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Abstract

Dynamic epistemic logic (DEL) is a logical framework for representing
and reasoning about knowledge change for multiple agents. An important
computational task in this framework is the model checking problem, which
has been shown to be PSPACE-hard even for S5 models and two agents—in
the presence of other features, such as multi-pointed models. We answer open
questions in the literature about the complexity of this problem in more restricted
settings. We provide a detailed complexity analysis of the model checking
problem for DEL, where we consider various combinations of restrictions, such
as the number of agents, whether the models are single-pointed or multi-pointed,
and whether postconditions are allowed in the updates. In particular, we show
that the problem is already PSPACE-hard in (1) the case of one agent, multi-
pointed S5 models, and no postconditions, and (2) the case of two agents, only
single-pointed S5 models, and no postconditions. In addition, we study the
setting where only semi-private announcements are allowed as updates. We
show that for this case the problem is already PSPACE-hard when restricted
to two agents and three propositional variables. The results that we obtain in
this paper help outline the exact boundaries of the restricted settings for which
the model checking problem for DEL is computationally tractable.

We would like to thank anonymous reviewers for their useful feedback on previous versions of the
paper.
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de Haan and van de Pol

1 Introduction

Dynamic epistemic logic (or DEL, for short) is a logical framework for representing and
reasoning about knowledge (and belief) change for multiple agents. This framework
has applications in philosophy, cognitive science, computer science and artificial
intelligence (see, e.g., [7, 10, 13, 18, 26, 31]). For instance, reasoning about information
and knowledge change is an important topic for multi-agent and distributed systems
[22].

DEL is a very general and expressive framework, but many settings where the
framework is used allow strong restrictions. For instance, in the context of reasoning
about knowledge, the semantic models for the logic are often restricted to models
that contain only equivalence relations (also called S5 models).

For many of the applications of DEL, computational and algorithmic aspects
of the framework are highly relevant. It is important to study the complexity of
computational problems associated with the logic to determine to what extent it can
be used in practical settings, and what algorithmic approaches are best suited to
solve these problems. One important computational task is the problem of model
checking, where the question is to decide whether a formula is true in a model.

The complexity of the model checking problem for DEL has been a topic of
investigation in the literature. For a restricted fragment of DEL, known as public
announcement logic [4, 5, 27], the model checking problem is polynomial-time solvable
[8, 23]. The problem of DEL model checking, in its general form, has been shown to
be PSPACE-complete [2, 16], even in the case of two agents and S5 models. However,
these hardness proofs crucially depend on the use of multi-pointed models, and
therefore do not apply for the case where the problem is restricted to single-pointed
S5 models. This open question was answered with a PSPACE-hardness proof for the
restricted case where all models are single-pointed S5 models, but where the number
of agents is unbounded [29, 30]. It remained open whether these PSPACE-hardness
results extend to more restrictive settings (e.g., only two agents and single-pointed
S5 models).

In this paper, we investigate to what extent these PSPACE-hardness results
hold for more demanding combinations of restrictions. In other words, we study
the exact boundaries between (A) the combinations of restrictions that lead to the
model checking problem being polynomial-time solvable, and (B) the combinations
of restrictions for which the model checking problem is computationally intractable.
Various examples of restrictions have been found that fit in either (A) or (B), but no
structural investigation has been done on the exact boundaries between these two
areas. Investigating these exact boundaries is useful and relevant, for example, for
the development of (implemented) algorithms for the model checking problem for
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On the Complexity of Model Checking for DEL with S5 Models

DEL—we discuss this relevance in more detail in Section 5.

Other related work Various topics related to DEL model checking have been
studied in the literature. For (several restricted variants of) a knowledge update
framework based on epistemic logic, the computational complexity of the model
checking problem has been investigated [6]. Other related work includes implementa-
tions of algorithms for DEL model checking [9, 15]. Additionally, research has been
done on the complexity of the satisfiability problem for (fragments of) DEL [2, 25].

Results and contributions In this paper we provide a detailed computational
complexity analysis of the model checking problem for DEL, restricted to S5 models.
We consider various different restricted settings of this problem.

For the case of arbitrary event models, we have the following results.

• We make the following folklore result explicit: that the problem is polynomial-
time solvable in the case of a single agent and single-pointed S5 models without
postconditions (Proposition 1).

• We show that a similar restriction (single agent and single-pointed S5 models)
where postconditions are allowed already leads to ∆p

2-hardness (Theorem 2).

• When multi-pointed event models are allowed, we show that the problem
is PSPACE-hard even for the case of a single agent and S5 models without
postconditions (Theorem 3).

• For the case where there are two agents, we show that the problem is already
PSPACE-hard when restricted to single-pointed S5 models without postcondi-
tions and with only three propositional variables (Theorem 4).

An overview of the complexity results for arbitrary event models can be found
in Table 1. These results outline the boundaries of the tractable setting of the
folklore results pinpointed in Proposition 1—they indicate that relaxing any of the
three elements of the condition (i.e., a single agent, single-pointed models, and no
postconditions) results in computational hardness.

Additionally, we consider the setting where instead of arbitrary event models,
only semi-private announcements can be used—this is a restricted class of event
models. In this setting, the problem is known to be PSPACE-hard, when an arbitrary
number of agents is allowed (i.e., when the number of agents is part of the problem
input) [29, Theorem 4].
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• We show that the problem is already PSPACE-hard in the case where there
are only two agents and only three propositional variables (Theorem 5).1

single- or
# agents multi-pointed postconditions complexity
1 single no in P (Proposition 1)
1 single yes ∆p

2-hard (Theorem 2)
1 multi no / yes PSPACE-complete (Theorem 3)
≥ 2 single / multi no / yes PSPACE-complete (Theorem 4)

Table 1: Complexity results for the model checking problem for DEL with S5 models
and S5 event models.

Interpretation of the results The results that we obtain in the paper contribute
to our understanding of the computational complexity of the model checking problem
for DEL. In particular, our results form a useful step towards a better comprehension
of how the various elements of the framework of DEL contribute to the computational
costs of the model checking problem. For example, the hardness result of Theorem 4
indicates that introducing a second agent—even when severely restricting several
other aspects of the problem—already leads to a problem that in the worst case is as
hard as the general, unrestricted problem. This improved insight can—in future
work—be used to develop (implemented) algorithms for DEL model checking that
work more efficiently in different settings and for different applications. We discuss
the relevance and significance of our results in more detail in Section 5.

Roadmap We begin in Section 2 with reviewing basic notions and notation from
dynamic epistemic logic and complexity theory. Then, in Section 3, we present
the complexity results for the various settings that involve updates with (arbitrary)
event models. In Section 4, we present our PSPACE-hardness proof for the setting
of semi-private announcements. We discuss the relevance and significance of our
results for the computational and algorithmic study of the model checking problem
for DEL in Section 5. Finally, we conclude and suggest directions for future research
in Section 6.

1We would like to point out that Theorem 5 is a stronger result than Theorem 4—Theorem 5
implies the result of Theorem 4. We present it as two separate results because the proof of Theorem 4
acts as a stepping stone for proving Theorem 5—the proof of Theorem 4 is useful for understanding
the elaborate proof of Theorem 5.
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2 Preliminaries
We briefly review some basic notions from dynamic epistemic logic and complexity
theory that are required for the complexity results that we present in this paper.

2.1 Dynamic Epistemic Logic

We begin by reviewing the syntax and semantics of dynamic epistemic logic. We
consider a version of this logic that is often considered in the literature (e.g., by Van
Ditmarsch, Van der Hoek and Kooi [13]). After describing the logic that we consider
in this paper, we briefly relate it to other variants of dynamic epistemic logic that
have been considered in the literature.

We fix a countable set P of propositional variables, and a finite set A of agents.
We begin with introducing the basic language of epistemic logic, and its semantics.
The semantics of epistemic logic is based on a type of (Kripke) structures called
epistemic models. Epistemic models are structures that are used to represent the
agents’ knowledge about the world and about the other agents’ knowledge.

Definition 1 (Epistemic models). An epistemic model is a tuple M = (W,R, V ),
where W is a non-empty set of worlds, R maps each agent a ∈ A to a relation Ra ⊆
W ×W , and V : P → 2W is a function called a valuation. By a slight abuse of
notation, we write w ∈ M for w ∈ W . We also write v ∈ Ra(w) for vRaw. A
single-pointed model is a pair (M, w) consisting of an epistemic model M and a
designated (or pointed) world w ∈ M. A multi-pointed model is a pair (M,Wd)
consisting of an epistemic modelM and a subset Wd of designated worlds.

Definition 2 (Basic epistemic language). The language LEL of epistemic logic is
defined as the set of formulas ϕ defined inductively as follows, where p ranges over P
and a ranges over A:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ.

The formula ⊥ is an abbreviation for p ∧ ¬p, and the formula > is an abbreviation
for ¬⊥. A formula of the form (ϕ1 ∨ ϕ2) abbreviates ¬(¬ϕ1 ∧ ¬ϕ2), and a formula
of the form (ϕ1 → ϕ2) abbreviates (¬ϕ1 ∨ϕ2). Moreover, a formula of the form K̂aϕ
is an abbreviation for ¬Ka¬ϕ. We call formulas of the form p or ¬p literals. We
denote the set of all literals by Lit.

Intuitively, the formula Kaϕ expresses that ‘agent a knows that ϕ holds in the
current situation.’ Next, we define when a formula in the basic epistemic language is
true in a world of an epistemic model.
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Definition 3 (Truth conditions for LEL). Given an epistemic modelM = (W,R, V ),
we inductively define the relation |= ⊆W × LEL as follows. For all w ∈W :
M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff notM, w |= ϕ
M, w |= ϕ1 ∧ ϕ2 iff bothM, w |= ϕ1 andM, w |= ϕ2
M, w |= Kaϕ iff for all v ∈ Ra(w), it holds thatM, v |= ϕ

The statement M, w |= ϕ expresses that the formula ϕ is true in world w in the
modelM.

The framework of dynamic epistemic logic extends the basic epistemic logic with
a notion of updates, that are based on another type of structures: event models.
These are used to represent the effects of an event on the world and the knowledge
of the agents. The notion of event models that we use in this paper involves
postconditions—to bring about changes in the factual state of the world. Event
models with postconditions have been studied and used in the literature on dynamic
epistemic logic and epistemic planning (see, e.g., [10, 12]).

Definition 4 (Event models). An event model is a tuple E = (E,S, pre, post),
where E is a non-empty and finite set of possible events, S maps each agent a ∈ A
to a relation Sa ⊆ E × E, pre : E → LEL is a function that maps each event to a
precondition expressed in the epistemic language, and post : E → 2Lit is a function
that maps each event to a set of literals (not containing complementary literals)2.
For convenience, we write > to denote an empty postcondition. By a slight abuse
of notation, we write e ∈ E for e ∈ E. A single-pointed event model is a pair (E , e)
consisting of an event model E and a designated (or pointed) event e ∈ E. A
multi-pointed event model is a pair (E , Ed) consisting of an event model E and a
subset Ed ⊆ E of designated events.

The language of dynamic epistemic logic extends the basic epistemic language
with update modalities.

Definition 5 (Dynamic epistemic language). The language LDEL of dynamic epis-
temic logic is defined as the set of formulas ϕ defined inductively as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | [E , e]ϕ | [E , Ed]ϕ,

where p ranges over P and a ranges over A, and where (E , e) and (E , Ed) are single-
and multi-pointed event models, respectively. A formula of the form 〈E , e〉ϕ is an

2Alternatively, one can define postconditions using a function post : E×P → LEL, (see, e.g., [12]).
The complexity results in this paper also hold when this alternative definition is used.
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On the Complexity of Model Checking for DEL with S5 Models

abbreviation for ¬[E , e]¬ϕ; we use a similar abbreviation 〈E , Ed〉ϕ for updates with
multi-pointed event models.

The effect of these event models is defined using the following notion of product
update.

Definition 6 (Product update). Let M = (W,R, V ) be an epistemic model and
let E = (E,S, pre, post) be an event model. The product update of M by E is the
epistemic model M⊗ E = (W ′, R′, V ′) defined as follows, where p ranges over P
and a ranges over A:

W ′ = { (w, e) ∈W × E :M, w |= pre(e) }
R′a = { ((w, e), (w′, e′)) ∈W ′ ×W ′ : wRaw′ and eSae′ }

V ′(p) = { (w, e) ∈W ′ : w ∈ V (p) and ¬p 6∈ post(e) } ∪
{ (w, e) ∈W ′ : p ∈ post(e) }

Next, we define when a formula in the dynamic epistemic language is true in a
world of an epistemic model.

Definition 7 (Truth conditions for LDEL). Given an epistemic modelM = (W,R, V )
and a formula ϕ ∈ LDEL, we inductively define the relation |= ⊆W×LDEL as follows.
For all w ∈W :
M, w |= [E , e]ϕ iff M, w |= pre(e) impliesM⊗E , (w, e) |= ϕ

M, w |= [E , Ed]ϕ iff M, w |= [E , e]ϕ for all e ∈ Ed
The other cases are identical to Definition 3. Again, the statement M, w |= ϕ
expresses that the formula ϕ is true in state w in the modelM.

(Having defined the language LDEL, we could now also change the definition
of preconditions in event models to be functions pre : E → LDEL mapping events
to formulas in the dynamic epistemic language LDEL. The definition of product
update would work in an entirely similar way. All results in this paper work for
either definition of preconditions pre.)

We can then define truth of a formula ϕ ∈ LDEL in epistemic models as follows.
A formula ϕ is true in a single-pointed epistemic model (M, w) ifM, w |= ϕ, and
a formula ϕ is true in a multi-pointed epistemic model (M,Wd) if M, w |= ϕ for
all w ∈Wd.

For the purposes of representing knowledge, the relations in epistemic models
and event models are often restricted to be equivalence relations, that is, reflexive,
transitive and symmetric (see, e.g., [13]). Models that satisfy these requirements
are also called S5 models, after the axiomatic system that characterizes this type
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of relations. In the remainder of this paper, we consider only epistemic models and
event models that are S5 models. All our hardness results hold for S5 models, as
well as for arbitrary models.

For the sake of convenience, we will often depict epistemic models and event
models graphically. We will represent worlds with solid dots, events with solid
squares, designated worlds and events with a circle or square around them, valuations,
preconditions and postconditions with labels next to the dots, and relations with
labelled lines between the dots. Since we restrict ourselves to S5 models, and thus to
equivalence relations, all relations are symmetric and it suffices to represent relations
with undirected lines. Moreover, the reflexive relations are not represented graphically.
For a valuation of a world w, we use the literals that the valuation makes true in
world w as a label, and for the preconditions and postconditions of an event e, we
use the label 〈pre(e), post(e)〉. Moreover, since all epistemic models and event models
that we consider in this paper have reflexive relations, in order not to clutter the
graphical representation of models, we do not explicitly depict the reflexive relations.
For an example of an epistemic model with its graphical representation, see Figure 1,
and for an example of an event model with its graphical representation, see Figure 2.

z

w1

¬z

w2

a

Figure 1: The epistemic model (M, w1) for the set A = {a, b} of agents
and a single proposition z, where M = (W,R, V ), W = {w1, w2}, Ra =
{(w1, w1), (w1, w2), (w2, w1), (w2, w2)}, Rb = {(w1, w1), (w2, w2)}, and V (z) = {w1}.

〈>, h〉

e1

〈>,¬h〉

e2
a

Figure 2: The event model (E , e1) for the set A = {a, b} of agents and
a single proposition h, where M = (E,S, pre, post), E = {e1, e2}, Ra =
{(e1, e1), (e1, e2), (e2, e1), (e2, e2)}, Rb = {(e1, e1), (e2, e2)}, pre(e1) = pre(e2) = >,
post(e1) = h, and post(e2) = ¬h.
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Semi-private announcements A particular type of S5 event models that has
been considered in the literature are semi-private (or semi-public) announcements
[3]. Intuitively, a semi-private announcement publicly announces one of two formu-
las ϕ1, ϕ2 to a subset A of agents, and to the remaining agents it publicly announces
that one of the two formulas is the case, and that the agents in A learned which one
is. A semi-private announcement for formulas ϕ1, ϕ2 and a subset A ⊆ A of agents
is represented by the event model in Figure 3.

To illustrate the notion of semi-private announcements, consider the following
example scenario. There are two agents, Ayla (a) and Blair (b). Ayla flips a coin,
which lands either on heads (h) or on tails (¬h), and hides the result of the coin flip
from Blair. Blair sees that the coin is flipped and that Ayla knows the result of the
coin flip, but Blair herself does not see the result of the coin flip. This semi-private
announcement is represented by the event model E that is depicted in Figure 2 (in
the event model depicted in Figure 2, the coin lands on heads).

〈ϕ1,>〉 〈ϕ2,>〉
A\A

Figure 3: A semi-private announcement for formulas ϕ1, ϕ2 and the subset A ⊆ A of
agents.

Relations to other variants of Dynamic Epistemic Logic The formalism of
dynamic epistemic logic that we consider is based on the one originally introduced by
Baltag, Moss, and Solecki [4, 5]. Their language only considers single-pointed event
models. A few years later, Baltag and Moss [3] extended this original language to
include regular operators (union, composition and ‘star’) for the update modalities.
The language that we consider corresponds to the variant of their language with
only the union operator. The language presented by Van Ditmarsch et al. in their
textbook [13] resembles the language that we consider, as their framework also allows
the union operator for updates, but not the composition or ‘star’ operators. The
union operator for update modalities corresponds to allowing multi-pointed event
models. Because it simplifies notation, we use multi-pointed models, following the
notation of other existing work [10]. Additionally, the language that we consider
also allows events to have postconditions, unlike the language presented by Van
Ditmarsch et al. [13].
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2.2 Computational Complexity

Next, we review some basic notions from computational complexity that are used in
the proofs of the results that we present. We assume the reader to be familiar with
the complexity classes P and NP, and with basic notions such as polynomial-time
reductions. For more details, we refer to textbooks on computational complexity
theory (see, e.g., [1]).

The class PSPACE consists of all decision problems that can be solved by an
algorithm that uses a polynomial amount of space (memory). Alternatively, one
can characterize the class PSPACE as all decision problems for which there exists a
polynomial-time reduction to the problem QSat, that is defined using quantified
Boolean formulas as follows. A (fully) quantified Boolean formula (in prenex form) is
a formula of the form Q1x1Q2x2 . . . Qnxn.ψ, where all xi are propositional variables,
each Qi is either an existential or a universal quantifier, and ψ is a (quantifier-free)
propositional formula over the variables x1, . . . , xn. Truth for such formulas is defined
in the usual way. The problem QSat consists of deciding whether a given quantified
Boolean formula is true. Moreover, QSat is PSPACE-hard even when restricted
to the case where Qi = ∃ for odd i and Qi = ∀ for even i. (For the proofs of
Theorems 3, 4 and 5, we will use reductions from this restricted variant of QSat.)

Additionally, one can restrict the number of quantifier alternations occurring in
quantified Boolean formulas, i.e., the number of times where Qi 6= Qi+1. For each
constant k ≥ 1 number of alternations, this leads to a different complexity class. These
classes together constitute the Polynomial Hierarchy. We consider the complexity
classes Σp

k, for each k ≥ 1. The complexity class Σp
k consists of all decision problems

for which there exists a polynomial-time reduction to the problem QSatk. Instances
of QSatk are quantified Boolean formulas of the form ∃x1 . . . ∃x`1∀x`1+1 . . . ∀x`2 . . .
Qkx`k−1+1 . . . Qkx`k . ψ, where Qk = ∃ if k is odd and Qk = ∀ if k is even, where 1 ≤
`1 ≤ · · · ≤ `k, and where ψ is quantifier-free. The question is to decide whether the
quantified Boolean formula is true.

The last complexity class that we consider is ∆p
2 . We give a definition of this class

that is based on algorithms with access to an oracle, i.e., a black box that is able to
decide certain decision problems in a single operation. Consider the problem Sat of
deciding satisfiability of a given propositional formula. The class ∆p

2 consists of all
decision problems that can be solved by a polynomial-time algorithm with access
to an oracle for Sat. Alternatively, the class ∆p

2 consists of all decision problems
for which there exists a polynomial-time reduction to the problem where one is
given a satisfiable propositional formula ϕ over the variables x1, . . . , xn, and the
question is whether the lexicographically maximal assignment that satisfies ϕ (given
the fixed ordering x1 ≺ · · · ≺ xn) sets variable xn to true [24]. An assignment α1 is
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lexicographically larger than an assignment α2 (given the ordering x1 ≺ · · · ≺ xn) if
there exists some 1 ≤ i ≤ n such that α1(xi) = 1, α2(xi) = 0, and for all 1 ≤ j ≤ i it
holds that α1(xj) = α2(xj).

3 Results for updates with arbitrary S5 models
In this section, we provide complexity results for the model checking problem for
DEL when arbitrary event models are allowed for the update modalities in the
formulas. For several cases, we prove PSPACE-hardness. Since the problem was
recently shown to be in PSPACE for the most general variant of dynamic epistemic
logic that we consider in this paper [2, 29, 30], these hardness results suffice to show
PSPACE-completeness.

3.1 Polynomial-time solvability

We begin with showing polynomial-time solvability for the strongest restriction
that we consider in this paper: a single agent, single-pointed S5 models, and no
postconditions. This is a result that is well-known and can be seen as part of the
folklore of the DEL literature, but for which—to the best of our knowledge—no
detailed proof has been published. The high-level idea of the proof is straightforward:
even though updating the model with an event model in this setting might duplicate
a lot of words—potentially resulting in an exponential blow-up in the number of
worlds—these worlds are copies of only a small number of distinct worlds. We can
identify a representative for each of the worlds in polynomial-time, and at each step
in the recursive evaluation of the formula, we keep only these representative worlds.
To work out an algorithm that implements this proof idea requires some attention to
algorithmic details (e.g., using the technique of dynamic programming). We present
the proof of Proposition 1 in detail to give insight into the exact algorithmic details
involved in the proof—providing a precise recipe that can be used to implement the
algorithm.

Proposition 1. The model checking problem for DEL with S5 models is polynomial-
time solvable when restricted to instances with a single agent and only single-pointed
event models without postconditions.

Proof. We describe a polynomial-time algorithm that solves the problem. The main
idea behind this algorithm is the following. Even though the updates might cause an
exponential blow-up in the number of worlds in the model, in this restricted setting,
we only need to remember a small number of these worlds.
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Concretely, since there is only a single agent a, and since there is only a single
designated world w0, we only need to remember the set of worlds that are connected
with an a-relation to the designated world w0. Moreover, among these worlds, we
can merge those with an identical valuation. Since the event models contain no
postconditions, this (contracted) set of worlds can only decrease after updates, i.e.,
updates can only remove worlds from this set.

Formally, we can describe this argument as follows. Let (M, w0) be a single-
pointed S5 epistemic model with one agent, and let (E , e0) be a single-pointed S5
event model with one agent and no postconditions. ThenM⊗ E is bisimilar to a
submodelM′ ofM, that is, to someM′ that can be obtained fromM by removing
some worlds. Specifically, let W ′ be the set of worlds in M that are a-accessible
from w0, and let E′ be the set of events in E that are a-accessible from e0. Then,
let W ′′ ⊆ W ′ be the subset of worlds that satisfy the precondition of at least
one e ∈ E′. One can straightforwardly verify that (M⊗E , (w0, e0)) is bisimilar to
the submodel (M′, w0) of (M, w0) induced by W ′′. Moreover,M′ can be computed
in polynomial time.

Using this property, we can construct a recursive algorithm to decide whether
M, w |= ϕ. We consider several cases. In the case where ϕ = p for some p ∈ P, the
problem can easily be solved in polynomial time, by simply checking whether w ∈
V (p). In the case where ϕ = ¬ϕ1, we can recursively call the algorithm to decide
whether M, w |= ϕ1, and return the opposite answer. Similarly, for ϕ = ϕ1 ∧ ϕ2,
we can straightforwardly decide whetherM, w |= ϕ by first recursively determining
whether M, w |= ϕ1 and whether M, w |= ϕ2. In the case where ϕ = Kaϕ1, we
firstly recursively determine whetherM, w′ |= ϕ1 for each w′ ∈W that is a-accessible
from w. This information immediately determines whetherM, w |= Kaϕ1.

Finally, consider the case where ϕ = [E , e]ϕ1. In this case, we firstly recursively
decide whether M, w |= pre(e). If this is not the case, then trivially, M, w |= ϕ.
Otherwise, we construct the submodelM′ ofM that is bisimilar toM⊗E . This
can be done as described above. In order to do this, we need to decide which states
in W ′ satisfy the precondition of some e′ ∈ E′, where W ′ ⊆ W and E′ ⊆ E are
defined as explained above. This can be done by recursive calls of the algorithm.
Having determined W ′, and having constructedM′, we can now answer the question
whether M, w |= [E , e]ϕ1 by using only M′, w and ϕ1. We know that w is a
world in M′, since M, w |= pre(e). Since M′ is bisimilar to M ⊗ E , it holds
thatM⊗E , (w, e) |= ϕ1 if and only ifM′, w |= ϕ1. Therefore, by recursively calling
the algorithm to decide whetherM′, w |= ϕ1, we can decide whetherM, w |= [E , e]ϕ1.

It is straightforward to verify that this recursive algorithm correctly decides
whether M, w |= ϕ. However, naively executing this recursive algorithm will, in
the worst case result in an exponential running time. This is because for the case
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for ϕ = [E , e]ϕ1, the algorithm makes multiple (say b ≥ 2) recursive calls for pre(e),
and pre(e) could contain subformulas of the form [E ′, e′]ϕ′—which in turn triggers
multiple recursive calls for pre(e′) for each of the b branches in the recursion tree,
and so forth. As the number of these iterations can grow linearly with the input size
(say f(n)), the recursion tree can be of exponential size (namely, of size ≥ 2f(n)). We
describe how to modify the algorithm to run in polynomial time, using the technique
of memoization. Whenever a recursive call is made to decide whether N , u |= ψ, for
some submodel N ofM, some world w in N , and some subformula ψ of ϕ, the result
of this recursive call is stored in a lookup table. Moreover, before making a recursive
call to decide whether N , u |= ψ, the lookup table is consulted, and if an answer is
stored, the algorithm uses this answer instead of executing the recursive call.

The number of submodels N ofM that need to be considered in the execution
of the modified algorithm is upper bounded by the number of occurrences of update
operators [E , e] in the formula ϕ that is given as input to the problem. Therefore,
the size of the lookup table is polynomial in the input size. Moreover, computing
the answer for any entry in the lookup table can be done in polynomial time (using
the answers for other entries in the lookup table). Therefore, the modified algorithm
decides whetherM, w |= ϕ in polynomial time.

3.2 Hardness results for one agent
Next, we consider the restriction where we have a single agent and single-pointed
models, but where postconditions are allowed in the event models.3 In this case, the
problem is ∆p

2-hard. This hardness result is interesting because it helps identify
the boundaries of the tractable fragment of Proposition 1. The result of Theorem 2
shows that adding the single element of postconditions to this tractable fragment
leads to computational hardness.

Theorem 2. The model checking problem for DEL with S5 models restricted to
instances with a single agent and only single-pointed models, but where event models
can contain postconditions, is ∆p

2-hard.

Proof. To show ∆p
2-hardness, we give a polynomial-time reduction from the problem

of deciding whether the lexicographically maximal assignment that satisfies a given

3 The reader might wonder for what type of situations the DEL setting of Theorem 2 (a single
agent, single-pointed S5 models, and postconditions) could be useful. This restricted setting is
relevant, for example, when reasoning about the epistemic state of a single agent in the face of
undercainty over changes in the world (made by nature). A simple example of a situation where
such reasoning plays a role is in the analysis of single-player memory games where the state of (parts
of) the game board can be changed randomly by the rules of the game.
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propositional formula ϕ over variables x1, . . . , xn sets the variable xn to true. Let ϕ
be an instance of this problem, with variables x1, . . . , xn. We construct a single-
pointed epistemic model (M, w0) with a single agent a and a DEL-formula χ whose
updates consist of single-pointed event models (that contain postconditions), such
thatM, w0 |= χ if and only if xn is true in the lexicographically maximal assignment
that satisfies ϕ.

In addition to the propositional variables x1, . . . , xn, we introduce a variable z.
Then, we construct the model (M, w0) as depicted in Figure 4.

z,¬x1, . . . ,¬xn ¬z,¬x1, . . . ,¬xn

a

Figure 4: The epistemic model (M, w0), used in the proof of Theorem 2.

Then, for each 1 ≤ i ≤ n, we introduce the single-pointed event model (Ei, ei)
as depicted in Figure 5. Intuitively, these updates will serve to generate, for each
possible truth assignment α to the variables x1, . . . , xn, a world that agrees with α
(and that sets z to false), in addition to the designated world (where z is true).
We will denote the model resulting from updating (M, w0) subsequently with the
updates (E1, e1), . . . , (En, en) by (M′, w′).

〈z,>〉

〈¬z, xi〉 〈¬z,>〉

a

a

a

Figure 5: The event model (Ei, ei), used in the proof of Theorem 2.

Next, for each 1 ≤ i ≤ n, we introduce the single-pointed event model (E ′i, e′i) as
depicted in Figure 6. Intuitively, we will use the event models (E ′i, e′i) to obtain (many
copies of) the lexicographically maximal assignment that satisfies ϕ. Applying the
update (E ′i, e′i) to (M′, w′) will set the variable xi to true in all worlds (that satisfy ¬z)
if there is an assignment (among the remaining assignments) that satisfies ϕ and that
sets xi to true, and it will set the variable xi to false in all worlds (that satisfy ¬z)
otherwise. Then, after applying the updates (E ′1, e′1), . . . , (E ′n, e′n) to (M′, w′), all
worlds in the resulting model will have the same valuation—namely, a valuation that
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agrees with the lexicographically maximal assignment that satisfies ϕ. In particular,
the variable xn is true in this valuation if and only if xn is true in the lexicographically
maximal assignment that satisfies ϕ.

〈z,>〉

〈¬z ∧ K̂a(xi ∧ ϕ), xi〉 〈¬z ∧ ¬K̂a(xi ∧ ϕ),¬xi〉

a

a

a

Figure 6: The event model (E ′i, e′i), used in the proof of Theorem 2.

We then let χ = [E1, e1] . . . [En, en][E ′1, e′1] . . . [E ′n, e′n]K̂axn. We now formally show
that the lexicographically maximal assignment α0 that satisfies ϕ sets xn to true if
and only ifM, w0 |= χ. In order to do so, we will prove the following claim. The
model (M′′, w′′) = (M, w0)⊗ (E1, e1)⊗· · ·⊗ (En, en)⊗ (E ′1, e′1)⊗· · ·⊗ (E ′n, e′n) consists
of a world w′′ that sets z to true and all other variables to false, and of worlds
that set z to false and that agree with α0 on the variables x1, . . . , xn. Firstly, it is
straightforward to verify that (M′, w′) = (M, w0)⊗ (E1, e1)⊗ · · · ⊗ (En, en) consists
of the world w′ and exactly one world corresponding to each truth assignment α to
the variables x1, . . . , xn.

Then, applying the update (E ′1, e′1) to (M′, w′) has two possible outcomes: ei-
ther (1) if there exists a model of ϕ that sets x1 to true, then in all worlds (that
set z to false) the variable x1 will be set to true; or (2) if there exists no model
of ϕ that sets x1 to true, then in all worlds (that set z to false) the variable x1 will
be set to false. For each 1 < i ≤ n, subsequently applying the update (E ′i, e′i) has
an entirely similar effect. By a straightforward inductive argument, it then follows
that all the worlds in (M′′, w′′) that set z to false agree with the lexicographically
maximal model of ϕ.

Therefore,M, w0 |= χ if and only if xn is true in the lexicographically maximal
model of ϕ, and we can conclude that the problem is ∆p

2-hard.

When we allow multi-pointed models, the problem turns out to be PSPACE-hard,
even when restricted to a single agent (Theorem 3). This hardness result adds
to our understanding of the boundaries of the algorithmically tractable fragment
of Proposition 1. Whereas Theorem 2 showed that adding postconditions leads to
intractability, the following result shows that adding multi-pointedness to the models
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instead (and having no further additions) also leads to intractability. In other words,
the following result indicates that leaving the fragment of Proposition 1 by a different
route also requires giving up polynomial-time algorithms for model checking.

In the literature, PSPACE-hardness results have been shown for a setting that is
similar to the one used in Theorem 3—i.e., [16, Proposition 7.2] and [2, Theorem 2].
The difference is that these proofs in the literature depend on particular features
of the DEL setting—the result of [16, Proposition 7.2] depends on there being two
agents, and the result of [2, Theorem 2] depends on relations not being serial—
whereas the result of Theorem 3 holds also for the case with both a single agent and
S5 relations. The proofs from the literature depends crucially on there being two
agents or non-serial relations—they are used to encode the quantifiers in a quantified
Boolean formula. The main technical hurdle that needs to be overcome to establish
Theorem 3 is to encode the quantification of a quantified Boolean formula in DEL
using a single agent and using S5 relations. We do so by starting with an S5 epistemic
modelM that includes worlds that set different propositional variables x1, . . . , xn to
true, and using multi-pointed event models to quantify over different possibilities of
deleting worlds fromM.

Theorem 3. The model checking problem for DEL with S5 models restricted to
instances with a single agent and no postconditions in the event models, but where
models can be multi-pointed, is PSPACE-hard.

Proof. In order to show PSPACE-hardness, we give a polynomial-time reduction
from the problem of deciding whether a quantified Boolean formula is true. Let ϕ =
∃x1∀x2 . . . ∃xn−1∀xn.ψ be a quantified Boolean formula, where ψ is quantifier-free
(we assume without loss of generality that n is even). We construct a single-pointed
epistemic model (M, w0) with one agent a and a DEL-formula χ (containing updates
with multi-pointed event models) such thatM, w0 |= χ if and only if ϕ is true.

The first main idea behind this reduction is that we represent truth assignments
to the propositional variables x1, . . . , xn with connected groups of worlds. Let α be
a truth assignment to the variables x1, . . . , xn, and let xi1 , . . . , xi` be the variables
that α sets to true. We then represent α by means of a group of worlds w0, w1, . . . , w`,
where the world w0 makes no propositional variable true, and for each 1 ≤ j ≤
`, world wj makes exactly one propositional variable true (namely, xij ). These
worlds w0, w1, . . . , w` are fully connected. This collection of worlds w0, w1, . . . , w`
is what we call the group of worlds corresponding to α. Moreover, the designated
state is w0. Consider the truth assignment α = {x1 7→ 1, x2 7→ 1, x3 7→ 0, x4 7→ 1},
for example. In Figure 7 we show the group of worlds that we use to represent this
truth assignment α. We let the modelM be the group of worlds corresponding to
the truth assignment α0 that assigns all variables x1, . . . , xn to true.
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x1

x2 x4

a

a

a a

a

a

Figure 7: The group of worlds that we use to represent the truth assignment α =
{x1 7→ 1, x2 7→ 1, x3 7→ 0, x4 7→ 1}, in the proof of Theorem 3.

The next main idea is that we represent existential and universal quantification of
the propositional variables using the dynamic operators 〈E , E〉 and [E , E], respectively.
For each propositional variable xi in the quantified Boolean formula, we introduce
the multi-pointed event model (Ei, Ei) as depicted in Figure 8. We use the event
models (E1, E1), . . . , (En, En), to create (disconnected) groups of worlds (that all
have a designated world) that correspond to each possible truth assignment α to the
variables x1, . . . , xn.

〈>,>〉 〈¬xi,>〉

Figure 8: The multi-pointed event model (Ei, Ei) corresponding to variable xi, used
in the proof of Theorem 3.

Using the alternation of diamond dynamic operators and box dynamic operators,
we can simulate existential and universal quantification of variables in the formula ϕ.
We simulate an existentially quantified variable ∃xi by the dynamic operator 〈Ei, Ei〉—
a formula of the form 〈Ei, Ei〉φ is true if and only if 〈Ei, ei〉φ is true for some ei ∈
Ei. Similarly, we simulate a universally quantified variable ∀xi by the dynamic
operator [Ei, Ei]—a formula of the form [Ei, Ei]φ is true if and only [Ei, ei]φ is true
for all ei ∈ Ei.

Concretely, we let χ = 〈E1, E1〉[E2, E2] . . . 〈En−1, En−1〉[En, En]χ′, where χ′ is the
formula obtained from ψ by replacing each occurrence of a propositional variable xi
by the formula K̂axi.

We show that ϕ is a true quantified Boolean formula if and only ifM, w0 |= χ.
In order to do so, we prove the following statement, relating truth assignments α
to the variables x1, . . . , xn to groups of worlds containing a designated world. The
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statement that we will prove inductively for all 1 ≤ i ≤ n+ 1 is the following.

Statement: Let α be any truth assignment to the variables x1, . . . , xn that sets all vari-
ables xi, . . . , xn to true, and let α′ be the restriction of α to the variables x1, . . . , xi−1.
Moreover, let M be a group of worlds that corresponds to the truth assignment α,
containing a designated world w. Then Qixi . . . ∃xn−1∀xn.ψ is true under α′ if and
only if:

• w makes 〈Ei, Ei〉 . . . [En, En]χ′ true, if i is odd; and

• w makes [Ei, Ei] . . . [En, En]χ′ true, if i is even.

The statement for i = 1 implies that M, w0 |= χ if and only if ϕ is a true
quantified Boolean formula. We show that the statement holds for i = 1 by showing
that the statement holds for all 1 ≤ i ≤ n + 1. We begin by showing that the
statement holds for i = n+1. In this case, we know that α = α′ is a truth assignment
to the variables x1, . . . , xn. Moreover, by construction of χ′ we know that w makes χ′
true if and only if α satisfies ψ. Therefore, the statement holds.

Next, we let 1 ≤ i ≤ n be arbitrary, and we assume that the statement holds
for i+ 1. We now distinguish two cases: either (1) Qi = ∃, i.e., the i-th quantifier
of ϕ is existential, or (2) Qi = ∀, i.e., the i-th quantifier of ϕ is universal.

First, consider case (1). Suppose that ∃xi . . . ∃xn−1∀xn.ψ is true under α′. Then
there exists a truth assignment α′′ to the variables x1, . . . , xi that agrees with α′ on the
variables x1, . . . , xi−1 and for which ∀xi+1 . . . ∃xn−1∀xn.ψ is true under α′′. Therefore,
there exists some event e ∈ Ei such that the group M ′ = { (v, e) : v ∈M and M,v |=
pre(e) } of worlds and the world w′ = (w, e), together with the assignment α′′′ that
agrees with α′′ on the variables x1, . . . , xi and that sets the variables xi+1, . . . , xn
to true, satisfy the requirements for the statement for i + 1. Then, by the induc-
tion hypothesis we know that w′ makes [Ei+1, Ei+1] . . . 〈En−1, En−1〉[En, En]χ′ true.
Therefore, we can conclude that w makes 〈Ei, Ei〉 . . . 〈En−1, En−1〉[En, En]χ′ true.

Conversely, suppose that w makes 〈Ei, Ei〉 . . . 〈En−1, En−1〉[En, En]χ′ true. This
can only be the case if there is some event e ∈ Ei such that the set M ′ and w′

(defined as above) correspond to a truth assignment α′′′ (also defined as above). Then,
by the induction hypothesis, we know that ∀xi+1 . . . ∃xn−1∀xn.ψ is true under α′′
(obtained from α′′′ as above). Therefore, since α′′ extends α′, we can conclude
that ∃xi . . . ∃xn−1∀xn.ψ is true under α′.

The argument for case (2) is entirely analogous (yet dual). We omit a detailed
treatment of this case. This concludes the inductive proof of the statement for
all 1 ≤ i ≤ n+ 1, and thus concludes our proof thatM, w0 |= χ if and only if ϕ is
true.
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3.3 Hardness results for two agents
Next, we show that when we consider the case of two agents, the model checking
problem for DEL is PSPACE-hard, even when we only allow single-pointed models
without postconditions (Theorem 4). This hardness result adds yet another piece
of understanding of the boundaries of the algorithmically tractable fragment of
Proposition 1. Namely, it shows that leaving the algorithmically tractable fragment
of Proposition 1 by another one of the possible different routes—that is, by adding
a second agent only—leads to computational hardness. In fact, this is the third of
the three most obvious ways of extending the fragment of Proposition 1. Therefore,
Theorem 4—together with Theorems 2 and 3—indicates that all individual restrictions
in the fragment of Proposition 1 are necessary to obtain polynomial-time solvability.

Additionally, the result of Theorem 4 shows that the inherent hardness in the
model checking problem for DEL with two agents holds even when we restrict the
setting to include only three propositional variables x1, x2, x3—in addition to having
only two agents and single-pointed S5 models only.

Similarly to the case of Theorem 3, the result of Theorem 4 differs from similar
results from the literature—i.e., [16, Proposition 7.2] and [2, Theorem 2]—in that it
considers different restrictions than these results. In particular, the former result [16,
Proposition 7.2] requires the use of multi-pointed models, and the latter result [2,
Theorem 2] requires non-serial relations in the models (and these proofs crucially
depend on these features). In the literature, there are also PSPACE hardness results
for the case of single-pointed S5 models [29, 30]. However, these results hold for the
case where an unbounded number of agents are used—and the proofs given in the
literature crucially depend on the number of agents not being bounded. The result
of Theorem 4 holds for the case with only two agents and where only single-pointed
S5 models are allowed.

The main technical hurdle that needs to be overcome to establish Theorem 4 is
to encode the differently quantified variables of a quantified Boolean formula using
single-pointed S5 models and using only two agents and three propositional variables.
We do so—roughly—by (i) representing propositional variables by alternating chains
of worlds where the end of the chain is marked by a designated propositional
variable z0,4 (ii) representing quantification over different variables in the quantified
Boolean formula using S5 event models where different alternating chains of relations
lead to different copies of the original model that represent different truth assignments
to the variables of the quantified Boolean formula, and (iii) by introducing DEL
formulas that interact appropriately with the gadgets of (i) and (ii), making use

4 This technique was previously used by Van de Pol, Van Rooij, and Szymanik in a hardness
proof for DEL model checking [30, Proposition 3].
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of only two auxiliary variables z1 and z2. The main challenge in (i)–(iii) is in the
details of the intricate construction of the DEL formulas and in the detailed argument
that they interact in exactly the right way with the event models—this is why the
proof of Theorem 4 is of considerable length.

Theorem 4. The model checking problem for DEL is PSPACE-hard, even when
restricted to the case where the question is whether M, w0 |= [E1, e1] . . . [En, en]χ,
where:

• the model (M, w0) is a single-pointed S5 model;

• all the (Ei, ei) are single-pointed S5 event models without postconditions;

• χ is an epistemic formula without update modalities that contains (multiple
occurrences of) only three propositional variables; and

• there are only two agents.

Proof. In order to show PSPACE-hardness, we give a polynomial-time reduction
from the problem of deciding whether a quantified Boolean formula is true. Let ϕ =
∃x1∀x2 . . . ∃xn−1∀xn.ψ be a quantified Boolean formula, where ψ is quantifier-free.
We construct an epistemic model (M, w0) with two agents a, b and a DEL-formula ξ
such thatM, w0 |= ξ if and only if ϕ is true.

The first main idea behind the reduction is that we use two propositional variables,
say z0 and z1, to represent an arbitrary number of propositions, by creating chains
of worlds that represent these propositions. Let x1, . . . , xn be the propositions that
we want to represent. Then we represent a proposition xj by a chain of worlds of
length j + 1 that are connected alternatingly by b-relations and a relations. In this
chain, the last world is the only world that makes z0 true. Moreover, the first world
in the chain is the only world that makes z1 true. An example of such a chain that
we use to represent proposition x3 can be found in Figure 9.

(w0)

z1 z0

b a b

Figure 9: The chain of worlds that we use to represent proposition x3 in the proof of
Theorem 4. The first world in the chain is the world w0, that is depicted on the left.

The next idea that plays an important role in the reduction is that we will group
together (the first worlds) of several such chains to represent a truth assignment to the
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propositions x1, . . . , xn. Let α be a truth assignment to the propositions x1, . . . , xn,
and let xi1 , . . . , xi` be the propositions that α sets to true (for 1 ≤ i1 < · · · < i` ≤ n).
Then we represent the truth assignment α in the following way. We take the chains
corresponding to the propositions xi1 , . . . , xi` , and we connect the first world (the
world that is labelled with w0 in Figure 9) of each two of these chains with an a-
relation. In other words, we connect all these first worlds together in a fully connected
clique of a-relations. Moreover, to this a-clique of worlds, we add a designated world
where both z1 and a third propositional variable z2 are true. The collection of all
worlds in the chains corresponding to the propositions xi1 , . . . , xi` and this additional
designated world is what we call the group of worlds representing α. For the sake
of convenience, we call the world where z1 and z2 are true the central world of the
group of worlds. In Figure 10 we give an example of such a group of worlds that we
use to represent the truth assignment α = {x1 7→ 1, x2 7→ 1, x3 7→ 0, x4 7→ 1}.

z1, z2

z1 z0

b

z1 z0

b a

z1 z0

b a b a

aa

a

a

a

a

Figure 10: The group of worlds that we use to represent the truth assignment α =
{y1 7→ 1, y2 7→ 1, y3 7→ 0, y4 7→ 1} in the proof of Theorem 4.

By using the expressivity of epistemic logic, we can construct formulas that
extract information from these representations of truth assignments. Intuitively, we
can check whether a truth assignment α sets a proposition xj to true by checking
whether the group of worlds representing α contains a chain of worlds of length
exactly j + 1. Formally, we will define a formula χj for each 1 ≤ j ≤ n, which is
true in the designated world if and only if the group contains a chain representing
proposition xj . We describe how to construct the formulas χj . Firstly, we inductively
define formulas χaj and χbj , for all 1 ≤ j ≤ n as follows. Intuitively, the formula χaj is
true in exactly those worlds from which there is an alternating chain that ends in a
z0-world, that is of length at least j and that starts with an a-relation. Similarly,
the formula χbj is true in exactly those worlds from which there is an alternating
chain that ends in a z0-world, that is of length at least j, and that starts with a
b-relation. We let χa0 = χb0 = z0, and for each j > 0, we let χbj = K̂b(¬z1∧¬z2∧χaj−1)
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and χaj = K̂a(¬z1 ∧ ¬z2 ∧ χbj−1). Now, using the formulas χbj , we can define the
formulas χj . We let χj = z1 ∧ ¬z2 ∧ χbj ∧ ¬χbj−1. As a result of this definition, the
formula χj is true in exactly those worlds that are the first world of a chain of length
exactly j.

For example, consider the formula χ2 = z1∧¬z2∧ K̂b(¬z1∧¬z2∧ K̂a(¬z1∧¬z2∧
z0)) ∧ ¬K̂b(¬z1 ∧ ¬z2 ∧ z0) and consider the group of worlds depicted in Figure 10.
This formula is true only in the first world of the chain of length 2.

The epistemic model (M, w0) that we use in the reduction is based on the
model Mα0 representing the truth assignment α0 : {x1, . . . , xn} → {0, 1} that
sets all propositions x1, . . . , xn to true. To obtain M, we will add a number of
additional worlds to the modelMα0 , that we will use to simulate the behavior of
the existential and universal quantifiers in the DEL-formula χ that we will construct
below. Specifically, we will add alternating chains of worlds to the model that
are similar to the chains that represent the propositions x1, . . . , xn. However, the
additional chains that we add differ in two aspects from the chains that represent
the propositions x1, . . . , xn: (1) the additional chains start with an a-relation instead
of starting with a b-relation, and (2) in the first world of the additional chains, the
propositional variable z2 is true instead of the variable z1. For each 1 ≤ i ≤ n, we add
such an additional chain of length i, and we connect the first worlds of these additional
chains, together with the designated world, in a clique of b-relations. To illustrate
this, the model (M, w0) that results from this construction is shown in Figure 11, for
the case where n = 3. For the sake of convenience, we will denote these additional
chains by z2-chains, and the chains that represent the propositions x1, . . . , xn by
z1-chains (after the propositional variables that are true in the first worlds of these
chains).

To check whether an alternating chain of length exactly j, that starts from a
z2-world with an a-relation, is present in the model, we define formulas χ′j similarly
to the way we defined the formulas χj . Specifically, we let χ′j = ¬z1∧z2∧χaj ∧¬χaj−1.

We will use the z2-chains together with the formulas χ′j to keep track of an
additional counter. We will use this counter as a technical trick to implement the
simulation of existentially and universally quantified variables in the formula ϕ.

Next, we describe how we can generate all possible truth assignments over the
variables x1, . . . , xn from the initial modelM. We do this in such a way that we can
afterwards express the existential and universal quantifications of the formula ϕ using
modal operators in the epistemic language. In order to generate groups of worlds
that represent truth assignments α that differ from the all-ones assignment α0, we
will apply updates that copy the existing worlds but that eliminate (the first worlds
of) chains of a certain length. This is the third main idea behind this reduction.
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Figure 11: The epistemic model (M, w0) for the case where n = 3, as used in the
proof of Theorem 4.

Specifically, we will introduce a single-pointed event model (Ei, ei) for each
propositional variable xi, that is depicted in Figure 12. Intuitively, what happens
when the update (Ei, ei) is applied is the following. All existing groups of worlds will
be duplicated, resulting in five copies—this corresponds to the five events f1

i , . . . , f
5
i

in the event model. The resulting groups of worlds will be connected corresponding
to the relations between the events in the event model. That is, for any existing
group of worlds, three of its copies (corresponding to the events f1

i , f2
i , and f3

i )
will be connected by b-relations. The second and third of these copies (the ones
corresponding to the events f2

i and f3
i ) will be connected by a-relations to the fourth

and fifth copy (corresponding to the events f4
i and f5

i ), respectively. Moreover, in
the fourth and fifth copy, (the first world of) the z2-chain of length i is removed,
and in the fifth copy, (the first world of) the z1-chain of length i is removed as well.
These effects of removing (the first worlds of) chains is enforced by the preconditions
of the events in the event model.

By applying the updates (E1, e1), . . . , (En, en), we generate many (in fact, an
exponential number of) copies of the modelM, in each of which certain chains of
worlds are removed, and which are connected to each other by means of a-relations
and b-relations in the way described in the previous paragraph. In particular, for
each truth assignment α to the propositions x1, . . . , xn, there is some group of worlds
that corresponds to α.

Finally, we construct the DEL-formula ξ. We let ξ = [E1, e1] . . . [En, en]ξ1, where
we define ξ1 below. The formula ξ1 exploits the structure of the epistemic modelM′,
that results from updating the modelM with the updates (Ei, ei), to simulate the
semantics of the quantified Boolean formula ϕ. For each 1 ≤ i ≤ n+ 1, we define ξi
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(f1
i = ei)

〈>,>〉

(f2
i )

〈>,>〉

(f3
i )

〈>,>〉

(f4
i )

〈¬χ′i,>〉

(f5
i )

〈¬χ′i ∧ ¬χi,>〉

b b

b

a a

Figure 12: The event model (Ei, ei) corresponding to the propositional variable xi,
used in the proof of Theorem 4. The events are labelled f1

i , . . . , f
5
i .

inductively as follows:

ξi =





ψ′ if i = n+ 1,
K̂bK̂a(z1 ∧ z2 ∧

∧

1≤j≤i
¬K̂bχ

′
j ∧

∧

i<j≤n
K̂bχ

′
j ∧ ξi+1) for odd i ≤ n,

KbKa((z1 ∧ z2 ∧
∧

1≤j≤i
¬K̂bχ

′
j ∧

∧

i<j≤n
K̂bχ

′
j)→ ξi+1) for even i ≤ n.

Here, ψ′ is the formula obtained from ψ (the quantifier-free part of the quantified
Boolean formula ϕ) by replacing each occurrence of a propositional variable xi by
the formula K̂aχi.

We use the formulas ξi to express the formula ϕ with its existentially and
universally quantified variables. Intuitively, the formulas ξi navigate through the
groups of worlds in the model M′—resulting from updating M with the event
models (Ei, ei)—as follows. Consider the central world of some group of worlds in
the modelM′, and consider the formula ξi for some odd i ≤ n. For ξi to be true in
this world, the formula ξi+1 needs to be true in the central world of some group of
worlds that corresponds to one of the events f4

i or f5
i from the event model (Ei, ei).

Similarly, for the formula ξi to be true in this world, for even i ≤ n, the formula ξi+1
needs to be true in the central world of both groups of worlds that correspond to
the events f4

i and f5
i . In this way, for odd i ≤ n, the formula ξi together with

the event model (Ei, ei) serves to simulate an existential choice of a truth value for
the variable xi. Similarly, for even i ≤ n, the formula ξi together with the event
model (Ei, ei) serves to simulate a universal choice of a truth value for the variable xi.

The model (M, w0) and the formula ξ can be constructed in polynomial time
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in the size of the quantified Boolean formula ϕ. Furthermore, in the constructed
instance, there are only two agents, the epistemic model (M, w0) is a single-pointed S5
model, all event models (Ei, ei) are single-pointed S5 models without postconditions,
and ξ1 is a formula without update modalities that contains (many occurrences of)
only three propositional variables z0, z1, z2.

We show that ϕ is a true quantified Boolean formula if and only if M, w0 |=
ξ. In order to do so, we prove the following (technical) statement relating truth
assignments α to the propositions x1, . . . , xn and (particular) worlds w in the epistemic
model (M′, w′0) = (M, w0)⊗ (E1, e1)⊗ · · · ⊗ (En, en). Before we give the statement
that we will prove, we observe that every world w that sets both z1 and z2 to true is
the central world of some group of worlds that represents a truth assignment α to the
propositions x1, . . . , xn. For the sake of convenience, we will say that w corresponds
to the truth assignment α. The statement that we will prove for all 1 ≤ i ≤ n+ 1 is
the following.
Statement: Let α be any truth assignment to the propositions x1, . . . , xi−1. Moreover,
let w be any world in the model (M′, w′0) such that:

1. w makes z1 and z2 true,

2. w makes K̂bχ
′
j false for all 1 ≤ j < i,

3. w makes K̂bχ
′
j true for all i ≤ j ≤ n, and

4. the truth assignment corresponding to w agrees with α on the propositions
x1, . . . , xi−1.

Then the (partially) quantified Boolean formula Qixi . . . ∃xn−1∀xn.ψ is true under α
if and only if w makes ξi true.

Observe that for i = 1, the world w′0 satisfies all four conditions. Therefore, the
statement for i = 1 implies that M, w0 |= ξ if and only if ϕ is a true quantified
Boolean formula. Thus, proving this statement for all 1 ≤ i ≤ n+ 1 suffices to show
the correctness of our reduction.

We begin by showing that the statement holds for i = n+1. In this case, we know
that α is a truth assignment to the propositions x1, . . . , xn. Moreover, ξn+1 = ψ′.
By construction of ψ′, we know that w makes ψ′ true if and only if α satisfies ψ.
Therefore, the statement holds for i = n+ 1.

Next, we let 1 ≤ i ≤ n be arbitrary, and we assume that the statement holds
for i+ 1. That is, the statement holds for every combination of a truth assignment α
and a world w that satisfies the conditions. Since w is a world in the model (M, w0)⊗
(E1, e1) ⊗ · · · ⊗ (En, en), and since w makes z1 and z2 true, we know that w =
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(w0, e′1, . . . , e
′
n), for some e′1, . . . , e′n, where e′j ∈ Ej for all 1 ≤ j ≤ n. We know that w

makes K̂bχ
′
j true for all i ≤ j ≤ n. Therefore, we know that for each i ≤ j ≤ n it

holds that e′j ∈ {f1
j , f

2
j , f

3
j }.

We now distinguish two cases: either (1) i is odd, or (2) i is even. In case (1),
the i-th quantifier of ϕ is existential, and in case (2), the i-th quantifier of ϕ is
universal. First, consider case (1). Suppose that ∃xi . . . ∃xn−1∀xn.ψ is true under α.
Then there exists some truth assignment α′ to the propositions x1, . . . , xi that agrees
with α on the propositions x1, . . . , xi−1 and that ensures that ∀xi+1 . . . ∃xn−1∀xn.ψ
is true under α′. Suppose that α′(xi) = 0; the case for α′(xi) = 1 is entirely sim-
ilar. Now, consider the worlds w′ = (w0, e′1, . . . , e

′
i−1, f

3
i , e
′
i+1, . . . , e

′
n) and w′′ =

(w0, e′1, . . . , e
′
i−1, f

5
i , e
′
i+1, . . . , e

′
n). By the construction of (Ei, ei), by the semantics of

product update, and by the fact that e′i ∈ {f1
i , f

2
i , f

3
i }, it holds that (w,w′) ∈ Rb

and (w′, w′′) ∈ Ra. Moreover, it is straightforward to verify that w′′ satisfies condi-
tions (1)–(4), for the truth assignment α′. Also, we know that ∀xi+1 . . . ∃xn−1∀xn.ψ
is true under α′. Therefore, by the induction hypothesis, we know that w′′ makes the
formula ξi+1 true. It then follows from the definition of ξi that w′ and w′′ witness
that w makes ξi true.

Conversely, suppose that w makes ξi true. Moreover, suppose that w′ and w′′
(as defined above) witness this. (The only other possible worlds u′ and u′′ that
could witness this are obtained from w by replacing e′i by f2

i and f4
i , respectively.

The case where u′ and u′′ witness that w makes ξi true is entirely similar.) This
means that w′′ makes ξi+1 true. Then, by the induction hypothesis, it follows
that the truth assignment α′ to the propositions x1, . . . , xi corresponding to the
world w′′ satisfies ∀xi+1 . . . ∃xn−1∀xn.ψ. Moreover, since α′ agrees with α on the
propositions x1, . . . , xi−1, it follows that ∃xi . . . ∃xn−1∀xn.ψ is true under α.

Next, consider case (2). Suppose that ∀xi . . . ∃xn−1∀xn.ψ is true under α.
Then for both truth assignments α′ to the variables x1, . . . , xi that agree with α
it holds that ∃xi+1 . . . ∃xn−1∀xn.ψ is true under α′. The only worlds that sat-
isfy (z1 ∧ z2 ∧

∧
1≤j≤i ¬K̂bχ

′
j ∧

∧
i<j≤n K̂bχ

′
j) and that are accessible from w by

a b-relation followed by an a-relation are the worlds u1 and u2, where u1 =
(w0, e′1, . . . , e

′
i−1, f

4
i , e
′
i+1, . . . , e

′
n) and u2 = (w0, e′1, . . . , e

′
i−1, f

5
i , e
′
i+1, . . . , e

′
n). More-

over, the truth assignments α1 and α2 that correspond to u1 and u2, respectively,
agree with α on the propositions x1, . . . , xi−1. Because ∀xi . . . ∃xn−1∀xn.ψ is true
under α, we know that ∃xi+1 . . . ∃xn−1∀xn.ψ is true under both α1 and α2. Then, by
the induction hypothesis it follows that both u1 and u2 make ξi+1 true. Therefore, w
makes ξi true.

Conversely, suppose that w makes ξi true. By the definition of ξi, we then know
that all worlds that are accessible from w by a b-relation followed by an a-relation
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and that make (z1 ∧ z2 ∧
∧

1≤j≤i ¬K̂bχ
′
j ∧

∧
i<j≤n K̂bχ

′
j) true, also make ξi+1 true.

Consider the worlds u1 and u2, as defined above. These are both accessible from w
by a b-relation followed by an a-relation, and they make (z1 ∧ z2 ∧

∧
1≤j≤i ¬K̂bχ

′
j ∧∧

i<j≤n K̂bχ
′
j) true. Therefore, both u1 and u2 make ξi+1 true. Also, the truth

assignments α1 and α2 that correspond to u1 and u2, respectively, agree with α on
the propositions x1, . . . , xi−1. Moreover, the truth assignments α1 and α2 are both
possible truth assignments to the propositions x1, . . . , xi that agree with α. By the
induction hypothesis, the formula ∃xi+1 . . . ∃xn−1∀xn.ψ is true under both α1 and α2.
Therefore, we can conclude that ∀xi . . . ∃xn−1∀xn.ψ is true under α.

This concludes the inductive proof of the statement for all 1 ≤ i ≤ n + 1, and
thus concludes our correctness proof. Therefore, we can conclude that the problem
is PSPACE-hard.

4 Results for semi-private announcements

Next, we consider the model checking problem for DEL when restricted to updates
that are semi-private announcements. In fact, PSPACE-hardness for the setting with
semi-private announcements (rather than allowing arbitrary event models) already
follows from a recent PSPACE-hardness proof for a restricted variant of the model
checking problem— see [29, Theorem 4] and [30, Theorem 1]. In that PSPACE-
hardness result, the number of agents is unbounded, i.e., the number of agents is part
of the problem input. We show that the problem is already PSPACE-hard when the
number of agents is bounded by any constant k ≥ 2.

The result of Theorem 5 shows that the inherent hardness of the model checking
problem for DEL—which we saw in Theorem 4 is already present in a very restricted
setting—is even present when we restrict event models to be of a very specific shape
(i.e., semi-private announcements).

Theorem 5 is a stronger result than Theorem 4—Theorem 5 implies the result of
Theorem 4. We presented the proof of Theorem 4 in full detail, because it allows us
to explain the proof of Theorem 5 in a clear way. In fact, the result of Theorem 5 is
stronger than all other PSPACE-hardness results for the model checking problem for
DEL in the literature—i.e., [16, Proposition 7.2], [2, Theorem 2] and [29, 30]. These
results all depend on allowing certain parts of the DEL setting being unrestricted—
e.g., allowing multi-pointed models, allowing more than two agents, or allowing
non-serial relations—and their proofs cannot easily be modified to work for the more
restricted setting of Theorem 5 with (single-pointed) semi-private announcements,
S5 relations, only two agents, and only three propositional variables.

The main technical hurdle that needs to be overcome to establish Theorem 5 is
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to simulate the event models that we used in the proof of Theorem 4 (each consisting
of 5 events) by using a sequence of semi-private announcements (which are event
models with 2 events). We do this by constructing—for each event model—three
semi-private announcements, in such a way that when these three semi-private
announcements are composed, they take the role of the event model in the proof. In
order to make sure that the semi-private announcements correctly take over the role
of the event models in the proof, we also need to adapt the part of the DEL formula
that expresses (the unquantified part of) the quantified Boolean formula.

Theorem 5. The model checking problem for DEL is PSPACE-hard, even when
restricted to the case where the question is whether M, w0 |= [E1, e1] . . . [En, en]χ,
where:

• the model (M, w0) is a single-pointed S5 model;

• all the (Ei, ei) are (single-pointed) semi-private announcements;

• χ is an epistemic formula without update modalities that contains (multiple
occurrences of) only three propositional variables; and

• there are only two agents.

Proof. We modify the proof of Theorem 4 to work also for the case of semi-private
announcements. Most prominently, we will replace the event models (Ei, ei) that are
used in the proof of Theorem 4 (shown in Figure 12) by a number of event models
for semi-private announcements. Intuitively, these semi-private announcements will
take the role of the event models (Ei, ei). In order to make this work, we will also
slightly change the initial modelM.

As in the proof of Theorem 4, we give a polynomial-time reduction from the
problem of deciding whether a quantified Boolean formula is true. Let ϕ =
∃x1∀x2 . . . ∃xn−1∀xn.ψ be a quantified Boolean formula, where ψ is quantifier-free.
We construct an epistemic model (M, w0) with two agents a, b and a DEL-formula ξ
such thatM, w0 |= ξ if and only if ϕ is true.

In the proof of Theorem 4, the initial model M consisted of a central world
(where z1 and z2 are true), a number of z1-chains (for each 1 ≤ i ≤ n, there is a
z1-chain of length i), and a number of z2-chains (for each 1 ≤ i ≤ n, there is a
z2-chain of length i)—and these worlds are connected by a-relations and b-relations
as shown in Figure 11. To obtain the initial modelM that we use in this proof, we
add additional z2-chains. Specifically, for each 1 ≤ i ≤ 3n, we will have a z2-chain of
length i. These additional z2-chains are connected to the central world in exactly the
same way as the original z2-chains (that is, all the first worlds of the z2-chains are
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connected in a b-clique to the central world). We will use these additional z2-chains
to simulate the behavior of the event models (Ei, ei) from the proof of Theorem 4
with event models corresponding to semi-private announcements. The number of
z1-chains remains the same. The designated world w0 is the central world (that is,
the only world that makes both z1 and z2 true), as in the proof of Theorem 4.

(f1
i )

〈¬χ′i+n,>〉

(f2
i )

〈¬χ′i+2n,>〉

b

(a) The semi-private announcement (E1
i , f

1
i )

(f3
i )

〈>,>〉

(f4
i )

〈(¬K̂bχ
′
i+n ∧ z2)→ ¬χ′i,>〉

a

(b) The semi-private announcement (E2
i , f

3
i )

(f5
i )

〈>,>〉

(f6
i )

〈((¬K̂bχ
′
i+2n ∧ z2)→ ¬χ′i) ∧

((¬K̂aK̂bχ
′
i+2n ∧ z1)→ ¬χi),>〉

a

(c) The semi-private announcement (E3
i , f

5
i )

Figure 13: The semi-private announcements (E1
i , f

1
i ), (E2

i , f
3
i ) and (E3

i , f
5
i ) used in

the proof of Theorem 5.

The event models (Ei, ei) that are used in the proof of Theorem 4 we replace
by the semi-private announcements (E1

i , f
1
i ), (E2

i , f
3
i ), and (E3

i , f
5
i ), as shown in

Figure 13. The intuition behind these updates is the following. Firstly, the semi-
private announcement E1

i , shown in Figure 13a, transforms every group of worlds
into two copies, and allows a choice between these two copies when following a
b-relation. Moreover, in one copy, every (first world of the) z2-chain of length i+n is
removed, and in the other copy, every (first world of the) z2-chain of length i+ 2n is
removed. In other words, the choice between these two copies determines whether the
formula K̂bχ

′
i+n or the formula K̂bχ

′
i+2n is false in the central world. Then for every

group of worlds that does not include a z2-chain of length i + n, the semi-private
announcement E2

i , shown in Figure 13b, creates an a-accessible copy where the
z2-chain of length i is removed. Similarly, for every group of worlds that does not
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include a z2-chain of length i + 2n, the semi-private announcement E3
i , shown in

Figure 13c, creates an a-accessible copy where both the z2-chain of length i and the
z1-chain of length i are removed.

Next, we construct the DEL-formula ξ. We let ξ = [E1
1 , f

1
1 ][E2

1 , f
3
1 ][E3

1 , f
5
1 ] . . .

[E1
n, f

1
n][E2

n, f
3
n][E3

n, f
5
n]ξ1, where ξ1 is defined as follows, similarly to the definition

used in the proof of Theorem 4. For each 1 ≤ i ≤ n+ 1, we define ξi inductively as
follows:

ξi =





ψ′ if i = n+ 1,
K̂b(

∧

1≤j≤i

¬K̂bχ
′
j ∧ K̂a(z1 ∧ z2 ∧

∧

1≤j≤i

¬K̂bχ
′
j ∧

∧

i<j≤n

K̂bχ
′
j ∧ ξi+1)) for odd i ≤ n,

Kb((
∧

1≤j≤i

¬K̂bχ
′
j)→ Ka((z1 ∧ z2 ∧

∧

1≤j≤i

¬K̂bχ
′
j ∧

∧

i<j≤n

K̂bχ
′
j)→ ξi+1)) for even i ≤ n.

Here, ψ′ is the formula obtained from ψ (the quantifier-free part of the quantified
Boolean formula ϕ) by replacing each occurrence of a propositional variable xi by
the formula K̂aχi.

The formulas ξi that we defined above are very similar to their counterparts
in the proof of Theorem 4—and the idea behind their use in the proof is entirely
the same as in the proof of Theorem 4. The only difference is the addition of
the subformulas ∧

1≤j≤i ¬K̂bχ
′
j after the first modal operator. These additional

subformulas are needed to ensure that some additional worlds—that are a by-product
of the combination of the semi-private announcements (E1

i , f
1
i ), (E2

i , f
3
i ), and (E3

i , f
5
i )—

do not interfere in the reduction.
We show that ϕ is a true quantified Boolean formula if and only ifM, w0 |= ξ.

In order to do so, as in the proof of Theorem 4, we prove the following (technical)
statement relating truth assignments α to the propositions x1, . . . , xn and (particular)
worlds w in the epistemic model (M′, w′0) = (M, w0)⊗(E1

1 , f
1
1 )⊗· · ·⊗(E3

n, f
5
n). Before

we give the statement that we will prove, we observe that every world w that sets
both z1 and z2 to true is the central world of some group of worlds that represents a
truth assignment α to the propositions x1, . . . , xn. For the sake of convenience, we
will say that w corresponds to the truth assignment α. The statement that we will
prove for all 1 ≤ i ≤ n+ 1 is the following.
Statement: Let α be any truth assignment to the propositions x1, . . . , xi−1. Moreover,
let w be any world in the model (M′, w′0) such that:

1. w makes z1 and z2 true,

2. w makes K̂bχ
′
j false for all 1 ≤ j < i,

3. w makes K̂bχ
′
j true for all i ≤ j ≤ n, and
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4. the truth assignment corresponding to w agrees with α on the propositions
x1, . . . , xi−1.

Then the (partially) quantified Boolean formula Qixi . . . ∃xn−1∀xn.ψ is true under α
if and only if w makes ξi true.

Observe that for i = 1, the world w′0 satisfies all four conditions. Therefore, the
statement for i = 1 implies that M, w0 |= ξ if and only if ϕ is a true quantified
Boolean formula. Thus, proving this statement for all 1 ≤ i ≤ n+ 1 suffices to show
the correctness of our reduction.

We begin by showing that the statement holds for i = n+1. In this case, we know
that α is a truth assignment to the propositions x1, . . . , xn. Moreover, ξn+1 = ψ′.
By construction of ψ′, we know that w makes ψ′ true if and only if α satisfies ψ.
Therefore, the statement holds for i = n+ 1.

Next, we let 1 ≤ i ≤ n be arbitrary, and we assume that the statement holds
for i+ 1. That is, the statement holds for every combination of a truth assignment α
and a world w that satisfies the conditions. Since w is a world in the model (M, w0)⊗
(E1

1 , f
1
1 ) ⊗ · · · ⊗ (E3

n, f
5
n), and since w makes z1 and z2 true, we know that w =

(w0, g1, g′1, g
′′
1 , . . . , gn, g

′
n, g
′′
n), for some g1, g′1, g

′′
1 , . . . , gn, g

′
n, g
′′
n, where for each 1 ≤

j ≤ n, it holds that gj ∈ {f1
j , f

2
j }, g′j ∈ {f3

j , f
4
j }, and g′′j ∈ {f5

j , f
6
j }.

We now distinguish two cases: either (1) i is odd, or (2) i is even. In case (1),
the i-th quantifier of ϕ is existential, and in case (2), the i-th quantifier of ϕ is
universal. First, consider case (1). Suppose that ∃xi . . . ∃xn−1∀xn.ψ is true under α.
Then there exists some truth assignment α′ to the propositions x1, . . . , xi that agrees
with α on the propositions x1, . . . , xi−1 and that ensures that ∀xi+1 . . . ∃xn−1∀xn.ψ
is true under α′. Suppose that α′(xi) = 0; the case for α′(xi) = 1 is entirely similar.
Now, consider the worlds w′ = (w0, g1, . . . , g′′i−1, f

2
i , g
′
i, g
′′
i , gi+1, . . . , g′′n) and w′′ =

(w0, g1, . . . , g′′i−1, f
2
i , g
′
i, f

6
i , gi+1, . . . , g′′n) By the construction of E1

i , E2
i , and E3

i , and
by the semantics of product update, it holds that (w,w′) ∈ Rb and (w′, w′′) ∈ Ra.
Also, we know that w′ makes ∧

1≤j≤i ¬K̂bχ
′
j true. Moreover, it is straightforward to

verify that w′′ satisfies conditions (1)–(4), for the truth assignment α′. Also, we know
that ∀xi+1 . . . ∃xn−1∀xn.ψ is true under α′. Therefore, by the induction hypothesis,
we know that w′′ makes the formula ξi+1 true. It then follows from the definition
of ξi that w′ and w′′ witness that w makes ξi true.

Conversely, suppose that w makes ξi true. Moreover, suppose that w′ and w′′ (as
defined above) witness this. It could also be the case that the worlds u′ and u′′ witness
this, which are obtained from w by replacing gi by f1

i , and by replacing gi by f1
i and g′i

by f4
i , respectively. The case where u′ and u′′ witness that w makes ξi true is entirely

similar. (There are also variants of w′ and w′′, and of u′ and u′′, that could witness
the fact that w makes ξi true. These variants can be obtained by replacing gj , g′j ,
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and g′′j—for i < j ≤ n—ensuring that for all i < j ≤ n it holds that neither
(1) gj = f1

j and g′j = f4
j nor (2) gj = f2

j and g′′j = f6
j . The following argument is

entirely similar for these variants. Therefore, we restrict our attention to the worlds w′
and w′′.) The assumption that w′ and w′′ witness that w makes ξi true implies that w′
makes ∧

1≤j≤i ¬K̂bχ
′
j true and that w′′ makes ξi+1 true. Then, by the induction

hypothesis, it follows that the truth assignment α′ to the propositions x1, . . . , xi
corresponding to the world w′′ satisfies ∀xi+1 . . . ∃xn−1∀xn.ψ. Moreover, since α′
agrees with α on the propositions x1, . . . , xi−1, it follows that ∃xi . . . ∃xn−1∀xn.ψ is
true under α.

Next, consider case (2). Suppose that ∀xi . . . ∃xn−1∀xn.ψ is true under α.
Then for both truth assignments α′ to the variables x1, . . . , xi that agree with α
it holds that ∃xi+1 . . . ∃xn−1∀xn.ψ is true under α′. We need to look at those
worlds that satisfy (z1 ∧ z2 ∧

∧
1≤j≤i ¬K̂bχ

′
j ∧

∧
i<j≤n K̂bχ

′
j) and that are acces-

sible from w by a b-relation followed by an a-relation (where the intermediate
world makes ∧

1≤j≤i ¬K̂bχ
′
j true). For our argument, it suffices to look at the

worlds u1 and u2, where u1 = (w0, g1, . . . , g′′i−1, f
1
i , f

4
i , g
′′
i , gi+1, . . . , g′′n) and w′′ =

(w0, g1, . . . , g′′i−1, f
2
i , g
′
i, f

6
i , gi+1, . . . , g′′n). (As in the argument for case (1) above,

there are variants of these worlds that also satisfy the requirements. The argument
for these variants is entirely similar, and therefore we restrict our attention to the
worlds u1 and u2.) The truth assignments α1 and α2 that correspond to u1 and u2, re-
spectively, agree with α on the propositions x1, . . . , xi−1. Because ∀xi . . . ∃xn−1∀xn.ψ
is true under α, we know that ∃xi+1 . . . ∃xn−1∀xn.ψ is true under both α1 and α2.
Then, by the induction hypothesis it follows that both u1 and u2 make ξi+1 true.
Therefore, w makes ξi true.

Conversely, suppose that w makes ξi true. By the definition of ξi, we then
know that all worlds that are accessible from w by a b-relation followed by an
a-relation and that make (z1 ∧ z2 ∧

∧
1≤j≤i ¬K̂bχ

′
j ∧

∧
i<j≤n K̂bχ

′
j) true (where the

intermediate world makes ∧
1≤j≤i ¬K̂bχ

′
j true), also make ξi+1 true. Consider the

worlds u1 and u2, as defined above. These are both accessible from w by a b-relation
followed by an a-relation (where the intermediate world makes ∧

1≤j≤i ¬K̂bχ
′
j true),

and they make (z1 ∧ z2 ∧
∧

1≤j≤i ¬K̂bχ
′
j ∧

∧
i<j≤n K̂bχ

′
j) true. Therefore, both u1

and u2 make ξi+1 true. Also, the truth assignments α1 and α2 that correspond
to u1 and u2, respectively, agree with α on the propositions x1, . . . , xi−1. More-
over, the truth assignments α1 and α2 are both possible truth assignments to the
propositions x1, . . . , xi that agree with α. By the induction hypothesis, the for-
mula ∃xi+1 . . . ∃xn−1∀xn.ψ is true under both α1 and α2. Therefore, we can conclude
that ∀xi . . . ∃xn−1∀xn.ψ is true under α.

This concludes the inductive proof of the statement for all 1 ≤ i ≤ n + 1, and
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thus concludes our correctness proof. Therefore, we can conclude that the problem
is PSPACE-hard.

5 Discussion
In this section, we reflect on the relevance and significance of our results in the overall
endeavor of obtaining a well-informed and useful understanding of the computational
properties of the model checking problem for DEL. In particular, we discuss (a) how
our results contribute to the undertaking of getting a detailed picture of the com-
putational complexity of DEL model checking, (b) why such a detailed theoretical
picture is useful and important for the development and improvement of DEL model
checking algorithms, and (c) how we can get an even more detailed picture of the
complexity of DEL model checking in future research.

Detailed worst-case complexity analysis In this paper—as in most works in
the literature on the study of the computational properties of DEL—we adopt the
framework of worst-case computational complexity analysis (see, e.g., [1]). This is
a framework that has been hugely influential and successful, but that also has its
inherent downsides. One of its main disadvantages is that it is prone to give an overly
negative image of the computational difficulty of a problem. It is not uncommon
for a problem to be computationally hard in the worst case sense, while instances of
this problem that come up in applications can be solved efficiently. Therefore, for
a worst-case computational complexity analysis to provide an accurate picture of
the inherent complexity of a problem, it needs to be as fine-grained and detailed as
possible. This means that it needs to consider many different restricted settings that
are relevant to applications that use the problem under study.

The results that we provided in Sections 3 and 4 contribute to the detail and fine-
grainedness of the computational complexity study of the model checking problem
for DEL. Previous work on the computational complexity of the problem investigated
restricted settings—where certain components of the problem are restricted in number
or shape. However, this mostly involved studies where restrictions only involve a
single component of the problem [2, 8, 16, 23]. There has been some research that
considered combinations of restrictions [29, 30], but this work only focuses on the
line between polynomial-time solvable (and an extension thereof: fixed-parameter
tractability) and computationally intractable. Our results both (i) take into account
combinations of restrictions on different components of the problem, and (ii) are
aimed at identifying the exact degree of complexity of the problem—distinguishing
between different degrees of computational intractability. As such, our results provide
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an important and useful step in the direction of establishing a detailed and fine-
grained picture of the worst-case complexity of the model checking problem for
DEL.

Guidance for model checking algorithms Establishing a detailed picture of
the exact degree of computational complexity for a wide range of restricted settings
provides a good guide for the development of practical model checking algorithms.
For example, the results of Theorems 4 and 5 show that the model checking problem
can require polynomial space even in restricted settings with a limited number of
agents and propositions. This suggests that better performing algorithms could be
obtained by using optimized algorithmic approaches for PSPACE-complete problems.
For example, it would be interesting to investigate whether encoding the model
checking problem for DEL into the satisfiability problem for quantified Boolean
formulas (QBFs) and subsequently invoking QBF solvers on the resulting formula
could lead to model checking algorithms that are competitive with existing model
checking algorithms—even on instances that involve only a limited number of agents
and propositions. Such an approach would have the benefit that years of research
and engineering effort on developing QBF solvers (see, e.g., [17]) could be leveraged
to get efficient algorithms.

The results that we established in this paper indicate that currently implemented
model checking algorithms for DEL—that are based on constructing a representation
of the epistemic model resulting from the original model and updates applied to
it—are likely to run into barriers of combinatorial explosion already in very limited
settings. For example, the results of Theorems 2, 3 and 4 show that deviating
from the restricted setting of Proposition 1 in one of various minimal ways leads
to a setting where any (deterministic) algorithm cannot run in polynomial time in
the worst case. Examples of model checking algorithms for which these results are
relevant are those of DEMO [15] and SMCDEL [9, 21].

Our results also suggest directions for experimental evaluation of (implemented)
model checking algorithms. For example, it would be useful to investigate on which
types of instances algorithms such as DEMO and SMCDEL perform well, and on
which types of instances they in fact run into barriers of combinatorial explosion.
For instances where DEMO and SMCDEL perform poorly, it would be interesting
to study whether model checking algorithms based on QBF solvers—and other
optimized algorithmic methods for PSPACE-complete problems—perform better.
The computational complexity results in this paper provide indications for which
properties of inputs could have an impact on the performance of different model
checking algorithms.

654



On the Complexity of Model Checking for DEL with S5 Models

Parameterized complexity analysis The foundational computational complex-
ity results for DEL model checking that we developed in this paper (and that
other papers in the literature developed) enable an interesting direction for future
research—namely, to employ the framework of parameterized complexity theory (see,
e.g., [11, 14, 20]). This would take the undertaking of providing a more fine-grained
worst-case complexity analysis even a step further. Parameterized complexity theory
provides a complexity-theoretic framework that can be used to identify which parts
of the problem input contribute in what way to the running time (or space usage)
of algorithms solving the model checking problem for DEL. This framework has
already been used to initiate a more detailed investigation of the computational
complexity of the model checking problem for DEL [29, 30]. Further pursuing this
research direction has the potential of yielding useful and relevant insights into the
computational properties of DEL.

The results in this paper provide a constructive foundation for establishing
parameterized complexity results for the model checking problem for DEL. For
example, the hardness result of Theorem 4 tells us that the model checking problem
for DEL is para-PSPACE-complete when parameterized by the number of agents
and the number of propositional variables occurring in the formula—and thus is
not fixed-parameter tractable for this parameter. (For more details on the relation
between traditional computational complexity results and parameterized complexity,
we refer to the literature—e.g., [19, 20].)

Studying other restrictions Another way forward in the study of the compu-
tational properties of the model checking problem for DEL that is pointed at by
the results that we provide in this paper, is to consider restrictions on the problem
input that go beyond counting simple quantities in the input (such as the number of
agents or the number of propositions) and instead are based on structural properties
of the input. An example of this would be to consider the computational properties
of settings where models are restricted to those whose underlying graph has certain
graph-theoretic properties—such as bounded treewidth.5 Whereas simple restrictions
only lead to positive algorithmic results in only a very limited number of cases—as
indicated by the results that we provide in this paper—structural restrictions have
the potential of leading to positive results in more general settings. Tractability
results based on such structural properties could then of course be used to develop
efficient model checking algorithms that are tailored to application settings where

5Treewidth is a measure that, intuitively, captures how similar a graph is to a tree (trees have
minimum possible treewidth). Restricting problems to graphs of bounded treewidth often yields
efficient algorithms for problems that are intractable in general (see, e.g., [11, Chapter 7]).
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these structural properties show up in problem inputs. The framework of parameter-
ized complexity theory is particularly well suited to analyze the impact of structural
properties of the problem input on the computational complexity of the model
checking problem for DEL.

6 Conclusion
We extended the investigation of the computational complexity of the model checking
problem for DEL by providing a detailed computational complexity analysis of the
model checking problem for various (previously uninvestigated) combinations of
restrictions on the DEL model. In particular, we studied various restrictions of the
problem where all models are S5, including bounds on the number of agents, allowing
only single-pointed models, allowing no postconditions, and allowing semi-private
announcements rather than updates with arbitrary event models. We showed that
the problem is already PSPACE-hard for very restricted settings.

Future research includes extending the computational complexity analysis to
additional restricted settings. For instance, it would be interesting to see whether the
polynomial-time algorithm for Proposition 1 can be extended to the setting where the
models contain only relations that are transitive, Euclidean and serial (KD45 models).
Additionally, it would be interesting to further investigate the contribution of various
parameters of the problem input to the computational costs required to solve the
problem—continuing an endeavor that was recently initiated [29, 30]. In the setting
of KD45 models, it would also be interesting to investigate the complexity of the
problem for the case where all updates are private announcements (i.e., a public
announcement to a subset of agents, where the remaining agents have no awareness
that any action has taken place). Moreover, future research includes obtaining upper
bounds for the case where we only found lower bounds (i.e., for the case of one agent,
a single-pointed models, and single-pointed event models with postconditions, where
we showed ∆p

2-hardness).
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Abstract

In this paper, I investigate the effect of Aristotle’s connexive axioms in non-
connexive logics. I define two properties of formula schemes Φ(ϕ):

1. pos-reflection: Φ(ϕ) ≡ ϕ
2. neg-reflection: Φ(ϕ) ≡ ¬ϕ

I then investigate several logics for the reflectivity of ΦA1(ϕ) = ¬(ϕ→¬ϕ), and
ΦA2(ϕ) = ¬(¬ϕ→ϕ).

1 Introduction
The characteristic axioms1 of connexive logics (see [17] for a general survey) are:

Aristotle’s axioms:
A1 : ¬(ϕ→¬ϕ) (1.1)

A2 : ¬(¬ϕ→ϕ) (1.2)

Boethius’ axioms:
B1 : (ϕ→ψ)→¬(ϕ→¬ψ) (1.3)

B2 : (ϕ→¬ψ)→¬(ϕ→ ψ) (1.4)

Those axioms are not classical logic validities, but have a strong intuitive appeal,
reflecting properties of a “natural” conditional, closer to the indicative conditional
used in natural language.

There are several indications for the appeal of the connexive axioms.

1Actually, those are axiom scemes. I use ‘axioms’ for brevity.
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• The growing number of recent publications on various aspects of connexive
logics. See the connexive logic site2.

• The growing number of conferences/workshops dedicated to connexive logics.

• Empirical studies show favourable results for the connexive axioms serving as
part of the interpretation of conditionals, enhancing their view as “natural”.

1. In [8] (Section 2), McCall reports the results of an empirical study about
truth of conditionals formulated in natural language. The questionnaire
included randomly spread instances of connexive conditionals, popularly
judged as true.

2. In [13], Pfeifer reports an empirical study connecting the connexive ax-
ioms to probabilistic reasoning.

• In a recent manuscript [3], Crupi and Iacona present a conditional, referred to
as ‘evidential conditional’, that also provides a natural reading of the connexive
axioms as indicating a support of the consequent by the antecedent.

Alas, not all logics are connexive ...
In this paper, I am interested in studying an effect that the A-schemes have when

they are not logical validities, but are holding (for some ϕs ), in non-connexive logics.
I refer to this effect as reflectivity (defined in Section 2).

Note that reflectivity (in its various guises) is not presented necessarily as a
desirable feature of a non-connexive logic. Uncovering the reflectivity effect may
contribute to the study of connexive logics, for example by relating the latter to
some recent trends of restricting the scope of those axioms, such as to formulas
having some modal strength (cf. [6]). Understanding the reflectivity effect may help
in understanding what are we “really” imposing on a connexive logic by admitting
the connexive characteristics as axioms.

2 Reflecting formula schemes
Let L be a logic with an object-language L, with {‘¬′, ‘→′} ⊆ L. A unary formula
scheme Φ(ϕ) is a formula schematically constructed over a base schematic formula
ϕ; for example, ϕ→¬ϕ.

Suppose there is some model-theory for L, defining satisfaction of an L-formula
ϕ in a modelM, denoted byM|=ϕ.

2https://sites.google.com/site/connexivelogic/
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Definition 2.1 (equivalence). Two L-formulas ϕ and ψ are L-equivalent, denoted
by ϕ ≡L ψ, iff for every modelM for L:

M|=ϕ iff M|=ψ

I assume that L-equivalence is a congruence over the other connectives in the
object-language. This assumption is used implicitly in all proofs. For example,
without this assumption, Theorem 4.1 does not hold.

Definition 2.2 (reflective formula schemes). A unary formula scheme Φ(ϕ) ∈ L,
is:

• positively-reflective (pos-reflective) for L iff for every ϕ ∈ L

Φ(ϕ) ≡L ϕ (2.5)

• negatively-reflective (neg-reflective) for L iff for every ϕ ∈ L

Φ(ϕ) ≡L ¬ϕ (2.6)

Definition 2.3 (involution). L is involutive iff the unary scheme Φ¬¬(ϕ) =df. ¬¬ϕ
is pos-reflective (i.e., ¬¬ϕ ≡L ϕ).

The question I am interested in can now be more precisely formulated: what are
the reflective capabilities of the unary formula schemes

ΦA1(ϕ) =df. ¬(ϕ→¬ϕ) ΦA2(ϕ) =df. ¬(¬ϕ→ϕ) (2.7)

based on the A-axioms, respectively, in non-connexive logics?
I start with some case studies, and then move to a general statement.

3 Case studies
3.1 Reflection in classical propositional logic
In this section I consider reflectivity of the connexive A-schemes in (the obviously
non-connexive) propositional classical logic. Here ‘→’ is taken as the material im-
plication ‘⊃’ in both schemes.
Classical logic is, of course, involutive.

An easy inspection of the standard classical truth-tables for negation and mate-
rial implication establishes the following immediate consequence.
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Proposition 3.1 (classical reflection).

• ΦA1(ϕ) is pos-reflective for classical logic.

• ΦA2(ϕ) is neg-reflective for classical logic.

That is, a classical valuation satisfies A1 iff it satisfies ϕ itself, and it satisfies A2
iff it does not satisfy ϕ itself.

3.2 FDE
In this section I consider reflectivity of the connexive A-schemes in the (non-
connexive) Belnap-Dunn 4-valued logic of first-degree entailment (FDE) [1, 2, 4],
over the signature {¬,∧,∨}, with implication defined by

ϕ→ψ =df. ¬ϕ∨ψ (3.8)

while this implication is notoriously “bad3” (see, for example, [10], Section 5.1), I
include it because, as shown below, the reflectivity induced by it resembles that of
classical logic. However, as argued in Section 3.2.3, this similarity in reflectivity to
classical logic is an indication for the “badness” of FDE’s conditional.

3.2.1 Defining FDE

The logic is based on four truth-values, that can be (or often are) represented as the
power-set of the classical truth-values {t, f}:

• t ({t}: true only)

• b ({t, f}: both true and false)

• n (∅: neither true nor false)

• f ({f}: false only)

The truth-tables of the basic connective (cf. [15], p.144 or [5], p. 60) are pre-
sented in Figure 1. The truth-table of the defined ‘→’ is presented in Figure 2.

Models are again valuations, mapping atomic propositions to truth-values, ex-
tended to arbitrary formulas by respecting the truth-tables.

3For example, invalidation of modus ponens.
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¬
−− −−
t f
b b
n n
f t

∧ t b n f
−− −− −− −− −−
t t b n f
b b b f f
n n f n f
f f f f f

∨ t b n f
−− −− −− −− −−
t t t t t
b t b t b
n t t n n
f t b n f

(3.9)

Figure 1: The four-valued truth-tables for FDE

→ t b n f
−− −− −− −− −−
t t b n f
b t b t b
n t t n n
f t t t t

(3.10)

Figure 2: The four-valued truth-table for FDE’s ‘→’

3.2.2 Reflection in FDE

Again, an easy inspection of the truth-tables establishes that FDE is involutive, and:

Proposition 3.2 (FDE-reflection).

• ΦA1(ϕ) is pos-reflective for FDE.

• ΦA2(ϕ) is neg-reflective for FDE.

Proof. The reasoning concerning t and f is like that in the case of classical logic,
and the reasoning regarding b is similar to that regarding n. So, I only show the
latter.

ΦA1: Consider any valuation v.

1. Suppose v[[ϕ]] = n. Then, by the truth-table for negation, v[[¬ϕ]] = n,
and by the truth-table for implication v[[ϕ→¬ϕ]] = n. Finally, again by
the truth-table for negation, v[[¬(ϕ→¬ϕ)]] = n.
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2. Suppose v[[¬(ϕ→¬ϕ)]] = n. Then, by the truth-table for negation,
v[[ϕ→¬ϕ]] = n. By the truth-table of implication, the value n can re-
sult for three pairs of truth-values: (t, n), (n, f), (n, n). However, by the
truth-table of negation, the first two cannot be attributed to (ϕ,¬ϕ),
hence v[[ϕ]] = n.

Thus, pos-reflectivity of ΦA1 for FDE is established.

ΦA2: Consider any valuation v.

1. Suppose v[[ϕ]] = n. Then, by the truth-table for negation, v[[¬ϕ]] = n,
and by the truth-table for implication v[[¬ϕ→ϕ]] = n. Finally, again by
the truth-table for negation, v[[¬(¬ϕ→ϕ)]] = n.

2. Suppose v[[¬(¬ϕ→ϕ)]] = n. Then, by the truth-table for negation,
v[[¬ϕ→ϕ]] = n. Again, by the truth-table of implication, the value n can
result for three pairs of truth-values: (t, n), (n, f), (n, n). However, by
the truth-table of negation, the first two cannot be attributed to (ϕ,¬ϕ),
hence v[[¬ϕ]] = n.

Thus, neg-reflectivity of ΦA2 for FDE is established.

Consequently, the A-schemes play in FDE (with implication defined “classi-
cally”) a role similar to the role they play in propositional classical logic.

3.2.3 A “useful” conditional for FDE

As mentioned above, it is well-known that the conditional ‘→’ defined above is
a “bad” conditional for FDE. In [16], some guiding lines for a “good” FDE-
conditional are suggested. The “good” conditional chosen, also preferred in several
other studies of implication in FDE, is known as the ‘→cmi’ (‘cmi’ stands for ‘clas-
sical material implication’), with the truth-table below.

→cmi t b n f
−− −− −− −− −−
t t b n f
b t b n f
n t t t t
f t t t t

(3.11)
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¬
−− −−
t f
n n
f t

→ t n f
−− −− −− −−
t t n f
n t t n
f t t t

(3.12)

Figure 3: Truth-tables for Łukasiewicz’s three-valued logic Ł3

Consequently, the A1-scheme, when based on the “useful” conditional ‘→cmi’ is
not pos-reflective. For a valuation v with v[[ϕ]] = n, the truth-value of A1 has to be
t, contradicting4 the pos-reflectivity imposed truth-value n.

A similar lack of pos-reflectivity of A1 holds also for several other conditionals
suggested for FDE (cf. [11], [12]).

3.3 Łukasiewicz’s three-valued logic Ł3

In this section, I inspect Łukasiewicz’s three-valued logic Ł3 [7] for reflectivity of the
connexive A-schemes. I consider the negation-implication fragment of Ł3, defined
by the following truth-tables (Figure 3) over the truth-value {t, n, f}. Clearly, Ł3
is involutive.

Proposition 3.3 (Ł3-reflection).

• ΦA1(ϕ) is not pos-reflective for Ł3.

• ΦA2(ϕ) is not neg-reflective for Ł3.

Proof. Consider a valuation v and a formula ϕ s.t. v[[ϕ]] = n.

1. By the truth-tables for Ł3,
v[[¬(ϕ→¬ϕ)]] = f 6= n. Thus, ΦA1 is not pos-reflective.

2. By the truth-tables for Ł3,
v[[¬(¬ϕ→ϕ)]] = f 6= n(= v[[¬ϕ]]). Thus, ΦA2 is not neg-reflective.

In contrast to propositional classical logic and FDE, where the connexive A-
schemes are reflective, both A-schemes are not reflective for Ł3.

4Unless the definition of negation is varied too ...
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3.4 Intuitionistic logic
I now turn to the question of reflectiveness of the connexive A-schemes in the noto-
riously non-involutive propositional intuitionistic logic IL (see, for example, [9]).

Proposition 3.4 (IL-reflection).

• ΦA1(ϕ) is not pos-reflective for IL.

• ΦA2(ϕ) is neg-reflective for IL.

Proof. The proof of both clauses relies on the well-known consequence of Glivenko’s
theorem on double-negation translation, the consequence stating that a negated
formula ¬ϕ is intuitionistically equivalent to another negated formula ¬ψ iff the two
negated formulas are classically equivalent.

• The negated formula ΦA1(ϕ) is classically, and hence intuitionistically, equiv-
alent to ¬¬ϕ. However, by non-involutiveness, ¬¬ϕ is not intuitionistically
equivalent to ϕ.
Hence, pos-reflectiveness of ΦA1 fails for IL.

• The negated formula ΦA2(ϕ) is classically, and hence intuitionistically, equiv-
alent to ¬ϕ, thereby establishing neg-reflectiveness of ΦA2 holds for IL.

3.5 Post logics with cyclic negation
Post logics, denoted Pn, were introduced by Post [14]. The object-language contains
‘∧’ (conjunction5), ‘∨’ (disjunction) and ‘¬p’ (negation). It is convenient to take here
V = {v0, · · · , vn−1}, ordered by vi ≤ vj whenever i ≤ j. The main interest in these
logics is due to the definition of negation, which is cyclical. The truth-table of
negation is the following.

ϕ | ¬pϕ
−−− −−−
v0 | v1
v1 | v2
· · · | · · ·
vn−1 | v0

(3.13)

5Post’s original definition in [14] considered conjunction as defined by disjunction and negation.
Taking it as primitive is a matter of convenience only.
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Conjunction and disjunction are defined as, respectively, minimum and maxi-
mum.

v[[ϕ∧ψ]] = min{v[[ϕ]], v[[ψ]]} v[[ϕ∨ψ]] = max{v[[ϕ]], v[[ψ]]} (3.14)

Here, too, define the conditional as ϕ→ψ =df. ¬pϕ∨ψ.
Clearly, Pn is not involutive for n > 2.

Proposition 3.5 (Pn-non-reflectiveness). For n > 2:

1. ΦA1(ϕ) is not pos-reflective for Pn.

2. ΦA2(ϕ) is not neg-reflective for Pn.

Proof. 1. It is easily verified that ¬p(ϕ→¬pϕ) ≡Pn ¬p¬pϕ. However, because of
the cyclicality of ‘¬p’, ¬p¬pϕ 6≡Pn ϕ for n > 2.

2. Similarly, ¬(¬ϕ→ϕ) ≡Pn ¬(¬¬ϕ∨ϕ). But, because of the cyclicality of ‘¬p’,
¬p(¬p¬pϕ∨ϕ) 6≡Pn ¬pϕ for n > 2.

4 Connexive reflection
I now turn to generalising the reflectivity of the connexive A-schemes in the above
special cases.

Theorem 4.1 (reflection). For any involutive L, ΦA1(ϕ) is pos-reflective for L iff
ΦA2(ϕ) is neg-reflective for L.

Proof: let L be involutive.

1. Assume ΦA1(ϕ) is pos-reflective for L. Substitute ¬ϕ for ϕ in ΦA1 . We get

¬ϕ ≡ass.
L ΦA1(¬ϕ) = ¬(¬ϕ→¬¬ϕ) ≡involutivenessL ¬(¬ϕ→ϕ) = ΦA2(ϕ)

Thus, ΦA2 is neg-reflective for L.

2. Assume ΦA2(ϕ) is neg-reflective for L. Substitute ¬ϕ for ϕ in ΦA2 . We get

¬¬ϕ ≡ass.
L ¬(¬¬ϕ→¬ϕ)

and by involutiveness

ϕ ≡L ¬(ϕ→¬ϕ) = ΦA1(ϕ)

Thus, ΦA1 is pos-reflective for L.
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Indeed, the special cases studied above all conform to Theorem 4.1:

• Classical propositional logic and FDE are both involutive, and for both the
two connexive A-schemes are reflective.

• Łukasiewicz’s three-valued logic Ł3 is involutive, and both of the connexive
A-schemes are not reflective for it.

• Intuitionistic propositional logic is not involutive. The scheme ΦA1 fails to be
pos-reflective for IL, while the scheme ΦA2 is neg-reflective for IL.

• Post logics Pn, n > 2, are not involutive, nor are the connexive A-schemes
reflective for them.

5 Conclusion
The question posed, and partially answered, in this paper is: what is the effect of the
formula schemes based on Aristotle’s axioms of connexive logics when not imposed
as axioms?

As far as I am aware of, this question was not raised before in the literature.
A partial characteristic obtained relates to the property of reflectivity: being

equivalent to the schematic argument of the scheme (positive reflection) or to its
negation (negative reflection).

Theorem 4.1 reveals that when a logic is involutive (i.e., respects double-negation
equivalence), either both schemes are reflective (one positively, the other negatively),
or none of them is.

Some natural extensions of this work include:

• Find some regularity about the reflectivity for non-involutive logics.

• Find some general conditions (on negation and conditionals) that guarantee
reflectivity (or the lack thereof).

• Investigate analogous effects of binary connexive schemes based on B1 and B2.
This task requires some possible modification of the definition of reflectivity,
accounting for the presence of ‘ψ’-the second metavariable in the B-schemes.
I still have no clear opinion on this.

• Extend the question to schemes based on axioms of other contra-classical log-
ics.
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1 Introduction
The unification problem in a modal logic L is to determine, given a formula ϕ,
whether there exists a substitution σ such that σ(ϕ) is in L [1]2. In that case, σ is a
unifier of ϕ. We shall say that a set of unifiers of a unifiable formula ϕ is complete
if for all unifiers σ of ϕ, there exists a unifier τ of ϕ in that set such that τ is more
general than σ. When unifiable formulas have no minimal complete sets of unifiers,
they are nullary. Otherwise, they are either infinitary, or finitary, or unitary depend-
ing on the cardinality of their minimal complete sets of unifiers [11]. To be nullary
is considered to be the worst situation for a unifiable formula whereas to be unitary
is considered to be better than to be finitary which is itself considered to be better
than to be infinitary. The unification type of a modal logic is the worst unification
type of its unifiable formulas3.

The fusion L1 ⊗ L2 of modal logics L1 and L2 respectively based on the modal
connectives 21 and 22 is the least modal logic based on these modal connectives
and containing both L1 and L2. A first immediate result is that L1 ⊗ L2 is a con-
servative extension of the modal logics L1 and L2 when L1 and L2 are consistent.
A number of other results — transfer results — have been obtained as well. They
concern properties preserved under the operation of forming fusions: the fusion of
decidable modal logics is decidable, the fusion of modal logics having uniform in-
terpolation property has uniform interpolation property, etc. See [15, Chapter 4]
and [23, 24, 31]. To the best of our knowledge, the preservation of properties related
to the unification problem has not been studied yet.

Owing to its strong connections with the admissibility problem [29], the unification
problem is an important problem in Applied Non-Classical Logics [1], a domain of
investigations where fusions of modal logics are omnipresent [24]. It is therefore nat-

2We assume that the reader is at home with tools and techniques in modal logics. In particular,
we follow the standard conventions for talking about modal logics: S5 is the least modal logic
containing the formulas usually denoted (T), (4) and (B), KT is the least modal logic containing
the formula usually denoted (T), etc. For more on this, see [7, 8, 22]. As a result, in the main body
of the paper, we will present neither the algebraic semantics of modal logics, nor the relational
semantics of modal logics, prefering to introduce semantic tools and techniques when they are
needed.

3About the unification type of modal logics, it is known that KB, KD, KDB, KT and KTB
are nullary [3, 4, 5], S5 and S4.3 are unitary [10, 12], some transitive modal logics like K4 and S4
are finitary [18, 19], K is nullary [20] and K4D1 is unitary [21], the nullariness of KB, KD, KDB,
KT and KTB having only been obtained within the context of unification with parameters. No
modal logic is known to be infinitary.
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ural to ask how the unification types of modal logics are related to the unification
type of their fusion. In this paper, we prove that if L1⊗L2 is unitary then L1 and L2
are unitary and if L1 ⊗ L2 is finitary then L1 and L2 are either unitary, or finitary.
In other respects, Dzik conjectured that the fusion S5⊗S5 of S5 with itself is either
nullary, or infinitary [11, Chapter 6]. Clarifying Dzik’s conjecture, we prove that the
fusion of arbitrary consistent extensions of S5 is nullary when these extensions are
different from Triv. An Appendix includes the proofs of some of our results.

Jer̆ábek has proved that K is nullary by showing that the K-unifiable formula
x → 2x has no minimal complete sets of unifiers [20]. In Jer̆ábek’s line of rea-
soning, the fact that for all d ≥ 0, 2d+1⊥ → 2d⊥ 6∈ K plays an important role.
Unfortunately, for all d ≥ 0, 2d⊥ is either equivalent to ⊥, or equivalent to 2⊥ in
KB, KD, KDB, KT and KTB. It follows that Jer̆ábek’s line of reasoning has to
be seriously adapted if one wants to apply it to KB, KD, KDB, KT and KTB.
This has been done in [3, 4, 5] by using parameters and by considering much more
complicated formulas than x → 2x. For the fusion of arbitrary consistent exten-
sions of S5 different from Triv, a new adaptation of Jer̆ábek’s line of reasoning is
described in the course of Lemmas 14–29 and Propositions 7, 8 and 9.

2 Syntax
2.1 Formulas and substitutions
Let VAR be a countably infinite set of propositional variables (with typical members
denoted x, y, etc). Let PAR be a countably infinite set of propositional parameters
(with typical members denoted p, q, etc). Atoms (denoted α, β, etc) are either
variables, or parameters. Let I be a non-empty subset of {1, 2}. The set FORI
of I -formulas (with typical members denoted ϕ, ψ, etc) is inductively defined as
follows:

• ϕ,ψ ::= α | ⊥ | ¬ϕ | (ϕ ∨ ψ) | 2iϕ

where i ranges over I . We adopt the standard rules for omission of the parentheses.
For all I -formulas ϕ, we write “ϕ0” to mean “¬ϕ” and we write “ϕ1” to mean “ϕ”.
For all I -formulas ϕ, let var(ϕ) be the set of all variables occurring in ϕ. For all
I -formulas ϕ, the degree of ϕ (denoted deg(ϕ)) is defined as usual. An I -substitution
is a function σ associating to each variable x an I -formula σ(x)4. We shall say that

4Occasionally, we will slightly abuse notation by considering that {1}-substitutions and {2}-
substitutions are also {1, 2}-substitutions.
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an I -substitution σ moves a variable x if σ(x) 6= x. Following the standard as-
sumption considered in the literature [1], we will always assume that I -substitutions
move at most finitely many variables. For all {1, 2}-formulas ϕ(x1, . . . , xm), let
σ(ϕ(x1, . . . , xm)) be the {1, 2}-formula ϕ(σ(x1), . . . , σ(xm)). The composition σ ◦
τ of the I -substitutions σ and τ is the I -substitution associating to each vari-
able x the I -formula τ(σ(x)). Obviously, for all {1, 2}-formulas ϕ(x1, . . . , xm),
(σ ◦ τ)(ϕ(x1, . . . , xm)) is the {1, 2}-formula ϕ(τ(σ(x1)), . . . , τ(σ(xm))).

2.2 Abbreviations and translation functions
The Boolean connectives >, ∧,→ and↔ are defined by the usual abbreviations. For
all finite sets X of variables, we will use >X as a shorthand for ∧{x ∨ > : x ∈ X}.
As it is traditionally done, in the extreme case when the finite set X of variables
is empty, >X will be a shorthand for >. The role of the finite set X of variables
in the definition of >X will become clear in Propositions 3 and 6. Nevertheless, we
can already mention that this role is connected to the fact that for all finite sets X
of variables, >X is a tautology such that var(>X) = X. The modal connectives 31
and 32 are defined as follows:

• 31ϕ ::= ¬21¬ϕ,

• 32ϕ ::= ¬22¬ϕ.

From now on in this paper,

let p, q, r be fixed distinct parameters.

Now, let us define modal connectives that will be useful in Section 6 for proving
Proposition 9 saying that the fusion of arbitrary consistent extensions of S5 is nullary
when these extensions are different from Triv. The modal connectives � and � are
defined as follows:

• �ϕ ::= p1 ∧ q0 ∧ r1 → 21(p0 ∧ q0 ∧ r0 → 22(p0 ∧ q0 ∧ r1 → 21(p0 ∧ q1 ∧ r0 →
22(p0 ∧ q1 ∧ r1 → 21(p1 ∧ q0 ∧ r0 → 22(p1 ∧ q0 ∧ r1 → ϕ)))))),

• �ϕ ::= p1 ∧ q0 ∧ r1 → 22(p1 ∧ q0 ∧ r0 → 21(p0 ∧ q1 ∧ r1 → 22(p0 ∧ q1 ∧ r0 →
21(p0 ∧ q0 ∧ r1 → 22(p0 ∧ q0 ∧ r0 → 21(p1 ∧ q0 ∧ r1 → ϕ)))))).

For all k ≥ 0, the modal connectives �k and �k are inductively defined as follows:

• �0ϕ ::= ϕ,

• �0ϕ ::= ϕ,
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• �k+1ϕ ::= ��k ϕ,

• �k+1ϕ ::= ��k ϕ.

For all k ≥ 0, the modal connectives �<k and �<k are inductively defined as follows:

• �<0ϕ ::= >,

• �<0ϕ ::= >,

• �<k+1ϕ ::= �<kϕ ∧�kϕ,

• �<k+1ϕ ::= �<kϕ ∧�kϕ.

Now, let us define translation functions that will be useful in Section 5 for proving
Propositions 4 and 5 saying that if the fusion of arbitrary consistent modal logics is
unitary then both of them are unitary and if the fusion of arbitrary consistent modal
logics is finitary then both of them are either unitary, or finitary. We inductively
define for all finite sets X of variables and for all i ∈ {1, 2}, the translation functions
trTi : FOR{1,2} −→ FOR{i} and trVX,i : FOR{1,2} −→ FOR{i} as follows:

• trTi (α) = α,

• trVX,i(α) = α,

• trTi (⊥) = ⊥,

• trVX,i(⊥) = ⊥,

• trTi (¬ϕ) = ¬trTi (ϕ),

• trVX,i(¬ϕ) = ¬trVX,i(ϕ),

• trTi (ϕ ∨ ψ) = trTi (ϕ) ∨ trTi (ψ),

• trVX,i(ϕ ∨ ψ) = trVX,i(ϕ) ∨ trVX,i(ψ),

• trTi (2jϕ) = 2jtrTi (ϕ) when i = j,

• trVX,i(2jϕ) = 2jtrVX,i(ϕ) when i = j,

• trTi (2jϕ) = trTi (ϕ) when i 6= j,

• trVX,i(2jϕ) = >X when i 6= j.
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As the reader can see from the above definition, the translation function trTi does
not depend on X. The reader is invited to appreciate the use of the abbreviation
>X in the definition of the translation function trVX,i.

Lemma 1. Let X be a finite set of variables and i ∈ {1, 2}. For all {i}-formulas ϕ,

• trTi (ϕ) = ϕ,

• trVX,i(ϕ) = ϕ.

Lemma 2. Let i ∈ {1, 2}. For all {1, 2}-formulas ϕ,

• var(trTi (ϕ)) = var(ϕ),

• var(trVvar(ϕ),i(ϕ)) = var(ϕ).

For all finite sets X of variables, for all i ∈ {1, 2} and for all {1, 2}-substitutions
σ, let σTi and σVX,i be the {i}-substitutions defined as follows:

• for all variables x, σTi (x) = trTi (σ(x)),

• for all variables x, σVX,i(x) = trVX,i(σ(x)).

3 Fusions of modal logics
From now on in this paper,

we write “1̄” to mean “2” and we write “2̄” to mean “1”.

3.1 Modal logics
Let I be a non-empty subset of {1, 2}. An I -logic is a set L of I -formulas such that

• L contains all I -tautologies

• for all i ∈ I , L contains all I -formulas of the form 2i(ϕ→ ψ)→ (2iϕ→ 2iψ),

• L is closed under modus ponens (if ϕ ∈ L and ϕ→ ψ ∈ L then ψ ∈ L),

• L is closed under I -generalization (if ϕ ∈ L then for all i ∈ I , 2iϕ ∈ L).

As is well-known, the intersection of I -logics is an I -logic. Hence, for every set of
I -formulas, there exists a least I -logic containing it. We shall say that an I -logic L
is consistent if L 6= FORI . In this paper, it will be useful to remember that for all
i ∈ {1, 2},
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• if an {i}-logic L is consistent then either L is contained in the least {i}-logic
Trivi containing all {i}-formulas of the form 2iϕ ↔ ϕ, or L is contained in
the least {i}-logic Verumi containing all {i}-formulas of the form 2iϕ.

See [25]. For all i ∈ {1, 2}, we shall say that an {i}-logic L is a non-trivial extension
of S5 if L contains the least {i}-logic S5i containing all {i}-formulas of the form
2iχ → χ, 2iχ → 2i2iχ and χ → 2i3iχ and L is strictly contained in Trivi. In
this paper, it will be useful to remember that for all i ∈ {1, 2}, if an {i}-logic L is a
non-trivial extension of S5 then one of the following conditions holds:

• there exists kk ≥ 2 such that L is equal to the least extension S5kk
i of S5i

containing all {i}-formulas of the form ∧{3iϕm : 0 ≤ m ≤ kk} → ∨{3i(ϕm∧
ϕn) : 0 ≤ m < n ≤ kk},

• L = S5i.

See [26, 27]. It will also be useful to remember that for all i ∈ {1, 2},

• for all kk ≥ 2, S5kk
i is a Kripke complete modal logic characterized by the

class of all Kripke frames (W,Ri) where Ri is an equivalence relation on W
for which each equivalence class is a finite set of exactly kk possible worlds,

• for all kk ≥ 2, S5kk
i is a Kripke complete modal logic characterized by the

class of all Kripke frames (W,Ri) where Ri is an equivalence relation on W
for which each equivalence class is a finite set of at most kk possible worlds,

• S5i is a Kripke complete modal logic characterized by the class of all Kripke
frames (W,Ri) where Ri is an equivalence relation on W for which each equiv-
alence class is a countably infinite set of possible worlds.

3.2 Fusions
Let L1 be a {1}-logic and L2 be a {2}-logic. The fusion of L1 and L2 is the least
{1, 2}-logic (denoted L1 ⊗ L2) containing L1 and L25. As is well-known, if L1 is
consistent and L2 is consistent then L1 ⊗ L2 is a conservative extension of L1 and

5Generalized to logics formulated in languages with an arbitrary number of modal connectives,
the operation of forming fusions is associative. Therefore it makes sense to define the fusion of an
arbitrary number of logics L1, . . . ,Ln respectively formulated in languages with the modal connec-
tives 21, . . . ,2n as being the least logic formulated in the language with the modal connectives
21, . . . ,2n and containing L1, . . . ,Ln. For instance, the multimodal logics considered in [9, 13] are
fusions of finitely many logics of knowledge. In this paper, we will only consider the operation of
forming fusions of two unimodal logics.
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L2 [14, 30]6. A number of other results — transfer results — have been obtained as
well. They concern properties preserved under the operation of forming fusions [15,
Chapter 4]: the fusion of decidable modal logics is decidable, the fusion of modal
logics having uniform interpolation property has uniform interpolation property, etc.
We shall say that L1 ⊗ L2 is tensed if L1 ⊗ L2 contains all {1, 2}-formulas of the
form ϕ → 2131ϕ and ϕ → 2232ϕ. We shall say that L1 ⊗ L2 is smooth if for all
k, l ≥ 0, if k > l then �k⊥ → �l⊥ 6∈ L1 ⊗ L2 and �k⊥ → �l⊥ 6∈ L1 ⊗ L2.

Lemma 3. If L1 and L2 are non-trivial extensions of S5 then L1 ⊗ L2 is tensed
and smooth.

Within the context of this paper, it is relevant to investigate the properties of the
translation functions trTi : FOR{1,2} −→ FOR{i} and trVX,i : FOR{1,2} −→ FOR{i}
in L1 ⊗ L2 for each finite set X of variables and for each i ∈ {1, 2}. The following
results will be used in Section 5.

Lemma 4. Let X,Y be finite sets of variables and i ∈ {1, 2}. For all {1, 2}-formulas
ϕ, trVX,i(ϕ)↔ trVY,i(ϕ) ∈ Li.

Lemma 5. Let X be a finite set of variables, i ∈ {1, 2} and σ be a {1, 2}-substitution.
For all {1, 2}-formulas ϕ,

• σTi (trTi (ϕ))↔ trTi (σ(ϕ)) ∈ Li,

• σVX,i(trVX,i(ϕ))↔ trVX,i(σ(ϕ)) ∈ Li.

Lemma 6. Let X be a finite set of variables, i ∈ {1, 2} and σ be an {i}-substitution.
For all {1, 2}-formulas ϕ,

• σ(trTi (ϕ))↔ trTi (σ(ϕ)) ∈ Li,

• σ(trVX,i(ϕ))↔ trVX,i(σ(ϕ)) ∈ Li.

Lemma 7. Let X be a finite set of variables. For all {1, 2}-formulas ϕ,

• trT1 (ϕ)↔ ϕ ∈ L1 ⊗Triv2,

• trVX,1(ϕ)↔ ϕ ∈ L1 ⊗Verum2,

6That is to say, when L1 and L2 are consistent, for all i ∈ {1, 2} and for all {i}-formulas ϕ, if
ϕ ∈ L1⊗L2 then ϕ ∈ Li. Obviously, if either L1 is inconsistent, or L2 is inconsistent then L1⊗L2 is
inconsistent. In actual fact, as noticed by Kracht and Wolter [23], L1⊗L2 is a conservative extension
of L1 and L2 if and only if either L1 is consistent and L2 is consistent, or L1 is inconsistent and L2
is inconsistent.
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• trT2 (ϕ)↔ ϕ ∈ Triv1 ⊗ L2,

• trVX,2(ϕ)↔ ϕ ∈ Verum1 ⊗ L2.

Lemma 8. Let X be a finite set of variables, i ∈ {1, 2} and ϕ be a {1, 2}-formula.
If ϕ ∈ L1 ⊗ L2 then

1. if Lī ⊆ Trivī then trTi (ϕ) ∈ Li,

2. if Lī ⊆ Verumī then trVX,i(ϕ) ∈ Li.

Within the context of this paper, it is relevant to investigate the properties of
the modal connectives � and � in L1 ⊗ L2. The following results will be used in
Section 6.

Lemma 9. 1. L1 ⊗ L2 contains all {1, 2}-formulas of the form �(ϕ → ψ) →
(�ϕ→ �ψ),

2. L1 ⊗ L2 contains all {1, 2}-formulas of the form �(ϕ→ ψ)→ (�ϕ→ �ψ),

3. L1 ⊗ L2 is closed under the rule ϕ
�ϕ ,

4. L1 ⊗ L2 is closed under the rule ϕ
�ϕ ,

5. if L1 ⊗ L2 is tensed then L1 ⊗ L2 is closed under the rule ¬ϕ→�ψ
¬ψ→�ϕ ,

6. if L1 ⊗ L2 is tensed then L1 ⊗ L2 is closed under the rule ¬ϕ→�ψ
¬ψ→�ϕ .

Lemma 10. For all k ≥ 0,

1. �k> ∈ L1 ⊗ L2,

2. �k> ∈ L1 ⊗ L2,

3. �<k> ∈ L1 ⊗ L2,

4. �<k> ∈ L1 ⊗ L2.

Lemma 11. Let k ≥ 0. For all {1, 2}-formulas ϕ,

1. �<k+1ϕ↔ ϕ ∧��<k ϕ ∈ L1 ⊗ L2,

2. �<k+1ϕ↔ ϕ ∧��<k ϕ ∈ L1 ⊗ L2.

Lemma 12. Let k ≥ 0. If L1 ⊗ L2 is smooth then
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1. �k⊥ 6∈ L1 ⊗ L2,

2. �k⊥ 6∈ L1 ⊗ L2.

Lemma 13. Let k ≥ 0. If L1 ⊗ L2 is tensed and smooth then for all l ≥ 0,
�k⊥ ∨�l⊥ 6∈ L1 ⊗ L2.

In anticipation of our results about the unification type of fusions in Sections 5
and 6, we complete this section by defining the families (σk)k≥0, (τk)k≥0, (λk)k≥0
and (µk)k≥0 of {1, 2}-substitutions and by proving some of their properties. From
now on in this paper,

let x be a fixed variable.

For all k ≥ 0, let σk and τk be the {1, 2}-substitutions inductively defined as follows:

• σ0(x) = ⊥,

• for all variables y distinct from x, σ0(y) = y,

• τ0(x) = >,

• for all variables y distinct from x, τ0(y) = y,

• σk+1(x) = x ∧�σk(x),

• for all variables y distinct from x, σk+1(y) = y,

• τk+1(x) = ¬(¬x ∧�¬τk(x)),

• for all variables y distinct from x, τk+1(y) = y.

For all k ≥ 0, let λk and µk be the {1, 2}-substitutions defined as follows:

• λk(x) = x ∧�k⊥,

• for all variables y distinct from x, λk(y) = y,

• µk(x) = ¬(¬x ∧�k⊥),

• for all variables y distinct from x, µk(y) = y.

Lemma 14. Let k ≥ 0. We have �<kx ∧ �k⊥ → σk(x) ∈ L1 ⊗ L2 and �<k¬x ∧
�k⊥ → ¬τk(x) ∈ L1 ⊗ L2.

Lemma 15. Let k ≥ 0. We have σk(x)→ x ∈ L1⊗L2 and ¬τk(x)→ ¬x ∈ L1⊗L2.
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Lemma 16. Let k ≥ 0. We have σk(x) → �σk(x) ∈ L1 ⊗ L2 and ¬τk(x) →
�¬τk(x) ∈ L1 ⊗ L2.
Lemma 17. Let k ≥ 0. For all l ≥ 0, if k ≤ l then σk(x) → �l⊥ ∈ L1 ⊗ L2 and
¬τk(x)→ �l⊥ ∈ L1 ⊗ L2.
Lemma 18. Let k ≥ 0. For all l ≥ 0, if k ≤ l then �k⊥∧ σl(x)↔ σk(x) ∈ L1⊗L2
and �k⊥ ∧ ¬τl(x)↔ ¬τk(x) ∈ L1 ⊗ L2.
Lemma 19. Let k ≥ 0. For all l ≥ 0, if k ≤ l then λl(σk(x)) ↔ σk(x) ∈ L1 ⊗ L2
and µl(τk(x))↔ τk(x) ∈ L1 ⊗ L2.
Lemma 20. Let k ≥ 0. For all l ≥ 0, if k ≥ l then λl(σk(x)) ↔ σl(x) ∈ L1 ⊗ L2
and µl(τk(x))↔ τl(x) ∈ L1 ⊗ L2.
Lemma 21. Let k ≥ 0. If L1 ⊗ L2 is smooth then for all l ≥ 0, if k > l then
σk(x)→ �l⊥ 6∈ L1 ⊗ L2 and ¬τk(x)→ �l⊥ 6∈ L1 ⊗ L2.
Lemma 22. Let k ≥ 0. If L1 ⊗ L2 is smooth then for all l ≥ 0, �k⊥ ∨ ¬τl(x) 6∈
L1 ⊗ L2 and �k⊥ ∨ σl(x) 6∈ L1 ⊗ L2.

4 Unification
4.1 Unifiable formulas and unification types
Let I be a non-empty subset of {1, 2}. Let L be an I -logic. We shall say that an
I -substitution σ is equivalent in L to an I -substitution τ with respect to a set X
of variables (in symbols σ 'XL τ) if for all variables y ∈ X , σ(y) ↔ τ(y) ∈ L. We
shall say that an I -substitution σ is more general in L than an I -substitution τ with
respect to a set X of variables (in symbols σ �XL τ) if there exists an I -substitution υ
such that σ◦υ 'XL τ . Obviously, for all sets X of variables and for all I -substitutions
σ, τ , if σ 'XL τ then σ �XL τ . Moreover, for all sets X of variables, on the set of all
I -substitutions, the binary relation 'XL is reflexive, symmetric and transitive and
the binary relation �XL is reflexive and transitive. We shall say that an I -formula ϕ
is L-unifiable if there exists an I -substitution σ such that σ(ϕ) ∈ L. In that case,
σ is an L-unifier of ϕ. We shall say that a set Σ of L-unifiers of an L-unifiable
I -formula ϕ is L-complete if for all L-unifiers σ of ϕ, there exists τ ∈ Σ such that
τ �var(ϕ)

L σ. As is well-known, if an L-unifiable I -formula has minimal L-complete
sets of L-unifiers then these sets have the same cardinality7. About the type of

7Suppose Σ and ∆ are minimal L-complete sets of L-unifiers of the same L-unifiable I -formula
ϕ. By the L-completeness of Σ and ∆, one can readily define functions f : Σ −→ ∆ and g : ∆ −→ Σ
such that f(σ) �var(ϕ)

L σ for each σ ∈ Σ and g(δ) �var(ϕ)
L δ for each δ ∈ ∆. By the minimality of Σ

and ∆, it follows that f and g are injective. Hence, Σ and ∆ have the same cardinality.
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L-unifiable I -formulas, we shall say that an L-unifiable I -formula

• ϕ is L-nullary (or of type 0) if there exists no minimal L-complete set of
L-unifiers of ϕ,

• ϕ is L-infinitary (or of type ∞) if there exists a minimal L-complete set of
L-unifiers of ϕ but there exists no finite one,

• ϕ is L-finitary (or of type ω) if there exists a finite minimal L-complete set of
L-unifiers of ϕ but there exists no with cardinality 1,

• ϕ is L-unitary (or of type 1) if there exists a minimal L-complete set of L-
unifiers of ϕ with cardinality 1.

Obviously, the types “L-nullary”, “L-infinitary”, “L-finitary” and “L-unitary” con-
stitute a set of jointly exhaustive and pairwise distinct situations. To be of type 0
is considered to be the worst situation whereas to be of type 1 is considered to be
better than to be of type ω which is itself considered to be better than to be of type
∞. As for the type of L, we traditionally distinguish between elementary unification
and unification with parameters:

• elementary unification in L is the problem of asking whether a given parameter-
free I -formula is L-unifiable,

• unification with parameters in L is the problem of asking whether a given
I -formula is L-unifiable.

We shall say that

• L is nullary (or of type 0) for elementary unification if there exists an L-nullary
L-unifiable parameter-free I -formula,

• L is infinitary (or of type ∞) for elementary unification if every L-unifiable
parameter-free I -formula is either L-unitary, or L-finitary, or L-infinitary and
there exists an L-infinitary L-unifiable parameter-free I -formula,

• L is finitary (or of type ω) for elementary unification if every L-unifiable
parameter-free I -formula is either L-unitary, or L-finitary and there exists an
L-finitary L-unifiable parameter-free I -formula,

• L is unitary (or of type 1) for elementary unification if every L-unifiable
parameter-free I -formula is L-unitary.

We shall say that
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• L is nullary (or of type 0) for unification with parameters if there exists an
L-nullary L-unifiable I -formula,

• L is infinitary (or of type ∞) for unification with parameters if every L-
unifiable I -formula is either L-unitary, or L-finitary, or L-infinitary and there
exists an L-infinitary L-unifiable I -formula,

• L is finitary (or of type ω) for unification with parameters if every L-unifiable
I -formula is either L-unitary, or L-finitary and there exists an L-finitary L-
unifiable I -formula,

• L is unitary (or of type 1) for unification with parameters if every L-unifiable
I -formula is L-unitary.

Obviously, both for elementary unification and for unification with parameters, the
types “nullary”, “infinitary”, “finitary” and “unitary” constitute a set of jointly ex-
haustive and pairwise distinct situations. In other respects, the unification type of
L for elementary unification is at least better than the unification type of L for uni-
fication with parameters and there is a priori no guarantee that the unification type
for elementary unification and the unification type for unification with parameters
are equal. For instance, the implication fragment of Classical Propositional Logic is
unitary for elementary unification and finitary for unification with parameters [6]8.
To the extent that in cases such as KB, KD, KDB, KT and KTB, the unification
type for unification with parameters is known whereas the unification type for ele-
mentary unification is still a mystery9. Of course, seeing that the unification type
of an equational theory depends not only on the equational theory itself but also
on the set of symbols that can occur in the considered unification problems, this
phenomenon is already well-known from the theory of unification [2]. Finally, as
already noticed by several authors within the context of unimodal logics, there is
no I -logic L that is known to be infinitary either for elementary unification, or for
unification with parameters. See [11].

4.2 Playing with formulas and substitutions
Let L1 be a consistent {1}-logic and L2 be a consistent {2}-logic.

8For all parameter-free formulas ϕ with → as its sole connective, ϕ is unifiable in Classical
Propositional Logic and the so-called Löwenheim substitution ε defined by ε(y) = ϕ → y for each
y ∈ var(ϕ) constitutes a minimal complete set of unifiers of it.

9KB, KD, KDB, KT and KTB are nullary for unification with parameters [3, 4, 5].
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Lemma 23. Let k ≥ 0. For all l ≥ 0, if k ≤ l then σl ◦ λk '{x}L1⊗L2
σk and

τl ◦ µk '{x}L1⊗L2
τk.

Lemma 24. Let k ≥ 0. For all l ≥ 0, if k ≤ l then σl �{x}L1⊗L2
σk and τl �{x}L1⊗L2

τk.

Lemma 25. Let k ≥ 0. If L1 ⊗ L2 is smooth then for all l ≥ 0, if k < l then
σk 6�{x}L1⊗L2

σl and τk 6�{x}L1⊗L2
τl.

Lemma 26. Let k ≥ 0. If L1 ⊗ L2 is smooth then for all l ≥ 0, σk 6�{x}L1⊗L2
τl and

τk 6�{x}L1⊗L2
σl.

From now on in this paper,

let ϕ be the {1, 2}-formula x→ �x and ψ be the {1, 2}-formula ¬x→ �¬x.

The {1, 2}-formulas ϕ and ψ will be the keys in Section 6 to the determination of
the unification type of the fusion of arbitrary consistent extensions of S5. In the
meantime, by Lemma 9, if L1 ⊗ L2 is tensed then ϕ and ψ have the same unifiers
in L1 ⊗ L2. Hence, in that case, as long as we only consider ϕ and ψ through their
unifiers in L1 ⊗ L2, it does not matter if we are talking about either ϕ, or ψ.

Lemma 27. Let k ≥ 0. For all unifiers σ of ϕ in L1⊗L2, σ(x)→ �<kσ(x) ∈ L1⊗L2
and for all unifiers τ of ψ in L1 ⊗ L2, ¬τ(x)→ �<k¬τ(x) ∈ L1 ⊗ L2.

Lemma 28. For all k ≥ 0, σk is a unifier of ϕ in L1 ⊗ L2 and τk is a unifier of ψ
in L1 ⊗ L2.

Lemma 29. Let υ be a {1, 2}-substitution. If υ is a unifier of ϕ in L1 ⊗ L2 then
for all k ≥ 0, the following conditions are equivalent:

(a) σk ◦ υ '{x}L1⊗L2
υ,

(b) σk �{x}L1⊗L2
υ,

(c) υ(x)→ �k⊥ ∈ L1 ⊗ L2

and if υ is a unifier of ψ in L1 ⊗L2 then for all k ≥ 0, the following conditions are
equivalent:

(d) τk ◦ υ '{x}L1⊗L2
υ,

(e) τk �{x}L1⊗L2
υ,

(f) ¬υ(x)→ �k⊥ ∈ L1 ⊗ L2.
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5 General results about the unification type of fusions
Let L1 be a consistent {1}-logic and L2 be a consistent {2}-logic.

Proposition 1. Let i ∈ {1, 2} and χ be an {i}-formula. If χ is unifiable in L1⊗L2
then χ is Li-unifiable.

Proof. Suppose χ is unifiable in L1 ⊗ L2. Hence, there exists a {1, 2}-substitution
σ such that σ(χ) ∈ L1 ⊗ L2. Without loss of generality, suppose i = 1. Since L2
is consistent, either L2 ⊆ Triv2, or L2 ⊆ Verum2. In the former case, L1 ⊗ L2 ⊆
L1 ⊗ Triv210. Since σ(χ) ∈ L1 ⊗ L2, σ(χ) ∈ L1 ⊗ Triv2. Thus, by Lemma 7,
trT1 (σ(χ)) ∈ L1 ⊗ Triv2. Since L1 ⊗ Triv2 is a conservative extension of L1, it
follows that trT1 (σ(χ)) ∈ L1. Consequently, by Lemma 5, σT1 (trT1 (χ)) ∈ L1. Hence,
by Lemma 1, σT1 (χ) ∈ L1. Thus, χ is L1-unifiable.

Proposition 2. Let i ∈ {1, 2} and χ be an {i}-formula. For all complete sets Σ of
unifiers of χ in L1 ⊗ L2,

1. if Lī ⊆ Trivī then {σTi : σ ∈ Σ} is an Li-complete set of Li-unifiers of χ,

2. if Lī ⊆ Verumī then {σV∅,i : σ ∈ Σ} is an Li-complete set of Li-unifiers of χ.

Proof. Let Σ be a complete set of unifiers of χ in L1 ⊗ L2. The proof of Item (1)
can be done as follows11.

Suppose i = 1 and L2 ⊆ Triv2.

Claim {σT1 : σ ∈ Σ} is a set of L1-unifiers of χ.

Proof: It suffices to prove that for all σ ∈ Σ, σT1 (χ) ∈ L1. Let σ ∈ Σ. The
proof that σT1 (χ) ∈ L1 is essentially the one described in the body of the proof
of Proposition 1. We include it here for the sake of the completeness. Since Σ is
a set of unifiers of χ in L1 ⊗ L2, we obtain σ(χ) ∈ L1 ⊗ L2. Since L2 ⊆ Triv2,
L1 ⊗ L2 ⊆ L1 ⊗ Triv2. Since σ(χ) ∈ L1 ⊗ L2, σ(χ) ∈ L1 ⊗ Triv2. Hence, by
Lemma 7, trT1 (σ(χ)) ∈ L1 ⊗Triv2. Since L1 ⊗Triv2 is a conservative extension of
L1, trT1 (σ(χ)) ∈ L1. Thus, by Lemma 5, σT1 (trT1 (χ)) ∈ L1. Hence, by Lemma 1,
σT1 (χ) ∈ L1.

Claim {σT1 : σ ∈ Σ} is an L1-complete set of L1-unifiers of χ.
10In the latter case, the proof can be similarly done.
11The proof of Items (2)–(4) can be similarly done.
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Proof: By the previous Claim, it suffices to prove that for all {1}-substitutions
σ, if σ(χ) ∈ L1 then there exists τ ∈ Σ such that τT1 �

var(χ)
L1

σ. Let σ be a {1}-
substitution. Suppose σ(χ) ∈ L1. Hence, σ(χ) ∈ L1⊗L2. Since Σ is a complete set
of unifiers of χ in L1⊗L2, there exists τ ∈ Σ such that τ �var(χ)

L1⊗L2
σ. Thus, there exists

a {1, 2}-substitution υ such that τ ◦υ 'var(χ)
L1⊗L2

σ. Hence, for all variables y ∈ var(χ),
υ(τ(y)) ↔ σ(y) ∈ L1 ⊗ L2. Since L2 ⊆ Triv2, L1 ⊗ L2 ⊆ L1 ⊗ Triv2. Since for
all variables y ∈ var(χ), υ(τ(y)) ↔ σ(y) ∈ L1 ⊗ L2, for all variables y ∈ var(χ),
υ(τ(y)) ↔ σ(y) ∈ L1 ⊗ Triv2. Thus, by Lemma 7, for all variables y ∈ var(χ),
trT1 (υ(τ(y))↔ σ(y)) ∈ L1 ⊗Triv2. Since L1 ⊗Triv2 is a conservative extension of
L1, for all variables y ∈ var(χ), trT1 (υ(τ(y)) ↔ σ(y)) ∈ L1. Thus, for all variables
y ∈ var(χ), trT1 (υ(τ(y))) ↔ trT1 (σ(y)) ∈ L1. Consequently, by Lemma 5, for all
variables y ∈ var(χ), υT1 (τT1 (y)) ↔ trT1 (σ(y)) ∈ L1. Hence, by Lemma 1, for all
variables y ∈ var(χ), υT1 (τT1 (y)) ↔ σ(y) ∈ L1. Thus, τT1 ◦ υT1 '

var(χ)
L1

σ. Conse-
quently, τT1 �

var(χ)
L1

σ.

This ends the proof of Proposition 2.

Proposition 3. Let i ∈ {1, 2} and χ be a {1, 2}-formula.

1. For all minimal Li-complete sets Σ of Li-unifiers of trTi (χ), if Lī = Trivī
then Σ is a minimal complete set of unifiers of χ in L1 ⊗ L2,

2. for all minimal Li-complete sets Σ of Li-unifiers of trVvar(χ),i(χ), if Lī =
Verumī then Σ is a minimal complete set of unifiers of χ in L1 ⊗ L2.

Proof. The proof of Item (1) can be done as follows12.

Let Σ be a minimal Li-complete set of Li-unifiers of trTi (χ). Suppose i = 1 and
L2 = Triv2.

Claim Σ is a set of unifiers of χ in L1 ⊗ L2.

Proof: It suffices to prove that for all σ ∈ Σ, σ(χ) ∈ L1 ⊗L2. Let σ ∈ Σ. Since Σ is
a set of Li-unifiers of trTi (χ), σ(trTi (χ)) ∈ Li. Hence, by Lemma 6, trTi (σ(χ)) ∈ Li.
Since i = 1 and L2 = Triv2, then by Lemma 7, σ(χ) ∈ L1 ⊗ L2.

Claim Σ is a complete set of unifiers of χ in L1 ⊗ L2.
12The proof of Item (2) can be similarly done.
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Proof: By the previous Claim, it suffices to prove that for all {1, 2}-substitutions
σ, if σ(χ) ∈ L1 ⊗ L2 then there exists τ ∈ Σ such that τ �var(χ)

L1⊗L2
σ. Let σ be

a {1, 2}-substitution. Suppose σ(χ) ∈ L1 ⊗ L2. Since i = 1 and L2 = Triv2,
then by Lemma 7, trTi (σ(χ)) ∈ L1 ⊗ L2. Since L1 ⊗ L2 is a conservative ex-
tension of Li, trTi (σ(χ)) ∈ Li. Hence, by Lemma 5, σTi (trTi (χ)) ∈ Li. Thus,
σTi is an Li-unifier of trTi (χ). Since Σ is an Li-complete set of Li-unifiers of
trTi (χ), there exists τ ∈ Σ such that τ �var(trT

i (χ))
Li

σTi . Consequently, there ex-
ists an {i}-substitution υ such that τ ◦ υ 'var(trT

i (χ))
Li

σTi . Hence, for all variables
y ∈ var(trTi (χ)), υ(τ(y)) ↔ σTi (y) ∈ Li. Thus, by Lemma 1, for all variables
y ∈ var(trTi (χ)), trTi (υ(τ(y))) ↔ trTi (σ(y)) ∈ Li. Consequently, for all variables
y ∈ var(trTi (χ)), trTi (υ(τ(y)))↔ trTi (σ(y)) ∈ L1⊗L2. Since i = 1 and L2 = Triv2,
then by Lemma 7, for all variables y ∈ var(trTi (χ)), υ(τ(y)) ↔ σ(y) ∈ L1 ⊗ L2.
Hence, by Lemma 2, for all variables y ∈ var(χ), υ(τ(y))↔ σ(y) ∈ L1 ⊗ L2. Thus,
τ ◦ υ 'var(χ)

L1⊗L2
σ. Consequently, τ �var(χ)

L1⊗L2
σ.

Claim Σ is a minimal complete set of unifiers of χ in L1 ⊗ L2.

Proof: By the previous Claim, it suffices to prove that for all σ, τ ∈ Σ, if σ �var(χ)
L1⊗L2

τ

then σ = τ . Let σ, τ ∈ Σ. Suppose σ �var(χ)
L1⊗L2

τ . Hence, there exists an {1, 2}-
substitution υ such that σ ◦ υ 'var(χ)

L1⊗L2
τ . Thus, for all variables y ∈ var(χ),

υ(σ(y)) ↔ τ(y) ∈ L1 ⊗ L2. Hence, by Lemma 2, for all variables y ∈ var(trTi (χ)),
υ(σ(y)) ↔ τ(y) ∈ L1 ⊗ L2. Since i = 1 and L2 = Triv2, then by Lemma 7, for all
variables y ∈ var(trTi (χ)), trTi (υ(σ(y))) ↔ trTi (τ(y)) ∈ L1 ⊗ L2. Since L1 ⊗ L2 is
a conservative extension of Li, for all variables y ∈ var(trTi (χ)), trTi (υ(σ(y))) ↔
trTi (τ(y)) ∈ Li. Consequently, by Lemmas 1 and 5, for all variables y ∈ var(trTi (χ)),
υTi (σ(y))↔ τ(y) ∈ Li. Thus, σ �var(trT

i (χ))
Li

τ . Since Σ is a minimal Li-complete set
of Li-unifiers of trTi (χ), σ = τ .

This ends the proof of Proposition 3.

In the above proof, the reader is invited to appreciate the uses of Lemma 2.

Proposition 4. Both for elementary unification and for unification with parameters,
if L1 ⊗ L2 is of type 1 then for all i ∈ {1, 2}, Li is of type 1.

Proof. Suppose L1 ⊗ L2 is of type 1. Suppose i = 1.
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It suffices to prove that for all L1-unifiable {1}-formulas χ, χ is L1-unitary. Let
χ be an L1-unifiable {1}-formula. Hence, there exists a {1}-substitution σ such that
σ(χ) ∈ L1. Thus, σ(χ) ∈ L1⊗L2. Hence, χ is unifiable in L1⊗L2. Since L1⊗L2 is
of type 1, there exists a minimal complete set Σ of unifiers of χ in L1⊗L2 with cardi-
nality 1. Since L2 is consistent, either L2 ⊆ Triv2, or L2 ⊆ Verum2. In the former
case, by Proposition 2, {σT1 : σ ∈ Σ} is an L1-complete set of L1-unifiers of χ13.
Since the cardinality of Σ is 1, the cardinality of {σT1 : σ ∈ Σ} is 1. Consequently,
χ is L1-unitary.

Notice that the converse of the statement established in Proposition 4 is not
always true. For instance, as proved in Section 6, S5⊗ S5 is of type 0.

Proposition 5. Both for elementary unification and for unification with parameters,
if L1 ⊗ L2 is of type ω then for all i ∈ {1, 2}, Li is either of type 1, or of type ω.

Proof. Suppose L1 ⊗ L2 is of type ω. Suppose i = 1.

It suffices to prove that for all L1-unifiable {1}-formulas χ, χ is either L1-unitary,
or L1-finitary. Let χ be an L1-unifiable {1}-formula. The proof that χ is either
L1-unitary, or L1-finitary is essentially the one described in the body of the proof
of Proposition 4. We include it here for the sake of the completeness. Since χ is
an L1-unifiable {1}-formula, there exists a {1}-substitution σ such that σ(χ) ∈ L1.
Thus, σ(χ) ∈ L1 ⊗ L2. Hence, χ is unifiable in L1 ⊗ L2. Since L1 ⊗ L2 is of type
ω, there exists a finite minimal complete set Σ of unifiers of χ in L1 ⊗L2. Since L2
is consistent, either L2 ⊆ Triv2, or L2 ⊆ Verum2. In the former case, by Proposi-
tion 2, {σT1 : σ ∈ Σ} is an L1-complete set of L1-unifiers of χ14. Since Σ is finite,
{σT1 : σ ∈ Σ} is finite. Consequently, χ is either L1-unitary, or L1-finitary.

Notice that the converse of the statement established in Proposition 5 is not
always true. For instance, as proved in [28, Chapter 6], K4⊗K4 and S4⊗S4 are of
type 0. After Propositions 4 and 5, it is natural to ask whether both for elementary
unification and for unification with parameters, if L1 ⊗ L2 is of type ∞ then for
all i ∈ {1, 2}, Li is either of type 1, or of type ω, or of type ∞. Unfortunately,
we have not been able to answer this question, seeing that in Proposition 2, it is
not clear that if the set Σ considered there is an infinite minimal complete set of
unifiers then, when either Lī ⊆ Trivī, or Lī ⊆ Verumī, the corresponding set
among {σTi : σ ∈ Σ} and {σV∅,i : σ ∈ Σ} is minimal complete too.

13In the latter case, the proof can be similarly done.
14In the latter case, the proof can be similarly done.
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Proposition 6. Both for elementary unification and for unification with parameters,
for all i ∈ {1, 2}, if either Li = Trivi, or Li = Verumi then the type of L1 ⊗ L2
and the type of Lī are equal.

Proof. Suppose i = 1.

Suppose either L1 = Triv1, or L1 = Verum1. In the former case, for the sake
of the contradiction, suppose that the type of L1 ⊗ L2 and the type of L2 are not
equal15. We consider the following cases.

Case L2 is of type 0: Hence, there exists an L2-unifiable {2}-formula χ of type
0. Thus, there exists an L2-unifier υ of χ. Hence, υ is a unifier of χ in L1 ⊗ L2.
Since L1 ⊗ L2 is not of type 0, there exists a minimal complete set Σ of unifiers
of χ in L1 ⊗ L2. Since L1 = Triv1, then by Proposition 2, {σT2 : σ ∈ Σ} is
an L2-complete set of L2-unifiers of χ. Since χ is of type 0, {σT2 : σ ∈ Σ}
is not a minimal L2-complete set of L2-unifiers of χ. Consequently, there ex-
ists σ, τ ∈ Σ such that σT2 �

var(χ)
L2

τT2 and σT2 6= τT2 . Thus, σ 6= τ . Since
σT2 �

var(χ)
L2

τT2 , it follows that there exists a {2}-substitution λ such that for all
variables y ∈ var(χ), λ(σT2 (y)) ↔ τT2 (y) ∈ L2. Consequently, for all variables
y ∈ var(χ), λ(trT2 (σ(y))) ↔ trT2 (τ(y)) ∈ L2. Thus, by Lemma 6, for all variables
y ∈ var(χ), trT2 (λ(σ(y))) ↔ trT2 (τ(y)) ∈ L2. Hence, for all variables y ∈ var(χ),
trT2 (λ(σ(y)))↔ trT2 (τ(y)) ∈ L1 ⊗ L2. Since L1 = Triv1, then by Lemma 7, for all
variables y ∈ var(χ), λ(σ(y)) ↔ τ(y) ∈ L1 ⊗ L2. Consequently, σ ◦ λ 'var(χ)

L1⊗L2
τ .

Thus, σ �var(χ)
L1⊗L2

τ . Since Σ is a minimal complete set of unifiers of χ in L1 ⊗ L2,
σ = τ : a contradiction.

Case L2 is of type ∞: Hence, by Propositions 4 and 5, neither L1 ⊗ L2 is of
type 1, nor L1 ⊗L2 is of type ω. Since L1 ⊗L2 is not of type ∞, L1 ⊗L2 is of type
0. Thus, there exists a unifiable {1, 2}-formula χ of type 0 in L1⊗L2. Hence, there
exists a unifier υ of χ in L1⊗L2. Consequently, υ(χ) ∈ L1⊗L2. Since L1 = Triv1,
then by Lemma 7, trT2 (υ(χ)) ∈ L1⊗L2. Thus, by Lemma 5, υT2 (trT2 (χ)) ∈ L1⊗L2.
Since L1 ⊗ L2 is a conservative extension of L2, it follows that υT2 (trT2 (χ)) ∈ L2.
Consequently, υT2 is an L2-unifier of trT2 (χ). Since L2 is of type ∞, there exists
a minimal L2-complete set Σ of L2-unifiers of trT2 (χ). Since L1 = Triv1, then by
Proposition 3, Σ is a minimal complete set of unifiers of χ in L1 ⊗ L2. Thus, χ is
not of type 0 in L1 ⊗ L2: a contradiction.

15In the latter case, the proof can be similarly done.
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Case L2 is of type ω: Thus, by Proposition 4, L1 ⊗ L2 is not of type 1. Since
L1 ⊗ L2 is not of type ω, either L1 ⊗ L2 is of type 0, or L1 ⊗ L2 is of type ∞.
Consequently, there exists a unifiable {1, 2}-formula χ either of type 0, or of type
∞ in L1 ⊗ L2. Hence, there exists a unifier υ of χ in L1 ⊗ L2. Consequently,
υ(χ) ∈ L1 ⊗ L2. Since L1 = Triv1, then by Lemma 7, trT2 (υ(χ)) ∈ L1 ⊗ L2. Thus,
by Lemma 5, υT2 (trT2 (χ)) ∈ L1 ⊗ L2. Since L1 ⊗ L2 is a conservative extension of
L2, we obtain υT2 (trT2 (χ)) ∈ L2. Hence, υT2 is an L2-unifier of trT2 (χ). Since L2 is
of type ω, there exists a finite minimal L2-complete set Σ of L2-unifiers of trT2 (χ).
Since L1 = Triv1, then by Proposition 3, Σ is a minimal complete set of unifiers of
χ in L1⊗L2. Consequently, neither χ is of type 0 in L1⊗L2, nor χ is of type ∞ in
L1 ⊗ L2: a contradiction.

Case L2 is of type 1: Since L1 ⊗ L2 is not of type 1, there exists a unifiable
{1, 2}-formula χ either of type 0, or of type ∞, or of type ω in L1⊗L2. Thus, there
exists a unifier υ of χ in L1⊗L2. Hence, υ(χ) ∈ L1⊗L2. Since L1 = Triv1, then by
Lemma 7, trT2 (υ(χ)) ∈ L1⊗L2. Consequently, by Lemma 5, υT2 (trT2 (χ)) ∈ L1⊗L2.
Since L1 ⊗ L2 is a conservative extension of L2, υT2 (trT2 (χ)) ∈ L2. Thus, υT2 is an
L2-unifier of trT2 (χ). Since L2 is of type 1, there exists a finite minimal L2-complete
set Σ of L2-unifiers of trT2 (χ) with cardinality 1. Since L1 = Triv1, then by Propo-
sition 3, Σ is a minimal complete set of unifiers of χ in L1⊗L2. Hence, neither χ is
of type 0 in L1 ⊗ L2, nor χ is of type ∞ in L1 ⊗ L2, nor χ is of type ω in L1 ⊗ L2:
a contradiction.

In the above proof, the reader is invited to appreciate the uses of Proposition 3.

6 Specific results about the unification type of fusions
Let L1 be a consistent {1}-logic and L2 be a consistent {2}-logic. In Propositions 7
and 8, for all m ≥ 0, σm and τm are the {1, 2}-substitutions defined in Section 3
and ϕ and ψ are the {1, 2}-formulas defined in Section 4.

Proposition 7. If L1 and L2 are non-trivial extensions of S5 then for all unifiers υ
of ϕ∧ψ in L1⊗L2, there existsm ≥ 0 such that either σm �{x}L1⊗L2

υ, or τm �{x}L1⊗L2
υ.

Proof. Suppose L1 and L2 are non-trivial extensions of S5. Let υ be a unifier of
ϕ ∧ ψ in L1 ⊗ L2. Hence, υ is a unifier of ϕ in L1 ⊗ L2 and υ is a unifier of ψ in
L1 ⊗ L2. Let m ≥ 0 be such that deg(υ(x)) ≤ 6m. Suppose σm 6�{x}L1⊗L2

υ and
τm 6�{x}L1⊗L2

υ. Since υ is a unifier of ϕ in L1 ⊗L2 and υ is a unifier of ψ in L1 ⊗L2,
then by Lemma 29, υ(x) → �m⊥ 6∈ L1 ⊗ L2 and ¬υ(x) → �m⊥ 6∈ L1 ⊗ L2. Since
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L1 and L2 are non-trivial extensions of S5, either there exists kk ≥ 2 such that
L1 = S5kk

1 , or L1 = S51 and either there exists ll ≥ 2 such that L2 = S5ll
2 , or

L2 = S52. Consequently, we have to consider the following cases:

1. there exists kk ≥ 2 such that L1 = S5kk
1 and there exists ll ≥ 2 such that

L2 = S5ll
2 ,

2. there exists kk ≥ 2 such that L1 = S5kk
1 and L2 = S52,

3. L1 = S51 and there exists ll ≥ 2 such that L2 = S5ll
2 ,

4. L1 = S51 and L2 = S52.

The proof in Case (1) can be done as follows16.

Remind that

• S5kk
1 is a Kripke complete {1}-logic characterized by the class of all Kripke

frames (W,R1) where R1 is an equivalence relation onW for which each equiv-
alence class is a finite set of exactly kk possible worlds,

• S5ll
2 is a Kripke complete {2}-logic characterized by the class of all Kripke

frames (W,R2) where R2 is an equivalence relation onW for which each equiv-
alence class is a finite set of exactly ll possible worlds,

• S5kk
1 is characterized by the class of all Kripke frames (W,R1) where R1 is an

equivalence relation on W for which each equivalence class is a finite set of at
most kk possible worlds,

• S5ll
2 is also characterized by the class of all Kripke frames (W,R2) where R2

is an equivalence relation on W for which each equivalence class is a finite set
of at most ll possible worlds.

Since these classes of Kripke frames are closed under the formation of disjoint unions
and isomorphic copies, then by [15, Theorem 4.1],

• L1 ⊗ L2 is a Kripke complete {1, 2}-logic characterized both by the class C=

of all Kripke frames (W,R1, R2) where R1 is an equivalence relation on W for
which each equivalence class is a finite set of exactly kk possible worlds and
R2 is an equivalence relation on W for which each equivalence class is a finite
set of exactly ll possible worlds,

16The proof of Cases (2)–(4) can be similarly done.
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• L1 ⊗ L2 is a Kripke complete {1, 2}-logic characterized both by the class C≤
of all Kripke frames (W,R1, R2) where R1 is an equivalence relation on W for
which each equivalence class is a finite set of at most kk possible worlds and
R2 is an equivalence relation on W for which each equivalence class is a finite
set of at most ll possible worlds.

Since υ(x)→ �m⊥ 6∈ L1 ⊗ L2 and ¬υ(x)→ �m⊥ 6∈ L1 ⊗ L2,

• there exists a Kripke frame F = (W,R1, R2) in C=, there exists a model
M = (W,R1, R2, V ) based on F and there exists t0 ∈ W such that M, t0 |=
υ(x) ∧ ¬�m ⊥,

• there exists a Kripke frame F ′ = (W ′, R′1, R′2) in C=, there exists a model
M′ = (W ′, R′1, R′2, V ′) based on F ′ and there exists t′0 ∈W ′ such thatM′, t′0 |=
¬υ(x) ∧ ¬�m ⊥.

Now, let us transformM andM′ into kinds of tree-like models without affecting sat-
isfiability. An adaptation of the transformation called unravelling [7, Definition 4.51]
will enable us to do this. We describe the transformation of M as follows17. A
t0-tip in M is a tuple of the form (u0, a1, u1, . . . , ak, uk) where u0 = t0, k ≥ 0,
a1, . . . , ak ∈ {1, 2} and u1, . . . , uk ∈W are such that

• for all i ∈ {1, . . . , k}, ui−1Raiui,

• for all i ∈ {1, . . . , k}, ui−1 6= ui,

• for all i ∈ {2, . . . , k}, ai−1 6= ai.

LetW ′′ be the set of all t0-tips inM. Notice that (t0) ∈W ′′. For all i ∈ {1, 2}, let R′′i
be the equivalence relation on W ′′ such that for all (u0, a1, u1, . . . , ak, uk), (v0, b1, v1,
. . . , bl, vl) ∈W ′′, (u0, a1, u1, . . . , ak, uk)R′′i (v0, b1, v1, . . . , bl, vl) iff one of the following
conditions holds:

• (u0, a1, u1, . . . , ak, uk) = (v0, b1, v1, . . . , bl, vl),

• k ≥ 1, (u0, a1, u1, . . . , ak−1, uk−1) = (v0, b1, v1, . . . , bl, vl) and ak = i,

• l ≥ 1, (u0, a1, u1, . . . , ak, uk) = (v0, b1, v1, . . . , bl−1, vl−1) and bl = i,

• k ≥ 1, l ≥ 1, (u0, a1, u1, . . . , ak−1, uk−1) = (v0, b1, v1, . . . , bl−1, vl−1), ak = i,
and bl = i.

17The description of the transformation ofM′ can be similarly done.
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Notice that for all (u0, a1, u1, . . . , ak, uk) ∈ W ′′, the equivalence class of (u0, a1, u1,
. . . , ak, uk) modulo R′′1 contains exactly kk elements and the equivalence class of
(u0, a1, u1, . . . , ak, uk) modulo R′′2 contains exactly ll elements. Moreover, the inter-
section of these equivalence classes is the singleton {(u0, a1, u1, . . . , ak, uk)}. Let V ′′
be the valuation onW ′′ such that for all atoms α, V ′′(α) = {(u0, a1, u1, . . . , ak, uk) ∈
W ′′ : uk ∈ V (α)}. Let the unravelling ofM around t0 be the structure

• M′′ = (W ′′, R′′1 , R′′2 , V ′′).

Similarly, let the unravelling ofM′ around t′0 be the structure

• M′′′ = (W ′′′, R′′′1 , R′′′2 , V ′′′).

Let f ′′ be the function defined from W ′′ to W and associating to each t0-tip (u0, a1,
u1, . . . , ak, uk) in W ′′ the possible world uk in W . Similarly, let f ′′′ be the function
defined from W ′′′ to W ′ and associating to each t′0-tip (u′0, a′1, u′1, . . . , a′k, u′k) in W ′′′
the possible world u′k in W ′. Obviously, f ′′ is a bounded morphism fromM′′ toM
such that f ′′((t0)) = t018. Similarly, obviously, f ′′′ is a bounded morphism fromM′′′
toM′ such that f ′′′((t′0)) = t′0. SinceM, t0 |= υ(x) ∧ ¬�m ⊥, then by [7, Proposi-
tion 2.14],M′′, (t0) |= υ(x) andM′′, (t0) 6|= �m⊥. Similarly, sinceM′, t′0 |= ¬υ(x)∧
¬�m⊥, then by [7, Proposition 2.14],M′′′, (t′0) 6|= υ(x) andM′′′, (t′0) 6|= �m⊥. Since
M′′, (t0) 6|= �m⊥, there exists t1,1, t1,2, t1,3, t1,4, t1,5, t1,6, . . . , tm,1, tm,2, tm,3, tm,4,
tm,5, tm,6 ∈W such that

• t0R1t1,1R2t1,2R1t1,3R2t1,4R1t1,5R2t1,6 . . . R1tm,1R2tm,2R1tm,3R2tm,4R1tm,5R2
tm,6,

• M, t0 |= p1 ∧ q0 ∧ r1,M, t1,1 |= p0 ∧ q0 ∧ r0,M, t1,2 |= p0 ∧ q0 ∧ r1,M, t1,3 |=
p0∧q1∧r0,M, t1,4 |= p0∧q1∧r1,M, t1,5 |= p1∧q0∧r0,M, t1,6 |= p1∧q0∧r1,
. . ., M, tm,1 |= p0 ∧ q0 ∧ r0, M, tm,2 |= p0 ∧ q0 ∧ r1, M, tm,3 |= p0 ∧ q1 ∧ r0,
M, tm,4 |= p0 ∧ q1 ∧ r1,M, tm,5 |= p1 ∧ q0 ∧ r0,M, tm,6 |= p1 ∧ q0 ∧ r1.

18To see this, notice that
• by the definition of the valuation V ′′ on W ′′, for all t0-tips (u0, a1, u1, . . . , ak, uk) in W ′′,

(u0, a1, u1, . . . , ak, uk) and uk satisfy the same atoms,
• for all i ∈ {1, 2}, by the definition of the equivalence relation R′′i on W ′′, knowing that Ri

is an equivalence relation on W , for all t0-tips (u0, a1, u1, . . . , ak, uk), (v0, b1, v1, . . . , bl, vl) in
W ′′, if (u0, a1, u1, . . . , ak, uk)R′′i (v0, b1, v1, . . . , bl, vl) then ukRivl,

• for all i ∈ {1, 2}, by the definition of the equivalence relation R′′i on W ′′, knowing that
Ri is an equivalence relation on W , for all t0-tips (u0, a1, u1, . . . , ak, uk) in W ′′ and for
all v in W , if ukRiv then there exists a t0-tip (v0, b1, v1, . . . , bl, vl) in W ′′ such that
(u0, a1, u1, . . . , ak, uk)R′′i (v0, b1, v1, . . . , bl, vl) and vl = v.
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This implies that W ′′ contains the t0-tip tt = (t0, 1, t1,1, 2, t1,2, 1, t1,3, 2, t1,4, 1, t1,5,
2, t1,6, . . . , 1, tm,1, 2, tm,2, 1, tm,3, 2, tm,4, 1, tm,5, 2, tm,6). Similarly, since M′′′, (t′0) 6|=
�m⊥, there exists t′1,1, t′1,2, t′1,3, t′1,4, t′1,5, t′1,6, . . . , t′m,1, t′m,2, t′m,3, t′m,4, t′m,5, t′m,6 ∈ W ′
such that

• t′0R2t′1,1R1t′1,2R2t′1,3R1t′1,4R2t′1,5R1t′1,6 . . . R2t′m,1R1t′m,2R2t′m,3R1t′m,4R2t′m,5R1
t′m,6,

• M′, t′0 |= p1∧ q0∧ r1,M′, t′1,1 |= p1∧ q0∧ r0,M′, t′1,2 |= p0∧ q1∧ r1,M′, t′1,3 |=
p0∧q1∧r0,M′, t′1,4 |= p0∧q0∧r1,M′, t′1,5 |= p0∧q0∧r0,M′, t′1,6 |= p1∧q0∧r1,
. . ., M′, t′m,1 |= p1 ∧ q0 ∧ r0, M′, t′m,2 |= p0 ∧ q1 ∧ r1, M′, t′m,3 |= p0 ∧ q1 ∧ r0,
M′, t′m,4 |= p0 ∧ q0 ∧ r1,M′, t′m,5 |= p0 ∧ q0 ∧ r0,M′, t′m,6 |= p1 ∧ q0 ∧ r1.

Similarly, this implies that W ′′′ contains the t′0-tip tt′ = (t′0, 2, t′1,1, 1, t′1,2, 2, t′1,3,
1, t′1,4, 2, t′1,5, 1, t′1,6, . . . , 2, t′m,1, 1, t′m,2, 2, t′m,3, 1, t′m,4, 2, t′m,5, 1, t′m,6). Let M∪ =
(W∪, R∪1 , R∪2 , V ∪) be the model obtained from the disjoint union ofM′′ andM′′′ by
deleting all possible worlds in R′′1(tt) but tt and by deleting all possible worlds in
R′′′2 (tt′) but tt′. Notice that consequently, R∪1 (tt) = {tt} and R∪2 (tt′) = {tt′}. Ob-
viously, the Kripke frame (W∪, R∪1 , R∪2 ) is in C≤. Moreover, notice that in this
frame, the length of the shortest path from (t0) to tt is equal to 6m and the
length of the shortest path from (t′0) to tt′ is equal to 6m. Since deg(υ(x)) ≤ 6m,
M′′, (t0) |= υ(x) and M′′′, (t′0) 6|= υ(x), M∪, (t0) |= υ(x) and M∪, (t′0) 6|= υ(x).
Let M] = (W], R]1 , R]2 , V ]) be the least model model obtained from M∪ =
(W∪, R∪1 , R∪2 , V ∪) by adding new states u1, u2, u3, u4 and u5 such that

(?) ttR]1 u1R]2 u2R]1 u3R]2 u4R]1 u5R]2 tt′,

(??) R]1 and R]2 are reflexive and symmetric19,

(? ? ?) M], u1 |= p0 ∧ q0 ∧ r0, M], u2 |= p0 ∧ q0 ∧ r1, M], u3 |= p0 ∧ q1 ∧ r0,
M], u4 |= p0 ∧ q1 ∧ r1 andM], u5 |= p1 ∧ q0 ∧ r0.

Notice that consequently, R]1 (tt) = {tt, u1} and R]2 (tt′) = {tt′, u5}. Obviously,
the Kripke frame (W], R]1 , R]2 ) is in C≤. Moreover, notice that in this frame, the
length of the shortest path from (t0) to tt is still equal to 6m and the length of
the shortest path from (t′0) to tt′ is still equal to 6m. Since deg(υ(x)) ≤ 6m,
M∪, (t0) |= υ(x) andM∪, (t′0) 6|= υ(x), we obtainM], (t0) |= υ(x) andM], (t′0) 6|=
υ(x). Since υ is a unifier of ϕ and υ is a unifier of ψ, υ(x) → �υ(x) ∈ L1 ⊗ L2
and ¬υ(x) → �¬σ(x) ∈ L1 ⊗ L2. Since the Kripke frame (W], R]1 , R]2 ) is in
C≤, M], (t0) |= υ(x) and M], (t′0) 6|= υ(x), it follows that M], tt |= υ(x) and

19The transitivity of R]1 and R]2 is a consequence of the definition ofM].
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M], tt′ 6|= υ(x). Since υ(x) → �υ(x) ∈ L1 ⊗ L2, ¬υ(x) → �¬σ(x) ∈ L1 ⊗ L2 and
the Kripke frame (W], R]1 , R]2 ) is in C≤, then by (?), (??) and (???),M], tt 6|= υ(x)
andM], tt′ |= υ(x): a contradiction.

This ends the proof of Proposition 7.

Proposition 8. If L1 and L2 are non-trivial extensions of S5 then ϕ∧ψ is of type
0 in L1 ⊗ L2.

Proof. Suppose L1 and L2 are non-trivial extensions of S5. Suppose ϕ∧ψ is not of
type 0 in L1 ⊗ L2. Consequently, there exists a minimal complete set Σ of unifiers
of ϕ ∧ ψ in L1 ⊗ L2. By Lemma 28, σ0 is a unifier of ϕ ∧ ψ in L1 ⊗ L2. Since Σ
is a minimal complete set of unifiers of ϕ ∧ ψ in L1 ⊗ L2, let υ ∈ Σ be such that
υ �{x}L1⊗L2

σ0. Thus, by Proposition 7, let k ≥ 0 be such that either σk �{x}L1⊗L2
υ, or

τk �{x}L1⊗L2
υ. In the former case, by Lemma 28, σk+1 is a unifier of ϕ∧ψ in L1⊗L2.

Since Σ is a minimal complete set of unifiers of ϕ∧ψ in L1⊗L2, let υ′ ∈ Σ be such
that υ′ �{x}L1⊗L2

σk+1. Since σk �{x}L1⊗L2
υ, then by Lemma 24, υ′ �{x}L1⊗L2

υ. Since Σ
is a minimal complete set of unifiers of ϕ∧ψ in L1⊗L2, υ′ = υ. Since σk �{x}L1⊗L2

υ

and υ′ �{x}L1⊗L2
σk+1, σk �{x}L1⊗L2

σk+1: a contradiction with Lemmas 3 and 25. In
the latter case, since υ �{x}L1⊗L2

σ0, τk �{x}L1⊗L2
σ0: a contradiction with Lemmas 3

and 26.

Proposition 9. If L1 and L2 are non-trivial extensions of S5 then L1 ⊗ L2 is of
type 0 for unification with parameters.

Proof. By Proposition 8.

7 Conclusion
After Propositions 4 and 5, it is natural to ask whether if L1⊗L2 is of type ∞ then
for all i ∈ {1, 2}, Li is either of type 1, or of type ω, or of type ∞. Unfortunately,
we have not been able to answer this question, seeing that in Proposition 2, it is
not clear that if the set Σ considered there is an infinite minimal complete set of
unifiers then, when Lī ⊆ Trivī, or Lī ⊆ Verumī, the corresponding set among
{σTi : σ ∈ Σ} and {σV∅,i : σ ∈ Σ} is minimal complete too.20

20By the way, no modal logic (either unimodal, or multimodal) is known to be infinitary and it
is also an open problem to determine if such modal logic exists.
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Following the same line of reasoning as the one used in Section 6, other fusions
such as K4⊗K4 and S4⊗S4 can also be proved to be nullary. See [28, Chapter 6].
The results obtained there as well as the results obtained in Section 6 lead us to the
conjecture that every non-trivial fusion is of type 0, that is to say: if L1⊗L2 is not of
type 0 then either L1 = Triv1, or L1 = Verum1, or L2 = Triv2, or L2 = Verum2.
These results also lead us to the conjecture that if either L1 is of type 0, or L2 is
of type 0 then L1 ⊗ L2 is of type 021. By Propositions 4 and 5, this conjecture is
equivalent to the one saying that if L1 ⊗ L2 is of type ∞ then for all i ∈ {1, 2}, Li
is either of type 1, or of type ω, or of type ∞.

Finally, Proposition 9 only constitutes a partial answer to Dzik’s conjecture that
the fusion S5 ⊗ S5 of S5 with itself is either nullary, or infinitary [11, Chapter 6],
seeing that it is still unknown when L1 and L2 are non-trivial extensions of S5
whether L1 ⊗ L2 is of type 0 for elementary unification. In the case of elementary
unification, what will play the role of the parameters p, q and r used in the formulas
ϕ and ψ? What will play the role of the formulas ϕ and ψ? Is S5⊗S5 itself of type
0 for elementary unification?
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Appendix
This Appendix includes the proofs of some of our results. Most of these proofs are
relatively simple and we have included them here just for the sake of the complete-
ness.

Proof of Lemma 1: The proof is done by induction on ϕ.

Proof of Lemma 2: The proof is done by induction on ϕ.

Proof of Lemma 3: Suppose L1 and L2 are non-trivial extensions of S5.

Firstly, we prove that L1 ⊗ L2 is tensed. Since S51 contains all {1}-formulas of
the form ϕ→ 2131ϕ and S52 contains all {2}-formulas of the form ϕ→ 2232ϕ, L1
contains all {1}-formulas of the form ϕ→ 2131ϕ and L2 contains all {2}-formulas
of the form ϕ → 2232ϕ. Hence, L1 ⊗ L2 contains all {1, 2}-formulas of the form
ϕ→ 2131ϕ and ϕ→ 2232ϕ. Thus, L1 ⊗ L2 is tensed.

Secondly, we prove that L1 ⊗ L2 is smooth. More precisely, we prove that for
all k, l ≥ 0, if k > l then �k⊥ → �l⊥ 6∈ L1 ⊗L222. Let k, l ≥ 0. Suppose k > l. Let
M = (W,R1, R2, V ) be a model such that

• W = {i ≥ 0 : 0 ≤ i ≤ 6l},

• for all i, j ∈W , iR1j iff | j − i |≤ 1 and either i = j, or max{i, j} is odd,

• for all i, j ∈W , iR2j iff | j − i |≤ 1 and either i = j, or max{i, j} is even,

• V (p) = {i ≥ 0 : 0 ≤ i ≤ 6l and either i mod 6 = 0, or i mod 6 = 5},

• V (q) = {i ≥ 0 : 0 ≤ i ≤ 6l and either i mod 6 = 3, or i mod 6 = 4},

• V (r) = {i ≥ 0 : 0 ≤ i ≤ 6l and either i mod 6 = 0, or i mod 6 = 2, or i
mod 6 = 4}.

22The proof that for all k, l ≥ 0, if k > l then �k⊥ → �l⊥ 6∈ L1 ⊗ L2 can be similarly done.
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Obviously, M, 0 |= �k⊥ and M, 0 |= ¬ �l ⊥. Consequently, the Kripke frame
(W,R1, R2) does not validate �k⊥ → �l⊥. In other respects, each equivalence class
modulo R1 contains exactly two possible worlds and each equivalence class modulo
R2 contains exactly two possible worlds. Hence, the Kripke frame (W,R1, R2) vali-
dates S52

1⊗S52
2. Since the Kripke frame (W,R1, R2) does not validate �k⊥ → �l⊥,

�k⊥ → �l⊥ 6∈ S52
1 ⊗ S52

2. Since L1 and L2 are non-trivial extensions of S5,
L1 ⊗ L2 ⊆ S52

1 ⊗ S52
2. Since �k⊥ → �l⊥ 6∈ S52

1 ⊗ S52
2, �k⊥ → �l⊥ 6∈ L1 ⊗ L2.

Proof of Lemma 4: The proof is done by induction on ϕ.

Proof of Lemma 5: The proof is done by induction on ϕ.

Proof of Lemma 6: The proof is done by induction on ϕ.

Proof of Lemma 7: The proof is done by induction on ϕ.

Proof of Lemma 8: The proof of Item (1) can be done as follows23.

Suppose i = 1.

Suppose ϕ ∈ L1 ⊗ L2 and L2 ⊆ Triv2. Hence, L1 ⊗ L2 ⊆ L1 ⊗ Triv2. Since
ϕ ∈ L1 ⊗ L2, ϕ ∈ L1 ⊗ Triv2. Thus, by Lemma 7, trT1 (ϕ) ∈ L1 ⊗ Triv2. Since
L1 ⊗Triv2 is a conservative extension of L1, trT1 (ϕ) ∈ L1.

Proof of Lemma 9: The proofs of Items (1)–(4) are left to the reader. The
proofs of Items (5) and (6) are done by using the well-known fact that if L1 ⊗L2 is
tensed then L1 ⊗ L2 is closed under the rules ¬ϕ→21ψ

¬ψ→21ϕ
and ¬ϕ→22ψ

¬ψ→22ϕ
.

Proof of Lemma 10: The proof is done by induction on k.

Proof of Lemma 11: The proof is done by induction on k.

Proof of Lemma 12: Suppose L1⊗L2 is smooth. Hence, �k+1⊥ → �k⊥ 6∈ L1⊗L2
and �k+1⊥ → �k⊥ 6∈ L1 ⊗ L2. Thus, �k⊥ 6∈ L1 ⊗ L2 and �k⊥ 6∈ L1 ⊗ L2.

Proof of Lemma 13: The proof is done by induction on k. Suppose for all k′ ≥ 0, if
k′ < k then if L1⊗L2 is tensed and smooth then for all l ≥ 0, �k′⊥∨�l⊥ 6∈ L1⊗L2.

23The proof of Item (2) can be similarly done.
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Case k = 0: Suppose L1 ⊗ L2 is tensed and smooth. Let l ≥ 0. Since L1 ⊗ L2 is
smooth, then by Lemma 12, �l⊥ 6∈ L1 ⊗ L2. Hence, �k⊥ ∨�l⊥ 6∈ L1 ⊗ L2.

Case k ≥ 1: Suppose L1 ⊗ L2 is tensed and smooth. Let l ≥ 0. Since L1 ⊗ L2
is tensed and smooth, then by induction hypothesis, (�k−1⊥ ∨ �l+1⊥) 6∈ L1 ⊗ L2.
Thus, (¬�k−1 ⊥ → ��l ⊥) 6∈ L1 ⊗L2. Since L1 ⊗L2 is tensed, then by Lemma 9,
(¬�l ⊥ → ��k−1 ⊥) 6∈ L1 ⊗ L2. Consequently, (�k⊥ ∨�l⊥) 6∈ L1 ⊗ L2.

Proof of Lemma 14: The proof is done by induction on k. Suppose for all k′ ≥ 0,
if k′ < k then �<k′x ∧ �k′⊥ → σk′(x) ∈ L1 ⊗ L2 and �<k′¬x ∧ �k′⊥ → ¬τk′(x) ∈
L1 ⊗ L2.

Case k = 0: This case is left to the reader.

Case k ≥ 1: By induction hypothesis, �<k−1x ∧ �k−1⊥ → σk−1(x) ∈ L1 ⊗ L2
and �<k−1¬x ∧ �k−1⊥ → ¬τk−1(x) ∈ L1 ⊗ L2. Hence, � �<k−1 x ∧ � �k−1 ⊥ →
�σk−1(x) ∈ L1 ⊗ L2 and � �<k−1 ¬x ∧ � �k−1 ⊥ → �¬τk−1(x) ∈ L1 ⊗ L2. Thus,
x∧��<k−1x∧��k−1⊥ → x∧�σk−1(x) ∈ L1⊗L2 and ¬x∧��<k−1¬x∧��k−1⊥ →
¬x ∧ �¬τk−1(x) ∈ L1 ⊗ L2. Consequently, by Lemma 11, �<kx ∧ �k⊥ → σk(x) ∈
L1 ⊗ L2 and �<k¬x ∧�k⊥ → ¬τk(x) ∈ L1 ⊗ L2.

Proof of Lemma 15: The proof is left to the reader.

Proof of Lemma 16: The proof is done by induction on k. Suppose for all k′ ≥ 0,
if k′ < k then σk′(x)→ �σk′(x) ∈ L1 ⊗ L2 and ¬τk′(x)→ �¬τk′(x) ∈ L1 ⊗ L2.

Case k = 0: This case is left to the reader.

Case k ≥ 1: By induction hypothesis, σk−1(x) → �σk−1(x) ∈ L1 ⊗ L2 and
¬τk−1(x)→ �¬τk−1(x) ∈ L1⊗L2. Hence, by Lemma 15, σk−1(x)→ x∧�σk−1(x) ∈
L1 ⊗ L2 and ¬τk−1(x) → ¬x ∧ �¬τk−1(x) ∈ L1 ⊗ L2. Thus, σk−1(x) → σk(x) ∈
L1 ⊗ L2 and ¬τk−1(x) → ¬τk(x) ∈ L1 ⊗ L2. Consequently, �σk−1(x) → �σk(x) ∈
L1 ⊗L2 and �¬τk−1(x)→ �¬τk(x) ∈ L1 ⊗L2. Since σk(x)→ �σk−1(x) ∈ L1 ⊗L2
and ¬τk(x) → �¬τk−1(x) ∈ L1 ⊗ L2, σk(x) → �σk(x) ∈ L1 ⊗ L2 and ¬τk(x) →
�¬τk(x) ∈ L1 ⊗ L2.

Proof of Lemma 17: The proof is done by induction on k. Suppose for all
k′ ≥ 0, if k′ < k then for all l ≥ 0, if k′ ≤ l then σk′(x) → �l⊥ ∈ L1 ⊗ L2 and
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¬τk′(x)→ �l⊥ ∈ L1 ⊗ L2.

Let l ≥ 0. Suppose k ≤ l.

Case k = 0: This case is left to the reader.

Case k ≥ 1: Since k ≤ l, k − 1 ≤ l − 1 and by induction hypothesis, σk−1(x) →
�l−1⊥ ∈ L1 ⊗ L2 and ¬τk−1(x) → �l−1⊥ ∈ L1 ⊗ L2. Hence, �σk−1(x) →
��l−1 ⊥ ∈ L1 ⊗L2 and �¬τk−1(x)→ ��l−1 ⊥ ∈ L1 ⊗L2. Thus, x∧�σk−1(x)→
� �l−1 ⊥ ∈ L1 ⊗ L2 and ¬x ∧ �¬τk−1(x) → � �l−1 ⊥ ∈ L1 ⊗ L2. Consequently,
σk(x)→ �l⊥ ∈ L1 ⊗ L2 and ¬τk(x)→ �l⊥ ∈ L1 ⊗ L2.

Proof of Lemma 18: The proof is done by induction on k. Suppose for all k′ ≥ 0,
if k′ < k then for all l ≥ 0, if k′ ≤ l then �k′⊥ ∧ σl(x) ↔ σk′(x) ∈ L1 ⊗ L2 and
�k′⊥ ∧ ¬τl(x)↔ ¬τk′(x) ∈ L1 ⊗ L2. Let l ≥ 0. Suppose k ≤ l.

Case k = 0: This case is left to the reader.

Case k ≥ 1: Since k ≤ l, k − 1 ≤ l − 1 and by induction hypothesis, �k−1⊥ ∧
σl−1(x) ↔ σk−1(x) ∈ L1 ⊗ L2 and �k−1⊥ ∧ ¬τl−1(x) ↔ ¬τk−1(x) ∈ L1 ⊗ L2.
Hence, ��k−1 ⊥ ∧ x ∧�σl−1(x) ↔ x ∧�σk−1(x) ∈ L1 ⊗ L2 and ��k−1 ⊥ ∧ ¬x ∧
�¬τl−1(x) ↔ ¬x ∧ �¬τk−1(x) ∈ L1 ⊗ L2. Thus, �k⊥ ∧ σl(x) ↔ σk(x) ∈ L1 ⊗ L2
and �k⊥ ∧ ¬τl(x)↔ ¬τk(x) ∈ L1 ⊗ L2.

Proof of Lemma 19: The proof is done by induction on k. Suppose for all
k′ ≥ 0, if k′ < k then for all l ≥ 0, if k′ ≤ l then λl(σk′(x))↔ σk′(x) ∈ L1 ⊗ L2 and
µl(τk′(x))↔ τk′(x) ∈ L1 ⊗ L2. Let l ≥ 0. Suppose k ≤ l.

Case k = 0: This case is left to the reader.

Case k ≥ 1: Since k ≤ l, k − 1 ≤ l and by induction hypothesis, λl(σk−1(x)) ↔
σk−1(x) ∈ L1 ⊗ L2 and µl(τk−1(x)) ↔ τk−1(x) ∈ L1 ⊗ L2. Hence, x ∧ �l⊥ ∧
�λl(σk−1(x)) ↔ �l⊥ ∧ x ∧ �σk−1(x) ∈ L1 ⊗ L2 and ¬x ∧ �l⊥ ∧ �¬µl(τk−1(x)) ↔
�l⊥∧¬x∧�¬τk−1(x) ∈ L1⊗L2. Thus, λl(x∧�σk−1(x))↔ �l⊥∧σk(x) ∈ L1⊗L2
and µl(¬x ∧ �¬τk−1(x)) ↔ �l⊥ ∧ ¬τk(x) ∈ L1 ⊗ L2. Since k ≤ l, by Lemma 17,
λl(σk(x))↔ σk(x) ∈ L1 ⊗ L2 and µl(τk(x))↔ τk(x) ∈ L1 ⊗ L2.

Proof of Lemma 20: The proof is done by induction on k. Suppose for all
k′ ≥ 0, if k′ < k then for all l ≥ 0, if k′ ≥ l then λl(σk′(x)) ↔ σl(x) ∈ L1 ⊗ L2 and
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µl(τk′(x))↔ τl(x) ∈ L1 ⊗ L2. Let l ≥ 0. Suppose k ≥ l.

Case k = l: This case is left to the reader.

Case k ≥ l + 1: Hence, k − 1 ≥ l and by induction hypothesis, λl(σk−1(x)) ↔
σl(x) ∈ L1⊗L2 and µl(τk−1(x))↔ τl(x) ∈ L1⊗L2. Thus, x∧�l⊥∧�λl(σk−1(x))↔
�l⊥ ∧ x ∧ �σl(x) ∈ L1 ⊗ L2 and ¬x ∧ �l⊥ ∧ �¬µl(τk−1(x)) ↔ �l⊥ ∧ ¬x ∧
�¬τl(x) ∈ L1 ⊗ L2. Consequently, λl(x ∧ �σk−1(x)) ↔ �l⊥ ∧ σl+1(x) ∈ L1 ⊗ L2
and µl(¬x ∧ �¬τk−1(x)) ↔ �l⊥ ∧ ¬τl+1(x) ∈ L1 ⊗ L2. Hence, by Lemma 18,
λl(σk(x))↔ σl(x) ∈ L1 ⊗ L2 and µl(τk(x))↔ τl(x) ∈ L1 ⊗ L2.

Proof of Lemma 21: Suppose L1 ⊗ L2 is smooth. Let l ≥ 0. Suppose k > l.
Let υ and θ be the {1, 2}-substitutions defined as follows:

• υ(x) = >,

• for all variables y distinct from x, υ(y) = y,

• θ(x) = ⊥,

• for all variables y distinct from x, θ(y) = y.

By Lemma 14, �<kx ∧ �k⊥ → σk(x) ∈ L1 ⊗ L2 and �<k¬x ∧ �k⊥ → ¬τk(x) ∈
L1 ⊗ L2. Hence, �<kυ(x) ∧ �k⊥ → υ(σk(x)) ∈ L1 ⊗ L2 and �<k¬θ(x) ∧ �k⊥ →
¬θ(τk(x)) ∈ L1 ⊗ L2. Since υ(x) = > and θ(x) = ⊥, then by Lemma 10, �k⊥ →
υ(σk(x)) ∈ L1 ⊗ L2 and �k⊥ → ¬θ(τk(x)) ∈ L1 ⊗ L2. Since L1 ⊗ L2 is smooth
and k > l, �k⊥ → �l⊥ 6∈ L1 ⊗ L2 and �k⊥ → �l⊥ 6∈ L1 ⊗ L2. Since �k⊥ →
υ(σk(x)) ∈ L1 ⊗ L2 and �k⊥ → ¬θ(τk(x)) ∈ L1 ⊗ L2, υ(σk(x)) → �l⊥ 6∈ L1 ⊗ L2
and ¬θ(τk(x)) → �l⊥ 6∈ L1 ⊗ L2. Thus, σk(x) → �l⊥ 6∈ L1 ⊗ L2 and ¬τk(x) →
�l⊥ 6∈ L1 ⊗ L2.

Proof of Lemma 22: Suppose L1 ⊗ L2 is smooth. Let l ≥ 0. Let υ and θ be
the {1, 2}-substitutions defined as follows:

• υ(x) = >,

• for all variables y distinct from x, υ(y) = y,

• θ(x) = ⊥,

• for all variables y distinct from x, θ(y) = y.
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Since L1⊗L2 is smooth, then by Lemma 12, �k⊥ 6∈ L1⊗L2 and�k⊥ 6∈ L1⊗L2. Since
υ(x) = > and θ(x) = ⊥, �k⊥∨¬υ(x) 6∈ L1⊗L2 and �k⊥∨ θ(x) 6∈ L1⊗L2. Hence,
�k⊥∨¬x 6∈ L1⊗L2 and �k⊥∨x 6∈ L1⊗L2. By Lemma 15, ¬τk(x)→ ¬x ∈ L1⊗L2
and σl(x) → x ∈ L1 ⊗ L2. Since �k⊥ ∨ ¬x 6∈ L1 ⊗ L2 and �k⊥ ∨ x 6∈ L1 ⊗ L2,
�k⊥ ∨ ¬τk(x) 6∈ L1 ⊗ L2 and �k⊥ ∨ σl(x) 6∈ L1 ⊗ L2.

Proof of Lemma 23: By Lemma 20.

Proof of Lemma 24: By Lemma 23.

Proof of Lemma 25: Suppose L1 ⊗ L2 is smooth. Let l ≥ 0. Suppose k < l.
Suppose either σk �{x}L1⊗L2

σl, or τk �{x}L1⊗L2
τl. In the former case, let λ be a {1, 2}-

substitution such that σk ◦ λ '{x} σl. Hence, λ(σk(x)) ↔ σl(x) ∈ L1 ⊗ L2. Since
L1 ⊗ L2 is smooth and k < l, then by Lemma 21, σl(x) → �k⊥ 6∈ L1 ⊗ L2. By
Lemma 17, σk(x) → �k⊥ ∈ L1 ⊗ L2. Thus, λ(σk(x)) → �k⊥ ∈ L1 ⊗ L2. Since
σl(x) → �k⊥ 6∈ L1 ⊗ L2, λ(σk(x)) ↔ σl(x) 6∈ L1 ⊗ L2: a contradiction. In the
latter case, let µ be a {1, 2}-substitution such that τk ◦ µ '{x} τl. Consequently,
µ(τk(x)) ↔ τl(x) ∈ L1 ⊗ L2. Since L1 ⊗ L2 is smooth and k < l, by Lemma 21,
¬τl(x) → �k⊥ 6∈ L1 ⊗ L2. By Lemma 17, ¬τk(x) → �k⊥ ∈ L1 ⊗ L2. Hence,
¬µ(τk(x)) → �k⊥ ∈ L1 ⊗ L2. Since ¬τl(x) → �k⊥ 6∈ L1 ⊗ L2, µ(τk(x)) ↔ τl(x) 6∈
L1 ⊗ L2: a contradiction.

Proof of Lemma 26: Suppose L1 ⊗ L2 is smooth. Let l ≥ 0. Suppose either
σk �{x}L1⊗L2

τl, or τk �{x}L1⊗L2
σl. In the former case, let λ be a {1, 2}-substitution

such that σk ◦ λ '{x} τl. Hence, λ(σk(x)) ↔ τl(x) ∈ L1 ⊗ L2. By Lemma 17,
σk(x)→ �k⊥ ∈ L1⊗L2. Since L1⊗L2 is smooth, then by Lemma 22, �k⊥∨¬τl(x) 6∈
L1⊗L2. Since λ(σk(x))↔ τl(x) ∈ L1⊗L2, then λ(σk(x))→ �k⊥ 6∈ L1⊗L2. Thus,
σk(x) → �k⊥ 6∈ L1 ⊗ L2: a contradiction. In the latter case, let µ be a {1, 2}-
substitution such that τk ◦µ '{x} σl. Consequently, µ(τk(x))↔ σl(x) ∈ L1⊗L2. By
Lemma 17, ¬τk(x)→ �k⊥ ∈ L1⊗L2. Since L1⊗L2 is smooth, then by Lemma 22,
�k⊥ ∨ σl(x) 6∈ L1 ⊗ L2. Since µ(τk(x)) ↔ σl(x) ∈ L1 ⊗ L2, ¬µ(τk(x)) → �k⊥ 6∈
L1 ⊗ L2. Hence, ¬τk(x)→ �k⊥ 6∈ L1 ⊗ L2: a contradiction.

Proof of Lemma 27: The proof is done by induction on k. Suppose for all k′ ≥ 0,
if k′ < k then for all L1⊗L2-unifiers σ of ϕ, σ(x)→ �<k′σ(x) ∈ L1⊗L2 and for all
L1 ⊗ L2-unifiers τ of ψ, ¬τ(x)→ �<k′¬τ(x) ∈ L1 ⊗ L2.

Case k = 0: This case is left to the reader.
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Case k ≥ 1: Let σ be an L1 ⊗ L2-unifier of ϕ and τ be an L1 ⊗ L2-unifier
of ψ. By induction hypothesis, σ(x) → �<k−1σ(x) ∈ L1 ⊗ L2 and ¬τ(x) →
�<k−1¬τ(x) ∈ L1 ⊗ L2. Since σ is an L1 ⊗ L2-unifier of ϕ and τ is an L1 ⊗ L2-
unifier of ψ, σ(x) → �k−1σ(x) ∈ L1 ⊗ L2 and ¬τ(x) → �k−1¬τ(x) ∈ L1 ⊗ L2.
Since σ(x) → �<k−1σ(x) ∈ L1 ⊗ L2 and ¬τ(x) → �<k−1¬τ(x) ∈ L1 ⊗ L2, σ(x) →
�<k−1σ(x)∧�k−1σ(x) ∈ L1⊗L2 and ¬τ(x)→ �<k−1¬τ(x)∧�k−1¬τ(x) ∈ L1⊗L2.
Hence, σ(x)→ �<kσ(x) ∈ L1 ⊗ L2 and ¬τ(x)→ �<k¬τ(x) ∈ L1 ⊗ L2.

Proof of Lemma 28: By Lemma 16.

Proof of Lemma 29: Suppose υ is an L1 ⊗ L2-unifier of ϕ. Let k ≥ 0.

(a)⇒ (b): Suppose σk ◦ υ '{x}L1⊗L2
υ. Hence, σk �{x}L1⊗L2

υ.

(b) ⇒ (c): Suppose σk �{x}L1⊗L2
υ. Let υ′ be a {1, 2}-substitution such that σk ◦

υ′ '{x}L1⊗L2
υ. Thus, υ′(σk(x)) ↔ υ(x) ∈ L1 ⊗ L2. By Lemma 17, σk(x) → �k⊥ ∈

L1 ⊗ L2. Consequently, υ′(σk(x)) → �k⊥ ∈ L1 ⊗ L2. Since υ′(σk(x)) ↔ υ(x) ∈
L1 ⊗ L2, υ(x)→ �k⊥ ∈ L1 ⊗ L2.

(c) ⇒ (a): Suppose υ(x) → �k⊥ ∈ L1 ⊗ L2. Since υ is an L1 ⊗ L2-unifier of
ϕ, by Lemma 27, υ(x)→ �<kυ(x) ∈ L1⊗L2. Since υ(x)→ �k⊥ ∈ L1⊗L2, υ(x)→
�<kυ(x)∧�k⊥ ∈ L1⊗L2. By Lemma 14, �<kx∧�k⊥ → σk(x) ∈ L1⊗L2. Hence,
�<kυ(x) ∧ �k⊥ → υ(σk(x)) ∈ L1 ⊗ L2. Since υ(x) → �<kυ(x) ∧ �k⊥ ∈ L1 ⊗ L2,
υ(x)→ υ(σk(x)) ∈ L1⊗L2. By Lemma 15, σk(x)→ x ∈ L1⊗L2. Thus, υ(σk(x))→
υ(x) ∈ L1 ⊗ L2. Since υ(x) → υ(σk(x)) ∈ L1 ⊗ L2, υ(σk(x)) ↔ υ(x) ∈ L1 ⊗ L2.
Consequently, σk ◦ υ '{x}L1⊗L2

υ.

Suppose υ is an L1 ⊗ L2-unifier of ψ. Let k ≥ 0.

(d)⇒ (e): Suppose τk ◦ υ '{x}L1⊗L2
υ. Hence, τk �{x}L1⊗L2

υ.

(e) ⇒ (f): Suppose τk �{x}L1⊗L2
υ. Let υ′ be a {1, 2}-substitution such that τk ◦

υ′ '{x}L1⊗L2
υ. Thus, υ′(τk(x)) ↔ υ(x) ∈ L1 ⊗ L2. By Lemma 17, ¬τk(x) → �k⊥ ∈

L1 ⊗ L2. Consequently, υ′(¬τk(x)) → �k⊥ ∈ L1 ⊗ L2. Since υ′(τk(x)) ↔ υ(x) ∈
L1 ⊗ L2, ¬υ(x)→ �k⊥ ∈ L1 ⊗ L2.

(f)⇒ (d): Suppose ¬υ(x)→ �k⊥ ∈ L1⊗L2. Since υ is an L1⊗L2-unifier of ψ, by
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Lemma 27, ¬υ(x)→ �<k¬υ(x) ∈ L1⊗L2. Since ¬υ(x)→ �k⊥ ∈ L1⊗L2, ¬υ(x)→
�<k¬υ(x) ∧ �k⊥ ∈ L1 ⊗ L2. By Lemma 14, �<k¬x ∧ �k⊥ → ¬τk(x) ∈ L1 ⊗ L2.
Hence, �<k¬υ(x)∧�k⊥ → υ(¬τk(x)) ∈ L1⊗L2. Since ¬υ(x)→ �<k¬υ(x)∧�k⊥ ∈
L1 ⊗ L2, ¬υ(x) → υ(¬τk(x)) ∈ L1 ⊗ L2. By Lemma 15, ¬τk(x) → ¬x ∈ L1 ⊗ L2.
Thus, υ(¬τk(x)) → ¬υ(x) ∈ L1 ⊗ L2. Since ¬υ(x) → υ(¬τk(x)) ∈ L1 ⊗ L2,
υ(τk(x))↔ υ(x) ∈ L1 ⊗ L2. Consequently, τk ◦ υ '{x}L1⊗L2

υ.

Received 30 May 2020705





Proving Cleanthes Wrong

Laureano Luna

laureanoluna@yahoo.es

Abstract

Hume’s famous character Cleanthes claims that there is no difficulty in ex-
plaining the existence of causal chains with no first cause since in them each
item is causally explained by its predecessor. Relying on logico-mathematical
resources, we argue for two theses: (1) if the existence of Cleanthes’ chain can
be explained at all, it must be explained by the fact that the causal law ruling
it is in force, and (2) the fact that such a causal law is in force cannot explain
the occurrence of the events in the chain. In order to perform (1), we manage
to express in mathematical terms the intuitive idea that indefinitely delayed
explanation is ultimately no explanation. In order to achieve (2), we identify
a logical relation we can prove to be as strong as the causal relation at issue
in the Cleanthes passage, according to a precise notion of strength of relations.
Keywords: cause; chain; autonomous causal chain; ungrounded causal chain;
causal law; L-nomologically possible worlds.

1 Introduction
Let us remember the words of Hume’s character Cleanthes [17, p. 59]:

“Add to this, that in tracing an eternal succession of objects, it seems
absurd to enquire for a general cause or first author. How can any thing,
that exists from eternity, have a cause, since that relation implies a pri-
ority in time, and a beginning of existence?

In such a chain, too, or succession of objects, each part is caused by
that which preceded it, and causes that which succeeds it. Where then
is the difficulty? But the WHOLE, you say, wants a cause. I answer,
that the uniting of these parts into a whole, like the uniting of several
distinct countries into one kingdom, or several distinct members into one
body, is performed merely by an arbitrary act of the mind, and has no

Vol. 8 No. 3 2021
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications



Luna

influence on the nature of things. Did I shew you the particular causes
of each individual in a collection of twenty particles of matter, I should
think it very unreasonable, should you afterwards ask me, what was the
cause of the whole twenty. This is sufficiently explained in explaining
the cause of the parts”.

Note that Cleanthes is not necessarily rejecting as meaningless to ask for an expla-
nation of the chain, his claim is that if every item in the chain is explained, then it
makes no sense to ask in addition for an explanation of the chain as a whole: the
explanation of every item in the chain amounts to an explanation of the chain. This
is sometimes called the Hume-Edwards principle (see [31]): the explanation of every
part of a whole explains the whole. We wish to remark that our argumentation
is compatible with the Hume-Edwards principle. “Where then is the difficulty?”
Though Cleanthes asks rhetorically the difficulty might be real: intuitively, if any
item that acts as a ground or an explanation for another needs itself to be grounded
or explained, there is no ultimate explanation or, equivalently, there is ultimately no
explanation for any item in the chain. It is intuitive that delaying the explanation
indefinitely cannot count as actually providing it.

We intend to express this intuition in logico-mathematical terms and prove it from
extremely plausible assumptions.

We are assuming, as the context in which Cleanthes speaks suggests, that there
is no ground or explanation for the causal chain external to the chain itself; we say
that the chain is autonomous. As possible grounds for the chain we only have the
items in it and the causal law taking from each item to the next. Cleanthes’ claim is
that there is no difficulty in explaining the existence of an autonomous beginningless
causal chain because each item in it is explained by its predecessor.

Consider a causal chain ruled by a causal law. Supose the chain to have no first item
and suppose it to be autonomous, that is, lacking any explanation, cause, ground
or support exterior to the chain itself. Our first claim is that if the chain has any
explanation at all, that explanation must be the fact that the causal law ruling it is
is force or, equivalently, that the causal powers of the items of the chain are what
they are; for this we argue in section 3. Our second claim is that the fact that a
causal law is in force cannot bring any event into existence, hence does not serve as
an explanation of any causal chain; we elaborate on this in section 4. Our conclusion
in section 5 will be that if an autonomous ungrounded chain exists, it exists for no
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reason, that is, without any ultimate cause or explanation.

Focusing on our second question, it is intuitive that the fact that a causal law is in
force, that is, the fact that certain events would cause some others if they occurred,
can bring nothing into existence by itself. The law can only return outputs if it acts
on some previously existing input or, equivalently, an event can only bring another
into existence once it has occurred. However, one can ask whether the question is
susceptible of rigorous logical treatment. We contend it is, at least for the type of
problem posed by Cleanthes’ words, in which the focus is on an isolated beginning-
less causal chain containing temporal slices of a world’s history. We consider an
ungrounded causal chain SL = (QL, <L) whose set of items QL is endowed with a
strict linear ordering <L. So, the logical form of the causal law L ruling the chain
should be that of a sequence of some kind of concatenated conditionals:

...⇒ pi ⇒ pi+1 ⇒ pi+2 ⇒ ...

where for each i, pi is the assertion that qi occurs at time ti. It is intuitive that
from such a sequence of conditionals alone no pi follows unless for logical reasons
unrelated to any causal relation (e.g. if pi is a validity), which we can safely as-
sume to never be the case when the qi are worldly events. The problem is that
in Cleanthes’ context material implication is too weak a relation to represent the
causal relation: sometimes pi → pj is true even if qi does not cause qj . We manage
to identify a logical relation such that if the relation holds between pi and pj , then
qi, if it occurred, would cause qj ; that is, we find a logical relation that is in that
sense (see definition 2.iv. below) at least as strong as the causal relation involved
in Cleanthes’ words.

As we identify a logical relation among propositions that we can prove to be at
least as strong as the causal relation and show that the fact that such a relation
obtains does not entail the occurrence of any member of a certain set of events, we
show that a causal law’s being in force is also unable to explain the occurrence of
such events.

2 Causality in Cleanthes’ Universe: the Background of
our Argument and its Connections to Some of the
Recent Literature.

Cleanthes’ universe is an isolate, i.e. context-free, and beginningless temporal chain
of causes and effects, in which each member of the chain causes its immediate suc-
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cessor in time, if it exists, so being a sufficient condition for its occurrence given the
causal laws in force, in such a way that the occurrence of a member of the chain
together with the fact that the causal laws are such and such logically entails the
occurrence of its immediate successor in time, if there is one. As the chain is iso-
lated, we can think of it as the history of a universe or world and we can regard its
members as the contents of infinitely many finite and disjunct time intervals whose
mereological fusion yields exactly the history of the world.

Assuming this universe settles many disputed aspects of the nature of causality,
thus rendering many controversies about the nature of causality largely irrelevant
for our purpose: adicity of the causal relation, finer-grained vs. coarser-grained in-
dividuation of causes and effects, token vs. type causal relation, distinction between
cause and background conditions, causes as sufficient conditions for their effects vs.
causes as merely raising the probabilities of their effects, local vs. global nature of
causal relation,1 relationship between temporal and causal order, etc. We are aware
of the subtleties surrounding the metaphysics of causation (see e.g. [12]) but we do
believe that the very scenario we are dealing with settles most of the questions they
pose.

The events that make up Cleanthes’ causal chain are worldly events, slices of the
universal history, hence it is not possible for them (or the propositions stating their
occurrences) to logically entail other events of the chain (or the propositions stat-
ing their occurrences). In this, they are unlike the events in probabilistic spaces —
which may be Boolean compounds of simpler events — or the Lewisian events [20]
— which are properties of spatiotemporal regions and behave like classes, both of
which can enter relations of logical implication. However, for the sake of the argu-
ment, we will allow not just events but also facts (e.g. the fact that a causal law is
in force) as explanations even if they are not members of the Cleanthian causal chain.

For simplicity, we can assume that Cleanthes’ universe is ruled by one causal law
that endows each member of the causal chain with the power to bring its immediate
successor into existence. We need not make substantial ontological claims concerning
causal laws: the fact that a causal law is in force in Cleanthes’ universe or actually
rules it means only that the members of the causal chain have certain causal pow-
ers and not other. However, the assumption made by Cleanthes himself that the
occurrence of a member of the chain must be able to furnish an explanation of the

1This aspect for instance is important for a number of questions (see e.g. [4]) but irrelevant
here.
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occurrence of its immediate successor forces upon us a conception of causality in
which causal laws are able to provide explanations. This means that the fact that a
causal law is in force in Cleanthes’ universe cannot reduce to which the actual facts
are in that universe because the statement of which the facts are cannot suffice as
an explanation of them, unless we wish to strip the word “explanation” of its usual
meaning. The description of the causal chain is by no means an explanation thereof.
For A to count as a causal explanation of B, it is not enough if A is always followed
by B as far as we know; we must attribute A the causal power to bring about B
or equivalently we must believe that a causal law exists according to which A has
the causal power to make B occur. Therefore, the need to understand causation as
a form of explanation of occurrence or existence compels us to a nomological un-
derstanding of causality. This in turn renders the talk about nomologically possible
worlds meaningful.

These will be our assumptions about causation and the causal relation, all of them
necessary to fit the scenario put forward by Cleanthes. Whether our results here
would stand if causation is so understood that a cause is not a sufficient condition for
its effect may be of little interest, because so weak a notion of causation makes little
sense in a scenario in which causes are proposed as the sources of complete explana-
tions of their effects; indeed a cause that is not even a sufficient condition for its effect
could hardly provide a complete explanation of it. Since we are interested precisely
in figuring out whether ungroundedness prevents the existence of complete expla-
nation, we eschew scenarios in which other circumstances would thwart it. Withal,
we sketch in footnotes variants of our proofs showing that our result holds as well if
we assume that all a cause has to do to act as such is raise the probability of its effect.

This seems to be the place to make some clarifications concerning the argument
we develop in the following pages and its connections to recent literature, without
any hope of being exhaustive. First of all, we do not think ours to be an infinite
regress argument. Maurin [23, p. 422], drawing on Gratton [16], writes that infinite
regress arguments typically have the following ingredients:

1. The assumptions necessary for the generation of an infinite regress.

2. First conclusion: the infinite regress.

3. The premises necessary to show that the first conclusion is unacceptable.

4. Second conclusion: the rejection of one or more of the assumptions in 1.
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Therefore, such arguments use the existence of an infinite regress to refute some as-
sumptions. In contrast, we start from a given infinite regress and argue for a claim
about it but we do not use it to discard previous assumptions.

In particular, our argument has no essential relation to the claims made by Atkin-
son and Peijnenburg [1, 2], who argue for the possibility of probabilistic justification
through an infinite regress of justifying items. These authors essentially rely on the
fact that certain functions defined by ungrounded recursion may be well-defined but
this fact has no obvious bearing on our argument.

It is also convenient to make a distinction between our argument and arguments
for fundamentalism (e.g. [9, 21, 10, 15]; for contrary positions see e.g. [14, 24, 5],
understood as the claim that the grounding relation must be well-founded. We do
not argue for the impossibility that a grounding relation be non well-founded; we
do not even argue for the narrower claim that the relation of causal grounding must
be well-founded; we do not even argue against the existence of causal chains with
no first cause. We just argue that if such chains exist (and are of the kind we deal
here with, i.e. they are Cleanthian causal chains), there is no explanation for their
existence.

The main intuition for the position that the grounding relation must be well-founded
is — in Cameron’s words [10, p. 3] — that:

“. . . it is hard to see how things could get off the ground in the first
place.”,

Or as Schaffer 2010 (p. 37) puts it:

“if one thing exists only in virtue of another, then there must be some-
thing from which the reality of the derivative entities ultimately derives.”,

We think these intuitions involve an assumption that fundamentalists usually make,
namely, that no part of reality can be unexplained; one can almost read the follow-
ing implicit in Schaffer’s words: ‘otherwise there would be no explanation of why
anything exists at all’. Fundamentalists typically argue from that assumption. We
do not assume in this paper anything like that. Despite this, fundamentalists who
argue from the assumption that nothing can be unexplained may profit from our
argument that Cleanthian causal chains are unexplained, if they exist, to the end of
arguing for the impossibility of their existence.
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Rota [30], for instance, does argue for the same conclusion as we do: causal chains
with no first cause are unexplained but his argument differs from ours in that Rota
essentially relies on dismissing the Hume-Edwards Principle, since he takes the ex-
istence of an infinite causal chain as a complex fact on its own that requires ex-
planation and cannot be explained by its constituent parts. Dumsday [15], on his
way to conclude that certain causal chains (transitive ones) cannot lack first causes,
argues as well for the claim that they could not provide causal explanation if they
had no first causes. However, for this he essentially relies on the intuition that real
explanation is ultimate explanation (see for this our section 5). Without denying
either the appeal or the significance of that intuition, we intend to offer here a more
rigorous logico-mathematical treatment of the question.

Support for the possibility of Cleanthian causal chains comes mostly from two philo-
sophical positions. Firstly, the denial that everything must have an explanation, as
in Russell’s [32, p. 134] famous words:

“I should say that the universe is just there, and that’s all.”

This position is widespread among those philosophers who regard Leibniz’ Principle
of Sufficient Reason and the related principles of causality either as suspect or as false
as metaphysical principles. Many logical positivists were in this class; for example,
Hans Reichenbach [28, p. 4] wrote:

“According to the verifiability theory of meaning, which has been gener-
ally accepted for the interpretation of physics, the statement that there
are causal laws therefore must be considered as physically meaningless.”

Outside logical positivism a classical is Bunge [8], especially Part IV, but see also
(in Bunge’s footsteps) Romero [29]; also Brown [7, p. 525].

Secondly, support for the possibility of Cleanthian causal chains can rely on the
belief that the Hume-Edwards Principle is enough to supply explanation for them.
This position is held for instance by Russell himself [32, p. 134] and recently for
instance by Paul Edwards [14]. As said above, this paper has nothing to say as re-
gards the former position; however, it presents an argument against the latter since
it argues against the possibility that Cleanthian causal chains have explanation and
does it without rejecting the Hume-Edwards Principle.

There exist logico-mathematical arguments against the possibility of ungrounded
causal chains, which — as already said — is not exactly our topic here, for instance,
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Craig and Sinclair 2012, [13]. Some of these arguments rely on finitism understood
as the thesis that there can be no actual infinity of concrete entities (so Craig and
Sinclair). Pruss [27] features a number of paradoxical situations with one common
trait: in all of them infinitely many items are causally previous to some other item.
The author harnesses those examples to build an argument for causal finitism, that
is, the claim that such a causal structure is impossible. Our argument here does
not rely on finitism or causal finitism nor employs any of the logico-mathematical
resources these authors utilize. However, as we comment at the end of section 3,
our first result could be seen as a paradox of causal infinitism.

Let us finally mention an attempt [22] at proving on logico-mathematical grounds
that an ungrounded causal chain cannot exist because it cannot determine the con-
tent of its constituents. The argument is based on these two facts: it is impossible
to determine a value by means of an infinitely regressing computation and from an
infinite chain of conditionals no categorical proposition follows. Intuitive as this
approach may be, it seems inconclusive because we have no certainty that an un-
grounded causal chain would have to perform either a computation or a logical
deduction to give determinate contents to its constituents.

3 First Claim: the Sole Possible Explanation.

We argue in this section for the claim that the occurrence of an autonomous begin-
ningless causal chain can only be explained, if at all, by the fact that the causal law
ruling it is in force.

Definition 1.

i. By a strict countable chain we understand a pair S = (Q,<), where Q is a
countable set with at least two members and < is a strict total order on Q.

The order among the members of Q can be expressed by indices from a subset
I of Z, endowed with the natural order among the integers. Let qB be the <-first
member of Q, if it exists.

ii. A strict countable chain is ungrounded iff the corresponding relation < is un-
grounded, that is, iff

∀j∈I∃i∈I [qi < qj ].
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iii. Our mathematical representation of a causal law L is a relation holding between
members of two non empty sets of events, namely, QC (the set of causes) and QE
(the set of effects): L ⊆ QC ×QE .

iv. A causal chain SL = (QL, <L) ruled by a causal law L is a strict countable
chain of events in which for any qi, qj ∈ QL, (qi, qj) ∈ L iff qi is the immediate
<L-predecessor of qj in QL.

v.We say that x explains the occurrence of event y iff x is a sufficient condition
for the occurrence of y. We will assume that if x causes the occurrence of y accord-
ing to L, then x and the fact that L is in force make up a sufficient condition for y’s
occurrence.

vi. A causal chain ruled by a causal law L is autonomous iff nothing external
to the causal chain itself — Äthat is, nothing else than L or the members of QL —
causes or explains the existence of the chain, not even partially.

Remarks of definition 1.

Chains are usually defined as totally ordered subsets of partially ordered sets: strict-
ness and countability are usually not included. However, we wish to adapt our frame
to the kind of chain Hume seems to have had in mind in the quote above. For brevity,
we will omit the adjectives “strict” and “countable” from now on. The order relation
<L in a causal chain being irreflexive, it will contain no pair like (q, q). As <L is
transitive, this rules out causal loops. Causal loops merit specific discussion (see
e.g. [27, p. 152]; [25]) but will not be considered here.

Note also that as the ordering relation < in a chain has been defined as a total
ordering in Definition 1.i, each causal chain can contain at most one independently
given event, which we call qB. In so doing, we restrict ourselves for simplicity to the
simplest case but nothing substantial depends on this.

Note that we do not intend to define causation; this is beyond the point here; so,
we take it as a primitive concept. �

Let us now address our first claim. After providing an intuitive approach to the
question we bring up, we will look for a more conclusive way of settling it and we

715



Luna

will find a handy mathematical fact.

Consider an arbitrary item qi ∈ QL of an autonomous SL. The causal produc-
tion of qi is explained both by the occurrence of qi−1 and the fact that qi−1 is able
to cause the occurrence of qi, that is, that the relevant part of L is in force. These
are distinguishable moments -not separable parts- obtained by abstraction from one
single act of causation. However, distinguishing different causal contributions of in-
separable aspects of a cause is not unusual; for example, in collisions, the capacity
of a moving ball to convey momentum to another ball at rest depends (among other
things) on the mass of the moving ball and its velocity, although the latter is but a
property of the former.

Note that if SL is ungrounded, there is no item in QL that occurs independently
of L’s being in force, no item is given to L as a starting point from which it could
bring forth a chain qB, q1, q2, .... If qB existed, we would explain the chain from its
occurrence and the fact that L is in force. If we remove qB so that the chain is
ungrounded, everything is produced through L out of no independent event. Note
that only the items in QL and the law L are internal to SL. This suggests that in an
autonomous ungrounded chain SL it must be the fact that L is in force that explains
the chain, if anything at all. Let us see if we can approach this in more rigorous,
mathematical terms.

Splitting the responsibility for the production of qi into two different quantities,
namely, what the occurrence of qi−1 contributes and what the fact that L is in
force does, may seem to make little sense because both things are simultaneously
necessary, namely, that qi−1 occurs and that it can in fact cause the occurrence of
qi. There is no such thing as marginal productivity here permitting to isolate the
contribution of each factor because the two ingredients are simultaneously required
in their integrity, fused in one single act of causation, for anything to be produced
at all. Nevertheless, we can argue by other means for a quantitative approach to the
respective contributions of L’s being in force and the occurrence of qi−1 2. Consider
that in a longer chain, for instance

qi−2, qi−1, qi

instead of just

qi−1, qi

2For brevity, sometimes we will simply speak of the contributions of L and qi−1.
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where qi−1 is assumed to not depend on L (i.e. to be qB), L’s contribution must be
larger because L is involved in producing the occurrence not just of qi but of qi−1
itself, in such a way that the contribution of qi−1 to the occurrence of qi is also par-
tially due to L; thus, an additional contribution to the production of qi must accrue
to L for its involvement in the production of qi−1.There must be two quantities k1
and k2, corresponding to L’s contributions in the shorter and the longer chain, such
that k2 > k1. We enunciate this as

Assumption 1.

If given some event qi, exactly two conditions C1 and C2 can be distinguished that
must be satisfied for qi to occur and we consider two occasions O1 and O2, such that
in O1 no condition contributes to the fulfillment of the other condition and in O2
C2 does contribute to the fulfillment of C1, then -ceteris paribus- the contribution of
C2 to the occurrence of qi in O2 increases with respect to its contribution in O1 in a
mathematically consistent way, that is to say, in such a way that if C2 contributes
to the fulfillment of C1 k parts per unit, then k times the per unit value of the
contribution of C1 to the occurrence of qi must be added to the per unit value of
the contribution of C2 to the occurrence of qi. �

It is commonsense that if something acts n + 1 times, then it contributes more
than if it acts just n times; furthermore, the sole way we have to measure the dif-
ference is in real numbers and as a difference in the percent or per unit value of the
total contribution.

The assumption is extremely general and we need to work out how it applies to
our case, for it is Assumption 1 as applied to our particular case that yields the
particular number established in Theorem 1 below.

Let the two-item and the three-item chains considered above be respectively O1
and O2. As in this case the contribution of L’s being in force (which is our C2 here)
to the causation of the occurrence of qi−1 (which is C1) is exactly the same as its
contribution to the occurrence of qi in O1, the total contribution of L’s being in
force to the occurrence of qi in O2 must be computed by adding to its contribution
in O1 the same percentage of C1’s contribution in O1 that was used to compute C2’s
contribution in O1. This generalizes in the obvious way to n-item chains and attains
a limit value for an ungrounded chain, as we show next.

Let us consider an ungrounded SL and let us initially say that L contributes a
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portion 0 < x0 < 1 of the total explanation of the occurrence of qi and 1 − x0 is
the part due to qi−1; as qi−1 itself is explained by L according to the same ratio
(for in ungrounded chains all items occupy structurally identical loci), we must add
(1−x0)x0 to x0 to approach the real share of L; we get −x2

0 + 2x0; then such is also
the part of explanation of qi−1 due to L and we must add (1−(−x2

0+2x0))(−x2
0+2x0)

to −x2
0 + 2x0; and so on. We are iterating the function

f(x) = x+ (1− x)x = −x2 + 2x

Starting from any 0 < x0 < 1, the iteration yields 1 in the limit, so that ultimately
the explanation of the occurrence of qi — hence of QL — is all due to L. The
mathematical fact is elementary3 but we provide below an easy proof.

Theorem 1.

Let f(x) = −x2 + 2x and 0 < x0 < 1.
Then

limn→∞ fn(x0) = 1.

Proof. fn is a dynamical system with seed x0 such
that

f0(x0) = x0,
fn+1(x0) = 2fn(x0) − fn(x0)2 = fn(x0) + fn(x0) −
fn(x0)2.

So, fn+1(x0) adds fn(x0)− fn(x0)2 to fn(x0). As 0 < x0 < 1, fn(x0)− fn(x0)2 > 0
up to fn(x0) = 1, where fn(x0)− fn(x0)2 = 0, fn+1(x0) adds 0 and fn has a fixed
point (FIGURE 1). As (fn(x0))n∈N converges, it is a Cauchy sequence, hence it
approaches a limit only as fn+1(x0)− fn(x0) approaches 0, i.e. as fn(x0) tends to
1 so that fn(x0)− fn(x0)2 approaches 0.4

3Let k be L’s contribution; whatever k is, the same part of the rest, i.e. (1− k)k, goes as well
to L; so, k = k + (1 − k)k and k = 1. Whoever sees this as a correct approach can skip Theorem
1. This version of the theorem reveals that any number system for which the ordinary arithmetical
operations are defined and that is such that for all x > 0, x/x = 1 will do the job (and not just the
real numbers), since this is all that is required to extract that k = 1 from ‘k = k + (1− k)k’. Here
‘0’ and ‘1’ are respectively the additive identity and the multiplicative identity.

4Again the reader might wonder how much this result depends on the possibility of expressing
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Remarks on theorem 1.

Theorem 1 shows that 1 minus L’s contribution is less than ε for any ε > 0. This im-
plies that L’s contribution equals 1. Limits, however, are not values that are reached
at infinity but values we can get arbitrarily close to. Though infinite summations
(i.e. series) are usually thought of as limits, one does have the intuition that if all
summands of a summation are in place, its value has to be reached. So, perhaps we
can make the most of the fact that there are infinitely many qi if SL is ungrounded
by making the theorem state the value of a series.5

We have seen that in each iteration of f we add (1 − x)x to x, where x is the
sum of all previous results;6 thus, the iteration of f carries over the sum of all
previous results, so that if we define recursively

g(0) = x0

g(n+ 1) = fn+1(x0)− fn(x0)

we have that

limn→∞ fn(x0) = ∑∞
n=0 g(n) = 1.

Let us explore how the summands g(0), g(1), g(2), ... arise. Let the “x⇒ y” denote
the causation of y by x. As L partakes in qi−1 ⇒ qi, we assign it the initial share
0 < x0 < 1 and we assign the rest, that is, 1−x0, to qi−1; however, as L partakes as
well in qi−2 ⇒ qi−1, we must transfer to L in addition a part of qi−1’s share, namely,
(1−x0)x0 = −x2

0 +x0, so that L’s share amounts now to −x2
0 +2x0 and qi−1’s share

is 1 − (−x2
0 + 2x0); however, as L partakes in qi−3 ⇒ qi−2 too, the part accorded

partial contributions to total explanation as real numbers. For this, we refer the reader to footnote
3. Cleanthians may object to our modeling of the problem but as ours is the usual treatment of
partial contributions to a total quantity, the burden of the proof that the modeling of this problem
should be special lies with the Cleanthian.

5Some readers might suspect that taking limit could be a misguided attempt at cooking up a
first cause as some sort of ‘point at negative infinity’. We show below that the summands of the
series arise from the items in the causal chain; if this is Cleanthian, hence actually infinite for any
qi, the summands must actually make up a series and yield its value.

6Proof for our fn by induction on n. It is obvious for f1(x0) = x0 + (1−x0)x0; assume it holds
for n = m; then the argument of fm+1 is the sum of all results prior to fm plus what fm adds; call
it k; then fm+1(k) = k + (1− k)k.
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to L in qi−2 ⇒ qi−1 should not be just x0 as previously assumed but −x2
0 + 2x0,

hence the part accorded to L in qi−1 ⇒ qi should not be −x2
0 + 2x0 but in addition

(1− (−x2
0 + 2x0))(−x2

0 + 2x0); and son on (FIGURE 2).

The deeper we go into the chain’s tail, the greater L’s contribution grows. The
number of summands g(0), g(1), g(2), ... depends on the number of items <L-prior
to qi in QL; so, if SL is ungrounded, the summation tops out at 1.7

The theorem implies that on Assumption 1 if an autonomous ungrounded causal
chain SL were to exist, its existence would be either unexplained or explained solely
by L’s being in force. The striking fact that in such a chain the contribution of the
mere occurrence of qi−1 to the explanation of the occurrence of qi vanishes may be
taken as the mathematical expression of the fact that indefinitely delayed explana-
tion is ultimately no explanation or as the mathematical expression of the old thesis
that there is no cause at all if there is no first cause (Aristotle, Metaphysics, 994a10-
19; see Aristotle [3, p. 37]. It can also be taken as a kind of paradox of infinity,
since it actually looks paradoxical that though qi−1 is still causing qi according to
L, the contribution of the occurrence of qi−1 to the explanation of the occurrence of
qi is null. So interpreted, the situation may suggest an additional conclusion, other
than the one we are arguing for here, namely, that autonomous ungrounded causal
chains can only exist on pain of paradox. That point, however, is outside the scope
of this paper.

7The reader may have noticed that the situation is different for dense causal chains because any
such chain with more than one item involves always infinitely many of them. Note that definition
1.i excludes dense causal chains, which we deem to be incompatible with Cleanthes’ universe.
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4 Second Question: the Failure of the Sole Possible Ex-
planation.

In this section, we argue for the claim that a causal law’s being in force cannot
explain on its own the existence of a causal chain. Let us clarify that the fact that
L’s being in force explains the occurrence of event qi cannot mean that L becomes
a cause that according to some other causal law L∗ causes qi. On the one hand, L
is not the kind of thing we have admitted as possibly entering a causal relation. On
the other hand, if we invoke L∗, which is an element external to the chain SL, then
L’s being in force is not enough to explain the occurrence of qi: L∗’s being in force,
that is. an element external to the chain, would be required as well. If L’s being in
force alone is to explain the occurrence of qi, it has to do so by conferring the causal
powers it confers by being in force: it is the fact that these causal powers exist that
has to explain the occurrence of qi.

Now, which causal powers L bestows by being in force and upon which events it
confers them is a matter of definition of L: it is essential to L’s identity; L would
not be L if it did not endow the events it endows with the causal powers it actu-
ally endows them with; so, which these powers are must be either explicit in each
complete definition of L or logically entailed by this definition. In addition, such
powers are defined by what they are powers to achieve. As a consequence, if L’s
being in force explains the occurrence of qi, then L’s being in force logically entails
the occurrence of qi, so that if we can prove for an arbitrary L that its being in force
is logically compatible with qi’s not occurring, we are proving that no L is able —
by being in force — of explaining the occurrence of qi. And this is what we intend
to do here.

It is convenient to keep in mind the following distinction: in the Cleanthian universe,
the causal relation between say qi−1 and qi is surely not logically necessary;8 even if
(qi−1, qi) ∈ L and L is in force, it surely does not follow from any complete definition
of qi−1 that it brings qi into existence; it is indeed logically possible for the sort of
causal laws acting in a Cleanthian universe that at some possible world qi−1 does not
cause qi; what comes next in Cleanthes’ universe can hardly be a logical consequence
of what is there currently the case. The point is ultimately that worldly events are
not the kind of things that could enter relations of logical entailment. However,

8Some authors (e.g. [34, 6]) support the existence of a priori causal laws but not of the kind
of the laws ruling causal chains in Cleanthian universes: to the best of our knowledge no author
presently claims that the universe’s unfolding in time may be just executing a logical deduction.
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to repeat, the relation between L’s being in force and the occurrence of qi, if the
former is to explain the latter, has to logically follow from any complete definition
of L because what specifies a causal law is precisely the powers its being in force
bestows and these powers are in turn defined by which things they are powers to
achieve.

As we have already said, it is commonsensical that causal law L cannot — by just
being in force — bring an event qi into existence. By being in force L can endow
certain events with certain causal powers; for instance, it can endow event qi−1 with
the power to bring qi into existence but the fact that L is in force does not ensure
the occurrence of qi−1, hence does not ensure the effective causation of qi. As al-
ready suggested, what L’s being in force guarantees is the truth of some conditional
implying that if qi−1 occurs, then so does qi but it does not entail any categorical
statement that some qi does occur. To be able to address the question formally, we
should know what kind of conditionals causal laws consist of. This we do not claim
to have figured out but we do claim to have found a logical relation9 at least as
strong as the causal relation, so that if our relation’s being in force does not explain
the occurrence of qi, neither does the fact that the causal relation encapsulated in
L is in force, whatever this relation actually is.

Definition 2.

i. By a state-of-affairs, we understand a function σ : P → {T, F}, where P is
a set of propositions10 and T and F are the classical truth value , such that the
truth value assignment made by σ is logically possible.

ii. Let P1 and let P2 be sets of propositions; P2 is a logical consequence of P1
(written as P1 � P2) iff each state-of-affairs σ rendering all propositions in P1 true
— which we symbolize as “σ  P1” — renders all propositions in P2 true:

(P1 � P2)↔def ∀σ[(σ  P1)→ (σ  P2)].

We read “P1 � P2” as “P2 is a logical consequence of P2” or “P1 entails P2”.11

9Namely, the relation of contingent but L-nomologically necessary material implication; see
Remarks on Lemma 3 below.

10Note that we think of propositions as semantic objects, not as closed formulas. See below.
11In this context, we usually replace singletons by their members and write e.g. “ϕ � ψ”, “σ  ϕ”

instead of “{ϕ} � {ψ}”,“σ  {ϕ}”.
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iii. Let P1 and P2 be two sets of propositions. We say that P1 is logically as
strong as P2 iff

P1 � P2

iv. In a derivative sense, we say that relation R1 is as strong as relation R2 iff

∀xy[R1(x, y) � R2(x, y)]

Of course, this implies that for all x, y

R1(x, y)→ R2(x, y).

Remarks on Definition 2.

The concept of logical possibility requires some comments.

Consider first that logical possibility may differ from metaphysical possibility: some
logically possible states of affairs could be metaphysically impossible:12 for instance,
a state-of-affairs according to which things pop out of nowhere or time is reversible
may be metaphysically impossible although it is logically possible since logic is not
concerned with relations among events or other concrete objects.

As a consequence of the incompleteness of higher order logic, the concept of log-
ical possibility cannot be given a syntactical definition. A mathematically precise
semantical definition is available for formalized languages by means of the usual
Tarskian notion of logical consequence: a sentence s is a logical consequence of a
set S of sentences iff all models of S are models of {s}. A set S of sentences is
logically possible iff it is consistent, that is, if no contradiction is a Tarskian logical
consequence of S.

Nevertheless, Definition 2 is not about formal sentences but about propositions,
which are semantical objects. We could attempt to define logical possibility of
states-of-affairs in that context as follows: let σ : P → {T, F}, let P = (pi)i∈I and
let S = (si)i∈I be a set of formal sentences such that for each i∈I , si is the formal-
ization of pi. σ is logically possible iff the following set is consistent in the Tarskian
sense:

S∗ = {si|σ(pi) = T} ∪ [¬si|σ(pi) = F ].

12We take metaphysical modality and the associated possible worlds as primitive concepts.
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However, we would have to add that the formalizations of the pi into the si must be
such that all logical relations holding among the former hold also among the latter
due to their logical form and this would surely have us circling around because Def-
inition 2 defines logical (un)relatedness in terms of logical possibility.

So, we must take logical possibility as a primitive concept. This situation, how-
ever, poses no real problem for our arguments because the use they make of logical
possibility is very restricted. All our arguments require is the following:

1. Propositions that are true by virtue of definitions are logically necessary.

2. Propositions describing the state of (sa Cleanthian universe at different times
are logically unrelated (this we will call Assumption 2), which is intuitive
indeed since worldly events are not the kind of things logic is about.

Condition 1 is uncontroversial since all it amounts to is the claim that tautological
propositions are logically necessary. We enunciate condition 2 as

Assumption 2.

Propositions describing the state of a Cleanthian universe at different times are
logically unrelated.

Lemma 1.

Transitivity of �: (P1 � P2 � P3)→ (P1 � P3)

Proof.

Assume the antecedent “P1 � P2 � P3”. By definition 2.ii (of logical consequence),
we have that for any state-of-affairs σ,

((σ  P1)→ (σ  P2)) & ((σ  P2)→ (σ  P3))

By transitivity of material implication, for any σ

(σ  P1)→ (σ  P3))

which, by definition 2.ii (of logical consequence), is equivalent to P1 � P3.

Definition 3.
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Let P be a (non-empty) set of propositions. We say that the propositions in P
are logically unrelated iff any truth-value assignment to them is logically possible.
That p and q are logically unrelated in this sense can be expressed by this conjunc-
tion:

p 2 q & p 2 ¬q & ¬p 2 q & ¬p 2 ¬q13.

Definition 4.

If W is a set of possible worlds and P is a set of propositions, a Kripke valua-
tion function V : P ×W → {T, F} is a function assigning each proposition in P
a classical truth value from {T, F} at each possible world in W . Kripke valuation
functions are subject to certain rules in order to comply with logic and the meaning
of modal operators. Instead of specifying them all here, we will specify the ones we
need to in the proof of Lemma 4. As usual, we assume all possible worlds to be
logically possible.

Remarks on Definition 4.

A pair (p, w) ∈ P ×W can be interpreted as a proposition stating that proposi-
tion p is true at world w. As a consequence, each Kripke valuation function is a
state-of-affairs as defined in Definition 2.i. This will be relevant for the proof of
Lemma 4 below.

Lemma 2.

Let W be a set of possible worlds and P a set of propositions. If the members
of P are logically unrelated, any Kripke valuation function V : P ×W → {T, F} is
logically possible.

Proof.

A Kripke valuation function V : P × W → {T, F} can be thought of as a col-
lection of truth value assignments (σi)i∈I to the members of P in which the σi are
paired to possible worlds wj from W = (wj)j∈J :

V = {(σiα , wjα), (σiβ , wjβ ), . . .}

13The converses of the members of the conjunction follow from these by 2-Contraposition and
Double Negation: consider e.g. “p 2 ¬q”, which implies that p is consistent with q, so that q 2 ¬p.
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If the members of P are logically unrelated, then each σi is logically possible and
then it is so with logical necessity. As all the wj are logically possible, it is logically
possible for any of the σi to obtain at any of the wj . Thus, the entire V is logically
possible.

Definition 5.

An L-nomologically possible world is any possible world in which the causal law
L is in force iff it is in the actual world. We denote L-nomological necessity by the
operator “�L”.

Definition 6.

We only introduce some notation.

i. Let “px” mean “event qx occurs at time tx” and let “C(px, py)” express the
relationship holding between propositions px and py whenever (qx, qy) ∈ L and L is
in force. Now we can express the fact that a causal law L is in force (see Definition
1.iii) by

∀ij∈I [(qi, qj) ∈ L→ C(pi, pj)]

It follows from our considerations in section 2 that C is such that

�[C(pi, pj)→ (pi → pj)],

where “�” is the metaphysical necessity operator; that is, the relation C between
propositions induced by L’s being in force is necessarily at least as strong (in the
sense of Definition 2.iv) as the relation of material implication.

ii. Let PL = {pi | qi ∈ QL}, that is, the set of all propositions asserting exactly the
occurrence of a member of QL at its corresponding time.

Remarks on definition 6.

Note that L is a relation between certain events while C is a relation between the
propositions asserting the occurrence of those events at certain times.

In order to isolate what L’s being in force entails by itself from what the possi-
ble logical relations existing between the members of PL could entail, it is useful to
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suppose that all members of PL are logically unrelated. To see why this matters (see
e.g. [18]), assume for instance that, for some pair (pi, pj) ∈ C, pi � pj ; then L’s
being in force would entail pi → pj , for logical reasons alone, without any relation
to any causal powers encapsulated in L. If L’s being in force has to entail pi → pj
due to the causal powers of some qi, it has to entail it even if pi and pj are logi-
cally unrelated. For causal chains of worldly events, our assumption seems possible
WLOG because worldly events are not the kind of things that can maintain logical
relations. This is what renders Assumption 2 extraordinarily plausible.

Lemma 3.

Let L be a causal law and let CL be the set of all conditionals of the form

pi → pj

with one such conditional for any pair (pi, pj) such that (qi, qj) ∈ L. Let C�L be a
set of conditionals of the form

�L[pi → pj ]

with one such modal conditional for any pair (pi, pj) such that (qi, qj) ∈ L. Thus:

C�L = {x | ∃y[y ∈ CL & x = �L[y]]}

Let K be the proposition

¬�[p1 → p2]

for p1, p2 such that (q1, q2) ∈ L. Let C�LK = C�L ∪ {K} and let “FL” denote the
proposition that L is in force:

FL = “∀ij∈I [(qi, qj) ∈ L→ C(pi, pj)]”

Accordingly,

C�LK � FL.

Proof.

We first prove the mere conditional that if all members of C�LK are true, then
L is in force. Assume the antecedent and that L is not in force for a reductio. As K
is true, there is a possible world w′ at which “p1 → p2” is false; w′ is L-nomologically
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impossible14 because �L[p1 → p2] is in C�L and has been assumed to be true. As
L is not in force in the actual world, it is in force in all L-nomologically impossible
worlds (by Definition 6), hence also in w′; since (q1, q2) ∈ L and L is in force in w′,
it is true at w′ that (p1, p2) ∈ C; now, by Definition 7.i, C is at least as strong as
material implication; then “p1 → p2” is true at w′; contradiction.

To see that the entailment holds, note that in the preceding part of the proof, FL
has been logically deduced from the truth of all members of C�LK and the premise
that for any (qx, qy) ∈ L, if L is in force in some world w, then “px → py” is true
at w, which is analytical for our concept of causal law (see Definition 7) and any
concept of causation admissible in Cleanthes’ universe.15

Remarks on Lemma 3.

The fact that all propositions in the set C�LK are true is equivalent to some relation
holding among the members of PL : L-nomologically necessary but contingent ma-
terial implication, which we by no means claim to exactly correspond to the causal
relation but which we have shown to be as strong as this.

Let RL be defined by

∀xy[(RL(x, y)↔def (x, y) ∈ L & C�LK)].

For those who believe that causal laws are metaphysically contingent and that causes
are sufficient conditions for their effects, RL could be a candidate for representing
the relation of causality according to law L. In a nomological understanding of
causation, a general binary causality relation K could then be defined by

∀xy[K(x, y)↔def ∃L[RL(x, y)]].

Lemma 4.

Let CL, C�L, K, and C�LK = C�L ∪ {K} be as defined in Lemma 3. Let PL
be the set of all antecedents and consequents of the members of CL (as in Definition
6.ii). Then

14Note that K being true together with all members of C�L requires L-nomologically necessary
material implication to be contingent.

15If we do not believe “C(pi, pj)” should imply “pi → pj”, because we believe causes are not
sufficient conditions for their effects — they just raise their probabilities, we can replace “¬�[p1 →
p2]” in K with “♦[Pr(p2) = 0]”, a probability assignment which is incompatible with Pr(p2|p1) >
Pr(p2), so that we obtain all the same that C�LK entails FL.
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∀ϕ∈PL [FL 2 ϕ].

Proof.

We first prove that

∀ϕ∈PL [C�LK 2 ϕ].

The argument shows that for each ϕ in PL there is a state-of-affairs rendering ϕ false
and all members of C�LK true. As the members of PL are logically unrelated, we
can treat them as atomic propositions; thus, all we need now is modal propositional
logic, where the states of affairs are represented by valuation functions in Kripke
models (see above Remark on Definition 4). A Kripke model is a triple

M = {W,R, V },

where W is the set of all possible worlds, R ⊆ W ×W is an accessibility relation,
and V : PL×W → {T, F} is a Kripke valuation function (see Definition 4) assigning
each ϕ in PL a truth value at each w ∈ W . We will show that a Kripke model M∗
exists that renders all members of C�LK true and all members of PL false (at the
actual world). Valuation functions in Kripke models for modal propositional logic
are only subject to the usual recursive clauses for molecular formulae:

4.i. V (¬ϕ,w) = T iff V (ϕ,w) = F .
4.ii. V (ϕ ∨ ψ,w) = T iff V (ϕ,w) = T or V (ψ,w) = T .
4.iii. V (�ϕ,w) = T iff ∀w′∈W [R(w,w′)→ V (ϕ,w′) = T ].

Let M∗ = {W,R∗, V ∗}; let WL ⊆ W be the set of all L-nomologically possible
worlds; let V ∗ render all members of PL false at all L-nomologically possible worlds:

∀ϕ∈PL ∀w∈WL
[V ∗(ϕ,w) = F ]

but let it be such that

∃w′∈W [V ∗(p1, w′) = T & V ∗(p2, w′) = F ],16,17

where p1 and p2 are the propositions involved in K. Let R∗ be such that

16Consider instead extending V ∗ by V ∗(Pr(p2) = 0, w′) = T ; whatever “p2 has probability 0
at w′” means in terms of possible worlds (e.g. “p2 is false at all worlds nomologically compatible
with w′” or “p2 is false at all worlds sufficiently similar to w′”, etc.), by Lemma 2 it is logically
compatible with p2’s being false at all L-nomologically possible worlds.

17Note that w′ ∈W \WL.
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∀w∈W [R∗(wA, w)],
where wA is the actual world.

As the members of PL are logically unrelated (as stated by Assumption 2), by
Lemma 2, V ∗ is a logically possible state-of-affairs. V ∗ renders all members of PL
false and, by clauses 4.i, 4.ii, 4.iii, all members of C�LK true: it renders the mem-
bers of C�L true by rendering all antecedents of the members of CL false at all
L-nomologically possible worlds, and it renders K — which was “¬�[p1 → p2]” —
true by rendering “p1 → p2” false at some w′ ∈W such that R∗(wA, w′).

Thus, V ∗ renders C�LK true though it makes all pi false. From this and Defini-
tion 2.ii (of logical consequence), we have

∀ϕ∈PL [C�LK 2 ϕ].
From Lemma 3, we have

C�LK � FL.
Thus, by transitivity of � (Lemma 1), we obtain

∀ϕ∈PL [FL 2 ϕ].
Remarks on Lemma 4.

Arguably, it is metaphysically impossible for all members of PL to be false at all
L-nomologically possible worlds if L is in force, since worldly events are commonly
regarded as contingent and there seems to be no metaphysical incompatibility be-
tween L’s being in force and the occurrence of the members of QL. It might be the
case as well that causal laws are metaphysically necessary, so that W = WL, and no
such Kripke valuation function as V ∗ is metaphysically possible since it renders p1
false at all L-nomologically possible worlds but true at some possible world. If so,
the situation used to show that all members of C�LK may be true while all members
of PL are false would be metaphysically impossible. This, however, is irrelevant to
our proof, which only requires that situation to be logically possible; that it is in
fact so follows from Assumption 2.

Note that the lemma shows that it is possible for L to be in force even if none
of the members of QL takes place. This — together with the assumption that the
relation C(px, py) is stronger than material implication — implies that the causal
relation involves counterfactual conditional of the form “if x occurred, x would cause
the occurrence of y”.
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Theorem 2.

The fact that a causal law is in force is unable by itself to cause any of the events
in the chain it rules.

Proof.

Lemma 4 states that for all pi in PL, FL 2 pi; if L’s being in force explains the
occurrence of qi, then it does so as a matter of definition, hence with logical neces-
sity, so that FL � pi. As a consequence, for all qi in QL, the fact that L is in force
does not explain the occurrence of qi.

Remarks on Theorem 2.

It is an easy corollary of Lemma 4 that the relation C(x, y) has a counterfactual
nature, so that for any ij∈I , L can be in force even if (qi, qj) ∈ L but neither qi nor
qj occurs, so that for all i∈I it is logically possible that FL & ¬pi. If we assume this
as a premise, a much easier proof of Theorem 2 becomes possible: if L’s being in
force is a sufficient condition for the occurrence of qi, then it is so as a matter of
definition, so that FL � pi and it is logically impossible that FL & ¬pi. Thus, L’s
being in force is a sufficient condition for the occurrence of no qi.

5 Conclusions.

Cleanthes claims that an autonomous ungrounded causal chain finds sufficient ex-
planation for its existence in the fact that each item is caused by its immediate
predecessor, that the existence of such a chain is thereby explained without diffi-
culty. Theorem 1 entails that — on the very plausible Assumption 1 — this claim
amounts to the contention that the existence of the chain is explained by the fact
that the causal law ruling it is in force. This is, however, what Theorem 2 — on
the equally plausible Assumption 2 — shows impossible. As a consequence, we
can conclude that on very plausible assumptions, if autonomous ungrounded causal
chains exist, they ultimately exist for no reason at all, they exist without ultimate
explanation. So, contrary to what Cleanthes contends there is indeed a difficulty
in explaining why they exist. The fact that every item in them is caused by an
immediate predecessor is not enough to fill the explanatory gap.
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In this context, it may be convenient to draw an expeditious distinction18 between
a scientific and a metaphysical sense of explanation. Empirical science usually un-
derstands that something is explained as soon as a cause of it according to some
known causal law is discovered even if the cause and the causal law themselves re-
main unexplained. Scientific explanation is usually partial explanation. In contrast,
metaphysical explanation (at least in the tradition of the Principle of Sufficient Rea-
son, as it appears in Leibniz) requires ultimate or complete explanation. It is the
latter kind of explanation that an autonomous ungrounded causal chain would lack
even if each of its items could be given an explanation of the former kind.

Drawing a difference between partial and ultimate explanation by no means compro-
mises our neutrality as regards the Hume-Edwards Principle. These are disparate
questions. Note that we can indeed endorse the claim that it does not make sense
to require explanation for a whole when there is available explanation for each of its
parts (so supporting the Principle) while at the same time advocating the view that
any real explanation of the parts must be complete or ultimate explanation.19 In
fact, we do not commit ourselves here to the claim that real explanation is ultimate
explanation; we just draw the distinction between partial and ultimate explanation
to clarify the kind of explanation our argument is about.

Thus, have we proven Cleanthes wrong? Almost.

Acknowledgments
I wish to thank Jacobus Erasmus for meticulous reading followed by helpful advice
about earlier versions of this article.

References
[1] Atkinson, D; Peijnenburg, J. 2008. Probabilistic justification and the regress problem.

Studia Logica 89(3): 333-341.

18So, Cole [11, p. 18] writes that “a scientist does not think he has failed in explanation because
he makes use of a theory about which further questions can be raised”. The literature on causality
and causal explanation is humongous. I beg the reader’s pardon for daring to tackle this difference
without offering a revision of the literature, which would transcend the scope and space of this
article.

19One author who may have criticized the Principle without observing the distinction we propose
is Pruss [27].

732



Proving Cleanthes Wrong

[2] Atkinson, D; Peijnenburg, J. 2014. Can infinite regress justify everything?. In J. Turri,
P. Klein (eds.) Ad Infinitum: New Essays on Epistemological Infinitism, pp. 162-178.
Oxford, Oxford University Press.

[3] Aristotle. 2007. Metaphysics. Translated by J. H. McMahon. Mineola (NY), Dover.
[4] Bigelow, J.; Pargetter, R. 1975. Metaphysics of causation. Erkenntnis 33(1): 89-119.
[5] Bohn, E. D. 2018. Indefinitely descending ground. In R. Bliss, G. Priest (eds.) Reality and

its Structure: Essays in Fundamentality. Oxford, Oxford University Press, pp. 167-181.
[6] Bradley, D. 2017. A priori causal laws. Inquiry 60(4): 358-370.
[7] Brown, P. 1996. Infinite causal regression. The Philosophical Review 75(4): 510-525.
[8] Bunge, M. 1959. Causality. The Place of the Causal Principle in Modern Science. Cam-

bridge (MA), Harvard University Press.
[9] Callender, C. 2001. Why be a fundamentalist, Reply to Schaffer. Presented at the

Pacific APA, San Francisco, March 2001. Text available at PhilSci Archive: http:
//philsci-archive.pitt.edu/215/

[10] Cameron R. P. 2008. Turtles all the way down: Regress, priority and fundamentality.
The Philosophical Quarterly 58(230): 1-14.

[11] Cole, R. 1974. Causality and sufficient reason. The Review of Metaphysics 28(1): 3-23.
[12] Collins, J.; Hall, N.; Paul, L. (eds.). 2004. Causation and counterfactuals. Cambridge

(MA), The MIT Press.
[13] Craig, W. L.; Sinclair J. D. 2012. The kalam cosmological argument. In W. L. Craig

and J. P. Moreland (eds.) The Blackwell Companion to Natural Theology, pp. 101–201.
Oxford, Wiley-Blackwell.

[14] Edwards, P. 2008. A critique of the cosmological argument. In L. P. Pojman, M.
Rea (eds.) Philosophy of Religion. An Anthology, 5th edition. Belmont (CA), Thomson
Wadsworth, pp. 15-23.

[15] Dumsday, T. 2014. Can causal chains extend back infinitely? Entailment, determinism,
and a cosmological argument. Forum Philosophicum 19(2): 193-208.

[16] Gratton, C. 2010. Infinite Regress Arguments. Dordrecht, Springer.
[17] Hume, D. 1779. Dialogue concerning natural religion. H. D. Aiken (ed.), New York,

Hafner, 1966.
[18] Kim, J. 1973. Causes and Counterfactuals. The Journal of Philosophy 70(17): 570-572.
[19] Lewis, D.K. 1983. Philosophical Papers.Volume 1. Oxford, Oxford University Press.
[20] Lewis, D.K. 1986. Philosophical Papers.Volume 2. Oxford, Oxford University Press.
[21] Lowe, E. J. 2001. The Possibility of Metaphysics: Substance, Identity, and Time. Ox-

ford, Clarendon Press.
[22] Luna, L. 2014. No successful infinite regress. Logic and Logical Philosophy 23(2): 189-

201.
[23] Maurin, A-S. 2013. Infinite regress arguments. In C. Svennerlind, J. AlmÃďng, R.

Ingthorsson (eds.) Johanssonian Investigations, pp. 421-438. Heusenstamm, Ontos Verlag.
[24] Orilia, F. 2009. Bradley’s regress and ungrounded dependence chains: A reply to

733



Luna

Cameron. Dialectica 63(3): 333-341.
[25] Meyer, U. 2012. Explaining causal loops. Analysis 72(2): 259-264.
[26] Pruss, A.R. 1998. The Hume-Edwards principle and the cosmological argument. Inter-

national Journal for Philosophy of Religion 43(3): 149-165.
[27] Pruss, A. R. 2006. The Principle of Sufficient Reason. A Reassessment. Cambridge,

Cambridge University Press.
[28] Reichenbach, H. 1944. Philosophic Foundations of Quantum Mechanics. Mineola (NY),

Dover, 1998.
[29] Romero, G. 2016. Sufficient reason and reason enough. Foundations of Science 21(3):

455-460.
[30] Rota, M. 2007. Infinite Causal Chains and Explanation. Proceedings of the American

Catholic Philosophical Association 81: 109-122.
[31] Rowe, W.L. 1989. Two criticisms of the cosmological argument. In W.L. Rowe and W.J.

Wainwright (eds.) Philosophy of Religion: Selected Readings. Second edition, pp. 142-156.
New York, Harcourt Brace Jovanovic.

[32] Russell, B. 2004. Why I am not a Christian. London, New York, Routledge.
[33] Schaffer, J. 2010. Monism: The priority of the whole. Philosophical Review 119(1):

31-76.
[34] Sober, E. 2011. A priori causal models of natural selection. Australasian Journal of

Philosophy 89(4): 571âĂŞ589.

Appendix
To see not just that a probabilistic L’s being in force cannot bring into existence
the members of QL but that it cannot even probabilistically explain them, consider
the following scenario. Let PL = (pi)i∈I and WL = (wLj )j∈J Let U be a Kripke
valuation function. Let us assume FL, so that

∀i∈I∀j∈J [U(Pr(pi+1|pi) > Pr(pi+1), wLj ) = T ].

The question is whether FL is logically compatible with the following:

Pr(pi|FL) ≤ Pr(pi), (1)

that is, with the proposition that L’s being in force does not raise pi’s probability.

If L’s being in force probabilistically explains qi, then FL and (1) are logically in-
compatible. To see that FL and (1) are in fact logically compatible, consider that qi
could be an event q∗i in the set QL∗ of items of some other causal chain SL∗ ruled by
another causal law L∗, so that even if the occurrence of qi−1 is a necessary condition
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for qi to be caused in the worlds in which L is in force, it may not be a metaphys-
ically necessary condition for qi to be caused: qi as q∗i in QL∗ could be caused in
some L-nomologically impossible world by a different event q∗i−1. Now, suppose that
as expected in a Cleanthian scenario, L’s being in force precludes L∗’s being in force
and suppose further that

Pr(p∗i |p∗i−1) > Pr(pi|pi−1),

so that by preventing a greater rise in its probability, L’s being in force in fact lowers
pi’s probability. This is indeed logically possible and would render both FL and (1)
simultaneously true.
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Abstract
In this paper we study formal properties of approaches to the reasoning

with prioritized defeasible assumptions. We focus on methods proposed in
formal argumentation, more specifically in the context of assumption-based
argumentation.

We systematically compare two approaches for handling conflicts: prefer-
ence-based defeats and preference-based defeats extended with reverse defeat.
We investigate under which conditions these approaches give rise to the same
output. We study several meta-theoretical properties including argumentation
theoretical properties (such as Dung’s Fundamental Lemma and the consistency
of extensions) and properties for nonmonotonic reasoning (such as Cautious
Monotony and Cut) in a parametrized way, i.e., relative to specific constraints
on the underlying deducability relation. Finally, we study the relationship be-
tween these approaches and preferred subtheories, a nonmonotonic reasoning
formalism that is based on maximal consistent subsets of a totally ordered
knowledge base.

In the parametrized setting we study different sub-classes of assumption-
based argumentation frameworks. For instance, we identify a particularly well-
behaved sub-class of argumentation-based frameworks for which the different
conflict-handling mechanisms coincide, which give the same outcomes as pre-
ferred subtheories and for which core properties of nonmonotonic logic are valid.
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1 Introduction
We reason with defeasible information nearly all the time, be it the weather report or
a doctor’s diagnosis. Moreover, defeasible information usually comes in varying de-
grees of reliability depending on many factors, such as the quality of the underlying
method by means of which some information has been obtained or the trustworthi-
ness of a person’s testimony. Several models have been proposed in the context of
non-monotonic logic to model this type of reasoning (see [3] for an overview). In
this paper our main aim is to provide some meta-theoretic transparency by studying
formal properties of some of these methods. For this, our main focus will mainly be
on the paradigm of structured argumentation.

Assumption-based argumentation (ABA) [9] is a formal model of defeasible rea-
soning with strict rules and defasible assumptions. Sets of defeasible assumptions
can be in conflict with one another. To represent and resolve such conflicts, a formal
argumentation framework is constructed on the basis of the strict rules and defea-
sible assumptions. In particular, argumentative attacks represent conflicts between
sets of assumptions. Preferences over the plausible assumptions can be used to re-
fine conflicts between assumptions by turning attacks into defeats. The orthodox
approach (see [23, 33, 31]) in argumentation to resolve conflicts using preferences is
to allow defeats only when an attacking set is not less preferred than the attacked
assumption.

Example 1. Björn is throwing a party. His best friends are Anni-Frid, Benny
and Agnetha, in order of affection. Björn told you that if Agnetha is around,
Anni-Frid and Benny only talk about business and so she will not invite Agnetha
in case she invites Björn and Benny. Defeasible assumptions in this scenario are
Anni-Frid, Benny, and Agnetha, expressing that the person in question is invited.
They are ordered according to plausibility by Agnetha ≺ Benny ≺ Anni-Frid given
Björn’s respective affection. We also know that Anni-Frid, Benny → Agnetha: he
will not invite Agnetha if he invites Anni-Frid and Benny (Agnetha denotes the
contrary of Agnetha, which expresses that Agnetha is not acceptable).

Now any set of assumptions {Agnetha, . . . } is attacked by {Benny, Anni-Frid}
(among others). The reason is that given Benny and Anni-Frid we can derive
Agnetha. It is also defeated since neither Benny nor Anni-Frid is less preferred
than Agnetha.

Recently, ABA+ was proposed in [16], where reverse defeats are added as a
passive counterpart to direct defeats: if an assumption is attacked by a set of as-
sumptions one of which is strictly less preferred than the attacked assumption, a
reverse attack is initiated.
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Example 2. Suppose in our previous example the order of affection is inverse:
Anni-Frid ≺ Benny ≺ Agnetha. In this case {Agnetha} is not (directly) defeated by
{Benny, Anni-Frid} since the assumptions Benny and Anni-Frid have lower priori-
ties than Agnetha. On the other hand, Agnetha reverse defeats {Benny, Anni-Frid}.

Absent reverse-defeats, in examples such as Example 2 conflicts between as-
sumptions may not get tracked properly and as a consequence consistency may get
violated when selecting assumptions. Avoiding such scenarios is one of the main
motivations behind the notion of reverse-defeat.

In this contribution we offer a comparative study of the approach based on
direct defeat and the approach based on reverse defeat. For instance, we investigate
whether closing the given inference rules under contraposition (e.g., in the given
example we could add the rules Benny, Agnetha → Björn and Björn, Agnetha →
Benny) leads to the same or similar outcomes.

We proceed as follows: In Section 2 we give the necessary background on ABA
with direct defeats (ABAd) and reverse defeats (ABAr). In Section 3 we review some
argumentation theoretical properties of the frameworks, such as consistency and the
Fundamental Lemma and in Section 4 we investigate under which conditions these
approaches give rise to the same output. In the second part of the paper we relate
the approaches based on direct and reverse defeats to the study of nonmonotonic
logic more generally. In Section 5, we offer a systematic study of properties of the
resulting consequence relations, such as cautious monotonicity and cut. The study
proceeds in a parametrized way, in the sense that the results are presented relative
to specific constraints on the underlying deducibility relation or relative to specific
argumentation semantics.

Argumentative approaches are closely related to reasoning with consistent sub-
sets of a given knowledge base. In the final Section 6 we validate this claim by
presenting a characterization theorem for preferred subtheories [10], a nonmono-
tonic reasoning formalism based on (maximally) consistent subsets of a given totally
ordered knowledge base.

Altogether, with this paper we hope to enrich our understanding of prioritized
assumption-based defeasible reasoning by comparing two paradigmatic approaches,
by studying important nonmonotonic reasoning properties of these approaches, and
by characterizing them in terms of reasoning with maximally consistent subsets.

ABA was chosen as a core system for this study for several reasons. First, it is
one of the paradigmatic approaches to formal argumentation and offers an intuitive
and well-behaved approach [38]. Second, ABA is related to other argumentative
approaches in a transparent way. For instance, ABA can be seen a special case
of ASPIC+ [33], a prominent argumentation-based formalism for reasoning with
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knowledge bases that can contain defeasible rules in addition to strict rules, as
well as strict and defeasible premises. Moreover, in [24] it was shown that (absent
priorities) ASPIC-like defeasible rules can be represented by means of defeasible
assumptions within ABA via a translation, making ASPIC+ (without priorities) a
special case of ABA. ABA also has strong connections to abstract argumentation
[14, 27] and logic-programming [12, 36, 27]. Finally, in [9] ABA has been shown to
capture autoepistemic logic [30] and default logic [34].

2 Preliminaries
ABA, thoroughly described in [9], is a formal model on the use of plausible as-
sumptions used “to extend a given theory” [9, p.70] unless and until there are good
arguments for not using (some of) these assumptions.

Inferences in ABA are implemented in ABA by means of rules over a formal
language. Furthermore, defeasible assumptions are introduced, together with a con-
trariness operator to express argumentative attacks. We adapt the definition from
[16] for an ABA+ assumption-based framework.

Definition 1 (Assumption-based framework (ABF)). An assumption-based frame-
work is a tuple of the form ABF = (L,R, Ab, ,V,≤, υ), where:

• L is a formal language given by a countable set of sentences {A,A1, . . . ,
B, . . .}.

• R is a set of inference rules of the form A1, . . . , An → A or → A.

• Ab ⊆ L is a non-empty, finite set of plausible assumptions.

• : Ab→ L is a contrariness operator.

• V is a non-empty, finite set of elements (called values).

• ≤ ⊆ V× V is a total preorder over the values.1

1We note that we do not require anti-symmetry to hold for ≤. Due to the totality of ≤, this
allows for equally preferred but still different values. Nevertheless, whether one uses total preorders
or total orders is inconsequential for the results of this paper. One can easily see that for any of
the semantics sem defined below (see Definition 7) and where ABF∼ = (L,R, Ab, ,V∼,≤∼, v∼) is
the quotient framework to ABF (i.e., V∼ = {[v]∼ | v ∈ V}, [v]∼ = {v′ | v ≤ v′, v′ ≤ v}, ≤∼=
{([v]∼, [v′]∼) | v ≤ v′} and v∼ : A 7→ [v(A)]∼), x-sem(ABF) = x-sem(ABF∼) (where x ∈ {f, d, r}).
Note that ≤∼ is a total order.
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• υ : Ab→ V is a total function assigning values to the assumptions.2

As usual, we denote by ≥ the inverse of ≤, and define α < β iff α ≤ β and β 6≤ α.

In some presentations of ABA, deductions are obtained from a set of strict
premises Γ ⊆ L, a set of assumptions Ab ⊆ L and a set of rules R. Here we
follow [16] and rewrite each strict premise A ∈ Γ as an empty-bodied rule → A in
the set R.

Definition 2 (R-deduction). Given ABF = (L,R, Ab, ,V,≤, υ), a set ∆ ⊆ L, and
a sentence A ∈ L, an R-deduction from ∆ of A, written ∆ `R A, is a finite labeled
tree such that

• the root is labeled A,

• each leaf is labeled with an element in ∆ or with the empty string ε,

• for each parent node labeled with B there is a rule B1, . . . , Bm → B ∈ R such
that its children node are labeled B1, . . . , Bm (in case of a rule with empty body
its only child is labeled with ε),

• ∆ is the set of all labels of leaf nodes.

Definition 3. Given ABF = (L,R, Ab, ,V,≤, υ) and ∆ ⊆ L, we define

CnR(∆) = {A ∈ L | there is a ∆′ ⊆ ∆,∆′ `R A}.

We will restrict attention to so-called flat ABFs, i.e. ABFs for which Ab ∩
CnR(∆) = ∆ for any ∆ ⊆ Ab (cf. [15, Definition 2.5]) (this restriction is also
made in e.g. [9, 39, 16, 18]). The investigation of non-flat frameworks is left for fu-
ture work. Clearly, an ABF whose rule base R contains no rules whose consequents
are assumptions is flat.

Although we have defined the deducability relation `R over ℘(L)×L, in order to
define ABA-frameworks it is sufficient to consider the restriction of `R to ℘(Ab)×L.
The more general form is, however, useful to define Contraposition (see Def. 9).
Note that `R need not be monotonic in the antecedent as witnessed by Example
3. This non-monotonicity arises in view of a relevancy requirement that comes with
Definition 2 (according to which only those formulas occur on the left side of ` which
are labels in a deduction tree).

2In [16], a preference order ≤ ⊆ Ab × Ab is defined directly over the assumptions. It will,
however, greatly increase readability to use values to express priorities in this paper. Clearly, these
modes of expression are equivalent.
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Example 3. Let ABF = (L,R, Ab, ,V,≤, υ) where v(p) < v(r) < v(q), p = u,
q = v, r = w and:

Ab = {p, q, r} L = {p, q, r, u, v, w} R = {q → w}

Then {q} `R w but {p, q} 6`R w (since p does not label any leaves in theR-deduction
tree), while w ∈ CnR({q}) ∩ CnR({p, q}). 3

Remark 1. Often derivability/deducability relations ` are defined in a monotonic
way: so if ∆ ` A then also ∆ ∪ ∆′ ` A. Clearly, a monotonic counterpart to
`R is readily available (in the style of the CnR-operator from Definition 3 below).
Our choice to define `R in a non-monotonic way is really a question of ease of
presentation: it will come in handy when defining reverse-defeat (see Definition 6
and the follow-up Remark 2) and when defining contraposition (see Definition 9 and
the discussion following it). For both, it is important to track that every element
in the support ∆ of ∆ `R A is really needed to derive A. To remove all potential
doubts on the side of the reader, we provide Appendix A where we present alternative
definitions based on a monotonic derivability relation and prove that it gives rise to
the same semantic selections (Theorem 14).

The total preorder ≤ in an ABF encodes a preference between some of the as-
sumptions in Ab via the map υ : Ab → V. The intuitive reading of the preferences
is as follows: if v(A) ≤ v(B) then B is at least as preferred as A. In order to com-
pare arguments (i.e. R-deductions), the order ≤ needs to be lifted to ℘(Ab) × Ab.
The following Definitions 4–8 are relative to a given assumption-based framework
ABF = (L,R, Ab, ,V,≤, υ).

Definition 4 (≤-minimal set). Where ∆ ⊆ Ab is a set of assumptions, we define
min(∆) = {A ∈ ∆ | there is no B ∈ ∆ such that v(B) < v(A)}.4

Definition 5 (Lifting of <). Given some ∆ ∪ {A} ⊆ Ab, we define

∆ < A iff for some B ∈ min(∆), v(B) < υ(A)

Definition 6 (Attack, defeat, reverse defeat). Given ∆ ∪Θ ∪ {A} ⊆ Ab,
3Note that our relevancy requirement is not the same as minimality of support which is some-

times assumed in structured argumentation. To see this we slightly alter the example by adding
non-assumptive atoms q1 and q2 and the assumption q′ to our language L. Additionally we add
q → q1, q′ → q2, and q1, q2 → w to our set of rules R above. Now we have: {q} `R w and
{p, q} `R w as before. However, we also have {q, q′} `R w which would not be the case if we were
to require minimality of support.

4Since we assume a total order and thus v(A) = v(B) for any A, B ∈ min(∆), one could
alternatively define min(∆) as one of the minimal elements of ∆. See also Footnote 1.
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• ∆ attacks A (with ∆′) iff there is ∆′ ⊆ ∆ such that ∆′ `R A.

• ∆ attacks Θ iff ∆ attacks some A ∈ Θ.

• ∆ d-defeats A iff ∆ attacks A with some ∆′ such that ∆′ 6< A.

• ∆ d-defeats Θ iff ∆ d-defeats some A ∈ Θ.

• ∆ r-defeats Θ iff ∆ d-defeats Θ, or for some Θ′ ⊆ Θ and A ∈ ∆, Θ′ attacks
A with Θ′ < A.

If some {A} r-defeats Θ we will also say A r-defeats Θ.

Remark 2. When defining ∆ attacks A with ∆′ we essentially make use of the
non-monotonicity of `R: every member of ∆′ is relevant for deriving A. This is
especially important in the definition of r-defeat. Consider for this again Example 3.
Absent the relevancy requirement r were to r-defeat {q, p} because {p, q} < r (since
p < r) and r ∈ CnR({p, q}). However, p is not relevant in the derivation of r (while
{q} `R r, we have {p, q} 0R r), only q is and r < q.

In the context of ABFs for which all assumptions are equally preferred (i.e. an
ABF for which ≤ = V2),5 attack coincides with d-defeat, so we will sometimes write
f-defeat (where the f abbreviates flat) instead of attack to avoid confusion. From
here on, ABAf, ABAd and ABAr denote assumption-based argumentation using,
respectively f-, d- and r-defeats. We observe that for any x ∈ {f, d, r}, x-defeat is
monotonic on both sides of the defeat relation.

Fact 1. Where x ∈ {f, d, r}, ∆′,Θ ⊆ Ab and ∆ ⊆ ∆′:

• if ∆ x-defeats Θ then ∆′ x-defeats Θ

• if Θ x-defeats ∆ then Θ x-defeats ∆′.6

We also note that r-defeats preserve conflicts between sets of assumptions, as
witnessed by the following fact.

Fact 2. If ∆ `R A then either A r-defeats ∆ or ∆ d-defeats (and therefore also
r-defeats) A.

Example 4 witnesses that a similar fact does not hold for d-defeat.
The consequences of a given ABF are determined by the argumentation seman-

tics.
5Clearly, if ≤ = V2, v(A) 6 v(B) and v(B) 6 v(A) for every A, B ∈ Ab.
6This fact and other results in this section are proven in Appendix B.
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Definition 7 (Argumentation semantics [9]). Given some sets ∆,∆′ ⊆ Ab, we
define for each x ∈ {f, d, r}:

• ∆ is x-conflict-free iff ∆ does not x-defeat itself.

• ∆ x-defends ∆′ iff for any ∆′′ ⊆ Ab that x-defeats ∆′, ∆ x-defeats ∆′′.

• ∆ is x-admissible iff ∆ is x-conflict-free and ∆ x-defends itself.

• ∆ is x-complete iff ∆ is x-admissible and ∆ contains every ∆′ ⊆ Ab it x-
defends.

• ∆ is x-grounded iff ∆ is ⊆-minimally x-complete.

• ∆ is x-preferred iff ∆ is ⊆-maximally x-admissible.

• ∆ is x-stable iff ∆ is x-conflict-free and ∆ x-defeats every A ∈ Ab \∆.

We will denote x-conflict-free, x-admissible, x-complete, x-grounded, x-preferred
resp. x-stable by x-cf, x-adm, x-comp, x-grou, x-pref, x-stab. For any semantics
sem ∈ {cf, adm, comp, grou, pref, stab}, we define x-sem(ABF) as the set of all sets of
assumptions in Ab that are x-sem, as defined above.

The (skeptical) consequence relations based on the various semantics from Defi-
nition 7 are defined as follows:

Definition 8. For any sem ∈ {grou, pref, stab}, let ABF |∼ sem
x A iff A ∈ CnR(∆) for

every ∆ ∈ x-sem(ABF).

Remark 3. In Definition 8, we restrict attention to the x-preferred, x-stable and x-
grounded semantics. The reason why we omit x-complete and x-admissible semantics
from our discussion is that (1) entailment relations for x-admissible semantics are
trivial and non-informative7 and (2) by Definition 7 entailment relations based on
the x-complete semantics coincide with those based on x-grounded semantics (for
skeptical consequence).

Example 4. Björn wants to go out with his friends Agnetha (a), Benny (b) and
Anni-Frid (f). Also, if Benny is with Anni-Frid, Benny does not want to go out
with Agnetha (f, b → a). Furthermore, Björn likes Benny more then Anni-Frid,

7Notice that for any x ∈ {f, d, r}, ∅ is x-admissible. This means that A is a consequence of ABF
(based on the x-admissible semantics) iff ∅ `R A.
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(v(f) = 1 and v(b) = 2) and Björn likes Agnetha more than Benny (v(a) = 3). Who
should Björn take out? We have the following ABF = (L,R, Ab, ,V,≤, υ) where:8

Ab = {a, b, f} L = Ab ∪Ab R = {f, b→ a}
V = {1, 2, 3} υ(f) = 1, υ(b) = 2, υ(a) = 3

We have the following defeats and failures thereof:

• {f, b} f-defeats {a} (since {f, b} `R a),

• {f, b} does not d-defeat {a} (since {f, b} < a),

• {a} r-defeats {f, b} (since {f, b} f-defeats {a} and {f, b} < a)

• {a} does not d-defeat {f, b} (since a does not f-defeat {f, b}).

This results in:

• {f, b} being f-grounded, f-preferred and f-stable.

• {a, b, f} being d-grounded, d-preferred and d-stable.

• {a, f} and {a, b} being r-preferred. Note that there are no r-complete, r-
grounded and r-stable extensions (since e.g. {a, f} r-defends b (since b has
no r-defeater, but adding b to {a, f} would result in {a, b, f} not being r-
admissible).

This means that, for instance, ABF |∼ pref
f f and ABF |∼ grou

d a while ABF 6|∼ pref
f a and

ABF 6|∼ pref
r f .

Remark 4. While for Dung’s seminal abstract argumentation frameworks from
[20], the set of ⊆-maximal admissible sets of arguments is identical to the set of
⊆-maximal complete sets of arguments, Example 4 shows that this does not in gen-
eral hold for ABFs based on r-defeat. Indeed, notice that {a, f} and {b, f} are not
r-complete since e.g. {a, f} r-defends the unattacked b yet {a, b, f} is not r-complete
since it is not r-conflict-free. This behaviour is caused by a failure of the so-called
Fundamental Lemma of Abstract Argumentation for ABAr, which is the subject of
Section 3.

8Unless mentioned otherwise, we will assume that when V consists of a set of natural numbers,
≤ is the canonical order over V. Moreover, we will often slightly abuse notation by defining L as
Ab ∪ Ab (or similar), meaning that L consists of all members of Ab and for each member A ∈ Ab
there is a unique element A′ /∈ Ab in L for which A = A′.
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Contraposition

Consistency for d-cf Ex 5 Thm 1
Consistency for r-cf Thm 2
DFL for d-def. Thm 3
DFL for r-def. [17, Ex 10] Thm 4

Table 1: Argumentation theoretic properties of ABAd and ABAr.

3 Argumentation-Theoretic Properties
In this section we investigate some properties that are interesting from an argu-
mentative perspective. In particular, we consider (1) the rationality postulate of
consistency, known from structured argumentation [11] and (2) the Fundamental
Lemma (DFL) [20] known from abstract argumentation. Table 1 summarizes the
results of this section. The top line lists the assumptions on the ABF under which a
claim (in the lefmost column) is proved or shown to fail (the empty column meaning
that contraposition is not supposed to hold). The table refers to the positive results,
or to counter-examples (the latter have a grey background).

3.1 ABAd and Conflict Preservation
In [11], several rationality postulates were proposed for structured argumentation
systems. The only postulate proposed in [11] that doesn’t trivially hold for flat
ABAd and ABAr frameworks is the postulate of consistency:

No set of assumptions ∆ selected by a given semantics contains an assumption
A for which A is derivable from some ∆′ ⊆ ∆.9

One of the reasons for introducing reverse defeats in ABAr is to avoid violations of
the postulate of consistency by preserving conflicts between assumptions even if the
attacking assumptions are strictly less preferred than the attacked assumption. The
following example shows that for ABAd conflicts are not necessarily preserved.

Example 5. Let ABF = (L,R, Ab, ,V,≤, υ) where:10

Ab = {p, q} L = Ab ∪Ab R = {p→ q}
V = {1, 2} υ(p) = 1, υ(q) = 2

9See Theorem 1 below for a formal statement.
10Here and in examples below, we let Ab = {A | A ∈ Ab} and suppose that Ab ∩Ab = ∅ and for

all A, B ∈ Ab, if A 6= B then A 6= B.
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Note that {p} does not d-defeat q. As a consequence, {p, q} is d-conflict-free,
but at the same time it entails q. In contrast, note that in ABAr, consistency will
be preserved since {q} r-defeats {p}, rendering {p, q} not r-conflict-free.

Accordingly, one might ask under which conditions consistency is preserved in
the context of ABAd. As done in ASPIC+ [33, 32], ASPIC− [13] or ASPIC	 [25] we
focus our attention on contraposition-like properties.

Definition 9 (Contraposition). ABF = (L,R, Ab, ,V,≤, υ) is closed under contra-
position if for every ∆ ⊆ L and every A ∈ Ab:

If ∆ `R A then for every B ∈ ∆ ∩ Ab there is a Θ ⊆ {A} ∪ (∆ \ {B}) for
which Θ `R B.

Note that the two formulas A and B that change position in our definition
of contraposition are both assumptive. This distinguishes our definition from the
stronger form of contraposition e.g. known from classical logic.

Although our definition of contraposition is similar to the definition found in
[33, 32], it is less demanding. The difference is that [33, 32] define it by using a
monotonic deducability relation. In our notation:

Contraposition?: If A ∈ CnR(∆) then for every B ∈ ∆ ∩ Ab, B ∈ CnR({A} ∪ (∆ \
{B})).

Any framework that satisfies Contraposition? also satisfies Contraposition.

Fact 3. Any ABF = (L,R, Ab, ,V,≤, v) that satisfies Contraposition? also satisfies
Contraposition.

Proof. Suppose ABF = (L,R, Ab, ,V,≤, v) satisfies Contraposition?. Assume fur-
ther that ∆ `R A and let B ∈ ∆ ∩ Ab. Thus, A ∈ CnR(∆). By Contraposition?,
B ∈ CnR({A} ∪ (∆ \ {B})). Thus, there is a Θ ⊆ {A} ∪ (∆ \ {B}) for which
Θ `R B.

Not every framework that satisfies Contraposition also satisfies Contraposition?,
as the following example shows.

Example 6. Consider ABF = (L,R, Ab, ,V,≤, v) with Ab = {p, q, r} and R =
{q → r, r → q}. Then r ∈ CnR({p, q}), but p /∈ CnR({q, r}).

Thus, all results below that hold for contrapositive ABFs will also hold for ABFs
that satisfy the more demanding notion (here dubbed Contraposition?) from [33, 32].

A related condition on knowledge bases is transposition (see e.g. [33, 32]), which
is a condition on the rule base R, not on the resulting consequence relation `R. In
more detail, we can define a variant of transposition in our setting as follows:
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Transposition: Where A ∈ Ab, if A1, . . . , An → A ∈ R then for every 1 6 i 6 n for
which Ai ∈ Ab: A1, . . . , Ai−1, Ai+1, . . . , An, A→ Ai ∈ R.

Our variant restricts transposition to formulas Ai that are assumptions. In the
context of ABA, transposition as originally defined is problematic, since in ABA
contraries are only defined for Ab but not necessarily for every element of L.

Moreover, neither does transposition imply contraposition nor vice versa. We
give two examples:

Example 7. Let ABF = (L,R, Ab, ,V,≤, v) with Ab = {q, p}, L = Ab ∪ Ab ∪ {t}
and R = {p → t; t → q}. Notice that R is closed under transposition. However,
`R is not closed under contraposition, since {p} `R q yet {q} 6`R p. The problem
is that the derivation of q from p makes use of the intermediate step {p} `R t, and
since t 6∈ Ab, transposition does not enforce {q} 6`R p.

Example 8. Let ABF = (L,R, Ab, ,V,≤, v) with Ab = {q, p}, L = Ab ∪ Ab ∪ {q′}
and R = {p→ q; q → q′; q′ → p}. Then `R is closed under contraposition, but R is
not closed under transposition since p→ q ∈ R but q → p /∈ R.

We close the discussion of transposition with the observation that transposition
and contraposition are closely related as soon as R is closed under Cut. We say that
R is closed under Cut iff whenever A1, . . . , An → B ∈ R and C1, . . . , Cm → Ai ∈ R
then also C1, . . . , Cm, A1, . . . , Ai−1, Ai+1, . . . , An → B ∈ R.

Fact 4. If R is closed under Cut, then A1, . . . , An → B ∈ R iff A1, . . . , An `R B.

Proof. The (⇒) direction is trivial. The (⇐) direction is shown inductively over
the length of a derivation of B from A1, . . . , An. The base case is trivial. For the
inductive step suppose C1, . . . , Cm → B is the last rule applied in the derivation of
B from A1, . . . , An. Thus, for each Ci there are Ai

1, . . . , A
i
ki
∈ {A1, . . . , An} such

that Ai
1, . . . , A

i
ki
`R Ai. Also ⋃m

i=1{Ai
1, . . . , A

i
ki
} = {A1, . . . , An}. By the inductive

hypothesis, Ai
1, . . . , A

i
ki
→ Ai ∈ R. By applying Cut m times, A1, . . . , An → B ∈

R.

Fact 5. If R is closed under Cut and under transposition, then `R is closed under
contraposition.

Proof. Suppose R is closed under cut and transposition. Suppose A1, . . . , An `R
A and Ai ∈ Ab. By Fact 4, A1, . . . , An → A ∈ R. Thus, by transposition,
A1, . . . , Ai−1, A,Ai+1, . . . , An → Ai. Hence, again by Fact 4,
A1, . . . , Ai−1, A,Ai+1, . . . , An `R Ai.
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Indeed, contraposition guarantees consistency, as shown next.11

Theorem 1 (Consistency). Let ABF = (L,R, Ab, ,V,≤, υ) be closed under contra-
position. For any ∆ ⊆ Ab, if ∆ is d-conflict-free, then there is no A ∈ ∆ for which
A ∈ CnR(∆).12

Note that Theorem 1 implies the consistency of an extension in any of the d-
semantics: admissible, complete, preferred, grounded, stable.

Consistency for ABAr follows immediate in view of Fact 2.13

Theorem 2 (Consistency). Where ABF = (L,R, Ab, ,V,≤, υ), for any ∆ ⊆ Ab, if
∆ is r-conflict-free, then there is no A ∈ ∆ for which A ∈ CnR(∆).

3.2 Fundamental Lemma
In [20] we find the Fundamental Lemma of Abstract Argumentation (DFL, short for
Dung’s Fundamental Lemma). Informally, this result says that if a set of assump-
tions ∆ is admissible and it defends another assumption A, ∆∪{A} is admissible as
well. This result is “fundamental” since it guarantees that one can build up complete
extensions from admissible extensions ∆ in an incremental way by simply adding
assumptions that are defended by ∆. Where ∆ = ∅ this will give rise to the unique
grounded extension (see Appendix C.3.1 for technical details).

As such, DFL assures us that different argumentation semantics will have all the
properties that were investigated in [20] (besides the existence of a unique grounded
extension also the fact that every preferred extension is complete, see Lemma 2 be-
low). Indeed, when the DFL is violated, some of these properties might be violated,
as is the case of ABAf for non-flat ABFs (see [15, Example 2.15]). Example 4 is an
example of the failure of DFL for ABAr for flat ABFs not closed under contraposi-
tion (this behaviour was first observed by [18, Example 12]). Note that there the
admissible set {a, b} defends the assumption f but {a, b, r} is not admissible. The
example shows that in cases in which the Fundamental Lemma is violated we may
loose other properties such as preferred extensions being complete or the existence of
complete/grounded extensions. Even when complete extensions exist, the grounded
extension may not be unique since there may be more than one minimal complete
extensions. Our next example illustrates such a case.

11In ASPIC+ [33], contraposition together with various other conditions are sufficient for con-
sistency. For ABAd it turns out that contraposition alone guarantees consistency.

12The proof of this theorem can be found in Appendix C.1.
13This was also observed in [16, Lemma 6].

749



Heyninck and Straßer

Example 9. Let ABF = (L,R, Ab, ,V,≤, υ) (see Fig. 1) where

R = {a1 → a2; a2 → a1; a1 → a3; a3 → a1; a2 → a3; a3 → a2; b1, b2 → a1}
Ab = {a1, a2, a3, b1, b2} L = Ab ∪Ab V = {1, 2}
υ(b1) = υ(b2) = 1 υ(a1) = υ(a2) = υ(a3) = 2

In this case both {a2, b1, b2} and {a3, b1, b2} are ⊆-minimal r-complete extensions
and therefore r-grounded. Note for this that ∅ defends b1 and b2, {b1} defends b2
and {b2} defends b1 but {b1, b2} is not admissible. So neither ∅ nor {b1} nor {b2} nor
{b1, b2} are complete. Similarly, neither {a1} nor {a1, b1} nor {a1, b2} nor {a1, b1, b2}
are complete. Now, also both a2 and a3 defend the assumptions b1 and b2. Therefore
neither {a2} nor {a3} are complete. Both {a2, b1, b2} and {a3, b1, b2} are complete.

{b1, b2} {a1}

{a2}

{a3}

Figure 1: A fragment of the defeat diagram for Example 9. Here and in all the
defeat diagrams below, full lines represent d-defeat whereas dashed lines represent
(proper) r-defeats.

In view of these considerations, we prove the Fundamental Lemma for ABAd for
any ABF and for ABAr for ABFs closed under contraposition.

As explained above, for d-defeat, DFL holds for any ABF.

Theorem 3 (Fundamental Lemma, d-defeat). For any ABF = (L,R, Ab, ,V, ≤,
υ), if the d-admissible ∆ ⊆ Ab d-defends A ∈ Ab then ∆ ∪ {A} is d-admissible.14

The situation is more complicated when r-defeats are involved. As is shown
by Example 4, for ABFs that are not closed under contraposition, DFL does not
necessarily hold. However, when an ABF is closed under contraposition it will satisfy
DFL. In [18] the following formulation of DFL is proven.

Theorem 4 (Fundamental Lemma for Single Assumptions, r-defeat, [18]). For any
ABF = (L,R, Ab, , V,≤, υ) that is closed under contraposition, if the r-admissible
∆ ⊆ Ab r-defends A ∈ Ab then ∆ ∪ {A} is r-admissible.

14 The proof of this theorem can be found in Appendix C.2.
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The Fundamental Lemma can easily be generalized to sets of defended assump-
tions.15

Lemma 1. If ABF = (L,R, Ab, , V,≤, υ) satisfies the Fundamental Lemma, then
also for all ∆,Θ ⊆ Ab, if ∆ is r-admissible and r-defends Θ, then ∆ ∪ Θ is r-
admissible as well.

We immediately get the following corollary:16

Corollary 1 (Fundamental Lemma for Sets of Assumptions, r-defeat). For any
ABF = (L,R, Ab, ,V,≤, υ) that is closed under contraposition, if the r-admissible
∆ ⊆ Ab r-defends Θ ⊆ Ab then ∆ ∪Θ is r-admissible.

We now state an important corollary, given the following insight:17

Lemma 2. If ABF = (L,R, Ab, , V,≤, υ) satisfies the Fundamental Lemma then
(where x ∈ {r, d, f}):

1. there is a unique x-grounded extension and

2. every x-preferred extension is x-complete.

We state an immediate consequence of Theorem 3, Corollary 1 and Lemma 2.

Corollary 2. For any ABF = (L,R, Ab, , V,≤, υ),

1. there is a unique d-grounded extension and

2. every d-preferred extension is d-complete.

If ABF is closed under contraposition,

3. there is a unique r-grounded extension and

4. every r-preferred extension is r-complete.

15The proof can be found in Appendix C.3.
16In Appendix E we further generalize the result by showing that both versions of the Funda-

mental Lemma hold for r-defeat and for weakly contrapositive ABFs (see Lemmas 10 and 4 and
Section 7 for more discussion on and a definition of weak contraposition).

17Item 1 of Lemma 2 is shown in Appendix C.3.1. Item 2 is a even more direct consequence:
Suppose ∆ is preferred. By the Fundamental Lemma F (∆) ∪ ∆ ⊇ ∆ is admissible where F (∆)
denotes the set of all assumptions defended by ∆. Since ∆ is maximally admissible, ∆ = F (∆)∪∆.
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4 On the relation between ABAd and ABAr

In this section we systematically compare ABAd and ABAr. We will show that for
a specific class of frameworks, dubbed well-behaved below, the two systems have the
same preferred and stable extensions. We will proceed step-wise: first we do not
consider any restrictions on the class of frameworks considered and subsequently we
impose several restrictions. We first define the restrictions we consider.

In addition to contraposition, we introduce a new property called Sanity. The
basic idea is that if an assumption seems ‘paradoxical’ and attacks itself, e.g. if
there is a rule A → A or more general if A ∈ CnR({A}), then the rule-system
should be equipped to allow filtering out these assumptions on independent grounds,
i.e., by enforcing A ∈ CnR(∅). This is similar to classical logic where we have
`CL ¬(A ∧ ¬A). We can generalize this basic requirement for our rule set R by
demanding that whenever A ∈ CnR(∆), then A ∈ CnR(∆\{A}). The generalization
disallows for assumptions to be in a more strict sense paradoxical, namely to be
“essentially” involved in the demonstration of their own contrary:

Definition 10. Where ABF = (L,R, Ab, ,V,≤, υ) and A ∈ Ab, A is a paradoxical
assumption iff there is a ∆ ⊆ L\{A} such that A ∈ CnR(∆∪{A}) and A /∈ CnR(∆).

Definition 11 (Sanity). ABF = (L,R, Ab, ,V,≤, υ) is sane iff for all ∆ ⊆ L and
A ∈ Ab, A ∈ CnR(∆) implies A ∈ CnR(∆ \ {A}).

In the following remark we establish the above discussed relation between sanity
and the absence of paradoxical assumptions and we additionally express sanity in
terms of `R.

Fact 6. Where ABF = (L,R, Ab, ,V,≤, υ), the following statements are equivalent:

1. ABF is sane,

2. there are no paradoxical assumptions in Ab,

3. for all ∆ ⊆ L, if ∆ `R A for some A ∈ ∆ then there is a ∆′ ⊆ ∆ \ {A} for
which ∆′ `R A.

Proof. The equivalence of 1 and 2 follows immediately in view of the Definitions 10
and 11. Here is the proof of the “1 ⇒ 3” direction. Suppose ABF = (L,R, Ab, ,V,
≤, υ) is sane and suppose ∆ `R A for some A ∈ ∆. Thus, A ∈ CnR(∆). Thus, by
sanity, A ∈ CnR(∆ \ {A}). Hence, there is a ∆′ ⊆ ∆ \ {A} for which ∆′ `R A. The
other direction is similar.
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Remark 5. Note that sanity does not require that there are no self-attacking sets of
assumptions ∆ ⊆ Ab. All that is required is that there are no derivations of the form
∆ `R A, where A ∈ ∆, that are not reducible to ∆′ `R A for some ∆′ ⊆ ∆ \ {A}.
Example 10. To further clarify the definition of sane ABFs, let us consider ABF1 =
(L,R1, Ab, ,V,V2, υ) and ABF2 = (L,R2, Ab, ,V,V2, υ) where:

Ab = {p, q, s} L = Ab ∪Ab R1 = { p, q → s } R2 = { p, q, s→ s }

ABF2 is not sane since s ∈ CnR2({p, q, s}) \ CnR2({p, q}) and so s is paradoxical.
Note that this is not the case for ABF1 since even though {p, q, s} is self-attacking,
{p, q, s} 6`R1 s and since {p, q} `R1 s there is an independent attacker of s which
renders s non-paradoxical.

Remark 6. Sanity does also not require that there are no odd defeat cycles and as
such it does not imply that every preferred extension is automatically stable or that
stable sets exist (Example 11). However, as will be demonstrated (Theorem 6), in the
presence of contraposition, sanity is sufficient to guarantee the latter two properties.

Example 11. Consider x ∈ {d, r} and ABF = (L,R, Ab, ) where Ab = {s, q, p, r},
L = Ab ∪ Ab and R = {p → q; q → s; s → p}. Then {r} is the only x-preferred
extension of ABF and there is no x-stable set. Note that ABF is sane.

For the sake of completeness we also give a simple example demonstrating the
contraposition is not sufficient to warrant the existence of stable extensions.

Example 12. Consider x ∈ {d, r} and ABF = (L,R, Ab, ) where Ab = {s}, L =
Ab ∪ Ab and R = {s → s}. Then ∅ is the only x-preferred extension of ABF and
there is no x-stable set. Note that ABF is closed under contraposition.

Since r-defeat is essentially a form of contrapositive reasoning, one could ask
whether a given ABF closed under contraposition gives the same outcomes under
ABAd and under ABAr. Thus, another central property of interest is the closure
of the underlying deducability relation `R of a given ABF under contraposition (see
Definition 9).

Putting these requirements together we end up with a notion of well-behaved
frameworks.

Definition 12 (Well-Behaved). We call an ABF well-behaved if it is sane and
closed under contraposition.18

18The name well-behaved was chosen since this class of ABFs behaves particularly well with
respect to the meta-theoretic properties studied in this paper. To avoid being misunderstood, this
does not mean that ABFs outside of this class cannot also have very useful for specific applications.
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Our results are summarized in Table 2. The top line lists the assumptions on the
ABF framework under which a claim (in the leftmost column) is proved or shown to
fail. The table refers to the results containing these proofs, or to counter-examples
to the corresponding claims (in gray). An empty cell to the left of a counter-example
means that the example holds for the cell under consideration as well, whereas an
empty cell to the right of a positive result means that the result applies to the cell
under consideration as well.

When imposing no restrictions or merely sanity on the class of frameworks un-
der consideration, ABAd and ABAr give rise to different extensions with all the
standard semantics (see the 1st column in Table 2). The comparability improves
when considering contraposition (see the 2nd column of the table). For instance,
stable extensions then coincide (see also Theorem 5). Finally when considering well-
behaved frameworks the preferred and stable extensions of the two approaches are
identical (see the 3rd column of Table 2 and also Theorem 6).

The remainder of this section consists of two parts: first we state our positive
results in Fact 7, Theorem 5 and Theorem 6. Then we state negative results in
terms of (counter-)examples.

The following fact follows immediately due to the fact that every d-defeat is also
a r-defeat.

Fact 7. For any ABF we have that every r-conflict-free set is d-conflict-free.

Theorem 5. If ABF is closed under contraposition,

(1) every d-conflict-free set is r-conflict-free and vice versa;

(2) every d-stable set is r-stable and vice versa;

(3) every d-admissible set is an r-admissible set;

(4) every d-complete set is a subset of an r-complete set.19

Theorem 6. For any well-behaved ABF we have:

r-pref(ABF) = d-pref(ABF) = r-stab(ABF) = d-stab(ABF).20

Example 13. Let ABF = (L,R, Ab, ,V,≤, υ) where:

Ab = {p, r} L = Ab ∪Ab R = {p→ r}
V = {1, 2} υ(p) = 1, υ(r) = 2

19This theorem is proven in Appendix F.
20This theorem is an immediate consequence of Theorem 13, proven in Appendix D.

754



Assumption-based Approaches to Reasoning with Priorities

no restr. sane contrap. well-beh.
d-pref(ABF) ⊆
d-comp(ABF) Cor. 2

r-pref(ABF) ⊆
r-comp(ABF) Ex. 4 Cor. 2

r/d-pref(ABF) ⊆
r/d-stab(ABF) Ex. 11 Ex. 12 Thm. 6

Uniqueness/Existence
of d-grou(ABF) Cor. 2

Uniqueness/Existence
of r-grou(ABF)

Ex. 9/
Ex. 4 Cor. 2

d-cf(ABF) ⊆
r-cf(ABF) Ex. 13 Thm. 5

r-cf(ABF) ⊆
d-cf(ABF) Fact 7

d-adm(ABF) ⊆
r-adm(ABF) Ex. 13 Thm. 5

r-adm(ABF) ⊆
d-adm(ABF) Ex. 14

d-pref(ABF) ⊆
r-pref(ABF) Ex. 13 Ex. 15 Thm. 6

r-pref(ABF) ⊆
d-pref(ABF) Ex. 13 Ex. 15 Thm. 6

every d-comp(ABF) is subset
of some r-comp(ABF) Ex. 13 Thm. 5

r-comp(ABF) ⊆
d-comp(ABF) Ex. 14

d-stab(ABF) ⊆
r-stab(ABF) Ex. 13 Thm. 5

r-stab(ABF) ⊆
d-stab(ABF) Ex. 13 Thm. 5

every d-grou(ABF) is subset
of some r-grou(ABF) Ex. 13 Thm. 5

every r-grou(ABF) is subset
of some d-grou(ABF) Ex. 14

Table 2: A comparison of ABAd and ABAr.
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Notice that ABF is sane. {p} does not d-defeat r since υ(p) < υ(r). Consequently,
{p, r} is d-stable, d-preferred, and d-grounded. However, {p, r} is not r-admissible.
To see this, notice that r r-defeats {p}. Moreover, {r} is r-stable, r-preferred, and
r-grounded, while not being d-complete.

For a set of assumptions {A1, . . . , An} ⊆ Ab, we will use A1, . . . , An to denote
the list of all the contrapositions of the rule A1, . . . , An−1 → An. That is:

A1, . . . , An = A1, . . . , An−1 → An ; . . . ; A2, . . . , An → A1

Example 14. Let ABF = (L,R, ,V,≤, υ) where (see Figure 2):

Ab = {p, r, s, q} L = Ab ∪Ab R = { p, q, r; p, q, s }
V = {1, 2, 3} υ(s) = 1, υ(p) = υ(q) = 2, υ(r) = 3

Note that ABF is well-behaved. Note that {r, s} is r-complete but not d-admissible.
To see that {r, s} is r-complete note that r r-defeats {p, q}, the only d-defeater of
s. Note that {r, s} is r-grounded whereas {r} is d-complete and d-grounded.

Example 15. Let ABF = (L,R, ,V,≤, υ) where (see Figure 2):

Ab = {s, p, q, r} L = Ab ∪Ab R =
{
p, q, r; p, q, s; p→ p; q → q

}

V = {1, 2, 3} υ(s) = 1 υ(p) = υ(q) = 2 υ(r) = 3

Observe that ABF is closed under contraposition yet not sane (e.g., p and q are
paradoxical). Note that {r, s} is r-preferred. However {r} is d-preferred, showing
that a maximally d-admissible set (like {r}) need not be maximally r-admissible.

{q, r} {p}

{r}

{p, r} {q}

{p, q} {s}

{p, s}

{q, s} {q, r} {p}

{r}

{p, r} {q}

{p, q} {s}

{p, s}

{q, s}

Figure 2: Fragments of the defeat diagrams for Example 14 (left) resp. Example 15
(right).
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5 Properties for Nonmotonic Reasoning
Structured argumentation has been proposed as a powerful framework to model
defeasible reasoning. Clearly, also assumption-based argumentation gives rise to
non-monotonic consequence relations.

Example 16. Let ABF = (L,R, Ab, ,V,≤, v) where:

Ab = {p} L = {p, q} p = q R = ∅
V = {1} υ(p) = 1

Let, moreover, ABFq = (L,R ∪ {→ q}, Ab, ,V,≤, v) be the result of enriching ABF
with the information that q holds (modeled in terms of a strict rule).

Clearly, for any sem ∈ {pref, stab, grou} and x ∈ {d, r} we have ABF |∼ sem
x p while

ABFq 6|∼ sem
x p.

This motivates studying properties for non-monotonic reasoning for assumption-
based argumentation in this section. In particular we will investigate properties such
as Cautious Monotony, Cautious Cut, Cumulativity, Rational Monotony, Rationality
and two properties that concern Monotony and Cautious Cut under the addition of
assumptions, namely Ab-Monotony and Cautious Ab-Montony.

Probably the most well-known properties studied here are Cautious Monotony
and Cautious Cut [21, 29, 26]. Cautious Cut requires that adding information to an
ABF that is derivable from the knowledge base does not result in new consequences.
In other words, if A follows from ABF and adding → A to the strict rule base
of ABF (resulting in ABFA) allows to derive B, then B should have already been
derivable from ABF. The reverse of Cautious Cut is known as Cautious Monotony
and requires that if A and B are derivable from an ABF then adding → A to the
strict rule base of ABF should not influence the derivability of B. In other words, no
information is lost when adding information that is already derivable from the ABF
under consideration. Consequence relations that satisfy Cautious Cut and Cautious
Monotony are called cumulative. A weaker version of Cautious Monotony is Cautious
Ab-Monotony, which additionally requires thatA is an assumption. Finally, we study
two strengthenings of Cautious Monotony: Rational Monotony and Ab-Monotony.
Rational Monotony [26] is a somewhat controversial rule (see e.g. [37]) which requires
that if a contrary of an assumption B is not derivable, adding the assumption B
as a strict premise (i.e. adding the rule → B to R) does not result in any loss of
derivable information. Finally, the property Ab-monotony has, to the best of our
knowledge, not been defined before.21 It expresses that an ABF is robust under

21It is similar to semi-monotonicity known from default logic [28], which concerns monotonicity
under the addition of default rules.
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adding assumptions as strict rules: i.e. removing an assumption A from Ab and
adding it as a rule → A instead preserves the consequences from ABF.

Definition 13. Where ABF = (L,R, Ab, ,V,≤, υ) and given a set of formulas
∆ ∪ {A} ⊆ L, let ∆−A = ∆ if A /∈ Ab and ∆−A = ∆ \ {A} if A ∈ Ab. Let
ABFA = (L,R∪{→ A}, Ab−A, ,V,≤, υ′) with υ′(C) = υ(C) for every C ∈ Ab\{A}.
Definition 14. Let ABF = (L,R, Ab, ,V,≤, υ), sem ∈ {grou, pref, stab}, x ∈ {r, d},
and A,B ∈ L. In Table 3 we define several of the well-known postulates frequently
discussed in non-monotonic logic.

Before presenting our results, we show some relations between the properties
defined above. First, we comment shortly on the relationship between cumulative
and rational ABFs. Thereafter we explain the relationship of Ab-monotony with
Monotony and Rational Monotony.

For most formal systems of defeasible reasoning, Rational Monotony can be seen
as a special case of Cautious Monotony. In the case of assumption-based argumenta-
tion, however, violations of consistency may give rise to ABFs which violate Cautious
Monotony while not violating Rational Monotony as demonstrated in Example 17
(for d-preferred and d-stable semantics).

Example 17. Let ABF = (L,R, Ab, ,V,≤, v) where:

Ab = {s, r, p, t′, t} L = Ab ∪Ab R = { s, r → p; t′, t→ s }
V = {1, 2, 3, 4} υ(t′) = υ(t) = 1 υ(s) = 2 υ(p) = 3 υ(r) = 4

We have d-pref(ABF) = d-stab(ABF) = d-grou(ABF) = {Ab}. Notice that it holds
that ABF |∼ d

sem s, p and ABF 6|∼ d
sem r, t′, t. Also, ABFA |∼ d

sem B if ABF 6|∼ d
sem A for all

A ∈ Ab and all B ∈ L. So RM holds for ABF.
However, neither CM nor CM-Ab holds. Take, for instance, ABFs 6|∼ d

sem p while
ABF |∼ d

sem p and ABF |∼ d
sem s.

However, when an ABF satisfies f-consistency for a given semantics, the expected
relationship between Cautious and Rational Monotony is preserved, as shown in the
following fact.

Definition 15 (f-consistency). Where x ∈ {r, d} and sem ∈ {grou, stab, pref}, ABF
satisfies f-consistency under x-sem iff for every ∆ ∈ x-sem(ABF), ∆ is f-conflict-free.

Fact 8. Where x ∈ {r, d} and sem ∈ {grou, stab, pref}, if ABF is f-consistent under
x-sem and it satisfies RM (relative to |∼ sem

x ) then it satisfies CM-Ab (relative to
|∼ sem

x ).22

22The proof of this fact can be found in Appendix G.
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Cautious Cut (CC)

If ABF |∼ sem
x A and

ABFA |∼ sem
x B then ABF |∼ sem

x B. CC-ent
∆ ∈ x-sem(ABF) then ∆−A ∈ x-sem(ABFA). CC-sem

Monotony (M)
If ABF |∼ sem

x B then ABFA |∼ sem
x B. M-ent

If ∆−A ∈ x-sem(ABFA) then ∆ ∈ x-sem(ABF). M-sem
Ab-Monotony (M-Ab) [where A ∈ Ab and A /∈ CnR(∅)]

If ABF |∼ sem
x B then ABFA |∼ sem

x B. M-Ab-ent
If ∆−A ∈ x-sem(ABFA) then ∆ ∈ x-sem(ABF). M-Ab-sem

Cautious Monotony (CM)

If ABF |∼ sem
x A and

ABF |∼ sem
x B then ABFA |∼ sem

x B. CM-ent
∆−A ∈ x-sem(ABFA) then ∆ ∈ x-sem(ABF). CM-sem

Cautious Ab-Monotony (CM-Ab) [where A ∈ Ab]

If ABF |∼ sem
x A and

ABF |∼ sem
x B then ABFA |∼ sem

x B. CM-Ab-ent
∆−A ∈ x-sem(ABFA) then ∆ ∈ x-sem(ABF). CM-Ab-sem

Cumulativity iff CC and CM
Rational Monotony (RM) [where A ∈ Ab]

If ABF 6 |∼ sem
x A and

ABF |∼ sem
x B then ABFA |∼ sem

x B. RM-ent
∆−A ∈ x-sem(ABFA) then ∆ ∈ x-sem(ABF). RM-sem

Table 3: Properties of ABF (relative to x-sem), Definition 14. Each property consists
of two necessary and jointly sufficient requirements, one concerning the entailment
one concerning the semantic selection. Also, A and B are universally quantified over
L (where A satisfies some further restrictions in (M-Ab), (CM-Ab) and (RM)).

From Fact 8 it follows that any ABF that satisfies RM satisfies CM-Ab for any
r-semantics. This can be seen by observing that for any r-semantics, f-consistency
is always satisfied.

Fact 9. Any ABF is f-consistent under r-sem for any sem ∈ {grou, pref, stab}.

To see this notice that ∆ f-defeats A iff ∆ d-defeats A or A r-defeats ∆ (cf. Fact
2).

The following fact thus follows immediately from Fact 8 and Fact 9.
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Fact 10. Where sem ∈ {grou, stab, pref}, if ABF satisfies RM (relative to |∼ sem
r )

then it satisfies CM-Ab (relative to |∼ sem
r ).

For d-defeats, by Theorem 1 and Fact 8, closure of an ABF under contraposition
is a sufficient condition for the expected relation between RM and CM-Ab to hold:

Fact 11. Where sem ∈ {grou, stab, pref}, if ABF is closed under contraposition and
satisfies RM (relative to |∼ sem

d ) then it satisfies CM-Ab (relative to |∼ sem
d ).

While RM as defined above expresses the robustness of the |∼ sem
x -entailment

under the addition of assumptions A whose contraries A are not derivable from a
given ABF, one could go a step further and also demand robustness of the |∼ sem

x -
entailment under the addition of contraries of assumptionsA where A is not derivable
from a given ABF. The following example shows that this stronger variant of RM
does not hold, not even for well-behaved non-prioritized ABFs.

Example 18. Let ABF = (L,R, Ab, ,V,≤, v) whereR =
{
q′, p; q′, q; p, q → s; q′ →

s
}
and

Ab = {p, q, q′} L = Ab ∪Ab ∪ {s}
V = {1} υ(p) = υ(q) = υ(q′) = 1

For an illustration see Figure 3. Note that ABF |∼ sem
x s and ABF 6|∼ sem

x q (where
sem ∈ {pref, stab}). To verify this notice that the x-stable (resp. x-preferred) sets
are {p, q} and {q′}. When moving to ABFq we have: ABFq 6|∼ sem

x s since the x-stable
(resp. x-preferred) sets are {p} and {q′} and furthermore {p} 0R∪{→q} s.

{p} {q′} {q}

{p, q}

(a) Defeat Diagram for ABF

{p} {q′} {q}

{p, q} ∅

(b) Defeat Diagram for ABFq

Figure 3: A fragment of the defeat diagram for Example 18.
The property Ab-monotony is not to be confused with Monotony. The following

example shows that Ab-monotony does not imply Monotony. In other words, there
is an important difference between adding assumptions as a fact and adding any
formula as a fact.

Example 19 (Ex. 16 cont.). We again consider Ex. 16. We have already established
that it violates Monotony. Note though that it does not violate Ab-Monotony since
ABF and ABFp have the same |∼ sem

x -consequences for any x ∈ {d, r} and sem ∈
{pref, stab, grou}.
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In the definition of M-Ab, the restriction A 6∈ CnR(∅) is necessary, otherwise
counter-examples are readily found, such as the following example.

Example 20. Let ABF = (L,R, Ab, ,V,≤, v) where (for α ∈ {p, q, s}) (see Fig. 4):

Ab = {p, q, s} L = {p, q, s, p′, q′, s′} R = {→ q′; q, s→ p′; p, s→ q′; p, q → s′}
V = {1} υ(p) = υ(q) = υ(s) = 1 α = α′ for any α ∈ Ab

We have x-sem(ABF) = {{p, s}} while x-sem(ABFq) = {{p}, {s}} (for any sem ∈
{stab, pref} and any x ∈ {r, d, f}). Note for this that {q, s} x-defeats p in ABF and is
x-defeated by ∅ while {s} x-defeats p in ABFq. Similarly, {q, p} x-defeats s in ABF and
is x-defeated by ∅ while {p} x-defeats s in ABFq. In view of this {p, s} is conflict-free
in the context of ABF but not in the context of ABFq and thus {p, s} is neither in
x-pref(ABFq) nor in x-stab(ABFq).

∅

{q}{s}

{q, s}

{p, q}

{p, s}

{p}
Defeat Diagram for ABF

{s} {p, s}

{p}

Defeat Diagram for ABFq

Figure 4: A fragment of the defeat diagram for Example 20.

To conclude this preliminary discussion of the properties that will be studied in
this section, we note that it is trivial to see that M-Ab implies CM-Ab and RM for
assumptions B ∈ Ab for which B /∈ CnR(∅). For other assumptions this need not
be so, as the following example illustrates.

Example 21. Let ABF = (L,R, Ab, ,V,≤, v) where R = { → q} ∪ {q → si; si →
si; si → p | i ∈ {1, 2}} and

Ab = {p, q, s1, s2} L = Ab ∪Ab
V = {1} υ(p) = υ(q) = υ(s1) = υ(s2) = 1

A partial defeat diagram for this ABF can be found in Figure 5. Note that there is no
d-stable extension of ABF and therefore, for instance, ABF |∼ stab

d q and ABF |∼ stab
d s1.

However, ABFq has one stable extension, namely {p} and therefore ABFq 6|∼ stab
d s1.

This shows that CM-Ab does not hold for ABF and d-stab.
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The situation is different for M-Ab. Here we note that for all B ∈ Ab for which
B /∈ CnR(∅), namely B ∈ {s1, s2, p}, also ABFB has no stable extensions. Therefore,
trivially, M-Ab holds for ABF and d-stab.

∅ {q}

{s1}

{s2}

{s1, s2} {p}

Defeat Diagram for ABF

∅

{s1}

{s2}

{s1, s2} {p}

Defeat Diagram for ABFq

∅ q

{s2}

{p}
Defeat Diagram for ABFs1

Figure 5: A fragment of the defeat diagram for Example 21.

Definition 16. ABF = (L,R, Ab, ,V,≤, v) is assumption-consistent iff for all B ∈
Ab, B /∈ CnR(∅).

Fact 12. If ABF = (L,R, Ab, ,V,≤, v) is assumption-consistent, then M-Ab implies
both CM-Ab and RM.

In the following, we again proceed in two steps: first we present positive results
(Theorems 7–12, which are all proven in Appendix G) and then we provide negative
results for specific subclasses of frameworks in view of counter-examples (Examples
22–32). Table 4 summarizes the results of this section. Cautious Cut and Monotony

M-Ab

RM

M

f-consistency

Ab-consistency CM-Ab

CM

Figure 6: Schematic representation of relations between the properties studied in
this section. Prop1 → Prop2 means that any ABF that satisfies Prop1 also satisfies
Prop2. An arrow with a circle on it means that the relation holds only when the
ABF satisfies the specified condition (e.g. M-Ab implies RM when Ab-consistency
is satisfied).

762



Assumption-based Approaches to Reasoning with Priorities

no restr. sane contr. well-behav. wb., ≤ = V2

M, x-sem Ex. 16

CC, d-grou Ex. 22 Thm. 8
CC, d-pref/stab Ex. 22 Thm. 9
CC, r-grou Ex. 26 Thm. 12
CC, r-pref Ex. 23 Ex. 24 Thm. 10
CC, r-stab Ex. 23 Thm. 7

CM, d-grou Ex. 22 Thm. 8
CM, d-stab/pref Ex. 22 Ex. 30 Thm. 10
CM, r-grou Ex. 27 Thm. 12
CM, r-stab/pref Ex. 23 Ex. 30 Thm. 10

CM-Ab, d-grou Ex. 31 Thm. 8
CM-Ab, r-grou Ex. 32 Thm. 12
CM-Ab, x-stab/pref Ex. 25 Ex. 30 Thm. 10

RM/M-Ab x-grou Ex. 29 Thm. 12
RM/M-Ab, x-pref/stab Ex. 28 Thm. 11

Table 4: Properties for Nonmonotonic Reasoning of ABAd and ABAr.

are investigated for ABFs in general, ABFs closed under contraposition and well-
behaved ABFs. For Rational Monotony, we furthermore investigate the behaviour
of ABFs for which every assumption has the same priority. Again, an empty cell
to the left of a counter-example means that the example holds for the cell under
consideration as well, whereas an empty cell to the right of a positive result means
that the result applies to the cell under consideration as well.

We first note that the property of being closed under contraposition, sanity and
well-behavedness of an ABA-framework are invariant under enhancements (for the
proof see Appendix G.1):

Fact 13. Where ABF = (L,R, Ab, ,V,≤, v) is closed under contraposition [resp.
sane, resp. well-behaved], then also ABFB = (L,R ∪ {→ B}, Ab \ {B}, ,V,≤, v) is
closed under contraposition [resp. sane, resp. well-behaved].

Theorem 7. Any ABF closed under contraposition satisfies Cautious Cut for |∼ stab
r .
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Theorem 8. Any ABF closed under contraposition is cumulative for |∼ grou
d .

Theorem 9. Where sem ∈ {pref, stab}, any ABF closed under contraposition satisfies
Cautious Cut for |∼ sem

d .

Theorem 10. Where sem ∈ {pref, stab} and x ∈ {d, r}, any well-behaved ABF is
cumulative for |∼ sem

x .

Theorem 11. Where ABF = (L,R, Ab, ,V,≤, υ) is well-behaved, x ∈ {d, r}, sem ∈
{pref, stab}, ≤ = V2, ABF is Ab-monotonic for |∼ sem

x .

Theorem 12. Where x ∈ {d, r}, ≤ = V2, and ABF = (L,R, Ab, ,V,≤, υ) is well-
behaved, ABF is Ab-monotonic for |∼ grou

x .

We now move to our negative results by giving counter-examples for the prop-
erties from nonmonotonic reasoning relative to specific classes of frameworks (see
Table 4 for an overview).

Example 22. Let ABF = (L,R, Ab, ,V,≤, v) where (see Figure 7):

Ab = {s, t, r, p} L = Ab ∪Ab ∪ {x} R =
{
s→ x; r, x→ p; p→ t

}

V = {1, 2, 3, 4} υ(t) = 1 υ(s) = 2 υ(p) = 3 υ(r) = 4

Notice that ABF is sane. The d-grounded, unique d-preferred, and unique d-stable
extension is {s, r, p}. Note for this that although {s, r} `R p, we have {s, r} < p
and so {s, r} does not d-defeat p. Thus, x follows. Now if we move to ABFx, r d-
defeats p and t is d-defended. The d-grounded and unique d-preferred and d-stable
extension is now {s, r, t}. So, where sem ∈ {pref, grou, stab}, while ABF |∼ sem

d p we
have ABFx 6|∼ sem

d p and while ABFx |∼ sem
d t we have ABF 6|∼ sem

d t.

{p} {t}
(a) Defeat Diagram for ABF

{p} {t}{r}
(b) Defeat Diagram for ABFx

Figure 7: A fragment of the defeat diagrams for Example 22.

Example 23. Let ABF = (L,R, Ab, ,V,≤, v) where (see Figure 8):

Ab = {p, t, s} L = Ab ∪Ab R =
{
s→ p; s→ t

}

V = {1, 2, 3} υ(t) = 1 υ(s) = 2 υ(p) = 3

Note first that ABF is sane. The set {p, t} is r-stable, r-preferred and r-grounded.
Note for this that there is no r-defeat on p and p r-defeats s and in this way defends
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t. Moving to ABFp, the set {t} cannot be defended from the d-defeat by {s}. The
only r-stable, r-preferred and r-grounded extension is now {s}, which is undefeated.
Where sem ∈ {stab, pref, grou}, we have, for instance, ABF |∼ sem

r t while ABFp 6|∼ sem
r t

and ABF 6|∼ sem
r s while ABFp |∼ sem

r s.

{p}{s}{t}
Defeat Diagram for ABF

{s}{t}
Defeat Diagram for ABFp

Figure 8: A fragment of the defeat diagram for Example 23.

{r}

{t1} {t2}

{t1, t2} {s} {t}

(a) Defeat Diagram for ABF

{t1} {t2}

{t1, t2} {s} {t}

(b) Defeat Diagram for ABFr

Figure 9: A fragment of the defeat diagram for Example 24.

Example 24. Let ABF = (L,R, Ab, ,V,≤, v) where: Ab = {r, t1, t2, t, s}, L =
Ab ∪ Ab, V = {1, 2, 3} and v(s) = v(t) = 1, v(t1) = v(t2) = 2 and v(r) = 3. Let R
be the closure under contraposition23 of

R′ = { t1 → t1; t2 → t2; t1, t2 → r; t1, t2 → s; t→ s }

See Figure 9 for an illustration. We have two r-preferred extensions: {r, s} and
{r, t}. However, in ABFr s cannot be anymore defended from the attack by {t1, t2}
via r. So, the only r-preferred extension is now {t}.

Example 25. Let ABF = (L,R, Ab, ,≤, v) where: Ab = {u, t, s}, L = Ab ∪ Ab,
V = {1, 2}, v(u) = 1, v(t) = v(s) = 2, and R = {u, t→ s; s→ t}. Where x ∈ {r, d},
{s, u} is the only x-stable and x-preferred extension. Note that t cannot be defended
against the attack by s. For ABFu we have two x-preferred and x-stable extensions,
namely {s} and {t}. Since now {t} `R∪{→u} s, t can defend itself against the attack
by s. Altogether s ceases to be a consequence.

23We let the closure under contraposition R of a set of rules R′ be the smallest set that contains
R′ and is such that `R satisfies contraposition.
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Example 26. Let ABF = (L,R, Ab, ,V,≤, v) where (see Figure 10)

Ab = {x, p, q, s, s′, s′′, r} L = Ab ∪Ab ∪ {t} V = {1, 2, 3, 4, 5}
υ(x) = 1 υ(s′) = υ(s′′) = 2 υ(s) = 3 υ(p) = υ(q) = 4 υ(r) = 5

R =
{
s′, s′′, x; p, q, r; p, q, s; s→ t; s′, s′′, t→ r; r, s′, t→ s′′; r, s′′, t −→ s′

}
.

Note that ABF is well-behaved. The r-grounded set of ABF is {r, s}. Note that
{s} `R t. However, since {s′, s′′} `R∪{→t} r, r r-defeats {s′, s′′}, reinstating x. Thus
the r-grounded extension of ABFt is {r, s, x}. So, ABF 6|∼ grou

r x while ABFt |∼ grou
r x.

{r} {p, q} {s}

{s′, s′′} {x}

(a) Defeat Diagram for ABF

{r} {p, q} {s}

{s′, s′′} {x}

(b) Defeat Diagram for ABFB

Figure 10: A fragment of the defeat diagram for Example 26.

Example 27. Let ABF = (L,R, Ab, ,V,≤, v) where (see Figure 11)

Ab = {p, q, s, s′, s′′, r} L = Ab ∪Ab ∪ {t} V = {1, 2, 3, 4, 5}
υ(x) = 1 υ(s′) = υ(s′′) = 2 υ(s) = 3 υ(p) = υ(q) = 4 υ(r) = 5

and R =
{
p, q, r; p, q, s; s, s′, s′′, r; s→ t; s′, s′′, t→ x; x, s′, t→ s′′; x, s′′, t→ s′

}

Notice that ABF is well-behaved. The r-grounded set of ABF is {r, s, x}. Note
that {s} `R t. However, since {s′, s′′} `R∪{→t} x, {s′, s′′} d-defeats x and this time
{r} cannot reinstate x. Thus the r-grounded extension of ABFt is {r, s}.

{r} {p, q} {s}

{s, s′, s′′} {x}

(a) Defeat Diagram for ABF

{r} {p, q} {s}

{s, s′, s′′} {x} {s′, s′′}

(b) Defeat Diagram for ABFB

Figure 11: A fragment of the defeat diagram for Example 27.

Example 28. Let ABF = (L,R, Ab, ,V,≤, v) where (see Figure 12)

Ab = {p, q, s, r} L = Ab ∪Ab ∪ {x} V = {1, 2}
υ(s) = 1 υ(p) = υ(q) = υ(r) = 2

R =
{
s, p, q; r, p; r, q; p, q → x; r → x

}
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Observe that ABF is well-behaved. Note that, for x ∈ {r, d}, {p, q} and {s, r}
are the only x-stable and x-preferred extensions of ABF. This means that, where
sem ∈ {stab, pref}, ABF |∼ sem

x x and ABF 6|∼ sem
x s (in view of {r, s} being x-stable

resp. x-preferred). However, if we add→ s to R, {p} `R∪{→s} q and {q} `R∪{→s} p.
This means that there are three x-stable resp. x-preferred extensions: {r}, {p} and
{q}. Note that since {p} and {q} do not allow to derive x, ABFs 6|∼ sem

x x.

{s, p}

{s}

{s, q}

{p, q} {r}

{p}

{q}

(a) Defeat Diagram for ABF

{p, q} {r}

{p}

{q}

(b) Defeat Diagram for ABFs

Figure 12: A fragment of the defeat diagram for Example 28.

Example 29. Let ABF = (L,R, Ab, ,V,≤, v) where (see Figure 13)

Ab = {t, s, p, q} L = Ab ∪Ab R =
{
t, p, s; p, q

}
V = {1, 2}

υ(t) = 1 υ(s) = υ(p) = υ(q) = 2

Notice that ABF is well-behaved. Then, for x ∈ {r, d}, {s} is the x-grounded exten-
sion of ABF and ABF 6|∼ grou

x t. However, when moving to ABFt, the x-grounded set is
∅ since now s is d-defeated by t and vice versa.

{t} {s, p} {q} {p}
(a) Defeat Diagram for ABF

{s} {p} {q}
(b) Defeat Diagram for ABFt

Figure 13: A fragment of the defeat diagram for Example 29.

Example 30. Let ABF = (L,R, Ab, ,V,≤, v) where (see Figure 14)

Ab = {q, p, t, x1, x2} L = Ab ∪Ab
V = {1, 2} υ(t) = 1 υ(x1) = υ(x2) = υ(q) = υ(p) = 2

and R is the closure under contraposition of:
{
q, p; q, x1; q, x2; x1, x2, p; t, x1; t, x2; x1 → x1; x2 → x2

}
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Notice that ABF is closed under contraposition. The only d-stable, r-stable,
d-preferred, and r-preferred extension is {q, t}. Thus, ABF |∼ sem

x t where sem ∈
{stab, pref} and x ∈ {d, r}. Note that p cannot only be defended from the attack by
{x1, x2} by q, but {p, q} is not conflict-free.

Now if we move to ABFt and add → t to R, also {p} is d-stable, r-stable, d-
preferred and r-preferred (in addition to {q}). The reason is that now ∅ `R∪{→t} x1
and ∅ `R∪{→t} x2 and {p} `R∪{→t} q. Thus, ABFt 6|∼ sem

x q.

{t}

{x1}

{x2}

{q} {p} {x1, x2}

(a) Defeat Diagram for ABF

∅

{x1}

{x2}

{q} {p} {x1, x2}

(b) Defeat Diagram for ABFt

Figure 14: A fragment of the defeat diagram for Example 30.

Example 31. Let ABF = (L,R, Ab, ,V,≤, v) where (see Figure 15)

Ab = {p, q, p′, s} L = Ab ∪Ab R =
{
p, s→ q; p→ p′; p′ → p

}

V = {1, 2} υ(s) = 1 υ(p) = υ(p′) = υ(q) = 2

Note that, for x ∈ {d, r}, {s, q} is the (unique) x-grounded extension. When
we move to ABFs we have p `R∪{→s} q and so the (unique) x-grounded extension of
ABFs is ∅. So, we have ABF |∼ grou

x q while ABFs 6|∼ grou
x q.

{p} {p′}

(a) Defeat Diagram for ABF

{p} {p′}{q}

(b) Defeat Diagram for ABFs

Figure 15: A fragment of the defeat diagram for Example 31.

Example 32. Let ABF = (L,R, Ab, ,V,≤, v) where (see Figure 16)

Ab = {p, q, s, r} L = Ab ∪Ab R =
{
p, q; p, q, s; p, q, r

}

V = {1, 2, 3} υ(s) = 1 υ(p) = υ(q) = 2 υ(r) = 3
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Note that {r, s} is the r-grounded extension of ABF since r is un-defeated and
it defends s from the attack by {p, q} since r r-defeats {p, q}. Consider now ABFr.
Now r /∈ Ab \ {r} and so it does not r-defeat {p, q} anymore which now leaves s r-
undefended. Thus, the unique r-grounded extension is now ∅. So we have ABF |∼ grou

r s
while ABFr 6|∼ grou

r s.

{q, r}

{p, r} {q}

{p}

{p, q} {s}

{r}
(a) Defeat Diagram for ABF

{q}

{p}

{p, q} {s}

(b) Defeat Diagram for ABFr

Figure 16: A fragment of the defeat diagram for Example 32.

6 Connection with Preferred Subtheories
We already saw in Section 4 that for well-behaved ABFs, r-preferred, r-stable, d-
preferred and d-stable extensions collapse. It turns out we can say even more about
this class of extensions: they coincide with the preferred subtheories [10] of their
respective ABFs.

We first adapt the definition of preferred subtheories for ABFs. For this it is
convenient to suppose that V is a (finite) initial sequence of N with ≤ being the
canonical order.24 Preferred subtheories are obtained by selecting the lexicographi-
cally most preferred or ≺-maximal sets among the maximally consistent subsets of
ABF, denoted MCS(ABF). The latter are the maximal (w.r.t. set inclusion) sets of
assumptions that contain no inconsistent set of assumptions, i.e. that contain no set
of assumptions ∆ such that ∆ \ {A} `R A for some A ∈ ∆. The set of inconsistent
sets of assumptions for a given ABF is denoted by IS(ABF).
Definition 17. Where ABF = (L,R, Ab, ,V,≤, υ),

• IS(ABF) is the set of all ∆ ⊆ Ab such that ∆ \ {A} `R A for some A ∈ ∆.25

24Since we assume that (V,≤) is a total order, this assumption does not result in any loss of
generality.

25Notice that this definition of inconsistent sets of assumptions is only adequate when considering
sane ABFs, as we presuppose in this section. When ABFs contain paradoxical assumptions, it might
be the case that ∆ `R A for some A ∈ ∆ while there is no ∆′ ⊆ ∆ \ {A} for which ∆′ `R A and
accordingly, this will have to be taken into account when generalizing the definition of IS(ABF) to
such ABFs.
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• CS(ABF) is the set of all ∆ ⊆ Ab such that for no Θ ∈ IS(ABF), Θ ⊆ ∆.

• MCS(ABF) is the set of all ∆ ∈ CS(ABF) that are ⊆-maximal.

• Where ∆ ⊆ Ab and i ∈ N, πi(∆) = {A ∈ ∆ | υ(A) = i}.

• ≺ ⊆ ℘(Ab) × ℘(Ab) is defined as: ∆ ≺ Θ iff there is an i ≥ 1 such that
πj(∆) = πj(Θ) for every j > i and πi(∆) ⊂ πi(Θ).

• MCS≺(ABF) = max≺(MCS(ABF))26

To illustrate the above definition, we give an Example.

Example 33. Let ABF = (L,R, Ab, ,V,≤, υ) with R =
{
p, q; r, q, s

}
and Ab =

{p, q, r, s}. Furthermore let V = {1, 2, 3} and υ(s) = 3, υ(r) = 2 and υ(p) = υ(q) =
1. We have IS(ABF) = {Θ ⊆ Ab | Θ ⊇ {p, q} or Θ ⊇ {r, q, s}}. This means that

MCS(ABF) =
{{p, r, s}, {q, r}, {q, s}}.

Since π3({q, r}) = ∅ and π3({p, r, s}) = π3({q, s}) = {s}, {q, r} ≺ {p, r, s} and
{q, r} ≺ {q, s}. Since π2({p, r, s}) = {r} whereas π2({q, s}) = ∅, {q, s} ≺ {p, r, s}.
This means that

MCS≺(ABF) =
{{p, r, s}}.

Theorem 13. For any well-behaved ABF we have:

MCS≺(ABF) = r-pref(ABF) = d-pref(ABF) = r-stab(ABF) = d-stab(ABF)

This theorem is proven in Appendix D.

7 Related Work
Properties known from non-monotonic logic have also been studied in [18]. Their
definitions of (restricted forms of) monotony- and cut-properties are extension-based.
For our discussion it will suffice to give one example for skeptical consequence in
a non-prioritized setting. Given an ABA framework ABF = (L,R, Ab, ), a sem-
extension ∆, an A ∈ CnR(∆) \Ab [resp. A ∈ CnR(∆) ∩Ab], and let ABF′ = (L,R∪
{> → A}, Ab, ) [resp. ABF′ = (L,R∪ {> → A}, Ab \ {A}, )]:

Skeptical strict [resp. asm] mon is satisfied iff for all sem-extensions ∆′ of ABF′,
CnR(∆) ⊆ CnR(∆′).

26Since we assume V to be finite, max≺(MCS(ABF)) will never be empty.
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At first sight this may seem to amount to a semantical counter-part of cautious
monotony as defined above in Definition 14 for ABA-induced non-monotonic entail-
ment relations. However, the more natural semantic counter-part for the skeptical
versions are (see e.g., [4, 2] where such versions are used):

Strict version: Every sem-extension ∆′ of ABF′ is also a sem-extension of ABF.

asm version: For every sem-extension ∆′ of ABF′, ∆′ \ {A} is a sem-extension
of ABF.

The strict semantic versions are the ones we prove in this paper (in addition to
the properties of the nonmonotonic entailment relations).

In fact, many typical non-monotonic logics which are (skeptically) cumulative
don’t satisfy skeptical mon as defined in [18]. Take as an example the inevitable
consequence from [35]: Given a set of formulas Σ, A is an inevitable consequence of
Σ iff it follows from all maximal consistent subsets of Σ. The natural corresponding
notion to an “extension” is thus a maximal consistent subset. Take, for instance,
Σ = {p,¬p}. The maximal consistent subsets are E1 = {p} and E2 = {¬p}. Now,
clearly p∨¬p follows from E1. So consider Σ′ = Σ∪{p∨¬p}. The maximal consistent
subsets are E1∪{p∨¬p} and E2∪{p∨¬p}. However, Cn(E2∪{p∨¬p}) 6⊆ Cn(E1).

We can observe the same discrepancy for ABA frameworks. Take the well-
behaved framework ABF (without preferences) consisting of Ab = {p, q}, R = {p →
s, q → s} and where p = q and q = p. We have two preferred/stable extensions,
{p} and {q} and ABF |∼ sem

x s for x ∈ {r, d} and sem ∈ {pref, stab}. Moving to ABFs

we still have the same extensions. However, skeptical mon as defined in [18] is not
satisfied since, for instance, Cn({p}) 6⊆ Cn({q}). Recall that with Theorem 10, ABF
is cumulative.

Altogether, it seems the skeptical mon property is most sensible in the context
of single-extension semantics.

In sum, the properties studied in [18] don’t correspond to (skeptical) Cautious
Monotony and Cautious Cut as usually defined in nonmonotonic logic. To the best of
our knowledge, the current paper provides the first study of this type ABA-systems.

ABAr was the first approach to assumption-based argumentation where priorities
determine defeat relations [16]. In [23], additionally ABAd was introduced and
translations between ABAd and ABAr were presented. Although similar in spirit,
the present paper is more general in several respects: we investigate properties for
both ABAd and ABAr and in this way offer a systematic comparison between these
two frameworks. We have shown that for well-behaved frameworks ABAd and ABAr

give rise to the same stable and preferred extensions.
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Finally, we investigate properties for flat ABFs, ABFs closed under contraposition
and well-behaved ABFs, whereas [18] investigate nonmonotonic inference properties
for frameworks under so called weak contraposition, a variant of contraposition:27

Definition 18 (Weak Contraposition, [1, 18]). For all ∆ ∪ {A} ⊆ Ab, if ∆ `R A
and ∆ < A, then there is a B ∈ min(∆∩Ab) and a ∆′ ⊆ (∆ \ {B})∪{A} for which
∆′ `R B.

Many of the results shown in this paper for contrapositive ABFs do not hold for
weakly contrapositive ABFs. For instance, the correspondence between preferred
subtheories and d-stable, r-stable, d-preferred and r-preferred extensions for well-
behaved ABFs in Theorem 13 does not hold anymore for weakly well-behaved ABFs
(those that are weakly contrapositive and sane (Def. 11)). Similarly, for weakly
well-behaved ABFs it is not in general the case that r-pref(ABF) ⊆ d-pref(ABF) or
vice versa (in contrast to the bi-conditionals of Theorem 6). Both these claims are
demonstrated in the following example.

Example 34. Let ABF = (L,R, Ab, ,V,≤, υ) with Ab = {p, p′, p′′, r, r′, s} where
v(r′) = 1, v(s) = v(p) = v(p′) = v(p′′) = 2 and v(r) = 3. Furthermore, let

R =
{
p→ p′; p′ → p′′; p′′ → p; p, s→ r; p, s→ r′; r, p→ s

}
.

See Figure 17 for an illustration. Note that this ABF is weakly well-behaved.
{r, r′} is r-preferred in this ABF but not d-preferred. The only d-preferred extension
is {r}. Furthermore, note that {r, r′, p} ∈ MCS≺(ABF). Finally, observe that there
are no r-stable or d-stable extensions.

{p}

{p′} {p′′}

{r, p}

{s} {p, s}

{r}

{r′}

Figure 17: A fragment of the defeat diagram for Example 34. Full lines represent
d-defeats whereas dashed lines represent proper r-defeats.

Also, CM-Ab and CM do not hold for weakly well-behaved ABFs and for pre-
ferred and stable semantics, in contrast to Theorem 10 where CM (and thus CM-Ab)
is shown for well-behaved ABFs. We give a counter-example.

27We also notice that [18] don’t restrict their study to total preorders.
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Example 35. We give an example of a sane ABF closed under weak contraposition.
Let Ab = {s, p, q, x1, x2, x′1, x

′′
1, x
′
2, x
′′
2}, v(q) = 1, v(x1) = v(x′1) = v(x′′1) = v(x2) =

v(x′2) = v(x′′2) = v(s) = v(p) = 2, and R be
{
s, p; s, x1; s, x′1; s, x′′1; s, x2; s, x′2; s, x′′2; x1, x2, p; q, x1; q, x′1; q, x′′1; q, x2;

q, x′2; q, x′′2; x1 → x′1; x′1 → x′′1 x′′1 → x1; x2 → x′2 x′2 → x′′2; x′′2 → x2
}
.

See Figure 18 for an illustration. The only d-stable, r-stable, d-preferred, and
r-preferred extension is {s, q}. Thus, ABF |∼ sem

x q where sem ∈ {stab, pref} and
x ∈ {d, r}. Note that p cannot be defended from the attack by {x1, x2}, except by
s with which it is not conflict-free.

Now if we move to ABFq and add → q to R, also {p} is d-stable, r-stable, d-
preferred and r-preferred (in addition to {s}). The reason is that now ∅ `R∪{→q} x1
and ∅ `R∪{→q} x2 and {p} `R∪{→q} s. Thus, ABFq 6|∼ sem

x s.

{x1}

{x′1}

{x′′1}

{x2}

{x′2}

{x′′2}

{s} {q} {x1, x2}

{p}

∅

{x1}

{x′1}

{x′′1}

{x2}

{x′2}

{x′′2}

{s} {x1, x2}

{p}

Figure 18: A fragment of the defeat diagram for Example 35 (left side for ABF and
right side for ABFq). Full lines represent d-defeats whereas dashed lines represent
proper r-defeats.

Nevertheless, we can also report on some novel positive results for weak con-
traposition. For instance, the Fundamental Lemma holds for weakly contrapositive
ABFs and r-defeat generalizing Theorems 4 and 1. This is shown in Appendix E
(Lemma 10).28 Moreover, one can generalize Theorem 5 for weakly contrapositive

28To the best of our knowledge the Fundamental Lemma has only been shown for contrapositive
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ABFs (see Appendix F, Theorem 16) which, for instance, shows that the d-stable
and r-stable extensions of a weakly contrapositive ABFs coincide.

8 Discussion
The results of Section 6 shed further light on the connection between ABA and
other formalisms for defeasible reasoning. Previously works have compared ABA
to logic programming [12], as well as ASPIC, nonmonotonic logics with preferential
semantics [24], autoepistemic logic [9] and default logic [9].

We moreover note that the coincidence between x-preferred and x-stable seman-
tics (for any x ∈ {d, r}) shown in Theorem 6 is also interesting from a computational
point of view. It means that it is sufficient to establish membership of assumptions
in an admissible set of assumptions in order to show that an assumption is part
of a stable set of assumptions [19]. In general, the latter is harder to show, since
it is necessary to show for every assumption that it is either part of the stable set
of assumptions or defeated by the set of assumptions under consideration. On the
other hand, proof theories for preferred sets of assumptions do not need take into
account all sets of assumptions. In view of such computational considerations, [19]
showed that preferred subtheories (based on classical logic) coincide with stable and
preferred extensions in deductive argumentation based on classical logic. Theorem
6 can be seen as a generalization of this result since we allow for deductive argu-
mentation based on any well-behaved rule base, in addition to classical logic.

We do not believe that our results give conclusive evidence in favour of either
ABAd and ABAr especially since there seems to be a trade-off between consistency
and the satisfaction of the Fundamental Lemma (see Section 3). Furthermore, we
have shown that ABAd and ABAr coincide when restricting attention to well-behaved
ABFs (see Section 4). For such ABFs, when making use of the preferred or stable se-
mantics, it seems computationally more efficient to make use of ABAd, since adding
r-defeats does not change the consequences of the ABF under consideration. Further-
more, this class ABFs avoids the trade-off between consistency and the satisfaction
of the Fundamental Lemma.

With regards to properties for non-monotonic reasoning, we notice that two wide
classes of consequence relations are cumulative: |∼ d

grou for ABFs that are closed under
contraposition and |∼ x

sem for any x ∈ {d, r} and sem ∈ {stab, pref} for any ABF that
is well-behaved. Furthermore, when priorities over the assumptions are not taken
into account, any x-semantics is rational for well-behaved ABFs. Even though we

ABFs and r-defeat before in publication [18]. In the unpublished manuscript [17], however, one
finds a proof of the Fundamental Lemma for weakly contrapositive ABFs.
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believe these results offer valuable insights into both the behaviour of consequence
relations based on assumption-based argumentation and the relation between such
consequence relations and other formalisms for defeasible reasoning, we do not be-
lieve that these results offer conclusive reasons to say that one approach is “better”
or “worse” than the other. Indeed, even though the properties for cumulative in-
ference relations have been claimed to “constitute a basic set of principles that any
reasonable account of defaults must obey” [22], the generality of this claim has been
put into doubt by Alexander Bochman [6, 7, 8], who posits a distinction between
explanatory and preferential reasoning, where only for the latter cumulativity is fea-
sible. Furthermore, some of the properties considered in Section 5 are not outside
of controversy, such as rational monotony (cf. e.g. [37]). In sum, we submit that
the feasibility of the postulates for nonmonotonic reasoning depends on the precise
context of application. Once the feasibility of the postulates for nonmonotonic rea-
soning has been decided for a given application context, our result offer an indication
of which formalism is the most apt.

Mainly for reasons of space we have focused in this contribution on skeptical
consequence relations. Frequently, in the context of nonmonotonic logics also a
credulous notion of consequence is considered: A is credulously entailed by an ABF
(according to a semantics sem) iff it follows from at least one sem-extensions. We
nevertheless issue a word of warning. Our positive and negative results obtained for
skeptical consequence do in many cases not apply to credulous entailment.

The following Example 36 illustrates that in contradistinction to |∼ sem
x for x ∈

{d, r} and sem ∈ {stab, pref}, Cautious Monotony does not hold for credulous en-
tailments based on well-behaved ABFs:

Example 36. Let ABF = (L,R, Ab, ,V,≤, v) where:

Ab = {p, q} L = Ab ∪Ab V = {1} R =
{
p, q

}

υ(p) = υ(q) = 1

For any x ∈ {d, r}, ABF has two x-preferred extensions which are also x-stable: {p}
and {q}. Since q is contained in at least one extension, q is credulously derivable. If
we move to ABFq, ∅ `R∪{→q} p, which means that there is only one x-preferred (and
x-stable) set of assumptions: ∅.

{p} {q}
(a) Defeat Diagram for ABF

{p} ∅
(b) Defeat Diagram for ABFq

Figure 19: A fragment of the defeat diagram for Example 36.
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In view of such examples, we leave the investigation of the generalization of the
results in this paper to credulous consequence relations for future work. Further-
more, we plan to generalize our results to non-flat ABFs and preorders that are not
necessarily total in future work.
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Appendices
The order of appearance of results in these appendices does not necessarily mirror
the order of the statements of these results in the paper but is primarily based on
logical dependency.29

Appendix A On the Requirement of Relevance in R-
deductions

The reader may have noticed that in this paper we have based x-defeat (where
x ∈ {d, r}) on a notion of R-deduction that demands minimality in its support (see
Definition 6).30 In the literature often a monotonic deducability relation is used
as the basis for the definition of defeat (see e.g. [9, 16, 36]). In this appendix we
show that both approaches lead to the same result in terms of semantic selections
whence our results also apply to the presentation of ABA based on a monotonic
deducability relation (see Corollary 3 and Theorem 14 below). In order to show this

29Whenever results in the Appendix apply to d-defeat based frameworks, they also apply to
f-defeat based frameworks (since any d-based framework with the trivial ordering v(A) = v(A′) for
all A, A′ ∈ Ab gives rise to the same semantic selections as the corresponding f-based framework).
In such cases we sometimes omit the discussion of f-based frameworks for the sake of brevity.

30Minimality of support is also required in other prominent approaches to argumentation such
as [5].
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we first define x-defeat?:

Definition 19 (Attack?, defeat?, reverse defeat?). Given ∆ ∪ {A} ⊆ Ab,

• ∆ attacks? A iff A ∈ CnR(∆).

• ∆ attacks? Θ iff ∆ attacks? some A ∈ Θ.

• ∆ d-defeats? A iff some ∆′ ⊆ ∆ attacks? A for which ∆′ 6< A.

• ∆ d-defeats? Θ iff ∆ d-defeats? some A ∈ Θ.

• ∆ r-defeats? Θ iff ∆ d-defeats? Θ, or for some Θ′ ⊆ Θ and A ∈ ∆, Θ′ attacks?

A with Θ′ < A

We first show that the notions of f- and d-defeat are extensionally equivalent to
f- and d-defeat?.

Proposition 1. Where x ∈ {f, d} and ∆∪{A} ⊆ Ab, ∆ x-defeats A iff ∆ x-defeats?

A.

Proof. (⇒) Suppose ∆ f-defeats [resp. d-defeats] A. Thus, there is a ∆′ ⊆ ∆ for
which ∆′ `R A [and ∆′ 6< A]. Thus, A ∈ CnR(∆′) [and ∆′ 6< A] and hence ∆
f-defeats? [d-defeats?] A.

(⇐) Suppose ∆ f-defeats? [resp. d-defeats?] A. Thus, there is a ∆′ ⊆ ∆ for
which A ∈ CnR(∆′) [and ∆′ 6< A]. Hence, there is a ∆′′ ⊆ ∆′ for which ∆′′ `R A
[and ∆′′ 6< A (since v(B) ≤ v(C) for all B ∈ min(∆′) and all C ∈ min(∆′′))]. Thus,
∆′′ and so ∆ f-defeats [resp. d-defeats] A.

We can prove one direction also for r-defeat.

Proposition 2. Where ∆,Θ ⊆ Ab, if ∆ r-defeats Θ then ∆ r-defeats? Θ.

Proof. Suppose ∆ r-defeats Θ. If ∆ d-defeats Θ then by Proposition 1 it also d-
defeats? and thus also r-defeats? Θ. Else, there is a Θ′ ⊆ Θ and a B ∈ ∆ for which
Θ′ f-defeats B and Θ′ < B. By Proposition 1, Θ′ f-defeats? B. Thus, ∆ r-defeats?

Θ.

However, r-defeats and r-defeats∗ do not always coincide as the following exam-
ple shows.
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Example 37. Let Ab = {p, q, r}, L = Ab∪Ab, V = {1, 2}, υ(q) = 1, υ(p) = υ(r) =
2, and R = {p→ r}. Note that while r r-defeats? {p, q} since r ∈ CnR({p, q}) and
{p, q} < r, it is not the case that r r-defeats {p, q}. The reason is that {p, q} does
not attack r with31 {p, q} (since {p, q} 0R r in view of the nonmonotonicity of `R)
but rather with {p} where {p} 6< r.

Can we say more about cases where some ∆ r-defeats? Θ but it does not amount
to r-defeat? It is interesting to notice that such defeats always give rise to inverse
d-defeat. In fact, there will be a Θ′ ⊂ Θ that d-defeats ∆ and that is not r-defeated?

by ∆ (see Proposition 3 below). In view of this such r-defeats? are really redundant
since in the overall attack dynamics the right-hand side (e.g. Θ) ‘will win over’ the
left hand side (e.g. ∆) anyway (see Theorem 14 below).

Proposition 3. Where ∆,Θ ⊆ Ab, if ∆ r-defeats? Θ, then ∆ r-defeats Θ or

1. Θ d-defeats and so also r-defeats ∆, and

2. there is a Θ′ ⊂ Θ that d-defeats ∆ while ∆ does not r-defeat? Θ′.

Proof. Suppose ∆ r-defeats? Θ while it doesn’t r-defeat Θ. We show first item 1.
By Proposition 1, ∆ does not d-defeat? Θ since otherwise it also d-defeats and so
r-defeats Θ. Hence, there is a Θ′ ⊆ Θ and a B ∈ ∆ for which Θ′ f-defeats? B and
Θ′ < B. By Proposition 1, Θ′ f-defeats B. Note that Θ′ does not f-defeat B with
Θ′ since otherwise ∆ r-defeats Θ. Thus, there is a Θ′′ ⊂ Θ′ for which Θ′′ `R B.
Note that Θ′′ 6< B since otherwise ∆ r-defeats Θ. Thus, Θ d-defeats ∆ in B.

We now move to item 2. Having established item 1 we know there is a ⊆-minimal
Θ′ ⊆ Θ that d-defeats ∆. Assume for a contradiction that ∆ r-defeats? Θ′. In view
of Proposition 1, ∆ does not d-defeat? Θ′ since then ∆ r-defeats Θ. So, there is a
Θ′′ ⊆ Θ′ and a C ∈ ∆ for which Θ′′ f-defeats? C and Θ′′ < C. By Proposition 1,
Θ′′ f-defeats C. Hence, there is a Θ′′′ ⊆ Θ′′ for which Θ′′′ `R C. In view of the fact
that ∆ does not r-defeat Θ, Θ′′′ 6< C. Thus, since Θ′′ < C and Θ′′ ⊆ Θ′, Θ′′′ ⊂ Θ′.
Since Θ′′′ d-defeats ∆ this contradicts the ⊆-minimality of Θ′.

In order to show that x-defeat and x-defeat? give rise to the same semantic se-
lections we first define the semantics based on x-defeat?. This is perfectly analogous
to Definition 7.

Definition 20 (Argumentation semantics? [9]). Given some sets ∆,∆′ ⊆ Ab, we
define for each x ∈ {f, d, r}:

• ∆ is x-conflict-free? iff it does not x-defeat? itself.
31Recall the last item of Definition 6.
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• ∆ x-defends? ∆′ iff for any ∆′′ ⊆ Ab that x-defeats? ∆′, ∆ x-defeats? ∆′′.

• ∆ is x-admissible? iff ∆ is x-conflict-free? and ∆ x-defends? itself.

• ∆ is x-complete? iff ∆ is x-admissible? and ∆ contains every ∆′ ⊆ Ab it
x-defends?.

• ∆ is x-preferred? iff ∆ is ⊆-maximally x-admissible?.

• ∆ is x-grounded? iff ∆ is ⊆-minimally x-complete?.

• ∆ is x-stable? iff ∆ is x-conflict-free? and ∆ x-defeats? every A ∈ Ab \∆.

x-conflict-free?, x-naive?, x-admissible?, x-complete?, x-grounded?, x-preferred?

resp. x-stable? will be denoted by x-cf?, x-adm?, x-comp?, x-grou?, x-pref?, x-stab?.
For any semantics sem? ∈ {cf?, adm?, comp?, grou?, pref?, stab?}, x-sem?(ABF) is de-
fined as the sets of assumptions that are x-sem?, as defined above.

The following corollary is an immediate consequence of Proposition 1.

Corollary 3. Where sem ∈ {cf, adm, comp, grou, pref, stab} and x ∈ {f, d}, ∆ ∈ x-
sem?(ABF) iff ∆ ∈ x-sem(ABF).

With the help of Propositions 2 and 3 we now prove the same for r-based se-
mantics.

Theorem 14. Where sem ∈ {cf, adm, comp, grou, pref, stab}, ∆ ∈ r-sem?(ABF) iff
∆ ∈ r-sem(ABF).

Proof. [r-cf] Suppose ∆ ⊆ Ab and ∆′,∆′′ ⊆ ∆. If ∆′ r-defeats? ∆′′ then by Propo-
sition 3, ∆′ r-defeats ∆′′ or ∆′′ r-defeats ∆′. If ∆′ r-defeats ∆′′, by Proposition 2,
∆′ r-defeats? ∆′′.

[r-adm] Suppose ∆ ∈ r−adm?(ABF). By our previous item, ∆ ∈ r−cf(ABF).
Suppose now that Θ ⊆ Ab r-defeats ∆. By Proposition 2, it r-defeats? ∆. Thus, ∆
r-defeats? Θ. Assume for a contradiction that ∆ does not r-defeat Θ. By Proposi-
tion 3, there is a Θ′ ⊂ Θ that d-defeats ∆ while ∆ does not r-defeat? Θ′. Since by
Proposition 1, Θ′ also d-defeats? ∆ this is a contradiction to ∆ being r-admissible?.
So ∆ r-defeats Θ.

Suppose now that ∆ ∈ r−adm(ABF). By our previous item ∆ ∈ r−cf?(ABF).
Suppose Θ ⊆ Ab r-defeats? ∆. If Θ also r-defeats ∆ then ∆ r-defeats Θ and thus
by Proposition 2 ∆ r-defeats? Θ. Else, by Proposition 3, there is a Θ′ ⊂ Θ that
d-defeats (and thus also r-defeats) ∆ and ∆ does not r-defeat? Θ′. But then by
Proposition 2 ∆ also does not r-defeat Θ′ which contradicts ∆ being admissible.
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[r-comp] Suppose ∆ ∈ r−comp(ABF). By our previous item, ∆ ∈ r−adm?(ABF).
Suppose ∆ r-defends? Θ ⊆ Ab. Assume Λ ⊆ Ab r-defeats Θ. By Proposition 2, Λ
r-defeats? Θ. Hence, ∆ r-defeats? Λ. Assume for a contradiction that ∆ does not
r-defeats Λ. By Proposition 3 there is a Λ′ ⊂ Λ that r-defeats? ∆ and which is not
r-defeated? by ∆. This contradicts ∆ ∈ r−adm(ABF). Thus, ∆ r-defeats Λ. Hence,
Θ is defended by ∆ and so Θ ⊆ ∆.

Suppose now that ∆ ∈ r−comp?(ABF). By our previous item, ∆ ∈ r−adm(ABF).
Suppose ∆ r-defends Θ ⊆ Ab. Let C ∈ Θ be arbitrary. Suppose Λ ⊆ Ab r-
defeats? C. By Proposition 3, either Λ also r-defeats C or ∅ d-defeats ∆ and so by
Proposition 1 ∅ also d-defeats? ∆. The latter is impossible since ∆ ∈ r−adm?(ABF).
Hence, since Λ r-defeats C, ∆ r-defeats Λ and so by Proposition 2 it also r-defeats?

Λ. Hence, ∆ r-defends? C and so C ∈ ∆. Since C was arbitrary in Θ, Θ ⊆ ∆.
The claims for sem ∈ {grou, pref} follow with the previous item.
[r-stab] Suppose ∆ ∈ r−stab(ABF). By our first item, ∆ ∈ r−cf?(ABF). Let

A ∈ Ab \ ∆. Thus, ∆ r-defeats A. By Proposition 2 it also r-defeats? A. Thus,
∆ ∈ r−stab?(ABF).

Suppose now that ∆ ∈ r−stab?(ABF). By our first item, ∆ ∈ r−cf(ABF). Let
A ∈ Ab \ ∆. Thus, ∆ r-defeats? A. Assume for a contradiction that ∆ does
not r-defeat A. Then by Proposition 3, ∅ d-defeats? ∆ which contradicts that
∆ ∈ r−cf?(ABF). Thus, ∆ ∈ r−stab(ABF).

Appendix B Proofs for Section 2
Fact 1. Where x ∈ {f, d, r}, ∆′,Θ ⊆ Ab and ∆ ⊆ ∆′:

• if ∆ x-defeats Θ then ∆′ x-defeats Θ

• if Θ x-defeats ∆ then Θ x-defeats ∆′.

Proof. For the case where x ∈ {f, d} both claims hold trivially. For item 1 and
x = r, suppose that ∆ r-defeats Θ but it does not d-defeat Θ (since if Θ would
d-defeat Θ, this case would reduce to the case x = d). This means that there is
some Θ′ ⊆ Θ and an A ∈ ∆ such that Θ′ `R A and Θ′ < A. Since A ∈ ∆′, ∆′ also
r-defeats Θ. For item 2 and x = r suppose Θ x-defeats ∆ but does not d-defeat it.
Thus, there is an A ∈ Θ and a ∆′′ ⊆ ∆ such that ∆′′ `R A and ∆′′ < A. Since
∆′′ ⊆ ∆′, Θ also r-defeats ∆′.

Fact 2. If ∆ `R A then either A r-defeats ∆ or ∆ r-defeats A.

Proof. Suppose that ∆ `R A. If ∆ 6< A then ∆ r-defeats A. Otherwise A r-defeats
∆.
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Appendix C Proofs for Section 3

C.1 Proof of Theorem 1

Fact 14. Where A ∈ Ab, ∆ ⊆ Ab and ∆′ ⊂ ∆, if ∆ 6< A then ∆′ 6< A.

Proof. Suppose ∆ 6< A. Thus, there is no B ∈ min(∆) such that B < A. Thus,
there is no B ∈ min(∆′) such that B < A.

Fact 15. Where ∆ ⊆ Ab and A,B ∈ Ab, for all B ∈ min(∆) for which B < A and
for all Θ ⊆ (∆ \ {B}) ∪ {A}, Θ 6< B.

Proof. We show that (∆ \ {B}) ∪ {A} 6< B. The rest follows by Fact 14. Suppose
there is a B ∈ min(∆) for which B < A. Suppose first that ∆ \ {B} = ∅. Then
(∆ \ {B})∪{A} = {A} and since {A} 6< B also (∆ \ {B})∪{A} 6< B. Suppose now
that ∆ \ {B} 6= ∅. Let C ∈ min(∆ \ {B}). Then C 6< B. In view of the totality of
≤ we have two cases: C ≤ A or A < C. In the first case C ∈ min((∆ \ {B}) ∪ {A})
and thus (∆ \ {B}) ∪ {A} 6< B. In the second case A ∈ min((∆ \ {B}) ∪ {A}) and
thus (∆ \ {B}) ∪ {A} 6< B.

Fact 16. If ∆ < A then there is a B ∈ min(∆) such that Θ 6< B for all Θ ⊆
(∆ \ {B}) ∪ {A}.

Proof. Suppose ∆ < A. Thus, there is a B ∈ min(∆) for which B < A. The rest
follows with Fact 15.

Lemma 3. If ABF = (L,R, Ab, ,V,≤, υ) is closed under contraposition then:

∆ is d-conflict-free iff ∆ is f-conflict-free.

Proof. (⇐) This direction is trivial. (⇒) Suppose now for a contradiction that ∆ is
d-conflict-free in ABF yet there is are A ∈ ∆ and ∆′ ⊆ ∆ for which ∆′ `R A. Since ∆
is d-conflict-free, this means ∆′ < A. Take B ∈ min(∆′). By contraposition, there
is a ∆? ⊆ {A} ∪ (∆′ \ {B}) for which ∆? `R B. By Fact 15, ∆? 6< B. But then
∆?⊆ ∆ d-<-defeats B ∈ ∆, in contradiction with ∆ being d-conflict-free.

Theorem 1. Where ABF = (L,R, Ab, ,V,≤, υ) is closed under contraposition. For
any ∆ ⊆ Ab, if ∆ is d-conflict-free then there is no A ∈ ∆, for which A ∈ CnR(∆).

Proof. Follows directly from Lemma 3.
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C.2 Proof of Theorem 3

Theorem 3. For any ABF = (L,R, Ab, , V,≤, υ), if ∆ ∈ d-adm(ABF) d-defends
A ∈ Ab then ∆ ∪ {A} is d-admissible.

Proof. We first show that ∆ (and so in view of Fact 1 also ∆ ∪ {A}) d-defends
∆ ∪ {A}. Suppose that Θ d-defeats ∆ ∪ {A}. If the attack is in ∆, ∆ d-defeats
Θ since ∆ is d-admissible, while if the attack is in A, also ∆ d-defeats Θ since it
d-defends A.

Now we show that ∆ ∪ {A} is d-conflict-free. Assume for a contradiction that
some Θ ⊆ ∆ ∪ {A} d-defeats ∆ ∪ {A}. Thus, as shown in the first paragraph, ∆
d-defeats Θ in some C. Since C ∈ ∆∪{A} and ∆ d-defends ∆∪{A}, ∆ d-defeats ∆.
This is a contradiction to the d-conflict-freeness of ∆. Altogether, we have shown
that ∆ ∪ {A} is d-admissible.

C.3 Proof of Corollary 1
The following two facts follow immediately from Fact 1.

Fact 17. If ∆ r-defends Θ then ∆ r-defends Θ′ ⊆ Θ.

Fact 18. If ∆ r-defends B then ∆ ∪∆′ r-defends B.

Lemma 1. If ABF = (L,R, Ab, , V,≤, υ) satisfies the Fundamental Lemma, then
for all ∆,Θ ⊆ Ab, if ∆ is r-admissible and it r-defends Θ, then ∆∪Θ is r-admissible
as well.

Proof. Let Θ = {B1, . . . , Bn}. We show inductively that ∆i = ∆ ∪ {B1, . . . , Bi} ∈
r-adm(ABF). The base case follows from the Fundamental Lemma. Suppose now
that ∆i ∈ r-adm(ABF). Since ∆ r-defends Bi+1, also ∆i r-defends Bi+1 (by Facts 17
and 18). By the Fundamental Lemma, ∆i+1 ∈ r-adm(ABF).

C.3.1 Iteratively Constructing the Grounded Extension

As noted above, one of the assurances the Fundamental Lemma gives is the fact
that the grounded extension can be build up in an iterative way.

Definition 21. Given ABF = (L,R, Ab, , V,≤, υ) and x ∈ {d, r} we define:

• x-grou0(ABF) is the union of all sets Θ ⊆ Ab that are not x-defeated by any
∆ ⊆ Ab.

• x-groui+1(ABF) is the union of all sets x-defended by x-groui(ABF).
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Remark 7. Notice that in Definition 7, x-grou is defined as the set of all ⊆-
minimally x-complete sets of assumptions, i.e. it is a set of sets. If there is a unique
grounded extension, it is sensible to consider the set of assumptions ⋃ x-grou(ABF)
instead of the set containing a single set of assumptions x-grou(ABF).

Theorem 15. For any ABF = (L,R, Ab, , V,≤, υ),

1. if ABF is closed under contraposition and where x ∈ {d, r}, ⋃ x-grou(ABF) =⋃
i≥1 x-groui(ABF) = ⋂ comp(ABF) ∈ comp(ABF);

2. ⋃ d-grou(ABF) = ⋃
i≥1 d-groui(ABF) = ⋂ comp(ABF) ∈ comp(ABF).

Proof. Consider the sequence 〈Fn(∅)〉n≥1 = 〈x-groui(ABF)〉i≥0 where F (Θ) denotes
the set of all assumptions that are x-defended by Θ. I.e. F 1(∅) = x-grou0(ABF),
F 2(∅) = x-grou1(ABF), and so on. By the Fundamental Lemma (Theorem 3 and
Corollary 1) this is a ⊆-monotonic sequence of admissible subsets of Ab. As such
there is a fixed-point which is identical to ⋃i≥0 x-groui(ABF). (Note that the fixed-
point is reached after finitely many iterations since Ab is finite.) Notice that it
holds that ⋃i≥0 x-groui(ABF) ∈ comp(ABF) since it is admissible and contains all
assumptions it defends.

Let ∆ ∈ comp(ABF). We show that each x-groui(ABF) ⊆ ∆. For i = 0 this holds
since F (∅) is defended by ∅ and so by ∆ in view of Fact 1. Consider i+1. Then F i(∅)
defends every A ∈ F i+1(∅) \ F i(∅) and since by the inductive hypothesis F i(∅) ⊆ ∆
also ∆ defends every such A in view of Fact 1. Thus, F i+1(∅) ⊆ ∆.

Hence since ⋃i≥0 x-groui(ABF) ∈ comp(ABF) and ⋃i≥0 x-groui(ABF) ⊆ ∆ for every
∆ ∈ comp(ABF), ⋃i≥0 x-groui(ABF) = ⋂ comp(ABF).

Appendix D Proofs for Section 6
In the following we suppose that ABF = (L,R, Ab, ,V,≤, υ) is well-behaved (Defi-
nition 12), that V is a finite initial sequence of N, ≤ the canonical order on N and
x ∈ {d, r}.

For readability we recall Definition 17:

Definition 17. Where ABF = (L,R, Ab, ,V,≤, υ),

• IS(ABF) is the set of all ∆ ⊆ Ab such that ∆ \ {A} `R A for some A ∈ ∆;

• CS(ABF) is the set of all ∆ ⊆ Ab such that for no Θ ∈ IS(ABF), Θ ⊆ ∆;

• MCS(ABF) is the set of all ∆ ∈ CS(ABF) that are ⊆-maximal;
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• Where ∆ ⊆ Ab and i ∈ N, πi(∆) = {A ∈ ∆ | υ(A) = i};

• ≺ ⊆ ℘(Ab) × ℘(Ab) is defined as: ∆ ≺ Θ iff there is an i ≥ 1 such that
πj(∆) = πj(Θ) for every j > i and πi(∆) ⊂ πi(Θ);

• MCS≺(ABF) = max≺(MCS(ABF)).

In the following we use ∆ � Θ to denote that ∆ ≺ Θ or ∆ = Θ.
The proof of the following fact is straight-forward and similar to the proof of

Fact 24 below.

Fact 19. ≺ is transitive.

Fact 20. Where ∆,Θ ∈ CS(ABF) and ∆ ⊂ Θ, ∆ ≺ Θ.

Proof. Suppose ∆ ⊂ Θ. Since Ab is finite there is an l ∈ N for which πl(Θ) ⊃ πl(∆)
and πk(Θ) = πk(∆) for all k > l.

Lemma 4. Where ∆ ∈ CS(ABF) there is a Θ ∈ MCS(ABF) such that ∆ ⊆ Θ.

Proof. This follows immediately in view of the finiteness of Ab. One can construct
the maximal consistent superset of ∆ via the usual Lindenbaum construction which
we now illustrate. Let A1, A2, . . . be an enumeration of Ab. We construct Θ =⋃

i≥1 ∆i as follows:

• ∆0 = ∆

• ∆i+1 =
{

∆i ∪ {Ai+1} if ∆i ∪ {Ai+1} ∈ CS(ABF)
∆i else

By the construction, for each i, ∆i ∈ CS(ABF). Suppose Θ 6∈ CS(ABF). Thus, there
is a Θ′ ⊆ Θ for which Θ′ ∈ IS(ABF). Thus, there is a minimal j for which Θ′ ⊆ ∆j .
Thus, ∆j /∈ CS(ABF) which is a contradiction.

Fact 21. Where Θ ∈ MCS(ABF) there is a ∆ ∈ MCS≺(ABF) such that ∆ = Θ or
Θ ≺ ∆.

Proof. This follows immediately with the finiteness of Ab.

Fact 22. Where x ∈ {d, x}, if ∆ ∈ IS(ABF) then ∆ 6⊆ Θ for all x-conflict-free
Θ ⊆ Ab.
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Proof. Suppose Θ is x-conflict-free and ∆ ∈ IS(ABF). Assume for a contradiction
that ∆ ⊆ Θ. Thus, there is an A ∈ ∆ for which ∆ \ {A} `R A. We have two cases:
(a) ∆ \ {A} < A or (b) ∆ \ {A} 6< A. In case (b), ∆ d-defeats A which contradicts
the x-conflict-freeness of Θ. Suppose case (a). If x = r, A r-defeats ∆ \ {A} which
contradicts the r-conflict-freeness of ∆. Otherwise (i.e. x = d), by contraposition,
for an arbitrary B ∈ min(∆) there is a ∆′ ⊆ ∆ \ {B} such that ∆′ `R B. Moreover,
by Fact 15, ∆′ 6< B and thus ∆′ d-defeats B which contradicts the d-conflict-freeness
of ∆.

Fact 23. Where x ∈ {d, x}, if Θ ⊆ Ab is not x-conflict-free, there is a ∆ ∈ IS(ABF)
for which ∆ ⊆ Θ.

Proof. Suppose Θ is not x-conflict-free. Thus, there is a ⊆-minimal Θ′ ⊆ Θ and an
A ∈ Θ for which Θ′ `R A. Since ABF is sane, A 6∈ Θ′ and consequently (Θ′ ∪ {A}) \
{A} `R A, i.e. , Θ′ ∪ {A} ∈ IS(ABF).

Lemma 5. d-stab(ABF) ⊆ MCS≺(ABF).

Proof. Suppose ∆ ∈ d-stab(ABF). By Fact 22, there is no Θ ∈ IS(ABF) such that
Θ ⊆ ∆. Thus ∆ ∈ CS(ABF).

By Lemma 4 there is a Θ ∈ MCS(ABF) for which ∆ ⊆ Θ. Assume ∆ ⊂ Θ and thus
there is a B ∈ Θ\∆. Since ∆ is stable, ∆ d-defeats B. By sanity, ∆′∪{B} ∈ IS(ABF)
for some ∆′ ⊆ ∆ which contradicts Θ ∈ CS(ABF). Thus, ∆ ∈ MCS(ABF).

Now suppose there is a Θ ∈ MCS≺(ABF) for which ∆ ≺ Θ. Thus, there is an i ≥ 1
such that for all j > i, πj(Θ) = πj(∆) and πi(Θ) ⊃ πi(∆). Let B ∈ πi(Θ) \ πi(∆).
Since ∆ is d-stable, ∆ d-defeats B. Thus, there is a ∆′ ⊆ ∆ such that ∆′ `R B,
∆′ 6< B and, by sanity there is a ∆′′ ⊆ ∆′ \ {B} for which ∆′′ `R B and hence
∆′′ ∪ {B} ∈ IS(ABF). By Fact 14, ∆′′ 6< B. Hence, for all C ∈ ∆′′, C ≥ B. Thus,
∆′′ ⊆ Θ. We reached a contradiction to Θ ∈ CS(ABF).

Lemma 6. Where x ∈ {d, x}, MCS≺(ABF) ⊆ x-stab(ABF).

Proof. Suppose ∆ ∈ MCS≺(ABF) and x ∈ {d, r}.
Conflict-freeness. Suppose ∆ is not x-conflict-free. By Fact 23 there is a ∆′ ⊆ ∆

for which ∆′ ∈ IS(ABF) in contradiction to ∆ ∈ CS(ABF).
Stability. Assume for a contradiction that there is an A ∈ Ab \ ∆ such that

∆ does not x-defeat A. We know that ∆ ∪ {A} 6∈ CS(ABF) is not consistent since
otherwise ∆ /∈ MCS(ABF).

Let ∆1,∆2, . . . be a list of all subsets of ∆ for which ∆i∪{A} ∈ IS(ABF). Since ∆
does not x-defeat A, for all these ∆i, min(∆i) < A. To see this note that for each i,
∆i /∈ IS(ABF) and hence there is Bi ∈ ∆i∪{A} for which (∆i∪{A})\{Bi} ` Bi. By
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contraposition, there is a ∆′i ⊆ ∆i for which ∆′i `R A. Since ∆i does not x-defeat
A, ∆′i < A and so ∆i < A by Fact 14.

Let Λ be a set that contains at least one member Bi of each min(∆i). Let
Θ = (∆ \ Λ) ∪ {A}. Then ∆ ≺ Θ. To see this, notice that v(B) < v(A) for
every B ∈ Λ and thus (†) πi(∆) = πi(Θ) for every i > v(A). Since furthermore
πv(A)(Θ) = πv(A)(∆) ∪ {A} and A 6∈ ∆, we see that πv(A)(Θ) ⊃ πv(A)(∆).

We now assume for a contradiction that Θ /∈ CS(ABF). Thus, there is a Ω ⊆ Θ
such that Ω ∈ IS(ABF). Since ∆ ∈ CS(ABF), Ω 6⊆ ∆ and hence A ∈ Ω. So, Ω \ {A} =
∆i for some i. But this is impossible since Bi /∈ Θ. Thus, Θ ∈ CS(ABF).

By Lemma 4, there is a Θ′ ⊇ Θ such that Θ′ ∈ MCS(ABF). Since, by Facts 19
and 20, ∆ ≺ Θ′, we have reached a contradiction to our main assumption. Thus,
∆ ∈ x-stab(ABF).

Lemma 7. d-stab(ABF) = r-stab(ABF).

Proof. Suppose first that ∆ ∈ d-stab(ABF). By Lemma 5, ∆ ∈ MCS≺(ABF). By
Lemma 6, this means that ∆ ∈ r-stab(ABF).

Suppose now that ∆ ∈ r-stab(ABF). Assume that A ∈ Ab \∆. We know that ∆
r-defeats A. Thus, either ∆ d-defeats A or there is a B ∈ ∆ for which A `R B and
A < B. In the latter case, by contraposition, {B} `R A or ∅ `R A and consequently,
∆ d-defeats A. Thus, ∆ ∈ d-stab(ABF).

In the next proof we will use the following order @ ⊆ ℘(Ab)× ℘(Ab):

Definition 22. ∆ @ Θ iff there is an i ≥ 1 such that πi(∆) ⊂ πi(Θ) and for all
1 ≤ j < i, πj(∆) = πj(Θ).

Fact 24. (i) @ is transitive, (ii) @ is ⊂-monotonic.

Proof. Ad (i). Suppose ∆1 @ ∆2 and ∆2 @ ∆3. Thus,

1. there is an i1 for which (i) πi1(∆1) ⊂ πi1(∆2) and (ii) for all 1 ≤ j < i1,
πj(∆1) = πj(∆2),

2. there is an i2 for which (i) πi2(∆2) ⊂ πi2(∆3) and (ii) for all 1 ≤ j < i2,
πj(∆2) = πj(∆3).

We distinguish two cases: (a) i1 < i2 and (b) i1 ≥ i2.
Ad (a). In view of 1.i and 2.ii, πi1(∆1) ⊂ πi1(∆2) = πi1(∆3) and in view of 1.ii

and 2.ii, for all 1 ≤ j < i1, πi1(∆1) = πi1(∆2) = πi1(∆3). Hence, ∆1 @ ∆3.
Ad (b). In view of 1 and 2.i, πi2(∆1) ⊆ πi2(∆2) ⊂ πi2(∆3) and, in view of 1.ii

and 2.ii, for all 1 ≤ j < i2, πi2(∆1) = πi2(∆2) = πi3(∆3). Hence, ∆1 @ ∆3.
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Fact 25. If ∆ ⊆ Ab and M ∈ min(∆), C ∈ Ab, C > M , and ∆′ ⊆ (∆\{M})∪{C},
then ∆′ @ ∆.

Proof. Where i = v(M), since M < C and ∆′ ⊆ (∆ \ {M})∪{C}, we have πi(∆) ⊆
πi((∆ \ {M}) ∪ {C}) ⊂ πi(∆) and for all 1 ≤ j < i, πj(∆′) ⊆ πj(∆). Clearly, then
∆′ @ ∆.

Lemma 8. x-pref(ABF) ⊆ MCS≺(ABF)

Proof. Suppose ∆ ∈ x-pref(ABF). If ∆ /∈ CS(ABF) then there is a Θ ∈ IS(ABF) for
which Θ ⊆ ∆ and hence by Fact 22, ∆ /∈ x-adm(ABF) which is a contradiction. Thus,
∆ ∈ CS(ABF). By Lemma 4, there is a Θ′ ∈ MCS(ABF) for which ∆ ⊆ Θ′.

By Fact 20, ∆ � Θ′. Since Ab is finite, there is a Θ ∈ MCS≺(ABF) such that
Θ′ � Θ. Assume for a contradiction that ∆ ≺ Θ. Thus, there is an i ≥ 0 for which
πi(∆) ⊂ πi(Θ) and πj(∆) = πj(Θ) for all j > i. Since ∆ is x-preferred, ∆∪ πi(Θ) is
not x-admissible. We now show that in fact Ω = ∆ ∪ πi(Θ) is x-admissible which is
a contradiction and thus our assumption is false. Thus, ∆ 6≺ Θ which implies that
∆ = Θ ∈ MCS≺(ABF).

We first show that Ω is x-conflict-free. Assume the opposite. Then there are
∆′ ⊆ Ω and C ∈ Ω for which ∆′ `R C. (†) Without loss of generality we assume
that ∆′ is @-minimal with this property, i.e., we let ∆′ and C be such that there
are no ∆′′ ⊆ Ω and C ′ ∈ Ω for which ∆′′ `R C ′ and ∆′′ @ ∆′. We have two cases:
(1) ∆′ ≥ C or (2) ∆′ < C.

Suppose (2) and let M ∈ min(∆′). By contraposition, there is a ∆′′ ⊆ (∆′ \
{M})∪ {C} for which ∆′′ `R M . By Fact 25, ∆′′ @ ∆′ which contradicts (†).

Suppose (1). We distinguish two cases: (a) C /∈ ∆ and (b) C ∈ ∆.

In case (a), C ∈ πi(Θ) \∆ and since ∆′ ≥ C, ∆′ ⊆ ⋃j≥i πj(∆) ∪ πi(Θ) =⋃
j≥i πj(Θ) ⊆ Θ. But since then ∆′ ⊆ Θ d-defeats C ∈ Θ this contradicts

the x-conflict-freeness of Θ (note that by Fact 23 Θ is x-conflict-free since
Θ ∈ CS(ABF)).
Suppose (b). Since ∆ is x-admissible and ∆′ d-defeats C∈ ∆, ∆ x-defeats
∆′. We have two cases: (i) ∆ d-defeats ∆′ and (ii) not (i) and ∆ r-defeats
∆′.

Suppose (i). Thus, since ∆ is x-conflict-free, there are Λ ⊆ ∆ and a
E ∈ ∆′ \∆ for which Λ `R E and Λ ≥ E. Thus, E ∈ πi(Θ) \∆ and
since Λ ≥ E, Λ ⊆ ⋃j≥i πj(∆)∪ πi(Θ) = ⋃

j≥i πj(Θ) ⊆ Θ. Again, this
contradicts the x-conflict-freeness of Θ.
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Suppose (ii). Thus, there is a T ∈ ∆ and a ∆′′ ⊆ ∆′ for which
∆′′ `R T and ∆′′ < T . Let M ∈ min(∆′′). By contraposition, there
is a ∆? ⊆ (∆′′ \ {M}) ∪ {T} for which ∆? `R M . Since by Fact 25,
∆? @ ∆′, this is a contradiction to (†).

Altogether this shows that Ω is x-conflict-free.
In order to show that Ω is x-admissible, it remains to be shown that Θ defends

itself against all attacks. We assume for a contradiction Λ x-defeats Ω and (?) Ω
does not x-defeat Λ. Since ∆ is x-admissible, we have two cases:

1. Λ d-defeats some C ∈ πi(Θ) \∆, or

2. some C ∈ Λ r-defeats some ∆′ ⊆ Ω where ∆′ \ ∆ 6= ∅ and so ∆′ `R C and
∆′ < C.

In the remainder we show that both cases lead to a contradiction.

Suppose case 1. Then, Λ ≥ C. Since by Lemma 6, Θ is x-admissible, Θ x-
defeats Λ. Suppose first that Θ d-defeats Λ in some L ∈ Λ. Thus, there is
a Θ′ ⊆ Θ for which Θ′ `R L and Θ′ ≥ L. Note that v(L) ≥ i as Λ ≥ C
and v(C) = i. So Θ′ ⊆ Ω and hence Ω d-defeats Λ – a contradiction to (?).
Suppose now that some T ∈ Θ r-defeats Λ′ ⊆ Λ. So Λ′ `R T and Λ′ < T .
Thus, v(T ) > i and so T ∈ Ω. So Ω r-defeats Λ – again a contradiction to (?).

Suppose case 2. Without loss of generality, we suppose that ∆′ is @-minimal in
Ω with the property of being r-defeated by C. Let M ∈ min(∆′). So M < C.
We distinguish two cases: (a) v(M) ≥ i and (b) v(M) < i.

Case a. If v(M) ≥ i, ∆′ ⊆ ⋃j≥i πj(∆)∪ πi(Θ) ⊆ Θ∩Ω. Since by Lemma
6, Θ is x-admissible, Θ x-defeats C. So, there is a Θ′ ⊆ Θ for which
Θ′ `R C and Θ′ 6< C. Since v(C) > i, Θ′ ⊆ Ω and so Ω defends itself
against the attack by Λ which is a contradiction to (?).
Case b. Suppose now that v(M) < i and so M ∈ ∆. Since ∆′ `R C, by
contraposition there is a ∆? ⊆ (∆′ \{M})∪{C} for which ∆? `R M . By
Fact 25, ∆? @ ∆′. Also, since ∆? 6< M , ∆? x-defeats ∆ in M . Thus, ∆
x-defeats ∆?.

Suppose first that ∆ d-defeats ∆?. Thus, there is a ∆† ⊆ ∆ for which
∆† `R D for some D ∈ ∆? and ∆† ≥ D. By the conflict-freeness of
Ω, D = C. This is a contradiction to (?).
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Suppose now that ∆ r-defeats ∆?. Thus, there is a D ∈ ∆ and a
∆† ⊆ ∆? for which ∆† `R D and ∆† < D. Again, by the conflict-
freeness of Ω, C ∈ ∆†. So, M < D. By contraposition, there is a
∆‡ ⊆ (∆† \ {C}) ∪ {D} for which ∆‡ `R C. Since ∆‡ ⊆ Ω and Ω
does not defeat C, ∆‡ < C and so ∆‡ is r-defeated by C. Note that
by the @-minimality of ∆′ it cannot be the case that ∆† @ ∆′. We
will contradict this this now to conclude the proof. Since ∆† ⊆ ∆? ⊆
(∆′\{M})∪{C}, ∆†\{C} ⊆ ∆′\{M}. Since ∆‡ ⊆ (∆†\{C})∪{D},
∆‡ ⊆ (∆′\{M})∪{D}. Since D > M andM ∈ min(∆′), by Fact 25,
∆‡ @ ∆′. But this is a contradiction to the @-minimality of ∆′.

Altogether this shows that Ω is x-admissible which completes our proof by re-
ductio.

Lemma 9. x-pref(ABF) = MCS≺(ABF)

Proof. In Lemma 8 we have shown that x-pref(ABF) ⊆ MCS≺(ABF).
We now show that x-pref(ABF) ⊇ MCS≺(ABF). Suppose that ∆ ∈ MCS≺(ABF).

By Lemma 6, ∆ ∈ x-stab(ABF) and hence ∆ ∈ x-pref(ABF).

Theorem 13. For any well-behaved ABF we have:

MCS≺(ABF) = r-pref(ABF) = d-pref(ABF) = r-stab(ABF) = d-stab(ABF)

Proof. This follows by Lemma 5, 6, 7 and Lemma 9.

Appendix E The Fundamental Lemma for Weak Con-
traposition

We will again use the relation @ from Definition 22 in the following proofs. Recall
also Definition 18 of Weak Contraposition.

Lemma 10 (Fundamental Lemma for Weak Contraposition and r-defeat). If ABF
is weakly contrapositive, ∆ is r-admissible and r-defends A ∈ Ab, then ∆ ∪ {A} is
r-admissible.

Proof. We show that if the r-admissible ∆ r-defends A ∈ Ab\∆ then ∆′ = ∆∪{A}
is r-admissible. We proceed in two steps, first showing that ∆′ is r-conflict-free and
then that ∆′ r-defends itself.

Conflict-freeness. Suppose ∆′ is not r-conflict-free. Thus, there are Λ ⊆ ∆′ and
B ∈ ∆′ such that either (a) Λ d-defeats B or (b) B r-defeats Λ.
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We first note that (?), ∆ does not d-defeat A since otherwise ∆ also defeats ∆
to defend A. This, however, contradicts the r-conflict-freeness of ∆.

Suppose now (b) and so Λ ` B where Λ < B. By weak contraposition, there
is a D ∈ min(Λ) and a Λ′′ ⊆ (Λ \ {D}) ∪ {B} for which Λ′′ ` D. Since in view of
Fact 15 Λ′′ 6< D, Λ′′ d-defeats D and we are in case (a). We will show that case
(a) is impossible which in turn shows that both (a) and (b) are impossible and thus
implies that ∆′ is r-conflict-free.

So, suppose (a) and thus Λ ` B where Λ ≥ B. We know that Λ∪{B} 6⊆ ∆ since
∆ is r-conflict-free.

• Suppose B = A. Then some Ω ⊆ ∆ r-defeats Λ since ∆ r-defends A.

• Suppose B 6= A. Then B ∈ ∆ and hence some Ω ⊆ ∆ r-defeats Λ since ∆ is
r-admissible.

In sum, so far we have shown (†) that whenever (a) or (b) for some Λ∪{B} ⊆ ∆′,
there is a Ω ⊆ ∆ that r-defeats Λ. Also, A ∈ Λ by the r-conflict-freeness of ∆. So,
suppose Ω r-defeats Λ. We now distinguish the two types of defeat.

• (??) Assume first for a contradiction that Ω d-defeats Λ. Then there is a L ∈ Λ
for which Ω ` L and Ω ≥ L. By the r-conflict-freeness of Λ, L = A. By (?)
this is impossible.

• So, Ω r-defeats Λ which means that there is a O ∈ Ω and a Λ′ ⊆ Λ for which
Λ′ ` O and Λ′ < O. Since O ∈ Âť∆ and by the conflict-freeness of ∆, A ∈ Λ′.
Without loss of generality we now assume that Λ′ is @-minimal with the prop-
erty of being a subset of ∆′ that is r-defeated by ∆. (Since Ab is finite such a
set exists.)
By weak contraposition, there is an L′ ∈ min(Λ′) and a Λ′′ ⊆ (Λ′ \{L′})∪{O}
for which Λ′′ ` L′. So L′ is d-defeated by Λ′′. This is case (a).
Thus, by (†) there is a Ω′ ⊆ ∆ that r-defeats Λ′′. As shown in (??), we are
not dealing with a d-defeat.
Since by Fact 25, Λ′′ @ Λ′, we have a contradiction with the @-minimality of
Λ′.

This completes our proof by reductio showing that ∆′ is r-conflict-free.
Admissibility. Suppose now some Θ ⊆ Ab r-defeats ∆′. Consider first the case of

a d-defeat. Thus there is a B ∈ ∆′ and Θ ` B while Θ ≥ B. Since ∆ is r-admissible
and it r-defends A, ∆ r-defeats Θ.
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Consider now that the attack is a proper r-defeat and thus there is a T ∈ Θ
and a Λ ⊆ ∆′ for which Λ ` T and Λ < T . By weak contradiction there is an
L ∈ min(Λ) and a Λ′ ⊆ (Λ \ {L}) ∪ {T} for which Λ′ ` L. Thus, Λ′ d-defeats L.
Hence, ∆′ r-defeats Λ′.

If it d-defeats Λ′, it d-defeats T by the r-conflict-freeness of ∆′. So consider the
case where it r-defeats Λ′.

So, we know that there is a Λ′ ⊆ ∆′∪{T} that is r-defeated by ∆′. Without loss
of generality we suppose that Λ′ is a @-minimal subset of ∆′∪{T} that is r-defeated
by ∆′. (Again, since Ab is finite such a set exists.) We again show that ∆′ d-defeats
T .

Note that there is a K ∈ ∆′ such that Λ′ ` K and Λ′ < K. By weak contrapo-
sition there is a L′ ∈ min(Λ′) and a Λ′′ ⊆ (Λ′ \ {L′}) ∪ {K} for which Λ′′ ` L′. By
Fact 15, Λ′′ 6< L′.

• If L′ = T , ∆′ d-defeats Θ in T via Λ′′.

• Else, L′ ∈ ∆′ and hence ∆′ r-defeats Λ′′. If it is a d-defeat then the defeat
is in T (due to the r-conflict-freeness of ∆′). Else, by Fact 25, we have a
contradiction to the @-minimality of Λ′ since Λ′′ @ Λ′.

Altogether we have shown that ∆′ d-defeats Θ.

The next corollary follows in view of Lemma 10 and Lemma 1.

Corollary 4. For any ABF = (L,R, Ab, , V,≤, υ) that is closed under weak
contraposition, if ∆ ∈ r-adm(ABF) r-defends Θ ⊆ Ab then ∆ ∪Θ is r-admissible.

Appendix F Proofs for Section 4
F.1 Proof of Theorem 5
Theorem 16. Let ABF = (L,R, Ab, ,V,≤, υ) be closed under weak contraposition.
Then,

(1) every d-conflict-free set is r-conflict-free and vice versa;

(2) every d-stable set is r-stable and vice versa;

(3) every d-admissible set is an r-admissible set;

(4) every d-complete set is a subset of an r-complete set.
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Proof. Ad 1. Suppose that ∆ is not r-conflict-free. Then there are ∆′ ⊆ ∆ and
A ∈ ∆ for which ∆′ `R A and (a) ∆′ < A or (b) ∆′ ≥ A. Suppose (a). By
weak contraposition there are B ∈ min(∆′) and ∆′′ ⊆ (∆′ \ {B}) ∪ {A} such that
∆′′ `R B. By Fact 15, ∆′′ 6< B and so ∆′′ ⊆ ∆ d-defeats B ∈ ∆. Also in case (b),
∆′ ⊆ ∆ d-defeats ∆. So, ∆ is not d-conflict-free.

Suppose ∆ is r-conflict-free. Therefore ∆ does not r-defeat any ∆′ ⊆ ∆. Thus,
∆ does not d-defeat any A ∈ ∆ and so ∆ is d-conflict-free.

Ad 2. Suppose first that ∆ is a d-stable set, i.e. ∆ d-defeats every A ∈ Ab \∆.
Then clearly also ∆ r-defeats every A ∈ Ab \∆. Also, by Item 1 ∆ is r-conflict-free
since it is d-conflict-free. Thus, ∆ is r-stable.

Suppose now that ∆ is an r-stable set and suppose for a contradiction that ∆ is
not d-stable. By Item 1, ∆ is d-conflict-free. Consequently there is an A ∈ Ab \∆
such that ∆ r-defeats A but does not d-defeat A. I.e., {A} `R C for some C ∈ ∆
such that C > A. By weak contraposition, {C} `R A or ∅ `R A. But then ∆ does
d-defeat A which is a contradiction.

Ad 3. Suppose first that ∆′ ⊆ Ab is d-admissible and suppose that some Θ ⊆ Ab
r-defeats ∆′. If Θ also d-defeats ∆′, ∆′ d-defeats Θ since it is d-admissible. This
implies that ∆′ also r-defeats Θ. Suppose now that there is a ∆ ⊆ ∆′ such that
∆ `R A and ∆ < A for some A ∈ Θ. By weak contraposition there is a B ∈ min(∆)
and a Λ ⊆ (∆\{B})∪{A} for which Λ `R B. Note that by Fact 15 Λ 6< B and so Λ
d-defeats B. Since ∆′ is d-admissible, ∆′ d-defeats Λ. Since d-admissibility implies
d-conflict-freeness, ∆′ defeats Λ in A. Consequently, ∆′ also r-defeats Θ.

Ad 4. Suppose that ∆ is d-complete. By (3), ∆ is r-admissible. For any Θ ⊆ Ab,
let F (Θ) ⊆ Ab be the set of all assumptions r-defended by Θ. Consider the sequence
〈Fn(∆)〉0≤n where F 0(∆) = ∆. By Corollary 4, this is a ⊆-monotonic sequence of
admissible subsets of Ab. Since Ab is finite there is fixed point Fn(∆) ⊇ ∆ which is
r-complete.

Theorem 5 is a direct consequence of Theorem 16.

Appendix G Proofs for Section 5

Definition 23. Where ABF = (L,R, Ab, ,V,≤, υ) ∆ ⊆ Ab and B ∈ L, let ∆−B =
∆+B = ∆ if B /∈ Ab, and ∆−B = ∆ \ {B} and ∆+B = ∆ ∪ {B} else.

Notice in particular that this means that Ab−B = Ab \ {B}.
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G.1 Proof of Facts 8 and 13
Fact 8. Where sem ∈ {grou, pref, stab}, x ∈ {r, d} and every ∆ ∈ x-sem(ABF) is
f-consistent, if ABF satisfies RM (relative to |∼ sem

x ) then it satisfies CM-Ab (relative
to |∼ sem

x ).

Proof. Where B ∈ Ab and A ∈ L, suppose that ABF satisfies RM. Suppose now that
ABF |∼ sem

x A and ABF |∼ sem
x B. This means that for every x-sem-extension ∆, ∆ `R A

and ∆ `R B. Since, by the f-consistency of ∆, ∆ 6`R B and so ABF 6|∼ sem
x B. By

RM, ABFB |∼ sem
x A.

Fact 13. Where ABF = (L,R, Ab, ,≤, v) is closed under contraposition [resp. sane,
resp. well-behaved], then also ABFB = (L,R∪{→ B}, Ab−B, ,≤, v) is closed under
contraposition [resp. sane, resp. well-behaved].

Proof. Suppose ABF is closed under contraposition. Suppose ∆ `R∪{→B} C where
∆ ⊆ L, A,C ∈ Ab and A ∈ ∆. Then either (a) ∆ `R C or (b) ∆ ∪ {B} `R C. In
the former case there is a Θ ⊆ {C}∪ (∆ \ {A}) for which Θ `R A and in the second
case there is a Θ′ ⊆ {C} ∪ ((∆ ∪ {B}) \ {A}) for which Θ′ `R A since ABF is closed
under contraposition. Thus, in any case there is a Λ ⊆ {C} ∪ (∆ \ {A}) for which
Λ `R∪{→B} A. Thus, ABFB is closed under contraposition.

Suppose ABF is sane. Where ∆ ⊆ L and A ∈ Ab assume that ∆ `R∪{→B} A.
Thus, ∆ ∪ {B} `R A. By the sanity of ABF, (∆ ∪ {B}) \ {A} `R A and hence
∆ \ {A} `R∪{→B} A. Thus, ABFB is sane.

Suppose ABF is well-behaved. Thus, it is sane and closed under contraposition.
By the previous two cases, also ABFB is sane and closed under contraposition. Thus,
ABFB is well-behaved.

G.2 Proof of Theorem 7
Fact 26. If ∆′ `R A and ∆′ ∪ {A} ⊆ ∆ then ∆ is not r-conflict-free.

Proof. We have two cases: (1) ∆′ < A and (2) ∆′ 6< A. In the first case A r-defeats
∆′. In the second case ∆′ r-defeats A. Thus, ∆ is not r-conflict-free.

In the remainder of this subsection we assume that ABF = (L,R, Ab, ,V,≤ , υ)
is closed under contraposition and we let ABFB = (L,R∪{→ B}, Ab−B, ,V,≤, υ).

Fact 27. If ∆ x-defeats A ∈ Ab−B in ABF then also ∆−B x-defeats A in ABFB.
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Proof. Suppose ∆ d-defeats A ∈ Ab−B in ABF. Thus, ∆ `R A and ∆ 6< A. Thus,
there is a ∆′ ⊆ ∆−B for which ∆′ `R∪{→B} A. By Fact 14, ∆′ 6< A and hence ∆−B

d-defeats A in ABFB.
Suppose now ∆ r-defeats A ∈ Ab−B in ABF but does not d-defeat it. Thus, there

is a C ∈ ∆ for which A `R C and A < C. If C 6= B then also A `R∪{→B} C and
thus also ∆ r-defeats A in ABFB. Now suppose B = C. By contraposition, B `R A
or ∅ `R A and thus ∅ `R∪{→B} A. Hence, A is also defeated by ∆−B in ABFB.

Fact 28. Where ∆ ∪ ∆B ⊆ Ab and A,B ∈ L, if ∆B `R B and ∆−B `R∪{→B} A
then ∆−B `R A or ∆−B ∪∆B `R A.

Proof. If ∆−B `R∪{→B} A but ∆−B 0R A then the rule → B was used in the
derivation D underlying ∆−B `R∪{→B} A. A derivation of A from ∆−B ∪ ∆B

with the rules R is then obtained by replacing the instance(s) of → B in D by the
derivation underlying ∆B `R B.

Lemma 11 (CC-semantic, r-stab). Where ABF |∼ stab
r B, ∆ ∈ r-stab(ABF) implies

∆−B ∈ r-stab(ABFB).

Proof. Let ∆ ∈ r-stab(ABF). We show that ∆−B ∈ r-stab(ABFB) by showing r-
conflict-freeness and r-stability. Since ABF |∼ stab

r B there is a ∆B ⊆ ∆ for which
∆B `R B.

r-conflict-freeness. Assume for a contradiction that ∆−B is not r-conflict-free in
ABFB. Thus, there is a ∆′ ⊆ ∆−B and a A ∈ ∆−B for which ∆′ `R∪{→B} A. Thus,
by Fact 26, if ∆′ `R A we have reached a contradiction since ∆ is r-conflict-free in
ABF. By Fact 28, ∆′ ∪∆B `R A. We have again reached a contradiction since ∆ is
then not r-conflict-free in ABF by Fact 26.

r-stability. Let A ∈ Ab−B \∆−B. Thus, A ∈ Ab \∆. Since ∆ ∈ r-stab(ABF), ∆
r-defeats A in ABF. By Fact 27, ∆−B r-defeats A in ABFB.

Theorem 7. Any ABF closed under contraposition satisfies Cautious Cut for |∼ stab
r .

Proof. In view of Lemma 11 we only need to show CC-entailment for x-stab. Suppose
ABF |∼ stab

r B and ABFB |∼ stab
r A. Let ∆ ∈ r-stab(ABF). Thus, there is a ∆B ⊆ ∆ such

that ∆B `R B. By Lemma 11, ∆−B ∈ r-stab(ABFB). Thus, there is a ∆′ ⊆ ∆−B for
which ∆′ `R∪{→B} A. By Fact 28, ∆′ `R A or ∆′ ∪∆B `R A. Since ∆′ ∪∆B ⊆ ∆
this suffices to show that ABF |∼ stab

r A.
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G.3 Proof of Theorem 8
In this section, suppose some given ABF = (L,R, Ab, ,V,≤, v) is closed under con-
traposition and ABF |∼ grou

d B. Thus, there is a ∆B ⊆
⋂

d-grou(ABF) for which ∆B `R
B. Slightly abusing notation we will also write d-grou(ABF) instead of ⋂ d-grou(ABF).
Recall that by Theorem 15 there is an inductive definition of d-grou(ABF). Finally,
we let ABFB = (L,R∪ {→ B}, Ab−B, ,V,≤, υ).

Fact 29. Where Θ ∪ {A} ⊆ Ab, if Θ 6< A and Θ ∪ ∆ < A, then there is a C ∈
(min(∆) ∩min(∆ ∪Θ)) \Θ for which C < A.

Proof. Suppose Θ 6< A and Θ ∪ ∆ < A. Since Θ 6< A, for all C ∈ min(Θ),
C 6< A. Since Θ ∪ ∆ < A, there is a D ∈ min(Θ ∪ ∆) for which D < A. Thus,
D ∈ (min(∆) ∩min(∆ ∩Θ)) \Θ.

Fact 30. Where ∆ ∪Θ ∪ {A} ⊆ Ab, if Θ ∪∆ < A, Θ 6< A, and Θ ∪∆ `R A, there
are B ∈ min(∆) and Λ ⊆ ((Θ ∪∆) \ {B}) ∪ {A} for which Λ `R B and Λ 6< B.

Proof. Suppose Θ∪∆ < A, Θ 6< A, and Θ∪∆ `R A. Since Θ∪∆ < A and Θ 6< A,
min(Θ ∪∆) = min(∆). Let B ∈ min(∆). By contraposition and since Θ ∪∆ `R A,
there is a Λ ⊆ ((Θ ∪ ∆) \ {B}) ∪ {A} for which Λ `R B. By Fact 15 and since
B ∈ min(Θ ∪∆), Λ 6< B.

Lemma 12. Where ∆ ∈ d-comp(ABF) and C ∈ Ab,

1. if ∆′ ⊆ ∆ such that ∆′∪∆B `R C, ∆′ 6< C and ∆′∪∆B < C, then ∆ d-defeats
C;

2. if D ∈ ∆, Θ 6< D, Θ ∪∆B `R D and Θ ∪∆B < D then ∆ d-defeats Θ.

Proof. Ad 1. By Fact 29 there is a D ∈ (min(∆B) ∩min(∆B ∪∆′)) \∆′ such that
D < C. By contraposition, there is a Θ ⊆ ((∆′ ∪ ∆B) \ {D}) ∪ {C} such that
Θ `R D. By Fact 15, Θ 6< D. Thus, Θ d-defeats ∆ and since ∆ is d-complete, ∆
d-defeats Θ in some F . Since (∆′∪∆B) ⊆ ∆ and ∆ does not attack ∆, F /∈ ∆′∪∆B,
F = C.

Ad 2. Since Θ 6< D, Θ ∪∆B < D, and by Fact 29, there is an E ∈ (min(∆B) ∩
min(Θ ∪ ∆B)) \ Θ for which E < D. By contraposition, there is a Λ ⊆ ((∆B ∪
Θ) \ {E}) ∪ {D} for which Λ `R E. By Fact 15, Λ 6< E. Thus, Λ d-defeats ∆ and
since ∆ is d-complete, ∆ d-defeats Λ in some F . Since ∆ does not d-defeat ∆ and
∆B ∪ {D} ⊆ ∆, F ∈ Θ.

Lemma 13. Where ∆ ∈ d-comp(ABF), if ∆−B d-defeats C ∈ Ab−B in ABFB then ∆
d-defeats C in ABF.
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Proof. Suppose ∆−B d-defeats C in ABFB. Then there is a ∆′ ⊆ ∆−B for which
∆′ `R∪{→B} C and ∆′ 6< C. In case ∆′ `R C, ∆′ ⊆ ∆ and thus ∆ d-defeats C in
ABF. Else, by Fact 28, ∆′ ∪∆B `R C. If ∆′ ∪∆B 6< C, ∆ d-defeats C in ABF. Else,
by Lemma 12 (item 1), ∆ d-defeats C in ABF.

Lemma 14. If ∆ ∈ d-comp(ABF) then ∆−B ∈ d-comp(ABFB).

Proof. Suppose ∆ ∈ d-comp(ABF).
d-conflict-freeness. Suppose ∆−B d-defeats some D ∈ ∆−B in ABFB. By Lemma

13, ∆ d-defeats D in ABF in contradiction to ∆ ∈ d-comp(ABF).
d-Admissibility. Suppose some Θ ⊆ Ab−B d-defeats ∆−B in D in ABFB. Thus,

Θ `R∪{→B} D and Θ 6< D. If Θ `R D then ∆ d-defeats Θ in ABF since ∆ ∈
d-comp(ABF). If Θ 6`R D, by Fact 28, Θ ∪∆B `R D. We distinguish two cases: (i)
Θ∪∆B 6< D and (ii) Θ∪∆B < D. In case (i), ∆ d-defeats Θ∪∆B in some T in ABF
since ∆ ∈ d-comp(ABF). Since ∆B ⊆ ∆, T ∈ Θ. In case (ii), by Lemma 12 (item 2),
∆ d-defeats Θ in ABF. In any case, by Fact 27, also ∆−B d-defeats Θ in ABFB.

d-completeness. Suppose ∆−B d-defends some A ∈ Ab−B in ABFB. Suppose
further that some Θ ⊆ Ab−B d-defeats A in ABFB. Thus, ∆−B d-defeats some
T ∈ Θ in ABFB. By Lemma 13, ∆ d-defeats T in ABF. Hence, ∆ d-defends A in ABF
and since ∆ ∈ d-comp(ABF) also A ∈ ∆ and hence A ∈ ∆−B.

Lemma 15. If d-grou(ABF) d-defeats some T ∈ Ab then there is a ∆ ⊆ d-grou(ABF)
that d-defeats T and for which T < ∆ (and equivalently v(T ) < v(∆)).

Proof. Suppose Λ ⊆ d-grou(ABF) d-defeats T and assume i is minimal such that (i)
Λ ⊆ d-groui(ABF) (recall Theorem 15) and (ii) Λ is a defeater of T in d-grou(ABF).
Since Λ 6< T , min(Λ) ≥ v(T ). Assume for a contradiction that min(Λ) = v(T ). Let
L ∈ min(Λ). By contraposition there is a Ψ ⊆ (Λ \ {L}) ∪ {T} for which Ψ `R L.
Since v(L) = v(T ), (Λ \ {L})∪ {T} 6< L and so Ψ 6< L by Fact 14. So Ψ and so also
(Λ \ {L})∪ {T} d-defeats L ∈ d-groui(ABF). But then there is a Ω ⊆ d-groui−1(ABF)
that d-defeats (Λ \ {L}) ∪ {T}. By the conflict-freeness of d-grou(ABF) and since
Λ \ {L} ⊆ d-grou(ABF), Ω d-defeats T . But this contradicts the minimality of i. So
our assumption was wrong and hence min(Λ) > v(T ).

Definition 24. Let d-grouk(ABF) = {A ∈ d-grou(ABF) | v(A) = k} and
d-grou>k(ABF) = {A ∈ d-grou(ABF) | v(A) > k}.

Lemma 16. d-grou(ABF)−B ⊆ d-grou(ABFB).
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Proof. We show this by a double induction following the inductive characterization
of d-grou(ABF) in Definition 21. Since Ab is finite, there is a maximal k such that
d-grouk(ABF) 6= ∅ (see Definition 24). Our outer induction is on i = k, . . . , 1 demon-
strating that d-groui(ABF)−B ⊆ d-grou(ABFB). Our inner induction is as follows:
given a fixed i we show that for every j ≥ 0, d-groui

j(ABF)−B ⊆ d-grou(ABF) where
d-groui

j(ABF) = d-groui(ABF) ∩ d-grouj(ABF).

Outer Base: i = k.

• Inner Base: j = 0. Suppose A ∈ d-grouk
0(ABF)−B. Assume for a contradiction

that Θ ⊆ Ab−B d-defeats A in ABFB. Thus, Θ `R∪{→B} A, Θ 6< A and hence
min(Θ) ≥ k = v(A). Since A ∈ d-grou0(ABF), Θ 0R A. However, by Fact 28,
Θ∪∆B `R A. Since Θ∪∆B does not d-defeat A in ABF, Θ∪∆B < A. By Fact
30 there are D ∈ min(∆B) and Λ ⊆ ((Θ∪∆B)\{D})∪{A} such that Λ `R D
and Λ 6< D. Hence, d-grou(ABF) defends D from this attack. Thus, there is a
∆′ ⊆ d-grou(ABF) that d-defeats some T ∈ Λ ⊆ ((Θ∪∆B) \ {D})∪{A}. Since
∆B ∪ {A} ⊆ d-grou(ABF), T ∈ Θ and thus v(T ) ≥ k. By Lemma 15, there is
a Ω ⊆ d-grou>k(ABF) that d-defeats T . This contradicts the maximality of k.
Thus, no Θ ⊆ Ab−B d-defeats A in ABFB and so A ∈ d-grou(ABFB).

• Inner Step: j 7→ j + 1. Suppose A ∈ d-grouk
j+1(ABF)−B. Assume for a con-

tradiction that Θ ⊆ Ab−B d-defeats A in ABFB. Thus, Θ `R∪{→B} A and
Θ 6< A.

– Suppose first that Θ `R A. Then, since min(Θ) ≥ k, there is a ∆ ⊆
d-grouk

j (ABF) that d-defeats Θ in ABF.
– Suppose now that Θ 0R A. Then, by Fact 24, Θ∪∆B `R A. If Θ∪∆B 6<
A, d-grou(ABF) d-defeats Θ in ABF (since ∆B ⊆ d-grou(ABF)). Else, if
Θ ∪∆B < A, by Fact 30 there are D ∈ (min(∆B) and Λ ⊆ ((Θ ∪∆B) \
{D}) ∪ {A} for which Λ 6< D and Λ `R D. Thus, d-grou(ABF) d-defeats
Λ in some T (in ABF) and since ∆B ∪ {A} ⊆ d-grou(ABF), T ∈ Θ.

Hence, in any case, by Lemma 15, there is a ∆′ ⊆ d-grou>k(ABF) that d-defeats
Θ in ABF which contradicts the maximality of k. Thus, there is no Θ ⊆ Ab−B

that d-defeats A and so A ∈ d-grou(ABFB).

Outer Step: i 7→ i− 1.

• Inner Base: j = 0. Suppose A ∈ d-groui−1
0 (ABF)−B. Suppose Θ ⊆ Ab−B

d-defeats A in ABFB. Thus, Θ `R∪{→B} A and Θ 6< A. Note that Θ 0R A
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since A ∈ d-grou0(ABF) and has thus no defeaters. by Fact 24, Θ ∪∆B `R A.
Again, since A ∈ d-grou0(ABF), Θ ∪ ∆B < A. Thus, by Fact 30 there are
D ∈ min(∆B) and Λ ⊆ ((Θ∪∆B) \ {D})∪{A} for which Λ 6< D and Λ `R D.
Thus, d-grou(ABF) d-defeats Λ in some T in ABF. Since ∆B∪{A} ⊆ d-grou(ABF),
T ∈ Θ. By Lemma 15 there is a ∆′ ⊆ d-grou≥i(ABF) that d-defeats Θ since
min(Θ) ≥ i − 1. By the inductive hypothesis, ∆′−B ⊆ d-grou(ABFB) and by
Fact 27, ∆′−B d-defeats Θ in ABFB.

• Inner Step: j 7→ j + 1. Suppose A ∈ d-groui−1
j+1(ABF)−B. Suppose Θ ⊆ Ab−B

d-defeats A in ABFB. Thus, Θ `R∪{→B} A, Θ 6< A, and thus min(Θ) ≥ v(A) =
i− 1.

– Suppose first that Θ `R A. Then, there is a ∆′ ⊆ d-grou≥min(Θ)(ABF) ⊆
d-grou≥i−1(ABF) such that ∆′ d-defeats Θ in ABF. By Lemma 15, there is a
∆ ⊆ d-grou≥i(ABF) that d-defeats Θ in ABF. By the inductive hypothesis,
∆−B ⊆ d-grou(ABFB). By Fact 27, ∆−B also d-defeats Θ in ABFB.

– Suppose now that Θ 0R A. Then, by Fact 24, Θ∪∆B `R A. If Θ∪∆B 6<
A, d-grou(ABF) d-defeats Θ (since ∆B ⊆ d-grou(ABF)). Else, if Θ ∪∆B <
A, by Fact 30, there are D ∈ min(∆B) and Λ ⊆ ((Θ ∪∆B) \ {D}) ∪ {A}
for which Λ 6< D and Λ `R D. Thus, d-grou(ABF) d-defeats some T ∈
Λ ⊆ (Θ∪∆B \{D})∪{A} in ABF. Since ∆B ∪{A} ⊆ d-grou(ABF), T ∈ Θ.
So, in both cases d-grou(ABF) d-defeats some T ∈ Θ. Since v(T ) ≥ i − 1
by Lemma 15, there is a ∆′ ⊆ d-grou≥i(ABF) that d-defeats Θ. By the
inductive hypothesis, ∆′−B ⊆ d-grou(ABFB) and by Fact 27, ∆′−B d-
defeats Θ in ABFB.

We have shown that d-grou(ABFB) d-defends A and thus that A ∈ d-grou(ABFB)
since d-grou(ABFB) is complete.

Theorem 8. Any ABF closed under contraposition is cumulative for |∼ grou
d .

Proof. We have to show that: d-grou(ABF) `R C iff d-grou(ABFB) `R∪{→B} C for
every C ∈ L and that d-grou(ABF)−B = d-grou(ABFB) .

We first note d-grou(ABF) = ⋂
d-comp(ABF) and d-grou(ABFB) = ⋂

d-comp(ABFB)
with Theorem 15.

Suppose A /∈ d-grou(ABF)−B. Since d-grou(ABF) = ⋂
d-comp(ABF), there is a

∆ ∈ d-comp(ABF) for which A /∈ ∆−B. By Lemma 14, ∆−B ∈ d-comp(ABFB). Thus,
A /∈ d-grou(ABFB) = ⋂

d-comp(ABFB). Altogether, d-grou(ABFB) ⊆ d-grou(ABF)−B.

800



Assumption-based Approaches to Reasoning with Priorities

With Lemma 16, d-grou(ABF)−B = d-grou(ABFB). Since ∆B ⊆ d-grou(ABF) and by
Fact 28, d-grou(ABF) `R C iff d-grou(ABFB) `R∪{→B} C for all C ∈ L.

G.4 Proof of Theorem 9
Fact 31. Where x ∈ {d, r} and sem ∈ {pref, stab, grou}, ABF |∼ sem

x B, and ∆ ∈
x-sem(ABF), ∆ = ∆+B.

Proof. We distinguish two cases: B ∈ Ab and B /∈ Ab. In the latter case, trivially
∆ = ∆+B. In the former case, B ∈ CnR(Θ) for every Θ ∈ x-sem(ABF). Thus,
B ∈ CnR(∆). Since ABF is flat, B ∈ ∆.

Fact 32. Where B ∈ Ab, x ∈ {d, r} and sem ∈ {pref, stab, grou}, if ABF |∼ sem
x B then

∅ 0R B.

Proof. Suppose ABF |∼ sem
x B and let ∆ ∈ x-sem(ABF). By Fact 31, B ∈ ∆. Were

∅ `R B then ∅ would x-defeat ∆ in B which is impossible since ∆ cannot defend
itself from this attack.

In the following we suppose that sem ∈ {pref, stab}, ABF = (L,R, Ab, ,V,≤, υ)
is closed under contraposition and that ABF |∼ sem

d B. That means that in every
∆ ∈ sem(ABF) there is a ∆B ⊆ ∆ for which ∆B `R B.

Lemma 17. Where ∆ ∈ d-sem(ABF) and ∆−B d-defeats Θ ⊆ Ab−B in ABFB then
also ∆ d-defeats Θ in ABF.

Proof. Suppose ∆−B d-defeats Θ in ABFB. Thus, there is a T ∈ Θ and there is a
∆′ ⊆ ∆−B for which ∆′ `R∪{→B} T and ∆′ 6< T . By Fact 28, there is a ∆′′ ∈
{∆′,∆′ ∪∆B} such that ∆′′ `R T .

If ∆′′ = ∆′ then also ∆ d-defeats Θ in ABF.
Suppose ∆′′ = ∆′ ∪∆B. Note that ∆′′ ⊆ ∆ since ∆B ⊆ ∆ and ∆′ ⊆ ∆−B ⊆ ∆.

We have two cases: ∆′′ < T or ∆′′ 6< T . In the latter case ∆ d-defeats T in
ABF. In the former case ∆B < T and by Fact 30 there is a D ∈ min(∆B) and a
Λ ⊆ ((∆′ ∪ ∆B) \ {D}) ∪ {T} for which Λ `R D and Λ 6< D. Hence, ∆ d-defeats
Λ ⊆ ∆′ ∪ (∆B \ {D}) ∪ {T} in ABF. Since ∆′ ∪∆B ⊆ ∆ and ∆ is d-conflict-free, ∆
d-defeats T in ABF.

Lemma 18 (CC-sem, d-stab/pref). ∆ ∈ d-sem(ABF) implies ∆−B ∈ d-sem(ABFB).

Proof. Suppose ∆ ∈ sem(ABF). We now show that ∆−B ∈ sem(ABFB).
d-conflict-free. Suppose ∆−B d-defeats some A ∈ ∆−B in ABFB. Then ∆ d-

defeats A in ABF by Lemma 17. Since A ∈ ∆ this is a contradiction to the conflict-
freeness of ∆ in ABF.
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d-admissible. Suppose some Θ ⊆ Ab−B d-defeats some A ∈ ∆−B in ABFB. Thus,
Θ `R∪{→B} A and Θ 6< A.

• If Θ `R A, ∆ d-defeats Θ in ABF.

• Else, by Fact 28, Θ ∪∆B `R A.

If Θ ∪ ∆B 6< A then ∆ d-defeats Θ ∪ ∆B in some E (in ABF). Since
∆B ⊆ ∆ and by the d-conflict-freeness of ∆, E ∈ Θ.
Else, by Fact 30, there are C ∈ min(∆B) and Λ ⊆ ((Θ∪∆B)\{C})∪{A}
such that Λ `R C and Λ 6< C. Again, ∆ d-defeats Λ ⊆ (Θ ∪ (∆B \
{C})) ∪ {A} in some E (in ABF). Since ∆B ∪ {A} ⊆ ∆ and by the
d-conflict-freeness of ∆, E ∈ Θ.

We have shown that in every case, ∆ d-defeats Θ in ABF. By Fact 27, ∆−B d-defeats
Θ in ABFB.

sem = stab. Suppose A ∈ Ab−B \∆−B. Thus, ∆ d-defeats A. By Fact 27, ∆−B

d-defeats A.

sem = pref. Assume for a contradiction that ∆−B /∈ d-pref(ABFB). Since, as
shown above, ∆−B ∈ d-adm(ABFB), there is a Θ ∈ Ab−B such that Θ ⊃ ∆−B and
Θ ∈ d-adm(ABFB). We distinguish two cases: (a) B ∈ Ab and (b) B /∈ Ab.
Ad (a). By Fact 31, B ∈ ∆. Also, Θ+B ⊃ ∆. Thus Θ+B is not d-admissible in ABF
since ∆ is d-preferred in ABF. We will show that from the assumption that ∆−B /∈ d-
pref(ABFB), it follows that Θ+B is d-admissible in ABF, leading to a contradiction.

We first show that Θ+B is d-conflict-free in ABF. Assume otherwise, then there
are Θ′ ⊆ Θ+B and A ∈ Θ+B such that Θ′ `R A and Θ′ 6< A. Thus, by Fact 27, Θ′−B

d-defeats A in ABFB or A = B. In the former case we have a contradiction to the
d-conflict-freeness of Θ in ABFB. In the second case, Θ′ `R B. With Fact 32, Θ′ 6= ∅.
Let T ∈ min(Θ′), then by contraposition Λ `R T for some Λ ⊆ (Θ′ \ {T}) ∪ {B}.
Hence Λ \ {B} `R∪{→B} T which again contradicts the d-conflict-freeness of Θ in
ABFB since Λ \ {B} 6< T as T ∈ min(Θ′) and Λ \ {B} ⊆ Θ′ \ {T}. Thus, Θ+B is
d-conflict-free in ABF.

For showing d-admissibility of Θ+B in ABF suppose now some Λ ⊆ Ab d-defeats
some D ∈ Θ+B.

• If D ∈ ∆, ∆ d-defeats Λ and hence so does Θ+B.
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• Else suppose D ∈ Θ+B \∆ and hence D 6= B. Since by Fact 27 Λ−B d-defeats
Θ(in D) in ABFB, Θ d-defeats Λ−B in ABFB in view of Θ ∈ d-adm(ABFB).
Thus, there is a Θ′ ⊆ Θ for which Θ′ `R∪{→B} L for some L ∈ Λ−B such that
Θ′ 6< L.

– If Θ′ `R L also Θ+B d-defeats Λ in ABF.
– Else, Θ′+B `R L.

If B 6< L, Θ+B d-defeats Λ in ABF.
Else, {B} = min(Θ′+B). By Fact 30 there is a Θ? ⊆ Θ′ ∪ {L} for
which Θ? `R B and Θ? 6< B. Thus, Θ′ ∪{L} d-defeats ∆ in ABF and
hence ∆ d-defeats Θ′ ∪ {L} in ABF. Since Θ+B is d-conflict-free and
Θ+B ⊇ ∆, the attack is in L. Thus, Θ+B d-defeats Λ in ABF.

Altogether we have shown that Θ+B is d-admissible in ABF which is a contradiction
to the ⊂-maximality of ∆.
Ad (b). Again, Θ is not d-admissible in ABF since Θ ⊃ ∆ = ∆−B and ∆ is d-preferred
in ABF. We now show that Θ is d-admissible, leading to a contradiction.

We first show that Θ is d-conflict-free in ABF. Assume the opposite. Then there
are Θ′ ⊆ Θ and A ∈ Θ for which Θ′ d-defeats A in ABF. Thus, also Θ′ d-defeats A
in ABFB which contradicts the conflict-freeness of Θ in ABFB.

We now show that Θ is d-admissible in ABF. Suppose some Λ ⊆ Ab d-defeats
Θ. Thus, Λ also d-defeats Θ in ABFB. Thus, Θ d-defeats Λ in ABFB. Hence, there
is a Θ′ ⊆ Θ for which Θ′ `R∪{→B} L for some L ∈ Λ such that Θ′ 6< L. Note that
Θ′ ∪∆B ⊆ Θ since Θ′ ⊆ Θ ⊆ ∆ = ∆−B and ∆B ⊆ ∆. By Fact 28, Θ′ ∪∆B `R L
or Θ′ `R L.

• If Θ′ `R L also Θ d-defeats Λ in ABF.

• Else either Θ′ ∪∆B 6< L or Θ′ ∪∆B < L.

– If Θ′ ∪∆B 6< L, Θ also d-defeats Λ in ABF.
– Else, by Fact 30, there are D ∈ min(∆B) and Λ ⊆ ((Θ′∪∆B)\{D})∪{L}

for which Λ `R D and Λ 6< D. Since ∆B ⊆ ∆ and ∆ ∈ d-adm(ABF), ∆
d-defeats Λ ⊆ ((Θ′ ∪∆B) \ {D}) ∪ {L} in ABF. By the d-conflict-freeness
of Θ in ABF and since Θ ⊃ ∆, ∆ d-defeats L. Hence, also Θ d-defeats Λ
in ABF.

Altogether, we have shown that Θ is d-admissible in ABF which contradicts the
⊂-maximality of ∆.
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Theorem 9. Where sem ∈ {pref, stab}, any ABF closed under contraposition satisfies
Cautious Cut for |∼ sem

d .

Proof. In view of Lemma 18 we have to show that if ABF |∼ sem
d B and ABFB |∼ sem

d A
then ABF |∼ sem

d A. We show this via contraposition. Suppose (1) ABF |∼ sem
d B and (2)

ABF 6|∼ sem
d A. We show that ABFB 6|∼ sem

d A.
By (2) there is a ∆ ∈ d-sem(ABF) for which (3) there is no ∆′ ⊆ ∆ such that

∆′ `R A. By (1), there is a ∆B ⊆ ∆ for which ∆B `R B. By Lemma 18,
∆−B ∈ d-sem(ABFB). Assume for a contradiction that there is a Θ ⊆ ∆−B such that
Θ `R∪{→B} A. By Fact 28, Θ `R A or Θ ∪∆B `R A. But this is a contradiction
to (3) since Θ ∪∆B ⊆ ∆. Since ∆−B ∈ d-sem(ABFB) and there is no ∆′ ⊆ ∆−B for
which ∆′ `R∪{→B} A, ABFB 6|∼ sem

d A.

G.5 Proof of Theorem 10
In the following we suppose that ABF = (L,R, Ab, ,V,≤, υ) is well-behaved (see
Definition 12). Recall for this section also Definition 17.

Fact 33. Where ∆ ⊆ Ab and x ∈ {d, r}, if ABF |∼ stab
x B and ∆ ∈ IS(ABF) then

∆−B /∈ CS(ABFB).

Proof. Suppose ∆ ∈ IS(ABF). Thus, there is a C ∈ ∆ such that ∆′ `R C where
∆′ = ∆ \ {C}.

• Suppose B /∈ ∆′.

– If B 6= C, ∆ = ∆−B and, since ∆′ `R∪{→B} C, ∆′ ∪ {C} ∈ IS(ABFB) and
so ∆−B /∈ CS(ABFB).

– Else B = C. We first note that ∆′ 6= ∅ since otherwise ∅ `R B which
with Fact 32 contradicts ABF |∼ stab

x B. Let D ∈ min(∆′). By contrapo-
sition there is a Θ ⊆ (∆′ \ {D}) ∪ {B} for which Θ `R D and thus
Θ \ {B} `R∪{→B} D. Thus, ∆−B /∈ CS(ABFB) since (Θ \ {B}) ∪ {D} ∈
IS(ABFB) and (Θ \ {B}) ∪ {D} ⊆ ∆−B.

• Suppose now that B ∈ ∆′. Then ∆′−B `R∪{→B} C. Again, ∆′−B ∪ {C} ∈
IS(ABFB) and so ∆−B /∈ CS(ABFB).

Lemma 19. Where ∆ ⊆ Ab and x ∈ {d, r}, if ABF |∼ stab
x B and ∆ ∈ MCS≺(ABF)

then ∆−B ∈ MCS(ABFB).
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Proof. Let ∆ ∈ MCS≺(ABF). By Lemma 6, ∆ ∈ x-stab(ABF). Since ABF |∼ stab
x B

there is a ∆B ⊆ ∆ for which ∆B `R B.
Assume first that ∆−B /∈ CS(ABFB). Thus, there is a ∆′ ∈ IS(ABFB) such that

∆′ ⊆ ∆−B. Hence, there is a C ∈ ∆′ for which ∆′ \ {C} `R∪{→B} C. By Fact 28,
∆′\{C} `R C or (∆′\{C})∪∆B `R C and by sanity there is a ∆′′ ⊆ (∆′∪∆B)\{C}
for which ∆′′ `R C. So, ∆′ ∈ IS(ABF) or ∆′′ ∪ {C} ∈ IS(ABF). Since ∆′′ ∪ {C} ⊆
∆′ ∪∆B ⊆ ∆ and ∆ ∈ CS(ABF) this is impossible. Hence, ∆−B ∈ CS(ABFB).

Assume now that there is a Θ ⊃ ∆−B for which Θ ⊆ Ab−B and Θ ∈ CS(ABFB).
Since Θ+B ⊃ ∆ and ∆ ∈ MCS(ABF), Θ+B /∈ CS(ABF) and thus there is a Λ ∈
IS(ABF) for which Λ ⊆ Θ+B. However, since by Fact 33, Λ−B /∈ CS(ABFB) this is a
contradiction since Λ−B ⊆ Θ and Θ ∈ CS(ABFB). Thus, ∆−B ∈ MCS(ABFB).

Fact 34. Where ∆,Θ ⊆ Ab and B ∈ Ab,

1. if B ∈ Θ and Θ ≺ ∆ then Θ−B ≺ ∆−B; and

2. if ∆,Θ ⊆ Ab−B and ∆ ≺ Θ then ∆+B ≺ Θ+B.

Proof. Ad 1. Since Θ ≺ ∆ there is an i ≥ 1 for which πi(Θ) ⊂ πi(∆) and for all j > i,
πj(Θ) = πj(∆). Suppose first B /∈ ∆. Then v(B) < i and still πi(Θ−B) ⊂ πi(∆−B)
while for all j > i, πj(Θ−B) = πj(∆−B). Suppose now that B ∈ ∆. Again,
πi(Θ−B) ⊂ πi(∆−B) while for all j > i, πj(Θ−B) = πj(∆−B).

Ad 2. Trivial.

Lemma 20. Where x ∈ {d, r} and ∆ ⊆ Ab−B, if ABF |∼ stab
x B and ∆ ∈ MCS≺(ABFB)

then ∆+B ∈ MCS(ABF).

Proof. Let ∆ ∈ MCS≺(ABFB). Assume first that ∆+B /∈ CS(ABF). Thus, there is
a Θ ∈ IS(ABF) for which Θ ⊆ ∆+B. Thus, by Fact 33, Θ−B /∈ CS(ABFB) which
contradicts that ∆ ∈ CS(ABFB) since Θ−B ⊆ ∆. Thus, ∆+B ∈ CS(ABF).

Suppose now that there is a Θ ∈ MCS(ABF) for which Θ ⊃ ∆+B. Thus,
∆+B ≺ Θ by Fact 20. By Fact 34 (Item 1) ∆ ≺ Θ−B and since ∆ ∈ MCS≺(ABFB),
Θ−B /∈ CS(ABFB) and so Θ−B /∈ MCS(ABFB). By Lemma 19, Θ /∈ MCS≺(ABF).
By Fact 21, there is a Λ ∈ MCS≺(ABF) for which Θ ≺ Λ. Again by Lemma 19,
Λ−B ∈ MCS(ABFB). Thus, by Fact 34 (Item 1), Θ−B ≺ Λ−B and thus by the transi-
tivity of ≺ (Fact 19), ∆ ≺ Λ−B. This is again a contradiction to ∆ ∈ MCS≺(ABFB).
Thus, there is no Θ ∈ MCS(ABF) for which Θ ⊃ ∆+B and thus ∆+B ∈ MCS(ABF).

Lemma 21. Where x ∈ {d, r} and ABF |∼ stab
x B, ∆ ∈ MCS≺(ABF) iff (∆−B ∈

MCS≺(ABFB) and ∆ = ∆+B).
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Proof. (⇒) Suppose ∆ ∈ MCS≺(ABF). By Theorem 13, ∆ ∈ x-stab(ABF) and by
Fact 31, ∆ = ∆+B. By Lemma 19, ∆−B ∈ MCS(ABFB). Assume there is a
Θ ∈ MCS≺(ABFB) for which ∆−B ≺ Θ. By Lemma 20, Θ+B ∈ MCS(ABF). This
contradicts ∆ ∈ MCS≺(ABF) since ∆ ≺ Θ+B by Fact 34.2.

(⇐) Suppose ∆−B ∈ MCS≺(ABFB) and ∆ = ∆+B. ∆ ∈ MCS(ABF) by Lemma
20,. Assume for a contradiction that ∆ /∈ MCS≺(ABF). By Fact 21, there is a
Θ ∈ MCS≺(ABF) for which ∆ ≺ Θ. By Fact 34 (Item 1), ∆−B ≺ Θ−B. By Lemma
19, Θ−B ∈ MCS(ABFB). This contradicts ∆−B ∈ MCS≺(ABFB).

Corollary 5. Where sem ∈ {pref, stab}, x ∈ {d, r}, and ABF |∼ sem
x B,

1. where ∆ ⊆ Ab, ∆ ∈ x-sem(ABF) iff ∆+B ∈ x-sem(ABF) iff ∆−B ∈ x-sem(ABFB);

2. where ∆ ⊆ Ab−B, ∆+B ∈ x-sem(ABF) iff ∆ ∈ x-sem(ABFB).

Proof. Suppose ABF |∼ sem
x B. Note that with Fact 31, for all ∆ ∈ x-sem(ABF), ∆ =

∆+B.
Ad 1. Let ∆ ⊆ Ab. ∆ ∈ x-sem(ABF) iff [by Theorem 13] ∆ ∈ MCS≺(ABF) iff
[by Lemma 21] ∆−B ∈ MCS≺(ABFB) iff [by Theorem 13 and Fact 13] ∆−B ∈
x-sem(ABFB).
Ad 2. Let ∆ ⊆ Ab−B. ∆+B ∈ x-sem(ABF) iff [by Theorem 13 and Fact 13] ∆+B ∈
MCS≺(ABF) iff [by Lemma 21] ∆+B−B = ∆ ∈ MCS≺(ABFB) iff [by Theorem 13]
∆ ∈ x-sem(ABFB).

Theorem 10. Where sem ∈ {pref, stab} and x ∈ {d, r}, any well-behaved ABF is
cumulative for |∼ sem

x .

Proof. Suppose ABF |∼ sem
x B. Thus, there is a ∆B ⊆

⋂
x-sem(ABF) for which ∆B `R

B. By Fact 31, for all ∆ ∈ x-sem(ABF), ∆ = ∆+B.
Cautious Monotony: Suppose ABFB 6|∼ sem

x A. Thus, there is a ∆ ∈ x-sem(ABFB)
such that for all ∆′ ⊆ ∆, ∆′ 0R∪{→B} A. By Corollary 5 (Item 2), ∆+B ∈
x-sem(ABF). Assume for a contradiction that there is a ∆′ ⊆ ∆+B for which
∆′ `R A. But then ∆′−B `R∪{→B} A which is a contradiction since ∆′−B ⊆ ∆.
Thus, ABF 6|∼ sem

x A.
Cautious Cut: Suppose ABF 6|∼ sem

x A. Thus, there is a ∆ ∈ x-sem(ABF) such that
there is no ∆′ ⊆ ∆ for which ∆′ `R A. By Corollary 5 (Item 1), ∆−B ∈ x-sem(ABFB).
Note again that if there were a ∆′ ⊆ ∆−B for which ∆′ `R∪{→B} A then, by Fact 28,
∆′ ∪∆B `R A or ∆′ `R A which was excluded in view of ∆′ ∪∆B ⊆ ∆. Thus, also
ABFB 6|∼ sem

x A.
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G.6 Proof of Theorems 11 and 12
Let in the following ABF = (L,R, Ab, ,V,≤, υ) be well-behaved where ≤ = V2.
Also suppose in the following that B ∈ Ab and B /∈ CnR(∅).
Fact 35. Every r-defeat is also a d-defeat.

Proof. Assume for a contradiction that A r-defeats ∆ but does not d-defeat ∆.
Thus, ∆′ `R A for some ∆′ for which ∆′ < A. However, the latter is impossible
since ≤ = V2.

Lemma 22. Where sem ∈ {stab, pref} and x ∈ {d, r}, if ∆ ∈ x-sem(ABFB) then
∆+B ∈ x-sem(ABF).

Proof. By Theorem 13 and Fact 13 we need only consider the case sem = stab and
x = d. Suppose ∆ ∈ x-sem(ABFB).

Conflict-freeness. Suppose ∆+B d-defeats some A ∈ ∆+B in ABF. Thus, there
is a ∆′ ⊆ ∆+B and a A ∈ ∆+B for which ∆′ `R A. Thus, ∆′ \ {B} `R∪{→B} A.
Since ∆′ \ {B} ⊆ ∆ and ∆ is conflict-free, A /∈ ∆. So, A = B and ∆′ `R B. By
the sanity of ABF, there is a ∆′′ ⊆ ∆′ \ {B} for which ∆′′ `R B. Note that by the
assumption that B /∈ CnR(∅), ∆′′ 6= ∅. Let C ∈ ∆′′. By contraposition, there is
a Θ ⊆ (∆′′ \ {C}) ∪ {B} such that Θ `R C and thus Θ \ {B} `R∪{→B} C. Since
(Θ \ {B}) ∪ {C} ⊆ ∆ this is in contradiction to the conflict-freeness of ∆ in ABFB.

Stability. Let A ∈ Ab \ ∆+B. Thus, A ∈ Ab−B \ ∆. Thus, ∆ d-defeats A in
ABFB. Hence, there is a ∆′ ⊆ ∆ for which ∆′ `R∪{→B} A which implies ∆′ `R A or
∆′ ∪ {B} `R A. Thus, ∆+B d-defeats A in ABF.

Theorem 11. Where sem ∈ {pref, stab}, x ∈ {d, r}, ABF is Ab-monotonic for |∼ sem
x .

Proof. In view of Lemma 22 we still have to show that ABF |∼ sem
x A then ABFB |∼ sem

x A.
We show the contraposition.

Suppose ABFB 6|∼ sem
x A. Thus, there is a ∆ ∈ x-sem(ABFB) such that ∆′ 0R∪{→B}

A for all ∆′ ⊆ ∆. By Lemma 22, ∆+B ∈ x-sem(ABF). Assume for a contradiction
that there is a ∆′ ⊆ ∆+B for which ∆′ `R A. But then ∆′ \ {B} `R∪{→B} A which
is a contradiction since ∆′ \ {B} ⊆ ∆. So, ABF 6|∼ sem

x A.

Lemma 23. Where x ∈ {d, r}, x-grou(ABF)−B ⊆ x-grou(ABFB).

Proof. We show via induction on i ≥ 0 that if A ∈ x-groui(ABF)−B then A ∈
x-grou(ABFB). In view of Fact 35 we only consider x = d.

i = 0. Let A ∈ x-grou0(ABF)−B. Assume for a contradiction that some Θ ⊆ Ab−B

defeats A in ABFB. Thus, Θ′ `R∪{→B} A for a Θ′ ⊆ Θ. Moreover, Θ′ 0R A since
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A has no defeaters in ABF. Thus, Θ′+B `R A which contradicts the fact that
A ∈ grou0(ABF). Thus, A has no defeaters in ABFB and so A ∈ x-grou(ABFB).

i 7→ i+1. Let A ∈ x-groui+1(ABF)B. Suppose some Θ ⊆ Ab−B defeats A in ABFB.
Thus, there is a Θ′ ⊆ Θ for which Θ′ `R∪{→B} A. Thus, Θ′ `R A or Θ′∪{B} `R A.
Hence, there is a Λ ⊆ x-groui(ABF) and a T ∈ Θ′ ∪ {B} such that Λ `R T . So,
Λ \ {B} `R∪{→B} T .

• If T ∈ Θ′, since by the inductive hypothesis Λ \ {B} ⊆ x-grou(ABFB), Θ is
defeated by x-grou(ABFB).

• Assume for a contradiction that T /∈ Θ′ and so T = B and Λ\{B} `R∪{→B} B.
By the sanity of ABF, there is a Λ′ ⊆ Λ \ {B} for which Λ′ `R B. Since B /∈
CnR(∅), Λ′ 6= ∅. Let C ∈ Λ′. By contraposition, there is a Ω ⊆ (Λ′\{C})∪{B}
for which Ω `R C. So, Ω \ {B} `R∪{→B} C. But this contradicts the conflict-
freeness of x-grou(ABFB) since by the inductive hypothesis (Ω \ {B}) ∪ {C} ⊆
Λ \ {B} ⊆ x-grou(ABFB).

We have shown that x-grou(ABFB) x-defends A and hence A ∈ x-grou(ABFB).

Theorem 12. Where x ∈ {d, r}, ABF is Ab-monotonic for |∼ grou
x .

Proof. In view of Lemma 23, we have to show that ABF |∼ grou
x A implies ABFB |∼ grou

x A.
Suppose ABF |∼ grou

x A. Thus, Θ `R A for some Θ ⊆ x-grou(ABF). So, Θ−B `R∪{→B}
A. By Lemma 23, Θ−B ⊆ x-grou(ABFB) and thus ABFB |∼ sem

x A.
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Abstract

Given any Euclidean ordered field, Q, and any ‘reasonable’ group, G, of
(1+3)-dimensional spacetime symmetries, we show how to construct a model
MG of kinematics for which the set W of worldview transformations between
inertial observers satisfies W = G. This holds in particular for all relevant sub-
groups of Gal, cPoi, and cEucl (the groups of Galilean, Poincaré and Euclidean
transformations, respectively, where c ∈ Q is a model-specific parameter corre-
sponding to the speed of light in the case of Poincaré transformations).

In doing so, by an elementary geometrical proof, we demonstrate our main
contribution: spatial isotropy is enough to entail that the set W of worldview
transformations satisfies either W ⊆ Gal, W ⊆ cPoi, or W ⊆ cEucl for some
c > 0. So assuming spatial isotropy is enough to prove that there are only
3 possible cases: either the world is classical (the worldview transformations
between inertial observers are Galilean transformations); the world is relativistic
(the worldview transformations are Poincaré transformations); or the world is
Euclidean (which gives a nonstandard kinematical interpretation to Euclidean
geometry). This result considerably extends previous results in this field, which
assume a priori the (strictly stronger) special principle of relativity, while also
restricting the choice of Q to the field R of reals.
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As part of this work, we also prove the rather surprising result that, for any
G containing translations and rotations fixing the time-axis t, the requirement
that G be a subgroup of one of the groups Gal, cPoi or cEucl is logically equivalent
to the somewhat simpler requirement that, for all g ∈ G: g[t] is a line, and if
g[t] = t then g is a trivial transformation (i.e. g is a linear transformation that
preserves Euclidean length and fixes the time-axis setwise).

1 Introduction
Physical theories conventionally define coordinate systems and transformations using
values and functions defined over the field of reals, R. However, this assumption
is not well-founded in physical observation because all physical measurements yield
only finite-accuracy values — even quantum electrodynamics (QED), one of the most
precisely tested physical theories, is only accurate to around 12 decimal digits [26].
Since we have no empirical reason to make this assumption, it is worth investigating
what happens to our expectations of physical theories if we generalize by assuming
less about the physical quantities used in measurements. In this paper, we assume
only that every positive element in the ordered field of quantities has a square root,
but it is worth noting that special relativity can also be modelled over the field
of rational numbers [21], in which even this assumption fails. It remains an open
question whether the new results presented here generalize over arbitrary ordered
fields.

Starting in 1910, Ignatovsky’s [18, 19, 20] attempt to derive special relativity
assuming only Einstein’s principle of relativity initiated a new research direction
investigating the consequences of assuming the principle of relativity without Ein-
stein’s light postulate. However, Frank and Rothe [10] quickly identified (1911) that
hidden assumptions were implicitly used by both Einstein and Ignatovsky, and it is
still not uncommon over a century later to find hidden assumptions in related works.

One notable investigation was that of Borisov [7] (see also [17, §10, pp. 60-61]).
Borisov explicitly introduced all the assumptions used in his framework investigat-
ing the consequences of the principle of relativity. Then he showed that there are
basically two possible cases: either the world is classical and the worldview trans-
formations between inertial observers are Galilean; or the world is relativistic and
the worldview transformations are Poincaré transformations.1

In [23], we made Borisov’s framework even more explicit using first-order logic,
and investigated the role of his assumption that the structure of physical quantities

1 Metric geometries corresponding to these two structures also appear among Cayley-Klein
geometries; see, e.g., [32] and [28, §6].
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is the field of real numbers. We showed that over non-Archimedean fields there is a
third possibility: the worldview transformations can also be Euclidean isometries.2

In this paper, we present a general axiom system for kinematics using a simple
language talking only about quantities, inertial observers (coordinate systems), and
the worldview transformations between them. Our axiom system is based on just
a few natural assumptions, e.g., instead of assuming that the structure of physical
quantities is the field of real numbers we assume only that it is an ordered field
Q in which all non-negative values have square roots. Using this framework, we
investigate what happens if instead of the principle of relativity we make the weaker
assumption that space is isotropic. We show that isotropy is already enough to en-
sure that the worldview transformations are either Euclidean isometries, or Galilean
or Poincaré transformations; see Theorem 5.5 (Classification).

There is an abundance of axiom systems for special relativity in the literature
using various basic concepts and basic assumptions, see e.g., [5, 8, 13, 24, 27, 33,
29, 34]. It is natural to ask whether they all capture the same thing – and if not,
what is the significance of their differences? Recently, Andréka and Németi have
initiated a research project answering these questions by connecting two of these
axiom systems by interpretations (logical translation functions) as a first step, see
[4]. The investigation presented in this paper forms part of the wider Andréka–
Németi school’s general project of logic-based axiomatic foundations of relativity
theories, see e.g., [1, 2, 3]. Friend and Molinini [11, 12] discuss the significance of
this project and the underlying methodology from the viewpoints of epistemology
and explanation in science. One important feature of using a first-order logic-based
axiomatic framework is that it helps avoid hidden assumptions, which is fundamental
in foundational analyses of this nature. Another feature is that it opens up the
possibility of machine verification of the results, see e.g., [31, 16].

2 Framework
We are concerned in this paper with two sorts of objects, (inertial) observers
and quantities, which we represent as elements of non-empty sets IOb and Q,
respectively.

Observers are interpreted to be labels for inertial coordinate systems. Quantities
are used to specify coordinates, lengths and related quantities, and we assume that
Q is equipped with the usual binary operations, · (multiplication) and + (addition);
constants, 0 and 1 (additive and multiplicative identities); and a binary relation, ≤

2 That the principle of relativity is consistent with worldview transformations being Euclidean
isometries has previously been shown by Gyula Dávid [9].
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(ordering).
Although the results presented here can also be generalized to higher-dimensional

spaces (though not necessarily lower-dimensional ones — see Sect. 8), we assume
for definiteness that observers inhabit 4-dimensional spacetime, Q4, and locations
in spacetime are accordingly represented as 4-tuples over Q. We often write ~p , ~q
and ~r to denote generic spacetime locations.

For each pair of observers k, h ∈ IOb, we assume the existence of a function
wkh : Q4 → Q4, called the worldview transformation from the worldview of h
to the worldview of k, which we interpret as representing the idea that observers
may see (i.e. coordinatize) the same events, but at different spacetime locations:
whatever is seen by h at ~p is seen by k at wkh (~p ).3

Formally, this framework corresponds to using a two sorted first-order language
where the models are of the following form

M = (IOb,Q,+, ·, 0, 1,≤,w),

where: IOb and Q are two sorts; + and · are binary operations on Q; 0 and 1 are
constants on Q; ≤ is a binary relation on Q; and w is a function from IOb×IOb×Q4

to Q4. In this language, the worldview transformation between fixed observers k
and h can be introduced as:

wkh (t, x, y, z) def= w(k, h, t, x, y, z).

3 Axioms
In this section, we describe the general axiom system, KIN, used to represent kine-
matics in this paper. Additional axioms representing spatial isotropy and the special
principle of relativity will be introduced in Section 4.

3.1 Quantities
We assume that (Q,+, ·, 0, 1,≤) exhibits the most fundamental algebraic properties
expected of the real numbers (R), so that calculations can be performed and results
compared with one another. We also assume that square-roots are defined for non-
negative values (i.e. that Q is a Euclidean field [25]).

3 In more general theories, for example in general relativity, this relation need not be a function
or even defined on the whole Q4, because an event seen by k may be invisible to h or may appear
at one or more different spacetime locations from h’s point of view, but in this paper we assume
that all observers completely and unambiguously coordinatize the same universe — they all see the
same events, albeit in different locations relative to one another.
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AxEField (Q,+, ·, 0, 1,≤) is a Euclidean field, i.e. a linearly ordered field in which
every non-negative element has a square root.

Assuming AxEField also means that the derived operations of subtraction (−), divi-
sion (/), square root (

√
), dot product of vectors (·), Euclidean length of vectors,

etc., are well-defined on their domains, and allows us to assume the usual vector
space structure of Q4 over Q. We will generally omit the multiplication symbol.

3.2 Worldview transformations
The following axiom states informally that: (i) the worldview transformation from
an observer’s worldview to itself is just the identity transformation, Id : Q4 → Q4;
and (ii) switching from k’s worldview to h’s and then to m’s has the same effect as
switching directly from k’s worldview to m’s.

AxWvt For all k, h,m ∈ IOb:

(i) wkk = Id;
(ii) wmh ◦ whk = wmk.

3.3 Lines, worldlines and motion
By assumption, all of the locations under discussion in this paper are points in Q4.
We often write (t, x, y, z) to indicate the coordinates of a generic point in Q4. Given
any n > 0 and ~p = (p1, p2, . . . , pn) ∈ Qn, its squared length, |~p |2, is defined by

|~p |2 def= p2
1 + . . .+ p2

n.

(This is just the standard Euclidean squared length of ~p .)
To simplify our notation, we write ~o def= (0, 0, 0, 0) for the zero-vector (origin)

in Q4. More generally, we sometimes write ~0 for any tuple of zeroes (the length
will always be clear from context). We define the time-axis, t, and the present
simultaneity, S, to be the set

t def= {(t, 0, 0, 0) : t ∈ Q}

and the spatial hyperplane

S def= {(0, x, y, z) : x, y, z ∈ Q},
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respectively. We write ~t for the unit time vector (1, 0, 0, 0), and likewise ~x def=
(0, 1, 0, 0), ~y def= (0, 0, 1, 0) and ~z def= (0, 0, 0, 1). If ~p = (t, x, y, z) ∈ Q4, we call ~p t

def= t

the time component, and ~p s def= (x, y, z) the space component, of ~p . Finally, if
t ∈ Q and ~s ∈ Q3, we write (t,~s ) for the point with time component t and space
component ~s .

The worldline of observer h according to observer k is defined as

wlk(h) def= wkh [t] .

In particular, if we assume AxWvt and take k = h, we have wlh(h) = whh [t] = t.
This corresponds to the convention that observers consider themselves to be at the
spatial origin relative to which measurements are made: from their own viewpoint
their worldline is the time-axis; and wlk(h) = wkh[t] = wkh[wlh(h)] describes the
same worldline but from k’s point of view.

When we say that one observer moves inertially with respect to another, we
mean that neither of them accelerates relative to the other, so that linear motions
seen by one remain linear when seen by the other. Since each observer considers its
own worldline to be the line t, we would expect all inertial observers to agree that
each others’ world lines are lines.

Formally, a subset ` ⊆ Q4 is a line iff there are ~p ,~v ∈ Q4, where ~v 6= ~o and
` = {~p +λ~v : λ ∈ Q}. The next axiom states that worldlines of observers according
to observers are lines.

AxLine For every k, h ∈ IOb,wlk(h) is a line.

According to AxLine, the worldlines of observers are lines, and by AxWvt each
observer considers its own worldline to be the time-axis; we can therefore express the
idea that observer k is moving according to observer m by saying that wlm(k) is
not parallel to t,4 or more simply, that wmk takes the time-unit vector~t and the zero-
vector ~o to coordinate points having different spatial components, i.e. wmk

(
~t
)
s 6=

wmk (~o )s. In the same spirit, we say that k is at rest according to m iff wmk(~t )s =
wmk(~o )s.

We will sometimes need to assume explicitly the existence of observers moving
relative to one another, which we express using the following formula:

∃MovingIOb There are observers m, k ∈ IOb such that wmk
(
~t
)
s 6= wmk (~o )s.

4As one would expect, being in motion relative to another observer — and likewise being at
rest — are symmetric relations; see Lemma 6.6.2 (Rest).
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3.4 Trivial transformations
We say that a linear transformation T : Q4 → Q4 is a linear trivial transforma-
tion provided it fixes (setwise) both the time-axis and the present simultaneity, and
preserves squared lengths in both, i.e.

• if ~p ∈ t, then T (~p ) ∈ t and T (~p )2
t = ~p 2

t ; and

• if ~p ∈ S, then T (~p ) ∈ S and |T (~p )s|2 = |~p s|2.

Remark 3.1. Assuming AxEField, the statement that T is a linear trivial transfor-
mation is equivalent to the statement that T is a linear transformation that preserves
Euclidean length and fixes the time-axis setwise.5 2

A map f : Q4 → Q4 is a translation iff there is ~q ∈ Q4 such that f(~p ) = ~p +~q
for every ~p ∈ Q4. We write Trans for the set of all translations.

A transformation is called a trivial transformation if it is a linear trivial
transformation composed with a translation. We write Triv for the set of all trivial
transformations.

We say that two observers k and k′ are co-located if they consider themselves
to share the same worldline: wlk(k) = wlk(k′) (assuming AxWvt, this relationship is
symmetric; see Lemma 6.3.5 (Equal Worldlines)). The following axiom says that, if
observers k and k′ are co-located, then their worldviews are related to one another
by a trivial transformation. In other words, even though inertial observers following
the same worldline may use different coordinate systems, these coordinate systems
can only differ by using a different orthonormal basis for coordinatizing space and/or
a different direction and origin of time.6

AxColocate For all k, k′ ∈ IOb, if wlk(k) = wlk(k′), then wkk′ ∈ Triv.

5 This claim follows by Lemma 6.3.2 (Triv =
⋂

κIso), but can also be proven directly. Suppose
T is linear, preserves Euclidean length and fixes t setwise. It follows immediately that T (~t ) = ±~t .
Now choose any (0,~s ) ∈ S, and suppose T (0,~s ) = (t′,~s ′). Then |T (±1,~s )|2 = |T (0,~s )± T (~t )|2 =
(t′ ± 1)2 + |~s ′|2. Since |(1,~s )|2 = |(−1,~s )|2 and T preserves Euclidean length, we therefore require
(t′ + 1)2 + |~s ′|2 = (t′ − 1)2 + |~s ′|2, whence t′ = 0. Thus, T also fixes S, so it is a linear trivial
transformation. The converse is trivial.

6 By AxWvt, if k and k′ are co-located, i.e. wlk(k) = wlk(k′), then wkk′ [t] = t. This is why we
do not need to assume explicitly in the statement of AxColocate that co-located observers share the
same time-axis.
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3.5 Spatial rotations.
A linear trivial transformation R : Q4 → Q4 is called a spatial rotation iff it
preserves the direction of time and the orientation of space, i.e. R(~t ) = ~t and the
determinant of 3× 3 matrix [R(~x )s, R(~y )s, R(~z )s] is positive.7 We denote the set of
all spatial rotations by SRot.

The following axiom says that translated and spatially rotated versions of any
inertial coordinate system are also inertial coordinate systems.8

AxRelocate For all k ∈ IOb and for all T ∈ Trans ∪ SRot, there is h ∈ IOb such that
wkh = T .

The underlying axiom system with which we are concerned in this paper is

KIN def= {AxEField,AxWvt,AxLine,AxRelocate,AxColocate},

which defines our basic theory of the kinematics of inertial observers.

4 The special principle of relativity, isotropy and set of
worldview transformations

There are many different formal interpretations of the principle of relativity [14, 15,
22]. In this paper, we interpret the special principle of relativity (SPR) to mean
that all inertial observers agree as to how they are related to other observers, so
that no observer can be distinguished from any other in terms of the things they
can and cannot (potentially) observe. We express this via the following axiom:

AxSPR For every k, k∗, h ∈ IOb, there exists h∗ ∈ IOb such that wkh = wk∗h∗ ,

that is, given observers k, k∗, h, there must (potentially) be some h∗ which is related
to k∗ in exactly the same way that h is related to k, i.e. the geometrical structure
of spacetime cannot forbid such an observer.

7 This can be expressed in our formal language without any assumption about the structure of
quantities as: R(~x )2R(~y )3R(~z )4 + R(~x )4R(~y )2R(~z )3 + R(~x )3R(~y )4R(~z )2 > R(~x )4R(~y )3R(~z )2 +
R(~x )2R(~y )4R(~z )3 + R(~x )3R(~y )2R(~z )4, here R(~p )2, R(~p )3, and R(~p )4 denote the second, third
and fourth component of R(~p ) ∈ Q4, i.e. if R(~p ) = (t, x, y, z), then R(~p )2 = x, R(~p )3 = y, and
R(~p )4 = z.

8 The quantification over T in AxRelocate appears at first sight to be second-order. However,
because translations are determined by the image of the origin, while spatial rotations are deter-
mined by the images of the three spatial unit vectors, this axiom can be formalized in our first-order
logic language by quantifying over the 4 parameters representing the image of the origin and the
12 parameters representing the images of the three spatial unit vectors.
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In contrast, isotropy refers to the weaker constraint that there is no distin-
guished direction in space, i.e. no matter which direction we face, we should be able
to perform the same experiments and observe the same outcomes. Isotropy can be
expressed in much the same way as SPR, except that we only require equivalence
as to what can be observed (h) when the relevant observers (k and k∗) are related
via a spatial rotation (see Figure 1):

AxIsotropy For every k, k∗, h ∈ IOb, if wkk∗ ∈ SRot, there exists h∗ ∈ IOb such that
wkh = wk∗h∗ .

∀k
h

∀h

∀k∗

h∗
∃h∗

wkh

wk∗h∗

wkh = wk∗h∗

Figure 1: Isotropy and the special principle of relativity. The special principle,
AxSPR, says that given any k, h and k∗, there exists an h∗ that is related to k∗ the
same way that h is related to k (i.e. there are no distinguished inertial coordinate
systems). Spatial isotropy, AxIsotropy, is similar, except that we only require h∗ to
exist when wkk∗ is a spatial rotation (i.e. rotating ones spatial coordinate system
has no effect on what can and cannot potentially be seen).

In order to investigate these ideas, we will need to consider various sets of world-
view transformations, and attempt to establish both their algebraic properties and
the relationships between them. The setWk of worldview transformations associated
with a specific observer k ∈ IOb will be defined by

Wk
def= {wkh : h ∈ IOb}

and the set of all worldview transformations is then given by

W def= {wkh : k, h ∈ IOb} =
⋃
{Wk : k ∈ IOb}.
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Wk

k

b

a

c

a

b

c

wka

wkb

wkc
. . .

Figure 2: The set Wk of all worldview transformations into k’s coordinate sys-
tem. For each observer a, b, c, . . . , the set Wk contains the associated transformation
wka,wkb,wkc, . . . .

Using these notations AxSPR can be reformulated as saying that all inertial
observers have essentially the same worldview, i.e. Wk = Wk∗ for all k, k∗ ∈ IOb.
Although it is not immediately obvious that any Wk can form a group, if we assume
AxWvt it can be proven that AxSPR is equivalent to saying that there is at least one
k for which Wk forms a group under composition, which is itself equivalent to saying
that Wk = W. For the proof of this and other equivalent formulations of AxSPR,
see [23, Prop. 2.1]. Similarly, AxIsotropy is equivalent to saying, for all k, k∗ ∈ IOb,
if wkk∗ ∈ SRot, then Wk = Wk∗ .

Remark 4.1. We have already noted that AxSPR entails AxIsotropy, so that the
special principle of relativity is at least as strong assumption as spatial isotropy. In
fact, it is strictly stronger, because W is a group in all models of KIN + AxIsotropy,
but Wk need not be. In particular, therefore, KIN + AxIsotropy does not imply
AxSPR. This remains true even if we add the restriction that (Q,+, ·, 0, 1,≤) is the
ordered field of real numbers. However, if we add the assumption that co-located
observers agree on the direction of time, then it can be shown that KIN + AxIsotropy
implies AxSPR.

For easy reference, Table 1 summarizes the axioms used in this paper and dis-
cussed above.
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KIN Axiom Description

X AxEField the set Q of quantities is an ordered field in which all non-
negative values have square roots

X AxWvt
wkk transforms k’s worldview to itself identically; and going
from k’s worldview to h’s and then to m’s is same as going
directly from k’s worldview to m’s

X AxLine inertial observers see each other’s worldlines as lines

X AxColocate if two observers are co-located, their worldviews are triv-
ially related to one another

X AxRelocate translated and spatially rotated versions of inertial coordi-
nate systems are also inertial

AxSPR the special principle of relativity

AxIsotropy isotropy of space

Table 1: Our axioms and their intuitive meanings.

5 Main theorems

First let us introduce the transformations that will be used in this paper to char-
acterize the worldviews of observers. In this section, we assume that (Q,+, ·, 0, 1)
is a field. Table 2 summarizes the various transformation groups referred to in the
theorems.

Trans translations
SRot spatial rotations
Triv trivial transformations
κIso κ-isometries
cPoi c-Poincaré transformations = 1/c2 Iso
cEucl c-Euclidean transformations = −1/c2 Iso
Gal Galilean transformations = 0Iso

Table 2: Transformation groups considered in this paper.
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5.1 κ-isometries
Given ~p = (t, x, y, z), the (squared) κ-length of ~p is defined by

‖(t, x, y, z)‖2κ
def= t2 − κ(x2 + y2 + z2),

or in other words,
‖~p ‖2κ

def= ~p 2
t − κ|~p s|2.

Taking κ = 1 gives the squared Minkowski length ‖~p ‖21 = t2 − (x2 + y2 + z2) of ~p ,
while κ = −1 gives its squared Euclidean length, ‖~p ‖2−1 = |~p |2 = t2 + (x2 + y2 + z2).

Definition 5.1.1 (κ-isometry, κ 6= 0). If κ 6= 0, we call a linear transformation
f : Q4 → Q4 a linear κ-isometry provided it preserves κ-length, i.e. for every
~p ∈ Q4,

‖f(~p )‖2κ = ‖~p ‖2κ .

In the case of κ = 0, we require more than simply preserving 0-length, for while
0-length takes account of temporal extent, it ignores spatial structure. We therefore
need to add an extra condition to the definition of 0-isometry to ensure that spatial
structure is also respected when considering points with equal time coordinates.9

Definition 5.1.2 (κ-isometry, κ = 0). Let f : Q4 → Q4 be a linear transformation.
We call f a linear 0-isometry provided, for every ~p ∈ Q4,

f(~p )2
t = ~p 2

t and
(
~p t = 0 ⇒ |f(~p )s|2 = |~p s|2

)
. (5.1)

We call the composition of a linear κ-isometry and a translation a κ-isometry,
and write κIso for the set of all κ-isometries.

Definition 5.1.3 (cPoi, cEucl and Gal). For c > 0, 1/c2-isometries will be called
c-Poincaré transformations and −1/c2-isometries will be called c-Euclidean
isometries. Parameter c in c-Poincaré transformations corresponds to the “speed
of light”. A 0-isometry is also called a Galilean symmetry. We denote these sets
of transformations by cPoi, cEucl and Gal, respectively.

It is easily verified that each of these sets forms a group under function compo-
sition. In general, when we speak about a set G of transformations as a group, we
mean G under function composition, i.e. (G, ◦). As usual, we write H ≤ G to mean
that H is a subgroup of G, and H < G to mean that the inclusion is proper.

9Although every 0-isometry preserves 0-length, the converse is not true.
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We note that 1-Poincaré transformations form the usual group Poi of Poincaré
transformations and 1-Euclidean isometries form the usual group Eucl of Euclidean
isometries. Notice also that trivial transformations, translations and spatial rota-
tions are κ-isometries for all values of κ. Moreover, by Lemma 6.3.2 (Triv = ⋂

κIso),

Trans ∪ SRot ⊂ Triv =
⋂

κ∈Q
κIso = xIso ∩ yIso (5.2)

for any two distinct x, y ∈ Q. It follows immediately that Trans ∪ SRot ⊂ cPoi ∩
cEucl ∩ Gal.

5.2 The theorems
Our first result, Theorem 5.1 (Characterisation), tells us that if space is isotropic
then all worldview transformations are κ-isometries for some κ, and shows how to
calculate the value of κ in the case that two observers can be found which move
relative to one another.

Theorem 5.1 (Characterisation). Assume KIN+AxIsotropy. Then there is a κ ∈ Q
such that the set of worldview transformations is a set of κ-isometries, i.e.

W ⊆ κIso.

In other terms,

either W ⊆ cPoi, W ⊆ Gal, or W ⊆ cEucl for some c > 0.

Moreover,

• if ¬∃MovingIOb is assumed, then W ⊆ Triv;

• if ∃MovingIOb is assumed, this κ is uniquely determined by the wmk-images of
~o and ~t where m and k are observers moving relative to one another, and can
be calculated as

κ =
∣∣wmk

(
~t
)
t − wmk (~o )t

∣∣2 − 1
∣∣wmk

(
~t
)
s − wmk (~o )s

∣∣2 .

For all positive c ∈ Q, the group cPoi is isomorphic to group Poi (via natural
inner automorphisms of the affine group, representing the effects of changing the
spatial or temporal units of measurements) and similarly group cEucl is isomorphic
to the Euclidean transformation group Eucl (via the same inner automorphisms);
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see [23, Prop. 6.9]. So essentially there are only three nontrivial cases: either all the
worldview transformations are relativistic; all of them are classical; or all of them
are Euclidean isometries. Subject to this constraint, however, Theorem 5.3 (Model
Construction) says that all ‘reasonable’ transformation groups (groups containing
the translations and spatial rotations, which we know must be present) can occur
as the group of worldview transformations in a model of KIN + AxSPR.

To present a general model construction, let us write Sym(Q4) for the set of all
permutations of Q4. Given any transformation group G ≤ Sym(Q4), we define a
model MG of our language by taking IOb := G and wmk := m ◦ k−1 for k,m ∈ G.
Theorem 5.2 (Satisfaction) connects the axioms of KIN to properties of G.

Theorem 5.2 (Satisfaction). Let G ≤ Sym(Q4). Then

(a) MG satisfies AxWvt, AxSPR and W = G.

(b) MG satisfies AxRelocate iff SRot ∪ Trans ⊆ G.

(c) MG satisfies AxLine iff g[t] is a line for all g ∈ G.

(d) MG satisfies AxColocate iff g ∈ Triv whenever g ∈ G and g[t] = t.

Theorem 5.3 (Model Construction). Assume AxEField. Let G be a group such that

• SRot ∪ Trans ⊆ G ≤ cPoi for some c ∈ Q; or

• SRot ∪ Trans ⊆ G ≤ cEucl for some c ∈ Q; or

• SRot ∪ Trans ⊆ G ≤ Gal.

ThenMG is a model of KIN + AxSPR for which W = G.

By Theorem 5.1 (Characterisation), Theorem 5.3 (Model Construction) and The-
orem 5.2 (Satisfaction), in order to determine whether a group of symmetries has to
be a subgroup of one of the groups cPoi, cEucl and Gal, it is sufficient to consider its
members’ actions on t:

Theorem 5.4 (Determination). Let (Q,+, ·, 0, 1,≤) be a Euclidean field, and let G
be a group satisfying SRot ∪ Trans ⊆ G ≤ Sym(Q4). Then

(i) For all g ∈ G, g[t] is a line, and
if g[t] = t, then g ∈ Triv. ⇐⇒ (ii) G ≤ cPoi, G ≤ cEucl or G ≤ Gal

for some positive c ∈ Q.
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Our next result, Theorem 5.5 (Classification), tells us that we can classify all
possible models by looking at how observers’ clocks run relative to one another.
Based on the difference between the time components of the wmk-image of ~t and ~o ,
we can decide whether observer k’s clock is fast, slow or accurate relative to observer
m’s clock; see Figure 3. Using these notions, we can capture the following situations:

∃SlowClock There are observers m, k ∈ IOb such that
∣∣wmk

(
~t
)
t − wmk (~o )t

∣∣ > 1.

∃FastClock There are observers m, k ∈ IOb such that
∣∣wmk

(
~t
)
t − wmk (~o )t

∣∣ < 1.

∃MovingAccurateClock There are observers m, k ∈ IOb such that

wmk
(
~t
)
s 6= wmk (~o )s and

∣∣wmk
(
~t
)
t − wmk (~o )t

∣∣ = 1.

∀MovingClockSlow For all observers m, k ∈ IOb,

if wmk
(
~t
)
s 6= wmk (~o )s , then

∣∣wmk
(
~t
)
t − wmk (~o )t

∣∣ > 1.

∀MovingClockFast For all observers m, k ∈ IOb,

if wmk
(
~t
)
s 6= wmk (~o )s , then

∣∣wmk
(
~t
)
t − wmk (~o )t

∣∣ < 1.

∀ClockAccurate For all observers m, k ∈ IOb,
∣∣wmk

(
~t
)
t − wmk (~o )t

∣∣ = 1.

Theorem 5.5 (Classification). Assume KIN+AxIsotropy. Then precisely one of the
following four cases holds:

1. There exists a slow clock (∃SlowClock). In this case, there exists a moving
observer (∃MovingIOb), all moving clocks are slow (∀MovingClockSlow), and

W ⊆ cPoi for some positive c ∈ Q.
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~o~o ~o

~t~t ~t

mmm k kk k k k

wmk

wmk

wmk

wmk

wmk

wmk

11 1

> 1

< 1

1

slow clock fast clock accurate clock

Figure 3: k’s clock can be fast, slow or accurate according to m

2. There exists a fast clock (∃FastClock). In this case, there exists a moving
observer (∃MovingIOb), all moving clocks are fast (∀MovingClockFast), and

W ⊆ cEucl for some positive c ∈ Q.

3. There exists a moving accurate clock (∃MovingAccurateClock). In this case, all
clocks are accurate (∀ClockAccurate) and

W ⊆ Gal.

4. There are no moving observers (¬∃MovingIOb). In this case,

W ⊆ Triv.

By Theorem 5.6 (Consistency), all of these situations can indeed arise.

Theorem 5.6 (Consistency). The following axiom systems are all consistent (they
all have models):

1. KIN + AxSPR + ∃SlowClock,

2. KIN + AxSPR + ∃FastClock,

3. KIN + AxSPR + ∃MovingAccurateClock,

4. KIN + AxSPR + ¬∃MovingIOb.
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6 Subsidiary theorems and lemmas

Because we use only a small number of basic axioms, we have a large number of
intermediate lemmas to prove before we can prove our main theorems. This section
is accordingly split into six subsections, each focussing on a key stage in the overall
proof of our main findings. Each stage builds on its predecessor(s) and together they
establish the following subsidiary theorems. Informally stated, they assert (subject
to various conditions) that:

Theorem 6.1 (Observer Lines Lemma)
If ` is a possible worldline, then all lines of the same slope as ` are also possible
worldlines.

Theorem 6.2 (Line-to-Line Lemma)
Each worldview transformation is a bijection taking lines to lines, planes to
planes and hyperplanes to hyperplanes.

Theorem 6.3 (tx-Plane Lemma)
If wkm maps the tx-plane to itself, then it also maps the yz-plane to itself;
moreover, if wkm is linear, there is some positive λ such that |wkm(~p )| = λ|~p |
for all ~p in the yz-plane.

Theorem 6.4 (Same-Speed Lemma)
Suppose at least one observer considers h and k to be travelling with the same
speed. Then whk is a κ-isometry for some κ.

Theorem 6.5 (Fundamental Lemma)
Suppose no observers move with infinite speed, and that speedk(m) = u > 0.
Then there exists ε > 0 for which, given any positive v ≤ u+ ε, there is some
h with speedk(h) = v and speedm(h) = speedm(k).

Theorem 6.6 (Main Lemma)
There exists at least one observer k and one κ for which all worldview trans-
formations wmk involving observers m who agree with k about the origin are
κ-isometries.

The order of implications in the proofs that follow is:
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Same-Speed

$$Observer
Lines

// Line-to-Line // tx-Plane

99

&&

Main

Fundamental

99

6.1 Observer Lines Lemma
We say that a subset ` ⊆ Q4 is an observer line for k if there is some observer
h for which ` = wlk(h), and write ObLines(k) for the set of k-observer lines. We
say that ` is an observer line if there is some k for which it is an observer line. By
AxLine, all observer lines are lines (because they are worldlines). In this section, we
prove that if k can see an observer travelling along a worldline, then every other line
with the same slope is also a worldline as far as k is concerned; there are none of
these lines from which observers are banned.

Now suppose AxEField holds. If ` is a line and ~p , ~q are distinct points in `, we
define its slope by

slope(`) def=
{
|~p s−~q s|/|~p t−~q t| if ~p t 6= ~q t,
∞ otherwise .

Theorem 6.1 (Observer Lines Lemma). Assume AxEField, AxWvt, AxRelocate,
AxLine and AxIsotropy. Suppose either

(a) slope(`) = slope(`′) 6=∞; or else

(b) slope(`) = slope(`′) = ∞ and there exist ~p ∈ ` and ~q ∈ `′ whose time coordi-
nates are equal.

Then for any observer k, we have ` ∈ ObLines(k) iff `′ ∈ ObLines(k).

In order to prove this result, we require various supporting lemmas (the more
elementary ones are re-used in subsequent proofs). These lemmas refer to a concept
we call F -transformation that relates the worldviews of any two observers via that
of a third (see Figure 4). To illustrate the concept, suppose that I am observing
two planets, k and k∗, in the night sky. From my point of view, people living on
those planets would see the world quite differently, but they nonetheless see the
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same world I do, so I ought to be able to find some function (F ) that transforms
“what I think k sees” into “what I think k∗ sees”. From my point of view, I can say
that “k∗ is an ‘F -transformed’ version of k.”

Definition 6.1.1 (F -transforms). Given any bijection F : Q4 → Q4, we say that
k∗ is an F -transformed version of k according to h, and write k F

;h k
∗ if

whk∗ = F ◦ whk. (6.1)

2

Remark 6.1. Assuming AxWvt, k Id
;h k

∗ is equivalent to wk∗k = Id, in particular
k

Id
;h k; relations k

F
;h k

∗ and k∗ G
;h k

′ imply k
G◦F
; h k

′; and k
F
;h k

∗ implies
k∗ F

−1
; h k.

worldview of h

F

F

k k
∗

whk∗whk

Worldline Relocation

k
R
❀h k

∗

k
F
❀h k

∗

wlh(k) wlh(k
∗
)

Observer Relocation

∃k
∗

∀R∀k

∀h

Figure 4: F -transforms (left) describe how h can transform what it considers to be
k’s worldview — and worldline (middle) — into k∗’s (Definition 6.1.1, Lemma 6.1.3
(Worldline Relocation)). Lemma 6.1.4 (Observer Rotation) tells us that all spatial
rotations can be interpreted as F -transforms (right).

6.1.1 Supporting lemmas

Some of these initial lemmas are quite elementary, but they form the bedrock of
what follows, and we need to prove them formally to ensure they definitely follow
from our somewhat restricted first-order axiom set. The supporting lemmas can be
informally described as follows:
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Lemma 6.1.2 (WVT)
This describes various elementary properties concerning worldview transfor-
mations. We often use these results without further mention.

Lemma 6.1.3 (Worldline Relocation)
If h can F -transform k into k∗, then that transformation maps k’s worldline
into k∗’s.

Lemma 6.1.4 (Observer Rotation)
Every spatial rotation can be interpreted as an F -transform.

Lemma 6.1.5 (Transformed Observer Lines)
If ` is an observer line for k, then whk[`] is an observer line for h.

Lemma 6.1.6 (Rotated Observer Lines)
If ` is an observer line for k, so is any spatially rotated copy of `.

Lemma 6.1.7 (Horizontal Rotation)
This is a technical lemma telling us when one pair of mutually orthogonal
horizontal vectors can be spatially rotated into another (where “horizontal”
means “orthogonal to the time-axis”).

Lemma 6.1.8 (Same-Slope Rotation)
If two lines have the same slope and both pass through the origin, it is possible
to spatially rotate one into the other.

Lemma 6.1.9 (Observer Line Intersections)
Suppose two intersecting lines have the same slope. If one of them is an
observer line for k, then so is the other.

Lemma 6.1.10 (Triangulation)
Suppose t′ is a line parallel to the time-axis, t, and that ~p is not on t′. Given
any positive λ we can find lines `1 and `2 which intersect at ~p , meet t′ at
different points, and have the same slope, λ. In other words, we can find an
isosceles triangle whose base is along t′ and vertex at ~p , and whose equal
non-base sides both have slope λ.

6.1.2 Proofs of the supporting lemmas

Lemma 6.1.2 (WVT). Assume AxWvt. Then, for every k, h,m ∈ IOb,

(i) wlk(k) = t;
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(ii) whk [wlk(m)] = wlh(m);

(iii) whk : Q4 → Q4 is a bijection from Q4 onto itself;

(iv) w−1
hk = wkh.

Proof. (i) wlk(k) = wkk[t] = Id[t] = t.
(ii) Since wlk(m) = wkm [t], we have whk [wlk(m)] = whk [wkm [t]] = whm [t] =

wlh(m), as required.
(iii), (iv): It follows from wkh ◦ whk = wkk = Id and whk ◦ wkh = whh = Id that

wkh and whk are mutual inverses, and hence that they are both bijections.

Lemma 6.1.3 (Worldline Relocation). Assume AxWvt, and suppose k F
;h k

∗ for
some bijection F : Q4 → Q4. Then F maps wlh(k) onto wlh(k∗); see Fig. 4 (middle).

Proof. Recall that k F
;h k

∗ means whk∗ = F ◦ whk. So

wlh(k∗) = whk∗ [t] = (F ◦ whk) [t] = F [wlh(k)] .

Lemma 6.1.4 (Observer Rotation). Assume AxEField, AxWvt, AxRelocate and
AxIsotropy. Then given any spatial rotation R ∈ SRot and k, h ∈ IOb, there ex-
ists an observer k∗ such that k R

;h k
∗; see Fig. 4 (right).

Proof. By AxRelocate, there exists an observer h∗ for which whh∗ = R. Because h
and h∗ are related via a spatial rotation, AxIsotropy tells us there exists k∗ ∈ IOb
which is related to h∗ the same way k is related to h, i.e. wh∗k∗ = whk. It follows
immediately that whk∗ = whh∗ ◦ wh∗k∗ = R ◦ whk, i.e. k R

;h k
∗, as claimed.

Lemma 6.1.5 (Transformed Observer Lines). Assume AxWvt. Then ` ∈ ObLines(k)
iff whk[`] ∈ ObLines(h).

Proof. This follows immediately from Lemma 6.1.2 (WVT), since all k-observer lines
are worldlines.

Lemma 6.1.6 (Rotated Observer Lines). Assume AxEField, AxWvt, AxRelocate
and AxIsotropy. If ` ∈ ObLines(k) and R ∈ SRot is any spatial rotation, then
R[`] ∈ ObLines(k).

Proof. Choose h ∈ IOb such that ` = wlk(h). By Lemma 6.1.4 (Observer Rotation),
there is some h∗ ∈ IOb for which h

R
;k h

∗, i.e. wkh∗ = R ◦ wkh. By Lemma 6.1.3
(Worldline Relocation), we have that wlk(h∗) = R[wlk(h)] = R[`], and this worldline
is in ObLines(k), as required.
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Lemma 6.1.7 (Horizontal Rotation). Let (Q,+, ·, 0, 1,≤) be an ordered field and
suppose ~p 1,~q 1,~p 2,~q 2 ∈ Q4 satisfy:

(a) ~p 1 and ~p 2 have the same length, as do ~q 1 and ~q 2:
|~p 1|2 = |~p 2|2 and |~q 1|2 = |~q 2|2;

(b) ~p 1 and ~q 1 are horizontal and mutually orthogonal:
~p 1 ·~t = ~q 1 ·~t = ~p 1 ·~q 1 = 0; and

(c) ~p 2 and ~q 2 are horizontal and mutually orthogonal:
~p 2 ·~t = ~q 2 ·~t = ~p 2 ·~q 2 = 0.

Then there exists a spatial rotation R ∈ SRot such that R(~p 1) = ~p 2 and R(~q 1) =
~q 2; see the left-hand side of Figure 5.

~t

~p 1

~p 1

~p 2

R

R

R

R

R~q 1

~q 2

Lemma 6.1.7 (Horizontal Rotation)

ℓ1

ℓ2

(0, (~p 1)s) (0, (~p 2)s)

~o

Lemma 6.1.8 (Same-Slope Rotation)

~p 2

Figure 5: Illustrations for Lemma 6.1.7 (Horizontal Rotation) and Lemma 6.1.8
(Same-Slope Rotation).

Proof. Consider the linear map that takes α~t + β~p 1 + γ~q 1 to α~t + β~p 2 + γ~q 2. It is
easy to see that this map is a linear Euclidean isometry between two subspaces of
Q4 which are each at most three-dimensional. Hence, by the refinement of Witt’s
theorem [30, Thm 234.1, p.234] there is an extension R : Q4 → Q4 which is a linear
Euclidean isometry with determinant 1. This R must be a spatial rotation, because
R(~t ) =~t .

Lemma 6.1.8 (Same-Slope Rotation). Let (Q,+, ·, 0, 1,≤) be a Euclidean field.
Assume `1 and `2 are lines such that slope (`1) = slope (`2) and ~o ∈ `1 ∩ `2. Then
there exists R ∈ SRot such that R [`1] = `2.
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Proof. Let ~p 1 ∈ `1 and ~p 2 ∈ `2 be such that ~p 1 6= ~o 6= ~p 2 and (~p 1)t = (~p 2)t, see the
right-hand side of Figure 5. Then |(0, (~p 1)s)|2 = |(0, (~p 2)s)|2. Taking ~q 1 = ~q 2 = ~o ,
Lemma 6.1.7 (Horizontal Rotation) now tells us there exists a spatial rotation R
that takes (0, (~p 1)s) to (0, (~p 2)s) and leaves ~o fixed. Since spatial rotations leave
time coordinates unchanged, this R takes ~p 1 to ~p 2, and since it also fixes the origin
it must take `1 to `2.

Lemma 6.1.9 (Observer Line Intersections). Assume AxEField, AxWvt, AxLine,
AxRelocate, and AxIsotropy. If two lines `1, `2 intersect one another and have equal
slope, then for any k ∈ IOb we have `1 ∈ ObLines(k) iff `2 ∈ ObLines(k).

t

~o

~p

ℓ1
ℓ2

wk∗k[ℓ2]wk∗k[ℓ1]

kk
∗

R

wk∗k

Figure 6: Illustration for the proof of Lemma 6.1.9 (Observer Line Intersections).

Proof. Let ~p be the point of intersection of `1 and `2, and let T be the translation
taking ~p to the origin, ~o . By AxRelocate, there exists some k∗ ∈ IOb such that
wk∗k = T ; see Figure 6.

Note first that the images of `1 and `2 under wk∗k are lines of equal slope because
wk∗k = T is a translation, and translations map lines to lines and leave slopes
unchanged. Moreover, both of these lines pass through T (~p ) = ~o , so Lemma 6.1.8
(Same-Slope Rotation) tells us there exists a spatial rotation R taking wk∗k[`1] to
wk∗k[`2].

The claim now follows. For suppose `1 is a k-observer line; we have to show
that `2 is also a k-observer line. Since wk∗k[`1] ∈ ObLines(k∗) by Lemma 6.1.5
(Transformed Observer Lines), it follows that wk∗k[`2] ∈ ObLines(k∗) as well, by
Lemma 6.1.6 (Rotated Observer Lines). Applying Lemma 6.1.5 (Transformed Ob-
server Lines) in the opposite direction now tells us that `2 ∈ ObLines(k), as required.

The converse follows by symmetry.
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Lemma 6.1.10 (Triangulation). Assume AxEField. Let t′ be a line parallel to the
time-axis and let ~p be any point not on t′. Given any positive λ ∈ Q, there exist
lines `1, `2 with

(i) slope(`1) = slope(`2) = λ,

(ii) ~p ∈ `1 ∩ `2,

(iii) `1 ∩ t′ 6= ∅,

(iv) `2 ∩ t′ 6= ∅,

(v) `1 ∩ `2 ∩ t′ = ∅.

t
′

ℓ1

ℓ2

~p
~q

~q 1

~q 2

Proof. Let ~q ∈ t′ be the point on t′ with ~q t = ~p t. We know that ~p s 6= ~q s because
~p 6∈ t′. Consider the points

~q 1 := ~q + (|~p s −~q s| /λ, 0, 0, 0) and ~q 2 := ~q − (|~p s −~q s| /λ, 0, 0, 0)

and let `1 be the line passing through ~p and~q 1, and `2 the line passing through ~p and
~q 2. Then direct calculation shows that `1 and `2 have the required properties.

6.1.3 Main proof

We now complete the proof of Theorem 6.1 (Observer Lines Lemma).
We use the word plane in the usual Euclidean sense to mean a 2-dimensional

slice of Q4, and refer to 3-dimensional ‘slices’ as hyperplanes. Formally, a subset
P ⊆ Q4 is a plane iff there are linearly independent vectors ~v , ~w 6= ~o ∈ Q4 and
a point ~p ∈ Q4, such that P = {~p + λ~v + µ~w : λ, µ ∈ Q} (hyperplanes are
defined analogously). By AxEField, the usual properties of Euclidean planes hold.
In particular, a plane P can be specified by giving a line ` ⊆ P and a point ~p ∈ P \`,
or three distinct non-collinear points ~p ,~q ,~r ∈ P , or two distinct but intersecting
lines in P . Moreover, given a line ` ⊆ P and a point ~p ∈ P \ `, there is exactly
one line `p through ~p that is parallel to ` (indeed, if we assume AxEField, the way
in which we have defined line and plane allows us to uniquely determine `p in the
usual way once ~p and ` are specified).

Proof of Theorem 6.1 (Observer Lines Lemma). Let `, `′ be lines of equal slope, i.e.
slope(`) = slope(`′). If ` = `′, there is nothing to prove, so assume that ` 6= `′. Also,
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if slope(`) = slope(`′) = 0, then ` and `′ are both parallel to the time-axis, and it
follows easily from AxRelocate that `, `′ ∈ ObLines(k).

Suppose, therefore, that slope(`) = slope(`′) 6= 0.
Note first that there exist ~p ,~q ∈ Q4 such that

~p ∈ `, ~q ∈ `′, ~p 6= ~q , and ~p t = ~q t.

This is true by assumption for case (b), where slope(`) = slope(`′) = ∞, and it is
easy to see that such ~p ,~q also exist in case (a) where slope(`) = slope(`′) is finite.10

Let ˆ̀be the line containing ~p and~q . Because ~p ,~q have the same time coordinate,
slope(ˆ̀) =∞; see Figure 7.

P ℓpℓq
ℓ

ℓ

ℓ′

ℓ′

~p

~p ~q

∞∞
~q

(a) finite slopes (b) infinite slopes

ℓ̂

ℓ̂∞

Figure 7: Illustration for the proof of Theorem 6.1 (Observer Lines Lemma)

We now consider cases (a) and (b) in turn.
Case (a): finite slopes. By assumption, 0 < slope(`) = slope(`′) 6= ∞ and

slope(ˆ̀) =∞. Let P be the plane containing ˆ̀ and parallel to t.11

Let tp be the line parallel to t which passes through ~p , and notice that this line
lies in P . Choose any point ~p ′ ∈ P \ tp and let λ = slope(`) = slope(`′). Then
Lemma 6.1.10 (Triangulation) tells us that we can find two distinct lines which pass
through ~p ′, lie in P (because they meet both ~p ′ and tp), and have slope λ. Applying
the translation taking ~p ′ to ~p , the images of those two lines will still lie in P and
still have slope λ, but will intersect at ~p . Similarly, we can find two distinct lines

10 Pick any point ~p on ` that isn’t on `′ and consider the ‘horizontal time slice’ containing it;
because `′ has finite slope, it must also pass through this time slice. Take ~q to be the corresponding
point of intersection on `′.

11P is parallel to t iff P contains a line parallel to t.
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of slope λ which lie in P and pass through ~q . Pick one of the lines passing through
~q , and call it `q. Since the two lines through ~p are distinct, they cannot both be
parallel to `q — let `p be one that isn’t. Since `p and `q are non-parallel lines lying
in the same plane, they must intersect.

The claim now follows. For suppose ` ∈ ObLines(k). Then ` and `p are lines of
equal slope which intersect at ~p , so Lemma 6.1.9 (Observer Line Intersections) tells
us that `p is also in ObLines(k), whence (applying the same argument twice more)
so are `q (because it meets `p) and `′ (since it meets `q).

Case (b): infinite slopes. If slope(`) = ∞, then ` and ˆ̀ are two lines of infinite
slope which intersect at ~p . Likewise, `′ and ˆ̀are lines of infinite slope that intersect
at ~q . As before it now follows by Lemma 6.1.9 (Observer Line Intersections) that

` ∈ ObLines(k)⇐⇒ ˆ̀∈ ObLines(k)⇐⇒ `′ ∈ ObLines(k).

In both cases, therefore, we have ` ∈ ObLines(k) ⇐⇒ `′ ∈ ObLines(k), as re-
quired.

6.2 Line-to-Line Lemma
Theorem 6.2 (Line-to-Line Lemma). Assume AxEField, AxWvt, AxLine, AxIsotropy,
AxRelocate and ∃MovingIOb. Then given any k, h ∈ IOb, the worldview transforma-
tion whk is a bijection that takes lines to lines, planes to planes, and hyperplanes to
hyperplanes.

6.2.1 Supporting lemmas

A number of the supporting lemmas refer to the concept of an observer line triad:

Definition 6.2.1 (Observer Line Triads). If `1, `2, `3 ∈ ObLines(k) are three (nec-
essarily coplanar) lines, each pair of which intersect in a point, and whose pairwise
intersections are not collinear, we shall call the set {`1, `2, `3} an observer line triad
for k, or simply a k-triad. 2

The lemmas can be described informally as follows:

Lemma 6.2.4 (Speed)
Speeds are well-defined, and the terms at rest and in motion have their ex-
pected meanings.

Lemma 6.2.5 (Triads)
If one observer considers that three worldlines form a triad, all other observers
agree.
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Lemma 6.2.6 (Plane-to-Plane)
Suppose plane P contains a k-triad whose slopes are either all finite or else all
infinite. Then whk[P ] is contained in a plane.

Lemma 6.2.7 (Infinite Speeds ⇒ Lines are Observer Lines)
If infinite speeds occur, then all lines are observer lines.

6.2.2 Proofs of the supporting lemmas

Definition 6.2.2. Suppose AxEField and AxLine holds. If ` = wlk(h), we call the
slope, slope(`), of line ` the speed of h according to k, i.e.

speedk(h) def= slope(wlk(h)).

Definition 6.2.3. Recall that observer k ∈ IOb is moving according to observer
m ∈ IOb iff wmk(~t )s 6= wmk(~o )s and at rest according to m otherwise. We say
that observer k ∈ IOb is moving instantaneously according to observer m iff
wmk(~t )t = wmk(~o )t.

Lemma 6.2.4 (Speed). Assume AxWvt, AxEField and AxLine. Then for everym, k ∈
IOb, speedm(k) is well-defined, and

• k is at rest according to m iff speedm(k) = 0,

• k is moving according to m iff speedm(k) 6= 0, and

• k is moving instantaneously according to m iff speedm(k) =∞.

Proof. By AxEField and AxLine, it follows that speedm(k) is unambiguously defined
for all k and m. The proof is straightforward after noticing that wmk(~t ) 6= wmk(~o )
which holds because wmk is a bijection by Lemma 6.1.2 (WVT).

Lemma 6.2.5 (Triads). Suppose AxEField, AxWvt, AxLine. Let k, h ∈ IOb. If
T = {`1, `2, `3} is a k-triad, then whk[T ] := {whk[`1],whk[`2],whk[`3]} is an h-triad.

Proof. Each `i is a k-observer line, so by Lemma 6.1.5 (Transformed Observer Lines),
each `′i = whk[`i] is an h-observer line (and hence a line). Because whk is a bijection,
we know that any two of the lines in whk[T ] has non-empty intersection, and that
they have three distinct pairwise intersections in total. It follows that the three lines
are coplanar and that their three pairwise intersection points are not collinear. That
is, whk[T ] is an h-triad as claimed.
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Lemma 6.2.6 (Plane-to-Plane). Assume AxEField, AxWvt, AxLine, AxRelocate and
AxIsotropy. Choose k, h ∈ IOb, let P be a plane which contains a k-triad {`1, `2, `3},
and suppose that the slopes of these lines are either all finite, or else all infinite.
Then whk[P ] is contained in a plane.

P

P ′
whk

whk

~p
whk(~p )

ℓ

k h

Figure 8: Illustration for the proof of Lemma 6.2.6 (Plane-to-Plane)

Proof. According to Lemma 6.2.5 (Triads), the lines whk[`i] (i = 1, 2, 3) form an
h-triad. We can therefore define P ′, the plane spanned by this triad. We will prove
that whk[P ] ⊆ P ′.

Choose any ~p ∈ P . If ~p lies on any of the lines `i, then the conclusion whk(~p ) ∈
P ′ is trivial. Suppose, then, that ~p does not lie on any of these lines. Because the
lines form a triad we can draw a line ` through ~p which is parallel to one of the lines
(wlog, `1) and which intersects the other two lines (`2 and `3) in distinct points.

We claim that ` ∈ ObLines(k). If all three lines have finite slope, this follows
from Theorem 6.1 (Observer Lines Lemma) because ` and `1 have equal (hence finite)
slopes and `1 is a k-observer line. On the other hand, if all three lines (and hence
also `) have infinite slope, this means there exist t1, t2 and t3 such that all points
on `i (i = 1, 2, 3) have time component ti. But we know that the lines intersect one
another, so we must have t1 = t2 = t3. Since ` lies in the plane spanned by these
lines it follows that points on ` share the same time component as points on `1, and
we can again apply Theorem 6.1 (Observer Lines Lemma) to ` and `1 to deduce that
` ∈ ObLines(k).

As claimed, therefore, ` is a k-observer line. Therefore, `, `2 and `3 form a k-triad
and Lemma 6.2.5 (Triads) tells us that whk[`], whk[`2] and whk[`3] form an h-triad.
It follows that whk[`] lies in the same plane as whk[`2] and whk[`3], i.e. P ′, and hence
whk(~p ) ∈ whk[`] ⊆ P ′, as required.
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The following formula says that instantaneously moving observers exists.

∃∞Speed There are observers m, k ∈ IOb such that wmk (~o )t = wmk
(
~t
)
t .

Lemma 6.2.7 (Infinite Speeds ⇒ Lines are Observer Lines). Assume AxEField,
AxWvt, AxLine, AxRelocate, AxIsotropy and ∃∞Speed. Then for any observer, every
line is an observer line.

P
P ′

ℓ1 ℓ2

ℓ3 ℓ′

1

ℓ′

3

ℓ∗

~q
~r

ℓ

~q ∗

~r ∗

tt

~p

~p ′

whk

hk

wlk(h)

Figure 9: Illustration for the proof of Lemma 6.2.7 (Infinite Speeds ⇒ Lines are
Observer Lines)

Proof. Choose k, h ∈ IOb such that speedk(h) =∞, and recall that this means that
slope(wlk(h)) = ∞. Thus, there exists some t ∈ Q such that every point on wlk(h)
has time component t. Let P be any ‘horizontal’ plane containing wlk(h), i.e. all
points in P have this same time component t. Then every line in P is in ObLines(k)
by Theorem 6.1 (Observer Lines Lemma) because every line in P is of slope ∞.

Choose ~p ∈ P\wlk(h), and notice that the plane P is determined by ~p and wlk(h).
It follows from Lemma 6.2.6 (Plane-to-Plane) that whk[P ] is contained in a plane
containing both whk(~p ) and whk[wlk(h)]. In other words, if we define ~p ′ = whk(~p ),
observe that whk[wlk(h)] = t, and define P ′ to be the plane generated by ~p ′ and t,
then whk[P ] ⊆ P ′.

We will show first that the reverse inclusion also holds, so that whk[P ] is the
whole of P ′. To this end, choose three lines `i (i = 1, 2, 3) in P which pass through
~p and whose intersections with wlk(h) are three distinct points; as observed above,
these are all k-observer lines. Thus, if we define, for each i = 1, 2, 3, `′i := whk[`i]
then `′1, `

′
2, `
′
3 and t (= whk[wlk(h)]) are all h-observer lines in P ′. Since whk is a
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bijection by Lemma 6.1.2 (WVT), all four of these lines are distinct and moreover,
each `′i passes through ~p ′, and they meet t in three distinct points.

Since at most one of the lines `′i can have infinite slope (and slope(t) = 0), we
have therefore shown that there exists in P ′ a k-triad of observer lines, all with finite
slope. By Lemma 6.2.6 (Plane-to-Plane), it follows that wkh[P ′] ⊆ P , and hence
P ′ ⊆ whk[P ]. Thus, whk[P ] = P ′, as claimed.

Now we will prove that every line in P ′ is in ObLines(h). Let `∗ ⊆ P ′ be a line
and let ~q ∗,~r ∗ be two distinct points on `∗. Then ~q := wkh(~q ∗), ~r := wkh(~r ∗) are
two distinct points in P because wkh[P ′] ⊆ P and wkh is a bijection. Let ` be the
line connecting ~q and ~r . Then ` lies in P , and must therefore be in ObLines(k).
Since whk[`] = `∗, it follows by Lemma 6.1.5 (Transformed Observer Lines) that
`∗ ∈ ObLines(h) as claimed.

Now we use the fact that t ⊆ P ′ to prove that every line is in ObLines(h). Let ` be
an arbitrary line. Then there is some `∗ ⊆ P ′ which has the same slope as ` because
t ⊆ P ′ and therefore lines of every positive slope occur in P ′ by Lemma 6.1.10
(Triangulation), while if slope(`) = 0 we can take `∗ = t, and if slope(`) = ∞ we
can take `∗ to be the line joining ~p ′ to ((~p ′)t,~0 ). Moreover, by using translations
‘up or down’ the time-axis as necessary, `∗ can be chosen such that there are ~p ∈ `,
~q ∈ `∗ such that ~p t = ~q t. We know that `∗ ∈ ObLines(h) because every line in P ′ is
in ObLines(h). But now ` ∈ ObLines(h) by Theorem 6.1 (Observer Lines Lemma).
So ObLines(h) is the set of all lines, as claimed.

Finally, it is easy to see that because ObLines(h) is the set of all lines for one
observer h, the same holds for every other observer m. For suppose `′ is a line, and
choose distinct points ~p ′,~q ′ ∈ `′. By Lemma 6.1.2 (WVT), the points ~p := whm(~p ′)
and ~q := whm(~q ′) are again distinct, so they define a line `. As we’ve just seen,
` must be an h-observer line. It follows from Lemma 6.1.5 (Transformed Observer
Lines) that wmh[`] is an m-observer line, and hence a line. This means that `′ and
wmh[`] are both lines passing through the two points ~p ′ 6= ~q ′, so they must be the
same line. In other words, `′ = wmh[`] ∈ ObLines(m), as claimed.

6.2.3 Main proof

We now complete the proof of Theorem 6.2 (Line-to-Line Lemma).

Definition 6.2.8 (Observer Planes). Whenever a plane P contains at least one k-
observer line, we shall say that P is an observer plane for k, or a k-observer plane.
We write ObPlanes(k) for the set of all k-observer planes. 2
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Proof of Theorem 6.2 (Line-to-Line Lemma). We have already observed that every
worldview transformation wkh is a bijection; we will show first that they also take
lines to lines.

Suppose m,m′ are observers in motion relative to one another, i.e. speedm(m′) >
0 — such observers exist by ∃MovingIOb and Lemma 6.2.4 (Speed). There are two
cases to consider, depending on whether speedm(m′) can or cannot be infinite.

(Case 1: ∃∞Speed): If m,m′ can be chosen such that speedm(m′) = ∞, then
Lemma 6.2.7 (Infinite Speeds ⇒ Lines are Observer Lines) tells us that all lines
belong to ObLines(h) and we know that wkh takes observer lines to observer lines
(which are again lines). So in this case, the result is immediate.

(Case 2: ¬∃∞Speed): Assume, therefore, that all observers move with finite
speed relative to one another (so that, given any observer o and ` ∈ ObLines(o), we
have slope(`) 6=∞); in particular, 0 < speedm(m′) 6=∞. Our proof will be given in
four stages; we will show that

(1) if a plane P contains a k-triad, then whk[P ] is again a plane;

(2) that for every observer o there is some ` ∈ ObLines(o) for which slope(`) 6= 0;

(3) if P ∈ ObPlanes(k) there exists a k-triad lying entirely within P . Items (1)
and (3) imply that whk maps k-observer planes to h-observer planes.

(4) Finally, we use this information to show that every line can be obtained as
the intersection of two k-observer planes — since the images of these planes
intersect in a line, the result then follows.

(1) We prove that if a plane P contains a k-triad, then whk[P ] is a plane. Let
{`1, `2, `3} be a k-triad contained in P , and for each i = 1, 2, 3 define `′i := whk[`i].
Because all observer lines are assumed to have finite slopes, Lemma 6.2.6 (Plane-
to-Plane) tells us that whk[P ] ⊆ P ′, where P ′ is the plane generated by {`′1, `′2, `′3}.
Since, by Lemma 6.2.5 (Triads), {`′1, `′2, `′3} is likewise an h-triad contained in P ′

and comprising finite-slope lines, we can again apply Lemma 6.2.6 (Plane-to-Plane)
to deduce that wkh[P ′] ⊆ P . Consequently, whk[P ] = P ′, and whk[P ] is a plane as
claimed.

(2) Next we show that for every observer o there is some ` ∈ ObLines(o) for
which slope(`) 6= 0. To this end, let `′ be the line parallel to wlm(m′) which passes
through the origin ~o , and note that this line cannot be the time-axis (which has
slope 0). Since wlm(m′) is an m-observer line, so is `′ (by Theorem 6.1 (Observer
Lines Lemma)). It follows that `′ and t = wlm(m) are non-identical intersecting m-
observer lines, whence wom[`′] and wom[t] are non-identical intersecting o-observer
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lines. If these both had zero slope, they would be the same line. So at least one of
them has non-zero slope and hence can be taken to be `.

(3) Now we prove that for every k, if P ∈ ObPlanes(k) there exists a k-triad
lying entirely in P . Suppose P ∈ ObPlanes(k), and choose some k-observer line
` = wlk(h) ⊆ P and some ~p ∈ P \ `, see Figure 10. Transforming to h’s worldview
we have whk[`] = whk[wlk(h)] = wlh(h) = t and ~p ′ := whk(~p ) 6∈ t. By (2), we
know there is some `′ ∈ ObLines(h) for which slope(`′) 6= 0, and by assumption
slope(`′) 6= ∞. Thus, by Lemma 6.1.10 (Triangulation) there exist lines `′1, `′2
passing through ~p ′ which have the same slope as `′, such that {t, `′1, `′2} is a k-triad
(see Figure 10), and we know that `′1, `′2 ∈ ObLines(h) by Theorem 6.1 (Observer
Lines Lemma). Taking `1 := wkh[`′1] and `2 := wkh[`′2], and recalling that wkh[t] = `,
it follows that all three lines are k-observer lines, and together they form a k-triad
lying entirely within P because their pairwise intersections comprise the point ~p 6∈ `
together with two distinct points on `.

~p
~p ′

ℓ′

2

ℓ′

1ℓ

wlk(h)P

ℓ′

k h

ℓ1

ℓ2

wlh(h)t

whk

Figure 10: Illustration for item (3) of the proof of Theorem 6.2 (Line-to-Line
Lemma).

Taken together, these results imply that whenever P ∈ ObPlanes(k), then whk[P ]
is a plane.

(4) Now let k ∈ IOb. We want to prove that any line can be obtained as the
intersection of two planes in ObPlanes(k). To see this, let ` be any line, and choose
any ~p ∈ `, see Figure 11. As we have just seen, we can also choose `′ ∈ ObLines(k)
such that slope(`′) 6= 0 and (by assumption) slope(`′) 6=∞. Let `1, `2 be lines passing
through ~p , having the same slope as `′, such that `, `1 and `2 are not co-planar (such
lines can be obtained from `′ by a combination of translation and spatial rotation).
It follows from Theorem 6.1 (Observer Lines Lemma) that `1, `2 ∈ ObLines(k). For
each i = 1, 2, let Pi be the plane containing `i and `. Then P1, P2 are k-observer
planes and their intersection is `, as required.
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ℓ′

P1

P2

ℓ

ℓ1

ℓ2

~p

Figure 11: Illustration for item (4) of the proof of Theorem 6.2 (Line-to-Line
Lemma).

It now follows, once again, that given any k, h ∈ IOb, the worldview trans-
formation whk is a bijection that takes lines to lines. For if ` is any line, choose
k-observer planes P1, P2 such that ` = P1 ∩ P2. Since whk is one-to-one, whk[`] =
whk[P1] ∩ whk[P2] and whk[P1] 6= whk[P2] (as P1 6= P2). Since whk[P1] and whk[P2]
are distinct intersecting planes, their intersection whk[`] is a line.

This completes the proof that lines are mapped to lines. The claim for planes
and hyperplanes now follows easily. Given a plane, choose three non-collinear points.
These determine three distinct intersecting lines and their images determine the
image plane. Likewise, we can choose four non-coplanar points in a hyperplane
whose images determine the image hyperplane.

6.3 The tx-Plane Lemma
Definition 6.3.1 (Principal Observer). We now fix one observer o for the rest of
the paper (the principal observer) and define

IObo
def= {k ∈ IOb : wko(~o ) = ~o }

to be the set of observers who agree with o (and hence each other) as to the location
of the origin. 2

Analogously to the definition of the time-axis t, the three spatial axes (x, y, and
z) are defined in the usual way as:

x def= {(0, x, 0, 0) : x ∈ Q}, y def= {(0, 0, y, 0) : y ∈ Q}, z def= {(0, 0, 0, z) : z ∈ Q}.
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We write plane(t,x) for the tx-plane and plane(y, z) for the yz-plane. More
generally, if ` 6= `′ are intersecting lines, then plane(`, `′) denotes the plane containing
` and `′.

Theorem 6.3 (tx-Plane Lemma). Assume KIN + AxIsotropy. Let m, k ∈ IObo such
that wkm[plane(t,x)] = plane(t,x). Then

wkm[plane(y, z)] = plane(y, z) (6.2)

and
if ~q ,~p ∈ plane(y, z) and |~p | = |~q |, then |wkm(~p )| = |wkm(~q )| . (6.3)

Moreover, if wkm is also linear, then there is a positive λ ∈ Q such that

|wkm(~p )| = λ|~p | (6.4)

for all ~p ∈ plane(y, z).

6.3.1 Supporting lemmas

The supporting lemmas can be informally described as:

Lemma 6.3.2 (Triv = ⋂
κIso)

A transformation is trivial if and only if it is a κ-isometry for at least two
different choices of κ.

Lemma 6.3.3 (IObo)
Elementary results concerning worldview transformations involving members
of IObo.

Lemma 6.3.4 (Affine)
Suppose f is a bijection on Q4 taking lines to lines. Then there is an auto-
morphism ϕ of Q and an affine transformation A such that f = A ◦ ϕ̃ (where
ϕ̃ is the coordinatewise extension of ϕ to Q4).

Lemma 6.3.5 (Equal Worldlines)
If any one observer considers m,m∗ ∈ IOb to have the same worldline, then
all other observers do so as well.

Lemma 6.3.7 (Colocate)
If two observers share the same worldline, the worldview transformation be-
tween them is trivial.
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6.3.2 Proofs of the supporting lemmas

Lemma 6.3.2 (Triv = ⋂
κIso). Assume that (Q,+, ·, 0, 1) is a field and choose

x, y ∈ Q such that x 6= y. Then

Triv = xIso ∩ yIso.

In particular, every trivial transformation is a Euclidean isometry.

Proof. (⊆) Choose any x, y ∈ Q, T ∈ Triv and ~p = (t,~s ) ∈ Q4. We will show that
T ∈ xIso. Without loss of generality we can assume that T is linear (since it is the
composition of a linear map with a translation, and all translations are x-isometries).
It follows that T (~p ) = T (t,~0 )+T (0,~s ). However, because T is trivial, we know that
it fixes and preserves squared lengths in both t and S, so there exist t′, ~s ′ such that
T (t,~0 ) = (t′,~0 ) and T (0,~s ) = (0,~s ′), where |t|2 = |t′|2 and |~s |2 = |~s ′|2. It follows
immediately that ‖~p ‖x = |t|2 − x|~s |2 = |t′|2 − x|~s ′|2 = ‖T (~p )‖x, i.e. T preserves
squared κ-lengths. It now follows that T ∈ xIso when x 6= 0, and because |~s |2 = |~s ′|2
no matter what the value of t, we also have T ∈ xIso when x = 0. Finally, because
x can be any value in Q we also have T ∈ yIso, and hence Triv ⊆ xIso ∩ yIso, as
claimed.

(⊇) To show the converse, choose any x 6= y ∈ Q and any T ∈ xIso ∩ yIso. We
will show that T ∈ Triv.

Assume first that T is linear. Choose any ~p = (t,~s ) ∈ Q4 and suppose T (~p ) =
(t′,~s ′). Because T is in both xIso and yIso, we have both ‖T (~p )‖x = ‖~p ‖x and
‖T (~p )‖y = ‖~p ‖y, i.e.

|t′|2 − x|~s ′|2 = |t|2 − x|~s |2 and (6.5)
|t′|2 − y|~s ′|2 = |t|2 − y|~s |2. (6.6)

Subtracting (6.6) from (6.5) gives

(x− y)|~s ′|2 = (x− y)|~s |2

whence division by (x− y) 6= 0 gives both

|~s ′|2 = |~s |2 (6.7)

and hence (by either (6.5) or (6.6))

|t′|2 = |t|2. (6.8)
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Therefore,

if t = 0, then t′ = 0, and
if ~s = ~0 , then ~s ′ = ~0 ,

which together with (6.7) and (6.8) show that T ∈ Triv.
If T is not itself linear, notice that we can write T = L◦τ where τ is a translation

and L is a linear x-isometry. Since T ∈ yIso and L = T ◦ τ−1 differs from T only by
a translation (and all translations are in yIso), we see that L is in yIso too. Thus, L
is a linear map in xIso∩ yIso (in other words, the “linear” and “translation” parts of
T are the same in xIso as in yIso) whence it follows from what we have just shown
that L is trivial. Because τ is trivial, we now conclude that T = L◦τ is itself trivial,
as claimed.

In particular, we have Triv = (0Iso∩−1Iso) ⊆ −1Iso, i.e. all trivial transformations
are Euclidean isometries.

Lemma 6.3.3 (IObo). Assume AxWvt. Let k, h ∈ IObo and m ∈ IOb. Then (a)–(c)
below hold.

(a) wkh (~o ) = ~o and ~o ∈ wlk(h).

(b) If wkm (~o ) = ~o , then m ∈ IObo.

(c) If R : Q4 → Q4, R (~o ) = ~o and k R
;h m, then m ∈ IObo.

Proof. The proof involves only straightforward applications of Lemma 6.1.2 (WVT),
and we omit the details.

Lemma 6.3.4 (Affine). Assume Q = (Q,+, ·, 0, 1,≤) is a Euclidean field, and
suppose f : Q4 → Q4 is a bijection taking lines to lines. Then there is an ordered-
field automorphism ϕ of Q and an affine transformation A on Q4 such that f = A◦ϕ̃,
where ϕ̃ : Q4 → Q4 is the map ϕ̃ : (t, x, y, z) 7→ (ϕ(t), ϕ(x), ϕ(y), ϕ(z)).

Proof. By the Fundamental Theorem of Affine Geometry [6, Thm. 2.6.3, p. 52],
there is an automorphism ϕ of field (Q,+, ·, 0, 1) and an affine transformation A
such that f = A ◦ ϕ̃. To complete the proof of the lemma, we only have to show
that ϕ is order preserving, i.e. ϕ(a) ≤ ϕ(b) iff a ≤ b. Since x ≤ y iff 0 ≤ y − x,
it is enough to show that 0 ≤ ϕ(z) iff 0 ≤ z — and this follows directly from the
Euclidean property, i.e. 0 ≤ d iff d = c2 for some c ∈ Q.

Lemma 6.3.5 (Equal Worldlines). Assume AxWvt. Suppose m,m∗ ∈ IOb, and
suppose wlk(m) = wlk(m∗) for some k ∈ IOb. Then wlj(m) = wlj(m∗) for all
j ∈ IOb.
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Proof. By Lemma 6.1.2 (WVT), wlj(m) = wjk[wlk(m)] = wjk[wlk(m∗)] = wlj(m∗)
for all j ∈ IOb.

Definition 6.3.6. Let m,m∗ ∈ IOb. If wlk(m) = wlk(m∗) for some k ∈ IOb, we say
that m and m∗ share the same worldline.

Lemma 6.3.7 (Colocate). Assume AxWvt and let m,m∗ ∈ IOb. Suppose m and
m∗ share the same worldline. If AxColocate holds, then wmm∗ ∈ Triv.

Proof. Saying thatm andm∗ share the same worldline means that wlk(m) = wlk(m∗)
for some k ∈ IOb. By Lemma 6.3.5 (Equal Worldlines), this equation therefore holds
for all choices of k, and in particular for k = m, i.e. wlm(m) = wlm(m∗). The claim
now follows immediately by AxColocate.

6.3.3 Main proof

We now complete the proof of Theorem 6.3 (tx-Plane Lemma).

Proof of Theorem 6.3 (tx-Plane Lemma). Let observers m, k ∈ IObo be such that
wkm[plane(t,x)] = plane(t,x). By Lemma 6.3.3 (IObo), wmk (~o ) = wkm (~o ) = ~o .

Let us first prove the following claim

If R ∈ SRot fixes plane(t,x) pointwise, then there exists k∗ ∈ IOb
such that (a) wkk∗ = wkm ◦R ◦ wmk and (b) wkk∗ ∈ Triv. (6.9)

Proof of claim (6.9). (a) By Lemma 6.1.4 (Observer Rotation), there exists some
k∗ such that k R

;m k∗, i.e. wmk∗ = R ◦wmk. Hence, wkk∗ = wkm ◦wmk∗ = wkm ◦R ◦
wmk. (b) By Lemma 6.1.3 (Worldline Relocation), we have wlm(k∗) = R[wlm(k)],
and because wlm(k) = wmk[t] ⊆ plane(t,x) and R leaves plane(t,x) pointwise-fixed,
we have that R[wlm(k)] = wlm(k). Thus, wlm(k∗) = R[wlm(k)] = wlm(k), i.e. k and
k∗ share the same worldline. So wkk∗ ∈ Triv by Lemma 6.3.7 (Colocate). Thus, (6.9)
holds.

Proof of statement (6.2). Choose any ~p ∈ plane(y, z) and write ~p ′ := wkm(~p ).
We have to prove that ~p ′ ∈ plane(y, z).

We will show that ~p ′ · ~q = 0 for every ~q ∈ plane(t,x), whence it follows easily
that ~p ′ ∈ plane(y, z).

By Lemma 6.3.4 (Affine), Theorem 6.2 (Line-to-Line Lemma) and the fact that
wkm(~o ) = ~o , we know that wkm can be written as a composition wkm = L ◦ ϕ̃ of a
linear transformation, L, and a map induced by a field automorphism, ϕ. Therefore,
wkm(−~p ) = L(ϕ̃(−~p )) = L(−ϕ̃(~p )) = −L(ϕ̃(~p )) = −wkm(~p ) = −~p ′.
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Figure 12: Illustration for the proof of (6.2) of Theorem 6.3 (tx-Plane Lemma).

Let R be the linear transformation that takes ~t ,~x ,~y ,~z to ~t ,~x ,−~y ,−~z , respec-
tively. Then R is a self-inverse spatial rotation that leaves plane(t,x) pointwise
fixed and takes ~p to −~p , see Figure 12. So by (6.9), there is k∗ ∈ IOb such that
wkk∗ ∈ Triv and wkk∗ = wkm ◦R ◦ wmk.

Let ~q ∈ plane(t,x) be arbitrary. Now note that wmk(~q ) ∈ plane(t,x), hence
R(wmk(~q )) = wmk(~q ). Note also that wkk∗(~p ′) = −~p ′ and wkk∗(~q ) = ~q because

wkk∗(~p ′) = wkm(R(wmk(~p ′))) = wkm(R(~p )) = wkm(−~p ) = −~p ′,

wkk∗(~q ) = wkm(R(wmk(~q ))) = wkm(wmk(~q )) = ~q .

Now, because wkk∗ is trivial, we know from Lemma 6.3.2 (Triv = ⋂
κIso) that it

is a Euclidean isometry. Moreover, because every trivial map is the composition of
a linear map and a translation, and since it fixes ~o (because wkm, wmk and R all do
so), wkk∗ must be linear.

It follows that |~q −~p ′| = |wkk∗(~q −~p ′)| = |wkk∗(~q )−wkk∗(~p ′)| = |~q +~p ′|, whence
(~q −~p ′) · (~q −~p ′) = (~q +~p ′) · (~q +~p ′), and so ~p ′ ·~q = 0.

Since this holds for any ~q ∈ plane(t,x), in particular it holds for both ~t and ~x .
Consequently, ~p ′ ∈ plane(y, z) as claimed.

Proof of statement (6.3). Let ~p ,~q ∈ plane(y, z) and write ~p ′ := wkm(~p ) and
~q ′ := wkm(~q ). Assume |~p | = |~q |. We want to prove that |~p ′| = |~q ′|. By Lemma 6.1.7
(Horizontal Rotation), there is a spatial rotation that takes ~x to ~x and ~p to ~q .
Let R′ ∈ SRot be such a spatial rotation. Then R′ leaves plane(t,x) pointwise
fixed and takes ~p to ~q . By (6.9), there is k∗ ∈ IOb such that wkk∗ ∈ Triv and

846



Groups of Worldview Transformations Implied by Isotropy of Space

~x

wkm

m k k
∗

plane(t, x)

plane(y, z)

wkk∗

~p ′~p ′ ~q ′

~p

~q

k k∗

R

R

Figure 13: Illustration for the proof of (6.3) of Theorem 6.3 (tx-Plane Lemma).

wkk∗ = wkm ◦R′ ◦ wmk, see Figure 13. It follows that

wkk∗(~p ′) = wkm(R′(wmk(~p ′))) = wkm(R′(~p )) = wkm(~q ) = ~q ′.

Finally, because wkk∗ is trivial, Lemma 6.3.2 (Triv = ⋂
κIso) tells us that it is a

Euclidean isometry. It now follows that |~p ′| = |wkk∗(~p ′)| = |~q ′|, as claimed. Thus,
(6.3) holds.

Proof of statement (6.4). Now assume that wkm is linear. Let λ := |wkm(~y )|.
This λ is positive since wkm(~y ) 6= ~o as m, k ∈ IObo. We will prove that |wkm(~p )| =
λ |~p | for every ~p ∈ plane(y, z). Clearly for ~p = ~o this holds, so assume that ~p ∈
plane(y, z) \ {~o }, and note that

∣∣∣∣
~p

|~p |

∣∣∣∣ = 1 = |~y | .

Then, by (6.3), ∣∣∣∣wkm
(
~p

|~p |

)∣∣∣∣ = |wkm(~y )| = λ.

Therefore, by linearity of wkm,

|wkm(~p )| =
∣∣∣∣|~p |wkm

(
~p

|~p |

)∣∣∣∣ = λ |~p | .
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6.4 The Same-Speed Lemma
Theorem 6.4 (Same-Speed Lemma). Assume KIN, AxIsotropy, and that k,m, h ∈
IObo. If speedm(k) = speedm(h), then

(a) there exists κ such that whk is a κ-isometry;

(b) speedk(h) = speedh(k);

(c) speedh(m) = speedk(m).

6.4.1 Supporting lemmas

The supporting lemmas can be informally described as:

Lemma 6.4.1 (Translation to IObo)
Every observer can be translated into IObo.

Lemma 6.4.2 (Vertical Plane Rotation)
Every vertical plane can be rotated into the tx-plane.

Lemma 6.4.3 (LinTriv ⇒ Same Speed)
If wmm∗ is both linear and trivial, then every j agrees that m and m∗ are
moving at the same speed, and likewise m and m∗ agree on the speed of j.

6.4.2 Proofs of the supporting lemmas

Lemma 6.4.1 (Translation to IObo). Assume AxWvt and AxRelocate. Given any
k ∈ IOb there exists ko ∈ IObo such that wkok is a translation.

Proof. Let T be the translation taking wko(~o ) to the origin and let ko be an observer
such that wkok = T (such an observer exists by AxRelocate). Then wkoo(~o ) =
(wkok ◦ wko) (~o ) = T (wko(~o )) = ~o , so ko ∈ IObo as required.

Lemma 6.4.2 (Vertical Plane Rotation). Assume (Q,+, ·, 0, 1,≤) is a Euclidean
field, that P is a plane in Q4 containing the time-axis t, and that ~p ∈ P \ t. Then
there exists a spatial rotation R that takes P and ~p to plane(t,x) and (~p t, |~p s| , 0, 0),
respectively.

Proof. By Lemma 6.1.7 (Horizontal Rotation), there is R ∈ SRot which takes (0,~p s)
to (0, |~p s| , 0, 0) and ~o to ~o ; see Figure 14. It is easy to see that this R has the desired
properties.
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Figure 14: Illustration for Lemma 6.4.2 (Vertical Plane Rotation).

Lemma 6.4.3 (LinTriv⇒ Same Speed). Assume AxWvt and AxEField and suppose
m,m∗ ∈ IOb and wm∗m is a linear trivial transformation. Then wlj(m) = wlj(m∗)
for every observer j ∈ IOb. Furthermore, if AxLine is assumed, then speedj(m) =
speedj(m∗) and speedm(j) = speedm∗(j) for every j ∈ IOb.

Proof. Recall that wlm∗(m) = wm∗m[t]. Since wm∗m is a linear trivial transforma-
tion, we have wm∗m[t] = t = wlm∗(m∗). Thus, wlm∗(m) = wlm∗(m∗). Hence, for
every j ∈ IOb, wlj(m) = wlj(m∗) by Lemma 6.3.5 (Equal Worldlines).

Now, assume AxLine and let j ∈ IOb. Then speedj(m) = speedj(m∗) since
wlj(m) = wlj(m∗). It is easy to see that slope(`) = slope(f [`]) holds for ev-
ery trivial transformation f and line `. Therefore, speedm(j) = slope(wlm(j)) =
slope(wm∗m[wlm(j)]) = slope(wlm∗(j)) = speedm∗(j).

6.4.3 Main proof

We now complete the proof of Theorem 6.4 (Same-Speed Lemma).

Proof of Theorem 6.4 (Same-Speed Lemma). Suppose speedm(k) = speedm(h) for
some m, k, h ∈ IObo.

(a) If wlm(k) = wlm(h), then whk is a trivial transformation by Lemma 6.3.7
(Colocate), hence it is a κ-isometry by Lemma 6.3.2 (Triv = ⋂

κIso).
Assume, therefore, that wlm(k) 6= wlm(h). Because k and h have the same

speed in m’s worldview, their worldlines have the same slope according to m. By
Lemma 6.3.3 (IObo), ~o ∈ wlm(k) ∩ wlm(h) because m, k, h ∈ IObo.
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Let ~p 1 ∈ wlm(k) and ~p 2 ∈ wlm(h) be such that ~p 1 6= ~o 6= ~p 2 and (~p 1)t = (~p 2)t,
see Figure 15. Let t∗ := (~p 1)t be the common time component of ~p 1 and ~p 2.

Let ~s 1 := (~p 1)s and ~s 2 := (~p 2)s. Then |~s 1| = |~s 2| because lines wlm(k) and
wlm(h) are of same slope. Thinking of ~s 1 and ~s 2 as points in Q3, let ~s ∗ be the
point mid-way between them, i.e. ~s ∗ = (~s 1 +~s 2)/2, and let ` be a line in Q3 passing
through ~0 and ~s ∗. If we now define ρ to be the map which rotates Q3 through 180◦
about axis `, then the map R given by R(t,~s ) := (t, ρ(~s )) is a self-inverse spatial
rotation.12

We claim that R(~p 1) = ~p 2. To see this, notice that the points ~s 1 and ~s 2 form
the base of an isosceles triangle in Q3 whose vertex is ~0 ; it follows easily that the line
` bisects and is orthogonal to the line joining ~s 1 to ~s 2, whence the rotation ρ about
` maps ~s 1 to ~s 2 (and vice versa) in Q3. Thus, R(~p 1) = R(t∗,~s 1) = (t∗, ρ(~s 1)) =
(t∗,~s 2) = ~p 2. Since R also fixes ~o , it must take wlm(k) to wlm(h). Point ~s ∗ is fixed
by ρ because this point is on ρ’s axis of rotation. Therefore, (0,~s ∗) is fixed by R.

So we have R ∈ SRot, R[wlm(k)] = wlm(h), R−1 = R and R(0,~s ∗) = (0,~s ∗).
Choose h′ ∈ IObo such that k R

;m h′. Such h′ exists by Lemma 6.1.4 (Observer
Rotation) and Lemma 6.3.3 (IObo). By Lemma 6.1.3 (Worldline Relocation), we
have wlm(h′) = R[wlm(k)], and since R[wlm(k)] = wlm(h), we must have

wlm(h) = wlm(h′), (6.10)

i.e. h and h′ share the same worldline. It follows, by Lemma 6.3.7 (Colocate) and
h, h′ ∈ IObo, that

whh′ is a linear trivial transformation. (6.11)

Our goal is to prove that whk ∈ κIso for some κ. Since whk = whh′ ◦wh′k and (as
we have just seen) whh′ is trivial, it is enough to prove that wh′k ∈ κIso for some κ.

By k R
;m h′, we have wmh′ = R ◦ wmk. Thus,

wkh′ = wkm ◦ wmh′ = wkm ◦R ◦ wmk (6.12)

and
wh′k = (wkm ◦R ◦ wmk)−1 = wkm ◦R−1 ◦ wmk

whence (as R−1 = R)

wh′k = wkh′ , and thus wlk(h′) = wlh′(k). (6.13)

12 We can define ρ in the usual way. Given any ~s we decompose it into a sum ~s = ~s ‖ +~s⊥ of
components parallel and perpendicular to `, respectively, and then ρ(~s ) = ~s ‖ −~s⊥.
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Figure 15: Illustration for the proof of Theorem 6.4 (Same-Speed Lemma)

Let P be the plane containing (0,~s ∗) and t. Since (0,~s ∗) and t are pointwise
fixed by R, it follows that the whole of P is likewise fixed pointwise by R; see
Figure 15.

We claim that wh′k (= wkh′) leaves the plane wkm[P ] pointwise fixed. To see
this, choose any ~p ∈ wkm[P ]. By (6.12), wkh′(~p ) = (wkm ◦ R ◦ wmk)(~p ). But
wmk(~p ) ∈ wmk[wkm[P ]] = P , so R(wmk(~p )) = wmk(~p ). It follows that

wkh′(~p ) = (wkm ◦ wmk)(~p ) = ~p

as stated.
We know that wh′k is a bijective collineation by Theorem 6.2 (Line-to-Line

Lemma) and that it leaves ~o fixed by Lemma 6.4.1 (Translation to IObo) because
h′, k ∈ IObo. So, by Lemma 6.3.4 (Affine), wh′k is a linear transformation composed
with a map induced by a field automorphism. But since wh′k leaves the plane wkm[P ]
pointwise fixed, the automorphism component must be the identity, and we deduce
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that wh′k is a linear transformation.
By wlm(k) 6= wlm(h) = wlm(h′) and Lemma 6.3.5 (Equal Worldlines), we have

that wlh′(k) 6= wlh′(h′) = t. By Lemma 6.3.3 (IObo), we have that ~o ∈ wlk(h′). Let
P ′ be the plane determined by the time-axis and wlk(h′) (= wlh′(k)) and let S be a
spatial rotation that takes the tx-plane to P ′, see Figure 15. Such a rotation exists by
Lemma 6.4.2 (Vertical Plane Rotation). Choose k∗, h∗ such that wkk∗ = wh′h∗ = S
(these exist by AxRelocate). Then

wh∗k∗ = wh∗h′ ◦ wh′k ◦ wkk∗ = S−1 ◦ wh′k ◦ S (6.14)

and hence
wk∗h∗ = (S−1 ◦ wh′k ◦ S)−1 = S−1 ◦ wh′k ◦ S

because wh′k = wkh′ . Therefore, wh∗k∗ = wk∗h∗ and wh∗k∗ is a linear transformation
since S−1, wh′k, and S are linear.

To prove that there is κ such that wh′k ∈ κIso, it is therefore enough to show
that there is κ such that wh∗k∗ ∈ κIso, because spatial rotations S, S−1 ∈ κIso for
every κ.

The worldview transformation wh′k leaves plane P ′ fixed because it takes t and
wlk(h′) to wlh′(k) and t, respectively, and P ′ is the unique plane that contains t
and wlk(h′) = wlh′(k). By this and (6.14), we have that wh∗k∗ maps the tx-plane to
itself. Hence, by Theorem 6.3 (tx-Plane Lemma) wh∗k∗ also takes the yz-plane to
itself and there is λ > 0 such that for every ~p ∈ plane(y, z), |wh∗k∗(~p )| = λ |~p |. But
now, for every ~p ∈ plane(y, z), we have

|~p | = |(wk∗h∗ ◦ wh∗k∗)(~p )| = |(wh∗k∗ ◦ wh∗k∗)(~p )| = λ2 |~p | .

Thus, λ2 = 1, whence λ = 1 (as λ > 0).
This means that wh∗k∗ preserves Euclidean length in plane(y, z).
We have proven so far that wh∗k∗ = wk∗h∗ , that wh∗k∗ is a linear transformation

taking plane(t,x) to plane(t,x) and plane(y, z) to plane(y, z), and that it preserves
Euclidean length in plane(y, z). It remains to show that wh∗k∗ ∈ κIso.

We have already seen that ~o ∈ wlh′(k) 6= t. Thus, speedh′(k) 6= 0. By
Lemma 6.4.3 (LinTriv ⇒ Same Speed) and the fact that wh′h∗ and wkk∗ are spa-
tial rotations (hence linear trivial transformations), we have that speedh∗(k∗) =
speedh′(k∗) = speedh′(k). Thus, speedh∗(k∗) 6= 0.

We will choose κ so that ∥∥wh∗k∗(~t )
∥∥2
κ = 1.

We can do this because we know that wh∗k∗(~t ) ∈ plane(t,x), so we can write
wh∗k∗(~t ) = (te, xe, 0, 0) for some te and xe, and we know that xe 6= 0 because
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speedh∗(k∗) 6= 0 and ~o ,wh∗k∗(t) ∈ wlh∗(k∗). So we can take κ := (t2e − 1)/x2
e,

because then
∥∥wh∗k∗(~t )

∥∥2
κ = t2e − κx2

e = t2e −
(t2e − 1)
x2
e

x2
e = 1,

as required.
It follows that ‖wh∗k∗(~p )‖2κ = ‖~p ‖2κ for every ~p ∈ plane(t,x), i.e. wh∗k∗ preserves

κ-length in the tx-plane. To see why, let ~p ∈ plane(t,x). Notice that ~p can be
written as some linear combination ~p = λ~t +µwh∗k∗(~t ). From this and the fact that
wh∗k∗ = wk∗h∗ is a linear transformation, we have

wh∗k∗(~p ) = wh∗k∗(λ~t + µwh∗k∗(~t )) = λwh∗k∗(~t ) + µ~t .

Writing ~p † = wh∗k∗(~p ) and recalling that wh∗k∗(~t ) = (te, xe, 0, 0), we have

~p = λ(1, 0, 0, 0) + µ(te, xe, 0, 0) and ~p † = λ(te, xe, 0, 0) + µ(1, 0, 0, 0)

and now direct calculation (using κ = (t2e − 1)/x2
e) shows that

‖~p ‖2κ = (λ+ µte)2 − (t2e − 1)
x2
e

µ2x2
e = λ2 + 2teλµ+ µ2

and likewise

‖~p †‖2κ = (λte + µ)2 − (t2e − 1)
x2
e

λ2x2
e = λ2 + 2teλµ+ µ2,

whence
∥∥~p 2∥∥

κ = ‖~p †‖2κ = ‖wh∗k∗(~p )‖κ as claimed.
Next, we are going to prove that wk∗h∗ preserves the κ-length. To prove this,

let ~p = (t, x, y, z) be an arbitrary point in Q4 and let (t̂, x̂, ŷ, ẑ) = wh∗k∗(~p ). By
linearity, we have

(t̂, x̂, ŷ, ẑ) = wh∗k∗(t, x, y, z) = wh∗k∗(t, x, 0, 0) + wh∗k∗(0, 0, y, z),

whence (t̂, x̂, 0, 0) = wh∗k∗(t, x, 0, 0) and (0, 0, ŷ, ẑ) = wh∗k∗(0, 0, y, z), because wh∗k∗
preserves both the tx- and yz-planes. We also have that

t̂2 − κx̂2 = t2 − κx2 and ŷ2 + ẑ2 = y2 + z2

because wh∗k∗ preserves the κ-length in the tx-plane and preserves the Euclidean
length in the yz-plane. It follows immediately that

(t̂2 − κx̂2)− κ(ŷ2 + ẑ2) = (t2 − κx2)− κ(y2 + z2),
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or in other words, ‖~p ‖2κ = ‖wh∗k(~p )‖κ, and so wh∗k∗ preserves the κ-length.
Therefore, if κ 6= 0, then wh∗k∗ is a linear κ-isometry, so wh∗k∗ ∈ κIso, and we

are done.
Suppose, finally, that κ = 0. We will prove that wh∗k∗ is a linear 0-isometry.

Recall that wh∗k∗(~t ) = (te, xe, 0, 0) and κ = (t2e − 1)/x2
e. Since κ = 0, we have

te = ±1, and hence wh∗k∗(~t ) = (±1, xe, 0, 0). Thus, (0, xe, 0, 0) = wh∗k∗(~t )∓~t . This
and the fact that wh∗k∗ is both linear and self-inverse now yields

wh∗k∗(0, xe, 0, 0) = wh∗k∗(wh∗k∗(~t ) ∓ ~t ) (6.15)
= wh∗k∗(wh∗k∗(~t )) ∓ wh∗k∗(~t )
= ~t ∓ wh∗k∗(~t )
= ∓ (0, xe, 0, 0).

Writing f := wh∗k∗ we have already shown that f preserves κ-length, so for κ = 0
we have f(~p )2

t = ‖f(~p )‖20 = ‖~p ‖20 = ~p 2
t for every ~p ∈ Q4. By (5.1), it only remains

to show that |f(~p )s|2 = |~p s|2 when ~p t = 0. However, we know that f maps the
yz-plane to itself and preserves Euclidean length in that plane, and that it simply
reverses or preserves x-coordinates by (6.15). Hence, f also preserves Euclidean
length in the xyz-hyperplane. Thus, wh∗k∗ is a linear 0-isometry.

This completes the proof of (a).
Proof of (b). By (6.11) (which says that whh′ is a linear trivial transformation)

and by Lemma 6.4.3 (LinTriv ⇒ Same Speed), for every j ∈ IOb, we have that
speedj(h) = speedj(h′) and (6.16)
speedh(j) = speedh′(j), (6.17)

and so
speedk(h) (6.16)= speedk(h′)

(6.13)= speedh′(k) (6.17)= speedh(k)
as required.

Proof of (c). First we show that
wlk(m) = wlh′(m). (6.18)

To do so, recall that wmh′ = R◦wmk (by k R
;m h′). It follows that wh′m = wkm◦R−1,

and hence (because the time-axis t is fixed under spatial rotations),
wlh′(m) = wh′m[t] = (wkm ◦R−1)[t] = wkm[t] = wlk(m)

as claimed. Consequently,

speedk(m) (6.18)= speedh′(m) (6.17)= speedh(m).
This completes the proof.
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6.5 Fundamental Lemma
Theorem 6.5 (Fundamental Lemma). Assume KIN+AxIsotropy+¬∃∞Speed. Then
for every k,m ∈ IObo with speedk(m) > 0, there is a positive ε ∈ Q such that for
every non-negative v ≤ speedk(m) + ε, there is some h ∈ IObo with speedk(h) = v
and speedm(k) = speedm(h).

speedk(m) > 0

m k

h

∀k∀m

∃h∀v

∃ε

Figure 16: Figure illustrating Theorem 6.5 (Fundamental Lemma).

We first show that observers can be found which satisfy certain standard config-
urations; see Figure 17.

6.5.1 Supporting lemmas

The supporting lemmas can be informally described as:

Lemma 6.5.1 (Configuration)
If two observers k and m are moving at any speed u > 0 relative to one
another, there are ‘rotated versions’ k∗ and m∗ of those observers which agree
with each other as to where the tx-plane and the y-axis are located. Moreover,
if u is finite, then m∗ considers k∗ to be moving in the positive direction of the
x-axis.

Lemma 6.5.2 (Quadratic IVT)
This is a purely technical lemma stating that the Intermediate Value Theo-
rem holds for functions of the form f(x) =

√
F (x)/G(x) where F and G are

quadratic polynomials over Q.
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Figure 17: Illustration for Lemma 6.5.1 (Configuration).

6.5.2 Proofs of the supporting lemmas

Lemma 6.5.1 (Configuration). Assume KIN + AxIsotropy. Given any k,m ∈ IObo
satisfying speedm(k) 6= 0, there exist k∗,m∗ ∈ IObo such that

(a) wk∗k and wm∗m are spatial rotations, hence13

speedm∗(k∗) = speedm(k),
speedk∗(h) = speedk(h) and speedm∗(h) = speedm(h) for every h ∈ IOb;

(b) wk∗m∗ [plane(t,x)] = plane(t,x);

(c) wk∗m∗ [y] = y;

(d) k∗ moves in the positive direction of the x-axis according to m∗, i.e.(
1, speedm∗(k∗), 0, 0

) ∈ wlm∗(k∗) and ~o ∈ wlm∗(k∗) if speedm∗(k∗) 6=∞.

Proof. Let us recall that, by Theorem 6.2 (Line-to-Line Lemma), worldview trans-
formations are bijections taking lines to lines and planes to planes.

We know that wlk(m) and t are distinct lines, because speedk(m) 6= 0. Since,
by Lemma 6.3.3 (IObo), they meet at the origin, we know that plane(t,wlk(m)) is a
well-defined plane, and because this plane contains the time-axis, by Lemma 6.4.2
(Vertical Plane Rotation) there must exist a spatial rotation about t which takes
plane(t,x) to plane(t,wlk(m)). By AxRelocate and (b) of Lemma 6.3.3 (IObo), there

13 by Lemma 6.4.3 (LinTriv ⇒ Same Speed)
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is some k∗ ∈ IObo for which this rotation equals wkk∗ , so that

wkk∗ [plane(t,x)] = plane(t,wlk(m)), (6.19)

see the left-top of Figure 18.
According to Lemma 6.4.2 (Vertical Plane Rotation) there is also a spatial rota-

tion R that takes plane(t,wlm(k)) to plane(t,x); moreover, if speedm(k) 6=∞, we can
choose ~p ∈ wlm(k) such that ~p t = 1 and require of R that R(~p ) = (1, |~p s| , 0, 0). In
this case, because ~o ,~p ∈ wlm(k) and ~p t = 1, we have speedm(k) = slope(wlm(k)) =
|~p s|, and so

R(~p ) = (1, speedm(k), 0, 0). (6.20)

Now let m′ ∈ IObo be such that wm′m = R (such an m′ exists by AxRelocate and
(b) of Lemma 6.3.3 (IObo)). We will show that wm′k∗ fixes both the tx-plane and
the yz-plane. By definition,

wm′m[plane(t,wlm(k))] = plane(t,x) (6.21)

see the left-bottom of Figure 18. If speedm(k) 6= ∞, by ~p ∈ wlm(k), we have that
wm′m(~p ) ∈ wlm′(k). Combining this with (6.20) tells us that

(1, speedm(k), 0, 0) ∈ wlm′(k) if speedm(k) 6=∞. (6.22)

Notice next that the world-view transformation wmk takes t to wlm(k) and
wlk(m) to t, respectively. Therefore,

wmk[plane(t,wlk(m))] = plane(t,wlm(k)), (6.23)

see the left-hand side of Figure 18. By (6.19), (6.23), (6.21), and the fact that
wm′k∗ = wm′m ◦ wmk ◦ wkk∗ , we have that

wm′k∗ [plane(t,x)] = plane(t,x).

By Theorem 6.3 (tx-Plane Lemma), it follows that wm′k∗ [plane(y, z)] = plane(y, z).
Thus, wm′k∗ fixes both the tx-plane and the yz-plane, as claimed.

Now write ŷ := wm′k∗ [y], and note that ŷ ⊆ plane(y, z) because wm′k∗ preserves
this plane. We can find a spatial rotation which fixes the tx-plane pointwise and takes
ŷ to y because of the following. Let ~q ∈ ŷ and ~q ′ ∈ y be such that |~q | = |~q ′| 6= 0.
Then ~q ·~t = ~x · ~q = ~q ′ ·~t = ~x · ~q ′ = 0 because ~q ,~q ′ ∈ plane(y, z). Therefore, by
Lemma 6.1.7 (Horizontal Rotation) there is a spatial rotation that takes ~q to ~q ′ and
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Figure 18: Illustration for the proof of Lemma 6.5.1 (Configuration)

~x to itself. By AxRelocate and Lemma 6.3.3 (IObo), there is some m∗ ∈ IObo such
that wm∗m′ is this spatial rotation, see the right-bottom of Figure 18.

Notice that wm∗m′ maps ŷ to y (because it fixes ~o and maps ~q ∈ ŷ to ~q ′ ∈ y)
and fixes plane(t,x) pointwise because it fixes ~t and ~x .

In summary, we have so far shown that wm∗m′ and wm′m are spatial rotations;
and that wm∗m′ and wm′k∗ both fix the tx-plane and the yz-plane.

Proof of (a). The transformation wk∗k is a spatial rotation by definition. Since
wm∗m = wm∗m′ ◦ wm′m is a composition of two spatial rotations, it is also a spatial
rotation. By Lemma 6.4.3 (LinTriv ⇒ Same Speed), speedm∗(k∗) = speedm(k∗) =
speedm(k), speedk∗(h) = speedk(h) and speedm∗(h) = speedm(h) for every h ∈ IOb.
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Proof of (b). Since wm∗k∗ = wm∗m′ ◦ wm′k∗ and both wm∗m′ and wm′k∗ fix the
tx-plane, wm∗k∗ and its inverse wk∗m∗ also fix the tx-plane.

Proof of (c). We have y = wm∗m′ [ŷ] = wm∗m′ [wm′k∗ [y]] = wm∗k∗ [y], so wm∗k∗
and its inverse wk∗m∗ fix the y-axis.

Proof of (d). It is already clear that ~o ∈ wlm∗(k∗), by Lemma 6.3.3 (IObo). We
need to show that (1, speedm∗(k∗), 0, 0) ∈ wlm∗(k∗) as well.

By (6.21) and wlm′(k) = wm′m[wlm(k)], we have that wlm′(k) ⊆ plane(t,x). Be-
cause wm∗m′ fixes plane(t,x) pointwise and takes wlm′(k) to wlm∗(k), we therefore
have wlm∗(k) = wlm′(k). By Lemma 6.4.3 (LinTriv ⇒ Same Speed), wlm∗(k∗) =
wlm∗(k) because wk∗k ∈ SRot is a linear trivial transformation. Consequently,
wlm∗(k∗) = wlm∗(k) = wlm′(k). Now assume that speedm(k) 6=∞. Then (6.22) tells
us that (1, speedm(k), 0, 0) ∈ wlm′(k) = wlm∗(k∗). By (a), speedm(k) = speedm∗(k∗).
Therefore, (1, speedm∗(k∗), 0, 0) ∈ wlm∗(k∗), as required.

This completes the proof.

Remark 6.2. Using the fact that any real-closed field is elementarily equivalent to
the field of real numbers (i.e. they satisfy the same first-order logic formulas), it is
easy to show that an ordered field is real-closed iff it satisfies the Intermediate Value
Theorem for every polynomial function. However, for arbitrary ordered fields (e.g.,
the field Q of rationals) the Intermediate Value Theorem can fail even for quadratic
functions: if F (x) = x2 − 2, then despite the fact that F (0) < 0 < F (2) there is no
c ∈ Q for which F (c) = 0.

In the proof of Theorem 6.5 (Fundamental Lemma) below, we will need the
following lemma stating that the Intermediate Value Theorem holds for a specific
class of algebraic functions defined over Euclidean fields.

Lemma 6.5.2 (Quadratic IVT). Assume AxEField, and let F and G be quadratic
functions on Q.14 Let a < b be values in Q and suppose F (x) ≥ 0 and G(x) > 0 for
all x ∈ [a, b]. Let g : [a, b] → Q be the function g(x) :=

√
F (x)/G(x). Then given

any y between g(a) and g(b), there exists c ∈ [a, b] such that g(c) = y.

Proof. If g(a) = y or g(b) = y the proof is trivial, so suppose that y lies strictly
between g(a) and g(b) and consider the quadratic function p(x) = F (x)− y2G(x) ≡
[g(x)2− y2]G(x). Because y2 lies strictly between g(a)2 and g(b)2, the values p(a) =
[g(a)2 − y2]G(a) and p(b) = [g(b)2 − y2]G(b) are both non-zero and have opposite
signs.

14F : Q → Q is called a quadratic function if there are p, q, r ∈ Q such that F (x) = px2 +qx+r
for every x ∈ Q.
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We will show that there exists some c ∈ (a, b) for which p(c) = 0. Because
p is quadratic, it can be written in the form p(x) = αx2 + βx + γ. We know
that p is not constant because p(a) 6= p(b), so α and β cannot both be zero. If
α = 0, then β 6= 0 and p(x) = βx + γ is a linear function for which a suitable
c can trivially be found. Suppose, then, that α 6= 0. Then we can rewrite p as
p(x) = α

[
(x+ β/2α)2 − (β2 − 4αγ)/4α2)

]
, and now the fact that p(x) can be both

positive and negative implies immediately that the discriminant ∆ := (β2 − 4αγ)
is positive, whence p can be factorised over Q with the usual quadratic roots x1 :=
(−β +

√
∆)/2α and x2 := (−β −

√
∆)/2α. Writing p(x) = α(x − x1)(x − x2) it is

now easy to see from p(a)p(b) < 0 that at least one of these roots must lie strictly
between a and b, and we set c equal to this root.

Given the definition of p it now follows from p(c) = 0 that 0 = [g(c)2 − y2]G(c).
Because G is positive on [a, b] we can divide through by G(c), whence g(c)2 = y2.
By construction, however, we know that g(x) ≥ 0 for all x ∈ [a, b], so both g(c) and
y (which lies between g(a) and g(b)) are non-negative. We have therefore found a
value c ∈ (a, b) satisfying g(c) = y, as required.

6.5.3 Main proof

We now complete the proof of Theorem 6.5 (Fundamental Lemma).

Proof of Theorem 6.5 (Fundamental Lemma). Choose any k,m ∈ IObo satisfying
speedk(m) > 0. Then t and wlk(m) are distinct lines intersecting in ~o . Therefore,
their wmk-images, wlm(k) and t, are distinct intersecting lines. Hence, speedm(k) >
0. By Lemma 6.5.1 (Configuration) and ¬∃∞Speed, we can assume that

• wkm[plane(t,x)] = plane(t,x);

• wkm[y] = y; and

• k moves in the positive direction of the x-axis according to m, i.e.
(1, speedm(k), 0, 0) ∈ wlm(k) and ~o ∈ wlm(k).

Let r := speedm(k), and note that r 6= ∞ by ¬∃∞Speed. Then (1, r, 0, 0) ∈
wlm(k).

For each x ∈ [0, r], let `x be the line containing ~o and the point (1, x,
√
r2 − x2, 0).

Observe that slope(`x) = r for all such x, and that `r = wlm(k); see Figure 19. Since
wlm(k) is anm-observer line, by Theorem 6.1 (Observer Lines Lemma) every `x is an
m-observer line, hence by Lemma 6.1.5 (Transformed Observer Lines) every wkm[`x]
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Figure 19: Illustration for the proof of Theorem 6.5 (Fundamental Lemma)
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is a k-observer line. It follows from ¬∃∞Speed that the function f : [0, r]→ Q given
by

f(x) := slope(wkm[`x])

is well-defined, and it is easy to see that

f(r) = slope(wkm[`r]) = slope(wkm[wlm(k)]) = slope[t] = 0.

We will prove that f(0) > speedk(m).
Recall that wkm is a bijection taking planes to planes by Theorem 6.2 (Line-to-

Line Lemma). Since `0 ⊆ plane(t,y) and wkm fixes the y-axis, we have

wkm[`0] ⊆ plane(wkm[t],wkm[y]) = plane(wkm[t],y).

Let us write P̂ := plane(wkm[t],y).
Because slope(wkm[t]) = speedk(m) cannot be infinite (by ¬∃∞Speed), there

exists some ~s ∈ Q3 and such that (1,~s ) ∈ wkm[t]. And because t is a subset of
the tx-plane (which is fixed by wkm), we know that wkm[t] ⊂ plane(t,x). Thus, the
y- and z-components of ~s must both be zero, and there exists some x̂ ∈ Q with
(1, x̂, 0, 0) ∈ wkm[t].

By Lemma 6.3.3 (IObo), we have wkm (~o ) = ~o , so we know that ~o ∈ wkm[t] ⊆ P̂ .
It follows that P̂ = plane(wkm[t],y) is the unique plane containing both the origin
and the line ˆ̀ := {(1, x̂, y, 0) : y ∈ Q}, and every line in this plane which has finite
slope and passes through the origin must intersect ˆ̀ at some point (1, x̂, y, 0) where
y ∈ Q. The line of this form with the smallest slope is the one which minimises
the value of x̂2 + y2, and since this is minimal precisely when y = 0 the line in this
plane through the origin which has the least slope is wkm[t]. At the same time, we
know that wkm[`0] is a line in this plane, and that wkm[`0] 6= wkm[t] because wkm is
a bijection and `0 6= t. Hence, slope(wkm[`0]) > slope(wkm[t]). Therefore, we have

f(0) = slope(wkm[`0]) > slope(wkm[t]) = speedk(m).

Thus, f(0) > speedk(m) as claimed.
Let ε = f(0)− speedk(m). We will prove that for this choice of ε the conclusion

of the lemma holds, i.e. that for every non-negative v ≤ speedk(m) + ε there is
h ∈ IObo such that speedk(h) = v and speedm(k) = speedm(h).

To prove this, choose any v ∈ Q satisfying 0 ≤ v ≤ speedk(m) + ε = f(0), and
recall that f(r) = 0. Thus,

f(0) ≥ v ≥ f(r). (6.24)
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We will use Lemma 6.5.2 (Quadratic IVT) to prove that

there is x ∈ [0, r] such that f(x) = v. (6.25)

We know from Theorem 6.2 (Line-to-Line Lemma) that wkm is a bijection tak-
ing lines to lines. It also preserves the origin since m, k ∈ IObo. Hence, by
Lemma 6.3.4 (Affine), there exists some linear transformation L and automorphism
ϕ of (Q,+, ·, 0, 1,≤) for which wkm = L ◦ ϕ̃.

By construction, ϕ̃ maps each coordinate axis to itself, so it takes plane(t,x) to
plane(t,x) and y to y. We have already seen that wkm does likewise, and so the
same must be true of L.

We can therefore find a, b, c, d, λ ∈ Q with λ 6= 0 such that, for every t, x, y ∈ Q,

wkm(t, x, y, 0) = (aϕ(t) + bϕ(x), cϕ(t) + dϕ(x), λϕ(y), 0).

As ϕ is an automorphism of (Q,+, ·, 0, 1,≤), it follows that ϕ(1) = 1; that for every
x ∈ [0, r] we have ϕ(x) ≤ ϕ(r); and that

wkm
(
1, x,

√
r2 − x2, 0

)
=
(
a+ bϕ(x), c+ dϕ(x), λ

√
ϕ(r)2 − ϕ(x)2, 0

)
.

By definition, for every x ∈ [0, r], `x is the line containing ~o and
(
1, x,
√
r2 − x2, 0

)
;

therefore, wkm[`x] is the line containing ~o and wkm
(
1, x,
√
r2 − x2, 0

)
, and f(x) ∈ Q

is the slope of this line. Since this slope cannot be infinite we have, for all x ∈ [0, r],
that

a+ bϕ(x) 6= 0 (6.26)

and hence

f(x) =

√√√√(c+ dϕ(x))2 + λ2
(
ϕ(r)2 − ϕ(x)2

)

(a+ bϕ(x))2 .

Let F : [0, ϕ(r)]→ Q and G : [0, ϕ(r)]→ Q be the quadratic functions defined by

F (y) := (c+ dy)2 + λ2
(
ϕ(r)2 − y2

)

G(y) := (a+ by)2,

and consider any y ∈ [0, ϕ(r)]. Because (ϕ(r)2 − y2) ≥ 0, it follows immediately
that F (y) ≥ 0. Moreover, G(y) > 0, because ϕ is an ordered-field automorphism,
whence ϕ−1(y) ∈ [0, r], and so by (6.26) we have a+ by = a+ bϕ(ϕ−1(y)) 6= 0. So,
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if we now define g(y) =
√
F (y)/G(y), then g is of the correct form for Lemma 6.5.2

(Quadratic IVT) to be applied over the interval [0, ϕ(r)].
Because f = g ◦ ϕ, it follows from (6.24) and ϕ(0) = 0 that

g(0) ≥ v ≥ g(ϕ(r)).

By Lemma 6.5.2 (Quadratic IVT), there therefore exists some y ∈ [0, ϕ(r)] with
g(y) = v. Taking x = ϕ−1(y) now shows that there exists x ∈ [0, r] satisfying
f(x) = v, and (6.25) holds as claimed.

Accordingly, let x̃ ∈ [0, r] be such that f(x̃) = slope(wkm[`x̃]) = v. Then `x̃ is a
line satisfying slope(`x̃) = r = speedm(k) and slope(wkm[`x̃]) = f(x̃) = v. Since `x̃
is an m-observer line, there exists h ∈ IObo with wlm(h) = `x̃, and hence

• wlk(h) = wkm[`x̃],

• speedm(h) = slope(wlm(h)) = slope(`x̃) = r = speedm(k), and

• speedk(h) = slope(wlk(h)) = slope(wkm[`x̃]) = v.

This is exactly what we had to prove, viz. there exists some h with speedk(h) = v
and speedm(k) = speedm(h).

6.6 Main Lemma
Theorem 6.6 (Main Lemma). Assume KIN + AxIsotropy. Then there is k ∈ IObo
and κ ∈ Q such that

{wmk : m ∈ IObo} ⊆ κIso. (6.27)

6.6.1 Supporting lemmas

The supporting lemmas can be informally described as:

Lemma 6.6.1 (Same Speed Easy)
Ifm considers k and h to be moving at the same speed and wmk is a κ-isometry,
then so is wmh.

Lemma 6.6.2 (Rest)
Two observers are at rest with respect to one another if and only if the trans-
formation between them is trivial.

Lemma 6.6.3 (Observer Origin)
Given any point on an observer’s worldline, we can find an observer with the
same worldline which regards that point as its origin.
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Lemma 6.6.4 (Median Observer)
Given any two observers, there is a third observer which sees them both moving
with the same speed.

Lemma 6.6.5 (κ is unique)
If two observers are moving relative to one another, there exists a unique value
κ for which the transformation between them is a κ-isometry.

6.6.2 Proofs of the supporting lemmas

Lemma 6.6.1 (Same Speed Easy). Assume KIN+AxIsotropy, and let k, h,m ∈ IObo.
If speedm(k) = speedm(h) and wmk ∈ κIso, then wmh ∈ κIso.

Proof. By Lemma 6.1.8 (Same-Slope Rotation), there exists a spatial rotation R
taking wlm(k) to wlm(h), and by Lemma 6.1.4 (Observer Rotation) there is some
observer k∗ satisfying k R

;m k∗. Since wmk∗ = R ◦ wmk and R[wlm(k)] = wlm(h),
it follows that wlm(k∗) = R[wlm(k)] = wlm(h), so that k∗ and h share the same
worldline. By Lemma 6.3.7 (Colocate), wk∗h is therefore trivial, and hence a κ-
isometry. It now follows that wmh = wmk∗ ◦wk∗h = R ◦wmk ◦wk∗h is a composition
of κ-isometries, so wmh ∈ κIso as claimed.

Lemma 6.6.2 (Rest). Assume KIN. For all observers k,m ∈ IOb, we have

k is at rest according to m iff wmk ∈ Triv.

Proof. (⇒) Suppose first that k is at rest according to m, i.e. wmk(~o )s = wmk(~t )s.
We will show that wmk ∈ Triv.

Recall that wlm(k) is a line (by AxLine) and notice that wmk(~o ),wmk(~t ) ∈
wmk[t] = wlm(k). Hence, wlm(k) is parallel to t (because it is a line containing
two distinct points, wmk(~o ) and wmk(~t ), whose spatial components are identical),
and it passes through wmk(~o ).

Next, according to AxRelocate we can find an observer m′ ∈ IOb for which wmm′
is the translation taking ~o to wmk(~o ). Because it is a translation, wmm′ necessarily
takes t to a line parallel to t; and because this line is wmm′ [t] = wlm(m′), we
see that wlm(m′) is parallel to t. Moreover, because t contains ~o , we know that
wmk(~o ) = wmm′(~o ) ∈ wlm(m′), whence wlm(m′) is also a line parallel to t that
passes through wmk(~o ).

Since wlm(k) and wlm(m′) are parallel lines which share a common point, they
must be the same (world)line, so wm′k ∈ Triv by Lemma 6.3.7 (Colocate). At the
same time we know that wmm′ ∈ Triv, because it is a translation. It therefore follows
by composition that wmk = wmm′ ◦ wm′k ∈ Triv, as claimed.
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(⇐) To prove the converse, suppose that wmk ∈ Triv. We need to show that k is
at rest according to m, i.e. wmk(~t )s = wmk(~o )s. But this is obvious because every
trivial transformation maps t to a line parallel to t.

Remark 6.3. It follows easily from Lemma 6.6.2 (Rest) and the fact that Triv is a
group under composition that “being at rest according to” is an equivalence relation
on observers, and “moving according to” is a symmetric relation.

Lemma 6.6.3 (Observer Origin). Assume AxEField, AxWvt and AxRelocate. If
` ∈ ObLines(k) and ~p ∈ `, then there exists some h ∈ IOb for which wkh(~o ) = ~p and
wlk(h) = `.

Proof. Choose h′ ∈ IOb such that wlk(h′) = `. By ~p ∈ wlk(h′), we have wh′k(~p ) ∈
wh′k[wlk(h′)] = wlh′(h′) = t. Let h ∈ IOb be such that wh′h is the translation
by vector wh′k(~p ). Such h exists by AxRelocate. Translation wh′h fixes t because
wh′k(~p ) ∈ t. Then wlk(h) = wkh[t] = wkh′ [wh′h[t]] = wkh′ [t] = wlk(h′) = ` and
wkh(~o ) = wkh′(wh′h(~o )) = wkh′(wh′k(~p )) = ~p as claimed.

Lemma 6.6.4 (Median Observer). Assume KIN, AxIsotropy, and ¬∃∞Speed. Then
given any k,m ∈ IObo, there exists some h ∈ IObo for which speedh(k) = speedh(m).

Proof. If speedk(m) = 0, the result follows trivially by choosing h = k, so suppose
speedk(m) > 0. By applying Theorem 6.5 (Fundamental Lemma) choosing v =
speedk(m), there exists h ∈ IObo such that

speedk(h) = speedk(m) (6.28)
speedm(k) = speedm(h). (6.29)

Applying Theorem 6.4 (Same-Speed Lemma) to (6.29) tells us that

speedk(h) = speedh(k) (6.30)
speedh(m) = speedk(m) (6.31)

and so
speedh(k) (6.30)= speedk(h) (6.28)= speedk(m) (6.31)= speedh(m)

as claimed.

Lemma 6.6.5 (κ is unique). Assume AxEField and let m, k ∈ IOb be observers such
that k is moving according to m and wmk ∈ κIso. Then κ is uniquely determined
by:

κ =
∣∣wmk

(
~t
)
t − wmk (~o )t

∣∣2 − 1
∣∣wmk

(
~t
)
s − wmk (~o )s

∣∣2 . (6.32)
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Proof. Let f : Q4 → Q4 be the linear part of wmk, i.e. f(~p ) := wmk(~p ) − wmk(~o ).
Then f is a linear κ-isometry, so it preserves κ-length. Hence, 1 =

∥∥~t
∥∥
κ =

∥∥f(~t )
∥∥
κ =

f(~t )2
t − κ|f(~t )s|2 = |wmk(~t )t − wmk(~o )t|2 − κ|wmk(~t )s − wmk(~o )s|2. We have that

wmk(~t )s 6= wmk(~o )s because k is moving according to m. Thus, (6.32) follows by
reorganizing the equality above.

6.6.3 Main proof

We now complete the proof of Theorem 6.6 (Main Lemma).

Proof of Theorem 6.6 (Main Lemma). There are two cases to consider: Case 1:
¬∃∞Speed holds. Case 2: ∃∞Speed holds.

Proof of Case 1: Assume ¬∃∞Speed.
Suppose k̂, m̂ are any observers in IObo. According to Lemma 6.6.4 (Median

Observer), there is some ĥ ∈ IObo such that speedĥ(k̂) = speedĥ(m̂). By Theorem 6.4
(Same-Speed Lemma), wm̂k̂ is a κ-isometry for some κ ∈ Q. This shows that every
worldview transformation between two observers in IObo is a κ-isometry for some κ,
and by Lemma 6.6.5 (κ is unique), this κ is unique if the two observers are moving
relative to each other (however, even this unique κ may vary with the choice of the
two observers.)

Suppose that k ∈ IObo. We will show that κ can be found such that (6.27) holds.
Let us note first that if any observer m ∈ IObo is at rest relative to k, then

Lemma 6.6.2 (Rest) tells us that wmk is trivial, thus it is a κ-isometry for every
κ ∈ Q by Lemma 6.3.2 (Triv = ⋂

κIso). So we only need to consider observers which
are moving relative to k.

Suppose, therefore, that m1,m2 ∈ IObo are two observers, and that at least
one is moving according to k. Without loss of generality we can assume that 0 <
speedk(m1) and speedk(m2) ≤ speedk(m1). We have already seen that

wm1k ∈ κ̃Iso (6.33)

for some unique κ̃. We will show that wm2k ∈ κ̃Iso as well. We have already seen
that this is the case if speedk(m2) = 0, so we can assume that 0 < speedk(m2).

By Theorem 6.5 (Fundamental Lemma), choosing v = speedk(m2) and m = m1,
there exists h ∈ IObo such that

speedk(h) = speedk(m2) (6.34)
speedm1(k) = speedm1(h) (6.35)
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It follows from Lemma 6.6.1 (Same Speed Easy) with (6.33) and (6.35) that

wm1h ∈ κ̃Iso (6.36)

and hence (by (6.33)) that

wkh = wkm1 ◦ wm1h = w−1
m1k
◦ wm1h ∈ κ̃Iso. (6.37)

Applying Lemma 6.6.1 (Same Speed Easy) with (6.34) and (6.37) now tells us that
wkm2 ∈ κ̃Iso. But then

wm2k ∈ κ̃Iso
as claimed.

Finally, let m ∈ IObo be arbitrary. As we have shown, no matter whether m is
at rest or in motion relative to k, there is some κm such that wm1k and wmk are
both in κm Iso. But because m1 is moving relative to k this κm is unique for m1, so
we must have κm = κ̃. Thus, taking κ := κ̃ ensures that (6.27) holds as claimed.
Proof of Case 2: Assume ∃∞Speed.

By Lemma 6.2.7 (Infinite Speeds ⇒ Lines are Observer Lines), every observer
considers every line to be the worldline of an observer, so in particular any ‘horizon-
tal’ line through ~o is an observer line. By Lemma 6.6.3 (Observer Origin), therefore,
there exists h ∈ IObo satisfying speedo(h) =∞.

Recall that S is the spatial hyperplane {(0, x, y, z) : x, y, z ∈ Q}; let us consider
woh[S]. By Theorem 6.2 (Line-to-Line Lemma), this is a 3-dimensional subspace of
Q4 which contains woh(~o ) = ~o (because h ∈ IObo). It follows that the subspace
formed by the intersection of S with woh[S] must be at least 1-dimensional and so
there is some line ` such that ~o ∈ ` ⊆ woh[S] ∩ S. See Figure 20.

Because every observer considers every line to be an observer line, o considers `
to be an observer line, so there exists some k such that ` = wlo(k). By Lemma 6.6.3
(Observer Origin), we can choose this k to be in IObo. Since ` ⊆ S, we have
speedo(k) = ∞. It follows that speedo(k) = speedo(h) (both are infinite), whence
Theorem 6.4 (Same-Speed Lemma) tells us that whk ∈ κIso for some κ. Let us fix
such a κ. We will prove that (6.27) holds for this κ.

To do this, we first switch from o’s worldview to h’s. By construction, we know
that wlo(k) = ` ⊆ woh[S], so by applying who, we have

wlh(k) ⊆ S, (6.38)

and hence speedh(k) =∞.
Now let m be any observer m ∈ IObo.
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Figure 20: Illustration for the proof of Theorem 6.6 (Main Lemma) if ∃∞Speed is
assumed.

In the particular case when wlh(m) ⊆ S, we must have speedh(m) =∞ because
all points in S have the same time coordinate. In this case, we have speedh(k) =
speedh(m), and since we know that whk ∈ κIso, Lemma 6.6.1 (Same Speed Easy) tells
us that whm (hence also wmh) is a κ-isometry as well. It now follows by composition,
in this special case, that wmk = wmh ◦ whk is a κ-isometry, as required.

Now consider things more generally from k’s point of view. As before, wkh[S] is
a hyperplane, and we know from (6.38) that wlh(k) ⊆ S. It follows that

t = wlk(k) = wkh[wlk(h)] ⊆ wkh[S]

so wkh[S] contains the time-axis t.
We can therefore find a line ` such that ~o ∈ ` ⊆ wkh[S] and slope(`) = speedk(m).

For if speedk(m) = ∞ we can choose the line through ~o in wkh[S] that is perpen-
dicular to t, and if speedk(m) = 0 we can take ` = t. For the remaining case,
where 0 < speedk(m) < ∞, choose any point ~p ∈ wkh[S] \ t. By Lemma 6.1.10
(Triangulation), we can find a line of slope speedk(m) in wkh[S] which meets t, and
a translation along t can then be applied to find a parallel line (also in wkh[S]) that
passes through ~o .

Because all lines are observer lines, ` is an observer line; and by Lemma 6.6.3
(Observer Origin) there is some m∗ ∈ IObo for which wlk(m∗) = ` ⊆ wkh[S]. But
this means that wlh(m∗) = whk[wlk(m∗)] ⊆ whk[wkh[S]] = S and hence, as we saw in
the special case above, wm∗k ∈ κIso. But now Lemma 6.6.1 (Same Speed Easy) tells
us that from speedk(m) = slope(`) = speedk(m∗) and wkm∗ ∈ κIso we can deduce
wkm ∈ κIso. Therefore, for arbitrary m ∈ IObo, wmk ∈ κIso, i.e. (6.27) holds.
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7 Proofs of the main theorems

Proof of Theorem 5.1 (Characterisation). If ¬∃MovingIOb is assumed, then W ⊆
Triv by Lemma 6.6.2 (Rest), hence W ⊆ κIso for every κ by Lemma 6.3.2 (Triv =⋂
κIso).
Assume ∃MovingIOb. Let k ∈ IObo and κ be such that (6.27) in Theorem 6.6

(Main Lemma) holds, i.e. {wmk : m ∈ IObo} ⊆ κIso. Then by Lemma 6.6.5 (κ is
unique) it is enough to prove that the worldview transformations are κ-isometries.

To prove that worldview transformations are κ-isometries, choose any observers
m1,m2 ∈ IOb. By Lemma 6.4.1 (Translation to IObo), we can find mo

1,m
o
2 ∈ IObo

for which wm1mo1
and wmo2m2 are translations and hence κ-isometries. As wmo1k and

wmo2k are also κ-isometries, so it follows that

wm1m2 = wm1mo1
◦ wmo1k ◦ wkmo2 ◦ wmo2m2 = wm1mo1

◦ wmo1k ◦ w−1
mo2k
◦ wmo2m2 (7.1)

is a κ-isometry.

Proof of Theorem 5.2 (Satisfaction). Let us first prove that

Wk = G, for every k ∈ IOb. (7.2)

To do so, let k ∈ IOb. Then, by the definition of Wk and the construction ofMG,

Wk = {wkh : h ∈ IOb} = {k ◦ h−1 : h ∈ G} = k ◦ G−1 = G

because G is a group. Thus, (7.2) holds.
(a) By construction of MG, we have wkk = k ◦ k−1 = Id and wmh ◦ whk =

m ◦ h−1 ◦ h ◦ k−1 = m ◦ k−1 = wmk for every m, k, h ∈ IOb = G. Thus, AxWvt
holds. By (7.2), we have that Wk = Wh for every k, h ∈ IOb, which is a trivial
reformulation of AxSPR. Finally, also by (7.2), we have W = ⋃

k∈IOb Wk = G.
(b) A trivial reformulation of AxRelocate is that SRot ∪ Trans ⊆ Wk for all

k ∈ IOb, which, by (7.2), is equivalent to SRot ∪ Trans ⊆ G inMG.
(c) By definition of worldline, a trivial reformulation of AxLine is that g[t] is a

line for every g ∈W. We know from (a) that W = G, hence the statement holds.
(d)We know from (a) that AxWvt holds, hence by Lemma 6.1.2 (WVT), wlk(k) =

t for every k ∈ IOb. Recall that by definition of worldline wlk(k′) := wkk′ [t] for every
k, k′ ∈ IOb. Hence, for every k, k′ ∈ IOb, wlk(k) = wlk(k′) is equivalent to wkk′ [t] = t
inMG. Therefore, AxColocate holds inMG iff g ∈ Triv whenever g ∈W and g[t] = t.
We know from (a) that W = G, hence the statement holds.
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Proof of Theorem 5.3 (Model Construction). From Lemma 5.2 (Satisfaction)(a-c),
it is clear that AxWvt, AxSPR, AxLine and AxRelocate all hold, and that W = G. To
see that AxColocate also holds, suppose g ∈ cPoi ∪ cEucl ∪ Gal satisfies g[t] = t. We
will show that g ∈ Triv, whence the result follows by Lemma 5.2 (Satisfaction)(d).

To this end, write g = T ◦ L as a composition of a translation T and linear
κ-isometry L, and recall that a linear map is trivial if and only if it fixes (setwise)
both the time-axis and the present simultaneity, and preserves squared lengths in
both. We will show that L has these properties.

To see that L[t] = t, note that T (~o ) = T (L(~o )) = g(~o ) ∈ t, whence T must
be a translation along the t-axis. Thus, g and T both fix t setwise, whence so does
L = T−1 ◦ g.

To see that L preserves squared length in t, choose arbitrary t ∈ Q. Since L[t] =
t there is some t′ ∈ Q such that L(t,~0 ) = (t′,~0 ), and now

∥∥∥L(t,~0 )
∥∥∥

2

κ
=
∥∥∥(t,~0 )

∥∥∥
2

κ
forces t′ = ±t. Thus, L preserves squared lengths in t.

If κ = 0, then L fixes the present simultaneity S and preserves the square lengths
in it by definition. To see that the same statement holds if κ 6= 0, choose arbitrary
~s ∈ Q3 and define t∗ ∈ Q and ~s ∗ ∈ Q3 by (t∗,~s ∗) := L(0,~s ). Then by linearity

L(1,~s ) = (±1 + t∗,~s ∗) and L(1,−~s ) = (±1− t∗,−~s ∗).

Since ‖(1,~s )‖2κ = ‖(1,−~s )‖2κ and L is a linear κ-isometry, we have that ‖L(1,~s )‖2κ =
‖L(1,−~s )‖2κ, which implies that (1 + t∗)2 = (1 − t∗)2 and hence t∗ = 0. Thus,
L(0,~s ) = (0,~s ∗), i.e. L maps S to itself. If κ 6= 0, ‖(0,~s )‖2κ = ‖L(0,~s )‖2κ =
‖(0,~s ∗)‖κ implies that |~s |2 = |~s ∗|2. Hence, L preserves the square lengths in S.

As claimed, therefore, L is a linear map which fixes both the time-axis and the
present simultaneity, and preserves squared lengths in both, whence it is linear trivial
and g = T ◦L is trivial. As outlined above, it now follows that AxColocate also holds,
and that henceMG is a model in which KIN + AxSPR holds and W = G.

Proof of Theorem 5.4 (Determination). Assume that G is a group satisfying the con-
ditions. We will prove that statements (i) and (ii) are equivalent.

Assume that (i) holds. By Theorem 5.2 (Satisfaction),MG is a model of KIN +
AxSPR (and hence also KIN + AxIsotropy) for which W = G. Then (ii) follows by
Theorem 5.1 (Characterisation).

Assume that (ii) holds. Then by Theorem 5.3 (Model Construction) MG is
a model of KIN + AxSPR for which W = G. Then (i) follows by Theorem 5.2
(Satisfaction).

Proof of Theorem 5.5 (Classification). Assume KIN + AxIsotropy. It is clear that at
least one of cases (1)-(4) holds. First we show the consequences of the cases and
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then from those we show that they are mutually exclusive.
(Cases 1-3) If k,m ∈ IOb are at rest relative to each other, then because wmk

is trivial by Lemma 6.6.2 (Rest), it is also a Euclidean isometry by Lemma 6.3.2
(Triv = ⋂

κIso). Thus, for all observers k and m we have

if wmk(~t )s = wmk(~o )s, then
∣∣wmk(~t )t − wmk(~o )t

∣∣ = 1. (7.3)

We claim we can choose k∗ and m∗ such that wm∗k∗(~t )s 6= wm∗k∗(~o )s. This is
true by definition if ∃MovingAccurateClock holds, and follows from (7.3) if either
∃SlowClock or ∃FastClock holds because in each of these cases we can choose m∗, k∗
such that

∣∣wm∗k∗(~t )t − wm∗k∗(~o )t
∣∣ 6= 1.

It follows that ∃MovingIOb holds in all three cases, and so by Theorem 5.1
(Characterisation), there is a unique κ such that W ⊆ κIso. Recall from (6.32) that
κ can be determined from the motion of any two observers moving relative to one
another by

κ =
∣∣wmk

(
~t
)
t − wmk (~o )t

∣∣2 − 1
∣∣wmk

(
~t
)
s − wmk (~o )s

∣∣2 .

So, given our choice of m∗, k∗ (and the definitions of ∃FastClock, ∃SlowClock and
∃MovingAccurateClock) we have

∃SlowClock⇒
∣∣wm∗k∗(~t )t − wm∗k∗(~o )t

∣∣2 > 1 ⇒ κ > 0

∃FastClock⇒
∣∣wm∗k∗(~t )t − wm∗k∗(~o )t

∣∣2 < 1 ⇒ κ < 0

∃MovingAccurateClock⇒
∣∣wm∗k∗(~t )t − wm∗k∗(~o )t

∣∣2 = 1 ⇒ κ = 0.

Because (6.32) holds for any two relatively moving observers it now follows
from the uniqueness of κ that ∃SlowClock ⇒ ∀MovingClockSlow, ∃FastClock ⇒
∀MovingClockFast and ∃MovingAccurateClock⇒ ∀ClockAccurate.

Finally, to complete the proof of cases (1-3) it is enough to note that

κ > 0 ⇒ κIso = cPoi where c =
√

1/κ;

κ < 0 ⇒ κIso = cEucl where c =
√
−1/κ;

κ = 0 ⇒ κIso = Gal.

(Case 4). If ¬∃MovingIOb holds, then all worldview transformations are trivial
by Lemma 6.6.2 (Rest), so W ⊆ Triv as claimed.

The four cases are clearly mutually exclusive, because the situations

(∀MovingClockSlow + ∃MovingIOb), (∀MovingClockFast + ∃MovingIOb),
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∃MovingAccurateClock and ¬∃MovingIOb

are mutually exclusive.

Proof of Theorem 5.6 (Consistency). (Cases 1-3) By Theorem 5.3 (Model Construc-
tion) and (5.2), there are modelsMP ,ME andMG of KIN + AxSPR such that the
set of worldview transformations are respectively Poi, Eucl and Gal. In all three
models, there are m, k ∈ IOb such that wmk

(
~t
)
s 6= wmk (~o )s because if W = Poi

or W = Eucl or W = Gal, then it can be easily seen that there is f ∈ W such that
f
(
~t
)
s 6= f (~o )s. Let such m and k be fixed. Then ∃MovingIOb holds. Thus, by

Theorem 5.1 (Characterisation), there is a unique κ such that the set of worldview
transformations is a subset of κIso. This κ is positive (κ = 1) in MP , negative
(κ = −1) in ME and 0 in MG. Then by equation (6.32) in Lemma 6.6.5 (κ is
unique) it can be seen that ∃SlowClock holds inMP , ∃FastClock holds inME and
∃MovingAccurateClock holds inMG.

(Case 4) It remains to prove that KIN + AxSPR + ¬∃MovingIOb has a model.
Let MT be a model of KIN + AxSPR such that W = Triv. Such MT exists by
Theorem 5.3 (Model Construction) and (5.2). Let us notice that for any f ∈ Triv,
f
(
~t
)
s = f (~o )s. Therefore, for every m, k ∈ IOb, wmk

(
~t
)
s = wmk (~o )s, and this

means that ¬∃MovingIOb holds inMT .

8 Discussion
In this paper, we have presented an essentially elementary description of what can
be deduced about the geometry of (1 + 3)-dimensional spacetime from isotropy if
we restrict ourselves to first-order logic and make as few background assumptions as
reasonably possible. Nonetheless, there is potential to go further, as even our own
very simple assumptions can potentially be weakened while still providing a physi-
cally relevant description. The history of the field has shown repeatedly that authors
have inadvertently made unconscious, and sometimes unnecessary, assumptions, and
it would be foolish to assume that we are necessarily immune to this problem. We
have accordingly started a programme of painstakingly machine-verifying our results
using interactive theorem provers [31], but this programme remains very much in
its infancy. In the meantime, therefore, we have been as explicit as possible at all
stages of our proofs.

We began by noting that, in the elementary framework advocated in this paper
there are reasons why it is no longer appropriate to assume that the ordered field
Q of numbers used when recording physical measurements is the field R of real
numbers. Partly this is because practical measurements can never achieve more
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than a few decimal points of accuracy, and partly because the field R cannot be
uniquely characterised in terms of the first-order sentences it satisfies. But as we
have also shown, it is simply not necessary to make the assumption. As long as Q
allows the taking of square roots of non-negative values, all of our results hold.

Our results tell us, subject to a small number of very basic axioms, that the
worldview transformations that characterise kinematics in isotropic spacetime form
a group W of κ-isometries for some κ. In contrast to earlier studies, we have not
needed to assume the full special principle of relativity, but have shown instead that
the strictly weaker assumption that space is isotropic is already enough to entail
these results. We accordingly obtain four basic possibilities: the universe is not
static (there are moving observers) and W is a subgroup of either Poi, Eucl or Gal,
or the universe is static (all observers are at rest with respect to one another) and
W ⊆ Triv.

As usual (if moving observers exist) we can identify which kind of spacetime we
are in by considering whether moving clocks run slow or fast or remain accurate. But
because we have not restricted ourselves to Q = R, we have allowed for the possibility
that the structure of Q may be somewhat more complicated than usually assumed
(for example, there is no reason why Q should not contain infinite or infinitesimal
values). This in turn means that the topological structure of Q4 need not satisfy
the usual theorems of R4, nor the symmetry group Sym(Q4) has to satisfy those of
Sym(R4). Even so, we have shown that all ‘reasonable’ subgroups G of Sym(Q4) can
occur as the transformation group W in some associated modelMG. In other words,
assuming that Q = R has inadvertently imposed severe and unnecessary limitations
on the set of models investigated in earlier papers.

Nonetheless, many questions remain to be answered. Which of our results still
hold, for example, if we remove the requirement for Q to be Euclidean? Are square
roots essential, and if not, how can this be interpreted physically? For example,
when κ > 0 the value κ corresponds to a model in which the speed of light is given
by c =

√
1/κ, but what happens if κ has no square root? Presumably this would

be a model in which light signals cannot exist, since they would need to travel with
non-existent speed. Some familiar expressions might still be meaningful, for example√

1− v2/c2 can be rewritten as
√

1− κv2, but even so, how does time dilation ‘work’
if v is a value for which

√
1− κv2 is undefined?

There is also the issue of dimensionality. Our initial investigations suggest that
all of the proofs presented here go through for dimensions d ≥ (1 + 3), but can fail
for d = (1+1). But do they hold for d = (1+2)? The answer appears to be yes if we
allow trivial transformations to reverse the direction of time — but is this inclusion
of reflections essential? We simply do not know.
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Abstract

One of the sub-problems of the event individuation problem is: if A does x
by doing y, is A doing x the same event as A doing y? Although it has been
argued in the literature that doing x is a trying and as such, a mental event,
the basis for defining the physicality of such events when they succeed, needs
to be defined.

This paper argues that actions that must be done by doing something else
are Vendlerian accomplishments and that treating events as located situations
enables one to commit to the option in which doing y is a sub-situation of doing
x. This is done by defining a sufficient condition for inferring that x has been
accomplished from the fact that y has been done, which, is when a situation in
which y has been done causes another situation in which the culmination of the
accomplishment x holds.

By extending the situation theory with intentional predicates, it becomes
possible to model x as an intentional or strategic accomplishment and conse-
quently define the sufficient condition for inferring that a situation in which y is
done is a plan that resulted in a situation for accomplishing x. That condition
holds when it is known that agent’s intention in carrying out y is to accomplish
x and the agent’s plan is rational, and the situation characterized by the agent’s
doing of y causes a situation in which the culmination of x holds.

1 Introduction
The problem of event individuation according to Bennett and Galton [7] is that
of determining the criteria sufficient for distinguishing one event from every other.
Various criteria proposed in the literature for event individuation include the specific
details given about the event otherwise known as event particulars [20], the event’s
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causes and effects, which are also events [10] and spatiotemporal regions [21, 25].
Unwin [30] identified three aspects (which he actually called instances) of the event
individuation problem, which we regard as some kind of refinement of the event
individuation problem. These aspects identified in Unwin’s refinement of the event
individuation problem are stated thus:

1. “Will the addition of adverbial modifiers to an event designator alter its ref-
erence?”

2. “If A does x by doing y, is A’s doing of x the same [event] as A’s doing of y?”

3. “Can two events completely occupy the same time-space zone?”

Unwin concluded that Quine’ s criteria for event individuation, which are based
on spatio-temporal regions, support the intuition that the addition of an adverbial
modifier to an event designator will not alter its identity (just as Sebastian’s stroll
down streets of Bologna, is the same as Sebastian’s leisurely stroll down streets
of Bologna if both are known to have taken place at the same time), but not the
intuition that two events can completely occupy the same time-space zone (just as
the heating of a metal ball and its simultaneous rotation through 35 degrees are
two different events). On the other hand, Kim’s criteria, which uses all the details
stated in the event description, is not against the possibility that two events may
completely occupy the same time-space zone while it does not support the intuition
that the addition of an adverbial modifier to an event will not alter its identity.
Thus a set of criterion that can make an ontological commitment with respect to all
these questions is needed.

Our position in this paper is that treating events as located situation enables
us to make a definite various commitments with respect to each of the above ques-
tions. A located situation is defined by a fluent that fully characterizes it and its
spatiotemporal context. A fluent is the descriptive essence of an event or state, or
some other eventuality.

Pietroski [23] adopts the approach that actions must be viewed as tryings, such
that if an agent wishes to carry out an action x, she tries something even if that thing
she tries is not x. Thus for example if an agent tries to do x by doing y, x should
be treated as part of the agent’s mental events. However, there are three potential
problems with treating such actions as mental actions. Firstly, there is a need to
define the basis for knowing when such a mental action leaves the mental realms
and becomes physical reality. Secondly, the mere fact that an agent carried out y
that resulted in her doing x does not necessarily imply that the agent conceived a
mental action x. The agent may have a different objective than x for carrying out
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the action y and it only happens that the action y eventually results in x. Thus
our motivation in this paper is to develop a logical theory that answers these three
questions with respect to an agent doing x by doing y:

• Is doing x the same as doing y?

• What are the bases for determining that x has been done given that y has
been done?

• What should be the bases for determining the fact that an agent’s action of
doing y is part of the plan to accomplish x?

The logical theory proposed in this paper advocates treating events as located situ-
ations so that if an agent does x by doing y, then the doing of y should be treated
as a sub-situation of doing x. At the same time, as we argue, treating events as
located situations enables one to commit to events which identity are not altered by
adding adverbials and to events that cannot occupy any spatiotemporal region with
any other event that is fully characterized by the same fluent.

All the fluents in the theory presented are categorized along Vendler’s aspectual
lines. Vendler categorized verbs along aspectual lines as activities, states, achieve-
ments and accomplishments. If in trying to do Φ an agent must carry out some
other action Ψ, then every successful incidence of Φ must be an accomplishment. In
Vendler’s aspectual categorization of verbs, an accomplishment is of non-zero dura-
tion and every accomplishment culminates in an achievement which is of (almost)
momentary duration [29]. Based on this analysis of fluents, the sufficient condition
for inferring that the action Φ has been carried out by an agent that has done Ψ
is the following: that the action Ψ causes the culmination of the doing Φ. When
that happens, the agent is deemed to have done Φ by doing Ψ and the situation in
which the agent did Ψ is deemed in our logical theory to be a sub-situation of the
situation in which she did Φ. However, if in addition we can somehow show that
doing Φ was the agent’s reason before for undertaking the action, Ψ, and that the
agent is rational with respect to that plan, then, we should be able to infer that the
situation in which Ψ was done was a part of the plan to accomplish a situation in
which the agent accomplishes Φ. In this regard, our logical theory includes a ternary
logical relation that defines an agent’s intention or goal in carrying out an action.
In addition to this there is also a ternary relation that describes the fact that an
agent’s plan is rational. Rationality is defined in terms of ceteris paribus causation
relation between fluents.

The rest of this paper is organized as follows: Section 2 discusses the background
literature on the meaning of event types, event instances and their individuation,
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situations in the Artificial Intelligence (AI) literature and Vendler’s aspectual cate-
gorization of verbs. Section 3 presents a first-order logic treating events as situations
in which the fluents defining the situations are categorized along Vendler’s aspec-
tual lines and an intentionality relation is defined between an agent’s participation
in an event and the intended outcome on the part of that agent. In section 4 we
demonstrate how such a theory allows us to define the nature of intentional events
such as A does x with the intention of doing y, as well as strategic events such as A
does x with the intention of getting B to do y.

2 Literature Background
This section begins in subsection 2.1 with a discussion of our perception of the nature
of events as drawn from philosophical and artificial intelligence (AI) literature. That
sets the stage for a discussion on the event individuation debate from the literature
in subsection 2.2. Subsection 2.3 discusses the notion of situations from the AI
literature. Finally subsection 2.4 discusses the literature based on Zeno Vendler’s
aspectual classification of verbs which becomes relevant in analyzing the actions
involved in the events.

2.1 Events as Instances of Event Types
An issue that arose from the discourse in modelling events is whether events should
be treated as event types or as event instances [15]. Event instances are individual
events. Davidson [12] and his descendants in the knowledge representation literature
such as Bennett and Galton [7] and Galton [15] define event instances around verbs
and the relationship they create between the agent of the verb and its object(s).
Davidson created an event form that associates with each verb, an “existentially
quantified event token variable”. Thus to represent the event described as “Pat
cooked spaghetti yesterday” he would write:

∃e. Cook(e, pat, spaghetti) ∧ Happen(e, yesterday).

Bennett and Galton [7] would have represented the statement “Pat is cooking
spaghetti late” as:

∃e. Cook(e, pat spaghetti) ∧ Prog(e) ∧ Late(e)

In the above formula Prog represents the progressive property for asserting that
an event is on-going and Late represents a property for asserting that an event is
late. On the other hand an event type according to Galton [15] is an abstract or
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universal entity for which actual events are realizations known as event tokens or
instances. For example, the event “Pat cooked spaghetti yesterday” is an instance of
the universal event class or event type in which Pat cooks spaghetti. The instance
of the event mentioned in the statement happened yesterday. In notational terms,
Galton reckoned that Allen’s reified logic representation of the statement: “John saw
Mary yesterday” as Occurs(see(john, mary), yesterday) implies that he was stating
that an event instance of the type defined by John’s action of seeing Mary (denoted
by see(john, mary) ) happened yesterday. Thus the event type defined by John’s
action of seeing Mary is different from any other event type. For example, it is
different from another event type defined by Mary’s action of dancing with John.
An event type is therefore defined by a kind of action involving specific agents and
objects. For example, the event type dance(mary, john) is defined from a dance-with
action undertaken by an agent called Mary and the object of her action is an person
called John. There are two important points to note about event types.

One may obtain a sub-type by adding location and time information to the event
type. For example, every dance between John and Mary that takes place at Trafalgar
square may be viewed as instances of a subtype of the type that generalizes all John
and Mary dances, because it refers to a subset of all John and Mary dances. So
may all the John and Mary dances that take place at Trafalgar Square on Sundays
between 4 and 5 pm. However, for us, the notion of event types refer to a specific
relations between specific domain entities that is unfiltered with time and location
information.

Secondly, while action modifiers (such as late, suddenly, vigorously etc.) are
captured as properties of events instances in Davidson’s representation of event to-
kens, modifiers cannot be regarded as aspects of event type definitions. For example
there is an event type defined by Mary’s dance with John; but there can be no event
type defined by Mary’s vigorous dance with John. Note that that the event type
vigorously-danced –with(mary, john) is a subtype of danced-with(mary, john). We
will end up multiplying the number of event types by as many modifiers as can
possibly modify each action.

By the way they are defined event types are generics of event instances. Event
types have formed the basis for formalizing the notion of event repetition [5] because
it takes generics to talk about being repeatable. While event individuation is a
problem about event instances, event types may be of help as we see in the next
section.
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2.2 Event Individuation in the Literature

In the philosophical and AI literature, the various identity criteria proposed for
events include causation (i.e. what causes the event and what the event causes) [10]
and the event’s time and place [25, 21], event’s particulars [20] and event type and
time [34]. Each of these proposals has its drawbacks. For example, Kim’s proposal
will reckon that a stroll by Sebastian and a leisurely stroll by the same person should
be regarded as two different events even if they both take place at the same time
and location. Davidson’s proposal [10] has been famously criticized for its circularity
by Quine [25]. Quine and Lemmon’s proposal also have a drawback: the fact that
certain events can share the similar spatiotemporal zones. Consider the example:
Sebastian walked around the beach while sun tanning. Going by the proposal of
Lemmon [21] and Quine [25] the beach walking event and the sun tanning event will
be the same event.

Cleland [9] repeated Davidson’s example of two events sharing the same spatio-
temporal region. These involve the rotation of a sphere which is also changing
colour at the same time. Cleland claims that both events cannot be identified as
separate from one another. However, going by our earlier discussion about event
types in subsection 2.1, the rotation of a sphere is of a different event type from
the event of its colour changing. Thus in a case such as this, event types can be
used to distinguish between two events that occupy the time-space region. Before
event types and time-space region can become generally applicable as sufficient event
individuation criteria, it must be the case that it is not possible for more than one
event belonging to the same event type to occupy the same time-space zone. This
assumption seems intuitively appealing considering the fact that it is difficult to find
an example of an event of the same type sharing the same time-space region. It is
important to apply this line of thought to the broader problem of event individuation.

From the foregoing analysis in this paper therefore, we wish to argue that by
slightly extending Vila and Reichgelt’s criteria [34] for individuating events with
spatial location, we can make specific ontological commitments with respect to two
of the three sub-problems of the event individuation problem. Firstly, if as we
have argued earlier, event types are taken to be invariant to adverbial modifiers,
then by combining event type with time and spatial location as event individuation
criteria, we are definitely committed to the ontological position that adding adverbial
modifiers to an event designator will not alter its reference.

Secondly, if considering the difficulty of finding an example of two events of the
same type occupying the same exact time-space zone leads us to conclude that no
two events of the same (most specific) event type can completely occupy the same
exact time-space region, then, again by combining event-type with time and spatial
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location as event individuation criteria we are definitely committed to the ontological
position that no two events of the same type can completely occupy the same time-
space zone.

In a similar vein there is an existing proposal in ontological literature that an
event can be individuated by its relational essence (which for us is its event type),
and the event’s place and time (also known as scenes) [16]. While we still cannot rule
out two different events of the same type taking place in the same broad location at
the same time, however, one may argue, following Guarino and Guizzardi [16], that
by sufficiently focusing on the sub-location of the broad location, it will be possible to
delineate one event from another of the same type. For example, if two conferences
with the same name are holding at the same time at the same Hyatt’s hotel, say, the
room in which each event is holding is a focus on the broad location that is sufficient
for delineating one conference event from another. Thus it is arguable that two
different events of the same type cannot occupy the precise space-time zone.

The next section discusses situations in the form in which they will be used in
this paper.

2.3 Situations

Schubert [28] identified two approaches for incorporating “situations” into the se-
mantic representation of sentences. Both of these two approaches influenced more
contemporary approaches. The first approach which he attributed to Davidson [12]
allows only a single event relationship (denoted by verb-predicates or fluents) to be
assigned to situations, (such as Stab(brutus, caesar, e)). When a Davidson event
token is identified as a stabbing, even though many assertions can be made about
the stabbing event token, it must remain only a stabbing and nothing more. It
cannot be both a stabbing and a killing. The implication of this is that none of
Davidson’s event tokens can belong to more than one event type. However, unlike
Davidson’s notion of event tokens, it is important to note that the kinds of event
tokens introduced by Kautz [19], may be associated with more than one distinct
event type. For example, an event token may be an instance of both of the event
types: Make-Spaghetti-Dish and Make-Marinara-Dish. That can be the case if the
event token is an instance of the event type Make-Spaghetti-Marinara.

The second approach credited to Reichenbach [26] allows more than one such
sentence, for example, Brutus stabbed Caesar and Brutus killed Caesar to be as-
signed to (or characterize) the same situation. Reichenbach’s approach influenced
the Situational Semantics of Barwise and Perry [6]. This is also the case in the situ-
ation calculus by McCarthy and Hayes [22] as well as in episodic logic [28]. On the
other hand Davidson’s approach influenced the logics of Galton [15], Bennett and
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Galton [7], Allen [2] and Allen and Fergusson [1]. Schubert prefers the situational
semantics approach for the task of semantic representation of narrative texts.

A Davidsonian event token cannot be associated with two or more statements.
So one cannot associate the stabbing and killing of Caesar with the same davidsonian
event token thus:

∃e. Stab(brutus, Caesar, e) ∧ Kill(brutus, Caesar, e)

On the other hand, one is allowed to associate both the stabbing and the killing
with the same situation thus:

∃s. [stab(brutus, caesar)]∗s∧ [kill(brutus, caesar)]∗s

Each of stab(brutus, Caesar), denoting the fact of the stabbing of Caesar by Brutus,
and kill(brutus, caesar) denoting the fact of the killing of Caesar by Brutus, are
examples of fluents. Essentially a fluent is a description of what may hold true in
a situation. A fluent may refer to a state, event or any other kind of eventuality
[14]. However, for the sake of this paper, our focus is on events. This definition
of fluents is somewhat more generic than the fluents in situational calculus [22], in
which situations only describe the states of the world. Thus in situation calculus,
fluents are partial descriptions of states of individuals in the world. On the other
hand situations in situational semantics are more generic covering events, states
and other kinds of eventualities. Our formalization here is akin to the forms in
situation semantics. Associating a fluent with a situation then means the kind
of eventuality defined by that fluent characterizes that situation, either partially
or fully. A situation may be partially characterized by more than one fluent, while
only one fluent can fully characterize a situation. Ordinarily, a situation is (partially)
characterized by a potentially infinite number of fluents. However, it is possible to
talk about a situation being fully characterized by a fluent if we focus on a certain
aspect of a situation and define a new situation which is a sub-situation of the
existing situation, thereby.

There is a closed additive operator + defined on fluents (under which the set
of fluents are closed) for fluents such that when both fluents f and f1 partially
characterize a situation s, it is the case that the fluent f + f1 also characterizes
s either partially or fully. There is also a sub-situation relation between pairs of
situations such that if f1 + f2 fully characterize s, then there is a situation, s1 say,
which is fully characterized by f1 and which is a sub-situation of s. The sub-situation
enables the precise definition of causation relations among situations. If for example
situation s1 is the cause of some situation s3, then it is not the case that s is the
cause of s3 but its sub-situation s1.
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For Schubert [28], situations can be individuated by two main criteria: the fluent
that fully characterizes them and the time of the situation. Thus, in the world of
situations as they exist in Schubert [28], there is no possibility of associating two or
more situations which are completely described by the same fluent with the same
time frame. In other words, two situational variables that are fully characterized
by the same fluent and have the same temporal extents are referents to the same
situation. Thus, situations as they currently exist in the knowledge representation
literature are location invariant. This kind of situation may be sufficient for the tasks
of representing and reasoning with narrative texts, which were the tasks for which
Schubert and his colleagues invented their FOL∗∗. To see an example of a situation
that cannot be location invariant, consider a situation defined a 0-arity raining fluent
called rain. Two situation variables defined (fully characterized) by the same rain
fluent, cannot be referents to the same situation, unless they happen at the same
time and over the same spatial location. Thus location invariant situations as they
currently exist in the literature are not sufficient for modelling events in general.

The notion of a fluent can be thought of as being roughly equivalent to the
notion of an event type. This is because they both refer to universal class or kinds
of situations. That is why fluents have been used as a basis for defining repetition
within the context of situation calculus by Pinto [24] just as event types have been
used similarly by Akinkunmi and Osofisan [5]. Thus, if we let situations that these
fluents define be located situations such that two situational variables are referring
to the same situation if and only if they are fully characterized by exactly the same
fluents and they are associated with the same exact spatiotemporal region, then it
means that treating events as located situation makes the same definite ontological
commitment with respect the first and third sub-problems of the event individuation
problem as event types and spatiotemporal regions. Those ontological commitments
are the same that are made by using event types with time and spatial location as
criteria for event individuation as discussed earlier.

Ultimately, treating events as situations, if an agent does x by doing y, then we
wish to let the situation fully characterized by y be a sub-situation of some situation
characterized by x. However, a sufficient condition for making that inference is
discussed in sub-section 2.4.

2.4 Vendler’s Aspectual Theory of Events

An aspect of literature that is relevant for the discourse in this paper is the literature
on the nature of events that have their roots in Zeno Vendler’s aspectual classifica-
tion of verbs [33]. These aspectual classes include: states, activities, achievements
and accomplishments. Drawing on Dowty’s development of Vendler’s classification,
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Rothstein [27] presents the classes thus: States are based on non-dynamic verbs
such as sleeping, activities are based on open-ended cumulative actions such as run,
achievements are events that are near instantaneous defined by a culmination, while
accomplishments are events that take place over a time interval and have a natural
end-point or culminations. Trustwell [29] defined the four aspectual classes around
processes and their potential culminations. Both states and activities are atelic in
the sense that they are open ended events without any known culmination. Telic
events on the other hand have a known conclusion. We distinguish between two
categories of telic events. One category of telic events consist of those events that
are identified as quantized by Krifka [29] such as: building a snowman or a house.
The other category is the category of cumulative events that have a conclusion. For
example: falling to the ground (Galton, personal communication). The earlier cate-
gory of telic events we will refer to as quantized-telic events while the other category
will be called cumulative-telic.

An achievement is an instantaneous culmination such as finding a dice. An
accomplishment is an extended process followed by a culmination such as running
a mile. Sometimes, the literature can be confusing about the distinction between
achievements and accomplishments. For example, Trustwell [29] categorized crossing
a street as an achievement while categorizing building a house as an accomplishment.
Perhaps that confusion may arise from differing perceptions about which process is
instantaneous and which is not.

Based on Vendlerian analysis, Trustwell [29] identified four classes of events.
These are physical, intentional, strategic and analytical events. Physical events are
not defined by the intention of any participant, and as such can be reduced, accord-
ing to Trustwell, to “configurations of event participants, associated with different
forces”. Intentional events are those for which a participant in an event has a goal
in mind. Strategic events are events for which goals are formed and executed by a
party that is not a participant in the event. Analytical events are events that can
only be inferred by some analysis, not necessarily by a single observation or by some
agent’s intention. Examples of an analytical event include: global warming or the
event of a species going extinct or even a national brain drain event.

One way of viewing events categorized as accomplishments by Vendler is taking
them to be a composite of two events involved in a causation relationship [29]. In a
significant part of the literature, however, (e.g. [29, 8]), the causing event is always
believed to be an activity while the caused event is an achievement. Trustwell [29] for
example, treats an accomplishment as an activity culminating in some achievement.

One thing is very clear from the literature; and this is the fact that all accomplish-
ments culminate in an achievement. The culmination of a killing is the achievement
of the victim’s death, the culmination of a building process is the achievement of
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a built house just as the culmination of a shooting is the achievement of getting
a victim shot. The departure between these examples and the pattern presented
in the literature is that the processes that may possibly lead to the culmination
in all these examples hardly qualify to be called Vendlerian activities because they
are quantized in nature. The process leading to getting a house built is quantized
in nature and is therefore not a Vendlerian activity. In fact, in the stab/kill and
trigger-pulling/shoot examples, those processes are themselves achievements.

Going back to the argument of Pietroski [23] that actions must be viewed as
tryings, one can argue that any action for which trying to do it must necessarily
involve trying some other action must be a Vendlerian accomplishment. Examples of
such accomplishments are building, killing, shooting and door opening. The physical
existence of such an accomplishment is only deemed to hold if some predefined
culmination of that accomplishment which is an achievement on the part of the
agent, results from the agent’s action. For example the culmination of a shooting by
an agent is for the agent to achieve getting the victim shot. That culmination is an
achievement by the agent, which can only result from pulling the trigger of a loaded
gun pointed at the desired victim. Every culmination of an accomplishment is an
achievement. Every achievement leaves behind the irreversible attainment of a goal,
which we may regard as its effect. For example the effect of an agent’s achievement
of getting a victim shot is to attainment of the goal of putting the victim in a shot
state, while the effect of reaching a mountain peak by an agent is the attainment of
that goal on the agent’s part.

Thus, if an agent conceives an accomplishment Φ, and carries out an action Ψ
in order to execute that accomplishment, then if Ψ causes the achievement of a goal
which is the culmination of Φ, then it is the case that the agent has carried out her
accomplishment. In that case, Φ ceases to be just a mental event as it was at the
point of conception, but an event with a physical manifestation. Besides this we
must regard Ψ as a plan on the part of the agent, to accomplish Φ.

In section 3, we bring the insight of Vendler [33] and Trustwell [29] into the
theory that we present in this paper by categorizing fluents that define situations
along Vendlerian lines: states, activities, achievements and accomplishments. The
language of located situation introduced in section 3 includes a function for deriving
the culmination of an accomplishment, which is an achievement and another one for
deriving the effect of an achievement which is state fluent. Similarly, the insight of
Pietroski [23] is useful in this way: if a rational agent does x by doing y then if we
know that the agent conceived x as a mental event before doing y, then we can infer
that the agent’s action y is part of the rational agent’s plan to accomplish y.
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3 Events as Located Situations with Causative Rela-
tionships

In what follows, we present a logical theory of located situations, which is complete
with the notion of sub-situations and causation. Our notion of a situation is a local-
ized form of Schubert’s situation which is an enhancement of Schubert’s situation or
episodes [28] with location information. While the assertions associated with both
can be described by fluents, the difference between Schubert’s situation and our
localized situation is the fact that while Schubert’s situation can be individuated
by their times of occurrence, localized situations require both time and location to
individuate. We have motivated the need for localized situations of that nature by
illustrating the example of a rain event treated as a situation, and have argued that
one raining situation cannot be distinguished from another unless the location of
the situation is known. Thus, location situations will provide a better vehicle for
representing events than Schubert’s situations.

In this section, we present a logic of localized situations henceforth referred to
as situations. Subsection 3.2 discusses an axiomatization around situations and the
sub-situation relationships that may exist between them. Subsection 3.3 introduces
axiomatizations around two causation relationships. One is a direct causation rela-
tionship between pairs of situations named Cause-of while the other is ceteris paribus
causation between pairs of fluents named Causes. Subsection 3.4 presents sufficient
conditions for the completion of an accomplishment. Finally section 4 develops the
axiomatizations needed to formalize examples of intentional and strategic events. In
our representation, A does y is treated as a sub-situation of A does x. In addition
we also formalize strategic events of the type: A does x to B in order to get B to
accomplish y. In that case A does x to B is treated as a sub-situation of A gets B to
accomplish y.

3.1 Language and Notation
The logical language is a many-sorted reified first order predicate logic with equal-
ity with standard semantics for all the known operators. The sorts are fluents F ,
situations S, and the domain of objects and individuals, D, time intervals T , time
instants TP and location L. A fluent is a relational entity that describes partly
or fully, an event or state or similar eventualities. The Characterize predicate de-
notes the idea of a fluent occurring over or partially characterizing a situation and
Characterize∗∗ which denotes the idea that a fluent defines or completely character-
izes a situation and similar to the ∗∗ operator which denotes full characterization in
Schubert’s FOL∗∗ [28]. There is the predicate: Characterizemax, which denotes the
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fact that a fluent maximally characterizes a situation in such a way that the even-
tuality the fluent describes cannot be extended beyond either side of the situation’s
temporal extent (i.e. the situation’s beginning or end); There is also the predicate
Characterizemax∗∗ which denotes the idea that a fluent completely characterizes a
situation and the eventuality it describes cannot be extended beyond either side of
the situation’s temporal extents. The signature of each of these functions is the
same and given thus:

Characterize: F × S → Boolean
Characterize∗∗ : F × S → Boolean
Characterizemax: F × S → Boolean
Characterizemax∗∗ : F × S → Boolean

Our language has a causation relation between pairs of situation denoted by the
predicate Cause-of and a potential causation (i.e. all things being equal or ceteris
paribus) relation between a pair of fluents, denoted by the predicate Causes. The
Causes relation means a situation completely characterized by the first fluent can
cause some situation that is characterized by the second fluent. Their signatures are
given below:

Cause-of: S × S → Boolean
Causes: F × F → Boolean

The infix predicates ≺ and �, which denote the ideas that one situation is a proper
and improper sub-situation of another situation (in the sense that every fluent that
is reckoned to occur in the former is also reckoned to occur in the latter and they
happened at the same time) as well as the infix predicate symbols / and E which
respectively denote the relations proper and improper temporal sub-situation of. One
situation is a temporal sub-situation of another if its temporal extents are part of
the temporal extents of the other. The notation > denotes the relation of temporal
overlap between two situations which means the time of one situation overlap with
the other. Their signatures are:

�,≺, /,E,> : S × S → Boolean

In addition to these, there are three temporal relations denoted as @,v,u be-
tween time intervals, known respectively as proper subinterval, subinterval, and
non-disjoint relations respectively.

@,v,u : >×> → Boolean
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Finally, we introduce the predicate MinContainSit which denotes a relation between
a situation and two fluents. It means that the two fluents completely and maximally
describe two situations that are both temporal part of the situation in the relation-
ship, and no smaller situation contains the two situations described by the fluents.
The signature is given thus:

MinContainSit: S × F × F → Boolean

The final predicate we introduce here is the one that describes the intention of an
agent in bringing about a situation. The predicate Intent-to-accomplish denotes a
ternary relation with the signature:

Intent-to-accomplish: D × S × F → Boolean

The relation means an agent of the sort D participates in the situation of the sort S
with the intention of accomplishing a fluent of the sort F . In other words an agent
forms a plan to carry out an accomplishment f by participating or instigating the
situation s.

Ordinarily, fluents are structured as function applications. The functions that
we introduce at this point are the basic fluent functions. There are fluents defined
from unary functions which denote the state of some domain element:

dead, broken, drunk, shot, tired: D ∼→ F

The symbol ∼→ in function signatures is used to denote the fact that the function
being described is a partial function that is not necessarily defined for every member
of the domain.

One class of fluents denote actions that are carried out by one agent from the
domain on another domain entity.

shoot, stab, kill, get-tired, get-drunk, shoot, hold-down, fully-turn:
D ×D ∼→ F

The other functions are the infix operator + defined as the operator for combining
fluents as well as time and context functions for getting time and location. The
signatures of the functions are given thus:

+ : F × F ∼→ F
time: S → T
place: S → L
context: S → T × L
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The additive nature of + implies that it is idempotent, commutative and associative.
The time function returns the time over which a situation holds, while the place
function returns the location of the situation. The context function returns both the
time and location of the situation as pair.

Two other fluent functions introduced here are the sequence function, seq, and
the maintain function, maintain. The sequence function is a temporal sequence
of two fluents such that that there is no time gap between their occurrence. The
function seq has the following signature:

seq: F × F → F

The maintain function, on the other hand, is a partial function that denotes the
maintenance of a certain state (denoted by a fluent) by an agent. The signature of
the function is:

maintain: D × F ∼→ F

The maintain and seq functions are used in Example 2.4.3.
We introduce three functions that operate on time intervals. The begin function

returns the time instant that corresponds to the beginning of some given time inter-
val, the end function returns the time instant that corresponds to the ending instant
of a time interval. The common function returns the longest time interval that is
common to a pair of non-disjoint intervals. Their signatures are:

begin, end:T → TP
common: T × T ∼→ T

The first definition in our formalization clarifies the meaning of the + function.

Definition 1. The fluent f + f1 characterizes a situation s if and if each of f and
f1 also characterizes s.

∀f, f2, s. Characterize(f + f1, s) ≡
Characterize(f, s)∧ Characterize(f1, s)

Definition 2. A fluent fully characterizes a situation s if and only if no other fluent
characterises s.

∀f, f2, s. Characterize∗∗(f, s) ≡ Characterize(f, s)∧
∀f1.f 6= f1 ⊃ ¬Characterize(f1, s)

Definition 3. The fluent f + f1 Characterizes a situation s if and only if both f
and f1 characterize the situation s.
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∀f, f1, s. Characterize(f + f1, s) ≡
Characterize(f, s)∧ Characterize(f1, s)

The relations denoted by the predicate Characterize∗∗ is defined in terms of
Characterize thus:

Definition 4. A fluent completely characterizes a situation if and only if no new
fluent can be added to it in order to also describe the situation.

∀f, s. Characterize∗∗(f, s) ≡ Characterize(f, s)∧
(∀f1.(f 6= f1 ∧ ¬∃f2.f = f1 + f2) ⊃ ¬Characterize(f + f1, s))

The purpose of Characterize∗∗ is that it enables us to define a news situation that
focuses on certain aspects of what is going on in another situation. If a situation is
characterized by several fluents, it is possible to define a new situation from it, with
exactly the same temporal extents, which is fully characterized by a finite number
of fluents. Note that in classical situation calculus as well as situational semantics
(e.g. in FOL∗∗ [28]), it is generally assumed that situations are identified by the
fluents that define them and the time of the situation i.e.

Two mentioned (Schubert’s) situations are the same if exactly the same fluents
Occur in them and both situations have exactly the same temporal extents.

∀s.s = s1 ≡ (∀f. Characterize(f, s) ≡ Characterize(f, s1))∧ time(s) =
time(s1)

This can be the case when fluents are defined around clearly identified objects as in
a narrative. However, when fluents are defined around indefinite objects, such as: A
lion killed a dog, as opposed to definite objects, such as: lion36 killed dog180, there
is the need for a stronger context than just time for individuating situations.

For example, deciding the difference between lion36 and lion32 who are both
male lions that look very much alike may be difficult. In that case, one needs more
contextual information in order to individuate situations. Such information includes
particulars such as time and place. We are assuming here that events are stationary;
in other words that, all the temporal parts of events are in one place. We will define
the context of a situation as a pair of the time and place of that situation.

context : S → T × P

Thus we define context in Definition 2.3 below.

Definition 5. The context of two located situations is the same if they share the
same time, place.
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∀s, s1. context(s) = context(s1) ≡ time(s) =
time(s1) ∧ place(s) = place(s1)

It is some kind of generalization of contexts that led Akinkunmi [4] to propose
the notion of qualification such that an event token etoken say is formed form an
event type etype by the application of a tokenization function fT to a pair of the
event type and qualification q such that: etoken = fT (etype, q), such that q carries all
the information about time and location and others.

If we are dealing with situations that are not stationary, i.e. whose spatial extents
may vary with time, for example, a situation evolving on a moving ship as discussed
by Hacker [17], then we will need to turn place into two-argument functions so that
contextual equality can be redefined as two situations that share the same time and
for which the values of spatial extents and the other particulars at the same time
instants are the same, thus:

∀s, s1. context(s) = context(s1) ≡ time(s) = time(s1) ∧
(∀tp.tp ∈ time(s) ⊃ place(s, tp) = place(s1, tp)

Thus, even when dealing with moving situations, the context of situations can easily
be defined. With a clear definition of contexts, we can then individuate located
situations using context thus:

Definition 6. Two situational variables refer to the same situation if exactly the
same fluents characterize the both of the situations they represent and their contexts
are the same.

∀s, s1.s = s1 ≡ (∀f . Characterize(f, s) ≡
Characterize(f, s1))∧ context(s) = context(s1)

Although for most domains, time and place should be sufficient for defining
situational contexts, we cannot rule out the possibility that there are domains for
which they are not sufficient.

There are different kinds of fluents in this paper according to Vendler’s aspectual
properties of verbs. These are states, activities, achievements and accomplishments.
We will identify them by the kind of function that generates them and the kind of
fluent for which they are defined. Therefore, we will present a number of partial
functions defining these fluents and the fluents for which they are defined.

While there are activities that can be defined directly as fluents, there are ac-
tivities that must be defined around other fluents. Firstly, we introduce a function
that denotes the fact that an agent is engaged in some activity. This is the function
act with the signature:
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act: D × F ∼→ F

The function act is defined for an agent and basic Vendler activity such as running,
spinning and mixing. Examples of this are act(jack, mix(x, y)) or act(machine12,
spin(fabric134)).

Secondly, we introduce a partial second-order function, achieve, for deriving
achievement fluents from an agent and state fluents, which denotes the idea that a
member of the domain (an agent) brings about some state fluent.

achieve: D × F ∼→ F

An example of an achievement is achieve(tola, locked(door24)) which means Tola
has achieved putting door24 in a locked state. The achieve function is particularly
useful in deriving the culminations of Vendler’s accomplishments. For example the
achievement of a locked door for an agent is the culmination of a door locking
accomplishment by that same agent.

Similarly, have an accomplish function for making accomplishment fluents thus:

accomplish: D × F ∼→ F

The accomplish function takes a domain agent and another achievement or ac-
complishment and returns an accomplishment. Primarily, an accomplishment is
an activity leading up to an achievement, Thus the application of the accomplish
function to an individual and an achievement fluent results in an accomplishment
that culminates in the achievement. For example accomplish(tola, achieve(tola,
locked(door24))), is a fluent that describes an accomplishment that culminates in
the locking of door24 by tola. An alternative way of stating this is to write: accom-
plish(tola, lock-door(tola, door24)) where it should be noted that lock-door(tola,
door24) is an accomplishment.

The latter representation in which the fluent argument for the accomplish func-
tion is also an accomplishment is particularly useful when we need to specify strategic
events for which an agent gets another agent to accomplish a task such as in this
example:

accomplish(kola, lock-door(tola, door24)).

The achieve function distributes over the + operator on fluents thus:

∀x, f1, f2. achieve(x, f1 + f2) = achieve(x, f1) + achieve(x, f2)

In general, achievements may have effects which are state fluents. For that purpose,
we therefore introduce the partial function, eff, with the signature:
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eff: F ∼→ F

The eff function is applicable to an achievement fluent and generates a state fluent.
For achievement fluents defined in terms of the achieve function, the effect of such
fluents can be defined in terms of the goal state thus:

∀x, f . eff(achieve(x, f)) = f

Another partial function with a similar signature to eff is the culmination func-
tion culm that is only defined for fluents that are accomplishments. It returns the
culminating achievement of the accomplishment. For example fact that x kills y
culminates in x achieving putting x in a dead state is expressed thus:

culm(kill(x, y)) = achieve(x, dead(y)).
In fact kill(x, y) is also the same fluent as accomplish(x, achieve(x, dead(y)). Thus
we can further define the culmination of an accomplishment defined in terms of an
accomplishment thus:

culm(accomplish(x, achieve(x, ϕ))) = achieve(x, ϕ).
However if there are accomplishments defined in terms of other accomplishments,
such as when an agent gets another agent to act in a certain kind of way, their
culmination the first agent’s accomplishment is defined in terms of the culmination
of the second agent’s accomplishment thus:

culm(accomplish(x, accomplish(y, ϕ))) = culm(accomplish(y, ϕ)).
It is important to note at this point that the effect of a fluent can be a state, such
as when a fluent denotes the opening of a door by an agent or it can be another
event fluent, such as when an agent instigates another agent to effect the opening
of the door. In the former case the effect of the fluent: achieve(x, open(door))
is open(door). In the latter case, the effect of the fluent: achieve(x, achieve(y,
open(door)) is achieve(y, open(door)). In the latter case, x got y to open the door.
The achieve and eff functions appear in section 4 and in the examples in subsection
4.1.

3.2 Sub-situations and Temporal Sub-situations
A (localized) situation like an episode can be characterized by many fluents. As
such, each of those fluents can be considered as defining sub-situations. There
is also the need to represent the notion of a causation relationship between two
situations. Thus there is a need for concurrent sub-situation relationship between
two situations. A sub-situation of a situation is another situation within the same
context that describes some relevant aspect of a certain situation.
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Definition 7. A situation s is a sub-situation of s1 if and only if every fluent that
characterizes s, also characterizes s1 and both s and s1 share the same context.

∀s, s1.s � s1 ≡ (∀f. Characterize(f, s) ⊃
Characterize(f, s1))∧ context(s) = context(s1)

Definition 8. A situation s is a proper sub-situation of s1 if and only if s is a
sub-situation of s1 that is not equal to s1.

∀s, s1.s ≺ s1 ≡ s � s1 ∧ s 6= s1

Another kind of sub-situation relation is one in which the time of one situation
is a temporal part of the time of another, while other aspects of the context remains
the same. This is regarded as a temporal sub-situation relation defined next.

Definition 9. Situation s is a proper temporal sub-situation of s1 if and only if time
of s is also within the time of s1, while the other aspect of the context remains the
same.

∀s, s1.s / s1 ≡ time(s) @ time(s1) ∧ place(s) = place(s1)

Definition 10. A situation s is a temporal sub-situation of another situation s1 if
and only if s is either a proper sub-situation of s1 or s is the same as s1.

∀s, s1.s E s1 ≡ s / s1 ∨ s = s1

Theorem 11. If a situation is a sub-situation of another, then it is also a temporal
sub-situation of the same situation.

∀s, s1.s � s1 ⊃ s E s

3.3 Causation and Consequences
There are certain basic facts about causation relations among situations. The most
fundamental of these is the fact that a causation relation can only be defined among
two completely defined situations.

Axiom 12. If the situation s causes some other situation, then s can be character-
ized fully and maximally by some fluent.

∀s, s1 Cause-of(s, s1) ⊃ ∃f, f1. Characterizemax∗∗(f, s)∧
Characterize∗∗(f1, s1)

The cause of a situation is also the cause of all its sub-situations as well as all
its temporal sub-situations. These ideas are expressed as Axioms 13 and 14 below.
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Axiom 13. If the situation s2 is a sub-situation s1, then whatever causes s2 causes
s1.

∀s1, s2.s2 � s1 ⊃ (∀s. Cause-of(s, s1) ≡ Cause-of(s, s2) )

Axiom 14. If the situation s2 is a temporal sub-situation s1, then whatever causes
s2 causes s1.

∀s1, s2.s2 E s1 ⊃ ∀s. Cause-of(s, s1) ≡ Cause-of(s, s2)

No sub-situation or temporal sub-situation of the cause of any particular situ-
ation can be taken to be the cause of that situation. Those ideas are expressed as
Axioms 15 and 16.

Axiom 15. If the situation s causes another situation s1 then no proper temporal
sub-situation of s can be the cause of s1.

∀s, s1. Cause-of(s, s1) ⊃ ∀s2.s2 / s ⊃ ¬ Cause-of(s2, s1)

Axiom 16. If the situation s causes another situation s1 then no proper sub-
situation of s can be the cause of s1

∀s, s1. Cause-of(s, s1) ⊃ ∀s2.s2 ≺ s ⊃ ¬ Cause-of(s2, s1)

The next sub-section uses the notions of causation defined here and the notion
of an accomplishment’s culmination to define sufficient conditions for defining the
existence of a physical accomplishment.

3.4 Accomplishments and Situations
If it happens that an agent has done x by doing y, irrespective of their intentions in
doing y, it is important to be able to determine the conditions for knowing when x has
done. As we have argued earlier, x must be an accomplishment with a culmination
defined around a specific achievement.

In this sub section, we define a sufficient condition for deciding when such an
action, x has been accomplished by an agent doing y. A sufficient condition for com-
pleting an accomplishment is when a situation defined by some other action causes
another situation fully characterized by the culmination of that accomplishment,
which has temporal extents that begins where the causing situation ends.

Axiom 17. A sufficient ground for an accomplishment to characterize a situation
is for another situation to cause another situation characterized by the culmination
of that accomplishment and the temporal extent of the causing situation ends at the
same time as the caused situation starts. In that case the causing situation is deemed
to be a sub-situation of the situation characterized by the accomplishment.
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∀f . Accomplishment(f)∧
∃f2, s1, s2. eff(culm(f)) = f2∧ Characterize∗∗(f2, s2)∧
Cause-of(s1, s2)∧ end(time(s1)) = begin(time(s2))
⊃ ∃s. Characterize(f, s) ∧ s1 � s).

In the next section, we extend the logical theory to be able to identify a case
in which a rational agent conceives doing y as a plan for accomplishing x and does
so. The theory will therefore be extended in section 4 to formalize intentional and
strategic accomplishments.

4 Intentional and Strategic Accomplishments
Pietroski [23] has argued that actions must be viewed as tryings. For example,
“trying to [shoot] is doing something even if [that thing] is not [shooting]”. In order to
go about shooting Abraham Lincoln, Daniel Booth pulled the trigger of a loaded gun
that is pointed at Lincoln. When an agent decides to carry out an accomplishment,
they must decide what actions to undertake in order to get there. Thus in trying
to accomplish x by doing y, an agent first conceives the accomplishment of x. This
is what Pietroski [23] argues should be part of an agent’s mental events. In the
last section we have defined sufficient conditions for determining when x has been
accomplished from doing y. That inference was neutral about whether or not x was
pre-conceived before y was undertaken as a means of accomplishing it.

In this section, we extend the existing logical theory by presenting a sufficient
condition for deciding whether or not doing y was an agent’s plan for accomplishing
x. Those conditions are based on knowing whether an agent’s intention in doing
y, was to accomplish x and whether the agent was rational with respect to that
intention. We will define the rationality of an agent’s plan in terms of a ceteris
paribus causation relationship between action fluents.

For example, when Booth decided to shoot Lincoln, he decided to pull the trigger
of the loaded gun pointed at Lincoln. As an agent that knows enough about the
domain of guns and shooting, Booth must have known that the pulling of a trigger
of a loaded gun can lead to a situation fully characterized by the shooting of the
victim. In other words, he must have known there is a ceteris paribus causation
relation between pulling the trigger of a loaded gun pointed at his victim, and the
culmination of the accomplishment of the victim’s shooting, all things being equal.
This relation is denoted by the Causes predicate between fluents.

Every agent should be able to infer what fluent can cause another by learning
from the experience of actual causation experiences thus:
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Axiom 18. When a situation s fully characterized by f causes another situation s1
which is fully characterized by f1 then a ceteris paribus causation relation has been
established between f and f1.

∀s, s1, f, f − 1. Cause-of(s, s1)∧ Characterize∗∗(f, s)∧
Characterize∗∗(f1, s1) ⊃ Causes(f, f1)

This axiom does not rule out that the possibility of the agent acquiring knowl-
edge about the ceteris paribus relation from other sources apart from learning from
experience. If the only means by which an agent can know what can cause what is
by experience, then we could strengthen all the axioms like 4.1 above into a defini-
tion for ceteris paribus causation. However, we stop short of doing that, so that we
can accommodate knowledge of ceteris paribus causation from sources other than
experience (e.g. tradition).

Informally, an agent effects or instigates a situation s (described by a fluent ϕ)
with the intention of bringing about an accomplishment φ. Thus when an agent
desires φ and believes (rightly or wrongly) that doing ϕ will lead to the desired
accomplishment, then s/he does ϕ. The predicate Intent-to-accomplish denotes the
ternary relation between an agent, a situation s/he instigates and a fluent s/he
wishes to accomplish. The predicate means, an agent instigates a situation s in
order to achieve the goal fluent f . The signature is:

Intent-to-accomplish: Agent × Situation × Fluent → Boolean

Examples that can be formalized using the predicate are given thus:

1. Sam drinks with Neil in order to get Neil drunk.

∃s. Intent-to-accomplish(sam, s, get-drunk(sam, neil )) ∧
Characterize∗∗( drinks-with(sam, neil), s)

2. In pointing the gun at Lincoln and pulling the trigger, Booth intended to have
him shot.

∃s. Intent-to-accomplish(booth, s, get-shot(booth, lincoln)) ∧
Characterize∗∗(point-at(booth, gun17, lincoln) +

pull-trigger(gun17), s)

3. Uju dances with Lagbaja in order to get Lagbaja tired.

∃s. Intent-to-accomplish(uju, s, get-tired(uju, lagbaja )) ∧
Characterize∗∗(dance-with(uju, lagbaja), s)
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4. Sam stabs Carlos in order to get Carlos killed.

∃s. Intent-to-accomplish(sam, s, kill(sam, carlos)) ∧
Characterize∗∗(stabs(sam, carlos), s)

5. Mike strikes the rock with a hammer in order to break it.

∃s. Intent-to-accomplish(mike, s, break(mike, rock)) ∧
Characterize∗∗(strike-with-hammer(mike, rock), s)

It is important to note that some achievement fluents of the sort defined by the
achieve function given in section 3.1, are related to accomplishment fluents through
the applications of the culminations function, culm.

∀x, y. culm(get-drunk(x, y)) ≡ achieve(x, drunk(y))
∀x, y. culm(get-tired(x, y)) ≡ achieve(x, tired(y))
∀x, y. culm(kill(x, y)) ≡ achieve(x, dead(y))
∀x, y. culm(break(x, y)) ≡ achieve(x, broken(y))
∀x, y. culm(shoots(x, y)) ≡ achieve(x, shot(y))

It is also important to recall that for every achievement fluent of the sort on the left
hand side of the equations above, the application of the effect function, eff will yield
the goal that the achievement brought about. For example:

eff(achieve(x, drunk(y)) = drunk(y).
eff(achieve(x, tired(y) = tired(y).
eff(achieve(x, dead(y)) = dead(y).
eff(achieve(x, broken(y)) = broken(y).

We can now define what makes an agent rational with respect to their plan or
expectation to accomplish a specific goal by bringing about a situation. According
to Davidson [13], “a reason rationalizes an action only if it [i.e. that reason] leads
us to see something the agent saw, or thought he saw, in his action-some feature,
consequence, or aspect of the action the agent wanted, desired, prized”. Thus every
intent-to-accomplish assertion gives a reason to rationalize an action. That reason
therefore is rational if it can be shown that the situation the agent participated in
can lead to the desired outcome which is the effect of the desired accomplishment’s
culmination.

Thus, an agent is rational with respect to a plan to bring about the accomplish-
ment fluent f by participating in a situation s if the effect of the culmination of f
can be caused by the fluent that defines that situation. In other words, if what s/he
intends to accomplish by bringing about a particular situation is feasible.
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Definition 19. An agent is rational with respect to using a situation s to bring about
accomplishment f , if and only if the effect of that accomplishment’s culmination can
be caused by the fluent defining the situation s.

∀x, s, f . Rational-wrts(x, s, f) ≡
(∃f1. Intent-to-accomplish(x, s, f)∧
Characterize∗∗(f1, s)∧ eff(culm(f)) = f2 ⊃ Causes(f1, f2) )

With the definition of an agent’s rationality, we are now ready to define a plan-
oriented relationship between an accomplishment and the action that leads to it. A
Plan-for relation exists between two situations if the action that characterizes the
first situation was conceived to lead to the accomplishment that characterizes the
second situation. The signature for Plan-for is:

Plan-for: S × S → Boolean

A definition for Plan-for is presented below:

Definition 20. A situation s is deemed to have been a part of a plan for accom-
plishing a situation s1 if and only if the intention of an agent x in carrying out s is
to accomplish f , and x is rational with respect to the intention to accomplish f by
doing s and f characterizes s1 and s is a temporal situation of s.

∀s, s1. Plan-for(s, s1) ≡ ∃f . Intent-to-accomplish(x, s, f)∧
Characterize∗∗(f, s1) ∧ s E s1∧ Rational-wrts(x, s, f).

The next axiom gives sufficient condition for deciding whether or not a situation
is a plan for bringing about another situation.

Axiom 21. If an agent a participates in or triggers a situation s in order to bring
about an accomplishment f and the agent is rational with respect to using the sit-
uation s to accomplish f , and a succeeding situation s1 arises that is characterized
by effect of culmination of that accomplishment and (s1) is also caused by s, then
a has brought about the accomplishment f which he set out to bring about, and the
situation s is deemed to be a plan for the situation s2.

∀a, s, ϕ, f1, f2. Intent-to-accomplish(a, s, f)∧ Rational(a, s, f)∧
Characterize(f2, s)∧ eff(culm(ϕ)) = f1∧
∃s1. Characterize∗∗(f1, s1)∧ Cause-of(s, s1)∧ end(time(s)) =
begin(time(s1))∧ Characterize(f1, s1)
⊃ ∃s2. Characterize∗∗(f, s2)∧ Plan-for(s, s2).
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It is important to draw attention to the use of the Intent-to-accomplish predicate
used here and its significance. The predicate allows the specification of both inten-
tional and strategic events in the same sense as contained in Trustwell’s analysis
[29]. An intentional event is one carried out by an agent with a goal and the agent
is involved in the event. On the other hand, a strategic event is one instigated by a
party who is not part of the event and with a goal in the mind of the instigator.

The subsection below presents examples of how the ontological commitment
made in Axiom 21 above can be used to formalize some examples of intentional
events (Example 1 is about intentional events while Example 3 is about intentional
non-atomic events). Example 2 focuses on a strategic event instance.

4.1 Examples
We now proceed to see examples for which situations and their causation relation-
ships are useful. For the first example, clearly, a logic based on atomic events is
inadequate. The first example takes care of the Brutus stab/kill Caesar problem
by making the stabbing of Caesar by Brutus, a sub-situation of another in which
Brutus kills Caesar.

Example 1 (Intentional Events). In this example, we are distinguishing between a
stabbing event in which the actor has the intention to kill (as is the case with the
Brutus and Caesar case) and other stabbing events in which the actor does not have
the intention to kill. If the stabbing agent intends to kill and he succeeds then we
treat the stabbing situation as part of the plan for accomplishing the killing situation.

These treatments of intentional and unintentional events are presented below:
Any stabbing situation with the intention to make the victim dead by an agent

who is rational with respect to a situation s, agent that causes the death of its victim
is part of a killing situation of the victim by the agent.

∀x, y, s. Characterize∗∗(stab(x, y), s)∧
Intent-to-accomplish(x, s, kill(x, y))
∧ Rational-wrts(x, s, kill(x, y))∧
∃s1.Characterize∗∗(dead(y), s1)∧ Cause-of(s, s1)∧
end(time(s)) = begin(time(s1)) ⊃
∃s2. Characterize(kill(x, y), s2)∧ Plan-for(s, s2).

The above axiom associated with Example 1, is an instance of Axiom 21. To see
this, it is important to note that both of the following are true:

culm(kill(x, y)) = achieve(x, dead(y))
eff(achieve(x, dead(y))) = dead(y).
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The logic of intent presented here accurately mirrors the intuition of Pietroski [23]. In
Pietroski’s manner of speaking: In an attempt to kill Caesar, Brutus did something,
which is stabbing Caesar. Thus Pietroski’s thought can be translated into our logic
of intent thus: in trying to accomplish φ, an agent x does ϕ, is represented in our
logic as:

Intent-to-accomplish(x, s, φ)∧ Characterize∗∗(achieve(x, ϕ), s).
Thus the killing begins as a conceived mental event in the mind of the agent as
Pietroski rightly observed. Axiom 21 above gives the condition for the agent to be
deemed to have accomplished his plan through a specific line of action. That condi-
tion is if we know that the agent has a rational plan to accomplish her goal φ through
a specific action ϕ and the action caused the culmination of that accomplishment.
The next example is one involving strategic events.
Example 2 (Strategic Events). Strategic events [29] are events that an agent in-
stigates without being a participant. It is similar to intention event because the
instigating agent hope the culmination of that event will result in the achievement
of objective. For example, an agent can instigate a stabbing event without being part
of it. For example, it is true that Cassius got Brutus to stab Caesar in a particular
situation. Such a situation can be represented by using the accomplishment fluent
thus:

∃s. Characterize∗∗(accomplish(cassius, stab(brutus, caesar)), s)
The following statement is formalized using the accomplishment fluent below:

a. The intention of Cassius in convincing Brutus to stab Caesar is to get him to
stab Caesar.

∃s. Characterize∗∗(convince-to(cassius, brutus,
stab(brutus, caesar)), s)∧ Intent-to-accomplish(cassius,
s, accomplish(cassius, stab(brutus, caesar)))

It is important to note that strategic events such as the one above are generally
accomplishments. The treatment of the relationship between a strategic event of
this nature and the event that brings it about is explained in the following axiom
schema:
Axiom 22. If x convinces y to do ϕ to z and his intent in doing so is to get y to do
ϕ to z and x was rational about his course of action to achieve his objective, then
if y eventually does what he was directed to do as a result of x’s action, then x is
deemed to have succeeded in getting y to do ϕ to z over a situation towards which
the convincing situation is part of the plan.
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∀ϕ.
∀x, y, z, s, s1, s2.

Characterize∗∗(convince(x, y, ϕ(y, z)), s)∧
Intent-to-accomplish(x, s, ϕ(y, z))∧ Rational-wrts(x, s, ϕ(y, z))∧
∃s1. Characterize∗∗(ϕ(y, z), s1)∧ Cause(s, s1)∧
end(time(s)) ≤ begin(time(s1)) ⊃
∃s2. Characterize∗∗(accomplish(x, ϕ(y, z)), s2)∧ Plan-for(s, s2)

Axiom 22 above captures the notion of the strategic agent telling getting or
directing the convinced agent the exact thing to do. There are definitely cases in
which the strategic agent only gives the convinced agent an accomplishment to carry
out and that agent is to decide how to do it as seen in the following axiom.

Axiom 23. If x convinces y to do φ to z, with the intention of getting y to do φ to z
and x is rational with respect to his objective, then if y does ϕ to z as a result of the
convincing until the action results in putting z in a state τ which is the culmination
of doing φ to z, then x is deemed to have accomplished the task of getting y to do φ
to z over a situation for which the directing situation is a part of its plan.

∀φ, τ, ϕ.
∀x, y, z, s, s1, s2.

Characterize∗∗(convince(x, y, φ(y, z)), s)∧
Intent-to-accomplish(x, s, φ(y, z))∧ Rational-wrts(x, s, φ(y, z))∧
∃s1. Characterize∗∗(ϕ(y, z), s1)∧ Cause-of(s, s1)∧
∃s2. Characterize∗∗(τ(z), s2)∧ Cause-of(s1, s2)∧
eff(culm(φ(y, z))) = τ(z)∧
end(time(s1)) = begin(time(s2)) ⊃
∃s3. Characterize∗∗(accomplish(x, φ(y, z)), s3)∧ Plan-for(s, s3).

Another justification for preferring situations to davidsonian events in represent-
ing events is the fact that causation is not necessarily always a relationship between
events or situation that can be described by an atomic fluents or so-called atomic
events. There are cases in which it takes a combination of events to cause another
event or set of events. The next example demonstrates such a case.

Example 3 (A non-atomic Event). The following is an example from the planning
domain arising from a paper of James Allen [2]. In that example, it takes both the
full turning of the knob and holding down the latch of a door by an agent, at the
same time, in order to open the door.

Axiom 24. If a rational agent fully turns the knob of a door while pressing and
holding down its latch with the intention of opening the door, and that situation
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causes the door to open, then there exists a situation fully characterized by the open-
ing of the door by the agent for which the situation characterized by knob turning
and latch holding is part of the plan.

∀s, x, d.
Characterize∗∗(f, s)∧ Rational-wrts(x, s, open-door(x, d))∧
Intent-to-accomplish(x, s, open-door(x, d)) ∧ f =
seq(hold-down(x, latch(d)),
maintain(x, held-down(latch(d))) + fully-turn(x, knob(d))) ∧
∃s1. Characterize∗∗(opened(d), s1)∧ Causes(s, s1)∧ end(time(s)) =

begin(time(s1))
⊃ ∃s2. Characterize∗∗(open-door(x, d), s2)∧ Plan-for(s, s2).

It is important to note that the culmination of the accomplishment open-door(x, d)
is the achievement achieve(x, opened(d)). Thus:

culm(open-door(x, d)) = achieve(x, opened(d)) and
eff(culm(open-door(x, d))) = opened(d)

In this section we have seen the internal plan structures of intentional and strategic
events. The first kind is intentional events in which A is acting for itself with the
structure A does x by doing y. In that case the precondition is presented for which
the situation in which A does y is a plan for A doing x. If the agent does y with the
intention of accomplishing x and that causes the culmination of x in the immediate
or long term, then the situation in which A does y is a part of the situation in which
A does x.

The second one is strategic events in which an agent A is getting some other agent
to act in some kind of way, for example, A directs B to do x. In the case that x is
an accomplishment then B is free to choose how to carry out the accomplishment.
Supposing B chooses to do x by doing y, then condition for knowing when A has
accomplished a strategic goal of directing B to do x is when A directs B to do x and
B does something that causes the culmination of x in the immediate or long term.
In that case, the situation in which A does whatever he did is a part of the plan for
getting B to accomplish x.

5 Summary
Starting from Unwin’s refinement of the three aspects of Davidson’s event individu-
ation problem, this paper has argued that it is possible to commit to an ontological
position with respect to the problem of whether adverbial modifiers can alter an
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event reference and the problem of whether or not two events can occupy the same
spatiotemporal zone, by using identity criteria for events that combines event types
and the time-space region. This follows, firstly, from the fact that event types (which
are roughly equivalent to the notion of fluents) as they appear in the knowledge rep-
resentation literature are invariant with respect to adverbial modifiers. Thus given
that an event is identified by an event type and the time and space they occupy,
“the addition of an adverbial modifier to an event designator”, will not “alter its
reference”. Secondly, we argue that while two events may occupy the same exact
time space zone, they may be differentiated from one another by their event types,
as in the case of the rotating cylinder changing colour to red at the same time, which
must be taken to consist of two events of types: the rotation of the cylinder and
the changing of the cylinder’s colour. Even when the two events of the same type
do occupy the same (broad) time-space zone their exact time-space zones may be
delineated by Guarino and Guizzardi [16] style focusing process.

Our argument is that treating events as located situations also helps to capture
the same kind of ontological commitment with respect to first and third aspects
of the refinement of the event individuation problem, made by using event types
and spatio-temporal region. Subsequently, a logical theory of located situations is
provided that enables committing to a middle ground between the “identificationist”
and “anti-identificationist” positions identified by Pietroski [23], with respect to the
second aspect of the refinement which is: If A does x to B by doing y to B, is the
event of A’s doing of y to B the same as the event of A’s doing of x to B? That
middle ground treats the situation in which A does y to B as a sub-situation in
which A does x to B, rather than treating the two events as either the same event
or as two different events.

We also argue that if the only way an agent can do x is by doing something other
than x, then x must be an accomplishment, and the condition for the existence of
a situation characterized by x is when the existence of a situation characterized
by A doing y leads to the culmination of the accomplishment A doing x. In that
sense we must infer that A doing x characterizes a situation for which A doing y
is a sub-situation. If an agent intentionally does y in order to do x, then A doing
x started as a mental event as observed by Pietroski [23], we infer that when x is
accomplished by doing y then the situation in which A does y is a part of the plan
for the situation in which A does x.

It is important to understand clearly the kind of ontological commitment that
choosing to represent events with various knowledge representation structures entail.
For instance, representing events as pure Schubert’s situation commits us to having
a domain in which two events described by the same fluents cannot happen at the
same time even if those events are happening in two different locations. That is a
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restriction that may be suitable for the domain of narrative texts for which Episodic
Logic was intended, but is definitely not suitable for the wider context of reasoning
about events.

We must end this paper with a disclaimer: that the author is not an advocate of
killings or violence in any way or form, and that the examples chosen in this paper
should not be construed as suggesting so.
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