initial move of Chance that distributes private information
(rules or arguments) among the players. Hence, Chance selects types for the players
by assigning to them possibly different theories from the set of all possible theories
constructible from a given language. If this hypothesis is correct, notice that Bayesian
extensive games with observable actions allow to simply extend the argumentation
models proposed, for example, in [120; 69]. Despite this fact, however, complexity
results for Bayesian games are far from encouraging (see [61] for games of strategy).
Indeed, it seems that considerations similar to those presented by [34] can be applied
to argument games: the calculation of the perfect Bayesian equilibrium solution can

18 Such dialogues are known as inquiry dialogues [138].
19 Examples of such work are [136; 3; 100].
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be tremendously complex due to both the size of the strategy space (as a function of
the size of the game tree, and it can be computationally hard to compute it [40]),
and the dependence between variables representing strategies and players’ beliefs.

Many works, for example [119; 70] (and see [127; 24] for more discussion), have
addressed the development of a model of the adversary, which can help in developing
heuristics for choosing a particular move. Such work does not change the worst-case
complexity of making a move, which is NP-hard or worse (see Table 2). Furthermore,
even with full knowledge of the adversary, the problem of developing a strategy to
beat the adversary is PSPACE-complete (Theorem 7.2).

As mentioned earlier, some work [116; 122] considers hiding arguments (that is,
playing an argument a1 that you know is defeated by a2, but keeping a2 private) to
be dishonest or even lying. However, in a game of incomplete knowledge a player
does not know which arguments hold in the omniscient argumentation framework,
so this attitude seems harsh. In any case, our focus is on strategic arguing, where
hiding arguments is acceptable. Those works also address “bullshitting” [56] (the
introduction of arguments that the player does not know), which is not acceptable in
strategic argumentation. We assign to the adjudicator the responsibility for rejecting
such arguments. [116] shows that, for their single simultaneous move game, honesty
is the best policy only in very restrictive circumstances. [122] identifies some cases
in which a player can detect a dishonest adversary, while [107] show that, as the
players play more games the probability of a lie being caught by the adversary
approaches 1. Apart from these works, which might be considered as addressing
corruption isolated to a single player, there seems no discussion of corruption in
formal argumentation prior to [88]. [126] address “argumentational integrity”, but
this refers to fairness in the performance of general argumentation; they do, however,
agree that “pretence of truth” is unfair, and would also consider hidden arguments
as “insincere contributions”.

A majority of the (persuasion) dialogue and argumentation literature takes the
perspective of Dung, which sees arguments as monadic elements. There, arguments
are typically abstract: the players know such arguments, can propose one (or a set) of
them during a turn of the game, but the players do not know their internal structure.
Although for many applications this perspective is admissible and gives good benefits
in simplifying the problem, in some cases it results in an oversimplification. Anyway,
restricting to abstract argumentation does not reduce the complexity of the problems,
in general. We have seen in Section 7.5 that hardness results at the abstract level can
be extended to the concrete level. Thus, it seems that the complexity of the problems
largely comes from the problems themselves (including semantics and strategic aims)
and not from the level of detail of the arguments.

Strategic argumentation can be considered a specific form of collective argumen-
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tation [25] (and judgement aggregation), where different argumentation frameworks
contribute to a combined judgement on the arguments. This topic is usually consid-
ered in the context of collaboration, but some work considers self-interested agents [27;
77]. Strategic argumentation is clearly a framework-wise approach, in the classifica-
tion of [25], where argument frameworks are combined, and arguments then evaluated
in the result. See Chapter 4 [18] of this handbook for additional discussion of this
topic from a computational social choice perspective.

An approach to argumentation of interest for strategic argumentation is proba-
bilistic argumentation. We refer the readers to Chapter 7 of this volume [73] for an
in-depth discussion of this topic. Under the constellations approach to probabilistic
argumentation, the key idea is that the existence (or, perhaps, validity) of arguments
and attacks is unknown, but there is a probability distribution function describing
the likelihood of different possibilities. Such an approach could be a useful refinement
for strategic argumentation, allowing the replacement of a complete unknown (the
adversary’s arguments) with a more detailed model of the adversary. This might
provide the basis for a player to choose among different moves.

Within the framework proposed in [80], probabilities are used to represent the
likelihood that arguments and attacks exist. This defines a probability distribution
over all possible worlds, where each possible world is an abstract argumentation
framework consisting of some subset of the arguments and attacks. Extensions arise,
as usual, for a possible world, by applying any of various semantics. In [80; 52], the
authors tackle the probabilistic counterpart of the problem VERσ(S), that is, the
problem PROBσ

F (S) of computing the probability PrsσF (S) that a set S of arguments
is an extension according to a given semantics σ, given a probabilistic argumentation
framework F . [80] suggested that computing the exact value of probability PrsσF (S)
requires exponential time, and employed a Monte-Carlo simulation approach to
approximate PROBσ

F (S). However, as far as the admissible and stable semantics are
concerned, [52]’s results show that the exact value of PrsσF (S) can be determined in
polynomial time, without enumerating the possible worlds. Nevertheless, in general
the number of extensions is potentially exponential and, for other semantics, the
problem is intractable. Consequently, it seems likely that many of the problems
arising in strategic probabilistic argumentation will also be difficult.

Finally, there are some works that might appear to be addressing strategic
argumentation, but have only weak relevance to the topic. Strategic manoeu-
vring was introduced in [133] to bridge the gap between dialectical and rhetor-
ical approaches to the study of argumentation [134]. It refers to “the efforts
arguers make in argumentative discourse to reconcile aiming for rhetorical effec-
tiveness with maintaining dialectical standards of reasonableness” [134]. It was
introduced in the context of the pragma-dialectical theory of argumentation [132;
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131], which focuses on analysis and evaluation of lingual argumentation. This theory
is a much broader view of argumentation than we address here. Nevertheless, there
might be links between strategic manoeuvring and strategic argumentation applied
to value-based or audience-based argumentation frameworks [19].

We have already mentioned [126], which addresses ethics of lingual argumentative
communication. It proposes standards for lingual argumentation, under the title
argumentational integrity, and develops a taxonomy of these standards. The standards
address rhetoric rather than the relation between arguments, and the notion of
integrity does not include corruption (except to the extent already discussed in
Section 7.1).

Despite the title, [46] analyzes a very different scenario than we do here. In that
work, a decision-maker consults an expert, who possibly has an ulterior motive, about
deciding between two alternatives. For example, a customer consulting a camera
salesman about which camera to buy. The expert has all the arguments (which
are informal) for both alternatives, and the decision-maker has none. The game is
modelled probabilistically, and the paper performs an equilibrium analysis. Apart
from the words “strategic argumentation” and the possibility of a self-interested player,
there is no relationship between this work and the work on strategic argumentation
presented here.

9 Future Directions
There are multiple avenues for further research in this area.

• The NP-completeness results in Section 5.1 apply to a wide variety of logics
whose inference problem can be solved in polynomial time. Other logics, such as
those in [21], that have a harder inference problem might result in complexities
higher in the polynomial hierarchy. An analysis of such cases could extend the
existing results.

• Structured argumentation theories can generate a large number of arguments,
possibly infinitely many. This prevents applying the results of Section 7 to
structured argumentation directly. For example, we used a different method to
prove Theorem 5.8. What is needed is to find a polynomially-sized argumenta-
tion framework that is equivalent to the generated argumentation framework
for the semantics of interest.

• In this chapter we have focused on a competitive situation, where the two players’
aims are inconsistent. However, the basics of strategic argumentation also apply
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when the player’s aims are consistent. In this case, strategic argumentation
represents a crude adversarial negotiation. It is worth exploring how concepts
from strategic argumentation can be used to analyse such negotiations, both in
strategic argumentation games and in other negotiation games.

• Work has focused on two-player games of strategic argumentation. However,
there are often more than two stakeholders in an adjudication, and so it would be
interesting to see how strategic argumentation can be extended to more players.
Among the many issues that would need to be addressed are: the protocol
for turn-taking, the criterion for terminating the game, and the possibility of
some players cooperating to construct an argument that none of them could
construct individually. There is discussion of multi-party dialogues in [37; 99;
127]. In general, game play would appear to be more complex because of the
potential for shifting alliances between players, and because players might not
be compelled to make a move at each opportunity. Corruption might also be
more complicated.

• In current work, the players’ aims are implicitly assumed to be known and
fixed. In some scenarios this might be realistic. However, there are scenarios
where the motivations of a player are unclear, and/or may change over the
course of argumentation. For example, a defence lawyer might begin with a
“not guilty” aim but, if the trial is going badly, change tack to instead aim at a
mis-trial. Thus, the extension of strategic argumentation to consider aims as
possibly private and flexible/changeable is an interesting one.

• In the treatment of strategic abstract argumentation, the most prominent
semantics for Dung’s framework have been addressed, but there remain many
semantics in the literature for which resistance to corruption is unknown. In
addition, the treatment of the subset-minimality standard remains to be done
for most semantics.

• The treatment of espionage assumes that full knowledge of an adversary’s
arguments is obtained. Perhaps the illicit gain of only some knowledge is more
realistic. How can this framework be extended to cases where only partial
knowledge is obtained? The work of [39] could be a first step in this direction.
That paper represents partial knowledge and determines whether a player has
the ability to force a desired outcome. However, it will need much expansion,
as it only addresses Existential and Universal outcomes, and only for the stable
semantics; assumes that the player’s control arguments cannot be attacked by
partially-known attacks; and does not consider multiple moves.
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• Although standards are insufficient to make corruption visible, they can also be
useful in guiding heuristic approaches to playing strategic argumentation games.
For example, the subset-minimality standard prevents a player needlessly
creating an opening for the adversary. ([105] employ this as a heuristic in a
different dialogue game than the one we have presented.) Thus, it would be
helpful to identify more standards, especially those that can be incorporated in
heuristics or used to improve a heuristic move.

• The brief discussion of argument retraction in Section 8 deserves expansion.
Strategic argumentation with retraction would seem to produce an outcome
that is less arbitrary than without retraction, but perhaps the strategic element
would be much diminished. Argument retraction would need to be restricted in
some way, or an explicit termination rule introduced, otherwise a losing player
might be able to prevent termination by repeatedly retracting arguments and
then replaying them. Treating such retraction as a disavowal of some or all of
the backtracked arguments (i.e. a commitment not to use those arguments in
the remainder of the game) might temper the power of retraction and lead to
a richer game.

• The notion of resistance to corruption we discussed is based on worst-case
complexity, but this is sometimes not reflective of the difficulty of problems
that arise in practice. An empirical comparison of the difficulty of solving
the problems in practice and a study of approximation algorithms for these
problems are needed.

• As observed in subsection 6.1, it can be worthwhile to consider an adjudicator as
part of a strategic argumentation game. In this case we might consider whether
the adjudicator can be subject to corruption. If the role of the adjudicator
is simply to enforce the consequences arrived at by the players then there is
nothing in the game that allows us to detect corruption.

However, if we assume that the adjudicator chooses the semantics under which
the game will be adjudicated, we have an action by the adjudicator that can
be subject to analysis. This leads to quite different games, especially if the
adjudicator changes the semantics during the playing of the game. While this
appears to be rather Kafkaesque, it might be somewhat reflective of some
situations where the judiciary can be influenced by other arms of government.
The adjudicator then has both the choice of semantics to impose, and the choice
of timing of this move. More realistically, [110] presents a game where the
adjudicator plays an active role, based on a detailed model of legal procedure.

1737



Governatori, Maher, Olivieri

Perhaps that model is a base on which corruption of adjudication can be
investigated.

10 Conclusions
Strategic argumentation is a primarily adversarial approach to dialogue games with
incomplete information. It reflects aspects of legal argument. The idea can be
applied at a concrete level, as we have demonstrated using defeasible logic rules as
the basis for arguments, and at an abstract level, which was demonstrated using
Dung’s argumentation system.

The key element of strategic argumentation games is each player re-establishing
their aim at the end of their turn. The details of the argument framework are not
needed at this level of abstraction, only that they can be used to define a notion of
acceptance/aim achievement. Consequently, we have a formulation of strategic argu-
mentation that applies to Dung’s notion of argumentation framework [41], but also to
bipolar argumentation frameworks [33], abstract argumentation frameworks with sets
of attacking arguments [101; 55]20, and preference-based argumentation frameworks [3;
17]. If, in the dialogue game (A,R), we extend R beyond simply relations on A then
we can have strategic argumentation on constrained argumentation frameworks [35],
weighted argument systems [42], abstract dialectical frameworks [30], and probabilis-
tic argumentation frameworks [80], and the ideas might well be applicable to other
forms of argumentation framework. Similarly, the ideas of strategic argumentation
apply to semantics other than Dung-style semantics.

We have also demonstrated how the strategic argumentation framework can be
used to address issues of corruption, even when the corrupt behaviour is motivated
by rewards extrinsic to the game. We have not much addressed the strategies that
a player might employ when playing a strategic argumentation game, although the
study of standards in Section 7 provides some guidelines. More information on that
topic can be found in Section 5.2 of Chapter 9 [24] in this handbook.
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Abstract

Argumentation frameworks often model dynamic situations where argu-
ments and their relationships (e.g., attacks) frequently change over time. As a
consequence, the sets of conclusions (e.g., extensions of abstract argumentation
frameworks, or warranted literals for structured argumentation frameworks) of-
ten need to be computed again after performing an update. However, as most
of the argumentation semantics proposed so far suffer from high computational
complexity, computing the set of conclusions from scratch is costly in general.
In this work, we address the problems of efficiently recomputing extensions of
dynamic abstract argumentation frameworks and warranted literals in dynamic
defeasible knowledge bases. In particular, we first present an incremental al-
gorithmic solution whose main idea is that of using an initial extension and
the update to identify a (potentially small) portion of an abstract argumen-
tation framework, which is sufficient to compute an extension of the updated
framework.

1 Introduction
Computational Argumentation is an established research field in the area of Knowl-
edge Representation and Reasoning (KR) [29; 91; 21; 84; 61], which is central in
Artificial Intelligence (AI). An (abstract) argumentation framework [55] is a simple,
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yet powerful formalism for modeling disputes between agents. The formal mean-
ing of an argumentation framework is given in terms of argumentation semantics,
which intuitively tell us the sets of arguments (referred to as extensions) that can
be accepted together to support a point of view in a discussion. For an abstract
argumentation framework, an argument is an abstract entity whose role is entirely
determined by its relationships with other arguments. In contrast, DeLP [69] is a
well-known argumentation formalism where arguments have an explicit structure as
they derive from a knowledge base (DeLP program) consisting of facts and strict
and defeasible rules. By considering the structure of arguments, i.e., their inner con-
struction, it becomes possible to analyze reasons for and against a conclusion closely,
and the warrant status of a claim in the context of a knowledge base represents the
main output of a dialectical process.

Although the ideas underlying abstract and structured argumentation frame-
works are intuitive and straightforward, most of the argumentation semantics pro-
posed so far suffer from high computational complexity [58; 57; 60; 77; 50]. Most
research in the domain of formal argumentation (both in the abstract and struc-
tured settings) have focused on static frameworks (i.e., frameworks whose structure
does not change over time), whereas argumentation frameworks are frequently used
for modeling dynamic systems [25; 62; 81; 24; 51; 36; 37]; since, as a matter of
fact, the argumentation process is inherently dynamic, this is not surprising. For
instance, consider how many times we change our minds after learning something
new about a situation that is the focus of our reasoning. There is evidence of that
in social network threads [76], where users frequently post new arguments against
or supporting other posts, often made by the same users that change their minds.
Surprisingly, the definition of evaluation algorithms and the analysis of the com-
putational complexity taking into account such dynamic aspects have been mostly
neglected, whereas, in these situations, incremental computation techniques could
significantly improve performance. In many cases, especially when few updates at a
time are performed, the changes made to a framework can result in small changes to
the set of its conclusions—extensions of abstract argumentation frameworks; war-
ranted literals for structured argumentation—and recomputing the whole semantics
from scratch can be avoided.

The following is a summary of the contributions of this work:

• By focusing on the most popular argumentation semantics for abstract frame-
works, i.e., complete, preferred, stable, ideal, and grounded, we present a general
approach for incrementally solving the following computational task: given an
argumentation framework AF , an extension for AF under semantics σ, and an
update u, obtain an extension of the updated argumentation framework u(AF )
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under σ. In other words, we explore the possibility of incrementally solving the
task σ-SE of the International Competition on Computational Models of Ar-
gumentation (ICCMA) [93]: given an argumentation framework, obtain some
σ-extension. The technique consists of the following main steps: (i) identifi-
cation of the influenced set, which intuitively consists of the set of arguments
whose acceptance status may change after performing an update; (ii) identifi-
cation of a (possibly) smaller argumentation framework, called reduced argu-
mentation framework, based on the influenced set and additional information
provided by the initial extension; (iii) using any non-incremental algorithm to
compute an extension of the reduced argumentation framework; and (iv) ob-
taining the final extension by merging a portion of the initial extension with
the one computed for the reduced argumentation framework.

• We show that the main idea behind the above-described incremental approach
can be adapted to extended abstract argumentation frameworks, i.e., bipo-
lar argumentation frameworks allowing the presence of attacks and supports,
as well as argumentation frameworks with second-order interactions (e.g., at-
tacks towards attacks). This is achieved by leveraging meta-argumentation
approaches, which provide ways to transform a more general abstract frame-
work into a Dung framework.

• Intending to minimize wasted effort in the computation of the warrant status
of literals of a DeLP program after performing an update, we summarize the
necessary elements to develop the updating techniques in DeLP’s structured
argumentation. Particularly, we focus only on literals that are potentially
affected by a given update (namely, influenced and core literals), and avoids
the computation of the status of inferable and preserved literals.

Organization. As a prelude, we first briefly recall basic notions of abstract argu-
mentation frameworks [55] and then introduce updates in Section 2. The incremen-
tal technique for recomputing an extension of an updated abstract argumentation
framework under different semantics is presented in Section 3. The main idea behind
the above-described incremental approach is then adapted to cope with extended
argumentation frameworks in Section 4. Next, in Section 5, we discuss the critical
aspects of the technique dealing with structured argumentation in an easy-to-read
manner. Related work is discussed in Section 6, and conclusions and directions for
future work are drawn in Section 7.
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Figure 1: AF0 of Example 2.1.

2 Abstract Argumentation Frameworks and Updates
We assume the existence of a set Args of arguments. An (abstract) argumentation
framework [55] is a pair 〈Ar , att〉, where Ar ⊆ Args is a finite set of arguments,
and att ⊆ Ar × Ar is a binary relation over Ar whose elements are called attacks.
Thus, an argumentation framework can be viewed as a directed graph where nodes
correspond to arguments and edges correspond to attacks.

Example 2.1 (Running example for abstract argumentation). Let AF0 = 〈Ar0,
att0〉 be an argumentation framework, where Ar0 = {a, b, c, d, e, f, g, h} and att0 =
{(a, b), (b, a), (b, c), (c, c), (d, a), (d, e), (e, d), (b, e), (f, e), (g, d), (g, h), (h, e),
(h, f)}. The argumentation framework AF0 is shown in Figure 1.

Given an argumentation framework 〈Ar , att〉 and arguments a, b ∈ Ar , we say
that a attacks b iff (a, b) ∈ att, and that a set S ⊆ Ar attacks b iff there is a ∈ S
attacking b. We use S+ = {b | ∃a ∈ S : (a, b) ∈ att} to denote the set of all
arguments that are attacked by S.

Moreover, we say that S ⊆ Ar defends a iff ∀b ∈ Ar such that b attacks a, there
is c ∈ S such that c attacks b. A set S ⊆ Ar of arguments is said to be:

• conflict-free if there are no a, b ∈ S such that a attacks b;

• admissible if it is conflict-free and it defends all its arguments.

An argumentation semantics specifies the criteria for identifying a set of argu-
ments, called extension, that can be considered “reasonable” together. A complete
extension (CO) is an admissible set that contains all the arguments that it defends.
A complete extension S is said to be:

• preferred (PR) iff it is maximal (w.r.t. ⊆);

• stable (ST ) iff it attacks every argument in A \ S;
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σ Eσ(AF0) Eσ(AF )
CO {{f, g}, {a, f, g}, {b, f, g}} {{g}, {a, g}, {b, f, g}}
PR {{a, f, g}, {b, f, g}} {{a, g}, {b, f, g}}
ST {{b, f, g}} {{b, f, g} }
ID {{f, g}} {{g}}
GR {{f, g}} {{g}}

Table 1: Sets of extensions for AF0 and AF = +(c, f)(AF0).

• grounded (GR) iff it is minimal (w.r.t. ⊆).

• ideal (ID) iff it is contained in every preferred extension and it is maximal
(w.r.t. ⊆).

Given an argumentation framework AF and a semantics σ ∈ {CO, PR, ST ,
GR, ID}, we use Eσ(AF ) to denote the set of σ-extensions for AF , i.e., the set of
extensions for AF according to the given semantics σ.

All the above-mentioned semantics except the stable admit at least one extension,
and the grounded and ideal admits exactly one extension [55; 56; 41]. Grounded and
ideal semantics are called deterministic or unique status as |EGR(AF )| =
|EID(AF )| = 1, whereas the other above recalled semantics are called nondeter-
ministic or multiple status. For any AF AF , it holds that EST (AF ) ⊆ EPR(AF ) ⊆
ECO(AF ), EGR(AF ) ⊆ ECO(AF ), and EID(AF ) ⊆ ECO(AF ).

Example 2.2. The set of admissible sets for the argumentation framework AF0
shown in Figure 1 is {∅, {b}, {g}, {a, g}, {b, g}, {f, g}, {a, g, f}, {b, g, f}}, and the
set Eσ(AF0) of extensions, with σ ∈ {CO, PR, ST , ID, GR} is as reported in the
second column of Table 1.

2.1 Labelling and Status of Arguments
The argumentation semantics can be also defined in terms of labelling [21]. A la-
belling for an argumentation framework 〈Ar , att〉 is a total function Lab : Ar →
{in, out, undec} assigning to each argument a label. L(a) = in means that argu-
ment a is accepted, L(a) = out means that a is rejected, while L(a) = undec means
that a is undecided.

Let in(L) = {a | a ∈ Ar ∧ L(a) = in}, out(L) = {a | a ∈ Ar ∧ L(a) = out},
and un(L) = {a | a ∈ Ar ∧ L(a) = undec}. In the following, we also use the triple
〈in(L), out(L), un(L)〉 to represent the labelling L.
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Figure 2: Labelling L corresponding to the preferred extensions EPR ∈
EAF0(PR) = 〈{a, f, g}, {b, d, e, h}, {c}〉 (left-hand side) and E

′
PR ∈ EAF0(PR) =

〈{b, f, g}, {a, d, e, h}, {c}〉 (right-hand side). A green (resp., red, orange) node x is
such that L(x) = in (resp., out, undec).

Given an argumentation framework AF = 〈Ar , att〉, a labelling L for AF is said
to be admissible (or legal) if ∀a ∈ in(L) ∪ out(L) it holds that

(i) L(a) = out iff ∃ b ∈ Ar such that (b, a) ∈ att and L(b) = in; and

(ii) L(a) = in iff L(b) = out for all b ∈ Ar such that (b, a) ∈ att.

Moreover, L is a complete labelling iff conditions (i) and (ii) hold for all a ∈ Ar .
Between complete extensions and complete labellings there is a bijective mapping

defined as follows: for each extension E there is a unique labelling L = 〈E,E+,Ar \
(E ∪ E+)〉 and for each labelling L there is a unique extension in(L). We say that
L is the labelling corresponding to E.

Example 2.3. Continuing from Example 2.2, 〈{a, f, g}, {b, d, e, h}, {c}〉 is the la-
belling corresponding to the preferred extension EPR ∈ EPR(AF0) = {a, f, g}, as
shown in Figure 2.

In the following, we say that the status of an argument a w.r.t. a labelling L
(or its corresponding extension in(L)) is in (resp., out, undec) iff L(a) = in (resp.,
L(a) = out, L(a) = undec). We will avoid to mention explicitly the labelling (or
the extension) whenever it is understood.

2.2 Updating a Dung Argumentation Framework
An argumentation framework typically models a temporary situation, and new ar-
guments and attacks can be added or retracted to take into account new available
knowledge.

1754



On the Incremental Computation of Semantics...

b c

d e f

g h

a

Figure 3: AF = +(c, f)(AF0)

Performing an update on an argumentation framework AF0 means modifying it
into an argumentation framework AF by adding or removing arguments or attacks.
We use +(a, b), with a, b ∈ Ar0 and (a, b) 6∈ att0, (resp. −(a, b), with (a, b) ∈ att0)
to denote the addition (resp. deletion) of an attack (a, b), and u(AF0) to denote
the application of update u = ±(a, b) to AF0 (where ± means either + or −).
Applying an update u to an argumentation framework implies that its semantics
(set of extensions or labellings). Table 1 reports the sets of extensions for the
argumentation framework AF0 of Figure 1 and for AF = +(c, f)(AF0) of Figure 3
which is obtained from AF0 by performing the update +(c, f).

Concerning the addition (resp. deletion) of a set of isolated arguments, it is easy
to see that if AF is obtained from AF0 through the addition (resp. deletion) of a
set S of isolated argument, then, let E0 be an extension for AF0, E = E0 ∪ S (resp.
E = E0 \ S) is an extension for AF that can be trivially computed. Of course, if
arguments in S are not isolated, for addition we can first add isolated arguments and
then add attacks involving these arguments, while for deletion we can first delete all
attacks involving arguments in S. Thus we do not consider these kinds of update in
the following.

3 Incremental Computation of Extensions in Dynamic
Argumentation Frameworks

We tackle the problem of incrementally computing extensions of dynamic argumen-
tation frameworks: given an initial extension and an update (or a set of updates), we
devise a technique for computing an extension of the updated argumentation frame-
work under five well-known semantics (i.e., complete, preferred, stable, grounded,
and ideal).

The idea, initially proposed in [74; 75] and then developed in [4], is that of
identifying a reduced (updated) argumentation framework sufficient to compute an
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update L0(b)
+(a, b) in undec out

L0(a)
in CO, PR, ST , GR

undec CO, GR CO, PR, GR
out CO, PR, ST CO, GR CO, PR, ST , GR

Table 2: Cases for which E0 ∈ Eσ(u(AF0)) for u = +(a, b).

extension of the whole argumentation framework and use state-of-the-art algorithms
to recompute an extension of the reduced argumentation framework only.

For the sake of presentation, we first present the technique for semantics σ ∈ {CO,
PR, ST , GR}, and then show how to deal with the ideal semantics in Section 3.3,
since the definition of the reduced argumentation framework for the ideal semantics
is different from that for the other semantics.

We first give some sufficient conditions ensuring that a given σ-extension for
an argumentation framework AF continues to be a σ-extension for the updated
argumentation framework u(AF ). Then, we introduce the influenced set that intu-
itively consists of the set of arguments whose status may change after performing
an update.

Updates Preserving a Given Initial Extension

Given an update ±(a, b) and an initial extension E0 corresponding to L0, for each
pair of initial statuses L0(a) and L0(b) of the arguments involved in the update,
Tables 2 and 3 tell us the semantics for which E0 is still an extension after the
update, as stated in the following proposition.

Proposition 3.1 (Irrelevant Updates [5]). Let AF0 be an argumentation framework,
σ a semantics, E0 ∈ Eσ(AF0) an extension of AF0 under semantics σ, L0 the
labelling corresponding to E0, and u an update. If σ is in the cell 〈L0(a),L0(b)〉 of
Table 2 and u = +(a, b) (resp., of Table 3 and u = −(a, b)), then E0 ∈ Eσ(u(AF0)).

The results in Tables 2 and 3 concerning the grounded semantics follow from
those in [39; 40], where the principles according to which the grounded extension
does not change when attacks are added or removed have been studied.

In the following, given an argumentation framework AF0 and a σ-extension E0
for it, we say that an update u is irrelevant w.r.t. E0 and σ iff the conditions of
Proposition 3.1 hold. Otherwise, u is said to be relevant.
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update L0(b)
−(a, b) in undec out

L0(a)

in NA NA
undec NA CO, PR, GR
out CO, PR, ST , GR CO, PR, GR CO, PR, ST , GR

Table 3: Cases for which E0 ∈ Eσ(u(AF0)) for u = −(a, b).

Example 3.2. Consider AF0 of Figure 1 and its sets of extensions listed in the
second column of Table 1. E0 = {b, f, g} is an extension according to semantics
σ ∈ {CO,PR,ST }. Thus, L0(c) = out and L0(f) = in, and using Proposition 3.1
it follows that for update u = +(c, f) E0 is still an extension of u(AF0) (see the last
column of Table 1). Thus +(c, f) is irrelevant w.r.t. E0 and σ.

In contrast, +(c, f) is relevant w.r.t. E0 = {a, f, g} and any semantics (in this
case L0(c) = undec and L0(f) = in, and no semantics is listed in the cell 〈undec, in〉
of Table 2).

It is important to note that Tables 2 and 3 are not meant to be exhaustive, as
more conditions can be found for which a σ-extension is preserved after an update.
For instance, for the grounded semantics, the initial extension is preserved also if
L0(a) = out and L0(b) = in and argument a of updated +(a, b) is not reachable
from b. Here we provided a simple set of conditions that can be easily checked by just
looking at the initial labelling L0. The technique for the incremental computation
can be trivially extended by considering a more general set of such conditions.

Influenced Set
Given an argumentation framework, an update, and an initial σ-extension of the
considered framework, the influenced set consists of the arguments whose acceptance
status (according to the semantics σ) may change after performing the update.
For irrelevant updates, the influenced set will be empty, as in this case, the initial
extension can be immediately returned as an extension of the updated argumentation
framework. If none of the conditions of Proposition 3.1 hold (i.e., the update is
relevant), then the influenced set may turn out to be not empty. In such case, the
influenced set will be used to delineate a portion of the argumentation framework,
called reduced argumentation framework, that we will use to recompute (a portion
of) an extension for the updated argumentation framework.

Given an argumentation framework AF = 〈Ar , att〉 and an argument b ∈ Ar ,
we use ReachAF (b) to denote the set of arguments that are reachable from b in the
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graph AF .

Definition 3.3 (Influenced Set [5]). Let AF = 〈Ar , att〉 be an argumentation frame-
work, u = ±(a, b), E an extension of AF under semantics σ ∈ {CO, PR, ST , ID,
GR}, and let

• INF0(u,AF,E) =





∅ if u is irrelevant w.r.t. E and σ or ∃(z, b) ∈ att
s.t. z 6= a ∧ z ∈ E ∧ z 6∈ ReachAF (b);

{b} otherwise;

• INFi+1(u,AF,E) = INFi(u,AF,E) ∪ {y | ∃(x, y) ∈ att s.t.
x ∈ INFi(u,AF,E) ∧ @(z, y) ∈ att s.t. z ∈ E ∧ z 6∈ ReachAF (b)}.

The influenced set of u w.r.t. AF and E is INF(u,AF,E) = INFn(u,AF,E) such
that INFn(u,AF,E) = INFn+1(u,AF,E).

Thus, the set of arguments that are influenced by an update of b’s status are
those that can be reached from b without using any intermediate argument y whose
status is known to be out because it is determined by an argument z ∈ E that is
not reachable from (and thus not influenced by) b.

Example 3.4. Consider the argumentation framework AF0 = 〈Ar0, att0〉 of Fig-
ure 1 and the update u = +(c, f). We have that ReachAF0(f)=Ar0 \ {g, h}. The
influenced set depends on the initial extension chosen. For the (preferred) extension
{b, f, g} of Example 3.2, we have that the influenced set is empty as u is irrele-
vant. In contrast, for the (preferred) extension E0 = {a, f, g}, the influenced set is
INF(u,AF0, E0) = {f, e}. Indeed, d 6∈ INF(u,AF0, E0) since it is attacked by g ∈ E0
which is not reachable from f . Thus the arguments that can be reached from d do
not belong to INF(u,AF0, E0). If we consider the initial grounded extension {f, g},
then {f, e} turns out once again to be the influenced set.

Reduced Argumentation Framework
Given the influenced set, we define a subgraph, called reduced argumentation frame-
work, that will be used to compute the status of the influenced arguments, thus
providing an extension that will be combined with that of initial argumentation
framework to obtain an extension of the updated argumentation framework, for
every semantics σ ∈ {CO, PR, ST , GR}.

For any argumentation framework AF = 〈Ar , att〉 and set S ⊆ Ar of arguments,
we denote with AF↓S = 〈S, att∩(S×S)〉 the subgraph of AF induced by arguments
in S. Moreover, given two argumentation frameworks AF1 = 〈Ar1, att1〉 and AF2 =
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e f

Figure 4: RAF(+(c, f), AF0, {a, f, g})

〈Ar2, att2〉, we denote as AF1 tAF2 = 〈Ar1 ∪Ar2, att1 ∪ att2〉 the union of the two
argumentation frameworks.
Definition 3.5 (Reduced Argumentation Framework [5]). Let AF0 = 〈Ar0, att0〉 be
an argumentation framework, E0 ∈ Eσ(AF0) an extension for AF0 under a semantics
σ ∈ {CO, PR, ST , GR}, and u = ±(a, b) an update. Let AF = 〈Ar , att〉 be the
argumentation framework updated using u. The reduced argumentation framework
for AF0 w.r.t. E0 and u (denoted as RAF(u,AF0, E0)) is as follows.
• RAF(u,AF0, E0) is empty if INF(u,AF0, E0) is empty.

• RAF(u,AF0, E0) = AF↓INF(u,AF0,E0) tAF1 tAF2 where:

(i) AF1 is the union of the frameworks 〈{a, b}, {(a, b)}〉 s.t. (a, b) ∈ att,
a 6∈ INF(u,AF0, E0), a ∈ E0, and b ∈ INF(u,AF0, E0);

(ii) AF2 is the union of the frameworks 〈{c}, {(c, c)}〉 s.t. there is (e, c) ∈ att,
e 6∈ INF(u,AF0, E0), e 6∈ (E0 ∪ E+

0 ), and c ∈ INF(u,AF0, E0).

Hence, the argumentation framework RAF(u,AF0, E0) contains, in addition to
the subgraph of u(AF0) induced by INF(u,AF0, E0), additional nodes and edges
containing needed information on the “external context”, i.e., information about
the status of arguments which are attacking some argument in INF(u,AF0, E0).
Specifically, if there is in u(AF0) an edge from an uninfluenced node a whose status
in in to an influenced node b, then we add the edge (a, b) so that, as a does not
have incoming edges in RAF(u,AF0, E0), its status is confirmed to be in. Moreover,
if there is in u(AF0) an edge from an uninfluenced node e to an influenced node c
such that e is undec, we add edge (c, c) to RAF(u,AF0, E0) so that the status of c
cannot be in. Using fake arguments/attacks to represent external contexts has been
exploited in [20] where decomposability properties of argumentation semantics are
investigated.
Example 3.6. For our running example, if E0 = {a, f, g} and u = +(c, f), the
reduced argumentation framework RAF(+(c, f), AF0, E0) consists of the subgraph
induced by INF(u,AF0, E0) = {f, e} plus the edge (f, f) as there is the attack
(c, f) in the updated argumentation framework from a non influenced argument c
labelled as undec toward the influenced argument f . Hence, RAF(+(c, f), AF0, E0)
= 〈{e, f}, {(f, f), (f, e)}〉 as shown in Figure 4.
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The following theorem states that, for every semantics σ ∈ {CO, PR, ST , GR},
an extension for the updated argumentation framework can be obtained by the union
of an extension of the reduced argumentation framework and the projection of the
initial extension on the uninfluenced part.

Theorem 3.7 ([5]). Let AF0 be an argumentation framework, AF = u(AF0) be the
argumentation framework resulting from performing update u = ±(a, b) on AF0, and
E0 ∈ Eσ(AF0) be an extension for AF0 under a semantics σ ∈ {CO, PR, ST , GR}.
If Eσ(RAF(u,AF0, E0)) is not empty, then there is an extension E ∈ Eσ(AF ) for the
updated argumentation framework AF such that E = (E0 \ INF(u,AF0, E0)) ∪ Ed,
where Ed is a σ-extension for reduced argumentation framework RAF(u,AF0, E0).

Example 3.8. Continuing with our example, for the preferred semantics, let E0 =
{a, f, g} and u = +(c, f), we have that INF(u,AF0, E0) = {f, e}, and RAF(+(c, f),
AF0, E0) = 〈{e, f}, {(f, f), (f, e)}〉. Thus, using the theorem, there is an extension
E of the updated argumentation framework such that E = ({a, f, g} \ {f, e}) ∪ Ed
where Ed = ∅ is a preferred extension of the reduced argumentation framework. In
fact, E = {a, g} ∈ EPR(u(AF0)).

It is worth noting that the set of extensions of an argumentation framework
can be empty only for the stable semantics. Thus, in the case that this happens for
the reduced argumentation framework (i.e., Eσ(RAF(u,AF0, E0)) = ∅), the theorem
does not give a method to determine an extension of the updated argumentation
framework, as shown in the following example.

Example 3.9. Consider the two stable extensions {a, c} and {a, d, e} for AF0 and
the update u = +(d, d). Depending on the initial extension, the influenced set is
either INF(u,AF, {a, c}) = ∅ (as u is irrelevant w.r.t. {a, c} and ST ) or INF(u,AF,
{a, d, e})
= {d}. Thus, starting from the extension {a, c} we directly know {a, c} is a sta-
ble extension of the updated argumentation framework. However, starting from
{a, d, e}, the reduced argumentation framework will be RAF(u,AF0, {a, d, e}) =
〈{d}, {(d, d)}〉, which has no stable extension. In this case, the theorem does not
provide a stable extension of the updated argumentation framework, thought a stable
extension exists: that obtained by starting from the initial extension {a, c}.

Note that, if we consider the preferred semantics, for which the starting ex-
tensions are again {a, c} and {a, d, e}, a preferred extension of the updated argu-
mentation framework can be obtained no matter what starting extension is cho-
sen. In particular, as the preferred extension for reduced argumentation framework
〈{d}, {(d, d)}〉 is the empty set, it follows that ({a, d, e} \ {d}) ∪ ∅ = {a, e} is a
preferred extension of the updated argumentation framework.
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Algorithm 1 Incr-Alg(AF0, u, σ,E0, Solverσ) [5]
Input: AF0 = 〈Ar0, att0〉,

update u = ±(a, b),
semantics σ ∈ {CO, PR, ST , GR},
extension E0 ∈ Eσ(AF0),
function Solverσ(AF ) returning a σ-extension of AF if it exists, ⊥ otherwise;

Output: A σ-extension E ∈ Eσ(u(AF0)) if it exists, ⊥ otherwise;
1: S = INF(u,AF0, E0);
2: if (S = ∅) then
3: return E0;
4: end if
5: AFd = RAF(u,AF0, E0);
6: Let Ed = Solverσ(AFd);
7: if (Ed 6= ⊥) then
8: return E = (E0 \ S) ∪ Ed;
9: else

10: return Solverσ(u(AF0));
11: end if

3.1 Incremental Algorithm

Algorithm 1 computes an extension of an updated argumentation framework [5].
Besides taking as input an initial argumentation framework AF0, an update u, a
semantics σ ∈ {CO, PR, ST , GR}, and an extension E0 ∈ Eσ(AF0), it also takes
as input a function that computes a σ-extension for an argumentation framework, if
any. In particular, function Solverσ(AF ) will be used to compute an extension of the
reduced argumentation framework, which will be then combined with the portion
of the initial extension that does not change in order to obtain an extension for the
updated argumentation framework (as stated in Theorem 3.7).

More in detail, Algorithm 1 works as follows. First, the influenced set of AF0
w.r.t. update u and the given initial extension E0 is computed (Line 1). If it is
empty, then E0 will be still an extension of the updated argumentation framework
under the given semantics σ, and thus it is returned (Line 3). Otherwise, the re-
duced argumentation framework AFd is computed at Line 5, and function Solverσ
is invoked to compute a σ-extension of AFd, if any. If σ ∈ {CO, PR, GR}, then
AFd will have an extension Ed, which is combined with E0 \ S at Line 8 to get an
extension for the updated argumentation framework. For the stable semantics, if
EST (RAF(u,AF0, E0)) is not empty, then the algorithm proceeds as for the other
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Figure 5: Simulating multiple updates by a single one.

semantics (Line 8). Otherwise, function Solverσ is invoked to compute a stable
extension of the whole updated argumentation framework u(AF0), if any.

The soundness and completeness of the algorithm follows from the result of
Theorem 3.7 and the soundness and completeness of function SolverS used.

Theorem 3.10 (Soundness and Completeness [5]). Let AF0 be an argumentation
framework, u = ±(a, b), and E0 ∈ Eσ(AF0) an extension for AF0 under σ ∈ {CO,
PR, ST , GR}. If Solverσ is sound and complete then Algorithm 1 computes E ∈
Eσ(u(AF0)) if Eσ(u(AF0)) is not empty, otherwise it returns ⊥.

3.2 Applying Multiple Updates Simultaneously
The approach described in the previous section extends to the case of multiple
updates, i.e., set of updates performed simultaneously. In fact, performing a set
of updates U = {+(a1, b1), . . . ,+(an, bn), −(a′1, b′1), . . . ,−(a′m, b′m)} on AF0 can be
reduced to performing a single update +(v, w) on an argumentation framework AFUE0
whose definition depends on both the set of updates U and the initial σ-extension
E0, as explained in what follows.

Given a set U of updates for an argumentation framework AF0, and a σ-extension
E0 for AF0, we use U∗ to denote the subset of U consisting of the relevant updates
(that is, the updates in U for which the conditions of Proposition 3.1 do not hold).

The argumentation framework AFUE0 for applying a set U∗ of relevant updates is
obtained from AF0 by (i) adding arguments xi, yi and the chain of attacks between ai
and bi as shown in Figure 5, for each update +(ai, bi) ∈ U∗; (ii) replacing each attack
(a′j , b′j) in AF0 with the chain of attacks between a′j and b′j as shown in Figure 5,
for each update −(aj , bj) ∈ U∗; and (iii) adding the new arguments v, w,w′ and the
attacks involving them as shown in Figure 5. The following definition considers a
general set of updates which includes also irrelevant updates.

Definition 3.11 (AF for applying a set of updates [75]).
Let AF0 = 〈Ar0, att0〉 be an argumentation framework, and E0 a σ-extension for
AF0. Let
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• att+ = {(a1, b1), . . . , (an, bn)} ⊆ (Ar0 ×Ar0) \ att0, and

• att− = {(a′1, b′1), . . . , (a′m, b′m)} ⊆ att0

such that att+ ∩ att− = ∅ be two sets of attacks.
Let U = {+(ai, bi) |(ai, bi) ∈ att+} ∪ {−(aj , bj) |(aj , bj) ∈ att−} be a set of

updates, and U∗ ⊆ U be the set of relevant updates w.r.t. E0 and σ. Then, AFUE0 =
〈ArU , attU 〉 denotes the argumentation framework obtained from AF0 as follows:

• ArU = Ar0 ∪ {xi, yi | +(ai, bi) ∈ U∗} ∪{x′j , y′j | −(aj , bj) ∈ U∗} ∪{v, w,w′},
where all xi, yi, x′j , y′j, w, w′, and v are new arguments not occurring in Ar0,
and

• attU = (att0 \ att−) ∪ {(ai, bi) |+ (ai, bi) ∈ (U \ U∗)}∪
{(ai, xi), (xi, yi), (yi, bi) | + (ai, bi) ∈ U∗} ∪
{(aj , x′j), (x′j , y′j), (y′j , bj) | − (aj , bj) ∈ U∗} ∪
{(w, yi) | + (ai, bi) ∈ U∗} ∪
{(w′, y′j) | − (aj , bj) ∈ U∗} ∪ {(w,w′)}.

It is worth noting that, in the definition above, each argument xi, yi, x′i, and y′i
is assumed to be unique and non-identical for every attack (ai, bi).

The following theorem states that every extension of the argumentation frame-
work AF obtained by performing on AF0 all the updates in U corresponds to an
extension of +(v, w)(AFUE0), where +(v, w) is a single attack update.

Theorem 3.12 ([75; 5]). Let AF0 = 〈Ar0, att0〉 be an argumentation framework,
E0 a σ-extension for AF0, and U a set of updates. Let AF be the argumentation
framework obtained from AF0 by performing all updates in U on it. Then, for any
semantics σ ∈ {CO,PR,ST ,GR} E ∈ Eσ(AF ) iff there is EU ∈ Eσ(+(v, w)(AFUE0))
such that EU ∩Ar0 = E.

3.3 Dealing with the Ideal Semantics
Algorithm 1 can be extended to deal with the ideal semantics. The only difference
is that we need a new definition of reduced argumentation framework since, as
illustrated in the following example, that of Definition 3.5 does not work for the
ideal semantics.

Example 3.13. Consider the argumentation framework AF0 = 〈{a, b, c, d}, {(a, b),
(b, a), (c, d), (d, c), (a, c), (b, c)}〉 and the update u = −(b, c). The ideal extension
of AF0 is E0 = {d} (i.e., arguments a and b are both labeled as undec). The
influenced set is INF(u,AF0, E) = {c, d}. However, the RAF obtained by applying
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Definition 3.5 is 〈{c, d}, {(c, c), (c, d), (d, c)}〉, its ideal extension is {d}, and applying
the result of Theorem 3.7 we would obtain that {d} is still the ideal extension for
u(AF0). But this is not correct, as the ideal extension for u(AF0) is the empty set.

Before defining the reduced framework for the ideal semantics, we define the
paths providing the information on the “context” outside the influenced set INF(u,
AF,E) that needs to be added to determine the new status of the arguments influ-
enced by update u w.r.t. the ideal extension E.

Given an argumentation framework AF = 〈Ar , att〉 with ideal extension E and
a set S ⊆ Ar , we use Node(AF, S,E) (resp. Edge(AF, S,E)) to denote a set of
arguments x1, . . . , xn (resp. attacks (x1, x2), . . . , (xn−1, xn)) in AF such that there
is a path x1 . . . xn in AF with xn ∈ S, x1, . . . , xn-1 6∈ S and x1, . . . , xn-1 6∈ E ∪ E+

(i.e., x1, . . . , xn-1 are undec). Essentially, if S is the influenced set of an update,
to determine the status of nodes in S we must also consider all nodes and attacks
occurring in paths (of any length) ending in S whose nodes outside S are all labeled
as undec. The motivation to also consider the paths ending in S is that some of
the undecided arguments occurring in these paths could be labelled in or out in
some preferred labelling and, therefore, together they could determine a change in
the status of nodes in S.

Definition 3.14. (Reduced Argumentation Framework for Ideal Seman-
tics [75; 8])
Let AF0 = 〈Ar0, att0〉 be an argumentation framework, E0 be the ideal extension for
AF0, and u = ±(a, b) an update. Let AF = 〈Ar , att〉 be the argumentation frame-
work updated by using u. The reduced argumentation framework for AF0 w.r.t. E0
and u (denoted as RAFID(u,AF0, E0)) is as follows.

• RAFID(u,AF0, E0) is empty if INF(u,AF0, E0) is empty.

• RAFID(u,AF0, E0) = AF↓INF(u,AF0,E) tAF1 tAF2 where:

(i) AF1 is the union of the frameworks 〈{a, b}, {(a, b)}〉 such that (a, b) ∈ att
and a 6∈ INF(u,AF0, E0), a ∈ E0, and b ∈ INF(u,AF0, E0);

(ii) AF2 is the union of the frameworks 〈Node(AF, INF(u,AF0, E0), E0) and
Edge(AF, INF(u,AF0, E0), E0)〉.

Example 3.15. For the argumentation framework AF0 of running example (see Fig-
ures 1 and 3), where the initial ideal extension is E0 = {f, g} and u = +(c, f), the
reduced argumentation framework RAFID(+(c, f), AF0, E0) consists of the subgraph
induced by INF(u,AF0, E0) = {f, e} plus the sub-graph consisting of the paths of un-
decided arguments ending in the influenced set, that is, AF2 = 〈{a, b, c}, {(a, b), (b, a),
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(b, c), (c, c),
(c, f)}〉. Hence, RAFID(+(c, f), AF0, E0) = 〈{a, b, c, e, f}, {(a, b), (b, a), (b, c), (c, c),
(c, f), (f, e)}〉. The ideal extension of the reduced framework is the empty set.

It can be shown that the result of Theorem 3.7 also holds for the case of the ideal
semantics [8]. By applying that result, we obtain that the (updated) ideal extension
for the updated argumentation framework of Example 3.15 is ({f, g} \ {f, e}) ∪ ∅ =
{g} (see Table 1).

Example 3.16. Consider again the argumentation framework AF0 and the update u
of Example 3.13, where the ideal extension of AF0 is E0 = {d} and INF(u,AF0, E) =
{c, d}.

Thus, RAFID(u,AF0, E0) = AF↓INF(u,AF0,E0) tAF1 tAF2 where:

• AF↓INF(u,AF0,E) = 〈{c, d}, {(c, d), (d, c)}〉,

• AF1 = 〈∅, ∅〉 and

• AF2 = 〈{a, b, c}, {(a, b), (b, a), (a, c)}〉.
That is, RAFID(u,AF0, E0) = 〈{a, b, c, d}, {(a, b), (b, a), (c, d), (d, c), (a, c)}〉, and
its ideal extension is ∅. Thus, using the result of Theorem 3.7, we obtain that the
ideal extension for the updated argumentation framework u(AF0) is the empty set.

Finally, Algorithm 1 can be used to compute the updated ideal extension of a
given argumentation framework by using AFd = RAFID(u,AF0, E0) at Line 5 and
an external solver that computes the ideal extension of the reduced argumentation
framework.

In the next two sections, we will deal with other possible ways to apply the in-
cremental algorithm in other approaches to formal (computational) argumentation.
First, Section 4 deals with bipolarity and extended argumentation frameworks, while
Section 5 centers on Defeasible Logic Programming (DeLP) as a structured argu-
mentation formalism.

4 Bipolarity and Second-Order Attacks
Dung’s framework has been extended along several dimensions; for instance,

see [22; 83; 96]. The proposed incremental approach can be applied to different kinds
of abstract argumentation frameworks that extend Dung’s model. The main idea is
that of using meta-argumentation approaches, which provide ways to transform a
more general abstract framework into a Dung framework, and apply the incremental
technique on the meta argumentation framework [4; 6; 7].
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Bipolarity in argumentation is discussed in [17], where a survey of the use of
bipolarity is given, as well as a formal definition of bipolar argumentation frame-
works, which extend Dung’s concept of argumentation framework by also including
the relation of support between arguments. The notion of support has been found to
be useful in many application domains, including decision making [16]. Several inter-
pretations of the notion of support have been proposed in the literature [17; 46; 47;
48; 38; 96] (see [53] for a comprehensive survey). In this work, we focus on deductive
support [38; 96] which is intended to capture the following intuition: if argument a
supports argument b then the acceptance of a implies the acceptance of b, and thus
the non-acceptance of b implies the non-acceptance of a. However, the approach
presented in this section can be adapted to work also with necessary support [89;
88; 23] due to the duality between these two kinds of interpretations of the support
relation [53]. The acceptability of arguments in the presence of a support relation
was first investigated in [46]. Later on, to handle bipolarity in argumentation, [47;
48] proposed an approach based on using the concept of coalition of arguments,
where sets of arguments are considered as a group that plays the role of an ar-
gument and defeats then occur between coalitions. However, when considering a
deductive interpretation of support [38; 96], coalitions may lead to counter-intuitive
results [53]; nevertheless, they are useful in contexts where support is interpreted
differently.

Furthermore, other abstract argumentation frameworks have been considered,
such as Extended Argumentation Frameworks, which extend bipolar argumentation
frameworks by modelling (apart from attacks/supports between arguments) also at-
tacks towards an attack or a support (called second-order attacks). Thanks to a meta
argumentation approach, an extended argumentation framework can be converted
into an abstract argumentation framework by using additional meta-arguments as
well as attacks between them to model supports and second-order attacks.

In the following, we discuss how to extend the incremental technique to deal with
extended argumentation frameworks. An Extended Argumentation Framework [38]
is a quadruple 〈Ar , att, sup, s-att〉, where where (i) Ar ⊆ Args, (ii) att ⊆ Ar × Ar ,
(iii) sup ⊆ Ar ×Ar is a binary relation over Ar whose elements are called supports,
(iv) att ∩ sup = ∅,and (v) s-att is a binary relation over Ar × (att ∪ sup) whose
elements are called second-order attacks.

In the following, a second-order attack from an argument a to an attack (b, c)
will be denoted as (a� (b→ c)), while an attack from an argument a to a support
(b, c) will be denoted as (a � (b ⇒ c)). Thus, a Dung argumentation frame-
work is an extended argumentation framework of the form 〈Ar , att, ∅, ∅〉, while a
bipolar argumentation framework is extended argumentation framework of the form
〈Ar , att, sup, ∅〉.
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Figure 7: Meta framework for EF0 of Example 4.1.

Example 4.1. Consider the extended argumentation framework EF0 = 〈Ar0, att0,
sup0, s-att0〉 where:

• Ar0 = {a, b, c, d, e, f} is the set of arguments;

• att0 = {(a, c), (c, b), (b, d), (d, e), (e, d), (e, e), (e, f)} is the set of attacks;

• sup0 = {(a, b)} is the set of supports; and

• s-att0 = {(a, (b, d))} is the set of second-order attacks.

The corresponding graph is shown in Figure 6, where second-order attacks are drawn
using double-headed arrows.

The semantics of an extended argumentation framework can be given by means
of the following meta argumentation framework.

Definition 4.2 (Meta Argumentation Framework [38]). The meta argumentation
framework for EF = 〈Ar , att, sup, s-att〉 is MF = 〈Arm, attm〉 where:

• Arm = Ar ∪ {Xa,b, Ya,b | (a, b) ∈ att} ∪ {Za,b | (a, b) ∈ sup} ∪
{Xa,(b,c), Ya,(b,c) | (a, (b, c)) ∈ s-att, (b, c) ∈ att}

• attm={(a,Xa,b), (Xa,b, Ya,b), (Ya,b, b)|(a, b) ∈ att} ∪
{(b, Za,b), (Za,b, a) | (a, b) ∈ sup} ∪
{(a,Xa,(b,c)), (Xa,(b,c), Ya,(b,c)), (Ya,(b,c), Yb,c) |
(a, (b, c)) ∈ s-att, (b, c) ∈ att} ∪
{(a,Xa,(b,c)), (Xa,(b,c), Ya,(b,c)), (Ya,(b,c), Zb,c) |
(a, (b, c)) ∈ s-att, (b, c) ∈ sup}
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The meaning of meta-arguments Xa,b, Ya,b and Za,b is as follows. Xa,b represents
the fact that the corresponding attack (a, b) is “negligible” in the extended argumen-
tation framework—it belongs to an extension of the meta argumentation framework
iff a does not belong to an extension of the extended argumentation framework. On
the other hand, Ya,b represents the fact that (a, b) is “significant” in the extended
argumentation framework, and it belongs to an extension of the meta argumenta-
tion framework iff argument b does not. Finally, meta-argument Za,b represents a
support relation between a and b: it does not belong to an extension for the meta
argumentation framework iff the supported argument b is accepted in the deductive
model of support.

Moreover, a second order attack of the form (a� (b→ c)) is encoded as an attack
towards the meta-argument Yb,c (that represents the fact that (b, c) is “significant”),
while an attack of the form (a� (b⇒ c)) is encoded as an attack toward the meta-
argument Zb,c. The meta argumentation framework for the extended argumentation
framework of Example 4.1 is shown in Figure 7.

Extensions for an extended argumentation framework EF are obtained from ex-
tensions for its meta argumentation framework MF: E is an σ-extension for EF iff
Em ∈ Eσ(MF) and E = Em ∩ Ar , where Ar is the set of arguments of EF. Using
this relationship, the notion of labelling can be extended to extended argumentation
frameworks as well. As done in [38], in the following we will focus on the preferred
and stable semantics. However, the technique can be also applied to grounded, ideal,
and complete semantics by means of meta argumentation approach.

Example 4.3. For the meta argumentation framework MF of Figure 7, we have the
following preferred extensions (which are also stable extensions): (i) {a, b, d, f, Ya,c,
Xc,b, Yd,e, Ya,(b,d), Xe,e, Xe,d, Xe,f , }, which corresponds to the extension {a, b, d, f}
of the extended argumentation framework of Example 4.1, and (ii) {c, d, f, Xa,c,
Yc,b, Za,b, Xb,d, Yd,e Xe,e, Xe,d, Xe,f , Xa,(b,d)}, which corresponds to the extension
{c, d, f} of the extended argumentation framework.

Updates over Extended Argumentation Frameworks For extended argu-
mentation frameworks we also consider updates consisting of additions and deletions
of support relations and second-order attacks, in addition to the attack updates
considered for Dung’s frameworks. Specifically, the addition (resp., deletion) of a
support relation from an argument a to an argument b will be denoted as +(a⇒ b)
(resp. −(a ⇒ b)). Analogously, the addition (resp., deletion) of a second-order
attack from an argument a to an attack (b, c) will be denoted as +(a � (b → c))
(resp., −(a � (b → c))). Finally, if (b, c) is a support, then the update will be
denoted as +(a � (b ⇒ c)) (resp., −(a � (b ⇒ c))). We use u(EF0) to denote the
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extended argumentation framework resulting from the application of update u to an
initial extended framework EF0.

We introduce the compact argumentation framework for performing an update
on extended argumentation frameworks—it will be used in a variant of Algorithm 1
for the incremental computation. The definition builds on (the compact version
of) that proposed in [38] and considers additional meta-arguments and attacks that
will allow us to simulate addition updates to be performed on the extended argu-
mentation framework by means of single updates performed on the corresponding
(compact) meta argumentation framework.

Definition 4.4 (Compact Argumentation Framework [7]). Let EF = 〈Ar , att, sup,
s-att〉 be an extended argumentation framework, and u an update of one of the
following forms:

• u = ±(e→ f) • u = ±(e⇒ f)
• u = ±(e� (g → h)) • u = ±(e� (g ⇒ h)).

The compact argumentation framework for EF w.r.t. u is CF(EF, u) = 〈Arm, attm〉
where:

• Arm = A ∪ {Za,b | (a, b) ∈ sup} ∪
{Xc,d, Yc,d | (e, (c, d)) ∈ s-att, (c, d) ∈ att} ∪
{Ze,f | u = +(e⇒ f)} ∪
{Xg,h, Yg,h | u = +(e� (g → h))}

• attm = att \ {(g, h) | u = +(e� (g → h))} ∪
{(g,Xg,h), (Xg,h, Yg,h), (Yg,h, h) | u = +(e� (g → h))} ∪
{(b, Za,b), (Za,b, a) | (a, b) ∈ sup} ∪
{(e, Za,b) | (e, (a, b))∈s-att, (a, b)∈sup} ∪
{(c,Xc,d), (Xc,d, Yc,d), (Yc,d, d), (e, Yc,d) |
(e, (c, d)) ∈ s-att, (c, d)∈att} ∪
{(f, Ze,f ) | u = +(e⇒ f)}.

Besides the meta-arguments Za,b of Definition 4.2, and the attacks involving those
arguments, the above meta argumentation framework contains meta-arguments
Xc,d, Yc,d for encoding second order attacks in s-att toward attacks (c, d) ∈ att. In
fact, an attack e� (a⇒ b) in s-att toward a support is encoded as an attack from e
toward Za,b in the meta argumentation framework, while e� (c→ d) in s-att is en-
coded as an attack from e toward Yc,d in the meta argumentation framework (which
contains also the attacks (c,Xc,d), (Xc,d, Yc,d), (Yc,d, d)). Moreover, meta-arguments
Ze,f and Xg,h, Yg,h, are added to the meta argumentation framework for encoding,
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Figure 8: Compact argumentation framework for the extended argumentation frame-
work EF0 of Figure 6 w.r.t. the update u = +(d� (c→ b)).

respectively, the addition of a second order attack toward a support (e, f) ∈ sup
or toward an attack (g, h) ∈ att. In the latter case, meta-arguments Xg,h and Yg,h
along with the set of attacks {(g,Xg,h), (Xg,h, Yg,h), (Yg,h, h)} are used to simulate
the attack g → h which is attacked by e in the extended argumentation framework.
This enables the definition of simple attack updates to simulate second-order attack
updates.

Example 4.5. The compact argumentation framework for the EAF EF0 of Figure 6
w.r.t. the update u = +(d � (c → b)) is shown in Figure 8. Herein, the attacks
involving the meta-arguments Xb,d and Yb,d allow us to simulate the second order
attack a � (b → d). Moreover, the attacks involving the meta-arguments Xc,b and
Yc,b are added to enable the simulation of the second-order update u by a single attack
update on the meta argumentation framework.

We now define updates on the meta argumentation framework.

Definition 4.6 (Updates for the meta argumentation framework [7]). Let EF =
〈Ar , att, sup, s-att〉 be an extended argumentation framework, and u an update for
EF. The corresponding update um for the compact argumentation framework
CF(EF, u) is as follows:
um = um =
+(Ze,f → e) if u = +(e⇒ f) −(Ze,f → e) if u = −(e⇒ f))
+(c→ d) if u = +(c→ d) −(c→ d)) if u = −(c→ d))
+(e→ Yg,h) if u = +(e� (g → h)) −(e→ Yg,h) if u = −(e� (g → h))
+(e→ Za,b) if u = +(e� (a⇒ b)) −(e→ Za,b) if u = −(e� (a⇒ b))

For instance, continuing with Example 4.5, given the extended argumentation
framework EF0 of Figure 6 and the update u = +(d � (c → b)), we have that
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update um for the compact argumentation framework CF(EF0, u) shown in Figure 8
is um = +(d→ Yc,b).

Finally, given an initial extension for an extended argumentation framework and
an update, we define the initial labelling for the corresponding compact argumenta-
tion framework as follows.
Definition 4.7 (Corresponding initial labelling [7]). Given an extended argumenta-
tion
framework EF0 = 〈Ar , att, sup, s-att〉 and a initial labelling L0, the correspond-
ing initial labelling Lm0 for the compact argumentation framework CF(EF0, u) =
〈Arm, attm〉 is as follows:

∀a ∈ Ar ∩Arm : Lm0 (a) = L0(a);
∀ Xa,b ∈ Arm : Lm0 (Xa,b) = in if L0(a) = out

Lm0 (Xa,b) = out if L0(a) = in
Lm0 (Xa,b) = undec if L0(a) = undec

∀ Ya,b ∈ Arm : Lm0 (Ya,b) = in if (i) Lm0 (Xa,b) = out and
(ii) ∀c ∈ Ar s.t. (c, (a, b)) ∈ s-att,

L0(c) = out
Lm0 (Ya,b) = out if (i) Lm0 (Xa,b) = in or

(ii) ∃ c ∈ Ar | (c, (a, b)) ∈ s-att
and L0(c) = in

Lm0 (Ya,b) = undec, otherwise.

∀Za,b ∈ Arm : Lm0 (Za,b) = in if (i) L0(b) = out and
(ii) ∀ c ∈ Ar s.t. (c, (a, b)) ∈ s-att,

L0(c) = out
Lm0 (Za,b) = out if (i) L0(b) = in or

(ii) ∃ c ∈ Ar | (c, (a, b)) ∈ s-att
and L0(c) = in

Lm0 (Za,b) = undec, otherwise.

For instance, given the initial preferred extension E0 = {a, b, d, f} of the extended
argumentation framework EF0 of Example 4.1, the initial labelling for the compact
argumentation framework CF(EF0, +(d → Yc,b)) of Figure 8 is such that Lm0 (a) =
L0(a) = in, Lm0 (c) = L0(c) = out, Lm0 (Xc,b) = in, and Lm0 (Yc,b) = out. Also, we
have that Lm0 (b) = L0(b) = in, Lm0 (Xb,d) = out, Lm0 (Yb,d) = out since Lm0 (a) =
L0(a) = in, and Lm0 (d) = L0(d) = in.
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Algorithm 2 Incr-EAF(EF0, u, E0, σ, Solverσ)
Input: Extended argumentation framework EF0 = 〈Ar0, att0, sup0, satt0〉,

update u over EF0,
an initial σ-extension E0 for EF0,
semantics σ ∈ {PR,ST },
function Solverσ(AF ) that returns an σ-extension of AF if it exists, and ⊥
otherwise;

Output: An σ-extension E for u(EF0) if it exists, ⊥ otherwise;
1: if checkProp(EF0, u, E0, σ) then
2: return E0;
3: end if
4: Let CF0 = CF(EF0, u) be the compact argumentation framework for EF0 w.r.t.
u (cf. Definition 4.4);

5: Let um be the update for CF0 corresponding to u (cf. Definition 4.6);
6: Let Em0 be the initial σ-extension for CF0 corresponding to E0;
7: Let Em = Incr-Alg(CF0, um, σ, Em0 , Solverσ);
8: if (Em 6= ⊥) then
9: return E = (Em ∩Ar0);

10: else
11: return ⊥;
12: end if

Incremental Algorithm for Extended Argumentation Frameworks We are
now ready to present the algorithm for extending the incremental technique to the
case of extended argumentation frameworks. Given an extended argumentation
framework EF0, a semantics σ ∈ {PR, ST }, an extension E0 ∈ Eσ(EF0), and an
update u of the form u = ±(a ⇒ b), u = ±(a → b), u = ±(e � (c ⇒ d)),
or u = ±(e � (c → d)), Algorithm 2 computes an extension E of the updated
extended argumentation framework u(EF0), if it exists [7]. The algorithm works as
follows. It first checks if the initial extension E0 is still an extension of the updated
extended argumentation framework at Line 1, where checkProp(EF0, u, E0, σ) is a
function returning true iff the update is irrelevant—the interested reader can find
the conditions under which an update for an extended argumentation framework
is irrelevant in [7]. If this is the case, it immediately returns the initial extension.
Otherwise, it computes the compact argumentation framework CF0 (Line 4), the
update um for CF0 (Line 5), and the initial σ-extension Em0 for CF0 (Line 6). Next,
it invokes function Incr-Alg (i.e., Algorithm 1). Incr-Alg takes as input the parameters
CF0, um, σ, Em0 , and Solverσ, where Solverσ is an external solver that can compute
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an σ-extension for the input argumentation framework. Finally, the extension of the
updated extended argumentation framework (if any) is obtained by projecting out
the extension Em returned by Incr-Alg over the set of arguments Ar0 of the initial
extended argumentation framework (Line 9).

From a computational point of view, in the worst case (that is, when every ar-
gument is influenced, and thus the RAF collapses to be the updated framework),
Algorithm 1 and Algorithm 2 have the same computational complexity as the cor-
responding task in the static setting under the considered AF semantics. It is worth
noting that the overhead of computing the influenced set and the RAF is polynomial
in the input framework’s size.

The use of the incremental techniques discussed in this section and the previous
one become significant in practice. In fact, in [5] it is shown that Algorithm 1 out-
performs state-of-the-art solvers that compute the extensions from scratch for single
updates by two orders of magnitude on average, and it remains faster than the
competitors even when recomputing an extension after performing updates simulta-
neously. Moreover, [7] reports on an experimental analysis showing that Algorithm 2
also outperforms by two orders of magnitude the computation from scratch on EAFs,
where solvers from scratch taking as input the (compact) Dung argumentation fra-
meworks resulting from the transformation of the candidate EAF (cf. Definition 4.4)
are used. Finally, the experimental results concerning the use of both Algorithm 1
and Algorithm 2 also revealed that the improvements of using incremental techniques
become larger as the computation from scratch becomes more challenging.

5 Incremental Computation in Defeasible Logic
Programming

In [30], four frameworks that consider the structure of arguments were presented.
Two of them—ASPIC+ [85] and ABA [94]—build the set of all possible arguments
from the knowledge base and then rely on using one of the possible Dung semantics
to decide on the acceptance of arguments. The other two—Logic-Based Deductive
Argumentation [32] and DeLP [70]—only build the arguments involved in answering
the query. These last two frameworks exhibit several differences [30]—among them
is the base logic used as a knowledge representation language: [32] relies on proposi-
tional logic, requiring a theorem prover to solve queries; on the other hand, DeLP [70]
adopts an extension of logic programming, which is a computational framework per
se. To better understand the differences among the frameworks mentioned above,
we refer the interested reader to [68], where a variant of DeLP using the grounded
semantics is also discussed.
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A fundamental distinction between DeLP and the other three frameworks, which
significantly affects a query’s resolution, rests on how attacks between arguments are
described. DeLP considers two forms of defeat: proper and blocking; the former is
akin to Dung’s attack [55], whereas the latter presents a different behavior since the
two arguments that are part of the blocking defeat relation, attacker and attackee,
are defeated (hence the use of the term blocking defeater). Of course, this could be
modeled in Dung’s graphs as a mutual attack, but the DeLP mechanism forbids, in
a properly formed dialogue, the use of two blocking defeaters successively because
the introduction of another blocking defeater is unnecessary since the first two are
already defeated. Moreover, to find the answers required by the query, other con-
siderations of dialogical nature are taken into account, strengthening the reasoning
process by forbidding common dialogical fallacies; these characteristics have been
reflected in the development of a game-based semantics [95].

In this section, we focus on the incremental computation in the context of
structured argumentation. Particularly, we discuss an incremental technique [12;
11] for Defeasible Logic Programming (DeLP) [69; 70] which shares the same under-
lying ideas and the goal of avoiding wasted effort as in the (incremental) technique
previously discussed for AFs. Given that our primary focus is on the changes in the
structure of the arguments used to answer a query, we have considered the DeLP
language; however, the ideas here developed can inspire similar techniques for other
structured argumentation frameworks such as ABA and ASPIC+. Next, we will
summarize the necessary elements to develop the updating techniques in DeLP’s
structured argumentation; see [11] for an extended presentation.

5.1 Defeasible Logic Programming and Updates
A DeLP program P = (Π,∆) consists of sets Π and ∆ of strict and defeasible rules
defined using elements of a set Lit of literals, that are ground atoms obtained from
a set At of atoms. LitP denotes the set of literals occurring in a rule of P, and the
symbol “∼” represents strong negation; for any literal α ∈ Lit the formula ∼∼α
is considered equivalent to α and can be used for denoting it. Particularly, given
the literals α0, α1, . . . , αn, a strict rule α0 ← α1, . . . , αn (with n ≥ 0) represents
non-defeasible information, while defeasible rules α0−≺α1, . . . , αn (with n > 0)
represent tentative information, i.e., information that can be used if nothing can be
posed against it. Given a strict or defeasible rule r, we use head(r) to denote α0,
and body(r) to denote the set of literals {α1, . . . , αn}. Strict rules with empty body
will also be called facts.1

1With a little abuse of notation, in the following we will denote a fact (α←) simply by α.
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As an example of DeLP program, let us consider P1 = (Π1,∆1), where:

Π1={x, y, z, (w ← y)} is the set of strict rules (and facts), and

∆1 = {(a−≺w), (a−≺ z), (∼a−≺ z), (b−≺ a), (b−≺ z), (c−≺ b, x),

(∼c−≺ b), (d−≺ ∼c)} is the set of defeasible rules.

Given a DeLP program P = (Π,∆) and a literal α ∈ LitP , a (defeasible) deriva-
tion for α w.r.t. P is a finite sequence α1, α2, . . . , αn = α of literals such that (i)
each literal αi is in the sequence because there exists a (strict or defeasible) rule
r ∈ P with head αi and body αi1 , αi2 , . . . , αik such that ij < i for all j ∈ [1, k], and
(ii) there do not exist two literals αi and αj such that αj = ∼αi. A derivation is
said to be a strict derivation if only strict rules are used.

A program P is contradictory if and only if there exist defeasible derivations for
at least two complementary literals α and ∼α from P. We assume that Π (the strict
part of P) is not contradictory. However, complementary literals can be derived
from P when defeasible rules are used in the derivation. Two literals α and β are
said to be contradictory if (i) neither Π ∪ {α} nor Π ∪ {β} strictly derive a pair of
complementary literals, whereas (ii) Π∪{α, β} does. Pairs of complementary literals
are clearly contradictory; a set of literals is said to be contradictory if it contains
two contradictory literals.

Considering the program P1, the literal c can be derived using the following sets
of rules and facts: {(c−≺x, b), (x), (b−≺ a), (a−≺w), (w ← y), (y)}; the derivation
(y, w, a, b, x,
c) describes how rules can be applied to derive c. However, the set of rules Π1∪∆1
is contradictory since also ∼c can be derived using the rules: {(∼c−≺ b), (b−≺ a),
(a−≺w), (w ← y), (y)}. The non-contradictory set of literals that can be derived
from Π1 is {x, y, w, z}.

DeLP incorporates a defeasible argumentation formalism for the treatment of
contradictory knowledge, allowing the identification of conflicting pieces of knowl-
edge, and a dialectical process is used for deciding which information prevails as
warranted. This process involves the construction and evaluation of arguments that
either support or interfere with a user-issued query. An argument A for a literal α
is a couple 〈A, α〉 where A is a set of defeasible rules representing a derivation that
is (i) supported by facts, (ii) non-contradictory, and (iii) ⊆-minimal (i.e., there
is no proper subset of A satisfying both (i) and (ii)). As an example, 〈A1, c〉 =
〈{(c−≺x, b), (b−≺ a), (a−≺w), (w ← y)}, c〉 and 〈A2,∼a〉 = 〈{(∼a−≺ z)},∼a〉 are
two arguments that can be obtained from the program P1. An argument 〈A, α〉 is
said to be a sub-argument of 〈A′, α′〉 if A ⊆ A′.

1775



Alfano, Greco, Parisi, Simari, Simari

The main task of DeLP is establishing warranted literals. A literal α is said
to be warranted if there exists an undefeated argument 〈A, α〉. To determine if an
argument 〈A, α〉 is undefeated, defeaters for 〈A, α〉 are considered, and since rein-
statement could happen when all of A’s possible defeaters are defeated, the process
continues considering defeaters for A’s defeaters, and so on. To define defeaters, to
decide when an attack is successful, we require a comparison criterion � over argu-
ments, which is irreflexive and asymmetric. As the comparison criterion is a modular
part of the argumentation inference engine, we will abstract away from this criterion
and simply assume the existence of a comparison criterion � between arguments:
〈A, α〉 � 〈B, β〉 meaning that argument 〈A, α〉 is preferred to 〈B, β〉. Intuitively, an
argument 〈A, α〉 attacks an argument 〈B, β〉 when there is a sub-argument 〈C, γ〉 of
〈B, β〉, such that α and γ are contradictory. When the attacker satisfies that 〈C, γ〉
is not preferred to 〈A, α〉 (i.e., 〈C, γ〉 6� 〈A, α〉), the attacker is called a defeater. A
defeater 〈A, α〉 for 〈B, β〉 will be referred to as a proper defeater if 〈A, α〉 � 〈C, γ〉;
otherwise, it will be called a blocking defeater.

An other part of the dialectical process is the construction of the so called di-
alectical tree, which is used to decide the warrant status of a literal. A dialectical
tree contains all the possible acceptable argumentation lines (namely, sequences of
defeating arguments) that can be constructed from the given argument that sits on
the root of that tree as paths from the root to the leaves. (see [52] for a discussion).
More in detail, a dialectical tree for an argument 〈A, α〉 is a tree-like structure where
nodes are arguments and the root node is 〈A, α〉. Each root-to-leaf path in the tree
is an acceptable argumentation line, which is a finite sequence of arguments that
satisfy the following four constraints: (i) every argument of the sequence defeats its
predecessor; (ii) the arguments in odd (resp., even) positions of the sequence does
not contradict the strict part of the program; (iii) two blocking defeaters cannot
appear one immediately after the other in the sequence; and (iv) arguments cannot
appear twice in the sequence (also when appearing as sub-arguments).

Therefore, it is interesting to note that a dialectical tree for an argument repre-
sents the exhaustive dialectical analysis for that argument. Each dialectical tree is
then marked to obtain the status of the literal α in the argument at its root through
a bottom-up marking procedure, consisting in i) marking all leaves of the tree as
undefeated; then, ii) every non-leaf node is marked as defeated if and only if
at least one of its children is marked as undefeated, otherwise it is marked as
undefeated. Thus, if there exists a marked dialectical tree whose root contains an
argument for α, which is marked as undefeated, we will say that α is warranted2.

2The system available at the following link allows us to compare the abstract semantics with that
of DeLP: https://hosting.cs.uns.edu.ar/~daqap/client/index.html; see [78] for a description.

1776



On the Incremental Computation of Semantics...

Considering the program P1, only x, y, z, w, and b are warranted.
Given a DeLP program P, we define a total function SP : Lit → {in, out,

undec} assigning a status to each literal w.r.t. P as follows: SP(α) = in if α is
warranted; SP(α) = out if SP(∼α) = in; SP(α) = undec if neither SP(α) = in nor
SP(α) = out. For literals not occurring in the program we also say that their status
is unknown.

Updates. An update for a DeLP program P = 〈Π,∆〉 modifies P into a new
program P ′ = 〈Π′,∆′〉 by adding or removing a strict or a defeasible rule r. In
particular, we allow the removal of any rule r of P through an update, and consider
the addition of a rule r such that body(r) ⊆ LitP and head(r) ⊆ Lit, thus allowing
also the addition of a rule whose head is a literal not belonging to LitP . Given a
DeLP program P and a strict or defeasible rule r, we use u = +r (resp., u = −r)
to denote a rule addition (resp., deletion) update to be performed on P, obtaining
the DeLP-program u(P) resulting from the application of update u to P. In the
following, we assume that any update u is feasible, meaning that i) we only remove
(resp. add) strict or defeasible rules appearing (resp., not appearing) in the given
program P, and ii) guaranteeing that the strict part of the updated program u(P)
will not be contradictory.

5.2 Incremental Computation of Warranted Literals
We first introduce the concept of labeled directed hypergraph associated with a
DeLP program, which is central to our incremental approach.

Given a program P, the corresponding labelled hypergraph G(P) = 〈N,H〉
consists of a set N of nodes and a set H of labelled hyper-edges (Src, t, l), where
Src is a possibly empty set called the source set, t is called the target node, and
l ∈ {def, str, cfl} is a label associated to the hyper-edge. Literals for which there
exists a strict derivation in Π are immediately added to the set N of nodes of
G(P). Then, for each (strict or defeasible) rule whose body is in N , the head is
added to N , and a (str or def) labelled hyper-edge corresponding to the (strict or
defeasible) rule is added to the set H of hyper-edges. Finally, there is a pair of (cfl)
labelled hyper-edges for each pair of complementary literals appearing as nodes in
the hypergraph.

The hypergraph G(P1) for the DeLP program P1 is shown in Figure 9(a) where
↔ (resp. �− and J−) denotes hyper-edges labeled as cfl (resp. def and str).

We say that there is a path from a literal β to a literal α, if either (i) there exists
a hyper-edge whose source set contains β and whose target is α, or (ii) there exists
a literal γ and also there exist paths from β to γ and from γ to α. Moreover, we say
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Figure 9: (a) G(P1) for program P1; (b) G(P ′1) for program P ′1 = −(∼c−≺ b)(P1).

that a node y is reachable from a set X of nodes if there exists a path from some x
in X to y.

Given an update u, we denote with G(u,P) the labeled hypergraph G(u+(P)) or
G(u−(P)), depending on whether u consists of an insertion or deletion, respectively.
The reason of this difference is that, to determine the set of literals whose status
may change by deleting a rule r, we need to consider the hypergraph also containing
the hyper-edge derived from r.

Given a DeLP-program P and an update u, our incremental approach for recom-
puting the status of the literals after performing u consists of the following steps.

• Firstly, it is checked whether the update u is irrelevant, that is all literals in
Lit are preserved. In such a case the initial status SP is returned.

• If u is not irrelevant, we need to:

(i) compute the set of literals that are “influenced” by the update;
(ii) among the influenced literals determine the subset of literals (called core

literals) whose status may change after performing the update. The status
of uninfluenced literals does not change after the update.

(iii) compute the updated status of the core literals; and
(iv) determine the updated status of the inferable literals, i.e., the literals

whose status can be immediately determined from the status of the core
literals.

The identification of relevant and irrelevant updates, as well influenced, pre-
served, core, and inferable literals is discussed below. In [12; 11], it is shown that,
in practice, the algorithm resulting from applying the above-mentioned steps turns
out to be much more efficient than recomputing everything from scratch.
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Irrelevant updates. Sufficient conditions guaranteeing that the status of each
literal in the updated program is the same as that of the initial program are inves-
tigated in [11]. In these cases we say that the update u is irrelevant. One of these
conditions holds whenever we add (resp. remove) a defeasible rule whose head’s
status is in (resp. out) w.r.t. the initial program. However, this does not hold for
updates concerning strict rules. In these cases, we need to makes use of the hyper-
graph associated with a DeLP program, as well as the status of the literals related
to an update.

A literal is said to be related to a given update u = ±r and program P if it can
be reached from head(r) in the labelled hypergraph G(u,P) by navigating forward
each rules and backward strict rules only, until no new related literals can be found.
We call deductive closure of facts and strict rules of a program P the set of literals
that are facts in P or can be derived from the strict part Π of P. Given this, an
update u = ±r is irrelevant if either (i) head(r) does not belong to G(u,P); or (ii)
either head(r) or ∼head(r) appears in the deductive closure of facts and strict rules
of both programs P and u(P); or (iii) at least one literal in the body of r is either
out or not related to u. Recomputing the status of the updated program’s literals
can be avoided if an irrelevant update is performed.

Relevant updates and influenced set. We now consider the computation of the
status of literals for updates which have not been identified as irrelevant. An update
is relevant whenever it causes the status of at least one literal to change. That is,
even if for relevant updates the status of some literals may not change, and therefore
for those literals, their status does not need to be recomputed when the update is
performed. To avoid wasted effort, we determine the subset of literals whose status
needs to be recomputed after an update. Towards this end, we discuss the concept of
influenced set, which consists of the set of literals that are related to a given update
u and program P but using only labeled hyper-edges whose corresponding rules are
such that (i) the head (or its complement) is not in the deductive closures of both
P and u(P), and (ii) the body does not contain a literal that is not related to u and
P and such that its status is out—intuitively, the other hyper-edges can be ignored
as they correspond to rules whose head does not change status. For instance, for
the program P1 and update u = −(∼c−≺ b), the influenced set consists only of the
literals b, c, ∼c, and d.

The notion of influenced set for DeLP programs is conceptually similar to the
influenced set of Definition 3.3 for abstract argumentation frameworks (where ar-
guments have no internal structure). Although the aim is analogous, here we deal
with incremental computation of the status of structured arguments, and consider a
notion of influenced set w.r.t. an update for a DeLP program and its status that we
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then apply to (hyper)graphs representing DeLP programs, from which structured
arguments are derived. A significant difference is that here we have both strict and
defeasible rules meaning that to determine a portion of the hypergraph that contains
nodes corresponding to literals whose status may change, we need to navigate strict
edges both forward and backward. As an example, consider the DeLP program
Pχ = 〈Πχ,∆χ〉 where Πχ = {f1, f2, a ← b, ∼a ← c} and ∆χ = {b−≺ f1}, and
let u = +(c−≺ f2) be an update yielding the updated DeLP program P ′χ. The in-
fluenced set is {c, ∼a, a, b}. Observe that b is included in the influenced set by
navigating backward via the (hyper)edge corresponding to the strict rule a ← b,
while the other literals are reached by forward reachability. Note that including b is
important as its status changes (it is undec w.r.t. P ′χ, it was in w.r.t. Pχ).

Preserved, core, and inferable literals. Using the influenced set we can iden-
tify the preserved literals, i.e., the literals whose status does not change after per-
forming a relevant update. This set consists of the literals (i.e., nodes) of the
updated hypergraph that are not influenced. The status of a literal for which there
is no argument in the (updated) program may depend only on the status of its
complementary literal—we call such literals inferable and use them to define what
we call core literals. The core literals for an update u are those in LitP ′ that are
influenced but are not inferable, where P ′ is the updated program. The status of an
inferred literal w.r.t. the updated program can be either out or undec, and if it is
out it is entailed by the status of a core or preserved literal that is in. Finally, the
status of the literals not in LitP ′ can be readily determined to be undec.

Considering the program P1 and update u = −(∼c−≺ b), ∼c and d are the only
inferable literals, while b and c are core literals. The (updated) status of the inferable
literal ∼c is out as it is entailed by the (updated) status of its complementary literal,
which is in; the status of the inferable literal d remains undec.

Efficiency. The incremental technique discussed in this section has been the sub-
ject of analysis in [11; 12], which report on a set of experiments comparing the
incremental approach with full recomputation from scratch (that is, the direct com-
putation of the status of all the literals in an updated DeLP program using the
DeLP-Solver). It turned out that the incremental approach significantly outper-
forms computation from scratch. Specifically, the incremental algorithm takes only
a few seconds for DeLP programs, while the approach from scratch takes almost 2
minutes.
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6 Related Work

Overviews of key concepts in argumentation theory and formal models of argumen-
tation in the field of Artificial Intelligence are presented in [29; 31; 91; 19]. Further
discussion regarding uses of computational argumentation as an Agreement Tech-
nology can be found in [86].

A comprehensive introduction to the semantics of static abstract argumenta-
tion frameworks can be found in [21]. Although the idea underlying abstract ar-
gumentation frameworks is intuitive and straightforward, most of the semantics
proposed so far suffer from a high computational complexity [58; 57; 59; 60; 64; 65;
66; 67]. Complexity bounds and evaluation algorithms for abstract argumentation
frameworks have been intensely studied in the literature, but most of this research
focused on static frameworks, whereas, in practice, argumentation frameworks are
dynamic systems [42; 62; 25; 81; 24; 51]. In fact, in general, an AF represents a
temporary situation, and new arguments and attacks can be added/retracted to
model new available knowledge. For instance, for disputes among users of online
social networks [76], arguments/attacks are continuously added or removed by users
to express their point of view in response to the last move made by the adversaries
(often disclosing as few arguments/attacks as possible).

There have been several significant efforts aimed at coping with the dynamic
aspects of abstract argumentation. In [39; 40], the authors have investigated the
principles according to which a grounded extension of a Dung abstract argumen-
tation framework does not change when the set of arguments/attacks is changed.
Meanwhile, in [35] a synthesis is presented concerning the characterization of changes
based on the work presented in [44; 45; 33; 34] where the evolution of the set of ex-
tensions after performing a change operation is studied; here, a change operation can
be about adding or removing one interaction or adding or removing one argument
and a set of interactions.

Dynamic argumentation has been applied to the decision-making mechanisms
of an autonomous agent by [18], where it is studied how the acceptability of ar-
guments evolves when a new argument is added to the decision system. Other
relevant works on dynamic aspects of Dung’s argumentation frameworks include the
following. [25] has proposed an approach exploiting the concept of the splitting of
logic programs to deal with dynamic argumentation. The technique considers weak
expansions of the initial argumentation framework, where added arguments never
attack previous ones. [28] have investigated whether and how it is possible to mod-
ify a given argumentation framework so that a desired set of arguments becomes
an extension, whereas [90] have studied equivalence between two argumentation fra-
meworks when further information (another argumentation framework) is added to
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both argumentation frameworks. [26] has focused on expansions where new argu-
ments and attacks may be added, but the attacks among the old arguments remain
unchanged, while [27] have characterized update and deletion equivalence, where
adding/deleting arguments/attacks is allowed (deletions were not considered by [90;
26]).

Several approaches for dividing argumentation frameworks into subgraphs have
been explored in the context of dynamic argumentation frameworks. The division-
based method, proposed in [81] and then refined in [24], divides the updated frame-
work into two parts: affected and unaffected, where only the status of affected argu-
ments is recomputed after updates. Using the results introduced in [81], the work
presented in [80] investigated the efficient evaluation of the justification status of
a subset of arguments in an argumentation framework (instead of the whole set of
arguments), and proposed an approach based on answer-set programming for lo-
cal computation. In [79], an argumentation framework is decomposed into a set
of strongly connected components, yielding sub-argumentation frameworks located
in layers, which are then used for incrementally computing the semantics of the
given argumentation framework by proceeding layer by layer. Then, [97] introduced
a matrix representation of argumentation frameworks and proposed a matrix re-
duction that, when applied to dynamic argumentation frameworks, resembles the
division-based method in [81].

Changes in bipolar argumentation frameworks have been studied in the work [49],
where it is shown how the addition of one argument together with one support that
involves that argument (and without introducing any attack) impacts the extensions
of the updated bipolar argumentation framework. However, these works do not
address the incremental computation in dynamic bipolar argumentation frameworks,
nor in extended argumentation frameworks modeling attacks towards the attack
relation [82; 22] and defeasible support [38].

There have been fewer attempts to consider the dynamics of the defeasible ar-
gumentation in the field of structured argumentation [30]. As in the abstract argu-
mentation case, there have been some works following the belief revision approach.
In [63], the issue of modifying strict rules to become defeasible was analyzed in
the context of revisions effected over a knowledge base, while in [87] the authors
thoroughly explored the different cases that may occur when a DeLP program is
modified by adding, deleting, or changing its elements. Neither of these works ex-
plored the implementation issues related to the problems studied here. Regarding
implementations of approaches focusing on improving the tractability of determining
the status of pieces of knowledge, in [42; 43], the authors consider several alternatives
to avoid recomputing warrants. In [54], the authors focus on challenges arising in
the development of recommender systems, addressing them via the design of novel
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architectures that improve the computation of answers. Finally, [73] makes use of
heuristics designed to improve efficiency, and [92] deals with the computational com-
plexity of performing recalculations in a structured argumentation setting by relying
on an approximation algorithm.

We believe that the set of ideas proposed in this work may be a forerunner of
similar techniques for the optimization of other structured argumentation frame-
works such as, for example, ABA and ASPIC+. Regarding ABA, the construction
of deductions is very similar to that of arguments for DeLP, although the way ar-
guments attack each other is different. Therefore, similarly, the ABA framework
could be represented using hypergraphs (where assumptions may be modeled as de-
feasible facts) to identify irrelevant updates and restrict the hypergraph to compute
the semantics of updated programs efficiently. The similarities between DeLP and
ASPIC+ are even more substantial: both have a distinction between strict and defea-
sible inference rules, and both use comparison criteria to resolve attacks into defeats;
however, while ASPIC+ evaluates arguments with the standard AF semantics, DeLP
has a special-purpose definition of argument evaluation [71]. Therefore, the ideas
developed here can be of inspiration to optimize the incremental computation of the
semantics of ASPIC+ programs.

7 Conclusions and Future Work

We have reviewed techniques for the incremental and efficient computation in dy-
namic abstract argumentation and defeasible knowledge bases. In the case of ab-
stract argumentation, we have presented a technique enabling any non-incremental
algorithm to be used as an incremental one for computing some extension of dy-
namic argumentation frameworks. The algorithm identifies a tighter portion of the
updated argumentation framework to be examined for recomputing the semantics.
The incremental algorithm proposed for Dung’s frameworks enables a technique for
the incremental computation of extensions of dynamic frameworks incorporating
supports and second-order attacks (that we called extended argumentation frame-
works). Recently, in [3], we have investigated incremental techniques for the ASAF
framework [72], where attacks and support relations of any order are considered.
For the case of structured argumentation, we have discussed an algorithm able to
incrementally solve the problem determining the warrant status of literals in a DeLP
program which is updated by adding or deleting strict or defeasible rules. The exper-
imental analysis performed in [5; 7; 12; 11] showed that, in practice, the incremental
approach, for both the cases of abstract and structured frameworks, turns out to be
much more efficient than recomputing everything from scratch.
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The notions behind the use of an incremental approach can be extended fur-
ther, as done in [8; 1], where an incremental technique was recently proposed aimed
at determining whether a given argument is skeptically preferred accepted in dy-
namic argumentation frameworks by exploiting the concept of influenced and re-
duced argumentation frameworks presented here in Section 3. Future work will
be devoted to extending our technique to cope with other argumentation frame-
works [13; 14] and other computational problems [2; 9; 15]. It would be interesting
to deal with different interpretations of the support relation, e.g., that one in [47;
48] where a meta argumentation approach is also adopted to deal with bipolarity.
We plan to address the problem of incrementally enumerating all the extensions of
an abstract argumentation framework. Following [8; 10], devising an incremental
computation approach for the skeptical/credulous acceptance in dynamic argumen-
tation frameworks, and its extensions (e.g., bipolar argumentation frameworks and
ASAFs), is another intriguing direction for future work. Finally, we believe the
basic ideas presented for the case of structured argumentation could carry over to
other frameworks, e.g., ASPIC+ or ABA; this is another research direction we are
planning to pursue in future work.
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Abstract

We study the logical foundations of Dung-style argumentation frameworks. Logic-
based methods in the context of argumentation theory are described from two perspec-
tives: (a) a survey of logic-based instantiations of argumentation frameworks, their
properties and relations, and (b) a review of logical methods for the study of argu-
mentation dynamics. In this chapter we restrict ourselves to Tarskian logics, based
on (propositional) languages and corresponding (constructive) semantics or syntactic
rule-based systems.
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1 Motivation, Introduction and Scope
The purpose of this chapter is to study the logical foundations of formal argumentation
and highlight its role in the modeling of defeasible reasoning. For this, we assume the
availability of an underlying logic (that is, a pair of a formal propositional language and
a corresponding (reflexive, monotonic, and transitive) consequence relation), upon which
argumentation-based formalisms are defined. We then study logic-based approaches to for-
mal argumentation from two perspectives. One perspective is concerned with instantiations
of argumentation frameworks by logic-based formalisms. The need to instantiate Dung’s
abstract argumentation frameworks [85] by deductive (or, more generally, structured) ap-
proaches is well acknowledged in the literature (see, e.g., [66; 151; 153] for some papers
on the subject), and is primarily motivated by giving logical justifications to the notions of
arguments and counter-arguments. Moreover, several fundamental mathematical and philo-
sophical notions that cannot be studied in an abstract context (or at least not natural to this
context), can be investigated in a logic-based setting. This includes, for example, proper-
ties such as consistency, maximal consistency [155], deductive closure [60], logical omni-
science, and so forth, as well as inference principles that can be related to general patterns
of non-monotonic and paraconsistent reasoning, and which are better suited to a deductive
(logic-based) setting.

The second perspective taken in this chapter is related to the use of logic-based machin-
ery to describe (that is, represent and reason with) argumentation-based dynamics. Indeed,
the availability of an underlying ‘core’ logic triggers a wide variety of methods for formally
expressing argumentation-related processes. For instance, since modal logics allow to qual-
ify statements, alethic arguments (about necessity and possibility), epistemic ones (about
knowledge and belief) [128; 84], and deontic phrases (about obligations and permissios)
[179; 104; 168] can be expressed, giving rise to different applications in linguistics, security
and game theory (see e.g., [40] and [84]). Also, the presence of an underlying logic allows for
incorporation of proof-theoretical methods [16] and related structural methodologies [114]
to reason with argumentation frameworks and characterize their properties (see also [102;
103]).

This chapter is divided into two parts according to the two perspectives described above.
The first part of the chapter, given in Section 2, is focused on the first perspective, namely: a
study of logic-based approaches to formal argumentation. The formalisms that are investi-
gated in this part are those that are based on some underlying (core) logic (in the traditional
sense of this notion, described in Definition 1 and Remark 1). This means, in particular,
that not only the arguments in these formalisms have a particular structure (as opposed to
abstract argumentation frameworks [85; 23], where an abstraction is made of the structure
of arguments), but also that their validity can be logically justified. It follows that not all
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the formalisms under the umbrella of structured argumentation will be considered in this
chapter, but only those that are based on specific core logics.

To study the logical instantiations of formal Dung-style argumentation, we first recall,
in Section 2.2, three central approaches that correspond to this line of research: logic-
based deductive methods [35; 14; 38], assumption-based argumentation systems [46; 171;
73] and ASPIC systems [150; 146; 147]. Then, in Section 2.3, we consider the main proper-
ties of each approach, in particular: its relation to reasoning with maximal consistency, the
rationality postulates that it satisfies, and the inference principles validated by the induced
entailment relations. Finally, in Section 2.4, we study relations among these approaches, as
well as their relations to other defeasible reasoning methods.

The second part of this chapter describes logic-based methods for representing and rea-
soning with argumentation dynamics. In this chapter, by ‘dynamics’ we mean processes in
the context of a fixed argumentative framework.1 Basic notions and concepts such as con-
flicting arguments, defending arguments, and Dung-style extensions are expressed by logical
formulas, and corresponding reasoning processes, based on proof-theoretical methods, are
described. The representations are divided between those that are based on propositional lan-
guages or their extensions by quantifications (Section 3.1), and those that incorporate modal
operators (Section 3.2). The reasoning machinery described in this chapter (Section 3.3) is
again one that takes into account the logical relationships among the arguments (although it
can be easily adjusted to abstract entities). It can be seen as an extension of Gentzen-type
proof calculi [110], in which the dynamics of arguments are taken into consideration, and
so the proofs are dynamic, in the sense that a derived argument can be retracted in light of
more-recently derived counter-arguments [15; 16].

We conclude the chapter with some final remarks (Section 4) and proofs of unpublished
results (in the appendix). The general structure of this chapter is sketched in Figure 1.

We note, finally, that due to the broad scope of this chapter, some parts of it may be
viewed as “second-order” surveys, pointing to other reviews on specific sub-topics of this
chapter. In some other parts we give more detailed descriptions on specific formalisms. We
do so mainly for illustrating our points, but this should not be taken as a preference of one
method over the others.

2 Logical Instantiations
The first part of this chapter is devoted to logic-based instantiations of formal argumentation.
We describe different approaches to logical argumentation (Section 2.2), consider some of

1A similar terminology is sometimes used in the context of revising argumentation frameworks, see also
Chapters 8 [28] and 11 [1] in this handbook.
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1. Introduction

2. Instantiations 3. Dynamics
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(2.4)

Propositional
Representation

(3.1)
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(3.2)
Dynamic
Proofs(3.3)

4. Conclusion
Figure 1: Schematic structure of the chapter

their properties (Section 2.3), and review the (known) relations among them (Section 2.4).
First, we recall some common notions and notations.

2.1 Preliminaries
In what follows we shall assume that the underlying language  is propositional. Sets of
formulas are denoted by  ,  , finite sets of formulas are denoted by Γ,Δ,Π,Θ, formulas are
denoted by �,  , �,  , and atomic formulas are denoted by p, q, r, all of which can be primed
or indexed. The set of all the atomic formulas of  is denoted Atoms(), and the set of the
(well-formed) formulas of  is denotedWFF().

All the approaches to formal argumentation considered in this chapter assume an under-
lying logic that forms the basis for specifying arguments and counter-arguments. The next
definition is thus at the heart of our study.
Definition 1 (logic). A (propositional) logic is a pair L = ⟨, ⊢⟩, where  is a propositional
language, and⊢ is a (Tarskian, [170]) consequence relation for a language, that is: a binary
relation between sets of formulas and formulas in , satisfying the following conditions:

• Reflexivity: if  ∈  then  ⊢  .
• Monotonicity: if  ⊢  and  ⊆  ′ then  ′ ⊢  .
• Transitivity: if  ⊢  and  ′,  ⊢ � then  , ′ ⊢ �.2
2As usual, we use the notation  , ′ on the left-hand side of the entailment symbol to denote  ∪  ′. In

case of singletons we shall usually omit the parenthesis and abbreviate  ∪ { } by  ,  .
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In what follows we also assume that a consequence relation satisfies some further stan-
dard conditions:

• Structurality: for every -substitution �,3 if  ⊢  then �() ⊢ �( ).
• Non-Triviality: p ⊬ q for every two distinct atomic formulas p and q.
• Finitariness: if  ⊢  , there is a finite set Γ ⊆  such that Γ ⊢  .

Structurality means closure under substitutions of formulas. Non-triviality is convenient
for excluding trivial logics, and finitariness is often essential for practical reasoning, such
as being able to form arguments (based on a finite number of assumptions) for entailments
with possibly infinite number of premises.

To some extent, Definition 1 determines the instantiations covered in Section 2.2 (and
the scope of the whole chapter in general): not only that the arguments should have a specific
structure (unlike, e.g., arguments in abstract argumentation frameworks that are of a purely
abstract nature), but they should be based on (i.e., justified by) some underlying logic as well
(see also Definitions 4 and 5).4 As indicated in Definition 1, in the sequel we shall consider
(arbitrary) propositional logics, although most of the formalisms can be easily extended to
more generic logics (including first-ordered ones), since the relevant ideas and approaches
can be represented at this level.

In what follows we shall assume that the language  contains at least the following
connectives and constant:
a ⊢-negation ¬, satisfying: p ⊬ ¬p and ¬p ⊬ p (for every atomic p),
a ⊢-conjunction ∧, satisfying:  ⊢  ∧ � iff  ⊢  and  ⊢ �,
a ⊢-disjunction ∨, satisfying:  , � ∨  ⊢ � iff  , � ⊢ � and  ,  ⊢ �,
a ⊢-implication ⊃, satisfying:  , � ⊢  iff  ⊢ � ⊃  ,
a ⊢-falsity F, satisfying: F ⊢  for every formula  .5

3That is, � is a finite set of pairs {(p1,  1),…(pn,  n)}, where for every 1 ≤ i ≤ n, pi is an atom and  i isan -formula, such that for every -formula �, the -formula �(�) is obtained from � by replacing in it each
occurrence of pi by  i (i = 1… , n). We denote �() = {�(�) ∣ � ∈ }.

4Note that this means that some approaches to structured argumentation whose underlying formalisms do
not meet the conditions of Definition 1 are not covered in Section 2.2, such as defeasible logic programming
[106] and instances of ASPIC+ where neither strict nor defeasible rules are based on a logic in the sense of
Definition 1.

5In particular, F is not a standard atomic formula, since F ⊢ ¬F.
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In what follows, we shall abbreviate (� ⊃  ) ∧ ( ⊃ �) by � ↔  . For a set of formulas we denote ¬ = {¬ ∣  ∈ }, and for a finite set of formulas Γ we denote by ⋀
Γ

(respectively, by ⋁
Γ) the conjunction (respectively, the disjunction) of all the formulas in

Γ. The powerset of  is denoted by ℘(). Now,
• We say that an -formula  is a ⊢-theorem, if ∅ ⊢  .
• The ⊢-transitive closure of a set  of -formulas is defined by Cn⊢() = { ∣  ⊢
 }.

• We shall say that a set is⊢-consistent if ⊬ F. In particular, if is not⊢-consistent
(i.e, if it is ⊢-inconsistent), it is trivialized with respect to ⊢ in the sense that Cn⊢()
consists of every formula in . Note, in particular, that if  is ⊢-inconsistent, then ⊢ ¬

⋀
Γ for Γ ⊆  .

When ⊢ is clear from the context we will sometimes omit it from the notations above
(and say that a formula is a theorem, a set of formulas is consistent, and write Cn() for the
⊢-transitive closure ).
Remark 2. To all of the instantiations considered here there are extensions in which the
language contains also non-logical components such as priorities among the arguments. As
we concentrate on purely logical approaches, these extensions will not be covered in this
chapter.

Definition 3 (explosive/contrapositive logic). A logic L = ⟨, ⊢⟩ is explosive, if for every-formula  the set { ,¬ } is ⊢-inconsistent.6 We say that L is contrapositive, if (a) ⊢ ¬F
and (b) for every nonempty Γ and  it holds that Γ ⊢ ¬ iff for every � ∈ Γ we have:
Γ ⧵ {�},  ⊢ ¬�.

2.2 Central Approaches to Logical Argumentation
In this section we review some central approaches to logical argumentation. Further details
about these approaches, related approaches, and relevant references can be found in [152;
34; 38; 151].

6That is,  ,¬ ⊢ F. Thus, in explosive logics every formula follows from complementary assumptions.
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2.2.1 Logic-Based Methods

A. Arguments. Some of the first works on logic-based formal argumentation used classi-
cal logic (CL) as the underlying base logic to generate arguments. This indeed is the most
common approach in the study and implementation of such argumentation frameworks. To
avoid trivial reasoning in such cases, the set of assumptions of an argument (the so-called
argument’s support) is assumed to be consistent and frequently also minimal, in the sense
that no proper subset of the argument’s support entails the argument’s conclusion (see [35;
36; 111; 37; 38]). This leads to the following definition:
Definition 4 (classical argument). A classical argument is a pair A = ⟨Γ,  ⟩, where Γ is
a finite set of formulas in the language of {¬,∨,∧, ⊃, F} (with their usual bivalent interpre-
tations), such that: (1) Γ ⊢CL  (namely:  follows, according to classical logic, from Γ),
(2) Γ is ⊢CL-consistent, and (3) for no Γ′ ⊊ Γ it holds that Γ′ ⊢CL  .

A more general view of arguments (which will be taken here) allows to base arguments
on arbitrary logics, and relaxes the two assumptions (consistency and minimality) on their
supports (see, e.g, [14; 38]):7
Definition 5 (argument). Given a logic L = ⟨, ⊢⟩, an L-argument (an argument, for short)
is a pair A = ⟨Γ,  ⟩, where Γ is a finite set of -formulas and  is an -formula, such that
Γ ⊢  . We denote the set of all L-arguments by ArgL.

In what follows, we shall usually denote arguments by A,B, C , etc., possibly primed or
indexed. Now:

• Given an argument A = ⟨Γ,  ⟩, we shall call Γ the support set (or the premise set) of
A, and  the conclusion (or the claim) of A, denoting them by Sup(A) and Conc(A),
respectively. For a set S of arguments, we denote: Sup(S) =

⋃
A∈S Sup(A) and

Conc(S) = {Conc(A) ∣ A ∈ S}.
• The set of the L-arguments whose supports are subsets of  is denoted by ArgL().

That is: ArgL() = {A ∈ ArgL ∣ Sup(A) ⊆ }.
• Given an argument A ∈ ArgL, its set of sub-arguments is denoted by Sub(A). That

is: Sub(A) = {B ∈ ArgL ∣ Sup(B) ⊆ Sup(A)}.
Remark 6. An alternative notation for an argument ⟨Γ,  ⟩ is Γ ⇒  (where ⇒ is a new
symbol, not appearing in the language of Γ and  ). The latter resembles the way sequents

7See, e.g., [17] for a comparison of Definitions 4 and 5.
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are denoted in the context of proof theory [110]. This notation is frequently used in sequent-
based argumentation (see, e.g., [14; 16]) to emphasize the fact that the only requirement on
Γ and  to form an argument is that the latter follows, according to the base logic, from the
former.

B. Attacks. Disagreements between arguments are often described in terms of counter-
arguments. It is often said that a counter-argument attacks the argument that it challenges.8
Attacks between arguments are usually described in terms of attack rules (with respect to
the underlying logic). Table 1 lists some of them. Other attack rules between classical
arguments are described e.g. in [111] and [38, Section 5.2]. For a variety of attacks in terms
of sequents we refer to [14]. Attack rules incorporating modalities are introduced in [168].

Rule Name Acronym Attacking Attacked Attack
Argument Argument Conditions

Defeat Def ⟨Γ1,  1⟩ ⟨Γ2,  2⟩ ⊢  1 ⊃ ¬
⋀
Γ2

Direct Defeat DirDef ⟨Γ1,  1⟩ ⟨{2} ∪ Γ′2,  2⟩ ⊢  1 ⊃ ¬2
Undercut Ucut ⟨Γ1,  1⟩ ⟨Γ′2 ∪ Γ′′2 ,  2⟩ ⊢  1 ↔ ¬

⋀
Γ′2

Canonical Undercut CanUcut ⟨Γ1,  1⟩ ⟨Γ2,  2⟩ ⊢  1 ↔ ¬
⋀
Γ2

Direct Undercut DirUcut ⟨Γ1,  1⟩ ⟨{2} ∪ Γ′2,  2⟩ ⊢  1 ↔ ¬2
Consistency Undercut ConUcut ⟨∅,¬⋀Γ′2⟩ ⟨Γ′2 ∪ Γ′′2 ,  2⟩
Rebuttal Reb ⟨Γ1,  1⟩ ⟨Γ2,  2⟩ ⊢  1 ↔ ¬ 2
Defeating Rebuttal DefReb ⟨Γ1,  1⟩ ⟨Γ2,  2⟩ ⊢  1 ⊃ ¬ 2
Big Argument Attack BigArgAt ⟨Γ1,  1⟩ ⟨{2} ∪ Γ′2,  2⟩ ⊢

⋀
Γ1 ⊃ ¬2

Table 1: Some attack rules. The support sets of the attacked arguments are assumed to be
nonempty (to avoid attacks on theorems).

Rules like those specified in Table 1 form attack schemes that are applied to particu-
lar arguments according to the underlying logic. For instance, when classical logic is the
underlying formalism, the attacks of ⟨p, p⟩ on ⟨¬p,¬p⟩ and of ⟨¬p,¬p⟩ on ⟨p ∧ q, p⟩9 are

8Sometimes, mainly when priorities among arguments are introduced, or in the context of specific types of
attacks, the term “defeat” is used for “successful attacks”.

9Here and in what follows we omit the set signs when the support of the arguments are singletons.
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obtained by applications of the Defeat rule (or other rules in the table). When an attack
rule is applied we shall sometimes say that its attacking argument-attacks the attacked
argument.
Remark 7. Clearly, the rules in Table 1 are related. The relations among some of the rules
for classical arguments are considered in [111] and [38, Section 5.2]. Figure 2 shows that
for any base logic as defined in Definition 1 these relations (together with other relations for
ConUcut and BigArgAt) hold also for the more general definition of argument (Definition 5).
In this figure, an arrow from1 to2 means that1 ⊆ 2.

Def

DirDefDirUcut

Ucut

Reb DefReb

ConUcut

BigArgAt

Figure 2: Relations between attack relations from Table 1 (for any base logic). The dashed
arrow concerns contrapositive base logics.

C. Argumentation Frameworks. A logical argumentation formalism may be represented
as an argumentation framework in the style of Dung [85]. This is defined next.
Definition 8 (logical argumentation framework). Let L = ⟨, ⊢⟩ be a logic and  a set of
attack rules with respect toL. Let also be a set of-formulas. The (logical) argumentation
framework for  , induced by L and , is the pair L,() = ⟨ArgL(), Attack()⟩,
whereArgL() is the set of theL-arguments whose supports are subsets of , andAttack()
is a relation on ArgL() × ArgL(), defined by (A1, A2) ∈ Attack() iff there is some ∈  such that A1 -attacks A2.

Argumentation frameworks that are induced by classical logic (and some attack rules),
and whose arguments are classical (Definition 4), are called classical (logical) argumenta-
tion frameworks.

In what follows, somewhat abusing the notations, we shall sometimes identify the rela-
tion Attack() with . To simplify the notations, we shall also frequently omit the sub-
scripts L and in L,(), and just write ().
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Example 9. LetCL() = ⟨ArgCL(), Attack()⟩ be a logical argumentation framework
for the set = {p, q,¬p∨¬q, r}, based on classical logic (CL), and inwhichAttack() is ob-
tained from the attack rules in , where {ConUcut} ⊆  ⊆ {DirDef ,DirUcut,ConUcut}.
The following arguments are in ArgCL():

A1 = ⟨r, r⟩ A7 = ⟨{p, q}, p ∧ q⟩
A2 = ⟨p, p⟩ A8 = ⟨{¬p ∨ ¬q, q}, ¬p⟩
A3 = ⟨q, q⟩ A9 = ⟨{¬p ∨ ¬q, p}, ¬q⟩
A4 = ⟨¬p ∨ ¬q, ¬p ∨ ¬q⟩ A⊤ = ⟨∅, ¬(p ∧ q ∧ (¬p ∨ ¬q))⟩
A5 = ⟨p, ¬((¬p ∨ ¬q) ∧ q)⟩ A⊥ = ⟨{p, q,¬p ∨ ¬q}, ¬r⟩
A6 = ⟨q, ¬((¬p ∨ ¬q) ∧ p)⟩

Figure 3 is a graphical representation of part of the logical argumentation framework with
direct defeat and consistency undercut as the attack rules. Here, nodes represent arguments,
and directed edges represent attacks (the direction of an edge represents the direction of the
attack that it represents).

A1

A⊥

A⊤

A5A2

A6A3

A7 A4

A8

A9

Figure 3: Part of the framework from Example 9.

D. Dung’s Semantics. Given an argumentation framework, a key issue in its understand-
ing is the question what combinations of arguments (called extensions) can collectively be
accepted from this framework. According to Dung [85], this is determined as follows:
Definition 10 (extension-based semantics). Let  () = ⟨ArgL(), Attack()⟩ be a log-
ical argumentation framework, and let  ∪ {A} ⊆ ArgL(). Below, maximality and mini-
mality are taken with respect to the subset relation.
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• We say that  attacks an argument A, if there is an argument B ∈  that attacks A
(that is, (B,A) ∈ Attack()). The set of arguments in ArgL() that are attacked by (called the range of ) is denoted +.

• We say that  defends A, if  attacks every argument in ArgL() that attacks A.
• The set  is called conflict-free with respect to  (), if it does not attack any of

its elements (i.e., + ∩  = ∅). A set that is maximally conflict-free with respect to () is called a naive extension of ().
• An admissible extension of  () is a subset of ArgL() that is conflict-free with

respect to  () and defends all of its elements. A complete extension of  () is
an admissible extension of () that contains all the arguments that it defends.

• The minimal complete extension of () is called the grounded extension of ()
and amaximal complete extension of () is called a preferred extension of ().
A complete extension  of  () is called a stable extension of  () if  ∪ + =
ArgL().

• We will denote with Naive( ()) [respectively: Adm( ()), Cmp( ()),
Prf ( ()), Stb( ())] the set of all the naive [respectively: admissible, complete,
preferred, stable] extensions of  () and Grd( ()) for the unique grounded
extension of ().

Remark 11. In [85], preferred extensions are defined as the maximally admissible sets and
stable extensions are the conflict-free extensions whose range consists of all the arguments
not in the extension. It is well known that these definitions are equivalent to the ones in Defi-
nition 10. Furthermore, stable extensions are preferred (but not necessarily vice-versa), and
as is shown in [85, Theorem 25], the grounded extension of an argumentation framework is
unique. For more properties of the extensions defined above, further references, and other
types of extensions, see, e.g., [24; 22; 23].

Skeptical and credulous approaches for making inferences from the above-mentioned
extensions are defined as follows:
Definition 12 (extension-based entailments). Let  () = ⟨ArgL(), Attack()⟩ be a
logical argumentation framework, and let Sem ∈ {Naive,Cmp,Grd, Prf , Stb}. We denote:

•  ∣∼L,
Grd

 if there is an argument ⟨Γ,  ⟩ ∈ Grd(L,()),10 11

10We make a distinction between the grounded semantics and the other types of semantics, since unlike the
other types, the grounded extension is unique (recall Remark 11).

11Recall that by the definition of Grd(L,()) it holds that Γ ⊆  . The same note holds for the other
items in this definition.
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•  ∣∼L,
∪Sem  if there is an argument ⟨Γ,  ⟩ ∈ ⋃

Sem(L,()),
•  ∣∼L,

∩Sem  if there is an argument ⟨Γ,  ⟩ ∈ ⋂
Sem(L,()),

•  ∣∼L,
⋒Sem  if for every  ∈ Sem(L,()) there is an argument ⟨Γ,  ⟩ ∈  .

Example 13. Consider again the argumentation framework CL() from Example 9,
where  = {r, p, q,¬p ∨ ¬q}. In the notations of that example (see also Figure 3), the
grounded extension of CL() is ArgCL({A⊤, A1}), and the naive/preferred/stable exten-
sions onCL() are ArgCL(i) (i ∈ {1, 2, 3}), where:

• 1 = {A⊤, A1, A2, A3, A5, A6, A7},
• 2 = {A⊤, A1, A3, A4, A6, A8},
• 3 = {A⊤, A1, A2, A4, A5, A9}.

It follows that for every entailment ∣∼ considered in Definition 12 we have that  ∣∼ r.
The other formulas in  can only be credulously inferred: for every  ∈  − {r} and
Sem ∈ {Naive, Prf , Stb} we have that  ∣∼∪Sem  , but  ̸ ∣∼∩Sem  ,  ̸ ∣∼⋒Sem  , and ∤∼Grd  . Note, moreover, that for instance  ∣∼⋒Sem p ∨ q (but  ̸∣∼∩Sem p ∨ q), since at
least one of p or q (but not both) follows from each preferred/stable extension, from which
p ∨ q is inferred.

The next example, taken from [168], demonstrates the usefulness of incorporating
modalities for having logic-based argumentative approaches to normative reasoning.
Example 14. Consider the following example by Horty [129]:

When a meal is served (m), one should not eat with fingers (f ). However, if the
meal is asparagus (a), one should eat with fingers.

This scenario may be represented by the deontic logic SDL (standard deontic logic, i.e., the
normal modal logic KD), where the modal operator O intuitively represents obligations. In
this setting, the statements above may be expressed, respectively, by the formulas m ⊃ O¬f
and (m ∧ a) ⊃ Of . Now, in case that asparagus is indeed served (m ∧ a) one expects to
derive the (unconditional) obligation to eat with fingers (Of ) rather than not to eat with
fingers (O¬f ).

This is a paradigmatic case of specificity: a more specific obligation cancels (or over-
rides) a less specific obligation. An attack rule that reflects this intuition may be expressed
as follows:
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Specificity Undercut (SpecUcut):
⟨Γ ∪ {� ⊃ O },¬(�′ ⊃ O ′)⟩ attacks ⟨Γ′ ∪ {�′ ⊃ O ′}, �⟩ if the following conditions are
met: (i) Γ ⊢ �, (ii) � ⊢ �′, and (iii)  ⊢ ¬ ′.

Condition (i) expresses that the conditional� ⊃ O is ‘triggered’ in view of Γ, Condition (ii)
expresses that � is logically at least as strong as �′ (i.e., the former is more specific than
the latter), and Condition (iii) indicates that the conditionals have conflicting conclusions
(after filtering the modalities).

We thus consider an argumentation framework that is based on the following set:

 = {m, a, m⊃O¬f, (m ∧ a)⊃Of}.

Some arguments in ArgSDL() are listed in Figure 4 (right). Figure 4 (left) shows an attack
diagram where the sole attack rule is SpecUcut.

A1 A2 A3 A4

A5 A6 A7

A8 A9

A1 = ⟨m ⊃ O¬f, m ⊃ O¬f⟩
A2 = ⟨m,m⟩
A3 = ⟨a, a⟩
A4 = ⟨(m ∧ a) ⊃ Of, (m ∧ a) ⊃ Of⟩
A5 = ⟨{m,m ⊃ O¬f},O¬f⟩
A6 = ⟨{m, a}, m ∧ a⟩
A7 = ⟨{m, a, (m ∧ a) ⊃ Of},Of ⟩
A8 = ⟨{m, a, (m ∧ a) ⊃ Of},¬(m ⊃ O¬f )⟩
A9 = ⟨{m, a, m ⊃ O¬f, (m ∧ a) ⊃ Of},OF⟩

Figure 4: (Part of) the normative argumentation framework of Example 14.

It follows that we have the following expected deductions for every entailment ∣∼ in Def-
inition 12:

•  ∤∼ O¬f . Indeed, one cannot derive O¬f , since the application of Modus Ponens to
m⊃O¬f (depicted by argument A5) gets attacked by A8.

•  ∣∼ Of . Indeed, A7 is not attacked by an argument in ArgSDL(), thus it is part
of every grounded, preferred, and stable extension of the underlying normative argu-
mentation framework, and so its descendant follows from  . (Note that A7 is attacked
by SDL-derivable arguments, but none of them is in ArgSDL()).

We refer to [168] for further examples of well-known puzzles, treated by SDL-based argu-
mentation frameworks.
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Remark 15. Clearly, whenever a frameworkL,() has Sem-extensions, it holds that if
 ∣∼L,

∩Sem  then ∣∼L,
⋒Sem  . Also, if ∣∼L,

⋒Sem  then ∣∼L,
∪Sem  (thus both types of skeptical

reasoning entail credulous reasoning). The converses, however, do not hold. Example 13
shows that for every Sem ∈ {Prf , Stb}, ∣∼L,

∪Sem ⊈ ∣∼
L,
∩Sem, and ∣∼

L,
∪Sem ⊈ ∣∼

L,
⋒Sem, and ∣∼

L,
⋒Sem ⊈

∣∼L,
∩Sem. To see another example for the latter, consider the logical argumentation frameworkL,( ′), where  ′ = {p ∧ q, p ∧ ¬q}, L = CL, and  = {Ucut}. Then  ′ ∣∼L,

⋒Sem p
but  ′ ∤∼L,

∩Sem p (because
⋂

Sem(L,( ′)) consists only of tautological arguments, i.e.,
those with empty support sets).

Proposition 16. Let () be a logical argumentation framework for a finite  , based on
a contrapositive logic L and the set = {DirUcut, ConUcut}. Then:

1.  ∣∼L,
Grd

 iff  ∣∼L,
∩Prf  iff  ∣∼L,

∩Stb  .

2.  ∣∼L,
∪Prf  iff  ∣∼L,

∪Stb  .

3.  ∣∼L,
⋒Prf  iff  ∣∼L,

⋒Stb  .

The above proposition is shown in [10], and some variations of it are proved in [11].
As mentioned there, the assumptions on the logic and the attack rules are essential for the
proposition to hold.

2.2.2 The ASPIC System
ASPIC+ [150; 145] is another well-known approach to structured argumentation, based on
some underlying logic. It contains (at least) two types of premises: axioms (which cannot be
questioned) and ordinary premises (which can be questioned/attacked). Also, there are two
types of rules: strict and defeasible. The latter, unlike strict rules, allow for exceptions. A
wide variety of research has been done on ASPIC+, both from a theoretical perspective (e.g.,
rationality postulates were introduced in [60] for ASPIC, an earlier version of ASPIC+, and
the use of preferences has been investigated in [145]) and from an application perspective
(See [147, Section 6] for an overview). We refer to [146; 147] for extensive surveys on
ASPIC+ and related approaches. Unless otherwise stated, the definitions in this section are
taken from [147] (the chapter on ASPIC+ in the first volume of the handbook).
Remark 17. As noted in Remark 2, we only discuss purely logical instances of logical ar-
gumentation frameworks. For ASPIC+ this means that we do not take into account any
ordering over the defeasible elements.

Definition 18 (ASPIC-based argumentation system). An argumentation system is a tuple
AS = ⟨, ,, n⟩, where:
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•  is a propositional language,

• is a contrariness function from  to 2 ⧵ ∅, 12

•  = ⟨s,d⟩ consists of strict (s) and defeasible (d) inference rules of the form
�1,… , �n → � and �1,… , �n ⇒ � respectively, such thats ∩d = ∅,

• n ∶ d → WFF() is a (possibly partial) function assigning names to defeasible
rules.

The contrariness function allows to specify conflicts between elements of the language.
Strict rules are deductive in the sense that the truth of their premises �1,… , �n necessarily
implies the truth of their antecedent �. Unlike strict rules, a defeasible rule warrants the
truth of its conclusion only provisionally: its application can be retracted in case counter-
arguments are encountered. A naming function associates a name n(r) with some of the
defeasible rules in d . This will facilitate the formulation of the attack form undercut (see
below).
Definition 19 (ASPIC theory). A knowledge-base in an argumentation system AS = ⟨, ,, n⟩ is a pair = ⟨n,p⟩ of-formulas that consists of two disjoint sets: n (the axioms)
and p (the ordinary premises). An ASPIC argumentation theory is a pair AT = ⟨AS,⟩,
where AS is an argumentation system and  is a knowledge-base in AS.

Arguments in ASPIC+ differ from arguments in logic-based argumentation frameworks.
These are inference trees that are constructed from the rules of the argumentation system and
the formulas in the knowledge base:
Definition 20 (ASPIC argument). An ASPIC-argument A on the basis of an ASPIC-theory
AT is of one of the following forms:

1. �, if � ∈ n ∪p. In this case we denote:
Prem(A) = {�};
Conc(A) = �;
Sub(A) = {�};
Rules(A) = DefRules(A) = TopRules(A) = ∅.

2. A1,… , An →  , if A1,… , An are ASPIC-arguments such that there exists a strict
rule of the form Conc(A1),… ,Conc(An)→  in s. In this case we denote:
Prem(A) = Prem(A1) ∪ … ∪ Prem(An);
Conc(A) =  ;

12In many publications, a distinction is made between contraries and contradictories. This distinctionmainly
plays a role when preferences over defeasible rules are taken into account and therefore is left out of this survey.
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Sub(A) = Sub(A1) ∪ … ∪ Sub(An) ∪ {A};
Rules(A) = Rules(A1) ∪ … ∪ Rules(An) ∪ {Conc(A1),… ,Conc(An)→  };
TopRules(A) = ⋃

B∈Sub(A) TopRules(B);
DefRules(A) = {r ∈ d ∣ r ∈ Rules(A)}.

3. A1,… , An ⇒  , if A1,… , An are ASPIC-arguments such that there exists a defeasi-
ble rule of the form Conc(A1),… ,Conc(An)⇒  in d . In this case we denote:
Prem(A) = Prem(A1) ∪ … ∪ Prem(An);
Conc(A) =  ;
Sub(A) = Sub(A1) ∪ … ∪ Sub(An) ∪ {A};
Rules(A) = Rules(A1) ∪ … ∪ Rules(An) ∪ {Conc(A1),… ,Conc(An)⇒  };
TopRules(A) = {Conc(A1),… ,Conc(An)⇒  };
DefRules(A) = {r ∈ d ∣ r ∈ Rules(A)}.

We denote the set of arguments that can be constructed from an argumentation theory AT =
⟨AS,⟩ by Arg(AT).
Example 21. Let AS = ⟨, ,, n⟩ be an argumentation system, where  is a standard
propositional language with Atoms() = {p, q, r, n(r1)}, � = { ∣  ≡ ¬�} for any -
formula �, the rules in s coincide with those of classical logic in the sense that �1,… ,
�n → � ∈ s iff {�1,… , �n} ⊢CL � for -formulas �1,… , �n, �, and

d =
{
r1 ∶ p⇒ ¬q; r2 ∶ q ⇒ ¬n(r1)

}
, p = {p, q, r}, n = ∅

Among others, the following ASPIC-arguments can be constructed:

A1 ∶ r A4 ∶ A2 ⇒ ¬q A7 ∶ A2, A4 → p ∧ ¬q
A2 ∶ p A5 ∶ A3 ⇒ ¬n(r1) A8 ∶ A3, A4 → ¬r
A3 ∶ q A6 ∶ A2, A3 → p ∧ q A9 ∶ A3, A4 → ¬p

In ASPIC+ arguments can be attacked on their defeasible rules (undercut), on conclu-
sions of sub-arguments whose top-rule is defeasible (rebuttal) and on their ordinary premises
(undermine attack):
Definition 22 (ASPIC-attack). An ASPIC-argument A attacks an ASPIC-argument B iff A
undercuts, rebuts or undermines B, where:

• A undercuts B (on B′) iff Conc(A) ∈ n(Conc(B1),… ,Conc(Bn)⇒ �) for some B′ ∈
Sub(B) of the form B1,… , Bn ⇒ �;

• A rebuts B (on B′) iff Conc(A) ∈ � for some B′ ∈ Sub(B) of the form B′′1 ,… , B′′n ⇒
�.
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• A undermines B (on B′) iff Conc(A) ∈ � for some B′ = �, for some � ∈ Prem(B) ∩p.

Remark 23. Note that attacks in ASPIC+ always target defeasible elements of the attacked
argument: undercuts attack a defeasible rule (for this the naming function was instrumen-
tal), rebuts always attack in the head of a defeasible rule, and undermining always targets
defeasible premises. Also note the difference in terminology to logic-based argumentation:
the undercut attack in the context of ASPIC+ is quite different from the undercut attack for
logic-based argumentation (see Table 1). The latter resembles more undermining-attacks in
the context of ASPIC+.

Now, Dung-style argumentation frameworks are defined in ASPIC+ as follows:
Definition 24 (ASPIC argumentation framework). Let AT = ⟨AS,⟩ be an ASPIC argumen-
tation theory. An (ASPIC) argumentation framework, defined by AT, is a pair  (AT) =
⟨Arg(AT), Attack⟩, where:

• Arg(AT) is the set of ASPIC-arguments constructed from AT, as in Definition 20; and

• (X, Y ) ∈ Attack iff X attacks Y , as in Definition 22.13

Example 25 (Example 21 continued). In the argumentation theory from Example 21, we
have that:

• A5 undercuts A4, A7, A8 and A9 (all of them on A4),

• A4 undermines A3, A5, A6, A8 and A9 (all on A3),

• A3 rebuts A4, A7, A8 and A9 (all on A4).

There are more attacks between A1,… , A9 besides the ones listed here: the full attack rela-
tion between these arguments is shown in Figure 5.

Dung-style semantics, as defined in Definition 10, can now be applied to the frame-
works defined above as well. For example, given  (AT) = ⟨Arg(AT), Attack⟩,  ⊆
Arg(AT) is an admissible extension of (AT) if it is conflict-free with respect to (AT)
and defends all of its elements. Similarly,  is a complete extension of  (AT) if it is
an admissible extension of  (AT) that contains all the arguments it defends. Like be-
fore, we will denote by Sem( (AT)) all the Sem-extensions of  (AT), for Sem ∈
{Naive,Adm,Cmp,Grd, Prf , Stb}.

The next definition is a counterpart, for the ASPIC+ system, of Definition 12:
13Note that, unlike logic-based argumentation, where frameworks may differ in their attack rules, in ASPIC

systems always all the possible attack rules are applied.
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A1 A2

A3 A4

A5

A6A7

A8 A9

Figure 5: Part of the framework from Example 25.

Definition 26 (ASPIC extension-based entailments). Let  (AT) = ⟨Arg(AT), Attack⟩ be
an argumentation framework for some argumentation theory AT and let Sem ∈ {Grd,Cmp,
Prf , Stb,Naive}. Then:

• AT ∣∼∪Sem  if there is an argument A ∈
⋃

Sem( (AT)) with Conc(A) =  . In
this case it is said that  is credulously justified;

• AT ∣∼∩Sem  if there is an argument A ∈
⋂

Sem( (AT)) with Conc(A) =  . In
this case it is said that  is skeptically justified;

• AT ∣∼⋒Sem  if for every  ∈ Sem( (AT)) there is an argument A ∈  with
Conc(A) =  . In this case it is said that  is weakly skeptically justified.

As any Dung-style argumentation framework has a single grounded extension, the en-
tailments ∣∼∩Grd, ∣∼∪Grd and ∣∼⋒Grd coincide, we will therefore sometimes omit the initial
symbol from the subscript.
Remark 27. Unlike standard consequence relations (Definition 1) and the extension-based
entailments for the logic-based approach (Definition 12), which are relations between sets of
formulas and formulas, the entailments above are relations between argumentation theories
and formulas. This will not cause any confusion in what follows.

Example 28 (Example 25 continued). In the argumentation framework from Example 25
shown in Figure 5, for the ASPIC argumentation theory AT from Example 21, we have that
Grd( (AT)) = ∅.14 It is easy to see that there are two preferred extensions for this frame-
work: one contains (among others) the arguments A1, A2, A4 and A7 and the other contains

14Recall that we identify Grd( (AT)) with its single set.
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(among others) A1, A2, A3, A5 and A6. Therefore, the following conclusions can be derived
for Sem = Prf:

• AT ∣∼∩Prf � iff � ∈ Cn(r ∧ p), since A1 and A2 occur in each preferred extension;

• AT ∣∼⋒Prf ¬q ∨ (¬n(r1) ∧ q) since A4 occurs in one preferred extension and A5 and
A3 in the other preferred extension;

• AT ∣∼∪Prf � for � ∈ {p,¬q, q} (among others), since each of the arguments besides
A8 and A9 from Example 21 is part of at least one preferred extension.

Remark 29. A similar result as that of Proposition 16 in the previous section is not available
for ASPIC systems, since in the presence of odd attack cycles some preferred extensions may
not attack all arguments in their complement (and therefore might not be stable). This can
also lead to settings in which no stable extension exist. This is demonstrated in the next
example.

Example 30. As in our previous example, lets be instantiated by classical logic. Let also
� = {¬�} for every formula �,  = ⟨∅, ∅⟩, and let d consist of the following three rules:
r1 ∶⇒ ¬n(r2), r2 ∶⇒ ¬n(r3), r3 ∶⇒ ¬n(r1). Note that, for instance, the arguments

A1 ∶⇒ ¬n(r2), A2 ∶⇒ ¬n(r3), A3 ∶⇒ ¬n(r1)

are involved in an odd attack cycle (of length 3). As a consequence, neither of the three
arguments can be part of an admissible extension. Thus, the only preferred extension will
consist of all strict arguments (which conclude classical theorems). Clearly, this extension
will not be able to attack the three arguments above, and thus it is not stable.

We note, nevertheless, that there are instances of ASPIC+ for which a similar result to
that of Proposition 16 is available. This is especially the case when ASPIC+ is instantiated
by a contrapositive strict rule base, when the contrariness operator is defined by the negation
of the language and no undercutting arguments can be generated from the knowledge base.
See further discussions in Sections 2.3.1 and 2.4.

2.2.3 Assumption-Based Argumentation
Assumption-based argumentation (ABA, [46]) is another prominent formalism for logical
argumentation. It was introduced in the 1990s as a computational framework to capture and
generalize default and defeasible reasoning, inspired by Dung’s semantics for abstract argu-
mentation and by logic programming with its dialectical interpretation of the acceptability
of negation-as-failure assumptions based on “no-evidence-to-the-contrary”. In this section
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we recall the basic definitions that are related to this approach. For extensive surveys on
ABA and related approaches, we refer to [87; 171; 72; 73]. ABA-based implementations
are surveyed in [69, Section 3.2].
Definition 31 (assumption-based framework). An assumption-based framework (in short:
ABF) is a tuple = ⟨,,,∼⟩ where:

•  is a (propositional) language,

•  is a set of strict rules, whose elements are of the form  1,… ,  n →  , where  , i
(1 ≤ i ≤ n) are -formulas,

•  is a nonempty set of -formulas, called the defeasible (or candidate) assumptions,
and

• ∼∶ → ℘() is a contrariness operator, assigning a finite set of -formulas to every
defeasible assumption in .15

Somewhat like the rules in ASPIC, rules in ABFs can be chained to form deductions.
Given a set  ⊆  of defeasible assumptions, an -based deduction may be viewed as a
proof, i.e., a sequence of-formulas, where each element of the sequence is either a formula
in  or is obtained from previous elements in the sequence by an application of a rule ,
just like an application of Modus Ponens.
Definition 32 (⊢). Let  be a set of inference rules over . We write  ⊢  if there
is an -deduction, based on the rules in , that culminates in  , i.e., there is a sequence
�1,… , �n of -formulas such that �n =  and for each 1 ≤ i ≤ n, �i ∈  or there are
�i1 ,… , �im for which i1,… , im < i and �i1 ,… , �im → �i ∈ .

For instance, if p→ q ∈ , then p ⊢ q.
As in logic-based argumentation and ASPIC, (defeasible) assertions in an ABF may be

attacked in the presence of counter (defeasible) information. This is described in the next
definition.
Definition 33 (attacks in ABFs). Let = ⟨Atoms(),,,∼⟩ be an assumption-based
framework, and let  ,  ⊆ ,  ∈ . We say that  attacks  if there are  ′ ⊆  and
� ∈ ∼ such that  ′ ⊢ �. Accordingly,  attacks  if  attacks some  ∈  .

15Note that the contrariness operator is not a connective of , as it is restricted only to the candidate assump-
tions.
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Remark 34. In contrast to most of the logical argumentation frameworks defined in the
preceding sections (as well as other approaches to structured argumentation, such as DeLP
[106]), in which attacks are defined between individual arguments, in ABA systems attacks
are defined between sets of assumptions. This may be viewed as a higher level of abstrac-
tion, operating on equivalence classes that consist of arguments generated from the same
assumptions.

Using the above notion of attack, Dung-style semantics is defined on ABFs just as in
Definition 10. The only difference is that an extension  in an ABF is required to be closed
with respect to the rules in , namely:  = Cn⊢() ∩. Thus, for instance, for  ⊆ 
we say that

•  is conflict-free (with respect to ) iff  does not attack itself.
•  defends (with respect to ) a set  ′ ⊆  iff for every closed set ⋆ that attacks ′,  attacks ⋆.
•  is admissible (with respect to ) iff it is closed, conflict-free, and defends itself.

An admissible set is called complete, if it does not defend any of its proper supersets.
•  is stable (with respect to  ) iff it is closed, conflict-free and attacks every � ∈ ⧵  .

In ABA it is usual to refer also to the intersection of all the complete extensions of an ABF,
which is called the well-founded extension of that ABF.

Like before, we denote by Naive( ) [respectively: Adm( ), Cmp( ),
Grd( ), Prf ( ), Stb( ), WF( )] the set of all the naive [respectively: ad-
missible, complete, grounded, preferred, stable, well-founded] extensions of .16

If every set of assumptions ⊆  is⊢-closed, theABF is called flat. In [46] it is shown
that most of the relations between the Dung extensions considered in Remark 11 carry on
to flat ABFs (see also [73, Theorems 2.12 and 2.14], and [126] for prioritized settings). For
non-flat ABFs, however, some of these relations cease to hold. For instance, there may be
non-flat ABFs without complete extensions (cf. Item 2 of Proposition 38).

The following form of ABFs is considered in [117; 119; 121]:
Definition 35 (simple contrapositive ABFs). A contrapositive assumption-based framework
is a tuple = ⟨L,Γ,Δ,∼⟩ where:

16Note that, as observed in [121], the grounded extension of an ABF may not be unique, thus (unlike the
previous cases) this time Grd( ) is not an extension but a set of extensions.
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• L = ⟨, ⊢⟩ is an explosive and contrapositive logic,17
• Γ (the strict assumptions) and Δ (the candidate/defeasible assumptions) are distinct

(countable) sets of -formulas, where the former is assumed to be ⊢-consistent and
the latter is assumed to be nonempty,

• ∼ ∶ Δ → ℘() is a contrariness operator, assigning a finite set of -formulas to
every defeasible assumption in Δ, such that for every ⊢-consistent  ∈ Δ it holds
that  ⊬

⋀
∼ and

⋀
∼ ⊬  .

A contrapositive ABF is called simple, if its language contains a negation ¬, and for every
 ∈ , ∼ = {¬ }.

Given a simple contrapositive assumption-based framework  = ⟨L,Γ,Δ,∼⟩, the
notion of attack and Dung-style semantics are defined as before, with the obvious adjust-
ments using the consequence relation ⊢ of the base logic instead of the entailment ⊢. For
instance,

•  ⊆ Δ attacks  ∈ Δ iff Γ, ⊢ � for some � ∈ ∼ . Accordingly,  attacks  if 
attacks some  ∈  ,

•  ⊆ Δ is closed in  if  = Δ ∩ Cn⊢(Γ ∪ ).
The other semantic notions remain exactly as before.

Given a (simple, contrapositive) assumption-based framework and Sem ∈ {Naive,
WF,Grd, Prf , Stb}, we denote:
Definition 36 (ABA extension-based entailments).

•  ∣∼∪Sem  iff Γ,  ⊢  for some  ∈ Sem(ABF).

•  ∣∼∩Sem  iff Γ,
⋂

Sem(ABF) ⊢  .

•  ∣∼⋒Sem  iff Γ,  ⊢  for every  ∈ Sem(ABF).

The entailment relations in Definition 36 are again different from those in Definitions 1
and 12, as they are defined on ABFs and formulas (cf. Remark 27). Like before, this will
not cause any confusion in the sequel.
Example 37. Let L = CL, Γ = ∅, Δ = {p,¬p, q}, and ∼ = {¬ } for every formula  . A
corresponding attack diagram is shown in Figure 6.18

17Classical logic CL, intuitionistic logic, the central logic in the family of constructive logics, and standard
modal logics are all explosive and contrapositive logics.

18For reasons that will become apparent in the sequel (see Remark 41), we include in the diagram only closed
sets. Thus, the set {p,¬p} is omitted from the diagram.
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∅ {q}{p,¬p, q}

{p}

{¬p}

{p, q}

{¬p, q}

Figure 6: An attack diagram for Example 37

Here, Naive( ) = Prf ( ) = Stb( ) = {{p, q}, {¬p, q}}, and therefore ∣∼◦Sem q for every ◦ ∈ {∪,∩,⋒} and Sem ∈ {Naive, Prf , Stb}.

Some interesting properties of simple contrapositive ABFs are given next (see [117; 119;
121]).
Proposition 38. Let = ⟨L,Γ,Δ,¬⟩ be a simple contrapositive ABF. Then:

1. Naive( ) = Prf ( ) = Stb( ).
2. If F ∈ Δ then Grd( ) = WF( ).
The next example shows that the condition in Item 2 of the last proposition is indeed

necessary:
Example 39. Let L be an explosive logic, Δ = {p,¬p, q} and Γ = {s, s ⊃ q}. Note that the
emptyset is not admissible, since it is not closed (indeed, Γ ⊢ q). Also, {q} is not admissible
since p,¬p, q ⊢ ¬q.19 The two minimal complete extensions here are {p, q} and {¬p, q},
thus there is no unique grounded extension in this case.
Corollary 40. Let  be a simple contrapositive ABF, and let ◦ ∈ {⋒,∪,∩}. Then for
every  we have that:  ∣∼◦Naive  iff  ∣∼◦Prf  iff  ∣∼◦Stb  . Moreover, if
F ∈ Δ then ∣∼◦Grd  iff ∣∼◦WF  .

Remark 41. Interestingly, as shown in [117], the closure requirement is redundant in the
definition of extensions of simple contrapositive ABFs. Thus, for instance, if  ⊆ Δ is
conflict-free and attacks every  ∈ Δ ⧵  then it is closed (so closure is assured in the
definition of stable extensions), a maximally conflict-free subset of Δ is closed (thus closure
is guaranteed in the definition of naive extensions), and so forth. For grounded and well-
founded semantics, the closure requirement is redundant only if F ∈ Δ.

19Note that q is also attacked by {p,¬p} and does not counterattack it. However, {p,¬p} is not closed, and
for admissibility checking it is enough to consider only closed sets (see also Remark 41).
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Remark 42. In [126] other classes of ABFs are studied. It is shown there that also for so-
called well-behaved ABFs, the preferred and stable extension coincide. Well-behaved ABFs
are flat ABFs that satisfy a slightly weaker notion of contraposition than the one above, and a
property called sanity that says that if ∼� follows from a set of assumptionsΔ then it follows
from Δ⧵{�} (which is also satisfied by contrapositive ABFs). Otherwise, no restrictions on
the underlying language are imposed.20

2.3 Properties of the Frameworks and Their Entailments
In order to evaluate and compare the various approaches to logical argumentation, different
properties and postulates have been introduced in the literature. In this section we consider
the three logical argumentation methods of Section 2.2 in light of these criteria. We do so
from three perspectives:

• relations to reasoning with maximal consistency, following [155] (Section 2.3.1),
• rationality postulates for argumentative reasoning, following [60] (Section 2.3.2), and
• inference principles for non-monotonic reasoning, following [133] (Section 2.3.3).
In what follows we review the main results in the literature concerning the above-men-

tioned issues. We recall that it is not the purpose of this survey to resolve open questions or
particular cases that were not addressed so far,21 thus we do not pretend to have an exhaustive
coverage of the subject.

2.3.1 Relations to Reasoning with Maximal Consistency
Reasoning with maximally consistent subsets (MCS), introduced in [155], is a well-known
approach to handle inconsistencies within non-monotonic reasoning. The idea is to derive
conclusions from inconsistent knowledge-bases, by considering the maximally consistent
subsets of these knowledge bases. This idea has been applied in a variety of research direc-
tions within artificial intelligence, e.g.: knowledge-based integration systems [21], consis-
tency operators for belief revision [131] and computational linguistics [140].

The relation between reasoning with maximally consistent subsets and formal argumen-
tation has been studied extensively since this possibility was raised in [67]. In what follows

20For technical details we refer to the paper whose main focus is to study and compare systems of prioritized
ABFs.

21The only exception are the (yet unpublished) results in the appendix of the chapter, which appear in a paper
that is currently under review.
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we survey some of the main results relatingMCS-based reasoning and the logic-based meth-
ods of the previous section. For a more extensive overview of the subject we refer to [11;
10].

Reasoning with maximally consistent subsets of the premises is based on the following
definition:
Definition 43 (MCSL(),MCS ′L ()). Let L = ⟨, ⊢⟩ be a logic and let  ′, be sets of-formulas (intuitively,  ′ are the strict assumptions and  are the defeasible ones).

• MCSL() is the set of the maximally ⊢-consistent subsets of  . I.e.,
MCSL() = { ⊆  ∣  is ⊢-consistent and for every  ′ such that  ⊊  ′ ⊆ ,  ′ is ⊢-inconsistent}.

• MCS ′L () is the set of the maximally ⊢-consistent subsets of  , given  ′. I.e.,
MCS ′L () = { ⊆  ∣  ∪  ′ is ⊢-consistent and for every  ′ such that  ⊊  ′ ⊆ ,  ′ ∪  ′ is ⊢-inconsistent}.

The second item in the definition above, which defines maximally consistent subsets
w.r.t. a set of strict assumptions, is known from [138] as default assumptions. Some of the
corresponding entailment relations are defined in [138] as well, which is similar to those in
Definitions 12, 26 and 36:
Definition 44 (MCS-based entailments). Let L = ⟨, ⊢⟩ be a logic and let  ′, be sets of-formulas. We denote:

•  ′, ∣∼L
∩mcs  iff  ∈ CnL( ′ ∪ ⋂

MCS ′L ());
•  ′, ∣∼L

⋒mcs  iff  ∈
⋂

 ∈MCS′L () CnL( ′ ∪  );
•  ′, ∣∼L

∪mcs  iff  ∈
⋃

 ∈MCS′L () CnL( ′ ∪  ).
In the definition above, ′ is the set of the strict assumptions, and is the set of defeasible

assumptions. When  ′ = ∅ we shall just omit it. In this case we have that:
•  ∣∼L

∩mcs  iff  ∈ CnL(⋂MCSL());
•  ∣∼L

⋒mcs  iff  ∈ ⋂
 ∈MCSL() CnL( );

•  ∣∼L
∪mcs  iff  ∈ ⋃

 ∈MCSL() CnL( ).
Example 45. Suppose that the base logic is classical logic (i.e., L = CL).
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• Let  = {p,¬p, q}. Then
⋂

MCSCL() = {q}, thus  ∣∼CL
∩mcs q but  ∤∼CL

∩mcs p and ∤∼CL
∩mcs ¬p.

• Let  = {p ∧ q,¬p ∧ q}. Then
⋂

MCSCL() = ∅, thus  ∣∼CL
∩mcs  only if  

is a classical theorem. On the other hand,  ∣∼CL
⋒mcs q (and still  ∤∼CL

⋒mcs p and
 ∤∼CL

⋒mcs ¬p).

• It is easy to verify that for any  , if  ∣∼L
∩mcs  then  ∣∼L

⋒mcs  . As the previous
item shows, the converse does not hold.

The next result relates MCS-based entailments and entailments that are induced by ar-
gumentation frameworks that are based on classical logic:
Proposition 46. ([11, Propositions 4.3]),[50, Theorem 5]22 LetL,() be a logic-based
argumentation framework, where L is classical logic and ∅ ⊂  ⊆ {Ucut,Def}. Then:

•  ∣∼L,
Grd

 iff  ∣∼L,
∩Prf  iff  ∣∼L,

∩Stb  iff  ∣∼L
∩mcs  .

•  ∣∼L,
∪Prf  iff  ∣∼L,

∪Stb  iff  ∣∼L
∪mcs  .

If  = {DirUcut}, we have that:

•  ∣∼L,
⋒Prf  iff  ∣∼L,

⋒Stb  iff  ∣∼L
⋒mcs  .

Example 47. By the last proposition, the correspondence between the examples in Re-
mark 15 and those of Example 45 is not coincidental.

We refer to [11] for many other results concerning the relations between reasoning with
maximal consistency and logic-based argumentation (or, more precisely, sequent-based ar-
gumentation, a specific form of logic-based argumentation – see Remark 6).

The relation between ABA and maximally consistent subsets has been studied, e.g., in
[48; 117; 121; 126]. In particular, a similar result as the one above is shown for simple
contrapositive assumption-based frameworks (recall Definition 35).
Proposition 48. ([117, Theorems 1 and 3] and [48, Theorem 3]) Let  = ⟨L,Γ,Δ,∼⟩
be a simple contrapositive assumption-based framework. Then:

•  ∣∼L,
⋒Prf  iff  ∣∼L,

⋒Stb  iff Γ,Δ ∣∼L
⋒mcs  .

22The results in [50] are phrased in the more general context of hypersequent-based argumentation. Since
standard sequent calculi are special instances of hypersequent calculi, the results are applicable also to sequent-
based argumentation.
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•  ∣∼L,
∪Prf  iff  ∣∼L,

∪Stb  iff Γ,Δ ∣∼L
∪mcs  .

• If F ∈ Δ then ∣∼L,
Grd

 iff Γ,Δ ∣∼L
∩mcs  .

If L is contrapositive then:

•  ∣∼L,
∩Prf  iff  ∣∼L,

∩Stb  iff Γ,Δ ∣∼L
∩mcs  .

Remark 49. A result similar to the one of Proposition 48 is obtained in [126] for what is
called therewell-behaved assumption-based frameworks, which among other things requires
closure of the underlying inference rules under contraposition. It is shown that for well-
behaved assumption-based frameworks, it holds MCSL( ) = Prf ( ) = Stb( ).
By including priorities, the results are further generalized to cover preferred subtheories
[52].

Example 50. Recall Example 37 with the assumption-based framework for L = CL, Γ = ∅,
Δ = {p,¬p, q} and ∼ = {¬ } for every formula  . Since Naive( ) = Prf( ) =
Stb( ) = {{p, q}, {¬p, q}}, we have  ∣∼◦sem q for ◦ ∈ {⋒,∪,∩} and Sem ∈
{Naive,Prf,Stb}. In view of Prop. 48 and Remark 49 it is not surprising that MCSCL() =
{{p, q}, {¬p, q}}.

We turn now to MCS-based reasoning and ASPIC systems. In [145, §5.3.2] it is shown
that Brewka’s preferred subtheories [52] are an instance of ASPIC+. Since no preference
ordering is considered in this chapter, preferred subtheories correspond to maximally con-
sistent subsets. The following proposition states this result in terms of sets of formulas.
Proposition 51. ([145, Theorem 34]) Let  (AT) = ⟨Arg(AT), Attack⟩ be an ASPIC-
argumentation framework for some ASPIC-argumentation theory AT, based on a proposi-
tional language , a set  of -formulas, and where the rules are all strict. Suppose further
that Γ →  ∈  iff  follows according to classical logic from Γ. Let Arg(Δ) ⊆ Arg(AT) be
the arguments constructed from premises in Δ. Then:

• IfΔ is amaximally consistent subset of , thenArg(Δ) is a stable extension of (AT).
• If  is a stable extension of  (AT), then ⋃

A∈ Prem(A) is a maximally consistent
subset of  .

Example 52. To illustrate the last result consider the ASPIC argumentation system AS =
⟨, ,, n⟩, where  is a propositional language with Atoms() = {p, q}, the rules in s
coincide with those of classical logic as in Example 21, p = {p,¬p, q}, n = ∅, and
� = {¬�} for any -formula �. Among others, the following ASPIC-arguments can be
constructed:

A1 ∶ p A2 ∶ ¬p A3 ∶ q A4 ∶ A1, A2 → ¬q
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A3 A4

A1

A2

Figure 7: Part of the framework from Example 52.

The corresponding attack diagram is given in Figure 7. (AT ) has two stable extensions, one containing among others A1 and A3 and the
second containing among others A2 and A3. As expected in view of Proposition 51, we see
that these correspond to the two maximally consistent subsets of {p,¬p, q}, namely: {p, q}
and {¬p, q}.

Remark 53. It is interesting to note that unlike some other frameworks (cf., e.g., Proposi-
tions 46 and 48), the grounded extension in the ASPIC framework of Example 52 does not
contain the free formula q. This is since the inconsistent argument A4 causes interferent
behavior for the grounded semantics (see Section 2.3.2.B for more details).

While the result in Proposition 51 above is about ASPIC-frameworks with only strict
rules, one may also consider maximal consistent sets of formulas in the context of defeasible
rules. In [127], maximal consistent sets of defeasible rules are defined as follows:
Definition 54 (MCS(AT)). Let AT = ⟨AS,⟩ be an ASPIC argumentation theory, where = ⟨n,p⟩, AS = ⟨, ,, n⟩, and = d ∪s. We define:

• 
d = d ∪ {⇒ � ∣ � ∈ p}.

• A set of defeasible rules  ⊆ 
d is AT-inconsistent iff there are -formulas � and

 ∈ �, for which n ⊢s∪  and n ⊢s∪ �. Otherwise,  is AT-consistent.23

• A rule r =  1,… ,  n ⇒ � ∈ 
d is triggered by some  ⊆ 

d if n ⊢s∪  i for
each 1 ≤ i ≤ n.

• ℘̂(
d ) is the set of all  ⊆ 

d such that every r ∈  is triggered by .

• MCS(AT) is the set of all ⊆-maximal consistent  ∈ ℘̂(
d ).

23Maximally consistent sets of defeasible rules also play a role in constrained input/output logics, see [139]
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Example 55. Let AT = ⟨AS,⟩ be an ASPIC argumentation theory, where AS = ⟨, ,, n⟩, d = {r1 ∶ ⊤ ⇒ p, r2 ∶ p ⇒ q, r3 ∶ ⊤ ⇒ ¬q}, s is induced by classical logic,
and  = ∅. Then,

• ℘̂(
d ) =

{
{r1}, {r1, r2}, {r1, r2, r3}, {r1, r3}, {r3}

}
, and

• MCS(AT) =
{
{r1, r2}, {r1, r3}

}
.

Note that {r2, r3} ∉ ℘̂(
d ) since r2 is not triggered by this set. Also, {r1, r2, r3} ∈ ℘̂(

d )⧵
MCS(AT) since the set is inconsistent.

For the next result we need also the following definition:
Definition 56 (contrapositive ASPIC theory, Arg()). Let AT = ⟨AS,⟩ be an ASPIC
argumentation theory as in the previous definition. Then:

• AT is contrapositive if it satisfies

S1 If Δ,  ⊢s
�′ for some �′ ∈ � then Δ, � ⊢s

 ′ for some  ′ ∈  ; and

S2 If Δ ⊢s
�′ for some �′ ∈ � then Δ ⧵ {�} ⊢s

�′.

• For  ∈ ℘̂(
d ), we define: Arg() = {A ∈ Arg(AT) ∣ DefRules(A) ⊆  ∩d}.

We get the following representation theorem for ASPIC+ frameworks without undercut
attacks:
Proposition 57. ([127, Theorem 6]) For any contrapositive ASPIC argumentation theory
AT without undercut attacks, it holds that:

Prf ( (AT)) = Stb( (AT)) = {Arg() ∣  ∈ MCS(AT)}.

Example 58 (Example 55 continued). In Example 55 we have the two stable resp. preferred
extensions Arg({r1, r2}) and Arg({r1, r3}).

Maximal consistency is also related to properties of extensions and of argumentation
semantics, as will be shown in the next section. Here we only comment on one such property,
which is directly related to the maximally consistent subsets of the premises.
Remark 59. Consider the following property, investigated in [3; 177]:

MCSCL() = {Sup() ∣  ∈ Sem( ())}.
It is shown that in classical argumentation frameworks (i.e., those that consist of classical
arguments in the sense of Definition 4), the equation above is met for both the stable (i.e,
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when Sem = Stb) and preferred (Sem = Prf ) semantics, and when the attack relation is
either DirDef, DirUcut, or BigArgAt, while for the other attacks (Def, Ucut, Reb, DefReb)
the above property ceases to hold.

Other properties of the attack relations, as well as properties of the extensions and of
the induced entailments will be considered in the next sections.

2.3.2 Rationality Postulates for Argumentative Reasoning
Since the introduction of the rationality postulates for ASPIC in [60], they have become
a standard to assess approaches to structured argumentation. The postulates state that the
conclusions of a framework should be closed under its strict rules (in approaches without a
distinction between strict and defeasible rules, this simply means closure under the rules of
the system), that the set of conclusions should be consistent, and that the set of formulas that
is the result of the closure of the conclusions should be consistent as well. Another property
states that an extension should also contain all the sub-arguments of its arguments. These
postulates may formally be defined as follows:
Definition 60 (rationality postulates for extensions). Let  = ⟨Arg, Attack⟩ be an argu-
mentation framework, L = ⟨, ⊢⟩ a logic, Sem a semantics for it and  ∈ Sem( ). Then satisfies:

• sub-argument closure, iff for all A ∈  , Sub(A) ⊆ ;
• closure, iff CnL(Conc()) = Conc();
• direct consistency, iff Conc() is ⊢-consistent; and
• indirect consistency, iff CnL(Conc()) is ⊢-consistent.
In [60] it was shown that, if an argumentation framework  satisfies indirect consis-

tency, it satisfies direct consistency as well and if satisfies closure and direct consistency,
it also satisfies indirect consistency.

Following [60], many related rationality postulates were introduced in the literature,
some of them will be discussed in what follows. While the postulates in [60] are mainly
concerned with the properties of the extensions of a framework (under certain semantics),
there are other postulates that are related to the inferences relations induced by the frame-
works. For instance, the non-interference and crash-resistance postulates, introduced in
[61], guarantee that the entailment relation of argumentation frameworks do not collapse in
view of inconsistent information. Next, we formalize these postulates.

For the next definitions, we say that two sets 1,2 of -formulas are syntactically dis-
joint iff Atoms(1) ∩ Atoms(2) = ∅.24 This will be denoted by 1 ∣ 2.

24Recall that Atoms() denotes the set of atoms occurring in the formulas of  .
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Definition 61 (rationality postulates for inferences). Let ∣∼ ⊆ ℘() × .
• We say that ∣∼ satisfies non-interference, iff for every two sets 1,2 of -formulas,

and every -formula � such that 1 ∪ {�} ∣ 2, it holds that 1 ∣∼ � iff 1,2 ∣∼ �.

• We say that ∣∼ satisfies crash-resistance iff there is no ∣∼-contaminating set  of -
formulas, where a set  such that Atoms() ⊊ Atoms(), is called contaminating
(w.r.t. ∣∼), if for every  ′ such that  ∣  ′ and for every -formula �, it holds that ∣∼ � iff  , ′ ∣∼ �.

Remark 62. In [61] it is shown that crash-resistance follows from non-Interference under
some very weak criteria on the monotonic base logic.

Note, for instance, that the consequence relation ⊢CL of classical logic does not satisfy
either of the properties of Definition 61. Indeed, where2 is inconsistent, non-interference is
violated, and any inconsistent set is⊢CL-contaminating. We refer to [61] for more discussion
on non-interference and crash-resistance.

Since rationality postulates are an important indicator of the usefulness of an argumenta-
tion system, extensive research has been conducted on the properties a system should satisfy
in order for the rationality postulates to be satisfied. In the remainder of this section we will
discuss the results of this research for the three approaches to logical argumentation frame-
works discussed earlier.

A. Rationality postulates for logic-based methods
There are many studies on the properties of logic-based frameworks, including those in
[111; 4; 2; 49; 12; 50]. Below, we survey the main results, starting with the postulates that
are concerned with the properties of the attack rules and then those that are related to the
properties of extensions and extension-based inferences.

Studies on requirements on the attack relation of a classical argumentation framework
to fulfill rationality postulates are presented in [3; 177]. The conditions considered in those
work are presented next.
Definition 63 (attack relation properties). Let  () = ⟨Arg(), Attack⟩ be a classical
argumentation framework. Then Attack is called:

• conflict-dependent, iff for each (A,B) ∈ Attack, Sup(A) ∪ Sup(B) ⊢ F;

• conflict-sensitive, iff for each A,B ∈ Arg(), if Sup(A) ∪ Sup(B) ⊢ F then (A,B) ∈
Attack;
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• valid, iff for each  ⊆ Arg(), if  is conflict-free, then Sup() is consistent;
• conflict-complete, iff for every minimally inconsistent set  ⊆  , for every 1, 2 ⊆ 

such that 1 ≠ ∅, 2 ≠ ∅ and 1∪2 =  and for every A ∈ Arg() with Sup(A) = 1
there is an argument B ∈ Arg() with Sup(B) = 2 such that (B,A) ∈ Attack;

• symmetric, iff when (A,B) ∈ Attack also (B,A) ∈ Attack.

We refer to [3; 177] for a discussion on these properties and the relations among them.
Table 2 summarizes which of the properties above are satisfied by the attack rules from
Table 1.25

Attack rule conflict- conflict- valid conflict- symmetric
dependent sensitive complete

Def ✓ × × ✓ ×

DirDef ✓ × × × ×

Ucut ✓ × × ✓ ×

DirUcut ✓ × × × ×

ConUcut ✓ × × × ×

Reb ✓ × × × ✓

DefReb ✓ × × × ✓

Reb ∪ DirUcut ✓ × × × ×

BigArgAt ✓ × × × ×

Table 2: The satisfiability of the properties from Definition 63 for attack rules in Table 1.

Another study on the properties of attack relations in logic-based argumentation frame-
works is given in [111]. Again, the study refers to classical argumentation framework, that
is: the arguments meet the restrictions in Definition 4. An overview over various necessary
and sufficient conditions on the attack relations considered in [111] is given in Table 3.
Proposition 64. ([111, Propositions 6 and 10]) Where  () = ⟨Arg(), Attack⟩ is a
classical argumentation framework:

25Note that, in this context, Reb ∪ DirUcut is the only union of attack rules considered in the literature.
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Necessary conditions on attacks

If (A,B) ∈ Attack, then

{Conc(A)} ∪ Sup(B) ⊢ F. (D1)
there is a � ∈ Sup(B) s.t. Conc(A) ⊢ ¬�. (D1′)
Conc(A) ⊢ ¬Conc(B). (D1′′)
¬Conc(A) ⊢

⋀
Sup(B), (D5)

there is a � ∈ Sup(B) s.t. ¬Conc(A) ⊢ �. (D5′)
¬Conc(A) ⊢ Conc(B), (D5′′)
there is a Γ ⊆ Sup(B) s.t. ⊢ ¬Conc(A) ≡ ⋀

Γ. (D5′′′)
Sufficient conditions on attacks

(C,B) ∈ Attack if
(A,B) ∈ Attack and

⊢ Conc(A) ≡ Conc(C) (D2)
Conc(C) ⊢ Conc(A) (D2′)

(A,C) ∈ Attack, if
(A,B) ∈ Attacks
and

⊢ Sup(B) = Sup(C) (D3)
Sup(B) ⊆ Sup(C) (D3′)

There is a C such that
Conc(A) ⊢ Conc(C)
and (C,B) ∈ Attack,
if

{Conc(A)} ∪ Sup(B) ⊢ F (D6)
there is a � ∈ Sup(B) s.t. Conc(A) ⊢ ¬� (D6′)
Conc(A) ⊢ ¬Conc(B) (D6′′)

(A,B) ∈ Attack if there is a Γ ⊆ Sup(B) s.t. ⊢ Conc(A) ≡ ¬⋀Γ (D6′′′)
Sufficient and necessary conditions on attacks
(A,B) ∈ Attack
iff (A′, B′) ∈
Attack, if

⊢ A ≡ A′ and ⊢ B ≡ B′ (D0)

Table 3: Conditions on the attack relations in [111].

• Table 4, summarizes which of the postulates from Table 3 hold for the attack rules
from Table 1.

• Table 5 summarizes by which of the postulates from Table 3 the different attack rela-
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tions are characterized.

Def DirDef Ucut DirUcut CanUcut Reb DefReb
D0 ✓ ✓ ✓ ✓ ✓ ✓ ✓

D1 ✓ ✓ ✓ ✓ ✓ ✓ ✓

D2 ✓ ✓ ✓ ✓ ✓ ✓ ✓

D2′ ✓ ✓ × × × × ✓

D3 ✓ ✓ ✓ ✓ ✓ × ×

D3′ ✓ ✓ ✓ ✓ × × ×

Table 4: Overview of the constraints on the attack relation (Table 3) that are satisfied by the
rules from Table 1 (Based on [111, Table 1 and Proposition 6])

D1, D6 D1′, D6′ D1′′, D6′′ D6′′′

D2′ Def DirDef DefReb -
D2 CanUcut (D5) DirUcut (D5′) Reb (D5′′) -
- - - - Ucut (D5′′′)

Table 5: Overview of the attack relation postulates from Table 3 that characterize the attack
rules from Table 1. An attack rule is characterized by the conjunction of the attack relation
postulates from the appropriate row, column and (where applicable) the cell. For example,
the attack rule is direct undercut iff the attack relation postulates D1′, D2, D5′ and D6′ are
satisfied (Based on [111, Table 2 and Proposition 10]).

Remark 65. The interplay between logical principles about argumentation, on the one
hand, and inference principles as studied in proof theory, on the other hand, is also stud-
ied in [70]. In that paper a series of logical principles of attack relations in argumentation
frameworks is stated, and their collection leads to a characterization of classical logical con-
sequence relations that only involves argumentation frameworks. We refer to [70] and [71]
for further details.

We turn now to postulates concerning the extensions of logic-based argumentation frame-
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works. Definition 66 lists rationality postulates studied in, e.g., [60; 111; 4; 2; 3; 12].26
Definition 66 (extension-based postulates). Let () = ⟨Arg(), Attack⟩ be an argumen-
tation framework for  , based on a logic L = ⟨, ⊢⟩, and let FreeL() = ⋂

MCSL().27
The following postulates are defined with respect to the Sem-extensions of  ().
Postulates on Individual Extensions, where  ∈ Sem( ()):

• Support consistency: ⋃A∈ Sup(A) ⊬ F;

• Consistency: ⋃A∈ Conc(A) ⊬ F;

• Closure under support: if Sup(A) ⊆ Sup() then A ∈ ;
• Exhaustiveness: if Sup(A) ∪ {Conc(A)} ⊆ Conc(), then A ∈ ;
• Strong exhaustiveness: if Sup(A) ⊆ Conc(), then A ∈ ;
• Support inclusion: Sup() ⊆ Conc();
• Limited [strong] exhaustiveness: [strong] exhaustiveness restricted to extensions 

with
⋃

Sup() ≠ ∅.
Semantic-Wide Postulates:

• Core support consistency: ⋃A∈
⋂

Sem( ()) Sup(A) ⊬ F;

• Core conclusion consistency: ⋂∈Sem( ()) Conc() ⊬ F;

• Core consistency: ⋃A∈
⋂

Sem( ()) Conc(A) ⊬ F;

• Core closure: ⋂∈Sem( ()) Conc() = CnL(⋂∈Sem( ()) Conc());
• Non-triviality: there is an  for which Arg() ⧵ Arg(Free()) ≠ ∅ and Arg() ≠⋃Sem( ());
• Free precedence: Arg(Free()) ⊆ ⋂ Sem( ());
• Maximal consistency: Sem( ()) = {Arg( ) ∣  ∈ MCSL()};
• Stability: Stb( ()) ≠ ∅;
• Strong stability: Stb( ()) = Prf( ()).

26We use naming conventions from [2; 12].
27When the underlying logic is clear from the context, we shall just write Free().
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We start with the results in [111]:
Proposition 67. Let  () = ⟨Arg(), Attack⟩ be a classical argumentation framework.
Table 6 summarizes which of the (semantic-wide) postulates from Definition 66 are satisfied
in () with respect to a semantic Sem and the conditions in Table 3.

Postulate Semantics 1,2,6 1′,2,6′ 1′,2,6′′ 1,2,6′′′

Free precedence Sem1 ✓ ✓ ✓ ✓

Non-triviality Sem2 × × × ×

Non-triviality Grd ✓ ✓ ✓ ✓

Core support consistency Sem1 ✓ ✓ × ✓

Grd( ()) = Free(Arg()) Grd ✓ ✓ × ✓

Consistency Grd ✓ ✓ × ✓

Consistency Sem1 × +D3′ ✓ × ×

Table 6: Overview results of the (semantic-wide) postulates fromDefinition 66 that are satis-
fied by argumentation frameworkswith semantics Sem (where Sem1 ∈ {Grd,Cmp,Prf, Stb}
and Sem2 ∈ {Cmp,Prf,Stb}) and attacks satisfying the conditions in Table 3 (In the table,
+D3′ denotes that the attack postulate D3′ is also required, in addition the postulates D1′,
D2 and D6′).

Another investigation of the rationality postulates in Definition 66 for logic-based argu-
mentation appears in [2] and [4]. Again, it is assumed that the supports of the arguments
are consistent and minimal with respect to the subset relation. The core logic may be any
explosive propositional logic, and the attack relations are divided according to the properties
they have, which are specified in Definition 63 and in the following definition (see also [2,
Definition 12]):
Definition 68 (postulates R1 and R2 for attack rules). Let  be an attack relation. The
following conditions are verified with respect to every set  of -formulas:28
R1 for every A,B, C ∈ Arg() such that Sup(A) ⊆ Sup(B), it holds that if (A,C) ∈ 

then (B,C) ∈ ;

28As usual, we freely exchange between the rule name and the corresponding relation.
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R2 for every A,B, C ∈ Arg() such that Sup(A) ⊆ Sup(B), it holds that if (C,A) ∈ 
then (C,B) ∈ .29

Proposition 69. Let () = ⟨Arg(), Attack⟩ be an argumentation framework, for some
explosive propositional logic L = ⟨, ⊢⟩ and where the arguments are ⊢-consistent and ⊆-
minimal. Table 7 summarizes the results from [4; 2]. In particular, it shows which postulates
are satisfied under the conditions in the left-most column.30

In [12] and its extension in [47, Chapter 4] many of the postulates from Definitions 61
and 66 are investigated for sequent-based argumentation [14]. In particular, the arguments
may be of the general form of Definition 5 (no constraints are posed on their supports).
Also, the base logic is any logic satisfying the standard rules in Table 8. Therefore, the
characterizations in [12] hold not only for classical logic, but also for many other logics,
including intuitionistic logic and several modal logics.

Three classes of argumentation frameworks are studied:
•  sub

L,(): frameworks based on Defeat and/or Undercut, therefore it holds that∩
{Def,Ucut} ≠ ∅;

• dir
L,(): frameworks based on some and only direct attack rules, that is: ∅ ≠  ⊆

{DirDef,DirUcut};
•  con

L,(): frameworks that, in addition to only direct attack rules, are based on Con-
sistency Undercut, i.e., {ConUcut} ⊊  ⊆ {ConUcut,DirDef,DirUcut}.

Proposition 70. ([12, Theorem 1]) LetL = ⟨, ⊢⟩ be a logic in which the rules of Table 8 are
satisfied. Table 9 lists which rationality postulates are satisfied by the three classes of frame-
works defined above, and with respect to which semantics Sem ∈ {Grd,Cmp,Prf, Stb}.

Remark 71. The columns of dir
L,() and  con

L,() in Table 9 show that all the postu-
lates are compatible (that is, they can be satisfied together).

In [49], relevance in structured argumentation is studied. In particular it is investigated,
under which conditions the entailment relation induced by a framework of structured argu-
mentation is robust under the addition of irrelevant information, i.e., information that can al-
ready be derived from it (semantic irrelevance) or information that is syntactically unrelated
to the already available information (syntactic irrelevance). Rather than taking one of the

29Note that R2 corresponds to D3′ in Table 3.
30Note that the results in Table 7 refer also to the ideal (Idl) and the semi-stable (SStb) semantics. We refer

to [4; 2], as well as to [24; 22; 23] for their definitions.
31A logicL = ⟨, ⊢⟩ is called uniform [136; 172], if for every two sets1,2 of-formulas and an-formula

 it holds that 1 ⊢  iff 1,2 ⊢  and 2 is a ⊢-consistent set such that Atoms(2) ∩Atoms(1 ∪ { }) = ∅.
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P1 P2 P3 P4 P5 P6 P7
Sem( ()) = ∅ ✓ ✓
Sem( ()) = ∅ + CnL(∅) ≠ ∅ × × ✓ ✓
Sem( ()) = ∅ + Free() ≠ ∅ ✓ ✓ ×
Sem( ()) ≠ ∅ +

✓ = Arg(Supp())
CnL ≠ ∅ + Sem = Adm ×

Closure ✓ ✓
Consistency ✓ ✓
Support consistency ✓ ✓ ✓
Support consistency Naive ✓ ✓ ✓Conflict-dependent
Support cons. + Confl.-dep. + Stb ✓ ✓ ✓Stb( ()) ≠ ∅
Consistency + Sub arg. closure ✓ ✓ ✓ ✓
Consistency +  = Arg(Supp()) ✓ ✓ ✓

Conflict dependent Sem2

Conflict dependent + Sensitive Sem1 Sem2

Conflict dependent +
× Sem2Symmetric + |C| > 2

Exhaustive +
✓ ✓ ✓ ✓ ✓ = Arg(Supp())

R1 + R2 Sem1

R2 Stb

Table 7: Overview of the results from [4; 2], under the assumptions stated in Proposition 69.
Legend of the postulates: P1 = closure, P2 = core closure, P3 = sub-argument closure, P4 =
consistency, P5 = support consistency, P6 = core conclusion consistency, P7 = free prece-
dence. Also, Sem1 ∈ {Grd,Cmp,Prf, Idl, Stb,SStb} and Sem2 ∈ {Grd,Prf, Idl, SStb}. The
condition |C| > 2 denotes that there is a minimal conflict of three or more formulas. Only
the results from [4; 2] are shown: ✓ indicates that the postulate is satisfied for all considered
semantics, Sem indicates that the postulate is satisfied for the particular semantics, × indi-
cates that the postulate is not satisfied and an empty box indicates that the result is unknown,
under the given conditions.
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Rule Name Rule’s Conditions Rule’s Conclusion
Reflexivity ⟨ , ⟩
Monotonicity ⟨Γ,Δ⟩ ⟨Γ ∪ Γ′,Δ ∪ Δ′⟩
Transitivity ⟨Γ1,Δ1 ∪ { }⟩ , ⟨Γ2 ∪ { },Δ2⟩ ⟨Γ1 ∪ Γ2,Δ1 ∪ Δ2⟩
Left-∧ ⟨Γ ∪ { } ∪ {�},Δ⟩ ⟨Γ ∪ { ∧ �},Δ⟩
Right-∧ ⟨Γ,Δ ∪ { }⟩ , ⟨Γ,Δ ∪ {�}⟩ ⟨Γ,Δ ∪ { ∧ �}⟩
Left-¬ ⟨Γ,Δ ∪ { }⟩ ⟨Γ ∪ {¬ },Δ⟩
Right-¬ ⟨Γ ∪ { },Δ⟩ ⟨Γ,Δ ∪ {¬ }⟩

Table 8: Rules for the base logics in Proposition 70.

main approaches to structured argumentation, a simple argumentation setting is introduced,
into which the other approaches can be translated. The main results on syntactic relevance
are based on the notion of pre-relevance, which is related to basic relevance known from rel-
evance logics [18]. Intuitively, a consequence relation satisfies pre-relevance, if the derived
conclusion can be derived from a relevant (w.r.t. shared atoms) subset of the antecedents.
Definition 72 (pre-relevance). A consequence relation⊢⊆ ℘()× satisfies pre-relevance,
if for each disjoint sets 1 ∪ {�} ∣ 2, if 1,2 ⊢ � then there is some  ′1 ⊆ 1 such that ′1 ⊢ �.
Example 73. We list some entailment relations that satisfy pre-relevance:

• the consequence relation of the (semi-)relevance logic RM ([19, Proposition 6.5]),

• the entailment ⊢⊤
CL

that is the restriction of ⊢CL to pairs (Γ, �), for which it holds that
⊬CL ¬

⋀
Γ, and

• the entailment ∣∼CL
∪mcs (Definition 44).

32

The following proposition follows from [49, Theorem 1].
Proposition 74. Let ⊢ be a pre-relevant consequence relation over the language ,  be a
set of -sentences, Arg⊢() = {⟨Γ, �⟩ ∣ Γ ⊢ �}, Attack is induced by direct attack rules

32In [183] ⊢⊤
CL

is used to obtain a crash-resistant version of ASPIC, and, similarly, in [112] the authors make
use of ⊢CL

∪mcs also for ASPIC.
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Postulate dir
L,()  con

L,()  sub
L,()

Closure ✓ ✓ ×

Closure under support ✓ ✓ ×

Sub-argument closure ✓ ✓ ✓

Support inclusion ✓ ✓ ✓

Consistency ✓ ✓ ×

Support consistency ✓ ✓ ×

Maximal consistency Prf,Stb Prf,Stb ×

Exhaustiveness Prf,Stb ✓ ×

Limited exhaustiveness ✓ ✓ ×

Strong exhaustiveness Prf,Stb ✓ ×

Limited strong exhaustiveness ✓ ✓ ×

Free precedence Prf,Stb ✓ ✓

Limited free precedence ✓ ✓ ✓

Stability ✓ ✓ ✓

Strong stability ✓ ✓ ✓

Non-interference Prf,Stb ✓ ✓

Crash-resistance Prf,Stb ✓ ✓

Table 9: Postulates satisfaction (Proposition 70, originally presented in [12]) for Sem ∈
{Grd,Cmp,Prf,Stb}. Cells with ✓ indicate no conditions for the postulate, otherwise spe-
cific semantics with respect to which the postulate holds are indicated. Cells with × mean
that the postulate does not hold. In case of non-interference and crash-resistance the base
logic is assumed to be uniform.31

(such as DirDef and/or DirUcut) and let () = ⟨Arg⊢(), Attack⟩ be the corresponding
argumentation framework. Then ∣∼⋆Sem satisfies non-interference for ⋆ ∈ {∩,⋒,∪} and
Sem ∈ {Grd,Cmp,Prf}.
Remark 75. Like the examples in items 2 and 3 of Example 73, consequence relations ⊢
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considered in Proposition 74 need not be induced by a logic in the technical sense of Defi-
nition 1. In fact, as is demonstrated in [49], structured argumentation frameworks such as
ASPIC and ABA can be translated into the ⊢-based argumentation frameworks of Proposi-
tion 74.

B. Rationality postulates for ASPIC+

Discussions on rationality postulates for ASPIC+ can be found, among others, in [145; 147;
59]. For the completeness of the presentation we recall here some of the main results. For
this, we need two notions, introduced in [147] and [90], respectively.
Definition 76 (well-formed argumentation framework). An ASPIC argumentation frame-
work defined by an ASPIC argumentation theory AT = ⟨AS,⟩, where AS = ⟨, ,, n⟩
and = n∪p, is called well-formed, if whenever � is a contrary of  (i.e., � ∈  while
 ∉ �), then  ∉ n and  is not the consequent of a strict rule.

Definition 77 (self-contradiction axiom; closure under transposition). An ASPIC argumen-
tation framework  (AT) = ⟨Arg(AT), Attack⟩, defined by an ASPIC argumentation the-
ory AT = ⟨AS,⟩, where AS = ⟨, ,, n⟩ and  = n ∪p satisfies:

• the self-contradiction axiom, if for each minimally inconsistent set  of -formulas it
holds that {¬� ∣ � ∈ } ⊆ Cns

();33
• closure under transposition, if for each �1,… , �n → � ∈ s, for each i ∈ {1,… , n},
�1,… , �i−1,¬�, �i+1,… , �n → ¬�i ∈ s as well.

Proposition 78. ([90],[147]) Let (AT) = ⟨Arg(AT), Attack⟩ be an argumentation frame-
work and let  ∈ Cmp( (AT)). Table 10 lists the rationality postulates that are satisfied
under the different conditions of Definitions 76 and 77.

Remark 79. The results in [147] are given for prioritized frameworks (i.e., with a preference
relation defined on the arguments of  (AT)). However, since the non-prioritized setting
is a special case of the prioritized setting, the results still apply here.

The satisfaction of the non-interference and crash-resistance postulates for ASPIC+ are
not so straightforward. For example, when the strict rules are based on classical logic, ex-
plosion might still occur. See [59] for an extensive discussion on non-interference and crash-
resistance for ASPIC+. One of the challenges when trying to resolve these issues is that the
postulates from [60] should still be satisfied by the resulting framework.

33A set  of -formulas is minimally inconsistent if there is some formula � such that � ∈ Cn () and
� ∈ Cn (), and for each  ′ ⊊  no such � exists.

1833



ARIELI, BORG, HEYNINCK, STRASSER

Postulate − Well-formed Self-contradic- Closure under
framework tion axiom transposition

Sub-argument closure ✓ ✓ ✓ ✓

Closure × ✓ ✓ ✓

Direct consistency × ✓ ✓ ✓

Indirect consistency × ✓ ✓ ✓

Table 10: Overview of the postulates that are satisfied by ASPIC+ argumentation frame-
works given some condition on the set of strict rules and a contrary relation. The column
titled − denotes that there are no requirements placed on the framework.

Several variants of ASPIC+ have been proposed in the literature, some of them satisfy
non-interference and crash-resistance. An overview of some of these systems, the settings in
which they have been studied and the postulates that they satisfy, can be found in Table 11.34
Remark 80. Below are some further explanations and notes that are related to the results
in Table 11.

• The variant ASPIC Lite, introduced in [183], is obtained by filtering all inconsistent
arguments out of the argumentation framework. An argument A is inconsistent if
{Conc(B) ∣ B ∈ Sub(A)} is inconsistent. It is then shown that non-interference and
crash-resistance are satisfied for complete semantics, while the postulates from [60]
are still satisfied as well. For the proof it is necessary that at least one extension exists.
Among others, that is why other semantics are not discussed in that particular paper.
Moreover, it is shown that the results do not hold when preferences are introduced.

• A weaker version of crash-resistance, called non-triviality is discussed in [112]. This
variant, called ASPIC⋆, restricts the application of strict rules. In particular, chain-
ing of strict rules and applying strict rules to inconsistent sets of antecedents is not
allowed.

• ASPIC− [63] is a variant of ASPIC+ that uses the attack form of unrestricted rebut. Its
violation of non-interference is shown in [124]. Closure is also violated if inconsistent
arguments are filtered out, in the presence of priorities.

34As for ASPIC+ with filtering out inconsistent arguments: no results are known, even though ASPIC Lite
is its subsystem.
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System Priorities Incons. arg. Direct Closure Crash
filtered consistency resistance

ASPIC+ Yes No ✓ ✓ ×

ASPIC Lite No Yes Cmp Cmp Cmp

ASPIC Lite Yes Yes Cmp × Cmp

ASPIC⋆ Yes No ✓ ✓† ✓†

ASPIC− Yes No ✓ ✓ ×

ASPIC− No Yes ✓ ✓ ✓

ASPIC− Yes Yes ✓ × ✓

ASPIC⊖ Yes No Grd Grd Grd

Table 11: Overview of the different variants to ASPIC+ and the conditions under which
some of the postulates are satisfied. “Yes” means that the results also hold when taking into
account priorities over the defeasible rules, whereas “no” means that when priorities are
taken into account, counter-examples to the results exist. In columns 4–6, ✓ denotes that
the postulate is satisfied, × denotes that the postulate is not satisfied, and Cmp [resp. Grd]
denotes that the postulate is studied and satisfied for complete [resp. grounded] semantics
Finally, ✓† denotes that a weaker variant of the postulate is satisfied.

• Another variant of ASPIC+ with unrestricted rebut, called ASPIC⊖, is studied in [124]
and [125]. In ASPIC⊖, the notion of unrestricted rebut is generalized such that an ar-
gument can attack another argument if its conclusion claims that a subset of the com-
mitments of the attacked argument are not tenable together. It is shown that the result-
ing framework ASPIC⊖, where the priority relation is a preorder using the so-called
weakest link principle, satisfies the rationality postulates from both [60] and [61]
under grounded semantics.

C. Rationality postulates for ABA
Recall from Section 2.2.3 that an extension is a set of assumptions (i.e.,  ⊆  for every
extension  of an assumption-based framework  = ⟨,,,∼⟩) that is also closed
with respect to the rules in  (i.e.,  = Cn⊢()). From this it follows immediately that
the closure postulate from Definition 60 is satisfied. Thus, from the rationality postulates in
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[60], it remains to show consistency. In the context of flat assumption-based argumentation
frameworks, this postulate can be defined as follows [75; 126]:

Consistency: for all extensions  , it holds that there are no �,  ∈  such that
� ∈ ∼ .35

In the non-prioritized setting, as discussed in this chapter, it follows immediately that
extensions for any of the considered semantics are consistent, since otherwise these would
not be conflict-free (recall the definition of attack in assumption-based frameworks, Defi-
nition 33). However, as shown in e.g., [75; 126], whether an assumption-based framework
satisfies consistency in a prioritized setting depends on the definition of the preference or-
dering and the notion of conflict-freeness. A discussion of this is beyond the scope of this
chapter.36

The rationality postulates for inferences (recall Definition 61) have been studied for sim-
ple contrapositive assumption-based frameworks (recall Definition 35) in [121]. Note that,
since the entailment relation for assumption-based frameworks is defined for frameworks and
not for sets of formulas (as in the case of the discussed logic-based approaches), the notion
of syntactically disjoint sets of formulas has to be lifted to assumption-based frameworks.
Two assumption-based frameworks 1 = ⟨L,Γ1,Δ1, ∼1⟩ and 2 = ⟨L,Γ2,Δ2,∼2⟩
are syntactically disjoint if (Γ1 ∪ Δ1) ∣ (Γ2 ∪ Δ2). Besides this new notion of syntactically
disjointness, the definitions of non-interference and crash-resistance remain the same as for
logic-based argumentation and the ASPIC-family.
Proposition 81. ([121, Theorems 7 and 8]) Let = ⟨L,Γ,Δ,∼⟩ be a simple contrapos-
itive assumption-based framework. Table 12 lists under what conditions the corresponding
entailment relations satisfy non-interference for Sem ∈ {Naive,Prf, Stb,Grd,WF}.

In [49] it is shown that
• ABA frameworks with domain-specific rules and whose contrariness relation do not

introduce syntactic discontinuities, i.e., for all formulas � we have that Atoms(∼�) ⊆
Atoms(�), satisfy non-interference, and

• ABA frameworks whose inference rules are induced by logicsL = ⟨, ⊢⟩ for which
⊢ is pre-relevant (see Definition 72), i.e., �1,… , �n →  ∈  iff �1,… , �n ⊢  ,
satisfy non-interference.

35 Since [75; 126] restrict their attention to flat assumption-based argumentation frameworks, this notion of
consistency is equivalent to the following formulation, which bears closer similarities to indirect consistency:
for all extensions  , it holds that there are no �,  ∈  s.t.  ⊢ � and  ⊢  and � ∈ ∼ .

36In contexts where besides the contrariness relation there are other negations (e.g., when translating ex-
tended logic programs into ABA), various notions of consistency may have to be considered (see e.g., [180]).
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Entailment − F ∈ Ab

∣∼⋒Sem Sem ∈ {Naive,Prf,Stb} Sem ∈ {Naive,Prf,Stb}

∣∼∪Sem Sem ∈ {Naive,Prf,Stb} Sem ∈ {Naive,Prf,Stb}

∣∼∩Sem × Sem ∈ {Grd,WF}

Table 12: Results from [121] concerning the conditions and semantics under which simple-
contrapositive assumption-based frameworks satisfy non-interference. × denotes that non-
interference is not satisfied for any Sem ∈ {Naive,Prf, Stb,Grd,WF}.

2.3.3 Inference Principles for Non-Monotonic Reasoning
Next, we examine the argumentation-based entailment relations in Definitions 12, 26 and
36, relative to general patterns for non-monotonic reasoning, originally studied in [162],
[98], [133; 134], and [137]. These works study how to adjust the set of conclusions (which
may be reduced, not necessarily increased) upon a growth in the set of assumptions. In our
case, since the assumptions are divided to strict premises and defeasible premises, it will be
useful to distinguish between the two ways of increasing the set of premises: we shall use the
operator ⊎ for the addition of strict premises and ⋓ for the addition of defeasible premises.
Accordingly, we define:
Definition 82 (premise addition). Let  = ⟨s,d⟩ be a pair of sets of formulas in a lan-
guage .37 We denote:

•  ⋓ � = ⟨s,d⟩ ⋓ � = ⟨s, d ∪ {�}⟩,
•  ⊎ � = ⟨s,d⟩ ⊎ � = ⟨s ∪ {�}, d⟩.
Note that logic-based argumentation is considered here only with respect to defeasible

assumptions, therefore ⊎ will not be used in that context, and the meaning of ⋓ in case the
logic-based argumentation is simply the union, ∪. For the other formalisms, addition of
premises is defined as follows:
Definition 83 (premise addition in ASPIC). Let AT = ⟨⟨, ,, n⟩, ⟨n,p⟩⟩ be an ASPIC
argumentation theory, and let � be an -formula. We define:

• AT ⋓ � = ⟨⟨, ,, n⟩, ⋓ �⟩ (where � ∉ n),

• AT ⊎ � = ⟨⟨, ,, n⟩, ⊎ �⟩ (where � ∉ p).
37The subscripts ‘s’ and ‘d’ indicate that, intuitively, the first component consists of the strict premises and

the second component is the set of defeasible premises.
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Definition 84 (premise addition in ABA). Let  = ⟨,,,∼⟩ be an assumption-
based argumentation framework, and let � be an -formula. We define:

•  ⋓ � = ⟨, ⧵ {Θ→ � ∣ Θ ⊂ WFF(L)}, ∪ {�},∼⟩,38

•  ⊎ � = ⟨, ∪ {→ �}, ⧵ {�},∼⟩.39

Let  = ⟨L,Γ,Δ,∼⟩ be a (simple) contrapositive assumption-based argumentation
framework, and let � be an -formula. We define:

•  ⋓ � = ⟨L,Γ,Δ ∪ {�},∼⟩,
•  ⊎ � = ⟨L,Γ ∪ {�},Δ,∼⟩.40

Using the operators ⊎ and ⋓ we can now consider known postulates for non-monotonic
reasoning, adjusted to the two types of information updates. To make the presentation more
compact we will define the properties for ASPIC, ABA, MCS-based reasoning and logic-
based argumentation in one definition. For this we call a knowledge base one of the follow-
ing:

⋄ an ASPIC argumentation theory AT = ⟨⟨, ,, n⟩, ⟨n,p⟩⟩,
⋄ an assumption-based framework ,
⋄ a set of -formulas for logic-based argumentation with a logic L = ⟨, ⊢⟩, or
⋄ a pair of -formulas ⟨ ′,⟩ in MCS-based reasoning and a logic L = ⟨, ⊢⟩.

In the context of a fixed language  resp. a fixed logic L = ⟨, ⊢⟩ resp. a fixed set of strict
rules s, it will also be useful to consider empty knowledge bases, written KB∅ and denot-
ing, the argumentation theory AT = ⟨⟨, , ∅, n⟩, ⟨∅, ∅⟩⟩ in the context of ASPIC, resp. the
assumption-based framework ⟨,s, ∅, ∅⟩ in the context of assumption-based argumenta-
tion, resp. the pair of empty sets of-formulas ⟨∅, ∅⟩ in the context ofMCS-based reasoning,
resp. the empty set of -formulas in the context of logic-based argumentation.
Definition 85 (properties for non-monotonic reasoning). Let L = ⟨, ⊢⟩ be a propositional
logic, KB a knowledge base, �,  , � -formulas, and ⊔ ∈ {⋓, ⊎}. For an entailment relation
∣∼ ⊆ ℘() ×  we define:

⊔-Cautious Reflexivity (⊔-CREF): KB∅ ⊔ � ∣∼ � where � is ⊢-consistent.

⊔-Reflexivity (⊔-REF): KB∅ ⊔ � ∣∼ �.
38RemovingΘ → � from Γ ensures that ⋓� is flat if so is , and is proposed in [76]. Furthermore,

we let ∼� = ∅ and ∼ is defined as in the original for any  ∈ .
39∼ is defined as in the original for any  ∈  ⧵ {�}.
40Since in the context of simple contrapositive assumption-based frameworks is is not necessary to restrict

attention to flat assumption-based frameworks, � is not removed from Δ.
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Right Weakening (RW): If KB ∣∼ � and � ⊢  then KB ∣∼  .

⊔-Cautious Monotonicity (⊔-CM): If KB ∣∼ � and KB ∣∼  then KB ⊔ {�} ∣∼  .

⊔-Cautious Cut (⊔-CC): If KB ∣∼  and KB ⊔ { } ∣∼ � then KB ∣∼ �.

⊔-Left Logical Equivalence (⊔-LLE): If ⊢ � ≡  and KB ⊔ � ∣∼ � then KB ⊔  ∣∼ �.

⊔-OR (⊔-OR): If KB ⊔ � ∣∼ � and KB ⊔  ∣∼ � then KB ⊔ {� ∨  } ∣∼ �.

⊔-Rational Monotonicity (⊔-RM): If KB ∣∼  and KB ∤∼ ¬� then KB ⊔ � ∣∼  .41

Remark 86. We refer to [133; 134] for a detailed discussion on CM, RW, LLE, OR, and
RM and to [98] for a discussion on CC. All of these properties are well-known and have
been extensively examined in different contexts and for different purposes involving inference
in a non-monotonic way.

Some interesting variations of these properties have been considered in the literature
but have, to the best ouf our knowledge, not been studied for argumentative consequence
relations. For example, an interesting weaker variant of cautious monotony is known as very
cautious monotony (VCM) [116] or conjunctive cautious monotony [43] and is defined as
follows: if Γ ∣∼ � ∧  then Γ ⊔ � ∣∼  . This variant has not been studied yet in structured
argumentation.

Another variation is semi-monotonicity (SM) [7], stating that when adding defeasible
information, every extension (according to a given semantics) of the original framework is a
subset of some extension of the supplemented framework. For more variants of the properties
discussed here, we refer the reader to [43; 95] in which many more variants are discussed
and studied.

The properties inDefinition 85 are often gathered for defining systems for non-monotonic
inference.
Definition 87 (systems for non-monotonic inference). Let ⊔ ∈ {⋓, ⊎}. We say that an
entailment ∣∼ is:

• ⊔-cumulative, if it satisfies ⊔-REF, RW, ⊔-LLE, ⊔-CM and ⊔-CC.

• ⊔-cautiously cumulative, if it satisfies ⊔-CREF, RW, ⊔-LLE, ⊔-CM and ⊔-CC.

• ⊔-(cautiously) preferential, if it is ⊔-(cautiously) cumulative and satisfies ⊔-OR.

• ⊔-(cautiously) rational, if it is ⊔-(cautiously) preferential and satisfies ⊔-RM.
41In ASPIC this has to be rephrased in terms of the contrariness relation instead of negation: If KB ∣∼  and

KB ∤∼ �′ for all �′ ∈ �, then KB ⊔ � ∣∼  .
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Table 13 classifies the argumentation-based entailment relations according to Defini-
tion 87.42

MCS reasoning logic-based arg. simple contrap. ABA ASPIC
System. ∣∼L

∩mcs ∣∼L
⋒mcs ∣∼L,UD

∩gps ∣∼CL,DirUcut
⋒ps ∣∼⋒ps ∣∼∩gps ∣∼Grd (†) ∣∼⋒Stb (‡)

⋓-ccum. Yes Yes Yes Yes Yes Yes Yes Yes
⊎-cum. Yes Yes − − Yes Yes Yes Yes
⋓-cpref. No Yes No Yes Yes No No Yes
⊎-pref. No Yes − − Yes No No Yes
⋓-crat. No No No No No No No No
⊎-rat. No No − − No No No No

Table 13: Overview over the properties of non-monotonic inference. In the table, “(c)cum.”
means “(cautiously) cumulative”, “(c)pref.” means “(cautiously) preferential”, and “(c)rat.”
means “(cautiously) rational”. We let: ∅ ⊂ UD ⊆ {Ucut,Def}, gps ∈ {Grd, Prf , Stb}, and
ps ∈ {Prf , Stb}, Also, (†) means that F ∈ Δ, (‡) means “without defeasible rules”, and “−”
means that the property is not applicable in the context of the given entailment.

The positive results presented in Table 13 follow from the representational results in
Propositions 46, 48 and 51, using the next two propositions:
Proposition 88. Let L = ⟨, ⊢⟩ be a propositional logic. The entailments ∣∼L

∩mcs and ∣∼
L
⋒mcs

are ⋓-cautiously cumulative and ⊎-cumulative.

Proposition 89. LetL = ⟨, ⊢⟩ be a propositional logic and let ⊔ ∈ {⋓, ⊎}. The entailment
∣∼L
⋒mcs is ⊔-preferential.

Proofs of the last two propositions are given in Appendix A.
Remark 90. Some of the results in Table 13 have been shown before. For instance, in [30] it
is shown that ∣∼CL

⋒mcs∅L
is ⋓-preferential, the results for simple contrapositive ABFs are shown

in [117], and the results concerning the ⋓-cautious cumulativity and the non ⋓-cautious
preferentiality of ∣∼L,UD

∩gps follow from [16, Proposition 16 and Note 10].

42Since the credulous entailment is often monotonic (see [31] for MCS-based reasoning and [50, Proposi-
tion 8] for argumentation-based reasoning), the results in Table 13 refer to skeptical entailments.
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Counter-examples for ⊔-OR which justify the negative results in Table 13 are easy to
find. We give some examples for MCS-based reasoning, which in view of the cited repre-
sentational results immediately generalize for the listed argumentation systems in Table 13.
Example 91 (Counter-Example, ⊎-OR, ∣∼∩mcs). Suppose that the underlying logic L is clas-
sical logic, and let  = {¬p ∧ r,¬q ∧ r}. In this case we have:

• ⟨{p},⟩ ∣∼L
∩mcs r, sinceMCS{p}() = {{¬q ∧ r}},

• ⟨{q},⟩ ∣∼L
∩mcs r, sinceMCS{q}() = {{¬p ∧ r}}, while

• ⟨{p ∨ q},⟩ ̸∣∼L
∩mcs r, sinceMCS{p∨q}() = {{¬p ∧ r}, {¬q ∧ r}}.

Example 92 (Counter-example, ⋓-OR, ∣∼∩mcs). Suppose again that the underlying logic L
is classical logic, and let  = {¬p,¬q,¬p ⊃ r,¬q ⊃ r}. Then we have:

• ⟨∅, ∪ {p}⟩ ∣∼L
∩mcs r,

sinceMCS∅( ∪{p}) = {{p,¬q,¬p ⊃ r,¬q ⊃ r}, {¬p,¬q,¬p ⊃ r,¬q ⊃ r}} and thus⋂
MCS∅( ∪ {p}) = {¬q,¬p ⊃ r,¬q ⊃ r},

• ⟨∅, ∪ {q}⟩ ∣∼L
∩mcs r,

sinceMCS∅( ∪{q}) = {{¬p, q,¬p ⊃ r,¬q ⊃ r}, {¬p,¬q,¬p ⊃ r,¬q ⊃ r}} and thus⋂
MCS∅( ∪ {q}) = {¬p,¬p ⊃ r,¬q ⊃ r}, while

• ⟨∅, ∪ {p ∨ q}⟩ ̸∣∼L
∩mcs r,

since MCS∅( ∪ {p ∨ q}) = {{p ∨ q,¬p,¬p ⊃ r,¬q ⊃ r}, {p ∨ q,¬q,¬p ⊃ r,¬q ⊃
r}, {¬p,¬q,¬p ⊃ r,¬q ⊃ r}} and thus

⋂
MCS∅( ∪ {p ∨ q}) = {¬p ⊃ r,¬q ⊃ r}.

Example 93 (Counter-example, ⊔-RM, ∣∼⋒mcs). Let L be classical logic and  = {r, p∧q∧
¬r, (p∧r) ⊃ ¬q, ¬p∧q}. We haveMCS∅() = {{r, (p∧r) ⊃ ¬q,¬p∧q}, {p∧q∧¬r, (p∧r) ⊃
¬q}}. One of the two elements of MCS∅() does not imply ¬p, while both of them imply q.
Thus, ⟨∅,⟩ ∣∼⋒mcs q and ⟨∅,⟩ ̸∣∼⋒mcs ¬p.

Now, consider ⟨∅, ∪ {p}⟩ and ⟨{p},⟩. We have:

• MCS∅(∪{p}) = {{r, (p∧r) ⊃ ¬q,¬p∧q}, {p∧q∧¬r, (p∧r) ⊃ ¬q, p}, {r, p, (p∧r) ⊃
¬q}} and

• MCS{p}() = {{p ∧ q ∧ ¬r, (p ∧ r) ⊃ ¬q}, {r, (p ∧ r) ⊃ ¬q}}.
As a consequence, ⟨∅, ∪ {p}⟩ ̸∣∼⋒mcs q and ⟨{p},⟩ ̸∣∼⋒mcs q. Thus, neither ⊎-RM nor
⋓-RM holds in this case.
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Not so many results on inferential properties are known for fragments of ASPIC+ and
ABA that are beyond those that coincide with reasoning with maximally consistent subsets.
To the best of our knowledge, for ABA frameworks, inferential behavior for these fragments
has only been studied in [126], where the following results are shown:
Remark 94. For flat ABFs that are not necessarily simple contrapositive but whose strict
rule set is contrapositive (see Remark 49), [126] show the following additional results:

• ∣∼⋒Grd satisfies ⊎-CM and ⊎-CC

• ∣∼⋒Prf satisfies ⊎-CC

• if  is well-behaved (recall Remark 49), then ∣∼⋒sem satisfies ⊎-CM for sem ∈
{Prf , Stb}.43

Another study of inferential behavior of assumption-based argumentation is given in [74]
(in [76] it is extended to ABA+), where yet another set of postulates is studied. For example,
cautious cut and cautious monotony are defined in [74] as follows:
Definition 95. Given  = ⟨,,,∼⟩, for an arbitrary extension  ∈ Sem( )-formula � ∉ , and ⊔ ∈ {⋓, ⊎}, we define:
⊔-SCC: If � ∈ Cn⊢(), then for every  ′ ∈ Sem( ⊔ �), Cn⊢() ⊆ Cn⊢( ′).
⊔-WCC: If � ∈ Cn⊢(), then for some  ′ ∈ Sem( ⊔ �)), Cn⊢() ⊆ Cn⊢( ′).
⊔-SCM: If � ∈ Cn⊢(), then for every  ′ ∈ Sem( ⊔ �)), Cn⊢() ⊇ Cn⊢( ′).
⊔-WCM: If � ∈ Cn⊢(), then for some  ′ ∈ Sem( ⊔ �)), Cn⊢() ⊇ Cn⊢( ′).

It can be shown that, for each ⊔ ∈ {⋓, ⊎}, ∪-CC and ⊔-CM, defined for ∣∼∪Sem, imply,
respectively, ⊔-WCC and ∪-WCM (and, obviously, ⊔-SCC and ⊔-SCM also respectively
imply the two latter rules).

The following proposition and examples are shown in [74]:
Proposition 96. For each ⊔ ∈ {⋓, ⊎},

• grounded semantics satisfies ⊔-SCC and ⊔-SCM,

• preferred and stable semantics satisfy ⊔-WCC and ⊔-WCM.

Here are counter-examples to ⊎-SCC and ⊎-SCM for preferred and stable semantics:
43The satisfaction of the postulates for ∣∼∩sem and ∣∼∪sem-entailments are not studied in [126], and neither is

satisfaction of properties such as ⊎-REF, ⊎-LLE, RW or ⊎-OR. The same holds for any of the ⋓-properties.
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Example 97. Let = ⟨{p, q, r, p′, q′, r′, s},,,∼⟩ with
 = {p, q, r},

 = {p→ q′; r→ p′; q → p′; q → s; s→ r′}, and

∼x = {x′} for any x ∈ .

A fragment of the attack diagram of this ABF is given in Figure 8a. Here {q} is the unique
preferred and stable extension and {q} ⊢ s. Consider now ⊎ {s} (see Figure 8b for
a fragment of the attack diagram). Now there are two preferred (and stable) extensions: {q}
and {p}. Since Cn({p}) ⊈ Cn({q}), it follows that ⊎-SCM is violated. Likewise, since
Cn({p}) ⊉ Cn({q}), it follows that ⊎-SCC is violated.

Notice that this example is also a counter-example to ⊎-CM for ∣∼⋒Sem with Sem ∈
{Prf , Stb}, as  ∣∼⋒Sem s and  ∣∼⋒Sem q, yet  ⊎ {s} ∤∼⋒Sem q.

Here are counter-examples to ⋓-SCC and ⋓-SCM for the preferred semantics:
Example 98. Let be as in Example 97. Observe that:

 ⋓ {s} = ⟨{p, q, r, s, p′, q′, r′, s′},,,∼⟩, with
′ = {p, q, r, s},

′ = {p→ q′; r→ p′; q → p′; s→ r′}, and

∼x = {x′} for any x ∈ .

A fragment of the attack diagram of this ABF is given in Figure 8c.
The framework ⋓{s} has two preferred (and stable) extensions: {q, s} and {p, s}.

In this case ⋓-SCM is violated, since Cn({q}) ⊈ Cn({p, s}). Likewise, ⋓-SCC is vio-
lated, since Cn({q}) ⊉ Cn({p, s}).

As in Example 97, this example can also be seen to be a counter-example to ⋓-CM.

In [135], inference properties are studied for ASPIC+. However, right weakening, left
logical equivalence and reflexivity are defined there in a different way. In more detail, [135]
study the following alternative versions of these rules:
Definition 99 (alternative inference properties). Given an ASPIC argumentation theory
AT = ⟨⟨, ,, n⟩, (n,p)⟩, -formuals �,  , an operator ⊔ ∈ {⊎,⋓} and an entailment
relation ∣∼ as in Definition 26, we say that ∣∼ satisfies:

REFd if � ∈ p then AT ∣∼ �

REFs if � ∈ n then AT ∣∼ �
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{q}

{r}

{p}

(a) Diagram for 

{q}

{r}

{p}

∅

(b) Diagram for  ⊎ {s}

{q}

{r}

{p}

{s}

(c) Diagram for  ⋓ {s}
Figure 8: Attack diagrams for Examples 97 and 98. To avoid clutter only attacks from
minimal sets are included.

RWd if AT ∣∼ � and � ⇒  ∈ d then AT ∣∼  

RWs if AT ∣∼ � and � →  ∈ s then AT ∣∼  

⊔-LLEd if �⇒  ∈ d ,  ⇒ � ∈ d and AT ⊔ � ∣∼ � then AT ⊔  ∣∼ �

⊔-LLEs if � →  ∈ s,  → � ∈ s and AT ⊔ � ∣∼ � then AT ⊔  ∣∼ �

Notice that RW implies RWs and ⊔-LLE implies ⊔-LLEs (for any ⊔ ∈ {⊎,⋓}), REFs
implies ⊎-REF (but not vice versa) and REFd implies ⋓-REF (but not vice versa).

The main positive results of [135] are the following:
Proposition 100.

• ∣∼⋒Grd satisfies REFs, RWs, LLEs, ⋓-CM and ⋓-CC.

• ∣∼⋒Prf satisfies REFs, RWs, LLEs and ⋓-CC.

• ∣∼∩Prf and ∣∼∪Prf satisfy REFs, RWs and LLEs.

We conclude this section by making some observations on both the significance of sat-
isfaction or violations of the properties discussed in this section and the current state of the
art. On one hand, there is a long tradition in non-monotonic logic which claims or assumes
the properties for cumulative inference relations to “constitute a basic set of principles that
any reasonable account of defaults must obey” [108]. As such, the satisfaction of such prop-
erties can be seen as a minimal condition on any formalization of non-monotonic reasoning.
However, the generality of this claim has been put into doubt by, e.g. Bochman [41; 42;
43], who posits a distinction between explanatory and preferential reasoning, where only
for the latter cumulativity is feasible. Furthermore, some of the properties considered in this
section are not outside of controversy, such as rational monotony (cf., for instance, [163]).
In sum, we submit that the feasibility of the postulates for non-monotonic reasoning depends
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on the precise context of application. Once this is decided, the results in this section offer
some indications of which formalisms are appropriate for specific needs.

Finally, it is evident from this survey that the formalizations of the properties differ
greatly in different works, making it difficult to compare results and transfer them between
systems. Therefore, we think that it is an important direction for future work to study the
relations between the different formulations of the properties studied in this section, and
– more generally – to express some other criteria for relating and comparing the different
approaches to logic-based argumentations, as well as their relations to other forms of non-
monotonic reasoning. Some steps in this direction are reviewed in the next section.

2.4 Comparative Study
In this section we review some results concerning the inter-relations among the three logic-
based approaches to formal argumentation considered in Section 2.2, as well as some of their
connections to related methods to defeasible reasoning.

2.4.1 Relations among the Logic-Based Approaches
From the descriptions of logic-based argumentation, assumption-based argumentation and
ASPIC+ given above, the similarities of the frameworks are clear: they all use the same
pipeline-methodologywhere an argumentation framework is constructed from the following
components:

• a core (base) logic that determines the underlying language and the consequence re-
lation for the arguments,

• attack rules relating arguments with counterarguments,
• a knowledge-base, encoding the set of the ‘global’ assumptions of the framework,
• an argumentation semantics, according to which sets of jointly acceptable arguments

and their respective accepted conclusions are determined.
However, the formalisms outlined in Section 2.2 clearly differ in the specific ways formal
substance is given to this general methodology. Table 14 gives an overview of the spe-
cific instantiations of the main argumentative concepts by logic-based argumentation (LBA),
assumption-based argumentation (ABA) and ASPIC+.

An important question that arises in such a comparison is concerned with the impact
of the different choices on the resulting inference relation. Such a question can be partly
answered by considering the exact relationship between the formalisms under consideration.
This can be done in several ways, for instance by
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Concept LBA ABA ASPIC+

Knowledge-base  and L ⟨,s,p,∼⟩
⟨, ,, n⟩,
⟨n,p⟩

Arguments support-conclusion sets of assumptions proof treespairs
Attacks various direct defeat undermining,

rebut, undercut
Table 14: Argumentative concepts and their instantiations in logic-based frameworks

1. comparing the inference relations associated with the respective formalisms,
2. investigating translations between the different formalisms, and
3. comparing the relative expressivity of the different formalisms.
Several works, including [150; 11; 117; 48; 121; 126], have concluded that logic-based

argumentation, assumption-based argumentation and ASPIC+ agree on what we could call
a core fragment, namely when the underlying (strict) base logic is classical logic (or even
any contrapositive Tarskian logic), and the defeasible assumptions are some propositional
formulas. Indeed, it follows from Propositions 16, 46 and 48 that all three frameworks
give rise to the same inference relation for the above-mentioned fragment and that this core
fragment coincides with MCS-based reasoning.

Whenmoving away from this core fragment, the formalisms start to behave in fundamen-
tally different ways. First, it should be noted that logic-based argumentation as represented
here, is restricted to (usually contrapositive) Tarskian logics, where the knowledge-base con-
sists of defeasible propositional formulas.44 In contrast, ABA and ASPIC+, do allow to use
not only defeasible, but also strict assumptions. Moreover, ASPIC+ allows to reason with
defeasible rules in addition to defeasible premises, i.e., with ASPIC+ one can make infer-
ences from knowledge bases that ABA cannot handle.

As we will describe below, there are ways to express defeasible rules with the help of
defeasible premises and strict rules, but it seems equally interesting to compare the inferential
behavior of ABA and ASPIC+ for knowledge bases whose only defeasible elements are
premises. In [150, Corollary 8.10] it is shown that given a flat assumption-based framework

44We note that this restriction can be lifted by adding strict assumptions and applying the attack rules only on
the defeasible arguments. See [48] for the details. Here we follow the main line of research so far that combines
logic-based framework with defeasible information only.
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 = ⟨Atoms(),,,∼⟩ (i.e, when for no Θ ∪ {�} ⊆ , Θ ⊢ �.), the ASPIC-
based argumentation framework AT = ⟨⟨Atoms(), , ⟨, ∅⟩, n⟩, ⟨∅,⟩⟩ gives rise to
the same inferences.
Proposition 101. Let = ⟨Atoms(),,,∼⟩ be a flat assumption-based framework.
Consider the ASPIC-based argumentation framework AT = ⟨⟨Atoms(), , ⟨, ∅⟩, n⟩,
⟨∅,⟩⟩ for arbitrary n45 and where is defined by � = ∼� for any � ∈  and � = ∅
otherwise. Then for any † ∈ {∪,∩,⋒} and Sem ∈ {Grd, Prf ,Cmp, Stb}, ∣∼†Sem  iff
AT ∣∼†Sem  .

It follows that for knowledge-bases with a flat rule-base and any semantics subsumed by
complete semantics ABA and ASPIC+ provide the same inferences. However, for non-flat
knowledge-bases, this correspondence breaks down, as demonstrated by the next example.
Example 102. Let Atoms() = {p, q},  = {p → q}, and  = ⟨{p, q},, {p, q},∼⟩
where ∼p = ∅ and ∼q = {q}. For this ABF, the unique preferred extension is ∅. Indeed,
{p} is not admissible since it is not closed (since {p} ⊢ q) and any set containing q is not
admissible (since q attacks itself).

If we move to ASPIC+ we have the argumentation theory AT = ⟨⟨{p, q}, , ⟨, ∅⟩,
n⟩, ⟨∅, {p, q}⟩⟩, and the arguments A = ⟨p⟩, B = ⟨q⟩, C = A→ q.

There is an attack from B to itself and from C to B. Notice furthermore that C is
unattacked (Recall here that no rebuttals are possible in the heads of strict rules, which
is why C does not rebut itself). This means that {A,C} is the unique stable and preferred
extensions.

It is perhaps interesting to note that {A,C} presents a violation of the rationality pos-
tulate of consistency from [58] (see Section 2.3.2, and in particular definition 60). It is
an open question if there are any differences in inferential behavior between ASPIC+ and
non-flat ABA for knowledge-bases whose extensions satisfy all the rationality postulates.

Translation methods. Given both the conceptual differences (as displayed in Table 14)
and the diverging inferential behavior of LBA, ABA and ASPIC+, the correspondences de-
scribed above have been supplemented by translations among the formalisms. Particular
attention has been paid to translations from ASPIC+ into ABA. Conceptually, this corre-
sponds to asking if one can model defeasible rules as defeasible premises. Such a question
has been answered positively in [90] and [123], sharing the same underlying idea: given
an ASPIC-based argumentation framework ⟨, ,s ∪d , n⟩, the underlying language 
is extended to ′ as to contain a name N(r) for every r ∈ d . This name is then added as

45Note that n can be safely ignored since the set of defeasible rules d is empty.
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a defeasible assumption in the ABF.46 The strict rule-base is then supplemented with rules
that ensure that the names of the defeasible rules are handled adequately in the argumenta-
tive inference process. In particular, for every rule r = �1,… , �n ⇒  ∈ d , the following
rules are added (resulting in R(d)):47

• N(r), �1,… , �n →  , which ensures that  is (defeasibly) derivable from {�1,… ,
�n};

•  → N(r) which enables an attack on N(r) if the contrary of the consequent of r is
derivable (thus mirroring rebuttal);

• n(r) → N(r), which enables an attack on N(r) if n(r) is derivable (thus mirroring
undercut).

In [123] it is shown that this translation is adequate for flat argumentation theories for ad-
missible, preferred and stable semantics. In [90], it is shown that their translation is adequate
for any semantics subsumed by complete semantics. In the following, given a flat48 argu-
mentation theory AT = ⟨⟨, ,s ∪d , n⟩, ⟨n,n⟩⟩, let

 (AT ) = ⟨,s ∪ R(d) ∪ {→ � ∣ � ∈ n},p ∪ {N(r) ∣ r ∈ d},∼⟩
We now recall the adequacy result from [123]
Proposition 103. Given a flat argumentation theory AT , † ∈ {∩,∪,⋓}, and Sem ∈ {Prf ,
Stb}: AT ∣∼†Sem � iff (AT ) ∣∼†Sem �.

No adequate translation is known for non-flat argumentation theories.

Expressivity, Complexity and Representation of Arguments. A third way to compare
the logic-based approaches to formal argumentation considered in this chapter is by studying
their expressiveness. In other words, one may compare the answers to the question: “what
kind of problems can be solved by this formalism” [165]. In terms of feasibility, this often
boils down to questions of computational complexity. In that respect, we note that while
the complexity of ABA has been studied in [83], for LBA and ASPIC+ similar complexity
results are missing. As noted in [147], the complexity of these formalisms is indeed an
important open question.

46In [90] the language is also extendedwith an atom not for every�1,… , �n ⇒  such that in the translated
ABF, not  is a defeasible assumption similar to negation as failure.

47For simplicity, we denote by � any �′ ∈ �.
48An argumentation theoryAT = ⟨⟨, ,s ∪d , n⟩, ⟨n,p⟩⟩ is flat if there is no A ∈ Arg(AT ) such that

Conc(A) ∈ p ⧵ Prem(A).
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Another point of difference between the formalisms is related to how exactly argu-
ments are represented. In ASPIC+ and logic-based argumentation, arguments are formed
for specific conclusions. In ABA, on the other hand, nodes of an argumentation graph are
made up of sets of assumptions, without a specific conclusion. In this sense, ABA can
be said to operate on the level of equivalence classes of arguments with the same sup-
port. For this reason, given a finite set of defeasible assumptions, ABA will give rise to
an argumentation graph bounded by the size of the power set of the set of defeasible as-
sumptions. Logic-based argumentation and ASPIC+, on the other hand, might still gener-
ate an infinite argumentation graph since the underlying base logic might generate an in-
finite set of conclusions for every set of defeasible assumptions. On the other hand, this
also means that in ASPIC+ and logic-based argumentation, all the possible conclusions
are present in the argumentation graph, whereas in ABA these conclusions have to still
be derived. Altogether, we can summarize this difference as follows: ABA represents
arguments in a more compact way, which has both positive aspects (e.g. boundedness of
the argumentation graph) and negative aspects (e.g. some information might not be read-
ily present in the argumentation graph). In [5], a procedure is developed to compute a fi-
nite core of a logic-based argumentation system, which returns all the results of the orig-
inal system. Similarly, in [16] congruence relations (and their corresponding structures)
are discussed for argumentation frameworks in the context of sequent-based argumenta-
tion, e.g., based on equivalent support sets of arguments. For ASPIC+, the problem of
having infinite number of arguments out of a finite set of assumptions is avoided in [77;
78] in the context of dialectical argumentation frameworks and depth-bounded logics. This
approach involves preferences among arguments and is concentrated on classical logic as
the base logic of the framework.

2.4.2 Connections to Other Approaches
Next, we discuss relations between the logic-based argumentation formalisms presented in
this chapter and other formalisms for defeasible reasoning. Clearly, it is not possible to
formally and fully define here all the related formalisms, thus in what follows we just give
some general description of each related formalism, together with some references for fur-
ther reading. This means also that we will not be able to express the relations between the
formalisms in detail, but instead we shall provide the general underlying ideas and references
to papers where the relations are fully described.

It was arguably one of the goals of Dung in [85] to show that the way conflicts are
handled in abstract argumentation theory correspond to the way conflicts are handled in
many different kinds of formalisms for defeasible reasoning. In [85], Dung showed that this
is the case by proving representation results for several formalisms for defeasible reasoning.
He showed how to construct argumentation graphs for several such formalisms in a way
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that is both intuitive and gives rise to an adequate representation when applying the abstract
argumentation semantics to the resulting argumentation graph.

Since then, various additional argumentative characterizations of formalisms for defea-
sible reasoning have been proposed. We have already mentioned in Section 2.3.1 argu-
mentative characterizations of reasoning with maximal consistent subsets [155] by logic-
based argumentation, assumption-based argumentation and ASPIC+. In the rest of this sec-
tion we use these formalisms for argumentative characterizations of adaptive logics [26;
167], default assumptions [138], logic programming [8], default logic [154] and autoepis-
temic logic [148]. An illustration of these relations in given in Figure 9 at the end of this
section.

A. Adaptive Logics Adaptive logics offer a general framework for defeasible reasoning.
A plethora of forms of defeasible reasoning has been explicated in the adaptive logic frame-
work. Some examples are: the modeling of abduction (e.g., [142; 107]), inductive general-
ization (e.g., [27; 25]), default reasoning (e.g., [166]), reasoning from incompatible obliga-
tions (e.g., [29; 174]), causal discovery (e.g., [175]), reasoning with vague predicates (e.g.,
[176]), diagnostic reasoning (e.g., [182]), etc.

Adaptive logics comewith a dynamic proof theory extending a Tarskian core logic with a
set of retractable inferences which are associated with defeasible assumptions. More specif-
ically, these assumptions are sets of formulas of a predefined ‘abnormal’ form that are as-
sumed to be false in the given inference. When an assumption turns out to be dubious in
view of a premise set, the inference associated with it gets retracted.

Semantically, adaptive logics are based on preferential semantics that are adequate rela-
tive to the dynamic proof theory. Given a Tarskian core logic L, not all the L-models of the
premises are considered when determining the consequences, but only a sub-class is “se-
lected”, namely those models which are “sufficiently normal”. Different types of adaptive
logics follow different strategies that offer specifications of what it means to be sufficiently
normal. For instance, in adaptive logics that follows the minimal abnormality strategy, those
models are selected for which there are no models that verify less abnormal formulas.

As shown in [123], there is a straightforward translation of the framework of adaptive
logics into ABA: given an adaptive logic AL = ⟨L,Ω⟩, where L = ⟨, ⊢⟩ is a Tarskian
logic and Ω ⊆  is a set of abnormalities, and a set of premises Γ, the corresponding ABF
is defined as AL = ⟨L,Γ, {¬� ∣ � ∈ Ω},∼⟩, where ∼¬� = �. It is shown that for
preferred, naive and stable semantics, this translation is adequate to represent different types
of adaptive strategies.

B. Logic Programming Logic programming (LP) is one of the most popular approaches
to knowledge representation and has been widely studied, implemented and applied [8].
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(Propositional) logic programs are set of rules of the form:
�1 ∨… ∨ �n ←  1,… ,  m,∼ m+1,… ∼ m+l

where �i,  j are formulas for any 1 ≤ i ≤ n and 1 ≤ j ≤ m + l. The left-hand side of
the implication is call the rule’s head and the right-hand side of the implication is the rule’s
body. Now,

• If in all the rules of the program, every �i (1 ≤ i ≤ n) and  j (1 ≤ j ≤ m + 1) is
atomic, the program is called a disjunctive logic program, and

• If, in addition, n ≤ 1 for every rule in the program, the program is called normal.
There are many ways of giving semantics to logics programs. One of the better-known one
is based on the notion of a reduct, which is a set of rules that is calculated on the basis of a
set of atoms. For example,

the Gelfond-Lifschitz reduct [109] 
Δ , of a normal logic program  with respect to a

set of atoms Δ, is constructed as follows: � ←  1,… ,  m ∈

Δ iff � ←  1,… ,  m,∼

 m+1,… ∼ m+l ∈  and  i ∉ Δ for any m < i ≤ m + l.
Based on such a reduct, the semantics of logic programming then describe ways to select
sets of atoms which count as models. For example,

the stable model semantics says that a set of atoms is a stable model if it is the minimal
model of its own Gelfond-Lifschitz reduct.49

The translation of logic programming into assumption-based argumentation has been the
subject of several publications (e.g., [157; 89; 65; 118]). The basic idea underlying all of
these publications is the same: the set of assumptions is made up of negated atoms, and
the contrary of a negated atom is the positive atom. The (strict) rules consist of the rules
of the logic programs. Thus, a set of negated atoms will attack a negated atom if the logic
program and the attacking set allows to derive the positive version of the attacked negated
atom. Therefore, the underlying idea is to assume the ‘absence’ of any atom A appearing
in the logic program (the defeasible assumptions), unless, on the basis of attacks derived by
the programs rules, some set of assumptions indicates that A holds.

The correspondence results in Table 15 where proven in [65] for normal logic programs.
Remark 104. It is interesting to note that L-stable models (i.e. 3-valued stable models that
are maximal w.r.t. atoms assigned a definite truth value) do not correspond to semi-stable
sets of assumptions (see [65, Example 13]), although both of these semantics are based on
the same idea of maximizing the assignment of determinate truth values.

49That is, Δ is a stable model of  if for every p ← q1,… qn ∈

Δ
, either p ∈ Δ or qi ∉ Δ for some 1 ≤ i ≤ n,

and there is no Δ′ ⊊ Δ with the same property.
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ABA Extension LP Model
complete stable (3-valued)
grounded well-founded
preferred regular
stable stable (2-valued)
ideal ideal

Table 15: Correspondence between model of normal logic programs and extensions of ABA
frameworks

The results above were extended in [118] to disjunctive logic programming under sta-
ble model semantics. Furthermore, argumentative characterizations of the so-called well-
justified [159] and well-founded [181] semantics of general or first-order logic programs
(i.e., logic programs where any first-order formula can occur in the head or the body of a
rule) are provided in [89]. These generalizations are based on the same idea as [65]: the
assumptions consist of negated atoms and attacks occur when the attacking set allows to
derive the positive version of the attacked (negated) atom. What changes, however, is the
derivability relation used to determine if attacks occur. For example, in [118] in addition
to allowing for modus ponens on the rules of the program as in [65], one has also to allow
for reasoning by cases and resolution in the derivations. Likewise, in [89] both modus po-
nens on the rules of the program and any deduction valid in first-order logic are allowed.
In [180] extended logic programs [109] under three- and two-valued stable semantics are
translated into assumption-based argumentation. These translations have been used to ob-
tain explanations of (non-)derivability of literals in [158] and explaining and characterizing
inconsistencies of logic programs [156].

C. Default Logics Reiter’s default logic [154] has also been translated in assumption-
based argumentation. Again, here we just we recall the basics of default logic in an informal
way. Defaults are objects of the form

� ∶ M 1, … ,M n
 

.

Here, �,  1,… ,  n,  are formulas in the language, and the intuitive meaning of this ex-
pression is the following:

if � holds, and none of ¬ 1,… ,¬ n is provable, then normally one may sup-
pose that  also holds.
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An extension of a set of defaults Δ is a set of formulas Θ, such that Θ is a fixed point under
the operator ∇Δ, i.e., ∇Δ(Θ) = Θ, where the operator ∇Δ is defined as follows: given a set
Θ, ∇Δ(Θ) is the smallest set such that:

1. for every �∶M 1,…,M n
 

∈ Δ, if � ∈ Θ and ¬ i ∉ Θ for every 1 ⩽ i ⩽ n, then
 ∈ ∇Δ(Θ), and

2. ∇Δ(Θ) = Cn(∇Δ(Θ)),
The translation into ABA proposed in [46] works as follows: the language is that of

classical logic extended with M� for any � ∈ . The assumptions are M� for any � ∈, i.e., we assume (defeasibly) that for any formula � ∈ , its negation is not provable.
The rules are generated by taking the default rules together with a set of rules that captures
(classical) first-order logic. Finally, the contrary ofM� is defined as ¬� (recall thatM� is
interpreted as ¬� not being provable): a positive proof of ¬� gives us a counter-argument
to the assumptionM�.

In [46] it is shown that under this translation, stable extensions in ABA correspond to
Reiter’s default extensions. An interesting open question is whether similar results hold for
other semantics for default logic, such as those from [55; 6; 81].

D. Autoepistemic Logics Moore’s autoepistemic logic [148] is another well-established
formalisms for defeasible reasoning. It involves theories consisting of formulas in a doxastic
language, which is typically the closure L of a propositional language  under a belief
operator L. The intuitive meaning of L� is that ‘� is believed’. Thus, autoepistemic logic
is a formal logic for the representation and reasoning of knowledge about knowledge, and
theories containing formulas of the form L� are viewed are representing “knowledge of
a perfect, rational, introspective agent” [148; 132; 45]. An autoepistemic theory Δ ⊆ L

represents both positive and negative introspection of a logically perfect agent, i.e., � ∈ Δ iff
L� ∈ Δ and � ∉ Δ iff ¬L� ∈ Δ. Autoepistemic logic has been shown to have connections
to many other formalisms for defeasible reasoning, such as several variants of default and
priority logic [130], and several classes of logic programming [141].

A translation of autoepistemic logics to ABA frameworks is provided in [46]. According
to this translation, the set of assumptions is made up of the assumption of both negative
and positive knowledge: Ab = {L�,¬L� ∣ � ∈ }. Thus, both negative and positive
knowledge are assumed equally plausible. However, there are asymmetric treatments when
it comes to the definition of contraries: the contrary of positive knowledgeL� is the negative
knowledge (or absence of knowledge) of ¬L� (i.e., L� = ¬L�). The contrary of absence
of knowledge of a formula, on the other hand, is the formula itself, that is: ¬L� = �. The
rule-base is a set of rules capturing first-order logic, but formulated over the modal language
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L. It is interesting to note, however, that within the rule-base, no rules for the modal
operator are defined. Under this translation, the strict premises consist of the autoepistemic
theory Δ. [46] shows that stable extensions of the translation in ABA correspond to the so-
called consistent stable expansions [148] of the translated autoepistemic theory. For other
semantics, no correspondences are known.

Figure 9 provides a schematic description of the relations among the formalisms de-
scribed in this section.
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Figure 9: Argumentative representations of formalisms for modeling defeasible reasoning,
presented in Sectrion 2.4

Besides the translations discussed above, we mention the following additional transla-
tions which are beyond the scope of this paper:

• In [48] a generalization of sequent-based argumentation, called assumptive sequent-
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based argumentation, is shown to capture assumption-based argumentation, adaptive
logics and default assumptions.

• We note that in [65] it is also shown that assumption-based argumentation can be
translated in logic-programming.

• In [64] translations from normal logic programming to abstract argumentation and
vice-versa have been presented which are adequate for most (but not all) argumenta-
tion semantics.

• In [120] it is shown that approximation fixpoint theory [80], a general approach to
the study of non-monotonic reasoning, can be translated into assumption-based argu-
mentation. This allows for the straightforward translation of many semantic variations
on logic programming, default logic and auto-epistemic logic into assumption-based
argumentation.

• Relationships (and further references) of ASPIC+ to defeasible logic programming
[106], classical logical argumentation frameworks (see the paragraph below Defini-
tion 8) and prioritized formalisms, such as Brewka’s preferred subtheories [52] and
prioritized default logic [53], are described in [146; 147].

• Translations of abstract dialectical frameworks [54] into logic programming respec-
tively system Z [108] are shown in [164] respectively [122].

3 Logical Methods for Studying Argumentation Dynamics
There are a variety of methods for studying the dynamics of argumentation systems.50 This
includes, among others, dialectic games (see [144]), discussions [58], and, to some extent,
even machine learning algorithms [56]. Other approaches involve formal (logic) program-
ming methods, such as reductions to answer set programs (ASP), defeasible logic programs
(DeLP) and constraint satisfaction problems (CSP) (see, e.g., [68] for a description of these
methods and further references).

The common ground of the methods that are described in this section (following the
scope of this chapter) is that all of them assume the availability of an underlying Tarskian
logic and apply related formal methods (e.g., satisfiability of formulas in the underlying
language or proof procedures that allow to make inferences by derivation sequences). In the
first two subsections (3.1 and 3.2) we survey several logic-basic representation methods that

50Recall that ‘dynamics’ means here processes of a (fixed) argumentative framework and not its revision.
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are adequate for expressing the selection of arguments in view of argumentation semantics
and epistemic notions such as beliefs and their justifications in an argumentative setting. In
the last subsection (3.3) we consider proof-theoretic methods that are adequate for structured
argumentation.

3.1 Representation Methods Based on [Quantified] Propositional Languages
As indicated in, e.g., [33] and [94], given a finite argumentation framework, computing its
admissible sets or its complete extensions can be done by a straightforward encoding, in
propositional classical logic, of the requirements in the fourth item of Definition 10. In-
deed, given an abstract argumentation framework  , one may associate a propositional
atom with every argument in  (in what follows, to ease the notations, we shall use the
same symbol for an argument and its propositional variable), and accordingly construct the
following formula:

ADM( ) = ⋀
p∈Arg

((
p ⊃

⋀
(q,p)∈Attack

¬q
)
∧

(
p ⊃

⋀
(q,p)∈Attack

(
⋁

(r,q)∈Attack
r)
))
.51

Clearly, the arguments of an admissible set of correspond to the atoms that are verified
(i.e., those that are assigned the truth value ‘true’) by a model of ADM( ) and, conversely,
everymodel ofADM( ) is associated with an admissible set of , the elements of which
correspond to the verified atoms of the model. Similar considerations hold for the following
formula, representing the complete extensions of :

CMP( ) = ⋀
p∈Arg

((
p ⊃

⋀
(q,p)∈Attack

¬q
)
∧

(
p ↔

⋀
(q,p)∈Attack

(
⋁

(r,q)∈Attack
r)
))
.

Another, more informative way, of representing admissible and/or complete extensions, is
to turn to signed formulas (and so to an underlying three-valued semantics). By this, it is
possible not only to identify the arguments in the extensions (those that are verified by the
models of the formulas), but also identify the arguments that are attacked by the extensions
(those that are falsified by the models of the formulas). Briefly, the idea is to associate every
argument in the framework with a pair ⟨p+, p−⟩ of (“signed”) atoms, the truth values of
which describe the status of the associated argument: accepted (p+ is verified, p− is falsified),

51Recall that⋀∅ = T (truth) and⋁∅ = F (falsity).
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rejected (p+ is falsified, p− is verified), and undecided (both p+ and p− are falsified).52 53 54

Now, consider the following formula :

CMP±( ) = ⋀
⟨p+,p−⟩∈Arg

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
(p+ ∧ ¬p−) ⊃

⋀
(⟨q+,q−⟩,⟨p+,p−⟩)∈Attack(¬q+ ∧ q−)

)
, (1)

(
(¬p+ ∧ p−) ⊃

⋁
(⟨q+,q−⟩,⟨p+,p−⟩)∈Attack(q+ ∧ ¬q−)

)
, (2)

(
(¬p+ ∧ ¬p−) ⊃

(
¬
(⋀

(⟨q+,q−⟩,⟨p+,p−⟩)∈Attack(¬q+ ∧ q−)
)
∧

¬
(⋁

(⟨q+,q−⟩,⟨p+,p−⟩)∈Attack(q+ ∧ ¬q−)
) ))

, (3)

¬
(
p+ ∧ p−

)
(4)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

• the subformula denoted by (1) states that any argument that attacks an accepted argu-
ment must be rejected,

• the subformula denoted by (2) states that any rejected argument must be attacked by
at least one accepted argument,

• the subformula denoted by (3) states that for undecided arguments the previous con-
ditions do not hold,55 and

• the subformula denoted by (4) states that an argumentmay be either accepted, rejected,
or undecided (i.e., a fourth state depicted by p+ ∧ p− is excluded).

The next proposition (proved in [13]) shows the one-to-one correspondence between the
models of CMP±( ) and the complete extensions of .
Proposition 105. Let = ⟨Arg, Attack⟩ be an argumentation framework. Then:

• For every complete extension  ∈ Cmp( ) there is a model of CMP±( ) such
that

52The superscripts + and − have several meaning in different contexts, as A+ (respectively, A−) denotes the
set of arguments that are attacked by (respectively, that attack) A. This notational overloading will not cause
any confusion in what follows. Signed formulas were used in the context of inconsistency-tolerant reasoning in
[39].

53Again, we freely switch between an argument and the pair of atomic formulas that is associated with it, so
a pair ⟨p+, p−⟩ of (signed) atoms also stands for an argument in the framework.

54For a representation in terms of four-valued semantics, where both p+ and p− may be verified, we refer to
[9].

55These three subformulas state conditions that correspond to Caminada’s complete labeling (see [23]). See
also Remark 106.
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– In() = {⟨p+, p−⟩ ∣(p+) = t, (p−) = f} =  ,
– Out() = {⟨p+, p−⟩ ∣(p+) = f, (p−) = t} = +,
– Undec() = {⟨p+, p−⟩ ∣(p+) = f, (p−) = f} = Arg ⧵ ( ∪ +).

• For every model of CMP±( ) there is a complete extension  ∈ Cmp( ) such
that

–  = In() = {⟨p+, p−⟩ ∣(p+) = t, (p−) = f}
– + = Out() = {⟨p+, p−⟩ ∣(p+) = f, (p−) = t},
– Arg ⧵ ( ∪ +) = Undec() = {⟨p+, p−⟩ ∣(p+) = f, (p−) = f}.

Remark 106. The notations in the first bullet of Proposition 105 are not accidental, as they
correspond to the three types of assignments (in, out, undec) of the complete labeling of .56 Moreover, as shown in [13], all the results in this section carry on to labeling seman-
tics.

As an immediate consequence of the last proposition we get a representation of the stable
extension of . Indeed, as a stable extension is a set  ⊆ Arg such that Arg =  ∪ +, by
the last proposition we just have to add a requirement that Undec() = ∅ for every model of a theory. This can be easily done by adding the following ‘excluded middle’ condition:

EM±( ) = ⋀
⟨p+,p−⟩∈Arg

(
p+ ∨ p−

)

Corollary 107. Let  = ⟨Arg, Attack⟩ be an argumentation framework. Then:
• For every  ∈ Stb( ) there is a model of CMP±( ) ∪ {EM±( )} such that

In() =  and Out() = +.
• For every model  of CMP±( ) ∪ {EM±( )} there is a stable extension  ∈

Stb( ) such that  = In() and + = Out().

When it comes to other types of extensions like grounded or preferred extensions, propo-
sitional formulas in classical logic are not sufficient for the representation, since the defi-
nitions of such extensions involve qualitative or comparative considerations. One way of
dealing with this is to incorporate quantifiers in the language. As is shown in [94; 13; 82;
9], for this purpose first-order languages are not necessary, and it is sufficient to remain in
the propositional level, by using quantified Boolean formulas. For this, we extend the under-
lying language with universal and existential quantifiers ∀,∃ over propositional variables.

56Labeling semantics for argumentation frameworks is described, e.g., in [23].
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Intuitively, the meaning of a quantified Boolean formula (QBF) of the form ∃p ∀q  is
that there exists a truth assignment of p such that for every truth assignment of q,  is true.
Clearly, every QBF is associated with a logically equivalent propositional formula, thus
ultimately we are still at the propositional level. This may be formally defined as follows:
Definition 108 (QBF-related notions). Consider a QBF Ψ.

• An occurrence of an atom p in Ψ is called free if it is not in the scope of a quantifier
Qp, for Q ∈ {∀,∃}.

• We denote by Ψ[�1∕p1,… , �n∕pn] the uniform substitution of each free occurrence
of a variable (atom) pi in Ψ by a formula �i, for i = 1,… , n, and denote by T and F
the propositional constants for truth and falsity (respectively).57

• Valuations over QBFs are, as usual, functions that assign truth values to the propo-
sitional variables (the atomic formulas) in the QBFs, and are extended to complex
formulas as follows:
�(¬ ) = ¬�( ),
�( ◦�) = �( )◦�(�) for ◦ ∈ {∧,∨, ⊃},
�(∀p  ) = �( [T∕p]) ∧ �( [F∕p]),
�(∃p  ) = �( [T∕p]) ∨ �( [F∕p]).

Preferred extensions of an argumentation framework  with n arguments that corre-
spond to the n pairs {⟨p+1 , p−1 ⟩,… , ⟨p+n , p−n ⟩}may now be represented by the following QBF:

PRF±( ) = CMP±( )(p+1 , p−1 ,… , p+n , p
−
n ) ∧

∀q+1 , q
−
1 ,… , q+n , q

−
n

(
CMP±( )(q+1 , q−1 ,… , q+n , q

−
n ) ⊃

INC±⊆(p
+
1 , p

−
1 ,… , p+n , p

−
n , q

+
1 , q

−
1 ,… , q+n , q

−
n )
)
.

Here, CMP±( )(p+1 , p−1 ,… , p+n , p
−
n ) is the formula CMP±( ) considered previously, but

with the free variables p+1 , p−1 ,… p+n , p
−
n , and

INC±⊆(p
+
1 , p

−
1 ,… p+n , p

−
n , q

+
1 , q

−
1 ,… q+n , q

−
n ) =⋀

i

(
(p+i ∧ ¬p

−
i ) ⊃ (q

+
i ∧ ¬q

−
i )
)
⊃
⋀
i

(
(q+i ∧ ¬q

−
i ) ⊃ (p

+
i ∧ ¬p

−
i )
)
.

Intuitively, a model of PRF±( ) should satisfy two requirements: the condition in
the first line of the formula (i.e., CMP±( )) assures that the pairs ⟨p+, p−⟩ that are verified
by correspond to a complete extension of . The condition on the second and the third
line (CMP±( ) ⊃ INC±⊆( )) assures that this set of pairs is not strictly ⊂-included in
another set that forms a complete extension of . We thus have:

57That is, for every valuation � it holds that �(T) = t and �(F) = f .
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Proposition 109. ([13]) Let = ⟨Arg, Attack⟩ be an argumentation framework. Then:

• For every preferred extension  ∈ Prf ( ) there is a model  of PRF±( ) such
that In() =  , Out() = +, and Undec() = Arg ⧵ ( ∪ +).

• For every model  of PRF±( ) there is a preferred extension  ∈ Prf ( ) such
that  = In(), + = Out(), and Arg ⧵ ( ∪ +) = Undec().

In a similar way it is possible to represent the grounded semantics as well as other types
of comparative Dung-type extensions, such as semi-stable semantics, eager semantic, ideal
semantics, and so forth (see [13]). In [82] similar QBF-based representations are used for
representing extensions of abstract dialectical frameworks [54], and in [9] they are used
for representing conflict-tolerant semantics. It follows that off-the-shelf SAT-solvers and/or
QBF-solvers may be used for computing argumentation-based entailments by Dung seman-
tics.

Another approach based on propositional logic is taken in [169]. Again, arguments are
represented by propositional letters in a finite setAtoms. The language of propositional logic
is enriched with a connective ↠ characterized by the axiom scheme (� ∧ (� ↠  )) ⊃ ¬ 
to express argumentative attack. The fact that an argument  (in Atoms) is defeated is then
expressed by:

def =df

⋁
�∈Atoms

(� ∧ (� ↠  )).

In order to express admissible semantics, i.e., the idea that the selected arguments have to
defend themselves from all attacks, the following axiom is used:

(� ∧ ( ↠ �)) ⊃ def .

The logic LA = ⟨L↠
Atoms

, ⊢A⟩ is axiomatized by classical propositional logic enriched with
the three discussed axiom schemes. In order to characterize complete extensions, LA is
enriched with ⋀

�∈Atoms

((� ↠  ) ⊃ def�) ⊃  

resulting in LC = ⟨↠
Atoms

, ⊢C⟩, expressing that if an argument is defended then it is se-
lected.58

Similar to the approach in QBL, in order to characterize grounded and preferred se-
mantics, more formal machinery needs to be employed. Instead of quantifiers, in [169] the

58The presentation of the logics in [169] is slightly simplified in that the original systems also capture argu-
mentative changes, that is, a dynamic proof theory is presented that allows for the addition of new arguments
and new argumentative attacks “on-the-fly”. For a similar approach see our discussion in Section 3.3.
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preferential semantics of adaptive logics is used (recall Section 2.4.2-A). That means, for
the grounded [preferred] semantics those LC-interpretations are selected in which the least
[most] atoms are true. As shown in [173], the selection semantics underlying adaptive logics
can also be expressed in terms of maximal consistent subsets.

Given our previous discussion of MCS-based reasoning, we therefore state the follow-
ing corollary from [169, Theorem 1]: Given a logic L = ⟨, ⊢⟩ and sets  and  ′ of -
sentences, let in the following propositionMC

L ( ′) be the set of all maximally⊢-consistent
sets  of -sentences for which: (a)  ⊆  , and (b) there is no ⊢-consistent set  ′ of -
sentences for which both ( ∩  ′) ⊊ ( ′ ∩  ′) and  ⊆  ′.
Proposition 110. Let = ⟨Args,Attack⟩ be an abstract argumentation framework based
on a finite set of arguments. Consider the language ↠

Args
and let Γ = {� ↠  ∣ (�,  ) ∈

Attacks} ∪ {¬(� ↠  ) ∣ (�,  ) ∉ Attacks}. We have:

• Adm( ) = {Atoms() ∣  ∈ MCSΓLA
(↠

Args
)}

(In other words,  ∈ Adm( ) iff there is a maximallyL-consistent set of sentences for which Γ ⊆  and  = Atoms()),
• Cmp( ) = {Atoms() ∣  ∈ MCSΓLC

(↠
Args

)},

• Grd( ) = Atoms() where {} = MCΓL ({¬� ∣ � ∈ Atoms}),

• Prf ( ) = {Atoms() ∣  ∈ MCΓL(Atoms)} = {Atoms() ∣  ∈ MCΓL (Atoms)},

• SStb( ) = {Atoms() ∣  ∈ MCΓL ({� ∨ def� ∣ � ∈ Atoms})}.59

We note, finally, that the presentation in this section is by no means exhaustive, but
rather meant to illustrate the way logical propositional formulas may be used for encoding
the dynamics of argumentation-based reasoning. Among other approaches that are based on
a Tarskian logic we recall the ones in [103] and [97] based on intuitionistic logic, in [92]
based on Łukasiewicz logic, in [91] based on monadic second order logic, in [101] and [102]
based on classical logic, and in [79] based on first-order logic with finite domains. We refer to
[32] for a recent comprehensive survey on the subject (see in particular Sections 4–8 therein,
which are relevant to the material in this chapter), where also a variety of implementations
are described (summarized in [32, Table 4]).

59SStb( ) is the set of the semi-stable extensions of  , that is: the complete extensions  such that ∪ + is maximal among all the complete extensions of .
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3.2 Representation Methods Based on Modal Languages
In this section we consider several systems for reasoning about argumentation in a modal
logical context. We distinguish two major purposes these systems serve:

1. The first goal, which is shared among all the presented systems and discussed in Sec-
tion 3.2.1, is to express underlying notions of abstract argumentation, such as attacks
and semantic selections, in the object language via modal operators.

2. The second goal, discussed in Section 3.2.2, is to integrate central notions underlying
argumentative reasoning with those expressing argumentation dynamics in Item 1, for
instance, propositional attitudes such as belief and endorsement, and justification. In
this way, the presented logics offer a comprehensive logical model of (meta)argumen-
tation and its dynamics.

We start with the basic settings of [44; 62; 113; 178; 114], which are concerned with
meta-argumentative reasoning, and thenmove on to some frameworks that include epistemic
considerations [115; 161].

3.2.1 Argumentation Logics
Grossi in [113; 114] defines argumentation models to reason about argumentative situations.
An argumentation model  based on an argumentation framework  = ⟨Args,→⟩60 is
a tuple ⟨Args,←, v⟩, where ← is the inverted version of → (that is, A ← B iff B → A).
The pair ⟨Args,←⟩ constitutes a Kripkean possible world frame where arguments provide
the points connected by the accessibility relation ←. As usual, the assignment v associates
each propositional atom with a set of points (arguments) in which they hold.

In the following, we enrich the propositional language by two unary modalities. Thus,
formulas in the language are defined by the following BNF:61

� ∶= Atoms ∣ ¬� ∣ � ∧ � ∣ ⊟ a� ∣ ⊟ u� ∣ F

where Atoms is a set of propositional atoms of the language. The diamond-versions of the
given modal operators are defined as usual: � a =df ¬ ⊟ a¬ and �

u =df ¬ ⊟ u¬. Other
propositional connectives, such as implication ⊃, disjunction ∨, and the propositional con-
stant T for truth are defined as usual in classical propositional logic.

60To keep the original notations, we use in this section the arrow sign for designating the attack relation.
61We use the ⊟ -notation in our language since we will later on generalize this logic to a product logic where

the argumentation-related modalities will provide the vertical axis.

1862



LOGIC-BASED APPROACHES TO FORMAL ARGUMENTATION

Validity for atoms and propositional connectives is defined in the usual way. Similarly,
themodal operators ⊟ a and ⊟ u function like a usual necessitation and universal necessitation
operator. For a model = ⟨Args,←, v⟩ and an argument A ∈ Args, we define:

• , A ⊧ ⊟ a� iff for all B ∈ Args for which A ← B we have , B ⊧ �. Since worlds
are identified with arguments, this definition is understood as follows: all attackers B
of the argument A have the property �.

• , A ⊧ ⊟ u� iff for all B ∈ Args, , B ⊧ �. In words: all the arguments B ∈ Args
have the property �.62

•  ⊧ � iff for all A ∈ Args it holds that , A ⊧ �. The set of all formulas �
for which  ⊧ � is denoted by J�K (the subscript is removed when the context
disambiguates).

In sum, since there are no frame conditions, we are dealing with models of the modal logic
K enriched with universal modality.
Example 111. Consider the argumentation framework and the assignment v presented in
Figure 10.

atom v(⋅)

p {A,A′}

q {A,C}

A

A′

B C

Figure 10: Left: the assignment of Example 111; Right: the argumentation framework of
Example 111

In this case, we have:

• , A ⊧ ⊟ aF and , A′ ⊧ ⊟ aF, expressing that A and A′ have no attackers.

• , B ⊧ �
a ⊟ a F, expressing that there is an attacker against which B cannot be

defended (since this attacker has no attackers).

• , C ⊧ ⊟ a � aT and, C ⊧ ⊟ a � a p, expressing that for all attackers of C there is
a defender (either A or A′)

More generally, we have for any x ∈ Args:
62Thus, if, A0 ⊧ ⊟ u� for some A0 then, A ⊧ ⊟ u� for every A ∈ Args.
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• , x ⊧ ⊟ u
(
(p ∨ q) ⊃ ⊟ a � a (p ∨ q)

)
, expressing that the set {A,A′, C} (consisting

of the worlds in which p ∨ q holds) attacks all its attackers.

As the following proposition shows, the induced logic is expressive enough to charac-
terize several standard semantics.
Proposition 112. ([113, p. 411]) Let = ⟨Args,→⟩ and = ⟨Args,←, v⟩. For J�K = ⊆ Args, it holds that:  ⊧ sem(�) iff  ∈ Sem( ),
where the correspondence between the formula sem and the semantics Sem is the following:

Sem sem(�)

Adm ⊟ u(� ⊃ ( ⊟ a¬� ∧ ⊟ a � a �))

Cmp ⊟ u((� ⊃ ⊟ a¬�) ∧ (� ↔ ⊟ a � a �))

Stb ⊟ u(� ↔ ⊟ a¬�)

Example 113. In Example 111 we have, for instance, that:

•  ⊧ adm(p), since {A,A′} is admissible, while

•  ⊧ ¬cmp(p) and  ⊧ ¬stb(p), since {A,A′} is neither complete nor stable, and

•  ⊧ cmp(p ∨ q) and  ⊧ stb(p ∨ q), since {A,A′, C} is complete and stable.

The logic, however, lacks the resources to express argumentation semantics that are
based on minimality or maximality assumptions, such as grounded and preferred seman-
tics. We recall (see [85]) that the grounded extension is characterized by the least fixed
point of the function

defended ∶ ℘(Args)→ ℘(Args),

which maps a set  of arguments to the set of all arguments in Args that are defended by . Now, recall from our example that ⊟ a� a expresses argumentative defense in the logic,
i.e., , A ⊧ ⊟ a � a � iff J�K defends A. We thus need to characterize the formula  for
which J K is minimal such that J K = J ⊟ a � a  K. For this purpose one can enrich
the argumentation logic by a fixpoint �-operator (see [51] for an introduction to modal �-
calculi), defined as follows: 63

, A ⊧ �p.�(p) iff A ∈⋂{ ∈ ℘(Args) ∣ J�K[p∶=] ⊆ },
63All systems introduced in this section have an adequate axiomatization (see e.g. [113]), which we omit for

space reasons.
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where[p∶=] = ⟨Args,←, v′⟩, v′
Atoms⧵{p} = vAtoms⧵{p}, and v′(p) =  .64

In [114] Grossi tackles preferred and semi-stable semantics65 bymeans of a second-order
formalization:

, A ⊧ ∃p.�(p) iff there is an  ⊆ Args such that[p∶=], A ⊧ �(p).

The following proposition is shown in [113] for the grounded semantics and in [114] for
the preferred and semi-stable semantics:66
Proposition 114. Denote by � ⊑u  the formula ⊟ u(� ⊃  ) and denote by � ⊏u  the
formula (� ⊑u  ) ∧ ¬( ⊑u �). Let � be a formula such that J�K =  ⊆ Args. It holds
that:  ⊧ sem(�) iff  ∈ Sem( ),
where the correspondence between the formula sem and the semantics Sem is the following:

Sem sem(�)

Grd cmpl(�) ∧ ∀q.(cmpl(q) ⊃ � ⊑u q)

Prf cmpl(�) ∧ ¬∃q.(cmpl(q) ∧ � ⊏u q))

SStb cmpl(�) ∧ ¬∃q.((� ∨ � a�) ⊏u (q ∨ � aq)))

In [62], Caminada and Gabbay also use argumentation models, but proceed differently
when characterizing argumentation semantics. Let pi, po and pu be three atoms which are
intended to represent the three argument labels in, out, and undec. We can now elegantly
express the characteristic requirements of complete labelings:67

1. , A ⊧ ( ⊟ aF ∨ ⊟ apo) ⊃ pi expresses that if A is not attacked ( ⊟ aF) or all attackers
of A are out ( ⊟ apo), then A is in;

2. , A ⊧ � api ⊃ po expresses that if A is attacked by an argument that is in, then A
is out;

3. , A ⊧ ⊟ a(po ∨ pu) ∧ � apu ⊃ pu expresses that if A has only attackers that are out
or undec and at least one attacker is undec, then A is undec as well;

64 If  is a set of atoms and v is a valuation, v denotes the restriction of v to the atoms in.
65Recall Footnote 59.
66See below for the treatment of preferred extensions in [161] in terms of a fixpoint �-operator.
67 Recall Remark 106. See [57] and [23] for a characterization of argumentation semantics in terms of

labelings.
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4. , A ⊧ (pi ∨po ∨pu)∧¬(pi ∧po)∧¬(pi ∧pu)∧¬(po ∧pu) expresses that A has exactly
one label.

By restricting argumentation models to those that satisfy Items 1–4 (at every argument
A), we can, for instance, characterize the grounded extension as follows, where again =
⟨Args,→⟩: If for every model  in the restricted class based on the frame ⟨Args,←⟩ we
have, B ⊧ pi then B ∈ Grd( ), and vice versa. Other semantics are represented in [62]
by techniques from circumscription logic.

A different approach is taken in [44] and [178]. The starting point is again an argumen-
tation framework  = ⟨Args,→⟩, but instead of treating arguments as possible worlds in
a Kripkean frame as in the previous approaches, the set of worlds is now given by℘(Args).
Again, the accessibility relation encodes argumentative attacks.

Denote by→℘ the following lifting of→ to℘(Args) ×℘(Args): we write  →℘  ′ iff
there is anA ∈  and a B ∈  ′ such thatA→ B. Let also→℘

C
= (℘(Args)×℘(Args))⧵→℘

be the complement of→℘. Figure 11 shows a simple example.

A B

∅ {A}

{A,B} {B}

∅ {A}

{A,B} {B}

Figure 11: Left: The attack diagram for  = ⟨{A,B},→⟩, where → = {(a, b)}; Middle:
Graph for→℘; Right: Graph for →℘

C
.

The formal language is similar to the ones given above, except that now the propositional
atoms corresponds directly to the abstract arguments:

� ∶= Args ∣ ¬� ∣ � ∧ � ∣ □u� ∣ □a�

The truth conditions of propositional connectives are as usual. We define:
• , ⊧ A iff A ∈  . This expresses that a is a member of the currently considered

set of arguments;
• , ⊧ □a� iff for all ′ for which →℘

C
 ′, it holds that, ′ ⊧ �. This expresses

that � holds for all sets of arguments  ′ not attacked by  .
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• , ⊧ □u� iff for all  ∈ ℘(Args) it holds that , ⊧ �. This expresses that all
sets of arguments have the property �.

Just like the previous formalisms, at its core also this logic is K enriched with a universal
modality. The logic allows us to express core concepts of abstract argumentation such as
attack and defense:

•  ⊧ □u(A ⊃ □a¬B) expresses that A attacks B,
•  ⊧ □u(

⋀ ⊃ □a¬
⋀ ′) expresses that some argument A ∈  attacks some

argument A′ ∈  ′,
•  ⊧ □u

⋀
 ′∈℘(Args)

(
□u(

⋀ ′ ⊃ □a¬A) ⊃ □u(
⋀ ⊃ □a¬

⋀ ′)) expresses that
the set of arguments  defends the argument A.68

In a series of articles Gabbay and various co-authors investigate logical characterizations
of argumentation frameworks. In [102] and [103] the basic idea is similar to the systems
presented above: arguments are represented by propositional atoms, and the fact that an
argument A attacks argument B is represented by the formula A ⊃ ∼B, in which ⊃ is an
implication and ∼ is a negation of the underlying logic. Different core logics are considered:

• In [103] the underlying logic is the intuitionistic logic G3, whose Kripkean models
consist of two linearly ordered worlds (also known as Here-and-There logic [149]).

• In [102] the underlying logic is classical and ∼ is a strong negation N, for which
∼p ⊃ ¬p but not necessarily vice versa (where ¬ is the classical negation).69 N can
be used to express different argument label/statuses: a holds if a is in, Na holds if a
is out and ¬a ∧ ¬Na holds if a is undec.

Remark 115. The negationN in the second item also has an elegant modal characterization
in the logic CNN [102]. Like G3, there are two worlds in the underlying pointed Kripkean

68To express this, the set Args is supposed to be finite (otherwise a second-order approach is needed). In
order to express properties of specific semantics the authors enhance their modal logic by unary non-normal
modal operators. We refer to [178] for further details.

69An earlier characterization of Dung-style argumentation in classical logic has been presented in [101] for
stable semantics (as well as for complete semantics in a 3-valued setting). The only logical connective in the
presented system is the “Peirce-Quine-Dung dagger” ⇓, a generalization of the Peirce-Quine dagger or of NOR:
⇓ Δ is true iff ⋁

Δ is false. The attack relation corresponds in this representation to the direct subformula
relation (which is generalized to equivalence classes in order to deal with attack cycles): note that if ⇓Δ is true
all members ofΔ are false and, vice versa, if some member ofΔ is true, ⇓Δ is false. In this context Gabbay also
develops a “geometric concept of proof” which concerns inference rules (such as geometrical modus ponens)
that operate on patterns of a given attack diagram and which are adequate to a given proof procedure in the
Peirce-Quine-Dung-Dagger logic. Similar to the modal systems discussed here, the logic in [101] offers several
generalizations, such as quantifiers, higher-order attacks, etc.
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models, just now for each world the other world is the only accessible one. The modal
truth conditions for N are then spelled out by: N� holds in one world iff ¬� holds in the
other. Similarly to intuistionistic possible worlds models (including those of G3), models of
CNN are constrained by a “monotony” requirement on ⊧: if p holds at the actual world, it
necessarily holds at the other world as well. However, if p holds at the non-actual world, it
need not hold at the actual world, although the actual world is accessible.

The translations of a given argumentation framework into the language of G3 (see Equa-
tion (1)) or of CNN (see Equation (2)) are also similar for both systems, where for each
x ∈ Args, x− = {y ∈ Args ∣ y → x} and the formula n in Equation (1), introduced to
identify the actual world, can be defined by⋀x∈Args(x ∨ ¬x):70

⋀
x∈Args

⎛
⎜⎜⎜⎜⎝

if in, all attackers out
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(
x ⊃ (n ∨

⋀
y∈x−

¬y)
)
∧

if all attackers out, then in
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(⋀
y∈x−

¬y ⊃ (n ∨ x)
)
∧

if out, some attackers in
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(
¬x ⊃ (n ∨

⋁
y∈x−

y)
)

∧

if some attackers in, then out
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(⋁
y∈x−

y ⊃ (n ∨ ¬x)
)
⎞⎟⎟⎟⎟⎠

(1)

⋀
x∈Args

⎛
⎜⎜⎜⎜⎝

x in iff all attackers out
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(⋀
y∈x−

Ny↔ x
)
∧

if all attackers not in and some und, then und
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞((⋀
y∈x−

¬y ∧
⋁
y∈x−

¬Ny
)
⊃ (¬x ∧ ¬Nx)

)
∧

x attacks y
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(⋀
x∈y−

x ⊃ Ny
)
⎞
⎟⎟⎟⎟⎠

(2)

In both systems (i.e., the Kripkean semantics for G3 and in CNN), we can, for each
atom, identify one of the truth-assignment patterns in (the left part of) Table 16 relative to
the two worlds in a given model. These patterns correspond to argument labels as indicated
in the same table. This means that the models of the translated argumentation frameworks
are one-to-one related to the complete labelings of the framework. As a consequence, the
entailed atoms characterize the grounded extension. Stable semantics can be characterized
by demanding excluded middle p ∨ ∼p (where again in the case of G3 ∼ is intuitionistic
negation and in the case of CNN it is strong negation).

We illustrate this by means of the argumentation framework in Figure 12.
70Clearly, like previous encodings, the translations presuppose a finite set of arguments.
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G3 / CNN LN1

in out undec in out undec

w1 1 0 0 1 0 1 w1

w2 1 0 1 1 0 0 w2

1 0 1 w3

Table 16: Overview: truth-value assignment pattern and argument labelings. Note that in
G3 and CNN two worlds are used, while in LN1 there are three worlds.

A

A′

B C

G3 / CNN LN1

w1 w2 w1 w2 w3 label
C 1 1 1 1 1 in

B 0 0 0 0 0 out

A 1 1 1 1 1 in

A′ 0 1 1 0 1 undec

Figure 12: Example for the characterizations of the given AF on the left in the logics G3,
CNN and LN1

A related approach is introduced in [100] and [62], where argumentation frameworks
are characterize in terms of provability logic71 and argumentation labelings are modeled in
terms of fixed points of modal formulas. The underlying logic LN1 is given by K4, enhanced
with:

• LÃűb’s axiom (◊� ⊃ ◊(� ∧□¬�)),
• an axiom of linearity ((◊� ∧◊ ) ⊃ (◊(� ∧  ) ∨◊(� ∧◊ ) ∨◊( ∧◊�))), and
• some axioms characterizing the behavior of atoms: (p ⊃ □(¬p ⊃ □p),□(□⊥∨p)↔
□p and□(□⊥ ∨ ¬p)↔ □¬p).

Pointed LN1models are such that the accessibility relation < forms finite linear chains start-
ing with the actual world. Additionally, it is required that if all non-endpoints of < agree on
the assignment of an atom, then the endpoint takes over the same assignment.

71A similar approach was used in [99] for cyclic logic programs.
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Let G� = � ∧□�. Argumentation frameworks are translated into the language of LF1
as follows:

G

⎛
⎜⎜⎜⎝
□⊥ ∨

⋀
x∈Args
x−≠∅

(
x↔

⋀
y∈x−

◊¬y

)⎞
⎟⎟⎟⎠
∧

⋀
x∈Args
x−=∅

Gx (3)

In [100] it is shown that there is a one-to-one correspondence between LP1-models of
the formula in Equation (3), whose states form chains of length 3, and complete labelings
of the given argumentation framework. As was the case for G3 and CNN, we can again
uniquely associate argument labels with valuation patterns at the given possible worlds (see
the right-hand side of Table 16). We show how this plays out in our example in Figure 12.
Remark 116. The logics G3,CNN and LN1 can readily express higher-order and joint at-
tacks, as well as argument quantifiers. We refer to the original papers for more details.

3.2.2 Belief, Informativeness and Awareness
One of the advantages of using modal argumentation logics is the possibility to integrate
epistemic modalities. In this section we demonstrate this.

Grossi and van der Hoek [115] propose a modal product logic (see [105]) in which the
argumentation logic from [113; 114] (see our discussion in the previous section) provides
one ingredient and a KD45 epistemic logic provides another. The latter have frames of the
form ⟨ ,⟩, where  is a set of (epistemic) states and  ⊆  is a non-empty subset of  ,
namely those that a given agent considers possible. A frame of the product logic is then
the product of an epistemic frame ⟨ ,⟩ and an argumentation frame ⟨,←⟩. The domain
of a model  of the product logic is the Cartesian product between epistemic states and
arguments ( ×Args) and its assignment function v associates propositional atoms with sets
of state-argument pairs in its domain. One can picture the workings of such a product logic
in terms of a chess-board with epistemic states providing the x-axis and arguments providing
the y-axis (see Example 117 below for a concrete illustration). The epistemic modality,⊟b,
and its universal cousin, ⊟u, move along the x-axis while keeping arguments fixed. The
argumentative modality ⊟ a and ⊟ u, move along the y-axis while keeping states fixed:

• , (s, A) ⊧ ⊟ a� iff for all B ∈ Args such that A ← B, we have: , (s, B) ⊧ �

• , (s, A) ⊧ ⊟ u� iff for all B ∈ Args, we have: , (s, B) ⊧ �

• , (s, A) ⊧ ⊟b� iff for all s′ ∈  , we have: , (s′, A) ⊧ �.
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• , (s, A) ⊧ ⊟u� iff for all s′ ∈  , we have: , (s′, A) ⊧ �.
Grossi and van der Hoek also introduce a designated symbol/atom � to signify that an

argument A supports an epistemic state s in case, (s, A) ⊧ �.
To illustrate these definitions, we take a look at an example.

Example 117. Consider the following argumentative scenario (inspired by [143] and
[113]):

Default (C) It was sunny yesterday, so it will be sunny today.

Pete (B) Currently there are thick clouds, it is going to rain and storm.

CNN (A) The weather report of the CNN reports sunny but windy weather.

FOX (A′) The weather report of FOX news reports sunny and calm weather.

We use the atoms w for it “being windy”, s for it “being sunny”, and CNN, FOX, and
Pete are atoms that indicate sources of information.

We consider the epistemic states  = {s1, s2, s3} where the possible epistemic states of
our agent are = {s1, s2}. Figure 13 illustrates the situation. On the y-axis we find our four
arguments where the arrows between them illustrate the inverted(!) attack relation. On the
x-axis we find the epistemic state, where the possible epistemic states in  are highlighted.

• Highlighted in boxes along the x axis are properties of arguments that are robust under
changes of the epistemic state. For instance,

– , (si, A) ⊧ CNN for all 1 ≤ i ≤ 3, which indicates that argument A is based on
evidence from CNN.

– Similarly, argument A′ is based on evidence from FOX, etc.

• Highlighted in boxes along the y-axis are properties of epistemic states that are robust
under changes of the considered argument. For instance,

– , (s1, x) ⊧ s ∧ ¬w for all x ∈ {A,A′, B, C}, which expresses that according
to state s1 we have calm and sunny weather.

• The symbol � indicates which arguments support which epistemic states. For instance,

– , (s2, A′) ⊧ � meaning that argument A′ supports state s2.

In the given systemwe can express properties that concern information states that involve
both beliefs and argumentative properties, such as:
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s1 s2 s3

A

A′

B

C

CNN

FOX

Pete

¬w
s

w
s

w
¬s

�

� �

�

�


Figure 13: Model in for Example 117. The vertical [horizontal] boxes represent proper-
ties of states [arguments] that are robust under changes of the considered arguments [states].

•  ⊧ (¬s ∧ �) ⊃ ⊟ a(CNN ∧ FOX) meaning that if an argument supports “not sunny”
then all attackers of it rely on CNN or FOX.

•  ⊧ ⊟b(s ∧ ((w ∧ �) ⊃ (FOX ∨ �
aPete))) meaning that our agent believes s and

that if an argument supports windy weather then it relies on FOX or it is attacked by
an argument that relies on Pete.

Grossi and van der Hoek enrich this framework further by an endorsement operator

⊟ e that works similar to ⊟b except that it operates on the y-axis and therefore concerns
arguments rather than epistemic states: instead of fixing a set of possible belief states we
now fix a set of endorsed arguments  ⊆ Args and define:

• , (s, A) ⊧ ⊟ e� iff for all a ∈  , , (s, a) ⊧ �.
This way it is possible to formally characterize several types of argumentation-based beliefs:

• SB� = ⊟b( ⊟ u� ∧ � u�) expressing an (argumentatively) supported belief in �,
• EB� = ⊟b( ⊟ u� ∧ � e�) expressing an endorsed supported belief in �, and
• JB(�,  ) = ⊟b( ⊟ u�∧ � e(� ∧⊟u )) expressing a belief in �, justified by a belief in
 .72

72In this definition also a universal belief modality is used, which is defined as usual.
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Example 118. Suppose that in Example 117 we have six agents, Anne, Bill, Chris, Dan, Eli,
and Fay that endorse different arguments and have different beliefs. We have, for instance:

Anne Bill Chris Dan Eli Fay

Endorsed arguments {A′, C} {C} {A} {B} {A′, C} {B}

Possible belief states {s2} {s1, s2} {s1} {s1, s2} {s3} {s3}

SBs Yes Yes Yes Yes No No

EBs Yes Yes Yes No No No

JB(s, FOX) Yes No No No No No

JB(s, CNN) No No Yes No No No

JB(¬s, Pete) No No No No No Yes

While in the framework of Grossi and van der Hoek belief and argumentative considera-
tions are treated by independent modalities, in [161] beliefs are dependent on the underlying
argumentative structure. For this they consider argumentation-support modelswhich are de-
fined as product modal logics similar to the models discussed above. Let us highlight some
differences. First, the language in [161] does not allow for arbitrary nesting of modalities.
The underlying grammar is defined as follows:

� ∶= ⊤ ∣ p ∣ ¬� ∣ � ∧ � ∣ ⊟u� ∣ ⊟ u� � ∶= ⊤ ∣ □a� ∣ ¬� ∣ � ∧ � ∣ ⊟ �a� ∣ Gfp
�

While �-formulas express facts about possible worlds, �-formulas describe arguments.
To explain the meaning of the different modal operators, let us take a look at the semantics.

For this we take a closer look at the argumentation-support models introduced. An ar-
gumentation-support model is given by a tuple ⟨ ,Args, {←X ∣ X ⊆ }, vs, va⟩, where  is
a (non-empty) set of (factual) states, Args is a set of arguments, for each X ⊆  , ←X is a
contextualized (inverted) attack relation, and vs [respectively, va] associates propositional
atoms [respectively, arguments] with [non-empty] sets of states.73 74 Just like in [115],
formulas are evaluated at state-argument pairs. For all classical connectives this works as
expected (e.g.,M, (s, A) ⊧ p iff s ∈ vs(p), and,M, (s, A) ⊧ �1 ∧ �2 iffM, (s, A) ⊧ �1 and
M, (s, A) ⊧ �2, etc.). Let us therefore take a look at the modal operators.

First, we notice that the attack modality ⊟ �a is contextualized to formulas � expressing
claims that are disputed in the respective attacks.

73Note the difference of this approach to the models of [115], in which there is only one assignment function
v ∶ Atoms → ℘( × Args).

74In [160] and in a similar setting the same authors propose a topological semantics to model evidence
supporting arguments.

1873



ARIELI, BORG, HEYNINCK, STRASSER

• , (s, A) ⊧ ⊟ �a iff for all B for which A ←J�K B, it holds that , (s, B) ⊧  
(where J�K = {s′ ∈  ∣M, (s, C) ⊧ � for any C ∈ Args}). In words: all attackers
B of the argument A in a dispute about the claim � satisfy  (where, just like in the
product logics of [115] discussed above, we keep the given state fixed).

The authors consider several constraints on this relation:
1. A ←X B iff A ←W ⧵X B. Clearly, if the attack concerns the question whether X is

the case, it will equally concern the question whetherW ⧵X is the case.
2. If A←X B then

(a) va(A) ⊆ X or va(A) ⊆ W ⧵X, and
(b) va(A) ⊆ X implies va(B) ⊆ W ⧵X.

The attacked argument will either support X or W ⧵ X and the attacking argument
should have an opposite stance.

3. If A ←X B and va(A) ⊆ Y ⊂ X, then A ←Y B. If B attacks A concerning the claim
X and A supports the stronger claim Y , then B also attacks A on the stronger claim.

The universal vertical and horizontal modalities ⊟ u and ⊟u are analogous to those in
[115] discussed above. For the□a modality we have:

• , (s, A) ⊧ □a� iff va(A) ⊆ J�K, meaning that the considered argumentA supports
the claim �.

Also, Shi et al. enhance the logic with a �-operator Gfp� (similar to [113], see the
discussion in the previous section) to express membership in admissible extensions:75

• , (s, A) ⊧ Gfp� iff A is in an admissible set of arguments in the argumentation
framework ⟨Args,→J�K⟩.

An agent believes in � in case there is an admissible argument for � and there is no
admissible argument for ¬�. This can be expressed by putting

B� ∶=

there is an argument s.t. . . .
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
�

u( □a�
⏟⏟⏟

it supports �

∧ Gfp�
⏟⏟⏟

it is admissible

) ∧

there is no argument s.t. . . .
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
¬ � u ( □a¬�

⏟⏟⏟
it supports ¬�

∧ Gfp¬�
⏟⏟⏟

it is admissible

) .

Example 119. Consider again the scenario in Example 117. Given a set of states  =
{s1, s2, s3} we let our assignments be as in Table 17.

We then get, for instance, where 1 ≤ i ≤ 3,
75Gfp� is the greatest postfix point of ⊟

�
a
� �

a . See [161] for an axiomatization. Note also that the discussion
in [161] is restricted to uncontroversial argumentation frameworks (see also [85] for a definition).
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atom vs(⋅)
s {s1, s2}
w {s2, s3}

arg. va(⋅)
A {s1}
A′ {s2}
B {s3}
C {s1, s2} A′

A

B C� �

JsK, J¬sK
JwK, J¬wK

JsK, J¬sK
Js ∧wK

J¬s ∨ ¬wK

JsK, J¬sK

Table 17: Left and Middle: Assignments for Example 119; Right: The attack-diagrams for
the contextualized attack relations. Arrows exist for each of the listed labels (e.g., B →JsK C
and B →J¬sK C), where � is a placeholder for Js ∧wK, J¬s ∨ ¬wK, JwK and J¬wK.

• , (si, x) ⊧ Gfps ∧□as for x ∈ {A,A′, C}, while, (si, B) ⊧̸ Gfps and, (si, B) ⊧̸
□as

• , (si, A′) ⊧ Gfps∧w ∧□a(s ∧w) and , (si, A) ⊧ Gfp¬(s∧w) ∧□a¬(s ∧w)

•  ⊧ Bs while ̸⊧ B(s ∧w).

The systems presented above have the merit of allowing for argumentation-based ap-
proaches to belief and justification, which allow for new and interesting insights. E.g., for
all of Grossi’s and van der Hoek’s belief types (SB,EB and JB) negative introspection fails
for beliefs that are not supported by arguments, but succeeds otherwise. That is (where
XB ∈ {SB,EB}), while:

⊭ ¬XB� ⊃ XB¬XB�, and
⊭ ¬JB(�,  ) ⊃ JB(¬JB(�,  ),  )

we have (see [115, Proposition 6])
⊨ (¬XB� ∧⊟b

�
e �) ⊃ XB¬XB�, and

⊨ (¬JB(�,  ) ∧⊟b
�

e (� ∧⊟u )) ⊃ JB(¬JB(�,  ),  )

Similarly, in Shi et al.’s system the aggregation of beliefs fails, i.e.,⊭ (B�∧B�′) ⊃ B(�∧�′),
which may give rise to applications to paradoxes, respectively difficult scenarios, such as the
lottery or the preface paradox.
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3.3 Reasoning with Dynamic Derivations
Although the satisfiability methods described in the previous sections are logic-based, from
a pure logical perspective they have some drawbacks:

• In many of the described formalisms, the encoding of the arguments are by proposi-
tional variables, thus arguments are treated as abstract entities. As such, thesemethods
are more adequate to abstract argumentation [23] than to structured argumentation.
Put differently, if these methods are applied to argumentation frameworks such as the
ones considered in Section 2, the construction of the frameworks and the reasoning
methods are distinguished: first the arguments and the attacks among them are pro-
duced, and only then the satisfiability-based methods can be applied on them.

• Even more serious is the fact that many of these methods are applicable only to finite
argumentation frameworks, as for the encoding of the formulas a finite set of argu-
ments is assumed. As such, these methods are suitable only for some logical instan-
tiations (assumption-based frameworks, for instance), but not for all of them (e.g.,
logic-based argumentation frameworks which are infinite since so are the transitive
closures of sets of assertions).

In this section we describe an alternative method to reasoning with logic-based argumen-
tation, which overcomes the two shortcomings of the other approach described above: it is
applicable to infinite frameworks and is affected by the logical content of the arguments and
the attack rules.

LetL,() = ⟨ArgL(), Attack()⟩ be a logical argumentation framework (Defini-
tion 8) and let be a sound and complete proof system forL.76 The idea is to use (inference)
rules in  for deriving new arguments from already derived ones, and to use (attack) rules in for excluding derived arguments, when opposing arguments are also derived. This gives
rise to the notion of dynamic proofs (or dynamic derivations), which are intended for ex-
plicating the actual non-monotonic flavor of reasoning processes in a logical argumentation
framework. The main idea behind these formalisms is that, unlike ‘standard’ proof methods,
an argument can be challenged (and possibly withdrawn) by a counter-argument, and so a
certain argument may be considered as not accepted at a certain stage of the proof, even if
it were considered accepted in an earlier stage of the proof. It is only when an argument is

76 may be a Hilbert-type proof system, a Gentzen-type sequent calculus, a natural deduction system, a se-
mantic tableaux system, or any other proof method that is based on finite sequences (or trees) of finite syntactical
expressions which are based on the underlying language (see e.g. Section 1.3 of [20] for a general definition of
such proof systems). Here we concentrate on sequent calculi, since a sequent is in fact a multiple-conclusion
argument. For the other kinds of proof systems some simple modifications of the definitions in what follows are
needed.
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‘finally derived’ (in the sense that will be explained later on) that it can be safely concluded
by the dynamic proof. In the rest of this section we elaborate on this idea (full details and
formal definitions can be found in [16]).

A proof system in our case is determined by a proof settingS = ⟨L, ,⟩ consisting of
a logicL, a corresponding sound and complete proof calculus for producingL-arguments,
and a set  of attack rules for eliminating (undefended) attacked arguments. An argument
⟨ ,  ⟩ that is eliminated (i.e., is attacked by an application of a rule in ) will be denoted
in what follows by ⟨ ,  ⟩.
Definition 120 (proof tuple). A (proof) tuple is a triple T = ⟨i, A, J⟩, where i (the tuple’s in-
dex) is a natural number, A ∈ {⟨Γ,Δ⟩,⟨Γ,Δ⟩} (the tuple’s argument) is a (possibly attacked)
multiple-conclusion argument,77, 78 and J (the tuple’s justification) is a string, consisting of
a rule name followed by a sequence of numbers.79 In the sequel we shall sometimes identify
a proof tuple with its argument.
Definition 121 (simple derivation). LetS = ⟨L, ,⟩ be a proof setting. A simpleS-der-
ivation based on a set  of formulas in , is a finite sequenceS() = ⟨T1,… Tm⟩ of proof
tuples, where each Ti ∈  is of either of the following forms:

• Ti = ⟨i, A, J⟩, where J =“ i1,… , in” and A is obtained by applying the inference
rule ∈  on the arguments of the tuples Ti1 ,… Tik (i1,… , in < i).

• Ti = ⟨i, A, J⟩, where J =“ i1,… , in” and A is obtained by applying the elimination
rule  ∈  on the arguments of the tuples Ti1 ,… Tik (i1,… , in < i). In this case
both the attacked argument A and the attacking argument Ai1 should be elements of
ArgL().80

Tuples of the first form are called introducing tuples and those of the second form are called
eliminating tuples.
Example 122. Let  be Gentzen’s proof system LK for classical logic. Table 18 presents
this system in terms of (multiple-conclusion) arguments.

Consider now the set of assumptions  = {¬p, p, q} (see also Example 37). Figure 14
presents a simple derivation with respect toLK and Ucut as the sole attack rule. To simplify
the reading, in this and other derivations in the rest of the paper we shall sometimes use
abbreviations or omit some details, e.g. the tuple signs in proof steps.

77Thus Δ, the conclusion of A, is a finite set of formulas and not just a formula. (In classical logic, Δ may
be replaced by its disjunction⋁Δ.) When Δ is a singleton we shall omit the parentheses and identify A with a
standard argument in the sense of Definition 5.

78When the underlying calculus is Hilbert-type or based on a natural deduction system, A may be just a
formula (corresponding to the rule conclusions is those proof systems) rather than an argument.

79This string indicates what rule has to be applied, and on what tuples, in order to derive T .
80 This prevents situations in which, e.g., ⟨¬p,¬p⟩ Ucut-attacks ⟨p, p⟩, although  = {p}.
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Rule Name Acronym Rule’s conditions Rule’s conclusion
Axiom ⟨ , ⟩
Weakening ⟨ ,  ⟩ ⟨ ∪  ′,  ∪  ′⟩
Cut ⟨1, 1 ∪ { }⟩ , ⟨2 ∪ { }, 2⟩ ⟨1 ∪ 2, 1 ∪ 2⟩
Left-∧ [∧L] ⟨ ∪ { } ∪ {�},  ⟩ ⟨ ∪ { ∧ �},  ⟩
Right-∧ [∧R] ⟨ ,  ∪ { }⟩ , ⟨ ,  ∪ {�}⟩ ⟨ ,  ∪ { ∧ �}⟩
Left-∨ [∨L] ⟨ ∪ { },  ⟩ , ⟨ ∪ {�},  ⟩ ⟨ ∪ { ∨ �},  ⟩
Right-∨ [∨R] ⟨ ,  ∪ { } ∪ {�}⟩ ⟨ ,  ∪ { ∨ �}⟩
Left-⊃ [⊃L] ⟨ ,  ∪ { }⟩ , ⟨ ∪ {�},  ⟩ ⟨ ∪ { ⊃ �},  ⟩
Right-⊃ [⊃R] ⟨ ∪ { },  ∪ {�}⟩ ⟨ ,  ∪ { ⊃ �}⟩
Left-¬ [¬L] ⟨ ,  ∪ { }⟩ ⟨ ∪ {¬ },  ⟩
Right-¬ [¬R] ⟨ ∪ { },  ⟩ ⟨ ,  ∪ {¬ }⟩

Table 18: Arguments construction rules according to LK .

Note that in this derivation Tuple 8 represents a Ucut-attack of the argument in Tuple 7
on the argument in Tuple 1 (where the former serves also as the justification of the attack),
and Tuple 11 represents a Ucut-attack of the argument in Tuple 1 on the argument in Tuple 7,
justified by the arguments in Tuples 9 and 10. Thus, Tuples 8 and 11 are eliminating while
the other tuples are introducing.

Not all the attacks in a simple derivation should be successful, since if the attacking
argument is itself attacked by another argument (i.e., it appears in an eliminating tuple) the
attack may not be validated. The iterative process in Figure 15 checks this, and evaluates
each tuple’s argument: Elim is the status of an eliminated argument whose attacker is not
already eliminated, Attack means that the argument attacks an argument whose status is
Elim, and Accept is the status of a derived argument whose status is not Elim.

Definition 123 ((strongly) coherent derivation). A simple derivation  is coherent, if there
is no argument that eliminates another argument and that is eliminated itself. Formally:
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1. ⟨p, p⟩ Axiom
2. ⟨∅, {p,¬p}⟩ Right-¬, 1
3. ⟨∅, p ∨ ¬p⟩ Right-∨, 2
4. ⟨p ∨ ¬p,¬(p ∧ ¬p)⟩ ⋯

5. ⟨¬(p ∧ ¬p), p ∨ ¬p⟩ ⋯

6. ⟨q, q⟩ Axiom
7. ⟨¬p,¬p⟩ Axiom
8. ⟨p, p⟩ Ucut, 7, 7, 7, 1
9. ⟨p,¬¬p⟩ ⋯

10. ⟨¬¬p, p⟩ ⋯

11. ⟨¬p,¬p⟩ Ucut, 1, 9, 10, 7

Figure 14: A derivation with respect to LK and Ucut, based on  = {¬p, p, q}

Input: a simple derivation .
let Attack ∶= Elim ∶= Derived ∶= ∅;
while ( is not empty) do {

if the last element in  introduces an argument A, then
add A to the set Derived;

if the last element in  is an attack of A1 ∉ Elim on A2, then
add A1 to Attack and A2 to Elim;

remove the last element from  }
let Accept ∶= Derived − Elim;
Output: Attack, Elim, Accept.

Figure 15: Evaluation of a simple derivation.

Attack() ∩ Elim() = ∅. We say that  is strongly coherent, if
Sup(Attack()) = ⋃

A∈Attack()
Sup(A)
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is consistent.81

Example 124 (Example 122 continued). Consider the simple derivation of Example 122.

• When considering only the simple derivation consisting of lines 1–8 we have that
⟨q, q⟩, ⟨¬p,¬p⟩ ∈ Accept, Attack = {⟨¬p,¬p⟩} and Elim = {⟨p, p⟩}.

• When considering the simple derivation consisting of lines 1–11 we have that ⟨q, q⟩,
⟨p, p⟩ ∈ Accept, Attack = {⟨p, p⟩} and Elim = {⟨¬p,¬p⟩}. Note that when the
algorithm in Figure 15 reaches line 8, ⟨p, p⟩ is not added to Elim since its attacking
argument ⟨¬p,¬p⟩ is already in Elim at that point.82

In particular, in each step the derivation that is obtained is both coherent and strongly co-
herent.

Now we can define what dynamic derivations are.
Definition 125 (dynamic derivation). Let S = ⟨L, ,⟩ be a proof setting. A dynamic
S-derivation based on a set  of formulas in , is an -based simpleS-derivation S()
which is of one of the following forms:

a) S() = ⟨T ⟩, where T = ⟨1, A, J⟩ is a proof tuple.
b) S() is obtained by adding to a dynamic derivation a sequence of introducing tuples

whose arguments are not in Elim(S()).
c) S() is obtained by adding to a dynamic derivation a sequence of eliminating tuples

where the attacking arguments are in ArgL() and are not attacked by arguments in
Accept(S()) ∩ ArgL(). The attacks must be based on arguments that are proved
in S().83

One may think of a dynamic derivation as a proof that progresses over derivation steps.
At each step the current derivation is extended by a ‘block’ of introduced arguments or elim-
inated arguments. As a result, the statuses of the arguments in the derivation are updated.
In particular, a derived argument may be eliminated in light of new derived arguments, but
also the other way around is possible: an eliminated argument may be ‘restored’ if its at-
tacking argument is counter-attacked. It follows that previously accepted data may not be
accepted anymore (and vice-versa) until and unless new derived information revises the state
of affairs.

81As shown in [11], in the proof setting S = ⟨CL, LK, {Ucut}⟩, strong coherence implies coherence (but
not vice-versa).

82This is so, since the evaluation process progresses backwards, from the last tuple to the first one, so ⟨¬p,¬p⟩
is already eliminated in the first evaluation step, following line 11.

83This condition assures that the attacks are ‘sound’: the attacking arguments are not counter-attacked by an
accepted -based argument.
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Example 126 (Examples 122 and 124, continued). The simple derivation of Example 122 is
also a dynamic derivation. Example 124 demonstrates the dynamic nature of this derivation.
For instance, although the argument ⟨¬p,¬p⟩ is derived in Step 7 of the derivation, it is
eliminated in Step 11 of the derivation as a consequence of an Undercut attack, initiated by
⟨p, p⟩.

The next definition, of the outcomes of a dynamic derivation, indicates when it is ‘safe’
to conclude that a derived argument must hold under any circumstances.
Definition 127 (final derivability). Let S = ⟨L, ,⟩ be a proof setting and let  be a set
of -formulas.

• A formula  is finally derived in a coherent dynamic S-derivation S(), if for
some Γ ⊆  the argument A = ⟨Γ,  ⟩ is in ArgL() ∩ Accept(S()), and for every
coherent dynamic derivation ′

S() extending S() (i.e., any dynamic derivation
whose prefix is S()), still A ∈ Accept(′

S()).
• A formula  is sparsely finally derived in a strongly coherent dynamic S-derivationS(), if for some Γ ⊆  the argument A = ⟨Γ,  ⟩ is in ArgL() ∩ Accept(S()),

and for every strongly coherent dynamic derivation′
S() that extendsS() there

is some Γ′ ⊆  such that the argument A′ = ⟨Γ′,  ⟩ is in ArgL() ∩Accept(′
S()).

Thus, final derivability means that an argument is derived and accepted in a valid dy-
namic derivation and remains in this status in every extension of the derivation. Sparse final
derivability is a weaker notion, meaning that if an argument A is derived and accepted in
a valid dynamic derivation, in every extension of that derivation the conclusion of A is a
conclusion of a derived and accepted argument.
Definition 128 (∣∼S

∩ , ∣∼S
⋒ ). LetS=⟨L,ℭ,⟩ be a proof setting,  a set of -formulas, and

 an -formula.
•  ∣∼S

∩  iff there is aS-derivation based on  , in which  is finally derived.

•  ∣∼S
⋒  iff there is aS-derivation based on  , in which  is sparsely finally derived.

Example 129.

a) q is finally derived (and so also sparsely finally derived) in the derivation of Fig-
ure 14 whereS = ⟨CL, LK, {Ucut}⟩ and  = {p,¬p, q}. Indeed, the only arguments
in ArgCL() that can potentially Ucut-attack ⟨q, q⟩ are of the form ⟨{p,¬p},  ⟩ or
⟨{p,¬p, q},  ⟩, where  is logically equivalent to ¬q. However, such arguments are
counter-attacked by the argument ⟨∅, p∨¬p⟩, obtained in Tuple 3 of the derivation. It
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follows, by the conditions in Item (c) of Definition 125, that no eliminating tuple in
which ⟨q, q⟩ is attacked can be derived in any extension of the derivation above, thus
q is finally derived in this derivation.
We have, then, that {p,¬p, q} ∣∼S

⋆ q, while {p,¬p, q} ̸∣∼S
⋆ p and {p,¬p, q} ̸∣∼S

⋆ ¬p, for
any ⋆ ∈ {∩,⋒}.

b) To see the need for sparse final derivability, let again S = ⟨CL, LK, {Ucut}⟩ and
consider the set  ′ = {p ∧ q,¬p ∧ q}. Note that both A1 = ⟨p ∧ q, q⟩ and A2 =
⟨¬p ∧ q, q⟩ are LK-derivable in this case, but neither of them is finally derivable,
since any S-derivation that includes them can be extended with derivations of A3 =
⟨¬p ∧ q,¬(p ∧ q)⟩ and A4 = ⟨p ∧ q,¬(¬p ∧ q)⟩ that respectively Ucut-attack A1 and
A2. Note, however, that these attacks cannot be applied simultaneously, since the
attackers A3 and A4 counter-attack each other. It follows that in each extension of the
derivation either A1 or A2 is accepted, and so q is sparsely finally derived from  ′.
We have, then, that {p∧q,¬p∧q} ∣∼S

⋒ q (and it is easy to verify that {p∧q,¬p∧q} ̸∣∼S
⋒ p

and {p ∧ q,¬p ∧ q} ̸∣∼S
⋒ ¬p).

The next proposition, introduced in [11], provides some soundness and completeness
results for entailments by dynamic proofs (Definition 128) and entailments induced byDung-
semantics (Definition 12), and relates both of these entailments to reasoning with maximal
consistency (Definition 44).
Proposition 130. Let S=⟨CL, LK, {Ucut}⟩ be a proof setting. Then for every finite set 
of formulas and formula  , it holds that:

•  ∣∼S
∩  iff  ∣∼CL

∩mcs  iff  ∣∼CL,{Ucut}
Grd

 iff  ∣∼CL,{Ucut}
∩Prf  iff  ∣∼CL,{Ucut}

∩Stb  .
•  ∣∼S

⋒  iff  ∣∼CL
⋒mcs  iff  ∣∼CL,{Ucut}

⋒Prf  iff  ∣∼CL,{Ucut}
⋒Stb  .

We refer to [11] for further related results, where e.g. the base logic is not necessarily
classical logic and the attack is not necessarily Undercut.
Example 131. The first item of Example 129 demonstrates the first two items of the last
proposition for  = {p,¬p, q} (Examples 122 and 126), as

⋂
MCSCL() = {q}. The

second item of Example 129 exemplifies the second item of Proposition 130, where  ′ =
{p ∧ q,¬p ∧ q} is the set of assertions.

Some other approaches for reasoning with logic-based (structured) argumentation frame-
works are the following:84

84As indicated before, description of algorithms for reasoning with argumentation frameworks which are not
logic-based, including those for abstract argumentation frameworks, are not in the scope of the current chapter.
For the latter, see e.g. the surveys in [144] and [68].
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• For logic-based methods whose arguments are classical (Definition 4), already the
construction of arguments poses serious computational challenges, since the finding of
aminimal subset of a set of formulas that implies the consequent is in the second level
of the polynomial hierarchy [96]. Algorithms for constructing classical arguments
and counter-arguments can be found e.g. in [93].

• Common computational machineries of logic-based argumentation frameworks are
based on dispute trees and dispute derivations [86; 88], both of which can be repre-
sented as games between proponent and opponent players. For some illustrations and
an overview of their use in ABA frameworks, see [87, Section 5] and [73, Section 5].

• Illustrations of reasoning with ASPIC+ can be found, e.g., in [146, Section 4.5]; In-
ference engines for APSIC+ are surveyed (with relevant further references) in [147,
Section 6].

In [169] a similar dynamic proof theory to the one discussed above has been presented,
but for abstract argumentation instead of structured argumentation. It allows for the addi-
tion of new arguments and new argumentative attacks in an ongoing open-ended proof of an
adaptive logic. The finally derivable propositional atoms are those that are in the intersec-
tion of a given semantics. The latter are characterized in terms of different adaptive proof
strategies.

4 Concluding Remarks
Formal argumentation theory is by now a well-established and still extensively growing
research area, even when restricted to its applications in Artificial Intelligence. There is
no wonder, then, that it has many branches with different disciplines, some of them went
as far as pure graph-theoretical approaches, treating argumentation frameworks as directed
graphs, and so viewing their nodes (that is, the arguments) as totally abstract entities. In
this chapter, we have taken to some extent the opposite approach, arguing that a meaningful
and solid argumentation-based system must have a logic behind it, which takes a primary
role not only in the construction of argumentation frameworks, but is also essential for the
specification of their dynamics and deductive methods of reasoning. In Sections 2 and 3 we
demonstrated, respectively, the fundamental role that logic may (and should) have in relation
to these two aspects of formal argumentation systems. Indeed, the common ground of all
the approaches surveyed in this chapter is that they are logically developed methodologies
towards formal argumentation systems. We believe that this is crucial for justifying the
outcomes of such systems in a logical and rational way.
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A Proofs
Below we provide proofs to propositions that appear in the chapter and to the best of our
knowledge have not been fully proven yet in the literature.
Proposition 88. Let L = ⟨, ⊢⟩ be a propositional logic. The entailments ∣∼L

∩mcs and ∣∼
L
⋒mcs

are ⋓-cautiously cumulative and ⊎-cumulative.

Proof. The properties⊔-(C)REF,RW,⊔-LLE follow directly fromDefinition 44. Note that
for ⋓, full reflexivity does not hold since for an ⊢-inconsistent formula �, MCS∅({�}) =
{∅}. The properties ⊔-CC and ⊔-CM follow for ∣∼L

⋒mcs and ∣∼L
∩mcs by Lemma 132 and

Corollary 133. We paradigmatically show the case for ∣∼L
∩mcs and ⊔ = ⋓: Suppose that

 ′, ∣∼L
∩mcs  . Then the following equivalences hold:  ′, ∣∼L

∩mcs �, iff
⋂

MCS ′L () ⊢
�, iff (by Corollary 133 and since ⋂MCS ′L () ⊢  by the supposition) ⋂MCS ′L ( ∪
{ }) ⊢ �, iff  ′, ∪ { } ∣∼∩mcs �.
Lemma 132. If ⟨ ′,⟩ ∣∼⋒mcs  . Then:

1. MCS ′L ( ∪ { }) = { ∪ { } ∣  ∈ MCS ′L ()}, and
2. MCS ′L () = MCS ′∪{ }L ().

Proof. Item 1, ⊆: Suppose that  ∈ MCS ′L ( ∪ { }). Thus,  ∩  is a ⊢-consistent
subset of  , given  ′. Assume that there is a  ′ ∈ MCS ′L () such that  ∩  ⊊  ′. By
the supposition,  ′ ⊢  . Thus,  ′ ∪ { } is a ⊢-consistent subset of  ∪ { }, given  ′.
But since  ⊊  ′ ∪ { }, this is a contradiction to the ⊆-maximal consistency of  . Thus,
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 ∩  ∈ MCS ′L (). By the assumption again,  ⊢  , and so  ′ = ( ∩ ) ∪ { } is an
element of the set in the right-hand side of the equation of Item 1.

Item 1, ⊇: Suppose that  ∈ MCS ′L (). Thus,  is a ⊢-consistent subset of  , given ′. Since ⟨ ′,⟩ ∣∼⋒mcs  , we have that  , ′ ⊢  and so  ∪ { } is a ⊢-consistent
subset of  ∪ { }, given  ′. Assume for a contradiction that there is a proper superset ′ ⊋ ( ∪ { } such that  ′ ∈ MCS ′L ( ∪ { }). Then,  ⊊ ( ′ ∩ ) and  ′ ∩  is a
⊢-consistent subset of  given  ′, which contradicts the ⊆-maximal consistency of  .

Item 2, ⊇: Suppose that  ∈ MCS ′∪{ }(). Thus,  is a ⊢-consistent subset of 
given  ′ ∪ { }, and so also given S′. Assume that there is a set  ′ ∈ MCS ′L () such that ⊊  ′. Thus,  ′ is ⊢-inconsistent with  (given  ′) since otherwise  ′ is ⊢-consistent
with  given  ′∪{ } in contrast to  ∈ MCS ′∪{ }L (). Thus,  ′, ′,  ⊢ F. By the main
supposition also  ′, ′ ⊢  . Thus, by transitivity,  ′, ′ ⊢ F which is a contradiction to
the choice of  ′. Thus,  ∈ MCS ′().

Item 2, ⊆: The proof is similar to that of the previous item. Briefly, suppose that  ∈
MCS ′L (). Since ⟨ ′,⟩ ∣∼⋒mcs  , necessarily  is a ⊢-consistent subset of  , given
 ′ ∪ { }, and trivially then  ∈ MCS ′∪{ }L ().

The following corollary follows immediately in view of the fact that ∣∼L
∩mcs is contained

in ∣∼L
⋒mcs.

Corollary 133. If ⟨ ′,⟩ ∣∼∩mcs  then Items 1 and 2 of Lemma 132 hold.

Proposition 89. Let L = ⟨, ⊢⟩ be a propositional logic and let ⊔ ∈ {⋓, ⊎}. The entailment
∣∼L
⋒mcs is ⊔-preferential.

Proof. The proposition follows by Proposition 88 and Lemma 134.
Lemma 134. ∣∼L

⋒mcs satisfies ⊔-OR.

Proof. We first consider the case ⊔ = ⋓. Suppose that ⟨ ′, ∪ {�1}⟩ ∣∼L
⋒mcs  and

⟨ ′, ∪ {�2}⟩ ∣∼L
⋒mcs  . Let  ∈ MCS ′L ( ∪ {�1 ∨ �2}) and  ′ =  ∩  . If  ′ is

⊢-inconsistent with �1 ∨�2, then  ′ ∈ MCS ′L ( ∪{�1}) ∩MCS ′L ( ∪{�2}) and  =  ′.
By the supposition  ′, ′ ⊢  and so  , ′ ⊢  .

If  ′ is ⊢-consistent with both �1 and �2, then  ′ ∪ {�1} ∈ MCS ′L ( ∪ {�1}),  ′ ∪
{�2} ∈ MCS ′L ( ∪ {�2}), and  =  ′ ∪ {�1 ∨ �2}. By the supposition  ′, �1, ′ ⊢  
and  ′, �2, ′ ⊢  . Hence,  ′, �1 ∨ �2, ′ ⊢  and so  , ′ ⊢  .

If  ′ is⊢-consistent with�1 but is not⊢-consistent with�2, then  ′∪{�1} ∈ MCS ′L (∪
{�1}),  =  ′ ∪ {�1 ∨ �2}, and  ′,  ′, �2 ⊢ F. Thus  ′,  ′, �2 ⊢  . By the supposition
also  ′, �1, ′ ⊢  and thus  ′, �1 ∨ �2, ′ ⊢  . Hence,  , ′ ⊢  .
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The case that  ′ is ⊢-consistent with �2 but ⊢-inconsistent with �1 is analogous.
Since our case distinction is exhaustive and in every case that  , ′ ⊢  , we have

⟨ ′, ∪ {�1 ∨ �2}⟩ ∣∼L
⋒mcs  .

We now consider the case ⊔ = ⊎. Suppose that ⟨ ′ ∪ {�1},⟩ ∣∼⋒mcs  and also
⟨ ′ ∪ {�2},⟩ ∣∼⋒mcs  . Let  ∈ MCS

 ′∪{�1∨�2}
L (). Thus,  is ⊢-consistent with �1∨�2

in the context of  ′. Then,  is ⊢-consistent with �1 or with �2. Without loss of generality
suppose the former. Hence,  ∈ MCS

 ′∪{�1}
L (). By the supposition,  , ′, �1 ⊢  . If 

is⊢-consistent with�2 in the context of  ′, also  ∈ MCS
 ′∪{�2}
L (), and so  , ′, �2 ⊢  .

Otherwise,  , ′, �2 ⊢ F and thus  , ′, �2 ⊢  . In any case, since ∨ is a disjunction with
respect to ⊢, it holds that  , ′, �1 ∨ �2 ⊢  . Thus, ⟨ ′ ∪ {�1 ∨ �2},⟩ ∣∼L

⋒mcs  .
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