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Abstract

The ability to compose parts to form a more complex whole, and to analyze
a whole as a combination of elements, is desirable across disciplines. Semantic
Spaces at the Intersection of Natural Language Processing (NLP), Physics, and
Cognitive Science brought together researchers applying similar compositional
approaches within the three disciplines. The categorical model of [6], inspired
by quantum protocols, has provided a convincing account of compositionality
in vector space models of NLP. Similar category-theoretic approaches have been
applied in cognitive science, in the context of conceptual spaces. The interplay
between the three disciplines fostered theoretically motivated approaches to
understanding how meanings of words interact in sentences and discourse, and
how concepts develop in a cognitive space. This volume sees commonalities
between the compositional mechanisms employed extracted, and applications
and phenomena traditionally thought of as ‘non-compositional’ being shown to
be compositional.

Many thanks to the programme committee for their hard work reviewing the papers that contributed
to this volume, and to the organisers of ESSLLI 2019 for providing a venue that made the event
such a success.

∗Funded by NWO Veni project ‘Metaphorical Meanings for Artificial Agents’
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1 Background

Since their introduction in the early 1970s, vector space models of meaning have
evolved into a well-established area of research in NLP. Their probabilistic nature
and ability to exploit the abundance of large-scale resources such as the Web make
them one of the most useful tools (arguably the most successful [23]) for modelling
what we broadly call meaning in language.

There is also a long-standing history of vector space models in cognitive science.
Theories of categorization such as those developed by [1, 14, 18] utilise notions of
distance and similarity that can readily be incorporated in vector space models of
meaning. [12, 19, 24] encode meanings as feature vectors, and models of high-level
cognitive reasoning have been implemented within vector symbolic architectures
[16, 20, 11]. More recently [8, 9] has developed a model of concepts in which concep-
tual spaces provide geometric structures, and information is represented by points,
vectors and regions in vector spaces. The conceptual spaces model has been ap-
plied to language evolution [22], scientific theory change [10], and models of musical
creativity [7], amongst others, and has the potential to augment NLP models of
meaning with representations that have been learned through interaction with the
external world.

A third field in which vector space models play an important role is physics,
and especially quantum theory. Though seemingly unrelated to language, intriguing
connections have recently been uncovered. The link between physics and natural
language semantics that vector space models provide has been successfully exploited,
providing novel solutions and a fresh perspective for a number of problems related
to NLP and cognitive science, such as modelling logical aspects in vector spaces [26].
Methods from quantum logic have also been applied to cognitive processes related
to the human mental lexicon, such as word association [4], decision-making [17],
human probability judgements [5], and information retrieval [25]. Furthermore, the
categorical model of [6], inspired by quantum mechanics, has provided a convincing
account of compositionality in vector space models and an extensible framework
for linguistically motivated research on sentential semantics. More recently, the
link between physics and text meaning was made more concrete by a number of
proposals that aim at replacing the traditional notion of a word vector with that of
a density matrix—a concept borrowed from quantum mechanics which can be seen
as a probability distribution over vectors [15, 3, 21].
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2 Topics covered

Exploiting the common ground provided by semantic spaces, the SemSpace work-
shop brought together researchers working at the intersection of NLP, cognitive
science, and physics, offering to them an appropriate forum for presenting their
uniquely motivated work and ideas. The workshop attracted 15 submissions, of
which 8 have been developed into full length papers for this journal issue.

Three papers covered the representation of concepts in semantic spaces. Inte-
grating Conceptual Spaces in Frames describes how the theories of conceptual spaces
[8] and frames [2] can be brought together in a single theory that addresses their
respective limitations. A Vector Simplex Model of Concepts lays out a vector-based
memory and reasoning system that aims to unify the main theories of concepts:
classical, prototype, exemplar, and the theory-theory. Concept Functionals brings a
more compositional aspect to the representation of concepts. Concepts are modelled
within spaces of functionals that form a compact closed category, meaning that they
can be the target of a functor from pregroup grammar [13] that describes how words
compose according to grammatical structure, as in the categorical compositional
distributional (DisCoCat) model of meaning [6].

Three papers use the concept of a density matrix to represent words and phrases.
Density matrices allow the representation of a probability distribution over vectors,
and can also be incorporated into a categorical compositional account. In Meaning
Updating for Density Matrices an extension of DisCoCat is used under the acronym
DisCoCirc. This extension starts to show how larger fragments of text can be be
composed to form narratives. The paper describes two update mechanisms for den-
sity matrices and shows how the two update mechanisms can be combined in a shared
categorical representation. In Towards Logical Negation for Compositional Distribu-
tional Semantics a notion of logical negation is introduced that is akin to projection
to the orthogonal subspace of a vector, and this notion of negation, together with
various composition operators, is evaluated on a short entailment dataset. Density
Matrices with Metric for Derivational Ambiguity use density matrices to represent
ambiguity in grammatical parses, rather than in semantic content. To do so, the
authors use a variant of Lambek’s categorial grammar with directional implication,
and build a canonical isomorphism between a vector space and its dual that allows
the directional implication to be retained, unlike in standard pregroup grammar.

Advanced linguistic structure is examined in A Frobenius Algebraic Analysis
for Parasitic Gaps. Here, the notion of a gap being felicitous on the presence of
another gap, is modelled. On the syntactic side, Lambek calculus with structural
control modalities are used. On the semantic side, Frobenius algebras are employed.
The reliance on the over-generating operations of copying and moving, often used
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to model parasitic gaps, is overcome by the novel use of Frobenius algebras, from
quantum mechanics, as a vessel for delivering type polymorphism. Finally, Vector
Spaces as Kripke Frames extends the DisCoCat approach from focussing on pregroup
grammar to a vector space semantics for the general Lambek calculus, based on
algebras over a field, meaning that the match between the grammar of natural
languages such as English can be much more closely matched. Here, general ordered
algebraic operations are used to model different operations on vector spaces, opening
up the field for operations that are not necessarily associative to commutative.

We also had three invited speakers: Ruth Kempson, Jamie Kiros, and Sanjaye
Ramgoolam. Ruth Kempson described the Dynamic Syntax view that a natural
language grammar is a set of processes inducing incremental context-relative coor-
dination of action. Jamie Kiros argued for the importance of research in language
grounding, structural priors and their relevance to constructing semantic spaces,
particularly in the light of recent advances in large-scale language modelling and
contextualized word representations that have led to significant improvements across
several language processing tasks. Sanjaye Ramgoolam presented ideas from random
matrix theory in physics that have been applied to characterize the statistics of ma-
trices for adjectives and verbs generated in compositional distributional semantics.
Permutation invariance was argued to be the appropriate symmetry.

The range of topics covered allowed lively discussion and ideas around theoreti-
cally motivated approaches to understanding how meanings of words interact with
each other in sentences and discourse, how they are determined by input from the
world, and how word and sentence meanings interact logically.
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Abstract

Conceptual spaces and recursive frames are two different models of concep-
tual representation. This paper explains their commonalities and differences.
We argue that these seemingly competing methods can complement each other.
Frames can relate conceptual spaces in different domains making them an at-
tractive supplement for the theory of conceptual spaces. In contrast, frames
benefit from a more fine-grained and structured representation of properties
that can be only provided by conceptual spaces. Based on existing overlaps in
research, the paper explores how combinations of frames and conceptual spaces
can be generated and how they can be used to develop a better understanding
of natural concepts.

1 Conceptual Content and Its Representation
Many theories claim that concepts are determined by cognitive content. This posi-
tion is called cognitivism. Cognitivism is to be distinguished from approaches that
understand concepts primarily as denoting entities in the world (e.g. [9]). Cognitivist
positions need to address two questions. First, what is conceptual content? Second,
how is it represented? There are many answers to the first question. Concepts were
traditionally considered to be definitions. However, over the last decades, other ac-
counts became more prominent. Eleanor Rosch and her collaborators [29, 31, 32, 30]
regard concepts as prototype structures that capture similarities between category
members. This is known as the prototype theory. Another position, known as theory

I like to thank the participants of the SemSpace 2019 workshop and especially the organizers of
the event. Moreover I am grateful for helpful comments from Martha Lewis and three anonymous
reviewers. The ideas in this paper were influenced by many fruitful discussions with Gerhard Schurz,
Annika Schuster, Peter Sutton and Henk Zeevat.

∗This work was generously supported by the German Research Foundation (DFG), grant
SFB991/D01.
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theory, analyses concepts in terms of their role in world knowledge and background
theories (cf. [25]). This paper does not commit itself to any of these theories. Each
of these approaches has its justification depending on the concepts and domain in-
volved. For example, mathematical and everyday concepts differ fundamentally and
need different theories of concepts.1 In this paper, concepts are broadly understood
as representations of categories. These are collections of possible entities, which will
be called members of the category.

There are currently two highly researched and frequently applied models of con-
ceptual representation: conceptual spaces and recursive frames. Both aim to struc-
ture conceptual content. Proponents of the two approaches conduct their research
independently, but they address similar issues in linguistics, cognitive science, and
philosophy. While proponents of conceptual spaces and frame theory address com-
parable questions, they disagree on the appropriate representational scheme. This
motivates the first aim of this paper: a discussion of the commonalities and differ-
ences as well as the respective advantages and limitations of frames and conceptual
spaces. Building on this comparison, the second aim will be to discuss possible in-
tegrations. The paper proceeds with a survey of frames and conceptual spaces in
section 2 and 3. Section 4 gives a comparison between the models. The integration
of conceptual spaces in frames is discussed in section 5 and 6.

Bachelor

human

adult

male

unwed

(a) Feature List

Bachelor

species

human

marital staus

unwed

majority

adult

sex

male
(b) Frame

Figure 1: Representation of the meaning of ‘bachelor’ (defined as unmarried man) in a
feature list (fig. 1a) and in a frame (fig. 1b).
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2 Frames
Frames originated in Minsky [24] and were further developed in the field of cognitive
science by Barsalou [3]. They extend feature lists by a functional structure, which
consists of attributes and values. For example, a bachelor is not represented as an
unmarried male but as a human with the attributes sex and marital status and
their values ‘male’ and ‘unwed’.2 This attribute value structure is recursive, that
is, it is nested: a value of one attribute can be the argument of another. Figure 1
illustrates how the attributes of marital status, majority and sex are applied
to a value of another attribute: ‘human’.

In addition to the recursive attribute value structure, Barsalou [3] discusses rela-
tionships between attributes and values. Structural invariants are relations between
attributes. For example, concepts with the attribute sender, like ‘information’
or ‘message’, should also incorporate receiver. Constraints state dependencies be-
tween the values of different attributes. For example, the values of marital status
and age are related: younger people are more likely to be unwed than older ones.

Graph Theoretic Definition of Frames in Linguistics Petersen [27] devel-
oped a precise formalisation of recursive frames in terms of graph theory, which is
widely used in linguistics [19, 23]. According to her definition, frames consist of a
set of finite nodes V . One is distinguished as the central node v that stands for the
represented concept. The nodes are connected by a partial attributing function att
that assigns one node to a tuple of nodes, together with an attribute label from the
set A. The nodes gain their meanings by a function typ that assigns a type from
the set of types T to them. The type specifies appropriate values. For example,
the value for age is necessarily a time, and for humans it is a value between 0 and
approximately 120 years. Given the tuple 〈V, v, T, typ,A, att〉, the directed graph
〈V, ~E〉, where ~E are nodes connected by the attributing function, is the frame.

Often the root of a frame is also its central node. For example, in the ‘bachelor’
frame in figure 1, the represented concept ‘bachelor’ is the one to which all further
attributes are applied, either directly or via other values. Concepts with such a
frame structure are sortal concepts. However, frames are by no means limited to
such structures. For example, the functional concept ‘mother’ appears as a value of
the according attribute mother. Another kind of frames are found for relational
concepts like ‘brother’: they have two roots. This and further examples from [27]
are provided in figure 2.

1Arguments for conceptual pluralism can be inter alia found in [33]
2We use capitals for attributes. For other concepts, we use single quotation marks. Double

quotation marks are used for quotes, objective language, and non-literal speech.
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(a) Sortal: ‘lolly’ (b) Functional: ‘stick’ (c) Relational: ‘brother’

Figure 2: Exemplary graphs, directly taken from [27, p. 158]: The central node is the root
for sortal concepts (fig. 2a) but not for functional concepts (fig. 2b). Relational concepts
(fig. 2c) have more than one root, one of which represents the concept.

With their increased level of formality and generality, Petersen’s frames are useful
in natural language processing. While they ignore several aspects of Barsalou’s
model (most notably knowledge constraints), the two main points remain central.
First, attributes are functional: only one node can be its value; second, nodes occur
as arguments of attributes as well as their values. Both points together yield the
recursive attribute value structure of frames.

Classification Frames in Philosophy of Science Independently from the lin-
guistic formalisation, philosophers of science adopted frames to represent the devel-
opment of scientific theories and theoretical concepts [7, 2, 38, 21, 20]. In this paper
they are called classification frames.

Classification frames have a root that represents the application domain of a
theory, expressed in terms of a category. Several attributes are applied to it and
alternative values are represented. Constraints, that is dependencies between values
of different attributes, model correlations. Subordinated categories are derived from
combinations of values. Figure 3 shows an example from [20]. It represents Perlmut-
ter’s distinction between pro drop and non-pro drop languages [26] by three gram-
matical characteristics, namely the possibility to drop thematic and non-thematic
subjects and to extract the subject of a subordinate clause. The dashed lines are con-
straints. They illustrate the relation between these properties. The subcategories
capture these constraints: pro drop languages realise all grammatical parameters
while non-pro drop languages have none of them.

This version of frames differs from the one of Petersen [27] in several aspects.
First, classification frames are more informative since they elucidate different al-
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language

SSE

NNTS

NTS

-

+

-

+

-

+

non-pro drop

pro drop

Figure 3: Frame from [20] for representing the distinction between pro and non-pro language
made by [26]. In pro drop languages it is permissible to omit subject pronouns (NTS), non-
thematic subjects (NNTS) and to extract the subject of a subordinate clause (SSE) [20, p.
151-52]

ternative values and represent constraints between them. On the other hand, they
have a quite fixed structure and are thus less flexible. However, classification frames
and the graph-theoretic frames from [27] share core assumptions from Barsalou [3].
They represent categories in terms of attributes of which every category member
instantiates exactly one possible value and they are recursive. Though recursiv-
ity is restricted by the fixed structure in classification frames, subcategories can be
analysed in terms of further frame structures, rendering them also recursive. For ex-
ample, pro-drop languages could be further analysed in terms of other grammatical
parameters.

To conclude, frames are essentially recursive attribute value structures. From
this common ground, several versions of frames were developed, which all agree on
this central point.

3 Conceptual Spaces

The fundamental ideas concerning conceptual spaces were presented in the seminal
book “Conceptual spaces: The geometry of thought” by Gärdenfors [10] within which
he claims that geometrical methods provide the appropriate tool for conceptual
representation. According to him, a vast number of basic concepts, most importantly
the adjectives from perceptual domains, can be represented as areas in a space. The
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most popular example is the colour space.
There are several formally detailed versions of conceptual spaces. Aisbett and

Gibbon [1] define conceptual spaces in pointed metric spaces, that is, sets with
a distance function d and a point of infinity, which is maximally distant from all
other points. Raubal [28] uses vectors to define his conceptual spaces. More recent
approaches combine conceptual spaces with random set theory [22] or fuzzy set
theory [5]. All these approaches refer to Gärdenfors [10] and his understanding of
conceptual spaces:

A conceptual space consists of a class D1, . . . , Dn of quality dimensions.
A point in the space is represented by a vector v = 〈d1, . . . , dn〉, with
one index for each dimension. Each dimension is endowed with a certain
geometrical or topological structure [10, p. 67].

Though it is not excluded that the dimensions of a conceptual space are merely
binary or comparative, most discussions on conceptual spaces concern metric spaces.
These are pairs (X, d) consisting of a set X and a real-valued distance measure d
over pairs of elements from X such that d satisfies the following axioms:

D1 d(x, y) ≥ 0; d(x, y) = 0 if and only if x = y (minimality).

D2 d(x, y) = d(y, x) (symmetry).

D3 d(x, z) + d(y, z) ≥ d(x, y) (triangle inequality).
cf. [10, p. 18]

The distance between two points in the space depends on their distance in the single
dimensions. Gärdenfors [10, p. 20] presents two measures to determine the distance
between points in multidimensional spaces with each dimension being accompanied
by an importance weight wi:

Euclidean distance: d (x, y) =
√∑n

i=1wi(xi − yi)2,

City-block (Manhattan) distance: d (x, y) = ∑n
i=1wi |xi − yi|.

Both are special cases of the more general

Minkowski distance: d (x, y) = (∑n
i=1wi |xi − yi|p)1/p.3

3There are other ways to measure similarity, e.g., cosine similarity but Minkowski distances
dominate the discussion of conceptual spaces.
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From the Minkowski distance, the city-block metric is defined by p = 1 and the
Euclidean distance by p = 2. There are conceptual implications associated with the
particular value of p. Euclidean distances are appropriate in spaces with integral
dimensions, that is, dimensions that are so deeply connected that, by assigning a
value to one dimension, one also has to assign values to the other dimensions.4 A
bundle of integral dimensions is called domain.

Since the Minkowski distance allows gradations between Euclidean and Manhat-
tan distances, there can be degrees of integrality. Moreover, as discussed by [18],
different pairs of dimensions in a space can have different measures. As an example,
think of a conceptual space of coloured, differently sized dots. It can be expected
that the colour specific dimensions hue, saturation and brightness combine in a
Euclidean manner, yet these dimensions have no Euclidean distance to the dimension
of size.5

A central idea in the theory of conceptual spaces is that (natural) concepts are
topologically restricted. The most popular principle is convexity. It relies on the
notion of betweenness B(a, b, c), read as b is between a and c. An area is convex if
and only if all points between any two points of the region are also in the region.
Convexity is thus closure under betweenness.

Most frequently convexity is applied in spaces with Euclidean metrics, that is,
domains. Gärdenfors [10, p. 71] specifies a natural property as a convex region in
a domain. On other occasions, Gärdenfors suggests convexity as general criterion
of natural concepts without the restriction to properties: “A natural concept is a
convex region of a conceptual space” [11, p. 18]. There is significant evidence for
convexity in domains, that is, Euclidean spaces. Using evolutionary game theory,
Jäger [17] demonstrates that, given plausible background assumptions, language evo-
lution divides domains into convex regions. In addition, neighbourhood-matching
methods (e.g., Voronoi tesselation) yield convex regions in Euclidean spaces. Con-
vexity in other conceptual spaces is more problematic. A critical view of convexity
in non-integral dimensions is taken by Hernández-Conde [16]. Recently, Gärdenfors
[12] clarified that he views convexity as an empirical thesis and not as an analyt-
ically true assumption of conceptual spaces theory. As such, it can be confirmed
or refuted by further research. Moreover, many proponents of conceptual spaces do
not suppose it at all [5]. The present investigation thus views conceptual spaces
theory as being committed to representing conceptual content in terms of topology
and geometry but not to the convexity thesis.

4The term “dimension” is slightly ambiguous as it can mean a function or its value space. We
will use it as a counterpart of attributes in frames (i.e., as function).

5This is an example for explanatory purposes. Johannesson [18] outlines more complex experi-
mental data.
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4 Comparison
As argued by Barsalou and Hale [4], frames clearly extend the representational
possibilities of simple feature lists. However, there is no consensus on whether
conceptual spaces exceed the power of frames. Zenker [40] argues that the important
components of frames are recoverable in conceptual spaces. Furthermore, only the
latter address quantitative (interval, ratio, or absolute-scaled) measurement scales,
which are alien to frames. This claim was rejected by Votsis and Schurz [38]. The
question of how frames and conceptual spaces are related to each other is thus not
settled and it is also barely researched. Zenker [40] placed his brief comparison in
a discussion of scientific change and it can be doubted that he primarily intended
a thorough comparison of frames and conceptual spaces. Votsis and Schurz [38]
answer in barely more than a footnote.6

This section aims to offer a comparative overview of the commonalities and differ-
ences between the two approaches, based on their respective cores: the modelling of
concepts in terms of recursive attribute value structures in frames and the geometric
viewpoint on concepts, following the tradition of Gärdenfors [10].

Frames and conceptual spaces both assume that concepts should be analysed in
terms of functions and values. Frame theorists call these “attributes”. Regarding
conceptual spaces, one uses “dimensions”, emphasising a geometric structure of the
value spaces. By doing so, both frameworks promote a distinction between functions
and values. A single instance of a concept always takes one specific value, for ex-
ample, one point in the conceptual spaces. This fundamental commonality makes it
important for both approaches to discuss which attributes or dimensions contribute
to the conceptual representation and how important they are. For the frames in Pe-
tersen [27], the bare “skeleton” of attributes with their range and value spaces does
most of the representational work. In conceptual spaces, the question of contribut-
ing dimensions (and domains) is fundamental as well. For example, Gärdenfors [12]
emphasises that shape rather than colour is critical in the representation of ‘swan’.

The most apparent difference between frames and conceptual spaces is the role
of quantitative and nominal values. As previously stated, Zenker [40] claims that
conceptual spaces extend frames because they allow for quantitatively scaled value
spaces. Votsis and Schurz [38] object that a frame “allows values to be structured in
terms of nominal, ordinal, interval, ratio or absolute scales” [38, p. 108]. Kornmesser
and Schurz [21] actually use a quantitative classification frame of electrostatics in
which constraints are given as equations, namely versions of Coulomb’s law.7

6In a personal communication, Frank Zenker as well as Gerhard Schurz elaborated their position,
which became a main inspiration for the present investigation.

7The frame and a detailed explanation of it is found in section 4 of their paper.
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On closer inspection, this dispute can be dissolved by distinguishing two ques-
tions: what kind of information can be represented and how is it represented? With
respect to the former question, frames are indeed not restricted in any way. All
kinds of attributes are representable, as Votsis and Schurz [38] point out and as
Kornmesser and Schurz [21] actually demonstrate by an example. Though discrete
(i.e., nominal) values are more common in frames, they are not limited to them.
Conceptual spaces, on the other hand, are usually applied to quantitative scales,
but ordinal and even merely classificatory values are not excluded [6]. Differences
between frames and conceptual spaces in their ability to represent different mea-
surement scales are thus only tendentious.

With respect to the second question, however, there is a true difference. The
representation in frames is symbolic and does not employ quantitative measures as
means of representation. Conceptual spaces, on the other hand, use quantitative
notions as representational tools, for example, distance measures. In this respect,
Zenker [40] is correct that conceptual spaces exceed the representational power of
frames.8 This leads to the above-mentioned bias in application fields. For con-
ceptual spaces, values with quantitative information are of higher interest than for
frames. By having quantitative methods, conceptual spaces can exploit quantitative
information.

The most important advantage of frames is their flexibility, particularly in the
version of Petersen [27]. As explained above, a frame is a structure consisting of
functional attributes and a set V . Elements of V can occur as arguments and as
values of attributes, rendering them recursive and providing frames with considerable
flexibility. This is their advantage, but it also entails a shortcoming in representing
the detailed internal structure of values. As a result, frames offer a powerful tool to
model concepts or larger structures (events, propositions) when the attribute value
structure itself is of highest importance. If the finer structure of the values is critical,
frames face limitations. At this point, conceptual spaces unfold. They model the
internal structure of values with as much accuracy as necessary. This advantage is
apparent regarding the representation of quantitative values and in domains with
fine gradations. For example, if one aims to represent a particular shade of a colour,
the representation in the colour space provides more accuracy than the use of any
symbolic label. Conceptual spaces also allow to capture the fuzziness of borderline
cases; for example, a greenish blue or blueish green. Moreover, concepts can be
captured on a sub-symbolic, pre-linguistic level. According to Gärdenfors [10, p.

8 Note that frames have been enriched by further operations like comparators [23], that improve
the ability to express some kinds of properties that rely on quantitative scales (e.g. that one person
is older than another one). The topological and geometric notions of conceptual spaces, however,
are still much more powerful.
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1-2], this is actually what conceptual spaces were developed for. Finally, contrary to
frames, conceptual spaces model similarity, defined as an inverse of distance. Because
similarity is a central notion in understanding categorisation, it is an important
advantage to be able to represent how similar values are.

To conclude, conceptual spaces provide a more fine-grained view of values than
frames. In this respect, we agree with Zenker [40] that conceptual spaces are more
powerful. However we reject “that frames can be recovered rather easily within the
conceptual spaces model” [40, p. 82]. Though lacking expressive power concerning
details, frames model complex structures between attributes and values. They are
not merely conceptual spaces without geometrical notions. Table 1 provides an
overview of the comparison. In brief, conceptual spaces and frames are both based on
functions that assign values from a value space to objects. Frames provide a recursive
structure for attributes, which we do not find in conceptual spaces. Conceptual
spaces, on the other hand, associate values with a topological or geometric structure,
which we do not find in frames.

Frames Conceptual Spaces
Cognitive representation scheme X X
Functional attribute value structure X X
Classificatory values common uncommon
Metric values uncommon common
Recursivity X X
Distance measures X X

Table 1: Frames and conceptual spaces: commonalities and differences

Having two different modelling schemes with complementary advantages and dis-
advantages raises the question of whether they can be aggregated and what they can
gain from each other. The following sections consider this question from two angles:
section 5 discusses frames as means to represent the composition and decomposition
of conceptual spaces, whereas section 6 investigates how conceptual spaces can be
applied in probabilistically extended frames.

5 Frames for combing conceptual spaces
Conceptual spaces are best known for representing properties along a low number
of quality dimensions, typically within a domain. However, most concepts (e.g.,
‘apple’, ‘horse’, ‘human’) are characterised by a combination of many properties. To
represent this, Gärdenfors proposes Criterion C :
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A natural concept is represented as a set of regions in a number of do-
mains together with an assignment of salience weights to the domains
and information about how the regions in different domains are corre-
lated. [10, p. 105]

Gärdenfors and Zenker [14, p. 6] acknowledge that Criterion C resembles frames but
claim that it is richer since “a representation based on conceptual spaces allows one
to describe the structure of concepts such that objects are more or less central rep-
resentatives of a concept” [14, p. 6]. As argued in the previous section this does not
imply that frames are redundant in view of conceptual spaces. In contrast, Crite-
rion C unfolds if the theory of conceptual spaces combines with frames. Conceptual
spaces can model the inner structure of (natural) properties, but frames allow to
link properties to each other and to the concept.

Table 2 presents the essential idea of Criterion C, as illustrated by Gärdenfors.
The first four lines (shape, colour, texture, and taste) can be directly repre-
sented in domains. The specifications for fruit and nutrition are quite complex
and may need more decomposition.

Domain Region
Colour Red-yellow-green
Shape Roundish (cycloid)
Texture Smooth
Taste Regions of the sweet and sour dimensions
Fruit Specifications of seed structure, flesh and peel type, etc.

according to principles of pomology
Nutrition Values of sugar content, vitamins, fibers, etc.

Table 2: Criterion C: Representation of apple from [10, p. 103].

Table 2 is a simple frame structure if the domains are interpreted as attributes.
For instance, colour has the value ‘red-yellow-green’. However, one gains further
expressive possibilities by assuming frames with recursivity. This is illustrated in a
frame-based representation of the first four lines of table 2 in figure 4. The values
in italic letters are the ones Gärdenfors mentions in the table. They are critical for
the overall appearance of an apple. For instance, the apple peel is important for
colour but not for taste.

In the frame, one can model that apples have different parts, which allows one
to apply some attributes twice: colour, texture, and taste. The values of these
perceptual attributes are indeed best represented by including conceptual spaces.
In this model, it is natural to assume that only the terminal nodes correspond to
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apple

shape

cycloid

flesh

flesh of apple

taste

sweet-sour

texture

smooth

colour

pale

peel

apple peel

taste

tasteless

texture

leathery

colour

red-green-yell.

Figure 4: Criterion C as a (partial) frame of an apple.

proper conceptual spaces.9 However, this should not be seen as a general rule for
conceptual spaces in frames, as we shall see later.

The frame can easily be extended to model further information from table 2: in
line 5 (fruit), by applying the attribute seeds to ‘apple’, yielding the value ‘seeds’
to which one applies structure; in line 6 (nutrition) by applying the attribute
sugar content to ‘flesh’ and so on. This simple example illustrates how frames
can provide a symbolic outer structure for conceptual spaces.

Figure 4 demonstrates that frames are well-suited to represent part-whole rela-
tions. The issue of relating parts and wholes in conceptual spaces was previously
addressed by Fiorini et al. [8]. They propose that a concept like ‘apple’ is repre-
sented as a product space, containing: 1) the holistic picture capturing the general
appearance of apples; and 2) the part-whole system, consisting of a) conceptual
space representation of parts (e.g., ‘apple seed’ in a seed space), and b) the struc-
ture space, determining the way the parts are related (e.g., that the seeds are inside
the flesh).

The investigation of Fiorini et al. [8] has similarities to the frame-based proposal
above, but there are also striking differences. The frame-based modelling is focused
on analysing properties and only uses part-whole decomposing as an intermediate
step to locate properties; for example, the sweet-sour taste as a property of the
flesh. The proposal of Fiorini et al. [8], on the other hand, focuses on the part-
whole relation itself. The most important point, however, is that frames are not only
applicable to decomposing part-whole relations, but to specify all kind of attributes.
One can extend the frame by including further conceptually relevant information:
For example, origin of ‘apple’ gives ‘apple tree’, to which one can apply attributes

9“Proper conceptual space” means that at least one dimension exceeds a nominal level.
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such as age in order to represent that apples grow on apple trees aged between ten
and hundred years.

To sum up, the composition and decomposition of conceptual spaces in frames
can go far beyond part-whole relationships. They provide a general procedure con-
cerning how to relate conceptual spaces within a concept. As such, a frame-based
approach is relevant to a long-standing problem within the theory of conceptual
spaces: how are lower-dimensional conceptual spaces and more complex ones re-
lated. This question has two parts: how should one analyse complex spaces and
how can conceptual spaces be combined?

A contribution to the first part of the question is the aforementioned work by Jo-
hannesson [18]. He investigates conceptual spaces with subspaces. Such conceptual
spaces typically arise if several domains are intertwined in one conceptual space.
The afore mentioned space of coloured dots would be an example of a combined
space. That means, the dimensions in the space are prima facie not equally closely
connected to each other. The space has integral and separable dimensions or, more
precisely, integral and separable pairs of them.

The frame-based approach to conceptual spaces fits the research by Johannesson
[18]. It can provide a formal structure for analysing complex spaces in terms of their
subspaces, or even subsubspaces and so on, such that the ending nodes correspond
to one-dimensional spaces or domains, where an approximately Euclidean metric
is assumed. Spaces with city-block metrics or mixed metrics can occur higher in
the paths of frames. In contrast to the example in figure 4 above, this application
obviously entails that conceptual spaces appear in all nodes of the frames.

The reverse side of decomposition is the composing of conceptual spaces.Within
Criterion C, Gärdenfors claims that natural concepts are a combination of properties
(represented in domains). As indicated, one can formalise this idea in terms of
frames. For the theory of conceptual spaces, however, the question becomes whether
and how the composition yields new conceptual spaces, in which complex concepts
are placed. This question has been recently addressed by Lewis and Lawry [22], who
focus on the composition of prototype concepts. The foundation of their research
is an understanding of concepts and properties in terms of a prototype P and an
uncertain threshold ε of tolerated deviation from the prototype. Their central aim
is to formalise empirical findings on conjunct prototype nouns (e.g., ‘sports that are
also games’) from Hampton [15]. However, within their model, they also address
modifications (e.g., ‘red car’) and, on the most basic level, the composition of (noun)
concepts from properties. Figure 5 gives the schematic illustrations of the conceptual
combinations and their hierarchical structure. Lewis and Lawry [22] emphasise that
their framework is quite flexible:
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−→
X ∈ {0, 1}n

Yn ∈ ΩnY1 ∈ Ω1 ...

(a) From properties to con-
cepts

−→
Z ∈ {0, 1}n

−→
Xa ∈ {0, 1}k−→

Xb ∈ {0, 1}j

Yan ∈ Ωn

Ybn ∈ Ωn

Ya1 ∈ Ω1
Yb1 ∈ Ω1

...

(b) Combining concepts

−→
Z ∈ {0, 1}n

−→
X ∈ {0, 1}kY1 ∈ Ω1

Yn ∈ ΩnY1 ∈ Ω1 ...

(c) Modification

Figure 5: Schemes of conceptual combinations, taken from [22]. Properties, understood as
points in conceptual spaces, can be combined to form concepts namely vectors in combination
spaces (figure 5a). Higher level conceptual spaces are used to combine concepts with each
other (figure 5b) or with other properties (figure 5c).

[A]lthough when introducing this framework we have made a distinction
between properties and concepts, this distinction is not really important
in actually carrying out a combination. Increasingly complex concepts
can be created and combined with other complex concepts or alterna-
tively with simple properties utilising a single domain [22, p. 219].

The relaxation of the distinction between properties and concepts and the possibili-
ties of an iterative combination brings the approach close to the recursivity in frames.
The resulting hierarchical structure of the combination process in figure 5 resembles
sortal frames. The schemes, however, are merely an additional illustration. They
are not understood as a proper part of the conceptual representation.

A frame-based account represents the conceptual combination itself and attaches
a more substantial role to it. By embedding conceptual spaces in frames, one can
formally represent subspaces and combined spaces together with a symbolic repre-
sentation how they are related. The complete representation of concepts consists of
a graph which relates spaces and product spaces. This allows a representation of a
complex concept to consist of a region in high-dimensional spaces as well as all con-
tributing subspaces. Though such an illustration is not based purely on conceptual
spaces, it suits the central aims of the theory, because a complex concept is repre-
sented in many spaces and topologically interesting phenomena can be investigated
in the product spaces and the subspaces, which are hold together in the frame of
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the concept.
A representation of conceptual spaces and subspaces in a frame can also be

applied in the discussion of how the human mind develops an understanding of
domains. Gärdenfors [13] argues that most domains (i.e., their conceptual spaces)
are only separated after the infant has learnt many noun concepts. The brain, he
suggests, captures covariances, such as the one between flying ability, feathers and
beaks, in terms of complex concepts, like ‘bird’, which have an overall similarity in
different properties. Only later in development is the child able to single out these
properties and represent them in their domains. This depiction speaks in favour of
a representational tool that models relations between conceptual spaces on different
levels of complexity. As argued in this section, frames can play an important role
for such investigations.

6 Conceptual Spaces as Enrichment of Frames

Among the many concepts one could develop only some are easily learnt and effi-
ciently used by humans. Obviously, not all possible categories one can imagine are
apt for reasoning about the world. Conceptual spaces provide the means to topolog-
ically characterise what makes concepts natural. Moreover, they are related to the
prototype theory of concepts. This approach, in particular the work Eleanor Rosch
and her collaborators, should be given credit for drawing attention to naturalness
of concepts and for shedding light on many different aspects of it, including cogni-
tively focal points for categorisation (e.g., the typical red) [29], the role of overall
similarity [31] and cognitive economy [32]. By having an inbuilt notion of centrality,
distance, and similarity, conceptual spaces and prototype theory fit together well
and many findings of the prototype theory can be integrated in conceptual spaces.
Together with its constraint of convexity (or other topological criteria), the theory
of conceptual spaces can be considered as a framework of natural categorisation.

Frames are not specialised to a particular theory of concepts. This is why they are
also unrestricted with respect to the cognitive plausibility of conceptual content. In
order to overcome this problem, frames need to be extended by further parameters,
which allow to represent more content. This section sketches the recently researched
extension by probabilities and its application to prototype concepts. The central
message is that these extensions are indeed fruitful, but that they benefit from
an integration of conceptual spaces and even implicitly presuppose geometric and
topological structures.
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Frames and probabilities A basic version of a probabilistically extended frame
is proposed in [36]. There I suggest modelling knowledge constraints, which were
already introduced by Barsalou [3], in terms of conditional probabilities. This re-
quires that the values of attributes have a probability attached to it. Figure 6 is
an example of such a frame. It represents common knowledge about birds. They
have a foot structure, which is more commonly clawed than webbed. We can find
birds in states of rest or movement, which are supposed to be equally common
in the frame. If they move, they either walk, swim, or fly, where the latter is
most likely. The constraints in the frame say that flying movement is always fast
(P(fast|flying)=1) and that birds with webbed feet are more likely to move by swim-
ming (P(swimming|webbed)=0.75). The conditional probabilities tell the agent how
to adjust the likelihood if she is confronted with concepts like ‘webbed-footed bird’
or ‘flying bird’. The details about this process and how the constraints are restricted
by probability theory are discussed in [36].

bird

locomotion

moving
0.5

speed

fast
0.8

slow
0.2

mode

flying
0.75

walking
0.1

swimming
0.15

resting
0.5

foot structure

webbed
0.2

clawed
0.8

P(swimming|webbed)=0.75

P(fast|flying)=1

Figure 6: A partial representation of “bird” with a hierarchical structure and constraints
between different levels.

The probabilistic frame allows the inclusion of more precise constraints than the
original frames from [3], which only distinguish between positive and negative rele-
vance. However, the representation is based on discrete values. This kind of frame
is thus unable to represent constraints on continuous attributes, like for example
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our knowledge that the size, weight and age of a person are correlated. Com-
bining continuously valued attributes with probabilistic information requires a more
general approach in terms of joint probability distributions (including probability
densities).

Such a generalisation of probabilistic frames, called stochastic frames, has been
proposed by Schuster et al. [35]. The basic idea is that the nodes are not associated
to values (or types of values), but to probability distributions over possible values.10

For example, when applying the attribute colour to ‘apple peel’, the value is a
probability distribution over the colour space. Likewise, size for ‘person’ is a (bell-
shaped) distribution over sizes.

Stochastic frames automatically incorporate constraints, namely in terms of con-
ditional probabilities. Table 3 illustrates this for foot structure and the mode of
locomotion in the bird frame.11 Unconditional probabilities, that is, the marginal
values of the joint probability distribution, are presented in the first line and the left
row. The inner part of the table displays an underlying joint probability distribution
as well as conditional probabilities, that is, the constraints.

P(fly) P(swim) P(walk)
0.75 0.15 0.10
Joint probability distribution

P(clawed) 0.80 0.72 0.00 0.08
P(webbed) 0.20 0.03 0.15 0.02

Conditional probabilities
P(...|clawed) 0.90 0.00 0.10
P(âĂę|webbed) 0.15 0.75 0.10

Table 3: Probabilistic relations between mode of locomotion for a movement and foot
structure in terms of a joint probability distribution and conditional probabilities that
follow from it.

An important application of stochastic frames is the modelling of vagueness
in a manner previously outlined by Sutton [37]. They allow to understand the
meaning of an adjective like “tall” as a shift of the probability distribution in the
appropriate direction. For example, “John is tall” is not understood as giving the
value ‘tall’ for size. Rather it moves the prior probability distribution to the right.
The same line of thought can be applied to colour adjectives like “green” [35]. With

10The definition was developed by Peter Sutton.
11Here, mode of locomotion refers to (the likelihood of) specific bird movements and not a

bird’s ability to use these, which would not be exclusive.
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this application to vague adjectives, stochastic frames capture the effect of contrast
classe, a phenomenon that Gärdenfors [10, p. 119–122] discusses as an application of
conceptual spaces. He suggests that many adjectives operate on the area the noun
concept usually occupies in the conceptual space. For example, a white wine has
the lightest tones of wines have but is not white as such. Gärdenfors [10, p. 121]
emphasises that this effect is difficult to address in a frame-based model. Stochastic
frames overcome this limitation. However, inasmuch as stochastic frames can provide
such a solution, they presuppose more geometry than is provided in frames alone.

For one thing, (joint) probability distributions over continuous variables are ac-
tually (joint) probability densities. This presupposes an underlying geometric struc-
ture of the value spaces. Moreover, the interpretation of vague adjectives as shifting
values into a certain direction, whether in the colour space or in the size dimensions,
anchors their meaning in this geometric structure. So far, conceptual spaces have
not been explicitly included in stochastic frames, but they are implicitly present.
They are not only a possible extension of stochastic frames but already an implicit
part of them. Their role in stochastic frames, however, is to be explicated in future
research.

Prototype Frames Prototype frames, as suggested by Schuster [34], take proto-
types as weighted summary of properties.12 They contain information about prop-
erties and their respective typicality. The according frames represent the probability
of all the values an attribute can take. In this respect they are like stochastic frames
but in addition they also represent attribute importance.

Attribute importance measures whether the attribute is crucial for determining
category membership and is based on cue validity (cf. [30]), the conditional proba-
bility of a category C given an attribute value vi: P (C|vi).13 Schuster [34] identifies
attribute importance, called diagnosticity, by the existence of properties with a high
cue validity. If v1, v2, . . . vn are possible values of an attribute A, the diagnosticity
is diag(A|C) = max(P (C|v1), P (C|v2), ..., P (C|vn)). For example, mode of lo-
comotion is important for discriminating birds from other vertebrates, because
the value ‘flying’ distinguishes bird. In contrast, the attribute number of eyes is
unhelpful to differentiating birds from other vertebrates.

The diagnosticity formula rests on the assumption that the values v1, v2, ...,
vn are cognitively appropriate concepts. A prominent example in [34] is the diag-

12Note that this understanding is fundamentally different from the understanding of a prototype
as a central member of a category as in [22].

13The comparison is restricted to appropriate categories. That is, one calculates the probability
of a category (e.g, ‘bird’) given a property (e.g., ‘flying’) within an appropriate superordinate
category (‘vertebrates’) and leaves out unconnected categories (‘space ships’, ‘planets’, and so on).
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nosticity of the colour attribute for distinguishing fruits from vegetables. If the
values were arbitrary, the formula would fail to intuitively grasp diagnosticity. By
choosing inadequate properties, one could make A almost arbitrarily (un)diagnostic.
For example, the red colour is a distinguishing property of most fruits as opposed to
vegetables, of which only few are red. This makes the colour attribute diagnostic for
fruits. However, the result depends on using the right values, e.g., ‘red’, rather than
‘red or white’. In other words, saying that a property (and its according attribute)
is diagnostic makes only sense in light of an appropriate understanding of natural
properties as provided in conceptual spaces.

Another connection is that attribute importance is a crucial parameter in the
theory of conceptual spaces as well. Gärdenfors [10] includes it not only in Criterion
C, but also as part in his weighted versions of the Minkowski distance equations. The
determination of attribute importance in frames and the weighting of dimensions
in conceptual spaces allows them to mutually complement each other: prototype
frames offer a probabilistic definition of how to measure attribute importance while
conceptual spaces offer a way to geometrically represent it.

Like conceptual spaces, prototype frames have a notion of similarity. It relates
probability distributions of one attribute, usually comparing a subcategory SC (e.g.,
‘apple’) to a supercategory C (e.g., ‘fruit’ ). If an attribute A (e.g., taste) has n
possible values (e.g., ‘sweet’, ‘sour’), then, according to [34], the similarity is:14

Sim(C, SC|A)) =
n∑

i=1
min(P (vi|C), P (vi|SC)).

For birds (B) and the subcategory of clawed-footed birds (CB) on the attribute
mode of locomotion (short: mode), the formula yields Sim(B,CB|mode) =
min(0.75, 0.9)+min(0.15, 0)+min(0.1, 0.1) = 0.85. For the subcategory of webbed-
footed birds (WB), the formula gives Sim(B,WB|mode) = min(0.75, 0.15) +
min(0.15, 0.75) + min(0.1, 0.1) = 0.4. A direct comparison of ‘webbed footed bird’
and ‘clawed footed bird’ on mode of locomotion yields: Sim(CB,WB|mode) =
min(0.9, 0.15) +min(0, 0.75) +min(0.1, 0.1) = 0.25.

It is quite obvious that the introduction of similarity measurements links frames
to conceptual spaces. Indeed, it seems that conceptual spaces are not only ap-
plicable within prototype frames for structuring the value space, but that proto-
type frames themselves can be placed in spaces. However, similarity in prototype
frames is not a geometric notion. Any distance-based measure of (dis)similarity
satisfies the three axioms on page 3. Sim(B,C|A) complies with a reverse of mini-

14The formula was developed by Annika Schuster and Gerhard Schurz.
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mality15 and symmetry but the (reversed) triangle inequality [39], Sim(B,D|A) ≥
Sim(B,C|A)×Sim(C,D|A) does not hold in prototype frames. In the above exam-
ple, the similarity of ‘webbed-footed bird’ and ‘clawed-footed bird’ with respect to
movement is only 0.25, which is less than 0.85× 0.4 = 0.34. It would go beyond the
scope of this paper to illustrate or even settle the dispute whether similarity should
be a geometric notion. However, it is important to note that the similarity notion of
prototype frames and of conceptual spaces follow from different traditions. Whether
it is possible to modify prototype frames in a way that makes them compatible to
geometric representation and the question of how this should be done are matters
for future research.

Remarks on Informativity and Naturalness The beginning of the section
pointed out that frames, in contrast to conceptual spaces, are quite unrestricted
with respect to the represented content and thus barely provide the means to dis-
cuss the naturalness of concepts. One problem was that frames, as representation of
categories, are quite uninformative, while informational content is relevant to decid-
ing whether a concept is natural. According to Rosch “the task of a category system
is to provide maximum information with the least cognitive effort” [29, p. 28].
Schurz [33] supports this line of argumentation through an evolutionary explana-
tion. By the principles of variation and selective reproduction, evolution shaped an
environment of similarities and correlations. Developing prototype representations
promoted our survival. That means, many natural concepts are an evolutionary
developed form of probabilistic reasoning.

In this regard, it is clear that probabilistic frames (including their geometric
background assumptions) improve the abilities of frames to model criteria of natu-
ralness significantly. In particular, the probabilistic extension is a prerequisite for
specifying what Barsalou has dubbed constraints and what Gärdenfors calls “in-
formation about how the regions in different domains are correlated”. Note that
correlations are important in two ways. First, there are relations within categories,
like the relation between ‘webbed-feet’ and ‘swimming’ in ‘bird’. The even more
crucial correlations, however, are not the ones within categories, but the ones that
are captured by categories. For example, having a beak and having feathers is highly
correlated within the category of animals but not within the category of birds. Al-
most all birds have both properties. What makes the concept ‘bird’ natural is that it
captures these reliable correlations. From “x has a beak” one can reliably infer “x is
a bird” and this makes it almost certain that x has feathers. Concepts collect highly

15Sim(B, C|A) = 1 if and only if the probability distributions of C and B on A are identical
and Sim(B, C|A) < 1 otherwise.
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correlated properties. Often the correlations are very strong and instances of natural
concepts can be independently identified in different attributes (e.g., many animals
by smell, sound, shape). Like the theoretical concepts in sciences, they seem to
be “multiply operationalised”. At this point, classification frames can contribute to
the understanding of naturalness in concepts, because they model subcategories as
result of correlations. This makes it promising to also keep in mind probabilistic
versions of classification frames. In combination with conceptual spaces, they can
promote our understanding of natural categories.

7 Conclusion

This paper had two aims: to compare conceptual spaces with frames and to outline
possible integrations and fields of joint research. We argued that conceptual spaces
and frames are complementary approaches. Conceptual spaces enable a fine-grained
representation of quantified information and similarity judgements. Frames offer
the recursive structure to relate domains and specify subcategories. Conceptual
spaces and frame representation neither exclude each other nor is one framework
generally more powerful. Each has advantages in respects to which the other is
limited, rendering their integration into a unifying framework promising.

We discussed potential integrations in sections 5 and 6. Conceptual spaces can
make use of frames to relate spaces and subspaces. This is, inter alia, relevant for
representing whole-part relations or conceptual combinations. Conversely, frames,
particularly probabilistic ones, require a more fine-grained representation of value
spaces, which is possible in conceptual spaces.

During this investigation, it became apparent that conceptual spaces and frames
already approach each other insofar as they implicitly use each other’s toolboxes.
Basic frame structures are found in conceptual spaces research and frame theorists
implicitly assume geometric notions. Further research must not so much develop
a new framework, but focus on further detailing existing overlaps in a unifying
approach.
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Abstract

Certain seemingly incompatible properties of concepts, as explored in cog-
nitive science experiments, can be understood as compatible in a model that
represents concepts as regions in high-dimensional semantic space. After briefly
reviewing the main theories of concepts and some outstanding questions in the
field, we lay out the structure of a vector-based memory and reasoning system.
With this background, we show how many of the model accounts for many
puzzling features of mental concepts.

1 Views of Concepts
The nature of mental representation of concepts has led to several heavily debated
questions in philosophy and cognitive science. In Concepts and Categorization [12],
Medin defines three views of concepts. The classical view, held from ancient Greek
times up until the 1960s, is that concepts are defined by a set of necessary and
sufficient properties. The probabilistic view is that a category is represented by
a central or “average” representative of all its individual members, known as a
prototype. This theory became the most prominent in the 1970s. The exemplar view
suggests that rather than a single prototype, a category consists of a set of examples,
and individual entities are compared to the entire set to determine membership. It
was developed as a response to criticisms of the probabilistic theory starting in
the 1980s. A fourth view, named by Adam Morton around the same time [14], is
the theory-theory: “that concepts are organized within and around theories, that
acquiring a concept involves learning such a theory, and that deploying a concept
in a cognitive task involves theoretical reasoning, especially of a causal-explanatory
sort” [30].

These models seem, at first glance, to contradict one another: for example,
they differ in their answers to whether a concept is better modeled by many things
(exemplars) or by one thing (a prototype). Yet each has points in its favor the others
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lack. The classical theory allows the analysis of categories by breaking them down
into the intersection of properties which are in some sense simpler than the concept
itself. The prototype theory allows the concept to be represented as a single thing,
and explains why the most typical properties tend to be best retained in memory
[20]. The exemplar theory provides a plausible explanation of how newly learned
examples can influence how a concept is used to classify, and why features cluster in
particular combinations [19]. The correct model of concepts, whatever it may turn
out to be, must explain all these properties at once.

The papers exploring these issues usually argue for or against one of the four
models of concepts mentioned above, or propose modifications or extensions to a
model.1 In our scheme, all these views can be considered as different operations
performed on the same underlying structure. Concept exemplars are represented
as vectors in a high-dimensional floating-point-valued vector space, constructed in
such a way that similar exemplars have nearby vectors. The set of these exemplars,
and interpolations between them, forms the extension of the concept. The concept
prototype is taken to be a weighted sum of these exemplars. Individual properties
can also be represented as concept prototypes: the weighted sum of all exemplars
which share those properties. Sparse vector decomposition of the concept prototype
can recover which individual exemplars make up a concept, reversing the averaging
process. The classical theory corresponds to finding the intersection of property
concepts. The exemplar theory focuses on the individual exemplar vectors. The
prototype theory corresponds to analysis of the concept prototype vector as if it
were itself an exemplar. Relations between concepts (such as “A and B imply C”)
can also be represented by vectors, by an encoding scheme that allows the system
to find a tree of deductive reasoning supporting a concept by the same process of
vector decomposition, supporting the theory-theory.

Exemplars, prototypes, classical intersections of properties, and theories can all
be interchanged for each other as needed in the reasoning process and are simply
different ways of looking at a region in semantic space and its geometric relationship
with nearby or overlapping regions. Whether or not one finds these arguments for
how human concepts and conceptual reasoning work compelling, there are several
ideas here that might be useful to include in other systems of vector representations,
including the notions of a concept simplex and sparse decomposition of semantic
vectors.

1A good overview of the arguments and experiments supporting or contradicting these models
is the first four chapters of [15].
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2 Vector Representations
Semantic vectors can be created in many ways. Distributional semantic word vectors,
such as word2vec [13], GloVe [18], and so forth, are widely used in computational
linguistics. Vectors derived from knowledge bases, such as TransE [3] and its rela-
tives, are a second source. Numberbatch [26] and others combine distributional and
knowledge base resources to get higher quality vectors. A more recent idea is using
a neural network to assign vectors to arbitrary phrases as with ELMo [10] represen-
tations. All these methods can be refined to provide representations for individual
word senses [4], which is more appropriate for the construction of concepts than
words themselves. Each method results in a mapping where vectors representing
semantically related items have similar representations. Whenever this is the case,
the vectors will also support analogical arithmetic to some extent. That is, when
A is to B as C is to D, the vectors for A,B,C, and D are such that the expression
−A + B + C is approximately equal to D. (This follows from the fact that each of
the pairs (A and B), (B and D), (C and D), and (A and C) must share a common
context.) This analogical property that makes vector spaces capable of generalizing
to previously unseen cases. This paper will use mainly word vectors from word2vec
as exemplars simply for convenience, but for a system meant to do more than ex-
plore the possibilities of the architecture more refined methods of creating vectors
should be used.

Most human mental representations of concepts must be different from repre-
sentations derived from knowledge bases or large text corpora. These methods do a
poor job at capturing direct sensory properties of perceptions, such as color, sound,
and shape. The knowledge bases used capture few salient properties for any one
exemplar compared to the richness of human concepts. The subsymbolic vector
architecture described, however, can handle the way that concepts shade into one
another, generalize to related cases, and appear in analogies in ways that purely
symbolic representations never could.

3 A Concept Simplex
Few concepts can be completely enumerated. New exemplars that have never been
seen before can be recognized because they are sufficiently similar to the already
existing concept representation. According to some prototype theories, the vectors
representing all concept exemplars that have been observed in the past are weighted
and averaged together to form a prototype vector. The distance from this prototype
vector is then compared to the vector for the new observation, and if these are suffi-
ciently similar, the observation is counted as an exemplar of the concept. However,
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suppose a new observation comes in that looks like a cross between a flamingo and
a penguin. Would this be recognized as a member of the bird concept? The vec-
tor representing this new creature could be generated by averaging the vectors for
flamingo and penguin: .5 ∗ flamingo+ .5 ∗ penguin. Since both flamingo and pen-
guin are atypical birds, this new vector will be far from the prototype vector at the
center of the cluster of all birds. And yet people would still be able to recognize it
as a bird. Instead of a single prototype, it seems that a better representation would
recognize an observation similar to any possible weighted average of exemplars from
the concept.

The structure formed by taking all possible weighted combinations of a set of
independent vectors is called a simplex. For three exemplar vectors, this would be
the triangle whose corners are the exemplars. Triangle edges are weighted averages of
any two of these exemplars, while the face is a weighted average of all three vectors.
Weights at any vector within the triangle are known as the barycentric coordinates
of the vector. Four exemplar vectors form a tetrahedron, and in general n exemplars
form an n-simplex. These are convex regions in semantic space, as described by Peter
Gärdenfors in The Geometry of Meaning [9]. The individual dimensions Gärdenfors
describes are typically meaningful and segregated into domains, while ours need not
be. It is also similar to the spaces used by Dominic Widdows’ subspace model [31].
The main difference here is that Widdows defines (a OR b) as the space spanned by
the vectors a and b, while we restrict it to positive weights on a and b which sum to
1, known as the convex combination of a and b.

The intersection of two concept simplices is the simplex formed by the exemplar
vectors which belong to both concepts. When a concept simplex is incomplete, a
fuzzy intersection returns exemplars which are near to both concept simplices. (That
is, for exemplar x and concept simplices A and B, max(Dist(x,A), Dist(x,B)) is
small.) When simplex A is considered complete and B is not, we can ask which
points in A are closest to B. For example, when querying which vehicles from a
list are likely to be flying vehicles, the system measures how close each list item
is to the flying things simplex. These methods work when all the exemplars are
available. We will show in a later section, however, that intersections and unions
can often be calculated even when only a prototype vector is available for each set,
and decomposition into exemplars can be done afterwards.

3.1 Simplex Distance Experiment

We performed an experiment to determine the following: which provides a better
estimate of class membership: distance to the centroid (arithmetic mean) of a set
of semantic vectors belonging to that class, or distance to the simplex defined by
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those points? To perform this experiment, we obtained members of classes from
ConceptNet. We used 1773 concepts with ten or more exemplars derived from Con-
ceptNet, such as IsA furniture (chair, sofa, etc.) or HasProperty boring (repetition,
housework, etc.). We represented the exemplars from the dataset using Mikolov’s
original 300-D word2vec semantic vectors. From these concepts we withheld 10% of
the data as a test set. We also constructed a set of distracting semantic vectors. For
each exemplar, we found a named semantic vector at the same Euclidean distance
from the centroid which was not an exemplar of the class. The experiment was to
decide, for each pair of exemplars, which belonged to the class and which did not.
An algorithm to measure the Euclidean distance from a vector to the nearest point
on a simplex was presented in [11]. In 69% of cases, the true exemplar of the class
was closer to the simplex than the distractor. This indicates that distance to the
simplex is a better measure of semantic nearness than distance to the mean in most
cases. (See fig. 1.) Using a simplex makes the assumption that the manifold is
locally Euclidean, which may not be the case. This suggests that a neural network
capable of learning a nonlinear model of the structure of a concept could be a better
model. However, the number of exemplars used to form a concept can be in the sin-
gle digits, which is challengingly few for most learning methods. It is also possible
that what we group as a class may encompass multiple distinct concepts. In that
case the more appropriate representation may be a simplical complex: a collection
of simplices such that the intersection of any two is a face of each of them.

Figure 1: Histogram of the difference in distances to a concept simplex between a test
vector belonging to the concept and a distractor vector that does not. Everything
to the right of zero is a success (the distance is smaller for the vector belonging to
the class than the distractor) while everything to the left of zero is a failure (the
distance is greater for the vector belonging to the class than to the distractor.)
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4 AND, OR, and NOT
A weighted sum of exemplars a and b has a meaning similar to the phrase “a OR b” in
the following sense: a person saying “I would like a sandwich or a hamburger” would
likely be satisfied by something partway between a sandwich and a hamburger (a
roast beef sandwich on a bun, perhaps). If exemplar weights are treated as variable,
a concept simplex can thus be thought of as representing the OR-combination of all
its exemplars. By contrast, “a AND b” is better represented by the set {a, b}. To
represent a concept without one of its exemplars, the exemplar can be subtracted
from the sum: a + b + c + d − a = b + c + d. This suggests that “NOT a” can
be represented by −a. Dominic Widdows has come to a similar conclusion [31],
representing a NOT b as the portion of a perpendicular to b: a − a·b

|a·b|b. (This
maintains the same idea except for a multiplicative factor, which we are generally
ignoring here.) These representations can be used to form the basis for a useful
system for performing logical operations on concepts, as described in section 6.

5 Decomposition of Prototypes
Given a prototype vector for a concept, which is a weighted sum of the exemplars
of the concept, is there any way to recover from this vector what the exemplars
and weights are? The answer turns out to be “yes” for a surprisingly large range of
cases. The problem is known as sparse vector decomposition: given a dictionary of
all named vectors, the goal is to find which exemplar vectors have been summed up to
make this prototype, and with what weights.(The fact that most observed vectors are
not exemplars of this concept means that they will have zero weight, which is what
makes this a “sparse” decomposition.) The number of vectors that can be recovered
necessarily depends on the size of the dictionary, the vector dimensionality, and how
related the vectors are. Surprisingly many exemplars can be recovered because most
vectors only fall within a single simplex or its sub-simplices. (This holds as long as
the dimensionality of the simplex is not too high compared to the dimensionality of
the vectors.) We typically use a variation on non-negative LASSO to perform the
decomposition. LASSO balances sparsity against exactness in finding sparse sums
with a parameter, λ. It can be difficult to choose the correct lambda, so we use
a screening method called DPP (Dual Polytope Projection) [29] to efficiently test
over the full range of λ values from 0 to 1, and gather all the candidate non-zero
weighted vectors from this range. With a dictionary size less than or equal to the
dimensionality of the vectors, it is possible to solve the resulting system of linear
equations exactly. As long as the correct vectors are included among these n vectors,
the exact weights will be recovered.
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Experiments on how complex sensory inputs such as faces and sounds are sep-
arated out in neural representations hints that the brain makes use of some kind
of sparse decomposition in order to make sense of complex inputs [2]. It has been
speculated that this could be achieved through competition among neural units in
a winner-take-all architecture [7]. Others have found that sparsity can be achieved
by appropriate thresholding [22].

Figure 2 shows how the number of vectors that can be recovered varies with
vector dimensionality, holding dictionary size and relatedness constant. Up to a
point, all vectors in the sum can be recovered. (This is the linearly rising part of
the graph on the left.) Beyond this point, the graph still rises briefly, as there are a
few errors. Once there are too many errors, thowever, they cascade and the number
of vectors successfully recovered from the sum drops.
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Figure 2: Number of exemplar vectors and weights that can be successfully recovered
from a prototype vector of various dimensions, given a dictionary of size 100,000.

If two prototype vectors are added together, the exemplar vectors which make
them up will be doubly weighted in the sum. This means that it in the case where the
weights within a prototype are equal it is possible to find the union and the intersec-
tion of the exemplars based on their weights in the decomposition. Decomposition
can also be performed into a dictionary of properties, returning the properties and
weights by which a concept may be defined.
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6 Decomposition for Deduction
Using vectors representing propositions a and b, “a implies b,” is equivalent to “(not
a) or b” and can be represented as the vector−a+b according to the scheme described
in the last section. Given that proposition a is true, the truth of proposition b can
be derived by decomposing it into the two propositions a and (−a+ b):

b = a+ (−a+ b)

Decomposition in this way can recover trees or long chains of propositional rea-
soning. By using a different dictionary, we can choose whether to recover exemplars
or to recover a chain of reasoning. In the first case, the dictionary is a list of all
named vectors. In the second case, it is a list of true proposition vectors and true
logical phrases composed of them, such as “a and b and (not c) imply d”.

When performing decomposition for deductive reasoning, we begin with a set of
true sentences about propositions known as KB, for Knowledge Base. (KB could
also be considered as one large sentence joined by AND since it is asserting that
the conjunction of each of its sentences is true.) The goal of deductive inference
is to decide whether KB |= α for some sentence α. The method proposed in this
paper represents each of the sentences in KB and the sentence α by one or more
vectors per sentence. The vectors are constructed in such a way that the vectors
corresponding to clauses which prove α add up to the vector representation of α. In
this way, by finding sums of vectors that add up to the vectors representing α, we
are able to find a proof that KB |= α.

Individual propositional literals such as A, B, and C are represented as basis
vectors a, b, and c. The negation of proposition A, ¬A, is represented as −a. The
disjunction (OR) of two or more (possibly negated) propositions, A ∨ B... ∨ C, is
represented as a+ b...+ c. This is known as a disjunctive clause. 2 The conjunction
(AND) of disjunctive clauses is not represented by a single vector but by vectors for
the clauses listed separately.

Any sentence in propositional logic can be written as the conjunction of one or
more disjunctive clauses. This is called conjunctive normal form, or CNF. The KB
as a whole is the conjunction of all of the disjunctive clauses from all the sentences
that make it up. The sentence α is also converted into one or more vectors by
converting it to CNF. We then prove α by finding clauses from the KB that add up
to the vector for each clause of α.

2Notice that switching signs, as in logical negation, is an involution, so that −−a = a, and that
addition, like disjunction, is commutative, so that order doesn’t matter. However, ¬(a ∨ b) cannot
be encoded as −(a + b) and then simplified to −a − b, because the distributive property does not
hold. Simplification must therefore take place before encoding propositions as vectors.
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Each clause vector represents its premises by negated terms and conclusions by
un-negated terms. A conclusion of a previous step and a premise of the next step
sum to zero, leaving only the conclusion of the final step in the sum. For example,
consider proving B from a KB including A and A ⊃ B. We represent A by the
vector a, and use the vector representation −a + b for A ⊃ B. When (−a + b) is
added to the vector a, only the conclusion b remains.

The contrapositive can make use of the same vector representation, since if we
know that ¬B is true, we can conclude ¬A, whose expression −(−b) + (−a) also
simplifies to −a + b. Similarly, when using the ∨ (OR) operator, if it is given that
¬A is true, we can conclude B. So we subtract −a and add b, resulting in the vector
representation −(−a) + b = a+ b. If, on the other hand, we know that ¬B is true,
we can conclude that A is true, and the expression −(−b)+a still simplifies to a+ b.

If such a sum cannot be found, we can try to prove the negation of α, proving
that α is false. If neither can be proved, α’s truth value is unknown. If both were
proved, there would be a contradiction, but this cannot happen if the KB has been
properly encoded in CNF.

logical operator sentence vector representation
A a

not ¬A −a
or A ∨B a+ b
and A ∧B a , b
implies A ⊃ B (equivalent to ¬A ∨B) −a+ b
implied by A ⊂ B (equivalent to A ∨ ¬B) a− b
equals A = B −a+ b , a− b
not equals A 6= B {a+ b , −a− b}
xor A YB {a+ b , −a− b}
A or B implies C (A ∧B) ⊃ C −a− b+ c
A and B implies C (A ∨B) ⊃ C {−a+ c , −b+ c}
A implies B or C A ⊃ (B ∧ C) {−a+ b , −a+ c}
A implies B and C A ⊃ (B ∨ C) −a+ b+ c

Table 1: vector representations of common expressions in propositional logic

It is possible to create more complex operations by combining these, as long
as De Morgan’s laws are respected. For example, (A ∧ B) ⊃ C can be rewritten
¬(A ∧ B) ∨ C, which simplifies, using De Morgan’s laws, to ¬A ∨ ¬B ∨ C, which
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gives the vector representation −a + −b + c. To find the vector representation for
any sentence, we represent it in conjunctive normal form, and then replace ¬ with
−, ∨ with +, and ∧ with a comma, indicating multiple vectors.3 Requiring that
all sentences must be converted into CNF before being included in the KB also
eliminates the problems that would otherwise occur when dealing with multiple
copies of the same term or its negation. For example, A∨B is represented as a+ b,
but A ∨ A cannot be represented as a + a because it is logically equivalent to A
and therefore must be represented as a. By requiring that sentences must first be
converted into CNF, such problems are dealt with in the preparation stage.

The primary benefit of using decomposition rather than traditional methods of
finding chains of reasoning is flexibility in allowing concepts which have been phrased
slightly differently to still connect, allowing the chain of reasoning to “go through.”
By embedding the entire deductive reasoning process in the vector space, the system
can take advantage of associational and analogical reasoning in order to fill in gaps
that would cause forwards or backwards inference to return no results. For example,
in an experiment using this method reported in [27], in 548 out of 1000 cases, the
top result returned was the correct one, in cases where a traditional knowledge base
would have returned no answer.

Sparse decomposition is not difficult to achieve with a neural system: if a brain
state is characterized as activation weights on a set of neurons, then each exemplar
and prototype are represented by a particular state of these neurons, and a form of
sparse decomposition has been shown to be biologically plausible [21]. Combined
with recent research which “suggest[s] that empiricist, prediction-based vectorial
representations of meaning are a viable candidate for the representational architec-
ture of human semantic knowledge,” [24] the architecture described here may be a
candidate for a reasonably realistic model of brain representation of concepts.

7 Example
Here is a fully worked example from [23]. The six asserted clauses were mixed in
with 94000 other clauses derived from Conceptnet to act as distractors.

If the unicorn is mythical, then it is immortal, but if it is not mythical,
then it is a mortal mammal. If the unicorn is either immortal or a
mammal, then it is horned. The unicorn is magical if it is horned.

3Converting new assertions to CNF before adding them to the knowledge base is a
technique commonly used in large knowledge bases such as Cyc: see http://www.cyc.com/
subl-information/cyc-canonicalizer/
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Interpretation:

• Y : it is mythical, O: it is mortal, A: it is a mammal, H: it is horned, G: it is
magical

• (Y → ¬O) ∧ ¬Y → (O ∧A)

• (¬O ∨A)→ H

• H → G

Everything after this point is automatic.
Conjunctive normal form:

• (A ∨ ¬O) ∧ (¬O ∨ ¬Y ) ∧ (O ∨ Y )

• (¬A ∨H) ∧ (H ∨O)

• ¬H ∨G

Vector Representation:

• −o+ a, −o− y, o+ y

• −a+ h, h+ o

• −h+ g

We perform decomposition on the vector h, resulting in the following proof that
the animal is horned:

1
2(h+ o) + 1

2(−o+ a) + 1
2(−a+ h) = h

Decomposition of g generates the following proof that the animal is magical:

1
2(h+ o) + 1

2(−o+ a) + 1
2(−a+ h) + (−h+ g) = g

There are a few things to notice about these equations. First, although we have
arranged their left hand side to show the reasoning as an ordered chain, in fact the
terms are returned as an unordered set, and ordering, if desired, must occur in a
postprocessing step. Second, notice that some of the terms have a fractional weight
on them. The system assigns these weights automatically in such a way that the
final sum will equal the goal vector. For the purpose of finding out which clauses
are needed for a proof, these weights can be ignored; they nevertheless have some
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relevance for applications using linear logic. Third, addition inside of the paren-
theses represents OR, while addition outside of the parentheses represents AND.
This double assignment of addition works only in the specific context of deductive
inference of clauses already in conjunctive normal form, because in such a context,
DeMorgan’s laws don’t come into play, and A and ¬A in separate clauses cancel out
as they need to.

Decomposition of y, an attempt to prove that the unicorn is mythical, returns
the following one-step proof:

(o+ y)
i.e., it is either mortal or it is mythical. Since the sum does not add up to y, we
know that this is not a complete proof of y.

8 Vector Representation of Concepts
This vector simplex representation of concepts is the simplest possible model that
has the property that any point between two known exemplars of a concept belongs
to the concept. It provides a possible solution to several puzzling properties that
concepts have been shown to have:

Properties and relations can themselves be concepts. [5]
The extension of a property may be represented by the region spanned by all

exemplars which share that property. Since “a implies b” can be represented by the
vector −a + b in this scheme, a concept formed of the convex space spanned by a
set of such vectors is itself a concept.

Concepts are organized in such a way that a concept similar to any
two other concepts can be found.

The nature of high-dimensional vector spaces is such that all vectors are close
together in the sense that (a + b)/2 is closer to both a and b than to any other
observed vectors in the dictionary, for any reasonable dictionary size.

For instance, the word cartoon is closest to the word cartoons: their dot product
is .80. A distant word is cardiology: the dot product with cartoon is .02. Cardiology
is professional, serious, and correlated with aging, while cartoons are entertainment,
silly, and related to children, so they would seem to have little to do with each
other, and be far apart in the semantic vector space. And yet, the closest results to
the midpoint of the two terms are cartoon and cardiology. In other words, even for
distant words there is a point which is closer to those two terms than to any other
terms in the dictionary. Other terms close to this vector include pediatric cardiology
and editorial cartoon, which exchange certain features of the term with the other
term (youth, in the first case, and age and seriousness in the second). If we took

718



Vector Model of Concepts

such distant terms in a two-dimensional semantic vector space, their midpoint would
be somewhere in the middle of the map and be surrounded by many completely
unrelated words. In a high-dimensional semantic vector space, however, any point
along the line connecting any two distant terms is only nearby terms which are
similar to one or both of the terms. This means that any two concepts can be
combined to form a new concept with properties between the parent concepts.

Exemplars can themselves be broken down into exemplars (bird exem-
plars might include robin, which itself might include individual robins or
robin sightings).

The possibility for prototype vector decomposition into exemplars lets us form
multi-level hierarchies where the concept’s exemplars are prototypes formed from
weighted averages of exemplars at the next layer down.

A concept prototype changes based on context or perspective. [1]
Whenever a prototype is needed which is different in some way, it can be recre-

ated by choosing a different weight set and re-averaging the exemplars. In these ex-
periments [1], participants were asked to consider a category from another culture’s
point of view. Adding the vector for the culture to the prototype, and recalculating
the weights on exemplars needed to decompose this modified prototype vector, can
give similar results.

Taking weighted averages of vectors is a common process in computational lin-
guistics. However, this has generally been treated as a kind of summarization of
meaning that inevitably loses track of the vectors that make up the sum – a lossy
compression. [28] shows that vectors that make up such a sum are recoverable when
they are few compared with the vector’s dimensionality, and depending on how
closely related they are.

Concepts can be defined by their relation to other concepts, which
themselves seem to be defined by their relation to the first concept. [8]

When treating concepts as separate entities, facts about the relations between
concepts are difficult to place: “In general, it may be extremely difficult, if not
impossible, to identify where the knowledge for a particular category in long-term
memory begins and ends. To the extent this is true, it is hard to imagine how there
could be invariant representations for categories stored in long-term memory.” [16]

Definition circularity is problematic if one is trying to construct a world model
by starting from only a few “primitive concepts.” In contrast, if many concepts are
being added to the mental space by a process of simply considering usage contexts,
then sorting into regions where the same properties hold will happen automatically,
and if the concepts are already in place, then the concept bachelor will be observed,
as desired, near the intersection of the regions unmarried and man. Indeed, without
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such an ability, how could the first dictionaries have possibly been written? Con-
cepts, their properties, the relations between them, and the means of reasoning over
them must all be encoded in the same structures for our behavior in regards to
concepts to be explained.

Despite goldfish not being a highly prototypical fish or a highly proto-
typical pet, it is a highly prototypical pet fish. [17]

Take the intersection of the fish concept simplex with the pet concept simplex.
The intersection is itself a concept simplex, with exemplars which are all both pets
and fish. Taking an evenly weighted average of these exemplars, gives a prototype
vector for pet fish. Goldfish is an exemplar which is near to that prototype. The
idea that composition of vector representations of concepts can solve the pet fish
problem was explored in [6].

There can be prototypes, exemplars, and properties defining concepts,
and yet each time the same subject is asked what they are, slightly dif-
ferent answers are generated. [1]

We hypothesize that the answers people give to questions about prototypes,
exemplars, and properties are not the precise vectors making up the concept in our
brain. Instead, they are generated anew from the mental representations as needed.
Given exemplars, the brain can look for or generate prototypes and properties; given
prototypes, it can look for exemplars or properties; and given properties, it can come
up with exemplars or prototypes.

Concepts can be used for inference and conceptual combination as
well as classification. [25]

A key questions that cognitive science has had little to say about yet is how it is
possible for concepts to represent both concrete ideas and rules for how those ideas
are related. Our model provides a method by which a vector can represent a rule
for combining other vectors, allowing the same structure (a vector) to serve as both
an object to be reasoned about and the rules that constrain that reasoning. Finding
chains of reasoning by vector decomposition shows how concepts can form linked
paths from one to another.

Learning new information about an exemplar can update all relevant
concepts at once. [25]

If prototype vectors as being recomputed on the fly from exemplars as needed,
then updating one exemplar’s position as we learn more about it will modify to a
greater or lesser extent prototypes calculated from sums involving it. In our model,
these prototypes are not fixed entities but the result of a calculation, which means
that changing one of the terms of the calculation will directly affect all the concepts
in which it participates.
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9 Conclusion

Treating a concept as a simplex of exemplar vectors in semantic space, along with
functions to find a prototype vector for the concept, to recover exemplars from the
prototype, and to find chains of reasoning between vectors in this space, creates a
representation that is capable of reproducing at least some of the seemingly puzzling
behavior of human mental concepts. We have introduced the notion of distance to
the simplex as a principled way of estimating whether a new exemplar belongs to a
class concept, and have shown how our previous experiments in vector-based reason-
ing lend theoretical and perhaps also empirical pllausibility to such a representation.
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Abstract

[−1, 1]-valued functionals allow the semantic modelling of concepts as fuzzy
and nonclassical predicates over a rich collection of domains, whilst maintain-
ing compatibility with logical operations such as negation. We integrate this
semantics with the Categorical Compositional Meaning programme, allowing
us to compose and compute with concepts: in particular, we demonstrate how
we may model spatial inference from vague and negated information obtained
from fragments of natural language.

1 Introduction
We focus on two of the guiding questions in Cognitive Science. How should we
represent concepts? How can they be composed to form new concepts? Gärdenfors’
Conceptual spaces theory [12] is a framework to address the former, where concepts
are modelled as convex subsets of abstract spaces. One appreciates the strength
of this proposal and the naturality of convexity by the following example: if two
pigments are both Red, it ought to follow that any mixture of these two pigments
is also Red. To address the latter question, following the Categorical Compositional
Meaning programme [16, 10, 6] – which broadly aims to elucidate the interacting
compositional structure of syntax and semantics of natural language [22] – Bolt
et al. [4] imbue Gärdenfors’ conceptual spaces with structure both necessary to
model concept composition, and sufficient to model how natural language directs
this composition: allowing the computation of the meaning of phrases from the
meanings of consituents.

We address the following gaps in the state-of-the-art. We will be able to model
non-convex concepts (Figure 1). We will be able to model concepts fuzzily, as in
[23](Figure 2), granting concepts truth values on a spectrum between true and false.
Finally, we will not only be able to model the negation of concepts, but do so in
psycho-linguistically faithful manners, capturing the following:
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1. Negation might be non-involutive: the phrase "I am happy" may carry a dif-
ferent meaning than "I am not unhappy", even if we take unhappy and not
happy to have the same meaning.

2. Negation might not obey the Law of Excluded Middle: if I only have a partial
understanding of a concept, such as that of Good Music, even if I am unable to
classify a new song as Good Music, does not mean that I immediately classify
it as Not Good Music; some songs I might be unable to classify as either!

3. The negation of a concept might not be a concept: while Not Red is not a
colour, Blue, Green and Yellow are colours that are certainly Not Red, so Not
Red behaves more as a collection of other concepts in the abstract concept-
domain of colour; yet, we can make sense of "The coffee is bitter and
(not sweet).", where bitter and sweet both belong to an abstract domain
of taste, so even if negated concepts are not concepts per se, they must still
interact meaningfully with non-negated concepts.

First we will introduce the concepts underpinning the Categorical Compositional
Meaning programme we work in, which will illustrate that the main challenge we
face is finding a suitable compact closed category for our functional-spaces to act as
a semantic category. Then we will build up the formalism behind these functional-
spaces and explore how we may define concepts and negation with them. Finally we
will place concepts in the category ConcFun, and provide an example of meaning
computation.

2 Categorical Compositional Meaning
The general outline of the categorical compositional approach is to establish a com-
positional structure – interpreted categorially as the Grammar Category – in
tandem with meaning/concept spaces – again organised categorially as the Seman-
tics Category – both chosen such that functors from the grammar to semantics
categories map grammatical type-reductions in the grammar to algorithms for com-
posing meanings in the semantics. We will use Lambek pregroups [16, 17] as our
grammatical compositional structure.

Definition 2.1 (Pregroups). A pregroup is a tuple (A, ·, 1,−L,−R,≤), where

• (A, ·, 1,≤) is a partially ordered monoid

• −L,−R are functions A→ A such that for all a ∈ A:
a · aR ≤ 1 ≤ aR · a aL · a ≤ 1 ≤ a · aL
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Figure 1: Soil Texture can be considered as simplicial convex domain parameterised by
{Clay,Silt,Sand}: Sandy Loam and Silt Loam are nonconvex concepts; it is not the
case that any mixture of Sandy Loam remains Sandy Loam: it is possible to produce
Loam.

Figure 2: The television test-pattern illusion: covering the divide between any two
adjacent gray patches (try with your finger) makes them appear to be the same colour.
Hence Black, Grey, and White are best modelled as fuzzy concepts, where particular
shades may enjoy partial membership in multiple colour-concepts.
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Figure 3: As a sneak peek, here is what our concepts and negations can look like.

Figure 4: From left to right: an object A; a morphism A
f→ B; the composite A f→

B
g→ C; the tensor of A h→ and C k→ D; I is the empty diagram; a state morphism

u : I → A; an effect morphism v : A→ I.

Lambek pregroups can be viewed as thin rigid categories[17, 8], of which compact
closed monoidal categories are a special case – there is no distinction made between
the left and right adjoints −L,−R. In this paper, we will make use of compact closed
categories as modelling vehicles.

Monoidal categories are tuples (C,⊗, I, α, λ, ρ) of a category, a tensor, and
the associator, left- and right-unitor natural transformations, and that monoidal
categories admit a sound and complete graphical calculus [19].

A monoidal category is symmetric when it admits a ‘twist’ natural transfor-
mation X ⊗ Y → Y ⊗X that is self inverse, depicted graphically as a crossing pair
of wires.

A monoidal category is rigid if for each object X there are objects XL (the left
dual), XR (the right dual), and natural transformations:

ηLX : I → X ⊗XL ηRX : I → XR ⊗X
εLX : X ⊗XL → I εRX : XR ⊗X → I

728



Concept Functionals

Figure 5: The depiction of the yanking equation (εRA ⊗ idA) ◦ (idA ⊗ ηRA) = idA in the
graphical calulus. The ε, η morphisms are depicted as cups and caps respectively.

Figure 6: The sentence chickens cross roads has type n(nRsnL)n, which reduces
as follows on the right: n(nRsnL)n = (nnR)s(nLn) ≤ s(nLn) ≤ s, corresponding to
the cups in the left diagram. When we can interpret the diagram on the left in a compact
closed category, we can consider the meaning of the sentence to be the compound state
achieved by wiring the word-states together.

Which satisfy the yanking equations:

(idX ⊗ εLX) ◦ (ηLX ⊗ idX) = idX (εRX ⊗ idX) ◦ (idX ⊗ ηRX) = idX
(εLX ⊗ idXL) ◦ (idXL ⊗ ηLX) = idXL (idXR ⊗ εRX) ◦ (ηRXR ⊗ idXR) = idXR

As an example of the Categorical Compositional approach in action, consider a
pregroup grammar generated by the linguistic types {n, s}, for nouns and sentences
respectively; so our grammar category is Preg{n,s}. Suppose we have the words
{chickens,cross,roads}, where chickens and roads are assigned the type n, and
cross is assigned the type nR · s · nL. In Figure 6, we demonstrate how a type
reduction in the pregroup corresponds neatly to the graphical calculus of monoidal
categories, allowing us to evaluate the meanings of sentences.

3 Towards spaces of functionals
A Functional on a space can be thought of as a “truth-value field"; a truth value is
assigned to each point of the underlying space. Functionals admit linear algebra, in
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that two functionals over the same base space can be summed, and functionals can be
multiplied by scalars, by summing and scaling truth-values pointwise whenever the
truth-values admit those operations. For the reader who wishes to skip technicality:
if we accept that concepts live in ambient geometric spaces, where points of the
space are concrete instances of phenomena, functionals over those ambient spaces
allow one to expressively specify, for each concrete phenomenon, to what degree that
phenomenon is an instance of a concept.

Example 3.1. As a first example, consider this graphic from the Scandinavian
colour-naming survey by [20]. Depicted is a colour wheel, overlaid with shaded re-
gions, where darker shades correspond to higher mean degree of agreement (on a
scale from 0 ‘not at all’ to 7 ‘extremely well’) of how well colour samples from those
regions coincided with “what [participants] mean by blue". We may model the concept
‘blue’ according to this data by a [0, 7]-valued functional on the disk.

Functionals will be the objects of our eventual semantic category: (Hilbert)
spaces of [−1, 1]-valued functionals over unit-measure spaces. Expressing functionals
as elements of Hilbert spaces grants access to the inner product bilinear form, which
gives us a way to quantify the distance between concepts. The ‘unit-measure spaces’
requirement is technical: in order to define the inner products in these Hilbert spaces,
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we must first ensure that the functionals we define admit a notion of integration, for
which we require measure-theoretic notions, which we recount briefly [5].

In detail, the motivation for having integration is to grant a systematic method
to map functionals onto R, which we may then use to define notions of similarity
via inner product and how far a given functional is from a classical predicate that
assigns either True or False to every point in its domain. The following section
recounts the mathematical boilerplate necessary, and may be skimmed or skipped
without conceptual loss.

A measure space is a tuple (X,X , µ) of a set X, a measure X which is
a σ-algebra on X – a collection of subsets of X that contains X and is closed
under complement and countable unions –, and a measure function µ which is
a set-function X → R that is non-negative, maps ∅ to 0, and for all countable
collections {Ei : i ∈ I} of pairwise disjoint sets in X , µ( ⋃

i∈I
Ei
)

= ∑
i∈I

µ(Ei). When

X is a topological space, and the σ-algebra X contains the topology of X, we
call the measure a Borel measure. A measurable function between measure
spaces (X,X , µX) f→ (Y,Y, µY ) is such that the preimages of measurable sets are
measurable: for all E ∈ Y, f−1(E) ∈ X . When topological spaces are equipped with
a Borel measure, we can define the integrals of arbitrary measurable functions from
them to R, which we write (with respect to the symbol names above), as

∫
X f dµ.

As is standard, we assume that the reals R carry the Lebesgue measure, where
µR([k, k + 1]) = 1 for any unit interval. The Lebesgue measure can be extended to
any cartesian space Rn, assigning measure 1 to any unit hypercube.

Example 3.2 (All convex algebras on finite sets X are fair game). Convex Algebras
were employed for conceptual modelling in [3]. In brief, convex algebras generate
convex spaces from (among other structures) finite sets, by considering formal convex
sums of elements. Formally, a convex algebra on a set X is a tuple (D(X), α),
where D(X) := { ∑

x∈X
px |x〉 : ∑

x∈X
px = 1, ∀x∈X(0 ≤ px ≤ 1)} is the set of formal

convex sums of the set X. The ket-notation is used to stress the formal nature of
the sums. The mixing operation α : D(X)→ X satisfies:

α(|x〉) = x α
(∑

i,j

piqi,j |xi,j〉
)

= α

(∑

i

pi |
(∑

j

qi,j |a〉i,j
)〉
)

We can borrow the topology and measure of R|X|. When the underlying X is
finite, we can define the function:

y 7→ { |X|
√
|X|! · ~px ∈ R|X| :

∑

x∈X
px |x〉 = y}
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that maps elements y ∈ D(X) to the coefficients of the convex mixtures that yield y,
viewed as convex subsets of unit-measure simplices in R|X|, so obtaining a measure
and a quotient topology for D(X).

We will restrict our attention to normalised Borel-measure spaces (X,X , µ) with
unit total measure: µ(X) = 1. We wish to consider an appropriate (Hilbert) space
of all such functionals for a given Borel unit-measure space ∆. Recall that a Hilbert
space is a vector space V equipped with an inner product 〈_,_〉 : V ×V → C which
is sesquilinear and conjugate-symmetric [18].

Definition 3.1 (L2(∆)-space). Where ∆ is a Borel unit-measure space, L2(∆) is the
Hilbert space of all functionals f : ∆→ R that are square integrable:

∫
X f

2 dµ <∞.
The inner product 〈_,_〉 is

〈f, g〉 =
∫

X
fg dµ

L2(∆) is a vector space over R, and the inner product satisfies sesquilinearity and
conjugate-symmetry.

4 Functionals as Concepts
We wish to normalise our functionals to take values in [−1, 1], such that we at once
obtain fuzzy representations of positive and negative extensions of concepts. In
general, functionals may take on values outside of this range, and may be poorly
behaved, tending to diverge at points to arbitrarily large values. For our purposes,
we may consider functionals to be bounded.

Given a functional taking bounded values, we may normalise to obtain a func-
tional taking values in the range [−1, 1]. For instance, we may take some monotone
homeomorphism, denoted κ, between R and the interval (−1, 1) such that κ(0) = 0
(such as families of sigmoids often used in Machine Learning), we may equivalently
treat L2(∆) to be the space of square-integrable functionals on ∆ taking values in
(−1, 1). We will instead instead identify functionals f with the first [−1, 1]-bounded
functional obtainable from f by multiplication with a suitable scalar.

Definition 4.1 (Concepts). Concepts are functionals that take values in the inter-
val [−1, 1]. The positive-valued domain of a concept is its (possibly fuzzy) positive
extension, the negative-valued domain of a concept is its (possibly fuzzy) negative
extension1, and the 0-valued domain of a concept is its penumbra. Given an

1A logic-folkloric term for tuples in a model for which a predicate evaluates to false
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arbitrary functional f , we define its concept f̂ to be:

f̂ := f

max{sup
x∈X
|f(x)|, 1}

| f
sup
x∈X

|f(x)| | takes values bounded in the interval [−1, 1], so ‖f̂‖ ≤ 1 and hence

∫

X
f̂ dµ < 1

Now we explore the kinds of concepts we can express. The operative intuition
here is that we treat a concept – or predicate – as a test on points of the domain
space, which returns a value in [−1, 1] corresponding to the degree to which the
tested instance satisfies the predicate.

To take a simple example, the predicate ‘tall’, applied to people, is fuzzy, in-
creasing in truth value (from 0 to 1, in Zadeh’s fuzzy setting) as height increases.
As is, for instance, ‘short’, which we would treat as an antonym to ‘tall’, decreasing
(from 1 to 0) as height increases. Modelling ‘tall’ as a concept functional over the
real line, we may take the truth value at each point to be that of ‘tall’ minus ‘short’:
negative values correspond to heights that are ‘short’, positive to ‘tall’, and 0 values
to heights at which the truth values for ‘tall’ and ‘short’ coincide.

Remark 1. Concepts are closed under taking convex combinations, so it is already
possible here to implement them in ConvexRel [4]. We will push slightly further in
order to capture negation.

4.1 Modelling Classical, Fuzzy, and Nonclassical Concepts
Definition 4.2 (ε-crisp concepts). f is an ε-crisp concept when

‖f̂‖ ≥ 1− ε

When ε = 0, we force
∫
X f̂ dµ = 1, as ‖f̂‖ = 1 =

∫
X f̂

2 dµ, and since f̂ is
bounded in [−1, 1] and X has unit measure, we must have that f̂ takes values -1
or 1 almost everywhere: that is, except on sets of measure 0. In other words, these
are classical concepts with non-fuzzy truth values, whose positive and negative
and negative extensions collectively cover the domain. In other words, the Law of
Excluded Middle is obeyed.

When ε > 0, we admit penumbras and smaller supremal values. The former case
corresponds to vague or underspecified concepts, with positive and negative ex-
tensions that do not cover the domain (say for instance, music so confusing that it
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Figure 7: Various concepts over a simplex domain (say, that of Music, with vertices
labelled {Metal,Jazz,Yodelling} according to taste.) Redder regions are positive ex-
tensions, and bluer regions are negative extensions. The leftmost concept is classical
(and convex). The middle concept is uncertain: it never takes values −1 or 1. The
rightmost concept is vague: it has regions (yellow) in which it takes value 0.

cannot be classified into any genre known by the listener), and the latter case corre-
sponds to uncertain concepts, which subsume the concepts that can be obtained
by scaling classical concepts by an uncertainty parameter 0 < γ < 1. Notably, these
concepts arise from the scaling procedure when the resultant concept does not take
on the full range of values [−1, 1].

When ε ≈ 1, we force f̂ to take value 0 almost everywhere in the domain, by a
similar argument as in the case ε = 0. These correspond to concepts with very sparse
support in their domain, such as pointwise concepts. For example, a mechanism
that detects the hex-colour #6600ff positively, while not responding when shown
any other colour, would be an example of a such a pointwise concept functional with
ε ≈ 1, that takes value 1 in a very small neighbourhood of #6600ff in the domain
of colour, and 0 everywhere else.

Note that by construction, the normalised concepts f̂ can never be such that
‖f̂‖ > 1. Such bounding is only necessary if we are committed to the real interval
[−1, 1] representing fuzzy truth values, and may be dispensed with if we wish to
treat our concepts as analogs of neural activation functions.

5 Modelling Negation and Similarity
In Hilb, we can already model concept-negation as the negative identity map, which
maps f̂ 7→ −f̂ , swapping the positive and negative extensions. This negation is
involutive, but one can also have non-involutive negations, by for instance applying
a scalar in (0, 1) to −IL2(∆). The aforementioned cases subsume the expressive
capacity of [14]. In our case, we may consider further generalised notions of negation
via premultiplication by maps N which are “sufficiently close to −IL2(∆)", where
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“sufficiently close" is expressed by a parameter δ ∈ [0, 1]:

〈−IL2(∆),N〉 ≤ δ
Whenever ∆ contains more than one point, L2(∆) is infinite-dimensional. Finite

dimensional Hilbert spaces are isomorphic to their dual spaces, but this fails for
infinite dimensional Hilbert spaces: the categoryHilb of Hilbert spaces and bounded
linear maps between them is not compact closed and is hence an unsuitable semantic
category for Lambek pregroups, so we cannot place our L2(∆)-spaces there.

We discuss several alternative methods of recovering the graphical tools of cups
and caps in the conclusion. In this section, we demonstrate a particular method
of relocation from Hilb to a variant of LinRel [21], the category of vector spaces
and linear relations between them. In this structure, we win compatibility with
categorical compositional semantics, and a parameterised similarity relation which
subsumes identity, similarity, and negation.

5.1 The Category ConcFun
Definition 5.1 (Linear Relations). A linear relation between vector spaces V and
W over the same field F is a binary relation between their elements that:

• Relates the zero vectors: R(0V ,0W ).

• Is closed under vector addition: for all u,v ∈ V and all w,x ∈W , if R(u,w)
and R(v,x), then R(u + v,w + x).

• Is closed under scalar multiplication: for all v ∈ V , all w ∈W , and all λ ∈ F ,
if R(v,w), then R(λv, λw).

In short, Linear Relations between V andW relate linear subspaces of V to linear
subspaces ofW . Observe that the definition of Linear Relations does not rely on the
additive and multiplicative inverses present in the field F . We only wish to consider
positive linear combinations of concepts in order to define a generalised negation
later, so without compromising the spirit of Linear Relations, we can restrict the
scalars to the addition-multiplication module over the positive reals.

Now we define the category of concept-functionals ConcFun, for which we will
demonstrate a compact closed monoidal structure.

Definition 5.2 (ConcFun). The objects of ConcFun are the Hilbert Spaces with
distinguished bases, where ∆ are Borel unit-measure spaces, and the morphisms are
linear relations between them over the R-module (×,+,R≥0).
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Figure 8: Some examples of how these modified linear relations behave. Left: The
smallest linear relation 0→ R2 that contains the points {(1, 2), (2, 1)}. Right: A linear
relation R3 → R3 between three linearly independent points {a, b, c} and {x, y}, which is
the smallest that contains {(a, x), (b, x), (c, y)}; we show a cross section of the {a, b, c}-
ray, and rays from the origin are related if they have the same colour. We might call
these Linear Raylations.

Proposition 5.1. ConcFun is a category.

Proof. Every object of ConcFun is an object in LinRel, hence it will suffice to show
that ConcFun is closed under relational composition. We must show relational
closure under vector addition and scalar multiplication. Let X R→ Y

S→ Z.
Vector Addition: Suppose (S ◦R)(a1, c1) and (S ◦R)(a2, c2). By relational com-

position, there exists b1,b2 such that R(a1,b1), R(a2,b2), S(b1, c1), S(b2, c2).
By closure of R and S under vector addition, R(a1 + a2,b1 + b2) and S(b1 +

b2, c1 + c2), and by relational composition, (S ◦R)(a1 + a2, c1 + c2), as required.
Scalar Multiplication: (S ◦ R)(a, c). By relational composition, there exists b

such that R(a,b), S(b, c). By closure of R and S under scalar multiplication, for
an arbitrary but fixed scalar γ ∈ R≥0, R(γa, γb) and S(γb, γc), so by relational
composition, (S ◦R)(γa, γc), as required.

In fact, every morphism in LinRel between objects of ConcFun is present in
ConcFun: for an arbitrary morphism X

R→ Y in LinRel between X,Y objects of
ConcFun, if R(a, b), by closure under scalar multiplication in LinRel, R(−a,−b),
and there is a relation X R′

→ Y in ConcFun that contains (a, b) and (−a,−b).
ConcFun is symmetric strict monoidal, being essentially the same as that of

LinRel.

Proposition 5.2. ConcFun is symmetric strict compact closed monoidal.
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Proof. Explicitly, the tensor product is the direct sum ⊕ of vector spaces (which we

will write as column vectors), and the twist θV,W is the relation {(
(

v
w

)
,

(
w
v

)
) : v ∈

V,w ∈W}. We identify singleton spaces in ConcFun that only contain the empty
function ∅ 7→ R with the one-point zero subspace {0}, which is the monoidal unit in
LinRel. This unit I is unique up to isomorphism, as there is a unique linear relation
between the zero-subspaces of any two vector spaces. Hence ConcFun inherits the
symmetric strict monoidal structure of LinRel.

It remains to demonstrate compact closure, which follows similarly to compact
closure in Rel. For an arbitrary object V , we exhibit explicit self-dualities εV :
V ⊕ V → I, ηV : I → V ⊕ V that satisfy yanking.

εV := {(
(

v
v

)
,0) : v ∈ V } ηV := {(0,

(
v
v

)
) : v ∈ V }

From which it follows by relational composition that:

(εV ⊕ idV ) ◦ (idV ⊕ ηV ) = idV = (idV ⊕ εV ) ◦ (ηV ⊕ idV )

The recovery of compact closure makes ConcFun a suitable semantics category
for a Lambek Pregroup Grammar. Notably, all bounded linear maps in Hilb are
subsumed by relations in ConcFun (as they are subsumed by linear relations in
LinRel). In this new setting, we win a general, parameterised similarity relation
which subsumes negation.

Definition 5.3 (ρ-similarity in ConcFun). For ρ ∈ [−1, 1], and V in ConcFun,
define Simρ

V : V → V to be

Simρ
V := {(f, g) : g ∈ Ray({h : 〈f̂ , h〉 = ρ and h is a concept})}

Where Ray is the linear span over the positive addition-multiplication R-module
ensuring that the relation is linear, and f, g, h ∈ V .

Let us consider the action of Simρ
V on the subspace of a single classical concept

f , in the limit case when ρ = 1. The inner Ray is generated by the concepts h such
that 〈f, g〉 = 1: i.e., those classical concepts that agree with f almost everywhere.
So Sim1

V behaves like idV . Symmetrically, Sim−1
V behaves as the negation obtained

from the negative-identity linear map (bottom left in Figure 9).
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Figure 9: The action of Simρ
L2(∆) on the subspace generated by a single concept (top-

most, black circle), where ∆ is the 2-simplex. Above is a visual representation of a 2D
slice of the space L2(∆).

As ρ decreases from 1, more concepts h are introduced in the inner set, expanding
the generated ray to include concepts of decreasing degrees of concordance with f
(right edge of Figure 9). Symmetrically, as ρ increases from −1, the generated ray
expands to include concepts of increasing degrees of concordance.

When ρ = 0, we relate f to its orthogonal subspace. If f has a penumbra, then
notably, the image of Sim0

V under f contains all those concepts that are defined in
the penumbra, suggesting a form of concept-completion (upper left in Figure 9).

It is worth observing here a distinction in the literature on natural-language
semantics of negation between “logical” and “pragmatic” [13] or “conversational”
negation. We have been exclusively focused on the former, in which the negation of
a concept is another algebraically-obtained concept. The latter form of pragmatic
negation operates upon the universe of available predicates [15]: for instance, to in-
fer that “The apple is maybe red” from “The apple is not green” requires a
semantic-contextual restriction (driven by apple) to a space of compatible descrip-
tors including the concepts red and green. While the similarity operator we have
defined permits this form of alternative-capture, it only does so when all predicates
involved share the same domain.

738



Concept Functionals

6 Treasure Hunt: spatial inference with negated and
vague meanings

In this toy example, you are the captain of a crew of pirates seeking a buried treasure
of precious gemstones, and you have found a treasure-map, narrowing the location
of the treasure to a small region with two landmarks: a lake, and a palm tree.
Tomorrow you must organise an expedition, but at the moment, you are drinking
with an old man in a nearby village, hoping your charm can ply more information
from him. Early in the evening, he tells you that "The treasure is located west
of the palm". Much later, when he has finished all of your good rum, he tells
you slurringly that "The treasure is not located south of the lake", before
falling asleep.

We take the following grammatical types: {T (treasure), S (search zone), R
(region), L (landmark)}. Our focus is the modelling of R in ConcFun as [−1, 1]-
valued functionals over the treasure-map viewed as a Borel unit-measure space;
concepts in R are regions on the map. S, the search zone, is similar to R, but
may encode additional information relevant to your eventual decision, such as the
topography of the region; the value of a functional on any point in R corresponds to
your prioritisation of searching that point. We can model L as a regular vector space
– such as the coordinates of the treasure-map – where the landmarks correspond to
vectors in the space. It is unimportant how we model T . Let us focus on the
first piece of information: "The treasure is located west of the palm". We
assign words in our lexicon with types as follows: {the treasure: T , is: TRSSRT ,
located: TRSRL, west of: RLL, the palm: L}. Figure 10 depicts the diagram of
the sentence.

We model the determiner "west of" as a linear relation that relates landmarks
to regions: concepts over a rectangular unit-measure space, depicted as the dotted
rectangle surrounding the treasure map. The old man uses language as normal
people do, so directional relations are not crisp concepts (see Figure above). We
model "located" as concepts over the captain’s internal representation of the region
– depicted above as the treasure map.

Recall that Simρ behaves as the identity relation when ρ = 1, so in this case "is"
is modelled as a copula, but we can model a spectra of such copula, where the ρ
parameter controls probity: for instance "is almost certainly" is obtained with
large but less than unital ρ, while "might be" corresponds to smaller positive ρ,
and "is not" corresponds to ρ = −1. We might take into account the drunkenness
of the old man by setting the ρ parameter to be negative but slightly greater than
−1. So, we can visualise the second piece of information (collapsing the first few
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Figure 10: The composite state has potentially many functionals in its image. We
provide a “typical representative" search zone concept among those functionals; redder
regions on the treasure-map indicate areas of higher priority, and bluer regions indicate
regions of lower priority.

Figure 11: On the left, the diagram of the sentence. On the right, a typical representative
concept from the composite state so obtained; note that this concept doesn’t take on
the value 1 anywhere, which may be the case, interpreting −1 < ρ < 0.

words graphically) as in (Figure 11.)
To put the information together, suppose that we type the word "and" as SLSSR,

and model it as a relation from the tensor of two search zone concepts to a single one:
a means to combine information. There is a great degree of modelling freedom here
in the word "and", which we can exploit to model differing inferential strategies, as
in Figure 13.
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Figure 12: Treating the old man’s information as a whole.

Figure 13: Typical concepts obtainable by taking the "and" of the concepts from Figures
10 and 11. The concept heatmaps are self-explanatory. From left to right, we depict
typical concepts from the following "and" relations S ⊗ S → S respectively: we give
a generating set, from which one obtains the smallest linear raylation by closure under
vector addition and scalar multiplication.

• {(
(
f
g

)
, [x 7→ max{f(x), g(x)}])} (“greedy" pointwise maximisation)

• {(
(
f
g

)
, [x 7→ min{f(x), g(x)}])} (“pessimistic" pointwise minimisation)

• {(
(
f
g

)
, f+g

2
)}

(“bayesian" convex combinations)

• {(
(
f
g

)
, [x 7→ arg max

y∈{f(x),g(x)}
{max{y,−y}}])} (“inferential" nonconvex combina-

tions)

Your crew is looking quizzically over your shoulder at the strange diagrams you
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have been drawing, and they have been for a while. You mutter “the concepts aren’t
crisp enough" (to general confusion), and you conclude that it is easier to just have
the old man lead you to the treasure tomorrow himself, the least he could do for all
of your good rum.

7 Conclusion

We have demonstrated how we may model and compute with a rich collection of
concepts in ConcFun. Modelling concepts as functionals in this way provides room
to express fuzzy, nonclassical, and probabilistic predicates, equipped with a param-
eterised notion of similarity that subsumes identity, similarity, and negation. There
is room for future work to explore how concept functionals fit into the larger con-
ceptual spaces framework, in particular bringing in quantitative representations for
psychologically-based models, such as prototype theory.

Moreover, as we require our concepts to have measurable domains, we win a
direct theoretical representation of spatial predicates, modularly compatable with
differing inferential strategies. For future work, we hope to perform experiments
upon linguistically disciplined models of machine spatial inference with this model.
The linguistic discipline here is afforded by the categorical compositional approach,
which we have shown here is compatible with our explicitly formulated, rather than
distributionally obtained, semantics.

Regarding further practical application, allowing explicitly grounded semantics
in conjunction with categorical grammar is potentially useful for the implementation
of intelligent systems that must interface with reality beyond textual corpuses. The
added value of perspicuously and explicitly defined rules of grammar lies in ruling out
unwarranted behaviour in outcome-sensitive tasks. For instance, when an expensive
robot with a camera is directed to navigate around “dangerous-looking things”,
for which it has a concept-recogniser. From work on distributional pragmatics of
negation [15], it appears that the benefits of distributional and explicit semantics are
complementary: distributionally obtained semantics encode relations between real-
world concepts, while having explicit algorithms to recognise concepts “empirically”
grounds the relata. For instance, we may use kernel density estimates obtained from
instances of data as smooth concept functionals.

There are several ways to circumvent the obstacle of infinite-dimensional repre-
sentations. Where the concepts in question may be approximated by models with
finite parameters – as is the case for any particular trained Neural Net – we may
treat each parameter as a basis vector, though notably at the price of linearity in the
concepts expressed in the general case. Where the concept functionals themselves
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may be expressed by finite fourier approximants, linearity is conserved. Where the
space of functionals carries differentiable structure, it becomes possible to recover
stochastic gradient descent as a concrete method to learn concepts from data. There
are, of course, alternative approaches. One is to use tools of [11] and [22] in which the
compact closure requirement of categorical grammar is skipped entirely, permitting
arbitrary semantic representations. Another is to use richer grammatical systems
with structurally richer semantic categories, a more mature line of development for
many extensions of the Lambek Calculus.

Theoretically, we have left much about ConcFun unexplored: to the best of
our knowledge, the category of Linear “Raylations" is novel in this work, and merits
further study as a middle case between the full unconstrained expressivity of the
category of sets and relations Rel, and the relatively constrained linear structure
of Vect, from which we may define notions of similarity from the inner product
structure. Further, there is potential value in viewing negation as a byproduct
of a parameterised similarity relation as we have defined, as over large enough or
“universal" domains, we recover both the logical and pragmatic forms of negation,
where the former asks for a sharper parameter of negation than the latter.
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Abstract

The DisCoCat model of natural language meaning assigns meaning to a
sentence given: (i) the meanings of its words, and, (ii) its grammatical structure.
The recently introduced DisCoCirc model extends this to text consisting of
multiple sentences. While in DisCoCat all meanings are fixed, in DisCoCirc
each sentence updates the meanings of words. In this paper we explore different
update mechanisms for DisCoCirc, in the case where meaning is encoded in
density matrices—which come with several advantages as compared to vectors.

Our starting point is two non-commutative update mechanisms, borrowing
one from quantum foundations research [46, 47], and the other one that origi-
nally appeared in the area of our current interest, language meaning updating
[15, 48]. Unfortunately, both of these lack key algebraic properties, nor are
internal to the meaning category. Passing to double density matrices [3, 71] we
do get an elegant internal diagrammatic update mechanism.

We also show that (commutative) spiders can be cast as an instance of the
update mechanism of [46, 47]. This result is of interest to quantum foundations,
as it bridges the work in Categorical Quantum Mechanics (CQM) with that on
conditional quantum states. Our work also underpins the implementation of
text-level Natural Language Processing (NLP) on quantum hardware, for which
exponential space-gain and quadratic speed-up have previously been predicted.
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1 Intro
Grammar is a mathematically well-studied structure [1, 44, 33, 45], and in Natural
Language Processing (NLP) this mathematical structure is studied extensively in its
own right, most notably for parsing. However, with respect to meanings of phrases
and sentences it has not been given the respect it deserves, and some 10 years ago
‘how to combine grammar and meaning’ was still an open problem, and in particular,
doing so in a conceptually well-founded manner.

The Categorical Distributional Semantics (DisCoCat) framework [28] was intro-
duced in order to address this problem: it exploits grammatical structure in order to
derive meanings of sentences from the meanings of its constituent words. For doing
so we mostly relied on Lambek’s pregroups [45], because of their simplicity, but any
other mathematical model of grammar would work as well [20].

In NLP, meanings are established empirically (e.g. [35]), and this leads to a
vector space representation. DisCoCat allows for meanings to be described in a
variety of models, including the vector spaces widely used in NLP [28, 32, 41], but
also relations as widely used in logic [28], density matrices [55, 4, 7], conceptual
spaces [12], as well as many other more exotic models [52, 19].

Density matrices, which will be of interest to us in this paper, are to be conceived
as an extension of the vector space model. Firstly, vector spaces do not allow for
encoding lexical entailment structure such as in:

tiger ≤ big cat ≤ mammal ≤ vertebrate ≤ animal

while density matrices [66] do allow for this [4, 7]. Density matrices have also been
used in DisCoCat to encode ambiguity (a.k.a. ‘lack of information’) [54, 40, 55]. Here
the use of density matrices perfectly matches von Neumann’s motivation to introduce
them for quantum theory in the first place, and why they currently also underpin
quantum information theory [9]. Density matrices also inherit the empirical benefits
of vectors for NLP purposes. Other earlier uses of density matrices in NLP exploit
the extended parameter space [11], which is a benefit we can also exploit.

DisCoCat does have some restrictions, however. It does not provide an obvious
or unique mechanism for compositing sentences. Meanings in DisCoCat are also
static, while on the other hand, in running text, meanings of words are subject to
update, namely, the knowledge-update processes that the reader undergoes as they
acquire more knowledge upon reading a text:

Once there was Bob.
Bob was a dog.

He was a bad dog that bites.
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or, when properties of actors change as a story unfolds:

Alice and Bob were born.
They got married.

Then they broke up.

These restrictions of DisCoCat were addressed in the recently introduced DisCoCirc
framework [15], in which sentences within larger text can be composed, and meanings
are updated as text progresses. This raises the new question on what these update
mechanisms are for specific models. Due to the above-stated motivations, we focus
on meaning embeddings in density matrices.

There has been some use of meaning updating within DisCoCat, most notably,
for encoding intersective adjectives [12] and relative pronouns [57, 58]. Here, a
property is attributed to some noun by means of a suitable connective. Thus far,
DisCoCat relied on the commutative special Frobenius algebras of CQM [27, 26],
a.k.a. spiders [22, 23]. However, for the purpose of general meaning updating spiders
are far too restrictive, for example, they force updating to be commutative. For this
reason in this paper, we study several other update mechanisms and provide a unified
picture of these, which also encompasses spiders.

In Section 3, we place meaning updating at the very centre of DisCoCirc: we
show that DisCoCirc can be conceived as a theory about meaning updating only.
This will in particular involve a representation of transitive verbs that emphasises
how a verb creates a bond between the subject and the object. Such a representation
has previously been used in [32, 42], where also experimental support was provided.

In Section 4 we identify two existing non-commutative update mechanisms for
density matrices. The first one was introduced in [15, 48], which we will refer to
as fuzz, and has a very clear conceptual grounding. The other one was introduced
within the context of a quantum theory of Bayesian inference [46, 47], which we will
refer to as phaser. While this update mechanism has been used in quantum foun-
dations and has been proposed as a connective within DisCoCat [54], its conceptual
status is much less clear, not in the least since it involves the somewhat ad hoc
looking expression

√
σ ρ
√
σ involving density matrices ρ and σ. In Section 4.2 we

show that, in fact, the phaser can be traced back to spiders, but in a manner that
makes this update mechanism non-commutative. In Section 4.4 we point at already
existing experimental evidence in favour of our update mechanisms.

In Section 5 we list a number of shortcomings of fuzz and phaser. Firstly, as we
have two very distinct mechanisms, the manner in which meanings get updated is
not unique. Both are moreover algebraically poor (e.g. they are non-associative).
Finally, neither is internal to the meaning category of density matrices and CP-maps.
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As both update mechanisms do have a natural place within a theory of meaning
updating, in Section 6 we propose a mechanism that has fuzz and phaser as special
cases. We achieve this by meanings and verbs as double density matrices [3, 71],
which have a richer structure than density matrices. Doing so we still remain internal
to the meaning category of density matrices and CP-maps, as we demonstrate in
Section 7, where we also discuss implementation on quantum hardware.

In Section 8 we provide some very simple illustrative examples.

Work related to DisCoCat and DisCoCirc. Since DisCoCat came about
around 2008 [13], there has been some related work, for example [8] soon after.
Within the context of recurrent neural networks (RNNs) there also is some work
now taking aspects of grammar into account, for example in [37, 62]. The paper [49]
directly combines ideas from RNNs with DisCoCat, while aiming to maintain the
richness and flexibility of the latter.

The sentence type used in this paper was also used in the recent DisCoCat paper
that introduces Cartesian verbs [24], and as discussed in [24] Sec. 2.3, precursors of
this idea are in [32, 43, 42]. Also within the context of DisCoCat, the work by
Toumi et al. [16, 63] involves multi-sentence interaction by relying on discourse
representation structures [39], which comes at the cost of reducing meaning to a
number. Textual context is also present in the DisCoCat-related papers [56, 69],
although no sentence composition mechanism is proposed.

Within more traditional natural language semantics research, dynamic seman-
tics [34, 64] models sentence meanings as I/O-transitions and text as compositions
thereof. However, the approach is still rooted in predicate logic, just as Montague
semantics is, hence not accounting for more general meaning spaces, and also doesn’t
admit the explicit type structure of diagrams/monoidal categories. Dynamic seman-
tics is a precursor of dynamic epistemic logic (DEL) [6, 5]; we expect that DEL, and
generalisations thereof, may in fact emerge from our model of language meaning by
considering an epistemic-oriented subset of meanings. In [59], static and dynamic
vector meanings are explicitly distinguished, taking inspiration for the latter from
dynamic semantics. There are many other logic-oriented approaches to text e.g. [2],
of text organisation e.g. [51], and of the use of categorical structure.

2 Preliminaries
We expect the reader to have some familiarity with the DisCoCat framework [28, 57,
24], and with its diagrammatic formalism that we borrowed from Categorical Quan-
tum Mechanics (CQM) [21, 22, 23], most notably caps/cups, spiders, and doubling.
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We also expect the reader to be familiar with Dirac notation, projectors, density
matrices, spectral decomposition and completely positive maps as used in quantum
theory. We now set out the specific notational conventions that we will be following
in this paper.

We read diagrams from top to bottom. Sometimes the boxes will represent
linear maps, and sometimes they will represent completely positive maps. In order
to distinguish these two representations we follow the conventions of [23, 22], which
means that a vector and a density matrix will respectively be represented as:

vector
. . . . . .

density
outputs

where wires represent systems. A privileged vector for two systems is the cap:

:=
∑

i

|ii〉

and its adjoint (a.k.a. ‘bra’) is the cup:

:=
∑

i

〈ii|

Similarly to states, linear maps and CP maps are respectively depicted as:

linear
. . .

. . . . . .
CP
. . .inputs

outputs

We will reserve white dots to represent spiders:
. . .

. . .
:=

∑

i

|i . . . i〉〈i . . . i| (1)

Crucially, spiders are clearly basis-dependent, and in fact, they represent orthonor-
mal bases [27]. Note also that caps and cups are instances of spiders, and more
generally, that spiders can be conceived as ‘multi-wires’ [23, 22]: the only thing that
matters is what is connected to what by means of possibly multiple spiders, and not
what the precise shape is of the spider-web that does so. This behaviour can be
succinctly captured within the following fusion equation:

. . .

. . . . . .

. . .

=
. . .

. . .
(2)
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By un-doubling we refer to re-writing a CP-map as follows [60, 23]:

CP ; f f

with the two boxes being ∑i fi ⊗ |i〉 and
∑

i |i〉 ⊗ f̄i for Kraus maps fi, that is:

∑
i
fi ⊗ |i〉

∑
i
|i〉 ⊗ f̄i (3)

In the specific case of density matrices this becomes:

dens ; ω ω (4)

Concretely, for a density matrix ∑i pi|i〉〈i| we have ω = ∑
i
√
pi|ii〉, i.e.:

∑
i

√
pi |ii〉

∑
i

√
pi |ii〉

3 Text meaning in DisCoCirc as updating
The starting point of both DisCoCat and DisCoCirc is the fact that pregroup analysis
[45] of the grammatical structure associates to each sentences a diagram. In the case
of a sentence (of which the associated grammatical type is denoted s) consisting of a
subject (with type n for ‘noun’), a transitive verb (with composite type −1n ·s ·n−1),
and an object (also with type n) this diagram looks as follows:

n ns nn -1-1

n and −1n cancel out n−1 and n cancel out

s is retained

In DisCoCat [28] we then replace the types by the encoding of the word meanings,

Bob bites Alicenoun as state noun as state

verb as state

750



Meaning updating in DisCoCirc

which in our case are represented by density matrices. The wires are interpreted as
maps, for example, the cups will be the CP-maps associated to Bell-effects:

∑

i

〈ii|

while the straight wire is an identity.
The above assumes that all words have fixed meanings given by those density

matrices. However, as already explained in the introduction, meanings evolve in the
course of developing text. Therefore, in DisCoCirc [15], prime actors like Bob and
Alice in Bob bites Alice are not represented by a state, but instead by a wire
carrying the evolving meaning. For this purpose we take the s-type to be the same
as the type of that of the incoming actors [15]:

s-type has Alice-wire s-type has Bob-wire
Alice

Bob
bitesnoun as wire

Alice

Bob

noun as wire

If we happen to have prior knowledge about that actor we can always plug a corre-
sponding ‘prior’ state at the input of the wires:

Alice

bites

Bob

Bob prior Alice Prior

which yields a DisCoCat-style picture. One can think of a sentence with an open
input as a function f , while providing a prior state corresponds to f being applied
to a concrete input as in f(x). The major advantage of not fixing states as a default
is that this now allows us to compose sentences, for example:

Alice

bites

Bob

fears
Bob Alice

The above in particular means that the s-type will depend on the sentence. For
example, in Bob is (a) dog, the noun dog can be taken to be fixed, so that the
s-type becomes the Bob-wire alone, and we also introduce a special notation for is:

Bob

dog

is

(5)
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Yanking wires this becomes:
Bob

dog (6)

Here we think of dog as an adjective, for Bob. This reflects what we mean by
an update mechanism in this paper: we update an actor’s meaning (here Bob) by
imposing a feature (here Dog) by means of the grey dot connective, where by ‘actor’
we refer to varying nouns subject to update.

We can also put more general transitive verbs into an adjective-like shape like
in (6) by using the verb-form introduced in [32, 42]:

bites

AliceBob
verb

= bites

Bob Alice

This representation of transitive verbs emphasises how a verb creates a bond between
the subject and the object. From this point of view, an entire text can in principle
be reduced to updates of this form, with the grey dot playing a central role.

The main remaining question now is:
What is the grey dot?

A first obvious candidate are the spiders (1), which have been previously employed
in DisCoCat for intersective adjectives [12] and relative pronouns [57, 58]. However,
while by spiders being multi-wires, by fusion (2) we have:

=

clearly we don’t have:

bites
Alice Bob

sad
6=

bites

Alice Bob
sad

Therefore, in this case the grey dot needs to be something else. As spiders do make
sense in certain cases, we desire something that has spiders as a special case, and as
we shall see, this wish will be fulfilled.
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4 Updating density matrices: fuzz vs. phaser
What is the most basic form of update for density matrices? Following Birkhoff-von
Neumann quantum logic [10], any proposition about a physical system corresponds
to a subspace A, or its corresponding projector PA. Following [68, 67] it is also
natural to think of propositions for natural language meaning like (being a) dog
as such a projector. Imposing a proposition on a density matrix is then realised as
follows:

P ◦ − ◦ P (7)

for example, Pdog ◦ ρBob ◦ Pdog. Typically the resulting density matrix won’t be
normalised, so we will use the term density matrix also for sub-normalised and
super-normalised positive matrices.

Now, by representing meanings by density matrices also dog itself would corre-
spond to a density matrix in (6) for an appropriate choice of the grey dot. Fortu-
nately, each projector P is a (super-normalised) density matrix.

More generally, by means of weighted sums of projectors we obtain general den-
sity matrices in the form of their spectral decomposition:

∑

i

xiPi (8)

where one could imagine these sums to arise from the specific empirical procedure
(e.g. [55, 50]) that is used to establish the meaning of dog. With dog itself a density
matrix, we can now think of the grey dot in (6) as combining two density matrices:

Bob is (a) dog :=
dogBob

(9)

We now consider some candidates for such a grey dot. Firstly, let’s eliminate two
candidates. Composing two density matrices by matrix multiplication doesn’t in
general return a density matrix, nor does this have an operational interpretation. Al-
ternatively, component-wise multiplication corresponds to fusion via spiders, which
as discussed above is too specialised as it is commutative.

Two alternatives for these have already appeared in the literature:

ρ σ :=
∑

i

xi

(
Pi ◦ ρ ◦ Pi

)
with σ :=

∑

i

xiPi (10)

ρ σ :=
(∑

i

xiPi

)
◦ ρ ◦

(∑

j

xjPj

)
with σ :=

∑

i

x2
iPi (11)
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where for each we introduced a new dedicated ‘guitar-pedal’ notation. The first of
these was proposed in [15, 48] specifically for NLP. The second one was proposed in
the form

√
σ ρ
√
σ within the context of a quantum theory of Bayesian inference [46,

47, 29]. Clearly, as update mechanisms, each of these can be seen as a quantitative
generalisation of (7):

∑

i

xi

(
Pi ◦ − ◦ Pi

)
(12)

(∑

i

xiPi

)
◦ − ◦


∑

j

xjPj


 (13)

Diagrammatically, using un-doubling, we can represent the spectral decomposi-
tion of the density matrix σ as follows:

σ ;

x

P

and the fuzz and phaser seen as update mechanisms as in (6) then become:

x

P =
P P

x x2

P =
x

P

x

P

where the state labeled x is the vector |x〉 = (x1 . . . xn−1)T , the box labeled P is the
linear map ∑i Pi ⊗ 〈i|, and the white dot is a spider (1).

4.1 The fuzz

We call the fuzz. The coefficients xi in the spectral decomposition of σ are
interpreted as representing the lack of knowledge about which proposition Pi is
imposed on ρ. In other words, the fuzz imposes a fuzzy proposition on the density
matrix, and returns a density matrix comprising the mixture of having imposed
different propositions each yielding a term Pi ◦ ρ ◦ Pi. This reflects the manner in
which we would update a quantum state if there is uncertainty on which projector
is imposed on a system undergoing measurement.
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4.2 The phaser
We call the phaser. To understand the effect of the phaser, we write the 2nd
argument σ in (11) in terms of rank-1 projectors Pi := |i〉〈i| for an ONB {|i〉}i,
which can always be done by allowing some of the xi’s to be the same. We have the
following initial result relating the phaser to spiders:

Lemma 4.1. The phaser, when the 1st argument is pure, takes the form of a spider
where the ONB in which the spider is expressed arises from diagonalisation of the
2nd argument. Setting |x〉 = (x1 . . . xn−1)T , we have:

(
|ψ〉〈ψ|

) (∑

i

x2
i |i〉〈i|

)
= |φ〉〈φ|

where:

|φ〉 :=
xψ

(14)

So in particular, the resulting density matrix is also pure.

Proof. We have, using the fact the xi’s are real:
(
|ψ〉〈ψ|

) (∑

i

x2
i |i〉〈i|

)
=

(∑

i

xi|i〉〈i|
)
|ψ〉〈ψ|

(∑

j

xj |j〉〈j|
)

=
(∑

i

〈i|ψ〉xi|i〉
)(∑

j

〈ψ|j〉xj〈j|
)

=
(∑

i

〈i|ψ〉xi|i〉
)(∑

j

〈j|ψ〉xj〈j|
)

=
(∑

i

ψixi|i〉
)(∑

j

ψ̄ix̄j〈j|
)

with ψi := 〈i|ψ〉. As the explicit form of the spider is:

=
∑

i

|i〉〈ii|

we indeed have:
∑

i

ψixi|i〉 = |φ〉 =
xψ

what completes the proof.
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From this it now follows that the apparently obscure phaser, in particular due
to the involvement of square root when presented as in [46, 47, 29], canonically
generalises to the spiders previously used in DisCoCat:

Theorem 4.2. The action of the phaser on its first argument can be expressed in
terms of spiders, explicitly, using the notations of (11), it takes the form:

− σ =
x

(15)

Proof. We have:

x

=
(∑

j

|j〉〈jj|
)
◦
(

1⊗
∑

i

xi|i〉
)

=
∑

i

xi|i〉〈i|

which then yields the action of the phaser in the form (13).

So in conclusion, the phaser boils down to the spiders that we are already famil-
iarly with in DisCoCat, hence now solidly justifying its consideration by us in the
first place. Moreover, there is one important qualification that will overcome our
objection voiced above against using spiders given that they yield commutativity.
Namely, these spiders may be expressed in different ONBs which they inherit from
the 2nd argument σ, and if we update with nouns which diagonalise in different
bases, then the corresponding spiders typically won’t commute:

2

1

6=
2

1

Hence, for the phaser, it is the properties with which the nouns are updated that con-
trol commutativity. The special case in which they commute is then the counterpart
to the intersective adjectives [38] mentioned above.

Finally, we justify the term ‘phaser’. Recalling that the key feature of the fuzz
and the phaser is that they produce a density matrix, we see that we can let the xi

in the phaser be complex:
(∑

i

xi|i〉〈i|
)
◦ − ◦

(∑

j

x̄j |j〉〈j|
)

(16)
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In that case, of course, the density matrix σ := ∑
i |xi|2Pi does not fully specify

(16), so rather than the density matrix, the data needed is the pair consisting of all
xi’s and Pi’s. Taking all xi’s such that |xi| = 1 then the operation:

x

takes the form of the original phases of ZX-calculus [17, 18, 23]. All spiders are
equipped with phases, and more abstractly, they can be defined as certain Frobenius
algebras [27]. In more recent versions of the ZX-calculus, more general phases are
also allowed [53, 30], as these exist for equally general abstract reasons, and this
then brings us to the general case of the phaser.

4.3 Normalisation for fuzz and phaser
We have the following no-go theorem for the fuzz:

Proposition 4.3. If the operation (12) sends normalised density matrices to nor-
malised density matrices, then it must be equal to a (partial) decoherence operation:

∑

i

(
Pi ◦ − ◦ Pi

)

which retains all diagonal elements and sets off-diagonal ones to zero.

Proof. By trace preservation ∑i xi(Pi ◦ Pi) = ∑
i xiPi is the identity, so xi = 1.

For the phaser we have an even stronger result:

Proposition 4.4. If the operation (16) sends normalised density matrices to nor-
malised density matrices, then for all i we have |xi| = 1. Taking the xi’s to be
positive reals, only the identity remains.

Proof. By trace preservation (∑i xiPi) ◦ (∑j x̄jPj) = ∑
i xix̄i(Pi ◦ Pi) = ∑

i |xi|2Pi

is the identity, so |xi| = 1.

It immediately follows from Propositions 4.3 and 4.4 that the operations (12)
and (16) only preserve normalisation for a single trivial action both of and . Of
course, this was already the case for single projectors PA, which will only preserve
normalisation for fixed-points, so this result shouldn’t come as a surprise. Hence,
just like in quantum theory, one needs to re-normalise after each update if one insists
on density matrices to be normalised.

757



Coecke and Meichanetzidis

4.4 Experimental evidence

Both the fuzz and the phaser have recently been numerically tested in their per-
formance in modelling lexical entailment [48] (a.k.a. hyponymy). In [48] both fuzz
and phaser are used to compose meanings of words in sentences, and it is explored
how lexical entailment relationships propagate when doing so. The phaser performs
particularly well, and seems to be very suitable when one considers more complex
grammatical constructs. While these results were obtained within the context of
DisCoCat, they also lift to the realm of DisCoCirc.

5 Non-uniqueness and non-internalness

The above poses a dilemma; there are two candidates for meaning update mech-
anisms in DisCoCirc. This seems to indicate that a DisCoCirc-formalism entirely
based on updating, subject to that update process being unique, is not achievable.

Moreover, it is easy to check (and well-known for the phaser [36]) that both
and fail to have basic algebraic properties such as associativity, so treating

them as algebraic connectives is not useful either. But that was never really our
intention anyway, given that the formal framework where meanings in DisCoCat
and DisCoCirc live is the theory of monoidal categories [25, 61]. In these categories,
we both have states and processes which transform these states. In the case that
states are vectors these process typically are linear maps, and in the case that states
are density matrices these processes typically are CP-maps. However, neither the
fuzz nor the phaser is a CP-map on the input ρ⊗ σ, which can clearly be seen from
the double occurrence of projectors in their outputs. In other words, these update
mechanisms are not internal to the meaning category. This means that there is no
clear ‘mathematical arena’ where they live.

We will now move to a richer meaning category where the fuzz and phaser will be
unified in a single construction which will become internal to the meaning category,
as well as having a diagrammatic representation.

6 Pedalboard with double mixing

In order to unify fuzz and phaser , and also to make them internal to the
meaning category, we use the double density matrices (DDMs) of [3, 71]. This is a
new mathematical entity initially introduced within the context of NLP for capturing
both lexical entailment and ambiguity within one structure [3]. On the other hand,
they are a natural progression from the density matrices introduced by von Neumann
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for formulating quantum theory [65]. The key feature of DDMs for us is that they
have two distinct modes of mixedness, for which we have the following:

Theorem 6.1. DDMs enable one to unify fuzz and phaser in a combined update
mechanism, where fuzz and phaser correspond to the two modes of mixedness of
DDMs. In order to do so, meanings of propositions are generalised to being DDMs,
and the update dot is then entirely made up of wires only:

DMM

We now define DDMs, and continue with the proof of the theorem. Firstly, it
is shown in [71] that there are two natural classes of DDMs, namely those arising
from double dilation, and those arising from double mixing, and here we need the
latter. While mixing can be thought of as passing from vectors to weighted sums of
doubled vectors as follows (using the un-doubling representation):

|φ〉 ;
∑

i

xi|φi〉|φ̄i〉

double mixing means repeating that process once more [3]:
∑

i

xi|φi〉|φ̄i〉 ;
∑

ijk

ykxikxjk|φik〉|φ̄ik〉|φjk〉|φ̄jk〉

Setting |ωik〉 := y
1/4
k x

1/2
ik |φik〉 this becomes:

∑

ijk

|ωik〉|ω̄ik〉|ωjk〉|ω̄jk〉

and in diagrammatic notation akin to that of un-doubled density matrices, we obtain
the following generic form for double density matrices [71]:

ω̄ ω ω̄ω

In order to relate DDMs to our discussion in Section 4, we turn them into CP-maps
in the un-doubled from of (3), by bending up the inner wires:

ω̄ ω ω̄ω
=

ω̄ ω

ω ω̄

(17)
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where:
ω := ω ω̄ := ω̄

as well as the horizontal reflections of these. In order to see that this is indeed an
instance of (3), using fusion (2) we rewrite the spider in the RHS of (17) as follows:

ω

ω̄ ω

ω̄

These CP-maps take the concrete form:

∑

k

(∑

i

|ωik〉〈ωik|
)
◦ − ◦

(∑

j

|ωjk〉〈ωjk|
)

(18)

where the k-summation sums corresponds to the spider and the other summations
to the two connecting wires. Using the spectral decomposition of the density matrix∑

i |ωik〉〈ωik| this can be rewritten as follows, where the yk’s are arbitrary:

(18) =
∑

k

(∑

i

x′ikPik

)
◦ − ◦

(∑

j

x′jkPjk

)

=
∑

k

yk

(∑

i

x′ik
yk
Pik

)
◦ − ◦

(∑

j

x′jk

yk
Pjk

)

=
∑

k

yk

(∑

i

xikPik

)
◦ − ◦

(∑

j

xjkPjk

)

Now, this expression accommodates both the update mechanisms (12) and (13) as
special cases, which are obtained by having either in the outer- or in the two inner-
summations only a single index, and setting the corresponding scalar to 1. Conse-
quently, in this form, we can think of the doubled density matrices as a canonical
generalisation of propositions that unifies fuzz and phaser.

By relying on idempotence of the projectors we obtain:

(18) =
∑

k

yk

(∑

i

xikPik ◦ Pik

)
◦ − ◦

(∑

j

xjkPjk ◦ Pjk

)
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and we can now indicate the roles of fuzz and phaser diagrammatically, as follows:

P P

P P

(19)

where the summations and corresponding scalars are represented by their respective
pedals. Of course, this notation is somewhat abusive, as also the projectors are part
of the fuzz and phaser. Also, while the phaser appears twice in this picture, there
is only one, just like for a density matrix |ψ〉〈ψ| there are two occurrences of |ψ〉.

We now put (19) in a form that exposes what the dot as in (6) is when taking
meanings to be DDMs. Recalling the wire-bending we did in (17) we have:

P P

P P

=
P P PP

so it indeed follows that the dot only contains plain wires, which completes the proof.

Remark 6.2. One question that may arise concerns the relationship of the de-
composition of CP-maps (19) and the Krauss decomposition of CP maps. A key
difference is that (19) is a decomposition in terms of projections, involving two levels
of sums, constituting it more refined or constrained than the more generic Krauss
decomposition. This then leads to interesting questions, for example, regarding
uniqueness of the projectors and coefficients arising from the spectral decomposi-
tions in our pedal-board construction. Furthermore, these coefficients may be used
in a quantitative manner, e.g. for extracting entropies as in [55].

7 Meaning category and physical realisation
We can still take as meaning category density matrices with CP-maps as processes.
We can indeed think of a DDM as a density matrix of the form (4):

ω̄ω ω̄ω
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The update dot is a CP-map of the form (3):

︷ ︸︸ ︷ ︷ ︸︸ ︷DMM input DMM input

In this way we obtain a meaning category for which updating is entirely internal.
In previous work, we already indicated the potential benefits of the implemen-

tation of standard natural language processing tasks modelled in DisCoCat on a
quantum computer [70]. One major upshot is the exponential space gain one ob-
tains by encoding large vectors on many-qubit states. Another is the availability
of quantum algorithms that yield quadratic speedup for tasks such as classification
and question-answering. Moreover, the passage from vectors to density matrices is
natural for a quantum computer, as any qubit can also be in a mixed state. Double
density matrices are then implemented as mixed entangled states.

8 Some examples
Example 1: Paint it black. Following Theorem 4.2, the phaser can be ex-
pressed as a spider-action (15). The aim of this example is to illustrate how in this
form non-commutative updating arises. For the sake of clarity we will only consider
rank-1 projectors rather than proper phasers, but this suffices for indicating how
non-commutativity of update arises. The toy text for this example is:

Door turns red.
Door turns black.

Diagrammatically we have:
Door

red

black

One can think of turns as an incarnation of is with non-commutative capability.
Therefore it is of the form (5), and reduces to (6), where the grey dots are spiders.
We take red and black to correspond to vectors |r〉 and |b〉, with induced density
matrices |r〉〈r| and |b〉〈b|. As they share the feature of both being colours, they are
related (e.g. according to a factual corpus) and won’t be orthogonal:
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|r〉
|b〉

|r〉⊥

|b〉⊥

We can now build a ONB associated to red, with |r〉 one of the basis vectors, and
the other ones taken from |r〉⊥, which results in red spiders representing red, and
then, taking |x〉 only to be non-zero for basis vector |r〉, turns red becomes:

red
=

xr = 1, x
r⊥ = 0

Similarly, turns black becomes:

black
=

xb = 1, x
b⊥ = 0

Crucially, the red and black spiders won’t commute since they are defined on different
ONBs taken from {|r〉, |r〉⊥} and {|b〉, |b〉⊥} respectively.

Concretely, we obtain two rank-1 projectors, |r〉〈r| and |b〉〈b| respectively, as
desired. Taking an initial state for the door only considering the door’s colour:

door
:= |d〉〈d|

we obtain:

red
door

=
(
|r〉〈r|

)
◦
(
|d〉〈d|

)
◦
(
|r〉〈r|

)
= z |r〉〈r|

for some non-zero z ∈ R+, so now the door is red, and also:

red

black

door

=
(
|b〉〈b|

)
◦
(
z |r〉〈r|

)
◦
(
|b〉〈b|

)
= z′ |b〉〈b|

so now the door is black, just like Mick Jagger wanted it to be.
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Example 2: Black fuzztones. The aim of this example is to demonstrate the
operation of the fuzz in modelling ambiguous adjectives. Above we treated black
as pure, but in fact, it is ambiguous in that, for example, it may refer to a colour as
well as to an art-gerne. This kind of ambiguity is accounted for by the fuzz. Disam-
biguation may take place when applying the ambiguous adjective to an appropriate
noun, for example:

black poem
black door

or not, when the noun is lexically ambiguous as well, for example:
black metal

which may be an art-genre, namely the music-genre, or the material:

This same ambiguity can propagate even further e.g.:
black metal fan

which clearly demonstrates the importance of the fuzz, as ambiguity is ubiquitous
in natural language. The latter example in fact also involves grammatical and
syntactical ambiguity. This level of ambiguity is beyond the scope of this paper and
will be studied elsewhere.

So now, besides blackcol as defined above for colour, there is another use of it,
namely blackgen for genre:

blackgen

=
xb = 1, x

b⊥ = 0

and we can represent the overall meaning as the following fuzz:

black
= y

blackcol

+ y′
blackgen
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that is, concretely:

− σblack = y
(
|bcol〉〈bcol| ◦ − ◦ |bcol〉〈bcol|

)
+ y′

(
|bgen〉〈bgen| ◦ − ◦ |bgen〉〈bgen|

)

where the ambiguity is induced by the adjective:

σblack := |bcol〉〈bcol|+ |bgen〉〈bgen|

Inputting ρpoem, ρdoor, and ρmetal, we expect empirically (from a factual corpus)
that the following terms will be very small:

(
|bcol〉〈bcol| ◦ ρpoem ◦ |bcol〉〈bcol|

)
≈ 0 ≈

(
|bgen〉〈bgen| ◦ ρdoor ◦ |bgen〉〈bgen|

)

while these will all be significant:
(
|bcol〉〈bcol| ◦ ρdoor ◦ |bcol〉〈bcol|

)
� 0

(
|bgen〉〈bgen| ◦ ρpoem ◦ |bgen〉〈bgen|

)
� 0

(
|bcol〉〈bcol| ◦ ρmetal ◦ |bcol〉〈bcol|

)
� 0

(
|bgen〉〈bgen| ◦ ρmetal ◦ |bgen〉〈bgen|

)
� 0

That is, poem and door are unambiguous nouns that disambiguate the ambiguous
adjective black, while metal is ambiguous before and remains ambiguous after the
application of the adjective black on it.

9 Outro
In this paper we proposed update mechanisms for DisCoCirc, in terms of fuzz and
phaser, which in the real world look something like this:

:= :=

and you can hear their sound in the QPL talk on the present paper [14]. Our pedal-
notation has meanwhile also been adopted in [31], introducing the compressor.

We unified them within a single diagrammatically elegant update mechanism
by employing double density matrices. In this way we upgraded the commutative
spiders used in DisCoCat to non-commutative ones that respect the temporal order
of the sentences within a text. The commutative spiders consist a special case of
the more general phaser. At the same time, the fuzz models lexical ambiguity.
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One might consider employing the double density matrix formalism to contribute
to a theory of quantum Bayesian inference. Vice versa, fully incorporating inference
within the diagrammatic formalism of quantum theory would aid in successfully
modeling tasks in natural language processing as well as cognition.

Furthermore, since double density matrices can be described by standard density
matrices with post-selection, the update formalism we have defined here can in
principle be implemented in quantum hardware. Therefore, our framework provides
a source for small- and large-scale experiments in the novel field of quantum natural
language processing.

Finally, one might wonder whether an ‘anatomy of completely positive maps’ can
be performed by means of double density matrices, potentially providing a compact
framework in which to study quantum channels.
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Abstract

The categorical compositional distributional model of meaning gives the
composition of words into phrases and sentences pride of place. However, it
has so far lacked a model of logical negation. This paper gives some steps
towards providing this operator, modelling it as a version of projection onto the
subspace orthogonal to a word. We give a small demonstration of the operator’s
performance in a sentence entailment task.

1 Introduction
Compositional models of meaning aim to represent the meaning of phrases and sen-
tences by combining representations of the words in the sentence according to some
rule. Compositional distributional models, such as described in [3, 12, 30] combine
the compositional approach with vector-based models of word meaning. In these
models, nouns are represented as vectors, and function words, such as verbs and
adjectives, are modelled as linear maps. In this paper, we use the categorical compo-
sitional distributional (DisCoCat) model introduced in [12]. This model formalises
the compositional approach to language using category theory, setting up a func-
torial mapping between the grammar of the language on the one hand, and the
structures used to represent lexical meaning on the other. In modelling the mean-
ing of words and sentences, a distinction can be made between words with lexical
content, and words that can arguably be modelled as an operation on the structure
of the sentence. For example, in [36], relative pronouns are modelled as routing
information around a sentence using the structure of a Frobenius algebra. In [19],
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conjunctions are modelled using Frobenius algebras. In [12], negation is modelled as
a linear map on a two-dimensional sentence space which sends each basis vector to
the subspace orthogonal to it. This idea of modelling negation as projection to the
orthogonal subspace was used in [44], but at the vector level is somewhat unsatis-
factory since a word and its negation are then of two different kinds. Furthermore
within DisCoCat, words should be modelled as linear maps, which projection onto
an orthogonal subspace doesn’t satisfy.

There are various kinds of negation. Modelling negation as projection to an
orthogonal subspace, as described above, has the result that the negated word or
sentence is not similar to the word itself. However, it has also been argued that
the negation of a word should be fairly similar to the original. In [21] the notion
of conversational negation is introduced, in which the negation of a word should be
viewed as introducing a range of alternatives to the negated concept. For example,
That’s not a horse, it’s a donkey makes sense, whereas That’s not a horse, it’s a
score does not. It is difficult to imagine a natural context where this sentence would
be uttered. Amongst other findings, they show that pairs of items that are close
together in a semantic space form good alternatives within this kind of sentence. For
example, they have pairs such as lizard/iguana or trumpet/saxophone. Similarly, [17]
argue that ‘not red’ is still a colour, and provide a model where the vector is divided
into domains and only part of the vector is inverted. In [34] negation is viewed as
antonymy, and they provide a model of negation in which an encoder is trained to
produce the antonym of a given adjective.

In [44] the aim is not to model conversational negation, but to model negation
within the context of information retrieval. We take a similar stance. Whilst dis-
tributional semantics is about modelling human use of language, as derived from
text corpora, there is also a range of research into distributional representations for
natural language inference, some incorporating logical semantics [4, 43, 8]. In this
work, we aim to give an account of negation that can be used for natural language
inference. In previous work [25, 24], we looked at hyponymy relations between in-
dividual words, and how that relation lifts to entailment between short sentences.
In this work, we will introduce a way of modelling negation that interacts with our
notions of hyponymy and composition in a way that allows us to model entailment
between sentences. As such, the operator we present is more similar to a notion of
negation then the pragmatic, conversational, notion described in [21].

Within the categorical compositional framework, we can be flexible about how
to represent word meanings. In [12] the category FVect of vector spaces and linear
maps was used, meaning that nouns and sentences are modelled as vectors, and
functional words such as verbs and adjectives are modelled as linear maps. In [7] the
category ConvexRel was used, enabling the representation of nouns and sentences
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as convex sets and function words as convex relations. In this paper we will use the
category CPM(FVect) which models nouns and sentences as positive operators,
and function words as completely positive maps. This approach to meaning was
developed in [1, 2] and implemented in [24, 25]. We model negation as an operation
related to projection onto the orthogonal subspace. In the current paper we will
concentrate on negating nouns and verbs, however, the proposal we make can be
applied to other forms such as adjectives, adverbs, or verb phrases. Algebraically,
the operation we propose can also be applied to sentences. However, more work is
needed to determine how this makes sense linguistically, since we do not currently
have an account of quantification in this framework (but see [16] for an alternative
account).

2 Background
2.1 Categorical compositional approaches to meaning
The categorical compositional model of meaning uses the framework of category
theory to set up a mapping between the grammar of a language and the structures
used to represent the manings of individual words. A formalization of grammar is
chosen, and represented as a category, called the grammar category. A choice is made
about the type of meaning representation, which again is formalized as a category,
called the meaning category. The meaning category and the grammar category
are chosen to have the same abstract structure. Type reductions in the grammar
category are then functorially mapped to operations in the semantics category. In
this paper, the grammar category and the meaning category are both compact closed.
For details of what this means within the context of linguistics, see [12] or [33]. A
gentle presentation is also given in [7].

Pregroup grammar In this paper, we will use pregroup grammar, although the
formalism is flexible about what can be used, and other choices are given in, for
example, [10, 26, 29]. A pregroup is a partially ordered monoid (X, ·, 1,≤) where
each x ∈ X has a left and a right adjoint (−)l, (−)r such that:

εrx : x · xr ≤ 1, εlx : xl · x ≤ 1 ηr
x : 1 ≤ xr · x, ηl

x : 1 ≤ x · xl (1)

A pregroup grammar is the pregroup freely generated over a set of chosen types. We
consider the set containing n for noun and s for sentence. Complex types are built
up by concatenation of types, and we often leave out the dot so that xy = x · y. If
x ≤ y we say that x reduces to y.
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A string of types t1, ...tn is grammatical if it reduces, via the morphisms above,
to the sentence type s. For example, typing clowns as n, tell as nrsnl and the truth
as n, the sentence Clowns tell the truth has type n(nrsnl)n and is shown to be
grammatical as follows:

(εr 1 εl)n(nrsnl)n ≤ (εr 1)(n nrs 1) (2)
≤ 1 s 1 = s (3)

The above reduction can be represented graphically as follows:

n nrsnl n

Clowns tell the truth

Meaning categories As a first example we describe how pregroup grammar is
mapped to FVect, the category of vector spaces and linear transformations. The
noun type n is mapped to a vector space N and the sentence type s to S. The
concatenation operation in the grammar is mapped to ⊗, i.e., the tensor product
of vector spaces. Then the morphisms εrx and εlx map to tensor contraction, and ηr

x

and ηl
x map to identity matrices.

Function words like verbs and adjectives are modelled as (multi)linear maps.
Intransitive verbs are represented as maps from N to S, or matrices in N ⊗ S, and
transitive verbs are represented as maps from two copies of N to S, or tensors in
N ⊗ S ⊗ N . So, in the example above, Clowns is mapped to a vector in N , as is
the truth, and tell is mapped to a tensor in N ⊗S⊗N . The vectors and tensors are
concatenated using the tensor product, and tensor contraction is applied to map the
sentence down into one sentence vector.

Compact closed categories have a nice diagrammatic calculus, described in [39],
or for a linguistically couched explanation see [12]. In this calculus, the composition
of the words Clowns, tell, and the truth into the sentence Clowns tell the truth is
expressed as follows:

Clowns tell the truth

N NS
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We will use this notation later to describe how to build particular representations
of verbs and other function words.

In [12], the authors model negation as an operator on the sentence space. How-
ever, they only give a semantics for that operator in the case where the sentence
space is two dimensional, and the dimensions correspond to truth and falsity - then,
negation can be modelled as a swap operator, taking true to false and vice versa.
In that model, the sentence Clowns do not tell the truth is given by the following
diagram:

Clowns tell the truth

N NS

¬

do not

which can be simplified to:

Clowns tell the truth

N N
S

¬

In this paper, we will take a different view, in which negation is applied at the
word level, rather than the sentence level. This is because, as mentioned, we do
not currently have a model of quantification, making negation at the sentence level
harder to deal with.

2.2 Modelling words as positive operators
In [32], [2], and [1] the DisCoCat model is instantiated with the meaning category
CPM(FVect). This has the same objects as FVect, but the morphisms are now
completely positive maps. The CPM construction is introduced in [38]. Words
are now represented as positive operators rather than as vectors, and maps between
them are completely positive maps. In the rest of the paper, we will use bra-ket
notation which can be explained simply as follows. Suppose we are in a vector space
V = Rn, which is usually the case in distributional semantic applications. Then:

• A ket |v〉 ∈ V is a column vector.

• A bra 〈v| ∈ V is a row vector.
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• 〈v|w〉 is the inner product of |v〉 and |w〉

• |v〉 〈w| is the outer product of |v〉 and |w〉

A positive operator is then defined as follows. For a unit vector |v〉, the projection
operator |v〉 〈v| onto the subspace spanned by |v〉 is called a pure state. A positive
operator is given by sum of pure states. It is an operator A such that:

1. ∀v ∈ V. 〈v|A|v〉 ≥ 0,

2. A is self-adjoint

If, in addition, A has trace 1, then A encodes a probabilistic mixture of pure states,
and is called a density matrix. Relaxing this condition gives us different choices for
normalization.

We give an informal description of how pregroup grammar maps into the category
CPM(FVect). For more details see [32], [2], or [1]. Within CPM(FVect), the
objects are vector spaces, and morphisms are completely positive maps, i.e. linear
maps that preserve positivity of operators and do so for any trivial extension. The
underlying spaces in which we represent nouns, sentences, and other words in are
now doubled up, meaning that a noun is a positive operator N → N , or a positive
semidefinite matrix in N∗ ⊗ N . Completely positive maps are defined in [38] as a
morphism φ : A∗⊗A→ B∗⊗B such that there exists an object C in the underlying
category, in our case FVect, and a morphism k : C ⊗A→ B such that:

φ = (k∗ ⊗ k) ◦ (1A∗ ⊗ ηC ⊗ 1A)

Importantly, CPM(FVect) is also compact closed, so that the same sort of func-
torial mapping can be made from the grammar category to the semantics category.
Furthermore, the diagrammatic calculus can also be used in this context.

Positive operators were proposed in [1, 2] as a means of representing word mean-
ings since they have a natural ordering called the Löwner ordering. This ordering
states that for two positive operators A and B,

A 6 B ⇐⇒ B −A is positive

This ordering can be used to represent hyponymy and lexical entailment. In [1, 25]
concrete proposals for building positive operators representing words are given.

The space of positive operators and the properties of the Löwner ordering on this
space has been examined in [13, 40]. When the set of positive operators is restricted
to those with maximum eigenvalue less than or equal to 1, the ordering has nice
properties. We restrict to this set, and use the notation CP1(V ). When the set of

776



Towards Negation in DisCoCat

positive operators is restricted to those with eigenvalues exactly 1, we have the set
of projection operators onto subspaces of V , and the Löwner ordering corresponds
to subspace inclusion on projection operators.

The Löwner ordering is crisp: either the relation obtains or it doesn’t. How-
ever, when considering natural language, we are also interested in graded notions
of hyponymy and entailment. For example, although we may consider dog to be
highly indicative of pet, not every dog is a pet, and so we want some kind of graded
ordering. On the other hand, we would expect dog to be a full hyponym of mammal.

[1] introduce a graded notion of hyponymy based on the relative entropy of two
operators. [2] use a graded notion of hyponymy that is based on expanding the
hypernym (the broader term) to include the hyponym. [25] extends this idea to
include a wider range of gradings.

Specifically, suppose we are comparing two positive operators A and B. If A 6 B
crisply, then B = A + D for some positive operator D. However, if this is not the
case, then we can consider an error term E so that now

A+D = B + E

Then we have that B−A = D−E, i.e. that there is a wholly positive and a wholly
negative component to the difference B−A. In [2] the authors render the error term
E as being of the form (1− k)A, where k ∈ [0, 1). Then the value k is the strength
of the hyponymy relation between A and B. The drawback of this approach is that
the span of A must be included within the span of B. [25] proposes two alternative
gradings based on the error term that do not suffer from this drawback:

kBA(A,B) = Tr(D − E)
Tr(D + E) (4)

kE(A,B) = 1− ||E||||A|| (5)

In equation (4), in the worst case the positive difference term D is 0, and then
kBA = −1. In the best case E = 0 and then kBA = 1. Furthermore, the worst
case is obtained when the operator B is the zero matrix. In equation (5), in the
worst case E = A, and then kE = 0. In the best case E = 0 and then kE = 1. This
means that in both cases the best score of 1 is obtained when the crisp Löwner order
obtains. We can think of A as being contained in B. For kE the worst case obtains
when the spans of the operators of the words are disjoint. So we can think of this
as saying that word A is unrelated to word B. However, for kBA, the score becomes
smaller as Tr(B) becomes smaller. Therefore, even if the spans of the operators are
disjoint, the lowest value is obtained only when Tr(B) = 0. This means that when
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measuring whether, say, dog is a hyponym of mathematics, kE will (hopefully) give
back a value of 0. However, kBA will not result in the value −1, because (hopefully)
Tr(JmathematicsK) 6= 0. It would therefore seem that kE is better for representing
graded hyponymy. However, whilst this is true at the single word level [25, 24], we
will see that kBA works better when words are composed into phrases and sentences.

2.3 Building positive operators for words

In [2], a broader term such as mammal is viewed as a weighted sum over projectors
describing instances of mammals. For example:

JmammalK =pd |dog〉 〈dog|+ pc |cat〉 〈cat|+ pw |whale〉 〈whale|+ ...

where ∀i.pi ≥ 0 (and some kind of normalisation may be applied)

[25] propose a means of building positive operators for words using distributional
word vectors and information about hyponymy relations from resources such as
WordNet [28], as follows. In general, the meaning of a word w is considered to be
given by a collection of unit vectors {|wi〉 ∈ W}i, where each |wi〉 represents an
instance of the concept expressed by the word. Then the operator:

JwK =
∑

i

pi |wi〉 〈wi| ∈W ⊗W (6)

represents the word w. The pi are weightings derived from the text, and there are
various choices about what these should be.

We build representations of words as positive operators in the following manner.
Suppose we have a dictionary of word vectors {vi : |vi〉 ∈W}i derived from a corpus
using standard distributional or embedding techniques, for example GloVe, [31],
fastText [6], or weighted co-occurrence vectors. To build a representation of a word,
we obtain a set of hyponyms that are instances of that word. In this paper, we use
WordNet [28], a human-curated database of word relationships including hyponym-
hypernym pairs. The WordNet hyponymy relationship is naturally arranged as a
directed graph with a root (it is not quite a tree). For the noun subset of the
database, the root is the most general noun entity, and the leaves are specific nouns.
For example, under the word rocket there are (inter alia): test_instrument_vehicle,
Stinger, takeoff_booster, arugula. Notice that here we have different meanings of
the word rocket, one as a projectile and one as a vegetable. There are also less
supervised ways of obtaining these relationships using patterns derived from text,
see [15, 35] for examples.
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To build a positive operator for a word w, we go through the WordNet hierarchy
and collect all hyponyms wi of w at all levels. We then form JwK as in equation (6),
with pi = 1 for all i.

When we build these operators, between 1/3 and 1/2 of the hyponyms listed in
WordNet are available in the precomputed GloVe vectors that we used1, since many
entries in WordNet are multi-word expressions, which are not included in the set of
vectors we used. We therefore miss a large proportion of the information included
in WordNet.

2.4 Normalization
An important parameter choice is the type of normalization to use. In [2] two
choices are discussed: normalizing operators to trace 1, or normalizing operators
to have maximum eigenvalue less than or equal to 1. The properties of these two
normalization strategies are thoroughly analyzed in [41]. If operators are normalized
to trace 1, then the crisp Löwner ordering becomes trivial: no two operators stand
in the relation A 6 B. If operators are normalized to have maximum eigenvalue 1,
then the Löwner ordering has particularly nice properties. In the current paper, we
will need to normalize operators so that their maximum eigenvalue is less than or
equal to 1, as this will allow us to apply our proposed negation operator.

2.5 Composing positive operators
Building positive operators as proposed gives us representations for individual words.
However, the representations are all states in one object of CPM(FVect), whereas
for verbs, adjectives, and so on, we need morphisms in CPM(FVect). In order to
obtain these, we use an approach outlined in [20]. Firstly, we consider the spaces
for noun and sentence to be the same, so now our pregroup types n and s both
map to the same space W . To represent adjectives and verbs, representations of
type W ⊗W or W ⊗W ⊗W are needed. In order to encode our representations in
W ⊗W , we need to use the word representations we have built to define suitable
morphisms in CPM(FVect). [20] use the notion of a Frobenius algebra. Working in
FVect, a Frobenius algebra over a finite-dimensional vector space with bases {|i〉}i
is given by

∆ :: |i〉 7→ |i〉 ⊗ |i〉 ι :: |i〉 7→ 1 µ :: |i〉 ⊗ |i〉 7→ |i〉 ξ :: 1 7→ |i〉

In the graphical calculus, these are given by:

1available from https://nlp.stanford.edu/projects/glove/
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∆ : ι : µ : ξ :

A vector |v〉 ∈ W can be lifted to a higher-order representation in W ⊗W by
applying the map ∆. In FVect, this higher-order representation takes the vector
|v〉 and embeds it along the diagonal of a matrix in W ⊗ W . So, for example,
given a vector representation of an intransitive verb |run〉 ∈ W , we can lift that
representation to a matrix in W ⊗W by embedding it into the diagonal of a matrix.
The Frobenius algebra interacts with the type reduction morphism εN in such a way
that the result of lifting a verb and then composing with a noun is to apply the µ
multiplication to the tensor product of the noun and the verb vectors, i.e.

(εN ⊗ 1N ) ◦ (1N ⊗∆N )(|noun〉 ⊗ |verb〉) = µ(|noun〉 ⊗ |verb〉)

Diagrammatically,

verbnoun

=

verbnoun

In FVect the multiplication µ implements pointwise multiplication of the two
vectors. In CPM(FVect) we have access to the same algebra, and the multiplication
µ operates similarly - namely, given two positive operators A and B, µ(A⊗B) im-
plements pointwise multiplication of the two operators. We call this operator Mult
or �. Whilst simple and theoretically motivated, this operation is not desirable for
some linguistic purposes as it is commutative, so that dog bites man gets the same
representation as man bites dog. It may be suitable for some other combinations,
such as conjunctions (but see [45] for extensive work in this area).

In [9, 24], two other multiplications are proposed for combining positive oper-
ators. One, which we call BMult or ∗B, was originally proposed in [22, 23] as
a quantum Bayesian operation. This takes two operators A and B and returns
the non-commutative and non-associative product B 1

2AB
1
2 . In [11], the authors

show that this operation is also related to a Frobenius algebra, with the caveat
that the algebra corresponds to a basis for W that diagonalises B. Specifically,
consider B = ∑

i bi |i〉 〈i| and A = ∑
jk ajk |j〉 〈k|, and define C :=

√
b ⊗
√
b where
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√
b := diag(B 1

2 ). Then:

B
1
2AB

1
2 =

∑

i

√
bi |i〉 〈i| ◦

∑

jk

ajk |j〉 〈k| ◦
∑

l

√
bl |l〉 〈l| (7)

=
∑

i

√
bi |i〉 〈i| ◦

∑

jk

ajk

√
bk |j〉 〈k| (8)

=
∑

jk

ajk

√
bj

√
bk |j〉 〈k| = µ(A⊗ C) (9)

The second composition function, which we call KMult, or ∗K , is to form a
completely positive map from a positive matrix B by decomposing B into a weighted
sum of orthogonal projectors B = ∑

i piPi, and then forming the map

B(A) =
∑

i

piPi ◦A ◦ Pi

If we again consider a basis that diagonalises B, this operation then corresponds to
the Frobenius multiplication µ(A⊗B) in that basis. To see this, consider

B =
∑

i

bi |i〉 〈i| , A =
∑

jk

ajk |j〉 〈k|

Then

B(A) =
∑

i

bi |i〉 〈i| ◦

∑

jk

ajk |j〉 〈k|

 ◦ |i〉 〈i| (10)

=
∑

i

bi |i〉 〈i| ◦
∑

j

aji |j〉 〈i| (11)

=
∑

i

biaii |i〉 〈i| = µ(A⊗B) (12)

We therefore have three ways of combining positive operators. Moreover, each
of these combination methods preserves the property that the eigenvalues must
be less than or equal to 1. For the operations Mult and KMult, the spectral
radius is submultiplicative with respect to the Hadamard (pointwise) product of
two positive semidefinite matrices [18], implying that the maximum eigenvalue of
A � B is bounded by 1. For the case of BMult, note that the product B 1

2AB
1
2 is

similar to AB and hence has the same eigenvalues. Then the maximum eigenvalue
of the product AB is bounded by the product of the maximum eigenvalues of A and
of B [5], again implying that the maximum eigenvalue of AB is bounded by 1.
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To apply these multiplications linguistically, choices must be made about the
order in which they are applied, since neither BMult nor KMult are associative.
In particular for transitive verbs there are a number of different choices, and some
of these are discussed in [25]. For now, we limit to simple intransitive sentences, of
the form noun verb.

The operators we outlined above are summarised below.

Mult: Jnoun verbK = JnounK� JverbK (13)

BMult: Jnoun verbK = JnounK ∗B JverbK = JverbK 1
2 JnounKJverbK 1

2 (14)
KMult: Jnoun verbK = JnounK ∗K JverbK =

∑

i

piPiJnounKPi (15)

where in KMult JverbK = ∑
i piPi.

3 Modelling negation in CP1(V )
So far, we have shown how to build positive operators from a corpus of text, together
with information about hyponymy relations. We have also shown how to lift the
simple operators thus described to the maps required for functional words such as
verbs and adjectives. We now describe how to model negation.

As discussed, one approach to modelling negation is to map a vector to the
subspace orthogonal to it. We can incorporate this in our model very easily, since in
the case of projectors, this is equivalent to subtracting the associated matrix from
the identity matrix. Consider a vector |dog〉 that we have learnt in a distributional
manner from a corpus. We can lift this representation to a positive operator by
forming the projector |dog〉 〈dog|, which forms a one-dimension subspace of the vector
space W. We can then form an operator

Jnot dogK = I− |dog〉 〈dog|

which encompasses the n − 1-dimensional subspace orthogonal to the projector
|dog〉 〈dog|. In the general case, we define

Jnot wK := I− JwK (16)

When we restrict to the subset CP1(W ) over a vector space W , this operation
preserves positivity of the operator and also maps operators into the set CP1(W ).

What does this mean in application to a sentence? If we take a sentence dogs
dance then the standard ways of adding a negation operator to this sentence would
be to go to either: dogs don’t dance or no dogs dance. In the second case, we
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change the quantification of the sentence: if dogs dance his implicitly existentially
quantified, then no dogs dance is universally quantified, and vice versa. However,
at present, we do not have a means of representing quantification in our model, and
therefore at present we will steer clear of this interpretation. Another, admittedly
less natural, interpretation is to say non-dogs move, i.e. negate only the word and
not the sentence, and this is the interpretation we will use in this paper.

Importantly, the negation operation we have proposed is not a morphism of
CPM(FVect), and therefore a suitable home needs to be found for it. We do not
provide an answer to that in this paper, leaving it for ongoing work. Rather, we look
at how this operation interacts with composition, the Löwner ordering, and how it
works in implementation.

3.1 How not interacts with the (graded) Löwner ordering

Consider operators A and B ∈ CP1(W ). Under the crisp Löwner ordering, we have

A 6 B ⇐⇒ B = A+D (17)
⇐⇒ I−B = I− (A+D) (18)
⇐⇒ I−B +D = I−A ⇐⇒ not B 6 not A (19)

Considering an error term E, we use the notation 6E if B+E = A+D. With such
an error term,

A 6E B ⇐⇒ B + E = A+D (20)
⇐⇒ I− (B + E) = I− (A+D) (21)
⇐⇒ I−B +D = I−A+ E ⇐⇒ not B 6E not A (22)

Depending on the grading we use, the strength of the hyponymy relation will be
affected. Using the kBA grading (equation (4)) we have that not B is a hyponym of
not A with strength

kBA(not B,not A) = Tr(D − E)
Tr(D + E) = kBA(A,B)

Using kE (equation (5)), we have:

kE(not B,not A) = 1− ||E||
||not B|| 6= kE(A,B)
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3.2 How not interacts with composition
We focus here just on the case of intransitive sentences composed of a subject and
a verb. When we negate the noun we obtain the following expressions:

Jnot nounK� JverbK = (I− JnounK)� JverbK (23)
= diag(JverbK)− JnounK� JverbK (24)

Jnot nounK ∗B JverbK = (I− JnounK) ∗B JverbK (25)

= JverbK 1
2 JverbK 1

2 − JverbK 1
2 JnounKJverbK 1

2 (26)
= JverbK− JnounK ∗B JverbK (27)

Jnot nounK ∗K JverbK = (I− JnounK) ∗K JverbK (28)
=

∑

i

piPiPi −
∑

i

piPiJnounKPi (29)

= JverbK− JnounK ∗K JverbK (30)
Particularly in the case of ∗B and ∗K , these feel like fairly natural interpretations of
a sentence with a negated noun. We take the meaning of the verb as a whole, and
then subtract out the part of the verb that is applied to the noun.

We can also look at the behaviour of the operators when the verb is negated.
JnounK� Jnot verbK = JnounK� (I− JverbK) (31)

= diag(JnounK)− JnounK� JverbK (32)
For ∗B and ∗K we make the assumption that we use a basis in which JverbK is
diagonal so that JverbK = ∑

i piPi. Considering the expression in equation (9) we
obtain:

JnounK ∗B Jnot verbK = (JnounK) ∗B (I− JverbK) (33)

=
∑

jk

ajk

√
1− pj

√
1− pk |j〉 〈k| . (34)

This expression does not relate very well to the semantics of the particular words.
We do obtain something better with ∗K :

JnounK ∗K Jnot verbK = (JnounK) ∗K (I− JverbK) (35)
=

∑

i

(1− pi)PiJnounKPi (36)

=
∑

i

PiJnounKPi −
∑

i

piPiJnounKPi (37)

= diag(JnounK)− JnounK ∗K JverbK. (38)
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The operation ∗B does not have a particularly illuminating representation when
the verb is negated, but in the case of � and ∗K , these are again fairly natural
interpretations of a sentence with a negated verb.

4 Demonstrations
We give a demonstration on a small dataset that this rendering of negation works
well together with the composition operators proposed. In particular, we will see
that our combination operators can beat baselines that examine just the noun or
the verb in the sentence. This is an important baseline since the construction of
the dataset is such that entailment does follow from comparing either the nouns
or the verbs. Our combination operators do not in general beat an average of two
operators, however, they do in some cases.

4.1 Datasets
We build a set of datasets based on the intransitive sentence dataset introduced in
[37]. The dataset consists of paired sentences consisting of a subject and a verb. In
half the cases the first sentence entails the second, and in the other half of cases, the
order of the sentences is reversed. For example, we have:

summer finish, season end, T
season end, summer finish, F

The first sentence is marked as entailing, whereas the second is marked as not
entailing. The dataset is created by selecting nouns and verbs from WordNet. In
the case of the sentence marked T, the first noun is selected as a hyponym of the
second noun, and the first verb is selected as a hyponym of the second verb.

For these sentences to be thought of as entailing, we must view them as being
implicitly existentially quantified. For example, if we took the pair of sentences

gazelles sprint, mammals run

we can clearly see that the first sentence does not entail the second if we assume a
universal quantification - there could easily be, and there are, non-gazelle mammals
that don’t run. However, if we take an existential quantification, then the fact that
there is some gazelle that sprints means that there must be some mammal (the
gazelle) who runs (as sprinting is a kind of running).

Bearing in mind that the sentences are existentially quantified, we create three
further datasets that include negation. We apply negation only at the word level
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and not at the sentence level, as this retains the existentially quantified nature of
the sentences. Consider an entailing sentence pair such as:

dogs run |= mammals move

We include negation in two places: either the noun can be negated, giving us
non-dogs and non-mammals, or else the verbs can be negated, giving us do not run
and do not move.

From dogs run |= mammals move we then get three more pairs of entailing sen-
tences:

some dogs run |= some mammals move (39)
some non-mammals run |= some non-dogs move (40)
some dogs do not move |= some mammals do not run (41)

some non-mammals do not move |= some non-dogs do not run (42)

To model these, we render the negation of the verb as directly acting on the verb.
Another choice would be for the negation to act on the whole sentence, render-
ing dogs don’t move as not(dogs move), but this would mean that we now consider
the sentence universally quantified. Working out how to include a full account of
quantification is an area of further work.

To model these sentences, we therefore calculate, respectively:

JdogsK ∗ JrunK 6k JmammalsK ∗ JmoveK (43)
(I− JmammalsK) ∗ JrunK 6k (I− JdogsK) ∗ JmoveK (44)

JdogsK ∗ (I− JmoveK) 6k JmammalsK ∗ (I− JrunK) (45)
(I− JmammalsK) ∗ (I− JmoveK) 6k (I− JdogsK) ∗ (I− JrunK) (46)

where 6k∈ {kBA, kE} is one of the graded hyponymy measures and ∗ ∈ {�, ∗B, ∗K}
is one of the compositional operators.

4.2 Construction and composition of positive operators
We follow the construction methods outlined in [25] and summarised in this paper in
section 2.3. In order to construct the basic positive operators, we use hyponyms from
WordNet [28], and 50 or 300 dimensional GloVe vectors. The operators produced
are normalised to have maximum eigenvalue equal to 1.

To compose positive operators, we use the three composition functions Mult,
BMult, KMult discussed in section 2.5. We compare these with three baselines:

786



Towards Negation in DisCoCat

Model noun-verb ¬noun-verb noun-¬verb ¬noun-¬verb
KS2016 best 0.84 - - -
Verb only 0.866 0.867 0.865 0.867
Noun only 0.926 0.921 0.925 0.923
Average 0.947+ 0.946+ 0.948+ 0.946+

Mult 0.960∗+ 0.874 0.931+ 0.950+

BMult 0.948+ 0.892 0.928 0.947+

BMult switched 0.949+ 0.896 0.916 0.944+

KMult 0.950+ 0.875 0.925 0.948+

KMult switched 0.950+ 0.874 0.920 0.948+

Table 1: Area under ROC curve on the negation datasets, using kBA, WordNet
hyponyms, and 300 dimensional GloVe vectors. Figures reported are the average of
the 100 values of the test statistic. ∗ indicates significantly better than the Average
baselline. + indicates significantly better than the noun-only baseline.

the average of two operators, a noun-only baseline, and a verb-only baseline. Due
to the construction of the datasets, we see that in fact the verb-only and noun-only
baselines are fairly strong, since as long as the construction of the individual words
models the hyponymy relations well then a verb-only or noun-only model will be able
to perform well on these datasets. Note that taking the average of the two operators
preserves the criterion of the maximum eigenvalue being less than or equal to 1 by
Weyl’s inequalities [42].

Metrics and significance measures Since the entailment measures we use give
back a grading, whereas we require a binary response, we calculate area under ROC
curve (AUC). The AUC calculates the true positive rate vs. the false positive rate
for different cutoff levels of the graded measure. The maximum that can be attained
is 1.

To measure the significance of our results, we use bootstrapping [14] to calculate
100 values of the test statistic (AUC) drawn from the distribution implied by the
data. We compare between models using a paired t-test and apply the Bonferroni
correction to compensate for multiple model comparisons.

5 Results
We can see that across the board (tables 1, 2, 3, 4), the kBA measure performs more
strongly than the kE measure. The difference in performance is likely to be because
the kBA measure is very symmetric, and the dataset is also, meaning that not only
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Model noun-verb ¬noun-verb noun-¬verb ¬noun-¬verb
KS2016 best 0.84 - - -
Verb only 0.635 0.637 0.636 0.634
Noun only 0.686 0.643 0.684 0.635
Average 0.727 0.778+ 0.777+ 0.782+

Mult 0.883∗+ 0.885∗+ 0.899∗+ 0.952∗+

BMult 0.792∗+ 0.678+ 0.725+ 0.719+

BMult switched 0.786∗+ 0.693+ 0.715+ 0.718+

KMult 0.873∗+ 0.725+ 0.900∗+ 0.732+

KMult switched 0.839∗+ 0.879∗+ 0.732+ 0.666+

Table 2: Area under ROC curve on the negation datasets, using kE , WordNet
hyponyms, and 300 dimensional GloVe vectors. Figures reported are the average of
the 100 values of the test statistic. ∗ indicates significantly better than the Average
baselline. + indicates significantly better than the noun-only baseline.

Model noun-verb ¬noun-verb noun-¬verb ¬noun-¬verb
KS2016 best 0.84 - - -
Verb only 0.787 0.787 0.786 0.785
Noun only 0.907 0.906 0.903 0.904
Average 0.929+ 0.925+ 0.929+ 0.930+

Mult 0.942∗+ 0.836 0.915+ 0.925+

BMult 0.917+ 0.861 0.914+ 0.920+

BMult switched 0.918+ 0.859 0.912+ 0.922+

KMult 0.929+ 0.829 0.910+ 0.926+

KMult switched 0.926+ 0.821 0.911+ 0.930+

Table 3: Area under ROC curve on the negation datasets, using kBA, WordNet
hyponyms, and 50 dimensional GloVe vectors. Figures reported are the average of
the 100 values of the test statistic. ∗ indicates significantly better than the Average
baselline. + indicates significantly better than the noun-only baseline.

are there equal numbers of entailing and non-entailing sentences in the dataset, but
the non-entailing datasets are the opposite of the entailing datasets. Enhancing
the datasets with some random pairings would likely degrade the performance of
the kBA measure. Investigating the differences in performance in a less balanced
dataset is an area of further work.

In the case of the kBA measure, increasing the dimensionality of the underly-
ing vector space improved performance across all sentence types. This was not
the case for the kE measure, where for sentences of the type noun - not verb and
not noun - verb performance using the kE measure improved with lower dimension-

788



Towards Negation in DisCoCat

Model noun-verb ¬noun-verb noun-¬verb ¬noun-¬verb
KS2016 best 0.84 - - -
Verb only 0.601 0.605 0.605 0.607
Noun only 0.708 0.724 0.706 0.720
Average 0.753+ 0.791+ 0.783+ 0.797+

Mult 0.847∗+ 0.845∗+ 0.891∗+ 0.925∗+

BMult 0.751+ 0.694 0.738+ 0.751+

BMult switched 0.728+ 0.707 0.727+ 0.758+

KMult 0.875∗+ 0.702 0.875∗+ 0.802+

KMult switched 0.808∗+ 0.791∗+ 0.726+ 0.815∗+

Table 4: Area under ROC curve on the negation datasets, using kE , WordNet
hyponyms, and 50 dimensional GloVe vectors. Figures reported are the average of
the 100 values of the test statistic. ∗ indicates significantly better than the Average
baseline. + indicates significantly better than the noun-only baseline.

ality (tables 2 and 4)
The best results were obtained using the kBA measure and 300-dimensional

GloVe vectors. In this set of results (table 1) the Average baseline proves hard to
beat, however Mult also performs strongly for sentences with either no word negated
or both words negated. For these two classes of sentences, it is also notable that all
composition functions enable better performance than the strong non-compositional
noun-only baseline. A similar pattern is seen when using 50-dimensional vectors
with the kBA measure (table 3), where the benefit of using a compositional operator
is also seen for the sentence type noun - not verb.

The benefit of using compositional operators is also seen for the kE measure
(tables 2 and 4), where using a compositional operator helps in almost all cases over
the (admittedly much worse) non-compositional noun-only baseline.

Across both measures and dimensionalities performance is poor on the sentence
type not noun - verb. More research is needed to investigate why this is.

6 Discussion and Further Work
We have introduced a negation operator for use in the CPM(FVect) flavour of
DisCoCat. The operators is based on the notion of projection onto the orthogonal
subspace, used previously by [44]. The operator works well together with the com-
position operators Mult, BMult, and KMult discussed in [24, 25, 11], and in many
cases perform well on a toy dataset of sentence entailments.

More investigation into the properties of the BMult and KMult operators is
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needed. In [11] it was shown that the two operators can be combined together in
a double density matrix setting, meaning that the operators can be given a natural
home.

Further, testing on larger scale datasets is also needed. Ideally, the kinds of
entailment relations we are looking at should be useful for textual entailment and
reasoning systems. Expanding the models we currently have to test on realistic
datasets is desirable. One move towards this would be use these operators with the
Stanford Natural Language Inference (SNLI) dataset [8]. That dataset has pairs of
short sentences labelled either as entailing, contradictory, or neutral. The sentences
are given a binary parse, determining the order of composition. Example sentences
from the dataset where the first entails the second are:

S1 :( Children ( ( ( smiling and ) waving ) ( at camera ) ) )
S2 :( There ( ( are children ) present ) )

Given positive operators for each word, we would be able to combine them together
in the specified order to form sentence representations, and use these to predict the
relationship that obtains between sentences.

In order to build operators for a wider range of words, techniques that can
generate representations directly from a corpus are needed. At present, data on
hyponymy relations from WordNet is used. Work is ongoing to build operators
directly from a corpus, with success in learning operator representations that model
ambiguity well [27].

Another major unanswered question is where the negation operator should sit
theoretically. It cannot be viewed as a morphism in CPM(FVect). Some work in
progress is into looking at the set CP1(W ) as an object of the category ConvexRel,
introduced in [7]. Then, the negation operator can be viewed as a morphism. This
is an area of further work.
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Abstract
Recent work on vector-based compositional natural language semantics has

proposed the use of density matrices to model lexical ambiguity and (graded)
entailment. Ambiguous word meanings, in this work, are represented as mixed
states, and the compositional interpretation of phrases out of their constituent
parts takes the form of a strongly monoidal functor sending the derivational
morphisms of a pregroup syntax to linear maps in FdHilb.

Our aims in this paper are threefold. Firstly, we replace the pregroup front
end by a Lambek categorial grammar with directional implications expressing
a word’s selectional requirements. By the Curry-Howard correspondence, the
derivations of the grammar’s type logic are associated with terms of the (or-
dered) linear lambda calculus; these terms can be read as programs for compo-
sitional meaning assembly with density matrices as the target semantic spaces.
Secondly, we extend on the existing literature and introduce a symmetric, non-
degenerate bilinear form called a “metric” that defines a canonical isomorphism
between a vector space and its dual, allowing us to keep a distinction between
left and right implication. Thirdly, we use this metric to define density matrix
spaces in a directional form, modeling the ubiquitous derivational ambiguity
of natural language syntax, and show how this allows an integrated treatment
of lexical and derivational forms of ambiguity controlled at the level of the
interpretation.
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1 Introduction

Semantic representations of language using vector spaces are an increasingly pop-
ular approach to automate natural language processing, with early comprehensive
accounts given in [4, 16]. This idea has found several implementations, both theo-
retically and computationally. On the theoretical side, the principle of composition-
ality [12] states that the meaning of a complex expression can be computed from
the meaning of its simpler building blocks and the rules used to assemble them. On
the computational side, the distributional hypothesis [11] asserts that a meaning
of a word is adequately represented by looking at what words most often appear
next to it. Joining these two approaches, a distributional compositional categorical
(DisCoCat) model of meaning has been proposed [5], mapping the pregroup alge-
bra of syntax to vectors spaces with tensor operations, by functorialy relating the
properties of the categories that describe those structures, allowing one to interpret
compositionality in a grammar-driven manner using data-extracted representations
of words that are in principle agnostic to grammar. This method has been shown to
give good results when used to compare meanings of complex expressions and with
human judgements [10]. Developments in the computation of these vectors that use
machine learning algorithms [15] provide representations of words that start devi-
ating from the count-based models. However, each model still provides a singular
vector embedding for each word, which allows the DisCoCat model to be applied
with some positive results [30].

The principal limitation of these embeddings, designated static embeddings,
is that it provides the same word representation independently of context. This
hides polysemy, or even subtler gradations in meaning. Using the DisCoCat frame-
work, this issue has been tackled using density matrices to describe lexical ambigu-
ity [22,23], and using the same framework also sentence entailment [24] and graded
hyponymy [1], since the use of matrices allows the inclusion of correlations between
context words. From the computational side, the most recent computational lan-
guage models [7,21] present contextual embeddings of words as an intrinsic feature.
In this paper we aim at reconciling the compositional distributional model and these
developments by presenting density matrices as the fundamental representations of
words, thus leveraging previous results, and by introducing a refined notion of tensor
contraction that can be applied even if we do not assume that we are working with
static embeddings coming from the data, thus additionally presenting the possibility
of eliminating the distinction between context and target words, because all words
can be equally represented with respect to one another. To achieve this, we build
the components of the density matrices as covariant or contravariant by introducing
a metric that relates them, extending to the interpretation space the notion of direc-
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tionality of word application, as a direct image of the directional Lambek calculus.
After that, we attach permutation operations that act on either type of components
to describe derivational ambiguity in a way that keeps multiple readings represented
in formally independent vector spaces, thus opening up the possibility of integration
between lexical and syntactic ambiguity.

Section 2 introduces our syntactic engine, the Lambek calculus (N)L/,\, together
with the Curry-Howard correspondence that associates syntactic derivations with
programs of the ordered lambda calculus λ/,\. Section 3 motivates the use of a
more refined notion of inner product and introduces the concept of a tensor and
tensor contraction as a basis independent application of a dual vector to a vector,
and introduces a metric as the mechanism to go from vectors extracted from the
data to the dual vectors necessary to perform tensor contraction. Section 4 gives
some background on density matrices, and on ways of capturing the directionality
of our syntactic type logic in these semantic spaces using the previously described
metric. Section 5 then turns to the compositional interpretation of the λ/,\ programs
associated with (N)L/,\ derivations. Section 6 shows how the directional density
matrix framework can be used to capture simple forms of derivational ambiguity.

2 From proofs to programs
With his [13, 14] papers, Jim Lambek initiated the ‘parsing as deduction’ method
in computational linguistics: words are assigned formulas of a type logic designed
to reason about grammatical composition; the judgement whether a phrase is well-
formed is the outcome of a process of deduction in that type logic. Lambek’s original
work was on a calculus of syntactic types, which he presented in two versions. With
L/,\ we refer to the simply typed (implicational) fragment of Lambek’s [13] associa-
tive syntactic calculus, which assigns types to strings; NL/,\ is the non-associative
version of [14], where types are assigned to phrases (bracketed strings).1

Van Benthem [27] added semantics to the equation with his work on LP, a
commutative version of the Lambek calculus, which in retrospect turns out to be a
precursor of (multiplicative intuitionistic) linear logic. LP is a calculus of semantic
types. Under the Curry-Howard ‘proofs-as-programs’ approach, derivations in LP
are in 1-to-1 correspondence with terms of the (linear) lambda calculus; these terms

1Neither of these calculi by itself is satisfactory for modelling natural language syntax. To handle
the well-documented problems of over/undergeneration of (N)L/,\ in a principled way, the logics
can be extended with modalities that allow for controlled forms of reordering and/or restructuring.
We address these extensions in [6].
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Terms: t, u ::= x | λrx.t | λlx.t | t / u | u . t

Typing rules:

x : A ` x : A Ax

Γ, x : A ` t : B
Γ ` λrx.t : B/A I/

x : A,Γ ` t : B
Γ ` λlx.t : A\B

I\

Γ ` t : B/A ∆ ` u : A
Γ,∆ ` t / u : B E/

Γ ` u : A ∆ ` t : A\B
Γ,∆ ` u . t : B E\

Figure 1: Proofs as programs for (N)L/,\.

can be seen as programs for compositional meaning assembly. To establish the
connection between syntax and semantics, the Lambek-Van Benthem framework
relies on a homomorphism sending types and proofs of the syntactic calculus to
their semantic counterparts.

In this paper, rather than defining semantic interpretation on a commutative
type logic such as LP, we want to keep the distinction between the left and right
implications \, / of the syntactic calculus in the vector-based semantics we aim
for. To achieve this, our programs for meaning composition use the language of
Wansing’s [29] directional lambda calculus λ/,\. Wansing’s overall aim is to study
how the derivations of a family of substructural logics can be encoded by typed
lambda terms. Formulas, in the substructural setting, are seen as information pieces,
and the proofs manipulating these formulas as information processing mechanisms,
subject to certain conditions that reflect the presence or absence of structural rules.
The terms of λ/,\ faithfully encode proofs of (N)L/,\; information pieces, in these
logics, cannot be copied or deleted (absence of Contraction and Weakening), and
information processing is sensitive to the sequential order in which the information
pieces are presented (absence of Permutation).

We present the rules of (N)L/,\ with the associated terms of λ/,\ in Fig 1. The
presentation is in the sequent-style natural deduction format. The formula language
has atomic types (say s, np, n for sentences, noun phrases, common nouns) for
complete expressions and implicational types A\B, B/A for incomplete expressions,
selecting an A argument to the left (resp. right) to form a B.
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Ignoring the term labeling for a moment, judgments are of the form Γ ` A, where
the antecedent Γ is a non-empty list (for L) or bracketed list (NL) of formulas, and
the succedent a single formula A. For each of the type-forming operations, there is
an Introduction rule, and an Elimination rule.

Turning to the Curry-Howard encoding of NL/,\ proofs, we introduce a language
of directional lambda terms, with variables as atomic expressions, left and right λ
abstraction, and left and right application. The inference rules now become typing
rules for these terms, with judgments of the form

x1 : A1, . . . , xn : An ` t : B. (1)

The antecedent is a typing environment providing type declarations for the variables
xi; a proof constructs a program t of type B out of these variables. In the absence of
Contraction, Weakening and Permutation structural rules, the program t contains
x1, . . . , xn as free variables exactly once, and in that order. Intuitively, one can
see a term-labelled proof as an algorithm to compute a meaning t of type B with
parameters xi of type Ai. In parsing a particular phrase, one substitutes the meaning
of the constants (i.e. words) that make it up for the parameters of this algorithm.

3 Directionality in interpretation
In order to introduce the directionality of the syntactic calculus in the semantic
calculus, we expand on the existing literature that uses FdVect as the interpretation
category by calling attention to the implied inner product. We introduce a more
abstract notion of tensor, tensor contraction and the need to introduce explicitly the
existence of a metric, coming from the literature of general relativity, following the
treatment in [28].2 Formally, a metric is a function that assigns a distance between
two elements of a set, but if applied to the elements of a set that is closed under
addition and scalar multiplication, that is, the elements of a vector space, it becomes
an inner product. Since we will be looking at vector spaces, we use the terms metric
and inner product interchangeably.

To motivate the need for a more careful treatment regarding the inner product,
lets look at a very simple yet illustrative example. Suppose that a certain language
model provides word embeddings that correspond to two-dimensional, real valued
vectors. In this model, the words “vase” and “wall” have the vector representations
~v and ~w, respectively

2An alternative introductory treatment of tensor calculus can be found in [8].
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~v = (0, 1), and ~w = (1, 0). (2)

This representation could mean that they are context words in a count-based model,
since they form the standard (orthogonal) basis of R2, or that they have this partic-
ular representation in a particular context-dependent language model. To compute
cosine similarity, the notion of Euclidean inner product is used, where the compo-
nents corresponding to a certain index are multiplied:

~v · ~w = 0 · 1 + 1 · 0 = 0, (3)

which we can use to calculate the cosine of the angle θ between these vectors,

cos(θ) = ~v · ~w
‖~v‖ · ‖~w‖ = 0 · 1 + 1 · 0 = 0

1 · 1 = 0. (4)

Thus, if the representations of these words are orthogonal, then using this measure
to evaluate similarity we conclude that these words are not related. However, there is
a degree of variation in the vectors that are assigned to the distributional semantics
of each word. Static embeddings are unique vector representations given by a global
analysis of a word over a corpus. The unique vector assigned to the semantics
of a word depends on the model used to analyze the data, so different models do
not necessarily put out the same vector representations. Alternative to this are
dynamic embeddings, which assign different vector representations to the same word
depending on context, within the same model.

Therefore, there are at least three ways in which the result of eq.4 and subsequent
interpretation can be challenged:

1. Static Embeddings. If the representations come from a count-based model,
choosing other words as context words changes the vector representation and
therefore these words are not orthogonal to one another anymore; in fact this
can happen with any static embedding representation when the basis of the
representation changes. Examples of models that give static embeddings are
Word2Vec [15] and GloVe [20].

2. Dynamic Embeddings. When the vector representations come from a
context-dependent embedding, changing the context in which the words are
evaluated influences their representation, which might not be orthogonal any-
more. Dynamic embeddings can be obtained with i.e. ELMo [21] and BERT
[7].
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3. Expectation of meaning. Human judgements, which are the outcomes of
experiments where subjects are explicitly asked to rate the similarity of words,
predict that some words should have a degree of relationship. Therefore, the
conclusion we derive from orthogonal representations of certain words might
not be valid if there is a disagreement with their human assessment. These
judgements are condensed in datasets such as the MEN dataset [3].

While points 1 and 2 can be related, caution is necessary in establishing that link.
On a preliminary inspection, comparing the cosine similarity of context-free embed-
dings of nouns extracted from pre-trained BERT [7] with the normalized human
judgements from the MEN dataset [3], we find that the similarity between two
words given by the language model is systematically overrated when compared to
its human counterpart. One possible explanation is that the language model is com-
paring all words against one another, so it is an important part of similarity that
the two words belong to the the same part of speech, namely nouns, while humans
assume that as a condition for similarity evaluation. Further, though we can ask
the language model to rate the similarity of words in specific contexts, that has not
explicitly been done with human subjects. A more detailed comparison between
context-depend representations and human judgement constitutes further research.

One way to reconcile the variability of representations and the notion of simi-
larity is to expand the notion of inner product to be invariant under the change of
representations. Suppose now that by points 1 or 2 the representations of “vase”
and “wall” change, respectively, to

~v′ = (1, 1), ~w′ = (−1, 2). (5)

These vectors also form a basis of R2, but not an orthogonal one. If we use the same
measure to compute similarity, taking normalization into account, the Euclidean
inner product gives ~v′ · ~w′ = (−1) · 1 + 1 · 2 = 1 and cosine similarity gives

cos(θ′) = ~v′ · ~w′
‖~v′‖ · ‖~w′‖ = 1√

2 ·
√

5
= 1√

10
. (6)

If now we have a conflict between which representations are the correct ones, we can
look at the human evaluations of similarity. Suppose that it corresponds too to 1√

10 .
We argue in this paper that, by introducing a different notion of inner product,

we can fine-tune a relationship between the components of the vectors with the
goal to preserve a particular value, for example a human similarity judgement. In
this framework, the different representations of words in dynamic embeddings are
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brought about by a change of basis, similarly to what happens when the context
words change in static embeddings, in which case the value of the inner product
should be preserved. This can be achieved by describing the inner product as a
tensor contraction between a vector and a dual vector, with the latter computed
using a metric.

Let V be a finite dimensional vector space and let V ∗ denote its dual vector
space, constituted by the linear maps from V to the field R. A tensor T of type
(k, l) over V is a multilinear map

T : V ∗ × · · · × V ∗︸ ︷︷ ︸
k

×V × · · · × V︸ ︷︷ ︸
l

→ R. (7)

Once applied on k dual vectors and l vectors, a tensor outputs an element of the
field, in this case a real number. By this token, a tensor of type (0, 1) is a dual
vector, which is the map from the vector space to the field, and a tensor of type
(1, 0), being technically the dual of a dual vector, is naturally isomorphic to a vector.
Given a basis E = {êi} in V and its dual basis dE = {êj} in V ∗, with êj(êi) = δji ,
the tensor product between the basis vectors and dual basis vectors forms a basis
B = {êi1 ⊗ · · · ⊗ êik ⊗ êj1 ⊗ · · · ⊗ êjl} of a tensor of type (k, l), allowing the tensor
to be expressed with respect to this basis as

T =
∑

i1,...,ik,j1,...,jl

T i1...ik j1...jl
êi1 ⊗ · · · ⊗ êik ⊗ êj1 ⊗ · · · ⊗ êjl . (8)

The basis expansion coefficients T i1...ik j1...jl are called the components of the tensor.
We can perform two important operations on tensors: apply the tensor product

between them, T ′ ⊗ T , and contract components of the tensor, CT . The first oper-
ation happens in the obvious way, while the second corresponds to applying one of
the basis dual vectors to a basis vector, resulting in an identification and summing
of the corresponding components:

(CT )i1...ik−1
j1...jl−1

=
∑

σ

T
i1...σ...ik−1

j1...σ...jl−1
. (9)

The outcome is a tensor of type (k − 1, l − 1). Note that this procedure is basis
independent, because of the relationship between the basis and dual basis. For
a tensor of type (1, 1), which represents a linear operator from V to V , tensor
contraction corresponds precisely to taking the trace of that operator. To simplify
the notation, we will use primed indices instead of numbered ones when the tensors
have a low rank. We define a special (0, 2) tensor called a metric d:
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d =
∑

j,j′
djj′ ê

j ⊗ êj′ . (10)

This tensor is symmetric and non-degenerate. The contraction of this tensor with
two vectors v and w gives the value of the inner product:

d(v, w) =
∑

j,j′
djj′v

jwj
′
. (11)

Because of symmetry, d(v, w) = d(w, v), and because of non-degeneracy, the metric
is invertible, with its inverse d−1 expressed as

d−1 =
∑

i,i′
dii
′
êi ⊗ êi′ . (12)

Given that the elements extracted from the data are elements of V , the con-
tractions that need to be performed, for example for the application of the compo-
sitionality principle in vector spaces, must involve a passage from vectors to dual
vectors as seen in the DisCoCat model, before contraction takes place. The metric
can be used to define a canonical map between V and V ∗ via the partial map that
is obtained when only one vector is used as an argument of the metric, giving rise
to the dual vector dv : v 7→ d(−, v), with the slash indicating the empty argument
slot:

d(v, w) ≡ d(v,−)(w) ≡ dv(w). (13)

This formulation is basis independent, since it results from tensor contraction. Once
a basis is defined, the resulting dual vector can be expressed as

vd =
∑

i,j,j′
djj′v

iêj ⊗ êj′(êi) =
∑

j,j′
djj′v

j′ êj =
∑

j′
vj′ ê

j′ , (14)

where we rewrite vj′ = ∑
j djj′v

j′ .
We call the components of vectors, with indices “up", the contravariant compo-

nents, and those of dual vectors, with indices “down", the covariant components.
Thus, consistent with our notation, the metric can be used to “lower” or “raise”
indices, applying contraction between the metric and the tensor and relabeling the
components:
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d(T ) =
∑

i1,...,ik,j1,...,jl+2

djl+1,jl+2T
i1,...,ik

j1,...,jl
êjl+1 ⊗ êjl+2(êi1)⊗ . . .⊗ êjl

=
∑

i1,...,ik,j1,...,jl+1

djl+1,i1T
i1,...,ik

j1,...,jl
êjl+1 ⊗ êi2 ⊗ . . .⊗ êjl

=
∑

i2,...,ik,j1,...,jl+1

T i2,...,ik
jl+1 j1,...,jl

êjl+1 ⊗ êi2 ⊗ . . .⊗ êjl . (15)

The effect of the metric on a tensor can be captured by seeing how we rewrite
the components of some example tensors:

• ∑j′ djj′T
j′
j′′ = Tjj′′ ;

• ∑i′ T
i
i′ d

i′i′′ = T ii
′′ ;

• ∑j′,j′′′ djj′dj′′j′′′T
j′j′′′ = Tjj′′ .

Most importantly, a proper tensor is only defined in the form of eq.8, so whenever
we have a tensor that has components “up” and “down” in different orders, for
example in T i

j , this is in fact a tensor of type (1, 1) of which the actual value of the
components is

∑

i′,j′
dii
′
djj′T

j′
i′ . (16)

Returning to our toy example with the words “vase” and “wall", we can look at
the change in vector representations as a change of basis êi = ∑

i′ Λ i′
i ê
′
i′ :

~v =
∑

i

viêi =
∑

ii′
viΛ i′

i ê
′
i′ =

∑

i′
v′i
′
ê′i′ , (17)

corresponding to a change in the vector components v′i′ = viΛ i′
i . The components

of the metric also change with the basis:

d′j′′j′′′ = Λ j′
j′′′Λ

j
j′′djj′ . (18)

With this change, we can show that inner product remains invariant under a basis
change:

w′i
′
v′i′ = w′i

′
v′j
′
d′j′i′ = w′i

′
v′j
′Λ i
i′ Λ

j
j′ dji = wivjdji = wivi. (19)
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In this way, finding the right metric allows us to preserve a value that is constant
in the face of context dependent representations. Assuming a metric that has the
following matrix representation in the standard basis,

d =
(

2 1
1 5

)
, (20)

its application to the vector elements in eqs.2 gives a value of the inner product
calculated in the new representation:

v′i′w
′i′ =

(
1 0

)(2 1
1 5

)(
0
1

)
= 1. (21)

Since norms of the vectors have to be calculated using the same notion of inner
product,

‖~v‖ =
√
vigijvj , (22)

we find exactly the cosine similarity calculated in eq.6. Note that this formalism
allows us to deal with non-orthogonal basis, but does not require it: in fact, there
is an implicit metric already when we compute the Euclidean inner product in eq.2,

given by dorth =
(

1 0
0 1

)
in the standard basis, which is the one assumed when

talking about an orthonormal basis.
Since these new tools allow us to preserve a quantity in the face of a change

of representation, we can start reversing the question on similarity: given a cer-
tain human judgement on similarity, or another constant of interest, what is the
metric that preserves it across different representations?3 Once the vector spaces
are endowed with specific metrics, the new inner product definitions permeate all
higher-rank tensor contractions that are performed between higher and lower rank
tensors, namely the ones that will be used in the interpretation of the Lambek rules,4

3In case the quantity we wish to preserve is other than that of the Euclidean inner product in
either representation, there is an option to expand the vector representation of our words by adding
vector components that act as parameters, to ensure that the quantity is indeed conserved. This
would be similar to the role played by the time dimension in Einstein’s relativity theory.

4Using this formalism, we can replace the unit and counit maps ε and η maps of the compact
closed category FdVect by

ηl : R→ V ⊗ V ∗ :: 1 7→ 1⊗ d(1,−)
ηr : R→ V ∗ ⊗ V :: 1 7→ d(−, 1)⊗ 1

εl : V ∗ ⊗ V → R :: d(−, v)⊗ u 7→ d(u, v)
εr : V ⊗ V ∗ → R :: v ⊗ d(u,−) 7→ d(u, v).
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and can further be extended to density matrices.

3.1 Metric in Dirac Notation
We want to lift our description to the realm of density matrices. We now show how
the concept of a metric can also be introduced in that description, such that the
previously described advantages carry over.

Dirac notation is the usual notation for vectors in the quantum mechanics lit-
erature. To make the bridge with the previous concepts from tensor calculus, we
introduce it simply as a different way to represent the basis and dual basis of a vector
space. Let us rename their elements as kets |i〉 ≡ êi and as bras 〈j| ≡ êj . The fact
that the bases are dual to one another is expressed by the orthogonality condition
〈j|i〉 = δij , which, if the vector basis elements are orthogonal to each other, is equiv-
alent to applying the Euclidean metric to |i〉 and |j〉. Using Dirac notation, a vector
and dual vector are represented as v ≡ |v〉 = ∑

i v
i |i〉 and vd ≡ 〈u| = ∑

j vj 〈j|.5 If
the basis elements are not orthogonal, this mapping has to be done through a more
involved metric. To express this, in this paper we introduce a modified Dirac nota-
tion over the field of real numbers, inspired by the one used in [9] for the treatment of
quantum states related by a specific group structure.6 The previous basis elements
of V are written now as |i〉 ≡ êi and the corresponding dual basis as

〈
j
∣∣ ≡ êj , such

that
〈
j
∣∣
i
〉

= δji . In this basis, the metric is expanded as d = ∑
j,j′ dj′j

〈
j
∣∣⊗
〈
j′
∣∣∣ while

the inverse metric is expressed as d−1 = ∑
ii′ d

i′i |i〉⊗|i′〉. The elements of the metric
and inverse metric are related by ∑i dj′i′d

i′i = δi
′
j′ . Applying the metric to a basis

element of V , we get

〈i| ≡ d(−, |i〉) =
∑

jj′
dj′j

〈
j
∣∣∣⊗

〈
j′
∣∣∣i
〉

=
∑

j

dij
〈
j
∣∣∣ . (23)

Acting with this on |i′〉 to extract the value of the inner product, the following
formulations are equivalent:

d(|i′〉 , |i〉) = d(−, |i〉) |i′〉 =
∑

j

dij
〈
j
∣∣∣i′
〉

= 〈i|i′〉 = dii′ . (24)

When the inverse metric is applied to
〈
j
∣∣ it gives

5For orthonormal basis over the field of complex numbers, the covariant components are simply
given by the complex conjugate of the contravariant ones, vi = v̄i.

6This treatment can be extended to the field of complex numbers by considering that the metric
has conjugate symmetry, dij = d̄ji [25].
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∣∣∣j
〉
≡ d

(
−,
〈
j
∣∣∣
)

=
〈
j
∣∣∣
∑

ii′
di
′i |i〉 ⊗ |i′〉 =

∑

i′
di
′j |i′〉 , (25)

with a subsequent application on
〈
j′
∣∣∣ giving

d−1
(〈

j′
∣∣∣ ,
〈
j
∣∣∣
)

=
〈
j′
∣∣∣ d
(
−,
〈
j
∣∣∣
)

=
〈
j′
∣∣∣
∑

i′
di
′j |i′〉 =

〈
j′
∣∣∣j
〉

= dj
′j . (26)

Consistently, we can calculate the value of the new bras and kets defined in eqs.23
and 25 applied to one other, showing that they too form a basis/dual basis pair:

〈
i

∣∣∣j
〉

=
∑

j′
dij′

〈
j′
∣∣∣
∑

i′
di
′j |i′〉 =

∑

i′j′
dij′d

i′j
〈
j′
∣∣∣i′
〉

=
∑

j′
dij′d

j′j = δji . (27)

If the basis elements are orthogonal, the components of the metric and inverse metric
coincide with the orthogonality condition.

4 Density Matrices: Capturing Directionality
The semantic spaces we envisage for the interpretation of the syntactic calculus
are density matrices. A density matrix or density operator is used in quantum
mechanics to describe systems for which the state is not completely known. For
lexical semantics, it can be used to describe the meaning of a word by placing
distributional information on its components. As standardly presented,7 density
matrices that are defined on a tensor product space indicate no preference with
respect to contraction from the left or from the right. Because we want to keep
the distinction between left and right implications in the semantics, we set up the
interpretation of composite spaces in such a way that they indicate which parts will
and will not contract with other density matrices.

The basic building blocks of the interpretation are density matrix spaces Ṽ ≡
V ⊗ V ∗. For this composite space, we choose the basis formed by |i〉 tensored with
〈i′ |, Ẽ = {|i〉 〈i′ |} =

{
ẼJ
}
. Carrying over the notion of duality to the density matrix

space, we define the dual density matrix space Ṽ ∗ ≡ V ⊗ V ∗. The dual basis in this
space is the map that takes each basis element of Ṽ and returns the appropriate
orthogonality conditions. It is formed by

〈
j
∣∣ tensored with

∣∣∣j′
〉
, dẼ =

{∣∣∣j′
〉 〈

j
∣∣
}

={
ẼJ
}
, and is applied on the basis vectors of Ṽ via the trace operation

7A background for the non-physics reader can be found in [19].
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ẼJ
(
ẼI
)

= Tr
(
|i〉
〈
i′
∣∣∣j′
〉〈

j
∣∣∣
)

=
∑

l

〈
l
∣∣∣i
〉〈

i′
∣∣∣j′
〉〈

j
∣∣∣l
〉

=
∑

jj′

〈
j
∣∣∣i
〉〈

j′
∣∣∣i′
〉
δji δ

j′
i′ ≡ δJI . (28)

Because density operators are hermitian, their matrices do not change under
conjugate transposition, which extends to elements of the basis of the density matrix
space. In this way, we can extend our notion of metric to the space of density
matrices, where a new metric D emerges from d, expanded in the basis of V ∗ as

D =
∑

J,J ′
DJJ ′Ẽ

J ⊗ ẼJ ′ (29)

=
∑

jj′,j′′j′′′
dj′′j′dj′′′j

∣∣∣j′
〉〈

j
∣∣∣⊗

∣∣∣j′′′
〉〈

j′′
∣∣∣ . (30)

We can see how both definitions are equivalent by their action on a density
matrix tensor T ≡∑I T

IẼI ≡
∑
ii′ T

ii′ |i〉 〈i′ |. Staying at the level of Ṽ and Ṽ ∗, we
use eq.29 to obtain

D(−, T ) =
∑

I,J,J ′
DJJ ′T

IẼJ ⊗ ẼJ ′
(
ẼI
)

=
∑

I,J,J ′
DJJ ′T

IẼJδJ
′

I

=
∑

J,J ′
DJJ ′T

J ′ẼJ ≡
∑

J

TJ Ẽ
J =

∑

jj′
Tj′j

∣∣∣j′
〉〈

j
∣∣∣ , (31)

where we redefine TJ ≡ DJJ ′T
J ′ , thus establishing covariance and contravariance of

the tensor components defined over the density matrix space. Looking in its turn
at the level of V and V ∗, using eq.30, we see that both definitions are equivalent:

D(−, T ) =
∑

ii′,jj′,j′′j′′′
T ii
′
dj′′j′dj′′′j

∣∣∣j′
〉〈

j
∣∣∣⊗ Tr

(∣∣∣j′′′
〉〈

j′′
∣∣∣i
〉
〈i′ |
)

=
∑

ii′,jj′,j′′j′′′
T ii
′
dj′′j′dj′′′jδ

j′′
i δ

j′′′
i′

∣∣∣j′
〉〈

j
∣∣∣

=
∑

ii′jj′
T ii
′
dij′di′j

∣∣∣j′
〉〈

j
∣∣∣ ≡

∑

jj′
Tjj′

∣∣∣j′
〉〈

j
∣∣∣ , (32)
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where we rewrite Tjj′ ≡ T ii
′
dij′di′j .8

From these basic building blocks, composite spaces are formed via the binary
operation ⊗ (tensor product) and a unary operation ()∗ (dual functor) that sends
the elements of a density matrix basis to its dual basis, using the metric defined
above. In the notation, we use Ã for density matrix spaces (basic or compound),
and ρ, or subscripted ρx, ρy, ρz, . . . ∈ Ã for elements of such spaces. The ()∗ operation
is involutive; it interacts with the tensor product as (Ã ⊗ B̃)∗ = B̃∗ ⊗ Ã∗ and acts
as identity on matrix multiplication.

Below in (†) is the general form of a density matrix defined on a single space in
the standard basis, and (‡) in the dual basis:

(†) ρÃx =
∑

ii′
Xii′ |i〉 Ã〈i′ |, (‡) ρÃ

∗
x =

∑

jj′
Xj′j

∣∣∣j′
〉
Ã∗

〈
j
∣∣∣.

Over the density matrix spaces, we can see these matrices as tensors as we defined
them previously, with XI ≡ Xii′ the contravariant components and with XJ ′ ≡ Xj′j
the covariant components.

A density matrix of a composite space can be an element of the tensor product
space between the standard space and the dual space either from the left or from
the right:

ρÃ⊗B̃
∗

y =
∑

ii′,jj′
Y ii′
j′j

∣∣∣ j
′

i

〉
Ã⊗B̃∗

〈
j
i′

∣∣∣; (33)

ρB̃
∗⊗Ã

w =
∑

ii′,jj′
W ii′
j′j

∣∣∣j
′
i

〉
B̃∗⊗Ã

〈
j
i′

∣∣∣. (34)

Although both tensors are of the form (1, 1), the last one is a tensor with com-
ponents Y I

J ′ , which relate with a true tensor form by DII′Y J
I′ DJJ ′ . Recursively,

density matrices that live in higher-rank tensor product spaces can be constructed,
taking a tensor product with the dual basis either from the left or from the right.
Multiplication between two density matrices of a standard and a dual space follows
the rules of tensor contraction:

ρÃ
∗

y · ρÃx =
∑

jj′
Yj′j

∣∣∣j′
〉
Ã∗

〈
j
∣∣∣ ·
∑

ii′
Xii′ |i〉 Ã〈i′ | =

∑

i′,jj′
Yj′jX

ji′
∣∣∣j′
〉
Ã〈i′ |. (35)

8Here we can compare our formalism to that of the compact closed category of completely
positive maps CPM(FdVect) developed in [26]. The categorical treatment applies here at a higher
level, however, introducing the metric defines explicitely the canonical isomorphisms V ∼= V ∗ and
Ṽ ∼= Ṽ ∗, which trickles down to knowing exactly how the symmetry of the tensor product acts on the
compenents of a tensor: σV,V ∗ : V ∗⊗V → V ⊗V ∗ ::

∑
ij
T j

i êi⊗ êj 7→
∑

ii′,jj′ d
ii′djj′T

j′
i′ êi⊗ êj .
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ρÃx · ρÃ
∗

y =
∑

ii′
Xii′ |i〉 Ã〈i′ | ·

∑

jj′
Yj′j

∣∣∣j′
〉
Ã∗

〈
j
∣∣∣ =

∑

i,jj′
Xij′Yj′j |i〉

Ã

〈
j
∣∣∣, (36)

respecting the directionality of composition. To achieve full contraction, the trace
in the appropriate space is applied, corresponding to a partial trace if the tensors
involve more spaces:

TrÃ


∑

i′,jj′
Yj′jX

ji′
∣∣∣j′
〉
Ã〈i′ |


 =

∑

l,i′,jj′
Yj′jX

ji′

Ã

〈
l

∣∣∣j′
〉
Ã∗ Ã

〈
i′
∣∣∣l
〉
Ã∗

=
∑

jj′
Yj′jX

jj′ ,

(37)

TrÃ


∑

i,jj′
Xij′Yj′j

∣∣∣i
〉
Ã〈j |


 =

∑

l,j′,ij

Xij′Yj′j
Ã∗

〈
l

∣∣∣i
〉
Ã Ã∗

〈
j

∣∣∣l
〉
Ã

=
∑

jj′
Xjj′Yj′j . (38)

We see that the cyclic property of the trace is preserved.
In §6 we will be dealing with derivational ambiguity, and for that the concepts of

subsystem and permutation operation introduced here will be useful. A subsystem
can be thought of as a copy of a space, described using the same basis, but formally
treated as a different space. In practice, this means that different subsystems do
not interact with one another. In the quantum setting, they represent independent
identical quantum systems. For example, when we want to describe the spin states of
two electrons, despite the fact that each spin state is defined on the same basis, it is
necessary to distinguish which electron is in which state and so each is attributed to
their own subsystem. Starting from a space Ã, two different subsystems are referred
to as Ã1 and Ã2. If different words are described in the same space, subsystems
can be used to formally assign them to different spaces. The permutation operation
extends naturally from the one in standard quantum mechanics. We define two
permutation operators: P Ã1Ã2 permutes the elements of the basis of the respective
spaces, while PÃ1Ã2

permutes the elements of the dual basis. If only one set of basis
elements is inside the scope of the permutation operators, then either the subsystem
assignment changes,

P Ã1Ã2 |i〉 Ã1
〈i′ |P Ã1Ã2 = |i〉 Ã2

〈i′ |; PÃ1Ã2

∣∣∣i′
〉
Ã1
∗

〈
i
∣∣∣PÃ1Ã2

=
∣∣∣i′
〉
Ã2
∗

〈
i
∣∣∣; (39)

or the respective space of tracing changes,
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TrÃ1

(
PÃ1Ã2

|i′〉 Ã2
∗〈i|PÃ1Ã2

)
= TrÃ2

(
|i′〉 Ã2

∗〈i|
)
. (40)

Note that permutations take precedence over traces. If two words are assigned to
different subsystems, the permutations act to swap their space assignment:9

P Ã1Ã2 |i〉 Ã1
〈i′ | ⊗ |j〉 Ã2

〈
j′
∣∣P Ã1Ã2 = |i〉 Ã2

〈i′ | ⊗ |j〉 Ã1

〈
j′
∣∣, (41)

PÃ1Ã2

∣∣∣i′
〉
Ã1
∗

〈
i
∣∣∣⊗

∣∣∣j′
〉
Ã2
∗

〈
j
∣∣∣PÃ1Ã2

=
∣∣∣i′
〉
Ã2
∗

〈
i
∣∣∣⊗

∣∣∣j′
〉
Ã1
∗

〈
j
∣∣∣. (42)

If no word has that subsystem assignment then the permutation has no effect.

5 Interpreting Lambek Calculus derivations
Let us turn now to the syntax-semantics interface, which takes the form of a ho-
momorphism sending the types and derivations of the syntactic front end (N)L/,\
to their semantic counterparts. Consider first the action of the interpretation ho-
momorphism on types. We write d.e for the map that sends syntactic types to the
interpreting semantic spaces. For primitive types we set

dse = S̃, dnpe = dne = Ñ , (43)

with S the vector space for sentence meanings and N the space for nominal expres-
sions (common nouns, full noun phrases). For compound types we have

dA/Be = dAe ⊗ dBe∗, and dA\Be = dAe∗ ⊗ dBe. (44)

Given semantic spaces for the syntactic types, we can turn to the interpretation of
the syntactic derivations, as coded by their λ/,\ proof terms. We write J·Kg for the
map that associates each term t of type A with a semantic value, i.e. an element
of dAe, the semantic space where meanings of type A live. The map J.K is defined
relative to a assignment function g that provides a semantic value for the basic
building blocks, viz. the variables that label the axiom leaves of a proof. As we saw

9We define this as a shorthand application of the permutation operations as defined in eq.39,
such that eq.41 can be calculated w.r.t. that definition as

P Ã1Ã2 |i〉Ã1

(
Ã1
〈i′ |P Ã1Ã2

)
⊗
(
P Ã1Ã2 |j〉Ã2

)
Ã2
〈j′ |P Ã1Ã2

= P Ã1Ã2 |i〉Ã1 Ã2
〈i′ | ⊗ |j〉Ã1 Ã2

〈j′ |P Ã1Ã2 = |i〉 Ã2
〈i′ | ⊗ |j〉 Ã1

〈j′ |,
and similarly for eq.42.
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above, a proof term is a generic meaning recipe that abstracts from particular lexical
meanings. Specific lexical items, as we will see in §6, have the status of constants.
These constants are mapped to their distributional meaning by an interpretation
function I. The distributional meaning corresponds to the embeddings assigned by
a particular model to the lexicon. Below we show that this calculus is sound with
respect to the semantics of section 4.

Axiom q
xA

y
g

= g(xA) = ρdAex =
∑

ii′
Xii′ |i〉 dAe〈i′ |. (45)

Elimination Recall the inference rules of fig.1
E/: Premises tB/A, uA; conclusion (t / u)B:

q
(t / u)B

y
g
≡ TrdAe

(r
tB/A

z
g
·
q
uA

y
g

)
(46)

= TrdAe


∑

ii′,jj′
T ii
′
j′j

∣∣∣ j
′

i

〉
dBe⊗dAe∗

〈
j
i′

∣∣∣ ·
∑

kk′
Ukk

′ |k〉 dAe〈k′ |

 (47)

=
∑

ii′,jj′

∑

kk′
T ii
′
j′j · Ukk

′
δjkδ

j′
k′ |i〉 dBe〈i′ | =

∑

ii′,jj′
T ii
′
j′j · U jj

′ |i〉 dBe〈i′ |. (48)

E\: Premises uA, tA\B; conclusion (u . t)B:

q
(u . t)B

y
g
≡ TrdAe

(q
uA

y
g
·
r
tA\B

z
g

)
(49)

= TrdAe


∑

kk′
Ukk

′ |k〉 dAe
〈′
k

∣∣ ·
∑

ii′,jj′
T ii′
jj

∣∣∣j
′
i

〉
dAe∗⊗dBe

〈
j
i′

∣∣∣


 = (50)

=
∑

kk′

∑

ii′,jj′
Ukk

′ · T ii′
j′j δjkδ

j′
k′ |i〉 dBe〈i′ | =

∑

ii′,jj′
U jj

′ · T ii′
j′j |i〉 dBe〈i′ |. (51)

Introduction I/: Premise tB, with xA as its rightmost parameter; conclusion
(λrx.t)B/A:

r
(λrx.t)B/A

z
g
≡
∑

kk′

(
JtBKgx

kk′
⊗
∣∣∣k′
〉
dAe∗

〈
k
∣∣∣
)

(52)
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I\: Premise tB, with xA as its leftmost parameter; conclusion (λlx.t)A\B:

s(
λlx.t

)A\B{

g

≡
∑

kk′

(∣∣∣k′
〉
dAe∗

〈
k
∣∣∣⊗ JtBKgx

kk′

)
(53)

Here gxkk′ is the assignment exactly like g except possibly for the parametric vari-
able x which takes the value of the basis element |k〉 dAe〈k′ |. More generally, the
interpretation of the introduction rules lives in a compound density matrix space
representing a linear map from Ã to B̃. The semantic value of that map, applied to
any object m ∈ Ã, is given by JtBKg′ , where g′ is the assignment exactly like g except
possibly for the bound variable xA, which is assigned the value m. Note that now,
given the introduction of the metric, the interpretations of A/B and B\A are related
by it: if the components of the first are T I

J , then those of the second are given by
those in eq.16 adapted for density matrices. This is what introduces directionality
in our interpretation: using the metric, we can extract a certain representation for
a function word and distinguish by the values of the components whether it will
contract from the left or from the right.

6 Derivational Ambiguity
The density matrix construction has been successfully used to address lexical ambi-
guity [22], as well as lexical and sentence entailment [1,24], where different measures
of entropy are used to perform the disambiguation. Here we arrive at disambiguation
in a different way, by storing in the diagonal elements of a higher order density ma-
trix the different interpretations that result from the different contractions that the
proof-as-programs prescribes. This is possible due to the the set-up that is formed
by a multi-partite density matrices space, so that, by making use of permutation
operations, it happens automatically that the two meanings are expressed indepen-
dently. This is useful because it can be integrated with a lexical interpretation in
density matrices optimized to other tasks, such as lexical ambiguity or entailment. It
is also appropriate to treat the existence of these ambiguities in the context of incre-
mentality, since it keeps the meanings separated in their interaction with posterior
fragments.

We give a simple example of how the trace machinery can be used on an ambigu-
ous fragment, providing a passage from one reading to the other at the interpretation
level, and how the descriptions are kept separated. For this application, the coeffi-
cients in the interpretation of the words contain distributional information harvested
from data, either from a count-base model or a more sophisticated language model.
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The final coefficient of each outcomes is the vector-based representation of that
reading.

We illustrate the construction with the phrase “tall person from Spain”. The
lexicon below has the syntactic type assignments and the corresponding semantic
spaces.

syn type A dAe
tall n/n N∗ ⊗N ⊗ (N∗ ⊗N)∗

person n N∗ ⊗N
from (n\n)/np (N∗ ⊗N)∗ ⊗N∗ ⊗N ⊗ (N∗ ⊗N)∗
Spain np N∗ ⊗N

Given this lexicon, “tall person from Spain” has two derivations, corresponding to
the bracketings “(tall person) from Spain” (x/tall, y/person, w/from, z/Spain):

axx : n/n ` x : n/n axy : n ` y : n
/E2(x : n/n, y : n) ` (x / y) : n

axw : (n\n)/np ` w : (n\n)/np axz : np ` z : np
/E1(w : (n\n)/np, z : n) ` (w / z) : n\n \E3[(x : n/n, y : n), (w : (n\n)/np, z : n)] ` ((x / y) . (w / z)) : n

versus “tall (person from Spain)”:

axx : n/n ` x : n/n
axy : n ` y : n

axw : (n\n)/np ` w : (n\n)/np axz : np ` z : np
/E1(w : (n\n)/np, z : n) ` (w / z) : n\n \E2[y : n, (w : (n\n)/np, z : n)] ` (y . (w / z)) : n

/E3(x : n/n, [y : n, (w : (n\n)/np, z : n)]) ` (x / (y . (w / z))) : n

In the first reading, the adjective “tall” is evaluated with respect to all people,
before it is specified that this person happens to be from Spain, whereas in the
second reading the adjective “tall” is evaluated only in the restricted universe of
people from Spain.

Taking “from Spain” as a unit for simplicity, let us start with the following
primitive interpretations:

• Jtalln/nKI = ∑
ii′,jj′ T

j′j
ii′

∣∣∣ij′
〉
N⊗N∗

〈
i′
j

∣∣∣,

• JpersonnKI = ∑
kk′ Pkk′

∣∣∣k
〉
N

〈
k′
∣∣∣,

• Jfrom_Spainn\nKI = ∑
ll′,mm′ Fl′l

mm′ | ml′ 〉N∗⊗N
〈
m′
l

∣∣∣.
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Interpreting each step of the derivation in the way described in the previous
section will give two different outcomes. The first one is

Jtall_person_from_SpainnK1
I =

= TrN


TrN


∑

ii′,jj′
Tii′

j′j

∣∣∣ j
′

i

〉
N⊗N∗

〈
j
i′

∣∣∣ ·
∑

kk′
Pkk′ |k〉N 〈k′ |




·
∑

ll′,mm′
F mm′
l′l

∣∣∣l′m
〉
N∗⊗N

〈
l
m′

∣∣∣




=
∑

ii′,jj′,mm′
Tii′

j′j Pjj′ F mm′
i′i |m〉N 〈m′ |, (54)

while the second one is

Jtall_person_from_SpainnK2
I =

= TrN


∑

ii′,jj′
Tii′

j′j

∣∣∣ j
′

i

〉
N⊗N∗

〈
j
i′

∣∣∣ · TrN
(∑

kk′
Pkk′ |k〉N 〈k′ |

·
∑

ll′,mm′
F mm′
l′l

∣∣∣l′m
〉
N∗⊗N

〈
l
m′

∣∣∣






=
∑

ii′,jj′,ll′
Tii′

j′j Pll′ F jj′
l′l |i〉N 〈i′ |. (55)

The respective graphical representations of these contractions can be found in fig.2.
Though the coefficients might be different for each derivation, it is not clear how both
interpretations are carried separately if they are part of a larger fragment, since their
description takes place on the same space. Also, this recipe gives a fixed ordering
and range for each trace. To be able to describe each final meaning separately, we
use here the concept of subsystem. Because different subsystems act formally as
different syntactic types and in each derivation the words that interact are different,
it follows that each word should be assigned to a different subsystem:

• Jtalln/nKI1 = Jtalln/nKI2 = ∑
ii′,jj′ Tii′

j′j

∣∣∣ j
′

i

〉
N1⊗N2∗

〈
j
i′

∣∣∣,
• JpersonnKI1 = ∑

kk′ Pkk′ |k〉N2〈k′ |,
JpersonnKI2 = ∑

kk′ Pkk′ |k〉N3〈k′ |,
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Figure 2: Representation of contractions corresponding to the first reading (lower
links) and to the second reading (upper links), without subsystems. The final value
is a coefficient in the Ñ space as in eq.54 and in eq.55, respectively.

• Jfrom_Spainn\nKI1 = ∑
ll′,mm′ F mm′

l′l

∣∣∣l′m
〉
N1∗⊗N3

〈
l
m′

∣∣∣,

Jfrom_Spainn\nKI2 = ∑
ll′,mm′ F mm′

l′l

∣∣∣l′m
〉
N3∗⊗N2

〈
l
m′

∣∣∣.

Notice that the value of the coefficients given by the interpretation functions I1 and
I2 that describe the words does not change from the ones given in I, only possibly
the subsystem assignment does. Rewriting the derivation of the interpretations in
terms of subsystems, the ordering of the traces does not matter anymore since the
contraction is restricted to its own subsystem. For the first reading we obtain

Jtall_person_from_SpainnK1
I1 =

= TrN1


TrN2


∑

ii′,jj′
Tii′

j′j

∣∣∣ j
′

i

〉
N1⊗N2∗

〈
j
i′

∣∣∣ ·
∑

kk′
Pkk′ |k〉N2〈k′ |

·
∑

ll′,mm′
F mm′
l′l

∣∣∣l′m
〉
N1∗⊗N3

〈
l
m′

∣∣∣






=
∑

ii′,jj′,mm′
Tii′

j′j Pjj′ F mm′
i′i |m〉N3〈m′ | (56)

and for the second
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Jtall_person_from_SpainnK2
I2 =

= TrN2


∑

ii′,jj′
Tii′

j′j

∣∣∣ j
′

i

〉
N1⊗N2∗

〈
j
i′

∣∣∣ · TrN3

(∑

kk′
Pkk′ |k〉N3〈k′ |

·
∑

mm′,ll′
F mm′
l′l

∣∣∣l′m
〉
N3∗⊗N2

〈
l
m′

∣∣∣






= TrN3


TrN2


∑

ii′,jj′
Tii′

j′j

∣∣∣ j
′

i

〉
N1⊗N2∗

〈
j
i′

∣∣∣ ·
∑

kk′
Pkk′ |k〉N3〈k′ |

·
∑

ll′,mm′
F mm′
l′l

∣∣∣l′m
〉
N3∗⊗N2

〈
l
m′

∣∣∣






=
∑

ii′,jj′,ll′
Tii′

j′j Pll′ F jj′
l′l |i〉N1〈i′ |. (57)

The interpretation of each derivation belongs now to different subsystems, which
keeps the information about the original word to which the free “noun” space is
attached. We can see this by comparing the upper and lower links in fig.3.

However, it is not very convenient to attribute each word to a different subsystem
depending on the interpretation it will be part of, since that is information that
comes from the derivation itself and not from the representations of words. To
tackle this problem, one uses permutation operations over the subsystems. Since
these have precedence over the trace, when the traces are taken the contractions
change accordingly. This changes the subsystem assignment at specific points so
it is possible to go from one interpretation to the other, without giving different
interpretations to each word initially. Thus, there is a way to go directly from the
first interpretation to the second:
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Figure 3: Representation of contractions corresponding to the first reading (lower
links) and to the second reading (upper links), with subsystems. The final value is
a coefficient in the Ñ space as in eq.56 and in eq.57, respectively.

Jtall_person_from_SpainnK2
I1 =

= TrN1


P13 TrN2


∑

ii′,jj′
Tii′

j′j

∣∣∣ j
′

i

〉
N1⊗N2∗

〈
j
i′

∣∣∣ · P13P
23∑

kk′
Pkk′ |k〉N2〈k′ |

·
∑

ll′,mm′
F mm′
l′l

∣∣∣l′m
〉
N1∗⊗N3

〈
l
m′

∣∣∣P 23P13


P13




= TrN3


TrN2


∑

ii′,jj′
Tii′

j′j

∣∣∣ j
′

i

〉
N1⊗N2∗

〈
j
i′

∣∣∣ ·
∑

kk′
Pkk′ |k〉N3〈k′ |

·
∑

ll′,mm′
F mm′
l′l

∣∣∣l′m
〉
N3∗⊗N2

〈
l
m′

∣∣∣




 . (58)

The reasoning behind this is as follows: the permutation P 23 swaps the space as-
signment between that of “person” and the free space in “from_Spain”, according
to eq.42; after that a permutation P13 is used as in eq.39 to change the argument
space of “from_Spain” from N1∗ to N3∗ , and then the same permutation is applied
again to change the space of tracing, following eq.40. In this way, all the coefficients
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Figure 4

will have the correct contractions and in a different space from the first reading. In
fig.4 we can see the action of the permutations by visualizing how both the spaces
and the traces change as we go from the lower to the upper links.
Although the metric is not used explicitly in the application of the permutation
operators, it is necessary to generate the correct tensors where the permutation
operator is applied in the first place, by going from the vector representation that
comes directly from the data to one that allows contraction. As an example, the
adjective “tall” would have a vector representation from the data as an element of
Ṽ ⊗ Ṽ , of the form Tii′,kk′ . We need the metric dkj′dk′j to change its form to T ii′j′j .
By defining the interpretation space of adjectives as Ñ⊗Ñ∗, we assume this passage
has already been made when we assign an interpretation to a word in this space. As
an alternative to this derivation, we mention that it is possible to apply a P 23 per-
mutation followed by a P 13 permutation that results in the correct contraction of the
indices, but fails to deliver the results of the two derivations in different subspaces;
it is however noteworthy that, in order to start with a unique assignment for each
word, this alternative derivation can, in any case, only be achieved by distinguishing
between subsystems, as well as the covariant and contravariant indices.

7 Conclusion and Future Work
In this paper we provided a density matrix model for a simple fragment of the
Lambek Calculus, differently from what is done in [2] who uses density matrices to
interpret dependency parse trees. The syntax-semantics interface takes the form of
a compositional map assigning semantic values to the λ/,\ terms coding syntactic
derivations. We proposed the use of a metric as a way to reconcile the various vector
representations of the same word that come from different treatments, assuming that
there is a quantity that is being preserved, such as human judgements. If we know
the metric, we can confidently assign only one embedding to each word as its seman-
tic value. A metric can relate these various representations so that we can assign
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only one vector as its semantic value. The density matrix model enables the inte-
gration of lexical and derivational forms of ambiguity. Additionally, it allows for the
transfer of methods and techniques from quantum mechanics and general relativity
to computational semantics. One example of such transfer is the permutation opera-
tor. In quantum mechanics, this operator permits a description of indistinguishable
particles. In the linguistic application, it allows one to go from an interpretation that
comes from one derivation to another, without the need to to go through the latter,
but keeping this second meaning in a different subsystem. Another example is the
introduction of covariant and contravariant components, associated with a metric,
that allow the permutation operations to be properly applied. In future work, we
want to explore the preservation of human judgements found in the literature via
a metric that represents the variability of vector representations of words, either
static or dynamic. We also want to extend our simple fragment with modalities for
structural control (cf [17]), in order to deal with cases of derivational ambiguity that
are licensed by these control modalities. Finally, we want to consider derivational
ambiguity in the light of an incremental left-to-right interpretation process, so as to
account for the evolution of interpretations over time. In enriching the treatment
with a metric, we want to explore the consequences of having this new parameter in
treating context dependent embeddings.
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1 Introduction
Natural languages present many situations where an overt syntactic element provides
the semantic content for one or more occurrences of elements that are not physically
realized, or that have no meaning of their own. Illustrative cases can be found at the
sentence and at the discourse level, e.g. long-distance dependencies in ‘movement’
constructions, ellipsis phenomena, anaphora. Parasitic gaps are a challenging case
in point.

To provide the reader with the necessary linguistic background, the examples in
(1) illustrate some relevant patterns1. The symbol ␣ marks the position of the virtual
elements that depend on a physically realized phrase elsewhere in their context for
their interpretation; in the generative grammar literature, these virtual elements are
referred to as “gaps”.

a papers that Bob rejected ␣ (immediately)
b Bob left the room without closing the window
c ∗window that Bob left the room without closing ␣
d papers that Bob rejected ␣ without reading ␣p (carefully)
e security breach that a report about ␣p in the NYT made ␣ public
f this is a candidate whom I would persuade every friend of ␣ to vote for ␣

(1)
Consider first the case of object relativisation in (a). This example has a single

gap for the unexpressed direct object of rejected. In categorial type logics, gaps
have the status of hypotheses, introduced by a higher-order type. In Lambek’s [6]
Syntactic Calculus, for example, the relative pronoun that in (a) would be typed
as (n\n)/(s/np). The complete relative clause then acts as a noun postmodifier
n\n. The relative clause body Bob rejected ␣ is typed as s/np, which means it
needs a noun phrase hypothesis in order to compose a full sentence. Because the
hypothesis occupies the direct object position, it is impossible to physically realize
that object, as the ungrammaticality of ∗papers that Bob rejected the proposal shows.
The Lambek type requires the hypothetical np to occur at the right periphery of
the relative clause body — a restriction that we will lift in Section §2 to allow for
phrase-internal hypotheses. An example would be (a) with an extra temporal adverb
(immediately) at the end.

As the name suggests, a parasitic gap is felicitous only in the presence of a
primary gap. The relative clause in (d) has two gaps: the primary one is for the

1For a more thorough discussion of the phenomena, and proposed analyses in a variety of
grammatical frameworks, see[2].
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object of rejected as in (a); the secondary, parasitic gap (marked by ␣p) is the
unexpressed object of reading. The parasitic gap occurs here in an adjunct: the
verb phrase modifier without closing ␣. Such an adjunct by itself, is an island for
extraction: the ungrammatical (c) shows that it is impossible for the relative pronoun
to establish communication with a np hypothesis occuring within the adjunct phrase.
Compare (c) with the gapless (b) which has the complete adjunct without closing
(the window)np.

Examples (e) and (f) represent a different type of parasitic gapping where both
the primary and the parasitic gap regard co-arguments of the same verb. In (e),
the primary gap is the direct object of made public, the secondary gap occurs in
the subject argument of this predicate. In (f), the primary gap is the object of the
infinitive complement of the verb persuade, viz. to vote for ␣, while the secondary
gap occurs in the direct object of persuade2.

We illustrated the adjunct and co-argument types of parasitic gapping in (1) with
relative clause examples. Primary gaps can also be triggered in main or subordinate
constituent question constructions, as in (2a, b), where which papers will carry the
higher-order type initiating hypothetical reasoning. In the ‘passive infinitive’ case
(2c), the higher-order type is associated with the adjective hard, which in this context
could be typed as ap/(to_inf /np). The adjective then selects for an incomplete to-
infinitive missing a np hypothesis, the direct object in (2c). As with the relative
clause example (1a), putting a physically realized np in the position occupied by the
hypothesis leads to ungrammaticality. Again, as in (1), the primary gaps here open
the possibility for parasitic gaps dependent on them as in (2d, e, f). These examples
also illustrate some of the various forms the adjunct phrase can take: temporal
modification (before, after), contrastive (despite), etc.

a which papers did Bob reject ␣ (immediately)
b I know which papers Bob will reject ␣ (immediately)
c this paper is hard to understand ␣ / ∗the proposal
d which papers did Bob accept ␣ despite not liking ␣p (really)
e I know which papers Bob will reject ␣ before even reading ␣p (cursorily)
f this paper is easy to explain ␣ well after studying ␣p (thoroughly)

(2)
To account for the duplication of semantic content in parasitic gap constructions,

existing categorial analyses rely on explicit forms of syntactic copying. The CCG
analysis of [19] rests on (a directional version of) the S combinator of Combinatory
Logic; the type-logical account of [13, 14] adapts the ! modality of Linear Logic to

2According to [19], each of the gaps in this type of example would be felicitous by itself.
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implement a restricted form of the structural rule of Contraction. These syntactic
devices are hard to control: the CCG version of the S rule is constrained by rule
features; the attempts to properly constrain Contraction easily lead to undecidabilty
as shown in [4].

Our aim in this paper is to explore lexical polymorphism as an alternative to
syntactic copying. The technique of polymorphic typing is standardly used in cat-
egorial grammars for chameleon words such as and, but. Rather than giving these
words a single type, they are assigned a type schema, with different realizations
depending on whether they are conjoining sentences, verb phrases, transitive verbs,
etc. Treating the adjunct phrases of (1d) and (2d, e, f) as forms of subordinating
conjunction, we propose to similarly handle the adjunct type of parasitic gaps by
means of a polymorphic type schema for the heads without, despite, after, etc. In the
co-argument type of parasitic gapping (1e,f), a conjunctive interpretation is absent.
In this case, a polymorphic type schema for the relative pronouns that or who(m)
allows us to generalize from the single gap instance (1a) to the multi-gap case (1e).
To obtain the derived relative pronoun type from the basic assignment, we can rely
on the same mechanisms that relate the basic type for without etc to the derived
type needed for the parasitic gap examples.

Our analysis builds on the categorical Frobenius algebraic compositional distri-
butional semantics of [16, 17], combined with a multimodal extension of Lambek
calculus as the syntactic front end, as in [9]. Our analysis provides further evidence
that Frobenius algebra is a powerful tool to model the internal dynamics of lexical
semantics.

2 Syntax
2.1 The logic NL♦
The syntactic front end for our analysis is the type logic NL♦ of [10] which extends
Lambek’s pure logic of residuation [7] with modalities for structural control. The
formula language is given by the following grammar (p atomic):

A,B ::= p | A⊗B | A/B | A\B | ♦A | 2A (3)

In NL♦, types are assigned to phrases, not to strings as in the more familiar Syn-
tactic Calculus of [6], or its pregroup version [8]. The tensor product ⊗ then is
a non-associative, non-commutative operation for putting phrases together; it has
adjoints / and \ expressing right and left incompleteness with respect to phrasal
composition, as captured by the residuation inferences (4). In addition to the bi-
nary family /,⊗, \, the extended language has unary control modalities ♦,2 which
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again form a residuated pair with the inferences in (5).

A −→ C/B iff A⊗B −→ C iff B −→ A\C (4)

♦A −→ B iff A −→ 2B (5)

The modalities serve a double purpose, either licensing reordering or restructuring
that would otherwise be forbidden, or blocking structural operations that otherwise
would be applicable. To license rightward extraction, as found in English long-
range dependencies, we use the postulates in (6). Postulate α� is a controlled form
of associativity: the ♦ marking licenses a rotation of the tensor formula tree that
leaves the order of the components A,B,♦C unaffected. Postulate σ� implements a
form of controlled commutativity: here the internal structure of the tensor formula
tree is unaffected, but the components B and ♦C are exchanged.

α� : (A⊗B)⊗♦C −→ A⊗ (B ⊗♦C)
σ� : (A⊗B)⊗♦C −→ (A⊗♦C)⊗B (6)

To block these structural operations from applying, we use a pair of modalities
♦,2. Phrases that qualify as syntactic islands are marked off by ♦. The modal
island demarcation makes sure that the input conditions for α�, σ� do not arise.
The island markers ♦,2 have no associated structural rules; their logical behaviour
is fully characterized by (5).

NL� derivations will be represented using the axiomatisation of Figure 1, due
to Došen [3]. This axiomatisation takes (Co)Evaluation as primitive arrows, and
recursively generalizes these by means of Monotonicity. It is routine to show that the
residuation inferences of (4) and (5) become derivable rules given the axiomatisation
of Figure 1. To streamline derivations, we will make use of the derived residuation
steps. Also, we will freely use (Co)Evaluation and the structural postulates (6) in
their rule form, by composing them with Transitivity (◦).

2.2 Graphical calculus for NL♦
Wijnholds [23] gives a coherent diagrammatic language for the non-associative Lam-
bek Calculus NL; the generalisation to NL with control modalities is straightfor-
ward, see Figure 2. In short, each connective is assigned two links that either
compose or decompose a type built with that connective. Links (and diagrams) can
be put together granted that their in- and outputs coincide. This system has a full
recursive definition, and is shown to be sound and complete (i.e. coherent) with
respect to the categorical formulation of the Lambek Calculus, given a suitable set
of graphical equalities (not discussed in the current paper).
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1A : A −→ A

f : A −→ B g : B −→ C

g ◦ f : A −→ C

f : A −→ B g : C −→ D

f ⊗ g : A⊗ C −→ B ⊗D

f : A −→ B g : C −→ D

f/g : A/D −→ B/C

f : A −→ B g : C −→ D

f\g : B\C −→ A\D

f : A −→ B

3f : ♦A −→ ♦B
f : A −→ B

2f : 2A −→ 2B

ev\A,B : A⊗A\B −→ B co-ev\A,B : B −→ A\(A⊗B)

ev/
A,B : B/A⊗A −→ B co-ev/

A,B : B −→ (B ⊗A)/A

ev2A : ♦2A −→ A co-ev2A : A −→ 2♦A
α♦ : (A⊗B)⊗♦C −→ A⊗ (B ⊗♦C) σ♦ : (A⊗B)⊗♦C −→ (A⊗♦C)⊗B

Figure 1: Došen style axiomatisation of NL♦.

As an illustration, we present the derivation of the simple relative clause example
(1a) in symbolic and diagrammatic form. For this case of non-subject3 relativisation,
the relative pronoun that is typed as a functor that produces a noun modifier n\n
in combination with a sentence that contains an unexpressed np hypothesis (Bob
rejected ␣ immediately). The subtype for the gap is the modally decorated formula
♦2np. The ♦ marking allows it to cross phrase boundaries on its way to the
phrase-internal position adjacent to the transitive verb rejected. At that point, the
licensing ♦ has done its work, and can be disposed of by means of the ev2 axiom
♦2np −→ np, which provides the np object required by the transitive verb rejected.
For legibility, we use words instead of their types for the lexical assumptions in the
derivation below. The steps labeled ` indicate the lexical look-up.

3Subject relative clauses, e.g. paper that ␣ irritates Bob, do not involve any structural reasoning.
The relative pronoun for subject relatives can be typed simply as (n\n)/(np\s).
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Identity Composition ⊗ Monotonicity

A

f

g

A

B

C

⊗

f g

⊗

A⊗B

A B

C D

C ⊗D

\ Monotonicity \ Evaluation \ Co-evaluation

\

f∗ g

\

C\B

C B

A D

A\D

⊗

\

A⊗ (A\B)

A A\B

A
B

⊗

\

B
A

A A⊗B

A\(A⊗B)

♦ Monotonicity 2 Evaluation 2 Co-evaluation

♦

f

♦

♦A

A

B

♦B

♦

2

♦2A

2A

A

♦

2

A

♦A

2♦A

Controlled associativity α♦ Controlled commutativity σ♦

⊗

⊗

A

♦

♦

⊗

⊗

(A⊗B)⊗♦C

A⊗B
♦C

B ♦C

B ⊗♦C

A⊗ (B ⊗♦C)

⊗

⊗
B

♦

♦
B

⊗

⊗

(A⊗B)⊗♦C

A⊗B
♦C

A

♦C
A⊗♦C

(A⊗♦C)⊗B

Figure 2: Došen style axiomisation of NL♦ with diagrams. Monotonicity and
(co)evaluation laws for / are fully symmetrical to the given diagrams for \.
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paper
n `

that
(n\n)/(s/♦2np) `

Bob
np `

rejected
(np\s)/np ` ♦2np −→ np

ev2

rejected⊗ ♦2np −→ np\s ev/
immediately

(np\s)\(np\s) `

(rejected⊗ ♦2np)⊗ immediately −→ np\s ev\

Bob⊗ ((rejected⊗ ♦2np)⊗ immediately) −→ s ev\

Bob⊗ ((rejected⊗ immediately)⊗ ♦2np) −→ s
σ�

(Bob⊗ (rejected⊗ immediately))⊗ ♦2np −→ s
α�

Bob⊗ (rejected⊗ immediately) −→ s/♦2np
res/

that⊗ (Bob⊗ (rejected⊗ immediately)) −→ n\n ev/

paper⊗ (that⊗ (Bob⊗ (rejected⊗ immediately))) −→ n ev\

(7)

(np\s)/npnpn (n\n)/(s/♦2np)

/

paper that Bob rejected

\

/

n

♦

2

\

\

/

immediately
(np\s)\(np\s)

Figure 3: Diagrammatic form of Paper that Bob rejected immediately.

In the diagrammatic form of Fig 3, the ♦2np gap hypothesis is indicated by
the corresponding links. The leading ♦ link licenses the crossing over to the object
position of rejected by means of the σ� postulate of Fig 2. In what follows, we use
diagrams for NL� derivations because this format pictures the information flow in
a simple and intuitive way.
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2.3 Typing Parasitic Gaps
Lexical polymorphism: generalized coordination As our account of parasitic
gaps in adjuncts treats the adjuncts as a form of subordinate conjunction, we briefly
review how lexical polymorphism is used in the analysis of generalized coordination.

Chameleon words such as and, but cannot easily be typed monomorphically;
given an initial type and interpretation, say (s\s)/s for sentence coordination, we’d
like to be able to obtain derived types and interpretations for the coordination of
(in)transitive verbs, as in (8b, c), or for non-constituent coordination cases such as
(8d).

a (Alice sings)s and (Bob dances)s

b Alice (sings and dances)np\s
c Bob (criticized and rejected)(np\s)/np the paper
d (Alice praised)s/♦2np but (Bob criticized)s/♦2np the paper

(8)

Deriving the (b–d) types from an initial (s\s)/s assignment, however, goes beyond
linearity. The attempt in (9) to derive verb phrase coordination from sentence
coordination requires a copying step to strongly distribute the final np abstraction
over the two conjuncts.

...
( np ⊗ np\s)⊗ ((s\s)/s⊗ ( np ⊗ np\s) −→ s

np ⊗ (np\s⊗ ((s\s)/s⊗ np\s) −→ s
Copy!

(s\s)/s −→ ((np\s)\(np\s))/( np \s) (9)

Partee and Rooth’s [15] work on generalized coordination offers a method for re-
placing syntactic copying by lexical polymorphism. Coordinating expressions and,
but get a polymorphic type assignment (X\X)/X where X is a conjoinable type.
The set of conjoinable types CType forms a subset of the general set of types Type.
CType is defined inductively4:

• s ∈ CType;
• A\B,B/A ∈ CType if B ∈ CType, A ∈ Type

The type polymorphism comes with a generalized interpretation. We write uX (infix
notation) for a coordinator of (semantic) type X → X → X.

4Partee and Rooth formulate this in terms of the semantic types obtained from the syntax-
semantics homomorphism h, with h(s) = t (the type of truth values), h(np) = e (individuals) and
h(A\B) = h(B/A) = h(A) → h(B).
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• P ut Q := P ∧Q coordination in type t amounts to boolean conjunction
• P uA→B Q := λxA.(P x) uB (Q x) distributing the xA parameter over the
conjuncts

The generalized interpretation scheme, then, associates a type transition such as
(9) with the Curry-Howard program that would be associated with a derivation
involving the copying step. In Section §3, we will obtain the same effect using the
Frobenius algebras over our vector-based interpretations.

Parasitic gaps in adjuncts Consider the type lexicon for the data in (1a–d)5.

papers, window :: n
that :: (n\n)/(s/♦2np)
Bob :: np

rejected :: (np\s)/np
reading, closing :: gp/np

immediately, carefully :: iv\iv
without :: 2(X\Y )/Z (schematic)

withoutb,c :: 2(iv\iv)/gp
withoutd :: 2((iv/♦2np)\(iv/np))/(gp/♦2np)

(10)

The gap-less example (1b) provides the motivation for the basic type assignment to
without as a functor combining with a non-finite gerund clause gp to produce a verb-
phrase modifier iv\iv. To impose island constraints, we use a pair of modalities ♦,2.
In order to block the ungrammatical (1c), we follow [11] and lock the iv\iv result
type with 2; the matching ♦ needed to unlock it has the effect of demarcating the
modifier phrase without closing the window as an island, represented in the diagram
below by means of a dotted line.

np 2((np\s)\(np\s))/gp

/

withoutBob

\

2

left
np\s

window

/

np/n
the

n

/

gp/np

closing

\

s

5iv abbreviates np\s; gp stands for gerund clause, headed by the -ing form of the verb.
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An attempt to derive the ungrammatical window that Bob left without closing ␣ fails.
The derivation proceeds like the one above, but with the gap hypothesis ♦2np in
the place of the window. At that point the ♦ island demarcation of without closing
♦2np makes it impossible to bring out the hypothesis to the position where it can be
withdrawn. This becomes apparent diagrammatically as the gap hypothesis cannot
cross the dotted line:

np 2((np\s)\(np\s))/gp

/

withoutBob

\

2

left
np\s

/

gp/np

closing

\

s

(n\n)/(s/♦2np)
window

\

/

n

n /

that

2

♦

Let us turn then to the adjunct parasitic gapping of (1d). To account for the double
use of the gap we replace syntactic copying via controlled Contraction by lexical
polymorphism, treating without as a polymorphic item on a par with coordinators
and, but. That means we assign to without the following type schema

without :: 2(X\Y )/Z

with basic instantiation X = Y = iv, Z = gp. From this basic instantiation, a
derived instantiation with X = Y = iv/♦2np and Z = gp/♦2np is obtained for
the parasitic gapping example (1d) by uniformly dividing the subtypes iv and gp by
♦2np using the forward slash.

In Section §3, we will see how the vector-based interpretation of the derived
type is obtained in a systematic fashion from the interpretation of the basic type
instantiation. For this, it is helpful to factorize the construction of the derived
type as the combination of an expansion step and a distribution step. Ignoring
the appropriate 2 decoration to mark off the adjunct as an island, the expansion
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step here is an instance of the Geach transformation A/B −→ (A/C)/(B/C), with
A = iv\iv, B = gp, C = ♦2np.

(basic type) 2(iv\iv)/gp

(2(iv\iv)/♦2np)/(gp/♦2np)

(derived type) 2((iv/♦2np)\(iv/♦2np))/(gp/♦2np)

expand

distribute

Setting now A = iv, B = iv, C = ♦2np, the distribution step is a directional
instance of the S combinator (A\B)/C −→ (A/C)\(B/C).

To arrive at the version of the derived type for without as we have it in our lexicon
(10), a final calibration is required. We replace the result type iv/♦2np by iv/np,
dropping the modal marking required for controlled associativity/commutativity.
The final type 2((iv/♦2np)\(iv/np))/(gp/♦2np) allows for the derivation of the
parasitic gapping example (1c) displayed in Figure 4, but also for cases of Right
Node Raising such as

Bob (rejected without reading)iv/np all papers about linguistics

where all papers about linguistics is a plain np rather than ♦2np.

Parasitic gaps: co-arguments

Let us turn to the co-argument type of parasitic gapping as exemplified by (1e, f).
Consider first (1e), repeated here for convenience, together with a gap-less sentence
that motivates the type-assignments given in (11).

security breach that a report about ␣p in the NYT made ␣ public = (1e)
(a report in the NYT)np made (the security breach)np publicap

a, the :: np/n
security breach, report, NYT :: n

about, in :: (n\n)/np
made :: ((np\s)/ap)/np
public :: ap

(11)
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(np\s)/npnp

/

n (n\n)/(s/♦2np)

/

papers that reviewers rejected

\

/

n

♦

2

without
2(((np\s)/♦2np)\((np\s)/np))/(gp/♦2np) gp/np

reading

/

2

/

/

2

♦\

/

\

/

Figure 4: Information flow for the double parasitic gap.

In (1e) the relative clause body does not contain a coordination-like element that
would be a suitable candidate to lexically encapsulate the ostensible copying. But
we can turn to the relative pronoun itself, and use the mechanisms we relied on for
parasitic gaps in adjuncts to move from the relative pronoun’s basic type assignment
for single-gap dependencies to a derived assignment for the double-gap dependency
of (1e).

thata,c :: (n\n)/(s/♦2np)
thate :: (n\n)/((np/♦2np)⊗ ((np\s)/♦2np)) (12)

Again, we see that these types are derivable from the initial type for that by a
combination of an expansion and a distribution step:

(n\n)/(s/♦2np)

(n\n)/((np⊗ np\s)/♦2np)

(n\n)/((np/♦2np)⊗ ((np\s)/♦2np))

expand

distribute
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The expansion step replaces s in antitone position by np ⊗ np\s, which is justified
by leftward Application ev\ : np ⊗ np\s −→ s and Monotonicity. Here, with A =
np⊗ np\s, B = s, C = ♦2np and D = n\n, we have

A −→ B
Appl

A/C −→ B/C
Mon↑

D/(B/C) −→ D/(A/C) Mon↓

Likewise, the distribution step relies on Mon↓ to replace (A⊗B)/C by A/C ⊗B/C
in antitone position. Here, with A = np, B = np\s, C = ♦2np, D = n\n, we have

...
(A/C ⊗ C)⊗ (B/C ⊗ C) −→ A⊗B

(A/C ⊗B/C)⊗ C −→ A⊗B Distr

A/C ⊗B/C −→ (A⊗B)/C
Res

D/((A⊗B)/C) −→ D/(A/C ⊗B/C) Mon↓

Figure 6 has the derivation for example (1e).
Turning to (1f), repeated below with its underlying lexical type-assignments,

we find the primary and secondary gaps in the infinitival complement to_inf and
direct object of the verb persuade.

candidate whom Alice persuaded every friend of ␣ to vote for ␣ ∼ (1f)
Alicenp persuaded (a friend)np to vote for Bobnp

persuaded :: ((np\s)/to_inf )/np
to vote :: to_inf /pp

for :: pp/np

whomf :: (n\n)/(((s/♦2to_inf )/♦2np)⊗ (to_inf /♦2np))
(13)

To obtain the required derived type for whom, we follow the same expansion/dis-
tribution routine as for (1f). Expansion in this case replaces s by the product
(s/to_inf )⊗ to_inf ; the gap type ♦2np is then distributed over the two factors of
that product. To obtain the desired whomf , there is an extra modal marking on
the first occurrence of to_inf , in order to license rebracketing with respect to the
subject. Recall that the base logic NL is non-associative by default.
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(n\n)/(s/♦2np)

(n\n)/((s/to_inf )⊗ to_inf )/♦2np)

(n\n)/(((s/to_inf )/♦2np)⊗ (to_inf /♦2np))

expand

distribute

3 Frobenius Semantics

The proposed vector-based semantics has two ingredients: first, the derivational se-
mantics specifies a compositional mapping that interprets types and proofs of the
NL♦ syntax as morphisms of a Compact Closed Category, concretely the category
of FVect and linear maps. Second, the lexical semantics specifies the word-internal
interpretation of individual lexical items; here, we make use of the Frobenius Al-
gebras over FVect to model the copying of semantic content associated with the
interpretation of relative pronouns such as that and whom, and modifier heads such
as without.

3.1 Diagrams for Compact Closed Categories and Frobenius Alge-
bras

Recall that a Compact Closed Category is a symmetric monoidal category (C,⊗, I)
with duals A∗ for every object A, and contraction and expansion maps for every
object. In the case of vector spaces over fixed bases (our concrete semantics) we don’t
distinguish between objects and their duals, hence the contraction and expansion
maps have signature ε : V ⊗ V → I and η : I → V ⊗ V , respectively.

For compact closed categories, there is a complete diagrammatic language avail-
able, that uses cups and caps to represent contraction and expansion, see [18]. These
are drawn as connecting two objects either as a cup in the case of ε or as a cap in
the case of η. The standard contraction and expansion maps of a CCC form the
basis for interpreting derivations of NL♦.

Crucial to our polymorphic approach is the inclusion of Frobenius Algebras in the
lexicon. A Frobenius algebra in a symmetric monoidal category (C,⊗, I) is a tuple
(X,∆, ι, µ, ζ) where, for X an object of C, the first triple below is an internal
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comonoid and the second one is an internal monoid.

(X,∆, ι) (X,µ, ζ)

This means that we have a coassociative map ∆ and and its counit ι:

∆: X → X ⊗X ι : X → I

and an associative map µ and its unit ζ:

µ : X ⊗X → X ζ : I → X

as morphisms of our category C. The ∆ and µ morphisms satisfy the Frobenius
condition given below

(µ⊗ 1X) ◦ (1X ⊗∆) = ∆ ◦ µ = (1X ⊗ µ) ◦ (∆⊗ 1X)

Informally, the comultiplication ∆ decomposes the information contained in one
object into two objects; the multiplication µ combines the information of two ob-
jects into one. In diagrammatic terms, to visualise the Frobenius operations one
adds a white triangle to the diagrammatic language for CCCs that represents the
(un)merging of information through the four different Frobenius maps. The resulting
graphical language is summarised in Figure 7.

3.2 Derivational Semantics
For the derivational semantics, we need to define a homomorphism d·e that sends
syntactic types and derivations to the corresponding components of the Compact
Closed Category of FVect and linear maps. This homomorphism has been worked
out by Moortgat and Wijnholds [9]. We present the key ingredients below and refer
the reader to that paper for full details.
Types The target signature has atomic semantic spaces N and S, an involutive (·)∗
for dual spaces and a symmetric monoidal product ⊗. We set

dse = S,

dnpe = dne = N,

dto_infe = dape = dgpe = N∗ ⊗ S,
d♦Ae = d2Ae = dAe,

dA/Be = dAe ⊗ dBe∗,
dA\Be = dAe∗ ⊗ dBe
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Identity Composition ⊗ Monotonicity

A

f

g

A

B

C

f ⊗ g

f g

A

C

B

D

ε : V ⊗ V → I η : I → V ⊗ V
V V

V V

∆ : A→ A⊗A ι : A→ I µ : A⊗A→ A ζ : I → A

A A

A

A

A A

A

A

Figure 7: Diagrams of a Compact Closed Category with Frobenius Algebras.

Notice that to_inf , ap and gp are mapped to N∗ ⊗ S. Their understood subject is
provided by the context: the main clause subject, in the case of Bob fell asleep while
watching TV, the direct object in the case of make the report public and persuade A
to vote for B.

Derivations The instances of the Evaluation axioms correspond to generalised con-
traction operations on vector spaces, the instances of the Co-Evaluation axioms du-
ally are mapped to generalised expansion maps. The structural control postulates
stipulate a syntactically limited associativity and commutativity; since the control
modalities leave no trace on the semantic interpretation, the structural postulates
α� and σ� are interpreted using the standard associativity and symmetry maps of
FVect.

The derivational semantics is represented graphically in Figure 8, where the
diagrams of Figure 2 are interpreted in the complete diagrammatic language of
compact closed categories of Figure 7.
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Figure 8: Interpreting derivations of NL♦ arrows in a compact closed category.

Under the given interpretation, the diagrammatic derivation of Figure 4 for (1d)

papers that Bob rejected without reading
n (n\n)/(s/♦2np) np (np\s)/np (2(X\Y ))/Z gp/np −→ n

is sent to the contractions in the interpreting CCC in Figure 9 (red: dthate, blue:
dwithoute).

3.3 Lexical Semantics
For the lexical interpretation of the relative pronouns that and whom and the con-
junctive without, we follow previous work [16, 17] and use Frobenius algebras that
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N N∗ N N S∗ N N∗ S N∗ N S∗ N N∗ S N∗ N S∗ N N∗ S N∗

Figure 9: Axiom linking in a CCC for the parasitic gapping example (1d).

characterise vector space bases [1]. First, the basic form of the diagram for that is as
developed in [16]. The basic diagram for without uses a double instance of a Frobe-
nius Algebra to coordinate the gerundive phrase with the intransitive verb phrase
consumed to its left. Recall that the interpretation homomorphism sends np\s and
gp to the same semantic space, N∗ ⊗ S. In Figure 10 we display graphically these
basic types as well as how their derived instantiations look. As our type for whom is
derived similarly to the type of that, except that we distribute over the type to_inf
rather than np, we get instead two extra wires rather than a single one.

For the case of parasitic gaps in adjunct positions we use the basic type for that
and the derived type for without. For that, its basic Frobenius instantiation has the
concrete effect of projecting down the verb phrase into a vector which is consecutively
multiplied elementwise with the head noun of the main clause. The diagram for
without then makes sure to distribute the missing hypothesis of the relative clause
over the two gaps in the clause body. Given the identification dive = dgpe, this is
essentially the treatment of coordination of [5].

For the co-argument case, we need make use of the derived type for that; its
function is now to both specify the need for a clause body missing a hypothetical
noun phrase, as well as coordinating this noun phrase through two gaps. Hence,
the derived instantiation figures an iterative use of the Frobenius µ to merge three
elements together.

With both the derivational semantics of Figure 9 and the lexical specifications
of the constituents of Figure 10 we can put everything together to get the (unnor-
malised) diagram in Figure 11.

This diagram can be normalised under the equations of the diagrammatic lan-
guage, leading to the normal form of Figure 12.

The above diagrams are morphisms of a symmetric compact closed category with
Frobenius algebras and can be written down in that language as done e.g. in [16, 9].
Here, we provide the closed linear algebraic form of the normal form in Figure 12.
For Rejected and Not-Reading the rank 3 tensors interpreting rejected and (without)
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without that

NS∗ N∗ S NS∗ NNN∗ S∗

NS∗ N∗ S NS∗N∗ N NNN∗ S∗ N N∗

NS∗ N∗ S NS∗

N∗

NN NN∗ S∗ N N∗

NN

N N S∗ NN∗N N∗S∗ S NNN∗ S∗ N N∗N

expand

distribute

normalise

expand

distribute

normalise

Figure 10: Deriving the lexical semantics for without and that.
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Paper

N SN∗

rejected

N∗ N∗

reading

N∗ S

Bob

N N NS∗ N∗ S N∗NN∗ N S∗

that

NS∗N

without

N

Figure 11: Semantic information flow for the double parasitic gap (initial form).

N S N NN

Bob Rejected Papers Not-Reading

S N

N

N

Figure 12: Semantic information flow for the double parasitic gap (normal form).

reading, and ι the unit of the Frobenius coalgebra, this is
−−−−→Papers� (ιS ⊗ idN )(−−→BobT × (Rejected�Not-Reading))

The closed linear algebraic form says that we take the elementwise multiplication of
both cubes, and contract them with the subject Bob; then, we collapse the resulting
matrix into a vector and compute the elementwise multiplication of this vector with
the vector interpreting the head noun Papers.

For the co-argument case of parasitic gapping, we insert the derived Frobenius
diagrams for that and whom, to obtain the initial diagrams of Figures 13 (1e) and
14 (1f), which normalise to the diagrams in Figures 15,16. Note that the lexical
specification of made and persuade is a wrapper around the lexical content of the
verbs; since public and the phrase to vote for are interpreted as N ⊗ S, their un-
derstood subject needs to be supplied, which happens through the use of Frobenius
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operations in the specification of their consuming verbs. This is the direct analogue
of assigning a lambda term λx.λP.λy.PERSUADE x (P x) y to persuade, where the
Frobenius expansion corresponds to variable reuse.

4 Discussion

The concrete modelling presented above produces an interpretation of relative
clauses that is analogous to the formal semantics account: seeing elementwise mul-
tiplication as an intersective operation (cf. set intersection), the interpretation of
papers that Bob rejected without reading identifies those papers that were both re-
jected and not reviewed, by Bob.

In the formal semantics account, the head noun and the relative clause body
are both interpreted as functions from individuals to truth values, i.e. characteristic
functions of sets of individuals, which allows them to be combined by set intersection.
In our vector-based modelling, however, the head noun and the relative clause body
are initially sent to different semantic spaces, viz. N for the head noun versus N⊗S
for the relative clause body. This means we need to appeal to the ι operation to
effectuate the rank reduction from N⊗S to N that reduces the interpretation of the
relative clause body to a vector that can then be conjoined with the meaning of the
head noun. The rank reduction performed by the ι transformation is not a lossless
transformation, and it is debatable whether it correctly captures the semantic action
we want to associate with the relative pronoun.

As a first step towards a more general model, we abstract away from the specific
modelling of the relative pronoun by means of the ι map.

As shown in Figure 17, our type translation for the relative pronoun effectively
interprets it as a map from a verb phrase (N⊗S) meaning into an adjectival meaning
modifying a (common) noun (N ⊗N).

With this generalization, we are not bound anymore to a specific implementation
of the relative pronoun meaning, although the proposed account for now gives a
workable solution for experimentation.

We suggest here, that a data-driven approach may lend itself for modelling the
relative pronoun, as it essentially binds a verb phrase to its adjectival form. For
example, a verb phrase can occur in adjectival form, e.g. “papers that were rejected"
vs “rejected papers”. In such cases, we would expect to get the same meaning
representation, which crucially relies on being able to project either an adjective
onto a verb phrase or vice versa. Formulating this as a machine learning problem,
is work in progress.
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security breach

N

made ␣ public

S NNN

a report about ␣ in NYT

N

N

Figure 15: Semantic information flow for the co-argument parasitic gap (1e, normal
form).

candidate

N

persuaded every friend of

N N N

to vote for

SNN

Bob

N

SN S N

Figure 16: Semantic information flow for the co-argument parasitic gap (1f , normal
form).

5 Conclusion/Future Work
We presented a typelogical ditributional account of parasitic gapping, one of the
many linguistic phenomena in which some semantic elements are not present in the
sentence (or more generally discourse) and therefore their corresponding informa-
tion needs to be provided from some other syntactic element. Rather than relying
on some form of copying and/or movement on the syntax side to provide this in-

849



Moortgat, Sadrzadeh and Wijnholds

N S N NN

Bob Rejected PapersNot-Reading

S N

N

Verb to Adjective
N ⊗ S ⇒ N ⊗N

N

Figure 17: General normal form for a sentence with a parasitic gap; the relative
pronoun is now a general map that transforms a verb phrase (N⊗S) into an adjective
(N ⊗N).

formation (as is the approach for ellipsis with anaphora in [20, 22]), we have solved
the problem by using polymorphic typing for function words that play a key role in
parasitic gapping (here, that, whom and without).

The polymorphism carries over to the semantics, where we have used Frobenius
algebras to interpret them. This enabled us to handle the coordination of multiple
gaps, and where the relative pronoun that handles the coordination of the head noun
with the body of the relative clause and the pronoun without coordinates the second
gap that exists in the body and which refers to the same head noun. The lexical
specifications we use are analogous to a formal semantic modelling, but moreover al-
low for a more flexible way of representing meaning that may be obtained from data.
That resolving gaps is useful in verb disambiguation and sentence similarity tasks
has been recently shown [21]. On this point, we discussed a more general normal
form in which the behaviour of the relative pronoun is kept abstract. Investigating
alternatives to the current modelling with the ι map, and looking into data-driven
modelling of the relative pronoun, constitutes work in progress.
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Abstract

In recent years, the compositional distributional approach in computational
linguistics has opened the way for an integration of the lexical aspects of mean-
ing into Lambek’s type-logical grammar program. This approach is based on
the observation that a sound semantics for the associative, commutative and
unital Lambek calculus can be based on vector spaces by interpreting fusion as
the tensor product of vector spaces.

In this paper, we build on this observation and extend it to a ‘vector space
semantics’ for the general Lambek calculus, based on algebras over a field K (or
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K-algebras), i.e. vector spaces endowed with a bilinear binary product. Such
structures are well known in algebraic geometry and algebraic topology, since
Lie algebras and Hopf algebras are important instances of K-algebras. Applying
results and insights from duality and representation theory for the algebraic
semantics of nonclassical logics, we regard K-algebras as ‘Kripke frames’ the
complex algebras of which are complete residuated lattices.

This perspective makes it possible to establish a systematic connection be-
tween vector space semantics and the standard Routley-Meyer semantics of
(modal) substructural logics.

1 Introduction

The extended versions of the Lambek calculus [25, 26] currently used in compu-
tational syntax and semantics can be considered as multimodal substructural type
logics where residuated families of n-ary fusion operations coexist and interact. Ex-
amples are multimodal TLG with modalities for structural control [28], the dis-
placement calculus of [30] which combines concatenation and wrapping operations
for the intercalation of split strings, or Hybrid TLG [24], with the non-directional
implication of linear logic on top of Lambek’s directional implications. For semantic
interpretation, these formalisms rely on the Curry-Howard correspondence between
derivations in a calculus of semantic types and terms of the lambda calculus that
can be seen as recipes for compositional meaning assembly. This view of composi-
tionality addresses derivational semantics but remains agnostic as to the choice of
semantic spaces for lexical items.

Compositional distributional semantics [1, 6, 5, 31] satisfactorily addresses the
lexical aspects of meaning while preserving the compositional view on how word
meanings are combined into meanings for larger phrases. In [5], the syntax-semantics
interface takes the form of a homomorphism from Lambek’s syntactic calculus, or its
pregroup variant, to the compact closed category of finite dimensional vector spaces
and linear maps; [29] have the same target interpretation, but obtain it from the
non-associative Lambek calculus extended with a pair of adjoint modal operators
allowing for controlled forms of associativity and commutativity in the syntax. The
interpretation homomorphism in these approaches typically ‘forgets’ about syntac-
tic fine-structure, sending Lambek’s non-commutative, non-unital syntactic fusion
operation to the tensor product of the commutative, associative, unital semantic
category, and treating the control modalities as semantically inert.

In this paper we start exploring a more general interpretation of the Lambek
fusion in vector spaces. Our starting point is the notion of algebra over a field K

(or K-algebra). An algebra over a field K is a vector space over K endowed with a
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bilinear product (cf. Definition 2.2). Algebras over a field can be regarded as Kripke
(Routley-Meyer) frames in the following way. The vector space structure of a given
K-algebra gives rise to a closure operator on the powerset algebra of its underlying
vector space (i.e. the closure operator which associates any set of vectors with the
subspace of their linear combinations). The closed sets of this closure operator form
a complete non distributive (modular, Arguesian, complemented [23, 22, 12]) lattice
which interprets the additive connectives (∧,∨) of the Lambek calculus (whenever
they are considered). The graph of the bilinear product of the K-algebra, seen as a
ternary relation, gives rise to a binary fusion operation on the powerset of the vec-
tor space in the standard (Routley-Meyer style) way, and moreover the bilinearity
of the K-algebra product guarantees that the closure operator mentioned above is
a nucleus. This fact makes it possible to endow the set of subspaces of a K-algebra
with a residuated lattice structure in the standard way (cf. Section 3). This per-
spective on K-algebras allows us to introduce a more general vector space semantics
for the Lambek calculus (expanded with a unary diamond operator and a unary box
operator) which we show to be complete (cf. Section 6), and which lends itself to be
further investigated with the tools of unified correspondence [7, 8, 9] and algebraic
proof theory [19, 16]. We start developing some instances of correspondence theory in
this environment, by characterizing the first order conditions on any given (modal)
K-algebra corresponding to the validity in its associated (modal) residuated lattice
of several identities involving (the diamond and) the Lambek fusion such as com-
mutativity, associativity and unitality. Moreover, using these characterizations, we
show that commutativity and associativity fail on the residuated lattice associated
with certain well known K-algebras.

2 Preliminaries
2.1 Algebras over a field
Definition 2.1 ([27]). Let K = (K,+, ·, 0, 1) be a field. A vector space over K is a
tuple V = (V,+, ·, 0)1 such that

(V1) + : V × V → V is commutative, associative and with unit 0;

(V2) − : V → V is s.t. u+ (−u) = 0 for any u ∈ V ;

1We overload notation and use the same symbols for sum, product and the constant 0 both in
the field K and in the vector space V , and rely on the context to disambiguate the reading. Notice
that in this axiomatization − is the unary inverse operation and it is considered primitive.
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(V2) · : K×V → V (called the scalar product) is an action, i.e. α ·(β ·u) = (α ·β) ·u
for all α, β ∈ K and every u ∈ V ;

(V3) the scalar product · is bilinear, i.e. α · (u+v) = (α ·u)+(α ·v) and (α+β) ·u =
(α · u) + (β · u) for all α, β ∈ K and all u, v ∈ V ;

(V4) 1 · u = u for every u ∈ V .

A subspace U of a vector space V as above is uniquely identified by a subset
U ⊆ V which is closed under +,−, ·, 0.
Definition 2.2. An algebra over K (or K-algebra) is a pair (V , ?) where V is a
vector space V over K and ? : V ×V → V is bilinear, i.e. left- and right-distributive
with respect to the vector sum, and compatible with the scalar product:

(L1?) u ? (v + w) = (u ? v) + (u ? w) and (u + v) ? w = (u ? w) + (v ? w) for all
u, v, w ∈ V ;

(L2?) (α · u) ? (β · v) = (αβ) · (u ? v) for all α, β ∈ K and all u, v ∈ V .

Definition 2.3. A K-algebra (V , ?) is:

1. associative if ? is associative;

2. commutative if ? is commutative;

3. unital if ? has a unit 1;

4. idempotent if u = u ? u for every u ∈ V ;

5. monoidal if ? is associative and unital.

Example 2.4. Let R denote the field of real numbers. A well known example of
R-algebra is the algebra (H, ?H) of quaternions [10], where H is the 4-dimensional
vector space over R, and ?H : H × H → H is the Hamilton product, defined on the
basis elements { e1, i, j, k} as indicated in the following table and then extended to
H×H by bilinearity as usual. Quaternions are the unique associative 4-dimensional
R-algebra fixed by i2 = j2 = k2 = − e1 and i j k = − e1.

?H e1 i j k
e1 e1 i j k
i i − e1 k − j
j j −k − e1 i
k k j − i − e1
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The Hamilton product is monoidal (cf. Definition 2.3)2 and, notably, not commuta-
tive.

Example 2.5. Another well known example is the R-algebra (O, ?o) of octonions
[10] where O is the 8-dimensional R-vector space O, and ?O : O×O→ O is defined
on the basis elements e0, e1, e2, e3, e4, e5, e6, e7 as indicated in the following table.

?O e0 e1 e2 e3 e4 e5 e6 e7

e0 e0 e1 e2 e3 e4 e5 e6 e7
e1 e1 − e0 e3 − e2 e5 − e4 − e7 e6
e2 e2 − e3 − e0 e1 e6 e7 − e4 − e5
e3 e3 e2 − e1 − e0 e7 − e6 e5 − e4
e4 e4 − e5 − e6 − e7 − e0 e1 e2 e3
e5 e5 e4 − e7 e6 − e1 − e0 − e3 e2
e6 e6 e7 e4 − e5 − e2 e3 − e0 − e1
e7 e7 − e6 e5 e4 − e3 − e2 e1 − e0

The product of octonions is unital, but neither commutative nor associative.

Example 2.6. Finally two more examples are the algebras (Mn, ?), and (Mn, ◦J)
where Mn is the vector space of n×n matrices over R, ? is the usual matrix product
and ◦J is the Jordan product defined as A ◦J B = A?B+B?A

2 . The usual matrix
product is associative but not commutative while the Jordan product is commutative
but not associative.

2.2 The modal non associative Lambek calculus
The logic of the modal non associative Lambek calculus NL3 can be captured
via the proper display calculus D.NL3 (cf. [32] where this notion is introduced
and [19], which expands on the connection between this calculi and the notion of
analytic structural rules). Notice that the rules of a Gentzen calculus for this logic
are derivable in D.NL. Moreover, the general theory of display calculi guarantees
good properties we want to retain, for instance the fact that any display calculus
can be expanded with analytic structural rules still preserving a canonical form of
cut-elimination. The language of D.NL3 is built from the following structural and
operational connectives3

2Given our convention, in this case 1 is an abbreviation for 1 e1 + 0 i + 0 j + 0 k.
3Notice that in [28] the unary modality 3 is denoted by the symbols ♦ and 2 is denoted by the

symbol 2↓.
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Structural symbols 3̂ 2̌ ⊗̂ /̌ \̌
Operational symbols 3 2 ⊗ / \

The calculus D.NL3 manipulates formulas and structures defined by the following
recursion, where p ∈ AtProp:

Fm 3 A ::= p | 3A | 2A | A⊗A | A/A | A \A
Str 3 X ::= A | 3̂X | 2̌X | X ⊗̂X | X /̌X | X \̌X

and consists of the following rules:

Identity and Cut

Id p ⇒ p
X ⇒ A A ⇒ Y Cut

X ⇒ Y

Display postulates

Y ⇒ X \̌Z
⊗ a \

X ⊗̂Y ⇒ Z⊗ a /

X ⇒ Z /̌ Y

3̂X ⇒ Y
3 a 2

X ⇒ 2̌Y

Logical rules

A ⊗̂B ⇒ X⊗L
A⊗B ⇒ X

X ⇒ A Y ⇒ B ⊗R

X ⊗̂Y ⇒ A⊗B

X ⇒ A B ⇒ Y\L

A \B ⇒ X \̌Y
X ⇒ A \̌B

\R
X ⇒ A \B

B ⇒ Y X ⇒ A/L

B /A ⇒ Y /̌X
X ⇒ B /̌A

/R
X ⇒ B /A

3̂A ⇒ X3L
3A ⇒ X

X ⇒ A 3R

3̂X ⇒ 3A

A ⇒ X
2L

2A ⇒ 2̌X
X ⇒ 2̌A

2R
X ⇒ 2A

A modal residuated poset is a structure P = (P,≤,⊗, \ , / ,3,2) such that ≤
is a partial order and for all x, y, z ∈ P

x⊗ y ≤ z iff x ≤ z / y iff y ≤ x \ z
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3x ≤ y iff x ≤ 2y.

The calculus D.NL3 is sound and complete with respect to modal residuated
posets. Indeed every rule given above is clearly sound on these structures, and
the Lindenbaum-Tarski algebra of D.NL3 is clearly a modal residuated poset (cf.
Proposition 9 and the discussion before Theorem 4 in [16]). Furthermore, D.NL3

has the finite model property with respect to modal residuated posets (cf. [16, The-
orem 49]).

Analytic Extensions. As an example of an extension of D.NL3 with analytic
structural rules, consider A3 and 3C below.

X ⊗̂ (Y ⊗̂ 3̂Z) ⇒ W
A3

(X ⊗̂Y ) ⊗̂ 3̂Z ⇒ W

(X ⊗̂ 3̂Y ) ⊗̂Z ⇒ W
3C

(X ⊗̂Z) ⊗̂ 3̂Y ⇒ W

These rules replace global forms of associativity or commutativity by controlled
forms of restructuring (A3) or reordering (3C) that have to be explicitly licensed
by the presence of the 3̂ operation. Rules of this form have been used to model long
range dependencies: constructions where a question word or relative pronoun has to
provide the semantic content for an unrealized ‘virtual’ element later in the phrase.
In the relative clause key that Alice found ␣ there, for instance, the relative
pronoun that has to make sure that the unrealized direct object of found (indicated
by ␣) is understood as the key. To make this possible, typelogical grammars assign a
higher-order type to the relative pronoun; the unexpressed object then has the logical
status of a hypothesis that can be withdrawn once it has been used to provide the
transitive verb with its direct object.

We illustrate with the following simple lexicon: key : n, that : (n\n)/(s/32np),
Alice : np, found : (np\s)/np, there : (np\s)\(np\s). Consider first the judgment
key that Alice found ⇒ n where the gap ␣ occurs at the right periphery of the
clause Alice found ␣. In the derivations below a dashed inference line abbreviates
applications of display postulates or unary logical rules. The derivation relies on
controlled associativity A3:
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n ⇒ n n ⇒ n

n \n ⇒ n \̌n

np ⇒ np s ⇒ s

np \ s ⇒ np \̌ s

np ⇒ np

3̂2np ⇒ np

(np \ s) / np ⇒ (np \̌ s) /̌ 3̂2np

np ⊗̂ ((np \ s) / np ⊗̂ 3̂2np) ⇒ s
A3

(np ⊗̂ (np \ s) / np) ⊗̂ 3̂2np ⇒ s

np ⊗̂ (np \ s) / np ⇒ s /32np

(n \n) / (s /32np) ⇒ (n \̌n) /̌ (np ⊗̂ (np \ s) / np)
n︸︷︷︸

key

⊗̂ ((n \n) / (s /32np)︸ ︷︷ ︸
that

⊗̂ ( np︸︷︷︸
Alice

⊗̂ (np \ s) / np)︸ ︷︷ ︸
found

) ⇒ n

This example would be derivable also in Lambek’s [25] Syntactic Calculus, where
associativity is globally available. But consider what happens when an adverb is
added at the end. We then have to prove the judgment key that Alice found
there⇒ n where the gap 3̂2np occurs in a non-peripheral position. The Syntactic
Calculus lacks the expressivity to derive such examples. With the help of controlled
commutativity 3C (and A3) the derivation goes through:

n ⇒ n n ⇒ n

n \n ⇒ n \̌n

np ⇒ np s ⇒ s

np \ s ⇒ np \̌ s

np ⇒ np

3̂2np ⇒ np

(np \ s) / np ⇒ (np \̌ s) /̌ 3̂2np

(np \ s) / np ⊗̂ 3̂2np ⇒ np \ s

np ⇒ np s ⇒ s

np \ s ⇒ np \̌ s

(np \ s) \ (np \ s) ⇒ ((np \ s) / np ⊗̂ 3̂2np) \̌ (np \̌ s)
((np \ s) / np ⊗̂ 3̂2np) ⊗̂ (np \ s) \ (np \ s) ⇒ np \̌ s

3C
((np \ s) / np ⊗̂ (np \ s) \ (np \ s)) ⊗̂ 3̂2np ⇒ np \̌ s

np ⊗̂ (((np \ s) / np ⊗̂ (np \ s) \ (np \ s)) ⊗̂ 3̂2np) ⇒ s
A3

(np ⊗̂ ((np \ s) / np ⊗̂ (np \ s) \ (np \ s))) ⊗̂ 3̂2np ⇒ s

np ⊗̂ ((np \ s) / np ⊗̂ (np \ s) \ (np \ s)) ⇒ s /32np

(n \n) / (s /32np) ⇒ (n \̌n) /̌ (np ⊗̂ ((np \ s) / np ⊗̂ (np \ s) \ (np \ s)))
n︸︷︷︸

key

⊗̂ ((n \n) / (s /32np)︸ ︷︷ ︸
that

⊗̂ ( np︸︷︷︸
Alice

⊗̂ ((np \ s) / np)︸ ︷︷ ︸
found

⊗̂ (np \ s) \ (np \ s)︸ ︷︷ ︸
there

)) ⇒ n

The original modal Lambek calculus is single-type. However, it is possible to
generalize this framework to proper multi-type display calculi, which retain the fun-
damental properties while allowing further flexibility. Languages with different sorts
(also called types in this context) are perfectly admissible and so-called heteroge-
neous connectives are often considered (e.g. [14, 13, 18, 20, 21, 17, 4]). In particular,
we may admit heterogeneous unary modalities where the source and the target of
3 and 2 do not coincide.
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3 A Kripke-style analysis of algebras over a field
For any K-algebra (V , ?), the set S(V ) of subspaces of V is closed under arbitrary
intersections, and hence it is a complete sub ⋂-semilattice of P(V ). Therefore,
by basic order-theoretic facts (cf. [11]), S(V ) gives rise to a closure operator [−] :
P(V )→ P(V ) s.t. [X] := ⋂{U ∈ S(V ) | X ⊆ U} for any X ∈ P(V ). The elements of
[X] can be characterized as linear combinations of elements in X, i.e. for any v ∈ V ,

v ∈ [X] iff v = Σiαi · xi.

If (V , ?) is a K-algebra, let ⊗ : P(V )× P(V )→ P(V ) be defined as follows:

X ⊗ Y := {x ? y | x ∈ X and y ∈ Y } = {z | ∃x∃y(z = x ? y and x ∈ X and y ∈ Y )}.

Lemma 3.1. If (V , ?) is a K-algebra, [−] : P(V )→ P(V ) is a nucleus on (P(V ),⊗),
i.e. for all X,Y ∈ P(V ),

[X]⊗ [Y ] ⊆ [X ⊗ Y ].

Proof. By definition, [X] ⊗ [Y ] = {u ? v | u ∈ [X] and v ∈ [Y ]}. Let u ∈ [X] and
v ∈ [Y ], and let us show that u ? v ∈ [x ? y | x ∈ X and y ∈ Y ]. Since u = Σjβjxj
for xj ∈ X, we can rewrite u ? v as follows: u ? v = (Σjβjxj) ? v = Σj((βjxj) ? v) =
Σjβj(xj ? v); likewise, since v = Σkγkyk for yk ∈ Y , we can rewrite each xj ? v as
xj ? v = xj ? (Σkγkyk) = Σk(xj ? (γkyk)) = Σkγk(xj ? yk). Therefore:

u ? v = Σjβj(xj ? v) = Σjβj(Σkγk(xj ? yk)) = ΣjΣk(βjγk)(xj ? yk),

which is a linear combination of elements of X ⊗ Y , as required.

Hence, by the general representation theory of residuated lattices [15, Lemma
3.33], Lemma 3.1 implies that the following construction is well defined:4

Definition 3.2. If (V , ?) is a K-algebra, let V+ := (S(V ),>,⊥,∧,∨,⊗, \, /) be the
complete residuated lattice generated by (V , ?), i.e. for all U,W,Z ∈ S(V ),

U⊗W ⊆ Z iff U ⊆ Z/W iff W ⊆ U\Z, (1)

where

1. > := V

4Notice that in defining the operations, we prefer to use the standard universal and existential
modal logic clauses associated to left and right residuals, respectively.
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2. ⊥ := {0}

3. U ∨W := [z | ∃u∃w(z = u+ w and u ∈ U and w ∈W )]

4. U ∧ Z := U ∩ Z

5. U⊗W := [z | ∃u∃w(z = u ? w and u ∈ U and w ∈W )];

6. Z/W := [u | ∀z∀w((z = u ? w and w ∈W )⇒ z ∈ Z)];

7. U\Z := [w | ∀u∀z((z = u ? w and u ∈ U)⇒ z ∈ Z)].

Lemma 3.3. [U ∪W] = U ∨W.

Proof. To show [U∪W] ⊆ U∨W, it is enough to show that U∪W ⊆ {z | ∃u∃w(z =
u + w and u ∈ U and w ∈ W )}. Let x ∈ U ∪W, which implies x ∈ U or x ∈ W .
Without loss of generality, assume that x ∈ U , the definition of subspace implies
that 0 ∈ W. Hence x ∈ {z | ∃u∃w(z = u + w and u ∈ U and w ∈ W )} by the
fact that x = x + 0. Conversely, to show U ∨ W ⊆ [U ∪ W], let z ∈ U ∨ W, we
need to show that z ∈ [U ∪W]. Since z = Σiαi(ui + wi) for all ui ∈ U and for all
wi ∈ W , z = Σiαiui + Σiαiwi for all ui ∈ U and for all wi ∈ W . Moreover, since
for all ui ∈ U and for all wi ∈ W , Σiαiui ∈ U ⊆ U ∪W and Σiαiwi ∈ W ⊆ U ∪W,
Σiαiui + Σiαiwi ∈ [U ∪ W] by the definition of [−]. Therefore, z ∈ [U ∪ W], as
required.

4 Sahlqvist correspondence for algebras over a field
Definition 4.1. If (V , ?) is a K-algebra, V+ = (S(V ),≤,⊗, \ , / ) is:

1. associative if ⊗ is associative;

2. commutative if ⊗ is commutative;

3. unital if there exists a 1-dimensional subspace 1 such that U⊗ 1 = U = 1⊗ U

for all U;

4. contractive if U ⊆ U⊗ U for all U;

5. expansive if U⊗ U ⊆ U for all U;

6. monoidal if ⊗ is associative and unital.
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The following are to be regarded as first-order conditions on K-algebras, seen as
‘Kripke frames’.

Definition 4.2. A K-algebra (V , ?) is:

1. quasi-commutative if ∀u, v ∈ V ∃α ∈ K s.t. u ? v = α(v ? u);

2. quasi-associative if ∀u, v, w ∈ V ∃α ∈ K s.t. (u ? v) ? w = α(u ? (v ? w)) and
∃β ∈ K s.t. u ? (v ? w) = β((u ? v) ? w);

3. quasi-unital if ∃1 ∈ Vs.t. ∀u ∈ V ∃α, β, γ, δ ∈ K s.t. u = α(u?1) and u?1 = βu
and u = γ(1 ? u) and 1 ? u = δu;

4. quasi-contractive if ∀u ∈ V ∃α ∈ K s.t. u = α(u ? u);

5. quasi-expansive if ∀u, v ∈ V ∃α, β ∈ K s.t. u ? v = αu+ βv;

6. quasi-monoidal if quasi-associative and quasi-unital.

Remark 4.3. The notion of quasi-commutativity is strictly weaker than the notion
of commutativity in case K has more than 2 elements. Indeed take the 2-dimensional
vector space over K with base e1, e2, and define the bilinear map such that e1?e2 = e1,
e2?e1 = −e1 and e1?e1 = 0 = e2?e2. Then it is routine to verify that this K-algebra
is quasi-commutative but not commutative.

In what follows, we sometimes abuse notation and identify a K-algebra (V , ?) with its
underlying vector space V . Making use of definition 4.2 we can show the following:

Proposition 4.4. For every K-algebra V ,

1. V+ is commutative iff V is quasi-commutative;

2. V+ is associative iff V is quasi-associative;

3. V+ is unital iff V is quasi-unital;

4. V+ is contractive iff V is quasi-contractive;

5. V+ is expansive iff V is quasi-expansive;

6. V+ monoidal iff V is quasi-monoidal.
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Proof. 1. For the left-to-right direction, assume that V+ is commutative and let
u, v ∈ V . Then [u]⊗ [v] = [v]⊗ [v]. Notice that [u]⊗ [v] = [u?v] = {α(u?v) |α ∈ K}
and [v]⊗ [u] = [v ? u] = {α(v ? u) |α ∈ K}. Hence, [u]⊗ [v] = [v]⊗ [v] implies that
u ? v ∈ [v ? u], i.e. u ? v = α(v ? u) for some α ∈ K, as required.

Conversely, assume that V is quasi-commutative, and let U,W ∈ S(V ). To show
that U⊗W ⊆ W ⊗U, it is enough to show that u ? w ∈ W ⊗U for every u ∈ U and
w ∈ W. By the assumption that V is quasi-commutative, there exists some α ∈ K

such that u?w = α(w ?u) ∈ W ⊗U, as required. The argument for W ⊗U ⊆ U⊗W

is similar, and omitted.
2. For the left-to-right direction, assume that V+ is associative and let u,w, z ∈

V . Then ([u]⊗[w])⊗[z] = [u]⊗([w]⊗[z]). Notice that ([u]⊗[w])⊗[z] = [u?w]⊗[z] =
[(u?w)?z] = {α((u?w)?z) |α ∈ K} and [u]⊗([w]⊗[z]) = [u]⊗[w?z] = [u?(w?z)] =
{α(u ? (w ? z)) |α ∈ K}. Hence, ([u] ⊗ [w]) ⊗ [z] = [u] ⊗ ([w] ⊗ [z]) implies that
(u ? w) ? z = α(u ? (w ? z)) for some α ∈ K and u ? (w ? z) = α((u ? w) ? z) for some
α ∈ K, as required.

Conversely, assume that V is quasi-associative, and let U,W,Z ∈ S(V ). To show
that (U⊗W)⊗Z ⊆ U⊗ (W⊗Z), it is enough to show that (u?w)?z ∈ U⊗ (W⊗Z)
for every u ∈ U, w ∈ W and z ∈ Z. Since V is quasi-associative, there exists some
α ∈ K such that (u ? w) ? z = α(u ? (w ? z)) ∈ U ⊗ (W ⊗ Z), as required. The
argument for U⊗ (W ⊗ Z) ⊆ (U⊗W)⊗ Z is similar, and omitted.

3. For the left-to-right direction, assume that V+ is unital and let 1 ∈ V such
that 1 = [1]. Then [u] = [u] ⊗ 1 = [u ? 1] for any u ∈ V . Hence, u = α(u ? 1) and
u ? 1 = βu, for some α, β ∈ K, as required. Analogously, from [u] = 1 ⊗ [u] one
shows that u = γ(1 ? u) and 1 ? u = δu for some γ, δ ∈ K.

Conversely, assume that V is quasi-unital, and let U ∈ S(V ). To show that
U⊗1 ⊆ U, it is enough to show that u?1 ∈ U for every u ∈ U. By assumption, there
exists some α ∈ K such that u ? 1 = αu ∈ U, as required. The remaining inclusions
are proven with similar arguments which are omitted.

4. For the left-to-right direction, assume that V+ is contractive and let u ∈ V .
Then [u] ⊆ [u]⊗ [u] = [u ? u]. Hence, u = α(u ? u) for some α ∈ K, as required.

Conversely, assume that V is quasi-contractive, and let U ∈ S(V ). To show that
U ⊆ U ⊗ U, it is enough to show that u ∈ U ⊗ U for every u ∈ U. By assumption,
there exists some α ∈ K such that u = α(u ? u) ∈ U⊗ U, as required.

5. For the left-to-right direction, assume that V+ is expansive and let u, v ∈ V .
Then, letting [u, v] denote the subspace generated by u and v, we have [u, v]⊗[u, v] ⊆
[u, v], and since u ? v ∈ [u, v]⊗ [u, v] we conclude u ? v ∈ [u, v], i.e. u ? v = αu+ βv
for some α, β ∈ K, as required.

Conversely, assume that V is quasi-expansive, and let U ∈ S(V ). To show that
U⊗ U ⊆ U, it is enough to show that u ? v ∈ U for every u, v ∈ U. By assumption,
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there exist some α, β ∈ K such that u ? v = αu+ βv ∈ U, as required.
6. Immediately follows from 2. and 3.

4.1 Examples
Fact 4.5. The algebra of quaternions H is not quasi-commutative.

Proof. Let u = i + j and v = j, then u ?H v = k − 1 and v ?H u = −k − 1. By
contradiction, let us assume that ?H is quasi-commutative, then there exists a real
number α s.t. k− 1 = α(−k− 1) = α(−k)− α. It follows that α = 1 and a = −1
contradicting the assumption that ?H is quasi-commutative.

Corollary 4.6. H+ is not commutative.

Proof. Immediate by Fact 4.5 and Proposition 4.4.

Fact 4.7. The algebra O of octonions is not quasi-associative.

Proof. Let u = v = w = 1 e0 + 2 e1 + 3 e2 + 5 e3 + 7 e4 + 8 e5 + 11 e6 + 12 e7, then
w?O u = u?O v = −415 e0 +4 e1 +6 e2 +10 e3 +14 e4 +96 e5 +22 e6 +24 e7. In order
to show that w?O (u?Ov) 6= (w?Ou)?Ov is enough to check the first two coordinates:
w ?O (u ?O v) = −1887 e0 − 266 e1 . . . 6= −1887 e0 − 1386 e1 . . . = (w ?O u) ?O v. By
contradiction, let us assume that ?O is quasi-associative, then there exists a real
number α s.t. w?O (u?O v) = α((w?O u)?O v). It follows that −1887 e0 = α(−1887)
and −266 = α(−1386). We observe that −1887 e0 = α(−1887) holds only for α = 1,
but then −266 = α(−1386) does not hold contradicting the assumption that ?O is
quasi-associative.

Corollary 4.8. O+ is not associative.

Proof. Immediate by Fact 4.7 and Proposition 4.4.

5 Modal algebras over a field
Definition 5.1. A modal K-algebra is a triple (V , ?, R) such that (V , ?) is a K-
algebra and R ⊆ V × V is compatible with the scalar product, and it preserves the
zero-vector:

(L1R) vRu& zRw ⇒ ∀γδ ∃αβ (γv + δz)R(αu+ βw);

(L2R) tR(αu+ βv) ⇒ ∃λµ ∃zw zRu & wRv & λz + µw = t.

(L3R) xR0 ⇔ x = 0.
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If (V , ?, R) is a modal K-algebra, let 3 : P(V )→ P(V ) be defined as follows:

3X := R−1[X] = {v | ∃u(vRu and u ∈ X)}.

Lemma 5.2. If (V , R) is a modal K-algebra, [−] : P(V )→ P(V ) is a 3-nucleus on
(P(V ),3), i.e. for all X ∈ P(V ),

3[X] ⊆ [3X].

Proof. By definition, 3[X] = ⋃{R−1[u] | u ∈ [X]}. Let u ∈ [X], assume that
vRu and let us show that v ∈ [3X]. Since u = Σjβjxj for xj ∈ X, by L2R,
∀j∃λj ∃vj vjRxj & Σjλjvj = v. So v ∈ [3X]. If X = ∅, then 3[∅] = 3{0} =
R−1[0]. By L3R, R−1[0] = {0} ⊆ [3X].

Hence, by the generalization of the representation theory of residuated lattices
[2, 3], Lemma 5.2 implies that the following construction is well defined:

Definition 5.3. If (V , ?, R) is a modal K-algebra, let V+ := (S(V ),≤,⊗, \ , / ,3,2)
be the complete modal residuated lattice generated by (V , ?, R), i.e. for all U,W ∈
S(V ),

3U ⊆ W iff U ⊆ 2W, (2)

where

1. 3U := [v | ∃u (vRu and u ∈ U)];

2. 2W := [u | ∀v (vRu ⇒ v ∈W )].

Remark 5.4. Notice that every linear map f : V → V satisfies the conditions
of Definition 5.1, and hence functional modal K-algebras (V , ?, f) can be defined
analogously to definition 5.1 and their associated algebras will be complete modal
residuated lattices such that 3 f [−] a f−1[−] in S(V ). However, if we make use a
linear function f (instead of a relation R) to define modal K-algebras, then we are
not able to show completeness for the full fragment of D.NL3.

5.1 Axiomatic extensions of a modal algebra over K

In order to capture controlled forms of associativity/commutativity, we want to con-
sider axiomatic extensions of the modal algebras introduced in the previous section.
Below, we consider right-associativity and left-commutativity.

Definition 5.5. If (V , ?, f) is a modal K-algebra, V+ := (S(V ),≤,⊗, \ , / ,3,2)
is:
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1. right-associative if (U⊗W)⊗3V ⊆ U⊗ (W ⊗3V );

2. left-commutative if (U⊗ V )⊗3W ⊆ (U⊗3W)⊗ V .

Definition 5.6. A modal K-algebra (V , ?, R) is:

1. quasi right-associative if for u,w, z, v ∈ V such that vRz, there exists α, β ∈ K

and v′ such that v′Rβz and (u ? w) ? v = α(u ? (w ? v′));

2. quasi left-commutative if for all u,w, z, v ∈ V such that vRz there exists α, β ∈
K and v′ such that v′Rβz and (u ? w) ? v = α((u ? v′) ? w).

Proposition 5.7. For every modal K-algebra (V , ?, R):

1. V+ is right associative if and only if (V , ?, R) is quasi right-associative;

2. V+ is left commutative if and only if (V , ?, R) is quasi left-commutative.

Proof. 1. For the left to right direction let u,w, z, v such that vRz. By the assump-
tion ([u]⊗[w])⊗R−1[[z]] ⊆ [u]⊗([w]⊗R−1[[z]]). Since (u?w)?v ∈ ([u]⊗[w])⊗R−1[[z]]
it follows that (u?w) ? v ∈ [u]⊗ ([w]⊗R−1[[z]]), i.e. there exist α, β ∈ K and v′ ∈ V

with v′Rβz such that (u ? w) ? v = α(u ? (w ? v′)).
For right to left direction let q ∈ (U ⊗W) ⊗3Z, i.e. there exists u ∈ U, w ∈ W

and v ∈ 3Z such that q = (u ? w) ? v. Since v ∈ 3Z there exists z ∈ Z such that
vRz. Then by assumption there exist α, β ∈ K and v′ ∈ V such that v′Rβz and
q = α(u?(w?v′)). It holds that v′ ∈ 3Z since βz ∈ Z, and hence q ∈ U⊗(W⊗3Z).

2. For the left to right direction let u,w, z, v such that vRz. By the assumption
([u]⊗ [w])⊗R−1[[z]] ⊆ ([u]⊗R−1[[z]])⊗ [w]. Since (u?w)?v ∈ ([u]⊗ [w])⊗R−1[[z]]
it follows that (u?w) ? v ∈ ([u]⊗R−1[[z]])⊗ [w], i.e. there exist α, β ∈ K and v′ ∈ V

with v′Rβz such that (u ? w) ? v = α((u ? v′) ? w).
For right to left direction let q ∈ (U ⊗W) ⊗ 3Z, i.e. there exist u ∈ U, w ∈ W

and v ∈ 3Z such that q = (u ? w) ? v. Since v ∈ 3Z there exists z ∈ Z such that
vRz. Then by assumption there exists α, β ∈ K and v′ ∈ V such that v′Rβz and q =
α((u?v′)?w). It holds that v′ ∈ 3Z since βz ∈ Z, and hence q ∈ (U⊗3Z)⊗W.

Remark 5.8. Notice that in case R is a linear function, the inequalities above
imply equality. Indeed, e.g. in the case of right-associativity, if zRv, and βzRv′ then
v′ = βv. Therefore, it immediately follows that (u ? w) ? v = α(u ? (w ? v)), and
hence 1

α((u ? w) ? v) = u ? (w ? v), and hence U⊗ (W ⊗3Z) ⊆ (U⊗W)⊗3Z.
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6 Completeness
The aim of this section is to show the completeness of the logic D.NL3 with respect
to modal K-algebras of finite dimension (cf. Theorem 6.1).

Given a modal K-algebra V , a valuation on V is a function v : Prop → V+.
As usual, v can be extended to a homomorphism J−Kv : Str → V+. We say that
V , v |= S ⇒ T if and only if JSKv ⊆ JT Kv.
Theorem 6.1 (Completeness). Given any sequent X ⇒ Y of D.NL3, if V , υ |=
X ⇒ Y for every modal K-algebra V of finite dimension and any valuation υ on V ,
then X ⇒ Y is a provable sequent in D.NL3.

As discussed in Section 2.2,D.NL3 is complete and has the finite model property
with respect to modal residuated posets. Therefore, to show Theorem 6.1, it is
enough to show that any finite modal residuated poset can be embedded into the
modal residuated lattice of subspaces of a modal K-algebra of finite dimension.

Let P be a finite residuated poset. We will define a modal K-algebra V and a
D.NL3-morphism h : P → S(V ) which is also an order embedding.

Let n be the number of elements of P , and let {p1, . . . , pn} be an enumeration
of P . Let V be the n2-dimensional vector space over K and let {eij | 1 ≤ i, j ≤ n}
be a base. Let h : P → V be defined as

h(pk) = [emj | 1 ≤ j ≤ n & pm ≤ pk].

We define ? : V × V → V on the base as follows: For every pk ∈ P take an
surjective map

νk : n× n→ {emj | 1 ≤ j ≤ n & pm ≤ pk}

such that νk(m,m) = ekm. Define ekm?e`r = νt(m, r), where pt = pk⊗p`. This function
uniquely extends to a bilinear map and compatible with the scalar product.

We define the relation R ⊆ V × V as follows 0R0 and
∑

1≤i≤d

∑

0≤j≤di

α
ki

j

`j
e
ki

j

`j
R

∑

1≤i≤d
βmi
ji
emi
ji

where αk
i
j

`j
, βmi
ji
∈ K, βmi

ji
6= 0, pki

j
≤ 3pmi and if mi = mk then ji 6= jk for

1 ≤ i, k ≤ d. It is immediate that R satisfies the properties of Definition 5.1.
The lemma below shows that h is indeed a D.NL3-morphism which is also an

order embedding.

Lemma 6.2. The following are true for the poset P and h as above.
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1. p ≤ q if and only if h(p) ⊆ h(q);

2. h(pm ⊗ pk) = h(pm)⊗ h(pk);

3. h(pm\pk) = h(pm)\h(pk);

4. h(pm/pk) = h(pm)/h(pk);

5. h(3pk) = 3h(pk).

6. h(2pk) = 2h(pk).

Proof. 1. Assume that p ≤ q. Let ∑
i,j α

i
je
i
j an element of h(p) where pi ≤ p.

Then by assumption pi ≤ q, and therefore ∑
i,j α

i
je
i
j ∈ h(q). For the other direction,

assume that pm = p � q, then em1 /∈ h(q), since each eij is independent from the rest.
2. Let u ∈ h(pm ⊗ pk) that is, u = ∑

i,j α
i
je
i
j where pi ≤ pm ⊗ pk = p`. Since ν`

is surjective there is (zij , xij) such that ν`(zij , xij) = eij . By definition em
zi

j
? ek

xi
j

= eij .
Since em

zi
j
∈ h(pm) and ek

xi
j
∈ h(pk) for each i, j, we have that

h(pm)⊗ h(pk) 3
∑

i,j

αij(emzi
j
? ekxi

j
) =

∑

i,j

αije
i
j = u.

Conversely let u ∈ e(pm)⊗ e(pk), i.e. u = ∑
i,j α

i
j(emi

mj
? eki

kj
) where pmi ≤ pm and

pki
≤ pk. Then pmi ⊗ pki

≤ pm ⊗ pk. Then, since emi
mj

? eki
kj
∈ h(pmi ⊗ pki

), we have
emi
mj

? eki
kj
∈ h(pm ⊗ pk) for each i, so u ∈ h(pm ⊗ pk).

3. Let u ∈ h(pm\pk). Then u = ∑
i,j α

i
je
i
j where pi ≤ pm\pk. By adjunction

this means that pm ⊗ pi ≤ pk. Pick ∑
i′,j′ β

i′
j′e

i′
j′ ∈ h(pm), i.e. pi′ ≤ pm. Notice by

monotonicity pi′ ⊗ pi ≤ pk. Now

(
∑

i′,j′
βi
′
j′e

i′
j′) ? (

∑

i,j

αije
i
j) =

∑

i,i′,j,j′
βi
′
j′α

i
j(ei

′
j′ ? e

i
j).

Each of the components are by definition in h(pi′ ⊗ pi), and by monotonicity in
h(pk). So for every w ∈ h(pm), w ? u ∈ h(pk). Therefore u ∈ h(pm)\h(pk).

Conversely, let u = ∑
i,j α

i
je
i
j ∈ h(pm)\h(pk). Then for every w ∈ h(pm), w ? u ∈

h(pk). In particular for w = ∑
j e

m
j ,

(
∑

j

emj ) ? (
∑

i,j

αije
i
j) ∈ h(pk)
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. Since ? is bilinear and every element has a unique representation given a base,
each emj ? eij ∈ h(pk). Let pr = pm⊗ pi. By definition of νr, emj ? eij = erj ∈ h(pk) and
therefore pm⊗pi ≤ pk. That is pi ≤ pm\pk, i.e. eij ∈ h(pm\pk) for each j. Therefore
u ∈ h(pm\pk).

4. The proof is the same as item 3.
5. Let u ∈ h(3pk), i.e., u = ∑

i α
mi
ji
emi
ji

where pmi ≤ 3pk. Since emi
ji
Rek1 for each

i, it follows that emi
ji
∈ R−1[h(pk)], for each i and hence u ∈ 3h(pk).

Conversely let u ∈ 3h(pk), i.e. u ∈ R−1[h(pk)]. By definition of R and the
monotonicity of 3 it follows that uRek1. So u = ∑

i α
mi
ji
emi
ji

where pmi ≤ 3pk, i.e.
u ∈ h(3pk).

6.Let u ∈ h(2pk). Then u = ∑
i β

mi
ji
emi
ji

where pmi ≤ 2pk. By adjunction this

means that 3pmi ≤ pk. Let vRu then v = ∑
i

∑
0≤j≤ni

α
`ij
rje

`ij
rj where p`ij ≤ 3pmi .

Then p`ij ≤ pk and therefore v ∈ h(pk). Hence u ∈ 2h(pk).
Conversely, let u = ∑

i β
mi
ji
emi
ji
∈ 2h(pk), i.e. v ∈ h(pk) for every v such that

vRu. Notice that ∑
i e
`i
ji
Ru where p`i = 3pmi . Since v ∈ h(pk) it follows that

3pmi ≤ pk and by adjunction pmi ≤ 2pk. Then emi
ji
∈ h(2pk), for every i and

therefore u ∈ h(2pk).

Remark 6.3. In the proof above the finiteness of P was used only to guarantee the
dimension of V to be finite. The same proof holds for an arbitrary modal residuated
poset P with a modal K-algebra of dimension |P×P |. That is, every modal residuated
poset, and in particular the Lindenbaum-Tarski algebra of D.NL3, can be embedded
into the lattice of subspaces of some modal K-algebra.

Remark 6.4. In the proof of Theorem 6.1, we showed that in fact h embeds P into
the subalgebra {[eji | (i, j) ∈ S] | S ⊆ n × n} which is a Boolean subalgebra of
V+. This is analogous to Buszkowski’s proof (see e.g. [3]) that generalized Lambek
calculus is complete with respect to algebraic models based on powerset algebras.

7 Conclusions and further directions
Our contributions. In this paper we have taken a duality-theoretic perspective
on vector space semantics of the basic modal Lambek calculus and some of its
analytic extensions. In a slogan, we have regarded vector spaces (more specifically,
modal K-algebras) as Kripke frames. This perspective has allowed to transfer a num-
ber of results pertaining to the theory of modal logic to the vector space semantics.
Our main contributions are the proof of completeness of the basic modal Lambek
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calculus D.NL3 with respect to the semantics given by the modal K-algebras and
a number of ensuing Sahlqvist correspondence results.

Correspondence and completeness. In the standard Kripke semantics setting,
the completeness of the basic logic and canonicity via correspondence immediately
implies that any axiomatic extension of the basic logic with Sahlqvist-type axioms
is complete with respect to the elementary class of relational structures defined by
the first order correspondents of its axioms. We plan to extend this result to the
vector space semantics.

Adding lattice connectives. Another direction we plan to pursue consists in
extending the present completeness result to the full Lambek calculus signature.
Towards this goal, the representation results of [23, 22, 12], which embeds each
complemented modular Arguesian lattice into the lattice of subspaces of a vector
space (over a division ring), is likely to be particularly relevant.

Finite vector spaces. We plan to refine our results so as to give upper bounds
on the dimensions of possible witnesses of non derivable sequents.
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