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Extending Ideas of Tait for Incorporating
Higher-order Parameters in Schemes of

Reflection

Rupert McCallum
University of Tübingen

rupertmccallum@yahoo.com

Abstract
We formulate a new reflection principle which subsumes all of the reflection

principles which were considered by Tait and Koellner and are also known to
be consistent, and which is itself consistent relative to an ω-Erdős cardinal (be-
cause equivalent to the existence of a remarkable cardinal). The author was
supported by the research grant DE 436/10-1 from Deutsche Forschungsgemein-
schaft, while working at the University of Tübingen. Ralf Schindler provided
very helpful assistance with identifying errors in earlier versions of the paper
and providing a useful characterisation of remarkable cardinals which greatly
simplified the argument that a cardinal is extremely reflective if and only if it
is remarkable.

1 The reflection principles of Tait, and α-reflective car-
dinals

It is well known, and was first observed in [15], that a schema asserting reflection for
first-order formulas with parameters – that is, that for each formula φ(x1, x2, . . . xn)
we have the axiom that if φ(x1, x2, . . . xn) then (φ(x1, x2, . . . xn))Vα for some ordinal
α such that x1, x2, . . . xn ∈ Vα – is implied by ZF. A slightly stronger version asserting
for each formula φ(x1, x2, . . . xn) that there is a proper class of ordinals α such that,
for all x1, x2, . . . xn ∈ Vα, φ(x1, x2 . . . xn) ≡ (φ(x1, x2, . . . xn))Vα , is equivalent, given
Extensionality, Separation, and Foundation, to ZF. The philosophical issues become
more problematic when we consider whether we can meaningfully speak of higher-
order properties of the universe and whether we should regard as justified reflection
principles which reflect some higher-order property of the universe V down to a level
Vα, or which posit the existence of a level Vκ such that all higher-order properties of
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McCallum

a certain kind are reflected down to some level Vβ with β < κ, where β may perhaps
depend on which property is being reflected. We shall gloss over the philosophical
part of the discussion here and refer the reader to Tait’s discussion in [5], contenting
ourselves here with simply describing the various higher-order reflection principles
that may be proposed.

If we consider reflection of higher-order formulas with second-order parameters,
we arrive at various types of indescribable cardinals. For example, if κ is such that
whenever any Πn

m-formula φ with one free second-order variable X holds relative to
Vκ (that is, type n variables are relativized to Vκ+n) for a particular value A of the
free variableX, then there is always some β < κ such that φ holds relative to Vβ when
A ∩ Vβ is substituted for X, then such a cardinal κ is said to be Πn

m-indescribable.
There are various other natural generalizations of the notion of indescribability, all
involving reflection with second-order parameters only. But when we move to third-
order parameters and higher we encounter a difficulty: unrestricted reflection with
such parameters leads to inconsistency, as was first observed by Reinhardt in [16].
A proof can be found on page 276 of [19].

If we are to countenance some forms of higher-order reflection involving param-
eters of third order or higher then what principled reasons can we offer for distin-
guishing it from those forms of reflection with such parameters which are known to
be inconsistent? It is at this point in our discussion where we start to consider the
large cardinals considered in [5] and [12].

Let us consider what Tait writes in [5] on the question of how to justify special
cases of reflection with parameters of third and higher order.

“One plausible way to think about the difference between reflecting ϕ(A) when A
is second-order and when it is of higher-order is that, in the former case, reflection
is asserting that, if ϕ(A) holds in the structure 〈R(κ),∈, A〉, then it holds in the
substructure 〈R(β),∈, Aβ〉 for some β < κ . . . But, when A is higher-order, say of
third-order this is no longer so. Now we are considering the structure 〈R(κ), R(κ+1),
∈, A〉 and 〈R(β), R(β+1),∈, Aβ〉. But, the latter is not a substructure of the former,
that is the ‘inclusion map’ of the latter structure into the former is no longer single-
valued: for subclasses X and Y of R(κ), X 6= Y does not imply Xβ 6= Y β. Likewise
for X ∈ R(κ+1), X /∈ A does not imply Xβ /∈ Aβ. For this reason, the formulas that
we can expect to be preserved in passing from the former structure to the latter must
be suitably restricted and, in particular, should not contain the relation /∈ between
second- and third-order objects or the relation 6= between second-order objects."
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Higher-order parameters and schemes of reflection

He then uses these ideas to motivate the following family of reflection principles.

Definition 1.1. A formula in the nth-order language of set theory, for some n < ω,
is positive iff it is built up by means of the operations ∨, ∧, ∀, ∃ from atoms of
the form x = y, x 6= y, x ∈ y, x /∈ y, x ∈ Y (2), x /∈ Y (2) and X(m) = X ′(m) and
X(m) ∈ Y (m+1), where m ≥ 2.

Definition 1.2. For a first-order or second-order variable A, and a finite ordinal
n, we define An× = {〈n, x〉 | x ∈ A}, A/n = {x | 〈n, x〉 ∈ A}, and for variables
B of order greater than the second we define, by induction on the order of the
variable, Bn× = {Xn× | X ∈ B}, B/n = {X/n | X ∈ B}, and for A and B of
the same order A + B = A0× ∪ B1×. Compositions of these operations are called
contracting operations, and a formula is said to be positive in the extended sense
if it is obtained from a positive formula by substitution for free variables of terms
involving contracting operations.

Definition 1.3. For 0 < n < ω, Γ(2)
n is the class of formulas

∀X(2)
1 ∃Y

(k1)
1 · · · ∀X(2)

n ∃Y (kn)
n ϕ(X(2)

1 , Y
(k1)

1 , . . . , X(2)
n , Y (kn)

n , A(l1), . . . A(ln′ ))

where ϕ is positive in the extended sense and does not have quantifiers or second
or higher-order and k1, . . . kn, l1, . . . ln′ are natural numbers.

Definition 1.4. We say that Vκ satisfies Γ(2)
n -reflection if, for all ϕ ∈ Γ(2)

n , if
Vκ |= ϕ(A(m1), A(m2), . . . A(mp)) then Vκ |= ϕδ(A(m1),δ, A(m2),δ, . . . A(mp),δ) for some
δ < κ.

Peter Koellner established in [8] that these reflection principles are consistent
relative to an ω-Erdős cardinal. In [5] Tait proposes to define Γ(m)

n in the same
way as the class of formulas Γ(2)

n , except that universal quantifiers of order ≤ m are
permitted. Koellner shows in [8] that this form of reflection is inconsistent when
m > 2.

This raises the issue of whether we have principled grounds for refusing to accept
those reflection principles of Tait which Peter Koellner proved to be inconsistent.
In [12] I suggested a possible motivation for this. Given a formula in the higher-
order language of set theory, it is possible to introduce Skolem functions and re-
write it as a formula with universal quantifiers alone and the Skolem functions as
parameters. Then just as Tait appealed to the idea that the inclusion map of a
structure (Vβ, Vβ+1,∈) into a structure (Vκ, Vκ+1,∈) is not single-valued when β < κ
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as a motivation for refusing to accept a “naive" form of third-order reflection which
is easily proved to be inconsistent, so we can appeal to the idea that the Skolem
functions witnessing the truth of a higher-order formula in Vκ may cease to be single-
valued when we reflect down to Vβ, to motivate refusing to accept those reflection
principles of Tait which Koellner proved to be inconsistent. But on the other hand
this still allows for plausible motivations to be given for the reflection principles
discussed in [12] and the present paper.

In [12] I proposed the following large-cardinal axiom and attempted to provide
motivation for it based on the ideas above.

Definition 1.5. We define l(γ) = γ − 1 if 0 < γ < ω and l(γ) = γ otherwise. We
extend the definition A(m+1),β = {B(m),β | B(m) ∈ A(m+1)} to A(α),β = {Bβ | B ∈
A(α)} for all ordinals α > 0, it being understood that if Vκ is the domain of discourse
then A(α) ranges over Vκ+l(α).

Definition 1.6. Suppose that α, κ are ordinals such that 0 < α < κ and that

(1) S = 〈{Vκ+γ | γ < α},∈, f1, f2, . . . fk, A1, A2, . . .
An〉 is a structure where each fi is a function Vκ+l(γ1)×Vκ+l(γ2)× . . . Vκ+l(γi) → Vκ+ζi
for some ordinals γ1, γ2, . . . γi, ζi such that
l(γ1), l(γ2), . . . l(γi) < α, 0 < ζi < α, and each Ai is a subset of Vκ+δi for some δi < α
(2) ϕ is a formula true in the structure S, of the form
∀X(γ1)

1 ∀X(γ2)
2 · · · ∀X(γk)

k

ψ(X(γ1)
1 , f1(X(γ1)

1 ), X(γ2)
2 , f2(X(γ1)

1 , X
(γ2)
2 ), . . . X(γk)

k , fk(X(γ1)
1 , X

(γ2)
2 , . . . X

(γk)
k ),

A1, A2, . . . Aj) with ψ a formula with first-order quantifiers only
(3) there exists a β such that α < β < κ and a mapping j : Vβ+α → Vκ+α, such
that j(X) ∈ Vκ+γ whenever X ∈ Vβ+γ , j(X) = X for all X ∈ Vβ, and j(X) ∈ j(Y )
whenever X ∈ Y , and such that, in the structure
Sβ = 〈Vβ, {Vβ+γ | 0 < γ < α}, {Vκ+γ | 0 < γ < α},∈, j, f1, f2, . . . fk, A1, A2 . . .
An〉, with variables of order γ ranging over Vβ+l(γ), we have

(∗)∀X(γ1)
1 ∀X(γ2)

2 · · · ∀X(γk)
k

ψ(j(X(γ1)
1 ), f1(j(X(γ1)

1 )), j(X(γ2)
2 ), f2(j(X(γ1)

1 ), j(X(γ2)
2 )), . . . j(X(γk)

k ),
fk(j(X(γ1)

1 ), j(X(γ2)
2 ), . . . j(X(γk)

k )), A1, A2, . . . An)

Then we say that the formula ϕ with parameters A1, A2, . . . An reflects down from S
to β. If for all structures S of the above form and for all formulas ϕ of the above form
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Higher-order parameters and schemes of reflection

true in the structure S, this occurs for some β < κ, then κ is said to be α-reflective.
1

Since in this definition I have introduced a mapping j to guide the reflection
it may be questioned whether it still deserves to be called a reflection principle. I
tried to motivate the acceptance of the existence of cardinals satisfying the above
large-cardinal property as intrinsically justified by deriving it from yet another large-
cardinal property. Specifically one may introduce the notion of an α-hyper-reflective
cardinal for α > 0. We do this by means of a definition identical to Definition 1.6,
except that we have the higher-order variables of order γ in (*) of Definition 1.6
range over Vκ+l(γ) rather than Vβ+l(γ), and remove reference to the mapping j. It is
also necessary to require that the formula being reflected not contain subformulas
of the form X = Y for variables X,Y of order at least second order, in order for
the resulting reflection principle to be consistent, this point was not noticed in [12].
One can then proceed to prove (assuming the axiom of choice) that an α-hyper-
reflective cardinal is α-reflective. It is more plausible to think of an axiom positing
the existence of an α-hyper-reflective cardinal as a reflection principle.

The choice of the term “hyper-reflective" is unfortunate; it is actually not hard
to construct an argument that a cardinal κ is α-reflective if and only if it is α-hyper-
reflective, for any ordinal α such that 0 < α < κ.

Lemma 1.7. For each ordinal α > 0, a cardinal κ is α-hyper-reflective if and only
if it is α-reflective.

Proof. The forward direction is easy. For the other direction, suppose that κ is α-
reflective. Suppose that we have a formula of the form (*) in Definition 1.6, together
with parameters corresponding to the free variables in the formula, including the
variables for the Skolem functions, and satisfying the constraint that the formula
has no subformula of the form X = Y for formulas of at least second order, and that
a mapping j witnesses that this formula reflects down to β for those parameters. Let
us replace the Skolem functions with their restrictions to the range of the mapping
j, we shall show that these restricted Skolem functions can be extended to Skolem
functions on the entire domains of discourse for the higher-order variables such that
the cardinal κ satisfies the definition of α-hyper-reflectiveness for the formula in

1At the time of writing [12] I was under the impression that the phrase “α-reflective cardinal"
had not been used previously. This turned out not to be correct. Dmytro Taranovsky had in-
troduced a completely different notion of “α-reflective cardinal" independently in a paper “Higher
Order Set Theory with Reflective Cardinals" which at the time of writing is available on-line at
http://web.mit.edu/dmytro/www/ReflectiveCardinals.htm. It should be emphasised that my no-
tion of “α-reflective cardinal" is completely different to the notion introduced in Taranovsky’s paper.
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question with that choice of tuple of Skolem functions and other parameters, and if
that can be shown for an arbitrary initial choice of formula and parameters, then
that is sufficient to show that κ satisfies the definition of α-hyper-reflectiveness in
general. Assume the mapping j and the ordinal β chosen so that the mapping
j will witness that all other formulas of the form (*) – with the same number of
initial higher-order quantifiers and the same free variables including Skolem function
variables – are also reflected down to the same β for the original choice of parameters
and Skolem functions. It can be seen that such a choice of j and β is possible,
by considering the existence of a truth predicate for the class of formulas of the
type being discussed, and applying the definition of being α-reflective to a formula
involving that truth predicate. We shall show that on these assumptions it is always
possible to extend the Skolem functions to the entire range of possible values for
the appropriate higher-order variables, in such a way that the resulting choice of
Skolem functions witnesses that the cardinal κ satisfies the definition of being α-
hyper-reflective for that particular choice of formula and parameters and Skolem
functions, and as observed before showing that this is true regardless of the initial
choice of formula and Skolem functions and parameters is sufficient to prove the
theorem.

Suppose that we are given an interpretation for each of the higher-order variables
which appear in universally quantified form at the start of the original formula of
the form (*), where not every value of such a higher-order variable is in the range of
the mapping j. To extend the Skolem functions to every such tuple of values for the
higher-order variables, use the values of the Skolem functions for tuples of elements
of the range of j as a guide. Assume that we are trying to determine what the value
of the Skolem function fn(X1, X2, . . . Xk) should be, and assume as an induction hy-
pothesis that we have already chosen values for fm(X1, X2, . . . Xj) for m < n, and
parameters k(X1), k(X2), . . . k(Xk−1) in the range of the mapping j, such that any
first-order formula with higher-order parameters is true of a tuple of parameters cho-
sen from {X1, f1(X1), X2, f2(X1, X2), . . . Xn−1, fn−1(X1, X2, . . . Xn−1)} if and only
if it is true of the corresponding tuple of parameters from {k(X1),
f1(k(X1)), k(X2), f2(k(X1), k(X2)), . . . k(Xn−1), fn−1(k(X1), k(X2), . . .
k(Xn−1))}. Then by our assumptions on the mapping j we can choose values for
k(Xn) and fk(X1, X2, . . . Xn) so that the induction step goes through. If we use a
well-ordering on the set of all possible tuples of parameters, so as to ensure that
the the Skolem functions are always defined in this way for every possible tuple of
parameters, then these Skolem functions will witness that κ satisfies the definition
of being α-hyper-reflective for this particular formula and choice of parameters, and
the initial choice of formula and Skolem functions and parameters was arbitrary. As
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Higher-order parameters and schemes of reflection

observed previously, this is sufficient to prove that every α-reflective cardinal is α-
hyper-reflective, completing the proof of equivalence between the two properties.

In [12] I gave a proof of the consistency of these large cardinals relative to an
ω-Erdős cardinal. In the next section I want to extend this program further by
formulating a stronger reflection principle and giving a consistency proof for it.

2 The new reflection principle
We begin by presenting one version of the new reflection principle, a natural gener-
alization of the notion of an α-hyper-reflective cardinal.

Definition 2.1. A cardinal κ is said to be extremely reflective if, for each ordinal
λ > κ, considering structures of the form (Vκ, Vλ\Vκ) and formulas φ in a two-sorted
language holding in such a structure, of the same form as the formulas considered in
the definition of α-hyper-reflective cardinal except that variables of at least second
order are replaced with variables of the second sort, each such formula reflects down
to some β < κ in the same sense as in the definition of α-hyper-reflective cardinal.
(Here we must recall that the constraint that the reflected formula has no subformula
of the form X = Y where X and Y are variables of the second sort is necessary.)

We now present an alternative definition of the same concept and then briefly
indicate how one can prove that the two definitions are equivalent.

Definition 2.2. Suppose that κ is a cardinal with the following property. For any
ordinal η > κ, and for any formula φ of the form described in the previous definition,
there exists an ordinal λη < κ, and a family of sets Mφ,a (not necessarily transitive)
for all a ∈ Vη \ Vκ, with Card(Mφ,a) ≤ λη, and mappings jφ,a : Mφ,a → Vη, for each
a ∈ Vη \Vκ, such that Vλη ∪{λη} ⊆Mφ,a for all a ∈ Vη \Vκ,

⋃
a∈Vη\VκMφ,a = Vρη for

some ρη, and for all a ∈ Vη \Vκ the mapping jφ,a is elementary from (Vλη ,Mφ,a\Vλη)
into (Vκ, Vη \Vκ), for all formulas of the same form as φ (that is, the form described
in the previous definition, with the constraint on subformulas of the form X = Y )
such that the number of free variables (including free variables for Skolem functions)
is no greater than that of φ, with critical point λη and such that jφ,a(λη) = κ, and
a ∈ range(jφ,a). We also require that given any n-tuple (a1, a2, . . . an) the mapping
jφ,(a1,a2,...an) has domain containing the domains of jφ,a1 , jφ,a2 , . . . jφ,an and agrees
with the map jφ,ak at ak for each k such that 1 ≤ k ≤ n. If κ has this property then
κ is said to be an extremely reflective cardinal.
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Using a similar argument to the one used to show that a cardinal is α-hyper-
reflective if and only if it is α-reflective, together with the use of Skolem hulls, the
first definition can be shown to be equivalent to the second one. To show that
the first definition implies the second, use a sequence of formulas each of which
is universal for a given level of complexity, and choose a sequence of families of
Skolem functions for each such formula such that the families of Skolem functions
in the sequence and consistent with one another, and use these families of Skolem
functions to construct the maps jφ,a. It may not be immediately obvious that λη
can be chosen independently of φ, but simply choose it to be as small as possible for
each φ, then it can be easily seen that the resulting ordinal is independent of φ. To
show that it is possible to choose the Mφ,a in such a way that ⋃

a∈Vη\VκMφ,a = Vρη ,
consider that each Mφ,a could be embedded in an M constructed from a Skolem
hull of larger cardinality but still of smaller cardinality than iκ, so that Vδ+1 ∈ M
where j(δ) = rank(a), j being the mapping corresponding to the Skolem hull M .
This indicates how it can be shown that the first definition implies the second, and
it can be shown that the second implies the first using similar reason to that used
to show that every α-reflective cardinal is α-hyper-reflective.

It can be shown that this reflection principle subsumes all the ones considered
in [5], [8], and [12]. In fact it can be shown that an extremely reflective cardinal κ
is α-reflective for all ordinals α such that 0 < α < κ (and is a stationary limit of
cardinals with this property). This point can easily be argued making use of the
first definition given.

One easy upper bound for the consistency strength of an extremely reflective
cardinal is that every supercompact cardinal is extremely reflective. This can be
shown using Magidor’s characterisation of supercompactness. It is also not hard to
show that a measurable cardinal is a stationary limit of extremely reflective cardinals.

Before proceeding further, we note two errata in [12]. In the proof of Theorem
2.5 of [12] it is said that given any closed unbounded subset C ⊆ κ(ω), where κ(ω)
is the first ω-Erdős cardinal, one may choose an ω-sequence of indiscernibles for any
structure S with domain of discourse Vκ(ω) which lie in C. More needs to be said
for the argument to work. It must be required that it be possible to choose the set
of indiscernibles I ⊆ C in such a way that each element of I is a critical point of
an elementary embedding from the Skolem hull of I in S into itself. Fortunately
this is possible as well. Further it was claimed that κ(ω) is a stationary limit of
remarkable cardinals. What should have been said is that it is a stationary limit of
cardinals κ with the property that Vκ(ω) |= “κ is remarkable". This result is Lemma
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Higher-order parameters and schemes of reflection

1.2 of [10]. Having noted these errata, we now proceed to the next result, showing
that the property of being extremely reflective is in fact equivalent to the property
of being remarkable.

Theorem 2.3. A cardinal is extremely reflective if and only if it is remarkable.

Proof. This is a corollary of the second definition given of “extremely reflective
cardinal", and the following characterisation of remarkable cardinals which Ralf
Schindler communicated to me in private email correspondence.

Let κ be an infinite cardinal. We consider two two-player games. The first one
will be denoted by G1

κ. Player I plays an ordinal α > κ, player II plays two ordinals
λ, β such that λ < β < κ, then from then on Player I plays elements x0, x1, . . . of
Vβ and Player II plays elements y0, y1, . . . of Vα, and player II wins if she is not
the first one to break the following rules: xk ∈ Vλ =⇒ yk = xk, and for every
formula φ in the language of set theory and for all k < ω, Vβ |= φ(λ, x0, . . . xk−1) ≡
Vα |= φ(κ, y0, . . . yk−1). The second game is denoted Gcritκ , and this time after the
first two moves, Player I plays X0, Player II plays j0, Player I plays X1, Player II
plays j1, and so on, and the rules are X0 ⊂ X1 ⊂ . . . ⊂ Vβ, j0 ⊂ j1 ⊂ . . ., and
for all k < ω, Card(Xk) ≤ λ, jk : Xk → Vα, jk � Xk ∩ Vλ = id, and for every
formula φ in the language of set theory, for all n < ω, and for all x0, x1, . . . xn ∈ Xk,
Vβ |= φ(λ, x0, x1, . . . xn) ≡ Vα |= φ(κ, jk(x0), jk(x1), . . . jk(xn)). Again Player II wins
if she is the first one not to break any rule. Ralf Schindler has shown that κ being
remarkable is equivalent to Player II having a winning strategy in G1

κ, which is in
turn equivalent to Player II having a winning strategy in Gcritκ . This charactrisation
of remarkable cardinals was known to Schindler at the time that [18] appeared, and
is in the spirit of Section 4 of that paper.

Using this characterisation of remarkable cardinals and our previous character-
isation of extremely reflective cardinals, it can be shown that the two concepts are
equivalent. If we assume that κ is remarkable in the sense just given then it is
easy to see that κ is extremely reflective according to our second definition, and
the converse is easy to show too, namely the winning strategy for player II in G1

κ

is the one whereby she plays yi := jφ,(x0,x1,...xi)(xi) where φ has a sufficiently large
number of free variables. Any violation of the rules would then witness a failure
of the defining property for some jψ,b with x0, x1, . . . xi ∈ dom jψ,b and ψ having
enough free variables to cover both the complexity of the formula for which the rules
are broken as well as all the free variables in that formula.
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It now follows by Lemma 1.2 of [10] that extremely reflective cardinals are con-
sistent relative to an ω-Erdős cardinal.

Reflection principles stronger than an ω-Erdős cardinal have been proposed by
Welch and Roberts in [1] and [2] in response to Peter Koellner’s challenge to for-
mulate an intrinsically justified reflection principle with that level of consistency
strength. In particular, Sam Roberts has formulated a reflection principle which
implies a proper class of 1-extendible cardinals, and along lines which I will indicate
in a different forthcoming paper on the topic, this line of thought can be taken at
least up to the level of a supercompact cardinal. For attempted justifications from
notions of reflection of still stronger large cardinals, in [17] Victoria Marshall mo-
tivates increasingly strong theories from notions of reflection which go all the way
up to inconsistency with the axiom of choice. Whether principled reasons could
be offered for stopping short of the point of inconsistency with choice would be an
interesting topic to explore. This work has given an indication of how a certain kind
of reflection principle can be extended up the point of remarkable cardinals. In other
work we hope to take a more comprehensive look at the relations between reflection
principles of the weak kind described here and the stronger reflection principles of
the kind proposed by Welch and Roberts.
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Abstract
Since the early 2000s, researchers in logic and AI have developed a frame-

work for measuring inconsistency in information. They proposed inconsistency
measures as well as desirable properties for them and dealt with related issues.
AI researchers are interested in this topic because some intelligent systems need
to handle inconsistencies. However, the bulk of the research has been done for
propositional knowledge bases, that is, finite sets of formulas in propositional
logic. But much of the information that intelligent systems deal with, such as
databases, use first-order logic formulas. The purpose of this paper is to extend
inconsistency measuring to finite sets of first-order logic formulas. We propose
five different measures and explain the rationale for each. Furthermore, we ex-
tend some of the properties proposed for propositional inconsistency measures
to first-order logic and introduce several new properties appropriate for first-
order logic. We show the satisfaction or violation of each property for each
measure.

1 Introduction
Classical logic follows a rule stated in Latin as ex contradictione quodlibet, meaning
that from a contradiction everything follows. This makes every set of inconsistent
formulas trivial. Some logicians think that as a practical matter this rule is too
strong. For this reason, many different paraconsistent logics [3], logics that do not
follow ex contradictione quodlibet, have been proposed and studied. The issue has
also been of interest to AI researchers, as some intelligent systems must deal with
inconsistent information.

The first mention of the concept of measuring inconsistency was in [2]. That
paper presented several ways of classifying the inconsistency of a set of formulas in
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first-order logic. The first work that proposed a specific inconsistency measure was
[7]. It defined an inconsistency measure that can be applied to any set of formulas
in propositional logic. Since that time, numerous other measures have also been
proposed. However, there is no general agreement about which, if any, is the best
method. In this paper we use [12], which surveys most of this work. In fact, it gives
the definitions for 22 inconsistency measures including the most popular ones. Due
to the proliferation of proposed inconsistency measures, some researchers proposed
properties, called rationality postulates, that a “good” inconsistency measure should
satisfy. In fact, [12] defines 18 such properties but there is also no consensus about
which of these should be required.

A significant limitation of such past work is that almost all of it deals only with
formulas in propositional logic. But the information that AI systems deal with usu-
ally comes from various databases and other knowledge that can be represented
in first-order logic, but not in propositional logic. The purpose of this paper is
to define inconsistency measures that are appropriate for first-order logic formu-
las, thereby greatly expanding the applicability of previous work. It turns out that
some of the propositional inconsistency measures can be extended to first-order logic
in a straightforward manner. The problem is that such extensions do not handle
quantification appropriately. For that, one needs an inconsistency measure defined
specifically for first-order logic. However, we keep one important consideration from
propositional logic: finiteness. While we do not use a specific finite bound, we will
deal only with finite sets. In this respect, we follow the basic concepts of finite
model theory, [8], a topic that has been investigated both in mathematical logic and
computer science, particularly in database theory and computational complexity.
The reason for the finiteness assumption in our case is that the existence of models
of various infinite cardinalities impedes inconsistency measurement: such measures
have finite values with a single infinity in special cases. Thus, in our setting every-
thing is finite: the number of symbols in the language, the length of a formula (this
is a feature of first-order logic but worth mentioning), the number of formulas (in
the set under consideration), and the size of the models.

The plan of this paper is as follows. In Section 2 we review the basic definitions
of inconsistency measuring in propositional logic, including some inconsistency mea-
sures and rationality postulates. Section 3 contains the syntax of and semantics of
first-order logic in our setting. Then, Section 4 describes a finitary 3-valued se-
mantics that will be used to define several inconsistency measures for first-order
logic. In Section 5 we rephrase the propositional rationality postulates for our first-
order setting and add new postulates appropriate for first-order logic inconsistency
measures. Section 6 defines what we consider our main inconsistency measure for
first-order logic formulas, fI, and then Section 7 shows which rationality postulates
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in our list fI satisfies. The following four sections each define and study an ad-
ditional inconsistency measure for first-order logic: Section 8 has a “weak” version
of fI; Section 9 has a measure based on minimal inconsistent subsets; Section 10
counts only relations; and Section 11 is a relative measure that considers the ratio
of the inconsistency with the total possible amount. The paper is summarized in
Section 12.

2 Measuring Inconsistency in Propositional Logic

This section reviews work done on measuring inconsistency in propositional logic
that is relevant to this paper. We refer to [12] for a thorough treatment of this
topic. Essentially, an inconsistency measure is a function that can be applied to
any finite set of propositional logic formulas, whose result is a nonnegative number
or infinity. The idea is that the result is the inconsistency of the given set. In
particular, this allows for the comparison of two such sets of formulas with respect
to their inconsistency.

We start with a propositonal logic language that contains an unbounded finite
set of atoms (propositions), and the propositional connectives ¬, ∧, and ∨, as well
as parentheses. Formulas are formed in the usual way. In this section we use α for a
formula and A for a finite set of formulas. We write Atoms(A) for the set of atoms
in A.

A classical interpretation i for A assigns each atom the truth value T or F ; that
is, i : Atoms(A) → {T, F}. Such an interpretation is extended to all propositional
logic formulas in the usual way, using the truth tables for the connectives. We say
that i satisfies α just in case the assignment of the truth values given by i makes α
true. Then, i satisfies A iff i satisfies α for all α ∈ A. A is consistent if there is an
interpretation i that satisfies it; otherwise A is inconsistent. A minimal inconsistent
set (MIS) is an inconsistent set all of whose proper subsets are consistent. We write
MI(A) for the set of minimal inconsistent subsets of A. A formula is problematic if it
is a member of some set S ∈ MI(A), free otherwise. We write Problematic(A) (resp.
Free(A)) for the set of problematic (resp. free) formulas of A.

Consider the following two sets: A1 = {a, b, c,¬a∨¬b∨¬c} and A2 = {a∧b,¬a∧
¬b, c,¬c}. Both A1 and A2 are inconsistent. But intuitively, A2 appears to be more
inconsistent than A1. We would like an inconsistency measure to give a higher value
to A2 than to A1, and in fact, that is what typically happens. There are several
types of inconsistency measures. One type, usually called a syntactic measure, is
based in some way on the minimal inconsistent sets of A. We will give below the
simplest such measure, one that counts the number of minimal inconsistent subsets.
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A semantic measure uses interpretations in its definition: we will give below the one
that is typically used. Incidentally, not all inconsistency measures fall clearly into
these two groups.

The purpose of this paper is to define the concept of an inconsistency measure
for first-order logic. Our approach is to start with a propositional inconsistency
measure and extend it in some way, so that it is applicable to first-order logic. After
considering various extensions, we found that the most appropriate one to use is a
well-known semantic measure. This measure uses a 3-valued propositional logic that
we explain next.

Consider a 3-valued logic with the truth-values T , F , and B, where B indicates
inconsistency. Thus, an interpretation i assigns to every atom one of the 3 truth-
values. That is, in this case i : Atoms(A) → {T, F,B}. We need to define the truth-
tables for the connectives. The measure we define uses Priest’s Logic of Paradox
[10], (but with the corresponding truth values t, f , and p). The truth tables use an
ordering on the truth values, where F < B < T and ∧ computes the minimum value
while ∨ computes the maximum value; also ¬(B) = B. So, for example, B ∧F = F
and B ∨ F = B. Then, an interpretation i satisfies a formula α iff the truth-value
of α for i is T or B.

In the following definition, A stands for the set of all finite sets of propositional
logic formulas.

Definition 1. A function I : A → R≥0
∞ is an inconsistency measure iff it satisfies

the Consistency postulate:

Consistency I(A) = 0 iff A is consistent.

This is a very general definition that fits all proposed inconsistency measures for
propositional logic. Of the many propositional inconsistency measures proposed, we
present only the two that will be important in our work for first-order logic.

Definition 2. The following are two well-known propositional inconsistency mea-
sures.
IMI(A) = |MI(A)|.
IC(A) = min{|i−1(B)| | i satisfies A}.

IMI ([5]) counts the number of minimal inconsistent subsets, which in a sense
counts the number of inconsistencies. IC ([4]) counts the minimal number of distinct
atoms that are involved in a minimal inconsistency. In particular, for the sets given
above, IMI(A1) = 1, IMI(A2) = 2, IC(A1) = 1, and IC(A2) = 3. Both measures give
a higher value to A2 than to A1, in accordance with our intuition that A2 is more
inconsistent than A1. As we will show later, IMI , as well as many other propositional

406



Measuring Inconsistency

inconsistency measures, carry over to first-order logic; the problem with them is that
they cannot differentiate between the existential and universal quantifiers. For this
reason, we believe that an extension of IC , which can distinguish between them, is
more appropriate for first-order logic.

In order to differentiate among the large number of propositional inconsistency
measures, some researchers proposed various properties, called rationality postulates,
that intuitively a good inconsistency measure should satisfy. However, just as there
is no general agreement about which inconsistency measure is best, there is also no
agreement about which rationality postulates should be required, except for Con-
sistency, that we put into the definition of inconsistency measure. Here we list 9
additional postulates.

Definition 3. The following postulates will be considered:

Monotony If A ⊆ A′, then I(A) ≤ I(A′).

Independence If α ∈ Free(A) then I(A) = I(A \ {α}).

Dominance If α is consistent and logically implies β then I(A∪{α}) ≥ I(A∪{β}).

Super-Additivity If A ∩A′ = ∅ then I(A ∪A′) ≥ I(A) + I(A′).

Penalty If α ∈ Problematic(A) then I(A) > I(A \ {α}).

MI-Separability If {MI(A),MI(A′)} is a partition of MI(A∪A′) then I(A∪A′) =
I(A) + I(A′).

MI-Normalization If M ∈ MI(A) then I(M) = 1.

Equal Conflict If M,M ′ ∈ MI(A) and |M | = |M ′| then I(M) = I(M ′).

Exchange If A1 is consistent and A1 and A2 are logically equivalent then for any
set of formulas A, I(A ∪A1) = I(A ∪A2).

Monotony states that the addition of formulas cannot decrease the measure.
Independence states that the removal of a free formula does not change the measure.
Dominance states that if a first consistent formula logically implies a second formula,
then the addition of the first to a set has a measure at least as great as the addition of
the second. A confusing aspect of this postulate is that the first formula may already
be in the set. These three postulates, as well as Consistency in the definition of an
inconsistency measure, are from [6]. Super-Additivity considers two nonintersecting
sets and requires the measure of the union to be at least the sum of the individual
ones. Penalty is the counterpart of Independence: the removal of a problematic
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formula decreases the measure. These two postulates are from [11]. MI-Separability,
([5]), like Super-Additivity, also involves two sets, but in this case, if the minimal
inconsistent sets of the two sets form a partition of the minimal inconsistent sets of
the union, then the measure of the union is the sum of the measures of the two sets.
MI-Normalization ([6]) states that every minimal inconsistent subset has measure 1.
Equal Conflict ([9] is a weaker condition than MI-Normalization: it requires minimal
inconsistent sets of the same size to have the same measure. Finally, Exchange ([1])
states that the addition of two logically equivalent consistent sets to a set have the
same inconsistency measure.

3 Syntax and Semantics for First-Order Logic

We will be using finitary first-order languages with equality, relation, and constant
symbols. Recall that a function symbol can be represented as a relation symbol.
We start by explaining the concepts in general and then how to specify a particular
language. The results will be general, applying to any first-order language. We use
= for equality, R with subscripts for relation symbols, and c with subscripts for
constant symbols. Variables are designated by x with subscripts. A term t with
subscripts is either a constant symbol or a variable. Each relation symbol has an
associated arity, which is a positive integer. The connectives ¬, ∧, and ∨, as well as
the quantifiers ∀ and ∃, and parentheses, as usual, are in the language.

A specific language is defined by its signature, which is a finite sequence starting
with 0 or more positive integers followed by 0 or more zeros. For example, sig =
〈1, 2, 1, 0, 0〉 is the signature for a language with 3 relation symbols: R1 of arity 1,
R2 of arity 2, and R3 of arity 1, and two constant symbols c1 and c2. An atomic
formula has the form ti = tj or Ri(t1, . . . , tn) where Ri has arity n. A literal is
an atomic formula or its negation. We write ti 6= tj for ¬ti = tj. Formulas are
formed by applying the connectives ∧ and ∨ to the literals and quantifiers in front
of formulas. The difference between this definition and the standard one is that in
this version negation is applied only to atomic formulas. This is not a real restriction,
because for a formula where negation is applied elsewhere, there is a standard way
to transform it to a logically equivalent formula where negation is applied only to
atomic formulas. A formula with no free (unquantified) variable is called a sentence.

A theory is a finite set of sentences (in the specified language). We write A
with subscripts for theories. As the language contains equality, a theory may give
information about the possible number of elements in a model. The concept of
model will be explained below: here we just point out this feature of a language with
equality. For example, the sentence E2 = ∀x1∃x2∀x3(x1 6= x2 ∧ (x3 = x1 ∨x3 = x2))
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states that the number of elements in a model must be 2. Similarly, sentences can
be written with no relation or constant symbols (hence in every language) stating
that the number of elements in a model must be k, less than k, less than or equal
to k, bigger than k, and bigger than or equal to k for every positive integer k.
This means that a theory in any first-order language may have an inconsistency
involving equality: for example, if A = {E2, E3}. Another way that equality can
cause an inconsistency is with a sentence like ∃x1(x1 6= x1). While we need to deal
with this issue, our interest is really in inconsistencies involving relation symbols.
Therefore, these two types of inconsistencies will be treated differently when we
define inconsistency measures. We call any sentence that restricts in some way the
size of a model, like E2, a cardinality sentence. Furthermore, we call any sentence or
set of sentences an equality inconsistency iff it minimally (that is, no proper subset
also) violates a property of equality. Both the sentence ∃x1(x1 6= x1) and the set
{E2, E3} are equality inconsistencies.

The semantics of finitary first-order logic is standard by way of relational struc-
tures. We sketch the basic ideas here. Consider a language with signature sig =
〈n1, . . . , nk, 0, . . . , 0〉, where the ni are positive integers and there are m zeros. Hence
the language contains the k relation symbols R1, . . . , Rk, where each Ri has arity
ni, and the constant symbols c1, . . . , cm. A relational structure for sig is a tuple
S = 〈D, f1, . . . , fk, g〉 where D is a finite set, say D = {d1, . . . , dr}, each fi is a func-
tion, fi : Dni → {T, F}, and g : {c1, . . . , cm} → D. The concept of when a relational
structure is a model of a set of sentences is a well-known feature of first-order logic.
Then, a set of sentences in first-order logic is consistent if it has a model; otherwise
it is inconsistent. When we define an inconsistency measure for finitary first-order
logic, we do so for the standard semantics involving relational structures.

4 A Finitary 3-Valued Semantics for First-Order Logic

Recall that the definition of IC in Section 2 uses a 3-valued logic with the truth-
values T , F , and B. Here we extend this semantics to first-order logic, in order to
define an inconsistency measure for it.

The syntax is exactly the same as before, namely a language with signature
sig = 〈n1, . . . , nk, 0, . . . , 0〉, where the ni are positive integers and there are m zeros.
The language contains the k relation symbols R1, . . . , Rk, where each Ri has arity
ni, and the constant symbols c1, . . . , cm. For the 3-valued semantics, we define a
3-valued relational structure, that we simply call structure. A structure for sig is
a tuple S = 〈D, f1, . . . , fk, g〉 where D is a finite set, say D = {d1, . . . , dr}, each fi

is a function, fi : Dni → {T, F,B}, and g : {c1, . . . , cm} → D. A structure S is
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consistent iff Range(fi) = {T, F} for all fi. Otherwise, S is inconsistent. We say
that |D| is the size of S.

Next we sketch the definition of when a sentence φ holds in a structure S, written
S |= φ. (Note that we use |= for the 3-valued logic.) For this purpose, we enlarge the
language by adding the r elements of D to the language as new constant symbols,
d1, . . . , dr. In the following we will not deal separately with formulas containing any
constant symbol ci, as we will assume that in the evaluation process it is changed to
g(ci), which is an element of D. In order to simplify notation, we use ~dj for a tuple of
elements from D appropriate to the arity of the relation symbol under consideration.
For equalities we write S |= dj = dj for all dj ∈ D and S |= dj 6= dℓ whenever j 6= ℓ.
For the literals involving a relation symbol we write S |= Ri(~dj) iff fi(~dj) ∈ {T,B}
and S |= ¬Ri(~dj) iff fi(~dj) ∈ {F,B}. This is where the 3-valued semantics differs
from the classical 2-valued semantics. Conjunction and disjunction are defined in
the standard way, that is, S |= φ ∧ ψ iff S |= φ and S |= ψ; S |= φ ∨ ψ iff S |= φ or
S |= ψ. Formally defining |= for quantified formulas is a tedious process, just like in
the classical case, and we use the standard method without giving the details here.
Suppose that φ = Q1x1 . . . Qℓxℓ(ψ), where each Qi is a quantifier and ψ is a formula
with the free variables x1, . . . , xℓ and no quantifiers. Determining if S |= φ involves
going from left to right among the quantifiers and evaluating ψ by checking if the
formula ψ (now with elements of D substituted for the free variables), where ∀xi is
interpreted as “for all substitutions of d ∈ D (for xi)” and ∃xi is interpreted as “there
exists a substitution d ∈ D (for xi)”. Thus the testing becomes a matter of checking
for finitely many cases the concept of a ground literal holding in S (along with the
appropriate application of any conjunctions and disjunctions). When S |= φ we say
that S is a model of φ. For a theory A, S is a model of A iff S |= φ for all φ ∈ A.

Example 1. Let sig = 〈2, 2, 1, 0〉 and S = 〈{d1, d2, d3}, f1, f2, f3, g〉 where
f1(d1, d1) = T , f1(d1, d2) = F , f1(d1, d3) = B,
f1(d2, d1) = F , f1(d2, d2) = F , f1(d2, d3) = B,
f1(d3, d1) = T , f1(d3, d2) = F , f1(d3, d3) = F ,
f2(d1, d1) = F , f2(d1, d2) = T , f2(d1, d3) = T ,
f2(d2, d1) = B, f2(d2, d2) = B, f2(d2, d3) = T ,
f2(d3, d1) = T , f2(d3, d2) = F , f2(d3, d3) = B,
f3(d1) = T , f3(d2) = T , f3(d3) = F , and g(c1) = d2.
Consider the sentence
φ = ∀x1∀x2∃x3((¬R1(x1, x2) ∨R2(x2, x3)) ∧ x2 6= x3).
To show that S |= φ we must take all 9 substitutions of pairs of elements of D,
〈x1, x2〉, and for each case find a substitution of an element from D for x3 such that
with those substitutions for x1, x2, x3, the formula (¬R1(x1, x2) ∨R2(x2, x3)) ∧ x2 6=

410



Measuring Inconsistency

x3) holds in S. For example, for the substitution of d1 for x1 and d1 for x2 the
choice of d2 for x3 works because S |= (¬R1(d1, d1) ∨ R2(d1, d2)) ∧ d1 6= d2). The
other 8 cases can be done similarly.

Recall from the previous section that using equalities it is possible to specify the
possible number of objects in a model. We call a theory equality inconsistent if it
contains sentences that cannot be satisfied by any structure on account of equality.
Otherwise the theory is equality consistent. For example, the theory A = {E2, E3}
is equality inconsistent because no structure can have both size 2 and 3: the size is
unique. On the other hand, expressing in first-order logic that “there are at least 10
elements” and “there are at most 20 elements” is possible and having just those 2
equality sentences gives an equality consistent theory.

Proposition 1. Every equality consistent theory has a model.

Proof. If A is equality consistent, then there must be at least one positive integer j
such that a structure with j elements may be a model of A. Choose such a j and
define in accordance with the signature, S = 〈{d1, . . . , dj}, f1, . . . , fk, g〉 such that
fi(~d) = B for all fi and ~d and g is such that it satisfies all equalities related to the
constants ci. Then all the ground literals must hold in S and hence all sentences
obtained by applying the connectives and quantifiers must hold also. Therefore,
S |= A.

When we get to measuring the inconsistency of a theory, we will use the concept
of the inconsistency of a structure. Let S = 〈D, f1, . . . , fk, g〉. We define Inc(S :
fi) = |~dj | such that fi(~dj) = B for each i, 1 ≤ i ≤ k. That is, for each relation
we count the number of times a tuple gets the truth value B for that relation, as
each such value represents an inconsistency. Then we define the inconsistency of a
structure S as Inc(S) = ∑k

i=1 Inc(S; fi), that is, we add the inconsistency for each
relation. In particular, in Example 1, Inc(S) = 5.

Later we will need to use the concept of inconsistency reduction and enlargement.

Definition 4. For a structure S = 〈D, f1, . . . , fk, g〉, a structure of the same sig-
nature, domain, and assignment of constant symbols, S′ = 〈D, f ′

1, . . . , f
′
k, g〉, is an

inconsistency reduction of S iff the following 3 conditions hold:

1. If fi(~dj) = T then f ′
i(~dj) = T .

2. If fi(~dj) = F then f ′
i(~dj) = F .

3. There is at least one fi and ~dj such that fi(~dj) = B and either f ′
i(~dj) = T or

f ′
i(~dj) = F .
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In such a case we call S an inconsistency expansion of S′.

Proposition 2. 1. If S′ is an inconsistency reduction of S then
Inc(S′) < Inc(S).

2. If S |= A and S′ is an inconsistency expansion of S then S′ |= A.

Proof. 1. This follows from the definition of the inconsistency of a structure.

2. Every equality and inequality that holds in S must hold in S′. The same goes
for every literal and then conjunction and disjunction of literals followed by
the application of the quantifiers.

Note that S and S′ having the same signature and Inc(S′) < Inc(S) does not
imply that S is an inconsistency expansion of S′. For example, let sig = 〈1〉, S =
〈{d1, d2, d3}, f1〉 and S′ = 〈{d1, d2, d3}, f ′

1〉 where f1(d1) = f1(d2) = B, f1(d3) = T
and f ′

1(d1) = f ′
1(d2) = T , f ′

1(d3) = B. Then Inc(S) = 2 > Inc(S′) = 1 but S is not
an inconsistency expansion of S′ on account of d3.

5 Rationality Postulates in First-Order Logic
Section 2 gave definitions and postulates for propositional logic inconsistency mea-
sures. Recall that propositional inconsistency is measured in the context of classical
2-valued logic. The same will be the case when we extend the measures to first-order
logic. But in order to do the extension, some modifications are needed. We say that
a theory is f-consistent iff it has a consistent structure for a model. So, f-consistency
means that there is a classical finite model. We call a theory f-inconsistent iff it has
a model but no model is f-consistent. Thus there are three concepts concerning the
consistency of a theory: f-consistent, f-inconsistent, and equality inconsistent, the
latter as explained in Section 3

A theory may have models in infinitely many (finite) cardinalities. Consider the
theory A = {∀x1R(1x1),∀x1¬R1(x1)} in a language with sig = 〈1〉. How inconsis-
tent is A? A has a model for every cardinality and if S is a model then it must have
an inconsistency for each element of the domain. In determining the inconsistency
of a theory we should consider the cardinalities of its models. Our method for ac-
complishing this is to allow the value of an inconsistency measure for a theory to be
not just a specific number, as in the propositional case, but also a function of the
size of a model represented by a parameter N . For the purpose of comparison, we
will consider N to be larger than every specific finite integer.

412



Measuring Inconsistency

Definition 5. A first-order inconsistency measure is a function whose domain is
the set of all theories such that for each theory A, either I(A) = ∞, or I(A) =
a nonnegative number, or I(A) = f(N) where f is a function of the parameter N
standing for the size of a model, such that I satisfies the following two postulates:

f-Consistency I(A) = 0 iff A is f-consistent.

Equality Consistency I(A) = ∞ iff A is equality inconsistent.

Thus, for a first-order inconsistency measure there are two consistency require-
ments, as we consider every equality inconsistent theory to have the maximum pos-
sible inconsistency. Next, we consider the other postulates that we considered for
propositional inconsistency measures in Section 2 to determine what changes, if any,
are needed in the case of first-order logic. We write f −MI(A) for the set of minimal
f-inconsistent subsets of A. Then, the f-problematic sentences are the ones in some
minimal f-inconsistent subset; the other sentences are f-free. We say that φ implies
ψ iff every model of φ is a model of ψ. Two theories are called equivalent iff they
have the same models. For some of the postulates we deal with two theories, where
one is a subset of another or we take the union or intersection. In those cases we
assume that the theories have the same signature.

The following definition provides the first-order counterparts to the rationality
postulates in Section 2. We also add several new postulates appropriate for first-
order logic. For the one dealing with signatures we need a definition. Given sig =
〈n1, . . . , nk, 0, . . . , 0〉 with m zeros, we say that sig′ is an expansion of sig iff sig′ has
the form
sig′ = 〈n1, . . . , nk, nk+1, . . . , nk+ℓ, 0, . . . , 0〉 where either ℓ > 0 or there are more than
m zeros.

Here are the rationality postulates we will use for first-order logic.

Definition 6. A is a theory; φ and ψ are sentences in first-order logic.

f-Monotony If A ⊆ A′ and A′ \ A contains no cardinality sentence, then I(A) ≤
I(A′).

f-Independence If φ ∈ f − Free(A) then I(A) = I(A \ {φ}).

f-Dominance If φ implies ψ then I(A ∪ {φ}) ≥ I(A ∪ {ψ}).

Super-Additivity If A ∩A′ = ∅ then I(A ∪A′) ≥ I(A) + I(A′).

f-Penalty If φ ∈ f − Problematic(A) then I(A) > I(A \ {φ}).
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f-MI-Separability If {f −MI(A), f −MI(A′)} is a partition of f −MI(A∪A′) then
I(A ∪A′) = I(A) + I(A′).

f-MI-Normalization If M ∈ f − MI(A) then I(M) = 1.

f-Equal Conflict If M,M ′ ∈ f − MI(A) and |M | = |M ′| then I(M) = I(M ′).

f-Exchange If A1 is equivalent to A2 then for any theory A, I(A∪A1) = I(A∪A2).

Signature Invariance If A is a theory for signature sig, sig′ is an expansion of
sig, A′ is the same theory as A but for sig′, then I(A) = I(A′).

Quantifier Change If sig = 〈n〉,
A = {Q1x1 . . . Qnxn(R1(x1, . . . , xn) ∧ ¬(R1(x1, . . . , xn))}, where at least one
of the quantifiers Qi is ∀, and A′ is obtained from A by changing at least one
of the universal quantifiers to an existential quantifier, then I(A′) < I(A).

The last two postulates are appropriate for first-order logic, but have no coun-
terpart in propositional logic.. Let us now go back to Definition 2 and consider
the counterpart of IMI , but using minimal f-inconsistent subsets. Both A and A′

in the Quantifier Change postulate have one minimal f-inconsistent subset; hence
IMI(A) = IMI(A′) = 1. Actually we don’t need to deal with f-inconsistency at
all; we get the same result for classical inconsistency. But intuitively A is more
inconsistent than A′. This shows that a propositional inconsistency measure cannot
differentiate between the two quantifiers.

6 The Inconsistency Measure fI

In this section we define what we consider to be the main inconsistency measure for
finitary first-order logic.

Definition 7. Let A be a theory. fI is defined using 3 cases:

1. A is equality inconsistent. Then fI(A) = ∞.

2. The size of a model of A has an upper bound, s. Then fI(A) = min{Inc(S) |
S |= A and the size of S = s}.

3. A has arbitrarily large models. We use the parameter N for the size of an arbi-
trarily large model of A. Then fI(A) = min{Inc(S) | S |= A and the size of S
= N}.
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It is clear from Definition 5 that fI is a first-order inconsistency measure. Next
we give several examples to illustrate the computation of fI(A).

Example 2. Let A1 = {E2, E3}. Then fI(A1) = ∞.

Example 3. Let sig = 〈2, 2〉 and
A2 = {∀x1∀x2R1(x1, x2),
∀x1∀x2¬R1(x1, x2),
∀x1∀x2∀x3(¬R2(x1, x2) ∨ ¬R2(x2, x3) ∨ x1 6= x3),
∃x1∀x2(R2(x1, x2) ∧R2(x2, x1)),
∃x1∃x2(R2(x1, x2) ∧ ¬R2(x1, x2))}.
A2 has arbitrarily large models. Let N be the size of a model, say
S2 = 〈{d1, . . . , dN }, f1, f2〉 for some functions f1 and f2. The following assignment
has the minimal number of inconsistencies:
f1(di, dj) = B for all di, dj , 1 ≤ i, j ≤ N ,
f2(d1, di) = B for all di, 1 ≤ i ≤ N ,
f2(di, d1) = T for all di, 2 ≤ i ≤ N ,
f2(di, dj) = F for all di, dj , 2 ≤ i, j ≤ N .
Hence fI(A2) = N2 +N .

Example 4. Continuing with Example 3 let
A3 = A2 ∪ {∀x1 . . . ∀x6(x1 = x2 ∨ x1 = x3 ∨ x1 = x4 ∨ x1 = x5 ∨ x1 = x6)}.
So A3 is the same as A2 except that the size of a model cannot exceed 5.
Hence fI(A3) = 52 + 5 = 30.

Example 5. Let sig = 〈2〉 and
A4 = {∀x1∀x2∀x3(¬R1(x1, x2) ∨ ¬R1(x2, x3) ∨R1(x1, x3)),
∀x1∀x2(¬R1(x1, x2) ∨ ¬R1(x2, x1) ∨ x1 = x2),
∀x1R1(x1, x1),
∀x1∀x2(R1(x1, x2) ∨R1(x2, x1)),
∀x1∃x2(R1(x1, x2) ∧ x1 6= x2)}.
A4 is the theory of ordering (with R1 for ≤) with no right endpoint. A4 does not have
a consistent finite model. Let S4 = 〈{d1, . . . , dN }, f1〉. The following assignment has
the minimum number of inconsistencies:
f1(di, dj) = T , 1 ≤ i ≤ j ≤ N ,
f1(dj , di) = F , 1 ≤ i < j ≤ N except that f1(dN , d1) = B.
Hence fI(A4) = 1.

7 Postulate Satisfaction for fI

This section considers the satisfaction of the rationality postulates given in Section 5.
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Theorem 1. fI satisfies f-Monotony, f-Dominance, f-Exchange, Signature Invari-
ance, and Quantifier Change and violates f-Independence, Super-Additivity,
f-Penalty, f-MI-Separability, f-MI-Normalization, and f-Equal Conflict.

Proof. In several parts of the proof we use the same sentences. Let φ1 = ∀x1(R1(x1)∧
¬R1(x1)) and φ2 = ∃x1(R1(x1) ∧ ¬R1(x1)). For these formulas sig = 〈1〉.

f-Monotony Let A ⊆ A′ such that A′ \ A does not contain a cardinality sentence.
If A has no models then neither does A′ and hence fI(A) = fI(A′) = ∞. If A
has a model then every model of A′ is a model of A. Hence by the minimality
condition in the definition of fI, fI(A) ≤ fI(A′).

f-Independence Let sig = 〈1, 1〉, A = {∀x1(R1(x1) ∧ ¬R1(x1) ∧R2(x1)),
∀x1¬R2(x1)}. Then, f−MI(A) = {{∀x1(R1(x1)∧¬R1(x1)∧R2(x1))}}. Hence
∀x1¬R2(x1) ∈ f −Free(A). But fI(A) = 2×N > fI(A\{∀x1¬R2(x1)}) = N .

f-Dominance If A ∪ {φ} does not have a model then fI(A ∪ {φ}) = ∞ ≥ fI(A ∪
{ψ}). Otherwise, every model of A ∪ {φ} is a model of A ∪ {ψ} and hence
fI(A ∪ {φ}) ≥ fI(A ∪ {ψ}).

Super-Additivity Let A1 = {φ1} and A2 = {φ2}. Then A1 ∩A2 = ∅, fI(A1) = N ,
fI(A2) = 1, and fI(A1 ∪A2) = N 6≥ fI(A1) + fI(A2) = N + 1.

f-Penalty Let A = {φ1, φ2}. Then, f − MI(A) = {{φ1}, {φ2}}.
Hence φ2 ∈ f − Problematic(A). But then fI(A) = N 6> fI(A \ {φ2}) = N .

f-MI-Separability For A1 = {φ1} and A2 = {φ2}, the partition property is sat-
isfied as shown in the proof of f-Penalty, but fI(A1 ∪ A2) = N 6= fI(A1) +
fI(A2) = N + 1.

f-MI-Normalization For A = {φ1, φ2}, {φ1} ∈ f − MI(A) but fI({φ1}) = N 6= 1.

f-Equal Conflict |{φ1}| = 1 = |{φ2}| but fI({φ1}) = N 6= fI({φ2}) = 1.

f-Exchange If A ∪ A1 does not have a model then neither does A ∪ A2 and so
fI(A ∪A1) = fI(A ∪A2) = ∞. Otherwise A ∪A1 and A ∪A2 have the same
models and hence fI(A ∪A1) = fI(A ∪A2).

Signature Invariance The definition of fI does not take the signature into con-
sideration.

Quantifier Change The effect of each universal quantifier is a multiplicative N ,
while the effect of each existential quantifier is a multiplicative 1. So, for
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A = {Q1x1 . . . Qnxn(R1(x1, . . . , xn) ∧ ¬(R1(x1, . . . , xn)}, fI(A) = Nk where
the number of universal quantifiers among the {Q1, . . . , Qn} is k. The change
of each universal quantifier to its existential counterpart subtracts 1 from k.
Therefore fI(A′) = Nh where h < k and so fI(A′) < fI(A).

As we see from this theorem, many of the postulates proposed for propositional
inconsistency measures and extended to first-order logic are violated by fI. These
postulates are already controversial for propositional logic, and may just be inap-
propriate in this context. In each of the next four sections we propose an additional
inconsistency measure for first-order logic. We provide the intuition for each and
investigate their satisfaction of the postulates.

8 The Inconsistency Measure fIw

As explained earlier, the measure fI can be thought of as the extension of the
propositional inconsistency measure IC to finitary first-order logic. In this section we
present an inconsistency measure that does not have a counterpart in propositional
logic. The reason is that this measure uses the meaning of quantifiers. Consider
the following 3 theories in the signature 〈1〉: A1 = {∃x1(R1(x1) ∧ ¬R1(x1))}, A2 =
{∃x1R1(x1),∃x1¬R1(x1)}, and A3 = {∀x1R1(x1)}. A1 is f-inconsistent while A2 and
A3 are f-consistent. But there is a subtle difference between A2 and A3 regarding
consistency. There is a structure M2 of size 2 such that f1(d1) = T and f1(d2) = F .
M2 is a consistent model of A2. That is why A2 is consistent. But there is an
inconsistent model of A2 of size 1, M1, where f1(d1) = B. Actually, as shown in the
proof of Proposition 1, it is always possible to obtain an inconsistent model for every
equality consistent theory, such as A2 and A3. To avoid this issue, in this section
we restrict our attention to just the minimal (to be defined in the next paragraph)
inconsistent models. That will provide the difference between A2 and A3: every
minimal model of A3 is consistent but A2 has an inconsistent minimal model.

Let M be an inconsistent model of A. We call M minimal iff no inconsistency
reduction of M is a model of A. For the model M1 of A2 above, there are two
inconsistency reductions: M11 where f1(d1) = T and M12 where f1(d1) = F . Neither
is a model of A2. Hence, M1 is a minimal inconsistent model of A2. But for A3,
every inconsistent model has an inconsistency reduction to a consistent model by
changing each B to T . Hence, no inconsistent model is a minimal model.

Now we define an inconsistency measure based on fI (a weak version of fI) that
differentiates between A2 and A3.
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Definition 8. Let A be a theory. fIw is defined using 3 cases:

1. A is equality inconsistent. Then fIw(A) = ∞.

2. The size of a model of A has an upper bound, s. Then
fIw(A) = max{Inc(S) | S is a minimal model of A and the size of S = s}.

3. A has arbitrarily large models. We use the parameter N for the size of an
arbitrarily large model of A. Then
fIw(A) = max{Inc(S) | S is a minimal model of A and the size of S = N}.

For the case above, fIw(A1) = fI(A1) = 1, fIw(A3) = fI(A3) = 0, but
fIw(A2) = 1 6= fI(A2) = 0. For the four examples in Section 6, fIw gives the
same results as fI. In general, fI(A) ≤ fIw(A) for all theories A.

Next we consider postulate satisfaction for fIw. The following result will be
useful.

Proposition 3. If every model of A′ is a model of A then fIw(A) ≤ fIw(A′).

Proof. Let M ′ be a minimal model of A′ such that fIw(A′) = Inc(M ′). Then M ′ is
a model of A so it is either a minimal model or it has an inconsistency reduction that
is a minimal model. Then, by Proposition 2, the maximum value for every minimal
model M of A, Inc(M), cannot exceed Inc(M ′). Hence fIw(A) ≤ fIw(A′).

As fIw is very close to fI, it turns out that they satisfy the same postulates in
our list.

Proposition 4. fIw satisfies f-Monotony, f-Dominance, f-Exchange, Signature In-
variance, and Quantifier Change and violates f-Independence, Super-Additivity, f-
Penalty, f-MI-Separability, f-MI-Normalization, and f-Equal Conflict.

Proof. The same counterexamples work as for the proof of Theorem 1. For the
proofs of f-Monotony and f-Dominance the proof uses the proposition just proved
above. The other satisfaction proofs are the same as for Theorem 1.

9 The Inconsistency Measure fMI

As explained in Section 2, using minimal inconsistent subsets does not differentiate
between the quantifiers. Still, given that the IMI inconsistency measure is highly
regarded for propositional logic, it is worthwhile to consider its extension to first-
order logic. That is what we do in this section, but in order to use a uniform
formulation for this paper, we use the definitions from Section 5. That is, f −MI(A)
is the set of minimal inconsistent subsets of A that are f-inconsistent.
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Definition 9. Let A be a theory. If A is equality inconsistent then fMI(A) = ∞.
Otherwise fMI(A) = |f − MI(A)|.

The definition for fMI, unlike for fI and fIw, does not have a parameter.
So the value is either a nonnegative integer or infinity. Clearly, fMI satisfies the
requirement for an inconsistency measure from Definition 5.

Next, we write the f-minimal inconsistent subsets of the examples from Section 6
and thereby compute fMI for them.

Example 6. Continuing with Examples 2-5 we first list the set of f-minimal in-
consistent subsets. Actually, we don’t have to do this for A1 because it is equality
inconsistent. Hence fMI(A1) = ∞.
Next, f − MI(A2) = {{∀x1∀x2R1(x1, x2),∀x1∀x2¬R1(x1, x2)},
{∀x1∀x2∀x3(¬R2(x1, x2)∨ ¬R2(x2, x3)∨x1 6= x3),∃x1∀x2(R2(x1, x2)∧R2(x2, x1))},
{∃x1∃x2(R2(x1, x2) ∧ ¬R2(x1, x2))}}
Hence, fMI(A2) = 3.
For A3, f − MI(A3) = f − MI(A2); thus fMI(A3) = 3.
Finally, for A4 every proper subset has a consistent model. We show this here for
two cases.
For the first four formulas, for a domain D = {d1, . . . , dN }, let f1(di, dj) = T for
all 1 ≤ i ≤ j ≤ N , f1(di, dj) = F for all 1 ≤ j < i ≤ N .
For the last four formulas, for a domain D = {d1, . . . , dN }, let f1(di, dj) = T for all
1 ≤ i ≤ j ≤ N , f1(dN , d1) = T , and f1(di, dj) = F otherwise.
Hence f − MI(A4) = {{A4}} and so fMI(A4) = 1.

Next we consider the satisfaction of the postulates for fMI.

Theorem 2. fMI satisfies f-Monotony, f-Independence, Super-Additivity,
f-Penalty, f-MI-Separability, f-MI-Normalization, f-Equal Conflict, and Signature
Invariance, and violates f-Dominance, f-Exchange, and Quantifier Change.

Proof. The properties are checked in order.

f-Monotony Let A ⊆ A′ such that A′ \A does not contain a cardinality sentence..
If A has no models then fMI(A) = fMI(A′) = ∞. Otherwise, every minimal
f-inconsistent subset of A must also be a minimal f-inconsistent subset of A′.
Hence, fMI(A) ≤ fMI(A′).

f-Independence If φ ∈ f − Free(A) then φ 6∈ A′ for any A′ ∈ f − MI(A). Hence, A
and A\{φ} have the same minimal f-inconsistent subsets. Therefore, fMI(A\
{φ}) = fMI(A).
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f-Dominance Let A = {∀x1R(x1),∀x1¬R1(x1)}, φ = ∀x1R1(x1) and
ψ = ∃x1R1(x1). Here, φ implies ψ, A ∪ {φ} = A and
A ∪ {ψ} = {∀x1R1(x1),∀x1¬R1(x1),∃x1R1(x1)}. Then,
fMI(A ∪ {ψ}) = 1 6≥ fMI(A ∪ {ψ}) = 2.

Super-Additivity If A∩A′ = ∅ then f−MI(A) ⊆ f−MI(A∪A′) and f−MI(A′) ⊆
f − MI(A ∪ A′) while f − MI(A) ∩ f − MI(A′) = ∅. Hence, fMI(A ∪ A′) ≥
fMI(A) + fMI(A′).

f-Penalty If φ ∈ f − Problematic(A) then f − MI(A \ {φ}) is a proper subset of
f − MI(A) because all minimal f-inconsistent subsets of A that contain φ are
removed. Hence, fMI(A) > fMI(A \ {φ}).

f-MI-Separability This follows from the partition and the definition of fMI.

f-MI-Normalization This follows from the definition of fMI.

f-Equal Conflict f-MI-Normalization implies f-Equal Conflict.

f-Exchange Let A = ∅, A1 = {∀x1R1(x1),∀x1¬R1(x1)} and
A2 = {∀x1R1(x1),∀x1¬R1(x1),∃x1R1(x1)}. Then A1 is equivalent to A2 but
fMI(A ∪A1) = 1 6= fMI(A ∪A2) = 2.

Signature Invariance The definition of fMI does not take the signature into
consideration.

Quantifier Change For A = {Q1x1 . . . Qnxn(R1(x1, . . . , xn) ∧ ¬(R1(x1, . . . , xn)},
fMI(A) = 1 no matter which quantifiers Qi represent.

10 The Inconsistency Measure fRI

Consider the case where sig = 〈1, 1, 1, 1, 1〉 and the two theories
A1 = {∀x1R1(x1),∀x1R2(x1),∀x1R3(x1),∀x1R4(x1),∀x1R5(x1),∀x1¬R2(x1)} and
A2 = {∃x1(R1(x1) ∧ ¬R1(x1) ∧ R2(x1) ∧ ¬R2(x1) ∧ R3(x1) ∧ ¬R3(x1) ∧ R4(x1) ∧
¬R4(x1) ∧R5(x1) ∧ ¬R5(x1))}.
Comparing the inconsistency of A1 and A2, we get fI(A1) = fIw(A1) = N ,
fIM(A1) = 1. fI(A2) = fIw(A2) = 5, fIM(A2) = 1. Thus fI and fIw con-
sider A1 more inconsistent than A2, while fMI considers them equally inconsistent.
But consider that A2 involves 5 relations in inconsistencies, while A1 has only 1 such
relation. In this section, we define a measure that gives A2 a higher inconsistency
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value than A1 for exactly that reason. This new measure is a sort of a global measure
that does not involve local considerations for the relations.

Section 4 contained the definition of the inconsistency of a structure. Now we
define the relation inconsistency of a structure S = 〈D, f1, . . . , fk, e1, . . . , em〉, writ-
ten RInc(S) as the number of functions, fi, for which there is some ~dj such that
fi(~dj) = B. Thus relation inconsistency counts the number of relations for which S
has at least one inconsistency. Now we can define the inconsistency measure fRI.

Definition 10. Let A be a theory. There are two cases for fRI.

1. If A is equality inconsistent then fRI(A) = ∞.

2. If A has models then fRI(A) = min{RInc(S) | S |= A}.

Example 7. For Examples 2 - 5 fRI(A1) = ∞, fRI(A2) = fRI(A3) = 2, and
fRI(A4) = 1.

Example 8. Let sig = 〈1, 1〉 and
A5 = {∀x1(R1(x1) ∧R2(x1)),∃x1(¬R1(x1) ∧ ¬R2(x1)) ∨ ∀x1¬R1(x1)}.
From the point of view of calculating fI, choose the model S of size N such that
f1(d1) = f2(d1) = B, f1(di) = f2(di) = T , 2 ≤ i ≤ N , so that fI(A5) = 2. But for
calculating fRI, S is not the right model because RInc(S) = 2. Instead, choose S′

such that f ′
1(di) = B, 1 ≤ i ≤ N and f ′

2(di) = T, 1 ≤ i ≤ N , so that RInc(S′) = 1,
and therefore fRI(A5) = 1. Note that S′ has more inconsistencies than S, but its
inconsistencies involve only one relation.

Next, we investigate the satisfaction of the postulates for fRI. It turns out that
the result is almost the same as for fI and many of the proofs are the same or
similar.

Proposition 5. fRI satisfies f-Monotony, f-Dominance, f-Exchange, and Signature
Invariance, and violates f-Independence, Super-Additivity, f-Penalty,
f-MI-Separability, f-MI-Normalization, f-Equal Conflict, and Quantifier Change.

Proof. The proof is based on the proof of Theorem 1, so we indicate only the
differences between them, if any. In particular, we use the same sentences φ1 =
∀x1(R1(x1) ∧ ¬R1(x1)) and φ2 = ∃x1(R1(x1) ∧ ¬R1(x1)).

f-Monotony Same proof.

f-Independence Same example and fRI(A) = 2 6= fRI(A \ {∀x1¬R2(x1)}) = 1.

f-Dominance Same proof.
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Super-Additivity Same example and fRI(A1 ∪A2) = 1 6≥ fRI(A1) + fRI(A2) =
1 + 1.

f-Penalty Same example and fRI(A) = 1 6> fRI(A \ {φ2}) = 1.

f-MI-Separability Same example and fRI(A1 ∪A2) = 1 6= fRI(A1)+fRI(A2) =
1 + 1.

f-MI-Normalization Let φ3 = ∃x1(R1(x1) ∧ ¬R1(x1) ∧ R2(x1) ∧ ¬R2(x1)) and
A = {φ3}. Then {φ3} ∈ f − MI(A) but fRI(A) = 2

f-Equal Conflict |{φ1}| = 1 = |{φ3}| but fRI({φ1}) = 1 6= fRI({φ3}) = 2.

f-Exchange Same proof.

Signature Invariance The definition of fRI does not take the signature into con-
sideration.

Quantifier Change fRI(A′) = 1 6> fRI(A) = 1.

11 The Inconsistency Measure fIr

In the research literature on propositional inconsistency measures, a distinction be-
tween two types is often not clearly stated. Absolute inconsistency measures measure
the total amount of inconsistency in the set. The four inconsistency measures pre-
sented so far are all absolute measures: they use different criteria, but in some way
they measure the totality of the inconsistency. Another way to measure inconsis-
tency is as a proportion, that is, what proportion of the theory is inconsistent. Such
a measure is called a relative inconsistency measure. In the propositional case, such
a measure must have a value between 0 and 1, but in the first-order case, where
some theories do not have even inconsistent models, we also allow the value to be
∞. In general, any absolute inconsistency measure can be relativized; we do it here
for our main measure fI.

Consider an arbitrary signature sig = 〈n1, . . . , nk, 0, . . . , 0〉 and a structure
S = 〈D, f1, . . . , fk, g〉 for it. The most inconsistent such structure has fi(~dj) = B
for all i, j. Hence, for such a structure S, fI(S) = |D|n1 + . . . + |D|nk . When the
theory allows finite models of arbitrarily large size, using the parameter N we obtain
Nn1 + . . .+Nnk .
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Definition 11. Let A be a theory in the signature sig = 〈n1, . . . , nk〉. There are 3
cases.

1. A is equality inconsistent. Then fIr(A) = ∞.

2. The size of a model of A has an upper bound, s. Then fIr(A) = fI(A)
(sn1 +...snk ) .

3. A has arbitrarily large models. We use the parameter N for the size of an
arbitrarily large model of A. Then fIr(A) = fI(A)

(Nn1 +...Nnk ) .

Example 9. Continuing with Examples 2 - 5 as well as Example 8, we obtain:
fIr(A1) = ∞, fIr(A2) = N2+N

2×N2 = N+1
2×N , fIr(A3) = 30

50 = 0.6, fIr(A4) = 1
N2 ,

fIr(A5) = 2
2×N = 1

N .

Next, we investigate the satisfaction of postulates for fIr. It turns out that with
the exception of Signature Invariance, fIr satisfies the same postulates as fI.

Proposition 6. fIr satisfies f-Monotony, f-Dominance, f-Exchange, and Quantifier
Change, and violates f-Independence, Super-Additivity, f-Penalty, f-MI-Separability,
f-MI-Normalization, f-Equal Conflict, and Signature Invariance.

Proof. The proof is based on the proof of Theorem 1, so we indicate only the
differences between them, if any. In particular, we use the same sentences φ1 =
∀x1(R1(x1) ∧ ¬R1(x1)) and φ2 = ∃x1(R1(x1) ∧ ¬R1(x1)).

f-Monotony The case where A has no models is the same. If A has a model, we use
our assumption that A and A′ have the same signature. Thus the denominator
is the same for both and the result follows from fI(A) ≤ fI(A′).

f-Independence Same example and fIr(A) = 2×N
2×N = 1 6= fIr(A \ {∀x1¬R2(x1)})

= N
2×N = 1

2 .

f-Dominance Same proof and the denominators are the same.

Super-Additivity Same example and fIr(A1 ∪A2) = N
N = 1 6≥ fIr(A1) + fIr(A2)

= 1 + 1
N .

f-Penalty Same example and fIr(A) = N
N = 1 6> fIr(A \ {φ2}) = N

N = 1.

f-MI-Separability Same example and fIr(A1 ∪ A2) = N
N = 1 6= fIr(A1) +

fIr(A2) = 1 + 1
N .

f-MI-Normalization Let A = {φ2}. Then {φ2} ∈ f−MI(A) but fIr(A) = 1
N 6= 1.
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f-Equal Conflict |{φ1}| = 1 = |{φ2}| but fIr({φ1}) = N
N = 1 6= fIr({φ2}) = 1

N .

f-Exchange Same proof and the denominators are the same.

Signature Invariance When the signature changes, the denominator changes.

Quantifier Change Same proof and the denominators are the same.

12 Summary
The purpose of this paper was to extend the concept of measuring inconsistency from
propositional logic, where much work has been done, to finitary first-order logic.
For this purpose we defined an alternative semantics for first-order logic. Using this
semantics we defined five inconsistency measures appropriate for first-order logic.
We also investigated various properties of these inconsistency measures, including
properties extended from propositional logic and some new properties appropriate
for first-order logic. This paper gives a general approach to inconsistency measuring
for unrestricted first-order logic formulas.

In Table 1 we indicate postulate satisfaction for the five inconsistency measures
we introduced. The measure fMI satisfies more of them than the others, but it
does not satisfy the very important Quantifier Change postulate. The same objec-
tion arises to most other inconsistency measures obtained from propositional logic
measures. Actually, if our interest is only in counting the number of different rela-
tions that are involved in an inconsistency, then fRI is a good choice, even though
it also does not satisfy Quantifier Change. As far as the other three measures are
concerned, fIW measures a slightly different concept that has no counterpart in
propositional logic. In general we think that fI (resp. fIr) is the most suitable
absolute (resp. relative) inconsistency measure for finitary first-order logic.

In this paper we dealt with the full power of first-order logic. But information
in databases often consists of a restricted class of first-order logic formulas. Thus,
for specific applications, it will be appropriate to define inconsistency measures de-
signed for such classes.

Acknowledgement I wish to thank the referees for many very useful comments.
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FFOL Inconsistency Measures
fI fIW fMI fRI fIr

f-Monotony ✓ ✓ ✓ ✓ ✓

f-Independence ✗ ✗ ✓ ✗ ✗

f-Dominance ✓ ✓ ✗ ✓ ✓

Super-Additivity ✗ ✗ ✓ ✗ ✗

f-Penalty ✗ ✗ ✓ ✗ ✗

f-MI-Separability ✗ ✗ ✓ ✗ ✗

f-MI-Normalization ✗ ✗ ✓ ✗ ✗

f-Equal Conflict ✗ ✗ ✓ ✗ ✗

f-Exchange ✓ ✓ ✗ ✓ ✓

Signature Invariance ✓ ✓ ✓ ✓ ✗

Quantifier Change ✓ ✓ ✗ ✗ ✓

Table 1: Postulate satisfaction of FFOL inconsistency measures
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Abstract. This is an overview of the basic techniques and applications of
Boolean valued analysis. Exposition focuses on the Boolean valued transfer
principle for vector lattices and positive operators, Banach spaces and injective
Banach lattices, AW ∗-modules and AW ∗-algebras, etc.
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1 Boolean Valued Requisites
In the beginning of the 1960s Cohen propounded his method of forcing and proved
that the negation of the continuum hypothesis is consistent with the axioms of
Zermelo–Fraenkel set theory (cp. [16]). The contemplation over the Cohen method
gave rise to the Boolean valued models of set theory, which were first introduced
by Scott and Solovay (see [115] and [129]). A systematic account of the theory of
Boolean valued models and its applications to independence proofs can be found in
[11], [40], [119], and [128].

Scott foresaw the role of Boolean valued models in mathematics and wrote as
far back as in 1969 (see [116, p. 91]): “We must ask whether there is any interest in
these nonstandard models aside from the independence proof; that is do they have
any mathematical interest? The answer must be yes, but we cannot yet give a really
good arguments.” Some impressive arguments are available today (see, for example,
[67], [68], [69], and [122]).
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The term “Boolean valued analysis” appeared within the realm of mathematical
logic. It was Takeuti, a renowned expert in proof theory, who introduced the term.
Takeuti defined Boolean valued analysis in [122, p. 1] as “an application of Scott–
Solovay’s Boolean valued models of set theory to analysis.” More precisely, Boolean
valued analysis signifies the technique of studying the properties of an arbitrary
mathematical object by comparison between its representations in two different set-
theoretic models whose construction utilizes principally distinct Boolean algebras.
As these models, the classical Cantorian paradise in the shape of the von Neumann
universe V and a specially-trimmed Boolean valued universe V(B) are usually taken.
Comparison analysis is carried out by some interplay between the universes V and
V(B).

The needed information on the theory of Boolean valued analysis is briefly pre-
sented in [56, Chapter 9] and [69, Chapter 1]; details may be found in [67] and [68].
A short survey of the Boolean machinery is also in [78]. See more on the Boolean
valued models and the independence proofs in [11], [40], and [128].

Throughout the sequel B is a complete Boolean algebra with unity 1 and zero 0.
A partition of unity in B is a family (bξ)ξ∈Ξ ⊂ B such that ∨ξ∈Ξ bξ = 1 and bξ∧bη = 0
whenever ξ 6= η. We let := denote the assignment by definition, while R and C
symbolize the reals and the complexes. Recall also that ZFC is an abbreviation for
Zermelo–Fraenkel axiomatic set theory with the axiom of choice.

1.1. Boolean valued universe and Boolean valued truth [69, § 1.2]. Given
a complete Boolean algebra B, we can define the Boolean valued universe V(B), the
class of B-valued sets. For making statements about V(B) take an arbitrary formula
ϕ = ϕ(u1, . . . , un) of the language of set theory and replace the variables u1, . . . , un
by elements x1, . . . , xn ∈ V(B). Then we obtain some statement about the ob-
jects x1, . . . , xn. There is a natural way of assigning to each formula some element
[[ϕ(x1, . . . , xn)]] ∈ B that serves as the “Boolean truth-value” of ϕ(u1, . . . , un) in V(B)

and is defined by induction on the complexity of ϕ, using the naturally defined truth-
values [[x ∈ y]] ∈ B and [[x = y]] ∈ B, where x, y ∈ V(B). We say that ϕ(x1, . . . , xn) is
valid within V(B) provided that [[ϕ(x1, . . . , xn)]] = 1. In this event, we will also write
V(B) � ϕ(x1, . . . , xn).

1.2. Ascending–descending machinery [69, § 1.5, § 1.6, and § 2.2]. No com-
parison is feasible without some dialog between V and V(B). The relevant technique
of ascending and descending bases on the operations of the canonical embedding,
descent, and ascent.

(1) The canonical embedding. There is a canonical embedding of the von
Neumann universe V into the Boolean valued universe V(B) which sends x ∈ V
to its standard name x∧ ∈ V(B). The standard name sends V onto V(2), where
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2 := {0, 1} ⊂ B.
(2) Descent. Given a member x of a Boolean valued universe V(B), define the

descent x↓ of x by x↓ := {y ∈ V(B) : [[y ∈ x]] = 1}. The class x↓ is a set; i.e., x↓ ∈ V
for every x ∈ V(B).

(3) Ascent. Assume that x ∈ V and x ⊂ V(B). Then there exists a unique
x↑ ∈ V(B) such that [[u ∈ x↑]] = ∨{[[u = y]] : y ∈ x} for all u ∈ V(B). The member x↑
is the ascent of x.

The operations of descent, ascent, and canonical embedding can be naturally
extended to mappings and relations, so that they are applicable to algebraic struc-
tures. The various functors of Boolean valued analysis thus arise whose interplay is
of import in applications; see [67, Chapter 3] and [68, Chapter 5].

1.3. Principles of Boolean valued set theory [69, § 1.4]. The main properties
of a Boolean valued universe V(B) are collected in the four propositions:

(1) Transfer Principle. If ϕ(x1, . . . , xn) is a theorem of ZFC then so is the
following formula:

(∀x1, . . . , xn ∈ V(B))V(B) |= ϕ(x1, . . . , xn).
(2) Maximum Principle. To each formula ϕ of ZFC there is a member x0

of V(B) satisfying [[(∃x)ϕ(x)]] = [[ϕ(x0)]]. In particular, if V(B) |= (∃x)ϕ(x), then
there exists x0 ∈ V(B) such that V(B) |= ϕ(x0).

(3) Mixing Principle. For every family (xξ)ξ∈Ξ in V(B) and every partition
of unity (bξ)ξ∈Ξ in B there exists a unique x ∈ V(B) satisfying bξ ≤ [[x = xξ]] for
all ξ ∈ Ξ. This unique x is the mixing of (xξ) by (bξ) and is denoted as follows:
x = mixξ∈Ξ(bξxξ) = mix{bξxξ : ξ ∈ Ξ}.

A formula is bounded or restricted provided that each of its quantifiers occurs in
the form (∀x ∈ y) or (∃x ∈ y) or if it can be proved to be equivalent in ZFC to
such a formula.

(4) Restricted Transfer Principle. Given a restricted formula ϕ of ZFC
and x1, . . . , xn ∈ V, we have in ZFC that

ϕ(x1, . . . , xn)⇐⇒ V(B) |= ϕ(x∧1 , . . . , x∧n).

The transfer principle tells us that all theorems of ZFC are true in V(B); the
maximum principle guarantees the existence of various “Boolean valued objects”;
the mixing principle shows how these objects may be constructed. The transfer
principle does not mean that if a theorem is true for an algebraic structure A within
V(B), then the theorem is true also for its descent A↓ in V. The question of when
this happens was first studied by Gordon [25] and Jech [38].

1.4. Boolean valued technology. To prove the relative consistency of some
set-theoretic propositions we use a Boolean valued universe V(B) as follows: Let
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T and S be some enrichments of Zermelo–Fraenkel theory ZF (without choice).
Assume that the consistency of ZF implies the consistency of S . Assume further
that we can define B so that S |= “B is a complete Boolean algebra” and S |=
[[ϕ]] = 1 for every axiom ϕ of T . Then the consistency of ZF implies the consistency
of T . That is how we use V(B) in foundational studies.

Other possibilities for applying V(B) base on the fact that irrespective of the
choice of a Boolean algebra B, the universe is an arena for testing an arbitrary
mathematical event. By the principles of transfer and maximum, every V(B) has
the objects that play the roles of numbers, groups, Banach spaces, manifolds, and
whatever constructs of mathematics that are already introduced into practice or still
remain undiscovered. These objects may be viewed as some nonstandard realizations
of the relevant originals.

All ZFC theorems acquire interpretations for the members of V(B), attaining
the top truth-value. We thus obtain a new technology of comparison between the
interpretations of mathematical facts in the universes over various complete Boolean
algebras. Developing the relevant tools is the crux of Boolean valued analysis.

A general scheme of the method is as follows (see [68] and [69]). Assume that
X ⊂ V and X ⊂ V(B) are two classes of mathematical objects and we are able to
prove the possibility of

Boolean Valued Representation: Each X ∈ X embeds into a Boolean valued
model, becoming an object X ∈ X within V(B).

The Boolean Valued Transfer Principle tells us that every theorem about X
within Zermelo–Fraenkel set theory has its counterpart for the original object X
interpreted as a Boolean valued object X .

The Boolean Valued Machinery enables us to perform some translation of theo-
rems from X ∈ V(B) to X ∈ V by using the appropriate general operations and the
principles of Boolean valued analysis.

2 Vector Lattices
The reader can find the relevant information on the theory of vector lattices and
order bounded operators in Aliprantis and Burkinshaw [4], Kusraev [56], Luxemburg
and Zaanen [86], Meyer–Nieberg [89], Schaefer [114], Vulikh [130], and Zaanen [132].

Definition 1. A vector lattice or a Riesz space is a real vector space X equipped
with a partial order ≤ for which the join x ∨ y and the meet x ∧ y exist for all
x, y ∈ X, and such that the positive cone X+ := {x ∈ X : 0 ≤ x} is closed under
addition and multiplication by positive reals and for any x, y ∈ X the relations
x ≤ y and 0 ≤ y − x are equivalent. A Banach lattice is a vector lattice that is
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also a Banach space whose order is connected with the norm by the condition that
|x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x, y ∈ X.

In the sequel, we assume that all vector lattices X are Archimedean; i.e., for
every pair x, y ∈ X it follows from (∀n ∈ N) nx ≤ y that x ≤ 0. Most of the vector
spaces that appear naturally in analysis (Lp, lp, C(K), c, c0, etc.) are Archimedean
vector lattices with respect to the pointwise or coordinatewise order.

Definition 2. Two elements x, y ∈ X are disjoint and write x ⊥ y if |x| ∧ |y| = 0
where the modulus |x| of x is defined as |x| := x∨ (−x). A vector 0 < 1 ∈ X said to
be a weak order unit whenever 1⊥ = {0}. A band in a vector lattice X is a subset
of the form B := A⊥ := {x ∈ X : (∀ a ∈ A) |x| ∧ |a| = 0} for a nonempty A ⊂ X.
The inclusion ordered set of all bands in X is a complete Boolean algebra denoted
by B(X).

Definition 3. A band B in X such that X = B ⊕B⊥ is referred to as a projection
band, while the associated projection (onto B parallel to B⊥) is a band projection.
The set of all band projections P(X) in X also forms a Boolean algebra in which
π ≤ ρ means π(X) ⊂ ρ(X). If each band in X admits a band projection then
B(X) ' P(X).

Definition 4. A subset U ⊂ X is order bounded if U lies in an order interval [a, b] :=
{x ∈ X : a ≤ x ≤ b} for some a, b ∈ X. A vector lattice X is Dedekind complete
(respectively, laterally complete) if every nonempty order bounded set (respectively,
each nonempty set of pairwise disjoint positive vectors) U in X has a least upper
bound sup(U) ∈ X. The vector lattice that is laterally complete and Dedekind
complete simultaneously is referred to as universally complete.

Definition 5. Say that a net (xα) in a vector lattice X o-converges to x ∈ X
and write x = o-lim xα if there exists a decreasing net (eβ)β∈B in X such that
inf{eβ : β ∈ B} = 0 and for each β ∈ B there is α(β) ∈ A with |xα − x| ≤ eβ for all
α ≥ α(β).

Example 6. Assume that a measure space (Ω,Σ, µ) is semifinite; i.e., if A ∈ Σ and
µ(A) = ∞ then there exists B ∈ Σ with B ⊂ A and 0 < µ(A) < ∞. The vector
lattice L0(µ) := L0(Ω,Σ, µ) (of cosets) of µ-measurable functions on Ω is universally
complete if and only if (Ω,Σ, µ) is localizable. In this event Lp(Ω,Σ, µ) is Dedekind
complete; see [21, 241G]. Observe that P(L0(Ω,Σ, µ)) ' Σ/µ−1(0).

Example 7. Given a complete Boolean algebra B of orthogonal projections in
a Hilbert space H, denote by 〈B〉 the space of all selfadjoint operators on H whose
spectral resolutions are in B; i.e., A ∈ 〈B〉 if and only if A =

∫
R λ dEλ and Eλ ∈ B

431



Kusraev and Kutateladze

for all λ ∈ R. Define the partial order in 〈B〉 by putting A ≥ B whenever 〈Ax, x〉 ≥
〈Bx, x〉 holds for all x ∈ D(A) ∩ D(B), where D(A) ⊂ H stands for the domain of
A. Then 〈B〉 is a universally complete vector lattice and P(〈B〉) ' B.

Applying the transfer principle and the maximum principle to the theorem of
ZFC stating the existence of the field of real numbers, we find R ∈ V(B), the reals
within V(B) for which [[R is the reals]] = 1. The fundamental result of Boolean
valued analysis is the Gordon Theorem describing an interplay between R, R∧, R,
and R = R↓; see [69, § 2.2–§ 2.4].

Theorem 8. (Gordon Theorem). Let B be a complete Boolean algebra, and let R
be the reals within V(B). Endow R with the descended operations and order. Then

(1) The algebraic structure R is a universally complete vector lattice.
(2) The field R ∈ V(B) can be chosen so that [[ R∧ is a dense subfield of R ]] = 1.
(3) There is a Boolean isomorphism χ from B onto P(R) such that

χ(b)x = χ(b)y ⇐⇒ b ≤ [[ x = y ]],
χ(b)x ≤ χ(b)y ⇐⇒ b ≤ [[ x ≤ y ]]

(x, y ∈ R; b ∈ B).

As regards the further development of the theory of vector lattices on using
Theorem 8; see Kusraev and Kutateladze [69, § 2.2–§ 2.11]. Note that the versions of
the Gordon Theorem which involve the multiplicative structure and complexification
are true as well.

Definition 9. An f -algebra is a vector lattice X equipped with a distributive
multiplication such that if x, y ∈ X+ then xy ∈ X+, and if x ∧ y = 0 then
(ax) ∧ y = (xa) ∧ y = 0 for all a ∈ X+. An f -algebra is semiprime provided
that xy = 0 implies x ⊥ y for all x and y. A complex vector lattice XC is the
complexification XC := X ⊕ iX (with i standing for the imaginary unity) of a real
vector lattice X.

In the complex version of Example 7, 〈B〉 consists of all normal operators A+ iB
with A,B ∈ 〈B〉 and the product AB is defined as the unique selfadjoint extension
of the operator x 7→ A(Bx) = B(Ax) (x ∈ D(A) ∩D(B)).

Theorem 10. (1) The universally complete vector lattice R↓ with the descended
multiplication is a semiprime f -algebra with the ring unity 1 := 1∧. Moreover, for
every b ∈ B the band projection χ(b) ∈ P(R) acts as multiplication by χ(b)1.

(2) Let C be the field of complex numbers within V(B). Then the algebraic sys-
tem C ↓ is a universally complete complex f -algebra. Moreover, C ↓ is the complex-
ification of the universally complete real f -algebra R↓; i.e., C ↓ = R↓ ⊕ iR↓.
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Remark 11. If µ is a Maharam measure and B in the Gordon Theorem is the algebra
of all µ-measurable sets modulo µ-negligible sets, then R↓ is lattice isomorphic
to L0(µ); see Example 6. If B is a complete Boolean algebra of projections in
a Hilbert space H then R↓ is isomorphic to 〈B〉; see Example 7. The two indicated
particular cases of Gordon’s Theorem were intensively and fruitfully exploited by
Takeuti [122]–[125]. The object R↓ for general Boolean algebras was also studied by
Jech [37], [38], and [39] who in fact rediscovered Gordon’s Theorem. The difference
is that in [37] a (complex) universally complete vector lattice with unit is defined by
another system of axioms and is referred to as a complete Stone algebra. Selecting
special B’s, it is possible to obtain some properties of R. For instance, Solovay
proved the existence of B such that all subsets of the reals are Lebesgue measurable
in V(B); see [118].

Remark 12. Interpretation of an arbitrary field in a Boolean valued model leads to
the class of rationally complete semiprime commutative rings (see Lambek [82] for
the definitions). Gordon proved in [26] that if K is a rationally complete semiprime
commutative ring and B stands for the Boolean algebra of all annihilator ideals of
K, then there is an internal field K ∈ V(B), the Boolean valued representation of
K, such that the ring K is isomorphic to K ↓. It follows that the Horn theories
of fields and rationally complete semiprime commutative rings coincide. Details
may be found in [67, Theorems 4.5.6 and 4.5.7] and [68, Theorems 8.3.1 and 8.3.2].
Note also that Smith in [120] established an equivalence between the category of
commutative regular rings and the category of Boolean valued fields. Boolean valued
rings, integral domains, and fields were examine also by Nishimura [97] and [103].
Here we also point out the article by Nishimura [90] on the Boolean-valued analysis
of continuous geometries and the article by Chupin [15] with a solution to Problem
18 in the book by Goodearl [22, p. 346].

Remark 13. In another article [27], Gordon found the following description of the
class of modules arising as descents of vector spaces from Boolean valued models:
Assume that K and K are the same as in Remark 12. For every strongly unital
injective K-module M there exists M ∈ V(B), the Boolean valued representation of
the moduleM , such thatM is isomorphic to M ↓; also see [67, 4.5.10 (5)]. Now, if M
and M ′ are Boolean valued representations of M and M ′, respectively, then by the
transfer principle, M and M ′ are isomorphic if and only if they have Hamel bases
of the same cardinality. Using the descent functor and the description of Boolean
valued cardinals enables us to obtain a classification of strongly unitary injective
modules. The result was obtained recently by Chilin and Karimov [14] with the
superfluous assumption K = L0(µ) (but without any instance of Boolean valued
analysis).
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3 Positive Operators
The aim of this section is to establish some variants of the Boolean valued transfer
principle from functionals to operators between vector lattices.

Let X and Y be vector lattices. By L(X,Y ) we denote the space of all linear
operators from X to Y . Take T ∈ L(X,Y ). Call T positive and write T ≥ 0 provided
that T (X+) ⊂ Y+. Call T order bounded or o-bounded whenever T sends each order
bounded subset of X to an order bounded subset of Y .

The set of all order bounded operators from X to Y is denoted by L∼(X,Y ).
The order relation in L∼(X,Y ) is defined as follows: S ≥ T ⇐⇒ S − T ≥ 0.

The celebrated Riesz–Kantorovich Theorem tells us that if X and Y are vector
lattices with Y Dedekind complete, then L∼(X,Y ) is a Dedekind complete vector
lattice. Moreover, in this event every order bounded operator T is regular ; i.e., T
can be presented as a difference of two positive operators.

The fact that X is a vector lattice over the ordered field R may be rewritten as
a restricted formula, say, ϕ(X,R). Hence, recalling the restricted transfer principle,
we come to the identity [[ϕ(X∧,R∧) ]] = 1 which amounts to saying that X∧ is
a vector lattice over the ordered field R∧ within V(B). Similarly, the positive cone
X+ is defined by a restricted formula; hence V(B) |= (X∧)+ = (X+)∧. By the same
reason |x∧| = |x|∧, (x ∨ y)∧ = x∧ ∨ y∧, (x ∧ y)∧ = x∧ ∧ y∧ for all x, y ∈ X, since the
lattice operations ∨, ∧, and | · | in X are defined by restricted formulas.

Let X∧∼ := L∼R∧(X∧,R) be the space of regular R∧-linear functionals from X∧

to R. More precisely, R is considered as a vector space over the field R∧ and by
the maximum principle there exists X∧∼ ∈ V(B) such that [[X∧∼, the set of R∧-linear
order bounded functionals from X∧ to R, is a vector space over R ordered by
the cone of positive functionals ]] = 1. A functional τ ∈ X∧∼ is positive whenever
[[τ ≥ 0]] = 1.

Definition 14. Let X ∈ V and Y ∈ V(B) be such that X 6= ∅ and [[Y 6= ∅]] = 1.
Given an operator T : X → Y ↓, there exists a unique T↑ ∈ V(B) (called the modified
ascent of T ) such that [[T↑ : X∧ → Y ]] = 1 and [[T↑(x∧) = T (x)]] = 1 for all x ∈ X.
Given a member τ ∈ V(B) with [[τ : X∧ → Y ]] = 1, there exists a unique τ↓ : X → Y ↓
(called the modified descent of τ) with [[τ(x∧) = τ↓(x)]] = 1 for all x ∈ X.

Definition 15. A linear operator T from X to Y is a lattice homomorphism when-
ever T (x1∨x2) = Tx1∨Tx2 for all x1, x2 ∈ X. Say that T is disjointness preserving
if |x| ∧ |y| = 0 implies |T (x)| ∧ |T (y)| = 0 for all x, y ∈ X. Two vector lattices X and
Y are said to be lattice isomorphic if there is a lattice isomorphism from X onto Y .
Let Hom(X,Y ) and L∼dp(X,Y ) stand for the sets of all lattice homomorphisms and
all disjointness preserving operators from X to Y , respectively.
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Theorem 16. Let X and Y be vector lattices with Y universally complete and rep-
resented as Y = R↓. Given T ∈ L∼(X,Y ), the modified ascent T↑ is an order
bounded R∧-linear functional on X∧ within V(B); i.e., [[T↑ ∈ X∧∼ ]] = 1. The map-
ping T 7→ T↑ is a lattice isomorphism between the Dedekind complete vector lattices
L∼(X,Y ) and X∧∼↓.

As an example of the application of Theorem 16, we will describe some property
of an order bounded operator T ∈ L∼(X,Y ) in terms of the kernels ker(bT ) =
{x ∈ X : b ◦ Tx = 0} of its stratum bT with b ∈ P(Y ). To this end, assume
Y = R↓, put τ := T↑, and observe that T ∈ Hom(X,Y ) if and only if [[ τ ∈
Hom(X∧,R) ]] = 1 and T ∈ L∼dp(X,Y ) if and only if [[ τ ∈ (X∧∼)dp ]] = 1. Moreover,
X0 is an order ideal (or sublattice, or Grothendieck subspace) in X if and only if
[[ so is X∧0 in X∧ ]] = 1. Recall that a subspace X0 ⊂ X is a Grothendieck subspace
provided that x ∨ y ∨ 0 + x ∧ y ∧ 0 ∈ X0 for all x, y ∈ X0. Combining the above,
we can reduce the problem about the operator T to studying the functional τ . The
following result is due to Kutateladze [76] and [77]; also see [69, § 3.4–§ 3.6].

Theorem 17. Let X and Y be vector lattices with Y Dedekind complete, B := P(Y ),
and let T : X → Y be an order bounded operator. The following assertions hold:

(1) T is disjointness preserving if and only if the kernel of each stratum bT of T
with b ∈ P(Y ) is an order ideal in X.

(2) An operator T is the difference of two lattice homomorphisms if and only if
the kernel of each stratum bT of T with b ∈ B is a vector sublattice of X.

(3) The modulus |T | of T is the sum of some pair of lattice homomorphisms if
and only if the kernel of each stratum bT of T with b ∈ B is a Grothendieck subspace
of X.

The modified ascent mapping T 7→ T↑ has the disadvantage that it does not pre-
serve order continuity. Now consider an embedding into V(B) preserving o-continuity.

Definition 18. An operator T : X → Y between vector lattices is order continuous
provided that o-limTxα = 0 in Y for every net (xα) with o-lim xα = 0 in X. A
positive operator T : X → Y enjoys the Maharam property (or is order interval
preserving) whenever T [0, x] = [0, Tx] for every 0 ≤ x ∈ X; i.e., if for all 0 ≤ x ∈ X
and 0 ≤ y ≤ Tx there is some 0 ≤ u ∈ X such that Tu = y and 0 ≤ u ≤ x.
A Maharam operator is an order continuous linear operator whose modulus has the
Maharam property.

Definition 19. A positive operator T : X → Y has the Levi property if Y =
T (X)⊥⊥ and supxα exists inX for every increasing net (xα) ⊂ X+, provided that the
net (Txα) is order bounded in Y . Given an order bounded order continuous operator
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T from X to Y , denote by Dm(T ) the largest ideal of the universal completion Xu

onto which we may extend T by order continuity. For a positive order continuous
operator T we have X = Dm(T ) if and only if T has the Levi property.

The following result states that each Maharam operator is representable as an
order continuous linear functional in an appropriate Boolean valued model. This
Boolean valued status of the concept of Maharam operator was found by Kusraev
[50] and [51].

Theorem 20. Let X be a Dedekind complete vector lattice, Y := R↓, and let T :
X → Y be a positive Maharam operator with Y = T (X)⊥⊥. Then there are X and
τ ∈ V(B) such that

(1) [[ X is a Dedekind complete vector lattice and τ : X → R is an order
continuous strictly positive functional with the Levi property ]] = 1.

(2) X ↓ is a Dedekind complete vector lattice and a unital f -module over the
f -algebra R↓.

(3) τ↓ : X ↓ → R↓ is a strictly positive Maharam operator with the Levi property
and an R↓-module homomorphism.

(4) There exists an order continuous lattice homomorphism ϕ : X → X ↓ such
that ϕ(X) is order dense ideal of X ↓ and T = τ↓ ◦ ϕ.
Remark 21. The Maharam operators stem from the theory of Maharam’s “full-
valued” integrals which was developed in 1949–1953 (see the survey [87]). Luxem-
burg in the joint articles with de Pagter [84] and Schep [85] extended some portion
of Maharam’s theory to the case of positive operators in Dedekind complete vector
lattices; in particular, some operator versions of the Hahn Decomposition Theo-
rem and the Radon–Nikodým Theorem were obtained in [85]. The Maharam ideas
were transferred to the convex operators by Kusraev [48] and [49]. More results,
applications, and references on Maharam operators can be found in [56], [66], and
[69].
Remark 22. Suppose that X is a vector lattice over a dense subfield F ⊂ R and
ϕ : X → R is a strictly positive F-linear functional. Then the completion Xϕ of the
normed lattice (X, ‖ · ‖ϕ) with ‖x‖ϕ := ϕ(|x|) is an AL-space that includes X. This
simple constriction interpreted within a Boolean valued model yields an extension of
an arbitrary positive operator to a Maharam operator, i.e. the Maharam extension.
This was done by Akilov, Kolesnikov, and Kusraev in [5] and [6]. Later, Luxemburg
and de Pagter [84] constructed the Maharam extension for a given ideal of operators
in L∼(X,Y ) without using Boolean valued analysis.
Remark 23. In 1935 Kantorovich in his first definitive article on vector lattices (see
[41]) wrote: “In this note, I define the new type of space that I call a semiordered
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linear space. The introduction of such a space allows us to study linear operations
of one abstract class (those with values in such a space) as linear functionals.” Here
Kantorovich stated an important heuristic transfer principle; Theorems 16 and 20
present two instances of the mathematical implementation of this principle.

4 Boolean Valued Banach Spaces
In this section we discuss Banach spaces within a Boolean valued universe. We
start with the concept of Banach–Kantorovich space (not to be confused with that
of Kantorovich–Banach space or, shortly, KB-space which is by definition a Banach
lattice with an order continuous Levi norm; see [2, p. 89] and [89, Definition 2.4.11].)

Definition 24. Consider a vector space X and a real vector lattice Λ. A Λ-valued
norm is a mapping· : X → Λ+ such thatx= 0 implies x = 0,λx= |λ|x,
andx+ y

≤x+yfor all x, y ∈ X and λ ∈ R. A Λ-valued norm is decomposable
if, for each decompositionx= λ1 + λ2 with λ1, λ2 ∈ Λ+ and x ∈ X, there exist
x1, x2 ∈ X such that x = x1 + x2 andxk

= λk (k := 1, 2).

Definition 25. A Banach–Kantorovich space over a Dedekind complete vector lat-
tice Λ is a vector space X with a decomposable norm·: X → Λ which is norm
complete in the sense that, given a net (xα)α∈A in X with (

xα − xβ
)(α,β)∈A×A

o-convergent to the zero of Λ, there exists x ∈ X such that (xα − x
)α∈A is o-

convergent to the zero of Λ.

Definition 26. A Banach–Kantorovich space over Λ is universally complete in case
Λ is universally complete. By a universal completion of a Λ-normed space (X,·)
we mean a universally complete Banach–Kantorovich space Y over Λu together with
a linear isometry ı : X → Y (i.e.,

ι(x)
=xfor all x ∈ X) such that each universally

complete subspace of Y containing ı(X) coincides with Y .

Definition 27. A linear operator T : X → Y between Banach–Kantorovich spaces
over Λ is Λ-bounded ifTx≤ λ

x(x ∈ X) for some λ ∈ Λ+; the least such λ is
denoted byT. Define LΛ(X,Y ) as the space of Λ-bounded operators from X to Y .

The following two theorems stating that the category of Banach–Kantorovich
spaces over Λ = R↓ and Λ-bounded linear operators is equivalent to the category of
Banach spaces and bounded linear operators within V(B) were established by Kusraev
[51] (see [52], [56], and [67] for full details).

Theorem 28. Let (X , ‖ · ‖) be a Banach space within the model V(B). If X := X ↓
and·:= ‖ · ‖↓, then (X,·) is a universally complete Banach–Kantorovich space
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over R↓; moreover, the relations b ≤ [[ x = 0 ]] and χ(b)x = 0 are equivalent for
all b ∈ B and x ∈ X. Conversely, for every lattice-normed space (X,·) with
B ' P (X⊥⊥), there exists a unique (up to a linear isometry) Banach space X
within V(B), for which the descent X ↓ is a universal completion of X.

Theorem 29. Let X and Y be Boolean valued representations of Banach-
Kantorovich spaces X and Y over some universally complete vector lattice Λ. Let
L B(X ,Y ) be the space of bounded linear operators from X into Y within V(B),
where B := P(E). The descent and ascent operations implement linear isometries
between the Banach–Kantorovich spaces LΛ(X,Y ) and L B(X ,Y )↓.

Let Λ := R⇓ be the bounded part of the vector lattice R↓; i.e., Λ consists of all
x ∈ R↓ with |x| ≤ C1 for some C ∈ R, where 1 := 1∧ ∈ R↓. Take a Banach space
X within V(B) and put X ⇓ := {x ∈ X ↓ : x ∈ Λ}. Endow X ⇓ with a mixed
norm

|||x||| :=
∥∥x

∥∥
∞ := inf{0 < C ∈ R : x ≤ C1}.

We will write Λ = Λ(B) if R ∈ V(B) and Λ̄ := C⇓ = Λ⊕ iΛ; i.e., Λ̄ is the complexifi-
cation of Λ.

Definition 30. The normed space (X ⇓, |||·|||) is the bounded descent of X . If
τ : X → Y is a bounded linear operator then τ⇓ denotes the restriction of τ↓ to
X ⇓.

The bounded descent of an internal Banach space is a Banach space. Thus, the
natural question arises: Which Banach spaces are linearly isometric to the bounded
descents of internal Banach spaces? The answer is given in terms of B-cyclic Banach
spaces. Let B be a complete Boolean algebra of norm one projections in a Banach
space X with the Boolean operations: π ∧ ρ := π ◦ ρ = ρ ◦ π, π ∨ ρ = π + ρ− π ◦ ρ,
π∗ = IX − π (π, ρ ∈ B), and the zero and identity operators in X serve as the zero
and unity of the Boolean algebra B.

Definition 31. If (bξ)ξ∈Ξ is a partition of unity in B and (xξ)ξ∈Ξ is a family in
X, then the element x ∈ X with bξxξ = bξx for all ξ ∈ Ξ is a mixing of (xξ) with
respect to (bξ). A Banach space X is B-cyclic if B is a complete Boolean algebra
isomorphic to B and the mixing of every family in the unit ball of X with respect
to every partition of unity in B (with the same index set) exists in the unit ball and
is unique; see [56, Definitions 7.3.1 and 7.3.3]. In the sequel we will identify B and
B.

Let X and Y be Banach spaces with B ⊂ L (X) and B ⊂ L (Y ). An operator
T : X → Y is B-linear, whenever T is linear and commutes with all projections in
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B, i.e. in the case that b ◦ T = T ◦ b. The set of all bounded B-linear operators
from X into Y denote by LB(X,Y ). The terms B-isomorphism and B-isometry are
self-evident. The space X# := LB(X,Λ), where Λ = Λ(B), is B-dual to X.

The following result can be easily deduced from Theorem 28 and the fact that
a Banach lattice (X, ‖ · ‖) is B-cyclic with respect to a complete Boolean algebra B
of projections if and only if X is a Banach–Kantorovich space with a Λ(B)-valued
norm·such that ‖x‖ = ‖x‖∞ for all x ∈ X; see Kusraev [53].

Theorem 32. The bounded descent of a Banach space from the model V(B) is a
B-cyclic Banach space. Conversely, if X is a B-cyclic Banach space, then in the
model V(B) there is a Banach space X unique up to an isometric isomorphism whose
bounded descent X ⇓ is B-isometric to X.

The element X ∈ V(B) from Theorem 32 is the Boolean valued representation
of X. Let X and Y be the Boolean valued representations of B-cyclic Banach
spaces X and Y , respectively. Denote by L (X ,Y ) an element in V(B) representing
the space of bounded linear operators from X into Y . As in Theorem 29, the
bounded descent of the Banach space L (X ,Y ) and the B-cyclic Banach space
LB(X,Y ) are isometrically B-isomorphic. Moreover, the functor of bounded descent
establishes an equivalence of the category of Banach spaces and bounded linear
operators within V(B) with the category of B-cyclic Banach spaces and norm bounded
B-linear operators.

Definition 33. Let Λ̄ = Λ̄(B) with unity 1 and consider a unital Λ̄-module X. The
mapping 〈· | ·〉 : X × X → Λ̄ is a Λ̄-valued inner product if, for all x, y, z ∈ X and
λ ∈ Λ̄, the following are satisfied:

(1) 〈x |x〉 ≥ 0; 〈x |x〉 = 0⇐⇒ x = 0;
(2) 〈x | y〉 = 〈y |x〉∗;
(3) 〈λx | y〉 = λ〈x | y〉;
(4) 〈x+ y | z〉 = 〈x | z〉+ 〈y | z〉.

Using a Λ̄-valued inner product, we introduce the norm by |||x||| :=
√
‖〈x|x〉‖

(x ∈ X) and the decomposable Λ-valued norm byx:=
√
〈x|x〉 (x ∈ X). Obviously,

|||x||| =
∥∥x

∥∥
∞ for all x ∈ X, and so X is a space with mixed norm.

Definition 34. Let X be a Λ̄-module with an inner product 〈· | ·〉 : X ×X → Λ̄. If
X is complete with respect to the mixed norm |||·||| then X is a C∗-module over Λ̄.
A unitary C∗-module X over Λ̄(B) is a Kaplansky–Hilbert module or AW ∗-module
if X enjoys one (hence, both) of the equivalent conditions: (1) (X, |||·|||) is a B-cyclic
Banach space and (2) (X, · ) is a Banach–Kantorovich space over Λ̄(B).
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The equivalence (1) ⇐⇒ (2) in Definition 34 follows from Theorem 32 and it is
clear that some counterparts of Theorems 28 and 29 are true for Kaplansky–Hilbert
modules. This result was obtained by Ozawa in [104] and [106].
Theorem 35. The bounded descent functor establishes an equivalence of the cate-
gory of Hilbert spaces and bounded linear operators within V(B) with the category of
Kaplansky–Hilbert modules over Λ̄(B) and bounded B-linear operators.
Remark 36. The concept of vector space normed by the elements of a vector lattice
was introduced by Kantorovich in 1936 [42]. The first applications of vector norms
and metrics were related to the method of successive approximations in numerical
analysis. The modern theory of lattice-normed spaces and dominated operators on
them is presented in Kusraev [56].
Remark 37. The bounded descent of 30 appeared in the research by Takeuti into
von Neumann algebras and C∗-algebras within Boolean valued models; see [126]
and [127]. Then the technique was developed in the research by Ozawa into the
Boolean valued interpretation of the theory of Hilbert spaces; see [104] and [106].
Theorem 32 is due to Kusraev in [51], [53]; also see [52] and [56]. Similar results were
obtained by Ozawa [111, Theorem 5.2]; the difference is in the fact that Ozawa [111]
deals with Banach spaces possessing an extra module structure over Λ(B) which
may be recovered in each B-cyclic Banach space. Nishimura [100] established the
Boolean valued transfer principle from L∗-algebras to AL∗-algebras in the spirit
of the Takeuti–Ozawa theory of AW ∗-modules; also see [95]. (An L∗-algebra is a
complex Lie algebra whose vector space is a Hilbert space endowed with an involution
and some axiom connecting the Lie bracket, inner product, and involution.)
Remark 38. In [106] Ozawa found a complete system of isomorphism invariants for
Kaplansky–Hilbert modules: There is one-to-one correspondence between the iso-
morphism classes of Kaplansky–Hilbert modules over Λ̄(B) and the cardinals in V(B).
At the same time each Kaplansky–Hilbert module admits a direct sum decompo-
sition into homogeneous components. Using these results, Kusraev obtained the
following functional representation: To each Kaplansky–Hilbert module X there ex-
ist a set of cardinals Γ and a family of nonempty extremally disconnected compact
spaces (Qγ)γ∈Γ such that there is a unitary equivalence X ' ∑⊕γ∈ΓC#(Qγ , l2(γ)).
(Here C#(Q,X) is the space of cosets of X-valued bounded continuous functions
defined on comeager subsets of Q; see [67, 6.4.1] and [69, 5.13.3].) The represen-
tation is not unique and, as discovered Ozawa in [106], the reason for this is the
cardinal shift phenomena in V(B): Given two infinite cardinals κ < λ, there is a
complete Boolean algebra B such that V(B) |= |κ∧| = |λ∧|, and so the injective
Banach lattices C#

(
K, l2(κ)

)
and C#

(
K, l2(λ)

)
are lattice B-isometric with K the

Stone representation space for B; see [67] and [68].
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5 Injective Banach Lattices
In this section we present the instance of the Boolean valued transfer principle from
AL-spaces to injective Banach lattices which states that each injective Banach lattice
is embedded into an appropriate Boolean valued model, becoming an AL-space; see
Kusraev [59], [60], [61], and [62]. First we consider Boolean valued Banach lattices.

Definition 39. A Banach lattice X is an AL-space (resp., AM -space) if ‖x+ y‖ =
‖x‖+ ‖y‖ (resp., ‖x∨ y‖ = max{‖x‖, ‖y‖}) whenever x∧ y = 0. An AM -space has
a (strong order) unit u ≥ 0 if the order interval [−u, u] is the unit ball of X.

Definition 40. A band projection π in a Banach lattice X is an M -projection if
‖x‖ = max{‖πx‖, ‖π⊥x‖} for all x ∈ X, where π⊥ := IX − π. The collection of all
M -projections forms a subalgebra M(X) of P(X) in X. A Banach lattice X is B-
cyclic whenever X is a B-cyclic Banach space for a complete subalgebra B ⊂ M(X).
A B-isometric lattice homomorphism is referred to as lattice B-isometry.

Theorem 41. The bounded descent of a Banach lattice from the model V(B) is a
B-cyclic Banach lattice. Conversely, if X is a B-cyclic Banach lattice, then in the
model V(B) there is a Banach lattice X unique up to an isometric isomorphism whose
bounded descent is lattice B-isometric to X. Moreover, π 7→ π⇓ is an isomorphism
of Boolean algebras M(X )↓ and M(X); in symbols, M(X )↓ ' M(X ⇓).

Definition 42. A real Banach lattice X is injective whenever, for every Banach
lattice Y , every closed vector sublattice Y0 ⊂ Y , and every positive linear operator
T0 : Y0 → X there exists a positive linear extension T : Y → X with ‖T0‖ = ‖T‖.

Thus, the injective Banach lattices are the injective objects in the category of
Banach lattices with the positive contractions as morphisms. Arendt [7, Theo-
rem 2.2] proved that the injective objects are the same if the regular operators with
contractive modulus are taken as morphisms.

The first example of an injective Banach lattice was indicated by Abramovich
in [1] without introducing the term: A Dedekind complete AM -space with unit is
an injective Banach lattice. Later this fact was rediscovered by Lotz in [83], where
the concept of injective Banach lattice was introduced. Lotz also proved that each
AL-space is an injective Banach lattice; see [83, Proposition 3.2]. This shows that
there is an essential difference between the injective Banach lattices and injective
Banach spaces, since C(K) with an extremally disconnected compact set K is the
only injective object (up to isomorphism) in the category of Banach spaces and linear
contractions (see the Nachbin–Goodner–Kelley–Hasumi Theorem [81, Theorem 6])
An important contribution to the study of injective Banach lattices was made by
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Cartwright [13] who found the order intersection property and proved that a Banach
lattice X is injective if and only if X has the order intersection property and there
exists a positive contractive projection in X ′′ onto X (the property (P )); see [69,
Definition 5.10.9 (3), Theorems 5.10.10, and 5.10.11]. Another significant advance
is due to Haydon [30]. He discovered that an injective Banach space has a mixed
AM -AL-structure and proved three representation theorems [30, Theorems 5C, 6H,
and 7B].

Theorem 43. The bounded descent X ⇓ of an AL-space X from V(B) is an injective
Banach lattice with B ' M(X ⇓). Conversely, if X is an injective Banach lattice
and B ' M(X), then there exists an AL-space X within V(B) whose bounded descent
is lattice B-isometric to X; in symbols, X 'B X ⇓.

According to Theorem 43, each theorem about AL-spaces within Zermelo–
Fraenkel set theory has its counterpart for injective Banach lattices. Translation
of theorems from AL-spaces to injective Banach lattices is carried out by the func-
tors of Boolean valued analysis. Combining Theorems 20 and 43 yields the following
result.

Theorem 44. If Φ is some strictly positive Maharam operator with the Levi prop-
erty that takes values in a Dedekind complete AM -space Λ with unit and |||x||| =
‖Φ(|x|)‖∞ (x ∈ L1(Φ)), then (L1(Φ), |||·|||) is an injective Banach lattice and there is
a Boolean isomorphism ϕ from B := P(Λ) onto M(L1(Φ)) such that π ◦Φ = Φ ◦ϕ(π)
for all π ∈ B. Conversely, every injective Banach lattice X is lattice B-isometric to
(L1(Φ), |||·|||) for some strictly positive Maharam operator Φ with the Levi property
that takes values in a Dedekind complete AM -space Λ with unit, where B = P(Λ) '
M(X).

Consider the question of the functional representation of injective Banach lat-
tices. For every cardinal γ, there exists a canonical measure on the unit cube [0, 1]γ ,
i.e. the γth power of Lebesgue’s measure on [0, 1]. The associated Banach lattice
of integrable functions will be denoted by L1([0, 1]γ). The celebrated Kakutani–
Maharam representation result tells us that for each AL-space X there exists a
unique family of cardinals (δγ)γ∈Γ∪{0} with Γ a set of infinite cardinals such that δγ
is either equal to 1 or is uncountable for all γ ∈ Γ and

X ' l1(γ0)⊕
∑⊕

γ∈Γ
δγL1

(
[0, 1]γ

)
, (1)

where ' stands for lattice isometry, while ⊕ and∑⊕ denote l1-joins, and δY denotes
the l1-join of δ copies of Y ; see [81] and [117]. Thus, the Banach lattices l1(γ0) and
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L1([0, 1]γ) are the “building blocks” for AL-spaces. By transfer the result is true for
a Boolean valued representation X of an injective Banach lattice X. Having worked
with the descent and ascent functors, we can find that the building blocks for X
are injective Banach lattices C#(K, l1(α)) and C#(K,L1([0, 1]γ)). Every injective
Banach lattice is lattice B-isometric to a injective direct sum of these building blocks.
For an injective Banach lattice X there exist families (Kβγ)β∈B(γ) (γ ∈ Γ) and
(Kα)α∈A, where Γ is a set of infinite cardinals, A and B(γ) are the sets of cardinals,
and each element of B(γ) is either equal to 1 or is uncountable for all γ ∈ Γ, such
that Kβγ and Kβγ make up the partition of unity in the Boolean algebra of clopen
subsets of the Stone representation space of M(X) and the representation holds:

X 'B

( ∑

α∈A
C#
(
Kα, l

1(α)
))

∞
�
∑

γ∈Γ

�
( ∑

β∈B(γ)
β � C#

(
Kβγ , L

1([0, 1]γ)
))

∞
, (2)

where β � Y stands for the injective direct sum of δ copies of Y and ∑ denotes the
l∞-join. The formula (2) is the descent of the internal representation (1), while the
injective direct sum ∑� of injective Banach lattices can be defined as the descent of
the internal l1-join within V(B). For more details see [60], [61]. The representation
(2) of an injective Banach lattice is not unique in general for the same reason as
in Remark 38: If κ < λ and V(B) |= |κ∧| = |λ∧|, then C#

(
K,L1([0, 1]κ)

)
and

C#
(
K,L1([0, 1]γ)

)
are lattice B-isometric. The above enables us to give a complete

isometric classification of injective Banach lattices; see [60] and [61].

Remark 45. We indicate a few more results obtained by using the Boolean valued
transfer principle for injective Banach lattices. The Daugavet equation in injective
Banach latices, injective Banach lattices of operators, the Boolean valued inter-
pretation of the theory of cone absolutely summing operators, and the operators
factoring through injective Banach lattices are examined in Kusraev [63]; Kusraev
and Wickstead [72] (also see [69]). The following Boolean value version of Ando’s
Theorem was obtained by Kusraev and Kutateladze [70, Theorem 6.4]: Each closed
B-complete sublattice in a B-cyclic Banach lattice X admits a positive contractive
projection commuting with projections from B = M(X) if and only if there exists a
partition of unity (πγ)Γ∪{0} in B with Γ being a nonempty set of cardinals such that
π0X 'π0B L

p(Φ) for some 1 ≤ p ∈ Λu and injective Banach lattice L := L1(Φ), for
which M(L) ' π0B, and πγX 'πγB C#(Qγ , c0(γ)) for all γ ∈ Γ, where Qγ is a clopen
subset of the Stone representation space Q of B corresponding to the projection πγ .
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6 C∗-Algebras and AW ∗-Algebras

This section deals with a transfer principle for C∗-algebras and AW ∗-algebras and
a classification of type I AW ∗-algebras. We start with C∗-algebras. See Berberian
[12], Sakai [113], and Takesaki [121] for the needed information on the topic.

Definition 46. A B-cyclic C∗-algebra or B-C∗-algebra A is a C∗-algebra that is a
B-cyclic Banach space and for each projection π ∈ B we have π(xy) = π(x)y = xπ(y)
and π(x∗) = π(x)∗ for all x, y ∈ A. An element z ∈ A is central provided that z
commutes with every member of A. The center of a T ∗-algebra A is the set Z (A)
of all central elements. Clearly, Z (A) is a commutative C∗-subalgebra of A and
C1 ⊂ Z (A).

The Boolean valued transfer principle for C∗-algebras, discovered by Takeuti
[127], is stated below in terms of the complete Boolean algebra of projections. As
regards other formulations that use a module structure, see Ozawa [109, Theorem
2], [111, Theorem 6.3] and Takeuti [127, Theorem 1.1]).

Theorem 47. If A is a C∗-algebra within V(B) then A := A ⇓ is a B-C∗-algebra.
Conversely, for each B-C∗-algebra A there exists C∗-algebra A within V(B) such that
A is ∗-B-isomorphic to A ⇓.

Definition 48. An AW ∗-algebra is a C∗-algebra presenting a Baer ∗-algebra. More
explicitly, an AW ∗-algebra is a C∗-algebra A whose every right annihilator M⊥ :=
{y ∈ A : (∀x ∈M) xy = 0} has the form pA, with p a projection. A projection p is
a hermitian (p∗ = p) idempotent (p2 = p) element. If Z (A) = {λ1 : λ ∈ C} then
the AW ∗-algebra A is an AW ∗-factor.

The symbol P(A) stands for the set of all projections of an involutive algebra A.
Denote the set of all central projections by Pc(A). Observe that Λ̄ := C⇓ is a
commutative AW ∗-algebra and P(Λ̄) = Pc(Λ). If Λ̄ = Z (A) then Λ̄ = Λ̄(B) with
B = Pc(A). An AW ∗-algebra A is a B-cyclic C∗-algebra for every order closed sub-
algebra B of the complete Boolean algebra Pc(A). This fact together with Theorem
32 yields the following result due to Ozawa [109].

Theorem 49. If A is an AW ∗-algebra within V(B) then A := A ⇓ is also an AW ∗-
algebra and Pc(A) has an order closed subalgebra isomorphic to B. Conversely, if A
is an AW ∗-algebra and B is an order closed subalgebra of the Boolean algebra Pc(A)
then there is an AW ∗-algebra A within V(B) such that A ⇓ is ∗-B-isomorphic with
A. Moreover, A is an AW ∗-factor if and only if B := Pc(A).
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The classification of an AW ∗-algebra into types is determined from the structure
of its lattice of projections; see [56] and [113]. It is important to emphasize the abso-
luteness of types; i.e., the Boolean valued representation preserves this classification;
see Takeuti [126] and Ozawa [109]. Similar absoluteness theorems in a completely
lattice-theoretical framework were established by Nishimura [93]. We recall only the
definition of type I AW ∗-algebra.
Definition 50. A projection π ∈ A is abelian provided that the algebra πAπ is
commutative. An algebra A has type I, if each nonzero projection in A contains
a nonzero abelian projection. Say that a C∗-algebra A is B-embeddable whenever
there are a type I AW ∗-algebra N with B = Pc(N) and a ∗-monomorphism π : A→
N such that π(A) coincides with the bicommutant π(S)′′ of π(A) in N . Furthermore,
if B = Pc(A) then A is centrally embeddable.
Definition 51. A B-cyclic Banach space Y is B-dual or B-bidual provided that,
respectively, Y 'B X

# or Y 'B X
## for some B-cyclic Banach space X, where 'B

stands for isometric B-isomorphy. (Recall that X# := LB(X,B(Λ)) and Λ = Λ(B).)
Say that Y is a B-predual of X if Y # 'B X and Y is B-selfdual if Y 'B Y

#.
Ozawa [111, Theorems A, B, and C] characterized those C∗-algebras that are B-

dual, B-bidual, and B-selfdual (in terms of the Λ̄(B)-module instead of the Boolean
algebra of projections B). He also proved that a B-embeddable C∗-algebra has a
predual unique up to B-isometry which is a Kaplansky–Hilbert module over Λ̄(B);
see [111, Theorem D]).

Let X be a Kaplansky–Hilbert module over Λ̄ and denote by BΛ(X) the space of
all continuous Λ̄-linear operators in X. Since a Λ̄-linear operator is continuous if and
only if it has an adjoint, BΛ(X) is an AW ∗-algebra of type I with center isomorphic
to Λ̄. As it was shown by Kaplansky [45], a type I AW ∗-algebra A is isomorphic to
BΛ̄(X) for some Kaplansky–Hilbert module X over Λ̄(B) with B = Pc(A). Taking
into account Theorem 35, we arrive at the following transfer principle from von
Neumann algebras to embeddable AW ∗-algebras (see Ozawa [107, Theorem 2.3]
and [109, Theorem 6]):
Theorem 52. Let A be a C∗-algebra within V(B) and let A be the bounded descent
of A . Then A is a B-embeddable AW ∗-algebra if and only if A is a von Neumann
algebra within V(B). The algebra A is centrally embeddable if and only if A is a von
Neumann factor within V(B).

We now present a complete system of ∗-isomorphism invariants for type I AW ∗-
algebras due to Ozawa [106]. Every automorphism π of a complete Boolean algebra
B can be extended to a Boolean truth-value preserving automorphism π∗ of V(B);
see [69, § 1.3].
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Definition 53. Two internal cardinals α, β ∈ V(B) are said to be congruent if there
is an automorphism π of B with β = π∗(α). The congruence class of α is defined as
[α] := {π∗(α) : π is an automorphism of B}. Given a type I AW ∗-algebra A with
center isomorphic to Λ̄(B), define the degree Deg(A) of A as [Dim(X)], where X is
a Kaplansky–Hilbert module over Λ̄(B) such that A is ∗-isomorphic to BΛ(X) and
Dim(X) ∈ V(B) is the dimension of the Boolean valued representation X ∈ V(B)

of X.

Theorem 54. Two type I AW ∗-algebras are ∗-isomorphic if and only if their centers
are ∗-isomorphic and they have the same degree. For every nonzero cardinal α
within V(B) there is a type I AW ∗-algebra A with Z (A) isomorphic to Λ̄(B) and
Deg(A) = [α].

Remark 55. The modern structural theory of AW ∗-algebras originates with the arti-
cles [43]–[45] by Kaplansky. These objects appear naturally by way of algebraization
of the theory of von Neumann operator algebras. The study of C∗-algebras and von
Neumann algebras by Boolean valued models was started by Takeuti with [125]
and [126]. See Korol′ and Chilin [46], Nishimura [91], [94], [98], [101], and Ozawa
[104]–[111] for further related developments.
Remark 56. Combining the results about the Boolean valued representations of
AW ∗-algebras with the analytical representations for dominated operators, we come
to some functional representations of AW ∗-algebras (see Kusraev [56]): To each type
I AW ∗-algebra A there exist a set of cardinals Γ and a family of nonempty extremally
disconnected compact spaces (Qγ)γ∈Γ such that there is a ∗-B-isomorphism:

A '
⊕∑

γ∈Γ
SC#(Qγ , B(l2(γ))).

Remark 57. Boolean valued analysis of AW ∗-algebras yields a negative solution to
the Kaplansky problem of unique decomposition of a type I AW ∗-algebra into the
direct sum of homogeneous components. Ozawa gave this solution in [106] and [108].
The lack of uniqueness is tied with the effect of the cardinal shift. The cardinal shift
is impossible in the case when the Boolean algebra of central idempotents B under
study satisfies the countable chain condition, and so the decomposition in question
is unique. Kaplansky established the uniqueness of the decomposition on assuming
that B satisfies the countable chain condition and conjectured that uniqueness fails
in general; see [45].
Remark 58. The concept of Kaplansky–Hilbert module was introduced by Kaplansky
in [45] under the name AW ∗-module. In the introduction he wrote: “. . . the new
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idea is to generalize Hilbert space by allowing the inner product to take values in
a more general ring then the complex numbers. After the appropriate preliminary
theory of these AW ∗-modules has been developed, one can operate with a general
AW ∗-algebra of type I in almost the same manner as with the factor.” In other
words, the central elements of an AW ∗-algebra can be taken as complex numbers
and one can work with factors rather than general AW ∗-algebras. Needles to say,
this is a version of Kantorovich’s heuristic principle; see Remark 23.

7 Miscellany
7.1 The Wickstead problem

An operator in a vector lattice is band preserving if each band is its invariant sub-
space. The following question was raised by Wickstead in [131]: Which vector
lattices have the property (sometimes called the Wickstead property) that every lin-
ear band preserving operator in them is automatically order bounded? One of the
principal technical tools is the concept of d-basis which is presented in the memoir
[3, Section 4]. Boolean valued analysis reduces the Wickstead problem to that of
order boundedness of the endomorphisms of the field R or C viewed as a vector
lattice and algebra over the field R∧ or C∧, respectively; see [69, § 4.2]. In particular,
each d-basis is just a Boolean valued Hamel basis [69, § 4.5]. Gutman [33] proved
that a vector lattice X has the Wickstead property if and only if the Boolean alge-
bra P(X) is σ-distributive if and only if R and R∧ coincide within V(B). Kusraev
[57] established that in a universally complete complex vector lattice X with a fixed
f -algebra multiplication the Wickstead property is equivalent to each of the follow-
ing assertions: (1) there is no nonzero derivation in X; (2) every band preserving
endomorphism in X is a band projection; (3) there is no nontrivial band preserving
automorphism in X. The history and state of the art of the Wickstead problem are
presented in [34] and [69, Chapter 4]. It worth mentioning here that the question
of automatic continuity of homomorphisms from a Banach algebra of continuous
functions into an arbitrary Banach algebra is independent of ZFC; see Dales and
Woodin [18] as well as Dales and Oliveri [17].

7.2 A transfer principle in harmonic analysis

In [124] Takeuti introduced the Fourier transform for the mappings defined on a lo-
cally compact abelian group and having as values pairwise commutable normal op-
erators in a Hilbert space. By applying the transfer principle, he developed a general
technique for translating classical results to operator-valued functions. In particu-
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lar he established a version of the Bochner Theorem describing the set of all inverse
Fourier transforms of positive operator-valued Radon measures. Similar results were
obtained by Gordon and Lyubetskii within their theory of the Boolean extension of
a uniform space; see [28] and [29]. Nishimura [92] extended Takeuti’s Boolean valued
approach to abstract harmonic analysis on locally compact abelian groups to locally
compact groups (not abelian in general). Kusraev and Malyugin in [71] improved
Takeuti’s results in the following directions: more general arrival spaces (including
Banach spaces and Dedekind complete vector lattices) were considered, the class of
dominated mappings was identified with the set of all inverse Fourier transforms
of order bounded quasi-Radon vector measures, and the construction of a Boolean
valued universe was eliminated from the definitions and statements of the results.

7.3 Boolean compactness

Combining the notions of Boolean mixing and compactness yields the concept of mix-
compactness (or cyclic compactness) and the corresponding class of linear operators.
Consider a Λ-metric space (X, ρ) with Λ = R↓. A subset K ⊂ X is mix-compact
if K is mix-complete and for every sequence (xn)n∈N ⊂ K there is x ∈ K such
that infn>k ρ(xn, x) = 0 for all k ∈ N. Clearly, in case Λ = R mix-compactness is
equivalent to compactness in the metric topology. The concept of cyclic compact-
ness was first studied by Kusraev [47] and [52]. Section 8.5 in [56] deals with the
cyclically compact linear operators on B-cyclic Banach spaces. Gönüllü [31] and [32]
found the Lidskii trace formula and the Rayleigh–Ritz minimax formula for cycli-
cally compact operators in Kaplansky–Hilbert modules. The equivalent concept
of mix-compact subset of a lattice-normed space was introduced in Gutman and
Lisovskaya [35]. Basing on Boolean valued analysis, they proved some counterparts
of the three classical theorems for arbitrary lattice-normed spaces over universally
complete vector lattices, namely, the boundedness principle, the Banach–Steinhaus
Theorem, and the uniform boundedness principle for a compact convex set; see [35,
Theorems 2.4, 2.6, and 3.3]. In [63] and [72] Kusraev and Wickstead examine the
question of when the space of compact operators is a vector lattice or an injective
vector lattice. Moreover, a Dodds–Fremlin–Wickstead type domination result for
cyclically compact operators was obtained in [72, Theorem 8.13].

7.4 JB-algebras

The JB-algebras are nonassociative real analogs of C∗-algebras and von Neumann
operator algebras. The theory of these algebras exists as a branch of functional
analysis since the mid 1960s; see [10] and [36]. The Boolean valued approach to
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JB-algebras is outlined by Kusraev [54] and [55]. In [54] a B-JB-algebra is defined
as a JB-algebra that is a B-cyclic Banach space with respect to a complete Boolean
algebra of central idempotents B and, naturally, it turns out that B-JL-algebras are
the bounded descents of JB-algebras from V(B) [54, Theorem 3.1]. Then it is proved
that a B-JB-algebra A is a B-dual space if and only if A is monotone complete
and admits a separating set of Λ(B)-valued normal states [54, Theorem 4.2]. An
algebra A satisfying one of these equivalent conditions is a B-JBW -algebra. Each
B-JBW -factor A admits a unique decomposition A = eA ⊕ e∗A with a central
projection e ∈ B, e∗ := 1− e, such that the algebra eA has a faithful representation
in the algebra of selfadjoint operators on a Kaplansky–Hilbert module and e∗A is
isomorphic to C(Q,M8

3 ), where Q is the Stone representation space of the Boolean
algebra e∗B := [0, e∗] and M8

3 := M3(O) is the algebra of hermitian (3× 3)-matrices
over the Cayley numbers O; see [54, Theorem 4.6]. A full classification of type I2
AJW -algebras was obtained in [55]. More details and references are collected in
[54], [58], and [68].

7.5 Convex analysis

One of the most important concepts in convex analysis is that of support set or
subdifferential at zero, i.e. the convex set of linear operators majorized by a sub-
linear operator; see [66]. The intrinsic characterization of subdifferentials was first
formulated as a conjecture by Kutateladze in [73] and then it was proved by Kusraev
and Kutateladze (see [64] and [65]): A weakly order bounded set of operators is a
subdifferential if and only if it is operator convex and closed with respect to pointwise
order convergence. The result is well known for functionals and the Boolean valued
transfer principle enables one to translate the result to the operators taking values
in the universally complete vector lattice that is the descent of the reals. Similarly,
we can recover a subdifferential from its extreme points on using the classical Krein–
Milman Theorem and its Milman’s inversion. Kutateladze in [74] and [75] weakened
the boundedness assumption in the spirit of the classical theory of caps which was
developed by Choquet and his followers; see [8] and [112]. The peculiarity of his
approach consists in working with the new notion of operator cap. An operator cap
is not a cap in the classical sense in general but becomes a usual cap in the scalar
case. More precisely, when studying convex sets of operators it is appropriate to use
operator caps rather than conventional caps, i.e. the descents of scalar caps from
a suitable Boolean valued model; see [66] for details. Recently Kutateladze applied
Boolean valued analysis to deriving the operator versions of the classical Farkas
Lemma in the theory of simultaneous linear inequalities and proved the Lagrange
principle for dominated polyhedral sublinear operators; see [79] and [80].
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7.6 Mathematical finance

In order to provide an analytical basis to some problems of mathematical finance
in a multiperiod setup with a dynamic flow of information, the two approaches
were proposed: randomized convex analysis (Filipovic, Kupper, and Vogelpoth [20])
and conditional set theory (Drapeau, Jamnesahn, Karliczek, and Kupper [19]). It
is proved in Avilés and Zapata [9, Theorems 2.2 and 3.1] that: (1) the category of
mix-complete L0-convex modules and continuous L0-linear operators is equivalent
to the category of locally convex spaces and continuous linear operators within
V(B); (2) the category of conditional sets and conditional mappings is equivalent
to the category of sets and mappings within V(B); also see [133]. Thus, Boolean
valued analysis provides a natural framework for the study of locally L0-convex
analysis and conditional set theory and to explore new applications to conditional
risk measures, equilibrium theory, optimal stochastic control, financial preferences,
etc. More details and references are collected in [9], [133], and [134].
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The Γ-ultraproduct and Averageable
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Abstract. This paper introduces the Γ-ultraproduct, which is designed to take
a collection of structures omitting some fixed set of unary types Γ and average
them into a structure that also omits those types. The motivation comes from
the Banach space ultraproduct, and generalizes other existing constructions
such as the torsion submodule. Motivated by examples and counterexamples,
we explore conditions on classes that make the Γ-ultraproduct well-behaved and
apply results from the existing literature on classification for nonelementary
classes. We use torsion modules over PIDs as an extended example.

1 Introduction
Ultraproducts are an invaluable tool in first-order model theory. The ability to create
a new structure that is the “average” of some collection of structures has far-reaching
implications, most importantly the compactness theorem. When trying to adapt
first-order results (such as various results of classification theory) to nonelementary
contexts, the lack of compactness is a major stumbling block. One strategy is to use
set-theoretic hypotheses to allow very complete ultrafilters (as was done in [5,16,17]).
Another approach is to assume that the class satisfies some fragment of compactness;
an example of this is the property tameness, which was introduced by Grossberg and
VanDieren [12] and has seen a large amount of activity in recent years.

We examine a different approach. Rather than appealing to the uniform con-
struction of the ultraproduct, we fix a collection Γ of types to be omitted in advance
and then build the Γ-ultraproduct with the express purpose of creating an average
that omits those types. More precisely, fix the following:

• a language τ ;
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• a collection of unary τ -types Γ; and

• a collection of τ -structures {Mi : i ∈ I} that each omit every type in Γ.

We sometimes refer to this collection as the data, see Hypothesis 2.1.
The main definition of this paper is the Γ-ultraproduct of this data by some

ultrafilter U , which is denoted ∏ΓMi/U .

Definition 1.1. Fix an ultrafilter U on I.

Γ∏

i∈I
Mi := {f ∈

∏
Mi : there is some Xf ∈ U such that, for each p ∈ Γ, there

is a φpf (x) ∈ p such that Mi |= ¬φpf (f(i)) for each i ∈ Xf}

• Form ∏ΓMi/U by giving it universe ∏ΓMi/U := {[f ]U : f ∈ ∏ΓMi} and
inheriting the functions and relations from the full ultraproduct ∏Mi/U .

• If Γ = {p}, then we write ∏pMi/U .

Given [f ]U ∈
∏ΓMi/U , we call a choice function p ∈ Γ 7→ φpf as in the definition

a witness for [f ]U ’s inclusion in the Γ-ultraproduct. We typically denote witnesses
and choice functions by C. Note that there are often many witnesses for a single
element.

Unlike the normal ultraproduct, there is no reason to suspect that the Γ-ultra-
product is always well-behaved or is even a τ -structure; these issues and examples
of where things go wrong are explored in Section 2. Note that the assumption that
the types of Γ are unary is crucial for this definition. This allows the inclusion
criteria for ∏Γ

i∈IMi to be local, i.e., only depend on the function on consideration.
If the types were not unary (such as those expressing a group is locally finite), then
determining wether a choice function f were to be included would require a witness
that involves the other included choice functions in some way. There seems to be no
uniform way to generalize the above definition in this case. Indeed, simply coding
tuples as single elements with projection functions does not avoid this necessity: the
resulting Γ-ultraproduct might omit the coded types, but fail to satisfy the sentences
stating that finite tuples are coded as elements.

Section 3 introduces averageable classes (roughly nonelementary classes where
the appropriate Γ is well-behaved) and applies some results from the classification
theory of Abstract Elementary Classes; Theorem 3.12 here gives a dividing line
in the number of models for averageable classes. Section 4 gives several examples
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of averageable classes, including dense linearly ordered groups with a cofinal Z-
chain. Section 5 develops the example of torsion modules over a PID, including the
appropriate Łoś’ Theorem and some stability theory.

This construction can be seen as a generalization of two well-known construc-
tions: ultraproducts of multi-sorted structures and Banach space ultraproducts.
Subsection 4.4 shows how to view the ultraproduct of multi-sorted structures as the
appropriate Γ-ultraproduct. Moreover, if Γ is finite (as it is in most of our examples,
with Banach spaces and Archimedean fields being the only non-examples in this pa-
per), there is a single type pΓ such that omitting pΓ is equivalent to omitting all of
Γ. Then, we could attempt to impose a sorted structure on a model omitting Γ by
which formula of pΓ it omits, and attempt to translate the language and syntax to a
sorted one. This would be an alternate presentation of these results: being able to
sort the language corresponds to Γ-closed (Definition 2.3) and being able to sort the
formulas corresponds to Γ-nice (Definition 2.10). We chose the current presentation
in part because some choice of equally valid presentations must be made, but also to
accommodate cases of omitting infinitely many types and to avoid the unnaturality
discussed below. We discuss a third possible presentation in Section 2.5.

In the standard Banach space ultraproduct, the elements of∏Bi/U are sequences
of bounded norm that are modded out by the equivalence relation

(xi) ∼U (yi) ⇐⇒ lim
U
‖xi − yi‖Bi = 0

In the standard model-theoretic ultraproduct, the elements of∏Mi/U are sequences
that are modded out by the equivalence relation

(xi) ∼U (yi) ⇐⇒ {i : xi = yi} ∈ U

Both constructions contain a step that ignores U -small differences; this is the equiva-
lence relations. However, the Banach space ultraproduct contains an extra step that
excludes unbounded sequences. In model theoretic language, this amounts to exclud-
ing sequences that would realize the type {‖x‖ > n : n < ω}. The model theoretic
ultraproduct has no similar step. We add such a step to arrive at ∏ΓMi/U . Exam-
ple 4.1 goes into greater detail about the application of the Γ-ultraproduct to Banach
spaces. Indeed, this example was the original motivation for the Γ-ultraproduct as
an attempt to generalize the extra step of throwing away unbounded elements to
more general situations. Note that, in continuous first-order logic (see [4]), atten-
tion is restricted to uniformly bounded metric spaces and, thus, avoid the extra step.
Ben Yaacov [3] has explored continuous logic in unbounded metric spaces. The key
there is to restrict the logic to only allow quantifiers that specify where that type is
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omitted, that is, quantifiers that turn φ(x,y) into ∃x (‖x‖ < n ∧ φ(x,y)) for some
particular n < ω; see Observation 2.9 for a discussion of that technique here.

Many of the proofs of this paper (particularly the basic exploration of the Γ-
ultraproduct in Section 2) are straightforward (especially in light of the above com-
parisons). However, there seems to be no place in the literature that discusses these
constructions in this generality or applies them to achieve compactness-like results
in nonelementary classes. In particular, the results of Section 5 on the compact-
ness and classification theory of torsion modules over PIDs is new. While these
results could have been obtained by “sorting” the structures and applying the ul-
traproduct of sorted structures1, this class is always considered as a nonelementary
(single-sorted) class. Moreover, the translation to a sorted class would be very un-
natural: the single addition function + would replaced by a collection of addition
functions {+r,r′ | r, r′ ∈ R} (and similarly for other functions). Moreover, formulas
like “∃z(x + z = y)′′ would not survive the sorting translation and one would be
forced to specify an annihilator of x, y, and z to use such a formula. Thus, we prefer
to work with torsion modules as a “sortable” class, rather than one that is actually
sorted.

2 Properties of ∏Γ Mi/U

Our main goal will be analyzing compactness in classes of the form (EC(T,Γ),≺)
or (EC(T,Γ),⊂) via the Γ-ultraproduct (recall the definition of the Γ-ultraproduct
from Definition 1.1 and that EC(T,Γ) is the class of all models of T that omit each
type in Γ). However, in this section we analyze this construction in more generality;
we specialize back to these classes in Section 3. For the rest of this section and the
next, fix the data that goes into the Γ-ultraproduct.

Hypothesis 2.1. Fix the following:

• a language τ ;

• a collection of unary τ -types Γ; and

• a collection of τ -structures {Mi : i ∈ I} that each omit every type in Γ.

This definition and the discussion below work in a great deal of generality, in
particular allowing many unary types of different sizes. In concrete cases, Γ often

1Or, in the case R = Z, imposing a metric on torsion abelian groups by setting d(g, h) =
log o(g − h).
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consists of a single countable type and the reader can simplify to this case with little
loss.

The analysis of ∏ΓMi/U breaks along two main questions:

• Is ∏ΓMi/U a structure, specifically a substructure of ∏Mi/U?

• Is ∏ΓMi/U an elementary substructure of ∏Mi/U?

We analyze each of this separately, although we first provide examples that the
answer to each question can be no.

Example 2.2.

1. Set M = (ω,+, |, 2), I = ω, p(x) =
{

(2k | x) ∧ (x 6= 0) : k < ω
}
, where the ‘ |′

is the symbol for ‘divides.’ Then [n 7→ 1]U , [n 7→ 2n − 1]U ∈
∏pM/U , but

[n 7→ 1]U + [n 7→ 2n − 1]U = [n 7→ 2n]U 6∈
p∏
M/U

Thus ∏pM/U is not closed under addition.

2. Let τ be the two-sorted language 〈N1, N2; +1,×1, 11; +2,×2, 12;×1,2〉 where
×1,2 : N1 × N2 → N1. Take M = 〈N,N′; +,×, 1; +′,×′, 1′;×∗〉 where N and
N′ are disjoint copies of the naturals and ×∗ is also normal multiplication.
Then this structure omits the type of a nonstandard element of the second sort
p(x) = {N2(x) ∧ (1 + · · ·+ 1 6= x) : n < ω}. Then ∏pM/U is a structure. In
particular, N2 remains standard but N1 is just ∏N/U . To see the failures of
Łoś’ Theorem described above,

• the formula ψ(x) ≡ “∃y ∈ N2(11 ×1,2 y = x)” is true of all n ∈ NM
1 , but

is not true of [n 7→ n]U ∈ N
∏p

M/U
1 .

• the sentence φ ≡ “ ∀x ∈ N1∃y ∈ N2(11×1,2 y = x)” is true in M , but not
in ∏pM/U for the above reason.

Note that the first example shows that the class of classically valued fields does
not fit into the framework described here; compactness results in that class will be
explored in Boney [8].

These examples and Example 2.16 below give an indication of when things don’t
fit nicely into this framework. Section 4 collects several positive examples.
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2.1 Structure

For ∏ΓMi/U to be a structure, all that is necessary is that ∏ΓMi/U is closed under
functions. This means that, if [f0, ]U . . . , [fn−1]U ∈

∏ΓMi/U have witnesses to their
inclusion and F is a function of the structure ∏Mi/U , then F ([f0]U , . . . , [fn−1]U )
has a witness as well. However, in many cases, there is a degree of uniformity where
tuples with the same sequence of witnesses are always mapped to an element with
a fixed witness.

Definition 2.3. The collection {Mi : i ∈ I} is Γ-closed iff for all n-ary functions
F of τ , there is a function gF that takes in n choice functions on Γ and outputs a
choice function on Γ such that

for all [f1]U , . . . , [fn]U ∈
∏ΓMi/U with witnesses C1, . . . , Cn , we have that, for

each i ∈ I and p ∈ Γ,

Mi � ¬φ (F (f1(i), . . . , fn(i)))

where φ = gF (C1, . . . , Cn) (p)

Abelian torsion groups are an example of this: the order of h+k can be computed
from the orders of h and k; see Section 4.2. There, g+ takes in natural numbers
(representing choice functions on the singleton set of the torsion type) and outputs
a natural number such that g+(o(h), o(k)) is an order of h+ k.

It is clear that if {Mi : i ∈ I} is Γ-closed, then ∏ΓMi/U is a structure for all
ultrafilters U ; the witness to F ([f0]U , . . . , [fn−1]U ) is gF (C1, . . . , Cn).

The main advantage of Γ-closedness is in the study of classes of models omitting
Γ when Γ is finite because this property is captured by the first order theory of M .
We say that a class EC(T,Γ) is Γ-closed iff every collection of models from it is
Γ-closed.

Proposition 2.4. Suppose Γ is finite and T is ∀(Γ∪¬Γ)-complete. Then EC(T,Γ)
is Γ-closed iff some collection {Mi ∈ EC(T,Γ) : i ∈ I} is.

The notation “∀(Γ∪¬Γ)-complete” means that T decides all first order sentences
whose quantifiers are a universal followed by a quantifier string that appears in Γ or
a universal followed by the negation of such a string. In practical terms, this means
the large formula a few lines below is decided by the theory. Similar expressions
have the obvious meaning.
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Proof: Being Γ-closed can be expressed by the following scheme: for each F ∈ τ ,
sequence of choice functions C0, . . . , Cn−1, and type p ∈ Γ, include the sentence

∀x0, . . . , xn−1




 ∧

q∈Γ,i<n
¬Ci (q) (xi)


→ ¬gF (C0, . . . , Cn−1) (p) (F (x0, . . . , xn−1))




where gF is the witness for F from the definition of Γ-closed. Since Γ is finite, this
is first order of the desired complexity. †

If∏ΓMi/U is a structure, then it is a substructure of∏Mi/U . This immediately
gives us a universal version of Łoś’ Theorem.

Theorem 2.5 (Universal Łoś’ Theorem). Suppose ∏ΓMi/U is a structure. If
φ(x0, . . . , xn) is a universal formula and [f0]U , . . . , [fn−1]U ∈

∏ΓMi/U , then

{i ∈ I : Mi |= φ(f0(i), . . . , fn−1(i))} ∈ U =⇒
Γ∏
Mi/U |= φ([f0]U , . . . , [fn−1]U )

Proof: The key point is that, since ∏ΓMi/U is a structure, it is a substructure
of the full ultraproduct ∏Mi/U . Thus, universal formulas transfer from ∏

Mi/U to∏ΓMi/U . †

Remark 2.6. A proof by induction on formula complexity (mirroring the proof of
the standard version of Łoś’ Theorem) is also possible. This proof is longer, but
provides extra information: if φ and ψ are formulas that transfer from a U -large
set of Mi to

∏ΓMi/U , then conjunction, disjunction, and universal quantification
preserves this transfer, while negation reverses it. This finer analysis is used in
Section 5.2.

This has important implications for Γ consisting of existential types.

Proposition 2.7. Suppose ∏ΓMi/U is a structure and the types of Γ contain only
existential formulas.

1. ∏ΓMi/U omits Γ.

2. If Γ is finite and each Mi satisfies a common (and complete) ∃∀-theory T∃∀,
then ∏ΓMi/U � T∃∀.

Proof:
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1. Let [f ]U ∈
∏ΓMi/U and p ∈ Γ. By definition, there is φp ∈ p such that

{i ∈ I : Mi � ¬φp (f(i))} ∈ U . Since ¬φp is universal, ∏ΓMi/U � ¬φp(m) by
Universal Łoś’ Theorem 2.5.

2. Let ∃xψ(x) be in T∃∀ with ψ universal and fix some i0 ∈ I. Then there are
m1, . . . ,mn ∈ Mi0 such that Mi0 � ψ(m1, . . . ,mn). Because Mi0 omits Γ
(recall Hypothesis 2.1), for each p ∈ Γ and ` = 1, . . . , n, there is φ`p ∈ p such
that Mi0 � ¬φ`p(m`). Then,

Mi0 � ∃x

ψ(x1, . . . , xn) ∧

∧

p∈Γ;`≤n
¬φ`p(x`)




This is an ∃∀-sentence, and is thus part of T∃∀. For each i ∈ I, there is
mi

1, . . . ,m
i
n ∈Mi such that

Mi � ψ(mi
1, . . . ,m

i
n) ∧

∧

p∈Γ;`≤n
¬φ`p(mi

`)

Define functions g1, . . . , gn by g`(i) = mi
`. Then the function p 7→ φ`p witnesses

that [g`]U ∈
∏ΓMi/U . By Universal Łoś’ Theorem 2.5, we have that

Γ∏
Mi/U � ψ ([g1]U , . . . , [gn]U )

So ∏ΓMi/U � ∃xψ(x), as desired.

†

Indeed, if Γ is finite (but not necessarily existential), a similar proof shows that
if each Mi satisfy a common ∃(¬Γ ∪ ∀)-theory, then ∏ΓMi/U models the ∃∀ part
of the common theory. Note that the ∃∀ level is sharp as Example 2.2.(2) gives
an example of a Γ-ultrapower that doesn’t have the same ∀∃ theory as the original
model.

2.2 Elementary Substructure

For this subsection, we assume that the Γ-ultraproduct forms a structure.

Hypothesis 2.8. Using the notation of Hypothesis 2.1, ∏ΓMi/U is a structure.
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The second line of analysis of the Γ-ultraproduct is finding the class of formulas
φ(x) such that for all [f0]U , . . . , [fn−1]U ∈

∏ΓMi/U ,

{i ∈ I : Mi � φ (f0(i), . . . , fn−1(i))} ∈ U ⇐⇒
Γ∏
Mi/U � φ ([f0]U , . . . , [fn−1]U )

We know that this class contains the universal formulas and, indeed, is closed under
universal quantification. However, Example 2.2.(2) shows that existential quantifi-
cation causes problems. The problem is that the witnesses to an existential formula
involving parameters that omit Γ uniformly might not omit Γ uniformly.

When Γ is finite, some level of existential quantification is allowed by essentially
forcing a witness to exist as part of the condition on the existential.

Observation 2.9. Suppose Γ is finite. If Łoś’ Theorem holds for φ(x,y) then it
also holds for

∃x

φ(x,y) ∧

∧

p∈Γ
¬C(p)(x)




for any choice function C on Γ. Recalling Ben Yaacov’s work on metric ultraproducts
in unbounded metric structures, this condition is similar to his requirement that the
formula is bounded [3, Definition 2.7].

In general, there are two main ways of guaranteeing the transfer of all existential
statements: Γ-niceness and quantifier elimination.

Γ-niceness is the appropriate generalization of Γ-closed to the situation of exis-
tentials.

Definition 2.10. {Mi : i ∈ Γ} is Γ-nice iff for all existential formulas ψ :≡
∃xφ(x,y) from τ , there is a function gψ that takes in `(y) choice functions on Γ and
outputs a choice function on Γ such that

for all [f1]U , . . . , [fn]U ∈
∏ΓMi/U with witnesses C1, . . . , Cn and i ∈ I, if

Mi � ∃xφ (x, f1(i), . . . , fn(i)), then there is m ∈Mi such that, for all p ∈ Γ,

Mi � φ (m, f1(i), . . . , fn(i)) ∧ ¬χ(m)

where χ = gψ (C1, . . . , Cn) (p).

The following basic facts about Γ-niceness are obvious.

Proposition 2.11. 1. If the data is Γ-nice, then it is Γ-closed.
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2. The data is Γ-nice iff there is a skolemization of the data that is Γ-closed.

3. If Γ is finite, then being Γ-nice is first-order expressible.

Proof: For (1), set gF := g∃x(F (y)=x). For (2), take gF∃xφ(x;y) = g∃xφ(x;y) where
F∃xφ(x;y) is the skolem function for ∃xφ(x; y). For (3), the proof follows as in Propo-
sition 2.7.(2). †

The main use of Γ-niceness is as a sufficient condition for Łoś’ Theorem to hold.

Theorem 2.12 (Łoś’ Theorem). Suppose the data is Γ-nice and U is an ultrafilter
on I. If φ(x1, . . . , xn) is a formula and [f1]U , . . . , [fn]U ∈

∏ΓMi/U , then

{i ∈ I : Mi |= φ (f1(i), . . . , fn(i))} ∈ U ⇐⇒
Γ∏
Mi/U |= φ ([f1]U , . . . , [fn]U )

Proof: By Proposition 2.11 and Theorem 2.5 (and Remark 2.6), all that needs
to be shown is that adding an existential quantifier maintains transfer from “true in
U -many Mi’s” to “true in ∏ΓMi/U .” That is, suppose φ(y) = ∃xψ(x,y) such that,
for all [f0]U , . . . , [fn]U ∈

∏ΓMi/U ,

{i ∈ I : Mi |= ψ (f0(i), . . . , fn(i))} ∈ U ⇐⇒
Γ∏
Mi/U |= ψ ([f0]U , . . . , [fn]U )

We want to show that, for all [f1]U , . . . , [fn]U ∈
∏ΓMi/U ,

X := {i ∈ I : Mi |= ∃xψ(x, f1(i), . . . , fn−1(i))} ∈ U =⇒∏ΓMi/U |= ∃xψ(x, [f1]U , . . . , [fn−1]U )

Suppose we have such a tuple with witnesses C1, . . . , Cn. By Γ-niceness, for each
i ∈ X, there is mi ∈ Mi as in the definition. Then [i 7→ mi]U is in ∏ΓMi/U , as
witnessed by gψ(C1, . . . , Cn) and {i ∈ I : Mi |= ψ (mi, f1(i), . . . , fn(i))} ∈ U . By the
induction assumption,

Γ∏
Mi/U � ψ ([i 7→ mi]U , [f1]U , . . . , [fn]U )

as desired. †

Once we have the full strength of Łoś’ Theorem, we are guaranteed the resulting
structure omits the desired types.
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Proposition 2.13 (Type Omission). Suppose the data is Γ-nice (or just Łos’ The-
orem holds). Then ∏ΓMi/U omits each type in Γ.

Proof: Let [f ]U ∈
∏ΓMi/U . This is witnessed by some C. For each p ∈ Γ,

{i ∈ I : Mi � ¬C(p) (f(i))} ∈ U

By Theorem 2.12,
Γ∏
Mi/U � ¬C(p) ([f ]U )

So every element of ∏ΓMi/U does not realize any type from Γ. †

Summarizing our results so far, we have the following.

Corollary 2.14. If the data is Γ-nice, then ∏ΓMi/U is a τ -structure that satisfies
Łoś’ Theorem and omits every type in Γ. In particular, if Mi ∈ EC(T,Γ) for all
i ∈ I, then ∏ΓMi/U ∈ EC(T,Γ).

Proof: By Theorems 2.12 and 2.13. †

We now turn to another method for proving Łoś’ Theorem that seems more ad-
hoc, but has proven more useful in practice (at least in Sections 4 and 5): quantifier
elimination. This method involves directly proving that the Γ-ultraproduct is a
structure that models the theory T and, if T has only partial quantifier elimination,
proving that Łoś’ Theorem holds for the necessary class of formulas. Examples of
this are DLOGZ (Section 4.3) and torsion modules over PIDs (Section 5). This final
example makes use of the full generality of the following proposition since modules
only have quantifier elimination to p. p. formulas.

Proposition 2.15. Fix a collection of formulas ∆. Suppose each Mi � T ,∏ΓMi/U � T , T has quantifier elimination to ∆-formulas, and Łoś’ Theorem for
∆-formulas holds. Then the full Łoś’ Theorem holds.

Proof: Immediate. †

2.3 Ultrapowers
We now turn our attention to ultrapowers, where Mi = M for all i ∈ I. In this
case, set æ : M → ∏ΓMi/U to be the ultrapower map æ(m) = [i 7→ m]U . This
function is well-defined even if ∏ΓMi/U is not a structure, and the statement of
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Łos’ Theorem is equivalent to æ being an elementary embedding. We would also
like to know when this construction gives rise to a proper extension. Unfortunately,
this is not always the case.
Example 2.16. Let U be an ultrafilter on I. Take the ultraproduct of N = 〈ω,+,
·, <〉 omitting p(x) = {x > n : n < ω}; then j : N ∼= ∏pN/U .

Proof: The data is obviously Γ-closed: g+(x, y) = x + y and g·(x, y) = x · y.
This is enough to make the conclusion well-formed, i.e. ∏pN/U is a structure. If
f ∈ ∏pN, then there is some kf < ω such that f(i) < kf for all i ∈ I. Since U is
ω-complete (as are all ultrafilters) and kf is finite, there is some nf < kf such that
{i ∈ I : f(i) = nf} ∈ U . Thus, [f ]U = [i 7→ nf ]U and the mapping h : ∏pN/U → N
by h([f ]U ) = nf is an isomorphism. †

This did not give rise to a new model because the choice function witnessing
f ∈ ∏pN, here characterized by a single natural number, determined which element
of N the function represented. In order to ensure that j is not surjective, we need
to ensure that there are many choices that give rise to the same C. Indeed, this
characterization is reversible.
Theorem 2.17. Suppose M omits Γ. Then the following are equivalent:

1. There is infinite X ⊂ M and choice function C such that, for all m ∈ X and
p ∈ Γ,

M � ¬C(p) (m)

2. There is a nonprincipal ultrafilter U such that j : M → ∏ΓM/U is not sur-
jective.

Proof: For (1) implies (2), let U be any nonprincipal ultrafilter on ω. Then let
f : ω → X enumerate distinct members of X. By definition of X, f ∈ ∏ΓM . Since
U is nonprincipal, f is not U -equal to any constant function. Thus, [f ]U is an extra
element in ∏ΓM/U .
For (2) implies (1), let [f ]U be a new element of ∏ΓM/U . Then, for each m ∈M ,

Xf ∩ {i ∈ I : f(i) = m} 6∈ U

Then f“Xf ⊂ M is infinite and, taking C to be the choice function witnessing
f ∈ ∏ΓM , we have that, for each m ∈ f“Xf and p ∈ Γ,

M � ¬C(p) (m)

†
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Corollary 2.18. If ‖M‖ > ∏
p∈Γ |p|, then there is an ultrafilter U such that j :

M → ∏ΓM/U is not surjective.

Proof: For each x ∈ M , pick a choice function Cx such that, for all p ∈ Γ,
M � ¬Cx(p)(x). There are ∏ |p| many possible values for Cx. Since ‖M‖ is greater
than this, there must be some infinite X ⊂ |M | such that the choice is constant.
Then apply Theorem 2.17. †

Corollary 2.19. Suppose p is countable andM is uncountable. If U is nonprincipal,
then ∏pM/U 6∼= M .

2.4 Changing the language
One strength of the ultraproduct is its robustness under changing the language.
Unfortunately, the Γ-ultraproduct does not share this robustness. However, some
results remain, which gives rise to a form of Γ-compactness in Theorem 3.3, and
there are sometimes natural conditions, such as in Section 4.1, that determine when
the expansions are well-behaved.

As with quantifier elimination, adding constants does not impact the proper-
ties discussed above (Γ-closed, etc.). As an example, we show that Γ-niceness is
preserved.

Proposition 2.20. Suppose {Mi : i ∈ I} is Γ-nice and M∗i is an expansion of Mi

by constants {cj : j < κ} such that, for all j < κ, cMi
j omits each type at the same

place for all i ∈ I; that is, for each p ∈ Γ, there is φj(x) ∈ p such that Mi � ¬φj(cj)
for all i ∈ I. Then {M∗i : i ∈ I} is Γ-nice.

Proof: Let ψ∗(y) = ∃xφ∗(x,y) be an existential formula in the expanded lan-
guage. Then, there are new constants c such that ∃xφ(x,y, c) = ψ(y, c) and φ is
a formula in the original language. Set gψ∗(z) := gψ(z, C̄), where C̄ are the choice
functions for the c; these exist by hypothesis. Then gψ∗ witness the Γ-niceness. †

In general, expanding the language by functions or relations does not preserve
these properties. For instance, an added function might pick out elements that omit
the types “wildly” on a domain that omits the types at the same place. This is
of course unfortunate because these are the expansions that are most often useful.
However, this means that the study of when expanding the language preserves these
properties is of great interest. One example is given in Subsection 4.1. Another
example, given below, shows that this investigation allows us to get compactness
results outside of omitting types classes.
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We will use Q for the quantifier “there exists uncountably many.” Then L(Q)
refers to the extension of the logic L obtained by allowing this quantifier. Set T
to be the L(Q)-theory that says E is an equivalence relations and each class is
countable; this is a first order axiom and ∀x¬QyE(x, y). This is the most basic
example of a quasiminimal class and of a non-finitary AEC (the strong substructure
is substructure plus equivalence classes don’t grow; see Kirby [15] for an explicit
description of this class and overview of quasiminimal classes). Thus, this is not
a type-omitting class, but there is a well-known method that allows the expression
of Lω1,ω(Q) in terms of Lω1,ω in an expanded language (see, for instance, the proof
of [1, Theorem 5.1.8]). This expansion is not canonical and typically gives rise
to non-unary types. However, in this example, the combination of the facts that
the L(Q)-subformula has only one free variable and the fact that the quasiminimal
closure is trivial allows us to get a compactness result.

Expand τ by adding countably many unary predicates {Rn(x) : n < ω} and
expand a model of T by making Rn true of exactly one member of each equivalence
class. Set T ∗ to be the first order part of T plus ∀x∃!y (Rn(y) ∧ E(x, y)) for each
n < ω and set p(x) = {¬Rn(x) : n < ω}. The following is straightforward.

Claim 2.21. Let {Mi : i ∈ I} be models of T and U an ultrafilter on I. If M∗i is
an expansion of Mi to a model of T ∗ omitting p, then

( p∏
M∗i /U

)
� τ � T

and Łoś’ Theorem holds. Moreover, (∏pM∗i /U) � τ does not depend on the choice
of the expansion.

This is a very basic example and the consequences are more easily obtained by
analyzing it as a quasiminimal class. However, it gives hope that more intractable
L(Q) classes can be analyzed via the Γ-ultraproduct.

2.5 A different approach
We have given a construction of∏ΓMi/U that is intimately tied to the ultraproduct.
However, if Γ is a finite set of types, then there is an equivalent way of constructing
the Γ-ultraproduct.

Given a model M and a set Γ of unary types, set the Γ-hull of M to be

Γ(M) := {m ∈M : ∀p ∈ Γ,m does not realize p}

If Γ is finite, then Γ (∏Mi/U) = ∏ΓMi/U . In the study of Γ-hulls, many of the
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same issues arise in the analysis of the Γ-hull as in the analysis of the Γ-ultraproduct,
but with the relationship between Γ(M) and M taking center stage. For instance,
Section 2.2 would be replaced by an exploration of how elementary Γ(M) is in M .

This paper focused on the Γ-ultraproduct over the Γ-hull for two related reasons.
First, the main goal of viewing nonelementary classes as averageable is that some
form of compactness holds there. Thus, working with ultraproducts is very natural.
Second, some classes have a stronger Łoś’ Theorem between {Mi : i ∈ I} and∏ΓMi/U than there is (in general) elementarity between Γ(M) and M . This again
makes ∏ΓMi/U the natural choice. An example of the second is abelian torsion
groups. For instance, tor (Z⊕ Z2) = Z2 and Z ⊕ Z2 are very different, but the full
Łoś’ Theorem holds for the class of torsion abelian groups by Theorem 5.10.

In general, we have, as sets,

Γ∏
Mi/U ⊂ Γ

(∏
Mi/U

)
⊂
∏

Mi/U

It would be interseting to find a nonelementary class and Γ (necessarily infinite)
where the Γ-hull of the ultraproduct was the proper structure to analyze, e.g.,
it is different from the Γ-ultraproduct and the Γ-hull is in the class, but the Γ-
ultraproduct is not.

3 Averageable Classes
We now consider classes that are well behaved under the Γ-ultraproduct. We use the
language of Abstract Elementary Classes (AECs) here; Baldwin [1], Grossberg [11],
and Shelah [21] are the standard references. The main object of study are classes
K of models that omit all types from Γ such that all sets of models from K are Γ-
closed or Γ-nice and such that the strong substructure relation under consideration
is preserved under Γ-ultraproducts. The examples we consider all fall into one of
two cases:

1. (EC(T,Γ),⊂) when T is ∃∀, the types of Γ are existential, and EC(T,Γ) is
Γ-closed.

2. (EC(T,Γ),≺) when EC(T,Γ) is Γ-nice.
The reader can easily focus on these, but we introduce a joint generalization of these
cases to keep from stating our results twice and for potential future applications.
Definition 3.1. A class (K,≺K) is averageable iff there is a collection of first-order
formulas FK = F that contains all atomic formulas and a collection of unary types
Γ such that
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• for all φ(x) ∈ p ∈ Γ, ¬φ(x) ∈ F ;

• the strong substructure ≺K is F-elementary substructure;

• given any {Mi ∈ K : i ∈ I} and any ultrafilter U on I, ∏ΓMi/U ∈ K and this
Γ-ultraproduct satisfies Łoś’ Theorem for the formulas in F ; and

• each M ∈ K omits each p ∈ Γ.

Being an averageable class gives a very strong compactness result within the
incompact framework of AECs; this was seen using large cardinals in Boney [5] and
exploited in Boney and Grossberg [9] axiomatically.

The first property of averageable classes is a (much) better Hanf number.

Proposition 3.2. Suppose that K is averageable and set κ = ∏ |p|. Then K>κ has
no maximal models.

This follows directly from Corollary 2.18. The normal Hanf number is i(2|T |)+ ,
while ∏ |p| ≤ 2|T |.

A stronger result builds on Proposition 2.20. Because they omit types, aver-
ageable classes are not compact. However, they satisfy a strong approximation to
compactness that we call local compactness.

Theorem 3.3 (Local Compactness). Suppose that (EC(T,Γ),≺) is an averageable
class with F ; T ∗ is an extension of T in τ∗ := τ(T ) ∪ {ci : i < κ} such that each
new sentence of T ∗ comes from substituting new constants into a formula from F ;
and choice functions {Ci : i < κ} on Γ with T0 = {¬Ci(p) (ci) : i < κ, p ∈ Γ}.

If, for every finite T− ⊂ T ∗, there is M∗ � T− ∪ T0 that omits all of Γ, then T ∗
has a model omitting all of Γ.

Looking at the space gSn(∅) of syntactic n-types that are realized in some model
of EC(T,Γ) when Γ is finite leads to the name local compactness. Equip this space
with the logic topology, where the basic open sets are

JφK := {q ∈ gSn(∅) : φ ∈ q}

Then this space is not compact unless Γ is trivial. But it is locally compact: if
p ∈ gSn(∅) and C1, . . . , Cn are the corresponding choice functions, then

t
∧

p∈Γ,i<n
¬Ci(p)((xi)

|
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is a compact clopen neighborhood of p, with the compactness of the neighbor-
hood following by the theorem. When n or Γ is infinite, this set is no longer clopen
(so the space is no longer locally compact), but the set above is still compact and
typically contains more than just p.

Proof: For each finite T− ⊂ T ∗, let M∗T− be the model advertised in the hy-
pothesis and let MT− be its restriction to τ(T ). Let U be a fine ultrafilter on PωT ∗;
recall that fineness means that [φ∗] := {s ∈ PωT ∗ : φ∗ ∈ s} is in U for each φ∗ ∈ T ∗.
Set

M :=
Γ∏

T−∈PωT ∗
MT−/U

By averageability, M ∈ EC(T,Γ) and Łoś’ Theorem holds for F . Now expand M
to a τ∗ structure M∗ by setting cM∗i := [T− 7→ c

M∗
T−

i ]U . Note that Ci is the witness
to cM∗i ∈M , so this is a valid definition.

Now we claim that M∗ is the model satisfying T ∗ and omitting Γ. Since M ∈
EC(T,Γ), it satisfies T and omits Γ and naming additional constants does not change
this. Let φ ∈ T ∗ be a new sentence. Then it is of the form ψ(ci1 , . . . , cin) for some
ψ ∈ F . By the fineness of the ultrafilter,

[φ] = {T− ∈ PωT ∗ : MT− � ψ(c
M∗
T−

i1 , . . . , c
M∗
T−

in
)} ∈ U

Since Łoś’ Theorem holds for ψ, this means that

M∗ � ψ
(
cM
∗

i1 , . . . , cM
∗

in

)

Since this holds for every φ ∈ T ∗, we have M∗ � T ∗, as desired. †

Although complex to parse, local compactness has a very nice corollary.

Corollary 3.4. Suppose EC(T,Γ) is Γ-nice and p is a type such that every finite
subset is a realizable in a model of EC(T,Γ) with some fixed witness. Then p is
realized in a model of EC(T,Γ).

Many other uses of compactness follow similarly, such as a criteria for amalga-
mation similar to first-order (see [14, Theorem 6.5.1]).

Corollary 3.5. Suppose EC(T,Γ) is Γ-nice. Then it has amalgamation.

Indeed, much of the rest of this section is more easily proven with the local
compactness result above. However, we have lost some generality by restricting
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ourselves to averageable classes of the form EC(T,Γ). For instance, this excludes
the L(Q)-axiomatizable class discussed in Section 2.4. Although this is the form
of our examples, we prove the following results in greater generality and, therefore,
without local compactness.

Following [5], we get the following result about tameness and type shortness.
Tameness and type shortness are locality results for Galois types. We only prove
type shortness (and not the tameness which follows), so we define that here. For
full definitions, see, e.g., [5, Section 3].

Definition 3.6. Let (K,≺K) be an AEC and I a linear order.

• Given M ≺K N1, N2 from K and 〈x`i | i ∈ I〉, we say that
(
〈x1
i | i ∈ I〉,M,N1

)
EAT

(
〈x2
i | i ∈ I〉,M,N2

)

iff there is N∗ ∈ K and g` : N` →M N∗ such that g1(x1
i ) = g2(x2

i ) for all i ∈ I.

• Given M ≺K N1, N2 from K and 〈x`i | i ∈ I〉, we say that
(〈x1

i | i ∈ I〉,M,N1
)

and
(〈x2

i | i ∈ I〉,M,N2
)
have the same Galois type, written

gtp(〈x1
i | i ∈ I〉/M ;N1) = gtp(〈x2

i | i ∈ I〉/M ;N2)

iff they are related by the transitive closure of EAT . The length of the Galois
type gtp(〈x1

i | i ∈ I〉/M ;N1) is the index I

• K is fully < κ-type short iff for all I and for all Galois types gtp(〈x1
i | i ∈

I〉/M ;N1) and gtp(〈x2
i | i ∈ I〉/M ;N2), we have

gtp(〈x1
i | i ∈ I〉/M ;N1) = gtp(〈x2

i | i ∈ I〉/M ;N2)

iff for all I0 ⊂ I of size < κ

gtp(〈x1
i | i ∈ I0〉/M ;N1) = gtp(〈x2

i | i ∈ I0〉/M ;N2)

Note that, if K satisfies amalgamation, then EAT is already transitive. Full < ω-
type shortness follows from the assertion that Galois types are syntactic (in some
sublogic of L∞,ω). For examples of AECs that are not type short, see Baldwin-
Shelah [2].

Theorem 3.7. Suppose K is averageable. Then K is fully < ω-tame and -type short.
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This relies on the following lemma, which says that the ultraproduct of K-
embeddings is also a K-embedding. Recall that averageability means there is a
fragment FK so the K-embeddings are precisely the FK-elementary ones.

Lemma 3.8. Suppose that 〈Mi : i ∈ I〉 and 〈Ni : i ∈ I〉 and fi : Mi → Ni is a
K-embedding. Then f : ∏ΓMi/U →

∏ΓNi/U by f([i 7→ mi]U ) = [i 7→ fi(mi)]U is
a K-embedding.

Proof: First, we need to know that [i 7→ fi(mi)]U is in ∏ΓNi/U . This is true
because, by the FK-elementarity of each fi,

Mi � ¬φjk(mi) =⇒ Ni � ¬φjk(fi(mi))

So k([i 7→ mi]U ) is a witness for [i 7→ fi(mi)]U . Thus f is a K-embedding. †

Proof of Theorem 3.7: We prove the type shortness and note that it implies
the tameness by [5, Theorem 3.5]. Since we are not assuming amalgamation, we will
show type shortness holds for atomic Galois equivalence. Suppose that X = 〈xi ∈
M1 : i ∈ I〉 and Y = 〈yi ∈M2 : i ∈ I〉 are given such that, for all I0 ∈ PωI,

(〈xi : i ∈ I0〉/∅;M1)EAT (〈yi : i ∈ I0〉/∅;M2)

That is, there is NI0 ∈ K and f `I0 : M` → NI0 such that f1
I0(xi) = f2

I0(yi) for all
i ∈ I0. Let U be a fine ultrafilter on PωI. Then, following [5], set

• N = ∏Γ
I0∈PωI NI0/U ;

• f ` : M` → N is given by f `(m) = [I0 7→ f `I0(m)]U

N is well-defined by hypothesis and f ` is a K-embedding by Lemma 3.8. For
each i ∈ I, {I0 ∈ PωI : f1

I0(xi) = f2
I0(yi)} contains [i] := {I0 ∈ PωI : i ∈ I0} ∈ U by

the fineness. So f1(xi) = f2(yi) for all i ∈ I. Then

(X/∅;M1)EAT (Y/∅;M2)

†

We now look at some stability theory. Following [9], we can define two notions of
coheir. There are two because the syntactic notion of type from the formulas F and
the Galois notion of type from considering K as an AEC do not necessarily coincide,
although having the same Galois type implies having the same F-type

477



Boney

The first is Galois coheir
Gal

^ (this could also be called s-coheir). In this case, we
consider Galois types over finite domains. When Galois types are syntactic, these
are complete syntactic types over a finite set. The second is t-coheir

t

^, which is
more like the first order version.

Definition 3.9. Let K be an averageable class.

1. Given A,B,C ⊂M with M ∈ K, we say A
Gal

^
C

MB iff

for all finite a ∈ A, b ∈ B, c ∈ C, gtp(a/bc) is realized in C.

2. K has the weak Galois order property iff there are finite tuples 〈ai, bi ∈ M :
i < ω〉 and c and types p 6= q ∈ gS(c) such that, for all i, j < ω,

j < i =⇒ aibj � q

j ≥ i =⇒ aibj � p

3. Given A,B,C ⊂M , we say A
t

^
C

MB iff

for all finite a ∈ A, b ∈ B, c ∈ C and φ(x, y, z) ∈ FK, if M � φ(a, b, c), then
there is c′ ∈ C such that M � φ(c′, b, c).

4. K has the weak order property iff there are finite tuples 〈ai, bi ∈ M : i < ω〉
and a formula φ(x, y, c) ∈ FK with c ∈M such that, for all i, j < ω,

j < i ⇐⇒ M � φ(ai, bj , c)

Note that we have begun talking about Galois types over sets even though we
only have amalgamation over models. This adds some additional dificulties, but we
are careful to avoid them here. The adjective ‘weak’ in describing the order property
means that we only require ω length orders, rather than all ordinal lengths as in
Shelah [23].

This ultraproduct allows us to weaken the requirements on getting this to be an
independence relation the same way as in [9, Section 8].

Theorem 3.10. If K is an averageable class with amalgamation that doesn’t have

the weak Galois order property and every model is ℵ0-Galois saturated, then
Gal

^ is
an independence relation in the sense of [9].
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Theorem 3.11. If K is an averageable class with amalgamation that doesn’t have
the weak order property and F is first-order logic, then

t

^ is an independence relation
in the sense of [9].

Note that neither of these coheir’s are precisely the definition given in [9]: [9] only

considered Galois types over models (so
Gal

^ was not used) and there was no logic

to choose (so
t

^ was not possible). Nonetheless, the proofs of the above theorems
go through the same arguments as in [9, Theorem 5.1]. The changes are minor,
so we omit the details. The interested reader can find the details on the author’s
website [6]; the above results are Theorems 6 and 10, respectively, from there. Note

that an advantage of using
t

^ is that Existence holds for free when F is closed
under existentials, although the disadvantadge is that

t

^ doesn’t always have the
semantic consequences often desired when dealing with types, that is, if working in
a class where syntactic types are not Galois types. Additionally, with a little more
stability, [10] shows that the two notions are the same if all models are ℵ0-Galois
saturated.

We have so far seen that averageable classes are very much like elementary
classes. The following result is a further restriction on the behavior of averageable
classes. It is easy to construct an averageable class with only a single model; take
the standard model of arithmetic. For general Abstract Elementary Classes, there
are many more possibilities for the spectrum function of a class without arbitrarily
large models. However, the following result shows that, in the case of averageable
classes, there are not.

Theorem 3.12. Let Γ be a finite set of countable existential types and let M be a
structure omitting Γ that is Γ-closed. Then, either

(a) every τ structure omitting Γ and satisfying the same ∃∀-theory as M is iso-
morphic to M ; or

(b) there are ⊂-extensions of M of all sizes, each satisfying the same ∃∀-theory.
If Γ consists of just quantifier free types, then the requirement in (a) can be relaxed
to just the same ∃- and ∀-theory.

We have stated the theorem in the simplest case. However, variations are possible
that strengthen the amount of Łoś’ Theorem that holds and strengthen the similarity
between the models; this means that it can be applied to situations such as DLOGZ
or torsion modules over PIDs. However, the countability of Γ remains crucial for
the proof.
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Theorem 3.13. Let Γ be a finite set of countable types and let M be a structure
omitting Γ that is Γ-nice. Then, either

(a) every τ structure omitting Γ and elementarily equivalent to M is isomorphic
to M ; or

(b) there are ≺-extensions of M of all sizes.

Proof of Theorem 3.12: Enumerate each p ∈ Γ as {φpn(x) : n < ω}. Set

ψ`(x) := ∧p∈Γ ∨n<` ¬φpn(x)

We use these formulas to measure the type omission of all types of Γ jointly. Recall
from Theorem 2.17, that the Γ-ultraproduct produces a proper extension if there is
an infinite subset of M that all satisfy the same ψ`. This property separates our
cases:

There is `0 < ω such that ψ`0(ω) is infinite. (*)

First, suppose property (*) fails; we will show that (a) holds. For each ` < ω,
ψ`(M) is finite. Thus, M is countable and we can enumerate it as {mi : i < ω}. For
each i < ω, pick some `i such that M � ψ`i(mi). Then, define

k` = |{n < ω : `i = `}|
K` = |ψ`(M)|

Note k` ≤ K` < ω.
Let N be a model omitting Γ and having the same ∃∀-theory as M . Note that

∃x0, . . . , xK`−1


 ∧

i<K`

ψ`(xi)




∀x0, . . . , xK`


 ∧

i≤K`
ψ`(xi)→

∨

i 6=j≤K`
xi = xj




are both ∃∀-sentences, so |ψ`(N)| = |ψ`(M)|. In particular, N is also countable. We
want to define bijections between these sets that fit together to be an isomorphism
between the entire models; this is done through a finite injury-style argument.

We construct sequences {kLi : i < L} for L < ω such that

1. for each L < ω, we have tpqf (mi : i < L) = tpqf (kLi : i < L) and, for all ` < ω,

M � ψ`(mi) ⇐⇒ N � ψ`(kLi )
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2. for each i < ω, the sequence 〈kLi : i < L < ω〉 eventually stabilizes.

This is enough: For i < ω, set ki to be the eventual value of 〈kLi : i < L < ω〉.
Our isomorphism f will take mi to ki. This is an isomorphism onto its range by the
first part of (1). Furthermore, by the second part of (1),

|ψ`(M)| = |ψ`(N) ∩ f(M)| = |ψ`(N)|

Since the ψ`(N) are finite and exhaust N , we have f(M) = N . Thus, M ∼= N , as
desired.

Construction: The following claim is key.
Claim: For all m ∈ M , there is n ∈ N such that tpqf (m) = tpqf (n) and N �

ψ`∗i (ki), where `
∗
i is the picked witness for mi, the ith member of m.

Suppose not. Let

N∗ = {n′ ∈ `(m)N : ∀i.N � ψ`∗i (n
′
i)}

Note that N∗ is finite. Then, for each n′ ∈ N∗, there is a quantifier-free φn′(x) that
holds of m, but not of n′. Set

ψ := ∃x

∧

i

ψ`∗i (xi) ∧
∧

n′∈N∗
φn′(x)




This is an ∃(¬Γ)-sentence satisfied by M and not by N , a contradiction. Thus, the
claim is proved.

Now we are ready to build {kLi : i < l} by induction on L < ω.
Set k1

0 to satisfy the same qf-type as m0 and satisfy the appropriate ψ`.
For L > 1, the above Claim says that there is at least one sequence satisfying (1)

for m0, . . . ,mL−1. Pick {kLi : i < L} to be the sequence satisfying (1) that agrees
with the largest possible initial segment of {kL−1

i : i < L− 1}.
It is clear that this construction satisfies (1). To see it satisfies (2), note that

there are only finitely many choices for the ith element. Thus, if an initial segment
changed infinitely often, it would necessarily repeat; however, repetition is forbidden
by the construction.

Second, suppose property (*) holds; we will show that (b) holds. We know that
the Γ-ultraproduct is a proper extension. We will iterate this.

For each ordinal, we will construct Mα ≡∃(¬Γ) M that omits Γ and a coherent
set of nonsurjective embeddings fβ,α : Mβ →Mα for β < α.

For α = 0, set M0 = M .
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For α = β + 1, set Mα := ∏ΓMβ/U , for U a nonprincipal ultrafilter on ω. Note
that this is a structure since the data is Γ-closed by Proposition 2.4 and Proposition
2.7.(2). Then the ultrapower map j is a nonsurjective embedding. Set fγ,α = j ◦fγ,β
for each γ ≤ β.

For α limit. Let U be a nonprinicipal uniform ultrafilter on α and set Mα :=∏Γ
βMβ/U ; note that this is a Γ-ultraproduct rather than a Γ-ultrapower. Again,

this is a structure. This shares the same ∃(¬Γ) theory of the Mβ’s.
Define fβ,α : Mβ →Mα by fβ,α(m) = [gmβ,α]U where

gmβ,α(γ) =
{
fβ,γ(m) β ≤ γ < α

0 γ < β

Then this is a nonsurjective K-embedding such that fβ,α = fγ,α ◦ fβ,γ .
Since this chain is increasing, Mα ≥ |M |+ |α|, giving us the desired result. †

4 Examples

We now give several examples of type-omitting classes EC(T,Γ) for which our con-
struction gives some compactness results. The meaning of “some compactness re-
sults” is left vague, but the general behavior is that these are averageable classes for
the appropriate fragment F . Another class of examples from torsion modules over
PIDs is discussed in the next section.

As a final cautionary example, we discuss the case of Archimedean fields. Typ-
ically, Archimedean fields are presented as ordered fields omitting the type of an
infinite element p∞(x) = {x > n · 1 : n < ω}. However, if we take the theory of
fields (of characteristic 0) and this type, then the data is not even p-closed: the
p∞-ultraproduct has no positive infinite element, but does have infinitesimals and a
negative infinite element; thus it’s not closed under the field operations. Thus, to fit
into this framework, Γ must contain continuum many types, one each to explicitly
omit the positive and negative infinite elements and the infinitesimal elements above
and below each standard element. After these types are added, the class is Γ-closed
with R as a maximal model of size 2ℵ0 = |R| (this maximality agrees nicely with
Theorem 2.17).

Another example along these lines is to consider differentially closed fields where
every element is differentially algebraic over the constants (so it omits the type of a
differential transcendental).
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4.1 Banach Spaces
Banach spaces are the motivating example from this work: viewing continuous first-
order logic as a certain fragment of Lω1,ω (see Boney [7]) lead to viewing the Banach
space ultraproduct as one that, in part, omits unbounded elements by simply ex-
cluding them. We outline how this can be put into this framework.

Let τb = 〈B,R; +B, 0B; +R, ·R, 0R, 1R, <R, cr; ‖ · ‖, ·scalar〉r∈R be the two sorted
language of normed linear spaces. Then Tb says that

• {cr : r ∈ R} is a copy of R; and

• B is a vector space over R, with norm ‖ · ‖ : B → R.

We want to ensure that, in the ultraproduct, R and B each have no nonstandard
elements, i.e., omit the type of an element of R that is not some cr. Similar to the
case of Archimedean fields, it is not enough to omit a single type; instead every
nonnegative real must have a types specifying there is no nonstandard real around
it and a type specifying there are not Banach space elements that would be mapped
to such an element.

• p∞(x) = {R(x) ∧ (x < −n ∨ n < x) : n < ω};

• pr(x) = {R(x) ∧ (x 6= cr) ∧ (cr− 1
n
< x < cr+ 1

n
) : n < ω} for r ∈ R;

• q∞(x) = {B(x) ∧ (‖x‖ < −n ∨ n < ‖x‖) : n < ω}; and

• qr(x) = {B(x) ∧ (‖x‖ 6= cr) ∧ (cr− 1
n
< x < cr+ 1

n
) : n < ω}.

Set Γ = {pr(x) : r ∈ R ∪ {∞}} ∪ {qr(x) : r ∈ R≥0 ∪ {∞}}. We omit the details,
but EC(Tb,Γ) is Γ-closed: the key details is that the standard real number that two
sequences correspond to can be used to calculate the standard real number their
sum or product corresponds to. This means that the Universal Łoś’ Theorem holds.
Additionally, by Observation 2.9, the class of formulas which Łoś’ Theorem holds is
closed under “bounded quantification,” that is, of the form

∃x (φ(x,y) ∧ ‖x‖ < c)

for some c > 0.
Comparing this with first-order continuous logic, there is not a requirement that

the space be of bounded diameter. Moreover, the condition above recovers some of
the results from Ben Yaacov [3] about unbounded metric spaces.
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Other results for continuous logic can be recovered through these methods. For
instance, when trying to extend the language τb and preserve the Γ-closedness of the
class, the relevant condition turns out to be uniform continuity of the function or
relation, which agrees with the results from continuous first-order logic. Additionally,
a continuous version of the Γ-ultraproduct can be developed along the same lines.

4.2 Abelian Torsion Groups
Let τg = {+, 0,−·} and Tag be the theory of abelian groups, where −· is the additive
inverse. Abelian torsion groups are models of Tag that omit tor(x) = {n · x 6= 0 :
n < ω}. We claim that abelian torsion groups are tor-closed.
Proposition 4.1. If G is an abelian group, then it is tor-closed.

Proof: Given g ∈ G, we have that G � ¬(n · g 6= 0) exactly when o(g) | n. Since
o(g) = o(−g) and o(g1 + g2) = lcm(o(g1), o(g2)) | o(g1)o(g2), setting g−(n) = n and
g+(n,m) = nm shows that G is tor-closed. †

A more in depth analysis shows the full Łoś’ Theorem holds in the wider class
of torsion modules over a PID.

4.3 DLOGZ
We consider the theory of densely ordered abelian groups2 with the infinitary prop-
erty of having a cofinal Z-chain. The first order part of this theory was first shown
to have quantifier elimination by Skolem [26]3. We will show that the first order
portion of the theory is preserved by the appropriate p-ultraproduct, and then use
quantifier elimination to bootstrap the full version of Łoś’ Theorem.

Set T := Th(Q, <,+,−, 0, 1, n)n∈Z and Z(x) := {x ≤ cn or cm ≤ x : n < m ∈
Z}, where cn is the constant representing n. By a model of DLOGZ, we mean a
model of T that omits Z, i.e. one where {cn : n ∈ Z} is a discrete, countable
sequence that is cofinal in both directions. This theory has quantifier elimination
and is axiomatized by the axioms for an ordered, uniquely divisible, torsion-free
abelian group that is dense as an ordering and the elementary diagram of (Z,+, <).
Proposition 4.2. (EC(T,Z),≺) is closed under Z-ultraproducts and they satisfy
Łoś’ Theorem. Morever, this is a class with amalgamation where Galois types are
syntactic.

2Note that the group structure is not crucial here, and the same analysis could be done with
the theory of dense linear orders with a cofinal Z-chain.

3For a little more history, see the introduction of Hieronymi [13]. Also, Miller [18] contains a
proof and is more easily accessible than Skolem’s original
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Proof: Let Mi be a model of DLOGZ for each i ∈ I and let U be an ultrafilter
on I.

Claim 4.3. ∏ZMi/U is a structure that models T .

Proof: We have to show that it contains the constants and is closed under
functions. Each cn is represented by [i 7→ cMi

n ]U , which fails to satisfy “x ≤
cn−1 or cn+1 ≤ x” everywhere. Next we look at addition; subtraction is similar.
Let [f ]U , [g]U ∈

∏ZMi/U that are witnessed by

cnf < [f ]U < cmf
cng < [g]U < cmg

Then [f ]U + [g]U = [f + g]U ∈
∏ZMi/U as witnessed by

cnf+g = cnf + cng < [f ]U + [g]U < cmf + cmg = cmf+g

Since ∏ZMi/U is a structure, we now wish to show it models T . We know ∃∀-
sentences transfer, so we only need to show that the existentials in the divisibility
of the group and denseness of the order hold.
For the divisibility, suppose [f ]U ∈

∏ZMi/U and k < ω such that there is X ∈ U
and nf < mf ∈ Z such that, for all i ∈ X, Mi � cnf < f(i) < cng . Then, for each
i ∈ I, there is f

k (i) ∈Mi such that

Mi � k ·
f

k
(i) = f(i) ∧ (c−|nf |−|mf | <

f

k
(i) < c|nf |+|mf |

For the denseness, suppose [f ]U , [g]U ∈
∏ZMi/U such that ∏ZMi/U � [f ]u < [g]U .

Thus, there is X ∈ U and nf < mf , ng < mg ∈ Z such that, for all i ∈ X, we have

1. Mi � f(i) < g(i);

2. Mi � cnf < f(i) < cmf ; and

3. Mi � cng < g(i) < cmg .

We can find h ∈ ∏Mi such that Mi � f(i) < h(i) < g(i). For i ∈ X, we have
Mi � cnf < h(i) < cng . Thus, [h]U ∈

∏ZMi/U and ∏ZMi/U � [f ]U < [h]U < [g]U .

Claim 4.4. The Z-ultraproduct satisfies Łoś’ Theorem.

This follows by Proposition 2.15 and quantifier elimination.
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Second, we show that the class has amalgamation and that Galois types are
syntactic. Note that, by definition of the class, having the same Galois type implies
having the same syntactic type. Let M0 ≺ M1,M2 ∈ EC(T,Z), possibly with
a` ∈ M` such that tp(a1/M0;M1) = tp(a2/M0;M2). Then, since the elementary
class of models of T has amalgamation and has that syntactic types are Galois
types, there is N∗ � T and f` : M` →M0 N∗ such that, if we are dealing with
types, f1(a1) = f2(a2). N∗ might realize p, but set N to be the substructure of
N∗ with universe {x ∈ N | ∃n,m ∈ Z.N∗ � cn < x < cm}. This is a substructure
of N∗ that models T , contains f1(M1) and f2(M2), and omits p. By quantifier
elimination, these inclusions are actually elementary substructure. Thus N is the
desired amalgam. Additionally, if we are dealing with the type statement, f1(a1) =
f2(a2), so gtp(a1/M0;M1) = gtp(a2/M0;M2) as desired. †

This example can be generalized by looking at ordered R-vector spaces over an
ordered division ring R rather than just ordered divisible abelian group. By [27,
Corollary 1.(7.8)], this wider class also has quantifier elimination and the argument
works in the same way.

4.4 Multi-sorted first order logic
Take a multi-sorted language τ with sorts {Sα : α < κ} and a theory T . There is
a natural correspondence between multi-sorted models of T and models of a (non-
sorted) first-order theory T ∗ in the language τ∗ := τ ∪ {Sα : α < κ} that omit the
type sort(x) := {¬Sα(x) : α < κ}. Then, the class EC(T ∗, sort) is not sort-nice,
but is still well-behaved with respect to the sort-ultraproduct in the following sense.

Proposition 4.5. EC(T ∗, sort) satisfies Łoś’ Theorem with respect to τ∗ formulas
that come from sorted τ formulas.

Proof: First, we observe that the class is sort-closed: if F be a function of τ ,
then T ∗ determines the sort of F applied to any valid input. This means that a the
universal Łoś’ Theorem holds. Moreover, suppose that ∃xφ(x,y) is a τ∗ formula
that comes from a sorted τ formula. Then, this formula determines which sort
a witness x would be in. This is precisely the information required to define the
function g∃xφ(x,y); note that it is a constant function. Thus, the set of formulas that
EC(T ∗, sort) satisfies Łoś’ Theorem with contain all quantifier-free τ∗ formulas that
come from sorted τ formulas and is closed under exstentials. By applying Remark
2.6, this extends to the class of all formulas coming from sorted τ formulas, as
desired. †

This allows one to read off the normal compactness results of sorted first-order
logic from the results of this paper; moreover, Theorem 3.12 means that a sorted
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model has proper elementary extensions iff one of the sorts has infinite size. Indeed,
this correspondence seems to go both ways and one could likely perform the same
analysis in this paper by looking at which EC classes are “sortable.”

4.5 Highly Complete Ultrafilters
Our final example shows that, if there are very complete ultraproducts, then this
new ultraproduct coincides with the classic one.

Theorem 4.6. If U is χ-complete, χ > |Γ|, and χ > |p| for all p ∈ Γ, then∏ΓMi/U = ∏
Mi/U .

Proof: We always have ∏ΓMi ⊂
∏
Mi. Let f ∈ ∏Mi. We want to show f ∈∏ΓMi by finding a witness. For each φ ∈ p ∈ Γ, set Xf,p

φ := {i ∈ I : Mi � ¬φ(f(i))}.
For each p ∈ Γ, I is the union of {Xf,p

φ : φ ∈ p}. Since |p| < χ, there is some φp
such that Xf,p

φp
∈ U . Then

Xf = ∩p∈ΓX
f,p
φp
∈ U

shows that the map p 7→ φp is a witness. Thus ∏ΓMi = ∏
Mi. †

Note that, if κ is some large cardinal giving rise to κ-complete ultrafilters and τ
is averageable with respect to κ-complete ultrafilters, then τ will satisfy the relevant
parts of the last section with κ in place of ω; see [5] and [9, Section 8] for what is
relevant.

5 Torsion Modules
In this section, we explore the previous results applied to torsion modules over PIDs
and apply some results for nonelementary stability theory. The stability theoretic
results are not deep (and probably follow from results about modules and other
properties of torsion modules), but we intend this to show what can be done.

5.1 The Torsion Ultraproduct
For this subsection, assume that R is a commutative ring with unity.4

We review some basics of the model theory of modules, using Prest [19] as the
reference. The language is τR = 〈+, r·,−, 0〉r∈R. Then the theory of R-modules TR

4The following weakening of commutativity is also sufficient: ∀x∀y∃z(xy = zx). Then we can
take the ultraproduct of left torsion modules.

487



Boney

is the statement of all of the module axioms; note that this is a universal theory.
Given a module M and m ∈M , set

OM (m) := {r ∈ R : r ·m = 0 and r is regular}

Recall that regular elements are those that are not zero divisors. We drop the M
if it is clear. If this set is non-empty and m 6= 0, then m is a torsion element and
every element of O(m) is called an order of m. If every element of M is a torsion
element, then M is a torsion module.

Note that Shelah [24] has recently explored the more general behavior of Lλ,µ-
theories of modules, but does not deal with compactness or nonforking5.

Set tor(x) = {r · x 6= 0 : r ∈ R and r is regular} to be the type of a torsion-free
element. Let {Mi : i ∈ I} be a collection of torsion modules (i.e. modules that omit
tor) and let U be an ultrafilter on I. Then the tor-ultraproduct is

tor∏
Mi/U := {[f ]U : f ∈

∏
Mi and there is Xf ∈ U and rf ∈ R

such that rf ∈ OMi(mi) for all i ∈ Xf}

Proposition 5.1. EC(TR, tor) is tor-closed and the universal Łoś’ Theorem holds.

Proof: Note that the first part implies the second by Theorem 2.5.
We need to construct functions that tell us the order of a sum, etc. based on the

order of the inputs. For later use, we do more: for each τR-term τ(x), we inductively
construct fτ : R`(x) → R such that f ′′τ

∏O(mi) ⊂ O(τ(m0, . . . ,mn−1))

• if τ(x) = xi, then fτ (r) = ri;

• if τ = s · σ, then fτ = fσ;

• if τ = σ + χ, then fτ = fσfχ; and

• if τ = −σ, then fτ = fσ.

Thus, EC(TR, tor) is tor-closed..
In fact, in this case, we have ∏torMi/U is precisely the torsion subgroup of

the full ultraproduct ∏Mi/U . Thus, the construction of the tor-ultraproduct is
not new, but we can use the results from earlier sections and the model theory of
modules to get some new results.

Further study of the ultraproduct requires specialization to PIDs, but we already
have the following dividing line for modules. Roughly, this says that, given a torsion

5 [24] says he intends to deal with nonforking in [25], but this has yet to appear.
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module over a countable commutative ring, either it is the only torsion module like
it or there are torsion modules like it of all sizes.

Corollary 5.2. Let M be a torsion module over a countable, commutative ring.
Then either

1. every torsion module that is ∃- and ∀-equivalent to M is in fact isomorphic to
M ; or

2. there are torsion ⊂∀-extensions of M of all sizes (in fact, the all model the
same ∃∀ theory).

Note that there is no explicitly stated restriction on the size of the module in
(1), but M will necessarily be countable as will any torsion module ∀-equivalent to
it.

Proof: This is Theorem 3.12 in this context. †

5.2 Torsion Compactness over PIDs
For the remained of this subsection, assume that R is a principal ideal domain. Note
that PIDs are integral domains, so all nonzero elements are regular.

The goal of this subsection is to prove Łoś’ Theorem for elementarily equivalent
modules. The proof of this uses Proposition 2.15 and has two steps:

1. recall that TR has p. p. elimination of quantifiers; and

2. show that Łoś’ Theorem holds for p. p. formulas (and a little more).

We need to recall the key facts about p. p. elimination of quantifiers.

Definition 5.3. φ(x) is a p. p. (primitive positive) formula iff it is a conjunction
of formulas of the form pn | τ(x) and τ(x) = 0 for a term τ , a prime p ∈ R, and
n < ω.

Note that p. p. formulas have a more general definition (see [19, Section 2] for
the more general definition and a deeper discussion of their role in the model thoery
of modules), but this is an equivalent formulation in PIDs ( [19, Theorem 2.Z1]).
Indeed this formulation is the key reason we have specified to PIDs as it allows us
to prove Łoś’ Theorem for p. p. formulas. Note that Shelah [24, Theorem 2.4] has a
much more general version of this result for Lλ,θ-theories of modules (note he calls
these formulas p. e. or “positive existential”), but the first-order version suffices.
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Given a complete theory of a module, all formulas are equivalent to a boolean
combination of p. p. formulas. However, a more precise result involving invariants
conditions is true.

Definition 5.4. Given a module and p. p. formulas φ(x) and ψ(x), set
Inv(M,φ, ψ) = |φ(M)/φ(M) ∩ ψ(M)|. An invariants condition is the assertion
that Inv(M,φ, ψ) is either greater than or less than some k < ω.

Fact 5.5 ( [19].2.13). If φ(x) is a formula, then there is a boolean combination of
invariants conditions σ and a boolean combination of p. p. formulas ψ(x) such that

TR ` ∀x(φ(x) ⇐⇒ (σ ∧ ψ(x)))

Lemma 5.6. Suppose allMi are elementarily equivalent. Given [f0]U , . . . , [fn−1]U ∈∏torMi/U and p. p. φ(x),

{i ∈ I : Mi � φ(f0(i), fn−1(i))} ∈ U ⇐⇒
tor∏
Mi/U � φ([f0]U , . . . , [fn−1]U )

Proof: Note that ¬φ(x) is universal, so right to left follows from Theorem 5.1
above. For the other direction, suppose φ(x) is of the following form:

∧

j<m

(∃yj .pnjj · yj = τj(x)) ∧
∧

j<m′
(σj(x) = 0)

and that Y := {i ∈ I : Mi � φ(f0(i), . . . , fn−1(i))} ∈ U . The difficulty is establishing
that the existential witnesses lie in the tor-ultraproduct. By the definition of the
tor-ultraproduct, each parameter [fk]U has some fixed order on a U -large set, say
rk ∈ OMi(fk(i)) for all i ∈ Xk ∈ U . Then r := fτi(r0, . . . , rn−1) will be an order for
them on X := ∩k<nXk; recall that fτ was constructed in the proof of Proposition
5.1.

For each i ∈ Y and j < m, find mi
j such that

Mi � pnjj ·mi
j = τj(f0(i), . . . , fn−1(i))

Then r is also an order for each mi
j when i ∈ X. We define gj ∈

∏
Mi by

gj(i) =
{
mi
j if i ∈ X ∩ Y

0 otherwise
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Then r and X ∩ Y ∈ U witness that [gj ]U ∈
∏torMi/U for each j < m and

tor∏
Mi/U � pnjj · [gj ]U = τj([f0]U , . . . , [fn−1]U )

Thus, ∏torMi/U � φ([f0]U , . . . , [fn−1]U ), as desired.

We can easily extend this result to boolean combinations of p. p. formulas.

Corollary 5.7. Suppose Mi are elementarily equivalent. Given [f0]U , . . . , [fn−1]U ∈∏torMi/U and a boolean combination of p. p. φ(x),

{i ∈ I : Mi � φ(f0(i), . . . , fn−1(i))} ∈ U ⇐⇒
tor∏
Mi/U � φ([f0]U , . . . , [fn−1]U )

Remark 5.8. Lemma 5.6 is the key result that requires the specialization to modules
over PIDs, and it’s not currently known if this holds in general for commutative
rings. As an alternate hypothesis, this result also holds if all annihilator ideals are
prime.

We can use the fact that Łoś’ Theorem holds for p. p. formulas to show that
it also holds for boolean combinations of invariants conditions (these are sometimes
called invariants sentences).

Lemma 5.9. Suppose that all Mi are elementarily equivalent. Let φ be a boolean
combination of invariants conditions. Then φ is part of the common theory of the
Mi’s iff ∏torMi/U � φ.

Proof: Since a negation of a boolean combination is itself a boolean combination,
it suffices to show one direction. Thus, assume that Mi � φ for all i ∈ I. Since
conjunctions and disjunctions transfer (see Remark 2.6 or easy to work out the
details), we only have to show this for Inv(M,φ, ψ) ≥ k and Inv(M,φ, ψ) < k.
WLOG, assume ψ implies φ. Note that

Inv(M,φ, ψ) ≥ k ≡ “∃v0, . . . ,vk−1(
∧

i<k

φ(vi) ∧
∧

j<i<k

¬ψ(vj − vi))′′

Inv(M,φ, ψ) < k ≡ “∀v0, . . . ,vk−1(
∨

i<k

¬φ(vi) ∨
∨

j<i<k

ψ(vj − vi))′′

Inv(M,φ, ψ) ≥ k is ∃∀, so the result holds by Proposition 2.7. The formula
“∨i<k ¬φ(vi) ∨

∨
j<i<k ψ(vj − vi)” is a boolean combination of p. p. formulas,

so it transfers by Corollary 5.7. Then Inv(M,φ, ψ) < k is universal over a for-
mula that transfers, so it transfers as well; again, see Remark 2.6 or work out the
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details. †

We now have all of the tools that we need to prove the full version of Łoś’
Theorem.

Theorem 5.10. Let T ∗R be a complete theory τR-theory extending TR (recall R is a
PID). Then EC(T ∗R, tor) satisfies Łoś’ Theorem with the tor-ultraproduct.

Proof: Suppose that {Mi | i ∈ I} are torsion models of T ∗R and U is an
ultrafilter on I. Then ∏torMi/U is a torsion module by Proposition 5.1. Let
[f0]U , . . . , [fn−1]U ∈

∏torMi/U and φ(x) be a formula. By Fact 5.5, φ(x) is equiva-
lent modulo TR to a boolean combination σ of invariants conditions and a boolean
combination ψ(x) of p. p. formulas. Then

{i ∈ I : Mi � φ(f0(i), . . . , fn−1(i))} ∈ U ⇐⇒ {i ∈ I : Mi � σ ∧ ψ(f0(i), . . . , fn−1(i))} ∈ U

⇐⇒
tor∏

Mi/U � σ ∧ ψ([f0]U , . . . , [fn−1]U )

⇐⇒
tor∏

Mi/U � φ([f0]U , . . . , [fn−1]U )

The first and third equivalence is by Fact 5.5 and the second equivalence is by
Corollary 5.7 and Lemma 5.9. †

5.3 Examples
For this subsection, we specialize to R = Z. That is, we examine abelian torsion
groups.

We look at some examples of torsion abelian groups and examine how the groups
differ from their tor-ultraproducts and how the AEC (Mod(T ∪ {∀x∨n<ω n · x =
0}),≺) differs from the elementary class (Mod(T ),≺).

We list some torsion abelian groups G such that G � ∏torG/U �
∏
G/U6. The

main point here is the inequalities, as the elementary substructure results follow
from Theorem 5.10. If G does not have finite exponent, then ∏G/U necessarily
contains elements with no order, so ∏torG/U (

∏
G/U . Theorem 2.17 gives a

condition for G ( ∏torG/U . In this context, the result becomes:

If there is some n < ω such that there are infinitely many g ∈ G such that o(g) | n,
then G ( ∏torG/U .

6Formally, G is not a subset of
∏tor

G/U , but is canonically embedded in it; we blur this
distinction by identifying g ∈ G and [i 7→ g]U ∈

∏tor
G/U

492



The Γ-ultraproduct and Averageable Classes

Thus, the following groups are all proper elementary subgroups of their tor-
ultraproducts (for any nonprincipal ultrafilter).

1. ⊕n<ωZn
2. More generally, ⊕n<ωZsn for any sequence 〈sn : n < ω〉 such that there is a

prime p that divides infinitely many of the sn’s

3. ⊕n<ωZ(p∞) for any prime p or ⊕n<ωQ/Z

Note that Z(p∞) and Q/Z (or the sum of finitely many of them) do not satisfy
this criterion. Thus, by Theorem 5.2, any torsion group elementarily equivalent to
them is in fact isomorphic to them.

Consider G = ⊕n<ωZ2n and I = ω. Note that, for any nonzero g ∈ G, there is
a maximum k < ω such that 2k | g. However, this is not the case in ∏torG/U : set
f : I → ω sucht that f(i) is 2i−1 in Z2i , i.e. f(i) ∈ ∏Z2n such that

f(i)(n) =
{

2i−1 if i = n

0 otherwise

Then each f(i) has order 2, so [f ]U ∈
∏torG/U . However, for every k < ω,

{i ∈ I : G � ∃y.2k · y = f(i)} = ω − (k + 1) ∈ U

So ∏torG/U � 2k | [f ]U for all k < ω. Thus there are countable submodels of∏torG/U not isomorphic to G. Thus, Th(G) is not countably categorical amongst
abelian torsion groups.

In contrast, we now examine Th(⊕Z(p∞)). We will show that this theory is not
categorical as an elementary class, but it is categorical in all cardinals (and more)
in the class of abelian torsion groups7.

This gives a concrete example of a torsion group where more stability theoretic
machinery is available when viewing it as a member of a nonelementary class.

For the first part, we note the following general fact.

Proposition 5.11. If R is a PID and M is a torsion module such that

1. annM = {0}; and

2. there is r ∈ R such that {m ∈M : r ∈ O(m)},

7More formally, this means that the class Mod(T h(⊕Z(p∞))) is not categorical, but
Mod(T h(⊕Z(p∞)) ∪ {∀x

∨
n<ω

n · x = 0}) is categorical in all cardinals.
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then Th(M) is not categorical in any λ ≥ |R|.

If R = Z, then the first condition says that M is not of finite exponent.
Proof: WLOG, |M | = |R|. The given conditions ensure that, for any torsion

M ′ ≡M ,

M ′ �
tor∏
M ′/U �

∏
M/U

and that ∏M/U is not torsion. Thus, we have a torsion and non-torsion module
elementarily equivalent to M in all cardinalities of size at least |R|. Since torsion
and non-torsion modules are obviously non-isomorphic, we have the result. †

For the second part, we show that, if we have torsion G ≡ ⊕n<ωZ(p∞), then
G ∼= ⊕i<|G|Z(p∞). We rely on the following well-known fact about divisible abelian
groups.

Fact 5.12. Every divisible group is isomorphic to a direct sum of copies of Q and
Z(q∞).

Since we know G is a divisible p-group, it cannot contain any copies of Q or
Z(q∞) for q 6= p. Also, every element of G has infinitely many pth roots, so it
cannot be a direct sum of finitely many copies of Z(p∞). Thus, G ∼= ⊕i<|G|Z(p∞).

5.4 Some Stability Theory

Now that a compactness result is established, we wish to explore some stability
theory for torsion modules over a PID (considered as an AEC). It is already known
that all modules are stable (see [19, Theorem 3.A]), but we have seen that examining
nonelementary classes can give stronger results.

Definition 5.13. Let M be an infinite torsion module over a PID. Then KM is
the AEC whose models are all torsion modules elementarily equivalent to M (in the
sense of first-order logic) and where ≺ is elementary substructure.

It is easy to see that this is an AEC. This class is averageable by Theorem 5.10.
Furthermore, this AEC is nicely behaved in the sense that amalgamation holds;
Galois types are (first-order) syntactic types; and KM has no maximal models holds
unless all models are isomorphic to M .

Proposition 5.14. KM has amalgamation, joint embedding, and Galois types are
syntactic.
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Proof: We show amalgamation and Galois types are syntactic together. Note
that, since strong substructure is elementary substructure, having the same Galois
type implies having the same syntactic type. Let M0 ≺ M1,M2 from KM , possibly
with a` ∈ M` such that tp(a1/M0;M1) = tp(a2/M0,M2). Then, by amalgamation
for first order theories, we can find a module N∗ and f` : M` → N∗, for ` = 1, 2, that
agree onM0 and (if they exist) f1(a1) = f2(a2). Set N to be the torsion subgroup of
N∗. The torsion radical preserves pure embeddings and picks out a pure subgroup,
so we have

f`(M`) ⊂pure N ⊂pure N∗

Since they are elementarily equivalent, Inv(f`(M`), φ, ψ) = Inv(N∗, φ, ψ) for all
p. p. formulas φ and ψ and pureness implies that N has the same invariants con-
ditions. Thus, N is elementarily equivalent and the embeddings are elementary.
Furthermore, the f` witness that a1 and a2 have the same Galois type.

The proof of joint embedding is similar. †

Note that although two tuples having the same Galois type and having the same
syntactic type are the same, the “Galois types are syntactic” result above should
not be taken to mean that any consistent, complete set of formulas is realized as a
Galois type; obviously, this is not true a non-torsion element. However, we do have
a local compactness result: any partial type is realizable iff there is a fixed order
such that all of its finite subsets are realizable with that fixed order.

Proposition 5.15. Let A ⊂ N ∈ KM and p(x) be a consistent set of formulas
with parameters in A. Then there is an extension of N that realizes p iff there are
r0, . . . , rn−1 ∈ R such that, for every finite q ⊂ p, there is an extension of N that
realizes q ∪ {ri · xi = 0 : i < n}.

Proof: This is Theorem 3.3 in this context. †

Proposition 5.16. KM has no maximal models or consists of a single model up to
isomorphism.

Proof: Follows directly from Theorem 3.13. †

Since this class is stable, we have a unique independence relation.

Theorem 5.17. 1. KM is Galois stable at least in all λω.

2. Coheir is a stability-like independence relation.
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3. Any independence relation satisfying Existence, Extension, and Uniqueness is
coheir.

Proof:

1. KM has less types than Mod(Th(M)) (this uses that Galois types are syntac-
tic), which is stable (see [19, Chapter 3, Example 1]).

2. This follows from Theorem 3.11.

3. This is [10, Corollary 5.18]

As a consequence of the last statement, this means that the good frame defined
by nonsplitting from Vasey [28] is the same as coheir in K⊕n<ωZ(p∞).
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Abstract
The variety of quasi-Nelson algebras has been recently singled out and char-

acterised in several equivalent ways: among others, as (1) the class of bounded
commutative integral (but not necessarily involutive) residuated lattices satis-
fying the Nelson identity, as well as (2) the class of (0, 1)-congruence orderable
commutative integral residuated lattices. Logically, quasi-Nelson algebras are
the algebraic counterpart of quasi-Nelson logic, which is the (algebraisable) ex-
tension of the substructural logic FLew (Full Lambek calculus with Exchange
and Weakening) by the Nelson axiom. Quasi-Nelson logic may also be viewed
as a common generalisation of both Nelson’s constructive logic with strong
negation and intuitionistic logic. The present paper focusses on the subreducts
of quasi-Nelson algebras obtained by eliding the implication while keeping the
two term-definable negations. It is shown that, similarly to the involutive case
(treated by A. Sendlewski in 1991), this class of algebras is a variety that can be
characterised by means of twist-structures over pseudo-complemented distribu-
tive lattices. In this way we extend to a non-involutive setting the well-known
connection between Nelson and Heyting algebras, as well as Sendlewski’s re-
sult relating Kleene algebras with a weak pseudo-complementation and pseudo-
complemented distributive lattices.

1 Introduction
Nelson’s constructive logic with strong negation N (introduced in [16]; see also [17,
25, 29]) is a well-known and by now fairly well-understood non-classical logic that
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tífico e Tecnológico (CNPq, Brazil), under the grant 313643/2017-2 (Bolsas de Produtividade em
Pesquisa - PQ).
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combines the constructive approach of positive intuitionistic logic with a classical
(i.e. De Morgan) negation. The algebraic models of N , forming a variety called
Nelson algebras or Nelson residuated lattices, have been studied since at least the
late 1950’s (firstly by H. Rasiowa; see [17] and references therein) and are also by
now fairly well understood. One of the main algebraic insights on this variety came,
towards the end of the 1970’s, with the realisation (independently due to M. M. Fidel
and D. Vakarelov) that every Nelson algebra can be represented as a special binary
product (here called a twist-structure) of a Heyting algebra. This correspondence
was formulated as a categorical equivalence (by A. Sendlewski in the early 1990’s)
between Nelson algebras and a category of enriched Heyting algebras, which made it
possible to transfer a number of fundamental results from the more widely studied
theory of intuitionistic logic to the realm of Nelson algebras.

The most important advance in the theory of Nelson algebras since Sendlewski’s
work in the 1990’s was probably the discovery that Nelson logic can be viewed as one
of the so-called substructural logics. This result (first proved in 2008 by M. Spinks
and R. Veroff [27, 28]) entails that (modulo algebraic signature formalities) Nelson
algebras can be presented as a subvariety of (bounded, commutative, integral) resid-
uated lattices [5]; hence the alternative name of Nelson residuated lattices. Given the
flourish of studies on substructural logics and residuated structures (leading to and
following the book [5]), this alternative perspective on Nelson algebras has proven
quite fruitful. Indeed, it has made in the first place possible to recover or recast a
number of results on Nelson algebras by specialising more general ones about resid-
uated structures. Furthermore, and perhaps more interestingly, it allowed scholars
to formulate new questions that can be best appreciated within the wider theory
of residuated lattices. Among these is the problem that led to the introduction of
quasi-Nelson algebras, which can be phrased as follows.

We know, by the results of M. Spinks and R. Veroff, that Nelson algebras can
be viewed as the class of (bounded, commutative, integral) residuated lattices that
additionally satisfy the involutive law (x ≈ (x⇒ 0)⇒ 0) and the identity (Nelson)
displayed in Section 2. Hence, all results that are specific to Nelson algebras (as op-
posed to general residuated lattices), including the connection with Heyting algebras
discovered by Vakarelov and Fidel, essentially depend on involutivity and (Nelson).
Do they indeed rely, one may ask, equally on both properties or perhaps just on one
of them?

It is interesting to note that, while the class of involutive residuated lattices has
attracted a fair amount of attention in the algebraic logic community (see e.g. [6, 8]),
the class of residuated lattices satisfying the identity (Nelson) alone was never con-
sidered before [22]. It is not difficult to convince oneself that the involutive identity
alone is not sufficient to obtain a result such as the Fidel-Vakarelov-Sendlewski rep-
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resentation (at least in the forms that we know) of Nelson algebras as products of
Heyting algebras. On the other hand, the identity (Nelson), which could be spec-
ulated to be sufficient, has proved to be difficult to work with. It is also possible
that other ‘hidden’ identities may be involved, such as the so-called 3-potency (cor-
responding to the logical axiom sometimes called 3, 2-contraction) – which indeed
corresponds to quite a powerful structural property – or the lattice-theoretic distribu-
tive laws. In an involutive setting, both properties are consequences of (Nelson):
but does this hold true once we drop involutivity?

In the papers [22, 23] my coauthors and I addressed the above-mentioned problem
in broad terms: namely, we tried to determine how much of the structure theory of
Nelson algebras can be reconstructed (within the context of residuated lattices) in
the presence of the identity (Nelson) but independently of the involutive law. To
our surprise, it turned out that some of the most characteristic results on Nelson
algebras do not require involutivity.

In [22, 23] we have shown, in particular, that (a suitable generalisation of) the
Fidel-Vakarelov-Sendlewski construction can be performed in a not-necessarily in-
volutive context: thus making it possible to recover the connection between Heyting
algebras and ‘non-involutive Nelson algebras’, a variety of algebras that we pro-
posed to call quasi-Nelson algebras (alias quasi-Nelson residuated lattices) in analogy
with Sankappanavar’s quasi-De Morgan algebras. This variety we have also char-
acterised by a purely congruence-theoretical property introduced in [15] under the
name of (0, 1)-congruence orderability; the main result being that among (bounded,
commutative, integral) residuated lattices, quasi-Nelson algebras are precisely the
(0, 1)-congruence orderable ones. We generalised in this way the characterisation of
Nelson algebras obtained in [15], namely that, if we restrict ourselves to the class of
involutive residuated lattices, then the (0, 1)-congruence orderable ones are precisely
the Nelson residuated lattices.

A further advantage of viewing Nelson’s logic N as a substructural logic (which,
as such, extends the logic of all residuated lattices, known as Full Lambek Calculus
or FL) is the possibility to work with logics that are algebraisable in the sense
of [4]. In such a context, every algebraic identity corresponds one-to-one to a logical
axiom and vice-versa; algebraic identities characterise subvarieties of the class of all
residuated lattices, while logical axioms characterise axiomatic extensions of FL.
The logic QN of quasi-Nelson algebras is also determined by this correspondence:
QN is precisely the logic obtained by extending FL with axioms corresponding to
commutativity, integrality, boundedness and the identity (Nelson). On the other
hand, in analogy with Nelson’s logic N , it should also be possible to view the logic
QN in the old-fashioned way (in keeping with D. Nelson’s original presentation,
later adopted by H. Rasiowa), namely as an expansion of positive intuitionistic logic
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by a new negation connective1. This approach is pursued in [14], and the resulting
logic is axiomatised and shown to be algebraisable, as expected, with respect to
quasi-Nelson algebras (there presented as algebras having a Heyting-like implication
enriched with a new negation operator, rather than as a subclass of residuated
lattices).

From a logical point of view, it is worthwhile observing that, once we get rid
of the involutive law (corresponding to the logical axiom ((p ⇒ ⊥) ⇒ ⊥) ⇒ p),
the addition of Nelson’s axiom (Nelson-Ax) to FL does not make the resulting
logic (i.e. QN ) incomparable with intuitionistic logic, because Nelson’s axiom is
(trivially) sound w.r.t. the intuitionistic semantics. This entails that, while Nelson’s
logic N is incomparable with intuitionistic logic (the only common extension being
classical logic), quasi-Nelson logic QN can be viewed as a common generalisation
of both Nelson’s and intuitionistic logic2. This, indeed, is a remarkable difference
between Nelson’s and quasi-Nelson logic, as well as between Nelson and quasi-Nelson
algebras3.

The aim of the present paper is to carry on the investigation of quasi-Nelson
algebras initiated in [22, 23] by focussing on the implication-free fragment of the
algebraic language. More precisely, we get rid of the implication while keeping
the two negation operators that are term-definable in the full language of quasi-
Nelson algebras. Notice that, in the absence of the implication, the above-mentioned
correspondence between logics and algebras that is a corollary of algebraisability is
lost (cf. Proposition 5.7). This notwithstanding, we will show that a twist-structure
construction can be used to characterise the class of algebras corresponding to the
implication-free fragment (i.e. the subreducts) of quasi-Nelson algebras. This is the
main result of the paper, from which we derive a few applications to subvarieties
of the class of ‘implicationless quasi-Nelson algebras’. As a by-product, we will
also obtain further insight on the class of quasi-Nelson algebras in the form of an
alternative twist-structure representation (see Section 8).

The present study can be viewed as a non-involutive counterpart of Sendlewski’s
investigations into the two-negation fragment of Nelson algebras [26]. This variety

1By an extension or strengthening (of a given logic) we mean a stronger logic over the same
language; by an expansion we mean a logic obtained by adding new connectives.

2Already at this point, the reader might be wondering whether QN is precisely the meet (or
intersection), in the lattice of all logics extending FL, of Nelson’s logic and intuitionistic logic. This
is not the case: QN is strictly weaker than this intersection (see [20, Subsection 3.1]).

3The above considerations entail, in particular, that Heyting algebras can be represented as
twist-structures over Heyting algebras [23]. This is of course a degenerate case in the representa-
tion, yet one that is not entirely devoid of information. Indeed, the result shows how the (order-
reversing) Heyting negation operator can be decomposed into two order-preserving maps (the n
and p introduced in Definition 2.5 below) from (subsets of) the Heyting algebra to itself.
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of algebras, called wp-Kleene algebras, is shown in [26] to correspond, via a twist-
structure construction, to pseudo-complemented distributive lattices (i.e. the sub-
reducts of Heyting algebras with negation but without implication). In Sendlewski’s
terms, this entails that the functor that relates Nelson and Heyting algebras can be
extended to a functor with similar properties relating the implication-free subreducts
of both classes.

As we will show, the majority of results contained in [26] can be retrieved from
the ones established in the present study by restricting our attention to involu-
tive algebras. A close comparison of the two papers will also reveal that, while
most techniques from [26] allow for a straightforward generalisation to the non-
involutive context, the correspondence between subvarieties of wp-Kleene algebras
and of pseudo-complemented distributive lattices does not; thus suggesting that the
lattice of subvarieties of ‘non-involutive wp-Kleene algebras’ may indeed be intrin-
sically more complex than its involutive counterpart.

Besides [26], the only antecedents to the present paper (that I know of) are
the studies by A. Monteiro’s school on the implication-free subreducts of Nelson
algebras, as well as the recent [19], in which the class of implication-free subreducts
of quasi-Nelson algebras (with just one negation, the primitive one, in the language)
is characterised, also by means of twist-structures. In the present paper we shall,
indeed, rely on a few results from [19] that will allow us to shorten our proofs. The
reader should however be aware that such a dependency is inessential. In fact, as
will be demonstrated, the added expressivity given by the presence of the second
negation would allow us to establish all our results without any reference to [19].

The paper is organised as follows. Section 2 contains preliminary observations
and definitions on the main classes of algebras involved in our study. In Section 3
we introduce the ‘concrete’ twist-structure construction meant to provide a rep-
resentation for the implication-free subreducts of quasi-Nelson algebras. An ab-
stract (equational) presentation for the corresponding algebras, that in keeping with
Sendlewski’s terminology we call weakly pseudo-complemented quasi-Kleene algebras
(WPQK-algebras), is contained in Section 4. The twist-structure representation
result is also proved in this section (Theorem 4.10). The subsequent Section 5 fo-
cusses on the relation between quasi-Nelson and WPQK-algebras, establishing in
particular that the latter is precisely the class of implication-free subreducts of the
former. Section 6 introduces a more fine-grained twist-structure representation, so
as to provide a basis on which one can build a co-variant categorical equivalence
between WPQK-algebras and enriched (pairs of) pseudo-complemented distributive
lattices; Sendlewski’s equivalence between wp-Kleene algebras and enriched pseudo-
complemented distributive lattices is recovered by specialising our result to the in-
volutive case. Section 7 relates the congruence lattice of a WPQK-algebra to the
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congruence lattices of the corresponding factors given by the twist representation;
the result that (in the involutive case) Sendlewski’s functor preserves the structure
of the congruence lattice can also be obtained as a consequence of our Theorem 7.8.
The very brief Section 8 translates a few observations from the preceding ones into
an alternative, modally-oriented twist representation for WPQK-algebras. The main
import of the latter is the indication of a potentially novel perspective on the study
of WPQK and quasi-Nelson algebras via twist-structures: from this alternative point
of view, the counterpart of a WPQK (or quasi-Nelson) algebra should be taken to
be one (enriched) algebra with a (so-called) nucleus operator rather than two alge-
bras related by maps. Section 9 collects some information on a few subvarieties of
WPQK-algebras that admit a simple characterisation in terms of the twist represen-
tation. Section 10 closes the paper with a few final considerations and perspectives
on future research.

2 Quasi-Nelson Logic, Algebras and
Residuated Lattices

Let us begin by introducing quasi-Nelson algebras, the algebras in the full language
(regarding which we refer the reader to [22, 23] for further details and proofs; see
also [5] for all unexplained algebraic and logical terminology). The most convenient
way to do so is to take the substructural route, starting from the notion of residuated
lattice.

Definition 2.1. A commutative integral bounded residuated lattice (CIBRL) is an
algebra A = 〈A;∧,∨, ∗,⇒, 0, 1〉 of type 〈2, 2, 2, 2, 0, 0〉 such that:

(i) 〈A; ∗, 1〉 is a commutative monoid, (Mon)

(ii) 〈A;∧,∨, 0, 1〉 is a bounded lattice (with order ≤), (Lat)

(iii) a ∗ b ≤ c iff a ≤ b⇒ c for all a, b, c ∈ A. (Res)

Despite item (iii) above, the class of CIBRLs is equationally definable (a va-
riety). A slightly more general class (that we will not need much in the present
context) is that of (not-necessarily lower-bounded) commutative integral residuated
lattices (CIRLs), which differ from CIBRLs because the constant 0 is not included
in the algebraic signature. As hinted at in the introduction, CIRLs are the algebraic
counterpart of the logic called FLew, which is the extension of the Full Lambek
Calculus FL obtained by adding the rules of exchange (e) and weakening (w). This
entails that CIBRLs are the algebraic counterpart of the expansion of FLew by a
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propositional constant (usually denoted ⊥ or 0) meant to be interpreted as the least
element on the algebras.

If the logical/algebraic signature does include a constant symbol 0 (as will always
be assumed in the present paper), then one can define a negation connective in the
logic by ∼ p := p ⇒ 0, to which corresponds a similarly defined negation operator
on every algebraic model. This allows us to write the Nelson axiom

((p⇒ (p⇒ q)) ∧ (∼ q ⇒ (∼ q ⇒ ∼ p)))⇒ (p⇒ q) (Nelson-Ax)

whose alter ego, on algebraic models, is the Nelson identity:

(x⇒ (x⇒ y)) ∧ (∼ y ⇒ (∼ y ⇒ ∼x)) ≈ x⇒ y. (Nelson)

As mentioned earlier, the papers [22, 23, 14] concern the logic obtained by ex-
tending FLew (with a 0 constant) with the addition of the Nelson axiom. We
called this logic quasi-Nelson logic, and the corresponding algebras quasi-Nelson
algebras or quasi-Nelson residuated lattices. Further adding the double negation ax-
iom (∼∼ p⇒ p) to quasi-Nelson logic, one obtains Nelson’s constructive logic with
strong negation N , whose algebraic counterpart is the variety of Nelson algebras.

Definition 2.2. A quasi-Nelson residuated lattice (or quasi-Nelson algebra) is a
CIBRL that satisfies the identity (Nelson). A Nelson residuated lattice (or Nelson
algebra) is a quasi-Nelson residuated lattice that satisfies the involutive identity
∼∼x ≈ x.

As hinted at earlier, every Heyting algebra satisfies the identity (Nelson), and
is therefore an example of a quasi-Nelson algebra (by contrast, the only examples
of Heyting algebras which are also Nelson algebras are the Boolean algebras). The
class of quasi-Nelson algebras can thus be viewed as a common generalisation of
Heyting algebras and Nelson algebras.

An observation that will be central to the present study is that, within Nel-
son and quasi-Nelson logic, a second implication connective → can be defined by
p→ q := p⇒ (p⇒ q). There is no doubt that → is an implication in its own right,
and this is indeed the implication connective originally taken as primitive by D. Nel-
son (followed H. Rasiowa and so on) in defining his logic. Traditionally, → is called
the weak implication, while⇒ is the strong one. Taking the former as primitive, the
strong implication can be recovered by defining p⇒ q := (p→ q)∧ (∼ q → ∼ p); the
monoid connective ∗ is also definable as p∗q := ∼(p⇒ ∼ q). Indeed, one of the main
results in the theory of Nelson logic/algebras (which, as shown in [22, 23], extends to
quasi-Nelson without dramatic changes) is that the presentation over the language
{∧,∨, ∗,⇒,∼, 0, 1} of Definition 2.2 (‘Nelson residuated lattices’) is equivalent, on
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the level of both logic and algebras, to the one over the language {∧,∨,→,∼, 0, 1},
corresponding to the original denomination of ‘Nelson algebras’.

The presence of the weak implication (either as a primitive or as a defined connec-
tive) in the (quasi-)Nelson setting makes it possible to introduce a second negation
¬ (alternative to ∼) given by ¬p := p→ 0. In the literature on Nelson logic this new
connective has been sometimes called the ‘intuitionistic negation’ (the primitive ∼
being the ‘strong’ or De Morgan negation). This terminology makes little sense out-
side the involutive setting, because the primitive negation ∼ is also ‘intuitionistic’
(as mentioned above, Heyting algebras are quasi-Nelson algebras); in fact, it may
well be argued that ∼ is closer to intuitionistic negation than ¬ (see e.g. the obser-
vations immediately preceding Proposition 4.3). Following Sendlewski, we shall call
¬ a weak pseudo-complement(ation).

The paper [26] introduces and studies the class of algebras obtained by eliding
the implication(s) from the language of Nelson algebras while taking both nega-
tions as primitive. This is a variety of algebras dubbed Kleene algebras with a
weak pseudo-complementation (or wp-Kleene algebras for short; see Definition 4.14).
In [26], a number of results are established about wp-Kleene algebras, including the
fundamental one that they can be represented through (what we here call) twist-
structures over pseudo-complemented distributive lattices. This observation is then
used to obtain information on the subdirectly irreducible members of the variety of
wp-Kleene algebras and on the lattice of its subvarieties.

In the present paper we undertake a study similar to Sendlewski’s but extended
to ‘non-involutive wp-Kleene algebras’, which we are going to define by applying
Sendlewski’s procedure to quasi-Nelson algebras in lieu of Nelson algebras. Virtually
all results obtained here will thus be generalisations of Sendlewski’s, which will allow
us to recover those of [26] by specialising to involutive algebras. This holds true even
of those results that appear much less satisfactory than their involutive counterparts
(e.g. Theorem 7.8). More than a fault on our part, this is (as we will demonstrate) an
indication that ‘non-involutive wp-Kleene algebras’ are an essentially more complex
class than their involutive counterparts.

We now proceed to introduce formally the classes of algebras involved in the
present study. As observed in [22, Proposition 2.7], the {∧,∨,∼, 0, 1}-reduct of
every quasi-Nelson algebra is a ‘lower quasi-De Morgan’ algebra according to the
terminology introduced by H.P. Sankappanavar [24]. It will be useful to have the
definition at hand. Here and henceforth, we use the symbol ≈ to represent formal
equality between algebraic terms, and we write s� t as a shorthand for the identity
(or equation) s ∧ t ≈ s.

Definition 2.3 ([24]). A semi-De Morgan algebra is an algebra A = 〈A;∧,∨,∼, 0, 1〉
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of type 〈2, 2, 1, 0, 0〉 satisfying the following properties:

(SD1) 〈A;∧,∨, 0, 1〉 is a bounded distributive lattice,

(SD2) ∼ 0 ≈ 1 and ∼ 1 ≈ 0,

(SD3) ∼(x ∨ y) ≈ ∼x ∧ ∼ y,

(SD4) ∼∼(x ∧ y) ≈ ∼∼x ∧ ∼∼ y,

(SD5) ∼x ≈ ∼∼∼x.

A lower quasi-De Morgan algebra is a semi-De Morgan algebra that satisfies:

(QD) x� ∼∼x.

A De Morgan algebra can be defined as a semi-De Morgan algebra that satisfies the
involutive identity ∼∼x ≈ x.

In the sequel of the paper (especially in proofs) we shall refer to properties (SD2)
to (SD5), collectively, as to the semi-De Morgan identities (or laws). The axioma-
tisation of lower quasi-De Morgan algebras introduced above does not completely
characterise the class of implication-free subreducts of quasi-Nelson algebras. These
form a more specific class, called quasi-Kleene algebras, that we introduced and
studied in [19, Definition 2.2].

Definition 2.4. A quasi-Kleene algebra A is a semi-De Morgan algebra that addi-
tionally satisfies the following identities:

(QK1) x ∧ ∼x� y ∨ ∼ y, (the Kleene identity)

(QK2) x� ∼∼x, (thus A is a lower quasi-De Morgan algebra)

(QK3) ∼∼x ∧ ∼(x ∧ y)� ∼x ∨ ∼ y,

(QK4) ∼∼x ∧ ∼x� x.

A Kleene algebra can be defined as a quasi-Kleene algebra that satisfies the involutive
identity: ∼∼x ≈ x.

While semi-De Morgan algebras are due to Sankappanavar, De Morgan algebras
(alongside Kleene algebras) have been studied since the late 1950’s, beginning with
the works of J.A. Kalman, A. Monteiro and his school. Every Nelson algebra has a
Kleene algebra reduct; indeed, Kalman’s results easily entail that Kleene algebras
are precisely the {∧,∨,∼}-subreducts of Nelson algebras. Similarly, we have shown
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in [19, Corollary 6.6] that quasi-Kleene algebras are the {∧,∨,∼}-subreducts of
quasi-Nelson algebras. In keeping with this observation, we shall introduce the
abstract algebras meant to characterise the {∧,∨,∼,¬}-subreducts of quasi-Nelson
algebras as a class of quasi-Kleene algebras expanded with a new negation ¬ (see
Definition 4.2).

Before proceeding with the definitions, we need to recall another key result from
the theory of quasi-Nelson algebras. This is the twist-structure representation men-
tioned in the Introduction.

Definition 2.5. Given Heyting algebras H+ = 〈H+,∧+,∨+,→+, 0+, 1+〉 and H− =
〈H−,∧−,∨−,→−, 0−, 1−〉, let n : H+ → H− and p : H− → H+ be maps satisfying
the following properties:

(i) n preserves finite meets, finite joins and the bounds,

(ii) p preserves finite meets and the bounds,

(iii) n ◦ p = IdH− and IdH+ ≤+ p ◦ n.

The algebra H+ ./ H− = 〈H+ × H−,∧,∨,→,∼, 0, 1〉 is defined as follows. For all
〈a+, a−〉, 〈b+, b−〉 ∈ H+ ×H−,

1 = 〈1+, 0−〉
0 = 〈0+, 1−〉

∼〈a+, a−〉 = 〈p(a−), n(a+)〉
〈a+, a−〉 ∧ 〈b+, b−〉 = 〈a+ ∧+ b+, a− ∨− b−〉
〈a+, a−〉 ∨ 〈b+, b−〉 = 〈a+ ∨+ b+, a− ∧− b−〉
〈a+, a−〉 → 〈b+, b−〉 = 〈a+ →+ b+, n(a+) ∧− b−)〉.

A quasi-Nelson twist-structure A over H+ ./ H− is a {∧,∨,→,∼, 0, 1}-subalgebra
of H+ ./ H− with carrier set A satisfying π1(A) = H+ and a+ ∧+ p(a−) = 0+ for
all 〈a+, a−〉 ∈ A.

The reader familiar with the representation of Nelson algebras will recognise the
above definition (introduced in [22], refined in [23]) as a generalisation of the Fidel-
Vakarelov-Sendlewski construction for Nelson algebras. Indeed, the latter can be
viewed as a special case of Definition 2.5 in which the maps n and p are mutually
inverse Heyting algebra isomorphisms.

Upon defining x⇒ y := (x→ y)∧ (∼ y → ∼x) and x ∗ y := x∧ y ∧∼(x⇒ ∼ y),
every quasi-Nelson twist-structure gives rise to a quasi-Nelson residuated lattice (the
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operations ⇒ and ∗ could obviously be introduced as primitive in Definition 2.5; we
have not done so for the sake of consistency with the notation introduced in [22],
which is the traditional one for Nelson algebras). More importantly, every quasi-
Nelson residuated lattice/algebra arises in this way [22, Proposition 6]. The twist-
structure construction thus provides a more concrete way to obtain all members of
the abstractly-defined class of quasi-Nelson algebras/residuated lattices. As we shall
see throughout the whole paper, one of the advantages of such a representation is
that it is highly helpful in simplifying the algebraic calculations (verifying or refuting
identities, etc.).

We shall not give here further details on the twist representation for quasi-
Nelson algebras; these can be found in [22, 23], and will also be demonstrated in
the course of our treatment of twist-structures in the next sections. In view of our
study of subreducts, what is important to observe at this point is that Definition 2.5
can be straightforwardly restricted to the language {∧,∨,∼,¬, 0, 1} in which the ¬
operation is given component-wise, for all 〈a+, a−〉 ∈ A, by 〈a+, a−〉 → 〈0+, 1−〉.
This is precisely what we shall do with Definition 3.1 in the next section; our final
aim being to show that every subreduct of a quasi-Nelson algebra can be obtained
in this way.

3 Concretely: Weakly Pseudo-Complemented
Quasi-Kleene Twist-Structures

We begin by describing a twist-structure construction for “implication-free quasi-
Nelson algebras with two negations”, i.e. algebras A = 〈A;∧,∨,∼,¬, 0, 1〉 with no
implication but having both the quasi-Nelson negation ∼ and the weak pseudo-
complement ¬, which is defined, on quasi-Nelson algebras, via the weak implication
by ¬x := x→ 0. The definitions are a pretty straightforward restriction of those for
the algebras in the full language (Definition 2.5); the interesting result is that they
are indeed sufficient to characterise the algebras in the reduced language, i.e. the
subreducts of quasi-Nelson algebras4.

Recall that pseudo-complemented distributive lattices (also called distributive p-
algebras or simply p-lattices) are algebras 〈A;∧,∨,¬, 0, 1〉 of type 〈2, 2, 1, 0, 0〉 that
are precisely the {∧,∨,¬, 0, 1}-subreducts of Heyting algebras [2, Chapter VIII].This
class can be axiomatized by requiring 〈A;∧,∨, 0, 1〉 to be a bounded distributive
lattice (with order ≤, bottom 0 and top 1) satisfying the property that, for all

4We include the constants 0 and 1 in the language from the start because they are term-definable.
That is, the {∧,∨,∼,¬}- and the {∧,∨,∼,¬, 0, 1}-fragment of the quasi-Nelson algebraic language
determine the same class of algebras (this is a consequence, e.g., of item (ii) of Proposition 4.12).
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a, b ∈ A,

(P) a ≤ ¬b if and only if a ∧ b = 0. (pseudo-complement)

We shall refer to (P) as to the property of the pseudo-complement. It is useful to
keep in mind that, on every distributive lattice A, the pseudo-complement ¬b of each
b ∈ A (if it exists) is uniquely determined by the lattice structure in the following
way:

¬b =
∨
{a ∈ A : a ∧ b = 0}.

Definition 3.1. Given a p-lattice A+ = 〈A+;∧+,∨+,¬+, 0+, 1+〉, a bounded
distributive lattice A− = 〈A−;∧−,∨−, 0−, 1−〉 and maps n : A+ → A− and
p : A− → A+ satisfying the following properties:

(i) n is a bounded lattice homomorphism,

(ii) p preserves finite meets and both lattice bounds,

(iii) n ◦ p = IdA− and IdA+ ≤+ p ◦ n,

the algebra A+ ./ A− = 〈A+ × A−;∧,∨,∼,¬, 0, 1〉 is defined as follows. For all
〈a+, a−〉, 〈b+, b−〉 ∈ A+ ×A−,

1 = 〈1+, 0−〉
0 = 〈0+, 1−〉

∼〈a+, a−〉 = 〈p(a−), n(a+)〉
¬〈a+, a−〉 = 〈¬+a+, n(a+)〉

〈a+, a−〉 ∧ 〈b+, b−〉 = 〈a+ ∧+ b+, a− ∨− b−〉
〈a+, a−〉 ∨ 〈b+, b−〉 = 〈a+ ∨+ b+, a− ∧− b−〉

A weakly pseudo-complemented quasi-Kleene twist-structure (for short, a WPQK
twist-structure) A over A+ ./ A− is a {∧,∨,∼,¬, 0, 1}-subalgebra of A+ ./ A− with
carrier set A satisfying π1(A) = A+ and a+ ∧+ p(a−) = 0+ for all 〈a+, a−〉 ∈ A.

The definition immediately implies that both maps n and p are order-preserving
(we will often use this observation, with or without warning, in subsequent proofs).
Going forward, we shall write A ≤ A+ ./ A− to indicate that A is a WPQK twist-
structure over A+ ./ A−, leaving implicit the maps n and p when no confusion is
likely to arise.
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Remark 3.2. Observe that the requirement a+ ∧+ p(a−) = 0+ in Definition 3.1
entails a− ∧− n(a+) = 0−. Indeed, using the properties of n and of the composite
map n ◦ p, from a+ ∧+ p(a−) = 0+ we have n(a+ ∧+ p(a−)) = n(a+) ∧− np(a−) =
n(a+) ∧− a− = n(0+) = 0−. Also, it is easy to check that π1(A) = A+ entails
π2(A) = A−.

Remark 3.3. To make sure that Definition 3.1 is sound, we need to check that the
set

A := {〈a+, a−〉 ∈ A+ ×A− : a+ ∧+ p(a−) = 0+}
is closed under the twist-structure operations, and is therefore the universe of the
largest WPQK twist-structure over A+ ./ A−. Let us consider first the two nega-
tions. For ∼, we need to show that p(a−)∧+ pn(a+) = 0+ whenever a+ ∧+ p(a−) =
0+. Recalling that p preserves meets and the bounds (and Remark 3.2), we have
p(a−) ∧+ pn(a+) = p(a− ∧− n(a+)) = p(0−) = 0+. For the ¬ negation, we need to
check that ¬+a+ ∧+ pn(a+) = 0+. Recall that, on every pseudo-complemented lat-
tice, from ¬+a+ ≤+ ¬+a+ one obtains ¬+a+∧+a+ = 0+. Thus, using IdA+ ≤+ p◦n,
we have ¬+a+ ∧+ pn(a+) ≤+ pn(¬+a+) ∧+ pn(a+) = pn(¬+a+ ∧+ a+) = pn(0+) =
0+. Moving to the binary operations, we assume a+ ∧+ p(a−) = b+ ∧+ p(b−) = 0+.
Recall that p preserves meets and that A+ is a distributive. Then, for ∧, using
Remark 3.2 and the inequality IdA+ ≤+ p ◦n, we have a+ ∧+ b+ ∧+ p(a− ∨− b−) ≤+
pn(a+)∧+ pn(b+)∧+ p(a−∨− b−) = p(n(a+)∧− n(b+)∧− (a−∨− b−)) = p((n(a+)∧−
n(b+) ∧− a−) ∨− (n(a+) ∧− n(b+) ∧− b−)) = p((0− ∧− n(b+)) ∨− (n(a+) ∧− 0−)) =
p(0−) = 0+. For ∨, we need to check that (a+ ∨+ b+)∧+ p(a− ∧− b−) = 0+. Recall-
ing that p preserves meets (and that A+ is a distributive), We have (a+ ∨+ b+) ∧+
p(a− ∧− b−) = (a+ ∨+ b+) ∧+ p(a−) ∧+ p(b−) = (a+ ∧+ p(a−) ∧+ p(b−)) ∨+ (b+ ∧+
p(a−) ∧+ p(b−)) = (0+ ∧+ p(b−)) ∨+ (0+ ∧+ p(a−)) = 0+, as required.

The following proposition shows that one of the apparent asymmetries between
A+ and A− in Definition 3.1 is merely superficial (others, as we shall see, are not).

Proposition 3.4. For all A ≤ A+ ./ A−, the lattice A− is pseudo-complemented,
with the pseudo-complement given by ¬−a− = n(¬+p(a−)) for all a− ∈ A−. Fur-
thermore, both maps n and p preserve the pseudo-complement operation (hence, n
is a p-lattice homomorphism).

Proof. Let us check that, for all a−, b− ∈ A−,

b− ≤− n(¬+p(a−)) if and only if a− ∧− b− = 0−.

Notice that a− ∧− n(¬+p(a−)) = np(a−) ∧− n(¬+p(a−)) = n(p(a−) ∧+ ¬+p(a−)) =
n(0+) = 0−. Thus, assuming b− ≤− n(¬+p(a−)), we have a− ∧− b− ≤− a− ∧−
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n(¬+p(a−)) = 0−. Conversely, if a− ∧− b− = 0−, then p(a− ∧− b−) = p(a−) ∧+
p(b−) = 0+ = p(0−). By (P), this implies p(b−) ≤+ ¬+p(a−), from which we obtain
np(b−) = b− ≤− n(¬+p(a−)), as required.

Let us check that p preserves the pseudo-complement, that is, p(¬−a−) =
pn(¬+p(a−)) = ¬+p(a−) for all a− ∈ A−. The inequality ¬+p(a−) ≤+ pn(¬+p(a−))
holds because IdA+ ≤+ p ◦ n. It remains to show pn(¬+p(a−)) ≤+ ¬+p(a−). Us-
ing the property of the pseudo-complement, from ¬−a− = n(¬+p(a−)) we have
a− ∧− n(¬+p(a−)) = 0−. Then p(a− ∧− n(¬+p(a−))) = p(a−) ∧+ pn((¬+p(a−)) =
p(0−) = 0+. Hence, again by the property of the pseudo-complement, p(a−) ∧+
pn((¬+p(a−)) = 0+ gives us pn((¬+p(a−)) ≤+ ¬+p(a−), as required.

To see that n preserves the pseudo-complement operation, observe that, for all
a+ ∈ A+, one has ¬+a+ = ¬+pn(a+). In fact, on the one hand (since IdA+ ≤+
p ◦ n) we have a+ ≤+ pn(a+). Since the pseudo-complement is order-reversing,
it follows that ¬+pn(a+) ≤+ ¬+a+. By the property of the pseudo-complement,
the other inequality ¬+a+ ≤+ ¬+pn(a+) holds iff ¬+a+ ∧+ pn(a+) = 0+. Observe
that IdA+ ≤+ p ◦ n (together with the requirement that both p and n preserve
finite meets and the bounds) gives us ¬+a+ ∧+ pn(a+) ≤+ pn(¬+a+) ∧+ pn(a+) =
pn(¬+a+ ∧+ a+) = pn(0+) = 0+. Thus ¬+a+ = ¬+pn(a+). Then n(¬+a+)) =
n(¬+pn(a+)) = ¬−n(a+), as claimed.

Let A ≤ A+ ./ A− and 〈a+, a−〉, 〈b+, b−〉 ∈ A. Observe that the lattice order ≤
of A is given component-wise by:

〈a+, a−〉 ≤ 〈b+, b−〉 iff (a+ ≤+ b+ and b− ≤− a−).

We shall write:

〈a+, a−〉 4 〈b+, b−〉 as a shorthand for 〈a+, a−〉 ≤ ∼〈a+, a−〉 ∨ 〈b+, b−〉

〈a+, a−〉 ≡ 〈b+, b−〉 for (〈a+, a−〉 4 〈b+, b−〉 and 〈b+, b−〉 4 〈a+, a−〉).

Lemma 3.5. Let A ≤ A+ ./ A− be a WPQK twist-structure. For all elements
〈a+, a−〉, 〈b+, b−〉 ∈ A, we have:

(i) 〈a+, a−〉 4 〈b+, b−〉 iff a+ ≤+ b+ iff 〈a+, a−〉 ∧ ∼¬〈a+, a−〉 ≤ 〈b+, b−〉 ∧
∼¬〈b+, b−〉.

(ii) ∼〈b+, b−〉 4 ∼〈a+, a−〉 iff b− ≤− a−.

(iii) 〈a+, a−〉 ≡ 〈b+, b−〉 iff a+ = b+.

(iv) 〈a+, a−〉 ≤ 〈b+, b−〉 iff (〈a+, a−〉 4 〈b+, b−〉 and ∼〈b+, b−〉 4 ∼〈a+, a−〉).
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(v) 〈a+, a−〉 ≤ ¬〈b+, b−〉 iff 〈a+, a−〉 ∧ 〈b+, b−〉 ≤ ∼〈b+, b−〉.

(vi) ¬(〈a+, a−〉∧〈b+, b−〉) = 〈1+, 0−〉 iff ¬¬〈a+, a−〉 ≤ ¬〈b+, b−〉 iff a+∧+ b+ = 0+.

(vii) 〈a+, a−〉 ∧ ∼〈a+, a−〉 = ∼∼〈a+, a−〉 ∧ ∼〈a+, a−〉.

(viii) 〈a+, a−〉 ∧ ∼〈a+, a−〉 = 〈a+, a−〉 ∧ ¬〈a+, a−〉.

(ix) ∼〈a+, a−〉 ≤ ¬〈a+, a−〉.

(x) 〈a+, a−〉 ∧ ¬〈a+, a−〉 ≤ 〈b+, b−〉 ∨ ¬〈b+, b−〉.

(xi) ¬(〈a+, a−〉 ∨ 〈b+, b−〉) = ¬〈a+, a−〉 ∧ ¬〈b+, b−〉.

(xii) ¬¬¬〈a+, a−〉 ≤ ¬〈a+, a−〉.

(xiii) ∼∼¬〈a+, a−〉 = ¬〈a+, a−〉.

(xiv) ∼¬〈a+, a−〉 ≡ ∼∼〈a+, a−〉.
Proof. (i). Applying the component-wise definitions, we have 〈a+, a−〉 4 〈b+, b−〉 if
and only if a+ ≤+ p(a−)∨+ b+ and n(a+)∧− b− ≤− a−. Thus a+ = a+∧+ (p(a−)∨+
b+). Observe that, using distributivity and the requirement a+ ∧+ p(a−) = 0+, we
have a+ = a+∧+ (p(a−)∨+ b+) = (a+∧+ p(a−))∨+ (a+∧+ b+) = 0+∨+ (a+∧+ b+) =
a+ ∧+ b+. Hence, 〈a+, a−〉 4 〈b+, b−〉 entails a+ ≤+ b+. But also, conversely,
a+ ≤+ b+ entails 〈a+, a−〉 4 〈b+, b−〉. To see this, observe that, by monotonicity of
n, from a+ ≤+ b+ we get n(a+) ≤+ n(b+). Then n(a+)∧− b− ≤− n(b+)∧− b− = 0−
(Remark 3.2). This implies n(a+) ∧− b− ≤− a−, and so 〈a+, a−〉 4 〈b+, b−〉.
This settles the first equivalence. As to the second, let us compute: 〈a+, a−〉 ∧
∼¬〈a+, a−〉 = 〈a+ ∧+ pn(a+), a− ∨− n(¬+a+)〉 = 〈a+, n(¬+a+)〉. The last passage
is justified by the following reasoning. On the one hand, the equality a+∧+pn(a+) =
a+ holds by the requirement IdA+ ≤+ p ◦ n. On the other, using n ◦ p = IdA− and
the requirement that n preserves finite joins, we have a− ∨− n(¬+a+) = np(a−) ∨−
n(¬+a+) = n(p(a−) ∨+ ¬+a+). Observe that the requirement a+ ∧+ p(a−) = 0+
implies, by the property of the pseudo-complement, p(a−) ≤+ ¬+a+. Hence,
n(p(a−) ∨+ ¬+a+) = n(¬+a+). Then 〈a+, a−〉 ∧ ∼¬〈a+, a−〉 = 〈a+, n(¬+a+)〉 ≤
〈b+, n(¬+b+)〉 = 〈b+, b−〉 ∧ ∼¬〈b+, b−〉 obviously implies a+ ≤+ b+. Also, con-
versely, a+ ≤+ b+ implies ¬+b+ ≤+ ¬+a+ (the pseudo-complement operation is
order-reversing), which gives us n(¬+b+) ≤− n(¬+a+) because n is order-preserving.
Hence we obtain 〈a+, n(¬+a+)〉 ≤ 〈b+, n(¬+b+)〉, as required.

(ii). By item (i) above, we have ∼〈b+, b−〉 4 ∼〈a+, a−〉 iff p(b−) ≤+ p(a−).
Then, applying n to both sides and recalling that n ◦ p = IdA− , we have bp(b−) =
b− ≤− a− = np(a−), as claimed.
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(iii). Follows immediately from item (i) above.
(iv). Follows from items (i) and (ii) above.
(v). Observe that 〈a+, a−〉 ≤ ¬〈b+, b−〉 component-wise means a+ ≤+ ¬+b+ (i.e.,

by pseudo-complementation, a+ ∧+ b+ = 0+) and n(b+) ≤− a−, while 〈a+, a−〉 ∧
〈b+, b−〉 ≤ ∼〈b+, b−〉 means a+ ∧+ b+ ≤+ p(b−) and n(b+) ≤− a− ∨− b−. It is thus
obvious that 〈a+, a−〉 ≤ ¬〈b+, b−〉 entails 〈a+, a−〉 ∧ 〈b+, b−〉 ≤ ∼〈a+, a−〉. Let us
show that the converse implication holds as well. From a+ ∧+ b+ ≤+ p(b−) we have
a+ ∧+ b+ ≤+ b+ ∧+ p(b−) = 0+. From n(b+) ≤− a− ∨− b−, using distributivity and
Remark 3.2, we have n(b+) = n(b+)∧−(a−∨−b−) = (n(b+)∧−a−)∨−(n(b+)∧−b−) =
(n(b+) ∧− a−) ∨− 0− = n(b+) ∧− a−. Thus n(b+) ≤− a− ∨− b− is equivalent to
n(b+) ≤− a−, as required.

(vi). Consider the first and last conditions in the statement. Firstly, observe that
a+∧+ b+ = 0+ entails n(a+∧+ b+) = n(0+) = 0− and ¬+(a+∧+ b+) = ¬+(0+) = 1+.
Secondly, observe that ¬(〈a+, a−〉 ∧ 〈b+, b−〉) = 〈1+, 0−〉 iff 〈¬+(a+ ∧+ b+), n(a+ ∧+
b+) = 〈1+, 0−〉 iff ¬+(a+ ∧+ b+) = 1+ and n(a+ ∧+ b+) = 0−. Since IdA+ ≤+ p ◦ n,
from n(a+ ∧+ b+) = 0− we have pn(a+ ∧+ b+) = p(0−) = 0+ and so a+ ∧+ b+ ≤
0+ = pn(a+ ∧+ b+). Hence, ¬(〈a+, a−〉 ∧ 〈b+, b−〉) = 〈1+, 0−〉 iff a+ ∧+ b+ = 0+. As
to the second condition, we have ¬¬〈a+, a−〉 ≤ ¬〈b+, b−〉 iff 〈¬+¬+a+, n(¬+a+)〉 ≤
〈¬+b+, n(b+)〉 iff ¬+¬+a+ ≤+ ¬+b+ and n(b+) ≤− n(¬+a+). Using the property
of the pseudo-complement, from ¬+¬+a+ ≤+ ¬+b+ we obtain ¬+¬+a+ ∧+ b+ ≤+
0+. Since a+ ≤+ ¬+¬+a+, we have a+ ∧+ b+ ≤+ 0+ = ¬+¬+a+ ∧+ b+. Thus
¬¬〈a+, a−〉 ≤ ¬〈b+, b−〉 entails a+ ∧+ b+ = 0+. Conversely, from a+ ∧+ b+ = 0+
(again by the property of the pseudo-complement) we have b+ ≤+ ¬+a+ and also,
since ¬+ is order-reversing, ¬+¬+a+ ≤+ b+. Also, from b+ ≤+ ¬+a+, using that n
is monotone, we have n(b+) ≤− n(¬+a+). Thus a+∧+b+ = 0+ entails ¬¬〈a+, a−〉 ≤
¬〈b+, b−〉, which concludes our proof.

(vii). Since ∼∼〈a+, a−〉 = 〈pn(a+), a−〉, the identity trivially holds for the
second components. The first components are a+ ∧+ p(a−) on the one hand and
pn(a+) ∧+ p(a−) on the other. Recalling Remark 3.2, we have pn(a+) ∧+ p(a−) =
p(n(a+) ∧+ a−) = p(0−) = 0+ = a+ ∧+ p(a−), as required.

(viii). Since ∼〈a+, a−〉 = 〈p(a−), n(a+)〉 and ¬〈a+, a−〉 = 〈¬+a+, n(a+)〉, the
identity trivially holds for the second components. The first give us, respectively,
a+∧+p(a−) = 0+ and (using the property of the pseudo-complement) a+∧+¬+a+ =
0+.

(ix). In this case too only the first components matter. These are p(a−) and
¬+a+. By the property of the pseudo-complement, p(a−) ≤+ ¬+a+ if and only if
p(a−) ∧+ a+ ≤+ 0+, which holds by Definition 3.1.

(x). Let us calculate 〈a+, a−〉 ∧ ¬〈a+, a−〉 = 〈a+ ∧+ ¬+a+, a− ∨− n(a+)〉 and
〈b+, b−〉 ∨ ¬〈b+, b−〉 = 〈b+ ∨+ ¬+b+, b− ∧− n(b+)〉. The result then follows from the
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observation that a+ ∧+ ¬+a+ = 0+ by (P) and b− ∧− n(b+) = 0− by Remark 3.2.
(xi). Let us calculate ¬(〈a+, a−〉∨ 〈b+, b−〉) = 〈¬+(a+∨+ b+), n(a+∨+ b+)〉. and

¬〈a+, a−〉∧¬〈b+, b−〉 = 〈¬+a+∧+¬+b+, n(a+)∨−n(b+)〉. Observe that the identity
¬+(a+ ∨+ b+) = ¬+a+ ∧+ ¬+b+ holds on any p-lattice [24], and n(a+ ∨+ b+) =
n(a+) ∨− n(b+) holds by item (i) of Definition 3.1. Thus the desired result follows.

(xii). Let us compute
¬¬¬〈a+, a−〉 = 〈¬+¬+¬+a+, n(¬+¬+a+)〉 = 〈¬+a+, n(¬+¬+a+)〉

and ¬〈a+, a−〉 = 〈¬+a+, n(a+)〉. Thus, only the second components matter. Ob-
serve that a+ ≤+ ¬+¬+a+ always holds on a p-lattice, hence so does n(a+) ≤−
n(¬+¬+a+). Thus, ¬¬¬〈a+, a−〉 ≤ ¬〈a+, a−〉.

(xiii). Let us compute:
∼∼¬〈a+, a−〉 = 〈pn(¬+a+), np(n(a+))〉 = 〈pn(¬+a+), n(a+)〉.

Since ¬〈a+, a−〉 = 〈¬+a+, n(a+)〉, it suffices to show pn(¬+a+) = ¬+a+. Since
IdA+ ≤+ p ◦ n, it suffices to show pn(¬+a+) ≤+ ¬+a+. By the property of the
pseudo-complement, we have pn(¬+a+) ≤+ ¬+a+ iff a+ ∧+ pn(¬+a+) ≤+ 0+. Ob-
serve that, using IdA+ ≤+ p◦n and that p and n preserve finite meets and the bottom
element, we have a+ ∧+ pn(¬+a+) ≤+ pn(a+) ∧+ pn(¬+a+) = pn(a+ ∧+ ¬+a+) =
pn(0+) = 0+. Thus the result follows.

(xiv). Let us compute ∼¬〈a+, a−〉 = ∼〈¬+a+, n(a+)〉 = 〈pn(a+), n(¬+a+)〉 and
∼∼〈a+, a−〉 = 〈pn(a+), np(a−)〉 = 〈pn(a+), a−〉. Then the result follows from item
(iii) above.

Remark 3.6. In the context of Kleene algebras, the two properties stated in items
(v) and (vi) of Lemma 3.5 define, in the terminology of A. Sendlewski [26, p. 22],
the class of Kleene algebras with a weak pseudo-complementation (alias wp-Kleene
algebras; see Definition 4.14). This is the reason behind our choice of the term
‘weakly pseudo-complemented’ for the above-defined twist-structures (and for the
corresponding class of abstract algebras, that are going to be introduced in Defini-
tion 4.2).

4 Abstractly: Weakly Pseudo-Complemented
Quasi-Kleene Algebras

Let A be a quasi-Kleene algebra (Definition 2.4). In keeping with the notation of
the previous section, we write:

a 4 b as a shorthand for a ≤ ∼ a ∨ b
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a ≡ b as a shorthand for (a 4 b and b 4 a).

Remark 4.1. Observe that (the binary relation naturally associated to) 4 is re-
flexive (as well transitive: see below) on every quasi-Kleene algebra A. It is also
obvious that a ≤ b implies a4 b, for all a, b ∈ A. Thus, in particular, for all a ∈ A,
we have 04 a4 1.

Definition 4.2. A weakly pseudo-complemented quasi-Kleene algebra (a WPQK-
algebra, for short) is an algebra A = 〈A;∧,∨,∼,¬, 0, 1〉 of type 〈2, 2, 1, 1, 0, 0〉 such
that:

(i) 〈A;∧,∨,∼, 0, 1〉 is a quasi-Kleene algebra (Definition 2.4).

(ii) for all a, b, c, d ∈ A,

(1) a4¬b iff a ∧ b4 0 (WP)
(2) ∼¬a ≡ ∼∼ a.

By definition, WPQK-algebras form a quasi-variety. We will see that condition
ii.1, the only proper quasi-equational one, can equivalently be replaced by three
equations (Proposition 4.12, Corollary 4.13). Hence, WPQK-algebras are in fact a
variety.

Our prime examples of WPQK-algebras are obviously the reducts of Nelson
and quasi-Nelson algebras (cf. Proposition 4.4). It is also easy to check (cf. [24,
Corollary 2.8]) that every p-lattice 〈A;∧,∨,¬, 0, 1〉 forms a WPQK-algebra if we let
∼x := ¬x (see Proposition 9.3). We will later introduce a simple construction that
allows one to produce other non-trivial WPQK-algebras (Example 6.4). As we are
going to show (Proposition 4.15), Sendlewski’s wp-Kleene algebras (Definition 4.14)
are precisely the subvariety of WPQK-algebras that satisfies the involutive identity
∼∼x ≈ x.

One may wonder whether the reduct 〈A;∧,∨,¬, 0, 1〉 of a WPQK-algebra is also
a quasi-Kleene algebra. This is not the case, because for instance the analogue of
(QK2) for ¬ need not be satisfied (cf. Proposition 9.3). In fact, (SD4) and (SD5)
may also fail, suggesting that 〈A;∧,∨,¬, 0, 1〉 may not even be a semi-De Morgan
algebra (cf. Proposition 9.7).

Proposition 4.3. Every WPQK twist-structure A (Definition 3.1) is a WPQK-
algebra (Definition 4.2).

Proof. For the quasi-Kleene algebra conditions, see [19, Proposition 4.7]. Let us
check item (ii) of Definition 4.2. Let 〈a+, a−〉, 〈b+, b−〉 ∈ A. For ii.1, observe
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that, by Lemma 3.5.i, we have 〈a+, a−〉4¬〈b+, b−〉 iff a+ ≤+ ¬+b+. By pseudo-
complementation, a+ ≤+ ¬+b+ iff a+ ∧+ b+ = 0+. By Lemma 3.5.i again, we have
a+∧+ b+ = 0+ iff 〈a+, a−〉∧ 〈b+, b−〉4〈0+, 1−〉. For ii.2, we calculate ∼¬〈a+, a−〉 =
∼〈¬+a+, n(a+)〉 = 〈pn(a+), n(¬+a+)〉 and ∼∼ a = 〈pn(a+), np(a−)〉. Thus the
result follows from Lemma 3.5.iii.

The following proposition, like the preceding one, is a matter of routine checking
(using the twist-structure representation of quasi-Nelson algebras [22, 23]).

Proposition 4.4. Let A = 〈A;∧,∨,→,∼, 0, 1〉 be a quasi-Nelson algebra. Upon
defining ¬x := x→ 0, the structure 〈A;∧,∨,∼,¬, 0, 1〉 is a WPQK-algebra.

The following proposition is a direct consequence of [19, Lemma 3.3].

Proposition 4.5. Let A be a WPQK-algebra and a, b, c, d ∈ A.

(i) If a4 b and b4 c, then a4 c.

(ii) If a4 b and c4 d, then a ∨ c4 b ∨ d.

(iii) If a4 b and c4 d, then a ∧ c4 b ∧ d.

Proposition 4.6. Let A be a WPQK-algebra and a, b ∈ A.

(i) If a ≡ b, then ¬a ≡ ¬b.

(ii) a4 b iff a ≡ a ∧ b.

(iii) a ≤ b iff (a4 b and ∼ b4∼ a).

Proof. (i). Assume a ≡ b. Then, by Proposition 4.5.iii, ¬a ∧ a ≡ ¬a ∧ b. By [19,
Prop. 3.15.ix] we have ¬a∧ a4 0. Thus (by Proposition 4.5.i) we obtain ¬a∧ b4 0.
Applying Definition 4.2.ii.1, we then obtain ¬a4¬b. A similar reasoning allows us
to obtain ¬b4¬a, as required.

(ii). Assume a4 b, and observe that (since a ∧ b ≤ a holds generally), by Re-
mark 4.1 one always has a ∧ b4 a. By Proposition 4.6.iii, from a4 b we can obtain
a ∧ a = a4 a ∧ b. Hence, a ≡ a ∧ b, as required.
Conversely, assume a ≡ a ∧ b. Thus, in particular a4 a ∧ b. Then, using a ∧ b4 b
and Proposition 4.6.i, we have a4 b, as required.

(iii). Since A has a quasi-Kleene algebra reduct, the result follows from [19,
Prop. 3.15.ii and Prop. 3.15.v].

Propositions 4.5 and 4.6 together establish the following important fact:
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Corollary 4.7. The relation ≡ is a congruence of the {∼}-free reduct of every
WPQK-algebra.

Proposition 4.8. For every WPQK-algebra A = 〈A;∧,∨,∼,¬, 0, 1〉, the quotient
algebra A+ = 〈A/≡;∧,∨,¬, 0, 1〉 is a p-lattice.

Proof. It is clear that the {¬}-free reduct of A+ is a bounded distributive lattice.
It remains to prove that the pseudo-complement law holds. Denoting by ≤+ the
lattice order of A+, assume [a] ≤+ ¬[b]. This means that [a]∧+¬[b] = [a∧¬b] = [a].
From a ∧ ¬b ≡ a, using Proposition 4.5.iii, we have a ∧ ¬b ∧ b ≡ a ∧ b. Observe
that, by Definition 4.2.ii.1, from ¬b4¬b we have ¬b ∧ b4 0. From this, using
Proposition 4.5.iii, we get a ∧ ¬b ∧ b4 a ∧ 0 = 0. Thus, using the assumption
a ∧ b4 a ∧ ¬b ∧ b (and Proposition 4.5.i), we obtain a ∧ b4 0. Since 04 a ∧ b holds
generally, we conclude a ∧ b ≡ 0. Thus 0+ = [a ∧ b] = [a] ∧+ [b], as required.
Conversely, assuming [a] ∧+ [b] = 0+, we have a ∧ b ≡ 0, and in particular a ∧ b4 0.
Using by Definition 4.2.ii.1, we then have a4¬b. By Proposition 4.6.ii, this means
a ≡ a ∧ ¬b and so [a] = [a ∧ ¬b] = [a] ∧+ ¬[b]. Hence, [a] ≤+ ¬[b], as required.

Let A be a WPQK-algebra. Consider the set A− := {[∼ a] : a ∈ A} ⊆ A+. We
endow A− with operations as follows. For all a, b ∈ A, let

[∼ a] ∧− [∼ b] := [∼(a ∨ b)] = [∼ a ∧ ∼ b] = [∼ a] ∧+ [∼ b]

[∼ a] ∨− [∼ b] := [∼(a ∧ b)]

0− := [∼ 1] = [0] = 0+

1− := [∼ 0] = [1] = 1+.

The above equality [∼(a∨b)] = [∼ a∧∼ b] holds because of the semi-De Morgan law
(SD3); also note that A− is obviously closed under the above-defined operations.
Recalling Proposition 3.4, we can also define a pseudo-complement operation on A−
by

¬−[∼ a] := [∼∼¬∼ a] = [¬∼ a] = ¬+[∼ a] (cf. Proposition 4.11.xi).

Proposition 4.9. For every WPQK-algebra A, we have that the algebra A− =
〈A−,∧−,∨−,¬−, 0−, 1−〉 is a p-lattice.

Proof. It is clear that the ∨−-free reduct of A− is a bounded sub-meet-semilattice
of A+. Let us see that ∨− is a join operation for ∧−. Observe that ∨− inherits
idempotency, associativity and commutativity from ∧. It remains to verify the
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absorption law, which we can do as follows: [∼ a]∨− ([∼ a]∧− [∼ b]) = [∼ a]∨− [∼(a∨
b)] = [∼(a ∧ (a ∨ b))] = [∼ a] and [∼ a] ∧− ([∼ a] ∨− [∼ b]) = [∼ a] ∧− [∼(a ∧ b)] =
[∼(a ∨ (a ∧ b))] = [∼ a]. Let us check distributivity. Let a, b, c ∈ A. We have:

[∼ a] ∧− ([∼ b] ∨− [∼ c]) = [∼ a] ∧− [∼(b ∧ c)]
= [∼ a ∧ ∼(b ∧ c)]
= [∼(a ∨ (b ∧ c)] (SD3)
= [∼((a ∨ b) ∧ (a ∨ c))] (distributivity)
= [∼(a ∨ b)] ∨− [∼(a ∨ c)]
= [∼ a ∧ ∼ b] ∨− [∼ a ∧ ∼ c] (SD3)
= ([∼ a] ∧− [∼ b]) ∨− ([∼ a] ∧− [∼ c]).

Finally, that ¬− is the pseudo-complement in A− follows from Proposition 4.8 to-
gether with our earlier observation that ¬−[∼ a] = ¬+[∼ a] for all a ∈ A.

We proceed to define maps p : A− → A+ and n : A+ → A− between A+ and A−
as follows. Let p be the identity map on A−, and let n[a] := [∼∼ a] for all a ∈ A.
Obviously p preserves the bounds and meets, as required by Definition 3.1.

Let us check that the map n is a bounded lattice homomorphism. It is easy
to see that the bounds are preserved. Also, using the semi-De Morgan identity
∼∼(x ∧ y) = ∼∼x ∧ ∼∼ y, we have n([a] ∧+ [b+]) = n[a ∧ b] = [∼∼(a ∧ b)] =
[∼∼ a ∧ ∼∼ b] = [∼∼ a] ∧− [∼∼ b] = n[a] ∧− n[b]. Using ∼(x ∨ y) = ∼x ∧ ∼ y, we
have n([a]∨+ [b+]) = n[a∨ b] = [∼∼(a∨ b)] = [∼(∼ a∧∼ b)] = [∼∼ a]∨− [∼∼ b] =
n[a]∨−n[b]. Let us verify that n◦p = IdA− and IdA+ ≤+ p◦n. Using ∼x ≈ ∼∼∼x,
we have np[∼ a] = n[∼ a] = [∼∼∼ a] = [∼ a]. Thus n ◦ p = IdA− . Observe that the
identity of quasi-Kleene algebras x ≤ ∼∼x entais [a] = [a ∧ ∼∼ a] = [a] ∧+ [∼∼ a]
and so [a] ≤+ [∼∼ a]. Hence we have [a] ≤+ [∼∼ a] = p[∼∼ a] = pn[a], which
shows that IdA+ ≤+ p ◦ n.

Theorem 4.10. Every WPQK-algebra A is isomorphic to a WPQK twist-structure
over A+ ./ A− through the map ι : A→ A+×A− given by ι(a) := 〈[a], [∼ a]〉 for all
a ∈ A.

Proof. Injectivity of ι follows from item (iii) of Proposition 4.6. It is easy to check
that ι preserves the ∼ negation. Let us see the case of the other operations. For
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a, b ∈ A, we have:

ι(a ∧ b) = 〈[a ∧ b], [∼(a ∧ b)]〉
= 〈[a] ∧+ [b], [∼ a] ∨− [∼ b]〉
= 〈[a], [∼ a]〉 ∧ 〈[b], [∼ b]〉
= ι(a) ∧ ι(b).

ι(a ∨ b) = 〈[a ∨ b], [∼(a ∨ b)]〉
= 〈[a] ∨+ [b], [∼(a ∨ b)]〉
= 〈[a] ∨+ [b], [∼ a ∧ ∼ b]〉 (SD3)
= 〈[a] ∨+ [b], [∼ a] ∧− [∼ b]〉
= 〈[a], [∼ a]〉 ∨ 〈[b], [∼ b]〉
= ι(a) ∨ ι(b).

ι(¬a) = 〈[¬a], [∼¬a]〉
= 〈[¬a], [∼∼ a]〉 (Def. 4.2.ii.2)
= 〈¬+[a], n[a]〉
= ¬ι(a).

Thanks to Theorem 4.10, we can identify each WPQK-algebra A with a WPQK
twist-structure A ≤ A+ ./ A−. We will often use this observation, whenever con-
venient, in subsequent proofs. To begin with, we have that all identities proved for
WPQK twist-structures hold on every WPQK-algebra. This allows us to rephrase
Lemma 3.5 as follows.

Proposition 4.11. Let A be a WPQK-algebra and a, b ∈ A.

(i) a 4 b iff a ∧ ∼¬a ≤ b ∧ ∼¬b.

(ii) a ≤ b iff (a 4 b and ∼ b 4 ∼ a).

(iii) a ≤ ¬b iff a ∧ b ≤ ∼ b.

(iv) ¬(a ∧ b) = 1 iff ¬¬a ≤ ¬b.

(v) a ∧ ∼ a = ∼∼ a ∧ ∼ a.
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(vi) a ∧ ∼ a = a ∧ ¬a.

(vii) ∼ a ≤ ¬a.

(viii) a ∧ ¬a ≤ b ∨ ¬b.

(ix) ¬(a ∨ b) = ¬a ∧ ¬b.

(x) ¬¬¬a ≤ ¬a.

(xi) ∼∼¬a = ¬a.

(xii) ∼¬a ≡ ∼∼ a.

The following result is an analogue of [2, Theorem 1, p. 155].

Proposition 4.12. Item ii.1 in Definition 4.2 can equivalently be replaced by the
following conditions: for all a, b ∈ A,

(i) ¬1 = 0,

(ii) ¬(a ∧ ∼ a) = 1,

(iii) a ∧ ¬(a ∧ b) ≡ a ∧ ¬b.

Proof. We check that (i), (ii) and (iii) are satisfied by every WPQK twist-structure
A ≤ A+ ./ A−. Since ¬1 ≈ 0 holds on any p-lattice. we easily have ¬〈1+, 0+〉 =
〈¬+1+, n(1+)〉 = 〈0+, 1+〉. Regarding (ii), we have ¬(〈a+, a−〉 ∧ ∼〈a+, a−〉) =
〈¬+(a+ ∧+ p(a−)), n(a+ ∧+ p(a−))〉 = 〈¬+0+, n(0+)〉 = 〈1+, 0−〉. As to (iii), only
the first components matter, and they are, respectively, a+ ∧+ ¬+(a+ ∧ b+) and
a+∧¬+b+. We know from [2, Theorem 1, p. 155], the identity x∧¬(x∧y) ≈ x∧¬y
holds on every pseudo-complemented distributive lattice, hence the required result
follows.

Conversely, assume (i), (ii) and (iii) hold. Observe that, since 0 is the bottom
element, (ii) gives us, in particular, ¬0 = ¬(0 ∧ ∼ 0) = 1. Using this we can
prove that a ∧ ¬a ≡ 0 for all a ∈ A. Indeed, using ¬0 = 1 and that 1 is the top
element, we have a = a ∧ 1 = a ∧ ¬0, so a ∧ ¬a = a ∧ ¬(a ∧ ¬0), which entails
a ∧ ¬a ≡ a ∧ ¬(a ∧ ¬0). By (iii) we have a ∧ ¬(a ∧ ¬0) ≡ a ∧ ¬¬0 and, using also
(i), we have a ∧ ¬¬0 = a ∧ ¬1 = a ∧ 0 = 0. Thus a ∧ ¬¬0 ≡ 0 and, using the
transitivity of ≡ (Corollary 4.7), we obtain a ∧ ¬a ≡ 0, as claimed. Now, assume
a4¬b. Using Proposition 4.5.iii, we have a ∧ b4¬b ∧ b ≡ 0. Thus, by transitivity
of 4 (item (i) of Proposition 4.5), we have a ∧ b4 0. Conversely, assume a ∧ b4 0.
By definition, this means a ∧ b ≤ ∼(a ∧ b) ∨ 0 = ∼(a ∧ b). Then we can use (ii) to
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obtain ¬((a ∧ b) ∧ ∼(a ∧ b)) = ¬(a ∧ b) = 1. Thus a ∧ ¬(a ∧ b) = a ∧ 1 = a, which
entails a∧¬(a∧ b) ≡ a. Applying (iii) and the transitivity of ≡, we have a ≡ a∧¬b.
Thus, by Proposition 4.6.ii, we conclude a4¬b, as required.

Corollary 4.13. The class of WPQK-algebras is a variety.

Another application of Theorem 4.10 is the possibility to verify rather easily
that Sendlewski’s wp-Kleene algebras (cf. Remark 3.6) are precisely the subvariety
of WPQK-algebras obtained by adding the involutive identity.

Definition 4.14 ([26], p. 20). A quasi weakly pseudo-complemented Kleene algebra
(qwp-Kleene algebra) is an algebra A = 〈A;∧,∨,∼,¬, 0, 1〉 of type 〈2, 2, 1, 1, 0, 0〉
such that A = 〈A;∧,∨,∼, 0, 1〉 is Kleene algebra (Definition 2.4) with order ≤ and
the following condition is satisfied: for all a, b ∈ A,

a ≤ ¬b iff a ∧ b ≤ ∼ b.

A qwp-Kleene algebra is a Kleene algebra with a weak pseudo-complementation (wp-
Kleene algebra) if the following additional condition is satisfied: for all a, b ∈ A,

¬(a ∧ b) = 1 iff ¬¬a ≤ ¬b (iff ¬¬b ≤ ¬a).

Proposition 4.15. Let A = 〈A;∧,∨,∼,¬, 0, 1〉 be an algebra of type 〈2, 2, 1, 1, 0, 0〉.
The following conditions are equivalent:

(i) A is an involutive WPQK-algebra.

(ii) A is a wp-Kleene algebra.

Proof. Let A be an involutive WPQK-algebra. Then the reduct 〈A;∧,∨,∼, 0, 1〉 is
a Kleene algebra. Moreover, by items (v) and (vi) of Lemma 3.5 (v) and (vi), A
satisfies the two conditions in Definition 4.14. Hence, A is a wp-Kleene algebra.

Conversely, assume A is a wp-Kleene algebra. Then the reduct 〈A;∧,∨,∼, 0, 1〉
is a Kleene algebra, and every Kleene algebra is a quasi-Kleene algebra [19]. We
proceed to verify item (ii) of Definition 4.2.

ii.1. Let a, b ∈ A. Assume a4¬b, i.e. a ≤ ∼ a ∨ ¬b. From this, using the
properties of the De Morgan negation, we have ∼(∼ a ∨ ¬b) = ∼∼ a ∧ ∼¬b = a ∧
∼¬b ≤ ∼ a. Since ∼¬b ≤ b [26, Lemma 2.1.iii], we also have a∧∼¬b ≤ a∧ b ≤ ∼ a.
Since a∧b ≤ a entails ∼ a ≤ ∼(a∧b), we obtain a∧b ≤ ∼ a ≤ ∼(a∧b) = ∼(a∧b)∨0,
i.e. a ∧ b4 0, as required.
Now assume a∧ b4 0, that is, a∧ b ≤ ∼(a∧ b). Then, by [26, Lemma 2.1.v], we have
¬(a ∧ b) = 1. By the properties of the weak pseudo-complement (Definition 4.14),
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we have ¬(a ∧ b) = 1 iff ¬¬b ≤ ¬a iff ¬¬b ∧ a ≤ ∼ a. Using the properties of
the De Morgan negation, we have ∼∼ a = a ≤ ∼(¬¬b ∧ a) = ∼¬¬b ∨ ∼ a. Since
∼¬¬b ≤ ¬b [26, Lemma 2.1.iii], we also have ∼¬¬b ∨ ∼ a ≤ ¬b ∨ ∼ a. Thus
a ≤ ¬b ∨ ∼ a, i.e. a4¬b, as required.

ii.2. By [26, Lemma 2.1.iii], we have ∼¬a ≤ a for all a ∈ A, which (by the
lattice properties) implies ∼¬a ≤ ∼∼¬a∨a, that is, ∼¬a4 a. Since a = ∼∼ a (by
the involutive identity for De Morgan negation), we obtain ∼¬a4∼∼ a. To show
∼∼ a4∼¬a (i.e. ∼∼ a ≤ ∼∼∼ a ∨ ∼¬a), we reason as follows. By [26, Lemma
2.1.i] we have a∧¬a = ∼∼ a∧¬a ≤ ∼ a. Then, using De Morgan’s laws, we obtain
∼∼ a ≤ ∼(∼∼ a ∧ ¬a) = ∼∼∼ a ∨ ∼¬a, as required.

Proposition 4.15, together with our earlier observation that p-lattices are also
examples of WPQK-algebras, suggests the following considerations.

Let us denote by p-Lat the class of all p-lattices, by WPQK the class of WPQK-
algebras and by wp-K the class of wp-Kleene algebras. As we will show, the intersec-
tion p-Lat∩wp-K is the class of Boolean algebras (Proposition 9.13). Regarding the
union, we obviously have p-Lat∪wp-K ⊆WPQK. Since (by Corollary 4.13) the class
WPQK is closed (inter alia) under direct products, taking for instance A1 ∈ p-Lat
and A2 ∈ wp-K (such that neither A1 nor A2 is a Boolean algebra), we can obtain
a WPQK-algebra A2 × A2 that is interesting in the sense that (as can be easily
checked) A1 ×A2 is neither a p-lattice nor a wp-Kleene algebra. We will describe
another simple method for producing non-trivial examples of WPQK-algebras in
Example 6.4.

Denoting by V(C) the variety generated by the class C, by Corollary 4.13 we also
have V(p-Lat ∪ wp-K) ⊆ WPQK. This inclusion is strict, as the following reasoning
shows (cf. our Footnote 2 on the corresponding problem regarding Heyting, Nelson
and quasi-Nelson algebras/logic). Since we are in a congruence-distributive setting,
we can invoke a classic result of Jónsson [11, Lemma 4.1] to conclude that the
subdirectly irreducible algebras in V(p-Lat∪wp-K) belong to p-Lat∪wp-K. However,
the WPQK-algebra A shown in Figure 1 is a counterexample to this: A is subdirectly
irreducible (see Figure 2) and it can be easily checked that A /∈ p-Lat ∪ wp-K.

5 WPQK vs. Quasi-Nelson Algebras

As observed earlier (Proposition 4.4), every quasi-Nelson algebra has a WPQK-
algebra reduct. We now proceed to check that, indeed, WPQK-algebras are precisely
the {∧,∨,∼,¬, 0, 1}-subreducts of quasi-Nelson algebras. Let us begin by observing
that there are WPQK-algebras which are not the reduct of any quasi-Nelson algebra.
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Example 5.1. Let L = 〈L;∧,∨,¬,⊥,>〉 be the algebra defined as follows. L =
(N × N) ∪ {⊥,>}, where N denotes the set of natural numbers. The order ≤ on
N × N is the direct product of the usual order on N, and we set ⊥ < 〈m,n〉 < >
for all 〈m,n〉 ∈ N × N. Upon defining ¬⊥ = > and ¬〈m,n〉 = ¬> = ⊥ for all
〈m,n〉 ∈ N×N, we have that L is a p-lattice. However, A cannot be endowed with
a Heyting implication. Indeed, a Heyting implication → would have to satisfy, for
example,

〈1, 0〉 → 〈0, 1〉 = max{〈m,n〉 ∈ L : 〈m,n〉 ∧ 〈1, 0〉 ≤ 〈0, 1〉}.

But
{〈m,n〉 ∈ A : 〈m,n〉 ∧ 〈1, 0〉 ≤ 〈0, 1〉} = {〈0, n〉 : n ∈ N},

and this set does not have a maximum. Now, consider the (involutive) WPQK
twist-structure A ≤ L ./ L obtained by letting n = p = IdL and

A := {〈a, b〉 ∈ L× L : a ∧ b = ⊥}.

If A were the reduct of a quasi-Nelson algebra (in which case, indeed, A would be
the reduct of a Nelson algebra), then A+ = 〈A+;∧+,∨+,→+, 0+, 1+〉 would be a
Heyting algebra such that 〈A+;∧+,∨+, 0+, 1+〉 ∼= 〈L;∧,∨,⊥,>〉. This is impossible,
because we have seen that on the lattice 〈L;∧,∨,⊥,>〉 one cannot define a Heyting
implication.

The preceding example shows that there are WPQK-algebras that cannot be
endowed with a quasi-Nelson implication. However, we are going to see that every
WPQK-algebra can be embedded into a quasi-Nelson algebra. To do so, viewing
a WPQK-algebra as a twist-structure A ≤ A+ ./ A−, we will begin by finding
embeddings of A+ and A− into corresponding Heyting algebras H+,H−, and will
then show that the maps n : A+ → A− and p : A− → A+ can be lifted to H+ and
H−.

For constructing H+,H− we will borrow a few results from the theory of canoni-
cal extensions. Recall that the canonical extension of a bounded distributive lattice
L is a complete and completely distributive lattice into which L embeds. Every
(bounded distributive) lattice L has a uniquely determined canonical extension, de-
noted Lσ (see e.g. [9] for further details and proofs). To simplify the notation, one
usually assumes L ⊆ Lσ. Being a complete and completely distributive lattice, ev-
ery canonical extension Lσ has a definable relative pseudo-complementation (i.e. a
Heyting implication) given, for all a, b ∈ Lσ, by

a→ b :=
∨
{c ∈ Lσ : a ∧ c ≤ b}. (RP)
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Let us also keep in mind that every Heyting algebra has a p-lattice reduct, in which
the pseudo-complement operation ¬ is given by ¬a = a→ 0.

Since both A+ and A− have a bounded distributive lattice reduct, we can con-
struct the canonical extensions of these reducts, which we denote by Aσ

+ and Aσ
−.

These algebras can be endowed with Heyting implications →+,→− defined accord-
ing to (RP), obtaining Heyting algebras H+ := 〈Aσ

+,→+〉 and H− := 〈Aσ
−,→−〉.

Regarding the extra operation (pseudo-complement) on Aσ
+, we observe that the

equations defining the pseudo-complement in a lattice are preserved by canonical
extensions [1, Corollary 3.14]. That is, the canonical extension of a p-lattice is a
p-lattice. Thus Aσ

+ is, structurally, both a Heyting algebra (with→+ as implication,
or relative pseudo-complement) and a p-lattice in which the pseudo-complement (call
it ¬+) is the extension (as defined in [1, p. 183]) of the pseudo-complement operation
of A+. Moreover, for all a ∈ Aσ

+, we have
¬+a = a→+ 0+

where 0+ is the bottom element of Aσ
+. This holds because both the Heyting im-

plication and the pseudo-complement operation are completely determined by the
lattice structure, therefore the pseudo-complement of a ∈ Aσ

+ is given by
∨
{c ∈ Aσ+ : a ∧ c = 0+}.

The previous considerations entail that (i) A+ embeds (as a bounded pseudo-
complemented lattice) into the Heyting algebra Aσ

+ and (ii) A− embeds (as a
bounded lattice) into the Heyting algebra Aσ

−. We proceed to show that the maps
n : A+ → A− and p : A− → A+ can be extended to H+ and H− so as to preserve
the desired properties.

The problem of extending maps is well studied within the theory of canoni-
cal extensions. Every map between (bounded distributive) lattices (such as our
n : L+ → L−) can be extended in two ways, obtaining two maps (usually denoted
nσ and nπ) from Lσ+ to Lσ− which agree with n on L+. However, if the map is meet-
preserving (as is our case), then nσ = nπ [9, Lemma 4.4, Corollary 4.7], so we need
not choose between the two. At this point, proving that the extended maps nσ, pσ
satisfy the desired properties is straightforward, modulo the following lemma [19,
Lemma 6.4].
Lemma 5.2. Let M+ = 〈M+,∧+,→+〉 and M− = 〈M−,∧−,→−〉 be implicative
meet-semilattices5 and n : M+ → M− and p : M− → M+ be maps satisfying the
following properties:

5Implicative meet-semilattices are the 〈∧,→〉-subreducts of Heyting algebras, corresponding to
the conjunction-implication fragment of intuitionistic logic. Thus, in particular, the 〈∧,→〉-reduct
of every Heyting algebra is an implicative meet-semilattice.
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(i) n preserves finite meets,

(ii) p preserves finite meets,

(iii) n ◦ p = IdM− and IdM+ ≤+ p ◦ n.

Then p also preserves the implication.

Proposition 5.3. Let 〈A+,A−, n, p〉 be a tuple satisfying the conditions of Defi-
nition 3.1. Then the tuple 〈H+,H−, nσ, pσ〉, where H+ := 〈Aσ

+,→+〉 and H− :=
〈Aσ
−,→−〉 are defined as before, satisfies the conditions of Definition 2.5.

Proof. In the light of the preceding discussion, we only need to check that the maps
n and p satisfy items (i) to (iii) of Definition 2.5. For items (i) and (ii) we can
invoke [9, Corollary 4.7], whereas (iii) easily follows from [9, Lemma 4.5].

Theorem 5.4. Every WPQK-algebra is embeddable into a quasi-Nelson algebra.

Proof. As discussed earlier, we use Theorem 4.10 to view a WPQK-algebra A as a
WPQK twist-structure A ≤ A+ ./ A−, where A+ ⊆ H+ = Aσ+ and A− ⊆ H− =
Aσ−. Constructing the algebra H+ ./ H− as indicated in Proposition 5.3, we have
A ⊆ H+×H−. Let Aσ := {〈a+, a−〉 ∈ H+×H− : a+ ∧+ pσ(a−) = 0+}. As observed
in [22], the set Aσ is the universe of (the largest) quasi-Nelson twist-structure over
H+ ./ H−, which we denote by Aσ. Moreover, A ⊆ Aσ because of the last condition
in Definition 3.1. So A is a {∧,∨,∼,¬, 0, 1}-subalgebra of Aσ, as claimed.

Theorem 5.4 easily entails that the equational presentation of WPQK-algebras
of Definition 4.2 constitutes a complete axiomatization of the {→}-free equational
consequence of quasi-Nelson algebras; this result, in turn, implies that the “logic of
WPQK-algebras” will correspond to the {→}-free fragment of quasi-Nelson logic.

Corollary 5.5. The class of {∧,∨,∼,¬, 0, 1}-subreducts of quasi-Nelson algebras is
the variety of WPQK-algebras. The class of {∧,∨,∼,¬, 0, 1}-subreducts of Nelson
algebras is the variety of wp-Kleene algebras.

Although a logical calculus corresponding to WPQK-algebras (or even to wp-
Kleene algebras) has not been defined, the preceding results are sufficient for us to
make a few considerations about the logics of WPQK and wp-Kleene algebras from
an algebraic logic point of view.

Denote by |=QN ∗ the logical consequence corresponding to the {∧,∨,∼,¬, 0, 1}-
fragment of quasi-Nelson logic |=QN (as defined e.g. in [14]). Thus, Γ |=QN ∗ ϕ if
and only if Γ |=QN ϕ, for all formulas Γ, ϕ that belong to the {∧,∨,∼,¬, 0, 1}-
fragment of the language of quasi-Nelson logic. Similarly, let |=N ∗ denote the
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{∧,∨,∼,¬, 0, 1}-fragment of Nelson logic |=N . On the other hand, let |=WPQK
and |=wpK denote, respectively, the consequences determined by the class of matri-
ces {〈A, {1}〉 : A is a WPQK algebra} and {〈A, {1}〉 : A is a wp-Kleene algebra}.
The following proposition is an immediate consequence of Corollary 5.5.

Proposition 5.6. |=QN ∗ and |=N ∗ coincide, respectively, with |=WPQK and |=wpK.

Proposition 5.7. |=WPQK and |=wpK are not algebraisable in the sense of [4].

Proof. If we show that |=wpK is not algebraisable, the non-algebraisability of |=WPQK
will follow, because algebraisability is preserved by extensions and |=wpK extends
|=WPQK . Let L = 〈{0, a, b, 1};∧,∨,¬, 0, 1〉 be the four-element totally ordered p-
lattice, with 0 < a < b < 1. The order determines the behaviour of the pseudo-
complement operation, which is given by ¬1 = ¬a = ¬b = 0 and ¬0 = 1. For
∇ = {a, b, 1}, consider the wp-Kleene algebra A = Tw(L,∇), which is also a totally
ordered (six-element) lattice with elements 〈0, 1〉 < 〈0, b〉 < 〈0, a〉 < 〈a, 0〉 < 〈b, 0〉 <
〈1, 0〉. The lattice of congruences of A has five elements, the non-trivial ones being:
θ1, having as non-trivial blocks {〈a, 0〉, 〈b, 0〉}, {〈0, a〉, 〈0, b〉}, θ2 having as non-trivial
blocks {〈1, 0〉, 〈b, 0〉}, {〈0, 1〉, 〈0, b〉}, and θ3 = θ1 ∪ θ2. If |=wpK were algebraisable,
there would be an isomorphism between the lattice of logical |=wpK-filters on A
and the congruences of A given by the Leibniz operator Ω [4, Theorem 5.1]. There
would thus be four non-trivial |=wpK-filters F0, F1, F2, F3 on A such thatΩ(F0) = Id,
Ω(F1) = θ1, Ω(F2) = θ2 and Ω(F3) = θ3. Since p |=wpK p∨q obviously holds, all the
|=wpK-filters on A must be increasing sets (i.e., on a chain, lattice filters). Observe
that F0 ⊆ F1 ⊆ F3 and F0 ⊆ F2 ⊆ F3. Since F0 6= ∅ (an algebraisable logic must
have theorems), both F1 and F2 must have at least two elements, and F3 must have
at least three elements. The only lattice filter with at least three elements having θ3
as its Leibniz congruence is the principal up-set ↑〈a, 0〉. Hence, F3 = ↑〈a, 0〉. This
means that F2 = ↑〈b, 0〉 and F0 = {〈1, 0〉}. But then Ω(F0) = θ1, which contradicts
Ω(F0) = Id. Hence, there can be no isomorphism between |=wpK-filters on A and
the congruences of A.

An altogether different question from the one considered in Proposition 5.7
is whether the class of WPQK-algebras (resp. wp-Kleene algebras) might be the
equivalent algebraic semantics of some algebraisable logic (different from |=QN ∗ ,
resp. |=N ∗); that is, as some authors might put it, whether WPQK-algebras (respec-
tively, wp-Kleene algebras) form a class of “algebras of logic” in such a strong sense.
As far as WPQK-algebras are concerned, it is easy to show that the answer is neg-
ative. This holds because p-lattices can be viewed as a subclass of WPQK-algebras
(Proposition 9.3), and p-lattices are not the equivalent algebraic semantics of any
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algebraisable logic [18, Theorem 3.1]. This argument does not apply to wp-Kleene
algebras (cf. Proposition 9.13), and indeed the corresponding question concerning
this class is open.

6 Refining the Twist Representation
In this section we sharpen the twist representation of WPQK-algebras in the spirit
of the Sendlewski-Odintsov filter-ideal representation of Nelson algebras and N4-
lattices. Let us consider again the algebra A+ ./ A− introduced in Definition 3.1.
We showed in Remark 3.3 that the set

{〈a+, a−〉 ∈ A+ ×A− : a+ ∧+ p(a−) = 0+}

is closed under all the algebraic operations of A+ ./ A−, and is therefore the uni-
verse of the largest twist-structure over A+ ./ A−. We can obtain arbitrary twist-
structures by considering subsets of A+ ×A− defined as follows.

Let ∇ ⊆ A+ be a lattice filter of A+. We shall say that ∇ is dense if it contains
the set D(A+) of dense elements of A+, defined as follows:

D(A+) := {a+ ∨+ ¬+a+ : a+ ∈ A+} = {a+ ∈ A+ : ¬+a+ = 0+}.

Given a dense filter ∇ ⊇ D(A+) of A+, define the set:

Tw〈A+, A−,∇〉 := {〈a+, a−〉 ∈ A+ ×A− : a+ ∨+ p(a−) ∈ ∇, a+ ∧+ p(a−) = 0+}.

In what follows, instead of Tw〈A+, A−,∇〉, we shall sometimes use the more com-
plete notation Tw〈A+, A−, n, p,∇〉 if the role of the maps n and p needs to be
emphasised.

Proposition 6.1. Let A+,A−, n, p be given as per Definition 3.1 and let ∇ be a
dense filter of A+. The set Tw(A+, A−,∇) is the universe of a twist-structure over
A+ ./ A−.

Proof. Notice that ‘one half’ of the proof (the one corresponding to the condition
a+ ∧+ p(a−) = 0+) has already been established in Remark 3.3. We thus need to
deal with the condition a+ ∨+ p(a−) ∈ ∇. Let 〈a+, a−〉 ∈ Tw(A+, A−,∇), so that
a+∨+p(a−) ∈ ∇ and a+∧+p(a−) = 0+. From IdA+ ≤+ p◦n we have a+∨+p(a−) ≤+
p(a−) ∨+ pn(a+), and thus p(a−) ∨+ pn(a+) ∈ ∇. This shows that Tw(A+, A−,∇)
is closed under the ∼ negation. For the negation ¬ we need to check that ¬+a+ ∨+
pn(a+) ∈ ∇. This follows from the density condition: from a+ ∨+ ¬+a+ ∈ ∇
and a+ ∨+ ¬+a+ ≤+ ¬+a+ ∨+ pn(a+), we obtain the desired result. For closure
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under ∧ we need to check that, given 〈a+, a−〉, 〈b+, b−〉 ∈ Tw(A+, A−,∇), we have
(a+∧+b+)∨+p(a−∨−b−) ∈ ∇. By distributivity, we have (a+∧+b+)∨+p(a−∨−b−) =
(a+∨+p(a−∨−b−))∧+(b+∨+p(a−∨−b−)). Since a+∨+p(a−) ≤+ a+∨+p(a−∨−b−),
from the assumption a+ ∨+ p(a−) ∈ ∇ we obtain a+ ∨+ p(a− ∨− b−) ∈ ∇. A similar
reasoning, using the assumption b+ ∨+ p(b−) ∈ ∇, gives us b+ ∨+ p(a− ∨− b−) ∈ ∇.
Thus, the result follows from the closure of ∇ under ∧+. Regarding ∨, we need
to ensure that a+ ∨ b+ ∨+ p(a− ∧− b−) ∈ ∇. Since p preserves meets, we have
a+ ∨+ b+ ∨+ p(a− ∧− b−) = a+ ∨+ b+ ∨+ (p(a−)∧+ p(b−)) = (a+ ∨+ b+ ∨+ p(a−))∧+
(a+∨+ b+∨+ p(b−)). Since a+∨+ p(a−) ≤+ a+∨+ b+∨+ p(a−) and a+∨+ p(a−) ∈ ∇,
we have a+ ∨+ b+ ∨+ p(a−) ∈ ∇. A similar reasoning shows that the assumption
b+ ∨+ p(b−) ∈ ∇ entails a+ ∨+ b+ ∨+ p(b−) ∈ ∇. Hence the result follows from the
closure of ∇ under ∧+.

To see that the twist-structures with universe Tw〈A+, A−,∇〉 are all the possible
twist-structures over A+ ./ A−, consider an arbitrary WPQK twist-structure A ≤
A+ ./ A−. Define the set

I(A) := {〈a+, a−〉 ∈ A : ∼〈a+, a−〉 ≤ 〈a+, a−〉}.

A simpler description of I(A) is this one:

I(A) = {〈a+, 0−〉 : 〈a+, 0−〉 ∈ A}.

Indeed, it is clear that every element of the form 〈a+, 0−〉 satisfies ∼〈a+, 0−〉 =
〈0+, n(a+)〉 ≤ 〈a+, 0−〉. But conversely, the condition ∼〈a+, a−〉 ≤ 〈a+, a−〉 entails
p(a−) ≤+ a+. In such a case, recalling the requirement a+ ∧+ p(a−) = 0+, one has
a+ ∧+ p(a−) = p(a−) = 0+. Then np(a−) = a− = n(0+) = 0−.

Theorem 6.2. Let A ≤ A+ ./ A− be a WPQK twist-structure.

(i) I(A) is a lattice filter of A.

(ii) ∇A := π1[I(A)] is a lattice filter of A+.

(iii) D(A+) ⊆ ∇A.

(iv) A = Tw〈A+, A−,∇A〉.

Proof. (i). Recalling that I(A) = {〈a+, 0−〉 : 〈a+, 0−〉 ∈ A}, this is straightforward.
Obviously the top element 〈1+, 0−〉 of A belongs to I(A). Assuming 〈a+, 0−〉 ∈ I(A)
and 〈a+, 0−〉 ≤ 〈b+, b−〉, we have b− ≤− 0−, so that 〈b+, b−〉 = 〈b+, 0−〉 ∈ (A).
Finally, if 〈a+, 0−〉, 〈b+, 0−〉 ∈ I(A), then 〈a+, 0−〉∧〈b+, 0−〉 = 〈a+∧+b+, 0−∨−0−〉 =
〈a+ ∧+ b+, 0−〉 ∈ I(A).
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(ii). It follows from the preceding item that 1+ ∈ ∇A. Further, assume a+ ∈ ∇A
and a+ ≤+ b+. The former assumption implies that 〈a+, 0−〉 ∈ I(A). From the
latter, letting 〈b+, b−〉 ∈ A (such an element must exist in A, by the requirement that
π1(A) = A+ in Definition 3.1), we have 〈a+, 0+〉∨〈b+, b−〉 = 〈a+∨+ b+, 0−∧− b−〉 =
〈b+, 0−〉. Then 〈b+, 0−〉 ∈ I(A) and so b+ ∈ ∇A, as required. Lastly, assuming
a+, b+ ∈ ∇A, we have 〈a+, 0−〉, 〈b+, 0−〉 ∈ I(A). Hence, by item (i) above, we have
〈a+ ∧+ b+, 0−〉 ∈ I(A) and so a+ ∧+ b+ ∈ ∇A.

(iii). Let a+ ∨+ ¬+a+ ∈ D(A+). Then a+ ∈ A+ and, since π1(A) = A+, there is
a− ∈ A− with 〈a+, a−〉 ∈ A. Then 〈a+, a−〉∨¬〈a+, a−〉 = 〈a+, a−〉∨〈¬+a+, n(a+)〉 =
〈a+ ∨+ ¬+a+, a− ∧− n(a+)〉 = 〈a+ ∨+ ¬+a+, 0−〉 ∈ A (the last equality holding by
Remark 3.2). Then a+ ∨+ ¬+a+ ∈ ∇A, as required.

(iv). The inclusion A ⊆ Tw〈A+, A−,∇A〉 is straightforward. Indeed, for all
〈a+, a−〉 ∈ A, using Remark 3.2) we have 〈a+, a−〉∨∼〈a+, a−〉 = 〈a+∨+p(a−), a−∧−
n(a+)〉 = 〈a+ ∨+ p(a−), 0−〉 ∈ I(A). Thus a+ ∨+ p(a−) ∈ ∇A and so 〈a+, a−〉 ∈
Tw〈A+, A−,∇A〉. Conversely, assume 〈a+, a−〉 ∈ Tw〈A+, A−,∇A〉, i.e. a+ ∨+
p(a−) ∈ ∇A and a+ ∧+ p(a−) = 0+. From the first condition we have 〈a+ ∨+
p(a−), 0−〉 ∈ I(A) ⊆ A. Also, from p(a−) ∈ A+ and π1(A) = A+, we have that
there is b− ∈ A− such that 〈p(a−), b−〉 ∈ A. Recalling n ◦ p = IdA− , we have
¬〈p(a−), b−〉 = 〈¬+p(a−), np(a−)〉 = 〈¬+p(a−), a−〉 ∈ A.

We further compute:

〈a+ ∨+ p(a−), 0−〉 ∧ 〈¬+p(a−), a−〉 =
= 〈(a+ ∨+ p(a−)) ∧+ ¬+p(a−), 0− ∨− a−〉
= 〈(a+ ∨+ p(a−)) ∧+ ¬+p(a−), a−〉
= [by distributivity]
= 〈(a+ ∧+ ¬+p(a−)) ∨+ (p(a−) ∧+ ¬+p(a−)), a−〉
= [using x ∧+ ¬+x = 0+]
= 〈(a+ ∧+ ¬+p(a−)) ∨+ 0+, a−〉
= 〈a+ ∧+ ¬+p(a−), a−〉
= [using a+ ∧+ p(a−) = 0+]
= 〈a+, a−〉.

Hence, 〈a+, a−〉 ∈ A and so Tw〈A+, A−,∇A〉 ⊆ A.

Remark 6.3. Theorem 6.2 can be used to establish a (co-variant) equivalence of
categories between (1) a category having WPQK-algebras as objects and algebraic
homomorphisms between them as morphisms, and (2) a category having tuples of
type 〈A+,A−, n, p,∇〉 as objects and as morphisms pairs of maps 〈h+, h−〉 which
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preserve the tuple structure. We shall not pursue this here; the interested reader is
referred to [21] for the relevant details.

As an application of Theorem 6.2, we describe in the next example a simple
method for constructing interesting WPQK-algebras (qua twist-structures).

Example 6.4. Let A+ = 〈A+,∧+,∨+,¬+, 0+, 1+〉 be a p-lattice having a splitting
element, that is, an element c+ ∈ A+ such that, for all a+ ∈ A+, either a+ <+ c+
or c+ ≤+ a+. It is well known that such a splitting element exists, for instance, in
every subdirectly irreducible p-lattice [13, Theorem 2], in which case c+ is the unique
co-atom. Thus A+ = [0+, c+] ∪ [c+, 1+], where [0+, c+] := {a+ ∈ A+ : a+ ≤+ c+}
and [c+, 1+] := {a+ ∈ A+ : c+ ≤+ a+}. Let us observe that [c+, 1+] ⊆ D(A+),
where D(A+) denotes the set of dense elements of A+ given by

D(A+) = {a+ ∨+ ¬+a+ : a+ ∈ A+} = {a+ ∈ A+ : ¬+a+ = 0+}.

Using the latter characterization, it is easy to show that [c+, 1+] ⊆ D(A+). Observe
that (disregarding the nullary constant 1+) the interval [0+, c+] is a subalgebra of
A+. Thus [0+, c+] can itself be viewed as a p-lattice, with bottom element 0+ and
top element c+. Denote this algebra by A([0+, c+]).
Let A− = 〈A−,∧−,∨−, 0−, 1−〉 be an isomorphic copy of the bounded lattice reduct
of A([0+, c+]). We denote by a− ∈ A− the element corresponding, via the isomor-
phism, to each a+ ∈ [0+, c+]. Thus 1− = c−.

Define maps n : A+ → A− and p : A− → A+ as follows. Let n(a+) = a− for
a+ < c+ and n(a+) = 1− for c+ ≤+ a+. Let p(1−) = 1+ and p(a−) = a+ for
a− ∈ A− with a− <− 1−. It is easy to verify that the maps thus defined satisfy all
the conditions of Definition 3.1. Thus we can obtain a WPQK twist-structure A
over A+ ./ A− by choosing a filter ∇ such that [c+, 1+] ⊆ D(A+) ⊆ ∇. Note that
〈c+, 0+〉 will itself be a splitting element in A. More importantly, observe that:

(i) if c+ 6= 1+, then n is not injective, which implies that A is not a wp-Kleene
lattice (see Proposition 9.12);

(ii) if [c+, 1+] ( ∇, then n(∇) 6= {1−}, so A is not a p-lattice (see Proposition 9.2).

Thus, the method described above allows us to construct examples of WPQK-
algebras which do not belong to either of these already known subvarieties.

Figure 1 shows the Hasse diagram of a WPQK-algebra A obtained by the method
in Example 6.4, together with the corresponding p-lattices A+ and A−. We do not
indicate the pseudo-complement operations on A+ and A− on the diagram, as these
are determined by the lattice structure. The maps n and p are given by p(x−) = x+
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for all x− ∈ A−, n(x+) = 1− for x+ ∈ {e+, 1+} and n(x+) = x− otherwise. This
determines the behaviour of all operations on A. It can be checked that A is
not a wp-Kleene algebra, because the negation ∼ is not involutive: ∼∼〈e+, 0−〉 =
〈1+, 0+〉. Also, A is not a p-lattice because ¬〈0+, c−〉 = 〈1+, 0−〉, and 〈1+, 0−〉 is
not the pseudo-complement of 〈0+, c−〉.

〈0+, 1−〉

〈0+, c−〉

〈b+, a−〉

〈a+, d−〉

〈a+, b−〉

〈c+, 0−〉

〈1+, 0−〉

〈e+, 0−〉

〈d+, a−〉

A

0+

b+

d+

a+

c+

e+

1+

A+

0−

b−

d−

a−

c−

1−

A−

Figure 1: A WPQK-algebra constructed according to Example 6.4.

Figure 2 shows the congruence lattices of A,A+ and A−; note that A− is here
viewed as a p-lattice rather than just a lattice. We shall see with Theorem 7.5
(cf. also Proposition 7.3) that the lattice Con(A) is in general embeddable into
Con(A+) via a map denoted (.)∗. The names of the elements of Con(A+) on the
diagram have been chosen to reflect this observation. Notice that the congruence
η, which is the one having as only non-singleton blocks {b+, d+} and {c+, e+}, is
(the only one) not in the image of (.)∗ because η /∈ Con2(A+); see Theorem 7.8.
Indeed, since 〈c+, e+〉 ∈ η, if we had η ∈ Con2(A+), then we should also have
〈pn(c+), pn(e+)〉 = 〈c+, 1+〉 ∈ η, which is not the case. We shall also see that
Con(A−) is embeddable into Con(A+) by a map denoted (.)2 (Proposition 7.13).
On the diagram, the embedding is given by (A− ×A−)2 = A+ ×A+, (IdA−)2 = θ∗0
and (ρi)2 = θ∗i for 1 ≤ i ≤ 4.
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θ0

θ2

θ4

θ1

θ3

A×A

IdA

Con(A)

A+ ×A+

θ∗3

IdA+

η

θ∗1

θ∗0 = (IdA−)2

θ∗2

θ∗4

Con(A+)

IdA−

ρ2

ρ4

ρ1

ρ3

A− ×A−

Con(A−)

Figure 2: The corresponding congruence lattices.

7 Congruences and the p-Skeleton
In this section we shall obtain more information on the lattice of congruences of
a WPQK-algebra, and in particular on how it relates to the congruences of the
underlying factor algebra given in the twist-structure representation. To do so, we
will employ a non-involutive generalisation of Sendlewski’s p-skeleton construction
for wp-Kleene algebras.

Let A be a WPQK-algebra and a ∈ A. Define the operation:

a∗ := a ∧ ∼¬a.

It may be useful to observe the behaviour of the ∗ operation on a twist-structure.
Recalling the proof of Lemma 3.5.i, we have that, for every twist-structure A and
every pair 〈a+, a−〉 ∈ A,

〈a+, a−〉∗ = 〈a+, a−〉 ∧ ∼¬〈a+, a−〉 = 〈a+, n(¬+a+)〉.

For our purposes, the key feature of this operation is that it leaves the first compo-
nent of each pair unchanged while deleting the second one. Using this observation,
we can easily obtain a number of useful properties listed below.

Lemma 7.1. Let A be a WPQK-algebra and a, b ∈ A.
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(i) a ≡ b iff a∗ = b∗.

(ii) a = b iff (a∗ = b∗ and (∼ a)∗ = (∼ b)∗).

(iii) (a ∨ b)∗ = (a∗ ∨ b∗)∗ = a∗ ∨ b∗.

(iv) (a ∧ b)∗ = (a∗ ∧ b∗)∗.

(v) ¬(a∗) = ¬a

(vi) 0∗ = 0 and 1∗ = 1.

(vii) (∼∼ a)∗ = (∼¬a)∗.

(viii) ∼(a∗) = ∼∼¬a.

(ix) a∗∗ = a∗.

Proof. (i). Follows from item (i) of Proposition 4.11.
(ii). Follows from (ii) of Proposition 4.11.
It is convenient to check the remaining items on a twist-structure A ≤ A+ ./ A−.

Let a = 〈a+, a−〉, b = 〈b+, b−〉 ∈ A, and recall from Lemma 3.5.i that 〈a+, a−〉∗ =
〈a+, a−〉 ∧ ∼¬〈a+, a−〉 = 〈a+, n(¬+a+)〉.

(iii). Let us compute 〈a+, a−〉∗ ∨ 〈b+, b−〉∗ = 〈a+ ∨+ b+, n(¬+a+) ∧− n(¬+b+)〉.
Observe that, using the requirement that n preserves finite meets and the semi-De
Morgan identities (for the pseudo-complement), we have n(¬+a+) ∧− n(¬+b+) =
n(¬+a+ ∧+ ¬+b+) = n(¬+(a+ ∨+ b+)) Thus we have

〈a+, a−〉∗ ∨ 〈b+, b−〉∗ = 〈a+ ∨+ b+, n(¬+(a+ ∨+ b+))〉 = (〈a+, a−〉 ∨ 〈b+, b−〉)∗,

as required. Having established a∗ ∨ b∗ = (a ∨ b)∗, to show that (a∗ ∨ b∗)∗ = a∗ ∨ b∗
it suffices to observe that (a∗)∗ = a∗ for all a ∈ A, which is very easily checked on
twist-structures.

(iv). It suffices to compute (〈a+, a−〉 ∧ 〈b+, b−〉)∗ = 〈a+ ∧+ b+, n(¬+(a+ ∧+
b+))〉 and (〈a+, a−〉∗ ∧ 〈b+, b−〉∗)∗ = 〈a+ ∧+ b+, n(¬+a+) ∨− n(¬+b+)〉∗ = 〈a+ ∧+
b+, n(¬+(a+ ∧+ b+))〉.

(v). On the one hand, we have

¬(〈a+, a−〉∗) = ¬(〈a+, n(¬+a+)〉) = 〈¬+a+, n(a+)〉

and, on the other, ¬〈a+, a−〉 = 〈¬+a+, n(a+)〉.
(vi). Also straightforward to check on a twist-structure.
(vii). Follows from item (i) above, together with Proposition 4.11.xii.
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(viii). On a twist-structure, let us compute ∼(〈a+, a−〉∗) = ∼〈a+, n(¬+a+)〉 =
〈pn(¬+a+), n(a+)〉. and ∼∼¬〈a+, a−〉 = ∼∼〈¬+a+, n(a+)〉 = 〈pn(¬+a+), n(a+)〉.

(ix). Straightforward to check on a twist-structure.

The preceding proposition should have made it clear that the ∗ operation is a
way of “internalising” the relation ≡ on A, thus allowing us to find an isomorphic
copy of the quotient A+ inside A itself. The p-skeleton defined below makes this
intuition more precise.

Definition 7.2. The p-skeleton A∗ of a WPQK algebra A is the algebra A∗ =
〈A∗;∧∗,∨∗,¬∗, 0∗, 1∗〉 where A∗ := {a∗ : a ∈ A} and, for all a, b ∈ A∗,

a ∧∗ b := (a ∧ b)∗

a ∨∗ b := (a ∨ b)∗ = a ∨ b (cf. Lemma 7.1.iii)

¬∗a := (¬a)∗

0∗ := 0

1∗ := 1.

As mentioned earlier, Definition 7.2 and the results that it will allow us to prove
are obviously a generalisation of Sendlewski’s p-skeleton functor [26, Section 4].
Notice that, if the WPQK-algebra A happens to be a wp-Kleene algebra (Defini-
tion 4.14), then a∗ = ∼¬a for all a ∈ A [26, Lemma 2.1.iii], so we recover precisely
Sendlewski’s original definition.

Proposition 7.3. For every WPQK-algebra A, the map α : A+ → A∗ given by
α([a]) = a∗ for all a ∈ A is a p-lattice isomorphism between A+ and A∗ (hence, A∗
is a p-lattice).

Proof. Lemma 7.1.i guarantees at the same time that α is a well-defined and injective
map. Surjectivity is obvious. Let us check that the p-lattice operations are preserved.
To improve readability, we write α[a] instead of α([a]). The case of the constants is
straightforward. Using Lemma 7.1.iii, we have α([a] ∨+ [b]) = α[a ∨ b] = (a ∨ b)∗ =
(a∗ ∨ b∗)∗ = a∗ ∨∗ b∗ = α[a] ∨∗ α[b]. Using Lemma 7.1.iv, we have α([a] ∧+ [b]) =
α[a ∧ b] = (a ∧ b)∗ = (a∗ ∧ b∗)∗ = a∗ ∧∗ b∗ = α[a] ∧∗ α[b]. Using Lemma 7.1.v, we
have α(¬+[a]) = α[¬a] = (¬a)∗ = (¬(a∗))∗ = ¬∗(a∗) = ¬∗α[a].
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Proposition 7.3 suggests that an alternative way of obtaining a twist-structure
representation for WPQK-algebras is to use the p-skeleton A∗ (instead of A+) as
first factor and the map given by a 7→ a∗ instead of the relation ≡ (see Proposi-
tion 7.10 for the corresponding result concerning A−). We will state this formally
later on (Theorem 7.11). For the time being, we are going to employ A∗ to ex-
plore the relationship between the congruences of a WPQK-algebra and those of the
corresponding p-lattice factor(s).

Lemma 7.4 (cf. [26], Lemma 5.1). Let A be a WPQK-algebra, let θ ∈ Con(A) and
a, b ∈ A. The following conditions are equivalent:

(i) 〈a, b〉 ∈ θ.

(ii) 〈a∗, b∗〉, 〈(∼ a)∗, (∼ b)∗〉 ∈ θ.

Proof. It is plain that (i) implies (ii). Conversely, assume (ii). Thus, in the quotient
A/θ we have [a∗]θ = [b∗]θ and [(∼ a)∗]θ = [(∼ b)∗]θ. Observe that [a∗]θ = ([a]θ)∗
and, likewise, [(∼ a)∗]θ = (∼[a]θ)∗. Observe also, by Corollary 4.13, that the class
of WPQK-algebras is closed under homomorphic images. Hence A/θ is a WPQK-
algebra. Then, by item (i) of Lemma 7.1, we have [a]θ ≡ [b]θ and ∼[a]θ ≡ ∼[b]θ.
By item (iii) of Proposition 4.6, this gives us [a]θ = [b]θ, that is 〈a, b〉 ∈ θ, as
required.

Theorem 7.5. For every WPQK-algebra A, the lattice Con(A) is embeddable into
the lattice Con(A∗) via the map (.)∗ given, for all θ ∈ Con(A), by θ∗ := θ∩(A∗×A∗).
The embedding obviously preserves the least and greatest elements.

Proof. It is plain that θ∗ ∈ Con(A∗) for all θ ∈ Con(A). Obviously the map
(.)∗ preserves arbitrary intersections, so it is order-preserving. Notice also that
(.)∗ preserves both the least and the greatest element (compare this with Propo-
sition 7.13). Let us show that (.)∗ is also order-reflecting (which implies injec-
tivity). Assume θ∗1 = θ1 ∩ (A∗ × A∗) ⊆ θ2 ∩ (A∗ × A∗) = θ∗2 for some θ1, θ2 ∈
Con(A). Let 〈a, b〉 ∈ θ1. Then, by Lemma 7.4, we have 〈a∗, b∗〉, 〈(∼ a)∗, (∼ b)∗〉 ∈ θ1.
Since a∗, b∗, (∼ a)∗, (∼ b)∗ ∈ A∗, we have 〈a∗, b∗〉, 〈(∼ a)∗, (∼ b)∗〉 ∈ θ∗1 ⊆ θ∗2. Thus
〈a∗, b∗〉, 〈(∼ a)∗, (∼ b)∗〉 ∈ θ2 which, again by Lemma 7.4, gives us 〈a, b〉 ∈ θ2. Hence,
θ1 ⊆ θ2, as required.

For involutive WPQK-algebras (i.e. Sendlewski’s wp-Kleene algebras), one can
improve on Theorem 7.5 by showing Con(A) ∼= Con(A∗) [26, Theorem 5.2]; one can
also obtain this result as a corollary to our Theorem 7.8 below. Such an isomor-
phism does not exist, in general, for WPQK-algebras. In fact, we have constructed
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earlier (Figures 1 and 2) a subdirectly irreducible WPQK-algebra A such that nei-
ther the p-lattice A∗ nor A− (viewed as either a p-lattice or a lattice) is subdirectly
irreducible6. We may observe, in particular, that every congruence of A∗ having
the form θ∗ for some θ ∈ Con(A) satisfies a characteristic property. Indeed, one
has 〈(∼∼ a)∗, (∼∼ b)∗〉 ∈ θ∗ whenever 〈a, b〉 ∈ θ∗ (notice that this trivially holds
on all wp-Kleene algebras). Indeed, this is the only non-trivial property that con-
gruences having the form θ∗ possess. We proceed to translate this intuition into a
mathematical result.

For every WPQK-algebra A and a ∈ A, define 2a := (∼¬a)∗. It may be useful
to keep in mind that, if A is viewed as a twist-structure, then we have, for all
〈a+, a−〉 ∈ A,

2〈a+, a−〉 = 〈pn(a+), n(¬+pn(a+))〉 = 〈pn(a+), n(¬+a+)〉.

The equality n(¬+pn(a+)) = n(¬+a+) holds because, on the one hand, from a+ ≤+
pn(a+) we obtain ¬+pn(a+) ≤+ ¬+a+ and from this n(¬+pn(a+)) ≤+ n(¬+a+).
On the other hand, we can obtain the other inequality n(¬+a+) ≤+ n(¬+pn(a+))
as follows. We have pn(a+)∧+¬+a+ ≤+ pn(a+)∧+ pn(¬+a+) = pn(a+∧+¬+a+) =
pn(0+) = 0+. From pn(a+) ∧+ ¬+a+ = 0+, using the property of the pseudo-
complement, we have ¬+a+ ≤+ ¬+pn(a+), so n(¬+a+) ≤+ n(¬+pn(a+)), as re-
quired.

The p-skeleton A∗ is obviously closed under the 2 operation; thus we may con-
sider the enriched algebra 〈A∗,2〉. We also define

Con2(A∗) := {η ∈ Con(A∗) : 〈2a,2b〉 ∈ η whenever 〈a, b〉 ∈ η}.

It is easy to verify that Con2(A∗) is closed under arbitrary intersections. Thus
〈Con2(A∗),⊆〉 is a complete lattice whose meet coincides with that of 〈Con(A∗),⊆〉.
Indeed, 〈Con2(A∗),⊆〉 is just the lattice of all congruences of the algebra 〈A∗,2〉.
Our next aim is to show that this lattice is isomorphic to Con(A).

In the following lemma we state a few properties of the 2 operator that will be
useful in subsequent proof.

Lemma 7.6. Let A be a WPQK-algebra and a, b ∈ A.

(i) 2a = (∼∼ a)∗ = (∼∼(a∗))∗ = (∼¬(a∗))∗.

(ii) 2(¬∗(a∗)) = (∼(a∗))∗ = 2¬2a.
6This not only destroys all hope of having Con(A) ∼= Con(A+) or Con(A) ∼= Con(A−), but also

disproves the conjecture that the embedding of Theorem 7.5 might at least preserve the monolith
congruence (cf. [26, Corollary 5.4]).

537



Rivieccio

(iii) 21 = 1 and 20 = 0.

(iv) 2(a ∧ b) = 2(a ∧∗ b) = 2a ∧∗ 2b.

(v) 2a = 22a.

(vi) a∗ ≤ 2a = 2(a∗).

(vii) 2(∼ a) = (∼ a)∗.

(viii) 2(((∼ a)∗) ∨ ((∼ b)∗)) = 2(∼(a ∧ b)).

(ix) 2(2a ∨2b) = 2(a ∨ b).

Proof. (i). By Proposition 4.11.xii and Lemma 7.1.i, we have 2a = (∼∼ a)∗. The
remaining equalities follow from the observation that ∼∼ a ≡ ∼∼(a∗) and ∼¬a ≡
∼¬(a∗) which are easily checked on twist-structures. We also check the following
items on twist-structures.

(ii). Recalling that 2〈a+, a−〉 = 〈pn(a+), n(¬+pn(a+))〉, we have

2(¬∗(〈a+, a−〉∗)) = 2(¬∗(〈a+, n(¬+a+〉))
= 2(〈¬+a+, n(a+)〉∗)
= 2〈¬+a+, n(¬+¬+a+)〉
= 〈pn(¬+a+), n(¬+pn(¬+a+))〉.

Let us compute: (∼(〈a+, a−〉∗))∗ = (∼〈a+, n(¬+a+)〉)∗ = 〈pn(¬+a+), n(a+)〉∗ =
〈pn(¬+a+), n(¬+pn(¬+a+))〉. The first equality then follows. As to the second, let
us compute:

2¬2〈a+, a−〉 = 〈pn(¬+pn(a+)), n(¬+pn(¬+pn(a+)))〉.

Recall from the proof of Proposition 3.4 that ¬+a+ = ¬+pn(a+) for all a+ ∈ A+.
Then pn(¬+a+) = pn(¬+pn(a+)), which entails

n(¬+pn(¬+a+)) = n(¬+pn(¬+pn(a+))),

as required.
(iii). Very easy.
(iv). Recall that, on a twist-structure, 〈a+, a−〉∧〈b+, b−〉 = 〈a+∧+ b+, a−∨− b−〉

and 〈a+, a−〉 ∧∗ 〈b+, b−〉 = 〈a+ ∧+ b+, n(¬+(a+ ∧+ b+))〉. The first equality then
simply follows from the observation that the 2 operation only uses the first compo-
nent of each pair. As to the second, we have 2(〈a+, a−〉 ∧∗ 〈b+, b−〉) = 2(〈a+ ∧+
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b+, a− ∨− b−〉∗) = 2〈a+ ∧+ b+, n(¬+(a+ ∧+ b+))〉 = 2〈a+ ∧+ b+, n(¬+(a+ ∧+
b+))〉 = 〈pn(a+ ∧+ b+), n(¬+(a+ ∧+ b+))〉 Since p and n preserve finite meets, we
also have 2a ∧∗ 2b = (〈pn(a+), n(¬+a+)〉 ∧ 〈pn(b+), n(¬+b+)〉)∗ = 〈pn(a+) ∧+
pn(b+), n(¬+a+) ∨− n(¬+b+)〉∗ = 〈pn(a+) ∧+ pn(b+), n(¬+a+) ∨− n(¬+b+)〉∗ =
〈pn(a+ ∧+ b+), n(¬+a+) ∨− n(¬+b+)〉∗ = 〈pn(a+ ∧+ b+), n(¬+pn(a+ ∧+ b+))〉. The
first equality then follows from our earlier observation that n(¬+pn(c+)) = n(¬+c+)
for all c+ ∈ A+.

(v). We shall prove this directly: but note that it also follows (using the lattice
properties) by item (ix) below. Let us compute:

22〈a+, a−〉 = 2〈pn(a+), n(¬+a+)〉 = 〈pnpn(a+), n(¬+pn(a+))〉.

Now n ◦ p = IdA− gives us pnpn(a+) = pn(a+), and we have already observed that
n(¬+pn(a+)) = n(¬+a+). Thus the result follows.

(vi). The equality 2a = 2(a∗) is very easily checked on a twist-structure: observe
that the 2 operator disregards the first component of each pair 〈a+, a−〉, and recall
that 〈a+, a−〉∗〈a+, n(¬+(a+))〉. As to the inequality a∗ ≤ 2a, recall that 〈a+, a−〉∗ =
〈a+, n(¬+a+)〉. We thus need to check that 〈a+, n(¬+a+)〉 ≤ 〈pn(a+), n(¬+a+)〉,
which follows from IdA+ ≤+ p ◦ n.

(vii). By item (i) above and the semi-De Morgan identities, we have 2(∼ a) =
(∼∼∼ a)∗ = (∼ a)∗.

(viii). Let us compute:

2(((∼〈a+, a−〉)∗) ∨ ((∼〈b+, b−〉)∗)) = 2(〈p(a−), n(¬+p(a−)〉 ∨ 〈p(b−), n(¬+p(b−)〉)
= 〈pn(p(a−) ∨+ p(b−)), n(¬+(p(a−) ∨+ p(b−)))〉
= 〈p(a− ∨− b−)), n(¬+(p(a−) ∨+ p(b−)))〉.

The last equality holds because, using n◦p = IdA− and the fact that n preserves finite
joins, pn(p(a−)∨+ p(b−)) = p(np(a−)∨−np(b−)) = p(a−∨− b−). On the other hand,
also using n◦p = IdA− , we have 2(∼(〈a+, a−〉∧〈b+, b−〉)) = 2〈p(a−∨−b−), n(a+∧+
b+)〉 = 〈pnp(a−∨−b−), n(¬+p(a−∨−b−))〉 = 〈p(a−∨−b−), n(¬+p(a−∨−b−))〉. Thus
the first components are equal. As to the second ones, from p(a−) ∨+ p(b−) ≤+
p(a− ∨− b−) we get ¬+(p(a− ∨− b−)) ≤+ ¬+(p(a−) ∨+ p(b−)) and n(¬+(p(a− ∨−
b−))) ≤− n(¬+(p(a−)∨+p(b−))). To show n(¬+(p(a−)∨+p(b−))) ≤− n(¬+(p(a−∨−
b−))) it is sufficient (by monotonicity of n) to check that ¬+(p(a−) ∨+ p(b−)) ≤+
¬+(p(a−∨− b−)). By the property of the pseudo-complement, this holds iff p(a−∨−
b−)∧+¬+(p(a−)∨+p(b−)) = 0+. Observe that, using the semi-De Morgan identities
(for ¬+), we have p(a−∨− b−)∧+¬+(p(a−)∨+ p(b−)) = p(a−∨− b−)∧+¬+p(a−)∧+
¬+p(b−). Using IdA+ ≤+ p ◦ n, the observation that p and n preserve finite meets
and distributivity, we have p(a− ∨− b−)∧+ ¬+p(a−)∧+ ¬+p(b−) ≤+ p(a− ∨− b−)∧+
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pn(¬+p(a−)∧+¬+p(b−)) = p((a−∨− b−)∧−n(¬+p(a−))∧−n(¬+p(b−))) = p((a−∧−
n(¬+p(a−))∧− n(¬+p(b−)))∨− (b− ∧− n(¬+p(a−))∧− n(¬+p(b−)))). Observe that,
using n ◦ p = IdA− and the fact that n preserves finite meets (and the bottom
element), we have a− ∧− n(¬+p(a−)) ∧− n(¬+p(b−))) = np(a−) ∧− n(¬+p(a−)) ∧−
n(¬+p(b−))) = n(p(a−) ∧+ ¬+p(a−) ∧+ ¬+p(b−)) = n(0+ ∧+ ¬+p(b−)) = n(0+) =
0−. In a similar way we obtain b− ∧− n(¬+p(a−)) ∧− n(¬+p(b−)) = 0−. Thus
p((a− ∧− n(¬+p(a−)) ∧− n(¬+p(b−))) ∨− (b− ∧− n(¬+p(a−)) ∧− n(¬+p(b−)))) =
p(0− ∨− 0−) = 0+, which gives us the desired result.

(ix). Let us compute:

2(2〈a+, a−〉 ∨2〈b+, b−〉) = 2〈pn(a+) ∨+ pn(b+), n(¬+a+) ∧− n(¬+b+)〉
= 〈pn(pn(a+) ∨+ pn(b+)), n(¬+(pn(a+) ∨+ pn(b+)))〉

and 2(〈a+, a−〉 ∨ 〈b+, b−〉) = 〈pn(a+ ∨+ b+), n(¬+(a+ ∨+ b+))〉. Recalling that n
preserves finite joins and that n ◦ p = IdA− , we have pn(pn(a+) ∨+ pn(b+)) =
p(npn(a+) ∨− npn(b+)) = p(n(a+) ∨− n(b+)) = pn(a+ ∨+ b+). Thus, the first
components are equal. As to the second components, we can use the semi-De Morgan
identities (for ¬+) and the fact that n preserves finite meets to obtain n(¬+(a+ ∨+
b+)) = n(¬+a+ ∧+ ¬+b+) = n(¬+a+) ∧− n(¬+b+) and, similarly, n(¬+(pn(a+) ∨+
pn(b+))) = n(¬+pn(a+)) ∧− n(¬+pn(b+)). Then the result follows from our earlier
observation (just after the definition of 2) that n(¬+pn(c+)) = n(¬+c+) for any
c+ ∈ A+.

Lemma 7.7. Let A be a WPQK-algebra and η ∈ Con2(A∗). Then the relation

η∗ := {〈a, b〉 ∈ A×A : 〈a∗, b∗〉, 〈(∼ a)∗, (∼ b)∗〉 ∈ η}

is a congruence of A.

Proof. It is clear that η∗ is an equivalence relation. We proceed to check the com-
patibility with the operations of A.

(∼). Assume 〈a, b〉 ∈ η∗, which means 〈a∗, b∗〉, 〈(∼ a)∗, (∼ b)∗〉 ∈ η. Using
Lemma 7.6.i, from the first assumption we can obtain

〈2(a∗),2(b∗)〉 = 〈(∼∼(a∗))∗, (∼∼(a∗))∗〉 = 〈(∼∼ a)∗, (∼∼ a)∗〉 ∈ η.

Thus 〈∼ a,∼ b〉 ∈ η∗.
(¬). From the assumption 〈a∗, b∗〉 ∈ η we also have

〈¬∗(a∗),¬∗(b∗)〉 = 〈(¬(a∗))∗, (¬(b∗))∗〉 = 〈(¬a)∗, (¬b)∗〉 ∈ η,
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the last equality holding by Lemma 7.1.v. That 〈(∼∼ a)∗, (∼∼ a)∗〉 ∈ η has been
already established. By Proposition 4.11.xii, we have

〈(∼∼ a)∗, (∼∼ a)∗〉 = 〈(∼¬a)∗, (∼¬b)∗〉.

Thus 〈(∼¬a)∗, (∼¬b)∗〉 ∈ η, which shows that 〈¬a,¬b〉 ∈ η∗.
(∧). Assuming 〈a, b〉, 〈c, d〉 ∈ η∗, we have 〈a∗, b∗〉, 〈(∼ a)∗, (∼ b)∗〉, 〈c∗, d∗〉,

〈(∼ c)∗, (∼ d)∗〉 ∈ η. Using Lemma 7.1.iv, from 〈a∗, b∗〉, 〈c∗, d∗〉 ∈ η we obtain
〈(a∗) ∧∗ (c∗), (b∗) ∧∗ (d∗)〉 = 〈((a∗) ∧ (c∗))∗, ((b∗) ∧ (d∗))∗〉 = 〈(a ∧ c)∗, (b ∧ d)∗〉 ∈ η.
Using Lemma 7.1.iii, from 〈(∼ a)∗, (∼ b)∗〉, 〈(∼ c)∗, (∼ d)∗〉 ∈ η we obtain 〈((∼ a)∗)∨∗
((∼ c)∗), ((∼ b)∗)∨∗((∼ d)∗)〉 = 〈(((∼ a)∗)∨((∼ c)∗))∗, (((∼ b)∗)∨((∼ d)∗)∗〉 = 〈(∼ a∨
∼ c)∗, (∼ b ∨ ∼ d)∗〉 ∈ η. From this we have 〈2((∼ a ∨ ∼ c)∗),2((∼ b ∨ ∼ d)∗)〉 =
〈(∼¬((∼ a ∨ ∼ c)∗))∗, (∼¬((∼ b ∨ ∼ d)∗))∗〉 ∈ η. By Lemma 7.1.vii, we have that
〈(∼¬((∼ a ∨ ∼ c)∗))∗, (∼¬((∼ b ∨ ∼ d)∗))∗〉 = 〈(∼∼((∼ a ∨ ∼ c)∗))∗, (∼∼((∼ b ∨
∼ d)∗))∗〉. By Lemma 7.6.i, we have 〈(∼∼((∼ a ∨ ∼ c)∗))∗, (∼∼((∼ b ∨ ∼ d)∗))∗〉 =
〈(∼∼(∼ a ∨ ∼ c))∗, (∼∼(∼ b ∨ ∼ d))∗〉. Observe that, by the semi-De Morgan iden-
tities, we have ∼∼(∼ a ∨ ∼ c) = ∼(∼∼ a ∧ ∼∼ c) = ∼∼∼(a ∧ c) = ∼(a ∧ c) and
similarly ∼∼(∼ b ∨ ∼ d) = ∼(b ∧ d). Then 〈(∼(a ∧ c))∗, (∼(b ∧ d))∗〉 ∈ η, which
together with 〈(a ∧ c)∗, (b ∧ d)∗〉 ∈ η give us 〈a ∧ c, b ∧ d〉 ∈ η∗, as required.

(∨). Using Lemma 7.1.iii, from the assumptions 〈a∗, b∗〉, and 〈c∗, d∗〉 ∈ η we get
〈(a∗) ∨∗ (c∗), (b∗) ∨∗ (d∗)〉 = 〈((a∗) ∨ (c∗))∗, ((b∗) ∨ (d∗))∗〉 = 〈(a ∨ c)∗, (b ∨ d)∗〉 ∈ η.
Using Lemma 7.1.iv, from the assumptions 〈(∼ a)∗, (∼ b)∗〉, 〈(∼ c)∗, (∼ d)∗〉 ∈ η we
have 〈((∼ a)∗)∧∗ ((∼ c)∗), ((∼ b)∗)∧∗ ((∼ d)∗)〉 = 〈(((∼ a)∗)∧ ((∼ c)∗))∗, (((∼ b)∗)∧∗
((∼ d)∗))∗〉 = 〈(∼ a ∧ ∼ c)∗, (∼ b ∧ ∼ d)∗〉 ∈ η. By the semi-De Morgan identities,
∼ a∧∼ c = ∼(a∨ c) and ∼ b∧∼ d = ∼(b∨ d). Hence, 〈(∼(a∨ c))∗, (∼(b∨ d))∗〉 ∈ η,
which gives us 〈a ∨ c, b ∨ d〉 ∈ η∗, as required.

Theorem 7.8. For every WPQK-algebra A, the lattice Con(A) is isomorphic to
the lattice Con2(A∗) via the mutually inverse maps (.)∗ and (.)∗ defined as follows:

for θ ∈ Con(A), let θ∗ := θ ∩ (A∗ ×A∗);
for η ∈ Con2(A∗) and a, b ∈ A, 〈a, b〉 ∈ η∗ iff 〈a∗, b∗〉, 〈(∼ a)∗, (∼ b)∗〉 ∈ η.

Proof. We have seen in Theorem 7.5 that the map (.)∗ is order-preserving, order-
reflecting and injective. We have also observed earlier that θ∗ ∈ Con2(A∗) for all
θ ∈ Con(A). It remains to show that, if the codomain is Con2(A∗), then (.)∗ is
onto. We will use the inverse map (.)∗ defined above.

By Lemma 7.7 we have η∗ ∈ Con(A) for all η ∈ Con2(A∗). Let us check that
η = (η∗)∗. Let a, b ∈ A∗. Observe that, by Lemma 7.1.ix, we have a∗ = a and b∗ = b.
Now, 〈a, b〉 ∈ (η∗)∗ holds iff 〈a, b〉 ∈ η∗ iff 〈a∗, b∗〉 = 〈a, b〉, 〈(∼ a)∗, (∼ b)∗〉 ∈ η.
It is thus clear that (η∗)∗ ⊆ η. Conversely, assume 〈a, b〉 = 〈a∗, b∗〉 ∈ η. Then
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〈¬∗(a∗),¬∗(b∗)〉 ∈ η, from which we can also obtain 〈2(¬∗(a∗)),2(¬∗(b∗))〉 ∈ η.
By Lemma 7.6.ii, we have 〈2(¬∗(a∗)),2(¬∗(b∗))〉 = 〈(∼(a∗))∗, (∼(b∗))∗〉. Thus
〈(∼(a∗))∗, (∼(b∗))∗〉 = 〈(∼ a)∗, (∼ b)∗〉 ∈ η, which entails η ⊆ (η∗)∗.

We have seen (Figures 1 and 2) that a WPQK-algebra A ≤ A+ ./ A− may be
subdirectly irreducible even if neither A+(∼= A∗) nor A− (viewed as either p-lattices
or lattices) are subdirectly irreducible. Theorem 7.8 can however be used to obtain
a sufficient condition for a WPQK-algebra A to be subdirectly irreducible.

Corollary 7.9. Let A be a WPQK-algebra, with A∗ a subdirectly irreducible p-
lattice. Then A is subdirectly irreducible.

Proof. By [13, Theorem 2], every subdirectly irreducible p-lattice A∗ is obtained
by adding a new top element 1 to a Boolean lattice. Then, in particular, A∗ has a
unique co-atom c and the monolith congruence θ ∈ Con(A∗) is given by θ = {〈a, b〉 ∈
A∗ ×A∗ : a = b or a, b ∈ {c, 1}}. Using this description, it is not difficult to check
that θ ∈ Con2(A∗). Indeed, if 〈a, b〉 ∈ θ, then either a = b (in which case 2a = 2b
and so 〈2a,2b〉 ∈ θ), or a = c and b = 1. By items (iii) and (vi) of Lemma 7.6, we
have c ≤ 2c ≤ 21 = 1. Hence, 2c ∈ {c, 1} and 〈2c,21〉 = 〈2c, 1〉 ∈ θ, as required.
By Theorem 7.8, this entails that θ∗ is the monolith congruence of A. Thus A is
subdirectly irreducible.

Theorem 7.8 (also bearing in mind Proposition 7.3) seems to suggest that, as
far as congruences are concerned, a more faithful counterpart of a WPQK-algebra
A would be the enriched algebra 〈A∗,2〉 rather than the p-lattice A∗ (alias A+).
We will make this intuition precise in the next section. For the time being, we
demonstrate that the map 2 gives us the opportunity to state a result concerning
the other factor (A−) that is an analogue to Proposition 7.3.

Given a WPQK-algebra A, define:

A2 := {2a : a ∈ A}.

Observe that, since 2a = (∼¬a)∗, we have A2 ⊆ A∗. We define operations on A2

as follows: for all a, b ∈ A2,

a ∧2 b := 2(a ∧∗ b) = 2a ∧∗ 2b = a ∧∗ b (Lemma 7.6.iv and .v)

a ∨2 b := 2(a ∨ b)

02 := 20 = 0 (Lemma 7.6.iii)
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12 := 21 = 1 (Lemma 7.6.iii).

¬2a := 2¬a (Lemma 7.6.iii).

Proposition 7.10. For every WPQK-algebra A, the map β : A− → A2 given by
β([∼ a]) = 2∼ a for all a ∈ A is a p-lattice isomorphism between A− and A2

(hence, A2 is a p-lattice).

Proof. To improve readability, we write β[a] instead of β([a]). Let us prelimi-
narily observe that, by Lemma 7.6.vii, we have β[∼ a] = 2∼ a = (∼ a)∗ for all
a ∈ A. By Lemma 7.1.i, we also have ∼ a ≡ ∼ b iff (∼ a)∗ ≡ (∼ b)∗ for all
a, b ∈ A. This means that β[∼ a] = β[∼ b] iff [∼ a] = [∼ b]. Thus β is a well-
defined and injective map. Surjectivity is also easily verified. Indeed, if a ∈ A2, then
a = 2b = (∼¬b)∗ = β[∼¬b] for [∼¬b] ∈ A−. Let us check that the lattice operations
are preserved. The case of the constants is straightforward. Using Lemma 7.1.iv
and the semi-De Morgan identities, we have β([∼ a] ∧− [∼ b]) = β([∼ a ∧ ∼ b]) =
β[∼(a ∨ b)] = (∼(a ∨ b))∗ = (∼ a ∧ ∼ b)∗ = ((∼ a)∗ ∧ (∼ b)∗)∗ = (∼ a)∗ ∧∗ (∼ b)∗ =
β[∼ a] ∧2 β[∼ b]. Using Lemma 7.6.viii, we have β([∼ a] ∨− [∼ b]) = β[∼(a ∧ b)] =
2(∼(a ∧ b)) = 2(((∼ a)∗) ∨ ((∼ b)∗)) = ((∼ a)∗) ∨2 ((∼ b)∗) = β[∼ a] ∨2 β[∼ b]. Re-
garding the pseudo-complement operation, observe that, by Lemma 7.1.v, we have
¬∼ a = ¬((∼ a)∗) for all a ∈ A. This entails 2¬∼ a = 2¬((∼ a)∗), which gives
us β(¬−[∼ a]) = β[¬∼ a] = 2¬∼ a = 2¬((∼ a)∗) = ¬2((∼ a)∗) = ¬2β[∼ a], as
required.

Joining Proposition 7.10 with Proposition 7.3 and Theorem 4.10, we can restate
the twist representation result for WPQK-algebras replacing A+ and A− by their
internalised alter egos A∗ and A2 (Theorem 7.11 below). Indeed, it suffices to find
suitable counterparts of the maps n : A+ → A− and p : A− → A+. It is easy to
check that these are, respectively, the map 2 : A∗ → A2 and the identity map on
A2.

Theorem 7.11. Every WPQK-algebra A is isomorphic to a WPQK twist-structure
over A∗ ./ A2 through the map φ : A → A∗ × A2 given by φ(a) := 〈a∗, (∼ a)∗〉 for
all a ∈ A.

Observe that on a wp-Kleene algebra A (by Lemma 7.1.ix) we have 2a = a∗∗ =
a∗ for all a ∈ A. Thus A∗ = A2 and Theorem 7.11 gives us precisely Sendlewski’s
representation result.

Remark 7.12. Since every quasi-Nelson algebra A has a WPQK-algebra reduct
(Proposition 4.4), we can consider the corresponding p-skeleton A∗ defined as before.
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In this case, upon defining a→∗ b := (a→ b)∗ for all a, b ∈ A∗, we have that 〈A,→∗〉
is a Heyting algebra isomorphic to the factor A+ given by the twist-representation
(cf. Definition 2.5). Similarly, the algebra A2 can be endowed with an implication
given by a →2 b := 2(a → b) for all a, b ∈ A2 so that 〈A2,→2〉 is a Heyting
algebra isomorphic to A−. Then, defining the maps n : A∗ → A2 and p : A2 → A∗

as for WPQK-algebras, we can obtain an alternative representation for quasi-Nelson
algebras analogue to Theorem 7.11.

At this point we could (if we wished to) use Theorem 7.11 to rewrite Theorem 6.2
replacing A+ and A− by A∗ and A2. A more interesting observation is that, for
the purpose of the representation, we can altogether dispense with the second factor
(whether we call it A− or A2). We will illustrate this in the next section; but
before we move on to this, one might wonder, is there anything interesting we can
say about the congruences of A2?

Proposition 7.13. For every WPQK-algebra A, the lattice Con(A2), where is A2

is viewed as a p-lattice, is embeddable into Con2(A∗), and thus also into Con(A∗),
via the map (.)2 given, for all θ ∈ Con(A2), by

θ2 := {〈a, b〉 ∈ A∗ ×A∗ : 〈2a,2b〉 ∈ θ}.

The embedding (.)2 preserves the greatest but not necessarily the least element.

Proof. It is clear that the map (.)2 preserves the top element; that the least element
is not necessarily preserved follows from the example shown earlier on Figure 2.
The map (.)2 is clearly order-preserving, and it is easy to see that it is also order-
reflecting (hence, injective). To check this, assume θ2 ⊆ η2 for some θ, η ∈ Con(A2)
and let 〈a, b〉 ∈ θ for some a, b ∈ A2. Then a = 2a′ and b = 2b′ for some a′, b′ ∈ A
and, by Proposition 7.6.v, 22a′ = 2a′ and 22b′ = 2b′. Hence, 2a = a and 2b = b.
Thus 〈a, b〉 ∈ θ is equivalent to 〈2a,2b〉 ∈ θ, which implies 〈a, b〉 ∈ θ2. Then
〈a, b〉 ∈ η2, that is, 〈2a,2b〉 = 〈a, b〉 ∈ η. Thus θ ⊆ η, as claimed. It remains to
check that θ2 ∈ Con2(A∗) for all θ ∈ Con(A2). It is clear that θ2 ∈ Con(A∗)
is an equivalence relation. Also observe that, if we check that θ2 ∈ Con(A∗),
then θ2 ∈ Con2(A∗) will immediately follow. Indeed, by the definition of θ2,
we have 〈a, b〉 ∈ θ2 iff (by Lemma 7.6.v) 〈2a,2b〉 = 〈22a,22b〉 ∈ θ, and so
〈2a,2b〉 ∈ θ2. Let us check that θ2 is compatible with the pseudo-complement
operation. Let a, b ∈ A∗ be such that 〈a, b〉 ∈ θ2, i.e. 〈2a,2b〉 ∈ θ. Then, by
the compatibility of θ with ¬2, we have 〈¬22a,¬22b〉 = 〈2¬2a,2¬2b〉 ∈ θ. By
Lemma 7.6.ii we have 2¬2a = 2(¬∗(a∗)) and likewise 2¬2b = 2(¬∗(b∗)). Then
〈2(¬∗(a∗)),2(¬∗(b∗))〉 ∈ θ. Since a, b ∈ A∗, we also have a∗ = a and b∗ = b
(Lemma 7.1.ix). Hence, 〈2(¬∗(a∗)),2(¬∗(b∗))〉 = 〈2(¬∗a),2(¬∗b)〉 ∈ θ, that is,
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〈¬∗a,¬∗b〉 ∈ θ2. We next check that θ2 is compatible with the lattice operations.
Assume 〈a, b〉, 〈c, d〉 ∈ θ2 for a, b, c, d ∈ A∗, i.e. 〈2a,2b〉, 〈2c,2d〉 ∈ θ. Then we
have 〈2a ∧2 2c,2b ∧2 2d〉 = 〈2(a ∧ c),2(b ∧ d)〉 ∈ θ. By Lemma 7.6.iv,

〈2(a ∧ c),2(b ∧ d)〉 = 〈2(a ∧∗ c),2(b ∧∗ d)〉 ∈ θ,

that is, 〈a ∧∗ c, b ∧∗ d〉 ∈ θ2. This settles the case of the meet; as to the join, the
assumptions give us 〈2a∨22c,2b∨22d〉 = 〈2(a∨c),2(b∨d)〉 ∈ θ. By Lemma 7.1.iii
we have a ∨ c = a ∨∗ c and b ∨ d = b ∨∗ d. Then the result follows.

Recalling Theorem 7.8, we see that Proposition 7.13 immediately entails the
following result.

Corollary 7.14. For every WPQK-algebra A, the lattice Con(A2), where is A2

is viewed as a p-lattice, is embeddable into Con(A). The embedding preserves the
greatest but not necessarily the least element.

8 An Alternative Representation: Nuclear p-Lattices
Definition 8.1. We shall call nuclear p-lattice (np-lattice for short) an algebra
A = 〈A;∧,∨,¬,2, 0, 1〉 of type 〈2, 2, 1, 1, 0, 0〉 such that:

(i) 〈A;∧,∨,¬, 0, 1〉 is a p-lattice (with order ≤).

(ii) The operator 2 is a nucleus on A, that is, for all a, b, c, d ∈ A,

(1) 20 = 0
(2) 2(a ∧ b) = 2a ∧2b

(3) a ≤ 2a = 22a.

An example of an np-lattice (indeed, the intended example for us) is the algebra
〈A∗,2〉 considered in the preceding subsection. Equivalently, one may think of the
p-lattice A+ = 〈A+;∧+,∨+,¬+, 0+, 1+〉 introduced in Definition 3.1 enriched with
an operation 2 given by 2a+ := pn(a+) for all a+ ∈ A+. More generally, any
p-lattice A may be viewed as an np-lattice if one lets 2a := ¬¬a for all a ∈ A.

The properties introduced in Definition 8.1 are precisely saying that the 2 op-
erator is a (dense) nucleus in the sense of e.g. [3]. Nuclei are well studied in the
context of Heyting algebras and residuated lattices (concerning the latter, several
results can be found in [5]). The paper [7] is also relevant, for the authors introduce
a representation of Sugihara monoids (the algebraic counterpart of relevance logic
RMt) as twist-structures over nuclear (semi-linear) Heyting algebras.

545



Rivieccio

Remark 8.2. Every np-lattice A satisfies 21 = 1 (since item ii.3 implies 1 ≤ 21)
and 2(2a ∨ 2b) = 2(a ∨ b) for all a, b ∈ A (cf. Lemma 7.6.ix). Indeed, since 2 is
order-preserving (by item ii.2), from a, b ≤ a ∨ b we have 2a,2b ≤ 2(a ∨ b) and
2a∨2b ≤ 2(a∨b). Using also item ii.3, we have 2(2a∨2b) ≤ 22(a∨b) = 2(a∨b).
On the other hand, from a ≤ 2a and b ≤ 2b we have a∨ b ≤ 2a∨2b, so 2(a∨ b) ≤
2(2a ∨2b).

Proposition 8.3. For every WPQK-algebra A, the algebra 〈A∗,2〉 is an np-lattice.

Proof. We have seen in Proposition 7.3 that A∗ is a p-lattice. The remaining prop-
erties of Definition 8.1 are proven in Lemma 7.6 (precisely, in items (iii) to (vi) of
the Lemma).

Given an np-lattice A = 〈A;∧,∨,¬,2, 0, 1〉, we proceed to define an algebra
A2 = 〈A2;∧2,∨2, 02, 12〉, following the intuitions gathered in the preceding sub-
section. We let

A2 := {2a : a ∈ A}
and define operations on A2 as follows: for all a, b ∈ A2,

a ∧2 b := 2(a ∧ b) = 2a ∧2b = a ∧ b (by Def. 8.1.ii.3)

a ∨2 b := 2(a ∨ b)

02 := 20 = 0

12 := 21 = 1.

Proposition 8.4. Let A be an np-lattice.

(i) The map 2 : A→ A2 is a (surjective) bounded lattice homomorphism between
A and A2 (thus A2 is a bounded distributive lattice). Furthermore, defining
¬2a := 2¬a, we have that A2 is a p-lattice and 2 a p-lattice homomorphism.

(ii) The identity map IdA2 : A2 → A preserves finite meets and the lattice bounds.

(iii) 2 ◦ IdA2 = IdA2 and IdA ≤ IdA2 ◦2.

Proof. (i). It is clear that the map 2 is surjective. Also, by Definition 8.1.ii.1, the
lattice bounds are preserved. The meet is preserved by Definition 8.1.ii.2. As to
the join, by Remark 8.2, we have 2(a ∨ b) = 2(2a ∨ 2b) = 2a ∨2 2b. Let us
check that 2¬a is the pseudo-complement in A2 of each a ∈ A2. Observe that
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a ∧ 2¬a = 2a ∧ 2¬a = 2(a ∧ ¬a) = 20 = 0. Further, suppose a ∧ b = 0 for some
b ∈ A2. Then b ≤ ¬a, so b ∧ 2¬a = 2b ∧ 2¬a = 2(b ∧ ¬a) = 2b = b. So b ≤ 2¬a,
as required.

(ii). It is clear that IdA2 preserves the bounds. Regarding the meet, let a, b ∈ A2.
Then a = 2a′ and b = 2b′ for some a′, b′ ∈ A. Then, using Definition 8.1.ii.2 and ii.3,
we have IdA2(a∧2b) = IdA2(2a′∧22b′) = 2(2a′∧2b′) = 22a′∧22b′ = 2a′∧2b′ =
a ∧ b = IdA2(a) ∧ IdA2(b). Observe that joins are not necessarily preserved, for in
general one may have IdA2(a∨2 b) = IdA2(2a′∨22b′) = 2(2a′∨2b′) = 2(a′∨b′) 6=
2a′ ∨2b′ = a ∨ b = IdA2(a) ∨ IdA2(b).

(iii). Let a ∈ A2, so that a = 2a′ for some a′ ∈ A. Using Definition 8.1.ii.3,
we have (2 ◦ IdA2)(a) = (2 ◦ IdA2)(2a′) = 22a′ = 2a′ = a. For a ∈ A, using
Definition 8.1.ii.3 we have a ≤ 2a = (IdA2 ◦2)(a).

By Proposition 8.4, every np-lattice A determines the p-lattice A2 as well as
maps 2 : A→ A2 and IdA2 : A2 → A which satisfy the properties of Definition 3.1.
Thus, we have a twist-structure A ./ A2, that we may just denote by Tw(A), since
it is completely determined by A. Moreover, by Theorem 7.11, every WPQK-algebra
is representable as a twist-structure of this type. We state this formally in the next
theorem.

Theorem 8.5. Every WPQK-algebra A is isomorphic to a WPQK twist-structure
over the np-lattice 〈A∗,2〉 through the map φ : A → A∗ × A2 given by φ(a) :=
〈a∗, (∼ a)∗〉 for all a ∈ A.

Recalling Theorem 7.8, we immediately obtain the following result.

Corollary 8.6. For every WPQK-algebra A, the lattice Con(A) is isomorphic to
the congruence lattice of the corresponding np-lattice 〈A∗,2〉.

Corollary 8.6 indicates that, in order to obtain a better characterisation of con-
gruence lattices of WPQK-algebras, we need to study the congruences of np-lattices;
we leave this as a suggestion for future research.

Theorem 8.5 can obviously be refined by considering the filter ∇A ⊆ A∗, ob-
taining an analogue of Theorem 6.2: every WPQK-algebra is representable as a
twist-structure Tw(A∗,∇A), where A∗ is an np-lattice and ∇A is a filter containing
the dense elements of A∗. It is also easy to observe that a WPQK-algebra A is a
wp-Kleene algebra (Definition 4.14) if and only if the 2 operator on the correspond-
ing np-lattice 〈A∗,2〉 is ‘trivial’, that is, if 2a = a for all a ∈ A∗. In such a case we
have Con(A∗) = Con(〈A∗,2〉) ∼= Con(A), thus recovering Sendlewski’s result [26,
Theorem 5.2].
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Given the preceding considerations and the close relationship between WPQK-
and quasi-Nelson algebras (Section 5), one may wonder whether the ‘modal’ (or
‘nuclear’) approach might provide further insight on quasi-Nelson algebras7. This
may well be the case; but observe that, as far as congruences are concerned, on a
quasi-Nelson algebra one can prove that Con(A+) ∼= Con(A) [23, Proposition 8].
This entails that the 2 operator on A+ (if one were to define it) will have no impact
on the congruences of (the 2-free reduct of) A+.

9 Subvarieties of WPQK-Algebras
In the same way as quasi-Nelson algebras can be viewed as a common generalisa-
tion of Heyting and Nelson algebras, WPQK-algebras can be viewed as a common
generalisation of p-lattices and wp-Kleene algebras. Because of this generality, the
task of describing the lattice of sub-(quasi-)varieties of WPQK-algebras cannot be
expected to be an easy one, and we will not address it in this paper. However, we
are going to demonstrate how Theorem 6.2 can be employed to characterise certain
subvarieties.

Recall from [24] that a semi-De Morgan algebra 〈A;∧,∨,∼〉 is a called a demi-
p-lattice if it satisfies the identity ∼x ∧ ∼∼x ≈ 0. An almost p-lattice is a demi-p-
lattice (or, equivalently, a semi-De Morgan algebra) that further satisfies x∧∼x ≈ 0.
A p-lattice is a demi-p-lattice that is also a lower quasi-De Morgan algebra, i.e. one
that satisfies x � ∼∼x. Alternatively, one can define a p-lattice as a semi-De
Morgan algebra that satisfies x ∧ ∼(x ∧ y) ≈ x ∧ ∼ y (see [24] for proofs of these
results). Last but not least, a Stone lattice is a p-lattice satisfying ∼x ∨ ∼∼x ≈ 1.

Given a WPQK-algebra A, in general it makes sense to ask (1) when the ∼-free
reduct of A is in the above classes, as well as (2) when the same happens with
the ¬-free reduct. In the following propositions we provide a number of equivalent
conditions/characterisations.

Proposition 9.1. Let A = 〈A;∧,∨,∼,¬, 0, 1〉 be a WPQK-algebra with
A = Tw〈A+, A−, n, p,∇〉. The following are equivalent:

(i) A |= ∼(x ∧ y) ≈ ∼x ∨ ∼ y, (i.e. 〈A;∧,∨,∼, 0, 1〉, is an Ockham algebra)

(ii) A |= ∼(x ∧ y)� ∼x ∨ ∼ y,
7Indeed, the algebra 〈A+,2〉 corresponding to a quasi-Nelson algebra A via the twist repre-

sentation will be precisely a Heyting algebra with a nucleus of the type considered in [3], which
suggests a connection with the work of Bezhanishivli and Ghilardi that may be worthwhile explor-
ing in future research (see [21]). The isomorphism Con(A+) ∼= Con(A) can also be obtained as a
corollary of the general theory of nuclei on residuated lattices [7, Theorem 7.1].
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(iii) p preserves finite joins.

Proof. The equivalence between (i) and (ii) holds on every semi-De Morgan algebra.
That (i) is equivalent to p(a−∨−b−) = p(a−)∨+p(b−) is a matter of routine checking
on a twist-structure.

Proposition 9.2. Let A = 〈A;∧,∨,∼,¬, 0, 1〉 be a WPQK-algebra with
A = Tw〈A+, A−, n, p,∇〉. The following are equivalent:

(i) A |= ∼∼x ∧ ∼x ≈ 0, (〈A;∧,∨,∼, 0, 1〉 is a demi-p-lattice)

(ii) A |= x ∧ ¬x ≈ 0, (〈A;∧,∨,¬, 0, 1〉 is an almost-p-lattice)

(iii) A |= x ∧ ∼x ≈ 0 , (〈A;∧,∨,∼, 0, 1〉 is an almost-p-lattice)

(iv) A |= x ∧ ∼(x ∧ y) ≈ x ∧ ∼ y, (〈A;∧,∨,∼, 0, 1〉 is a p-lattice)

(v) A |= ¬x� ∼x,

(vi) A |= ¬x ≈ ∼x, (〈A;∧,∨,¬, 0, 1〉 = 〈A;∧,∨,∼, 0, 1〉)

(vii) A |= x� ¬¬x,

(viii) 〈A;∧,∨,¬, 0, 1〉 is a quasi-Kleene algebra (Definition 2.4),

(ix) ¬+a+ ≤+ p(a−) for all 〈a+, a−〉 ∈ A,

(x) ¬+a+ = p(a−) for all 〈a+, a−〉 ∈ A,

(xi) n(∇) = 1−,

(xii) 〈A;∧,∨,¬, 0, 1〉 is p-lattice and A = A∗.

Proof. We have seen in Proposition 4.11 that the following identities hold on every
WPQK-algebra:

∼∼x ∧ ∼x ≈ x ∧ ¬x ≈ x ∧ ∼x.
This immediately implies that items (i)–(iii) are all equivalent. By Sankappanavar’s
results [24], a lower quasi-De Morgan algebra satisfying (iii) must also satisfy (iv).
Similarly, a semi-De Morgan algebra satisfying (iv) is a p-lattice and must therefore
satisfy (iii). This shows the equivalence of (i)–(iv).

Now assume (iv). Then 〈A;∧,∨,∼, 0, 1〉 is a p-lattice where ∼ is the pseudo-
complement operation and, since we have shown that (iv) is equivalent to (ii), we
also have ¬a∧a = 0 for all a ∈ A. Then, by the property of the pseudo-complement,
we have ¬a ≤ ∼ a. Thus (v) follows. Observe that, by item (vii) of Proposition 4.11,
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the identity ∼x � ¬x holds on all WPQK-algebras. Thus (v) implies (vi). By a
similar argument, since x � ∼∼x holds on all WPQK-algebras, we have that (vi)
implies (vii).

Regarding (vii), observe that, for 〈a+, a−〉 ∈ A, we have 〈a+, a−〉 ≤ ¬¬〈a+, a−〉
iff a+ ≤+ ¬+¬+a+ and n(¬+a+) ≤− a−. The former inequality always holds on a p-
lattice, but from the latter we have pn(¬+a+) ≤− p(a−). Since ¬+a+ ≤+ pn(¬+a+),
we obtain ¬+a+ ≤+ p(a−). Observe that the inequality p(a−) ≤+ ¬+a+ holds in
general. In fact, by the property of the pseudo-complement, we have p(a−) ≤+ ¬+a+
iff a+ ∧+ p(a−) = 0+, which we know to hold on every twist-structure. This shows
that (ix) and (x) are equivalent, and are both implied by (vii). Notice, further, that
the equality p(a−) = ¬+a+ implies a− = np(a−) = n(¬+a+). This means that
every element of the twist-structure has the form 〈a+, n(¬+a+)〉 for some a+ ∈ A+,
and is thus determined by its first component. Recall that 〈a+, a−〉 ∧ ∼〈a+, a−〉 =
〈0+, a−∨−n(a+)〉. Assuming (vii), we then have a−∨−n(a+) = n(¬+a+)∨−n(a+) =
n(¬+0+) = n(1+) = 1−. Hence, 〈a+, a−〉 ∧ ∼〈a+, a−〉 = 〈0+, 1−〉, which means that
(iii) holds. Thus (vii) implies (and is therefore equivalent to) any of the items (i)–
(iv). Regarding (viii), observe that it is implied by (ii). Also, conversely, (viii)
clearly implies (vii), which we have just shown to be equivalent with (ii). Thus the
items (i), (ii), (iii), (iv), (vii) and (viii) are all equivalent. From this we have that
(viii) implies (vii) which, as we have seen, implies (ix) and (x). Recalling that n
preserves finite joins, we also obtain that (vii) implies (xi): for all 〈a+, a−〉 ∈ A, one
has n(a+ ∨+ a−) = n(a+ ∨+ ¬+a+) = n(a+) ∨− n(¬+a+) = 1−. Thus (viii) implies
(xi) as well. Now, assuming (xi), we have

n(a+ ∨+ p(a−)) = n(a+) ∨− np(a−) = n(a+) ∨− a− = 1−,

which entails (i). This means that all items from (i) to (xi) are equivalent. To
conclude the proof, observe that (xii) implies (ii), and so implies all other items.
Conversely, if (using (vii), for example) every element is of the form 〈a+, n(¬+a+)〉,
then clearly the map (.)∗ is the identity on A. Thus A∗ = 〈A;∧,∨,¬, 0, 1〉, which
entails (by Proposition 7.3) that 〈A;∧,∨,¬, 0, 1〉 is a p-lattice, as required.

We list below a selection of items from the preceding proposition that give dif-
ferent characterisations for the ∼-free reduct of a WPQK-algebra being itself a
p-lattice.

Proposition 9.3. Let A = 〈A;∧,∨,∼,¬, 0, 1〉 be a WPQK-algebra. The following
are equivalent:

(i) 〈A;∧,∨,¬, 0, 1〉 is a p-lattice,
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(ii) 〈A;∧,∨,¬, 0, 1〉 is an almost-p-lattice,

(iii) 〈A;∧,∨,¬, 0, 1〉 is a quasi-Kleene algebra,

(iv) 〈A;∧,∨,¬, 0, 1〉 = A∗ ∼= A+,

(v) 〈A;∧,∨,¬, 0, 1〉 ∼= 〈A;∧,∨,∼, 0, 1〉,

(vi) A |= x� ¬¬x,

(vii) A |= x ∧ ¬x ≈ 0.

Proposition 9.4. Let A = 〈A;∧,∨,∼,¬, 0, 1〉 be a WPQK-algebra with
A = Tw〈A+, A−, n, p,∇〉. The following are equivalent:

(i) A |= ∼∼x ∨ ∼x ≈ 1, (i.e. 〈A;∧,∨,∼, 0, 1〉 is a Stone lattice),

(ii) p(n(a+)) ∨+ p(a−) = 1+ for all 〈a+, a−〉 ∈ A.

Proof. Observe that (i) easily entails (using the semi-De Morgan identities) the
identity ∼∼x∧∼x ≈ 0. Thus, by Proposition 9.2, (i) implies that 〈A;∧,∨,∼, 0, 1〉
is a p-lattice. Indeed, in general a Stone lattice is defined precisely as a p-lattice
satisfying (i). That this condition corresponds, on twist-structures, to (ii) is a matter
of routine checking.

Proposition 9.5. Let A = 〈A;∧,∨,∼,¬, 0, 1〉 be a WPQK-algebra with
A = Tw〈A+, A−, n, p,∇〉. The following are equivalent:

(i) A |= ¬x� ¬¬¬x,

(ii) A |= ¬x ≈ ¬¬¬x,

(iii) n(¬+¬+a+) ≤− n(a+) for all a+ ∈ A+,

(iv) n(¬+¬+a+) = n(a+) for all a+ ∈ A+.

Proof. Recall (Lemma 3.5.xii) that ¬¬¬x� ¬x holds on every WPQK-algebra, and
that n(a+) ≤− n(¬+¬+a+) also holds generally. The proof of Lemma 3.5.xii shows
that the converse inequality ¬x� ¬¬¬x holds precisely when n(¬+¬+a+) ≤− n(a+)
for all a+ ∈ A+.

Proposition 9.6. Let A = 〈A;∧,∨,∼,¬, 0, 1〉 be a WPQK-algebra with
A = Tw〈A+, A−, n, p,∇〉. The following are equivalent:

(i) A |= ¬¬x ∧ ¬¬y � ¬¬(x ∧ y),
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(ii) A |= ¬¬x ∧ ¬¬y ≈ ¬¬(x ∧ y),

(iii) n(¬+(a+ ∧+ b+)) ≤− n(¬+a+ ∨+ ¬+b+) for all a+, b+ ∈ A+,

(iv) n(¬+(a+ ∧+ b+)) = n(¬+a+ ∨+ ¬+b+) for all a+, b+ ∈ A+.
Proof. On the one hand, we have

¬¬(〈a+, a−〉 ∧ 〈b+, b−〉) = 〈¬+¬+(a+ ∧+ b+), n(¬+(a+ ∧+ b+))〉
= 〈¬+¬+a+ ∧+ ¬+¬+b+, n(¬+(a+ ∧+ b+))〉.

On the other,

¬¬〈a+, a−〉 ∧ ¬¬〈b+, b−〉 = 〈¬+¬+a+, n(¬+a+)〉 ∧ 〈¬+¬+b+, n(¬+b+)〉
= 〈¬+¬+a+ ∧+ ¬+¬+b+, n(¬+a+) ∨− n(¬+b+)〉
= 〈¬+¬+a+ ∧+ ¬+¬+b+, n(¬+a+ ∨+ ¬+b+)〉.

So only the second components matter. Since ¬+ is order-reversing, the inequality
¬+a+ ∨+ ¬+b+ ≤+ ¬+(a+ ∧+ b+) always holds on a p-lattice, and entails the in-
equality n(¬+a+ ∨+ ¬+b+) ≤− n(¬+(a+ ∧+ b+)). Thus, it is clear that all items
correspond to the requirement that n(¬+(a+ ∧+ b+)) ≤− n(¬+a+ ∨+ ¬+b+) for all
a+, b+ ∈ A+.

By joining the two preceding results, we obtain the following characterization.
Proposition 9.7. Let A = 〈A;∧,∨,∼,¬, 0, 1〉 be a WPQK-algebra with
A = Tw〈A+, A−, n, p,∇〉. The following are equivalent:
(i) 〈A;∧,∨,¬, 0, 1〉 is a semi-De Morgan algebra,

(ii) n(¬+¬+a+) = n(a+) and n(¬+(a+ ∧+ b+)) = n(¬+a+ ∨+ ¬+b+), for all
a+, b+ ∈ A+.

Proposition 9.8. Let A = 〈A;∧,∨,∼,¬, 0, 1〉 be a WPQK-algebra with
A = Tw〈A+, A−, n, p,∇〉. The following are equivalent:
(i) A |= ¬¬x ∨ ¬x ≈ 1,

(ii) A+ is a Stone lattice.
Proof. Let us calculate ¬¬〈a+, a−〉 ∨ ¬〈a+, a−〉 = 〈¬+a+ ∨+ ¬+¬+a+, n(a+) ∧−
n(¬+a+)〉 = 〈¬+a+ ∨+ ¬+¬+a+, n(a+ ∧+ ¬+a+)〉 = 〈¬+a+ ∨+ ¬+¬+a+, n(0+)〉 =
〈¬+a+ ∨+ ¬+¬+a+, 0−〉. It is thus clear that requiring ¬¬〈a+, a−〉 ∨ ¬〈a+, a−〉 =
〈1+, 0−〉 implies that A+ is a Stone lattice. Thus (i) entails (ii). The converse
is also straightforward (recall that, for all a+ ∈ A+, there is a− ∈ A− such that
〈a+, a−〉 ∈ A).
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Proposition 9.9. Let A = 〈A;∧,∨,∼,¬, 0, 1〉 be a WPQK-algebra with
A = Tw〈A+, A−, n, p,∇〉. The following are equivalent:

(i) A |= ¬¬x� x,

(ii) A |= x ∨ ¬x ≈ 1, (i.e. 〈A;∧,∨,¬, 0, 1〉 is a Boolean algebra),

(iii) A+ is a Boolean algebra.

Proof. Consider (i). On a twist-structure, this means:

¬¬〈a+, a−〉 = 〈¬+¬+a+, n(¬+a+)〉 ≤ 〈a+, a−〉.

That is, ¬+¬+a+ ≤+ a+ and a− ≤− n(¬+a+). The latter condition is always
satisfied by a twist-structure. Indeed, by the requirement that a+ ∧+ p(a−) =
0+, using the property of the pseudo-complement, we can obtain p(a−) ≤+ ¬+a+,
and from this (by the monotonicity of n and n ◦ p = IdA−) we get np(a−) =
a− ≤− n(¬+a+). On the other hand, since a+ ≤+ ¬+¬+a+ holds on every p-lattice,
using the former condition (¬+¬+a+ ≤+ a+) we have ¬+¬+a+ = a+. This entails
that A+ is a Boolean algebra. Using this, it is easy to check that (ii) holds, for
〈a+, a−〉 ∨ ¬〈a+, a−〉 = 〈a+ ∨+ ¬+a+, a− ∧− n(a+)〉 = 〈a+ ∨+ ¬+a+, 0−〉. It is also
clear that requiring 〈a+, a−〉 ∨ ¬〈a+, a−〉 = 〈1+, 0−〉 implies that A+ is a Boolean
algebra, which in turn entails (i).

Proposition 9.10. Let A = 〈A;∧,∨,∼,¬, 0, 1〉 be a WPQK-algebra. with A =
Tw〈A+, A−, n, p,∇〉. The following are equivalent:

(i) A |= x ∧ ∼¬∼x ≈ 0,

(ii) A− is a Boolean algebra with complement given by ¬−a− = n(¬+p(a−)).

Proof. Let us compute:

〈a+, a−〉 ∧ ∼¬∼〈a+, a−〉 = 〈a+ ∧+ p(a−), a− ∨− n(¬+p(a−))〉
= 〈0+, a− ∨− n(¬+p(a−))〉.

Thus, (i) is equivalent to a− ∨− n(¬+p(a−)) = 1−. In such a case, n(¬+p(a−)) is
the Boolean complement of a− in A−. To see this, it is sufficient to observe that
a− ∧− n(¬+p(a−)) = np(a−)∧− n(¬+p(a−)) = n(p(a−)∧+ ¬+p(a−)) = n(0+) = 0−.
Thus (i) implies (ii). The converse is clear.

Proposition 9.11. Let A = 〈A;∧,∨,∼,¬, 0, 1〉 be a WPQK-algebra with A =
Tw〈A+, A−, n, p,∇〉. The following are equivalent:
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(i) A |= ¬¬x ∧ ¬x ≈ 0, (〈A;∧,∨,¬, 0, 1〉 is a demi-p-lattice),

(ii) n(D(A+)) = 1−.

Proof. For 〈a+, a−〉 ∈ A, let us calculate ¬¬〈a+, a−〉 ∧ ¬〈a+, a−〉 = 〈¬+¬+a+ ∧+
¬+a+, n(¬+a+) ∨− n(a+)〉 = 〈0+, n(¬+a+ ∨+ a+)〉. We thus see that (i) means
requiring that n(¬+a+∨+ a+) = 1+. Thus, it suffices to observe that the set D(A+)
of dense elements of A+ is precisely made of all elements of the form ¬+a+ ∨+ a+
for some a+ ∈ A+.

In the next propositions we focus on involutive WPQK-algebras, i.e. Sendlewski’s
wp-Kleene algebras (Definition 4.14).

Proposition 9.12. Let A = 〈A;∧,∨,∼,¬, 0, 1〉 be a WPQK-algebra with A =
Tw〈A+, A−, n, p,∇〉. The following are equivalent:

(i) A |= ∼∼x� x,

(ii) A |= ∼∼x ≈ x,

(iii) 〈A;∧,∨,∼, 0, 1〉 is a Kleene algebra,

(iv) A is a wp-Kleene algebra,

(v) The maps n and p are mutually inverse bounded (p-)lattice isomorphisms.

Proof. The equivalence of (i)–(iii) has been observed before. That these items are
equivalent to (iv) has been proven in Proposition 4.15. Regarding (v), observe that
the involutive identity holds iff p ◦ n = IdA+ . Since n ◦ p = IdA− holds generally,
we have that p and n are mutually inverse bijections. Moreover, they are monotone
maps, which entails that they are lattice isomorphisms. Lastly, notice that the
pseudo-complement operation (cf. Proposition 3.4) is completely determined by the
lattice structure, which implies that it is also preserved by n and p.

Observe that, if A is a wp-Kleene algebra such that A = Tw〈A+, A−, n, p,∇〉,
then A is completely determined by the pair 〈A+,∇〉. Thus, we can can simply
write A = Tw〈A+,∇〉.

Proposition 9.13. Let A = 〈A;∧,∨,∼,¬, 0, 1〉 be a wp-Kleene algebra with A =
Tw〈A+,∇〉. The following are equivalent:

(i) A |= x ≈ ¬¬x,

(ii) A |= x� ¬¬x,

554



Fragments of Quasi-Nelson: Two Negations

(iii) A |= ¬x� ∼x,

(iv) A |= ¬x ≈ ∼x, i.e. 〈A;∧,∨,¬, 0, 1〉 = 〈A;∧,∨,∼, 0, 1〉,

(v) A |= ¬x ≈ ¬¬¬x,

(vi) A |= ¬x� ¬¬¬x,

(vii) A |= x ∨ ∼x ≈ 1,

(viii) A+ is a Boolean algebra isomorphic to 〈A;∧,∨,∼, 0, 1〉 (and 〈A;∧,∨,¬, 0, 1〉)
through the map given by a+ 7→ 〈a+,¬+a+〉 for all a+ ∈ A+,

(ix) 〈A;∧,∨,∼, 0, 1〉 is a Boolean algebra,

(x) 〈A;∧,∨,¬, 0, 1〉 is a semi-De Morgan algebra,

(xi) ∇ = {1+}.

Proof. Clearly (i) implies (ii). The equivalence among (ii), (iii) and (iv) has been
proven earlier (Proposition 9.2). Assuming (iv), we have ¬〈a+, a−〉 = 〈¬+a+, a+〉 =
〈a−, a+〉 = ∼〈a+, a−〉 for all 〈a+, a−〉 ∈ A (notice we are assuming A+ = A− because
we are in a wp-Kleene algebra). Thus every element of A is of the form 〈a+,¬+a+〉.
Using ¬x ≈ ∼x, we have ¬¬〈a+,¬+a+〉 = 〈¬+¬+a+,¬+a+〉 = ∼∼〈a+,¬+a+〉 =
〈a+,¬+a+〉. Hence, ¬+¬+a+ = a+. Since (using the semi-De Morgan identities
for ¬+) we have ¬¬¬〈a+, a−〉 = 〈¬+¬+¬+a+,¬+¬+a+〉 = 〈¬+a+,¬+¬+a+〉, it is
clear that ¬+¬+a+ = a+ implies that (v) holds. Clearly (v) implies (vi). Now, (vi)
implies ¬+¬+a+ ≤+ a+ and so ¬+¬+a+ = a+. Thus, as observed before, A+ is
an involutive p-lattice, i.e. a Boolean algebra. Then 〈a+,¬+a+〉 ∨ ¬〈a+,¬+a+〉 =
〈a+ ∨+ ¬+a+,¬+a+ ∧+ a+〉 = 〈1+, 0+〉, which means that (vii) is satisfied. In
turn, (vii) entails a+ ∨+ a− = 1+ for all 〈a+, a−〉 ∈ A, and so for all a+ ∈ A+. Since
a+∧+a− = 0+ holds in general, this means that a− is the Boolean complement of a+
in A+. Then a− is also the pseudo-complement of a+, which gives us a− = ¬+a+ for
all a+ ∈ A+. Hence, 〈A+;∧+,∨+,¬+, 0+, 1+〉 is a Boolean algebra. Checking that
the map defined in item (viii) is a Boolean algebra isomorphism is straightforward.
Hence, (vii) entails (viii). It is clear that (viii) entails (ix). It is also clear that
(ix) implies (x). Now, assuming (x), we have A |= ¬x � ¬¬¬x (for this equation
is part of the definition of semi-De Morgan algebras), which is (vi), and ee have
seen that (vi) implies (viii). Thus A+ is a Boolean algebra, and every element of A
has the form 〈a+,¬+a+〉 for some a+ ∈ A+. Then n(a+ ∨+ ¬+a+) = n(1+) = 1−,
which shows that (xi) holds. Lastly, assume (xi). Then a+ ∨+ a− = 1+ for all
〈a+, a−〉 ∈ A, and so for all a+ ∈ A+. Then we can reason as before to conclude
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that a− is the Boolean complement and the pseudo-complement of a+ ∈ A+, which
entails ¬〈a+, a−〉 = 〈¬+a+, a+〉 = 〈a−, a+〉 = ∼〈a+, a−〉. Thus we obtain (iv), which
as mentioned earlier is equivalent to (i), closing the circle.

10 Conclusions and Future Work
The present paper, together with [19], may be considered a first essay in characteris-
ing a fragment of quasi-Nelson algebras/logic. As we have seen, twist-structures turn
out to be a particularly useful tool in this endeavour, and we speculate that similar
techniques could be successfully applied to other (if not all) fragments. Observe
that, in a non-involutive setting, the language {∧,∨, ∗,→,⇒,∼, 0, 1} in which Nel-
son algebras/logic are traditionally presented offers a number of independent combi-
nations. Indeed, certain inter-definabilities among operations/connectives that are
well known in the Nelson literature also hold in the quasi-Nelson setting; one can
for example define (salva veritate):

x ∗ y := x ∧ y ∧ ∼(x⇒ ∼ y)

x⇒ y := (x→ y) ∧ (∼ y → ∼x)

x→ y := x⇒ (x⇒ y)

∼x := x⇒ 0

0 := ∼(x→ x) or 0 := ∼(x⇒ x) or 0 := x ∗ ∼x

1 := x→ x or 1 := x⇒ x or 1 := ∼(x ∗ ∼x).

Others equivalences are however lost, for in general on quasi-Nelson algebras one
has:

x ∧ y 6= ∼(∼x ∨ ∼ y)

x ∨ y 6= ∼(∼x ∧ ∼ y)

x ∗ y 6= ∼(x⇒ ∼ y)

x⇒ y 6= ∼(x ∗ ∼ y).

For example, while in the Nelson setting both fragments {∧, ∗,∼} and {∨,⇒, 0} are
as expressive as the full language, once we drop the involutive law they may (in
principle) determine distinct classes of algebras and different logics. Characterising
fragments such as these, or even a systematic study of all fragments of quasi-Nelson
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algebras/logic, will be the subject of future investigation. Notice that, besides its
intrinsic interest, this project will have an impact on (involutive) Nelson logic as
well, given that several fragments of Nelson algebras/logic (indeed, all of them,
except those corresponding to Kleene algebras and wp-Kleene algebras) have not
been studied yet.

Concerning WPQK-algebras in particular, the most intriguing issue currently
left open is probably obtaining a better characterisation of their congruence lat-
tices. Such a result would hopefully lead to a useful description of the subdirectly
irreducible WPQK-algebras, thus providing a basis for a systematic study of the sub-
variety lattice of WPQK-algebras. As mentioned in Section 8, a means to achieving
such a characterisation may perhaps be a study of WPQK-algebras in the guise of
twist-structures over nuclear p-lattices; in turn, the congruences of nuclear p-lattices
(and of the subdirectly irreducible algebras in particular) might be more easily un-
derstood through a frame-theoretic perspective (in the sense e.g. of the so-called
Jónsson-Tarski duality for Boolean algebras with operators).

To conclude the conclusions, let us briefly return to the topic of logics associated
to WPQK and wp-Kleene algebras. We have seen with Proposition 5.7 that the
consequence |=wpK , corresponding to the {∧,∨,∼,¬, 0, 1}-fragment of Nelson logic
(hence, a fortiori, the consequence |=WPQK of the corresponding fragment of quasi-
Nelson logic), is not algebraisable. We believe that, analogously to the logic of
p-lattices (as shown in [18]), neither of these systems is even protoalgebraic. This
would entail that a (Hilbert-style) axiomatisation for |=WPQK (resp. |=wpK) will
not be obtained ‘algorithmically’ by translating the identities that constitute an
equational presentation for WPQK (resp. wp-Kleene) algebras as varieties. The
previous considerations also suggest that (once more in parallel to the logic of p-
lattices [18]) Gentzen-style calculi might provide a more suitable framework for a
logical understanding of these consequence relations. On the other hand, having
established the twist representation result for WPQK and wp-Kleene algebras, we
speculate that a multi-type approach (similar to the one applied in [10] to bilattice
logic, also based on a twist representation) may also provide valuable insight into
the proof theory of WPQK and wp-Kleene logics.
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Abstract

We introduce a new concept of approximation applicable to decision prob-
lems and functions, inspired by Bayesian probability. From the perspective of a
Bayesian reasoner with limited computational resources, the answer to a prob-
lem that cannot be solved exactly is uncertain and therefore should be described
by a random variable. It thus should make sense to talk about the expected
value of this random variable, an idea we formalize in the language of average-
case complexity theory by introducing the concept of “optimal polynomial-time
estimators.” We prove some existence theorems and completeness results, and
show that optimal polynomial-time estimators exhibit many parallels with “clas-
sical” probability theory.

0 Introduction
0.1 Motivation
Imagine you are strolling in the city with a friend when a car passes by with the
license plate number “7614829”. Your friend proposes a wager, claiming that the
number is composite and offering 10 : 1 odds in your favor. Knowing that your
friend has no exceptional ability in mental arithmetic and that it’s highly unlikely
they saw this car before, you realize they are just guessing. Your mental arithmetic
is also insufficient to test the number for primality, but is sufficient to check that
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7614829 ≡ 1 (mod 3) and 1
ln 7614829 ≈ 0.06. Arguing from the prime number theorem

and observing that 7614829 is odd and is divisible neither by 3 nor by 5, you conclude
that the probability 7614829 is prime is 1

ln 7614829 × 2× 3
2 × 5

4 ≈ 22%. Convinced
that the odds are in your favor, you accept the bet1.

From the perspective of frequentist probability, the question “what is the proba-
bility 7614829 is prime?” seems meaningless. It is either prime or not, so there is no
frequency to observe (unless the frequency is 0 or 1). From a Bayesian perspective,
probability represents a degree of confidence; however, in classical Bayesian proba-
bility theory it is assumed that the only source of uncertainty is lack of information.
The number 7614829 already contains all information needed to determine whether
it is prime, so the probability again has to be 0 or 1. However, real life uncertainty
is not only information-theoretic but also complexity-theoretic. Even when we have
all of the information needed to obtain the answer, our computational resources are
limited, and so we remain uncertain. The rigorous formalization of this idea is the
main goal of the present work.

The idea of assigning probabilities to purely mathematical questions was studied
by several authors [6,8,10,11,14], mainly in the setting of formal logic. That is, their
approach was looking for functions from the set of sentences in some formal logical
language to [0, 1]. However, although there is a strong intuitive case for assigning
probabilities to sentences like

ϕ1 := “7614829 is prime”

it is much less clear there is a meaningful assignment of probabilities to sentences
like

ϕ2 := “there are no odd perfect numbers”

or (even worse)

ϕ3 := “there is no cardinality κ s.t. ℵ0 < κ < 2ℵ0"

A wager on ϕ1 can be resolved in a predetermined finite amount of time (the
amount of time it takes to test it directly). On the other hand, it is unknown how
long the resolution of ϕ2 will take. It is possible that there is an odd perfect number
but finding it (or otherwise becoming certain of its existence) will take a very long
time. It is also possible there is no odd perfect number, a fact that cannot be
directly verified because of its infinite nature. It is possible that there is a proof of
ϕ2 within some formal theory, but accepting such a proof as resolution requires us

1Alas, 7614829 = 271× 28099.
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to be completely certain of the consistency of the theory (whereas it is arguable that
the consistency of formal mathematical theories, especially more abstract theories
like ZFC, is itself only known empirically and in particular with less than absolute
certainty). Moreover, there is no knowing a priori whether a proof exists or how
long it will take to find it. For ϕ3 there is no way to “directly” verify either the
sentence or its negation, and it is actually known to be independent of ZFC.

In the present work we avoid choosing a specific category of mathematical ques-
tions2. Instead, we consider the abstract setting of arbitrary distributional decision
problems. This leads to the perspective that an assignment of probabilities is a form
of approximate solution to a problem. This is not the same sense of approximation
as used in optimization problems, where the approximation error is the difference
between the ideal solution and the actual solution. Instead, the approximation error
is the prediction accuracy of our probability assignment. This is also different from
average-case complexity theory, where the solution is required to be exact on most
input instances. However, the language of average-case complexity theory (in par-
ticular, the concept of a distributional decision problem) turns out to be well-suited
to our purpose. The concept of “optimal polynomial-time estimator” that arises
from the approach turns out to behave much like probabilities, or more generally
expected values, in “classical” probability theory. They display an appropriate form
of calibration. The “expected values” are linear in general and multiplicative for
functions that are independent in an appropriate sense. There is a natural par-
allel of conditional probabilities. For simple examples constructed from one-way
functions we get the probability values we expect. They are also well behaved in
the complexity-theoretic sense that a natural class of reductions transforms optimal
polynomial-time estimators into optimal polynomial-time estimators, and complete
problems for these reductions exist for important complexity classes.

Optimal polynomial-time estimators turn out to be unique up to a certain equiv-
alence relation. The existence of optimal polynomial-time estimators depends on the
specific variety you consider. We show that in the non-uniform case (allowing advice)
there is a variety of optimal polynomial-time estimators that exist for completely
arbitrary problems. Uniform optimal polynomial-time estimators of this kind exist
for a certain class of problems we call “samplable” which can be very roughly re-
garded as an average-case analogue of NP ∩ coNP. More generally mapping the
class of problems which admit optimal polynomial-time estimators allows for much
further research.

2We do require that these questions can be represented as finite strings of bits.
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0.2 Overview
Consider a language L ⊆ {0, 1}∗ and a family {Dk}k∈N where eachDk is a probability
distribution on {0, 1}∗. We associate with L its characteristic function χL : {0, 1}∗ →
{0, 1}. A pair (D, L) is called a distributional decision problem [4]. Our goal is
defining and studying the probabilities of “events” of the form x ∈ L3 associated
with the uncertainty resulting from limited computational resources. (Specifically,
we will consider the resources of time, randomness and advice.)

The distributional complexity class HeurnegP is defined as the set of dis-
tributional decision problems which admit a polynomial-time heuristic algorithm
with negligible error probability [4]. That is, (D, L) ∈ HeurnegP iff there is
A : N× {0, 1}∗ alg−−→ {0, 1} (an algorithm which takes input in N× {0, 1}∗ and
produces output in {0, 1}) s.t. A(k, x) runs in time polynomial in k and
Prx∼Dk [A(k, x) 6= χL(x)] is a negligible function of k. We have the following equiv-
alent condition. (D, L) ∈ HeurnegP iff there is P : N× {0, 1}∗ alg−−→ Q s.t. P (k, x)
runs in time polynomial in k and Ex∼Dk [(P (k, x)− χL(x))2] is a negligible function
of k. In the language of the present work, such a P is a called an “Fneg(Γ1

0,Γ1
0)-

perfect polynomial-time estimator for (D, χL)” (see Definition 5.1, Example 2.6 and
Example 2.1).

Our main objects of study are algorithms satisfying a related but weaker condi-
tion. Namely, we consider P s.t. its error w.r.t. χL is not negligible but is minimal
up to a negligible function. That is, we require that for any Q : N× {0, 1}∗ alg−−→ Q
s.t. Q(k, x) also runs in time polynomial in k, there is a negligible function ε(k) s.t.

Ex∼Dk [(P (k, x)− χL(x))2] ≤ Ex∼Dk [(Q(k, x)− χL(x))2] + ε(k)

Such a P is called an “Fneg(Γ1
0,Γ1

0)-optimal polynomial-time estimator for
(D, χL).” More generally, we replace negligible functions by functions that lie in some
space F which can represent different asymptotic conditions (see Definition 2.8), and
we consider estimators that use certain asymptotic amounts of randomness and ad-
vice represented by a pair Γ of function spaces (see Definition 2.3). This brings us to
the concept of an “F(Γ)-optimal polynomial-time estimator” (see Definition 2.11).

Denote OP[F(Γ)] the set of distributional decision problems that admit F(Γ)-
optimal polynomial-time estimators. Obviously OP[Fneg(Γ1

0,Γ1
0)] ⊇ HeurnegP.

Moreover, if one-way functions exist the inclusion is proper since it is possible to use
any function with a hard-core predicate to construct an example where the constant

3We will actually consider the more general case of a function f : {0, 1}∗ → R and the “expected
value” of f(x), but for most purposes there is no difference of principle.
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1
2 is an Fneg(Γ1

0,Γ1
0)-optimal polynomial-time estimator (see Theorem 2.3). Thus, it

seems that we constructed novel natural distributional complexity classes.
The distributional complexity class HeurP is defined as the set of distribu-

tional decision problems which admit a polynomial-time heuristic scheme [4]. That
is, (D, L) ∈ HeurP iff there is S : N2 × {0, 1}∗ alg−−→ {0, 1} s.t. S(K0,K1, x) runs
in time polynomial in K0,K1 and4 Prx∼DK0 [S(K0,K1, x) 6= χL(x)] ≤ (K1 + 1)−1.
Analogously to before, we have the following equivalent condition. (D, L) ∈ HeurP
iff there is P : N2 × {0, 1}∗ alg−−→ Q s.t. P (K0,K1, x) runs in time polynomial in
K0,K1 and for some M > 0, Ex∼DK0 [(P (K0,K1, x)− χL(x))2] ≤M(K1 + 1)−1. In
the language of the present work, such a P is a called an “F(K1+1)−1(Γ2

0,Γ2
0)-optimal

polynomial-time estimator for (Dη, χL)” (see Example 2.7), where Dη is a two-
parameter (K0,K1 ∈ N) family of distributions which is constant along the param-
eter K1.

Again we can consider the corresponding weaker condition, that for all
Q : N2 × {0, 1}∗ alg−−→ Q s.t. Q(K0,K1, x) runs in time polynomial in K0,K1

Ex∼DK0 [(P (K0,K1, x)−χL(x))2] ≤ Ex∼DK0 [(Q(K0,K1, x)−χL(x))2]+M(K1 +1)−1

Such a P is called an “F(K1+1)−1(Γ2
0,Γ2

0)-optimal polynomial-time estimator for
(Dη, χL).”

It is also useful to introduce the closely related concept of an “F ](Γ)-
optimal polynomial-time estimator” (see Definition 2.13). For example, an
F ](K1+1)−1(Γ2

0,Γ2
0)-optimal polynomial-time estimator P has to satisfy that for each

S : N2 × {0, 1}∗ alg−−→ Q that is also polynomial-time there is M > 0 s.t.

|Ex∼DK0 [(P (K0,K1, x)− χL(x))S(K0,K1, x)]| ≤M(K1 + 1)−1

We show that e.g. every F ](K1+1)−1(Γ2
0,Γ2

log)-optimal polynomial-time estimator
is in particular an F(K1+1)−1(Γ2

0,Γ2
log)-optimal polynomial-time estimator (see The-

orem 2.2), whereas every F(K1+1)−1(Γ2
0,Γ2

log)-optimal polynomial-time estimator is
in particular an F ]

(K1+1)−
1
2
(Γ2

0,Γ2
log)-optimal polynomial-time estimator (see Theo-

rem 2.1). Here, Γ2
log indicates that we consider algorithms with advice of logarithmic

length (see Example 2.4).

4We slightly reformulated the definition given in [4]: replaced the rational input parameter δ
by the integer input parameter K1. The equivalence of the two formulations may be observed via
the substitution δ = (K1 + 1)−1.
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We claim that the concept of an optimal polynomial-time estimator is a for-
malisation of the intuition outlined in 0.1. A priori, this is plausible because the
mean squared error is a proper scoring rule (the Brier score). Moreover, it is the
only scoring rule which is “proper” for arbitrary expected value assignment rather
than only probability assignment. To support this claim, we prove a number of
results that form a parallel between probability theory and the theory of optimal
polynomial-time estimators:

• According to Borel’s law of large numbers, every event of probability p occurs
with asymptotic frequency p. Therefore, if some algorithm P represents a
notion of probability for x ∈ L, we expect that given a, b ∈ Q and considering
x ∼ Dk s.t. a ≤ P (x) ≤ b, the frequency with which x ∈ L is asymptotically (in
k) between a and b. In Bayesian statistics, probability assignments satisfying
such a property are said to be “well calibrated” (see e.g. [7]). With some
assumptions about allowed advice and the portion of the distribution falling in
the [a, b] interval, F(Γ)-optimal polynomial-time estimators are well calibrated
(see Corollary 3.1). In particular, if the aforementioned portion is bounded
from below, this frequency lies in [a, b] up to a function of the form

√
ε for

ε ∈ F .

• Given L1, L2 ⊆ {0, 1}∗ s.t. L1 ∩ L2 = ∅ we expect a reasonable notion of
probability to satisfy Pr[x ∈ L1 ∪ L2] = Pr[x ∈ L1] + Pr[x ∈ L2]. To satisfy
this expectation, we show that given D any family of distributions, P1
an F ](Γ)-optimal polynomial-time estimator for (D, L1) and P2 an F ](Γ)-
optimal polynomial-time estimator for (D, L2), P1 + P2 is an F ](Γ)-optimal
polynomial-time estimator for (D, L1 ∪ L2). This observation in itself is triv-
ial (see Proposition 3.1) but applying it to examples may require passing from
an F(Γ)-optimal polynomial-time estimator to an F ](Γ)-optimal polynomial-
time estimator using the non-trivial Theorem 2.1.

• Consider L,M ⊆ {0, 1}∗ and suppose we are trying to formalize the conditional
probability Pr[x ∈ L | x ∈M ]. There are two natural approaches. One is
reducing it to unconditional probability using the identity

Pr[x ∈ L | x ∈M ] = Pr[x ∈ L ∩M ]
Pr[x ∈M ]

We can then substitute optimal polynomial-time estimators for the numera-
tor and denominator. The other is considering an optimal polynomial time-
estimator for a family of conditional distributions. Luckily, these two approach
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yield the same result. That is, we show that given D a family of distribu-
tions, PLM an optimal polynomial time estimator for (D, L ∩M), PM an op-
timal polynomial-time estimator for (D,M) and assuming DK(M) is not too
small (e.g. bounded from below), P−1

M PLM is an optimal polynomial-time es-
timator for (D |M,L) (see Theorem 3.3). Conversely, given PL|M an optimal
polynomial-time estimator for (D |M,L), PMPL|M is an optimal polynomial-
time estimator for (D, L ∩M) (see Theorem 3.2).

• For some pairs L1, L2 ⊆ {0, 1}∗, the “events” x ∈ L1 and x ∈ L2 can be intu-
itively regarded as independent since learning whether x ∈ L2 doesn’t provide
any information about whether x ∈ L1 that a polynomial-time algorithm can
use. We formalize one situation when this happens and show that in this sit-
uation the product of an F ](Γ)-optimal polynomial-time estimator (in certain
form) for (D, L1) by an F ](Γ)-optimal polynomial-time estimator for (D, L2)
is an F ](Γ)-optimal polynomial-time estimator for (D, L1 ∩ L2) (see Theo-
rem 3.4). This is precisely analogous to the property of probabilities where
the probability of the conjunction of independent events is the product of the
separate probabilities. This is one of the central results of the present work.

Different complexity classes often have corresponding types of reductions that
preserve them. In particular, reductions in average-case complexity theory have
to satisfy an extra-condition that intuitively means that typical problem instances
should not be mapped to rare problem instances. We define a class of reductions
s.t. pull-backs of optimal polynomial-time estimators are optimal polynomial-time
estimators. This requires stronger conditions than what is needed for preserving
average-case complexity. Namely, a reduction π of (D, L) to (E ,M) has to be
“pseudo-invertible” i.e. there should be a way to sample D | π−1(y) in polyno-
mial time for y sampled from π∗D, up to an error which is asymptotically small on
average.

We give separate proofs for the invariance of F ](Γ)-optimal polynomial-time
estimators (see Corollary 4.4) and the invariance of F(Γ)-optimal polynomial-time
estimators (see Corollary 4.5) without relying on Theorem 2.1 and Theorem 2.2 in
order to produce a slightly stronger bound. We also show that this reduction class is
rich enough to support complete problems for many problem classes e.g. SampNP
(see Theorem 4.4).

Explicit construction of optimal polynomial-time estimators is likely to often
be difficult because it requires proving a hardness result (that no polynomial-time
estimator can outperform the given polynomial-time estimator). However, for a
specific choice of F which we denote F (n)

uni (see Example 2.8), we prove two broad
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existence theorems.
The first (Theorem 5.1) shows that for suitable Γ (in particular it has to allow

sufficiently long advice strings, e.g. logarithmic advice is sufficient), any distribu-
tional decision problem (D, L) admits an F (n)

uni (Γ)-optimal polynomial-time estimator
for (Dη, L). The construction of this estimator is rather trivial: the advice string
for (K0,K1) is the optimal (i.e. least Ex∼DK0 [(P (x)− f(x))2]) program that runs in
time K1 and is of length at most l(K0,K1) where l : N2 → N is some function which
determines the allowed asymptotic advice length (Γ depends on l and an analogous
function r : N2 → N which determines the allowed asymptotic number of random
bits used by the estimators). The non-trivial part here is the definition of F (n)

uni
which is s.t. allowing any estimator an amount of resources greater by a polynomial
always translates to a reduction in error which lies in F (n)

uni .
The second (Theorem 5.2), which is another central result, shows that for suit-

able Γ (logarithmic advice and enough random e.g. logarithmic amount of random
bits is sufficient), any distributional decision5 problem (D, L) which is samplable
(i.e. it is possible to efficiently sample pairs (x, t) where x ∈ {0, 1}∗ is distributed
approximately according to D and t ∈ Q is an estimate of χL(x) which is approxi-
mately unbiased on average) admits an F (n)

uni (Γ)-optimal polynomial-time estimator
with the same advice strings as the sampler. In particular, if the sampler is uniform
the estimator is also uniform.

The samplability property allows recasting the estimation problem as a learning
problem. That is, we use the sampler to generate a number (we use O

(
(logK1)2

)
)

of problem instances for which an unbiased estimate of the correct answer is known,
and we should now generalize from these instances to an instance for which the
correct answer is unknown. The optimal polynomial-time estimator we construct
accomplishes this using the empirical risk minimization principle from statical learn-
ing theory, applied to a hypothesis space which consists of programs. Specifically,
the estimator iterates over all programs of length O (logK1), runs each of them on
the samples {(xi, ti)}i∈[O((logK1)2)] for time K1 getting estimates {pi}i∈[O((logK1)2)]
and computes the empirical risk ∑i∈[O((logK1)2)](pi − ti)2. It then selects the pro-
gram with the minimal risk and runs it on the input for time K1 to get the desired
estimate. This is similar to Levin’s universal search which dovetails all programs
to get optimality. The optimality of this estimator is also closely related to the
fundamental theorem of statistical learning theory for agnostic PAC learning [18]:

5All of the theorems are described for decision problems in the overview for the sake of simplicity
but we actually prove them for “estimation” problems i.e. f : {0, 1}∗ → R instead of L ⊆ {0, 1}∗.
Here this generalisation is more important since any efficient algorithm producing (x, t) pairs is the
sampler of some distributional estimation problem.
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like in agnostic PAC learning we get an estimate which is not necessarily accurate,
but which is optimal within the hypothesis space (which in our case is the space of
efficient estimators).

On the other hand, we rule out the existence of optimal polynomial-time es-
timators in the uniform case for certain problems. These negative results rely on
the simple observation that if the veracity of x ∈ L for x ∼ Dk depends only on k,
then advice strings of size O(1) enable storing the exact answer to all such ques-
tions. Additionally, it is easy to see that an optimal polynomial-time estimator in
the uniform case is still optimal when we allow O(1) advice. This means that any
optimal polynomial-time estimator for such a problem has to be a polynomial-time
estimator. So, any problem of this form that doesn’t have uniform polynomial-time
estimators also doesn’t have uniform optimal polynomial-time estimators. Conse-
quently, any problem that is reducible to the former sort of problem also doesn’t
have optimal polynomial-time estimators.

Finally, we examine the uniqueness of optimal polynomial-time estimators for
a fixed problem. We prove that if such an estimator exists, it is unique up to a
difference which is asymptotically small on average (see Theorem 5.3). For example,
given (D, L) a distributional decision problem s.t. the length of any x ∼ Dk is
bounded by some polynomial in k and P1, P2 two F ](Γ1

0,Γ1
0)-optimal polynomial

time estimators, Ex∼Dk [(P1(k, x)− P2(k, x))2] is a function of k that lies in F .
We are able to prove a stronger uniqueness result for optimal polynomial-time

estimators for problems of the form (D |M,L) (see Theorem 5.4). Namely, if there
is an optimal polynomial-time estimator PM for (D,M) which takes values with a
sufficiently strong lower bound then any PL1, PL2 optimal polynomial-time estima-
tors for (D |M,L) have an asymptotically small difference on average with respect
to D (rather than D |M). Informally, this means that whenever determining that
x 6∈M is sufficiently hard, there are well-defined (up to an asymptotically small
perturbation) probabilities for events of the form x ∈ L conditioned by x ∈M , even
for instances which actually lie outside of M . That is, optimal polynomial-time
estimators allow us asking counterfactual “what if” questions that are meaningless
from a “classical” mathematical perspective due to the principle of explosion.

Many of our results make use of algorithms with advice strings, where the allowed
asymptotic length of the advice strings is determined by the space of functions ΓA.
Such algorithms are not entirely realistic, but one way to interpret them is as real-
time efficient (since we assume polynomial time) algorithms that require inefficient
precomputation (at least this interpretation is valid when the advice strings are
computable). The strength of the concept of an “F(Γ)-optimal polynomial-time
estimator” depends ambiguously on the size of ΓA, since on the one hand larger ΓA

allows for a greater choice of candidate optimal polynomial-time estimators, on the
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other hand the estimator is required to be optimal in a larger class6. Sometimes it
is possible to get the best of both worlds by having an estimator which uses few or
no advice but is optimal in a class of estimators which use much advice (see e.g.
Theorem 5.2).

Note that most of the theorems we get about F(Γ)-optimal polynomial-time esti-
mators require a lower bound on ΓA through the assumption that F is ΓA-ample (see
Definition 2.12). Theorem 2.1 which shows when an F(Γ)-optimal polynomial-time
estimator is also an F 1

2 ](Γ)-optimal polynomial-time estimator (see Definition 2.9)
also assumes a lower bound on ΓA, but a weaker one. On the other hand, the con-
verse Theorem 2.2 makes no such assumption and so do all other theorems about
F ](Γ)-optimal polynomial-time estimators (except indirectly since Theorem 2.1 is
often required to construct an F ](Γ)-optimal polynomial-time estimator in the first
place).

0.3 Related work
Several authors starting from Gaifman studied the idea of assigning probabilities
to sentences in formal logic [6, 8, 10, 11, 14]. Systems of formal logic such as Peano
Arithmetic are very expressive, so such an assignment would have much broader ap-
plicability than most of the examples we are concerned about in the present work.
On the other hand, the constructions achieved by those authors are either much fur-
ther from realistic algorithms (e.g. require halting oracles or at least very expensive
computations7) or have much weaker properties to attest to their interpretation as
“probabilities”.

Lutz [17] uses the theory of computable martingales to define when a set of se-
quences “appears for a polynomial-time observer” to have certain ν-measure with
respect to a fixed probability measure ν on the set of infinite strings {0, 1}ω. In par-
ticular, if a singleton {x} has Lutz measure 1 (where x ∈ {0, 1}ω), this means that x
“looks like” a random sequence sampled from ν, as far as a polynomial-time observer
can tell. This seems closely related to our idea of assigning “subjective probabilities
for polynomial-time observers” to events that are otherwise deterministic. Formally
relating and comparing the two setups remains a task for future work.

The notion that computational hardness often behaves like information-

6The same observation is true about the space ΓR which controls the allowed quantity of random
bits.

7In fact, Theorem 5.1 shows optimal polynomial-time estimators exist for completely arbitrary
distributional estimation problems, but the price is the need for advice strings which might be
expensive or even uncomputable, depending on the problem. Nevertheless, these estimators are
still “real-time efficient” which makes them semi-realistic in some sense.
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theoretical uncertainty is well-known in complexity theory, although it hasn’t been
systematically formalized. For example see discussion of Theorem 7.5 in [12] or
section 6.1 in [4]. Results such as Yao’s XOR lemma can be interpreted as the
transformation of “computational probabilities” under certain operations, which is
resonant with our results e.g. Theorem 3.4. It seems likely that it is possible to
fruitfully investigate these relations further.

Barak, Shaltiel and Wigderson [2] discuss notions of “entropy” for probability
distributions that take computational hardness into account. Zheng [20] (Chapter 7)
considers prediction markets where traders perform transactions via Boolean circuits
of polynomial size. This is similar to our optimal polynomial-time estimators, in
the sense that a loss function which is a proper scoring rule is minimized under
computational resource constraints. However, Zheng doesn’t study this concept
beyond deriving a relation to the “pseudoentropy” mentioned above.

Much of the conceptual framework and results in average-case complexity theory,
as detailed in Bogdanov and Trevisan’s review [4], have analogues in this setting,
and the distributional decision problems studied in average-case complexity theory
are a special case of the distributional estimation problems studied in this paper.
For example, the notion of a randomized Karp-reduction of distributional problems
is analogous to the notion of a pseudo-invertible reduction used in this setting. The
assertion that a predicate is (poly,O(ρ))-inapproximable in the sense of Definition
7.9 in [12] is equivalent to the assertion that there is no perfect poly-time estimator
for the predicate with “fall space” O(ρ). Notably, the construction by Levin of a
SampNP-complete problem [4] is closely related to our Theorem 4.4.

Different brands of “optimal algorithms” were previously defined and investi-
gated in various contexts. Levin’s universal search is an algorithm that solves the
candid search form of any problem in NP in time which is minimal up to a poly-
nomial (see Theorem 2.33 in [12]). Barak [1] uses instance checkers to construct
algorithms optimal in this sense for decision problems (in particular for any prob-
lem that is EXP-complete). This concept also has a non-deterministic counterpart
called “optimal proof system”: see survey by Hirsch [13], which additionally discusses
“optimal acceptors” (optimal algorithms that halt only on the “yes” instances of the
problem). Notably, the latter survey also discusses the average-case rather than only
the worst-case.

Khot’s Unique Games Conjecture implies that many optimization problems have
an algorithm which produces the best approximation factor possible in polynomial-
time (see e.g. [16]). Barak and Steurer [3] speculate that even if the Unique Games
Conjecture is false, the existence of an algorithm that is optimal in this sense for a
large class of problems is plausible, and propose the Sum-of-Squares algorithm as a
candidate.
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Optimal polynomial-time estimators are optimal in a sense different from the
examples above: they simultaneously run in polynomial-time, are applicable to
decision problems and are of average-case nature. The metric they optimize is the
average squared difference (Brier score) with the true function. Nevertheless, it
might be interesting to explore connections and similarities with other types of
optimal algorithms.

The structure of the paper is as follows. Section 1 fixes notation. Section 2
introduces the main definitions and gives a simple example using one-way func-
tions. Section 3 shows the parallel between properties of optimal polynomial-time
estimators and classical probability theory. Section 4 discusses behavior of optimal
polynomial-time estimators under reductions and shows certain natural classes have
complete problems under reductions that are appropriate. Section 5 discusses ex-
istence and uniqueness of optimal polynomial-time estimators. Section 6 discusses
possible avenues for further research. The Appendix briefly reviews relevant material
about hard-core predicates and one-way functions.

1 Notation

1.1 Sets, numbers and functions

N is the set of natural numbers. We will use the convention in which natural numbers
start from 0, so N = {0, 1, 2 . . .}.

Z is the ring of integers, Q is the field of rational numbers, R is the field of real
numbers.

For F ∈ {Q,R}, F>0 := {x ∈ F | x > 0}, F≥0 := {x ∈ F | x ≥ 0}.
Given n ∈ N, N[K0,K1 . . .Kn−1] will stand for the set of polynomials with nat-

ural coefficients in the n variables K0,K1 . . .Kn−1.
For any t ∈ R, btc := max{n ∈ Z | n ≤ t}, dte := min{n ∈ Z | n ≥ t}.
log : R≥0 → R t {−∞} will denote the logarithm in base 2.
Given n ∈ N, [n] := {i ∈ N | i < n}. Given sets X0, X1 . . . Xn−1,

x ∈ ∏i∈[n]Xi and m ∈ [n], xm ∈ Xm is the m-th component of the n-tuple x
i.e. x = (x0, x1 . . . xn−1).

Given a set X and x, y ∈ X, δxy (or δx,y) will denote the the Kronecker delta

δxy :=





1 if x = y

0 if x 6= y
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Given a set X and a subset Y , χY : X → {0, 1} will denote the indicator function
of Y (when X is assumed to be known from the context)

χY (x) :=





1 if x ∈ Y
0 if x 6∈ Y

θ : R → {0, 1} will denote the Heaviside step function θ := χ[0,∞).
sgn : R→ {−1,+1} will denote the function 2θ − 1.

1.2 Probability distributions

ForX a set, P(X) will denote the set of probability distributions onX. A probability
distribution on X can be represented by a function D : X → [0, 1] s.t. ∑x∈X D(x) =
1. Abusing notation, we will use the same symbol to denote the function and the
probability distribution. Given A a subset of X, we will use the notation

D(A) := Prx∼D[x ∈ A] =
∑

x∈A
D(x)

For X a set, D ∈ P(X), V a finite dimensional vector space over R and f : X →
V , Ex∼D[f(x)] will denote the expected value of f with respect to D, i.e.

Ex∼D[f(x)] :=
∑

x∈X
D(x)f(x)

We will the abbreviated notations ED[f(x)], E[f(x)], ED[f ], E[f ] when no con-
fusion is likely to occur.

Given a set X and D ∈ P(X), suppD will denote the support of D i.e.

suppD = {x ∈ X | D(x) > 0}

Given X,Y sets, D ∈ P(X) and f : X → Y a mapping, f∗D ∈ P(Y ) will denote
the corresponding pushforward distribution i.e.

(f∗D)(y) :=
∑

x∈f−1(y)
D(x)

Given X,Y sets, the notation f : X mk−−→ Y signifies f is a Markov kernel with
source X and target Y . Given x ∈ X, fx is the corresponding probability distri-
bution on Y and f(x) is a random variable sampled from fx. Given D ∈ P(X),
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D n f ∈ P(X × Y ) (resp. f o D ∈ P(Y ×X)) is the semidirect product distribu-
tion. f∗D ∈ P(Y ) is the pushforward distribution, i.e. f∗D := π∗(D n f) where
π : X × Y → Y is the projection.

For X a set, D ∈ P(X) and A a subset of X s.t. D(A) > 0, D | A will denote
the corresponding conditional probability distribution, i.e. (D | A)(B) := D(B∩A)

D(A) .
Given Y another set, f : X mk−−→ Y and A a subset of Y s.t. (D n f)(X × A) > 0,
D | f−1(A) ∈ P(X) is defined by

(D | f−1(A))(B) := (D n f | X ×A)(B × Y )

Note that when f is deterministic (i.e. fx is a Dirac measure for every x), this
corresponds to conditioning by the inverse image of A with respect to f . When
A = {a} we will use the shorthand notation D | f−1(a).

GivenX a set and D, E ∈ P(X), dtv(D, E) will denote the total variation distance
between D and E i.e.

dtv(D, E) := 1
2
∑

x∈X
|D(x)− E(x)|

For X a set and x ∈ X, δx will denote the Dirac measure associated with x, i.e.
δx(y) := δxy.

1.3 Algorithms
{0, 1}∗ is the set of all finite binary strings (words), i.e. {0, 1}∗ := ⊔

n∈N{0, 1}n. For
any x ∈ {0, 1}∗, |x| is the length of x i.e. x ∈ {0, 1}|x|. λ ∈ {0, 1}∗ is the empty
string. For any n ∈ N

{0, 1}≤n := {x ∈ {0, 1}∗ | |x| ≤ n}
{0, 1}>n := {x ∈ {0, 1}∗ | |x| > n}

For any x ∈ {0, 1}∗ and n ∈ N, x<n stands for the prefix of x of length n if
|x| ≥ n and x otherwise. Given x, y ∈ {0, 1}∗, xy stands for the concatenation of
x and y (in particular |xy| = |x| + |y|). Given n ∈ N and x0, x1 . . . xn−1 ∈ {0, 1}∗,∏
i∈[n] xi is also concatenation. Given n ∈ N and x, y ∈ {0, 1}n, x · y stands for⊕
i∈[n] xiyi. For any n ∈ N, Un ∈ P({0, 1}n) is the uniform probability distribution.
Given n ∈ N and x0, x1 . . . xn−1 ∈ {0, 1}∗, 〈x0, x1 . . . xn−1〉 ∈ {0, 1}∗ denotes the

encoding of (x0, x1 . . . xn−1) obtained by repeating each bit of x0, x1 . . . xn−1 twice
and inserting the separators 01.
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Definition 1.1. An encoded set is a set X together with an injection
cX : X → {0, 1}∗ (the encoding) s.t. Im cX is decidable in polynomial time.

There are standard encodings we implicitly use throughout. 1 denotes an en-
coded set with 1 element • whose encoding is the empty string. {0, 1}∗ is an encoded
set with the trivial encoding c{0,1}∗(x) := x. N is an encoded set where cN(n) is the
binary representation of n. Q is an encoded set where cQ( nm) := 〈n,m〉 for an irre-
ducible fraction n

m . For any encoded set X and L ∈ P, {x ∈ X | cX(x) ∈ L} is an
encoded set whose encoding is the restriction of cX . For X0, X1 . . . Xn−1 encoded
sets, ∏i∈[n]Xi is an encoded set with encoding

c∏
i∈[n]Xi

(x0, x1 . . . xn−1) := 〈cX0(x0), cX1(x1) . . . cXn−1(xn−1)〉

For any n ∈ N we use the shorthand notation cn := c({0,1}∗)n .
Given n ∈ N, encoded setsX0, X1 . . . Xn−1 and encoded set Y we use the notation

A : ∏i∈[n]Xi
alg−−→ Y to mean a Turing machine with n input tapes that halts on every

input for which the i-th tape is initialized to a value in Im cX and produces an output
in Im cY . Given {xi ∈ Xi}i∈[n] the notation A(x0, x1 . . . xn−1) stands for the unique
y ∈ Y s.t. applying A to the input composed of cXi(xi) results in output cY (y). We
use different input tapes for different components of the input instead of encoding
the n-tuple as a single word in order to allow A to process some components of the
input in time smaller than the length of other components. This involves abuse of
notation since a Cartesian product of encoded sets is naturally an encoded set, but
hopefully this won’t cause much confusion.

Given A : X alg−−→ Y and x ∈ X, TA(x) stands for the number of time steps in
the computation of A(x).

For any n ∈ N, we fix Un, a prefix free universal Turing machine with n +
1 input tapes: 1 program tape and n tapes that serve as input to the program.
Given n, k ∈ N, a ∈ {0, 1}∗ and {xi ∈ {0, 1}∗}i∈[n], evk(a;x0, x1 . . . xn−1) stands for
the output of Un when executed for k time steps on program a (continued by an
infinite sequence of 0s) and inputs {xi ∈ {0, 1}∗}i∈[n].

2 Fundamentals
2.1 Basic concepts
2.1.1 Distributional estimation problems

We start with a simple model to help build intuition and motivate the following
definitions.
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Consider finite sets X and Y , D ∈ P(X), a mapping m : X → Y and a function
f : X → R. Suppose x was sampled from D and we were told y := m(x) (but not told
x itself). Our expected value of f(x) in these conditions is Ex∼D[f(x) | m(x) = y].

Let P : X → R be the function P (x) := Ex′∼D[f(x′) | m(x′) = m(x)]. How can
we characterize P without referring to the concept of a conditional expected value?
For any Q : X → R we can consider the “error” ED[(Q− f)2]. Q is called “efficient”
when it factors as Q = q ◦m for some q : Y → R. It is easy to see that P has the
least error among all efficient functions.

Note that the characterization of P depends not only on f but also on D. That is,
the accuracy of an estimator depends on the prior probabilities to encounter different
questions. In general, we assume that the possible questions are represented by
elements of {0, 1}∗. Thus we need to consider a probability distribution on {0, 1}∗.
However, in the spirit of average-case complexity theory we will only require our
estimators to be asymptotically optimal. Therefore instead of considering a single
probability distribution we consider a family of probability distribution indexed by
integer parameters8, where the role of the parameters is defining the relevant limit.
We thereby arrive at the following:

Definition 2.1. Fix n ∈ N. A word ensemble of rank n is a family
{DK ∈ P({0, 1}∗)}K∈Nn .

We will use the notation suppD := ⋃
K∈Nn suppDK .

We now introduce our abstraction for a “class of mathematical questions” (with
quantitative real-valued answers). This abstraction is a trivial generalization of the
concept of a distributional decision problem from average-case complexity theory
(see e.g. [4]).

Definition 2.2. Fix n ∈ N. A distributional estimation problem of rank n is a pair
(D, f) where D is a word ensemble of rank n and f : suppD → R is bounded.

2.1.2 Growth spaces and polynomial-time Γ-schemes

In the motivational model, the estimator was restricted to lie in a class of functions
that factor through a fixed mapping. Of course we are interested in more realistic
notions of efficiency. In the present work we consider restrictions on time complexity,
access to random bits and size of advice strings. Spatial complexity is also of interest
but treating it is out of our current scope. It is possible to consider weaker or stronger

8It is convenient to allow more than 1 parameter for reasons that will become clear in section 5.
Roughly, some parameters represent the complexity of the input whereas other parameters represent
the amount of computing resources available for probability estimation.
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restrictions which we represent using the following abstraction which is closely tied
to big-O notation:

Definition 2.3. Fix n. A growth space Γ of rank n is a set of functions γ : Nn → N
s.t.

(i) 0 ∈ Γ

(ii) If γ1, γ2 ∈ Γ then γ1 + γ2 ∈ Γ.

(iii) If γ1 ∈ Γ, γ2 : Nn → N and ∀K ∈ Nn : γ2(K) ≤ γ1(K) then γ2 ∈ Γ.

(iv) For any γ ∈ Γ there is a p ∈ N[K0,K1 . . .Kn−1] s.t. γ ≤ p.

Example 2.1. For any n ∈ N, we define Γn0 , a growth space of rank n. γ ∈ Γn0 iff
γ ≡ 0.

Example 2.2. For any n ∈ N, we define Γn1 , a growth space of rank n. γ ∈ Γn1 iff
there is c ∈ N s.t. γ ≤ c.

Example 2.3. For any n ∈ N, we define Γnpoly, a growth space of rank n.

Γnpoly := {γ : Nn → N | ∃p ∈ N[K0,K1 . . .Kn−1] : γ ≤ p}

Example 2.4. For any n ∈ N, we define Γnlog, a growth space of rank n. γ ∈ Γnlog iff
there is c ∈ N s.t. γ(K0,K1 . . .Kn−1) ≤ c∑i∈[n] log(Ki + 1).

Definition 2.4. Fix n ∈ N>0. γ : Nn → N is said to be steadily growing when

(i) γ ∈ Γnpoly

(ii) ∀J ∈ Nn−1, k, l ∈ N : k < l =⇒ γ(J, k) ≤ γ(J, l)

(iii) There is s ∈ N[K0,K1 . . .Kn−1] s.t.
∀J ∈ Nn−1, k ∈ N : γ(J, k) ≤ 1

2γ(J, s(J, k)).

This could be thought of as a polynomial that is monotonically increasing in the
last argument quickly enough that a polynomial increase in the last argument can
double the available resources.

Example 2.5. For any n ∈ N>0 and γ∗ steadily growing, we define Γγ∗ ,
a growth space of rank n. γ ∈ Γγ∗ iff there is p ∈ N[K0,K1 . . .Kn−1] s.t.
γ(J, k) ≤ γ∗(J, p(J, k)). This is the space of functions that are bounded above by
the reference function γ∗ with the last argument growing at a polynomial rate.
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To verify condition ii, consider γ1, γ2 s.t. γ(J, k) ≤ γ∗(J, p1(J, k)) and
γ2(J, k) ≤ γ∗(J, p2(J, k)). Choose p, s ∈ N[K0,K1 . . .Kn−1] s.t. p ≥ max(p1, p2) and
s is as in condition iii of Definition 2.4.

γ1(J, k) + γ2(J, k) ≤ γ∗(J, p1(J, k)) + γ∗(J, p2(J, k))

γ1(J, k) + γ2(J, k) ≤ 2γ∗(J, p(J, k))

γ1(J, k) + γ2(J, k) ≤ γ∗(J, s(J, p(J, k)))

In particular taking γ∗poly(J, k) := k and γ∗log(J, k) := blog(k + 1)c we have
Γnpoly = Γγ∗poly

, Γnlog = Γγ∗log
.

We now introduce our notion of an “efficient” algorithm.

Definition 2.5. Fix n ∈ N and Γ = (ΓR, ΓA) a pair of growth spaces of rank n that
correspond to the length of the random and advice strings. Given encoded sets X
and Y , a polynomial-time Γ-scheme of signature X → Y is a triple (S, rS , aS) where
S : Nn ×X × {0, 1}∗ × {0, 1}∗ alg−−→ Y , rS : Nn ×{0, 1}∗ alg−−→ N and aS : Nn → {0, 1}∗
are s.t.

(i) maxx∈X maxy,z∈{0,1}∗ TS(K,x, y, z) ∈ Γnpoly

(ii) maxz∈{0,1}∗ TrS (K, z) ∈ Γnpoly. Note that rS , the polynomial-time function that
outputs the number of random bits to read, takes the advice string z as input.

(iii) The function r : Nn → N defined by r(K) := rS(K, aS(K)) lies in ΓR.

(iv) |aS | ∈ ΓA

Abusing notation, we denote the polynomial-time Γ-scheme (S, rS , aS) by S.
SK(x, y, z) will denote S(K,x, y, z), SK(x, y) will denote S(K,x, y, aS(K)) and
SK(x) will denote the Y -valued random variable which equals S(K,x, y, a(K)) for
y sampled from UrS(K). UK

S will denote UrS(K). We think of S as a randomized
algorithm with advice where y are the internal coin tosses and aS is the advice9.
Similarly, rS(K) will denote rS(K, aS(K)).

9Note that the number of random bits rS(K) has to be efficiently computable modulo the advice
aS(K) rather than being an arbitrary function. This requirement is needed to prevent using the
function rS as advice in itself. In particular, when ΓA = Γ2

0, S represents a uniform randomized
algorithm.
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We will use the notation S : X Γ−→ Y to signify S is a polynomial-time Γ-scheme
of signature X → Y .

There is a natural notion of composition for polynomial-time Γ-schemes.

Definition 2.6. Fix n ∈ N and Γ = (ΓR, ΓA) a pair of growth spaces of rank
n. Consider encoded sets X, Y , Z and S : X Γ−→ Y , T : Y Γ−→ Z. Choose
p ∈ N[K0,K1 . . .Kn−1] s.t. |aS(K)| ≤ p(K) and |aT (K)| ≤ p(K). We can then
construct U : X Γ−→ Z s.t. for any K ∈ Nn, a, b ∈ {0, 1}≤p(K), v ∈ {0, 1}rT (K,a),
w ∈ {0, 1}rS(K,b) and x ∈ X

aU (K) = 〈aT (K), aS(K)〉 (2.1)
rU (K, 〈a, b〉) = rT (K, a) + rS(K, b) (2.2)

UK(x, vw, 〈a, b〉) = TK(SK(x,w, b), v, a) (2.3)

Such a U is called the composition of T and S and denoted U = T ◦ S. There
is a slight abuse of notation due to the freedoms in the construction of U but these
freedoms have no real significance since all versions of T ◦S induce the same Markov
kernel from X to Z.

It will also be useful to consider families of polynomial-time Γ-schemes satisfying
uniform resource bounds.

Definition 2.7. Fix n ∈ N, Γ = (ΓR, ΓA) a pair of growth spaces of rank n and
encoded sets X, Y . A set F of polynomial-time Γ-schemes of signature X → Y is
called a uniform family when

(i) maxS∈F maxx∈X maxy,z∈{0,1}∗ TS(K,x, y, z) ∈ Γnpoly

(ii) maxS∈F maxz∈{0,1}∗ TrS (K, z) ∈ Γnpoly

(iii) maxS∈F rS ∈ ΓR

(iv) maxS∈F |aS(K)| ∈ ΓA

(v) There are only finitely many different machines S and rS for S ∈ F .

The details of this definition are motivated by the following proposition.

Proposition 2.1. Fix n ∈ N and Γ = (ΓR, ΓA) a pair of growth spaces of rank n
s.t. 1 ∈ ΓA. Consider X, Y encoded sets, F a uniform family of polynomial-time
Γ-schemes of signature X → Y and a collection {SK ∈ F}K∈Nn. Then, there is ∆S :
X

Γ−→ Y s.t. for any K ∈ Nn, x ∈ X and y ∈ Y , Pr[∆K
S (x) = y] = Pr[SKK (x) = y].
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Proof. Choose p, q ∈ N[K0,K1 . . .Kn−1] (time bounds to emulate an arbi-
trary randomness function and algorithm from the uniform family) and
{aK , bK ∈ {0, 1}∗}K∈Nn (encodings of the randomness functions and algorithms,
which by the definition of a uniform family, can be a finite set) s.t. there is only
a finite number of different words aK and bK , and for any K,L ∈ Nn, x ∈ X and
y, z ∈ {0, 1}∗

evq(L)(bK ; cNn(L), z) = rSK (L, z)
evp(L)(aK ; cNn(L), x, y, z) = SLK(x, y, z)

Now, use the nonzero advice string to encode which algorithm is to be used
on which input. Construct ∆S s.t. for any K ∈ Nn, x ∈ X, y, w ∈ {0, 1}∗,
u ∈ {0, 1}≤maxK∈Nn |aK | and v ∈ {0, 1}≤maxK∈Nn |bK |

a∆S (K) = 〈aK , bK , aSK (K)〉
r∆S (K, 〈u, v, w〉) = evq(K)(v; cNn(K), w)

∆K
S (x, y, 〈u, v, w〉) = evp(K)(u; cNn(K), x, y, w)

2.1.3 Fall spaces

Fix n ∈ N and Γ a pair of growth spaces of rank n. Given a distributional esti-
mation problem (D, f) and Q : {0, 1}∗ Γ−→ Q, we can consider the estimation error
E(x,y)∼DK×UKQ

[(QK(x, y) − f(x))2]. It makes little sense to require this error to be
minimal for every K ∈ Nn, since we can always hard-code a finite number of answers
into Q without violating the resource restrictions. Instead we require minimization
up to an asymptotically small error. Since it makes sense to consider different kind
of asymptotic requirements, we introduce an abstraction that corresponds to this
choice.

Definition 2.8. Given n ∈ N, a fall space of rank n is a set F of bounded functions
ε : Nn → R≥0 s.t.

(i) If ε1, ε2 ∈ F then ε1 + ε2 ∈ F .

(ii) If ε1 ∈ F , ε2 : Nn → R≥0 and ∀K ∈ Nn : ε2(K) ≤ ε1(K) then ε2 ∈ F .
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(iii) There is h ∈ N[K0,K1 . . .Kn−1] s.t. 2−h ∈ F .

Example 2.6. We define Fneg, a fall space of rank 1. For any ε : N→ R≥0 bounded,
ε ∈ Fneg iff for any d ∈ N, limk→∞ kdε(k) = 0.

Example 2.7. For any n ∈ N and ζ : Nn → R≥0, we define Fζ to be the set
of ε : Nn → R≥0 bounded s.t. there is M ∈ R for which ε ≤Mζ. If there is
h ∈ N[K0,K1 . . .Kn−1] s.t. ζ ≥ 2−h then Fζ is a fall space of rank n.

Example 2.8. For any n ∈ N>0 and ϕ : Nn−1 → N t {∞}, we define F (ϕ)
uni , a fall

space of rank n. For any ε : Nn → R≥0 bounded, ε ∈ F (ϕ)
uni iff there are M ∈ R>0

and p ∈ N[J0, J1 . . . Jn−2] s.t.

∀J ∈ Nn−1 :
ϕ(J)−1∑

k=2

ε(J, k)
k log k ≤M log log p(J) (2.4)

To verify condition iii note that 2−Kn−1 ∈ F (t)
uni.

For ϕ ≡ ∞ we use the notation F (n)
uni := F (ϕ)

uni .
For example, if ε1(J, k) := log log p(J)

log(k+2) and ε2(J, k) := log log p(J)
log log(k+2) , then ε1(J, k) ∈

F (n)
uni , but ε2(J, k) 6∈ F (n)

uni because it falls too slowly to force the sum to converge.

Example 2.9. For any n ∈ N>0, we define F (n)
mon, a fall space of rank n. For

any ε : Nn → R≥0 bounded, ε ∈ F (n)
mon iff the function ε̄ : Nn → R≥0 defined by

ε̄(J, k) := supl≥k ε(J, l) satisfies ε̄ ∈ F (n)
uni .

The main motivation for examples 2.8 and 2.9 are the existence theorems proven
in Section 5.

We note a few simple properties of fall spaces which will be useful in the following.

Proposition 2.2. For any fall space F , 0 ∈ F .

Proof. Follows from conditions ii and iii, since 0 ≤ 2−h.

Proposition 2.3. For any fall space F , ε ∈ F and c ∈ R≥0, cε ∈ F .

Proof. By induction, condition i implies that for any m ∈ N, mε ∈ F . It follows
that cε ∈ F since cε ≤ dceε.

Proposition 2.4. For any fall space F and ε1, ε2 ∈ F , max(ε1, ε2) ∈ F

581



Kosoy and Appel

Proof.
max(ε1, ε2) ≤ ε1 + ε2

Proposition 2.5. For any fall space F , ε ∈ F and α ∈ R, if α ≥ 1 then εα ∈ F .

Proof.

εα = (sup ε)α
(

ε

sup ε

)α
≤ (sup ε)α ε

sup ε ∈ F

Definition 2.9. For any fall space F and α ∈ R>0, we define Fα := {εα | ε ∈ F}.
Proposition 2.6. Consider F a fall space and α ∈ R>0. Then, Fα is a fall space.

Proof. To check condition i, consider ε1, ε2 ∈ F .
If α > 1, (εα1 + εα2 ) 1

α ≤ ε1 + ε2 ∈ F hence (εα1 + εα2 ) 1
α ∈ F and εα1 + εα2 ∈ Fα.

If α ≤ 1, (εα1 + εα2 ) 1
α = 2 1

α ( ε
α
1 +εα2

2 ) 1
α ≤ 2 1

α
ε1+ε2

2 ∈ F hence (εα1 + εα2 ) 1
α ∈ F and

εα1 + εα2 ∈ Fα.
Conditions ii and iii are obvious.

Proposition 2.7. Consider F a fall space and α1, α2 ∈ R>0 with α1 ≤ α2. Then,
Fα2 ⊆ Fα1.

Proof. Follows from Proposition 2.5.

Definition 2.10. For any n ∈ N, fall space F of rank n and γ : Nn → R s.t.
inf γ > 0, we define γF := {γε bounded | ε ∈ F}.
Proposition 2.8. For any n ∈ N, fall space F of rank n and γ : Nn → R s.t.
inf γ > 0, γF is a fall space.

Proof. Conditions i and ii are obvious. To verify condition iii note that for any
ε ∈ F we have ε

γ ≤ ε
inf γ ∈ F and therefore ε = γ εγ ∈ γF . In particular if h ∈

N[K0,K1 . . .Kn−1] is s.t. 2−h ∈ F then 2−h ∈ γF .

We will use several shorthand notations for relations between functions that hold
“up to a function in F .” Given f, g : Nn → R, the notation f(K) ≤ g(K) (mod F)
means

∃ε ∈ F∀K ∈ Nn : f(K) ≤ g(K) + ε(K)
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Similarly, f(K) ≥ g(K) (mod F) means

∃ε ∈ F∀K ∈ Nn : f(K) ≥ g(K)− ε(K)
f(K) ≡ g(K) (mod F) means |f − g| ∈ F .
For families {fα, gα : Nn → R}α∈I (where I is some set),

fα(K)
α
≤ gα(K) (mod F) means that

∃ε ∈ F∀α ∈ I,K ∈ Nn : fα(K) ≤ gα(K) + ε(K)

fα(K)
α
≥ gα(K) (mod F) and fα(K) α≡ gα(K) (mod F) are defined analogously.

2.1.4 Optimal polynomial-time estimators

We are now ready to give our central definition, which corresponds to a notion of
“expected value” for distributional estimation problems.

Definition 2.11. Fix n ∈ N, Γ a pair of growth spaces of rank n and F a fall space
of rank n. Consider (D, f) a distributional estimation problem and P : {0, 1}∗ Γ−→ Q
with bounded range. P is called an F(Γ)-optimal polynomial-time estimator for
(D, f) when for any Q : {0, 1}∗ Γ−→ Q

EDK×UKP
[(PK − f)2] ≤ EDK×UKQ

[(QK − f)2] (mod F) (2.5)

For the sake of brevity, we will say “F(Γ)-optimal estimator” rather than “F(Γ)-
optimal polynomial-time estimator.”

Distributional decision problems are the special case when the range of f is
{0, 1}. In this special case, the outputs of an optimal polynomial-time estimator
can be thought of as probabilities10.

2.2 Basic properties
From now on we fix n ∈ N>0, Γ := (ΓR,ΓA) a pair of growth spaces of rank n and
F a fall space of rank n. All word ensembles and distributional estimation problems
will be of rank n unless specified otherwise.

In this subsection we discuss some basic properties of optimal polynomial-time
estimators which will be used in the following.

10With some caveats. First, P can take values outside [0, 1] but it’s easy to see that clipping all
values to [0, 1] preserves optimality. Second, PK(x, y) = 1 doesn’t imply f(x) = 1 and PK(x, y) = 0
doesn’t imply f(x) = 0. We can try to fix this using a logarithmic error function instead of the
squared norm, however this creates other difficulties and is outside the scope of the present work.
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2.2.1 Optimality relative to uniform families

Note that ε in 2.5 depends on Q. However in some sense the optimality condition is
automatically uniform w.r.t. the resources required by Q. The following Proposition
2.9 can be used to reduce domination of a uniform family to domination of a single
polynomial-time Γ-scheme constructed via Proposition 2.1.

Proposition 2.9. Consider (D, f) a distributional estimation problem, P an F(Γ)-
optimal estimator for (D, f) and F a uniform family of polynomial-time Γ-schemes
of signature {0, 1}∗ → Q. Then there is ε ∈ F s.t. for any Q ∈ F

EDK×UKP
[(PK − f)2] ≤ EDK×UKQ

[(QK − f)2] + ε(K) (2.6)

Proof. For any K ∈ Nn, {EDK×UKQ
[(QK −f)2] | Q ∈ F} is a finite set because F is a

uniform family so the runtime of QK is bounded by a polynomial in K that doesn’t
depend on Q. Therefore we can choose

QK ∈ arg min
Q∈F

EDK×UKQ
[(QK − f)2]

By Proposition 2.1, there is Q̄ : {0, 1}∗ Γ−→ Q s.t. Q̄K(x) is distributed the same
as QKK(x).

Since P is an F(Γ)-optimal estimator, there is ε ∈ F s.t.

EDK×UKP
[(PK − f)2] ≤ EDK×UK

Q̄
[(Q̄K − f)2] + ε(K) (2.7)

For any Q ∈ F , we have

EDK×UK
Q̄

[(Q̄K − f)2] = EDK×UKQK
[(QKK − f)2]

EDK×UK
Q̄

[(Q̄K − f)2] ≤ EDK×UKQ
[(QK − f)2] (2.8)

Combining 2.7 and 2.8 we get the desired result.

2.2.2 Random versus advice

As usual, random is no more powerful than advice (see e.g. Theorem 6.3 in [12]).
This is demonstrated by the following two propositions.

Proposition 2.10. Observe that Γ̄R := ΓR + ΓA is a growth space and denote
Γ̄ := (Γ̄R,ΓA). Consider (D, f) a distributional estimation problem and P an F(Γ)-
optimal estimator for (D, f). Then, P is also an F(Γ̄)-optimal estimator for (D, f).
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Proof. The proof will proceed by taking a Q with access to extra randomness, and
then considering another algorithm Q with access to the old amount of randomness,
which uses the advice to encode an optimal prefix to the random string. Then we
just need to show that Q dominates Q and is dominated by P . This proof strategy
also applies to the next proposition.

Consider any Q : {0, 1}∗ Γ̄−→ Q. Suppose rQ = rR + rA where rR ∈ ΓR and
rA ∈ ΓA. For any K ∈ Nn, choose

āQ(K) ∈ arg min
y∈{0,1}rA(K)

E(x,z)∼DK×UrR(K) [(QK(x, yz)− f(x))2]

As is easy to see, there is Q̄ : {0, 1}∗ Γ−→ Q s.t. for all K ∈ Nn, x ∈ suppDK and
z ∈ {0, 1}rR(K)

aQ̄(K) = 〈aQ(K), āQ(K)〉
rQ̄(K) = rR(K)

Q̄K(x, z) = QK(x, āQ(K)z)

It follows that there is ε ∈ F s.t.

EDK×UKP
[(PK − f)2] ≤ EDK×UrR(K) [(Q̄K − f)2] + ε(K)

Obviously EDK×UrR(K) [(Q̄K − f)2] ≤ EDK×UKQ
[(QK − f)2] therefore

EDK×UKP
[(PK − f)2] ≤ EDK×UKQ

[(QK − f)2] + ε(K)

Proposition 2.11. Denote Γ̄R := ΓR + ΓA and Γ̄ := (Γ̄R,ΓA). Consider (D, f)
a distributional estimation problem and P̄ an F(Γ̄)-optimal estimator for (D, f).
Then, there exists an F(Γ)-optimal estimator for (D, f).

Proof. Suppose rP̄ = rR + rA where rR ∈ ΓR and rA ∈ ΓA. For any K ∈ Nn, choose

āP (K) ∈ arg min
y∈{0,1}rA(K)

E(x,z)∼DK×UrR(K) [(P̄K(x, yz)− f(x))2]

We can construct P : {0, 1}∗ Γ−→ Q so that for all K ∈ Nn, x ∈ suppDK and
z ∈ {0, 1}rR(K)
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aP (K) := 〈aP̄ (K), āP (K)〉
rP (K) = rR(K)

PK(x, z) = P̄K(x, āP (K)z)

Clearly EDK×UrR(K) [(PK − f)2] ≤ EDK×UK
P̄

[(P̄K − f)2] and therefore P is an
F(Γ)-optimal estimator for (D, f).

2.2.3 Optimality of weighted error

Although the word ensemble plays a central role in the definition of an optimal
polynomial-time estimator, the dependence on the word ensemble is lax in some
sense. To see this, consider the following proposition.

Definition 2.12. Given a growth space Γ∗ of rank n, F is called Γ∗-ample when
there is ζ : Nn → (0, 1

2 ] s.t. ζ ∈ F and blog 1
ζ c ∈ Γ∗.

The intuitive interpretation of this is that, when Γ∗ represents the amount of ad-
vice, the advice bits are sufficient to write down an approximation to some parameter
with error at most ζ.

Example 2.10. Any fall space of rank n is Γnpoly-ample, due to condition iii of
Definition 2.8.

Example 2.11. F (n)
uni is Γnlog-ample since we can take ζ(K) := (Kn−1 + 2)−1.

Proposition 2.12. Assume F is ΓA-ample. Consider (D, f) a distributional es-
timation problem, P an F(Γ)-optimal estimator for (D, f), Q : {0, 1}∗ Γ−→ Q
and W : {0, 1}∗ Γ−→ Q≥0 bounded s.t. rW ≥ max(rP , rQ). Denote DKW := DK ×UK

W .
Then

EDKW [WK(x, y)(PK(x, y<rP (K))− f(x))2]

≤ EDKW [WK(x, y)(QK(x, y<rQ(K))− f(x))2] (mod F)

This essentially says that if there is enough advice available, then an optimal
estimator continues to be optimal when a poly-time adversary assigns weights to
how important the various problem instances are. The proof will come after the
following corollary.

The relationship to the role of the word ensemble is as follows.
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Corollary 2.1. Assume F is ΓA-ample. Consider (D, f) a distributional estimation
problem and P an F(Γ)-optimal estimator for (D, f). Consider W : {0, 1}∗ Γ−→ Q≥0

bounded s.t. for any K ∈ Nn there is x ∈ suppDK and y ∈ {0, 1}rW (K)

s.t. WK(x, y) > 0. Define γ : Nn → R by γ(K) := EDK×UKW
[WK ]−1 and denote

FW := γF . Define the word ensemble E by

EK(x) :=
Ey∼UKW

[WK(x, y)]DK(x)
E(x′,y)∼DK×UKW

[WK(x′, y)]

Then, P is an FW (Γ)-optimal estimator for (E , f).

That is, if the distribution on problem instances is reweighted by a poly-time
adversary, an optimal estimator will continue being optimal, although with an in-
creased error if the expected weight assigned by the adversary keeps falling as K
grows. Therefore, the property of being an optimal estimator is robust against some
types of “distributional shift”, when sufficient advice is available.

Proof of Corollary 2.1. Consider any Q : {0, 1}∗ Γ−→ Q. Proposition 2.12 implies
there is ε ∈ F s.t.

EDK×UKP ×UKW
[WK(PK − f)2] ≤ EDK×UKQ ×UKW

[WK(QK − f)2] + ε(K)

EDK×UKP
[EUKW

[WK ](PK − f)2] ≤ EDK×UKQ
[EUKW

[WK ](QK − f)2] + ε(K)

Dividing both sides of the inequality by EDK×UKW
[WK(x)] we get

EEK×UKP
[(PK − f)2] ≤ EEK×UKQ

[(QK − f)2] + ε(K)
EDK×UKW

[WK(x)]

Let M be the supremum of the left hand side.

EEK×UKP
[(PK − f)2] ≤ EEK×UKQ

[(QK − f)2] + min


 ε(K)

EDK×UKW
[WK(x)] ,M




The second term on the right hand side is clearly in FW .

We now give the proof of Proposition 2.12.
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Proof of Proposition 2.12. The proof will construct a uniform family of algorithms
that use their advice to encode an approximation of some number t, and use P if
W assigns a weight less than the approximation, and Q otherwise. P dominates all
the algorithms in this family, and after some reshuffling, and integrating over t, W
can be recovered, and this leads to the desired result.

Consider ζ : Nn → (0, 1
2 ] s.t. ζ ∈ F and blog 1

ζ c ∈ ΓA. For any K ∈ Nn and
t ∈ R, let ρKζ (t) ∈ arg min

s∈Q∩[t−ζ(K),t+ζ(K)]
|cQ(s)|. Denote M := supW . It is easy to see

that there is γ ∈ ΓA s.t. for any t ∈ [0,M ], |cQ(ρKζ (t))| ≤ γ(K).
For any t ∈ R there is Qt : {0, 1}∗ Γ−→ Q s.t. rQ = rW and for any x ∈ suppDK

and y ∈ {0, 1}rW (K)

QKt (x, y) =




QK(x, y<rQ(K)) if WK(x, y) ≥ ρKζ (t)
PK(x, y<rP (K)) if WK(x, y) < ρKζ (t)

Moreover we can construct the Qt for all t ∈ [0,M ] s.t. they form a uniform
family. By Proposition 2.9 there is ε ∈ F s.t. for all t ∈ [0,M ]

EDK×UKP
[(PK − f)2] ≤ EDK×UKW

[(QKt − f)2] + ε(K)

E(x,y)∼DK×UKW
[(PK(x, y<rP (K))− f(x))2 − (QKt (x, y)− f(x))2] ≤ ε(K)

The expression inside the expected values vanishes when WK(x, y) < ρKζ (t). In
other cases,

QKt (x, y) = QK(x, y<rQ(K))

We get

E(x,y)∼DK×UKW
[θ(WK(x, y)− ρKζ (t))·
((PK(x, y<rP (K))− f(x))2 − (QK(x, y<rQ(K))− f(x))2)] ≤ ε(K)

We integrate both sides of the inequality over t from 0 to M .

E
[∫ M

0
θ(WK − ρKζ (t)) dt · ((PK − f)2 − (QK − f)2)

]
≤Mε(K) (2.9)

For any s ∈ R
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∫ M

0
θ(s− ρKζ (t)) dt =

∫ s−ζ(K)

0
θ(s− ρKζ (t)) dt+
∫ s+ζ(K)

s−ζ(K)
θ(s− ρKζ (t)) dt+

∫ M

s+ζ(K)
θ(s− ρKζ (t)) dt

|ρKζ (t) − t| ≤ ζ(K) therefore the integrand in the first term is 1 and in the last
term 0:

∫ M

0
θ(s− ρKζ (t)) dt =

∫ s−ζ(K)

0
dt+

∫ s+ζ(K)

s−ζ(K)
θ(s− ρKζ (t)) dt

∫ M

0
θ(s− ρKζ (t)) dt = s− ζ(K) +

∫ s+ζ(K)

s−ζ(K)
θ(s− ρKζ (t)) dt

∫ M

0
θ(s− ρKζ (t)) dt− s = −ζ(K) +

∫ s+ζ(K)

s−ζ(K)
θ(s− ρKζ (t)) dt

∫ M

0
θ(s− ρKζ (t)) dt− s ∈ [−ζ(K), ζ(K)] (2.10)

Combining 2.9 and 2.10 we conclude that for some M ′ ∈ R

E[WK · ((PK − f)2 − (QK − f)2)] ≤Mε(K) +M ′ζ(K)

2.2.4 Amplification from zero to O(1) advice

The following will be handy to prove negative existence results (see section 5).

Proposition 2.13. Assume ΓA = Γn0 . Consider (D, f) a distributional estimation
problem and P an F(Γ)-optimal estimator for (D, f). Denote Γ1 := (ΓR,Γn1 ). Then,
P is also an F(Γ1)-optimal estimator for (D, f).

Proof. This proof proceeds by using the standard "domination of a uniform family"
result to dominate all the algorithms with a bounded-size advice string that never
changes. An algorithm with constant advice can be interpreted as switching around
within this family, and thus is dominated. Consider any Q : {0, 1}∗ Γ1−→ Q. Choose
l ∈ N s.t. ∀K ∈ Nn : |aQ(K)| ≤ l. For each a ∈ {0, 1}≤l, construct Qa : {0, 1}∗ Γ−→ Q
s.t. for any K ∈ Nn, x, y ∈ {0, 1}∗
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rQa(K) = rQ(K, a)
QKa (x, y) = QK(x, y, a)

For some εa ∈ F we have

EDK×UKP
[(PK − f)2] ≤ EDK×UKQa

[(QKa − f)2] + εa(K)

Since the above holds for every a ∈ {0, 1}≤l, we get

EDK×UKP
[(PK − f)2] ≤ EDK×UKQ

[(QK − f)2] + εaQ(K)(K)

EDK×UKP
[(PK − f)2] ≤ EDK×UKQ

[(QK − f)2] +
∑

a∈{0,1}≤l
εa(K)

2.3 Orthogonality theorems
There is a variant of Definition 2.11 which is nearly equivalent in many cases and
often useful.

We can think of functions f : suppD → R as vectors in a real inner product
space with inner product 〈f, g〉 := ED[fg]. Informally, we can think of polynomial-
time Γ-schemes as a subspace (although a polynomial-time Γ-scheme is not even a
function) and an F(Γ)-optimal estimator for (D, f) as the nearest point to f in this
subspace. Now, given an inner product space V , a vector f ∈ V , an actual subspace
W ⊆ V and p = arg min

q∈W
‖q − f‖2, we have ∀v ∈ W : 〈p− f, v〉 = 0. This motivates

the following:

Definition 2.13. Consider (D, f) a distributional estimation problem and
P : {0, 1}∗ Γ−→ Q with bounded range. P is called an F ](Γ)-optimal polynomial-time
estimator for (D, f) when for any S : {0, 1}∗ ×Q Γ−→ Q with bounded range11

E(x,y,z)∼DK×UKP ×UKS
[(PK(x, y)− f(x))SK(x, PK(x, y), z)] ≡ 0 (mod F) (2.11)

11The Q-valued argument of S is only important for non-trivial ΓR, otherwise we can absorb it
into the definition of S using P as a subroutine.
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For the sake of brevity, we will say “F ](Γ)-optimal estimator” rather than
“F ](Γ)-optimal polynomial-time estimator.” This definition is interesting because it
can be interpreted as a game against an adversary that is allowed to look at what
the estimator outputs, which then predicts whether the estimator will overestimate
or underestimate the true value. F ](Γ)-optimal polynomial-time estimators are in-
exploitable against this class of adversaries. As we will show shortly, inexploitability
is a slightly stronger condition than optimality, in the sense than any F ](Γ)-optimal
polynomial-time estimator is F-optimal, but going in the other direction requires
at most logarithmic advice and is associated with an increase in the error. The
inexploitability property will be used in many additional proofs.

The following theorem is the analogue in our language of the previous fact about
inner product spaces. The notation F 1

2 refers to Definition 2.9, i.e. it is just the set
of square roots of all the functions in F .
Theorem 2.1. Assume there is ζ : Nn → (0, 1

4 ] s.t. ζ ∈ F 1
2 and blog log 1

ζ c ∈ ΓA
12.

Consider (D, f) a distributional estimation problem and P an F(Γ)-optimal estima-
tor for (D, f). Then, P is also an F 1

2 ](Γ)-optimal estimator for (D, f).

Proof. Assume without loss of generality that there is h ∈ N[K0,K1 . . .Kn−1] s.t.
ζ ≥ 2−h (otherwise we can take any h ∈ N[K0,K1 . . .Kn−1] s.t. 2−h ∈ F and con-
sider ζ ′ := ζ+2−h). Fix S : {0, 1}∗×Q Γ−→ Q bounded. Consider any σ : Nn → {±1}
and m : Nn → N s.t. m ≤ log 1

ζ (in particular m ≤ h). Define t(K) := σ(K)2−m(K).
It is easy to see there is Qt : {0, 1}∗ Γ−→ Q s.t. rQt = rP + rS and given K ∈ Nn,
x ∈ suppDK , y ∈ {0, 1}rP (K) and z ∈ {0, 1}rS(K)

QKt (x, yz) = PK(x, y)− t(K)SK(x, PK(x, y), z)

Moreover, we can construct Qt for all admissible choices of t (but fixed S) to get
a uniform family.

Applying Proposition 2.9, we conclude that there is ε ∈ F which doesn’t depend
on t s.t.

EDK×UKP
[(PK − f)2] ≤ EDK×UKP ×UKS

[(QKt − f)2] + ε(K)

EDK×UKP
[(PK − f)2] ≤ EDK×UKP ×UKS

[(PK − t(K)SK − f)2] + ε(K)

12If Γnlog ⊆ ΓA then this condition holds for any F since we can take ζ = 2−h for h ∈
N[K0,K1 . . .Kn−1].

591



Kosoy and Appel

EDK×UKP ×UKS
[(PK − f)2 − (PK − t(K)SK − f)2] ≤ ε(K)

EDK×UKP ×UKS
[(−t(K)(SK)2 + 2(PK − f))SK ]t(K) ≤ ε(K)

−EDK×UKP ×UKS
[(SK)2]t(K)2 + 2 EDK×UKP ×UKS

[(PK − f)SK ]t(K) ≤ ε(K)

2 EDK×UKP ×UKS
[(PK − f)SK ]t(K) ≤ EDK×UKP ×UKS

[(SK)2]t(K)2 + ε(K)

2 EDK×UKP ×UKS
[(PK − f)SK ]t(K) ≤ (sup|SK |)2t(K)2 + ε(K)

2 EDK×UKP ×UKS
[(PK − f)SK ]σ(K)2−m(K) ≤ (sup|SK |)24−m(K) + ε(K)

Multiplying both sides by 2m(K)−1 we get

EDK×UKP ×UKS
[(PK − f)SK ]σ(K) ≤ 1

2
(
(sup|SK |)22−m(K) + ε(K)2m(K)

)

Let σ(K) := sgn EDK×UKS
[(PK − f)SK ].

|EDK×UKP ×UKS
[(PK − f)SK ]| ≤ 1

2((sup|SK |)22−m(K) + ε(K)2m(K))

Let m(K) := min
(
b1

2 log max( 1
ε(K) , 1)c, blog 1

ζ(K)c
)
.

|E[(PK − f)SK ]| ≤ (sup|SK |)2 max
(

min
(
ε(K)

1
2 , 1
)
, ζ(K)

)

+ 1
2ε(K) min

(
max

(
ε(K)−

1
2 , 1
)
, ζ(K)−1

)

|E[(PK − f)SK ]| ≤ (sup|SK |)2 max
(
ε(K)

1
2 , ζ(K)

)
+ 1

2 max
(
ε(K)

1
2 , ε(K)

)

The right hand side is obviously in F 1
2 .
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Note that it would still be possible to prove Theorem 2.1 if in Definition 2.13 we
allowed S to depend on y directly instead of only through P . However, the definition
as given appears more natural since it seems necessary to prove Theorem 3.4 in full
generality.

Conversely to Theorem 2.1, we have the following:

Theorem 2.2. Consider (D, f) a distributional estimation problem and P an F ](Γ)-
optimal estimator for (D, f). Then, P is also an F(Γ)-optimal estimator for (D, f).

Proof. Consider any Q : {0, 1}∗ Γ−→ Q. We have

EDK×UKQ
[(QK − f)2] = EDK×UKQ ×UKP

[(QK − PK + PK − f)2]

E[(QK − f)2] = E[(QK − PK)2] + 2 E[(QK − PK)(PK − f)] + E[(PK − f)2]

E[(PK − f)2] + E[(QK − PK)2] = E[(QK − f)2] + 2 E[(PK −QK)(PK − f)]

E[(PK − f)2] ≤ E[(QK − f)2] + 2 E[(PK −QK)(PK − f)]

We can assume Q is bounded without loss of generality since given any Q it easy
to construct bounded Q̃ s.t. E[(Q̃K − f)2] ≤ E[(QK − f)2]. Applying 2.11, we get
2.5.

2.4 Simple example
The concept of an optimal polynomial-time estimator is in some sense complemen-
tary to the concept of pseudorandomness: a pseudorandom process deterministi-
cally produces output that appears random to bounded algorithms whereas optimal
polynomial-time estimators compute the moments of the perceived random distribu-
tions of the outputs of deterministic processes. To demonstrate this complementarity
and give an elementary example of an optimal polynomial-time estimator, we use
the concept of a hard-core predicate (which may be regarded as an elementary exam-
ple of pseudorandomness). The notation Fneg below refers to the fall space defined
in Example 2.6 (functions that fall faster than any polynomial). 1

2 is an optimal
polynomial-time estimator for a hard-core predicate.
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Theorem 2.3. Consider D a word ensemble of rank 1 s.t. for any different k, l ∈ N,
suppDk ∩ suppDl = ∅, f : suppD → {0, 1}∗ one-to-one and B a hard-core predi-
cate of (D, f) (see Definition A.1). Define m : suppD → N by

∀x ∈ suppDk : m(x) := k

For every k ∈ N, define Dkf := fk∗Dk. Finally, define χB : suppDf → {0, 1} by

χB(f(x)) := Bm(x)(x)

Let Γ := (Γ1
poly,Γ1

0). Let P : {0, 1}∗ Γ−→ Q satisfy P ≡ 1
2 . Then, P is an

Fneg(Γ)-optimal estimator for (Df , χB).

Proof. Assume to the contrary that P is not optimal. Then there is Q : {0, 1}∗ Γ−→ Q,
d ∈ N, an infinite set I ⊆ N and ε ∈ R>0 s.t.

∀k ∈ I : EDk
f
[(1

2 − χB)2] ≥ EDk
f
×UkQ

[(Qk − χB)2] + ε

kd

∀k ∈ I : EDk
f
×UkQ

[(Qk − χB)2] ≤ 1
4 −

ε

kd

∀k ∈ I : EDk
f
[(EUkQ

[Qk]− χB)2] ≤ 1
4 −

ε

kd

There is G : {0, 1}∗ Γ−→ {0, 1} s.t. for all x ∈ {0, 1}∗,

|E[Qk(x)]− Pr[Gk(x) = 1]| ≤ 2−k

Gk works by evaluating α← Qk and then returning 1 with probability α± 2−k
and 0 with probability 1 − α ± 2−k, where the 2−k error comes from rounding a
rational number to a binary fraction. Denoting

δ(x) := E[Qk(x)]− Pr[Gk(x) = 1]

we get

∀k ∈ I : EDk
f
[(PrUkG

[Gk = 1] + δ − χB)2] ≤ 1
4 −

ε

kd

∀k ∈ I : EDk
f
[(PrUkG

[Gk = 1]−χf )2]+2 EDk
f
[(PrUkG

[Gk = 1]−χB)δ]+EDk
f
[δ2] ≤ 1

4−
ε

kd
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∀k ∈ I : EDk
f
[(PrUkG

[Gk = 1]− χB)2]− 2 · 2−k − 4−k ≤ 1
4 −

ε

kd

Since 2−k falls faster than k−d, there is I1 ⊆ N infinite and ε1 ∈ R>0 s.t.

∀k ∈ I1 : EDk
f
[(PrUkG

[Gk = 1]− χB)2] ≤ 1
4 −

ε1
kd

∀k ∈ I1 : EDk
f
[|PrUkG

[Gk = 1]− χB|] ≤
√

1
4 −

ε1
kd

∀k ∈ I1 : EDk
f
[PrUkG

[Gk 6= χB]] ≤
√

1
4 −

ε1
kd

∀k ∈ I1 : Ex∼Dk [PrUkG
[Gk(f(x)) 6= Bk(x)]] ≤

√
1
4 −

ε1
kd

∀k ∈ I1 : PrDk×UkG
[Gk(f(x)) 6= Bk(x)] ≤

√
1
4 −

ε1
kd

Since
√
t is a concave function and the derivative of

√
t is 1

2
√
t
, we have

√
t ≤

√
t0 + t−t0

2
√
t0
. Taking t0 = 1

4 we get

∀k ∈ I1 : PrDk×UkG
[Gk(f(x)) 6= Bk(x)] ≤ 1

2 −
ε1
kd

∀k ∈ I1 : PrDk×UkG
[Gk(f(x)) = Bk(x)] ≥ 1

2 + ε1
kd

This contradicts the definition of a hard-core predicate.

Corollary 2.2. Consider f : {0, 1}∗ alg−−→ {0, 1}∗ a one-to-one one-way function.
For every k ∈ N, define f (k) : {0, 1}k × {0, 1}k → {0, 1}∗ by f (k)(x, y) := 〈f(x), y〉.
Define the distributional estimation problem (D(f), χf ) by

Dk(f) := f
(k)
∗ (Uk×Uk)

χf (〈f(x), y〉) := x · y

Let Γ := (Γ1
poly,Γ1

0). Let P : {0, 1}∗ Γ−→ Q satisfy P ≡ 1
2 . Then, P is an

Fneg(Γ)-optimal estimator for (D(f), χf ).

Proof. Follows immediately from Theorem 2.3 and Theorem A.1.
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The following is the non-uniform version of Theorem 2.3 which we state without
proof since the proof is a straightforward adaptation of the above.

Theorem 2.4. Consider D a word ensemble s.t. for any different k, l ∈ N, suppDk∩
suppDl = ∅, f : suppD → {0, 1}∗ one-to-one and B a non-uniformly hard-core
predicate of (D, f) (see Definition A.2).

Let Γ := (Γ1
poly,Γ1

poly). Let P : {0, 1}∗ Γ−→ Q satisfy P ≡ 1
2 . Then, P is an

Fneg(Γ)-optimal estimator for (Df , χB).

Corollary 2.3. Consider f : {0, 1}∗ alg−−→ {0, 1}∗ a one-to-one non-uniformly hard
to invert one-way function.

Let Γ := (Γ1
poly,Γ1

poly). Let P : {0, 1}∗ Γ−→ Q satisfy P ≡ 1
2 . Then, P is an

Fneg(Γ)-optimal estimator for (Df , χf ).

Proof. Follows immediately from Theorem 2.4 and Theorem A.2.

3 Optimal estimators and probability theory
3.1 Calibration
From a Bayesian perspective, a good probability assignment should be well cali-
brated (see e.g. [7]). For example, suppose there are 100 people in a room and you
assign each person a probability they are married. If there are 60 people you assigned
probabilities in the range 70%-80%, the number of married people among these 60
should be close to the interval 60 × [0.7, 0.8] = [42, 48]. The same requirement can
be made for expected value assignments. For example, if you now need to assign an
expected value to the age of each person and you assigned an expected age in the
range 30-40 to some sufficiently large group of people, the mean age in the group
should be close to the interval [30, 40].

We will now show that optimal polynomial-time estimators satisfy an analogous
property.

Theorem 3.1. Assume F is ΓA-ample. Consider (D, f) a distributional estimation
problem, P an F(Γ)-optimal estimator for (D, f) and W : {0, 1}∗ Γ−→ Q≥0 bounded
s.t. rW ≥ rP and for every K ∈ Nn there is x ∈ suppDK and y ∈ UK

W with
WK(x, y) > 0. Denote

α(K) := E(x,y)∼DK×UKW
[WK(x, y)]

δ(K) := E(x,y)∼DK×UKW
[WK(x, y)(PK(x, y<rP (K))− f(x))]
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Then, α−1δ2 ∈ F .

Looking at the definition of an F ](Γ)-optimal estimator, we see that, when Q is
{0, 1}-valued to pick out a small subset of inputs, P may be biased on that small
subset, because the bias isn’t normalized by dividing by the fraction of probability
mass where Q outputs 1. In the language of the above theorem, δ lies in F , but δ

α
may not.

Proposition 2.12 says that, given ample advice, optimal estimators continue to
be optimal (although with increased error) on small subsets of their input, which is
a slightly stronger condition. Therefore, the above theorem essentially says that if
enough advice is available for Proposition 2.12 to apply, the property of resistance
to reweighting implies that, for the subset that W picks out, the unnormalized bias
times the normalized bias is a small term that lies in F .

To see the relationship between Theorem 3.1 and calibration, consider the fol-
lowing corollary.

Corollary 3.1. Assume F is ΓA-ample. Consider (D, f) a distributional estimation
problem, P an F(Γ)-optimal estimator for (D, f) and A,B : 1 Γ−→ Q s.t. rA ≡ 0 and
rB ≡ 0. Denote

α(K) := Pr(x,y)∼DK×UKP
[AK ≤ PK(x, y) ≤ BK ]

Then, there is ε ∈ F s.t.

AK−
√
ε(K)
α(K) ≤ E(x,y)∼DK×UKP

[f(x) | AK ≤ PK(x, y) ≤ BK ] ≤ BK+
√
ε(K)
α(K) (3.1)

The appearance of α in the denominator in 3.1 is not surprising since we only
expect calibration to hold for large sample size.

We now proceed with the proofs.

Proof of Corollary 3.1. Construct W : {0, 1}∗ Γ−→ {0, 1} s.t.

rW (K) = rP (K)
WK(x, y) = θ(PK(x, y)−AK)θ(BK − PK(x, y))

Denote δ(K) := EDK×UKP
[WK(PK−f)] and ε := δ2

α . According to Theorem 3.1,
ε ∈ F . We get
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EDK×UKP
[WK(PK − f)]2

α(K) = ε(K)

EDK×UKP
[θ(PK(x, y)−AK)θ(BK − PK(x, y))(PK − f)]2 = ε(K)α(K)

(EDK×UKP
[θ(PK(x, y)−AK)θ(BK − PK(x, y))]·

E[PK − f | AK ≤ PK ≤ BK ])2 = ε(K)α(K)

(α(K) E[PK − f | AK ≤ PK ≤ BK ])2 = ε(K)α(K)

α(K) E[PK − f | AK ≤ PK ≤ BK ]2 = ε(K)

|E[PK − f | AK ≤ PK ≤ BK ]| =
√
ε(K)
α(K) (3.2)

On the other hand

E[f | AK ≤ PK ≤ BK ] = E[PK − PK + f | AK ≤ PK ≤ BK ]

E[f | AK ≤ PK ≤ BK ] = E[PK | AK ≤ PK ≤ BK ]− E[PK − f | AK ≤ PK ≤ BK ]

Applying 3.2

E[f | AK ≤ PK ≤ BK ] ≤ E[PK | AK ≤ PK ≤ BK ] +
√
ε(K)
α(K)

E[f | AK ≤ PK ≤ BK ] ≤ BK +
√
ε(K)
α(K)

In the same manner, we can show that

E[f | AK ≤ PK ≤ BK ] ≥ AK −
√
ε(K)
α(K)
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Proof of Theorem 3.1. Consider ζ : Nn → (0, 1
2 ] s.t. ζ ∈ F and blog 1

ζ c ∈ ΓA. Define

I := {K ∈ Nn | |δ(K)|
α(K) ≥ ζ(K)}

EK := Q ∩
[
|δ(K)|
2α(K) ,

|δ(K)|
α(K)

]

ε(K) ∈ (sgn δ(K)) · arg min
t∈EK

|cQ(t)|

It is easy to see that |cQ(ε)| = O(log α
|δ|), hence we can construct Q : {0, 1}∗ Γ−→ Q

s.t. for any K ∈ I and x, y ∈ {0, 1}∗

aQ(K) = cQ(ε(K))
rQ(K) = rP (K)

QK(x, y) = PK(x, y)− ε(K)

This algorithm uses the advice string to check whether the normalized bias is
too high, and if it is, it perturbs the estimated values accordingly.

Applying Proposition 2.12 to P , Q and W , we conclude there is ε ∈ F s.t.

EDK×UKW
[WK(PK − f)2] ≤ EDK×UKW

[WK(QK − f)2] + ε(K)

EDK×UKW
[WK(PK − f)2] ≤ EDK×UKW

[WK(PK − f − ε(K))2] + ε(K)

EDK×UKW
[WK((PK − f)2 − (PK − f − ε(K))2] ≤ ε(K)

ε(K) EDK×UKW
[WK(2(PK − f)− ε(K))] ≤ ε(K)

ε(K)(2 EDK×UKW
[WK(PK − f)]− EDK×UKW

[WK ]ε(K)) ≤ ε(K)

ε(K)(2δ(K)− α(K)ε(K)) ≤ ε(K)

Dividing both sides by α(K) we get
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ε(K)
(

2δ(K)
α(K) − ε(K)

)
≤ ε(K)
α(K)

δ(K)2

α(K)2 −
(
ε(K)− δ(K)

α(K)

)2

≤ ε(K)
α(K)

ε is between δ
2α and δ

α therefore (ε− δ
α)2 ≤ ( δ

2α − δ
α)2 which yields

δ(K)2

α(K)2 −
(
δ(K)

2α(K) −
δ(K)
α(K)

)2

≤ ε(K)
α(K)

3
4 ·

δ(K)2

α(K)2 ≤
ε(K)
α(K)

δ(K)2

α(K) ≤
4
3ε(K)

3.2 Algebraic properties
In this subsection and subsection 3.4, we show that several algebraic identities sat-
isfied by expected values have analogues for optimal polynomial-time estimators.

3.2.1 Linearity

Given F1, F2 random variables and t1, t2 ∈ R, we have

E[t1F1 + t2F2] = t1 E[F1] + t2 E[F2] (3.3)
Optimal polynomial-time estimators have an analogous property:

Proposition 3.1. Consider D a word ensemble, f1, f2 : suppD → R bounded and
t1, t2 ∈ Q. Denote f := t1f1 + t2f2. Suppose P1 is an F ](Γ)-optimal estimator for
(D, f1) and P2 is an F ](Γ)-optimal estimator for (D, f2). Construct P : {0, 1}∗ Γ−→ Q
s.t. for any x ∈ suppDK , y1 ∈ {0, 1}rP1 (K) and y2 ∈ {0, 1}rP1 (K)

aP (K) = 〈aP1(K), aP2(K)〉 (3.4)
rP (K) = rP1(K) + rP2(K) (3.5)

PK(x, y1y2) = t1P
K
1 (x, y1) + t2P

K
2 (x, y2) (3.6)
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Then, P is an F ](Γ)-optimal estimator for (D, f).

Proof. Consider any bounded S : {0, 1}∗ ×Q Γ−→ Q. We have

E[(PK − f)SK ] = E[(t1PK1 + t2P
K
2 − (t1f1 + t2f2))SK ]

E[(PK − f)SK ] = t1 E[(PK1 − f1)SK ] + t2 E[(PK2 − f2)SK ]

|E[(PK − f)SK ]| ≤ |t1| · |E[(PK1 − f1)SK ]|+ |t2| · |E[(PK2 − f2)SK ]|

Using 2.11 for P1 and P2 we see that the right hand side is in F .

3.2.2 Conditional expectation

Consider a random variable F and an event A. Denote χA the {0, 1}-valued random
variable corresponding to the indicator function of A. We have

E[F | A] = E[χAF ]
Pr[A] (3.7)

This identity is tautologous if interpreted as a definition of E[F | A]. However,
from the perspective of Bayesian probability it is more natural to think of E[F | A]
as an atomic entity (the subjective expectation of F after observing A).

The language of optimal polynomial-time estimators provides a natural way to
define an analogue of conditional expectation. Namely, consider a distributional es-
timation problem (D, f) and a decision problem L ⊆ {0, 1}∗. Then, P : {0, 1}∗ Γ−→ Q
represents the conditional expectation of f given L when it is an optimal polynomial-
time estimator for (D | L, f). That is, the conditional expectation is the best esti-
mate of f(x) when the problem instance x is sampled with the promise x ∈ L.

The above perspective allows us stating and proving non-tautological theorems
analogous to 3.7. We give two such theorems, corresponding to two different ways
to group the variables in 3.7. Let χL be the indicator function for L. The first
states that an optimal estimator for χLf can be made by multiplying together an
optimal estimator for χL and a less accurate optimal estimator for f |L, and the
second theorem states that a less accurate optimal estimator for f |L can be made
by dividing the output of an optimal estimator for χLf by the output of an optimal
estimator for L. The amplification of error appears because L might be a low-
probability event, and conditional probabilities for low-probability events are less
accurate than conditional probabilities for high-probability events.
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Theorem 3.2. Consider (D, f) a distributional estimation problem and L ⊆ {0, 1}∗
s.t. for all K ∈ Nn, DK(L) > 0. Define γL : Nn → R by γL(K) := DK(L)−1 and
FL := γLF . Let PL be an F ](Γ)-optimal estimator for (D, χL) and Pf |L be an F ]L(Γ)-
optimal estimator for (D | L, f). Construct Pχf : {0, 1}∗ Γ−→ Q s.t. rPχf = rPL + rPf |L
and for any x ∈ {0, 1}∗, y ∈ {0, 1}rPL (K) and z ∈ {0, 1}rPf |L (K)

PKχf (x, yz) = PKL (x, y)PKf |L(x, z) (3.8)

Then, Pχf is an F ](Γ)-optimal estimator for (D, χLf).

Proof. Consider any K ∈ Nn, x ∈ suppDK , y ∈ {0, 1}rPL (K) and z ∈ {0, 1}rPf |L (K).

PKχf (x, yz)− χL(x)f(x) = PKL (x, y)PKf |L(x, z)− χL(x)f(x)

PKχf (x, yz)− χL(x)f(x)
= PKL (x, y)PKf |L(x, z)− χL(x)PKf |L(x, z) + χL(x)PKf |L(x, z)− χL(x)f(x)

PKχf (x, yz)− χL(x)f(x) = (PKL (x, y)− χL(x))PKf |L(x, z) + χL(x)(PKf |L(x, z)− f(x))

Consider any S : {0, 1}∗ ×Q Γ−→ Q bounded. We get

EDK×UKPχf ×UKS
[(PKχf − χLf)SK ]

= EDK×UKPχf ×UKS
[(PKL − χL)PKf |LSK)] + EDK×UKPχf ×UKS

[χL(PKf |L − f)SK ]

Using the fact that PKL is F ](Γ)-optimal for (D, χL),

EDK×UKPχf ×UKS
[(PKχf − χLf)SK ] ≡ EDK×UKPχf ×UKS

[χL(PKf |L − f)SK ] (mod F)

EDK×UKPχf ×UKS
[(PKχf − χLf)SK ]

≡ DK(L) E(DK |L)×UKPχf ×UKS
[(PKf |L − f)SK ] (mod F)
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Using the fact that PKf |L is F ]L(Γ)-optimal for (D | L, f), we conclude

|EDK×UKPχf ×UKS
[(PKχf − χLf)SK ]| ≡ 0 (mod F)

Theorem 3.3. Consider (D, f) a distributional estimation problem and L ⊆ {0, 1}∗
s.t. for all K ∈ Nn, DK(L) > 0. Define γL : Nn → R by γ(K) := DK(L)−1 and
FL := γLF . Let PL be an F ](Γ)-optimal estimator for (D, χL) and Pχf be an F ](Γ)-
optimal estimator for (D, χLf). Choose any M ∈ Q s.t. M ≥ sup|f | and construct
Pf |L : {0, 1}∗ Γ−→ Q s.t. rPf |L = rPL + rPχf and for any x ∈ {0, 1}∗, y ∈ {0, 1}rPL (K)

and z ∈ {0, 1}rPχf (K)

PKf |L(x, yz) =





PKL (x, y)−1PKχf (x, z) if this number is in [−M,M ]
M if PKL (x, y) = 0 or PKL (x, y)−1PKχf (x, z) > M

−M if PKL (x, y)−1PKχf (x, z) < −M
(3.9)

Then, Pf |L is an F ]L(Γ)-optimal estimator for (D | L, f).

In order to prove Theorem 3.3, we will need the following.
Consider s, t ∈ Q, an [s, t]-valued random variable F and an event A. Denote

χA the {0, 1}-valued random variable corresponding to the indicator function of A.
We have

Pr[A]s ≤ E[χAF ] ≤ Pr[A]t (3.10)

For optimal polynomial-time estimators the analogous inequalities don’t have to
hold strictly (they only hold within an asymptotically small error), but the following
proposition shows they can always be enforced.

Proposition 3.2. Consider (D, f) a distributional estimation problem, L ⊆ {0, 1}∗
and s, t ∈ Q s.t. s ≤ inf f , t ≥ sup f . Let PL be an F ](Γ)-optimal estima-
tor for (D, χL) and Pχf be an F ](Γ)-optimal estimator for (D, χLf). Construct
P̃χf : {0, 1}∗ Γ−→ Q s.t. rP̃χf = rPL + rPχf and for any y ∈ {0, 1}rPL (K) and
z ∈ {0, 1}rPχf (K), P̃Kχf (x, yz) = min(max(PKχf (x, z), PKL (x, y)s), PKL (x, y)t). Denote

DKP := DK ×UK
PL
×UK

Pχf

Then, for any S : {0, 1}∗ ×Q2 Γ−→ Q bounded
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EDKP ×UKS
[(P̃Kχf (x)− χL(x)f(x))SK(x, PKL (x), PKχf (x))] ≡ 0 (mod F) (3.11)

In particular, P̃ is also an F ](Γ)-optimal estimator for (D, χLf).

Proof. PL is an F ](Γ)-optimal estimator for (D, χL), therefore

EDKP [(PKL − χL)θ(PKχf − PKL t)] ≡ 0 (mod F) (3.12)

Pχf is an F ](Γ)-optimal estimator for (D, χLf), therefore

EDKP [(PKχf − χLf)θ(PKχf − PKL t)] ≡ 0 (mod F) (3.13)

Multiplying 3.12 by t and subtracting 3.13 we get

EDKP [(PKL t− PKχf − χL · (t− f))θ(PKχf − PKL t)] ≡ 0 (mod F)

EDKP [(PKL t− PKχf )θ(PKχf − PKL t)] ≡ EDKP [χL · (t− f)θ(PKχf − PKL t)] (mod F)

The left-hand side is non-positive and the right-hand side is non-negative, there-
fore

EDKP [(PKL t− PKχf )θ(PKχf − PKL t)] ≡ 0 (mod F)

EDKP [(P̃Kχf − PKχf )θ(PKχf − P̃Kχf )] ≡ 0 (mod F) (3.14)

In the same way we can show that

EDKP [(PKL s− PKχf )θ(PKL s− PKχf )] ≡ 0 (mod F)

EDKP [(P̃Kχf − PKχf )θ(P̃Kχf − PKχf )] ≡ 0 (mod F) (3.15)

Subtracting 3.14 from 3.15, we get

EDKP [(P̃Kχf − PKχf )(θ(P̃Kχf − PKχf )− θ(PKχf − P̃Kχf ))] ≡ 0 (mod F)

EDKP [|P̃Kχf − PKχf |] ≡ 0 (mod F) (3.16)
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Consider any S : {0, 1}∗ ×Q2 Γ−→ Q bounded.

EDKP ×UKS
[(P̃Kχf − χLf)SK(x, PKL , PKχf )]

= EDKP ×UKS
[(P̃Kχf − PKχf + PKχf − χLf)SK(x, PKL , PKχf )]

EDKP ×UKS
[(P̃Kχf − χLf)SK ] = EDKP ×UKS

[(P̃Kχf − PKχf )SK ] + EDKP ×UKS
[(PKχf − χLf)SK ]

Using the fact that Pχf is an F ](Γ)-optimal estimator for (D, χLf), we get

EDKP ×UKS
[(P̃Kχf − χLf)SK ] ≡ EDKP ×UKS

[(P̃Kχf − PKχf )SK ] (mod F)

|EDKP ×UKS
[(P̃Kχf − χLf)SK ]| ≤ EDKP ×UKS

[|P̃Kχf − PKχf |] supS (mod F)

Applying 3.16 we conclude that

EDKP ×UKS
[(P̃Kχf − χLf)SK ] ≡ 0 (mod F)

Proof of Theorem 3.3. Construct P̃χf : {0, 1}∗ Γ−→ Q s.t. rP̃χf = rPL + rPχf and for
any x ∈ {0, 1}∗, y ∈ {0, 1}rPL (K) and z ∈ {0, 1}rPχf (K)

P̃Kχf (x, yz) = min(max(PKχf (x, z),−PKL (x, y)M), PKL (x, y)M)

For any x ∈ {0, 1}∗, y ∈ {0, 1}rPL (K) and z ∈ {0, 1}rPχf (K), we have

P̃Kχf (x, yz) = PKL (x, y)PKf |L(x, yz)

P̃Kχf (x, yz)− χL(x)f(x) = PKL (x, y)PKf |L(x, yz)− χL(x)f(x)

P̃Kχf (x, yz)− χL(x)f(x)
= PKL (x, y)PKf |L(x, z)− χL(x)PKf |L(x, yz) + χL(x)PKf |L(x, yz)− χL(x)f(x)
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P̃Kχf (x, yz)−χL(x)f(x) = (PKL (x, y)−χL(x))PKf |L(x, yz)+χL(x)(PKf |L(x, yz)−f(x))

χL(x)(PKf |L(x, yz)−f(x)) = P̃Kχf (x, yz)−χL(x)f(x)− (PKL (x, y)−χL(x))PKf |L(x, yz)

Consider any S : {0, 1}∗ ×Q Γ−→ Q bounded. Denote

DKPS := DK ×UK
PL
×UK

Pχf
×UK

S

We have

EDKPS [χL(PKf |L − f)SK(x, PKf |L)]

= EDKPS [(P̃Kχf − χLf)SK(x, PKf |L)]− EDKPS [(PKL − χL)PKf |LSK(x, PKf |L)]

Applying Proposition 3.2 to the first term on the right-hand side and the fact
PKL is an F ](Γ)-optimal estimator for (D, χL) to the second term on the right-hand
side,

EDKPS [χL(PKf |L − f)SK(x, PKf |L)] ≡ 0 (mod F)

DK(L) E(DK |L)×UKPL ×UKPχf ×UKS
[(PKf |L − f)SK(x, PKf |L)] ≡ 0 (mod F)

E(DK |L)×UKPL ×UKPχf ×UKS
[(PKf |L − f)SK(x, PKf |L)] ≡ 0 (mod FL)

3.3 Polynomial-time MΓ-schemes and samplers

The next subsection and subsequent sections will require several new concepts. Here,
we introduce these concepts and discuss some of their properties.
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3.3.1 Congruent measure families

The notation f(K) ≡ g(K) (mod F) can be conveniently generalized from real-
valued functions to families of probability distributions.

Definition 3.1. Consider a set X and two families {DK ∈ P(X)}K∈Nn and {EK ∈
P(X)}K∈Nn . We say that D is congruent to E modulo F when dtv(DK , EK) ∈ F .
In this case we write DK ≡ EK (mod F) or D ≡ E (mod F).

Congruence of probability distributions modulo F has several convenient prop-
erties which follow from elementary properties of total variation distance.

Proposition 3.3. Congruence of probability distributions modulo F is an equiva-
lence relation.

Proof. Obvious since dtv is a metric.

Proposition 3.4. Consider X a set, {DK ∈ P(X)}K∈Nn, {EK ∈ P(X)}K∈Nn
and {fK : X → R}K∈Nn a uniformly bounded family of functions. Assume
D ≡ E (mod F). Then

Ex∼DK [fK(x)] ≡ Ex∼EK [fK(x)] (mod F) (3.17)

Proof. |Ex∼DK [fK(x)]− Ex∼EK [fK(x)]| ≤ (sup f − inf f) dtv(DK , EK)

Proposition 3.5. Consider X, Y sets, {DK ∈ P(X)}K∈Nn, {EK ∈ P(X)}K∈Nn
and {fK : X mk−−→ Y }K∈Nn a family of Markov kernels. Then, D ≡ E (mod F)
implies

DK n fK ≡ EK n fK (mod F) (3.18)

Proof. Total variation distance is contracted by semi-direct product with a Markov
kernel therefore dtv(DK n fK , EK n fK) ≤ dtv(DK , EK).

Proposition 3.6. Consider X, Y sets, {DK ∈ P(X)}K∈Nn, {EK ∈ P(X)}K∈Nn
and {fK : X mk−−→ Y }K∈Nn a family of Markov kernels. Then, D ≡ E (mod F)
implies

fK∗ DK ≡ fK∗ EK (mod F) (3.19)
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Proof. Total variation distance is contracted by pushforward therefore

dtv(fK∗ DK , fK∗ EK) ≤ dtv(DK , EK)

Proposition 3.7. Consider X1, X2 sets, {DK1 ∈ P(X1)}K∈Nn, {EK1 ∈ P(X1)}K∈Nn,
{DK2 ∈ P(X2)}K∈Nn and {EK2 ∈ P(X2)}K∈Nn. Then, D1 ≡ E1 (mod F) and D2 ≡
E2 (mod F) imply

DK1 ×DK2 ≡ EK1 × EK2 (mod F) (3.20)

Proof. Total variation distance is subadditive w.r.t. direct products therefore

dtv(DK1 ×DK2 , EK1 × EK2 ) ≤ dtv(DK1 , EK1 ) + dtv(DK2 , EK2 )

3.3.2 Polynomial-time MΓ-schemes

The concept of a polynomial-time Γ-scheme can be generalized in a way which allows
the advice to become random in itself.

Definition 3.2. Given encoded sets X and Y , a polynomial-time MΓ-scheme of
signature X → Y is a triple (S, rS ,MS) where S : Nn ×X × {0, 1}∗ × {0, 1}∗ alg−−→ Y ,
rS : Nn × {0, 1}∗ alg−−→ N and {MK

S ∈ P({0, 1}∗)}K∈Nn are s.t.

(i) maxx∈X maxy,z∈{0,1}∗ TS(K,x, y, z) ∈ Γnpoly

(ii) maxz∈{0,1}∗ TrS (K, z) ∈ Γnpoly

(iii) There is r ∈ ΓR s.t. for any K ∈ Nn and z ∈ supp MK
S , rS(K, z) ≤ r(K).

(iv) There is l ∈ ΓA s.t. for any K ∈ Nn, supp MK
S ⊆ {0, 1}l(K).

Abusing notation, we denote the polynomial-time MΓ-scheme (S, rS ,MS) by S.
rKS (z) will denote rS(K, z). UMK

S ∈ P({0, 1}∗ × {0, 1}∗) is the joint probability
distribution over advice bitstrings and randomness bitstrings, given by

608



Optimal Polynomial-Time Estimators

UMK
S (y, z) := MK

S (z)δ|y|,rKS (z)2− rKS (z)

SK(x, y, z) will denote S(K,x, y, z). Given w = (y, z), SK(x,w) will de-
note S(K,x, y, z). SK(x) will denote the Y -valued random variable which equals
S(K,x, y, z) for (y, z) sampled from UMK

S . SKx will denote the probability distribu-
tion of this random variable i.e. SKx is the push-forward of UMK

S by the mapping
(y, z) 7→ S(K,x, y, z).

We think of S as a randomized algorithm with advice which is random in itself.
In particular any polynomial-time Γ-scheme S can be regarded as a polynomial-time
MΓ-scheme with

MK
S (z) := δz aKS

We will use the notation S : X MΓ−−→ Y to signify S is a polynomial-time MΓ-
scheme of signature X → Y .

We introduce composition of MΓ-schemes as well.

Definition 3.3. Consider encoded sets X, Y , Z and S : X MΓ−−→ Y , T : Y MΓ−−→ Z.
Choose p ∈ N[K0,K1 . . .Kn−1] s.t.

supp MK
S ⊆ {0, 1}≤p(K)

supp MK
T ⊆ {0, 1}≤p(K)

We can then construct U : X Γ−→ Z s.t. for any K ∈ Nn, a, b ∈ {0, 1}≤p(K),
v ∈ {0, 1}rS(K,a), w ∈ {0, 1}rT (K,b) and x ∈ X

MK
U = c2

∗(MK
S ×MK

T ) (3.21)
rU (K, 〈a, b〉) = rT (K, a) + rS(K, b) (3.22)

UK(x, vw, 〈a, b〉) = TK(SK(x,w, b), v, a) (3.23)

Such a U is called the composition of T and S and denoted U = T ◦ S.
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3.3.3 Samplers and samplability

The concept of a samplable word ensemble is commonly used in average-case com-
plexity theory. Here we introduce a relaxation of this concept which allows approxi-
mate sampling with an error compatible with the given fall space. We then proceed
to introduce samplable distributional estimation problems.

Samplable word ensembles can be thought of as those ensembles which can be
produced by a computationally bounded process. Samplable distributional estima-
tion problems can be thought of as those questions that can be efficiently produced
together with their answers, like an exam where the examinee cannot easily find the
answer but the examinator knows it (even though the examinator is also computa-
tionally bounded).

Definition 3.4. A word ensemble D is called polynomial-time F(MΓ)-samplable
(resp. polynomial-time F(Γ)-samplable) when there is a polynomial-time MΓ-
scheme (resp. polynomial-time Γ-scheme) σ of signature 1→ {0, 1}∗ s.t. DK ≡ σK•
(mod F).

In this case, σ is called a polynomial-time F(MΓ)-sampler (resp. polynomial-time
F(Γ)-sampler) of D.

Definition 3.5. A distributional estimation problem (D, f) is called polynomial-
time F(MΓ)-samplable (resp. polynomial-time F(Γ)-samplable) when there is a
polynomial-time MΓ-scheme (resp. polynomial-time Γ-scheme) σ of signature
1→ {0, 1}∗ ×Q s.t.

(i) σ0 is a polynomial-time F(MΓ)-sampler (resp. polynomial-time F(Γ)-sampler)
of D.

(ii) For any K ∈ Nn, denote XK
σ := suppσK0•. For any x ∈ {0, 1}∗, denote

fKσ (x) :=





Ez∼UMK
σ

[σK(z)1 | σK(z)0 = x] if x ∈ XK
σ

0 if x 6∈ XK
σ

We require that the function ε(K) := Ex∼DK [|fKσ (x)− f(x)|] is in F .

This represents the requirement of being able to efficiently generate question-
answer pairs, such that the distribution of questions converges to the distribution
D, and the answers converge to the true output of the function f .
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When sup |σ1| <∞ (since f is bounded, this can always be assumed without loss
of generality), σ is called a polynomial-time F(MΓ)-sampler (resp. polynomial-time
F(Γ)-sampler) of (D, f).

For sufficiently large ΓA the requirements of F(MΓ)-samplability become very
weak, as seen in the following propositions, which essentially say that if the bitstrings
on which D is supported are short enough relative to the length of the advice string,
then the randomized advice can just duplicate the distribution. And if there is ample
advice available, then the randomized advice can also output an approximation to
the true value of f(x) along with x.

Proposition 3.8. Consider a word ensemble D s.t. for some l ∈ ΓA

DK({0, 1}≤l(K)) ≡ 1 (mod F) (3.24)

Denote I := {K ∈ Nn | DK({0, 1}≤l(K)) > 0}. Consider σ : 1 MΓ−−→ {0, 1}∗ s.t.
for any K ∈ I

MK
σ := DK | {0, 1}≤l(K)

σK(y, z) = z

Then, σ is a polynomial-time F(MΓ)-sampler of D. In particular, since such an
σ can always be constructed, D is polynomial-time F(MΓ)-samplable.

Proof. χI ≥ DK({0, 1}≤l(K)), 1−χI ≤ 1−DK({0, 1}≤l(K)) and therefore 1−χI ∈ F .
Given K ∈ I, σK• = DK | {0, 1}≤l(K) and we get

dtv(DK , σK• ) = dtv(DK ,DK | {0, 1}≤l(K))

dtv(DK , σK• ) = 1
2

∑

x∈{0,1}∗
|DK(x)− (DK | {0, 1}≤l(K))(x)|

Denote χK := χ{0,1}≤l(K) .

dtv(DK , σK• ) = 1
2

∑

x∈{0,1}∗
|DK(x)− χK(x)DK(x)

DK({0, 1}≤l(K))
|

dtv(DK , σK• ) = 1
2

∑

x∈{0,1}∗
DK(x)|1− χK(x)

DK({0, 1}≤l(K))
|

611



Kosoy and Appel

dtv(DK , σK• ) = 1
2




∑

x∈{0,1}≤l(K)

DK(x)|1− χK(x)
DK({0, 1}≤l(K))

|

+
∑

x∈{0,1}>l(K)

DK(x)|1− χK(x)
DK({0, 1}≤l(K))

|




dtv(DK , σK• ) = 1
2




∑

x∈{0,1}≤l(K)

DK(x)
(

1
DK({0, 1}≤l(K))

− 1
)

+
∑

x∈{0,1}>l(K)

DK(x)




dtv(DK , σK• ) = 1
2


DK({0, 1}≤l(K))

(
1

DK({0, 1}≤l(K))
− 1

)

+ 1−DK({0, 1}≤l(K))




dtv(DK , σK• ) = 1−DK({0, 1}≤l(K))

Given arbitrary K ∈ Nn,

dtv(DK , σK• ) ≤ max(1−DK({0, 1}≤l(K)), 1− χI)

Proposition 3.9. Assume F is ΓA-ample. Consider a distributional estimation
problem (D, f) s.t. for some l ∈ ΓA, 3.24 holds. Then, (D, f) is polynomial-time
F(MΓ)-samplable.

Proof. Consider ζ : Nn → (0, 1
2 ] s.t. ζ ∈ F and blog 1

ζ c ∈ ΓA. For any
K ∈ Nn and t ∈ R, let ρK(t) ∈ arg min

s∈Q∩[t−ζ(K),t+ζ(K)]
|cQ(s)|. For any K ∈ Nn, define

αK : {0, 1}∗ → {0, 1}∗ by
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αK(x) := 〈x, cQ(ρK(f(x)))〉
Denote

I := {K ∈ Nn | DK({0, 1}≤l(K)) > 0}

Construct σ : 1 MΓ−−→ {0, 1}∗ ×Q s.t. for any K ∈ I

MK
σ := αK∗ (DK | {0, 1}≤l(K))
σK(y, 〈z, cQ(t)〉) = (z, t)

By Proposition 3.8, σ0 is a polynomial-time F(MΓ)-sampler of D.
Let fKσ be defined as in Definition 3.5. Consider any K ∈ Nn. It is easy to

see that for any x ∈ suppDK ∩ {0, 1}≤l(K), fKσ (x) = ρK(f(x)) (for K 6∈ I this is
vacuously true). Also, for any x ∈ {0, 1}>l(K), fKσ (x) = 0. Denote

pK := DK({0, 1}≤l(K))

We get

EDK [|fKσ (x)− f(x)|] = pK EDK [|fKσ (x)− f(x)| | |x| ≤ l(K)]
+ (1− pK) EDK [|fKσ (x)− f(x)| | |x| > l(K)]

EDK [|fKσ (x)− f(x)|] = pK EDK [|ρK(f(x))− f(x)| | |x| ≤ l(K)]
+ (1− pK) EDK [|f(x)| | |x| > l(K)]

EDK [|fKσ (x)− f(x)|] ≤ pKζ(K) + (1− pK) sup|f |
The right hand side is obviously in F .

We now introduce the notions of samplability over a given “base space” Y .

Definition 3.6. Consider a word ensemble D, an encoded set Y and a family of
Markov kernels {πK : suppDK mk−−→ Y }K∈Nn . D is called polynomial-time F(MΓ)-
samplable (resp. polynomial-time F(Γ)-samplable) relative to π when there is a
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polynomial-time MΓ-scheme (resp. polynomial-time Γ-scheme) σ of signature Y →
{0, 1}∗ s.t. Ey∼πK∗ DK [dtv(DK | (πK)−1(y), σKy )] ∈ F .

In this case, σ is called a polynomial-time F(MΓ)-sampler (resp. polynomial-time
F(Γ)-sampler) of D relative to π. That is, even though the underlying distribution
may not be samplable, if some evidence (y) is given, that permits sampling from the
distribution conditional on y.

Definition 3.7. Consider a distributional estimation problem (D, f), an encoded
set Y and a family of Markov kernels {πK : suppDK mk−−→ Y }K∈Nn . (D, f) is called
polynomial-time F(MΓ)-samplable (resp. polynomial-time F(Γ)-samplable) relative
to π when there is a polynomial-time MΓ-scheme (resp. polynomial-time Γ-scheme)
σ of signature Y → {0, 1}∗ ×Q s.t.

(i) σ0 is a polynomial-time F(MΓ)-sampler (resp. polynomial-time F(Γ)-sampler)
of D relative to π.

(ii) For any K ∈ Nn, y ∈ Y , Denote XK
σ,y := suppσK0y. For any x ∈ {0, 1}∗, denote

fKσ (x, y) :=





Ez∼UMK
σ

[σK(y, z)1 | σK(y, z)0 = x] if x ∈ XK
σ,y

0 if x 6∈ XK
σ,y

We require that the function ε(K) := E(x,y)∼DKnπK [|fKσ (x, y)− f(x)|] is in F .
When sup |σ1| < ∞, σ is called a polynomial-time F(MΓ)-sampler (resp.

polynomial-time F(Γ)-sampler) of (D, f) relative to π.

Note that relative samplability reduces to absolute (ordinary) samplability when
Y = 1.

The following propositions are basic properties of samplable ensembles and prob-
lems which often come in handy. Proposition 3.10 states that the expectation of a
function h(x) remains approximately unchanged when x is replaced with a sampler of
D, and Proposition 3.11 states that the expectation of the product of h(x) and f(x)
remains approximately unchanged when x and f(x) are replaced by question/answer
pairs produced by a sampler for (D, f).

Proposition 3.10. Consider a word ensemble D, an encoded set Y , a family {πK :
suppDK mk−−→ Y }K∈Nn, a set I and a uniformly bounded family {hKα : (suppD)×Y →
R}α∈I,K∈Nn. Suppose σ is a polynomial-time F(MΓ)-sampler of D relative to π.
Then

E(x,y)∼DKnπK [hKα (x, y)] α≡ E(y,z)∼πK∗ DK×UMK
σ

[hKα (σK(y, z), y)] (mod F) (3.25)
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Proof. If we sample (x, y) from DK n πK and then sample x′ from DK | (πK)−1(y),
(x′, y) will obey the distribution DK n πK . Denote DKy := DK | (πK)−1(y). We get

E(x,y)∼DKnπK [hKα (x, y)] = E(x,y)∼DKnπK [Ex′∼DKy [hKα (x′, y)]]

EDKnπK [hKα (x, y)]− EπK∗ DK×UMK
σ

[hKα (σK(y, z), y)]
= EDKnπK [EDKy [hKα (x′, y)]]− EπK∗ DK×UMK

σ
[hKα (σK(y, z), y)]

EDKnπK [hKα (x, y)]− EπK∗ DK×UMK
σ

[hKα (σK(y, z), y)]
= EDKnπK [EDKy [hKα (x′, y)]− EUMK

σ
[hKα (σK(y, z), y)]]

EDKnπK [hKα (x, y)]− EπK∗ DK×UMK
σ

[hKα (σK(y, z), y)]
= EDKnπK [EDKy [hKα (x′, y)]− EσKy [hKα (x′, y)]]

|EDKnπK [hKα (x, y)]− EπK∗ DK×UMK
σ

[hKα (σK(y, z), y)]|
≤ EDKnπK [|EDKy [hKα (x′, y)]− EσKy [hKα (x′, y)]|]

|EDKnπK [hKα (x, y)]− EπK∗ DK×UMK
σ

[hKα (σK(y, z), y)]|
≤ (suph− inf h) EDKnπK [dtv(DKy , σKy )]

Using the defining property of σ, we get the desired result.

Proposition 3.11. Consider a distributional estimation problem (D, f), an encoded
set Y , a family {πK : suppDK mk−−→ Y }K∈Nn, a set I and a uniformly bounded family

{hKα : (suppD)× Y → R}α∈I,K∈Nn
Denote DKπ := DK n πK . Suppose σ is a polynomial-time F(MΓ)-sampler of

(D, f) relative to π. Then

EDKπ [hKα (x, y)f(x)] α≡ EπK∗ DK×UMK
σ

[hKα (σK(y, z)0, y)σK(y, z)1] (mod F) (3.26)
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Proof. Let fKσ be defined as in Definition 3.7.

EDKπ [hKα (x, y)f(x)]− EDKπ [hKα (x, y)fKσ (x, y)] = EDKπ [hKα (x, y)(f(x)− fKσ (x, y))]

|EDKπ [hKα (x, y)f(x)]− EDKπ [hKα (x, y)fKσ (x, y)]| ≤ EDKπ [|hKα (x, y)| · |f(x)− fKσ (x, y)|]

|EDKπ [hKα (x, y)f(x)]− EDKπ [hKα (x, y)fKσ (x, y)]| ≤ (sup|h|) EDKπ [|f(x)− fKσ (x, y)|]

By property (ii) of Definition 3.7

EDKπ [hKα (x, y)f(x)] α≡ EDKπ [hKα (x, y)fKσ (x, y)] (mod F)

Using property (i) of Definition 3.7 we can apply Proposition 3.10 to the right
hand side and get

EDKπ [hKα (x, y)f(x)] α≡ EπK∗ DK×UMK
σ

[hKα (σK(y, z)0, y)fKσ (σK(y, z)0, y)] (mod F)

EDKπ [hKα (x, y)f(x)] α≡ EπK∗ DK×UMK
σ

[hKα (σK(y, z)0, y)·
Ez′∼UMK

σ
[σK(y, z′)1 | σK(y, z′)0 = σK(y, z)0]] (mod F)

EDKπ [hKα (x, y)f(x)] α≡ EπK∗ DK×UMK
σ

[hKα (σK(y, z)0, y)σK(y, z)1] (mod F)

3.4 Independent variables
Independent random variables F1, F2 satisfy

E[F1F2] = E[F1] E[F2] (3.27)

To formulate an analogous property for optimal polynomial-time estimators, we
need a notion of independence for distributional decision problems which doesn’t
make the identity tautologous. Consider distributional decision problems (D, f1),
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(D, f2). Informally, f1 is “independent” of f2 when learning the value of f2(x)
provides no efficiently accessible information about f1(x). In the present work, we
won’t try to formalise this in full generality. Instead, we will construct a specific
scenario in which the independence assumption is justifiable.

We start with an informal description. Suppose that f1(x) depends only on
part π(x) of the information in x i.e. f1(x) = g(π(x)). Suppose further that given
y = π(x) it is possible to efficiently produce samples x′ of D | π−1(y) for which
f2(x′) is known. Then, the knowledge of f2(x) doesn’t provide new information
about g(π(x)) since equivalent information can be efficiently produced without this
knowledge, by observing y. Moreover, if we can only efficiently produce samples x′
of D | π−1(y) together with f̃2(x′) an unbiased estimate of f2(x′), we still expect the
analogue of 3.27 to hold since the expected value of f̃2(x′)− f2(x′) vanishes for any
given x′ so it is uncorrelated with f1(x).

The following theorem formalises this setting.

Theorem 3.4. Consider D a word ensemble, f1, f2 : suppD → R bounded, (E , g) a
distributional estimation problem and π : {0, 1}∗ Γ−→ {0, 1}∗. Assume the following
conditions:

(i) πK∗ (DK) ≡ EK (mod F)

(ii) Denote ḡ : {0, 1}∗ → R the extension of g by 0. We require

E(x,z)∼DK×UKπ [|f1(x)− ḡ(πK(x, z))|] ∈ F

(iii) (D, f2) is polynomial-time F(MΓ)-samplable relative to π.

Suppose P1 is an F ](Γ)-optimal estimator for (g, E) and P2 is an F ](Γ)-optimal
estimator for (D, f2). Denote Pπ := P1 ◦ π. Construct P : {0, 1}∗ Γ−→ Q s.t. rP =
rPπ + rP2 and for any x ∈ {0, 1}∗, z1 ∈ {0, 1}rPπ (K) and z2 ∈ {0, 1}rP2 (K)

PK(x, z1z2) = PKπ (x, z1)PK2 (x, z2) (3.28)

Then, P is an F ](Γ)-optimal estimator for (D, f1f2).

In order to prove Theorem 3.4 we will need the following proposition, which takes
the defining inexploitability property of an F ](Γ)-optimal estimator, and extends it
to the adversary S having access to randomized advice, which can be done because
deterministic advice can copy the "luckiest possible advice string" drawn from the
distribution over advice strings.
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Proposition 3.12. Consider (D, f) a distributional estimation problem, P an
F ](Γ)-optimal estimator for (D, f) and S : {0, 1}∗ ×Q MΓ−−→ Q bounded. Then

EDK×UKP ×UMK
S

[(PK(x, y)− f(x))SK(x, PK(x, y), z, w)] ≡ 0 (mod F) (3.29)

Proof. For any K ∈ Nn, choose

wK ∈ arg max
w∈supp MK

S

|E
DK×UKP ×UrK

S
(w) [(PK(x, y)− f(x))SK(x, PK(x, y), z, w)]|

Construct S̄ : {0, 1}∗ ×Q Γ−→ Q s.t.

rS̄(K) = rKS (wK)
S̄K(x, t, z) = SK(x, t, z, wK)

P is an F ](Γ)-optimal estimator for (D, f), therefore

EDK×UKP ×UK
S̄

[(PK(x, y)− f(x))S̄K(x, PK(x, y), z)] ≡ 0 (mod F)

E
DK×UKP ×UrK

S
(w) [(PK(x, y)− f(x))SK(x, PK(x, y), z, wK)] ≡ 0 (mod F)

By construction of wK , the absolute value of the left hand side is no less than
the absolute value of the left hand side of 3.29.

Proof of Theorem 3.4. Consider K ∈ Nn, x ∈ suppDK , z1 ∈ {0, 1}rP1 (K),
z2 ∈ {0, 1}rP2 (K) and z3 ∈ {0, 1}rπ(K).

PK(x, z1z3z2)− f1(x)f2(x) = PKπ (x, z1z3)PK2 (x, z2)− f1(x)f2(x)

Adding and subtracting PKπ (x, z1z3)f2(x) from the right hand side and grouping
variables, we get

PK(x, z1z3z2)− f1(x)f2(x)
= PKπ (x, z1z3)(PK2 (x, z2)− f2(x)) + (PKπ (x, z1z3)− f1(x))f2(x)

618



Optimal Polynomial-Time Estimators

For any bounded S : {0, 1}∗ ×Q Γ−→ Q we get

|E[(PK − f1f2)SK ]| ≤ |E[(PK2 − f2)PKπ SK ]|+ |E[(PKπ − f1)f2S
K ]|

P2 is an F ](Γ)-optimal estimator for (D, f2) therefore the first term on the right
hand side is in F .

|E[(PK − f1f2)SK ]| ≤ |E[(PKπ − f1)f2S
K ]| (mod F)

|E[(PK − f1f2)SK ]| ≤ |E[(PKπ − f1)f2S
K ]− E[(PKπ − ḡ ◦ πK)f2S

K ]
+ E[(PKπ − ḡ ◦ πK)f2S

K ]| (mod F)

|E[(PK − f1f2)SK ]| ≤ |E[(PKπ − f1)f2S
K ]− E[(PKπ − ḡ ◦ πK)f2S

K ]|
+ |E[(PKπ − ḡ ◦ πK)f2S

K ]| (mod F)

|E[(PK − f1f2)SK ]| ≤ |E[(ḡ ◦ πK − f1)f2S
K ]|+ |E[(PKπ − ḡ ◦ πK)f2S

K ]| (mod F)

|E[(PK − f1f2)SK ]| ≤ (sup|f2|)(sup|S|) E[|ḡ ◦ πK − f1|]
+ |E[(PKπ − ḡ ◦ πK)f2S

K ]| (mod F)

Condition ii implies the first term on the right hand side is in F .

|E[(PK − f1f2)SK ]| ≤ |E[(PKπ − ḡ ◦ πK)f2S
K ]| (mod F)

Denote UK
tot := UK

P1 ×UK
P2 ×UK

S . We change variables inside the expected value
on the right hand side by y := πK(x, z3). Observing that (x, y) obeys the distribution
DK n πK we get

|E[(PK − f1f2)SK ]| ≤ |EDKnπK×UKtot
[(PK1 (y, z1)− ḡ(y))·

f2(x)SK(x, PK1 (y, z1)PK2 (x, z2), z4)]| (mod F)
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|E[(PK − f1f2)SK ]| ≤ |EDKnπK [EUKtot
[(PK1 (y, z1)− ḡ(y))·

SK(x, PK1 (y, z1)PK2 (x, z2), z4)]f2(x)]| (mod F)

Let σ be a polynomial-time F(MΓ)-sampler of (D, f2) relative to π. Applying
Proposition 3.11 to the right hand side we get

|E[(PK − f1f2)SK ]| ≤ |EπK∗ DK×UMK
σ

[E[(PK1 (y)− ḡ(y))·
SK(σK(y)0, P

K
1 (y)PK2 (σK(y)0))]σK(y)1]| (mod F)

Using condition i we conclude that

|E[(PK − f1f2)SK ]| ≤ |EEk×UMK
σ

[E[(PK1 (y)− g(y))·
SK(σK(y)0, P

K
1 (y)PK2 (σK(y)0))]σK(y)1]| (mod F)

|E[(PK − f1f2)SK ]| ≤ |EEk×UKtot×UMK
σ

[(PK1 (y)− g(y))·
SK(σK(y)0, P

K
1 (y)PK2 (σK(y)0))σK(y)1]| (mod F)

By Proposition 3.12, this implies

|E[(PK − f1f2)SK ]| ≡ 0 (mod F)

The following corollary demonstrates one natural scenario in which the conditions
of Theorem 3.4 hold. The scenario is one where the distribution is D1 × D2, and
the task is to estimate f1(x1)f2(x2). By Theorem 3.4, this can be done if there is a
sampler for (D2, f2), and a sampler for D1.

Corollary 3.2. Consider (D1, f1), (D2, f2) distributional estimation problems. Sup-
pose P1 is an F ](Γ)-optimal estimator for (D1, f1), P2 is an F ](Γ)-optimal esti-
mator for (D2, f2), σ1 is a polynomial-time F(MΓ)-sampler for D1 and σ2 is a
polynomial-time F(MΓ)-sampler for (D2, f2). Define DK := c2

∗(Dk1 ×Dk2). Define
f : suppD → R by f(〈x1, x2〉) := f1(x1)f2(x2). Then, there is P , an F ](Γ)-optimal
estimator for (D, f), s.t. rP = rP1 + rP2 and for any K ∈ Nn, x1 ∈ suppσK1•,
x2 ∈ {0, 1}∗, z1 ∈ {0, 1}rP1 (K) and z2 ∈ {0, 1}rP2 (K)
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PK(〈x1, x2〉, z1z2) = PK1 (x1, z1)PK2 (x2, z2) (3.30)

In order to prove Corollary 3.2, we’ll need to prove several minor propositions
first.

Proposition 3.13. Consider D1, D2 word ensembles and σ1, σ2 which
are polynomial-time F(MΓ)-samplers for D1 and D2 respectively. Define
Dk := c2

∗(Dk1 ×Dk2). Suppose π : {0, 1}∗ Γ−→ {0, 1}∗ is s.t. for any K ∈ Nn,
x1 ∈ suppσK1•, x2 ∈ suppσK2• and z ∈ {0, 1}rπ(K), πK(〈x1, x2〉, z) = x1. Then
πK∗ DK ≡ DK1 (mod F)

Proof. σK1• ≡ DK1 (mod F) and σK2• ≡ DK2 (mod F). By Proposition 3.7,

σK1• × σK2• ≡ DK1 ×DK2 (mod F)

Denote DKσ := c2
∗(σK1• × σK2•). We get DKσ ≡ DK (mod F) and therefore

πK∗ DKσ ≡ πK∗ DK (mod F) (by Proposition 3.6). Obviously πK∗ DKσ = σK1•. We con-
clude that πK∗ DK ≡ σK1• (mod F) and therefore πK∗ DK ≡ D1 (mod F) (by Propo-
sition 3.3).

Proposition 3.14. Consider D1, D2 word ensembles and σ1, σ2 which are
polynomial-time F(MΓ)-samplers for D1 and D2 respectively. Suppose π : {0, 1}∗ Γ−→
{0, 1}∗ is s.t. for any K ∈ Nn, x1 ∈ suppσK1•, x2 ∈ suppσK2• and z ∈ {0, 1}rπ(K),
πK(〈x1, x2〉, z) = x1. Then, for any g : suppD1 → R bounded and ḡ : {0, 1}∗ → R
its extension by 0, we have

E(x1,x2,z)∼DK1 ×DK2 ×UKπ [|g(x1)− ḡ(πK(〈x1, x2〉, z))|] ∈ F

Proof. Denote M := sup g − inf g.

E[|g(x1)− ḡ(πK(〈x1, x2〉))|] ≤M PrDK1 ×DK2 [(x1, x2) 6∈ suppσK1• × suppσK2•]

E[|g(x1)− ḡ(πK(〈x1, x2〉))|] ≤M PrσK1•×σK2• [(x1, x2) 6∈ suppσK1•×suppσK2•] (mod F)

E[|g(x1)− ḡ(πK(〈x1, x2〉))|] ≡ 0 (mod F)
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Proposition 3.15. Consider word ensembles D1 and D2 with polynomial-time
F(MΓ)-samplers σ1 and σ2 respectively. Define Dk := c2

∗(Dk1 ×Dk2). Suppose
π : {0, 1}∗ Γ−→ {0, 1}∗ is s.t. for any K ∈ Nn, x1 ∈ suppσK1•, x2 ∈ {0, 1}∗ and z ∈
{0, 1}rπ(K), πK(〈x1, x2〉, z) = x1 and, conversely, if x ∈ {0, 1}∗ is s.t. πK(x, z) = x1

then x is of the form 〈x1, x′2〉 for some x′2 ∈ {0, 1}∗. Consider σ : {0, 1}∗ MΓ−−→ {0, 1}∗
s.t. UMK

σ = UMK
σ2 and for any x ∈ suppσK1•, σK(x, z, w) = 〈x, σK2 (z, w)〉. Then, σ

is a polynomial-time F(MΓ)-sampler of D relative to π. In particular, since such
an σ can always be constructed, D is polynomial-time F(MΓ)-samplable relative to
π.

Proof.
DK ≡ c2

∗(σK1• × σK2•) (mod F)

πK∗ DK ≡ πK∗ c2
∗(σK1• × σK2•) (mod F)

πK∗ DK ≡ σK1• (mod F)

Denote DKx := D | (πK)−1(x).

Ex∼πK∗ DK [dtv(DKx , σKx )] ≡ Ex∼σK1• [dtv(DKx , σKx )] (mod F)

For any x ∈ suppσK1•, DKx = c2
∗(δx ×DK2 ) and σKx = c2

∗(δx × σK2•).

Ex∼πK∗ DK [dtv(DKx , σKx )] ≡ Ex∼σK1• [dtv(c2
∗(δx ×DK2 ), c2

∗(δx × σK2•))] (mod F)

Ex∼πK∗ DK [dtv(DKx , σKx )] ≡ Ex∼σK1• [dtv(DK2 , σK2•)] (mod F)

Ex∼πK∗ DK [dtv(DKx , σKx )] ≡ dtv(DK2 , σK2•) (mod F)

Ex∼πK∗ DK [dtv(DKx , σKx )] ≡ 0 (mod F)

Proposition 3.16. Consider D1 a word ensemble with polynomial-time F(MΓ)-
sampler σ and (D2, f) a distributional estimation problem with polynomial-time
F(MΓ)-sampler τ . Define the distributional estimation problem (D, f̄) by
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Dk := c2
∗(Dk1 ×Dk2)

f̄(〈x1, x2〉) = f(x2)

Suppose π : {0, 1}∗ Γ−→ {0, 1}∗ is s.t. for any K ∈ Nn, x1 ∈ suppσK• , x2 ∈ {0, 1}∗
and z ∈ {0, 1}rπ(K), πK(〈x1, x2〉, z) = x1 and, conversely, if x ∈ {0, 1}∗ is s.t.
πK(x, z) = x1 then x is of the form 〈x1, x′2〉 for some x′2 ∈ {0, 1}∗. Then, (D, f̄)
is polynomial-time F(MΓ)-samplable relative to π.

Proof. Construct τ̄ : {0, 1}∗ MΓ−−→ {0, 1}∗ × Q s.t. UMK
τ̄ = UMK

τ and for any
x ∈ suppσK•

τ̄K(x, y, z) = (〈x, τK(y, z, w)0〉, τK(y, z, w)1)

By Proposition 3.15, τ̄0 is a polynomial-time F(MΓ)-sampler of D relative to π.

DK ≡ c2
∗(σK• × τK0•) (mod F)

DK n πK ≡ c2
∗(σK• × τK0•) n πK (mod F)

Let fKτ and fKτ̄ be defined as in Definition 3.7.

E(x,y)∼DKnπK [|fKτ̄ (x, y)− f̄(x)|] ≡ E(x,y)∼c2∗(σK• ×τK0•)nπK [|fKτ̄ (x, y)− f̄(x)|] (mod F)

EDKnπK [|fKτ̄ − f̄ |] ≡ E(x1,x2)∼σK• ×τK0• [|f
K
τ̄ (〈x1, x2〉, x1)− f̄(〈x1, x2〉)|] (mod F)

EDKnπK [|fKτ̄ − f̄ |] ≡ E(x1,x2)∼σK• ×τK0• [|EUMK
τ̄

[τ̄K1 (x1) | τ̄K(x1)0 = 〈x1, x2〉]
− f(x2)|] (mod F)

EDKnπK [|fKτ̄ − f̄ |] ≡ E(x1,x2)∼σK• ×τK0• [|EUMK
τ

[τK1 | 〈x1, τ
K
0 〉 = 〈x1, x2〉]
− f(x2)|] (mod F)
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EDKnπK [|fKτ̄ − f̄ |] ≡ E(x1,x2)∼σK• ×τK0• [|EUMK
τ

[τK1 | τK0 = x2]− f(x2)|] (mod F)

EDKnπK [|fKτ̄ − f̄ |] ≡ Ex2∼τK0• [|f
K
τ (x2)− f(x2)|] (mod F)

EDKnπK [|fKτ̄ − f̄ |] ≡ Ex2∼DK2 [|fKτ (x2)− f(x2)|] (mod F)

EDKnπK [|fKτ̄ − f̄ |] ≡ 0 (mod F)

Proposition 3.17. Consider word ensemble D1 with polynomial-time F(MΓ)-
sampler σ and (D2, f) a distributional estimation problem. Define the distributional
estimation problem (D, f̄) by

Dk := c2
∗(Dk1 ×Dk2)

f̄(〈x1, x2〉) = f(x2)

Suppose P is an F ](Γ)-optimal estimator for (D2, f). Let P̄ : {0, 1}∗ Γ−→ Q be s.t.
rP̄ = rP and for any K ∈ Nn, x1 ∈ suppσK• , x2 ∈ suppDK2 and z ∈ {0, 1}rP (K),
P̄K(〈x1, x2〉, z) = PK(x2, z). Then, P̄ is an F ](Γ)-optimal estimator for (D, f̄).

Proof. Consider any S : {0, 1}∗ × Q Γ−→ Q bounded. Denote UK
PS := UK

P ×UK
S ,

DKPS := DK ×UK
PS .

EDKPS [(P̄K(x)− f̄(x))SK(x, P̄K(x))]

= EDK1 ×DK2 ×UKPS
[(P̄K(〈x1, x2〉)− f̄(〈x1, x2〉))SK(〈x1, x2〉, P̄K(〈x1, x2〉))]

EDKPS [(P̄K(x)− f̄(x))SK(x, P̄K(x))]

= EDK1 ×DK2 ×UKPS
[(P̄K(〈x1, x2〉)− f(x2))SK(〈x1, x2〉, P̄K(〈x1, x2〉))]
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EDKPS [(P̄K(x)− f̄(x))SK(x, P̄K(x))]

= EDK1 [EDK2 ×UKPS
[(P̄K(〈x1, x2〉)− f(x2))SK(〈x1, x2〉, P̄K(〈x1, x2〉))]]

Applying Proposition 3.10 (with Y = 1) to the right hand side, we get

EDKPS [(P̄K − f̄)SK ] ≡ EUMK
σ

[EDK2 ×UKPS
[(P̄K(〈σK , x2〉)− f(x2))·
SK(〈σK , x2〉, P̄K(〈σK , x2〉))]] (mod F)

EDKPS [(P̄K − f̄)SK ] ≡ EUMK
σ

[EDK2 ×UKPS
[(PK(x2)− f(x2))·

SK(〈σK , x2〉, PK(x2))]] (mod F)

EDKPS [(P̄K − f̄)SK ] ≡ EDK2 ×UKPS ×UMK
σ

[(PK(x2)− f(x2))·
SK(〈σK , x2〉, PK(x2))] (mod F)

Using the fact that P is an F ](Γ)-optimal estimator for (D2, f), we conclude

EDKPS [(P̄K − f̄)SK ] ≡ 0 (mod F)

Proof of Corollary 3.2. Define f̄1, f̄2 : suppD → R by f̄1(〈x1, x2〉) = f1(x1),
f̄2(〈x1, x2〉) = f2(x2).

Construct π : {0, 1}∗ Γ−→ {0, 1}∗ s.t. rπ ≡ 0, for any K ∈ Nn, x1 ∈ suppσK1•
and x2 ∈ {0, 1}∗, πK(〈x1, x2〉) = x1 and, conversely, if x ∈ {0, 1}∗ is s.t. πK(x) = x1
then x is of the form 〈x1, x′2〉 for some x′2 ∈ {0, 1}∗. This is possible because the
runtime of σK1 is bounded by a polynomial in K so the length of σK1 ’s output is
also bounded by a polynomial in K, implying πK only has to read a polynomial size
prefix of its input in order to output x1. On the other hand, if the input is not of
the form 〈x1, x2〉 for x1 sufficiently short to be in suppσK1•, π may output a string
too long to be in suppσK1•.

Construct P̄ : {0, 1}∗ Γ−→ Q s.t. rP̄ = rP2 and for any x1 ∈ suppσK1•, x2 ∈ {0, 1}∗
and z ∈ {0, 1}rP2 (K), P̄K(〈x1, x2〉, z) = PK2 (x2, z). This is possible for the same
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reason as above: P̄ skips the polynomial size prefix corresponding to x1 and then
executes a simulation of running P2 on x2, even if x2 is too long to read in full. By
Proposition 3.17, P̄ is an F ](Γ)-optimal estimator for (D, f̄2).

We apply Theorem 3.4 where f̄1, f̄2 play the roles of f1, f2 and (D1, f1) plays
the role of (E , g): condition i holds due to Proposition 3.13, condition ii holds due
to Proposition 3.14 and condition iii holds due to Proposition 3.16. This gives us
P , an optimal polynomial-time estimator for (D, f) s.t. rP = rP1 + rP2 and for any
z1 ∈ {0, 1}rP1 (K) and z2 ∈ {0, 1}rP1 (K)

PK(x, z1z2) = PK1 (πK(x), z1)P̄K(x, z2)

In particular, for any x1 ∈ suppσK1• and x2 ∈ {0, 1}∗

PK(〈x1, x2〉, z1z2) = PK1 (x1, z2)PK2 (x2, z2)

4 Reductions and completeness
In this section we study notions of Karp reduction between distributional estimation
problems such that the pull-back of an optimal polynomial-time estimator is an
optimal polynomial-time estimator. It is also interesting to study Cook reductions
but we avoid it in the present work.

First, we demonstrate that the notion of Karp reduction used in average-case
complexity theory is insufficiently strong for our purpose.

Consider the setting of Corollary 2.2. Denote Dk := U2k and define
χ : suppD → {0, 1} s.t. for any x, y ∈ {0, 1}k, χ(xy) = x · y. Construct πf :
{0, 1}∗ Γ−→ {0, 1}∗ s.t. for any x, y ∈ {0, 1}k, πkf (xy) = 〈f(x), y〉. πf can be re-
garded as a Karp reduction of (D, χ) to (D(f), χf ) since for any z ∈ suppDk we
have χf (πkf (z)) = χ(z) and (πf )∗D = D(f)

13. However, the pullback of P is not
an Fneg(Γ)-optimal estimator for (D, χ) since its error is Ez∼Dk [(1

2 − χ(z))2] = 1
4

whereas we can construct Q : {0, 1}∗ Γ−→ Q s.t. for any z ∈ suppDk, Qk(z) = χ(z)
and therefore Ez∼Dk [(Qk(z)− χ(z))2] = 0.

We will describe several types of reductions that preserve optimal polynomial-
time estimators. After that, we will characterize reductions that can be constructed
by composing those types and prove a completeness theorem.

13This is a much stronger condition than what is needed for a reduction to preserve average-case
complexity. See [4] for details.
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4.1 Strict pseudo-invertible reductions
Definition 4.1. Consider (D, f), (E , g) distributional estimation problems and
π : {0, 1}∗ Γ−→ {0, 1}∗. π is called a precise strict pseudo-invertible F(Γ)-reduction
of (D, f) to (E , g) when

(i) πK∗ DK ≡ EK (mod F)

(ii) Denote ḡ : {0, 1}∗ → R the extension of g by 0. We require

E(x,z)∼DK×UKπ [|f(x)− ḡ(πK(x, z))|] ≡ 0 (mod F)

(iii) D is polynomial-time F(MΓ)-samplable relative to π.

Note that condition iii is violated in the one-way function example above, and
in particular it ensures that the problem doesn’t become significantly more difficult
after applying π.

Also, notice the similarity of condition ii to a randomized Karp reduction (page
189 in [12]). Reexpressing that definition in our terminology, it is ∀x : Ez∼UKπ [|f(x)−
g(πK(x, z))|] ≤ µ(K), where µ is a negligible function.

Precise strict pseudo-invertible F(Γ)-reductions preserve F ](Γ)-optimal estima-
tors as a simple corollary of Theorem 3.4:

Corollary 4.1. Consider (D, f), (E , g) distributional estimation problems and π a
precise strict pseudo-invertible F(Γ)-reduction of (D, f) to (E , g). Suppose P is an
F ](Γ)-optimal estimator for (E , g). Then, P ◦ π is an F ](Γ)-optimal estimator for
(D, f).

Proof. Follows directly from Theorem 3.4 for f1 = f , f2 ≡ 1, P2 ≡ 1. This relies
on the trivial observation that (D, 1) is samplable relative to π iff D is samplable
relative to π.

F(Γ)-optimal estimators are also preserved.

Theorem 4.1. Consider (D, f), (E , g) distributional estimation problems and π a
precise strict pseudo-invertible F(Γ)-reduction of (D, f) to (E , g). Suppose P is an
F(Γ)-optimal estimator for (E , g). Then, P ◦ π is an F(Γ)-optimal estimator for
(D, f).

Proposition 4.1. Consider (D, f) a distributional estimation problem and P an
F(Γ)-optimal estimator for (D, f). Then, for any Q : {0, 1}∗ MΓ−−→ Q bounded
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E(x,y)∼DK×UKP
[(PK(x, y)−f(x))2] ≤ E(x,y)∼DK×UMK

Q
[(QK(x, y)−f(x))2] (mod F)

(4.1)

Proof. For any K ∈ Nn, choose

wK ∈ arg max
w∈supp MK

Q

E
(x,z)∼DK×UrK

Q
(w) [(QK(x, z, w)− f(x))2]

Construct Q̄ : {0, 1}∗ Γ−→ Q s.t.

rQ̄(K) = rKQ (wK)
Q̄K(x, z) = Q̄K(x, z, w)

Equation 2.5 for Q̄ implies 4.1.

Proposition 4.2. Consider {FK}K∈Nn, {GK1 }K∈Nn, {GK2 }K∈Nn uniformly bounded
families of random variables and suppose E[|GK1 −GK2 |] ∈ F . Then

E[(FK +GK1 )2] ≡ E[(FK +GK2 )2] (mod F) (4.2)

Proof.

E[(FK +GK1 )2]− E[(FK +GK2 )2] = E[(2FK +GK1 +GK2 )(GK1 −GK2 )]

|E[(FK +GK1 )2]− E[(FK +GK2 )2]| ≤ (2 supF + supG1 + supG2) E[|GK1 −GK2 |]

Proof of Theorem 4.1. Let σ be an F(MΓ)-sampler of D relative to π. Consider any
Q : {0, 1}∗ Γ−→ Q bounded. Applying Proposition 4.1 for P and Q ◦ σ, we get

EEK×UKP
[(PK − g)2] ≤ EEK×UKQ ×UMK

σ
[((Q ◦ σ)K − g)2] (mod F)

Using condition i of Definition 4.1

EπK∗ DK×UKP
[(PK − ḡ)2] ≤ EπK∗ DK×UKQ ×UMK

σ
[((Q ◦ σ)K − ḡ)2] (mod F)
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EπK∗ DK×UKP
[(PK − ḡ)2] ≤ EπK∗ DK×UMK

σ
[EUKQ

[((Q ◦ σ)K − ḡ)2]] (mod F)

The right hand side has the form of the right hand side in 3.25 enabling us to
apply Proposition 3.10 and get

EπK∗ DK×UKP
[(PK − ḡ)2] ≤ EDK×UKπ [EUKQ

[(QK − ḡ ◦ πK)2]] (mod F)

EDK×UKπ ×UKP
[((P ◦ π)K − ḡ ◦ πK)2] ≤ EDK×UKπ ×UKQ

[(QK − ḡ ◦ πK)2] (mod F)

By Proposition 4.2 and condition ii of Definition 4.1

EDK×UKπ ×UKP
[((P ◦ π)K − f)2] ≤ EDK×UKQ

[(QK − f)2] (mod F)

We now consider a more general type of reduction which only preserves the
function on average (the only difference is in condition ii):

Definition 4.2. Consider (D, f), (E , g) distributional estimation problems and
π : {0, 1}∗ Γ−→ {0, 1}∗. π is called a strict pseudo-invertible F(Γ)-reduction of (D, f)
to (E , g) when

(i) πK∗ DK ≡ EK (mod F)

(ii) Denote ḡ : {0, 1}∗ → R the extension of g by 0. We require

E(x,z)∼DK [|f(x)− EUKπ [g(πK(x, z))]|] ≡ 0 (mod F)

(iii) D is polynomial-time F(MΓ)-samplable relative to π.

Theorem 4.2. Suppose γ ∈ Γnpoly is s.t. γ− 1
2 ∈ F . Consider (D, f), (E , g) distri-

butional estimation problems, π a strict pseudo-invertible F(Γ)-reduction of (D, f)
to (E , g) and Pg an F ](Γ)-optimal estimator for (E , g). Assume γ(rP + rπ) ∈ ΓR.
Construct Pf s.t. for any {zi ∈ {0, 1}rπ(K)}i∈[γ(K)] and {wi ∈ {0, 1}rPg (K)}i∈[γ(K)]
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rPf (K) = γ(K)(rPg(K) + rπ(K)) (4.3)

PKf


x,

∏

i∈[γ(K)]
wizi


 = 1

γ(K)
∑

i∈[γ(K)]
PKg (πK(x, zi), wi) (4.4)

Then, Pf is an F ](Γ)-optimal estimator for (D, f).

Proposition 4.3. Consider γ ∈ Γnpoly, D a word ensemble and ḡ : {0, 1}∗ → R
bounded. Then,

E(x,z)∼DK×
∏
i∈[γ(K)] UKπ [|Ez∼UKπ [ḡ(πK(x, z))]− 1

γ(K)
∑

i∈[γ(K)]
ḡ(πK(x, zi))|] ≤

sup|ḡ|
γ(K) 1

2

(4.5)

Proof. Denote UK
γ := ∏

i∈[γ(K)] UK
π . Using |X| =

√
X2, applying Jensen’s inequality

to move the square root outside the second expectation, and partially pulling the
1

γ(K) out,

E[|E[ḡ(πK(x, z))]− 1
γ(K)

∑

i∈[γ(K)]
ḡ(πK(x, zi))|]

≤ 1√
γ(K)

EDK




√√√√√√√
1

γ(K) EUKγ







∑

i∈[γ(K)]
EUKπ [ḡ(πK(x, z))]− ḡ(πK(x, zi))




2






Because the zi are i.i.d, the sum of the variances is the variance of the sum, so

EUKγ







∑

i∈[γ(K)]
EUKπ [ḡ(πK(x, z))]− ḡ(πK(x, zi))




2

 = γ(K) VarUKπ [ḡ(πK(x, z))]

Substituting this into the previous equation, canceling γ(K), and using the fact
that

√
Var(X) ≤ sup|X|, we get

E[|E[ḡ(πK(x, z))]− 1
γ(K)

∑

i∈[γ(K)]
ḡ(πK(x, zi))|] ≤

sup|g|
γ(K) 1

2
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Proof of Theorem 4.2. Consider any S : {0, 1}∗ × Q Γ−→ Q bounded. Denote
UK
PS := UK

Pf
×UK

S . Using condition ii of Definition 4.2

EDK×UKPS
[(PKf (x)− f(x))S(x, PKf (x))]

≡ EDK×UKPS
[(PKf (x)− EUKπ [g(πK(x))])S(x, PKf (x))] (mod F)

Using the construction of Pf , the assumption on γ and Proposition 4.3, we get

E[(PKf − f)S] ≡ EDK×UKPS







1
γ(K)

∑

i∈[γ(K)]
PKg (πK(x, zi), wi)

− 1
γ(K)

∑

i∈[γ(K)]
ḡ(πK(x, zi))


S(x, PKf (x))


 (mod F)

E[(PKf − f)S] ≡
1

γ(K)
∑

i∈[γ(K)]
EDK×UKPS

[(PKg (πK(x, zi), wi)− ḡ(πK(x, zi)))S(x, PKf (x))] (mod F)

All the terms in the sum are equal, therefore

E[(PKf − f)S] ≡
EDK×UKPS

[(PKg (πK(x, z0), w0)− ḡ(πK(x, z0)))S(x, PKf (x))] (mod F)

Let σ be a polynomial-time F(MΓ)-sampler of D relative to π. Denote

DKπ := πK∗ DK

UK
0 :=




∏

i∈[γ(K)]
UK
Pg


×




∏

i∈[γ(K)]\0
UK
π


×UK

S ×UMK
σ

Applying Proposition 3.10 we get
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E[(PKf − f)S] ≡ EDKπ ×UK0

[
(PKg − ḡ)·

S


σK ,

1
γ(K)(PKg +

∑

i∈[γ(K)]\0
PKg (πK(σK , zi)))





 (mod F)

Using condition i of Definition 4.2, we get

E[(PKf − f)S] ≡ EEK×UK0

[
(PKg − g)·

S


σK ,

1
γ(K)(PKg +

∑

i∈[γ(K)]\0
PKg (πK(σK , zj)))





 (mod F)

Pg is a F ](Γ)-optimal estimator for (E , g), therefore

E[(PKf − f)S] ≡ 0 (mod F)

Above we showed that strict pseudo-invertible reductions preserve F ](Γ)-optimal
estimators. We will now see that they preserve F(Γ)-optimal estimators as well, as
Theorem 4.3 states.

Theorem 4.3. Suppose γ ∈ Γnpoly is s.t. γ− 1
2 ∈ F . Consider (D, f), (E , g) distri-

butional estimation problems, π a strict pseudo-invertible F(Γ)-reduction of (D, f)
to (E , g) and Pg an F(Γ)-optimal estimator for (E , g). Assume rP +γ rπ ∈ ΓR.
Construct Pf s.t. for any {zi ∈ {0, 1}rπ(K)}i∈[γ(K)] and w ∈ {0, 1}rPg (K)

rPf (K) = rPg(K) + γ(K) rπ(K) (4.6)

PKf


x,w

∏

i∈[γ(K)]
zi


 = 1

γ(K)
∑

i∈[γ(K)]
PKg (πK(x, zi), w) (4.7)

Then, Pf is an F(Γ)-optimal estimator for (D, g).

Proposition 4.4. Consider F a bounded random variable and s, t ∈ R. Then

E[(F − s)2 − (F − t)2] = (E[F ]− s)2 − (E[F ]− t)2 (4.8)

632



Optimal Polynomial-Time Estimators

Proof.
E[(F − s)2 − (F − t)2] = E[(2F − s− t)(t− s)]

E[(F − s)2 − (F − t)2] = (2 E[F ]− s− t)(t− s)

E[(F − s)2 − (F − t)2] = (E[F ]− s)2 − (E[F ]− t)2

Proof of Theorem 4.3. Let σ be an F(MΓ)-sampler of D relative to π. Consider any
Qf : {0, 1}∗ Γ−→ Q bounded. Construct Qg : {0, 1}∗ MΓ−−→ Q s.t. for any zσ ∈ UMK

σ ,
zQ ∈ {0, 1}rQf (K), zπ ∈ {0, 1}γ(K) rπ(K) and zg ∈ {0, 1}rPg (K)

MK
Qg = c4

∗(MK
σ ×MK

Qf
×MK

π ×MK
Pg)

rKQg(〈zσ1, aQf (K), aπ(K), aPg(K)〉) = rKσ (zσ1) + rQf (K) + γ(K) rπ(K) + rPg(K)

QKg (x, zσ0zQzπzg, 〈zσ1, aQf (K), aπ(K), aPg(K)〉)
= QKf (σK(x, zσ), zQ)− PKf (σK(x, zσ), zgzπ) + PKg (x, zg)

Applying Proposition 4.1 for Pg and Qg, we get

EEK×UKPg
[(PKg − g)2] ≤ EEK×UMK

Qg
[(QKg − g)2] (mod F)

Using condition i of Definition 4.2

EπK∗ DK×UKPg
[(PKg − ḡ)2] ≤ EπK∗ DK×UMK

Qg
[(QKg − ḡ)2] (mod F)

EπK∗ DK×UKPg
[(PKg −ḡ)2] ≤ EπK∗ DK×UMK

Qg
[((Qf ◦σ)K−(Pf ◦σ)K+PKg −ḡ)2] (mod F)

The right hand side has the form of the right hand side in 3.25 enabling us to
apply Proposition 3.10 and get

EDK×UKπ ×UKPg
[((Pg ◦ π)K − ḡ ◦ πK)2]

≤ EDK×UKπ ×UKQf ×UKPf
[(QKf − PKf + (Pg ◦ π)K − ḡ ◦ πK)2] (mod F)
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We can consider the expressions within the expected values on both sides as
random variables w.r.t. UK

π while fixing the other components of the distribution.
This allows us applying Proposition 4.4 to the difference between the right hand
side and the left hand side (with the terms that don’t depend on UK

π playing the
role of the constants), which results in moving the expected value over UK

π inside
the squares. Let UK

PQ := UK
Qf
×UK

Pf
.

EDK×UKPg
[EUKπ [(Pg ◦ π)K − ḡ ◦ πK ]2]

≤ EDK×UKPQ
[(QKf − PKf + EUKπ [(Pg ◦ π)K − ḡ ◦ πK ])2] (mod F)

EDK×UKPg
[(EUKπ [(Pg ◦ π)K ]− EUKπ [ḡ ◦ πK ])2]

≤ EDK×UKPQ
[(QKf − PKf + EUKπ [(Pg ◦ π)K ]− EUKπ [ḡ ◦ πK ])2] (mod F)

We now apply Proposition 4.2 via condition ii of Definition 4.2

EDK×UKPg
[(EUKπ [(Pg ◦ π)K ]− f)2]

≤ EDK×UKPQ
[(QKf − PKf + EUKπ [(Pg ◦ π)K ]− f)2] (mod F)

Denote yi := πK(x, zi) where the zi are sampled independently from UK
π . Ap-

plying Proposition 4.2 via Proposition 4.3 and the assumption on γ, we get

EDK×UKPf







1
γ(K)

∑

i∈[γ(K)]
PKg (yi)− f




2



≤ EDK×UKPQ





QKf − PKf + 1

γ(K)
∑

i∈[γ(K)]
PKg (yi)− f




2

 (mod F)

EDK×UKPf
[(PKf − f)2] ≤ EDK×UKPQ

[(QKf − PKf + PKf − f)2] (mod F)

EDK×UKPf
[(PKf − f)2] ≤ EDK×UKQf

[(QKf − f)2] (mod F)
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4.2 Dominance
Next, we consider a scenario in which the identity mapping can be regarded as a valid
reduction between distributional estimation problems that have the same function
but different word ensembles.

Definition 4.3. Consider D, E word ensembles. D is said to be F(Γ)-dominated by
E when there is W : {0, 1}∗ Γ−→ Q≥0 bounded s.t.

∑

x∈{0,1}∗
|EK(x) EUKW

[WK(x)]−DK(x)| ∈ F (4.9)

In this case, W is called a Radon-Nikodym F(Γ)-derivative of D w.r.t. E .

Proposition 4.5. Consider D, E word ensembles, f : suppD ∪ supp E → R bounded
and P an F ](Γ)-optimal estimator for (E , f). Suppose D is F(Γ)-dominated by E.
Then, P is an F ](Γ)-optimal estimator for (D, f).

Proof. Let W be a Radon-Nikodym F(Γ)-derivative of D w.r.t. E . Consider any
S : {0, 1}∗ ×Q Γ−→ Q bounded.

EEK×UKP ×UKW ×UKS
[(PK(x)− f(x))WK(x)SK(x, PK(x))] ≡ 0 (mod F)

∑

x∈{0,1}∗
EK(x) EUKW

[WK(x)] EUKP ×UKS
[(PK(x)− f(x))SK(x, PK(x))] ≡ 0 (mod F)

∑

x∈{0,1}∗
(EK(x) EUKW

[WK(x)]−DK(x) +DK(x))·

EUKP ×UKS
[(PK(x)− f(x))SK(x, PK(x))] ≡ 0 (mod F)

∑

x∈{0,1}∗
(EK(x) EUKW

[WK(x)]−DK(x)) EUKP ×UKS
[(PK − f)SK ]

+
∑

x∈{0,1}∗
DK(x) EUKP ×UKS

[(PK − f)S] ≡ 0 (mod F)
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EDK×UKP ×UKS
[(PK − f)S] ≡

−
∑

x∈{0,1}∗
(EK(x) EUKW

[WK(x)]−DK(x)) EUKP ×UKS
[(PK − f)SK ] (mod F)

|EDK×UKP ×UKS
[(PK − f)S]| ≤

(sup|P |+ sup|f |) sup|S|
∑

x∈{0,1}∗
|EK(x) EUKW

[WK(x)]−DK(x)| (mod F)

EDK×UKP ×UKS
[(PK − f)S] ≡ 0 (mod F)

The corresponding statement for F(Γ)-optimal estimators may be regarded as a
generalization of Corollary 2.1.

Proposition 4.6. Assume F is ΓA-ample. Consider D, E word ensembles,
f : suppD ∪ supp E → R bounded and P an F(Γ)-optimal estimator for (E , f). Sup-
pose D is F(Γ)-dominated by E. Then, P is an F(Γ)-optimal estimator for (D, f).

Proof. Let W be a Radon-Nikodym F(Γ)-derivative of D w.r.t. E . Consider any
Q : {0, 1}∗ Γ−→ Q bounded. According to Proposition 2.12

EEK×UKW ×UKP
[WK(x)(PK(x)− f(x))2]

≤ EEK×UKW ×UKQ
[WK(x)(QK(x)− f(x))2] (mod F)

∑

x∈{0,1}∗
EK(x) EUKW

[WK(x)] EUKP
[(PK(x)− f(x))2]

≤
∑

x∈{0,1}∗
EK(x) EUKW

[WK(x)] EUKQ
[(QK(x)− f(x))2] (mod F)

Using the assumption on W

636



Optimal Polynomial-Time Estimators

∑

x∈{0,1}∗
DK(x) EUKP

[(PK(x)− f(x))2]

≤
∑

x∈{0,1}∗
DK(x) EUKQ

[(QK(x)− f(x))2] (mod F)

EDK×UKP
[(PK(x)− f(x))2] ≤ EDK×UKQ

[(QK(x)− f(x))2] (mod F)

4.3 Ensemble pullbacks
Finally, we consider another scenario in which the identity mapping is a valid reduc-
tion. This scenario is a simple re-indexing of the word ensemble (redefinition of the
security parameters). For the remainder of section 4, we fix some m ∈ N. Note that
is important that the growth spaces for the resources and fall space for the error,
after reindexing, lie in the growth spaces and fall space of the new problem.

Definition 4.4. We denote Γmnpoly := {γ : Nm → Nn | ∀i ∈ [n] : γi ∈ Γmpoly}.

Definition 4.5. Consider Γ∗ a growth space of rank n and α ∈ Γmnpoly. We introduce
the notation

Γ∗α := {γα : Nm → R≥0 | ∃γ ∈ Γ∗ : γα ≤ γ ◦ α} (4.10)

Obviously Γ∗α is a growth space of rank m.
We also denote Γα := (ΓRα,ΓAα).

Definition 4.6. Consider α ∈ Γmnpoly. We introduce the notation

Fα := {εα : Nm → R≥0 bounded | ∃ε ∈ F : εα ≤ ε ◦ α} (4.11)

Proposition 4.7. For any α ∈ Γmnpoly, Fα is a fall space.

Proof. Conditions i and ii are obvious. To verify condition iii, consider
h ∈ N[K0,K1 . . .Kn−1] s.t. 2−h ∈ F . Note that since the coefficients of h are
non-negative it is non-decreasing in all arguments. Consider p : Nm → Nn a poly-
nomial map s.t. for any i ∈ [n], αi ≤ pi. We have 2−h◦p ≤ 2−h◦α and therefore
2−h◦p ∈ Fα.

637



Kosoy and Appel

Definition 4.7. Consider D a word ensemble of rank n and α : Nm → Nn. The pull-
back of D by α, denoted Dα, is the word ensemble of rankm given by (Dα)k := Dα(k).

Definition 4.8. Consider X, Y encoded sets, S : X Γ−→ Y and α : Nm alg−−→ Nn s.t.
α ∈ Γmnpoly as a function and Tα ∈ Γmpoly. We define Sα : X Γα−−→ Y by requiring that
for any L ∈ Nm, rSα(L) = rS(α(L)) and (Sα)L(x, y) = Sα(L)(x, y).

Proposition 4.8. Consider X, Y encoded sets, α : Nm alg−−→ Nn and β ∈ Γnmpoly. As-
sume that Tα ∈ Γmpoly and ∀L ∈ Nm : β(α(L)) = L. Then, for any S : X Γα−−→ Y there
is S̃ : X Γ−→ Y s.t. for all K ∈ Nn that satisfy α(β(K)) = K, x ∈ X and y, z ∈ {0, 1}∗

aS̃(K) = aS(β(K)) (4.12)

rK
S̃

(z) = rβ(K)
S (z) (4.13)

S̃K(x, y, z) = Sβ(K)(x, y, z) (4.14)

Proof. To see there is no obstruction of time complexity, note that β can be com-
puted by some β∗ : Nn alg−−→ Nm s.t. Tβ∗ ∈ Γnpoly. Given input K, β∗ works by it-
erating over all L within some polynomial size range (thanks to the assumption
β ∈ Γnmpoly) and checking the condition α(L) = K.

To see there are no obstructions of random or advice complexity, note there is
γR ∈ ΓR s.t. rS(L) ≤ γR(α(L)) and γA ∈ ΓA s.t. |aS(L)| ≤ γA(α(L)). In particular,
if K ∈ Nn is s.t. α(β(K)) = K then rS(β(K)) ≤ γR(K) and |aS(β(K))| ≤ γA(K).

Definition 4.9. α : Nm alg−−→ Nn is called an efficient injection when α ∈ Γmnpoly as a
function, Tα ∈ Γmpoly and there is β ∈ Γnmpoly s.t. ∀L ∈ Nm : β(α(L)) = L.

Proposition 4.9. Consider (D, f) a distributional estimation problem of rank n,
P an F ](Γ)-optimal estimator for (D, f) and α : Nm alg−−→ Nn an efficient injection.
Then, Pα is an Fα](Γα)-optimal estimator for (Dα, f).

Proof. Consider any S : {0, 1}∗ ×Q Γα−−→ Q bounded. Construct S̃ : {0, 1}∗ ×Q Γ−→ Q
by applying Proposition 4.8 to S. There is ε ∈ F s.t. for any K ∈ Nn

|EDK×UKP ×UK
S̃

[(PK(x, y)− f(x))S̃K(x, PK(x, y), z)]| = ε(K)

Substituting α(L) for K, we get
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|EDα(L)×Uα(L)
P ×Uα(L)

S̃

[(Pα(L)(x, y)− f(x))S̃α(L)(x, Pα(L)(x, y), z)]| = ε(α(L))

|E(Dα)L×ULPα ×Uα(L)
S̃

[((Pα)L(x, y)− f(x))S̃α(L)(x, (Pα)L(x, y), z)]| = ε(α(L))

We have α(β(α(L)) = α(L), therefore

|E(Dα)L×ULPα ×Uβ(α(L))
S

[((Pα)L(x, y)− f(x))Sβ(α(L))(x, (Pα)L(x, y), z)]| = ε(α(L))

|E(Dα)L×ULPα ×ULS
[((Pα)L(x, y)− f(x))SL(x, (Pα)L(x, y), z)]| = ε(α(L))

Proposition 4.10. Consider (D, f) a distributional estimation problem of rank n,
P an F(Γ)-optimal estimator for (D, f) and α : Nm alg−−→ Nn an efficient injection.
Then, Pα is an Fα(Γα)-optimal estimator for (Dα, f).

Proof. Consider any Q : {0, 1}∗ Γα−−→ Q bounded. Construct Q̃ : {0, 1}∗ Γ−→ Q by ap-
plying Proposition 4.8 to Q. There is ε ∈ F s.t.

EDK×UKP
[(PK(x, y)− f(x))2] ≤ EDK×UK

Q̃
[(Q̃K(x, y)− f(x))2] + ε(K)

Substituting α(L) for K, we get

EDα(L)×Uα(L)
P

[(Pα(L)(x, y)− f(x))2] ≤ EDα(L)×Uα(L)
Q̃

[(Q̃α(L)(x, y)− f(x))2] + ε(α(L))

E(Dα)L×ULPα
[((Pα)L(x, y)− f(x))2] ≤ E(Dα)L×Uα(L)

Q̃

[(Q̃α(L)(x, y)− f(x))2] + ε(α(L))

We have α(β(α(L)) = α(L), therefore
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E(Dα)L×ULPα
[((Pα)L(x, y)− f(x))2] ≤

E(Dα)L×Uβ(α(L))
Q

[(Qβ(α(L))(x, y)− f(x))2] + ε(α(L))

E(Dα)L×ULPα
[((Pα)L(x, y)− f(x))2] ≤ E(Dα)L×ULQ

[(QL(x, y)− f(x))2] + ε(α(L))

4.4 Lax pseudo-invertible reductions
We now consider compositions of reductions of different types. For the remainder
of the section, we fix G, a fall space of rank m.

Definition 4.10. Consider (D, f) a distributional estimation problem of rank m,
(E , g) a distributional estimation problem of rank n, α : Nm alg−−→ Nn an efficient injec-
tion and π : {0, 1}∗ Γα−−→ {0, 1}∗. π is called a precise pseudo-invertible G(Γ)-reduction
of (D, f) to (E , g) over α when

(i) π∗D is G(Γα)-dominated by Eα.

(ii) Denote ḡ : {0, 1}∗ → R the extension of g by 0. We require

E(x,z)∼DK×UKπ [|f(x)− ḡ(πK(x, z))|] ≡ 0 (mod G)

(iii) D is G(MΓα)-samplable relative to π.

Corollary 4.2. Consider (D, f) a distributional estimation problem of rank m,
(E , g) distributional estimation problem of rank n, α : Nm alg−−→ Nn an efficient in-
jection and π a precise pseudo-invertible G(Γ)-reduction of (D, f) to (E , g) over α.
Assume Fα ⊆ G. Suppose P is an F ](Γ)-optimal estimator for (E , g). Then, Pα ◦π
is a G](Γα)-optimal estimator for (D, f).

Proof. By Proposition 4.9, Pα is an Fα](Γα)-optimal estimator (and in particular
a G](Γα)-optimal estimator) for (Eα, g). By Proposition 4.5 and condition i of Def-
inition 4.10, Pα is also a G](Γα)-optimal estimator for (π∗D, g). By Corollary 4.1
and conditions ii and iii of Definition 4.10, Pα ◦ π is a G](Γα)-optimal estimator for
(D, f).
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Corollary 4.3. Consider (D, f) a distributional estimation problem of rank m,
(E , g) distributional estimation problem of rank n, α : Nm alg−−→ Nn an efficient in-
jection and π a precise pseudo-invertible G(Γ)-reduction of (D, f) to (E , g) over α.
Assume Fα ⊆ G and G is ΓAα-ample. Suppose P is an F(Γ)-optimal estimator for
(E , g). Then, Pα ◦ π is a G(Γα)-optimal estimator for (D, f).

Proof. Completely analogous to proof of Corollary 4.2.

Definition 4.11. Consider (D, f) a distributional estimation problem of rank m,
(E , g) a distributional estimation problem of rank n, α : Nm alg−−→ Nn an efficient in-
jection and π : {0, 1}∗ Γα−−→ {0, 1}∗. π is called a pseudo-invertible G(Γ)-reduction of
(D, f) to (E , g) over α when

(i) π∗D is G(Γα)-dominated by Eα.

(ii) Denote ḡ : {0, 1}∗ → R the extension of g by 0. We require

E(x,z)∼DK [|f(x)− EUKπ [g(πK(x, z))]|] ≡ 0 (mod G)

(iii) D is G(MΓα)-samplable relative to π.

The following corollaries are completely analogous to Corollary 4.2 and there-
fore given without proof. We also drop the explicit constructions of the optimal
polynomial-time estimators which are obviously modeled on Theorem 4.2 and The-
orem 4.3.

Corollary 4.4. Consider (D, f) a distributional estimation problem of rank m,
(E , g) distributional estimation problem of rank n, α : Nm alg−−→ Nn an efficient in-
jection and π a pseudo-invertible G(Γ)-reduction of (D, f) to (E , g) over α. Assume
Fα ⊆ G. Suppose there exist P an F ](Γ)-optimal estimator for (E , g) and γ ∈ Γmpoly
s.t. γ− 1

2 ∈ G and γ(rP ◦α+ rπ) ∈ ΓRα. Then, there exists a G](Γα)-optimal estima-
tor for (D, f).

Corollary 4.5. Consider (D, f) a distributional estimation problem of rank m,
(E , g) distributional estimation problem of rank n, α : Nm alg−−→ Nn an efficient in-
jection and π a pseudo-invertible G(Γ)-reduction of (D, f) to (E , g) over α. Assume
Fα ⊆ G and G is ΓAα-ample. Suppose there exist P an F(Γ)-optimal estimator
for (E , g) and γ ∈ Γmpoly s.t. γ− 1

2 ∈ G and rP ◦α+ γ rπ ∈ ΓRα. Then, there exists a
G(Γα)-optimal estimator for (D, f).

Note that the last results involved passing from fall space F and growth spaces
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Γ to fall space G and growth spaces Γα, however in many natural examples m = n,
G = F and Γα = Γ. In particular, the following propositions are often applicable.

Proposition 4.11. Assume Γ∗ is a growth space of rank n s.t. for any γ ∈ Γ∗ and
α ∈ Γnnpoly, γ ◦ α ∈ Γ∗. Let α∗, β∗ ∈ Γnnpoly be s.t. β∗(α∗(K)) = K. Then, Γ∗α∗ = Γ∗.

Proof. For any γα ∈ Γ∗α∗ there is γ ∈ Γ∗ s.t. γα ≤ γ ◦ α ∈ Γ∗. Conversely, for any
γ ∈ Γ∗ we have γ = γ ◦ β ◦ α ∈ Γ∗α∗.

Proposition 4.12. Consider r : Nn → N steadily growing and
p ∈ N[K0,K1 . . .Kn−1] increasing in the last argument. Define αp : Nn → N
by ∀J ∈ Nn−1, k ∈ N : αp(J, k) = (J, p(J, k)). Then, Γrαp = Γr.

Proof. Consider γα ∈ Γrαp. There is γ ∈ Γr s.t. γα ≤ γ ◦ αp.
There is q ∈ N[K0,K1 . . .Kn−1] s.t. γ(J, k) ≤ r(J, q(J, k)). We get
γα(J, k) ≤ γ(J, p(J, k)) ≤ r(J, q(J, p(J, k))) and therefore γα ∈ Γr. Conversely,
consider γ′ ∈ Γr. There is q′ ∈ N[K0,K1 . . .Kn−1] s..t γ′(J, k) ≤ r(J, q′(J, k)).
p(J, k) ≥ k and r is non-decreasing in the last argument, implying that r ≤ r ◦ αp.
We conclude that γ′(J, k) ≤ r(J, p(J, q′(J, k))) and therefore γ′ ∈ Γrαp.

4.5 Completeness

Fix r, s : Nn alg−−→ N s.t.

(i) Tr,Ts ∈ Γnpoly

(ii) r and s are steadily growing.

(iii) ∀K ∈ Nn : 1 ≤ r(K) ≤ s(K)

Denote Γdet := (Γn0 ,Γn0 ), Γred := (Γr,Γn0 ), Γsmp := (Γs,Γn0 ).
We will show that certain classes of functions paired with F(Γsmp)-samplable

word ensembles have a distributional estimation problem which is complete w.r.t.
precise pseudo-invertible F(Γred)-reductions. This construction is an adaption of the
standard construction of a complete problem for SampNP, as provided in Theorem
10.25 of [12].

Due to the large number of variables and functions in the following theorem,
some intuitive exposition of the result seems helpful. A universal function F will
be considered, which takes three inputs. There is an element φ of some encoded
set E that tells F which (possibly hard-to-compute) function f to emulate, a time
parameter k which controls the computational resources used in emulating f , and a
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bit string x which is just the input to f . When k is sufficiently large, and b is chosen
appropriately, F(b, k, x) = f(x). The distribution DF is over 4-element tuples of a
bit string (which dictates what f is), the last coordinate of K (k), which serves as
a time parameter, a bit string a (which can be interpreted as a sampler), and a bit
string x (which is the output of the sampler when run for k steps.

For samplable distributions D, and functions f which have a corresponding b
that makes F emulate them, there is a reduction to this universal problem. Observe
that if D is samplable, there is some bit string a which encodes a turing machine
that samples from D. The reduction maps x to the tuple (b, p(K), a, x), and then
reindexes. (In particular, to ensure that the time parameter is large enough to fully
run the sampler.)

Theorem 4.4. Consider an encoded set E which is prefix-free, i.e. for all φ, ψ ∈ E
and z ∈ {0, 1}>0, cE(φ) 6= cE(ψ)z. Consider F : E × N× {0, 1}∗ → R bounded. For
any K ∈ Nn, define ζK : {0, 1}∗2 → {0, 1}∗2 by

ζK(a,w) = (a, evKn−1(a; cNn(K), w)) (4.15)
Define the distributional estimation problem (DF, fF) by

DKF := c4
∗(Ur(K)× cN∗ δKn−1 × ζk∗ (Ur(K)×Us(K))) (4.16)

fF(〈b, cN(k), a, x〉) :=




F(φ, k, x) if ∃z ∈ {0, 1}∗ : b = cE(φ)z
0 if ∀φ ∈ E, z ∈ {0, 1}∗ : b 6= cE(φ)z

(4.17)

For any p ∈ N[K0,K1 . . .Kn−1], define αp : Nn → Nn by

∀J ∈ Nn−1, k ∈ N : αp(J, k) = (J, p(J, k)) (4.18)
Consider a distributional estimation problem (D, f) s.t. D is F(Γsmp)-samplable

and there are φ ∈ E and q ∈ N[k] s.t. for any x ∈ suppD and k ≥ q(|x|),
f(x) = F(φ, k, x). Then, there is a precise pseudo-invertible F(Γred)-reduction from
(D, f) to (DF, fF) over αp for some p ∈ N[K0,K1 . . .Kn−1] increasing in the last
argument (it is easy to see that any such αp is an efficient injection).

Proof. Let σ be an F(Γsmp)-sampler of D. Denote b = cE(φ). Choose
p ∈ N[K0,K1 . . .Kn−1] increasing in the last argument and a ∈ {0, 1}∗ s.t. for any
K ∈ Nn, z ∈ {0, 1}∗, w1 ∈ {0, 1}rσ(K) and w2 ∈ {0, 1}∗: p(K) ≥ q(maxx∈suppσK• |x|),
r(αp(K)) ≥ |b|, r(αp(K)) ≥ |a|, s(αp(K)) ≥ rσ(K) and

evp(K)(az; cNn(αp(K)), w1w2) = σK(w1)
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The latter is possible because αp can be efficiently inverted using binary search
over Kn−1.

Denote rp := r ◦ αp. Note that Γredαp = Γred by Proposition 4.12. We construct
π : {0, 1}∗ Γred−−→ {0, 1}∗ s.t. for any K ∈ Nn, x ∈ suppσK• , zb ∈ {0, 1}rp(K)−|b| and
za ∈ {0, 1}rp(K)−|a|

rπ(K) = 2rp(K)− |a| − |b| (4.19)
πK(x, zbza) = 〈bzb, cN(p(K)), aza, x〉 (4.20)

We also ensure that for any K ∈ Nn, x ∈ {0, 1}∗ and zb, za as above, either 4.20
holds or

πK(x, zbza) = λ

To verify condition i of Definition 4.10 (with αp playing the role of the efficient in-
jection), fix h ∈ N[K0,K1 . . .Kn−1] s.t. h ≥ rp and suppσK• ⊆ {0, 1}h(K). Construct
W : {0, 1}∗ Γdet−−→ Q≥0 s.t.

WK(y) =





2|a|+|b| if ∃zb, za, x ∈ {0, 1}≤h(K) : y = 〈bzb, cN(p(K)), aza, x〉
0 otherwise

DK ≡ σK• (mod F) since σ is an F(Γsmp)-sampler of D. By Proposition 3.6

πK∗ DK ≡ πK∗ σK• (mod F)

It follows that

∑

y∈{0,1}∗
|Dαp(K)

F (y)WK(y)− (πK∗ DK)(y)| ≡

∑

y∈{0,1}∗
|Dαp(K)

F (y)WK(y)− (πK∗ σK• )(y)| (mod F)

For any y ∈ {0, 1}∗, if WK(y) = 0 then (πK∗ σK• )(y) = 0, so the correspond-
ing terms contribute nothing to the sum on the right hand side. Denote
π̄K(x, zb, za) := 〈bzb, cN(p(K)), aza, x〉.
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∑

{0,1}∗
|Dαp(K)

F WK − πK∗ DK | ≡

∑

zb∈{0,1}≤h(K)

za∈{0,1}≤h(K)

x∈{0,1}≤h(K)

|Dαp(K)
F (π̄K(x, zb, za))2|a|+|b| − (πK∗ σK• )(π̄K(x, zb, za))| ≡

∑

zb∈{0,1}rp(K)−|b|

za∈{0,1}rp(K)−|a|

x∈{0,1}≤h(K)

|2−rp(K)2−rp(K)σK• (x)2|a|+|b| − (πK∗ σK• )(π̄K(x, zb, za))| ≡

∑

z1∈{0,1}rp(K)−|a|

z2∈{0,1}rp(K)−|b|

x∈{0,1}≤h(K)

|2−2rp(K)+|a|+|b|σK• (x)− (πK∗ σK• )(π̄K(x, zb, za))| ≡

∑

z1∈{0,1}rp(K)−|a|

z2∈{0,1}rp(K)−|b|

x∈{0,1}≤h(K)

|2−2rp(K)+|a|+|b|σK• (x)− 2−(rp(K)−|a|)2−(rp(K)−|b|)σK• (x)| ≡

0 (mod F)

To verify condition ii of Definition 4.10, use Proposition 3.4 to get

EDK×UKπ [|f(x)− fF(πK(x, z))|] ≡ EσK• ×UKπ [|f(x)− fF(πK(x, z))|] (mod F)

EDK×UKπ [|f(x)− fF(πK(x, z))|]
≡ EσK• ×UKπ [|f(x)− fF(〈bzb, cN(p(K)), aza, x〉)|] (mod F)

EDK×UKπ [|f(x)−fF(πK(x, z))|] ≡ EσK• ×UKπ [|F(φ, p(K), x)−F(φ, p(K), x)|] (mod F)

EDK×UKπ [|f(x)− fF(πK(x, z))|] ≡ 0 (mod F)

To verify condition iii of Definition 4.10, construct τ : {0, 1}∗ Γdet−−→ {0, 1}∗ s.t. for
any z1, z2 ∈ {0, 1}rp(K) and x ∈ suppσK• , τK(〈z1, cN(p(K)), z2, x〉) = x. By Propo-
sition 3.6 and Proposition 3.4
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Ey∼πK∗ DK [dtv(DK | (πK)−1(y), τKy )]
≡ Ey∼πK∗ σK• [dtv(DK | (πK)−1(y), τKy )] (mod F)

Denoting UK
ba := Urp(K)−|b|×Urp(K)−|a|

E[dtv(DK | (πK)−1(y), τKy )]
≡ E(zb,za,x)∼UKba×σK• [dtv(DK | (πK)−1(π̄K(x, zb, za)), τKπ̄K(x,zb,za))] (mod F)

E[dtv(DK | (πK)−1(y), τKy )] ≡ E(zb,za,x)∼UKba×σK• [dtv(δx, δx)] (mod F)

E[dtv(DK | (πK)−1(y), τKy )] ≡ 0 (mod F)

Denote XF the set of bounded functions f : D → R (where D ⊆ {0, 1}∗) satisfy-
ing the conditions of Theorem 4.4, and SampXF[F(Γsmp)] the set of distributional
estimation problems of the form (D, f) for F(Γsmp)-samplable D and f ∈ XF. Obvi-
ously DF is F(Γsmp)-samplable. Therefore, if fF ∈ XF then (DF, fF) is complete for
SampXF[F(Γsmp)] w.r.t. precise pseudo-invertible F(Γred)-reductions over efficient
injections of the form αp.

Example 4.1. n = 1. ENP ⊆ {0, 1}∗ is the set of valid programs for the universal
machine U2. FNP is given by

FNP(φ, k, x) :=





1 if ∃y ∈ {0, 1}k : evk(φ;x, y) = 1
0 otherwise

(4.21)

Example 4.2. n = 1. EEXP ⊆ {0, 1}∗ is the set of valid programs for the universal
machine U1. FEXP is given by

FEXP(φ, k, x) :=





1 if ev2k(φ;x) = 1
0 otherwise

(4.22)

This completeness property implies that, under certain assumptions, optimal
polynomial-time estimators exist for all problems in SampXF[F(Γsmp)] if an optimal
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polynomial-time estimator exists for (DF, fF). More precisely and slightly more
generally, we have the following corollaries. For the remainder of the section, fix
m ∈ N s.t. m ≥ n. For any p ∈ N[K0,K1 . . .Kn−1], define βp : Nm → Nm by

∀J ∈ Nn−1, k ∈ N, L ∈ Nm−n : βp(J, k, L) = (J, p(J, k), L) (4.23)

Define η : Nm → Nn by

∀K ∈ Nn, L ∈ Nm−n : η(K,L) = K (4.24)

Corollary 4.6. Fix F (m) a fall space of rank m and Γm = (ΓmR ,ΓmA ) growth spaces
of rank m. Assume that Fη ⊆ F (m), Γrη ⊆ ΓmR and for any p ∈ N[K0,K1 . . .Kn−1]
increasing in the last argument, F (m)βp ⊆ F (m), ΓmRβp = ΓmR and ΓmA βp = ΓmA . In
the setting of Theorem 4.4, assume there is an F (m)](Γm)-optimal estimator for
(DηF, fF). Then, for any (D, f) ∈ SampXF[F(Γsmp)] there is an F (m)](Γm)-optimal
estimator for (Dη, f).

Proof. According to Theorem 4.4, there is π a precise pseudo-invertible F(Γred)-
reduction of (D, f) to (DF, fF) over αp for some p ∈ N[K0,K1 . . .Kn−1] increasing in
the last argument. This implies πη is a precise pseudo-invertible F (m)(Γm)-reduction
of (Dη, f) to (DηF, fF) over βp. Applying Corollary 4.2, we get the desired result.

Corollary 4.7. Fix F (m) a fall space of rank m and Γm = (ΓmR ,ΓmA ) growth spaces
of rank m s.t. F (m) is ΓmA -ample. Assume that Fη ⊆ F (m), Γrη ⊆ ΓmR and for any
p ∈ N[K0,K1 . . .Kn−1] increasing in the last argument, F (m)βp ⊆ F (m), ΓmRβp = ΓmR
and ΓmA βp = ΓmA . In the setting of Theorem 4.4, assume there is an F (m)(Γm)-
optimal estimator for (DηF, fF). Then, for any (D, f) ∈ SampXF[F(Γsmp)] there is
an F (m)(Γm)-optimal estimator for (Dη, fφ).

Proof. Completely analogous to proof of Corollary 4.6.

In particular, the conditions of Corollary 4.6 and Corollary 4.7 can hold
for F = Fζ (the fall space of functions which are O(ζ); see Example 2.7) and
F (m) = F (ϕ)

uni (see Example 2.8):

Proposition 4.13. Consider ϕ : Nn → N non-decreasing in the last argument s.t.
ϕ ≥ 3. Define ζ : Nn → R by
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ζ(K) :=
log log(3 +∑

i∈[n]Ki)
log logϕ(K) (4.25)

Assume ζ is bounded and there is h ∈ N[K0,K1 . . .Kn−1] s.t. ζ ≥ 2−h. Let
m = n+ 1. Then, Fζη ⊆ F (ϕ)

uni and for any p ∈ N[K0,K1 . . .Kn−1] increasing in the
last argument, F (ϕ)

uni βp ⊆ F
(ϕ)
uni .

Proof. Consider any ε0 ∈ Fζ .

ϕ(K)−1∑

l=2

ε0(K)
l log l ≤

3
2(log 3)ε0(K)

∫ ϕ(K)

2

dt
t log t

ϕ(K)−1∑

l=2

ε0(K)
l log l ≤

3
2(log 3)(ln 2)2ε0(K) log logϕ(K)

For some M0 ∈ R>0, ε0 ≤M0ζ, therefore

ϕ(K)−1∑

l=2

ε0(K)
l log l ≤

3
2(log 3)(ln 2)2M0ζ(K) log logϕ(K)

ϕ(K)−1∑

l=2

ε0(K)
l log l ≤

3
2(log 3)(ln 2)2M0 log log(3 +

∑

i∈[n]
Ki)

We got ε0 ◦ η ∈ F (ϕ)
uni . Now, consider any ε1 ∈ F (ϕ)

uni and p ∈ N[K0,K1 . . .Kn−1]
increasing in the last argument. Clearly, p(K) ≥ Kn−1.

ϕ(J,k)−1∑

l=2

ε1(J, p(J, k), l)
l log l ≤

ϕ(J,p(J,k))−1∑

l=2

ε1(J, p(J, k), l)
l log l

For some M1 ∈ R>0 and q ∈ N[K0,K1 . . .Kn−1]

ϕ(J,k)−1∑

l=2

ε1(J, p(J, k), l)
l log l ≤M1 log log q(J, p(J, k))

We got ε1 ◦ βp ∈ F (ϕ)
uni .
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5 Existence and uniqueness
5.1 Existence
5.1.1 Positive results

We give two existence theorems for F (n)
uni (Γ)-optimal estimators (the fall space F (n)

uni
was defined in Example 2.8). Theorem 5.1 shows that, for appropriate steadily
growing functions r and l, all distributional estimation problems of rank n− 1 ad-
mit F (n)

uni (Γr,Γl)-optimal estimators when trivially extended to rank n. The extra
parameter serves to control the resources available to the estimator. To illustrate
its significance using the informal14 example from the introduction, observe that the
question “what is the probability 7614829 is prime?” should depend on the amount
of available time. For example, we can use additional time to test for divisibility by
additional smaller primes (or in some more clever way) until eventually we are able
to test primality and assign a probability in {0, 1}.

However, in general the estimators constructed in Theorem 5.1 are non-uniform
because they rely on the advice string to emulate the Q with the lowest Brier score.
Theorem 5.2 shows that, under certain stronger assumptions on r and l, for samplable
distributional estimation problems there is an estimator which requires only as much
advice as the sampler. In particular, the existence of a uniform sampler implies the
existence of a uniform F (n)

uni (Γr,Γl)-optimal estimator.
We will use the notation η : Nn → Nn−1 defined by

∀J ∈ Nn−1, k ∈ N : η(J, k) = J

Theorem 5.1. Fix l : Nn → N>0 steadily growing. Denote Γnadv := (Γn0 ,Γl). Fix
r : 1 Γadv−−−→ N steadily growing. Assume ΓR = Γr, ΓA = Γl. Consider (D, f) a distri-
butional estimation problem of rank n− 1. Then, there exists an F (n)

uni (Γ)-optimal
estimator for (Dη, f).

The following two propositions approximately state that, given an arbitrary func-
tion ζ(J, k) for which polynomial increases in k lead to a decrease in ζ, the difference
between ζ(J, k) and some average of values after ζ(J, q(J, k)) lies in F (n)

uni . Roughly,
this occurs because either ζ falls quickly enough that, in the asymptotic tail, the val-
ues approximately vanish, or ζ falls slowly enough that, going polynomially further
out doesn’t change ζ very much.

14Strictly speaking, this example cannot be formalized in the framework as presented here since
the set of prime numbers is in P. We can tackle it by e.g. taking NC instead of P as the permissible
time complexity for our estimators, but we don’t explore this variant in the present work.
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Proposition 5.1. For any q ∈ N[J0, J1 . . . Jn−2] s.t. q ≥ 2 there are
{ωKq ∈ P(N)}K∈Nn s.t. for any ζ : Nn → R bounded, if there is a function ε ∈ F (n)

uni
s.t.

∀J ∈ Nn−1, k, k′ ∈ N : k′ ≥ (k+2)blog q(J)c−2 =⇒ ζ(J, k′) ≤ ζ(J, k)+ε(J, k) (5.1)

then

ζ(J, k) ≡ Ei∼ωJkp [ζ(J, (k + 2)blog q(J)c − 2 + i)] (mod F (n)
uni ) (5.2)

Proof. Take any a ∈ N s.t. a ≥ 5.
∫ ablog q(J)c

t=a
d(log log t) = log log ablog q(J)c − log log a

∫ ablog q(J)c

t=a
d(log log t) = log(blog q(J)c log a)− log log a

∫ ablog q(J)c

t=a
d(log log t) = logblog q(J)c+ log log a− log log a

∫ ablog q(J)c

t=a
d(log log t) = logblog q(J)c

Consider any ζ : Nn → R bounded.

|
∫ ablog q(J)c

t=a
ζ(J, btc − 2) d(log log t)| ≤ (sup|ζ|) logblog q(J)c

In particular

|
∫ 2blog q(J)c

t=2
ζ(J, btc − 2) d(log log t)| ≤ (sup|ζ|) logblog q(J)c

Adding the last two inequalities

|
∫ 2blog q(J)c

t=2
ζ(J, btc − 2) d(log log t)|

+ |
∫ ablog q(J)c

t=a
ζ(J, btc − 2) d(log log t)| ≤ 2(sup|ζ|) logblog q(J)c
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∫ 2blog q(J)c

t=2
ζ(J, btc − 2) d(log log t)

−
∫ ablog q(J)c

t=a
ζ(J, btc − 2) d(log log t) ≤ 2(sup|ζ|) logblog q(J)c

∫ a

t=2
ζ(J, btc − 2) d(log log t)

−
∫ ablog q(J)c

t=2blog q(J)c
ζ(J, btc − 2) d(log log t) ≤ 2(sup|ζ|) logblog q(J)c

We have d(log log tblog q(J)c) = d(log log t) therefore we can substitute in the sec-
ond term on the left hand side and get

∫ a

t=2
ζ(J, btc − 2) d(log log t)

−
∫ a

t=2
ζ(J, btblog q(J)cc − 2) d(log log t) ≤ 2(sup|ζ|) logblog q(J)c

∫ a

t=2
(ζ(J, btc − 2)− ζ(J, btblog q(J)cc − 2)) d(log log t) ≤ 2(sup|ζ|) logblog q(J)c

∫ a

2
(ζ(J, btc − 2)− ζ(J, btblog q(J)cc − 2)) dt

(ln 2)2t log t ≤ 2(sup|ζ|) logblog q(J)c

a−3∑

k=0

∫ k+3

k+2

ζ(J, btc − 2)− ζ(J, btblog q(J)cc − 2)
t log t dt ≤ 2(ln 2)2(sup|ζ|) logblog q(J)c

a−3∑

k=0

∫ 1

0

ζ(J, k)− ζ(J, b(k + t+ 2)blog q(J)cc − 2)
(k + t+ 2) log(k + t+ 2) dt ≤ 2(ln 2)2(sup|ζ|) logblog q(J)c

For k ≥ 2 we have (k + 3) log(k + 3) ≤ 5
2k log 5

2k ≤ 5
2k log klog 5 = 5

2(log 5)k log k.
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a−3∑

k=2

ζ(J, k)− ∫ 1
0 ζ(J, b(k + t+ 2)blog q(J)cc − 2) dt

5
2(log 5)k log k

≤ 2(ln 2)2(sup|ζ|) logblog q(J)c

Define

IJkq (i) := {t ∈ [0, 1] | (k + t+ 2)blog q(J)c − (k + 2)blog q(J)c ∈ [i, i+ 1)}

ωKq (i) :=





sup IKq − inf IKq if IKq 6= ∅
0 otherwise

We get

a−3∑

k=2

ζ(J, k)−∑∞i=0 ζ(J, (k + 2)blog q(J)c − 2 + i)ωJkq (i)
k log k

≤ 4
5(ln 2)(ln 5)(sup|ζ|) logblog q(J)c

Denote M := 4
5(ln 2)(ln 5)(sup|ζ|) and ζ̄(J, k) := ∑∞

i=0 ζ(J, (k + 2)blog q(J)c − 2 +
i)ωJkq (i). Using 5.1

ζ(J, k)− ζ̄(J, k) ≥ −ε(J, k)

|ζ(J, k)− ζ̄(J, k)| ≤ ζ(J, k)− ζ̄(J, k) + 2ε(J, k)

a−3∑

k=2

|ζ(J, k)− ζ̄(J, k)|
k log k ≤M logblog q(J)c+ 2

a−3∑

k=2

ε(J, k)
k log k

Taking a to infinity and using the fact that ε ∈ F (n)
uni , we get the desired result.

Proposition 5.2. For any p ∈ N[K0,K1 . . .Kn−1] there are {ωKp ∈ P(N)}K∈Nn s.t.
for any ζ : Nn → R bounded, if there is a function ε ∈ F (n)

uni s.t.

∀J ∈ Nn−1, k, k′ ∈ N : k′ ≥ p(J, k) =⇒ ζ(J, k′) ≤ ζ(J, k) + ε(J, k) (5.3)

then

ζ(J, k) ≡ Ei∼ωJkp [ζ(J, p(J, k) + i)] (mod F (n)
uni ) (5.4)
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Proof. Fix p ∈ N[K0,K1 . . .Kn−1]. Choose q ∈ N[J0, J1 . . . Jn−2] s.t.
p(J, k) ≤ (k + 2)blog q(J)c − 2. Let {ωKq ∈ P(N)}K∈Nn be as in Proposition 5.1.
Define {ωKp ∈ P(N)}K∈Nn by

Pri∼ωJkp [i ≥ k] = Pri∼ωJkq [i+ (k + 2)blog q(J)c − 2− p(J, k) ≥ k]

Suppose ζ : Nn → R is bounded and s.t. 5.3 holds. In particular, 5.1 also holds.
Therefore, we have 5.2. We rewrite it as follows

ζ(J, k) ≡ Ei∼ωJkq [ζ(J, p(J, k) + i+ (k + 2)blog q(J)c − 2− p(J, k))] (mod F (n)
uni )

By definition of ωp, 5.4 follows.

In the following, we use the notation αp(J, k) := (J, p(J, k)).

Proposition 5.3. Consider p ∈ N[K0,K1 . . .Kn−1], (D, f) a distributional estima-
tion problem and P,Q : {0, 1}∗ Γ−→ Q bounded. Suppose that

sup
i∈N

E
Dαp+i(K)×U

αp+i(K)
P

[(Pαp+i(K) − f)2] ≤ EDK×UKP
[(PK − f)2] (mod F (n)

uni )

(5.5)

sup
i∈N

E
Dαp+i(K)×U

αp+i(K)
P

[(Pαp+i(K) − f)2] ≤ EDK×UKQ
[(QK − f)2] (mod F (n)

uni )

(5.6)

Then

EDK×UKP
[(PK − f)2] ≤ EDK×UKQ

[(QK − f)2] (mod F (n)
uni ) (5.7)

Proof. Define ζ(K) := EDK×UKP
[(PK(x, y)− f(x))2] and observe that 5.5 implies

5.3, allowing us to apply Proposition 5.2 and get

EDK×UKP
[(PK(x, y)− f(x))2]

≡ EωKp [E
Dαp+i(K)×U

αp+i(K)
P

[(Pαp+i(K)(x, y)− f(x))2]] (mod F (n)
uni )

Applying 5.6 to the right hand side, we get 5.7.
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Proof of Theorem 5.1. Fix M ≥ sup|f | and construct D : {0, 1}∗ alg−−→ Q s.t.

D(x) =




D(x) = max(min(t,+M),−M) if x = cQ(t)
D(x) = 0 if x 6∈ Im cQ

Choose a∗ : Nn → {0, 1}∗ s.t.

a∗(K) ∈ arg min
a∈{0,1}≤l(K)

EDη(K)×Ur(K) [(D(evKn−1(a;x, y))− f(x))2] (5.8)

Construct P : {0, 1}∗ Γ−→ Q s.t. for any K ∈ Nn, x, y, b0 ∈ {0, 1}∗ and
a0 ∈ {0, 1}≤l(K)

aP (K) = 〈a∗(K), ar(K)〉 (5.9)
rP (K, 〈a0, b0〉) = r(K, b0) (5.10)

PK(x, y, 〈a0, b0〉) = D(evKn−1(a0;x, y)) (5.11)

Consider Q : {0, 1}∗ Γ−→ Q bounded. Without loss of generality we can assume
sup|Q| ≤M (otherwise we can replace Q by Q̃ := max(min(Q,+M),−M) and have
E[(Q̃− f)2] ≤ E[(Q− f)2]). Choose q ∈ N[K0,K1 . . .Kn−1] s.t. for any K ∈ Nn
there exists aKQ ∈ {0, 1}l(αq(K)) for which

rQ(K) ≤ r(αq(K)) (5.12)
∀i ∈ N, x, z ∈ {0, 1}∗, y ∈ {0, 1}rQ(K) : D(evq(K)+i(aKQ ;x, yz)) = QK(x, y) (5.13)

Take any i ∈ N.

E
Dη(K)×U

αq+i(K)
P

[(Pαq+i(K)(x, y)− f(x))2]

= EDη(K)×Ur(αq+i(K)) [(D(evq(K)+i(a∗(αq+i(K));x, y))− f(x))2]

Using 5.8

E
Dη(K)×U

αq+i(K)
P

[(Pαq+i(K)(x, y)− f(x))2]

≤ EDη(K)×Ur(αq+i(K)) [(D(evq(K)+i(aKQ ;x, y))− f(x))2]
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E
Dη(K)×U

αq+i(K)
P

[(Pαq+i(K)(x, y)− f(x))2] ≤ EDη(K)×UKQ
[(QK(x, y)− f(x))2]

By the same reasoning we can choose p ∈ N[K0,K1 . . .Kn−1] s.t. p ≥ q and

E
Dη(K)×U

αp+i(K)
P

[(Pαp+i(K)(x, y)− f(x))2] ≤ EDη(K)×UKP
[(PK(x, y)− f(x))2]

Applying Proposition 5.3, we conclude that P is an F (n)
uni (Γ)-optimal estimator

for (Dη, f).

We now proceed to study the special case of samplable problems. These prob-
lems admit an optimal polynomial-time estimator which is essentially a brute-force
implementation of the empirical risk minimization principle in statistical learning.
In particular, the optimality of this algorithm can be regarded as a manifestation of
the fundamental theorem of agnostic PAC learning (see e.g. Theorem 6.7 in [18]).
In our case the hypothesis space of the space of programs, so this algorithm can
also be regarded as a variation of Levin’s universal search. The advantage of this
optimal polynomial-time estimator on the fully general construction of Theorem 5.1
is that the required advice is only the advice of the sampler. The notation F (n)

mon
below refers to the fall space defined in Example 2.9.

Theorem 5.2. Fix r : Nn alg−−→ N s.t.

(i) Tr ∈ Γnpoly

(ii) As a function, r ∈ Γnpoly.

(iii) r is non-decreasing in the last argument.

(iv) There is s ∈ N[K0,K1 . . .Kn−1] s.t. ∀K ∈ Nn : log(Kn−1 + 4)r(K)
≤ r(αs(K)).

In particular, r is steadily growing. Assume ΓR = Γr and ΓA = Γnlog. Con-
sider (D, f) an distributional estimation problem of rank n− 1 and σ an F (n)

mon(Γ)-
sampler of (Dη, f). Then, there exists P an F (n)

uni (Γ)-optimal estimator for (Dη, f)
s.t. aP = aσ. In particular, if σ is uniform (i.e. aσ ≡ λ) then so is P .
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Proposition 5.4. Fix r ∈ Γnpoly s.t.

(i) r is non-decreasing in the last argument.

(ii) There is s ∈ N[K0,K1 . . .Kn−1] s.t. ∀K ∈ Nn : log(Kn−1 + 4)r(K)
≤ r(αs(K)).

In particular, r is steadily growing. Consider any γ ∈ Γr and define γ′ : N→ N
by

γ′(K) := blog(Kn−1 + 2)cγ(K)

Then, γ′ ∈ Γr

Proof. Choose p ∈ N[K0,K1 . . .Kn−1] s.t. p(K) ≥ Kn−1 and r(αp(K)) ≥ γ(K). We
get

γ′(K) ≤ blog(Kn−1 + 2)cr(αp(K))

γ′(K) ≤ blog(p(K) + 4)cr(αp(K))

γ′(K) ≤ r(αs(αp(K)))

Proposition 5.5. Consider (D, f) a distributional estimation problem, σ an F(Γ)-
sampler of (D, f), I a set and {hKα : {0, 1}∗ mk−−→ R}α∈I,K∈Nn uniformly bounded.
Then

EUKσ [E[(hKα ◦ σK0 − σK1 )2]] α≡ EDK [E[(hKα − f)2]] + EUKσ [(f ◦ σK0 − σK1 )2] (mod F)
(5.14)

Proof. Denote hKσα := hKα ◦ σK0 , fKσ := f ◦ σK0 . Proposition 3.10 implies

EUKσ [(E[hKσα]− fKσ )fKσ ] α≡ EDK [(E[hKα ]− f)f ] (mod F)

Applying Proposition 3.11 to the right hand side

EUKσ [(E[hKσα]− fKσ )fKσ ]] α≡ EUKσ [(E[hKσα]− fKσ )σK1 ] (mod F)
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EUKσ [(E[hKσα]− fKσ )(fKσ − σK1 )]] α≡ 0 (mod F) (5.15)

On the other hand

EUKσ [E[(hKσα − σK1 )2]] = EUKσ [E[(hKσα − fKσ + fKσ − σK1 )2]]

EUKσ [E[(hKσα − σK1 )2]] = EUKσ [E[(hKσα − fKσ )2]] + 2 EUKσ [(E[hKσα]− fKσ )(fKσ − σK1 )]]
+ EUKσ [E[(fKσ − σK1 )2]]

Applying Proposition 3.10 to the first term on the right hand side and 5.15 to
the second term on the right hand side, we get 5.14.

Proof of Theorem 5.2. Fix M ≥ sup|f | and construct D : {0, 1}∗ alg−−→ Q s.t.

D(x) =




D(x) = max(min(t,M),−M) if x = cQ(t)
D(x) = 0 if x 6∈ Im cQ

Denote l(K) := blog(Kn−1 + 2)c. Denote s(K) := 2dM2el(K)2. Con-
struct R : {0, 1}∗ Γ−→ Q s.t. for any K ∈ Nn, w ∈ {0, 1}∗, a ∈ {0, 1}l(K),
{yi ∈ {0, 1}rσ(K,w)}i∈[s(K)] and {zi ∈ {0, 1}r(K)}i∈[s(K)]

aR(K) = aσ(K) (5.16)
rR(K,w) = s(K)(rσ(K,w) + r(K)) (5.17)

RK


a,

∏

i∈[s(K)]
yizi, w


 = 1

s(K)
∑

i∈[s(K)]
(D(evKn−1(a;σK(yi, w)0, zi))− σK(yi, w)1)2

(5.18)

That is, R generates 2dM2el(K)2 estimates of f using σ and computes the “em-
pirical risk” of the program a w.r.t. these estimates. Here, 5.17 is legitimate due to
Proposition 5.4.

Construct A : 1 Γ−→ {0, 1}∗ s.t. for any K ∈ Nn, w ∈ {0, 1}∗,
{yi ∈ {0, 1}rσ(K,w)}i∈[s(K)] and {zi ∈ {0, 1}r(K)}i∈[s(K)]
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aA(K) = aσ(K) (5.19)
rA(K,w) = rR(K,w) (5.20)

AK




∏

i∈[s(K)]
yizi, w


 ∈ arg min

a∈{0,1}≤l(K)
RK


a,

∏

i∈[s(K)]
yizi, w


 (5.21)

Finally, construct P : {0, 1}∗ Γ−→ Q s.t. for any K ∈ Nn, w ∈ {0, 1}∗,
{yi ∈ {0, 1}rσ(K,w)}i∈[s(K)], {zi ∈ {0, 1}r(K)}i∈[s(K)] and z∗ ∈ {0, 1}r(K)

aP (K) = aσ(K) (5.22)
rP (K,w) = rR(K,w) + r(K) (5.23)

PK(x,




∏

i∈[s(K)]
yizi


 z∗, w) = D(evKn−1(AK




∏

i∈[s(K)]
yizi, w


 ;x, z∗)) (5.24)

Define %K0 ∈ R by

%K0 := EUKσ [(f(σK(y)0)− σK(y)1)2]

For any b ∈ {0, 1}∗, define %K(b) by

%K(b) := EDη(K)×Ur(K) [(D(evKn−1(b;x, z))− f(x))2]

Consider any α : Nn → {0, 1}∗ s.t. |α(K)| ≤ l(K). Define hKα : {0, 1}∗ mk−−→ R by

∀s, t ∈ R : Pr[hKα (x) ∈ (s, t)] := Prz∼Ur(K) [D(evKn−1(α(K);x, z)) ∈ (s, t)]

By Proposition 5.5

EUKσ [E[(hKα (σK(y)0)− σK(y)1)2]] α≡
EDη(K) [E[(hKα (x)− f(x))2]] + EUKσ [(f(σK(y)0)− σK(y)1)2] (mod F (n)

mon)

EUKσ [E[(hKα (σK(y)0)− σK(y)1)2]] α≡ %K(α(K)) + %K0 (mod F (n)
mon) (5.25)
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RK(α(K), y) is the average of 2dM2el(K)2 independent and and identi-
cally distributed bounded random variables. By 5.25, there is ε ∈ F (n)

mon that
doesn’t depend on α s.t. the expected value of these random variables is in
[%K(α(K)) + %K0 − ε(K), %K(α(K)) + %K0 + ε(K)]. Applying Hoeffding’s inequality
we conclude that

∀b ∈ {0, 1}≤l(K) : PrUKR
[RK(b, y) > %K(b) + %K0 + ε(K) + l(K)−1/2] ≤ 2− log(e)l(K)

In particular, since for any b ∈ {0, 1}l(K), RK(AK(y), y) ≤ RK(b, y)

∀b ∈ {0, 1}≤l(K) : PrUKR
[RK(AK(y), y) > %K(b)+%K0 +ε(K)+l(K)−1/2] ≤ 2− log(e)l(K)

(5.26)
Similarly, we have

∀b ∈ {0, 1}≤l(K) : PrUKR
[RK(b, y) < %K(b) + %K0 − ε(K)− l(K)−1/2] ≤ 2− log(e)l(K)

PrUKR
[∃b ∈ {0, 1}≤l(K) : RK(b, y) < %K(b)+%K0 −ε(K)−l(K)−1/2] ≤ 2−(log(e)−1)l(K)+1

PrUKR
[RK(AK(y), y) < %K(AK(y)) + %K0 − ε(K)− l(K)−1/2] ≤ 2−(log(e)−1)l(K)+1

(5.27)
Combining 5.26 and 5.27, we conclude that for any b ∈ {0, 1}≤l(K)

PrUKR
[%K(AK(y)) + %K0 − ε(K)− l(K)−1/2 > %K(b) + %K0 + ε(K) + l(K)−1/2]

≤ 2− log(e)l(K) + 2−(log(e)−1)l(K)+1

PrUKR
[%K(AK(y)) > %K(b) + 2(ε(K) + l(K)−1/2)] ≤ 2−(log(e)−1)l(K)+2

It follows that for some M0 ∈ R>0

EUKR
[%K(AK(y)] ≤ %K(b) + 2(ε(K) + l(K)−1/2) + 2−(log(e)−1)l(K)+2M0
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Denote ε1(K) := 2(ε(K) + l(K)−1/2) + 2−(log(e)−1)l(K)+2M0. Note that
ε1 ∈ F (n)

mon because ε is by assumption, the last two terms are monotonically
decreasing, and both ∑∞k=2

1
k log k

√
blog(k+2)c

and ∑∞k=2
2−(log(e)−1)blog(k+2)c

k log k converge.

EUKR
[EDη(K)×Ur(K) [(D(evKn−1(AK(y);x, z))− f(x))2]] ≤ %K(b) + ε1(K)

∀b ∈ {0, 1}≤l(K) : EDη(K)×UKP
[(PK(x, y)− f(x))2] ≤ %K(b) + ε1(K)

Consider Q : {0, 1}∗ Γ−→ Q bounded. Without loss of generality we can assume
sup|Q| ≤M . Choose q ∈ N[K0,K1 . . .Kn−1] s.t. q(K) ≥ Kn−1 and for all K ∈ Nn,
5.12 and 5.13 hold.

E
Dη(K)×U

αq+i(K)
P

[(Pαq+i(K)(x, y)− f(x))2] ≤ %αq+i(K)(aKQ ) + ε1(αq+i(K))

E
Dη(K)×U

αq+i(K)
P

[(Pαq+i(K)(x, y)− f(x))2]

≤ EDη(K)×Ur(αq+i(K)) [(D(evq(K)+i(aKQ ;x, z))− f(x))2] + ε1(αq+i(K))

E
Dη(K)×U

αq+i(K)
P

[(Pαq+i(K)(x, y)− f(x))2]

≤ EDη(K)×UKQ
[(QK(x, z)− f(x))2] + ε1(αq+i(K))

Define ε̄1(K) := supk≥Kn−1 ε1(η(K), k). We have ε̄1 ∈ F (n)
uni and

ε1(αq+i(K)) ≤ ε̄1(K) therefore

sup
i∈N

E
Dη(K)×U

αq+i(K)
P

[(Pαq+i(K)(x, y)− f(x))2]

≤ EDη(K)×UKQ
[(QK(x, z)− f(x))2] (mod F (n)

uni )

By the same reasoning we can choose p ∈ N[K0,K1 . . .Kn−1] s.t. p ≥ q and
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sup
i∈N

E
Dη(K)×U

αp+i(K)
P

[(Pαp+i(K)(x, y)− f(x))2]

≤ EDη(K)×UKP
[(PK(x, y)− f(x))2] (mod F (n)

uni )

Applying Proposition 5.3, we conclude that P is an F (n)
uni (Γ)-optimal estimator

for (Dη, f).

The above existence theorems employ the fall space F (n)
uni whose meaning might

seem somewhat obscure. To shed some light on this, consider the following ob-
servation. Informally, optimal polynomial-time estimators represent “expected val-
ues” corresponding to the uncertainty resulting from bounding computing resources.
When a function can be computed in polynomial time, this “expected value” has
to approximate the function within F which corresponds to a state of “complete
certainty.” However, we will now demonstrate that when a function can only be
computed in quasi-polynomial time, it still corresponds to complete certainty in the
context of F (n)

uni (Γ)-optimal estimators.

Definition 5.1. Consider (D, f) a distributional estimation problem and
P : {0, 1}∗ Γ−→ Q bounded. P is called an F(Γ)-perfect polynomial-time estimator
for (D, f) when

E(x,y)∼DK×UKP
[(PK(x, y)− f(x))2] ≡ 0 (mod F) (5.28)

For the sake of brevity, we will say “F(Γ)-perfect estimator” rather than “F(Γ)-
perfect polynomial-time estimator.”

Perfect polynomial-time estimators are essentially objects of “classical” average-
case complexity theory. In particular, perfect polynomial-time estimators for dis-
tributional decision problems of rank 1 are closely related to heuristic algorithms
in the sense of [4] (their existence is equivalent under mild assumptions), whereas
perfect polynomial-time estimators for rank 2 problems of the form (Dη, χL) with
D of rank 1 are related to heuristic schemes.

Comparing the definition of a perfect estimator to the definition of an inap-
proximable predicate, (Definition 7.9 in [12]), if f is (poly, ρ)-inapproximable, and
Dk = Uk, then for any ζ ∈ o(ρ), there is no Fζ(Γ1

0,Γ1
poly)-perfect estimator for

(D, f).
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Proposition 5.6. Consider (D, f) a distributional estimation problem,
P : {0, 1}∗ Γ−→ Q bounded, m ∈ N>0 and p ∈ N[J0, J1 . . . Jn−2] s.t. p ≥ 2. De-
fine q : Nn → N by q(J, k) := 2blog p(J) log max(k,1)cm. Suppose that

sup
i∈N

E
(x,y)∼DK×U

αq+i(K)
P

[(Pαq+i(K)(x, y)− f(x))2] ≡ 0 (mod F (n)
uni ) (5.29)

Then, P is an F (n)
uni (Γ)-perfect estimator for (D, f).

Proof. Define ε : Nn → R by

ε(K) := E(x,y)∼DK×UKP
[(PK(x, y)− f(x))2]

We have
∞∑

k=2

ε(J, k)
k log k =

∫ ∞

2

ε(J, btc)
btc logbtc dt

∞∑

k=2

ε(J, k)
k log k ≤

3
2 log 3

∫ ∞

2

ε(J, btc)
t log t dt

∞∑

k=2

ε(J, k)
k log k ≤

3
2(log 3)(ln 2)2

∫ ∞

2
ε(J, btc) d(log log t)

Substitute t = 2(log p(J) log s)m . Denoting s0 = 2(log p(J))−1

∞∑

k=2

ε(J, k)
k log k ≤

3
2(log 3)(ln 2)2m

∫ ∞

s=s0
ε(J, b2(log p(J) log s)mc) d(log log s)

∞∑

k=2

ε(J, k)
k log k ≤

3
2(log 3)m

∫ ∞

s0

ε(J, b2(log p(J) log s)mc)
s log s ds

∞∑

k=2

ε(J, k)
k log k ≤

3
2(log 3)m

∫ ∞

s0

supi∈N ε(J, 2blog p(J) logbsccm + i)
s log s ds

For some M ∈ R

∞∑

k=2

ε(J, k)
k log k ≤M + 3

2(log 3)m
∫ ∞

2

supi∈N ε(J, 2blog p(J) logbsccm + i)
bsc logbsc ds
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∞∑

k=2

ε(J, k)
k log k ≤M + 3

2(log 3)m
∞∑

k=2

supi∈N ε(J, 2blog p(J) log kcm + i)
k log k

Using 5.29 we get that for some M1 ∈ R>0 and p1 ∈ N[J0, J1 . . . Jn−2]
∞∑

k=2

ε(J, k)
k log k ≤M +M1 log log p1(J)

Denoting M2 := 2M−1
1 M

∞∑

k=2

ε(J, k)
k log k ≤M1 log log p1(J)M2

5.1.2 Negative results

The following propositions lead to disproving the existence of optimal polynomial-
time estimators with no advice for certain distributional estimation problems.

Proposition 5.7. Consider h : Nn → R bounded and D a word ensemble s.t. given
K1,K2 ∈ Nn, if K1 6= K2 then suppDK1 ∩ suppDK2 = ∅. Assume that either
1 ∈ ΓA and the image of h is a finite subset of Q or F 1

2 is ΓA-ample. Define
f : suppD → R by requiring that for any K ∈ Nn and x ∈ suppDK , f(x) = h(K).
Then, there exists an F(Γ)-perfect estimator for (D, f).

Proof. The idea is that, because the estimation problem only depends on the in-
dex K, the advice allows the estimator to either memorize f directly or closely
approximate it.

In the case F 1
2 is ΓA-ample, let ζ : Nn → (0, 1

2 ] be s.t. ζ ∈ F 1
2

and blog 1
ζ c ∈ ΓA. In the other case, let ζ ≡ 0. For any K ∈ Nn, let

ρ(K) ∈ arg min
s∈Q∩[h(K)−ζ(K),h(K)+ζ(K)]

|cQ(s)|. It is easy to see that there is γ ∈ ΓA s.t. for

any K ∈ Nn, |cQ(ρ(K))| ≤ γ(K). Construct P : {0, 1}∗ Γ−→ Q s.t. for any K ∈ Nn,
x ∈ {0, 1}∗ and t ∈ Q s.t. |cQ(t)| ≤ γ(K)

aP (K) = cQ(ρ(K))
rP (K) = 0

PK(x,λ, cQ(t)) = t
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We have

Ex∼DK [(PK(x)− f(x))2] = (ρ(K)− h(K))2

Ex∼DK [(PK(x)− f(x))2] ≤ ζ(K)2

In the setting of Proposition 5.7, any F(Γ)-optimal estimator for (D, f) has to
be an F(Γ)-perfect estimator. In particular, if no uniform F(Γ)-perfect estimator
exists then no uniform F(Γ)-optimal estimator exists (and likewise for any other
condition on the estimator).

Denote Γ0 := (ΓR,Γn0 ), Γ1 := (ΓR,Γn1 ). Taking Γ = Γ1 in Proposition 5.7 and
using Proposition 2.13, we conclude that if the image of h is a finite subset of Q
and there is no F(Γ0)-perfect estimator for (D, f) then there is no F(Γ0)-optimal
estimator for (D, f).

For distributional decision problems and F(Γ)-samplable word ensembles we
have the following stronger proposition: given an optimal estimator, we get not just
a perfect estimator, but a “heuristic” algorithm that depends only on K and doesn’t
need a problem instance.

Proposition 5.8. Let ∆ = (∆R,∆A) be a pair of growth spaces of rank n
s.t. ∆R ⊆ ΓR, ∆A ⊆ ΓA and 1 ∈ ∆A. Consider L ⊆ Nn and D a word ensem-
ble s.t. given K1,K2 ∈ Nn, if K1 6= K2 then suppDK1 ∩ suppDK2 = ∅. De-
fine χ : suppD → {0, 1} by requiring that for any K ∈ Nn and x ∈ suppDK ,
χ(x) = χL(K). Assume σ is an F(Γ)-sampler of D and P is an F(∆)-optimal
estimator for (D, χ). Then there is A : 1 Γ−→ {0, 1} s.t. aA(K) = 〈aσ(K), aP (K)〉
and

Pry∼UKA
[AK(y) = χL(K)] ≡ 1 (mod F) (5.30)

Proof. Construct A s.t. for any K ∈ Nn, y1 ∈ {0, 1}rL(K), y1 ∈ {0, 1}rP (K)

rA(K) = rσ(K) + rP (K)

AK(y1y2) =





0 if PK(σK(y1), y2) ≤ 1
2

1 if PK(σK(y1), y2) > 1
2

We get
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Pry∼UKA
[AK(y) 6= χL(K)] ≤ Pry1∼UKσ ,y2∼UKP

[
|PK(σK(y1), y2)− χL(K)| ≥ 1

2

]

Pry∼UKA
[AK(y) 6= χL(K)] ≤ Pry1∼UKσ ,y2∼UKP

[
(PK(σK(y1), y2)− χL(K))2 ≥ 1

4

]

Pry∼UKA
[AK(y) 6= χL(K)] ≤ 4 Ey1∼UKσ ,y2∼UKP

[(PK(σK(y1), y2)− χL(K))2]

By Proposition 3.10

Pry∼UKA
[AK(y) 6= χL(K)] ≤ 4 Ex∼DK ,y2∼UKP

[(PK(x, y2)− χL(K))2] (mod F)

Pry∼UKA
[AK(y) 6= χL(K)] ≤ 4 Ex∼DK ,y2∼UKP

[(PK(x, y2)− χ(x))2] (mod F)

By Proposition 5.7, P is an F(∆)-perfect estimator for (D, χ), therefore

Pry∼UKA
[AK(y) 6= χL(K)] ≡ 0 (mod F)

Again, the statement can be reversed to disprove the existence of F(∆)-optimal
estimators for ∆A = Γn0 .

Now we consider the special case F = F (ϕ)
uni , ΓR = Γnpoly. Consider the standard

decomposition of the index into two parameters J (which is going to be the only
relevant variable in the estimation problem) and k which controls the computation
time available. The following proposition states that if there is an F (ϕ)

uni (∆)-optimal
estimator for (D, χ), and an F (ϕ)

uni (Γ) sampler for D, then quasi-polynomial comput-
ing resources suffice to get a bounded-error randomized algorithm for computing
χ.

665



Kosoy and Appel

Proposition 5.9. Consider ϕ : Nn−1 → N superquasi-polynomial i.e. for any
m ∈ N and p ∈ N[J0, J1 . . . Jn−2] there is at most a finite number of J ∈ Nn−1 s.t.
ϕ(J) ≤ 2dlog p(J)em. Suppose ΓR = Γnpoly. Let ∆ = (∆R,∆A) be a pair of growth
spaces of rank n s.t. ∆A ⊆ ΓA and 1 ∈ ∆A. Consider L ⊆ Nn−1 and D a word en-
semble s.t. given K1,K2 ∈ Nn, if K1 6= K2 then suppDK1 ∩ suppDK2 = ∅. Define
χ : suppD → {0, 1} by requiring that for any J ∈ Nn−1, k ∈ N and x ∈ suppDJk,
χ(x) = χL(J). Assume σ is an F (ϕ)

uni (Γ)-sampler of D and P is an F (ϕ)
uni (∆)-

optimal estimator for (D, χ) s.t. aσ(J, k) and aP (J, k) don’t depend on k.
Then, there are m ∈ N, p ∈ N[J0, J1 . . . Jn−2] and B : 1 Γ−→ {0, 1} s.t. p ≥ 1,
aB(K) = 〈aσ(K), aP (K)〉 and, defining q : Nn−1 → N by q(J) := 2dlog p(J)em

∀J ∈ Nn−1 : Pr
y∼UJ,q(J)

B

[BJ,q(J)(y) = χL(J)] ≥ 2
3 (5.31)

Proof. Obviously it is enough to construct m, p and B s.t. 5.31 holds for all but a
finite number of J ∈ Nn−1. Use Proposition 5.8 to construct A : 1 Γ−→ {0, 1}. Given
any k ∈ N, define ωk ∈ P(N) s.t. for some N ∈ R>0

ωk(i) :=





N
i log i if 2 ≤ i < k

0 if i < 2 or i ≥ k

Denote Γ1 := (Γ1
poly,Γ1

0). Adapting the standard argument that any com-

putable distribution is samplable, we can construct τ : 1 Γ1
−→ N s.t. supp τk• ⊆ [k]

and dtv(τk• , ωk) ≤ 1
6 . Construct B : 1 Γ−→ {0, 1} s.t. for any J ∈ Nn−1, k ∈ N,

y ∈ {0, 1}rτ (J,k) and z ∈ {0, 1}∗

rB(J, k) ≥ rτ (k) + max
i∈[k]

rA(J, i)

BJk(y, z) = AJ,τ
k(y)(z<rA(J,τk(y)))

That is, B functions by generating a distribution over numbers up to k that is
approximately 1

i log i , and then sampling from it to determine how much computing
resources to allocate to A, which is a perfect estimator.

We know that for some M ∈ R≥0 and p ∈ N[J0, J1 . . . Jn−2] s.t. p ≥ 1

ϕ(J)−1∑

k=2

Prz∼UJkA
[AJk(z) 6= χL(J)]
k log k ≤M log log p(J)

Take m = d 6M
(ln 2)2 e. We get
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Ek∼ωq(J) [Prz∼UJkA
[AJk(z) 6= χL(J)]] =

∑q(J)−1
k=2

Pr
z∼UJk

A
[AJk(z) 6=χL(J)]

k log k
∑q(J)−1
k=2

1
k log k

Denote I := {J ∈ Nn−1 | ϕ(J) < q(J)}. We get

∀J ∈ Nn−1 \ I : Ek∼ωq(J) [Prz∼UJkA
[AJk(z) 6= χL(J)]] ≤ M log log p(J)

∫ q(J)
2

dt
t log t

∀J ∈ Nn−1 \ I : Ek∼ωq(J) [Prz∼UJkA
[AJk(z) 6= χL(J)]] ≤ M log log p(J)

(ln 2)2 log log q(J)

∀J ∈ Nn−1 \ I : Ek∼ωq(J) [Prz∼UJkA
[AJk(z) 6= χL(J)]] ≤ M log log p(J)

(ln 2)2m logdlog p(J)e

∀J ∈ Nn−1 \ I : Ek∼ωq(J) [Prz∼UJkA
[AJk(z) 6= χL(J)]] ≤ 1

6

∀J ∈ Nn−1\I : E
y∼Uq(J)

τ
[Pr

z∼UJ,τ
q(J)(y)

A

[AJ,τq(J)(y)(z) 6= χL(J)]] ≤ 1
6 +dtv(τ q(J)

• , ωq(J))

∀J ∈ Nn−1 \ I : Pr
y∼UJ,q(J)

B

[BJ,q(J)(y) 6= χL(J)] ≤ 1
3

By the assumption on ϕ, I is a finite set therefore we got the desired result.

For n = 2, we can think of L as a language using unary encoding of natural
numbers. Proposition 5.9 and Proposition 2.13 imply that if ∆A = Γn0 , σ is uniform,
and this language cannot be decided in quasi-polynomial time by a bounded-error
randomized algorithm, then there is no F (ϕ)

uni (∆)-optimal estimator for (D, χ).
Thanks to the results of section 4 and Theorem 2.2, these negative results imply

non-existence results for F ](∆)-optimal estimators15 for any distributional estima-
tion problem s.t. a problem admitting a negative result has an appropriate reduction
to it.

15The need to use F](∆)-optimal estimators rather than F(∆)-optimal estimators arises because
the theorems about reductions as we formulated them don’t apply to F(∆)-optimal estimators with
∆ = Γn0 or ∆ = Γn1 . This can be overcome by using somewhat more special reductions which still
admit a similar completeness theorem, but we omit details in the present work.
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5.2 Uniqueness
Since we view optimal polynomial-time estimators as computing “expected values”,
it is natural to expect that their values only depend on the distributional estimation
problem rather than the particular optimal polynomial-time estimator. However,
since they are defined via an asymptotic property exact uniqueness is impossible.
Instead, different F ](Γ)-optimal estimators have the expectation of the squared dif-
ference between their estimates fall fast enough to be in F (which is an equivalence
relation on the set of arbitrary estimators).

Theorem 5.3. Consider (D, f) a distributional estimation problem. Assume there
is p ∈ N[K0,K1 . . .Kn−1] s.t.

DK({0, 1}≤p(K)) ≡ 1 (mod F) (5.32)
Suppose P and Q are F ](Γ)-optimal estimators for (D, f). Then

E(x,y,z)∼DK×UKP ×UKQ
[(PK(x, y)−QK(x, z))2] ≡ 0 (mod F) (5.33)

Proof. Construct S : {0, 1}∗ ×Q Γ−→ Q bounded s.t. for any K ∈ Nn,
x ∈ {0, 1}≤p(K), t ∈ ImPK and z ∈ {0, 1}rQ(K)

rS(K) = rQ(K)
SK(x, t, z) = t−QK(x, z)

Construct T : {0, 1}∗ ×Q Γ−→ Q bounded s.t. for any K ∈ Nn, x ∈ {0, 1}≤p(K),
s ∈ ImQK and y ∈ {0, 1}rP (K)

rT (K) = rP (K)
TK(x, s, y) = PK(x, y)− s

P is an F ](Γ)-optimal estimator for (D, f), therefore

E(x,y,z)∼DK×UKP ×UKS
[(PK(x, y)− f(x))SK(x, PK(x, y), z)] ≡ 0 (mod F)

The construction of S and 5.32 give

E(x,y,z)∼DK×UKP ×UKQ
[(PK(x, y)−f(x))(PK(x, y)−QK(x, z))] ≡ 0 (mod F) (5.34)
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Q is an F ](Γ)-optimal estimator for (D, f), therefore

E(x,z,y)∼DK×UKQ ×UKT
[(QK(x, z)− f(x))TK(x,QK(x, z), y)] ≡ 0 (mod F)

The construction of T and 5.32 give

E(x,z,y)∼DK×UKQ ×UKP
[(QK(x, z)−f(x))(PK(x, y)−QK(x, z))] ≡ 0 (mod F) (5.35)

Subtracting 5.35 from 5.34, we get 5.33.

The notion of “conditional expected value” introduced in subsection 3.2 allows
conditions which are occasionally false. In some sense this provides us with well-
defined (probabilistic) answers to “what if” questions that are meaningless in formal
logic due to the principle of explosion, a concept which was hypothesized to be useful
for solving paradoxes in decision theory [19]. However, Theorem 5.3 suggests that the
values of an optimal polynomial-time estimator are only meaningful inside suppDK
whereas “conditional expected values” require using the word ensemble D | L (see
Theorem 3.3) so violation of the condition (i.e. x 6∈ L) means falling outside the
support of the word ensemble. On the other hand, we will now show that when
the condition is unpredictable with the given amount of computational resources,
a stronger uniqueness theorem holds that ensures “counterfactual” values are also
stable, although the fall space measuring the difference of the optimal estimators is
scaled up by a factor decreasing with the “degree of unpredictability”.

Theorem 5.4. Consider (D, f) a distributional estimation problem and L ⊆ {0, 1}∗
s.t. for all K ∈ Nn, DK(L) > 0. Define γL : Nn → R by γL(K) := DK(L)−1

and FL := γLF . Assume there is p ∈ N[K0,K1 . . .Kn−1] s.t. 5.32 holds. Let R
be an F ](Γ)-optimal estimator for (D, χL). Assume ε : Nn → R>0 is s.t. for all
x, y ∈ {0, 1}∗, RK(x, y) ≥ ε(K)DK(L). Suppose P and Q are F ]L(Γ)-optimal esti-
mators for (D | L, f). Then

E(x,y,z)∼DK×UKP ×UKQ
[(PK(x, y)−QK(x, z))2] ≡ 0 (mod ε−1FL) (5.36)

Proof. R is an F ](Γ)-optimal estimator for (D, χL), therefore

E(x,y,z,w)∼DK×UKP ×UKQ ×UKR
[(RK(x,w)− χL(x))(PK(x, y)−QK(x, z))2]

= 0 (mod F)
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EDK×UKP ×UKQ ×UKR
[RK · (PK −QK)2]

= EDK×UKP ×UKQ ×UKR
[χL · (PK −QK)2] (mod F)

EDK×UKP ×UKQ ×UKR
[RK · (PK −QK)2]

= DK(L) EDK |L×UKP ×UKQ ×UKR
[(PK −QK)2] (mod F)

EDK×UKP ×UKQ ×UKR
[ε(K)DK(L)(PK −QK)2]

≤ DK(L) EDK |L×UKP ×UKQ ×UKR
[(PK −QK)2] (mod F)

ε(K) EDK×UKP ×UKQ ×UKR
[(PK −QK)2]

≤ EDK |L×UKP ×UKQ ×UKR
[(PK −QK)2] (mod FL)

Applying Theorem 5.3 to the right hand side, we conclude

ε(K) EDK×UKP ×UKQ ×UKR
[(PK −QK)2] ≡ 0 (mod FL)

EDK×UKP ×UKQ ×UKR
[(PK −QK)2] ≡ 0 (mod ε−1FL)

Theorem 5.4 implies that in simple scenarios, “counterfactual” optimal estimates
behave as intuitively expected, assuming L is “sufficiently unpredictable”. For ex-
ample, if there is an efficient algorithm that evaluates f correctly given the promise
x ∈ L then a conditional optimal polynomial-time estimator constructed using The-
orem 3.3 will produce approximately the same values as this algorithm whether x is
in L or not.
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6 Discussion
The motivation for optimal polynomial-time estimators comes from the desire to
quantify the uncertainty originating in computational resource bounds. We used
this motivation to arrive at an intuitive definition, and proceeded to show the re-
sulting object has many properties of “normal” probability theory, justifying its
interpretation as a brand of expected value. Moreover, there are associated con-
cepts of reductions and complete problems analogous to standard constructions in
average-case complexity theory.

Thus, the class of distributional estimation problems admitting F(Γ)-optimal
estimators (or F ](Γ)-optimal estimators) is a natural distributional complexity class.
In light of the positive and negative existence results we have demonstrated, these
new classes are unlikely to trivially coincide with any of the previously known classes.
Mapping the boundary of these classes and understanding their relationships with
other classes in average-case complexity theory seems to be ground for much further
work. Moreover, it is possible to consider generalizations by including more types
of computational resources e.g. space, parallelism and/or non-determinism.

As an example of a natural open problem, consider (DNP, fNP), the complete
problem for SampNP resulting from Theorem 4.4 with n = 1, r(k) = s(k) = k,
E = ENP and F = FNP. Theorem 5.1 implies that e.g. there is an F (2)

uni(Γ2
poly,Γ2

log)-
optimal estimator for (DηNP, fNP). On the other hand, Proposition 5.9 implies that
it is unlikely that there is an F (2)

uni(Γ2
poly,Γ2

0)-optimal estimator16. This, however,
doesn’t tell us anything about the existence of an F (2)

uni(Γ2
poly,Γ2

1)-optimal estima-
tor. This question fits naturally into the theme of Impagliazzo’s “worlds” [15]: if
there is an F (2)

uni(Γ2
poly,Γ2

0)-perfect estimator for (DηNP, fNP) (a version of Impagli-
azzo’s “Heuristica” which is considered unlikely), then the answer is tautologically
positive. However, if there is no such perfect polynomial-time estimator then the
optimal polynomial-time estimator may or may not exist, a possible new partition
of “worlds”17.

One area where applying these concepts seems natural is Artificial General Intel-
ligence. Indeed, the von Neumann-Morgenstern theorem shows that perfect rational
agents are expected utility maximizers but in general the exact evaluation of ex-
pected utility is intractable. It is thus natural to substitute an optimal polynomial-
time estimator for utility, as the analogue of expected value in the computationally

16More precisely, it cannot exist assuming there is a unary language in NP that cannot be decided
by a randomized algorithm in quasi-polynomial time with bounded probability of error.

17The relation to the worlds is somewhat disturbed by the role of O(1) advice. We think there
is a natural variant of this question that doesn’t involve advice but it is out of the present scope.
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bounded case. Further illuminating the connection, Theorem 5.2 shows how optimal
polynomial-time estimators result from agnostic PAC learning.

Some results we left out of the present work show the existence of systems of
optimal polynomial-time estimators that are “reflective” i.e. estimate systems of
functions which depend on the estimators themselves. We constructed such systems
using the Kakutani-Glicksberg-Fan theorem which requires the use of random advice
strings, as in the definition of F(MΓ)-samplers. Such systems can be used to model
game theoretic behavior of computationally bounded rational agents, similarly to
the use of reflective oracles [9] for unbounded agents.

Finally, we wish to express the hope that the present work will lead to incor-
porating more concepts from complexity theory into the theory of AGI, serving to
create a stronger theoretical foundation for AI in general. The importance of build-
ing such a theoretical foundation is enormous since it is necessary to predict and
control the outcome of the eventual creation of artificial agents with superhuman
intelligence, an event which might otherwise trigger a catastrophe [5].

A Appendix
We review the definitions of hard-core predicate and one-way function and state the
Goldreich-Levin theorem.

We will use the notation Γdet := (Γ1
0,Γ1

0), Γrand := (Γ1
poly,Γ1

0), Γcirc := (Γ1
0,Γ1

poly).

Definition A.1. Given D a word ensemble18, f : suppD → {0, 1}∗ and
B : {0, 1}∗ Γdet−−→ {0, 1}, B is a called a hard-core predicate of (D, f) when for any
S : {0, 1}∗ Γrand−−−→ {0, 1}

Pr(x,y)∼Dk×UkS
[Sk(f(x), y) = Bk(x)] ≤ 1

2 (mod Fneg) (A.1)

Definition A.2. Given D a word ensemble, f : suppD → {0, 1}∗ and
B : {0, 1}∗ Γdet−−→ {0, 1}, B is a called a non-uniformly hard-core predicate of (D, f)
when for any S : {0, 1}∗ Γcirc−−−→ {0, 1}

18The standard definition of a hard-core predicate corresponds to the case Dk = Uk. Here we
allow for slightly greater generality.
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Prx∼Dk [Sk(f(x)) = Bk(x)] ≤ 1
2 (mod Fneg) (A.2)

Definition A.3. f : {0, 1}∗ alg−−→ {0, 1}∗ is called an one-way function when

(i) There is p : N→ N polynomial s.t. ∀x ∈ {0, 1}∗ : Tf (x) ≤ p(|x|).

(ii) For any S : {0, 1}∗ Γrand−−−→ {0, 1}∗

Pr(x,y)∼Uk ×UkS
[f(Sk(f(x), y)) = x] ≡ 0 (mod Fneg) (A.3)

Definition A.4. f : {0, 1}∗ alg−−→ {0, 1}∗ is called a non-uniformly hard to invert
one-way function when

(i) There is p : N→ N polynomial s.t. ∀x ∈ {0, 1}∗ : Tf (x) ≤ p(|x|).

(ii) For any S : {0, 1}∗ Γcirc−−−→ {0, 1}∗

Prx∼Uk [f(Sk(f(x))) = x] ≡ 0 (mod Fneg) (A.4)

It is easy to see that any non-uniformly hard-core predicate is in particular a
hard-core predicate and any non-uniformly hard to invert one-way function is in
particular a one-way function.

The following appears in [12] as Theorem 7.7. Here we state it in the notation
of the present work.

Theorem A.1 (Goldreich-Levin). Consider a one-way function
f : {0, 1}∗ alg−−→ {0, 1}∗. Let Dk := U2k, fGL : suppD → {0, 1}∗ and
B : {0, 1}∗ Γdet−−→ {0, 1} be s.t. for any x, y ∈ {0, 1}k, fGL(xy) = 〈f(x), y〉 and
Bk(xy) = x · y. Then, B is a hard-core predicate of (D, fGL).

There is also a non-uniform version of the theorem which is not stated in [12],
but its proof is a straightforward adaptation.

Theorem A.2. In the setting of Theorem A.1, assume f is non-uniformly hard to
invert. Then B is a non-uniformly hard-core predicate of (D, fGL).
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