
Journal of applied logics (Print) ISSN 2631-9810
Journal of applied logics (Online) ISSN 2631-9829

Contents
Articles
Towards Universal Logic: Gaggle Logics
Guillaume Aucher 875
The Reasonable Effectiveness of Model Theory 
in Mathematics
John T. Baldwin 943
Bilattice Basics
Melvin Fitting 973
Morphisims and Duality for Polarities and Lattices 
with Operators
Robert Goldblatt 1017
Twins in Logic – Identical and Otherwise
Lloyd Humberstone 1071
Fundamentals of Computability Logic
Giorgi Japaridze 1115
Relative Necessity Extended
Jessica Leech 1177
Potentiality and Indeterminacy in Mathematics
Øystein Linnebo and Stewart Shaprio 1199
First-degree Entailment and Binary Consequence Systems
Yaroslav Shramko 1221
Point-free Theories of Space and Time
Dimiter Vakarelov 1241
Logic’s Naturalistic Character
John Woods 1321

Volume 7    Issue 6    December 2020

Journal of 
Applied Logics 
The IfCoLog Journal of Logics and their Applications

Available online at 
www.collegepublications.co.uk/journals/ifcolog/

Free open access

Published bySponsored by
V
o
lu

m
e
 7 

 Is
s
u
e
 6

 
 D

e
c
e
m

b
e
r 2

0
2
0

Journal of Applied Logics The IfCoLog Journal of Logics and their Applications



Journal of Applied Logics - IfCoLog
Journal of Logics and their Applications

Volume 7, Number 6

December 2020



Disclaimer
Statements of fact and opinion in the articles in Journal of Applied Logics - IfCoLog Journal of
Logics and their Applications (JALs-FLAP) are those of the respective authors and contributors and
not of the JALs-FLAP. Neither College Publications nor the JALs-FLAP make any representation,
express or implied, in respect of the accuracy of the material in this journal and cannot accept any
legal responsibility or liability for any errors or omissions that may be made. The reader should
make his/her own evaluation as to the appropriateness or otherwise of any experimental technique
described.

c© Individual authors and College Publications 2020
All rights reserved.

ISBN 978-1-84890-346-3
ISSN (E) 2631-9829
ISSN (P) 2631-9810

College Publications
Scientific Director: Dov Gabbay
Managing Director: Jane Spurr

http://www.collegepublications.co.uk

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise
without prior permission, in writing, from the publisher.

http://www.collegepublications.co.uk


Editorial Board

Editors-in-Chief
Dov M. Gabbay and Jörg Siekmann

Marcello D’Agostino
Natasha Alechina
Sandra Alves
Arnon Avron
Jan Broersen
Martin Caminada
Balder ten Cate
Agata Ciabttoni
Robin Cooper
Luis Farinas del Cerro
Esther David
Didier Dubois
PM Dung
David Fernandez Duque
Jan van Eijck
Marcelo Falappa
Amy Felty
Eduaro Fermé

Melvin Fitting
Michael Gabbay
Murdoch Gabbay
Thomas F. Gordon
Wesley H. Holliday
Sara Kalvala
Shalom Lappin
Beishui Liao
David Makinson
George Metcalfe
Claudia Nalon
Valeria de Paiva
Jeff Paris
David Pearce
Pavlos Peppas
Brigitte Pientka
Elaine Pimentel

Henri Prade
David Pym
Ruy de Queiroz
Ram Ramanujam
Chrtian Retoré
Ulrike Sattler
Jörg Siekmann
Jane Spurr
Kaile Su
Leon van der Torre
Yde Venema
Rineke Verbrugge
Heinrich Wansing
Jef Wijsen
John Woods
Michael Wooldridge
Anna Zamansky

iii



iv



Scope and Submissions

This journal considers submission in all areas of pure and applied logic, including:

pure logical systems
proof theory
constructive logic
categorical logic
modal and temporal logic
model theory
recursion theory
type theory
nominal theory
nonclassical logics
nonmonotonic logic
numerical and uncertainty reasoning
logic and AI
foundations of logic programming
belief change/revision
systems of knowledge and belief
logics and semantics of programming
specification and verification
agent theory
databases

dynamic logic
quantum logic
algebraic logic
logic and cognition
probabilistic logic
logic and networks
neuro-logical systems
complexity
argumentation theory
logic and computation
logic and language
logic engineering
knowledge-based systems
automated reasoning
knowledge representation
logic in hardware and VLSI
natural language
concurrent computation
planning

This journal will also consider papers on the application of logic in other subject areas:
philosophy, cognitive science, physics etc. provided they have some formal content.

Submissions should be sent to Jane Spurr (jane@janespurr.net) as a pdf file, preferably
compiled in LATEX using the IFCoLog class file.

v

jane@janespurr.net


vi



Contents

ARTICLES

Towards Universal Logic: Gaggle Logics . . . . . . . . . . . . . . . . . . . . . . . 875
Guillaume Aucher

The Reasonable Effectiveness of Model Theory in Mathematics . . . . . . . 945
John T. Baldwin

Bilattice Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975
Melvin Fitting

Morphisims and Duality for Polarities and Lattices with Operators . . . . .1019
Robert Goldblatt

Twins in Logic – Identical and Otherwise . . . . . . . . . . . . . . . . . . . . . .1073
Lloyd Humberstone

Fundamentals of Computability Logic 2020 . . . . . . . . . . . . . . . . . . . . .1117
Giorgi Japaridze

Relative Necessity Extended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1179
Jessica Leech

Potentiality and Indeterminacy in Mathematics . . . . . . . . . . . . . . . . . .1201
Øystein Linnebo and Stewart Shaprio

vii



First-degree Entailment and Binary Consequence Systems . . . . . . . . . . .1223
Yaroslav Shramko

Point-free Theories of Space and Time . . . . . . . . . . . . . . . . . . . . . . . .1243
Dimiter Vakarelov

Logic’s Naturalistic Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1323
John Woods

viii



Towards Universal Logic: Gaggle Logics

Guillaume Aucher
Univ Rennes, CNRS, IRISA

263, Avenue du Général Leclerc, 35042 Rennes Cedex, France
guillaume.aucher@irisa.fr

Abstract

A class of non–classical logics called gaggle logics is introduced, based on a
Kripke–style relational semantics and inspired by Dunn’s gaggle theory. These
logics deal with connectives of arbitrary arity and we show that they capture
a wide range of non–classical logics. In particular, we list the 96 binary con-
nectives and 16 unary connectives of basic gaggle logic and relate their truth
conditions to the non-classical logics of the literature. We establish connections
between gaggle theory and group theory. We show that Dunn’s abstract law of
residuation corresponds to an action of transpositions of the symmetric group
on the set of connectives of gaggle logics and that Dunn’s families of connec-
tives are orbits of the same action. Other operations on connectives, such as
dual and Boolean negation, are also reformulated in terms of actions of groups
and their combination is defined by means of free groups and free products.
We show how notions of groups arise naturally from our gaggle logics and how
gaggle logics can be canonically defined from given groups. Our other main
contribution deals with the proof theory of gaggle logics. We show how sound
and complete calculi can be systematically computed from any basic gaggle
logic with or without Boolean connectives. These calculi are display calculi and
we prove that the cut rule can be systematically eliminated from proofs. This
allows us to prove that basic gaggle logics are decidable.

Keywords: substructural logics, residuation, gaggle theory, display cal-
culus, group theory, action of group, free group and free product.

1 Introduction
A wide variety of non–classical logics have been introduced over the past decades,
such as relevant logics, linear logics and Lambek calculi, to name just a few. On
the one hand, this diversity is an asset since each logic has an interest for a specific
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purpose, and one can select, and resort to, some of them for reasoning about a given
applicative issue [38]. In fact, many of these non–classical logics have been developed
for solving concrete problems in computer science: for example, dynamic logics [24],
Hoare and separation logics [25, 43] for reasoning about computer programs, and
description logics [3] for formalizing ontologies of the semantic web. Acknowledging
and dealing with this plurality and diversity of logics is in a sense at the origin of
the development of a philosophical stance in logic called “logical pluralism” [5]. On
the other hand, and from a theoretical point of view, this plurality can be felt as
problematic because it threatens the unity and the unifying power of logic. Indeed,
all logics already have in common the same terminology and notions, such as truth,
validity, conservativity and interpolation, and this is also an asset. Nevertheless, one
can argue that non–classical logics are still disorganized and scattered and somehow
miss a common formal ground. As Gabbay summarised the state of play (vis-à-
vis non-monotonic logics) in the early 1980s, “we have had a multitude of systems
generally accepted as ‘logics’ without a unifying underlying theory and many had
semantics without proof theory. Many had proof theory without semantics, though
almost all of them were based on some sound intuitions of one form or another.
Clearly there was the need for a general unifying framework.” [15, p. 184].

In response to that situation, a number of efforts have been made by some logi-
cians to provide a genuine unity to logic as witnessed for example by the development
of abstract model theory and “institutions” [4, 33, 19], the introduction of “labelled
deductive systems” by Gabbay [17] or the “basic logic” of Sambin & al. [45] (see [16]
for details and more examples). This led to the rise of a research thread sometimes
referred to (nowadays) as “Universal Logic”. Many kinds of semantics, such as al-
gebraic, categorial, topological, phase or relational semantics, have been introduced
and developed, sometimes for the express purpose of tackling this issue [46]. Within
that line of research, Dunn’s gaggle theory [10, 11, 7] is one of the most well–known
frameworks based on the relational Kripke-style semantics which itself deals with
the aforementioned problem. Dunn’s gaggle theory is an attempt to understand the
Kripke semantics of non-classical logics in a disciplined, systematic way.1

We share the ideal and the objective of “Universal Logic”, but, in our view, gaggle
theory is only a first step. Indeed, this theory does not really introduce an actual
logic or logical framework that can serve as a foundation for non–classical logics, in
the same way as the Lambek calculus is sometimes presented as the foundational
logic of the varied substructural logics [42]. However, as we will show, gaggle theory
provides formal methods to define a generic logic. In fact, it allows us to define a

1Dunn “owe[s] the name “gaggle” to [his] colleague Paul Eisenberg (a historian of philosophy,
not a logician), who supplied it at [his] request for a name like a “group”, but which suggested a
certain amount of complexity and disorder.” [10, p. 31]
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Towards Universal Logic

class of logics that can handle connectives of arbitrary arity. Building on (partial)
gaggle theory, we will define a class of non-classical logics that we call gaggle logics
and which generalize the Lambek calculus and other substructural logics in many
directions.

In doing so, we will establish connections between gaggle theory and group the-
ory. We will show that Dunn’s abstract law of residuation corresponds to an action
of transpositions of the symmetric group (the group of permutations) on the set of
connectives of gaggle logics and that Dunn’s families of connectives are orbits of the
same action. Other operations on connectives, such as dual and Boolean negation,
will also be reformulated in terms of actions of groups, and their combination will
be defined by means of free groups and free products. We will also show how no-
tions of groups arise naturally from our gaggle logics and how gaggle logics can be
canonically defined from given groups.

Our other main contribution will deal with the proof theory of gaggle logics.
We will show how sound and complete calculi can be systematically computed and
defined for any basic gaggle logic given by its set of connectives. This generic result
is in line with our ‘universal’ approach explained above and constitutes the main
technical advance of the article. We will use a specific Henkin construction method to
prove the strong completeness of our calculi. Our main objective is to obtain sound
and complete proof calculi for basic gaggle logics without the Boolean connectives.
However, we will need to add them anyway and proceed in two steps. Firstly, we
will consider a language with the Boolean connectives and prove completeness with
them (Section 7). Secondly, after proving the cut elimination (via the proof of
conditions (C1)− (C8)), we will obtain sound and complete calculi for basic gaggle
logics without the Boolean connectives thanks to a proof-theoretical analysis of the
calculi obtained (Sections 8 and 9, proof of Theorem 53). The cut elimination will
also entail that basic gaggle logics are conservative extensions of each other and are
decidable.

Organization of the article. In Section 2, we recall the basic results of (partial)
gaggle theory. In Section 3, we recall the basics of group theory including the
symmetric group (the group of permutations), free groups, free products and actions
of groups. In Section 4, we introduce our gaggle logics and define our actions of
groups on the gaggle connectives, in particular the residuation and the Boolean
negation. In Section 5, we prove that Dunn’s abstract laws of residuation are actions
of transpositions of the symmetric group on the set of connectives and that Dunn’s
families of connectives are orbits of the action of the symmetric group. In Section 6,
we relate our gaggle logics with the literature by listing the 96 binary connectives and
the 16 unary connectives of basic gaggle logic while mentioning which connectives
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have already been introduced in a publication. We also mention two logics which
cannot be embedded in gaggle logics. In Section 7, we introduce our display calculi.
In Section 8 we prove that our calculi satisfy the display property and that the
cut rule can be eliminated from any proof. Then, in Section 9, thanks to cut–
elimination, we provide sound and strongly complete display calculi for gaggle logics
without Boolean connectives. We also prove that basic gaggle logics are decidable.
In Section 10, we show how notions of groups arise naturally from our gaggle logics
and how gaggle logics can be canonically defined from given groups. We conclude
in Section 11. Long proofs are in the Appendix.

2 The core of gaggle theory
We present the core ideas of (partial) gaggle theory [10, 11]. Partial gaggle first
appeared in Dunn [11] as a generalization of a gaggle that has just an underlying
poset, not necessarily a distributive lattice as required for a gaggle in Dunn [10].
For our purpose, the presentation of (partial) gaggle theory is slightly different from
the usual presentation of this theory. The definitions are the same (although they
are sometimes instantiated) but the results of this theory are differently presented.
Our results can nevertheless easily be obtained from the original presentation [11].

In this section, we consider given an integer n ∈ N and a non-empty setW . P (W )
is the set of subsets of W and if S is a set, Sn is the Cartesian product S × . . .×S, n
times. A n–ary function f on P (W ) is a function f ∶ P (W )n → P (W ) and a n–ary
relation R over W is a subset of Wn. We write Rw1 . . .wn for (w1, . . . ,wn) ∈ R.
For all m,n ∈ N, the expression Jm;nK denotes the set {m, . . . , n} if m ≤ n, and the
empty set ∅ otherwise. In the sequel, we will resort to polarity groups, in particular
to the negation group P(+,−) and later to the anti-group P(+,∼).
Definition 1 (Polarity groups). Let (x, y) be an ordered pair. The polarity group
associated to (x, y) is P(x,y) ≜ ({x, y}, ⋅) where the operation ⋅ ∶ P(x,y)×P(x,y) → P(x,y)
is defined by x ⋅ y = y ⋅ x = y and x ⋅ x = y ⋅ y = x. For all ±,±′ ∈ {x, y}, we write ±±′
for ± ⋅ ±′.

Note that x is the neutral element of a polarity group.

Definition 2 (Trace, contrapositive trace). A (n–ary) trace is a tuple t =(±1, . . . ,±n,±) ∈ {+,−}n+1, often denoted t = (±1, . . . ,±n) ↦ ±. If j ∈ J1;nK,
then the contrapositive trace of t with respect to its jth argument is the trace
tj ≜ (±1, . . . ,−±, . . . ,±n)↦ −±j .
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Towards Universal Logic

Note that the contrapositive operation on traces is symmetric: (tj)j = t.
Example 3. The 2–ary traces (−,−) ↦ − and (−,+) ↦ + are contrapositive with
respect to (w.r.t.) their first argument.

Definition 4 (Relation negation and permutation). Let R be an arbitrary n+1–ary
relation over W . Then, for all j ∈ {1, . . . , n}, we define the n + 1–ary relation −R as
follows: for all w1, . . . ,wn,w ∈W ,

−Rw1 . . .wnw iff (w1, . . . ,wn,w) ∉ R
Sn+1 denotes the set of permutations of the set J1;n + 1K (see Section 3 for

details). If σ ∈ Sn+1 is a permutation then its inverse permutation is denoted σ−.
We define the n + 1–ary relation Rσ as follows: for all w1, . . . ,wn+1 ∈W ,

Rσw1 . . .wn+1 iff Rwσ−(1) . . .wσ−(n+1)
We also define +R ≜ R and if ± ∈ {+,−} then R±σ denotes ±Rσ.
Definition 5 (Logical functions associated to a trace and a relation). Let t =(±1, . . . ,±n) ↦ ± be a n–ary trace and let R be a n + 1–ary relation on W . The
n–ary function f on P (W ) associated to t and R, denoted f tR, is defined as follows:

• If n = 0, f tR ≜ R;
• If n > 0, then for all W1, . . . ,Wn ∈ P (W ),

f tR(W1, . . . ,Wn) ≜ {w ∈W ∣ CtR (W1, . . . ,Wn,w)}
where CtR (W1, . . . ,Wn,w) is called the truth condition of the function f tR and is
defined as follows:

• if ± = +: “for all w1, . . . ,wn ∈ W , we have w1 ⋔ W1 or . . . or wn ⋔ Wn or
Rw1 . . .wnw”;

• if ± = −: “there are w1, . . . ,wn ∈ W such that w1 ⋔ W1 and . . . and wn ⋔ Wn

and Rw1 . . .wnw”;

where, for all j ∈ J1;nK, wj ⋔Wj ≜ ⎧⎪⎪⎨⎪⎪⎩
wj ∈Wj if ±j± = +;
wj ∉Wj if ±j± = −.

Example 6. Let R be a 3–ary relation on W and let σ be the permutation (2,3,1)
on the set J1; 3K (see Section 3 for details). Then, we have that Rσuvw if, and only
if, Rwuv.
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• If t = (−,−) ↦ − then the function f tR ∶ P (W ) × P (W ) → P (W ), whose
truth condition is CtR (W1,W2,w) = ∃uv (u ∈W1 ∧ v ∈W2 ∧Ruvw), defines the
semantics of a connective, that we denote ○, as follows: for all w ∈W ,

w ∈ Jϕ ○ ψK iff w ∈ f tR (JϕK, JψK)
iff ∃uv (u ∈ JϕK ∧ v ∈ JψK ∧Ruvw)

• If t = (−,+)↦ + then the function f t−Rσ ∶ P (W )×P (W )→ P (W ), whose truth
condition is Ct−Rσ (W1,W2,w) = ∀vu (v ∈W1 ∨ u ∈W2 ∨ −Rσvuw), defines the
semantics of a connective that we denote /, as follows: for all w ∈W ,

w ∈ Jϕ/ψK iff w ∈ f t′−Rσ (JϕK, JψK)
iff ∀vu (v ∉ JϕK ∨ u ∈ JψK ∨ −Rσuvw)
iff ∀vu ((Rwuv ∧ u ∈ JϕK)→ v ∈ JψK) .

Definition 7 (Isotonic and antitonic functions). Let f be a n–ary func-
tion on P (W ). We say that f is isotonic (resp. antitonic) with respect to
the jth argument, written tn(f, j) = + (resp. tn(f, j) = −), when for all
W1, . . . ,Wj−1,Wj+1, . . . ,Wn,X,Y ∈ P (W ),

if X ⊆ Y
then f(W1, . . . ,Wj−1,X,Wj+1, . . . ,Wn) ⊆ f(W1, . . . ,Wj−1, Y,Wj+1, . . . ,Wn)(resp. f(W1, . . . ,Wj−1, Y,Wj+1, . . . ,Wn) ⊆ f(W1, . . . ,Wj−1,X,Wj+1, . . . ,Wn)) .

Example 8. If JϕK ⊆ Jϕ′K then Jϕ′/ψK ⊆ Jϕ/ψK because tn(f t′−Rσ ,1) = −, and Jϕ ○ ψK ⊆
Jϕ′ ○ ψK because tn(f tR,1) = +.
Definition 9 (Relation transformations). Let R be an arbitrary n + 1–ary relation
over W . Then, for all j ∈ {1, . . . , n}, we define the n + 1–ary relation Rj as follows:
for all w1, . . . ,wn,w ∈W ,

Rjw1 . . .wnw iff Rw1 . . .w . . .wnwj

If t = (±1, . . . ,±n) ↦ ± and t′ = (±′1, . . . ,±′n) ↦ ±′ are two n–ary traces which are
contrapositive w.r.t. their jth argument, we define the n + 1–ary relation (t′, t)(R)
over W as follows:

(t′, t)(R) ≜ ⎧⎪⎪⎨⎪⎪⎩
Rj if ± = ±′;−Rj otherwise.
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Towards Universal Logic

Theorem 10. Let R be a n+1–ary relation overW . Let t = (±1, . . . ,±n)↦ ± and t′ =(±′1, . . . ,±′n) ↦ ±′ be two contrapositive n–ary traces w.r.t. their jth argument. Let
f (resp. f ′) be the n–ary function on P (W ) associated to t and R (resp. associated
to t′ and (t′, t)(R)). Then, if n > 0:

1. for all j ∈ J1;nK, tn(f, j) = ±j± (and thus tn(f ′, j) = ±′j±′ too);
2. f and f ′ satisfy the abstract law of residuation w.r.t. their jth argument: for

all W1, . . . ,Wn,X ∈ P (W ),
S(f,W1, . . . ,Wj , . . . ,Wn,X) iff S(f ′,W1, . . . ,X, . . . ,Wn,Wj).

where S(f,W1, . . . ,Wn,X) ≜ ⎧⎪⎪⎨⎪⎪⎩
f(W1, . . . ,Wn) ⊆X if ± = −
X ⊆ f(W1, . . . ,Wn) if ± = +.

Example 11. Let us define ϕ ψ by for all w ∈W , w ∈ JϕK implies that w ∈ JψK.
Then, the following holds:

• if ψ ψ′ then ϕ ○ ψ ϕ ○ ψ′ because tn(f tR,2) = +, and if ϕ ϕ′ then
ϕ′/ψ ϕ/ψ because tn(f t′−Rσ ,1) = −. In other words, f tR is isotonic w.r.t. its
second argument and f t′−Rσ is antitonic w.r.t. its first argument.

• ϕ ○ ψ χ iff ϕ ψ/χ, because t and t′ are contrapositive w.r.t. their first
argument.

3 Group theory
We first recall some basics of group theory (see for instance [44] for more details).

Permutations and cycles. If X is a non-empty set, a permutation is a bijection
σ ∶ X → X. We denote the set of all permutations of X by SX . In the important
special case when X = {1, . . . , n}, we write Sn instead of SX . Note that ∣Sn∣ = n!,
where ∣Y ∣ denotes the number of elements in a set Y . A permutation σ on the set{1, . . . , n} such that σ(1) = x1, σ(2) = x2, . . . , σ(n) = xn is denoted (x1, x2, . . . , xn).
For example, (1,3,2) is the permutation σ such that σ(1) = 1, σ(2) = 3 and σ(3) = 2.

If x ∈ X and σ ∈ SX , then σ fixes x if σ(x) = x and σ moves x if σ(x) ≠ x. Let
j1, . . . , jr be distincts integers between 1 and n. If σ ∈ Sn fixes the remaining n − r
integers and if σ(j1) = j2, σ(j2) = j3, . . . , σ(jr−1) = jr, σ(jr) = j1 then σ is an r–cycle;
one also says that σ is a cycle of length r. Denote σ by (j1 j2 . . . jr). A 2–cycle
which merely interchanges a pair of elements is called a transposition.
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Two permutations σ, τ ∈ SX are disjoint if every x moved by one is fixed by
the other. A family of permutations σ1, σ2, . . . , σn is disjoint if each pair of them is
disjoint. Every permutation σ ∈ Sn is either a cycle or a product of disjoint cycles.
Moreover, this factorization is unique except for the order in which the factors occur.

Groups. A group (G, ○) is a non–empty set G equipped with an associative oper-
ation ○ ∶ G×G→ G and containing an element denoted 1G called the neutral element
such that:

• 1G○a = a = a○1G for all a ∈ G;
• for every a ∈ G, there is an element b ∈ G such that a○b = 1G = b○a.

This element b is unique and called the inverse of a, denoted a−1. The set Sn with
the composition operation is a group called the symmetric group on n letters.

A non–empty subset S of a group G is a subgroup of G if s ∈ S implies s−1 ∈ S
and s, t ∈ S imply s○t ∈ S. In that case, S is also a group in its own right.

If X is a subset of a group G, then the smallest subgroup of G contain-
ing X, denoted by ⟨X⟩, is called the subgroup generated by X. For exam-
ple, Sn = ⟨(1 2), (2 3), . . . , (i i + 1), . . . , (n − 1 n)⟩ = ⟨(n 1), (n 2), . . . , (n n − 1)⟩ =⟨(n − 1 n), (1 2 . . . n)⟩. Sn is also generated by (1 2) and 3–cycles. For n ≥ 3,
the alternating group Un is the subgroup of Sn generated by the n–cycles of Sn.

In fact, if X is non–empty, then ⟨X⟩ is the set of all the words on X, that is,
elements of G of the form x±1

1 x±2
2 . . . x±nn where x1, . . . , xn ∈ X and ±1, . . . ,±n are

either −1 or empty.

Free groups and free products. If X is a subset of a group F , then F is a free
group with basis X if, for every group G and every function f ∶X → G, there exists
a unique homomorphism ϕ ∶ F → G extending f . One can prove that a free group
with basis X always exists and that X generates F . We therefore use the notation
F = ⟨X⟩ also for free groups.

If G and H are groups, the free product of G and H is a group P and homomor-
phisms jG and jH such that, for every group Q and all homomorphisms fG ∶ G→ Q
and fH ∶ H → Q, there exists a unique homomorphism ϕ ∶ P → Q with ϕjG = fG
and ϕjH = fH . Such a group always exists and it is unique modulo isomorphism,
we denote it G ∗H. This definition can be generalized canonically to the case of a
finite number of groups G1, . . . ,Gn, yielding the free product G1 ∗ . . . ∗Gn.
Group actions. If X is a set and G a group, an action of G on X is a function
α ∶ G ×X →X given by (g, x)↦ gx such that:
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• 1x = x for all x ∈X;

• (g1g2)x = g1(g2x) for all x ∈X and all g1, g2 ∈ G.
An action of G on X is transitive if for every x, y ∈ X, there exists g ∈ G such that
y = gx; it is faithful if for gx = x for all x ∈X implies that g = 1.

If x ∈ X and α an action of a group G on X, then the orbit of x under α isOα(x) ≜ {α(g, x) ∣ g ∈ G}. The orbits form a partition of X. The stabilizer of x,
denoted by Gx, is the subgroup Gx ≜ {g ∈ G ∣ gx = x} of G. If G is finite, then we
have that ∣Oα(x)∣ = ∣G∣∣Gx∣ . Moreover, if X and G are finite then the number N of
orbits of X is N = 1∣G∣ ∑τ∈G F (τ) where, for τ ∈ G, F (τ) is the number of x ∈X fixed
by τ (Burnside’s lemma). Finally, if X ′ ⊆X then Oα(X ′) denotes ⋃

x′∈X′Oα(x′).
Fact 12. If α is an action of G on a set X and H is a subgroup of G, then the
restriction of α to H, denoted αH , is also an action of H on the set X.

Definition 13. Let G and H be two groups. If α and β are actions of G and
H on a set X, then the free action α ∗ β is the mapping α ∗ β ∶ G ∗H ×X → X
given by α∗β(g, x) ≜ α(g1, β(h1, . . . , α(gn, β(hn, x)))), where g = g1h1 . . . gnhn is the
factorization of g in the free group G ∗H.

This definition can be generalized canonically to the case of a finite number of
actions α1, . . . , αn, yielding the mapping α1 ∗ . . . ∗ αn.
Proposition 14. If α1, . . . , αn are actions of G1, . . . ,Gn on a set X respectively,
then the mapping α1 ∗ . . . ∗ αn is an action of the (free) group G1 ∗ . . . ∗Gn on X.

4 From gaggle theory to gaggle logics
The introduction of the formal concepts of gaggle theory are motivated by some
heuristic and logical reasons (see for example [41] for informal explanations). We
are going to reformulate these formal concepts of gaggle theory because we want
to make more clear the connection between traces and the relational Kripke–style
semantics that they induce. Thereby, we replace the notion of trace by our notion of
‘signature’ which highlights and distinguishes in a more immediate way the different
semantic ingredients that compose gaggle theory. More specifically, the output of
a trace (+ or −) is replaced by a quantification signature (∀ or ∃). Doing so, our
reformulation will capture and represent more directly and faithfully the tonicity of
the connective defined by a given trace/signature and the formulation of its truth
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condition (even if, as we said, the notion of trace output was introduced for different
heuristic reasons [41]).

In this section, we show how gaggle theory, and in particular Definition 5, leads
to the definition of finite families of connectives of arbitrary arities which are related
to each other by the abstract law of residuation of Theorem 10.

4.1 From traces to gaggle connectives
Informally, ∀ is associated with + and ∃ is associated with −. We formalize this
association with the function ± ∶ {∀,∃} → {+,−} defined by ±(∀) ≜ +,±(∃) ≜ − and
the inverse function Æ ∶ {+,−} → {∀,∃} defined by Æ(+) ≜ ∀,Æ(−) ≜ ∃. Also, we
define the function + ∶ {∀,∃} → {∀,∃} by +(∀) ≜ ∀ and +(∃) ≜ ∃ and the function− ∶ {∀,∃} → {∀,∃} by −(∀) ≜ ∃ and −(∃) ≜ (∀). For better readability, we write+∀,+∃,−∀,−∃ instead of −(∀),+(∃),−(∀),−(∃).
Definition 15 (Signatures versus traces). A (n–ary) signature s is a tuple s =(Æ, (±1, . . . ,±n)) ∈ {∀,∃}×{+,−}n. If s = (Æ, (±1, . . . ,±n)) is a n–ary signature and
t = (±1, . . . ,±n,±) a n–ary trace, then

• The trace T (s) equivalent to s is the trace (±′1, . . . ,±′n) ↦ ± where ± ≜ ±(Æ)
and ±′j ≜ ±±j for all j ∈ J1;nK.

• The signature S(t) equivalent to t is the signature (Æ, (±′1, . . . ,±′n)) where
Æ ≜Æ(±) and ±′j ≜ ±±j for all j ∈ J1;nK.

Note that the derived notion of tonicity tn(f, j) determined in Theorem 10 is
now taken as primitive with our notion of signature. Then, we can easily prove the
following:

s = S(T (s)) t = T (S(t))
We also reformulate the definition of contrapositive trace in terms of signature as

follows. If s = (Æ, (±1, . . . ,±n)) is a n–ary signature and rj = (n+1 j) a transposition
with j ∈ J1;nK, then we define

rjs ≜ (− ±j Æ, (− ±j ±1, . . . ,±j , . . . ,− ±j ±n)). (1)

Then, we can easily prove the following: for all n–ary traces t and n–ary signa-
tures s,

rjs = S (T (s)j) tj = T (rjS(t))
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Moreover, for every cycle c fixing n + 1, we define

cs ≜ (Æ, (±c(1),±c(2), . . . ,±c(n))) . (2)

This definition is coherent with Expression (1). Indeed, the transpositions (n +
1 1), (n+1 2), . . . , (n+1 n) generateSn+1 and every cycle fixing n+1 can be factorized
into a sequence of transpositions of the form (n + 1 j) so that, applying iteratively
Expression (1), we obtain Expression (2).

Definition 16 (Gaggle connectives). The set of atoms P and connectives C are:

P ≜S1 × {+,−} × {∀,∃} C ≜P ∪ ⋃
n∈N∗Sn+1 × {+,−} × {{∀,∃} × {+,−}n} .

Both atoms and connectives can be represented by triples p = (1,±,Æ) (for atoms)
and ⊛ = (σ,±, (Æ, (±1, . . . ,±n))) (for connectives) where σ ∈ Sn+1, ± ∈ {+,−}
and (Æ, (±1, . . . ,±n)) ∈ {∀,∃} × {+,−}n. The arity of an atom is 0, the arity of
a connective ⊛ = (σ,±, (Æ, (±1, . . . ,±n))) ∈ C, denoted a(⊛), is n, its signature
is (Æ, (±1, . . . ,±n)), its quantification signature is Æ and its tonicity signature is(±1, . . . ,±n). For all j ∈ J1;nK, tn(⊛, j) denotes ±j . Atoms are denoted p, p1, p2, etc.
and connectives are denoted ⊛,⊛1,⊛2, etc. The set of n–ary connectives, for n > 0,
is denoted Cn.

Fact 17. The number of n–ary gaggle connectives is (n + 1)! ⋅ 2n+2.

Proof: It follows from the very definition of connectives. ◻

4.2 Actions of groups on gaggle connectives
In this section, we introduce actions on the set of gaggle connectives. In the next
sections, we will show that they generalize standard notions of residuations, duals
and Boolean negation.

Definition 18 (Action of the symmetric group). Let n ∈ N∗. We define the
function αn ∶ Sn+1 × Cn → Cn, (τ,⊛) ↦ τ⊛ inductively as follows. Let ⊛ =(σ,±, (Æ, (±1, . . . ,±n))) ∈ Cn and let c ∈Sn+1.

• If c is the transposition rj = (j n + 1), then rj⊛ ≜ (rj ○ σ,− ±j ±, rjs), i.e.:
rj⊛ ≜ ((j n + 1) ○ σ,− ±j ±, (− ±j Æ, (− ±j ±1, . . . ,±j , . . . ,− ±j ±n)) .

The connective rj is called the residual of ⊛ w.r.t. its jth argument.
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Permutations of S2 1–ary signatures
τ1 = (1,2) t1 = (∃,+)
τ2 = (2,1) t2 = (∀,+)

t3 = (∀,−)
t4 = (∃,−)

Permutations of S3 2–ary signatures
σ1 = (1,2,3) s1 = (∃, (+,+))
σ2 = (3,2,1) s2 = (∀, (+,−))
σ3 = (3,1,2) s3 = (∀, (−,+))
σ4 = (2,1,3) s4 = (∀, (+,+))
σ5 = (2,3,1) s5 = (∃, (+,−))
σ6 = (1,3,2) s6 = (∃, (−,+))

s7 = (∃, (−,−))
s8 = (∀, (−,−))

Figure 1: Permutations of S2 and S3 and ‘families’ of 1–ary and 2–ary signatures

• If c is the cycle (j1 j2 . . . jk n + 1), then c⊛ ≜ rj1 (rj2 . . . (rjk⊛)), where
rj ≜ (j n + 1) for all j.

• If c is a cycle fixing n + 1, then c⊛ ≜ (c ○ σ,±, cs), i.e.:
c⊛ ≜ (c ○ σ,±, (Æ, (±c(1),±c(2), . . . ,±c(n)))) .

Finally, if τ is an arbitrary permutation of Sn+1, it can be factorized into a product
of disjoint cycles τ = c1c2 . . . ck and this factorization is unique (modulo its order)
[44]. So, we define τ⊛ ≜ c1 (c2 . . . (ck⊛)).

The mapping αn is well-defined because one can easily prove that any other
ordering of the disjoint cycles c1, . . . , ck of τ yields the same outcome for τ⊛. Our
definition is based on cycles and not on transpositions because the decomposition of
any permutation into disjoint cycles is unique (modulo its order), unlike its decom-
position into transpositions.

Proposition 19. For all n ∈ N∗, the mapping αn ∶Sn+1×Cn → Cn is a group action
of Sn+1 on Cn. For all n ∈ N∗, the group actions αn (and all their restrictions to
subgroups G) are not transitive, the cardinality of each orbit is ∣Sn+1∣ (resp. ∣G∣) and
the number of orbits is 4 ⋅ 2n (resp. ∣Cn∣∣G∣ ).
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Proof: (sketch) The condition (τ1 ○ τ2)⊛ = τ1(τ2⊛) of the definition of group actions
is proved by induction on τ1. The other results follow from group theory because
for all x ∈ Cn, Gx = {1}. ◻
Definition 20 (Actions of the negation group and the anti-group). Let n ∈ N∗.
We define the functions βn ∶ P(+,−) × Cn → Cn, (±,⊛) ↦ ±⊛ and γn ∶ P(+,∼) × Cn →
Cn, (±,⊛)↦ ±⊛ as follows: if ⊛ = (σ,±, (Æ, (±1, . . . ,±n))) ∈ Cn, then

• +⊛ ≜ ⊛
• ∼ ⊛ ≜ (σ,−±, (Æ, (±1, . . . ,±n)))
• −⊛ ≜ (σ,−±, (−Æ, (−±1, . . . ,−±n))).
−⊛ and ∼ ⊛ are called the Boolean negation and the symmetry of ⊛ respectively.
Moreover, if ⊛ is an atom p = (1,±,Æ), then we also define −p ≜ (1,−±,−Æ).
As we will see in Proposition 29, our definition of Boolean negation does corre-

spond to the intended (Boolean) negation.

Proposition 21. For all n ∈ N∗, the functions βn and γn are non–transitive actions.
For both actions, the cardinality of each orbit is 2 and the number of orbits is ∣Cn∣2 .

Proof: It follows from the application of Burnside Lemma. Only + fixes connectives
of Cn and it fixes all of them. − and ∼ do not fix any element of Cn. ◻

4.3 Gaggle logics
Our introduction of ‘gaggle logics’, like many semantic-based logics, is made in
three parts: first, we define their language (Definition 22), then their class of models
(Definition 24) and finally their satisfaction relation (Definition 25).

Definition 22 ((Boolean) gaggle language). The gaggle language L0 is the small-
est set that contains the propositional letters and that is closed under the gaggle
connectives. That is,

• P ⊆ L0;

• for all ⊛ ∈ C of arity n > 0 and for all ϕ1, . . . , ϕn ∈ L0, we have ⊛(ϕ1, . . . , ϕn) ∈L0.
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The Boolean gaggle language L is the smallest set that contains the proposi-
tional letters and that is closed under the gaggle connectives as well as the Boolean
connectives ∧,∨ and ¬.

Elements of L are called formulas and are denoted ϕ,ψ,α, . . . For all
ϕ1, . . . , ϕn ∈ L, ϕ1 ∧ . . . ∧ ϕn and ϕ1 ∨ . . . ∨ ϕn stand for ((ϕ1 ∧ ϕ2) ∧ . . . ∧ ϕn) and((ϕ1 ∨ ϕ2) ∨ . . . ∨ ϕn) respectively.

If C ⊆ C ∪ {∧,∨,¬} is such that C ∩ P ≠ ∅, then an element of LC is an element
of L that contains only connectives and atoms of C. In the sequel, we assume that
all the sets of atoms and connectives C ⊆ C ∪ {∧,∨,¬} are such that C ∩ P ≠ ∅.
Remark 23. We could consider a countable number of copies of the atoms and
connectives: P′ ≜ ⋃

i∈N{⊛i ∣ ⊛ ∈ P}, C′ ≜ ⋃
i∈N{⊛i ∣ ⊛ ∈ C}. Indeed, in general we need a

countable number of atoms or, like in some modal logics, we need multiple modalities
of the same (similarity) type. All the results that follow would still hold in this
extended language.

Definition 24 (C–models and C–frames). Let C ⊆ C. A C–model is a tuple M =(W,R) where W is a non-empty set and R is a set of relations over W . Each n–ary
connective ⊛ ∈ C is associated to a n+1–ary relation R⊛ such that for all connectives⊛1,⊛2 ∈ C, we have that R⊛1 = R⊛2 iff Oαn∗βn(⊛1) = Oαn∗βn(⊛2).

We abusively write w ∈M for w ∈W . A pointed C–model (M,w) is a C–model
M together with a state w ∈M . The class of all pointed C–models is denotedMC
and simply M when C = C. A C–frame is a C/P–model. The class of all pointed
C–frames is denoted FC and simply F when C = C.

Definition 25 (Gaggle logics). Let C ⊆ C and let M = (W,R) be a C–model.
We define the interpretation function of LC in M , denoted J⋅KM ∶ LC → P (W ),
inductively as follows: for all p ∈ C ∩ P and all ⊛ ∈ C of arity n > 0 and signature
denoted (σ,±, s), for all ϕ,ψ,ϕ1, . . . , ϕn ∈ LC,

JpKM ≜ ±Rp
J¬ϕKM ≜ W − JϕKM

J(ϕ ∧ ψ)KM ≜ JϕKM ∩ JψKM
J(ϕ ∨ ψ)KM ≜ JϕKM ∪ JψKM

J⊛(ϕ1, . . . , ϕn)KM ≜ f⊛(Jϕ1KM , . . . , JϕnKM)
where the function f⊛ = f tR±σ⊛ with t = T (s) defined in Section 4.1 and f tR±σ⊛
in Definition 5. That is, f⊛ is defined as follows: for all W1, . . . ,Wn ∈ P (W ),
f⊛(W1, . . . ,Wn) ≜ {w ∈W ∣ C⊛ (W1, . . . ,Wn,w)} where C⊛ (W1, . . . ,Wn,w) is called
the truth condition of ⊛ and is:
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• if Æ = ∀: “∀w1, . . . ,wn ∈W (w1 ⋔W1 ∨ . . . ∨wn ⋔Wn ∨R±σ⊛ w1 . . .wnw)”;
• if Æ = ∃: “∃w1, . . . ,wn ∈W (w1 ⋔W1 ∧ . . . ∧wn ⋔Wn ∧R±σ⊛ w1 . . .wnw)”;

where, for all j ∈ J1;nK, wj ⋔ Wj ≜ wj ∈ Wj if ±j = + and wj ⋔ Wj ≜ wj ∉ Wj if±j = − and R±σ⊛ w1 . . .wn+1 iff ±R⊛wσ−(1) . . .wσ−(n+1) (we recall that +R⊛ ≜ R⊛ and−R⊛ ≜Wn+1 −R⊛).
We extend the definition of the interpretation function J⋅KM to C–frames as fol-

lows: for all ϕ ∈ LC and all C–frames F ,

JϕKF ≜⋂{JϕK(F,P) ∣ P a set of n–ary relations over W such that (F,P) is a C–model}
If EC is a class of pointed C–models or C–frames, the satisfaction relation ⊆EC × LC is defined as follows: for all ϕ ∈ LC and all (M,w) ∈ EC, ((M,w), ϕ) ∈

iff w ∈ JϕKM . We usually write (M,w) ϕ instead of ((M,w), ϕ) ∈ . The triple(LC,EC, ) is a logic called the gaggle logic associated to EC and C. The logics of
the form (LC,MC, ) are called basic gaggle logics. We call them Boolean (basic)
gaggle logics when their language includes the Boolean connectives ∧,∨,¬.

The truth conditions of the above definitions have been introduced in a different
formal approach by Bimbó & Dunn [7] and for some particular cases by Dunn [10]
and Dunn & Hardegree [13]. However, it is the first time that they are spelled out
systematically and in a comprehensive manner.

Example 26 (Lambek calculus, modal logic). The Lambek calculus (LC,MC, )
where C = {p, ○, /, /} defined in Section 2 is an example of basic gaggle logic. Here○, /, / are the connectives (σ1,+, s1), (σ5,−, s3), (σ3,−, s2). Another example of gaggle
logic is modal logic (LC,EC, ) where C = {p,⊺,�,∧,∨,◇,◻} is such that

• ⊺,� are the connectives (1,+,∃) and (1,−,∀) respectively;

• ∧,∨,◇,◻ are the connectives (σ1,+, s1), (σ1,−, s4), (τ2,+, s1), (τ2,−, s2) respec-
tively;

• the C-models M = (W,R) ∈ EC are such that R∧ = R∨ = {(w,w,w) ∣ w ∈ W},
R◇ = R◻, R⊺ = R� =W .

Indeed, one can easily show that, with these conditions on the C–models of EC,
we have that for all (M,w) ∈ EC, (M,w) (σ1,+, s1)(ϕ,ψ) iff (M,w) ϕ and(M,w) ψ, and (M,w) (σ1,−, s4)(ϕ,ψ) iff (M,w) ϕ or (M,w) ψ. Note that
the Boolean conjunction and disjunction ∧ and ∨ are defined using the connectives
of C by means of special relations R∧ and R∨. They could obviously be defined
directly. Many more examples will be given in Section 6.
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5 Residual, Boolean negation, dual and switch
The action of specific permutations on the set of connectives corresponds to well–
known operations used in proof theory. For example, the action of a transposition(j n + 1) corresponds to the abstract law of residuation for the jth argument. This
operation of residuation turns out to be central since every permutation can be
decomposed into a composition of transpositions. Yet, we argue that the actions of
cycles is more central because every permutation can be decomposed uniquely into
disjoint cycles. Moreover, the symmetric group Sn+1 is also generated by the cycles(1 . . . n+1) and (n n+1) and the alternation group is generated by the n+1-cycles
of Sn+1. This confirms an observation already made in [2] which highlighted the
role of 3-cycles for substructural and update logics in the formal connections that
exist between connectives.

Proposition 27. Let t be a n-ary trace, R a n+1-ary relation over W and σ ∈Sn+1.
Then, f tR±σ = f⊛ where ⊛ = (σ,±, S(t)) = (σ,±, (Æ, (±1, . . . ,±n))). Moreover, if
j ∈ J1;nK, then the n-ary function associated to tj and (tj , t)(R) of Definition 5 is
frj⊛ where rj⊛, the residual of ⊛ w.r.t. its jth argument, was defined in Definition
18:

rj⊛ ≜ ((j n + 1) ○ σ,− ±j ±, (− ±j Æ, (− ±j ±1, . . . ,±j , . . . ,− ±j ±n)) .
Therefore, we have the following property: for all ϕ1, . . . , ϕj , . . . , ϕn, ϕ ∈ L,
S [⊛, ϕ1, . . . , ϕj , . . . , ϕn, ϕ] iff S [rj⊛, ϕ1, . . . , ϕ, . . . , ϕn, ϕj] (3)

where S [⊛, ϕ1, . . . , ϕn, ϕ] ≜ ⎧⎪⎪⎨⎪⎪⎩
⊛(ϕ1, . . . , ϕn) ϕ if Æ = ∃
ϕ ⊛ (ϕ1, . . . , ϕn) if Æ = ∀ .

Proof: It follows straightforwardly from our definitions. Expression (3) follows
from Theorem 10 (item 2). ◻

Hence, rj⊛ does correspond to the residual connective of ⊛ w.r.t. its jth argument
as it is usually defined in Dunn’s theory.

Definition 28 (Dual and switch operations). Let ⊛ = (σ,±, (Æ, (±1, . . . ,±n))) ∈ C
be a n–ary connective and let j ∈ J1;nK.

• The switch of ⊛ w.r.t. its jth argument is the n-ary connective

sj⊛ ≜ (σ,±, (Æ, (±1, . . . ,−±j , . . . ,±n))).
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• The dual of ⊛ w.r.t. its jth argument is the n–ary connective

dj⊛ ≜ (σ,−±, (−Æ, (−±1, . . . ,±j , . . . ,−±n))).
• The dual of ⊛ is the n-ary connective

d⊛ ≜ (σ,−±, (−Æ, (±1, . . . ,±n))).
The following proposition shows that our terminology for “Boolean negation”

and “dual” is appropriate and does correspond to the standard intuitive meaning
(see Blackburn & Al. [8, Def 1.13] for example).

Proposition 29. Let ⊛ ∈ C be a n–ary connective and let ϕ1, . . . , ϕn ∈ L. Then, for
all (appropriate) pointed models (M,w),

(M,w) − ⊛(ϕ1, . . . , ϕn) iff (M,w) ⊛ (ϕ1, . . . , ϕn) does not hold(M,w) sj ⊛ (ϕ1, . . . , ϕn) iff (M,w) ⊛ (ϕ1, . . . ,¬ϕj , . . . , ϕn)(M,w) dj ⊛ (ϕ1, . . . , ϕn) iff (M,w) − ⊛(ϕ1, . . . ,¬ϕj , . . . , ϕn)(M,w) d ⊛ (ϕ1, . . . , ϕn) iff (M,w) − ⊛(¬ϕ1, . . . ,¬ϕn)
The following proposition shows that the switch as well as the dual operations

are definable in terms of residuations and Boolean negation.

Proposition 30. If ⊛ ∈ Cn is a n–ary connective, then for all j ∈ J1;nK,
• sj⊛ = rj − rj⊛
• dj⊛ = rj − rj − ⊛
• d⊛ = s1 . . . sn − ⊛.

Proof: See the Appendix, Section A. ◻
Proposition 31. Dunn’s (complete) families of n–ary connectives are orbits Oαn(⊛)
of the group action αn. These families/orbits form a partition of the set of n–ary
connectives.

Proof: It follows easily from Dunn’s and our definitions. ◻
Dunn’s families of n–ary connectives are called “complete families” of operations

by Bimbó & Dunn [7]. Likewise, two n–ary connectives ⊛,⊛ ∈ Cn are “colligated”
in the sense of Bimbó & Dunn [7] when they belong to the same orbit Oαn(⊛).
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(σ6,+, s5)

(σ6,−, s3)

(σ1,+, s1)

(σ1,−, s8)

(σ6,−, s8)

(σ6,+, s1)

(σ1,−, s3)

(σ1,+, s5)

residuation r2

Boolean negation −

Figure 2: The 8 connectives of the orbit OαG2
((σ1,+, s1))

(σ1,+, s1)

(σ6,−, s3)

(σ5,−, s3) (σ4,+, s1)

(σ3,−, s2)

(σ2,−, s2)

residuation r2

residuation r1

Figure 3: The 6 connectives of the orbit Oα2 ((σ1,+, s1))
Proposition 32. Let n ∈ N∗, j ∈ J1;nK and let us define Gj = ⟨rj⟩∗P(+,−). Since Gj
is a subgroup of Sn+1 ∗P(+,−), let us denote by αGj the action of Gj on Cn induced
by the free action αn ∗ βn. Then, for all connectives ⊛ of arity n,

1. OαGj (⊛) is isomorphic to a cyclic group of order 8.

2. {Oαn∗βn (⊛) ,Oαn∗βn (∼ ⊛)} forms a partition of the set Cn of connectives of
arity n. Moreover, the mapping ∼⋅ ∶ Oαn∗βn(⊛) → Oαn∗βn(∼ ⊛), x ↦∼ x is
involutive.
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(σ1,+, s1)
(σ1,+, s5)

(σ1,+, s7)
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(σ4,+, s6)
(σ4,+, s7)
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(σ4,−, s2)

(σ4,−, s4)
(σ4,−, s3)(σ3,−, s2)

(σ3,+, s6)
(σ3,+, s7)

(σ3,−, s4)

(σ3,−, s8)
(σ3,+, s1)

(σ3,+, s5)
(σ3,−, s3)(σ2,−, s2)

(σ2,−, s4)
(σ2,+, s7)

(σ2,+, s6)

(σ2,−, s8)
(σ2,−, s3)

(σ2,+, s5)
(σ2,+, s3)residual r2

residual r1

switch s1

switch s2

negation −

Figure 4: The 48 connectives of the orbit Oα2∗β2 ((σ1,+, s1)) related to each other
by residual, negation and switch operations.
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3. For all n ∈ N∗, the free action αn ∗ βn ∗ γn on the set of connectives Cn is
transitive.

Proof: See the Appendix, Section A. ◻
So, for every pair of connectives (⊛,⊛′), there exists a sequence of residuation(s),

negation(s) and symmetry which transforms ⊛ into ⊛′. In other words, every gaggle
connective ⊛ ∈ Cn can be obtained from another connective ⊛′ ∈ Cn with a suitable
choice of element in the free groups Sn+1 ∗P(+,−) ∗P(+,∼): for all ⊛,⊛′ ∈ Cn, there is
g ∈Sn+1 ∗ P(+,−) ∗ P(+,∼) such that ⊛′ = αn ∗ βn ∗ γn(g,⊛).
Example 33. In Figure 2, we represent the orbit OαG2

((σ1,+, s1)). It is isomorphic
to a group of order 8 according to the first item of Proposition 32. In Figure 4, we
represent the orbit Oα2∗β2 ((σ1,+, s1)) where the 48 binary connectives are related
to each other by means of residuation, switch or Boolean negation. The other 48
binary connectives of the orbit Oα2∗β2 (∼ (σ1,+, s1)) are obtained symmetrically by
switching everywhere − to + and + to −. These two orbits form a partition of C2
according to the second item of Proposition 32. The orbits Oα2(⊛) of the binary
connectives ⊛ of C2 are given in Figures 7, 8, 9, 10, 11 and 12. Every orbit Oα2(⊛) is
of cardinality 6 = ∣S3∣. In order to follow common notations, binary connectives are
denoted ϕ⊛ψ instead of ⊛(ϕ,ψ). Finally, the orbit of Oα2 ((σ1,+, s1)) is represented
graphically in Figure 3, it corresponds to the outermost left vertical line of Figure
4.

6 Gaggle logics in the literature
In this section, we provide formal connections between our gaggle logics and sub-
structural and non-classical logics. The last columns of our tables indicate the rele-
vant publication where the gaggle logic connective was introduced for the first time.
A logic close to our approach with connectives of arbitrary arity is the Generalized
Lambek Calculus of Kolowska-Gawiejnovicz [26]. It is in fact the basic gaggle logic(LC,MC, ) where C = ⋃

n∈N∗{⊛n, ri⊛n ∣, i = 1, . . . , n} with ⊛n the n-ary connnective
(1,+, (∃, (+, . . . ,+))). (⊛n and ri⊛n are denoted f and f/i in [26].)

6.1 Binary and unary connectives of basic gaggle logic
The truth conditions of the 16 unary gaggle connectives of gaggle logic are given
in Figure 6 and those of the 96 binary gaggle connectives of gaggle logic in Figures
7, 8, 9, 10, 11 and 12. Many of these unary and binary connectives have already
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been introduced in the literature [30, 23, 28, 29, 40, 31, 22, 42, 2]. For example, the
binary connectives (σ1,+, s1) , (σ5, s3,−) and (σ3, s2,−) are the fusion ○, implication/ and co-implication / connectives of the Lambek calculus [30] used to illustrate
our examples in Section 2. They are also denoted ⊗3, ⊃1 and ⊂2 in update logic
[2].2 In the third column of the tables, we provide the bibliographical references
where the connectives were first introduced. Note that each binary connective ⊛
has a commutative version ⊛′ which belongs to the same orbit/family so that for
all formulas ϕ,ψ we have that ϕ⊛ψ = ψ ⊛′ ϕ. So, instead of 6 different connectives
for each 2–ary orbit, we genuinely have 3 different connectives. This is in line with
a result about colligated operations of Bimbó & Dunn [7]. For each orbit, one goes
from one connective to the next by alternating residuations w.r.t. the first or the
second argument, like in Figure 3. For example, (σ1,+, s1) = r1 (σ2,−, s2) =
r1r2 (σ3,−, s2) = r1r2r1 (σ4,+, s1) = r1r2r1r2 (σ5,−, s3) = r1r2r1r2r1 (σ6,−, s3) .

To each family/orbit of connectives corresponds a series of laws of residuation.
These laws are all instances of the same abstract law of residuation of Definition
10 and correspond to the action of transpositions of the form (j n + 1) on the set
of connectives. They are of different types depending on the family/orbit to which
they belong. These types were denoted in the literature: residuation connection,
dual residuation connection, Galois connection and dual Galois connection (denoted
rp, drp, gc and dgc by Goré [22]). These different ‘types’ of instance of the same
abstract law of residuation for binary and unary connectives are given in Figure 5.
In particular, note that the notion of dual residuation is the same as our definition
of dual w.r.t. the jth argument (Definition 28 and Proposition 29).

6.2 Non gaggle logics
Some connectives of non–classical logics are not connectives of gaggle logics. We
mention two of them here. First, the standard modal connective interpreted over
a neighborhood semantics [34, 35, 47]. It cannot be expressed by a combination of
gaggle logic connectives, because its reformulation with a ternary relation contains
an alternation of quantifiers that cannot occur in any function of Definition 5:

w ∈ J◻ϕK iff ∃u∀v (Rwuv↔ v ∈ JϕK) .
2There is a number of important typographical mistakes about dual update logic in [2]. In par-

ticular, in Definition 20 (dual update logic) of [2], y and z should be swapped in the truth conditions
of �i and �i. There are also some errors in the case study of Section 8 about bi-intuitionistic logic.
A fully corrected version of [2] is available at https://hal.inria.fr/hal-01476234v2/document.
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‘Type’ of the abstract law Binary connectives Unary connectives

Residuation

ϕ⊗i ψ χ

ϕ ψ ⊃j χ
1

ψ χ ⊂k ϕ
2

◇−ϕ ψ

ϕ ◻ ψ
◇ϕ ψ

ϕ ◻− ψ

Dual residuation

χ ϕ�i ψ

ψ �j χ ϕ

χ �k ϕ ψ

Galois

ϕ ∣i ψ χ

ϕ ∣j χ ψ

ψ ∣k χ ϕ

ϕ1 ψ

1ψ ϕ

Dual Galois

χ ϕ ↓i ψ

ψ ϕ ↓j χ

ϕ ψ ↓k χ

ψ ϕ0

ϕ 0ψ

Figure 5: Instances of the abstract law of residuation(i, j, k) ∈ {(3,1,2), (2,3,1), (1,2,3)}
Second, the disjunction of connexive logics interpreted over the ternary semantics

of relevant logics [37]. It cannot be expressed in basic gaggle logic either, because
its formulation contains a pattern of Boolean connectives absent from the functions
of Definition 5:

w ∈ Jϕ ∨ ψK iff ∃uv (Rwuv ∧ (u ∈ JϕK ∨ v ∈ JψK)) .
7 Calculi for Boolean gaggle logics

After some general definitions in Section 7.1 and definitions of structures and con-
secutions for gaggle logics in Definition 40, we introduce in Section 7.3 our calculus
for Boolean basic gaggle logics. The calculus is a display calculus.

7.1 Preliminary definitions

These definitions are very general and apply to any kind of formalism.
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Gaggle Truth condition Substructural
connective connective

The existentially positive orbit: residuations
(τ1,+, t1) ϕ ∃v (v ∈ JϕK ∧Rvw) ◇−ϕ [40] ◇↓ [10](τ2,−, t2) ϕ ∀v (v ∈ JϕK ∨ −Rwv) ◻ϕ [28]

The universally positive orbit: residuations
(τ1,+, t2) ϕ ∀v (v ∈ JϕK ∨Rvw) +↓ϕ [10] [13, p. 401](τ2,−, t1) ϕ ∃v (v ∈ JϕK ∧ −Rwv) [10]

The existentially negative orbit: Galois connections
(τ1,+, t4) ϕ ∃v (v ∉ JϕK ∧Rvw) ?ϕ [10][13, p. 402] ⊟1ϕ [10][7, Def. 10.7.7](τ2,+, t4) ϕ ∃v (v ∉ JϕK ∧Rwv) ?↓ϕ [10][14] [13, p. 402] ⊟2ϕ [7, Def. 10.7.7]

The universally negative orbit: dual Galois connections
(τ1,+, t3) ϕ ∀v (v ∉ JϕK ∨Rvw) ϕ⊥ [10, 12] ϕo [22] x1ϕ [7, Def. 10.7.2](τ2,+, t3) ϕ ∀v (v ∉ JϕK ∨Rwv) ∼ ϕ [20] ⊥ϕ [10, 12] oϕ [22]x2ϕ [7, Def. 10.7.2]

The symmetrical existentially positive orbit: residuations
(τ1,−, t1) ϕ ∃v (v ∈ JϕK ∧ −Rvw) [10](τ2,+, t2) ϕ ∀v (v ∈ JϕK ∨Rwv) +ϕ [10] [13, p. 402] ϕ∗ [7, Def. 7.1.19]

The symmetrical universally positive orbit: residuations
(τ1,−, t2) ϕ ∀v (v ∈ JϕK ∨ −Rvw) ◻−ϕ [40] ◻↓ [10](τ2,+, t1) ϕ ∃v (v ∈ JϕK ∧Rwv) ◇ϕ [28]

The symmetrical existentially negative orbit: Galois connections
(τ1,−, t4) ϕ ∃v (v ∉ JϕK ∧ −Rvw) ?ϕ [10][7, Ex. 1.4.5] ϕ1 [22](τ2,−, t4) ϕ ∃v (v ∉ JϕK ∧ −Rwv) ?↓ϕ [10] [7, Ex. 1.4.5] 1ϕ [22]

The symmetrical universally negative orbit: dual Galois connections
(τ1,−, t3) ϕ ∀v (v ∉ JϕK ∨ −Rvw) [10](τ2,−, t3) ϕ ∀v (v ∉ JϕK ∨ −Rwv) ¬hϕ [29, 42] �ϕ [14]

Figure 6: The 1–ary gaggle connectives
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Gaggle Truth condition Substructural
connective connective

The conjunction orbit Oα3( (σ1,+, s1) ): residuations
ϕ (σ1,+, s1) ψ ∃uv (u ∈ JϕK ∧ v ∈ JψK ∧Ruvw) ϕ ○ ψ [30], ϕ⊗3 ψ [2]
ϕ (σ2,−, s2) ψ ∀uv (u ∈ JϕK ∨ v ∉ JψK ∨ −Rwvu)
ϕ (σ3,−, s2) ψ ∀uv (u ∈ JϕK ∨ v ∉ JψK ∨ −Rvwu) / [30], ϕ ⊂2 ψ [2]
ϕ (σ4,+, s1) ψ ∃uv (u ∈ JϕK ∧ v ∈ JψK ∧Rvuw)= ψ (σ1,+, s1) ϕ
ϕ (σ5,−, s3) ψ ∀uv (u ∉ JϕK ∨ v ∈ JψK ∨ −Rwuv) / [30], ϕ ⊃1 ψ [2]= ψ (σ2,−, s2) ϕ
ϕ (σ6,−, s3) ψ ∀uv (u ∉ JϕK ∨ v ∈ JψK ∨ −Ruwv)= ψ (σ3,−, s2) ϕ

The not–but orbit Oα3( (σ1,+, s6) ): residuations
ϕ (σ1,+, s6) ψ ∃uv (u ∉ JϕK ∧ v ∈ JψK ∧Ruvw) ϕ �3 ψ [2]
ϕ (σ2,+, s6) ψ ∃uv (u ∉ JϕK ∧ v ∈ JψK ∧Rwvu)
ϕ (σ3,−, s4) ψ ∀uv (u ∈ JϕK ∨ v ∈ JψK ∨ −Rvwu) ϕ�2 ψ [2]
ϕ (σ4,+, s5) ψ ∃uv (u ∈ JϕK ∧ v ∉ JψK ∧Rvuw)= ψ (σ1,+, s6) ϕ
ϕ (σ5,+, s5) ψ ∃uv (u ∈ JϕK ∧ v ∉ JψK ∧Rwuv) ϕ �1 ψ [2]= ψ (σ2,+, s6) ϕ
ϕ (σ6,−, s4) ψ ∀uv (u ∈ JϕK ∨ v ∈ JψK ∨ −Ruwv)= ψ (σ3,−, s4) ϕ

The but–not orbit Oα3( (σ1,+, s5) ): residuations
ϕ (σ1,+, s5) ψ ∃uv (u ∈ JϕK ∧ v ∉ JψK ∧Ruvw) ϕ �3 ψ [2]
ϕ (σ2,−, s4) ψ ∀uv (u ∈ JϕK ∨ v ∈ JψK ∨ −Rwvu)
ϕ (σ3,+, s6) ψ ∃uv (u ∉ JϕK ∧ v ∈ JψK ∧Rvwu) ϕ �2 ψ [2]
ϕ (σ4,+, s6) ψ ∃uv (u ∉ JϕK ∧ v ∈ JψK ∧Rvuw) ϕ� ψ [23, 36]= ψ (σ1,+, s5) ϕ
ϕ (σ5,−, s4) ψ ∀uv (u ∈ JϕK ∨ v ∈ JψK ∨ −Rwuv) ϕ� ψ [23, 36] ϕ�1 ψ [2]= ψ (σ2,−, s4) ϕ
ϕ (σ6,+, s5) ψ ∃uv (u ∈ JϕK ∧ v ∉ JψK ∧Ruwv) ϕ� ψ [23, 36]= ψ (σ3,+, s6) ϕ

Figure 7: The 2–ary gaggle connectives
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Gaggle Truth condition Substructural
connective connective

The symmetrical conjunction orbit Oα3 ( (σ1,−, s1) ): residuations
ϕ (σ1,−, s1) ψ ∃uv (u ∈ JϕK ∧ v ∈ JψK ∧ −Ruvw) ϕ ○ ψ [7, Def. 5.2.3]
ϕ (σ2,+, s2) ψ ∀uv (u ∈ JϕK ∨ v ∉ JψK ∨Rwvu)
ϕ (σ3,+, s2) ψ ∀uv (u ∈ JϕK ∨ v ∉ JψK ∨Rvwu)
ϕ (σ4,−, s1) ψ ∃uv (u ∈ JϕK ∧ v ∈ JψK ∧ −Rvuw)= ψ (σ1,−, s1) ϕ
ϕ (σ5,+, s3) ψ ∀uv (u ∉ JϕK ∨ v ∈ JψK ∨Rwuv) ϕ→ ψ [7, Def. 5.2.3]= ψ (σ2,+, s2) ϕ
ϕ (σ6,+, s3) ψ ∀uv (u ∉ JϕK ∨ v ∈ JψK ∨Ruwv)= ψ (σ3,+, s2) ϕ

The symmetrical not–but orbit Oα3 ( (σ1,−, s6) ): residuations
ϕ (σ1,−, s6) ψ ∃uv (u ∉ JϕK ∧ v ∈ JψK ∧ −Ruvw)
ϕ (σ2,−, s6) ψ ∃uv (u ∉ JϕK ∧ v ∈ JψK ∧ −Rwvu)
ϕ (σ3,+, s4) ψ ∀uv (u ∈ JϕK ∨ v ∈ JψK ∨Rvwu)
ϕ (σ4,−, s5) ψ ∃uv (u ∈ JϕK ∧ v ∉ JψK ∧ −Rvuw)= ψ (σ1,−, s6) ϕ
ϕ (σ5,−, s5) ψ ∃uv (u ∈ JϕK ∧ v ∉ JψK ∧ −Rwuv)= ψ (σ2,−, s6) ϕ
ϕ (σ6,+, s4) ψ ∀uv (u ∈ JϕK ∨ v ∈ JψK ∨Ruwv)= ψ (σ3,+, s4) ϕ

The symmetrical but–not orbit Oα3 ( (σ1,−, s5) ): residuations
ϕ (σ1,−, s5) ψ ∃uv (u ∈ JϕK ∧ v ∉ JψK ∧ −Ruvw)
ϕ (σ2,+, s4) ψ ∀uv (u ∈ JϕK ∨ v ∈ JψK ∨Rwvu)
ϕ (σ3,−, s6) ψ ∃uv (u ∉ JϕK ∧ v ∈ JψK ∧ −Rvwu)
ϕ (σ4,−, s6) ψ ∃uv (u ∉ JϕK ∧ v ∈ JψK ∧ −Rvuw)= ψ (σ1,−, s5) ϕ
ϕ (σ5,+, s4) ψ ∀uv (u ∈ JϕK ∨ v ∈ JψK ∨Rwuv)= ψ (σ2,+, s4) ϕ
ϕ (σ6,−, s5) ψ ∃uv (u ∈ JϕK ∧ v ∉ JψK ∧ −Ruwv)= ψ (σ3,−, s6) ϕ

Figure 8: The 2–ary gaggle connectives
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Gaggle Truth condition Substructural
connective connective

The disjunction orbit Oα3 ( (σ1,−, s4) ): dual residuations
ϕ (σ1,−, s4) ψ ∀uv (u ∈ JϕK ∨ v ∈ JψK ∨ −Ruvw) ϕ�3 ψ [2]
ϕ (σ2,+, s5) ψ ∃uv (u ∈ JϕK ∧ v ∉ JψK ∧Rwvu)
ϕ (σ3,+, s5) ψ ∃uv (u ∈ JϕK ∧ v ∉ JψK ∧Rvwu) ϕ �2 ψ [2]
ϕ (σ4,−, s4) ψ ∀uv (u ∈ JϕK ∨ v ∈ JψK ∨ −Rvuw)= ψ (σ1,−, s4) ϕ
ϕ (σ5,+, s6) ψ ∃uv (u ∉ JϕK ∧ v ∈ JψK ∧Rwuv) ϕ �1 ψ [2]= ψ (σ2,+, s5) ϕ
ϕ (σ6,−, s6) ψ ∃uv (u ∉ JϕK ∧ v ∈ JψK ∧Ruwv)= ψ (σ3,+, s5) ϕ

The implication orbit Oα3 ( (σ1,−, s3) ): dual residuations
ϕ (σ1,−, s3) ψ ∀uv (u ∉ JϕK ∨ v ∈ JψK ∨ −Ruvw) ϕ ⊃3 ψ [2]
ϕ (σ2,−, s3) ψ ∀uv (u ∉ JϕK ∨ v ∈ JψK ∨ −Rwvu)
ϕ (σ3,+, s1) ψ ∃uv (u ∈ JϕK ∧ v ∈ JψK ∧Rvwu) ϕ⊗2 ψ [2]
ϕ (σ4,−, s2) ψ ∀uv (u ∈ JϕK ∨ v ∉ JψK ∨ −Rvuw)= ψ (σ1,+, s3) ϕ
ϕ (σ5,−, s2) ψ ∀uv (u ∈ JϕK ∨ v ∉ JψK ∨ −Rwuv) ϕ ⊂1 ψ [2]= ψ (σ2,−, s3) ϕ
ϕ (σ6,+, s1) ψ ∃uv (u ∈ JϕK ∧ v ∈ JψK ∧Ruwv)= ψ (σ3,+, s1) ϕ

The coimplication orbit Oα3 ( (σ1,−, s2) ): dual residuations
ϕ (σ1,−, s2) ψ ∀uv (u ∈ JϕK ∨ v ∉ JψK ∨ −Ruvw) ϕ ⊂3 ψ [2]
ϕ (σ2,+, s1) ψ ∃uv (u ∈ JϕK ∧ v ∈ JψK ∧Rwvu)
ϕ (σ3,−, s3) ψ ∀uv (u ∉ JϕK ∨ v ∈ JψK ∨ −Rvwu) ϕ ⊃2 ψ [2]
ϕ (σ3,−, s3) ψ ∀uv (u ∉ JϕK ∨ v ∈ JψK ∨ −Rvuw)= ψ (σ1,−, s2) ϕ
ϕ (σ5,+, s1) ψ ∃uv (u ∈ JϕK ∧ v ∈ JψK ∧Rwuv) ϕ⊗1 ψ [2]= ψ (σ2,+, s1) ϕ
ϕ (σ6,−, s2) ψ ∀uv (u ∈ JϕK ∨ v ∉ JψK ∨ −Ruwv)= ψ (σ3,−, s3) ϕ

Figure 9: The 2–ary gaggle connectives
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Gaggle Truth condition Substructural
connective connective
The symmetrical disjunction orbit Oα3 ( (σ1,+, s4) ): dual residuations
ϕ (σ1,+, s4) ψ ∀uv (u ∈ JϕK ∨ v ∈ JψK ∨Ruvw) ϕ� ψ [22]
ϕ (σ2,−, s5) ψ ∃uv (u ∈ JϕK ∧ v ∉ JψK ∧ −Rwvu) ϕ � ψ [22]
ϕ (σ3,−, s5) ψ ∃uv (u ∈ JϕK ∧ v ∉ JψK ∧ −Rvwu)
ϕ (σ4,+, s4) ψ ∀uv (u ∈ JϕK ∨ v ∈ JψK ∨Rvuw)= ψ (σ1,+, s4) ϕ
ϕ (σ5,−, s6) ψ ∃uv (u ∉ JϕK ∧ v ∈ JψK ∧ −Rwuv)= ψ (σ2,−, s5) ϕ
ϕ (σ6,+, s6) ψ ∃uv (u ∉ JϕK ∧ v ∈ JψK ∧ −Ruwv) ϕ � ψ [22]= ψ (σ3,−, s5) ϕ
The symmetrical implication orbit Oα3 ( (σ1,+, s3) ): dual residuations
ϕ (σ1,+, s3) ψ ∀uv (u ∉ JϕK ∨ v ∈ JψK ∨Ruvw)
ϕ (σ2,+, s3) ψ ∀uv (u ∉ JϕK ∨ v ∈ JψK ∨Rwvu)
ϕ (σ3,−, s1) ψ ∃uv (u ∈ JϕK ∧ v ∈ JψK ∧ −Rvwu)
ϕ (σ4,+, s2) ψ ∀uv (u ∈ JϕK ∨ v ∉ JψK ∨Rvuw)= ψ (σ1,+, s3) ϕ
ϕ (σ5,+, s2) ψ ∀uv (u ∈ JϕK ∨ v ∉ JψK ∨Rwuv)= ψ (σ2,+, s3) ϕ
ϕ (σ6,−, s1) ψ ∃uv (u ∈ JϕK ∧ v ∈ JψK ∧ −Ruwv)= ψ (σ3,−, s1) ϕ
The symmetrical coimplication orbit Oα3 ( (σ1,+, s2) ): dual residuations
ϕ (σ1,+, s2) ψ ∀uv (u ∈ JϕK ∨ v ∉ JψK ∨Ruvw)
ϕ (σ2,−, s1) ψ ∃uv (u ∈ JϕK ∧ v ∈ JψK ∧ −Rwvu)
ϕ (σ3,+, s3) ψ ∀uv (u ∉ JϕK ∨ v ∈ JψK ∨Rvwu)
ϕ (σ4,+, s3) ψ ∀uv (u ∉ JϕK ∨ v ∈ JψK ∨Rvuw)= ψ (σ1,+, s2) ϕ
ϕ (σ5,−, s1) ψ ∃uv (u ∈ JϕK ∧ v ∈ JψK ∧ −Rwuv)= ψ (σ2,−, s1) ϕ
ϕ (σ6,+, s2) ψ ∀uv (u ∈ JϕK ∨ v ∉ JψK ∨Ruwv)= ψ (σ3,+, s3) ϕ

Figure 10: The 2–ary gaggle connectives
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Gaggle Truth condition Substructural
connective connective

The stroke orbit Oα3 ( (σ1,+, s7) ): Galois connections
ϕ (σ1,+, s7) ψ ∃uv (u ∉ JϕK ∧ v ∉ JψK ∧Ruvw) ϕ ∣3 ψ [1, 22]
ϕ (σ2,+, s7) ψ ∃uv (u ∉ JϕK ∧ v ∉ JψK ∧Rwvu)
ϕ (σ3,+, s7) ψ ∃uv (u ∉ JϕK ∧ v ∉ JψK ∧Rvwu)
ϕ (σ4,+, s7) ψ ∃uv (u ∉ JϕK ∧ v ∉ JψK ∧Rvuw)= ψ (σ1,+, s7) ϕ
ϕ (σ5,+, s7) ψ ∃uv (u ∉ JϕK ∧ v ∉ JψK ∧Rwuv) ϕ ∣1 ψ [1, 22]= ψ (σ2,+, s7) ϕ
ϕ (σ6,+, s7) ψ ∃uv (u ∉ JϕK ∧ v ∉ JψK ∧Ruwv) ϕ ∣2 ψ [1, 22]= ψ (σ3,+, s7) ϕ

The dagger orbit Oα3 ( (σ1,−, s8) ): Galois connections
ϕ (σ1,−, s8) ψ ∀uv (u ∉ JϕK ∨ v ∉ JψK ∨ −Ruvw) ϕ ↓3 ψ [1, 22]
ϕ (σ2,−, s8) ψ ∀uv (u ∉ JϕK ∨ v ∉ JψK ∨ −Rwvu)
ϕ (σ3,−, s8) ψ ∀uv (u ∉ JϕK ∨ v ∉ JψK ∨ −Rvwu)
ϕ (σ4,−, s8) ψ ∀uv (u ∉ JϕK ∨ v ∉ JψK ∨ −Rvuw)= ψ (σ1,−, s8) ϕ
ϕ (σ5,−, s8) ψ ∀uv (u ∉ JϕK ∨ v ∉ JψK ∨ −Rwuv) ϕ ↓1 ψ [1, 22]= ψ (σ2,−, s8) ϕ
ϕ (σ6,−, s8) ψ ∀uv (u ∉ JϕK ∨ v ∉ JψK ∨ −Ruwv) ϕ ↓2 ψ [1, 22]= ψ (σ3,−, s8) ϕ

Figure 11: The 2–ary gaggle connectives

Definition 34 (Logic). A logic is a triple L = (L,E, ) where

• L is a language defined as a set of well-formed expressions built from a set of
connectives C and a set of atoms P;

• E is a class of pointed models or frames;

• is a satisfaction relation which relates in a compositional manner elements
of L to models of E by means of so-called truth conditions.

A L–consecution is an expression of the form ϕ ψ, ψ or ϕ , where ϕ,ψ ∈ L.
Our definition of a calculus and of an inference rule is taken from [32].
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Gaggle Truth condition Substructural
connective connective
The symmetrical stroke orbit Oα3 ( (σ1,−, s7) ): dual Galois connections
ϕ (σ1,−, s7) ψ ∃uv (u ∉ JϕK ∧ v ∉ JψK ∧ −Ruvw)
ϕ (σ2,−, s7) ψ ∃uv (u ∉ JϕK ∧ v ∉ JψK ∧ −Rwvu)
ϕ (σ3,−, s7) ψ ∃uv (u ∉ JϕK ∧ v ∉ JψK ∧ −Rvwu)
ϕ (σ4,−, s7) ψ ∃uv (u ∉ JϕK ∧ v ∉ JψK ∧ −Rvuw)= ψ (σ1,−, s7) ϕ
ϕ (σ5,−, s7) ψ ∃uv (u ∉ JϕK ∧ v ∉ JψK ∧ −Rwuv)= ψ (σ2,−, s7) ϕ
ϕ (σ6,−, s7) ψ ∃uv (u ∉ JϕK ∧ v ∉ JψK ∧ −Ruwv)= ψ (σ3,−, s7) ϕ
The symmetrical dagger orbit Oα3 ( (σ1,+, s8) ): dual Galois connections
ϕ (σ1,+, s8) ψ ∀uv (u ∉ JϕK ∨ v ∉ JψK ∨Ruvw)
ϕ (σ2,+, s8) ψ ∀uv (u ∉ JϕK ∨ v ∉ JψK ∨Rwvu)
ϕ (σ3,+, s8) ψ ∀uv (u ∉ JϕK ∨ v ∉ JψK ∨Rvwu)
ϕ (σ4,+, s8) ψ ∀uv (u ∉ JϕK ∨ v ∉ JψK ∨Rvuw)= ψ (σ1,+, s8) ϕ
ϕ (σ5,+, s8) ψ ∀uv (u ∉ JϕK ∨ v ∉ JψK ∨Rwuv)= ψ (σ2,+, s8) ϕ
ϕ (σ6,+, s8) ψ ∀uv (u ∉ JϕK ∨ v ∉ JψK ∨Ruwv)= ψ (σ3,+, s8) ϕ

Figure 12: The 2–ary gaggle connectives

Definition 35 (Conservativity). Let L = (L,E, ) and L′ = (L′,E′, ′) be two
logics such that L ⊆ L′. We say that L′ is a conservative extension of L when{ϕ ∈ L ∣ Lϕ} = L ∩ {ϕ′ ∈ L′ ∣ ′

L′ϕ′}.
Definition 36 (Calculus and sequent calculus ). Let L = (L,E, ) be a logic. A
calculus P for L is a set of elements of L called axioms and a set of inference rules.
Most often, one can effectively decide whether a given element of L is an axiom. To
be more precise, an inference rule R for L is a relation among elements of L such
that there is a unique l ∈ N∗ such that, for all ϕ,ϕ1, . . . , ϕl ∈ L, one can effectively
decide whether (ϕ1, . . . , ϕl, ϕ) ∈ R. The elements ϕ1, . . . , ϕl are called the premises
and ϕ is called the conclusion and we say that ϕ is a direct consequence of ϕ1, . . . , ϕl
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by virtue of R. Let Γ ⊆ L and let ϕ ∈ L. We say that ϕ is provable (from Γ) in P or
a theorem of P, denoted ⊢P ϕ (resp. Γ ⊢P ϕ), when there is a proof of ϕ (from Γ) in
P, that is, a finite sequence of formulas ending in ϕ such that each of these formulas
is:

1. either an instance of an axiom of P (or a formula of Γ);

2. or the direct consequence of preceding formulas by virtue of an inference rule
R.

If S is a set of L–consecutions, this set S can be viewed as a language. In that
case, we call sequent calculus for S a calculus for S.

Axioms and inference rules are often represented by means of axiom schemas
and inference rule schemas, that is, expressions of the following form, depending on
whether we deal with formulas of L or L–consecutions:
Axiom schemas:
α A B

Inference rule schemas:
α1 . . . αn

α
A1 B1 . . . An Bn

A B

where α1, . . . , αn, α are built up from variables often denoted ϕ,ψ, . . . and the con-
nectives of C and, likewise, A1, . . . ,An,B1, . . . ,Bn,A,B are built up from variables
often denoted X,Y, . . . and the connectives of C. In this representation, inference
rules and axioms schemas are closed by uniform substitution: each variable can be
replaced uniformly by any well-formed expression of L.

An inference rule R′ is derivable from an inference rule R in P when there is a
finite sequence of rules R1, . . . ,Rn of P, with at least one of them equal to R, such
that R′ = R1 ○ . . . ○Rn.
Definition 37 (Truth, validity, logical consequence). Let L = (L,E, ) be a logic.
Let M ∈ E, ϕ ∈ L, R be an inference rule for L and S,S′ be either inference rules
for L or formulas of L. If Γ is a set of formulas or inference rules, we write M Γ
when for all ϕ ∈ Γ, we have M ϕ. Then, we say that

• ϕ is true (satisfied) at M or M is a model of ϕ when M ϕ;

• ϕ is valid, denoted Lϕ, when for all models M ∈ E, we have M ϕ;

• R is true (satisfied) at M or M is a model of R, denoted M R, when for all(ϕ1, . . . , ϕl, ϕ) ∈ R, if M ϕi for all i ∈ {1, . . . , l}, then M ϕ.
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An inference rule R is equivalent to another inference rule R′ iff for all M ∈ E,
M R iff M R′.
Definition 38 (Soundness and completeness). Let L = (L,E, ) be a logic. Let P
be a calculus for L. Then,

• P is sound for the logic L when for all ϕ ∈ L, if ⊢P ϕ, then Lϕ.

• P is (strongly) complete for the logic L when for all ϕ ∈ L (and all Γ ⊆ L), if
Lϕ, then ⊢P ϕ (resp. if Γ Lϕ, then Γ ⊢P ϕ).

7.2 Structures and consecutions
In order to provide a sound and complete calculus for a gaggle logic based on a set
of connectives C ⊆ C, we will need to resort to the connectives of C which are in
the orbits of the free action αn ∗ βn (for appropriate ns). We introduce these extra
connectives in the language as structural connectives: they will appear in the proof
derivations but not in the formulas proved by the calculus.

Definition 39 (Structural connectives). (Gaggle) structural connectives, denoted[C], are a copy of the connectives: for all C ⊆ C,

[C] ≜{[⊛] ∣ ⊛ ∈ C} .
Structural connectives are denoted [p] , [p1] , [p2] , . . . and [⊛] , [⊛1] , [⊛2] , . . . For all⊛ = (σ,±, s) ∈ C, the arity, signature, tonicity signature, quantification signature of[⊛] are the same as ⊛.

We also introduce the (Boolean) structural connective , .

Definition 40 (Structural gaggle language and consecutions). The structural gaggle
language [L] is the smallest set that contains the gaggle language L, the structures∗ϕ for all ϕ ∈ L as well as [P] and that is closed under the structural connectives of[C] ∪ { , }.

A L–consecution (resp. [L]–consecution) is an expression of the form ϕ ψ (resp.
X Y ), where ϕ,ψ ∈ L (resp. X,Y ∈ [L]). The set of all (Boolean) L–consecutions
(resp. [L]–consecutions) is denoted S (resp. [S]) and the set of all L0–consecutions
is denoted S0. If C ⊆ C then an element of [L]C (resp. S0

C, SC, [S]C) is an element
of [L] (resp. S0, S, [S]) which contains only connectives of [C].

Elements of L (resp. [L] and [S]) are called formulas (resp. struc-
tures and consecutions); they are denoted ϕ,ψ,α, . . . (resp. X,Y,A,B, . . . and
X Y,A B, . . .).
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Definition 41 (Boolean negation). Let X ∈ [L] be a structure. The Boolean nega-
tion of X, denoted ∗X, is defined inductively as follows:

∗X ≜
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[−⊛] (X1, . . . ,Xn) if X = [⊛] (X1, . . . ,Xn)(∗X1 , ∗X2) if X = (X1 , X2)
ϕ if X = ∗ϕ∗ϕ if X = ϕ ∈ L

where −⊛ was defined in Definition 20.
Note that from that definition, for all structuresX ∈ [L], it follows that ∗∗X =X.

Definition 42 (Formula associated to a structure). We define inductively the func-
tion τ0 and τ1 from structures of [L] to formulas of L as follows: for all i ∈ {0,1},
all ⊛ = (σ,±, (Æ, (±1, . . . ,±n))),

τi(ϕ) ≜ ϕ
τi(∗ϕ) ≜ ¬ϕ

τ0 (X , Y ) ≜ (τ0(X) ∧ τ0(Y ))
τ1 (X , Y ) ≜ (τ1(X) ∨ τ1(Y ))

τi ([⊛] (X1, . . . ,Xn)) ≜ ⊛(τi1(X1), . . . , τin(Xn))
where for all j ∈ J1;nK, τij(Xj) ≜ ⎧⎪⎪⎨⎪⎪⎩

τi(Xj) if ±j = +
τ1−i(Xj) if ±j = − .

Then, we define the function τ from [L]–consecutions of [S] to L–consecutions
of S as follows:

τ(X Y ) ≜ τ0(X) τ1(Y )
Instead of a single structural connective , , we could introduce two Boolean

structural connectives [∧], [∨] as a copy of the Boolean connectives ∧,∨, like for the
other gaggle connectives ⊛. This would not be usual but in line with our approach.
This would greatly simplify the definition of the function τ since the interpretation
of the structural connectives would then not be context-dependent as here. In par-
ticular one would not need two functions τ0 and τ1. We proceed as follows on the
one hand in order to stay in line with current practice and on the other hand be-
cause it simplifies the subsequent calculus GGLC of Figure 13: we use one structural
connective ( , ) instead of two ([∧] and [∨]). This said, it would be easily possible to
adapt and rewrite the calculus GGLC with these two structural connectives [∧] and[∨]: the structural connective , would need to be replaced by [∧] in the premise of(dr2) and in (B ⊢) , (CI ⊢) , (K ⊢) , (∧ ⊢) and by [∨] in the conclusion of (dr2) and in(⊢ B) , (⊢ CI) , (⊢ K) , (⊢ ∨) (see below).
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Definition 43 (Interpretation of gaggle structures and consecutions). Let C ⊆ C
and let M = (W,R) be a C–model. We extend the interpretation function J⋅KM ofLC in M to LC–consecutions of SC as follows: for all ϕ,ψ ∈ LC and all w ∈ W , we
have that w ∈ Jϕ ψKM iff if w ∈ JϕKM then w ∈ JψKM , we have that w ∈ J ψKM iff
w ∈ JψKM and we have that w ∈ Jϕ KM iff w ∉ JϕKM . We then extend in a natural
way the interpretation function J⋅KM of LC in M to [L]C–consecutions of [S]C as
follows: for all X ∈ LC, all X Y ∈ [S]C and all w ∈W , we have that w ∈ JX Y KM
if, and only if, w ∈ Jτ(X Y )KM . If EC is a class of C–models, then the satisfaction
relation ⊆ EC × [S]C is defined like for formulas of L.
7.3 Our display calculus
We introduce a calculus for Boolean basic gaggle logics. Our calculus is defined
relatively to an orbit/family of connectives. This means that if we have a basic
gaggle logic defined on the basis of some connectives C and if we want to obtain a
sound and complete calculus for that logic, we need to consider in the proof system
the following associated set of connectives:

O(C) ≜ ⋃⊛∈C{Oαn∗βn(⊛) ∣ a(⊛) = n} (4)

This set of connectives O(C) is stable under the free action αn ∗ βn: for all ⊛ ∈O(C), we have that Oαn∗βn(⊛) ⊆ O(C). This is because in the completeness proof,
we need to apply the abstract law of residuation for any arguments j (associated
to the residuation operator of Definition 18) and consider the Boolean negation for
each connective. This entails that we must consider the orbits of the connectives of
C under the free action αn ∗ βn.
Definition 44. Let C ⊆ C. We denote by GGLC the calculus of Figure 13 where the
introduction rules (⊢ ⊛) and (⊛ ⊢) are defined for the connectives ⊛ of C and where
the rule (dr1) is defined for the elements τ of an arbitrary set of generators of Sn+1
(for each n ranging over the arities of the connectives of C).

Theorem 45 (Soundness and strong completeness). Let C ⊆ C be such that O(C) =
C. The calculus GGLC is sound and strongly complete for the Boolean basic gaggle
logic (SC,MC, ).
Proof: See the Appendix, Section B. ◻

Some comments about the rules of the calculus GGLC are needed.
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Structural rules:

((X , Y ) , Z) U

(X , (Y , Z)) U
(B ⊢) (X , Y ) U

(Y , X) U
(CI ⊢)

X U

(X , Y ) U
(K ⊢) (X , X) U

X U
(WI ⊢)

U ϕ ϕ V

U V
cut

Display rules:

S ([⊛] ,X1, . . . ,Xn,Xn+1)
S ([τ⊛] ,Xτ(1), . . . ,Xτ(n),Xτ(n+1)) (dr1) (X , Y ) Z

X (Z , ∗Y ) (dr2)
Introduction rules:

U ∗ ϕ
U ¬ϕ (⊢ ¬) ∗ϕ U

¬ϕ U
(¬ ⊢)

X ϕ Y ψ

(X , Y ) (ϕ ∧ ψ) (⊢ ∧) (ϕ , ψ) U

(ϕ ∧ ψ) U
(∧ ⊢)

U (ϕ , ψ)
U (ϕ ∨ ψ) (⊢ ∨) ϕ X ψ Y

(ϕ ∨ ψ) (X , Y ) (∨ ⊢)
U1 V1 . . . Un Vn

S ([⊛] ,X1, . . . ,Xn,⊛ (ϕ1, . . . , ϕn)) (⊢ ⊛) S ([⊛] , ϕ1, . . . , ϕn, U)
S (⊛, ϕ1, . . . , ϕn, U) (⊛ ⊢)

In rules (⊢ ⊛) and (⊛ ⊢), for all ⊛ = (σ,±, (Æ, (±1, . . . ,±n))) ∈ C:

● for all j ∈ J1;nK, we set Uj Vj ≜ ⎧⎪⎪⎨⎪⎪⎩
Xj ϕj if ±j ± (Æ) = −
ϕj Xj if ±j ± (Æ) = +

such that, in rule (⊢ ⊛), for all j Xj is not empty and if ϕj is empty for some j
then ⊛(ϕ1, . . . , ϕn) is also empty.

● for all ⋆ ∈ {⊛, [⊛]}, S(⊛,X1, . . . ,Xn,X) ≜ ⎧⎪⎪⎨⎪⎪⎩
⋆(X1, . . . ,Xn) X if Æ = ∃
X ⋆ (X1, . . . ,Xn) if Æ = ∀ .

If X is empty then ∗X is empty and (X , Y ) and (Y , X) are equal to Y .

Figure 13: Calculus GGLC
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● The axioms and inference rules for atoms p are special instances of the rules(⊢ ⊛) and (⊛ ⊢) of Figure 13. With ⊛ = p, we have that n = 0 and, replacing ⊛ with
p in (⊢ ⊛), we obtain the inference rules below. Note that (⊢ p) is in fact an axiom.

S([p] , p) (⊢ p) S ([p] ,X)
S (p,X) (p ⊢)

where, if ⊛ is p or [p], then S(⊛,X) ≜ ⎧⎪⎪⎨⎪⎪⎩
⊛ X if Æ = ∃
X ⊛ if Æ = ∀ .

Hence, for all p = (1,±,Æ), if Æ = ∃ then (⊢ p) and (p ⊢) rewrite as follows:

[p] p
(⊢ p) [p] X

p X
(p ⊢) (5)

and if Æ = ∀ then (⊢ p) and (p ⊢) rewrite as follows:

p [p] (⊢ p) X [p]
X p

(p ⊢) (6)

Note that in both cases, the standard axiom p p is derivable by applying (p ⊢)
once again to [p] p or p [p]. If [p] is replaced by I and p by ⊺ in the first pair
and if [p] is replaced by I and p by � in the second pair then we obtain respectively
the operational rules ( ⊺), (⊺ ), (� ) and ( �) of Kracht [27] and Belnap [6].
This is meaningful since truth constants can be seen as special atoms, those that are
always true or always false. Then, one needs, like in the calculus DLM of Kracht
[27], to impose some conditions on these atoms by means of particular structural
inference rules so that these special atoms ⊺ and � do behave as truth constants, as
intended. Note that the reading of I, either as ⊺ or as �, is clearly separated here
by means of two structural constants, whereas in the literature it is disambiguated
depending on the context, whether it is in antecedent part or consequent part of a
consecution. Alternatively, one can easily prove (by extending the proof of Section
??) that adding the following axioms to our calculus GGLC is enough to capture the
standard truth constants ⊺ and �:

� (� ⊢) ⊺ (⊢ ⊺)
● The Boolean operator ∗ transforms the structures on which it is applied. It does

not function as an operator applied externally on structures, it modifies them in-
ternally. Hence, for example, for any structure [⊛] (X1, . . . ,Xn), ∗ [⊛] (X1, . . . ,Xn)
is equal to [−⊛] (X1, . . . ,Xn). In that sense, it is formally different from the usual
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structural connective ∗ used in display logics, even if its semantic meaning is the same
(it behaves as a Boolean negation). Moreover, because by Definition 41 ∗ ∗X = X,
the following rule is a reformulation of the display rule (dr2) (premise and conclusion
are turned upside down):

X (Y , Z)
(X , ∗Z) Y

● Because of our convention that if X is empty then (X , Y ) and (Y , X) are
equal to Y , the following rules are specific instances of the display rule (dr2):

(X , Y )
X ∗ Y

(Z , Y )
∗Y Z

Likewise, if ⊛ = (σ,±, (Æ, (±1, . . . ,±n))) is such that, for example, Æ = ∃ and±j = +, then the following rule is an instance of the rule (⊢ ⊛), because of our
conventions about empty structures in the rule (⊢ ⊛):

U1 V1 . . . Xj . . . Un Vn[⊛] (X1, . . . ,Xj , . . . ,Xn) (7)

● The introduction rule (⊢ ⊛) of our calculus is a direct translation in gaggle
logics of the tonicity relations of Theorem 10. Likewise, the structural rule (dr1) is
a translation and a generalization of the abstract law of residuation of Theorem 10
(see Proposition 27).

● As shown in Example 26, ∧ and ∨ can be formalized by the gaggle connectives(σ1,+, s1) and (σ1,−, s4) if these are interpreted on identity ternary relations (which
can be obtained by imposing the validity of the classic structural rules involving
these connectives). Hence, unsurprisingly, rules (⊢ ∨) and (∧ ⊢) are instances of the
(gaggle) rule (⊛ ⊢) and rules (⊢ ∧) and (∨ ⊢) are also instances of the (gaggle) rule(⊢ ⊛).

This said, one could equivalently replace (⊢ ∧) and (∨ ⊢) by their exten-
sional/additive version (⊢ ∧)′ and (∨ ⊢)′ of Proposition 46 and still obtain the
completeness of the resulting calculus. In fact, completeness still holds if one
also removes the contraction rule (WI ⊢) because a contraction is hidden in the
extensional/additive version of the conjunction and disjunction rule. Yet, one
needs the contraction rule (WI ⊢) explicitly to prove cut elimination, in particular
for condition (C8) with the conjunction case (see Theorem 49). So, we prefer to
take in our calculus the intensional/multiplicative version (⊢ ∧) and (∨ ⊢) of the
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conjunction and disjunction rules because they are instances of the general rules(⊛ ⊢) and (⊢ ⊛) for gaggle connectives.

● Our calculus has the subformula property, but not the substructure property:
every formula appearing in a cut–free proof of a consecution is a subformula of a
formula of the final consecution.

● In the calculus GGLC, we do not need to consider all permutations τ of the
symmetric group Sn+1. In fact, it suffices to consider only a set of generators
of Sn+1 because rules for any permutations are derivable from these rules for
generators as the following proposition shows. One could naturally consider
transpositions because they generate the symmetric group and correspond to resid-
uation operations. One could consider as well other generators of the symmetric
group Sn+1, such as the pair {(n n + 1), (1 2 . . . n + 1)} or the set of generators{(1 2), (2 3), . . . , (i i + 1), . . . , (n n + 1)} or (1 2) together with the 3–cycles (see
Section 3). Hence, one can reduce the number of inference rules (dr1) from (n + 1)!
to 2: it suffices to define the calculus GGLC only with the rules (dr1) where
τ = (n n + 1) and τ = (1 2 . . . n + 1) for example. Indeed, the rules (dr1) with
τ ∈Sn+1 different from (n n+ 1) and (1 2 . . . n+ 1) are all derivable from these two
rules since these two cycles generate Sn+1.

Proposition 46. Let C ⊆ C and let ⊛ ∈ C be a n-ary connective. The following rules
are all derivable in GGLC.

X Y

∗Y ∗X (dr′2) S([⊛] ,X1, . . . ,Xj , . . . ,Xn,X)
S([sj⊛] ,X1, . . . ,∗Xj , . . . ,Xn,X) (swj)

∗X Y

∗Y X
(dr′′2) X ∗ Y

Y ∗X (dr′′′2 )
U ((X , Y ) , Z)
U (X , (Y , Z)) (⊢ B) U (X , Y )

U (Y , X) (⊢ CI)
U X

U (X , Y ) (⊢ K) U (X , X)
U X

(⊢WI)
U ϕ U ψ

U (ϕ ∧ ψ) (⊢ ∧)′ ϕ U ψ U(ϕ ∨ ψ) U
(∨ ⊢)′

The rule (dr′2) is called the Boolean negation rule and the rule (swj), for j ∈ J1;nK,
is called the switch rule w.r.t. the jth argument. The rule (dr1) is also derivable in
GGLC, for all τ ∈Sn+1.
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Proof: See the Appendix, Section A. ◻

8 Cut elimination and displayability
In this section, we prove that the cut rule can be eliminated from any proof of
GGLC. This result relies on the fact that our gaggle calculi are in fact display calculi
and enjoy the display property: every substructure of a consecution provable in
GGLC can be displayed as the sole antecedent or consequent of a provably equivalent
consecution. In display calculi [6], the antecedent or consequent position depends
on the kind of position in which the given substructure appears in the consecution:
either in “antecedent part” or in “consequent part”. In standard display logics,
these two related notions are defined on the basis of the parity of the number of
structural connectives ∗ that occur in front of the given substructure (odd or even).
Since our framework is more abstract, we reformulate these two notions in a more
abstract form based on the tonicity of the connectives that occur in front of the
substructure. This leads us to define the following notions of ‘protoantecedant part’
and ‘protoconsequent part’. A similar notion was defined by Goré [21] without
Boolean structural connectives.

Definition 47 (Protoantecedent and protoconsequent part). Let X,Y,Z ∈ [L] be
structures. If Z is a substructure of X, then tn(X,Z) is defined inductively as
follows:

• if X = Z then tn(X,Z) ≜ +;
• if X = ∗Y and Z appears in Y then tn(X,Z) ≜ −tn(Y,Z);
• if X = (X1 , X2) and Z appears in Xj then tn(X,Z) ≜ tn(Xj , Z);
• if X = [⊛] (X1, . . . ,Xn) and Z appears in Xj then tn(X,Z) ≜
tn(⊛, j)tn(Xj , Z).

If X Y is a [L]–consecution, then X is called the antecedent and Y is called the
consequent of X Y . If Z is a substructure of X or Y , Z is called a protoantecedent
part (resp. protoconsequent part) of X Y when tn(X,Z) = + or tn(Y,Z) = − (resp.
tn(X,Z) = − or tn(Y,Z) = +).
Proposition 48 (Display property). Let C ⊆ C. For all [L]–consecutions X Y
provable in GGLC and for all substructure Z of X Y ,
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• if Z is protoantecedent part of X Y then there exists a structure W ∈ [L]
such that Z W is provably equivalent to X Y in GGLC;

• if Z is protoconsequent part of X Y then there exists a structure W ∈ [L]
such that W Z is provably equivalent to X Y in GGLC.

Hence, GGLC is a display calculus.

Proof: It follows from an inductive application of the display rules (dr1) and (dr2)
on each substructure of X (or Y ) containing Z, from the outermost one to the
innermost one (Z itself). We use (dr1) if we have to ‘unfold’ a structural gaggle
connective [⊛] and (dr2) (or one of its derived rules) if we have to ‘unfold’ the
structural Boolean connective , . ◻
Theorem 49 (Cut–elimination). Let C ⊆ C. The calculus GGLC is cut–eliminable:
it is possible to eliminate all occurrences of the cut rule from a given proof in order
to obtain a cut-free proof of the same consecution.

Proof: See the Appendix, Section C. ◻
As usual in proof theory and ever since Gentzen [18], the fact that the cut rule

can be eliminated from any proof is of practical and theoretical importance and we
easily obtain a number of significant results about our logics. This also holds in our
setting.

Theorem 50 (Conservativity). If C ⊆ C′ ⊆ C then the logic (SC′ ,MC′ , ) is a
conservative extension of the logic (SC,MC, ).
Proof: It is standard because our calculi have the subformula property. See for
example [39] for details. ◻
Theorem 51 (Soundness and strong completeness). Let C ⊆ C. The calculus GGLC
is sound and strongly complete for the Boolean basic gaggle logic (SC,MC, ).
Proof: Since any proof of a consecution ϕ ψ ∈ SC can be cut–free and our
calculus has the subformula property, it contains only the introduction rules (⊢ ⊛)
for the connectives of C. (The introduction rules for the other connectives ofO(C) − C were needed in the initial completeness proof before the cut elimination
theorem for Lemma 68.) ◻
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The difference between the above theorem and Theorem 45 is that the set of
connectives C considered is not assumed to be such that C = O(C) (we recall thatO(C) is defined by Expression (4)). Thanks to cut–elimination, the completeness
result also holds if we do not have equality. This said, all connectives of O(C) do
appear in the calculus, but only as structural connectives.

9 Calculi for gaggle logics
Until now, our calculi are sound and complete for logics including the Boolean
connectives. However, we would like to obtain calculi for plain gaggle logics, without
Boolean connectives. Indeed, we consider the latter to be more primitive than
Boolean gaggle logics because even the Boolean connectives can be seen as particular
gaggle connectives, interpreted over special relations (identity relations, see Example
26). These special relations are obtained at the proof-theroretical level by imposing
the validity of Gentzen’s structural rules. So, in this section, we are going to define
sound and complete calculi for (plain) gaggle logics, without Boolean connectives.

Definition 52. Let C ⊆ C. We denote by GGL0
C the calculus of Figure 14 where the

introduction rules (⊢ ⊛) and (⊛ ⊢) are defined for the connectives ⊛ of C and where
the rule (dr1) is defined for the elements τ of an arbitrary set of generators of Sn+1
(for each n ranging over the arities of the connectives of C).

Note that (dr′2) (introduced in Proposition 46) is in GGL0
C instantiated with gag-

gle connectives. More precisely, in GGL0
C, an application of (dr′2) is of the following

form:

[⊛] (X1, . . . ,Xm) [⊛′] (X ′
1, . . . ,X

′
n)[−⊛′] (X ′

1, . . . ,X
′
n) [−⊛] (X1, . . . ,Xm)

⊛(ϕ1, . . . , ϕm) ⊛′ (ϕ′1, . . . , ϕ′n)∗ ⊛′ (ϕ′1, . . . , ϕ′n) ∗ ⊛(ϕ1, . . . , ϕm)
An equivalent axiomatization of GGL0

C is obtained if we replace rule (dr′2) by the
switch rule (swj) of Proposition 46, for each j ∈ J1;nK:

S([⊛] ,X1, . . . ,Xj , . . . ,Xn,X)
S([sj⊛] ,X1, . . . ,∗Xj , . . . ,Xn,X) (swj)

.

This is due to the fact that the switch rule is derivable in GGL0
C and, vice versa,(dr′2) is derivable from the switch rule and (dr1) thanks to Proposition 30.

The main difference between GGLC and GGL0
C lies in the fact that the introduction

rules for the Boolean connectives have been removed as well as the structural rules.
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Display rules:

S ([⊛] ,X1, . . . ,Xn,Xn+1)
S ([τ⊛] ,Xτ(1), . . . ,Xτ(n),Xτ(n+1)) (dr1) X Y

∗Y ∗X (dr′2)
Introduction rules:

U1 V1 . . . Un Vn

S ([⊛] ,X1, . . . ,Xn,⊛ (ϕ1, . . . , ϕn)) (⊢ ⊛) S ([⊛] , ϕ1, . . . , ϕn, U)
S (⊛, ϕ1, . . . , ϕn, U) (⊛ ⊢)

In rules (⊢ ⊛) and (⊛ ⊢), for all ⊛ = (σ,±, (Æ, (±1, . . . ,±n))) ∈ C:

● for all j ∈ J1;nK, we set Uj Vj ≜ ⎧⎪⎪⎨⎪⎪⎩
Xj ϕj if ±j ± (Æ) = −
ϕj Xj if ±j ± (Æ) = +

such that, in rule (⊢ ⊛), for all j Xj is not empty and with the convention
that if ϕj is empty for some j then ⊛(ϕ1, . . . , ϕn) is also empty.

● for all ⋆ ∈ {⊛, [⊛]}, S(⋆,X1, . . . ,Xn,X) ≜ ⎧⎪⎪⎨⎪⎪⎩
⋆(X1, . . . ,Xn) X if Æ = ∃
X ⋆ (X1, . . . ,Xn) if Æ = ∀.

Figure 14: Calculus GGL0
C

Theorem 53 (Soundness and strong completeness). Let C ⊆ C. The calculus GGL0
C

is sound and strongly complete for the basic gaggle logic (S0
C,MC, ).

Proof: See the Appendix, Section C. ◻
Goré [21] introduces a calculus δOP which is basically our calculus GGL0

C without
the rule (dr′2). Restall [41] establishes connections between gaggle theory and dis-
play logics and sketches a similar calculus (without proving condition (C8)). This
difference between our and their calculi is due to the fact that they do not deal
with Boolean negation and do not consider it in their approach and framework.
As one can notice, this complicates the proofs tremendously even if the addition
in the calculi is minimal. This said, Goré [21] recognizes the dual character, in a
proof–theoretical sense, of pairs of traces which are obtained from each other by
multiplying every argument of the trace by −. This leads him to introduce the func-
tion/connective f∆ of trace −t associated to a function f of trace t. However, he
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does not make the connection between this function/connective f∆ and the Boolean
negation of f as we do (see Definition 20 and Proposition 29). Therefore, he proves
the soundness and completeness of his calculus but with respect to two distinct yet
dual semantics based on Dunn’s tonoids. As such, he does not connect his algebraic
semantics with the Kripke–style relational semantics (elicited by Dunn) explicitly as
we do. A similar observation regarding the role of Boolean negation in his and our
work was already made in [2].

Theorem 54 (Decidability). Let C ⊆ C and let ϕ,ψ ∈ L0
C. The problem of deter-

mining whether ϕ or ϕ ψ are valid in the logics (L0
C,MC, ) and (S0

C,MC, )
(respectively) is decidable.

Proof: It suffices to observe that the set of consecutions that can lead to a
cut-free proof of ϕ ψ in GGL0

C is finite. The problem of finding a proof of ϕ ψ
thus boils down to a graph reachability problem in a finite graph whose edges
are labeled by the rules. This problem is decidable. We then obtain the result
by the completeness of GGL0

C for (L0
C,MC, ) and (S0

C,MC, ) of Theorem 53. ◻

10 Logics defining groups and groups defining logics
In this section, we are going to show how notions of groups arise naturally from our
gaggle logics and how gaggle logics can be canonically defined from groups thanks
to our connections with group theory.

10.1 Groups defined from logics

One problem solved in this article is the following: given an arbitrary basic gaggle
logic (Boolean or not) defined by a set C of (gaggle) connectives, how do we compute
and define uniformly a sound and complete calculus for that logic ? Theorems 51
and 53 of the previous sections have solved it. However, we needed in our calculi
to introduce all connectives of O(C) (defined by Expression (4)) either as logical
connectives in Theorem 45 or as structural connectives in Theorems 51 and 53. In
this section, we are going to show that we can in fact limit further the connectives
considered and not take the full orbits O(C) of C under the action αn∗βn. For that,
we need to explore a bit more the proof–theoretical aspects of our gaggle logics in
light of our connections with group theory.

We have introduced actions on the set of gaggle connectives. Even if we know
how a permutation, the Boolean negation and their combinations act on connectives,
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S ([⊛] ,X1, . . . ,Xn,Xn+1)
S ([τ⊛] ,±1Xτ(1), . . . ,±nXτ(n),±n+1Xτ(n+1)) (dr3)

where τ ∈Sn+1 ∗ P(+,−) and
if τ = τ0 − τ1 . . . − τm with m ≥ 1 then τ ≜ τ0τ1 . . . τm and for all j ∈ J1;n + 1K,

±j ≜ ±j1 ±j2 . . .±jm with, for all i ∈ J1;mK, ±ji ≜
⎧⎪⎪⎨⎪⎪⎩
∗ if j = τiτi+1 . . . τm(n + 1)
empty otherwise

;

if τ = τ0 − τ1 . . . − τm−1− with m ≥ 1 then replace τ with τ0 − τ1 . . . − τm−1 − 1;
if τ = −τ1 . . . − τm−1 − τm with m ≥ 1 then replace τ with 1 − τ1 . . . − τm−1 − τm;
if τ ∈Sn+1 then τ ≜ τ and ±1, . . . ,±n+1 are empty;
if τ = − then τ = 1 and ±1, . . . ,±n are empty and ±n+1 = −.

Figure 15: Rule (dr3)
we still do not know how their combination and iteration operate at the proof–
theoretical level. Indeed, we have a rule (dr1) for permutations τ1, . . . , τn and a rule(dr′2) for Boolean negation −, yet we do not have a rule combining both, for elements
τ0 − τ1 . . . − τm of the free group Sn+1 ∗ P(+,−). Such a rule is defined in Figure 15.
One can easily prove that rule (dr3) is valid and derives from (dr1) and (dr′2) in
GGL0

C. Conversely, with τ ∈ Sn+1, we recover rule (dr1) and with τ = − we recover
rule (dr′2). (The term “empty” could be replaced by ∗∗.)

Now, let us be given a set of connectives C ⊆ C and assume without loss of
generality that all connectives of C belong to the same orbit O(C) = Oαn∗βn(⊛) (for
some ⊛ ∈ C). What we would want in (dr1) is to be able to ‘go’ from one connective⊛ of C to an arbitrary other connective ⊛′ of C. By transitivity of the action αn∗βn,
this is possible in O(C): given any two connectives ⊛,⊛′ ∈ C, there is an element
of the group g ∈ Sn+1 ∗ P(+,−) such that ⊛′ = αn ∗ βn(g,⊛). This leads us to define
a special subset G of Sn+1 ∗ P(+,−) such that for all ⊛,⊛′ ∈ C there is g ∈ G such
that ⊛′ = αn ∗ βn(g,⊛). We want this set G to be a group. Indeed, informally, its
composition operation should be associative, because of the definition of an action
group, and every element g of G should have an inverse: if ⊛′ = αn ∗ βn(g,⊛) then
there should be a g−1 such that ⊛ = αn ∗ βn(g−1,⊛′). This leads us to the following
definition:
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Definition 55 (Group associated to a set of connectives). Let C ⊆ C. A group
associated to C is a group G such that for all n ∈ N∗, all ⊛,⊛′ ∈ C∩Cn, there is g ∈ G
such that ⊛′ = αn ∗ βn(g,⊛).

Implicitly, note that G ⊆ ⋃
n∈N{Sn+1 ∗ P(+,−) ∣ a(⊛) = n,⊛ ∈ C}. A group

associated to a set of connectives always exists because the free group
⟨ ⋃
n∈N∗ {g ∈Sn+1 ∗ P(+,−) ∣ ⊛′ = g ⊛′ for some ⊛,⊛′ ∈ C ∩Cn}⟩ satisfies the required
condition. It is not in general unique because the action αn ∗ βn is not faithful:
we proved in Proposition 32 (item 1) that −rj − rj − rj − rj⊛ = ⊛.
Definition 56. Let C ⊆ C and let G be a group associated to C. We denote by GL0

C,G
(resp. GLC,G) the calculus of Figure 14 (resp. Figure 13) where the introduction rules(⊢ ⊛) and (⊛ ⊢) are defined for the connectives ⊛ of C and where rules (dr1) and(dr′2) (resp. only (dr1)) are replaced by rule (dr3) which is defined for elements τ
belonging to a set of generators of the group G.

Theorem 57 (Soundness and strong completeness). Let C ⊆ C and let G be a group
associated to C. The calculus GL0

C,G (GLC,G) is sound and strongly complete for the
(Boolean) basic gaggle logic (S0

C,MC, ) (resp. (SC,MC, )).
Proof: See the Appendix, Section C. ◻
Example 58. The symmetric group S3 is a group associated to the connectives
of the Lambek calculus [30] and update logic [2]. However, there is a simpler and
smaller group associated. Indeed, the alternating group U3, generated by the 3–cycle(123) (or (132) = (123) ○ (123), see Section 3) is another group associated to the
connectives of the Lambek calculus and update logic. This confirms an observation
already made in [2] about the central role played by ternary cycles in update logic
and substructural logics in general. The free group U3 ∗P(+,−) is a group associated
to the connectives of dual update logic [2], because the dual connectives of dual
update logic are definable from the connectives of update logic thanks to Boolean
negation (see [2, Proposition 16]).

10.2 Logics defined from groups
According to Cayley’s theorem, every finite group of cardinal n + 1 is isomorphic to
a subgroup of the symmetric group Sn+1. Now, the restriction of the action αn to
any subgroup G of Sn+1 is also an action of G on Cn. Therefore, every finite group
G of cardinal n + 1 induces a canonical group action α of G on Cn defined for all
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g ∈ G and ⊛ ∈ Cn by α(g,⊛) = αn(ϕ(g),⊛), where ϕ is an isomorphism between G
and the subgroup of Sn+1. Every finite group therefore defines a set of connectives
obtained by considering the orbit of an arbitrary connective ⊛ ∈ C by this canonical
group action α. In other words, every finite group defines a class of logics. These
logics provide a certain perspective on the whole set of gaggle connectives.

11 Conclusion

In this article we have introduced a uniform method to automatically compute sound
and strongly complete calculi for a wide class of non–classical logics, basic gaggle
logics. These calculi are display calculi and enjoy the cut elimination. This allowed
us to prove in particular that basic gaggle logics are decidable. We further restrained
the structural connectives needed in our calculi by introducing the notion of group
associated to a set of connectives. We also established connections between gaggle
theory and group theory. We showed that Dunn’s abstract law of residuation cor-
responds to an action of transpositions of the symmetric group on the set of gaggle
connectives and that Dunn’s families of connectives are orbits of the same action of
the symmetric group. Other operations on connectives, such as dual and Boolean
negation, were also reformulated in terms of actions of groups and their combination
was defined by means of free groups and free products.

Based on our connection with group theory, we argued that there are more ‘basic’
operations on connectives than Dunn’s abstract law of residuation, based on cycles of
the symmetric group rather than transpositions (which are cycles anyway), because
every permutation factorizes uniquely into disjoint cycles. Residuation is still central
because it corresponds to the action of transpositions of the symmetric group and
transpositions generate it as well. Yet, there are many other generators and ways to
present and represent the symmetric groups and its subgroups. What really matters
from a proof-theoretical perspective is the set of generators of the groups that we
consider and how groups can be presented. That is why the results in group theory
regarding the presentation and classification of finite groups have now become quite
relevant for the study of various (gaggle) logics.

Our connections with the theory of groups enable to study the structure of gaggle
connectives in a very modular and systematic way, using bridges from algebra such
as Cayley’s theorem. Thanks to this bridge, each finite group can be seen as a set of
operations acting on the set of connectives. Hence, each group generates and defines
gaggle logics. Thus, the structure of the gaggle connectives can be studied under
a variety of different viewpoints by means of different logics that correspond to the
wide range of finite groups that can act on the connectives. This is similar to what
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happens in mathematics where the structure of (vectorial, Euclidean, etc.) spaces
can be studied by different geometries corresponding to different groups of trans-
formation acting on it: Euclidean geometry with the isometric group, hyperbolic
geometry with the Lorentz group, affine geometry with the affine group, etc.
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A Proofs of propositions 30, 32 and 46

Proposition 30. If ⊛ ∈ Cn is a n–ary connective, then for all j ∈ J1;nK,

• sj⊛ = rj − rj⊛
• dj⊛ = rj − rj − ⊛
• d⊛ = s1 . . . sn − ⊛.

Proof: Let ⊛ = (σ,±, (Æ, (±1, . . . ,±n))) ∈ Cn. Then,
rj⊛ =(σ,− ±j ±, (− ±j Æ, (− ±j ±1, . . . ,±j , . . . ,− ±j ±n)))−rj⊛ =(σ,±j±, (±jÆ, (±j±1, . . . ,−±j , . . . ,±j±n)))

rj − rj⊛ =(σ,±, (Æ, (±1, . . . ,−±j , . . . ,±n)))
Moreover,

−⊛ =(σ,−±, (−Æ, (−±1, . . . ,−±n)))
rj − ⊛ =((j n + 1) ○ σ,− ±j ±, (− ±j Æ, (− ±j ±1, . . . ,−±j , . . . ,− ±j ±n)))−rj − ⊛ =((j n + 1) ○ σ, (±j±, (±jÆ, (±j±1, . . . ,±j , . . . ,±j±n))))

rj − rj − ⊛ =(σ,−±, (−Æ, (−±1, . . . ,±j , . . . ,−±n)))
◻

Proposition 32. Let n ∈ N∗, j ∈ J1;nK and let us define Gj = ⟨rj⟩∗P(+,−). Since Gj
is a subgroup of Sn+1 ∗P(+,−), let us denote by αGj the action of Gj on Cn induced
by the free action αn ∗ βn. Then, for all connectives ⊛ of arity n,

1. OαGj (⊛) is isomorphic to a cyclic group of order 8.

2. {Oαn∗βn (⊛) ,Oαn∗βn (∼ ⊛)} forms a partition of the set Cn of connectives of
arity n. Moreover, the mapping ∼⋅ ∶ Oαn∗βn(⊛) → Oαn∗βn(∼ ⊛), x ↦∼ x is
involutive.

3. For all n ∈ N∗, the free action αn ∗ βn ∗ γn on the set of connectives Cn is
transitive.
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Proof: For the first item, it suffices to prove that for all connectives ⊛ of arity n
and all j ∈ J1;nK, −rj − rj − rj − rj⊛ = ⊛. Let ⊛ = (σ,±, (Æ, (±1, . . . ,±n))) and let rj
be the transposition (j n + 1). (See also Figure 2 for an example.)

⊛ = (σ,±, (Æ, (±1, . . . ,±j , . . . ,±n)))
rj⊛ = (rj ○ σ,− ±j ±, (− ±j Æ, (− ±j ±1, . . . ,±j , . . . ,− ±j ±n)))−rj⊛ = (rj ○ σ,±j±, (±jÆ, (±j±1, . . . ,−±j , . . . ,±j±n)))

rj − rj⊛ = (σ,±, (Æ, (±1, . . . ,−±j , . . . ,±n)))−rj − rj⊛ = (σ,−±, (−Æ, (−±1, . . . ,±j , . . . ,−±n)))
rj − rj − rj⊛ = (rj ○ σ,±j±, (±jÆ, (±j±1, . . . ,±j , . . . ,±j±n)))−rj − rj − rj⊛ = (rj ○ σ,− ±j ±, (− ±j Æ, (− ±j ±1, . . . ,−±j , . . . ,− ±j ±n)))

rj − rj − rj − rj⊛ = (σ,−±, (−Æ, (−±1, . . . ,−±j , . . . ,−±n)))−rj − rj − rj − rj⊛ = (σ,±, (Æ, (±1, . . . ,±j , . . . ,±n))) = ⊛.
For the second item, one should first observe that Oαn∗βn (⊛)∩Oαn∗βn (∼ ⊛) = ∅(∗). Indeed, for all ⊛′ = (σ′,±′, (Æ′, (±′1, . . . ,±′n))) ∈ Oαn∗βn (⊛), we have that±′ ± (Æ′) = ± ± (Æ) but at the same time, for all ⊛′ = (σ′,±′, (Æ′, (±′1, . . . ,±′n))) ∈Oαn∗βn (∼ ⊛), we also have that ±′ ± (Æ′) = − ± ±(Æ). Now, we prove that for all⊛′ = (σ′,±′, (Æ′, (±′1, . . . ,±′n))), if ±′ ± (Æ′) = ± ± (Æ) then ⊛′ ∈ Oαn∗βn(⊛), and⊛′ ∈ Oαn∗βn(∼ ⊛) otherwise. First, assume that ±′ ± (Æ′) = ± ± (Æ). Then, we

define ⊛′′ = σσ
′−⊛′. So, ⊛′′ = (σ,±′′, (Æ′′, (±′′1 , . . . ,±′′n))) and we still have that±′′ ± (Æ′′) = ±′ ± (Æ′) = ± ± (Æ). If ±′′ = ±, then it only suffices to switch the

tonicity of the arguments j1, . . . , jk of ⊛′′ such that ±′′j ≠ ±j . This can be done by
applying the switch operation for the arguments j1, . . . , jk to ⊛′′. We then obtain
that sj1sj2 . . . sjk⊛′′ = ⊛. Thus, sj1sj2 . . . sjkσσ

′−⊛′ = ⊛. Second, assume that ±′ ±(Æ′) = −±±(Æ). Then, we define ⊛′′ =∼ ⊛ = (σ′,±′, (Æ′′, (±′1, . . . ,±′n))) and we have
that ±′±(Æ′′) = ±′(−±(Æ′)) = ±±(Æ). So, we proceed like in the first case. We then
obtain that there are i1, . . . , il ∈ J1;nK such that si1si2 . . . silσσ

′− ∼ ⊛′ = ⊛. So, we
have proved that for all ⊛′ = (σ′,±′, (Æ′, (±′1, . . . ,±′n))), it holds that ⊛′ ∈ Oαn∗βn(⊛)
iff ±′±(Æ′) = ±±(Æ). This entails that ∣Oαn∗βn(⊛)∣ = ∣Oαn∗βn(∼ ⊛)∣ = (n+1)! ⋅2n+1 =∣Cn∣

2 . Therefore, Oαn∗βn(⊛)∪Oαn∗βn(∼ ⊛) = Cn and together with (*), we have that{Oαn∗βn(⊛),Oαn∗βn(∼ ⊛)} forms a partition of Cn.
The third item follows easily from the second item. ◻

Proposition 46. Let C ⊆ C and let ⊛ ∈ C be a n-ary connective. The following rules
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are all derivable in GGLC.

X Y

∗Y ∗X (dr′2) S([⊛] ,X1, . . . ,Xj , . . . ,Xn,X)
S([sj⊛] ,X1, . . . ,∗Xj , . . . ,Xn,X) (swj)

∗X Y

∗Y X
(dr′′2) X ∗ Y

Y ∗X (dr′′′2 )
U ((X , Y ) , Z)
U (X , (Y , Z)) (⊢ B) U (X , Y )

U (Y , X) (⊢ CI)
U X

U (X , Y ) (⊢ K) U (X , X)
U X

(⊢WI)
U ϕ U ψ

U (ϕ ∧ ψ) (⊢ ∧)′ ϕ U ψ U(ϕ ∨ ψ) U
(∨ ⊢)′

The rule (dr′2) is called the Boolean negation rule and the rule (swj), for j ∈ J1;nK,
is called the switch rule w.r.t. the jth argument. The rule (dr1) is also derivable in
GGLC, for all τ ∈Sn+1.

Proof:

(dr′2) ∶ (dr′′2) ∶ (dr′′′2 ) ∶
X Y

(X , ∗Y ) (dr2)
(∗Y , X) (CI ⊢)
∗Y ∗X (dr2)

∗X Y(∗X , ∗Y ) (dr2)
(∗Y , ∗X) (CI ⊢)
∗Y X

(dr2)
X ∗ Y(X , Y ) (dr2)

(Y , X) (CI ⊢)
Y ∗X (dr2)

(swj) ∶ (⊢ K) ∶
S(⊛,X1, . . . ,Xj , . . . ,Xn,X)
S(rj⊛,X1, . . . ,X, . . . ,Xn,Xj) (dr1)
S(−rj⊛,X1, . . . ,X, . . . ,Xn,∗Xj) (dr′2)

S(rj − rj⊛,X1, . . . ,∗Xj , . . . ,Xn,X) (dr1)
S(sj⊛,X1, . . . ,∗Xj , . . . ,Xn,X) Rewrite

U X∗X ∗U (dr′2)
(∗X , ∗Y ) ∗U (K ⊢)
U ∗ (∗X , ∗Y ) (dr′′′2 )
U (X , Y ) Rewrite
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(⊢ CI) ∶ (⊢ B) ∶
U (X , Y )(U , ∗(X , Y )) (dr2))(U , (∗X , ∗Y )) Rewrite

((∗X , ∗Y ) , U) (CI ⊢)
(∗X , ∗Y ) ∗U (dr2)
(∗Y , ∗X) ∗U (CI ⊢)

((∗Y , ∗X) , U) (dr2)
(U , (∗Y , ∗X)) (CI ⊢)
U ∗ (∗Y , ∗X) (dr2)
U (Y , X) Rewrite

U ((X , Y ) , Z)∗((X , Y ) , Z) ∗U (dr′2)
((∗X , ∗Y ) , ∗Z) ∗U Rewrite

(∗X , (∗Y , ∗Z)) ∗U (B ⊢)
U ∗ (∗X , (∗Y , ∗Z)) (dr′2)

U (X , (Y , Z)) Rewrite

(⊢WI) ∶ (⊢ ∧)′ ∶ (∨ ⊢)′ ∶
U (X , X)(∗X , ∗X) ∗U (dr′2)
∗X ∗U (WI ⊢)
U X

(dr′2)
U ϕ U ψ(U , U) (ϕ ∧ ψ) (⊢ ∧)
U (ϕ ∧ ψ) (WI ⊢)

ϕ U ψ U(ϕ ∨ ψ) (U , U) (∨ ⊢)
(ϕ ∨ ψ) U

(⊢WI)
The last rewriting part in the proof of (swj) is due to Proposition 30. ◻

B Proof of theorem 45
Theorem 45 (Soundness and strong completeness). Let C ⊆ C be such that O(C) =
C. The calculus GGLC is sound and strongly complete for the Boolean basic gaggle
logic (SC,MC, ).

In this section, C ⊆ C is such that O(C) = C. We provide the soundness and
completeness proofs of Theorem 45. We adapt the proof methods introduced in [2],
based on a Henkin construction, to our more abstract and general setting. We start
by the soundness proof.

Lemma 59. The calculus GGLC is sound for the Boolean basic gaggle logic(SC,MC, ).
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Proof: We only need to prove the soundness for the rules (dr1) and (⊢ ⊛), the
soundness of the other rules being standard. The soundness of the inference rule(⊢ ⊛) follows directly from item 1 of Theorem 10, the soundness of rule (dr1)
follows from an iterative application of item 2 of Theorem 10 (or Proposition 27)
by the decomposition of permutations into cycles or transpositions. ◻

The completeness proof uses a canonical model built up from maximal GGLC–
consistent sets. First, we define the notions of GGLC–consistent set and maximal
GGLC–consistent set. In the sequel, by abuse of notation and to ease the presentation,
when we write ϕ ψ we mean that ϕ ψ is provable in the calculus GGLC.
Definition 60 ((Maximal) GGLC–consistent set).

• A GGLC–consistent set is a subset Γ of LC such that there are no ϕ1, . . . , ϕn ∈ Γ
such that ϕ1 , . . . , ϕn . If ϕ ∈ LC, we also say that ϕ is GGLC–consistent
when the set {ϕ} is GGLC–consistent.

• A maximal GGLC–consistent set is a GGLC–consistent set Γ of LC such that
there is no ϕ ∈ LC satisfying both ϕ ∉ Γ and Γ ∪ {ϕ} is GGLC–consistent.

Lemma 61 (Cut lemma). Let Γ be a maximal GGLC–consistent set. For all
ϕ1, . . . , ϕn ∈ Γ and all ϕ ∈ L, if ϕ1 , . . . , ϕn ϕ then ϕ ∈ Γ.
Proof: First, we show that Γ ∪ {ϕ} is GGLC–consistent. Assume towards a
contradiction that it is not the case. Then, there are ψ1, . . . , ψm ∈ Γ such that
ψ1 , . . . , ψm , ϕ . Then, by the rules (dr2) and (CI ⊢), we have that
ϕ ∗ (ψ1 , . . . , ψm). Now, by assumption, ϕ1 , . . . , ϕn ϕ. Therefore, by
the cut rule, we have that ϕ1 , . . . , ϕn ∗ (ψ1 , . . . , ψm). Then, by the
rules (dr2) and (B ⊢), we have that ϕ1 , . . . , ϕn , ψ1 , . . . , ψm . However,
ϕ1, . . . , ϕn, ψ1, . . . , ψm ∈ Γ. This entails that Γ is not GGLC–consistent, which
is impossible. Thus, Γ ∪ {ϕ} is GGLC–consistent. Now, since Γ is a maximal
GGLC–consistent set, this implies that ϕ ∈ Γ. ◻
Lemma 62 (Lindenbaum lemma). Any GGLC–consistent set can be extended into
a maximal GGLC–consistent set.
Proof: Let ϕ1, ϕ2, . . . , ϕn, . . . be an enumeration of LC (it exists because C is count-
able). We define the sets Γn inductively as follows:

Γ0 ≜ Γ

Γn+1 ≜ ⎧⎪⎪⎨⎪⎪⎩
Γn ∪ {ϕn} if Γn ∪ {ϕn} is GGLC–consistent
Γn otherwise.
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Then, we define the subset Γ+ of L as follows: Γ+ = ⋃
n∈NΓn.

We show that Γ+ is a maximal GGLC–consistent set. Clearly, for all n ∈ N, Γn
is GGLC–consistent by definition of Γn. So, if Γ+ was not GGLC–consistent, there
would be a n0 ∈ N such that Γn0 is not GGLC–consistent, which is impossible. Now,
assume towards a contradiction that Γ+ is not a maximal GGLC–consistent set.
Then, there is ϕ ∈ LC such that ϕ ∉ Γ+ and Γ ∪ {ϕ} is GGLC–consistent. But there
is n0 ∈ N such that ϕ = ϕn0 . Because ϕ ∉ Γ+, we also have that ϕn0 ∉ Γn0+1. So,
Γn0 ∪ {ϕn0} is not GGLC–consistent by definition of Γ+. Therefore, Γ+ ∪ {ϕ} is not
GGLC–consistent either, which is impossible. ◻

Lemma 63. The following consecutions are provable in GGL: for all ϕ,ϕ′ ∈ L, all⊛ = (σ,±, (∃, (±1, . . . ,±j , . . . ,±n))),

ϕ ϕ (8)((ϕ ∨ ϕ′) ∧ (ϕ ∨ ¬ϕ′)) ϕ (9)
ϕ ((ϕ ∧ ¬ϕ′) ∨ (ϕ ∧ ϕ′)) (10)

if ±j = + then⊛(ϕ1, . . . , ϕj ∨ ϕ′j , . . . , ϕn) (⊛(ϕ1, . . . , ϕj , . . . , ϕn) ∨ ⊛(ϕ1, . . . , ϕ
′
j , . . . , ϕn)) (11)

if ±j = − then⊛(ϕ1, . . . , ϕj ∧ ϕ′j , . . . , ϕn) (⊛(ϕ1, . . . , ϕj , . . . , ϕn) ∨ ⊛(ϕ1, . . . , ϕ
′
j , . . . , ϕn)) (12)

(ϕ , ¬ψ) iff ϕ ψ (13)

Proof: The proof of Expression (8) is by induction on ϕ. The proof of Expression
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(9) is:

ϕ ϕ

ϕ (ϕ , ∗(ϕ ∨ ¬ϕ′)) K ,

ϕ ϕ

ϕ (ϕ , ∗ϕ′) K ,

ϕ′ ϕ′∗ϕ′ ∗ ϕ′ (dr2) , (dr2)
¬ϕ′ ∗ ϕ′ (¬ ⊢)

¬ϕ′ (ϕ , ∗ϕ′) (⊢ CI) ,K ,

(ϕ ∨ ¬ϕ′) (ϕ , ∗ϕ′) (∨ ⊢)′
((ϕ ∨ ¬ϕ′) , ϕ′) ϕ

(dr2)
(ϕ′ , (ϕ ∨ ¬ϕ′)) ϕ

(CI ⊢)
ϕ′ (ϕ , ∗(ϕ ∨ ¬ϕ′)) (dr2)

(ϕ ∨ ϕ′) (ϕ , ∗(ϕ ∨ ¬ϕ′)) (∨ ⊢)′
((ϕ ∨ ϕ′) , (ϕ ∨ ¬ϕ′)) ϕ

(dr2)
((ϕ ∨ ϕ′) ∧ (ϕ ∨ ¬ϕ′)) ϕ

(∧ ⊢)
and the proof of Expression (10) is:

ϕ ϕ(ϕ , ∗(ϕ ∧ ¬ϕ′)) ϕ
(K ⊢)

(ϕ ϕ)(ϕ , ∗ϕ′) ϕ
(K ⊢)

ϕ′ ϕ′∗ϕ′ ∗ ϕ′ (dr2) , (dr2)
∗ϕ′ ¬ϕ′ (⊢ ¬)

(ϕ , ∗ϕ′) ¬ϕ′ (CI ⊢) , (K ⊢)
(ϕ , ∗ϕ′) (ϕ ∧ ¬ϕ′) (⊢ ∧)′
(ϕ , ∗(ϕ ∧ ¬ϕ′)) ϕ′ (dr2)

(ϕ , ∗(ϕ ∧ ¬ϕ′)) (ϕ ∧ ϕ′) (K ⊢)
ϕ ((ϕ ∧ ¬ϕ′) , (ϕ ∧ ϕ′)) (dr2)
ϕ ((ϕ ∧ ¬ϕ′) ∨ (ϕ ∧ ϕ′)) (⊢ ∨)

Proof of Expression (11). Assume that ±j = +. Then,
[⊛] (ϕ1, . . . , ϕn) ⊛ (ϕ1, . . . , ϕn)[⊛] (ϕ1, . . . , ϕn) (⊛(ϕ1, . . . , ϕj , . . . , ϕn) , ⊛(ϕ1, . . . , ϕ

′
j , . . . , ϕn)) (⊢ K)

[⊛] (ϕ1, . . . , ϕn) (⊛(ϕ1, . . . , ϕj , . . . , ϕn) ∨ ⊛(ϕ1, . . . , ϕ
′
j , . . . , ϕn)) (⊢ ∨)

ϕj [τj⊛] (ϕ1, . . . , (⊛(ϕ1, . . . , ϕj , . . . , ϕn) ∨ ⊛(ϕ1, . . . , ϕ
′
j , . . . , ϕn)), . . . , ϕn) (dr1)

Likewise, we prove that:
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ϕ′j [τj⊛] (ϕ1, . . . ,⊛(ϕ1, . . . , ϕj , . . . , ϕn) ∨ ⊛(ϕ1, . . . , ϕ
′
j , . . . , ϕn), . . . , ϕn).

So, by (∨ ⊢)′, we obtain that:

ϕj ∨ ϕ′j [τj⊛] (ϕ1, . . . ,⊛(ϕ1, . . . , ϕj , . . . , ϕn) ∨ ⊛(ϕ1, . . . , ϕ
′
j , . . . , ϕn), . . . , ϕn).

Thus, by (dr1) and (⊛ ⊢), we obtain that:

⊛(ϕ1, . . . , ϕj ∨ ϕ′j , . . . , ϕn) ⊛ (ϕ1, . . . , ϕj , . . . , ϕn) ∨ ⊛(ϕ1, . . . , ϕ
′
j , . . . , ϕn).

Proof of Expression (12). Assume that ±j = −. Then,
[⊛] (ϕ1, . . . , ϕn) ⊛ (ϕ1, . . . , ϕn)[⊛] (ϕ1, . . . , ϕn) (⊛(ϕ1, . . . , ϕj , . . . , ϕn) , ⊛(ϕ1, . . . , ϕ

′
j , . . . , ϕn)) (⊢ K)

[⊛] (ϕ1, . . . , ϕn) (⊛(ϕ1, . . . , ϕj , . . . , ϕn) ∨ ⊛(ϕ1, . . . , ϕ
′
j , . . . , ϕn)) (⊢ ∨)

[τj⊛] (ϕ1, . . . , (⊛(ϕ1, . . . , ϕj , . . . , ϕn) ∨ ⊛(ϕ1, . . . , ϕ
′
j , . . . , ϕn)), . . . , ϕn) ϕj

(dr1)
Likewise, we prove that:

[τj⊛] (ϕ1, . . . , (⊛(ϕ1, . . . , ϕj , . . . , ϕn) ∨ ⊛(ϕ1, . . . , ϕ
′
j , . . . , ϕn)), . . . , ϕn) ϕ′j .

So, by (⊢ ∧)′, we obtain that:

[τj⊛] (ϕ1, . . . , (⊛(ϕ1, . . . , ϕj , . . . , ϕn) ∨ ⊛(ϕ1, . . . , ϕ
′
j , . . . , ϕn)), . . . , ϕn) ϕj ∧ ϕ′j .

Thus, by (dr1) and (⊛ ⊢), we obtain that:

⊛(ϕ1, . . . , ϕj ∧ ϕ′j , . . . , ϕn) (⊛(ϕ1, . . . , ϕj , . . . , ϕn) ∨ ⊛(ϕ1, . . . , ϕ
′
j , . . . , ϕn)).

Proof of Expression (13):
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ϕ ψ∗ψ ∗ ϕ (dr′2)
¬ψ ∗ ϕ (¬ ⊢)

(¬ψ , ϕ) (dr2)
(ϕ , ¬ψ) (CI ⊢)

ϕ , ¬ψ
ϕ ∗ ¬ψ (dr2)
ϕ ¬¬ψ (¬ ⊢)

ψ ψ∗ψ ∗ ψ (dr′2)
∗ψ ¬ψ (⊢ ¬)
∗¬ψ ψ

(dr′′2)
¬¬ψ ψ

(¬ ⊢)
ϕ ψ

cut

◻
Lemma 64. Let ⊛(ϕ1, . . . , ϕn) ∈ L with ⊛ = (σ,±, (∃, (±1, . . . ,±n))). If⊛(ϕ1, . . . , ϕn) is GGLC–consistent then ±1ϕ1, . . . ,±nϕn are GGLC–consistent, where

±jϕj ≜ ⎧⎪⎪⎨⎪⎪⎩
ϕj if ±j = +¬ϕj if ±j = − .

Proof: We prove it by contraposition. If ±jϕj is GGLC–inconsistent then ±jϕj .
If ±j = + then ϕj . If ±j = − then ¬ϕj and therefore ϕj by the cut rule
because ¬¬ϕj ϕj is provable. So, in both cases, applying Rule (⊢ ⊛), we obtain
that ⊛(ϕ1, . . . , ϕn) and thus ⊛(ϕ1, . . . , ϕn) is GGLC–inconsistent. ◻
Definition 65 (Canonical model). The canonical model is the tuple (W c,Rc) where
W c is the set of all maximal GGLC–consistent sets of LC and Rc is a set of relations
R⊛ over W c, associated to the connectives ⊛ ∈ C and defined by:

• if ⊛ = p then Γ ∈ R±
p iff p ∈ Γ (where p = (1,±,Æ));

• if ⊛ = (σ,±, (∃, (±1, . . . ,±n))) then (Γ1, . . . ,Γn+1) ∈ R±σ⊛ iff for all ϕ1, . . . , ϕn ∈LC, if ϕ1 ⋔ Γ1 and . . . and ϕn ⋔ Γn then ⊛(ϕ1, . . . , ϕn) ∈ Γn+1;

• if ⊛ = (σ,±, (∀, (±1, . . . ,±n))) then (Γ1, . . . ,Γn+1) ∉ R±σ⊛ iff for all ϕ1, . . . , ϕn ∈LC, if ⊛(ϕ1, . . . , ϕn) ∈ Γn+1 then ϕ1 ⋔ Γ1 or . . . or ϕn ⋔ Γn;

where for all j ∈ J1;nK, ϕj ⋔ Γj ≜ ⎧⎪⎪⎨⎪⎪⎩
ϕj ∈ Γj if ±j = +
ϕj ∉ Γj if ±j = − .

Lemma 66 (Truth lemma). For all ϕ ∈ L, for all maximal GGLC–consistent sets Γ,
we have that M c,Γ ϕ iff ϕ ∈ Γ.
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Proof: By induction on ϕ. The base case ϕ = p ∈ P holds trivially by definition of
M c.

● Case ¬ϕ.
Assume that ¬ϕ ∈ Γ and assume towards a contradiction that it is not the case

that M c,Γ ¬ϕ. Then, M c,Γ ϕ. So, by Induction Hypothesis, ϕ ∈ Γ. Now,
ϕ , ¬ϕ and ¬ϕ ∈ Γ by assumption. Thus, Γ is not GGLC–consistent, which is
impossible. Therefore, M c,Γ ¬ϕ.

Conversely, assume that M c,Γ ¬ϕ. Then, it is not the case that M c,Γ ϕ,
so, by Induction Hypothesis, ϕ ∉ Γ. Since Γ is a maximal GGLC–consistent set, this
implies that Γ ∪ {ϕ} is not GGLC–consistent. So, there are ϕ1, . . . , ϕn ∈ Γ such that
ϕ1 , . . . , ϕn , ϕ . Thus, ϕ1 , . . . , ϕn ∗ϕ and also by (⊢ ¬), ϕ1 , . . . , ϕn ¬ϕ.
Therefore, ¬ϕ ∈ Γ by the cut lemma.

● Case (ϕ ∨ ψ).
We prove the following fact. It will prove the induction step becauseM c,Γ ϕ∨

ψ iff M c,Γ ϕ or M c,Γ ψ iff ϕ ∈ Γ or ψ ∈ Γ by induction hypothesis.

Fact 67. For all maximal GGLC–consistent sets Γ, (ϕ ∨ ψ) ∈ Γ iff ϕ ∈ Γ or ψ ∈ Γ.

Without loss of generality, assume that ϕ ∈ Γ. Then, ϕ ϕ implies ϕ ϕ ∨ ψ
by K , and (⊢ ∨). So, by the cut lemma, (ϕ ∨ ψ) ∈ Γ since ϕ ∈ Γ. Conversely,
we prove that (ϕ ∨ ψ) ∈ Γ implies that ϕ ∈ Γ or ψ ∈ Γ. Assume that (ϕ ∨ ψ) ∈ Γ
and assume towards a contradiction that ϕ ∉ Γ and ψ ∉ Γ. Then, because Γ
is a maximal GGLC–consistent set, there are ϕ1, . . . , ϕm ∈ Γ and ψ1, . . . , ψn ∈ Γ
such that ϕ1 , . . . , ϕm , ϕ and ψ1 , . . . , ψn , ψ . Thus, by (K ⊢),(B ⊢) and (CI ⊢), we have that ϕ1 , . . . , ϕm , ψ1 , . . . , ψn , ϕ and
ϕ1 , . . . , ϕm , ψ1 , . . . , ψn , ψ . Then, by rule (dr2), we have that
ϕ ∗ (ϕ1 , . . . , ϕm , ψ1 , . . . , ψn) and ψ ∗ (ϕ1 , . . . , ϕm , ψ1 , . . . , ψn). So,
by rule (∨ ⊢)′, (ϕ∨ψ) ∗(ϕ1 , . . . , ϕm , ψ1 , . . . , ψn) and by rule (dr2) and (B ⊢),(ϕ∨ψ) , ϕ1 , . . . , ϕm , ψ1 , . . . , ψn . However, (ϕ∨ψ), ϕ1, . . . , ϕm, ψ1, . . . , ψn ∈ Γ.
Therefore, Γ is not GGLC–consistent, which is impossible. Thus, ϕ ∈ Γ or ψ ∈ Γ.

● Case (ϕ ∧ ψ).
We prove that ϕ ∧ ψ ∈ Γ iff ϕ ∈ Γ and ψ ∈ Γ. This will prove this induction step

becauseM c,Γ ϕ∧ψ iffM c,Γ ϕ andM c,Γ ψ iff ϕ ∈ Γ and ψ ∈ Γ by induction
hypothesis. Assume that ϕ ∈ Γ and ψ ∈ Γ. Then, since ϕ , ψ ϕ ∧ ψ is provable,
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we have by the cut lemma that ϕ ∧ ψ ∈ Γ. Conversely, assume that ϕ ∧ ψ ∈ Γ and
assume towards a contradiction that ϕ ∉ Γ. Since Γ is a maximal GGLC–consistent
set, there is ϕ1, . . . , ϕn ∈ Γ such that ϕ1 , . . . , ϕn , ϕ . Now, by rule (K ⊢), we
have that ϕ1 , . . . , ϕn , ϕ , ψ . Therefore, by rule B∨, ϕ1 , . . . , ϕn , (ϕ , ψ) .
Then, by rules (CI ⊢) (dr2), we have that (ϕ , ψ) ∗ (ϕ1 , . . . , ϕn). So, by rule(∧ ⊢), we have that (ϕ ∧ ψ) ∗ (ϕ1 , . . . , ϕn). Then, again by rules (CI ⊢) and(dr2), we obtain ϕ1 , . . . , ϕn , (ϕ , ψ) . Since (ϕ ∧ ψ) ∈ Γ and ϕ1, . . . , ϕn ∈ Γ,
this entails that Γ is not GGLC–consistent, which is impossible. Therefore, ϕ ∈ Γ.
Likewise, we prove that ψ ∈ Γ.

● Case ⊛(ϕ1, . . . , ϕn) with ⊛ = (σ,±, (Æ, (±1, . . . ,±n))).
First, we deal with the subcase Æ = ∃.
Assume that ⊛(ϕ1, . . . , ϕn) ∈ Γ. We have to show that M c,Γ ⊛ (ϕ1, . . . , ϕn),

i.e., there are Γ1, . . . ,Γn ∈ M c such that R±σ⊛ Γ1 . . .ΓnΓ and Γ1 ⋔ Jϕ1K and . . . and
Γn ⋔ JϕnK. We build these maximal GGLC–consistent sets Γ1, . . . ,Γn thanks to
(pseudo) Algorithm 1 (because it does not terminate). This algorithm is such that
if ⊛ (11 ±1 Γ1, . . . ,1n ±n Γn) ∈ Γ then for all ϕ1, . . . , ϕn ∈ L, there are (±′1, . . . ,±′n) ∈{+,−}n such that ⊛ ((11 ±1 Γm1 ) ×1 (±′1ϕm1 ) , . . . , (1n ±n Γmn ) ×n (±′nϕmn )) ∈ Γ. This
is due to Expressions (9), (10) and Expressions (11), (12) of Lemma 63. What
happens is that each 1j ±j Γj is decomposed into disjunctions ((1j ±j Γj) ∧ ϕn) ∨((1j ±j Γn) ∧ ¬ϕn) and conjunctions ((1j ±j Γj) ∨ ϕn)∧((1j ±j Γj) ∨ ¬ϕn) depend-
ing on whether ±j = + or ±j = −. Then, each decomposition of 1j ±j Γn is re-
placed in Expression ⊛ (11 ±1 Γ1, . . . ,1n ±n Γn). This is possible thanks to rule(⊢ ⊛) and this yields a new expression (∗). This new expression (∗) belongs
to Γ because Γ is a maximal GGLC–consistent set, by the cut lemma. Then,
we decompose again (∗) iteratively by applying Expressions (11) or (12). For
each decomposition, at least one disjunct belongs to Γ because ϕ ∨ ψ ∈ Γ im-
plies that either ϕ ∈ Γ or ψ ∈ Γ by Fact 67. Finally, after having decomposed
each argument of ⊛, we obtain that there is (±′1, . . . ,±′n) ∈ {+,−}n such that⊛ ((11 ±1 Γm1 ) ×1 (±′1ϕm1 ) , . . . , (1n ±n Γmn ) ×n (±′nϕmn )) ∈ Γ.

Now, let m ≥ 0 be fixed and assume that Γmj is GGLC–consistent. Then,⊛ ((11 ±1 Γm1 ) ×1 (±′1ϕm1 ) , . . . , (1n ±n Γmn ) ×n (±′nϕmn )) is GGLC–consistent because it
belongs to the GGLC–consistent set Γmj . Thus, by Lemma 64, for all j ∈ J1;nK, if±j = + then ⋀Γmj ∧ ±′jϕmj is GGLC–consistent and if ±j = − then ⋀Γmj ∧ (−±′j)ϕmj is
GGLC–consistent. That is, in both cases, Γm+1

j is GGLC–consistent. We have proved
by induction that for all m ≥ 0, Γmj is GGLC–consistent. Thus, Γ1, . . . ,Γn are GGLC–
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Algorithm 1
Require: (ϕ1, . . . , ϕn) ∈ LnC and a maximal GGLC–consistent set Γ such that⊛(ϕ1, . . . , ϕn) ∈ Γ with ⊛ = (σ,±, (∃, (±1, . . . ,±n))).
Ensure: A n–tuple of maximal GGLC–consistent sets (Γ1, . . . ,Γn) such that

R±σ⊛ Γ1 . . .ΓnΓ and ±1ϕ1 ∈ Γ1,. . . , ±nϕn ∈ Γn.

Let (ϕ0
1, . . . , ϕ

0
n), . . . , (ϕm1 , . . . , ϕmn ),. . . be an enumeration of LnC;

Γ0
1 ∶= {±1ϕ1};. . . ; Γ0

n ∶= {±nϕn};
5:

for all m ≥ 0 do
for all (±′1, . . . ,±′n) ∈ {+,−}n do
if ⊛ ((11 ±1 Γm1 ) ×1 (±′1ϕm1 ) , . . . , (1n ±n Γmn ) ×n (±′nϕmn )) ∈ Γ then

Γm+1
1 ∶= Γm1 ∪ {(±1±′1)ϕm1 };

10: ⋮
Γm+1
n ∶= Γmn ∪ {(±n±′n)ϕmn };

end if
end for

end for
15:

Γ1 ∶= ⋃
m≥0

Γm1 ;. . . ; Γn ∶= ⋃
m≥0

Γmn ;

where for all ϕ ∈ L, ±ϕ ≜ ⎧⎪⎪⎨⎪⎪⎩
ϕ if ± = +¬ϕ if ± = − ; for all j ∈ J1;nK, ×j ≜ ⎧⎪⎪⎨⎪⎪⎩

∧ if ±j = +∨ if ±j = − and

1j ±j Γmj ≜ ⎧⎪⎪⎨⎪⎪⎩
⋀{ϕ ∣ ϕ ∈ Γmj } if ±j = +⋁{¬ϕ ∣ ϕ ∈ Γmj } if ±j = − .

consistent. Moreover, for all j ∈ J1;nK, Γj are maximally GGLC–consistent because
by construction for all ϕ ∈ L either ϕ ∈ Γj or ¬ϕ ∈ Γj .

Finally, we prove that R±σ⊛ Γ1 . . .ΓnΓ, that is, we prove that for all ψ1, . . . , ψn ∈ L
if ψ1 ⋔ Γ1 and . . . and ψn ⋔ Γn then ⊛(ψ1, . . . , ψn) ∈ Γ, that is, since Γ1, . . . ,Γn
are maximally GGLC–consistent sets, if ±1ψ1 ∈ Γ1 and . . . and ±nψn ∈ Γn then⊛(ψ1, . . . , ψn) ∈ Γ. Assume that ±1ψ1 ∈ Γ1 and . . . and ±nψn ∈ Γn, we are going
to prove that ⊛(ψ1, . . . , ψn) ∈ Γ. Now (ψ1, . . . , ψn) ∈ Ln, so there is m0 ≥ 0 such
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that (ϕm0
1 , . . . , ϕm0

n ) = (ψ1, . . . , ψn). Since Γm0+1
1 ⊆ Γ1 and . . . and Γm0+1

n ⊆ Γn, we
have that the tuple (±′1, . . . ,±′n) satisfying the condition of line 8 of Algorithm 1
is (+, . . . ,+), because of the way Γm0+1

1 ,. . . , Γm0+1
n are defined. So, the condition

of line 8, which is fulfilled, is ⊛ ((11 ±1 Γm0
1 ) ×1 ϕ

m0
1 , . . . , (1n ±n Γm0

n ) ×n ϕm0
n ) ∈ Γ.

Then, for all j ∈ J1;nK, if ±j = + then (1j ±j Γm0
j ) ×j ϕm0

j ϕm0
j and if ±j = −

then ϕm0
j (1j ±j Γm0

j ) ×j ϕm0
j . Therefore, applying rule (⊢ ⊛), we obtain that

⊛ ((11 ±1 Γm0
1 ) ×1 ϕ

m0
1 , . . . , (1n ±n Γm0

n ) ×n ϕm0
n ) ⊛ (ϕm0

1 , . . . , ϕm0
n ) is provable.

Since we have proved that ⊛ ((11 ±1 Γm0
1 ) ×1 ϕ

m
1 , . . . , (1n ±n Γm0

n ) ×n ϕm0
n ) ∈ Γ, we

obtain by the cut lemma that ⊛ (ϕm0
1 , . . . , ϕm0

n ) ∈ Γ as well, that is ⊛ (ψ1, . . . , ψn) ∈ Γ.

Conversely, assume that M c,Γ ⊛ (ϕ1, . . . , ϕn), we are going to show that⊛(ϕ1, . . . , ϕn) ∈ Γ. By definition, we have that there are Γ1, . . . ,Γn ∈M c such that
R±σ⊛ Γ1 . . .ΓnΓ and Γ1 ⋔ Jϕ1K and . . . and Γn ⋔ JϕnK. By Induction Hypothesis, we
have that ϕ1 ⋔ Γ1 and . . . and ϕn ⋔ Γn. Then, by definition of R±σ⊛ in Definition 65,
we have that ⊛(ϕ1, . . . , ϕn) ∈ Γ.

Second, we deal with the subcase Æ = ∀.
Assume that ⊛(ϕ1, . . . , ϕn) ∈ Γ. We have to show that M c,Γ ⊛ (ϕ1, . . . , ϕn),

i.e. for all Γ1, . . . ,Γn ∈ M c, (Γ1, . . . ,Γn,Γ) ∈ R±σ⊛ or Γ1 ⋔ Jϕ1K or . . . or Γn ⋔ JϕnK.
Assume that (Γ1, . . . ,Γn,Γ) ∉ R±σ⊛ . Then, since ⊛(ϕ1, . . . , ϕn) ∈ Γ, we have by
Definition 65 that ϕ1 ⋔ Γ1 or . . . or ϕn ⋔ Γn. So, by Induction Hypothesis, we have
that Γ1 ⋔ Jϕ1K or . . . or Γn ⋔ JϕnK.

Conversely, we reason by contraposition and we assume that ⊛(ϕ1, . . . , ϕn) ∉ Γ.
We are going to show thatM c,Γ −⊛(ϕ1, . . . , ϕn) (we recall that −⊛ is a connective
of C), which will prove that it is not the case that M c,Γ ⊛ (ϕ1, . . . , ϕn) by
Proposition 29. First, we prove that ¬ ⊛ (ϕ1, . . . , ϕn) − ⊛(ϕ1, . . . , ϕn) as follows:

ϕ1 ϕ1 . . . ϕn ϕn[−⊛] (ϕ1, . . . , ϕn) − ⊛(ϕ1, . . . , ϕn) (⊢ ⊛)
∗ [⊛] (ϕ1, . . . , ϕn) − ⊛(ϕ1, . . . , ϕn) Rewrite

∗ − ⊛(ϕ1, . . . , ϕn) [⊛] (ϕ1, . . . , ϕn) (dr′′2)
∗ − ⊛(ϕ1, . . . , ϕn) ⊛ (ϕ1, . . . , ϕn) (⊛ ⊢)
∗ ⊛ (ϕ1, . . . , ϕn) − ⊛(ϕ1, . . . , ϕn) (dr′′2)
¬ ⊛ (ϕ1, . . . , ϕn) − ⊛(ϕ1, . . . , ϕn) (¬ ⊢)

Then, by Fact 67 and because (ϕ ∨ ¬ϕ) is provable, we have that
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¬ ⊛ (ϕ1, . . . , ϕn) ∈ Γ or ⊛(ϕ1, . . . , ϕn) ∈ Γ. So, by assumption, ¬ ⊛ (ϕ1, . . . , ϕn) ∈ Γ.
Therefore, by the cut lemma, since ¬ ⊛ (ϕ1, . . . , ϕn) − ⊛(ϕ1, . . . , ϕn) we have
that − ⊛ (ϕ1, . . . , ϕn) ∈ Γ. Hence, this case boils down to the case Æ = ∃ because−⊛ = (σ,−±, (∃, (−±1, . . . ,−±n))). This case has been proved in the previous item
and we thus have that M c,Γ − ⊛(ϕ1, . . . , ϕn). ◻

We finally prove that the canonical model is indeed a C–model. For that, we
need to prove the following lemma:

Lemma 68. Let ⊛ ∈ C be a connective of arity n ∈ N. Then, for all ⊛′ ∈ Oαn∗βn(⊛),
we have that R⊛ = R⊛′.
Proof: We prove this lemma using the following two facts: for all ⊛ ∈ C, all
transpositions τj = (j n + 1),
if ⊛ = (σ,±, (∃, (±1, . . . ,±n))) then ⊛ (ϕ1, . . . , τj ⊛ (ϕ1, . . . , ϕn), . . . , ϕn) ϕj (14)
if ⊛ = (σ,±, (∀, (±1, . . . ,±n)))then ϕj ⊛ (ϕ1, . . . , τj ⊛ (ϕ1, . . . , ϕn), . . . , ϕn) (15)

Expressions (14) and (15) are proved by a direct application of (dr1) with τj
and then (⊛ ⊢) to the provable consecution [τj⊛] (ϕ1, . . . , ϕn) τj ⊛ (ϕ1, . . . , ϕn) if
Æ(τj⊛) = ∃ and τj ⊛ (ϕ1, . . . , ϕn) [τj⊛] (ϕ1, . . . , ϕn) if Æ(τj⊛) = ∀.

First, we prove that for all ⊛′ ∈ Oαn(⊛), we have that R⊛ = R⊛′ . For that, it
suffices to prove that for all transpositions τj = (j n + 1), we have that Rτj⊛ = R⊛
because the transpositions generate the symmetric group. Proving R⊛ ⊆ Rτj⊛ or
Rτj⊛ ⊆ R⊛ for all τj = (j n+ 1) is enough, because by double inclusion we then have
that R⊛ ⊆ Rτj⊛ ⊆ Rτjτj⊛ = R⊛ and thus R⊛ = Rτj⊛.

● Case ⊛ = (σ,±, (∃, (±1, . . . ,±j−1,+,±j+1, . . . ,±n))). Then, τj⊛ =(τjσ,−±, (∀, (−±1, . . . ,−±j−1,+,−±j+1, . . . ,−±n))).
Assume that (Γ1, . . . ,Γn+1) ∈ R±σ⊛ . We are going to show that (Γ1, . . . ,Γn+1) ∈

R±σ
τj⊛, i.e. (Γ1, . . . ,Γn+1) ∉ R−±σ

τj⊛ , i.e. (Γ1, . . . ,Γj−1,Γn+1,Γj+1, . . . ,Γn,Γj) ∉ R−±τjσ
τj⊛ .

Let ϕ1, . . . , ϕn ∈ LC and assume that τj ⊛ (ϕ1, . . . , ϕn) ∈ Γj and ϕ1 ⋔ Γ1 and . . . and

ϕn ⋔ Γn where ϕi ⋔ Γi ≜ ⎧⎪⎪⎨⎪⎪⎩
ϕi ∈ Γi if ±i = +
ϕi ∉ Γi if ±i = − . We want to prove that ϕj ∈ Γn+1.

Since (Γ1, . . . ,Γn,Γn+1) ∈ R±σ⊛ and ϕ1 ⋔ Γ1 and . . . and τj ⊛ (ϕ1, . . . ϕn) ∈ Γj and
. . . and ϕn ⋔ Γn, we have thatM c,Γn+1 ⊛(ϕ1, . . . , τj(ϕ1, . . . , ϕn), . . . , ϕn). So, by
the truth lemma, ⊛(ϕ1, . . . , τj ⊛ (ϕ1, . . . , ϕn), . . . , ϕn) ∈ Γn+1. Now, by Expression
(14), ⊛(ϕ1, . . . , τj ⊛ (ϕ1, . . . , ϕn), . . . , ϕn) ϕj . Therefore, ϕj ∈ Γn+1 by the cut
lemma.
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● Case ⊛ = (σ,±, (∃, (−, . . . ,−))). Then, τj⊛ = (τjσ,±, (∃, (−, . . . ,−))).
Assume that (Γ1, . . . ,Γn+1) ∈ R±σ⊛ , i.e. for all ϕ1, . . . , ϕn ∈ LC, if ϕ1 ∉ Γ1

and . . . and ϕn ∉ Γn then ⊛(ϕ1, . . . , ϕn) ∈ Γn+1 (1). We are going to show
that (Γ1, . . . ,Γn+1) ∈ R±σ

τj⊛, i.e. (Γ1, . . . ,Γn+1, . . .Γn,Γj) ∈ R
±τjσ
τj⊛ , i.e. for all

ϕ1, . . . , ϕn ∈ LC, if ϕ1 ∉ Γ1 and . . . and ϕj ∉ Γn+1 and . . . and ϕn ∉ Γ, then
τj ⊛ (ϕ1, . . . , ϕn) ∈ Γj . Assume that ϕ1 ∉ Γ1 and . . . and ϕj ∉ Γn+1 and . . . and
ϕn ∉ Γn. We want to prove that τj ⊛ (ϕ1, . . . , ϕn) ∈ Γj .

Since ϕj ∉ Γn+1, we have that ⊛(ϕ1, . . . , τj ⊛ (ϕ1, . . . , ϕn), . . . , ϕn) ∉ Γn+1 because
of the cut lemma since ⊛(ϕ1, . . . , τj ⊛ (ϕ1, . . . , ϕn), . . . , ϕn) ϕj by Expression (14).
Then, either ϕ1 ∈ Γ1 or ϕ2 ∈ Γ2 or . . . or τj ⊛ (ϕ1, . . . , ϕn) ∈ Γj or ϕj+1 ∈ Γj+1 or
. . . or ϕn ∈ Γn, because of (1). However, ϕ1 ∉ Γ1,. . . , ϕj−1 ∉ Γj−1, ϕj+1 ∉ Γj+1, . . . ,
ϕn ∉ Γn. Therefore, τj ⊛ (ϕ1, . . . , ϕn) ∈ Γj .

● Case ⊛ = (σ,±, (∀, (±1, . . .±j−1,+,±j+1, . . . ,±n))). Then, τj⊛ =(τjσ,−±, (∃, (−±1, . . . ,−±j−1,+,−±j+1, . . . ,−±n))).
Assume that (Γ1, . . . ,Γn,Γn+1) ∉ R±σ⊛ . We are going to show

that (Γ1, . . . ,Γn,Γn+1) ∉ R±σ
τj⊛, i.e. (Γ1, . . . ,Γn,Γn+1) ∈ R−±σ

τj⊛ i.e.(Γ1, . . . ,Γn+1,Γj+1, . . . ,Γn,Γj) ∈ R−±τjσ
τj⊛ i.e. for all ϕ1, . . . , ϕn ∈ LC, if ϕ1 ⋔ Γ1 and

. . . and ϕj ∈ Γn+1 and ϕj+1 ⋔ Γj+1 and . . . and ϕn ⋔ Γn then τj ⊛ (ϕ1, . . . , ϕn) ∈ Γj

where ϕi ⋔ Γi ≜ ⎧⎪⎪⎨⎪⎪⎩
ϕi ∈ Γi if −±i = +
ϕi ∉ Γi if −±i = − . Assume that ϕ1 ⋔ Γ1 and . . . and ϕj ∈ Γn+1

and ϕj+1 ⋔ Γj+1 and . . . and ϕn ⋔ Γn. We want to show that τj ⊛ (ϕ1, . . . , ϕn) ∈ Γj .
Since ϕj ∈ Γn+1 and ϕj ⊛ (ϕ1, . . . , τj ⊛ (ϕ1, . . . , ϕn), . . . , ϕn) by Expression

(15), we have by the cut lemma that ⊛(ϕ1, . . . , τj ⊛ (ϕ1, . . . , ϕn), . . . ϕn) ∈ Γn+1.
So, M c,Γn+1 ⊛ (ϕ1, . . . , τj ⊛ (ϕ1, . . . , ϕn), . . . , ϕn) by the truth lemma. That
is, for all Γ′1, . . . ,Γ′n ∈ M c, either (Γ′1, . . . ,Γ′n,Γn+1) ∈ R±σ⊛ or not ϕ1 ⋔ Γ1 or . . .
or τj ⊛ (ϕ1, . . . , ϕn) ∈ Γj or . . . or not ϕn ⋔ Γn (ϕi ⋔ Γi is defined above). Take(Γ′1, . . . ,Γ′n) = (Γ1, . . . ,Γn). Then, by assumption, (Γ1, . . . ,Γn,Γn+1) ∉ R±σ⊛ and
ϕ1 ⋔ Γ1 and . . . and ϕj−1 ⋔ Γj−1 and ϕj+1 ⋔ Γj+1 and . . . and ϕn ⋔ Γn. Therefore,
τj ⊛ (ϕ1, . . . , ϕn) ∈ Γj .

● Case ⊛ = (σ,±, (∀, (−, . . . ,−))). Then, τj⊛ = (τjσ,±, (∀, (−, . . . ,−))).
Assume that (Γ1, . . . ,Γn+1) ∉ R±σ⊛ , i.e. for all ϕ1, . . . , ϕn ∈ LC, if ⊛(ϕ1, . . . , ϕn) ∈

Γn+1 and ϕ1 ∈ Γ1 and . . . and ϕn ∈ Γn then ϕj ∉ Γj (2). We are going to show that(Γ1, . . . ,Γn+1) ∉ R±σ
τj⊛, i.e. (Γ1, . . . ,Γn+1, . . . ,Γn,Γj) ∉ R±τjσ

τj⊛ i.e. for all ϕ1, . . . , ϕn ∈LC if τj ⊛ (ϕ1, . . . , ϕn) ∈ Γj and ϕ1 ∈ Γ1 and . . . and ϕn ∈ Γn then ϕj ∉ Γn+1. Assume
that τj ⊛ (ϕ1, . . . , ϕn) ∈ Γj (3) and ϕ1 ∈ Γ1 and . . . and ϕn ∈ Γn. We want to prove
that ϕj ∉ Γn+1.
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Assume towards a contradiction that ϕj ∈ Γn+1. Then, by Expression (15)
and the cut lemma, ⊛(ϕ1, . . . , τj ⊛ (ϕ1, . . . , ϕn), . . . , ϕn) ∈ Γn+1. Now, ϕ1 ∈ Γ1 and
. . . and ϕj−1 ∈ Γj−1 and ϕj+1 ∈ Γj+1 and . . . and ϕn ∈ Γn. So, by (2), because(Γ1, . . . ,Γn+1) ∉ R±σ⊛ , we have that τj ⊛ (ϕ1, . . . , ϕn) ∉ Γj . This contradicts (3).

Second, we prove that R⊛ = R−⊛. Again, it suffices to prove that R⊛ ⊆ R−⊛.

● Case ⊛ = (σ,±, (∃, (±1, . . . ,±n)). Then, −⊛ = (σ,−±, (∀, (−±1, . . . ,−±n))).(Γ1, . . . ,Γn+1) ∈ R±σ⊛ iff for all ϕ1, . . . , ϕn ∈ LC, if ϕ1 ⋔ Γ1 and . . . and ϕn ⋔ Γn

then ⊛(ϕ1, . . . , ϕn) ∈ Γn+1 where ϕj ⋔ Γj = ⎧⎪⎪⎨⎪⎪⎩
ϕj ∈ Γj if ±j = +
ϕj ∉ Γj if ±j = − . We are going to show

that (Γ1, . . . ,Γn+1) ∈ R±σ−⊛, i.e. (Γ1, . . . ,Γn+1) ∉ R−±σ−⊛ i.e. for all ϕ1, . . . , ϕn ∈ LC, if− ⊛ (ϕ1, . . . , ϕn) ∈ Γn+1 then ϕ1 ⋔′ Γ1 or . . . or ϕn ⋔′ Γn (1) where ϕj ⋔′ Γj =⎧⎪⎪⎨⎪⎪⎩
ϕj ∈ Γj if −±j = +
ϕj ∉ Γj if −±j = − . So, for all j, ϕj ⋔′ Γj is (not ϕj ⋔ Γj). Therefore, (1) holds iff

if ⊛(ϕ1, . . . , ϕn) ∉ Γn+1 and ϕ1 ⋔ Γ1 and . . . and ϕn ⋔ Γn then not ϕj ⋔ Γj
iff if ϕ1 ⋔ Γ1 and . . . and ϕn ⋔ Γn then ⊛(ϕ1, . . . , ϕn) ∈ Γn+1

iff (Γ1, . . . ,Γn+1) ∈ R±σ⊛ which holds by assumption.

● Case ⊛ = (σ,±, (∀, (±1, . . . ,±n)). It is proved like the previous case. ◻
Proof: (Completeness proof) We prove that for all sets Γ ⊆ SC and all S = ϕ ψ ∈ SC,
if Γ S holds then S is provable from Γ in GGLC. We reason by contraposition.
Assume that S is not provable from Γ in GGLC. That is, there is no proof of ϕ ψ
in GGLC from Γ. Thus, it is not the case that (ϕ , ¬ψ) is provable in GGLC ∪ Γ
by Expression (13). Hence, {ϕ,¬ψ} is GGLC ∪Γ–consistent (we can naturally adapt
the definition of GGLC–consistency to define the notion of GGLC ∪ Γ–consistency).
So, by Lemma 62 (where GGLC–consistency is replaced by GGLC∪Γ–consistency), it
can be extended into a maximal GGLC ∪ Γ–consistent set Γ′ such that {ϕ,¬ψ} ⊆ Γ′.
Now, Γ′ is also GGLC–consistent, so it is a state of the canonical model M c. Then,
by the truth Lemma 66, we have that (M c,Γ′) ϕ and (M c,Γ′) ¬ψ, so it is
not the case that (M c,Γ′) S. Moreover, by the cut Lemma 61 and because Γ′ is
also GGLC ∪ Γ–consistent, we also have that (M c,Γ′) Γ. Hence, we have found a
pointed model (M c,Γ′), which is indeed a C–model according to Lemma 68, such
that (M c,Γ′) Γ but not (M c,Γ′) S. That is, it is not the case that Γ S. ◻
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C Proofs of theorems 49, 53 and 57
Theorem 49 (Cut–elimination). Let C ⊆ C. The calculus GGLC is cut–eliminable:
it is possible to eliminate all occurrences of the cut rule from a given proof in order
to obtain a cut-free proof of the same consecution.

Proof: Since GGLC is a display calculus in the general sense of Ciabattoni & Ra-
manayake [9], we only need to prove that it satisfies the conditions (C2)–(C8) spelled
out in [9] as proved by Belnap [6]. Note that condition (C1) is not needed in Bel-
nap’s proof [6]. The conditions (C2)–(C7) are easily checked on each rule of GGLC.
It remains to prove condition (C8). It has already been proved in the literature for
the Boolean connectives so we only prove it for the gaggle connectives. Instead of
proving it in the general case, we prove it for n = 2 with ⊛ = (σ,±, (∃, (+,−))). This
should provide the reader with the main ideas underlying the proof in the general
case. Basically, we display each subformula of the cut formula using the display rule(dr1) and we apply the cut rule on each subformula.

X1 ϕ1 ϕ2 X2[⊛] (X1,X2) ⊛ (ϕ1, ϕ2) (⊢ ⊛) [⊛] (ϕ1, ϕ2) U⊛(ϕ1, ϕ2) U
(⊛ ⊢)

[⊛] (X1,X2) U
cut (⊛(ϕ1, ϕ2))

is transformed into

X1 ϕ1

[⊛] (ϕ1, ϕ2) U

ϕ1 [r1⊛] (U,ϕ2) (dr1)
X1 [r1⊛] (U,ϕ2) cut (ϕ1)
[⊛] (X1, ϕ2) U

(dr1)
[r2⊛] (X1, U) ϕ2

(dr1)
ϕ2 X2[r2⊛] (X1, U) X2

cut (ϕ2)
[⊛] (X1,X2) U

(dr1)
We proceed similarly for the rules concerning the Boolean connectives ¬,∧,∨ using
the Boolean display rule (dr2). ◻
Theorem 53 (Soundness and strong completeness). Let C ⊆ C. The calculus GGL0

C
is sound and strongly complete for the basic gaggle logic (S0

C,MC, ).
Proof: We are going to perform a backward proof search and analyze the structure
of a cut-free proof in GGLC which ends up in a consecution of the following form,
where ϕ1, . . . , ϕk, ϕ

′
1, . . . , ϕ

′
l ∈ L0

C do not contain Boolean connectives:

⊛(ϕ1, . . . , ϕk) ⊛′ (ϕ′1, . . . , ϕ′l).
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Our aim is, via that analysis, to transfom the proof in GGLC of the above
consecution into a proof in GGL0

C of the same consecution. This will prove the
theorem.

Before proceeding further, note that the following rules are particular instances
of (K ⊢) and (⊢ K) (with X empty):

U

Y U
(K ⊢)′ U

U Y
(⊢ K)′

Since the proof is cut-free and the final consecution does not contain Boolean
connectives, the Boolean rules (∧ ⊢), (⊢ ∧), (∨ ⊢), (⊢ ∨), (⊢ ¬) and (¬ ⊢) have not
been applied in the proof. Indeed, a property of our cut-free calculus GGLC is that
once a (Boolean) connective is introduced in a proof it stays present in the proof.
Because the conclusion of our proof does not contain Boolean connective, this entails
that the Boolean rules have not been used.

Stage A: rules (⊛ ⊢) and (dr1). We start with a proof in GGLC whose conclusion
is of the form ⊛(ϕ1, . . . , ϕk) ⊛′(ϕ′1, . . . , ϕ′l) and we analyse its proof backwards and
determine which rule(s) can be used as we proceed bottom–up. At the begining, it
is not possible to apply rule (⊢ ⊛) because the antecedent and the consequent of the
consecution are both formulas. On the other hand, it is possible to apply rule (dr2)
or (WI ⊢) right at the beginning and in that case we go directly to stage B. Oth-
erwise, it is also possible to apply the rules (⊛ ⊢) and (dr1) (possibly iteratively).
We then obtain an expression of the form S([⊛1] ,X1, . . . ,Xm,⊛2(ψ1, . . . , ψn)) or
S([⊛1] ,X1, . . . ,Xm, [⊛2] (Y1, . . . , Yn)) where X1, . . . ,Xm, Y1, . . . , Yn belong to the
language LX built up from formulas ϕ, structural atoms and structural connec-
tives [⊛]. Hence, at the end of that stage, we have a consecution of the form[⊛1] (X1, . . . ,Xn) ⊛2 (ψ1, . . . , ψn) (1) or ⊛1(ϕ1, . . . , ϕm) [⊛2] (Y1, . . . , Yn) (2)
or [⊛1] (X1, . . . ,Xm) [⊛2] (Y1, . . . , Yn) (3). Without loss of generality, let us deal
with case (1) in what follows.

We can then go to stage B or to stage C.

Stage B: rules (dr2) or (WI ⊢) and then structural rules. If rule (dr2) is
applied, we obtain

([⊛1] (X1, . . . ,Xm) , ∗ ⊛2 (ψ1, . . . , ψn))[⊛1] (X1, . . . ,Xm) ⊛2 (ψ1, . . . , ψn) (dr2)
or

941



Aucher

(⊛2(ψ1, . . . , ψn) , ∗ [⊛1] (X1, . . . ,Xm))[⊛1] (X1, . . . ,Xm) ⊛2 (ψ1, . . . , ψn) (dr2)
.

If rule (CI ⊢) is applied, we obtain

([⊛1] (X1, . . . ,Xm) , [⊛1] (X1, . . . ,Xm)) ⊛2 (ψ1, . . . , ψn)[⊛1] (X1, . . . ,Xm) ⊛2 (ψ1, . . . , ψn) (WI ⊢)
.

In both cases, we obtain a premise including the structural connective , . This
means that we cannot apply rules (dr1), (⊢ ⊛) or (⊛ ⊢) for the moment. We must
use the other rules, the structural rules and (dr2), in order to apply one of these
rules. Indeed, for the proof to terminate, we have to apply these rules in order to
reduce the complexity of the consecution. Since the structural rules and (dr2) do
not change the constituants of a consecution, the consecutions that we can obtain
as a result of applying these rules in order to be able to apply rules (dr1), (⊢ ⊛) or(⊛ ⊢) again are the following:

1. ⊛2 (ψ1, . . . , ψn)
2. [⊛1] (X1, . . . ,Xm)
3. ∗ ⊛2 (ψ1, . . . , ψn) [−⊛1] (X1, . . . ,Xn)
4. [⊛1] (X1, . . . ,Xm) ⊛2 (ψ1, . . . , ψn).

For each case, we replace the existing derivation by the following derivation:

1.

⊛2 (ψ1, . . . , ψn)[⊛1] (X1, . . . ,Xm) ⊛2 (ψ1, . . . , ψn) (K ⊢)′
2.

[⊛1] (X1, . . . ,Xm)[⊛1] (X1, . . . ,Xm) ⊛2 (ψ1, . . . , ψn) (⊢ K)′
3.

∗ ⊛2 (ψ1, . . . , ψn) [−⊛1] (X1, . . . ,Xm)[⊛1] (X1, . . . ,Xm) ⊛2 (ψ1, . . . , ψn) (dr′2)
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4. We simply remove the existing derivation.

So, for all cases the Boolean display rule (dr2) and the structural rules have been
eliminated. In all cases, the proof (considered so far) can be transfomed into a proof
where (dr2) has been eliminated and replaced by (dr′2), (K ⊢)′ and (⊢ K)′.

In all cases, the last premise ends up to be a consecution of the form
S([⊛1] ,X1, . . . ,Xm,⊛2(ψ1, . . . , ψn)) or ⊛1(ϕ1, . . . , ϕm) ⊛2 (ψ1, . . . , ψn) (possibly
with ⊛2(ψ1, . . . , ψn) empty). Then, we go to stage C.

Stage C: rules (dr1) or (⊢ ⊛). If rule (dr1) is applied then we go back to stage
A.

If rule (⊢ ⊛) is applied,

U1 V1 . . . Un Vn

S([⊛1] ,X1, . . . ,Xn,⊛2(ψ1, . . . , ψn)) (⊢ ⊛)
then for all j ∈ J1;nK, Uj Vj are of the form Xj ψj or ϕj Xj where

Xj ∈ LX . So, we apply inductively stages A, B and C to each Uj Vj .

Hence, applying these stages recursively, we are able to eliminate all structural
rules and the Boolean display rule (dr2) from the proof and replace them with the
rules (dr′2), (K ⊢)′ and (⊢ K)′.
Stage D. At this stage we have transformed our initial proof in GGLC into a
proof in the calculus consisting in the rules (⊢ ⊛), (⊛ ⊢), (dr1), (dr′2), (K ⊢)′
and (⊢ K)′. A requirement of rule (K ⊢)′ ((⊢ K)′) is that the antecedent (resp.
consequent) of its premisse is empty. If we examine the other rules, we notice
that an empty antecedent can only appear in rule (⊢ ⊛) if one of its premise
already contains an empty antecedent (see Expression (7)). As a matter of
fact, because of our axioms (see Expressions (5) and (6)) and the other rules,
this can never happen. Hence, rules (K ⊢)′ and (⊢ K)′ are in fact never used in
a proof. Therefore, the proof that we eventually obtain is actually a proof in GGL0

C. ◻
Theorem 57 (Soundness and strong completeness). Let C ⊆ C and let G be a group
associated to C. The calculus GL0

C,G (GLC,G) is sound and strongly complete for the
(Boolean) basic gaggle logic (S0

C,MC, ) (resp. (SC,MC, )).
Proof: We assume that we have a proof of a consecution ⊛1(ϕ1, . . . , ϕm) ⊛2(ψ1, . . . , ψn) ∈ S0

C in GGL0
C and we show that we can transform this proof into a
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proof of the same consecution in GL0
C,G. For that, we analyse the proof and perform

a backward proof search. The first rule that we can apply (backwards) is (⊛ ⊢) and
we arrive at a consecution of the form S([⊛] , ϕ1, . . . , ϕn, U). Then, we can directly
apply (⊛ ⊢) or a sequence of display rules in order to apply (⊛ ⊢). In both cases, we
arrive at a consecution of the form S([⊛′] ,X1, . . . ,Xn,⊛(ϕ1, . . . , ϕn)) with ⊛′ ∈ C
(in order to apply (⊢ ⊛)). Since both ⊛ ∈ C and ⊛′ ∈ C, the sequence of display
rules is equivalent to a single application of rule (dr3) and it suffices to replace this
sequence by a single application of rule (dr3) to obtain a proof in GL0

C,G. Then,
we repeat this process inductively to the premises of the instance of the rule (⊢ ⊛)
applied. Hence, we obtain the result for GL0

C,G.
As for GLC,G, it suffices to observe that (dr3) is derivable from (dr1) and (dr2)

and that, vice versa, (dr1) is derivable from (dr3). ◻
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Abstract

In this article we first provide some background on why the applicability
of model theory across mathematics is reasonable and briefly describe some of
the well-known results over the last seventy years (Sections 1 and 2). In the
remainder we focus on three areas that have developed in the last five. Two
are parallel developments of fundamental notions of stability theory and certain
combinatorial notions in learning theory (Section 3) and in functional analysis
(Section 4). Another is one of the many recent interactions between stability
theory and counting problems in finite combinatorics (Section 5). Section 6
summarizes the argument.

1 Introduction
In his famous article, The Unreasonable Effectiveness of Mathematics in the Nat-
ural Sciences [78], Eugene Wigner asserts, ‘The first point is that the enormous
usefulness of mathematics in the natural sciences is something bordering on the
mysterious and that there is no rational explanation for it.’ In contrast, we will
argue that applicability of model theory across mathematics is not mysterious but
is easily understood in terms of the basic methodology and motivations of model
theory1. In his Introduction to Logic and the Methodology of the Deductive Sciences,
Tarski aimed ‘to present to the educated layman . . . that powerful trend . . .modern
logic . . . [which] seeks to create a common basis for the whole human knowledge’
([75], xi).

Research partially supported by Simons travel grant G3535. I am grateful for helpful comments by
Hunter Chase, James Frietag, Karim Khanaki, Chris Laskowski, and Caroline Terry.

1Unsurprisingly, I am not the first to appropriate Wigner’s metaphor, although most writers
maintain Wigner’s UNreasonable. See [30] who refers to Corfield and Manders.

Vol. 7 No. 6 2020
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications



Baldwin

In his 1950 address to the International Conference of Mathematicians, Robinson
[64] made this more goal more specific, ‘. . . we shall be concerned with the effective
application of symbolic logic to mathematics proper, more particularly to abstract
algebra. Thus, we may hope to find the answer to a genuine mathematical problem
by applying a decision procedure to a certain formalized statement.’

After more than a half century of development, we argue that specific formaliza-
tions of areas of mathematics are fruitful for those areas. Moreover the technology of
classification theory provides a uniform strategy to obtain results in many different
contexts, extending well beyond Robinson’s innovations in abstract algebra.

There are three key reasons for this effectiveness. The first is representing an
area of mathematics as the study of a collection of similar structures for a fixed
vocabulary. One attempts local (area dependent) rather than global foundations
for mathematics. Second, rather than examining all subsets of those structures,
restricting to those defined in a formal logic provides a principled way to isolate
tame mathematics. Thirdly, the classification of theories introduced by Shelah [69],
brings to the fore certain combinatorial features that play significant roles in widely
distinct areas of mathematics.

At [4, page 2], I wrote,

In short, the paradigm around 1950 concerned the study of logics; the
principal results were completeness, compactness, interpolation and joint
consistency theorems. Various semantic properties of theories were given
syntactic characterizations but there was no notion of partitioning all
theories by a family of properties. After the paradigm shift there is a
systematic search for a finite set of syntactic conditions which divide first
order theories into disjoint classes such that models of different theories
in the same class have similar mathematical properties.

The finer analysis in the last ten years of the unstable section of the classification
has converted the italicized ‘finite’ to infinite. This classification, which is roughly
syntactic (certainly set theoretically absolute), drives what I call the paradigm shift
[4, Introduction]. Neo-stablity theory2 analyzes further patterns recognizable by for-
malized theories [71, 53, 73]. Model theory provides reasonable effectiveness because
this classification crosses traditional areas to provide unification and generalization.
As we’ll see the patterns identified play important roles in a wide range of traditional
mathematical settings.

2See the interactive map http://www.forkinganddividing.com/#_02_54 and the report https:
//pdfs.semanticscholar.org/b2c9/a98d0f1e26d336dc913358f45ec9f1a1f951.pdf. The interac-
tive feature allows one to see the classification hierarchy.
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Model theory analyzes the structure of definable sets (solutions to formulas with
free variables) in any model of a theory along two axes: the (quantifier)-complexity
of the definition and the combinatorial complexity of the class of definable sets.

Restriction to definable sets is historically very natural. Euclid and Eudoxus de-
veloped the method of exhaustion to provide a framework for studying the relations
among possibly incommensurable specific pairs of magnitudes such as the diagonal
and side of a square. But each example relates to objects which are definable in
the modern sense. It is Dedekind who posits that limits exists for arbitrary cuts.
Speaking polemically, studying only the ‘definable’ objects in a structure means,
‘studying the ones which actually arise’.

A natural way to ‘tame a structure’ is to look at definable subsets rather than
all sets. This happens automatically in algebraic geometry where the study of so-
lution sets of equations is essentially the study of all definable sets. Tarski and
Robinson [74, 64] saw this result in full generality as quantifier elimination for a real
closed or algebraically closed field, while Chevalley described the key inductive step:
constructible sets are closed under projection. This method of quantifier elimina-
tion provides a general format unifying the Hilbert Nullensatz for a wide range of
algebraic applications.

Combinatorial is not quite the right word for the second axis. The central idea
is (non)-existence of certain configurations among the definable sets. One such
configuration is simply an infinite decreasing sequence of definable sets. On the
combinatorial side, replacing the (ascending (acc)) descending chain condition (dcc)
(no such sequence exists) on subgroups (ideals) by the (ascending) descending chain
condition on definable subgroups (ideals) provides a common framework across group
theory, differential algebra, ring theory, etc. Thus, the Wedderburn theorem that
certain rings satisfying the descending chain conditions on ideals are represented as
matrix rings can be proved for rings, whose theories are stable, and so satisfy the
dcc on principal (1-generated) ideals [6]. The general picture is further clarified by
noting that similar variants on the chain condition (e.g., requiring infinite index at
each step) for different areas are unified by noting the theory is stable, superstable
or ω-stable.

What I refer to as ‘traditional philosophy of mathematics’ is dubbed ‘philos-
ophy of Mathematics’ (Harris, page 30 of [31] or [4, page 5]) or ‘Foundations of
Mathematics’ (Simpson in clarifying his view on the Foundations of Mathematics
Listserve)). This distinction is transcended in Maddy’s recent article, What do we
want a foundation to do? [52]. She writes

So my suggestion is that we replace the claim that set theory is a (or
‘the’) foundation for mathematics with a handful of more precise observa-
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tions: set theory provides Risk Assessment for mathematical theories, a
Generous Arena where the branches of mathematics can be pursued in a
unified setting with a Shared Standard of Proof, and aMeta-mathematical
Corral so that formal techniques can be applied to all of mathematics at
once.

I write from a similar perspective. I am not emphasizing the search for a reliable
basis for all mathematics but investigating the organization of mathematics and
how particular organizations3 can productively impact mathematical practice. The
clarification of such concepts as function, cardinality, and continuity in the late 19th
century had immediate positive impact on mathematics. This effect is usually viewed
from the lens of reliability. But Coffa places the relationship between ‘reliability and
clarity’ in historical perspective:

[We consider] the sense and purpose of foundationalist or reductionist
projects such as the reduction of mathematics to arithmetic or arith-
metic to logic. It is widely thought that the principle inspiring such
reconstructive efforts were basically a search for certainty. This is a se-
rious error. It is true, of course, that most of those engaging in these
projects believed in the possibility of achieving something in the neigh-
borhood of Cartesian certainty for principles of logic or arithmetic on
which a priori knowledge was to be based. But it would be a gross mis-
understanding to see in this belief the basic aim of the enterprise. A no
less important purpose was the clarification of what was being said. . . .
The search for rigor might be, and often was, a search for certainty, for
an unshakable ‘Grund’. But it was also a search for a clear account of
the basic notions of a discipline. ([26], 26)

While Maddy argued that set theory met the criteria for a foundation listed
above she said it failed a further criterion essential guidance: aiding the choice
of solution and posing of problems across mathematics. We argue below that the
flexibility of model theoretic axiomatizations and the exposure and clarification of
common themes provides such essential guidance.

In the first part of this article we outline the paradigm of contemporary model
theory and explain why this paradigm might be expected to be useful for proving
results in traditional mathematics. In the remainder we sketch a number of such
applications.

3I contrast model theory and category theory as different ‘scaffolds’ for mathematics in [5].
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2 The Model Theoretic Approach
The distinctive feature of model theory is formalization: the description of various
areas of mathematics in a formal language. The first two of the four theses of
[4](where the argument is expanded in more detail) assert:

1. Contemporary model theory makes formalization of specific mathematical ar-
eas a powerful tool to investigate both mathematical problems and issues in
the philosophy of mathematics (e.g. methodology, axiomatization, purity, cat-
egoricity and completeness).

2. Contemporary model theory enables systematic comparison of local formaliza-
tions for distinct mathematical areas in order to organize and do mathematics,
and to analyze mathematical practice.

Tarski’s term, meta-mathematics summarises the underlying motif of model the-
ory. By meta-mathematics I mean both developing a general notion of a formal
theory as an object of mathematical study and contributing to particular areas of
mathematics by formalizing the area in an appropriate theory.

Definition 2.1. A full formalization involves the following components.

1. Vocabulary: specification of primitive notions.

2. Logic:

(a) Specify a class4 of well formed formulas.
(b) Specify truth of a formula from this class in a structure.
(c) Specify the notion of a formal deduction for these sentences

3. Axioms: specify the basic properties of the situation in question by sentences
of the logic.

For much of model theory, compactness (consistency of a set of sentences X
follows from consistency of finite subsets of X) is more important than explicit
deductions and the completeness theorem. But there is an implicit reliance on com-
pleteness to transfer results on properties that are first order expressible consequence
of axioms. For ‘getting tight results’, a recursive deduction system is important but

4In the instances treated here, this will be a set.
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not sufficient. Even primitive recursive upper bounds are far too crude for math-
ematical applications. More sophisticated model theoretic techniques often obtain
mathematically interesting upper bounds.

I have chosen the word ‘vocabulary’ rather than such rough synonyms as lan-
guage, similarity type, signature or, even rougher, logic. Examining a particular
mathematical topic, the investigator selects certain concepts as fundamental. The
vocabulary is a set τ of relation symbols, function symbols, and constant symbols
chosen to represent these basic concepts. A τ -structure with universe A assigns (e.g.,
to each n-ary relation symbol R a subset RA of An). Thus, many situations in math-
ematics have led to the now nearly ubiquitous notion of a group. This notion can be
formalized in such diverse vocabularies as a single binary function, a single ternary
relation, or augmenting, say, the binary function with a unary function (inverse)
and a constant symbol (identity). Clarifying when these different approaches are,
or are not, equivalent is one of many important uses of the rigorous model theoretic
definition of the notion of interpretation.

Crucially, fixing a vocabulary, even with suggestive names, has done little work.
One must choose axioms that reflect the topic being studied. Calling a binary
relation an order and then positing that it satisfies the axioms of an equivalence
relation is madness. There has been no strict formal error, just an abuse of the
mathematician’s right to name concepts arbitrarily. However, a fruitful formalization
will respect the previous terminology. Crucially, one must select an appropriate logic.
Dedekind and Peano provided second order axioms which shed great light on the
internal structure of the arithmetic of the natural numbers. While these axioms
are particularly valued for determining a categorical (unique up to isomorphism5)
structure, and give a uniform basis for various results in number theory proved
by induction, they are not central in the great 20th century advances in number
theory. Rather, these advances are based on considering the natural numbers as
substructures of much more tame objects such as geometries over algebraically closed
fields.

We focus here on first order logic (Lω,ω) which allows finite Boolean combina-
tions of formulas and quantification over finite strings of individuals. We will make
occasional comparisons with infinitary logic (Lκ,λ) which allows Boolean combina-
tions of < κ formulas and quantification over < λ individuals. But second order
logic will get short shrift. On the one hand, first order set theory is a useful avatar
of second order logic [76]; on the other there is almost no model theory of second
order logic.

5Note that isomorphism is not well-defined unless one specifies the vocabulary. See Pierce’s
paradox in [4].
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A seminal aspect of modern model theory is the focus on complete theories
(usually in first order logic) and their models rather than on logics. Already in
the 1950’s (or even the 30’s for real closed fields) such pioneers as Robinson and
Tarski realized that showing that those subsets definable in a model of a theory T
could be defined by formulas with low quantifier complexity was a powerful tool
for studying the theory. This is an epistemological insight. If one can formalize an
area of mathematics in a way that all definable sets are ‘simple’, then one has a
much better understanding of the subject. Thus, while the formulas of first order
Peano arithmetic have unbounded quantifier-complexity, every definable subset of
the complex (or real field with order) is definable without quantifiers. The relation
between this kind of simplicity and decidability is not obligatory. But many decision
problems (e.g. the real field) were solved precisely by reducing to quantifier free
formulas where a brute-force analysis was possible.

Morley [58] proved that for countable first order theories, categoricity in one un-
countable cardinal κ (unique model with cardinality κ) is equivalent to categoricity
in all uncountable cardinalities. He asked whether the number of models in cardi-
nality ℵα (α > 1) is an increasing function. Shelah generalized Morley’s method and
developed the classification to solve this problem. The classification provided tools
for analyzing the structure of models whose impact across mathematics is discussed
here.

The notion of type connects the syntactic and the semantic: the type of a finite
sequence6 of elements b over a set A in a model M is the collection p = tp(b/A)
of formulas φ(x, a) (with a ∈ A) such that φ(b, a) is true (M |= φ(b, a)). Thus,
the collection S(A) of types over A is the Stone Space of the Boolean algebra of
formulas with parameters from A. A model is κ-saturated if every type over a set
of cardinality less than κ is realized in M . In an |A|+-saturated model M there is
an automorphism of M fixing A pointwise and mapping b1 to b2 if both satisfy p.
So each type determines a possible ‘kind’ of extension over A by a finite sequence
in an elementary extension of M . A countable first order theory T is κ-stable if for
A ⊆M |= T , |A| 6 κ implies |S(A)| 6 κ.

Shelah defined a stable theory and gave a long list of equivalent requirements for
a theory to be stable (e.g. stable in some infinite cardinal κ). We give three of the
criteria to emphasize the diversity of the notion.

Fact 2.2. Each of the following is equivalent to ‘T is stable’

i) T is stable in every cardinal κ with κℵ0 = κ.

6We use lower case Roman letters for finite sequences of variables or elements of a model.

951



Baldwin

ii) (fundamental theorem of stability theory) there is no formula φ(x,y) that has
the order property: for every n

T |= (∃x1, . . .xn∃y1, . . .yn)
∧

i<j

φ(xi,yj) ∧
∧

i>j
¬φ(xi,yj)

iii) there is a notion of independence on models of T which, locally, generalizes the
notion of independence of a vector space.

This equivalence of i) a condition about models of arbitrarily large cardinality,
ii) a syntactic condition that applies to theories across mathematics, and iii) an
algebraic condition leading to a geometry shows the unifying powers of model theory.

Fact 2.2.i) demonstrates that there are fundamental mathematical properties
which depend non-trivially on cardinality. In contrast most mathematical results
are either very specific to structures of size less than the continuum, e.g., a complete
separable ordered field is isomorphic to the real numbers, or completely independent
of cardinality, e.g., any Desarguesian plane can be coordinatized by a division ring.

The syntactic Fact 2.2.ii) can clearly be checked on the countable models of T .
Observe how it specializes: a) the ring of rationals and b) the real field each have
the order property by defining x < y a) if y − x is the sum of four squares and
b) if y − x is a square. There are consequences for reliability. These notions are
clearly described in second order arithmetic and do not depend on higher set theory.
Fact 2.2.iii), manifests itself both in the general notions of forking and orthogonality
of types which underlie global structure of models and more specifically in geometric
stability as theory discussed after Definition 2.5.

Shelah extended Morley’s global analysis of the Boolean algebra of all formulas,
over a set A and its Stone Space S(A) by localizing to instances φ(a, b) of a single
formula φ(x, y), φ-types in Sφ(A). This idea led not only to the connection with
the order property in Fact 2.2.ii) but to identifying those patterns which determine
instability. The patterns encoded by the next two properties appear across mathe-
matics. E.g., if the theory of a group G has NIP. Then G satisfies the descending
chain condition on centralizers and if locally nilpotent is solvable [7]; Macintyre’s
proof [51] that ω-stable fields are algebraically closed uses Morley rank, the Cantor-
Bendixson rank on the Stone space S(M).

Definition 2.3. Let M be a model of a first order theory T , and φ(x, y) a formula
in the vocabulary of T .

1. φ has the independence property (IP) if for arbitrarily large finite sets I
φ(x, ai) for each i ∈ I and each X ⊆ I, there is a bX such that M |= φ(bx, ai)
iff and only i ∈ X.
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2. φ(x, y) has the strict order property (SOP) if there are bi ∈M , for i < ω, such
that

M |= (∀x)φ(x, bi)→ φ(x, bj) iff i 6 j.

3. The complete theory T has (IP) or (SOP) if some formula does in some model.
T has NIP and NSOP if the property fails for each formula.

We explore in Section 4 connections of functional analysis with Shelah’s clarifi-
cation of sources of instability.

Theorem 2.4. T is stable if and only if every formula is both NIP (fails the inde-
pendence property) and NSOP (fails the strict order property).

Morley’s rank on formulas (or types) and the variety of similar ranks introduced
by Shelah provide a general tool that have been applied in many areas of mathe-
matics. Berline [11] proved that Morley rank on algebraically closed fields coincides
with the algebraic ranks defined by Krull (on ideals) and by Weil (on the associated
algebraic varieties) and all definable sets by (Morley). Surprisingly, the underlying
topologies providing the ranks are quite distinct. Morley works with a Stone topol-
ogy which is totally disconnected and Hausdorff, while the Zariski topology is never
Hausdorff.

The notion of forking provides a dependence notion in any stable theory that
satisfies (almost) the Van der Waerden (vector space) axioms for a dependence
relation (except cl(cl(A) may not be cl(A)). On a strongly minimal set algebraic
closure satisfies all the axioms. In a strongly minimal theory such as vector spaces or
algebraically closed fields the formula x = x is strongly minimal. Strong minimality
was introduced to study first order theories categorical in power κ.

Definition 2.5. 1. An element a is said to be in the algebraic closure of a set B
in a model M , a ∈ acl(B) if there is a formula φ(x,y) and a sequence b ∈ B
such that M |= φ(a,b) and there are only finitely many solutions of φ(x,b) in
M (written (∃6kx)φ(x,b).)

2. A definable set D = φ(M,a) of a model M is strongly minimal if every de-
finable subset of D is finite or cofinite in any elementary extension of M .
Equivalently, D has Morley degree and rank one. This implies that there is a
unique non-algebraic type of elements in D.

3. A structure is said to have trivial algebraic closure if acl(A) = ⋃
a∈A acl(a) for

every subset A.
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Zilber’s geometric stability theory [61] highlighted specific properties of the al-
gebraic closure relation (e.g. the lattice of algebraically closed sets is modular) as
a further salient pattern. Zilber [81] conjectured the trichotomy: the geometry of
any strongly minimal sets is trivial, vector space-like (modular), or field-like. This
generalized a lemma in his proof that theories categorical in all infinite powers are
not finitely axiomatizable. The conjecture failed in general [35], but its truth for
specific cases such as differentially closed fields and o-minimal theories has immense
consequences in traditional mathematics.

In [4, Chapters 4/5] (see [32, 57, 34, 67, 59]) we describe how the technology
developed ostensibly for counting models (more profoundly, for proving structure
theorems) and geometric stability theory underlie contributions to Diophantine ge-
ometry and differential equations (via Manin kernels [55, §5]). Completely abstract
model theoretic conditions on a theory T (that hold in many different contexts) im-
ply that (algebraic) groups (or fields) are interpreted in the theory. This technology,
specific reference to DCF and the strictly stable theory of separably closed fields
all contribute to E. Hrushovski’s celebrated proof of the function field Mordell-Lang
conjecture [19]. The realization that strongly minimal sets controlled differentially
closed fields (DCF ) led to solutions of problems in differential equations and tran-
scendence theory stemming from Painlevè more than a century ago [60, 20, 66].

In the 1980’s work of Steinhorn, Pillay, and Van Den Dries [63, 27] modified the
epistemological approach around quantifier rank by considering the simplicity of de-
finable sets. By Definition 2.5, each definable subset (finite or cofinite) of a strongly
minimal set is definable with parameters using only =. Analogously, a theory whose
models are linearly ordered is o-minimal if every definable subset of a model M
is a finite union of points and intervals with endpoints in M (defined using only
{<,=}). This definition captures the essential character of the collection of defin-
able subsets of the real field. This essence is emphasized by the proof [79] that the
real exponential field is also o-minimal and model complete. This work was followed
by showing other expansions of reals (e.g., by the Γ function) remain o-minimal.
Wilkie explains the sense in which o-minimality captures Grothendieck’s notion of
‘tame topology’ in [80]; see also Marker [56]. The subject has been well-integrated
with contemporary real algebraic geometry [14] and has had a significant impact in
number theory. Half of the 2013 Karp prize7 was awarded to Kobi Peterzil, Jonathan
Pila, Sergei Starchenko, and Alex Wilkie for ‘their efforts in turning the theory of
o-minimality into a sharp tool for attacking conjectures in number theory, which
culminated in the solution of important special cases of the André-Oort Conjecture
by Pila.’ Chambert-Loir’s review of o-Minimality and Diophantine Geometry [25, 37]

7For award details see http://vsl2014.at/2014/07/awards-at-the-logic-colloquium/.
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provides a poetic metaphor of unicorns and grasslands. Moreover, Matthias Aschen-
brenner, Lou van den Dries, and Joris van der Hoeven were awarded the 2018 Karp
prize for their work in model theory, especially on asymptotic differential algebra
and the model theory of transseries [2]. The effectiveness of model theory results
from a combination of a methodology applicable in many areas of mathematics and
a deep understanding of the particular topic.

In the remainder of the paper we pass over the famous examples mentioned
above and describe some recent interactions of model theory with other areas of
mathematics.

3 Parallel Developments I: statistics and learning the-
ory

A child who can recognize which of a collection of figures are squares has ‘learned’
the concept of square. Machine learning abstracts this notion. Fix a set X and
write P(X) for its power set. A concept class C on X is a subset of P(X). We
discuss several models for learning C: being able to predict whether A ⊆ X is in C.
The Sauer-Shelah Lemma describes an avatar of NIP that gives sufficient conditions
when for Y ⊂ X, |CY | = |{Y ∩ Si : Si ∈ C}| grows polynomially in |Y |. Inde-
pendently discovered by three investigators (Sauer (combinatorics of set systems),
Shelah/Perles8 (model theory/geometry), Vapnik-Chervonenkis (statistics)) around
1972, [44] connected these independent discoveries twenty years later. We adapt the
set system terminology.

Definition 3.1. Suppose C = {S1, S2, . . . } is a family of subsets of a set X and
Y ⊆ X:

1. Y is shattered by C if P(Y ) ⊆ CY = {Y ∩ Si : Si ∈ C}.

2. The Vapnik-Chervonenkis (VC) dimension of C is the largest cardinality n of
a finite set Y shattered by C. If such an n exists, C ⊂ P(X) is a VC class.

Lemma 3.2 (Sauer-Shelah). If C is a family of subsets of a set X and there is a
Y ⊆ X with |Y | = n such that |CY | >

∑k−1
i=0

(n
i

)
, then C shatters a set of size k.

Equivalently, if the VC dimension of C is k and |Y | = n, then

|CY | 6
∑k
i=0

(n
i

)
= O(nk).

8Shelah [68, 254] cites ‘a little more complex result, of Perles and Shelah’.
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To translate to model theory, take X to be the universe of M , a model of a first
order theory T , and φ(x, y) a formula in the vocabulary of T . Let Cφ = {φ(M,a)|a ∈
M}. The Sauer-Shelah Lemma asserts that if a formula φ does not have the inde-
pendence property (NIP), the number of φ-types of a set of size n is a polynomial
in n with order the VC dimension of φ. The following three properties of Cφ are
equivalent: i) has finite VC dimension, ii) has NIP and iii) is PAC-learnable as we
now define.

One model for measuring ‘learnability by an algorithm’, computes the proba-
bility that the algorithm will, for a large enough sample size, predict the target
set arbitrarily well. If this probability can be made arbitrarily high predictions are
probably approximately correct (Definition 3.3). In this model for some large n, a
sample A of n elements of X is chosen randomly, and the learner is told which points
belong to C ∈ C. The goal is to use the sample to make a prediction G(A) that
estimates C with small error. More formally,

Definition 3.3 ([23]). For a fixed ε > 0 and measure µ, we say that the sample A
estimates the set C ∈ C ε-well if µ(G(A)4C) < ε. The class C is PAC-learnable
(probably approximately correct) if for any δ there is a large enough n such that
the measure of the samples of size n (computed using the product measure µn) that
estimate the sample ε-well is greater than 1− δ.

Model theory provides a general setting and a wealth of new examples [23, Section
5] for the learning theory community. E.g., since the real field is o-minimal and so
NIP, any definable family of subsets R is PAC-learnable. Until recently most of the
inter-field transfer has been from learning theory to model theory (exception [49]).
In particular, the learning theory notion of a compression scheme [50] was adapted
to the stability theory context [36]. The abstract of [28] emphasizes this impact:
‘Combining two results from machine learning theory we prove that a formula has
NIP if and only if it satisfies uniform definability of types over finite sets. This
settles a conjecture of Laskowski.’

However, PAC learning is only one of many models of machine learning. More
recently a surprising new connection arose between three such models and stable
theories. In the online learning setting, the learner is presented with a stream of
elements and is asked to guess if they belong to the target set. A class is online
learnable if there is some N such that the learner has a strategy to make at most
N mistakes in learning any set in the class. In the equivalence query (EQ) learning
model, a learner [21] attempts to identify a target set A ∈ C by means of a series of
data requests called equivalence queries. The learner has full knowledge of C, as well
as a hypothesis class H with C ⊆ H ⊆ P(X). An equivalence query consists of the
learner submitting a hypothesis B ∈ H to a teacher, who either returns yes if A = B,
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or a counterexample x ∈ A4B. In the former case, the learner has learned A, and
in the latter case, the learner uses the new information to update and submit a new
hypothesis. [21] improve the upper bounds for the number of queries (LCEQ(C,H))
required for EQ learning (and the related EQ+MQ: equivalence and membership
queries) of a class C with hypotheses H. In these cases the order the sample is
chosen is central, while it is irrelevant for the random sample in PAC-learning. This
distinction led to an ostensibly new rank on set systems: Littlestone (or thicket)
dimension (Ldim(C)).

The new insight in [21] is the discovery that if the set system is given by first
order formulas Littlestone dimension is another version of Shelah 2-rank which takes
account of the order information is presented. The maximum height k of a tree
indexed by 〈cs : s ∈ 2<k〉, where elements 〈at : t ∈ 2k〉 satisfy φ(ai, cs) exactly when
s ⊂ t is rk(φ(x, c<>)). For VC, dimension cs must equal cs′ if lg(s) = lg(s′).

[1] proves that ‘private PAC learning’ (a variant on PAC-learning appropriate
when the input data, such as medical records, need to be kept secret) implies finite
Littlestone dimension and [18] shows the converse. The consistency dimension of
C, motivated by the model theoretic notion nfcp (the finite cover property fails),
with respect to H, denoted C(C,H) is new [21] to learning theory. Here is a sample
result.

Theorem 3.4. Suppose Ldim(C) = d < ∞ and 1 < C(C,H) = c < ∞. Then
LCEQ(C,H) 6 cd.
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Bhakasar [16] showed Y = Littlestone dimension solves for learning theory the
following analogy.

Y

stability
= VC–dimension

NIP
.

Theorem 3.5 (Thicket Sauer-Shelah). [16] Let C be a set system of Littlestone
dimension k. Then the maximum number of realized leaves,

ρC(n) 6
k∑

i=0

(
n

i

)
.

Chase and Freitag [22] introduce the notion of banned sequences to give a proof
that specializes not only to each version of Sauer-Shelah considered here but further
extends the Malliaris and Terry improvement [54] (using the stability classification
to better organize the case analysis) on the bounds in a result of [24] on a case of the
Erdős-Hajnal conjecture. The use of stability theory in online learning gives both
better upper bounds and a unified framework.

4 Parallel Developments II: functional analysis
In this section we explore some striking analogies between functional analysis and
stability theory that turn out to be not at all coincidental. After tracing some of
the history we present some suggestions of Khanaki for new methods and problems
in stability theory arising from analyzing these analogies.

In [12], Ben Yaacov argued that Grothendieck ‘first’ proved the fundamental
theorem of stability theory (Fact 2.2). Like an earlier hybrid, the Gödel-Deligne
completeness theorem9, there is a kernel of truth here; there is a common core to
the central argument. But in both cases the pairs of authors have different contexts.
That is, as discussed in [12, 62], there is a topological (functional analytic) core
to Shelah’s proof that for a first order theory instability (i.e. failure of the order
property) is equivalent to the non-definability of types10. Grothendieck had earlier
isolated this argument as a theorem of general topology. Shelah rediscovered the
argument in the much more general context of complete first order theories, by
considering the Stone spaces Sφ(A) for A ⊂M |= T .

I contrast the two uses of ‘general’ in the previous paragraph. Grothendieck
found topological (function analytic) conditions for a certain result. The Stone space

9 https://ncatlab.org/nlab/show/Deligne+completeness+theorem
10Ben Yaacov focuses on the equivalent we omitted from Fact 2.2: every complete φ-type p ∈

Sφ(B) is definable; there is a formula ψφ(y) over B such that φ(x, a) ∈ p if and only if ψφ(y). We
connect a different equivalent with Grothendieck.
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(compact, totally disconnected, Hausdorff) topology used by Shelah exemplifies this
situation. But Shelah proved a general result about first order theories. Thus,
he grounded the whole range of applications across mathematics mentioned in this
article and so a context which may enable new applications of functional analytic
concepts to model theory and then across mathematics.

This section reports the work of Khanaki [41, 42, 39] in transferring theorems of
functional analysis to inspire new characterizations of some classes and new classes
of first order theories. We isolate these topological phenomena, separating them
from the linear space context [41] so as to focus on the core of the argument. By
studying the action on a Stone space which is compact, we are able to study the
space of functionals with the topology of pointwise convergence rather than various
notions of weak topology.

We review some notions and results for the topology of pointwise convergence.
If X is any set and A a subset of RX , then the topology of pointwise convergence on
A is that inherited from the usual product topology of RX . A typical neighborhood
of a function f is determined by a finite subset {x1, . . . , xn} of X and ε > 0 as:
Uf (x1, . . . , xn; ε) = {g ∈ RX : |f(xi) − g(xi)| < ε for i 6 n}. C(X) ⊆ RX denotes
the space of continuous functions from X into R; it is naturally a linear space under
pointwise addition and is equipped with sup norm. We describe the relevant function
space following [42, 1,2] and [40, 2.1].

Notation 4.1. Let T be a first order theory, M a model of T , and M∗ an |M |+-
saturated elementary extension of M .

1. Fix φ(x, y) with lg(x) = n and A a set of n-tuples contained in M∗. Sφ(A)
is the collection of types containing formulas φ(x, a) or ¬φ(x, a) for a ∈ A.
Sφopp(A) reverses the roles of x and y; now formulas φ(a, y) are in the type.

2. Define a collection of functions φ(a, y) from Sφopp(A) into 2 by φ(a, q) = 1 iff
φ(a, y) ∈ q. As φ is fixed we can identify this set of functions with A. Since
each f ∈ A maps into {0, 1}, A is uniformly bounded. Moreover, the totally
disconnected Stone topology on Sφopp(A) ensures that each function φ(a, y) is
continuous. So A ⊆ C(Sφopp(A)).

In general a space of functions from X to R has the interchangeable double limit
property if for sequences of functions fn ∈ RX and points xm ∈ X

lim
n

lim
m
fn(xm) = lim

m
lim
n
fn(xm)

when the limits on both sides exist. We translate this to our context:
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Definition 4.2. Let A ⊆ M |= T , (A,Sφopp(A)) has the interchangeable double
limit property if for any infinite sequences a = 〈an : n < ω〉 ∈ A and b = 〈bn : n <
ω〉 ∈ Sφopp(A)

lim
n

lim
m
φ(an, bm) = lim

m
lim
n
φ(an, bm)

when the limits on both sides exist.

If a and b are infinite sequences we denote by (âb) the sequence obtained by
concatenating at each n, 〈a1b1, a2b2, . . .〉.

Definition 4.3. A sequence A = 〈ai : i ∈ I〉 is φ-n-order indiscernible (over B)
in a model M if for any n any pair of properly ordered n-tuples a1 . . . an, a′1 . . . a

′
n

from A, tpφ(a,B) = tpφ(a′,B). If this holds for arbitrary n, the sequence is φ-order
indiscernible and if for all formulas ψ, order indiscernible. If the ordering of the
ai, a

′
i does not affect the equality of types, we say set-indiscernible.

Order-indiscernibility implies set-indiscernibility is one of the main equivalents
to stability [69, I.2.3.1].

Observation 4.4. T does not have the order property exactly if for each A ⊆M |=
T , (A,Sφopp(A)) has the interchangeable double limit property.

Proof. If there exist a,b with the order property, φ(ai, bj) if and only if i < j, then
limn limm φ(an, bm) = 1 since for fixed n and a tail of m φ(an, bm) is true. But the
value is 0 when the limit is taken in the opposite order.

Conversely, suppose T is stable, Fix a,b so that both limits exist and fix n > 2.
By the Ramsey theorem we can find a subsequence of (âb) that is φ-n-indiscernible.
Hence, the double limits on the subsequence are equal. And since the sequence has
double limits it must be the limit of the subsequence.

Definition 4.5. Let A be a subset of a topological space X, then the set A is rela-
tively compact in X if its closure in X is compact.

Fact 4.6 applies to A and X = Sφopp(A). See [12, 62].

Fact 4.6 (Grothendieck’s criterion). Let X be a compact topological space. Then
the following are equivalent for a norm-bounded subset A ⊆ C(X):

(i) A is relatively compact in C(X).

(ii) A has the interchangeable double limit property.

Since the interchangeable double limit property is equivalent to: φ does not have
the order property (Observation 4.4), we have:
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Theorem 4.7 (stable). φ does not have the order property if and only if for each
model M of T and A ⊂M , A is relatively compact in C(Sφopp(A)).

Khanaki [39] refines Shelah’s equivalence (Theorem 2.4) of stable with (NIP
and NSOP) in several ways by characterizing various notions in functional analytic
terms. For this, we introduce a property Aφ that yields a new characterization of
failing the strict order property (NSOP).

Definition 4.8. We say sequences a =< ai : i < ω > and b =< bj : j < ω > from
a model M witness that φ satisfies Aφ in M if

1. the independence property is uniformly blocked for φ(x, y) on a. That is, there
exist (Nφ,a, Eφ,a) with N < ω and E ⊆ {0, . . . N − 1} such that for any subset
(ai1 , . . . aij , . . . aiN ) of distinct elements of a:

¬∃y(
∧

j∈E
φ(aij , y) ∧

∧

j 6∈E
¬φ(aij , y)).

2. a,b witness φ has the order property.

Crucially, the uniformity gives that ‘blocks’ is preserved by elementary equiva-
lence, so is a property of a theory. Khanaki shows by fairly standard model theoretic
arguments:

Theorem 4.9. 1. [39, Proposition 2.4] If Aφ holds witnessed by some a,b then
some Boolean combination of instances of φ has the strict order property (φ
engenders the strict order property11 (SOP)).

2. [39, Proposition 2.7] T has the NSOP if and if only there is no formula and
sequence that witness Aφ is true.

We deduce from Theorem 4.9 an ‘intrinsic’ characterization of those formulas
φ which have the Independence Property but not the Strict Order Property. The
characterization asserts that the type of a countable sequence a that indexes an
independent family of sets is omitted and a second type of a countable sequence âb
that witnesses the strict order property is realized in any ℵ1-saturated model.

Theorem 4.10. φ has NIP but engenders SOP if and only if
for every a in an ℵ1-saturated model, M∗, of T the independence property is

uniformly blocked for φ(x, y) by some (Nφ,a, Eφ,a) with Nφ,a < ω on a and there
exists a,b that witness the order property for φ.

11This characterization was extracted from [39].
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Note that, although Nφ,a varies with a, by compactness there must be a uniform
bound N or there would be a sequence in M∗ that is not bounded. This uniformity
illustrates two instruments for the effectiveness of model theory: i) the compactness
theorem allows one to ‘concentrate’ an unbounded phenomenon in a single instance
and ii) the ability to choose models with special properties that focus a problem.
In our case, we posit a saturated model to realize the concentrated phenomenon.
In another situation, the prime model might show a certain configuration can be
avoided.

In [4, Chapter 2.3] I distinguish between a virtuous property of a theory T and a
dividing line. A property is virtuous if it has significant mathematical consequences
for the theory or its models. A property is a dividing line if it and its negation are
both virtuous. We now find some further virtuous properties suggested by the study
of Baire functions in analysis.

Definition 4.11. 1. A real valued function from a complete metric space is
Baire-1 if it is a pointwise limit of a sequence of continuous functions.

2. f ∈ RX is DBSC if it is a difference of two bounded semi-continuous functions.
This is a proper subclass of the Baire-1 functions.

It is standard (e.g. [73]) that any formula φ which does not have the independence
property has an alternation number, the maximal number nφ of elements such that
there exists an indiscernible sequence a and a b such that φ(ai, b) ↔ ¬φ(ai+1, b)
for i < n. We use a wider notion of alternation number by not requiring a to
be a sequence of indiscernibles. Khanaki shows in [39] a topological result which
translates into model theory12 as follows.

Fact 4.12. If the independence property is uniformly blocked on a sequence a then
φ has alternation number nφ,a on a and consequently φ(an, x) converges pointwise
to a function f ∈ RX that is a difference of two bounded semi-continuous functions
(DBSC).

Note the distinction in form between the two propositions in Theorem 4.13. The
first is an unconditional statement that there is a subsequence whose limit is DBSC;
the second is conditioned on the sequence being uniformly blocked.

12The ‘consequently’ in Lemma‘4.12 is ii) implies iii) of the topological Lemma 2.6 in [39].
Additional assumptions, which here amount to the observation that the φ(an, x) are continuous and
Sφopp (a) is a metric space, yield ‘ii) implies iii)’. This last condition depends on the countability of
a. For large A, Sφopp (A) is not a metric space although it is compact.
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Theorem 4.13. 1. (NIP) [39, Remark 2.11] φ has NIP if and only if for every
sequence a, there is a subsequence ai such that φ(ai, y) converges to an f ∈ RX
which is a difference of two bounded semi-continuous functions (DBSC).

2. (NSOP) [39, Remark 2.8] A complete first order theory T is NSOP if and only
if
for any formula φ and infinite sequence a if the independence property is uni-
formly blocked on a by some (Nφ,a, Eφ,a) then φ(ai, x) converges to an f that
is continuous.

Proof. 1) It is well known that NIP is equivalent to every sequence φ(an, x) has a
subsequence with bounded alternation number and so the subsequence converges.
The statement here just adds that the limit function is DSBC, which follows from
Fact 4.12.

2) Suppose T has NSOP. Then, by Theorem 4.9.2) there is no formula φ and
sequences a,b that satisfy both conditions of Aφ. Suppose there is an a satisfying
condition 1) of Aφ. Since condition 2) of Aφ fails, for any b, the pair a,b do
not witness the order property. Pillay [62, Proposition 2.2] shows that if φ does not
satisfy the order property inM , then for any sequence a ∈M , limφ(an, x) converges
to a continuous function f .

Conversely, suppose T has SOP witnessed by the formula φ so there is a sequence
a such that ∀yφ(ai, y) → φ(aj , y) if and only if i < j. Thus, if j < i, ∃y(φ(ai, y) ∧
¬φ(aj , y). In particular, there is a b so that ab witness the order property for φ;
so, condition 2) of Aφ holds. But then the independence property is blocked on a
by N = 2 and E = {1} and condition i) of Aφ is satisfied contrary to hypothesis.

Definition 4.14. Let A be a subset of a topological space X, then

(RSC) The set A is relatively sequentially compact (RSC) in X if each sequence of
elements of A has a subsequence converging to an element of X.

(SCP) The set A is sequentially complete in X if the limit of every convergent sequence
from A is continuous.

A theory T has RSC (SCP) if for every A ⊆M |= T and every φ, (A,Sφopp(A)) has
RSC (SCP).

Note that SCP of a theory is a strengthening of the characterization of NSOP
in Theorem 4.13 as SCP drops the hypothesis of the implication defining NSOP.

Using Definition 4.14, Khanaki states [39, Fact 3.1] the following version of the
Eberlein-Šmulian theorem for the topology of pointwise convergence on C(X). We
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are interested in the result when X and A are as described in Notation 4.1. As noted
A is uniformly bounded. See [77] for a short proof.
Theorem 4.15 (Eberlein-Šmulian variant). A is relatively compact in C(X) if and
only if A is both relatively sequentially compact (RSC) and sequentially complete
(SCP).

Since we know stability is equivalent to the relative compactness of A in C(X)
the following theorem just states the model theoretic translation of Theorem 4.15.
Theorem 4.16. [39, Remark 3.2] The following are equivalent:

1. φ is stable for T .

2. For every A ⊆M∗ and every φ, the pair (A,Sφopp(A)) is both RSC and SCP.
The novelty here is that SCP strictly implies NSOP and NIP is equivalent to

RSC. This is a splitting of unstable into two classes (NRSC and NSCP) that overlap
differently than IP and SOP do. The flagship IP theory, random graphs is SCP, but
the theory of [39, Remark 3.5, Example 2.15] is NSOP and IP but does not have
SCP.

Khanaki [41] introduced the notion of NIP in a model and with Pillay [42, 39]
has demonstrated the interest of such ‘stability properties’ in a fixed model in both
first order and continuous logic. Khanaki suggests in [39] that the Kechris-Louveau
hierarchy of Baire-1 functions could be translated by the scheme outlined here to
a hierarchy of theories defined analogously to RSC and SCP above. In particular,
he suggests investigating the class of theories such that convergent sequences of
functions φ(an, x) are DBSC. These suggestions are an interesting way in which
functional analysis could aid in the neo-stability project.

Several questions arise. Are these properties virtuous? Are they dividing lines?
Do they separate interesting theories? In particular, do they give applications in
other areas of math? Shelah ([70] quoted at [4, 63]) assures us that one should
explore the universe without worrying about this last question although expecting
such consequences.

I have discussed here the use of functional analytic methods in refining the stabil-
ity classification. Let me quickly mention some other applications of model theory to
functional analysis. In particular there is a lot of work around C∗ and Von Neumann
algebras. Showing specific classes of function algebras are elementary in continuous
logic is a key tool. Hart’s web page https://ms.mcmaster.ca/~bradd/#Research
contains links to many papers including the forthcoming Memoir of the American
Mathematical Society,Model theory of C∗-algebras [29]. [13] provides the background
in continuous logic. The study of metric abstract elementary classes provides an-
other perspective and links to category theory [15, 33, 48].
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5 Finite Combinatorics
I cannot attempt to survey all the interactions of model theory with combinatorics.
Recently such topics include the Erdős-Hajnal conjecture, Szmerédi’s theorem, ap-
proximate subgroups, and the Elekes-Szabó theorem. Examples come from various
places in the stability hierarchy, especially the new notion of distal theories. Here
I will concentrate on one particular investigation that involves very nicely behaved
structures from a model theoretic standpoint.

Graph theorists count graphs that have a specified property. One standard
sort of problem is to fix a class of finite graphs H that is hereditary (closed under
substructure and isomorphism) and count. The model theorists eyes light up. One
of the earliest theorems of model theory, the Łoś-Tarski theorem, asserts a class H
is hereditary exactly if it is defined by a set of universal (only ∀ in prefix) sentences
TH. And counting the number of models of each cardinality was the motivating
problem for the stability classification. The speed of H is the function sending n to
|Hn|, where |Hn| is the number of members of H with universe n. Work in the 2000’s
by Alon, Balogh, Bollobás, Morris, Thomason, Weinreich (in various combinations)
almost completely classified the possible speeds for an hereditary class of graphs:

Theorem 5.1. Let H be an hereditary class of finite graphs.

• (1) (poly/exp) For some k, |Hn| is a sum of terms pi(n)in for i < k, where
each pi(n) is a rational polynomial

• (2) (factorial) |Hn| = n(1− 1
k
−o(n))n for some k > 1.

• (3) (penultimate) |Hn| is caught between a function growing slightly slower
than nn and one slightly below 2n2.

• (4) (exponential in n2) |Hn| grows as 2Cn2+o(n2).

The penultimate, ‘next to fastest’ growth rate, class gives only a range. There
is an H whose growth rate is close to the lower limit on one infinite set of natural
numbers and close to the upper limit on another [9].

A graph is a structure with one symmetric binary relation. Can the kind of anal-
ysis carried out for graphs be extended to an arbitrary finite relational language13?
Noting that |Hn| is counting the number of quantifier-free n-types of the theory
TH consisting of the universal sentences true in H links the problem with classical

13Spencer was surprised that the Shelah-Spencer 0-1 law for graphs with edge probability n−α[72]
(α irrational) extended to arbitrary finite relational languages [8].
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(1950’s) model theory. Strikingly, the solution by Laskowski and Terry depends on
the fine analysis of the stability hierarchy. Their work illustrates one of the themes
underlying the effectiveness of model theory: approximating the finite by the infinite
[3]: study the class H of finite models by studying infinite models of TH. We need
a little history to see how more sophisticated model theory enters the picture.

In generalizing Morley’s categoricity results to uncountable vocabularies, Shelah
introduced the notion of a weakly minimal set: an infinite definable set W (x) such
that every complete type p over a model M with W (x) ∈ p has a unique non-
algebraic extension to any N �M . Strongly (weakly) minimal theories are the best
behaved ω-stable (superstable) theories.

Laskowski [45] defines a τ -formula φ(z) to be mutually algebraic if there is an
integer K so that M |= ∀x∃6Kyφ(x; y) for every proper partition z = x̂ y. If
every formula with parameters is equivalent to a Boolean combination of mutually
algebraic formulas the structure is mutually algebraic. An incomplete theory T is
mutually algebraic if and only if every completion is.

Simplifying (abusing) the original notation we say a quantifier-free n-type p over
a finite set A ⊂ M is m-large in M if there are m pairwise disjoint realizations of
p. And T has unbounded arrays if for arbitrarily large m and N there is an M |= T
such that for some finite A there are at least N m-large types over A.

Theorem 5.2. An incomplete theory T is mutually algebraic if and only if every
atomic formula has uniformly bounded arrays in every model M of T [47].

Each model of a complete theory T is mutually algebraic if and only if T is weakly
minimal and algebraic closure is trivial on models of T [45].

Laskowski and Terry [46] use these model theoretic notions to obtain new results
measuring speeds.

Theorem 5.3. Let H be an hereditary class of finite structures in a language with
finitely many relation symbols with maximal arity r.

• Classes 1) and 2) are as in graphs.

• But the higher speeds depend on the arity r.

– (3) (penultimate) |Hn| is caught between a function growing slightly slower
than nn and one with growth approximately 2nr−ε.

– (4) (exponential in nr) |Hn| grows as 2Cnr+o(nr).

As in the graph case, there are examples showing that the range of solutions
in the penultimate case actually occur. The argument divides into two main cases.
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On the one hand the authors show theories with unbounded arrays (so not mutually
algebraic by Theorem 5.2) fall into classes 3) and 4) and then analyze the distinction.
On the other, they break the mutually algebraic theories into three classes using one
further concept.

A countable structure M is cellular ([17]) if for some n it admits a partition
into a finite set K and m families 〈Ci,j : i < m, j < ω〉 of finite sets such that for
each permutation σ of ω and i < m there is σi ∈ aut(M) mapping each Ci,j onto
Ci,σ(j), and fixing K ∪ ⋃` 6=i,j<ω C`,j pointwise. Braunfield and Laskowski prove a
model M is cellular if and only if it is mutually algebraic and ℵ0-categorical. Call
TH k-cellular if every model of the (incomplete) theory of H is k-cellular.

Laskowski and Terry (unpublished) have shown that if TH is k-cellular where
k = max{|Ci,1| : i < m} (k depends only on TH) then its growth rate is in class 1) if
k = 1 and in class 2) if k > 2; if TH is mutually algebraic but not k-cellular for any
k then it is in class 3). Thus we have captured the growth rate of a class of finite
structures by purely model theoretic properties of an associated theory. Here, the
notion of cellularity was developed in response to a problem in graph theory but the
characterization is entirely model theoretic.

This extension of a result for graphs to arbitrary relational languages uses not
only a refinement (ℵ0-categorical, mutually algebraic) of the stability classification
that gives very precise control over definable sets but invokes the precise model
theoretic notion of interpretation to control the mutually algebraic structures by
ones which are ‘totally bounded’. It uses deep model theoretic analysis to show
many arguments that appeared to be ‘graph-theoretic’ are actually determined by
properties of arbitrary finite relational structures.

6 The value of formalization

This article focuses on understanding why model theory has so many applications
across mathematics. Our choice of topics was restricted by space and time, the
desire to emphasize the widening range of applications, and the need to avoid areas
where the technical mathematical prerequisites are huge. Two, more or less random
examples of the last are [10, 20].

Applying formal definability to traditional mathematical topics is a central point.
But, it is exploited by each branch of pure logic (not to mention logic/computer sci-
ence). Definability plays not only a central role in exploring relations within set
theory (V=L, determinacy, etc.) but via the notion of Borel isomorphism in classi-
fying problems arising in many areas, e.g. [38, 65]. Computability theory has con-
tributed to the general theory of randomness; the large literature was summarised
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in [Nie12]. In his retiring presidential address at the 2019 ASL meeting in Prague,
Ulrich Kohlenbach, described proof-mining as ‘local proof theory’ [43]. In the gen-
eral setting of abstract metric spaces, he describes results in fixed point and ergodic
theory, convex optimization, geodesic geometry, Cauchy problems, game theory etc.
General metatheorems are applied to the formal proof of theorem in specific areas
that have been formalized in an appropriate way. This is analogous to applying re-
sults about ω-stable theories to differentially closed fields as well as compact complex
manifolds.

The particular applicability of model theory stems from:
1. Axiomatization of specific theories yields better understanding.

2. The model theoretic classification is orthogonal to usual organizations (algebra,
analysis, geometry . . . ); nevertheless, it provides essential guidance to transfer
methods and results from one area to another.

3. Parallel developments in distinct areas illustrate the ubiquity of patterns iso-
lated in model theory.

4. Compactness allows the concentration of unbounded phenomena into a single
instance.

5. Specific kinds (e.g. Saturated or atomic) of models are more easily analyzed.

6. Ranks support proofs by induction of analogous properties in different areas.

7. Structure theory from general model theory induces structure theory that an-
swers existing questions in various areas.

8. Abstract model theoretic conditions imply the existence of groups and fields.
The algebraic connection is inevitable.

9. Collections of finite structures can be ‘approximated’ by well-behaved infinite
structures.

Of course, the work involves both the model theoretic framework and the often
even more complex technology of the particular area. Model theory is not an isolated
subject but an integral part of the mathematical enterprise.
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1 Introduction
Stated abstractly, a bilattice is an algebraic structure with two orderings meeting
various conditions, separately and jointly. Stated more intuitively, a bilattice is
a space of truth values with two orderings, one intended to represent degrees of
truth, the other intended to represent the degrees of information that lead us to
assign these particular truth values. Bilattices were introduced by Matt Ginsberg,
[33, 34, 35], with the idea that they would be useful in artificial intelligence. In fact
many of the ideas behind bilattices have a substantial pre-history, with details to
be found in [13, 31]. It has often happened in scientific history that, when the time
is ripe, a range of ideas coalesces into a subject to be investigated for its own sake.
As algebraic structures, bilattices can play a direct role in semantical investigations.
But also they can be made to carry a logic, and so have an associated proof theory.
Both the semantical and the proof theoretical roles will be discussed here.

2 The Most Important Example
Bilattices are as varied as lattices themselves, but one example stands out. It was
introduced independently, is well-known, influential, and illustrates every nice fea-
ture any bilattice might have. We refer to the well-known Belnap-Dunn four-valued
structure, [5], shown in Figure 1. In Belnap’s paper two orderings were discussed,
but independently. The diagram in Figure 1 is a double Hasse diagram, and shows
Belnap’s two orderings together, as is done for bilattices generally.

Following Belnap-Dunn, think of the four values as sets of classical truth values,
consisting of values supplied to us by outside agents. Then f is that some said false
and nobody said true, t is some said true and nobody said false, > is some said true
and some said false, ⊥ is nobody said anything. Moving upward involves an increase
in information (not necessarily verified information, but information nonetheless).
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Figure 1: The Bilattice FOUR

The increase goes from no information, to some, to too much. Moving from left to
right involves an increase in truth or a decrease in falsity. Then f ≤t > because >,
like f , includes false, but > also includes true, and so degree of truth has increased.
Similarly f ≤t ⊥ because degree of falsity has decreased. And so on.

In FOUR, both orderings have the structure of a bounded lattice. Meets and
joins exist. Following bilattice conventions, meet and join for the ≤t ordering are
denoted ∧ and ∨ and have properties meant to generalize logical conjunction and
disjunction. Meet and join for the ≤k ordering are denoted ⊗ and ⊕. Commonly
with bilattices, ⊗ is read as consensus because x⊗y is the least information common
to both x and y. Likewise ⊕ is read as gullability or accept all. x⊕ y simply lumps
together what each of x and y tell us. Figure 2 has the tables for all these operations
of FOUR.

∧ f t ⊥ >
f f f f f
t f t ⊥ >
⊥ f ⊥ ⊥ f
> f > f >

∨ f t ⊥ >
f f t ⊥ >
t t t t t
⊥ ⊥ t ⊥ t
> > t t >

⊗ f t ⊥ >
f f ⊥ ⊥ f
t ⊥ t ⊥ t
⊥ ⊥ ⊥ ⊥ ⊥
> f t ⊥ >

⊕ f t ⊥ >
f f > f >
t > t t >
⊥ f t ⊥ >
> > > > >

Figure 2: Binary Connectives of FOUR

There is a plausible negation operation corresponding to left right symmetry.
There is also a similar vertical operation, known as conflation in the general bilattice
context. Figure 3 has the tables for these in FOUR.

All this structure is quite tightly interconnected. For instance with four binary
operations there are twelve possible distributive laws. Some, like x ∧ (y ∨ z) =
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¬
f t
t f
⊥ ⊥
> >

−
f f
t t
⊥ >
> ⊥

Figure 3: Unary Connectives of FOUR

(x ∧ y) ∨ (x ∧ z), involve only one kind of operation, in this case those associated
with the ≤t ordering. Some, like x ∧ (y ⊕ z) = (x ∧ y)⊕ (x ∧ z), involve operations
associated with both orderings. In fact, all twelve distributive laws hold in FOUR.

Going further, negation and conflation commute, ¬ − x = −¬x. There are De
Morgan laws for both orderings.

¬(x ∧ y) = ¬x ∨ ¬y
¬(x ∨ y) = ¬x ∧ ¬y
−(x⊗ y) = −x⊕−y
−(x⊕ y) = −x⊗−y

And there are what might be called pseudo De Morgan laws across orderings.

¬(x⊗ y) = ¬x⊗ ¬y
¬(x⊕ y) = ¬x⊕ ¬y
−(x ∧ y) = −x ∧ −y
−(x ∨ y) = −x ∨ −y

Note that FOUR contains subsystems corresponding to familiar logics. {f , t} be-
haves like classical truth using ∧, ∨, and ¬. {f ,⊥, t} similarly behaves like Kleene’s
strong three valued logic. Actually, {f ,>, t} has similar behavior, but informally
⊥ is much like the value of undefined, u, that Kleene talked about in [38], while >
is like the inconsistent truth value one finds in Priest’s Logic of Paradox, LP. In a
sense, FOUR contains multitudes.

All this tightly connected machinery is of more than formal interest. It plays a
natural role in many of the applications of FOUR to issues of importance in both
philosophical logic and computer science. But this is far enough to take this single
example. It is time to move to the full bilattice family.
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3 Bilattices
Bilattices are a family of structures having some, or all, of the signfiicant properties
mentioned in the previous section as applicable to FOUR. We give the general
definitions below. We should note that the term bilattice is somewhat loose, and has
varied in small ways over the years. For instance, negation is generally considered to
be a basic part, but with different conditions than was the case originally. Bounds are
built in below, but bilattices without bounds have been investigated. One must be
careful to note what a particular author’s practice is. Here we begin with structures
having two orderings, with no connections between the orderings postulated.

Definition 3.1. The structure B = 〈B,≤t,≤k〉 is a pre-bilattice provided B is a
non-empty set and ≤t and ≤k are partial orderings each giving B the structure of a
bounded lattice. We will assume all pre-bilattices are non-trivial, meaning that the
extreme elements, bottom and top in each ordering, are all distinct.

We refer to the ≤t order as the truth ordering. As was our practice with FOUR,
meet and join operations for the truth ordering are denoted by ∧ and ∨, bottom
is denoted by f and top by t. Similarly the ≤k is the information ordering. For
it, meet and join operations are denoted ⊗, consensus and ⊕, gullability, bottom is
denoted by⊥ and represents total ignorance; top is denoted by> and represents total
information, even allowing inconsistencies. Note that our non-triviality condition
amounts to assuming that t, f , >, and ⊥ are all distinct.

Historically the ≤k ordering was referred to as a “knowledge ordering”, hence
the subscript k. Calling it an information ordering is better, but the k subscript has
become somewhat traditional.

Pre-bilattices have two orderings, with no interconnecting conditions required.
Things get interesting when connections between the orderings are imposed. Typi-
cally, a pre-bilattice with additional conditions is referred to just as a bilattice with
those conditions.

Definition 3.2. A pre-bilattice 〈B,≤t,≤k〉 is:

Interlaced if each of the operations ∧, ∨, ⊗, and ⊕ is monotone with respect
to both orderings;

Distributive if all 12 distributive laws connecting ∧, ∨, ⊗, and ⊕ are valid.

Interlacing was not mentioned when discussing FOUR because it is a conse-
quence of distributivity, which is a property that FOUR has. However, interlacing
is strictly weaker than distributivity, as an example in the next section will show.
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Then it is good to get some idea of just what the interlacing conditions are actu-
ally requiring. In any pre-bilattice, a ≤t b implies a ∧ c ≤t b ∧ c by the following
lattice-theoretic argument. Suppose a ≤t b. Then a∧ c ≤t a because a∧ c is a lower
bound for {a, c} and hence is below a. Since a ≤t b, then a ∧ c ≤t b. Similarly
a ∧ c ≤t c. Then a ∧ c is a lower bound for {b, c} and hence a ∧ c ≤t b ∧ c because
b ∧ c is the greatest lower bound for {b, c}. In a similar way it can be shown that
we always have a ≤t b implies a ∨ c ≤t b ∨ c, and a ≤k b implies both a⊗ c ≤k b⊗ c
and a⊕ c ≤k b⊕ c. What interlacing adds is cross conditions, connecting operations
pertinent to one of the orderings with the other order. Thus we have the following
new items in an interlaced bilattice.

a ≤t b implies a⊗ c ≤t b⊗ c
a ≤t b implies a⊕ c ≤t b⊕ c
a ≤k b implies a ∧ c ≤k b ∧ c
a ≤k b implies a ∨ c ≤k b ∨ c

Distributivity is required to hold not only within each ordering, as in a∧(b∨c) =
(a ∧ b) ∨ (a ∧ c), but across the two orderings, as in a ∧ (b ⊗ c) = (a ∧ b) ⊗ (b ∧ c).
Distributivity implies interlacing. For instance, suppose a ≤k b. Then a⊗ b = a, so
(a ⊗ b) ∧ c = a ∧ c, so assuming distributivity, (a ∧ c) ⊗ (b ∧ c) = a ∧ c, and hence
a ∧ c ≤k b ∧ c. As we noted above, interlacing does not imply distributivity.

Finally, a negation is commonly assumed and, less frequently, an analogous sec-
ond symmetry operation.

Definition 3.3. Let B = 〈B,≤t,≤k〉 be a pre-bilattice.

1. B has a negation if there is a mapping ¬ : B → B such that

(Neg-1) if a ≤t b then ¬b ≤t ¬a,
(Neg-2) if a ≤k b then ¬a ≤k ¬b,
(Neg-3) ¬¬a = a.

2. B has a conflation if there is a mapping − : B → B such that

(Con-1) if a ≤k b then −b ≤k −a,
(Con-2) if a ≤t b then −a ≤t −b,
(Con-3) −− a = a.

3. Negation and conflation commute if both are present, that is, −¬a = ¬ − a.
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In the literature negation is commonly assumed. Conflation is less common, but
it is not generally assumed unless negation is present, in which case commutation
is also assumed. Our definitions are given as properties of the orderings, but the
following shows that the De Morgen laws noted earlier for FOUR are consequences
(indeed, equivalences).

Proposition 3.4 (De Morgan). Let B = 〈B,≤t,≤k〉 be a pre-bilattice.

1. If B has negation then ¬(x ∧ y) = ¬x ∨ ¬y and ¬(x ∨ y) = ¬x ∧ ¬y, while
¬(x⊗ y) = ¬x⊗ ¬y and ¬(x⊕ y) = ¬x⊕ ¬y.

2. If B has conflation then −(x⊗ y) = −x⊕−y and −(x⊕ y) = −x⊗−y, while
−(x ∧ y) = −x ∧ −y and −(x ∨ y) = −x ∨ −y.

Proof. We show one item, as representative of the rest. Suppose B has negation.
Since x ∧ y ≤t x, then by (Neg-1) ¬x ≤t ¬(x ∧ y). Similarly ¬y ≤t ¬(x ∧ y), and
so ¬x ∨ ¬y ≤t ¬(x ∧ y). Further, ¬x ≤t ¬x ∨ ¬y, so ¬(¬x ∨ ¬y) ≤t ¬¬x = x, by
(Neg-1) and (Neg-3). Similarly ¬(¬x ∨ ¬y) ≤t y, so ¬(¬x ∨ ¬y) ≤t x ∧ y. Then
¬(x ∧ y) ≤t ¬¬(¬x ∨ ¬y) by (Neg-1), so ¬(x ∧ y) ≤t ¬x ∨ ¬y by (Neg-3).

Conflation, when present, can be used to characterize interesting substructures
of a bilattice, though we will see that these substructures may not exhaust the entire
of a bilattice.

Definition 3.5. Let B = 〈B,≤t,≤k〉 be a pre-bilattice with a negation and a con-
flation that commute. A member x ∈ B is:

Consistent if x ≤k −x,

Anticonsistent if −x ≤k x,

Exact if x = −x.

Note that the exact members of B are also both consistent and anticonsistent.
While the categories above are defined using the information ordering, it is with
respect to the truth ordering that they are particularly nice.

Proposition 3.6. Let B = 〈B,≤t,≤k〉 be an interlaced bilattice with a negation
and a conflation that commute. Each of the consistent, anticonsistent, and exact
subclasses of B are closed under ∧, ∨, and ¬.
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Proof. We show a few parts of this; the rest are similar. Suppose we have a commut-
ing negation and conflation, and suppose x and y are consistent, so that x ≤k −x
and y ≤k −y.

x∧ y ≤k −x∧−y using interlacing, and −x∧−y = −(x∧ y) by Proposition 3.4,
so x ∧ y ≤k −(x ∧ y); hence x ∧ y is consistent. In a similar way x ∨ y is consistent.
Finally, since x ≤k −x then ¬x ≤k ¬ − x by (Neg-2), and so ¬x ≤k −¬x since
negation and conflation commute. Then ¬x is consistent.

It is easy to check that in the bilattice FOUR the exact members are {f , t}, the
classical values; the consistent members are {f ,⊥, t}, the ones we connected with
Kleene’s strong three valued logic; and the anticonsistent members are {f ,>, t}, the
ones we connected with Priest’s logic of paradox. In bilattices other than FOUR
the three categories can be thought of as generalizations of classical logic, Kleene
strong three valued logic, and logic of paradox. Many interesting properties carry
over.

4 Examples
We have already seen FOUR, a distributive (and hence interlaced) bilattice with
commuting negation and conflation. When we come to infinitary operations, Sec-
tion 9, it will be seen to be infinitarily distributive, and hence infinitarily interlaced,
simply because it is finite. In short, FOUR is a model for everything we discuss.
Now for some examples that are more complicated.

Figure 4 shows a bilattice taken from [33], where it was constructed to model
default reasoning. In addition to the usual extreme values there are df and dt, for
default falsehood and default truth. Also there is d> = df ⊕ dt, for default both
false and true. Ginsberg gives a thorough analysis of this. Here we only note that
it provides us with an example of a bilattice that is not interlaced, and hence not
distributive either. In it f ≤t df but f ⊗ d> 6≤t df ⊗ d> because f ⊗ d> = d> and
df ⊗ d> = df but d> 6≤t df .

Figure 5 shows a nine-valued bilattice that is about as well-behaved as FOUR.
It is interlaced, indeed distributive, has negation and conflation, and these commute.
Exact values are {f , d>, t}, consistent values are {f , d>, t, df , dt,⊥}, and anticon-
sistent values are {f , d>, t, of , ot,>}, which together exhaust the entire bilattice.

Finally something seriously more elaborate. Figure 6 shows a bilattice that,
despite its forbidding appearance, actually has interesting theoretical applications.
This bilattice is distributive, and has commuting negation and conflation. However,
neither negation nor conflation corresponds to a simple symmetry of the diagram.
While the node names will take on deeper meaning in Section 5, they do provide an
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Figure 4: The Bilattice DEFAULT

Figure 5: The Bilattice NINE

easy description of negation: the negation of node 〈x, y〉 is node 〈y, x〉. Conflation
has a similar but more complicated characterization, and we will come to it in detail
in Proposition 5.2. For now, just assume conflation is given by the table in Figure 7.

As noted, it is the case that negation and conflation commute. For instance,
¬ − 〈t,⊥〉 = ¬〈⊥, f〉 = 〈f ,⊥〉 and −¬〈t,⊥〉 = −〈⊥, t〉 = 〈f ,⊥〉, so ¬ − 〈t,⊥〉 =
−¬〈t,⊥〉. Exact values are {〈t, f〉, 〈>,>〉, 〈⊥,⊥〉, 〈f , t〉}. Consistent values are
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Figure 6: A Sixteen Valued Bilattice

x −x
〈t, t〉 〈f , f〉
〈⊥, t〉 〈f ,⊥〉
〈>, t〉 〈f ,>〉
〈t,>〉 〈>, f〉
〈t,⊥〉 〈⊥, f〉
〈f , t〉 〈f , t〉
〈⊥,>〉 〈>,⊥〉
〈⊥,⊥〉 〈⊥,⊥〉
〈>,>〉 〈>,>〉
〈>,⊥〉 〈⊥,>〉
〈t, f〉 〈t, f〉
〈f ,>〉 〈>, t〉
〈f ,⊥〉 〈⊥, t〉
〈⊥, f〉 〈t,⊥〉
〈>, f〉 〈t,>〉
〈f , f〉 〈t, t〉

Figure 7: Sixteen Valued Conflation

{〈t, f〉, 〈>,>〉, 〈⊥,⊥〉, 〈f , t〉, 〈⊥, f〉, 〈>, f〉, 〈f ,>〉, 〈f ,⊥〉, 〈f , f〉}. Anticonsistent values
are {〈t, f〉, 〈>,>〉, 〈⊥,⊥〉, 〈f , t〉, 〈t,⊥〉, 〈t,>〉, 〈>, t〉, 〈⊥, t〉, 〈t, t〉. The values 〈⊥,>〉

983



Fitting

and 〈>,⊥〉 do not fall into any of these categories. They are not exact because they
are conflations of each other, and not of themselves. And they are neither consistent
nor anticonsistent, since they are not comparable in the information ordering.

Function spaces provide a useful family of bilattices. We will see them in ac-
tion when discussing applications connecting bilattices with Kripke-style theories of
truth.

Definition 4.1. Let B = 〈B,≤t,≤k〉 be a bilattice, and let S be a set. The function
space BS is the bilattice whose domain is the set consisting of all functions from S
to B, and with pointwise orderings. That is, for f, g ∈ BS :

f ≤t g if and only if f(x) ≤t g(x) for all x ∈ S
f ≤k g if and only if f(x) ≤k g(x) for all x ∈ S

It is easy to check that BS is a bilattice: both orderings are those of bounded
lattices, and so on. Here are some further items whose verification is left to you.

Proposition 4.2. Let B = 〈B,≤t,≤k〉 be a bilattice, let S be a set, and let f, g ∈ BS.

1. The least member of BS in the pointwise ≤k ordering is the function that is
identically ⊥ on S, where ⊥ is the least member of B in the ≤k ordering on
B. Similarly for the other three extreme elements.

2. (f ∧ g)(x) = f(x) ∧ g(x), and similarly for ∨, ⊗, and ⊕.

3. If B is (infinitarily) interlaced, so is BS. Similarly for (infinitarily) distribu-
tive.

4. If B has negation, so does BS, and (¬f)(x) = ¬(f(x)), and similarly for
conflation.

5. If negation and conflation commute in B they also do in BS.

6. f is exact in BS if and only if f(x) is exact in B for every x, and similarly for
consistent and anticonsistent.

5 The Representation Theorem
There is a way of constructing bilattices, with conditions imposed, that is completely
general in the sense that every bilattice is isomorphic to a bilattice constructed in
this way. In [18, 17] it is called the Ginsberg-Fitting product, but we will just call it
a bilattice product. It has a complicated history, see [31, 13].
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Definition 5.1 (Bilattice Product). Let L1 = 〈L1,≤1〉 and L2 = 〈L2,≤2〉 be
bounded lattices. Their bilattice product is defined as follows.

L1 � L2 = 〈L1 × L2,≤t,≤k〉
〈a, b〉 ≤k 〈c, d〉 iff a ≤1 c and b ≤2 d

〈a, b〉 ≤t 〈c, d〉 iff a ≤1 c and d ≤2 b

Note that in the definition of ≤t above, the order reverses for the second com-
ponent. The term twist structure is rather common for such things.

The definition of bilattice product is strictly algebraic but there are intuitive,
everyday examples involving groups of experts. Imagine we have one group, the pros,
whose members can announce their opinions for something, or refrain from doing
so, and another group, the cons, who similarly announce opinions against, or don’t.
The two groups could be distinct, overlap, or be identical. Think of L1 and L2 as
consisting of all subsets of the first group and of the second group, respectively. That
is, a member of L1 is a set of experts each of whom say ‘yes’ to some proposition,
and a member of L2 is a set of experts who say ‘no’ to some proposition. For both
L1 and L2 the ordering relations are simply subset. A member of the corresponding
bilattice, then, is a generalized truth value that tells us who approves and who
rejects, where approving and rejecting are independent actions. For such a bilattice
we have an increase in information if additional experts declare their opinions, either
for or against. We have an increase in degree of truth if additional experts declare
in favor while some withdraw from declaring against. Of course not all bilattices are
of this kind, but it is good to have it in mind while discussing the representation
theorems that follow.
Proposition 5.2 (Bilattice Construction Properties). Let L1 = 〈L1,≤1〉 and L2 =
〈L2,≤2〉 be bounded lattices. In the following we write 01 and 02 for the smallest
elements of L1 and L2 respectively, and 11 and 12 for the largest, t1 and t2 for the
respective joins, and u1 and u2 for the meets.

1. L1 � L2 is a an interlaced bilattice.

2. The extreme elements of L1 � L2 are ⊥ = 〈01, 02〉, > = 〈11, 12〉, f = 〈01, 12〉,
and t = 〈11, 02〉.

3. The bilattice operations of L1 � L2 are the following.

〈a, b〉 ∧ 〈c, d〉 = 〈a u1 c, b t2 d〉
〈a, b〉 ∨ 〈c, d〉 = 〈a t1 c, b u2 d〉
〈a, b〉 ⊗ 〈c, d〉 = 〈a u1 c, b u2 d〉
〈a, b〉 ⊕ 〈c, d〉 = 〈a t1 c, b t2 d〉
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4. If L1 and L2 are distributive lattices then L1 � L2 is a distributive bilattice.

5. If L1 = L2 = L then L� L is a bilattice with negation, where ¬〈a, b〉 = 〈b, a〉.

6. If L1 = L2 = L is a non-distributive De Morgan algebra then L � L is a
bilattice with a conflation that commutes with negation, where −〈a, b〉 = 〈b, a〉,
writing overbar for the De Morgan involution. (A non-distributive De Morgan
algebra is like a De Morgan algebra, but distributivity is not required.)

Proof. This proof is really something of an exercise. We show the first part of item
3 as an illustration, and leave the rest to you. Assume 〈a, b〉, 〈c, d〉 ∈ L� L.

au1 c ≤1 a and b ≤2 bt2 d so 〈au1 c, bt2 d〉 ≤t 〈a, b〉. Similarly 〈au1 c, bt2 d〉 ≤t

〈c, d〉. So 〈a u1 c, b t2 d〉 is a lower bound for 〈a, b〉 and 〈c, d〉 in the ≤t ordering.
Suppose 〈x, y〉 ≤t 〈a, b〉 and 〈x, y〉 ≤t 〈c, d〉, so that 〈x, y〉 is a lower bound. Then

x ≤1 a and x ≤1 c, so x ≤1 au c. Similarly btd ≤2 y. Then 〈x, y〉 ≤t 〈au1 c, bt2 d〉.
So 〈a u1 c, b t2 d〉 is the greatest lower bound for 〈a, b〉 and 〈c, d〉.

It follows that 〈a, b〉 ∧ 〈c, d〉 is 〈a u1 c, b t2 d〉.

What is harder to show is that all these conditions reverse, and hence we have a
completely general method for producing bilattices—we have a bilattice representa-
tion theorem. We discuss this in Section 7, after taking a fresh look at our bilattice
examples.

6 Examples Again
The bilattice product operation makes bilattice examples easy to come by, and
indeed we have already seen some of the results. Suppose we start with the simplest,
where we use the De Morgan lattice for classical logic, shown in Figure 8a.

The bilattice product of this with itself is, isomorphically, the bilattice FOUR
from Figure 1, but in Figure 8b we have used as node labels the ones we get from
the product construction. In a similar way the bilattice product of the standard
three-valued lattice with itself is given in Figure 9. It is a version of what we saw in
Figure 5.

As more elaborate example, the 16 element bilattice shown in Figure 6 is the
bilattice product of the bilattice FOUR with itself, considering FOUR as a lattice
by using only the ≤t ordering. In the double Hasse diagram of Figure 6 we already
made use of node labels corresponding to the product representation.

Recall that in Section 5 we used sets of experts as motivation. This can be
made into a proper example. Let E be a finite set, informally called “experts”. The
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(a) The Classical Lattice (b) FOUR Again

Figure 8: The Prime Example

(a) Three-Valued Lattice (b) NINE Again

Figure 9: The Next Easiest Example

collection of all subsets of E is a lattice under the subset ordering, ⊆. Then meet
and join are simply intersection and union. It becomes a De Morgan lattice by using
the complementation operation. If we form the bilattice product of this lattice with
itself, we get exactly what was discussed in Section 5. A member of the product
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bilattice is a pair of sets of experts, and we can plausibly think of members of the
first component as the set of those who say “yes” to something, and members of the
second component as the set of those who say “no.”

Our final example has a somewhat different feel to it. Start with the lattice
[0, 1], the closed unit interval, with the usual ordering ≤, thus making meet and
join be minimum and maximum. Use x 7→ 1 − x as DeMorgan involution. Form
the bilattice product of this structure with itself. This is a bilattice in which each
element represents a degree of belief and a degree of doubt, in a plausible sense.

7 The Representation Theorem Continued
Proposition 5.2 reverses, and thus the bilattice product is a very general piece of
construction machinery. These results were proved over time, with it first being
established for distributive bilattices in a succession of papers [33, 21, 22]. Finally the
most general version, for interlaced bilattices, was shown in [3] and [46], essentially
simultaneously. (It eventually was realized that the result already existed, using
different terminology and in a purely algebraic setting. See [13] for the history of
this.) Here we give a presentation based on the proof from [3]. Proposition 5.2 makes
constructing bilattices easy. The Proposition below turns proofs about bilattices into
fairly straightforward computations. (It is not necessary to go through the proof to
make use of the result.)

Proposition 7.1 (Bilattice Representation). Let B = 〈B,≤t,≤k〉 be an interlaced
bilattice.

1. There are bounded lattices L1 = 〈L1,≤1〉 and L2 = 〈L2,≤2〉, unique up to
isomorphism, such that B is isomorphic to L1 � L2.

2. If B is a distributive bilattice, L1 and L2 will be distributive lattices.

3. If B has negation, we can take L1 = L2 and negation in L1 � L2 as ¬〈a, b〉 =
〈b, a〉. Negation is preserved by the isomorphism.

4. If B has negation and conflation, in addition to 3 we can take L1(= L2) to be
a non-distributive De Morgan algebra and −〈a, b〉 = 〈b, a〉, writing overbar for
the De Morgan involution. Conflation is preserved by the isomorphism.

We begin with some observations that should help motivate the proof. Suppose
we have a bilattice L1 �L2 that was constructed as a product of two lattices. Note
that 〈a, b〉 ∨ ⊥ = 〈a, b〉 ∨ 〈01, 02〉 = 〈a t 01, b u 02〉 = 〈a, 02〉. In a similar way,
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〈a, b〉 ∧ ⊥ = 〈01, b〉. This almost gets us the two components, a and b of the pair
〈a, b〉, and what we did get can be used as stand-ins for them. We need to reverse
engineer what we just noted.

We begin with a fundamental result from [3], connecting machinery from the two
bilattice orderings.

Proposition 7.2. In an interlaced bilattice B, for any a ≤t b,

a ≤t x ≤t b if and only if a⊗ b ≤k x ≤k a⊕ b.

Likewise for any a ≤k b,

a ≤k x ≤k b if and only if a ∧ b ≤t x ≤t a ∨ b.

Proof. Suppose a ≤t x ≤t b. By interlacing, a⊗ (a⊗ b) ≤t x⊗ (a⊗ b) ≤t b⊗ (a⊗ b),
or a ⊗ b ≤t x ⊗ (a ⊗ b) ≤t a ⊗ b. Then x ⊗ (a ⊗ b) = a ⊗ b, and it follows that
a⊗ b ≤k x. By a similar argument using ⊕ instead of ⊗, x ≤k a⊕ b.

Suppose a ≤t b and a⊗ b ≤k x ≤k a⊕ b. By interlacing, a ∧ (a⊗ b) ≤k a ∧ x ≤k

a∧ (a⊕ b). Also since a ≤t b then again by interlacing a⊗ a ≤t a⊗ b, so a ≤t a⊗ b,
and then a∧(a⊗b) = a. Similarly a∧(a⊕b) = a. Combining these, a ≤k a∧x ≤k a,
so a ∧ x = a, and hence a ≤t x. In a similar way, x ≤t b.

The second item is similar.

Here are some consequences, which will be of use of in proving Proposition 7.1.

Proposition 7.3. In any interlaced bilattice,

t⊗ f = ⊥
t⊕ f = >
> ∧⊥ = f
> ∨⊥ = t,

and for any x,

(x ∨ ⊥) ∧ > = x ∧ >
(x ∧ ⊥) ∨ > = x ∨ >
(x ∨ >) ∧ ⊥ = x ∧ ⊥
(x ∧ >) ∨ ⊥ = x ∨ ⊥

and also
(x ∧ ⊥)⊕ (x ∨ ⊥) = x.
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Proof. We have f ≤t x ≤t t for any x, so f ≤t ⊥ ≤t t. Then by Proposition 7.2,
f⊗t ≤k ⊥ ≤k f⊕t. From the first of these two inequalities and the trivial ⊥ ≤k f⊗t
we conclude f ⊗ t = ⊥. The next three items are similar.

Since ⊥ ≤k x, by interlacing x ∨ ⊥ ≤k x ∨ x = x. Then x ∨ ⊥ ≤k x ≤k >,
and by the second part of Proposition 7.2 (x ∨ ⊥) ∧ > ≤t x ≤t (x ∨ ⊥) ∨ >, so
(x ∨ ⊥) ∧ > ≤t x and it follows by interlacing that (x ∨ ⊥) ∧ > ≤t x ∧ >. In the
other direction, x ≤t x ∨ >, so x ∧ > ≤t (x ∨ ⊥) ∧ >. Then x ∧ > = (x ∨ ⊥) ∧ >.
Again the next three items are similar.

By using interlacing, (x ∧ ⊥)⊕ (x ∨ ⊥) ≤k (x ∧ x)⊕ (x ∨ x) = x⊕ x = x. Also,
x∧⊥ ≤t x ≤t x∨⊥ so by Proposition 7.2, (x∧⊥)⊗(x∨⊥) ≤k x ≤k (x∧⊥)⊕(x∨⊥).
Since we have (x ∧ ⊥) ⊕ (x ∨ ⊥) ≤k x and x ≤k (x ∧ ⊥) ⊕ (x ∨ ⊥) we have x =
(x ∧ ⊥)⊕ (x ∨ ⊥).

Remark 7.4. There are more results with similar proofs. For instance here is a
list, given as Corollary 2.8 in [3]. In an interlaced bilattice, all of the following are
equal to x: (x∧⊥)⊕ (x∨⊥), (x⊗ f)⊕ (x⊗ t), (x∧>)⊗ (x∨>), (x⊕ f)⊗ (x⊕ t),
(x⊗ f) ∨ (x⊕ f), (x ∧ ⊥) ∨ (x ∧ >), (x⊗ t) ∧ (x⊕ t), (x ∨ ⊥) ∧ (x ∨ >).

Now, finally, we show the central item.

Proof. Of Proposition 7.1 Part 1. Throughout the following, B = 〈B,≤t,≤k〉 is an
interlaced bilattice.

Existence: Two structures are specified, which will be shown to be bounded lattices.
Recalling the remarks at the beginning of the section, let L1 = 〈{x ∨ ⊥ | x ∈
B},≤1〉 where ≤1 is ≤t restricted to the set. Likewise let L2 = 〈{x ∧ ⊥ | x ∈
B},≤2〉, where ≤2 is ≤t reversed restricted to the set.

Lattice Structure: L1 is a sublattice of B under the ≤t ordering. Suppose (x ∨
⊥), (y ∨ ⊥) ∈ L1. We trivially have closure under ∨ since (x ∨ ⊥) ∨ (y ∨ ⊥) =
(x ∨ y) ∨ ⊥, and this is in L1. Closure under ∧ is a bit more complicated.
We have both ⊥ ≤t x ∨ ⊥ and ⊥ ≤t y ∨ ⊥, so ⊥ ≤t (x ∨ ⊥) ∧ (y ∨ ⊥). Then
(x ∨ ⊥) ∧ (y ∨ ⊥) = ((x ∨ ⊥) ∧ (y ∨ ⊥)) ∨ ⊥. The right hand side is in L1 by
definition, hence so is the left.

Lattices are Bounded: L1 is a bounded lattice. Since the ordering agrees with ≤t, a
largest member would be t if it were present, but it is because t = >∨⊥ ∈ L1.
The smallest member is ⊥. It is in L1 because it is ⊥ ∨ ⊥, and it is smallest
because ⊥ ≤t x∨⊥ for every x ∈ B. In a similar way, L2 is a bounded lattice;
we omit the arguments.
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Product and Mapping: We now have the existence of two bounded lattices L1 and
L2, and so can form the bilattice product L1 � L2 (Definition 5.1). And we
can define an isomorphism candidate θ : B → L1 × L2 by setting θ(x) =
〈x ∨ ⊥, x ∧ ⊥〉.

θ is an Injection: Suppose x, y ∈ B and θ(x) = θ(y), that is, 〈x ∨ ⊥, x ∧ ⊥〉 =
〈y∨⊥, y∧⊥〉. Then x∨⊥ = y∨⊥ and x∧⊥ = y∧⊥, so x = (x∧⊥)⊕(x∨⊥) =
(y ∧ ⊥)⊕ (y ∨ ⊥) = y, by Proposition 7.3. Thus we have that θ is 1-1.

θ is a Surjection: Suppose 〈x, y〉 ∈ L1 � L2. Then x⊕ y ∈ B, and it will be shown
that θ(x⊕ y) = 〈x, y〉, thus establishing surjectivity. Of course what must be
shown is that (x⊕ y) ∨ ⊥ = x and (x⊕ y) ∧ ⊥ = y.
Since x ∈ L1 then x is a ∨ ⊥ for some a ∈ B, but a ∨ ⊥ = (a ∨ ⊥) ∨ ⊥, so
x = x ∨⊥. Similarly y = y ∧⊥. Then y = y ∧⊥ ≤t ⊥ ≤t x ∨⊥ = x, in short,
y ≤t x. Using interlacing, x⊕ y ≤t x⊕ x = x, so (x⊕ y)∨⊥ ≤t x∨⊥ = x. In
the other direction, ⊥ ≤k x ≤k x⊕ y so by Proposition 7.2, x ≤t (x⊕ y) ∨ ⊥.
We now have that (x⊕ y)∨⊥ = x. In a similar way, (x⊕ y)∧⊥ = y, and thus
θ is onto.

θ preserves both orderings:
Let x, y ∈ B. We show that x ≤t y if and only if θ(x) ≤t θ(y). There is a
similar result concerning ≤k whose proof we omit.
Suppose first that x ≤t y. Then x ∨⊥ ≤t y ∨⊥ and x ∧⊥ ≤t y ∧⊥, so in L1,
x ∨ ⊥ ≤1 y ∨ ⊥ and in L2, y ∧ ⊥ ≤2 x ∧ ⊥ (recall that for L2 the ≤t ordering
was reversed). Then θ(x) = 〈x ∨ ⊥, x ∧ ⊥〉 ≤t 〈y ∨ ⊥, y ∧ ⊥〉 = θ(y).
In the other direction, suppose that θ(x) ≤t θ(y). Then 〈x ∨ ⊥, x ∧ ⊥〉 ≤t

〈y ∨ ⊥, y ∧ ⊥〉, which means x ∨ ⊥ ≤1 y ∨ ⊥ and y ∧ ⊥ ≤2 x ∧ ⊥. Taking the
order reversal into account, this means x ∨ ⊥ ≤t y ∨ ⊥ and x ∧ ⊥ ≤t y ∧ ⊥.
But then using interlacing and Proposition 7.3, x = (x ∨ ⊥) ⊕ (x ∧ ⊥) ≤t

(y ∨ ⊥)⊕ (y ∧ ⊥) = y.

Uniqueness Up To Isomorphism: We have shown that B is isomorphic to L1 �L2.
Suppose it is also isomorphic to M1�M2, where M1 and M2 are also bounded
lattices. Of course then L1 � L2 and M1 �M2 would be isomorphic to each
other. We observed, just after the statement of Proposition 7.1, that in product
bilattices, 〈a, b〉∨⊥ = 〈a, 02〉 and 〈a, b〉∧⊥ = 〈01, b〉. Since L1�L2 andM1�M2
are isomorphic, the subsets defined by x∨⊥ in the two are isomorphic. In the
first the set is {〈a, 02〉 | a ∈ L1} (where 02 is the bottom of L2), and this is
clearly isomorphic to L1. Similarly the subset of M1 �M2 defined by x∨⊥ is

991



Fitting

isomorphic to M1, so L1 and M1 are isomorphic. In a similar way L2 and M2
are isomorphic.

We have just seen the central item. Verifying the rest of the representation
properties is rather straightforward.

Proof. Of Proposition 7.1 Parts 2–4. Assume throughout that B = 〈B,≤t,≤k〉 is an
interlaced bilattice, and is isomorphic to L1�L2, where L1 has as elements {x∨⊥ |
x ∈ B} and ordering ≤1 being ≤t restricted to the set, and L2 is {x ∧ ⊥ | x ∈ B}
with ordering ≤2 being ≤t restricted to the set, and reversed.

2. Distributivity Suppose B is a distributive bilattice. We show 〈L1,≤1〉 and
〈L2,≤2〉 are distributive lattices. But this is trivial. L1 is a sublattice of B
under ≤t, which is distributive by assumption, and similarly for L2.

3. Negation Suppose B has a negation. It was claimed that we could take L1 = L2
but if we show that as defined, L1 and L2 are isomorphic lattices, the result
as stated follows.
If x ∈ L1, x = a ∨ ⊥, so ¬x = ¬(a ∨ ⊥) = ¬a ∧ ⊥ ∈ L2. Then the map
η : L1 → L2, given by xη = ¬x, is well-defined. We claim it is an isomorphism
between L1 and L2.
That the map is 1−1 follows from the fact that (xη)η = x. If x ∈ L2, x = a∧⊥
for some a, so ¬x = ¬(a ∧ ⊥) = ¬a ∨ ⊥ ∈ L1. Now (¬x)η = ¬¬x = x, so it
follows that η is onto. Finally, suppose x, y ∈ L1. Then x ≤1 y ⇔ x ≤t y ⇔
¬y ≤t ¬x ⇔ yη ≤t xη ⇔ xη ≤2 yη. Thus η is an isomorphism between L1
and L2.
Using η, L1 � L2 has a negation, ¬〈a, b〉 = 〈bη, aη〉. Now, using the bilattice
isomorphism θ from the proof of part 1 of Proposition 7.1, for any x ∈ B,
¬(xθ) = ¬〈x ∨ ⊥, x ∧ ⊥〉 = 〈(x ∧ ⊥)η, (x ∨ ⊥)η〉 = 〈¬x ∨ ⊥,¬x ∧ ⊥〉 = (¬x)θ.
Thus θ preserves negation.

4. Conflation Suppose B has negation and conflation operations that commute
with each other. Continuing from the previous part, instead of having L1 = L2
we assume L1 and L2 are isomorphic via the mapping η defined earlier. Note
that if x ∈ L1, then x = a ∨ ⊥ and so x ∨ ⊥ = a ∨ ⊥ ∨ ⊥ = a ∨ ⊥ = x. Now
let µ : L1 → L1 be given by xµ = −¬x ∨ ⊥. We claim µ is a de Morgan
complement.
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By Proposition 7.3, for x ∈ L1, (xµ)µ = −¬(−¬x∨⊥)∨⊥ = (x∧>)∨⊥ = x.
Thus µ is an involution.
Next, suppose x, y ∈ L1, and x ≤1 y. By definition, x ≤t y so ¬y ≤t ¬x, and
then −¬y ≤t −¬x. It follows that −¬y ∨ ⊥ ≤t −¬x ∨ ⊥, and thus yµ ≤t xµ,
so yµ ≤1 xµ. Thus µ is order reversing.
Finally, L1�L2 itself has a conflation, working out to −〈a, b〉 = 〈(bη)µ, (aµ)η〉.
Then for any x ∈ B, −(xθ) = (−x)θ so θ preserves convlation. Here is the
verifying calculation.

xθ = 〈x ∨ ⊥, x ∧ ⊥〉 so
−(xθ) = 〈(x ∧ ⊥)ηµ, (x ∨ ⊥)µη〉

= 〈(¬(x ∧ ⊥))µ, (−¬(x ∨ ⊥) ∨ ⊥)η〉
= 〈−¬¬(x ∧ ⊥) ∨ ⊥,¬(−¬(x ∨ ⊥) ∨ ⊥)〉
= 〈−(x ∧ ⊥) ∨ ⊥,−(x ∨ ⊥) ∧ ⊥〉
= 〈(−x ∧ >) ∨ ⊥, (−x ∨ >) ∧ ⊥〉
= 〈−x ∨ ⊥,−x ∧ ⊥〉 by Proposition 7.3
= (−x)θ.

8 The Logic of Bilattices
A bilattice is simply a particular kind of algebraic structure. In order to turn it into
something characterizing a logic, one must look to the methodology of many valued
logics in general. This was done in [2, 1], with significant consequences which we
summarize here. At its most general, a many valued logic is defined semantically by
giving a space of truth values, some operations on them designed to interpret the
logical connectives, and a set of designated truth values, the good ones, so to speak.
To evaluate logical formulas in such a structure we need a valuation, mapping atomic
formulas to our space of truth values. A valuation is then extended to all formulas
using the operations that interpret the logical connectives. A valuation validates a
formula if it maps the formula to a member of the designated truth value set. If
every valuation validates a formula, the formula is simply valid in the many-valued
structure.

If we have not just a set of generalized truth values, but a (non-distributive) De
Morgan algebra, we have readily available interpretations for the connectives ∧, ∨,
and ¬. In such a setting one commonly imposes special algebraic conditions on the
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set of designated truth values—specifically it should be a prime filter. This simply
means that a ∧ b should be designated exactly when both a and b are, and a ∨ b
should be designated exactly when one of a or b are.

In [2, 1] this algebraic approach was extended to bilattices with negations, by a
simple doubling. one uses the bilattice operations of the truth ordering, ∧, ∨, and
¬ to interpret the corresponding logical connectives. And designated truth values
should constitute a prime bifilter, essentially meaning that it should have the prime
filter properties with respect to both the truth and the information orderings.

Definition 8.1. Let B be a blattice. A prime bifilter on B is a subset F ⊆ B that is
not empty, not the entire of B, and that meets the following conditions. (The first
two are for being a bifilter, the last two are for being prime.)

1. (a ∧ b) ∈ F if and only if a ∈ F and b ∈ F

2. (a⊗ b) ∈ F if and only if a ∈ F and b ∈ F

3. (a ∨ b) ∈ F if and only if a ∈ F or b ∈ F

4. (a⊕ b) ∈ F if and only if a ∈ F or b ∈ F

A logical bilattice is a pair 〈B,F〉 where F is a prime bifilter on B.

A bilattice can have more than one prime bifilter. For instanceNINE in Figure 5
has two, as shown in Figure 10.

(a) Prime Bifilter A (b) Prime Bifilter B

Figure 10: NINE and Two Prime Bifilters
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It is helpful to see how one checks that the prime bifilters A and B are the only
two that NINE has because some of the reasoning is of more general use.

First, for any prime bifilter F of any bilattice, if a is a member and a ≤k b,
then b is a member. This is because, if a ≤k b then a = a ⊗ b, so if a ∈ F then
a⊗ b ∈ F and hence b ∈ F by item 2 of Definition 8.1. It is similar if the ordering
≤t is involved. In short, prime bifilters are upward closed.

Since prime bifilters are upward closed, and are non-empty, > and t must always
belong. And then {x | > ≤t x} and {x | t ≤k x} must be included. (In fact, in
any interlaced bilattice these are the same set. This is a good exercise—try using
the Representation Theorem.) And further, in any interlaced bilattice this set is
always a subset of any prime bifilter, and is a prime bifilter by itself (again a good
exercise). That is, it is always the smallest prime bifilter. For NINE this gives us
prime bifilter A.

Any other prime bifilter in NINE must extend A. Let us try adding one more
member and completing to a prime bifilter, if we can. If we add f , upward closure of
prime bifilters under ≤t would force us to add everything, but prime bifilters must
not be the entire of the bilattice, so this is out. If we add either of df or ⊥, upward
closure under ≤k would have us add f , which we cannot do. So none of f , df , or ⊥
can be added to A.

If we add any of of , d>, or dt to A, upward closure under one or another of ≤k

and ≤t would force us to add all of them. So B is the only possible other prime
bifilter for NINE . Simple checking verifies that it is, in fact, a prime bifilter.

We examined a very specific case above. In [2, 1] one can find general results
doing the job we just did as a special case. In particular they show the following.
In an interlaced bilattice B, a subset F is a prime bifilter if and only if it is a prime
filter (in the usual algebraic sense) relative to the ordering ≤t and contains > if and
only if it is a prime filter relative to the ordering ≤k and contains t.

All the examples of logical bilattices so far have involved interlaced, or even
distributive bilattices. Things are more general, though. In Figure 4 an interesting
bilattice was presented that is not interlaced. It has exactly one prime bifilter, shown
in Figure 11.

Figure 12 shows the simplest example of a bilattice with a prime bifilter. For
reasons that will become clear shortly, this is more than just an interesting example—
it is fundamental.

Each logical bilattice carries a logic with it. The logic based on the logical
bilattice of Figure 12 has a significant history—it is called First Degree Entailment.
At first it seems rather dreary, since there are no validities! That is, no formula
maps to a designated value under every valuation. Here is the simple argument.

Let v be the valuation that maps every propositional letter to ⊥. Extend v to
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Figure 11: DEFAULT With Prime Bifilter

Figure 12: First Degree Entailment

all formulas using the operations ∧, ∨, and ¬, as given in Figures 2 and 3. It is easy
to see by induction on formula complexity that v(X) = ⊥ for every formula X, so
every formula maps to a non-designated value under v, and so is not valid.

But, validity is the wrong (that is, uninteresting) thing, and consequence is the
right one. It is common to write consequence relations in sequent form, which we
do here.

Definition 8.2 (Sequents). A sequent is an ordered pair 〈Γ,∆〉 of (generally finite)
sets of formulas. It is customary to write this sequent as Γ ⇒ ∆, where Γ and ∆
are written without enclosing curly braces. Thus, for example, A,B,C ⇒ D,E is a
sequent provided A,B,C,D,E are formulas. Commonly ∅ ⇒ ∆ is written as ⇒ ∆,
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and similarly if ∆ is ∅.
In a many-valued logic, a valuation v validates a sequent Γ ⇒ ∆ provided, if v

maps every member of Γ to a designated truth value, then v maps some member
of ∆ to a designated truth value. And a sequent is simply valid if every valuation
validates it.

In particular, in a logical bilattice 〈B,F〉 a valuation v in B validates Γ ⇒ ∆
provided, if v maps every member of Γ to the prime bifilter F then v maps some
member of ∆ to F .

Now if 〈B,F〉 is a logical bilattice it validates a set of sequents, and we can
refer to this as the logic of the logical bilattice. One can ask questions about these
logics; what variation is possible. The remarkable answer is none! They are all
the same. This is an important result from [2, 1]. In the rest of this section we
present their proof that first degree entailment is the logic of every logical bilattice.
Actually, it should not come as a deep surprise. There is a similar phenomenon with
boolean algebras: all of them determine the same logic, namely classical logic. It
does not mean the range of boolean algebras becomes uninteresting, and the same
is true of the range of bilattices.

Definition 8.3. Let 〈B,F〉 be a logical bilattice, where B is a bilattice with negation,
not necessarily interlaced or with conflation. Define a relation ≡F on B as follows.
For x, y ∈ B, x ≡F y if the following two items hold:

1. x ∈ F if and only if y ∈ F

2. ¬x ∈ F if and only if ¬y ∈ F .

The relation ≡F is obviously an equivalence relation, and so defines equivalence
classes. There are always four of them. The following is a simple characterization,
along with some interesting properties. In it, and subsequently, we write >B to
mean the largest member of the bilattice B under the ≤k ordering, similarly for tB,
and so on.

Proposition 8.4. Let 〈B,F〉 be a logical bilattice, where B is a bilattice with nega-
tion, not necessarily interlaced or with conflation. No two of >B, ⊥B, tB, fB are
equivalent using the relation ≡F , but every x ∈ B is equivalent to one of them. Fur-
ther, these members of B satisfy the truth tables of Figure 2 and for negation from
Figure 3 up to equivalence. (That is, the tables say that f ∧ t = ⊥, while we have
fB ∧ tB ≡F ⊥B.)

Proof. Much of the proof is essentially by case checking. First we show no two of
>B, ⊥B, tB, fB can be equivalent. By upward closure of prime bifilters, >B and
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tB are in F , but since a prime bifilter must be a proper subset of B, neither ⊥B
nor fB can be in F . Then >B and tB cannot be equivalent to either of ⊥B or fB.
¬>B = >B ∈ F but ¬tB = fB 6∈ F , so >B and tB are not equivalent. Similarly
¬⊥B = ⊥B 6∈ F but ¬fB = tB ∈ F , so ⊥B and fB are not equivalent. This covers all
the cases.

For any x ∈ B there are four possibilities. First, x ∈ F and ¬x ∈ F . But then,
using items just discussed, x and >B will be equivalent. Second, x ∈ F but ¬x 6∈ F ,
in which case x and tB are equivalent. Third, x 6∈ F , so ¬x ∈ F , and x and fB are
equivalent. And fourth, x 6∈ F and ¬x 6∈ F , so x and ⊥B are equivalent.

Finally as a representative case we show that tB ⊗ fB ≡F ⊥B, leaving the other
cases to the reader. As we saw above, fB 6∈ F and tB ∈ F . Then tB⊗fB 6∈ F because
fB is not present. Also ¬(tB ⊗ fB) = (¬tB ⊗¬fB) = (fB ⊗ tB) 6∈ F , again because fB
is not present. But also ⊥B 6∈ F , and ¬⊥B = ⊥B 6∈ F . Hence tB ⊗ fB ≡F ⊥B.

By this proposition, every member of a logical bilattice falls into one of four
equivalence classes. In Figure 13 we show the equivalence classes for the two logical
bilattices from Figure 10, and in Figure 14 we show the equivalence classes for the
default logical bilattice of Figure 11.

(a) 〈NINE ,A〉 Equivalence Classes (b) 〈NINE ,B〉 Equivalence Classes

Figure 13: NINE and Equivalence Classes

Suppose we write ‖x‖F for the equivalence class containing x. Then, very simply,
the four equivalence classes of a logical bilattice 〈B,F〉 have the very suggestive
representations: ‖fB‖F , ‖tB‖F , ‖⊥B‖F , and ‖>B‖F .

Proposition 8.5. Let 〈B,F〉 be a logical bilattice. Not only is ≡F an equivalence
relation, it is a congruence as well. That is, for all x, x′, y, y′ ∈ B, if x ≡F x′ and
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Figure 14: DEFAULT Equivalence Classes

y ≡F y′ then:

x ∧ y ≡F x′ ∧ y′

x ∨ y ≡F x′ ∨ y′

x⊗ y ≡F x′ ⊗ y′

x⊕ y ≡F x′ ⊕ y′

¬x ≡F ¬x′.

Proof. We verify the ∧ case. There are four possibilities, and we simply check each
of them.

x ∧ y ∈ ‖>B‖F : Then x ∧ y ∈ F and ¬(x ∧ y) ∈ F . Using the properties of a
prime filter, from the first, x ∈ F and y ∈ F , and from the second, since
¬(x ∧ y) = ¬x ∨ ¬y, one of ¬x ∈ F or ¬y ∈ F , say the first. By definition of
≡F , x′ ∈ F , y′ ∈ F , and ¬x′ ∈ F . It follows that x′∧y′ ∈ F , and ¬x′∨¬y′ ∈ F ,
that is ¬(x′ ∧ y′) ∈ F . Then x ∧ y ≡F x′ ∧ y′ in this case.

x ∧ y ∈ ‖tB‖F : Then x ∧ y ∈ F and ¬(x ∧ y) 6∈ F . From the first, exactly as in
the previous case, it follows that x′ ∧ y′ ∈ F . From the second, ¬x ∨ ¬y 6∈ F .
Using the prime bifilter properties, ¬x 6∈ F and ¬y 6∈ F . Then by definition
of ≡F , ¬x′ 6∈ F and ¬y′ 6∈ F , so ¬x′ ∨ ¬y′ 6∈ F , and so ¬(x′ ∧ y′) 6∈ F . Then
x ∧ y ≡F x′ ∧ y′ in this case too.

x ∧ y ∈ ‖⊥B‖F : Similarly.
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x ∧ y ∈ ‖fB‖F : Similarly.

The other cases are left to the reader.

We note that the result above does not extend to the conflation operation. How-
ever, it does get us the following central result.

Proposition 8.6. Let 〈B,F〉 be a logical bilattice, and let FDE be the logical bilattice
for First Degree Entailment, built on the bilattice FOUR and shown in Figure 12.
Define a mapping h : B → FOUR as follows. h maps every member of ‖fB‖F to f ,
every member of ‖tB‖F to t, every member of ‖⊥B‖F to ⊥, and every member of
‖>B‖F to > (where f , t, ⊥ and > are the extreme members of FOUR). Then h is
a homomorphism in the following sense. For every x, y ∈ B:

h(x ∧ y) = h(x) ∧ h(y)
h(x ∨ y) = h(x) ∨ h(y)
h(x⊗ y) = h(x)⊗ h(y)
h(x⊕ y) = h(x)⊕ h(y)
h(¬x) = ¬h(x).

Further, the image of the prime bifilter F is the prime bifilter {>, t} of FDE while
the complement of F in B maps to {⊥, f}.
Proof. We show the first item in the list of equalities; the rest are similar. Note
that by the last part of Proposition 8.4, h is an isomorphism between the bilattice
FOUR and {>B,⊥B, tB, fB}. For instance, if we write ⊥ for the least member of
FOUR in the ≤k ordering and so on, we have fB ∧ tB ≡F ⊥B, so h(fB ∧ tB) =
h(⊥B) = ⊥ = f ∧ t = h(fB) ∧ h(tB). Similarly for all the other cases.

Assume x, y ∈ B. By Proposition 8.4, there are unique a, b ∈ {>B,⊥B, tB, fB}
such that x ≡F a and y ≡F b. By Proposition 8.5, x ∧ y ≡F a ∧ b. From the
definition of h, h(x) = h(a), h(y) = h(b), and h(x ∧ y) = h(a ∧ b). Finally, h(a) ∧
h(b) = h(a ∧ b) because h is an isomorphism on {>B,⊥B, tB, fB}. It follows that
h(x ∧ y) = h(x) ∧ h(y).

Finally we consider the behavior of h on the prime bifilter F . Suppose first that
x ∈ F . Then h(x) is either > or t depending on whether ¬x ∈ F or not. Either way,
h(x) ∈ F , so h maps F into {>, t}. And since both >B, tB ∈ F and h(>B) = > and
h(tB) = t, h maps F onto {>, t}. Next, suppose x 6∈ F . Then h(x) = ⊥ or h(x) = f
depending on whether ¬x ∈ F or not, so the complement of F maps to {⊥, f}.

Corollary 8.7. Let 〈B,F〉 and FDE be as in Proposition 8.6. For a valuation v in
B define a valuation v′ in FOUR by setting v′(P ) = h(v(P )) for every propositional
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letter P . Extend v and v′ to all formulas X built up using ∧, ∨, and ¬. Then for
every X, v′(X) = h(v(X)).

Proof. An easy induction on the complexity of X.

Now, finally with all the work done, the connection between the logics of various
bilattices, as shown in [2, 1], is easy going.

Proposition 8.8. Let 〈B,F〉 be a logical bilattice. It validates the same formulas
as the logical bilattice FDE (Figure 12).

Proof. Throughout this proof, h is the homomorphism from B to FOUR defined in
Proposition 8.6, and let Γ⇒ ∆ be any sequent.

Suppose Γ ⇒ ∆ is not valid in 〈B,F〉, say using the valuation v. That is,
v(X) ∈ F for every X ∈ Γ and v(Y ) 6∈ F for every Y ∈ ∆. Let v′ be the valuation
in FOUR defined in Corollary 8.7. Then for each X ∈ Γ, since v(X) ∈ F we
have h(v(X)) ∈ {>, t} by Proposition 8.6, and since v′(X) = h(v(X)), we have
v′(X) ∈ {>, t} for all X ∈ Γ. Similarly we have v′(Y ) 6∈ {>, t} for all Y ∈ ∆. It
follows that Γ⇒ ∆ is not valid in FDE.

Suppose Γ ⇒ ∆ is not valid in FDE. Then there is a valuation v′ in FOUR
such that for every X ∈ Γ, v′(X) ∈ {>, t} and for every Y ∈ ∆, v′(Y ) 6∈ {>, t}.
Define a valuation in B by setting v(P ) = >B if v′(P ) = >, v(P ) = tB if v′(P ) = t,
and so on, for each propositional letter P . Then for each propositional letter P ,
v′(P ) = h(v(P )) and hence for every formula Z, v′(Z) = h(v(Z)). If X ∈ Γ we have
v′(X) ∈ {>, t}, so h(v(X)) ∈ {>, t}. Then we must have v(X) ∈ F since h maps
non-members of F to non-members of {>, t}. Similarly v(Y ) 6∈ F for every Y ∈ ∆.
Then v does not validate Γ⇒ ∆ in 〈B,F〉.

9 Infinitary Operations
Throughout we have been using meets and joins with respect to the ≤t ordering of
bilattices to interpret logical conjunction and disjunction. If quantification comes
into it, something more is needed. In a logic model with an infinite domain quan-
tification can be thought of as an infinite conjunction or disjunction. Up to this
point meets and joins have combined two items and, by iteration, any finite number,
but they can’t handle infinite cases. For this, lattices must meet a special condition
called completeness. We now extend earlier notation and terminology.

Definition 9.1. A lattice 〈L,≤〉 is complete if the greatest lower and the least
upper bound of every set exists (not just finite sets). For an arbitrary set,

d
S is the
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greatest lower bound and ⊔
S is the least upper bound of S. More specific notation

will be introduced below for bilattices.

To be clear, the conditions that must be met are these. In a complete lattice,
for every set S there must be members

d
S and ⊔

S such that

Lower Bound
d
S ≤ x for every x ∈ S;

Greatest (Lower Bound) If b ≤ x for every x ∈ S, then b ≤ d
S;

Upper Bound x ≤ ⊔
S for every x ∈ S;

Least (Upper Bound) If x ≤ b for every x ∈ S, then ⊔
S ≤ b

A minor point: a complete lattice is automatically bounded, since the definition
makes

d ∅ the largest member, which thus must exist. Similarly ⊔ ∅ is the smallest
member.

Definition 9.2. A pre-bilattice 〈B,≤t,≤k〉 is complete if both lattices 〈B,≤t〉 and
B,≤k〉 are complete as lattices. Thus in a complete pre-bilattice all meets and joins
exist with respect to both orderings. In a pre-bilattice meet and join with respect
to ≤t are symbolized by ∧ and ∨, and with respect to the ≤k ordering by ∏ and∑.

In Definition 3.3 conditions for negation and conflation were given. These carry
over to complete pre-bilattices and we have the following extension of Proposi-
tion 3.4. In it we use the notation: for any set S, ¬S = {¬x | x ∈ S} and
−S = {−x | x ∈ S}.

Proposition 9.3. In any complete pre-bilattice with negation or conflation, for each
set S,

1. ¬∧
S = ∨(¬S) and ¬∨

S = ∧(¬S),

2. ¬∏
S = ∏(¬S) and ¬∑

S = ∑(¬S),

3. −∏
S = ∑(−S) and −∑

S = ∏(−S),

4. −∧
S = ∧(−S) and −∨

S = ∨(−S).

Proof. We show half of the first item and leave the rest to the reader. For each
x ∈ S, ∧

S ≤t x because ∧
S is a lower bound for S. Then ¬x ≤t ¬

∧
S for each

¬x ∈ ¬S, so ¬∧
S is an upper bound for ¬S. And then ∨(¬S) ≤t ¬

∧
S because∨(¬S) is the least upper bound for ¬S.
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In the other direction, ¬x ≤t
∨(¬S) for each ¬x ∈ ¬S because ∨(¬S) is an

upper bound for ¬S. Then ¬∨(¬S) ≤t ¬¬x = x, for all x ∈ S, so ¬∨(¬S) is a
lower bound for S. And then ¬∧(¬S) ≤t

∧
S because ∧

S is the greatest lower
bound for S, so ¬∧

S ≤t ¬¬
∨(¬S) = ∨(¬S).

Now Definition 3.2 is partially extended. We will have no need here for infinite
distributive laws, but an infinite version of interlacing is fundamental. From now on
connections between orderings will be common, and we only refer to bilattices, and
not to pre-bilattices.

Definition 9.4. A bilattice 〈B,≤t,≤k〉 is infinitarily interlaced if it is complete
and all four infinitary meet and join operations are monotone with respect to both
orderings, where we understand this as follows. If {ai | i ∈ I} and {bi | i ∈ I} are
two indexed collections with a common indexing set I, then:

1. If ai ≤t bi for all i ∈ I then

(a) ∏
i∈I ai ≤t

∏
i∈I bi

(b) ∑
i∈I ai ≤t

∑
i∈I bi

2. if ai ≤k bi for all i ∈ I then

(a) ∧
i∈I ai ≤k

∧
i∈I bi

(b) ∨
i∈I ai ≤k

∨
i∈I bi

Obviously an infinitarily interlaced bilattice is interlaced, so earlier results apply.
Making use of Proposition 9.3 part 4, Proposition 3.6 extends easily.

Proposition 9.5. In an infinitarily interlaced bilattice with a negation and a con-
flation that commute, each of the consistent, anticonsistent, and exact subclasses of
B are closed under ∧ and ∨.

Finally, the Representation Theorem from Sections 5 and 7 extends quite directly.
We state results and omit proofs.

Proposition 9.6. If L1 and L2 are bounded lattices that are complete, then L1�L2
is a complete bilattice. Conversely, if B is a complete infinitarily interlaced bilattice,
then there are complete bounded lattices, unique up to isomorphism, such that B is
isomorphic to L1 � L2, where the isomorphism takes the infinitary operations into
account.
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10 Lattice Fixed Point Theorems
When formulating a language containing its own truth predicate the liar sentence,
that asserts its own non-truth, is a familiar stumbling block. It is common to say
it should lack a truth value, or be undefined, or have some similar special status,
because otherwise contradictions ensue. This is a negative approach and it would
be better to be able to say which sentences do have standard truth values, rather
than discover that some cannot. Semantical approaches making use of truth revision
operators, and fixed points of them, have had considerable success. These originated
in Kripke’s very influential [39], and also in the simultaneous but less general [41].
Essentially these investigations took place in the consistent part of the bilattice
FOUR, though making use of the entire of FOUR was later seen to simplify things
technically and to lead to interesting philosophical issues that we will not go into
here (see [54]). We will look at some of this work in the next section, in the bilattice
context. But here, as a preliminary, we examine two fixed point theorems for their
own sakes, without consideration of philosophical applications. For this section only,
we work entirely in lattices, and not in bilattices as such.

The Knaster-Tarski theorem is a remarkable example of a powerful result with a
short self-contained proof. Actually it has two quite different proofs, one short and
self-contained, the other longer, involving facts from set theory, and yet curiously
providing more intuition. We give both proofs. The context is that of a complete
lattice, Definition 9.1.

Definition 10.1. Let 〈L,≤〉 be a lattice and let f : L → L be a mapping on the
lattice. f is monotone if it is order preserving, that is, if x ≤ y then f(x) ≤ f(y). A
fixed point of f is a value x such that f(x) = x.

Proposition 10.2 (Knaster-Tarski). Any monotone mapping on a complete lattice
has a fixed point; in fact it has a smallest and a greatest fixed point.

Actually, the full Knaster-Tarski theorem says that the set of fixed points will,
itself, be a complete lattice, but this is more than we need here. We said two proofs
would be given. We begin with the one from [53], which is elegant and short. Indeed,
the only background needed is basic definitions of things like a lattice, and greatest
lower and least upper bounds.

Proof. Version One. Let 〈L,≤〉 be a complete lattice, and let f : L → L be mono-
tone. We show the existence of a least fixed point. Let C = {x ∈ L | f(x) ≤ x}.
Since we have a complete lattice, the greatest lower bound of C exists, that is∧
C ∈ L. We will show it is the least fixed point of f .
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First we show C itself is closed under f . Suppose x ∈ C. Then f(x) ≤ x, so by
monotonicity f(f(x)) ≤ f(x), but this says that f(x) ∈ C.

Next we show ∧
C ∈ C, which we do by showing f(∧C) ≤ ∧

C. Suppose x ∈ C.
Since ∧

C is a lower bound for C, ∧
C ≤ x. By monotonicity, f(∧C) ≤ f(x) and

since c ∈ C, f(x) ≤ x, so f(∧C) ≤ x. Since x was an arbitrary member of C, this
says that f(∧C) is a lower bound for C. Since ∧

C is the greatest lower bound,
f(∧C) ≤ ∧

C, which is the condition for ∧
C ∈ C.

Since ∧
C ∈ C, and C is closed under f we have f(∧C) ∈ C. Since ∧

C is a
lower bound for C, ∧

C ≤ f(∧C). Combining this with f(∧C) ≤ ∧
C which we

showed above, f(∧C) = ∧
C.

Finally we show ∧
C is the least fixed point. Suppose f(x) = x. Then of course

f(x) ≤ x so x ∈ C, and then ∧
C ≤ x since ∧

C is a lower bound for C.

To show the existence of a greatest fixed point, let D = {x ∈ L | x ≤ f(x)}.
Then carry out the dual of the argument above. Replace C with D, reverse all
inequalities, use ∨ in place of ∧, and talk about greatest fixed points instead of least
fixed points. We leave the details to the reader, once again.

The second proof provides richer intuition. It shows we can, in a certain sense,
approximate to the smallest fixed point by starting at the bottom and iterating
applications of the function f . Dually with the biggest fixed point. But some addi-
tional background material from set theory is required, and here we are somewhat
sketchy about details, hoping the intuition is clear. One needs to make use of ordi-
nal numbers. These start with the natural numbers, after which comes the smallest
infinite ordinal, ω, followed by ω+1, ω+2 and so on. The ordinal ω is the first limit
ordinal, in that it does not have an immediate predecessor. There are many limit
ordinals beyond ω. Ordinals divide into three groups: 0 which, uniquely, is neither
a limit ordinal nor a successor ordinal; successor ordinals, which are written as α+1
where α is the immediate predecessor; and limit ordinals, which have predecessors
but no immediate one. We will need an important fundamental fact about the ordi-
nals: in set theory the collection of ordinals does not constitute a set, and so cannot
be placed in a 1-1 correspondence with a set.

Proof. Version Two. Again let 〈L,≤〉 be a complete lattice (which we assume is a
set), and let f : L → L be monotone. Once more we show the existence of a least
fixed point, leaving to the reader the dual argument for the greatest one.

Define a function ϕ from ordinals to members of L, using transfinite recursion,
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as follows.

ϕ(0) = 0L the least member of L
ϕ(α+ 1) = f(ϕ(α)) for a successor ordinal α

ϕ(λ) =
∨
{ϕ(α) | α < λ} for a limit ordinal λ

The first thing we need is that this is a (weakly) increasing sequence. That is, if
α < β for two ordinals then ϕ(α) ≤ ϕ(β) in the ordering of L. Essentially this comes
down to an induction for which we just sketch the three basic cases: 0, successor,
and limit.

Trivially ϕ(0) ≤ ϕ(α) for any α because 0L is the smallest member of L, and
hence is below anything.

Suppose ϕ(α) ≤ ϕ(α+ 1). Using the monotonicity of f , f(ϕ(α)) ≤ f(ϕ(α+ 1)),
and this tells us that ϕ(α+ 1) ≤ ϕ(α+ 2).

Finally, if λ is a limit ordinal and α < λ then ϕ(α) ≤ ∨{ϕ(α) | α < λ} = ϕ(λ).
The sequence is increasing and so at some point we must repeat a value, because

otherwise we would be pairing up the collection of ordinals with the members of
a set, and this cannot happen. Let us say α0 is the smallest ordinal such that
ϕ(α0) = ϕ(β) for some β > α0. Since the sequence is weakly increasing, it must be
that all values from ϕ(α0) to ϕ(β) are the same. In particular, ϕ(α0) = ϕ(α0 + 1).
Then ϕ(α0) is a fixed point because f(ϕ(α0)) = ϕ(α0 + 1) = ϕ(α0).

Finally, ϕ(α0) is the least fixed point, which can be shown as follows. Let F be
any fixed point of f .

ϕ(0) ≤ F because ϕ(0) is the least member of L.
Suppose ϕ(α) ≤ F . By monotonicity f(ϕ(α)) ≤ f(F ), and so ϕ(α + 1) ≤ F

because F is a fixed point.
Suppose λ is a limit ordinal and ϕ(α) ≤ F for every α < λ. It follows that

ϕ(λ) = ∨{ϕ(α) | α < λ} ≤ F .
Then (using transfinite induction) ϕ(α) ≤ F for every ordinal α, so in particular

ϕ(α0) ≤ F and hence ϕ(α0) must be the least fixed point.

There is a variation of Proposition 10.2, not as well known, but one that will be
of use to us later on. Instead of finding a fixed point for a function, one seeks two
values between which it oscillates.

Definition 10.3. Let 〈L,≤〉 be a lattice and let f : L → L be a mapping. f is
anti-monotone if it is order reversing, that is, if x ≤ y then f(y) ≤ f(x). Two values
x, y ∈ L are comparable if x ≤ y or y ≤ x. An alternating fixpoint pair for f is a pair
of comparable values, x and y, such that f(x) = y and f(y) = x. An alternating
fixpoint pair is extremal if any other alternating fixpoint pair is between them.
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Proposition 10.4. Any anti-monotone mapping on a complete lattice has an ex-
tremal alternating fixpoint pair.

Proof. Let 〈L,≤〉 be a complete lattice, and let f : L→ L be anti-monotone. Then
the function f2 defined by f2(x) = f(f(x)) is clearly monotone and so has a least
and a greatest fixed point, call them s and S. We note that if a is a fixed point
of f2 then f(a) is also a fixed point of f2, because f2(f(a)) = f(f2(a)) = f(a).
And further, if b is a fixed point of f2, then b = f(a) for some fixed point a of
f2. Simply take a to be f(b). This is a fixed point by what we just showed, and
f(a) = f(f(b)) = f2(b) = b.

Now we show that s and S is an extremal alternating fixpoint pair for f .
Trivially s and S are comparable—because we have s ≤ S.
We have that s is the smallest fixed point of f2; we show f(s) is the largest fixed

point, S. Since f maps fixed points of f2 to fixed points of f2, f(s) is a fixed point
of f2. Let b be any fixed point of f2. Then b = f(a) for some a that is a fixed
point of f2. Since s is the smallest fixed point, s ≤ a. And since f reverses order,
f(a) ≤ f(s), that is, b ≤ f(s). Since b was arbitrary, f(s) is the largest fixed point
of f2, and hence f(s) = S. Then f(f(s)) = f(S), that is, s = f(S). Thus s and S
are an alternating fixpoint pair for f .

Finally, suppose x and y are an alternating fixpoint pair for f . Then f2(x) =
f(f(x)) = f(y) = x so x is a fixpoint of f2. Similarly for y. Then x and y are
between the least fixed point of f2, s, and the greatest fixed point, S. Thus s and
S are extremal.

11 Fixed Point Theorems and Bilattices

In Section 10 we only looked at two lattice fixed point theorems. These are the only
ones we will need here, but each takes on additional features of interest when seen
in a bilattice setting, [20, 24, 26]. Applications will come in Section 12.

Proposition 11.1. Suppose 〈B,≤t,≤k〉 is a complete bilattice that is infinitarily
interlaced, and f : B → B is a mapping that is monotone in both orderings. By the
Knaster-Tarski theorem f has a least and greatest fixed point with respect to each
ordering. Call these pt, Pt, pk, and Pk, where lower case indicates least and upper
case indicates greatest fixed point, while the subscripts indicate the bilattice ordering
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involved. The following hold.

Pt ⊗ pt = pk

Pt ⊕ pt = Pk

Pk ∧ pk = pt

Pk ∨ pk = Pt

Proof. Since pt and Pt are least and greatest fixed points with respect to ≤t, and
pk is a fixed point, pt ≤t pk ≤t Pt. By Proposition 7.2, pt ⊗ Pt ≤k pk ≤k pt ⊕ Pt.
The first of the two inequalities gives us pt ⊗ Pt ≤k pk. Also since pk is the least
fixed point under ≤k, and pt and Pt are fixed points, pk ≤k pt and pk ≤k Pt. But
then, pk = pk ⊗ pk ≤k pt ⊗ Pt, so we have the first equality. The other results are
similar.

The Proposition above not only has a resemblance to Proposition 7.3, it is a
proper generalization of it. Let f be the identity map on interlaced bilattice B. This
is trivially monotone in both bilattice orderings, and everything is a fixed point, so
the least and greatest under ≤t are f and t, while least and greatest under ≤k are
⊥ and >, so Proposition 7.3 is a special case.

Proposition 11.2. Suppose 〈B,≤t,≤k〉 is a complete bilattice that is infinitarily
interlaced, and f : B → B is a mapping that is monotone with respect to ≤k but
anti-monotone with respect to ≤t. Let pk and Pk be the least and greatest fixed
points with respect to ≤k, and let pt and Pt be the smaller and the larger of the
extremal alternating fixpoint pair with respect to ≤t. Then again the following hold.

Pt ⊗ pt = pk

Pt ⊕ pt = Pk

Pk ∧ pk = pt

Pk ∨ pk = Pt

Proof. Very simply, the mapping f2 is monotone with respect to both orderings,
and now use Proposition 11.1.

12 Languages with a Truth Predicate
Suppose we have a language that can ‘talk about’ its own syntax. Arithmetic is
commonly used for this purpose, with Gödel numbering employed, and we will follow
this tradition here. Details are not critical. From now on we have a first order
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language with propositional operators ∧, ∨, and ¬ and quantifiers ∀ and ∃. Also it
contains a constant symbol 0, a unary function symbol for successor, which we write
as x+, binary function symbols + and × which we write in infix position, and a
binary relation symbol =, also written in infix position. All this will be interpreted
in the standard model for arithmetic, in the obvious way.

Now also suppose we add to this language a new unary predicate symbol T,
with the intention of having it represent truth internally. It is here we make use of
Gödel numbering and, for convenience, we make the simplifying but not necessary
assumption that our Gödel numbering is onto: every number is the Gödel number of
some sentence of the language of arithmetic extended with T. Since we have numerals
in the language, 0, 0+, (0+)+, . . . , every Gödel number has a representation as a
closed term of the language. (This happens in more than one way since, for example,
(0+)+ and (0+ +0+) denote the same number in the standard model, but this causes
no problems.)

For a sentence S in the arithmetic language extended with T, let s be any closed
term of the language denoting the Gödel number of sentence S in the standard
model. We abbreviate this by saying s names S. We want S and T(s) to be
equivalent, that is, they should have the same truth value for every sentence S and
every closed term s naming S. The well-known impediment to this is that we have
enough machinery to construct a liar sentence, one that asserts its own non-truth,
and our desires can’t be met for such a sentence, if we use classical logic.

A familiar move at this point is to switch from two valued logic to one with
more values, and announce that the liar does not have a standard truth value. In
his influential paper [39] Kripke, in effect, worked with several three valued logics
each having an ‘undefined’ third value. Of these Kleene’s strong three-valued logic
has been the one most commonly used subsequently by others. Graham Priest,
in [44, 45] and elsewhere, argues for an ‘overdefined’ or ‘contradictory’ third value.
Both approaches came together in [54] which used the logic of first degree entailment,
FOUR, having both underdefined and overdefined as values—values often called
‘gaps’ and ‘gluts’. Bilattices generalize FOUR, add no new complexities, and provide
additional models of interest. Here we sketch how this is done, following the approach
from [20].

Let 〈B,≤t,≤k〉 be a complete bilattice that is infinitarily interlaced, with a nega-
tion and conflation that commute. This is intended to supply our generalized truth
value space. Closed terms and sentences in the language described above will have
their arithmetic features interpreted in B as if in the standard model for arithmetic.
It is only the meaning of the T predicate that needs serious work, and for this we
make use of valuations, which will be completely specified by their behavior with
respect to T.
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Definition 12.1. A B valuation is a mapping from closed atomic sentences of the
form T(s) to B meeting the condition that if s1 and s2 are closed terms that designate
the same number in the standard model for arithmetic, then v(T(s1)) = v(T(s2)).

A B valuation is extended to all sentences as follows, using the operations of B
corresponding to the ≤t ordering.

1. If X is an atomic sentence not involving T, it will be a sentence of arithmetic.
Set v(X) to be t or f in B depending on whether X is true or false in the
standard model for arithmetic.

2. v(X ∧ Y ) = v(X) ∧ v(Y )

3. v(X ∨ Y ) = v(X) ∨ v(Y )

4. v(¬X) = ¬v(X)

5. v((∀x)F (x)) = ∧{v(F (t)) | t is a closed term}

6. v((∃x)F (x)) = ∨{v(F (t)) | t is a closed term}

B is a complete, infinitarily interlaced bilattice. Valuations map the set of atomic
sentences of the form T(s) to B. By Proposition 4.2 and the conditions from Defi-
nition 9.4, the space of valuations is also a complete, infinitarily interlaced bilattice.
The goal is to find valuations v such that for each sentence S, v(S) and v(T(s)) are
the same whenever s is a closed term that names S. To this end we introduce a
‘truth revision operator’ that embodies an approximation condition. That is, if v is
a valuation that meets our desired condition for some sentences, then applying the
truth revision operator to v produces another valuation that does so for these sen-
tences, and perhaps for more. Then we look for valuations that are unimprovable,
that is, for fixed points of the truth revision operator in the space of valuations.
And for this we can make use of the results in Section 11. It is the two orderings of
a bilattice that provide exactly the appropriate machinery now—the truth ordering
gives us what we need to evaluate formulas, as we just saw, and the information or-
dering gives us what we need to apply the Knaster-Tarski theorem, as we are about
to see.

Definition 12.2. Let fB be the mapping from B valuations to B valuations deter-
mined by the following. For each B valuation v, set fB(v) = v′ where v′ is the B
valuation such that v′(T(s)) = v(S), where the closed term s names the sentence S.

The key thing needed is monotonicity. That is, in the space of valuations,

v1 ≤k v2 =⇒ fB(v1) ≤k fB(v2).
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Then by the Knaster-Tarski result, Proposition 10.2, fB has a smallest and a greatest
fixed point. We leave it to you to verify monotonicity—the conditions for interlacing,
infinitary interlacing, and negation give us exactly what is needed.

If we take for B the bilattice FOUR, we are essentially working in the context
of [54]. The space of valuations in FOUR has a negation and a conflation that
commute, so Definition 3.5 applies. If we work in the space of valuations in FOUR
but restrict our attention to those valuations that are consistent, we have essentially
the setting for Kripke’s work in [39] based on the strong Kleene three valued logic.
Working with the anti-consistent part gives us the paraconsistent LP approach of
Priest.

What bilattices add to the picture is a uniform treatment of a variety of gener-
alizations of the fixed point approach to theories of truth. Here are two particularly
interesting examples.

The first example is one with a continuum of truth values, as follows. We use the
same language as above, an arithmetic language extended with a truth predicate.
But for truth values we use the lattice whose domain is the closed unit interval [0, 1]
with the usual ordering≤ on reals. Construct the bilattice product (Definition 5.1) of
this lattice with itself. Truth values now are ordered pairs 〈a, b〉 in which a represents
what mighty be called the ‘degree of truth’, and b the ‘degree of falsehood’, a kind
of fuzzy bilattice. It is a complete, infinitarily interlaced bilattice with negation and
conflation that commute, and hence all the machinery of the fixpoint construction
applies.

The second example brings a modal operator into the picture. Assume we have
a Kripke possible world frame for a modal logic. Say the set of possible worlds is G,
with R as the accessibility relation. (Good treatments of modal semantics can be
found in [36, 30, 6] and many, many other places.) Our arithmetic language with
a truth predicate is extended by the addition of two modal operators: if X is a
formula so are �X and ♦X. Let B be any complete, infinitarily interlaced bilattice
with commuting negation and conflation. We allow closed formulas to take on truth
values in B at possible worlds of the modal model.

We use a common domain for all worlds of the modal frame: the integers. Arith-
metic operators are interpreted at each possible world as if they were in the standard
model for arithmetic. As before, valuations are brought in to supply interpretations
for the truth predicate, T. The difference from earlier is that valuations are now
world-dependent; that is, they assign truth values to formulas at possible worlds.
More formally, a valuation now is a mapping v : TruthSentences → (G → B), where
TruthSentences is the set of all formulas of the form T(t), for a closed term t. We
follow custom and for a sentence T(t) and a possible world w, we write v(T(t))(w)
as v(T(t), w).
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Since B is an infinitarily interlaced bilattice with commuting negation and con-
flation, then so is the set of functions mapping G to B, and then the same again for
the set of functions mapping TruthSentences to G → B. That is, the set of valua-
tions in the modal frame is, itself, an infinitarily interlaced bilattice with commuting
negation and conflation.

In the modal setting, valuations are extended to all sentences using the connec-
tive and quantifier conditions given above, but relativized to possible worlds. For
instance, item 2 becomes v(X ∧ Y,w) = v(X,w) ∧ v(Y,w), where w is a possible
world. But two more conditions must be added to take care of the modal operators.

7. v(�X,w) = ∧{v(X,w′) | wRw′}
8. v(♦X,w) = ∨{v(X,w′) | wRw′}
The earlier Definition 12.2 still applies, using the revised version of valuation,

and it is still the case that the mapping fB is monotone, and we still leave the
proof of this to the reader. The Knaster-Tarski theorem thus applies, and we have
appropriate truth assignments at possible worlds of a modal model, relative to any
underlying bilattice of truth values. In particular, one could plausibly use FOUR,
or the ‘fuzzy’ one discussed above.

We conclude the discussion of bilattices and fixed point theories of truth with a
brief look at applications of the results in Section 11. A fuller study can be found
in [26, 27].

The mapping fB from Definition 12.2, while monotone in the ≤k ordering, will
not be monotone in the ≤t ordering because of the behavior of negation. But if
we restrict our attention to sentences that do not involve negation we will have
monotonicity with respect to both orderings. It follows that there will be least and
greatest fixed points with respect to both orderings, and these will be interconnected
as shown in Proposition 11.1. But of course, without negation there is much less
of interest that we can say. In [26] a different approach was taken, based on stable
model theory coming out of logic programming, The paper [24] is, in fact, very
closely related to what we are about to present.

From now on assume all sentences are in negation normal form, that is, all
occurrences of the negation symbol are at the atomic level. This is no real restriction
since every sentence can have its negations ‘pushed all the way in’ using De Morgan’s
laws. It is not essential to do this, but it does make things easier to follow. Now
think of occurrences of ¬T(x) as if they were occurrences of a new atom, a falsehood
atom that can behave independently of T(x).
Definition 12.3 (Pseudo-Valuations). Let v1 and v2 be valuations in the infinitarily
interlaced bilattice with commuting negation and conflation, B. A pseudo-valuation
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v14v2 is defined from them as follows.

(v14v2)(T(t)) = v1(T(t))
(v14v2)(¬T(t)) = ¬v2(T(t))

Pseudo-valuations extend to all sentences in a straightforward way. Details are
similar to those of Definition 12.1 and are omitted here. As we did with valua-
tions, we use the same notation for pseudo-valuations and for their extensions to all
sentences.

The truth revision operator fB of Definition 12.2 is replaced with a two-input
version, as follows.

Definition 12.4. Let v1 and v2 be valuations in the infinitarily interlaced bilattice
with commuting negation and conflation B. gB(v1, v2) = v′ where v′ is the B valu-
ation such that gB(v1, v2)(T(s)) = (v14v2)(S), where the closed term s names the
sentence S.

The basic facts about this new mapping follow. Proofs are omitted here but can
be found in [32, 19].

1. gB is monotone in both inputs, under ≤k: v1 ≤k v2 and w1 ≤k w2
imply gB(v1, w1) ≤k gB(v2, w2).

2. gB is monotone in its first input, under ≤t: v1 ≤t v2
implies gB(v1, w) ≤t gB(v2, w).

3. gB is anti-monotone in its second input, under ≤t: w1 ≤t w2
implies gB(v, w1) ≥t gB(v, w2).

This two input mapping is really auxilliary to the following, which is central.

Definition 12.5. The derived operator of gB is the single input function g′
B defined

by: g′
B(v) is the smallest fixed point, in the ≤t ordering, of the function (λx)gB(x, v).

The smallest fixed points required in the definition above exist because of item 2
in the list of properties of gB above. Since we use the smallest fixed point instead of
the largest, an explicit bias towards falsehood has been introduced, and thus there
is a close relation with the work in [55]. It can be shown that g′

B is monotone in the
≤k ordering, and so this is another candidate for a truth revision operator. In fact
it can be shown that its fixed points are among those of the mapping fB, defined
earlier. It can also be shown that g′

B is anti-monotonic in the ≤t ordering, and so
Proposition 11.2 applies.
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We have now seen some glimpses of the intricacies that can be discovered through
the use of bilattices. A discussion of the meaning that might be attached to the work
sketched above is more appropriate to a philosophical discussion. The mathematical
possibilities are what concern us here, these have been presented, and we take things
no further.

13 Whither From Here?
Unknown to the early bilattice community, some of the fundamental work already
existed, seeHistory below. We have not attempted to straighten this complex story
out here.

We have seen bilattices as generalizations of the structure for first degree entail-
ment, FDE, see Logic below. That important four valued structure contains natural
substructures appropriate for Kleene’s strong three valued logic and Priest’s logic of
paradox. We have seen that it is also possible to define the operations of Kleene’s
weak three valued logic, and of supervaluations. All this extends to interlaced bilat-
tices in general. We have also seen how FDE also extends to the family of all logical
bilattices. While that turned out to be not an extension at all, a negative result in
a sense, it can also be considered a positive result in that it gives us a much richer
set of models for first degree entailment. Of course generalizations of fixed point
theories of truth are prime examples of bilattices applied to logic constructs.

Work has not stopped, of course, though this chapter does. Here are some
references for further reading, which in turn will provide further references. The
citations are chronological within each category. Some citations are included that
appeared earlier in the chapter, but many occur here for the first time.
Artificial Intelligence: Applications in what would seem like a promising area

are, in fact, rather sparse. One wonders to what extent this is a consequence
of the current success of deep learning algorithms, with the general role of
logical reasoning pushed aside: [33] [34] [35] [51].

Logic: This area has been notable for multiple applications of bilattices. Connec-
tions with, and generalizations of, the familiar logics of Kleene, Priest, and
others, were to be expected. But as we saw, bilattices provided a natural
setting for Kripke style fixed point theories of truth, allowing self reference.
Of course the work of Arieli and Avron has provided coherence to the entire
bilattice family by showing that FOUR plays a role in the interlaced bilattice
family analogous to the one that the two element Boolean algebra plays in the
family of Boolean algebras. Indeed, logic has been a major user of the bilattice
structure: [20] [23] [25] [2] [26] [1] [27] [7] [8] [12] [47] [43] [4] [16] [52] [28] [29].
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Algebra: One is tempted to say that, since lattices are a big area of research,
bilattices should be twice as big. (That was meant to be a bit silly.) But in
fact, bilattices have a substantial history of interest within the general lattice
theoretic community. For instance the representation results, covered here
starting in Section 5, have been shown in more than one way, and notably
generalized as well. The following are fundamental, but not exhaustive: [3]
[46] [42] [37] [14] [10] [9] [15] [11].

Logic Programming: The area of logic programming, after an initial period of
general interest in the 1980’s, became a niche subject. Still, it raised interesting
questions, in particular concerning its ‘negation as failure’ construct. This led
to a fixpoint treatment that had notable similarities with Kripke’s work on
the theory of truth. One offshoot of logic programming that is still active is
that of answer set programming. Here so-called stable models are central, and
these play a role both in logic programming and in continuations of Kripke’s
work on truth predicates where self reference is allowed: [21] [24] [40].

History: History is partly decided by who writes it. Bilattices actually have a
complex history, and the following will give some idea of how complex: [31]
[13].

Trilattices and Multilattices: A perhaps reasonable question about bilattices is,
why stop at dimension two. Well, people have gone beyond. In trilattices,
which have three axes, typically one of them represents degree of constructivity,
but this is not all that is possible. This is currently very much in development:
[49] [50] [48] [18].
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Abstract
Structures based on polarities provide relational semantics for propositional

logics that are modelled algebraically by non-distributive lattices with addi-
tional operators. This article develops a first order notion of morphism between
polarity-based structures that generalises the theory of bounded morphisms (or
p-morphisms) for Boolean modal logics. It defines a category of such struc-
tures that is contravariantly dual to a given category of lattice-based algebras
whose additional operations preserve either finite joins or finite meets. Two
non-equivalent versions of the Goldblatt-Thomason theorem are derived in this
setting.

1 Introduction and Overview
Duality in mathematics is not a theorem, but
a “principle”.

Michael Atiyah [1]

We develop here a new definition of ‘bounded morphism’ between certain struc-
tures that model propositional logics lacking the distributive law for conjunction
and disjunction. Our theory adapts a well known semantic analysis of modal logic,
which we now review.

There are two main types of semantical interpretation of propositional modal
logics. In algebraic semantics, formulas of the modal language are interpreted as
elements of a modal algebra (B, f), which comprises a Boolean algebra B with an
additional operation f that interprets the modality 3 and preserves finite joins. In
relational semantics, formulas are interpreted as subsets of a Kripke frame (X,R),
which comprises a binary relation R on a set X.

The relationship between these two approaches is explained by a duality that
exists between algebras and frames. This is fundamentally category-theoretic in
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nature. The modal algebras are the objects of a category MA whose arrows are
the standard algebraic homomorphisms. The Kripke frames are the objects of a
category KF whose arrows are the bounded morphisms, α : (X,R) → (X ′, R′), i.e.
functions α : X → X ′ satisfying the ‘back and forth’ conditions

(Forth): xRy implies α(x)R′α(y). (1.1)
(Back): α(x)R′z implies ∃y(xRy & α(y) = z). (1.2)

(Bounded morphisms are also known as p-morphisms. The adjective ‘bounded’
derives from the R-bounded existential quantification in (1.2).)

Each Kripke frame F = (X,R) has the dual modal algebra F+ = (PX, fR)
comprising the Boolean algebra of all subsets of X, with the additional operation
fR defined for all A ⊆ X by

fRA = {x ∈ X : ∃y(xRy & y ∈ A)}.

Each modal algebra A = (B, f) has the dual frame A+ = (XB, Rf ), where XB is
the set of ultrafilters of B, and xRfy iff {f(a) : a ∈ y} ⊆ x. There is an injective
homomorphism of A into (A+)+ that acts by a 7→ {x ∈ XB : a ∈ x}, extending
the Stone representation of Boolean algebras to modal algebras. The mappings
F 7→ F+ and A 7→ A+ form the basis of a pair of functors, from KF to MA and
from MA to KF respectively, that are contravariant, i.e. direction-reversing. Each
homomorphism θ : A→ A′ induces a dual bounded morphism θ+ : A′+ → A+, while
each bounded morphism α : F → F ′ induces a dual homorphism α+ : (F ′)+ → F+.
These induced maps act by forming preimages under θ and α respectively.

Composing the two functors produces objects of logical significance. The double
dual algebra (A+)+ is known as the canonical extension of A, a construction first
introduced by Jónsson and Tarski [38] for Boolean algebras with any number of
operators: finitary operations that preserve joins in each coordinate. They proved
that any completely join preserving n-ary operator f on (A+)+ is determined by
an n + 1-ary relation Sf on the structure A+, and showed that many equationally
definable properties of f correspond to first-order definable properties of Sf . This
correpondence between algebras and relational structures provides tools for the se-
mantic analysis of a range of logics with modalities. One key to this is that if A
is the Lindenbaum-Tarski algebra for a modal logic, then A+ is isomorphic to the
canonical frame for the logic whose points are maximally consistent sets of formulas
[3, Theorem 5.42].

The study of canonical extensions has now evolved well beyond the Boolean
situation. Gehrke and Jónsson extended it to distributive lattice expansions [20,
21, 22]. Then Gehrke and Harding [18] gave an abstract algebraic definition of the
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canonical extension of any algebra A that is based on a bounded lattice. They proved
the uniqueness of this extension up to isomorphism and constructed it as an algebra
of ‘stable’ subsets of a polarity, a structure (X,Y,R) comprising a binary relation
R between two sets X and Y . Thus the polarity becomes the dual structure A+ of
A, and the canonical extension of A is the double dual (A+)+, which is the stable
set lattice of A+. Polarities are called (formal) contexts in Formal Concept Analysis
[16]. The term ‘polarity’ is itself of geometric origin, as we explain in Remark 2
below.

Polarities with additional relational structure to represent additional algebraic
operations have been used by Gehrke and co-workers to provide relational semantics
for several logical systems, including the logic of residuated lattices [12, 17], the
Lambek-Grishin calculus [6] and linear logic [10], with canonical extensions playing a
central role. There have also been applications to logics with unary modalities [7, 8].
A fuller overview of the history of canonical extensions is given in the introduction
to [30].

Our objective here is to develop a new kind of morphism from a polarity P =
(X,Y,R) to a polarity P ′ = (X ′, Y,′R′) that can accomodate expansion of the
polarities by additional relational structure, and which provides a dual morphism
θ+ for any homomorphism θ of lattices with operators. Like (1.1) and (1.2), the
definition of morphism we will use is first order relative to the structures involved,
i.e. it quantifies only over elements of the structures and not over any higher order
entities like subsets or sets of subsets.

The literature already contains several proposals for a notion of morphism be-
tween polarities. Erné [13, 14] investigated context morphisms as pairs of functions
of the form α : X → X ′ and β : Y → Y ′, and constructed functors between some cat-
egories of complete lattices with complete homomorphisms and categories of contexts
with morphism-pairs having various properties. One of these, concept continuity, is
equivalent to our notion of morphism for polarities without additional structure, as
we explain in Remark 12. Hartung [36] studied mapping pairs α, β between contexts
with topological structure, and used them to obtain duals for surjective homomor-
phisms θ. In [35] he obtained duals of arbitrary lattice homomorphisms by taking a
morphism to be a pair of ‘multivalued functions’, binary relations forming subsets
of X ×X ′ and Y × Y ′. Hartonas and Dunn [34] defined morphisms as certain pairs
of continuous functions between polarities with additional topological and partially
ordered structure that characterises them as the duals of lattices (see Remark 12).
There has also been work on polarity morphisms as pairs of subsets of X × Y ′ and
Y ×X ′ that provide duals of completely join preserving homomorphisms [12, 17, 9].
Jipsen [37] discusses a notion due to M. A. Moshier of a context morphism as a
subset of X ×Y ′, for which R itself is the identity morphism on P . Gehrke and van
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Gool [25] studied polarity morphisms as pairs of functions satisfying back and forth
properties similar to the modal frame conditions (1.1) and (1.2), showing that they
give duals for lattice homomorphisms that preserve finite sets whose join distributes
over meets, and ones whose meet distributes over joins.

Here we define a bounded morphism between polarity structures to be a pair α, β
of functions that have back and forth properties that look different to conditions (1.1)
and (1.2), and in fact are similar to what would result from those conditions if the
relations R and R′ were replaced by their complements. For instance we use the
reflection (back) condition

α(x)R′β(y) implies xRy,

in place of the preservation (forth) condition (1.1). The motivation for this approach
comes from earlier work of the author [27] in transforming polarity-style models of
orthologic into Kripke models of modal logic by replacing the polarity relation by
its complement. Thus, at least for ‘ortho-polarities’, the bounded morphisms we
use are essentially equivalent to the modal bounded morphisms of their transforms.
This is explained in more detail in Remark 9.

The new notion of bounded morphism allows us to carry out the kind of pro-
gramme that was sketched above for the categories MA of modal algebras and KF
of Kripke frames. We construct contravariant functors between a category Ω-Lat
of homomorphisms between lattices with additional operators (and dual operators)
and a category Ω-Pol of bounded morphisms between polarities with additional
n + 1-ary relations corresponding to additional n-ary lattice operations. Bounded
morphisms also gives rise to a notion of P being an inner substructure of P ′, mean-
ing that P is a substructure of P ′ for which the inclusions X ↪→ X ′ and Y ↪→ Y ′

form a bounded morphism. It is shown that the image of a bounded morphism
is an inner substructure of its codomain (Corollary 19). Moreover, the dual of a
surjective homomorphism is a bounded morphism whose domain is isomorphic to
its image (Theorem 25).

On the other side of the duality to (A+)+ is the double dual (F+)+ of a frame
F , which we also call the canonical extension of F . It plays a central role in a
definability result from [32], generally known as the Goldblatt-Thomason theorem,
which addresses the question of when a class of frames is definable by modal formulas.
Here we consider the corresponding question for a class S of polarity-based structures
and show in Theorem 38 that if S is closed under canonical extensions, then it is
equal to the class {P : P+ ∈ V } of all structures whose dual algebras belong to
some equationally definable class of algebras V if, and only if, S reflects canonical
extensions and is closed under images of bounded morphisms, inner substructures
and direct sums. The direct sum construction, introduced for polarities by Wille
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[42, 43], performs the same function here that disjoint unions perform for Kripke
frames, namely it is dual to the formation of direct products of stable set lattices.
We note that it is also a coproduct in the category Ω-Pol that we define.

The original definability theorem from [32] was concerned with modal definability
of first-order definable classes of frames, and its proof used the fact that any frame
F has an elementary extension F∗ that can be mapped surjectively onto (F+)+
by a bounded morphism. This F∗ can be taken to be an ultrapower of F , so
the theorem’s hypothesis can be taken to be that S is closed under ultrapowers.
Along with closure under images of bounded morphisms this then yields the required
closure under canonical extensions. Here we adapt the construction to polarities
and find that there is a divergence from the modal case: the bounded morphism
P ∗ → (P+)+ may not have the surjectivity required for this argument. But it
does have a weaker property that allows a modified proof that S is closed under
canonical extensions. We call this property maximal covering (briefly: the points
of the X-part of (P+)+ are the filters of P+ and the image of a maximal covering
morphism includes any filter that is maximally disjoint from some ideal). Thus we
obtain a different definability characterisation (Theorem 39) for a class S that is
closed under ultrapowers, in which closure under codomains of maximal covering
morphisms replaces closure under images of bounded morphisms. An example is
provided to show that this change is essential.

At the end of the article we briefly indicate how the theory can be extended to
quasi-operators, functions that in each coordinate either preserve joins or change
meets into joins.

2 Polarities and Stable Set Lattices
We assume that all lattices dealt with have universal bounds, and view them as
algebras of the form (L,∧,∨, 0, 1), with binary operations of meet ∧ and join ∨,
least element 0 and greatest element 1. The partial order of a lattice is denoted 6,
and the symbols ∨ and ∧ are used for the join and meet of a set of elements, when
these exist. If they exist for all subsets, the lattice is complete.

A polarity is a structure P = (X,Y,R) having R ⊆ X × Y . For A ⊆ X and
B ⊆ Y , write ARB if xRy holds for all x ∈ A and y ∈ B. Abbreviate AR{y} to
ARy and {x}RB to xRB. Define

ρRA = {y ∈ Y : ARy}, λRB = {x ∈ X : xRB}.

The operations ρR and λR are inclusion reversing: A ⊆ A′ implies ρRA′ ⊆ ρRA,
and likewise for λR. They also have A ⊆ λRρRA and B ⊆ ρRλRB, so form a Galois
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connection between the posets (P(X),⊆) and (P(Y ),⊆). They satisfy the ‘De
Morgan laws’

ρR
⋃ C = ⋂{ρRA : A ∈ C}, λR

⋃ C = ⋂{λRB : B ∈ C}, (2.1)

but not the corresponding laws with ⋃ and ⋂ interchanged.
The composite operations λRρR on P(X) and ρRλR on P(Y ) are closure op-

erations whose fixed points are called stable sets. Thus a subset A of X is stable if
A = λRρRA, and a subset B of Y is stable if B = ρRλRA. In general λRρRA is the
smallest stable superset of A and ρRλRB is the smallest stable superset of B, so to
prove stability of A it is enough to prove λRρRA ⊆ A, and similarly for B. The
stable subsets of X are precisely the sets of the form λRB, and the stable subsets
of Y are precisely the sets of the form ρRA. This uses that under composition,
λRρRλR = λR and ρRλRρR = ρR.

Let P+ be the set of all stable subsets of X in P , partially ordered by set
inclusion. P+ forms a complete lattice in which ∧ C = ⋂ C, ∨ C = λRρR

⋃ C, 1 = X
and 0 = λRρR∅ = λRY . We call P+ the stable set lattice of P . For any A ∈ P+, we
have

A =
∨
x∈A λRρR{x} =

⋂
y∈ρRA

λR{y}. (2.2)

A quasi-order 41 on X, with inverse <1, is defined by putting

x 41 x
′ iff ρR{x} ⊆ ρR{x′}. (2.3)

Similarly, a quasi-order 42 on Y is given by

y 42 y
′ iff λR{y} ⊆ λR{y′}. (2.4)

Then the following condition holds:

x′ <1 xRy 42 y
′ implies x′Ry′. (2.5)

For x ∈ X and y ∈ Y put

[x)1 = {x′ ∈ X : x 41 x
′}, [y)2 = {y′ ∈ Y : y 42 y

′}.

A subset A of X is an upset under 41 if it is closed upwards under 41, i.e. x ∈ A
implies [x)1 ⊆ A. Likewise a set B ⊆ Y is a 42-upset if y ∈ B implies [y)2 ⊆ B.

Lemma 1. Any stable subset of X is a 41-upset, and any stable subset of Y is a
42-upset. Hence ρRA is a 42-upset for any A ⊆ X, and λRB is a 41-upset for any
B ⊆ Y .
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Proof. Let A ∈ P+. If x ∈ A and x 41 x′, then any y ∈ ρRA has x′ <1 xRy 42 y,
hence x′Ry by (2.5). So x′ ∈ λRρRA = A. This shows A is a 41-upset. The case of
stable subsets of Y is similar. The second statement of the lemma follows as ρRA
and λRB are always stable.

A map α : (X,4)→ (X ′,4′) between quasi-ordered sets is isotone if it preserves
the orderings, i.e. x 4 z implies α(x) 4′ α(z). For such a map, if A is an 4′-upset
of X ′, then α−1A is an 4-upset of X.

An antitone α is one that reverses the orderings, i.e. x 4 z implies α(z) 4′
α(x). For example, ρR is antitone as a map (P(X),⊆)→ (P(Y ),⊆). Likewise for
λR : (P(Y ),⊆)→ (P(X),⊆).

Remark 2 (Etymology of ‘polarity’). In projective plane geometry, a polarity
is an interchange of points and lines, with the line associated to a given point being
the polar of the point, and the point associated to a given line being the pole of the
line. A point x lies on a given line iff the pole of that line lies on the polar of x.
The pole of the polar of a point is that point, and the polar of the pole of a line is
that line. Two points are called conjugate if each lies on the polar of the other. The
polar of point x can be identified with the set of points {y : xRy} where R is the
congugacy relation.

A polarity on a projective three-space interchanges points and planes as poles
and polars, while associating lines with each other in pairs. Two associated lines are
polars of each other. More generally, a polarity on a finite-dimensional projective
space is an inclusion reversing permutation θ of the subspaces that is also an invo-
lution, i.e. θ(θA) = A. Such a θ can be obtained from an inner product (symmetric
bilinear function) x · y on the space by putting θA = ρRA, where xRy iff x · y = 0.

The use of ‘polarity’ to refer to a binary relation derives from the work of Birkhoff
[2, Section 32] who first defined the operations ρR and λR for an arbitrary R ⊆ X×Y
and observed that they give a dual isomorphism between the lattices of stable subsets
of X and Y . He suggested that ρRA could in general be called the polar of A with
respect to R, in view of the above geometric example.

3 Operators and Relations

A finitary operation f : Ln → L on a lattice is an operator if it preserves binary joins
in each coordinate. As such it preserves the ordering of L is each coordinate, which
implies that it preserves the product ordering, i.e. it is isotone as an operation on
Ln.
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A normal operator preserves the least element in each coordinate as well, hence
preserves all finite joins in each coordinate, including the empty join 0. A complete
operator preserves all existing non-empty joins in each coordinate, while a complete
normal operator preserves the empty join as well. By iterating the join preservation
in each coordinate successively, one can show that if f is a complete normal operator,
then

f(∨A0, . . . ,
∨
An−1) = ∨{f(a0, . . . , an−1) : ai ∈ Ai for all i < n}. (3.1)

A dual operator (normal dual operator, complete dual operator, complete normal
dual operator) is a finitary operation that preserves binary meets (finite meets, non-
empty meets, all meets) in each coordinate. (Preservation of the empty meet means
preservation of the greatest element 1.) A dual operator is isotone on Ln. A complete
normal dual operator satisfies the equation that results from (3.1) by replacing each∨ by ∧.

Fix a polarity P = (X,Y,R). We are going to show that complete normal n-ary
operators on the stable set lattice P+ can be built from n+1-ary relations on P . For
this we need to introduce some vectorial notation for handling tuples and relations
(sets of tuples).

A tuple (x0, . . . , xn−1) will be denoted #»x . Then #»x [z/i] denotes the tuple obtained
from #»x by replacing xi by z, while ( #»x , y) denotes the n+ 1-tuple (x0, . . . , xn−1, y).
If S ⊆ Xn × Y is an n + 1-ary relation, i.e. a set of n + 1-tuples, we usually write
#»xSy when ( #»x , y) ∈ S. For Z ⊆ Xn we write ZSy if #»xSy holds for all #»x ∈ Z.

If #»

A = (A0, . . . , An−1) is a tuple of sets Ai, we write π #»

A for the product set
A0 × · · · × An−1. We sometimes write #»x ∈π

#»

A when #»x ∈ π #»

A, i.e. when xi ∈ Ai
for all i < n. Similarly #»

A ⊆π
#»

B means that Ai ⊆ Bi for all i < n. Various
operations are lifted to tuples coordinate-wise, so that ρR

#»

A = (ρRA0, . . . , ρRAn−1)
while λR

#»

A = (λRA0, . . . , λRAn−1), θ−1 #»

A = (θ−1A0, . . . , θ−1An−1), etc.
A section of a relation S ⊆ Xn × Y is any subset of X or Y obtained by fixing

all but one of the coordinates and letting the unfixed coordinate vary arbitrarily.
Thus each #»x ∈ Xn determines the section

S[ #»x ,−] = {y ∈ Y : #»xSy}.

For i < n, sections that vary the i-th coordinate are defined, for #»x ∈ Xn and y ∈ Y ,
by letting

S[ #»x [−]i, y] = {x′ ∈ X : #»x [x′/i]Sy}.
We illustrate this definition with a technical lemma that will be applied below. For
each x ∈ X, let |x| = λRρR{x}, the smallest member of P+ to contain x. For an
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n-tuple #»x = (x0, . . . , xn−1), let | #»x | = (|x0|, . . . , |xn−1|). Note that since xi ∈ |xi| for
all i < n, we have #»x ∈π | #»x |.
Lemma 3. Suppose that all sections of S of the form S[ #»x [−]i, y] are stable in X.
Then for all ( #»x , y) ∈ Xn × Y , if #»xSy then every #»z ∈π | #»x | has #»z Sy, i.e. (π| #»x |)Sy.
Proof. Let #»xSy where #»x = (x0, . . . , xn−1). We will show by induction on i 6 n that

if zj ∈ |xj | for all j < i, then (z0, . . . , zi−1, xi, . . . , xn−1)Sy. (3.2)

Putting i = n then gives the desired result that (|x0| × · · · × |xn−1|)Sy.
If i = 0, then (3.2) holds by the assumption #»xSy. Now suppose inductively

that (3.2) holds for some i < n, and that zj ∈ |xj | for all j < i + 1. Then this
hypothesis gives #»wSy, where #»w = (z0, . . . , zi−1, xi, . . . , xn−1). Now S[ #»w[−]i, y] is a
stable set containing xi, because #»w[xi/i] = #»w and #»wSy. Since |xi| is the smallest
such stable set, we get |xi| ⊆ S[ #»w[−]i, y]. But zi ∈ |xi|, so this implies #»w[zi/i]Sy,
i.e. (z0, . . . , zi, xi+1, . . . , xn−1)Sy. Hence (3.2) holds with i + 1 in place of i, That
completes the inductive proof that (3.2) holds for all i 6 n, as required.

The symbols [x)1 and |x| have conceptually different meanings, but name the
same set. For, |x| is a41-upset by Lemma 1, so includes [x)1 as the smallest41-upset
to contain x. Conversely, [x)1 is stable [7, Lemma 1], so includes |x| as the smallest
stable set to contain x. The |x| notation is a little more convenient, particularly
when lifted to tuples, and when the focus is on stability.

Now for S ⊆ Xn × Y , define f•S : (P+)n →PY by putting, for #»

A ∈ (P+)n,

f•S
#»

A = {y ∈ Y : (π #»

A)Sy},
=
⋂
{S[ #»x ,−] : #»x ∈ π #»

A}. (3.3)

Then define an n-ary operation fS on P+ by putting

fS
#»

A = λRf
•
S

#»

A.

This definition generalises the form of the binary fusion operation ⊗ defined in [17]
from a relation S ⊆ X2 × Y by

A0 ⊗A1 =
⋂
{λR{y} : (∀x0 ∈ A0)(∀x1 ∈ A1)S(x0, x1, y)}

= λR{y ∈ Y : (A0 ×A1)Sy}.

Note that f•S is antitone in the i-th coordinate, i.e. if Ai ⊆ B then f•S( #»

A) ⊇
f•S( #»

A[B/i]). Hence fS is isotone in each coordinate. The condition for x ∈ fS
#»

A is

∀y ∈ Y [∀ #»z ( #»z ∈π
#»

A → #»z Sy)→ xRy], (3.4)
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which can be spelt out as a first-order formula in the predicates zi ∈ Ai, #»z Sy and
xRy.

Theorem 4. Let f be any n-ary complete normal operator on P+ for a polarity P .
Then f is equal to the operation fSf determined by some relation Sf ⊆ Xn × Y .

Proof. Recall that for #»x = (x0, . . . , xn−1) we put | #»x | = (|x0|, . . . , |xn−1|) where
|xi| = λRρR{xi} ∈ P+. Define #»xSfy iff y ∈ ρRf | #»x |. Then for #»

A ∈ (P+)n,

f•Sf
#»

A = {y ∈ Y : #»x ∈π
#»

A implies y ∈ ρRf | #»x |} (3.5)

=
⋂
{ρRf | #»x | : #»x ∈π

#»

A}. (3.6)

But since f preserves joins in each coordinate, using the first equation from (2.2)
we get

f
#»

A = f(
∨
x0∈A0

|x0|, . . . ,
∨
xn−1∈An−1

|xn−1|)

=
∨
{f(| #»x |) : #»x ∈π

#»

A} by (3.1),

= λRρR
(⋃{f(| #»x |) : #»x ∈π

#»

A}), by definition of
∨
,

= λR
(⋂{ρRf(| #»x |) : #»x ∈π

#»

A}) by (2.1),

= λRf
•
Sf

#»

A by (3.6) ,

= fSf
#»

A.

Theorem 5. If all sections of S are stable, then fS is a complete normal operator,
and S is equal to the relation SfS determined by fS.

Proof. Assume all sections of S are stable. To prove that fS preserves joins in the
i-th coordinate it is enough to prove that the inclusion

fS( #»

A[∨J Bj/i]) ⊆
∨
J fS( #»

A[Bj/i]) (3.7)

holds for any #»

A ∈ (P+)n and any collection {Bj : j ∈ J} ⊆ P+ with join ∨J Bj .
This is because the converse inclusion must hold, since fS is isotone in the i-th
coordinate, so fS( #»

A[Bj/i]) ⊆ fS( #»

A[∨J Bj/i]) for all j ∈ J . We will first show that

⋂
j∈J f

•
S( #»

A[Bj/i]) ⊆ f•S( #»

A[∨J Bj/i]). (3.8)

To see this, let y ∈ f•S( #»

A[Bj/i]) for all j ∈ J . Take any #»x ∈π
#»

A[X/i]. Then for
each j, if x′ ∈ Bj then #»x [x′/i] ∈ π #»

A[Bj/i], so #»x [x′/i]Sy by the definition (3.5) of
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f•S . This shows that Bj ⊆ S[ #»x [−]i, y]. But the latter section is a stable subset of X,
hence belongs to P+, so this implies that ∨J Bj ⊆ S[ #»x [−]i, y]. Hence #»x [z/i]Sy for
all z ∈ ∨J Bj . As that holds for all #»x ∈π

#»

A[X/i], we get
(
π

#»

A[∨J Bj/i]
)
Sy, hence

y ∈ f•S( #»

A[∨J Bj/i]), proving (3.8).
Now as f•S( #»

A[∨J Bj/i]) is stable, being an intersection of stable sections (3.3),
we reason that

⋂
j∈J f

•
S( #»

A[Bj/i]) =
⋂
j∈J ρRλRf

•
S( #»

A[Bj/i])

=
⋂
j∈J ρRfS( #»

A[Bj/i])

= ρR
(⋃

j∈J fS( #»

A[Bj/i])
)
,

and therefore from (3.8) that

ρR
(⋃

j∈J fS( #»

A[Bj/i])
) ⊆ f•S( #»

A[
∨
J
Bj/i]).

Hence λRf•S( #»

A[∨J Bj/i]) ⊆ λRρR
(⋃

j∈J fS( #»

A[Bj/i])
)
, which is (3.7).

To show that S = SfS , note first that #»xSfSy iff y ∈ ρRfS | #»x |, by definition of Sf ,
while ρRfS | #»x | = ρRλRf

•
S | #»x | = f•S | #»x | since f•S | #»x | is stable by (3.3) as all S-sections

are stable. Thus #»xSfSy iff y ∈ f•S | #»x | iff (π| #»x |)Sy. But if (π| #»x |)Sy, then #»xSy since
#»x ∈ π| #»x |. Conversely, if #»xSy then (π| #»x |)Sy by Lemma 3. So altogether, #»xSfSy iff
#»xSy.

An alternative proof that fS is a complete normal operator can be given by
showing that the function A′ 7→ fS( #»

A[A′/i]) has a right adjoint, namely the function
B′ 7→ gi( #»

A[B/i]), where

gi
#»

A =
⋂
{S[ #»x [−]i, y] : #»x ∈ #»

A[X/i] and y ∈ ρRAi}.

The adjointness means that fS( #»

A[A′/i]) ⊆ B iff A′ ⊆ gi( #»

A[B/i]) for any A′, B ∈ P+.
It is a standard fact that any lattice operation with a right adjoin preserves all joins.
The functions B′ 7→ gi( #»

A[B/i]) for each i < n generalise the two residual operations
A0\A1 and A0/A1 of the above binary fusion operation A0 ⊗ A1, as given in [17].
These can be expressed as

A0\A1 =
⋂
{S[x0,−, y] : x0 ∈ A0 & y ∈ ρRA1},

A0/A1 =
⋂
{S[−, x1, y] : x1 ∈ A1 & y ∈ ρRA0}.

Next we consider the construction of dual operators on P+. An m-ary dual
operator can be obtained from a relation of the form T ⊆ X × Y m. We write xT #»y
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when (x, #»y ) ∈ T , and xTZ when xT #»y holds for all #»y ∈ Z. Sections of T take the
form

T [−, #»y ] = {x ∈ X : xT #»y } for #»y ∈ Y m,

T [x, #»y [−]i] = {y′ ∈ Y : xT #»y [y′/i]} for x ∈ X, i < m, #»y ∈ Y m.

Dual to Lemma 3 is a result about sequences of the form | #»y | = (|y0|, . . . , |ym−1|),
where |yi| = ρRλR{yi}, the smallest stable subset of Y to contain yi. Suppose all
sections of T of the form T [x, #»y [−]i]] are stable. Then if xT #»y , we can show by
induction on i 6 m that if zj ∈ |yj | for all j < i, then xT (z0, . . . , zi−1, yi, . . . , ym−1).
Putting i = m then gives

Lemma 6. Suppose that all sections of T of the form T [x, #»y [−]i]] are stable in
Y . Then for all (x, #»y ) ∈ X × Y m, if xT #»y then every #»z ∈π | #»y | has xT #»z , i.e.
xT (π| #»y |).

We now define an m-ary function gT on P+. For #»

A ∈ (P+)m put

gT
#»

A = {x ∈ X : xT (πρR
#»

A)},
= {x ∈ X : ∀ #»y ( #»y ∈ πρR

#»

A implies xT #»y )}
=
⋂
{T [−, #»y ] : #»y ∈π ρR

#»

A}. (3.9)

The condition for x ∈ gT
#»

A can be spelt out as the first-order expression

∀ #»y
(∧

i<m ∀z(z ∈ Ai → zRyi)→ xT #»y
)
. (3.10)

We exemplify gT with the case that m = 1. Then T is a binary relation from X
to Y , inducing a unary operation on P+ which we denote more suggestively by 2T .
Thus

2TA = {x ∈ X : xTρRA}.
As a binary relation, T can also be viewed as a subset of Xn × Y with n = 1, so it
induces a unary operation 3T on P+ having

3TA = λR{y ∈ Y : ATy}.

When all sections of T are stable, 2T is a dual operator and 3T is an operator that
is left adjoint to 2T in the sense that for any A,B ⊆ X,

3TA ⊆ B iff A ⊆ 2TB.
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2T and 3T can be viewed as modal operators. Defining a ‘satisfaction’ relation
x |= A to mean that x ∈ A, then (3.10) in the case m = 1 becomes the semantic
condition

x |= 2TA iff ∀y(∀z(z |= A→ zRy)→ xTy
)
.

Likewise, from the definition of 3T we obtain

x |= 3TA iff ∀y(∀z(z |= A→ zTy)→ xRy
)
.

See [7, 8] for discussion of pairs of ‘modalities’ like 2T and 3T .
In a similar way, the above operator A0 ⊗ A1 and its two residual operations

A0\A1 and A0/A1 have been used in [12] and [17] to develop a relational semantic
modelling for the implication-fusion fragments of a number of substructural logics,
including linear logic, relevant logic, and intuitionistic logic. This methodology has
been extended further to give a generalised Kripke semantics for the Lambek-Grishin
calculus [6] and the full linear logic [10].

Theorem 7. If all sections of a relation T ⊆ X × Y m are stable, then gT is a
complete normal dual operator.

Proof. If all sections of T are stable then gT
#»

A is stable by (3.9), so gT is an operation
on P+. gT is isotone in each coordinate. Hence it satisfies the inclusion

gT ( #»

A[⋂J Bj/i]) ⊆
⋂
J gT ( #»

A[Bj/i]).

To show that gT is a complete normal dual operator, we prove that the last inclusion
is an equality for any i < m. Let x ∈ ⋂j∈J gT ( #»

A[Bj/i]), where {Bj : j ∈ J} ⊆ P+.
Then

∀j ∈ J ∀ #»y ∈π ρR( #»

A[Bj/i]), xT #»y . (3.11)

Now take any #»y ∈π ρR( #»

A[⋂J Bj/i]). Then for any j ∈ J , if y′ ∈ ρRBj then
#»y [y′/i] ∈π ρR( #»

A[Bj/i]), so xT ( #»y [y′/i]) by (3.11). This proves ρRBj ⊆ T [x, #»y [−]i].
Therefore λRT [x, #»y [−]i] ⊆ λRρRBj = Bj . Hence λRT [x, #»y [−]i] ⊆

⋂
J Bj , giving

ρR
⋂
J Bj ⊆ ρRλRT [x, #»y [−]i] = T [x, #»y [−]i]

as T [x, #»y [−]i] is stable. But yi ∈ ρR
⋂
J Bj , so then yi ∈ T [x, #»y [−]i], making xT #»y .

Altogether we have shown that
#»y ∈π ρR( #»

A[⋂J Bj/i]) implies xT #»y ,

which means that x ∈ gT ( #»

A[⋂J Bj/i]), completing the proof that gT preserves all
meets in the i-th coordinate.
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It can also be shown that if g is any complete normal dual operator on P+, then
g is equal to gTg , where Tg ⊆ X × Y m is defined by

xTg
#»y iff x ∈ g(λR{y0}, . . . , λR{ym−1}),

making Tg[−, #»y ] = g(λR{y0}, . . . , λR{ym−1}). Then using the second equation from
(2.2), for any #»

A ∈ (P+)m we get

g
#»

A = g
(⋂

y0∈ρRA0
λR{y0}, . . . ,

⋂
ym−1∈ρRAm−1

λR{ym−1}
)

=
⋂
{g(λR{y0}, . . . , λR{ym−1}) : #»y ∈π ρR

#»

A} by the dual of (3.1),

=
⋂
{Tg[−, #»y ] : #»y ∈π ρR

#»

A}
= gTg

#»

A by (3.9).

Also, if all sections of T ⊆ X × Y m are stable, then T is equal to the relation
TgT determined by gT . For, if xTgT #»y then by definition of TgT , x ∈ gT

#»

A where
#»

A = (λR{y0}, . . . , λR{ym−1}), hence by definition of gT , we get xT (πρR
#»

A). But
#»y ∈ πρR

#»

A since yi ∈ ρRλR{yi} for i < m, so this implies xT #»y . Conversely, if xT #»y ,
then by Lemma 6, xT (π| #»y |). But here π| #»y | = πρR

#»

A, so this gives x ∈ gT
#»

A and
hence xTgT #»y . Altogether, T = TgT .

We are going to work with lattices having additional operators and dual opera-
tors, and we need a convenient notation for this. Let Ω be a set of function symbols
with given finite arities. Define an Ω-lattice to be an algebra of the form

L = (L0, {fL : f ∈ Ω}),

where L0 is a lattice, and for n-ary f ∈ Ω, fL is an n-ary operation on L0. Further-
more, we will take Ω to be presented as the union Λ∪Υ of disjoint subsets Λ and Υ
of ‘lower’ and ‘upper’ symbols, respectively (the reason for these names will emerge
later—see (6.7)). An Ω-lattice will be called a normal lattice with operators—an
Ω-NLO or just NLO—if each lower symbol denotes a normal operator in L and each
upper symbol denotes a normal dual operator.

We define an Ω-polarity to be a structure of the form

P = (X,Y,R, {Sf : f ∈ Λ}, {Tg : g ∈ Υ}),

based on a polarity P0 = (X,Y,R), such that for any n-ary lower symbol f ∈ Λ,
Sf ⊆ Xn × Y and all sections of Sf are stable; and for any m-ary upper symbol
g ∈ Υ, Tg ⊆ X × Y m and all sections of Tg are stable. Then P gives rise to the
Ω-NLO

P+ = (P+
0 , {fSf : f ∈ Λ}, {gTg : g ∈ Υ}), (3.12)
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where fSf is the complete normal operator determined by Sf , as per Theorem 5, and
gTg is the complete normal dual operator determined by Tg, as per Theorem 7.

4 Bounded Morphisms
To simplify the exposition, we fix two arbitrary natural numbers n andm and assume
from now that Λ consists of a single n-ary function symbol while Υ consists of a
single m-ary one. Then an Ω-polarity has the typical form

P = (X,Y,R, S, T )

with S ⊆ Xn × Y , T ⊆ X × Y m, and all sections of S and T being stable. We lift
the relations 41 and 42 to tuples coordinate-wise, putting #»x 41

#»z iff xi 41 zi for
all i < n; with [ #»x )1 = { #»z ∈ Xn : #»x 41

#»z } etc.
Let P and P ′ be Ω-polarities of the kind just described. For a function α : X →

X ′ we put

α( #»x ) = (α(x0), . . . , α(xn−1)),

α−1[
#»

x′)1 = { #»x ∈ Xn :
#»

x′ 4′1 α( #»x )} etc.

Definition 8. A bounded morphism from P to P ′ is a pair α, β of isotone maps
α : (X,41) → (X ′,4′1) and β : (Y,42) → (Y ′,4′2) that satisfy the following back
and forth conditions.

(1R) α(x)R′β(y) implies xRy, all x ∈ X, y ∈ Y .

(2R) (α−1[x′)1)Ry implies x′R′β(y), all x′ ∈ X ′, y ∈ Y .

(3R) xRβ−1[y′)2 implies α(x)R′y′, all x ∈ X, y′ ∈ Y ′.

(1S) α( #»x )S′β(y) implies #»xSy, all #»x ∈ Xn, y ∈ Y .

(2S) (α−1[
#»

x′)1)Sy implies
#»

x′S′β(y), all
#»

x′ ∈ (X ′)n, y ∈ Y .

(1T ) α(x)T ′β( #»y ) implies xT #»y , all x ∈ X, #»y ∈ Y m.

(2T ) xTβ−1[
#»

y′)2 implies α(x)T ′
#»

y′, all x ∈ X, #»

y′ ∈ (Y ′)m.

In condition (3R), β−1[y′)2 is the set {y ∈ Y : y′ 4′2 β(y)}. Thus the condition
can be expressed as

if ∀y(y′ 4′2 β(y) implies xRy), then α(x)R′y′.
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Contrapositively this says

if not α(x)R′y′, then ∃y(y′ 4′2 β(y) and not xRy). (4.1)

Similar formulations hold for (2R), (2S) and (2T ). Note that the converse of (4.1) is
equivalent to (1R), which follows from this converse by putting y′ = β(y). To derive
the converse, observe that if not xRy then (1R) implies not α(x)R′β(y), so then if
y′ 4′2 β(y) we get not α(x)R′y′ by definition of 4′2.
Remark 9 (Source of Definition 8). Suppose that X = Y and R is symmetric.
Then we have the kind of polarity used in [27] to provide a semantics for orthologic,
in which the operation λR (= ρR) is an orthocomplementation modelling a negation
connective. An ortholattice representation was given in [26] in which the points of
the representing space are filters of the lattice, and which can be seen as a precursor
to the canonical structures of Section 7 below. A translation of orthologic into
classical modal logic was obtained in [27] by transforming an ‘orthoframe’ (X,R)
into the Kripke frame (X, R̂), where R̂ = X2\R is the complementary relation to R.
Taking α = β, so that (2R) and (3R) become equivalent, then if the conditions (1R)–
(3R) are re-expressed in terms of R̂ and R̂′, they become similar to the standard
definition of a bounded morphism between the Kripke frames (X, R̂) and (X ′, R̂′),
with (1R) being equivalent to (1.1) for R̂, and (3R) in the form (4.1) amounting
to (1.2) for R̂ (except for the relation 4′2). The other conditions in Definition 8
give parallel back and forth properties for the relations S and T . This account may
explain why it is often natural to use contrapositive reasoning in proofs of properties
of bounded morphisms, as we shall see.

The use of quasi-orderings 4i is well established in theories of duality for non-
Boolean lattices [39, 40] and relates to the fact that the points of dual structures are
typically filters and/or ideals that may not be maximal. Such points are naturally
quasi-ordered by the set inclusion relation ⊆. The use of a quasi-order to formulate
bounded morphism conditions like (4.1) is also well established [28, p.192], [4, p.698].
We could adopt a more axiomatic approach and let 41 and 42 be any additional
quasi-orders that satisfy the condition (2.5), which is equivalent to requiring only
that x 41 x′ implies ρR{x} ⊆ ρR{x′} and y 42 y′ implies λR{y} ⊆ λR{y′}. But in
a polarity, suitable quasi-orders can be defined as in (2.3) and (2.4), and shown to
give the relation ⊆ in a canonical structure: see Lemma 21.

The requirement that α and β be isotone is needed to ensure that the class of
bounded morphisms is closed under functional composition and gives a category:
see Lemma 14.

We will show that a bounded morphism makes the following diagrams commute,
where the operation P4 gives the set of all 4-upsets.
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P41X
ρR //P42Y

P4′1X
′

α−1

OO

ρR′ //P4′2Y
′

β−1

OO
P41X P42Y

λRoo

P4′1X
′

α−1

OO

P4′2Y
′λR′oo

β−1

OO

Lemma 10. Let α, β : P → P ′ be a bounded morphism and A ⊆ X ′ and B ⊆ Y ′.

(1) β−1(ρR′A) ⊆ ρR(α−1A), with β−1(ρR′A) = ρR(α−1A) when A is a 4′1-upset.

(2) α−1(λR′B) ⊆ λR(β−1B), with α−1(λR′B) = λR(β−1B) when B a 4′2-upset.

(3) If A ∈ (P ′)+ then α−1A ∈ P+.

Proof. (1) Let y ∈ β−1(ρR′A), so AR′β(y). If x ∈ α−1A, then α(x) ∈ A, so then
α(x)R′β(y), hence xRy by (1R). This shows (α−1A)Ry, making y ∈ ρR(α−1A).
Suppose further that A is a 4′1-upset. Let y ∈ ρR(α−1A), so (α−1A)Ry. If x′ ∈
A, then [x′)1 ⊆ A as A is an upset, so α−1[x′)1 ⊆ α−1A, hence α−1[x′)1Ry, and
so x′R′β(y) by (2R). This shows AR′β(y), so β(y) ∈ ρR′A and y ∈ β−1(ρR′A).

(2) Like (1), but using (1R) and (3R).

(3) A = λR′(ρR′A) as A is stable, so α−1A = α−1λR′(ρR′A) = λRβ
−1(ρR′A) by part

(2) as ρR′A is stable, therefore a 4′2-upset. But any subset of X of the form
λRB is stable and so belongs to P+.

Corollary 11. (1) A pair α, β satisfies (1R) and (2R) if, and only if,

β−1(ρR′A) = ρR(α−1A) for all stable A ⊆ X ′. (4.2)

(2) α, β satisfies (1R) and (3R) if, and only if,

α−1(λR′B) = λR(β−1B) for all stable B ⊆ Y ′. (4.3)

Proof. (1): If (1R) and (2R) hold, then (4.2) follows by part (1) of the Lemma be-
cause stable sets are upsets. Conversely, assume (4.2). To prove (1R): if α(x)R′β(y),
then

y ∈ β−1ρR′{α(x)} = β−1ρR′λR′ρR′{α(x)} = ρRα
−1λR′ρR′{α(x)},

with the last equation holding by (4.2). But x ∈ α−1λR′ρR′{α(x)}, so then xRy.
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For (2R), suppose not x′R′β(y). Then y /∈ β−1ρR′{x′} = ρRα
−1λR′ρR′{x′} as

above. Hence there exists x ∈ X such that not xRy and α(x) ∈ λR′ρR′{x′}. Then
ρR′{x′} = ρR′λR′ρR′{x′} ⊆ ρR′{α(x)}, so x′ 4′1 α(x) and x ∈ α−1[x′)1. Since not
xRy this gives not (α−1[x′)1)Ry as required.

The proof of (2) is similar.

Remark 12 (On conditions (4.2) and (4.3)). Formal Concept Analysis defines
a concept of a context/polarity P = (X,Y,R) to be a pair (A,B) of subsets, of X
and Y respectively, with A = λRB and B = ρRA. The set of concepts is partially
ordered by putting (A,B) 6 (C,D) iff A ⊆ C (iff D ⊆ B), forming a complete
lattice isomorphic to P+. Erné [13] defined a pair X α−→ X ′, Y

β−→ Y ′ to be concept
continuous if (α−1A, β−1B) is a concept of P whenever (A,B) is a concept of P ′.
He showed in [13, Prop. 3.2] that α, β is concept continuous iff the follow conditions
hold.

not x′R′β(y) iff there is an x with not xRy and ρR′{x′} ⊆ ρR′{α(x)}, (4.4)
not α(x)R′y′ iff there is a y with not xRy and λR′{y′} ⊆ λR′{β(y)}. (4.5)

Now it is readily seen that α, β is concept continuous iff conditions (4.2) and (4.3)
of our Corollary 11 hold, which is equivalent by that corollary to having (1R)–(3R).
Condition (4.5) is equivalent to the combination of (4.1) and its converse, which we
already noted is equivalent to having (1R) and (3R). Likewise, (4.4) is equivalent to
having (1R) and (2R).

Hartonas [33], building on [34], studied morphisms between polarity-based struc-
tures in which 41 and 42 are complete partial orders, X and Y each carry a Stone
space topology, the closed subsets ofX are the sets [x)1 while the open subsets are the
sets λR{y}, and similarly for subsets of Y . A morphism is a pair X α−→ X ′, Y

β−→ Y ′

of continuous functions that preserve all meets in X and Y respectively, and are
such that α−1 and β−1 satisfy the equations in (4.2) and (4.3) for all clopen stable
A and B.

In the proof of the next result, and elsewhere, the notation α[Z] will be used for
the image {α(z) : z ∈ Z} of a set Z under function α.

Theorem 13. For any bounded morphism α, β : P → P ′, the map A 7→ α−1A gives
a homomorphism

(α, β)+ : (P ′)+ → P+

of Ω-lattices. If α is surjective, (α, β)+ is injective. If α is injective, (α, β)+ is
surjective.
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Proof. The map is well defined by Lemma 10(3). It preserves binary meets because
inverse maps preserve intersections, hence α−1(A∩B) = α−1A∩α−1B. It preserves
binary joins because

α−1(A ∨B)
= α−1λR′ρR′(A ∪B) by definition of A ∨B,
= λRβ

−1ρR′(A ∪B) by Lemma 10(2),
= λRρRα

−1(A ∪B) by Lemma 10(1),
= λRρR(α−1A ∪ α−1B) by property of α−1,
= α−1A ∨ α−1B.

It preserves greatest elements as α−1X ′ = X, and least elements as α−1λR′Y
′ =

λRβ
−1Y ′ = λRY .
Next we show that (α, β)+ preserves the operations fS and fS′ , first proving that

for any #»

A ∈ ((P ′)+)n,
β−1f•S′

#»

A = f•Sα
−1 #»

A. (4.6)

Let y ∈ β−1f•S′
#»

A, so (π #»

A)S′β(y) by (3.3). Then if #»x ∈π α−1 #»

A, then α( #»x ) ∈ π #»

A, so
α( #»x )S′β(y), hence #»xSy by (1S). This shows that (πα−1 #»

A)Sy, so y ∈ f•S(α−1 #»

A).
Conversely, let y ∈ f•S(α−1 #»

A), so (πα−1 #»

A)Sy. Take any
#»

x′ ∈ π
#»

A. Then if
#»z ∈ α−1[

#»

x′)1, we have
#»

x′ 41 α( #»z ), so α( #»z ) ∈ π #»

A as each Ai is a 41-upset, hence
#»z ∈ πα−1 #»

A, and therefore #»z Sy. Thus (α−1[
#»

x′)1)Sy. Hence
#»

x′S′β(y) by (2S).
Altogether this shows that (π #»

A)S′β(y). Therefore β(y) ∈ f•S′
#»

A, hence y ∈ β−1f•S′
#»

A,
which completes the proof of (4.6). Now we reason that

fS(α−1 #»

A) = λRf
•
Sα
−1 #»

A

= λRβ
−1f•S′

#»

A by (4.6)
= α−1λR′f

•
S′

#»

A by Lemma 10(2)
= α−1fS′

#»

A,

proving that (α, β)+ preserves the operations fS and fS′ .
Now we prove that (α, β)+ preserves gT and gT ′ , i.e. for any

#»

A ∈ ((P ′)+)m,

α−1gT ′
#»

A = gTα
−1 #»

A. (4.7)

Let x ∈ α−1gT ′
#»

A, so α(x) ∈ gT ′
#»

A, i.e. α(x)T ′πρR′
#»

A. Now if

#»y ∈ πρRα−1 #»

A = πβ−1ρR′
#»

A

(see Lemma 10(1)), then β( #»y ) ∈ πρR′
#»

A, hence α(x)T ′β( #»y ), and thus xT #»y by (1T ).
This shows that xT (πρRα−1 #»

A), i.e. x ∈ gTα−1 #»

A.
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Conversely, assume x ∈ gTα−1 #»

A. Let
#»

y′ ∈ πρR′
#»

A. Then if #»y ∈ β−1[
#»

y′)2, then
#»

y′ 42 β( #»y ), so β( #»y ) ∈ πρR′
#»

A. Hence for all i < m, yi ∈ β−1ρR′Ai = ρRα
−1Ai,

and so #»y ∈ πρRα−1 #»

A. That gives xT #»y because x ∈ gTα−1 #»

A. Altogether this show
xTβ−1[

#»

y′)2. Hence α(x)T ′ #»y ′ by (2T ). So we have established that α(x)T ′πρR′
#»

A,
which means that α(x) ∈ gT ′

#»

A. Hence x ∈ α−1gT ′
#»

A, completing the proof of (4.7),
and hence the proof that (α, β)+ is an Ω-lattice homomorphism.

The fact that A 7→ α−1A is injective when α is surjective is standard set theory:
surjectivity of α implies that α[α−1Z] = Z in general. Hence if α−1A = α−1B, then
A = α[α−1A] = α[α−1B] = B.

Finally, suppose that α is injective. For any B ∈ P+, take A = λR′ρR′α[B]
∈ (P ′)+. Then by Lemma 10, α−1A = λRρRα

−1(α[B]) = λRρRB as α is injective.
But B is stable, so we get that B = α−1A = (α, β)+A, showing that (α, β)+ is
surjective.

Let Ω-Pol be the category whose objects are the Ω-polarities and whose arrows
are the bounded morphisms between such objects. The identity arrow idP on each
object P is the pair idX , idY of identity functions on X and Y . The composition of
two arrows

P
α,β // P ′

α′,β′ // P ′′

is given by the pair of functional compositions α′ ◦α : X → X ′′ and β′ ◦β : Y → Y ′′.

Lemma 14. The pair α′ ◦ α, β′ ◦ β is a bounded morphism from P to P ′′.

Proof. It is straightforward that the composition of isotone functions is isotone. For
the back and forth conditions we give the details for (1S) and (2S), since the others
follow the same pattern.

For (1S), observe that if (α′ ◦ α)( #»x )S′′(β′ ◦ β)(y), then α( #»x )S′β(y) by (1S) for
α′, β′, hence #»xSy by (1S) for α, β.

For (2S), we argue contrapositively and take
# »

x′′ ∈ (X ′′)n and y ∈ Y such that
not

# »

x′′S′′(β′ ◦ β)(y). Then as α′, β′ is a bounded morphism, there exists
#»

x′ ∈ (X ′)n
such that

# »

x′′ 41 α′(
#»

x′) and not
#»

x′S′β(y). Hence as α, β is a bounded morphism,
there exists #»x ∈ Xn such that

#»

x′ 41 α( #»x ) and not #»xSy. From
#»

x′ 41 α( #»x ) we
get α′(

#»

x′) 41 α′(α( #»x )) as α′ is isotone, hence its action on tuples is isotone. Since
# »

x′′ 41 α′(
#»

x′) it follows that
# »

x′′ 41 α′(α( #»x )), so we have #»x ∈ (α′ ◦ α)−1[
# »

x′′)1 while
not #»xSy, hence not (α′ ◦ α)−1[

# »

x′′)1Sy, confirming (2S) for the pair α′ ◦ α, β′ ◦ β.
The cases of (3R) and (2T ) depend on β′ being isotone.

Let Ω-NLO be the category whose objects are the normal Ω-lattices with oper-
ators and whose arrows are the algebraic homomorphisms between Ω-NLO’s, with
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the composition of arrows being their functional composition and the identity arrows
being the identity functions. Then with the help of Theorem 13 and Lemma 14 we
see that the mappings P 7→ P+ and α, β 7→ (α, β)+ form a contravariant functor
from Ω-Pol to Ω-NLO.

5 Isomorphism and Inner Substructures
Every category provides a definition of isomorphism between its objects. Thus the
existence of Ω-Pol allows us to read off a description of isomorphisms between Ω-
polarities. A bounded morphism µ : P → P ′ is called an isomorphism if there exists
a bounded morphism µ′ : P ′ → P such that µ′ ◦ µ = idP and µ ◦ µ′ = idP ′ . Then µ′
is the inverse of µ. It is itself an isomorphism, with inverse µ.

We say that a bounded morphism α, β preserves polarity, or preserves R, if xRy
implies α(x)R′β(y), i.e. if the converse of (1R) holds. Similarly α, β preserves S if
#»xSy implies α( #»x )S′β(y), and preserves T if xT #»y implies α(x)T ′β( #»y ).

The function α reflects quasi-order if α(x) 4′1 α(z) implies x 41 z. Likewise β
reflects quasi-order if β(y) 4′2 β(w) implies y 42 w.

Lemma 15. For any bounded morphism α, β the following statements are equiva-
lent.

(1) α, β preserves polarity.

(2) α reflects quasi-order.

(3) β reflects quasi-order.

Proof. (1) implies (2): Assume (1). Let x, z ∈ X have α(x) 4′1 α(z). Then for
all y ∈ Y , if xRy, then α(x)R′β(y) by (1), and so α(z)R′β(y) by definition of
α(x) 4′1 α(z), hence zRy by (1R). Thus ρR{x} ⊆ ρR{z}, i.e. x 41 z. Altogether
this proves (2).

(2) implies (1): Assume (2). We prove (1) contrapositively. Suppose that not
α(x)R′β(y). Then by (2R), there exists z ∈ X with α(x) 4′1 α(z) and not zRy.
Hence x 41 z by (2), so by definition of 41 we get not xRy as required for (1).

That completes a proof that (1) is equivalent to (2). Similarly we can prove that
(1) is equivalent to (3), using (3R) in place of (2R).

Theorem 16. A bounded morphism µ = (α, β) : P → P ′ is an isomorphism iff
α : X → X ′ and β : Y → Y ′ are bijective and preserve the relations R, S and T .
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Proof. Suppose there is a bounded morphism µ′ = (α′, β′) that is inverse to µ. Then
α′ ◦ α = idX and α ◦ α′ = idX′ , so α has an inverse α′ and therefore is bijective.
Similarly β is bijective. Also, if #»xSy, then α′(α( #»x ))Sβ′(β(y)), so α( #»x )S′β(y) by
(1S) for the bounded morphism α′, β′. This proves that S is preserved. The proof
that R and T are preserved is similar, using (1R) and (1T ).

Conversely, assume that α and β are bijective and preserve the relations. Then
α and β have inverses α′ : X ′ → X and β′ : Y ′ → Y . We show that µ′ = (α′, β′) is a
bounded morphism, which will then be an inverse for µ, as required for µ to be an
isomorphism.

First, as R is preserved, α and β reflect quasi-orders by Lemma 15. If x′, z′ ∈ X ′
have x′ 4′1 z′, then there exist x, z ∈ X with x′ = α(x) and z′ = α(z), so x 41 z
from reflection by α. But this means that α′(x′) 41 α′(z′), and shows that α′ is
isotone. Similarly β′ is isotone.

To prove the back condition (1S) for α′, β′, let α′(
#»

x′)Sβ′(y). Then as (α, β)
preserves S we get α(α′(

#»

x′))S′β(β′(y)), i.e.
#»

x′S′y as required. The cases of (1R) and
(1T ) for α′, β′ are similar, using the preservation of R and T .

For a forth condition for α′, β′, we prove (2S). Let #»x ∈ Xn and y′ ∈ Y ′, and
suppose that not #»xSβ′(y′). We have to show that not (α′)−1[ #»x )1S′y′, i.e. that there
exists #»w ∈ (X ′)n such that #»x 41 α′( #»w) and not #»wS′y′. Now by (1S) for α, β, from
not #»xSβ′(y′) we get that not α( #»x )S′β(β′(y′)), hence by (2S) for α, β we get not
α−1[α( #»x ))1Sβ′(y′). So there exists #»z ∈ α−1[α( #»x ))1, hence α( #»x ) 4′1 α( #»z ), such
that not #»z Sβ′(y′). Let #»w = α( #»z ). Then as α′ is isotone, α′(α( #»x )) 41 α′(α( #»z )), i.e.
#»x 41 α′( #»w). Also from not #»z Sβ′(y′), by (1S) for α, β we get not α( #»z )S′β(β′(y′)),
i.e. not #»wS′y as required.

That proves (2S) for α′, β′. The cases of the other forth condition for α′, β′ are
similar.

We define P to be an inner substructure of P ′ if the following holds.

(i) P is a substructure of P ′ in the usual sense that X ⊆ X ′, Y ⊆ Y ′, and
the relations of P are the restrictions of those of P ′, i.e. R = R′ ∩ (X × Y ),
S = S′ ∩ (Xn × Y ), and T = T ′ ∩ (X × Y m).

(ii) The pair of inclusion maps X ↪→ X and Y ↪→ Y ′ form a bounded morphism
from P to P ′.

Condition (i) here entails that (1R), (1S) and (1T ) hold when α and β are the
inclusions, e.g. (1R) asserts that xR′y implies xRy when x ∈ X and y ∈ Y . Given
(i), condition (ii) is equivalent to requiring the following.
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(2R) {x ∈ X : x′ 4′1 x}Ry implies x′R′y, all x′ ∈ X ′, y ∈ Y ;

(3R) xR{y ∈ Y : y′ 4′2 y} implies xR′y′, all x ∈ X, y′ ∈ Y ′;

(2S) { #»x ∈ Xn :
#»

x′ 4′1 #»x}Sy implies
#»

x′S′y, all
#»

x′ ∈ (X ′)n, y ∈ Y ;

(2T ) xT{ #»y ∈ Y m :
#»

y′ 4′2 #»y } implies xT ′
#»

y′, all x ∈ X, #»

y′ ∈ (Y ′)m.

Theorem 17. It P is an inner substructure of P ′, then the map A 7→ A ∩X is an
Ω-lattice homomorphism from (P ′)+ onto P+.

Proof. If α is the inclusion X ↪→ X ′, then α−1A = A ∩ X, so by Theorem 13,
A 7→ A ∩ X is a surjective homomorphism (P ′)+ → P+ of Ω-lattices, since α is
injective.

The image of a bounded morphism α, β : P → P ′ is defined to be the structure

Im(α, β) = (α[X], β[Y ], R′′, S′′, T ′′),

where the relations displayed are the restrictions of the corresponding relations of P ′,
i.e. R′′ = R′∩(α[X]×β[Y ]), S′′ = S′∩(α[X]n×β[Y ]), and T ′′ = T ′∩(α[X]×β[Y ]m).

Lemma 18. (1) The quasi-orders 4′′1 and 4′′2 defined from R′′ are the restrictions
of the relations 4′1 and 4′2 to α[X] and β[Y ], respectively.

(2) All sections of S′′ and T ′′ are stable in Im(α, β).

Proof. For part (1), we show that α(x) 4′′1 α(z) iff α(x) 4′1 α(z) for all x, z ∈ X.
Suppose first that α(x) 4′1 α(z). By definition this means that α(x)R′y′ implies
α(z)R′y′ for all y′ ∈ Y ′ (see (2.3)). In particular, for any y ∈ Y , if α(x)R′′α(y)
then α(x)R′α(y), hence α(z)R′α(y) and so α(z)R′′α(y). This shows ρR′′{α(x)} ⊆
ρR′′{α(z)}, i.e. α(x) 4′′1 α(z).

Conversely, let α(x) 4′′1 α(z). For any y′ ∈ Y ′, if not α(z)R′y′, then by (3R)
there exists y ∈ Y such that y′ 4′2 β(y) and not zRy. Hence not α(z)R′β(y) by
(1R), and so not α(z)R′′β(y). This implies not α(x)R′′β(y) because α(x) 4′′1 α(z).
Hence not α(x)R′β(y), so then not α(x)R′y′ as y′ 4′2 β(y). Altogether this proves
ρR′{α(x)} ⊆ ρR′{α(z)}, i.e. α(x) 4′1 α(z).

The proof that 4′′2 is the restriction of 4′2 to β[Y ] is similar.
For part (2), consider a section of the form S′′[α( #»x )[−]i, β(y)]. If an element α(z)

of α[X] does not belong to this section, then it does not belong to S′[α( #»x )[−]i, β(y)].
But the latter section is stable in P ′, so there is some

y′ ∈ ρR′S′[α( #»x )[−]i, β(y)] (5.1)
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such that not α(z)R′y′. Then not zRβ−1[y′)2 by (3R), so there is some w ∈ Y such
that y′ 4′2 β(w) and not zRw. Hence by (1R), not α(z)R′β(w), and therefore not
α(z)R′′β(w). Now we show that

β(w) ∈ ρR′′S′′[α( #»x )[−]i, β(y)]. (5.2)

For if t ∈ S′′[α( #»x )[−]i, β(y)], then t ∈ S′[α( #»x )[−]i, β(y)], so by (5.1), tR′y′. But
y′ 4′2 β(w), so then tR′β(w) by (2.5). Hence tR′′β(w) as t ∈ α[X]. This proves (5.2).
Since not α(z)R′′β(w), α(z) /∈ λR′′ρR′′S′′[α( #»x )[−]i, β(y)], completing the proof that
S′′[α( #»x )[−]i, β(y)] is stable.

The argument for sections of the form S′′[α( #»x ),−] is similar, using (2R). The
arguments for the sections of T ′′ follow the same patterns.

Corollary 19. Im(α, β) is an inner substructure of P ′ .

Proof. Part (2) of the Lemma confirms that Im(α, β) is an Ω-polarity. By part (1),
the inclusions (α[X],4′′1) ↪→ (X ′,4′1) and (β[Y ],4′′2) ↪→ (Y ′,4′2) are isotone. We
show that they satisfy the back and forth properties of Definition 8, so they form
a bounded morphism, making Im(α, β) an inner substructure of P ′ by definition.
Since Im(α, β) is defined to be a substructure of P ′, the inclusions do satisfy the
back conditions, as already noted.

For the forward conditions, we consider (2R). This requires that for any x′ ∈ X ′
and w ∈ β[Y ], if not x′R′w then there exists z ∈ α[X] with x′ 4′1 z and not zR′′w.
Now w = β(y) for some y ∈ Y , and α and β satisfy (2R), so if not x′R′β(y) then
there exists x ∈ X with x′ 4′1 α(x) and not xRy. Hence not α(x)R′β(y) by (1R),
and so not α(x)R′′β(y). Thus putting z = α(x) fulfills our requirement for (2R).
The proofs that the inclusions satisfy the other forward conditions are similar.

Thus we have the general fact that the image of a bounded morphism is an inner
substructure of its codomain.

Theorem 20. If α and β are injective and preserve the relations R, S and T , then
they give an isomorphism between P and Im(α, β).

Proof. By Lemma 18(1), as α is isotone as a map from (X,41) to (X ′,4′1), it is
isotone as a map from (X,41) to (α[X],4′′1). Likewise β is isotone as a map from
(Y,42) to (β[Y ],4′′2), so α, β acts as a bounded morphism from P to Im(α, β).

If α and β are injective, then they are bijective as maps to α[X] and β[Y ], so
if they preserve the relations as well then Theorem 16 ensures that they give an
isomorphism from P to Im(α, β).
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6 Canonical Extensions
Lattice homomorphisms are assumed to preserve the bounds 0 and 1, as well as ∧
and ∨. An injective homomorphism (monomorphism) may be denoted by�, and a
surjective one (epimorphism) by�. A function θ : L→M between lattices is called
a lattice embedding if it is a lattice monomorphism. A lattice embedding is always
order invariant, i.e. has a 6 b iff θa 6 θb.

First we review the definition of a canonical extension of a lattice, as given in [18].
A completion of lattice L is a pair (θ,C) with C a complete lattice and θ : L � C
a lattice embedding. An element of C is open if it is a join of elements from the
θ-image θ[L] of L and closed if it is a meet of elements from θ[L]. Members of θ[L]
are both open and closed. The set of open elements of the completion is denoted
O(C), and the set of closed elements is K(C).

A completion (θ,C) of L is dense if K(C) is join-dense and O(C) is meet-dense
in C, i.e. if every member of C is both a join of closed elements and a meet of
open elements. It is compact if for any set Z of closed elements and any set W of
open elements such that ∧Z 6 ∨

W , there are finite sets Z ′ ⊆ Z and W ′ ⊆ W
with ∧Z ′ 6 ∨W ′. An equivalent formulation of this condition that we will use (in
Theorem 23) is that for any subsets Z and W of L such that ∧ θ[Z] 6 ∨ θ[W ] there
are finite sets Z ′ ⊆ Z and W ′ ⊆W with ∧Z ′ 6 ∨W ′.

A canonical extension of lattice L is a completion (θL,Lσ) of L which is dense and
compact. Any two such completions are isomorphic by a unique isomorphism com-
muting with the embeddings of L. This legitimises talk of “the” canonical extension,
and the assignment of a name Lσ to it.

A function f : L → M between lattices can be lifted it to a function Lσ → Mσ

between their canonical extensions in two ways, using the embeddings θL : L� Lσ
and θM : M � Mσ to form the lower canonical extension fO and upper canonical
extension fM of f (in [18] these are denoted fσ and fπ respectively). Let I be the
set of all intervals of the form {x : p 6 x 6 q} in Lσ with p ∈ K(Lσ) and q ∈ O(Lσ).
Then for x ∈ Lσ,

fOx =
∨{∧{θM(fa) : a ∈ L and θL(a) ∈ E} : x ∈ E ∈ I}. (6.1)

fMx =
∧{∨{θM(fa) : a ∈ L and θL(a) ∈ E} : x ∈ E ∈ I}. (6.2)

The functions fO and fM have fOx 6 fMx. They both extend f in the sense that
the diagram

L
��

θL
��

f //M
��
θM
��

Lσ h //Mσ
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commutes when h = fO or h = fM. For isotone f , these extensions can also be
specified as follows [18, Lemma 4.3].

fOp =
∧
{θM(fa) : a ∈ L and p 6 θL(a)}, for all p ∈ K(Lσ). (6.3)

fOx =
∨
{fOp : p ∈ K(Lσ) and p 6 x}, for all x ∈ Lσ. (6.4)

fMq =
∨
{θM(fa) : a ∈ L and q > θL(a)} for all q ∈ O(Lσ). (6.5)

fMx =
∧
{fMq : q ∈ O(Lσ) and q > x}, for all x ∈ Lσ. (6.6)

If f : Ln → L is an n-ary operation on L, then fO and fM are maps from (Ln)σ
to Lσ. But (Ln)σ can be identified with (Lσ)n, since the natural embedding Ln �
(Lσ)n is dense and compact, so this allows fO and fM to be regarded as an n-
ary operations on Lσ. Moreover it is readily seen that K((Lσ)n) = (K(Lσ))n,
i.e. a closed element of (Lσ)n is an n-tuple of closed elements of Lσ, and likewise
O((Lσ)n) = (O(Lσ))n. This will be important below, where we apply the lower
canonical extension to operators on L, and the upper extension to dual operators.

For any Ω-lattice L, based on a lattice L0, we define a canonical extension Lσ
for L by taking the canonical extension of L0, applying the lower extension to op-
erations denoted by members of Λ, and the upper extension to operations denoted
by members of Υ, to form

Lσ = (Lσ0 , {(fL)O : f ∈ Λ} ∪ {(gL)M : g ∈ Υ}). (6.7)

It is shown in [18, Section 4] (see also [41, 2.2.14]) that if L is an NLO, then so
is Lσ, with each (fL)O being a complete normal operator, and each (gL)M being a
complete normal dual operator.

7 Canonical Structures
The existence of Lσ as a canonical extension was established in [18] by taking it to
be the stable set lattice of a certain polarity between filters and ideals of L, with
the additional operations of L being extended to Lσ by the abstract lattice-theoretic
definitions (6.1) and (6.2). We will now see that if L is an Ω-NLO, then the polarity
can be expanded to an Ω-polarity, which we call the canonical structure of L, and
whose stable set Ω-lattice, as in (3.12), is a canonical extension of L.

Recall that we are assuming that Λ = {f} and Υ = {g}. In what follows we
write the n-ary operator fL just as f and the m-ary dual operator gL just as g. Let
FL be the set of non-empty filters of L and IL be the set of non-empty ideals of
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L. For F ∈ FL and D ∈ IL, write F G D to mean that F and D overlap, i.e.
F ∩D 6= ∅. Define the canonical structure of L to be the structure

L+ = (FL,IL, G, SL, TL, ),

where, for #»

F ∈ FL
n and D ∈ IL,

#»

FSLD iff there exists #»a ∈π
#»

F with f( #»a ) ∈ D;

while, for F ∈ FL and #»

D ∈ IL
m,

FTL
#»

D iff there exists #»a ∈π
#»

D with g( #»a ) ∈ F.

Lemma 21. In L+, if F, F ′ ∈ FL then F 41 F ′ iff F ⊆ F ′; and if D,D′ ∈ IL then
D 42 D′ iff D ⊆ D′.

Proof. If F ⊆ F ′, then F G D implies F ′ G D, so ρG{F} ⊆ ρG{F ′}, i.e. F 41 F ′

by (2.3). Conversely, suppose ρG{F} ⊆ ρG{F ′}. If a ∈ F , let D be the ideal
{b ∈ L : b 6 a} generated by a. Then a ∈ F ∩D, so D ∈ ρG{F}, hence there exists
b ∈ F ′ ∩ D, so b 6 a and thus a ∈ F ′. This shows F ⊆ F ′. The case of 42 is the
order-dual of this argument.

Assume from now that L is an Ω-NLO.

Lemma 22. All sections of the relations SL and TL are stable in L+, making L+
an Ω-polarity.

Proof. First consider a section of the form SL[ #»

F ,−] with #»

F ∈ FL
n. Let G be the

filter of L generated by {f( #»a ) : #»a ∈π
#»

F }. For any D ∈ SL[ #»

F ,−] there exists #»a ∈π
#»

F
such that f( #»a ) ∈ D. But then f( #»a ) ∈ G, so G G D. This proves G ∈ λGSL[ #»

F ,−].
Now take any D ∈ ρGλGSL[ #»

F ,−]. Then G G D so there exists a d ∈ G with d ∈ D.
By definition of G there is a finite subset Z of π #»

F such that
∧
{f( #»a ) : #»a ∈ Z} 6 d. (7.1)

For all i < n put bi = ∧{ai : #»a ∈ Z} ∈ Fi, and let #»

b = (b0, . . . , bn−1) ∈π
#»

F . Then
for all #»a ∈ Z we have #»

b 6 #»a , so f( #»

b ) 6 f( #»a ) as operators are isotone. Hence by
(7.1) f( #»

b ) 6 d ∈ D, so f( #»

b ) ∈ D. As #»

b ∈π
#»

F , this gives #»

FSLD, so D ∈ SL[ #»

F ,−].
We have now shown that ρGλGSL[ #»

F ,−] ⊆ SL[ #»

F ,−], which is enough to conclude
that SL[ #»

F ,−] is stable.
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Next take a section of the form SL[ #»

F [−]i, D] with D ∈ IL. Let E be the ideal
generated by the set

E0 = {b ∈ L : ∃ #»a ∈π
#»

F [L/i](f( #»a [b/i]) ∈ D)}.

For any G ∈ SL[ #»

F [−]i, D] we have #»

F [G/i]SLD so there exist #»a ∈ #»

F [L/i] and b ∈ G
such that #»a [b/i] ∈ #»

F [G/i] and f( #»a [b/i]) ∈ D. Then b ∈ E0, so G G E. This proves
that E ∈ ρGSL[ #»

F [−]i, D].
Now let G ∈ λGρGSL[ #»

F [−]i, D]. Then there exists d ∈ G ∩ E. By definition of
E there is a finite set Z ⊆ E0 with d 6 ∨Z. Hence ∨Z ∈ G as d belongs to the
filter G. For each b ∈ Z there exists #»ab ∈π

#»

F [L/i] such that f( #»ab[b/i]) ∈ D. Now
for all j < n, put cj = ∧{(ab)j : b ∈ Z}. Then cj ∈ Fj provided j 6= i. Let #»c =
(c0, . . . , cn−1). Then for all b ∈ Z, #»c [b/i] 6 #»ab[b/i], so f( #»c [b/i]) 6 f( #»ab[b/i]) ∈ D,
hence f( #»c [b/i]) ∈ D. Since f is a normal operator, we conclude that

f( #»c [∨Z/i]) = ∨{f( #»c [b/i]) : b ∈ Z} ∈ D.

But ∨Z ∈ G, so #»c [∨Z/i] ∈ #»

F [G/i], implying that #»

F [G/i]SLD and thus G ∈
SL[ #»

F [−]i, D]. This proves that λGρGSL[ #»

F [−]i, D] ⊆ SL[ #»

F [−]i, D], so SL[ #»

F [−]i, D] is
stable.

The arguments for the stability sections of TL are essentially the duals of those
for SL, but we go through the details, first for a section of the form TL[−, #»

D] with
#»

D ∈ Im.
Let E be the ideal generated by {g( #»a ) : #»a ∈π

#»

D}. For any G ∈ TL[−, #»

D] there
exists #»a ∈π

#»

D such that g( #»a ) ∈ G. But then g( #»a ) ∈ E, so G G E. This proves
E ∈ ρGTL[−, #»

D]. Now take any G ∈ λGρGTL[−, #»

D]. Then G G E so there exists a
b ∈ G with b ∈ E. By definition of E there is a finite subset Z of π #»

D such that

b 6
∨
{g( #»a ) : #»a ∈ Z}. (7.2)

For all i < m put di = ∨{ai : #»a ∈ Z} ∈ Di, and let #»

d = (d0, . . . , dn−1) ∈π
#»

D. Then
for all #»a ∈ Z we have #»a 6 #»

d , so g( #»a ) 6 g( #»

d ) as dual operators are isotone. Hence
by (7.2) b 6 gL( #»

d ). Then gL( #»

d ) ∈ F as b ∈ F . As #»

d ∈π
#»

D, this gives FTL
#»

D, so
F ∈ TL[−, #»

D]. We have now shown that λGρGTL[−, #»

D] ⊆ TL[−, #»

D], hence TL[−, #»

D]
is stable.

Finally we consider a section of the form TL[F, #»

D[−]i] with F ∈ FL. Let G be
the filter generated by the set

G0 = {d ∈ L : ∃ #»a ∈π
#»

D[L/i](g( #»a [d/i]) ∈ F )}.
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For any E ∈ TL[F, #»

D[−]i] we have FTL
#»

D[E/i] so there exist #»a ∈ #»

D[L/i] and d ∈ E
such that #»a [d/i] ∈ #»

D[E/i] and g( #»a [d/i]) ∈ F . Then d ∈ G0, so G G E. This
proves that G ∈ λGTL[F, #»

D[−]i]. Now let E ∈ ρGλGTL[F, #»

D[−]i]. Then there exists
b ∈ G ∩ E. By definition of G there is a finite set Z ⊆ G0 with ∧Z 6 b. Hence∧
Z ∈ E as b belongs to the ideal E. For each d ∈ Z there exists #»ad ∈π

#»

D[L/i] such
that g( #»ad[d/i]) ∈ F . Now for all j < m, put cj = ∨{(ad)j : d ∈ Z}. Then cj ∈ Dj

provided j 6= i. Let #»c = (c0, . . . , cm−1). Then for all d ∈ Z, #»ad[d/i] 6 #»c [d/i], so
g( #»ad[d/i]) 6 g( #»c [d/i]), hence g( #»c [d/i]) ∈ F . Since g is a normal dual operator, we
conclude that

g( #»c [∧Z/i]) = ∧{g( #»c [d/i]) : d ∈ Z} ∈ F.
But ∧Z ∈ E, so #»c [∧Z/i] ∈ #»

D[E/i], implying that FTL
#»

D[E/i] and thus E ∈
TL[F, #»

D[−]i]. This proves that ρGλGTL[F, #»

D[−]i] ⊆ TL[F, #»

D[−]i], so TL[F, #»

D[−]i] is
stable.

Theorem 23. (L+)+ is a canonical extension of L as a lattice.

Proof. This means that the bounded lattice underlying (L+)+ is a canonical exten-
sion of the lattice L0 underlying L. Urquhart [40] defined a dual space of L0 whose
points are certain maximally disjoint pairs of filters and ideals of L0, and gave a
representation of L0 as a lattice of stable subsets of a Galois connection over this
dual space. Hartung [36] built on this to give an embedding of L0 into the stable
set lattice of the overlap polarity between the set of filters of L0 that are maximally
disjoint from some ideal and the set of ideals of L0 that are maximally disjoint from
some filter. Hartonas and Dunn [34] observed that this embedding still obtains if the
overlap polarity is taken between all filters and all ideals, as we have done in defining
L+. Gehrke and Harding [18] introduced the general notion of canonical extension,
as already explained, and showed that (L+)+ is one. They also noted in [18, Remark
2.10] that the embedding of L0 into the complete lattice of all stable subsets of its
Urquhart dual is a canonical extension. In [11] there is a proof of this as part of
an exploration of the relationships between several ways of constructing canonical
extensions. Here we will go over a proof that (L+)+ is a canonical extension, since
we make further use of its ideas.

For a ∈ L, define Fa = {F ∈ FL : a ∈ F} and Ia = {I ∈ IL : a ∈ I}. Then
Fa = λGIa and Ia = ρGFa. For the first equation, if F ∈ Fa, then any D ∈ Ia

has a ∈ F ∩D so F G D, hence F ∈ λGIa. For the converse, let (a] = {b ∈ L : b 6
a} ∈ Ia be the ideal generated by a. Then any F ∈ λGIa has F G (a], hence a ∈ F
and so F ∈ Fa. The second equation is similar.

Thus Fa = λGIa = λGρGFa, showing Fa is stable. The map θ(a) = Fa gives a
lattice embedding of L into the stable set lattice of the polarity (FL,IL, G), hence
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into (L+)+. To show this, observe that Fa∧b = Fa ∩ Fb, so θ preserves binary
meets. Since F1 = FL and F0 = λGI0 = λGIL, it preserves the universal bounds.
Also Ia∨b = Ia ∩ Ib, so Fa∨b = λG(Ia ∩ Ib) = λG(ρGFa ∩ ρGFb) = λGρG(Fa ∪
Fb) = Fa ∨ Fb, so θ preserves binary joins. Moreover, if a 
 b, then the filter
[a) = {b′ ∈ L : a 6 b′} belongs to θ(a) \ θ(b), so θ is an order-embedding.

Next we show that θ : L → (L+)+ is a compact and dense embedding. For
compactness it suffices to take any subsets Z,W of L such that ⋂ θ[Z] ⊆ ∨ θ[W ] in
(L+)+, and show that there are finite sets Z ′ ⊆ Z and W ′ ⊆ W with ∧Z ′ 6 ∨W ′
[18, 2.4]. Given such Z and W , let F be the filter of L generated by Z. Then
F ∈ ⋂ θ[Z] ⊆ ∨ θ[W ], so

F ∈ ∨ θ[W ] = λGρG
⋃
θ[W ] = λG

⋂
b∈W ρGFb = λG

⋂
b∈W Ib.

Now if D is the ideal generated by W , then D ∈ ⋂b∈W Ib, so then F G D. This
means there is some a ∈ F ∩D and so by the nature of generated filters and ideals
there are finite sets Z ′ ⊆ Z and W ′ ⊆W with ∧Z ′ 6 a 6 ∨W ′, hence ∧Z ′ 6 ∨W ′
as required.

Density of θ requires that each member of (L+)+ is both a join of meets and
a meet of joins of members of θ[L]. We use the fact (2.2) that in any polarity, a
member of P+ is both a join of elements of the form λρ{x} and a meet of elements
of the form λ{y}.

If F ∈ FL and D ∈ IL, then F G D iff ∃a ∈ F (D ∈ Ia). So ρG{F} = ⋃
a∈F Ia.

Hence λGρG{F} = λG
⋃
a∈F Ia = ⋂

a∈F λGIa = ⋂
a∈F Fa = ⋂

a∈F θ(a). Combining
this with (2.2) gives that if A ∈ (L+)+, then

A =
∨
F∈A λGρG{F} =

∨
F∈A

⋂
a∈F θ(a). (7.3)

Also, F G D iff ∃a ∈ D(F ∈ Fa), so λG{D} = ⋃
a∈D θ(a). Since λG{D} is stable, this

union is a join. Together with (2.2) we then get that if A ∈ (L+)+, then

A =
⋂
D∈ρGA

∨
a∈D θ(a). (7.4)

(7.3) and (7.4) show that θ is dense as required.

Theorem 24. (L+)+ is a canonical extension of L as an Ω-lattice.

Proof. We need to supplement Theorem 23 by showing that its embedding θ pre-
serves f and g, and that the operations fSL and gTL on (L+)+ are the canonical
extensions of f and g as defined in (6.3)–(6.6). We will denote (L+)+ more briefly
as Lσ, as justified by Theorem 23.
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Preservation of f requires that for any #»a ∈ Ln,

θ(f( #»a )) = fSL(θ( #»a )), (7.5)

i.e. Ff( #»a ) = λGf
•
SL(θ( #»a )), where f•SL(θ( #»a )) = {D ∈ IL : (πθ( #»a ))SLD}. It is enough

to show that
f•SL(θ( #»a )) = If( #»a ), (7.6)

since that implies that λGf•SL(θ( #»a )) = λGIf( #»a ) = Ff( #»a ), as desired. Note that

πθ( #»a ) = Fa0 × · · · ×Fan−1 = { #»

F ∈ FL
n : #»a ∈π

#»

F },

so (7.6) amounts to the claim that for any D ∈ IL,

f( #»a ) ∈ D iff ∀ #»

F ∈ FL
n( #»a ∈π

#»

F implies #»

FSL
#»

D
)
. (7.7)

If f( #»a ) ∈ D, then if #»a ∈π
#»

F it is immediate that #»

FSLD by definition of SL.
Conversely, for each i < n, let Fi = [ai), the filter of L generated by ai, so that
Fi ∈ Fai , and let #»

F = (F0, . . . , Fn−1). Then #»a ∈π
#»

F , so if the right side of (7.7)
holds then #»

FSLD, hence there exists some #»

b ∈π
#»

F such that f( #»

b ) ∈ D. Then
#»a 6 #»

b . But any operator is isotone, so this implies f( #»a ) 6 f( #»

b ) ∈ D, hence
f( #»a ) ∈ D. That completes the proof of (7.7), and therefore of (7.5).

Next we dualise this argument to show that for any #»a ∈ Lm,

θ(g( #»a )) = gTL(θ( #»a )), (7.8)

i.e. Fg( #»a ) = {F ∈ FL : FTLπρGθ( #»a )}. Note that

πρGθ( #»a ) = ρGFa0 × · · · × ρGFam−1 = { #»

D ∈ IL
m : #»a ∈π

#»

D},

so what we want for (7.8) is that for any F ∈ FL,

g( #»a ) ∈ F iff ∀ #»

D ∈ IL
m( #»a ∈π

#»

D implies FTL
#»

D
)
. (7.9)

Now if g( #»a ) ∈ F , then if #»a ∈π
#»

D it is immediate that FTL
#»

D by definition of TL. For
the converse, for each i < m let Di = (ai], the ideal of L generated by ai, and put
#»

D = (D0, . . . , Dm−1). Then #»a ∈π
#»

D, so if the right side of (7.9) holds then fTL
#»

D,
hence there exists #»

b ∈π
#»

D with g( #»

b ) ∈ F . Then g( #»

b ) 6 g( #»a ) as dual operators are
isotone, hence g( #»a ) ∈ F as F is a filter. This proves (7.9) and hence (7.8).

Now we want to show that the lower canonical extension of f on Lσ = (L+)+

is just fSL , i.e. fO( #»

Z) = fSL( #»

Z) for all #»

Z ∈ (Lσ)n. First we show this for the case
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that #»

Z is any closed element of (Lσ)n, which means that for all i < n, Zi is a closed
element of Lσ, hence there is some subset Ai ⊆ L such that

Zi = ⋂
θ[Ai] = ⋂{Fa : a ∈ Ai} = {F ∈ FL : Ai ⊆ F}. (7.10)

Since #»

Z ∈ K((Lσ)n), (6.3) gives

fO( #»

Z) =
⋂
{θ(f( #»a )) : #»a ∈ Ln and #»

Z ⊆π θ( #»a )}. (7.11)

Now fSL is isotone, being an operator, so if #»

Z ⊆π θ( #»a ), then

fSL( #»

Z) ⊆ fSLθ( #»a ) = θ(f( #»a ))

by (7.5). Hence fSL( #»

Z) ⊆ ⋂{θ(f( #»a )) : #»

Z ⊆π θ( #»a )} = fO( #»

Z) by (7.11).
For the converse inclusion, suppose G ∈ fO( #»

Z). For all i < n, let Fi be the filter
generated by Ai. Then Fi ∈ Zi by (7.10), so the tuple #»

F = (F0, . . . , Fn−1) belongs
to π #»

Z . Thus for any D ∈ f•SL( #»

Z) we have #»

FSLD and so there is some #»a ∈π
#»

F such
that f( #»a ) ∈ D. But Zi = {F ∈ FL : Fi ⊆ F}, by (7.10) and the definition of Fi,
so as ai ∈ Fi, we get ai ∈

⋂
Zi, so Zi ⊆ Fai = θ(ai). Thus

#»

Z ⊆π θ( #»a ), so by (7.11)
fO( #»

Z) ⊆ θ(f( #»a )). As G ∈ fO( #»

Z), this gives f( #»a ) ∈ G. But f( #»a ) ∈ D, so G G D.
Altogether this proves that G ∈ λGf•SL( #»

Z) = fSL( #»

Z).
That completes the proof that fO and fSL agree on all closed members of (Lσ)n.

To show that they agree on an arbitrary #»

Z ∈ (Lσ)n we use the fact that each Zi is
a join of closed members of Lσ, so Zi = ∨

Zi for some Zi ⊆ K(Lσ). Now fO is a
complete normal operator as it is the lower extension of a normal operator f [18,
Sec. 4], and fSL is a complete normal operator by Theorem 5, so we reason that

fO( #»

Z) = fO(∨Z0, . . . ,
∨

Zn−1)
= ∨{fO( #»

Z ′) : Z ′i ∈ Zi for all i < n} by (3.1) for fO,
= ∨{fSL( #»

Z ′) : Z ′i ∈ Zi for all i < n} as fO = fSL on K((Lσ)n),
= fSL(∨Z0, . . . ,

∨
Zn−1) by (3.1) for fSL ,

= fSL( #»

Z).

Finally, we show that gTL is the upper canonical extension gM. First we prove
that gM( #»

Z) = gTL( #»

Z) whenever #»

Z is any open element of (Lσ)n, which means that
for all i < m, Zi is an open element of Lσ, so Zi = ∨

θ[Bi] for some Bi ⊆ L. Hence
by the definition of ∨ in Lσ,

Zi = λGρG
⋃
a∈Bi Fa = λG

⋂
a∈Bi Ia = λG{D ∈ IL : Bi ⊆ D}. (7.12)
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Since #»

Z ∈ O((Lσ)n), (6.5) gives

gM( #»

Z) =
∨
{θ(g( #»a )) : #»a ∈ Ln and θ( #»a ) ⊆π

#»

Z}. (7.13)

But if θ( #»a ) ⊆π
#»

Z , then θ(g( #»a )) = gTL(θ( #»a )) ⊆ gTL( #»

Z) as the dual operator gTL is
isotone. Hence we get gM( #»

Z) ⊆ gTL( #»

Z) by (7.13).
For the converse inclusion, suppose F ∈ gTL( #»

Z). For i < m, let Di be the ideal
of L generated by Bi. Then by (7.12), ρGZi = ρGλG{D ∈ IL : Bi ⊆ D}, and so as
Bi ⊆ Di we get Di ∈ ρGZi. Thus if

#»

D = (D0, . . . , Dm−1), then #»

D ∈ πρG
#»

Z , so FTL
#»

D

as F ∈ gTL( #»

Z). Hence there is some #»a ∈ #»

D such that g( #»a ) ∈ F . For each i < m, we
have ai ∈ Di and so any filter containing ai intersects every ideal including Di, i.e.
θ(ai) ⊆ λG{D ∈ IL : Di ⊆ D} = Zi. Thus θ( #»a ) ⊆π

#»

Z , implying θ(g( #»a )) ⊆ gM( #»

Z)
by (7.13). But F ∈ θ(g( #»a )), so then F ∈ gM( #»

Z).
That completes the proof that gM and gTL agree on all open members of (Lσ)n.

Since every member of (Lσ)n is a meet of open members, and gM and gTL are both
complete normal dual operators preserving all meets in each coordinate, we can then
show that gM and gTL are identical by using the order dual of (3.1).

Theorem 24 justifies the equation Lσ = (L+)+. In the case that L is the stable set
lattice P+ of an Ω-polarity, we will call the canonical structure (P+)+ the canonical
extension of P . Its stable lattice ((P+)+)+ is the canonical extension (P+)σ of the
Ω-lattice P+.

8 Dual Categories
At the end of Section 4 it was shown that there is a contravariant functor from
Ω-Pol to Ω-NLO. We now construct such a functor in the reverse direction.

Let θ : (L, fL, gL)→ (M, fM, gM) be an Ω-homomorphism between two Ω-NLO’s.
If E is a filter or ideal ofM, then θ−1E is a filter or ideal of L, respectively, so we can
define αθ : FM → FL and βθ : IM → IL by putting αθF = θ−1F and βθD = θ−1D.

Theorem 25. The pair θ+ = (αθ, βθ) is a bounded morphism from M+ to L+. If θ
is injective, αθ and βθ are surjective. If θ is surjective, then αθ and βθ are injective
and θ+ is an isomorphism from M+ to the inner substructure Im θ+ of L+.

Proof. Since θ−1 preserves set inclusion, αθ and βθ are isotone by Lemma 21. We
show that they fulfil the conditions of Definition 8, with R =G.

(1R): Let F ∈ FM and D ∈ IM have αθF G βθD. Then there is some a ∈
θ−1F ∩ θ−1D. Then θa ∈ F ∩D, showing that F G D.
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(2R): Let F ∈ FL and D ∈ IM have α−1
θ [F )1 G D, where [F )1 = {G ∈ FL :

F ⊆ G}. We have to show that F G βθ(D).
Now as θ preserves finite meets, the subset θ[F ] ofM is closed under finite meets.

Hence the filter it generates is its upward closure in M, i.e. the set

G = {b ∈M : ∃a ∈ F (θ(a) 6 b)}. (8.1)

Since θ[F ] ⊆ G we have F ⊆ θ−1(G) = αθ(G), and so G ∈ α−1
θ [F )1. But α−1

θ [F )1 G
D, so there exists b ∈ G ∩ D, and so for some a ∈ F , θ(a) 6 b ∈ D. As D is an
ideal, this gives θ(a) ∈ D. Thus a ∈ F ∩ θ−1(D) = F ∩ βθ(D), giving the desired
result F G βθ(D).

(3R): This is just the order-dual of the argument for (2R). Let F ∈ FM and
D ∈ IL have F G β−1

θ [D)2, where [D)2 = {E ∈ IL : D ⊆ E}. We have to show
that αθ(F ) G D.

The subset θ[D] of M is closed under finite joins, so the ideal it generates is

E = {b ∈M : ∃a ∈ D(b 6 θ(a))}.

Since θ[D] ⊆ E we have D ⊆ θ−1(E) = βθ(E), and so E ∈ β−1
θ [D)2. But F G

β−1
θ [D)2, so there exists b ∈ F ∩E, and so for some a ∈ D, b 6 θ(a). As F is a filter

containing b, this implies θ(a) ∈ F , hence a ∈ θ−1(F ) ∩ D = αθ(F ) ∩ D, showing
αθ(F ) G D as desired.

(1S): Let #»

F ∈ FM
n and D ∈ IM have αθ(

#»

F )SfLβθD. Then there is some
#»a ∈π αθ(

#»

F ) = θ−1( #»

F ) with fL( #»a ) ∈ βθD. Then θ( #»a ) ∈π
#»

F , and fM(θ( #»a )) =
θ(fL( #»a )) ∈ D, showing that #»

FSfMD.
(2S): Let α−1

θ [ #»

F )1SfMD, where #»

F ∈ FL
n and D ∈ IM. For all i < n, let Gi be

the filter of M generated by θ[Fi]. As in the case of (2R), we have

Gi = {b ∈M : ∃a ∈ Fi (θ(a) 6 b)}. (8.2)

Let #»

G = (G0, . . . , Gn−1). Since in general Fi ⊆ θ−1Gi = αθ(Gi) ∈ FL, we get #»

F ⊆π
αθ(

#»

G), hence #»

G ∈ α−1
θ [ #»

F )1. But α−1
θ [ #»

F )1SfMD, so there must exist #»

b ∈π
#»

G such
that fM( #»

b ) ∈ D. For all i < n, as bi ∈ Gi, by (8.2) there exists ai ∈ Fi with θ(ai) 6
bi. Putting #»a = (a0, . . . , an−1), we have θ( #»a ) 6 #»

b , hence fM(θ( #»a )) 6 fM( #»

b ) ∈ D,
and so fM(θ( #»a )) ∈ D, i.e. θ(fL( #»a )) ∈ D. Thus fL( #»a ) ∈ θ−1(D) = βθ(D). But
#»a ∈π

#»

F , so this proves #»

FSfLβθ(D) as required.
(1T ): Let αθ(F )TgLβθ(

#»

D), where F ∈ FM and #»

D ∈ IM
m, so that there is some

#»a ∈π βθ(
#»

D) with gL( #»a ) ∈ αθ(F ). Then θ( #»a ) ∈π
#»

D, and gM(θ( #»a )) = θ(gL( #»a )) ∈ F ,
showing that FTgM

#»

D.
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(2T ): Let FTgMβ−1
θ [ #»

D)2, where F ∈ FM and #»

D ∈ IL
m. Let Ei be the ideal of

M generated by θ[Di], so that

Ei = {b ∈M : ∃a ∈ Di(b 6 θ(a))}.

Let #»

E = (E0, . . . , Em−1). ThenDi ⊆ θ−1(Ei) = βθ(Ei) for all i < m, so #»

D ⊆π βθ(
#»

E),
hence #»

E ∈ β−1
θ [ #»

D)2, and therefore FTgM( #»

E). So there must exist #»

b ∈π
#»

E such that
gM( #»

b ) ∈ F . For all i < m, as bi ∈ Ei there exists ai ∈ Di with bi 6 θ(ai).
Putting #»a = (a0, . . . , am−1), we have #»

b 6 θ( #»a ), hence gM( #»

b ) 6 gM(θ( #»a )). As F
is a filter containing gM( #»

b ), this implies gM(θ( #»a )) ∈ F , i.e. θ(gL( #»a )) ∈ F . Thus
gL( #»a )) ∈ αθ(F ). Since #»a ∈π

#»

D, this proves αθ(F )TgL
#»

D as required.
That completes the proof that the pair αθ, βθ is a bounded morphism. Now

suppose that θ is injective. To show αθ is surjective, take any F ∈ FL. Let G be
the filter of M generated by θ[F ], as given in (8.1). Then F ⊆ θ−1G. To prove
the converse inclusion, let b ∈ θ−1G. Then by (8.1), there exists a ∈ F such that
θ(a) 6 θ(b). But θ, being an injective homomorphism, is order invariant, so this
implies a 6 b, hence b ∈ G. Thus G = θ−1F = αθF , showing that αθ : FM → FL
is surjective. A dual argument shows that βθ : IM → IL is surjective: if E ∈ IL,
then E = βθD where D is the ideal of M generated by θ[E].

Finally, suppose that θ is surjective. If αθ(F ) = αθ(G), then F = θ[θ−1F ] =
θ[θ−1G] = G, so αθ is injective. Similarly βθ is injective. Then by Theorem 20, to
show that θ+ makes M+ isomorphic to Im θ+, it suffices to show that it preserves
the relations.

Preservation of R: Let F ∈ FM and D ∈ IM have F G D. Then there is some
b ∈ F ∩D. But b = θ(a) for some a as θ is surjective. Then a ∈ θ−1F ∩ θ−1G, so
αθF G βθD.

Preservation of S: Let #»

F ∈ FM
n and D ∈ IM have #»

FSfMD. Then there is some
#»

b ∈π
#»

F with fM( #»

b ) ∈ D. But #»

b = θ( #»a ) for some #»a . Then #»a ∈ θ−1( #»

F ) = αθ(
#»

F ),
and θ(fL( #»a )) = fM( #»

b ), so fL( #»a ) ∈ θ−1(D) = βθD. Hence αθ(
#»

F )SfLβθD.
The preservation of T is similar.

Using this result we can infer that the mappings L 7→ L+ and θ 7→ θ+ give a
contravariant functor from Ω-NLO to Ω-Pol.

9 Direct Sums
Let {Pj : j ∈ J} be an indexed set of Ω-polarities, with Pj = (Xj , Yj , Rj , Sj , Tj).
We define a structure

∑
J Pj = (∑J Xj ,

∑
J Yj , RJ , SJ , TJ)
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whose stable set lattice (∑J Pj)+ is isomorphic to the direct product ∏J P
+
j of the

stable set lattices of the Pj ’s. This ∑J Pj is called the direct sum of the Pj ’s. The
polarity part of its definition is due to Wille [42, 43] and is given also in [16, p.184].

For each j ∈ J , let Ẋj = Xj × {j} and Ẏj = Yj × {j}. Then ∑J Xj = ⋃
J Ẋj is

the disjoint union of the Xj ’s, and
∑
J Yj = ⋃

J Ẏj is the disjoint union of the Yi’s.
However, unlike the case of Kripke modal frames, R is not the disjoint union of the
Rj ’s. Rather, we put

Ṙj = {((x, j), (y, j)) : xRjy},
Ṡj = {((x0, j), . . . , (xn−1, j), (y, j)) : #»xSjy},
Ṫj = {((x, j), (y0, j), . . . , (ym−1, j)) : xTj #»y },

and then define

RJ =
⋃
J
Ṙj ∪

⋃
{Ẋj × Ẏk : j 6= k},

SJ =
⋃
J
Ṡj ∪

⋃
{Ẋj0 × · · · × Ẋjn−1 × Ẏk : (∃i < n) ji 6= k},

TJ =
⋃
J
Ṫj ∪

⋃
{Ẋk × Ẏj0 × · · · × Ẏjm−1 : (∃i < m) ji 6= k}.

Spelling this out, we have that (x, j)RJ(y, k) iff either j 6= k or else j = k and xRky.
Likewise, ((x0, j0), . . . , (xn−1, jn−1))SJ(y, k) iff either ji 6= k for some i < n, or else
(x0, . . . , xn−1)Sky. The description of TJ is similar.

Lemma 26. ∑J Pj is an Ω-polarity.

Proof. This requires that all sections of SJ and TJ are stable. We prove stability for
any section of the form SJ [ # »xJ [−]i, (y, k)], where

# »xJ = ((x0, j0), . . . , (xn−1, jn−1)) ∈ (∑J Xj)n,

(y, k) ∈∑J Yj , and i < n. Let #»x = (x0, . . . , xn−1).
If an element (u, l) of ∑J Xj is not in SJ [ # »xJ [−]i, (y, k)], then it is not the case

that # »xJ [(u, l)/i]SJ(y, k), so by definition of SJ we have that

{j0, . . . , ji−1, l, ji+1, . . . , jn−1} = {k}

and not #»x [u/i]Sky. So u is not in the section Sk[ #»x [−]i, y], which is stable in Pj .
Hence there is some z ∈ Yk with z ∈ ρRkSk[ #»x [−]i, y] but not uRkz. Now we show
that

(z, k) ∈ ρRJSJ [ # »xJ [−]i, (y, k)]. (9.1)
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Take any (w, j) ∈ ∑J Xj with (w, j) ∈ SJ [ # »xJ [−]i, (y, k)]. If j 6= k, then we have
(w, j)RJ(z, k) by definition of RJ . If j = k, then w ∈ Xk and as # »xJ [(w, j)/i]S(y, k)
we have #»x [w/i]Sky. Since z ∈ ρRkSk[ #»x [−]i, y], this implies wRkz, and so again
(w, j)RJ(z, k). That proves (9.1). But not uRkz and l = k, so not (u, l)RJ(z, k). By
(9.1) then, (u, l) /∈ λRJρRJSJ [ # »xJ [−]i, (y, k)], completing the proof that the section
SJ [ # »xJ [−]i, (y, k)] is stable.

The cases of other sections of SJ , and those of TJ , are similar to this.

Now for each k ∈ J , define functions αk : Xk →
∑
J Xj and βk : Yk →

∑
J Yj by

putting αk(x) = (x, k) and βk(y) = (y, k).

Lemma 27. The pair αk, βk is a bounded morphism Pk →
∑
J Pj whose image is

an inner substructure of ∑J Pj isomorphic to Pk.

Proof. First we show that αk is isotone. Let 4k1 be the quasi-order of Xk determined
by Rk, and x 4k1 x′, i.e. ρRk{x} ⊆ ρRk{x′}. We have to show that ρRJ{αk(x)} ⊆
ρRJ{αk(x′)}. But if (x, k)RJ(y, j) then either k 6= j and hence (x′, k)RJ(y, j), or
else k = j and xRky, hence x′Rky as x 4k1 x′, which again gives (x′, k)RJ(y, j). The
proof that βk is isotone is similar.

Now given any #»x ∈ Xn
k and y ∈ Yk, the definitions of αk, βk and SJ make it

immediate that αk( #»x )SJβ(y) iff #»xSky. So αk, βk satisfies (1S) and preserves S.
To show that (2S) is satisfied, suppose that not # »xJSJβk(y), where y ∈ Yk and

# »xJ = ((x0, j0), . . . , (xn−1, jn−1)). Then ji = k for all i < n, and not #»xSky, where
#»x = (x0, . . . , xn−1). Then αk( #»x ) = # »xJ , so #»x ∈ α−1

k [ # »xJ)1, hence not α−1
k [ # »xJ)1Sky as

required by (2S).
The proofs that αk, βk satisfies the other back and forth conditions and also

preserves R and T are similar to the above. Thus αk, βk is a bounded morphism.
Since αk and βk are both injective, the rest of this theorem follows by Theorem
20.

Theorem 28. (∑J Pj)+ is isomorphic to ∏J P
+
j .

Proof. For each k ∈ J , the bounded morphism αk, βk induces a Ω-homomorphism
θk : (∑J Pj)+ → P+

k by Theorem 13. The direct product of these θk’s is the Ω-
homomorpism θ : (∑J Pj)+ −→ ∏

J P
+
j defined by θ(A)(k) = θkA = α−1

k A. θ is
injective, for suppose θ(A) = θ(B) and take any (x, k) ∈ ∑J Xj . Then θ(A)(k) =
θ(B)(k), i.e. α−1

k A = α−1
k B, so (x, k) ∈ A iff (x, k) ∈ B. Hence A = B.

Thus if θ is also surjective, it provides the desired isomorphism. To prove this
surjectivity, let 〈Bj : j ∈ J〉 be any member of∏I P

+
i . Put B = ⋃

J αj [Bj ] ⊆
∑
J Xj .

If B ∈ (∑I Pi)+, then θ(B) is defined with θ(B)(j) = α−1
j B = Bj for all j, hence

θ(B) = 〈Bj : j ∈ J〉.
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Thus it remains to prove that B is stable. Take any (x, k) ∈∑J Xj with (x, k) /∈
B. We want (x, k) /∈ λRJρRJB. We have (x, k) /∈ αk[Bk], so x /∈ Bk. But Bk ∈ P+

k ,
so there exists a y ∈ ρRkBk with not xRky. Hence not (x, k)RJ(y, k).

Now we show that (y, k) ∈ ρRJB. Any member of B has the form (z, j) ∈ αj [Bj ]
for some j with z ∈ Bj . If j 6= k, then (z, j)RJ(y, k) by definition of RJ . But if
j = k, then z ∈ Bk, hence zRky as y ∈ ρRkBk, giving (z, j) = (z, k)RJ(y, k) again.
This proves that (y, k) ∈ ρRJB. Since not (x, k)RJ(y, k), we have (x, k) /∈ λRJρRJB
as required to prove that B is stable and complete the proof that θ is surjective.

It is notable that the direct sum ∑
J Pj and the bounded morphisms {αj , βj :

j ∈ J} form a coproduct of {Pj : j ∈ J} in the category Ω-Pol. This means that
for any Ω-polarity P and bounded morphisms {α′j , β′j : Pj → P : j ∈ J}, there is
exactly one bounded morphism α, β : ∑J Pj → P that factors each α′j , β′j through
αj , βj , i.e. α′j , β′j = (α, β) ◦ (αj , βj). The only maps that could do this are given by
α(x, j) = α′j(x) and β(y, j) = β′j(y). It is left as an exercise for the reader to confirm
that α, β as thus defined is indeed a bounded morphism.

10 Saturated Extensions of Ω-Polarities
Recall that we take the canonical extension of an Ω-polarity P to be the structure
(P+)+. Regarding P as a model for a first-order language, we will now show that
a sufficiently saturated elementary extension of P can be mapped to the canonical
extension (P+)+ by a bounded morphism.

Let L = {X,Y ,R, S, T} be a signature consisting of relation symbols corre-
sponding to the different components of an Ω-polarity. Fix an L -structure P =
(X,Y,R, S, T ) that is an Ω-polarity, and let LP = {A : A ∈ P+}, where each A is a
unary relation symbol. Then P expands to an LP -structure, which we continue to
call P , by interpreting each symbol A as the set A.

Now let
P ∗ = (X∗, Y ∗, R∗, S∗, T ∗, {A∗ : A ∈ P+})

be an LP -structure that is an ω-saturated elementary extension of P . Then P and
P ∗ satisfy the same first-order LP -sentences. For each A ∈ P+, A∗ is the subset
of X∗ interpreting the symbol A. To explain ω-saturation, consider the process of
taking a set Z of elements of P ∗, expanding LP to L Z

P by adding a set {z : z ∈ Z} of
individual constants, and expanding P ∗ to an L Z

P -structure (P ∗, Z) by interpreting
each constant z as z. Then ω-saturation of P ∗ means that for any finite set Z of
elements of P ∗, and any set Γ of L Z

P -formulas, if each finite subset of Γ is satisfiable
in (P ∗, Z), then Γ is satisfiable in (P ∗, Z).
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Lemma 29. P ∗ is an Ω-polarity.

Proof. The sentence ∀v0∀v1
(
v0Rv1 → X(v0) ∧ Y (v1)

)
is true in P , hence is true in

P ∗, implying that R∗ ⊆ X∗×Y ∗. Similarly we can show that S∗ ⊆ (X∗)n×Y ∗ and
T ∗ ⊆ X∗ × (Y ∗)m.

As is common, we write ϕ( #»v ) to indicate that the list #»v of variables includes all
the free variables of formula ϕ. Then ϕ( #»w) denotes the formula obtained by freely
replacing each free occurrence of each vi in ϕ by wi.

Now for a formula ϕ( #»v , w) let ρϕ( #»v , w) be the formula

∀u(ϕ( #»v , u)→ uRw),

and let λϕ( #»v , w) be
∀u(ϕ( #»v , u)→ wRu),

where u is some fresh variable. The sentence ∀w(λρA(w) → A(w)) is true in P
when A ∈ P+, since A is stable. Hence the sentence is true in P ∗, giving that
λR∗ρR∗A

∗ ⊆ A∗, showing that A∗ ∈ (P ∗)+.
Now let ϕ( #»v , w) be the atomic formula S( #»v , w). The sentence

∀ #»v ∀w(λρS( #»v , w)→ S( #»v , w))

is true in P and hence in P ∗, giving that all sections of the form S∗[ #»x ,−] are stable
in P ∗. Similar arguments establish the stability of all other sections of S∗ and all
sections of T ∗. Thus P ∗ is an Ω-polarity.

We will construct a bounded morphism α, β : P ∗ → (P+)+ from P ∗ to

(P+)+ = (FP+ ,IP+ , G, SP+ , TP+),

the canonical structure of P+. The dual ((P+)+)+ → (P ∗)+ of this bounded mor-
phism, given by Theorem 13, proves to be a lattice embedding of the canonical
extension (P+)σ of P+ into the stable set lattice of P ∗. The construction of this
bounded morphism α, β follows the methodology used in [28, Section 3.6] for the
corresponding result for standard relational structures.

For x ∈ X∗, define
α(x) = {A ∈ P+ : x ∈ A∗}.

Then α(x) is non-empty, since it contains X. For A,B ∈ P+, the sentence

∀v(A ∩B(v)↔ A(v) ∧B(v)
)
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is true in P , hence in P ∗, making (A∩B)∗ = A∗∩B∗. So A∩B ∈ α(x) iff A ∈ α(x)
and B ∈ α(x). Thus α(x) is a filter of P+, and so α maps X∗ into FP+ .

For y ∈ Y ∗, define

β(y) = {A ∈ P+ : y ∈ (ρRA)∗}.

In P we have ρRλRY = Y and ρR(A ∨B) = ρRA ∩ ρRB, the latter because

ρR(A ∨B) = ρRλRρR(A ∪B) = ρR(A ∪B) = ρRA ∩ ρRB.

So the sentences ∀v(Y (v)→ ρRλRY (v)) and

∀v( ρR(A ∨B)(v)↔ ρRA(v) ∧ ρRB(v)
)

are true in P , hence in P ∗. Thus any y ∈ Y ∗ has λRY ∈ β(y), and A ∨ B ∈ β(y)
iff A ∈ β(y) and B ∈ β(y), i.e. β(y) is an ideal of P+. This shows that β maps Y ∗
into IP+ .

For each A ∈ P+, we have

(ρRA)∗ = ρR∗A
∗. (10.1)

This follows because the sentence ∀w(ρRA(w) ↔ ∀v(A(v) → vRw) is true in P ,
hence in P ∗.

Theorem 30. The pair α, β is a bounded morphism from P ∗ to (P+)+.

Proof. To show that the map α is isotone, first define v 41 w to be an abbreviation
for the formula ∀u(vRu→ wRu). This formula defines the relation 41 on X deter-
mined by R as in (2.3), and the corresponding relation 4∗1 on X∗ determined by R∗.
But if A ∈ P+ then A is a 41-upset, so the sentence ∀v∀w(A(v) ∧ v 41 w → A(w))
is true in P , hence in P ∗, showing that A∗ is a 4∗1-upset of X∗. Thus if x, x′ ∈ X∗
have x 4∗1 x′, then A ∈ α(x) implies A ∈ α(x′), showing that α(x) ⊆ α(x′), hence
by Lemma 21, α(x) 41 α(x′) as required.

A similar argument shows that as ρRA is stable, hence a 42-upset of Y , (ρRA)∗ is
a 4∗2-upset of Y ∗. Thus if y 4∗2 y′, then A ∈ β(y) implies A ∈ β(y′), so β(y) ⊆ β(y′).
Hence β is isotone.

Our main task is to show that α, β satisfy the back and forth conditions of
Definition 8. For (1R), suppose α(x) G β(y). Then there is some A ∈ α(x)∩β(y), so
x ∈ A∗ and y ∈ (ρRA)∗. Hence y ∈ ρR∗A∗ by (10.1), so xR∗y as required for (1R).

For (2R), take F ∈ FP+ and y ∈ Y ∗. We have to show that α−1[F )1R∗y implies
F G β(y), where [F )1 = {F ′ ∈ FP+ : F ⊆ F ′}. We prove the contrapositive of this
implication.
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Suppose that F G β(y) fails, i.e. F ∩ β(y) = ∅. Consider the set of formulas

Γ = {¬(vRy)} ∪ {A(v) : A ∈ F}

in the single variable v, where y is a constant denoting y. We show Γ is finitely
satisfiable in (P ∗, y). Given any finite Z ⊆ F , let A = ⋂

Z ∈ F . Then by assumption
A /∈ β(y), so y /∈ (ρRA)∗. Hence by (10.1) there exists an x ∈ A∗ such that not
xR∗y. Then for all B ∈ Z, as A ⊆ B we get A∗ ⊆ B∗ by the truth of the sentence
∀w(A(w)→ B(w)), so x ∈ B∗. Thus x satisfies {¬(vRy)} ∪ {B(v) : B ∈ Z}.

This proves that Γ is finitely satisfiable in (P ∗, y). By saturation it follows that
Γ itself is satisfiable in P ∗ by some x ∈ ⋂{A∗ : A ∈ F} with not xR∗y. Then
F ⊆ α(x), so x ∈ α−1[F )1, and hence not α−1[F )1R∗y, giving (2R).

The proof of (3R) is similar: if x ∈ X∗, D ∈ IP+ and not α(x) G D, let

∆ = {¬(xRv)} ∪ {ρRA(v) : A ∈ D}.

For any finite Z ⊆ D, let A = ∨
Z ∈ D. Then as α(x)∩D = ∅, A /∈ α(x) and hence

x /∈ A∗. Since A∗ is stable in P ∗, there is some y ∈ Y ∗ with y ∈ ρR∗(A∗) and not
xR∗y. Then for all B ∈ Z, as B ⊆ A we get B∗ ⊆ A∗, hence y ∈ ρR∗(B∗). Thus y
satisfies {¬(xRv)} ∪ {ρRB(v) : B ∈ Z} in (P ∗, x).

This proves that ∆ is finitely satisfiable in (P ∗, x). By saturation it follows that
∆ is satisfiable in (P ∗, x) by some y ∈ ⋂{(ρRA)∗ : A ∈ D} with not xR∗y. Then
D ⊆ β(y), so y ∈ β−1[D)2, and hence not xR∗β−1[D)2, giving (3R).

For (1S), suppose α( #»x )SP+β(y). We want #»xS∗y. We have some #»

A ∈π α( #»x ) with
fS( #»

A) ∈ β(y). Then Ai ∈ α(xi), i.e. xi ∈ A∗i , for all i < n, while y ∈ (ρGfS( #»

A))∗ =
(ρGλGf•S( #»

A))∗ = (f•S( #»

A))∗ as f•S( #»

A) is stable. Now the sentence

∀ #»v ∀w[f•S( #»

A)(w) ∧∧i<nA(vi)→ S( #»v , w)
]

is true in P by definition of f•S( #»

A), hence is true in P ∗. This implies #»xS∗y, as
required for (1S).

For (2S), we must show that α−1[ #»

F )1S∗y implies #»

FSP+β(y), where #»

F ∈ (FP+)n
and y ∈ Y ∗. Suppose that #»

FSP+β(y) fails. Then for all #»

A ∈π
#»

F , fS( #»

A) /∈ β(y) and
so y /∈ (ρGfS( #»

A))∗ = (f•S( #»

A))∗. Now let

Γ′ = {¬S( #»v , y)} ∪ {A(v0) : A ∈ F0} ∪ · · · ∪ {A(vn−1) : A ∈ Fn−1}.

We show Γ is finitely satisfiable in (P ∗, y). As each filter Fi is closed under finite
intersections, it is enough to show that if Ai ∈ Fi for all i < n, then the set

Γ′0 = {¬S( #»v , y)} ∪ {A0(v0), . . . , An−1(vn−1)}

1059



Goldblatt

of formulas in the free variables v0, . . . , vn−1 is satisfiable. For such Ai we have
#»

A = (A0, . . . , An−1) ∈π
#»

F , so y /∈ (f•S( #»

A))∗ by the above. But the sentence

∀w[Y (w) ∧ ¬f•S( #»

A)(w)→ ∃ #»v
(∧

i<nA(vi) ∧ ¬S( #»v , w)
)]

is true in P , hence in P ∗, so we infer that there exist xi ∈ A∗i for all i < n such that
not S∗( #»x , y). Thus #»x satisfies Γ′0 in (P ∗, y).

By saturation it follows that Γ′ is satisfied by some n-tuple #»x . Then for all i < n
we have xi ∈

⋂{A∗ : A ∈ Fi}, so Fi ⊆ α(xi). Thus #»x ∈ α−1[ #»

F )1. But #»xS∗y fails,
therefore so does α−1[ #»

F )1S∗y. This completes the proof of (2S).
The cases of (1T ) and (2T ) are similar to the above. For (1T ), suppose that

α(x)TP+β( #»y ). We want xT ∗ #»y . We have some #»

A ∈π β( #»y ) with gT ( #»

A) ∈ α(x).
Then Ai ∈ β(yi), i.e. yi ∈ (ρRAi)∗, for all i < m, while x ∈ (gT ( #»

A))∗. Now the
sentence

∀v∀ #»w
[
gT ( #»

A)(v) ∧∧i<m ρRAi(wi)→ T (v, #»w)
]

is true in P by definition of gT ( #»

A), hence is true in P ∗. This implies xT ∗ #»y , as
required for (1T ).

For (2T ), suppose that not α(x)TP+
#»

D, where x ∈ X∗ and #»

D ∈ (IP+)m. We
show that not xT ∗β−1[ #»

D)2. We have for all #»

A ∈π
#»

D that gT ( #»

A) /∈ α(x) and so
x /∈ (gT ( #»

A))∗. Now let

∆′ = {¬T (x, #»w)} ∪ {ρRA(w0) : A ∈ D0} ∪ · · · ∪ {ρRA(wm−1) : A ∈ Dm−1}.

Take any finite sets E0, . . . , Em−1 such that Ei ⊆ Di for all i < m We show that the
finite set

∆′0 = {¬T (x, #»w)} ∪ {ρRB(w0) : B ∈ E0} ∪ · · · ∪ {ρRB(wm−1) : B ∈ Em−1}

of formulas in the free variables w0, . . . , wm−1 is satisfiable in (P ∗, x). For each
i < m, let Ai = ∨

Ei ∈ Di. Then
#»

A = (A0, . . . , Am−1−1) ∈π
#»

D, and so x /∈ (gT ( #»

A))∗
by the above. But the sentence

∀v[X(v) ∧ ¬gT ( #»

A)(v)→ ∃ #»w
(∧

i<m ρRAi(wi) ∧ ¬T (v, #»w)
)]

is true in P , hence in P ∗, so we infer that there exist yi ∈ (ρRAi)∗ for all i < m such
that not T ∗(x, #»y ). Then for each i, any B ∈ Ei has B ⊆ Ai, so ρRAi ⊆ ρRB, hence
(ρRAi)∗ ⊆ (ρRB)∗ and thus yi ∈ (ρRB)∗. Thus #»y satisfies ∆′0 in (P ∗, x).

This proves that ∆′ is finitely satisfiable in P ∗. By saturation it follows that ∆′
is satisfied in P ∗ by some m-tuple #»y . Then for all i < m we have yi ∈

⋂{(ρRA)∗ :
A ∈ Di}, so Di ⊆ β(yi). Thus #»y ∈ β−1[ #»

D)2. But xT ∗ #»y fails, therefore so does
xT ∗β−1[ #»

D)2. This completes the proof of (2T ).
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Example 31. The bounded morphism of Theorem 30 does not in general have
surjective first component, in spite of the saturation of P ∗. To see this, consider a
P having the property λRY = ∅, i.e. for all x ∈ X there exists y ∈ Y such that not
xRy. This is a first-order condition, so it is preserved by elementary extensions. It
is also preserved by images of bounded morphisms with surjective first component.
For, if α, β : P → P ′ is any bounded morphism with surjective α, and λR′Y ′ 6= ∅,
then by the surjectivity there must exist an element of α−1λR′Y

′, which equal to
λR(β−1Y ′), so λRY 6= ∅.

Now there are many P satisfying λRY = ∅ (e.g. any with polarity of the form
(X,X, 6=)). For such P , if there was any bounded morphism P ∗ → (P+)+ with
surjective α, then (P+)+ would satisfy the preserved condition. But that is not so,
as no canonical structure L+ has λGIL = ∅. This is because FL contains the filter
L which intersects every ideal of L, so L ∈ λGIL.

Thus if P has λRY = ∅, then there is no bounded morphism P ∗ → (P+)+ with
surjective α, where P ∗ is any elementary extension of P .

11 Maximal Covering Morphisms

In the case of Kripke frames, for Boolean modal logics or distributive substructural
logics, the corresponding version of Theorem 30 produces a bounded morphism that
is surjective. The proof depends on the points of (P+)+ being prime filters [28,
3.6]. But here, in dealing with possibly non-distributive lattices, we admit arbitrary
filters as points in canonical structures.

In the lattice representations developed by Urquhart [40] and Hartung [36], the
points of representing spaces are filters or ideals, or filter-ideal pairs, that have
certain mutual maximality properties. As these papers point out, this does not lead
to a good duality construction for lattice homomorphisms, because the preimages
of maximal filters under lattice homomorphisms need not be maximal. Here we
have seen in Theorem 25 that admitting arbitrary filters leads to a notion of dual
morphism for lattice homomorphisms that has good properties.

Now surjective bounded morphisms are logically important because they preserve
validity of formulas in a semantics based on the structures involved. Typically, the
validity of a formula in P will be equivalent to the satisfaction of some corresponding
equation by the algebra P+. So the preservation of formula validity in passing from
P to P ′ will be secured if equation satisfaction is preserved in passing from P+ to
(P ′)+. This will hold if (P ′)+ is isomorphic to a subalgebra of P+. That will in
turn hold if the dual (α, β)+ of some bounded morphism α, β : P → P ′ is injective.
For this it suffices, by Theorem 13, that α be surjective. But when P ′ is a canonical
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structure, we can ensure this injectivity of (α, β)+ by a condition that is weaker
than the surjectivity of α.

To define this condition, first define a filter F of a lattice L to be D-maximal,
where D is an ideal of L, if F is maximal in the set of all filters disjoint from D. Call
F i-maximal if it is D-maximal for some ideal D. Now define a maximal covering
morphism to be a bounded morphism α, β : P → L+ into some canonical structure
such that the image α[X] of the map α : X → FL includes all i-maximal filters of
L. This condition holds immediately if α is surjective.

Theorem 32. If α, β : P → L+ is a maximal covering morphism, then the Ω-lattice
homomorphism (α, β)+ : (L+)+ → P+ is injective.

Proof. (α, β)+ is the map A 7→ α−1A. Suppose that A and B are stable subsets of
FL in L+, with A 6= B. Then, say, A * B, and there is some F ∈ A with F /∈ B.
By stability of B there is some D ∈ ρGB such that not F G D, hence F ∩D = ∅. By
Zorn’s Lemma, F can be extended to an F ′ ∈ FL that is D-maximal. By Lemmas
1 and 21, A is a ⊆-upset, so we get F ′ ∈ A. Since D ∈ ρGB and F ′∩D = ∅, we have
F ′ /∈ λGρGB = B. Since F ′ is i-maximal and α, β is maximal covering , there exists
an x ∈ X such that α(x) = F ′. So x ∈ α−1A \ α−1B. Hence α−1A 6= α−1B. Thus
(α, β)+ is injective.

Theorem 33. The bounded morphism α, β : P ∗ → (P+)+ of Theorem 30 is maximal
covering. Hence there is an Ω-lattice monomorphism (P+)σ � (P ∗)+.

Proof. Let F ∈ FP+ be i-maximal. Then there is some ideal D ∈ IP+ such that F
is D-maximal. Now let

Γ = {A(v) : A ∈ F} ∪ {¬B(v) : B ∈ D}.

We show that Γ is finitely satisfiable in P ∗. Given finite sets G ⊆ F and E ⊆ D, put
A = ⋂

G ∈ F and B = ∨
E ∈ D. If A ⊆ B, then B ∈ F (and A ∈ D), contradicting

F ∩D = ∅. So there must be some x ∈ X with x ∈ A \B. Hence x ∈ A′ \B′ for all
A′ ∈ G and B′ ∈ E. So x satisfies {A′(v) : A′ ∈ G} ∪ {¬B′(v) : B′ ∈ E} in P .

This shows that each finite subset of Γ is satisfiable in P , hence is satisfiable
in its elementary extension P ∗. By saturation it follows that Γ is satisfiable in P ∗
by some x ∈ ⋂{A∗ : A ∈ F}, with x /∈ B∗ for all B ∈ D. Thus the filter α(x)
includes F and is disjoint from D. The maximality of F in this respect implies that
α(x) = F . Thus the image of α includes all i-maximal filters of P+, as required for
the morphism to be maximal covering.

It follows from Theorem 32 that the Ω-lattice homomorphism

(α, β)+ : ((P+)+)+ → (P ∗)+
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given by Theorem 13 is injective. But ((P+)+)+ = (P+)σ.

We can strengthen this construction as follows.

Corollary 34. Let α1, β1 : P → P1 be a bounded morphism with α1 : X → X1 being
surjective. Then there is a maximal covering morphism from P ∗ to (P+

1 )+.

Proof. We have the situation

P ∗
α,β // (P+)+

α2,β2 // (P+
1 )+ ,

where α, β is the maximal covering morphism of Theorem 33, and α2, β2 is the
double dual ((α1, β1)+)+ of α1, β1. In particular, α2(G) = {A ∈ P+

1 : α−1
1 A ∈ G}

for any filter G of P+. The composite pair α2 ◦ α, β2 ◦ β is a bounded morphism
P ∗ → (P+

1 )+, so it suffices to show that it is maximal covering. We adapt and
extend the argument of Theorem 33. Let F ∈ FP+

1
be D-maximal, where D ∈ IP+

1
.

Put
Γ = {α−1

1 A(v) : A ∈ F} ∪ {¬α−1
1 B(v) : B ∈ D}.

For any finite sets G ⊆ F and E ⊆ D, as in the proof of Theorem 33 there is some
z ∈ X1 with z ∈ A \ B for all A ∈ G and B ∈ E. As α1 is surjective, there exists
x ∈ X with α1(x) = z, so x ∈ α−1

1 A \ α−1
1 B for all A ∈ G and B ∈ E. So x satisfies

{α−1
1 A(v) : A ∈ G} ∪ {¬α−1

1 B(v) : B ∈ E} in P , hence in P ∗.
By saturation it follows that X∗ has a point x that satisfies Γ, so belongs to

(α−1
1 A)∗ for all A ∈ F but not to (α−1

1 B)∗ for any B ∈ D. Thus α(x) includes
{α−1

1 A : A ∈ F} and is disjoint from {α−1
1 B : B ∈ D}. But α2(α(x)) = {A ∈ P+

1 :
α−1

1 A ∈ α(x)}, which includes F and is disjoint from D. Hence α2(α(x)) = F by
D-maximality of F .

This proves that the image of α2 ◦ α includes all i-maximal filters of P+
1 , as

required.

There is a further significant corollary to Theorem 33, which follows from the fact
that saturated models can be obtained as ultrapowers. By the theory of [5, Section
6.1], for any P there is an ultrafilter U such that PU is ω-saturated, where PU is
the ultrapower of P modulo U . We take PU as P ∗ in Theorem 33 and Corollary 34:

Corollary 35. For any Ω-polarity P and bounded morphism α1, β1 : P → P1 with α1
surjective, there is an ultrafilter U such that there is a maximal covering morphism
PU → (P+

1 )+ and an Ω-lattice monomorphism (P+
1 )σ � (PU )+.
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In [31], this corollary with P1 = P was obtained for a polarity P for which P+

has additional Ω-indexed complete normal operators and dual operators that are
all first-order definable over P in the sense indicated in (3.4) and (3.10) for the
operations fS and gT . The method used in [31] was focused on the algebraic side of
the duality between algebras and structures. It showed that (PU )+ is a MacNeille
completion of the ultrapower algebra (P+)U and then appealled to a result from
[19] stating that there is an embedding of (P+)σ into the MacNeille completion of
(P+)U for a suitable U that has (P+)U sufficiently saturated.

Corollary 35 gives one of the properties that define the notion of a canonicity
framework, as introduced in [30]. Such a framework describes a set of relationships
between a class Σ of structures and a variety, i.e. equationally definable class, C
of algebras equipped with operations (−)σ : C → C and (−)+ : Σ → C , that are
sufficient to ensure that the following holds.
(‡) if S is any subclass of Σ that is closed under ultraproducts, then the variety of

algebras generated by S+ = {P+ : P ∈ S} is closed under the operation (−)σ.
This provides an axiomatic formulation of a result about the generation of varieties
closed under canonical extensions that was first proven in [28] for Boolean algebras
with operators, and which was itself an algebraic generalisation of a theorem of Fine
[15] stating that a first-order definable class of Kripke frames characterises a modal
logic that is valid in its canonical frames.

A canonicity framework can be formed by taking Σ to be the class of Ω-polarities,
C to be the variety of Ω-NLO’s, Lσ to be the canonical extension (6.7), and P+

the stable set lattice (3.12). Hence the conclusion of (‡) holds if S is any class of
Ω-polarities that is closed under ultraproducts.

12 Goldblatt-Thomason Theorem
This theorem [32, Theorem 8] was originally formulated as an answer to the question:
which first-order definable properties of a binary relation can be expressed by modal
axioms? It gave structural closure conditions on a first-order definable class of Kripke
frames that are necessary and sufficient for that class to be the class of all frames
that validate the theorems of some propositional modal logic. In this section we will
derive two results of this kind in the present setting of polarity-based structures.
The article [9] contains another result of this type, based on a different notion of
polarity morphism (as a pair of binary relations) and different notions of morphic
image and inner substructure.

Now a Kripke frame validates a particular modal formula iff the dual algebra
of the frame satisfies some modal algebraic equation [3, Prop. 5.24]. Hence there
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is a correspondence between modal logics and varieties of modal algebras [3, Theo-
rem 5.27]. Accordingly, the kind of result we seek is one that characterises when a
class of Ω-polarities is the class of all such structures whose dual algebras P+ belong
to some variety. If V is a variety of Ω-lattices, let

SV = {P : P+ ∈ V }

be the class of all Ω-polarities whose stable set lattice belongs to V . We will give
structural closure conditions on a class S of structures that characterise when it is
of the form SV .

We say that S is closed under direct sums if, whenever {Pj : j ∈ J} ⊆ S, then∑
J Pj ∈ S. S is closed under inner substructures if, whenever P ′ ∈ S and P is

an inner substructure of P ′, then P ∈ S. S is closed under images of surjective
morphisms when, for any bounded morphism α, β : P → P ′ with α surjective, if
P ∈ S, then P ′ ∈ S. S is closed under codomains of maximal covering morphisms
if, whenever there is an maximal covering morphism from P to L+ and P ∈ S, then
L+ ∈ S. S reflects canonical extensions if P ∈ S whenever (P+)+ ∈ S (equivalently,
if the complement of S is closed under canonical extensions).

Lemma 36. Suppose that S reflects canonical extensions.

(1) If S is closed under canonical extensions and codomains of maximal covering
morphisms, then it is closed under images of surjective morphisms.

(2) If S is closed under ultrapowers and codomains of maximal covering morphisms,
then it is closed under images of surjective morphisms.

Proof. Let P ∈ S, and suppose there is a bounded morphism α1, β1 : P → P1 with
α surjective.

(1): By Theorems 13 and 25, (α+
1 )+, (β+

1 )+ : (P+)+ → (P+
1 )+ is a bounded

morphism, and is maximal covering as (α+
1 )+ is surjective. Thus if S is closed under

canonical extensions and codomains of maximal covering morphisms, then P ∈ S
implies (P+

1 )+ ∈ S, hence P1 ∈ S as S reflects canonical extensions.
(2) Taking P ∗ to be an ω-saturated ultrapower of P , by Corollary 34 there

is a maximal covering morphism from P ∗ to (P+
1 )+. Thus if S is closed under

ultrapowers and codomains of maximal covering morphisms, then P ∈ S implies
(P+

1 )+ ∈ S, hence P1 ∈ S.

Theorem 37. For any variety V , the class SV reflects canonical extensions and
is closed under direct sums, inner substructures, codomains of maximal covering
morphisms, and images of surjective morphisms.
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Proof. We use the fact that V is closed under direct products, subalgebras, and
homomorphic images (including isomorphic images).

Reflection of canonical extensions: suppose (P+)+ ∈ SV , so (P+)σ, which is
((P+)+)+, belongs to V . But P+ is isomorphic to a subalgebra of (P+)σ, so then
P+ ∈ V , hence P ∈ SV .

Closure under direct sums: if {Pj : j ∈ J} ⊆ SV , then {P+
j : i ∈ J} ⊆ V , so by

closure of V under products and isomorphism and Theorem 28 we get (∑J Pj)+ ∈ V ,
so ∑J Pj ∈ SV .

Closure under inner substructures: suppose P is an inner substructure of P ′ ∈
SV . By Theorem 17 there is a surjective homomorphism (P ′)+ → P+. Since
(P ′)+ ∈ V this implies P+ ∈ V , hence P ∈ SV .

Closure under images of surjective morphisms: this is dual to the previous case,
using the result of Theorem 13 that if a morphism α, β : P → P ′ has α surjective,
then it induces an injective homomorphism (P ′)+ → P+. Hence P+ ∈ V implies
(P ′)+ ∈ V .

Closure under codomains of maximal covering morphisms: suppose there is a
maximal covering morphism from P to L+ with P ∈ SV . Then by Theorem 32
there is an injective homomorphism making (L+)+ isomorphic to a subalgebra of
P+ ∈ V . Hence (L+)+ ∈ V and so L+ ∈ SV .

Our first definability result is this:

Theorem 38. Let S be closed under canonical extensions. Then the following are
equivalent.

(1) S is equal to SV for some variety V .

(2) S reflects canonical extensions and is closed under direct sums, inner substruc-
tures and codomains of maximal covering morphisms.

(3) S reflects canonical extensions and is closed under direct sums, inner substruc-
tures and images of surjective morphisms.

Proof. (1) implies (2): By Theorem 37.
(2) implies (3): Assume (2). Then in particular S reflects canonical extensions

and is closed under canonical extensions and codomains of maximal covering mor-
phisms. These imply that S is closed under images of surjective morphisms by
Lemma 36(1). Hence (3) holds.

(3) implies (1): Assume (3). Then we show that S = SV where V is the variety
generated by S+ = {P+ : P ∈ S}, i.e. the smallest variety that includes S+. It
is immediate that S ⊆ SV . Conversely, suppose P ∈ SV . Then P+ ∈ V , so from
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the well known analysis of the generation of varieties, P+ is a homomorphic image
of some algebra L which is isomorphic to a subalgebra of a direct product ∏J P

+
j

with {Pj : j ∈ J} ⊆ S. But ∏J P
+
j
∼= (∑J Pj)+ (Theorem 28), and thus there are

homomorphisms θ and χ having the configuration

P+ Lθoooo // χ // (∑J Pj)+ ,

with θ surjective and χ injective. By Theorem 25, there exist bounded morphisms

(P+)+ // αθ,βθ // L+ ((∑J Pj)+)+
αχ,βχoooo ,

with αθ and βθ injective and αχ and βχ surjective. But ((∑J Pj)+)+ ∈ S, by
closure under direct sums and canonical extensions. Hence L+ ∈ S by closure under
images of surjective morphisms. But Theorem 25 also gives that αθ, βθ makes (P+)+
isomorphic to an inner substructure of L+. By closure of S under inner substructures
and images of isomorphisms (as a special case of images of surjective morphisms),
this implies that (P+)+ ∈ S. Finally then S contains P as it reflects canonical
extensions. Thus S = SV as required for (1).

Now the equivalence of (1) and (3) of this theorem for Kripke frames in [32,
Theorem 8] has the hypothesis that S is closed under first-order equivalence. To-
gether with closure under images of bounded morphisms, this implies that S is
closed under canonical extensions, and the proof of the main theorem proceeds from
there. Thus, although closure under first-order equivalence is already weaker than
being first-order definable, the theorem for Kripke frames can be stated with the
still weaker hypothesis of closure under canonical extensions, as has been done here
for Ω-polarities. In [32] the closure under elementary equivalence was used to show
that a Kripke frame F has a saturated elementary extension F∗ that is mapped by a
surjective bounded morphism to (F+)+. This F∗ can be taken to be an ultrapower
of F , so an alternative hypothesis is that S is closed under ultrapowers. In the
present situation with polarities we do not get a surjection to (P+)+, but rather
a maximal covering morphism as in Theorem 33. But we can apply Lemma 36 to
Theorem 38 to give the following definability characterisation.

Theorem 39. Let S be a class of Ω-polarities that is closed under ultrapowers.
Then the following are equivalent.

(1) S is equal to SV for some variety V .

(2) S reflects canonical extensions and is closed under direct sums, inner substruc-
tures and codomains of maximal covering morphisms.
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Proof. Let S be closed under ultrapowers. (1) implies (2) again by Theorem 37.
Conversely, assume (2). Then the closure of S under ultrapowers and codomains
of maximal covering morphisms ensures that S is closed under images of surjective
morphisms by Lemma 36(2), so (3) of Theorem 38 holds. But it also ensures that S
is closed under canonical extensions, by Corollary 35, which implies (with P1 = P )
that there is a maximal covering morphism from an ultrapower of P to (P+)+.
Hence (1) holds by Theorem 38.

There is a good reason why part (3) of Theorem 38 is not part of this result.
Although the equivalence of parts (1) and (3) holds for ultrapower-closed classes
of modal Krikpe frames, it fails to hold in general for ultrapower-closed classes of
polarities. For some such classes, (3) is strictly weaker than (1) and (2). Thus the
replacement of images of bounded morphisms by codomains of maximal covering
morphisms is essential here.

An example of this failure is the class S0 of all polarities that satisfy λRY = ∅.
It was observed in Example 31 that this is a first-order definable condition. Hence
S0 is closed under ultrapowers. It was also noted that S0 is closed under images of
surjective morphisms. It can be readily checked that it is closed under direct sums
and inner substructures as well. Moreover it reflects canonical extensions, vacuously,
because it contains no canonical structures L+, hence none of the form (P+)+, as
Example 31 explained. Thus S0 fulfills part (3). However, since it is non-empty, it is
not closed under canonical extensions. Hence by Corollary 35 it is not closed under
codomains of maximal covering morphisms, so it fails to satisfy part (2), and thus
fails (1) as well.

13 Further Studies

We conclude by pointing out two possible directions for further study of morphisms
of polarities. One concerns the topological representation of lattices, imposing
topologies on the sets X and Y in order to define a category of topological Ω-
polarities and continuous bounded morphisms that is dually equivalent to Ω-Lat.
This would involve functorial mappings A 7→ A+ and P 7→ P+ such that A is natu-
rally isomorphic to (A+)+ and P is naturally isomorphic to (P+)+. Guidance on how
to go about topologising can be found in such papers as [39, 26, 40, 28, 36, 35, 34, 25].

The other development is to generalise from operators to quasioperators, opera-
tions that in each coordinate either preserve joins or map meets to joins [23, 24, 8, 9].
For instance, any ‘negation’ operation ¬ satisfying the De Morgan law ¬(a ∧ b) =
¬a∨¬b is a unary quasioperator. A dual quasioperator is an operation that in each

1068



Morphisms and Duality for Polarities

coordinate either preserves meets or maps joins to meets. The negation operation
of a Heyting algebra is a dual quasioperator that is not in general a quasioperator.

Operations of these types can be characterised by using the order dual L∂ of a
lattice L. The partial order of L∂ is the inverse of that of L, so the join and meet
in L∂ of a set of elements are the meet and join, respectively, of the same set in L.
An n-ary monotonicity type is an n-tuple ε ∈ {1, ∂}n whose terms will be denoted
ε(i) for i < n. Putting L1 = L, we can then define Lε to be the direct product
lattice ∏i<n Lε(i). A function with domain Ln can also be viewed as a function on
Lε, and f : Ln → L is an ε-operator if f : Lε → L is an operator. An n-ary f is a
quasioperator if it is an ε-operator for some ε ∈ {1, ∂}n.

Given a polarity P = (X,Y,R), let Xε be the product set ∏i<nXi, where Xi is
X if ε(i) = 1 and is Y if ε(i) = ∂. Then Xε is quasi-ordered by the product relation
6ε, where #»z 6ε

#»

z′ iff zi 6ε(i) z′i for all i < n, and 6ε(i) is 61 when ε(i) = 1 and is
62 when ε(i) = ∂. This yields upsets of the form [ #»z )ε = { #»w ∈ Xε : #»z 6ε #»w}.

An ε-operator fS on P+ can be defined from a relation S ⊆ Xε × Y . For
#»

A ∈ (P+)n, let #»

Aε =
(
A
ε(0)
0 , . . . , A

ε(n−1)
n−1

)
where Aε(i)i is Ai if ε(i) = 1 and is ρRAi

if ε(i) = ∂. Then π #»

Aε ⊆ Xε, and we put

fS
#»

A = λR{y ∈ Y : (π #»

Aε)Sy}.

Let P ′ be a second polarity with a relation S′ ⊆ (X ′)ε × Y ′, and let α : X → X ′

and β : Y → Y ′ be isotone maps that satisfy (1R)–(3R). Define αε : Xε → (X ′)ε by
putting αε( #»z ) = #»w, where wi is α(zi) if ε(i) = 1 and is β(zi) if ε(i) = ∂. The back
and forth conditions to make α, β a bounded morphism are then these:

(1S) αε( #»z )S′β(y) implies #»z Sy, all #»z ∈ Xε, y ∈ Y .

(2S) (α−1[ #»w)ε)Sy implies #»wS′β(y), all #»w ∈ (X ′)ε, y ∈ Y .

The constructions and notation have become more intricate, but there appears
to be no impediment to carrying through the same analysis for quasioperators that
we completed for operators, and to adapting it to dual quasioperators, which can be
constructed on a stable set lattice from relations of the form T ⊆ X × Y ε. Details
are left to the interested reader.
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Twins in Logic – Identical and Otherwise
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Abstract. Connectives are twins in a logic, according to a metaphor of
Łukasiewicz, when they behave ‘in the same way’ according to that logic. There
are, however, looser and stricter ways of understanding that phrase, informally
contrasted in §1 and then precisely defined and illustrated in §3, after a glance
at related work by Michael Byrd and Evgeni Zolin in §2. §4 returns to the mo-
tivating case of the Ł-modal system, with its ‘twin possibility operators.’ One
rather detailed discussion arising from §3 is deferred to an Appendix, so as not
to interrupt the flow.

Keywords: Connectives; Łukasiewicz.

1 Introduction
Yes, the reader is right to be reminded by the title – its first three words, at least –
of Łukasiewicz and the intriguing ‘twin possibility’ operators of his Ł-modal logic,
to which we shall come in due course. First, though, as background for the present
exploration of what exactly those three words might be taken to mean, we look
at an example from the literature in which Łukasiewicz [42] is recalled not quite
accurately. The details of the example – such as the proof (or even the correctness)
of Proposition 1.1 below – are not important for later sections. The example serves
only to make intelligible the remark embodying the inaccuracy just alluded to. (And
in any case, the Łukasiewicz example serves chiefly as a lively prompt to investigate
the ‘twins’ issue, which we illustrate with other examples in the following two sections
before returning to Łukasiewicz to tidy up the discussion of that example.)

Humberstone [28] discusses the modal logic S5, formulated in some language
with a functionally complete stock of Boolean connectives, of which one to be taken
as primitive is the material conditional, to be written as ⊃ just for this section (later

For their many corrections and suggestions, I am very grateful to Sam Butchart, Rohan French,
and Dave Ripley.
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we use→ in this capacity), and the modal primitive 2. The best known distinctively
modal relative of the material conditional is the strict conditional A J B, defined as
2(A ⊃ B), but [28] takes an interest, instead, in two other implicational connectives
with a distinctly modal flavour, written here as⇒ and→, defined thus, with ≡ and
∨ being the usual material biconditional and (inclusive) disjunction connectives:

A⇒ B = 2(A ≡ B) ∨B A→ B = 2A ⊃ B.

For the moment, restrict attention to the implicational fragment of classical
(non-modal) propositional logic – or CL for short – whose formulas we call pure
⊃-formulas. We denote by C[⇒] and C[→] the results, respectively, of replacing all
occurrences of ⊃ in a such a formula with ⇒ and with →, and for uniformity we
write C itself as C[⊃]. By `CL is meant the consequence relation most commonly
associated with CL, sometimes called tautological (or truth-functional) consequence,
though for the moment we consider only the consequences of the empty set, as usual
writing “`CL A” for “∅ `CL A”. Similarly in Proposition 1.1 `S5 indicates provability
in S5; a simplified version of Proposition 1.5 from [28] reads as follows:

Proposition 1.1. For any pure ⊃-formula A[⊃], the following are equivalent: (i)
`CL A[⊃]; (ii) `S5 A[⇒]; (iii) `S5 A[→].

What has been simplified away here is restored in a footnote for those interested.1
An earlier publication (namely [25]) concentrated on the equivalence of (ii) and

(iii) (or their more general versions in note 1) to throw light on the relation between
the two implicational connectives in Matthew Spinks’ BCSK logic,2 in which they
are far from interchangeable, the equivalence of (ii) and (iii) (in which each occurs
without the other) notwithstanding. In view of this, a comment from [25] (p. 6, with
some grammatical garbling corrected here) is recalled in [28] (p. 439), likening this
situation to

1Proposition 1.5 of [28] is actually the following considerably stronger claim concerning the
classical consequence relation `CL and the global consequence relation `glo

S5 associated with S5
(which we can think of syntactically as saying that the formula on the right can be obtained from
those on the left together with the theorems of S5 and the rules of Modus Ponens and Necessitation):
The following are equivalent, for all pure ⊃-formulas C1, . . . , Cn, A: (i) C1[⊃], . . . , Cn[⊃] `CL A[⊃];
(ii) C1[⇒], . . . , Cn[⇒] `glo

S5 A[⇒]; (iii) C1[→], . . . , Cn[→] `glo
S5 A[→]. Proposition 1.1 in the text is

the n = 0 case of this more general claim. We do not need the “glo” superscript for that, because the
global and local consequences of ∅ for S5 (or any normal modal logic) coincide. (A corresponding
syntactic formulation of the local version would drop the reference to necessitation figuring in the
gloss given for the global relation.)

2See for instance p. 6 of Veroff and Spinks [70] where the two connectives appear as notated
here.
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that which prompted Łukasiewicz in [42] to speak of two connectives as being
like a pair of identical twins on the grounds that any formula in which only one
of them made an appearance (perhaps alongside further connectives) did not
have its (un)provability affected when it was replaced (throughout) by the other,
even though the provability status of a formula containing both was prone to be
affected by interchanging them. The intended analogy is with those identical
human twins said to be indistinguishable except when appearing together.

The reference to identical twins in [25] even found its way into the title of [28].
There is only one problem with all this: Łukasiewicz makes no mention of iden-

tical twins – at least not in [42], the only reference cited in [25] and [28]. (We return
to this point at the end of Section 4.) He speaks there only of twins. Now, is this in-
accuracy in paraphrase just an excusable flourish in getting the gist of Łukasiewicz’s
point across? Perhaps so; but perhaps not: the choice between thinking of twins
in general and thinking of identical twins in particular is naturally connected with
two different ways of taking the idea that the connectives in question can only be
told apart when both are present. On the human side of this simile, with identical
twins, especially those making a point of exploiting this effect, one may not only
fail to realise that there are two of them if they are seen separately, but even on
encountering them together, be able to tell them apart only in the weak sense of
seeing that they are different people. On the other hand, non-identical twins can
still be sufficiently similar in appearance that when met singly, they may be taken
to be the same person, while if one encounters them together, one can see not only
that they are different – as in the identical twins case – but how they are different:
one, for example, is now seen to be slightly taller than the other.3 Might a similar
contrast be operative in the logical case? And if so, on which side of the contrast
would Łukasiewicz’s own example (of the twin possibility operators in [42]) fall?
We will look at that example more closely in Section 4, sampling some more recent
literature bearing on the issue and honing the concepts needed, in Sections 2 and 3,
respectively.

3That is: one can tell them apart in the sense of being aware of some differentiating respect
which is intrinsic to the pair. In the identical twins case these last words are intended to exclude such
a response as this: yes, I can tell them apart – Tweedledum is the one on the left and Tweedledee
is the one on the right.
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2 Concepts and Results from Byrd and Zolin
The authors whose names feature in the present section title will supply us with
useful materials for approaching the subject of twins in logic.4 Each of them distin-
guishes an internal from an external perspective. Thus Zolin [72], p. 861, writes as
follows, understanding by amodality any formula A(p) in the language of monomodal
logic in which only the only sentence letter to appear is p.5

According to the first, or internal, approach, modalities are identified if they
are equivalent in L, i.e., if the equivalence of formulas they are induced by is
a theorem of L. (. . . ) The second, or external, approach prescribes not to
distinguish between modalities having an identical “behaviour” over L.

Zolin uses ∇,∆ as variables over arbitrary modalities,6 and explains the distinc-
tive “L(∇)” notation he makes use of in the passage to be quoted as soon as we get
this announcement out of the way:

4Both of them put in an appearance on p. 483 of Humberstone [30], which the present discussion
complements.

5All propositional languages considered here have the same set of sentence letters,
p1, p2, . . . , pn . . ., the first three of which we write for convenience as p, q, r. Zolin takes 2 as
primitive, with 3 defined from it (and ¬) in the usual way. What is often meant by a modality
given such a choice of primitives, namely a (possibly empty) string of occurrence of 2 and ¬, Zolin
calls a linear modality.

6Except when discussing the specific noncontingency modality ∆p = 2p ∨ 2¬p. (Historically,
the literature on noncontingency-based logics uses ∆ and ∇ for noncontingency and contingency,
respectively; Zolin himself has, incidentally, been a prominent contributor this literature, the striking
paper [73] being only one example.) For present purposes the notational difficulties become more
acute still – and Convention 2.1 will reduce them somewhat – since Łukasiewicz [42] uses ∆ as
a possibility operator, rather than 3, and then when he wants to introduce his ‘twin possibility’
operator, he writes the latter as ∇. Similarly Łukasiewicz writes Γ in place of 2. It is for this reason
that when we want to use (specifically) Greek capital letters for sets of formulas we reach for Θ in
the following section. Notationally, matters would be even more complicated had the suggestion of
Schock [56], p. 12, note 1, caught on to any extent: that one use upward and downward pointing
triangles in place of 2 and 3 (for continuity with “∧” and “∨” and their occasional enlarged use
as universal and existential quantifiers). In saying this, differences in respect of stroke modulation
– e.g., between a capital delta and an upward pointing triangle of similar size – are ignored, since
this is often a typesetter’s decision: for instance the former, from Łukasiewicz [42] appear as the
latter in [43] (and Γ turns into a rotated version of what would now be taken as a negation symbol).
By Chapter 7 of Łukasiewicz [44] Γ and ∆ have become L and M , with the latter (more or less
inverted) W in place of ∇. (Simons [59] has the idea of writing L – we shall use this later in
the form “L” – as the inverted form of the earlier Γ for the dual of Łukasiewicz’s ∇.) L and M
in this usage gained considerable currency especially through the books of Hughes and Cresswell
from 1968 onward. But a reader coming across Prior’s discussion of Łukasiewicz in [52] is at some
risk of misinterpreting the the symbol “M”, especially on p. 204, which Prior uses as a contingency
operator rather than a possibility operator.
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Convention 2.1. From now, in view of the potential for confusion mentioned note
6 from the triple use of “∆” and “∇” mentioned there, whenever Zolin’s use of these
symbols for arbitrary modalities is being echoed, even in direct quotation, they will
be written with a dot beneath them:

˙
∆ and ∇̇. (This still leaves the double use of

the undotted versions, for noncontingency and contingency on the one had, and for
Łukasiewicz’s two possibility operators on the other, but no use is made of them here
in the first of these two roles.)

We can now proceed with the passage from Zolin ([72], p. 862) explaining the
(as we now call it) “L(∇̇)” notation he makes use of in characterizing several further
concepts:

[W]e define a logic L(∇̇) of a modality∇̇ over a logic L as the set of all formulas
whose ∇̇-translations are theorems of L.

The∇̇-translation of a formula A, τ
˙
∇(A), is defined inductively on the complexity

of A by setting it to be the identity map except for the case in which A is 2B for
some formula B, in which case τ

˙
∇(A) is ∇̇(τ

˙
∇(B)). Thus, L(∇̇) is the logic that says

about 2 what L says about ∇̇, and L is itself L(2). Zolin’s paper includes many
examples of this relationship, which in the terminology of Humberstone [33] is put
by saying that τ

˙
∇ is a 2-definitional translation faithfully embedding the logic L(∇̇)

into L.7 Cases mentioned in Zolin [72] include (i) and (ii) of the following; all of
these concern normal modal logics:

Examples 2.2. (i) K(�) = KT, where � is the modality induced by the formula
2p ∧ p.
(ii) K4(�) = KD4(�) = S4.
(iii) S4.2(32) = KD45. J

Examples 2.2(i) and (ii) are sufficiently well known and easily established as to be
describable as folklore. A generalization subsuming them, given (as Lemma 5.9) in
Zolin [72] says that whenever for normal L, L ⊆ L(�), then L(�) is the normal
extension of L by 2p→ p. The result for (iii) is due independently to E. E. Dawson
and W. Lenzen, for further details on which, see Example 4.4.27 of [33] and §4.2
in French [16]. More discussion concerning such embeddings (including proofs of
their fidelity), whether or not expressed using Zolin’s L(·) notation, can be found in
French [14], [16], Humberstone [29], [33] (passim), and – of special significance for
τ� – Jeřábek [36] (settling a question from French and Humberstone [15]).

7The τ
˙
∇-style notation is common in the works cited below; Zolin actually uses “tr” rather than

“τ”.
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Finally, giving the equivalence relations of focal of interest for the internal and
external perspectives, respectively, Zolin defines (p. 863) modalities ∇̇ and

˙
∆ to be

equivalent in L if `L ∇̇(p) ↔
˙
∆(p), and to be analogous over L when L(∇̇) = L(

˙
∆).

With respect to any congruential modal logic (i.e., an L for which `L A↔ B implies
`L 2A ↔ 2B) any equivalent modalities are analogous, though not in general
conversely. An interesting case in which the converse does hold is that of S5. In
1946, Carnap [7] showed that this logic provides sixteen non-equivalent modalities.
Zolin shows that no two of them are even analogous (over S5), in the course of
proving Theorem 4.21 of [72].8 What bears more obviously on the Łukasiewicz
‘twins’ theme, though, is the other outcome: modalities which are analogous over L
but not equivalent in L. Zolin provides numerous examples of this phenomenon,
citing from the literature a proof that 2 and 22 are analogous over – though
evidently not equivalent in – K, and giving, himself, a proof that the same is so for
KTB. Chellas [9], Exercise 7.8 on p. 211, had implicitly made a similar observation
concerning the modalities 2 and 3 in E, the smallest congruential modal logic. In
fact the points about 2 and 22 hold, as Zolin notes, for any 2m and 2n with
m,n ≥ 1 and m 6= n – setting the m = n aside since we want non-equivalent (and so
certainly distinct) though analogous modalities – and he also mentions at Remark
3.2 in [72], generalizing Chellas’s example, that there are only three non-analogous
linear modalities over E. We turn our attention presently to Byrd [5], though readers
with no concern for the background of that discussion should skim the paragraphs
after Remark 2.3, absorbing only the bold italic notation, down to Proposition 2.4.
(Although, coincidentally, all the letters K, T and B will appear in this font, they
have no connection with the K, T, and B appearing in the label “KTB” just seen.)

8The theorem itself reads: “ε(S5) = α(S5) = 16.” Here ε(L) (resp. α(L)) denotes the number
of non-equivalent (resp. non-analogous) modalities in L. Zolin remarks in the course of the proof
of Theorem 4.21 pertaining to non-equivalent modalities (which incidentally does not mention Car-
nap): “It is interesting to observe that each of these modalities is equivalent in S5 to a boolean
combination of © and �.” Here © is the null modality and (quoting Zolin’s own shorthand de-
scription) � is � ∧ 3, where � is © → 2. A quick way of seeing this is to notice that the Hasse
diagram of the 16 S5 modalities, partially ordered by provable implication – as at the base of p. 605
of Humberstone [27] – depicts the 16-element Boolean algebra, so taking the equivalence class of
a sentence letter, this Boolean algebra is freely generated by that element and any other element
at the same level in the diagram other than that element’s complement. In [27] the sentence letter
chosen was q and Zolin’s �q appears there as X(q). (Put for convenience in alethic terms, this
amounts to: it is either necessarily true or contingently false that q.) The same modality (labelled
‘Q’) was noted to be capable of playing this role in Canty and Scharle [6], where it was also erro-
neously claimed to be the only such candidate, overlooking the remaining three options in the same
‘row’. (Remaining, that is, after setting aside the equivalence class of the chosen sentence letter,
as well as its complement, and �q, from the six elements there.) The mistake was pointed out in
Massey [46].
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Remark 2.3. A unilateral version of Zolin’s (symmetric) analogousness relation
appears as the subconnective relation in Humberstone [22], p. 37f., where the ‘logi-
cally loaded’ notion of a connective is in play: a connective as an equivalence class
of pairs 〈∇̇, L〉, w.r.t. the equivalence relation “is analogous to” – to use Zolin’s no-
tation and terminology, so that (the equivalence class of) 〈2, S4〉 can be thought
of as “2-as-it-behaves-in-S4”. In the case where a single logic L is involved rather
than a cross-logical comparison, then what in Zolin’s notation would be written
as L(∇̇) ⊆ L(

˙
∆) would be read as: “∇̇ is a subconnective of

˙
∆ in L”, though to

avoid various complications, as when this comes up in the following section, primi-
tive (rather than defined) n-ary connectives κ and κ′; a definition in the ‘one logic’
case can by-pass the abstraction to equivalence classes: see Definition 3.6(iii) (for
purposes of which, logics will be taken as consequence relations rather than sets
of formulas). When L = L′ – or looking ahead to the consequence relation case,
`=`′ – the possibility arises of a confusion between κ’s being deductively stronger
than (or: at least as strong as) κ′ in L, in the sense that for all A1, . . . , An, we
have `L κ(A1, . . . , An) → κ′(A1, . . . , An) (or, in the consequence relational ver-
sion, which does not presume the availability of a suitably behaving → connective:
κ(A1, . . . , An) ` κ′(A1, . . . , An), all A) and κ’s being a subconnective of κ in (or
‘over’) L (i.e., 〈κ, L〉’s being a subconnective of 〈κ′, L〉). This particular external/in-
ternal confusion – the subconnective fallacy, we might call it – was illustrated in [22]
of binary κ, κ′ with an example treated in a conference presentation by Phil Staines,
who cited evidence of writers’ thinking along the following lines. Since a connective
representing a natural language conditional construction – for example, the indica-
tive conditional in English – would plausibly be taken as deductively stronger than
the material conditional, any argument valid for the former would be valid for the
latter (replacing the one conditional by the other). This amounts to passing without
further ado – and thus fallaciously – from an internal deductive strength comparison
to a claim that subconnective relation holds.9 J

Turning now to Byrd, we are concerned with the discussion in [5] of a claim
in Hintikka [19] to the effect that knowledge and true belief have different logics.
To assess this contention, Byrd has to contend with another of Hintikka’s claims:
that the verbs believe and know are each amenable to either a weaker or a stronger
interpretation. The detailed references to Hintikka’s discussion are all to be found in
Byrd [5], where they are treated using Hintikka’s rather clunky ‘model set’ analysis

9Staines [65] is a published record of much of the material from the conference presentation cited
in [22], though not, it appears, of the examples of those committing the ‘subconnective fallacy’ in
respect of conditionals. For further discussion, see subsection 3.24 in Humberstone [30]; a bilateral-
ized version of the subconnective fallacy would amount to confusing Zolin-style analogousness with
equivalence in a logic – cf. the criticism of E. E. Dawson before Remark 4.5.1 on p. 279 of [33].
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with all of its various conditions (A.PK*, A.PKK*, A.CBB*, etc.); explaining the
contrast in what are now more familiar terms, we start with the representation, for
a given cogniser a, of knowledge and belief attributions to a using respectively Ka

and Ba, taken as normal 2 operators. The strong versions are those for which the
4 schema 2A → 22A is appropriate, and the weak versions are those for which
this is not so. Byrd shows that if we stick to the strong versions of both belief and
knowledge, or else to the weak versions of both, then we find that knowledge and
true belief in Hintikka’s treatment, “when the two notions are considered in isolation
(. . . ) have the same internal logic.”10 The phrase “in isolation” is reminiscent
of Łukasiewicz’s earlier discussion of twins encountered one at a time, while the
“internal logic” matches Zolin’s later discussion of matters in those terms.

Byrd’s official formulation of the result he is interested in is couched in terms of
another Hintikka-specific notion, that of defensibility (and indefensibility), but this
can be put for present purposes in the more familiar and less problematic terminology
of consistency (and inconsistency), a set of formulas being understood as consistent
in a particular logic if the logic does not prove any conjunction of formulas from the
set.11 For a formula A, Byrd writes T BaA to abbreviate BaA ∧ A, but in order to
recall the ‘�’ notation of the discussion above, as well as to avoid the impression
(with T followed by B) of a composite notation, let us instead write ḂaA for this.
From this point on, we drop the subscript a, since the knower/believer is taken as
fixed for present purposes.12

The reference to inconsistency as defined above can be understood relative to
the uniformly weaker (“4-less”) logic or to the uniformly stronger one, and where
Byrd’s formulation speaks of epistemic operators because both K and its dual – the
epistemic 3 operator written, as P – are taken as primitive, of these we take only

10Byrd [5], p. 183. Byrd’s discussion, following Hintikka’s lead in this respect, abounds with talk
of the strong and weak epistemic operators, and the strong and weak doxastic operators, where
strength is a matter of being subject to the 4 axiom for the operator in question. Humberstone [30]
accordingly complains (p. 483) that such talk is a standing invitation to – if not already an instance
of – the subconnective fallacy, as Remark 2.3 puts it; if one operator has a logic that is stronger
than (satisfies a proper superset of logical principles) that of another, this of course does not imply
that when considered together the former is (deductively) stronger than the latter, or indeed vice
versa.

11A classic critical discussion of indefensibility as originally explained by Hintikka is provided by
Johnson Wu [37], though the end of the second last paragraph of Geach [17] is also interesting.

12Byrd follows Hintikka in writing the epistemic and doxastic operators in italic rather than in
bold italic, which is done here to prevent them looking like the italic capitals A,B, . . . used here as
schematic letters. For this reason Humberstone [33] switches to ϕ,ψ, . . . for schematic letters when a
clash of this kind threatens. Hintikka (with Byrd following suit) uses p, q, . . . in this capacity – highly
confusing in view of their use by almost everyone else as specifically sentence letters (propositional
variables) rather than (standing in for) formulas of arbitrary complexity.
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K as primitive, so as to have a standard bimodal logic under consideration. Lightly
paraphrasing [5], p. 183f., we have:

(†) Let Σ be a set of formulas in which the only non-Boolean connective to appear
is K. Then Σ is inconsistent if and only if the set Σ′ is inconsistent, where Σ′
differs from Σ only by having Ḃ where Σ has K.

The stronger logic favoured by Hintikka in [19] is S4 for K and either K4 or KD4
for B, along with the bridging axiom Kp → Bp, while the weaker logic combines
KT for K with either K or KD for B, and the same bridging axiom as before. What
is all this “either/or”? Hintikka’s discussion is less than ideally clear as to what
is intended. On p. 26 of [19] he writes that the formula (to put it in the present
notation) Bp ∧ B¬Bp “is easily seen to be inconsistent by means of (A.CBB*),
together with [some conditions relating only to the Boolean connectives]”, which
amounts to saying that Bp provably implies ¬B¬Bp (or CBp, where C is the
doxastic 3 operator, taken, as with P as a defined symbol rather than a separate
primitive), which is certainly not the case in K4 as the logic of B, though it is
when we pass to to KD4, as Hintikka does only later in the book, on p. 48, with
the introduction of the condition (C.b*) – which conspicuously fails to put in any
appearance in the official list of labelled conditions at the back (pp.169–173) of the
book; compare, in this connection, note 3 (and the text to which it is appended) in
Johnson Wu [37]. Nor does that condition figure in Byrd’s own proof of the above
result, though Lemmon explicitly takes D for B, (i.e., Bp → Cp) to be part of
Hintikka’s doxastic logic in his review [39] (p. 382, line 4).

Let us reformulate (†) above in the style of Proposition 1.1, for one specific
case, the strongest of the logics mentioned above (with 4 for both operators and D
replacing T for B):

Proposition 2.4. Let S be the smallest normal bimodal logic in K and B containing
the formulas Kp→ p, Kp→KKp, Bp→ Cp, Bp→ BBp and Kp→ Bp. Then
where A[K] is any formula in which K is the only non-Boolean connective to appear:

`S A[K] if and only if `S A[Ḃ].

Although we are here considering a bimodal logic and the discussion of Zolin
above pertained to monomodal logic, the simplest proof of Proposition 2.4 appeals to
the embedding results reported in Example 2.2(ii), more specifically that concerning
KD4, since the latter is the logic of the doxastic fragment. (We will not directly
deal with Byrd’s further ‘weak’ version of Proposition 2.4, with the 4 principles
Kp→KKp and Bp→ BBp omitted.)
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Let us reformulate the relevant part of Example 2.2(ii) in the notation used for
Proposition 1.1, which involves treating 2 and � on a par, since they correspond to
the K and Ḃ of the current discussion:

`S4 A[2] if and only if `KD4 A[�],

for any formula A[2]. We do not need to add here that the only non-Boolean vocab-
ulary (if any) used in its construction is 2, since that is the only such vocabulary
in the language of S4. To get from this to Proposition 2.4, which replaces both sub-
scripts with “S” as specified there, we need to check that the epistemic and doxastic
fragments of S are given by the epistemic and doxastic subsystems of that axiomatic
specification. In other words, we should be sure that (1) adding the B-involving
axioms listed in Prop. 2.4 – Bp→ Cp, Bp→ BBp, Kp→ Bp – does not produce
any new B-free formulas over and above those yielded by only the B-free axioms
Kp → p, Kp → KKp, and (2) adding the K-involving axioms does not yield any
new K-free theorems other than those provable using the K-free axioms.13 But
this is straightforward, since for (1), we can simply interpret B as K itself and all
the B-involving axioms are already provable from Kp→ p, Kp→KKp, and thus
could not have the envisaged non-conservative effects, while for (2) we similarly read
K as Ḃ.

It was, as already mentioned, with a view to treating 2 and � ‘on a par’ above
that we wrote the claim inset above as “`S4 A[2] iff `KD4 A[�],” rather than, in
something closer to the style used by Zolin, as “`S4 A iff `KD4 A[�]”. Similarly,
what Zolin writes as (2.1)

L(∇̇) = L′(
˙
∆) (2.1)

as the special case of L = L′ in the definition of the relation of being analogous over
L, would in the style of Proposition 1.1 appear as (2.2), understood as prefaced with
“for all formulas A”:

`L A[∇̇] if and only if `L′ A[
˙
∆] (2.2)

The “A[∇̇]”,“A[
˙
∆]”, here represent the result of replacing every occurrence of 2

with an application of ∇̇,
˙
∆, respectively, and so 2 is in effect here playing what

we might call an anchoring role in the sense that it marks a position in which it
awaits replacement at the hands of τ

˙
∇ by∇̇, and at the hands of τ

˙
∆ by

˙
∆, giving the

formulas schematically indicated on the left and right sides of (2.2).14 The fact that
the anchor 2 is itself a primitive connective of the object language in modal logic –

13If we did not have the bridging axiom Kp→ Bp to contend with, we could just simply appeal
to Thomason [66]. Note also that for brevity, the formulation here mentions only axioms but rules
– the necessitation rules for the two modal primitives – should also be understood as included.

14In Proposition 2.4, K plays both the anchoring role and the ∇̇ role.
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and hence to be able to appear in the replacing formulas themselves – is in a way
incidental, and even, for current purposes, potentially confusing, and the anchoring
role might be better played by a special purpose ‘dummy connective’ not in the object
language of the logic under discussion, though we make only incidental reference to
such devices in the main body of the present discussion. Such a connective merely
marks a spot for the insertion of the modalities or (primitive or compositionally
derived) connectives of the object language – we may call the formula-like expression
in which dummy connectives occur preformulas for the object language – and does
not appear in what replaces it.15 The symmetrical treatment thus afforded to∇̇ and

˙
∆, whether or not the symbol playing the 2 role in specifying what these formulas
are is itself part of the object language, seems in the end not to live up to its initial
promise, as we shall see in the final paragraph of the following section.

On the final page of Byrd [5] one reads the following, in which the reference to
specific results from earlier in the paper is not relevant to the point to be made
about the passage:

More generally, Lemma 6 and 7 together show that if a set whose sole non-
truth-functional operators are true belief operators is indefensible, then so is
the set obtained from it by replacing ‘TB’ throughout with ‘K’.

Byrd is saying that if a formula in which the only non-Boolean connective to occur
is Ḃ, then so is the formula obtained from it by replacing ‘Ḃ’ throughout with ‘K’.
But Ḃ can’t be the only non-Boolean connective to occur in a formula since any
subformula ḂA is just the formula BA ∧ A, so B itself occurs in any formula in
which Ḃ occurs. Perhaps Byrd meant that only non-Boolean connective occurring
was B, and all of the latter’s occurrences were in subformulas of the form BA ∧ A
(i.e. ḂA).

The minor criticism of Byrd in the preceding paragraph arises from his taking
Ḃ (or T B, as he writes it) to be defined by ḂA =df BA ∧ A, along with one of
two possible views of definition, and in particular, the metalinguistic view rather

15In general one would want to allow the preformulas to be constructed with the aid of dummy
connectives Bm

n – the nth m-place dummy connective, for all n ≥ 1,m ≥ 0 (in addition to the
vocabulary of object language under discussion). Occasionally below, we write just “B” for B1

1.
Dummy connectives in essentially the present sense can be found on p. 361 of Makinson [45] (and
no doubt elsewhere), where they are used for a convenient formulation of conditions on the form of
rules; compare also the ‘nominal symbols’ of Schütte [57], p. 11, used for a convenient description of
positive and negative occurrences of a formula within a formula, though not themselves part of the
language from which those formulas are drawn. Though the phrase is not used and the setting is
slightly different, the symbol 2 itself plays such a dummy (1-ary) connective role in the discussion
in Williamson [71] (esp. pp. 101–106), for purposes of explaining what principles are satisfied by
this or that bona fide sentence operator.
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than the object-linguistic view of definition. On the former view the defined symbol
is introduced into the metalanguage to abbreviate reference to the formulas of the
object language, and the “=df” (or “:=”) is just a special case of “=” as identity:
one and the same thing – in the present case a linguistic expression – is spoken of in
two ways. On the object-linguistic view of definition, by contrast, a definition adds
a new symbol to the object language which is intended to be interreplaceable with
the material in the definiens according to the logic (or the non-logical theory) under
discussion.16 These are really two different approaches to definition, whose relative
convenience depends on the purposes at hand, rather than two ‘views’ in sense of
conflicting opinions. For current purposes the object-linguistic approach to definition
does not seem particularly convenient, since it means we have three separate non-
Boolean connectives to keep track of in the language under discussion: K, B, and
now Ḃ as well. Accordingly our default understanding of the defined connectives
will be the metalinguistic one: they are not new symbols of the object language
but functions from that language to itself derived by composing applications of the
primitive connectives. However, it is often more desirable to proceed to (what in the
present case constitutes) the bimodal setting by throwing away (what appears in the
present case as) B by first promoting Ḃ to the status of a primitive – even though
definable – connective, and then passing to the B-free fragment of the resulting
logic, so as to compare directly with K without interference from B: see Example
3.3(i) below on the kind of interference at issue here.

3 Twins
We turn to the distinction gestured at in the final paragraph of Section 1 between
twins in general and identical twins in particular, using some of the discussion of
Section 2 to illuminate the topic here. The A[⇒]/A[→] style of notation, as it
appeared in Proposition 1.1 is not ideal if we want, as we shall, to consider formulas
corresponding to those which in the present case are constructed using both ⇒
and → at once. Our version of Byrd’s result, Proposition 2.4 had us asserting
the equi-provability in a certain logic of A[K] and A[Ḃ], but the condition on the
first of these was that K was the only non-Boolean connective to appear in A[Ḃ], so
again we ended up comparing certain monomodal formulas drawn from an originally
bimodal language. (In that case we took A[Ḃ] as defined but exploited the fact that
K was primitive and so could perform the ‘anchoring’ role played by 2 in Zolin’s
discussion, and envisaged for B, in notes 15 above and 18 below.) To address the

16For more on this, see the index entries in Humberstone [30] under ‘defined connectives: object-
linguistic vs. metalinguistic view’.
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topic of twins along the lines suggested in Section 1 we need a notation which will
apply whether only one, or instead both, of the connectives being compared appear
in a given formula. This will provide a convenient way of drawing the distinction
foreshadowed there between connectives behaving as twins and connectives behaving
as identical twins (in a given logic).

Let us use κ, λ, sometimes decorated (κ′ etc.) to stand for primitive connectives,
with ar(κ) denoting the arity of κ. Where ar(κ) = ar(κ′) it is convenient to have a
notation for the result of interchanging occurrences of κ in a formula A with occur-
rences of κ′, the official notation for which will be Aκ ./ κ′ though when the identity
of κ and κ′ is clear from the context, we will simply write A./ (“A swap”). There are
conceptual difficulties in trying to work with derived connectives (or Zolin’s ‘modal-
ities’) in settings like this, some taken up in the final paragraph of this section. For
the moment we indicate how the issue raises its head in the present instance after
giving an inductive definition of this ./ notation. Here let us fix n as the arity of
κ, κ′, and suppress reference to those two connectives in the ./ superscript:

• (pi)./ = pi

• (
κ(B1, . . . , Bn)

)./ = κ′(B./
1 , . . . , B

./
n )

• (
κ′(B1, . . . , Bn)

)./ = κ(B./
1 , . . . , B

./
n )

• (
λ(B1, . . . , Bar(λ))

)./ = λ(B./
1 , . . . , B

./
ar(λ)), for all primitive λ other than κ, κ′.

Remark 3.1. The need to restrict attention to primitive connectives in a treatment
like this, rather than trying to exchange derived connectives such as Zolin’s modal-
ities, is clear from the inductive clauses here. Suppose we have �, for instance, not
as a primitive connective, but instead used, as in Example 2.2(i), for the modality
that maps A to 2A ∧ A – often indicated in Zolin [72] by writing the value of this
function as �(A) rather than �A. A serious problem then arises with the idea of
interchanging 2 and � in a formula using the above explanation of (·)./: the fate
of (non-primitive) � is already settled by the inductive steps concerning 2 and ∧,
so any attempt to settle it again is either redundant or inconsistent, depending on
whether it agrees with or differs from the composite story already told for the primi-
tive connectives. (There would be a similar problem in trying to add in an inductive
clause for the compositionally derived connectives in defining the τ

˙
∇ translations in

play in the preceding section.) J

By induction (if necessary), we see that taking ./ as κ ./ κ′ as above, for any
formula A of a language in which these are primitive connectives of the same arity,
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(A./)./ is the same formula as A, and if A is constructed with the aid of only one
of κ, κ′ (and any further connectives), A./ is the result of replacing (all occurrences
of) κ with κ′ or vice versa. Thus in the notation of Proposition 1.1, if A is A[κ],
then A./ is A[κ′] – though for Prop. 1.1 there were stipulated to be no connectives
present other than κ = “⇒”, κ′ = “→” (or κ = “ ⊃”); no such restriction is
in force here. Again allowing for the possible appearance of primitive connectives
other than a given pair κ, κ′ (with ar(κ) = ar(κ′)), let us call a formula mixed if it
is constructed with the aid of both κ, κ′ and unmixed if it is constructed with the
aid of at most one out of κ, κ′.

Definitions 3.2. Suppose that L is a logic on a language with (possibly inter alia)
primitive n-ary connectives κ, κ′ (in terms of which the ‘unmixed’ terminology and
the “./” in what follows is to be understood). Then, meaning by ‘formula’, ‘formula
of the language of L’:
(i) κ, κ′ are twins in L if for all unmixed formulas A, we have `L A iff `L A./;
(ii) κ, κ′ are identical twins in L if for all formulas A, we have `L A iff `L A./.

Note that the ‘iff’s in (i) and (ii) can be replaced by ‘if’s (or by ‘only if’s) without
loss. For example, in the case of (i) the “all unmixed formulas A” covers the case
of A = A[κ], with A./ being A[κ′], as well as the case of A[κ′], with (·)./ returning
us to A[κ]. The present notion of twinhood is a close relation of Zolin’s notion of
analogousness, though the the role played 2 in [72] would have to be played by a
dummy connective of suitable arity (see note 15 above and note 18 below).

The idea, from Section 1, of twins being indistinguishable on the basis of separate
encounters with them is embodied in Definition 3.2(i) by considering only formulas in
which one of the candidate twins appears at a time: the logic in question returns the
same provability verdict on all such formulas when either candidate is replaced with
the other. But the stronger kind of indistinguishability raised in the introduction
– there being no difference to be registered even when both twins are present –
is embodied in Definition 3.2(ii), with its admission of mixed formulas to those in
which interchanging them still leads to identical verdicts.

Here we take no interest in an ‘inter-logical’ version of the twin concept be-
cause the extra effort involved would have no pay-off for cases like that for which
Łukasiewicz originally introduced this idea, though of course Definition 3.2(i) could
be loosened up to allow for κ-in-L to be a ‘twin’ of κ′-in-L′, with two one-directional
versions of the ./ notation, and the remaining vocabulary of L,L′ were suitably con-
strained. (This amounts to something along the lines of (2.2), though the present
κ, κ′, unlike ∇̇,

˙
∆ there, are supposed to primitive connectives.) Similarly, to apply

this vocabulary to describe Byrd’s observations in [5], L would be taken, not as the
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S of Proposition 2.4, but as the {K, Ḃ}-fragment of that S, now taking Ḃ as a prim-
itive connective in its own right – and getting rid of B itself for reasons explained
in the first of the following illustrations of the ‘twin’ terminology:
Examples 3.3. (i) For S from Prop. 2.4 as just modified, we have: K and Ḃ
are twins, though not identical twins, in S. The first claim is just a restatement
of Prop. 2.4, in the current terminology. But the change of terminology forces the
new understanding of what S is: its language must have as the only non-Boolean
connectives, K and Ḃ, throwing B out of the language and taking Ḃ to be taken
as primitive. We need the latter as primitive in any case, as observed in Remark
3.1, but we also need to exclude B from the language (of the new S) since if it were
still present, taking ./ as K ./ Ḃ, we should have for A = (Bp ∧ p)→ Ḃp

`S A, whereas 0S A./,
since A./ is (Bp ∧ p) → Kp. (If we call connectives other than the κ, κ′ being
swapped by ./, extraneous connectives – relative to the twinhood question under
consideration – then what we have here is what might be called interference with
the twin status of K and Ḃ by the extraneous connective B.) The second claim,
that though twins in (revised) S, K and Ḃ are not identical twins, is just a reflection
of the fact that

`S Kp→ Ḃp whereas 0S Ḃp→Kp (i.e. 0S (Kp→ Ḃp)./).
(Byrd adds, p. 186: “There are other more interesting contrasts between knowledge
and true belief in their strong senses [i.e., with the 4 principles in force], if mixed
sets are allowed.” He cites – putting it in the present terminology and notation –
the provability of Bp → ḂBp alongside the unprovability of Bp → KBp as an
example. But allowing such ‘mixed cases’ involves going back to the language with
B present in addition to K and Ḃ, which would lead straight back to the case of
the A just considered, preventing K and Ḃ from being even non-identical twins.)
(ii) For this example, we assume familiarity with propositional tense logic and use
A. N. Prior’s notation G,H for the future and past tense 2-operators, to be inter-
preted by accessibility relations which are each other’s converses. It is G and H that
are to be compared and in terms of which the “./” notation is to be understood (the
corresponding 3-operators being F and P , taken as defined rather than primitive).
The basic system Kt of tense logic (among many others) has the property that in
it these two operators are identical twins in the sense of Definition 3.2(ii). In the
tense-logical literature this property is often called the mirror image property, with
A./ being the ‘mirror image’ of the formula A. Steadfastly resisting any temptation
to extend the biological metaphor by purloining talk of ‘mirror twins’ from that
quarter, we note that this is a special case of a more general phenomenon:
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Let L be any normal bimodal logic determined by (i.e., sound and com-
plete w.r.t.) a class M of models 〈W,R, S, V 〉, R,S binary relations on
W 6= ∅ the first listed being an accessibility relation for 21, and the
second, for 22 (and V supplies subsets ofW to the sentence letters, with
the inductive definition of truth at a point proceeding as usual). Then if
M = 〈W,R, S, V 〉 ∈M always implies 〈W,S,R, V 〉 ∈M, then 21 and 22
are identical twins in L. For the proof it is convenient to use the notation
M./ for the result of interchanging the two accessibility relations; A./
is the result of interchanging the corresponding non-Boolean primitives
21,22 in A. One shows by induction on the complexity of A that for all
w ∈W , whereM = 〈W,R, S, V 〉 that

M |=w A if and only ifM./ |=w A
./,

and then argues that if `L A, we must have `L A./ by appeal to the
result inset above and the fact that L is determined by M, which is
closed under the ./ operation on models.

In the case of Kt determined by the class of models in which S = R−1, the desired
condition of closure under the ./ operation on models is evidently satisfied, as is also
the case of S as the complement of R (relative to W ×W ), considered in [21]. In
both cases given W and either accessibility relation, the other accessibility relation
is uniquely fixed (as the converse or the complement, respectively) but in general
the ./-closure condition does not require this. For example the class of models
〈W,R, S, V 〉 such that for each x ∈ W there exists y ∈ W such that Rxy and Sxy,
also satisfies the condition, though neither S nor R is uniquely fixed in terms of the
other in this case. (The ./-closure condition would most naturally be conducted in
terms of frames rather than models, but one wants to avoid conveying the impression
that these considerations bear only on the case of Kripke-complete normal modal
logics.)
(iii) This example comes from deontic logic as a variation on the use in such papers as
Anderson [3] of a sentential constant (or nullary connective) s informally read as “the
sanction is applied” (or more accurately “there has been an infringement of the moral
code”) added to the vocabulary of a suitable alethically interpreted modal logic and
governed by the axiom 3¬s to yield a deontic logic in which “It is forbidden/would
be wrong that A” could be represented by 2(A → s). Humberstone [20] suggests
the addition of a second sentential constant r – the letter chosen to suggest “reward”
with a view to reading 2(A→ r) as saying “It would be supererogatory that A”, and
examining the interrelations between these different deontic notions after trading in
the previously cited axiom for 3(¬s ∧ ¬r). Evidently s and r are identical twins
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(though not equivalent formulas) in the resulting logic – something referred as the
‘exchange property’ in [20], q.v. for acknowledgment that the deontic notions in
play here really deserve a more explicitly agent-relative treatment. (However, the
description in [20] of s, r as propositional constants rather than sentential constants
is ill-advised for reasons not germane to our present concerns. [33], p. 275, gives a
brief discussion of the issue, and further references.) J

Remarks 3.4. (i) In connection with Example 3.3(ii), it is important to recall
the metalinguistic understanding of definitions mentioned at the end of the previous
section. P> for instance, is none other than the formula ¬H¬>; similarly, references
to F are just our abbreviated way of referring to ¬G¬. Without this understanding
in place, we could not have given Kt as a logic according to which G and H are (non-
equivalent) identical twins, since the provable Gp↔ ¬F¬p would have as its mirror
image (its G ./ H-swap) the unprovable Hp ↔ ¬F¬p, rather than, as intended,
discerning the occurrence of “G” concealed by the “F” notation, the provable formula
Hp↔ ¬P¬p ( = Hp↔ ¬¬H¬¬p, in primitive notation). Similarly if we had been
considering the equivalences corresponding to the definitions that would have related
distinct primitives on the object-linguistic conception of definition – Fp ↔ ¬G¬p
in the future tense case. But the present point has nothing specifically to do with
biconditionals: the addition of any new primitive stipulated to stand in some non-
trivial logical relation17 toG but notH or vice versa – for example adding a one-place
connective O with just the axiom Op ∨ Gp would stop G and H from being twins
(since Op∨Hp) would not be provable. In the case of duals, if one wanted to treat H
and P (and G and F ) as separate primitives, one would have to re-work the account
so as to accommodate the more complicated relation “G is to F as H is to P” –
or that pair 〈G,F 〉 is a twin (or identical twin) of the pair 〈H,P 〉. (Compare the
even more general idea of (esp. ‘weak’) duality under a permutation introduced on
p. 159 of McKinsey and Tarski [47].) However, note that we may be dealing with a
case in which G and H are both primitive and only one of F, P is, in which case this
move would not be available; whichever of the latter two was primitive would then
be an extraneous connective spoiling – or interfering with – the twin relationship,
to use the terminology introduced in Example 3.3(i).
(ii) As an alternative to Example 3.3(i), it would be nice to present alongside Ex-
ample 3.3(ii) a tense-logical version, with G and H being non-identical twins. For
example, we might consider the normal extension of Kt by (one of) Hamblin’s dis-
creteness axiom(s) (p∧Hp)→ FHp, together with P>. A simple semantic argument
shows that this logic does not contain the mirror image of that discreteness axiom;

17More explicitly: in some proper coercive logical relation, as this is explained in Definition 2.7(ii)
in Humberstone [35].
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but since the given axiom has F> as a consequence we have added P> so as to keep
our past and future operators twins even though not identical twins. If this logic has
further unmixed theorems whose mirror images are not theorems, the latter would
have to be added, and one would want some guarantee that this could be done with-
out bringing in their wake ((p∧Hp)→ FHp)./ – so the author can only conjecture
that an example of the kind desired can be produced in this way. (Of course we
don’t always have to add the mirror images of the unmixed theorems since they
are often consequences – even just against the background of Kt; P> was not thus
automatically forthcoming as a theorem, reflecting the fact that a relation’s being
serial does not imply that its converse is, contrasting in this respect with adding
the 4 of axiom Gp → GGp which yields its mirror image as a theorem, reflecting
the fact that the converse of a transitive relation is transitive. A semantically more
nuanced presentation of these issues can be found in [33], p.185ff.)
(iii) The proof given in the course of the discussion in Example 3.3(ii) – concerning
models 〈W,R, S, V 〉 – thatG andH are identical twins in Kt is matched by a different
strategy for the case of logics given proof-theoretically rather than semantically, by
picking an axiomatization concerning which one shows that the mirror images of the
axioms are provable and that the rules preserve the property of having a provable
mirror image. (Indeed the sanction-and-reward case as presented in Example 3.3(iii)
is such a case.) But here we pause to note that a similar semantic argument can be
used whenever we are dealing with two items in the models – not just accessibility
relations – which can be interchanged, keeping us inside a class of models determining
the logic of interest, to show that the connectives they respectively interpret are
identical twins in the logic determined. One cannot, incidentally, help but notice a
resemblance between pairs of non-equivalent identical twins (in a logic) and pairs
of objects which are not pairs of individuals, as this terminology is explained in
Caulton and Butterfield [8]; non-equivalence of connectives should be understood
for in terms of the non-synonymy – in the sense of [63], p. 116 – of compounds
formed from the same components with their aid. Łukasiewicz’s reaction this this
phenomenon, mentioned in the final paragraph of Section 4 is likewise reminiscent
of the puzzlement sometimes raised by the the idea that the positive and negative
square roots of −1 are distinct – touched on again in [8] and many references there
cited. J

In all of Examples 3.3, the two connectives compared are surrounded by a bevy
of Boolean connectives left unaffected by the passage from A to A./, and in general
there the risk of interference from extraneous connectives alluded to in Example
3.3(i), which becomes acute when, to avoid comparing derived connectives, one
gives those to be compared primitive status and the inevitability of what would
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have been used in the a definition (had they been non-primitive) to interfere – as
that example (or, originally, in the last paragraph of the preceding section). One
accordingly often has occasion to study the logic of the connectives concerned in the
absence of other – even all other – connectives. Indeed this happened in the case of
Proposition 1.1. However, in the case of some such pairs of connectives, there are
no theorems to be found in the fragments thus purified:

Example 3.5. As a case in point, consider what in Zolin-inspired notation and
terminology might be called the two 1-ary ‘modalities’ ∇̇p = p → ⊥ and

˙
∆p =

((⊥ → p) → p) → ⊥.18 To avoid unwanted interference it may desirable to study
the pure logic of these two connectives and compare them with each other when they
are taken not only as primitives in their own right – to be written respectively as ¬
and ¬′ – rather than defined, but as the only primitive connectives of the language
considered. For a more interesting case study in which the two connectives are not
equivalent, we need to drop below not only classical but even intuitionistic logic, to
– this atheorematic fragment of – Minimal logic. Thus, roughly speaking:

¬A = A→ ⊥ and ¬′A = ((⊥ → A)→ A)→ ⊥,
with → and ⊥ as in Minimal Logic, have the same logic when each is taken as the
sole connective and the logic is given by the consequence relation, the restriction of
which to the negation fragment we call `ML¬ and to the non-standardly interpreted
negation fragment, `ML¬′ .19 J

This case gives us three logics of possible interest, ML¬, the standard pure nega-
tion fragment of Minimal Logic, ML¬′ , a version of Minimal logic with the ‘deviant’
negation ¬′ as the sole primitive connective, and, naturally of greatest interest here
since we are concerned with twinhood, ML¬,¬′ which has the two primitive con-
nectives ¬ and ¬′. But here there is a problem: if the logic is the set of provable
formulas, there is no logic to speak of in any of these three cases. Accordingly for
the further treatment of this issue in Example 3.7(i) we pass to the associated con-
sequence relations `ML¬ etc., as was done – though this particular (‘logic without

18In this case, unlike Zolin’s, these are 1-ary modalities (compositionally derived connectives)
with no 1-ary primitive connective in the language to play the anchoring role of 2 in the modal case.
One could use a 1-ary dummy connective B (see note 15) and adapt the mapping τ

˙
∇ so that it now

maps preformulas involving B by acting as the identity translation on sentence letters and for the
(non-dummy) connectives of the object language by themselves, coming to life with the inductive
step τ

˙
∇(BB) =∇̇(τ

˙
∇(B)), and correspondingly in the case of τ

˙
∆, mutatis mutandis.

19“Roughly speaking” because the above equalities are not to be taken as definitions within the
current language, in which → and ⊥ are not available to do the defining; rather, we intend the
two negations to be taken as primitive but with `ML¬ coinciding with {¬,¬′} fragment of `ML, and
similarly with the further subfragments involving only one or other of ¬,¬′.
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theorems’) problem did not arise there – in note 1 for the case of BCSK. We need
this move also for another example in this section (Example 3.7(i)) as well as for
the discussion of Łukasiewicz below (Section 4).

We assume familiarity with the notion of a consequence relation but rather than
the cumbersome notation of note 1 in which one reads such things as the following
(where ` was actually something called `gloS5 ):

C1[⇒], . . . , Cn[⇒] ` A[⇒] iff C1[→], . . . , Cn[→] ` A[→],

it is more convenient to think of the pairs 〈{C1, . . . , Cn}, A〉 which are elements of
a consequence relation as provable objects – ‘sequents’ – in their own right and use
the ‘context for a connective’ notation on a sequent itself, and where σ = 〈Θ, A〉
write `L σ in place of the explicit notation Θ `L A. Let us focus on the case in
which Θ is {C1, . . . , Cn} – though there is no general restriction to finite sets here –
and σ is 〈Θ, A〉, for which a more suggestive notation is usually employed, such as
Θ � A or Θ : A, the former notation being preferred here.20 Then we can write the
above more succinctly as

` σ[⇒] iff ` σ[→].

More to the point, since we want to include the case in which both of the connectives
of interest are present together (in the same sequent, whether or not they co-occur
in any of the formulas making up that sequent), we can similarly denote by σ./ the
result of interchanging those connectives in all the formulas of σ. That is, with (·)./
for formulas as above, if σ is Θ � A, then σ./ is {C./|C ∈ Θ} � A./.

Just for the record, let us give here the obvious reformulation of Definitions 3.2
to apply to the case of consequence relations. With respect to a pair of primitive
connectives, of the same arity, in the language of a consequence relation ` we call a
sequent mixed if among its constituent formulas, both connectives appear, otherwise
unmixed. For good measure we include a definition of the subconnective relation.

Definitions 3.6. Suppose that ` is a consequence relation on a language whose
primitive connectives include n-ary κ, κ′, in terms of which, as for Definitions 3.2,
the ‘unmixed’ terminology and the “./” notation is to be understood (i.e., ./ means
κ ./ κ′). Then:
(i) κ, κ′ are twins according to ` if for all unmixed sequents σ of that language ` σ
iff ` σ./;

20Sometimes instead, “→” or “⇒” is used as a sequent separator, which would be very confusing
in the present discussion, since those are both already in service here as sentence connectives. As
to the use of “Θ”, see note 6.
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(ii) κ, κ′ are identical twins according to ` if for all sequents σ of that language ` σ
iff ` σ./.
(iii) κ is a subconnective of κ′ according to ` if for all sequents σ[κ] in which κ and
any additional primitive connectives (of the language of `) with the exception of κ′
may occur, if ` σ[κ] then ` σ[κ′].

Note that under (iii) we could equally well have made the definition be: for all σ
composed of formulas not constructed with the aid of κ′, ` σ implies ` σ./, and also
that the “iff”s in (i), (ii) add nothing to what we would have with “only if” instead.

The following pair of examples concern twins in subclassical logics. The first con-
cerns the case of ML¬,¬′ , introduced after Example 3.5 above;the second is borrowed
from [30].

Examples 3.7. (i) The connectives ¬ and ¬′ from Example 3.5 are twins according
to ML¬,¬′ , though not identical twins. A proof of the first assertion is to be found
in the Appendix (see Proposition 5.2 there). For the second, note that for the
mixed sequent σ = ¬′p � ¬p, we have `ML¬,¬′ σ while 0ML¬,¬′ σ./. That is, ¬p is a
consequence of ¬′p according to the current logic, though not conversely (much as in
Example 3.3(i)). To see this note that ((q → p)→ p)→ q has p→ q an intuitionistic
(or ‘positive logical’ or indeed ‘Minimal’) consequence, so we can just substitute ⊥
for q; on the other hand, since ⊥ has no special logical powers in Minimal Logic,
we could only have p → ⊥ as an ML-consequence of ((⊥ → p) → p) → ⊥ if p → q
had ((q → p) → p) → q as an ML-consequence – or, equivalently, an intuitionistic
consequence, since only → is involved – which is easily checked not to be the case,
e.g., using the Kripke semantics. (Alternatively, much as in Exercise 4.22.11 of [30]:
observe that if this were so, then (p → q) → (

((q → p) → p) → q
)
would be

intuitionistically provable – an IL-consequence of the empty set, that is – and so,
therefore, permuting antecedents, would

((q → p)→ p)→ ((p→ q)→ q)

be. But on substituting q → p for all occurrences of p, we get a conditional that
would then deliver Peirce’s Law from Contraction by Modus Ponens.)
(ii) In the setting of intuitionistic logic (IL), consider the binary connectives (a) of
alternative denial (to use Quine’s phrase, though he did not take an interest in the
present setting), ↓, with A ↓ B = ¬A ∨ ¬B and (b) nand (or negated conjunction)
Z with A Z B = ¬(A ∧ B). As with the two minimal negations of (i), we consider
the fragment (now, of IL) in which only these two connectives figure, in which, as is
familiar, they do not yield intuitionistically equivalent compounds. Specifically, for
σ = p ↓ q � p Z q we have `IL σ while 0IL σ./, so these two connectives are out of the
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running for being identical twins according to the current fragmentary subrelation
of `IL – `IL↓,Z, let’s call it – which still leaves open the possibility that they are
nevertheless, twins according to that consequence relation, which would then match
the situation described under (i). But no, it is shown in [30] (Example 8.24.7 and
Remark 8.24.8, p. 1245, where ↓ is written as ∗), that according to `IL↓,Z, ↓ is a
proper subconnective of Z. (That is, ↓ is a subconnective of Z but not conversely.)

J

Remarks 3.8. (i) Concerning Example 3.7(ii): As is also pointed out in [30], p. 397,
the situation is quite different from that illustrated by the example in the case of
classical logic (`CL, as in Section 1), where no connective can be a subconnective of
a non-equivalent connective (κ, κ′ being said to be equivalent according to ` when
κ(A1, . . . , An) a` κ′(A1, . . . , An) for all A1, . . . , An, where ar(κ) = ar(κ′) = n).
(ii) Both the observation under (i) here and the proof in [30] of the ‘(proper) sub-
connective’ claim alluded to in Example 3.7(ii) rely heavily on results established
by W. Rautenberg. (The relevant references can be found in [30].) J

In this final paragraph of the present section, which can be skipped without
jeopardizing the intelligibility of the remainder of the paper, the author confesses
to being puzzled as to exactly how the present account of twins (Definitions 3.2(i)
and 3.6(i)) is related to Zolin’s account of analogousness. Zolin had no difficulty
describing derived connectives (‘modalities’) as analogous in a given (monomodal)
logic, as for example 22 and 222 – or 22 and 23 for short – in K, whereas the ./-
based Definition 3.2(i), was seen (Remark 3.1) to be highly problematic for the case
in which non-primitive logical vocabulary was under discussion. We might well have
expected trouble with the ‘identical twins’ notion introduced in part (ii) of 3.2(i)
(or 3.6) since it is not clear that there is any intuitive idea (for a generalization to
non-primitive connectives of the ./ operation to capture) of “interchanging 22 and
23” in a formula such as, for instance, the formula we might write for brevity as 28p.
In the interests of not privileging any particular connective of the object language
in the way in which 2 is privileged in Zolin’s treatment we might recruit the idea
of a preformula with a dummy connective of the appropriate arity, here taken for
simplicity to be 1. Thus where A = A[B] is such a preformula, we might enquire as
the equi-provability of A[∇̇] and A[

˙
∆] for the derived∇̇ and

˙
∆ of interest, where A[∇̇]

is τ
˙
∇(BA) from note 18, and correspondingly for A[

˙
∆]. But, for which preformulas

A[B] should one demand equi-provability of A[∇̇] and A[
˙
∆]? The account should at

least coincide with that given for twinhood of primitive connectives, extending it to
cover non-primitives, so since we want primitive G and H in a formulation of Kt
(with no other non-Boolean primitives) to count as twins – having seen them even to
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constitute identical twins in Example 3.3(ii), though here we are not worrying about
the ‘identical’ aspect of this case.21 For the preformula A[B] = Hp → B p we will
have A[H] ( = Hp → Hp) provable without A[G] ( = Hp → Gp) being provable,
which we do not want to count against the twin status of G,H, and can easily
guard against by requiring that G,H do not themselves occur in the preformula
A[B].22 This makes perfect sense because G,H happen to primitive connectives,
and what would be needed is to make sense of this generally, but what exactly is
it for a derived connective to occur in a formula? (Where �A is, as in Example
2.2(i) 2A ∧ A, does � ‘occur in’ the formula (2p ∧ q) ∧ p? Or in q ∧ 2q?) Finally,
while this discussion has supposed that we can separate the ‘twins’ and ‘identical
twins’ issues for derived connectives, that distinction hung on the contrast between
mixed and unmixed formulas, a distinction which is problematic when non-primitive
connectives are involved: returning to the above case of 22 and 23, is 26 a mixed
formula or an unmixed formula? If we are comparing 2 and �, isn’t any formula
constructed using � automatically a mixed formula? (This was the ‘minor criticism’
of Byrd in Section 2, where these were written as B and Ḃ.)

4 Back to Łukasiewicz
So frequently does commentary on the Ł-modal system of Łukasiewicz go astray that
it is with some trepidation that one ventures into this territory. But venture we must,
given the topic under discussion. That begins in the following paragraph, after we
pause to illustrate the perils that have afflicted otherwise impeccably credentialed
logicians. Segerberg’s [58] broaches the subject of the Ł-modal logic on p. 209, where
we are told that it is the smallest modal logic extending C with (all instances of the
schema) – called by Segerberg (as is the logic itself) Ł: 2> → (A→ 2A). Segerberg
remarks that this is itself a regular modal logic, something not immediately evident
from the above description of it since one of the defining conditions ([58], p. 12)
for regular modal logics is closure under the rule which takes us from A → B to
2A → 2B, making regularity a condition not automatically passed from modal
logics to their extensions.23 The description given obviously does not suffice to pick

21Conceivably, the pessimistic attitude already taken to identical twinhood between derived
connectives notwithstanding, something could be made of this using preformulas A[B1,B2] with
two dummy connectives of the relevant arity.

22This is like ‘extraneous interference’ à la Example 3.3(i), except that here the interfering
material – the “H” in the preformula – is here far from extraneous. The present example is highly
reminiscent of Examples 6.1(i) and (ii) urged as making trouble for a particular account of logical
independence in Humberstone [35].

23Here of course we are thinking of modal logics as sets of formulas (extensions thus being
supersets), and more specifically as such sets as contain all classical truth-functional tautologies
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out the Ł-modal logic since Segerberg’s Ł does not containing every formula of the
form 2A → A – or more simply put, does not contain the formula 2p → p – as
the Ł-modal logic does. (At least this will be obvious in view of the matrix-based
description of the logic below. This mistake is noted at the base of p. 48 in [33], no
doubt among several other places.) Erring in the other direction, over-axiomatizing
rather than under-axiomatizing the logic, the generally invaluable Font and Hájek
([13], p. 168) give an axiomatization of the Ł-modal system, using Modus Ponens as
its sole rule, along with any axioms sufficient for classical propositional logic, and
the following special axioms involving 2:

2(A→ B)→ (2A→ 2B) 2A→ A 2B → (A→ 2A)

but the first of these axioms (or more accurately, axiom schemata) is easily seen
to be redundant given the other two. To be fair to Font and Hájek, (1) this is an
oversight rather than an error, since the authors do not claim to be providing an
independent axiomatization, and (2) it’s not (originally, at least) their oversight,
since, as they mention, they are take this axiomatization straight from Lemmon
[40].24 Font and Hájek, incidentally, also discuss consequence relations associated
with the current set-of-formulas logic, though for reasons of space we defer entering
into that topic until a later occasion, save for a parenthetical comment under Remark
4.1(i). (Similarly deferred is any discussion of the reaction by others to Łukasiewicz’s
treatment of the twins issue.)

Finally, let us note that Gottwald [18], p. 693, misidentifies the Ł-modal logic
entirely, writing:

In contrast to the situation with three-valued systems, where there are a lot
of approaches and interpretations, only a few approaches concern four-valued
systems and give particular interpretations to the four truth degrees. One of
these rare exceptions is Łukasiewicz [1953] [ = our [42]] who, in his later years,
preferred a four-valued approach via his system L4 toward a modal reading
of the truth degrees over his original three-valued one via L3 in [Łukasiewicz,
1920].

From the fact that Gottwald calls the famous three-valued Łukasiewicz logic of the

and are closed under uniform substitution and Modus Ponens. The other condition defining regular
modal logics, aside from the monotonicity rule above (confusingly called the regularity rule by
Segerberg) is that every formula of the form (2A ∧ 2B) → 2(A ∧ B) should belong to the logic.
The two conditions are often conveniently combined into one, requiring closure under the rule taking
us from (A1 ∧ . . . ∧ An) → B to (2A1 ∧ . . . ∧ 2An) → 2B (for n ≥ 1). See also note 6 on other
notations for 2 and 3 in use – including later in the present section.

24The axiomatization appears at p. 214 of [40], with the labels for the various axioms explained
on p. 192.
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1930s L3, and from sentence after the passage quoted, with its reference to “L4
with its linearly ordered truth degree set,” it is clear that Gottwald has isolated the
wrong four-valued logic here: even restricting attention to the modal connectives,
the four-valued logic in the 1930s sequence of finitely many-valued logics explored
by Łukasiewicz (and Tarski) has nothing to do with the four-valued logic on offer in
[42], the partial order underlying the matrix treatment of the lattice connectives ∧
and ∨ in this case being anything but a linear order.25

The third schema listed above could be replaced by

(A↔ B)→ (2A↔ 2B)

explicitly revealing 2 to be an extensional connective in the Ł-modal logic (alterna-
tively put: revealing this to be an extensional modal logic) according to one natural
use of the term ‘extensional’ as applied in propositional logic.26 Given the classical
background for the non-modal connectives here, the second occurrence of “↔” in
the above schema can be replaced (without loss) by “→”, and given the schema
2A→ A, both occurrences can be so replaced – a formulation Łukasiewicz was es-
pecially fond of, though Łukasiewicz’s own preferred definition of the extensionality
of a context C(p) – in the above case, with C(p) = 2p – was not that A↔ B should
provably imply C(A)↔ C(B) but rather that C(A)∧C(¬A) should provably imply
C(B).27 Of course, this extensionality is widely taken to be responsible for every-

25As Simons ([60], p. 120) helpfully explains, to ward off the current misconception about the Ł-
modal logic, “Suffice it to say that the logic is very unlike Łukasiewicz’s earlier multivalent systems
and also very unlike other modal systems. It is unlike his own systems in that it is an extension of
classical bivalent logic and includes all bivalent tautologies.”

26This is the usage to be found in Humberstone [22], where the present logic is one of those
discussed, as well as in [30], in §3.2. The subsection there (3.24 – mentioned above in Remark
2.3) called ‘Hybrids and the subconnective relation’ devotes a Digression to the Ł-modal logic,
beginning on p. 470. It appears in that subsection because necessity in this logic is obtained by
hybridizing – isolating, that is, the common logical properties of – the one-place constant false
truth-function and the identity truth-function, as will be clarified in the paragraph which follows.
The consistent extensional modal logics are called prime logics in Zolin [72], though they are defined
rather differently: as the logics of ‘prime’ modalities, the 1-ary modalities induced by formulas in
which the sentence letter concerned does not appear in the scope of a modal operator – such as the
formulas ¬p, p→ 2⊥. In the case of the Ł-modal logic, as Zolin ([72], p. 866) notes, we are dealing
with the modal logic in which 2p is equivalent to the prime modality p∧2>; this modality figures
extensively in translations between the present logic and others in Font and Hájek [13].

27The relation between these two notions of extensionality – the second of which, as one might
expect, fails for intuitionistic logic – is explored in §5 ( = Appendix A) of Humberstone [32].
Łukasiewicz’s preferred way of expressing the negation-involving notion of extensionality would use
his (one-place) variable functor “δ” and read as follows – though here we use infix notation rather
than Polish notation for the binary connectives (and ¬ in place of N): (δp ∧ δ¬p) → δq, or, in
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thing philosophically objectionable about the Ł-modal logic as a plausible alethic
modal logic,28 though our current concern is not with pressing such objections.29

Historically, what Łukasiewicz wanted was a propositional logic intended for
alethic modal applications, he favoured taking a 3-operator in its language rather
than a 2-operator as primitive, but as mentioned in note 6, Łukasiewicz wrote ∆
for 3 (and Γ for 2), so we follow suit when quoting from or otherwise presenting
Łukasiewicz’s material. The passage also mentions something written as ∇ – which
again (repeating from Section 1) has nothing to do with the use of this symbol as
a contingency operator, or with the ∇̇ introduced in Convention 2.1. The semantic
description Łukasiewicz provides is four-valued: we take the direct product of the
usual two-element matrix with itself for the Boolean connectives (→ and ¬ in the
case [42]), and interpret ∆ by using the product of the identity and the (1-ary) con-
stant true truth-functions. That is, denoting these functions by I andV respectively,
and their product (in that order) by I · V, the latter maps 〈x, y〉 (x, y ∈ {T,F}) to
〈I(x),V(y)〉.30 The new idea occurring to Łukasiewicz in Section 7 (“The twin pos-
sibilities”) of [42] is that we might also consider the product of these two two-valued
truth-functions in the reverse order – V · I – and regard this as the interpretation of
another possibility-like operator, namely the above ∇. For the language with both
∆ and ∇, writing 1, 2, 3, 4, for 〈T,T〉, 〈T,F〉, 〈F,T〉 and 〈F,F〉, respectively we
have the matrix depicted in Figure 1, with tables for the Boolean connectives and
each of ∆, ∇. (As usual the designated value(s) – just one such in the present case
– are indicated by an asterisk at first occurrence.)

Remarks 4.1. (i) We may take the Ł-modal logic to be the set of formulas valid
in this matrix, since Smiley [62] showed (and Łukasiewicz seemed to have already
known or at least presumed, in [42]) that the formulas provable on the basis of his

‘exported’ form δp→ (δ¬p→ δq). It is interesting to read Łukasiewicz, in [44], p. 163, commenting,
concerning several principles formulated with the aid of “δ”, such as δ(p → q) → (p → δq) (or, as
he writes this: CδCpqCpδq), that these principles are “all very important but unknown to almost
all logicians.” Still correct today, on both counts – but the principles in question can be formulated
as metalinguistic claims about contexts, without having to have a variable functor in the object
language: see Humberstone [32] and (especially) [31] for this way of proceeding.

28See the end of §5.5 in Simons [61].
29On the subject of alternative axiomatization, let us note that of Tkaczyk [67] provides an

interesting further example, intimately connected with Porte’s representation (below) using Ω.
30This – along with F and N – for the constant false and negation truth-functions – is the

notation used, e.g., in [28], p. 471; Łukasiewicz writes S, V , for I, V, and has no explicit product
notation; to avoid the unintended (non)contingency associations of Łukasiewicz’s ∆/∇ notation,
these are written in [28] as 3 and � respectively. And naturally, Łukasiewicz uses Polish notation
– NCpNq for ¬(p → ¬q) etc. See [28], p. 469 for the rationale behind interpreting possibility as a
product of the identity and constant true (‘Verum’) truth-functions. For much further background
and information on the Ł-modal logic, see Font and Hájek [13] and references there given.

1098



Twins in Logic – Identical and Otherwise

→ 1 2 3 4 ¬ ∆ ∇
*1 1 2 3 4 4 1 1
2 1 1 3 3 3 1 2
3 1 2 1 2 2 3 1
4 1 1 1 1 1 3 2

Figure 1: Łukasiewicz’s Matrix with Both Possibility Operators

axiomatization were precisely those valid in the matrix. It is clear that the twin
possibility operators ∆ and ∇ are indeed twins according to this logic, since the set
of formulas valid in the product of two matrices is just the intersection of the sets
of formulas valid in the respective factor matrices, the order of the factor matrices
therefore being irrelevant. Whether a symbol is interpreted as V · I or as I · V it
still exhibits just the logical behaviour it would exhibit both when interpreted as
the identity truth-function and when interpreted as the constant true truth-function.
As is well known, however, when logics are thought of as consequence relations, we
lose the guarantee that the consequence relation determined by the product of two
matrices coincides with (though it always includes) the intersection of the conse-
quence relations determined by the factor matrices. (With generalized or multiple
conclusion consequence relations, we lose even that. See Observation 2.12.6 in Hum-
berstone [30] and the preceding discussion, for examples, proofs and references to the
literature. Slogan version in the terminology of that discussion and of the already
mentioned subsection 3.24 of the same work: in the framework Fmla, products of
connectives are hybrids, but in Set-Fmla and Set-Set this is not guaranteed to
be so.) We return to the question, raised in Section 1, of whether ∆ and ∇ are not
only twins but identical twins in the (formula) logic under consideration here in due
course (Prop.4.4), after some further terrain familiarization. Readers for whom the
answer that question is already obvious should still be able to enjoy the ride.
(ii) We may take the remaining Boolean connectives as defined in terms of → and
¬ in any of the usual ways, which will give them tables like those familiar from
discussions of the product of (the matrix operation interpreting) a connective with
itself (e.g., Bolc and Borowik [4], p. 21, or Rescher [55], pp. 96–98); this is just the
usual notion of taking direct products of algebras, coupled with taken a value as
designated in the product matrix iff each coordinate is designated in the respective
factor matrix.31 Note that this has nothing to do with the use of phrases like ‘product
connective’ in the fuzzy logic subgenre of many-valued logic, where the reference is

31This, the standard approach, is Rescher’s ‘Policy 1’ on p. 97 of [55]; ignore what he calls ‘Policy
2’ which replaces “each’ with “at least one”.
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to arithmetical multiplication. (See the index entries starting with ‘Product’ in
Metcalfe et al. [48].) Łukasiewicz [42] also observed that in this logic ∇ could be
defined in terms of → and ∆: ∇A = ∆A → A. If we are taking both of these as
primitive, as suits the present discussion better (see Convention 4.2), then to secure
the interreplaceability of what would otherwise be definiens and definiendum, it
suffices to add as a further axiom schema ∇A ↔ (∆A→ A) (or the corresponding
equivalence for the dual operators). J

Since modal matters are often discussed with 2 rather than 3 taken as primitive
(cf. the opening paragraph of this section), and Łukasiewicz endorses the familiar
equivalences of 2 with ¬3¬ and 3 with ¬2¬, we should note that the columns
under a table for 2 defined by the former equivalence when 3 is taken as ∆ would
be (reading downward) 2, 2, 4, 4, while if 3 is taken as∇, for the defined 2 we should
have, instead: 3, 4, 3, 4. The associated truth-function products are (using, as well
as the pair-forming · above, notation from note 30) I · F and F · I, respectively.

Łukasiewicz concentrates on possibility rather than necessity, introducing no
special notation for the 2-operator dual to ∇ in the way that his Γ is dual to ∆,
and writes:

∆ and ∇ are indistinguishable when they occur separately, but their difference
appears at once when they occur in the same formula. They are like twins who
cannot be distinguished when met separately, but are instantly recognised as
two when seen together. Take, for instance, the formulae ∆∆p, ∇∇p, ∆∇p
and ∇∆p. ∆∆p is equivalent to ∆p which is rejected, and likewise ∇∇p is
equivalent to ∇p which is rejected too. But ∆∇p and ∇∆p must be asserted
(. . . ) We cannot, therefore, replace in the two last formulae ∆ by ∇ or vice
versa (. . . ).32

The talk of accepted and rejected formulas in the quoted passage may be un-
derstood in terms of the usual notion of validity and invalidity in matrix semantics,
though Łukasiewicz also seeks to parallel these two with matching syntactic char-
acterizations using counter-axioms and rules of rejection alongside the usual axioms
and rules of proof – an aspect of his methodology of no concern to us here (and
famously eliminated from the streamlined early presentation in Smiley [62]33), ex-
cept to note a possible confusion that can arise because of it. The risk in using

32This passage is from p. 370 of [42]; I have changed the word “undistinguishable” in the opening
sentence to the more idiomatically suitable “indistinguishable”. It would perhaps have been clearer
to add after the “vice versa” the words “unless both replacements are made at once”.

33Smiley begins by showing that the axioms and non-rejection-involving rules yield proofs of
exactly the formulas valid in the matrix of Fig. 1 – the Ł-matrix for short; later he goes on to
show that the formulas invalid in the matrix are derivable as rejected formulas in the combined
proof + rejection system. Thus the rejected formulas end up being exactly those that are not
provable.
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terminology such as “the Ł-modal system” is that this may be taken to refer to
Łukasiewicz’s modal logic, understood as the phrase ‘modal logic’ usually is when
logics are thought of as sets of (provable) formulas, and it may be taken to refer to
the pair comprising the logic in that sense together with the set of explicitly rejected
formulas, which may or may not coincide with the set of formulas not provable.34

To see the need for this distinction, let us recall the discussion in Prior ([54] p. 126)
where it is remarked that not only does the Ł-modal system lack theorems of the
form 2A (of the form Lα, as Prior says – or Γα as Łukasiewicz himself would put
it), but that it would become inconsistent if any such formulas were added as further
axioms; here he is, saying that and a bit more, and using Łukasiewicz’s notation
(from [44]) of L and M in place of Γ and ∆ (or 2 and 3):

Like S1–S3 it has neither the rule to infer Lα from α nor the law MMp, but
unlike them it is not merely consistent with both without implying either but
positively inconsistent with both.

This may come as a surprise to someone whose first encounter with the Ł-modal logic
was as in the opening paragraph of the present section where we listed three axioms
(well, strictly, three axiom-schemata) deliberately including the first, redundant one
not only to comment on its redundancy, but also because of its fame as the K-axiom
often used as part of the characterization of normality among modal logics, and
in the axiomatization of the smallest such logic, K itself. In these last two roles,
one needs also closure under the rule of necessitation, conspicuously missing in the
present case – and apparently according to Prior, not a closure condition that one
could consistently impose. And this claim of inconsistency will seem surprising since
obviously the consistent normal modal logic KT! (in the nomenclature of Chellas [9]),
often called the Trivial modal logic, satisfies all these conditions (and only slightly
less obviously, is the least normal modal logic to do so).

The resolution of the puzzle presented by these conflicting considerations is that
Prior is not discussing the Ł-modal logic in the ‘logic as a set of (provable) formulas’
sense, but the Ł-modal system understood in the combined assertion+ rejection
sense. (KT! proves 3p → p, which is one of Łukasiewicz’s counter-axioms. Note
that this does not mean that all formulas of the form 3A → A are rejected –
many such formulas are provable – since Uniform Substitution moves in reverse for

34This contrast cross-cuts the distinction between logics – with or without the rejective com-
ponent – and particular axiomatizations of them (also sometimes terminologically marked by the
‘logic’/‘system’ distinction). When the rejective component is present, we have counter-axioms or
anti-axioms (the initially rejected formulas) as well as rules involving both rejected and asserted (or
provable) formulas. By ‘explicitly rejected’ in the text to which this footnote is appended is meant
those formulas which are initially rejected or whose rejection follows from the axioms and the rules
(rejection-involving or otherwise) of the proof system.
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rejected formulas, from a rejected formula to the rejection of any formula of which
it is a substitution instance.35) Let us denote the Ł-modal logic, without any of the
rejective apparatus of the full Ł-modal system, and with its language shorn of the
variable functor δ (see note 27), by Ł.

Convention 4.2. More specifically, since when asking about the potential twinhood
of pairs of connectives, we presume both connectives are primitive, the language of Ł
should have both ∆ and ∇ as its non-Boolean primitives, or else both of their duals,
Γ and L – inspired by Simons’ use of L in Simons [59] rather than Łukasiewicz’s
own use of the latter symbol (see note 6).

The above-mentioned non-normality – in view of the failure of necessitation to
preserve provability – of Ł has naturally led to its semantic treatment using the ideas
introduced in Kripke [38], at the hands of Lemmon [40], as recapitulated in Font and
Hájek [13] and also Tkaczyk [67]. A frame in this setting with universeW is equipped
with a special subset N of W as well as an accessibility relation R ⊆W ×W whose
elements are called normal worlds, and is converted into a model by the addition of
a V assigning subsets of W to the sentence letters, and a formula is valid on a frame
if it is true at every point (not just the normal worlds – this is feature introduced
by Lemmon) in every model on the frame. 2A is deemed to be true at w ∈ W in
such a model if w ∈ N and for every y ∈ W with Rxy, we have A true at y. For
certain purposes it is useful to break this up into its two components and introduce
a propositional constant stipulated to be true in any model at precisely the normal
worlds of that model, so that 2A as just defined amounts to the conjunction of that
constant with 2′A where 2′ is interpreted as in the semantics for normal modal
logics, as just quantifying universally over accessible points. Cresswell [11] wrote a
for such a constant, as did Aanderaa [1], though he took this to be a sentence letter
or propositional variable, specified as one not occurring in a formula one was using
the constant to translate in various embeddings between normal and non-normal
modal logics. That was also Cresswell’s concern, for which reason in neither case
does a supplementary notation such as 2′ above need to put in an appearance, each
logic being cast in a language with a single necessity operator. For reasons that will

35As well as ∆p → p, just mentioned in the more familiar 3 notation, Łukasiewicz has ∆p as
a counter-axiom, and from either of these by the rejective form of Uniform Substitution, we can
derived p as a rejected formula – a counter-axiom used by Łukasiewicz when presenting non-modal
propositional logic. There is also a rejective formulation of Modus Ponens: from asserted A → B
and rejected B, to rejected A. This looks a lot like Modus Tollens but rejection in the present sense
is not to be confused with rejection in the sense of denial (cf. [24]), and counter-axioms are not
doing the work that presenting the negation of the formula concerned as an axiom would do – as
the example of those counter-axioms just cited shows.
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become evident presently, however, we will write this normality constant as Ω. Thus
the equivalence mentioned above would be written as

2A↔ (Ω ∧2′A).

Let us put this to the back of our minds for the moment as we complete this summary
of the Kripke-inspired background for a range of non-normal modal logics before we
get specifically the application of current interest.

Sotirov [64] notes that for the case of Ł we can discard the accessibility relation
and use the simple ‘accessibility-free’ clauses below in the definition of truth at a
point x ∈ W in a modelM = 〈W,N, V 〉; We write 2 as Γ here so that it matches
∆, as we write the corresponding dual operator so that we can compare it with
Łukasiewicz’s ∇, and give the induced clause for this as (4.2):

M |=x ΓA ⇔ (x ∈ N and x |= A) (4.1)

M |=x ∆A ⇔ (x /∈ N or x |= A) (4.2)

Also noted in [64] is the fact that we can actually focus attention on a single frame,
with one element in N and one in W r N , which validates precisely the formulas
valid on all such frames. And these formulas are exactly the Ł-theorems, since at
the normal point Γ is interpreted as I and, at the non-normal point, as F.

Observe that we could equally have used a metalinguistic material conditional
to write the right-hand side of (4.2) as “x ∈ N ⇒ x |= A,” which is a metalinguistic
way of bringing out what Prior had in mind in writing the following ([53], p. 189),
in the course of his description of a summer logic workshop in the Oxford of 1956:

D. P. Henry (. . . ) told me just before Lemmon’s lecture that he had defined a
modal logic within the propositional calculus by defining Mp as Czp, where z
is a variable not put to any other purpose. (As the answer to “p?”, “Possibly”
means “Yes, if —”.) From this information alone it would seem that this system
would boil down to Łukasiewicz’s, for CpMp follows by substitution (q/z) in
CpCqp, and CMpCMNpNq by substitution in CCrpCCrNpCrq.36

36As Smiley [63], note 6, does in quoting this same passage, I have changed “L” to “Ł.” The
parenthetical sentence is a bit slick, adding a “Yes” to the “If —”. By itself “If A then B” has
no tendency to convey that it is possible that B unless it is presumed that it is possible that A.
This is a point associated with Chisholm ([10], p. 5f.) in connection with the supposed equivalence,
in some presentations of compatibilism, between “X could have done otherwise” and “If X had
chosen to do otherwise, then X would have done otherwise,” an equivalence undermined by cases in
which the conditional is true but X could not have chosen to do otherwise. Note, incidentally, that
the conditionals here are subjunctive, and with indicative conditionals there would be trouble with
Prior’s “Yes, if” line, on a straight material implication account (as the use of Polish notation’s “C”
suggests here): even if it is possible that A, from the additional information that it is (contingently)
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Now this “z” in Henry’s suggestion is an early appearance of the “a” of Aanderaa
and Cresswell, which was written as Ω above because that is how Jean Porte wrote it,
and it was Porte who first noted the light it shed on Ł.37 As already remarked, while
the Kripke-semantical route to this logic helps locate it relative to other (regular)
non-normal modal logics, so little of the semantic apparatus ends up being exploited
that we might as well simply start (as indeed Porte might have38) with the binary
division into the normal points, at which Γ ends up expressing the truth-function
I (and ∆, I also), and the non-normal points, at which it expresses F (and ∆, V).
Since validity requires us to take both into account we are successfully hybridizing
these truth-functions with the above treatment. And we could just as well have
begun with the truth-table on the left of Figure 2, focusing on the Γ case for Ω ∧ p,
treating Ω as though it were just another sentence letter.

Ω ∧ p Ω → p
T T T T T T
T F F T F F
F F T F T T
F F F F T F

Figure 2: Porte’s perspective on Ł-modal necessity and possibility

Concentrating on the first table in Figure 2, we see just what we expect we for
the conjunction of two formulas that can assume together all combinations of the
values T and F . Focus first on the cases in which Ω gets the value T (the top
two lines), thinking of this as a single operator Ω ∧ we apply to p, putting p
into the blank indicated by underlining. What 1-ary (bivalent) truth-function of p’s
truth-value does this operator represent? In these two lines, we see that the whole
formula has the same truth-valued as p itself, so the truth-function in question is

false that A it would follow that (material conditionally) if A then B, for any B, with, again,
nothing to make one think on this basis that it is possible that B.

37An interesting coincidence, especially as all four suggestions were independent of one another:
Aanderaa, Cresswell, Henry and Porte all select the first or last letters from the alphabets they are
drawn from in this capacity. In the course of their re-discovery of this approach, Font and H’ajek
[13] use L to play this role. For reasons of space the details are omitted here of the differences
among these authors as to whether the symbol chosen should be regarded as a propositional vari-
able (sentence letter) or as a nullary connective (sentential constant), as is any discussion of the
comparative merits of these alternatives.

38. . . but in fact did not, at least not in quite the form in which Lemmon presents the material,
crediting work in the 1940s by Marcel Boll: [49], p. 918 base; for more detail, including on the
relations between the Boll–Reinhart logics and Lemmon’s E-systems see Porte [50].
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the identity truth function, I. Similarly, looking at the bottom two lines, in which Ω
has the value F , the whole conjunction has the value F regardless of p’s truth-value,
so in these cases Ω ∧ is delivering the constant false truth-function, F. So, if we
count a formula involving Ω as valid when regardless of whether Ω is assigned T
or F , the formula will have to have the value T when Ω ∧ expresses the identity
truth function and also when Ω ∧ expresses the constant false function. But that
is exactly what validity in the Ł-matrix demands of 2 (writing in the blank just
for the sake of a parallel notation here). Likewise in the case of ∆, the first two lines
of the table on the right of Figure 2 present us with I, and in this case the bottom
two lines, with V.

To see what light this throws on the ‘twins’ issue, recall from Remark 4.1(ii) that
∇A is Ł-equivalent to ∆A → A, which means that ∇A amounts to (Ω → A) → A,
or more briefly put, Ω ∨ A, or perhaps more usefully for present purpose, ¬Ω→ A:
more usefully because we can see that in passing to Γ’s twin, L, what we have done
is moved from Porte’s constant to its negation, keeping us well inside the garden of
modal operators (in the broadest sense) “hidden in classical logic”, to quote from
the title of Sotirov [64], where Vakarelov is credited alongside – indeed ahead of39

– Porte for his horticultural endeavours. Figure 3 gives a fuller picture of the 1-ary
operators O derived by applying the 16 binary truth-functions to a Porte-style Ω and
another formula (represented by the sentence letter p). Each binary truth-functional
connective # – for which we use infix notation here – yields an ordered pair 〈f, g〉,
of 1-ary truth-functions satisfying the condition that for any Boolean (bivalent)
valuation v, when v(Ω) = T , v(Ω # p) is f(v(p)) and when v(Ω) = F , v(Ω # p) is
g(v(p)). Thus each such pair renders O as a product connective whose interpretation
is f · g. To save space we use overlining for negation, and write (connectives for)
the constant true and constant false binary truth-functions as t© and f©, and the
projections to the first and second coordinate as ¬ ,  , respectively.

Thus in particular, the top entry on the left with Op as Ω∧p gives us Łukasiewi-

39This claim of priority is not clearly correct: see note 40 of Humberstone [34]. The relevant
Vakarelov references are can be found in Sotirov [64]; see also p. 171f. in Font and Hájek [13].
Sotirov also discusses Vakarelov’s use of the 〈V,N〉 entry in Figure 3 (p → Ω) for handling a
subclassical negation operator, so the for the record we include also Porte [51] in our bibliography.
The fact that Ł can be treated in this way was already known to Prior in 1956, as we see from
the earlier quotation from [53] concerning D. P. Henry. (See also p. 172 of Font and Hájek [13],
for discussion of a similar idea in work by H. B. Curry.) The possibility of such a presentation is
implicit in Aanderaa [1], disguised in his faithful embedding of Ł in the ‘trivial modal logic’ KT!,
so it is not actually mentioned that we can throw away the ‘modal’ part of this description. Just to
make the relevant observation even harder to extract, Aanderaa introduces KT! as TM at the start
of [1], but when the embedding result is stated in its final line it is referred to as LT. (At least, that
is the best sense I can make of Aanderaa’s discussion.)
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Ω com-
pound

Hybrid-
ized pair

Ω com-
pound

Hybrid-
ized pair

Ω ∧ p 〈I,F〉 Ω ∨ p 〈V, I〉
Ω ∧ p 〈N,F〉 Ω ∨ p 〈V,N〉
Ω ∧ p 〈F, I〉 Ω ∨ p 〈I,V〉
Ω ∧ p 〈F,N〉 Ω ∨ p 〈N,V〉

Ω↔ p 〈I,N〉 Ω ¬ p 〈V,F〉
Ω↔ p 〈N, I〉 Ω ¬ p 〈F,V〉
Ω t© p 〈V,V〉 Ω  p 〈I, I〉
Ω f© p 〈F,F〉 Ω  p 〈N,N〉

Figure 3: Porte–Vakarelov Constant-induced Operators

cz’s initially introduced 2 connective Γ with interpretation I · F, while the third
entry down on the right represents his first stab at 3 with ∆ as I · V. The twin
possibility, ∇, appears at the top of that column, with interpretation V · I, as men-
tioned in the vicinity of Figure 1, though now we see how the interaction with Ω
gives rise to these variations. The dual operator, L, is the third entry in the first
column (interpretation: F · I).

Attending to ¬Ω no less than to Ω throws light on some of the ∆/∇ interactions
commented on in the earlier quotation in this section from Łukasiewicz [42], in par-
ticular the remark that unlike the invalid ∆∆p and ∇∇p, ∆∇p and ∇∆p were valid.
(Invalid and valid in the Ł-matrix of Figure 1, that is; of course what Lukasiewicz
actually said was “rejected” and “asserted”.) ∆∇p becomes, when expressed in our
current terms, Ω→ (¬Ω→ p) (or Ω→ (Ω ∨ p)), while its ∆/∇ ./-switch just inter-
changes Ω with its negation and so again is a truth-functional tautology (treating Ω
as though it were formula of CL). For our current agenda, however, more significant
is the fact that since Ω was a way of coding ‘normality’ in the 〈W,N, V 〉 models in
play for (4.1) and(4.2) above, its negation serves as a marker for non-normality, so
we can now treat L and ∇ in such models by corresponding clauses in the definition
of truth:

|=x LA ⇔ (x /∈ N and x |= A) (4.3)

|=x ∇A ⇔ (x ∈ N or x |= A) (4.4)
Remark 4.3. Porte [49] closes with the following observation, credited to D. La-
combe, in which Porte’s use of “N” (for necessity) has been replaced by “Γ”:

It is possible to generalize the Ω-system by introducing (in the propositional
calculus) any number of constants similar to Ω: Ω1, . . . ,Ωn. We will eventu-
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ally get a characteristic matrix with 2n+1 elements, and we can define n 1-ary
connectives similar to Γ.

What is missing here is the observation that already without adding any further Ω-
style constants, we already have a second endogenous 1-ary connective ‘similar to’
Γ – namely the dual of ∇ (rather than of ∆) – and that, correspondingly, passing to
the general case of Ω1, . . . ,Ωn gives 2n such connectives rather than n, since in each
case we can use either Ωi or its negation to conjoin with a formula A to produce an
Ł-style necessitation of A. J

Recall also that since the right-hand sides of these clauses do not direct us away
from the point x of evaluation, we can (following Sotirov [64]) conduct the discussion
entirely in terms of the characteristic two-element frame mentioned above – two
elements so that the case of normal and nonnormal points are both covered. So we
have a simple proof in the style of Example 3.3(ii) for the expected strengthening
of Remark 4.1, inserting “identical”:

Proposition 4.4. Γ and L are identical twins in Ł. Alternatively, if ∆ and ∇ are
taken as the non-Boolean primitives: these two connectives are identical twins in Ł.

Proof. For a model M = 〈W,N, V 〉 let M./ be the model M = 〈W,W r N,V 〉.
Then induction on the complexity of arbitrary A (mixed or otherwise) shows that
for w in W , M |=w A if and only if M./ |=w A./, from which we conclude that A
and A./ are equi-provable in Ł.

This is not meant to be a new result, except insofar as it clarifies the issue of
identical as opposed to ‘merely fraternal’ twinhood in its formulation, and places it
in the context of other such results. It is not even a new proof, but a model-theoretic
formulation of Łukasiewicz’s matrix-theoretic proof in [42] (p. 372), which consists
in observing that the function mapping 2 to 3 and 3 to 2 is a matrix isomorphism
of the Ł-matrix of Figure 1: that is, an isomorphism of the algebras which preserves
and reflects designation. This is just the matrix corresponding to the two-element
characteristic frame in the familiar way, with 2 corresponding to (the one-element
subset)N and 3 toWrN . Remark 3.4(iii) applies again here: one could equally well
argue the case by an induction on the length of proofs in a suitable axiomatization,
whether that for which Smiley [62] showed the Ł-matrix to be characteristic, or
any of the alternatives suggested at the start of the present section. In view of
Convention 4.2, one should bear in mind that for the latter 2-based axiomatizations,
in which we envisage 2 re-written as Γ, the comment at the end of Remark 4.1(ii)
about the “corresponding equivalence for the dual operators,” which needs to be
counted as one of the axioms, the definition-replacing equivalence in question is the
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perhaps surprising-looking: LA↔ (A∧¬ΓA), whose (Γ ./L)-switch therefore needs
checking in the basis part of that induction, and which incidentally reveals rather
starkly the fact that the twin necessity Γ and L notions are mutually exclusive – as
indeed is evident from the Porte–Vakarelov representations of ΓA and LA as having
respectively Ω and ¬Ω as conjuncts. This last consideration shows that the situation
is more extreme than that: not only are ΓA and LA incompatible according to Ł for
all A – that is, the negation of their conjunction is Ł-provable – but so are ΓA and
LB for any A,B. This is really just a re-phrasing of something already familiar as
exhibiting the Halldén incompleteness of Ł: ∆A∨∇B is always provable – so choose
A,B to be variable-disjoint (e.g., to be p, q).40

In Section 1, it was noted out that Łukasiewicz did not – the present author’s
loose summaries of the status of ∆ and∇ as cited there – ever refer to these operators
in [42] as being like identical twins. This provoked the present current enquiry as
to whether one might, picking up on aspects of Łukasiewicz’s discussion, distinguish
a logical analogue of twins in general from a logical analogue of identical twins
in particular. We have indeed found such a distinction to be sustainable, and of
Łukasiewicz’s ∆ and ∇ to stand in the narrower relation of identical twinhood in
his favoured logic – something we have now seen Łukasiewicz to be aware of, even
though that exact terminology is not employed in [42]. It is, accordingly, gratifying
to see that the passage, quoted at greater length above, in [42] (p. 37), reading:

They are like twins who cannot be distinguished when met separately, but are
instantly recognized as two when seen together

is subtly altered for its subsequent appearance on p. 173 of [44]:

They are like identical twins who cannot be distinguished when met separately,
but are instantly recognised as two when seen together.

Whether the alteration was intended to be anything more than stylistic is hard to
say, but, as we have seen, the upshot can retrospectively be construed as providing a
more precise description of the situation. On the other hand, in retrospect, we have
also found (in effect) that Łukasiewicz’s reaction – mentioned at the end of Remark
3.4(iii) – to the presence of twin connectives which yield non-equivalent formulas as

40Tkaczyk [67], p. 226, mentions this as though it were a new discovery; the observation can
be found in Anderson [2]. The explanation Tkaczyk then proceeds to give – basically, that any
hybrid of distinct truth-functional connectives engenders a Halldén-unreasonable disjunction with
the disjuncts corresponding to the different truth-functions hybridized – was given in Humberstone
[22], p. 33f. However, Tkaczyk does go on after that to formulate the observation in terms of the
Kripke–Lemmon semantic treatment of Ł.
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representing a “logical paradox” is certainly an overreaction,41 the phenomenon in
question being thoroughly commonplace – as, for instance, tense logics (like Kt, in
Example 3.3(ii)) with the mirror image property.42

5 Appendix: Postscript to Section 3 on the Two Mini-
mal Negations

Reminder: the wording “the two” in the title here is a reference to the ¬ and ¬′
introduced in Example 3.5 and last seen in Example 3.7(i); it is not intended to
suggest that these are the only two negation-like connectives available in `ML.43 We
recall from the discussion after Remarks 3.4 the two consequence relations `ML¬
and `ML¬′ and their common (conservative) extension `ML¬,¬′ . Our task here is to
show that ¬ and ¬′ are twins according to this third consequence relation, which
amounts to showing that the first two consequence relations coincide, modulo the
notational shift between ¬ and ¬′. We begin by noting that in the present expres-
sively impoverished setting, there is little opportunity for premisses to combine to
yield conclusions:

Lemma 5.1. (i) If Θ `ML¬ C then there is Θ0 ⊆ Θ with |Θ0| ≤ 2 with Θ0 `ML¬ C,
and (ii) if Θ `ML¬′ C then there is Θ0 ⊆ Θ with |Θ0| ≤ 2 with Θ0 `ML¬′ C, and
further, Θ0 can be chosen in such a way that there are at most two sentence letters
occurring in the sequent Θ0 � C.

Proof. Note that every formula of the language of `ML¬ or `ML¬′ is the result of
41From just before the previous quotation on p. 370 of [42]: “We encounter here a logical paradox:

although ∆ and ∇ can be defined by the same matrix, they are not identical.” Here the talk of
identity is an allusion to the matrix isomorphism mentioned in our previous paragraph.

42At the semantic level, the situation with Kt is that, adapting the mirror image operation
on models to one (similarly notated) on their underlying frames, it suffices for the mirror image
property that the class of frames determining our tense logic is closed under the operation taking
us from F = 〈W,R, S〉 to F./ = F = 〈W,S,R〉 (from 〈W,R〉 to 〈W,R−1〉, on the more familiar
way of presenting such frames). Since a matrix corresponds to a single frame, the closer tense-
logical analogue would be to have a single point-generated frame F which is isomorphic to F./. In
the terminology of note 78 of Humberstone [33], we want a frame which is symmetrical but not
symmetric – the latter because we want G and H to be identical twins without being equivalent.
The logic determined by the two-element frame in which one element bears R (with converse S) to
the other, or the reflexive closure of this frame, would do nicely, especially as the induced matrix
has four values, as with the Ł-matrix.

43Numerous 1-ary connectives of interest are ML-definable which are equivalent to ¬ in IL though
not in ML; one such, definable in ML as A ↔ ⊥ is given some attention in [30], Observation
8.33.10, which shows that neither this nor the standard ML negation is a subconnective of the other
(according to `ML).
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applying ¬ or ¬′, respectively, to some sentence letter pi, and we refer to this sentence
letter as the core of the formula in question. We begin with the case of `ML¬, in
which ¬(·) is interpreted as · → ⊥, with ⊥ as in ML, and with the reminder that any
formulas A0, A1 differing at most in the replacement of a subformula ¬¬¬D with
¬D are equivalent (A0 a`ML¬ A1). With this in mind, it is evident that Θ `ML¬ C
if and only if one of the following three situations obtains:

(1) “Shared core across `, equivalence case” – C is in the same equivalence class as
some formula in Θ, where formulas are equivalent if they are identical or if they
have the form ¬mpi and ¬npi where m,n differ by an even number and neither
m nor n is 0;

(2) “Shared core across `, one-way consequence case” – some formula in Θ properly
implies C, which happens when the formula in Θ is a sentence letter and C
prefixes an even number of negations to that sentence letter;

(3) “Shared core on the left case” – there are formulas A,B ∈ Θ with A = ¬mpi,
B = ¬npi, m,n differ by an odd number, and C is of the form ¬D.

Thus when Θ `ML¬ C if we are in cases (1) or (2), there is a one-element subset
Θ0 of Θ for which Θ0 `ML¬ C, while in case (3) there is a two-element subset Θ0
for which this holds. (The situation with intuitionistic logic here would be identical
except that in this last case there is no condition on the form of C.) Further in
the sequent Θ0 � C chosen on the basis of the formulas mentioned under (1)–(3),
i.e., with no additional weakening in cases (1)–(2), we have only one sentence letter
occurring (as the ‘shared core’) or else only two (one as the common core of the two
formulas on the left, and one as the core of the formula on the right).
Turning to the case of ¬′, for which we recall that ¬(·) is interpreted as ((⊥ →
·) → ·) → ⊥, we find that exactly the same reasoning applies: we have the law of
Triple Negation (for which it may help to note that, using both negations at once
and taking ` as `ML¬,¬′ , we have

¬′¬′ A a` ¬¬′A a` ¬′¬A
for all A) and also precisely the same cases (1)–(3), with ¬ replaced by ¬′ as the
alternative possibilities when Θ `ML¬′ C.

Next we adopt the perspective taken in Example 3.7(i), where we recall that ⊥ in
ML behaves as though it were nothing but a further sentence letter. This simplifies
the calculation of all consequence relationships among the formulas arising from
Lemma 5.1. First, since whenever Θ ` C, where ` is either `ML¬ or `ML¬′ , A,B ∈ Θ
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with A,B ` C with A = B (the 1-element Θ0 case), in terms of the proof of Lemma
5.1 or else A 6= B and neither A ` C or B ` C (the irredundant 2-element Θ0 case).
Since only two sentence letters are involved, we can assume without loss of generality
that they are p, q, so that the formulas A,B,C are all the result of negating these
sentence letters zero or more times. Reducing all triple to single negations – and
here we write ¬, though the same applies if we are negating with ¬′ instead – A,B,C
can be taken to be drawn from the following list: p,¬p,¬¬p, q,¬q,¬¬q. Now we
write out the ¬ in terms of → and the first unused sentence letter (for ⊥), which is
r, since the ML logical relations among our six formulas are given by the IL logical
relations among these translations. (We address the different translations we get for
¬′ in place of ¬ below.) This gives us the following six formulas, to contend with:

p, p→ r, (p→ r)→ r, q, q → r, (q → r)→ r. (†)

Let us now recall C. A. Meredith’s faithful embedding of the implicational frag-
ment of classical logic – let us call it `CL→ – into the corresponding fragment of
intuitionistic logic `IL→, with “→” serving as the material implication connective,
by contrast with the notational choices made for Proposition 1.1 and the discussion
leading up to it, where “⊃” served in that capacity, the latter being used in this
Postscript as a derived connective of the language of `IL→:

A ⊃ B = ((B → A)→ A)→ B.

Note that this permits us to abbreviate the ⊥,→ definition of ¬′ to

¬′A = A ⊃ ⊥.

With the aid of ⊃, so defined, Meredith’s translation for taking us from classical to
intuitionistic implication, call it τMer, is defined inductively as follows:

• τMer(pi) = pi (i = 1, 2 . . .);

• τMer(A→ B) = τMer(A) ⊃ τMer(B).

Lifting τMer from formulas to sequents in the obvious way, then, one has for all (pure
implicational) sequents σ:

`CL→ σ if and only if `IL→ τMer(σ). (††)

(See [30], pp. 1081–1088 for further information and references.) We are now in
a position to wrap things up; although our two negations are not identical twins
according to the present consequence relation (see Example 3.7(i)), we do have:
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Proposition 5.2. ¬ and ¬′ are twins according to `ML¬,¬′.

Proof. It suffices to show that for any sequents σ, σ′ constructed using only ¬,¬′ re-
spectively, `ML¬ σ[¬] if and only if `ML¬′ σ[¬′]. By Lemma 5.2 and the subsequent
discussion it suffices to show that we have this equivalence all for σ[¬] constructed
from the formulas p,¬p,¬¬p, q,¬q,¬¬q and σ[¬′] constructed correspondingly from
p,¬′p,¬′¬′p, q,¬′q,¬′¬′q, for which it in turn suffices to show that for all sequents
σ[→], constructed from the six formulas listed as (†), and the sequents σ[⊃] con-
structed corresponding from the formulas replacing → by ⊃ in those six formulas,
we have

`IL σ[→] if and only if `IL σ[⊃].

(We do not need to add → to the “IL” subscript here because the sequents in play
are all pure implicational sequents.) Since σ[⊃] is τMer(σ[→]), this is equivalent by
(††) to the claim that for the sequents in question

`IL σ[→] if and only if `CL σ[→],

where we could have equally well written “`CL σ[⊃]” on the right, since→ and ⊃ are
classically equivalent, and indeed we might just as well omit the “[→] given that the
formulation given uses the same connective on both sides. Since `IL⊆`CL we have
he “only if” direction automatically, so for the “if” direction we need only check that
the additional strength of `CL, or more particularly `CL→, does not show up when
attention is restricted to the consequence relationships among the formulas (†). But
this is easily done. Setting aside the `-statements among these six formulas whose
correctness is ensured simply because of the definition of a consequence relation or
because of weakening an earlier such statement (adding more formulas to the left,
that is), we have for `=`CL just the following cases:

p ` (p→ r)→ r q ` (q → r)→ r

p, p→ r ` q → r q, q → r ` p→ r

p, p→ r ` (q → r)→ r q, q → r ` (p→ r)→ r

(p→ r)→ r, p→ r ` q → r (q → r)→ r, q → r ` p→ r

(p→ r)→ r, p→ r ` (q → r)→ r (q → r)→ r, q → r ` (p→ r)→ r

(In fact there is still some redundancy here, in that the fourth entry in the left
(resp. right) column follows for arbitrary ` the first and second entries in the left
(resp. right) column.) And all of these relationships hold for `=`IL no less than for
`=`CL.
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The above proof may seem unnecessarily indirect in getting rid of negation
(whether ¬ or ¬′) and then of ⊥ so as to end up in the pure implicational fragment
of IL: why not work in the {→,⊥} fragment of IL, for instance? The answer is that
Meredith’s embedding does not work with ⊥ (or ¬) present: the subscripts on the
turnstiles in (††) if thus enlarged turn something true into something false. Tokarz
and Wójcicki [68] show that there is no definitional translation at all that embeds
`CL→,⊥ faithfully in `IL→,⊥: it is not just that for the particular case of τMer that we
have a failure of the envisaged variation on (††). And indeed this remains the case
even if we drop the word “faithfully” – which amounts to dropping the “if” direction
of (††) – as is shown in pp. 467–469 of Humberstone [26], where the discussion is
couched in terms of → and ¬ rather than → and ⊥ (an inconsequential difference
for present purposes). The “definitional”, however, cannot be dropped: the various
‘negative translations’ Troelstra and van Dalen ([69], §2.3) all fail to translate the
(non-logical) atomic formulas by themselves or fail to be compositional, or both.
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1 Introduction
Not to be confused with the generic term “computational logic”, computability logic
(CoL) is the proper name of a philosophical platform and mathematical framework
for developing ever more expressive computationally meaningful extensions of tra-
ditional logic. The main pursuit of this ongoing long-term project is to offer a
convenient language for specifying computational tasks and relations between them
in a systematic way, and to provide a deductive apparatus for systematically telling
what can be computed and how. This line of research was officially introduced in [14]
and developed in a series [3]-[4],[14]-[43],[45],[47]-[48],[51]-[55] of subsequent papers.

Under the approach of CoL, formulas represent computational problems, logical
operators stand for operations on such entities, and “truth” is seen as computability.
Computational problems, in turn, are understood in their most general, interactive
sense, and are mathematically construed as games played by a machine against
its environment, with computability meaning existence of a machine (algorithmic
strategy) that always wins.

CoL understands propositions or predicates of traditional logic as games with
no moves, automatically won by the machine when true and lost when false. This
naturally makes the classical concept of truth a special case of computability —
computability by doing nothing. Further, all operators of classical logic are con-
servatively generalized from moveless games to all games, which eventually makes
classical logic a conservative fragment of the otherwise much more expressive CoL.
Based on the overall philosophy and intuitions associated with intuitionistic and
linear logics, the latter can also be seen as special fragments of CoL, even though,
unlike classical logic, “not quite” conservative ones.

A long list of related or unrelated game semantics can be found in the literature
proposed by various authors. Out of those, Blass’s [6] game semantics, which in
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turn is a refinement of Lorenzen’s [46] dialogue semantics, is the closest precursor
of the semantics of CoL, alongside with Hintikka’s [13] game-theoretic semantics.
More often than not, the motivation for studying games in logic has been to achieve
a better understanding of some already existing systems, such as intuitionistic ([5,
9, 46]), classical ([13]) or linear ([1, 6]) logics. In contrast, CoL’s motto is that
logic should serve games rather than the other way around. For logic is meant to
be the most general and universal intellectual tool for navigating real life; and it is
games that offer the most adequate mathematical models for the very essence of all
“navigational” activities of agents: their interactions with the surrounding world.
An agent and its environment translate into game-theoretic terms as two players;
their actions as moves; situations arising in the course of interaction as positions;
and successes or failures as wins or losses.

This chapter is a semitutorial-style introduction to the basics of CoL, containing
many definitions, illustrations, claims and even exercises but no technical proofs
whatsoever. It is primarily focused on the language of CoL and its semantics, paying
considerably less attention to the associated proof theory or applications. A more
detailed and continuously updated survey of the subject is maintained online at [44].

2 Games

Computability is a property of computational problems and, before attempting to
talk about the former, we need to agree on the precise meaning of the latter. Ac-
cording to the mainstream understanding going back to Church [8] and Turing [50],
a computational problem is a function—more precisely, the task of systematically
generating the values of that function at different arguments. Such a view, how-
ever, as more and more researchers have been acknowledging [11], is too narrow.
Most tasks performed by computers are interactive, far from being as simple as
functional transformations from inputs to outputs. Think of the work of a network
server for instance, where the task is to maintain a certain infinite process, with in-
coming (“input”) and outgoing (“output”) signals interleaved in some complex and
probably unregulated fashion, depending on not only immediately preceding signals
but also various events taken place in the past. In an attempt to advocate for the
conventional view of computational problems, one might suggest to understand an
interactive computational task as the task of repeatedly computing the value of a
function whose argument is not just the latest input but the whole preceding interac-
tion. This is hardly a good solution though, which becomes especially evident with
computational complexity considerations in mind. If the task performed by your
personal computer was like that, then you would have noticed its performance wors-
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ening after every use due to the need to read the ever longer history of interaction
with you.

Instead, CoL postulates that a computational problem is a game between two
agents: a machine and its environment, symbolically named > and ⊥, respectively.
> is a mechanical device only capable of following algorithmic strategies, while there
are no similar assumptions about ⊥ whose behavior can be arbitrary. Computational
tasks in the traditional sense now become special cases of games with only two moves,
where the first move (“input”) is by ⊥ and the second move (“output”) by >.

The following notational and terminological conventions are adopted. A move
is any finite string over the standard keyboard alphabet. A labeled move is a
move prefixed with > or ⊥, with such a prefix (label) indicating which player is the
author of the move. We will not always be very strict about differentiating between
moves and labeled moves, sometimes saying “move” where, strictly speaking, “la-
beled move” is meant. A run is a (finite or infinite) sequence of labeled moves, and a
position is a finite run. We usually use lowercase Greek letters as metavariables for
moves, and uppercase Greek letters for runs. We will be writing runs and positions
as 〈α, β, γ〉, 〈Θ,Γ〉, 〈Θ, α,Γ〉, etc. The meanings of such expressions should be clear.
For instance, 〈Θ, α,Γ〉 is the run consisting of the (labeled) moves of the position Θ,
followed by the move α, and then by the moves of the run Γ.

A set S of runs is said to be prefix-closed iff, whenever a run is in S, so are all
of its initial segments. The limit-closure of a set S of runs is the result of adding
to S every infinite run Γ such that all finite initial segments of Γ are in S.

Definition 2.1. A game is a pair G = (LpG,WnG), where:
1. LpG is a nonempty, prefix-closed set of positions. We write LrG for the

limit-closure of LpG.
2. WnG is a mapping from LrG to {>,⊥}.

Intuitively, in the context of a given game G, LpG is the set of legal positions
and LrG is the set of legal runs. Note that, since LpG is required to be nonempty
and prefix-closed, the empty position 〈〉, being an initial segment of all runs, is
always legal. With ℘ here and elsewhere standing for either player and ℘ for its
adversary ℘ 6= ℘ ∈ {>,⊥}, a legal move by ℘ in a position Θ is a move α such
that 〈Θ, ℘α〉 ∈ LpG. We say that a run Γ is ℘-legal iff either Γ is legal, or else,
where Θ is the shortest illegal initial segment of Γ, the last move of Θ is ℘-labeled.
Intuitively, such a Γ is a run where ℘ has not made any illegal moves unless its
adversary ℘ has done so first. In all cases, we shall say “illegal” for “not legal”
and “lost” for “not won”. For each legal run, WnG tells us which of the two players
℘ ∈ {>,⊥} has won the run. The following definition extends this meaning of the
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word “won” from legal runs to all runs by stipulating that an illegal run is always
lost by the player that has made the first illegal move:

Definition 2.2. For a game G, run Γ and player ℘, we say that Γ is a ℘-won (or
won by ℘) run of G iff Γ is

1. either a legal run of G with WnG〈Γ〉 = ℘, or
2. a ℘-illegal run of G.

Games—at least when they are finite—can be visualized as trees in the style of
Figure 1. Each complete or incomplete branch of such a tree represents a legal run,
namely, the sequence of the labels of the edges of the branch. The nodes represent
positions, where the label > or ⊥ of a node indicates which player is the winner if
the play ends in the corresponding position.
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Figure 1: A game

A distinguishing feature of CoL games is the absence of rules governing the order
in which (legal) moves can or should be made. In some situations, such as in the
root position of the game of Figure 1, both players may have legal moves, and which
if any player moves first depends on which one wants or can act faster. Imagine a
simultaneous play of chess on two boards, where you play white on both boards. At
the beginning, only you have legal moves. But once you make an opening move—
say, on board #1—the situation changes. Now both you and your environment have
legal moves: the environment may respond on board #1, while you can make another
opening move on board #2. It would be unnatural to impose rules determining the
next player to move in this case, especially if your environment consists of two
independent and non-communicating adversaries. The relaxed nature of our games
makes them more direct and adequate tools for modeling real-life interactions like
this and beyond than stricter games would be.
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But how are such loose games played and, most importantly, what does an
algorithmic winning strategy mean? Below is an example of such a strategy. It is
left to the reader to convince himself or herself that following it guarantees > a win
in the game of Figure 1:

Regardless of what the adversary is doing or has done, go ahead and
make move α; make β as your second move if and when you see that the
adversary has made move γ, no matter whether this happened before or
after your first move.

Formally, >’s algorithmic strategies can be understood as what CoL, for histor-
ical reasons, calls HPMs (“hard-play machines”). An HPM is a Turing machine
with the capability of making moves. This is just like the capability of generating
an output, with the only difference that, while an ordinary Turing machine halts
after generating an output, an HPM generally does not halt after making a move,
so it can continue its work and make more moves later. Also, an HPM is equipped
with an additional, read-only tape called the run tape, initially empty. Every time
the HPM makes a move α, the string >α is automatically appended to the content
of this tape. At any time, any ⊥-labeled move ⊥β may also be nondeterministically
appended to the content of the run tape. This event is interpreted as that the envi-
ronment has just made move β. This way, at any step of the process, the run tape
spells the current position of the play. It is hardly necessary to define HPMs in full
detail here, for the Church-Turing thesis extends from ordinary Turing machines
to HPMs, according to which HPMs adequately correspond to what we intuitively
perceive as algorithmic strategies. So, rather than attempting to formally describe
an HPM playing a given game, we can simply describe its work in relaxed, informal
terms in the style of the earlier-displayed strategy for the game of Figure 1. There
is also no need to anyhow define ⊥’s strategies: all possible behaviors by ⊥ are
accounted for by the above-mentioned different nondeterministic updates of the run
tape, including ⊥’s relative speed because there are no restrictions on when or with
what frequency the updates can take place.

Depending on what nondeterministic events (⊥’s moves) occur in the course of
the work of an HPM M and when, different runs will be eventually (in the limit)
spelled onM’s run tape. We call any such run a run generated by M.

Definition 2.3. We say that an HPMM computes a game G iff every run gen-
erated by M is >-won run of G. Such an M is said to be a solution of (or an
algorithmic winning strategy for) G.

By the depth of a game we mean the (possibly infinite) length of its longest
legal run. Computational problems in the traditional sense, i.e. functions, are
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games of depth 2 of the kind seen in Figure 2. In such a game, the upper level edges
represent possible inputs provided by the environment. This explains why their
labels are ⊥-prefixed. The lower level edges represent possible outputs generated
by the machine, so their labels are >-prefixed. The root is >-labeled because it
corresponds to the situation where nothing happened, namely, no input was provided
by the environment. The machine has nothing to answer for in this case, so it wins.
The middle level nodes are ⊥-labeled because they correspond to situations where
there was an input but the machine failed to generate an output, so the machine
loses. Each group of the bottom level nodes has exactly one >-labeled node, because
a function has exactly one (correct) value at each argument.
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Figure 2: The successor function as a game

But why limit ourselves only to trees of the above sort? First of all, we may
want to allow branches to be longer than 2, or even infinite to be able to model
long or infinite tasks performed by computers. And why not allow any other sorts
of arrangements of > and ⊥ in nodes or on edges? For instance, consider the task
of computing the function 5/x. It would be natural to make the node to which the
input 0 takes us not ⊥-labeled, but >-labeled. For the function is not defined at
0, and the machine cannot be held responsible for failing to generate an output on
such an input.

It makes sense to generalize computational problems not only in the direction
of increasing their depths, but also decreasing. Games of depth 0, i.e., games that
have no nonempty legal runs, are said to be elementary. There are exactly two
elementary games, for which we use the same symbols >,⊥ as for the two players.
Namely, > is the elementary game G with WnG〈〉 = >, and ⊥ is the elementary
game G with WnG〈〉 = ⊥. Intuitively, > and ⊥ are moveless games, with (the only
legal run 〈〉 of) > automatically won by the machine and ⊥ won by the environment.
While the game ⊥ has no solution, the “do nothing” strategy is a solution of >.
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Extensionally, true propositions of classical logic such as “snow is white” are
understood in CoL as the game >, and false propositions such as “2 + 2 = 5” as
the game ⊥. Propositions are thus special—elementary—cases of our games. This
allows us to say that games are generalized propositions.

3 Gameframes

This section is devoted to the basic concepts necessary for lifting CoL from the
propositional level to the first-order level. What we call gameframes are generalized
predicates in the same sense as games are generalized propositions.

We fix an infinite set Variables = {var1, var2, var3, · · · } of variables. As usual,
lowercase letters near the end of the Latin alphabet will be used as metavariables for
variables. We further fix the set Constants = {0, 1, 2, 3, · · · } of decimal numerals,
and call its elements constants.

A universe (of discourse) is a pair U = (Dm,Dn), where Dm, called the do-
main of U , is a nonempty set, andDn, called the denotator of U , is a total function
of the type Constants → Dm. Elements of Dm will be referred to as individuals.
The intuitive meaning of d = Dn(c) is that the individual d is the denotat of the
constant c and thus c is a name of d.

A nice natural example of a universe is the arithmetical universe, whose
domain is the set of natural numbers and whose denotator is the bijective function
that sends each constant to the number it represents in standard decimal notation.
Generally, however, the denotator is required to be neither injective nor surjective,
meaning that some individuals may have multiple names, and some no names at
all. For instance, in the informal universe of astronomy, most individuals—celestial
bodies—have no names while some have several names (Morning Star = Evening
Star = Venus). A natural example of a mathematical universe with an intrinsically
non-surjective denotator would be one whose domain is the set of real numbers.
Even if the set of constants was not fixed, the denotator here could not be surjective
for the simple reason that, while there are uncountably many real numbers, there
can only be countably many names. This is so because names, by their very nature
and purpose, have to be finite objects.

Many properties of common interest, such as computability or decidability, are
sensitive with respect to how objects (individuals) are named, as they deal with the
names of those objects rather than the objects themselves. For instance, strictly
speaking, computing a function f(x) means the ability to tell, after seeing a (the)
name of an arbitrary individual a, a (the) name of the individual b with b = f(a).
Similarly, an algorithm deciding a predicate p(x) on a set S, strictly speaking, takes
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as inputs not elements of S—which may be abstract objects such as numbers or
graphs—but rather names of those elements, such as decimal codes. It is not hard
to come up with a nonstandard naming of the natural numbers via decimal nu-
merals where the predicate “x is even” is undecidable. On the other hand, for
any undecidable arithmetical predicate p(x), one can come up with a naming such
that p(x) becomes decidable—for instance, one that assigns even-length names to
all a satisfying p(a) and assigns odd-length names to all a with ¬p(a). Classical
logic exclusively deals with individuals of a universe without a need to also consider
names for them, as it is not concerned with decidability or computability. CoL, on
the other hand, with its computational semantics, inherently calls for being more
careful about differentiating between individuals and their names, and hence for ex-
plicitly considering universes in the form (Dm,Dn) rather than just Dm as classical
logic does.

For a set V r of variables and a domain Dm, by a (V r,Dm)-valuation we mean
a total function e of the type V r → Dm. When V r is finite, such a valuation e can
be simply written as an n-tuple (a1, · · · , an) of individuals, meaning that e(x1) =
a1, · · · , e(xn) = an, where x1, · · · , xn are the variables of V r listed lexicographically.

Definition 3.1. Let n be a natural number. An n-ary gameframe is a quadruple
(Dm,Dn, V r,G), where (Dm,Dn) is a universe, V r is a set of n distinct variables,
and G is a mapping that sends every (V r,Dm)-valuation e to a game G(e).

Given a gameframe G = (Dm,Dn, V r,G), we refer to Dm as the domain of G, to
Dn as the denotator of G, to (Dm,Dn) as the universe of G, to the elements of V r
as the variables on which G depends (or simply the variables of G), and to G as the
extension of G. For a gameframe (Dm,Dn, V r,G) we customarily use the same
name G as for its extension. This never causes ambiguity, as it is usually clear from
the context whetherG refers to the gameframe itself or just its extension. In informal
contexts where a universe is either fixed or irrelevant, we think of games as special—
nullary—cases of gameframes. Namely, a nullary gameframe (Dm,Dn, ∅, G) will be
understood as the game G(), usually simply written as G.

In classical logic, under an intensional (variable-sensitive) understanding, the
definition of the concept of an n-ary predicate would look exactly like our definition
of an n-ary gameframe after omitting the redundant denotator component, with the
only difference that there the extension function would return propositions rather
than games. And, just like propositions are nothing but 0-ary predicates, games are
nothing but 0-ary gameframes. Thus, gameframes generalize games in the same way
as predicates generalize propositions.

In formal contexts, we choose a similar intensional approach to functions. The
definition of a function given below is literally the same as our definition of a game-
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frame, with the only difference that the extension component now maps valuations
to individuals rather than games.

Definition 3.2. Let n be a natural number. An n-ary function is a tuple (Dm,Dn,
V r, f), where (Dm,Dn) is a universe, V r is a set of n distinct variables, and f is a
mapping that sends every (V r,Dm)-valuation to an element f(e) of Dm.

Just as in the case of gameframes, we customarily use the same name f for a
function (Dm,Dn, V r, f) as for its last component. We refer to the elements of V r
as the variables on which the function f depends, refer to Dm as the domain of f ,
etc.

Given a gameframe (Dm,Dn, V r,G), a set X of variables with V r ⊆ X and
an (X,Dm)-valuation e, we write G(e) to mean the game G(e′), where e′ is the
restriction of e to V r (i.e., the (V r,Dm)-valuation that agrees with e on all variables
from V r). Such a game G(e) is said to be an instance of G, and the operation
that generates G(e) from G and e is said to be the instantiation operation. For
readability, we usually write LpGe , LrGe and WnGe instead of LpG(e), LrG(e) and
WnG(e). Similarly, given a function (Dm,Dn, V r, f), a set X of variables with
V r ⊆ X and an (X,Dm)-valuation e, we write f(e) to denote the individual f(e′)
to which f maps e′, where e′ is the restriction of e to V r.

We say that a gameframe is elementary iff so are all of its instances. Thus,
gameframes generalize elementary gameframes in the same sense as games generalize
elementary games. In turn, elementary gameframes generalize elementary games in
the same sense as predicates generalize propositions in classical logic. So, just as
we identify elementary games with propositions, we will identify elementary game-
frames with predicates. Specifically, in the context of a given universe (Dm,Dn),
we understand a predicate p on Dm as the elementary gameframe (Dm,Dn, V r,G),
where V r is the set of variables on which p depends, and G is such that, for any
(V r,Dm)-valuation e, WnGe 〈〉 = > iff p is true at e. And vice versa: an elemen-
tary gameframe G will be understood as the predicate p that depends on the same
variables as G does and is true at a given valuation e iff WnGe 〈〉 = >.

Convention 3.3. Assume U = (Dm,Dn) is a universe, a ∈ Dm, c ∈ Constants,
and x ∈ Variables. We shall write aU to mean the nullary (constant) function
(Dm,Dn, ∅, f) such that f() = a. We shall write cU to mean the nullary function
(Dm,Dn, ∅, f) such that f() = Dn(c). And we shall write xU to mean the unary
function (Dm,Dn, {x}, f) such that, for any a ∈ Dm, f(a) = a.

Convention 3.4. Assume K = (Dm,Dn, V r,K) is a function (resp. gameframe).
Following the standard readability-improving practice established in the literature
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for functions and predicates, we may fix a tuple (x1, · · · , xn) of pairwise distinct
variables for K when first mentioning it, and write K as K(x1, · · · , xn). When
doing so, we do not necessarily mean that {x1, · · · , xn} = V r. Representing K
as K(x1, · · · , xn) sets a context in which, for whatever functions f1 = (Dm,Dn,
V r1, f1), · · · , fn = (Dm,Dn, V rn, fn), we can write K(f1, · · · , fn) to mean the func-
tion (resp. gameframe) (Dm,Dn, V r′,K ′) such that:
• V r′ = (V r − {x1, · · · , xn}) ∪ V r1 ∪ · · · ∪ V rn.
• For any (V r′, Dm)-valuation e′, K ′(e′) = K(e), where e is the (V r,Dm)-
valuation such that e(x1) = f1(e′), · · · , e(xn) = fn(e′) and e agrees with e′ on
all other variables from V r.

Further, we allow for any of the above fi to be (written as) just an individual a,
just a constant c or just a variable x. In such cases, fi should be correspondingly
understood as the function aU, cU or xU, where U = (Dm,Dn). So, for instance,
K(0, x) is our lazy way to write K(0U, xU).

4 The operator zoo of computability logic
Logical operators in CoL stand for operations on gameframes. With games seen as
nullary gameframes, such operations are automatically also operations on games.
There is an open-ended pool of operations of potential interest, and which of those
to study may depend on particular needs and taste. Below is an incomplete list of
the operations that have been officially introduced so far.

• Negation: ¬.
• Conjunctions: ∧ (parallel); u (choice); 4 (sequential); ∧ (toggling).
• Disjunctions: ∨ (parallel); t (choice); 5 (sequential); ∨ (toggling).
• Implications: → (parallel); A (choice); . (sequential); >− (toggling).
• Universal quantifiers: ∀ (blind); ∧ (parallel); u (choice); 4 (sequential); ∧

(toggling).
• Existential quantifiers: ∃ (blind); ∨ (parallel); t (choice); 5 (sequential); ∨

(toggling).
• Recurrences: ◦| (branching); ∧| (parallel); −∧| (sequential); ∧| (toggling).
• Corecurrences: ◦| (branching); ∨| (parallel); −∨| (sequential); ∨| (toggling).
• Rimplications: ◦– (branching); >– (parallel); .– (sequential); >– (toggling).
• Repudiations: ◦¬ (branching); >¬ (parallel); .¬ (sequential); >-¬ (toggling).
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Among the symbolic names for the above operations we see all operators of clas-
sical logic, and our choice of the classical notation for them is no accident: classical
first-order logic is nothing but the result of discarding all other operators in CoL
and forbidding all but elementary gameframes. Indeed, after analyzing the relevant
definitions, each of the classically-shaped operators, when restricted to elementary
gameframes, can be easily seen to be virtually the same as the corresponding opera-
tor of classical logic. For instance, if A and B are elementary games or gameframes,
then so is A∧B, and the latter is exactly the classical conjunction of A and B under-
stood as propositions or predicates. In the nonelementary case, however, the logical
behavior of ¬, ∧, ∨, → becomes more reminiscent of—yet not the same as—that of
the corresponding operators of multiplicative linear logic.

This section contains formal definitions of all of the above-listed operations. We
agree that, throughout those definitions, Φ ranges over positions, Γ over runs and
e over (V r,Dm)-valuations, where Dm is the domain of the gameframe G that is
being defined and V r is the set of variables on which that gameframe depends. All
such metavariables should be considered universally quantified in the corresponding
clause(s) of the definition unless otherwise implied by the context. Each definition
has two clauses, one defining LpG and the other WnG. The second clause, telling
us who wins a given run of G(e), always implicitly assumes that such a run is in
LrGe .

This section also contains many examples and informal explanations. For clarity
let us agree that in all such cases, unless otherwise implied by the context, we have
the arithmetical universe (cf. Section 3) in mind. This is so even if we talk about
seemingly non-number individuals such as people, Turing machines, etc. The latter
should simply be understood as the natural numbers that encode the correspond-
ing objects in some fixed encoding, and the (non-numeral) names of such objects
understood as the corresponding decimal numerals. Fixing the universe allows us
to understand games as nullary gameframes as explained in Section 3. The informal
discussions found in this section sometimes use the word “valid”, which, intuitively,
should be understood as “always computable”. The precise meaning(s) of this con-
cept will only be defined later in Section 6. When describing machine’s winning
strategies, we usually assume implicitly that the environment never makes illegal
moves, for, if it does, the machine automatically wins regardless of what happens
afterwards.

From our formal definitions of propositional (non-quantifier) operations it can be
seen immediately that instantiation commutes with all such operations: (¬A)(e) =
¬(A(e)), (A∧B)(e) = A(e)∧B(e), etc. So, in order to understand the meanings of
the propositional operations, it would be sufficient to just understand how they mod-
ify nullary gameframes. For this reason, in the corresponding informal explanations
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we always implicitly assume that the gameframes that we talk about are nullary,
and call them simply “games”. For similar reasons, when informally explaining the
meaning of QxA where Q is one of our quantifiers, it will be implicitly assumed that
A is a unary gameframe that only depends on x and (hence) QxA is nullary.

When omitting parentheses in compound expressions, we assume that all unary
operators (negation, repudiations, recurrences, corecurrences and quantifiers) take
precedence over all binary operators (conjunctions, disjunctions, implications, rim-
plications), among which implications and rimplications have the lowest precedence.
So, for instance, A→ ¬B ∨ C should be understood as A→ (

(¬B) ∨ C)
.

4.1 Prefixation and negation

Unlike the operations listed in the preceding outline, the operation of prefixation is
not meant here to act as a logical operator in the formal language of CoL. Yet, it is
very useful in characterizing and analyzing games, and we want to start our tour of
the zoo with it.

Definition 4.1. Assume A = (Dm,Dn, V r,A) is a gameframe and Ψ is a legal
position of every instance of A (otherwise the operation is undefined). The Ψ-
prefixation of A, denoted 〈Ψ〉A, is defined as the gameframe G = (Dm,Dn, V r,
G) such that:

• LpGe = {Φ | 〈Ψ,Φ〉 ∈ LpAe };

• WnGe 〈Γ〉 = WnAe 〈Ψ,Γ〉.

Intuitively, 〈Ψ〉A is a game playing which means playing A starting (continuing)
from position Ψ. That is, 〈Ψ〉A is the game to which A evolves (is brought down)
after the moves of Ψ have been made. Visualized as a tree, 〈Ψ〉A is nothing but the
subtree of A rooted at the node corresponding to position Ψ.

To define the negation operation ¬, read as “not”, let us agree that, for a run
Γ, Γ means the result of changing the label > to ⊥ and vice versa in each move of
Γ.

Definition 4.2. Assume A = (Dm,Dn, V r,A) is a gameframe. ¬A is defined as
the gameframe G = (Dm,Dn, V r,G) such that:

• LpGe = {Φ | Φ ∈ LpAe };

• WnGe 〈Γ〉 = > iff WnAe 〈Γ〉 = ⊥.
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Intuitively, ¬A is A with the roles of the two players interchanged: >’s (legal)
moves and wins become ⊥’s moves and wins, and vice versa. Let Chess, here and
later, be the game of chess from the point of view of White, with draws ruled out
(say, by declaring them to be wins for Black). Then ¬Chess is the same game but
as seen by Black.

Obviously the double negation principle ¬¬A = A holds: interchanging the
players’ roles twice restores the original roles of the players. It is also easy to see
that we always have ¬〈Ψ〉A = 〈Ψ〉¬A. So, for instance, if α is >’s legal move in the
empty position of A that brings A down to B, then the same α is ⊥’s legal move in
the empty position of ¬A, and it brings ¬A down to ¬B.

4.2 Choice operations

This group of operations consists of u (choice conjunction, read as “chand”), t
(choice disjunction, read as “chor”), A (choice implication, read as “chimpli-
cation”), u (choice universal quantifier, read as “chall”) and t (choice exis-
tential quantifier, read as “chexists”).

AuB is a game where, in the initial (empty) position, only the environment has
legal moves. Such a move should be either “0” or “1”. If the environment moves 0,
the game continues as A, meaning that 〈⊥0〉(A u B) = A; if it moves 1, then the
game continues as B, meaning that〈⊥1〉(A u B) = B; and if it fails to make either
move (“choice”), then it loses. A t B is similar, with the difference that here it is
the machine who has initial moves and who loses if no such move is made. Formally,
we have:

Definition 4.3. Assume A0 = (Dm,Dn, V r0, A0) and A1 = (Dm,Dn, V r1, A1) are
gameframes.

(a) A0 uA1 is defined as the gameframe G = (Dm,Dn, V r0 ∪ V r1, G) such that:

• LpGe = {〈〉} ∪ {〈⊥i,Φ〉 | i ∈ {0, 1}, Φ ∈ LpAi
e }.

• WnGe 〈〉 = >; WnGe 〈⊥i,Γ〉 = WnAi
e 〈Γ〉.

(b) A0 tA1 is defined as the gameframe G = (Dm,Dn, V r0 ∪ V r1, G) such that:

• LpGe = {〈〉} ∪ {〈>i,Φ〉 | i ∈ {0, 1}, Φ ∈ LpAi
e }.

• WnGe 〈〉 = ⊥; WnGe 〈>i,Γ〉 = WnAi
e 〈Γ〉.

(c) A0 A A1 =def ¬A0 tA1.
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The symbol A is seldom used in this chapter: instead of A A B, we often prefer
to write the intuitively more transparent ¬A tB.

Note the perfect symmetry between the first two clauses of the above definition:
clause (b) is nothing but clause (a) with > and ⊥ interchanged everywhere, and vice
versa. Such symmetry is called duality:

Terminology 4.4. We say that a concept B is dual to a concept A iff the definition
of B can be obtained from the definition of A by interchanging> and⊥. For instance,
t (or A tB) is dual to u (or A uB), and vice versa.

It is not hard to see that, due to duality, the De Morgan laws go through for
u,t: we always have ¬(AuB) = ¬At¬B and ¬(AtB) = ¬Au¬B. Together with
the earlier observed double negation principle, this means that AtB = ¬(¬Au¬B)
and A u B = ¬(¬A t ¬B). Similarly for the quantifier counterparts u and t of u
and t. And similarly for all other sorts of conjunctions, disjunctions, recurrences,
corecurrences and quantifiers defined in this section.
uxA(x) can be understood as the infinite conjunction A(0)uA(1)uA(2)u · · · ,

andtxA(x) as the infinite disjunction A(0)tA(1)tA(2)t· · · . Specifically, uxA(x)
is a game where, in the initial position, only the environment has legal moves, and
such a move should be one of the constants. If the environment moves c, then the
game continues as A(c), and if the environment fails to make an initial move/choice,
then it loses. txA(x) is similar, with the difference that here it is the machine
who has initial moves and who loses if no such move is made. So, we always have
〈⊥c〉uxA(x) = A(c) and 〈>c〉txA(x) = A(c). Below is a formal definition of the
choice quantifiers:

Definition 4.5. Assume A(x) = (Dm,Dn, V r,A) is a gameframe.

(a) uxA(x) is defined as the gameframe G = (Dm,Dn, V r − {x}, G) such that:

• LpGe = {〈〉} ∪ {〈⊥c,Φ〉 | c ∈ Constants, Φ ∈ LpA(c)
e }.

• WnGe 〈〉 = >; WnGe 〈⊥c,Γ〉 = WnA(c)
e 〈Γ〉.

(b) txA(x) is dual to uxA(x).

With choice operators we can easily express the most common sorts of compu-
tational problems, such as the problem of computing a function f or the problem
of deciding a predicate p. The former can be written as uxty(

y = f(x)
)
, and

the latter as ux(
p(x) A p(x)

)
. That is, f is computable in the standard sense iff

uxty(
y = f(x)

)
is computable in our sense, and p is decidable in the standard

sense iff ux(
p(x) A p(x)

)
is computable in our sense. So, the game of Figure 2
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is nothing but uxty(y = x + 1). Every run of this game can be seen as a short
dialogue between the machine and its environment. The first move—say, 2—is by
⊥, and intuitively it amounts to asking “what is the successor of 2?”. It brings the
game down to ty(y = 2 + 1). In order win, > has to make the move 3, amounting
to saying that 3 is the successor of 2. Any other move, or no move at all, would be
a loss for >.

Classical logic has been repeatedly criticized for its operators not being con-
structive. Consider, for example, ∀x∃y(

y = f(x)
)
. It is always true in the classical

sense (as long as f is a total function). Yet its truth has no practical import, for
“∃y” merely signifies existence of y, without implying that such a y can actually be
found. And, indeed, if f is an incomputable function, there is no method for finding
y. On the other hand, the choice operations of CoL are constructive. Computability
(“truth”) of uxty(

y = f(x)
)
means more than just existence of y; it means the

possibility to actually find (compute, construct) the corresponding y for every x.
Similarly, let Halts(x, y) be the predicate “Turing machine x halts on input

y”. Consider the statement ∀x∀y(¬Halts(x, y) ∨ Halts(x, y)
)
. It is true in classi-

cal logic, yet not in a constructive sense. Its truth means that, for all x and y, either
¬Halts(x, y) or Halts(x, y) is true, but it does not imply existence of an actual way to
tell which of these two is true after all. And such a way does not really exist, as the
halting problem is undecidable. This means that uxuy(¬Halts(x, y) t Halts(x, y)

)

is not computable. Generally, the law of excluded middle ¬A OR A, validated by
classical logic and causing the indignation of the constructivistically-minded, is not
valid in computability logic with OR understood as choice disjunction. The follow-
ing is an example of a game of the form ¬A tA with no algorithmic solution (why,
by the way?):

¬uxuy(¬Halts(x, y) tHalts(x, y)
) tuxuy(¬Halts(x, y) tHalts(x, y)

)
.

4.3 Parallel operations

This group of operations consists of ∧ (parallel conjunction, read as “pand”), ∨
(parallel disjunction, read as “por”), → (parallel implication, read as “pimpli-
cation”), ∧ (parallel universal quantifier, read as “pall”), ∨ (parallel existen-
tial quantifier, read as “pexists”), ∧| (parallel recurrence, read as “precurrence”),
∨| (parallel corecurrence, read as “coprecurrence”), >– (parallel rimplication,
read as “primplication”) and >¬ (parallel repudiation, read as “prepudiation”).

A ∧B and A ∨B are games playing which means playing the two games simul-
taneously. In order to win in A ∧ B (resp. A ∨ B), > needs to win in both (resp.
at least one) of the components A,B. For instance, ¬Chess ∨ Chess is a two-board
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game, where > plays black on the left board and white on the right board, and
where it needs to win in at least one of the two parallel sessions of chess. A win can
be easily achieved here by just mimicking in Chess the moves that the adversary
is making in ¬Chess, and vice versa. This copycat strategy guarantees that the
positions on the two boards always remain symmetric (“synchronized”), and thus
> eventually loses on one board but wins on the other. This is very different from
¬Chess t Chess. In the latter > needs to choose between the two components and
then win the chosen one-board game, which makes ¬Chess t Chess essentially as
hard to win as either ¬Chess or Chess. A game of the form A∨B is generally easier
(at least, not harder) to win than AtB, the latter is easier to win than AuB, and
the latter in turn is easier to win than A ∧B.

Technically, a move α in the left (resp. right) ∧-conjunct or ∨-disjunct is made
by prefixing α with “0.” (resp. “1.”). For instance, in the initial position of (A t
B) ∨ (C uD), the move “1.0” is legal for ⊥, meaning choosing the left u-conjunct
in the right ∨-disjunct of the game. If such a move is made, the game continues as
(AtB)∨C. The player >, too, has initial legal moves in (AtB)∨ (C uD), which
are “0.0” and “0.1”.

The rest of this chapter will rely on the following important notational conven-
tion:

Notation 4.6. For a run Γ and a string α, Γα means the result of removing from
Γ all moves except those of the form αβ, and then deleting the prefix “α” in the
remaining moves. For instance, 〈>0.1,⊥3.1,⊥0.0〉0. = 〈>1,⊥0〉.

Definition 4.7. Assume A0 = (Dm,Dn, V r0, A0) and A1 = (Dm,Dn, V r1, A1) are
gameframes.

(a) A0 ∧A1 is defined as the gameframe G = (Dm,Dn, V r0 ∪ V r1, G) such that:

• Φ ∈ LpGe iff every move of Φ has the prefix “0.” or “1.” and, for both
i ∈ {0, 1}, Φi. ∈ LpAi

e .
• WnGe 〈Γ〉 = > iff, for both i ∈ {0, 1}, WnAi

e 〈Γi.〉 = >.

(b) A0 ∨A1 is dual to A0 ∧A1.

(c) A0 → A1 =def ¬A0 ∨A1.

Example 4.8. Γ = 〈⊥1.5,>0.5,⊥0.25,>1.25〉 is a legal run of the game A =
txuy(y 6= x2)∨uxty(y = x2). It induces the following what we call evolution se-
quence, showing how things evolve as Γ runs, i.e., how the moves of Γ affect/modify
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the game that is being played:

txuy(y 6= x2) ∨uxty(y = x2) i.e. A
txuy(y 6= x2) ∨ty(y = 52) i.e. 〈⊥1.5〉A
uy(y 6= 52) ∨ty(y = 52) i.e. 〈⊥1.5,>0.5〉A
25 6= 52 ∨ty(y = 52) i.e. 〈⊥1.5,>0.5,⊥0.25〉A
25 6= 52 ∨ 25 = 52 i.e. 〈⊥1.5,>0.5,⊥0.25,>1.25〉A

The run hits the true proposition 25 6= 52 ∨ 25 = 52, and hence is won by the
machine.

As one may guess, ∧xA(x) is nothing but A(0)∧A(1)∧A(2)∧ · · · , and ∨xA(x)
is nothing but A(0) ∨A(1) ∨A(2) ∨ · · · . Formally these two quantifiers are defined
as follows:

Definition 4.9. Assume A(x) = (Dm,Dn, V r,A) is a gameframe.

(a) ∧xA(x) is defined as the gameframe G = (Dm,Dn, V r − {x}, G) such that:

• Φ ∈ LpGe iff every move of Φ has the prefix “c.” for some c ∈ Constants
and, for all such c, Φc. ∈ LpA(c)

e .
• WnGe 〈Γ〉 = > iff, for all c ∈ Constants, WnA(c)

e 〈Γc.〉 = >.

(b) ∨xA(x) is dual to ∧xA(x).

The next group of parallel operators are ∧| and its dual ∨| . Intuitively, playing
∧|A means simultaneously playing in infinitely many “copies” of A, and > is the
winner iff it wins A in all copies. ∨|A is similar, with the only difference that here
winning in just one copy is sufficient. So, ∧|A is nothing but the infinite parallel
conjunction A ∧ A ∧ A ∧ · · · , and ∨|A is A ∨ A ∧ A ∨ · · · . Equivalently, ∧|A and ∨|A
can be respectively understood as ∧xA and ∨xA, where x is a dummy variable on
which A does not depend. The following definition formalizes these intuitions:

Definition 4.10. Assume A = (Dm,Dn, V r,A) is a gameframe.

(a) ∧|A is defined as the gameframe G = (Dm,Dn, V r,G) such that:

• Φ ∈ LpGe iff every move of Φ has the prefix “c.” for some c ∈ Constants
and, for all such c, Φc. ∈ LpAe .

• WnGe 〈Γ〉 = > iff, for all c ∈ Constants, WnAe 〈Γc.〉 = >.

(b) ∨|A is dual to ∧|A.
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The prefix “r” in the qualification “rimplication” stands for “recurrence”. Gener-
ally, a rimplication of one or another sort is a weak (recurrence-based) implication,
and a repudiation is a weak negation. The parallel versions >– and >¬ of such
operations are defined as follows.

Definition 4.11. (a) A >–B =def ∧|A→ B. (b) >¬A =def
∨|¬A.

Just like negation and unlike choice operations, parallel operations preserve the
elementary property of games. When restricted to elementary games, the meanings
of ∧, ∨ and → coincide with those of classical conjunction, disjunction and impli-
cation. Further, as long as all individuals of the universe have naming constants,
the meanings of ∧ and ∨ coincide with those of classical universal quantifier and
existential quantifier. The same conservation of classical meaning (but without any
conditions on the universe) is going to be the case with the blind quantifiers ∀,∃
defined later; so, at the elementary level, when all individuals of the universe have
naming constants, ∧ ∨ and are indistinguishable from and ∀ and ∃, respectively.
As for the parallel recurrence and corecurrence, for an elementary A we simply have
A = ∧|A = ∨|A.

While all classical tautologies automatically remain valid when parallel operators
are applied to elementary games, in the general case the class of valid (in the strict
sense of either sort of validity defined in Section 6) principles shrinks. For example,
P → P ∧P , i.e. ¬P ∨ (P ∧P ), is not valid. Back to our chess example, one can see
that the earlier copycat strategy successful for ¬Chess∨Chess would be inapplicable
to ¬Chess∨ (Chess∧Chess). The best that > can do in this three-board game is to
synchronize ¬Chess with one of the two conjuncts of Chess ∧ Chess. It is possible
that then ¬Chess and the unmatched Chess are both lost, in which case the whole
game will be lost as well.

The principle P → P ∧ P is valid in classical logic because the latter sees no
difference between P and P ∧ P . On the other hand, in virtue of its semantics,
CoL is resource-conscious, and in it P is by no means the same as P ∧ P or P ∨ P .
Unlike P → P ∧P , P >–P ∧P is a valid principle. Here, in the antecedent, we have
infinitely many “copies” of P . Pick any two copies and, via copycat, synchronize
them with the two conjuncts of the consequent. A win is guaranteed. The principle
P → P u P can also be seen to be valid.

This talk about resource-consciousness immediately reminds us of linear logic
[10]. The latter, for instance, also rejects P → P∧P while accepting both P → PuP
and ∧|P → P ∧ P with ∧,∨,→ understood as multiplicatives, u,t as additives
and ∧| , ∨| as exponentials. Together with similarities, there are also considerable
discrepancies though. The class of principles provable in linear logic or even its
extension known as affine logic forms a proper subclass of the principles validated
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by the semantics of CoL. An example of a purely multiplicative formula separating
the two classes is Blass’s [6] principle

(P ∧ P ) ∨ (P ∧ P )→ (P ∨ P ) ∧ (P ∨ P ).

Other examples include ∨| ∧|P → ∧| ∨|P . On the other hand, it is believed (but never
has been officially proven) that the class of CoL’s valid principles in the signature
{¬,∧,∨,u,t,u,t} is indistinguishable from the class of principles validated by
Blass’s [6] game semantics. This, however, stops being the case if ∧| —or any later-
defined sort of recurrence for that matter—is added to the signature as a purported
counterpart of Blass’s repetition operator. For instance, ∧| (P t Q) → ∧|P t ∧|Q is
valid in Blass’s sense but it is not a valid principle of CoL; on the other hand, CoL
validates P ∧ ∧| (P → Q ∧ P )→ ∧|P (cf. [33]) which is not valid in Blass’s sense.

4.4 Reduction
The operator → deserves a separate subsection. The intuition associated with A→
B is that this is the problem of reducing B to A: solving A → B means solving
B while having A as a computational resource. Specifically, > may observe how A
is being solved by its adversary, and utilize this information in its own solving B.
Resources are symmetric to problems: what is a problem to solve for one player
is a resource that the other player can use, and vice versa. Since A is negated in
A→ B = ¬A∨B and negation means switching the players’ roles, A (as opposed to
¬A) comes as a resource rather than problem to > in A→ B. Our copycat strategy
for ¬Chess ∨Chess was an example of reducing Chess to Chess. The same strategy
was underlying Example 4.8, where uxty(y = x2) was reduced to itself.

Let us look at a more meaningful example: reducing the acceptance problem
to the halting problem. The former, as a decision problem, will be written as
uxuy(¬Accepts(x, y) tAccepts(x, y)

)
, where Accepts(x, y) is the predicate “Turing

machine x accepts input y”. Similarly, as we already agreed, the halting problem is
written as uxuy(¬Halts(x, y) t Halts(x, y)

)
. Neither problem has an algorithmic

solution, yet the following implication does:

uxuy(¬Halts(x, y) tHalts(x, y)
)→ uxuy(¬Accepts(x, y) tAccepts(x, y)

)
. (1)

Here is >’s winning strategy for (1). Wait till ⊥ makes the moves 1.m and 1.n
for some m and n. Making these moves essentially means asking the question “Does
machine m accept input n?”. If such moves are never made, you (the machine) win.
Otherwise, the moves bring the game down to

uxuy(¬Halts(x, y) tHalts(x, y)
)→ ¬Accepts(m,n) tAccepts(m,n).
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Make the moves 0.m and 0.n, thus asking the counterquestion “Does machine m
halt on input n?”. Your moves further bring the game down to

¬Halts(m,n) tHalts(m,n)→ ¬Accepts(m,n) tAccepts(m,n).

⊥ will have to answer this counterquestion, or else it loses (why?). If it answers by
0.0 (“No, m does not halt on n”), you make the move 1.0 (say “m does not accept
n”). The game will be brought down to ¬Halts(m,n) → ¬Accepts(m,n). You win,
because this is a true proposition: if m does not halt on n, then it does not accept n,
either. Otherwise, if ⊥ answers by 0.1 (“Yes, m halts on n”), start simulating m on
n until m halts. If you see that m accepted n, make the move 1.1 (say “m accepts
n”); otherwise make the move 1.0 (say “m does not accept n”). Of course, it is a
possibility that this simulation goes on forever. But then ⊥ has lied when saying
“m halts on n”; in other words, the antecedent is false, and you win regardless of
what happens in the consequent. Note that what the machine did when following
this strategy was indeed reducing the acceptance problem to the halting problem:
it solved the former using an external (environment-provided) solution of the latter.

There are many natural concepts of reduction, and a strong case can be made
that pimplicative reduction, i.e. the reduction captured by →, is the most basic
one. For this reason we agree that, if we simply say “reduction”, it always means
pimplicative reduction. A great variety of other reasonable concepts of reduction
is expressible in terms of →. Among those is Turing reduction. Remember that
a predicate q(x) is said to be Turing reducible to a predicate p(x) if q(x) can be
decided by a Turing machine equipped with an oracle for p(x). For a positive integer
n, n-bounded Turing reducibility is defined the same way, with the only difference
that here the oracle is allowed to be used only n times. It turns out that >– is a
conservative generalization of Turing reduction. Namely, when p(x) and q(x) are
elementary games (i.e. predicates), q(x) is Turing reducible to p(x) if and only if the
problem ux(¬p(x) t p(x)

)
>–ux(¬q(x) t q(x)

)
has an algorithmic solution. If here

we change >– back to →, we get the same result for 1-bounded Turing reducibility.
More generally, as one might guess, n-bounded Turing reduction will be captured
by

ux1
(¬p(x1) t p(x1)

) ∧ · · · ∧uxn(¬p(xn) t p(xn)
)→ ux(¬q(x) t q(x)

)
.

If, instead, we write

ux1 · · ·uxn
((¬p(x1) t p(x1)

) ∧ · · · ∧(¬p(xn) t p(xn)
))
→ ux(¬q(x) t q(x)

)
,

then we get what is called n-bounded weak truth-table reduction. The latter differs
from n-bounded Turing reduction in that here all n oracle queries should be made
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at once, before seeing responses to any of those queries. What is called mapping (or
many-one) reducibility of q(x) to p(x) is nothing but computability ofuxty(

q(x)↔
p(y)

)
, where A↔ B abbreviates (A→ B)∧ (B → A). One could go on and on with

this list.
And yet many other natural concepts of reduction expressible in the language

of CoL may have no established names in the literature. For example, from the
previous discussion it can be seen that a certain reducibility-style relation holds
between the predicates Accepts(x, y) and Halts(x, y) in an even stronger sense than
computability of (1). In fact, not only (1) has an algorithmic solution, but also the
generally harder-to-solve problem

uxuy(¬Halts(x, y) tHalts(x, y)→ ¬Accepts(x, y) tAccepts(x, y)
)
.

Among the merits of CoL is that it offers a formalism and deductive machinery
for systematically expressing and studying computation-theoretic relations such as
reducibility, decidability, enumerability, etc., and all kinds of variations of such con-
cepts.

Back to reducibility, while the standard approaches only allow us to talk about
(a whatever sort of) reducibility as a relation between problems, in our approach
reduction becomes an operation on problems, with reducibility as a relation simply
meaning computability of the corresponding combination of games, such as A→ B
for pimplicative reducibility. Similarly for other relations or properties such as the
property of decidability. The latter becomes the operation of deciding if we define
the problem of deciding a predicate p(x) as the game ux(¬p(x)tp(x)

)
. So, now we

can meaningfully ask questions such as “Is the reduction of the problem of deciding
q(x) to the problem of deciding p(x) always reducible to the mapping reduction of
q(x) to p(x)?”. This question would be equivalent to whether the following formula
is valid in CoL:

uxty(
q(x)↔ p(y)

)→
(
ux(¬p(x) t p(x)

)→ ux(¬q(x) t q(x)
))
. (2)

The answer turns out to be “Yes”, meaning that mapping reduction is at least as
strong as pimplicative reduction. Here is a strategy that wins this game no matter
what particular predicates p(x) and q(x) are. At first, wait till, for some m, the
environment brings the game down to

uxty(
q(x)↔ p(y)

)→
(
ux(¬p(x) t p(x)

)→ ¬q(m) t q(m)
)
.

Respond by bringing the game down to

ty(
q(m)↔ p(y)

)→
(
ux(¬p(x) t p(x)

)→ ¬q(m) t q(m)
)
.
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Wait again till, for some n, the environment further brings the above game down to
(
q(m)↔ p(n)

)→
(
ux(¬p(x) t p(x)

)→ ¬q(m) t q(m)
)
.

Bring this game down to
(
q(m) ↔ p(n)

) → (¬p(n) t p(n) → ¬q(m) t q(m)
)
, after

which wait till the environment further brings the game down to either
(
q(m) ↔

p(n)
)→ (¬p(n)→ ¬q(m) t q(m)

)
or

(
q(m)↔ p(n)

)→ (
p(n)→ ¬q(m) t q(m)

)
. In

the former case, bring the game down to
(
q(m) ↔ p(n)

) → (¬p(n) → ¬q(m)
)
, and

you have won; in the latter case, bring the game down to
(
q(m)↔ p(n)

)→ (
p(n)→

q(m)
)
, and you have won, again.

One could also ask: “Is the mapping reduction of q(x) to p(x) always reducible
to the reduction of the problem of deciding q(x) to the problem of deciding p(x)?”.
This question would be equivalent to whether the following formula is valid:

(
ux(¬p(x) t p(x)

)→ ux(¬q(x) t q(x)
))
→ uxty(

q(x)↔ p(y)
)
. (3)

The answer here turns out to be “No”, meaning that mapping reduction is properly
stronger than pimplicative reduction. This negative answer can be obtained by
showing that the above formula is not provable in one of the sound and complete
deductive systems for CoL whose language allows us to write (3), such as system
CL12 found later in Section 7.3. Similarly, had our ad hoc attempt to come up with
a strategy for (2) failed, its validity could have been easily established by finding a
proof of it in such a system.

To summarize, CoL offers not only a convenient language for specifying compu-
tational problems and relations or operations on them, but also a systematic tool
for asking and answering questions in the above style and beyond.

4.5 Blind operations
This group only includes ∀ (blind universal quantifier, read as “blall”) and ∃
(blind existential quantifier, read as “blexists”), with no propositional counter-
parts. Our definition of ∀xA(x) and ∃xA(x) below assumes that the gameframe
A(x) is “unistructural” in x. Intuitively, unistructurality in x means that the Lp
component of the gameframe does not depend on the (value of the) variable x. For-
mally, we say that a gameframe A(x) = (Dm,Dn, V r,A) is unistructural in x iff,
for any (V r,Dm)-valuation e and any a, b ∈ Dm, we have LpA(a)

e = LpA(b)
e . All

nullary or elementary gameframes are unistructural in (whatever variable) x. And
all operations of CoL are known to preserve this property.

Definition 4.12. Assume A(x) = (Dm,Dn, V r,A) is a gameframe unistructural in
x.
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(a) ∀xA(x) is defined as the gameframe G = (Dm,Dn, V r − {x}, G) such that:

• LpGe = LpA(x)
e .

• WnGe 〈Γ〉 = > iff, for all a ∈ Dm, WnA(a)
e 〈Γ〉 = >.

(b) ∃xA(x) is dual to ∀xA(x).

Intuitively, playing ∀xA(x) or ∃xA(x) means playing A(x) “blindly”, without
knowing the value of x. In ∀xA(x), the machine wins iff the play it generates is
successful for every possible value of x from the domain, while in ∃xA(x) being
successful for just one value is sufficient. When applied to elementary games, the
blind quantifiers act exactly like the corresponding quantifiers of classical logic.

Unlike ∧xA(x) which is a game on infinitely many boards, both ∀xA(x) and
uxA(x) are one-board games. Yet, they are very different from each other. To
see this difference, compare the problems ux(

Even(x)tOdd(x)
)
and ∀x(

Even(x)t
Odd(x)

)
. The former is an easily winnable game of depth 2: the environment selects

a number, and the machine tells whether that number is even or odd. The latter,
on the other hand, is a game which is impossible to win. This is a game of depth 1,
where the value of x is not specified by either player, and only the machine moves—
tells whether (the unknown) x is even or odd. Whatever the machine says, it loses,
because there is always a value for x that makes the answer wrong.

This should not suggest that nontrivial ∀-games can never be won. For instance,
the problem

∀x
(
Even(x) tOdd(x)→ uy(

Even(x+ y) tOdd(x+ y)
))

has an easy solution. The idea of a winning strategy here is that, for any given y,
in order to tell the parity of x + y, it is not really necessary to know the value of
x. Rather, just knowing the parity of x is sufficient. And such knowledge can be
obtained from the antecedent. In other words, for any known y and unknown x,
the problem of telling whether x + y is even or odd is reducible to the problem of
telling whether x is even or odd. Specifically, if both x and y are even or both are
odd, then x + y is even; otherwise x + y is odd. Below is the evolution sequence
(cf. Exercise 4.8) induced by the run 〈⊥1.7,⊥0.0,>1.1〉 where the machine has used
such a strategy.

∀x
(
Even(x) tOdd(x)→ uy(

Even(x+ y) tOdd(x+ y)
))

∀x(
Even(x) tOdd(x)→ Even(x+ 7) tOdd(x+ 7)

)

∀x(
Even(x)→ Even(x+ 7) tOdd(x+ 7)

)

∀x(
Even(x)→ Odd(x+ 7)

)
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The machine won because the play hit the true ∀x(
Even(x)→ Odd(x+ 7)

)
. Notice

how ∀x persisted throughout the sequence. Generally, the (∀,∃)-structure of a
game will remain unchanged in such sequences. The same is the case with parallel
operations such as → in the present case.

To help us appreciate the contrast between the logical behaviors of ∀, u and
∧, the following list shows some valid (`̀ ) and invalid ( 6̀`) principles of CoL, where
validity (“always computability”) can be understood in either sense defined later in
Section 6.

1. `̀ ∀xP (x)→ uxP (x)
2. 6̀` uxP (x)→ ∀xP (x)
3. 6̀` ∀xP (x)→ ∧xP (x)
4. 6̀` ∧xP (x)→ ∀xP (x)
5. `̀ ∧xP (x)→ uxP (x)
6. 6̀` uxP (x)→ ∧xP (x)
7. `̀ QxP (x) ∧QxR(x)→ Qx

(
P (x) ∧R(x)

)
for all three Q ∈ {∀,u,∧}

8. `̀ ∀x(
P (x) ∧R(x)

)→ ∀xP (x) ∧ ∀xR(x)
9. 6̀` ux(

P (x) ∧R(x)
)→ uxP (x) ∧uxR(x)

10. `̀ ∧x(
P (x) ∧R(x)

)→ ∧xP (x) ∧∧xR(x)

4.6 Branching operations

This group consists of ◦| (branching recurrence, read as “brecurrence”), ◦| (branch-
ing corecurrence, read as “cobrecurrence”), ◦– (branching rimplication, read
as “brimplication”) and ◦¬ (branching repudiation, read as “brepudiation”). Let
us talk about ◦| first, as all other branching operations are definable in terms of it.

What is common for the members of the family of game operations called re-
currences is that, when applied to a game A, they turn it into a game playing
which means repeatedly playing A. In terms of resources, recurrence operations
generate multiple “copies” of A, thus making A a reusable/recyclable resource. In
classical logic, recurrence-style operations would be meaningless, because classical
logic is resource-blind and thus sees no difference between one and multiple copies
of A. In the resource-conscious CoL, however, recurrence operations are not only
meaningful, but also necessary to achieve a satisfactory level of expressiveness and
realize its potential and ambitions. Hardly any computer program is used only once;
rather, it is run over and over again. Loops within such programs also assume mul-
tiple repetitions of the same subroutine. In general, the tasks performed in real life
by computers, robots or humans are typically recurring ones or involve recurring
subtasks.
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There is more than one naturally emerging recurrence operation. The differences
between various recurrence operations are related to how “repetition” or “reusage”
is exactly understood. Imagine a computer with a chess-playing program. The
resource that such a computer provides is obviously something stronger than just
our old friend Chess (as long as it always wins), for it permits to play Chess as many
times as the user wishes, while Chess, as such, only assumes one play. The simplest
operating system would allow to start a session of Chess, then—after finishing or
abandoning and destroying it—start a new play again, and so on. The game that
such a system plays—i.e. the resource that it supports/provides—is −∧| Chess, which
assumes an unbounded number of plays of Chess in a sequential fashion. A formal
definition of the operation −∧| , called sequential recurrence, will be given later is
Section 4.7.

A more advanced operating system, however, would not require to destroy the
old sessions before starting new ones; rather, it would allow to run as many parallel
sessions as the user wants. This is what is captured by ∧| Chess, meaning nothing
but the infinite parallel conjunction Chess ∧ Chess ∧ Chess ∧ · · · . As we remember
from Section 4.3, ∧| is called parallel recurrence.

Yet a really good operating system would not only allow the user to start new
sessions of Chess without destroying old ones; it would also make it possible to
branch/replicate any particular stage of any particular session, i.e., create any num-
ber of “copies” of any already reached position of the multiple parallel plays of Chess,
thus giving the user the possibility to try different continuations from the same po-
sition. What corresponds to this intuition is the branching recurrence ◦|Chess of
Chess.

At the intuitive level, the difference between ◦| and ∧| is that in ◦|A, unlike ∧|A,
the environment does not have to restart A from the very beginning every time
it wants to reuse it (as a resource); rather, it is allowed to backtrack to any of
the previous—not necessarily starting—positions and try a new continuation from
there, thus depriving the adversary of the possibility to reconsider the moves it has
already made in that position. This is in fact the type of reusage every purely
software resource allows or would allow in the presence of an advanced operating
system and unlimited memory: one can start running a process (task, game); then
fork it at any stage thus creating two threads that have a common past but possibly
diverging futures (with the possibility to treat one of the threads as a “backup copy”
and preserve it for backtracking purposes); then further fork any of the branches at
any time; and so on.

The less flexible type of reusage of A assumed by ∧|A, on the other hand, is closer
to what infinitely many autonomous physical resources would naturally offer, such
as an unlimited number of independently acting robots each performing task A, or
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an unlimited number of computers with limited memories, each one only capable of
and responsible for running a single thread of process A. Here the effect of forking an
advanced stage of A cannot be achieved unless, by good luck, there are two identical
copies of the stage, meaning that the corresponding two robots or computers have
so far acted in precisely the same ways.

In early papers [14, 26] on CoL, the formal definitions of ◦| and its dual ◦| were
direct formalizations of the above intuitions, with an explicit presence of “replicative”
moves used by players to fork a given thread of A and create two threads out of
one. Later, in [32], another definition was found which was proven to be equivalent
to the old one in the sense of mutual reducibility of the old and the new versions
of ◦|A. The new definition less directly corresponds to the above intuitions, but
is technically simpler, and we choose it as our “canonical” definition of branching
(co)recurrence. To be able to state it, we agree on the following:

Notation 4.13. Where Γ is a run and w is a bitstring (finite or infinite sequence
of 0s and 1s), Γ�w means the result of deleting from Γ all moves except those that
look like u.α for some initial segment u of w, and then further deleting the prefix
“u.” from such moves. E.g., 〈⊥00.77,>01.88,>0.66〉�00 = 〈⊥77,>66〉.

Definition 4.14. Assume A = (Dm,Dn, V r,A) is a gameframe.

(a) ◦|A is defined as the gameframe G = (Dm,Dn, V r,G) such that:

• Φ ∈ LpGe iff every move of Φ has the prefix “u.” for some finite bitstring
u and, for every infinite bitstring w, Φ�w ∈ LpAe ;
• WnGe 〈Γ〉 = > iff, for every infinite bitstring w, WnAe 〈Γ�w〉 = >.

(b) ◦|A is dual to ◦|A.

The direct intuitions underlying this definition are as follows. To play ◦|A or ◦|A
means to simultaneously play in multiple parallel copies/threads of A. Each infinite
bitstring w denotes one such thread (so, there are in fact uncountably many threads,
even if some of them coincide). Every legal move by either player looks like u.α for
some finite bitstring u, and the effect/meaning of such a move is simultaneously
making the move α in all threads w such that u is an initial segment of w. So, where
Γ is the overall run of ◦|A or ◦|A, the run in a given thread w of A is Γ�w. In order
to win ◦|A, the machine needs to win A in all threads, while for winning ◦|A it is
sufficient to win in just one thread.
◦| can be shown to be stronger than its parallel counterpart ∧| , in the sense that

the principle ◦|P → ∧|P is valid while ∧|P → ◦|P is not. The two operators, in isolation
from each other, also validate different principles. For instance, P ∧∧| (P → Q∧P )→
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∧|Q is valid while P ∧ ◦| (P → Q ∧ P ) → ◦|Q is not; ◦| (P t Q) → ◦|P t ◦|Q is valid
while ∧| (P tQ)→ ∧|P t ∧|Q is not. In its overall spirit, the earlier mentioned Blass’s
repetition operator R is much closer to ◦| than ∧| , yet Blass’s semantics validates a
different set of principles with R than CoL does with ◦| . For instance, the following
formula is invalid [33] in CoL but valid in Blass’s semantics with R in the role of ◦| :
P ∧ ◦| (P → Q ∧ P ) ∧ ◦| (R ∨Q→ R)→ ◦|R.

The branching sorts of rimplication and repudiation are defined in terms of ¬,→
and ◦| , ◦| the same way as the parallel sorts of rimplication and repudiation are defined
in terms of ¬,→ and ∧| , ∨| :

Definition 4.15. (a) A ◦– B =def ◦|A→ B. (b) ◦¬A =def
◦|¬A.

Similarly to the earlier defined pimplicative reducibility, for games A,B we say
that B is brimplicatively (resp. primplicatively, etc.) reducible to A iff A ◦– B
(resp. A >–B, etc.) is computable.

Exercise 4.16. The Kolmogorov complexity k(x) of a natural number x is the size of
a smallest Turing machine that outputs x on input 0. The Kolmogorov complexity
problem uxty(

y = k(x)
)
has no algorithmic solution. Nor is it pimplicatively

reducible to the halting problem. It, however, is reducible to the halting problem
in the weaker sense of brimplicative reducibility, meaning that > has a winning
strategy for uxuy(¬Halts(x, y)tHalts(x, y)

) ◦– uxty(
y = k(x)

)
. Describe such a

strategy, informally.

Both brimplicative and primplicative reducibilities are conservative generaliza-
tions of Turing reducibility: for any predicates p(x) and q(x), ux(¬p(x)t p(x)

) ◦–
ux(¬q(x) t q(x)

)
is computable iff q(x) is Turing reducible to p(x) iff ux(¬p(x) t

p(x)
)

>–ux(¬q(x) t q(x)
)
is computable. Generally, when restricted to traditional

sorts of problems such as problems of deciding a predicate or computing a function
as in Exercise 4.16, ◦– and >– are extensionally indistinguishable. This, how-
ever, stops being the case when these operators are applied to problems with higher
degrees of interactivity. For instance, the following problem is computable, but
becomes incomputable with >– instead of ◦– :

tyux(¬Halts(x, y) tHalts(x, y)
) ◦–

ty
(
ux(¬Halts(x, y) tHalts(x, y)

) ∧ux(¬Halts(x, y) tHalts(x, y)
))
.

Generally, (P >–Q)→ (P ◦– Q) is valid but (P ◦– Q)→ (P >–Q) is not.
While both >– and ◦– are weaker than → and hence more general than the

latter, ◦– is still a more interesting operation of weak reduction than >– . What
makes it special is the belief stated in Thesis 4.17 below. The latter, in turn, is
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based on the belief that ◦| (and by no means ∧| ) is the operation allowing to reuse its
argument in the strongest algorithmic sense possible.

Thesis 4.17. Brimplicative reducibility is an adequate mathematical counterpart
of our intuition of reducibility in the weakest—and thus most general—algorithmic
sense possible. Specifically:

(a) Whenever a problem B is brimplicatively reducible to a problem A, B is also
algorithmically reducible to A according to anyone’s reasonable intuition.

(b) Whenever a problem B is algorithmically reducible to a problem A according
to anyone’s reasonable intuition, B is also brimplicatively reducible to A.

The above is pretty much in the same sense as, by the Church-Turing thesis,
a function f is computable by a Turing machine iff f has an algorithmic solution
according to anyone’s reasonable intuition.

Understanding the intuitionistic negation, implication, conjunction, disjunction
and quantifiers as ◦¬, ◦– , u, t, u, t, respectively, Heyting’s system for intuition-
istic logic has been shown [23] to be sound with respect to the semantics of CoL. It
is also “almost complete”, as the following formula of an imposing length is among
the shortest known propositional formulas valid in CoL but unprovable in Heyting’s
calculus:

(◦¬P ◦– Q tR) u (◦¬◦¬P ◦– Q tR) ◦–
(◦¬P ◦– Q) t (◦¬P ◦– R) t (◦¬◦¬P ◦– Q) t (◦¬◦¬P ◦– R).

4.7 Sequential operations
This group consists of 4 (sequential conjunction, read as “sand”), 5 (sequen-
tial disjunction, read as “sor”), . (sequential implication, read as “simpli-
cation”), 4 (sequential universal quantifier, read as “sall”), 5 (sequential
existential quantifier, read as “sexists”), −∧| (sequential recurrence, read as
“srecurrence”), −∨| (sequential corecurrence, read as “cosrecurrence”), .– (se-
quential rimplication, read as “srimplication”) and .¬ (sequential repudiation,
read as “srepudiation”).

The game A4B starts and proceeds as A. It will also end as A unless, at some
point, the environment decides to switch to the next component, in which case A is
abandoned, and the game restarts, continues and ends as B. A5B is similar, with
the difference that here it is the machine who decides whether and when to switch
from A to B.

The original formal definition of A4B and A5B found in [25] was a direct
formalization of the above description. Definition 4.18 given below, while less di-
rect, still faithfully formalizes the above intuitions, and we opt for it because it
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is technically simpler. Specifically, Definition 4.18 allows either player to continue
making moves in A even after a switch takes place; such moves are meaningless but
harmless. Similarly, it allows either player to make moves in B without waiting for
a switch to take place, even though a smart player would only start making such
moves if and when a switch happens.

Definition 4.18. Assume A0 = (Dm,Dn, V r0, A0) and A1 = (Dm,Dn, V r1, A1)
are gameframes.

(a) A04A1 is defined as the gameframe G = (Dm,Dn, V r0 ∪ V r1, G) such that:

• Φ ∈ LpGe iff Φ has the form 〈Ψ,Θ〉 or 〈Ψ,⊥1,Θ〉, where every move of
〈Ψ,Θ〉 has the prefix “0.” or “1.” and, for both i ∈ {0, 1}, 〈Ψ,Θ〉i. ∈ LpAi

e .
• If Γ does not contain a (“switch”) move ⊥1, WnGe 〈Γ〉 = WnA0

e 〈Γ0.〉;
otherwise WnGe 〈Γ〉 = WnA1

e 〈Γ1.〉

(b) A05A1 is dual to A04A1.

(c) A0 . A1 =def ¬A05A1.

Recall that, for a predicate p(x), ux(
p(x) A p(x)

)
is the problem of deciding

p(x). The similar-looking ux(
p(x) . p(x)

)
, on the other hand, can be seen to be

the problem of semideciding p(x): the machine has a winning strategy in this game
if and only if p(x) is semidecidable, i.e., recursively enumerable. Indeed, if p(x) is
recursively enumerable, a winning strategy by > is to wait until ⊥ brings the game
down to p(n) . p(n), i.e., ¬p(n)5 p(n), for some particular n. After that, > starts
looking for a certificate of p(n)’s being true. If and when such a certificate is found
(meaning that p(n) is indeed true), >makes a switch move turning ¬p(n)5 p(n) into
the true p(n); and if no certificate exists (meaning that p(n) is false), then > keeps
looking for a non-existent certificate forever and thus never makes any moves, so the
game ends as ¬p(n), which, again, is true. And vice versa: any effective winning
strategy for ux(¬p(x)5 p(x)

)
can obviously be seen as a semidecision procedure

for p(x), which accepts an input n iff the strategy ever makes a switch move in the
scenario where ⊥’s initial choice of a value for x is n.

As we remember from Section 4.4, Turing reducibility of a predicate p(x) to a
predicate q(x) means nothing but computability of ux(

q(x) A q(x)
)

>–ux(
p(x) A

p(x)
)
(the same holds with ◦– instead of >– ). One can show that changing A to .

here yields another known concept of reducibility, called enumeration reducibility (cf.
[49]). That is, p(x) is enumeration reducible to q(x) iff ux(

q(x) . q(x)
)

>–ux(
p(x)

. p(x)
)
is computable in our sense. Similarly, the formula ux(

q(x) A q(x)
)
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>–ux(
p(x) . p(x)

)
captures relative computable enumerability (again, cf. [49]). And

so on and so forth.
Existence of effective winning strategies for games is known [14] to be closed

under “from A→ B and A conclude B”, “from A and B conclude A∧B”, “from A
conclude uxA”, “from A conclude ◦|A” and similar rules. In view of such closures,
the validity of the principles discussed below implies certain known facts from the
theory of computation. Those examples once again demonstrate how CoL can be
used as a systematic tool for defining new interesting properties and relations be-
tween computational problems, and not only reproducing already known theorems
but also discovering an infinite variety of new facts.

The valid formula ux(
p(x) . p(x)

) ∧ ux(¬p(x) . ¬p(x)
) → ux(

p(x) A p(x)
)

“expresses” the well known fact that, if a predicate p(x) and its complement ¬p(x)
are both recursively enumerable, then p(x) is decidable. Actually, the validity of
this formula means something more: it means that the problem of deciding p(x) is
reducible to (the ∧-conjunction of) the problems of semideciding p(x) and ¬p(x).
In fact, reducibility in an even stronger sense—a sense that has no name—holds,
expressed by the formula ux

((
p(x) . p(x)

) ∧ (¬p(x) . ¬p(x)
)→ (

p(x) A p(x)
))
.

The formula uxty(
q(x) ↔ p(y)

) ∧ux(
p(x) . p(x)

) → ux(
q(x) . q(x)

)
is also

valid, which implies the known fact that, if a predicate q(x) is mapping reducible
to a predicate p(x) and p(x) is recursively enumerable, then q(x) is also recursively
enumerable. Again, the validity of this formula, in fact, means something even
more: it means that the problem of semideciding q(x) is reducible to the problems
of mapping reducing q(x) to p(x) and semideciding p(x).

Certain other reducibilities hold only in the sense of rimplications rather than
implications. Here is an example. Two Turing machines are said to be equivalent
iff they accept exactly the same inputs. Let Neq(x, y) be the predicate “Turing
machines x and y are not equivalent”. This predicate is neither semidecidable nor
co-semidecidable. However, the problem of its semideciding primplicatively (and
hence also brimplicatively) reduces to the halting problem. Specifically, > has an
effective winning strategy for the game

uzut(¬Halts(z, t) tHalts(z, t)
)

>–uxuy(¬Neq(x, y)5Neq(x, y)
)
,

in terms of [49] meaning that Neq(x, y) is computably enumerable relative to
Halts(z, t). The strategy is to wait till the environment specifies some values m
and n for x and y. Then, create a variable i, initialize it to 1 and do the following.
Specify z and t as m and i in one yet-unused copy of the antecedent, and as n and i
in another yet-unused copy. That is, ask the environment whether m halts on input
i and whether n halts on the same input. The environment will have to provide the

1146



Fundamentals of Computability Logic 2020

correct pair of answers, or else it loses. (1) If the answers are “No,No”, increment i
to i+ 1 and repeat the step. (2) If the answers are “Yes,Yes”, simulate both m and
n on input i until they halt. If both machines accept or both reject, increment i to
i+ 1 and repeat the step. Otherwise, if one accepts and one rejects, make a switch
move in the consequent and celebrate victory. (3) If the answers are “Yes,No”, sim-
ulate m on i until it halts. If m rejects i, increment i to i + 1 and repeat the step.
Otherwise, if m accepts i, make a switch move in the consequent and you win. (4)
Finally, if the answers are “No,Yes”, simulate n on i until it halts. If n rejects i,
increment i to i + 1 and repeat the step. Otherwise, if n accepts i, make a switch
move in the consequent and you win.

As expected, 4xA(x) is essentially the infinite sequential conjunction A(0)4
A(1)4A(2)4 · · · , 5xA(x) is A(0)5A(1)5A(2)5 · · · , −∧|A is A4A4A4 · · ·
and −∨|A is A5A5A5 · · · . Formally, we have:

Definition 4.19. Assume A(x) = (Dm,Dn, V r,A) is a gameframe.

(a) 4xA(x) is defined as the gameframe G = (Dm,Dn, V r − {x}, G) such that:

• Φ ∈ LpGe iff Φ has the form 〈Ψ0,⊥1,Ψ1, · · · ,⊥n,Ψn〉 (n ≥ 0), where
every move of 〈Ψ0, · · · ,Ψn〉 has the prefix “c.” for some c ∈ Constants
and, for every such c, 〈Ψ0, · · · ,Ψn〉c. ∈ LpA(c)

e .
• Call ⊥1,⊥2, · · · switch moves. If Γ does not contain a switch move,

then WnGe 〈Γ〉 = WnA(0)
e 〈Γ0.〉; if Γ contains infinitely many switch moves,

then WnGe 〈Γ〉 = >; otherwise, where ⊥n is the last switch move of Γ,
WnGe 〈Γ〉 = WnA(n)

e 〈Γn.〉.

(b) 5xA(x) is dual to 4xA(x).

Definition 4.20. Assume A = (Dm,Dn, V r,A) is a gameframe.

(a) −∧|A is defined as the gameframe G = (Dm,Dn, V r,G) such that:

• Φ ∈ LpGe iff Φ has the form 〈Ψ0,⊥1,Ψ1, · · · ,⊥n,Ψn〉 (n ≥ 0), where
every move of 〈Ψ0, · · · ,Ψn〉 has the prefix “c.” for some c ∈ Constants
and, for every such c, 〈Ψ0, · · · ,Ψn〉c. ∈ LpAe .
• Call ⊥1,⊥2, · · · switch moves. If Γ does not contain a switch move,
then WnGe 〈Γ〉 = WnAe 〈Γ0.〉; if Γ contains infinitely many switch moves,
then WnGe 〈Γ〉 = >; otherwise, where ⊥n is the last switch move of Γ,
WnGe 〈Γ〉 = WnAe 〈Γn.〉.

(b) −∨|A is dual to −∧|A.
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For insights into the above-defined operations, remember the Kolmogorov com-
plexity function k(x) from Exercise 4.16. It is known that the value of k(x) is
always smaller than x (in fact, logarithmically smaller). While uxty(

y = k(x)
)

is not computable, > does have an algorithmic winning strategy for the problem
ux−∨|ty(

y = k(x)
)
. It goes like this: Wait till ⊥ specifies a value m for x, thus

asking “what is the Kolmogorov complexity of m?” and bringing the game down to
−∨|ty(

y = k(m)
)
. Answer (generously) that the complexity is m, i.e. specify y as m.

After that, start simulating, in parallel, all machines n of sizes smaller than m on
input 0. Whenever you find a machine n that returns m on input 0 and is smaller
than any of the previously found such machines, make a switch move and, in the
new copy of ty(

y = k(m)
)
, specify y as the size |n| of n. This obviously guarantees

success: sooner or later the real Kolmogorov complexity c of m will be reached and
named; and, even though the strategy will never be sure that k(m) is not something
yet smaller than c, it will never really find a reason to further reconsider its latest
claim that c = k(m).

Exercise 4.21. Describe a winning strategy for ux5y(
k(x) = x− y)

.

Definition 4.22. (a) A .– B =def −∧
|A→ B. (b) .¬A =def

−∨|¬A.

4.8 Toggling operations
This group consists of ∧ (toggling conjunction, read as “tand”), ∨ (toggling
disjunction, read as “tor”), >− (toggling implication, read as “timplication”), ∧
(toggling universal quantifier, read as “tall”), ∨ (toggling existential quan-
tifier, read as “texists”), ∧| (toggling recurrence, read as “trecurrence”), ∨| (tog-
gling corecurrence, read as “cotrecurrence”), >– (toggling rimplication, read
as “trimplication”) and >-¬ (toggling repudiation, read as “trepudiation”).

Let us for now focus on ∨ . One of the ways to characterize A∨B is the following.
This game starts and proceeds as a play of A. It will also end as an ordinary play
of A unless, at some point, > decides to switch to B, after which the game becomes
B and continues as such. It will also end as B unless, at some point, > “changes
its mind” and switches back to A. In such a case the game again becomes A, where
A resumes from the position in which it was abandoned (rather than from its start
position, as would be the case, e.g., in A5B5A). Later > may again switch to
the abandoned position of B, and so on. > wins the overall play iff it switches from
one component to another at most finitely many times and wins in its final choice,
i.e., in the component which was chosen last to switch to.

An alternative characterization A∨B, on which our formal definition of ∨ is
directly based, is to say that it is played just like A t B, with the only difference
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that > is allowed to make a “choose A” or “choose B” move any number of times. If
infinitely many choices are made, > loses. Otherwise, the winner in the play will be
the player who wins in the component that was chosen last (“the eventual choice”).
The case of > having made no choices at all is treated as if it had chosen A. Thus,
as in A5B, the left component is the “default”, or “automatically made”, initial
choice. It is important to note that >’s adversary—or perhaps even > itself—never
knows whether a given choice of a component of A∨B is the last choice or not.

What would happen if we did not require that > can change its mind only finitely
many times? There would be no “final choice” in this case. So, the only natural
winning condition in the case of infinitely many choices would be to say that >
wins iff it simply wins in one of the components. But then the resulting operation
would be essentially the same as ∨, as a smart > would always opt for keeping
switching between components forever. That is, allowing infinitely many choices
would amount to not requiring any choices at all, as is the case with A ∨B.

The very weak sort of choice captured by ∨ is the kind of choice that, in real life,
one would ordinarily call choice after trial and error. Indeed, a problem is generally
considered to be solved after trial and error (a correct choice/solution/answer found)
if, after perhaps coming up with several wrong solutions, a true solution is eventually
found. That is, mistakes are tolerated and forgotten as long as they are eventually
corrected. It is however necessary that new solutions stop coming at some point, so
that there is a last solution whose correctness determines the success of the effort.
Otherwise, if answers have kept changing all the time, no answer has really been
given after all.

As we remember, for a predicate p(x),ux(
p(x) A p(x)

)
is the problem of deciding

p(x), and ux(
p(x) . p(x)

)
is the weaker (easier to solve) problem of semideciding

p(x). Not surprisingly, ux(
p(x) >− p(x)

)
—which abbreviates ux(¬p(x)∨ p(x)

)
—is

also a decision-style problem, but still weaker than the problem of semideciding
p(x). This problem has been studied in the literature under several names, the
most common of which is recursively approximating p(x). It means telling whether
p(x) is true or not, but doing so in the same style as semideciding does in negative
cases: by correctly saying “Yes” or “No” at some point (after perhaps taking back
previous answers several times) and never reconsidering this answer afterwards. In
similar terms, semideciding p(x) can be seen as always saying (the default) “No”
at the beginning and then, if this answer is incorrect, changing it to “Yes” at some
later time; so, when the answer is negative, this will be expressed by saying “No”
and never taking back this answer, yet without ever indicating that the answer is
final and will not change. Thus, the difference between semideciding and recursively
approximating is that, unlike a semidecision procedure, a recursive approximation
procedure can reconsider both negative and positive answers, and do so several times

1149



Japaridze

rather than only once.
As an example of a predicate which is recursively approximable but neither

semidecidable nor co-semidecidable, consider the predicate k(x)<k(y), saying that
number x is simpler than number y in the sense of Kolmogorov complexity. As
noted earlier, k(z) (the Kolmogorov complexity of z) is always smaller than z. Here
is an algorithm that recursively approximates the predicate k(x)<k(y), i.e., solves
the problem uxuy(

k(x)≥k(y)∨k(x)<k(y)
)
. Wait till the environment brings the

game down to k(m)≥k(n)∨k(m)<k(n) for some m and n. Then start simulating,
in parallel, all Turing machines t of sizes less than max(m,n) on input 0. Whenever
you see that a machine t returns m and the size of t is smaller than that of any
other previously found machine that returns m or n on input 0, choose k(m)<k(n).
Quite similarly, whenever you see that a machine t returns n and the size of t is
smaller than that of any other previously found machine that returns n on input 0,
as well as smaller or equal to the size of any other previously found machine that
returns m on input 0, choose k(m)≥k(n). Obviously, the correct choice between
k(m)≥k(n) and k(m)<k(n) will be made sooner or later and never reconsidered
afterwards. This will happen when the procedure hits a smallest-size machine t that
returns either m or n on input 0.

Anyway, here is our formal definition of ∧ , ∨ and >− :

Definition 4.23. Assume A0 = (Dm,Dn, V r0, A0) and A1 = (Dm,Dn, V r1, A1)
are gameframes.

(a) A0 ∧A1 is defined as the gameframe G = (Dm,Dn, V r0 ∪ V r1, G) such that:

• Φ ∈ LpGe iff Φ has the form 〈Ψ0,⊥i1,Ψ1, · · · ,⊥in,Ψn〉 (n ≥ 0), where
i1, · · · , in ∈ {0, 1}, every move of 〈Ψ0, · · · ,Ψn〉 has the prefix “0.” or “1.”
and, for both i ∈ {0, 1}, 〈Ψ0, · · · ,Ψn〉i. ∈ LpAi

e .
• Call ⊥0 and ⊥1 switch moves. If Γ does not contain a switch move,

then WnGe 〈Γ〉 = WnA0
e 〈Γ0.〉; if Γ contains infinitely many switch moves,

then WnGe 〈Γ〉 = >; otherwise, where ⊥i is the last switch move of Γ,
WnGe 〈Γ〉 = WnAi

e 〈Γi.〉.

(b) A0 ∨A1 is dual to A0 ∧A1.

(c) A0 >−A1 =def ¬A0 ∨A1.

From the formal definitions that follow one can see that, as expected, ∧xA(x)
is essentially A(0)∧A(1)∧ A(2)∧ · · · , ∨xA(x) is A(0)∨A(1)∨A(2)∨ · · · , ∧|A is
A∧A∧A∧ · · · and ∨| xA(x) is A∨A∨A∨ · · · .
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Definition 4.24. Assume A(x) = (Dm,Dn, V r,A) is a gameframe.

(a) ∧xA(x) is defined as the gameframe G = (Dm,Dn, V r − {x}, G) such that:

• Φ ∈ LpGe iff Φ has the form 〈Ψ0,⊥c1,Ψ1, · · · ,⊥cn,Ψn〉 (n ≥ 0), where
c1, · · · , cn ∈ Constants, every move of 〈Ψ0, · · · ,Ψn〉 has the prefix “c.”
for some c ∈ Constants and, for every such c, 〈Ψ0, · · · ,Ψn〉c. ∈ LpA(c)

e .
• Call the above ⊥c1,⊥c2, · · · switch moves. If Γ does not contain a switch
move, then WnGe 〈Γ〉 = WnA(0)

e 〈Γ0.〉; if Γ contains infinitely many switch
moves, then WnGe 〈Γ〉 = >; otherwise, where ⊥c is the last switch move
of Γ, WnGe 〈Γ〉 = WnA(c)

e 〈Γc.〉.

(b) ∨xA(x) is dual to ∧xA(x).

Definition 4.25. Assume A = (Dm,Dn, V r,A) is a gameframe.

(a) ∧|A is defined as the gameframe G = (Dm,Dn, V r,G) such that:

• Φ ∈ LpGe iff Φ has the form 〈Ψ0,⊥c1,Ψ1, · · · ,⊥cn,Ψn〉 (n ≥ 0), where
c1, · · · , cn ∈ Constants, every move of 〈Ψ0, · · · ,Ψn〉 has the prefix “c.”
for some c ∈ Constants and, for every such c, 〈Ψ0, · · · ,Ψn〉c. ∈ LpAe .
• Call the above ⊥c1,⊥c2, · · · switch moves. If Γ does not contain a switch
move, then WnGe 〈Γ〉 = WnAe 〈Γ0.〉; if Γ contains infinitely many switch
moves, then WnGe 〈Γ〉 = >; otherwise, where ⊥c is the last switch move
of Γ, WnGe 〈Γ〉 = WnAe 〈Γc.〉.

(b) ∨|A is dual to ∧|A.

To see toggling quantifiers at work, remember that Kolmogorov complexity k(x)
is not a computable function, i.e., the problem uxty(

y = k(x)
)
has no algorithmic

solution. However, replacing ty with ∨y in it yields an algorithmically solvable
problem. A solution for ux∨y(

y = k(x)
)
goes like this. Wait till the environment

chooses a number m for x, thus bringing the game down to ∨y(
y = k(m)

)
, which is

essentially nothing but 0 = k(m)∨1 = k(m)∨2 = k(m)∨ · · · . Create a variable i
initialized to m, and perform the following routine: Switch to the disjunct i = k(m)
of 0 = k(m)∨1 = k(m)∨2 = k(m)∨ · · · and then start simulating on input 0, in
parallel, all Turing machines whose sizes are smaller than i; if and when you see that
one of such machines returns m, update i to the size of that machine, and repeat
the present routine.

Definition 4.26. (a) A >–B =def ∧|A→ B. (b) >-¬A =def
∨|¬A.
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4.9 Cirquents
The constructs called cirquents take the expressive power of CoL to a qualitatively
higher level, allowing us to form, in a systematic way, an infinite variety of game
operations. Each cirquent is—or can be seen as—an independent operation on
games, generally not expressible via composing operations taken from some fixed
finite pool of primitives, such as the operations seen in the preceding subsections of
the present section.

Cirquents come in a variety of versions, but common to all them is having mecha-
nisms for explicitly accounting for possible sharing of subcomponents between differ-
ent components. Sharing is the main distinguishing feature of cirquents from more
traditional means of expression such as formulas, sequents, hypersequents [2], or
structures of the calculus of structures [12]. While the latter can be drawn as (their
parse) trees, cirquents more naturally call for circuit- or graph-style constructs. The
earliest cirquents [17] were intuitively conceived as collections of one-sided sequents
(sequences of formulas) that could share some formulas and, as such, could be drawn
like circuits rather than linear expressions. This explains the etimology of the word:
CIRcuit+seQUENT. All Boolean circuits are cirquents, but not all cirquents are
Boolean circuits. Firstly, because cirquents may have various additional sorts of
gates (u-gates, 4 -gates, ∧ -gates, etc.). Secondly, because cirquents may often
have more evolved sharing mechanisms than just child- (input-) sharing between
different gates. For instance, a “cluster” [29] of t-gates may share choices associ-
ated with t in game-playing: if the machine chooses the left or the right child for
one gate of the cluster, then the same left or right choice automatically extends to
all gates of the cluster regardless of whether they share children or not.

We are not going to introduce cirquents and their semantics in full generality or
formal detail here. For intuitive insights, let us only focus on cirquents that look
like Boolean circuits with ∧- and ∨-gates. Every such cirquent C can be seen as an
n-ary parallel operation on games, where n is the number of inputs of C.
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Figure 3: The two-out-of-three combination of resources
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The left cirquent of Figure 3 represents the 3-ary game operation ♥ informally
defined as follows. Playing ♥(P,Q,R), as is the case with all parallel operations,
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means playing simultaneously in all components of it. In order to win, > needs
to win in at least two out of the three components. Any attempt to express this
operation in terms of ∧,∨ or other already defined operations is going to fail. For
instance, the natural candidate (P ∧Q) ∨ (P ∧R) ∨ (Q ∧R) is very far from being
adequate. The latter is a game on six rather than three boards, with P played
on boards #1 and #3, Q on boards #2 and #5, and R on boards #4 and #6.
Similarly, the formula (P ∧P )∨ (P ∧P )∨ (P ∧P ) is not an adequate representation
of the right cirquent of Figure 3. It fails to indicate for instance that the 1st and
the 3rd occurrences of P stand for the same copy of P while the 2nd occurrence for
a different copy in which a different run can be generated.

Cirquents are thus properly more expressive than formulas even at the most basic
(∧,∨) level. It is this added expressiveness and flexibility that, for some fragments
of CoL, makes a difference between axiomatizability and unaxiomatizability: even
if one is only trying to set up a deductive system for proving valid formulas, inter-
mediate steps in proofs of such formulas still inherently require using cirquents that
cannot be written as formulas. An example is the system CL15 found in Section
7.1.

The present article is exclusively focused on the formula-based version of CoL,
seeing cirquents (in Section 7.1) only as technical servants to formulas. This ex-
plains why we do not attempt to define the semantics of cirquents formally. It
should however be noted that cirquents are naturally called for not only within the
specific formal framework of CoL, but also in the framework of all resource-sensitive
approaches in logic, like linear logic. Such approaches may intrinsically require the
ability to account for the ubiquitous phenomenon of resource sharing. The insuf-
ficient expressiveness of linear logic is due to the inability of formulas to explicitly
show (sub)resource sharing or the absence thereof. The right cirquent of Figure 3
stands for a multiplicative-style disjunction of three resources, with each disjunct, in
turn, being a conjunction of two subresources of type P . However, altogether there
are three rather than six such subresources, each one being shared between two
different disjuncts of the main resource. From the abstract resource-philosophical
point of view of cirquent-based CoL, classical logic and linear logic are two imper-
fect extremes. In the former, all occurrences of a same subformula mean the same
(represent the same resource), i.e., everything is shared that can be shared; and in
the latter, each occurrence stands for a separate resource, i.e., nothing is shared at
all. Neither approach does thus permit to account for mixed cases where certain
occurrences are meant to represent the same resource while some other occurrences
stand for different resources of the same type.
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5 Static games
While games in the sense of Definition 2.1 are apparently general enough to model
anything one would call an interactive computational problem, they are a little bit
too general. Consider a game Bad whose only nonempty legal runs are 〈>α〉, won by
>, and 〈⊥α〉, won by ⊥. Whichever player is fast enough to make the move α first
will thus be the winner. Since there are no natural, robust assumptions regarding
the relative speeds of the players, obviously Bad is not something that could qualify
as a meaningful computational problem. For such reasons, CoL limits its focus on
a natural proper subclass of all games in the sense of Definition 2.1 called static.
Intuitively, static games are games where speed is irrelevant because, using Blass’s
words, “it never hurts a player to postpone making moves”.

In order to define static games, recall that, for a player ℘, ℘ means “the other
player”. Further recall the concepts of a ℘-legal and ℘-won runs from Section 2.
Given a run Γ, we let Γ> denote the subsequence of (all and only) >-labeled moves
of Γ; similarly for Γ⊥. We say that a run Ω is a ℘-delay of a run Γ iff the following
two conditions are satisfied:

• Ω> = Γ> and Ω⊥ = Γ⊥;

• For any n, k ≥ 1, if the kth ℘-labeled move is made earlier than the nth
℘-labeled move in Γ, then so is it in Ω.

The above Ω, in other words, is the result of possibly shifting to the right (“delaying”)
some ℘-labeled moves in Γ without otherwise violating the order of moves by either
player.

Definition 5.1. We say that a game G is static iff, for either player ℘ ∈ {>,⊥} and
for any runs Γ,Ω where Ω is a ℘-delay of Γ, the following conditions are satisfied:

1. If Γ is a ℘-legal run of G, then so is Ω.

2. If Γ is a ℘-won run of G, then so is Ω.

A gameframe is said to be static iff so are all of its instances.

Exercise 5.2. Verify that the game of Figure 1 is static.

The class of static games or gameframes is very broad. Suffice it to say that all
elementary gameframes are static, and that all operations defined in the preceding
long section preserve the static property of gameframes. Thus, the closure of ele-
mentary gameframes under those operations is one natural subclass of the class of
all static games.
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6 The formal language of computability logic and its
semantics

It is not quite accurate to say “the language” of CoL because, as pointed out earlier,
CoL has an open-ended formalism. Yet, in the present article, by “the language of
CoL” we will mean the particular language defined below. It extends the language
of first-order classical logic by adding to it all operators defined in Section 4, and
differentiating between two—elementary and general—sorts of atoms.

The set Variables of variables and the set Constants of constants of the lan-
guage are those fixed in Section 3. Per each natural number n, we also have infinitely
many n-ary extralogical function letters, elementary gameframe letters and
general gameframe letters. We usually use f, g, h, · · · as metavariables for func-
tion letters, p, q, r, · · · for elementary gameframe letters, and P,Q,R, · · · for general
gameframe letters. Other than these extralogical letters, there are three logical
gameframe letters, all elementary: > (nullary), ⊥ (nullary) and = (binary).

Terms are defined inductively as follows:
• All variables and constants are terms.
• If t1, · · · , tn are terms (n ≥ 0) and f is an n-ary function letter, then f(t1, · · · ,
tn) is a term.

Atoms are defined by:
• > and ⊥ are atoms. These two atoms are said to be logical, and all other
atoms extralogical.
• If t1 and t2 are terms, then t1 = t2 is an atom.
• If t1, · · · , tn are terms (n ≥ 0) and L is an extralogical n-ary gameframe
letter, then L(t1, · · · , tn) is an atom. Such an extralogical atom is said to be
elementary or general iff L is so.

Finally, formulas are defined by:
• All atoms are formulas.
• If E is a formula, then so are ¬(E), ◦| (E), ◦| (E), ∧| (E), ∨| (E), −∧| (E), −∨| (E), ∧| (E),
∨| (E), ◦¬(E), >¬(E), .¬(E), >-¬(E).

• If E and F are formulas, then so are (E)∧(F ), (E)∨(F ), (E)u(F ), (E)t(F ),
(E)4 (F ), (E)5 (F ), (E)∧ (F ), (E)∨ (F ), (E)→ (F ), (E) A (F ), (E) . (F ),
(E) >− (F ), (E) ◦– (F ), (E) >– (F ), (E) .– (F ), (E) >– (F ).

• If E is a formula and x is a variable, then ∀x(E), ∃x(E), ∧x(E), ∨x(E),
ux(E), tx(E), 4x(E), 5x(E), ∧x(E), ∨x(E) are formulas.
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Unnecessary parentheses will be usually omitted in formulas according to the
standard conventions, with partial precedence order as agreed upon earlier for the
corresponding game operations. The notions of free and bound occurrences of vari-
ables are also standard, with the only adjustment that now we have eight rather
than two quantifiers. A sentence, or a closed formula, is a formula with no
free occurrences of variables. While officially ∧ is a binary operator, we may still
write E1 ∧ · · · ∧ En for a possibly unspecified n ≥ 0. This should be understood as
E1 ∧ (E2 ∧ · · · (En−1 ∧En) · · · ) when n > 2, as just E1 when n = 1, and as > when
n = 0. Similarly for all other sorts of conjunctions. And similarly for all disjunc-
tions, with the difference that an empty disjunction of whatever sort is understood
as ⊥ rather than >.

For the following definitions, recall Conventions 3.3 and 3.4. Also recall that
var1, · · · , varn are the first n variables from the lexicographic list of all variables.

Definition 6.1. An interpretation is a mapping ∗ such that, for some fixed uni-
verse U called the universe of ∗, we have:

• ∗ sends every n-ary function letter f to an n-ary function f∗(var1, · · · , varn)
whose universe is U and whose variables are the first n variables of Variables.
• ∗ sends every n-ary extralogical game letter L to an n-ary static gameframe
L∗(var1, · · · , varn) whose universe is U and whose variables are the first n
variables of Variables; besides, if the letter L is elementary, then so is the
gameframe L∗(var1, · · · , varn).

Such a ∗ is said to be admissible for a formula E (or E-admissible) iff, whenever
E has an occurrence of a general atom P (t1, · · · , tn) in the scope of ∀x or ∃x and
one of the terms ti (1 ≤ i ≤ n) contains the variable x, P ∗ is unistructural in vari.
We uniquely extend ∗ to a mapping that sends each term t to a function t∗, and
each formula E for which it is admissible to a game E∗, by stipulating the following:

• Where c is a constant, c∗ is (the nullary function) cU.
• Where x is a variable, x∗ is (the unary function) xU.
• Where f is an n-ary function letter and t1, · · · , tn are terms,

(
f(t1, · · · , tn)

)∗

is f∗(t∗1, · · · , t∗n).
• >∗ is > and ⊥∗ is ⊥.
• Where t1 and t2 are terms, (t1 = t2)∗ is t∗1 = t∗2.
• Where L is an n-ary gameframe letter and t1, · · · , tn are terms,

(
L(t1, · · · ,

tn)
)∗ is L∗(t∗1, · · · , t∗n).
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• ∗ commutes with all logical operators, seeing them as the corresponding game
operations: (¬E)∗ is ¬(E∗), (◦|E)∗ is ◦| (E∗), (E ∧ F )∗ is (E∗) ∧ (F ∗), (uxE)∗
is ux(E∗), etc.

When O is a function letter, gameframe letter, term or formula and O∗ = W , we
refer to W as “O under interpretation ∗”.

Definition 6.2. For a sentence S we say that:
1. S is logically valid iff there is an HPMM such that, for every S-admissible

interpretation ∗,M computes S∗. Such anM is said to be a logical solution of S.
2. S is extralogically valid iff for every S-admissible interpretation ∗ there is

an HPMM such thatM computes S∗.

Convention 6.3. When S is a formula but not a sentence, its validity is understood
as that of the u-closure of S, i.e., of the sentence ux1 · · ·uxnS, where x1, · · · , xn
are all free variables of S listed lexicographically.

Every logically valid formula is, of course, also extralogically valid. But some
extralogically valid formulas may not necessarily be also logically valid. For in-
stance, where p is a 0-ary elementary gameframe letter, the formula ¬p t p is valid
extralogically but not logically. It is extralogically valid for a trivial reason: given
an interpretation ∗, either ¬p or p is true under ∗. If ¬p is true, then the strategy
that chooses the first disjunct wins; and if p is true, then the strategy that chooses
the second disjunct wins. The trouble is that, even though we know that one of
these two strategies succeeds, generally we have no way to tell which one does. And
this is why ¬p t p fails to be logically valid.

Extralogical validity is not only a non-constructive, but also a fragile sort of
validity: this property, unlike logical validity, is not closed under substitution of
extralogical atoms. For instance, where p is as before and q is a unary extralogical
elementary gameframe letter, the formula ¬q(x)t q(x), while having the same form
as ¬ptp, is no longer extralogically valid. The papers on CoL written prior to 2016
had a more relaxed understanding of interpretations than our present understanding.
Namely, there was no requirement that an interpretation should respect the arity
of a gameframe letter. In such a case, as it turns out, the extensional difference
between logical and extralogical validity disappears: while the class of logically
valid principles remains the same, the class of extralogically valid principles shrinks
down to that of logically valid ones.

Intuitively, a logical solutionM for a sentence S is an interpretation-independent
winning strategy: since the intended interpretation is not known to the machine,M
has to play in some standard, uniform way that would be successful for any possible
interpretation of S. It is logical rather than extralogical validity that is of interest
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in all applied systems based on CoL (cf. Section 8). In such applications we want a
logic that could be built into a universal problem-solving machine. Such a machine
should be able to solve problems represented by logical formulas without any spe-
cific knowledge of the meanings of their atoms, other than the knowledge explicitly
provided in the knowledgebase (extralogical axioms) of the system. Otherwise the
machine would be special-purpose rather than universal. For such reasons, in the
subsequent sections we will only be focused on the logical sort of validity, which will
be the default meaning of the word “valid”.

Definition 6.4. We say that a sentence F is a logical consequence of a set B of
sentences iff, for some E1, · · · , En ∈ B, the sentence E1 ∧ · · · ∧ En ◦– F is logically
valid.

Remember the symmetry between computational resources and computational
problems: a problem for one player is a resource for the other. Having a problem
A as a computational resource intuitively means having the (perhaps externally
provided) ability to successfully solve/win A. For instance, as a resource, uxty(y =
x2) means the ability to tell the square of any number. According to Thesis 6.5
below, the relation of logical consequence lives up to its name. The main utility
of this thesis, as will be illustrated in Section 7.3, is that it allows us to rely on
informal, intuitive arguments instead of formal proofs when reasoning within CoL-
based applied theories.

Thesis 6.5. Consider sentences E1, · · · , En, F (n ≥ 0) and an admissible inter-
pretation ∗ for them. Assume there is a winning strategy for F ∗ that relies on
availability and “recyclability”—in the strongest sense possible—of E∗1 , · · · , E∗n as
computational resources but no other knowledge or assumptions about ∗ (see Ex-
ample 7.10 for an instance of such a strategy). Then F is a logical consequence of
E1, · · · , En.

7 Axiomatizations
While the semantical setup for CoL in the language of Section 6 is complete, a
corresponding proof theory is still at earlier stages of development. Due to the
inordinate expressive power of the language, successful axiomatization attempts have
only been made for various fragments of CoL obtained by moderating its language
in one way or another. It should be pointed out that every conceivable application
of CoL will only need some fragment of CoL rather than the “whole” CoL anyway.

As of 2020 there are seventeen deductive systems for various fragments of CoL,
named CL1 through CL17. Based on their languages, these systems can be divided
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into three groups: elementary-base, general-base and mixed-base. Of the
extralogical gameframe letters, the languages of elementary-base systems only allow
elementary ones, the languages of general-base systems only allow general ones, and
the languages of mixed-base systems allow both sorts of letters. Based on the style of
the underlying proof theory, the systems can be further subdivided into two groups:
cirquent calculus systems and brute force systems. Either sort is rather
unusual, not seen elsewhere in proof theory. The cirquent calculus systems operate
with cirquents rather than formulas, with formulas understood as special cases of
cirquents. The brute force systems operate with formulas (sometimes referred to
as sequents for technical reasons), but in an unusual way, with their inference rules
being relatively directly derived from the underlying game semantics and hence
somewhat resembling games themselves.

Theorem 7.1. Each of the above-mentioned systems S ∈ {CL1, · · · ,CL17} is
adequate in the sense that, for any sentence F of the language of S, we have:

(a) Soundness: If F is provable in S, then it is logically valid and, furthermore, a
logical solution for F can be automatically extracted from a proof of F .

(b) Completeness: If F is logically valid, then it is provable in S.

In this article we shall take a look at only three of the systems: the general-base
cirquent calculus system CL15 in the logical signature {¬,∧,∨, ◦| , ◦|}, the mixed-
base brute force system CL13 in the signature {¬,∧,∨,u,t, 4 , 5 , ∧ , ∨}, and
the elementary-base brute force system CL12 in the signature {¬,∧,∨,u,t,∀,∃,
u,t, ◦– } (with ◦– only allowed to be applied externally). Their adequacy proofs
can respectively be found in [34, 35], [28] and [37].

7.1 The cirquent calculus system CL15
CL15-formulas—or just formulas in this subsection—are formulas of the language
of CoL that do not contain any function letters, do not contain any gameframe letters
other than 0-ary general gameframe letters, and do not contain any operators other
than ¬,∧,∨, ◦| , ◦| . Besides, ¬ is only allowed to be applied to atoms. Shall we still
write ¬E for a nonatomic E, it is to be understood as the standard DeMorgan
abbreviation defined by ¬¬F = F , ¬(F ∧ G) = ¬F ∨ ¬G, ¬(F ∨ G) = ¬F ∧ ¬G,
¬◦|F = ◦|¬F , ¬◦|F = ◦|¬F . Similarly, F → G, F ◦– G and ◦¬F should be understood
as ¬F ∨G, ◦|¬F ∨G and ◦|¬F , respectively.

Definition 7.2. A CL15-cirquent (henceforth simply “cirquent”) is a triple C =
(~F , ~U, ~O) where:
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1. ~F is a nonempty finite sequence of CL15-formulas, whose elements are said
to be the oformulas of C. Here the prefix “o” is for “occurrence”, and is used to
mean a formula together with a particular occurrence of it in ~F . So, for instance, if
~F = 〈E,G,E〉, then the cirquent has three oformulas even if only two formulas.

2. Both ~U and ~O are nonempty finite sequences of nonempty sets of oformulas of
C. The elements of ~U are said to be the undergroups of C, and the elements of ~O
are said to be the overgroups of C. As in the case of oformulas, it is possible that
two undergroups or two overgroups are identical as sets (have identical contents),
yet they count as different undergroups or overgroups because they occur at different
places in the sequence ~U or ~O. Simply “group” will be used as a common name for
undergroups and overgroups.

3. Additionally, every oformula is required to be in at least one undergroup and
at least one overgroup.

While oformulas are not the same as formulas, we may often identify an oformula
with the corresponding formula and, for instance, say “the oformula E” if it is clear
from the context which of the possibly many occurrences of E is meant. Similarly,
we may not always be very careful about differentiating between groups and their
contents.

We represent cirquents using three-level diagrams such as the one shown below:r raaa
!!!

aaa
!!!

F1 F2 F3 F4
QQ QQ �� QQ ��r r r

This diagram represents the cirquent with four oformulas F1, F2, F3, F4, three un-
dergroups {F1}, {F2, F3}, {F3, F4} and two overgroups {F1, F2, F3}, {F2, F4}. Each
(under- or over-) group is represented by a •, where the arcs (lines connecting the
•’s with oformulas) are pointing to the oformulas that the given group contains.

CL15 has ten rules of inference. The first one takes no premises, which qualifies
it as an axiom. All other rules take a single premise. Below we explain them in a
relaxed fashion, in terms of deleting arcs, swapping oformulas, etc. Such explana-
tions are rather clear, and translating them into rigorous formulations in the style
and terms of Definition 7.2, while possible, is hardly necessary.

Axiom (A): The conclusion of this premiseless rule looks like an array of n
(n ≥ 1) “diamonds” as seen below for the case of n = 3, where the oformulas within
each diamond are ¬F and F for some formula F .

A

¬F1 F1
ll,,r
,,ll
r

¬F2 F2
ll,,r
,,ll
r

¬F3 F3
ll,,r
,,ll
r
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Exchange (E): This rule comes in three flavors: Undergroup Exchange, Ofor-
mula Exchange and Overgroup Exchange. Each one allows us to swap any two
adjacent objects (undergroups, oformulas or overgroups) of a cirquent, otherwise
preserving all oformulas, groups and arcs. Below we see three examples, one per
each sort of Exchange. In all cases, of course, the upper cirquent is the premise and
the lower cirquent is the conclusion of an application of the rule.r r r

F G H
���r r r���HHH

Er r r
F G H
���r r r���

E

r rHHHr���
F H G
���

��r r r���HHHr r r
F G H
���r r r���

E

rHHHr��� r
F G H
���r r r���r r r
F G H
���r r r���

The presence of Exchange essentially allows us to treat all three components (~F , ~U,
~O) of a cirquent as multisets rather than sequences.

Weakening (W): The premise of this rule is obtained from the conclusion by
deleting an arc between some undergroup U with ≥ 2 elements and some oformula F ;
if U was the only undergroup containing F , then F should also be deleted (to satisfy
condition 3 of Definition 7.2), together with all arcs between F and overgroups; if
such a deletion makes some overgroups empty, then they should also be deleted (to
satisfy condition 2 of Definition 7.2). Below are three examples:

HHH
r r
E Fr r

W
HHH
r r
E F
���r r

HHH
r r

F
���r r

W
HHH
r r
E F
���r r

r
F

���r r
W

���
r r
E F
���r r

Contraction (C): The premise of this rule is obtained from the conclusion
through replacing an oformula ◦|F by two adjacent oformulas ◦|F, ◦|F , and including
them in exactly the same undergroups and overgroups in which the original oformula
was contained. Example: r rPPP rPPP���

H ◦|F ◦|F Gr rPP
P

��
�
��

�
PP

P
Cr r

QQ
rPPP��

H ◦|F Gr rPP
P

��
�

�� QQ

1161



Japaridze

Duplication (D): This rule comes in two versions: Undergroup Duplication and
Overgroup Duplication. The conclusion of Undergroup Duplication is the result of
replacing, in the premise, some undergroup U with two adjacent undergroups whose
contents are identical to that of U . Similarly for Overgroup Duplication. Examples:r rHHH

F G H
���r r���

Dr rHHH
F G H
���r r r���HHH

r rHHH
F G H
���r r���

Dr rHHHr���
F G H
���r r���

Merging (M): In the top-down view, this rule merges any two adjacent over-
groups, as illustrated below.r r

F G

Mr
�@
F G
@�r

rHHH r
F Gr@�r@�

Mr
�@
F G
@�r

rHHH��� r
F Gr@@��

Mr
�@
F G
@�r

r r��� r���
F G H
���r r r���

Mr r��� HHH
F G H
���r r r���

Disjunction Introduction (∨): The premise of this rule is obtained from the
conclusion through replacing an oformula F ∨G by two adjacent oformulas F,G, and
including both of them in exactly the same undergroups and overgroups in which
the original oformula was contained, as illustrated below:r

@�
E Fr�@

∨r
E ∨ Fr

rHH��
r

H F G Er r r��HH HH ��
∨r�� @
r

H F ∨G Er r r�HH @��

Conjunction Introduction (∧): The premise of this rule is obtained from the
conclusion by picking an arbitrary oformula F ∧ G and applying the following two
steps:

• Replace F ∧ G by two adjacent oformulas F,G, and include both of them in
exactly the same undergroups and overgroups in which the original oformula
was contained.
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• Replace each undergroup U originally containing F ∧G (and now containing
F,G instead) by the two adjacent undergroups U − {G} and U − {F}.

Below we see three examples.r
@�

E Fr r
∧r

E ∧ Fr

r
@�
rHHXXXX
E F Gr r rHH XXX
X

∧rrPPP
E F ∧Gr rPPP

r
@�
rXXXXHH
r

E F G Hr��r r����HH HH rHH
∧rrPPP r

E F ∧G Hr\�� r�HH
Recurrence Introduction (◦| ): The premise of this rule is obtained from the

conclusion through replacing an oformula ◦|F by F (while preserving all arcs), and
inserting, anywhere in the cirquent, a new overgroup that contains F as its only
oformula. Examples:r r

�
Gr

◦.....r
◦|Gr

r r��� HHH
r

F G H
��
�r r r��

�
◦.....r r��� HHH

F G ◦|H
��
�r r r��

�

Corecurrence Introduction (◦| ): The premise of this rule is obtained from the
conclusion through replacing an oformula ◦|F by F , and including F in any (possibly
zero) number of the already existing overgroups in addition to those in which the
original oformula ◦|F was already present. Examples:r r��� HHH

F G H
��
�r r r��

�
◦.....r r��� HHH

F G ◦|H
��
�r r r��

�

rXXXXXr��� HHH
F G H
��
�r r r��

�
◦.....r r��� HHH

F G ◦|H
��
�r r r��

�

rXXXXXr��� HHH
r

F G H
��
�r r r��

�
◦.....r r��� r

F G ◦|H
��
�r r r��

�

A proof (in CL15) of a cirquent C is a sequence of cirquents ending in C
such that the first cirquent is the conclusion of (an instance of) Axiom, and every
subsequent cirquent follows from the immediately preceding cirquent by one of the
rules of CL15. A proof of a formula F is understood as a proof of the cirquent
(〈F 〉, {F}, {F}).
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As an example, below is a proof of the formula ◦|◦|F → ◦|◦|F , i.e., ◦|◦|¬F ∨◦|◦|F . To
save space, the cirquents in it have been arranged horizontally, separated with =⇒’s
together with the symbolic names of the rules used; if such a name is duplicated as
in DD, it means that the rule was applied twice rather than once.

A=⇒
@�
r

¬F Fr�@ DD=⇒
@��
r rHH�r
¬F Fr�@

◦.....◦.....=⇒
r r
bb""
r

◦|¬F ◦|Fr""bb ◦.....◦.....=⇒
bb""
r

◦|◦|¬F ◦|◦|Fr""bb

∨=⇒
r

◦|◦|¬F ∨ ◦|◦|Fr
Exercise 7.3. Prove the following formulas in CL15:
• F ◦– F (i.e. ◦¬F ∨ F , i.e. ◦|¬F ∨ F ).
• F ∧ F → F .
• F ◦– ◦|F ∧ ◦|F .
• F ◦– ◦|◦|F .
• ◦|E ∨ ◦|F → ◦| (E ∨ F ).
• (E ∧ F ) ∨ (G ∧H)→ (E ∨G) ∧ (F ∨H).

W. Xu and S. Liu [53] showed that CL15 remains sound with ∧| , ∨| instead of ◦| , ◦| .
Completeness, however, is lost in this case because, for instance, as shown in [33],
the formula F ∧∧| (F → F ∧F )→ ∧|F is logically valid while F ∧◦| (F → F ∧F )→ ◦|F
is not.

Open Problem 7.4.
1. Is (the problem of provability in) CL15 decidable?
2. Extend the language of CL15 by including u,t and axiomatize (if possible)

the set of logically valid formulas in this extended language.
3. Replace ◦| , ◦| with ∧| , ∨| in the language of CL15. Is the set of logically valid

formulas in this new language axiomatizable and, if yes, how?
4. Does CL15 remain complete with respect to extralogical (as opposed to logi-

cal) validity?

7.2 The brute force system CL13
CL13-formulas—or just formulas in this subsection—are formulas of the language
of CoL that do not contain any function letters or non-nullary gameframe letters, and
do not contain any operators other than ¬,∧,∨,u,t, 4 , 5 , ∧ , ∨ . As in the case
of CL15, officially ¬ is only allowed to be applied to extralogical atoms, otherwise
understood as the corresponding DeMorgan abbreviation, including understanding
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¬> as ⊥ and ¬⊥ as >. Each of the implication operators →,A, . , >− should also
be understood as an abbreviation of its standard meaning in terms of negation and
the corresponding sort of disjunction. To define the system axiomatically, we need
certain terminological conventions.

• A literal means an atom A with or without negation ¬. Such a literal is said
to be elementary or general iff A is so.

• As in Section 7.1, we often need to differentiate between subformulas as such,
and particular occurrences of subformulas. We will be using the term osubfor-
mula to mean a subformula together with a particular occurrence. The prefix
“o” will be used with a similar meaning in terms such as oatom, oliteral, etc.

• An osubformula is positive iff it is not in the scope of ¬. Otherwise it is
negative. According to our conventions regarding the usage of ¬, only oatoms
may be negative.
• A politeral is a positive oliteral.
• A ∧-(sub)formula is a (sub)formula of the form E ∧F . Similarly for the other
connectives.
• A sequential (sub)formula is one of the form E4F or E5F . We say that
E is the head of such a (sub)formula, and F is its tail.
• Similarly, a parallel (sub)formula is one of the form E ∧ F or E ∨ F , a
choice (sub)formula is one of the form E u F or E t F , and a toggling
(sub)formula is one of the form E ∧F or E ∨F .

• A formula is said to be quasielementary iff it contains no general atoms and
no operators other than ¬,∧,∨, ∧ , ∨ .

• A formula is said to be elementary iff it is a formula of classical propositional
logic, i.e., contains no general atoms and no operators other than ¬,∧,∨.

• A semisurface osubformula (or occurrence) is an osubformula (or occur-
rence) which is not in the scope of a choice connective.
• A surface osubformula (or occurrence) is an osubformula (or occurrence)
which is not in the scope of any connectives other than ¬,∧,∨.
• The quasielementarization of a formula F , denoted by |F |, is the result of
replacing in F every sequential osubformula by its head, every u-osubformula
by >, every t-osubformula by ⊥, and every general politeral by ⊥ (the order of
these replacements does not matter). For instance, the quasielementarization
of

(
(P ∨q) ∨ (

(p ∧ ¬P )4 (Q ∧R)
))∧ (

q u (r t s)) is
(
(⊥∨q) ∨ (p ∧ ⊥)

)∧>.
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• The elementarization of a quasielementary formula F , denoted by ‖F‖,
is the result of replacing in F every ∧ -osubformula by > and every ∨ -
osubformula by ⊥ (again, the order of these replacements does not matter).
For instance, ‖(s ∧ (

p∧ (q ∨r))) ∨ (¬s ∨ (p∨r))‖ = (s ∧ >) ∨ (¬s ∨ ⊥).
• A quasielementary formula F is said to be stable iff its elementarization ‖F‖

is a tautology of classical logic.

We now define CL13 by the following six rules of inference, where ~H =⇒ F
means “from premise(s) ~H conclude F”. Axioms are not explicitly stated, but the
set of premises of the (∧ ) rule can be empty, in which case (the conclusion of) this
rule acts like an axiom.

Rule (∧ ): ~H =⇒ F , where F is a stable quasielementary formula, and ~H is the
smallest set of formulas satisfying the following condition:
• Whenever F has a surface osubformula E0 ∧E1, for both i ∈ {0, 1}, ~H

contains the result of replacing in F that osubformula by Ei.

Rule (∨ ): H =⇒ F , where F is a quasielementary formula, and H is the result of
replacing in F a surface osubformula E ∨G by E or G.

Rule (4u): |F |, ~H =⇒ F , where F is a non-quasielementary formula (note that
otherwise F = |F |), and ~H is the smallest set of formulas satisfying the fol-
lowing two conditions:
• Whenever F has a semisurface osubformula G0 uG1, for both i ∈ {0, 1},
~H contains the result of replacing in F that osubformula by Gi.

• Whenever F has a semisurface osubformula E4G, ~H contains the result
of replacing in F that osubformula by G.

Rule (t): H =⇒ F , where H is the result of replacing in F a semisurface osubfor-
mula E tG by E or G.

Rule (5 ): H =⇒ F , where H is the result of replacing in F a semisurface osub-
formula E5G by G.

Rule (M): H =⇒ F , where H is the result of replacing in F two—one positive
and one negative—semisurface occurrences of some general atom P by an
extralogical elementary atom p that does not occur in F .

A proof (in CL13) of a formula F is a sequence of formulas ending in F such
that every formula follows from some (possibly empty) set of earlier formulas by one
of the rules of the system.
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Example 7.5. Pick any two distinct connectives &1 and &2 from the list ∧, ∧ , 4 ,
u. Then CL13 proves the formula P&1Q → P&2Q if and only if &1 is to the left
of &2 in the list. Similarly for the list t, 5 , ∨ ,∨. Here we verify this fact only for
the case {&1,&2} = { ∧ , 4 }. The reader may want to try some other combinations
as exercises. Below is a proof of P ∧Q→ P 4Q together with step justifications:

1. ¬p ∨ p From no premises by (∧ ).
2. (¬p∨⊥) ∨ p From 1 by (∨ )
3. ¬q ∨ q From no premises by (∧ )
4. (¬p∨¬q) ∨ q From 3 by (∨ )
5. (¬p∨¬Q) ∨Q From 4 by (M)
6. (¬p∨¬Q) ∨ (p4Q) From 2,5 by (4u)
7. (¬P ∨¬Q) ∨ (P 4Q) From 6 by (M)

On the other hand, the formula P 4Q → P ∧Q, i.e. (¬P 5¬Q) ∨ (P ∧Q), has
no proof in CL13. This can be shown through attempting and failing to construct,
bottom-up, a purported proof of the formula. Here we explore one of the branches of
a proof-search tree. (¬P 5¬Q)∨ (P ∧Q) is not quasielementary, so it could not be
derived by (be the conclusion of) the (∨ ) or (∧ ) rule. The (t) rule does not apply
either, as there is no t in the formula. This leaves us with one of the rules (5 ),
(4u) and (M). Let us see what happens if our target formula is derived by (5 ).
In this case the premise should be ¬Q∨ (P ∧Q). The latter can be derived only by
(4u) or (M). Again, let us try (M). The premise in this case should be ¬q∨ (P ∧q)
for some elementary atom q. But the only way ¬q ∨ (P ∧q) can be derived is by
(4u) from the premise ¬q ∨ (⊥∧q). This formula, in turn, could only be derived
by (∧ ), in which case ¬q∨⊥ is one of the premises. Now we are obviously stuck, as
¬q ∨ ⊥ is not the conclusion of any of the rules of the system. We thus hit a dead
end. All remaining possibilities can be checked in a similar routine/analytic way,
and the outcome in each case will be a dead end.

Exercise 7.6.
1. Construct a proof of (P . P ) ∧ (¬P . ¬P )→ P A P .
2. For which of the four disjunctions ∪ ∈ {∨,t, 5 , ∨} are the following formulas

provable and for which are not? (a) ¬P ∪P ; (b) P ∪Q→ Q∪P ; (c) P ∪P → P ;
(d) p ∪ p→ p.

Open Problem 7.7.
1. Consider the first-order version of the language of CL13 with choice (to start

with) quantifiers. Adequately axiomatize the set of logically valid formulas in this
language.
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2. Consider the set of the theorems of CL13 that do not contain extralogi-
cal elementary letters. Does this set remain complete with respect to extralogical
validity?

7.3 The brute force system CL12

CL12-formulas—or just formulas in this subsection—are formulas of the language
of CoL that do not contain any general gameframe letters, and do not contain any
operators other than ¬,∧,∨,u,t,u,t,∀,∃. As in the preceding two sections, ¬
applied to formulas other than extralogical atoms is understood as the corresponding
DeMorgan abbreviation, E → F is understood as an abbreviation of ¬E ∨ F , and
E A F as an abbreviation of ¬E t F .

CL12-sequents—or just sequents in this subsection—are expressions of the
form E1, · · · , En ◦– F , where E1, · · · , En (n ≥ 0) and F are CL12-formulas; for
simplicity and safety, we require that no variable has both free and bound occur-
rences in the (not necessarily the same) formulas of the sequent. The sequence
E1, · · · , En is said to be the antecedent of the sequent, and F its succedent. Seman-
tically, such a sequent is identified with the (non-CL12) formula E1∧· · ·∧En ◦– F .
So for instance, when we say that the former is logically valid, we mean that so is
the latter, and a logical solution of the former means a logical solution of the latter.
Each CL12-formula F , in turn, can be identified with the empty-antecedent sequent
◦– F . A CL12-sequent is closed iff so is its succedent as well as all formulas of the
antecedent. When applied to CL12, the word “sentence” in Theorem 7.1 should be
interpreted as “closed CL12-sequent” rather than (merely) “closed CL12-formula”.

Note that the language of CL12 is an extension of the full language of classical
first-order logic. Due to this fact, together with the presence of u,t,u,t, ◦– in the
language, CL12 is a very powerful tool for constructing CoL-based applied theories
(see Section 8), and has been repeatedly [27, 30, 36, 37, 38, 39, 40, 41] used as such
with significant advantages over the less expressive and computationally less mean-
ingful classical logic. Below is some terminology employed in our axiomatization of
CL12.

• A surface occurrence of a subformula is an occurrence that is not in the
scope of any choice operators.
• A formula not containing choice operators—i.e., a formula of the language of
classical first order logic—is said to be elementary. A sequent is elementary
iff all of its formulas are so. The elementarization ‖F‖ of a formula F is the
result of replacing in F all surface occurrences of t- and t-subformulas by ⊥,
and all surface occurrences of u- and u-subformulas by >. Note that ‖F‖ is
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(indeed) an elementary formula. The elementarization ‖E1, · · · , En ◦– F‖
of a sequent E1, · · · , En ◦– F is the elementary formula ‖E1‖ ∧ · · · ∧ ‖En‖ →
‖F‖.

• A sequent is said to be stable iff its elementarization is classically valid (i.e.,
provable in some standard version of classical first-order calculus with con-
stants, function letters and =).

• We will be using the notation F [E] to mean a formula F together with some
fixed surface occurrence of a subformula E. Using this notation sets a context,
in which F [H] will mean the result of replacing in F [E] that occurrence of E
by H.

• ~G, ~K, ~L, ~M, stand for finite sequences of formulas.

We now define CL12 by the following six rules of inference, where S1, · · · , Sm
=⇒ S means “from premise(s) S1, · · · , Sn conclude S”. Axioms are not explicitly
stated, but the set of premises of the Wait rule can be empty, in which case (the
conclusion of) this rule acts like an axiom. In each rule, i is assumed to be either 0
or 1, t is either a constant or a variable with no bound occurrences in the premise,
and y is a variable not occurring in the conclusion; H(t) (resp. H(y)) is the result
of replacing in the formula H(x) all free occurrences of the variable x by t (resp. by
y).

t-Choose: ~G ◦– F [Hi] =⇒ ~G ◦– F [H0 tH1], for either i.

u-Choose: ~G,E[Hi] ◦– F =⇒ ~G,E[H0 uH1] ◦– F , for either i.
t-Choose: ~G ◦– F [

H(t)
]

=⇒ ~G ◦– F [txH(x)
]
, for any t.

u-Choose: ~G,E
[
H(t)

]
, ~K ◦– F =⇒ ~G,E

[uxH(x)
]
, ~K ◦– F , for any t.

Replicate: ~G,E, ~K,E ◦– F =⇒ ~G,E, ~K ◦– F .
Wait: S1, · · · , Sn =⇒ S (n ≥ 0), where S is stable and the following four conditions

are satisfied:

• Whenever S has the form ~K ◦– E[H0 uH1], both sequents ~K ◦– E[H0]
and ~K ◦– E[H1] are among S1, · · · , Sn.
• Whenever S has the form ~L, J [H0tH1], ~M ◦– E, both sequents ~L, J [H0],
~M ◦– E and ~L, J [H1], ~M ◦– E are among S1, · · · , Sn.

• Whenever S has the form ~K ◦– E[uxH(x)
]
, for some y, the sequent

~K ◦– E[
H(y)

]
is among S1, · · · , Sn.
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• Whenever S has the form ~L, J
[txH(x)

]
, ~M ◦– E, for some y, the sequent

~L, J
[
H(y)

]
, ~M ◦– E is among S1, · · · , Sn.

Each rule—seen bottom-up—encodes an action that a winning strategy should
take in a corresponding situation, and the name of each rule is suggestive of that
action. For instance, Wait (indeed) prescribes the strategy to wait till the adversary
moves. This explains why we use the name “Replicate” for one of the rules rather
than the more standard “Contraction”.

A proof (in CL12) of a sequent S is a sequence S1, · · · , Sn of sequents, with
Sn = S, such that each Si follows by one of the rules of CL12 from some (possibly
empty in the case of Wait, and certainly empty in the case of i = 1) set ~P of premises
such that ~P ⊆ {S1, · · · , Si−1}. A proof of a formula F is understood as a proof of
the empty-antecedent sequent ◦– F .
Example 7.8. Here × is a binary function letter and 3 is a unary function letter.
We write x×y and x3 instead of ×(x, y) and 3(x). The following sequence is a proof
of its last sequent.

1. ∀x(
x3 = (x× x)× x)

, t = s× s, r = t× s ◦– r = s3

(by Wait from no premises)
2. ∀x(

x3 = (x× x)× x)
, t = s× s, r = t× s ◦– ty(y = s3)

(by t-Choose from 1)
3. ∀x(

x3 = (x× x)× x)
, t = s× s,tz(z = t× s) ◦– ty(y = s3)

(by Wait from 2)
4. ∀x(

x3 = (x× x)× x)
, t = s× s,uytz(z = t× y) ◦– ty(y = s3)

(by u-Choose from 3)
5. ∀x(

x3 = (x× x)× x)
, t = s× s,uxuytz(z = x× y) ◦– ty(y = s3)

(by u-Choose from 4)
6. ∀x(

x3 = (x× x)× x)
,tz(z = s× s),uxuytz(z = x× y) ◦– ty(y = s3)

(by Wait from 5)
7. ∀x(

x3 = (x× x)× x)
,uytz(z = s× y),uxuytz(z = x× y) ◦– ty(y = s3)

(by u-Choose from 6)
8. ∀x(

x3 = (x × x) × x
)
, uxuytz(z = x × y), uxuytz(z = x × y) ◦–

ty(y = s3)
(by u-Choose from 7)

9. ∀x(
x3 = (x× x)× x)

,uxuytz(z = x× y) ◦– ty(y = s3)
(by Replicate from 8)
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10. ∀x(
x3 = (x× x)× x)

,uxuytz(z = x× y) ◦– uxty(y = x3)
(by Wait from 9)

Exercise 7.9. To see the resource-consciousness of CL12, show that it does not
prove p u q → (p u q) ∧ (p u q), even though this formula has the form F → F ∧ F
of a classical tautology. Then show that, in contrast, CL12 proves the sequent
puq ◦– (puq)∧(puq) because, unlike the antecedent of a pimplication, the antecedent
of a brimplication is reusable (trough Replicate).

For any closed sequent E1, · · · , En ◦– F , following holds due to the adequacy
Theorem 7.1:

CL12 proves E1, · · · , En ◦– F if and only if
F is a logical consequence of E1, · · · , En. (4)

This explains why we call the following rule of inference Logical Consequence:

E1, · · · , En =⇒ F , where CL12 proves the sequent E1, · · · , En ◦– F .

Logical Consequence is the only logical rule of inference in all CL12-based ap-
plied theories briefly discussed in Section 8. To appreciate the convenience that
Thesis 6.5 offers when reasoning in such theories, let us look at the following exam-
ple.

Example 7.10. Imagine a CL12-based applied formal theory, in which we have
proven or postulated ∀x(

x3 = (x × x) × x
)
(the meaning of “cube” in terms of

multiplication) and uxuytz(z = x× y) (the computability of multiplication), and
now we want to derive uxty(y = x3) (the computability of “cube”). This is how
we can reason to justify uxty(y = x3):

Consider any s (selected by the environment for x in uxty(y = x3)).
We need to find s3. Using the resource uxuytz(z = x × y) twice, we
first find the value t of s× s, and then the value r of t× s. According to
∀x(

x3 = (x× x)× x)
, such an r is the sought s3.

Thesis 6.5, in view of (4), promises that the above intuitive argument will be trans-
latable into a proof of

∀x(
x3 = (x× x)× x)

,uxuytz(z = x× y) ◦– uxty(y = x3)

in CL12, and hence the succedent uxty(y = x3) will be derivable in the theory by
Logical Consequence as the formulas of the antecedent are already proven. Such a
proof indeed exists—see Example 7.8.
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Open Problem 7.11.
1. Add the sequential connectives 4 , 5 to the language of CL12 and ade-

quately axiomatize the corresponding logic.
2. Axiomatize (if possible) the set of extralogically valid CL12-sequents.
3. Along with elementary gameframe letters, allow also general gameframe letters

in the language of CL12, and axiomatize (if possible) the set of valid sequents of
this extended language.

8 Applied systems based on computability logic
The main utility of CoL, actual or potential, is related to the benefits of using it
as a logical basis for applied systems, such as axiomatic theories or knowledgebase
systems.

The most common logical basis for applied systems is classical first-order logic
(CFOL). This is due to the fact that CFOL is universal: its language allows one to
say anything one could say, and its proof system allows one to justify anything one
could justify logically. But when it comes to expressing tasks (as opposed to facts)
and reasoning about them, such as the task/problem expressed by uxty(y = x2),
using CFOL can be an extremely circuitous and awkward way. Asking why we need
CoL if everything can be done with CFOL is akin to asking, for instance, why we
study modal logics if anything one can express or reason about in modal logic can
just as well be expressed or reasoned about using CFOL.

For specificity, let us imagine what a typical applied system S based on the al-
ready axiomatized fragment CL12 of CoL would look like. The construction of
such a system would start from building its extralogical basis B, with some fixed
interpretation ∗ in mind. In what follows, for readability, we omit explicit refer-
ences to this ∗ and, terminologically, identify each sentence E with the game E∗.
Depending on the context or traditions, B would generally be referred to as the
knowledgebase, or the set of axioms, of S. It would be a collection of rele-
vant (to the purposes of the system) sentences expressing computational problems
with already known, fixed solutions. Those can be atomic elementary sentences
expressing true facts such as Jane = MotherOf(Bob) or 0 6= 1; nonatomic ele-
mentary sentences expressing general or conceptual knowledge such as ∀x∀y(

y =
MotherOf(x) → Female(y)

)
or ∀x(x2 = x × x); nonatomic nonelementary sen-

tences such as uxty(
y = DateOfBirth(x)

)
expressing the ability to tell any

person’s date of birth (perhaps due to having access to an external database),
uxuytz(z = x× y) expressing the ability to compute multiplication, or

uxuy(¬Halts(x, y) tHalts(x, y)
)→ uxuy(¬Accepts(x, y) tAccepts(x, y)

)
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expressing the ability to reduce the acceptance problem to the halting problem. The
only logical rule of inference in S would be Logical Consequence defined in Section
7.3.

A proof P of a sentence F in such a system S will be defined in a standard
way, with the elements of B acting as axioms. The rule of Logical Consequence
preserves computability in the sense that, as long as all sentences of the antecedent
of a CL12-sequent are computable under a given interpretation, so is the succedent
and, furthermore, a solution of the latter can be extracted from solutions of the
sentences of the antecedent. Since solutions of all axioms are already known, P
thus automatically translates into a solution H of F . Think of S as a declarative
programming language, P as a program written in that language, the sentence F as
a specification of (the goal of) such a program, the mechanism extracting solutions
from proofs as a compiler, and the above H as a machine-language-level translation
of the high-level program P. Note that the notoriously hard problem of program
verification is fully neutralized in this paradigm: being a proof of the sentence F ,
P automatically also serves as a formal verification of the fact that the program P
meets its specification F . Further, P is a program commented in an extreme sense,
with every line/sentence in this program being its own, best possible, comment.

A relevant question, of course, is how efficient the above solution H would be
in terms of computational complexity. Here come more pieces of positive news.
The traditional complexity-theoretic concepts such as time or space complexities
find in CoL natural and conservative generalizations from the traditional sorts of
problems to all games (cf. [37]). The Logical Consequence rule is complexity-
theoretically well behaved, with the time (resp. space) complexity of its conclusion
guaranteed to be at most linearly (resp. logarithmically) different from the time
(resp. space) complexities of the solutions of the premises. So, how efficient the
solutions extracted from proofs in S are, is eventually determined by how efficient
the solutions of the axioms comprising B are. If, for instance, all axioms have linear
time and/or logarithmic space solutions, then so do all theorems of S as well.

In some cases, the extralogical postulates of S would consist of not only the
axioms B, but also certain extralogical rules of inference such as some versions of
induction or comprehension. Depending on the version, such a rule may less closely
preserve computational complexity than Logical Consequence does. For instance,
each application of induction may increase the time complexity quadratically rather
than linearly. By limiting the number of such applications or imposing certain other
restrictions, we can still get a system all of whose theorems are problems with low-
order polynomial time complexities as long as all axioms are so.

By now CoL has found applications in a series CLA1-CLA11 of formal num-
ber theories dubbed “clarithmetics”. All of these theories are based on CL12,
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and differ between each other only in their extralogical postulates. The language
of each theory has the same extralogical vocabulary {0,+,×,′ } (where x′ means
“the successor of x”) as the language of first-order Peano arithmetic. Unlike other
approaches with similar aspirations such as that of bounded arithmetic [7], this ap-
proach avoids a need for adding more extralogical primitives to the language as,
due to extending rather than restricting traditional Peano arithmetic, all arithmeti-
cal functions or predicates remain expressible in standard ways. The extralogical
postulates of clarithmetical systems are also remarkably simple, with their sets of
axioms consisting of all axioms of Peano arithmetic plus the single nonelementary
sentence uxty(y = x′) or just a few similarly innocuous-looking axioms, and the
set of extralogical inference rules consisting of induction and perhaps one more rule
such as comprehension. Different clarithmetics serve different computational com-
plexity classes, which explains their multiplicity. Each system has been proven to be
sound and complete with respect to its target complexity class C. Sound in the sense
that every theorem T of the system expresses an arithmetical problem A with a C
complexity solution and, furthermore, such a solution can be automatically obtained
from the proof of T . And complete in the sense that every arithmetical problem A
with a C complexity solution is expressed by some theorem T of the system. Fur-
thermore, if one adds all true sentences of Peano arithmetic to the set of axioms,
then this extensional completeness result strengthens to intensional completeness,
according to which every (rather than just some) sentence F expressing such an A
is a theorem of the system.

Among CLA1-CLA11, the system CLA11 stands out in that it is a scheme of
clarithmetical theories rather than a particular theory, taking three parameters a, s, t
and correspondingly written as CLA11(a, s, t). These parameters range over sets of
terms or pseudoterms used as bounds foru,t in certain postulates. t determines the
time complexity of all theorems of the system, s determines space complexity and a
the so called amplitude complexity (the complexity measure concerned with the sizes
of >’s moves relative to the sizes of ⊥’s moves). By tuning these three parameters
in an essentially mechanical, brute force fashion, one immediately gets a system
sound and complete with respect to one or another combination of time, space and
amplitude complexities. For instance, for Linear amplitude + Logarithmic space +
Polynomial time, it is sufficient to choose a to be the canonical set of terms expressing
all linear functions (i.e. terms built from variables, 0, + and ′), t the canonical set of
terms for all polynomial functions (namely, terms built from variables, 0, +, × and
′), and s the set of canonical pseudoterms for all logarithmic functions. This way one
can obtain a system for essentially all natural (whatever this means) combinations
of time, space and amplitude complexities. See the introductory section of [39] for
a more detailed account.
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Abstract

When we talk about possibility and necessity we might mean any of a wide range
of different kinds of modality, for example, logical modality, physical modality, or
epistemic modality, to name just a few. One natural way to understand the relation
between different kinds of possibility and necessity is that some are relativizations of
others. Hale and Leech (2017) [4] propose a new formalization of relative necessities,
but that proposal is restricted to alethic, non-epistemic necessities. In this paper I ex-
plore the prospects for extending the account to non-alethic and epistemic necessities.

1 Introduction

When we talk about possibility and necessity – when we say that, for example, something
must be the case, or something could have been so – we might mean any of a wide range of
different kinds of modality, for example, logical modality, physical or natural modality, or
epistemic modality, to name just a few. One natural way to understand the relation between
different kinds of possibility and necessity is that some are relativizations of others. For
example, one might think that whatever is physically necessary is also what follows as a
matter of logical necessity from the laws of physics. In Hale and Leech (2017) [4] we
made a proposal (detailed below) for how to formalize relative necessities, taking logical
necessity to be our base necessity, and other necessities as relative necessities. But that
proposal was offered with a clear restriction to alethic, non-epistemic necessities, that is,
necessities which are factive (such that: if it is necessary that p, then p) and not epistemic
(not defined in epistemic terms, in relation to knowledge or evidence etc.). There were
good reasons for such a restriction for, as we shall see, extending such an account beyond
the alethic raises significant problems. However, as I shall argue, there are also reasons for
wanting to treat all necessities – alethic or not, epistemic or not – in the same way. Hence, in

My thanks go to an anonymous referee, audiences in Oslo (June 2018) and London (May 2019), and especially
to Alex Grzankowski, Nick Jones, Øystein Linnebo, Carlo Nicolai, and Mark Textor for helpful comments and
discussion.

Vol. 7 No. 6 2020
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications



Leech

this paper I explore the prospects for such an extended relative necessity account; one might
also describe it as an attempt to offer a unifying account of different kinds of necessity.1

I proceed as follows. First, I introduce the account of relative necessity offered in Hale
and Leech (2017) [4]. I then present what I call “the similarity argument”, motivating a
uniform treatment of a wider range of modalities. I then introduce a major problem for
this project: a set of difficulties that arise from non-alethic modalities such as epistemic and
doxastic (belief-based) modalities, and modalities that appear to tolerate contradiction, such
as legal modalities. I will review leading treatments of such cases developed by Kratzer [8,
9, 10, 11], before introducing the main proposal of this paper: a theory of relative necessity
that draws on relevant logic. I will indicate some potential advantages that might be gained
by exploring this approach.

2 Relative Necessity Reformulated

The basic starting idea of a relative necessity in general is that it is relatively necessary that
p, in some specific sense, just when p follows logically (as a matter of logical necessity)
from some specific set or conjunction of propositions – call them Φ-propositions. So, for
example, it is physically necessary that p just when p follows logically from laws of physics,
or it is London-necessary that p just when p follows logically from true propositions about
London. (Note: there is no reason, on the face of it, why relative necessities should be
the familiar and non-arbitrary kinds of necessities that we usually list, such as physical
necessity.)2 In the past, it was thought that this idea could be captured formally simply by a
necessitated (material) conditional,3 or equivalently a strict conditional, such as

�(φ ⊃ p)

where, for example, ‘φ’ stands for a conjunction of the laws of physics. However, such an
approach leads to trouble.

I shall briefly review one of the key problems, as it will become relevant later: If �
in this formulation satisfies the S4 axiom, which is plausible for logical necessity,4 then it
follows that all relative necessities thus defined also satisfy the S4 axiom. Put briefly, the
S4 axiom for a relative necessity thus defined

�(φ ⊃ p) ⊃ �(φ ⊃ �(φ ⊃ p))
1This is my attempt to extend the account of [4]. I can’t say whether or not Bob would endorse the

following. In his other work, he endorsed a negative free logic (e.g., [5, ch.9]), which I think means he would
not be in favour of using a relevant logic. I hope at least he would find it interesting.

2See [12]
3I shall use ‘⊃’ throughout to signify the material conditional.
4E.g., see [18, p.76] for an argument that the logic of the necessity of the classical consequence relation is

S5.
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is itself a theorem of S4 for �. But one might think that we should be able to capture the
idea that some necessities may be both relative and have a logic weaker than S4. Hum-
berstone [7] draws out a model-theoretic diagnosis of the problem: if we interpret relative
modality in terms of a range restriction of the accessibility relation over possible worlds
(say to all worlds with the same laws of physics), then in crucial cases we do not thereby
change the properties of the accessibility relation. In particular, if it is transitive, then it
remains transitive, and so S4 will hold for whatever modality is defined, whatever the range
restriction. Humberstone offers a proposed solution in terms of two-dimensional semantics
[7, 6]. In [4] Hale and I raise some concerns about this approach, and propose the following
alternative.

The initial informal gloss on relative necessity made an important assumption, resulting
in the omission of crucial information. The formula ‘�(φ ⊃ p)’ says nothing about what
φ is, but that is a crucial part of relative necessity: not just that p follows logically from
something, but that it follows logically from propositions of a certain kind. We proposed that
this information be put back into the formalization, in the form of the explicit assumption
that there are propositions of a certain kind from which p follows. Hence we have, in
general:

RN It is Φ-necessary that p iff ∃q(Φ(q) ∧ �(q ⊃ p))5

Where “Φ(q)” should be understood as “it is a Φ-proposition that q” (q may be a conjunc-
tion). To give a specific example:

RNp It is physically necessary that p iff ∃q(π(q) ∧ �(q ⊃ p))

Where “π(q)” should be understood as “it is a law (or laws) of physics that q”. Such a for-
malization no longer falls foul of the S4 problem, as the S4 rendering of a relative necessity
is clearly no longer a theorem of S4 for �.6 There is no other way that we could see to
generate the same problematic result.

One notable feature of the proposal that is important for present purposes is that if there
is at least one Φ-proposition, then logical necessity (�p) implies relative necessity (�Φ p).
Finally, to reiterate, this proposal was offered for alethic, non-epistemic necessity.

5If we want to ensure closure under logical consequence for relative modalities, i.e., such that if A1, ..., An `
B then �ΦA1, ...,�ΦAn ` �ΦB for n ≥ 1, one option is to amend the definition to: �ΦA =def ∃q1, ...,∃qn(Φ(q1) ∧
... ∧ Φ(qn) ∧ �(q1 ∧ ... ∧ qn ⊃ A)). In [4] this is what we opted for. I reserve judgment for now whether the
extended view under discussion in this paper should also have this closure property. It is also worth noting that
all three formulations so far – the standard account, RN, and the schema in this note – may face a problem if
one wants to define a necessity relative to an infinite set of propositions. Although the problem is not fatal. See
e.g. [17], p.711.

6∃q(Φ(q) ∧ �(q ⊃ p)) ⊃ ∃r(Φ(r) ∧ �(r ⊃ ∃q(Φ(q) ∧ �(q ⊃ p))))
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3 The similarity argument

Why should we hope to treat different kinds of possibility and necessity together in a single
framework?

Different kinds of modality in the world seem to have something important in common
(just as on many views in linguistics all the “must”s and “can”s have a shared core mean-
ing).7 For example, metaphysical necessity and natural necessity can be taken to be distinct
kinds of necessity, subject to different principles. Even so, they are fundamentally alike.
They are both necessities for a start. That may sound obvious, but if the two phenomena
are given entirely different accounts, it may seem a mystery why they seem to have some-
thing so distinctive in common, that they both concern a way in which things must be so.
That different necessities and possibilities have something in common demands explana-
tion. One plausible explanation that meets this need, is that all modalities can be expressed
as relativizations of one fundamental kind of modality in the world (or as that fundamental
kind itself). In particular, all non-logical necessities can be expressed as relativizations of
logical necessity.

This argument is not quite an argument to the best explanation, but rather an argument
to a plausible explanation: there is a phenomenon to be explained, and treating modalities
as relative provides a fairly simple and plausible explanation. Let us briefly consider one
alternative that might seem just as good. The core idea is that we can explain what different
kinds of modality have in common by the fact that they can be expressed as derivative of
a shared kind of necessity. Relativization is indeed one way to derive one modality from
another. But what about other modes of derivation, such as restriction? Perhaps one could
account for similarity in at least some cases because the relevant kind of modality is a
restriction of some other modality, i.e. the physical possibilities might be a subset of the
metaphysical possibilities, or the logical necessities a subset of the metaphysical necessites.
Let me offer one reason why relativization may be more appealing than restriction.

In order to explain important similarities between different kinds of necessity in terms
of restriction, one will need a very wide notion of necessity to restrict. For example, one
might plausibly take the realm of physical necessity to be narrower than the realm of human
necessity (there are human necessities not physically necessary, such as not running 100m
in less than 5 seconds, but no physical impossibilities are humanly possible). If one were

7See especially Kratzer [8]. Vetter and Viebahn [20] argue, to the contrary, that modals do not share a
single core meaning with differences accounted for in terms of context-sensitivity, but rather that modals are
polysemous: they have related meanings, such as, for example, ‘healthy’ in the sense that a salad is healthy
and in the sense that a dog is healthy. To properly engage with their arguments here would take me beyond the
scope of the present essay, but it is worth noting that Vetter and Viebahn do allow for context-sensitivity within
what they call different ‘modal flavours’. Moreover, even if the linguistic story is polysemous, the argument
from similarity, understood as concerning modalities themselves, and not necessarily our words for them, may
still hold water.
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to apply a restrictive strategy here, the physical necessities would simply be a subclass of
the human necessities. In order to accommodate all the different kinds, the widest kind
of necessity is going to be something very weak; hardly an ideal paradigm from which to
explain how it is that, e.g., physical necessities are necessary. In contrast, relativization
does not need the fundamental kind of modality to somehow “contain” all the others. This
allows us to take a stronger and more intuitively robust kind of modality as the basic kind.
One might reply: there is no such problem if we proceed by restriction of possibility, for
the widest and weakest possibilities are often taken to be of a plausibly fundamental kind,
such as logical possibilities. Even so, relativization has the advantage of being able to take
the same fundamental kind of modality, whether starting with necessity or possibility. For
example, we might start instead with a general account of relative possibility:

RP It is Φ-possible that p iff ¬∃q(Φ(q) ∧ ¬^(q ∧ p))

That is: it is Φ-possible that p just when there’s no Φ-proposition that rules out p. This
is just the dual of RN, and thus takes the same kind of modality – just logical possibility
(^) rather than logical necessity. The fact that taking necessity or possibility first makes no
difference to the variety of base modality suggests that this kind of derivation is more robust
and significant than restriction.

So, we have some motivation for treating modalities together. But what about epistemic
and non-alethic modalities? Can the relative necessity view be extended to necessities more
widely construed?

4 The Problem with Other Modalities

Let me first clarify what is at stake. The aim is to offer a formal way to capture various
notions of necessity as relative necessities. But what would it take to successfully capture
such a necessity? A primary constraint will be to honour intuitions about the truth of various
claims made using the associated modal term. So, for example, if a sentence such as ‘Joe
must be the killer’ seems plausibly true, in a given context, for an epistemic reading of
‘must’, then the formalization should be able to accommodate that. And similarly, if there
is a salient context where ‘Jasmine must be the killer’ would be false, it should also be
possible to accommodate that. That said, my aim here is not to offer a comprehensive
semantics for modal words, nor is it to precisely capture every such case that we might
think of. Perhaps the framework I propose could be developed into something like this, but
I do not propose to do so here. Rather, the notions I aim to capture should be understood
as pseudo-technical notions of modality, which bear enough resemblance to our untutored
notions of various modalities to deserve names such as ‘epistemic modality’, and which
honour the strongest intuitions concerning the truth of various modal statements, but which
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also have some leeway for regimentation and idealization. The aim is to strike a happy
medium between the kind of wholly implausible formalization we get by heavy-handedly
applying the Hale-Leech relative necessity formulation to non-alethic and epistemic cases,
and an entirely linguistically and psychologically adequate formalization.

4.1 Epistemic Modality

The notions of epistemic necessity and possibility concern the “must”s and “might”s in
sentences such as:

(Given all the evidence) Joe must be the killer.

(For all I know) Jane might be at home.

Epistemic modality is typically linked to sets of known propositions, or sets of evidential
propositions, which might further be indexed to a particular epistemic subject. As such, it
would be natural to formulate epistemic necessity as a relative necessity.

RNe It is epistemically necessary (for S ) that p =df. ∃q(KS (q) ∧ �(q ⊃ p))

Where “KS (q)” should be understood as “S knows that q”. That is, it is epistemically
necessary for some epistemic subject S that p just when p follows as a matter of logical
necessity from some propositions known by S . For example, if S knows that if Jasmine
was out of town, then Joe was the killer, and if S learns also that Jasmine was out of town,
it follows that Joe was the killer. Given our definition, Joe must – in the epistemic sense –
be the killer.

However, there is a significant problem with this formulation. As long as at least one
proposition is known (that is, if S knows anything), then all logical truths will come out
as epistemically necessary. For all logical truths follow logically from any proposition (at
least assuming a classical logic). So, for any logical truth L, it would be true to say that it
must, for all S knows, be the case that L. But what if S is utterly ignorant of logic? Then it
would seem strange at best, incorrect at worst, to say that for S it is epistemically necessary
that L. Or put it this way. When S first attends their logic class, they haven’t yet learned
any propositional logic, and certainly haven’t yet learned that it is a logical truth that for all
p, q, r, s, (p ⊃ q) ⊃ ((q ⊃ (r ⊃ s)) ⊃ ((p ∧ r) ⊃ s)). So it would seem more appropriate to
say that, for all S knows, it’s possible – it’s epistemically possible – that for some p, q, r, s,
¬[(p ⊃ q) ⊃ ((q ⊃ (r ⊃ s)) ⊃ ((p ∧ r) ⊃ s))], and hence the logical truth itself is not
epistemically necessary.

To clarify, the problem is not one of S ’s logical reasoning abilities; it may well be that if
S thought long and hard enough about it, they would realise that L has to be true. The issue
is that, intuitively, there is a point at which whether or not some logical truth L is the case

1184



Relative Necessity Extended

seems to be genuinely open for S , which is supposed to be captured by saying that both L
and ¬L are epistemically possible for them (at that point). But according to RNe, that is
ruled out: L is epistemically necessary, and ¬L is epistemically impossible.

This is sometimes known as the problem of logical omniscience, although, as we shall
see, it extends beyond the knowledge case to other, non-alethic modalities. Not every logical
necessity is, plausibly, epistemically necessary; not every logical impossibility is epistemi-
cally impossible.

4.2 Propositional Attitudes

Knowledge is often taken to be a kind of propositional attitude. The problem besetting
epistemic modality carries over to other kinds of modality based on propositional attitudes,
such as doxastic modality (belief) and boulomaic (or bouletic) modality (desire). We might
informally introduce doxastic necessity as what is required by someone’s beliefs. So, for
example,

(Given everything Columbo believes) Joe must be the killer.

We might then naturally define doxastic necessity as relative to a subject’s beliefs.

RNd It is doxastically necessary that p =df. ∃q(BS (q) ∧ �(q ⊃ p))

Where “BS (q)” should be understood as “S believes that q”. But the problem from above is
replicated: If Columbo, say, has at least one belief – if he believes anything at all – then all
logical truths will turn out to be doxastically necessary for him. But what if Columbo has
no beliefs about logic at all? It would seem strange to say that, for him, it must be that for
all p, q, r, s, (p ⊃ q) ⊃ ((q ⊃ (r ⊃ s)) ⊃ ((p ∧ r) ⊃ s)). Moreover, suppose that for some
logical truth L, Columbo believes neither L nor ¬L. We would like to be able to say that, for
all Columbo believes, it could be that L, or it could be that ¬L, such that, given his current
state of belief, both are doxastically possible for him. But if L is in fact true, and logically
necessarily so, then according to RNd it is doxastically necessary that L, and doxastically
impossible that ¬L. Again, we have a problem, that we might term the problem of logical
omnicredence.

The same goes for modalities defined in terms of desire. We might informally introduce
boulomaic necessity as what is required by someone’s desires. So, for example,

(Given Rob Gordon’s desires for music) he must have that album.

We might then define boulomaic necessity as relative to a subject’s desires.

RNb It is boulomaically necessary that p =df. ∃q(DS (q) ∧ �(q ⊃ p))
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Where “DS (q)” should be understood as “S desires that q”. But again, if Rob has at least
one desire, then all logical truths will be boulomaically necessary. But that’s bizarre: why
should one hanker for logical truth, just because one desires music? We might call this the
problem of logical omnicupiscence.

As in the epistemic case, it seems implausible that all logical impossibilities should for
that reason be doxastically and boulomaically impossible, i.e. in some sense unbelievable
and undesirable. For a bad logician may believe a logical falsehood, and a long-suffering
logician with an unwelcome end to their proof may desire that this logical falsehood be
true. (And this is all without yet considering that we often have contradictory desires and
beliefs.)

What seems to lie at the heart of these problems? Intuitively, in the problematic cases,
the propositions that are known, or believed, or desired, don’t appear to have anything to
do with some of the logical truths. For example, if I believe that Torquay is in Devon, this,
intuitively speaking, has implications for the proposition that Torquay is not in Devon: given
what I believe, the latter can’t be true. But my belief that Torquay is in Devon doesn’t appear
to have anything to do with the proposition that 2+2=4 or it’s not the case that 2+2=4. That
latter might be necessarily true for other reasons, but it seems to be left open by my belief,
in an important sense. And it is this that we wish to capture. One might say: my belief
that Torquay is in Devon simply isn’t relevant to whether 2+2=4 or it’s not the case that
2+2=4, in the way that my belief is relevant to whether Torquay is in Cornwall. This is
all informal and intuitive, but something in this vicinity has been captured in attempts to
develop relevant logics, a family of logics that, amongst other things, try to do justice to
the idea that entailments hold only between propositions that have some kind of otherwise
related content. But before I say more about relevance, I shall introduce a further problem
case.

4.3 Inconsistent Conditions

Another problem case arises where the propositions to which a kind of modality is supposed
to be relative are inconsistent. There are recognizable such kinds of modality. For example,
it does not seem unlikely that someone might hold inconsistent beliefs (affecting doxastic
modality), or that they might hold inconsistent desires (affecting boulomaic modality), or
that a complicated legal system built up over many centuries might contain inconsistent
laws (affecting legal necessity), and so on.

The problem is as follows. If the Φ-propositions to which Φ-modality is relative are
inconsistent, then every proposition will turn out to be Φ-necessary — assuming a logical
consequence relation which conforms to the explosion rule of inference, ex falso quodlibet,
such as the classical consequence relation. For, in such a logic, everything follows from a
contradiction. But we would not expect, for example, some inconsistency in the legislature
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to result in everything being legally necessary, including murder, arson, and completing the
Times crossword.8

Conversely, and perversely, nothing would be Φ-possible. Take again the proposed
formulation of relative possibility:

RP It is Φ-possible that p iff ¬∃q(Φ(q) ∧ ¬^(q ∧ p))

(equivalently: It is Φ-possible that p iff ¬∃q(Φ(q) ∧ �(q ⊃ ¬p))). Suppose that there is
a proposition ⊥ which satisfies condition Φ but which is inconsistent. Suppose also that
something is Φ-possible, say p. Since it’s Φ-possible that p, no Φ-proposition rules out
p, i.e., ¬∃q(Φ(q) ∧ ¬^(q ∧ p)), hence ∀q(Φq ⊃ ¬�(q ⊃ ¬p)). And in particular, since
Φ(⊥), ¬�(⊥ ⊃ ¬p). But this is equivalent to ^(⊥ ∧ p), from which it follows that ^⊥.
But ⊥ is inconsistent and of course not logically possible. Contradiction! Holding fixed the
inconsistency and RP, we must deny that anything is Φ-possible. But again, we would not
expect inconsistencies in the law to result in everything being illegal, including giving to
charity, stopping at red lights, and completing the Times crossword. Something has gone
badly wrong.

5 Kratzer on Relative Modality

Perhaps the most well-known and influential accounts of relative necessity have been devel-
oped by Angelika Kratzer. This paper would be incomplete without at least a brief review of
her work. One can discern two kinds of approach to the issues raises above: what I will call
her “early inconsistency” account, developed in [8] in response to problems arising from in-
consistent conditions, and what I will call her “three-dimensional account” (first presented
in [9], which I will be taking from [10, 11]), which offers a more nuanced solution.

5.1 Early Inconsistency

Kratzer (1977) [8] offers an analysis of modal phrases as sharing a common structure: (1)
a ‘relative modal phrase’, such as can in view of or must in view of ; (2) a first argument
for that modal phrase: that in view of which something is possible or necessary; and (3) a
second argument for the modal phrase, which is the proposition in scope of the modal. So,
for example, “Rob must have that album” could be analysed as: ‘In view of Rob’s desires,

8The question of logical closure is relevant here (see footnote 5). For it is not clear whether if Φφ and
Φψ then Φ(φ ∧ ψ), and in particular, whether if Φφ and Φ¬φ then Φ(φ ∧ ¬φ). For example, if S believes
that p, and S believes that ¬p, does S believe that p ∧ ¬p? Note that if we opt for the amended definition –
�ΦA =def ∃q1, ...,∃qn(Φ(q1)∧ ...∧Φ(qn)∧�(q1 ∧ ...∧ qn ⊃ A)) – then inconsistent Φ-propositions generate the
problem even without this conjunction property. I shall proceed here in terms of the simpler formulation, under
the assumption that there are at least some relevant cases where there is an inconsistent Φ-proposition.
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he must have that album’, where (1) is must in view of, (2) is Rob’s desires, and (3) is Rob’s
having that album.

Kratzer offers a first attempt at a precise definition of the relative modal phrases (I’ll
focus just on necessity here):

DEFINITION 5. The meaning of ‘must in view of’ is that function ζ, which
fulfils the following conditions:

(i) If p is a proposition and f a function which assigns a set of propositions to
every w ∈ W, then ( f , p) is in the domain of ζ.

(ii) For any f and p such that ( f , p) is in the domain of ζ, ζ( f , p) is that propo-
sition which is true in exactly those w ∈ W for which the following holds: p
follows (logically) from f (w).

[8, p.346]

p is necessary relative to the propositions selected by f just when p follows logically from
those propositions.

Kratzer introduces a case to motivate and illustrate the problem of inconsistency.

Let us imagine a country where the only source of law is the judgements
which are handed down. There are no hierarchies of judges, and all judgements
have equal weight. There are no majorities to be considered. It does not matter
whether one judgement has a hundred judgements against it; it does not have
less importance for all that. Let New Zealand be such a country.

There is one judgement in New Zealand which provides that murder is a
crime. Never in the whole history of the country has anyone dared to attack
this judgement. No judgement in the whole history of New Zealand suggests
that murder is not a crime. There are other judgements, however. Some judges
did not quite agree, and there were even judges who disagreed so much that
they did not talk to each other any more.

Here is an example of such a disagreement. In Wellington a judgement
was handed down which provided that deer are not personally responsible for
damage they inflict on young trees. In Auckland a judgement was handed down
which provided that deer are personally responsible for damage they inflict on
young trees. This means that the set of propositions which the New Zealand
judgements provide is an inconsistent set of propositions. [8, pp.347–8]

The problem is that, given Definition 5, both of the following sentences are true, for in this
case f (w) is the set of New Zealand judgements, and given that that set is inconsistent, any
proposition will logically follow, including both that murder is a crime, and that murder is
not a crime.
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(6) In view of what the New Zealand judgements provide, murder must be a
crime.

(7) In view of what the New Zealand judgements provide, it must be that mur-
der is not a crime.

[8, p.348, Kratzer’s numbering]

Such a result is unacceptable. Even if the laws are confusing when it comes to trees and
deer, there’s no disagreement at all over the criminality of murder.

Kratzer’s repair here is to eliminate the inconsistency by adding structure to the sets of
propositions to which a relative necessity is relative.

DEFINITION 7. The meaning of ‘must in view of’ is that function ζ which
fulfils the following conditions:

(i) As in Definition 5.

(ii) For any f and p such that ( f , p) is in the domain of ζ, ζ( f , p) is that propo-
sition which is true in exactly those w ∈ W for which the following holds: if
X is the set of all consistent subsets of f (w), then there is for every set in X a
superset in X from which p follows (logically).

[8, p.351]

This solves our problem admirably. The set of New Zealand judgments consists of one
about murder, call it m, and two inconsistent ones about deer, call them d and ¬d. Call this
set Z: {m, d,¬d}, and the set of all consistent subsets of Z, Y: {{m}, {d}, {¬d}, {m, d}, {m,¬d},
∅}. Then for every set in Y , we can see that either m follows logically, or Y contains a
consistent extension of that set from which m follows logically. By contrast, things are not
so for d, as, for example, there is no consistent extension of {¬d} in from which d follows.
The proposal allows us to ‘overlook the inconsistences’ [8, p.351] of the set of New Zealand
judgments, by looking at its consistent subsets and consistent extensions of those subsets.

If we wanted to apply this to the Hale-Leech account, we would need a formulation
according to which a relative necessity is no longer logically necessary relative to the Φ-
propositions, but rather logically necessary relative to the supersets of the consistent subsets
of the set of Φ-propositions. However that might be worked out, we should first pause, for
there are some shortcomings of the proposal.

Kratzer’s proposal still appears to suffer from what we might in general call “the logical-
omni problem”: all logical truths follow (classically) logically from all of the consistent sets
of propositions.9 We may wish to genuinely capture the fact that it is legally necessary that
d and legally necessary that ¬d, but not legally necessary that ¬m. If a legislature really is

9Note: Kratzer does not claim to solve problems of logical omniscience in this paper.
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inconsistent, isn’t that better captured by recognising that we are presented with inconsistent
legal necessities – it’s both a crime and not a crime for a deer to damage a young tree –
rather than by insisting that, by some transformation, the inconsistent code generates only a
consistent set of legal necessities? The problem with an inconsistent law might be thought
to be that we are required by law to perform inconsistent actions, not that we have no legal
requirements at all where inconsistency is to be found.10

It might be preferable, for this reason, if there was a way to avoid explosion – every-
thing being legally necessary – without entirely avoiding the inconsistency. One thing that
Kratzer’s analysis takes for granted is what it takes to follow logically. And it is this that,
arguably, causes the problems. For, given a classical consequence relation, a logical truth
follows from anything whatsoever (causing the logical-omni problems), and anything what-
soever follows from a contradiction (causing the inconsistency problem). Rather than ac-
cepting that these consequences must hold, and attempting to solve the problems another
way, an alternative way forward – which I shall explore below – is to change the conse-
quence relation.

5.2 The Three-Dimensional Account

In more recent work, Kratzer [9, 10, 11] offers an account of modals which identifies three
distinct elements: modal force, i.e., possibility, necessity, and so on (roughly equivalent
to the relative modal phrase earlier); modal base, the set of accessible worlds which our
modality is ‘in view of’; and an ordering source, an element which induces an ordering on
the modal base, such as desires or values.

[D]ifferences between modal expressions in different languages can be capture
in terms of three dimensions:

Dimension 1: modal force: necessity, weak necessity, good possibility, possi-
bility, slight possibility, at least as good a possibility, better possibility, maybe
others.

Dimension 2: modal base: circumstantial versus epistemic ...

Dimension 3: ordering source: deontic, bouletic, stereotypical etc.

[10, p.649]

10One might compare these considerations to Ruth Barcan Marcus’s claim that moral dilemmas are genuine
and do not erase moral obligations, even if they cannot be fulfilled in the same circumstances. She writes, for
example, that ‘wherever circumstances are such that an obligation to do x and an obligation to do y cannot as a
matter of circumstance be fulfilled, the obligations to do each are not erased, even though they are unfulfillable’.
[2, pp.131–2]
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The ordering source is the mechanism by which inconsistencies can be tolerated. Kratzer
offers the following definition of necessity.

Definition 6.

A proposition p is a necessity in a world w with respect to a modal base f and
an ordering source g iff the following condition is satisfied:

For all u ∈ ⋂ f (w) there is a v ∈ ⋂ f (w) such that v ≤g(w) u and for all
z ∈ ⋂ f (w): if z ≤g(w) v then z ∈ p.

... Roughly, it says that a proposition is a necessity if and only if it is true in all
accessible worlds which come closest to the ideal established by the ordering
source.

([10, p. 644]. See also [11, p.40].)

Let us consider, for example, what I must do to best satisfy my desires. The modal force
is necessity. The modal base is circumstantial: we are interested a modal base that is con-
strained by how the world could be, as I need to satisfy my desires in the world, rather than
a modal base that is constrained by information. The ordering source is my desires. Now,
suppose that I want to A, to B, and to not-C, but suppose also that one As if and only if one
Cs. For example,

I want to become popular, I don’t want to go to the pub (more precisely: I want
not to go to the pub), and I want to hike in the mountains. ... As a matter of
fact, I live in a world where it is an unalterable fact that I will become popular
if and only if I go to the pub. [10, p.647]

The only worlds in the modal base are consistent worlds – all possible circumstances are
consistent. These worlds will then be ordered with those that do most to maximise my desire
satisfaction uppermost. No world is such that A, B, and not-C; the worlds closest to my ideal
are those which manage to satisfy 2 out of 3, namely, those in which A, B and C, and those
in which not-A, B, and not-C. Homing in on that set of worlds – the set of those accessible
worlds which come closest to what I want – we then have that B is boulomaically necessary
(it is true in all of those worlds), and A, not-A, C, not-C, are all possible (optional). (I must
hike in the mountains.)

In effect, inconsistency is now dealt with in two steps: the modal base contains only
consistent worlds, but then the ordering gives us a set of worlds as close as we can get
to the ideal without inconsistency. This is arguably an advance on the 1977 view, insofar
as the way that inconsistency is removed from the picture is more clearly motivated: it’s
not just a way to find consistent sets of conditions, but rather we understand that all of the
worlds are consistent because they belong to a certain modal base – e.g. circumstantial –
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and there is a sensible motivation for privileging some of those consistent worlds, because
they are ‘closest to the ideal’ determined by the ordering source. Kratzer also argues that
this account is able to accommodate graded and comparative modal notions, but I won’t
have space to pursue these aspects of the view here.

However, as before, the view does not obviously capture the genuine inconsistency we
might expect to find in the modal statements. Inconsistent desires are not translated into
inconsistent musts, but are dissolved by the combination of modal base and ordering. The
logical-omni problem also remains. So long as the logical necessities are true in all worlds,
they will be relatively necessary, raising the problems discussed in section 4. One might
wonder if the appeal to modal base could help here. For example, in the epistemic case, if
the modal base is a set of epistemically possible worlds, then if it is open, for all I know,
that some logical necessity L is false, there will be an epistemically possible world at which
not-L. However, the modal base itself is just defined in terms of accessibility relations, e.g.,
worlds that are epistemically accessible from the actual world [10, p.644]. So if our domain
of possible worlds contains, as standard, only consistent, logically possible worlds, then the
modal base is always going to be constrained by logical possibility.

Another problem also threatens. We can, effectively, still read the proposal as boiling
down to a restriction on possible worlds. A claim of relative necessity, for example, is a
claim to truth in all of a restricted class of worlds, where this class is restricted first with
respect to base and second with respect to ordering source. But still, ultimately, we end up
with a set of worlds. As Kratzer herself puts it:

In an ordering semantics for modals, ordering sources are used as domain re-
strictions for the set of accessible worlds: not all, but only the “closest” acces-
sible worlds matter for what is possible or necessary. [11, p.45]

But this approach to relative necessity is precisely what led to the S4 problem sketched in
section 2. Recall: the proposed definition of necessity says, roughly, that ‘a proposition is
a necessity if and only if it is true in all accessible worlds which come closest to the ideal
established by the ordering source.’ [10, p.644] But if we interpret relative modality in terms
of a range restriction of the accessibility relation over possible worlds – restricted to worlds
of a certain modal base that come closest to the ideal – then in crucial cases we do not
thereby change the properties of the accessibility relation. Again, we have the problem that
the transitivity of the accessibility relation over the whole domain of worlds carries over
to relative necessity, whether we want it to or not. This problem certainly afflicts simple
modal cases where the ordering source is empty, for then relative necessity is just truth in
all f -accessible worlds.11 This is already in itself a serious problem, so long as we want

11Kratzer allows that ‘the interpretations of modals depend on both a modal base and an ordering source,
but either parameter can be filled by the empty conversational background’ [11, p.49].
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to be able to accommodate relative necessities for which an ordering source is empty, and
with fairly weak logical properties (e.g., not S4). I believe we can understand the work
of the ordering source as further restricting the accessibility relation to what we might call
the “ideal- f -accessible” worlds. If this is right, then the problem spans further across the
proposed analysis.

Again, we have motivation to consider an alternative that has the capacity to avoid the
logical-omni problems, the inconsistency problem, and the S4 problem. In the remainder
of this paper, I shall attempt to provide such an alternative. It has already been shown how
the Hale-Leech proposal avoids the S4 problem, but it must now be modified to avoid the
others.

6 Relevance

I noted in section 5.1 that we might understand the logical-omni problem and the incon-
sistency problem as sharing a common core: a consequence relation according to which a
logical truth is a consequence of any proposition and anything is a consequence of an in-
consistent (set of) proposition(s). It is this feature in particular which causes problems for
applying the Hale-Leech view beyond alethic modalities. At the heart of that formulation
is a strict conditional: a conditional bound by a logical necessity operator. Another way
to view the same problem is as stemming from these strict conditionals. For the unwanted
consequences are simply versions of the paradoxes of strict implication.12

The paradoxes of strict implication

�B � AJB

¬^A � AJB

In the history of logic, paradoxes and problems arising from the conditional have often
been met with new logics that are better able to tolerate the kinds of inferences we do – and
don’t – want to capture. Hence, the proposal here is to change the logic behind the core
conditional. It is telling that in an early paper Alan Ross Anderson, one of the Godfathers
of relevant logic, wrote:

Defining deontic modalities in terms of “relevant implication,” and using the
necessity thereof (i.e., entailment) as the appropriate sense of “logical conse-
quence,” yields a system of deontic logic which satisfies all our dearest desires:
it is faithful to the rigor loved by logicians, to the justice loved by all, and to
our common discourse. [1, p.359]

12I shall use ‘J’ to signify the strict conditional.
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It is precisely some of the kinds of problems that appear to be plaguing a universal analysis
of relative necessity that also led to the development of a relevant logic. Perhaps the two
should go hand in hand.

What is a relevant logic? Mares and Meyer [14, p.286] list three conditions that any
relevant logic should satisfy:

1. They should avoid the paradoxes of implication and, in particular, give a
way of dealing with contradictions and other impossibilities non-trivially.

2. They should satisfy the variable sharing constraint. [A logic, L, satisfies
the variable sharing constraint iff whenever A ↔ B is a theorem of L, A
and B share at least one propositional variable.]13

3. They should contain a deducibility relation that requires all premises in
a valid deduction to be capable of being used in that deduction and they
should satisfy a deduction theorem.14

We can also list some additional features of relevant logics that are important for our pur-
poses (following Priest [15]).

4. Relevant logics are paraconsistent, in the sense that they can tolerate contradiction:
the rule of explosion (that anything follows from a contradiction) fails.15

5. Relevant logics are non-normal logics, in the sense that they contain in their semantics
non-normal worlds, that is, worlds where ‘logic is not guaranteed to hold’. [15, p.69]

6. Validity is truth preservation over all normal worlds, that is, truth preservation over
all worlds in which the laws of logic are guaranteed to hold.

7. The rule of necessitation (if � A then �A) fails in all non-normal logics, and so also in
relevant logics. For if �A is true just when A is true at all worlds, then even if some
formula is valid, say � A, this only guarantees that A is true at all normal worlds; it
may not be that A at all of the non-normal worlds as well.16

The intuitive appeal of a relevant logic is the variable-sharing constraint. For it seems to
make sense that the consequent of a true conditional should have something or other to

13I shall use the plain arrow ‘→’ and similar, i.e. ‘↔’, to signify an unspecified conditional.
14A logic typically includes a derivation system that determines what is deducible from what. Mares and

Meyer explain that a relevant logic needs a conception of deducibility according to which ‘A1, ..., An ` B is
relevantly valid only if A1, ..., An may all be really used in the deduction of B.’ [14, p.284]

15This is implied by condition 1, but it’s worth emphasising.
16See [15, pp.68–69], in particular, ‘The failure of the Rule of Necessitation is, perhaps, the most distinctive

feature of non-normal systems.’
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do with the antecedent. Compare, for example, “If Nancy is tall and Nancy is swift then
Nancy is swift”, and “If 1=0 then Nancy is swift”. It is the variable-sharing constraint that
intuitively captures this: that Nancy is tall and swift obviously has something to do with
Nancy’s being swift, but that 0=1 seems to have nothing whatsoever to do with Nancy.
Schematically, we have “if P and Q, then Q”, and “If R then Q”. In the first case, the
propositional variable Q is shared, whereas in the second, there is no propositional variable
in common.

An intuitive semantics for relevant logic has been notoriously difficult to find. There
are semantics available, but it is difficult to make sense of them as making clear a familiar
meaning of the conditional in the way that, for example, standard possible world semantics
for normal modal logics makes compelling semantic proxies for possibility and necessity.
Nevertheless, let me briefly sketch some features of a semantics for relevant logic (after
Priest [15]). We start with a structure 〈W,N,R, ∗, v〉, where W is the set of worlds, N such
that N ⊆ W is the set of normal worlds, R is a ternary relation on worlds, ∗ is a function
from worlds to worlds such that w∗∗ = w and, roughly, if ¬p is true at w, p is false at w∗,
and v a function which ‘assigns a truth value to every parameter at every world, and to every
formula of the form A→ B at every non-normal world’ [15, p.170].

The ternary relation comes into play when evaluating conditionals. The basic way to
understand the conditional is as follows: A → B is true at world w ∈ W just when, for all
x, y ∈ W such that Rwxy, if A is true at x then B is true at y [15, p.189]. One informal way
of thinking about this is in terms of information flow [13, 15, 16]: if the link from A to B
holds, then being at an A-world can get you to a B-world.

In practice, when a conditional is evaluated at a normal world, it behaves like a strict
conditional (such that Rwxy iff x = y [15, p.189]): in all worlds, A gets you to B.

w is normal: vw(A→ B) = 1 iff for all x ∈ W such that vx(A) = 1, vx(B) = 1.

However, if a conditional is evaluated at a non-normal world, we cannot assume that x = y.

w is non-normal: vw(A→ B) = 1 iff for all x, y ∈ W such that Rwxy, vx(A) = 1,
vy(B) = 1.

In a relevant logic as sketched, the two troublesome kinds of consequence are blocked:
from any propositions to any logical truths, and from any contradiction to any conclusion.
Syntactically speaking, there is no guarantee that a logical truth will share a propositional
variable with some set of premises, and so it is not guaranteed to follow from them; and there
is no guarantee that a contradiction will share a propositional variable with some potential
conclusion, and so no guarantee that the conclusion will follow from the contradiction.

The proposed change to the relative necessity formulation is thus, at first blush, as fol-
lows: Relative necessities are relevant consequences of certain propositions (rather than
strict). More precisely:

1195



Leech

RN* It is Φ-necessary that p iff ∃q(Φ(q) ∧ (q ⇒ p))17

Where “⇒” stands for relevant implication.
For example, we could now define epistemic necessity as follows.

RNe* It is epistemically necessary (for S ) that p =df. ∃q(KS (q) ∧ (q ⇒ p))

According to this definition, it is not the case that whenever p is a logical truth, p is epis-
temically necessary. But the definition allows that some logical truths may be epistemically
necessary, depending on what is known by S .

Take as a second example the following candidate definition of legal necessity, where
the operator “L” can be read as “is a conjunction of NZ laws”.

RNl* It is legally necessary that p =df. ∃q(L(q) ∧ (q ⇒ p))

Suppose that this conjunction of laws is in fact contradictory. For example, let’s take again
Kratzer’s example: murder is a crime; deer are not personally responsible for damage they
inflict on young trees; and deer are personally responsible for damage they inflict on young
trees. Each of these propositions is a relevant consequence of itself (in a sufficiently strong
relevant logic), and so it is legally necessary that deer are not personally responsible for
damage they inflict on young trees and legally necessary that deer are personally responsible
for damage they inflict on young trees. There are inconsistent legal necessities, as one might
expect. But it is not the case that any proposition whatsoever is a relevant consequence of
these laws, so we avoid the problem of the legal necessity glut raised above. It is also not the
case that all logical truths follow from these laws; only those which satisfy the constraints
of the relevant logic, chiefly the variable-sharing constraint.

It is true, in the case of the logical-omni problem, that many of the problematic conse-
quences are blocked. For example, it does not relevantly follow from the three laws, and so
is not legally necessary, that either Jasmine completes the Times crossword or it’s not the
case that Jasmine completes the Times crossword. However, there are some relevant con-
sequences that might still be seen to be troublesome. For example, in many relevant logics
the following are relevant consequences:

p⇒ (p ∨ ¬p)

p⇒ (p ∨ q)

17Informally put, the property of closure under relevant consequence seems to be reasonable and desirable.
For if A1, ..., An ` B is relevantly valid, and so all of A1, ...An are “relevant” to deducing B, then one might
reasonably suppose that �ΦA1, ...,�ΦAn ` �ΦB for n ≥ 1 may also be relevantly valid, insofar as the only
variation across the premises and conclusion are A1, ...An and B. If so, then we can amend the definition to:
�ΦA =def ∃q1, ...,∃qn(Φ(q1) ∧ ... ∧ Φ(qn) ∧ (q1 ∧ ... ∧ qn ⇒ A)).
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But don’t these also lead to counterintuitive consequences? Consider: given Rob’s desires
(supposing Rob desires only the new Radiohead album), it must be that either Rob gets
the album or he doesn’t. Well, perhaps so. But it seems to misrepresent Rob’s desires to
say he must either get the album or not. He wants the album! Or, for all Columbo knows
(supposing he knows only that Joe is the killer), it must be that either Joe is the killer or it
is raining. But surely Columbo has no thoughts of rain at all – just the knowledge of Joe’s
crime.

At this point, it is important to reiterate the present aim. My aim is not to present a
perfectly psychologically adequate account of various modals here, such as would accom-
modate Columbo’s only having epistemic necessities, in the above case, about Joe’s being
the killer. The aim is to develop an account of how one can capture some pseudo-technical
modal notions better than the result of simply applying the Hale-Leech account across the
board. At least the necessities in these cases have something fairly obviously to do with the
kinds of proposition to which each kind of necessity is relative. Rob’s disjunctive boulo-
maic necessity is still about the album, and Columbo’s disjunctive epistemic necessity is
still in part about Joe’s crime. It seems to me that this is certainly more acceptable than just
any logical truth becoming relatively necessary.

To reiterate, the logical-omni problems raised above concern whether RN and its dif-
ferent versions render all logical truths relatively necessary, and all logical impossibilities
relatively impossible, even where it is plausible that the falsity of some cases of logical truth,
and the truth of some logical impossibilities, should be left open (as merely possible). These
problems are due to the assumption of a particular behaviour for the consequence relation. If
we introduce a relevant consequence relation instead, the worst of these problematic cases
are solved. Moreover, because relevant consequence is tolerant of contradictions, we are
also able to solve the inconsistency problem.

7 Relative Necessity Unified?

The proposal is to formulate relative non-alethic and epistemic necessities using a relevant
logic. But how does this lend itself to unification with alethic necessities? How should we
now integrate alethic and other modalities together? If we straightforwardly apply RN* to
the familiar alethic modalities, we get counterintuitive results in the opposite direction. We
are typically happy to accept that all logical necessities are also physically necessary, and
so on, for it seems wrong to suppose that some logical impossibility might nevertheless be
physically possible. In the alethic case, we were not only happy to allow the logical-omni
results, we plausibly require them. By contrast, we do not require either that inconsistency
is preserved in alethic modals, nor do we require explosion; because alethic modalities are
factive, that means that the propositions from which alethic necessities follow will them-
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selves be true, and hence there will be no inconsistent bases. The inconsistency problem
simply doesn’t arise.

How, then, can we unify two sets of modals, one of which should include the logical
necessities as relative necessities too, and one of which should not guarantee the relative
necessity of logical necessities?

One option would be to build the solution into the “Φ”, such that, for example, the laws
of physics include the laws of logic. Perhaps there is a way to make this example plausible:
if the laws of physics concern all physical things, and the laws of logic concern all things
whatsoever, then the latter laws should be included in the former, say. But it is less clear
that such a strategy could work in the general case, for example, the necessity relative to
truths about London. Do the truths about London really include the laws of logic? It’s not
as though London is obviously illogical,18 but it seems a bit much to specify the laws of
logic in, say, a guidebook to London.

Another, perhaps less heavy-handed, option would be to think of relevant consequence
as a restriction of classical (or near classical) consequence. So non-alethic and epistemic
necessities can still be understood as inheriting their necessity from (classical) logical ne-
cessity. It is just that it is not via relativization alone, but via an additional step of restriction
to only the relevant relative necessities. This restriction—at least in the case of those ne-
cessities linked to propositional attitudes—can be motivated by the kinds of considerations
offered above. However, this requires a certain way of thinking about relevant logic, as
what has been called a “filter logic”. Filter logics have some different features to the kinds
of relevant logics that I have briefly introduced, and might be understood to have different
background motivations. For example, Priest prefers to think of relevant logic as having its
own distinct source.

There are some approaches to relevant logic where a conditional is taken to be
valid iff it is classically valid and satisfies some extra constraint, for example
that antecedent and consequent share a parameter. (These are sometimes called
filter logics, since the extra constraint filters out ‘undesirables’.) ...

In the present approach, relevance is not some extra condition imposed on top
of classical validity. Rather, relevance, in the form of parameter sharing, falls
out of something more fundamental, namely the taking into account of a suit-
ably wide range of situations. [15, p.173–4]

For Priest, relevance isn’t just a restriction on consequence, it is one possible result of
taking into account non-normal worlds, that is, situations where logic may fail to hold. The
filter logic conception may appear to fit my purposes fairly neatly here, and remains a live

18At most in a figurative sense.
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option. But I shall explore one further option, which avoids – at least in the first instance –
one having to take a stance on these issues.

The third and final option I shall consider is to take the logic to be a parameter that can
be varied, just as the operator Φ can be varied. The thought would then be that the shared
core of necessities, the answer to the similarity argument, is not a shared kind of necessity
to which all of the necessities are relative, after all, but rather a shared form.

RN It is Φ-necessary that p iff ∃q(Φ(q) ∧ (q→L p))

All relative necessities, so goes the thought, can be expressed using the same general for-
mula, with three parameters: (1) an operator that specifies the kinds of propositions relative
to which something is necessary, Φ; (2) a conditional that is typically either strict or rel-
evant, →L; and (3) the proposition which is relatively necessary, p. As indicated, this
proposal constitutes a slightly different answer to the similarity argument, but it has an an-
swer nevertheless. The (to me) appealing metaphysical idea of a basic kind of necessity,
logical necessity, of which all other necessities are relativizations, is diluted somewhat. But
at the core of this proposal there remains some kind of logically valid conditional from
which stems the relative necessity. Further unification – beyond this single shared form –
might then be achieved by asking further questions about the relations between the different
conditionals, perhaps taking us back to the considerations of the previous option (of filter
logics). But I will leave these matters open here.

One final point to note is that, for both options 2 and 3, it is clear here that the logic is,
in some sense, a parameter to be varied; in the first case, we take either classical logic or a
restriction of classical logic, in the second we take either a strict conditional or a relevant
conditional. This is a notably different approach to the kinds of parameters allowed for
in Kratzer’s proposal. It is for further study to what extent this additional parameter, and
alternative approach, compares favourably or not with Kratzer’s accounts.
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Abstract
The purpose of this article is to explore the use of modal logic and/or in-

tuitionistic logic to explicate potentiality and incomplete or indeterminate do-
mains in mathematics. Our primary applications are the traditional notion of
potential infinity, predicativity, a version of real analysis based on Brouwerian
choice sequences, and a potentialist account of the iterative hierarchy in set
theory.

The purpose of this article is to explore the use of modal logic and/or intu-
itionistic logic to explicate potentiality and incomplete or indeterminate domains in
mathematics. Our primary applications are the traditional notion of potential infin-
ity, predicativity, a version of real analysis based on Brouwerian choice sequences,
and a potentialist account of the iterative hierarchy in set theory. We present a uni-
fied framework in which these phenomena can be described and studied. We then
locate various views—historical as well as contemporary (including some developed
by ourselves)—in this framework.

Section 1 is a brief presentation of the history and philosophy behind potential-
ism, with a focus on mathematics. We argue that modality provides the best (or,
at any rate, a very good) framework to explicate potentialism. Section 2 develops
the proper modal logics for various kinds of potentiality. One key issue is the proper
background logic for this. Should it be classical or intuitionistic? We argue that
this distinction turns on a central philosophical thesis that the potentialist might
(or might not) adopt, concerning modal propositions. Section 3 provides sketches
of different applications.
Thanks to Sam Roberts and two referees for valuable comments on earlier versions of this article.
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1 Potential infinity
1.1 A modal analysis
Aristotle famously rejected the notion of the actual infinite—a complete, existing
entity with infinitely many members. He argued that the only sensible notion is
that of potential infinity. In Physics 3.6 (206a27-29), he wrote:

For generally the infinite has this mode of existence: one thing is always
being taken after another, and each thing that is taken is always finite,
but always different.

As Richard Sorabji [41] (322-3) once put it, for Aristotle, “infinity is an extended
finitude”(see also [24], [25]).

The attitude toward the infinite was echoed by the vast majority of mathemati-
cians and philosophers at least until late in the nineteenth century. In 1831, for
example, Gauss [10] wrote:

I protest against the use of infinite magnitude as something completed,
which is never permissible in mathematics. Infinity is merely a way of
speaking.

Aristotle did accept what is sometimes called potential infinity, against the ancient
atomists (see [30]). He argued that this makes sense of the mathematics of his
day.1 Subsequent mathematicians followed this, and, indeed, made brilliant use of
potential infinity. But what is potential infinity?

The notion can be motivated by considering procedures that can be repeated
indefinitely.2 A nice example is provided by Aristotle’s claim, against the atomists,
that matter is infinitely divisible. Consider a stick. However many times one has
divided the stick, it is always possible to divide it again (or so it is assumed).

1Aristotle wrote (Physics 207b27):
Our account does not rob the mathematicians of their science, by disproving the actual
existence of the infinite in the direction of increase, in the sense of the untraversable.
In point of fact they do not need the infinite and do not use it. They postulate only
that a finite straight line may be produced as far as they wish. It is possible to have
divided into the same ratio as the largest quantity another magnitude of any size you
like. Hence, for the purposes of proof, it will make no difference to them to have such
an infinite instead, while its existence will be in the sphere of real magnitudes.

See [21] for a detailed analysis of ancient Greek mathematics on these issues.
2There is some controversy over whether Aristotle took procedures like these to be central to the

view, or whether he was more concerned with the structure of matter and space. See, for example,
[19],[24], [25], and [5].
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It is natural to explicate this in a modal way.3 This yields the following analysis
of the infinite divisibility of a stick s:

2∀x(Pxs→ 3∃y Pyx), (1)

where Pxy means that x is a proper part of y. If, by contrast, the parts of the stick
formed an actual infinity, the following would hold:

∀x(Pxs→ ∃y Pyx). (2)

According to Aristotle, the stick does not have, and cannot have, infinitely many
parts:

¬3∀x(Pxs→ ∃y Pyx). (3)

By endorsing (1) and (3), one is asserting that the divisions of the stick are merely
potentially infinite. We thus see that a potential infinity is not the same as the pos-
sibility of an actual infinity. This contrasts with many uses of the word ‘potential’;
e.g. to say that someone is a potential champion is to say that possibly he or she is
a champion. On the Aristotelian view, there is no totality or collection that could
become infinite (whatever that might mean).

As noted above, our present concern is with mathematics. According to Aristotle,
the natural numbers are merely potentially infinite. We can represent this view as
the conjunction of the following theses:

2∀m3∃nSucc(m,n) (4)
¬3∀m∃nSucc(m,n), (5)

where Succ(m,n) states that n comes right after m. The modal language thus
provides a nice way to distinguish the merely potential infinite from the actual
infinite.4

Like David Hilbert ([18]), we are not looking to leave Cantor’s paradise. Follow-
ing contemporary practice, we accept the existence of actually infinite collections.
We suggest, however, that there is room for potentiality in contemporary mathemat-
ics, and in the philosophy of contemporary mathematics. The modal analysis helps
explicate that. It provides a framework in which actual and potential infinity can
live side by side, sometimes in the very same context (see [28]). In other words, we

3We make use here of contemporary modal notions. We make no attempt to recapitulate what
Aristotle himself says about modality.

4For Aristotle, there cannot be an actual infinity. So, here, one might say
2¬3∀m∃nSucc(m,n).
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envisage cases where there are actual infinities, but other “collections” or “totalities”
are merely potential.5 We describe some examples below.

1.2 Three orientations towards the infinite
It is useful to distinguish different orientations towards a given infinite totality.
Actualism unreservedly accepts actual infinities, of a given kind, and thus finds no
use for modal notions—or at least no use that is specific to the analysis of the
infinity in question. Actualists maintain that the non-modal language of ordinary
mathematics is already fully explicit and thus deny that we need a translation into
some modal language. Furthermore, actualists accept classical logic when reasoning
about the infinite (or the infinite in question).

Potentialism is the orientation that stands opposed to actualism. According to
it, the objects with which mathematics is concerned—or some of the objects with
which mathematics is concerned—are generated successively, and at least some of
these generative processes cannot be completed. So there is an inherent potentiality
to (at least some) mathematical objects.

There is room for disagreement about which processes can be completed. As
noted from the above passages, the traditional Aristotelian form of potentialism
takes a very restrictive view, insisting that at any stage, there are never more than
finitely many objects, but that we always (i.e., necessarily) have the ability to go
on and generate more. Recall Sorabji’s suggestion that, for Aristotle, infinity is
“extended finitude”. Generalized forms of potentialism take a more relaxed attitude.
Potentialism about set theory provides an extreme example. According to this view,
any generative process that is indexed by a set-theoretic ordinal can be completed,
but it is impossible to complete the the entire process of forming sets. The so-
called “relative predicativism” lies in between the traditional Aristotelian orientation
and potentialized set theory. The view accepts the natural numbers as a complete
infinity, but insists that sets of natural numbers are defined in stages, and there is
no stage at which all sets of natural numbers exist together, so to speak. Other sorts
of relative predicativity are possible as well. Brouwerian choice sequences can also
be taken to fit the mold of potentialism. See §3 below for a bit more detail on these
cases.

Potentialists also differ from each other with respect to a qualitative matter.
As characterized above, potentialism is the view some or all of the objects with
which mathematics is concerned are successively generated and that some of these

5Strictly speaking, there are no sets, collections, or totalities that are potentially infinite. But
it is useful to use a count noun to talk about the kinds of “things” said to be potentially infinite.
We will use “collections” for this, sometimes in scare quotes.
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generative processes cannot be completed. What about the truths of mathematics?
Of course, on any form of potentialism, these are modal truths concerned with
certain generative processes. But how should these modal truths be understood?

Liberal potentialists regard the modal truths as unproblematic, adopting biva-
lence for the modal language. Consider Goldbach’s conjecture. As potentialists
interpret it, the conjecture says that necessarily any even natural number that is
generated can be written as a sum of two primes. Liberal potentialists maintain that
this modal statement has an unproblematic truth-value—it is either true or false.
Their approach to modal theorizing in mathematics is thus much like a realist ap-
proach to modal theorizing in general: there are objective truths about the relevant
modal aspects of reality, and this objectivity warrants the use of some classical form
of modal logic.

Strict potentialists differ from their liberal cousins by requiring, not only that
every object be generated at some stage of a process, but also that every truth be
“made true” at some stage. Consider, again, the Goldbach conjecture. If there
are counterexamples to the conjecture, then its negation will presumably be “made
true” at the stage where the first counterexample is generated. But suppose there
never will be any counterexamples. Since the conjecture is concerned with all the
natural numbers, it is hard to see how it could be “made true” without completing
the generation of natural numbers. This completion would, however, violate the
strict potentialists’ requirement that any truth be made true at some stage of the
process.

We suggest that strict potentialists should adopt a modal logic whose underlying
logic is intuitionistic (or intermediate between classical and intuitionistic logic); this
allows them to adopt a conception of universal generality which does not presuppose
that all the instances are available, thus overcoming the problem just identified.
In particular, strict potentialists should not accept every instance of the law of
excluded middle in the background modal language (see [28] for more details). This
dovetails with a view that Solomon Feferman and others adopt towards predicative
mathematics, and it has ramifications for the articulation of predicativism and the
extent of the mathematics that it captures.

1.3 The modality

Here, as elsewhere, it is often useful to invoke the contemporary heuristic of pos-
sible worlds when discussing the modality in question. Here we insist that this is
only heuristic, as a manner-of-speaking. Our official theory is formulated in the
modal language, with (one or both of) the modal operators as primitive. The modal
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language is rock bottom, not explained or defined in terms of anything else.6
The potentialist does, of course, reject the now common thesis that mathematical

objects exist of necessity (if they exist at all). To invoke the heuristic, the now
common thesis is that all mathematical objects exist in all worlds. The potentialist
gives that up. There is no world with all of the objects in question—all natural
numbers for the Aristotelian, all sets of numbers for the relative predicativist, all
sets for the set-theoretic potentialist, etc.

The potentialist does, however, maintain that once a mathematical object comes
into existence—by being constructed—it continues to exist, of necessity. To para-
phrase Aristotle (from another context), the potentialist accepts generation, but not
corruption.

What about the philosophical nature of the modality invoked in the analysis
of potentiality? For the Aristotelian, it can perhaps be the ordinary metaphysical
modality invoked in contemporary philosophy (or perhaps defined from that notion).
The idea is that mathematical objects are generated successively, in time. At any
stage—in any world—there are finitely many natural numbers, but each such world
has access to another where some more numbers have been generated. Given enough
time, any given natural number can be generated.7

Charles Parsons [32] once argued that this sort of modality does not make sense
for the richer potentialisms, where the “procedure” of generating mathematical ob-
jects extends into the transfinite. Intuitively, generation takes place in time, and the
richer potentialisms stretch the the notion of time too far. Of course, the potentialist
is not going to presuppose a totality of ordinals (or anything else) by which to make
sense of the generation.

So perhaps the non-Aristotelian potentialist should simply sever any link between
metaphysical modality and the modality invoked in explicating potential infinity.
Instead, one might regard the latter as an altogether distinct kind of modality,
say the logico-mathematical modality of [34] or [11] (though see also [32]), or the
interpretational modality of [9], [26], or [42].

Here we remain neutral on the exact interpretation of the modal operators. What

6If a potentialist did make use of the explication of modality in terms of possible worlds, she
would, presumably, think of the collection of worlds as itself potentially infinite. So it is not clear
that there is much of a gain in understanding, analysis, or the like. Here we make use of the
usual possible-worlds semantics to obtain results about what is, and is not, derivable in the formal
systems. We do not directly address the interesting question concerning the extent to which a
potentialist can accept our results. Thanks to two referees for pressing this matter.

7In terms of possible worlds, the relevant modality is the one that results from restricting the
accessibility associated with metaphysical modality by imposing the additional requirement that
domains don’t ever decrease along the accessibility relation. This restriction can be captured proof-
theoretically, using the resources of plural logic (see [28], p. 188, n. 15).
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matters for us are the structural features of any plausible interpretation. That is,
we are concerned to develop the right modal logic.

2 The logic of potentiality
2.1 The modal logic
For the time being, we will be neutral on the liberal vs. strict divide and thus also
on whether the non-modal part of the logic should be classical or intuitionistic. To
invoke the heuristic, the idea is that a “possible world” has access to other possible
worlds that contain objects that have been constructed or generated from those in
the first world. From the perspective of the earlier world, the “new” objects in the
second exist only potentially.

Geometry provides a good illustration, if we take seriously the constructive lan-
guage in, say, Euclid’s Elements. One world might contain a line segment, and a
“later” (or accessible) world might contain a bisect of that line segment. Another
later world might contain an extension of that line segment. Other sorts of con-
structions are arithmetic: the later world might contain more natural numbers than
those of the first, say the successor of the largest natural number in the first world.
Or, for a third kind of example, the later world may contain a set whose members
are all in the first world.

An Aristotelian (or Gauss, etc.) assumes that every possible world is finite, in
the sense that it contains only finitely many objects. This, of course, just is the
rejection of the actually infinite. As noted, we make no such assumption here. Our
goal is to contrast the actually infinite and the potentially infinite, so we need a
framework where both can occur (to speak loosely). An actual infinity—or, to be
precise, the possibility of an actual infinity—is realized at a possible world if it
contains infinitely many objects.

As noted, we also assume that objects are not destroyed in the process of con-
struction or generation. So, to continue the heuristic, it follows from the foregoing
that the domains of the possible worlds grow (or, better, are non-decreasing) along
the accessibility relation. So we assume:

w1 ≤ w2 → D(w1) ⊆ D(w2) (6)

where ‘w1 ≤ w2’ says that w2 is accessible from w1, and for each world w, D(w)
is the domain of w. As is well-known, the conditional (6) entails that the converse
Barcan formula is valid. That is,

∃x3φ(x)→ 3∃xϕ(x). (CBF)
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For present purposes, we can think of a possible world as determined completely
by the mathematical objects—regions, numbers, sets, etc.—it contains. In other
words, we assume the converse of (6). We will talk neutrally about the extra mathe-
matical objects existing at a world w2 but not at an “earlier” world w1 which accesses
w2, as having been “constructed” or “generated”. This motivates the following prin-
ciple:

Partial ordering: The accessibility relation ≤ is a partial order. That
is, it is reflexive, transitive, and anti-symmetric.

So the underlying logic is at least S4. So far, then, we have S4 plus (CBF).8
At any stage in the process of construction, we generally have a choice of which

objects to generate. For some types of construction, but not all, it makes sense
to require that a license to generate objects is not revoked at accessible worlds.
Intuitively geometric construction is like this. For example, we might have, at some
stage, two intervals that don’t yet have bisections. We can choose to bisect one or
the other of them, or perhaps to bisect both simultaneously. Assume we are at a
world w0 where we can choose to generate objects, in different ways, so as to arrive
at either w1 or w2. Say at w1 we bisect an interval i and at w2 we bisect another
interval j. It seems plausible to require that the licence to bisect i can be executed
at w2 or any later world. In other words, nothing we do can prevent us from being
able to bisect the other interval.

This corresponds to a requirement that any two worlds w1 and w2 accessible
from a common world have a common extension w3. This is a directedness property
known as convergence and formalized as follows:

∀w0∀w1∀w2(w0 ≤ w1 ∧ w0 ≤ w2 → ∃w3(w1 ≤ w3 ∧ w2 ≤ w3))

For constructions that have this property, then, we adopt the following principle:

Convergence: The accessibility relation ≤ is convergent.

This principle ensures that, whenever we have a choice of mathematical objects to
generate, the order in which we choose to proceed is irrelevant. Whichever object(s)
we choose to generate first, the other(s) can always be generated later. Unless ≤ is
convergent, our choice whether to extend the ontology of w0 to that of w1 or that
of w2 might have an enduring effect.

8Recall that S4 and (non-free) first-order logic entails (CBF). We can also require the accessi-
bility relation to be well-founded, on the grounds that all mathematical construction has to start
somewhere. However, nothing of substance turns on this here.
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It is well known that the convergence of ≤ ensures the soundness of the following
principle:

3�p→ �3p. (G)
The modal propositional logic that results from adding this principle to a complete
axiomatization of S4 is known as S4.2. As noted, not all construction principles
sanction this principle. We give an example below.

2.2 The logic of potential infinity
What is the correct logic when reasoning about the potentially infinite? Informal
glosses aside, the language of contemporary mathematics is strictly non-modal. We
thus need a translation to serve as a bridge connecting the non-modal language in
which mathematics is ordinarily formulated with the modal language in which our
analysis of potentiality is developed. Suppose we adopt a translation ∗ from a non-
modal language L to a corresponding modal language L3. The question of the right
logic of potential infinity is the question of which entailment relations obtain in L.

To determine whether ϕ1, . . . , ϕn entail ψ, in the non-modal system, we need
to (i) apply the translation and (ii) ask whether ϕ∗

1, . . . , ϕ
∗
n entail ψ∗ in the modal

system. This means that the right logic of potential infinity depends on several
factors. First, the logic depends on the bridge that we choose to connect the non-
modal language of ordinary mathematics with the modal language in which our
analysis of potential infinity is given. Second, the logic obviously depends on our
modal analysis of potential infinity; in particular, on the modal logic that is used
in this analysis—including the underlying logic of the modal language, whether it is
classical or intuitionistic. Let us now turn to the first factor.

The heart of potentialism, as we see it, is the idea that the existential quan-
tifier of ordinary non-modal mathematics has an implicit modal aspect. Consider
the statement that a given number has a successor. For the Aristotelian, this is
a proposition that each number potentially has a successor—that it is possible to
generate a successor. This suggests that the right translation of ∃ is 3∃.

Since we consider both classical and intuitionistic backgrounds, we treat the uni-
versal quantifier separately. But it is understood in a dual way. When a potentialist
says that a given property holds of all objects (of a certain sort), he means that
the property holds of all objects (of that sort) whenever they are generated. This
suggests that ∀ be translated as 2∀.

Thus understood, the quantifiers of ordinary non-modal mathematics are un-
derstood as devices for generalizing over absolutely all objects, not only the ones
available at some stage, but also any that we may go on to generate. In our modal
language, these generalizations are effected by the strings �∀ and 3∃. Although
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these strings are strictly speaking composites of a modal operator and a quanti-
fier proper, they behave logically just like quantifiers ranging over all entities at all
(future) worlds. We will therefore refer to the strings as modalized quantifiers.

Our proposal is thus that each quantifier of the non-modal language is translated
as the corresponding modalized quantifier.Each connective is translated as itself. Let
us call this the potentialist translation, and let ϕ3 represent the translation of ϕ.9 We
say that a formula is fully modalized just in case all of its quantifiers are modalized.
Clearly, the potentialist translation of any non-modal formula is fully modalized.

Say that a formula ϕ is stable if the necessitations of the universal closures of
the following two conditionals hold:

ϕ→ �ϕ ¬ϕ→ �¬ϕ

Intuitively, a formula is stable just in case it never “changes its mind”, in the sense
that, if the formula is true (or false) of certain objects at some world, it remains
true (or false) of these objects at all “later” worlds as well.

We are now ready to state two key results, which answer the question about
the correct logic for those kinds of potentiality that enjoy the above convergence
property. Let ` be the relation of classical deducibility in a non-modal first-order
language L. Let L3 be the corresponding modal language, and let `3 be deducibility,
in this corresponding language, by `, S4.2, and axioms asserting the stability of all
atomic predicates of L.

Theorem 1 (Classical potentialist mirroring). For any formulas ϕ1,
. . . , ϕn, and ψ of L, we have:

ϕ1, . . . , ϕn ` ψ iff ϕ3
1 , . . . , ϕ

3
n `3 ψ3.

(See [26] for a proof.)
The theorem has a simple moral. Suppose we are interested in logical relations

between formulas in the range of the potentialist translation, in a classical (first-
order) modal theory that includes S4.2 and the stability axioms. Then we may delete
all the modal operators and proceed by the ordinary non-modal logic underlying `.10

In particular, under the stated assumptions, the modalized quantifiers �∀ and 3∃
9This is an alternative to the more familiar Gödel translation, which translates ‘∀’ as ‘2∀’ (as

we do), ‘∃’ as itself, and also adopts a non-homophonic translation of negation and the condi-
tional. This translation is poorly suited to explicating potentialism. For example, the translation of
∀m∃nSucc(m,n) is 2∀m∃n2Succ(m,n), which, as discussed in Section 1.1, a potentialist would
reject. For more detail, see [28].

10There are interesting issues concerning comprehension axioms in higher-order frameworks. See
[28], §7.
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behave logically just as ordinary quantifiers, except that they generalize across all
(accessible) possible worlds rather than a single world. This buttresses our choice
of the potentialist translation as the bridge connecting actualist and potentialist
theories. We will observe, as we go along, that the stability axioms on which the
mirroring theorem relies are acceptable.

It is important to note, however, that our interest won’t always be limited to
formulas in the range of the potentialist translation. One can often use the extra
expressive resources afforded by the modal language to engage in reasoning that
takes us outside of this range. The modal language allows us to look at the subject
matter under a finer resolution, which can be turned on or off, according to our
needs.11

An important upshot of the theorem is that ordinary classical first-order logic
is validated via this bridge. However, this response depends on the robustness of
our grasp on the modality. We noted that our liberal potentialist accepts classical
logic when it comes to the modality. Our first mirroring theorem fits in nicely with
that perspective. As noted above, however, Linnebo and Shapiro [28] argue that a
stricter form of potentialism pushes in the direction of intuitionistic logic. What to
do then?

The answer is given by a second mirroring theorem, which we now explain. As
usual, we say that a formula ϕ is decidable in a given (intuitionistic) theory if the
universal closure of ϕ ∨ ¬ϕ is deducible in that theory. Let `int be the relation of
intuitionistic deducibility in a first-order language L, and let `3int be deducibility in
the modal language corresponding to L, by `int, S4.2, the stability axioms for all
atomic predicates of L, and the decidability of all atomic formulas of L.12

Theorem 2 (Intuitionistic potentialist mirroring). For any formulas ϕ1, . . . , ϕn,
and ψ of L, we have:

ϕ1, . . . , ϕn `int ψ iff ϕ3
1 , . . . , ϕ

3
n `3int ψ

3.

(See [28] for a proof.)
Together, the two mirroring theorems show how our analysis of quantification

over a potentially infinite domain can be separated from the question of whether the
11A salient example is the Aristotelian statement, above, rejecting the actual infinity of the

natural numbers:
¬3∀m∃nSucc(m,n) (5)

This is not in the range of the potentialist translation, and so has no counterpart in the non-modal
framework. Moreover, the formula, ¬2∀m3∃nSucc(m,n), which is in the range of the translation,
is the contradictory opposite of (4)

12The intuitionistic modal predicate system must be formulated with some care, since the two
modal operators are not inter-definable. See [40] for the details.
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appropriate logic is classical or intuitionistic—at least for those kinds of potentiality
that have the convergence property (and for which the underlying logic is first-order).
Hold fixed our modal analysis of potential infinity, the propositional modal logic S4.2,
and the potentialist bridge. Then the appropriate logic of potential infinity depends
entirely on the (first-order) logic used in the modal system. Whichever logic we plug
in on the modal end—classical or intuitionistic—we also get out on the non-modal
end. Since liberal potentialists see no reason to plug in anything other than classical
first-order logic, they can reasonably regard this as the correct logic for potential
infinity, for the cases in question.

3 Applications
We will now describe some applications of the framework presented above.

3.1 Aristotelian potentialism
Let us begin with Aristotelian potentialism, that is, the view that even the natural
numbers do not form a completed “collection”, only a potential one. The view has
two parts. First, there is the positive thesis that necessarily, given any natural
number, it is possible for there to exist a successor of it. As before, let ‘Succ(m,n)’
express that the immediate successor of m is n. The mentioned view can then be
formalized as:

2∀m3∃nSucc(m,n) (4)

Next, there is the negative thesis that it is impossible for all of the natural numbers
to exist simultaneously:

¬3∀m∃nSucc(m,n) (5)

Once again, we can answer the vexed question of the correct logic for ordinary non-
modal reasoning about the natural numbers when these are understood as merely
potential. Provided our view of the modality is sufficiently robust to warrant the
use of classical logic combined with a modal logic at least as strong as S4.2, the
mentioned kind of reasoning is governed by classical first-order logic. This is the
upshot of our first mirroring theorem. The second such theorem ensures that, if only
intuitionistic logic can be assumed in the modal language, then only intuitionistic
logic is warranted in the ordinary non-modal language.

It is also instructive to use our framework to locate some kindred views. Geof-
frey Hellman’s modal structuralism [11] provides an example. The subtle details of
the view don’t matter for present purposes. Hellman avoids asserting the existence
of infinitely many objects. Instead, he asserts the possible existence of a model of
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second-order Dedekind-Peano arithmetic. In effect, this is to assert the contradic-
tory opposite of (5), i.e. 3∀m∃nSucc(m,n). In present terms, this is to assert
the possibility of an actual infinity. This is a strictly stronger modal commitment
than that of the Aristotelian potentialist, though still a weaker one than the claim
famously disputed by Hilbert [18], namely that there actually exists a completed
infinity of objects.

3.2 Set-theoretic potentialism
Cantor famously rejected the Aristotelian ban on actual infinities, which had been
the dominant view in mathematics and philosophy up until his time. At times, he
appears to endorse the diametrically opposite view that for every potential infinity,
there is a corresponding actual infinity:

. . . every potential infinite, if it is to be applicable in a rigorous mathe-
matical way, presupposes an actual infinite ([3], 410–411).

At least at times of his career, however, Cantor retained traces of the old po-
tentialist view, only now applied to the “multiplicity” of all sets rather than the
“multiplicity” of natural numbers. In a much quoted letter to Dedekind, in 1899, he
wrote:

[I]t is necessary . . . to distinguish two kinds of multiplicities (by this
I always mean definite multiplicities). For a multiplicity can be such
that the assumption that all of its elements ‘are together’ leads to a
contradiction, so that it is impossible to conceive of the multiplicity as a
unity, as ‘one finished thing’. Such multiplicities I call absolutely infinite
or inconsistent multiplicities . . . If on the other hand the totality of the
elements of a multiplicity can be thought of without contradiction as
‘being together’, so that they can be gathered together into ‘one thing’,
I call it a consistent multiplicity or a ‘set’. ([8], 931-932)

In other words, although it is possible for all the natural numbers to “exist together”,
or to form a completed totality, this cannot be said about the “collection” of all sets
or the “collection” all ordinals. These are “inconsistent multiplicities” whose mem-
bers cannot all “coexist”. In present terms, the sets and the ordinals are potential
collections.

Several more recent thinkers have been inspired by these ideas of Cantor’s, in-
choate though they may be. There are two main traditions. One is nicely encapsu-
lated in the following passage by Charles Parsons:
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A multiplicity of objects that exist together can constitute a set, but it
is not necessary that they do. . . . However, the converse does hold and
is expressed by the principle that the existence of a set implies that of
all its elements. (pp. 293-4)

This requires some explanation. First, there is the idea that a set exists potentially
relative to its elements. When the elements of some would-be set exist, we have
all that it takes to define or specify the set in question: it is the set of precisely
these things. Then, there is the related idea that the elements are ontologically
prior to their set. The elements can exist although the set does not—much like a
floor of a building can exist without the higher floors that it supports. But a higher
floor cannot exist without the lower floors that support it. Likewise, a set cannot
exist without its elements, which are prior to it and on which the set is therefore
ontologically dependent.

This view suggests that any objects potentially form a set. In the language of
plural logic:13

2∀xx3∃ySet(xx, y) (7)

However, on pain of paradox, we cannot admit a corresponding completed totality;
that is, we have:

¬3∀xx∃ySet(xx, y) (8)

Notice the parallel with the two theses, (4) and (5) of Aristotelian potentialism.
This “potentialist” view of set theory is interesting, philosophically as well as

technically. Potentialist set theories have been developed with (7) at their heart
([42], [26], inspired by [32]). Moreover, by applying the potentialist translation
described in Section 2.2, these theories validate either classical or intuitionistic logic,
depending on whether the modal logic employed is classical or intuitionistic.

A second tradition takes its departure from Ernst Zermelo’s famous 1930 arti-
cle [46]. Studying models of second-order ZF set theory—henceforth ZF2—which
includes a standard replacement axiom, Zermelo comes to the conclusion that the
distinction between sets and proper classes is only a relative one: what is a proper
class in one model is merely a set from the point of view of a larger model.

But [the set-theoretic paradoxes] are only apparent ‘contradictions’, and
depend solely on confusing set theory itself, which is not categorically
determined by its axioms, with individual models representing it. What
appears as an ‘ultrafinite non- or super-set’ in one model is, in the suc-
ceeding model, a perfectly good, valid set with both a cardinal number

13See Boolos [2] for the seminal contribution and [27] for a recent survey.
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and an ordinal type, and is itself a foundation stone for the construction
of a new domain. ([46], 1233)

Let us spell things out. Consider a model of ZF2 based on a domain M and
a membership relation R ⊆ M ×M , in terms of which the membership predicate
∈ is interpreted. The model is said to be standard if (i) the membership relation
R is well founded, (ii) the model has a maximality property akin to the axiom of
separation:

Consider any a in M . Let X be the collection of objects that bear R to
a. Then, for any subcollection Y ⊆ X, there must be some b in M such
that Y is the collection of objects that bear R to b,

and (iii) a similar clause for replacement holds. Letting M and M+ range over
standard models, Zermelo’s idea can be formalized as the following extendability
principle:14

2∀M3∃M+(M+ properly extends M) (EP)

This approach to set theory has been developed further by Putnam [34] and
Hellman [11]. In particular, they show how this approach too enables us to interpret
ordinary first-order set theoretic discourse. To do so, we need a translation from
the language of ordinary set theory into the language that talks about possible
models and their extensions. A simple example suffices to convey the idea, which is
quite intuitive. Consider the claim that for every ordinal there is a greater ordinal:
∀α∃β(α < β). This claim is translated as:

Necessarily, for every standard model and every object α that plays the
role of an ordinal in this model, possibly there is an extended standard
model containing an object β that also plays the role of an ordinal, and
according to which α is smaller than β.

How much set theory does this validate? Sam Roberts [35] provides an answer
by formulating a modal structuralist set theory in which a slight strengthening of
Zermelo set theory is faithfully interpretable.

3.3 Predicativism
A third view in the foundations of mathematics where potentialist ideas naturally
come up is predicativism. This may be surprising, given that predicativism is often

14Admittedly, Zermelo’s language isn’t consistently modal or potentialist. He does write, how-
ever, that “every categorically determined domain can also be interpreted as a set” (1232) and
describes this step as “a creative advance” (1233).
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seen as encapsulated in Russell’s Vicious Circle principle, which instructs us that
no entity can be defined in a way that quantifies over a totality to which this entity
belongs, on the grounds that any such definition would be unacceptably circular.
It is not immediately obvious what this non-circularity requirement has to do with
potentialist ideas.

However, potentialist ideas figure centrally in other characterizations of pred-
icativism. Some authors connect predicativism closely with the view that some
totalities are inherently potential. Consider Solomon Feferman:15

. . . we can never speak sensibly (in the predicative conception) of the
“totality”of all sets as a “completed totality” but only as a potential
totality whose full content is never fully grasped but only realized in
stages. ([12], p. 2)

The potentialist framework described above is useful for explicating these ideas.
To see how, consider predicativism relative to the natural numbers. This is the

view that takes the natural numbers to be a completed infinity and then proceeds to
generate sets of natural numbers in a predicative manner. We thus start with a base
world containing all of the natural numbers. We now consider a system of possible
worlds which add more and more sets of natural numbers. The essential constraint
on this generative process is that the sets we add be given a stable definition, that is,
a definition that isn’t disrupted as more entities are generated and the domain thus
expands.16 To ensure this definitional stability, it suffices to restrict all quantifiers
to sets available at the relevant world.

How might this restriction be effected? The crux is to observe that a little bit of
“coding” enables us to use a single set of natural numbers to represent a countable
collection of such sets. If X is a set of numbers and n is a number, we define the
n-section of X, denoted Xn, as {x|〈n, x〉 ∈ X}. If X is a set-variable and ϕ is
a formula without any occurrences of X, let ϕ<X be the result of restricting the
set-quantifiers in ϕ to the sections of X. That is, we translate ∀Y ψ(Y ) as

∀Y ∀z(Y = Xz → ψ<X(Y )),

where z is a new first-order variable. And ∃Y ψ(Y ) is translated in the obvious dual
manner.

We contend that all of the sets that exist at any given world can be “coded up”
as the sections of a single set X that exists at some other world. This means that
all sets that are predicatively definable, relative to a certain world, are definable by

15Other examples can be found Poincaré [33], p. 463.
16In fact, this emphasis on stability of definitions goes back to [33].
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a formula of the form ϕ<X . The desired predicative set formation principle can thus
be formulated as:

3∃Y2∀x(x ∈ Y ↔ ϕ<X(x)) (9)

where the formula ϕ does not contain X free, but may contain parameters. It is
possible to formulate stronger principles which assert not only the possibility of
generating a single, predicatively defined set but of simultaneously generating all
sets that are predicatively definable relative to a certain possible world. Call this
step a predicative jump.

Eventually, we lay down that, for any relation R which by predicatively accept-
able means can be proved to be a well-order, it is possible to iterate the predicative
jump along R. The exact analysis of this idea is subtle and somewhat controversial,
so cannot be discussed here (see [29]).

3.4 Free choice sequenecs
L.E.J. Brouwer’s approach to intuitionistic real analysis made crucial use of free
choice sequences. Each such sequence can be thought of as generated by an ideal
mathematician. At any one time, the mathematician has specified some finite initial
segment of the sequence, but she always has the ability to go on and specify a
larger initial segment. However, it is not in the mathematician’s power to complete
the specification of the entire sequence. Each choice sequence is thus a potentially
infinite object: at each moment, it consists of some finite initial segment, and there
is always a possibility of going on.

As realized by Saul Kripke [23] and Joan Moschovakis [31], the idea of choice
sequences naturally admits of a modal explication. For instance, while there is no
upper bound to how long a sequence α can be, it cannot be infinitely long:

2∀n3 l(α) ≥ n (10)
¬32∀n(l(α) ≥ n) (11)

Consider a free choice sequence α and suppose a is an initial segment. Then, for
any natural number n, it is possible that α should have n as its next entry:

2∀a∀n3∃x(x = aan)

where ‘aan’ is the result of appending n to the end of a.
This brings out a novel phenomenon not encountered in the forms of potentialism

discussed above: the generation in question is indeterministic. Suppose α has length
10. While it is possible that the 11th entry should be 0, there are many other,
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incompatible possibilities: if the 11th entry turns out to be 0, it will always remain
0, which means that the possibility of this entry being 1—which existed when the
sequence had only 10 entries—has been shut down forever.

This indeterminacy has some important consequences. Most immediately, it
means that the convergence property discussed in Section 2.1 fails. And this failure
has important knock-on effects. Without convergence, we lose the justification for
the axiom G, 32φ→ 23φ, and the mirroring theorem is no longer available. There
may, however, be other translations from the non-modal language of intuitionis-
tic analysis into our classical modal language. A natural contender is the Gödel
translation—although as explained in footnote 9, this is poorly suited to explicate
potentiality. But the translation would at least have the effect of rendering the logic
of choice sequences intuitionistic.

Much work still remains to be done. First, we need to provide a more complete
theory of choice sequences in a classical modal language based on S4 or some related
system. Second, it would be good to provide a translation from the non-modal
language into the modal one that better captures potentialist ideas.

4 Conclusion

We have outlined a powerful and very general framework for analyzing a wide variety
of potentialist ideas. We have made good progress applying this framework to various
such ideas, although much work still remains.
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Abstract

This paper presents an account of Belnap and Dunn’s logic of first-degree entail-
ment and some related logics based on a proof-theoretic machinery of binary (FMLA-
FMLA) consequence systems. It is shown how the logic of first-degree entailment can
be represented by various deductively equivalent systems, up to a purely structural sys-
tem with transitivity as the only inference rule. A family of possible extensions of this
later system is represented in a systematic manner. This is a review article, which reca-
pitulates certain recent advances in investigating the Belnap-Dunn logic, and organizes
the corresponding material from a genuinely first-degree entailment perspective.

Keywords: First-degree entailment, consequence system, binary consequence,
logical frameworks, structural reasoning, super-Belnap logics

1 The idea of first-degree entailment

The logic of first-degree entailment occupies an important place among modern non-classi-
cal logics. As Hitoshi Omori and Heinrich Wansing put it:

There is a continuum of nonclassical logics, but some systems have emerged
as particularly interesting and useful. Among these distinguished nonclassical
logics is a system of propositional logic that has become well-known as Belnap
and Dunn’s useful four-valued logic or first-degree entailment logic, FDE. [25,
p. 1021]

The notion of first-degree entailment has been introduced by Nuel Belnap in his doctoral
dissertation [5] (see also [25, p. 1021]), and put into circulation in a short abstract of his talk
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at the twenty-fourth annual meeting of the Association for Symbolic Logic held on Monday,
December 28, 1959 at Columbia University in New York [6]. This notion was elaborated
then in detail in [2] as a tool for “finding plausible criteria” for valid entailments of the form
ϕ→ ψ, where ϕ and ψ are purely truth-functional.

To this effect Belnap defines: “ϕ → ψ is a first degree entailment iff ϕ and ψ are
both written solely in terms of propositional variables, ∧, ∨, and ∼ (other truth-functional
connectives being treated as defined by these)” [6, notation adjusted]. Belnap explains that
a first-degree entailment is valid if and only if it is tautological, which means that it is of
the form ϕ1 ∨ . . . ∨ ϕm → ψ1 ∧ . . . ∧ ψn (or reducible to them by special replacement
rules), where every ϕi → ψj is an “explicitly tautological entailment”. A first-degree
entailment is explicitly tautological iff it is of the form χ1∧ . . . ∧χm → ξ1∨ . . . ∨ξn, where
χ1, . . . , χm, ξ1, . . . , ξn are all atoms (i.e. propositional variables or the negates thereof),1

and with some atom χi being the same as some atom ξj . Belnap remarks that tautological
entailmenthood is effectively decidable, and observes strong equality between the set of
first-degree theorems of the system E (of entailment) and the set of tautological entailments,
see also [2].

J. Michael Dunn in [10] initiated a highly innovative research program for semantic
justification of the first-degree entailments, culminating in his paper [11]. The main point
of the program consists in allowing underdetermined and overdetermined valuations that
can in certain situations falsify logical laws or verify contradictions, see [31]. One way to
achieve this is to treat valuation as a function from the set of sentences of a language to the
subsets of classical truth values {t, f}, cf. [11, p. 156].

Consider sentential language CDN defined as follows:2

ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ∼ϕ.

A generalized valuation is a map v from the set of sentential variables into P({t, f}).
This valuation is extended to the whole language by the following conditions:

Definition 1.

(1) t ∈ v(ϕ ∧ ψ)⇔ t ∈ v(ϕ) and t ∈ v(ψ), f ∈ v(ϕ ∧ ψ)⇔ f ∈ v(ϕ) or f ∈ v(ψ);
(2) t ∈ v(ϕ ∨ ψ)⇔ t ∈ v(ϕ) or t ∈ v(ψ), f ∈ v(ϕ ∨ ψ)⇔ f ∈ v(ϕ) and f ∈ v(ψ);
(3) t ∈ v(∼ϕ)⇔ f ∈ v(ϕ), f ∈ v(∼ϕ)⇔ t ∈ v(ϕ).

A truth-value function, so defined, produces exactly four possible assignments that can
be ascribed to a formula ϕ:

1“Atom” is the original term used by Belnap for what nowadays is usually called “literal”.
2CDN stands for “conjunction, disjunction, negation”.
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1. v(ϕ) = {t}, i.e., t ∈ v(ϕ) and f /∈ v(ϕ);

2. v(ϕ) = {f}, i.e., t /∈ v(ϕ) and f ∈ v(ϕ);

3. v(ϕ) = {t, f}, i.e., t ∈ v(ϕ) and f ∈ v(ϕ);

4. v(ϕ) = { }, i.e., t /∈ v(ϕ) and f /∈ v(ϕ).

In this way one arrives at a certain reinterpretation of classical truth and falsity on a
semantic level. Indeed, if we consider a classical valuation vc to be a usual map from the set
of formulas into the set {t, f}, then “ϕ is true” is explicated as vc(ϕ) = t, and “ϕ is false”
is explicated as vc(ϕ) = f . In Dunn’s semantics alternatively “ϕ is true” is explicated as
t ∈ v(ϕ), and “ϕ is false” is explicated as f ∈ v(ϕ). As a result, the following principles
(for any ϕ):

ϕ is true, or ϕ is false (Bivalence)

ϕ is not true, or ϕ is not false (Univocality)

do not generally hold in Dunn’s semantics, as they do in classical.
Belnap in his seminal papers [7] and [8] (reproduced in [4] as § 81, see also [26]) fa-

mously explicated assignments in Dunn’s semantics as new truth values (which can be
called “generalized truth values”, see [34, p. 763]): N = ∅, F = {f}, T = {t} and
B = {f, t}, thus obtaining a “useful four-valued logic” for a “computer-based reasoning”.
Truth values for compound formulas are determined by the following matrices:

∼
T F
B B
N N
F T

∧ T B N F

T T B N F
B B B F F
N N F N F
F F F F F

∨ T B N F

T T T T T
B T B T B
N T T N N
F T B N F

Moreover, Belnap’s four truth values (being ascribed to a sentence ϕ) can be explicated
as follows by Dunn’s generalized valuation:

v(ϕ) = T ⇔ t ∈ v(ϕ) and f /∈ v(ϕ): ϕ is true only;

v(ϕ) = F ⇔ t /∈ v(ϕ) and f ∈ v(ϕ): ϕ is false only;

v(ϕ) = B ⇔ t ∈ v(ϕ) and f ∈ v(ϕ): ϕ is both true and false;

v(ϕ) = N ⇔ t /∈ v(ϕ) and f /∈ v(ϕ): ϕ is neither true nor false.
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If a sentence has the truth value T , it is said to be exactly true; if it has one of the
values T or B, it can be viewed as at least true, and analogously for falsehood. By defining
entailment as a relation between sentences, one may rely on a basic understanding that valid
inference always preserves truth as well as non-falsity—from a premise to the conclusion.
Belnap implements this understanding in such a way that if the premise is at least true, so
is the conclusion, and if the conclusion is at least false, so is the premise (cf. [4, p. 519]).
We have thus the following definition:

Definition 2. ϕ �FDE ψ =df ∀v : t ∈ v(ϕ)⇒ t ∈ v(ψ).

Observation 3. The entailment relation �FDE as defined by Definition 2, explicitly takes
{T,B} as the set of designated truth values. That is, Definition 2 can be reformulated as
follows: ϕ �FDE ψ =df ∀v : v(ϕ) ∈ {T,B} ⇒ v(ψ) ∈ {T,B}.

Remarkably, within Dunn’s setting, the first half of Belnap’s understanding of entail-
ment implies the second, and vice versa. Indeed, it can be shown (see, e.g., Proposition 4 in
[14]), that the following holds:

Lemma 4. ϕ �FDE ψ ⇔ ∀v : f ∈ v(ψ)⇒ f ∈ v(ϕ).

Observation 5. Lemma 4 can be taken as a definition of entailment relation, in which
case Definition 2 becomes provable as a lemma. The set of designated truth values is then
{T,N}, and definition of entailment can be reformulated as follows:

ϕ �FDE ψ =df ∀v : v(ϕ) ∈ {T,N} ⇒ v(ψ) ∈ {T,N}.

It should also be observed, that the set of valid entailments under Definition 2 (and
Lemma 4) is exactly the set of tautological entailments in Belnap’s sense. In this way,
Anderson and Belnap’s approach to finding criteria “for picking out from among first-degree
entailments . . . those that are valid” [2, p. 9] is enshrined in a semantic framework of Dunn’s
generalized valuation and Belnap’s generalized truth values.

As already said, the distinctive feature of this approach consists in explicating entail-
ment as a relation between truth-functional formulas, i.e. between single formulas, which
do not include expressions of entailment in any form. Such a relation can serve then as
a general base and starting point for further expansions and generalizations, by consider-
ing, e.g., entailments between sets of formulas, entailments between entailments, etc. For
a comprehensive overview of various extensions (in the same vocabulary) and expansions
of the logic of first-degree entailment see a survey paper [25]. Remarkably, by all these ex-
pansions the core relation of first-degree entailment remains basic, providing thus a sound
general framework for the whole conception of entailment.

It is noteworthy, that this core relation, as originally introduced by Belnap and Dunn,
can itself be extended in different directions, thus giving rise to the first-degree entailment
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fragments of various non-classical logics, such as Kleene’s strong three-valued logic or
Priest’s logic of paradox.

In this paper I will explain a specific proof-theoretic machinery of binary consequence
systems, which can be seen as most suitable for a deductive formalization of the first-degree
entailment relation. I will show how this relation can be adequately axiomatized by a diver-
sity of binary consequence systems, which are all deductively equivalent, and which allow
a number of different extensions of the initial relation. A family of binary consequence
systems for these extensions will be presented in a systematic manner.

This is a survey article, which recapitulates and summarizes certain work of myself and
others (see, in particular [32, 33, 35, 36]), and organizes the corresponding material from
a genuinely first-degree entailment perspective. The proofs of lemmata and theorems are
omitted and can be restored from the corresponding references if needed.

2 Logical frameworks and binary consequence systems

Once again, first-degree entailments in the strict sense are implicational expressions of the
form ϕ → ψ, where ϕ and ψ can be “truth functions of any degree but cannot contain any
arrows” [3, p. 150]. Currently it is more common to employ “binary consequence expres-
sions” of the form ϕ ` ψ (to be read as “ϕ has ψ as a consequence” [12, p. 302]), where
ϕ,ψ ∈ CDN . The corresponding proof systems (called “binary consequence systems” by
Dunn [13, p. 24], and “symmetric consequence systems” by Chrysafis Hartonas [20, p. 5])
manipulate binary consequences as formal objects. Such systems are of interest in their own
right, as an important particular way of presenting logical structures.

Dunn and Hardegree in [16, p. 185] differentiate between four kinds of consequence
relations:

(1) unary assertional systems, ` φ;

(2) binary implicational systems, φ ` ψ;

(3) asymmetric consequence systems, Γ ` φ;

(4) symmetric consequence systems, Γ ` ∆.

It is observed that (1) can be viewed as a special case of (3), and (3) is a special case
of (4), whereas (2) is a special case of both (3) and (4). They also remark that “binary
implicational systems are perhaps the presentation that most fits the idea of thinking of
logics as ordered algebras” [16, p. 186].

In a similar vein, Lloyd Humberstone [22] elaborated on the idea of logical frame-
works as specific structures for manipulating sequents of various kinds. A particular logical
framework assigns to each language a class of sequents permissible within this framework,
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cf. [22, p. 103]. For example, the logical framework SET-FMLA, “takes a sequent . . . to have
the form Γ �B where Γ is a finite (possibly empty) set of formulas . . . and B is a formula”
[22, p. 103]. (Here � is a special symbol that “combines formulas into sequents”, used by
Humberstone as a “sequent separator”. Because I deal with consequence expressions, I
follow Dunn by employing the sign of a consequence relation ` in this place.)

Humberstone, in particular, describes in [22, p. 108] the following logical frameworks,
each of which determines the corresponding set of sequents consisting of all expressions
Γ ` ∆ (with Γ and ∆ being any finite sets of formulas, maybe empty), subject to the
following restrictions:

for SET-SET: no restrictions neither on Γ, nor on ∆;

for SET-FMLA: no restrictions on Γ, |∆| = 1;

for SET1-FMLA: |Γ| ≥ 1, |∆| = 1;

for SET-FMLA0: no restrictions on Γ, |∆| ≤ 1;

for FMLA-FMLA: |Γ| = 1, |∆| = 1;

for FMLA: |Γ| = 0, |∆| = 1.

He observes that there could be further variations of logical frameworks, such as SET1-
SET1 or FMLA-SET, and that they all “are specializations of SET-SET in the sense that for
any given language, the sequents of that language according to the given framework are all
sequents according to SET-SET” [22, p. 108].

Humberstone’s classification of logical frameworks includes prominently a separate cat-
egory for the FMLA-FMLA sequents, considered to be “a suitable setting in which to con-
centrate on entailment as a binary relation between formulas” [22, p. 108]. In full agree-
ment with the above-cited remark by Dunn and Hardegree, Humberstone [22, p. 246] ex-
plains how one can naturally design adequate algebraic semantics for the FMLA-FMLA

sequents, based on the relation of pre-order ≤ (which can also be restricted to a partial or-
der if needed). In terms of consequences, if one defines a homomorphism h from a given
language to a set of propositions, then a binary consequence ϕ ` ψ is said to hold on this h
when h(ϕ) ≤ h(ψ), and it is said to be valid when it holds on every such homomorphism.
It is worth noting that the underlying set of propositions is usually taken to form a lattice,
which enables us to have conjunction and disjunction in our language. Thus, the FMLA-
FMLA consequence systems may play an important role in determining the corresponding
algebraic structures, cf. discussion on relational logical algebra in [9, Ch. 4].

Let me briefly summarize. First degree entailments in their original and most gen-
uine sense fall into the category of binary consequence expressions. A binary consequence
expression (or simply binary consequence) is an expression of the form ϕ ` ψ, where
ϕ,ψ ∈ CDN . A binary consequence system can be defined then as a proof system, which
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manipulates binary consequences as formal objects. A binary consequence is thus a par-
ticular case of a Gentzenian ‘sequent’ where both antecedent and succedent are restricted
to singletons. In this respect, a binary consequence system is a “sequent style system” [29,
p. 246] constructed in a FMLA-FMLA “logical framework”.

A logic over the given language (in the FMLA-FMLA setting) is meant to be a set of
binary consequences closed at least under the usual Tarskian conditions of reflexivity and
transitivity:

(ref) ϕ ` ϕ
(tr) ϕ ` ψ, ψ ` χ⇒ ϕ ` χ

as well as Łoś and Suszko’s condition of structurality (substitution-invariance, for every
uniform substitution function s on CDN ):

(si) ϕ ` ψ ⇒ s(ϕ) ` s(ψ).

Moreover, a logic is said to be consistent (or non-trivial) whenever ` 6= CDN ×CDN .
A particular consequence system is consistent if the logic generated by this system (the
set of all valid consequences derived in this system) is consistent. Clearly, the same logic
can be captured by various consequence systems. If several binary consequence systems
determine the same set of provable consequences, these systems are said to be deductively
equivalent.

In the next section I will consider the deductive characterization of the logic of first-
degree entailment by various (deductively equivalent) binary consequence systems (more
detailed exposition of this material see in [32]).

3 Consequence systems for first-degree entailment and struc-
tural reasoning

The logic of first-degree entailment has been first axiomatized in [3, p. 158] by the following
binary consequence system:

System Efde

(ce1) ϕ ∧ ψ ` ϕ
(ce2) ϕ ∧ ψ ` ψ
(di1) ϕ ` ϕ ∨ ψ
(di2) ψ ` ϕ ∨ ψ
(dis1) ϕ ∧ (ψ ∨ χ) ` (ϕ ∧ ψ) ∨ χ
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(ni) ϕ ` ∼∼ϕ
(ne) ∼∼ϕ ` ϕ
(tr) ϕ ` ψ, ψ ` χ/ ϕ ` χ
(ci) ϕ ` ψ, ϕ ` χ/ ϕ ` ψ ∧ χ
(de) ϕ ` χ, ψ ` χ/ ϕ ∨ ψ ` χ
(con) ϕ ` ψ / ∼ψ ` ∼ϕ

It is essentially the original formulation from [3, p. 158] (with ` instead of→), where
this system is characterized as “a Hilbert-style formalism” with “seven axioms and four
rules”, conceived as “the first degree entailment fragment of the calculus E” (hence its
name).

This formulation is quite elegant, presenting a complete characterization of each propo-
sitional connective by a group of exactly three principles, two of which being the “direct
consequences” taken as axioms: (ce1), (ce2) for conjunction elimination; (di1), (di2) for
disjunction introduction; (ni), (ne) for negation introduction and elimination, and another
one formulated as a rule of inference, saying how to obtain some consequence with certain
connective from other consequence(s): (ci) for conjunction introduction; (de) for disjunc-
tion elimination and (con) for negation contraposition. There is also an additional axiom
of distributivity (dis1) reflecting an interconnection between conjunction and disjunction,
and one inference rule of transitivity (tr), which involves no propositional connectives and
deals purely with the consequence relation as such. Thus, by using Gentzen’s terminology,
see [19, p. 191], (ci), (de) and (con) are “rules for logical symbols” (“Logische-Zeichen-
Schlußfiguren”),3 and (tr) is the only “structural inference rule” [ibid].

An inference (proof) in Efde is a finite list of consequence expressions where every
list item is either an axiom or results from preceding elements of the list by an inference
rule application. It is well known that four De Morgan laws (∼ϕ ∧ ∼ψ ` ∼(ϕ ∨ ψ),
∼(ϕ ∧ ψ) ` ∼ϕ ∨ ∼ψ, ∼ϕ ∨ ∼ψ ` ∼(ϕ ∧ ψ), ∼(ϕ ∨ ψ) ` ∼ϕ ∧ ∼ψ) are derivable in
Efde. Moreover, Efde + ϕ∧∼ϕ ` ψ amounts to a consequence system of classical logic, cf.
[30, pp. 255-256].4

Efde is a rather strong system that hardly allows interesting non-classical extensions in
the same vocabulary. The only non-classical consistent extension of Efde can be obtained
by adding to it the axiom ϕ ∧ ∼ϕ ` ψ ∨ ∼ψ (see, e.g., [11, p. 157 and note 7] and [18,
p. 53]), which is the characteristic principle for the first-degree entailment fragments of both
“R-mingle” and “E-mingle”, the Dunn–McCall systems obtained by extending systems R
and E by the “mingle axiom” ϕ → (ϕ → ϕ) and “restricted mingle axiom” (ϕ → ψ) →
((ϕ→ ψ)→ (ϕ→ ψ)) respectively.

3One call them just “logical rules”.
4Clearly, ψ ` ϕ ∨ ∼ϕ becomes then derivable by (con).
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To make the logic of first-degree entailment more “flexible”, and particularly more sen-
sitive to further interesting extensions, it is possible to give up some of its initial inference
rules, and first of all, contraposition. In this way one obtains another well-known formula-
tion of this logic without the contraposition rule, but with De Morgan laws taken instead as
axioms. One can find this formulation, e.g. in [14, p. 12]:

System Rfde

(ce1) ϕ ∧ ψ ` ϕ
(ce2) ϕ ∧ ψ ` ψ
(di1) ϕ ` ϕ ∨ ψ
(di2) ψ ` ϕ ∨ ψ
(dis1) ϕ ∧ (ψ ∨ χ) ` (ϕ ∧ ψ) ∨ χ
(ni) ϕ ` ∼∼ϕ
(ne) ∼∼ϕ ` ϕ
(dm1) ∼(ϕ ∨ ψ) ` ∼ϕ ∧ ∼ψ
(dm2) ∼ϕ ∧ ∼ψ ` ∼(ϕ ∨ ψ)
(dm3) ∼(ϕ ∧ ψ) ` ∼ϕ ∨ ∼ψ
(dm4) ∼ϕ ∨ ∼ψ ` ∼(ϕ ∧ ψ)
(tr) ϕ ` ψ, ψ ` χ/ ϕ ` χ
(ci) ϕ ` ψ, ϕ ` χ/ ϕ ` ψ ∧ χ
(de) ϕ ` χ, ψ ` χ/ ϕ ∨ ψ ` χ

Dunn uses the label Rfde to highlight the fact that the first-degree entailment fragments
of systems R and E are the same. He also shows that contraposition, although not derivable
in Rfde, is still admissible, see [14, Proposition 11]. Thus, Efde and Rfde are deductively
equivalent. Yet, the latter system is in a way weaker than the former, so that it has fewer
derivable rules, and allows thus certain non-classical (and non-trivial) extensions, which are
impossible with Efde.

Namely, as stated in [14, Theorem 12], Rfde + ϕ ∧ ∼ϕ ` ψ gives us the first-degree
entailment fragment of Kleene’s logic, and Rfde + ψ ` ϕ ∨ ∼ϕ results in the first-degree
entailment fragment of Priest’s “logic of paradox”. Clearly, the contraposition rule is no
longer admissible in these extensions of Rfde.

Let ϕ `Efde ψ mean that ϕ ` ψ is provable in Efde, and analogously for Rfde. We
have then the following soundness and completeness result for both Efde and Rfde (see, e.g.,
Theorem 7 in [14]):

Theorem 6. For every ϕ,ψ: ϕ `Efde ψ ⇔ ϕ �FDE ψ ⇔ ϕ `Rfde ψ.
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A direct comparison of Efde and Rfde shows that deleting contraposition from the list
of initial inference rules, and compensating it by a set of suitable axioms (specifically, De
Morgan laws), allows for more non-classical extensions of the first-degree entailment logic.
Remarkably, the analogous methodology can be employed to eliminate the remaining two
non-structural inference rules of Rfde, for conjunction introduction and disjunction elimina-
tion.

Namely, consider the following system of first-degree entailment with conjunction in-
troduction as the only logical inference rule (together with the structural rule of transitivity):

System FDE(ci)

(ce1) ϕ ∧ ψ ` ϕ
(ce2) ϕ ∧ ψ ` ψ
(di1) ϕ ` ϕ ∨ ψ
(dco) ϕ ∨ ψ ` ψ ∨ ϕ
(did) ϕ ∨ ϕ ` ϕ
(das) ϕ ∨ (ψ ∨ χ) ` (ϕ ∨ ψ) ∨ χ
(dis2) ϕ ∨ (ψ ∧ χ) ` (ϕ ∨ ψ) ∧ (ϕ ∨ χ)
(dis3) (ϕ ∨ ψ) ∧ (ϕ ∨ χ) ` ϕ ∨ (ψ ∧ χ)
(dni) ϕ ∨ ψ ` ∼∼ϕ ∨ ψ
(dne) ∼∼ϕ ∨ ψ ` ϕ ∨ ψ
(ddm1) ∼(ϕ ∨ ψ) ∨ χ ` (∼ϕ ∧ ∼ψ) ∨ χ
(ddm2) (∼ϕ ∧ ∼ψ) ∨ χ ` ∼(ϕ ∨ ψ) ∨ χ
(ddm3) ∼(ϕ ∧ ψ) ∨ χ ` (∼ϕ ∨ ∼ψ) ∨ χ
(ddm4) (∼ϕ ∨ ∼ψ) ∨ χ ` ∼(ϕ ∧ ψ) ∨ χ
(tr) ϕ ` ψ , ψ ` χ/ ϕ ` χ
(ci) ϕ ` ψ, ϕ ` χ/ ϕ ` ψ ∧ χ

FDE(ci) is obtained from Rfde by removing disjunction elimination (de) from the list of
initial inference rules, and compensating this loss by a stock of additional axiom schemata,
most crucially, “disjunctive versions” of the double negation and De Morgan laws.

The following lemma, which enables us to get rid of redundant disjunctions, is inspired
by Proposition 3.2 from [17]:

Lemma 7. For every schema (dni), (dne), (ddm1)–(ddm4) of the form α ∨ γ ` β ∨ γ the
following consequences are derivable in FDE(ci):

(a) α ` β;
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(b) α ∧ γ ` β ∧ γ.

Also the following lemma is important for establishing the adequacy of FDE(ci) for the
logic of first-degree entailment:

Lemma 8. The rules of disjunction elimination (de) and contraposition (con) are admissi-
ble in FDE(ci).

System FDE(ci) opens the way for more interesting extensions of the logic of first-
degree entailment, in particular, it gives a base for axiomatizing the FMLA-FMLA formula-
tion of “exactly true logic” introduced by Andreas Pietz5 and Umberto Rivieccio in [27]. I
will come back to this (and other) extensions of first-degree entailment in the next section.

Duality between the rules of conjunction introduction and disjunction elimination sug-
gests a construction of another version of the logic of first-degree entailment with only
one logical inference rule (accompanied by the structural rule of transitivity), but now for
disjunction elimination.

System FDE(de)

(di1) ϕ ` ϕ ∨ ψ
(di2) ψ ` ϕ ∨ ψ
(ce1) ϕ ∧ ψ ` ϕ
(cco) ϕ ∧ ψ ` ψ ∧ ϕ
(cid) ϕ ` ϕ ∧ ϕ
(cas) (ϕ ∧ ψ) ∧ χ ` ϕ ∧ (ψ ∧ χ)
(dis4) (ϕ ∧ ψ) ∨ (ϕ ∧ χ) ` ϕ ∧ (ψ ∨ χ)
(dis5) ϕ ∧ (ψ ∨ χ) ` (ϕ ∧ ψ) ∨ (ϕ ∧ χ)
(cne) ∼∼ϕ ∧ ψ ` ϕ ∧ ψ
(cni) ϕ ∧ ψ ` ∼∼ϕ ∧ ψ
(cdm4) (∼ϕ ∨ ∼ψ) ∧ χ ` ∼(ϕ ∧ ψ) ∧ χ
(cdm3) ∼(ϕ ∧ ψ) ∧ χ ` (∼ϕ ∨ ∼ψ) ∧ χ
(cdm2) (∼ϕ ∧ ∼ψ) ∧ χ ` ∼(ϕ ∨ ψ) ∧ χ
(cdm1) ∼(ϕ ∨ ψ) ∧ χ ` (∼ϕ ∧ ∼ψ) ∧ χ
(tr) ϕ ` ψ , ψ ` χ/ ϕ ` χ
(de) ϕ ` χ , ψ ` χ/ ϕ ∨ ψ ` χ

By dualizing Lemma 7 one easily obtains:
5After he changed his name—Andreas Kapsner.
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Lemma 9. For every schema (cne), (cni), (cdm4)–(cdm1) of the form α ∧ γ ` β ∧ γ the
following consequences are derivable in FDE(de):

(a) α ` β;
(b) α ∨ γ ` β ∨ γ.

Also the following can be proved analogously to Lemma 8:

Lemma 10. The rules of conjunction introduction (ci) and contraposition (con) are ad-
missible in FDE(de).

Again, FDE(de), having less derivable rules than Rfde enables further non-trivial and
non-classical extensions, which will be considered in the next section in greater detail.

Anderson and Belnap, when characterizing their system Efde as a “Hilbert-style formal-
ism”, observe: “This formulation suffers, from a proof-theoretical point of view, in having
lots of rules; Hilbert would have preferred just one” [3, p. 158]. Well, both FDE(ci) and
FDE(de) rectify this shortcoming significantly by reducing the number of rules to two, but
still, they fail to meet “Hilbert’s ideal” of rule singularity.

Remarkably, both systems have the same structural rule of transitivity (tr) in com-
mon, and each of them additionally has its own logical rule absent in the other system.
This removability of logical inference rules by replacing them with appropriate axioms
for the corresponding propositional connectives suggests another formalization of the first-
degree entailment logic with the only (structural) inference rule of transitivity, obtained by a
straightforward combination of FDE(ci) and FDE(de). In [33, p 320] such a combined sys-
tem FDE(-) has been proposed as a consequence system that presumably fulfills “Hilbert’s
dream”. In this system disjunctive and conjunctive contexts are attached separately to the
antecedents and succedents of the consequences for De Morgan laws and the laws of double
negation. However, it turns out that this system might not be closed under the rules of dis-
junction elimination and conjunction introduction, and thus, its deductive equivalence with
Efde and Rfde is very much in question.6

Therefore consider another “really Hilbertian” consequence system FDES, which ma-
nipulates combined disjunctive-conjunctive contexts as appropriate:

System FDES

(di1) ϕ ` ϕ ∨ ψ
(dco) ϕ ∨ ψ ` ψ ∨ ϕ
(did) ϕ ∨ ϕ ` ϕ
(das∨) (ϕ ∨ (ψ ∨ χ)) ∨ ξ ` ((ϕ ∨ ψ) ∨ χ) ∨ ξ

6I am grateful to Adam Přenosil for pointing out this fact to me, and for noting that combined contexts fix
the problem.
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(ce1) ϕ ∧ ψ ` ϕ
(cco) ϕ ∧ ψ ` ψ ∧ ϕ
(cid) ϕ ` ϕ ∧ ϕ
(cas∧) ((ϕ ∧ ψ) ∧ χ) ∧ ξ ` (ϕ ∧ (ψ ∧ χ)) ∧ ξ
(dis∨∧

2 ) ((ϕ ∨ (ψ ∧ χ)) ∨ ξ) ∧ τ ` (((ϕ ∨ ψ) ∧ (ϕ ∨ χ)) ∨ ξ) ∧ τ
(dis∨∧

3 ) (((ϕ ∨ ψ) ∧ (ϕ ∨ χ)) ∨ ξ) ∧ τ ` ((ϕ ∨ (ψ ∧ χ)) ∨ ξ) ∧ τ
(dis∨∧

4 ) (((ϕ ∧ ψ) ∨ (ϕ ∧ χ)) ∨ ξ) ∧ τ ` ((ϕ ∧ (ψ ∨ χ)) ∨ ξ) ∧ τ
(dis∨∧

5 ) ((ϕ ∧ (ψ ∨ χ)) ∨ ξ) ∧ τ ` (((ϕ ∧ ψ) ∨ (ϕ ∧ χ)) ∨ ξ) ∧ τ
(ni∨∧) (ϕ ∨ ψ) ∧ χ ` (∼∼ϕ ∨ ψ) ∧ χ
(ne∨∧) (∼∼ϕ ∨ ψ) ∧ χ ` (ϕ ∨ ψ) ∧ χ
(dm∨∧

1 ) (∼(ϕ ∨ ψ) ∨ χ) ∧ ξ ` ((∼ϕ ∧ ∼ψ) ∨ χ) ∧ ξ
(dm∨∧

2 ) ((∼ϕ ∧ ∼ψ) ∨ χ) ∧ ξ ` (∼(ϕ ∨ ψ) ∨ χ) ∧ ξ
(dm∨∧

3 ) (∼(ϕ ∧ ψ) ∨ χ) ∧ ξ ` ((∼ϕ ∨ ∼ψ) ∨ χ) ∧ ξ
(dm∨∧

4 ) ((∼ϕ ∨ ∼ψ) ∨ χ) ∧ ξ ` (∼(ϕ ∧ ψ) ∨ χ) ∧ ξ
(tr) ϕ ` ψ,ψ ` χ/ϕ ` χ

This system might appear rather bulky, yet it is quite manageable, as the following
lemma shows:

Lemma 11. For axioms (dis∨∧
2 )–(dm∨∧

4 ) of the form (α ∨ χ) ∧ ξ ` (β ∨ χ) ∧ ξ :
(1) The respective consequences (dis2)–(dm4) of the form α ` β are derivable;
(2) The respective dual consequences (dis∧∨

2 )–(dm∧∨
4 ) of the form (α ∧ χ) ∨ ξ ` (β ∧

χ) ∨ ξ are derivable;
(3) The respective consequences (dis∨

2 )–(dm∨
4 ) of the form α∨χ ` β ∨χ, and (dis∧

2 )–
(dm∧

4 ) of the form α ∧ χ ` β ∧ χ are derivable.
Moreover, standard formulations of associativity for disjunction (das) ϕ ∨ (ψ ∨ χ) `

(ϕ ∨ ψ) ∨ χ, and conjunction (cas) (ϕ ∧ ψ) ∧ χ ` ϕ ∧ (ψ ∧ χ) are derivable as well.

The full admissibility of the inference rules of the first-degree entailment logic in FDES

can also be established.

Lemma 12. Rules (ci), (de), and (con) are all admissible in FDES.

We thus have the following result:

Lemma 13. Systems Efde, Rfde, FDE(ci), FDE(de), and FDES are all deductively equiv-
alent in the sense that each of these systems determines the same set of provable conse-
quences.
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As a direct byproduct of Lemma 13 we get the soundness and completeness of all the
systems formulated in this section with respect to the entailment relation determined by
Definition 2. Let ϕ `fde ψ means that consequence ϕ ` ψ is provable in any of the systems
Efde, Rfde, FDE(ci), FDE(de), or FDES. Then we have:

Theorem 14. For every ϕ,ψ: ϕ `fde ψ ⇔ ϕ �FDE ψ.

Among all these systems FDES is of particular interest, being the only purely struc-
tural system in certain precise sense of the term. This sense essentially goes back to the
Gentzenian division between structural rules and rules for logical symbols. As it is well
known, Gentzen’s sequent calculi comprise both kinds of rules “with small number (usually
one) of primitive sequents” [23, p. 1297]. There is also another approach to the sequent
calculi construction, which stems directly from the work of Paul Hertz (see, e.g., [21]), ac-
cording to which “rules have purely structural character and all logical content is contained
in primitive sequents” [23, p. 1309].

Schroeder-Heister defines structural reasoning as “reasoning in a sequent style system
using structural rules only” [29, p. 246]. He stresses the importance of this kind of reasoning
as a “subject in its own right”, particularly “in the light of modern developments such as
logic programming”, and also observes that “calculi developed by Paul Hertz in the 1920s
are structural systems in this independent sense” [29, p. 247].

In this section a natural way of evolving the logic of first-degree entailment towards
structural reasoning has been outlined—from Efde up to FDES. Namely, it has been shown
how we can forgo logical rules due to additional axiom schemata. Starting from Efde with a
special inference rule for each of the three propositional connectives of language CDN , one
can work the way through a system without the rule for negation (Rfde), then to a system
without the rule either for disjunction (FDE(ci)) or for conjunction (FDE(de)), and ending
up with a system with no logical rules at all (FDES). The latter is thus a purely structural
sequent style system of the “Hertz-kind”.

Moreover, derivations in all these systems are constructed not in tree form but are lin-
early ordered. An inference (proof) of a consequence is defined here as a finite consecutive
list of (occurrences of) consequence expressions, each of which either is an axiom or comes
by an inference rule from some consequence expressions preceding it in the list (cf. [24,
p. 34]). FDES deserves thus attention as a system, which represents linear structural rea-
soning, and can serve as a “proof ground” for investigating the properties of this kind of
reasoning.

The section concludes with an example of deriving in FDES consequence, which states
the closure of conjunction comutativity under a disjunctive context (note how Lemma 11 is
effectively used in this derivation).

(cco∨) (ϕ ∧ ψ) ∨ χ ` (ψ ∧ ϕ) ∨ χ:
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1. (ϕ ∧ ψ) ∨ χ ` χ ∨ (ϕ ∧ ψ) (dco)
2. χ ∨ (ϕ ∧ ψ) ` (χ ∨ ϕ) ∧ (χ ∨ ψ) (dis2)
3. (χ ∨ ϕ) ∧ (χ ∨ ψ) ` (χ ∨ ψ) ∧ (χ ∨ ϕ) (cco)
4. (χ ∨ ψ) ∧ (χ ∨ ϕ) ` χ ∨ (ψ ∧ ϕ) (dis3)
5. χ ∨ (ψ ∧ ϕ) ` (ψ ∧ ϕ) ∨ χ (dco)
6. (ϕ ∧ ψ) ∨ χ ` (ψ ∧ ϕ) ∨ χ 1–5: (tr), four times

4 Extensions of first-degree entailment:
a family of binary consequence systems

Efde, Rfde, FDE(ci), FDE(de) and FDES jointly present a rather illustrative example of
deductively equivalent systems which nevertheless disagree in their derivable rules of in-
ference. “Downgrading” a rule from a derivable to merely admissible within some system
may be useful, opening the door for interesting new extensions of the system, which could
be impossible otherwise. The less derivable rules a system has, the more subtle (non-trivial)
extensions it allows. For example, whereas adding ϕ ∧ ∼ϕ ` ψ to Efde collapses it into
classical logic (due to the rule of contraposition), the same manipulation with Rfde (where
contraposition is not derivable, but merely admissible) produces the first-degree entailment
fragment of Kleene’s strong three-valued logic, where contraposition is no longer admissi-
ble.

Importantly, logic as a set of expressions is always closed under the inference rules of
an (underlying) proof system, which explicates the properties of the corresponding conse-
quence relation. Therefore, adding some expression to the given set may result in different
outcomes, depending on the system taken to be basic, and thus, on the corresponding clo-
sure. It means that any accurate (syntactic) consideration of “logical extensibility” is essen-
tially “system-dependent”, so that when we speak of extensions of some “logic”, we always
have in mind (explicitly or implicitly) a particular proof system for this logic, subject to the
extensions in question. The stock of derivable rules of a system sets the boundaries of its
possible extensions, since such rules are preserved by all these extensions (by contrast with
merely admissible rules, which need not remain intact in extended systems).

From this perspective the purely structural system for the logic of first-degree entailment
FDES is most promising, opening a way for a fine-tuning of a whole bundle of systems,
which can be located between first-degree entailment and classical logic. Indeed, FDES

presents the “limiting case” among the deductively equivalent systems for the logic of first-
degree entailment, permitting the largest number of its possible extensions.

Consider the following consequences, which are not derivable in any of the first-degree
entailment systems deductively equivalent to FDES:
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(ds) ∼ϕ ∧ (ϕ ∨ ψ) ` ψ
(dds) ϕ ` ∼ψ ∨ (ψ ∧ ϕ)
(efq) ϕ ∧ ∼ϕ ` ψ
(veq) ϕ ` ψ ∨ ∼ψ
(efq∨) (ϕ ∧ ∼ϕ) ∨ ψ ` ψ
(veq∧) ϕ ` (ψ ∨ ∼ψ) ∧ ϕ
(saf) ϕ ∧ ∼ϕ ` ψ ∨ ∼ψ
(saf∨∧) (ϕ ∧ ∼ϕ) ∨ χ ` (ψ ∨ ∼ψ) ∧ χ
(saf∧) (ϕ ∧ ∼ϕ) ∧ χ ` (ψ ∨ ∼ψ) ∧ χ
(saf∨) (ϕ ∧ ∼ϕ) ∨ χ ` (ψ ∨ ∼ψ) ∨ χ

Label (ds) stands for “disjunctive syllogism”, whereas (dds) marks its dual version.
Consequences (efq) and (veq) are the famous “ex falso quodlibet” and “verum ex quodli-
bet”, and (saf) stands for “safety”, see explanations in [15, p. 443]. Indexing these rules
with ∧ or ∨ (or both) signifies the conjunctive and disjunctive variations thereof.

A family of structural consequence systems, which are all extensions of FDES (a struc-
tural FDE-family), can be defined as follows:

SMS = FDES + (saf); RMS = FDES + (saf∨∧);

RM∧
S = FDES + (saf∧); RM∨

S = FDES + (saf∨);

EFQS = FDES + (efq); VEQS = FDES + (veq);

ETLS = FDES + (ds); NFLS = FDES + (dds);

K3S = FDES + (efq∨); LPS = FDES + (veq∧);

RMf
S = RMS + (efq); RMv

S = RMS + (veq);

K3v
S = K3S + (veq); LPf

S = LPS + (efq);

SCLS = RMS + (veq), (efq);CLS = FDES + (efq∨), (veq∧).

Let me shortly characterize systems from the structural FDE-family. This family con-
sists of the purely structural systems for the first-degree entailment fragments of various
logics, some of which are well known, some less known, and some are almost completely
unknown.

In particular, SMS, RM∧
S , RM∨

S , and RMS are different mingle-logics obtained from
FDES by extending it with various versions of safety. Since both conjunction introduction
and disjunction elimination are not derivable in FDES, extending it with simple safety
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(saf) results in a very weak logic, which can be called a “submingle”-system SMS. The
distinctive feature of SMS is a non-derivability of the following consequences:

(ϕ ∧ ∼ϕ) ∨ (ψ ∧ ∼ψ) ` (χ ∨ ∼χ), (1)

(ϕ ∧ ∼ϕ) ` (ψ ∨ ∼ψ) ∧ (χ ∨ ∼χ), (2)

(ϕ ∧ ∼ϕ) ∨ (ψ ∧ ∼ψ) ` (χ ∨ ∼χ) ∧ (ξ ∨ ∼ξ). (3)

Now, (1) becomes derivable in RM∨
S , (2) in RM∧

S , and RMS restores the first-degree
entailment fragment of R-mingle in full generality.

K3S and LPS are purely structural first-degree entailment fragments of Kleene’s strong
three-valued logic and Priest’s logic of paradox respectively. VEQS and ETLS represent
certain narrowings of the first of these logics, whereas EFQS and NFLS are narrowings
of the second. Remarkably, ETLS is a binary consequence system of Pietz and Rivieccio’s
exactly true logic, and NFLS is a binary consequence system of the “non-falsity logic”
from [35].

Systems RMf
S , RMv

S , K3v
S , LPf

S are the results of extending the corresponding sys-
tems either with (efq), or with (veq). CLS is a structural system for the binary first-degree
entailment relation of classical logic. SCLS is a peculiar “sub-classical” logic, which is al-
most classical, with the only difference that it is not closed under conjunction introduction
and disjunction elimination.

The relations between these systems (including FDES) constitute a lattice of structural
FDE-family as presented in Figure 1. This lattice outlines a general framework for logics
based on the first-degree entailment, with benchmark systems defined above, and (infinitely)
many other systems which can be placed between (some of) them.

Now consider the following definition:

Definition 15. Let ϕ, ψ be any sentences of CDN , and let ϕd be obtained from ϕ by
interchanging between ∧ and ∨, and replacing every atomic sentence with its negation (and
likewise for ψ and ψd). Then ψd ` ϕd is said to be dual to ϕ ` ψ. Logical system S
is self-dual iff ϕ `s ψ ⇔ ψd `s ϕd; logical systems S1 and S2 are mutually dual iff
ϕ `s1 ψ ⇔ ψd `s2 ϕ

d (for any ϕ and ψ).

We have then the following result:

Lemma 16. Systems FDES, SMS, RMS, SCLS and CLS are self-dual. The following
pairs of systems are mutually dual: RM∧

S–RM∨
S , EFQS–VEQS, ETLS–NFLS, RMf

S –
RMv

S , K3S–LPS, K3v
S –LPf

S .

Various extensions of the logical construction of Belnap and Dunn (called also “su-
per-Belnap” logics) has received a considerable attention recently, see, e.g., [1, 28], where
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Figure 1: Lattice of structural FDE-family

this issue was approached primarily from an algebraic standpoint, concentrating on logical
systems of the SET-FMLA type belonging mainly to the path evolving between SM and K3.
In particular, it has been shown in [28] that there are infinitely many logics between Belnap-
Dunn’s and Kleene’s logics. These results can be straightforwardly adjusted to the FMLA-
FMLA framework, and also extend to the dual versions of the systems under consideration.

Namely, consider a series of axiom schemata:

(efqn) (ϕ1 ∧ ∼ϕ1) ∨ . . . ∨ (ϕn ∧ ∼ϕn) ` ψ,

defined for any n ≥ 1, and let system EFQSn
be obtained by adding (efqn) to EFQS

(clearly, EFQS1 is just EFQ). It can be shown that (efqn+1) is not derivable in EFQSn
, for

any n ≥ 1. Thus, there exists a denumerable chain of systems

EFQS < EFQS2 < . . . < EFQSn
< . . .EFQS∞ < ETLS,

such that EFQSn
< EFQSn+1 for any n ≥ 1 (where < is proper inclusion with respect to

provable consequences). Analogously, one can define ETLSn by adding (efqn) to ETLS,
and obtain the corresponding infinite chain of systems between ETLS and K3S. Likewise,
there are infinitely many systems between EFQS and RMf

S .
Moreover, there are infinitely many systems between VEQS and NFLS, VEQS and

RMv
S , as well as between NFLS and LPS. These new chains are obtained by using addi-

tional rules

(veqn) ϕ ` (ψ1 ∨ ∼ψ1) ∧ . . . ∧ (ψn ∨ ∼ψn),
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and defining corresponding systems for every n ≥ 1.
Note, that systems SMS, RM∧

S , RM∨
S , and RMS constitute a “diamond of mingle-

logics”, which is a sublattice of the lattice of structural FDE-family. This sublattice deserves
special consideration, in particular, by analysis of an infinity of systems between SMS and
RMS obtained by involving series of axioms like:

(saf∨
n ) (ϕ1 ∧ ∼ϕ1) ∨ . . . ∨ (ϕn ∧ ∼ϕn) ` ψ ∨ ∼ψ, and

(saf∧
n ) ϕ ∧ ∼ϕ ` (ψ1 ∨ ∼ψ1) ∧ . . . ∧ (ψn ∨ ∼ψn).

These and other possible extensions of FDES are worthy of special consideration.
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Abstract
The paper is in the field of Region Based Theory of Space and Time (RBTST).
This is an extension of the Region Based Theory of Space (RBTS) in which we
incorporate also time. RBTS is a kind of point-free theory of space based on the
notion of region. Another name of RBTS is mereotopology, because it combines
notions and methods of mereology and topology [71]. The origin of this theory
goes back to some ideas of Whitehead, De Laguna and Tarski to build the
theory of space without the use of the notion of point. More information on
RBTS, mereotopology and their applications can be found in [76, 8, 42, 66].
The notion of contact algebra [26] presents an algebraic formulation of RBTS
and in fact gives axiomatizations of the Boolean algebras of regular closed sets
of various classes of topological spaces with an additional relation of contact.
Dynamic contact algebra (DCA) is introduced by the present author in [77,
78, 79] and can be considered as an algebraic formulation of RBTST. It is a
generalization of contact algebra studying regions changing in time and presents
a formal explication of Whitehead’s ideas of integrated point-free theory of space
and time. DCA is an abstraction of a special dynamic model of space, called
also snapshot or cinematographic model. In the present paper we introduce a
simplified version of DCA with the aim to be used as a representative example
of DCA and to develop for this example not only the snapshot models but also
topological models and the expected topological duality theory, generalizing in
a certain sense the well known Stone duality for Boolean algebras. Due to these
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models DCA can be called also dynamic mereotopology. Abstract topological
models of DCAs present a new view on the nature of space and time and show
what happens if we are abstracting from their metric properties.

Preface
The present work can be considered as a continuation of the essay ‘Region-Based
Theory of Space: Algebras of Regions, Representation Theory and Logics’ ([76]).
The essay contains a short history of the Region-Based Theory of Space (RBTS) and
a survey of the corresponding literature (till 2006), an exposition of the mathematical
apparatus of this approach based on contact algebras and a description of some
propositional spatial logics related to RBTS. In this approach ‘region-based’ means
that the notion of region, taken as an abstraction of material or geometric body, is
considered as one of the base notions of the theory. The theory is also ‘point-free’ in
a sense that the typical geometric notion of ‘point’ is not considered as a primitive
(undefinable) notion of the theory and should be defined in a later stage of the
theory. Later on we consider RBTS and ‘point-free theory of space’ as synonyms.

The motivation of the point-free approach to the theory of space was formulated
for the first time by Alfred North Whitehead in 1915 in his lecture Space, Time, and
Relativity (published as chapter VIII of [87]). In the same lecture Whitehead also
claims that the same approach should also be applied to the theory of time, and,
motivated by the relativity theory, that the theory of time should not be developed
separately from the theory of space and they both should be developed in one inte-
grated point-free theory of space and time. In this context ‘point-free’ means that
neither space points, nor time points (instances of time, moments) are considered
as primitive notions of the theory.

The present essay is devoted mainly to the point-free theories of space and time
and so is the title. Point-free theories of space and time are also ‘region-based’
because they consider changing or moving regions. So, we consider also another
equivalent name: Region-Based Theory of Space and Time - RBTST.

The text of the paper is structured as follows. Section 1 is the Introduction. We
start with some discussion about point-free theory of space and time and present
with more details the discussions about the nature of space and time between Leib-
nitz and Newton, Leibnitz’s relational view on space and time and Newton’s absolute
space and absolute time. We consider the Whitehead’s viewpoint on this subject and
his motivations why the theory of space and time should be point-free and region-
based. We describe shortly Whitehead’s contributions to this idea and some other
sources and finally we present our concrete strategy of how to build an integrated
point-free theory of space and time. In Section 2 we summarize some facts of con-
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tact algebras and precontact algebras taken from [25, 76, 30] to be used later on. In
Section 3 we introduce a concrete point-based model of dynamic space called snap-
shot model or cinematographic model. This model is used as a source of motivated
axioms for a various versions of the abstract notion of dynamic contact algebra.
Section 4 is devoted to the abstract notion of one special version of dynamic contact
algebra (DCA), considered as a representative example of DCA. The main result in
this section is the representation theorem of DCA by means of snapshot models. In
Section 5 we introduce topological point-based models called dynamic mereotopo-
logical spaces (DMS) and develop the intended topological representation theory.
Section 6 is devoted to the expected topological duality theory for DCAs and DM-
Ses, generalizing the famous Stone Duality Theorem for Boolean algebras. Section
7 is for some conclusions, discussions and open problems. In a separate Appendix
we present a very short survey of results on RBTS obtained after 2007 making in
this way a more close connection with the present essay [76].

We consider [70], [35] and [58] as standard reference books correspondingly for
Boolean algebras, topology and category theory.

1 Introduction
1.1 Point-based and point-free theories of space and time
In mathematics the theory of space is identified with geometry which includes vari-
ous geometrical disciplines. Well-known example is the classical Euclidean geometry.
Typical for all axiomatically presented geometries is that they follow the standard
Euclidean approach to consider the notion of ‘point’ as one of the basic undefinable
notions of the theory and similarly for the notions ‘strait line’ and ‘plane’. Some-
times strait lines and planes are considered as certain sets of points satisfying some
additional axioms, so, point in geometry is always a primitive notion. But neither
points, nor strait lines and planes have a separate existence in reality, so the truths
for these notions do not correspond to some observational truths for the real things.
In a sense ‘points’, ‘straight lines’ and ‘planes’ are some kind of suitable fictions and
it is not good to put fictions on the base of the so respectable mathematical theory
as geometry, considered as a certain theory of reality. This issue gives rise to serious
discussions, which we will comment on below.

So, what is a point-free theory of space? Contemporary example is the point-
free topology [50]. Standardly topology is considered as an abstract theory of space
formalizing the notion of continuity and is considered as a set of points with some
distinguished subsets called open sets. Instead, point-free topology is based on lattice
theory considering the members of the lattice representing open sets. In general by
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a point-free theory of space we mean an axiomatic theory of space in which the
notion of point is not assumed as a primitive notion. For a given (point-based)
geometry, for instance Euclidean geometry, its point-free reformulation means it to
be reaxiomatized equivalently on a point-free basis of primitive notions. This means
that points are nor disregarded at all but are given by certain definitions in the
new axiomatization. Among the first authors who criticized the standard Euclidean
point-based approach to the theory of space and appealing to a point-free bases for
the theory I can mention Whitehead [87, 88, 89, 90, 91], De Laguna [53, 54, 55] and
Tarski [73].

According to time we can say that there is no specific pure mathematical area
like geometry, which is devoted exclusively to to the theory of time. Only some
investigations on temporal logic (TL) (see, for instance, [5]) introduced the so called
time structures devoted to a separate study of time. Time structures are systems in
the form (T,≺), where T is a nonempty set whose elements are called time points
or moments of time and ≺ is a binary relation between time points called before-
after relation, reading: i ≺ j - i is before j, or equivalently j is after i (other
relations between time points are also possible). Such structures are studied to
be used as a semantics of TL. The before-after relation may satisfy various sets
of some meaningful conditions which fact makes possible to have various different
time structures and hence different TL systems. If, for instance, T is the set of real
numbers and ≺ is the strong inequality <, then (T,≺) is called ‘real time structure’,
and similarly for ‘rational’ or ‘integer (discrete) time structure’. Thus, by definition
all temporal structures of the above kind are point-based. But moments of time, like
space points, also are some abstract fictions without a separate existence in reality.
So the problem to avoid time points in TL also exists. And indeed there are TL
systems with a more realistic semantics based on time intervals and some relations
between them according to their possible positions to each other. However, the
intuition of time intervals and their interrelations is based on their representation as
ordered pairs of time points (x, y) such that x ≺ y and x 6= y, and x, y taken from
some linearly ordered time structure (for instance real numbers). So, time intervals
and their interrelations again are reduced to time points. There is also a point of
view to consider interval structures as intuitively more clear and to extract from
their structure the notion of time point and a kind of before-after relation. But time
intervals are also ‘suitable fictions’, abstract tings, so the above criticism also holds.

Both time and space are central notions in physics, but physics takes its math-
ematical apparatus from mathematics (unless we can treat mathematical physics
just as a part of mathematics). Newtonian physics adopts, for instance, Newtonian
notions of absolute space and absolute time considered them independent from the
material things, independent from each other and having a separate existence in
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reality (see for this view, for instance [34, 49]). In relativistic physics space and
time are not independent and are considered as one spacetime system. In special
relativity, this is the Minkowski spacetime in which points are called events and
are identified with tuples of real numbers (x1, x2, x3, x4) where x1, x2, x3 are meant
as space coordinates of the event and x4 is meant as its time coordinate. So in
Minkowski spacetime time is the fourth coordinate, which makes the system to be
four dimensional with 3 spatial dimensions and one time dimension. Minkowski
spacetime differs from the 4-dimensional Euclidean space because it has a differ-
ent metrics convenient for describing special relativity in which gravitation is not
considered (see the paper [68] which discusses the relationship between Einstein’s
Special relativity [33] and Minkowki’s notion of spacetime.)

An axiomatic presentation of Minkowskian spacetime geometry is given by A.
A. Robb in [67]. Robb’s system has only two primitive notions: ‘instant’ intuitively
meant as a spacetime point and the ‘before-after’ relation between spacetime points
interpreted intuitively as a causal ordering of things. Robb named his relation after
and its converse before and presented for it an appealing illustration by means of
the Euclidean conic model of 3-dimensional Minkowski spacetime, which motivated
him to call this relation a conic order. Because after is a temporal relation and
space features (as well as all other notions of the system) are definable by it, this
fact motivates Robb to state that time is more fundamental than space and to call
his system geometry of time and space putting time on the first place. Probably
this shows in a certain sense that both time and space are based on a more deep
concept of causality. Spacetime systems based on before-after relation interpreted
as a causality relation are called causality theories of spacetime ( see, for instance
[93]).

A readable axiomatic treatment of Minkowski spacetime and some related space-
times based on a more natural and classically oriented basis of primitive concepts
is given by R. Goldblatt in [37]. Modal logics with a relational semantics based
on some versions of Minkowski spacetime relation ‘after’ are also studied — see
Goldblatt [36] and Shehtmann [69].

General relativity theory is a generalization of special relativity by assuming the
effects of gravitation. An intensive research on axiomatic foundations of relativity
theories is initiated by a Hungarian group of logicians organized by I. Nemeti and
H. Andreka [2]. But, let us note again, both Newtonian and relativistic spacetime
theories are not point-free and the problem of their point-free reformulation is still
open (the situation in quantum physics is still unclear).

Spacetime systems in which space and time are considered together like in rel-
ativity theory are used in applied mathematics for describing certain systems of
dynamically changing spatial objects. Such spacetime systems are combinations of

1247



Vakarelov

some spatial structure (geometry) and some temporal structure (theory of time).
For one such construction of concrete spacetime system see, for instance, [52]. It
was based on the so called snapshot construction and it is natural to be named
snapshot spacetime. As a rule such spatio-temporal systems are also point-based,
so their point-free reaxiomatization is an open problem. Later on we will discuss
such systems with more details and will consider them as a starting point for various
versions of an integrated point-free theory of space and time.

1.2 Relational theory of space and time: Newton, Leibniz and
Whitehead

The question of whether points of space and time have to be considered as real things,
raises hot philosophical discussions and puts the more serious question whether space
and time itself are also ‘suitable fictions’. A typical example is the discussion be-
tween Leibnitz and Newton about the nature of space and time. Leibnitz’ position
is known now as the ‘relational view of space and time’: space and time are math-
ematical fictions and the tings in reality are connected by some spacetime relations
and the mathematical theories of space and time just describe the properties of these
relations. Space expresses the coexistence of things, while time expresses an order of
successive things. Newton’s position advocates the view of ‘absolute space’ and ‘ab-
solute time’ discussed in the previous section (for more details about the discussion
between Leibniz and Newton see, for instance, [34, 49]).

At the beginning of 20th Century probably the first who adopted in some form
Leibnitz’s relational view of space and time and formulated the problem of its correct
mathematical reinterpretation as a point-free theory of space and time was Alfred
North Whitehead.

Whitehead is well-known among logicians as a co-author with Bertrand Russell
in their famous book Principia Mathematica, published in three volumes in 1910-
1913 and dedicated to the foundation of mathematics [92]. It is said in the preface
of volume III of the book that geometry is reserved for the final volume IV. But
probably due to some disagreements between the authors about the nature of space
(and probably of time), volume IV had not been written.

The best articulation of the original Whitehead’s view about space and time is
given in the following quote (pages 194,195 of [87]) of Whitehead’s lecture Space,
Time, and Reality:

“...We may conceive of the points of space as self-subsistent entities which have
the indefinable relation of being occupied by the ultimate stuff (matter, I will
call it) which is there. Thus, to say that the sun is there (wherever it is) is
to affirm the relation of occupation between the set of positive and negative
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electrons which we call the sun and a certain set of points, the points having
an existence essentially independent of the sun. This is the absolute theory of
space. The absolute theory is not popular just now, but it has very respectable
authority on its side Newton, for one so treat it tenderly. The other theory is
associated with Leibnitz.
Our spare concepts are concepts of relations between things in space. Thus
there is no such entity as a self-subsistent point. A point is merely the name
for some peculiarity of the relations between the matter which is, in common
language, said to be in space.

It follows from the relativity theory that a point should be definable in terms
of the relations between material things. So far as I am aware, this outcome
of the theory has escaped the notice of mathematicians, who have invariably
assumed the point as the ultimate starting ground of their reasoning. Many
years ago I explained some types of ways in which we might achieve such a
definition, and more recently have added some others. Similar explanations
apply to time. Before the theories of space and time have been carried to
a satisfactory conclusion on the relational basis, a long and careful scrutiny of
the definitions of points of space and instants of time will have to be undertaken,
and many ways of effecting these definitions will have to be tried and compared.
This is an unwritten chapter of mathematics, in much the same state as was
the theory of parallels in the eighteenth century.”

It can be concluded from this quote that Whitehead accepted Leibnitz’s rela-
tional theory of space and time in a more relaxed form: we have to build the theory
of space staring from more realistic primitive notions avoiding points, lines and
planes and introducing them by suitable definitions. From his other writings, for
instance from his main philosophical book Process and Reality [91] (which we will
discuss with more details after words) such more realistic notions are regions as
abstractions of material bodies and some natural relations between them. In con-
temporary terminology the above quote is nothing but a program for building of a
point-free theory of space, and also for building of an integrated point-free theory
of space and time as it is considered in relativity theory. From the phrase

“This is an unwritten chapter of mathematics, in much the same state
as was the theory of parallels in the eighteenth century”

we may conclude that Whitehead considered this as a difficult and a serious problem.
This problem has two forms, first, concerning only space, and second, concerning
both space and time taken together. Since geometry as a theory of space exists as
a branch of mathematics separately from the theory of time, this is the problem to
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build the point-free theory of space. And since the theory of time appeared mostly
in mathematical physics as an integrated theory of space and time - this is just the
related problem to build an integrated point-free theory of space and time.

1.3 Whitehead’s contribution and other roots of point-free
theories of space and time

In the lecture The Anatomy of Some Scientific Ideas (Chapter VII in the same book
cited above [88]) Whitehead describes, among others, how such a ‘point-free theory’
should be built. First he considers as a base notion the notion of ‘event’ a feature
existing in space and in time. Second, the theory should be based on the theory of
‘whole and a part’ (named by other authors mereology - see, for instance [71] and
more recently [65] and [83]) and definitions of the ‘points of time’ and ‘points of
space’ to be done by his ‘principle of convergence’, renamed in his later publications
by ‘the method of extensive abstraction’.

An attempt to present such a theory is given in the Whitehead’s books [88] and
[89]. This attempt was criticized from philosophical and from methodological points
of view by De Laguna in the papers [53, 54, 55], where he presented his own ap-
proach for point-free theory of space based on mereology. De Laguna’s system has
the primitives solid as an abstraction of physical body and a ternary relation be-
tween solids named can connect. Intuitively the solids a, b and c are in the relation
can connect if a can be moved so that to connect b and c. Here to connect means
to touch or to overlap. De Laguna showed how to define points, lines and surfaces
using a modification of Whitehead’s method of extensive abstraction. We will not
comment De Laguna’s critical remarks, but it has to be mentioned that Whitehead
considered them seriously and changed radically his system, published in Process
and Reality (P&R) [91] (see page 440 of P&R [91] where Whitehead correctly gives
credits to De Laguna’s criticism and comments how to avoid the defects of his ap-
proach to the definition of point presented in [88] and [89]). Instead of De Laguna’s
notion of solid Whitehead uses the term region with the same intuitive meaning,
and instead of the De Laguna’s ternary relation can connect he used the simplified
binary relation of connection (called in the recent literature contact). The main
idea of Whitehead’s new approach is described in Part IV of the book - ’The theory
of extension’ and the mathematical details are presented in Chapters II and III of
P&R. The exposition is almost mathematical and consists of a series of enumer-
ated definitions and assumptions without any attempt ‘to reduce these enumerated
characteristics to a logical minimum from which the remainder can be deduced by
strict deduction’ ( p. 449). By means of the connection relation, Whitehead defines
in Chap. II some other relations between regions: part-of, overlap, external con-
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nection, and tangential inclusion. Chapter II ends with the definition of a point (
Def. 16). Chapter III contains all preliminary formal definitions and assumptions
needed in the definitions of a straight line (Def. 6) and definition of a plane ( Def.
8) as certain sets of regions using the method of extensive abstraction. Because the
text is sketchy these two chapters of P&R have to be considered as an extended
program containing all needed details in order to develop Whitehead’s new theory
of space in a strictly mathematical manner. Namely, this is what is called now the
root of ‘region-based theory of space’ (RBTS), or equivalently - point-free theory
of space. Another root is, of course, De Laguna’s papers [53, 54, 55], but still De
Laguna’s system has no precise contemporary interpretation with adequate models
and representation theory. As another root it has to be mentioned Tarski [73], who
developed a point-free version of Euclidean geometry called ‘Foundations of the ge-
ometry of solids’. It is based on mereology extended with the primitive notion of
ball which is used in the definition of point. Also we owe to Tarski the reinterpreta-
tion of mereology (the mereological system of Lesniewski ) to the notion of Boolean
algebra (BA) (namely complete BA with deleted zero) and also the good topological
model of complete BA as algebra of regular open (or regular closed) subsets of a
topological space. In an algebra of regular closed sets solids (or regions) are just the
regular closed sets and the relation of ‘contact’ has a very natural definition - having
a common point. These facts can be considered as the roots of the first definitions
of the notion of contact algebra (CA) as an extension of BA with the contact rela-
tion (for the history of CA see [76]). Now the version of CA from [26] is commonly
considered as the simplest point-free formulation of RBTS with standard models
the algebras of regular closed sets of topological spaces. This fact motivates some
authors to use another name of RBTS - mereotopology - a combination of mereology
with topology: the BA represents mereologycal component and the contact relation
which has a topological nature represents the topological component of the system.

Let us mention that RBTS as a point-free approach to the theory of space can
be considered now as a well established branch of mathematics with applications in
computer science which is open for further research. For the results of RBTS till 2006
see our essay [76] as well as the survey papers [8, 66], and [42] which contains also
information of applications of RBTS in computer science. Some possibly incomplete
information on the further development of RBTS and some related topics after 2007
is given in the Appendix of this paper.

Let us return to the integrated point-free theory of space and time. As we
have mentioned spacetime systems from mathematical physics are not point-free
and the Whitehead’s early program formulated in his lecture Space, Time, and
Relativity can be considered as a kind of program or a wish to build such a theory.
Whitehead’s view on the nature of time developed in his books [87, 88, 90, 91] is

1251



Vakarelov

mainly philosophical and changed over years. For instance in [87, 88] he uses a more
common time terminology: instances of time, moments, but in [90, 91] he renamed
his theory of time as ‘epochal theory of time’ (ETT) considering epochs as certain
atomic instances of time. Probably the reason for this new terminology is that the
Whitehead’s notion of epoch is one of the central notions of his later theory of time.
Whitehead did not propose how ETT can be formalized and integrated with the
point-free theory of space. Unlike his quite detailed program for building point-
free mathematical theory of space, presented in P&R Whitehead did not describe
analogous program for his ETT. He introduced and analyzed many notions related to
ETT but mainly in an informal way using his own quite complicated philosophical
terminology which makes extremely difficult to obtain clear mathematical theory
corresponding to ETT.

An attempt to build a theory incorporating both space and time was recently
made in [31, 32], but the system is not point-free with respect to time: time points
are presented directly in the system.

1.4 The first attempts in building of an integrated point-free
theories of space and time and a possible strategy for such a
task

Having in mind the situation about building an integrated point-free theory of space
and time discussed at the end of the previous section, the present author decided to
make the first steps in building such a theory (or examples of such theories). The
results till now appeared in the series of papers started from 2010: [77, 78, 79], and
(jointly with P. Dimitrov) in [13]. Because the notions of space and time are so
rich, our aim in this project was to start with a simple system describing in a point
free manner (some aspects of) both space and time and their mutual relationships,
and then to refine the system step by step removing some defects and extending its
expressive power. First we had to find a strategy how to build such systems and
what requirements they should satisfy in order to treat them as point-free axiomatic
systems of space and time.

We found that the following requirements will be useful.
1. In order to follow Whitehead style the system should be region-

based and should be based on mereology. Regions will correspond to changing
or moving objects and following Tarski the regions should form a Boolean algebra.

2. The regions should be equipped with a number of basic spatio-
temporal relations with well motivated meaning. The relations are called
basic because they have to be used in the definitions of some other meaningful
relations. The meaning of the basic relations should be determined by an appropriate
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set of axioms. What does this mean? - see the next two requirements:
3. The system should have a meaningful standard adequate set-theore-

tical point based spacetime model describing the change of regions and
the meaning of the spatio-temporal relations. ‘Meaningful’ means that the
model is in accordance with our point-based spatial and temporal intuition which we
obtained during our basic education in mathematics and physics. ‘Standard’ means
that we consider that this model give the intended point-based intuition of the basic
relations.

4. ‘Adequate’ in 3. means that we can extract from the system in
a canonical way a standard model, called the ’canonical model of the
system’, and to define an isomorphism mapping of the system into its
canonical model. Here ‘to extract’ means to define both space points and time
points within the system and also all other ingredients needed to construct the
model. ‘To construct the model’ means to use only the axioms of the system and
standard set-theoretical constructions. So, the theory should have the form of ordi-
nary axiomatical mathematical theory.

5. The main problem in realization of 2 and 4 is how to find the
needed axioms. This is the most difficult part of the realization of the program.
One way, which we follow, is to start with the standard model and to proof for it
enough statements considered further as possible axioms. But which true sentences
to accept as axioms? Practically this is the following informal task: make an initial
hypothesis of the possible steps of the construction of the canonical model and look
for the axioms which are needed to prove the correctness of the given step. If the
required axioms are not in the list, see if they are true in the standard model and
add them to the list. This is a long experimental mathematical procedure which is
not always successful, and, as Whitehead commented in the quote from section 1.2,
‘many attempts have to be done in order to obtain a satisfying result’.

If we succeed in the realization of the above five requirements then obviously the
resulting system will be point-free, the standard models indeed will be models of the
system and the isomorphism of the system into its canonical model will show that
the choice of the axioms is successful and that the standard point-based model and
the point-free axiomatic systems are in certain sense equivalent. The expressivity
power of the system will depend on the choice of the basic spatio-temporal relations
between regions, so further steps of improving the system is to consider larger and
a richer system of basic relations.

As we have seen, the realization of such a strategy is to start with the stan-
dard point-based model of spacetime and to find a successful construction of space
points, time points and other ingredients of the model. Whitehead does this by
his method of ‘extensive abstraction’ which results to a complicated constructions.
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In contemporary mathematics, for instance in the Stone representation theory of
Boolean algebras [72] and the theory of proximity spaces [60, 74] there are more good
methods for defining abstract points: ultrafilters, clans, clusters and others. The
success of the realization of the above scheme depends also on what kind of concrete
point-based model is chosen to start with. Because standard point-based models are
concrete constructions involving space points and time points, we adopted a special
construction called ‘snapshot construction’ and the resulting models - called ‘snap-
shot spacetime models’. This is a very simple and intuitive construction which we
mentioned in Section 1.1 [52]. Intuitively the snapshot construction is a formaliza-
tion and generalization of the real method of describing an area of changing objects
by making a video: for each moment of time the video camera makes a snapshot of
the current spatial configurations of the objects and the series of the snapshots can
be used to construct the point based spacetime model of change (see Remark 3.2
about the limitation of the analogy of the method of ‘snapshot construction with
making video).

The first paper [77] from the above mentioned series of papers was experimental -
we just wanted to see if the above described strategy works. That is why we included
only two spatio-temporal relations between changing objects which do not suppose
that time flaws: aC∀b - stable contact (a and b are always in a contact) and aC∃b
- unstable contact (a and b are sometimes in a contact). The paper [78] makes the
next step assuming that time flaws and in the point based model the moments of
time are equipped with ‘before-after’ relation. It contains two relations which do not
depend on before-after relation: space contact aCsb - there is a moment of time in
which a and b are in a space contact, time contact aCtb - there is a moment of time
in which a and b exist simultaneously. The third relation, called preceding just uses
the before-after relation: there is a moment s in which a exists and a later moment t,
s ≺ t, in which b exists. This is a quite rich system for space and time, but it was not
able to describe past , present and future. This was possible in the system from [79]
in which we added the notion of the so called time representative, a region existing
only at a given moment of time, or epoch in Whitehead’s terminology, which is using
as a name of the corresponding epoch, for instance ‘the epoch of Leonardo’. The
paper [13] studies some new spacetime systems extending the system from [79] with
new axioms and some propositional (quantifier-free) logics based on these systems.
Other results in this direction are included in the papers [63] and [61, 62] which
generalize [77] putting the system on pure relational base and without operations
on regions.

In this paper, starting from Section 3, we will present with some details one not
very complicated spacetime system just in order to show how the method works.
The new thing is that we will supply the system not only with snapshot models,
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but also with topological models which will give more information on the nature of
space points and time points.

2 Contact and precontact algebras

In this section we summarize some facts about contact and precontact algebras
which are needed later on. We assume a familiarity of the reader with the basic
theory of Boolean algebras, filters, ideals, ultrafilters and the Stone representation of
Boolean algebra by ultrafilters. We consider only non-degenerate Boolean algebras,
i.e. algebras with 0 6= 1.

2.1 Definitions of contact and precontact algebras

Definition 2.1. Contact algebra [26]. Let (B, 0, 1,≤,+, ., ∗) be a Boolean algebra
with complement denoted by ∗ and let C be a binary relation in B. C is called a
contact relation in B if the following axioms are satisfied:

(C1) If aCb then a 6= 0 and b 6= 0,
(C2) If aCb and a ≤ a′ and b ≤ b′ then a′Cb′,
(C3’) If aC(b+ c) then aCb or aCc, (C3”) If (a+ b)Cc then aCc or bCc,
(C4) If aCb then bCa,
(C5) If a.b 6= 0 then aCb.

We write C for the complement of C. If C is a contact relation in B, then the
algebra A = (B,C) is called a contact algebra.

If we do not assume axioms (C4) and (C5), then C is called a precontact
relation in B and the pair (B,C) is called a precontact algebra.

If A = (B,C) is a precontact (contact) algebra then we will write also A =
(BA, CA), where BA = (B, 0, 1,≤,+, ., ∗) and CA = C.

In this paper we will consider also Boolean algebras with several precontact and
contact relations satisfying some interacting axioms.

Let us mention that if we assume (C4) only one of the axioms (C3’) and (C3”)
is needed. Note also that (C5) is equivalent (on the base of the precontact axioms)
to the following more simple axiom

(C5’) If a 6= 0 then aCa.
From (C5’) and (C1) it follows that a 6= 0 iff aCa.
In the present context we treat the Boolean part of the contact algebra as its

mereological component and the contact relation - as its mereotopological component.
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In our treating of mereology we consider the zero element 0 as a non-existing re-
gion and this can be used to define the ontological predicate of existence E(a): ‘a
ontologically exists’, in the following way:

E(a) iff a 6= 0.
For simplicity, instead of ’ontologically exists’ we will say simply ’exists’ and from
the context it will be clear that this is not the existential quantifier.

The definitions of mereological relations ’part-of’ and ’overlap’ are the following:
• a is part of b iff a ≤ b, i.e. part-of is just the Boolean ordering,
• a overlaps b (in symbols aOb) iff there exists a region c 6= 0 such that c ≤ a

and c ≤ b iff a.b 6= 0.
Note that by the definition of overlap the axiom (C5) can be presented in this

way: aOb implies aCb.

Remark 2.2. It is easy to see that the relation O of overlap satisfies all axioms of
contact relation and by axiom (C5) it can be considered as the smallest contact in
B. Non-degenerate Boolean algebras have also another contact Cmax definable by
”a 6= 0 and b 6= 0”. It follows by axiom (C1) that this is the largest contact in B.

By means of the contact relation we may reproduce the definitions of some
mereotopological relations considered by Whitehead:
• external contact: aCEb↔def aCb and a.b = 0, the common points of a and b

are on their boundaries.
• non-tangential inclusion a � b ↔def aCb

∗, called also deep inclusion - a is
included in b not touching the boundary of b.
• tangential inclusion: a ≤T b ↔def a ≤ b and a 6� b ↔ a ≤ b and aCb∗, a is

included in b and touches the boundary of b.
Intuitive examples: A cup on a table is in an external contact with the table.

If a nail is driven into the table then it is tangentially included into the table. If the
nail is deeply embedded into the table so that its head is not seen, then the nail is
non-tangentially included in the table.

Contact relation has the following interesting property, stated in the next lemma.

Lemma 2.3. ([77], Lemma 1.1. (vi)) For any a, b, p, q ∈ B: if pCq and aCb then
either (p.a∗)C(q.a∗) or (p.b∗)C(q.b∗).

Precontact algebras were considered under the name of proximity algebras in
[30]. We will be interested later on contact and precontact algebras satisfying the
following additional axiom:

(CE) If aCb then (∃c)(aCc and (c∗Cb).
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This axiom is sometimes called Efremovich axiom, because it is used in the
definition of Efremovich proximity spaces [60]. Let us note that the largest contact
Cmax satisfies the Efremowich axiom.

2.2 Examples of contact and precontact algebras
Topological example of contact algebra. The intended example of contact
algebra is a topological one and can be defined in the following way. Let X be
a topological space and Cl and Int be the operations of closure and interior of a
subset of X. A set a ⊆ X is called regular closed if a = Cl(Int(a)). The set RC(X)
of regular closed subsets of X is a Boolean algebra with respect to the following
operations and constants: 0 = ∅, 1 = X, a + b = a ∪ b, a.b = Cl(Int(a ∩ b)),
a∗ = Cl(X \ a) = Cl(−a). The algebra RC(X) becomes a contact algebra with
respect to the the following contact relation CX : aCXb iff a ∩ b 6= ∅, i.e. if a and b
have a common point. The contact algebra RC(X) and any contact subalgebra of
RC(X) is considered as a standard topological contact algebra. In the next section
we will see that each contact algebra is isomorphic to a standard contact algebra.

Remark 2.4. Defining regions as regular closed sets is a good choice, because all
known good geometrical regions in Euclidean geometry are regular closed sets of
points: balls, cubes, pyramids, etc. Let us note, however, that some authors do
not agree with this definition showing examples of regular closed sets in Euclidean
geometry which can not be considered intuitively as regions. That is true, but the
situation is quite similar to the formal ε−δ-definition of continuous function - there
are counterintuitive examples but, nevertheless, the definition is accepted.

Relational examples of precontact and contact algebras. Let X be a non-
empty set, whose elements are considered as points and R be a reflexive and sym-
metric relation in X. Pairs (X,R) with reflexive and symmetric R are called by
Galton adjacency spaces (see [30]).

One can construct a contact algebra from an adjacency space as follows: take
a class B of subsets of X which form a Boolean algebra under the set-theoretical
operations of union a+b = a∪b, intersection a.b = a∩b and complement a∗ = X \a
and define contact CR between two members of B as follows: aCRb iff there exist
x ∈ a and y ∈ b such that xRy. It can easily be verified that all axioms of contact
are satisfied.

Let us note that there are more general adjacency spaces in which neither re-
flexivity nor symmetry for the relation R are assumed (see [30]). We reserve the
name ’adjacency space’ for such more general spaces and for the special case where
R is a reflexive and symmetric relation we will say ’adjacency spaces in the sense

1257



Vakarelov

of Galton’. If we repeat the above construction then the axioms (C1), (C2), (C3’)
and (C3”) will be true but in general the axioms (C4) and (C5) will not be satisfied
and in this way we obtain examples of precontact algebras which are not contact
algebras. The relational models of contact and precontact algebras are called also
discrete models.

The following lemma will be of later use:

Lemma 2.5. Characterization of reflexivity, symmetry and
transitivity. [30] Let (X,R) be an adjacency space and (B(X), CR) be the precon-
tact algebra over all subsets of X. Then the following conditions hold:

(i) R is a symmetric relation in X iff (B(X), CR) satisfies the axiom (C4) If
aCRb then bCRa,

(ii) R is reflexive relation in X iff (B(X), CR) satisfies the axiom (C5) If a.b 6= ∅
then aCb,

(iii) R is a transitive relation in X iff (B(X), CR) satisfies the axiom
(CE) If aCb then (∃c)(aCc and c∗Cb).
In the proof of the above lemma the following equivalent definition of the pre-

contact relation aCRb will be helpful. For a subset a ⊆ X define 〈R〉a =def {x ∈
X : (∃y ∈ a)(xRy)}. Then obviously we have: aCRb iff a∩〈R〉b 6= ∅. The operation
〈R〉a comes from the relational semantics of modal logic and represents the opera-
tion of possibility (for more information for this connection see [4]). The following
property of the operation 〈R〉a can be proved: R is transitive relation on X iff for
all a ⊆ X: 〈R〉〈R〉a ⊆ 〈R〉a. Then by pure set-theoretical transformations one can
show that the Efremovich axiom (CE) is equivalent to this property, which proves
(iii).

2.3 Algebras with several precontact relations
In this section we will introduce Boolean algebras with two precontact relations
satisfying two special interacting axioms which will be used in the definition of
dynamic contact algebra. First, we will present their relational examples.

Let (W,R, S) be a relational system with two relations. We consider the following
two first-order conditions for R and S:

(R◦S ⊆ S) If xRy and ySz, then xSz (The composition of R with S is included
in S).

(S ◦R ⊆ S) If xSy and yRz, then xSz (The composition of S with R is included
in S).

The system (W,R, S) defines in an obvious way set-theoretical Boolean algebra
with two precontact relations CR and CS .

1258



Point-free Theories of Space and Time

Consider the following two conditions for the precontact relations CR and CS
which are similar to the Efremowich axiom (CE):

(CRCS) If aCSb, then there exists c ⊆W such that aCRc and c∗CSb, and
(CSCR) If aCSb, then there exists c ⊆W such that aCSc and c∗CRb.
We call the conditions (CRCS) and (CSCR) compositional axioms for CR and

CS .

Lemma 2.6. (i) The condition (CRCS) is fulfilled between precontact relations CR
and CS iff the condition (R ◦ S ⊆ S) is satisfied,

(ii) The condition (CSCR) is fulfilled between precontacts relations CR and CS
iff the condition (S ◦R ⊆ S) is satisfied.

The proof is similar to the proof of Lemma 2.5 (iii). In the proof of (i) use the
following equivalences: (R ◦S ⊆ S) iff for all a ⊆ X 〈R〉〈S〉a ⊆ 〈S〉a iff (CRCS) and
similarly for (ii) by exchanging the places of R and S.

2.4 Discrete (relational) representation of contact and precontact
algebras.

One way to obtain a representation theory of precontact algebras with relational
representation of precontact is to consider ultrafilters as the set of abstract points
of a given precontact algebra A = (B,C) (as in the Stone representation theory of
Boolean algebras) and to define the relation R in the set of ultrafilters Ult(A) of A
as follows. For U, V ∈ Ult(A):

URV ↔def (∀a, b ∈ B)(a ∈ U and b ∈ V ⇒ aCb).
For a ∈ B define also the Stone embedding: s(a) = {U ∈ Ult(A) : a ∈ U}.

Definition 2.7. The relational system (Ult(A), R) with just defined R is called a
canonical adjacency space over A and R is called the canonical adjacency relation
on Ult(A).

Note that the definition of the canonical relation R is meaningful for arbitrary
filters. In order to prove some facts for the canonical relation some constructions of
filters and ideals will be needed and some technical lemmas have to be introduced.

First we remind the well known Separation Lemma for filters and ideals in
Boolean algebra and the Extension Lemma for proper filters.

Lemma 2.8. (i) Separation Lemma. If F is a filter and I is an ideal in a Boolean
algebra such that F ∩ I = ∅, then there exists an ultrafilter U such that F ⊆ U and
U ∩ I = ∅.

(ii) Extension Lemma. Every proper filter can be extended into an ultrafilter.
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The sum of two filters: If F and G are filters, then F ⊕ G =def {a.b : a ∈
F, b ∈ B} is the smallest filter containing both F and G. 0 ∈ F ⊕G iff there exists
a ∈ F and a∗ ∈ G.
Lemma 2.9. Technical lema for the canonical relation. Let A = (B,C) be
a precontact algebra, F and G be filters in A and FRG be the canonical relation
between them corresponding to C. Define the following sets:

IC1 (F ) = {b : (∃a ∈ F )(aCb)}, IC2 (G) = {a : (∃b ∈ G)(aCb)},
FC1 (F ) = {b : (∃a ∈ F )(aCb∗)}, FC2 (G) = {a : (∃b ∈ G)(a∗Cb)}.
Then the following equivalencies are true:
(i) FRG iff IC1 (F ) ∩G = ∅, and IC1 (F ) is an ideal.
(ii) FRG iff F ∩ IC2 (G) = ∅, and IC2 (G) is an ideal.
(i’) If G is an ultrafilter then FRG iff FC1 (F ) ⊆ G, and FC1 (F ) is a filter.
(ii’) If F is an ultrafilter, then FRG iff FC2 (G) ⊆ F , and FC2 (G) is a filter.

Proof. The proof follows by a direct verification of the corresponding definitions.
�

Lemma 2.10. [30] R-extension Lemma. Let U0 and V0 be filters in a precontact
algebra (B,C) and let U0RV0. Then there exist ultrafilters U and V such that U0 ⊆
U , V0 ⊆ V and URV .

Proof. By Lemma 2.9 U0RV0 iff IC1 (U0)∩V0 = ∅. Then by the Sepation Lemma for
filters and ideals 2.8 there exists an ultrafilter V such that V0 ⊆ V and IC1 (U0)∩V =
∅. From IC1 (U0)∩V = ∅ again by Lemma 2.9 we obtain U0RV . So we have extended
U0 into the ultrafilter U . Similarly repeating this procedure for V0 we can extend it
into an ultrafilter V .

Lemma 2.11. [30] Canonical Lemma 1.
(i) aCb iff there exist ultrafilters U, V such that URV , a ∈ U and b ∈ V .
(ii) aCb iff s(a)CRs(b).

Proof. For (i) define first the filters generated by a and b: [a) = {c : a ≤ c} and
[b) = {c : b ≤ c}. Second, aCb implies [a)R[b) and then apply the R-extension
Lemma 2.10. Condition (ii) follows from (i).

Lemma 2.12. [30] Canonical Lemma 2. Let A = (B,C) be a precontact algebra.
Then:

(i) R is a symmetric relation in Ult(A) iff C satisfies the axiom (C4).
(ii) R is a reflexive relation in Ult(A) iff C satisfies the axiom (C5).
(iii) R is transitive relation in Ult(A) iff C satisfies the Efremovich axiom (CE)

aCb⇒ (∃c)(aCc and c∗Cb.
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Proof. We will demonstrate only the proof of (iii).
Proof of (=⇒). Suppose that R is a transitive relation. We will prove (CE).

Suppose aCb and in order to obtain a contradiction suppose that (∃c)(aCc and
c∗Cb) is not true. We will show that there are ultrafilters U, V and W such that
URV , V RW , but URW which contradicts the assumption on transitivity of R.

Let [a) =def {c : a ≤ c} and [b) =def {b : b ≤ c} and define (see Lemma
2.9):Γ = FC1 ([a))⊕ FC2 ([b)). Γ is a proper filter containing FC1 ([a)) and FC2 ([b)). If
we assume that 0 ∈ Γ, then there is a c such c∗ ∈ FC1 ([a)) and c ∈ FC2 ([b)). This
implies that aCc and c∗Cb contrary to the assumption that there is no such c. So Γ
is a propper filter and can be extended into an ultrafilter V such that FC1 ([a)) ⊆ V
and FC2 ([b)) ⊆ V . By Lemma 2.9) (i’) and (ii’) we obtain [a)RV and V R[b). By
Lemma 2.10 extend [a) and [b) to ultrafilters U and W such that URV and V RW ,
a ∈ U and b ∈ W . But by assumption we have aCb which shows that URW - the
desired contradiction.

Proof of (⇐=). Suppose that (CE) holds and for the sake of contradiction that
R is not transitive. Then there exist ultrafilters U, V andW such that URV , V RW ,
but URW . So, there exist a ∈ U and b ∈W such that aCb. By (CE) there exists c
such that aCc and c∗Cb. We have two cases for c:

Case 1: c ∈ V . But a ∈ U and URV , so aCc - a contradiction with aCc.
Case 2: c 6∈ V , so c∗ ∈ V . But b ∈ W and V RW imply c∗Cb - a contradiction

with c∗Cb.

The following lemma will be used later on. It is the canonical analog of Lemma
2.6 concerning algebras with several precontact relations.

Lemma 2.13. Canonical Lemma 3. Let A = (B,C1, C2) be a Boolean algebra
with two precontact relations C1 and C2 and let R1 and R2 be their canonical rela-
tions in the canonical structure (Ult(A), R1, R2). Then the following conditions are
true:

(i) A satisfies the condition
(C1, C2) aC1b⇒ (∃c)(aC1c and c∗C2b) iff
(Ult(A), R1, R2) satisfies the condition
(R1 ◦R2 ⊆ R1) UR1V and V R2W ⇒ UR1W .
(ii) A satisfies the condition
(C2, C1) aC1b⇒ (∃c)(aC2c and c∗C21b) iff
(Ult(A), R1, R2) satisfies the condition
(R2 ◦R1 ⊆ R1) UR2V and V R1W ⇒ UR1W .

Proof. The proof is similar to the proof of condition (iii) of 2.12.
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Theorem 2.14. Relational representation theorem for precontact and con-
tact algebras [30]. Let A = (B,C) be a precontact algebra, (Ult(A), R) be the
canonical adjacency space of A and s be the stone embedding. Then:

(i) s is an embedding of (B,C) into the precontact algebra over the canonical
adjacency space (Ult(A), R).

(ii) If (B,C) is a contact algebra then the precontact algebra over the canonical
adjacency space over (B,C) is a contact algebra.

Proof. The proof follows from Lemma 2.11 and Lemma 2.12 and the fact that s is
an isomorphic embedding of the Boolean algebra B into the algebra of all subsets
of Ult(A).

The above representation theorem for the case of contact algebras is not the
intended one because the contact is not of Whiteheadian type, namely sharing a
common point. In the next section we will describe another representation of con-
tact algebras using topology, which presents an Whiteheadian type contact between
regions. As we see, the reason is that ultrafilters as abstract points are not enough to
model the Whiteheadean contact and we need to introduce another kind of abstract
points.

2.5 Topological representation of contact algebras. Clans.
First we will introduce another kind of abstract points in contact algebras called
clans.

Definition 2.15. Definition of clan. [26] Let A = (B,C) be a contact algebra. A
subset Γ ⊆ B is called a clan in (B,C) if it satisfies the following conditions:

(i) 1 ∈ Γ and 0 6∈ Γ,
(ii) It a ∈ Γ and a ≤ b then b ∈ Γ,
(iii) If a+ b ∈ Γ then a ∈ Γ or b ∈ Γ
(iv) If a, b ∈ Γ then aCb.
Γ is a maximal clan if it is a maximal set under the set inclusion. We denote

by Ult(Γ) the set of all ultrafilters contained in Γ and by Clans(A) - the set of all
clans of A.

Subsets of B satisfying (i), (ii) and (iii) are called grills. So clans are grills
satisfying (iv).

The above definition is an algebraic abstraction from an analogous notion in the
proximity theory (see, for instance, [74], from where we adopt the name clan).

Let us note that ultrafilters are clans, but there are other clans and they can be
obtained by the following construction.
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Let ∑ be a nonempty set of ultrafilters of (B,C) such that if U, V ∈ ∑, then
URV , where R is the canonical adjacency relation of C on the set of ultrafilters
of (B,C). Such sets of ultrafilters are called R-cliques. An R-clique is maximal, if
it is a maximal set under the set-inclusion. By the axiom of choice every R-clique
is contained in a maximal R-clique. Let Γ be the union of all ultrafilters from ∑.
Then it can be verified that Γ is a clan. Moreover, every clan can be obtained by
this construction from an R-clique and there is an obvious correspondence between
maximal cliques and maximal clans. All these facts about clans are contained in the
following technical lemma:

Lemma 2.16. [26] Clan Lemma. (i) Every ultrafilter is a clan.
(ii) The complement of a clan is an ideal.
(iii) Every clan is contained in a maximal clan (by the Zorn Lemma),
(iv) Let ∑ be an R-clique and Γ(∑) = ⋃

Γ∈
∑ Γ. Then Γ(∑) is a clan.

(v) If U, V ∈ Ult(Γ) then URV , so Ult(Γ) is an R-clique,
(vi) If Γ is a clan and a ∈ Γ then there is an ultrafilter U ∈ Ult(Γ) such that

a ∈ U ,
(vii) Let Γ be a clan and ∑ be the R-clique Ult(Γ). Then Γ = Γ(∑), so every

clan can be defined by an R-clique as in (iv),
(viii) If ∑ is a maximal R-clique then Γ(∑) is a maximal clan,
(ix) If Γ is a maximal clan then Ult(Γ) is a maximal R-clique,
(x) For all ultrafilters U, V : URV iff there exists a (maximal) clan Γ such that

U, V ∈ Ult(Γ),
(xi) For all a, b ∈ B: aCb iff there exists a (maximal) clan Γ such that a, b ∈ Γ,
(xii) For all a, b ∈ B: a 6≤ b iff there exists clan (ultrafilter) Γ such that a ∈ Γ

and b 6∈ Γ.

Proof. We invite the reader to prove the lemma by himself or to consult [26]. As an
example we will give proofs only of some parts of the lemma in order to connect it
with the discrete representation of contact algebras.

(vi) Let Γ be a clan and a ∈ Γ. Then obviously [a) ⊆ Γ and consequently
[a)∩Γ = ∅. But [a) is a filter, Γ is an ideal (by (ii)) and by the Separation Theorem
for filters and ideals there exists an ultrafilter U such that [a) ⊆ U and U ∩ Γ = ∅.
This implies that a ∈ U and U ⊆ Γ.

(ix) (⇒). Let aCb. Then by Lemma 2.11 there exist ultrafilters U, V such that
URV , a ∈ U and b ∈ V . Since R is a reflexive and symmetric relation, then∑ = {U, V } is a clique and by (iv) Γ = U ∪ V is a clan such that a, b ∈ Γ.

(ix) (⇐). This direction follows by the definition of clan.
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Lemma 2.17. [26] Let Γ be a clan in a contact algebra A = (B,C). Then the
following holds for any a ∈ B:

a∗ ∈ Γ iff (∀b ∈ B)(a+ b = 1⇒ b ∈ Γ).

Proof. By a direct verification.

The topological representation theory of contact algebras is based on the fol-
lowing construction taken from [26]. Let A = (B,C) be a contact algebra and let
X = Clans(A) and for a ∈ B, define g(a) =def {Γ ∈ Clans(B) : a ∈ Γ}. We intro-
duce a topology in X taking the set B = {g(a) : a ∈ B} as the base of closed sets
in X. The obtained topological space X is called the canonical topological space of
(B,C).

Lemma 2.18. [26]
(i) g(0) = ∅, g(1) = X,
(ii) g(a+ b) = g(a) ∪ g(b),
(iii) a ≤ b iff g(a) ⊆ g(b).
(iv) a = 1 iff g(a) = X.
(v) g(a∗) = ClX(X r g(a)) = ClX − g(a)
(vi) g(a) is a regular closed subset of X.

Proof. (i) and (ii) follow directly from the definition of clan, (iii) follows from Lemma
2.11 (xii) and (iv) follows from (iii). (v) follows from the following sequence of
equivalencies:

for any clan Γ: Γ ∈ g(a∗) iff a∗ ∈ Γ iff (by Lemma 2.17) (∀b ∈ B)(a + b =
1 ⇒ b ∈ Γ) iff (by (ii) and (iv)) (∀b ∈ B)(g(a) ∪ g(b) = X ⇒ Γ ∈ g(b)) iff
(∀b ∈ B)(X r g(a) ⊆ g(b)⇒ Γ ∈ g(b)) iff ClX(X r g(a)) = ClX − g(a).

For (vi) By (v) g((a∗)∗) = ClX − ClX − g(a) = ClX(IntX(a)).

Theorem 2.19. Topological representation theorem for contact algebras
[26] (see also [76]). (i) The mapping g is an embedding from (B,C) into the canonical
contact algebra RC(X) of (B,C).

(ii) The canonical space of (B,C) is T0, compact and semiregular.

Note that a topological space is semiregular if it has a base of regular-closed sets.

Proof. We will give a proof only of (i). By Lemma 2.18 we see that g isomorphically
embeds B into RC(X) where X = Clans(A) and the topology is determined by the
closed basis {g(a) : a ∈ B}. It remains to show that g preserves contact:

aCb iff (by Lemma 2.16 (ix)) there exists a clan Γ such that a ∈ Γ and b ∈ Γ iff
there exists a clan Γ such that Γ ∈ g(a) and Γ ∈ g(b) iff g(a) ∩ g(b) 6= ∅, i.e. g(a)
and g(b) have a common point.
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Let us note that in the above representation theorem two kinds of abstract points
have been used: ultrafilters and clans which are not ultrafilters (ultrafilters as clans
are used in the Clan Lemma (xii)). Note that in the relational representation (The-
orem 2.14) contact is chracterized by the adjacency relations between ultrafilters. It
is possible that two regions are in a relational contact and not share an ultrafilter.
By adding more points (namely clans) this situation is excluded because we can
find a clan-like point in both regions. We may consider ultrafilter points as simple
atoms. Since clans are unions of adjacent ultrafilters, this suggests to consider clans
as molecules composed by atoms. It is interesting to know how these two kinds of
points are distributed in the set g(a) of points associated with a given region a. For
instance, it can be proved that the set BP (a) = g(a)r Int(g(a) of boundary points
of g(a) do not contain any ultrafilter point. In some sense the above facts throw a
new light on the ancient atomistic view of space.

Remark 2.20. Let us note that the clans corresponding to the largest contact Cmax
(which can be named Cmax-clans ) are just the gills and that there is only one
maximal grill - just the union of all ultrafilters. Analogously the clans and maximal
clans corresponding to the smallest contact, the overlap relation O in a Boolean
algebra ( O-clans ) are ultrafilters (see Example 3.1 in [26]).

2.6 Factor contact algebras determined by sets of clans.

The following is a construction of a contact algebra from a given contact algebra A
and given set of clans of A. The construction is taken from [77] and the reader is
invited to consult the paper for the details.

Let ∆ be an ideal in a Boolean algebra B. It is known from the theory of Boolean
algebras that the relation a ≡∆ b iff a.b∗+a∗.b ∈ ∆ is a congruence relation in B and
the factor algebra B/ ≡∆ under this congruence (called also factor algebra under ∆
and denoted by B/∆) is a Boolean algebra. Denote the congruence class determined
by an element a of B by |a|∆ (or simply by |a|). Boolean operations in B/∆ are
defined as follows: |a| + |b| = |a + b|, |a|.|b| = |a.b|, |a|∗ = |a∗|, 0 = |0|, 1 = |1|.
Recall that Boolean ordering in B/∆ is defined by |a| ≤ |b| iff a.b∗ ∈ ∆ (see [70] for
details).

Let A be a contact algebra and α ⊆ Clans(A), α 6= ∅. Now we will define a
construction of a contact algebra Bα corresponding to α. Define I(α) = {a ∈ B :
α ∩ g(a) = ∅}. It is easy to see that I(α) is a proper ideal in B, i.e. 1 6∈ I(α). The
congruence defined by I(α) is denoted by ≡α. So we have a ≡α b iff a∗.b+a.b∗ ∈ I(α)
iff a∗.b ∈ I(α) and a.b∗ ∈ I(α). Now define Bα to be the Boolean algebra B/I(α).
We define a contact relation Cα in Bα as follows: |a|αCα|b|α iff α∩ g(a)∩ g(b) 6= ∅,
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where g(a) = {Γ ∈ Clans(B) : a ∈ Γ} (see the topological representation theorem
of contact algebras).

Lemma 2.21. (Bα, Cα) is a contact algebra.

Let us note that in the Boolean algebra Bα the following conditions are true:
|a|α 6= |0|α iff a 6∈ I(α) iff there exists a clan Γ ∈ α such that a ∈ Γ.

2.7 Contact algebras satisfying the Efremovich axiom (CE).
Clusters.

We will show in this section that in contact algebras satisfying the Efremovich axiom
(CE) we can introduce a new kind of abstract points called clusters. Our definition is
an algebraic abstraction of the analogous notion used in the compactification theory
of proximity spaces (see for instance [60]). Clusters will be used later on to define
time points in dynamic contact algebras.

Definition 2.22. Clusters. [26] Let (B,C) be a contact algebra. A subset Γ ⊆ B
is called a cluster in (B,C) if it is a clan satisfying the following condition:

(Cluster) If a 6∈ Γ then there exists b ∈ Γ such that aCb.
The set of clusters of A = (B,C) is denoted by Clusters(A).

Lemma 2.23. Let A = (B,C) be a contact algebra satisfying the Efremovich axiom
(CE). Then:

(i) Γ is a cluster in (B,C) iff Γ is a maximal clan in (B,C).
(ii) Every clan is contained in a unique cluster.

Proof. Let us note that the above lemma is a lattice-theoretic version of a result
of Leader about clusters in proximity spaces mentioned in [74]. One can prove this
lemma having in mind the following facts. First, it follows from Lemma 2.12 that
if C is a contact relation satisfying the Efremovich axiom (CE), then the canonical
relation for C is an equivalence relation. Second, the maximal R-cliques of an
equivalence relation are the equivalence classes of R. And third, clusters in the
presence of (CE) are unions of such R-equivalence classes (by 2.16 ).

Lemma 2.24. Let (B,C) be a contact algebra satisfying the Efremovich axiom
(CE). Then for any a, b ∈ B: aCb iff there is a cluster Γ containing a and b.

Proof. aCb iff (by Lemma 2.16) there exists a maximal clan Γ containing a and b.
By Lemma 2.23 Γ is a cluster.
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Note that we can not prove a representation theorem for contact algebras satis-
fying the Efremovich axiom as subalgebras of regular closed sets using only clusters
as abstract points, because we can not distinguish in general different regions by
means of clusters. Ultrafilters can distinguish different regions, but in general they
are not clusters.

The following lemma states how we can distinguish clusters.

Lemma 2.25. Let A = (B,C) be a contact algebra satisfying the Efremovich axiom
and let Γ,∆ be clusters. Then the following conditions are equivalent:

(i) Γ 6= ∆,
(ii) there exist a ∈ Γ and b ∈ ∆ such that aCb,
(iii) there exists c ∈ B such that c 6∈ Γ and c∗ 6∈ ∆.

Proof. (i) ⇒ (ii) Suppose Γ 6= ∆, then, since they are maximal clans, there exists
a ∈ ∆ and a 6∈ Γ. Consequently, there exists b ∈ Γ such that aCb, so (ii) is fulfilled.

(ii) ⇒ (iii) Suppose that there exist a ∈ Γ and b ∈ ∆ such that aCb. From
aCb we obtain by the Efremovich axiom that there exists c such that aCc and c∗Cb.
Conditions a ∈ Γ and aCc imply c 6∈ Γ. Similarly b ∈ ∆ and c∗Cb imply c∗ 6∈ ∆.

(iii) ⇒ (i) Suppose that there exists c ∈ B such that c 6∈ Γ and c∗ 6∈ ∆ and for
the sake of contradiction that Γ = ∆. Since c+ c∗ = 1 then ether c ∈ Γ or c∗ ∈ ∆ -
a contradiction.

Remark 2.26. We have mentioned in Remak 2.20 that Cmax-clans are grills and
that there is only one maximal Cmax-clan just the union of all ultrafilters. Because
Cmax satisfies the Efremowich axiom, then there is only one Cmax-cluster - the
maximal grill.

3 A dynamic model of space and time based on
snapshot construction

In this section, following mainly [79, 13] we will give a specific point-based space-
time structure called dynamic model of space and time (DMST) built by a special
construction mentioned in Section 1 and called snapshot construction Because
the notion of time structure is one of the base ingredients of the construction we
start with this notion.

3.1 Time structures
Time structures of the forma T = (T,≺) were introduced in Section 1.1 as relational
systems used as a semantic basis of temporal logic. Let us remind that T is a non-
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empty set whose elements are called ‘time points’ (moments, Whitehead’s epochs).
The binary relation ≺ is called ‘before-after’ relation (or ‘time order’) with the
standard intuitive meaning of i ≺ j: the moment i is before the moment j, or
equivalently, j is after i. We also suppose that T is supplied with the standard
notion of equality denoted as usual by =. We do not presuppose in advance any
fixed set of conditions for the relation ≺. One possible list of first-order conditions
for ≺ which are typical for some systems of temporal logic, are the following. We
describe them with their specific names and notations which will be used in this
paper.

• (RS) Right seriality (∀m)(∃n)(m ≺ n),
• (LS) Left seriality (∀m)(∃n)(n ≺ m),
• (Up Dir) Updirectedness (∀i, j)(∃k)(i ≺ k and j ≺ k),
• (Down Dir) Downdirectedness (∀i, j)(∃k)(k ≺ i and k ≺ j),
• (Circ) Circularity (∀i, j)(i ≺ j → (∃k)(j ≺ k and k ≺ i))
• (Dens) Density i ≺ j → (∃k)(i ≺ k and k ≺ j),
• (Ref) Reflexivity (∀m)(m ≺ m),
• (Irr) Irreflexivity (∀m)( not m ≺ m),
• (Lin) Linearity (∀m,n)(m ≺ n or n ≺ m),
• (Tri) Trichotomy (∀m,n)(m = n or m ≺ n or n ≺ m),
• (Tr) Transitivity (∀ijk)(i ≺ j and j ≺ k → i ≺ k).

We call the set of formulas (RS), (LS), (Up Dir), (Down Dir), (Circ), (Dens), (Ref),
(Irr), (Lin), (Tri), (Tr) time conditions. If the relation ≺ satisfies the condition (Irr)
it will be called ”strict”. If ≺ satisfies (Ref) the reading of i ≺ j should be more
precise: ”i is equal or before j”.

Note that the above listed conditions for time ordering are not independent.
Taking some meaningful subsets of them we obtain various notions of time order.
Of course this list is not absolute and is open for extensions but in this paper we
will consider only these 11 conditions.

3.2 The snapshot construction and the dynamic model of space and
time

The snapshot construction is a specific method of constructing a dynamic model of
space. It is a formalization of the following intuitive idea. Suppose we are observing
an area of changing regions, called ‘dynamic regions’ and we want to describe this
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area. In our everyday life such a description can be realized by a video camera
making a video. In this way the camera can be interpreted as a fixed observer.
The description is realized by making a snapshot of the observed area for each
moment of the camera’s time. Namely the series of these snapshots can be considered
as a realization of the description of the area of changing or moving regions and
each snapshot can be considered as a static spatial description of the area for the
corresponding time moment. This procedure can be formalized and generalized
as follows. First, we start with certain time structure T = (T,≺), described in
the previous section. The formalization of the action ‘making snapshots’ is the
following. To each moment i ∈ T we associate a contact algebra Ai = (Bi, 0i, 1i,≤i
,+i, .i, ∗i, Ci) = (Bi, Ci), called ‘coordinate contact algebra’. We assume that the
algebra (Bi, Ci) realizes the static description of the dynamic regions at the moment
i ∈ T and can be considered as the corresponding ‘snapshot’ of the area at the
moment i ∈ T . In this way each dynamic region a is represented by a series 〈ai〉i∈T
such that for each i ∈ T , ai ∈ Bi. The series 〈ai〉i∈T is considered also as a life
history of a. We identify a with the series 〈ai〉i∈T and will write a = 〈ai〉i∈T . The
set of all dynamic regions is denoted by B. We consider B as a Boolean algebra
with Boolean operations defined coordinate-wise. For instance:

a+ b = 〈ai +i bi〉i∈T , 0 = 〈0i〉i∈T , 1 = 〈1i〉i∈T , etc.
Let us define the Cartesian product ( direct product) B of the coordinate Boolean

algebras Bi, i ∈ T , namely B = ∏
i∈T Bi. Obviously B is a subalgebra of B. Now

we introduce the following important definition

Definition 3.1. By a dynamic model of space and time (DMST) we understand
the system M =< (T,≺), {(Bi, Ci) : i ∈ T},B,B〉. We say that M is a full model
if B = B, and that M is a rich model if B contains all regions a = 〈ai〉i∈T such
that for all i ∈ T either ai = 0i, or ai = 1i. (obviously every full model is a rich
model).

Dynamic model of space and time will be sometimes called ‘snapshot model’ or
‘cinematographic model’.

Let us note that DMST is a very expressive model with the main component
the Boolean algebra B of dynamic regions which can be supplied with additional
structure by various ways using the other components of the model. Before doing
this let us make some observations and introduce some terminology.

Let a = 〈ai〉i∈T and b = 〈bi〉i∈T be two dynamic regions. Then a ≤ b (in the
Boolean algebra B or in B) iff (∀i ∈ T )(ai ≤i bi). If ai 6= 0i for some i ∈ T we say that
a exists at the moment i. It is possible for some dynamic region a 6= 0 to have many
successive (with respect to ≺) moments of time in which it is alternatively existing
and non-existing (for example viruses in biology). Also it is quite possible for two
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different regions a and b that there exists a moment of time i (possibly not only one)
such that ai = bi. Example: before the World War II we have one Germany, after
that for some time - two Germanies, West Germany and East Germany, now again
one Germany, and what will be in the future we do not know. Note that in DMST
coordinate contact algebras are presented as point-free spatial systems, but they
can equivalently be presented by their point-based representative copies according
to the representation theory of contact algebras. So, in DMST we do not have one
space, but for each i ∈ T a concrete local space Xi with his own set of points. Of
course all such observations put some ontological questions about the meaning of
‘existence’, ‘equality’ and other abstract metaphysical concepts which we will not
discuss in this paper.

Remark 3.2. Let us note that the analogy of ‘snapshot construction’ with making a
video have to be considered more carefully and not literally, because video is based on
visual observation. Normally what we (or camera) see is considered as existing at
the moment of observation. But this is true only for objects which are not far from
the observer. For instance seeing a star on the sky does not mean that this star is
existing at the moment of observation - it is quite possible that this star had ceased
to exist a billion years before and this fact is based on the finite velocity of light. So,
if we use a video (or some optic devices) for obtaining information for dynamically
changing area of regions, for some of them which are far from the observer we
need additional information for their status of existing and spatial configuration at
the moment of observing. For instance, if I observe the Sun from which the light
travels to the Earth several minutes I can conclude that it exists at the moment of
observation, just because it is not possible for it to stop existing for such a short
time. Having in mind the above, the phrase ‘snapshot at the moment t of the area
of dynamic regions’ has to be considered just as attaching to t the contact algebra
(Bt, Ct) considered as the real (actual) static description of spatial configurations of
regions of the area at the moment t no matter how we can obtain this information.
The analogy with video film is considered only as a way to illustrate the snapshot
construction.

3.3 Standard dynamic contact algebras

Let M =< (T,≺), {(Bi, Ci) : i ∈ T},B,B〉 be a given DMST. As we mentioned in
the previous section, the Boolean algebra B of dynamic regions can be supplied with
some additional relational structure in different ways. In this section we will give
the first step introducing three spatio-temporal relations in B.
• Space contact aCsb iff (∃m ∈ T )(amCmbm).
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Intuitively space contact between a and b means that there is a time point i ∈ T
in which a and b are in a contact Ci in the corresponding coordinate contact algebra
(Bi, Ci).
• Time contact aCtb iff (∃m ∈ T )(am 6= 0m and bm 6= 0m).

Intuitively time contact between a and b means that there exists a time point in
which a and b exist simultaneously. Note that am 6= 0m and bm 6= 0m means just
that a and b exist at the time point m. This relation can be considered also as a kind
of simultaneity relation or contemporaneity relation studied in Whitehead’s
works and special relativity.
• Local precedence or simply Precedence aBb iff (∃m,n ∈ T )(m ≺ n and
am 6= 0m and bn 6= 0n).

Intuitively a is in a local precedence relation with b (in words a precedes b) means
that there is a time point in which a exists which is before a time point in which
b exists, which motivates the name of B as a (local) precedence relation. Note the
following similarity between the relations Ct and B: if in the definition of B we
replace the relation ≺ with =, then we obtain just the definition of Ct.
Lemma 3.3. Let M =< (T,≺), {(Bi, Ci) : i ∈ T},B,B〉 be a a rich DMST. Then
the relations Cs, Ct and B satisfy the following abstract conditions:

(i) Cs is a contact relation,
(ii) Ct is a contact relation satisfying the following additional conditions:
(Cs ⊆ Ct) aCsb→ aCtb.
(CtE) aCtb→ (∃c ∈ B)(aCtc and c∗Ctb) - the Efremovich axiom for Ct.
(iii) B is a precontact relation satisfying the following additional conditions (see

for these conditions Section 2.3):
(CtB) aBb⇒ (∃c ∈ B)(aCc and c∗Bb),
(BCt) aBb⇒ (∃c ∈ B)(aBc and c∗Cb),

Proof. Let us note that the requirement that the modelM is rich is needed only in the
verifications of the conditions (CtE), (CtB) and (BCt) which required constructions
of new regions. As an example we shall verify only the condition (BCt). The proof
for the other conditions is similar.

Suppose aBb and define c coordinate-wise:

ck =
{

0k, if ak 6= 0k
1k, if ak = 0k.

Since the model is rich then c certainly belongs to B. The verification of the
conclusion aBc and c∗Ctb is straightforward.
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Definition 3.4. Standard Dynamic Contact Algebra. Let Let M =< (T,≺
), {(Bi, Ci) : i ∈ T},B,B〉 be a be a DMST and let us suppose that the algebra B of
dynamic regions enriched with the relations Cs, Ct and B satisfies the conclusions of
Lemma 3.3. Then the system (B, Cs, Ct,B) is called standard dynamic contact
algebra (standard DCA) over DMST.

Let us note that Lemma 3.3 ensures that standard DCAs exist. We call them
‘standard’, because they are concrete and will be considered as standard models of
abstract DCA (to be introduced and study later on). Shortly speaking the definition
of abstract DCA is to rephrase the present definition in an abstract way. Let us
remind that the aim to start with concrete point-based model for spacetime is to
use it as a source of motivated axioms.

3.4 A characterization of the abstract properties of time
structures with some time axioms

We do not presuppose in the formal definition of DMST that the time structure
(T,≺) satisfies some abstract properties of the precedence relation. In this section
we shall see that all abstract properties of the precedence relation mentioned in
Section 3.1 are in an exact correlation with some special conditions of time contact
Ct and precedence relation B called time axioms. The correlation is given in the
next table:

(RS) Right seriality (∀m)(∃n)(m ≺ n) ⇐⇒
(rs) a 6= 0→ aB1,
(LS) Left seriality (∀m)(∃n)(n ≺ m) ⇐⇒
(ls) a 6= 0→ 1Ba,
(Up Dir) Updirectedness (∀i, j)(∃k)(i ≺ k and j ≺ k)⇐⇒
(up dir) a 6= 0 and b 6= 0→ aBp or bBp∗,
(Down Dir) Downdirectedness (∀i, j)(∃k)(k ≺ i and k ≺ j) ⇐⇒
(down dir) a 6= 0 and b 6= 0→ pBa or p∗Bb,
(Circ) i ≺ j → (∃k)(k ≺ i and j ≺ k) ⇐⇒
(cirk) aBb→ bBp or p∗Ba
(Dens) Density i ≺ j → (∃k)(i ≺ k ∧ k ≺ j) ⇐⇒
(dens) aBb→ aBp or p∗Bb,
(Ref) Reflexivity (∀m)(m ≺ m) ⇐⇒
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(ref) aCtb→ aBb,
(Irr) Irreflexivity (∀m)( m 6≺ m) ⇐⇒
(irr) aBb→ (∃c, d)(aCtc and bCtd and cCtd),
(Lin) Linearity (∀m,n)(m ≺ n ∨ n ≺ m) ⇐⇒
(lin) a 6= 0 and b 6= 0→ aBb or bBa,
(Tri) Trichotomy (∀m,n)(m = n or m ≺ n or n ≺ m) ⇐⇒
(tri) (a 6= 0 and b 6= 0 → aCtb or (aBb or bBa),
(Tr) Transitivity i ≺ j and j ≺ k → i ≺ k ⇐⇒
(tr) aBb→ (∃c)(aBc and c∗Bb).

Lemma 3.5. Correspondence Lemma 1. Let M = 〈〈(T,≺), {(Bi, Ci) : i ∈
T},B,B〉 be a rich DMST and let B be enriched with the relations Ct and B. Then
all the correspondences in the above table are true in the following sense: the left
site of a given equivalence is true in (T,≺) iff the right site is true in B.

Proof. We will show the proof for two cases: (Irr) and (Circ).
Case 1: (Irr)⇐⇒(irr).
(Irr)=⇒(irr). Suppose Irr. This condition is also equivalent to the following

one: m ≺ n → m 6= n. To prove (irr) suppose aBb. Then there exist i, j such
that ai 6= 0i, bj 6= 0j and i ≺ j which implies i 6= j. Define the regions c and d
coordinate-wise as follows:

ck =
{

1k, if k = i

0k, if k 6= i.
, dk =

{
1k, if k = j

0k, if k 6= j.

From here we obtain ci = 1i 6= 0i and dj = 1j 6= 0j . Since ai 6= 0i we get aCtc.
Since bj 6= 0j we get bCtd. In order to show that cCd suppose the contrary: cCtd.
This implies that there is k ∈ T such that ck 6= 0k and dk 6= 0k. By the definitions
of c and d we get that ck = 1k (and hence k = i) and dk = 1k (and hence k=j) and
consequently - i = j - a contradiction. Thus cCtd which has to be proved.

(irr)=⇒(Irr). Suppose (irr) and that (Irr) is not true. Then there exists i
such that i ≺ i. Define a coordinate-wise as follows:

ak =
{

1k, if k = i

0k, if k 6= i.

From here we get that ai = 1i 6= 0i and since i ≺ i we obtain aBa. By (irr)
There are c and d such that aCtc, aCtd and cCd. From the definition of a we have
that ak 6= 0k only for k = i. From this and aCtc we get that ci 6= 0i and from aCtd
that di 6= 0i. Consequently cCtd a contradiction with cCd, which ends the proof.
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Case 2: (Circ)⇐⇒(circ).
(Circ)=⇒(circ). Suppose that (Circ) is true. To prove (circ) suppose aBb.

Then there are i, j ∈ T such that ai 6= 0i, bj 6= 0j and i ≺ j. By Circ there is a
k ∈ T such that j ≺ k and k ≺ i. Let p be arbitrary dynamic region. There are two
cases: Case a: pk 6= 0k which implies pBa.

Case b: pk = 0k. Then p∗k = 1k 6= 0k which implies bBp∗.
(circ)=⇒(Circ). Suppose (circ) holds. In order to prove (Circ) suppose i ≺ j.

Define a, b and p as follows:

am =
{

1m, if m = i

0m, if m 6= i.
, bn =

{
1n, if n = j

0n, if n 6= j.
, pk =

{
1k, if k ≺ i
0k, if k 6≺ i.

.

By the definitions of a and b we obtain that ai = 1i 6= 0i and bj = 1j 6= 0j .
Since i ≺ j we get aBb. By (Circ) we obtain bBp or p∗Ba. Consider the two cases
separately.

Case I: bBp. This implies that there exist m, k ∈ T such that n ≺ k, bn 6= 0m
(hence bn = 1n and n = j) and pk 6= 0k (and hence pk = 1k and k ≺ i). From here
we get j ≺ k and k ≺ i -just what have to be proved.

Case II: p∗Ba. This implies that there exist k,m ∈ T such that k ≺ m, p∗k 6= 0k
(and hence p∗k = 1k, pk = 0k and k 6≺ i) and am 6= 0m (and hence am = 1m and
m = i). From here we get k ≺ i which contradicts k 6≺ i. So this case is impossible
and the previous case implied what is needed.

Definition 3.6. The formulas (rs), (ls), (up dir), (down dir), (circ),
(dens), (ref), (irr), (lin), (tri), (tr), included in the above table are called ‘time
axioms’ and will be considered as additional axioms for abstract DCAs.

The above lemma is very important because it states that the abstract properties
of the time structure of a given rich model of space are determined by the time axioms
which contain only variables for dynamic regions and time points are not mention.
This correlation suggests to consider (abstract) DCAs satisfying some of the time
axioms.

3.5 Time representatives and NOW
In this section, following [79] we present another enrichment of the expressive power
of standard DCA by new constructs called time representatives, universal time rep-
resentatives and NOW. Since this material will not be used later on in this paper,
the presentation is sketchy and without proofs.

First about the intuitions behind these notions. Consider the phrases: ”the epoch
of Leonardo”, ”the epoch of Renaissance”, ”the geological age of the dinosaurs”, ”the
time of the First World War”, etc. All these phrases indicate a concrete unit of time
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named by something which happened or existed at that time and not in some other
moment (epoch) of time. These examples suggest to introduce in DMST a special
set of dynamic regions called time representatives, which are regions existing at a
unique time point. The formal definition is the following:

Definition 3.7. A region c in a DMST is called a time representative if there
exists a time point i ∈ T such that ci 6= 0i and for all j 6= i, cj = 0j. We say also
that c is a representative of the time point i and indicate this by writing c = c(i). In
the case when ci = 1i, c is called universal time representative. We denote by
TR the set of universal time representatives and by UTR the set of universal time
representatives.

Time representatives and universal time representatives always exist in rich mod-
els. Let i ∈ T , then the following region c = c(i) is the universal time representative
corresponding to the time point i:

ck =
{

1k, if k = i

0k, if k 6= i.

.
If for a given i ∈ T there exists a such that ai 6= 0i and ai 6= 1i then c.a is time

representative of i which is not universal time representative.
The existence of universal time representatives for each i ∈ T suggests to consider

enriched time structures (T,≺,now), where now is a fixed element of T correspond-
ing to the present epoch. We denote by NOW the universal time representative of
now. Let us note that the extension of the language of standard DCA with time
representatives and NOW enriches considerably its expressive power and makes
possible to consider Past, Present and Future. Examples:

• a exists now - aCtNOW,

• a will exist in the future - NOWBa,

• a will always exist in the future - (∀c ∈ TR)(NOWBc→ aCtc),

• a was existing in the past - aBNOW,

• a is in a contact with b now - a.NOWCsb,

• a will be in a contact with b - (∃c ∈ UTR)(NOWBc and a.cCsb),

• a and b are always in a contact - (∀c ∈ UTR)(a.cCsb).
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4 Dynamic contact algebra (DCA)
We adopt in this paper the following definition of abstract dynamic contact algebra.

Definition 4.1. The algebraic system A = (BA, CsA, CtA,BA) is called dynamic con-
tact algebra (DCA) provided the following conditions are stisfied:

(BA) BA = (BA,≤, 0, 1,+, ., ∗) is a nondegenerate Boolean algebra.
(CCs) CsA is a contact relation in BA, called space contact,
(CCt) CtA is a contact relation in BA, called time contact and satisfying
the following two axioms:

(Cs ⊆ Ct) aCsAb⇒ aCtAb.

(CtE) aCtAb ⇒ (∃c)(aCtAc and c∗C
t
A), the Efremovich axiom for

CtA.
(PreCB) BA is a precontact relation in BA, called local precedence
and satisfying the following two axioms:

(CtB) aBAB ⇒ (∃c)(aCtAc and c∗BAb).
(BCt) aBAB ⇒ (∃c)(aBAc and c∗C

t
Ab).

We considerer also DCA satisfying additionally some of the time axioms (rs),
(ls), (up dir), (down dir), (circ), (dens), (ref), (lin), (tri), (tr) (see Defi-
nition 3.6). (Note that here the axiom (irr) is excluded for reasons which will be
explained later, see Remark 4.10).

Since DCAs are algebraic systems we adopt the standard algebraic notions of
isomorphism between two DCAs A1 and A2 and isomorphic embedding of A1 into
A2. If A1 and A2 are isomorphic we will denote this by A1 ∼= A2.

Note that the name ‘dynamic contact algebra’ is used in the papers [77, 78, 79, 13]
as an integral name for point-free theories of space and time with different definitions
in different papers. This is just for economy of names. The definition used in [79]
incorporates also time representatives but for the purposes of this paper we decided
to adopt more simple definition which is based only on the relations Cs, Ct and B.
It is similar to the definition of DCA from [78], but the present definition is based on
a more strong axioms, so it has a different theory. Note also that the just introduced
DCA has models - these are the standard DCAs from Definition 3.4 and they will
be considered as standard models of the present definition of DCA. Our first aim is
to show that DCAs are representable by means of models.

Lemma 4.2. DCA is a generalization of CA.
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Proof. Let A = (BA, CA) be a contact algebra. Set CsA = CA, aCtAb iff a 6= 0 and
b 6= 0 (the maximal contact of A) and BA = CtA. Then it is easy to see that A with
thus defined relations is a DCA.

Remark 4.3. One note to the Lemma 4.2. If we interpret contact algebras as dy-
namic contact algebras as in Lemma 4.2 the obtained reinterpretation of contact
algebra has topological models which are different from the standard topological mod-
els of contact algebras (see section 5.5). So the stated equivalence in the Lemma 4.2
is only about the corresponding algebraic structures.

It is true if we consider CA with an additional contact - the definable maximal
contact (Cmax)A with a(Cmax)Ab ⇔def a 6= 0 and b 6= 0. Such extended contact
algebras have topological models which are different from the standard topological
models of contact algebras (see section 5.5).

4.1 Facts about ultrafilters, clans and clusters in DCA

Let A = (BA, CsA, CtA,BA) be a DCA. We denote by Ult(A) the set of ultrafilters of
A and by RsA, RtA and ≺A we denote correspondingly the canonical relations of CsA,
CtA and BA (for the definition of canonical relation see Definition 2.7). Since CsA
and CtA are contact relations, then RsA and RtA are reflexive and symmetric relations
(Lemma 2.12). Since CtA satisfies the Efremovich axiom (CtE), the relation RtA is
transitive (Lemma 2.12), which implies the following statement:

The relation RtA is an equivalence relation. (1)
By the axioms (CtB) and (BCt) the relation ≺A satisfies the following conditions

(see Lemma 2.13) for arbitrary U, V,W ∈ Ult(A):
(Rt◦ ≺⊆≺) URtAV and V ≺W ⇒ U ≺W , (2)
(≺ ◦Rt ⊆≺) U ≺ V and V RtAW ⇒ U ≺W . (3)

Conditions (2) and (3) imply the following more general condition
URtAU0 and U0 ≺A V0 and V0RtAV ⇒ U ≺A V . (4)

The axiom (Cs ⊆ Ct) implies that the relation RsA is included in the relation
RtA, namely the following condition is satisfied for arbitrary U, V ∈ Ult(A):

URsV ⇒ URtAV . (5)
The clans determined by the contact CsA are called s-clans and their set is de-

noted by s-Clans(A). The clans determined by CtA are called t-clans and their set
is denoted by t-Clans(A). By axiom (Cs ⊆ Ct) every s-clan is a t-clan. Note that
every ultrafilter is both an s-clan and a t-clan. So we have the inclusions:

Ult(A)⊆s-Clans(A)⊆t-clans(A).
If Γ is a t-clan we denote by Ult(Γ) the set of ultrafilters included in Γ. (6)
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By axiom (CtE) maximal t-clans are clusters and by Lemma 2.24 they are unions
of the equivalence classes of ultrafilters determined by the equivalence relation RtA.
The set of clusters is denoted by Clust(A). Note that (see Lemma 2.23)

Every t-clan (s-clan) is contained in a unique cluster. (7)
So there is a function γA:t-Clans(A)→ Clusters(A) with the following proper-

ties;
(γ1) If Γ ∈ t-Clans(A), then γA(Γ) ∈ Clust(A),
(γ2) If Γ ∈ Clust(A), then γA(Γ) = Γ. (8)

Now we extend the relation ≺ to hold between t-clans (and hence between clus-
ters) by the same definition used for ultrafilters: for Γ,∆ ∈ t− Clans(A)

Γ ≺A ∆⇔def (∀a, b ∈ BA)(a ∈ Γ and b ∈ ∆⇒ aBAb). (9)

Lemma 4.4. The following conditions are equivalent for any Γ,∆ ∈ t-Clans(A):
(i) Γ ≺A ∆,
(ii) For all U ∈ Ult(Γ) and V ∈ Ult(∆): U ≺A V ,
(iii) There exist U0 ∈ ULT (Γ) and V0 ∈ Ult(∆) such that: U0 ≺A V0.

Proof. (i)⇒(ii). Suppose (i) holds and to prove (ii) suppose a ∈ U ∈ Ult(Γ) and
b ∈ V ∈ Ult(∆). Then a ∈ Γ and b ∈ ∆ and by (i) and (9) we get aBb which proves
(ii).

(ii)⇒(iii) is obvious.
(iii)⇒(i). Suppose (iii): U0 ≺A V0 for some U0 ∈ Ult(Γ) and V0 ∈ Ult(∆). In

order to show (i) suppose a ∈ Γ and b ∈ ∆ and proceed to show that aBAb. Since
a ∈ Γ, then there exist an ultrafilter U such that a ∈ U ∈ Clans(Γ) and an ultrafilter
V such that b ∈ V ∈ Clans(∆) (see Lemma 2.16). Then URtAU0 and V0RtAV . Since
U0 ≺A V0, then by (4) we get U ≺A V . But a ∈ U , b ∈ V and U ≺A V imply
aBAb.

Lemma 4.5. For all t-clans Γ,∆ if Γ ≺A ∆, then there exists a cluster Γ′ and a
cluster ∆′ such that Γ ⊆ Γ′ and ∆ ⊆ ∆′ and Γ′ ≺A ∆′.

Proof. The proof follows from the fact that every t-clan can be extended into unique
cluster and the relation ≺A between extensions is preserved by the properties of this
relation stated in Lemma 4.4.

The next three definitions will be used later on. For a ∈ BA set:
gA(a) =def {Γ ∈ t-Clans(A) : a ∈ Γ}, (10)
gsA(a) =def {Γ ∈ s-Clans(A) : a ∈ Γ}=gA(a) ∩ s-Clans(A), (11)
gclustA (a) =def {Γ ∈ Clusters(A) : a ∈ Γ} = gA(a) ∩ Clusters(A). (12)
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Lemma 4.6. The following equivalencies are true for arbitrary a, b ∈ BA:
(i) aCtAb iff there exists a t-clan (cluster) Γ containing a and b iff gA(a)∩gA(b) 6=

∅ ( (gclustA (a) ∩ gclustA (b) 6= ∅) (see (10) and (12)).
(ii) aCsAb iff there exists an s-clan Γ containing a and b iff gsA(a) ∩ gsA(b) 6= ∅

(see (11)),
(iii) aBAb iff there exist t-clans (clusters) Γ,∆ such that Γ ≺ ∆, a ∈ Γ and b ∈ ∆

iff there exist t-clans (clusters) Γ,∆ such that Γ ≺ ∆ and gA(a) 6= ∅, gA(b) 6= ∅
(gclustA (a) 6= ∅, gclustA (b) 6= ∅) (see (10) and (12)).

Proof. (i) and (ii) follow from Lemma 2.16 and definitions (10), (11) and (12). For
(iii) suppose aBAb . Then by Lemma 2.11 there are ultrafilters U, V such that
U ≺A V . Then there are clusters Γ,∆ such that U ⊆ Γ and V ⊆ ∆, so a ∈ Γ and
b ∈ ∆. By Lemma 4.4 we obtain that Γ ≺A ∆. The converse implication follows
from the definition of ≺.

The next lemma is a more detailed reformulation of Lemma 4.6 which will be
used in Section 4.3.

Lemma 4.7. (i) aCsAb iff there exists a cluster Γ and an s-clan ∆ containing a and
b such that ∆ ⊆ Γ.

(ii) aCtAb iff there exist a cluster Γ and s-clans ∆,Θ such that a ∈ ∆, b ∈ Θ and
∆,Θ ⊆ Γ.

(iii) aBAb iff there exist clusters Γ,∆, such that Γ ≺ ∆ and there exist s-clans
Θ ⊆ Γ and Λ ⊆ ∆, a ∈ Θ and b ∈ Λ.

(iv) a 6≤ b iff a.b∗ 6= 0 iff there exists a cluster Γ and an s-clan ∆ ⊆ Γ such that
a.b∗ ∈ ∆.

Proof. The proof follows from Lemma 4.6 and the fact that every s-clan and t-clan
is contained in a cluster.

The system (s-Clans(A),t-Clans(a), Clusters(A), γA,≺A) is called the clan
structure of A.

Since any contact algebra is a DCA (Lemma 4.2) it is interesting to know which
are s-clans, t-clans and clusters of A. Obviously s-clans are just the clans of A with
(respect to C), t-clans are just the grills of A (they are unions of ultrafilters). There
is only one maximal grill in A - the union of all ultrafilters and this is the unique
cluster in A (with respect to CtA). The relation ≺ is just the universal relation in
the set of all grills.
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4.2 Extracting the time structure of DCA
Let A = (BA, CsA, CtA,BA) be a DCA. The first step to represent A in some DMSP
by the snapshot construction is to extract the time structure of A. This means
to define the time points of A and the corresponding ‘before-after’ relation. From
Lemma 4.6 we see that the relations CtA and BA which have a temporal nature can
be characterized by means of clusters. This suggests the time points of A to be
identified with the clusters of A and the before-after relation to be identified with
the relation ≺ defined by (9) and restricted to the set of clusters. So, we have the
following

Definition 4.8. Canonical time structure. The system
TA = (Clusters(A),≺A) where ≺A is restricted to Clusters(A) is considered as

the canonical time structure of A.

It is interesting to see if there is a correspondence between time properties of
TA and the corresponding time axioms like in Lemma 3.5. This is possible for all
time conditions except (Irr) . First we will present ultrafilter characterization of
time axioms by means of conditions on the set Ult(A) expressible by the canonical
relations RtA and ≺A, considered as a relation between ultrafilters (so these condi-
tions will be for the structure (Ult(A),≺A, RtA)). The corresponding table is the
following. Note that the names of ultrafilter conditions are the same for the names
for the corresponding time conditions from Section 3.1. enclosed by curly brackets.
U, V,W below are considered as variables ranging on ultrafilters.

〈 RS 〉 (∀U)(∃V )(U ≺A V ) ⇐⇒
(rs) a 6= 0→ aB1,
〈 LS 〉 (∀U)(∃V )(V ≺A U) ⇐⇒
(ls) a 6= 0→ 1Ba,
〈 Up Dir 〉 (∀U, V )(∃W )(U ≺W and V ≺W ) ⇐⇒
(up dir) a 6= 0 ∧ b 6= 0⇒ aBp or bBp∗,
〈 Down Dir 〉 (∀U, V )(∃W )(W ≺ U and W ≺ V ) ⇐⇒
(down dir) a 6= 0 ∧ b 6= 0⇒ pBa or p∗Bb,
〈 Circ 〉 U ≺A V → (∃W )(W ≺A U and V ≺W ) ⇐⇒
(cirk) aBb⇒ bBp or p∗Ba
〈 Dens 〉 U ≺A V → (∃W )(U ≺W and W ≺ V ) ⇐⇒
(dens) aBb⇒ aBp or p∗Bb,
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〈 Ref 〉 (∀U)(U ≺A U) ⇐⇒
(ref) aCtb⇒ aBb,
〈 Lin 〉 (∀U, V )(U ≺ V or V ≺ U) ⇐⇒
(lin) a 6= 0 and b 6= 0⇒ aBb or bBa,
〈 Tri 〉 (∀U, V )(URtAV or U ≺A V or V ≺A U) ⇐⇒
(tri) (a 6= 0 and b 6= 0 ⇒ aCtAb or aBAb or bBAa,
〈 Tr 〉 U ≺A V j and V ≺A W ⇒ U ≺A W ⇐⇒
(tr) aBb⇒ (∃c)(aBc and c∗Bb).

The table with clusters can be obtained from the above one replacing ultrafilter
variables U, V,W with cluster variables Γ,∆,Θ and RtA (which occurs only in the
condition 〈 Tr 〉) with equality =.

Lemma 4.9. Correspondence Lemma 2. The following equivalencies are true
for each raw of the above table:

(i) The left-side condition is true in the structure (Ult(A),≺A, RtA).
(ii) The left-side condition in its cluster interpretation is true in the canonical

time structure (Clusters(A),≺A).
(iii) The right-side condition is true in DCA A.

Proof. We illustrate the proof checking three examples. Let us start with the easiest
case - (ref). We will prove the following implications:

(i) (∀U ∈ Ult(A))(U ≺A U) =⇒ (ii) (∀Γ ∈ Clusters(A))(Γ ≺A Γ) =⇒
(iii) (∀a, b ∈ BA)(aCtAb⇒ aBAb) =⇒ (i).

(i)=⇒(ii). Suppose (i) and to prove (ii) suppose that Γ ∈ Clusters(A) and that
an ultrafilter U0 ⊆ Γ. By (i) U0 ≺A U0 and by Lemma 4.4 we get that Γ ≺A Γ.

(ii)=⇒(iii). Suppose (ii) and in order to show (iii) suppose aCtAb and proceed
to show aBAb. Condition aCtAb implies that there is a cluster Γ containing a and b.
By (ii) we have Γ ≺A Γ. But a ∈ Γ and b ∈ Γ implies (by the definition of ≺) that
aBAb.

(iii)=⇒(i). Suppose (iii) and in order to prove (i) suppose that U ∈ Ult(B) and
a, b ∈ U . Then a.b 6= 0 which implies aCtAb (CtA is a contact relation) and hence by
(iii) we get that aBAb. By the definition of the canonical relation ≺A for ultrafilters,
this shows that U ≺A U .

The next example is (tri). We will prove the following implications:
(i) URtAV or U ≺A V or V ≺A U =⇒ (ii) Γ = ∆ or Γ ≺A ∆ or ∆ ≺A Γ =⇒

(iii) (aCtc and bCtd and cCtd) ⇒ (aBb or bBa) ⇒ (i).
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(i)⇒ (ii). Suppose (i) and let Γ,∆ ∈ Clusters(A). To show (ii) suppose that
Γ,∆ ∈ Clusters(A). If Γ = ∆, then (ii) is OK. Suppose Γ 6= ∆. Then by Lemma
2.25 there exist a 6∈ Γ and b 6∈ ∆ such that aCtAb. Consequently there are ultrafilters
U, V such that a ∈ U ∈ Ult(Γ) and b ∈ V ∈ Ult(∆). Since aCtAb, then UC

t
AV . This

implies by (i) that U ≺A V or V ≺A U . Since U ⊆ Γ and V ⊆ ∆, then by Lemma
4.4 we get Γ ≺A ∆ or ∆ ≺A Γ.

(ii)⇒ (iii). Suppose (ii) and in order to show (iii) suppose a 6= 0 and b 6= 0.
Then there are Γ,∆ ∈ Clusters(A) such that a ∈ Γ and b ∈ ∆. By (ii) there are
three cases:

Case I: Γ = ∆. Then aCtAb.
Case II: Γ ≺A ∆. Then aBAb.
Case III: ∆ ≺A Γ =. Then bBAa.
(iii)⇒ (i). Suppose (iii) and for the sake of contradiction assume that (i) is not

true. Then there are ultrafilters U, V such that URtAV , UBAV and VBAU . Then
there are a1, b1 such that a1 ∈ U , b1 ∈ V and a1C

t
Ab1, there are a2, b2 such that

a2 ∈ U , b2 ∈ V and a2BAb2, and there are a3, b3 such that a3 ∈ U , b3 ∈ V and
b3BAba3. Let a = a1.a2.a3 and b = b1.b2.b3. Since U, V are ultrafilters then a ∈ U
and b ∈ V , so a 6= 0 and b 6= 0. It can be shown also that aCtAb, aBAb and bBAa
which contradicts (iii).

Let us consider as a last example (tr). By Lemma 2.12 we already know that
(i) ⇔ (iii). It remains to show (i) ⇔ (ii).

(i) =⇒ (ii). Suppose (i) and in order to prove (ii) suppose that Γ ≺A ∆ and
∆ ≺A Θ. Suppose for the contrary that Γ 6≺A Θ. Then by Lemma 4.4 there are
ultrafilters U ∈ Ult(Γ) and W ∈ Ult(Θ) such that U 6≺A W . Then by (i) U 6≺A V
or V 6≺A W for any V ∈ Ult(B)A. Take some V ∈ Ult(∆).

Case I: U 6≺A V . Then U ∈ Ulta(Γ), V ∈ Ult(∆) and Γ ≺A ∆ implies U ≺A V
- a contradiction.

Case II: V 6≺A W . Then V ∈ Ult(∆),W ∈ Ult(Θ) and ∆ ≺A Θ implies V ≺W
- a contradiction.

(ii) =⇒ (i). Suppose (ii) and in order to show (i) suppose U ≺A V and V ≺A W ,
U, V,W ∈ Ult(B)A. Then there are clusters Γ,∆,Θ such that U ⊆ Γ, V ⊆ ∆ and
W ⊆ Θ. By Lemma 4.4 we get Γ ≺A ∆ and ∆ ≺A Θ. By (ii) this implies Γ ≺A Θ.
But U ⊆ Γ and W ⊆ Θ which implies U ≺A W .

One remark for the proofs of the remaining cases of this lemma is to show first
the implication (i)=⇒ (iii) which follow the style of the proof of Lemma 2.12 and
Lemma 2.13. Then the proof of (i) =⇒ (ii) is more easy by application of Lemma
4.4.

1282



Point-free Theories of Space and Time

Remark 4.10. Let us explain why we excluded the axiom (irr) from the list of
time axioms and the Correspondence Lemma. The reason is that we can not prove
the equivalence 〈 Irr 〉 ⇐⇒(irr). One can easily proof the implication 〈 Irr 〉
=⇒ (irr), but we do not know if the converse has a proof (we believe not) or if
there is a stronger first-order sentence like (irr) for which the equivalence holds.
This equivalence is true in rich standard DCA and the reason is the possibility to
define special regions due to richness. The language of the abstract version of DCA
can not express a property similar to richness but in a DCA enriched with time
representatives discussed in Section 3.5 the treatment of this case is possible because
the language is more expressive (see [79]).

Since any contact algebra A is a DCA which is the canonical time structure of A?
The set T of time points is the singleton set {Γ} where Γ is the maximal grill in A
(the union of all ultrafilters) and ≺ is just the equality. So the time of A has only one
moment and the clock of A is not ticking - the time is ‘stopped’ or degenerated.
That is why contact algebras can be considered as static (no time is hidden in them)
and the RBTS based on contact algebras - as a static mereotopology.

4.3 Extracting canonical coordinate contact algebras and the
canonical standard DCA

Let A = (BA, CsA, CtA,BA) be a DCA and let TA = (Clusters(A),≺A) be the
canonical time structure of A. The next step in the snapshot construction is for
each Γ ∈ Clusters(A) to define in a canonical way the coordinate contact algebra
AΓ = (BΓ, CΓ).

Because Γ is a cluster, consider the set
Γ̂ = {∆ ∈ s-Clans(A): ∆ ⊆ Γ}.
We will consider the construction of factor contact algebra determined by sets

of clans described in Section 2.6. So we adopt the following definition.

Definition 4.11. Canonical coordinate contact algebra. We define (BΓ̂, CΓ̂)
denoted for simplicity by BΓ = (BΓ, CΓ) to be the contact algebra defined by the
factor construction from Sections 2.6 applied to the contact algebra (BA, CsA) and
the set of s-clans Γ̂. The algebra (BΓ, CΓ) is called the canonical coordinate
contact algebra corresponding to the time point Γ.

Remind that the elements of BΓ are now of the form |a|Γ defined by the congru-
ence ≡Γ̂ (see Section 2.6) and |a|ΓCΓ|b|Γ iff Γ̂ ∩ g(a) ∩ g(b) 6= ∅, where

g(a) = {Γ ∈ s-Clans(A): a ∈ Γ}.
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Definition 4.12. Canonical standard DCA. Having the canonical time structure
TB = (Clusters(A),≺A) and the set of canonical contact algebras AΓ = (BΓ, CΓ),
Γ ∈ Clusters(A) we define by the snapshot construction described in Sections 3.2
and 3.3 the full canonical standard DCA Acan = (B, Cs, Ct,B), where B =∏

Γ∈Clusters(A)BΓ is the Cartesian product of the coordinate Boolean algebras.
We define an embedding function h from A into Acan coordinatewise as follows:

for a ∈ BA and for each Γ ∈ Clusters(A), hΓ(a) = |a|Γ.

The next lemma is important because it shows that the time axioms are preserved
by the construction of the full canonical standard DCA.

Lemma 4.13. Let A be a DCA and Acan be the full canonical standard dynamic
contact algebra associated to A. Then for each time axiom α from the list of time
axioms (rs), (ls), (up dir), (down dir), (circ), (dens), (ref), (lin), (tri),
(tr) the following equivalence is true: α holds in A iff α holds in Acan.

Proof. By Lemma 4.9 α is true in A iff the corresponding condition α̂ is true in the
canonical time structure TA = (Clusters(A),≺A) iff (by Lemma 3.5) α is true in
the full standard DCA Acan.

Lemma 4.14. Embedding Lemma. Let A be a DCA and h be the mapping
defined in Definition 4.12. Then:

(i) h preserves Boolean operations.
(ii) aCsAb in A iff there exists Γ ∈ Clusters(a) such that |a|Γ CΓ|b|Γ iff

h(a)CsAcanh(b) in Acan.
(iii) aCtAb in A iff there exists Γ ∈ Clusters(A) such that |a|Γ 6= |0|Γ and

|b|Γ 6= |0|Γ iff h(a)CtAcanh(b) in Acan.
(iv) aBAb in A iff there exist Γ,∆ ∈ Clusters(A) such that Γ ≺ ∆ and |a|Γ 6= |0|Γ

and |b|∆ 6= |0|∆ iff h(a)B(A)Acanh(b) in Acan.
(v) a 6≤ b in A iff there exist Γ ∈ Clusters(A) such that |a|Γ 6≤Γ |b|Γ iff h(a) 6≤

h(b) in Acan.
(vi) a = b iff h(a) = h(b), i.e. h is an embedding.

Proof. (i) The statement is obvious, because the elements of the coordinate algebras
are equivalence classes determined by a congruence relations in A and that Boolean
operations in Acan are defined coordinatewise.

(ii) aCsAb in A iff (by Lemma 4.7 )there exist a cluster Γ and s-clans ∆,Θ such
that a ∈ ∆, b ∈ Θ and ∆,Θ ⊆ Γ iff (by the definition of Γ̂ and g, see (11), (12))
there exists Γ ∈ Clusters(A) such that Γ̂ ∩ g(a) ∩ g(b) 6= ∅ iff (by the factorization
construction) there exist Γ ∈ Clusters(A) such that |a|ΓCΓ|b|Γ iff h(a)CsAcanh(b) in
Acan.
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(iii) aCtAb in A iff (by Lemma 4.7 ) there exist clusters Γ,∆, such that Γ ≺ ∆ and
there exist s-clans Θ ⊆ Γ and Λ ⊆ ∆, a ∈ Θ and b ∈ Λ iff there exist Γ ∈ Clusters(A)
such that Γ̂∩g(a) 6= ∅ and Γ̂∩g(b) 6= ∅ iff (by the factorization construction) there
exist Γ ∈ Clusters(A) |a|Γ 6= |0|Γ and |b|Γ 6= |0|Γ iff h(a)CtAcanh(b) in Acan.

(iv) aBAb in A iff (by Lemma 4.7) there exist clusters Γ,∆, such that Γ ≺
∆ and there exist s-clans Θ ⊆ Γ and Λ ⊆ ∆, a ∈ Θ and b ∈ Λ iff there exist
Γ,∆ ∈ Clusters(A) such that Γ ≺A ∆, Γ̂ ∩ g(a) 6= ∅ and ∆̂ ∩ g(b) 6= ∅ iff (by the
factorization construction) there exist clusters Γ,∆, such that Γ ≺ ∆, |a|Γ 6= |0|Γ
and |b|∆ 6= |0|∆ iff h(a)BAcanh(b) in Acan.

(v) a 6≤ b in A iff a.b∗ 6= 0 iff there exists a cluster Γ and an s-clan ∆ ⊆ Γ such
that a.b∗ ∈ ∆ iff there exists Γ ∈ Clans(A) such that Γ̂ ∩ g(a.b∗) 6= ∅ iff (by the
factorization construction) |a|Γ 6≤Γ |b|Γ iff h(a) 6≤ h(b) in Acan.

(vi) a = b iff h(a) = h(b) - by (v) and the fact that a = b iff a ≤ b and b ≤ a.

4.4 Representation Theorem for DCAs by means of snapshot mod-
els

Theorem 4.15. Representation Theorem for DCA by means of snapshot
models. Let A be a DCA. Then there exists a full standard DCA B and an isomor-
phic embedding h of A into B. Moreover, A satisfies some of the time axioms iff the
same axioms are satisfied in B.

Proof. The proof is a direct corollary of Lemma 4.14 and Lemma 4.13 by taking
B = Acan.

This Theorem shows that the meaning of the (point-based) standard DCA built
by the snapshot construction is coded by the axioms of the abstract DCA which
is point-free. Note, however, that this representation theorem is of embedding
type, like the representation theorem for Boolean algebras as algebras of sets: every
Boolean algebra can be isomorphically embedded into the Boolean algebra of subsets
of some universe. The theorem does not guarantee one-one correspondence between
set models and algebras via some isomorphism. The same situation is with DCAs
and standard (point-based) DCAs. But adding topology we may characterize more
deeply point models and like in the Stone topological representation theorem for
Boolean algebras to establish a one-one correspondence between algebras and topo-
logical models. That is why we introduce and develop in the next Section topological
models for DCAs.
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5 Topological models for dynamic contact algebras

In this section we introduce topological models for DCA and prove the expected
topological representation theorem for DCA possibly extended with some time ax-
ioms. We develop the topological duality theory for the category of all DCAs and
some related categories.

5.1 What kind of topological models for DCA we need?

What kind of topological models for DCA we need? We need topological spaces
X such that their algebra RC(X) of regular closed subsets to model the algebra of
regions. Note that regions in this algebra are related by three different relations -
space contact Cs, time contact Ct and precedence B, the first two acting as contact
relations and the third - as precontact relation. This means that the realization
of the contact aCsb should be a and b to have a common point and for aCtb also
a and b to have a common point and these common points should be of different
kind - points characterized space contact - space points, and points characterized
time contact - time points. So regions should contain at least two kinds of points -
space and time points and aCsb should hold if they share a space point, and aCtb
should hold if a and b share time point. According to the third relation B, it should
act as a precontact by means of some binary relation between time points. Also,
in order to characterize Ct as a simultaneity relation we need a special subclass
of ‘bigger’ time points to be interpretted as ‘moments of time’ and the other time
points to be considered as parts of the bigger time points, such that simultaneous
time points to form different disjoint classes. So space should have different classes
of points similar to the clan structure of DCA. The topology in this space, as in the
representation theory for contact algebras, should be generated by a subalgebra of
the Boolean algebra of regular closed subsets of the space taken as a closed base for
the topology. And finally, in order to prove topological representation theorem for
DCA, we should be able to extract in a canonical way the same type of topological
space from the structure of DCA. Obviously the abstract points of such a topology
should be the different kinds of clans in DCA and their interrelations. So, this is
the intuition which we will put in the definition of the special topological spaces
introduced in Section 5.3 called Dynamic Mereotopological Spaces (DMS). Since
DCA is a generalizations of contact algebra, we follow some terminology and ideas
from the representation and duality theory for contact algebras given recently by
Goldblatt and Grice in [38]. Since we will represent a given DCA A as a subalgebra of
the regular closed subsets RC(S) of certain DMS S, we need some ‘lifting’ conditions
guaranteeing that A satisfies some abstract conditions (for instance the time axioms
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and some others) iff RC(X) satisfies the same axioms. This will be subject of the
next section.

5.2 Lifting conditions

Let Ai = (BAi , C
s
Ai
, CtAi

,BAi), i = 1, 2 be two algebras with a signature of DCA such
that CsAi

and CtAi
be contact relations and BAi be a precontact relation. We assume

also that A1 is a subalgebra of A2. This means that BA1 is a Boolean subalgebra
of BA2 and that the relations from the list CsA1 , C

t
A1 ,BA1 are restrictions of the

corresponding relations from the list CsA2 , C
t
A2 ,BA2 to BA1 . We need some abstract

‘lifting’ conditions guarantying that A1 satisfies the remaining axioms of DCA and
possibly some time axioms from the list time axioms (rs), (ls), (up dir), (down
dir), (circ), (dens), (ref), (lin), (tri), (tr) iff A2 satisfies the same axioms. The
conditions are given in the next definition and are similar to analogical conditions
considered in [76](pages 283-4 ) only for contact algebras. For convenience the
elements from the set BAi are denoted correspondingly by ai, bi, ci, ... etc.

Definition 5.1. Lifting conditions. Having in mind the above notations we say
that the Boolean subalgebra A1 is said to be a Boolean dense subalgebra of A2 if

(Dense) (∀a2)(a2 6= 0⇒ (∃a1)(a1 6= 0 and a1 ≤ a2),
and to be a co-dense subalgebra of A2 if
(Co-dense) (∀a2)(a2 6= 1⇒ (∃a1)(a1 6= 1 and a2 ≤ a1).
It is easy to see that (Dense) is equivalent to (Co-dense).
Let C be any of the relations CsA2 , C

t
A2 ,BA2 and its restriction to BA1 to be

denoted also by C. We say that A1 is a C-separable subalgebra of A2 if the following
condition is satisfied:

(C-separation) (∀a2, b2))(a2Cb2 ⇒ (∃a1, b1)(a1Cb1 and a2 ≤ a1 and b2 ≤ b1).
Conditions (Dense), (Co-dense) and (C-separable) for all C from the set

{CsA2 , C
t
A2 ,BA2} are called lifting conditions. If all lifting conditions are satisfied

then A1 is said to be a stable subalgebra of A2.
If g is an isomorphic embedding of A1 into A2, then g is said to be a dense

(co-dense) embedding provided that g(A1) is a dense (co-dense) subalgebra of A2.
We say that g is a C-separable embedding if g(A1) is a C-separable subalgebra of A2.
If all lifting conditions are satisfied, then g is called a stable embedding of A1 into
A2.

Lemma 5.2. Lifting Lemma. Let Ai = (BAi , C
s
Ai
, CtAi

,BAi), i = 1, 2 be two
algebras with a signature of DCA such that CsAi

and CtAi
be contact relations and

BAi be a precontact relation and let A1 be a stable subalgebra of A2. Let Ax be any
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of the following list of axioms of DCA : (Cs ⊆ Ct), (CtE), (CtB), (BCt), or any
from the list of time axioms. Then Ax is true in A1 iff Ax is true in A2.

Proof. Let us start with the case when Ax is the axiom (Cs ⊆ Ct) aCsb ⇒ aCtb.
Suppose first that (Cs ⊆ Ct) is true in A1 and for the sake of contradiction that it
is not true in A2. Then for some a2, b2 we have: a2Csb2 and a2C

t
b2. Then by the

condition (Ct-separation) we obtain: there exist a1, b1, such that a2 ≤ a1, b2 ≤ b1
and a1C

t
b1. From here and a2Csb2 we get a1Csb1 which by a1C

t
b1 shows that the

axiom (Cs ⊆ Ct) is not true in A1 - a contradiction. Suppose now that the axiom
is true in A2. Since it is an universal formula, then it is trivially true in A1.

Consider now that Ax is the axiom (CtE) aCtb⇒ (∃c)(aCtc and c∗Ctb). Sup-
pose first that (CtE) is true in A1. In order to show that it is true in A2 suppose
a2C

t
b2. Then by the condition (Ct-separation) there exist a1, b1 such that a1C

t
b1,

a2 ≤ a1 and b2 ≤ b1. By the assumption that (CtE) is true in A1, a1C
t
b1 implies

that (∃c1)(a1C
t
c1 and c∗1C

t
b1). From here we obtain a2C

t
c1 and c∗1C

t
b2. Obviously

c1 and c∗1 are in BA2 which shows that (CtE) is true in A2.
Suppose now that (CtE) is true in A2 and in order to prove it in A1 suppose

a1C
t
b1. Since a1, b1 are also in BA2 , then by the assumption there is c2 such that

a1C
t
c2 and c∗2C

t
b1. Then by the condition (Ct-separation) applied to a1C

t
c2 there

exist a′1, c′1 such that a1 ≤ a′1, c2 ≤ c2 ≤ c′1 and a′1C
t
c′1. Analogously from c∗2C

t
b1

we infer that there exist c′′1, b′1 such that b1 ≤ b′1, c∗2 ≤ c′′1, b1 ≤ b′1 and c′′1C
t
b′1.

Manipulating with inequalities and monotonicity conditions for Ct we finally obtain
a1C

t
c′1 and c′∗1 C

t
b1 which shows that (CtE) holds in A1.

In a similar way one can treat the case for the axioms (CtB) and (BCt).
As an example we will treat one case for time axioms just to show that the tings

go in a similar way. We consider the axiom (lin) a 6= 0 and b 6= 0 ⇒ aBb or bBa.
Suppose first that (lin) is true in A1 and in order to show that it is true in A2
suppose a2 6= 0 and b2 6= 0. Then by the condition (dence) there exists a1 6= 0 such
that a1 ≤ a2 and there exists b1 6= 0 such that b1 ≤ b2. By the assumption a1 6= 0
and b1 6= 0 imply a1Bb1 or b1Ba1. By monotonicity conditions for B we get a2Bb2 or
b2Ba2 which finishes the proof for this direction. For the converse direction suppose
that (lin) is true in A2. Since (lin) is an universal sentence it trivially holds in the
subalgebra A1.

5.3 Dynamic Mereotopological Spaces (DMS)
Definition 5.3. Dynamic Mereotopological Space. A system S = (Xt

S , X
s
S ,

TS ,≺S ,MS) is called Dynamic Mereotopological Space (DMS, DM-space) if the next
axioms are satisfied.
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The axioms of DMS:
• (S1) Xt

S is a nonempty topological space, the elements of Xt
S are called partial

time points of S.
• (S2) MS is a subalgebra of the algebra RC(Xt

S) of regular closed sets of Xt
S

and MS is a closed base of the topology of Xt
S.

• (S3) The sets Xt
S, Xs

S and TS are non-empty sets satisfying the following
inclusions:

Xs
S ⊆ Xt

S, TS ⊆ Xt
S.

The elements of Xs
S are called space points of S, hence every space point is a

partial time point. The elemnts of TS are called time points of S.
• (S4) For a ∈ RC(Xt

S): if a 6= ∅, then a ∩Xs
S 6= ∅ and

• (S5) ≺S is a binary relation in Xt
S called before-after relation. The subsys-

tem (TS ,≺S) is called the time structure of S.
Definitions: For a, b ∈ RC(Xt

S) define:

aCtSb iff a ∩ b 6= ∅, time contact,
aCsSb iff a ∩ b ∩Xs

S 6= ∅, space contact,
aBSb iff there exist x, y ∈ Xt

S such that x ≺S y, x ∈ a and y ∈ b,
precedence,
RC(S) =def (RC(Xt

S), CtS , CsS ,BS), regular-sets algebra of S,
For x ∈ Xt

S set ρS(x) =def {a ∈MS : x ∈ a}.
S+ =def (MS , C

t
S , C

s
S ,BS) with the above defined relations restricted to

MS.

It can easily be seen that CsS and CtS are contact relations in RC(Xt
S) and that B

is a precontact relation (for CsS use axiom (S4)).
• (S6) The system S+ is a DCA. S+ is called the canonical DCA of S or

the dual of S.
• (S7) For x, y ∈ Xt

S, x ≺S y iff (∀a, b ∈MS)(x ∈ a, y ∈ b⇒ aBSb).
• (S8) If x ∈ TS then ρS(x) is a cluster in S+,
We say that S is a T0 space if Xt

S is a T0 space.
Let Âx be a subset of the time conditions from the list (RS), (LS), (Up Dir),

(Down Dir), (Circ), (Dens), (Ref), (Lin), (Tri), (Tr). We say that S satisfies the
axioms from the list Âx if the time structure (TS ,≺S) satisfies these conditions.

Intuitively DMS is abstracted from the clan-structure of DCA by introducing in
it a topology.
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Lemma 5.4. Let S = (Xt
S , X

s
S , TS ,≺S ,MS) be a DMS. Then:

(i) If x ∈ Xt
S, then ρS(x) is a t-clan in S+.

(ii) If x ∈ Xs
S, then ρS(x) is an s-clan in S+.

(iii) If x ∈ TS, then ρS(x) is a cluster in S+.
(iv) Let ≺S+ be the canonical relation of B between t-clans of S+ (see (9) for

the definition). Then Axiom (S7) of DMS is equivalent to the following statement:
for all x, y ∈ Xt

S, x ≺S y iff ρS(x) ≺S+ ρS(y).
(v) S is T0 space iff (∀x, y ∈ Xt

S)(ρS(x) = ρS(y)⇒ x = y). (or, equivalently, S
is T0 iff ρS is an injective mapping from Xt

S into the t-clans of S+).

Proof. For (i) and (ii) - by an easy verification of the corresponding definitions. For
(iii) this is just the axiom (S8) for DMS. (iv) is trivial on the base of the definition of
the relation ≺M+ . (v) is easy if we take in consideration the definition T0 property,
the definition of ρs and the fact that MS is a closed base of the topology of Xt

S .

Definition 5.5. (1) A t-clan (s-clan, t-cluster) Γ of S+ is called a point t-clan
(s-clan, t-cluster) if there is a point x ∈ Xt

S (x ∈ Xs
S, x ∈ TS) such that Γ = ρS(x).

(2) S is a DM-compact (dynamic mereoompact) space if every t-clan, s-clan
and t-cluster of S+ is respectively a point t-clan, s-clan and a t-cluster.

The following Lemma is obvious.

Lemma 5.6. Let S be a DMS. Then the following two conditions are equivalent:
(i) S is DM-compact,
(ii) ρS is a surjective mapping from Xt

S onto the set of all t-clans of S+. More
over ρS maps Xs

S onto the set of all s-clans of S+ and it maps TS onto the set of
all clusters of S+.

Corollary 5.7. Let S be a T0 and DM-compact DMS. Then ρS is a one-one map-
ping from Xt

S onto the set of all t-clans of S+ which preserves the sets Xs
S and

TS.

Proof. By Lemma 5.4 and Lemma 5.6

Remark 5.8. The notions of DM-space and DM-compactness can be considered
as dynamic versions of the notions of mereotopological space and mereocompactness
introduced by Goldblatt and Grice in [38]. Their definitions are the following. A
mereotopological space is a pair S = (XS ,MS) where X is a topological space and
MS is a subalgebra of the Boolean algebra RC(XS) of regular closed sets of XS con-
sidered as closed base of the topology of X. Let S+ be the contact algebra (MS , CS)
where CS is the standard topological contact between regular closed sets. S is mere-
ocompact if every clan of the contact algebra S+ is a point clan in the sense of
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Definition 5.5 (in fact the definition of mereocompactness in [38] is slightly different
but equivalent to the given here). So, if S = (Xt

S , X
s
S , TS ,≺S ,MS) is a DM-space

then the pair (Xt,MS) is a mereotopological space and if S is DM-compact then
(Xt,MS) is mereocompact. Mereotopological spaces have been introduced by Gold-
blatt and Grice in order to develop a topological duality theory for contact algebras.
Similarly, we introduce the notion of DM-space to be used in the topological repre-
sentation theory and duality theory of DCAs.

Because our exposition is quite similar to that of Goldblatt and Grice and in
some sense is an adaptation of their method to the case of DCAs, we recommend
the paper [38] to the reader of the present text. For convenience we even use similar
and compatible notations with [38].

Lemma 5.9. Let S be a DM-compact space. Then the topological space Xt
S is

compact.

Proof. According to Remark 5.8 DM-compactness of S implies that the pair
(Xt

S ,MS) is a mereocompact space and then the statement follows from Theo-
rem 4.2.(3) of [38]. We present below the proof illustrating our definition of DM-
compactness.

In order to prove the compactness of Xt
S , it suffices to prove the following. Let

I ⊆MS be a nonempty set and let A = ⋂{a ∈MS : a ∈ I}. If for every finite I0 ⊆ I
the set ⋂{a ∈MS : a ∈ I0} 6= ∅, thenA 6= ∅. The fact that ⋂{a ∈MS : a ∈ I0} 6= ∅
for every finite subset I0 of I guarantees the existence of an ultrafilter U in the subset
of all subsets of Xt

S such that {a ∈ MS : a ∈ I} ⊆ U . Let Γ = {a ∈ MS : a ∈ U}.
Then it is easy to see that Γ is a t-clan. Then by DM-compactness there exists
x ∈ Xt

S such that Γ = ρS(x). Hence for every a ∈ I we have the following:
a ∈ I =⇒ a ∈ U =⇒ a ∈ Γ =⇒ a ∈ ρS(x) =⇒ x ∈ a =⇒ x ∈ A =⇒ A 6= ∅

Lemma 5.10. Let S = (Xt
S , X

s
S , TS , γS ,≺S ,MS) be a DM-compact DMS. Then the

set Xs
S of space points of S with a subset topology is a T0 dense subset of Xt

S.

Proof. Let Cl denote the closure operation of Xt
S . We have to show that ClXs

S =
Xt
S . Suppose that this is not true, i.e. there exists x ∈ Xt

S such that x 6∈ ClXs
S .

Since MS is a closed base of the topology of Xt
S then there exits a ∈MS such that

Xs ⊆ a and x 6∈ a. Then a 6∈ ρS(x), which is a t-clan in S+. Then for all ultrafilters
U ⊆ ρS(x) we have that a 6∈ U , and let U be such one. But U is an s-clan, so by
DM-compactness there is a point y ∈ Xs

S such that U = ρS(y). Because U ⊆ ρS(x)
we obtain ρS(y) ⊆ ρS(x). From here we obtain that a 6∈ ρS(y) and consequently
y 6∈ a. But y ∈ Xs ⊆ a, so y ∈ a - a contradiction.
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Lemma 5.11. ([12], page 271) Let X be a dense subspace of a topological space Y
and let RC(X) and RC(Y ) be the corresponding Boolean algebras of regular closed
sets of X and Y . Let for a ∈ RC(X), h(a) = ClY (a). Then h : RC(X)→ RC(Y ) is
an isomorphism from RC(X) onto RC(Y ). For b ∈ RC(Y ) converse mapping h−1

acts as follows: h−1(b) = b ∩X.

Corollary 5.12. The Boolean algebra RC(Xs
S) of regular closed subsets of Xs

S is
isomorphic to the Boolean algebra RC(Xt

S).

Proof. The lemma is a corollary of Lemma 5.10 and Lemma 5.11.

In the next section we study some other consequences of DM-compactness.

5.4 Canonical filters in DM-compact spaces
We assume in this section that S is a DM-compact space. The aim of the section is
to introduce a technical notion - canonical filter, generalizing a similar notion from
[76]. By means of canonical filters and the assumption of DM-compactness of a
given S we will establish that the algebra S+ is a stable subalgebra of RC(S) in the
sense of Definition 5.1 which fact implies several important consequences.

Definition 5.13. Let A ∈ RC(Xt
S). Then the set FA =def {a ∈ MS : A ⊆ a} is

called canonical filter of S+.

Lemma 5.14. Let A,B ∈ RC(Xt
S). Then:

(i) FA is a filter in S+.
(ii) ∀x ∈ Xt

S: x ∈ A iff FA ⊆ ρS(x).
(iii) A 6= Xt

S iff there exists a ∈MS such that A ⊆ a and a 6= Xt
S.

Let Rt, Rs,≺ be the canonical relations between filters corresponding to the rela-
tions CtS , CsS ,BS from the DCA algebra S+.

(iv) The following conditions are equivalent:
(1.1) ACtSB. (1.2) FARtFB. (1.3) A ∩B ∩ TS 6= ∅.

(v) The following conditions are equivalent:
(2.1) ACsSB. (2.2) FARsFB.

(vi) The following conditions are equivalent
(3.1) ABSB. (3.2) FA ≺ FB. (3.3) There exist x ∈ A∩ TS and y ∈ B ∩ TS

such that x ≺S y.

Proof. (i) The proof is by a direct checking of the corresponding definitions.
(ii) The implication from left to right is by straightforward checking. For the

converse direction we will reason by contraposition. Suppose x 6∈ A. Now we will
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apply the fact that MS is a closed base of the topology of X. Because A is a regular
closed set then A is a closed set and then there exists a ∈MS such that A ⊆ a and
x 6∈ a. Then a ∈ FA and a 6∈ ρS(x), so FA 6⊆ ρS(x).

(iii) can be derived by direct application of (ii).
(iv) (1.1)⇒(1.2) Suppose ACtSB. Then there is a point x ∈ Xt

S such that x ∈ A
and x ∈ B. By (ii) this implies

(1) FA ⊆ ρS(x) and
(2) FB ⊆ ρS(x).
In order to show FA ≺ FB suppose a ∈ FA and b ∈ FB and proceed to show

FAR
tFB. Then by (1) and (2) we get a ∈ ρS(x) and hence x ∈ a, and b ∈ ρS(x) and

hence x ∈ b, which shows a ∩ b 6= ∅. So, aCtS+b which proves that FARtFB.
(1.2)⇒(1.3) Suppose FARtF b. By Lemma 2.10 there exist ultrafilters U, V such

that FA ⊆ U , FB ⊆ V and URtV . Let Γ = U ∪ V . Obviously FA ⊆ Γ and FB ⊆ Γ.
By Lemma 2.16 Γ as a union of Rt-related ultrafilters is a t-clan in S+ and then it
can be extended into a cluster ∆. By DM-compactness there is x ∈ TS such that
∆ = ρs(x). Hence FA ⊆ ρs(x) and FB ⊆ ρs(x). By (ii) x ∈ A and x ∈ B hence
A ∩B ∩ TS 6= ∅.

(1.3)⇒(1.1) Suppose A ∩B ∩ TS 6= ∅. Then A ∩B 6= ∅, so ACtSB.
(v) the proof is similar to (iv)- it is used that if Γ is an s-clan in S+ then by the

DM-compactness there is point x ∈ Xs
S such that Γ = ρS(x).

(vi) (3.1)(⇒) (3.2) Suppose ABSB. Then there exist x ∈ A∩Xt
S and y ∈ B∩Xt

S

such that x ≺S y. Then by (ii) we obtain FA ⊆ ρS(x), FB ⊆ ρS(y) and by Lemma
5.4 we have ρS(x) ≺ ρS(y) and ρS(x) and ρS(y) are t-clans. Then by the definition
of ≺ in the set of t-clans we get FA ≺ FB.

(3.2)(⇒) (3.3) Suppose FA ≺ FB. Then by Lemma 2.10 there are ultrafilters
U, V such that FA ⊆ U , FB ⊆ V and U ≺ V . Ultrafilters are t-clans and we can
extend them into clusters preserving the relation ≺, namely: there exist clusters
Γ,∆ such that U ⊆ Γ, V ⊆ ∆ and Γ ≺ ∆. By DM-compactness there are x′, y′ ∈ TS
such that Γ = ρS(x′) and ∆ = ρS(y′), so ρS(x′) ≺ ρS(y′) and hence x′ ≺S y′. We
can obtain also FA ⊆ ρS(x′) and hence x′ ∈ A, and FB ⊆ ρS(y′) and hence y′ ∈ B.
All this says: ∃x′ ∈ A ∩ TS , ∃y′ ∈ B ∩ TS such that x′ ≺S y′.

(3.3)(⇒) (3.1). This implication is obvious because TS ⊆ Xt
S .

Note that conditions (i), (ii) and (iii) of the above lemma does not depend on
the assumption of DM-compactness.

Lemma 5.15. The following conditions are true for S:
(i) The algebra S+ is a stable Boolean sub-algebra of RC(S).
(ii) RC(S) is a DCA.
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Proof. (i) We first show that S+ satisfies the lifting conditions (see Definition 5.1)
and then (i) is a corollary of Lemma 5.2. First we verify the lifting condition (co-
dense). Suppose A ∈ RC(Xt

S) and A 6= Xt
S . Then by Lemma 5.14 (iii) there exists

a 6= MS such that a 6= Xt
S and A ⊆ a. We do not treat (dense) because it is

equivalent to (co-dense).
To verify the condition (C-separation) for C ∈ {CtS , CsS ,BS} we proceed as fol-

lows. Looking at the conditions (iv), (v), (vi) of Lemma 5.14 we see that they have
the following common form. Let R be the canonical relation between filters corre-
sponding to the relation C. Then for any A,B ∈ RC(Xt

S): ACB iff FARFB. Taking
the negation in both sides we obtain: ACB iff FARFB iff there exists a, b ∈MS such
that a ∈ FA, b ∈ FB and aCb iff there exists a, b ∈ MS such that A ⊆ a, B ⊆ b
and aCb. Thus: FARFB implies that for some a, b ∈ MS , A ⊆ a, B ⊆ b and
aCb which is the (C-separation) condition. Note that just this implication needed
DM-compactness in Lemma 5.14.

(ii) is a corollary of (i) and the fact that S+ is a DCA, so by Lemma 5.2 the
axioms (Cs ⊆ Ct), (CtE), (CtB and (BCt) are lifted from S+ to RC(S).

Lemma 5.16. Let (ϕ) be any of the time axioms: (rs), (ls), (up dir), (down
dir), (circ), (dens), (ref), (lin), (tri), (tr). Then the following conditions are
equivalent:

(i) (ϕ) is true in the algebra S+.
(ii) (ϕ) is true in the algebra RC(S).

Proof. The proof follows from Lemma 5.15 (i) and Lemma 5.2.

Lemma 5.17. Let S be DM-compact DMS, RC(S) be its regular-sets algebra,
(TS ,≺S) be its time structure and let (TS+ ,≺S+) be the canonical time structure of
S+ (see Definition 4.8). Let (Φ) be the time condition from the list (RS), (LS),
(Up Dir), (Down Dir), (Circ), (Dens), (Ref), (Irr), (Lin), (Tr) ( condition (Tri) is
excluded). Then the following conditions are true:

(i) (Φ) is true in (TS ,≺S) iff (Φ) is true in (TS+ ,≺S+).
(ii) If S is T0 DMS, then: (Tri) is true in (TS ,≺S) iff (Tri) is true in (TS+ ,≺S+).

Proof. (i) Let us remind that the members of TS+ are clusters of S+ , which we will
denote by Γ,∆,Θ, .... We will demonstrate the proof considering the case (Dense),
the proofs for the other cases go in the same manner.

(Dense) (∀i, j)(i ≺ j ⇒ (∃k)(i ≺ k and k ≺ j).
(⇒) Suppose (Dense) is true in (TS ,≺S) and let Γ,∆ ∈ TS+ and Γ ≺S+ ∆. Then

by DM-compactness there exist x, y ∈ TS such that Γ = ρS(x), and ∆ = ρS(y), so
ρS(x) ≺S+ ρS(y). By Lemma 5.4 (iv) we obtain x ≺S y and by (Dence) there exists
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z ∈ TS such that x ≺S z ≺S y. Again by Lemma 5.4 (iv) we obtain ρS(x) ≺S+

ρS(z) ≺S+ ρS(y). Because ρS(z) is a cluster in S+ we put Θ = ρS(z) and obtain
Γ ≺S+ Θ ≺S+ ∆ which shows that (Dense) is true in (TS+ ,≺S+).

(⇐) Suppose (Dense) is true in (TS+ ,≺S+), x, y ∈ TS and x ≺S y. Then
ρS(x) ≺S+ ρS+(y). By (Dence) there exists a cluster Θ (hence there exists z ∈ TS
with ρS(z) = Θ) such that ρS(x) ≺S+ ρS(z) ≺S+ ρS+(y). This implies x ≺S z ≺S y
which shows that (Dense) is true in (TS ,≺S).

(ii) The case of (Tri) (∀i, j)(i = j or i ≺ j or j ≺ i.
(⇒) The proof of this implication is straightforward and requires neither DM-

compactness nor T0 property.
(⇐) Suppose (Tri) is true in (TS+ ,≺S+) and let x, y ∈ TS . Then ρS(x), ρS(y)

are clusters in S+. Then by (Tri) we have ρS(x) = ρS(y) or ρS(x) ≺S+ ρS(y) or
ρS(y) ≺S+ ρS(x).

Case 1: ρS(x) = ρS(y). Since ρS(x) and ρS(y) are also t-clans then by the
assumption that S is a T0 space case 1 implies x = y (by Lemma 5.4 (v)).

Case 2: ρS(x) ≺S+ ρS(y). By Lemma 5.4 (iv) this implies x ≺S y.
Case 3: ρS(y) ≺S+ ρS(x). Again by Lemma 5.4 (iv) this implies y ≺S x. Thus,

(Tri) is fulfilled in the time structure (TS ,≺S).

Lemma 5.18. Topological definability. Let (TS ,≺S) be the time structure of S,
(Φ) be the time condition from the list (RS), (LS), (Up Dir), (Down Dir), (Circ),
(Dens), (Ref), (Lin), (Tri) (Tr) and (ϕ) be the corresponding time axiom from the
list (rs), (ls), (up dir), (down dir), (circ), (dens), (ref), (lin), (tri), (tr).
Then the following conditions are equivalent (for the case of (Tri) we assume also
that S is T0):

(i) (Φ) is true in (TS ,≺S)
(ii) (ϕ) is true in (RC)(S).

Proof. (Φ) is true in (TS ,≺S) iff (by Lemma 5.17) (Φ) is true in the canonical time
structure of S+, (TS+ ,≺S+) iff (by Lemma 4.9 (ϕ) is true in S+ iff (by Lemma 5.16
) (ϕ) is true in the algebra RC(S).

5.5 Canonical DMS for DCA and topological representation
theorem for DCA

Let A = (BA, CtA, CsA,BA) be a DCA. We associate to DCA in a canonical way a
DM-space denoted by A+ and called the canonical DMS of A or the dual DMS
of A as follows:
• A+ =def (Xt

A, X
s
A, TA,≺A,MA), where:
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• Xt
A =t-Clans(A), Xs

A =s-Clans(A) and TA = Clusters(A).
• ≺A is the before-after relation in the set Xt

A defined by (9). The structure
(TA,≺A) - the time structure of A is now the time structure of A+.

MA is defined as follows and is used to introduce a topology in the set Xt
A

considering it as a basis of the closed sets in the topology:
• For a ∈ BA let gA(a) = {Γ ∈t-Clans(A) : a ∈ Γ} and put
• MA = {gA(a) : a ∈ BA}.
By the topological representation theory of contact algebras (see Section 2.5)

the set {gA(a) : a ∈ BA} defines a topology in the set Xt
A and gA is an isomorphic

embedding of BA into the algebra RC(Xt
A) and MA is a Boolean subalgebra of

RC(Xt
A) isomorphic to BA.

We define the algebra (A+)+ - the dual of A+ as follows.
• (A+)+ =def (MA, C

t
A+ , C

s
A+ ,BA+).

Having in mind the topological representation theory of contact algebras (see
Section 2.5 and Lemma 4.6 it can be seen that gA is also an isomorphism from A
onto (A+)+, so (A+)+ = gA(BA) which proves the following lemma.

Lemma 5.19. A is isomorphic to (A+)+ and hence (A+)+ is a DCA.

By definition we have ρA+ =def {gA(a) ∈MA : Γ ∈ gA(a)} = {gA(a) ∈MA : a ∈
Γ}.

Lemma 5.20. (i) For any Γ ∈ Xt
A ρA+(Γ) is a t-clan in (A+)+.

(ii) For any Γ ∈ Xs
A ρA+(Γ) is a s-clan in (A+)+.

(iii) For any Γ ∈ TA ρA+(Γ) is a cluster in (A+)+.

Proof. The proof is by a routine verification of the corresponding definitions and
using the results about the clan structure of DCA developed in Section 4.1. As an
example we will demonstrate the proof of (iii).

Let Γ ∈ TA. Then Γ is a cluster in A, so Γ is a t-clan in A. By (i) ρA+(Γ) is
a t-clan in (A+)+. We will show that ρA+(Γ) is a cluster in (A+)+. Suppose that
for some a ∈ BA, gA(a) 6∈ ρA+(Γ). Then Γ 6∈ gA(a), so a 6∈ Γ. Then there exists
b ∈ BA such that b ∈ Γ and aCAb. Then gA(b) ∈ ρA+(Γ) and gA(a) ∩ gA(b) = ∅, so
gA(a)CtA+gA(b). Note that (iii) verifies the DMS axiom (S7) for A+.

Lemma 5.21. Let Γ,∆ be t-clans in A. Then: Γ ≺A ∆ iff for all gA(a), gA(b) ∈MA:
if Γ ∈ gA(a) and ∆ ∈ gA(b), then gA(a)B(A+)+gA(b).
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Proof. Let Γ,∆ be t-clans in A. Having in mind the relevant definitions the im-
plication from left to the right is obvious. For the converse implication suppose
that

(]) For all gA(a), gA(b) ∈ MA, the conditions Γ ∈ gA(a) and ∆ ∈ gA(b) imply
gA(a)B(A+)+gA(b)

and proceed to show Γ ≺A ∆. By (9) this means that for some a ∈ Γ and b ∈ ∆ we
have aBAb. To this end suppose a ∈ Γ and b ∈ ∆. Then Γ ∈ gA(a) and ∆ ∈ gA(b).
By (]) we get gA(a)B(A+)+gA(b) which by the definition of B(A+)+ means that for
some t-clans Γ′,∆′ in A we have Γ′ ∈ gA(a), ∆′ ∈ gA(b) and Γ′ ≺A ∆′. This implies
a ∈ Γ′ and b ∈ ∆′ and by the definition of Γ′ ≺A ∆′ (see (9)) that aBAb - end of the
proof. Note that this lemma verifies the DMS axiom (S7) for A+.

Lemma 5.22. Let A be a DCA and Γ ⊆MA. Define Γ̂ =def {a ∈ BA : gA(a) ∈ Γ}.
Then the following conditions are true:

(i) If Γ is a t-clan in (A+)+, then Γ̂ is a t-clan in A and ρA+(Γ̂) = Γ.
(ii) If Γ is an s-clan in (A+)+, then Γ̂ is an s-clan in A and ρA+(Γ̂) = Γ.
(iii) If Γ is a cluster in (A+)+, then Γ̂ is a cluster in A and ρA+(Γ̂) = Γ.

Proof. (i) Let Γ be a t-clan in (A+)+. The verification of grill properties of Γ̂ is easy.
Let us prove the t-clan property. Suppose a, b ∈ Γ̂. Then gA(a), gA(b) ∈ Γ. Then
(gA(a))Ct(A+)+((gA(b)). By the definition of Ct(A+)+ we have (gA(a))∩ ((gA(b)) 6= ∅.
So there exists Γ ∈ t− Clans(A) such that a, b ∈ Γ, which implies aCtAb.

Let us show the equality ρA+(Γ̂) = Γ. The following sequence of equivalencies
proves this:

gA(a) ∈ ρA+(Γ̂) iff Γ̂ ∈ gA(a) iff a ∈ {b ∈ BA : gA(b) ∈ Γ} iff gA(a) ∈ Γ.
(ii) Let Γ be an s-clan in (A+)+. We will show the s-clan property of Γ̂. Suppose

that a, b ∈ Γ̂. Then (gA(a))Cs(A+)+((gA(b)). By the definition of Cs(A+)+ , there exists
Γ ∈ s−Clans(A) such that Γ ∈ gA(a)∩gA(b). This implies a, b ∈ Γ and consequently
aCsb. The proof of ρA+(Γ̂) = Γ is as in (i).

(iii) Let Γ a cluster in (A+)+. So by it is a t-clan in (A+)+ and by (i) Γ̂ is a
t-clan in A. We will show that Γ̂ is a cluster in A. Suppose a 6 inΓ̂. Then gA(a) 6∈ Γ,
hence there exists gA(b) ∈ MA such that gA(b) ∈ Γ and gA(a)Ct(A+)+gA(b). This
implies b ∈ Γ̂ and gA(a) ∩ gA(b) = ∅ which gives aCtAb. This shows the cluster
property of Γ̂. The proof of ρA+(Γ̂) = Γ is as in (i).

Lemma 5.23. Let A be a DCA, A+ = (Xt
A, X

s
A, TA,≺A,MA) be its dual space,

α ∈ RC(Xt
A) and α ∩Xt

A+ 6= ∅. Then α ∩Xs
A+ 6= ∅.
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Proof. Suppose α ∈ RC(Xt
A) and α ∩Xt

A 6= ∅. (remind that Xt
A = t − Clans(A)

and Xs
A = s − Clans(A)). Then there exists Γ ∈ Xt

A such that Γ ∈ α. Let Fα
be the canonical filter of α (see Section 5.14). Then by Lemma 5.14 (ii) we have
Fα ⊆ ρA+(Γ). By Lemma 5.20 ρA+(Γ) is a t-clan in (A+)+. Then there exists an
ultrafilter U in (A+)+ such that Fα ⊆ U ⊆ ρA+(Γ). U is both a t-clan and an s-clan
in (A+)+. By Lemma 5.22 (ii) there exists an s-clan Û such that U = ρA+(Û). So,
we have Fα ⊆ ρA+(Û) and Û ∈ Xs

A. Again by Lemma 5.14 (ii) we get Û ∈ α and
consequently α ∩Xs

A 6= ∅.

Note that we have used Lemma 5.14 which presupposes DM-compactness. But
as it was mentioned after the proof of this lemma condition (ii) which we used does
not depend on DM-compactness. Note also that the above lemma verifies the DMS
axiom (S4) for A+.

Lemma 5.24. A+ is a DMS.

Proof. The proof follows from Lemma 5.20, Lemma 5.23, Lemma 5.21 and Lemma
5.19 which establish the DMS axioms (S4), (S6), (S7) and (S8) for A+. The other
axioms are obviously true.

The following theorem is important.

Theorem 5.25. A+ is T0 and DM-compact DMS.

Proof. By Lemma 5.4(v) A+ has T0 property iff for every two members Γ,∆ of
Xt
A(=t-Clans(A)) the following holds: if ρA+(Γ) = ρA+(∆), then Γ = ∆. Suppose

ρA+(Γ) = ρA+(∆) and for the sake of contradiction that Γ 6= ∆, so Γ 6⊆ ∆ or
∆ 6⊆ Γ. Considering the first case this means that there exists a such that a ∈ Γ and
a 6∈ ∆.Then by Lemma 5.20 gA(a) ∈ ρA+(Γ) and gA(a) 6∈ ρA+(∆) which shows that
ρA+(Γ) 6= ρA+(∆) - a contradiction. In a similar way the second case also implies a
contradiction.

For DM-compactness we have to show the following three things:
(i) Every t-clan Γ of (A+)+ is a point t-clan,
(ii) Every s-clan of (A+)+ is a point s-clan,
(iii) Every cluster of (A+)+ is a point cluster.
Proof of (i). Let Γ be a t-clan of (A+)+. To show that Γ is a point t-clan we

have to find ∆ ∈ Xt
A (= t-Clans(A)) such that Γ = ρA+(∆). Let ∆ = Γ̂ = {a ∈

BA : gA(a) ∈ Γ}. By Lemma 5.22 (i) Γ̂ is a t-clan in A and hence it is in Xt
A. More

over we have ρA+(Γ̂) = Γ.
The proofs of (ii) and (iii) are similar by using Lemma 5.22 (ii) and (iii).
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Theorem 5.26. Topological representation theorem for DCA. Let A be a
DCA. Then the following conditions for A are true:

(i) (A+)+ is a stable subalgebra of the algebra RC(A+).
(ii) The algebra RC(A+) is a DCA.
(iii) The function gA is a stable isomorphic embedding of A into RC(A+).
(iv) If Ax is a time axiom, then Ax is true in A iff Ax is true in RC(A+).

Proof. (i) By Theorem 5.25 A+ is a DM-compact DMS and hence by Lemma 5.15
(i) (A+)+ is a stable Boolean subalgebra of RC(A+).

(ii) follows from (i) and Lemma 5.15 (ii).
(iii) By Lemma 5.19 gA is an isomorphism from A onto (A+)+ and hence by (i)

gA is a stable isomorphic embedding of A into RC(A+).
(iv) follows from Lemma 5.25 and Lemma 5.16.

5.6 Contact algebra as a special case of dynamic contact algebra
Let A = (BA, CA) be a contact algebra. By Lemma 4.2 A can be considered as a
DCA algebra on the base of the following definable relations: a, b ∈ BA:

(1) aCtAb⇔def aC
max
A b⇔ a 6= 0 and b 6= 0.

(2) aBAb⇔def aC
t
Ab.

(3) aCsAb⇔def aCAb.
Let A = (BA, CsA, CtA,BA) be a DCA which satisfies the above conditions. Then

it is obviously equivalent to the contact algebra (BA, CA). Condition (3) is just giving
another name of CsA, and conditions (1) and (2) can be relaxed correspondingly to
the following:

(1′) If a 6= 0 and b 6= 0, then aCtAb,
(2′) If a 6= 0 and b 6= 0, then aBAb.
Obviously (1′) implies (1) and (2′) implies (2). Hence if a DCA satisfies (1′) and

(2′), t5hen it is equivalent to the contact algebra (BA, Cs). Condition (1) then makes
t-clans to coincide with grills, and in this case to have only one cluster, denote it by
t0 (the only time point of A which is just the union of all ultrafilters in A). Condition
(2) implies that BA = CtA which makes the relation ≺A to be the universal relation
between grills and especially for t0 to have t0 ≺A t0. This suggests the following
formal definition.

Definition 5.27. We say that A is a trivial DCA if it satisfies the conditions (1′)
and (2′).

Thus for the dual space A+ of a trivial DCA we have that TA = {t0} is a
singleton set and that t0 is the only time point of A. This suggests to consider this
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as a characteristic property of a DMS corresponding in some sense to a trivial DCA
and to adopt the following formal definition.

Definition 5.28. We say that S is a trivial DMS if the set TS = {t0} is a singleton
with a single time point t0 and t0 ≺S t0

Lemma 5.29. Let S be a T0 and DM-compact space. Then the following two
conditions are equivalent:

(i) S is trivial DMS.
(ii) The dual algebra S+ is a trivial DCA.

Proof. . (i)⇒(ii). Suppose that S is trivial DMS. First we will show that the
DCA algebra S+ has at most one cluster. Note that it has clusters. Let Γ,∆
be two clusters. By DM-compactness there is x ∈ TS such that ρS(x) = Γ and
y ∈ TS such that ρS(y) = ∆. But TS is a singleton, so x = y which implies
Γ = ρS(x) = ρS(y) = ∆. So we have only one cluster, say Γ0.

In order to show (ii) it is sufficient that the following is true for arbitrary regular
closed sets α, β ∈ RC(Xt

S :
If α 6= ∅ and β 6= ∅, then αCtSβ and then αBSβ.
Suppose α 6= ∅ and β 6= ∅, then there exist x ∈ α and y ∈ β. Now we will apply

the properties of canonical filters (see Lemma 5.14 from Section 5.4). Conditions
x ∈ α and y ∈ β imply Fα ⊆ ρS(x) and Fβ ⊆ ρS(y). ρS(x) and ρS(y) are t-clans
in S+ and can be extended into clusters. But there is only one cluster Γ0 = ρS(z)
for some z ∈ TS . Hence Fα ⊆ ρS(z) and Fβ ⊆ ρS(z). Then by the properties of
canonical filters we get z ∈ α and z ∈ β, so α ∩ β 6= ∅ which shows αCtSβ. Because
z is the only element of TS we have z ≺S z which also shows that αBSβ.

(ii)⇒(i) Let S+ be a trivial DCA. We mentioned that the condition (1) makes t-
clans to coincide with grills. Because there exists only one maximal grill - the union
of all ultrafilters, then there exists only one cluster, say Γ0. By DM-compactness
there exists x ∈ TS such that ρS(x) = Γ0. We will show that TS is a singleton.
Suppose that y ∈ TS . By axiom S8 of DMS ρS(y) is a cluster an because we have
only one cluster Γ0 we have ρS(y) = Γ0. So ρS(x) = ρS(y). Because S is a T0 space
this equality implies x = y.

Theorem 5.30. New topological representation theorem for contact alge-
bras. Let A = (BA, CA) be a contact algebra. Consider it as a trivial DCA. Then
the following conditions are true.

(i) The regular set-algebra RC(A+) is a trivial DCA.
(ii) The function gA is a stable isomorphic embedding of A into RC(A+).
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Proof. The Theorem is a consequence of of Theorem 5.26 - Topological representa-
tion theorem for DCA. Condition (iii) of the theorem says that the function gA is
a stable isomorphic embedding of A into RC(A+). This proves our condition (ii).
Let us note that it is easy to see that the lifting Lemma 5.2 is true for the formulas
(1′) and (2′). This implies that the conditions (1′) and (2′) are true in RC(A+), so
RC(A+) is a trivial DCA and this proves our condition (i).

6 Topological duality theory for DCA
In this section we extend the topological representation of DCAs to a topological
duality theory of DCAs in terms of DMSes. We assume basic knowledge of category
theory: categories, morphisms, functors and natural isomorphisms (see, for instance,
Chapter I from [58]). Since DCA is a generalization of contact algebra, and DMS
is a generalization of mereotopological space, the developed duality theory in this
section will generalize the duality theory for contact algebras and mereotopological
spaces presented by Goldblatt and Griece in [38] and some proofs below will be the
same as in [38]. Other topological dualities for contact and precontact algebras are
presented in [24] and it is possible to generalize them for DCAs, but in this paper we
follow the scheme of [38] for two purposes: first, because the corresponding notion of
DMS fits quite well to the topological representation theory for DCS-s, and second,
because the proofs in this case are more short.

6.1 The categories DCA and DMS
Definition 6.1. The category DCA consists of the class of all DCAs supplied with
the following morphisms, called DCA-morphisms.

Let Ai = (BAi , C
s
Ai
, CtAi

,BAi), i = 1, 2 be two DCAs. Then f : A1 −→ A2 is
a DCA-morphism if it is a mapping f : BA1 −→ BA2 which satisfies the following
conditions:

(f 1) f is a Boolean homomorphism from BA1 into BA2.
For all a, b ∈ BA1:
(f 2) if f(a)CsA2f(b), then aCsA1b,
(f 3) if f(a)CtA2f(b), then aCtA1b,
(f 4) if f(a)Bs

A2f(b), then aBs
A1b.

A1 is the domain of f and A2 the codomain of f .
We define f+ =def f

−1 acting on t-clans of A2 as follows: for Γ ∈ t-Clans(A2),
f−1(Γ) =def {a ∈ BA1 : f(a) ∈ Γ}.

A DCA-morphism f : A1 −→ A2 is a DCA-isomorphism (in the sense of category
theory) if there is a DCA-morphism g : A2 −→ A1 such that the compositions f ◦ g
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and g ◦ f are the identity morphism of their domains. It is a well known fact that
this definition is equivalent to the standard algebraic definition of isomorphism in
universal algebra.

Definition 6.2. The category DMS consists of the class of all DMSes equipped
with suitable morphisms called DMS morphism. The definition is as follows. Let
Si = (Xt

Si
, Xs

Si
, TSi ,≺Si ,MSi), i = 1, 2 be two DMSes. A DMS-morphism is a

mapping
θ: Xt

S1 −→ Xt
S2 such that:

(θ 1) if x ∈ Xs
S1, then θ(x) ∈ Xs

S2,
(θ 2) If x ≺S1 y, then θ(x) ≺S2 θ(y).
Let a ⊆ Xt

S2 and θ−1(a) =def {x ∈ Xt
S1 : θ(x) ∈ a}. We define θ+ =def θ

−1.
The next two requirements for θ are the following:
(θ 3) If a ∈MS2 then θ−1(a) ∈MS1 and
(θ 4) the map θ−1 : MS2 −→ MS1 is a Boolean algebra homomorphism from

(M2) into (M1).
Note that in MS the join operation is a set theoretical union of regular closed

sets. Since meets in Boolean algebra is definable by the join and the complement *,
for the condition (θ 4) it is sufficient to assume that θ−1 preserves complement.

A DMS-morphism θ : S1 −→ S2 is a DMS-isomorphism if there exists a converse
DMS-morphism η : S2 −→ S1 such that the compositions θ ◦ η and η ◦ θ are identity
morphisms in the corresponding domains.

The following lemma states an equivalent definition of DMS-isomorphism. Sim-
ilar statement for mereotopological isomorphism is Theorem 2.2 from [38].

Lemma 6.3. Let S, S′ be DM-spaces and θ : S 7→ S′ be a DMS-morphism from
S into S′. Let a ⊆ Xt

S and define θ[a] = {θ(x) : x ∈ a}. Then the following two
conditions are equivalent:

(i) θ is a DMS-isomorphism from S onto S′.
(ii) θ is a DMS-morphism which is is a bijection from Xt

S onto Xt
S′ satisfying

the following conditions:
(1) If θ(x) ∈ Xs

S′, then x ∈ Xs
S.

(2) If θ(x) ≺S′ θ(y), then x ≺S y.
(3) If a ∈MS, then θ[a] ∈MS′.

Proof. (i)⇒(ii) Suppose that θ is a DMS isomorphism from S onto S′. Then ob-
viously θ is a bijection with converse η such that θ is a DMS-morphisms from S
onto S′ and η is a DMS-morphism from S′ onto S such that the composition θ ◦ η
is the identity in S′ and η ◦ θ is the identity in S. To show (1) let θ(x) ∈ Xs

S′ . Then
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x = η(θ(x)) ∈ Xs
S , because η is a DMS-morphism from S′ onto S. In a similar

way we show (2). To show (3) let a ∈ MS . Then η−1(a) ∈ MS′ , because η is a
DMS-morphism from S′ onto S. This means that for any x ∈ Xt

S′ and a ∈ MS the
following holds: x ∈ η−1(a) iff η(x) ∈ a iff (by the definition of θ[a]) θ(η(x)) ∈ θ[a]
iff (because θ(η(x)) = x) x ∈ θ[a]. This shows that θ[a] = η−1(a), which shows that
θ[a] ∈MS′ .

(i)⇐(ii) Suppose that θ is a DMS-morphism from S into S′ and that (ii) is true.
Conditions (1), (2) and (3) imply that η satisfy conditions (θ1), (θ2) and (θ3) for
DMS-morphism. Since θ is a DMS morphism, it follows that the map a 7→ θ−1(a) is
a Boolean homomorphism from MS′ to MS . Because θ is a bijection, it follows that
for its converse η, the map a 7→ η−1(a) is a Boolean homomorphism from MS to
MS′ , which shows that the condition (θ4) is also fulfilled. So η is a DMS morphism
from S′ to S. Because θ and η are converses to each other, their compositions are
the identity mappings in the corresponding domains. So, θ is a DMS-isomorphism
from S onto S′.

Let f : A1 −→ A2 and g : A2 −→ A3 be two DCA-morphisms. The composition
h = f ◦ g is a mapping h : BA1 −→ BA3 acting as follows; for a ∈ BA1 : h(a) =
g(f(a)). In a similar way we define composition for DMS morphisms.

The following lemma has an easy proof.

Lemma 6.4. (i) The composition of two DCA-morphisms is a DCA-mor phism.
The identity mapping 1A on each DCA A is a DCA-morphism. Hence DCA is
indeed a category.

(ii) The composition of two DMS-morphisms is a DMS-morphism. The identity
mapping 1S on each DMS S is a DMS-morphism. Hence DMS is indeed a category.

It follows from Lemma 6.4 that DCA and DMS are indeed categories.
We denote by DMS∗ the full subcategory of DMS of all T0 and DM-compact

DMSes.
We introduce two contravariant functors
Φ: DCA→DMS, and Ψ: DMS→DCA as follows:
(I) For a given DCA A we put Φ(A) = A+ and for a DCA-morphism f : A −→ A′

we put Φ(f) = f+ and prove that f+ is a DMS-morphism from (A′)+ into A.
(II) For a given DMS S we put Ψ(S) = S+ and for a DMS-morphism θ : S −→ S′

we put Ψ(θ) = θ+ and prove that θ+ : is a DMS morphism from (S′)+ into S.
(III) We show that for each DCA A the mapping gA(a) = {Γ ∈ t-Clans(A) :

a ∈ Γ}, a ∈ BA is a natural isomorphism (in the sense of category theory (see [58]
Chapter I, 4.)) from A to Ψ(Φ(A)) = (A+)+.
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(IV) We show that for each T0 and DM-compact DMS S the mapping ρS(x) =
{a ∈MS : x ∈ a}, x ∈ Xt

S , is a natural isomorphism from S to Φ(Ψ(S) = (S+)+.
All this shows that the categoryDCA is dually equivalent to the categoryDMS∗

of T0 an DM-compact DMS. The realization of (I)-(IV) is given in the next subsec-
tion.

6.2 Facts for DCA-morphisms and DMS-morphisms
Lemma 6.5. Every DMS-morphism is a continuous mapping.

Proof. Let θ : S −→ S′ be a DMS-morpism. Since θ−1 maps MS′ (which is the
closed basis of the topology of S′) into MS , then θ is continuous.

Lemma 6.6. Let f : A −→ A′ be a DCA-morphism. Then:
(i) If Γ is a t-clan in A′ then f−1(Γ) =def {a ∈ BA : f(a) ∈ Γ} is a t-clan in A.
(ii) If Γ is an s-clan in A′ then f−1(Γ) =def {a ∈ BA : f(a) ∈ Γ} is an s-clan in

A.

Proof. The proof consists of a routine check of the corresponding definitions of t-clan
and s-clan.

Lemma 6.7. (i) Let A,A′ be two DCAs and f : A −→ A′ be a DCA-morphism.
Then f+ is a DMS-morphism from (A′)+ to A+.

(ii)The mapping gA(a) = {Γ ∈ t-Clans(A) : a ∈ Γ}, a ∈ BA is a natural
DCA-isomorphism of A onto Ψ(Φ(A)) = (A+)+.

Proof. (i) Remind that (A′)+ = (t-Clans(A′), s-Clans(A′), Clusters(A′), ≺A′ ,
MA′). If Γ ∈ t-Clans(A′), then by Lemma 6.6 f−1(Γ) is a t-clan of A and similarly
for the case when Γ is an s-clan. This shows that the condition (θ1) for DMS-
morphisms is fulfilled. For the condition (θ2) let Γ ≺A′ ∆, Γ,∆ ∈ t-Clans(A′).
We have to show that f−1(Γ) ≺A f−1(∆). By the definition of ≺A for clans (see
(9)) this means the following. Let a ∈ f−1(Γ), b ∈ f−1(∆). Then f(a) ∈ Γ and
f(b) ∈ ∆. But Γ ≺A′ ∆, so f(a)BA′f(b), which by (f 4) implies aBAb. This shows
that Γ ≺A ∆.

The next step is to verify the condition (θ3) of DMS-morphisms, namely that
(f+)+ maps the members of MA′ into the members of MA. Note that the members
ofMA are of the form gA(a) for a ∈ BA and that gA(a) = {Γ ∈ t−Clans(A) : a ∈ Γ}
and similarly for the members of MA′ . In order to verify (θ3) we will show that for
any a ∈ BA the following equality holds which indeed shows that (f+)+ maps MA

into MA′ :
(f+)+(gA(a)) = gA′(f(a)) (13)
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To show (13) note that (f+)+(gA(a)) is a subset of t-Clans(A′). So let Γ ∈ t-
Clans(A′). Then the following sequence of equivalences proves (13):

Γ ∈ (f+)+(gA(a)) iff Γ ∈ (f−1)−1(gA(a)) iff f−1(Γ) ∈ gA(a) iff a ∈ f−1(Γ) iff
f(a) ∈ Γ iff Γ ∈ gA′(f(a)).

Now we verify the condition (θ4) of DMS-morphisms: (f+)+ preserves the Boole-
an complement. We show this by applying (13) and the facts that f and gA′ acts as
Boolean homomorphisms:

(f+)+((gA(a))∗)=(f+)+(gA(a∗))=gA′f(a∗)=(f+)+(gA(a∗))=
((f+)+(gA(a)))∗.
(ii) The statement that gA is a natural isomorphism in the sense of category

theory means the following: first, that gA is indeed an isomorphism from A onto A+
(this is the Theorem 5.19) and second, that for any DCA-morphism f : A −→ A′,
the following equality should be true: gA′ ◦ f = (f+)+ ◦ gA. By the definition of the
composition ◦ for DCA-morphisms this equality is equivalent to the following: for
any a ∈ BA the following holds:

gA′(f(a)) = (f+)+(gA(a)), which is just (13).
In the language of category theory this means that the following diagram com-

mutes for every DCA morphism f :

A
gA //

f

��

(A+)+

(f+)+

��
A′

gA′ // (A′+)+

Lemma 6.8. Let S, S′ be two DMS-s and θ : S −→ S′ be a DMS-morphism from S
to S′. Then θ+ is a DCA-morphism from (S′)+ to S+.

Proof. We have to verify that θ+ = θ−1 satisfies the conditions (f1)-(f4) for DCA-
morphism. Condition (f1) is fulfilled by the condition (θ4) for DMS-morphisms. For
condition (f2) suppose that for some a, b ∈MS′ , θ−1(a)CtSθ−1(b) and proceed to show
aCtS′b. This implies that there exists x ∈ Xt

S such that x ∈ θ−1(a) and x ∈ θ−1(b).
From here we obtain θ(x) ∈ a, θ(x) ∈ b and θ(x) ∈ Xt

S′ (by condition (θ1) for DMS
morphism) which yields aCtS′b. In a similar way one can verify condition (f3).

For (f4) suppose θ−1(a)BSθ
−1(b) and proceed to show that aBS′b. Then there

exist x, y ∈ Xt
S such that x ≺S y, x ∈ θ−1(a), y ∈ θ−1(b). This implies θ(x) ∈ a,

θ(y) ∈ b, and by (θ1) and (θ2) that θ(x), θ(y) ∈ Xt
S′ and θ(x) ≺S′ θ(y). This implies

aBS′b.
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Before the formulation of the next statement let us see what is (S+)+ for a
DMS S. S+ is the dual of S which is the DCA algebra (MS , C

t
S , C

s
S ,BS) (see

Definition 5.3). Then (S+)+ is the dual space of the algebra S+ which is (S+)+ =
(Xt

S+ , Xs
S+ , TS+ ,≺S+ ,MS+), where Xt

S+ is the set of t-clans of S+, Xs
S+ is the set

of s-clans of S+, TS+ is the set of clusters of S+, ≺S+ is the relation defined by (9)
between t-clans, and MS+ is the set {gS+(a) : a ∈ MS}, where gS+(a) =def {Γ ∈
t− clans(S+) : a ∈ Γ} (see Section 5.5).

Lemma 6.9. (i) Let S be a DMS. Then ρS is a DMS-morphism from S to (S+)+.
(ii) Let S be a DM-compact DMS and let for a ⊆ Xt

S, ρS [a] =def {ρS(x) : x ∈ a}.
Then for a ∈ MS: ρS [a] = gS+(a) (for the function gA for a DCA A see Section
5.5).

(iii) If S is T0 and DM-compact, then ρS is a DMS-isomorphism from S onto
(S+)+.

(iv) If S is a T0 and DM-compact DMS, then ρS is a natural isomorphism from
S to Φ(Ψ(S)) = (S+)+.

Proof. (i) We have to verify whether ρS satisfies the conditions (θ1)-(θ4) for DMS-
morphisms. By Lemma 5.4 ρS(x) is a t-clan in S+ for x ∈ Xt

S and an s-clan in S+ for
x ∈ Xs

S . This verifies the conditions (θ1) and (θ2) for DMS-morphisms. Condition
(θ2) is guaranteed by axiom (7) for DMS and Lemma 5.4 (iv). For condition (θ3)
we have to show that (ρS)−1 transforms the members from MS+ into the members
from MS (recall that the members of MS+ are of the form gS+(a), a ∈MS , see the
text before the lemma). This can be seen from the following equality

(ρS)−1(gS+(a)) = a (14)
Indeed, for x ∈ Xt

S we have:
x ∈ (ρS)−1(gS+(a)) iff ρS(x) ∈ gS+(a) iff a ∈ ρS(x) iff x ∈ a.
For condition (θ4) we have to show that (ρS)−1 preserves Boolean comple-

ment. The following sequence of equalities proves this: (ρS)−1(gS+(a∗)) = a∗ =
((ρS)−1(gS+(a)))∗, which is true on the base of (14).

(ii) Suppose a ∈MS and let us show first ρS [a] ⊆ gS+(a):
ρS(x) ∈ ρS [a]⇒ x ∈ a⇒ a ∈ ρS(x)⇒ ρS(x) ∈ gS+(a) (because ρS(x) is a t-clan

in the DCA algebra S+). For the converse inclusion, let Γ be a t-clan in S+. The
by DM-compactness there exists x ∈ Xt

S such that Γ = ρS(x). Then for a ∈MS :
Γ ∈ gS+(a) ⇒ a ∈ Γ ⇒ a ∈ ρS(x) and x ∈ a ⇒ ρS(x) ∈ ρS [a] ⇒ Γ ∈ ρS [a].
(iii) Let S be T0 and DM-compact. Then by Lemma 5.7Then ρS is a one-one

mapping from Xt
S onto the set of all t-clans of S+, which are the points of (S+)+.

By (i) ρS is a DMS-morphism from S to (S+)+. So in order to show that ρS is a
DMS-isomorphism from S onto (S+)+ we have to see if ρS satisfies the conditions
(1), (2) and (3) of Lemma 6.3 (ii).
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For condition (1) suppose ρS(x) ∈ Xs
S+ . Then ρS(x) is a t-clan in MS . By

DM-compactness there exists y ∈ Xs
S such that ρS(x) = ρS(y). By T0 condition

this implies x = y, so x ∈ Xs
S .

For condition (2) suppose ρS(x) ≺S+ ρS(y). Then by Lemma 5.4 and axiom (S7)
for DMS we obtain x ≺S y.

For condition (3) suppose a ∈MS and proceed to show that θ[a] ∈M(S+)+ . By
(ii) θ[a] = gS+(a) and since gS+(a) ∈M(S+)+ we get θ[a] ∈M(S+)+ .

Thus the conditions (1), (2) and (3) are fulfilled which proves that ρS is a DMS-
isomorphism from S onto (S+)+.

(iv) Let S be a T0 and DM-compact DMS. In order ρS to be a natural isomor-
phism from S to (S+)+ it has to satisfy the following two conditions: first, ρS have
to be a DMS-isomorphism - this is guaranteed by (iii), and second, for every DMS
morphism θ : S ⇒ S′: the following equality should be true: θ ◦ ρS′ = ρS ◦ (θ+)+.
This equality is equivalent to the following condition: for x ∈ Xt

S

(θ+)+(ρS(x) = ρS′(θ(x)) (15)
In the language of category theory this means that the following diagram com-

mutes for every DMS morphism θ:

S
ρS //

θ
��

(S+)+

(θ+)+
��

S′
ρS′ // (S′+)+

The following sequence of equivalencies proves (15). For a ∈MS′ :
a ∈ (θ+)+(ρS(x)) iff a ∈ (θ+)−1(ρS(x)) iff Θ+(a) ∈ ρS(x) iff x ∈ θ+(a) iff

x ∈ θ−1(a) θ(x) ∈ a iff a ∈ ρS′(θ(x)).

As applications of the developed theory we establish some isomorphism corre-
spondences between the objects of the two categories. The isomorphism between
two objects will be denoted by the symbol ∼=.

Lemma 6.10. Let A,A′ be two DCAs. Then the following conditions are equivalent:
(i) A ∼= A′,
(ii) A+ ∼= (A′)+,
(iii) (A+)+ ∼= ((A′)+)+

Proof. (i)⇔(iii).By Lemma 5.19 we have A ∼= (A+)+ and A′ ∼= (A′+)+. This makes
obvious the equivalence (i)⇔(iii).

(i)⇒(ii) Suppose A ∼= A′, then there exists a on-one mapping f from A onto A′
with a converse mapping h such that f : A 7→ A′ is a DCA morphism from A onto
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A′ and h : A′ 7→ A is a DCA- morphism from A′ onto A such that the composition
f ◦h is the identity mapping in A′ and the composition h◦f is the identity mapping
in A. Then by Lemma 6.7 f+ is a DMS-morphism from A′+ onto A+ and h+ is a
DMS-morphism from A+ onto A′+.

We shall show the following:
(1) The composition f+ ◦ h+ is the identity in A′+, and
(2) The composition h+ ◦ f+ is the identity in A+.
Then, by the definition of DMS- isomorphism this will imply that both f+ and

h+ are DMS-isomorphisms in the corresponding directions.
Note that the members of A+ are the t-clans of A and similarly for A′+.
To show (1) let Γ be a point of the space A′+, i.e. Γ is a t-clan in A′. We shall

show that (f+ ◦ h+)(Γ) = Γ which will prove (1). This is seen from the following
sequence of equivalencies where a is an arbitrary element of BA′ :

a ∈ (f+ ◦ h+)(Γ ) iff a ∈ (f+(h+(Γ)) iff a ∈ f−1(h+(Γ)) iff f(a) ∈ h+(Γ) iff
f(a) ∈ h−1(Γ) iff h(f(a)) ∈ Γ iff a ∈ Γ.

Here we use that h(f(a)) = a for a ∈ BA′ because h is the converse of the one-one
mapping f from BA onto BA′ .

In a similar way we show (2).
(ii)⇒(iii ) The proof is similar to the above one. Suppose A+ ∼= (A′)+, then

there exists a one-one mapping θ and its converse η such that θ is a DMS-morphism
from A+ onto (A′)+ and η is a DMS-morphism from (A′)+ onto A+. Then by Lemma
6.8 θ+ is a DCA-morphism from (A′+)+ into (A+)+ and η+ is a DCA-morphism from
(A′+)+ into (A+)+. We shall show that both θ+ and η+ are DCA-isomorphisms in
the corresponding directions by showing that their compositions are identities in the
corresponding domains. Let us note that the domain of θ+ is the members of the
algebra (A′+)+ which are of the form gA′(a), a ∈BA′ , and similarly for the members
of (A+)+. Namely we will show the following two things:

(3) (θ+ ◦ η+)(gA′(a)) = gA′(a) for any a ∈ BA′ ,
(4) (η+ ◦ θ+)(gA′(a)) = gA′(a) for any a ∈ BA,
To show (3) note that gA′(a) = {Γ ∈ t − clans(A′) : a ∈ Γ. So let Γ ∈ t −

clans(A′). Then the following sequence of equivalents proves (3):
Γ ∈ (θ+ ◦ η+)(gA′(a)) iff Γ ∈ (θ+(eta+(gA′(a)))) iff Γ ∈ (θ−1(eta+(gA′(a)))) iff

θ(Γ) ∈ (eta+(gA′(a))) iff θ(Γ) ∈ (eta−1(gA′(a))) iff η(θ(Γ)) ∈ gA′(a) iff Γ ∈ gA′(a).
We have just used that η(θ(Γ)) = Γ, because η is the converse of the one-one

mapping θ from Xt
A+ = t − Calans(A) onto Xt

(A′)+
= t − clans(A′). The proof of

(4) is similar.

Lemma 6.11. Let S, S′ be two DMSes. Then the following conditions are equivalent:
(i) S ∼= S′,
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(ii) S+ ∼= (S′)+,
(iii) (S+)+ ∼= ((S′)+)+.

Proof. The proof is analogous to the proof of Lemma 6.10

As a corollary from Lemma 6.10 and Lemma 6.11 we obtain the following addition
to the topological representation theorem for DCAs.

Corollary 6.12. There exists a bijective correspondence between the class of all, up
to DCA-isomorphism DCAs, and the class of all, up to DMS-isomorphism DMSes;
namely, for every DCA-algebra A the corrseponding DMS of A is A+ - the canonical
DM-space of A; and for every DMS S the corresponding DCA of S is S+ – The
canonical DC-algebra of S.

6.3 Topological duality theorem for DCAs
In this section we prove the third important theorem of this paper.

Theorem 6.13. Topological duality theorem for DCAs. The category DCA
of all dynamic contact algebras is dually equivalent to the category DMS∗ of all T0
and DM-compact DMSes.

Proof. The proof follows from Lemma 6.7, Lemma 6.8 and Lemma 6.9.

The above theorem has several consequences to some important subcategories of
DCA and DMS. The first example is the following. Let Ax be a subset of the set
of temporal axioms (rs), (ls), (up dir), (down dir), (circ), (dens), (ref), (lin), (tri),
(tr). Consider the class of all DCAs satisfying the axioms from Ax. It is easy to
see that this class forms a full subcategory of the category of all DCAs under the
DCA-morphism. Denote this subcategory by DCA(Ax). Let Âx be the subset of
the corresponding to Ax time condition from the list (RS), (LS), (Up Dir), (Down
Dir), (Circ), (Dens), (Ref), (Lin), (Tri), (Tr). Consider the class of all T0 and
DM-compact DMSes which satisfy the axioms Âx. It is easy to see that this class
is a full subcategory of the category DMS∗ of all T0 and DM-compact dynamic
mereotopological spaces. Denote this subcategory by DMS(Âx)∗

Theorem 6.14. The category DCA(Ax) of all dynamic contact algebras satisfying
Ax is dually equivalent to the categoryDMS(Âx)∗ of all T0 and DM-compact DMSes
satisfying Âx.

Proof. Let S be a T0 and DM-compact DMS. It follows by Lemma 5.18 that S
satisfies Âx iff S+ satisfies Ax. Now the theorem is a corollary of Theorem 6.13.
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Another subcategory of DCA is the class of all trivial DCAs with the same
morphisms. Denote it by DCAtrivial. The corresponding subcategory of DMS∗
with the same morphisms is the class of all trivial T0 and DM-compact DMSes.
Denote it by DMS∗trivial. The following theorem is also an obvious consequence of
Theorem 6.13

Theorem 6.15. The category DCAtrivial is dually isomorphic to the category
DMS∗trivial.

Remark 6.16. Note that the category of contact algebras can be identified in an
obvious way with the category of trivial DCAs by enriching contact algebras with
some definable relations. Having in mind Lemma 5.10, Lemma 5.11 and Corollary
5.12 it can be shown that the category of mereocompact and T0 mereotopological
spaces from [38] can also be identified with the category of T0 and DM-compact
trivial DMS. This implies that the duality theorem for contact algebras from [38] can
be derived from Theorem 6.15.

7 Concluding remarks
Overview. The aim of this paper is to present with some details a version of
point-free theory of space and time based on a special representative example of a
dynamic contact algebra (DCA). The axioms of the algebra are true sentences from a
concrete point-based model, the snapshot model, developed in Section 3. Theorem
4.15 - the Representation theorem for DCA by snapshot models snows that the
chosen axioms are enough to code the intuition based on snapshot construction
which can be considered as the cinematographic model of spacetime. In Section
4 we introduced topological models of DCAs giving them another intuition based
on topology. These models are based on the notion of Dynamic mereotopological
space (DMS). Let us note that the abstract definition of DCA can be considered as
a ‘dynamic generalization’ of contact algebra, which in a sense is a certain point-
free theory of space called also a mereotopology. In this relation contact algebras
can be considered as a ‘static mereotopology’ while dynamic contact algebras can
be considered as a ‘dynamic mereotopology’. Let us note that topological models of
contact algebras, which are considered as the standard models of this notion, contain
one type of points, which are just the ‘space points’ while dynamic mereotopological
spaces contain several kinds of points: partial time points, time points and space
points, which in turn are also partial time points. Time points realize the time
contact, while space points realize the space contact. The fact that each space
point is a partial time point says that space in this model is reduced to time, a
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feature quite similar to the Robb’s axiomatic treating of Minkowskian spacetime
geometry in which space is reduced to time (see [67] and the discussion in Section
1.1). Another common feature of both snapshot and topological models is that the
properties of the underline time structure corresponds to the validity of time axioms
which are point-free conditions for dynamic regions formulated by the relations of
time contact Ct and precedence relation B. Because regions are observable things,
then recognizing which time axioms they satisfy we may conclude which abstract
properties satisfies the corresponding time structure.

Discussions and some open problems. Time contact relation aCtb, and
precedence relation aBb between two dynamic regions a and b in snapshot mod-
els are defined by the predicate ‘existence’ defined in Boolean algebras as follows:
E(a) iff a 6= 0. One may ask if this predicate is a good one. It has the following
disadvantage - there are too many existing regions and only one non-existing - the
zero region. For instance, we can not see the zero region, but we can see on the
sky a non-existing star - see Remark 3.2. What we see is different from 0 but this
does not mean that it is existing at the moment of observation. So, the adopted in
this paper definition for ‘existence’ is approximate one and we need a more exact
definition corresponding to what we intuitively mean by ‘actual existence’. This is
a problem discussed in our papers [81, 82] in which we introduce an axiomatic defi-
nition and corresponding models of predicate ‘actual existence’ (denoted by AE(a))
and a corresponding relation between regions called ‘actual contact’. The predicate
E(a) satisfies the axioms of AE(a) and is the simplest one, but AE is more general
- it is possible for some region a to have a 6= 0 but not AE(a) like ‘non-existing
stars’ discussed in Remark 3.2. One of our future plans is to reconstruct the theory
of the present paper on the base of the more realistic predicates of actual existence
and actual contact.

Another subject of discussion is the relation aCtb called ‘time contact’ which is
a kind of simultaneity relation. Special relativity theory (SR) also studies a kind
of simultaneity relation and states that it is not absolute and is relative to the
observer. Is it possible to relate these two notions? In general these two relations
are different because in our system this is a relation between regions and in SR it
is between events, which are not regions but space-time points. Nevertheless we
will try to find some correspondence. By event in SR one normally assume a space
point, taken from our ordinary space, with attached time-point (a date), taken from
a clock attached to the space point with the assumption that all attached clocks
work synchronously (the possibility to have synchronized clocks in all points of our
space is explained by Einstein in [33] by a special synchronization procedure). So,
events are pairs (A, t), where A is a space point and t is a real number interpreted
as a date. According to Einstein’s natural definition, two events (A1, t1), (A2, t2)
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are simultaneous if t1 = t2 which shows that simultaneity is an equivalence relation.
Note that Einstein did not give formal definition of ‘event’, but in the terminology
of Minkowski spacetime, which is a formal explication of SR spacetime, events are
just spacetime points and two spacetime points are simultaneous if they have equal
time coordinates. In our system we do not introduce the notion of event but in
the abstract DCA an (approximate) analog of event can be identified with a pair
(U,Γ) where U is an ultrafilter and Γ is a cluster containing U - U is a space point
and Γ is a time point (see Section 5.5). Let (Ui,Γi), i=1,2 be two events in DCA.
Then, according to the simultaneity relation between events it can be easily seen
that (U1,Γ1) is simultaneous with (U2,Γ2) iff U1RtU2 which is just the canonical
relation between ultrafilters corresponding to the contact relation Ct. Note that Rt
is also an equivalence relation as the simultaneity relation in SR is. So an analog of
SR simultaneity relation in our theory is the relation Rt considered between ‘events’
in the sense of DCA.

An analog of our before-after relation ≺ between events in SR is (A1, t1) ≺
(A2, t2) iff t1 < t2. This relation, like simultaneity, is not absolute and is relative to
the observer. Note also that it is different from the Robb’s causal relation ‘before’
taken as the unique basic relation between events in the axiomatic presentation of
Minkowski geometry [67]). The natural analog of the above relation between DCAs
‘events’ is (U1,Γ1) ≺ (U2,Γ2)⇔def Γ1 ≺ Γ2. But we have Γ1 ≺ Γ2 iff U1 ≺ U2 which
shows that the relation coincides with the canonical relation ≺ between ultrafilters
corresponding to the precontact relation B. This shows that the canonical relation
≺ between ultrafilters which is used to characterize B is not an analog of the Robb’s
causal relation (let us denote it by ≺Robb) which has a special definition in Minkowski
spacetime by means of its metric. An analog of this definition in Einstein’s SR is
the following: (A1, t1) ≺Robb (A2, t2) iff |A1A2| ≤ |t1 − t2| and t1 < t2. This relation
is stronger than the relation ≺. It will be nice to have an abstract version of DCA
containing stronger than B precontact relation corresponding to causality. We put
this problem to the list of our future plans.

Comparing the presented in this paper theory with SR we see that there is an-
other feature which differs the corresponding theories: RS considers many observers
and can prove that some relations between events like simultaneity are relative to
corresponding observer, while a given DCA A is based on only one observer, denote
it by O(A) (this observer can be identified with an abstract person describing the
standard dynamic model of space which is isomorphic to A). So, because we have
only one observer in our formalism, we can not give formal proofs whether the ba-
sic relations between regions are relative or not to the observer. Hence, building a
theory like DCA incorporating many observers is the next open problem.

One possibility for a theory with many observers describing one and the same
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reality is to consider a family of DCAs with some relations between them. Let A
and A′ be two DCAs from such a set. Examples of possible relations between them
are, for instance, the following:

(1) The observers O(A) and O(A′) are at rest to each other, they have syn-
chronous clocks, and have some possibilities to communicate. For instance, if we
have two observers with equal cameras who are at rest to each other and are filming
the same reality with their cameras. The communication is when one of them can
point out to the other some of the observed objects.

(2) The observers O(A) and O(A′) are not at rest to each other but have syn-
chronous clocks and some possibilities to communicate. A situation similar to the
above but one of the observers is moving with respect to the other.

Is it possible to find a meaningful abstract characterizations of such relations by
using some morphism like relations between the algebras A and A′? An example of
a set of DCAs with some morphisms between them is the category DCA considered
as a small category (the class od DCAs is a set). Then a natural question is what are
saying the DCA-morphisms between the algebras considered as algebras produced
by observers describing one and the same reality. For instance, what is the meaning
of the condition on DCA-morphism f : A −→ A′:

(]) If f(a)CtA′f(b), then aCtAb
If we interpret f as a way for the observer O(A) to point out some regions to the

observer O(A′), then (]) says that if O(A′) sees that the pointed regions are in a time
contact, then the same has been seen by A. Similar interpretation have the other
conditions on DCA-morphisms concerned Cs and B. This means that O(A′) is seen
the reality in the same way as O(A) from which we may conclude that observers are
at rest to each other. So an open problem is to study small categories of DCAs with
different kinds of meaningful morphisms between them.

Let us finish this section by formulating one more open problem. The axiomati-
zation of Minkowski geometry presented by Robb [67] is point-based: the primitive
concepts are points and the binary relation ‘before’ on points satisfying some axioms.
The problem is to present a point-free characterization of Minkowskian geometry
similar to DCA eventually with more spatio-temporal primitive relations between
regions and probably by axiomatizing some special regions in this geometry, for in-
stance, Minkowski’s light cones. An analogous result for Euclidean geometry is the
Tarski result in [73], where he presented an abstract axiomatization of Euclidean
balls. Euclidean balls are the regions in Euclidean geometry from which it is possi-
ble to extract the Euclidean metrics. In Minkowskian geometry light cones coded in
some way Minkowskian metrics. Similar proposal for a point-free characterization of
affine geometry was proposed by Whitehead in [91] by an abstract characterization
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of the set of convex regions (called by Whitehead ‘ovals’).
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Appendix: Short review of papers on RBTS
In this appendix we present a short, probably incomplete review of papers on RBTS
appeared after 1977 and not discussed in [76]. The papers are classified in several
groups.

(I) Mereology and RBTS First I want to mention here some papers devoted
to a detailed analysis of results obtained by Polish logicians in the field of mereology
and RBTS. The book Metamereology [65] extends some results on mereology, the
paper [40] is devoted to a detailed analysis of Grzegorczyk point-free theory of space
[39] and the paper [41] - to a full analysis of Tarski geometry of solids ([73]). The
paper [83] is also a good survey on recent results of Mereology and its connection
to mereotopology. The book Varieties of Continua: From Regions to Points and
Back [44] discusses the history of the idea of Continua and the point-based and
region-based approaches to its foundation.

(II) Further results on contact and precontact algebras. The papers
[29, 11] contain some technical results on contact algebras. The paper [21] transfers
the notion of dimension from topology to the corresponding notion of some classes
of contact algebras and the paper [75] extends contact algebras with connected-
ness predicates and studies the corresponding quantifier-free logics. The paper [18]
characterizes contact algebras on Euclidean spaces. The papers [27, 28] presented
topological representation theorem for precontact algebras and new representation
theorems for some classes of contact algebras. Some Isomorphism Theorems for
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MVD-algebras are studied in [48].
(III) Duality theory of contact and precontact algebras and some re-

lated systems. There are many papers generalizing De Vries duality theorem [84]
mainly with applications to topology: [6], [7], [14], [15], [16], [17], [9] - for Boolean
algebras with quasi-modal operators which are equivalent to precontact algebras,
[10] - for subordination Tarski algebras with application to De Vries duality. Ex-
tensions of dualities and a new approach to the de Vries duality and Fedorchuk
duality are studied in [22] and [23]. For some extensions of the Stone Duality to
the category of zero-dimensional Hausdorf spaces see [20]. A new duality theorem
for locally compact spaces is published in [19]. A paper about duality theory for
contact and precontact algebras is [24] which includes also some generalizations of
the Stone Duality Theorem. Another duality theorem for contact algebras based on
mereotopological spaced is presented in [38].

(IV) Generalizations of contact algebras. The paper [64] contains a gener-
alization of contact algebra based only on the standard mereological relations part-
of, overlap and underlap plus standard mereotopological relations of contact, dual
contact and non-tangential inclusion and studies also a modal logic based on these
relations. The paper [47] studies generalizations of contact algebras based on dis-
tributive lattices with three basic mereotopological relations of contact, dual contact
and non-tangential inclusion taken as primitive relations. Representation theorems
for extended contact algebras based on equivalence relations is in the paper [3].
Generalization of contact algebra based on non-distributive lattices is presented in
[43, 85, 86].

Another generalization of contact algebra is the notion of sequent algebra which
presents Tarski and Scott consequence relations as mereotopological relations - see
[80] and [46]. In standard models with regular closed subsets of a topological space
Tarski consequence relation a1, . . . , an ` b is defined as a1∩, . . . ,∩an
⊆ b, which makes possible to define n-ary contact by Cn(a1, . . . , an)⇔def a1, . . . ,
an 6` 0 and ordinary contact as aCb ⇔def a, b 6` 0. Generalizations of contact
algebras with predicates of actual existence and actual contact are subject of [81,
82]. In standard contact algebras the predicate of existence is defined as follows:
E(a) ⇔def a 6= 0. This is a quite weak predicate, because the only non-existing
region is 0. The generalization is to relax this definition as follows: take a fixed grill
Γ (see Definition 2.15) and define E(a)⇔def a ∈ Γ. Another line of generalizations
is to consider Boolean algebras with contact relation and measure - see [56] and [57].

(V) Modal and Quantifier-free logics based on contact and precontact
algebras. Modal logics based on mereological and mereotopological relations arising
from contact algebras or topology are presented in [59] and [64]. Papers on quantifier-
free logics in the style of [4] related to contact algebras and their extensions and
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generalizations are [75] for logics with connectedness predicates, [52] - studying them
form computational point of view, [47],[45], [46] - for logics based on extended contact
algebras. Quantifier-free logics related to contact algebras with measure are [56] and
[57].
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“I challenge anyone here to show me a serious piece of
argumentation in natural language that has been successfully evaluated

as to its validity with the help of formal logic.
I regard this as one of the greatest scandals of human existence.”

Yehoshua Bar-Hillel1

Abstract

For most of its long history, concepts of logical interest were defined over,
and instantiated by, constructions of natural language. This is one of the things
I have in mind when I speak of logic’s naturalistic character. For the most part,
the tripartite distinction between a proposition S’s having a proposition S′

as a consequence, someone spotting S′ as a consequence of S′, and someone
drawing that consequence S′ from that proposition S, had a recognizable, if
unannounced, presence in logical theory. A full-service logic of the consequence
relation makes theoretical provision for each of the three ways in which it man-
ifests itself. Given that agents are needed for spotting and drawing, decisions
must be taken as to the best way of bringing cognitive agency into logical the-
ory. With spotting and drawing, epistemology becomes ineradicably linked to
a full-service logic of consequence. Until approximately 170 years ago, logic’s
agents were people, that is, beings like us, natural objects of the natural world.
This is another of the things I have in mind in speaking of logic’s naturalistic
character. The spotting and drawing domains started to change when Pascal’s
axioms were adopted as rules of probabilistic inference and human agents were
replaced by the mathematical fiction of ideally rational ones. Leibniz had a sim-
ilar idea for all exact thought. In due course, deductive logic would also take
the mathematicizing turn, thereby alienating human beings from the dynamics
of spotting and drawing consequences. In the 1970s there arose a pushback
that has yet to abate. It opened the road for the restoration of humans as they
actually are in real life to the logics that are said to regulate their thinking.

1 “Formal logic and natural languages (A Symposium)”, J. F. Staal, editor, Foundations of
Language, 5 (1969) 903–926.
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In the late 1960s some epistemologists took the naturalizing turn in epistemol-
ogy, in which the philosophy of knowledge established working relations with
the sciences of cognition. In the late 1980s, some logicians proposed to do the
same for logic. By the early 2000s the proposal started bearing fruit. I think
it has a promising empirical future. This is a further manifestation of logic’s
naturalistic character.

1 Naturalistic logic
Until the latter part of the 19th century, the properties of interest to logicians were
defined over and attributable to natural language constructions. Logic was framed
as theory of natural-language argument and reasoning. It was a humanities subject,
typically lodged in the curricula of Philosophy Faculties in institutions of advanced
education. With scant exceptions (Leibniz, Pascal), for almost its whole history
mathematics neither sought nor achieved footfall in logic.2 Logic focused mainly
on deductive matters, notably the three ways in which the deductive consequence
relation manifests itself — consequence-having (entailment), consequence spotting
(entailment-recognition) and consequence-drawing (inference). Consequence-having
is a two place alethic relation defined over truth-evaluable sentences in what we
could call logical space. Consequence-spotting is a three-place alethic-epistemic re-
lation, whose third relatum is an epistemic agent’s spotting-devices in psychological
space. Consequence-drawing requires an inferer and, if his consequence-recognition
devices are different from his inference-drawing devices, it would be a four-place
relation instantiated in the agent’s inferential space.3 As we see, psychological and
epistemological considerations are harboured in the last two of this ordered triple,
which means that a fully developed logic of the consequence relation will draw upon

2Leibniz for deductive logic, and Pascal for probabilistic inductive logic.
3When a spotting occurs, the spotter forms a true belief in the form “S′ is a consequence of

S1, . . . , Sn.” When a drawing occurs, the drawer forms the compound belief that S′ is true in virtue
of the fact that the Si from which it follows are also true.
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circumspect alliances with the empirical sciences of cognition and epistemology.4,5

A further part of what I mean by logic’s naturalistic character is that the best treat-
ment of the epistemology to which spotting and drawing are tied is an epistemology
naturalized in the manner of Goldman [63], Quine [117], Gabbay and Woods [58],
Woods [148, 149] and Magnani [97].

It was recognized from logic’s outset that, while human beings are good at rea-
soning, they also make errors. A corresponding interest has been in practicable
measures for error-avoidance, and for the detection and correction of it after the
fact. It was recognized that, like all natural creatures, the human animal has his
limitations. Even when performing at his humanly possible best, there are certain
idealized heights to which the human reasoner cannot and need not rise. An accom-
panying assumption is that logic has no business in laying down norms for rational
performance which exceed the capacities of cognitively competent performers on the
ground, that is to say, under the conditions of real life. The reason why is that the
normal limits imposed on beings like us are not incapacitations. We can sum it up
this way: Until the parting of the ways c. 1850, logic in all its iterations trended
to agent-centred, resource-bound, goal-directed, interactive, time-and-action theo-
ries of human reasoning and argument in favourable psychological and epistemic
circumstances. A main purpose of the sections to follow is to quash the idle notion

4See here Alvin I. Goldman, “A causal theory of knowing”, Journal of Philosophy, 64 (1967),
357-372; W. V. Quine, “Epistemology naturalized” in his Ontological Relativity and Other Essays,
pages 69-90, New York: Columbia University Press, 1969; Dov M. Gabbay and John Woods, Agenda
Relevance: A Study in Formal Pragmatics, volume one of their A Practical Logic of Cognitive Sys-
tems, Amsterdam: North-Holland, 2003; and John Woods, “Logic naturalized”, in Juan Redmond,
Olga Pombo Martins and Ángel Nepomucheno Fernández, editors, Epistemology, Knowledge and
the Impact of Interaction, pages 403-432, Cham, Switzerland: Springer, 2016. For a more expan-
sive discussion of the role of a causal response epistemology in a naturalized logic of inference,
readers could consult my Errors of Reasoning: Naturalizing the Logic of Inference, volume 45 of
Studies in Logic, London: College Publications, 2013; reprinted with corrections in 2014; Lorenzo
Magnani, The Abductive Structure of Scientific Creativity: An Essay in the Ecology of Cognition,
Cham: Springer, 2017, “Naturalizing logic and errors of reasoning vindicated: Logic reapproaches
cognitive science,” Journal of Applied Logic, 13 (2015), 13-36, and “The urgent need of a natural-
ized logic”, in G. Dodig-Crmkovic, M. J. Schroeder, editors, Contemporary Natural Philosophy and
Philosophies, a special guest-edited number of Philosophies, 34 (2018), p. 44. In particular, we
should trust the data that these sciences aim to account for and hold their theoretical ways of doing
so to greater scrutiny. The social sciences sometimes embed philosophical mistakes.

5In this essay, I confine myself to logic in the Western tradition and intend no slight in omitting
them here to rich traditions elsewhere. See, for example Jonardon Ganeri, editor, Indian Logic:
A Reader, Milton Park, Oxon: Routledge, 2001; Salua Chatti, Arabic Logic from al-Fārārabi to
Averroes: A Study of the Early Arabic Categorical, Modal, and Hypothetical Syllogistic, Basel:
Birkhäuser, 2019; and Yiu-ming Fung, editor, Dao Companion to Chinese Philosophy of Logic,
Cham: Springer, 2020.
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that, in the absence of the mathematical tools which became available to deductive
logicians mainly in the last half of the 19th century, logic was a subpar discipline
that hadn’t grown up yet. I also want to lay the ground for showing that, in taking
the mathematical turn, modern logicians had largely changed the channel.

2 In the beginning
It is customary to locate the Western arrival of systematic logic in the six mono-
graphs of Aristotle’s Organon. From its very first appearance logic provided the
canonical regulatory framework for deductive science, for whose rigorous examina-
tion Aristotle originated metalogic. The key concept of this approach is a form
of argument called the syllogism.6 The concepts of argument and proof are goal-
oriented activities of an agent. Arguments can have different objectives, but proofs
always aim for truth. One way to spot a consequence S′ from some Si is to see
that it follows from them. Another way is to provide a conditional proof that it
does. Sometimes we are also able to know that S′ is true. One way of doing it is by
having a direct proof of it from Si we know to be true. A logic lacking the concept
of goal-oriented agency cannot be a full-service logic for the consequence relation.

Aristotle (384–322 BC) considers three basic kinds of syllogism: Direct syllo-
gisms; indirect syllogisms; and hypothetical syllogisms. He also considers related
kinds of proof rules: syllogistic rules (both direct and indirect), and common rules
such as modus ponens and ekthesis. A proof is a direct syllogism if its conclusion
arises from its premisses by direct syllogistic rules only. Direct syllogisms are con-
ceptually prior to the others. A direct syllogism is a valid argument fulfilling further
conditions. One is that its premisses and conclusions be categorical, that is, state-
ments of the form “All S is P”, “No S is P”, “Some S is P” and “Some S is non-P”.
“S” and “P” are schematic letters that serve as place-holders for general terms.
Syllogisms are sequences of exactly two distinct and non-redundant premisses and
a single conclusion. Propositions containing terms not contained in a syllogism’s
conclusion — “terms from the outside” — are ineligible to serve in its premisses.

6Aristotle defines direct syllogisms in On Sophistical Refutations at 165a 1-3: “A sulligismos
rests on certain propositions such that they involve necessarily the assertion of something, other
than what has been stated, through what has been stated.” The definition recurs in several other
places in the Organon. Scholars are not of one mind about how secure these defining conditions are.
This is not the place to litigate the matter further. Suffice it to note that an important difference
is one between the principles of syllogistic reasoning and certain of those that regulate metalogical
chains of reasoning whose various links are themselves syllogisms. Crucial to the success of chain-
reasoning are rules that have no application to syllogistic reasoning, modus ponens being one of
them. Syllogistic rules and only they are eligible for use in the crafting of syllogisms. But, as we
will see, they do not suffice for running the proofs of Aristotle’s metalogic.
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The requirement that premisses bear some relevance to their conclusions is met by
a rule for the distribution of terms. Each of the two distinct terms of a syllogism’s
conclusion must have exactly one occurrence in just one of the premisses. Because
premisses and conclusions are required to be both internally and jointly consistent,
syllogisms are hyperconsistent. Taken collectively, we have it from these conditions
that the Aristotle’s logic was nonmonotonic, relevantist, hyperconsistent, and a fair
approximation of the intuitionist notion of deductively derived conclusions.7 Aris-
totle also acknowledges proofs per impossibile. These are not, however, direct proofs
and don’t fall foul of the hyperconsistency requirement.8 In what follows, I will
mean by “syllogisms” direct syllogisms unless otherwise indicated.

It is easy to see that it is not possible for every (or even for few) proposition
to follow syllogistically from any set of inconsistent premisses. In other words, the
classical theorem that a contradictory sense that deductively entails every sentence
fails to hold in the syllogistic.9 If it did, this would violate the condition that
the terms of the conclusions of direct syllogisms must have a solitary occurrence
in one or other, but not both, of the premisses. All paraconsistent logics block
the classical theorem. There are logics — some of them relevantist ones — that
also block the theorem without being paraconsistentist. A logic is paraconsistent
only if, in addition to blocking the theorem, it implies at least one inconsistent
sentence. The goal of the paraconsistentist is to keep things from getting worse. The
fundamental question is this: By what means is this containment to be achieved? Do
we reconstruct the consequence-having relation, or do we observe the lived realities
of consequence-drawing on the ground? I will come back to this, too.

The founder of logic had the nose of a modern logician. By this I mean that
he had a nose for reductionism. In On Interpretation, Aristotle ventured, without
proving it, the bold claim that anything stateable in Greek could be stated without
relevant loss in the language of categorical propositions.10 Although the categorical
reduction claim is certainly false, we can see why Aristotle could have been drawn
to it. In the matter of problem-solving, Aristotle was one of those theorists who
framed for the big and solved for the small, and did so in a way that also took care
of the big. This was done by reducing the large to the small. Three objectives lie at
the centre of syllogistic logic. One was to provide a way of establishing that one’s

7See here John Woods, Aristotle’s Earlier Logic, 2nd edition, Studies in Logic volume 53, Lon-
don: College Publications, 2014; p. 146. For the connection to intuitionism, see D. J. Shoesmith
and T. J. Smiley, Multiple-Conclusion Logic, Cambridge: Cambridge University Press, 1978; p. 4.

8Prior Analytics 63b 31-64a 16.
9The theorem is commonly but inaccurately known as ex falso quodlibet. Its accurate name is

ex contradictione quodlibet — in English “from a contradiction whatever [you like]”. I will come
back to this.

10On Interpretation, 17a 13, 18a 19ff., 18a 24.
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opponent has made an inconsistent defence of some given thesis that he supports,
and to show this without begging the question against him. The required procedures
are laid out in On Sophistical Refutations and Book VIII of Topics. In solving the
problem for syllogistic refutations, Aristotle solved it in a more general form. It
can be summed up by the admonition not to argue against an opponent unless you
have reason to believe that your premisses are propositions which your opponent
would accede to. That way, if your refutation succeeds, you won’t have begged the
question against him.

In Prior Analytics Aristotle’s objective is a metatheoretic one. Aristotle wants to
construct a kind of decision-procedure for validity. The project is root and branch a
venture in epistemology. Its goal is to say something instructive about the mechanics
of coming to know something to be the case; in this instance, coming to know that
the argument one is considering is valid. Aristotle’s procedures would expose the
validity of any syllogism to any competent speaker of Greek, and would do so in
a step-by-step quasi-mechanical fashion with a practicable timeliness that made it
user-friendly for the legendary “man in the street”. 11 Such were the means of
making the validity of an inapparent syllogism self-evident to anyone interested
in knowing it. Aristotle’s proof of the practicably effective recognizability of the
validity of syllogisms almost succeeded, and was later shown by John Corcoran to
be repairable in a nonconservative extension of a natural deduction system.12 Were
Aristotle’s categorical reducibility thesis true, solving the recognizability problem
for the validity of syllogisms would have solved it for all valid arguments. It emerges
from Prior Analytics that there are just fourteen schemata whose instantiations are
syllogisms in the direct sense. One could record the schemata on a tablet and wear
it on a string around one’s neck. Anyone doing so would have a practicable decision
procedure for the validity of direct syllogisms. One would also have the same for
the property of being a direct syllogism.

It might strike one as strange that validity is a primitive concept in Aristotle’s
logic. An argument is valid if and only if its conclusions follow of necessity from its
premisses. Yet the logic contains no theory of the validity property or, relatedly, of
the premiss-conclusion necessitation relation (anagkaion).13 It bears repeating that

11Details can be found on pages 207 and 208 of Aristotle’s Earlier Logic.
12John Corcoran, “Completeness of ancient logic”, Journal of Symbolic Logic, 37 (1972), 696-702,

and “Aristotle’s natural deduction system”, in John Corcoran, editor, Ancient Logic and its Modern
Interpretation, pages 85-132, Dordrecht: Reidel, 1974. The Corcoran extension is (strongly) sound
and (strongly) complete.

13Aristotle makes several fragmentary attempts to modalize the syllogistic, none of which quite
made the grade of what he had accomplished for nonmodal syllogisms. See, for example, Storrs Mc-
Call, Aristotle’s Modal Syllogisms, Amsterdam: North-Holland, 1963 and Adriane Rini, Aristotle’s
Modal Proofs: Prior Analytics A8-22 in Predicate Logic, Dordrecht: Springer, 2011.
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Aristotle takes it for granted that the concept following of necessity from would be
in the working vocabulary of any competent speaker of Greek. Aristotle’s project
was not to analyze validity or consequence-having, but rather to make inapparent
validities and entailments apparent, that is, to make them spottable upon presenta-
tion. Though predicated on consequence-having, the metalogic of Pr. An. is deeply
invested in the epistemology of consequence-spotting.

Let’s move now to Posterior Analytics. Its principal task was to fashion a
metatheory for the axiomatization of the mature sciences, and to do so in a way
that proves that their demonstrative inferences in inference-chains from axioms are
both truth-preserving and knowledge-producing.14 Implicit in Aristotle’s demonstra-
tive logic is the full distinction between consequence-having, consequence-spotting,
and consequence-drawing. Let me say again that although Aristotle’s logic advances
no theory of consequence-having, consequence-spotting is catered for in Prior Analyt-
ics, and consequence-drawing is handled in Posterior Analytics. The demonstrative
rules of Post. An. teach an important lesson about axiom systems. In some quarters
it is put about that the theorems of an axiom system lie entirely in their deductive
closures, an overstatement to say the least. Consider the axiom that 1 is a natural
number. Clearly “1 is a natural number or Nice is nice in November” is a conse-
quence had by the axiom, hence sits in its deductive closure. But it is not a theorem
of arithmetic. It tolerates “terms from the outside”. Consequence-having is truth-
preserving, but it is not subject-matter preserving, and not theorem-generating ei-
ther.15 When we demonstrate S′ from the Si, we draw it from them in a way
that is a truth-preserving, content-preserving, theorem-generating, and knowledge-
generating. Since syllogisms ban terms from the outside, the use of syllogistic rules
in chains of demonstrative reasoning enables them to be subject-matter preserving.
This is, as we see, a striking insight into the manipulation of epistemically fruitful
deductive consequences. The logic of demonstration is a venture in the epistemology
of axiomatization, the first systematic work in what Tarski calls “the methodology of
deductive sciences”. Here too, although predicated on consequence-having, it is en-
tirely immersed in the mechanics of spotting, drawing and knowing. It is a relevant
logic through and through.

A further feature of Posterior Analytics is its attempt to explain how fallible be-
ings like us could come to grasp the certainty of the first principles of the demonstra-
tive sciences, given that they themselves are not susceptible of independent demon-

14John Corcoran, “Aristotle’s demonstrative logic”, History and Philosophy of Logic, 30 (2009),
1-20.

15Nor, contrary to some philosophers of science, is consequence law-preserving. See, for example,
Mark Lange, Laws and Lawmakers: Science, Metaphysics and the Laws of Nature, New York:
Oxford University Press, 2009; p. 16.
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stration.16 There is no space here to detail Aristotle’s courageously candid answer,
but here is a short sketch. Let statement F be a candidate for first principleship in
a demonstrative science D. Then the community of D experts repeatedly subject
F to the sort of refutation arguments described in On Sophistical Refutations. If a
refutation succeeds, F falls out of the race. But if F holds its ground against all
expert attempts to refute it, and no other candidates are left standing, then Aris-
totle’s contention is that the mind is causally induced to grasp with certainty that
F is a first principle. The question, however, is whether upon further consideration
a thithertofore unexamined expert refutation might now come forth and succeed.
Then what? Do we outright scorn the challenger? Or do we listen to what he has
to say? This is precisely the situation contemplated in the Metaphysics concerning
the most certain of all first principles, the Law of Non-Contradiction:

“It is impossible that the same thing belong and not belong to the same
thing at the same time and in the same respect.” (1005b 19-20):

However, rather remarkably, Aristotle immediately adds that “[w]e must presup-
pose, in the face of dialectical objections, any further qualifications which might be
added.” To understand this extraordinary capitulation, it is essential that we under-
stand what Aristotle means by “dialectical”. The notion of dialectic plays a twofold
role in Aristotle’s account of first principles. In one sense, the grasping of first prin-
ciples requires the dialectics of attack-and-defend arguments. In its second sense,
dialectic refers to beliefs endorsed by the wise, or in this case, the experts. What
Aristotle’s concession leaves room for is that future experts might have new refu-
tations that succeed against this particular formulation of LNC. We may conclude
from this (as I think we should) that Aristotle is a fallibilist about first principles
and, by his own lights, a foundational inductivist.17 That is to say that he saw the
foundations of the deductive sciences as inductive.

Aristotle’s syllogistic is a term logic in which there are five logical expressions,
the subject-term modifiers “all”, “no” and “some”, the predicate-term complement
particle “non-”, and the copula “is”. The nonlogical terms of the logic’s vocabu-
lary are schematic letters, “S”, “P”, “M”, which serve as placeholders for general

16Frege had a similar concern about how the concept of number is grasped. He also shared
Aristotle’s conception of axioms or primitive truths. It is an old-fashioned conception, put into
permanent retirement by the contradiction that Russell spotted in Frege’s axiom V.

17 For details see my “What did Frege take Russell to have proved?” Synthese, July 22, 2019.
DOI 10.1007/s11229-019-02324-4. Aristotle does say that it is impossible to believe a contradictory
sentence. If “contradictory sentence” implicitly carries the “in-the-same-respect” clause, Aristotle
might well be right. But there is no point in claiming that the negation of LNC is a contradictory
hence unbelievable sentence if one’s interlocuter already has taken the Law to have failed. Aristotle
is well aware of this in Book Gamma of the Metaphysics.
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terms of Greek, subject to the requirement that they be applicable to one thing
(at a time) and, when applied, they ascribe just one thing to it. Schematic letters
are not variables. Variables appeared in mathematics only in the 16th century, and
variable-binding had to wait another three centuries before Frege and Peirce, inde-
pendently, provided the means for it. Deprived of variables, there are no quantifiers
in Aristotle’s logic. The expressions “all”, “no” and “some” are general-term modi-
fiers, functioning in the manner of adverbs. Aristotle’s “is” is the “is” of predication,
not the “is” of identity.18 There is no conditional sign in Aristotle’s categorical syl-
logistic and no metalogical term for entailment. The use of schematic letters invites
the suggestion that an argument is a syllogism just in case it has the structure of a
syllogistic schema. Even so, Aristotle has no doctrine of logical form in our sense,
partly because he lacked a validity-preserving rule of substitutivity.19

It is hardly surprising that Aristotle’s logical contemporaries and close descen-
dants would chafe against the restriction of syllogisms to the categoricality of their
component statements. Although Aristotle recognizes the modus ponens rule as an
admissible “common principle” of metalogical reasoning, it is impossible to give it
syllogistic formulation. In other words, the valid argument

i. If p then q

ii. p

iii. Therefore, q

is inexpressible as a syllogism. So, too, are the likes of

a. p ∧ q

b. Therefore p

and

c. p
18Although Aristotle is said to have wondered about that. See below section 3.
19The rule was a long time in coming. In his 1921 doctoral dissertation, Post pointed out its

absence in Principia Mathematica. Post proved the rule and showed that when added to PM’s eight
primitive propositions a complete and decidable theory of the propositional calculus can be got. See
Emil L. Post, “Introduction to a general theory of elementary propositions”, in Jean van Heijenoort,
editor, From Frege to Gödel: A Resource Book in Mathematical Logic, 1879-1931, pages 265-283,
Cambridge, MA: Harvard University Press, 1967. We shouldn’t overlook Frege’s substitution rule
in §48 of the Grundesetze, volume 1. His rule is equivalent to an existence condition known as the
Comprehension Principle for Concepts. This is problematic for Frege, who thought that existence
claims were synthetic, hence not properly part of pure logic. I’ll come back to Frege in section 5.
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d. p ∨ q.

The very fact that Aristotle tarried with the categorical reduction thesis shows
an openness to the importance of having at hand the maximal field of the conse-
quence relation and the maximal extension of the validity-property. That way, a
theory’s expressive capability matches the instantiation-scope of the items in ques-
tion. Clearly, Aristotle fell short of this goal.

In the second greatest achievement of ancient logic, Megarian and Stoic logicians
would examine concepts which Aristotle had made some use of without theoretical
analysis, or had been wholly overlooked by him. In the first grouping we find the
concepts of consequence-having or validity. In the second, material “implication”
makes its first theoretical appearance. Only with the Stoics, does the ancient world
make full-service stabs at the logic of consequence.20 The Later Stoic logicians pro-
duced the first successful propositional logic. We also owe the material conditional
to Philo of Megara (late 4th-early 3rd cent. BC). However, the Stoics lacked rules
for simplification and disjunction-introduction. They also lacked “p→ p”. Chrysip-
pus (c. 280-207 BC) is credited by some commentators with having had the notion
of truth-function. This is open to question. The concept of function announces
itself only in the 17th century, in correspondence between Leibniz (1646-1716) and
Bernoulli (1654-1705). It was a dominant and vexed subject of mathematical in-
vestigation from Euler (1707-1783) to Hilbert (1862-1943). The notion would stir
in the mid-nineteenth century in the writings of De Morgan (1806-1871) and Boole
(1815-1864) and make a prominent début in Frege’s Begriffsschrift in 1879. There
is nothing in the Stoic writings that captures Frege’s notion of function or his pro-
visions for the abstract objects das Wahre and das Falsche.21 The Stoics also had

20Ancient sources include, Diogenes Laertius, Lives of Eminent Philosophers. R. D. Hicks, ed-
itor and translator, in two volumes, London: Loeb Classical Library 1925 and Diodorus Cronus,
in Die Megarikes: Kommentiere Sammlung der Testimonien, Klaus Döreng, editor, pages 28-45
and 124-139, Amsterdam: Gruener, 1972. More recent is the golden oldie of Benson Mates, Stoic
Logic, Berkeley and Los Angeles: University of California Press, 1953. More recent still are Ju-
lia Annas and Jonathan Barnes, editors, Sextus Empiricus: Outlines of Scepticism, 2nd edition,
New York: Cambridge University Press, 2000; Susanne Bobzien, “Stoic logic”, in Keimpe Algra,
Jonathan Barnes, Jaap Mansfeld and Malcolm Schofield, editors, The Cambridge History of Hel-
lenistic Philosophy, pages 92-157, Cambridge: Cambridge University Press, 1999; Walter Cavini,
“Chrysippus on speaking truly and the Liar”, in Klaus Döring and Theodor Ebert, editors, Di-
alektikes und Stoiker: Zer Logic der Stoiker und ihrer Vorläufer, Stuttgart: Franz Steiner, 1993;
Susanne Bobzien, “Chrysippus’ modal logic and its relation to Philo and Diodorius, in Döring and
Ebert (1993); see also Michael Frede, Die stoische Logik, Göttingen: Vandenhoek & Rupert, 1974
and A. A. Long, “Language and thought in Stoicism”, in his Problems in Stoicism, pages 75-113,
London: Duckworth, 1971.

21Details of the evolution of the concept of function in 19th century mathematics and its impact
on 19th century logic are reviewed in John Woods and Alirio Rosales, “Mathematics in Frege’s
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the conditionalization rule for logical implication. In addition to material implica-
tion, they had strict implication, and were aware of the so-called paradoxes thereof.
Although its makers couldn’t have known it, the Stoic syllogistic can be lodged in a
nonmonotonic extension of a sound and complete Gentzen-style natural deduction
system. Not every valid argument is a Stoic syllogism, but all are said to be subject
to reductions that make them so. Although clearly different, the deductive systems
of Aristotle and the Stoic needn’t be thought of a rivals. For the most part they
differ in the matters they cover. William and Martha Kneale are right to say in
chapter III “The Megarians and the Stoics” of The Development of Logic, that the
two systems can be seen as complementary. Still, it would fall to mediaeval logicians
to try to unify the two approaches.

Aristotle’s word for what we think of as his logic is analytics.22 The Stoic’s word
for what we consider their logics is logike. The word “logic”, made its first appear-
ance with Alexander of Aphrodisias (2nd-3rd cent. A. D.).23 Of particular note for
what concerns us here is that logikē is usually taken as broader than analytics and
logic. It also encompasses epistemology and the philosophy of natural language. On
that view, although Aristotle’s analytics are agent-centred, resource-bound, time-
and-action logics for human reasoners, and have clear epistemological implications
for inference, logike makes the connection to the allied modes of enquiry more ex-
pressly. The logic of human inference, even of the truth-preserving kind, would be
a partnership between what is more usually thought of as logical theory, together
with the theory of (human) knowledge and philosophy of (human) language. Speak-
ing for myself, I find this view somewhat overstated. Not all of what matters for
Aristotle’s logic is encompassed in the Organon but, even within it, On Interpreta-
tion is an essay in the philosophy of language and, for all its metaphysical trappings,
Categories is an essay on the ambiguity of the “is” of predication; Rhetoric is the
home of implicit arguments (enthymemes), and Metaphysics the cite of a thorough

day”, to appear.
22There is no scholarly consensus about what motivated Aristotle’s choice of the word that would

name his invention. Since he insisted on the utter originality of the concept of syllogism (Soph.
Ref. 34, 183b 34-36, 184b 2-8), it stands to reason that any question about his chosen word’s tie to
the later notion of analyticity is moot. This, I think, is right. But another possibility is that the
tie between Aristotle’s word and the modern notion of the analytic to be found in the Posterior
Analytics’ notion of the axiomatization of a science (or scientific theory) which, in all essentials,
was the device used by Frege to analyze the concept of number in ways that reveal arithmetic’s
analyticity. Details on this striking similarity can be found in “What did Frege take Russell to have
proved?” (2019).

23Alexander of Aphrodias, On Aristotle’s Prior Analytics 1-1-7, Jonathan Barnes, Susanne
Bobzien, Kevin Flannery and Katerina Ierodiakonou, editors and translators, London: Duckworth,
1991.
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discussion of contradiction.
We have seen how Stoic logicians found the categorical syllogistic too narrow

to provide for truth-preserving argument in general. We are about to see the same
complaint made against the Stoic alternative, especially as regards the implication
relation. However, it would be wrong to leave the impression that the lifespan of
term logic was nearing its end. Term logic would hold its ground well into the
twentieth century. It was the dominant logic at Oxford in the 1920s, both when and
after John Cook Wilson (1849-1915) held the Wykeham Chair of Logic.24

Nowhere in the ancient writings on logic is the tripartite division of the deductive
consequence relation expressly drawn. Even so, its response to those divisions is
discernible in its analytical provisions. Aristotle had no analysis of consequence-
having, but offered robust analytical provision for spotting and drawing. The Stoics
shifted the consequence relation from the confinements of categorical languages to
languages more in tune with the realities of actual speech. These propositional
settings catered for consequences in all three of its dimensions. Full-coverage was
maintained throughout the mediaeval period and, as we shall see, made notable
contributions to what had been a central methodological question for logic since
Aristotle advanced the overhopeful doctrine of the reducibility of anything stateable
at all to complete stateability in a language of categorical propositions.25 Beyond
knowing the doctrine to be false, the Stoics were able to show that the concepts
which drew Aristotle’s attention are subject to analytical treatments in languages
other than categorical ones. As we move to the Middle Ages, this preoccupation
with the appropriate language(s) for logic not only remains in place, but prompts
the question of how strictly a language for logic must resemble the theorist’s mother
tongue.

3 The middle ages
In the 13th and 14th centuries, logicians sought theoretical accommodations of the
consequence relation (consequentiae) that would work for a suitably unified language
for the two logics of old.26 This marked a significant juncture in the development

24Term logics still retain a place in the present day, and have followers. See, in particular, Fred
Sommers, The Logic of Natural Language, Oxford: Clarendon Press, 1987; and George Englebretsen,
The New Syllogistic, New York: Lang, 1987. I should mention that Frege’s very different second
order functional calculus also have a term-logic component in which all closed expressions and
well-formed formulas are denoting terms.

25It should be noted however that Aristotle never recurred to this striking claim. So it is probably
misleading to call it a doctrine.

26For a relevantist approach to consequence see Peter Abelard (1099-1142), Dialectica, L. M. de
Rijk, editor, 2nd edition Assen: van Gorcum, 1950. Something closer to what we call classical logic
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of logic. It showed that logic is able to benefit from well-designed mergers and
acquisitions.27 Some of the work on consequence was interwoven with developments
in supposition theory, that is, what we now call theories of reference and truth,
and in itself a clear adumbration of the semantic conception of consequence.28 In
some cases, suppositionism confined its focus to the workings of natural language, in
which there are early suggestions of a recursive treatment of truth-conditions. This
can be seen as an extension and enrichment of the Stoic’s inclusion of the philosophy
of Stoic logic in the logic of syllogisms. As the Stoics had done to Aristotle’s, so too
the suppositionists would do to both. They would re-express syllogisms in a new
notation, a theme we’ll get back to after a momentary return to earlier days. Let me
say again that the ancients could not have had the tools to form the modern notion
of quantifier. However, in the work of one of the Stoa’s peripatetic successors of
Aristotle, Theophrastus (c. 370-c. 288 B. C.), there is some indication of a struggle
to give expression to something rather like it. Consider the sentence

“If [something is] A, [it is] B.”

On a charitable reading, we might see that sentence is trying to capture something
along the lines of

“If some given thing is A, then that very thing is B.”

I mention this here, not to abandon the claim that quantifiers are the creations of
Frege (1848-1925) and Peirce (1839-1914), but rather to concede that our forbears
may well have felt the need of them. Accordingly, to simplify the exposition just
below, I will take the liberty of placing quantifiers at the disposal of the mediaevals.
Logicians of the period not only sought to provide rules for the effective recognizabil-
ity of validity and invalidity, they also sought rules that would provide an account

is John Buridan (c. 1300- after 1360), Tractatus de Consequentics (14th C), in Herbert Hubien, Io-
hannis Buridan tractatus de consequentus: Édition critique, volume XVI of Philosophes médiévaux,
Louvain: Université de Louvain, 1971. A good overview of consequence is provided by Catarina
Dutilh Novaes, “Logic in the 14th century after Ockham”, in Dov M. Gabbay and John Woods,
editors, Mediaeval and Renaissance Logic, volume 2 of Gabbay and Woods, editors, Handbook of
the History of Logic, section 3, “Consequences”, pages 467-484, Amsterdam: North-Holland, 2008.

27Of course, Corcoran’s handling of Pr. An. was both an acquisition and a merger. But the
mediaevals did it first. For an interesting attempt to formalize supposition theory in first-order logic,
see Graham Priest and Stephen Read, “The formalization of Ockham’s theory of supposition”, Mind
86 (1977), 109-113. I owe this reference to an anonymous reader, for which my thanks.

28Suppositionists of note include William of Sherwood (1200/10-1266/71), William of Ockham
(c. 1285-1349) and John Buridan (c. 1300-after 1360). An excellent survey of this period is Terence
Parsons, “The development of supposition theory in the later 12th through 14th centuries”, in
Gabbay and Woods (2008).
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of what is to be valid or invalid. The rules in question are those regulating the
quality and distribution of terms. The doctrine is flawed but, as Lawrence Powers
has rightly observed, “it is an almost perfect answer to a problem that puzzled Aris-
totle.”29 Aristotle had observed some non-contingent parallel between the logic of
syllogisms and the logic of identity, a parallelism which he was unable to explain.
There is no space here to expound the suppositionists distribution doctrine and
how it solves Aristotle’s puzzle. Suffice it to examine how the mediaevals brought
identity into the formulation of syllogisms. In what can be seen as early recogni-
tion of the concept of class, suppositionists had the distinction between “man” and
“Socrates”. They also recognized the distinction between kinds and their instanti-
ations. Socrates, for example, is a thing of the human kind, just as π is a thing of
the number kind and Nôtre Dame is a thing of the cathedral kind. Consider now
the old classic “All humans are mortal”. One way of schematizing it is Aristotle’s
way. Another is the suppositionists’ way;

“For every h there is some m to which h bears the identity relation.”

In this rendering, the italicized lower-case letters function somewhat as the vari-
ables of multi-sorted quantifiers do, never mind that they aren’t really variables and
“every” and “some” aren’t yet quantifiers. “Every” and “some” are arbitrary-term
modifiers.30 If we allowed the suppositionists real variables adreal quantifiers, we
could say that “Every A is B” can be symbolized as “∀a∃b(a = b)”. Indeed, as
Powers has it, “every categorical statement is a quantified identity or non-identity.”
(p. 192) Powers overstates the case. He concedes that “the Mediaevals did not sym-
bolize. But their analysis of the truth conditions of the various statements suggests
the above symbolization . . .” ; and these too: “∀a∀b(a 6= b)”, “∃a∃b(a = b)” and
“∃a∀b(a 6= b)” for “No A is B”, “Some A is B” and “Some A is non-B” respec-
tively. The main point of this brief visit with mediaeval logic is to emphasize logic’s
enduring attention to the load-bearing work done by a theory’s notation.

This brings us to an important point. Powers has “re-imagined” or “reconceptu-
alized” the suppositionists’ syllogisms, using tools not then in their possession. All
the same, the reconstructualizations are not implausible, and there is no need to
resort to anachronism in ascribing it to the mediaevals. These artifacts were devices

29Lawrence H. Powers, Non-contradiction, with a Foreword by Hans V. Hansen, volume 39 of
Studies in Logic, London: College Publications, 2012; p. 191. By “the logic of identity”, Powers
ascribes to Aristotle some implicit and non-extant theory.

30Consider the simplified example of a three-membered universe whose individuals instantiate
one or more of the kinds A and B. Then “Every A is B” can be laid out as follows: [(A1 =
B1)∨ (A1 = B2)∨ (A1 = B3)∨ . . .]∧ [(A2 = B1)∨ (A2 = B2)∨ (A2 = B3)∨ . . .]∧ [(A3 = B1)∨ (A3 =
B2) ∨ (A3 = B3) ∨ . . .].
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to strengthen and clarify the expressive powers of the home languages and their
capacity for rigour. They were never conceived of as showing natural language’s
intrinsic unsuitability for logic. Rather, it raises the issue of the role of quantifiers
and the identity sign in logic, one element of which had already caught Aristotle’s
attention. Let’s call this the quantifier/identity issue. As we soon shall see, it is
an issue that resurfaces from time to time, sometimes with real impact. It only re-
mains to say that the mediaevals undoubtedly made abundant use of technical terms
and neologisms. It is also true that they sometimes trended toward the distinction
between the surface grammar of a natural-language construction and its purported
depth grammar. But it would not be until Leibniz that the idea of a wholly artificial
language for logic would be bruited.

4 Early modernity
Apart from some closing remarks on Leibniz, I’ll be mainly concerned in this section
with the contributions of Francis Bacon (1561-1626) and Antoine Arnauld (1612-
1694). Since logic is our focus here, I’ll mention a theme that is common to both
men. Each in his own way is a critic of Aristotle’s logic, but neither harbours
destructive intent. Logic was now trending towards cumulative improvements on
what had gone before. I’ll not take the time to chronicle the polico-religious travails
under which these developments were worked out. Suffice it to say that Bacon and
Arnauld were very considerably men of parts.

Bacon was a rebel. He began his struggles with tradition as early as 1603, espe-
cially with classical antiquity and renaissance humanism. What he found wanting
in these traditions is a comprehensive metascience of all the sciences.31 Bacon con-
ceded that Aristotle’s Posterior Analytics had exposed the conditions under which
the truths of all the mature sciences would lie open to knowledge in the demonstra-
tive closures of their respective axioms, but he doubted that Aristotle’s metascientific
apparatus would serve the broader needs of the natural philosophy of Bacon’s day.
In matters of science, Bacon stresses the importance of trying out new ideas by
putting them to experimental test.32 He regarded as subpar Aristotle’s preference
for accounting for phenomena by finding their causes. In fact, it was Aristotle who
had originated the idea of abductive reasoning in Prior Analytics II. 25. It will

31I draw here mainly on The Advancement of Learning (1605) and Novum Organum (1620).
Bacon wrote prodigiously, and some of his shrewdest insights into traditional logic are to be found
elsewhere. The whole lot can be found in the Oxford Francis Bacon, Graham Rees and Lisa Jardine,
and Brian Vickers, general editors, Oxford: Oxford University Press, 1996-2011.

32In fairness, a dialectical version of submitting new ideas to trial was, as we saw, worked out
by Aristotle in Book A of Posterior Analytics.
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interest abduction scholars to know that Bacon lies closer to Peirce’s own approach
to it, but Aristotle’s lies closer to the inference-to-the-best-explanation approach.33

Bacon’s logic is thoroughly mentalistic. He considered it a part of rational psy-
chology, whose remit is to expose the laws of thought that underlie all sound judge-
ment and facilitate the detection of fallacy. It repays us to note that the fallacies
project was a foundational element in Aristotle’s logic, and remained a focus for
logicians until logicians turned away to newer things — notably, the glorious tur-
bulence of 19th century mathematics. Bacon organizes fallacies into three different
classes. In the first are the sophistical fallacies, which closely resemble in identity
and treatment Aristotle’s sophistical refutations and paralogisms. In the second
category, we find Bacon’s fallacies of interpretation, in which errors arise from the
misuse of common and general notions. The third grouping is that of “Idols” or false
appearances, and it is they for which he reserves his largest effort, not least because
they are

“the deepest fallacies of the human mind: For they do not deceive in
particulars, as the others do, by clouding and snaring the judgement;
but by a corrupt and ill-ordered predisposition of mind, which as it were
perverts and infects all the anticipations of the intellect.”34

Bacon identifies four sorts of Idol. By Idols of the Tribe, he means that it lies in the
very nature of a human being to make inapparent errors of the senses. By Idols of
the Cave, he means inapparent errors to which we have been encultured and, by Idols
of the Market Place, he means our various propensities to miscommunicate. In the
final category lie the Idols of the Theatre, which are prejudices instilled by dogmatic
philosophy or by faulty demonstration. Bacon remonstrates with us, bidding us to
abjure and renounce our Idol ways, and adds that “the understanding [must be]
thoroughly freed and cleansed.” (op. cit.,69).

Bacon on the fallacies makes common cause with most who’ve been moved to
write about them for the better part of the past two millenia. His adeptness in
identifying the blemishes caused by the fallacies greatly exceeds his capacity for
dampening down their pre-commission frequency. In this regard, Bacon and virtually
all the others miss the vital connection wrought by Aristotle between Prior Analytics

33For the first, see my “Cognitive economics and the logic of abduction”, Review of Symbolic
Logic, 5 (2012), 148-161, and for the second, see Gilbert H. Harman, “The inference to the best
explanation”, Philosophical Review, 74 (1965), 88-95. For the difference between inference to the
best explanation and abduction, see also my “Abduction and inference to the best explanation”, in J.
Anthony Blair, editor, Studies in Critical Thinking, volume 8 of Windsor Studies in Argumentation,
pages 405-430, Windsor, ON: WSIA, 2019.

34Advancement of Learning, in volume IV of OFB, 431.
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and On Sophistical Refutations. What Aristotle nearly brought off was, as we saw,
his decision-procedure for the validity of any argument in syllogistic form). No one
of intellectual honesty could think that any logician of this period holds a candle
to the deductive logician they were trying to improve upon in other ways. This is
especially true of Bacon, whose greatness as a revolutionary thinker rests upon his
insights into the importance of permitting the sciences of nature grow lest they fall
into the stiflement of dogma. In this respect, Bacon’s greatest achievement in logic
is in the logic of induction, a move of such importance to have led L. J. Cohen to
fashion a name for it — Baconian induction.35 I mention this here to give notice of
something I’ll say a bit later about the Port Royal Logique, to which I now turn.36

The threefold manifestations of deductive consequence receive no theoretical ad-
vancement in Bacon’s logical writings. The reason why is not for efforts that failed,
but rather because Bacon had switched the channel to the logic of induction. The
Port-Royal Logic casts a wider net. It encompasses, and does so in ways reflected
in its subtitle: l’Art de penser, the art (not science) of human thinking. By these
lights, people who reasons sensibly are artists — masters of the practical — and not
theorists. Although it doesn’t originate here, the distinction between theoretical and
practical reasoning is front and centre, and with an unmistakable preference for the
latter as it plays out in the general reaches of human life. The Logique doesn’t by
any means scant scientific thinking. It harbours a notable advance in logical the-
ory which not only throws itself into rivalrous, but unvoiced, opposition to Bacon,
but also cuts across the grain of its respect for the practicalities of real-life human
reasoning. This, of course, was the birth of the probability calculus.

The Port-Royal Logic was the most-used textbook in the whole period from
Aristotle to the last flicker of the mid 19th century. The 1818 English edition was
the textbook in use at Cambridge and Oxford for a generation. This is a fact of
major importance if we are properly to come to terms with the state that logic was
in when, at mid-century, mathematics began its efforts, which range from mergers
and acquisitions on the cumulative side to hostile takeovers on the destructive side.
At the heart of it all lay the question of just what, if anything, logic is that marks
the divide from mathematics.

The Port-Royal Logic is lodged in the philosophical slipstream of Descartes

35L. Jonathan Cohen, The Probable and the Provable, Oxford: Clarendon Press, 1977, and
“Bayesianism vs. Baconianism in the evaluation of medical diagnosis”, British Journal for the
Philosophy of Science, 33 (1980), 45-62.

36Antoine Arnauld and Pierre Nicole, Logic or the Art of Thinking, Jill Vance Buroker, translator,
Cambridge: Cambridge University Press, 1996; first published under the title La Logique ou l’art
de penser in 1662. Nicole (1625-1695) is the junior author.
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(1596-1650), whose theory of knowledge is absorbed virtually unchanged.37 In mat-
ters of logic, it is four-square with Aristotle’s logic of categorical propositions and
mediaeval term logic, onto which the cartesian theory of judgements is grafted (al-
though not easily). In plainer words, the graft didn’t take. There is neither space
nor need for further details here. It suffices to say that the difficulty of grafting
new theories onto old is itself as old as the hills (as the common expression has it).
It is the standing problem for the cumulative improvement of received opinion, of
making an old theory better without wrecking it.

As with Bacon, the fallacies loom large in the Port-Royal Logic under the name
of sophisms. They are plenteous in number, with a grand total of 27. Details can be
found in my File of Fallacies entry “Antoine Arnauld (1612-1694)”.38 Once again,
we see the rates of identification greatly outpacing the measures of avoidance. All
the same, there are points of real interest in the Royalist treatment of fallacies, made
so in part, by its contrast with what I’ll soon say about the Logic’s treatment of
probabilistic reasoning. First, since the reasonings of everyday life do not and need
not aspire to standards of scientific rigour, people cannot be faulted for their failure
to fulfill them. Secondly, when ordinary reasoning goes wrong, it will typically be
for reasons different from those that afflict scientific reasoning. Thirdly, whereas
scientific reasoning in the older tradition is the orderly demonstrative presentation
of what is already known, the reasoning of ordinary life is more of an attempt to
discover truth, which is the very thing that Bacon saw missing in Aristotle (and
Descartes, too). There is a further respect in which Bacon and Arnauld seem to
agree. Although Bacon thought that all branches of science lie open to a covering
metascience, he did not think that it could be axiomatized in a way that would
have won Descartes’ approval. Arnaud, despite his attachment to Descartes’ episte-
mology, has reservations about whether the particularities of human reasoning can
adequately be grasped by an overarching scientific theory: from which, again, we
see the point of the subtitle of the Logic — the art of thinking. Certainly he would
have agreed that the art of thinking cannot be captured axiomatically.

I turn now to a widely held inclination of Royalist scholars to see the probability
sections of the Logic as anonymously Pascal’s own. If this is so, it matters in a
way that matters to this day. It marks one-half of the rise of what is known as
Bayesian probability, the theory that clashes significantly with Baconian probabil-
ity.39 It is the first time that mathematics made constructive inroad to any sector of

37Arnauld, however, is best known for the fourth set of Objections to Descartes’ Meditations
(1641).

38Argumentation, 14 (2000), 31-43.
39In the course of his correspondence with Pierre de Fermat (1607-1665), Blaise Pascal (1623-

1662) recognized that states of uncertainty can be quantified using probability and expectations. In
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logic. It marks the early beginning of a trend in logic towards the mathematical. It
also matters in another way. In present-day inductive logic, the Bayesian influence
is dominant, but its inference rules are implementable only by “rationally ideal”
reasoners.

I said earlier that prior to the end of the first half of the 19th century mathematics
made no footfall in logic, with the exception of work by Pascal and Leibniz. This is
quite clear in the case of Pascal; real numbers are working elements of probability
theory. With Leibniz it would be more strictly true to say that he introduced into
logic a concept-notation system that bore some striking similarity to the one used
by Frege, a Begriffsschrift built largely from mathematical concepts. The point on
which they converge is the manifest unsuitability of natural languages for the heavy
demands of exact thought. Leibniz had introduced the idea of a calculus ratiocinator,
which anticipates the idea of leak-proof algorithmic proof-making. Also attributed
to him was a characteristica universalis, which carries the idea of a fully expressive
language for thought, a mode of representation that laid bare the internal conceptual
interlinkages of its propositions. The expression characteristica universals is not to
be found in Leibniz’s writings but similar expressions are used there.40 In the
opening pages of Begriffsschrift, Frege says that, although he is following Leibniz’s
example, he has two reservations about it. One is that the Leibniz set-up is too
ambitious. The other is that, while it held water on the calculus rationator side, it
was wanting on the “lingua universalis” side. If one’s language doesn’t fully expose
the internal conceptual make-up of its thoughts,41 the good to be wrought from
air-tight algorithmic proof rules can only be compromised. In particular, Leibniz’s

the early 1760s, Thomas Bayes (1702-1761) proposed that learning can be represented probabilis-
tically using the theorem that now bears his name. “These ideas serve as the basis for all Bayesian
thought”, according to James M. Joyce, “The development of subjective Bayesianism”, in Dov M.
Gabbay, Stephan Hartmann and John Woods, editors, Inductive Logic, volume 10 of Gabbay and
Woods, editors, Handbook of the History of Logic, pages 415-475, Amsterdam: North-Holland, 2011.
P. 415.

40 Leibniz speaks variously of “lingua generalis”, “lingua universalis”, “lingua rationalis” and
“lingua philosophica”, and used “characterica” to name his general theory of signs. (Volker Peck-
haus, “Schröder’s logic” in Dov M. Gabbay and John Woods, editors, The Rise of Modern Logic:
From Leibniz to Frege, volume 3 of Gabbay and Woods, editors, Handbook of the History of Logic,
pages 557-609, Amsterdam: North-Holland, 2004. P. 599, n 57) Peckhaus adds that “Frege obvi-
ously took the term ‘lingua characterisca’ from Adolf Friedrick Adolf Trendelenburg who uses the
expression ‘lingua characterica universalis’ . . . ”

41Everyone recognizes the peculiarities of Frege’s ideography and favours the more “user-friendly”
Shröder-Peirce notation or variations of Peano’s. For Frege, however, user-friendliness was not the
issue. What mattered utterly was the capacity of his notation-system to give full and conceptually
fine-grained expression not only to each logical fact, but to the totality of them each in the relation
to the others in the overall structure of logical reality.
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language has a subject-predicate grammar, and Frege thought that any language
thus structured was disabled for exact thought.

It is now time to move to the 19th century and closer to the trending breach. As
we make our way into the century’s first half, logic retains its naturalistic charac-
ter. It remains an agent-centred, resource-bound, interactive time-and-action theory
of human inference and argument in natural language settings. Indeed, with Ba-
con, it took on an expressly psychologistic character, and with the publication of
Mill’s A System of Logic: A System of Logic, Ratiocinative and Inductive: Being
a Connected View of the Principles of Evidence and the Methods of Scientific In-
vestigation, it took on an aggressively naturalistic form, with efforts to interpret
normative matters as matters as they normally occur under normal conditions.42

Mill’s Logic displaced the Port-Royal Logique as the textbook of choice in Britain
and elsewhere for most of the half-century to come. Also significant is De Morgan’s
Essay on Probabilities (1838).43 It is to De Morgan (1806-1871), by the way, that
we owe the principle of mathematical induction. It is unmistakable that before mid-
century logic was trending in two opposite directions: towards the more empirically
natural and concurrently towards the mathematical.

5 The nineteenth century
The extraordinary thing about traditional logic is that it lasted, more or less intact,
for the better part of two millenia. With the exceptions of plane geometry and arith-
metic, surely no other scientific theory even approximates to such venerability. In
1800 Kant (1724-1804) was prompted to observe, “Logic, by the way, has not gained
much content since Aristotle’s times and indeed it cannot, due to its nature. But
it may well gain in exactness, definiteness and distinctness.”44 We may mark the

42This anticipates the NN convergence thesis of Errors of Reasoning, according to which, in
matters of premiss-conclusion reasoning, the default position is that reasoning is normatively secure
to the extent to which it approximates to reasoning as it normally happens. (p. 53-56) Mill (1806-
1873) got into rather silly and undeserved trouble for making a similar move in ethics, when he
claimed that the best reason for thinking that something is desirable is that it is desired by all. The
best edition of Mill’s Logic are volumes VII and VIII of the Collected Works of John Stuart Mill,
edited by J. M. Robson, with an Introduction by R. F. McRae, Toronto: University of Toronto
Press, 1973 and 1974 respectively. For Mill on the fallacies, readers could consult my “John Stuart
Mill (1806-1873)” for the File of Fallacies in Argumentation, 13 (1999), 317-334.

43Augustus De Morgan, An Essay on Probabilities, and Their Applications to Contingencies and
Insurance Companies, London: Longmans, Brown, Green and Longmans, 1838.

44Immanuel Kant, Logic, translated with an introduction by Robert S. Hartman and Wolfgang
Schwartz, New York: Dover, 1974; p. 23. Emphases are Kant’s. First published, in German, in
1800.
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“official” break from that centuries-long tradition with Boole’s attempt to reduce
the syllogistic to algebra.45 Were Kant to have had a greater familiarity with the
richness of the logical Middle Ages, he could not have said that logic hadn’t changed
significantly since Aristotle’s time. Even so, given the nature of the changes that lay
just ahead, his remark had a certain prescience. It is perhaps not difficult to see why
Boole (1815-1904) and the other algebraicists would have looked to mathematics for
assistance in supplying the exactness, definiteness and distinctness that Kant had
hoped for. However, Boole’s intentions were more structurally ambitious, rather in
the way that the suppostionists’ intentions had been centuries earlier. The alge-
braicists would reduce syllogistic logic to something quite close to the algebra which
later would bear Boole’s name.46 This was, in fully expressed form, the launch of
mathematicism in logical theory. We should therefore note the extent to which, just
thirty years later, Frege would engineer a volte-face, by switching the Boolean provi-
sions for logic in mathematics to his own provisions for mathematics in logic. Frege’s
answer to mathematicism was logicism, the reduction of mathematics to logic. It
would be a logic that had to await Frege’s creation of it — a second-order functional
calculus. Whatever their differences with Boole, Frege (and Dedekind too) were
four-square with Kant on the necessity for exactness, definiteness and distinctness.
Kant criticized their absence in logic. Frege found them missing in mathematics.
One might think that he harboured doubts about, say, the role of geometry in 19th
century analysis, as Dedekind certainly did. But he directed his fire elsewhere. He
trained his guns on school-boy arithmetic.47

We come now to a crucial departure from the logical norm, the abandonment
of natural language constructions as the bearers and relata of the provisions of
formalized logics of deduction. This alone was a significant step away from logic’s
prior respect for the natural. In 1876, Richard Dedekind (1831-1916) wrote to his
friend Lipschitz that, in contexts such as his theory of the irrationals,

“[a]ll technical expressions [of a mathematical system are to be] replaced
by arbitrary newly invented words; the edifice [= structure] must, if

45George Boole, The Mathematical Analysis of Logic: Being an Essay Towards a Calculus of
Deductive Reasoning, Cambridge: Macmillan, Barclay & Macmillan; London: George Bell, 1847.
Reprinted with an introduction by John Stater, Bristol: Thoemmes, 1998; “The calculus of logic”,
Cambridge and Dublin Mathematical Journal, 3 (1848), 183-198; and An Investigation of the Laws
of Thought on which are Founded the Mathematical Theories of Logic and Probabilities, London:
Walton and Maberly, 1854; New York: Dover, 1958.

46Theodore Hailperin, “Boole’s algebra isn’t Boolean”, Mathematics Magazine, 54 (1984), 172-
184.

47So did Dedekind in Was sind und was sollen die Zahlen? Brunswick: Vieweg, 1888. Translated
as “The nature and meaning of numbers” in Essays on the Theory of Numbers, W. W. Beman, editor,
pages 3-115, New York: Dover, 1963.
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rightly constructed, not collapse.”48

As already remarked, thirteen years later Frege writes approvingly of Leibniz’s “per-
haps overrated” calculus philosophicus or ratiocinator. Speaking of his own two-
dimensional ideography, Frege marks its strangeness saying that

“[t]hese deviations from what is traditional find their justification in the
fact that logic hitherto always followed ordinary language and grammar
too closely. In particular, I believe that the replacement of the concepts
subject and predicate by argument and function, respectively, will stand
the test of time.”49

Nine years after that, Charles Peirce (1839-1914) picked up this theme. In his
Cambridge conference lectures of 1898, he proposed that

“[i]t is true that propositions must be expressed somehow; and for this
reason formal logic, in order to disentangle itself completely from linguis-
tic, or psychical, considerations, invents an artificial language of its own,
of perfectly regular formation, and declines to consider any proposition
under any form of statement than in that artificial language.”50

Peirce goes on to say:

“As for the business of translating from ordinary speech into precise
forms, . . . that is a matter of applied logic if you will. (p. 145; emphasis
mine)

A page earlier, Peirce had said that his proposal

“. . . is that logic, in the strict sense of that term, has nothing to do with
how you think . . . . ” (p. 143)51

48Richard Dedekind, “Briefe an Lipschitz (1-2)”, in Dedekind, p. 7, Gesammelte Mathematische
Werke, volumes 1-3, R. Friske, E. Noethen, and Ö. Ore, editors, Braunschweig: Vieweg, 1930-32.
Reprinted in New York by Chelsea Publications in 1969. The wording is clumsy. It is better to
read it as saying that if the structure is sound, it cannot collapse upon the arbitrary replacement
of technical terms with nonsensical ones.

49Gottlob Frege, Begriffsschrift, a formula language, modeled upon that of arithmetic, for pure
thought, in van Heijenoort; 7. Emphases are Frege’s. First published, in German in 1879.

50C. S. Peirce, Reasoning and the Logic of Things: The Cambridge Conference Lectures of 1898,
Kenneth Laine Ketner, editor, with an introduction by Ketner and Hilary Putnam, Cambridge,
MA: Harvard University Press, 1992; pp. 144-145.

51This is misleading. “The mathematician practices deduction (2. 532; 4. 239; 4. 124; 4.
42), reasons deductively, whereas logic studies deductive reasonings and arguments. According to
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The mathematical turn in logic is a revolution in at least three ways. It deposed
nonmathematical natural language as the language of record for logical theory; it
restocked logic’s operating system with mathematical tools; and it subjected logic to
a hostile take-over by algebra. In Frege’s case, all prior ties would be cast aside and
an entirely new thing was built from the ground up, and given the name of logic. I
say again that the move to abstract artificial languages marks a critical rupture of a
centuries-old tradition, and it is preceded by no demonstration of the incapacities of
home languages to take the measure of its own successes and failures in the making
and assessment of inference and argument.

In time, the following picture emerged. Artificialists sided with the new math-
ematics by insisting on new notations to carry the load of original concepts. But
technical notation is one thing and wholesale language-abandonment another. Tech-
nical terms are usually purpose-built neologisms to be added to the home lexicon.
Neo-languages that displace natural ones aren’t that at all. Their lexicons are replete
with neosemanticisms, in which common words — “language”, “sentence”, “pred-
icate”, 52 “interpretation”, “semantics”53 — are appropriated and given meanings
they’ve never had before. These are the meanings wrought by outright theoretical
stipulation. Special treatment is reserved for the natural language predicates “true”
and “false” which, at home, are predicates of truth-evaluable sentences. In artificial
settings, they are displaced by the undefined objects the True (das Wahre) and the
False (das Falsche), which are values of functions, carrying none of the meanings of
“true” or “false”.54

a dictum of his father, Peirce characterizes mathematics as ‘the science which draws necessary
conclusions’ (3. 588; 4. 229); logic, by contrast, is the science of drawing necessary conclusions.”’
(Claudine Engel-Turcelin, “Peirce’s semiotic version of the semantic tradition in formal logic”, in
Neil Cooper and Pascal Engel, editors, New Inquiries into Meaning and Truth, pages 187-213, New
York: St. Martin’s Press, 1991.) Mathematics, for Peirce, has no intrinsic subject-matter. It is the
practice of reasoning necessarily about all manner of things. The practice is as widely spread as the
consequence relation is instantiated in human thought and speech. Logic, in turn, is the metatheory
of the consequence relation. Moreover, formal logic “is nothing but mathematics applied to logic.”
(4. 263) We may draw from this the conclusion that drawing necessary conclusions about the science
of drawing necessary conclusions evinces something in the way of a bootstrapping challenge.

52Albeit that Frege’s predicates are functors.
53John P. Burgess, “Tarski’s tort”, in Burgess, Mathematics, Models and Modality: Selected

Philosophical Essays, pages 149-168, New York: Cambridge University Press, 2008; paperback in
2011.

54There is no doubt that Frege aspired to establish a close connection between the property
of being true and the relation of denoting the object das Wahre. In his attempt to explain how
judgements that denote das Wahre express a fact of logic, Frege tried to preserve the commonplace
that any sentence expressing a logical fact expresses a truth of logic, hence is itself a true proposition.
Michael Hallett provides a sobering assessment of this effort in “Frege and Hilbert”, in Michael
Potter and Tom Ricketts, editors, The Cambridge Companion to Frege, ages 413-464, Cambridge:
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It can rightly be said that logically artificial languages denature logic itself. To
some — Frege, for example — this could only be good news. For others — Quine, for
example — the alienating costs of denaturing might be somewhat offset by finding
ways of re-importing artificially attained insights into the home language. In this
way, logic’s theorems might be matched to advantage to counterpart sentences at
home.55 We have it then that artificial “languages” stand in formal representability
relations to significant fragments of the home language. They are relations under
which artificial “sentences” of an artificial “language” stand in a one-to-one corre-
spondence with selected sentences of the home language, thanks to which certain
properties of the former are backwards reflected upon the latter — the property of
logical truth, for example. It is a relationship that is easily misunderstood. For
present purposes, it is enough to say that “logically true” in artificial settings does
not mean what it means in home languages. Let L be a first-order artificial “lan-
guage” and N any natural language of one’s choice. It is widely accepted that, in N ,
the sentential predicate “true” gathers at least some of its meaning from Convention
T , according to which, for example, “Snow is white” is true just in case snow is
white. The English predicate “true” does have an occurrence in the metatheory of
L. An artificial “sentence” Φ is true in an interpretation I iff every countably infinite
sequence of objects in I’s domain satisfies Φ. Any I in which Φ is true is said to
be a model for Φ.56 This is not the place to overwork this point. It is enough to
note that the map that takes sentences of N to “sentences” of L is said to disclose
the formers’ logical form in L. This leaves the suggestion that a sentence S of N
is a formal logical truth just in case its image in L is a logical truth of L. In fact,
however it is no such thing. The sentence “Any red shirt is coloured” is logically true
in N but not formally so in L (and not logically true there either). Similarly, “The
shirt is red” logically implies “The shirt is coloured” notwithstanding that its logical
form in L fails. Formal validity will reflect validity backwards into N , but formal
invalidity won’t. Similarly, formal inconsistency reflects backwards in N , but formal
consistency doesn’t. It bears on this that there is no empirically backed reason to
suppose that S’s own logical form in L is one and the same with its logical form in
N . This gives rise to a central question about the utility of formalized logics (as
we may call them now) as assessment manuals for logical reasoning in our mother
Cambridge University Press, 2010; see especially section I.4 “Explicit definition and referential
fixity”.

55W. V. Quine, Methods of Logic, New York: Holt, 1950.
56 As anyone reading these pages will know, an “interpretation” of an L is a set-theoretic structure

defining abstract relations over abstract items of constructions from L and abstract constructions
from L’s domain of discourse, which is an infinitely large set of arbitrarily selected abstract items
called “individuals”. The details matter, but we needn’t dwell on them here. We should also note
that mass terms such as “snow” have no counterparts in L.

1346



Logic’s Naturalistic Character

tongues.57

As anyone will know who has taught the “translation” rules that map selected
sentences of English to counterpart “sentences” in L, there is little in the way of
student-resistance, despite the tort of calling these mappings to L “translations”
of sentences of English. Good teachers will point out that the English inputs for
mapping to the atomic “sentences” of L must themselves contain no subordinate
sentence and must also be logically independent of one another, not just formally
so, but also in the semantic sense. Such helpful admonitions aren’t routinely accom-
panied by express instruction. No one is told whether “She ran to the store” falls
out of the input box by virtue of the occurrence within of “She ran”. No one is told
how to recognize sentential entailments and inconsistencies in the home language.
There is a reason for this. These matters are known implicitly. We are all proficient
logicians as a matter of course. The moral to draw is that we have to be good natu-
ral logicians to implement the translation manual for first-order logic. So whatever
the merits of the latter, it cannot be to it that we owe our practical command of
entailment, inconsistency and sentence-simplicity.

This might be an appropriate place to issue a caveat about the artificiers’ naïve
underestimation of the powers of natural speech. There isn’t time to litigate the
matter properly, but it will only take a minute to record my sympathy with the
following view:

“Projects in artificial intelligence developed large systems based on com-
plex versions of logic, yet these systems are fragile and limited in com-
parison to the robust and immensely expressive languages. Formal logics
are too inflexible to be the foundation for language; instead, logic and
ontology are abstractions from language. This reversal turns many the-
ories about language upside down, and it has profound implications for
the design of automated systems for reasoning and language understand-
ing.”58

Let me now touch on a fuss within the “symbolic logic” community about the core
57We might note, by the way, that for all its distrust of home languages for their ambiguities,

logicians of the “formal” persuasion make liberal use of a word that is at least eight-wise ambiguous.
See here Catarina Dutilh Novaes, “The different ways in which logic is (said to be) formal”, History
and Philosophy of Logic, 32 (2011), 303-332. I have found ten varieties mentioned in her piece:
formality as pertaining to forms; as schematic form; as variability; as indifference to particulars;
as abstracted from content; as topic-neutral; as abstracted from meaning; as computability; as
pertaining to regulative rules; as pertaining to constitutive rules.

58John F. Sowa, “The role of logic and ontology in language and reasoning”, in Roberto Poli
& Johanna Seibt, editors, Theory and Applications of Ontology: Philosophical Perspectives, pages
231-263, Berlin: Springer, 2014.
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concept of logic and about its relationship, if any, with mathematics. In one of the
testier exchanges, W. S. Jevons (1835-1882) jousted with John Venn (1834-1923) in
embracing Boole’s insistence that logic is equational and that, being so, it draws its
strength from the cornerstone of mathematics — the relation of equality. On the
other side of this debate were Peirce, Ernest Schröder (1841-1902), Hugh MacColl
(1837-1909) and Frege, all of whom favoured the implication relation as the central
concept of logic.59 In the main, the British favoured equationalism, but its stoutest
critic was MacColl, the early founder of modern modal logic. He was as aware as
anyone else of the logical presence of implication since the Stoics. MacColl also
resisted interpreting symbols as denoting classes and plumped for treating them as
statements.60 In time, Louis Couturat (1868-1914), in France, came to MacColl’s
defence, as did Bertrand Russell (1872-1970) in England. As we see, however, the
identity/implication fight crisscrosses the divide between logic and mathematics.

The identity/implication issue is one half of the quantifier/identity issue, the
issue of whether subject-predicate term logic can be rewritten as quantifier-identity
symbolic logic. An affirmative answer is presaged in Frege’s determination to sup-
plant subject-predicate structures with argument-function structures.

An even more intense fight was for the soul of logic itself. Thomas Spencer
Baynes (1823-1887) resisted the Boolean takeover, arguing that the

“notion of extending the sphere of mathematics so as to include logic,
is as theoretically absurd as its realization is practically impossible. To
identify logic with mathematics is to make the whole equal to its part.”61

Oddly enough, Jevons and Venn shared this worry, never mind their adoption of the
Boolean notation for reasons of expository convenience.

Perhaps the strongest critic of the mathematical takeover was the aforementioned
Wykeham Professor of Logic John Cook Wilson. Here is the flavour of his objections:

“[S]ymbolic logic as such consists of a solution of particular problems,
which are on the same plane as the solution of geometrical or algebraic
problems, though concerned with the abstract forms of subject and pred-
icate, as specially scientific as these mathematical processes — no more
logic than they are, and related to logic precisely as they are. Inciden-
tally there is a little elementary logic involved, but the real and serious

59Actually, Frege was focused on logical truth. But a logical truth can be characterized as a
proposition logically implied by every proposition.

60We saw earlier adumbrations of this tension in our mediaeval section above.
61T. S. Baynes, An Essay on the New Analytic of Logical Forms, Edinburgh: Sutherland and

Knox, 1850; p. 152.
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problems of logic proper do not appear, nor is the symbolic logician able
to touch them. In comparison with the serious business of logic proper,
the occupations of the symbolic logician are merely trivial.”62

It would be wrong to think that Cook Wilson had no grasp of the mathematics of his
time or to deem him unacquainted with the details of his Boolean rivals. Although
his view persisted at Oxford until well into the 20th century, he had a steadfast
dissident in the mathematician we all know as Lewis Carroll.63

A final example, which I’ll touch on only slightly, is the debate between the two
Frenchmen Henri Poincaré and Couturat (and also later Russell, the Englishman). I
have only the space to say that Poincaré (1854-1912) took what we now call logicism
to be an unnecessary drag on the autonomy of mathematics.64 He writes,

“However it be, Logistik must be refashioned, and it is not known how
much of it can be saved. It is unnecessary to add that it is Cantorism
and Logistik alone that are in that question. The true mathematics, the
mathematics that is of some use, may continue to develop according to
its own principles, taking no heed of the tempests that rage without, and
step by step it will pursue it wonted conquests, which are decisive and
have never to be abandoned.”65

Before closing this section, it remains to say something about logicism. Frege
was fighting a two-front war, one against logicians and the other against mathemati-
cians. The knock against logicians such as Mill66 and Benno Erdman (1851-1921)67

62John Cook Wilson, Statement and Inference, with Other Philosophical Papers, two volumes,
Oxford: Clarendon Press, 1926; p. 637; posthumously published. Cook Wilson died in 1915. For
modern reservations about the mathematical takeover, see for example, Hartley Slater, Logic is not
Mathematics, volume 35 of Studies in Logic, London: College Publications, 2011.

63This the nom de plume of the Oxford mathematician Charles Lutwidge Dodgson (1838-1898),
whose “What the Tortoise said to Achilles” (Mind, 1895) laid out the case for the premissory
ineligibility of inference rules in logic.

64In these closing paragraphs of the present section, I have drawn on Amirouche Moktefi, “The
social shaping of modern logic”, in Natural Argument: A Tribute to John Woods, Dov M. Gabbay,
Lorenzo Magnani, Ahti-Veikko Pietarinen and Woosuk Park, editors, volume 40 in the Tribute
series, pages 503-520, London: College Publications, 2019.

65Henri Poincaré, Science and Method, London: Thomas Nelson, 1914; p. 189. Note that the
word “logistik” is not a natural word of English, unlike “logistics” for example. Its referent is any
system of mathematical logic contrived for the purpose of advancing the goals of what would be
called “logicism” by the likes of Fraenkel and Carnap. For a penetrating discussion of Poincaré’s
attitude towards logicism, readers could consult Warren Goldfarb, “Poincaré against the logicists”,
in W. Aspray and P. Kitcher, editors, Minnesota Studies in the Philosophy of Science, 11 (1988),
61-81.

66Grundlagen §§27-27, 29-31 and 46.
67Gottlob Frege, Grundgesetze der Arithmetik: Begriffschriftlich abgeleitet, Jena: Herman Pohle,
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was that they had polluted their respective logics with psychologistic and empiri-
cal considerations. He spoke hopefully of a renaissance in logic without troubling
to cite the logic to which the subject might aspire to be reborn as. The knock
against Frege’s fellow mathematicians was their proclivity to rely on gappy proofs,
that is to say, proofs in which some lines are assumed rather than expressly flagged
and justified; some so-called axioms are actually provable; and many definitions are
wanting in rigour. Logic now sought to collapse itself into a wholly re-engineered
rescue-theory for mathematics. The founder of logicism had changed the subject
even before he had produced the new subject that the name of logic would now
name — a second-order functional calculus with axioms for sets.

Notwithstanding that the term “logicism” made no appearance in English until
the close of the 1920s, several years after Frege had been thought to be the founder of
its nominatum, and Russell, too, from 1903 and after, we have it now that logicism
is

“the approach to the philosophy of mathematics pioneered by Frege and
Russell. According to logicism the truths of mathematics are logical
truths, deducible by logical laws from basic logical axioms.”68

Every 19th century mathematician was aware of Kant’s epistemology of math-
ematics. Although there were predecessor distinctions, two played a key role for
Kant. One is the distinction between knowledge a priori and a posteriori. The
other is the divide between analytic truth and synthetic truth. A distinctive feature
of Kant’s treatment of mathematics is his subscription to the view that, although
all the known theorems of arithmetic are known a priori, none is analytic. His
question in the first Critique (1781) was to determine how a priori knowledge of
synthetic truths is possible. We should note that Kant’s conception of the analytic
is information-containment notion, on which a statement is analytic just in case
there is no information carried by its predicate that isn’t contained in its subject.

1893 and 1903. Edited and translated into English as Basic Laws of Arithmetic, also edited by
Philip A. Ebert and Marcus Rossberg, with Crispin Wright, Oxford: Oxford University Press,
2013; Foreword to the Introduction. Frege doesn’t include the phenomenologist Edmund Husserl
(1859-1938) in these denunciations, whose On the Concept of Number appeared in 1887, and was
reworked as Philosophie der Arithmetik in 1891. His massive Logische Untersuchungen (1900-1913)
partly overlapped the Grundgesteze (1893-1903). Logische Untersuchungen, was translated by J. N.
Findlay for Logical Investigations, New York: Humanities Press, 1979. Husserl doesn’t get much
play in English-speaking philosophy of logic and mathematics. More’s the pity, since he would be
seen to have a substantial influence on keeping logic a naturalized science.

68Simon Blackburn, Oxford Dictionary of Philosophy, 2nd edition, Oxford: Oxford University
Press, 2005; p. 215. A corrective is administered by Woods and Rosales (forthcoming), from
LogicismÕs Ashes: The Rise of Mathematical Philosophy.
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Since they contain no sentences in subject-predicate form, it is not clear how the mi-
gration of this notion to the 19th axioms for numbers could be achieved. Although
the question is important, I shan’t tarry with it here. In a way, it doesn’t matter.
While Frege adopted Kant’s language, he actually collapsed the difference between
analyticity and apriority. In Grundlagen (1884), Frege argues that to determine
whether a proposition is analytic or synthetic, it is necessary that we examine its
proof and determine whether it flows from “primitive truths”, that is, from princi-
ples that neither need nor are susceptible of independent proof. If it turns out the
primitive truths are wholly general laws which also validate the proof’s definitions,
then the proposition is analytic.69 In almost the same words Frege says that, under
these same conditions, the proposition is a priori.70 The earlier idea that analyticity
is a logical property and apriority an epistemological one now vanishes. Moreover,
since a primitive truth is a law of logic just in case it is universally applicable irre-
spective of discipline, it cannot itself be considered either analytic or a priori. So
conceived of, a law of logic cannot be proved, hence cannot fulfill the conditions on
analyticity or apriority, one of which is that it be proved from logical laws. Un-
less this is simply a hiccough on Frege’s part, we see that proofs from logical laws
aren’t analyticity-preserving. Again, it hardly matters. The same is true of Aris-
totle’s demonstrative logic. Demonstration from first principles is truth-preserving
and knowledge-producing; but it is not self-evidence preserving, something that is
caught by the commonplace distinction between axioms and theorems. What Frege
wants is some means of showing that any theorem proved from the laws is analytic
and a priori. The laws, we may say, can take care of themselves. Their infallibility
is intrinsic. They are self-evidently true. (But how so?)

With the birth of mathematical logic, logic is now mathematics, as Boole had
earlier proposed. The attempt to prove every theorem of arithmetic in logic is widely
regarded as the whole objective of logicism. Everyone knows that Frege’s attempt
failed because one of his axioms for sets — Basic Law V — implies the contradiction
that Russell spotted in 1902. It is scarcely recognized at all that Frege’s project fails
for more fundamental reasons. For Frege to succeed, all the axioms of Grundgesetze
must be content-free mathematical analyticities, and its proof rules must likewise
be universally valid. Dedekind accepts and meets the second requirement. I doubt
that he held fast to the first. Frege accepted both requirements, indeed insisted on
them. Whatever our assessment of how he handled the second one, it is clear that
he failed the first one. The first one cannot be met by any axiom system rich enough

69Frege: Die Grundlagen der Arithmetik: Eine logische-mathematische Unter suchungen den
Begriff der Zahl, Breslau: Wilhelm Koebner, 1884. Translated by J. L. Austin as Foundations of
Arithmetic, Oxford: Blackwell, 1950.

70Ibid, p. 4.
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for arithmetic. Had Dedekind held fast with the first one, he too would have been
met with this comeuppance. Several of the most fundamental laws, including all the
laws for sets, cannot be re-expressed as content-indifferent universal validities.71 The
joining of quantification theory to set theory72 was a marriage of convenience. It was
a marriage doomed to fail. In due course, set theory would migrate to where it had
all along belonged, and would become a flourishing branch of mathematics. Even
so, quantification theory itself remains a theory built from thoroughly mathematical
materials — variables, quantifiers, mathematical induction, recursive definitions,
set-theoretic models, countably infinite series, one-to-one correspondences, and so
on.

It remains only to show how the quantifier/identity issue now fares in the pro-
gramme of showing the truths of arithmetic to be logical truths, made so by their
deducibility by logical laws from basic logical axioms. The programme, writes Black-
burn,

“started with Frege’s brilliant demonstration that the elementary
truths of counting . . . can be formalized using only quantifiers and iden-
tity.” (op. cit. p. 1, 215)73

Thus x is a natural number if and only if x falls under the concept of not being self-
identical, or otherwise is any element of that concept’s predecessor-series. It suffices
to note that quantifiers are needed for the definition of the predecessor relation.

In one of its meanings, a formal treatment of a subject-matter defines properties
of interest over schemata of natural-language constructions. In the Barbara-schema

71This is not a slip on Frege’s part. It was he who emphasized the necessary presence of contentful
terms in his logic — e.g. the concept of set-membership. On the other hand, if analyticity is to be
what Dedekind took it to be, namely, universal validity independently of subject-matter, it can’t
be said that Frege has shown the theorems of his logic to be analytic. Nor can relief be found in
returning to the older sense of analyticity, according to which a sentence is analytic just in case it
is true by the meaning of its logical terms. As mentioned in an earlier footnote existence-asserting
sentences don’t fulfill this condition.

72For Boole, Russell, Dedekind and others, sets were classes. Frege eschewed sets for courses of
values of concepts: “I have replaced the expression ‘set’ which is frequently used by mathematicians,
with the expression customary in logic: ‘Concepts”’. It is a false contrast. Although concepts play
a role in the Laws of Thought tradition in 19th century logic, concepts play an equally embedded
role in 19th century “conceptual” mathematics in the manner of Riemann. See Frege, “On formal
theories of arithmetic” in Brian McGuiness, editor, Collected Papers on Mathematics, Logic and
Philosophy, pages 112-121, Oxford: Oxford University Press, 1984; p. 112. Originally published in
1885, in German.

73Blackburn’s characterization of the logicist programme omits mention of logical definitions
of key concepts, for which Frege demanded both eliminability and conservatism. By the first
requirement that defining term is intersubstitutable salve veritate with the to-be-defined term. By
the second, definitions cannot be simply made-up.
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“〈All A are B, All B are C, All A are C〉”, A,B and C are place-holders for general
terms of Greek. Any instantiation of the schema got by the uniform replacement
of the placement by general terms of Greek is a syllogism. Whatever else we might
think of them, the place holders of Barbara are not open to quantifier-binding.74

Formalization by representation is a wholly artificial notation incapable of carrying
sentential meaning is another thing entirely. It lies at two removes from what formal
logic was subject to a hostile takeover and which Boole would play the mathemati-
cism card. The year 1879 marks the second remove. Formal logic would now be
transacted by measures set out in the Begriffschrift. By that stage, Frege’s logic
stood to traditional logic as Riemann’s geometry stood to Euclid’s, namely as rad-
ically different in kind: with the new geometry and the new logic, being geometry
and logic in name only. By the 1920s the remove was finalized when Frege’s second-
order provisions went down-market to the first-order.75 Then and now logic is the
preserve of stipulated artificialities. The thirst for such measures over-lie the tripar-
tite character of consequence-manifestation.76 The effect overall is a further layer of
difficulty. While the threefold distinctions remain, the system’s artificialities occlude
our understanding of their relata.

6 The 20th century
When we move from the old languages to the new ones, we move from the natural to
the artificial and lose sight of the subject-matter at hand. Perhaps the point on which
the two most differ pivots on the fact that in myriad ways artifice outreaches the
potentialities of the natural. One can make artifacts do what nature would have no
part of. A marked illustration of this difference lies in the ease with which the central
concepts of logic proliferate. The dominant reality of modern logic is pluralism.
Given the conditions under which it so easily comes about, it is hardly surprising that
ambiguities on the scale evinced in pluralism are very hard to discern in nature; that

74“For all A, B, C, 〈all A are B, all B are C, all A are C〉” is ill-formed in English (and Greek).
75 Like the name “quantifier”, the term “first-order logic” was coined by Peirce. For well over a

hundred years, first-order logics have been the logic of choice in analytically minded departments of
philosophy. First-order logic is the strongest system that satisfies compactness, completeness and the
downward Löwenheim-Skolem theorem. However, its theorems are not computationally enumerable.
(Alonzo Church “The Richard paradox”, The American Mathematical Monthly, 41 (1934), 356-
361.) First-order logic also lacks a full command of mathematical induction. Stewart Shapiro
makes a strong case for second-order logic in non-foundationalist approaches to the philosophy of
mathematics. Foundations Without Foundationalism: A Case for Second-Order Logic, New York:
Oxford University Press, 1991.

76In broad strokes, model theory more or less does for consequence-having theory more or less
does for spotting more or less. Neither is much good for drawing, notwithstanding their efforts.
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is, in the natural languages within which these concepts first rose. Pluralism, even
at its most moderately venturesome, is further evidence of the modern denaturing of
logic.77 This, when juxtaposed with the absence of formalized representation proofs
that pass on the fruits of artifice to the home languages. It is alienation on a scale
that defies purchase in any epistemologically realistic provisions for the spottings
and drawings of human life.

So, then, it can be said that 20th century logic stands to logic as 19th century
mathematics stands to mathematics. In each case, a teeming prosperity of technical
virtuosity and conceptual stipulation occasioned rising tides of tumult and uncer-
tainty.78 In the Preface to the first edition of Methods of Logic, Quine (1908-2000)
penned the dismissive quip that logic is an old discipline, and since 1879 has been
a great one. At mid-century mathematical logic had both trimmed down, set some
boundaries, and yet expanded in other ways. Logic would largely shed its second-
order origins and “simplify” itself to first-order. Finitary methods in proof theory
had also taken root, ensuing from Hilbert (1862-1943) and developed by Gentzen
(1909-1945) and others. Gentzen would give us natural deduction logic (natural in
name only) and, thanks to the efforts of Gödel (1906-1978) and Tarski (1901-1983),
model-theory would flower, and important limitation theorems would be proved.79

Tarski would set the standard for the formal semantics of natural languages,80 and
C. I. Lewis (1883-1964) would axiomatize modal propositional logics in his systems
of strict implication S1 to S5. Completeness and soundness results would be proved
or disproved in variations of propositional and quantificational logics, increasing the
motivation to recognize the system-relativities of pluralistic logics, including its most
nihilistic expression in Carnap (1891-1970).81 Many-valued logics had taken firm
root.82 Intuitionist logics would respond to the call of constructive mathematics.83

77JC Beall and Greg Restall, Logical Pluralism, Oxford: Clarendon Press, 2006. If Beall’s and
Restall’s pluralism can be considered moderate, Carnap’s can only be called rather mad. Rudolf
Carnap, The Logical Syntax of Language, London: Routledge & Kegan Paul, 1937.

78The lovely phrase “teeming prosperity” is Quine’s, which I’ve plucked from another context.
79Alfred Tarski, “Contributions to the theory of models I”, Indagationes Mathematicae, 16 (1954),

572-581.
80C. I. Lewis and C. H. Langford, A Survey of Symbolic Logic, New York: Dover, 1959; originally

published in 1932.
81Rudolf Carnap, Philosophy and Logical Syntax, London: Routledge & Kegan Paul 1935.
82Jan Łukasiewicz, “Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalk-

lüs”, Comptes rendus des séance de la Société des Sciences et des Lettres de Varsovie Cl. III, 23
(1930). Translated in Storrs McCall editor, Polish Logic 1920-1939, pages 40-65, Oxford: Clarendon
Press, 1967.

83 Kurt Gödel, “Eine Interpretation des intuitionistischen Aussagenkalküls”, Ergebnisse eines
mathematisches Kolloquiums 4 (1933) 39-40; translated in John Dawson, Solomon Feferman et al.,
editors, Collected Works of Kurt Gödel, vol. 1, Publications 1929-1936, pages 300-303, Oxford:
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In 1950, with the publication of Carnap’s The Logical Foundations of Probability,84

the probability calculus would make mature landfall in inductive logic.
In the half-century to follow, modal logic would take on quantificational form,

and would prove completeness and soundness results.85 Modal logics would extend
their reach to doxastic, epistemic, time and tense, and deontic frameworks. In the
latter 1950s, Saul Kripke (1940-) provided the first really powerful semantics for
the alethic modalities;86 and concurrently relevant logic would start to stir in New
Haven and Pittsburgh, soon taking root in the fertile soil of Oceania. In short order,
paraconsistent systems would be up and running, and dialethic logic would soon
appear.87 Dialogue and interrogative logics would reappear in formalized theories
and some of them would adapt themselves to game theory.88 More generally, formal
dialogue logics would be in full fettle.89 Meanwhile, from Turing onwards, com-
puter science would start the quest for a machine that’s worth talking to, and would
make inroads in philosophy of mind and enter into partnerships with psychology
and the sciences of cognition. Nonmonotonic, defeasibility and default logics and
their allied variations had hit their stride by the 1970s and 1980s.90 Dynamic and
justificationist logics were also finding their form.91 Model-theoretic semantics in
the manner of Tarski had engineered a dominating influence on philosophical theo-
ries of natural-language truth and meaning.92 Running through virtually all these

Oxford University Press, 1986.
84Chicago: University of Chicago Press, 1950.
85E. L. Post, op. cit, and Kurt Gödel, “Die Vollstandigkeit der Axoms des logischen Funk-

tionkalküls”, Mondatshefte for Mathematik und Physik, 37 (1930), 349-360; Translated in van Hei-
jenoort (1967), pages 582-591.

86Saul A. Kripke, “A completeness theorem in modal logic”, Journal of Symbolic Logic, 24 (1959),
1-14.

87See Dov M. Gabbay and John Woods, editors, Logic and the Modalities in the Twentieth
Century, vol. 7 of Gabbay and Woods, editors, Handbook of the History of Logic, Amsterdam:
North-Holland, 2006. The usual spelling is “dialetheic”, an imagined combination of the Greek di
and alethia. In combining them in this way, neither Greek nor English requires the terminal ‘e’, no
more than they require of “aletheia”.

88Jaakko Hintikka, The Principles of Mathematics Revisited, Cambridge: Cambridge University
Press, 1996.

89E. M. Barth and Erik C. W. Krabbe, From Axiom to Dialogue: A Philosophical Study of Logic
and Argumentation, Berlin and New York: de Gruyter, 1982.

90E.g. Raymond Reiter, “On closed world bases”, Journal of Logic and Data Bases, (1978),
55-76, and “A Logic for default reasoning”, Artificial Intelligence, 12 (1980), 81-132.

91E.g., Johan van Benthem, “Dynamic logic for belief revision”, Journal of Applied Non-classical
Logics, 14 (2004), 1-26. See also his Logic in Games, Cambridge, MA: MIT Press, 2014.

92Alfred Tarski, “The concept of truth in formalized languages”, in his Logic, Semantics, Meta-
mathematics: Papers from 1923-1938, J. H. Woodger, translator, Oxford: Oxford University Press;
second edition, John Corcoran, editor, pages 152-278, Indianapolis: Hackett, 1983.
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variations in logic’s fortunes, the methods of advancement are thoroughly mathe-
matical. Inferential semantics in a form given it by Dag Prawitz (1936-) and later by
Michael Dummett (1925-2011) had made its way to Pittsburgh and was brought to
interesting form by Robert Brandom (1950-) and others.93 Plausibility logics were
developed by Nicholas Rescher (1928-) and others,94 and the logic of fiction took
formal shape in 1969 and 1974.95 Meanwhile, logic was being put to work in various
parts of psychology and other parts of cognitive science.96 In physics, logics were
purpose-built to accommodate the Boolean failures of quantum mechanics, and Hi-
lary Putnam would put it about that logic might be an empirical science.97 The idea
that logic might be empirical would be taken up later, notably and more expansively
by E. M. Barth (1928-2015) in the Netherlands and Maurice Finocchiaro (1942-) in
the United States.98

In a 1970 paper, Gilbert Harman nailed two deep errors in the logical theories
of the day.99 The one is that the conditions on consequence-having (or entailment)
can be reissued as rules of truth-preserving consequence-drawing (or inference). The
other is that the calculation-rules of the probability calculus are those whose sat-
isfaction ensure the inductive strength of reasoning and argument. Taking the last
case first, consider a police investigation of a capital crime. At this stage, the evi-
dence is strongly against suspect X but not sufficient to proceed to trial. It is now

93 E. g., Dag Prawitz, Natural Deduction: A Proof-Theoretical Study, Stockholm: Almqvist
Wiksell, 1965, and “Remarks on some approaches to the concept of logical consequence”, Synthese,
62 (1985), 153-171; and Robert Brandom, Making it Explicit, Cambridge, MA: Harvard University
Press, 1994.

94Nicholas Rescher, Plausible Reasoning: An Introduction to the Theory and Practice of Plausible
Inference, Assen: Van Gorcum, 1976.

95John Woods, “Fictionality and the logic of relations”, Southern Journal of Philosophy 7 (1969),
51-63, and The Logic of Fiction: A Sounding of Deviant Logic; 2nd edition with a Foreword by
Nicholas Griffin, volume 23 of Studies in Logic, London: College Publications, 2009. First published
by Mouton in 1974.

96 P. N. Johnson-Laird, Mental Models: Towards a Cognitive Science of Language, Inference
and Consciousness, Cambridge, MA: Harvard University Press, 1983. See also Daniel Kahneman,
Paul Slovic and Amos Tversky, Judgement Under Uncertainty: Heuristics and Biases, Cambridge:
Cambridge University Press, 1982. See also Francesco Berto, Anthia Solaki and Sonja Smets, “The
logic of fast and slow thinking”, Erkenntnis, DOI 10.1007/s10670-019-00128-z.

97Hilary Putnam, “The logic of quantum mechanics”, in his Mathematics, Matter and Method:
Philosophical Papers, vol. 1, pages 174-197, Cambridge: Cambridge University Press, 1975.

98E. M. Barth, “A new field: Empirical logic”, Synthese, 63 (1985), 375-388, and Maurice Finoc-
chiaro, “Methodological problems in empirical logic”, Communication and Cognition, 22 (1989),
313-335.

99 Gilbert Harman, “Induction: A discussion of the relevance of the theory of knowledge to the
theory of induction”, in Marshall Swain, editor, Induction, Acceptance and Rational Belief, pages
83-99, Dordrecht: Reidel, 1970.
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the next morning, and overnight twenty new items of information have been logged.
To upgrade the log in accordance with the update requirements of the Bayesian
probability calculus would require ≈ one million calculations. Had thirty new items
of evidence arrived, ≈ one billion calculations would have been required. It is at
this juncture that we run headlong into a conflict about the normative conditions
on good reasoning. One option is that the probability rules are descriptively accu-
rate for the reasoning of ideally rational agents, and while descriptively inaccurate
for us, are nevertheless normatively binding on us. Accordingly, the police in this
case are handling the evidence correctly precisely to the extent that their update-
calculations approximate to the provisions of Bayes’ theorem. Whatever plausibility
such a move might initially have had, it runs into two difficulties. One is that no
one to date has successfully defined an approximation relation on real-life reasoning
behaviour and the reasoning ascribed to the ideal reasoner. A second and related
difficulty is that, to date no one has been able to defend against the objection
that idealized reasoner-mongering is motivated solely by the boost it gives to the
behaviour-distorting authority of mathematical equations.

In the first of the two Harman cases, we see the folly of a rule which prescribes
that if one has p→ q is in one’s belief-box, then the arrival of information carrying
p, either mandates or licenses that q be believed. In fact, other options present
themselves under these same conditions. One option would be to infer q. Another
would be to retain p→ q and reject p. Yet another would be to retain p and reject q
and thereby reject p→ q. A further purported condition on rational belief-update is
that a rational agent is one who (which?) closes its belief under consequence. Since
any belief has a minimum of ω deductive consequences, there is no finite degree
to which the most perfectly possible human reasoner can approximate to this ideal.
Difficulties such as these persuade Harman that the standard logics of deduction and
the dominant logics of induction are catastrophically unfit to regulate deductive and
inductive reasoning in the real-world circumstances of human life. At the heart of
it all is this question;
• When a theory and empirical data conflict, what is the rational thing to do?
Save the theory? Or save the data?100

The fact is that there is no general sure-fire, one-size-fits-all answer to this question.
But in the present case, there is compelling reason to save the data. If we opted

100It would be wrong to leave the suggestion that Bayesianism is the only game in town for induc-
tive logicians. For important but inequivalent alternatives, see among others, the ranking theory
of Wolfgang Spohn in The Laws of Belief: Ranking Theory and its Philosophical Applications, New
York: Oxford University Press, 2012 and the severe-test approach of Deborah G. Mayo, Statisti-
cal Inference as Severe Testing: How to Get Beyond the Statistics Wars, New York: Cambridge
University Press, 2018. Both these approaches are heavily mathematicised.
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otherwise, we’d saddle the logic of natural-language reasoning with a massive dose of
big-box scepticism, according to which we humans are, in matters of reasoning and
decision, colossal dim-wits.101 None of this accords with the known facts of survival,
evolutionary prosperity and, from time to time, the construction of the English com-
mon law and the cathedrals of mediaeval France. In 1970, first-order mathematical
logic called the shots for deductive reasoning in N and the applied mathematics of
probability would rule the waves of inductive reasoning. On Harman’s telling, there
is a common fault-line. It is (in my words) the failure to give adequate heed to
the distinction between consequence-having and consequence-drawing, never mind
whether the consequence relation in question be deductively structured or induc-
tively so. Mathematical logicians haven’t been unmindful of these failures, and have
sought their repair in formal systems of considerably greater complexity than one
finds in first-order environments. This is the way of what I call “heavy equipment
technologies”, in which the missing components of first-order systems — agents,
goals, resources, time, action, social conventions are supplied in idealized form.102

If I say so myself, these are wonderful pieces of intellectual architecture, ad-
mirable for their mathematical beauty which, until I have cause to know better, is
my sole interest in them. But on the applicational side, I have two things to say
against them. One is the various ways in which they advance and sanction empirical
falsehoods. The other is the failure convincingly to ground the presumption that
the empirical falsehoods are redeemed by their purported normative authority.103

101Or to be fair, somewhat rational but not so hot reasoners.
102For example, in his dynamic epistemic logic, van Benthem calls into play categorical gram-

mars, relational algebras, cognitive programming languages for information transfer, modal logic,
the dynamic logic of programs, whereby insights are achieved (or purported) for process invariances
and definability, dynamic inference and computational complexity logics. In the heavy equipment
technologies for attack-and-defend networks (ADN), developed by Howard Barringer, Dov Gabbay
and the present author, here too we find many moving parts — from unconscious neural nets to
adjustments for various kinds of conscious reasoning. The ADN paradigm picks up along the way
a number of other technical ideas currently in mathematical play — some of them pertaining to
equational algebraic analyses of connection strength, where stability can be achieved by way of
Brouwer’s fixed point theorem. And so on. See Johan van Benthem, Logical Dynamics of Infor-
mation and Interaction, New York: Cambridge University Press, 2011. See Howard Barringer, Dov
M. Gabbay and John Woods, “Temporal argumentation networks”, Argument and Computation,
2-3 (2012), 143-202, and “Modal argumentation networks”, op. cit., 203-227. There are many more
efforts of note to bring theories of reasoning within recognizable reach of real-life reasoning — public
announcement logics, knowledge-representation theories, to name just two. But none evades the
observation that when we junk up theories of human performance with heavy-equipment mathemat-
ical virtuosities, we get theorems alright, but they lack recognizable presence in the lived realities
of human cognitive life.

103I draw some of these remarks from my “The fragility of argument”, in Fabio Paglieri, Laura
Bonelli and Silvia Felletti, editors, The Property of Argument: Cognitive Approaches to Argumen-
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To this I might add: “Might we have your formal representation theorems, please?”
Upon a little reflection, the idea of proving and inferring as rule-governed ac-

tivities is difficult to square with empirically discernible facts of human cognitive
behaviour. Let’s pause with this a brief while. All going well, spotting and draw-
ing facilitate the acquisition of knowledge and belief, and, in so doing, lay a foun-
dation for decision and action. By their very natures, spotting and drawing are
goal-involved. It would be unrealistic, however, to suppose that every goal-involved
response to a consequence is goal-directed. Sometimes the human agent will spot a
consequence or draw an inference without consciously aligning it with any particular
goal. Sometimes the agent will align with a goal unconsciously. On some occasions
the spotting or drawing will be wholly unaligned. Of course, as every logician knows,
every truth-evaluable sentence or set of sentences has at least a countable infinity of
consequences.104 This has a considerable bearing on spotting and drawing. If there
were a grand rule for such things, it could only be this:

Rule: In the general case, accurate but unfettered spotting and drawing
would be a waste of time. Do not resort to them without adequate cause.
Corollary I: Being told that S′ would be a valid and sound inference to
draw gives no advice about whether to draw it. Being told that S′ would
be an invalid inference to draw would tell you not to draw it only if you
aspire to validity.
Corollary II: The proof rules of a standardly formulated logicistic system
are scarcely worth the paper they are written on, except when goal- or
interest- related.

Although entirely on track, our Rule scants its own more widely-spread and causally
puissant counterpart provision, in which beings like us spot and draw inferences
automatically and involuntarily, when causally induced to in the course of processing
information at hand. Take Peano arithmetic as an example. Our Rule suggests
that the Peano proof rules would be useless if either the theorem-prover lacked
the goal-alignment knack or his causal-alignment mechanisms failed him. If so, we
might find him drawing “1 is a natural number or Nice is nice in November” as
a theorem of arithmetic. To vary the example, consider a close approximation to
Principia Mathematica’s propositional logic. It has four axioms and three proof
rules — substitutivity, modus ponens and conjunction-introduction. The system is

tation and Persuasion, volume 59 in Studies in Logic, pages 99-128, London: College Publications,
2016.

104Thanks in part to the consequences repeatedly obtained by double negation, conjunction- and
disjunction-introduction.
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known to be consistent, sound and complete. This tells us something. To excavate
the whole demonstrative content of the PM axioms, no proof rule need be invoked
other than these meagre three and no inference drawn save as licensed by them. To
be sure, for every p and q in the L of PM, there is a modus ponens structure. Every
q is implied in PM but is not in the output class of its proof rules. This tells us that
the PM proof rules have been chosen with a particular goal in mind and that the
goal is based on a certain belief. The belief is that the whole theorematic content
of the PM propositional axioms can be got by repeated application of those three
rules to (outputs of) its axioms. Of course, if the rules actually encompassed that
restriction, they would be admissible but not valid. But not even this can save the
day in the absence of the means to determine when a consequence of a theorem is
itself a theorem, not just an implication. This is precisely what the proof rules don’t
provide. Enter now the no-terms-from-the-outside condition. Enter now relevance.

Call the spotting of a consequence opportune when it is relevant to an agent’s
interests, even interests undeclared and implicitly held. Call the drawing of a conse-
quence prudent when the drawn belief is true and relevant to the drawer’s interest.
As we now see, both opportunity and prudence are subject to relevance constraints.
We would expect it to be so in in relevant logics.105 We might not expect this to be
so in classical or intuitionist logics. But it is so there. This tells us that conditions
on the entailment relation radically underdetermine opportune spotting and prudent
drawing. The first truly original idea in proof theory was Aristotle’s determination
to exclude terms from the outside from syllogistic proofs and axiomatic demonstra-
tions. That he felt able to impose the constraint without the need of lodging it in an
analysis of the consequence relation itself is a solid indication that it doesn’t belong
there. Any proof theory worthy of the name will advance decently sized theories of
the opportune and the prudent. None that is currently on offer fulfills this condi-
tion. It is not an easy condition to meet. And it takes but a moment’s reflection
to see that terms from the outside aren’t the only source of irrelevance. It takes a
moment after that to recognize that, by and large, beings like us don’t have much
of a clear idea of the myriad forms in which irrelevance can intrude or distract. The
reason for this, I surmise, is that the proper management of irrelevance is subject
to largely automatic and unconscious filtration mechanism.106 Should this be so, we

105A small sample: A. D. Anderson and N. D. Belnap, Jr., Entailment: The Logic of Relevance and
Necessity, volume 1, Princeton: Princeton University Press, 1975; Richard Routley, Val Plumwood,
Robert K. Meyer and Ross Brady, Relevant Lgoics and Their Rivals, Atascadero: Ridgeview, 1984;
and Stephen Read, Relevant Logic, Oxford: Blackwell, 1988. Among the classical rules declared
invalid, disjunctive syllogism ranks high. In some cases, the deduction theorem is false if ex falso
is true. Other relevantists find against the conjunction rules, and others against the transposition
rule: These, as we now see, are slim pickings.

106Dov Gabbay and I have written about the management of irrelevance in Agenda Relevance
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could easily see the fix that proof theory finds itself in.
The present point casts a long shadow, and yet hangs an obscuring cloud over

relevant and paraconsistent logic. The misconception at the heart of each is the false
belief that because ex falso licenses the inference of everything whatever, it must be
denied a place among logic’s theorems. However, as we now see, the grief over ex
falso is not properly motivated. It is not a rule of inference, and to be so it need not
be taken to mischaracterize entailment. We have seen that paraconsistent logics in
their several variations have two things in common. One is that they block ex falso
the classical theorem that says that any contradictory sentence has every sentence
whatever as a deductive consequence.107 The other is that, paraconsistent systems
tolerate at least one instance of inconsistency. The general idea is to keep matters
from getting worse by reconceptualizing the relation of consequence-having. What
these logics overlook is the matter under current discussion. Not everything logically
implied by a sentence is inferrable from it. It helps to keep firmly in mind that
beings like us are knowledge-seeking processors of unceasing information flow. Like
all natural objects capable of change, there are limits. With action-oriented beings,
information is processed in knowledge-seeking ways, subject to the natural limits
on cognitive resources — limits, not failures. Because at any given t there is more
information at hand than the most adept of us can use to advantage, information-
processing is therefore structured and shaped by the processor’s cognitive interests
at t and the time and other resources available to him for their satisfaction. Since
human cognition is agenda-based, it only stands to reason that information irrelevant
to its advancement not make its way into his working epistemic capital. These
structural features bear directly on the mechanics of consequence-spotting. Again,
every truth-evaluable sentence of English at a minimum has a denumerable infinity
of deductive consequences, massively many of them of arbitrary length. Most of this
plenitude exceeds the spotting capacity of the human individual, never mind the
particularities of his cognitive agenda at t. Even when a consequence is spottable
in principle, for the most part it won’t be spotted. It wouldn’t advance his agenda
to spot it. (This was the message of “1 is a natural number or Nice is nice in
November”. It is a spottable consequence of its first disjunct, but it does not advance
the spotter’s number-theoretic agenda.) So I say again that for human cognition to
(2003). For a causal treatment of inference, readers could consult chapter 3 of Errors of Reasoning
(2013).

107Coinage of the name is unknown. As we saw, the mediaevals had an accurate name for it:
ex contradictione quodlibet. It was proved by Alexander Nekham of the School of Cologne in the
year 1200. It also follows directly from the standard definition of logical consequence. The proof
independently recurs in C. I. Lewis & C. H. Langford, Symbolic Logic, New York: Appleton Century-
Croft, 1932; reprinted in New York by Dover, 1959: 〈(p. ∼ p), p, p ∨ q,∼ p, q〉 by simplification,
addition, simplification again, and disjunctive syllogism in this order (p. 252).
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work at all, spotting must be subject to powerful cut-down mechanisms, all the more
so when the agenda is to acquire new knowledge. Most of what a knowledge-seeker
spots at t will play not role in belief he’s induced to have at t. Further cut-down
mechanisms are required for drawing. The moral to draw is that Harman’s case
against the inferential legitimacy of modus ponens is an understatement. What is
more, had the purveyors of these logics attended to what actually happens when
information harbours an inconsistency, they would have seen that the limitations
of the kind proposed for consequence-having are already and largely automatically
at work in the domain of consequence-drawing. Human inference is paraconsistent,
root and branch, and is so independently of the provisions of consequence-having or
entailment. I say paraconsistent rather than relevant because, on strong empirical
evidence, human beings store memories and background information in inconsistent
quantities. Upon retrieval, however, the rising subsets tend to be consistent. But
consider now a theory T whose inconsistency is not known, and suppose, as I do,
that ex falso is true. Then we have the following interesting situation. To every
theorem of T there corresponds a sentence that T implies and which contradicts it.
Wouldn’t this show that even a modestly inconsistent theory is a massive dialethia?
We have already seen that the unwelcome negations fail to qualify as T ’s theorems
notwithstanding their being implied there. We have also had occasion to reflect on
the “same respect” clause of Aristotle’s definition of the Law of Contradiction at
Metaphysics 1005b 19-20. This gives us room, if we wanted to take it, to rescue
T from dialethic saturation. Let S be a true sentence that is also a theorem of T .
Its negation “not-S” will be a false sentence that T also implies. “Not-S” is not a
theorem, and neither is “S and not-S”. “Not-S” does not qualify as a theoretical
disclosure of T .

What we have here is a nice example of not paying attention to the tripartite
character of consequence-manifestation. Consider again the case of Frege. Prior to
the revelation of the paradox, this was a consequence which Frege failed to spot.
Does anyone really think that, on that very account, there was nothing his students
in Jena could have learned about sets (≈ value-ranges of concepts)? Does anyone
really think that every statement whatever was a theorem of his set theory? Post-
paradox Frege gave up on logicism entirely by 1906. But the reason for doing so was
not that everything is now a theorem of his system. He gave up because he thought
that reference of the concept value-ranges of concepts could not be consistently fixed
with final assurance.
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7 Restoring logic to its natural home
We come back now to the utility of formalization question. It brings us to a very
substantial answer in the negative, which arose in the latter 1970s from the convic-
tion of logic teachers that, beyond highly simplified fragments of linguistic practice,
the fruits of formalizing natural language inference and argument ranged from bitter
to poisonous. John Burgess was moved to say, somewhat noncommittally perhaps,
that on the traditional “view of the subject, the phrase ‘formal logic’ is pleonasm and
‘informal logic’ oxymoron.”108 It was concomitantly believed the going formalisms
of the day succeeded in the main for types of reasoning that hardly happened in
the conditions of human cognitive life, mindful of the plain fact that most of a hu-
man being’s sound reasoning is deductively invalid. In the informal logic research
communities, probably still dogs the tail of ampliative reasoning. There is less in-
clination to disavow the probability calculus than the first-order predicate calculus.
The informal logic movement has spawned an enormous literature — another of
those teeming posperities of mainly rival conjecture — and there is no possibility
here of widescreen coverage. I’ll confine myself, to some important representative
works from the beginning until now.109 It is convenient and largely right to date
modern logic’s return to the natural with the publication in 1970 of Charles Ham-
blin’s Fallacies.110 It is not only a more developed work than Harman’s paper on
inference that same year, but it has had a larger impact. Hamblin, a formal logician
and pioneering computer scientist, rebuked his fellow logicians for having given up
on logic’s fallacy project, and called for vigorous action to restore it to health.

There is in the informal logic community little express push to return logic to
its naturalistic home, save for its general reluctance to call upon the notation and

108John P. Burgess, Philosophical Logic, Princeton: Princeton University Press, 2009; p. 2.
109J. A. Blair and R. H. Johnson, editors, “Recent developments of informal logic”, in Informal

Logic: The First International Symposium, pages 3-28, Inverness, CA: Edgepress, R. H. Johnson
and J. A. Blair, editors, New Essays in Informal Logic, Windsor, ON: Informal Logic, 1994; James
B. Freeman, Acceptable Premises: An Epistemic Approach to an Informal Logic Problem, New
York: Cambridge University Press, 2005. David Hitchcock, and Bart Verheij, editors, Arguing on
the Toulmin Model, Dordrecht: Springer, 2006. J. Anthony Blair and Ralph H. Johnson, editors,
Conductive Argument: An Overlooked Type of Defeasible Reasoning, volume 33 of Studies in Logic,
London: College Publications, 2011; J. Anthony Blair, Groundwork in the Theory of Argumentation
Selected Papers of J. Anthony Blair, Dordrecht: Springer, 2012; David Hitchcock, On Reasoning
and Argument: Essays in Informal Logic and On Critical Thinking, Cham, Switzerland: Springer,
2018. J. Anthony Blair, editor, Studies in Critical Thinking, volume 8 of Windsor Studies in
Argumentation, Windsor, ON: WSIA, 2019. The organisational and chief residential research centre
for informal logic is the Centre for Research in Reasoning, Argumentation and Rhetoric, in Ontario’s
University of Windsor, and the journal of record is Informal Logic.

110London: Methuen.
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methods of mathematical knowledge. Although informal logicians invest heavily in
the pragmatic dimension of language, there is little in the way of organized projects
to unify informal logic with naturalized epistemology and the empirical sciences of
cognition.111 Partly this is because the informal logic “movement” has never had
a manifesto.112 It would also appear that their epistemological instincts run to the
justified true belief model of knowledge and Bayesian theories of justification.

Engaging the practical is not the sole preserve of informal logicians. Many of
them, derived their interest from the pragmatic dimension of language — language-
in-use, so to speak, which is all it was ever good for. It wasn’t typical of these
logicians to enrich their understanding of how languages work by harkening to what
can be learned from empirical linguistics. This, I think, has been a regrettable
omission.113 We should also note that the pragmatic dimension of language is not the
sole route to the practical. Something deeper and richer can be got from cognitizing
our enquiries into inference and argument. This is done by aligning one’s logical
interests with materially relevant disclosures of cognitive science and naturalized
epistemology. Two figures of importance for these alliances are Dov Gabbay and
Lorenzo Magnani.114

111As already mentioned, there are exceptions. One is Else Barth (op. cit.), and another is
Maurice Finocchiaro (op. cit.). See also E. M. Barth and E. C. W. Krabbe, From Axiom to
Dialogue, Berlin: de Gruyter, 1982, and Maurice Finocchiaro, Meta-argumentation: An Approach
to Logic and Argumentation Theory, volume 42 of Studies in Logic, London: College Publications,
2013.

112Unlike the manifestos that periodically dot the pragma-dialectic landscape, as the School of
Amsterdam weaves its steady and well-received way. The organizational site and chief residential
research centre for the pragma-dialectical framework for critical conversations is the Group on
Discourse Analysis, Argumentation and Rhetoric at the University of Amsterdam. The journal of
record is Argumentation. Although deriving some initial inspiration from Barth and other logicians,
pragma-dialecticians aren’t logicians and show only limited interest in empirical considerations.
We can safely say, then, that they aren’t in the uptake draught of naturalistic renewal. The
pragma-dialectical model has had an enormous influence on theories of argument in most of its
disciplinary precincts. Of particular importance is F. H. van Eemeren and Rob Grootendorst, A
Systematic Theory of Argumentation: The Pragma-Dialectical Approach, Cambridge: Cambridge
University Press, 2004. See also van Eemeren, Peter Houtlosser and Francesca Snoeck Henkemans,
Argumentative Indicators in Discourse, Dordrecht: Springer, 2007. On the quasi-empirical side,
see van Eemeren, Bart Garsen and Bert Mueffels, Fallacies and Judgements of Reasonableness:
Empirical Research Concerning Pragma-Dialectical, Dordrecht: Springer, 2009. I say “quasi-” in
the belief that such investigations are motivated to some degree by a confirmation bias.

113An important example is Gregory N. Carlson and Francis Jeffry Pelletier, editors, The Generic
Book, Chicago: University of Chicago Press, 1995. A deep lesson to draw from this book is the strik-
ing infrequency with which speakers of natural languages frame their generalizations as universally
quantified conditionals

114Dov M. Gabbay, Ralph H. Johnson, Hans Jürgen Ohlbach and John Woods, editors, Handbook
of the Logic of Argument and Inference: The Turn Towards the Practical, Amsterdam: North-
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There are important exceptions to informal logic’s quasi-indifference to natu-
ralizing characteristics in its immediate “pre-history” of the emergence of informal
logic. In 1953 Stephen Toulmin published a primer on the philosophy of science in
which he took to task standard theories of probability for overwhelming the logic of
ampliative reasoning with surplus-to-need mathematicizations of how such reason-
ing is regulated in real life.115 In 1958, he followed up with The Uses of Argument,
in whose chapter II he deepens the case against the over-mathematicization of prob-
ability. In chapter IV he takes against the ideal modals approach to logic, and in
chapter V he insists on a working partnership between logic and epistemology.116

Each book caused something of a scandale, and I remember that when, on being
introduced to a large and excited audience in Ann Arbor, Toulmin was said to be
“philosophy’s most refuted living practitioner.” If naturalized logicians ever sought
the succor of a manifesto, they could do no better than selecting these two books
as starters. I should also mention a point that I’ll return to a bit later. Toulmin
rejects mathematics as a profitable model for logic, and urges the English common
law as much the superior alternative.

Also of considerable weight was the response to Hamblin’s challenge to logicians
to restore the fallacies project to its proper place in logic. What Hamblin himself
had in mind were formalized versions of mediaeval dialogue logics, especially those
of game-theoretic formulation, were much the coming thing in some precincts of
mathematical logic, and still are. But a more direct response to Hamblin was what
came to be known as the Woods-Walton Approach.117 In the jointly authored pa-
pers from 1972 to 1982, Woods and Walton brought a general theoretical framework

Holland, 2002; Dov M. Gabbay and John Woods, Agenda Relevance: A Study in Formal Pragmat-
ics, volume 1 of their A Practical Logic of Cognitive Systems, Amsterdam: North-Holland, 2003;
Dov M. Gabbay and John Woods, The Reach of Abduction: Insight and Trial, volume 2 of their
A Practical Logic of Cognitive Systems, Amsterdam: North-Holland, 2005; Lorenzo Magnani, Ab-
ductive Cognition: The Epistemological and Eco-Cognitive Dimensions of Hypothetical Reasoning,
volume 3 of Cognitive Systems Monographs, Berlin: Springer, 2009; Lorenzo Magnani, The Abduc-
tive Structure of Scientific Creativity: An essay on the Ecology of Cognition, volume 37 of Studies
in Applied Logic, Epistemology and Rational Ethics, Cham, Switzerland: Springer, 2017. See also
Woosuk Park, Abduction in Context: The Conjectural Dynamics of Scientific Reasoning, volume 32
of Studies in Applied Philosophy, Epistemology and Rational Ethics, Cham, Switzerland: Springer,
2017.

115Stephen E. Toulmin, Philosophy of Science, London: Hutchins, 1953.
116Stephen E. Toulmin, The Uses of Argument, Cambridge: Cambridge University Press, 1958.

Toulmin’s first book has left little trace on the informal logics that followed it. Uses is mentioned by
nearly everyone, studied by many fewer, has left little in the way of a structural impact on informal
logic.

117John Woods and Douglas Walton, Fallacies: Selected Papers 1972-1982, 2nd edition, with a
Foreword by Dale Jacquette, volume 7 of Studies in Logic, London: College Publications, 2007.
First published in Dordrecht by Foris Publications, 1989.
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to bear on the sprawling motley that has attracted the name of fallacy. Instead
they worked on fallacies one-by-one, bringing to bear considerations, many of which
were theoretical, to which they thought the target of an enquiry would be most
responsive. If there were a common theme to their approach, it was that the safest
home for a given fallacy was likely to be found in an application of some or other
already established nonclassical logic — e.g. Kripke’s intuitionistic logic for mod-
elling circular reasoning or Tyler Burge’s theory of aggregates for the modelling of
composition and division. In some quarters of informal logic, the Woods-Walton
Approach was resisted for its over-formality, but though I say it myself, the impact
of the WWA was substantial, and has long outlasted the time at which is the mid-
1980s its originators would move on in separate directions, with Walton assuming
more of a pragma-dialectical orientation,118 and Woods eschewing it entirely.

Aside from the WWA, there has been a good deal written about fallacies by
informal logicians and argumentation theorists of all stripes, some of it extremely
insightful. And probing.119 Before centuries end, it was clear that logic had ceased to
be the sole preserve of the theory of argument, what with developments in psychology
and some of the allied social sciences, and interesting developments in departments
of speech communication. For the most part, this work was patterned on the ideal
reasoner model, from whence normative authority was mistakenly thought to be
derived. There were, however, important exceptions on the empirical side, notably
in fields such as conversational analysis.120

There is little in the works surveyed here — whether in informal logic, fallacy
theory or argumentation theory — that could be considered to have harboured a
naturalizing motivation for logic. So I will now turn to a pair of developments, mainly
by computer scientists, in which the pulse of naturalism is more easily discerned.
The one development ensues from pioneering work in nonmonotonic, defeasible and
default logics, and allied ones such as autoepistemic logic. These logics cover what,
in Errors of Reasoning, I call “third way reasoning”, which is neither deductively
structured nor responsive to the regulatory controls of the standard or classical

118Douglas Walton (1942-2020) published more books on the fallacies — individually analyzed or
in small clusters — than can be easily counted. Over time they’ve come to rely heavily on Walton’s
methods for computer-modelling argument schemes. See, for example, Walton, C. Reed and F.
Macagno, Argumentation Schemes, Cambridge: Cambridge University Press, 2008.

119See especially, Hans V. Hansen and Robert C. Pinto, editors, Fallacies: Classical and Con-
temporary Readings, University Park: Pennsylvania State University, 1995. See also Trudy Govier,
The Philosophy of Argument, Newport News, VA: Vale Press, 2006, and Christopher W. Tindale,
Fallacies and Argument Appraisal, Cambridge: Cambridge University Press, 2007.

120See for example, Sally Jackson, Message Effects Research: Principles of Design and Analysis,
New York: Guilford, 1992, and Sally Jackson and Scott Jacobs, “The structure of conversational
argument: Pragmatic Bases for the Enthymeme”, Quarterly Journal of Speech, 66 (1980), 251-265.
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logics of induction. Since space is our mistress here, I refer the interested reader to
chapter 7 of that work, and also to chapter 8 which revisits the central concept of
logically following from. Most of these computationally inspired logics are in some
significant degree laid out formally, and there is liberal use made of mathematical
methods. The reason why, for the most part, is that computer science was invented
by mathematicians, many of whom were considered to have gone rogue.121 The
common impulse was not to make new mathematics, but rather to make computers
that are worth our while to talk to.

For that to happen, computers had to figure out how to interact with one an-
other, a feat accomplished by Carl Hewitt, inventor of the Actor model of concurrent
computation. This marks a significant development. In human life, communicating
with one another is robustly conversational. And he is wise to the fact that when
humans converse with one another they bear a marked tendency to give conversa-
tional voice to differences of opinion. Man has been said to be the rational animal.
It can equally be said that he is the arguing animal. So if, as a condition on building
computers that are up to present and foreseeable demands on them, it is necessary
to enable them to converse with us, they will have to learn to argue. At the present
and closely foreseeable stage of computational evolution, Hewitt thinks it unlikely
that computers will be simulacra of beings like us. But he does think that we’re on
track for computers and humans to communicate with one another conversationally.
For this to happen, software engineers have to know enough about how we ourselves
think, reason, converse and argue to enable them to build machines that are capable
of conversations with us.122 There is also the growingly vexed question of computa-
tional security. No one thinks that computer science could be foundationally secure
in the absence of a suitably engineered mathematical logic. My own view is that
first-order platforms simply aren’t up to that job. Right or wrong, whatever the cor-
rect methods for the foundational security of computer science, that alone doesn’t
begin to answer the question of how human beings bring into efficacious play their
cognitive resources in managing their interactions with one another, and with their
selective and collective engagements with their environments.

The present volume is focused to research trends in logic. For most of this
paper, I’ve been recounting, as much as I’ve had time for, logic’s research-trend
history. There is much talk these days about where research in logic is likely to take
us. I have three suggestions in mind.

121Ray Reiter to John Woods in conversation in London, c. 1996.
122See, for example, “Formalizing common sense reasoning for scalable inconsistency-robust in-

formation using Direct LogicTM reasoning and the Actor model”, in Carl Hewitt and John Woods,
editors, Inconsistency Robustness, volume 52 of Studies in Logic, pages 3-103, London: College
Publications, 2015.
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• Mathematical logic will try to find ways to stabilize the foundational security
of computer science. Of pressing and present concern, it must also provide for
its cybersecurity.

• Naturalized logic will provide software engineers with what they need to know
about how we make our cognitive ways — chiefly our argumentative ways —
in the day-to-day conditions of human life, sufficiently so as to enable them
to build a machine that’s worth talking to and also worth being talked to in
return.

To grasp the nettle of this point, it is necessary to understand that what we tell the
engineers about our own naturalistic ways does not remotely guarantee or require
that computers worth talking to be modelled on us. It is enough that the engi-
neers know enough about how we operate to engineer a machine that’s capable of
conversing with us.

• More generally, in the absence of meaningful investments in productive cross-
disciplinary research alliances, the movement of logic to a more naturalized
form will sputter and gutter.

Not only must we cite works from partner disciplines, we must read them with
all the critical care that we expend on reading ourselves. The best way to acquire
standing in a partner discipline is to take an advanced degree in it. One of my friends
has advanced degrees in philosophy, linguistics and computer science. Another is
similarly accoutred, with credentials in philosophy, psychology and computer science.
Perhaps this is a bit of a reach for most of us of naturalistic bent, but it should get
us working on re-positioning logic in the curricula of our best — or should I say
most aspiring — universities. Of particular importance is that cross-disciplinary
traffic be subject to tight visa requirements, since the difficulties which naturalists
seek to escape from can sometimes be ensconced in a partner discipline. Proper
circumspection should red-flag neo-classical economics, for example, but issue a
proceed-with-caution for behavioural economics, for example.

I close with semi-approving remarks on a trend currently underway to seek pro-
ductive analogies for human reasoning or how matters are handled in law. I regard
as his most important insight into the logic of human thinking, Toulmin’s proposal
to study the ways and means of thinking in the English common law. There are,
to be sure, other ways of finding logical fodder in law. An especially brisk line of
trade is to computerize schematic structures for argument-making and argument-
appraisal.123 There is much of interest in the readiness of argument-schemes to

123See Henry Prakken, Logical Tools for Modelling Legal Argument, Dordrecht: Kluwer, 1997;
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admit of computer-rendering. This is nothing to make light of, but I am bound to
think that much of this interaction misses Toulmin’s point. If we take a common law
criminal trial as our example, it stands out that nothing that occurs there takes the
form of face-to-face argument. Counsel are not permitted to argue with witnesses,
nor they with counsel. Counsel can give (brief) reasons for raising an objection, but
he or she may not argue about it. Closing arguments are monologues that sum up
counsel’s theory of the evidence. When judges instruct the jury, they aren’t arguing
with them. They are laying down the law. The only occasion for face-to-face argu-
ment is in camera in the jury room. Toulmin’s interest is much less argumentative
than epistemological.124 That is where the true value of the common law rests for
the naturalization of logic, not least in the doctrine of unwritten law or lex non
scripta. It is, in my respectful submission, a direction in which naturalized logic
should trend.125
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