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Assumptive Sequent-Based Argumentation

AnneMarie Borg∗
Department of Information and Computing Sciences, Utrecht University, The

Netherlands
a.borg@uu.nl

Abstract

In many expert and everyday reasoning contexts it is very useful to reason
on the basis of defeasible assumptions. For instance, if the information at
hand is incomplete we often use plausible assumptions, or if the information
is conflicting we interpret it as consistently as possible. In this paper sequent-
based argumentation, a form of logical argumentation in which arguments are
represented by a sequent, is extended to incorporate defeasible assumptions.
The resulting assumptive framework is general, in that several other approaches
to reasoning with assumptions from the literature can adequately be represented
in it. Moreover, assumptive sequent-based argumentation has many desirable
properties. It will be shown that assumptive sequent-based argumentation can
easily be extended to a prioritized setting, it satisfies rationality postulates and
reasoning with maximally consistent subsets can be represented in it.

1 Introduction
Assumptions are an important concept in defeasible reasoning. Often, in both expert
and everyday reasoning, the information provided is not complete or it is inconsis-
tent. To derive conclusions in such cases, additional information can be assumed or
only consistent subsets can be considered. There are many approaches to reasoning
with assumptions within the artificial intelligence literature. One of the earlier and
best-known formalisms is that of default logic [4, 59]. Intuitively, a default rule of
the form φ : φ1, . . . , φn/ψ, represents that the conclusion ψ can be derived, if φ is
given and no inconsistencies arise when φ1, . . . , φn hold.
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A well-known formal method for modeling defeasible reasoning is formal argu-
mentation. The idea is that an argument can only be considered as accepted or
warranted, when it is defended from all of its attackers. Argumentation frame-
works in abstract argumentation theory, introduced by Dung [36], represent this
idea by means of a directed graph. The nodes in the graph represent arguments
(which are abstract entities) and the edges represent the attacks (the nature of
which is unknown). Abstract argumentation can be instantiated in various ways,
resulting in logical (also known as deductive or structured) argumentation. In these
approaches the arguments have a specific structure and attacks depend on this struc-
ture [24, 25, 54]. For example, in [24] the argumentation machinery is combined with
classical logic. In logical argumentation there is an explicit relationship among ar-
guments (e.g., a sub-argument relation can be defined) and rationality postulates
from e.g., [30], such as the consistency of the derived conclusions, can be studied,
see also [55].

One such logical argumentation framework is sequent-based argumentation [10],
in which arguments are represented by sequents, as introduced by Gentzen [39] and
well-known in proof theory. Attacks between arguments are formulated by sequent
elimination rules, which are special inference rules. The resulting framework is
generic and modular, in that any logic, with a corresponding sound and complete
sequent calculus, can be taken as the deductive base (the so-called core logic).

Several extensions and relations to other frameworks for nonmonotonic reason-
ing have been studied for sequent-based argumentation. A dynamic proof theory
was introduced [11, 12] to study argumentation from a proof-theoretic perspective.
Furthermore, the relation to reasoning with maximally consistent subsets, a com-
mon way to maintain consistency when given an inconsistent set of information [60],
was investigated [7, 9]. Sequent-based argumentation was extended to incorporate
priorities [8] and hypersequents [27]. The latter are a generalization of Gentzen’s
sequents [13] and allow to take logics such as the semi-relevance logic RM [3, 14] and
the modal logic S5 [38] as the core logic. However, in sequent-based argumentation
or any of its generalizations, it is not possible to distinguish between facts and de-
feasible assumptions. This can result in attacks on arguments that are constructed
only from facts. As facts represent knowledge that is known to be true, there should
be no conflict between facts, nor should arguments constructed only from facts be
attacked, since otherwise one could doubt the known information. Therefore, this
paper, an extended version of [26], proposes a further generalization, that allows to
distinguish between facts and defeasible assumptions.

The contribution of this paper is twofold. First, sequent-based argumentation is
extended. To each sequent a component for assumptions is added, to distinguish be-
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tween defeasible and strict premises. This way, in addition to the given information,
assumptions can be made to reach further conclusions. An assumptive argument
can only be attacked in its defeasible assumptions, thus assuring that the facts (the
given information or strict premises) always hold. After introducing this assump-
tive sequent-based argumentation framework, we show how it can be generalized to
include priorities, based on the approach from [8]. In human reasoning preferences
are a common feature in the process of deriving conclusions. It is therefore benefi-
cial if formal approaches to modeling defeasible reasoning can account for possible
preferences. Including priorities in formal argumentation makes it possible to order
arguments and accept only the most preferred ones. Then the rationality postu-
lates from [30] are studied, which shows that the introduced framework satisfies
some basic desirable properties. Furthermore, the representation of reasoning with
maximally consistent subsets is investigated.

Second, instances of the obtained framework are studied. For this, three ap-
proaches to reasoning with assumptions from the literature are considered:

• Assumption-based argumentation (ABA): a structured argumentation frame-
work which is also semi-abstract, in that there are only limited assumptions
on the underlying deductive system [25, 64]. ABA was introduced to deter-
mine a set of assumptions that can be accepted as a conclusion from the given
information. One of the aims of ABA is to provide a general framework that
can incorporate other frameworks for nonmonotonic reasoning, such as default
logic and other default reasoning frameworks.

• Adaptive logics: is a logical framework in which the goal is to interpret infor-
mation as consistently or as normally as possible [21, 62]. What as consistently
or as normally as possible means, depends on the lower limit logic, which can
be understood as the core logic of the adaptive logic, and the application.
In contrast to the other two approaches, the defeasible assumptions (called
abnormalities) are assumed not to hold. A dynamic proof system provides a
syntactic way to derive conclusions. Many forms of defeasible reasoning can
be expressed by an adaptive logic, (see, e.g., [62], in particular page 86, for an
overview).

• Default assumptions: were introduced as one of three ways to turn a mono-
tonic consequence relation nonmonotonic [48]. Nonmonotonicty is obtained
by varying the set of assumptions. Maximal sets of assumptions that are con-
sistent with the given set of formulas are added to the consequence relation.
A formula is then considered as derived if it is a consequence for each set of
assumptions. Due to the maximality requirement on the sets of assumptions,
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it is a generalization of the consequence relations from [60].

Each of these three approaches covers instances of defeasible reasoning. Although
they are related (see [43]), what makes them interesting to consider separately are
their particular designs. For example, the type of framework (e.g., argumentation
based or (supra-classical) logic based) and the different notions of assumptions,
i.e., positive interpretations (the assumptions are assumed to hold) and negative
interpretations (the assumptions are assumed not to hold). A general assumptive
argumentation framework, of which the above three cases are instances, will therefore
be beneficial in the search for a general framework for defeasible reasoning.

The introduced framework is general and modular. Any Tarskian logic with a
corresponding sequent calculus can be taken as the core logic and, as will be shown
in Section 4, it incorporates some well-known approaches to nonmonotonic reasoning
with assumptions. Furthermore, the framework is well-behaved since, in most cases,
the rationality postulates from [30] are satisfied. By means of the here introduced
assumptive sequent-based argumentation framework, logics, such as intuitionistic
logic, many of the well-known modal logics and several relevance logics, can be
equipped with defeasible assumptions. Hence, the results of this paper generalize to
many deductive core systems, as long as the Tarskian conditions are fulfilled.

As noted above, this paper is an extension of [26]. The results of [26] are part of
this paper, now including full proofs. Additionally, this paper studies the properties
of the proposed framework in more detail. That is, the incorporation of priorities and
the rationality postulates from [30] are studied and it is shown how reasoning with
maximally consistent subsets with assumptions can be represented in it. Moreover,
the sections on adaptive logics and default assumptions are new.

The paper is organized as follows. In the next section, we provide preliminaries
on the used notation and logical notions, a short introduction to abstract argu-
mentation is given and the main definitions of sequent-based argumentation are
recalled. Then, in Section 3, the general framework for assumptive sequent-based
argumentation is introduced and generalized to a prioritized setting (Section 3.1),
rationality postulates are studied (Section 3.2) and the representation of reasoning
with maximally consistent subsets is investigated (Section 3.3). To demonstrate the
expressiveness of the assumptive sequent-based framework and how it can be ap-
plied, in Section 4 it is shown how some well-known approaches to reasoning with
defeasible assumptions can be represented in it: assumption-based argumentation
(Section 4.1); adaptive logics (Section 4.2); and default assumptions (Section 4.3).
Related work is discussed in Section 5 and we conclude in Section 6.
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2 Preliminaries
In this section we review some basic notions that will be useful throughout the paper:
the basic logical setting, abstract argumentation as introduced in [36] (Section 2.1)
and sequent-based argumentation from [5, 10] (Section 2.2).

Throughout the paper only propositional languages are considered, denoted by
L. Atomic formulas are denoted by p, q, formulas are denoted by γ, δ, φ, ψ, sets of
formulas are denoted by S, T , and finite sets of formulas are denoted by Γ,∆. Later
on sets of assumptions are denoted by AS,A and finite sets of assumptions by A.
All of these can be primed or indexed.

Definition 1. A logic for a language L is a pair L = 〈L,`〉, where ` is a (Tarskian)
consequence relation for L, having the following properties:

• reflexivity: if φ ∈ S, then S ` φ;

• transitivity: if S ` φ and S ′, φ ` ψ, then S,S ′ ` ψ; and

• monotonicity: if S ′ ` φ and S ′ ⊆ S, then S ` φ.
Furthermore, the following property is assumed:

• non-triviality: there is a non-empty set of L-formulas S and an L-formula φ
such that S 0 φ.

In this section and the next (Section 3) the following connectives will sometimes
be considered:

• a negation operator (¬): p 6` ¬p and ¬p 6` p, for every atom p,

• a conjunction operator (∧): S ` φ ∧ ψ iff S ` φ and S ` ψ,

• a disjunction operator (∨): S, φ ∨ ψ ` γ iff S, φ ` γ or S, ψ ` γ,

• an implication operator (⊃): S, φ ` ψ iff S ` φ ⊃ ψ.
We shall abbreviate (φ ⊃ ψ) ∧ (ψ ⊃ φ) by φ ↔ ψ. Furthermore, we denote by∧Γ (respectively, by ∨ Γ) the conjunction (respectively, the disjunction) of all the
formulas in Γ and we let ¬S = {¬φ | φ ∈ S}. In examples based on classical
logic (CL), it is assumed that all four connectives are part of the language. In the
example instances in Section 4, the properties of possible connectives depend on the
underlying deductive base.

Definition 2. Let L = 〈L,`〉 be a logic, where L contains at least the connectives
¬ and ∧, and let T be a set of L-formulas.

231



Borg

• The closure of T is denoted by CN(T ) (thus, CN(T ) = {φ | Γ ` φ for Γ ⊆ T }).

• T is consistent (for `), if there are no formulas φ1, . . . , φn ∈ T such that
` ¬∧n

i=1 φi.

• A subset C of T is a minimal conflict of T (w.r.t. `), if C is inconsistent and
for any c ∈ C, C \ {c} is consistent. Free(T ) denotes the set of formulas in T
that are not part of any minimal conflict of T .

2.1 Abstract Argumentation
An abstract argumentation framework, as introduced by Dung [36], can be viewed as
a directed graph. In this graph nodes represent arguments (which are abstract, i.e.,
they do not have an internal structure) and the arrows represent attacks between
arguments, see Figure 1 for a graphical representation. Formally:

Definition 3. An (abstract) argumentation framework is a pair AF = 〈Args,AT 〉,
where Args is a set of arguments and AT ⊆ Args × Args is an attack relation on
these arguments.

a1

a2

a3

a4 a5

Figure 1: Abstract argumentation framework

Example 1. Consider the abstract argumentation framework from Figure 1. The
graph in the figure represents AF = 〈Args,AT 〉 where Args = {a1, a2, a3, a4, a5}
and AT = {(a1, a2), (a2, a3), (a3, a1), (a4, a1), (a4, a5), (a5, a4)}.

Given an argumentation framework AF , Dung-style semantics [36] can be ap-
plied to it, to determine what combinations of arguments (called extensions) can
collectively be accepted from the framework.

Definition 4. Let AF = 〈Args,AT 〉 be an argumentation framework and let S ⊆
Args be a set of arguments. It is said that:
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• S attacks an argument a if there is an a′ ∈ S such that (a′, a) ∈ AT ;

• S defends an argument a if S attacks every attacker of a;

• S is conflict-free if there are no a1, a2 ∈ S such that (a1, a2) ∈ AT ;

• S is admissible if it is conflict-free and it defends all of its elements.

An admissible set that contains all the arguments that it defends is a complete
extension of AF . Below are definitions of some particular complete extensions of
AF :

• the grounded extension of AF is the minimal (with respect to ⊆) complete
extension of AF ;

• a preferred extension of AF is a maximal (with respect to ⊆) complete exten-
sion of AF ;

• a stable extension of AF is a complete extension of AF that attacks every
argument not in it.

In what follows we shall refer to either complete (cmp), grounded (grd), preferred
(prf) or stable (stb) semantics as completeness-based semantics. We denote by
Extsem(AF) the set of all the extensions of AF under the semantics sem ∈ {cmp, grd,
prf, stb}. The subscript is omitted when this is clear from the context. As shown
in [36], the grounded extension is unique for a given framework, we will therefore
sometimes identify Extgrd(AF) with its single element.1

Throughout the paper we will rely on several properties of the semantics defined
above. For example, every stable extension is also a preferred extension, but not
vice versa. In fact, the grounded extension always exists and there is always a
preferred extension, but there is not necessarily a stable extension. For more details
see e.g. [17].

Example 2. Recall the setting from Example 1, for the argumentation framework
from Figure 1. Here we have that a4 and a5 attack each other and both defend
themselves. Examples of conflict-free sets are {a1, a5} and {a2, a4}.

For the extensions, note that the grounded extensions is ∅. Furthermore, there
are three complete extensions: ∅, {a5} and {a2, a4}, the last two of these are also
preferred extensions and {a2, a4} is stable.

1Other extensions are discussed, e.g., in [16, 17, 18].
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It has been argued that abstract argumentation should be instantiated [55], some-
thing which Dung already did in his seminal paper [36]. The study of instantiated
abstract argumentation frameworks has resulted in several approaches to structured
(also called logical or deductive) argumentation [5, 24, 25, 54]. In this paper we
consider sequent-based argumentation [5, 10].

2.2 Sequent-Based Argumentation
As usual in logical argumentation (see, e.g., [24, 52, 53, 61]), arguments in this
paper will have a specific structure based on the underlying formal language, the so-
called core logic. In the current setting arguments are represented by the well-known
proof-theoretic notion of a sequent [39].

Definition 5. Let L = 〈L,`〉 be a logic and S a set of L-formulas.

• An L-sequent (sequent for short) is an expression of the form Γ⇒ ∆, where Γ
and ∆ are finite sets of formulas in L and ⇒ is a symbol that does not appear
in L.2

• An L-argument (argument for short) is an L-sequent Γ⇒ ψ,3 where Γ ` ψ. Γ
is called the support set of the argument and ψ its conclusion.

• An L-argument based on S is an L-argument Γ⇒ ψ, where Γ ⊆ S. The set of
all the L-arguments based on S will be denoted by ArgL(S) .

Given an argument a = Γ⇒ ψ, we denote Supp(a) = Γ and Conc(a) = ψ.

The formal systems used for the constructions of sequents (and so of arguments)
for a logic L = 〈L,`〉, are sequent calculi [39], denoted here by C. In what follows
it is assumed that C is sound and complete for L = 〈L,`〉, i.e., Γ ⇒ ψ is provable
in C iff Γ ` ψ. One of the advantages of sequent-based argumentation is that any
logic with a corresponding sound and complete sequent calculus can be used as the
core logic.4 The construction of arguments from simpler arguments is done by the
inference rules of the sequent calculus [39]. See Figure 2 for the sequent calculus LK
of classical logic (CL).5

2Intuitively, in many sequent calculi, a sequent Γ⇒ ∆ can be understood as: if all formulas in
Γ are true, then at least one formula in ∆ is true.

3Set signs in arguments are omitted.
4See [10] for further discussion and advantages of this approach.
5Note that sequents are defined for sets of formulas. This avoids the need for contraction rules

in LK. However, the conclusion of arguments (and later on derivations in single conclusioned calculi)
contains at most one formula, i.e., Γ⇒ φ, ψ is not allowed.
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Axioms: φ⇒ φ

Logical rules:

Γ, φ, ψ ⇒ ∆
Γ, φ ∧ ψ ⇒ ∆ [∧⇒] Γ⇒ φ,∆ Γ⇒ ψ,∆

Γ⇒ φ ∧ ψ,∆ [⇒∧]

Γ⇒ φ,∆
Γ,¬φ⇒ ∆ [¬⇒] Γ, φ⇒ ∆

Γ⇒ ¬φ,∆ [⇒¬]

Γ⇒ φ,∆ Γ, ψ ⇒ ∆
Γ, φ ⊃ ψ ⇒ ∆ [⊃⇒] Γ, φ⇒ ψ,∆

Γ⇒ φ ⊃ ψ,∆ [⇒⊃]

Γ, φ⇒ ∆ Γ, ψ ⇒ ∆
Γ, φ ∨ ψ ⇒ ∆ [∨⇒] Γ⇒ φ, ψ,∆

Γ⇒ φ ∨ ψ,∆ [⇒∨]

Structural rules:
Γ1 ⇒ φ,∆1 Γ2, φ⇒ ∆2

Γ1,Γ2 ⇒ ∆1,∆2
[Cut] Γ⇒ ∆

Γ, φ⇒ ∆ [Mon] Γ⇒ ∆
Γ⇒ φ,∆ [Mon]

Figure 2: The sequent calculus LK for classical logic.

In addition to arguments, an argumentation system contains attacks between
arguments as well. In our case, attacks are represented by sequent elimination rules.
Such a rule consists of an attacking argument (the first condition of the rule), an
attacked argument (the last condition of the rule), conditions for the attack (the
conditions in between) and a conclusion (the eliminated attacked sequent). The
outcome of an application of such a rule is that the attacked sequent is ‘eliminated’.
The elimination of a sequent a = Γ⇒ ∆ is denoted by Γ 6⇒ ∆.

Definition 6. A sequent elimination rule (or attack rule) is a rule R of the form:

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n

Γn 6⇒ ∆n
R (1)

Let L = 〈L,`〉 be a logic, C its corresponding sequent calculus and S a set of L-
formulas. It is said that a sequent elimination rule R is ArgL(S)-applicable (with
respect to some substitution θ), applicable for short, if θ(Γ1) ⇒ θ(∆1), θ(Γn) ⇒
θ(∆n) ∈ ArgL(S) and for each 1 < i < n, θ(Γi)⇒ θ(∆i) is derivable in C. It is then
said that θ(Γ1)⇒ θ(∆1) R-attacks θ(Γn)⇒ θ(∆n).

The following example shows some of the possible elimination rules.
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Example 3. Suppose L contains a negation operator ¬ and a conjunction operator
∧. See [10, 63] for a definition of many sequent elimination rules. Below are three
of them (assuming that Γ2 6= ∅):

Undercut (Ucut): Γ1 ⇒ ψ1 ψ1 ⇒ ¬
∧ Γ2 ¬∧ Γ2 ⇒ ψ1 Γ2,Γ′2 ⇒ ψ2

Γ2,Γ′2 6⇒ ψ2

Direct Ucut (DUcut): Γ1 ⇒ ψ1 ψ1 ⇒ ¬γ ¬γ ⇒ ψ1 γ,Γ′2 ⇒ ψ2
γ,Γ′2 6⇒ ψ2

Consistency Ucut (ConUcut): ⇒ ¬
∧ Γ2 Γ2,Γ′2 ⇒ ψ

Γ2,Γ′2 6⇒ ψ

A sequent-based framework is now defined as follows:

Definition 7. A sequent-based argumentation framework for a set of formulas S
based on the logic L = 〈L,`〉 and a set AR of sequent elimination rules, is a pair
AFL,AR(S) = 〈ArgL(S),AT 〉, where AT ⊆ ArgL(S) × ArgL(S) and (a1, a2) ∈ AT
iff there is an R ∈ AR such that a1 R-attacks a2.

In what follows, to simplify notation, the subscripts L and/or AR are omitted
when these are clear from the context or arbitrary.

Example 4. Let AFCL,{Ucut}(S) be an argumentation framework, with classical
logic as its core logic, Undercut as the only attack rule and the set S = {p, p ⊃ q,¬q}.
Some of the arguments are:

a = p, p ⊃ q ⇒ q b = ¬q ⇒ ¬q c = p⇒ p

d = ⇒ q ∨ ¬q e = p ⊃ q,¬q ⇒ ¬p.

Note that a attacks b and e since⇒ q ↔ ¬¬q is derivable in LK. Similarly, e attacks
a and c, since⇒ ¬p↔ ¬p. The argument d cannot be attacked, since the considered
attack rule attacks arguments in their support and d has an empty support set. See
Figure 3 for a graphical representation of these arguments and the attacks between
them. Note that the figure only shows the five arguments mentioned above. Many
other arguments are not shown. However, these five arguments are sufficient to
illustrate some of the notions of this section.

A sequent-based argumentation framework AFL,AR(S) = 〈ArgL(S),AT 〉 can be
seen as an instance of a Dung-style argumentation framework AF = 〈Args,AT 〉,
where Args = ArgL(S) (Definition 3). Therefore, Dung-style semantics (Definition 4)
can be applied to it.

From this entailment relations that are induced from a given sequent-based ar-
gumentation framework and its semantics can be defined.
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b a

d

e c

Figure 3: Part of the sequent-based argumentation framework from Example 4 for
S = {p, p ⊃ q,¬q}.

Definition 8. Given a sequent-based argumentation framework AFL(S), the se-
mantics as defined in Definition 4 induce corresponding (nonmonotonic) entailment
relations:

• S |∼∩L,sem φ iff there is an a ∈ ⋂ Extsem(AFL(S)), such that Conc(a) = φ,

• S |∼∪L,sem φ iff for some E ∈ Extsem(AFL(S)), there is an argument Γ⇒ φ ∈ E
where Γ ⊆ S,

• S |∼eL,semφ iff for every E ∈ Extsem(AFL(S)) there is an a ∈ E and Conc(a) = φ.

Since the grounded extension is unique, |∼∩L,grd, |∼∪L,grd and |∼eL,grd coincide and will
be denoted by |∼L,grd.

Example 5. Consider the framework from Example 4, for S = {p, p ⊃ q,¬q} and
Undercut as the only attack rule. Recall that only a few of the existing arguments
were mentioned in the previous example. Since the argument d = ⇒ q ∨ ¬q is
not attacked it holds that S |∼CL,grd q ∨ ¬q. It can be shown that there are three
preferred extensions: Extprf(AFL(S)) = {E1, E2, E3} where E1 = ArgL({p, p ⊃ q}),
E2 = ArgL({p,¬q}) and E3 = ArgL({p ⊃ q,¬q}). Thus, for φ ∈ S we have that
S|6∼∩CL,prfφ and S|∼∪CL,prfφ. Now consider the formula p∨¬q. Although S|6∼∩CL,prfp∨¬q,
S |6∼eCL,prf p and S |6∼eCL,prf ¬q, it holds that S |∼eCL,prf p∨¬q. This follows since in each
E ∈ Extprf(AFL(S)), there is an argument ap ∈ E such that Conc(ap) = p and/or
there is an argument aq ∈ E such that Conc(aq) = ¬q. In both cases p ∨ ¬q can be
derived from the conclusions of E .

3 Assumptive Sequent-Based Argumentation
Sometimes deriving conclusions requires making assumptions, for example, because
there is simply not enough information given, or the information provided is conflict-
ing. There are many ways in which assumptions are handled in the literature, e.g.,
default logic [59], assumption-based argumentation [25], default assumptions [48]
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and adaptive logics [21]. In this section the sequent-based argumentation frame-
work from Section 2.2, is extended to incorporate assumptions.

In what follows we assume that, instead of one set of formulas, the input consists
of two sets of L-formulas: AS, the defeasible premises, a set of assumptions, the
form of which depends on the application and the logic; and S, the strict premises,
the formulas of which can intuitively be understood as facts. As before, a logic
L = 〈L,`〉 is assumed to have a corresponding sequent calculus C. This calculus will
be adjusted to C′, in order to allow for assumptions. Both C and C′ are assumed to
be sound and complete for L. Furthermore, in the current section, L will contain at
least a negation operator ¬ and a conjunction operator ∧, as in Section 2.

Definition 9. Let L = 〈L,`〉 be a logic, with a corresponding sound and complete
sequent calculus C and the corresponding adjusted calculus C′, let S be a set of
L-formulas and AS a set of assumptions.

• An assumptive L-sequent ((assumptive) sequent for short) is an expression of
the form A

77 Γ⇒ ∆.

• An assumptive L-argument ((assumptive) argument for short) is an assumptive
sequent A

77 Γ⇒ ψ, that is provable in C′.6

• An assumptive L-argument based on S and AS is an assumptive argument
A

77 Γ ⇒ ψ such that Γ ⊆ S and A ⊆ AS. As before, the set of all the
assumptive L-arguments based on S and AS is denoted by ArgL(S,AS).

Notation 1. Let a = A
77 Γ ⇒ ψ be an assumptive argument. Then Ass(a) = A

denotes the assumptions of the argument a. As before, Supp(a) = Γ and Conc(a) =
ψ. Furthermore, for S a set of arguments, Concs(S) = {Conc(a) | a ∈ S}, Supps(S) =⋃{Supp(a) | a ∈ S} and Ass(S) = ⋃{Ass(a) | a ∈ S}. In case that A = ∅, a will
sometimes be written as Γ⇒ ψ.

Because of the additional component (the assumptions) in an argument, rules
have to be defined that allow for the movement of assumptions around

77.
Definition 10. Let L = 〈L,`〉 be a logic, S a set of L formulas and AS a set of
assumptions. The following two rules allow to move assumptions:

A
77 Γ, φ⇒ ψ

A, φ
77 Γ⇒ ψ

ASlAS
A, φ

77 Γ⇒ ψ

A
77 Γ, φ⇒ ψ

ASrAS where φ ∈ AS.
6In this paper, C′ will differ from C only in that it is defined in terms of assumptive sequents

rather than sequents (as in Definition 5) and that it has rules that allow for assumptions to be
moved to and from the left side of

77.
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Remark 1. For a logic L = 〈L,`〉, a set of L-formulas S and a set of assumptions
AS, let Γ ⊆ S and A ⊆ AS, if ASrAS and ASlAS are rules in C′ then: A ∪ Γ ⇒ φ is
derivable in C iff A

77 Γ⇒ φ is derivable in C′.

Remark 2. The rules from Definition 10 are necessary to construct assumptive
arguments. Note that these rules can only be applied to assumptions (i.e., elements
from AS). Thus, although assumptions might occur left and right of

77 in a deriva-
tion, assumptive sequents (and therefore the arguments in this paper) are such that
assumptions only occur on the left side of

77.

An important rule is [Cut] (see Figure 2). In view of Remark 1, the following two
versions are admissible when ASrAS and ASlAS are part of C′ and [Cut] is admissible
in C:

A1
77 Γ1 ⇒ ∆1, φ A2

77 Γ2, φ⇒ ∆2

A1, A2
77 Γ1,Γ2 ⇒ ∆1,∆2

[Cut]
A1

77 Γ1 ⇒ ∆1, φ A2, φ
77 Γ2 ⇒ ∆2

A1, A2
77 Γ1,Γ2 ⇒ ∆1,∆2

[Cut]

Figure 4 shows how the sequent calculus for classical logic LK (from Figure 2)
can be extended to LK′. IN view of the discussion above, LK′ contains only one cut
rule.

Example 6. Recall, from Example 4, the set of formulas {p, p ⊃ q,¬q}, where
CL is the core logic and LK the corresponding calculus. Let now S = {p} and
AS = {p ⊃ q,¬q} and take LK′ from Figure 4 as the corresponding calculus. The
assumptive counterparts of the arguments in Example 4 are then:

aAS = p ⊃ q
77 p⇒ q bAS = ¬q

77 ⇒ ¬q cAS = p⇒ p

dAS = ⇒ q ∨ ¬q eAS = p ⊃ q,¬q
77 ⇒ ¬p.

Arguments are attacked in the set of assumptions. When choosing a (set of)
attack rule(s), it is important to note that these reflect the interpretation of an
assumption. In the rules below, the interpretation of the assumptions is positive:
they are assumed to hold. If the interpretation is negative instead, the negation in
the condition(s) of the first two rules should be removed. See Section 4.2 on adaptive
logics for a setting with negative assumptions.

Example 7. Assume A1
77 Γ1 ⇒ φ1; A2, ψ

77 Γ2 ⇒ φ2 ∈ ArgL(S,AS) and ∆ ⊆ S.
Let a = A

77 Γ ⇒ φ ∈ ArgL(S,AS), we continue using A
77 Γ 6⇒ φ to denote

that a has been eliminated. Examples of sequent elimination rules for assumptive
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Axioms: φ⇒ φ

Logical rules:

A
77 Γ, φ, ψ ⇒ ∆

A
77 Γ, φ ∧ ψ ⇒ ∆

[∧⇒]
A

77 Γ⇒ φ,∆ A
77 Γ⇒ ψ,∆

A
77 Γ⇒ φ ∧ ψ,∆

[⇒∧]

A
77 Γ⇒ φ,∆

A
77 Γ,¬φ⇒ ∆

[¬⇒]
A

77 Γ, φ⇒ ∆
A

77 Γ⇒ ¬φ,∆
[⇒¬]

A
77 Γ⇒ φ,∆ A

77 Γ, ψ ⇒ ∆
A

77 Γ, φ ⊃ ψ ⇒ ∆
[⊃⇒]

A
77 Γ, φ⇒ ψ,∆

A
77 Γ⇒ φ ⊃ ψ,∆

[⇒⊃]

A
77 Γ, φ⇒ ∆ A

77 Γ, ψ ⇒ ∆
A

77 Γ, φ ∨ ψ ⇒ ∆
[∨⇒]

A
77 Γ⇒ φ, ψ,∆

A
77 Γ⇒ φ ∨ ψ,∆

[⇒∨]

Structural rules:
A1

77 Γ1 ⇒ Π, φ A2
77 Γ2, φ⇒ ∆

A1, A2
77 Γ1,Γ2 ⇒ Π,∆

[Cut]

A
77 Γ, φ⇒ ψ

A, φ
77 Γ⇒ ψ

ASlAS
A, φ

77 Γ⇒ ψ

A
77 Γ, φ⇒ ψ

ASrAS where φ ∈ AS

A
77 Γ⇒ ∆

A
77 Γ, φ⇒ ∆

[LMon]
A

77 Γ⇒ Π
A

77 Γ⇒ φ,Π
[RMon]

Figure 4: The assumptive sequent calculus LK′ for classical logic.

sequent-based argumentation are (see Section 4 for other definitions):

A1
77 Γ1 ⇒ φ1 φ1 ⇒ ¬ψ A2, ψ

77 Γ2 ⇒ φ2

A2, ψ
77 Γ2 6⇒ φ2

AT⇒AS

A1
77 Γ1 ⇒ φ1 φ1 ⇒ ¬ψ ¬ψ ⇒ φ1 A2, ψ

77 Γ2 ⇒ φ2

A2, ψ
77 Γ2 6⇒ φ2

AT⇔AS

∆⇒ ¬∧
A1 A1

77 Γ1 ⇒ φ1

A1
77 Γ1 6⇒ φ1

ATCon
AS

When the superscript is clear from the context or arbitrary, it will be omitted. In
the remainder we sometimes write that, for the arguments as in the first two rules,
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A2, ψ
77 Γ2 ⇒ φ2 is attacked in ψ by A1

77 Γ1 ⇒ φ1.

Each of the above rules reflects that an assumptive argument can only be attacked
in its assumptions. The rule AT⇔AS can be seen as the assumptive version of the
direct undercut rule from Example 3. The ATCon

AS rule can be understood as the
assumptive version of consistency undercut. This rule attacks arguments that have
an inconsistent set of assumptions (in which case it could be that ∆ = ∅) or the set
of assumptions is inconsistent with the set of facts. In Example 8 below, if ATCon

AS
would be part of the attack rules, the argument a6 would be ATCon

AS -attacked.

Definition 11. An assumptive sequent-based argumentation framework for a set
of formulas S, set of assumptions AS, based on a logic L = 〈L,`〉 and a set AR of
sequent elimination rules (such as those from Example 7), is a pair AFL,AR(S,AS) =
〈ArgL(S,AS),AT 〉, where AT ⊆ ArgL(S,AS)×ArgL(S,AS) and (a1, a2) ∈ AT iff
there is a rule R ∈ AR such that a1 R-attacks a2.

Note that, although no restrictions are placed on S and AS in the definition
above, in Section 3.2 it is shown why S should be consistent. Such a restriction
can not be enforced in general, since there are cases where S has to be inconsistent,
in order for the argumentation process to be interesting. Section 4.2, on adaptive
logics, is an example of such a case.

Like before, when these are clear from the context or arbitrary, the subscripts L
and/or AR are omitted. The semantics, as defined in Definition 4 can be applied to
assumptive sequent-based argumentation frameworks.

Example 8. Let AFCL,{AT⇔AS}(S,AS) = 〈ArgCL(S,AS),AT 〉, where S = {p} and
AS = {p ⊃ q,¬q}, as in Example 6. Then some of the arguments in ArgCL(S,AS)
are:

a1 = p⇒ p a2 = p ⊃ q
77 ⇒ p ⊃ q a3 = ¬q

77 ⇒ ¬q
a4 = p ⊃ q

77 p⇒ q a5 = ¬q
77 p⇒ p ∧ ¬q a6 = p ⊃ q,¬q

77 ⇒ ¬p

As in Example 4, these are only a few of the derivable arguments. However, these
arguments are sufficient for the purpose of this example and the other arguments do
not change the discussion and evaluation below.

Note that a4 attacks any argument with ¬q in the assumptions (i.e., a3, a5 and
a6), since ⇒ q ↔ ¬¬q is derivable in LK′. To see why a5 attacks a2, a4 and a6, take
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a look at the following derivations:

p⇒ p
p⇒ p, q [Mon] q ⇒ q

p, q ⇒ q [Mon]
p, p ⊃ q ⇒ q [⊃⇒]

p,¬q, p ⊃ q ⇒ [¬⇒]

p,¬q ⇒ ¬(p ⊃ q) [⇒¬]

p ∧ ¬q ⇒ ¬(p ⊃ q) [∧⇒]

⇒ (p ∧ ¬q) ⊃ ¬(p ⊃ q) [⇒⊃]

p⇒ p
p⇒ p, q [Mon]

q ⇒ q
p, q ⇒ q [Mon]
p⇒ ¬q, q [⇒¬]

p⇒ p ∧ ¬q, q [⇒∧]
⇒ p ∧ ¬q, p ⊃ q [⇒⊃]

¬(p ⊃ q)⇒ p ∧ ¬q [¬⇒]

⇒ ¬(p ⊃ q) ⊃ (p ∧ ¬q) [⇒⊃]

See Figure 5 for a graphical representation of the given arguments and the attacks
between them.

a1

a2 a3a4a5

a6

Figure 5: Part of the assumptive sequent-based argumentation framework from
Example 8 for S = {p} and AS = {p ⊃ q,¬q}.

Since Ass(a1) = ∅, the argument a1 cannot be attacked. It follows that a1 ∈⋂ Extcmp(AFCL,{AT⇔AS}(S,AS)) and hence a1 ∈ Extgrd(AFCL,{AT⇔AS}(S,AS)), where
Extgrd(AFCL,{AT⇔AS}(S,AS)) is identified with its single element. There are five
admissible sets in the framework from Figure 5: ∅, {a1}, {a1, a2, a4}, {a1, a3, a5},
{a2, a4} and {a3, a5}. Note that a6 is not part of any admissible set. To see this,
note that both a4 and a5 have to be attacked and not defended, yet any attacker of
a4 and a5 is also an attacker of a6.

The entailment relations for an assumptive framework AFL(S,AS) are defined
similarly to those in Definition 8 and are denoted by |∼?AS,sem for ? ∈ {∩,∪,e} and
where AS is the set of assumptions.
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Example 9. Recall AFCL,{AT⇔AS}(S,AS) from Example 8, where S = {p} and
AS = {p ⊃ q,¬q}. In view of the discussion about the extensions in that example,
S |∼AS,grd p, since a1 is not attacked. Moreover, S |∼∪AS,semφ for sem ∈ {cmp, prf, stb}
and φ ∈ CNCL({p ⊃ q, p} ∪ {¬q, p}), but S |6∼∩AS,sem ψ for sem ∈ {cmp, prf, stb} and
ψ ∈ {p ⊃ q,¬q}. This follows since for each φ ∈ {p ⊃ q,¬q} there is an argument
a with Conc(a) = φ and there is some E ∈ Extsem(AFCL,{AT⇔AS}(S,AS)) such that
a ∈ E . However, there is also some E ′ ∈ Extsem(AFCL,{AT⇔AS}(S,AS)) such that
a /∈ E ′, for sem ∈ {cmp, prf, stb}.

In the next sections we study some properties of assumptive sequent-based ar-
gumentation frameworks. First, in Section 3.1 priorities among the assumptions
are incorporated. Then, in Section 3.2 the rationality postulates from [30] for the
resulting prioritized frameworks are shown. In Section 3.3 we discuss how reasoning
with maximally consistent subsets, as introduced in [60], can be generalized to the
assumptive setting and can be represented by the here introduced framework. In
these sections we assume that the rules from Figure 6 are admissible in the sequent
calculus C. This way it is not necessary to choose a specific core logic to prove the
results and the proofs can be kept relatively simple (i.e., no case distinctions are nec-
essary to cover different kinds of rules). Note that this requirement does not limit
the presented assumptive framework, only the calculi for which the results hold.

3.1 Adding Priorities
Another important and often applied way to distinguish between elements of the
premises, is by means of priorities. By assigning priorities to some knowledge, or
expressing preferences among the knowledge, the derivation process can be adjusted
such that as much as possible of the most preferred knowledge is accepted. Within
argumentation, for many frameworks prioritized versions have been studied, includ-
ing sequent-based argumentation [8]. In the assumptive setting, facts always hold,
thus these are preferred over any other premise. But among the assumptions, a user
might have preferences.

Definition 12. A priority function for a language L is a function π : L → N+. Given
a set of L-formulas S, we denote π(S) = {π(φ) | φ ∈ S}. Moreover, maxπ(S) =
{φ ∈ S | @ψ ∈ S, π(φ) < π(ψ)} denotes the set of formulas from S with maximal
π-value. We let maxπ(∅) = 0.

In what follows, it is assumed that a formula φ is preferred over a formula ψ if
π(φ) ≤ π(ψ), φ is strictly preferred over ψ if it is preferred over ψ and π(ψ) 6≤ π(φ).
Thus, intuitively, a lower π-value means a higher preference.

With this priority function, the attack relation induced by ATAS can be refined:
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Axioms: φ⇒ φ

Logical rules:

A
77 Γ, φ, ψ ⇒ ∆

A
77 Γ, φ ∧ ψ ⇒ ∆

[∧⇒]
A

77 Γ⇒ φ,Π A
77 Γ⇒ ψ,Π

A
77 Γ⇒ φ ∧ ψ,Π

[⇒∧]

A
77 Γ⇒ φ,Π

A
77 Γ,¬φ⇒ Π

[¬⇒]
A

77 Γ, φ⇒ Π
A

77 Γ⇒ ¬φ,Π
[⇒¬]

Structural rules:
A1

77 Γ1 ⇒ Π, φ A2
77 Γ2, φ⇒ ∆

A1, A2
77 Γ1,Γ2 ⇒ Π,∆

[Cut]
A1

77 Γ1 ⇒ Π, φ A2, φ
77 Γ2 ⇒ ∆

A1, A2
77 Γ1,Γ2 ⇒ Π,∆

[Cut]

A
77 Γ, φ⇒ ψ

A, φ
77 Γ⇒ ψ

ASlAS
A, φ

77 Γ⇒ ψ

A
77 Γ, φ⇒ ψ

ASrAS where φ ∈ AS

A
77 Γ⇒ ∆

A
77 Γ, φ⇒ ∆

[LMon]
A

77 Γ⇒ Π
A

77 Γ⇒ φ,Π
[RMon]

Figure 6: Rules that are assumed to be part of (or admissible in) the calculus C (in
the case that C is single-conclusioned Π should be empty and ∆ contains at most
one formula).

Definition 13. Let a1, a2 ∈ ArgL(S,AS), it is said that a1 AT ?,≤π
AS -attacks a2 if

and only if a1 AT?AS-attacks a2 in ψ and maxπ(Ass(a1)) ≤ π(ψ), for ? ∈ {⇒,⇔} or
a1 ATCon

AS -attacks a2.

Remark 3. An ATCon,≤π
AS -attack is always successful, since the attacker has an

empty set of assumptions, the superscript ≤π will therefore often be omitted from
the notation.

Example 10. Recall the examples from the previous section, for the assumptive
framework AFCL,{AT⇔AS}(S,AS) = 〈ArgCL(S,AS),AT 〉, where S = {p}, AS = {p ⊃
q,¬q}. Let π(p ⊃ q) = 2 and π(¬q) = 3. Then, not all attacks of the flat setting
(i.e., the setting without priorities) go through. For example, although a5 attacks
a4 in the flat setting, this attack goes no longer through given the priority function
π. In fact, since a5 attacks arguments in the assumption p ⊃ q, no argument is
attacked by a5 given this priority function.

244



Assumptive Sequent-Based Argumentation

Definition 14. A prioritized assumptive sequent-based argumentation framework
for a set of formulas S, set of assumptions AS, based on a logic L = 〈L,`〉, π
a priority function on L and AR the set of sequent elimination rules, is a triple
AF≤πL,AR(S,AS) = 〈ArgL(S,AS),AT ,≤π〉, where AT ⊆ ArgL(S,AS)×ArgL(S,AS)
and (a1, a2) ∈ AT iff there is a rule R≤π ∈ AR such that a1 R≤π -attacks a2.

Like before, the semantics of Definition 4 can be applied to prioritized assumptive
sequent-based argumentation frameworks. The corresponding entailment relations
are denoted by |∼≤π ,?AS,sem, where ? ∈ {∩,∪,e} and AS is the set of assumptions.

Example 11. Consider the setting from Example 10, in which CL is the core logic,
AT⇔,≤πAS the attack rule, S = {p}, AS = {p ⊃ q,¬q}, the priority function π is such
that π(p ⊃ q) = 2 and π(¬q) = 3. As mentioned, not all attacks as presented in
Figure 5 go through. For a graphical representation of this prioritized assumptive
framework, see Figure 7. Given the priority function π, a2 is no longer attacked

a1

a2 a3a4a5

a6

Figure 7: Part of the prioritized assumptive sequent-based argumentation framework
from Example 11 for S = {p} and AS = {p ⊃ q,¬q}, with π(p ⊃ q) = 2 and
π(¬q) = 3.

and a3 can no longer be defended from the attack by a4. Thus S |∼≤πAS,grd φ, where
φ ∈ CNCL({p, p ⊃ q}). On the other hand S |6∼≤π ,∪AS,cmp ¬q.

In the next section some desirable properties of (prioritized) assumptive sequent-
based argumentation frameworks are studied, in terms of the rationality postulates
from [30].
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3.2 Rationality Postulates
There are many structured argumentation frameworks introduced and studied in the
literature. It is therefore important to have an objective measure for the usefulness
of such frameworks and to make sure that the resulting extensions satisfy some basic
desirable properties. To this end, the rationality postulates from [30] are studied.
Before introducing the postulates, the notion of a sub-argument will be useful.

Definition 15. Let AF≤πL (S,AS) = 〈ArgL(S,AS),AT ,≤π〉 be an argumentation
framework and consider two arguments a, a′ ∈ ArgL(S,AS) such that a = A

77 Γ⇒ φ
and a′ = A′

77 Γ′ ⇒ φ′. Then a′ is a sub-argument of a if Γ′ ⊆ Γ and A′ ⊆ A. The
set of sub-arguments of a is denoted by Sub(a).

Definition 16. Let AF≤πL (S,AS) = 〈ArgL(S,AS),AT ,≤π〉 be an assumptive ar-
gumentation framework for the logic L = 〈L,`〉, the set S of L-formulas, the set AS
of assumptions and some semantics sem. AF≤πL (S,AS) satisfies:

• closure of extensions: iff Concs(E) = CN(Concs(E)) for each extension E ∈
Extsem(AF≤πL (S,AS));

• sub-argument closure: iff a ∈ E implies that Sub(a) ⊆ E for all extensions
E ∈ Extsem(AF≤πL (S,AS));

• consistency: iff Concs(E) is consistent for each E ∈ Extsem(AF≤πL (S,AS)).

Remark 4. In [30], there are two different postulates for inconsistency: direct
consistency (the consistency postulate above) and indirect consistency. However,
in view of the closure of extensions postulate, indirect consistency follows from the
consistency postulate in our setting. This is why the above postulates are discussed
in the given order.

Furthermore, sub-argument closure was not defined as a postulate, but is shown
as a proposition ([30, Proposition 1]). Note that the framework from [30] is differ-
ent from the one presented here, thus the notion of a sub-argument is also differ-
ent. However, the definition of sub-arguments as given here, corresponds to that of
e.g., [1, 2, 8].

Remark 5. In the proofs of the rationality postulates below, it will be assumed
that S is consistent. Consider for example AF≤πL (S,AS) = 〈ArgL(S,AS),AT ,≤π〉,
for CL the core logic, with LK as calculus and where S = {p,¬p} and AS = {q}.
Some of the arguments are:

a = p⇒ p b = ¬p⇒ ¬p c = q
77 ⇒ q d = p,¬p⇒ ¬q
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Note that a, b and d cannot be attacked, since Ass(a) = Ass(b) = Ass(d) = ∅. Thus
a, b, d ∈ Extgrd(AF≤πL (S,AS)). Moreover, d attacks c and c cannot be defended,
though one might argue that the conflict of p should not cause q to be excluded
from the conclusions. In Lemma 2, it will be shown that, when S is inconsistent,
ArgL(S, ∅) is the only extension.

The next lemma introduces some sequent rules that will be used in the proofs of
this section.

Lemma 1. Let L = 〈L,`〉 be a logic with corresponding sequent calculus C, in which
the rules from Figure 6 are admissible. Then the rules from Figure 8 are admissible
as well.

Γ,¬¬φ⇒ ∆
Γ, φ⇒ ∆ [¬¬6⇒] Γ, φ1, . . . , φn ⇒ Π

Γ⇒ ¬(φ1 ∧ . . . ∧ φn),Π [⇒¬∧]

Γ⇒ ¬(φ1 ∧ . . . ∧ φn),Π
Γ, φ1, . . . , φn ⇒ Π [ 6⇒¬∧]

Figure 8: Admissible rules in the minimal calculus from Figure 6 (in the case that
C is single-conclusioned Π should be empty and ∆ contains at most one formula).

The proof is by means of derivations in the minimal calculus from Figure 6 and
can be found in Appendix A.

The next lemma shows that, when S is inconsistent, there is exactly one extension
that contains only the arguments with an empty set of assumptions. Moreover,
together with Remark 5, it provides the motivation to assume that S is consistent.

Lemma 2. Let AF≤πL (S,AS) = 〈ArgL(S,AS),AT ,≤π〉 be an argumentation frame-
work. If S is inconsistent, then Extsem(AF≤πL (S,AS)) = {ArgL(S, ∅)} for each
sem ∈ {grd, cmp, prf, stb}.

Proof. Let AF≤πL (S,AS) = 〈ArgL(S,AS),AT ,≤π〉 be an argumentation framework
for the logic L = 〈L,`〉 with corresponding calculus C, inconsistent set of L-formulas
S, set of assumptions AS and π a priority function. Since an attack is always on
formulas in the assumptions of an argument, none of the arguments in ArgL(S, ∅)
can be attacked, thus ArgL(S, ∅) ⊆ Extgrd(AF≤πL (S,AS)).

By assumption S is inconsistent, thus there are φ1, . . . , φn ∈ S, such that
` ¬∧n

i=1 φi. Thus, by the completeness of C for L, ⇒ ¬∧n
i=1 φi and by [ 6⇒¬∧]

φ1, . . . , φn ⇒ are derivable in C. Let ψ ∈ AS be arbitrary, by [RMon], a =
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φ1, . . . , φn ⇒ ¬ψ is derivable in C. Note that a ∈ ArgL(S, ∅) and a attacks any argu-
ment b ∈ ArgL(S,AS) for which ψ ∈ Ass(b). Since ψ ∈ AS was arbitrary, it follows
that ArgL(S, ∅) attacks any argument with a non-empty set of assumptions. Hence,
ArgL(S, ∅) attacks any argument not in it. Therefore Extsem(AF≤πL (S,AS)) =
{ArgL(S, ∅)} for each sem ∈ {grd, cmp, prf, stb}.

For the following lemmas let AF≤πL (S,AS) = 〈ArgL(S,AS),AT ,≤π〉 be an ar-
gumentation framework. The framework is induced by the logic L = 〈L,`〉 (with
corresponding calculus C), the set of L-formulas S, the set of assumptions AS, the
priority ordering π on formulas in L (≤π is based on π) and the attack rules AT?,≤πAS
and ATCon

AS , where ? ∈ {⇒,⇔}. Moreover, let sem ∈ {grd, cmp, prf, stb}. In view of
Remark 5 and Lemma 2, suppose that S is consistent.

Before proving the rationality postulates for assumptive sequent-based argumen-
tation, two helpful lemmas are considered. The first shows that an argument a is
only ATCon

AS -attacked if its set of assumptions is inconsistent with the set of facts.
The second lemma shows that the set of assumptions from an extension together
with the set of facts is always consistent. Together with the rationality postulates,
these are good properties to have: the arguments that are accepted in the end should
have no assumptions that are conflicting with the facts.

Lemma 3. a = A
77 Γ⇒ φ ∈ ArgL(S,AS) is ATCon

AS -attacked iff A∪S is inconsistent.

Proof. Let a = A
77 Γ⇒ φ ∈ ArgL(S,AS) and

⇒ suppose that a is ATCon
AS -attacked. Thus there is some ∆ ⊆ S such that ∆ ⇒

¬∧
A is derivable in C. Hence, by [ 6⇒¬∧] A,∆ ⇒ is derivable, by [⇒¬∧] it

follows that ⇒ ¬∧(A ∪∆) is derivable. Thus, by the soundness of C for L,
` ¬∧(A ∪∆). Therefore, by Definition 2, A ∪ S is inconsistent.

⇐ now suppose that A ∪ S is inconsistent. Then there are φ1, . . . , φn ∈ A ∪ S
such that ` ¬∧n

i=1 φi. Note that {φ1, . . . , φn} ∩ A 6= ∅, since S is consistent
by assumption. Thus, by the completeness of C for L, ⇒ ¬∧n

i=1 φi. Hence,
by [ 6⇒¬∧], φ1, . . . , φn ⇒ is derivable in C. Let {φ1, . . . , φn} ∩ S = ∆. By
[LMon], ∆, A⇒ is derivable and, by [⇒¬∧], ∆⇒ ¬∧

A is derivable. Hence
a is ATCon

AS -attacked.

Lemma 4 (Consistency of the assumptions). Let E ∈ Extsem(AF≤πL (S,AS)), then
Ass(E) ∪ S is consistent.

Proof. Let E ∈ Extsem(AF≤πL (S,AS)) and suppose, towards a contradiction, that
Ass(E) ∪ S is not consistent. Then there is a minimal set of formulas Γ = {φ1, . . . ,
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φn} ⊆ Ass(E) such that there are formulas ψ1, . . . , ψm ∈ S for which ` ¬(∧n
i=1 φi ∧∧m

j=1 ψj). Note that n ≥ 1, since S is consistent by assumption.
By the completeness of C for L, it follows that ⇒ ¬(∧n

i=1 φi ∧
∧m
j=1 ψj) is

derivable in C. By [ 6⇒¬∧] φ1, . . . , φn, ψ1, . . . , ψm ⇒ is derivable in C. Let φi ∈
{φ1, . . . , φn} be such that π(φi) = maxπ({φ1, . . . , φn}). By [⇒¬] and ASlAS a =
φ1, . . . , φi−1, φi+1, . . . , φn

77 ψ1, . . . , ψm ⇒ ¬φi. Note that a cannot be ATCon
AS -

attacked. This follows since Ass(a) = {φ1, . . . , φi−1, φi+1, . . . , φn} and thus Ass(a) (
Γ, but Γ was assumed to be minimal. Since φ1, . . . , φn ∈ Ass(E), any attacker of a is
an attacker of some a′ ∈ E . Therefore, because E is a completeness-based extension,
a ∈ E . Recall that φi was chosen such that maxπ(Ass(a)) ≤ π(φi). Since φi ∈ Ass(E),
there is some b ∈ E such that φi ∈ Ass(b). Thus a attacks b. A contradiction to the
conflict-freeness of E .

With this the rationality postulates from Definition 16 can be shown.

Lemma 5 (Closure). AF≤πL (S,AS) satisfies closure of extensions: for each exten-
sion E ∈ Extsem(AF≤πL (S,AS)) it holds that Concs(E) = CN(Concs(E)).

Proof. (⊆) This follows immediately by the reflexivity of `.
(⊇) Now suppose that φ ∈ CN(Concs(E)). Thus there are φ1, . . . , φn ∈ Concs(E)

such that φ1, . . . , φn ` φ and ai = Ai
77 Γi ⇒ φi ∈ E for each i ∈ {1, . . . , n}. Since

C is complete for L, it follows that φ1, . . . , φn ⇒ φ is derivable in C. Thus, by
[Cut], from the ai’s a = A1, . . . , An

77 Γ1, . . . ,Γn ⇒ φ is derivable in C′. If a is
not attacked (e.g., because Ass(a) = ∅) it follows immediately that a ∈ E thus that
φ ∈ Concs(E). Now suppose that a is attacked by some b ∈ ArgL(S,AS). Note that,
by Lemma 3, this is not an ATCon

AS -attack, since by Lemma 4, Ass(E)∪S is consistent
and Ass(a) ⊆ Ass(E). Thus there is some ψ ∈ Ai, for some i ∈ {1, . . . , n} such that
Conc(b) ⇒ ¬ψ and maxπ(Ass(b)) ≤ π(ψ). It follows immediately that b attacks ai
as well. Since ai ∈ E and E is complete, it follows that a ∈ E as well. Therefore
φ ∈ Concs(E).

Rather than showing sub-argument closure directly, a stronger property is shown:
an argument constructed from assumptions that other arguments in an extension
already contain is also part of that extension.

Lemma 6 (Assumption inclusion). AF≤πL (S,AS) satisfies assumption inclusion:
for E ∈ Extsem(AF≤πL (S,AS)) and a ∈ ArgL(S,AS), if Ass(a) ⊆ Ass(E), then a ∈ E.

Proof. Let a = A
77 Γ⇒ φ ∈ ArgL(S,AS) such that Ass(a) ⊆ Ass(E). Suppose there

is some b = A′
77 ∆ ⇒ ψ ∈ ArgL(S,AS) such that b attacks a (if no such attacker

exists it follows immediately that a ∈ E). By Lemma 3, this is not an ATCon
AS -attack,
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since Ass(a) ⊆ Ass(E), hence by Lemma 4, A ∪ S is consistent. Thus there is some
γ ∈ A such that ψ ⇒ ¬γ and maxπ(A′) ≤ π(γ). Since Ass(a) ⊆ Ass(E), there is
some c ∈ E such that γ ∈ Ass(c). Thus b attacks c as well. Therefore, since E is
assumed to be complete, E defends c and thus a from the attack by b. It follows
that a ∈ E .

From the lemma above it follows immediately that an extension is the set of
arguments constructed from S and some AS ′ ⊆ AS.
Corollary 1. For any E ∈ Extsem(AF≤πL (S,AS)) there is some AS ′ ⊆ AS such
that E = ArgL(S,AS ′).
Proof. First note that, for any E ∈ Extsem(AF≤πL (S,AS)), there is always some
AS ′ ⊆ AS such that E ⊆ ArgL(S,AS ′). In particular, E ⊆ ArgL(S,Ass(E)). Now let
E ∈ Extsem(AF≤πL (S,AS)) and let AS ′ = Ass(E). Consider some a ∈ ArgL(S,AS ′),
thus Ass(a) ⊆ AS ′. By Lemma 6 it follows immediately that a ∈ E . Hence, E ⊇
ArgL(S,AS ′) as well.

The following lemma is a corollary of the above result:
Lemma 7 (Sub-argument closure). AF≤πL (S,AS) satisfies sub-argument closure:
let E ∈ Extsem(AF≤πL (S,AS)), then a ∈ E implies that Sub(a) ⊆ E.
Lemma 8 (Consistency). AF≤πL (S,AS) satisfies consistency: for each extension
E ∈ Extsem(AF≤πL (S,AS)) it holds that Concs(E) is consistent.
Proof. Suppose, towards a contradiction, that Concs(E) is not consistent. Then
there are φ1, . . . , φn ∈ Concs(E) such that ` ¬∧n

i=1 φi. By the completeness of C
for L, ⇒ ¬∧n

i=1 φi is derivable in C. Hence, there are arguments a1, . . . , an ∈ E
such that ai = Ai

77 Γi ⇒ φi for i ∈ {1, . . . , n}. Then, by [ 6⇒¬∧], φ1, . . . , φn ⇒
is derivable and, by [Cut], so is a = A1, . . . , An

77 Γ1, . . . ,Γn ⇒ . By construction
Ass(a) ⊆ Ass(E). Thus, by Lemma 6, a ∈ E . However, by Remark 1 and [⇒¬∧],
⇒ ¬∧n

i=1(Ai ∪Γi) is derivable in C. A contradiction to Lemma 4. Thus Concs(E) is
consistent.

From these lemmas the next theorem follows.
Theorem 1. Let L = 〈L,`〉 be a logic with corresponding sound and complete se-
quent calculus C in which the rules from Figure 6 are admissible, let S be a consistent
set of L-formulas, AS a set of assumptions and let π be a priority function on the
formulas in L. Moreover, let AF≤πL (S,AS) = 〈ArgL(S,AS),AT ,≤π〉 be the cor-
responding argumentation framework, with AT ?,≤π

AS and ATCon
AS as the attack rules,

where ? ∈ {⇒,⇔}. Then AF≤πL (S,AS) satisfies closure of extensions, sub-argument
closure and consistency for completeness-based semantics.
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3.3 Maximally Consistent Subsets with Assumptions
In many reasoning contexts, the provided information is inconsistent. A well-known
way to maintain consistency when given an inconsistent set of formulas is by means
of reasoning with maximally consistent subsets, as introduced in [60]. The repre-
sentation of reasoning with maximally consistent subsets by means of structured
argumentation approaches has been studied in e.g. [2, 32, 40, 41], see [6] for a sur-
vey. Moreover, this kind of reasoning has been applied in several areas of artificial
intelligence, such as knowledge-based integration systems [15], consistency opera-
tors for belief revision [46] and computational linguistics [49]. It is therefore useful
to study the representation of reasoning with maximally consistent subsets in as-
sumptive sequent-based argumentation as well. To do so, the notion of a maximally
consistent subset has to be adjusted to account for the two sets of premises: facts
(S) and assumptions (AS). Following [8], in this section we suppose that both sets
are finite. First some basic notions and the entailment relations are recalled.

Notation 2. The set of all maximally consistent subsets of S for the logic L is
denoted by MCSL(S). The subscript is omitted when arbitrary or clear from the
context.

Definition 17. Let L = 〈L,`〉 and S a set of L-formulas. Several entailment
relations for reasoning with maximally consistent subsets are defined as follows:

• S |∼∩mcs φ iff φ ∈ CN(⋂ MCS(S));

• S |∼∪mcs φ iff φ ∈ ⋃
T ∈MCS(S) CN(T );

• S |∼emcs φ iff φ ∈ ⋂
T ∈MCS(S) CN(T ).

Example 12. Consider the set S = {p, p ⊃ q,¬q} and core logic CL, as in Ex-
ample 4. Then there are three maximally consistent subsets: MCS(S) = {{p, p ⊃
q}, {p,¬q}, {p ⊃ q,¬q}}. Hence ⋂ MCS(S) = ∅. Moreover, S |∼∩mcs φ if and only
if φ is a CL-tautology. But S |∼∪mcs ψ for ψ ∈ S (since for each ψ ∈ S there is a
T ∈ MCS(S) such that ψ ∈ T ) and S |∼emcs p∨¬q (since from each T ∈ MCS(S) the
formula p ∨ ¬q is derivable, thus p ∨ ¬q ∈ CNCL(T ) for each T ∈ MCS(S)).

Recently it was shown that sequent-based argumentation (as recalled in Sec-
tion 2.2) is a useful platform to incorporate reasoning with maximally consistent
subsets [9].

Proposition 1 ([9], Propositions 3.8 and 4.3). Let AFCL,{Ucut}(S) = 〈ArgL(S),AT 〉,
take classical logic as core logic, Undercut as attack rule and let S be a set of for-
mulas:
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• S |∼grd φ iff S |∼∩prf φ iff S |∼∩stb φ iff S |∼∩mcs φ

• S |∼∪prf φ iff S |∼∪stb φ iff S |∼∪mcs φ.

For AFCL,{DUcut}(S) = 〈ArgL(S),AT 〉, with Direct Undercut as attack rule, classical
logic as core logic and S a set of formulas, it was shown that:

• S |∼eprf φ iff S |∼estb φ iff S |∼emcs φ.

Indeed, the results from Examples 5 and 12 coincide.

Following the previous section, it will be assumed that S is consistent. To allow
for assumptions, the set MCSL(S,AS) is defined, which takes an additional set of
formulas (AS) as input. Then T ∈ MCSL(S,AS) iff T ⊆ AS, T ∪ S is consistent
and there is no T ⊂ T ′ ⊆ AS such that T ′ ∪ S is consistent. Thus, MCSL(S,AS)
is the set of all maximally consistent subsets of AS that are consistent with S. The
entailment relations are adjusted as follows:

Definition 18. Let L = 〈L,`〉, S a consistent set of L-formulas and AS a set of
assumptions.

• S |∼∩,ASmcs φ iff φ ∈ CN(⋂ MCS(S,AS) ∪ S);

• S |∼∪,ASmcs φ iff φ ∈ ⋃
T ∈MCS(S,AS) CN(S ∪ T );

• S |∼e,ASmcs φ iff φ ∈ ⋂
T ∈MCS(S,AS) CN(S ∪ T ).

Example 13. Let CL be the core logic, S = {p} and AS = {p ⊃ q,¬q}. Recall
that in Example 12, where there was no distinction between facts and defeasible
assumptions, there where three maximally consistent subsets. Now, given the dis-
tinction, there are two: MCSCL(S,AS) = {{p ⊃ q}, {¬q}}. Therefore, S |∼∩,ASmcs φ iff
φ ∈ CNCL({p}), this is the case since p is now a fact and thus should always follow.
However, S |∼∪,ASmcs ψ, for ψ ∈ {p ⊃ q,¬q}.

In order to generalize reasoning with maximally consistent subsets to the prior-
itized setting, we define an ordering on sets of L-formulas:

Definition 19. Let Γ,∆ ⊆ L and let π be a priority function on L. Where πj(Γ) =
{φ ∈ Γ | π(φ) = j}, Γ �π ∆ if and only if there is some i ≥ 1, such that πi(Γ) )
πi(∆) and for each j < i, πj(Γ) = πj(∆). When ∆ 6�π Γ, then Γ ≺π ∆.

Remark 6. The ordering on sets of formulas from Definition 19 is transitive: if
S1 �π S2 and S2 �π S3 then S1 �π S3.
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With this, the set of the �π-most preferred maximally consistent subsets can be
defined:

Definition 20. MCS�L (S,AS) = {T ∈ MCSL(S,AS) | @T ′ ∈ MCSL(S,AS) such
that T ′ ≺π T }.
Example 14. Consider again CL as the core logic, S = {p} and AS = {p ⊃ q,¬q}.
Let π be the priority function from Example 10, where π(p ⊃ q) = 2 and π(¬q) = 3.
Then MCS�CL(S,AS) = {{p ⊃ q}}.

Now consider S = r and AS = {p, q,¬p ∨ ¬q}. There are three maximally
consistent subsets: MCSCL(S,AS) = {{p, q}, {p,¬p ∨ ¬q}, {q,¬p ∨ ¬q}}. Consider
two cases:

• Let π(p) = 1, π(q) = 2 and π(¬p ∨ ¬q) = 3. Then {p, q} ≺π {p,¬p ∨ ¬q} ≺π
{q,¬p ∨ ¬q}. Thus MCS�CL(S,AS) = {{p, q}}.

• If π(p) = π(q) = 2 and π(¬p∨¬q) = 1, then {p,¬p∨¬q} and {q,¬p∨¬q} are
incomparable and both are strictly preferred to {p, q}. Thus MCS�CL(S,AS) =
{{p,¬p ∨ ¬q}, {q,¬p ∨ ¬q}}.

The prioritized counterparts of the entailment relations from Definition 18 are
defined as:

Definition 21. Let L = 〈L,`〉, S a consistent set of L-formulas, AS a set of
assumptions and π a priority function on L.
• S |∼∩,ASmcs,� φ iff φ ∈ CN(⋂ MCS�(S,AS) ∪ S);

• S |∼∪,ASmcs,� φ iff φ ∈ ⋃
T ∈MCS�(S,AS) CN(S ∪ T );

• S |∼e,ASmcs,� φ iff φ ∈ ⋂
T ∈MCS�(S,AS) CN(S ∪ T ).

Example 15. Recall from Example 14, that for S = {p}, AS = {p ⊃ q,¬q}, π
such that π(p ⊃ q) = 2 and π(¬q) = 3, there is only one assumptive maximally
consistent subset: MCS�CL(S,AS) = {{p ⊃ q}}. It thus follows that S |∼?,ASmcs,� φ,
where ? ∈ {∪,∩,e} iff φ ∈ CNCL({p, p ⊃ q}).

For the last setting from Example 14, where S = r and AS = {p, q,¬p ∨ ¬q}
such that π(p) = π(q) = 2 and π(¬p∨¬q) = 1 note that S |∼?,ASmcs,�φ for ? ∈ {∪,∩,e}
and φ ∈ CNCL({r,¬p ∨ ¬q}). Moreover S |∼∪,ASmcs,� φ for φ ∈ {p, q}.

The next theorem shows that it is no coincidence that the results from the first
part of the previous example correspond to that of Example 11. Like in the previous
section, in view of Remark 5 and Lemma 2, it will be assumed that S is consistent.
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Theorem 2. Let L = 〈L,`〉 be such that the rules from Figure 6 are admissible
in its corresponding calculus C, S a finite and consistent set of L-formulas, AS
a finite set of assumptions and π a priority function on L. For AF≤πL (S,AS) =
〈ArgL(S,AS),AT ,≤π〉 an argumentation framework, where AT is based on the at-
tack rules AT ?,≤π

AS and ATCon
AS , with ? ∈ {⇒,⇔}:

1. S |∼∩,ASmcs,� φ iff S |∼≤πAS,grd φ iff S |∼≤π ,∩AS,prf φ iff S |∼≤π ,∩AS,stb φ

2. S |∼∪,ASmcs,� φ iff S |∼≤π ,∪AS,prf φ iff S |∼≤π ,∪AS,stb φ

3. S |∼e,ASmcs,� φ iff S |∼≤π ,eAS,prf φ iff S |∼≤π ,eAS,stb φ.

For the next lemmas, needed to prove the above theorem, suppose that the
conditions from the theorem statement hold.

The first lemma shows that if there is an attack between two arguments, the
union of the assumptions and support sets of these arguments is inconsistent.

Lemma 9. Let a1, a2 ∈ ArgL(S,AS), if a1 AT ?,≤π
AS -attacks a2, then Ass(a1) ∪

Ass(a2) ∪ Supp(a1) ∪ Supp(a2) is inconsistent.

Proof. Let a1, a2 ∈ ArgL(S,AS) and suppose that a1 = A
77 Γ ⇒ φ AT?,≤πAS -attacks

a2, thus φ ⇒ ¬ψ, for some ψ ∈ Ass(a2). Thus, by [Cut] A
77 Γ ⇒ ¬ψ is derivable

in C′. By [¬⇒] and [¬¬6⇒] it follows that A
77 Γ, ψ ⇒ is derivable. Then, by

Remark 1 and [⇒¬∧] the sequent ⇒ ¬∧(A ∪ Γ ∪ {ψ}) is derivable in C. Hence,
by the soundness of C for L it follows that ` ¬∧(A∪ Γ∪ {ψ}). Therefore Ass(a1)∪
Ass(a2) ∪ Supp(a1) ∪ Supp(a2) is inconsistent.

The next lemma shows that for any maximally consistent subset of assumptions
(i.e, any member of MCS�L (S,AS)), no consistent set of assumptions can be strictly
preferred over it.

Lemma 10. Let T ∈ MCS�L (S,AS), if AS ′ ⊆ AS is such that AS ′∪S is consistent,
then AS ′ 6≺π T .
Proof. Let T ∈ MCS�L (S,AS) and AS ′ ⊆ AS such that AS ′∪S is consistent. Then
there is some AS ⊇ AS∗ ⊇ AS ′ such that AS∗ ∈ MCSL(S,AS). Since AS ′ ⊆ AS∗,
AS ′ = AS∗ or there is an i ≥ 1 such that πi(AS∗) ) πi(AS ′) and πj(AS∗) = πj(AS ′)
for each j < i and thus AS∗ �π AS ′. By definition of MCS�L (S,AS), AS∗ 6≺π T .
Thus in both cases, by Remark 6, AS ′ 6≺π T .

With help from the above two lemmas, the next three lemmas show how maxi-
mally consistent subsets of assumptions are related to grounded (Lemma 11), stable
(Lemma 12) and preferred (Lemma 13) extensions.
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Lemma 11. If A ⊆ ⋂ MCS�L (S,AS) and a = A
77 Γ ⇒ φ ∈ ArgL(S,AS), for some

Γ ⊆ S, then a ∈ Extgrd(AF≤πL (S,AS)).

Proof. Let E ∈ Extcmp(AF≤πL (S,AS)) and A ⊆ ⋂ MCS�L (S,AS) and suppose that
a = A

77 Γ ⇒ φ ∈ ArgL(S,AS) for some Γ ⊆ S. Suppose that there is some
b ∈ ArgL(S,AS), such that b attacks a. Note that, since A ⊆ ⋂ MCS�L (S,AS),
A ∪ S is consistent. Thus, by Lemma 3, b cannot ATCon

AS -attack a. By Lemma 9, it
follows that A∪Γ∪Ass(b)∪Supp(b) is inconsistent. Also since A ⊆ ⋂ MCS�L (S,AS),
Γ ∪ Ass(b) ∪ Supp(b) is inconsistent. Therefore, there are ψ1, . . . , ψn ∈ Γ ∪ Ass(b) ∪
Supp(b), such that ` ¬(ψ1 ∧ . . . ∧ ψn). Note that, since Γ, Supp(b) ⊆ S and S is
consistent by assumption Ass(b) ∩ {ψ1, . . . , ψn} 6= ∅.

Suppose, wlog., that ∆ = {ψ1, . . . , ψl} ⊆ S and {ψl+1, . . . , ψn} ⊆ Ass(b). Then,
by the completeness of C for L and [ 6⇒¬∧], ∆, ψl+1, . . . , ψn ⇒ is derivable in C. By
[LMon], and [⇒¬∧] c = ∆ ⇒ ¬∧ Ass(b) is derivable in C. Since Ass(c) = ∅ and
∆ ⊆ S it follows that c ∈ ArgL(S,AS). This also means that c cannot be attacked,
therefore c ∈ E . From this it follows that b is ATCon

AS -attacked by E . Thus E defends
a from any attacker. Moreover, since E was arbitrarily chosen, a is part of any
complete extension. Recall that the grounded extension is the ⊆-minimal complete
extension. Therefore a ∈ Extgrd(AF≤πL (S,AS)).

The proofs of the following two lemmas are based on proofs in [45].

Lemma 12. If T ∈ MCS�L (S,AS), then ArgL(S, T ) ∈ Extstb(AF≤πL (S,AS)).

Proof. Let T ∈ MCS�L (S,AS) and let E = ArgL(S, T ). In what follows we show
that E ∈ ExtstbAF≤πL (S,AS), by showing that E is conflict-free and stable.7
E is conflict-free. Suppose towards a contradiction, that E is not conflict-free.

Then there are a1, a2 ∈ E such that a1 = A1
77 Γ1 ⇒ φ1; a2 = A2

77 Γ2 ⇒ φ2 and
a1 AT?,≤πAS -attacks a2, for ? ∈ {⇒,⇔,Con}. Since A2 ⊆ T ∈ MCS�L (S,AS), A2 ∪ S
is consistent. Thus, by Lemma 3, this is not an ATCon

AS attack. However then, by
Lemma 9, Ass(a1)∪Ass(a2)∪Supp(a1)∪Supp(a2) is inconsistent, a contradiction to
the assumption that Ass(a1),Ass(a2) ⊆ T ∈ MCS�L (S,AS). Thus E is conflict-free.
E is stable. Now suppose that there is some b = A′

77 Γ′ ⇒ φ′ ∈ ArgL(S,AS)\E
and E does not attack b. Thus, since E = ArgL(S, T ) and b /∈ E , there is some
φ ∈ Ass(b) such that φ /∈ T . Suppose first that A′ ∪ S is inconsistent. Then b is
ATCon
AS -attacked by an argument that has an empty assumptions set and thus cannot

be attacked itself. It follows immediately that E attacks b, a contradiction. Now

7The statements “E conflict-free and stable” (i.e., E is conflict-free and attacks all arguments
not in it) and “E is complete and stable” are equivalent [17, Proposition 3.39].
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suppose that A′ ∪ S is consistent. Since T ∈ MCS�L (S,AS) (i.e., T is maximally
consistent w.r.t. S) and φ /∈ T , T ∪S ∪{φ} is inconsistent. Let C1, C2, . . . ⊆ T be all
the minimal subsets of T such that Ci∪S∪{φ} is inconsistent. Thus, for each i, there
are ψi1, . . . , ψini ∈ Ci∪S such that ` ¬(ψi1∧. . .∧ψini∧φ). By the completeness of C for
L, ⇒ ¬(ψi1∧. . .∧ψini∧φ) is derivable in C. By [ 6⇒¬∧] and [⇒¬], ψi1, . . . , ψini ⇒ ¬φ is
derivable in C. LetAi = {ψi1, . . . , ψini}∩AS and Γi = {ψi1, . . . , ψini}∩S. Note that, by
assumption, AS∩S = ∅ and {ψi1, . . . , ψini} ⊆ AS∪S, hence Ai∪Γi = {ψi1, . . . , ψini}.
Thus, by ASlAS , ai = Ai

77 Γi ⇒ ¬φ ∈ ArgL(S, T ). However, since ai does not attack
b, maxπ(Ai) 6≤ π(φ), for all i.

Let Π ⊆ ⋃
i≥1 maxπ(Ci) be such that it contains at least one member of each

{ψ ∈ Ci | π(ψ) = maxπ(Ci)} and let Θ = (T \Π)∪{φ}. Note that, since maxπ(Ci) >
π(φ) for each i, minπ(Π) > π(φ), thus Θ ≺π T . Suppose first that Θ ∪ S is not
consistent. Then there are Θ′ ⊆ Θ and ∆ ⊆ S such that ` ¬∧(Θ′ ∪∆). Note that
φ ∈ Θ′, since Θ′ \ {φ} ⊆ T . Therefore, there is some i such that Θ′ \ {φ} ⊇ Ci.
However, by construction, there is some ψ ∈ Ci such that ψ /∈ Θ. A contradiction.
Therefore, Θ∪ S is consistent. Hence, by Lemma 10 Θ 6≺π T . Also a contradiction.
Therefore, E attacks b, from which it follows that E is stable.

Lemma 13. Let E ∈ Extprf(AF≤πL (S,AS)), then there is some T ∈ MCS�L (S,AS)
such that E = ArgL(S, T ).

Proof. Suppose, for a contradiction, that there is some E ∈ Extprf(AF≤πL (S,AS))
such that there is no T ∈ MCS�L (S,AS) for which E = ArgL(S, T ). Note that, by
Corollary 1, there is some AS ′ ⊆ AS such that E = ArgL(S,AS ′). If AS ′ ∪S would
be inconsistent we have an immediate contradiction with Lemma 4. Hence, there
is some T ′ ∈ MCSL(S,AS) such that AS ′ ⊆ T ′. If T ′ ∈ MCS�L (S,AS), then by
Lemma 12 ArgL(S, T ′) ∈ Extstb(AF≤πL (S,AS)) and therefore (by [36, Lemma 15]
any stable extension is a preferred extension) ArgL(S, T ′) ∈ Extprf(AF≤πL (S,AS)),
a contradiction with the assumption that no such set exists. Therefore there is some
T ∈ MCS�L (S,AS) for which T ≺π T ′. It follows that there is some i, such that
πi(T ) ) πi(T ′) and for each j < i, πj(T ) = πj(T ′). Let ∆ = πi(T ) \ πi(T ′) and let
S = {a ∈ ArgL(S,AS ′ ∪∆) | Γ⇒ ¬∧ Ass(a) is derivable for some Γ ⊆ S}.

Since ArgL(S,AS ′) = E ∈ Extprf(AF≤πL (S,AS)), by Lemma 3 none of the argu-
ments in E are ATCon

AS -attacked thus E ∩S = ∅. Note that, since πj(AS ′∪∆) = πj(T )
for j ≤ i and there is some ψ ∈ πi(AS ′ ∪ ∆) \ πi(AS ′), ArgL(S,AS ′ ∪ ∆) \ S 6=
ArgL(S,AS ′) thus ψ

77 ⇒ ψ ∈ ArgL(S,AS ′ ∪∆). We show that E ′ = ArgL(S,AS ′ ∪
∆) \ S is admissible.
E ′ is conflict-free. To see this, note first that E ∈ Extprf(AF≤πL (S,AS)) and

ArgL(S,∆) ⊆ ArgL(S, T ) ∈ Extstb(AF≤πL (S,AS)) are conflict-free. Suppose, for
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some arguments a1, a2 ∈ E ′, that a1 attacks a2. By the definition of E ′ this is not
an ATCon

AS attack. Thus Conc(a1)⇒ ¬ψ for ψ ∈ Ass(a2) and maxπ(Ass(a1)) ≤ π(ψ).
Suppose first that ψ ∈ ∆. Since maxπ(Ass(a1)) ≤ π(ψ) = i, it follows that Ass(a1) ⊆
T . But then a1 ∈ ArgL(S, T ), a contradiction, since a1 attacks any argument with ψ
in the set of assumptions and ArgL(S, T ) is a stable extension and thus conflict-free.
Let now ψ ∈ AS ′. Then there is some a3 ∈ E such that a1 attacks a3 as well. Thus
a1 /∈ E , since E is conflict-free. Since a3 ∈ E , there is an a4 ∈ E , such that a4 attacks
a1 in some formula ψ′ ∈ Ass(a1) ∩∆. Hence maxπ(Ass(a4)) ≤ π(ψ′) = i. But then
a4 ∈ ArgL(S, T ), again a contradiction. Thus E ′ is conflict-free.
E ′ is admissible. Note that, since E ∈ Extprf(AF≤πL (S,AS)), any attack in a

formula in AS ′ is defended by E . Let a = A
77 Γ⇒ φ ∈ E ′ be such that it is attacked

by some b = A′
77 Γ′ ⇒ φ′ ∈ ArgL(S,AS) in γ ∈ A ∩ ∆. Thus maxπ(A′) ≤ π(γ).

By Lemma 12, ArgL(S, T ) ∈ Extstb(AF≤πL (S,AS)). Moreover, since γ ∈ T , there is
some a′ ∈ ArgL(S, T ), such that γ ∈ Ass(a′). Hence there is some c ∈ ArgL(S, T )
such that c attacks b in some γ′ ∈ A′. Thus maxπ(Ass(c)) ≤ π(γ′) and since γ′ ∈ A′,
maxπ(Ass(c)) ≤ π(γ) = i. Therefore c ∈ E ′ as well. It follows that E ′ defends itself
against all attackers. Hence E ′ is admissible. Since E ′ ) E this is a contradiction to
the assumption that E ∈ Extprf(AF≤πL (S,AS)).8

Therefore E ⊆ ArgL(S, T ), for some T ∈ MCS�L (S,AS). By Lemma 12 it follows
that ArgL(S, T ) ∈ Extstb(AF≤πL (S,AS)), thus E = ArgL(S, T ).

With the above lemmas Theorem 2 can be proven:

Proof. Let AF≤πL (S,AS) = 〈ArgL(S,AS),AT ,≤π〉 be an assumptive sequent-based
argumentation framework for the logic L = 〈L,`〉, such that the rules from Figure 6
are admissible in the corresponding calculus C. Let S be a finite and consistent set
of L-formulas, AS a finite set of assumptions, let φ be an L-formula and suppose
that π is a priority function on L. Furthermore, let AT be based on the attack rules
AT?,≤πAS and ATCon

AS , where ? ∈ {⇒,⇔}.

• (⇒) Note that S|∼≤πAS,grdφ implies S|∼≤π ,∩AS,prfφ implies S|∼≤π ,∩AS,stbφ. Suppose that
S|∼∩,ASmcs,�φ, thus there are A ⊆

⋂ MCS�L (S,AS) and Γ ⊆ S, such that A∪Γ ` φ.
By the completeness of C for L and Remark 1, A

77 Γ⇒ φ ∈ ArgL(S,AS). By
Lemma 11, it follows that A

77 Γ ⇒ φ ∈ Extgrd(AF≤πL (S,AS)). Therefore
S |∼≤πAS,grd φ and thus S |∼≤π ,∩AS,prf φ and S |∼≤π ,∩AS,stb φ as well.

8The statements “E is a ⊆-maximal admissible set of AF” and “E is a ⊆-maximal complete
extension of AF” (the definition of preferred extensions in Definition 4) are equivalent [17, Propo-
sition 3.35].
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(⇐) Suppose that S |∼≤π ,∩AS,stb φ. Then there is an a ∈ ⋂ Extstb(AFL(S,AS))
such that Ass(a) ⊆ AS, Supp(a) ⊆ S and Conc(a) = φ. By Lemma 12, for each
T ∈ MCS�L (S,AS), a ∈ ArgL(S, T ). Thus Ass(a) ⊆ ⋂ MCS�L (S,AS). From a,
by Remark 1 and the soundness of C for L, Ass(a) ∪ Supp(a) ` φ. Therefore,
S |∼∩,ASmcs,� φ.

• (⇒) Note that S |∼≤π ,∪AS,stbφ implies S |∼≤π ,∪AS,prf φ. Suppose that S |∼
∪,AS
mcs,�φ. Then,

there is some T ∈ MCS�L (S,AS) such that T ∪ S ` φ. By the completeness
of C for L and Remark 1, there are A ⊆ T and Γ ⊆ S such that A

77 Γ⇒ φ ∈
ArgL(S, T ). By Lemma 12, ArgL(S, T ) ∈ Extstb(AF≤πL (S,AS)). Thus there
is some stable extension E , such that φ ∈ Concs(E). Therefore S |∼≤π ,∪AS,stb φ and
thus S |∼≤π ,∪AS,prf φ.

(⇐) Suppose that S |∼≤π ,∪AS,prf φ. Then there is some E ∈ Extprf(AF≤πL (S,AS))
such that there is some A

77 Γ ⇒ φ where A ⊆ AS and Γ ⊆ Γ. Hence, by
Remark 1 and the soundness of C for L, A ∪ Γ ` φ. By Lemma 13, there is
some T ∈ MCS�L (S,AS) such that E = ArgL(S, T ). Thus A ⊆ T . Hence,
S |∼∪,ASmcs,� φ.

• (⇒) Note that S |∼≤π ,eAS,prf φ implies S |∼≤π ,eAS,stb φ. Suppose that S |6∼≤π ,eAS,prf φ,
then there is some E ∈ Extprf(AF≤πL (S,AS)) such that there is no a ∈ E with
Conc(a) = φ. By Lemma 13, there is some T ∈ MCS�L (S,AS) such that
E = ArgL(S, T ). Hence, there is no A ⊆ T and Γ ⊆ S, such that A ∪ Γ ` φ.
Therefore φ /∈ CNL(S ∪ T ). Thus S |6∼e,ASmcs,� φ.

(⇐) Now suppose that S|6∼e,ASmcs,�φ. Thus there is some T ∈ MCS�L (S,AS), such
that there are no A ⊆ T , Γ ⊆ S, for which A ∪ Γ⇒ φ. Hence there is no a ∈
ArgL(S, T ) such that Conc(a) = φ. By Lemma 12, it follows that ArgL(S, T ) ∈
Extstb(AF≤πL (S,AS)). Therefore S |6∼≤π ,eAS,stb φ and thus also S |6∼≤π ,eAS,prf φ.

Remark 7. As can be seen from the results above, the preferred and stable exten-
sions coincide, when the rules from Figure 6 are admissible in the calculus of the
core logic. In fact, by Lemmas 12 and 13 Extprf(AF≤πL (S,AS)) = {ArgL(S, T ) |
T ∈ MCS�L (S,AS)} = Extstb(AF≤πL (S,AS)). Although it is possible that no sta-
ble extension exists in abstract argumentation (see [36]), assumptive sequent-based
argumentation is not the only approach to logical argumentation in which the pre-
ferred and stable extensions coincide. For example, this is the case for instances of
ASPIC+ (see [51]), simple contrapositive assumption based argumentation (see [41])
and sequent-based argumentation (see [9]). For an overview see [6].
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When stable and preferred extensions do not coincide in abstract argumentation,
this is because of odd cycles in the argumentation framework. In, for example,
ASPIC+, such cycles may also exist, since the contrariness function might be one-
sided. However, given the assumptions made to prove the results (i.e., because
[⇒¬], [¬⇒] and [Cut] are admissible), such cycles do not cause these problems in
the setting of the theorem. For example, a possible odd cycle might exist when
p ∧ ¬p ∈ AS, since then p ∧ ¬p

77 ⇒ ¬(p ∧ ¬p) would be derivable with the rules
from Figure 6. However, this cycle is attacked by ⇒ ¬(p ∧ ¬p), which cannot be
attacked.

In the next section the general framework defined here will be applied to several
well-known approaches to nonmonotonic reasoning with assumptions.

4 Some Assumptive Approaches and Their Properties
We will consider three well-known frameworks for nonmonotonic reasoning with
assumptions. Assumption-based argumentation in Section 4.1, adaptive logics in
Section 4.2 and default assumptions in Section 4.3. For each of these approaches
the representation by the introduced assumptive sequent-based approach, maximally
consistent subsets, as well as the rationality postulates from [30] are discussed.

In this paper only the flat approaches are considered. On the one hand, because
the objective of this paper is just to show that the presented assumptive frameworks
are expressive enough to represent other approaches to reasoning with assumptions
and, on the other hand, because there are often several possibilities to introduce
priorities, for assumption-based argumentation see e.g., [35, 42] and for adaptive
logics see e.g., [57, 58].

4.1 Assumption-Based Argumentation
Assumption-based argumentation (ABA) was introduced in [25], see [37, 64] for an
introduction and an overview. In contrast to the other two examples that will be
discussed, ABA is already defined in terms of argumentation frameworks. It takes as
input a formal deductive system, a set of assumptions and a contrariness mapping
for each assumption. There are only few requirements placed on each of these,
keeping the framework semi-abstract on the one hand, while the arguments have a
formal structure and the attacks are based on the latter. We first consider some of
the most important definitions of the ABA-framework, from [25]:

Definition 22. A deductive system is a pair 〈L,R〉, where:
• L is a formal language;
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• R is a set of rules of the form φ1, . . . , φn → φ, for φ1, . . . , φn, φ ∈ L and n ≥ 0.

Definition 23. A deduction from a theory Γ is a sequence ψ1, . . . , ψm, wherem > 0,
such that for all i = 1, . . . ,m, ψi ∈ Γ, or there is a rule φ1, . . . , φn → ψi ∈ R with
φ1, . . . , φn ∈ {ψ1, . . . , ψi−1}. A deduction from Γ using rules in R is denoted by
Γ `R ψm.

Clearly, a deductive system is not necessarily based on a logic in the sense of
Section 2, thus the possible connectives do not necessarily have the properties they
were assumed to have in the previous sections. However, in this section, the examples
will be based on classical logic, in which the connectives have the properties as
discussed after Definition 1.

Example 16. An example of a deductive system is classical logic, such that φ1, . . . ,
φn → φ ∈ RCL if and only if φ1, . . . , φn `CL φ. Thus, Γ `R ψ if and only if Γ `CL ψ.

From this ABA argumentation frameworks can be defined:9

Definition 24. An ABA-framework is a tuple AF 〈L,R〉(S,A) = 〈L,R,S,A, ·〉
where:
• 〈L,R〉 is a deductive system;
• S ⊆ L a set of formulas, that satisfies non-triviality (there is some L-formula
φ such that S 0R φ);
• A ⊆ L a non-empty set of assumptions for which S ∩ A = ∅; and
• · a mapping from A into a set of L-formulas, where φ is the set of the contrary
formulas of φ.

In the remainder, if a set of formulas S satisfies non-triviality, it is said that S is
non-trivializing.

A simple way of defining contrariness in the context of classical logic is by φ =
{¬φ}. In what follows, by A′,Γ `R φ it is meant that there is some ψ ∈ φ such
that A′,Γ `R ψ. Moreover, to avoid clutter, the superscript R in `R is sometimes
omitted.

The consistency notions from Definition 2 can be defined in terms of a contrari-
ness function as well, in order to avoid confusion with the previously defined notion,
we will refer to (maximally) contrary-consistent sets of assumptions:

Definition 25. Given an ABA-framework AF 〈L,R〉(S,A), a set A ⊆ A is:
9Note that not in all the literature on ABA the set of facts (in the notation of this paper S) is

part of the framework. Rather, these are special rules (so-called domain oriented rules), denoted
by → φ for φ ∈ S. Thus, one could understand S such that φ ∈ S in our setting iff → φ ∈ R if a
set of facts is not part of the framework.
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• contrary-consistent if and only if there is no φ ∈ A such that A′,Γ `R φ for
some A′ ⊆ A and some Γ ⊆ S;
• maximally contrary-consistent, denoted by A ∈ MCS(S,A), if and only if A is
contrary-consistent and there is no contrary-consistent A′ such that A ⊂ A′ ⊆
A.

The closure of T ⊆ L is defined as CN(T ) = {φ | Γ `R φ for Γ ⊆ T }.

ABA-arguments are defined in terms of deductions and an attack is on the as-
sumptions of the attacked argument. Following [37], arguments are not required to
be contrary-consistent.

Definition 26. Let AF 〈L,R〉(S,A) = 〈L,R,S,A, ·〉. An ABA-argument for φ ∈ L
is a deduction A∪Γ `R φ, where A ⊆ A and Γ ⊆ S. The set ArgABA

〈L,R〉(S,A) denotes
the set of all ABA-arguments for S and A.

Definition 27. Let AF 〈L,R〉(S,A) = 〈L,R,S,A, ·〉. An argument A ∪ S `R φ

attacks an argument A′ ∪ S `R φ′ iff φ ∈ ψ for some ψ ∈ A′.

Example 17. Recall the deductive system RCL for classical logic, described in
Example 16 and let φ = {¬φ}. Consider the sets S = {s} and A = {p, q,¬p ∨
¬q,¬p ∨ r,¬q ∨ r}. Some of the arguments of AF 〈L,R〉(S,A) are:

a = s ` s b = p,¬p ∨ ¬q ` ¬q
c = q,¬p ∨ ¬q ` ¬p d = p, q,¬p ∨ r,¬q ∨ r ` r.

Note that a cannot be attacked, since the set of assumptions of a is empty. For the
other arguments, b attacks c and d, and c attacks b and d.

Semantics are defined as usual, see Definition 4. From this the corresponding
entailment relations can be defined:

Definition 28. Let AF 〈L,R〉(S,A) = 〈L,R,S,A, ·〉 and sem ∈ {grd, cmp, prf, stb}.
Then:

• A∪S |∼∪ABA,sem φ iff for some E ∈ Extsem(AF 〈L,R〉(S,A)) there is an argument
A ∪ Γ `R φ ∈ E .

• A ∪ S |∼∩ABA,sem φ iff there is an a ∈ ⋂ Extsem(AF 〈L,R〉(S,A)), where a =
A ∪ Γ `R φ.

• A ∪ S |∼eABA,sem φ iff for every E ∈ Extsem(AF 〈L,R〉(S,A)) there is an a ∈ E
with Conc(a) = φ.
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Example 18. Recall the setting from Example 17, where the deductive system was
RCL from Example 16, S = {s} and A = {p, q,¬p ∨ ¬q,¬p ∨ r,¬q ∨ r}. It can
be shown that A ∪ S |∼?ABA,sem s, for ? ∈ {∩,∪,e}, sem ∈ {grd, cmp, prf, stb}, this
follows since s is a fact. Furthermore, A ∪ S |∼∪ABA,sem φ, but A ∪ S |6∼∩ABA,sem φ and
A ∪ S |6∼eABA,sem φ for sem ∈ {cmp, prf, stb} and φ ∈ {p, q,¬p ∨ ¬q}, to see this, note
that for each formula φ ∈ {p, q,¬p ∨ ¬q} there is an extension from which φ can be
derived, but there is also an extension from which φ cannot be derived.

Based on the above notions from assumption-based argumentation, a correspond-
ing sequent-based ABA-framework can be defined:

Definition 29. Let AF 〈L,R〉(S,A) = 〈L,R,S,A, ·〉 be an ABA-framework. The
corresponding sequent-based ABA-framework is defined as a pairAFABA⇒

〈L,R⇒〉(S,A) =〈
ArgABA⇒

〈L,R⇒〉(S,A),AT
〉
, where:

• R⇒ is defined as follows:

– if 〈L,R〉 is a logic in the sense of Definition 1 with corresponding sound
and complete sequent calculus C in which [Cut] is admissible, R⇒ =
C ∪ {ASABA} such that:

A
77 Γ, φ⇒ ψ

A, φ
77 Γ⇒ ψ

ASABA
A, φ

77 Γ⇒ ψ

A
77 Γ, φ⇒ ψ

ASABA where φ ∈ A.

– otherwise R⇒ = {µ(r) | r ∈ R} ∪ {ASABA, [Cut], [id]} where, for each
r = φ1, . . . , φn → φ ∈ R

φ1, . . . , φn ⇒ φ
µ(r) and φ⇒ φ

[id]

• a = A
77 Γ⇒ φ ∈ ArgABA⇒

〈L,R⇒〉(S,A) for A ⊆ A, Γ ⊆ S iff there is a derivation of
a using rules in R⇒.

• (a1, a2) ∈ AT iff a1 R-attacks a2 as defined in Definition 7, for AR = {ATABA}
and:

A1
77 Γ1 ⇒ φ A2, φ

77 Γ2 ⇒ ψ

A2, φ
77 Γ2 6⇒ ψ

ATABA (2)

Remark 8. Similar to Remark 1, since the rules ASABA are part of the calculus
of any sequent-based ABA-framework: A ∪ Γ ⇒ φ is derivable iff A

77 Γ ⇒ φ is
derivable.
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In the next example we show how classical logic, with corresponding sequent
calculus LK can be taken as underlying deductive system.

Example 19. Let CL = 〈L,`〉, where φ = {¬φ} and R⇒ = LK. According to
Definition 9 A

77 Γ ⇒ φ ∈ ArgL(S,A) iff Γ ∪ A ⇒ φ is derivable in LK, for some
finite A ⊆ A and Γ ⊆ S. Since R⇒ = LK ∪ {ASABA} it follows immediately that
A ∪ Γ⇒ φ is derivable in R⇒ iff it is derivable in LK.

The next proposition formalizes the representation of ABA in assumptive se-
quent-based argumentation, via the above described translation.

Proposition 2. Let 〈L,R〉 be a deductive system, S ⊆ L a non-trivializing set of
formulas and A ⊆ L a set of assumptions, such that Γ ⊆ S and A ⊆ A are finite and
A∩S = ∅. Let AFABA⇒

〈L,R⇒〉(S,A) =
〈
ArgABA⇒
〈L,R⇒〉(S,A),AT

〉
be a sequent-based ABA-

framework that corresponds to the ABA-framework AF 〈L,R〉(S,A) = 〈L,R,S,A, ·〉.
A ∪ S |∼?ABA,sem φ iff S |∼?A,sem φ for sem ∈ {grd, cmp, prf, stb} and ? ∈ {∪,∩,e}.

The above proposition is a corollary of the following two lemmas. Suppose that
the conditions from the proposition statement hold:

Lemma 14. A ∪ Γ `R φ ∈ ArgABA
〈L,R〉(S,A) iff A

77 Γ⇒ φ ∈ ArgABA⇒
〈L,R⇒〉(S,A).

Proof. If the deductive system is a logic L = 〈L,`〉, with corresponding sound
and complete sequent calculus C, it follows that A ∪ Γ `R φ ∈ ArgABA

〈L,R〉(S,A) iff
A∪Γ `L φ. By the soundness and completeness of C for L we have that A∪Γ⇒ φ is
derivable iff A ∪ Γ `L φ. And by Remark 8 it follows that, since A ⊆ A and Γ ⊆ S,
A ∪ Γ⇒ φ is derivable in C iff A

77 Γ⇒ φ ∈ ArgABA⇒
〈L,R⇒〉(S,A).

For other types of deductive systems, consider both directions:

⇒ Assume that A ∪ Γ `R φ ∈ ArgABA
〈L,R〉(S,A). Then there is a deduction from

the theory A ∪ Γ for the formula φ. By Definition 23, there is a sequence
ψ1, . . . , ψm (ψm = φ), such that for each i = 1, . . . ,m, ψi ∈ A∪ Γ or there is a
rule φ1, . . . , φn → ψi = r ∈ R and φ1, . . . , φn ∈ {ψ1, . . . , ψi−1}. We proceed by
induction on m, showing that for each ψi, there is a sequent si = Ai∪Γi ⇒ ψi:

m=1 Then either ψ1 ∈ A ∪ Γ and thus ψ1 ⇒ ψ1 is derivable in R⇒, by [id].
Or there is a rule → ψ1 ∈ R. Hence ⇒ ψ1 ∈ R⇒ for A ∪ Γ = ∅. Since
ψ1 = ψm = φ, A ∪ Γ⇒ φ is derivable.

m=k+1 Assume that for sequences up to k ≥ 1, for each ψi there is a sequent
si = Ai ∪ Γi ⇒ ψi. Now consider ψk+1. Then ψk+1 ∈ A ∪ Γ, from which
it follows immediately that A ∪ Γ ⇒ ψk+1 is derivable in R⇒, or there
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is a rule φ1, . . . , φn → ψk+1 = r ∈ R and φ1, . . . , φn ∈ {ψ1, . . . , ψk}.
By Definition 29, φ1, . . . , φn ⇒ ψk+1 ∈ R⇒. Furthermore, by induction
hypothesis, for each ψi ∈ {ψ1, . . . , ψk}, there is a sequent si = Ai ∪ Γi ⇒
ψi. Hence, φ1, . . . , φn ∈ {Conc(s1), . . . ,Conc(sk)}. By applying [Cut] a
sequent sk+1 = Ak+1 ∪ Γk+1 ⇒ ψk+1 is obtained.

Hence, there is a sequence of sequents s1, . . . , sm, such that si is derived from
s1, . . . , si−1 by applying rules in R⇒ and sm = A∪ Γ⇒ φ. That A

77 Γ⇒ φ ∈
ArgABA⇒

〈L,R⇒〉(S,A) follows by Remark 8.

⇐ Now suppose that a = A
77 Γ⇒ φ ∈ ArgABA⇒

〈L,R⇒〉(S,A). By Remark 8, A∪Γ⇒ φ
is derivable inR⇒ as well. Then there is a derivation via a sequence of sequents
s1, . . . , sm, where si = Ai ∪ Γi ⇒ ψi for each i ∈ {1, . . . ,m} is the result of
applying rules from R⇒ to sequents in {s1, . . . , si−1} and sm = A ∪ Γ ⇒ φ.
Again by induction on the length of the derivation m, for each si, there is a
deduction Ass(si) ∪ Supp(si) `R Conc(si) via the sequence Φi = ψi1, . . . , ψ

i
mi :

m=1 Then φ ∈ A ∪ Γ in which case sm = φ ⇒ φ or there is a µ(r) ∈ R⇒
such that µ(r) = ⇒ φ and thus, by Definition 29, r = → φ ∈ R. Hence
A ∪ Γ `R φ.

m=k+1 Now assume that for derivations up to length k ≥ 1, for each si, there
is a deduction from Ass(si) ∪ Supp(si) for Conc(si) via the sequence Φi.
That sm is derivable implies that Conc(sm) ∈ Ass(sm) ∪ Supp(sm), in
which case sm = Conc(sm) ⇒ Conc(sm), from which it follows immedi-
ately that there is a deduction Ass(sm)∪ Supp(sm) `R Conc(sm) or sm is
the result of applying a rule to sequents in {s1, . . . , sk}:
∗ suppose that [Cut] was applied to sj1 , sj2 ∈ {s1, . . . , sk}. By in-

duction hypothesis, there are deductions Ass(sj1) ∪ Supp(sj1) `R
Conc(sj1) and Ass(sj2)∪Supp(sj2) `R Conc(sj2) via the sequence Φj1

respectively Φj2 . Then Ass(sm)∪ Supp(sm) `R Conc(sm) is obtained
via the sequence Φm = Φj1 ◦Conc(sj1 ) Φj2 , where Φ1 ◦ψ Φ2 denotes the
concatenation of Φ1 with Φ2 such that all occurrences of ψ in Φ2 are
taken out.
∗ suppose that sm is the result of applying φ1, . . . , φn ⇒ φ

µ(r) ∈
R⇒. By construction, φ1, . . . , φn → φ = r ∈ R such that φj ∈
{ψ1, . . . , ψk} is obtained via a sequence Φ′j , for each j ∈ {1, . . . , n}.
Therefore, Ass(sm) ∪ Supp(sm) `R Conc(sm).
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Thus, for the derivation of a, of any length m, via the sequence of sequents,
s1, . . . , sm, there is a deduction from A∪Γ via the sequence Φm, for φ. Hence
A ∪ Γ `R φ ∈ ArgABA

〈L,R〉(S,A).

Lemma 15. Let a, b ∈ ArgABA
〈L,R〉(S,A) and a′, b′ their corresponding ABA-sequent

arguments, thus a′, b′ ∈ ArgABA⇒
〈L,R⇒〉(S,A).10 Then a attacks b in AF 〈L,R〉(S,A) iff a′

attacks b′ in AFABA⇒
〈L,R⇒〉(S,A).

Proof. Consider the ⇒-direction, the ⇐-direction is similar and left to the reader.
Let a, b ∈ ArgABA

〈L,R〉(S,A) and assume a = A ∪ Γ `R φ attacks b = A′ ∪ Γ′ `R φ′.
Then, by Definition 27, φ ∈ ψ for ψ ∈ A′. By Lemma 14, a′ = A

77 Γ ⇒ φ and
b′ = A′

77 Γ′ ⇒ φ′ are arguments in AFABA⇒
〈L,R⇒〉(S,A) (a′, b′ ∈ ArgABA⇒

〈L,R⇒〉(S,A)).
Since φ ∈ ψ for ψ ∈ A′, it follows that a′ ATABA-attacks b′.

With this Proposition 2 can be shown:

Proof. Let 〈L,R〉 be a deductive system, S ⊆ L a non-trivializing set of formulas
and A ⊆ L a set of assumptions, such that Γ ⊆ S and A ⊆ A are finite and A∩S = ∅.
Let AFABA⇒

〈L,R⇒〉(S,A) =
〈
ArgABA⇒

〈L,R⇒〉(S,A),AT
〉
be a sequent-based ABA-framework

that corresponds to the ABA-framework AF 〈L,R〉(S,A) = 〈L,R,S,A, ·〉. We show
only some cases, leaving the others to the reader. First note that:

1. if E ∈ Extcmp(AF 〈L,R〉(S,A)) then {a′ | a ∈ E and a′ corresponds to a as in
Lemma 14} = E ′ ∈ Extcmp(AFABA⇒

〈L,R⇒〉(S,A));

2. if E ∈ Extcmp(AFABA⇒
〈L,R⇒〉(S,A)) then {a′ | a ∈ E and a′ corresponds to a as in

Lemma 14} = E ′ ∈ Extcmp(AF 〈L,R〉(S,A)).

We show only the first item, leaving the second item to the reader. Let E ∈
Extcmp(AF 〈L,R〉(S,A)) and let E ′ = {a′ | a ∈ E where a′ corresponds to a as in
Lemma 14}. To show that E ′ is complete.
E ′ is conflict-free. Since E ∈ Extcmp(AF 〈L,R〉(S,A)) it follows immediately

that E is conflict-free. By the construction of E ′ and Lemma 15 it follows that E ′ is
conflict-free as well.
E ′ defends itself. Suppose a′ ∈ E ′ is attacked by some b′ ∈ ArgABA⇒

〈L,R⇒〉(S,A). By
the construction of E ′ and Lemma 14 there exist a, b ∈ ArgABA

〈L,R〉(S,A) corresponding

10That a′ and b′ exist follows from Lemma 14.
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to a′ and b′ respectively, such that a ∈ E . Moreover, by Lemma 15, b attacks a.
Since a ∈ E , there is some c ∈ E such that c defends a. By the construction of E ′ it
follows that c′ ∈ E ′ and by Lemma 15 it defends a′ against the attack from b′. Thus
E ′ defends a′.
E ′ contains the arguments it defends. Suppose that a′ ∈ ArgABA⇒

〈L,R⇒〉(S,A)
is defended by E ′. Then there is some b′ ∈ ArgABA⇒

〈L,R⇒〉(S,A) such that b′ attacks
a′ and there is some c′ ∈ E ′ such that c′ attacks b′. By the construction of E ′ and
Lemma 14, there are corresponding arguments a, b, c ∈ ArgABA

〈L,R〉(S,A) such that a
is attacked by b, b is attacked by c and c ∈ E . Thus c defends a against the attack
by b. Since E is complete a ∈ E . Hence, by the construction of E ′ it follows that
a′ ∈ E ′.

Therefore we have that {a′ | a ∈ E and a′ corresponds to a as in Lemma 14} ∈
Extcmp(AFABA⇒

〈L,R⇒〉(S,A)). It remains to show that A∪S |∼?ABA,semφ iff S |∼?A,semφ for
? ∈ {∪,∩,e} and completeness-based semantics sem. We show the case for ? = ∪
and sem = cmp.

⇒ Let A ∪ S |∼∪ABA,cmp φ. Then there is some E ∈ Extcmp(AF 〈L,R〉(S,A)) such
that there is some a ∈ E where a = A ∪ Γ `R φ for some A ⊆ A and Γ ⊆ S.
By Lemma 14 a′ = A

77 Γ⇒ φ ∈ ArgABA⇒
〈L,R⇒〉(S,A). Moreover, by the first item

above it follows that there is some E ′ ∈ Extcmp(AFABA⇒
〈L,R⇒〉(S,A)) and a′ ∈ E ′.

Therefore S |∼∪A,cmp φ.

⇐ Let S |∼∪A,cmpφ. Then there is some E ∈ Extcmp(AF 〈L,R〉(S,A)) such that there
is some a ∈ E where a = A

77 Γ⇒ φ for some A ⊆ A and Γ ⊆ S. By the second
item above it follows that there is some E ′ ∈ Extcmp(AFABA⇒

〈L,R⇒〉(S,A)) such that
a′ ∈ E ′ where a′ corresponds to a as in Lemma 14, thus a′ = A∪Γ `R φ. Hence
A ∪ S |∼∪ABA,cmp φ.

Example 20. Recall the setting from Example 18, in which S = {s}, A = {p, q,¬p∨
¬q,¬p∨r,¬q∨r} and classical logic is the core logic. LetR⇒ = LK. Some of the argu-
ments of the sequent-based ABA-framework AFABA⇒

〈L,R⇒〉(S,A) =
〈
ArgABA⇒

〈L,R⇒〉(S,A),
AT 〉 are:

a = s⇒ s b = p,¬p ∨ ¬q
77 ⇒ ¬q

c = q,¬p ∨ ¬q
77 ⇒ ¬p d = p, q,¬p ∨ r,¬q ∨ r

77 ⇒ r.

Note that a cannot be attacked, since Ass(a) = ∅. Thus S |∼?A,sem s for sem ∈
{grd, cmp, prf, stb} and ? ∈ {∪,∩,e}. However, the argument d is attacked by
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both b and c. Moreover b attacks c and c attacks b. It can be shown that, for
φ ∈ {p, q,¬p∨¬q}, S |6∼?A,sem φ for sem ∈ {grd, cmp, prf, stb} and ? ∈ {∩,e} but also
S |∼∪A,sem′ φ for sem′ ∈ {cmp, prf, stb}.

We will now turn to the representation of reasoning with maximally consistent
subsets in the here presented framework.

Remark 9. In this section maximally consistent subsets are defined as in Defini-
tion 25. The corresponding entailment relations are defined in the same way as those
in Definition 18, now with respect to the definition of contrary-consistent sets. We
continue using the notation |∼?,ASmcs for ? ∈ {∩,∪,e}.

The relations between ABA and reasoning with maximally consistent subsets
and between sequent-based argumentation and maximally consistent subsets have
been studied before, see [7, 9, 41]. In addition to the two entailment relations in [41]
(in the notation of this paper |∼e,ASmcs and |∼∪,ASmcs ), we will also consider the entailment
relation |∼∩,ASmcs . For the proof of these relations, like in [41], it is assumed that `R
is contrapositive:

Definition 30. `R is said to be contrapositive for assumptions if for any φ ∈ A and
any ψ ∈ A it holds that A ∪ Γ `R ψ if and only if (A \ {φ}) ∪ {ψ} ∪ Γ `R φ.

Similar to the assumption made in the previous section, that the rules from
Figure 6 are admissible in the sequent calculus of the core logic, requiring that
`R is contrapositive restricts the generality of the result, not the above introduced
representation.

The proofs of Proposition 3 and the lemmas necessary for it are partially based
on proofs in [9]. For similar reasons as those in the previous section we will assume
that S is non-trivializing.

Proposition 3. Let AFABA⇒
〈L,R⇒〉(S,A) be a sequent-based ABA-framework for a de-

ductive system 〈L,R〉, S ⊆ L a non-trivializing set of formulas and A a set of
assumptions. Suppose that `R is contrapositive for assumptions. Then:

1. S|∼∩A,prf φ iff S|∼∩A,stb φ iff S |∼∩,Amcs φ;

2. S|∼∪A,prf φ iff S|∼∪A,stb φ iff S |∼∪,Amcs φ;

3. S|∼eA,prf φ iff S|∼eA,stb φ iff S |∼e,Amcs φ.

As in Section 3.3 we first consider two lemmas that will be useful in the proofs
of the above proposition. The first shows that for any maximally consistent subset
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of assumptions T , if some assumption φ is not part of T , there is some argument a
such that the conclusion of a is a contrary of φ. The second shows that the set of
assumptions from which the arguments in a complete extension is constructed, are
contrary-consistent.

For the next proofs, suppose that the conditions of the statement of the propo-
sition hold.

Lemma 16. For each set T ⊆ A: if T ∈ MCS(S,A) then for each φ ∈ A\T , there
is some finite A ⊆ T and some finite Γ ⊆ S such that A

77 Γ⇒ φ ∈ ArgABA⇒
〈L,R⇒〉(S,A).

Proof. Assume that T ∈ MCS(S,A) and consider some φ ∈ A\T . By Definition 25,
there is some A′ ⊆ T ∪ {φ} and some Γ ⊆ S such that A′ ∪ Γ `R ψ for some
ψ ∈ T ∪ {φ}. Consider two cases:
• ψ ∈ T . By contraposition, (A′ \ {φ}) ∪ {ψ} ∪ Γ `R φ.
• ψ = φ. Then A′ ⊆ T .

In both cases there is an A ⊆ T and a Γ ⊆ S such that A∪Γ `R φ ∈ ArgABA
〈L,R〉(S,A).

Hence, by Lemma 14, A
77 Γ⇒ ψ ∈ ArgABA⇒

〈L,R⇒〉(S,A).

Lemma 17. The set Ass(E), for any E ∈ Extcmp(AFABA⇒
〈L,R⇒〉(S,A)) is contrary-

consistent.

Proof. Assume, towards a contradiction, that Ass(E) = {φ1, . . . , φn} is not contrary-
consistent. Then, by Definition 25 there are A ⊆ Ass(E) and Γ ⊆ S such that
A,Γ `R φi for some φi ∈ Ass(E). By Lemma 14, a = A

77 Γ ⇒ φi is derivable.
Note that, if a is not attacked, a ∈ E . Suppose that a is attacked by an argument
b = A′

77 Γ′ ⇒ ψ ∈ ArgABA⇒
〈L,R⇒〉(S,A). Then ψ ∈ ψ′ for some ψ′ ∈ A. Hence

ψ′ ∈ Ass(E). Thus b attacks some argument a′ ∈ E as well. Since a′ ∈ E , there is
an argument c ∈ E which defends a′ and thus a from the attack by b. Since E is
complete, a ∈ E . Thus whether a is attacked or not, a ∈ E . However, a attacks each
aj ∈ E with φi ∈ Ass(aj). A contradiction with the conflict-freeness of the complete
extension E .

The next two lemmas show how maximally consistent subsets relate to stable
(Lemma 18) and preferred (Lemma 19) extensions.

Lemma 18. If T ∈ MCS(S,A) then ArgABA⇒
〈L,R⇒〉(S, T ) ∈ Extstb(AFABA⇒

〈L,R⇒〉(S,A)).

Proof. Assume that T ∈ MCS(S,A) and let E = ArgABA⇒
〈L,R⇒〉(S, T ). We show that E

is conflict-free and stable.
E is conflict-free. Suppose, towards a contradiction, that E is not conflict-free.

Then there are arguments a1 = A1
77 Γ1 ⇒ φ1 and a2 = A2

77 Γ2 ⇒ φ2, such that
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a1, a2 ∈ E and a1 attacks a2. Thus φ1 ∈ ψ for some ψ ∈ A2. However, by assumption
A1 ∪A2 ⊆ T . A contradiction with the assumption that T ∈ MCS(S,A).
E is stable. Now suppose that b = A′

77 Γ′ ⇒ φ′ ∈ ArgABA⇒
〈L,R⇒〉(S,A) \ E for some

Γ′ ⊆ S and A′ ⊆ A. Since b /∈ E = ArgABA⇒
〈L,R⇒〉(S, T ), there is some φ ∈ A′ such

that φ /∈ T . Since, by supposition T ∈ MCS(S,A), from Lemma 16, there are finite
A ⊆ T , Γ ⊆ S such that A

77 Γ ⇒ φ ∈ ArgABA⇒
〈L,R⇒〉(S,A). Because A ⊆ T it follows

that A
77 Γ⇒ φ ∈ E . Hence b is attacked by E . Therefore E attacks every argument

in ArgABA⇒
〈L,R⇒〉(S,A) \ E and thus E ∈ Extstb(AFABA⇒

〈L,R⇒〉(S,A)).

Lemma 19. If E ∈ Extprf(AFABA⇒
〈L,R⇒〉(S,A)) then there is some T ∈ MCS(S,A) such

that E = ArgABA⇒
〈L,R⇒〉(S, T ).

Proof. Assume, towards a contradiction, that for some E ∈ Extprf(AFABA⇒
〈L,R⇒〉(S,A))

there is no T ∈ MCS(S,A) such that E = ArgABA⇒
〈L,R⇒〉(S, T ). Consider first the case

that there is some T ∈ MCS(S,A) such that E = ArgABA⇒
〈L,R⇒〉(S, T

′) for T ′ ( T .
Thus E ( ArgABA⇒

〈L,R⇒〉(S, T ). By Lemma 18, it follows that ArgABA⇒
〈L,R⇒〉(S, T ) ∈

Extstb(AFABA⇒
〈L,R⇒〉(S,A)). A contradiction to the assumption that E is preferred and

thus maximal. Thus if T ∈ MCS(S,A) does not exist such that E = ArgABA⇒
〈L,R⇒〉(S, T ),

a T ′ ( T for which E = ArgABA⇒
〈L,R⇒〉(S, T

′) does not exist either. Thus, since there
is no T ∈ MCS(S,A) such that E = ArgABA⇒

〈L,R⇒〉(S, T ), there is no T ∈ MCS(S,A)
such that Ass(E) ⊆ T and hence, Ass(E) is contrary-inconsistent. A contradic-
tion with Lemma 17 and the assumption that E ∈ Extprf(AFABA⇒

〈L,R⇒〉(S,A)). Thus,
E ⊆ ArgABA⇒

〈L,R⇒〉(S, T ) for some T ∈ MCS(S,A). By Lemma 18, ArgABA⇒
〈L,R⇒〉(S, T ) is

stable (and therefore preferred) and thus E = ArgABA⇒
〈L,R⇒〉(S, T ).

We now turn to the proof of Proposition 3:

Proof. Let AFABA⇒
〈L,R⇒〉(S,A) be a sequent-based ABA-framework, where 〈L,R〉 is a

deductive system, S is a non-trivializing set of L-formulas and A is a set of assump-
tions. Consider each item in both directions:

1. (⇒) Note that S |∼∩A,prf φ implies S |∼∩A,stb φ. Suppose S |6∼∩,Amcs φ, but that
there is some finite A ⊆ A and some Γ ⊆ S such that A

77 Γ ⇒ φ ∈
ArgABA⇒

〈L,R⇒〉(S,A). Now, by assumption, A 6⊆ ⋂ MCS(S,A). Hence, there
is some φ′ ∈ A \ ⋂ MCS(S,A). From which it follows that there is some
T ∈ MCS(S,A) such that φ′ /∈ T . Therefore A

77 Γ ⇒ φ /∈ ArgABA⇒
〈L,R⇒〉(S, T ).
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By Lemma 18, ArgABA⇒
〈L,R⇒〉(S, T ) ∈ Extstb(AFABA⇒

〈L,R⇒〉(S,A)), thus S |6∼∩A,stb φ
(and thus S |6∼∩A,prf φ) as well.

(⇐) Suppose that S |∼∩,Amcs φ. Thus, there are finite A ⊆ ⋂ MCS(S,A) and
Γ ⊆ S such that A

77 Γ ⇒ φ ∈ ArgABA⇒
〈L,R⇒〉(S,A) is derivable. By Lemma 19

ArgABA⇒
〈L,R⇒〉(Γ, A) ⊆ ⋂ Extprf(AFABA⇒

〈L,R⇒〉(S,A)). Hence we have that A
77 Γ⇒ φ

∈ ⋂ Extprf(AFABA⇒
〈L,R⇒〉(S,A)). From which it follows that S |∼∩A,prf φ and thus

S |∼∩A,stb φ.

2. (⇒) Note that S |∼∪A,stb φ implies S |∼∪A,prf φ. Suppose that S |∼∪A,prf φ. Then
there is some E ∈ Extprf(AFABA⇒

〈L,R⇒〉(S,A)) such that A
77 Γ⇒ φ ∈ E , for A ⊆ A

and Γ ⊆ S. From Lemma 19 it follows that there is some T ∈ MCS(S,A)
such that E = ArgABA⇒

〈L,R⇒〉(S, T ) (thus A ⊆ T ). Hence, by Definition 25 and
Lemma 14, φ ∈ CN(T ∪ S) it follows that S |∼∪,Amcs φ.

(⇐) Assume that S |∼∪,Amcs φ. Then there is some T ∈ MCS(S,A) such that φ ∈
CN(T ∪S). Therefore, there is a deduction from A∪Γ ⊆ T ∪S for φ (A∪Γ `R
φ ∈ ArgABA

〈L,R〉(S,A)) and thus, by Lemma 14 A
77 Γ ⇒ φ ∈ ArgABA⇒

〈L,R⇒〉(S,A).
From Lemma 18 it follows that ArgABA⇒

〈L,R⇒〉(S, T ) ∈ Extstb(AFABA⇒
〈L,R⇒〉(S,A)).

Thus S |∼∪A,stb φ as well.

3. S |∼eA,stb φ implies S |∼e,Amcs φ: suppose that S |6∼e,Amcs φ, then there is some
T ∈ MCS(S,A) for which φ /∈ CN(S ∪ T ). Hence, there are no A ⊆ T
and Γ ⊆ S with A

77 Γ ⇒ φ ∈ ArgABA⇒
〈L,R⇒〉(S, T ). By Lemma 18 it follows that

ArgABA⇒
〈L,R⇒〉(S, T ) ∈ Extstb(AFABA⇒

〈L,R⇒〉(S,A)), thus S |6∼eA,stb φ.

S |∼e,Amcs φ implies S |∼eA,prf φ: suppose that S |6∼eA,prf φ. Then there is some
preferred extension E ∈ Extprf(AFABA⇒

〈L,R⇒〉(S,A)) such that there is no A
77 Γ⇒

φ ∈ E for A ⊆ A and Γ ⊆ S. From Lemma 19 it follows that there is some
T ∈ MCS(S,A) such that ArgABA⇒

〈L,R⇒〉(S, T ) = E and φ /∈ CN(S ∪ T ). Thus
S |6∼e,Amcs φ.
S|∼eA,prfφ implies S|∼eA,stbφ: this follows immediately since any stable extension
is a preferred extension [36, Lemma 15].

Example 21. Recall from Example 18 the sets S = {s} and A = {p, q,¬p∨¬q,¬p∨
r,¬q∨r}. Then MCS(S,A) = {{p, q,¬p∨r,¬q∨r}, {p,¬p∨¬q,¬p∨r,¬q∨r}, {q,¬p∨
¬q,¬p∨r,¬q∨r}}. Hence ⋂ MCS(S,A) = {¬p∨r,¬q∨r}. Therefore, S |∼∩,Amcs φ and
S|∼e,Amcsφ for φ ∈ CN({s,¬p∨r,¬q∨r}) and S|∼∪,Amcsφ for φ ∈ {p, q,¬p∨¬q}. Moreover,

270



Assumptive Sequent-Based Argumentation

by the results from Proposition 3 it follows that S |∼?A,sem φ for ? ∈ {∩,∪,e} and
φ ∈ {s,¬p ∨ r,¬q ∨ r} and S |∼∪A,sem φ for φ ∈ {p, q,¬p ∨ ¬q}, which corresponds
indeed to the results from Example 20.

The results presented above are summarized in the following theorem.

Theorem 3. Let AFABA⇒
〈L,R⇒〉(S,A) be a sequent-based ABA-framework, for 〈L,R〉 a

deductive system, S a non-trivializing set of L-formulas and A a set of assumptions
such that S ∩ A = ∅, then:

1. A∪S |∼?ABA,sem φ iff S |∼?A,sem φ for sem ∈ {grd, cmp, prf, stb} and ? ∈ {∪,∩,e}
(Proposition 2).
For the following, let `R be contrapositive for assumptions:

2. A∪S |∼∩ABA,semφ iff S |∼∩A,semφ iff S |∼∩,Amcsφ, for sem ∈ {prf, stb} (Propositions 2
and 3.1).

3. A∪S |∼∪ABA,semφ iff S |∼∪A,semφ iff S |∼∪,Amcs φ for sem ∈ {prf, stb} (Propositions 2
and 3.2).

4. A∪S |∼eABA,semφ iff S |∼eA,semφ iff S |∼e,Amcsφ, for sem ∈ {prf, stb} (Propositions 2
and 3.3).

We will now turn to the rationality postulates from [30], see also Section 3.2.
For these proofs consider the sequent-based ABA-framework AFABA⇒

〈L,R⇒〉(S,A) =〈
ArgABA⇒

〈L,R⇒〉(S,A),AT
〉
for some deductive system 〈L,R〉, let S be a non-trivializing

set of L-formulas and A a set of assumptions, where Γ ⊆ S, A ⊆ A are finite and
S∩A = ∅. Let sem ∈ {grd, cmp, prf, stb}. Note that, due to the definition of contrary-
consistency from Definition 25, the consistency postulate, defined in Definition 16,
has to be adjusted:

• Concs(E) is consistent if and only if there is no φ ∈ A such that φ, φ ∈
CN(Concs(E)).

Lemma 20 (Sub-argument closure). AFABA⇒
〈L,R⇒〉(S,A) satisfies sub-argument clo-

sure: let E ∈ Extcmp(AFABA⇒
〈L,R⇒〉(S,A)), then for all a ∈ E, Sub(a) ⊆ E.

Proof. Let a = A
77 Γ ⇒ φ ∈ E , a′ = A′

77 Γ′ ⇒ φ′ ∈ Sub(a) and assume b ∈
ArgABA⇒

〈L,R⇒〉(S,A) attacks a′. Then Conc(b) = ψ for some ψ ∈ A′. By definition of
a sub-argument A′ ⊆ A, hence b attacks a as well. Since E is complete and a ∈ E ,
it follows that there is a c ∈ E which defends a and thus a′ from the attack by b.
Therefore a′ ∈ E and hence Sub(a) ⊆ E .
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Lemma 21 (Closure). AFABA⇒
〈L,R⇒〉(S,A) satisfies closure of extensions, for each ex-

tension E ∈ Extcmp(AFABA⇒
〈L,R⇒〉(S,A)) it holds that Concs(E) = CN(Concs(E)).

Proof. By Definition 25, it follows immediately that Concs(E) ⊆ CN(Concs(E)). Sup-
pose φ ∈ CN(Concs(E)). Then there are arguments a1, . . . , an ∈ E , with Supp(ai) =
Γi, Conc(ai) = φi, Ass(ai) = Ai for 1 ≤ i ≤ n and φ1, . . . , φn ⇒ φ is derivable, using
rules in R⇒. By [Cut] a = A1, . . . , An

77 Γ1, . . . ,Γn ⇒ φ.
Note that, if a is not attacked, a ∈ E , thus φ ∈ Concs(E). Now suppose b ∈

ArgABA⇒
〈L,R⇒〉(S,A) attacks a. Then Conc(b) = ψ for some ψ ∈ A1 ∪ . . .∪An. Without

loss of generality assume ψ ∈ Ai. Then b attacks ai as well. Since ai ∈ E it follows
that E defends against the attack from b. Therefore a ∈ E as well.

Lemma 22 (Consistency). AFABA⇒
〈L,R⇒〉(S,A) satisfies consistency: for each exten-

sion E ∈ Extcmp(AFABA⇒
〈L,R⇒〉(S,A)),there is no φ ∈ A such that φ, φ ∈ CN(Concs(E)).

Proof. Assume, towards a contradiction, that Concs(E) is not consistent. Then
there are arguments a, b ∈ E , such that Conc(a) = Conc(b) (since CN(Concs(E)) =
Concs(E)). However, by Lemma 17, Ass(E) is consistent. Hence, by Definition 25,
no such arguments exist.

Theorem 4. Let AFABA⇒
〈L,R⇒〉(S,A) =

〈
ArgABA⇒
〈L,R⇒〉(S,A),AT

〉
be an sequent-based

ABA-framework, for the deductive system 〈L,R〉, S a non-trivializing set of L-
formulas, A a set of assumptions and ATABA the only attack rule. Then the frame-
work AFABA⇒

〈L,R⇒〉(S,A) satisfies sub-argument closure, closure under strict rules and
consistency.

4.2 Adaptive Logics
Adaptive logics, originally introduced by Batens (see e.g., [21, 62] for an overview),
are a logical framework that offer contributions to the research on formalizations
of defeasible reasoning forms. It was developed to interpret (possibly) inconsistent
theories as consistently as possible. From the perspective of epistemology, the in-
troduction of adaptive logics has been motivated by the lack of a proof-theoretic
account that captures the dynamic and defeasible aspects of human reasoning [20].
Adaptive logics have been frequently applied to reasoning forms typical for scientific
reasoning (such as handling inconsistencies, inductive generalizations and abductive
inferences). From the perspective of nonmonotonic logics, adaptive logics are a sub-
class of the preferential models known from [47]. Adaptive logics differ from other
approaches based on preferential models in that they offer an adequate dynamic
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proof theory for the resulting nonmonotonic consequence relations. Nowadays adap-
tive logics cover many application contexts, such as inconsistent knowledge bases,
default reasoning and circumscription, abstract argumentation, abduction, fuzzy
logic, induction and deontic conflict. The idea is to interpret the premises as nor-
mally as possible. What this means depends on the logic and the application. The
most common form for adaptive logics is the so-called standard format:

Definition 31. Adaptive logics in the standard format consist of three elements:
• the lower limit logic (LLL), the logic that is strengthened by the adaptive

logic, with:
– a Tarskian consequence relation (see Definition 1); and
– a characteristic semantics.

• a set of abnormalities Ω, the form of the abnormalities depends on the lower
limit logic and the application; and

• an adaptive strategy, either the reliability strategy which is a more cautious
reasoning form or minimal abnormality strategy, which is a more credulous
form of reasoning.

ALxLLL, where x ∈ {r,m} is the adaptive logic with lower limit logic LLL and
strategy x, which can be the reliability strategy (r) or the minimal abnormality
strategy (m). When the strategy and/or lower limit logic are arbitrary or clear from
the context, the superscript and/or subscript are omitted.

A third strategy, that is not part of the standard format, is the normal selections
strategy (n), which is even more credulous than the minimal abnormality strategy.
In this section we will also consider this third strategy and will therefore also discuss
the adaptive logic ALnLLL.

In the literature there are many logics that are used as lower limit logic. For
example da Costa’s Ci systems [22] and classical modal logics [23, 50] for which in-
terpreting the premises as normally as possible means as non-conflicting as possible.
Another example is the logic CLuN, introduced by Batens [19] under the name PI.
It is obtained by adding the axioms φ∨∼φ to full positive classical logic, as such, it
is a very weak paraconsistent logic. For CLuN interpreting the premises as normally
as possible means as consistent as possible.

The set of abnormalities, denoted by Ω, contains all the formulas of a logical
form that depends on the lower limit logic of the adaptive logic and its application.
Elements of Ω will be denoted by !φ, where φ is the abnormal formula. In terms
of abnormalities, interpreting the premises as normally as possible means that the
premises are interpreted in a way that as few abnormalities as possible are validated.
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Example 22. Consider the paraconsistent logic CLuN. Let Ω be the set of formulas
of the form ∼φ∧φ, where φ is a CLuN-formula. Then ALrCLuN = 〈CLuN,Ω, reliability〉
is the adaptive logic with lower limit logic CLuN and the reliability strategy.

The following notation will be useful in the definition of the consequence relations
and proofs:

Notation 3. Let Dab(Π) denote the classical disjunction of members in Π, where
Π is a finite subset of Ω, then:
• the minimal Dab consequences for a premise set Γ are all the Dab(Π) such
that Γ `LLL Dab(Π) and there is no Π′ ⊂ Π such that Γ `LLL Dab(Π′);
• if Dab(Π1),Dab(Π2), . . . are the minimal Dab consequences for Γ, then U(Γ) =

Π1 ∪Π2 ∪ . . . is called the set of unreliable abnormalities; and
• let Σ(Γ) = {Π1,Π2, . . .}, then Φ(Γ) denotes the set of all minimal choice sets
of Σ(Γ).11

Example 23. Let S = {p, q,∼p ∨ ∼q,∼p ∨ r,∼q ∨ r} and suppose that CLuN is
the lower limit logic. Then (p ∧ ∼p) ∨ (q ∧ ∼q) is a minimal Dab-consequence of S.
When reasoning skeptically, both p and q are considered unreliable, thus intuitively
r should not follow. However, when reasoning more credulously, r can follow. To
see this, suppose that p is unreliable (it is abnormal), then q could be normal, thus
from q and ∼q ∨ r, r follows.

In this paper we define the entailment relations of an adaptive logic semantically,
based on [62]. For the dynamic proof theory of adaptive logics see [62, Chapter 2]. In
what follows letMLLL(Γ) denote the set of all LLL-models for the set of formulas Γ.

Definition 32. LetM be an LLL-model, the abnormal part of M is then Ab(M) =
{φ ∈ Ω |M � φ}.

From the abnormal part of a model a (strict) partial order can be defined on the
models of a given premise set Γ:

• M @Γ
Ab M

′ iff Ab(M) ⊂ Ab(M ′);

• M vΓ
Ab M

′ iff Ab(M) ⊆ Ab(M ′).

Definition 33. A model M ∈MLLL(Γ) is a reliable model of Γ if Ab(M) ⊆ U(Γ).
The set of all reliable models of Γ is denoted byMALr(Γ).

11A choice set of Σ(Γ) is a set of formulas ∆, such that ∆ ∩ Πi 6= ∅ for each Πi ∈ Σ(Γ). ∆ is
minimal when there is no choice set ∆′ of Σ(Γ) such that ∆′ ⊂ ∆.
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Definition 34. A model M ∈MLLL(Γ) is a minimally abnormal model of Γ when
for all other modelsM ′ ∈MLLL(Γ) of Γ, Ab(M ′) 6⊂ Ab(M). The set of all minimally
abnormal models of Γ is denoted byMALm(Γ).

Thus, the minimally abnormal models are the minimal elements of the partial
order @Γ

Ab.

Definition 35. The entailment relations for the three strategies are then defined
by:

• Γ |∼r,ΩLLL φ if and only if for each M ∈MALr(Γ), M � φ.

• Γ |∼m,ΩLLL φ if and only if for each M ∈MALm(Γ), M � φ.

• Γ |∼n,ΩLLL φ if and only if there is a model M ∈ MALm(Γ) such that for all
M ′ ∈MLLL(Γ) for which Ab(M) = Ab(M ′), M ′ � φ.

Example 24. Recall the set S = {p, q,∼q ∨ ∼p,∼q ∨ r,∼p ∨ r} from Example 23,
where CLuN is the lower limit logic. Three types of models can be considered, they
differ in their abnormal parts: M1 for which Ab(M1) = {p ∧ ∼p}, M2 for which
Ab(M2) = {q∧∼q} and M3 for which Ab(M3) = {p∧∼p, q∧∼q}. As mentioned in
Example 23, intuitively it is expected that r follows when reasoning credulously, but
not when reasoning skeptically. Indeed, S |6∼rCLuN r, while S |∼mCLuN r and S |∼nCLuN r.

In assumptive sequent-based argumentation with a lower limit logic LLL as core
logic, an inference rule (RC) is added to the sequent calculus C of LLL. The idea
is similar to the rules ASAS introduced in Definition 10. Let φ be a formula in the
language of LLL and let !φ denote the abnormality for the formula φ. We consider
two variations and will refer in both cases to the RC -rule:

Π
77 Γ⇒ ∆, ψ∨!φ

Π, !φ
77 Γ⇒ ∆, ψ RC

Π
77 Γ⇒ ∆, !φ

Π, !φ
77 Γ⇒ ∆ RC (3)

For a logic L = 〈L,`〉, with corresponding sequent calculus C, let C′ = C∪{RC}.
AL-sequent arguments are then defined as follows:

Definition 36. Let LLL be a lower limit logic, with corresponding sound and com-
plete sequent calculus C, let S be a set of LLL-formulas and Ω a set of abnormalities.
An assumptive LLL-argument based on S and Ω (AL-(sequent )argument for short)
is an assumptive sequent Π

77 Γ ⇒ ψ, provable in C′, where Π ⊆ Ω and Γ ⊆ S.
ArgLLL,Ω(S) denotes the set of all AL-arguments based on S and Ω.
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Definition 37. The sequent elimination rule for assumptive sequent-based argu-
mentation with adaptive logics is defined as, where Π

77 Γ ⇒ φ, Θ, φ
77 ∆ ⇒ ψ ∈

ArgLLL,Ω(S):
Π

77 Γ⇒ φ Θ, φ
77 ∆⇒ ψ

Θ, φ
77 ∆ 6⇒ ψ

ATAL (4)

An assumptive sequent-based argumentation framework for adaptive logics is
now defined as:

Definition 38. An adaptive logic sequent-based argumentation framework ((sequent-
based) AL-framework for short) for the lower limit logic LLL = 〈L,`〉, with cor-
responding sequent calculus C, set of abnormalities Ω, set of formulas S and ATAL
as sequent elimination rule, is a pair AFLLL,Ω(S) =

〈
ArgLLL,Ω(S),AT

〉
. Where

ArgLLL,Ω(S) is the set of AL-arguments based on S and Ω, AT ⊆ ArgLLL,Ω(S) ×
ArgLLL,Ω(S) and (a1, a2) ∈ AT iff a1 ATAL-attacks a2.

Example 25. Consider again the set S = {p, q,∼q ∨ ∼p,∼q ∨ r,∼p ∨ r} and let
AFCLuN,Ω(S) =

〈
ArgCLuN,Ω(S),AT

〉
, whereAT is based on ATAL. Note that !ψ ∈ Ω

if and only if ψ is a CLuN-formula and !ψ = ψ ∧ ∼ψ. Some of the arguments in
ArgCLuN,Ω(S) are:

a = p⇒ p b = q ⇒ q c = ∼q ∨ ∼p⇒ ∼q ∨ ∼p
d = p,∼p ∨ ∼q ⇒ ∼q ∨ !p e = q,∼p ∨ ∼q ⇒ ∼p ∨ !q

f = !p
77 S ⇒ !q g = !q

77 S ⇒ !p h = !p
77 S ⇒ r k = !q

77 S ⇒ r.

As in previous sections, these are only a subset of the available arguments. See
Figure 9 for a graphical representation.

a b c d e

f g h k

Figure 9: Part of the AL-framework of Example 25 for S = {p, q,∼q ∨ ∼p,∼q ∨
r,∼p ∨ r}.

The consequence relation corresponding to an adaptive logic sequent-based ar-
gumentation framework AFLLL,Ω(S) is denoted by |∼?Ω,sem for each semantics and
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? ∈ {∩,∪,e}. Similar to Proposition 2 the following representational theorem can
be shown:

Theorem 5. Let AFLLL,Ω(S) =
〈
ArgLLL,Ω(S),AT

〉
be a sequent-based argumen-

tation framework for the lower limit logic LLL = 〈L,`〉, with corresponding sequent
calculus C, set of abnormalities Ω and set of L-formulas S.

1. S |∼m,ΩLLL φ if and only if S |∼eΩ,prf φ.

2. S |∼r,ΩLLL φ if and only if S |∼∩Ω,prf φ.

3. S |∼n,ΩLLL φ if and only if S |∼∪Ω,prf φ.

Due to the requirement of further notation and many technical details, the proof
of the above theorem is placed in Appendix B.

For adaptive logic sequent-based argumentation frameworks, the representation
of reasoning with maximally consistent subsets (recall Section 3.3) follows from the
results in [56], in which it was shown that the consequence relations of adaptive
logics are directly related to those of default assumptions, discussed in the next
section. We therefore refer to Corollary 2 on page 53.

Example 26. Recall the setting from Example 25, for the sequent-based AL-
framework AFCLuN,Ω(S) =

〈
ArgCLuN,Ω(S),AT

〉
, S = {p, q,∼q ∨∼p,∼q ∨ r,∼p∨ r}

and nine arguments were introduced. Two preferred extensions can be considered:
E1 ⊇ {a, b, c, d, e, f, h} and E2 ⊇ {a, b, c, d, e, g, k}. Hence S |∼eΩ,prf r but S |6∼∩Ω,prf r.

The above example shows that the consistency postulate (Definition 16) does
not hold in sequent-based AL-frameworks. This is the case since S is not necessarily
consistent. In fact, applying argumentation to a set of formulas S is only interesting
when it is inconsistent, since otherwise the consequences would be the same as the
conclusions that are already derivable with the lower limit logic. However, we will
show below that the other two postulates (i.e., closure and sub-argument closure)
can be shown for adaptive logic sequent-based argumentation.

In what follows let AFLLL,Ω(S) =
〈
ArgLLL,Ω(S),AT

〉
be a sequent-based AL-

framework for S a set of formulas, Ω a set of assumptions and ATAL the attack
rule.

Lemma 23 (Sub-argument closure). Let E ∈ Extcmp(AFLLL,Ω(S)), if a ∈ E then
Sub(a) ⊆ E.
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Proof. Assume a ∈ E . Let a′ ∈ Sub(a) and assume b ∈ ArgLLL,Ω(S) attacks a′.
Thus Conc(b) ∈ Ass(a′). Since, by definition, Ass(a′) ⊆ Ass(a), it follows that b
attacks a as well. Therefore, there is some c ∈ E , which defends a, and thus a′ from
the attack by b. Hence, a′ ∈ E .

Lemma 24 (Closure). Let E ∈ Extcmp(AFLLL,Ω(S)), then Concs(E) is closed under
strict rules.

Proof. To show Concs(E) = CN(Concs(E)). Note that Concs(E) ⊆ CN(Concs(E)) by
the reflexivity of `, it remains to show that Concs(E) ⊇ CN(Concs(E)). Suppose
φ ∈ CN(Concs(E)). Then there are arguments a1, . . . , an ∈ E such that Conc(ai) =
φi, Supp(ai) = Γi and Ass(ai) = Πi for 1 ≤ i ≤ n and φ1, . . . , φn ` φ. By the
completeness of C and applying [Cut] it follows that a = Ass(a1), . . . ,Ass(an)

77
Γ1, . . . ,Γn ⇒ φ is derivable. Note that any attacker of a is an attacker of one of the
arguments a1, . . . , an. Since E ∈ Extcmp(AFLLL,Ω(S)), it follows that a ∈ E as well.
Therefore Concs(E) = CN(Concs(E)).

As noted after Example 26, the consistency postulate does not hold for sequent-
based AL-frameworks since S can be inconsistent.

Theorem 6. Let AFLLL,Ω(S) =
〈
ArgLLL,Ω(S),AT

〉
for S a set of formulas, Ω a

set of abnormalities and ATAL the attack rule. AFLLL,Ω(S) satisfies sub-argument
closure and closure under strict rules under completeness-based semantics. But it
does not satisfy consistency.

4.3 Default Assumptions
In [48], Makinson presents three ways of turning a classical consequence relation
nonmonotonic. The first of which uses additional background assumptions, called
default assumptions. The resulting nonmonotonic consequence relation is directly
related to the assumptive maximally consistent subset consequence relations from
Definition 18, as well as to the adaptive consequence relation for minimal abnor-
mality |∼m,ΩLLL from Definition 35, see [56]. Because of the relations between the
different approaches, default assumptions are used in this section to show how adap-
tive sequent-based argumentation as introduced in the previous section is related to
reasoning with (assumptive) maximally consistent subsets.

In addition to the default assumption consequence relation introduced in [48]
(|∼e,ASmcs in Section 3.3), the two other relations from Definition 18 (i.e., |∼∩,ASmcs and
|∼∪,ASmcs ) will be considered as well. For the remainder of this section, it is assumed
that L contains at least a negation operator ¬ as introduced in Section 2.
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Example 27. Let CL be the core logic and, as in Example 18, S = {s} and AS =
{p, q,¬p∨¬q,¬p∨r,¬q∨r}. Then MCS(S,AS) = {{p,¬p∨¬q,¬p∨r,¬q∨r}, {q,¬p∨
¬q,¬p∨r,¬q∨r}, {p, q,¬p∨r,¬q∨r}}. Clearly S |∼?,ASmcs s, additionally S |∼?,ASmcs ¬p∨r
and S |∼?,ASmcs ¬q ∨ r for ? ∈ {e,∩}. Furthermore, S |∼∪,ASmcs φ for φ ∈ S ∪ AS.

Recall the entailment relations |∼r,ΩLLL and |∼m,ΩLLL from Definition 35. For S a set
of formulas, LLL a monotonic logic, Ω a set of abnormalities and AS a set of default
assumptions, in [56] it is shown that, where the maximally consistent subsets are
taken with respect to the core logic LLL:

• S |∼m,ΩLLL φ iff S |∼e,¬Ω
mcs φ and similarly S |∼e,ASmcs φ iff S |∼m,¬ASLLL φ

• S |∼r,ΩLLL φ iff S |∼∩,¬Ω
mcs φ and similarly S |∼∩,ASmcs φ iff S |∼r,¬ASLLL φ.

Let |∼?,AL
Ω,prf for ? ∈ {∩,e,∪} denote the consequence relation corresponding to an

adaptive logic sequent-based argumentation framework, as defined in the previous
section. The following corollary is obtained from the results in [56], Theorem 5 and
Proposition 2.

Corollary 2. Let AFL,K(S) =
〈
ArgL,K(S),AT

〉
, where L = 〈L,`〉 is a monotonic

logic with corresponding sequent calculus C, S is a set of formulas and K is a set of
default assumptions. Then:

1. S |∼e,ASmcs φ iff S |∼eAS,prf φ iff S |∼m,¬ASL φ iff S |∼e,AL
¬AS,prf φ.

2. S |∼∩,ASmcs φ iff S |∼∩AS,prf φ iff S |∼r,¬ASL φ iff S |∼∩,AL
¬AS,prf φ.

5 Related Literature
That one framework can be expressed by another (and vice versa), is nothing new.
Relations between different formal approaches to nonmonotonic reasoning have been
studied in the literature. As mentioned in the introduction, default logic is an in-
stance of ABA [25]. The results in [56] were used in Section 4.3, to relate rea-
soning with maximally consistent subsets and the presented adaptive logic setting.
In [43], ABA in relation to adaptive logics and vice versa, and ASPIC+ to ABA
were studied. Furthermore, reasoning with maximally consistent subsets and the
related consequence relations are studied for other structured argumentation frame-
works [2, 7, 9, 32, 41, 65], see [6] for a survey. By introducing assumptive sequent-
based argumentation, a first step was made into the study of how sequent-based
argumentation fits within this group of nonmonotonic reasoning systems.
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Although different approaches to formal argumentation can be expressed by one
another, one way of making a distinction between them is by their level of ab-
straction. Abstract argumentation (see Dung [36] and recall Section 2.1) is the
most abstract and, as mentioned, it has been argued that it should be instanti-
ated [55]. When looking at some approaches to logical argumentation (i.e., ABA,
(assumptive) sequent-based argumentation and ASPIC+ mentioned below), we can
distinguish different levels of abstraction. ASPIC+ [51, 54] is the most fine-grained
perspective, where arguments come with a full proof structure. On the other hand,
ABA is the most abstract of the three, since the semantics are applied to sets of
sets of assumptions and the derivation of a conclusion is completely abstract. (As-
sumptive) sequent-based argumentation lies between these two approaches, it is less
abstract than ABA, since an argument consists of a support set and a conclusion
(and in the case of assumptive sequent-based argumentation, it is clear which strict
and defeasible assumptions were used in the construction of an argument), but the
exact derivation of the argument is not part of the argument itself.

In Section 4 we have only studied three of the well-known approaches to reasoning
with defeasible assumptions. Two other well-known approaches were not mentioned
here: ASPIC+ [51, 54] and default logic [4, 59]. The first, like ABA, is an approach
to structured argumentation, in which a distinction is made between axioms (the
strict premises in the setting of this paper) and ordinary premises (the assumptions
in this paper) and there are two types of rules: strict and defeasible ones. Moreover,
an extensive study into the use of preferences was done in [51]. The result is an
expressive structured argumentation system.

Research on ASPIC+ has focused on applications and on the enrichment of the
expressive power of the underlying language (such as the addition of preferences
and having strict and defeasible rules) to be able to model different aspects of hu-
man reasoning. Research on sequent-based argumentation, which was introduced
in the tradition of instantiating abstract argumentation with Tarskian logics (see
also [24, 40]), has focused on studying logical properties of the resulting entailment
relations and semantic extensions of an argumentation framework. As pointed out
in, e.g., [29], defining argumentation frameworks with a robust meta-theory (e.g.,
satisfying the rationality postulates from [30, 31]), is not only interesting from a
theoretical point of view, but is also beneficial for practical purposes. However,
because of the many components from which an argumentation framework is con-
structed, this has been challenging for ASPIC+ in case the set of strict rules is
sufficiently rich (e.g., when these are based on a Tarskian logic) [29]. The only
instantiation that satisfies all standard rationality postulates is ASPIC	, see [44].
In contrast, sequent-based argumentation has been studied with these challenges in
mind. Classes of frameworks, instantiated with Tarskian logics, have been identified
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that satisfy all rationality postulates and other logical properties. Moreover, dy-
namic derivations ([11, 12]), introduced for sequent-based argumentation, provide a
proof-theoretic approach to formal argumentation with which Gentzen-type sequent
calculi can be applied to study the reasoning process of argumentation. Thus, while
ASPIC+ frameworks are very expressive and many possible applications have been
studied, sequent-based argumentation has mainly been investigated to obtain a clear
view of its meta-theoretic properties. How ASPIC+ and (assumptive) sequent-based
argumentation relate remains a question for future work. A good starting point for
this investigation are the results in [28], where it is shown that both, in a setting
without priorities, can be translated in a very simple argumentation setting.

The second approach, default logic, was already shortly mentioned in the in-
troduction as one of the best-known approaches to reasoning with defeasible rules.
There are however several specific additional problems one faces when represent-
ing default logic in sequent-based argumentation, besides the handling of default
assumptions. One is that, although default logic has CL as underlying deductive
system, classical connectives are not handled in a standard way when they occur in
default rules. For example, disjunction does not allow for reasoning by cases and
negation does not allow for contraposition. This is shown in the following example.

Example 28. Recall from the introduction that a default rule is of the form
φ : φ1, . . . , φn/ψ, which represents that ψ can be derived, if φ is given and no
inconsistencies arise when φ1, . . . , φn hold. Intuitively, one could expect that such
a default rule can be translated into an assumptive sequent: φ1, . . . , φn

77 φ ⇒ ψ.
Suppose that AFL(S,AS) = 〈ArgL(S,AS),AT 〉, where CL is the core logic, the se-
quent calculus is LK′ with in addition the sequents obtained by translating the rules
from D and AS contains the assumptions from the rules in D (i.e., φ1, . . . , φn ∈ AS
if the rule above is part of D).

• Let S = {¬q} and let D =
{
∅:p
q

}
. This rule would be translated into p

77 ⇒ q.
However, then by ASrAS , [⇒¬] and [¬⇒] the sequent ¬q ⇒ ¬p is derivable.
Moreover, since ¬q ∈ S, ¬q ⇒ ¬p is an argument that cannot be attacked: its
set of assumptions is empty. Therefore ¬p ∈ Concs(⋂ Extsem(AFL(S,AS))),
for any of the considered semantics. Yet ¬p is not a default conclusion.

• Now suppose that S = ∅ and let D =
{
∅:p
q∨t ,

∅:q
v

}
. These default rules are

translated into the sequents p
77 ⇒ q ∨ t and q

77 ⇒ v. From these, by applying
[⇒∨], [∨⇒], [Cut] and weakening, p

77 ⇒ v ∨ t can be derived. Since there are
no attackers, v ∨ t ∈ Concs(⋂ Extsem(AFL(S,AS))). However, in deault logic,
v ∨ t is not a consequence.
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In the first case, the problem arises because of the application of the sequent rules
for negation. Similarly, in the second case, the rules for disjunction make it possible
to derive v ∨ t.

Because of examples such as the ones above, there is an asymmetry when rea-
soning classically with the consequences of applications of defaults where all connec-
tives have their standard meaning, and reasoning with the defaults themselves. This
asymmetry poses an additional challenge for a representation of default logic within
the presented framework. As a solution for this, in the representation of default
logic in ABA (see [25, §2.3]), classical logic cannot be applied to the assumptions
in the default rule. However, one of the advantages of (assumptive) sequent-based
argumentation, is the modularity of the approach (any logic with corresponding
sequent calculus can be taken as the deductive base) and the availability of dy-
namic proofs [12], which allow for the automatic derivation of arguments. In light of
this, the representation of default logic in assumptive sequent-based argumentation
without such restrictions is left for future work.

6 Conclusion
In order to incorporate defeasible assumptions, sequent-based argumentation was
extended to assumptive sequent-based argumentation. An additional component
was added to each sequent, to contain the defeasible assumptions. As in sequent-
based argumentation, any logic with a corresponding sound and complete sequent
calculus can be taken as the core logic. It was shown how the assumptive framework
can be generalized to a prioritized setting and several desirable properties were
investigated. Furthermore, three well-known and much researched approaches to
reasoning with assumptions were investigated in the context of assumptive sequent-
based argumentation. It was shown that assumption-based argumentation (ABA),
adaptive logics and default assumptions can be embedded in the here introduced
framework.

Due to its generic and modular setting (only few requirements are placed on
the logic and its corresponding calculus) assumptive sequent-based argumentation
is a very general approach to reasoning with assumptions. In addition, the presented
proofs do not rely on specific properties of the logic and only a few rules are assumed
to be admissible in the calculus. This paper therefore paves the way to equip many
well-known logics (e.g., intuitionistic logic and many modal logics) with defeasible
assumptions. Moreover, although we required the logic to be Tarskian in this pa-
per (recall Definition 1), this is not strictly necessary for the general definitions of
assumptive sequent-based argumentation. It would therefore be possible to take a
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substructural logic, often characterized in terms of sequent calculi, as the core logic
of an assumptive sequent-based argumentation framework. This would, for exam-
ple, allow to incorporate a non-transitive system such as ST, which has been applied
to study paradoxes [33, 34]. Note that such a system cannot be represented by a
deductive system underlying ABA, since these are assumed to be transitive.

Though relations to other forms of reasoning with defeasible assumptions have
been discussed in detail, it was not the objective of this paper to show how various
approaches relate to each other, but instead to introduce a general logical argumen-
tation framework, that allows for reasoning with assumptions in different settings.
For example, situations in which assumptions are supposed to hold (such as in ABA)
or supposed not to be satisfied (such as in adaptive logics), different core logics, such
that different settings can be modeled, allowing for a priority function as additional
input and with different mechanisms (Dung-style semantics and maximally consis-
tent subsets). For the three approaches that were taken as example in Section 4, it
was shown that the resulting sequent-based framework satisfies the rationality pos-
tulates from [30] (except for consistency in the case of adaptive logic). Therefore,
assumptive sequent-based argumentation is a very general and flexible framework (it
allows for many instances and can easily be adjusted to the requirements of different
situations), that is also well-behaved (it satisfies some desirable properties).

The presented assumptive sequent-based argumentation framework can be ex-
tended to include other research on sequent-based argumentation. For example, the
notion of a sequent can be generalized to a hypersequent, as in [27]. This way fur-
ther core logics and calculi can be taken as the deductive base and the results of the
extensive studies on sequent calculi in proof theory can be benefited from in formal
argumentation. Furthermore, the dynamic proof theory from [12] can be adjusted to
the assumptive setting presented here, thus extending this proof-theoretic approach
to formal argumentation to account for defeasible assumptions. The availability
of first-order sequent calculi opens up the possibility to investigate nonmonotonic
systems such as circumscription. Though these extensions are left for future work,
they will further strengthen the benefits of the assumptive sequent-based approach
to formal argumentation. In addition, it would be interesting to know if assumptive
sequent-based argumentation is more expressive than ABA, adaptive logics and/or
default assumptions, or if they are equivalent. Therefore, in future work, we will
investigate instances of the example frameworks, to see if these can express (assump-
tive) sequent-based argumentation.
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A Admissible Rules in the Minimal Calculus
In this appendix we show that the rules from Figure 8 are indeed derivable in any
(single conclusioned) sequent calculus in which the rules from Figure 6 are admissi-
ble. We show this by sequent derivations in the minimal calculus from Figure 6.

Lemma 1. Let L = 〈L,`〉 be a logic with corresponding sequent calculus C, in which
the rules from Figure 6 are admissible. Then the rules from Figure 8 are admissible
as well.

Proof. Let L = 〈L,`〉 be a logic with corresponding sequent calculus C in which
the rules from Figure 6 are admissible. We show that the rules from Figure 8 are
admissible. Recall that Π is empty if C is a single conclusioned calculus and ∆
contains at most one formula. We consider each of the axioms and rules in turn,
note that each of the derivations can also be done in a single conclusioned calculus.

[⇒∧∧] First a useful derivation, that shows that φ1, . . . , φn ⇒ φ1 ∧ . . . ∧ φn is
derivable. We show the case for n = 3, the cases for other values of n are
similar.

φ1 ⇒ φ1
φ1, φ2 ⇒ φ1

[LMon]

φ1, φ2, φ3 ⇒ φ1
[LMon]

φ2 ⇒ φ2
φ2, φ3 ⇒ φ2

[LMon]

φ1, φ2, φ3 ⇒ φ2
[LMon]

φ1, φ2, φ3 ⇒ φ1 ∧ φ2
[⇒∧]

φ3 ⇒ φ3
φ2, φ3 ⇒ φ3

[LMon]

φ1, φ2, φ3 ⇒ φ3
[LMon]

φ1, φ2, φ3 ⇒ φ1 ∧ φ2 ∧ φ3
[⇒∧]

[¬¬6⇒] Γ,¬¬φ⇒ ∆

φ⇒ φ

φ,¬φ⇒ [¬⇒]

φ⇒ ¬¬φ [⇒¬]

Γ, φ⇒ ∆ [Cut]
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[⇒¬∧]

Γ, φ1, . . . , φn ⇒ Π
...

[∧⇒]

Γ, φ1 ∧ . . . ∧ φn ⇒ Π [∧⇒]

Γ⇒ ¬(φ1 ∧ . . . ∧ φn),Π [⇒¬]

[ 6⇒¬∧] Γ⇒ ¬(φ1 ∧ . . . ∧ φn),Π
φ1, . . . , φn ⇒ φ1 ∧ . . . ∧ φn

[⇒∧∧]

φ1, . . . , φn,¬(φ1 ∧ . . . ∧ φn)⇒ [¬⇒]

Γ, φ1, . . . , φn ⇒ Π [Cut]

B Representation Adaptive Logics
In this appendix we turn to the proof of the following theorem:

Theorem 5. Let AFLLL,Ω(S) =
〈
ArgLLL,Ω(S),AT

〉
be a sequent-based argumen-

tation framework for the lower limit logic LLL = 〈L,`〉, with corresponding sequent
calculus C, set of abnormalities Ω and set of L-formulas S.

1. S |∼m,ΩLLL φ if and only if S |∼eΩ,prf φ.

2. S |∼r,ΩLLL φ if and only if S |∼∩Ω,prf φ.

3. S |∼n,ΩLLL φ if and only if S |∼∪Ω,prf φ.
In order to prove the above theorem, some further notation, facts and lemmas

are necessary. Let AFLLL,Ω(S) =
〈
ArgLLL,Ω(S),AT

〉
be a sequent-based argumen-

tation framework as defined in Definition 38, with as the core logic the lower limit
logic LLL, the corresponding sequent calculus C, where Ω is a set of abnormalities
and S is a set of formulas.
Notation 4. Let Ψ ∈ Φ(S), define ArgLLL,Ψ(S) =df {Π

77 Γ ⇒ ψ | Π ⊆ Ω \
Ψ and Γ ⊆ S}.

The following result from [62, Lemma 5.5.1] will be useful in the proof of Theo-
rem 5.
Lemma 25. Let Ξ be a set of finite subsets of S, and let CS(·) denote the function
that returns the set of all the choice sets of a set of sets. Let Ψ = {φi | i ∈ N+} ∈
CS(Ξ) and define Ψ̂ = ⋂

i≥0 Ψi where Ψ0 = Ψ and (where i+ 1 ≤ n):

Ψi+1 =
{

Ψi if there is a ∆ ∈ Ξ such that Ψi ∩∆ = {φi+1}
Ψi \ {φi+1} else
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we have: Ψ̂ ∈ min⊂(CS(Ξ)).

Corollary 3.

1. For each choice set Ψ there is a minimal choice set Ψ′ such that Ψ′ ⊆ Ψ.

2. Let Ψ ∈ Φ(S), then for each φ ∈ Ψ there is a Π ∈ Σ(S) such that Ψ∩Π = {φ}.

Proof. Consider both items:

1. This follows immediately from Lemma 25.

2. Let Ψ ∈ Φ(S) and suppose that there is some φ ∈ Ψ, such that there is no
Π ∈ Σ(S) for which Ψ ∩Π = {φ}. Since Ψ is a choice set of Σ(S), there must
be some Π ∈ Σ(S) such that φ ∈ Π. Therefore for each Π ∈ Σ(S) such that
φ ∈ Π, Ψ ∩ Π ) {φ}. However, then Ψ \ {φ} would also be a choice set of
Σ(S). A contradiction to the minimality of Ψ.

Fact 1. Let Γ ⊆ S and Π ⊆ Ω be finite. Moreover, let Ψ ∈ Φ(S). Then:

1. For each φ ∈ Ψ, Π \ {φ}
77 Γ⇒ φ ∈ ArgLLL,Ψ(S).

2. Concs(ArgLLL,Ψ(S)) ⊇ Ψ.

3. Let Π
77 Γ⇒ φ ∈ ArgLLL,Ω(S) and S ⊆ ArgLLL,Ω(S). If Π∩ Concs(S) 6= ∅ then

S attacks Π
77 Γ⇒ φ.

4. Let Π
77 Γ ⇒ φ ∈ ArgLLL,Ω(S). If Π ∩ Ψ 6= ∅ then ArgLLL,Ψ(S) attacks the

argument Π
77 Γ⇒ φ.

5. Let φ ∈ Ω, then for any Π
77 Γ⇒ φ ∈ ArgLLL,Ω(S), there is some Π′ ⊆ Π∪{φ}

such that Π′ ∈ Σ(S).

Proof. Let Γ ⊆ S, Π ⊆ Ω and Ψ ∈ Φ(S). Consider each of the items in turn.

1. Let φ ∈ Ψ, then, by Corollary 3.2 there is some Π ∈ Σ(S), such that φ ∈ Π and
Ψ∩Π = {φ}. Where Dab(Π) is a minimal Dab consequence of S. Thus S `LLL
Dab(Π). Hence, by the completeness of C for LLL for some Γ ⊆ S, Γ⇒ ∨ Π
is derivable. And thus, by applying RC (several times) Π \ {φ}

77 Γ ⇒ φ is
derivable in C′. Since Γ ⊆ S, Π \ {φ}

77 Γ⇒ φ ∈ ArgLLL,Ω(S). Moreover, since
Ψ ∩Π = {φ}, (Π \ {φ}) ⊆ Ω \Ψ. Therefore Π \ {φ}

77 Γ⇒ φ ∈ ArgLLL,Ψ(S).

2. Suppose that φ ∈ Ψ. Then, by the previous item φ ∈ Concs(ArgLLL,Ψ(S)).
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3. Let Π
77 Γ ⇒ φ ∈ ArgLLL,Ω(S) and S ⊆ ArgLLL,Ω(S) and suppose that Π ∩

Concs(S) 6= ∅. Then there is some a ∈ S, such that Conc(a) ∈ Π. By definition
of the attack rule ATAL, it follows that a attacks Π

77 Γ⇒ φ.

4. Let Π
77 Γ ⇒ φ ∈ ArgLLL,Ω(S) and suppose that Π ∩ Ψ 6= ∅. Thus there is

some ψ ∈ Π, such that ψ ∈ Ψ. By Item 2, ψ ∈ Concs(ArgLLL,Ψ(S)). Thus, by
the previous item, ArgLLL,Ψ(S) attacks Π

77 Γ⇒ φ.

5. Let φ ∈ Ω and a = Π
77 Γ ⇒ φ ∈ ArgLLL,Ω(S), since a is derivable in C′,

a′ = Γ ⇒ φ ∨ ∨ Π is derivable in C as well. Thus, by the soundness and
monotonicity of C for LLL S ` φ ∨ ∨ Π. Hence, by the definition of minimal
Dab consequences (Notation 3), there is some Π′ ⊆ Π∪{φ} such that Dab(Π′)
is a minimal Dab consequence for Γ and thus Π′ ∈ Σ(Γ).

The following facts can be found in [21, 62]:

Fact 2.

1. S |∼r,ΩLLL φ iff there is a (finite) set of abnormalities Π ⊆ Ω \ U(S) such that
S `LLL φ ∨Dab(Π) [21, Theorem 7].

2. S |∼m,ΩLLL φ iff for all Ψ ∈ Φ(S) there is a Π ⊆ Ω \ Ψ such that S `LLL
φ ∨Dab(Π) [21, Theorem 8].

3. S |∼n,ΩLLL φ iff there is a Π ⊆ Ω such that S `LLL φ ∨ Dab(Π) and for some
Ψ ∈ Φ(S), Ψ ∩Π = ∅ [62, Theorem 2.8.3].

4. U(S) = ⋃ Φ(S) [21, Theorem 11.5].

Fact 3. If Γ `LLL φ ∨ Dab(Π), where Γ ⊆ S there is some Γ′ ⊆ Γ such that
Π

77 Γ′ ⇒ φ ∈ ArgLLL,Ω(S).

Proof. Suppose that Γ `LLL φ ∨ Dab(Π) and that Γ ⊆ S. By the completeness of
C for LLL, Γ′ ⇒ φ ∨ Dab(Π) is derivable in C for some Γ′ ⊆ Γ. Thus, by applying
RC (several times), Π

77 Γ′ ⇒ φ is derivable in C. Since Γ ⊆ S, Π
77 Γ′ ⇒ φ ∈

ArgLLL,Ω(S).

Before proving the theorem, we first show how preferred extensions relate to
minimal Dab consequences. In particular, we show that preferred extensions are
closely related to the above defined set of arguments ArgLLL,Ψ(S).

Lemma 26. Let Ψ ∈ Φ(S), then ArgLLL,Ψ(S) ∈ Extprf(AFLLL,Ω(S)).
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Proof. Let Ψ ∈ Φ(S) and let E = ArgLLL,Ψ(S). We show that E is admissible and
maximal.
E = ArgLLL,Ψ(S) is admissible. Let a = Θ

77 ∆ ⇒ ψ ∈ E , and assume
b = Π

77 Λ ⇒ φ ∈ ArgLLL,Ω(S) attacks a. By Definition 37, it follows that φ ∈ Θ.
Note that, since φ ∈ Θ, φ ∈ Ω. By Fact 1.5, there is some Π′ ⊆ Π ∪ {φ} such that
Π′ ∈ Σ(S). Since φ /∈ Ψ (by assumption a ∈ E) and Ψ ∩ Π′ 6= ∅ (by Corollary 3.2,
recall that Π′ ∈ Σ(S)), also Ψ∩Π 6= ∅. Therefore, b /∈ E . From which it follows that
E is conflict-free and since Ψ ∩Π 6= ∅, it follows by Fact 1.4 that E is admissible.
E is maximally admissible. Assume that there is an argument Π

77 Λ ⇒ γ ∈
ArgLLL,Ω(S) \ E such that E ∪ {Π

77 Λ ⇒ γ} is admissible. By Fact 1.4 it follows
that Π ∩Ψ = ∅. Hence Π

77 Λ⇒ γ ∈ E : E is maximally admissible.

Lemma 27. Let E ∈ Extprf(AFLLL,Ω(S)) and Π ∈ Σ(S), then Concs(E) ∩Π 6= ∅.
Proof. Let E ∈ Extprf(AFLLL,Ω(S)). Let ΣE denote all sets Π′ in Σ(S) for which
Concs(E)∩Π′ = ∅. Assume towards a contradiction that ΣE 6= ∅. Let Ψ be a minimal
choice set over ΣE . That Ψ exists follows from Corollary 3.1. From Corollary 3.2 it
is known that for each φ ∈ Ψ there is a Πφ ∈ ΣE such that Ψ∩Πφ = {φ}. Since Πφ ∈
ΣE ⊆ Σ(S), there is some Λ ⊆ S such that Λ `LLL Dab(Πφ). By the completeness
of C for L, Λ ⇒ ∨ Πφ is derivable and thus, by (several) application(s) of RC, so is
Πφ \ {φ}

77 Λ⇒ φ. Let E ′ = E ∪ {Πφ \ {φ}
77 Λ⇒ φ ∈ ArgLLL,Ω(S) | φ ∈ ΣE}. It can

be shown that E ′ is admissible:
E ′ is conflict-free. Suppose a = Πφ \ {φ}

77 Λ′ ⇒ φ attacks E . By assumption
E is admissible, hence there is an argument a′ ∈ E such that a′ attacks a. From
this it follows that Concs(E) ∩ (Πφ \ {φ}) 6= ∅, which is a contradiction with the
assumptions that Πφ ∈ ΣE and Concs(E) ∩ Π = ∅ for each Π ∈ ΣE . For the same
reason, no argument b ∈ E attacks Πφ \{φ}

77 Λ∗ ⇒ φ, for any Λ∗ ⊆ S. Now suppose
that Πφ \ {φ}

77 Λ ⇒ φ attacks Πψ \ {ψ}
77 Λ′ ⇒ ψ. By definition φ ∈ Πψ, which is

a contradiction with the assumption that φ ∈ Ψ and Ψ ∩ Πψ = {ψ}. Hence E ′ is
conflict-free.
E ′ defends its arguments. Suppose, for some argument b = Θ

77 ∆ ⇒ ψ ∈
ArgLLL,Ω(S) \ E ′, that b attacks Πφ \ {φ}

77 Λ⇒ φ and E does not attack b. Since E ′
is conflict-free it follows that Concs(E)∩ ({ψ} ∪Θ) = ∅. Note that, by Definition 37
ψ ∈ Πφ \ {φ} ⊆ Ω, thus by Fact 1.5, there is a Π ∈ Σ(S) such that Π ⊆ {ψ} ∪ Θ.
Hence Π ∈ ΣE . By the construction of E ′, for each γ ∈ Π and any ∆′ ⊆ S such that
c = Πγ \{γ}

77 ∆′ ⇒ γ is derivable in C′, c ∈ E ′. Note that γ 6= ψ, since it was shown
above that E ′ is conflict-free and otherwise E ′ would attack Πφ \ {φ}

77 Λ⇒ φ. Thus
γ ∈ Θ. Therefore Πγ \ {γ}

77 ∆′ ⇒ γ attacks b, and thus E ′ is admissible.
However, since E ′ attacks b and, by assumption, E does not, E ( E ′. This is a

contradiction with E being a preferred extension.
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Lemma 28. If E ∈ Extprf(AFLLL,Ω(S)), then there is a Ψ ∈ Φ(S) such that E =
ArgLLL,Ψ(S).

Proof. Suppose E ∈ Extprf(AFLLL,Ω(S)). By Lemma 27 and Corollary 3.1 it follows
that Concs(E) ⊇ Ψ for some Ψ ∈ Φ(S). By Fact 1.3, for all arguments Π

77 Λ ⇒
φ ∈ ArgLLL,Ω(S), with Π ∩ Ψ 6= ∅, Π

77 Λ ⇒ φ /∈ E . Hence E ⊆ ArgLLL,Ψ(S), with
Lemma 26 it thus follows that E = ArgLLL,Ψ(S).

From Lemmas 26 and 28 it follows that:

Corollary 4. E ∈ Extprf(AFLLL,Ω(S)) iff E = ArgLLL,Ψ(S) for some Ψ ∈ Φ(S).

With this Theorem 5 can be proven:

Proof. Let AFLLL,Ω(S) =
〈
ArgLLL,Ω(S),AT

〉
be a sequent-based AL-framework

for the lower limit logic LLL = 〈L,`〉, with corresponding set of abnormalities Ω
and S a set of L-formulas. Consider each strategy, in both directions.

1. Start with minimal abnormality.
(⇒) Suppose that S |∼m,ΩLLL φ. By Fact 2.2 and Fact 3, for all Ψ ∈ Φ(S) there
is a Π ⊆ Ω \ Ψ such that Π

77 Γ ⇒ φ ∈ ArgLLL,Ω(S), for some Γ ⊆ S. By
Corollary 4, for each preferred extension E there is a Ψ ∈ Φ(S) such that
E = ArgLLL,Ψ(S). From this it follows that for each preferred extension E
there is an argument Π′

77 Γ′ ⇒ φ ∈ E for some Γ′ ⊆ S and Π′ ⊆ Ω \ Ψ.
Therefore φ ∈ Concs(E) for each E ∈ Extprf(AFLLL,Ω(S)). Hence S |∼eΩ,prf φ.

(⇐) Now suppose that S |∼eΩ,prf φ. Let Ψ ∈ Φ(S) be arbitrary. Then, by
Corollary 4, there is an E ∈ Extprf(AFLLL,Ω(S)), such that E = ArgLLL,Ψ(S).
Hence, there is an argument Π

77 Γ ⇒ φ ∈ E , for some Γ ⊆ S, from which it
follows that Π ⊆ Ω\Ψ. Thus, by Definition 36 and the definition of the sequent
RC-rule, Γ ⇒ φ ∨ Dab(Π) is derivable in C′. Hence, by soundness of C and
monotonicity of LLL, S `LLL φ ∨ Dab(Π). Since Ψ ∈ Φ(S) is arbitrary, for
each such Ψ, such a Π exists. Therefore, by Fact 2.2 it follows that S |∼m,ΩLLL φ.

2. The reliability strategy.
(⇒) Suppose that S |∼r,ΩLLL φ. By Fact 2.1 and Fact 2.4, there is a set Π ⊆
Ω \ ⋃ Φ(S) of abnormalities, such that S `LLL φ ∨ Dab(Π). By Fact 3 for
some Γ ⊆ S it follows that Π

77 Γ ⇒ φ ∈ ArgLLL,Ω(S). Furthermore, by
the construction of ArgLLL,Ψ(S) and Corollary 4, Π

77 Γ ⇒ φ ∈ E , for every
E ∈ Extprf(AFLLL,Ω(S)). Hence S |∼∩Ω,prf φ.
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(⇐) Now suppose that S |∼∩Ω,prfφ. By assumption there is an argument a = Π
77

Γ ⇒ φ for some Γ ⊆ S such that for all E ∈ Extprf(AFLLL,Ω(S)), a ∈ E . By
Corollary 4 and the construction of ArgLLL,Ψ(S), it follows that Π∩Ψ = ∅, for
every Ψ ∈ Φ(S). Hence, Π ⊆ Ω \⋃ Φ(S). By the soundness of C and the RC-
rule that is available in C′, for some Γ ⊆ S, we have that Γ `LLL φ ∨Dab(Π).
Hence, by Fact 2.1 and the monotonicity and soundness of LLL S |∼r,ΩLLL φ.

3. The normal selections strategy.
(⇒) Suppose that S |∼n,ΩLLL φ. By Fact 2.3, there is a Π ⊆ Ω such that (a)
S `LLL φ ∨ Dab(Π) and (b) for some Ψ ∈ Φ(S), Ψ ∩ Π = ∅. From (a) and
Fact 3, a = Π

77 Γ ⇒ φ ∈ ArgLLL,Ω(S) for some Γ ⊆ S. By construction of
ArgLLL,Ψ(S), since by (b) Ψ∩Π = ∅, a ∈ ArgLLL,Ψ(S). Thus, by Corollary 4,
a ∈ E , for some E ∈ Extprf(AFLLL,Ω(S)). Therefore S |∼∪Ω,prf φ.

(⇐) Now assume that S |∼∪Ω,prf φ. Then there is an a = Π
77 Γ ⇒ φ ∈

ArgLLL,Ω(S), with Γ ⊆ S, such that a ∈ E ∈ Extprf(AFLLL,Ω(S)). By Corol-
lary 4, there is a Ψ ∈ Φ(S), such that E = ArgLLL,Ψ(S). Hence, by construc-
tion of ArgLLL,Ψ(S), Ψ ∩ Π = ∅. Moreover, by adjusting the derivation of a,
such that RC is never applied, the sequent a′ = Γ ⇒ φ ∨ ∨ Π is derived. By
soundness and monotonicity of C it follows that S `LLL φ∨Dab(Π). Thus, by
Fact 2.3 S |∼n,ΩLLL φ.

Received 29 March 2019294



Introducing Abstract Argumentation with
Many Lives

D. Gabbay
Informatics, King’s College London, UK and the University of Luxembourg

dov.gabbay@kcl.ac.uk

G. Rozenberg and Students of CS Ashkelon
Ashkelon Academic College, Israel

Abstract
Our starting point is to view argumentation networks (of the form pS,Rq)

as representing a survival game. The players are the elements of S and the
relation R is the attack relation. The various traditional Dung semantics for
subset of S can be viewed as defining extensions in the form of possible survival
groups E Ă S. The survival sets E (which are the traditional extensions) are
groups of players which are conflict free and able to protect themselves. So far
we have a different point of view on extensions which is compatible with the
traditional Dung formal mathematical machinery. However, given the survival
point of view we can generalise and add additional features to the traditional
argumentation networks:

1. The new features are:
(a) We can add to each x in S a many lives value Mpxq, meaning how

many live attackers are needed to force x to be out (i.e. x to become
dead).

(b) We associate with each attack pair py, xq in R a value Kpy, xq, mean-
ing how many lives are taken out of Mpxq should the attack of y on
x be successful (i.e. y is alive). The value Kpy, xq may be, or may
not be, correlated or even related to the number of lives Mpyq which
y has.

(c) The traditional concept of conflict free set is that of a set whose
members do not attack one another. With many lives available we
look at “living together” sets, using a concept of being able to stay
alive together. Members can attack but not able to kill one another.
In fact we could introduce different strengths of attack, one when
attacking inside a “living together” set and possibly another when a
“living together” set protects itself.
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(d) We can now investigate semantics for such systems pS,R,M,Kq.
2. The ideas of adding M and K arise from our research into the argumen-

tation/logic behaviour of mulitiple complaints. Thus the semantics and
additional features of argumentation that we study are inspired by real
life applications.
In fact, to protect an alleged offender x against attacks from a group
of complainers/victims E, x needs to present much stronger counter at-
tacks, and furthermore the public will tolerate a little bit of inconsistencies
among E (i.e. E need not be completely conflict free). This observation
led us to the idea that to present a formal argumentation system we need
to define three types of attacks, αa, αd, and αp, in increasing strength.
For E to attack x we use the αa attack. For Z to protect x, Z must use
the αp attack and for E (resp. for Z) to be considered conflict free its
members must not αd attack one another (though we may tolerate them
αa attacking one another). Furthermore, the attacks can be defined using
the basic attack relation R in a more complex manner. For example z αa
attacking x can be defined as pzRx^ pp@uqpuRz Ñ zRuqq.

3. We discuss our results and compare with other papers on the numerical
and ranking aspects of argumentation.

1 Orientation: The many lives idea
Our starting point is an argumentation network pS,Rq, where S is a non empty set
(of arguments) and R is a binary relation on S. When px, yq P R holds we say that
x (geometrically) attacks y. Dung [6] (see Section 3) introduced several concepts
related to pS,Rq, among them the concept of:

D1. A subset E of S attacks a node y P S iff (for some e P E we have eRy).1

D2. A subset E of S is conflict free iff (for no e1, e2 in E do we have e1Re2).

D3. A subset E of S protects a node x P S iff (for all y, if yRx then E attacks y).

D4. A subset E of S is admissible iff E is conflict free and it protects all its
members.

D5. A subset E is a complete extension iff E is admissible and contains all nodes
it protects.

1The perceptive mathematical reader will see that D1 is not used in the following D2-D5. It is
included here for reasons of Socratic exposition. See for example the next item DM1 and Remark
2.4.
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The above concepts were defined by Dung using the geometrical single attack, be-
tween x (the attacker) and y (the target), namely px, yq P R.

Our generalisation to to the above is to change D1. We introduce a function
Mpxq, for x P S, giving a natural number value ě 0, for each x, and using M
to introduce the new notion of many lives argumentation network, as the system
pS,R,Mq and modifying the definition D1 into the new DM1 below:

DM1. A subset E of S attacks a node y P S iff (for some ei P E we have eiRy, where
i “ 1, ...,Mpyq and where i ‰ j implies ei ‰ ej , for all 0 ď i, j ďMpyqq.

The function Mpxq gives the many lives of x, meaning how many live attackers
of x we need in order to kill x.

The change of DM to DM1 necessitates changes in the other DM clauses. In
other words, we need to define new corresponding clauses DM2–DM5.

To give our readers an idea of the nature of this paper and the relation of its
contribution to formal argumentation, we answer some questions:

Question 1: Is traditional Dung network a special case of our new networks?

Answer to question 1: Yes, because we can let Mpxq “ 1, for all x and define
the semantics options forM in such a way that they agrees with the Dung semantics
options. However, we must be careful how to define DM2–DM5, so that they also
conform to the special case. It may be, however, that we will judge that it is
more natural not to force restrictions on M and try to get the Dung semantics as
a special case but rather to allow us to depart from the Dung semantics options
even in the case that Mpxq is always 1.This decision may depend on the needs
of the multiple complaints offender application area and on general mathematical
smoothness properties which it can offer.

Questions 2: What happens with the concept conflict freeness? When arguments
have many lives they may be attacked but still be alive , so in what sense can a set
of arguments be conflict free? Consider a single point e which attacks itself and has
2 lives, i.e. we have S “ teu. R “ tpe, equ and Mpeq “ 2. e is not dead because it
suffers only one attack and it takes 2 attacks to kill it.

• is teu conflict free?
• How many lives does e have (after the attack)?
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Answer to Question 2: Let us move carefully here. We have that e geometrically
attacks itself (that is pe, eq P R) but cannot kill itself. Of course we can set up our
system to allow e to repeatedly attack itself again and again, in which case e will
kill itself after two rounds, but we may choose to allow attackers only one only one
attempt at attacking. In this case no matter how we look at it, e cannot be dead or
undecided. It is alive with one life left. To overcome this lack of clarity, let us talk
about “geometrical attack" and “successful attack" of a set E on a node x. The set
E geometrically attacks x if for some y in E we have py, xq P R, (R being the graph
“geometry” on S). The set E successfully attacks x if it manages (according to our
agreed definition of this notion) to reduce the many lives of x to 0. Given a subset
E, we can also talk about the old Dung concept E as being “geometrical conflict
free" and introduce a new concept of E as being “at peace" or as “able to survive
together".

So according to these new concepts E “ teu with Mpeq “ 2, does geometrically
attack e, but e is able to survive together with itself because it cannot kill itself. We
can also reasonably say that e has one life left now after having attacked itself.

Question 3: What is a complete extension? The example in Question 2 creates a
problem because we get a new network with e geometrically attacking itself, where
e has one life (one life left). Why don’t we allow e to carry on attacking?

Answer to question 3: We are therefore forced to say that the new concept of
a complete extension of any one network is another network. Section 4 discusses
how it is identified. So to be clear, given a network pS,R,M,Kq and a notion of
“semantics" for such networks, the output of this notion is a family of networks of
the same type. In comparison for the case of Dung networks of the form pS,Rq the
output of a semantics is a family of subsets E of S. Note that since any such E is
conflict free we can regard it as a network with the empty attack relation, pE,∅q. So
the network N “ pteu, tpe, equ,Mpeq “ 2q, has the single complete extension which
is the network N 1 “ pteu, tpe, equ,Mpeq “ 1q which has the traditional complete
extension N2 “ H “ te “ undecidedu. We immediately ask: Is this concept
compatible with the old Dung concept of extension?. The answer is yes, it is.

Question 4: How do we view our paper?
i Is it a contribution to the area of Numerical Argumentation (by introducing
the functions M and K)?

ii Is it a contribution to Ranking of arguments? something comparable to Grossi
and Modgil [8, 24]?
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iii Is it part of the Equational Approach [9]?

iv Is it arising from some application area? If indeed it is connected with an
application area and is not a purely technical paper, then we further ask:
Does it model some part of the application area or does it just draw ideas
from the application area and offers another formal argumentation system to
(i) or to (ii) which can approximate some features of the application area ?

Answer to question 4: The paper draws ideas from several application areas,
as described below, which have the many lives feature in common, and is inspired
to formulate a sample formal argumentation theory which connects with the formal
areas of numerical argumentation and of ranking. The formal systems suggested are
good and flexible enough to be adapted to modelling more accurately any of the
application areas which inspired them.

The old Dung concept of a complete extension E is a set but E can be can be
viewed as another network because it is conflict free so it is a network with the
empty attack relation. So the new concept contains the old concept. This is OK.

In familiar everyday life we have many examples of the many lives/tolerance/
resilience function Mpxq of x. These include:2

1. How may complaints against x can be tolerated/covered-up/ignored before
action needs to be taken

2. How many applications/demonstrations/hints/pressure/repeated nuisance,
can be tolerated before compliance/giving-in.

3. How many witnesses are needed legally to establish a fact in law

4. How many violations are sufficient to cross a legal threshold to the next legal
level.

There have been many cases in the UK where public figures and celebrities
were accused by several complainers of alleged misconduct. All these cases and
accusations had a similar pattern.

Let x be the accused. First a y1 would come forward with allegations against x.
Naturally x would deny any wrong doing and dismiss y1’s accusations. Then more
and more accusers come forward, say y2, y3, . . . , yn. At some point, say at accuser
n, the public perception will change and action/response is taken. It usually starts

2The idea of many lives actually arose from our argumentation modelling of sex offender’s
Therapy [1, 2].
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with increased activity in social networks and may end up in social pressure on the
accused to resign or pressure on the police to investigate the complaints and press
charges. The next scenarios can vary from case to case; they include:

1. The public figure x resigns and disappears from the news and that is the end
of the story.

2. The police investigates and the accused might end up with a prison sentence

3. Any outcome between the outcomes (1) and (2) above.

We now address items (i)–(iv).

It is true that the functionMpxq associates a numerical value with each node x
and it is also true that this value is seen in relation to the number of geometrical
attackers of x. So on the face of it, there seems to be a connection with
Numerical argumentation and the Ranking of arguments. However, the way
we use this numberMpxq in producing extensions is different. It is metal-level.
We want at least Mpxq live (“in”) attackers of x in order for x to be “out”.

If we look at Figure 2, the node y has two lives but its attack on x is counted
as one attack. Furthermore geometrically x has two attackers (so its ranking
is 2) but in order to be considered “out” in an extension these two attackers
must be live (“in”).

So the use of these values is different.

As for item (iii), the equational approach is itself meta-level. It derives from
the annotated graph a system of equations, solves the equations and derives
the extensions from the solutions. This procedures can be done for our many
lives graphs as well. We need to find and motivate the right equations.

As for item (iv), we confirm that we looked at various ways of dealing with
multiple complaints and devised the system of this paper as generic, showing
what kind of features and technical moves to expect, and allow the system
to be adapted/refined/expanded for modelling the more specific complaints
application areas.

We conclude our answer to question 4 by directing the reader to Remark 2.3 in
Section 2.
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x : Mpxq

y1 : Mpy1q , . . . , yk : Mpykq, . . .

Figure 1: General attack formation, where “�” denotes attack.

2 Semi-formal discussion of the many lives idea in the
complaints context

This section presents the many lives idea in a slightly more precise (semi-formal)
way, in order to prepare the readers from the informal argumentation community for
the later formal sections. We assume such readers have some minimal background
in Mathematics.

Our readers from formal argumentation theory can skip this section, after reading
the next formal Definition 2.1, of what is a many lives network.

Definition 2.1 (Many lives network). A general many lives network has the form
pS,R,M,Kq, where S is a non-empty set of arguments, R is the binary attack rela-
tion on S, M is a function giving each x in S a natural number of how many lives
it has, (including possibly 0) and K is a strength function defined on ER, giving a
positive natural number for each py, xq in R, such that it is at most Mpyq ` 1.

We now discuss and motivate Definition 628-DJ1.

Remark 2.2 (Motivating M). Let us first focus on the number Mpxq “ n of the
many number of lives of the node x and consider it as the resilience of x to attacks.

Mpxq “ how many live attackers does it take to kill x.3

Figure 1 indicates this basic situation. Figure 1 is a general schematic description
and Figure 2 is a particular case of it. Note that is this paper double headed arrows
“�” denote attacks.

In this figure we assume that each node z has a value Mpzq of number of lives
and that y1, . . . , yk attack x. If we have that all the y1, . . . , yk are alive then x would

3We use here the informal words “live", “dead" and “kill". We ask the reader to understand
them intuitively in this motivating section. Formal definitions will be given later in the formal
sections.
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x : 2

y1 : 2 y2 : 1

Figure 2

be dead ifMpxq ď k. In fact we can write a formula for the new valueM˚pxq, which
is obtained after the attack of y1, ..., yk is carried out. The value is

M˚pxq “Mpxq ´ k, if k ăMpxq and 0 otherwise.
In particular for mathematical reasons we are going to allow the M function to

give values 0. This would force us to say that Mpzq “ 0 means that z is “dead" for
any z.

So in Figure 2 the node x has 2 lives. If for example the node x had 4 lives then
it could survive the attack of the nodes y1 and y2, but its number of lives would
have been reduced from 4 to 2, because it withstood the attacks of 2 live attackers.
Note that although the attacker y1 has two lives in Figure 2, its attack on x reduces
x’s number of lives by 1 life only. The number of lives of y1 indicates how many
attacks can kill it, not how strongly y1 can attack others. Note also that we allow y1
and y2 to attack only once and not to attack again and again. This is reasonable if
you think of the attack as a complaint on an alleged offender. Repeating the same
complaint again and again is still the same attack.

We note the first two principles we are adopting here:

PP1: Every element x has a number Mpxq of lives (including possibly the value 0).
To really kill x you need to kill it Mpxq times.4 In particular non-attacked
elements retain all their many lives intact and have the capability of attacking
other elements (reducing the target’s number of lives ) if their value is not 0.

PP2: Although an element y may have Mpyq lives, when attacking any x it can kill
only one of x’s lives.

Remark 2.3 (Motivating K). The reader may wonder at the strong over-simpli-
fication of principle PP2. Surely even if an alleged offender like say a minister or a

4For example the case of Israeli minister Sylvan Shalom 2015 (see [26]). Apparently he had 6
lives. After 6 complaints of alleged offences he resigned. We have never heard his name in public
since.
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president would normally require maybe 6 or seven complaints to be “killed" (i.e. to
create enough of a public pressure to force resignation or prosecution), a particularly
nasty complaint may reduce the number from 6 to much less! Our answer is that we
are simplifying for the sake of simpler mathematics. We are not completely modelling
reality in this introductory paper but we are just approximating it. We admit that
in real examples of complaints y against alleged offender x (namely y � x), the
strength of attack is not necessarily only 1 (i.e. killing only one of the lives of x).

The perceptive reader might feel that we are simplifying too much. Two strong
complaints can kill maybe 3 lives. We can perhaps agree to a more realistic model
and allow the annotation for y in the model to be of two numbers,

1. Mpyq the number of lives which y has.

2. Kpyq, the strength of attack of y or in other words, how many lives does y
take when attacking. Kpyq can be related to Mpyq. The rationale being that
if Mpyq is higher then y is stronger, because y is harder to kill, therefore its
attack is stronger. The notation Kpyq assumes that the strength of attack of
y is the same, no matter whom y attacks. This is still a simplification. We
realise that K should also be dependent on the x attacked. If the attack on
x, for example is a complaint of y against x, then y might feel more strongly
about x than about another x1, therefore its attack on x will be stronger than
its attack on x1. If we want to make the strength of attack also depend on the
target of y, we need to make K a function of the pairs py, xq where y attacks
x. We can write it as Kpy � xq or Kpy, xq, for py, xq P R.

So according to this model, Figure 1 will become Figure 3 and the new value M˚pxq
of x after the attack from all yi would be

M˚pxq “Mpxq´
kÿ

i“1
Kpyi, xq.

Where the symbol “´” is truncated substraction, namely.

α ´ β “
"
α´ β, if α ě β
0, if α ď β

So for example in Figure 4, we have that y has attack strength 1, z has 2 and u has
3.

The number of lives of x is 7. So after the attack the new number of lives of x
in Figure 4 is M˚pxq.

M˚pxq “ 7´ p1` 2` 3q “ 7´ 6 “ 1.

303



Gabbay, Rozenberg and Students of CS Ashkelon

x : pMpxq,Kpx, zq for any z attacked by x)

y1 : pMpy1q,Kpy1, xqq, . . . ,yk : pMpykq,Kpyk, xqq

. . .

Figure 3

x : 7

z : 1, 2 u : 1, 3y : 1, 1

Figure 4

Note that we get a new network which is with the same geometrical graph as that
of Figure 4, and the same strengths and lives for the top nodes y, z and u but for
node x the number of lives is 1.

We hope the reader with experience in dealing with multiple complaints (e.g.
student’s complaints about a lecturer), can see that there is no end to our improving
the model, getting the mathematics more and more complicated. Surely, we can
further refine our model, saying, for example, that having one attack of strength 3
should be weaker than 3 attacks of strength 1. We must give extra bonus in recognition
that there are more complaints (attacks) on x. We thus can continue and further
agree to deduct one more life if the number of attacks is more than 2. Let us show
the reader what it would look like to write this formula.

Let k be a natural number. Define βpkq (β for bonus) to be

βpkq “
"

1, if k ą 2
0, otherwise

The calculation for Mβ̊ pxq of Figure 4 with bonus β is

Mβ̊ pxq “ 7´ p1` 2` 3` 1q “ 0.

Thus with the bonus we get that x is dead. Let us go on and further improve the
model and get the mathematics even more complicated.

304



Introducing Abstract Argumentation with Many Lives

We further remark that we have not addressed in detail the question of a node
x attacking more than one other node. For example x may attack node y and also
node z. We associated the strength of attack to node x, so the attack of x on y will
have the same strength as the attack on the node z. This is not true for all possible
applications. In many other complaints contexts, the strength of the complaints of
x against y may not be as solid and strong as the complaints on z. This means
that the strength of attack needs to be associated not with the node x itself but with
the attack arrows emanating from x, giving possibly different strengths to different
arrows.

There are examples where the strength of attack is done by associating a number
with x itself. In a survival game where the attack is done by shooting a gun, then x
has a gun and x shoots always the same strength.

We can now, for the time being, formulate our new principle for the case of
strength attached to nodes:

PP2 new: Given a network of the form pS,R,M,Kq and a node x in S with k
live attackers y1, . . . , yk of x with attack strength Kpy1q, . . . ,Kpykq5 re-
spectively, i.e. we have Mpyiq ą 0 for i “ 1, .., k and m dead attackers
z1, ..., zm, withMpzjq “ 0, for j “ 1, ...,m, and givenMpxq as the number
of lives of x, then the new number of lives M˚pxq after the attack is given
by the formula6

Mβ̊ pxq “Mpxq´ rβpkq `
kÿ

i“1
Kpyiqs p˚q

Remark 2.4. 1. We now discuss the idea of a different strength of attack re-
quired for protection. Assume for example that student y attacks professor x
by accusing x of being verbally abusive to y. Assume z comes to the protection
of x by accusing y of being a liar and a cheat and that y is attacking x for
leftist political reasons. In this context we might expect the attack of z on y
to be extra strong. Had y attacked x for something else, say for lack of clear
course notes, then, without the verbal abuse context, the attack of z on y might
not have been expected to be as strong.
Let us sum up and say that it is possible to take the view that to protect a node
x against the attack from node y you need much stronger killing attacks then
just an ordinary attack to kill.

5If the strength of attack is associated with arrows we replace “Kpyq" by “Kpy � xq".
6The formal definition we give in Section 4 is slightly more general. See Definition 4.1.
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2. Similarly suppose we have a set E of elements trying to live together. The
concept of conflict free is that the different elements of E do not attack to kill
one another. To be on the safe side we might take the view that to be sure that
the elements of E can indeed live together then even if the attack available is
stronger than ordinary attack, (but still weaker or equal the protective attack),
then still, the elements of E cannot kill one another.

3. We thus have 3 types of attacks, which we call αa, αp and αd, meaning
respectively,
αpordinary attackq, αpattack to protectq, αpattacks used in the context of living togetherq,
with the restriction that αp is stronger or equal to αd which is stronger or
equal to αa. So for example of three such attacks we can have:

(a) A set of nodes Y αa attacks a node z if for at least one element y P Y
attacks z

(b) A set of nodes Y αd attacks a node z if for at least two different elements
y P Y attack z

(c) A set of nodes Y αp attack a node z if for at least three pairwise different
element y P Y attack z.

3 Background and concepts from abstract argumenta-
tion with additional methodological remarks

This section presents, for the convenience of the reader, some basic concepts of what
we called traditional argumentation theory. Such systems contain attacks only. We
refer to such system as Dung Argumentation with Attack only (see [6]). We shall
then add methodological remarks and explain in what way the systems developed
for this paper depart from the traditional ones.

There are two traditional ways to present the semantics for the traditional Dung
argumentation with attack, the traditional set theoretical approach and the Cami-
nada labelling approach.7 For the mapping connections between the two approaches,
see [7]. Let us briefly quote the traditional set theoretic approach:

Definition 3.1.

7 Actually there are more ways of calculating the extensions
3. The equational approach of Gabbay [9]
4. The algorithmic approach, see [1]
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1. We begin with a pair pS,Rq, where S is a nonempty set of points (arguments)
and R is a binary relation on S (the “attack" relation).

2. Given pS,Rq, a subset E of S is said to be conflict free if for no x, y in E do
we have xRy.

3. E protects an element a P S, if for every x such that xRa, there exists a y P E
such that yRx holds.

4. E is admissible if E is conflict free and protects all of its elements.

5. E is a complete extension if E is admissible and contains every element which
it protects.

Various different semantics (types of extensions) can be defined by identifying
different properties of E. For example we might define that E is a stable extension
if E is a complete extension and for each y R E there exists x P E such that
xRy or the grounded extension as the unique minimal extension or a preferred
extension, being a maximal (with respect to set inclusion) complete extension. The
above properties give rise to corresponding semantics (stable semantics, grounded
semantics and preferred semantics).

It can be proved that extensions satisfying items (1)–(5) of Definition 3.1 do
exist. The proof is set- theoretical using fixed points. It is easy to see how the above
conditions on extensions E can be interpreted as defining a survival group. The
members of the group do not attack one another and attack anyone who attacks one
of them. The group also adds to itself all candidates it can protect. This is a group
of nodes taking a maximal defensive position.

Remark 3.2. Definition 3.1 uses geometrical properties (the “attack" arrow �, to
define survival concepts. Since later we are going to generalise the concept of one life
to many lives, it is helpful already at this point to rewrite Definition 3.1 in survival
terms.

The clause numbers here correspond to the clause numbers in Definition 3.1

1. Given pS,Rq, where S is a nonempty set of points and R is a binary relation
on S, a subset E of S is said to attack a point x in S if for some y in E we
have that yRx holds.

2. A subset E of S is said to be able to survive together, if for no subset Y of E
and no point x in E do we have that Y attacks x.
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3. E protects an element a in S if whenever a set X attacks a, then the set X´Y
does not attack a, where Y is the set

Y “ ty|y in X and E attacks yu.

4. E is admissible if E is able to survive together and E protects all of its ele-
ments.
Note for example that if we allow for many lives then if a � b and b � a
and each of ta, bu have two lives, then the set ta, bu is able to survive together,
because neither of its elements can kill the other.

5. E is a complete extension if E is admissible and contains every element which
it protects.

We can also present the complete extensions of A “ pS,Rq, using the Caminada
labelling approach, see [7].

Definition 3.3. A Caminada labelling of S is a function λ : S ÞÑ tin, out, und}
such that the following holds.

(C1) λpxq “ in, if for all y attacking x, λpyq “ out.

(C2) λpxq “ out, if for some y attacking x, λpyq “ in.

(C3) λpxq “ und, if for all y attacking x, λpyq ‰ in, and for some z attacking
x, λpzq “ und.

A consequence of (C1) in Definition 3.3 is that if x is not attacked at all, then
λpxq “ in. Any Caminada labelling yields a complete extension and vice versa. Any
{in, out} Caminada labelling (i.e. with no “und" value) yields a stable extension
and vice versa. Set theoretic minimality or maximality conditions on extensions
E correspond to the respective conditions on the “in" parts of the corresponding
Caminada labellings, see [7].

Remark 3.4. Let us summarise the comparison of the Caminada λ function (and
hence the notion of the traditional Dung extension which is equivalent to it) with the
many lives function Mpxq:
We can understand the Caminada labelling function λpxq a partially defined func-
tion M , giving values in t0, 1u satisfying certain restrictions. If we write Mpxq “
undefined when M is not defined on x, and write Mpxq “ in, to mean Mpxq “ 1
and Mpxq “ out to mean Mpxq “ 0, then the conditions (C1), (C2) and (C3) of
Definition 3.3 become the restrictions on M .

308



Introducing Abstract Argumentation with Many Lives

This observation is of methodological importance. We are offering a new many
lives system and we need to show how the traditional Dung system fits in as a special
case. We have just shown that if we allowM to be partial function and put conditions
onM in terms of R we can get the traditional Caminada Dung semantics as a special
case.

4 Formal set theoretic semantics
This section formally defines the notion of many lives networks for our paper and,
following Dung [6], develops set theoretic semantics for it.

Definition 4.1 ( MKβ annotation for a network). Let pS,R,M,K, βmq be an an-
notated network as follows:

1. pS,Rq is a network with S ‰ ∅ and R Ď S ˆ S.
2. M is a function on S giving for each x P S a natural number in t0, 1, 2, 3, . . .u

called the number of lives of x.

3. Kpy, xq is a function giving each attack py, xq P R a natural number value in
t1, 2, 3, . . .u called the strength of the attack.

4. βm for m a natural number or 8 is a function k we have βmpkq “ 0 if k ď m
and βmpkq “ 1 if k ą m.

5. Let δpxq be Kronecker δ function, namely

δpxq “
"

0, if x “ 0
1, if x ‰ 0

6. Let Attackpxq, for x P S and subsets E of S be the set ty|yRxu. Let E be any
subset of S and let Attack pE, xq be ty|y P E ^ yRxu.

7. Let E be a non-empty subset of S. Let M˚pE, xq be defined for x P S as the
function derived from M , satisfying the implicit equation (*) for any subset E
of S and any x P S:8

8The perceptive reader might ask why we have M˚ in the right had side of the equation in
item 7. We explain this by example. Take the network of Figure 15 with nodes ta, b, cu and attacks
a � b and b � c. Let K and β play no role. Let E “ ta, b, cu. So we have only M , and let
Mpaq “ 2,Mpbq “ 1 and Mpcq “ 2.
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M˚pE, xq “Mpxq´ rβmp
ÿ

yPE^yRx
δpM˚pE, yqqq `

ÿ

yPE^yRx
pδpM˚pE, yqqKpy, xqqs

p˚q
8. Let pS,R,M,Kq be a system with Kpx, yq “ 1 for all px, yq in R andMpxq ď 1

for all x in S and no β present. We say that this system has a numerically
balanced M labelling iff M˚ “M .9

Definition 4.2. Given an MKβ network as in Definition 4.1, with a set S of nodes
and a relation R on S, let us define the notion of a non-empty subset E attacking a
node x, Notation αapE, xq, as follows:
(7) αapE, xq holds iff by definition M˚pE, xq “ 0, where M˚pE, xq is as defined in

item 7 of Definition 4.1.

It is very important to note that for any E,E1 and x we have:

• E attacks x and E is a subset of E1 then E1 attacks x.

• E does not attack x and E1 is a subset of E then E1 does not attack x.

• Note that the attack αa, is defined using item 7 of Definition 4.1, and is there-
fore dependent on M and on K. If we use another many lives function N and
another strength of attack function L, we will get a different attack relation.,
which we can call for example by the name αp. Note further that if for all
x, y we have that Mpx, yq ď Npx, yq, and/or Lpx, yq ď Kpx, yq then αp is a
stronger attack than αa, namely if E can αp kill x then E can αa kill x.

Test the equation of item 7 on this network. We get

M˚pE, aq “ 2
M˚pE, bq “Mpbq ´ δpM˚pE, aqq “ 1´ 1 “ 0q
M˚pE, cq “Mpcq ´ δpM˚pE, bqq “ 2´ 0 “ 2q.

If we do not put M˚ on the right hand side we get for M˚pbq the value 1. The definition of M˚

is to yield the many lives values of the nodes following the the propagation of the attacks.
9The conditions on pM,Kq of item 8 makes the network practically a traditional network with

“in" and “out" annotation. If the network is acyclic a numerically balanced labelling exists. Note
that we allow Mpxq “ 0 even for x which is not attacked (i.e. even when all attackers are non-
existent or have M value 0). If we insist that Mpxq “ 1 in such cases (note this is one of the
Caminada conditions), then M will still be numerically balanced but M will yield the grounded
stable extension in the acyclic case. Consider a three point acyclic network of Figure 15, with
S “ ta, b, cu and R “ tpa, bq, pb, cqu, (that is the network a � b � c). Consider the numerically
balanced Mpaq “ 1,Mpbq “ Mpcq “ 0. This M does not give rise to a Dung grounded extension
but M 1 with M 1paq “ M 1pcq “ 1 and M 1pbq “ 0, which is also numerically balanced does give a
Dung grounded extension.
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Definition 4.3. Let pS,Rq be a given geometrical network. Imagine we have
several possible functions of the form Mpxq,Kpx, yq and β defined on pS,Rq. We
can use different functions M,K, β to define different kinds of attacks as done in
Definition 4.2.

Let αa, αd, and αp, be three such attacks as defined in Definition 4.2. Assume
the relative strength of these attacks is as follows:

(s1) If Y αp attacks z then Y αd attacks z

(s2) If Y αd attacks z then Y αa attacks z.

1. We say that E is at peace iff for no Y, a in E do we have αdpY, aq holds (“at
peace" means “able to live/survive together" where the attack does not kill,
compare with Definition 4.7 and Remark 2.4).

2. E protects x if for every Y such that αapY, xq holds we have that for some
subset Y 1 of Y the protecting set E successfully αp attacks all elements of
Y 1 and that the remaining elements of Y , namely the set Y ´ Y 1, does not
successfully αa attack x.

3. E is pa,p,dq admissible if E is at peace and protects its elements

Lemma 4.4. If E admissible and protects x then E Y txu protects itself.

Proof. This is true because E protects all elements of E Y txu so E Y txu does it
(i.e. protects) as well because of the monotonicity condition.

Lemma 4.5. If E is at peace and protects its elements and E protects x then EYtxu
is at peace.

Proof. Assume that E Y txu is not at peace, get a contradiction. We immediately
see that x is not in E.

Let Y Ď E Y txu, z P E Y txu be such Y successfully αd-attacks z. Then by our
assumptions Y also successfully αa attacks z. We distinguish several cases:

Case 1. x R Y, x ‰ z. This case contradicts E at peace.

Case 2. x R Y, z “ x. We have Y successfully αd attacks x and therefore also
successfully αa-attacks x. Since E αp-protects x, E must successfully αp-attack
some elements y1, . . . , yk such that Y ´ ty1, . . . , yku does not successfully αa-attack
x. Since Y does successfully αa-attack x, there must be at least one y1 in Y (and
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therefore y1 is not x) such that E successfully αp-attacks y1. Since by our assump-
tions say that αd attacks are stronger than αp attacks (this is assumption (s1)), we
get that E αd attack y1. Thus we have found a y1 in E which is successfully αd
attacked by E, a contradiction.

Case 3. x P Y and x is different from z. Let Yo be a subset of E and assume that
Y “ Yo Y txu. So we have that Yo Y txu successfully αd-attacks z and z ‰ x. Since
z P E, E αd-attacks elements of YoYtxu. E cannot attack any elements from Y0 so
E attacks x but this is now case 2, which is impossible.

Case 4. x P Y, z “ x. so we have YoYtxu αd attacks x. Therefore it αa attacks x.
Since E protects x, E attacks Y0Ytxu but E cannot attack any of its elements.

Lemma 4.6. There exists an admissible set E Ď S s.t. E “ all elements it protects.

Proof. Start with ∅. It protects its elements and is at peace. Suppose ∅ protects x
then txu protects x and is at peace.

Continue to increase the set using Lemma 4.4, until we reach a maximal st. This
is the set E we need.

Definition 4.7. Let pS,R,M,K, βq be the network defined in Definition 4.1, and
assume that we have the notion of αa, αp, and αd -attack to go with it. Using the
notion of such attacks we can identify the family of sets E which are admissible and
are equal to the set of all the elements E protects. Let E be such a set. E may αd
attack some of its elements but such attacks are not successful. This is why E is at
peace, precisely because the attacks of E on its elements, x P E, are not successful,
i.e. these attacks cannot reduce to 0 the many lives Mpxq of x. We can now use
the notion of αd-attack to update the number of lives of each element x in E. Let
x be any element x in E such that E αd-attacks x. Let the new annotation of x
be M˚pE, xq of item 7 of Definition 4.1. If x is not αd attacked by E, leave its
annotation unchanged.

Let ME be the new annotation on E. We refer to the system (E,R restricted to
E,ME restricted to E) together with the a respective attacks restricted to E, as an
E complete extension of the original system.

We thus can define the set of all E-complete extensions of the original system.

Example 4.8. Let us illustrate the concepts of Definition 4.7 using the network
of Figure 4. In the network of this figure, (with nodes ty, z, u, xu and where y has
attack strength 1, z has 2 and u has 3 and the number of lives of x is 7). In the
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c1

a

b

a1

b1

c

Figure 5

network of this figure, the entire set E of nodes is at peace with itself, because y, z
and u are not attacked and although they all attack x, x can survive the attack with
1 life left. Thus here ME is actually the calculated M˚.

Remark 4.9. We make a few key points related to the definitions of this section.

1. Note what the network withM,K, β looks like whenM is a fixed number m ą 1
for all nodes (say m “ 2) and K is always 1 and β “ 0. This means we have
a network where all nodes require 2 attackers to be dead. To appreciate this
case, consider the simple Figure 5. Assume m “ 2. So we are giving each
node in Figure 5 two lives. In this case we get that ta, a1, c, c1u are “in” with
two lives each and tb, b1u are “out” with zero lives each. If we let m “ 3 we get
a new network with the same graph figure but with different lives distribution.
a, a1 have 3 lives, and b, b1, c1, c1 have 1 life each.

2. Suppose in item (1) above we adopt a geometrical point of view and say that
to be killed we need 3 geometrical attackers. We do not assign life to nodes,
just say to be “out” you need 3 “in” attackers. This is in the spirit of [1]. In
this case we simply get that all are “in”. We do not subtract the number of live
attacks from the many lives of the target. When the target is attacked, it is
either killed or if not enough live attackers are present, then it stays as is.

3. The reader might ask why in Definition 4.2 we were talking about αa-attacking,
what is the role of the index “a”? We have this index because we might have
more than one type of attack, say we might have also another kind of attack
which we might call αp. The two notions of attacks, αa and αp might play
different roles in calculating extensions. For example the nodes ta, a1u are geo-
metrically protecting the nodes tc, c1u because they are geometrically attacking
the nodes tb, b1u which are the geometrical attackers of tc, c1u. We might make
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a distinction and say that attacks are usually αa attacks, but when protecting
elements we must use αp attacks.
For this to work smoothly we need to require that the relationships of Definition
4.3 to hold between αp and αa. In fact we can also add a another notion of
αd attacks and say that for a set E to be considered conflict free (at peace) we
want that no subset Y Ď E can αd attack any e P E. To work smoothly we
need condition (s1) of Definition 4.3 to hold for αd and αp.

4. Note that Definition 4.3 and the Lemmas and proofs following it, do not use the
exact definitions of the attacks but only their relative strengths, being conditions
(s1) and (s2). This allows us to give possibly completely different definitions
of attacks in our paper [38].

5. The ideas of different types of attacks was introduced in Section 8.3 of [1, p.
1855]. The reader can see more discussion in item (2) of the comparison with
the literature Section and in the methodological and concluding Section 7.

5 Comparison with the literature
We compare several related papers.

(1). Comparison with the universal distortion paper [1]. This paper deals
with thinking distortions of sex offenders in particular and of general thinking dis-
tortions in general. Part of this paper is the observation that the idea of many
lives can be used in argumentation. A simple model is given in the paper and some
semantics is described. The full analysis and study of many lives was postponed to
the present paper and other papers [27].

(2). Comparison with graded acceptability of arguments paper [8] and
[24]. These papers (among other results) propose a framework with a view of
distinguishing between nodes that are out because of, say, two successful attacks, as
opposed to nodes that are out because of, say, one successful attack. So for example,
in Figure 6 which describes a traditional network, d is more “dead” than c because
d is attacked by two living attackers while c is attacked by only one.

The authors are trying to bring this difference out by defining a predicate dmn pXq,
where X is a set of nodes (intended to be an admissible set) and dmn pXq is the set
which X protects. For the purpose of comparison with our own paper, we use the
definition for the case d1

2pXq, because this is sufficient to bring out the differences
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with our paper and our notion of many lives. So X is a set of nodes and d1
2pXq

defines the set of points which X protects.
We now quote and rewrite Definition 5 of [8] for the case m “ 1, n “ 2

d1
2pXq “ tx| Dě1ypry � x^ Dě2zpz Ñ y ^ z P Xqsu

We can rewrite the above as the following:

d1
2pXq “ tx|@yrpy � xq Ñ Dě2zpz � y ^ z P Xqsu.

We can again rewrite as the final version 7:
d1

2pXq “ tx|@yrpy � xq Ñ Dz1, z2pz1 ‰ z2^pz1 � yq^pz2 � yq^z1 P X^z2 P Xqsu.
p7q

This formula says that x is protected by X iff every attacker y of x, that is,py �
xq is itself attacked by two different members of X.

The above formula d1
2pXq, which describes how X can protect a node x, looks

very related to our two lives concept. However, it is not the same as a 2 lives. To
see this, consider Figure 15. Let us apply d1

2p∅q to a. This will determine whether
a is alive or not. Substituting a for x in the rewritten formula, we find that d1

2p∅q
holds for a because a has no attackers. Thus a is alive.

Let us now consider the node b. b attacks c. In order for c to be defended, b,
being the attacker of c, must be attacked by two live attackers. Such attackers are
not available in the figure.

However, b is being attacked by a and to get b dead it is enough to have one live
attacker of b which cannot be defended.

The important point here is that we cannot assign a simple number of lives to b.
For b the attacker of c, b has number of lives 2. For b the victim being attacked, the
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number of lives is 1. This is why d1
2 has two indices “1” and “2”. We can, however,

assign two numbers to b, one for it being attacked as a victim and one for being
attacked as an attacker. This is what we discussed in item 3 of Remark 4.9.

Further note that in our paper [38] we study the notion of forward looking attacks
and semantics. We prove in [38] that the many lives semantics is forward looking,
while the Grossi Modgil semantics/attack is not.

We now summarise the comparison of our many lives approach with the Grossi
and Modgil approach of [8, 24]:

1. From the technical mathematical point of view, given a network pS,Rq where S
is the set of arguments andR is the geometrical attack relation, we can simulate
the system dmn of [8, 24] (with n greater or equal m) using two many lives
functions M and N , and two types of attacks αa (to kill you need Mpxq “ m
live attackers) and αp (to protect you need to attack the attacker with n live
attackers). We can even add as a bonus another many lives function Gpxq “ k
, with k greater or equal to n, and define αd attacks. We can thus do a triple
index Grossi-Modgil geometrical function drm,n, ks.

2. Note that the attack αp can be required to have different strengths for different
nodes. Our machinery naturally allows for this. So in the terminology of [8, 24],
the function dmn can be different for each of the nodes involved.

3. From the conceptual point of view the two approaches, the many lives approach
and the Grossi Modgil ranking approach, S are independent and have different
origins and goals. The many lives idea comes from, and is inspired by, the
offender/complaints/ survival point of view and is to be tested by its ability
to adapt and serve its intended application areas. The dmn approach of [8, 24]
comes from the geometrical ranking approach of pure formal argumentation,
catering for the intuition of

(*) x being more “in" or more “out" than y.
The extent to which [8, 24] succeed in addressing this intuition is not relevant
to our comparison in this paper (it is discussed, however, in our paper [10]).
However, it is relevant to the question of to what extent many lives can also
be applied to the same ranking question (*).

4. We appreciate the fact that implicit in the Grossi and Modgil attempt in
[8] to address (*) is the idea that to protect we can ask for a stronger at-
tack,compatible with our developing networks with a progression of connected
attacks. Note that the idea of different types of attacks also appears in Section
8.3 of [1, p. 1855].
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Figure 8

We shall study [8, 24] critically elsewhere, see [10] and Section 8.3 of [1].

(3). Comparison with joint (also called Collective) attacks [17] and [4,
Chapter 7]. The idea of joint attacks introduced in [17] and also studied in [4,
Chapter 7] is explained in Figure 7. In this figure the set Y “ ty1, . . . , yku jointly
attacks the node x. The meaning is that only when all tyiu are live (in) do we have
that x is dead (out). Nielsen and Parsons in [17] use a set to point relation R for
such an attack. So they consider networks of the form pS,R where R Ď 2S ˆ S. In
Figure 7 we have pY, xq P R. The notation of Figure 7 is used by [4, Chapter 7], who
also allows for disjunctive attacks of the form of Figure 8.

This means that if w is alive (in), then one of Z “ tz1, . . . , zku must be out. We
can also have conjunctive–disjunctive attacks of the form of Figure 9

This means that if all of tyiu are in then one of tzju must be out. See [18]. This
can be written as a relation between sets Y and Z.

It is important to realise that the attacks of sets E on nodes e in this paper are
not joint attacks but an aggregation of single attacks. Not all members of the set
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. . . ,

z1, zk. . . ,

y1, yn

Figure 9

b : 2

a1 : 1 a2 : 1 a3 : 1

Figure 10

E need to mount a successful attacks. This is why we have the monotonicity rule,
that if E mounts successful attack on e so does any superset of E. The connection
with m lives is explained in Figures 10 and 11.

In Figure 10, a1, a2 and a3 attack b. b has 2 lives and so for b to be out, at least
two of its attackers must be in. Now suppose that only a1 is in and a2 and a3 are
out. What do we say now about b?

We say two statements

1. b is not out, b is still in.

2. The number of lives of b is 1 (reduced by 1).

It is statement (2) about b in Figure 10 which cannot be properly captured/
translated/reduced, by using joint attacks. Statement 1 can be translated into con-
junctive attacks as shown in Figure 11 with ta1, a2uRb, ta1, a3uRb and ta3, a2uRb,
but statement (2) is not represented in Figure 11. There is a more severe way of
bringing out the difference. Joint attacks still operate within the framework that
each node x is either in or out (or undecided). It may take a joint attack of m ą 1
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b

a2 a3a1

Figure 11

live/in nodes to kill x, but still m cannot be reduced to m´ 1 if we have only single
live attack.

Furthermore, the translation from Figure 10 to Figure 11 does succeed in trans-
lating statement (1) about b when b has only 2 lives, but what do we do with the
case of b having 4 lives? What do we write? There are not enough attacking nodes
to make any distinctions.

We are fairly confident that in general we cannot (prove a theorem that we can
always) translate a many lives network into a single life network with joint attacks .
In other words we believe the many lives concept cannot be reduced to the concept
of joint attacks. Note that the network of Figure 10 can be reduced/translated to a
network with joint attacks only, namely Figure 11 with b with one life only. We ask
however, how would a translation go if b were to have 10 lives in Figure 10?

Let us summarise as follows:
The semantics for many lives networks is to yield other many lives net-
works whose nodes have less lives. The semantics of networks with joint
attacks is to yield subsets of nodes which are in or out (the rest being
undecided).

Let us now ask about the other direction. Can the many lives model simulate
joint attacks?

Consider Figure 12. This is a figure with two types of joint attacks.
For the attack of a3 to succeed, we need b to have one life. For a1 or a2 alone not

to succeed we need b to have two lives. The problem is that the joint attacks can be
mixed, with different joint attacks having a different number of attackers. We can
perhaps compensate by adding strength of attack to a3 � b and get Figure 13

This may work in this case but the reader can see that the two ideas, joint attacks
and many lives are different intuitions.10

10 One of the referees made the following remark, we quote:
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b

a2 a3a1

Figure 12

strength 1

a2 : 1 a3 : 1a1 : 1

b : 2

strength 2

strength 1

Figure 13

“The idea of many lives in not new since in the literature it has been somehow captured
by collective attacks. Of course, the approach followed was quite different but the
purpose is the same. Personally, I prefer the encoding via collective attacks. The
reason is that the number Mpxq is independent from the attackers, namely from their
strength, their relations to each others, their relevance to the target, etc. This may
lead to counter-intuitive results. Assume for instance that Npxq “ 3 and surprisingly
x is attacked by 3 non-attacked arguments y1, y2, y3. According to the formalism
proposed in the paper x will be rejected independently of yi. Suppose that yi are all
similar (or logically equivalent). x would be rejected while it should not.”

Our answer to this remark is as follows:
1. The default assumption in argumentation is that different letters for arguments denote com-

pletely independent arguments. Otherwise we have the same problem in ordinary argumen-
tation. For example if we have x� a, y � a and b� x, then we never ask if x is equivalent
to y and so perhaps then b protects a? The default is that x is independent of y.

2. We already remarked that apart from the fact that the idea of many lives in different from that
of joint/collective attacks, we do not believe that technically we can reduce the machinery
of many lives to that of joint attacks.

Such a reduction is possible if we base argumentation on linear logic and use the attack as infor-
mation input, see [40].
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The square is a subfigure of the circle.

a1 a2 a3

b : 2

Big network

b is the only node which has two lives.

Figure 14

Example 5.1 (Can many lives be reduced to joint attacks?). Consider Figure 14.
We have a2, a2, a3 attacking b which has 2 lives. Assume this figure is part of a much
larger network and so it is not known what values ta1, a2, a3u get, (“in” or “out”).
We further assume that taiu are the only attackers of b and that the larger network
is finite acyclic and so has only the ground extension and it is stable (no undecided).
Assume also that b is the only argument in the entire network which has two lives.

Our objective is to represent this figure within the traditional framework of Dung.
We try to do that using common sense and see what happens. The traditional frame-
work cannot represent numbers, so let us duplicate b and introduce b1, b2 and write
in the meta-level that b1 “ b2. This gives b two lives.

Then we replace tbu by tb1, b2u in the larger network.
The problem is that we have a1, a2, a3 each attacking b and we need to say how

they attack tb1, b2u.
We know that

1. If only one of taiu is in then b is not out, but its life is reduced from 2 to 1.

2. If two of taiu are in then b is out.

So if we split/replace b to b1, b2 we must then satisfy:
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(1*) If only one of taiu is in then only one of tb1, b2u is out

(2*) If two of taiu are in then both tb1, b2u are out.

To implement the above we face a technical problem:

• What attack arrows do we draw from the ai to the bj?

Let us perform a detailed analysis of our options.

(p1) We do not draw any attack from a1.
This is not possible because if a1 “ in and a2 “ a3 “ out then we need exactly
one of tbiu to be out.

(p2) OK. Let a1 � b1. Clearly we will not have that a1 also attacks b2 because then
if a1 “ in and a2 “ a3 “ out both b1, b2 will be out.

(p3) How about a2?
a2 must attack one of the bi, otherwise if a2 “ in and a1 “ a2 “ out then none
of bi would be out. OK, then a2 must attack b2, i.e. a2 � b2 (it cannot attack
b1).

(p4) Now we have an impossibility. What does a3 attack? If it does not attack at
all, then if a3 “ in and a2 “ a3 “ out, the none of tbiu is out. This is wrong.
If a3 does attack say a3 � b1 and not attack b2, then if a1 “ a3 “ in then only
b1 will be out and not both of tbiu. Again not good.
If a3 also attacks b2 then if a3 “ in and a1 “ a2 “ out then we get that both
tbiu are out, again not correct.
OK, so what do we do now? It is natural to follow a continuation idea.
Let us form a set tb1, b2u and let all a1, a2, a3 each attack the set.
Namely

a1 � tb1, b2u
a2 � tb1, b2u
a3 � tb1, b2u

Let us say that to attack a set is to attack one of the members. We again have
a problem.

• If each ai says explicitly which member it attacks we are back to the pre-
vious dilemma.

322



Introducing Abstract Argumentation with Many Lives

• If ai does not say which member it attacks then we cannot prevent all ai
attacking b1 and we gain nothing.

• If we say all attackers must attack separate members and otherwise (if
there are no more un-attacked members) not attack, then this is a fancy
language basically repeating the much simpler original numerical b : 2
representation.

What we want is a better representation for the traditional Dung network,
which with a small change will represent the many lives generalisation.
To summarise:

• We need an inspiration

This is a problem for another paper. It is possible to do using linear logic and
using ideas from paper [40].

(4). Comparison with abstract dialectical framework (ADF) [14]–[16],
[23] and [39]. ADF is a powerful system which can express practically anything
you can throw at it. It can express the joint attacks easily. For example the condition
on b of Figure 12 can be written as

bØ p a1 _ a2q ^  a3.

So our adding many lives to ordinary Dung style networks can be easily added to
ADF. Take for example Figure 13. ADF simply uses its functions to give the kind
of semantics required. The simplest way of doing it is to allow ADF to talk about
nodes with numerical annotations, (in other words the basic units are pairs (node,
number)), and allow it to associate conditions on the combinations of attacking
nodes again with their numerical annotations. So we can say (see Figure 13):

• The new annotation of node (b : 2) is (b : 99), if its attackers all have annota-
tions which are not prime numbers.

Why prime numbers? Well ADF is mathematical. In mathematics we only
increase what we can do and not try to insist on things we should not be allowed to
do!. If we insist that ADF uses only in , out, undecided) annotation, then it cannot
simulate the many lives annotation. The discussion of Figure 10 in comparison (3)
above holds in this case as well.

More interesting is the other direction, can the many lives approach simulate
ADF or fragments of it? The answer is that the many lives model is monotonic,
namely
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b ca

Figure 15

• E attacks x and E Ď E1 then E1 attacks x.

ADF does not have this restriction. We can write in ADF an acceptance condition
which is not monotonic, for example:

• E attacks x if the number of elements in E is even.

(5). Comparison with papers with the idea of graduality, e.g. [11]–[13].
These papers and many others like them want to pay attention to the number of
attackers on x and the number of attackers on attackers, etc. Paying attention to
such distinctions allows us to say that some nodes are “more in" than other nodes.
For example in Figure 15, a is “more in" than c. This is a different theme but we can
use many lives as another instrument to measure this feature. This is best explained
by an example. Consider Figure 15. If we give all nodes one life we get:
One life: a “ 1, b “ 0, c “ 1
Two lives: a “ 2, b “ 1, c “ 1
Three lives: a “ 3, b “ 2, c “ 2.

So if the network has n nodes, go in sequence up to n lives and see what you
get. The differences will show in the sequence. Like the difference between a and c
in the sequence for Figure 15.

(6) Comparison with numerical argumentation. We really need not compare
our paper with any of the purely technical numerical argumentation publications.
Our paper is not intended as such. The relevant papers for comparison are really the
ones described in items 1 and 2 above. There is a comparison from the numerical
point of view in our paper [10]. Nevertheless, we are including some comparative
discussion (of papers [19, 20, 21, 23, 25, 33], and [34] in Appendix 2).

6 Methodological discussion and conclusion
This section summarises what is going on and indicates what is more to be done.
Given a geometric network of the form pS,Rq with S ‰ ∅ and R Ď SˆS, we propose
that we view it as a base/a carrier to be used to define an argumentation network for
a target application. We should not be locked into the view that R is the network
attack relation. R could be some important relation in the target application from
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which we derive the relevant attacks and supports. Once we accept this view about
a network pS,Rq, we can turn it into an argumentation network in many different
ways, by adding extra structure to it and defining the basic argumentation notions on
top of the structure. Our paper [38] discusses some such specific examples obtained
by using the relation R, meanwhile, let us give an example generalising the many
lives approach.

Let us add a numerical function

f : S ÞÑ r0, 1s

i.e. for each x P S, fpxq is a real number 1 ě fpxq ŕ 0.
The system pS,R, fq is very general. f can be interpreted i many ways. It can

be:

• Fuzzy value, introducing argumentation networks.

• Probabiity function, introducing probabilistic argumentation

• Measure of strength, introducing numerical argumentation

• A r0, 1s solution to some equations in the equation approach generating a many
lives function

Mpxq “ x

1´ x “
1

1´ 1{x
fpxq “ 0 means 0 lives pMpxq “ 0q.
fpxq “ 1 means immortal lives Mpxq “ 8.

Further note that we can add other types of functions, not necessarily numerical.
For example we can add a structured logic function ∆pxq, giving for each x P S,
a logical theory or a formula ∆pxq from some logic L. L could be classical logic or
intuitionistic logic of logic programming or some nonmonotonic logic. If we do that
we need to define what it means for one logical theory to attach another logical
theory. this can lead to systems like Aspic` or Assumption based argumentation or
argumentation as information input, etc.

Let us continue with the numerical function f and let us turn to the system
pS,R, fq into an argumentation network. We need to define some additional basic
notions. Let us elaborate using a question and answer dialogue:

Q1. What can be attacked?
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Answer 1:

• Individuals x P S or

• subsets Y Ď S, Y ‰ ∅

• Geometrical arrows (i.e. elements of R, giving rise to a higher level attacks)

Q2: Who are the attackers?

Answer 2:

• Subsets E Ď S E ‰ ∅ or

• individuals x P S.
• Geometrical arrows (i.e. elements of R, giving rise to a higher level attacks
attacking other attacks)

Q3: What is the nature of the attacks?

Answer 3: Let us take three types of attacks αa, αp, αd, such that the following
holds:

• If Y Ď S, αp attacks x then Y αd attacks x.

• If Y Ď S, αd attacks x then Y αa attacks x.

Note to Answer 3: Note hat we can define the attacks in many different ways.
Some we already did using the many lives functions M,N,G. We can define many
other types of attacks using the function f. We shall give different examples in our
paper [38], namely Geometrical Attacks, (these are attacks defined in first or higher
order logic of the language of pS,Rq).

The attacks on x make fpxq smaller.

Q4: What corresponds to the notion of protecting?

Answer 4: We use the attack αp. E protects x if E αp attacks any set Y which
αa attacks x. There can be more variations on this, see Appendix 2.

Q5: What corresponds to the notion of conflict freeness of a set E?
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Answer 5: We use αd. E is at peace (i.e. αd conflict free) if it does not αd attack
its elements.

Q6: How do we define semantics for pS,R, fq?

Answer 6: The general notion of semantics is a function F, giving for a given
system pS,R, fq a family of new systems tpEi.Ri, fiqu. There are four main methods
of defining semantics:

1. The Dung like set theoretical method.

2. Translating into classical, intuitionistic, modal or some other logic and taking
suitable models (in the semantics of that logic) and translating back.

3. Using the equational approach. Generating equations from pS,R, fq and solv-
ing them and the solutions generating semantics.

4. Giving direct algorithms on pS,R, fq, using the attacks to run around pS,Rq
and redefining new pEi, Ri, fiq. This is the Algorithmic Approach.

Given a family of tpEi, Ri, fiuq we an seek to prove completeness theorems, an-
swering the question of which methods from (1)–(4) can produce this family.

For example we can ask for the case of traditional Dung extensions, which equa-
tions and which algorithms can yield exactly all the preferred extensions?

Q7: What does this paper do?

Answer 7: We are inspired by the many lives phenomena in the complaints area
to define a function f and look at suitable and compatible networks pS,R, fq with
attack functions and give a set theoretical semantics. As a result of looking at the
multiple complaints application area we reached the conclusion that an argumenta-
tion network must have 3 different attack relations (all geometrically defined using
R) in increasing strength, all participating in defining extensions.

We compared with other related papers in the literature.

Q8: What is your opinion of the significance of this paper?
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Answer 8: I think there are two aspects to our contribution:

1. Introducing many lives with a view of applications to the “complaints” areas
of applications as well as many other notions motivated by the many lives idea.

2. It seems that it is time to introduce some methodological order to the chaotic
jungle of formal argumentation publications. The recent publication of volume
1 of the Handbook of Argumentation and the planned material for volume 2
together (I personally believe) the methodological view of this section and the
stimulus generated by the Grossi and Modgil papers is the starting trigger
point.

Q9: What is your next paper in this area?

Answer 9: We completed paper [27], dealing with the temporal aspects of mul-
tiple victims complaining one after another as the case develops in the media. We
are writing [31]. We observed that when an alleged offender is attacked by one or
two complaints, all of a sudden many more complaints come forward. See the story
of [32] for a very famous example. Our paper [27] cannot deal with that. Ordinary
traditional temporal logic or any variations based on it cannot deal with sudden
avalanche of simultaneous triggered changes. The proper way of modelling this is
via Reactive Attacks. We envisage a set S of offenders and victims and a binary
relation R on S of inactive attacks from victims to offenders. When a victim x
comes forward to complain about offender y, the attack xRy becomes active. The
other attacks are dormant and are activated when several attacks coming to life.
Exactly how many complaints trigger the activation of all the others depends on cir-
cumstances. Temporal logic is not the right way to handle this. What is happening
is that because of the first one or two brave attackers coming forward all the other
gain courage to join and attack.

For the idea of Reactivity and its applications see [29]. For the details of reactive
grammars we want to use to handle this type of formal argumentation see [30]. The
paper itself will be [31].
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Appendices

A Appendix 1: Discussion of drm, n, ks
It is useful to introduce a familiar story as an example for drm,n, ks, the story of the
party. To help us appreciate the story let us distinguish three types of attacks for a
traditional network pS,Rq illustrating dr1, 2, 2s. The examples deals with traditional
attack and protect but changes the notion of conflict free:

Definition A.1. . Let pS,Rq be an argumentation network, We define two notions
of attack of a subset Y of S on a node x using R as follows:
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• Y αa-attacks x of a subset Y of S on a node x yRx. This is the traditional
Dung attack notion.

• Y αd (respectively Y αp)-attacks x iff for two different y1 and y2 in Y we have
that y1Rx and y2Rx (respectively same condition for Y αp).

Example A.2. We are planning a party and we have a set S which is the maximal
set of all relatives friends, colleagues, etc. who can be invited to the party. The
problem is that some of them do not get along/hate some others. So we have a
relation R, where xRy (which we might denote by x� y) means that if x is invited, y
must not be invited. Let us also assume that for the sake of fairness, if any candidate
has no people objecting to him, the candidate should be invited. For example if the
party is a diplomatic event, then certainly all diplomats should be invited unless there
is a problem. With this view the problem becomes an ecological kind of network (if
you are not attacked you are alive). With this understanding we get here a traditional
argumentation network with attack relation R. The complete extensions are possible
groups of people we can invite.

These are the traditional Dung extensions obtained by using the a-attack notion.
If the party is a wedding, we can invite whom we please. So even if someone is
not objected to, we can choose not to invite him. So if we have S “ ta, b, cu with
a � b � c, we can invite b and not invite a and c, using the symmetrical closure
of the given notion of attack. We cannot get this tbu extension if we use the a
notion of attack the R attack only. We do need its symmetric closure. However,
other problems may arise at a wedding scenario. Let S “ ta, b, c, uu with R “
tpa, bq, pb, aq, pa, uq, pb, uq, pu, cqu. Think of xRy to mean x Hates y. So we have a
married couple/parents ta, bu who hate each other and hate the uncle u and a child
c who is hated by the uncle u. The wedding is of the child. See Figure 16: Common
sense wants to invite the child c and the parents a, b.

Traditional Dung extensions semantics can invite only one parent from ta, bu
and invite c. Even if we use the Grossi Modgil drm,ns approach, the set ta, bu is not
conflict free. If we use our proposed approach with the attacks of Definition A.1, the
parents set will be at peace, the uncle u will be out and c will be invited.

B Appendix 2: Comparison with argumentation net-
works with numerical annotations

Our starting point is a network pS,Rq, with additional annotations to the nodes
Lpxq, x P S, where Lpxq is any labelling function on S giving values from some
labelling domain.
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c

a b

u

Figure 16

The labels Lpxq can be used in the computation of extensions. The labels can
restrict or supplement R in some way, or can be transferred to extensions. The
following are some examples:

1. Lpxq can be either “high” or “low” with the understanding that any xRy is
disregarded if Lpxq “ “low” and Lpyq “ “high”. (See [37].)

2. Lpxq can be a numerical value (say in r0, 1s) and we can disregard any set
E Ď S provided that ΣxPELpxq ď ε where 0 ď ε ă 1. (See [21].)

3. Lpxq can be the many lives function Mpxq as it is used as in this paper.

4. Lpxq can be a probability distribution on S and it can be transferred as a
probability distribution to extensions.

5. Note that in examples 2 and 3 the numerical value is used to modify the attack
relation R and is not used as strength of attack. We could however use Lpxq
as part of the attack itself. Assume we have the nodes y1, . . . , yk attacking the
node x. The nodes z in S are annotated with a numerical number Lpzq. In the
general case Lpzq can be any real number. It is convenient to assume that the
number Lpzq is in the interval r0, 1s. We can thus adopt the view that Lpzq
represents the strength of attack which z can generate. 1 is full strength and
0 is no strength at all.

6. The most general point of view of numerical attacks was taken in papers [33]
and [34]. In these papers we considered the most general uninterpreted case of
numerical attacks. Assume that y attacks x, (that is y � x) with Lpyq “ a and
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Lpxq “ b. Mathematically what we have here is two numbers, with one number
a attacking another number b, namely a� b and we asked what number b1 we
get as a result of this attack. The papers discuss various possibilities, among
them the obvious b1 “ bp1´ aq. If we interpret a “ 1 as true (or full strength)
an a “ 0 as false, we get compatibility with Dung like attacks. There is a
connection with fuzzy logic and t-norms [35].

7. Note that the number annotation Lpzq is used in the attack. Compared with
the many lives approach, the number Mpzq is not used in the attack. So if
y has many lives Mpyq “ 100 and y is attacking x with Mpxq “ 2 then the
attack strength of y on x is just 1. The number Mpyq reflects resilience to
attacks on y and not strength of y as an attacker on x.

8. We can imagine a prosecutor trying to decide, given the complaints of y1, . . . , yk
on x, whether to press charges on x by putting forward as evidence all the
complaints of y1, . . . , yk or perhaps (expecting a counter attack from x) by
putting forward only the more resilient y’s (with Mpyq a large number). In
this case we are usingMpyq as a weight and we exclude the attack of y ifMpyq
does not pass a threshold. This is what paper [21] does, as described in item
(2) above. Paper [21] also contains a comparison with papers [33] and [36].

9. The papers [33, 34] and [20, 21, 36] all use the numerical annotation in the
attack. The qualitative difference between these papers and our current many
lives paper is manifested technically in the handling of loops. Loops are wel-
come and are easier to handle in numerical attacks context, as they naturally
lead to fixed point equations. Consider the situation of item (6) above, namely
where y � x and assume also that x � y. Thus the attack relation is sym-
metrical. We use symmetrical R in Ecologies, where different species attack
one another and we seek to identify states of equilibrium. (For analysis of
networks with symmetrical R, see [19]). Also note that when an offender x is
attacked by a victim y, the offender immediately attacks back, so the relation
is always symmetrical). When numerical strength annotations are present, we
solve equations. For example for x and y above we solve the two equations

b1 “ bp1´ a1q and a1 “ ap1´ b1q
we get that the new equilibrium labels are

b1 “ bp1´ aq{p1´ abq and a1 “ ap1´ bq{p1´ baq
10. The annotations can be quite complex, as in the paper [25]. We must be

careful, however, to keep our systems closely related to application areas and
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not embark on pure mathematical extensions. I think there is a connection
with [31].

Received 6 June 2019335





Hilbert Algebras in a
Non-Classical Framework:

Hilbert Algebras with Apartness

Daniel A. Romano
International Mathematical Virtual Institute, Banja Luka, B& H

bato49@hotmail.com

Abstract
In this article we observe and analyze Hilbert algebras in a non - classical

principled - philosophical - logical framework: We establish the properties of
Hilbert algebras within the frames of Bishop’s constructive mathematics by con-
sidering the carriers of these algebraic structures as sets with apartness relation.
In addition to redefining the concept of Hilbert algebras in this environment,
we introduce and analyze the concepts of some specific substrates of these al-
gebras, such as co-ideals and co-filters. The concept of co-congruence has been
introduced and is associated with co-ideals and quotient algebras, also.

1 Introduction
If X is a non-empty set and w : X ×X −→ X is an internal binary operation in X,
then the system (X,w) is a (simplest) algebraic structure recognizable by its name
‘groupoid’. Recall that it is implied that an equality relation is present at X. Thus,
the carrier of algebraic construction is the system (X,=). Since w is a total function
on X ×X, that w must be extensive with respect to equality, i.e. the following

(∀x, y, u, v ∈ X)((x, y) = (u, v) =⇒ w(x, y) = w(u, v))

holds. Recall that every predicate P determined on X must also be extensive with
respect to equality, i.e. the following

(∀x, y ∈ A)((P(x) ∧ x = y) =⇒ P(y))

must be a valid formula. If the operation in X has some additional properties,
then many questions arise about the characteristics of this more complex algebraic
structure. An example of such a complex algebraic structure is Hilbert algebra.
Since there are various modifications to the definition of Hilbert algebra, we will use
the following determination:

Vol. 7 No. 3 2020
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications



Romano

Definition 1.1. A Hilbert algebra is a triplet H = (H, ·, 1) where H is a nonempty
set, ‘ ·’ is a binary operation and ‘ 1’ is a fixed element of H such that the following
axioms hold:

(H-1) (∀x, y ∈ H)(x · (y · x) = 1),
(H-2) (∀x, y, z ∈ H)(x · (y · z)) · ((x · y) · (x · z)) = 1), and
(H-3) (∀x, y ∈ H)((x · y = 1 ∧ y · x = 1) =⇒ x = y).

The concept of Hilbert algebra was introduced in early 50-ties by L. Henkin [15]
and T. Skolem [36] for some investigations of implication in intuicionistic and other
non-classical logics. In 60-ties, these algebras were studied especially by A. Horn
[17] and A. Diego from algebraic point of view. A. Diego proved [12] that Hilbert
algebras form a variety which is locally finite. Hilbert algebras were treated by D.
Busneag [3, 4, 5], S. Celani [6], S. Celani and D. Montangie [7], W. A. Dudek [13, 14],
J. B. Jun and K. H. Kim [20], Y. B. Jun, J. W. Nam and S. M. Hong [16, 18, 19]
and A. S. Nasab and A. B. Saeid [22] for example.

I. Chajda and R. Halas introduced in [8] the concept of ideal in Hilbert algebra
and described connections between such ideals and congruences. In article [13] W. A.
Dudek described connections between such ideals and deductive systems. Besides,
in [14] it is shown that the class of all Hilbert algebras can embedded into the class
of all BCK-algebras.

Our first step is to introduce the notion ‘Hilbert algebra with apartness’. In that
intention we will transform the Definition 1.1 in the following definition equivalent
to the first.

Definition 1.2. For a system ((H,=), ·, 1), we say that it is a pre-Hilbert algebra
with apartness if the following formulas are axioms:

(H-1) (∀x, y ∈ H)(x · (y · x) = 1),
(H-2) (∀x, y, z ∈ H)((x · (y · z)) · ((x · y) · (x · z)) = 1), and
(H-3 6=) (∀x, y ∈ H)(x 6= y =⇒ (x · y 6= 1 ∨ y · x 6= 1)).

Let’s change now the logical framework within which we look at the construction
of this algebraic structure. We will assume that the logical environment of algebraic
constructions is the Intuitionistic Logic IL (see, for example [35, 37]) instead of
the Classic Logic CL. In addition, in the observation and analysis of the algebraic
constructions determined by the axioms of Definition 1.2 we will take into account
the principled-philosophical orientation of the Bishop’s constructive mathematics
Bish (see, for example [1, 2, 21, 31]). By accepting these commitments, the relation
′ 6= ′ is not the negation of the equality relation ′ = ′ but now it is a particular
relation in set H. Therefore, (H,=, 6=) should be regarded as a relational system.
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For a relation 6= on a set H we say that is is a difference relation if the following
holds

(∀x ∈ H)¬(x 6= x) (consistent) and
(∀x, y ∈ H)(x 6= y =⇒ y 6= x) (symmetry).

For the difference relation 6= on H, it is called that is an apartness if
(∀x, y, z ∈ H)(x 6= z =⇒ (x 6= y ∨ y 6= z)) (co-transitivity)

holds also. In what follows we will treat algebraic forms built on such relational
system (H,=, 6=) as carrier of these constructions. Previous analysis is justification
for using the term ‘algebra with apartness’. Additionally, all the relations and op-
erations that appear in this text will be strongly extensional with respect to the
apartness. Therefore, the internal binary operation mentioned in the Definition 1.2
is strong extensional in the following sense

(∀x, y, x′, y′ ∈ H)(x · y 6= x′ · y′ =⇒ (x 6= x′ ∨ y 6= y′)).
The preceding implication is equivalent to the following formula

(H-0) (∀x, y, z ∈ H)((x · z 6= y · z ∨ z · x 6= z · y) =⇒ x 6= y).
Our commitment to replace the axiom (H-3) with the axiom (H-36=) makes it

impossible to obtain validity of formulas by deductions using this first axiom. To
illustrate, since formulas (1) - (4) in Proposition 2.1 are obtained by applying axioms
(H-3), the question arises as to their validity in Hilbert algebras with apartness. The
problems we are facing now are:

- How to determine the concept of Hilbert algebras with apartness?
- How to determine objects in Hilbert algebras with apartness?
- Link the newly constructed objects with the corresponding objects that exist

in these algebras in the classical case.
- Describe objects in Hilbert algebras with apartness that do not have their

counterpart in the classical case.
The change in the logical environment and the acceptance of the principled

- philosophical orientation of the Bishop’s constructive mathematics considerably
change the observation aspects of the Hilbert algebras. In addition, the new frame-
work of these algebraic constructions is based on sets with apartness. Finally, let’s
point out that the rules of deductions are changing as well. It is completely accept-
able within the philosophical paradigm and logically it is justified to be interested
in perceiving, understanding and describing the consequences that these mentioned
changes produce.

In the next proposition we show that if the apartness is a tight relation, i.e. if

(∀x, y ∈ H)(¬(x 6= y) =⇒ x = y)

holds, then (H-36=) implies (H-3).
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Proposition 1.1. Let ((H,=, 6=), ·, 1) be a pre-Hilbert algebra with a tight apartness.
Then (H-3 6=) implies (H-3).

Proof. Let x, y ∈ H be arbitrary elements such that x · y = 1 and y · x = 1. If
there were x 6= y, we would have ¬(x · y = 1) ∧ ¬(y · x = 1) by (H-36=), which is
in contradiction with the hypothesis. Therefore, it must be ¬(x 6= y). From here it
follows x = y because the relation 6= is a tight relation.

Since, in general case, the apartness relation is not a tight relation in H, we
conclude that the algebraic structures ((H,=, 6=), ·, 1) and (H,=, ·, 1) differ in the
formulas in which appears the axiom (H-36=) instead of the axiom (H-3), or they are
the result of deduction using this axiom.

Algebraic structures developed on sets with apartness relation have been in the
focus of many authors for a long time (see, for example [9, 10, 11, 34]). While
authors S. Crvenković, M. Mitrović and D. A. Romano investigate semigroups with
apartness in the articles [10, 11], A. Cherubini and A. Frigeri deal with inverse
semigroups with apartness in the article [9]. D. A. Romano has deals with one
particular class of substructures in semigroups with aprtness - a class of co-filters in
article [34]. A brief recapitulation of his research on the various classes of algebraic
structures with apartness relation it can be found in [31].

In this article the author describe insights into the internal structure of Hilbert
algebras with apartness. The specificity of the logical background in which the
substructures in Hilbert algebra with apartness are observed and analyzed, provides
the identification, determination and insight into the properties of some special
substructures and processes that do not have the counterparts in the classical case.

Should there be an academic interest in exploring such algebraic structures with
apartness relation? - is a completely natural question that is posed in itself. The
second question posed by itself is: Would the results obtained be interesting to a
number of mathematicians?

The answer to the first question should always be affirmative. For the academic
community, it should be interesting to find out how from some given suppositions
deduce consequences in the framework of a chosen logical system in an acceptable
way.

This research is a continuation of the author research initiated by the investiga-
tion of BCC-algebra with apartness in [33].
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2 Preliminaries

This section presents some well-known definitions of concepts and processes in
Hilbert algebras, and several claims about the properties of these objects and pro-
cesses so that they can be compared with objects and processes that will be designed
later in this article. This algebraic structure has the following properties

Proposition 2.1 ([12]). Let (H, ·, 1) be a Hilbert algebra. Then:
(1) (∀x ∈ H)(x · x = 1),
(2) (∀x ∈ H)(1 · x = x),
(3) (∀x ∈ H)(x · 1 = 1),
(4) (∀x, y, z ∈ H)(x · (y · z) = y · (x · z)).

It is easily checked that in a Hilbert algebra H the relation 6 defined by

(∀x, y ∈ H)(x 6 y ⇐⇒ x · y = 1)

is a partial order on H with 1 as the largest element.

Proposition 2.2 ([4, 12, 13]). Let H be a Hilbert algebra. Then
(5) (∀x ∈ H)(x 6 x),
(6) (∀x ∈ H)(x 6 1),
(7) (∀x, y ∈ H)(x 6 y · x),
(8) (∀x, y ∈ H)(x 6 (x · y) · x),
(9) (∀x, y, z ∈ H)(x · y 6 (y · z) · (x · z)),
(10) (∀x, y, z ∈ H)(y · z 6 (x · y) · (x · z)),
(11) (∀x, y, z ∈ H)(x 6 y =⇒ (z · x 6 z · y ∧ y · z 6 x · z)).

Definition 2.1. Let H be a Hilbert algebra and S be a subset of H.
The subset S is a subalgebra of H if the following axioms are satisfied:
(Sub1) 1 ∈ S and
(Sub2) (∀x, y ∈ H)((x ∈ S ∧ y ∈ S) =⇒ x · y ∈ S).
(a) The subset S is an ideal of H if the following axioms are satisfied:
(J1) 1 ∈ S and
(J2) (∀x, y ∈ H)((x ∈ S ∧ x · y ∈ S) =⇒ y ∈ S).
(b) The subset S is a filter of H if the following axioms are satisfied:
(J1) 1 ∈ S and
(F2) (∀x, y ∈ H)((y ∈ S ∧ x · y ∈ S) =⇒ x ∈ S).
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Proposition 2.3. Let H be a Hilbert algebra.
(i) If J is an ideal of H, then
(12) (∀x, y ∈ H)((x 6 y ∧ x ∈ J) =⇒ y ∈ J).
(ii) If F is a filter of H, then
(13) (∀x, y ∈ H)((x 6 y ∧ y ∈ F ) =⇒ x ∈ F ).

Definition 2.2. If H1 and H2 are Hilbert algebras, then f : H1 −→ H2 is called
morphism of Hilbert algebras if

(∀x, y ∈ H1)(f(x · y) = f(x) · f(y)).

The following definition ends this section.

Definition 2.3. Let (H, ·, 1) be a Hilbert algebra and θ be an equivalence on the
set H. θ is a congruence on H if the following

(∀x, y, u ∈ H)((x, y) ∈ θ =⇒ ((x · u, y · u) ∈ θ ∧ (u · x, u · y) ∈ θ))

is a valid formula.

3 Properties of Hilbert algebras with apartness
First, let us specify one commitment in Bishop’s constructive orientation algebra.

Let X be an object (or process) in some classical algebraic structure S deter-
mined by a predicate P. The dual Y of this concept (or process) in the algebraic
structure (S,=, 6=) with apartness is an object (or process) designed so that the
strong compliment Y � of Y in S also satisfies the predicate P.
In this case, the objects X and Y are said to be associated (or mutually consistent).
Of course, it is not rare that a classically defined object and its constructive dual
are not associates.

Second, let’s explain the terms used. For subsets A and B of structure S, we
write A ./ B if (∀a ∈ A)(∀b ∈ B)(a 6= b) holds. In particular, for A = {x}, we write
x� B instead of {x} ./ B. Also, we write x 6= y instead of {x} ./ {y}. The subset
{x ∈ S : x�B} is a strong complement of B in S and it is denoted by B�.

Let us add two explanations to the previous one.
A predicate P on structure (S,=, 6=) is strongly extensional if the following

(∀x, y ∈ S)(P(x) =⇒ (y 6= x ∨ P(y)))
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holds. For example, A is a strongly extensional subset in S, if

(∀x, y ∈ S)(x ∈ A =⇒ (y ∈ A ∨ y 6= x))

holds.
Let f : A× ...×A −→ B be a function.

- f is a strongly extensional if holds

(∀x1, ..., xn, y1, ..., yn ∈ A)(f(x1, ..., xn) 6= f(y1, ..., yn) =⇒
n∨

i=1
(xi 6= yi)).

Hereinafter it is referred to as ‘se-mapping’ or ‘se-function’.
- f is an embedding if holds

(∀x1, ..., xn, y1, ..., yn ∈ A)(
n∨

i=1
(xi 6= yi) =⇒ f(x1, ..., xn) 6= f(y1, ..., yn)).

All definitions of newly introduced concepts and processes with them in this
section are the result of this author’s own reflections. Also, all claims made in this
section are designed and proven by the author.

3.1 Concept of co-subalgebras
Definition 3.1. A strongly extensional subset S of a pre-Hilbert algebra with apart-
ness H is a co-subalgebra if the following

(S1) ¬(1 ∈ S) and
(S2) (∀x, y ∈ H)(x · y ∈ S =⇒ (x ∈ S ∨ y ∈ S))

are valid.

Speaking language of classical algebra, the set S is a co-subalgebra in H if it is
a consistent subset in H.

Proposition 3.1. If S is an inhabited co-subalgebra in a pre-Hilbert algebra with
apartness H, then S� is a subalgebra in H.

Proof. Since S is an inhabited strongly extensional subset of H, then

u ∈ S =⇒ (u 6= 1 ∨ 1 ∈ S)

holds. The second option is impossible because of the hypothesis ¬(1 ∈ S). So
1 6= u ∈ S for every u ∈ S. This means 1 � S, i.e. 1 ∈ S�.
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Let x, y, u ∈ H be elements such that x ∈ S�, y ∈ S� and u ∈ S. Then
x · y 6= u ∈ S or x · y ∈ S by strongly extensionality of S in H. The second option
gives x ∈ S ∨ y ∈ S which contradicts the hypothesis. Thus, there must be x ·y 6= u
for each u ∈ S. This proves x · y ∈ S�.

This proves that S� is a subalgebra in the pre-Hilbert algebra H.

In the previous proposition, it is shown that the concepts of subalgebra and
co-subalgebras in a pre-Hilbert algebra with apartness are mutual consistent.

It is clear that the sets H and ∅ are co-subalgebras in H. Thus, the family
S(H) of all co-subalgebras of algebra H is not empty. The assertion of the following
theorem can be proved by direct verification.

Theorem 3.1. The family S(H) forms a complete lattice.

Proof. Let {Si}i∈I be a family of co-subalgebras in a pre-Hilbert algebra H. Clearly
that 1 �

⋃
i∈I Si and 1 �

⋂
i∈I Si valid.

Let x, y ∈ H be elements such that x · y ∈ ⋃
i∈I Si. The there is an index k ∈ I

such that x · y ∈ Sk. Thus x ∈ Sk ⊆
⋃

i∈I Si or y ∈
⋃

i∈I Si according to (S2). Since⋃
i∈I Si satisfies conditions (S1) and (S2), therefore ⋃

i∈I Si is a co-subalgebra in H.
Let X be a family of all co-subalgebra of the pre-Hilbert algebra H contained in⋂

i∈I Si. Then ∪X is the maximum co-subalgebra included in ⋂
i∈I Si according to

the second part of this evidence.
If we put ti∈ISi = ⋃

i∈I Si and ui∈ISi = ∪X, then (S(H),t,u) is a complete
lattice.

Corollary 3.1. For any subset of A of a pre-Hilbert algebra with apartness H, there
is the maximal co-subalgebra contained in A.

Proof. The evidence of this corollary follows from the second part of the proof of
Theorem 3.1.

Corollary 3.2. For any element a of a pre-Hilbert algebra with apartness H, there
is the maximal co-subalgebra Ha such that a�Ha.

Proof. The proof of this Corollary follows immediately from the previous Corollary
if we take A = {x ∈ H : x 6= a}.

3.2 Co-order relation in pre-Hilbert algebra with apartness
Co-order relation in sets with apartness was introduced in 1996 in [25] by the author.
The relation ′ 
 ′ on the set with apartness H is a co-order in H if it is consistent,
co-transitive and linear in the following sense:
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(∀x, y ∈ H)(x 
 y =⇒ x 6= y) (consistency)
(∀x, y, z ∈ H)(x 
 z =⇒ (x 
 y ∨ y 
 z)) (co-transitivity) and
(∀x, y ∈ H)(x 6= y =⇒ (x 
 y ∨ y 
 x)) (linearity).

If a set with apartness is supplied with a co-order relation, then it is said to be
‘ordered under co-order’ or it is ‘co-ordered set’.

Definition 3.2. For a co-order relation ′ 
 ′ on a pre-Hilbert algebra with apartness
((H,=, 6=), ·, 1) says that it is compatible with the internal operation in H if

(14) (∀x, y, z ∈ H)(x · z 
 y · z =⇒ x 
 y) (right compatibility)
(15) (∀x, y, z ∈ H)(z · x 
 z · y =⇒ x 
 y) (left compatibility)

are valid formulas.

Speaking by the classical algebra language, the co-order relation in is compatible
with the operation if the operation is left and right cancellative with respect to the
co-order.

Lemma 3.1. Formulas (14) and (15) are equivalent to the following formula
(16) (∀x, y, z, u ∈ H)(x · z 
 y · u =⇒ (x 
 y ∨ z 
 u)).

Proof. (14) ∧ (15) =⇒ (16). Let x, y, z, u ∈ H be arbitrary elements such that
x · z 
 y · u. Then x · z 
 y · z or y · z 
 y · u by co-transitivity of 
. Thus
x 
 y ∨ z 
 u by (14) and (15).

(16) =⇒ (14) ∧ (15). If we put u = z in (16), we immediately obtain (14). If
we put x = z, z = x, y = z and u = y in (16), we immediately obtain (15).

In the following definition, we introduce the relation ′ 
 ′ on a pre-Hilbert
algebra with apartness ((H,=, 6=), ·, 1).

Definition 3.3. The relation ′ 
 ′ on a pre-Hilbert algebra with apartness H we
introduce by the following formula

(∀x, y ∈ H)(x 
 y ⇐⇒ x · y 6= 1).

The claims in the following Lemma are obvious

Lemma 3.2. Let H be a pre-Hilbert algebra. Then
(17) (∀x, y ∈ H)¬(x · y = 1 ∧ x · y 6= 1), and
(18) (∀x, y ∈ H)(x · y = 1 =⇒ ¬(x 
 y)).

Lemma 3.3. Let H be a pre-Hilbert algebra. Then
(19) (∀x, y ∈ H)¬(x 
 y · x), and
(20) (∀x, y, z ∈ H)(¬(x · (y · z) 
 (x · y) · (x · z))).
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Proof. Claims (19) and (20) follow from the previous Lemma with reference to Def-
inition 3.3 and (H-1) and (H-2) respectively.

Analysis 3.1. Our intention with relation ′ 
 ′, determined on this way, is that it
should be a co-order relation H compatible with the operation in H.

The axiom (H-3 6=) immediately gives x 6= y =⇒ (x 
 y ∨ y 
 x). So, the
linearity condition is satisfied for this relation.

For the condition of consistency to be valid, it should be x 
 y =⇒ x 6= y for
any x, y ∈ H. In order to obtain the consistency of the relation ′ 
 ′, it is sufficient
that the following formula

(H-4) (∀x ∈ H)(x · x = 1)
be a valid formula in a pre-Hilbert algebra with apartness H.

To obtain the co-transitivity property for the relation ′ 
 ′, we should have
x 
 z =⇒ (x 
 y ∨ y 
 z) for any elements x, y, z ∈ H. Suppose that

(H-5) (∀x ∈ H)(1 · x = x) and
(H-6) (∀x ∈ H)(x · 1 = 1)

are valid formulas in the structure (H,=, 6=), ·, 1). Then, for any x, y, z ∈ H such
that x 
 z, i.e. such that x · z 6= 1, we have

1 · (x · z) 6= (x · y) · (z · z) ∨ (x · y) · (z · z) 6= (x · y) · 1.

by co-transitivity of apartness relation and with respect to (H-5) and (H-6). Thus

1 6= x · y ∨ x · z 6= 1

by (H-0). So, we have x 
 y ∨ y 
 z. Therefore, accepting hypotheses (H-5) and
(H-6), we get that ′ 
 ′ is a co-transitive relation in H.

Lemma 3.4. Let H be a pre-Hilbert algebra with apartness. Then (H-1) and (H-5)
implies (H-4).

Proof. If we put y = 1 in (H-1), we get (H-4) with respect to (H-5).

Lemma 3.5. Let H be a pre-Hilbert algebra with apartness. Then (H-1) and (H-5)
implies (H-6).

Proof. If we put x = 1 and y = x in (H-1), we get (H-6) with respect to (H-5).

Summarizing the previous analysis and results of Lemma 3.4 and Lemma 3.5,
we conclude: ′ 
 ′ is a co-order relation on a structure of pre-Hilbert algebra
with apartness ((H,=, 6=), ·, 1) if (H-4), (H-5) and (H-6) are valid formulas in that
structure. The foregoing justifies the following definition
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Definition 3.4. A pre-Hilbert algebra with apartness ((H,=, 6=), ·, 1) is a Hilbert
algebra with apartness if it additionally satisfies the axiom (H-5).

Proposition 3.2. Let H be a Hilbert algebra with apartness. Then
(56=) (∀x ∈ H)(x 
� x);
(66=) (∀x ∈ H)(x 
� 1);
(76=) (∀x, y ∈ H)(x 
� y · x);
(86=) (∀x ∈ H)(x 
� (x · y) · x);
(10 6=) (∀x, y, z ∈ H)(y · z 
� (x · y) · (x · z)).

Proof. (56=) Let x, u, v ∈ H be arbitrary elements such that u 
 v. Then u 

x ∨ x 
 v by co-transitivity of 
. Thus u 6= x ∨ x 6= v by consistency of 
 and
(x, x) 6= (u, v) ∈
. Hence x 
� x.

(66=) The proof is derived by same way as the proof for (56=).
(76=) Let x, y, u, v ∈ H be arbitrary elements such that u 
 v. Then

u 
 x ∨ x 
 y · x ∨ y · x 
 v

by co-transitivity of 
. Since the second option is impossible by (19), we have
(x, y · x) 6= (u, v) ∈
. Hence x 
� y · x.

(86=) is obtained directly from (76=) if we put y = x · y.
(10 6=) Let x, y, z, u, v ∈ H be arbitrary element such that u 
 v. Then

u 
 y · z ∨ y · z 
 x · (y · z) ∨ x · (y · z) 
 (x · y) · (x · z) ∨ (x · y) · (x · z) 
 v

by co-transitivity of 
. Since the second and third options are impossible by (19)
and (20), we have u 6= y · z or (x · y) · (x · z) 6= v by consistency of 
. Hence
y · z 
� (x · y) · (x · z).

In the following proposition we show that the relation ′ 
 ′ is left compatible
with the operation in a Hilbert algebra with apartness H.

Proposition 3.3. Let H be a Hilbert algebra with apartness. Then
(21) (∀x, y, z ∈ H)(z · x 
 z · y =⇒ x 
 y).

Proof. Let x, y, z ∈ H be such that z · x 
 z · y. Then (z · x) · (z · y) 6= 1. Thus

(z · x) · (z · y) 6= (z · (x · y) · ((z · x) · (z · y)) ∨ (z · (x · y) · ((z · x) · (z · y)) 6= 1.

The second option is impossible because of (H-2). From the first option in the form

1 · ((z · x) · (z · y)) 6= (z · (x · y)) · ((z · x) · (z · y)),

we get 1 6= z · (x · y). Thus z · 1 = 1 6= z · (x · y) and 1 6= x · y. Hence x 
 y.

347



Romano

Our intention is for the relation ′ 
 ′ to be right compatible with the operation
in any Hilbert algebra with apartness H. To this end, we will assume that (4) is
a valid formula in a Hilbert algebra with apartness H. With such a supplemented
request for a Hilbert algebra with apartness, we have

Proposition 3.4. Let H be a Hilbert algebra with apartness in which (4) is a valid
formula. Then

(22) (∀x, y, z ∈ H)(y · z 
 x · z =⇒ x 
 y).

Proof. Let x, y, z ∈ H be elements such that y · z 
 x · z. Then (y · z) · (x · z) 6= 1.
Thus

(y · z) · (x · z) 6= (x · y) · ((y · z) · (x · z)) ∨ (x · y) · ((y · z) · (x · z)) 6= 1.

From the second option (x ·y) · ((y ·z) · (x ·z)) 6= 1 we have (y ·z) · ((x ·y) · (x ·z)) 6= 1
by (4). This means y · z 
 (x · y) · (x · z). From here it follows

y · z 
 x · (y · z) ∨ (x · (y · z)) 
 (x · y) · (x · z)

according to the co-transitivity of 
 relation. Part of y · z 
 x · (y · z) is impossible
according to (76=). The second part means (x · (y · z)) · ((x · y) · (x · z)) 6= 1 which is
also impossible according to (H-2). In both of these cases we have a contradiction.
So (y · z) · (x · z) 6= (x · y) · ((y · z) · (x · z)) must be valid. We can write it in the form

1 · ((y · z) · (x · z)) 6= (x · y) · ((y · z) · (x · z))

in accordance with (H-5). From here we get 1 6= x · y. Finally, we got x 
 y, which
was to prove.

If we combine the results obtained in Analysis 3.1, Lemma 3.4, Lemma 3.5,
Proposition 3.3 and Proposition 3.4, we obtain

Theorem 3.2. If H is a Hilbert algebra with apartness in which (4) is a valid
gormula, then ′ 
 ′ is a co-order relation in H left compatible and right inverse
compatible with respect to the internal operation in H.

Proof. The relation ′ 
 ′, defined by Definition 3.3, is a co-order relation on the set
(H,=, 6=) by comment before Definition 3.4. The relation ′ 
 ′ is a left compatible
co-order with respect to the internal operation in H according to Proposition 3.3.
Finally, ′ 
 ′ is a co-order relation in H and it is inverse right compatible with
respect to the internal operation in H provided that (4) is a valid formula in H,
according to Proposition 3.4.
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3.3 Concept of co-ideals
The idea of co-ideals in algebraic structures with apartness relation first appeared
in Ruitenburg’s doctoral dissertation [35]. This idea can also be found in Chap-
ter 8: ‘Algebra’ of the famous book [37]. The analysis of concepts of co-ideals in
semigroups, groups and rings with apartness was in the focus of this author, also
(for example [23, 24, 30, 34]). An interested reader about this concepts in algebraic
structures with apartness can be found in review article [31].

The following definition introduces the concept of co-ideals in Hilbert algebra
with apartness.

Definition 3.5. Let H be a Hilbert algebra with apartness. A subset K of H is a
co-ideal in H if

(K1) 1 �K; and
(K2) (∀x, y ∈ H)(y ∈ K =⇒ (x ∈ K ∨ x · y ∈ K).

Lemma 3.6. A co-ideal K a Hilbert algebra with apartness H is a strongly exten-
sional subset in H.

Proof. Let x, y ∈ H be elements such that y ∈ K. Then x ∈ K or x · y ∈ K. The
second option give us x ·y 6= 1 = y ·y because 1�K and (H-4). Thus x ∈ K ∨ x 6= y
by (H-0).

Proposition 3.5. If K is a co-ideal of a Hilbert algebra with apartness H, then the
set K� is an ideal in H.

Proof. Let x, y, u ∈ H be arbitrary elements such that x ∈ K�, x · y ∈ K� and
u ∈ K. Then u 6= y ∨ y ∈ K by Lemma 3.6. From the second option we have
x · y ∈ K ∨ x ∈ K. Hence x 6= u ∈ K because the both options x · y ∈ K and x ∈ K
are impossible by hypothesis. So, we conclude that t ∈ K�. Therefore, the subset
K� satisfies (J1) and (J2) in the Definition 2.1.

Proposition 3.6. Let K be a co-ideal of a Hilbert algebra with apartness H. Then
(23) (∀x, y ∈ H)(y ∈ K =⇒ (x 
 y ∨ x ∈ K)).

Proof. Let x, y ∈ H be such y ∈ K. Then x · y ∈ K or x ∈ K by (K2). Thus, the
option give us x ·y 6= 1 = y ·y by (K1) and (H-4). So, this Proposition is proved.

Since sets ∅ and {x ∈ H : x 6= 1} are co-ideals in any Hilbert algebra with
apartness H, the family K(H) of all co-ideals of H is not empty.

Theorem 3.3. The family K(H) of all co-ideals of any Hilbert algebra with apartness
H forms a complete lattice.
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Proof. Let {Ki}i∈I be a family of co-ideal of H. It is obvious that 1 �
⋃

i∈I Ki

because 1 �Ki for any i ∈ I. Let x, y ∈ H be such y ∈ ⋃
i∈I Ki. Then there exists

an index j ∈ I such that y ∈ Kj . Thus x · y ∈ Kj ⊆
⋃

i∈I Ki or x ∈ Kj ⊆
⋃

i∈I Ki

because Kj is a co-ideal of H.
Also, it is clear that 1�⋂

i∈I Ki. If T is the family of all co-ideals in H contained
in ⋂

i∈I Ki, then ∪T is the maximal co-ideal of H contained in ⋂
i∈I Ki according to

the first part of this proof.
If we put ti∈IKi = ⋃

i∈I Ki and ui∈IKi = ∪T, then (K(H),t,u) is a complete
lattice.

3.4 Concept of co-filters
The concept of co-filters in co-ordered sets and algebraic structures with apartness
has been introduced and analyzed by this author in several of his articles (for ex-
ample: [25, 30, 31, 33]).

The following definition introduces the notion of co-filters in Hilbert algebras
with apartness.

Definition 3.6. Let H be a Hilbert algebra with apartness. A subset G of H is a
co-filter of H if the following hold

(G1) 1 �G, and
(G2) (∀x, y ∈ H)(x ∈ G =⇒ (x · y ∈ G ∨ y ∈ G)).

Lemma 3.7. A co-filetr in a Hilbert algebra with apartness H is a strongly exten-
sional subset in H.

Proof. Let x, y ∈ H be elements such that x ∈ G. Then y ∈ K or x · y ∈ G. The
second option give us x ·y 6= 1 = y ·y because 1�K and (H-4). Thus x ∈ K ∨ x 6= y
by (H-0).

Proposition 3.7. If G is a co-filter of a Hilbert algebra with apartness H, then the
set G� is a filter of H.

Proof. It is clear that 1 ∈ G�. Let x, y, u ∈ H be elements such that y ∈ G�,
x · y ∈ G� and u ∈ G. From u ∈ G it follows u 6= x ∨ x ∈ G by by consistency of
G in H. Thus from the second option x ∈ G, we have x · y ∈ G or y ∈ G. Both
obtained cases contradict to the hypotheses y ∈ G� and x · y ∈ G�. So, have to be
x 6= u ∈ G. This means x ∈ G�. Thus, the set G� satisfies conditions (F1) and
(F2) in Definition 2.1(b).

Proposition 3.8. Let G be a co-filter of a Hilbvert algebra with apartness H. Then
(24) (∀x, y ∈ H)(x ∈ G =⇒ (x 
 y ∨ y ∈ G)).
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Proof. Let x, y ∈ H be such x ∈ G. Then x · y ∈ G or y ∈ G by (G2). The first
option gives x · y 6= 1 by (G1). Thus x 
 y ∨ y ∈ G.

The following theorem can be proved in an analogous way as the proof of Theo-
rem 3.3, so we will therefore omit its evidence.

Theorem 3.4. The family G(H) of all co-filters a Hilbert algebra with apartness H
form a complete lattice.

3.5 se-homomorphisms of Hilbert algebras with apartness
Definition 3.7. Let f : ((H,=H , 6=H), ·H , 1H) −→ ((M,=M , 6=M ), ·M , 1M ) be a
se-mapping between Hilbert algebras with apartness. f is a se-homomorphism of
Hilbert algebras with apartness if the following hold

(se-h-1) f(1H) =M 1M ; and
(se-h-2) (∀x, y ∈ H)(f(x ·H y) =M f(x) ·M f(y)).

Remark 3.1. From (se-h-2) immediately it follows (se-h-1). Indeed. If we put y =H x
in (se-h-2) we get f(x ·H x) =M f(x) ·M f(x) and hence f(1H) =M 1M with respect
to (H-4).

Lemma 3.8. Let f be a a se-homomorphism between Hilbert algebras with apartness.
Then:

(i) the set f(H) is a subalgebra of M ;
(ii) the set Ker(f) is an ideal of H; and
(iii) the set Coker(f) = {x ∈ H : f(x) =M 0M} is a co-ideal of H.

Proof. (i) is obvious.
(ii) Let x, y ∈ H be such x ∈ Ker(f) and x ·H y ∈ Ker(f). Then f(x) =M 1M

and
1 =M f(x ·H y) =M f(x) ·M f(y) =M 1N ·M f(y) =M f(y).

Thus y ∈ Ker(f). So, the set Ker(f) satisfies conditions (J1) and (J2).
(iii) Let x, y ∈ H be such that y ∈ Coker(f). Then f(y) 6=M 1M . Thus

1M ·M f(y) 6=M f(x ·H y) =M f(x) ·M f(y) or f(x ·H y) 6=M 1M by co-transitivity
of apartness in M . From the first option we get 1M 6=M f(x) while from the second
option we get c ·H y ∈ Coker(f). Since 1H � Coker(f) is obvious, we have proved
that the set Coker(f) satisfies conditions (K1) and (K2).

Theorem 3.5. Let f : H −→ M be a se-homomorphism between Hilbert algebras
with apartness. Then

(i) If K be a co-ideal of M , then f−1(K) is a co-ideal of H; and
(ii) If G is a co-filter of M , then f−1(G) os a co-filter of H.
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Proof. Let S be a co-ideal (co-filter) ofM . Then 1M �S. If u ∈ f−1(S), then f(u) ∈
S. Thus f(u) 6= 1M =M f(1H) or 1M =M f(1H) ∈ S by strongly extensionality of
S in M . From the first option we have u 6=H 1H because f is a se-mapping. The
second option gives 1M ∈ S. As the second option leads to contradiction, it has to
be 1H 6=H u ∈ f−1(S). So, 1H � f−1(S).

Let S be a co-ideal of M and let x, y ∈ H be elements such that y ∈ f−1(S).
Then f(y) ∈ S. Thus f(x) ∈ S or f(x ·H y) =M f(x) ·M f(y) ∈ S by (K2). Hence
x ∈ f−1(S) or x ·H y ∈ f−1(S). This proves that the set f−1(S) since satisfying
conditions (K1) and (K2), is a co-ideal of H.

If S is a co-filter ofM , then it can be analogously proved that it satisfies condition
(F2). So, f−1(S) is a co-filter of H.

3.6 Co-congruence on Hilbert algebras with apartness
In this subsection, we will omit the affiliation indices unless this leads to imprecision.

In the following theorem, we describe the properties of relation θf , defined by

(∀x, y ∈ H)((x, y) ∈ θf ⇐⇒ f(x) 6= f(y)).

In this intention, we need some new notions.
A relation θ on the set (H,=, 6=) is a co-equivalence on H if it is consistent,

symmetric, and co-transitive in the following sense
(∀x, y ∈ H)((x, y) ∈ θ =⇒ x 6= y) (consistency)
(∀x, y ∈ H)((x, y(∈ θ (y, x(∈ θ) (symmetry) and
(∀x, y, z ∈ H)((x, z) ∈ θ =⇒ ((x, y) ∈ θ ∨ (y, z) ∈ θ)) (co-transitivity).

A co-equivalence θ on an algebraic structure ((H,=, 6=), ·) is compatible with the
internal operation in H if the following hold

(c) (∀x, y, z ∈ H)((x · z, y · z) ∈ θ =⇒ (x, y) ∈ θ) (right compatibility) and
(d) (∀x, y, z ∈ H)((z · x, z · y) ∈ θ =⇒ (x, y) ∈ θ) (left compatibility).

It can be verified without difficulty that (a) ∧ (b) are equivalent to the following
formula

(e) (∀x, y, u, v ∈ H)((x · u, y · v) ∈ θ =⇒ ((x, y) ∈ θ ∨ (u, v) ∈ θ)).
The foregoing analysis is justification for the following definition.

Definition 3.8. A co-equality relation θ on a Hilbert algebra with apartness H is
a co-congruence on H it is satisfies the condition (e).

The notion of co-equivalence on the set with apartness was first introduced and
analyzed by the author in his dissertation in 1995 [23], and further developed in
articles [25, 32]. Also, the term co-congruence on commutative rings with apartness
was first introduced and analyzed by the author in his thesis [23] and article [24].
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Theorem 3.6. Let f ;H −→ T be a se-homomorphism of Hilbert algebras with
apartness. The relation θf on H is a co-congruence on H.

Proof. Clearly, the relation θf is a co-equivalence on the set H.
Let’s show that the relation θ is compatible with the internal operation in H.

Let x, y, u, v ∈ H be arbitrary elements such that (x · u, y · v) ∈ θf . Then f(x · u) 6=
f(y · v). Thus f(x) · f(u) 6= f(y) · f(v). Hence f(x) 6= f(y) ∨ f(u) 6= f(v). So,
(x, y) ∈ θf ∨ (u, v) ∈ θf . It is shown that the relation θf satisfies condition (e).

Proposition 3.9. If θ is a co-congruence on a Hilbert algebra with apartness H,
then the relation θ� is a congruence on H.

Proof. If θ is a co-congruence on a Hilbert algebra with apartness H, then the
relation θ� is an equivalence on the set H by Proposition 1.1 in [31]. It remains
to show that the relation θ� is compatible with the internal operation in H. Let
x, y, u, v, t, s ∈ H be elements such that (x, y) � θ, (u, v) � θ and (y, s) ∈ θ. Then

(t, x · y) ∈ θ ∨ (x · u, y · v) ∈ θ ∨ (y · v, s) ∈ θ

by co-transitivity of θ. Thus

t 6= x · y ∨ (x, y) ∈ θ ∨ (u, v) ∈ θ ∨ y · v 6= s

by (e) and by consistency of θ. As the options (x, y) ∈ θ and (u, v) ∈ θ contradict
to the hypothesis, we get (x · u, y · v) 6= (t, s) ∈ θ. Therefore, (x · u, y · v) ∈ θ�.

It is well known that congruence forms classes of congruence with known traits.
Also, a co-congruence forms classes whose traits have been described by this author
in several of his texts (for example, see [25, 31, 33]).

Lemma 3.9. If θ is a co-congruence on a Hilbert algebra with apartness H, then
any class of θ is a strongly extensional suvset of H ×H.

Proof. Let x, y, z ∈ H be elements such that z ∈ θx. Then (x, z) ∈ θ. Thus
(x, y) ∈ θ ∨ (y, z) ∈ θ ⊆ 6= by co-transitivity of θ. Hence, y ∈ θx ∨ y 6= z.

Proposition 3.10. If θ is a co-congruence on a Hilbert algebra with apartness H,
then the class 1θ is a co-ideal of H.

Proof. If u ∈ 1θ, then (1, u) ∈ θ gives 1 6= u by consistency of θ. This means
1 � 1θ. Let x, y ∈ H be arbitrary elements such that y ∈ 1θ. Then (1, y) ∈ θ
gives (1, x · y) ∈ θ ∨ (x · y, 1 · y) ∈ θ by co-transitivity of θ and (H-5). Thus
x · y ∈ 1θ ∨ (x, 1) ∈ θ by (c). Finally, we have x · y ∈ 1θ ∨ x ∈ 1θ. This proves that
1θ is a co-ideal of H.
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In what follows, we need the term ‘co-quasiorder relation’ on a set with apartness.
A relation � on set with apartness H is a co-quasiorder on H if it is a consistent
and co-transitive relation on the set H. The concept of co-quasiorder relations on
sets (and on algebraic structures) with apartness was introduced and analyzed by
this author in several of his papers (see: [25, 26, 27, 28, 29, 30, 31]).

Proposition 3.11. Let K be a co-ideal of a Hilbert algerba with apartness H. Then
the relation �, defined by

(∀x, y ∈ H)(x � y ⇐⇒ x · y ∈ K)

is a co-quasiorder relation on H left compatible and right reverse compatible with
the operation in H.

Proof. Let x, y ∈ H be such x � y. Then x · y ∈ K. Thus x · y 6= 1 = y · y by (K1)
and (H-5). Hence x 6= y.

Let x, y, z ∈ H be arbitrary elements such that x � z. Then x · z ∈ K. Thus
x · y ∈ K ∨ (x · y) · (x · z) ∈ K by (K2). From the second option follows y · z 

(x · y) · (x · z) ∨ y · z ∈ K by (23). Since y · z 
 (x · y) · (x · z) is impossible due to
(106=), we have x ·y ∈ K ∨ y ·z ∈ K in the ending. Therefore, we got x � y ∨ y � z.

Let x, y, z ∈ H be elements such that z ·x � z · y. Then (z ·x) · (z · y) ∈ K. Thus
x · y 
 (z ·x) · (z · y) or x · y ∈ K by (23). Since the first option contradicts to (106=),
x · y ∈ K is left as a valid formula. Therefore, x � y.

Suppose that for elements x, y, z ∈ H, it holds y ·z � x·z. Then (y ·z)·(x·z) ∈ K.
Thus x · y 
 (y · z) · (x · z) ∨ x · y ∈ K by (23). From the first option, we get

x · y 
 z · (x · y) ∨ z · (x · y) 
 (y · z) · (x · z)

by co-transitivity of 
. The first option is impossible due to (76=) while the second
option contradicts with (H-2). So xy ∈ K must be valid. hence x � y.

Corollary 3.3. If K is a co-ideal of a Hilbert algebra with apartness H, then the
relation θK =� ∪ �−1 is a co-congruence on H with 1θK = K.

Proof. Since it is clear that θK is a co-congruence on H, let us show that 1θK = K.
If y ∈ 1θK , then (y, 1) ∈ θK . thus 1 = y · 1 ∈ K ∨ y = 1 · y ∈ K. Hence y ∈ K

by (H-6), (H-5) and (K1).
Conversely, let y ∈ K. Then 1 · y = y ∈ K by (H-5). Thus (y, 1) ∈ θK and

y ∈ 1θK .

Since θ�K and θK are an associate pair of congruence and co-congruence on Hilbert
algebra with apartness H, then we can construct the family H/(θ�K , θK) = {[x] : x ∈
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H} and the family [H : θK ] = {xθK : x ∈ H} where the equality and the apartness
are defined as follows:

(∀x, y ∈ H)([x] = [y] ⇐⇒ (x, y) � θK ∧ [x] 6= [y] ⇐⇒ (x, y) ∈ θK)

and

(∀x, y ∈ H)(xθK = yθK ⇐⇒ (x, y) � θK ∧ xθK 6= yθK ⇐⇒ (x, y) ∈ θK).

This last mentioned family has no a counterpart in classical theory of Hilbert alge-
bras.

To show that this quotient structure H/(θ�K , θK) is a Hilbert algebra with apart-
ness, we need the following lemma.

Lemma 3.10. Let K be a co-ideal of a Hilbert algebra with apartness H. If we
define an operation ′ ∗ ′ on H/(θ�K , θK) in the following way

(∀x, y ∈ H)([x] ∗ [y] = [x · y]),

then it is a well-defined an internal binary operation on H/(θ�K , θK).

Theorem 3.7. Let K be a co-ideal of a Hilbert algebra with apartness H. Then
the family H/(θ�K , θK) is a Hilbert algebra with apartness, where the co-order � is
defined by

(∀x, y ∈ H)([x] � [y] ⇐⇒ x � y).

Proof. Since axioms (H-1), (H-2), and (H-5) are simply verified, we will prove that
the axiom (H-3 6=) is a valid formula in H/(θ�K , θK). If [x] 6= [y], then (x, y) ∈ θK .
This means x · y ∈ K ∨ y · x ∈ K. Hence x � y ∨ y � x. So, [x] � [y] ∨ [y] � [x].
On the other hand, we have (x · y, 1) ∈ θK ∨ (y · x, 1) ∈ θK . Therefore, [x] ∗ [y] 6=
[1] ∨ [y] ∗ [x] 6= [1].

To show that the family [H : θK ] is also a Hilbert algebra with apartness, we
need the following lemma.

Lemma 3.11. Let K be a co-ideal of a Hilbert algebra with apartness H. If we
define an operation ′ ? ′ on [H : θK ] in the following way

(∀x, y ∈ H)(xθK ? yθK = (x · y)θK),

then it is a well-defined an internal binary operation on [H : θK ].
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Theorem 3.8. Let K be a co-ideal of a Hilbert algebra with apartness H. Then the
family [H : θK ] is a Hilbert algebra with apartness, where the co-order � is defined
by

(∀x, y ∈ H)(xθK � yθK ⇐⇒ x � y).

Proof. Since axioms (H-1), (H-2), and (H-5) are simply verified, we will prove that
the axiom (H-3 6=) is a valid formula in [H : θK ]. If xθK 6= yθK , then (x, y) ∈ θK .
This means x · y ∈ K ∨ y · x ∈ K. Hence x � y ∨ y � x. So, xθK � yθK ∨ yθK �
xθK . On the other hand, we have (x · y, 1) ∈ θK ∨ (y · x, 1) ∈ θK . Therefore,
xθK ? yθK 6= 1θK ∨ yθK ? xθK 6= 1θK .

Although this Hilbert algebra with apartness [H : θ], constructed by the co-
congruence θK , does not have its counterpart in the classical theory of Hilbert al-
gebras, it nevertheless appears naturally. Its existence is due to the specificity of
Bishop’s constructive framework. However, there is a strong link between Hilbert
algebras with apartness H/(θ�K , θK) and [H : θK ].

Theorem 3.9. Let f : H −→ M be a se-homomorphism between Hilbert algebras
with apartness. If we denote co-ideal Coker(f) by K, then there are the unique se-
epimorphisms π : H −→ H/(θ�K , θK), defined by π(x) = [x] and ϑ : H −→ [H : θK ],
defined by ϑ(x) = xθK , the unique se-monomorphisms g : H/(θ�K , θK) −→ M ,
defined by g([x]) = f(x) and h : [H : θK ] −→ M , defined by h(xθK , and the unique
injective, embedding and surjective se-homomorphism ϕ : H/(θ�K , θK) −→ [H : θK ],
defined by ϕ([x]) = xθK , such that

f = g ◦ π, f = h ◦ ϑ and ϑ = π ◦ ϕ, g = h ◦ ϕ and f = h ◦ ϕ ◦ π

are valid.

Proof. Since the proof of this theorem consists of a direct verification of the enu-
merated statements, we will omit their evidences.

4 Conclusion
In the paper we have introduced and analyze Hilbert algebras with apartness in the
Bishop’s constructive principled-philosophical-logic framework. The idea of Hilbert
algebra built on a set with apartness (H,=, 6=) as a carrier of the algebraic structure
is introduced in the Introductory Section of this article. In Section 3, which is a
major part of this research, the properties of Hilbert with apartness are presented.
This section is divided into seven subsections. While the concept of co-subalgebra
was introduced and analyzed in subsection 3.1, the concept of co-order relations in
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a Hilbert algebra with apartness was the focus of subsection 3.2. In subsections
3.3 and 3.4 some important properties of the concepts of co-ideals and co-filters in
such algebras are demonstrated. Subsection 3.5 deals with the se-homomorphisms
of Hilbert algebras with apartness. In the last subsection, we deal with the co-
congruence generated by a co-idea and, through it, construct a tightly interconnected
two different types of Hilbert algebras, one of which has no counterpart in the
classical theory of Hilbert algebras.
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Abstract

Answer Set Programming (ASP) is nowadays a dominant rule-based knowledge
representation tool. Though existing ASP variants enjoy efficient implementations,
generating an answer set remains intractable. The goal of this research is to define
a new ASP-like rule language, 4SP, with tractable model generation. The language
combines ideas of ASP and a paraconsistent rule language 4QL. Though 4SP shares
the syntax of ASP and for each program all its answer sets are among 4SP models, the
new language differs from ASP in its logical foundations, the intended methodology
of its use and complexity of computing models.

As we show in the paper, 4QL can be seen as a paraconsistent counterpart of ASP
programs stratified with respect to default negation. Although model generation for
4QL programs is tractable, dropping stratification makes it intractable for both 4QL and
ASP. To retain tractability while allowing non-stratified programs, in 4SP we introduce
trial expressions interlacing programs with hypotheses as to the truth values of default
negations. This allows us to develop a model generation algorithm with deterministic
polynomial time complexity.

We also show relationships among 4SP, ASP and 4QL.

1 Introduction and Motivations

Answer Set Programming (ASP) [5, 7, 17, 39, 40, 41, 44, 47, 48, 62] is a knowledge
representation framework based on the logic programming and nonmonotonic reasoning
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paradigms that uses an answer set/stable model semantics for logic programs. Generating
answer sets is intractable which is both an ASP strength and a weakness. The strength arises
from concise representations of NP-complete problems and the use of efficient ASP solvers
to conquer these problems. The weakness stems from potential lack of scalability: one can
hardly expect efficient performance over large datasets. Even generating the first answer set
may require time longer than could be allocated.

Another research line is represented by 4QL [49, 50, 51, 63], a four-valued paracon-
sistent rule language with tractable model generation and query answering. The language
allows for disambiguating inconsistencies and reacting on ignorance in a nonmonotonic
manner. For that purpose inspection operators for accessing truth values of literals have
been introduced. However, tractability comes at a price of stratification over inspection op-
erators. While the ASP semantics is basically three-valued with truth values t (true), f (false)
and u (unknown) [25, 56], 4QL uses the fourth truth value, i, representing inconsistency.

Paraconsistent and paracoherent versions of logic programs and ASP have been investi-
gated in the literature [4, 16, 21, 29, 33, 34]. However, to our best knowledge, no version
of ASP enjoys tractable model generation. Many approaches use the logic B4 [8] as the
base formalism. However, B4 may be problematic when used in the contexts we consider.
Therefore, in 4QL and 4SP we use the L+

4 logic not sharing less intuitive features of B4.
The superscript ‘+’ indicates that original logics are extended by introducing additional
connectives.1

In order to motivate the use of a paraconsistent approach and the choice of L+
4 rather

than B+
4 , consider sample rules of an imaginary rescue scenario listed as Program 1, where

resc abbreviates “rescuer” and one is primarily interested in checking who is going to be
saved by the rescuer, as specified in Lines 1–2 of the program where, as standard in rule-
based languages, ‘H :– B.’ denotes that the conjunction of formulas in B implies H , and
‘H.’ abbreviates ‘H :– true.’.

Program 1: Sample rules of the rescue scenario.
1 willSave(resc, P ) :– ¬willSave(P, P ), evacuable(P ).
2 ¬willSave(resc, P ) :– willSave(P, P ).
3 willSave(eve, eve). evacuable(eve).
4 ¬willSave(jack, jack). evacuable(jack).
5 ¬willSave(resc, resc). evacuable(resc).

Program 1, derived from the barber paradox, has no consistent models. Indeed, the least set
of its conclusions contains, among others,

1‘B’ is used to indicate that we basically deal with the Belnap-Dunn logic. ‘L’ indicates that a linear
ordering replaces the truth ordering of B4. For logics used in this paper see Table 2.
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willSave(resc, resc), ¬willSave(resc, resc), (1)
willSave(eve, eve), ¬willSave(resc, eve), (2)
¬willSave(jack, jack), willSave(resc, jack). (3)

Despite the inconsistency in (1), conclusions in (2)–(3) provide useful information about
eve and jack. Of course, there may be more victims for whom conclusions are consistent.
In fact, given that evacuable(P ) is consistent, willSave(P ) is consistent for all P other than
resc. Importantly, inconsistent conclusions may be useful as well. First, they may indicate
problematic situations calling for further attention. Second, when a generated plan makes
a given goal inconsistent, executing the plan may be a better choice than doing nothing.
E.g., if the goal is important, like helping victims, a plan leading to an inconsistent goal
may be better than having no plan: though during planning there are arguments against
achieving the goal as the plan’s effect, there are also arguments that the goal will actually
be accomplished. For many further arguments towards paraconsistency see [1, 3, 6, 11, 12,
13, 14, 15, 22, 23, 28, 36, 37, 64, 69] and numerous references there.

To illustrate the questionable features of B4, assume that willSave(chris, chris) is un-
known and willSave(resc, resc) is inconsistent. In such a case, in B4 we have:

(willSave(resc, resc) ∨ willSave(chris, chris)) is true; (4)
(willSave(resc, resc) ∧ willSave(chris, chris)) is false. (5)

The results (4)–(5) may be misleading to users sharing the classical understanding of ∨
and ∧, where one expects disjunction to be true (respectively, conjunction to be false) only
when at least one of its arguments is true (respectively, false). In L+

4 , the disjunction in (4)
is inconsistent and the conjunction in (5) is unknown. Consequently, we chose L+

4 and 4QL,
adjusting the related algorithms to our needs.2

The original contributions of the paper include:

• a synthesis of ASP and 4QL: to design a new language, 4SP, with tractable model
generation and capturing all queries computable in deterministic polynomial time;

• a generalized concept of stratification: to achieve the uniformity of presentation and
comparability of ASP and 4QL programs;

2Note, however, that in some other contexts it may be intuitive to assume a disjunction to be true even when
none of its arguments is true. For examples see [19, 20] where informational semantics is considered, a defense
of B4 in [67] where the canonical account of truth values is reminded as a tool for assessing consequences of
what the computer is being told, or the discussion of B4 in [35].
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• a concept of trial expressions allowing for setting hypotheses: to accomplish tractabil-
ity of 4SP model generation;

• Algorithm 11: for generating well-supported 4SP models;

• Theorems 5.11, 6.11, 8.1 – 8.4: to show relationships among ASP, 4QL and 4SP as
well as properties of 4SP.

The paper is structured as follows. In Section 2 we outline the methodology behind 4SP

and discuss selected use cases of 4SP. In Sections 3 – 5 we recall the three- and four-valued
logics considered in the paper as well as the ASP and 4QL languages. In Section 6 we
introduce trial expressions and the 4SP language, and present an algorithm for 4SP model
generation. In Section 7 we illustrate the use of 4SP using a simple case study. Section 8 is
devoted to properties of 4SP and its relations to ASP and 4QL. Finally, Section 9 discusses
related work and concludes the paper.

2 The Intended Methodology and Selected Use-Cases

Many application examples of paraconsistent reasoning are discussed, e.g., in [1, 3, 11, 12,
23, 64, 69]. 4SP can serve as a pragmatic tool for querying paraconsistent belief bases in
most application domains and scenarios addressed there. Note that in this paper “reasoning”
is based on querying rather than entailment. Below we outline the intended methodology of
its use and present some further selected use cases.

2.1 The Intended Methodology

As we will show in Section 8, every 4SP program may have an exponential number of
models. However, computing each model is tractable. We therefore replace the ASP

“generate-and-test” methodology, particularly suitable for solving NP-complete problems,
by the “generate-choose-and-use” methodology, where one:

• generates as many 4SP models as possible given particular time restrictions;

• selects the best models with respect to some externally defined criteria.

Model generation may be “blind” if no further information is available. With additional
external knowledge it may be better directed. For example, generating literals in models
may be directed by suitable probability distributions when available. Given a nonmonotonic
reasoning support, one may tend to avoid abnormal literals, use defaults or results obtained
from other nonmonotonic techniques.3

3For a review of tractable versions of such forms of reasoning, compatible with our approach, see [49].
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The criteria of selecting “the best” models are dependent on the particular goals to be
achieved. E.g., one may choose models:

• minimizing the number of inconsistent literals r(.) for specific r’s;

• minimizing the number of unknown literals r(.) for specific r’s;

• minimizing the resource consumption, cost, risks involved, etc.;

• maximizing the probability of success or preferences’ satisfaction;

• etc.

Note that 4SP does not provide specific means for expressing such criteria. It is meant to
generate models specified by programs and then to supply them for evaluation, choice and
use to other systems’ components.

Remark 2.1. Let us emphasize that 4SP model generation is tractable. This contrasts with
ASP, where generating each model is intractable. In 4SP one first generates an arbitrary
set of hypotheses (being tractable) and then uses the hypotheses to generate a model. For
each set of hypotheses there is a unique 4SP model and computing this model is tractable.
Even though iterating through all sets of hypotheses is infeasible (requiring an exponential
time), the intended methodology assumes generation of as many models as possible with the
guarantee that the assumed (feasible) number of models will be generated. This is not the
case in ASP, where one may generate candidates for answer sets and, provided that P6=NP,
finding even the first answer set may require a superpolynomial number of iterations. �

2.2 Selected Use-Cases

2.2.1 Big Data Analytics

When big data is involved, e.g., collected from sensor networks, cyber-physical systems,
IoT, health care systems, social media, smart cities, agriculture, finance, education, etc.,
uncertainty involving inconsistencies, noise, ambiguities and missing information, is in-
evitable [42]:

“most of the attribute values relating to the timing of big data [. . . ] are missing
due to noise and incompleteness. Furthermore, the number of missing links
between data points in social networks is approximately 80% to 90% and the
number of missing attribute values within patient reports transcribed from doc-
tor diagnoses are more than 90%.”
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The aim of big data analytics is to discover hidden knowledge, e.g., leading to early detec-
tion of destructive diseases or simulating risky business decisions. When rule languages are
used as (a support of) analytic tools, they typically use big data aggregates where lack of
knowledge and inconsistencies may or have to be inherited. Indeed, the strategy of enforc-
ing consistency may lead to loss of perhaps valuable information. For example [43],

“in health care systems, inconsistent information may be required to provide
a full clinical perspective where no information loss is desirable”.

In [37], among many others, the following example is appealing:

“in a government tax database inconsistencies in a taxpayer records are used to
invoke queries into that taxpayer.”

In the 4SP language truth values representing informational incompleteness and inconsis-
tencies are first-class citizens: information gaps and inconsistencies are built into the 4SP’s
semantics. Though ASP is ready for handling missing information, when the involved facts
or conclusions of rules are contradictory, its consistency requirement filters out all poten-
tially useful models.

2.2.2 Ontology Fusion

Fusing ontologies or belief bases may result in inconsistencies difficult or undesirable to
recover [43, 45, 59]. Program 2 reflects the scenario discussed in [43, 59], where two
ontologies are fused. Here b, cns, ns, bp stand for brain, central nervous system, nervous
system and body part, respectively.

Program 2: Sample rules resulting from fusing ontologies.
1 cns(X) :– b(X). /* shared by the 1st and the 2nd ontology */
2 bp(X) :– b(X). /* shared by the 1st and the 2nd ontology */
3 ns(X) :– cns(X). /* from the 1st ontology */
4 ¬ns(X) :– bp(X). /* from the 2nd ontology */
5 b(o1).

Conclusions of Program 2 are gathered in the set:

{b(o1), cns(o1), bp(o1), ns(o1),¬ns(o1)}, (6)

with an obvious inconsistency manifesting itself in the presence of both ns(o1) and¬ns(o1).
Though not an answer set, (6) is a 4SP model which can be used for further reasoning. While
the ontology may be huge, the inconsistency affects only literals involving ns(.).
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2.2.3 Some Further Use-Cases

Let us still indicate some further use cases being directly relevant to the current paper:4

• actions in potentially inconsistent/incomplete environments [15];

• belief fusion and shadowing [14, 26];

• argumentation [27, 28];

• approximate reasoning [66].

3 Many-valued Logics Used in the Paper

In the rest of the paper we will focus on propositional rule languages. Of course, first-order
variables are valuable as means to concisely express rule schemata. As we consider finite
domains only, our results can be lifted to the case where first-order variables are present.
Namely, first-order variables can be eliminated by grounding [39]. For example, the rule in
Line 1 of Program 1 represents three rules, one for each constant, resc, eve, jack, occurring
in the program:

willSave(resc, resc) :– ¬willSave(resc, resc), evacuable(resc).
willSave(resc, eve) :– ¬willSave(eve, eve), evacuable(eve).
willSave(resc, jack) :– ¬willSave(jack, jack), evacuable(jack).

Remark 3.1. Assuming a fixed number of rules and relations occurring in a program,
grounding only polynomially increases its size with respect to the number of constants in-
volved. Since we will consider data complexity [2], this feature is sufficient (though not nec-
essary: for many rule-based languages more efficient model generation algorithms exist). �

We will use three- and four-valued logics K+
3 [46], P+

3 [55], L+
4 [52], B+

4 [8] using
(suitable subsets of) truth values: f (false), u (unknown), i (inconsistent), t (true).5 To
keep the presentation uniform, the syntax of all considered logics is the same: for each
considered logic we use a set of propositional variables and define the set of formulas to
contain propositional variables and being closed under unary connectives ¬,∼ (classical
and default negation), and binary ones ∧,∨,→ (conjunction, disjunction and implication).

For the purpose of this paper it suffices to assume that a logic is given by the set of for-
mulas and interpretations assigning truth values to formulas. Let L ∈ {K+

3 , P
+
3 , L

+
4 , B

+
4 }

4Please consult also references in the quoted papers.
5According to the convention we do not distinguish between truth values and constants denoting them.
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¬ ∼
f t t

u u t

i i i

t f f

→ f u i t

f t t t t

u t t t t

i f f t f

t f f t t

Table 1: The semantics of negations and implication. For K+
3 (respectively, P+

3 ),
the row and column labeled by i (respectively, u) is to be removed.

be a logic. The set of its propositional variables is denoted by PL and the set of truth values
is denoted by nL where assume that:

{f, t} ⊆ nL ⊆ {f, u, i, t}.

For the purpose of defining models, we have to designate a set of truth values to act as being
true [57, 65]. The set of designated truth values is denoted by dL (dL ⊆ nL).

To define the semantics of L we first need to provide the semantics of connectives
applied to truth values. Truth tables of negations and implication are shown in Table 1.

Remark 3.2.

• When we deal with less than four truth values, Table 1 needs to be reduced by remov-
ing rows and columns labeled by “irrelevant” truth values. For example, for K+

3 the
row and column containing i is redundant, for P+

3 one removes those labeled by u.

• Intuitively, the default negation ∼ p stands for “p is not true”. However, while its
traditional ASP meaning is “the truth value of p is f or u in the finally computed
interpretation”, when considered as a four-valued connective of 4SP, its meaning is
“p’s truth value is f, u or i in the interpretation computed up to now”.

• The implication on {f, u, t} as well as on {f, i, t} is the implication of [61]. It has
been generalized to {f, u, i, t} in [52]. �

The semantics of ∧ and ∨ is standard:

τ1 ∧ τ2
def= glb≤{τ1, τ2}; (7)

τ1 ∨ τ2
def= lub≤{τ1, τ2}, (8)

where τ1, τ2 ∈ nL and lub, glb are respectively the least upper and the greatest lower bound
with respect to ordering ≤ chosen from Figure 1.
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Figure 1: Truth orderings used in the paper where K stands for Kleene, P - Priest,
L - Linearity, and B - for Belnap.

Logic Extends Truth values Ordering

K+
3 K3 f, u, t ≤K in Figure 1(a)

P+
3 P3 f, i, t ≤P in Figure 1(b)
L+

4 L4 f, u, i, t ≤L in Figure 1(c)
B+

4 B4 f, u, i, t ≤B in Figure 1(d)

Table 2: Logics used in the paper with underlined designated truth values.

To define the semantics of formulas of L ∈ {K+
3 , P

+
3 , L

+
4 , B

+
4 } we assume a mapping

w assigning truth values to propositional variables:

w : PL −→ nL. (9)

Assignments (9) are extended to all formulas:

w(¬A) def= ¬w(A); w(∼A) def=∼w(A); (10)

w(A ◦B) def= w(A) ◦ w(B), where ◦ ∈ {∧,∨,→}. (11)

Logics used in the paper are listed in Table 2, where K3, P3 are three-valued logics of [46]
and [55], B4, L4 are four-valued logics of [8] and [52], respectively.

Definition 3.3 (Literals). Let p ∈ PL be a propositional variable. By a classical literal
(literal, for short) we mean an expression of the form p (positive literal) or ¬p (negative
literal). The set of classical literals is denoted by L. When ` ∈ L, ¬¬` is identified with `.
By a default literal we understand an expression of the form ∼`, where ` ∈ L. The set of
default literals is denoted by D. �

Definition 3.4 (Interpretations, consistency). By an interpretation we mean a finite set
I ⊆ L. An interpretation I is consistent if, for every p ∈ PL, p 6∈ I or ¬p 6∈ I. �
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In what follows, the considered set of propositional variables, PL, will always be finite.
In such cases there is a one-to-one mapping between assignments (9) and interpretations
allowing us to freely switch between them. Namely, given an interpretation I, the corre-
sponding assignment wI is:

wI(p) def=





t when p ∈ I and ¬p 6∈ I;
i when p ∈ I and ¬p ∈ I;
u when p 6∈ I and ¬p 6∈ I;
f when p 6∈ I and ¬p ∈ I.

Of course, wI can be extended to all formulas using Equations (10) and (11). To simplify
notation we will write I(A) to stand for wI(A). Conversely, given w, the corresponding
interpretation Iw is defined by:

Iw def= {p | w(p)= t} ∪ {¬p | w(p)= f} ∪ {p,¬p | w(p)= i}.

Definition 3.5 (Models). Given a logic L with the set of designated values dL⊆ nL, we say
that an interpretation I is a model of a formula A, I |=L A, when I(A) ∈ dL. �

4 Answer Set Programming

We will focus on normal ASP programs.6

Definition 4.1 (Syntax of normal ASP programs).
Let `1, . . . , `k, `k+1, . . . `m ∈ L ∪ { f, u, t} and ` ∈ L. A normal ASP rule (ASP rule, for
short) is an expression of the form:

` :– `1, . . . , `k,∼`k+1, . . . ,∼`m. (12)

It is further assumed that 0 ≤ k ≤ m and when k + 1 ≤ m then k > 0.7 The literal ` is
called the conclusion (head) and the part after ‘:–’ is called the premises (body) of rule (12).
A rule with the empty premises is called a fact and is written as ‘`.’. A rule without default
literals is called pure.

A normal ASP program (ASP program, for short) is a finite set of normal rules. A pro-
gram is pure if it contains pure rules only. �

Note also that the empty conjunction, thus the empty body, is assumed to be t.

6The results can be extended to disjunctive programs where disjunctions correspond to choice rules. We
leave this extension for future research.

7Default literals have to be “guarded” by a classical literal.
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The basic rule-based reasoning principle of ASP is:

– if premises of rule (12) evaluate to t, add ` to the set of conclusions. (13)

The semantics of ASP programs is given by answer sets.

Definition 4.2 (Models of ASP programs; Answer Sets). By a model of an ASP program Π
we mean a consistent interpretation I satisfying all rules of Π understood as implications:

I |=K+
3

(`1 ∧ . . . ∧ `k∧ ∼`k+1 ∧ . . .∧ ∼`m)→ `.

If Π is pure then an answer set of Π is the least (with respect to⊆) model of Π, if exists. If Π
contains∼ then I is an answer set of Π iff I is the least model of ΠI , where ΠI is obtained
from Π by substituting each default literal ∼` occurring in Π by its truth value I(∼`). �

Let us now provide a simple (naive) algorithm for generating an answer set for an ASP

program. We first need Algorithm 3 generating minimal interpretations for pure programs.
To keep presentation simple, it is based on the naive bottom up evaluation - see [2]. Each
literal of the form ¬p is treated as a fresh propositional variable, say p′, so pure ASP pro-
grams can be seen as DATALOG programs to which the original naive bottom up evaluation
applies. Generating an answer set can be done nondeterministically, as in Algorithm 4.

Algorithm 3: function generateLeast(Π);
1 /* returns the least model of a pure ASP program Π */

2 set I = ∅;
3 while there is a rule ‘` :– β.’ ∈ Π such that I(β) = t and ` 6∈ I do
4 set I = I ∪ {`};
5 return I.

Algorithm 4: function generateAnswerSet(Π);
1 /* returns an answer set of an ASP program Π if exists */

2 set I = a nondeterministically generated consistent interpretation;
3 set J = generateLeast(ΠI); /* ΠI is defined in Def. 4.2 */
4 if I =J then
5 return I.

The following theorem is well known (see, e.g., [7, 17, 53]).

Theorem 4.3. Given an ASP program Π, generating an answer set for Π is an NP-complete
problem with respect to the number of propositional variables in Π. �
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5 The 4QL Language

The 4QL language has been introduced in [49, 50]. In this paper we shall use its extended
version of [51].8 4QL allows for paraconsistent reasoning, using the L+

4 logic. Rather than
default negation ∼, inspection operators are used as defined below.

Definition 5.1 (Inspection operators). By an inspection operator we understand any ex-
pression of the form ` ∈̇T , where ` ∈ L and T ⊆ { f, u, i, t}. The meaning of inspection
operators depends on the actual interpretation I:

I(` ∈̇T ) def=
{
t when I(`) ∈ T ;
f otherwise.

(14)

The set of inspection operators is denoted by I. �

When truth values are restricted to three values of K+
3 , default negation of ASP can be

defined by:

∼` def≡ (
` ∈̇ { f, u}). (15)

The original version of 4QL uses modules but, for the sake of uniformity, we skip them
here. In order to compare 4QL, ASP, and 4SP as well as to achieve the full power of
4QL without using modules, let us introduce a general form of stratification with respect to
a set of arbitrary expressions E, e.g., consisting of default literals or expressions involving
inspection operators (a definition similar in spirit but using modules has been provided
in [63]).

Definition 5.2 (Stratification). Given a finite set S of 4QL (or ASP) rules and a set of ex-
pressions E, we say that S is stratifiable with respect to E when S=S1 ∪ . . .∪ Sr such that
for 1≤ i 6= j≤r, Si ∩ Sj = ∅ and:

• for every conclusion ` of a rule in S, there is 1 ≤ i ≤ r such that all rules with
conclusions `,¬` are in Si (` is fully defined in Si);

• whenever an expression e 6∈ E appears in premises of a rule in Si, for 1 ≤ i ≤ r,
classical literals appearing in e are fully defined in Sj for some 1 ≤ j ≤ i;

• whenever an expression e ∈ E appears in premises of a rule in Si for 1 ≤ i ≤ r,
classical literals occurring in e are fully defined in Sj for some 1 ≤ j < i. �

8An open source interpreter of 4QL and its doxastic extensions (see [14] and references there) is available
via 4ql.org.
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Remark 5.3. Stratification of Definition 5.2 generalizes stratification used in DATALOG¬

(see, e.g., [2]). To verify whether a set of 4QL rules is stratifiable, one can easily adapt the
deterministic polynomial time algorithm checking stratification for DATALOG¬ programs.
Finding a stratification, if exists, is also tractable. �

Definition 5.4 (Syntax of 4QL programs).
Let ` ∈ L, `11, . . . , `1k1 ,. . . , `m1, . . . , `mkm∈ L ∪ I ∪ { f, u, i, t}. A 4QL rule is an expres-
sion of the following form, where semicolon ‘;’ stands for disjunction, with conjunction ‘,’
binding stronger:

` :– `11, . . . , `1k1 ; . . . ; `m1, . . . , `mkm . (16)

A rule without occurrences of inspection operators is called pure. A 4QL program is a finite
set of 4QL rules stratifiable with respect to I. A program is pure if it contains pure rules
only. �

Rule (16) is interpreted as the following implication of L+
4 :

(
(`11 ∧ . . . ∧ `1k1) ∨ . . . ∨ (`m1 ∧ . . . ∧ `mkm)

)→ `. (17)

The reasoning principles of 4QL are (13) together with:

– if premises of rule (16) evaluate to i, add `,¬` to the set of conclusions. (18)

Remark 5.5. Though Principles (13) and (18) are natural, they appear problematic when
disjunction is concerned. As an example, consider Program 5.

Program 5: Program illustrating a disjunction issue.
1 reachable(base, P ) :– can_reach(base, P, ground).
2 reachable(base, P ) :– can_reach(base, P, air).

When one of premises of rules in Lines 1–2 of Program 5 evaluates to t with the
other one being i, according to Principles (13), (18), reachable(base,P) becomes i. On
the other hand, base is reachable from P either by ground or by air, so the conclusion
reachable(base,P) should intuitively be true. In the classical logic the above rules are
equivalent to:

reachable(base,P) :– can_reach(base,P, ground) ∨ can_reach(base,P, air). (19)

Therefore one needs a disjunction in rules’ bodies. In fact, using rule (19) one indeed
concludes that reachable(base, P ) is t in each logic listed in Table 2.

Accordingly, disjunction is explicit in 4QL (and 4SP) rules. Due to its nonmonotonic
behavior, it requires a nonstandard computation engine.9 For details see [49, 51] and
further parts of the current paper. �

9A DATALOG-like evaluation applied to reducts in ASP is far from being sufficient here.
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The semantics of 4QL is defined by well-supported models, where well-supportedness
guarantees that all conclusions are derived using reasoning starting from facts [49, 50, 51].
For a definition of well supported models see [50]. To put well-supportedness into perspec-
tive, below we provide a new, equivalent definition generalizing the concept of loops [48].

Definition 5.6 (Dependency graph). Let Π be a pure 4QL program. By a dependency graph
of Π we understand a directed graph with vertices labeled by classical literals occurring in
Π. There is an arc from ` to `′ if there is a rule in Π whose head is ` and `′ appears in the
rule’s body. �

Definition 5.7 (Loop). A non-empty subset L of literals occurring in a pure 4QL program
Π is called a loop of Π if for any `, `′ ∈ L, there is a path of non-zero length from ` to `′ in
the dependency graph of Π, such that all the vertices in the path are in L. �

By R−(L,Π) we understand the set of rules:
{

‘` :– B1; . . . ;Bm.’ ∈ Π | ` ∈ L and there is 1 ≤ i ≤ m such that
for all `′ in Bi, `

′ 6∈ L}. (20)

Definition 5.8 (Well-supported model). An interpretation I is a well-supported model of
a pure 4QL program Π iff I is the least (with respect to⊆) model of Π,10 and for every loop
L of Π, if there is ` ∈ L such that I(`) ∈ {i, t} then:

• I(`) = t iff there is a rule ‘` :– B.’ in R−(L,Π) such that I(B) = t and there are
no rules ‘` :– C.’, ‘¬` :– D.’ in R−(L,Π) such that I(C) = i or I(D) ∈ {i, t};

• I(`) = i iff there is a rule ‘` :– B.’ or ‘¬` :– B.’ in R−(L,Π) such that I(B) = i or
there are rules ‘` :– C.’, ‘¬` :– D.’ in R−(L,Π) with I(C)= t and I(D)= t. �

Algorithm 6 presents a high-level pseudocode for computing well-supported models
for pure 4QL programs. It is further formalized as Algorithm 7 (implementing Line 4 of
Algorithm 6), and Algorithm 8 (computing the well-supported model). Note that all con-
clusions inferred by Algorithm 6 are supported by facts and no conclusion is obtained using
a proposition defeated later.

Remark 5.9. To generalize Algorithm 8 to non-pure programs, one can find its stratification
(without losing tractability – see Remark 5.3) and eliminate inspection operators stratum
by stratum, starting from the lowest one.11 Let Si be the lowest stratum where inspection
operators occurs. Their truth values are determined in strata lower than Si. Substituting
all inspection operators occurring in Si by the determined truth values makes S1 ∪ . . .∪Si

a pure program for which Algorithm 8 applies. This procedure is to be iterated until all
strata have been dealt with. �
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Algorithm 6: A pseudocode for computing the well supported model for a given pure
4QL program.
1 repeat
2 generate the least set of conclusions;
3 retract conclusions based on defeated premises, i.e., premises at some point being true

but later becoming inconsistent;
4 correct (minimally) the obtained set of literals to make it a model (to satisfy rules

with inconsistent premises and not inconsistent conclusions)
5 until no further retractions are needed.

Algorithm 7: function findCorrection(Π, I);
1 /* returns the correction of I with respect to a pure 4QL program Π */

2 set J = ∅;
3 set K = I;
4 while there is a rule ‘` :– β.’ ∈ Π such that K(β) = i and K(`) 6= i do
5 set J = J ∪ {`,¬`};
6 set K = K ∪ {`,¬`};
7 return J .

The following theorem is proved in [50, 51].

Theorem 5.10.

• For every 4QL program Π there is exactly one well-supported model and it can be
generated in deterministic polynomial time with respect to the number of proposi-
tional variables in Π.

• 4QL captures deterministic polynomial time over linearly ordered domains. That is,
every query computable in deterministic polynomial time can be expressed in 4QL

whenever a linear ordering over the domain is available in the 4QL vocabulary. �

When stratification is not required, like in the case of ASP, generating well supported
models for 4QL programs becomes an NP-complete problem.

The following theorem shows a close correspondence between (stratified) ASP and 4QL

programs.

10In the four-valued case, minimality substitutes the completion of [18] used together with loop formulas to
characterize answer sets for ASP programs [48].

11Here we understand stratification in the sense of Definition 5.2 with E = I.
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Algorithm 8: function generateWsm4ql(Π)
1 /* returns the well-supported model I for a 4QL program Π */

2 set Inc=∅; /*Inc is the set of inconsistent literals detected so far */
3 repeat
4 set PTrue = generateLeast(Π\{‘` :– β.’ | `∈Inc});

/* P T rue is the set of potentially true literals */
5 set I = Inc ∪ {` | ` ∈ PTrue};
6 set J = findCorrection(Π, I);
7 set Inc = {p,¬p | I(p) = i} ∪ J ;
8 until J = ∅;
9 return I.

Theorem 5.11. Let Π be an ASP program stratifiable with respect to the set of default
literals D and Π′ be a 4QL program obtained from Π by substituting default negations by
inspection operators as in (15). Then the well supported model I of Π′ is the answer set of
Π iff I is consistent. If I is inconsistent then Π has no answer set. �

6 The 4SP Language

The syntax of 4SP programs is very similar to ASP programs. We extend the language by
allowing disjunctions and the truth constant i to appear in rules’ bodies.

Definition 6.1 (Syntax of 4SP programs).
Let `∈L and `11, . . . ,`1k1, . . . , `m1,. . . ,`mkm∈ L ∪D ∪ { f, u, i, t}. A 4SP rule is an expres-
sion of the following form, where semicolon ‘;’ stands for disjunction, with conjunction ‘,’
binding stronger:

` :– `11, . . . , `1k1 ; . . . ; `m1, . . . , `mkm . (21)

A 4SP rule is pure if it does not involve default negation. A 4SP program is a finite set of
4SP rules. A 4SP program is pure if it contains pure rules only. �

Remark 6.2. Note that we require a nonempty conclusion, so ASP-like constraints are
excluded. With ASP-like constraints, tractability could be lost. Indeed, iterating through
the set of hypotheses (see Definition 6.5) could take superpolynomial time when models
could be rejected by constraints. �

The key step towards tractable model generation is to use the four valued default nega-
tion, as defined in Table 1. To illustrate the idea, let us start with supportedness losing in
the non-stratified case.
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Example 6.3. When 4QL programs may be non-stratified, supportedness may be lost. To
illustrate the issue, consider non-stratifiable 4QL rules in Program 9.12 The program has
no well-supported models: the rule in Line 1 makes p true so the second rule makes q true,
too. That way p loses its support so cannot be derived. Consequently, q cannot be derived,
so its value becomes u and so on.

Program 9: Supportedness losing.
1 p :– q ∈̇ {u, f}. /* p :– ∼q. – when restricted to ASP */
2 q :– p.

When Line 1 is replaced by ‘p :– ∼ q.’, with the four-valued ∼ , after applying the
rules it would be natural to consider ∼q inconsistent. Now, Principle (18) together with
the rule in Line 1 make p inconsistent and the rule in Line 2 makes q inconsistent. So the
well-supported model would become {p,¬p, q,¬q}. �

In 4SP, rather than using two-valued inspection operators, we will use the four-valued
default negation ∼ . However, we encounter the next issue, illustrated in Example 6.4.

Example 6.4. Consider Program 10. It consists of two non-stratifiable rules. Both {p} and
{q} are its well-supported models. Their generation depends on the order of rules: when
the rule in Line 1 is applied first, the result is {p}, being {q} otherwise. �

Program 10: A further non-stratifiability effect.
1 p :– ∼q.
2 q :– ∼p.

Of course, the semantics should not depend on the order of rules’ application. We
therefore consider programs in the context of trial expressions allowing one to select truth
values of default negations.

Definition 6.5 (Trial expression). By a trial expression we understand an expression of the
form:

Π withH, (22)

where Π is a program with ASP syntax in the sense of Definition 4.1 and H, called a set of
hypotheses for Π, is a finite set of expressions of the form ∼` � t or ∼` � f such that for
every and only literal `′ occurring in Π within an expression ∼`′, the literal `′ occurs (as
a subexpression) inH. �

12Program 9 is a set of rules being neither a 4QL nor a 4SP program.
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The set of trial expressions is denoted by T.
Intuitively, Π withH amounts to assuming the truth values of default negations in H

and verifying whether the hypotheses have been consistent with the results of Π. For a par-
ticular default negation occurring in Π,

• first assume that the truth value ∼` is t (respectively, f);

• if, during generating an answer set for Π, the value of ∼` appears not to be t (respec-
tively, not to be f), correct the truth value of ∼` assigning it the value i.

Note that we do not allow expressions of the form ∼` � i. First, the role of trial expres-
sions is to try to “guess” consistent solutions with inconsistency being an undesirable effect.
Second, ∼` � i can be expressed by {∼` � f,∼¬` � f}. This follows from the fact that
∼` is f only when ` is t.

Example 6.6. Let Π denote Program 10. Then:

Π with {∼q � t,∼p� f} (23)

is intended to mean that the value of ∼q is hypothesized to be true and the value of ∼p is
hypothesized to be false. Hence, (23) results in {p}, confirming the hypotheses.

On the other hand, consider:

Π with {∼p� t,∼q � t}. (24)

The rules of Program 10 generate {p, q} as conclusions, violating both hypotheses ex-
pressed in (24). Therefore, both ∼p and ∼q become i and the answer set for (24) becomes
{p,¬p, q,¬q}. �

Remark 6.7. Note that hypotheses of (22) may mutually affect knowledge bases repre-
sented by programs. For example, ¬p is inconsistent with the hypothesis that ∼p � f. If
¬p is a generated conclusion, ∼p � f together with ¬p makes ∼p inconsistent, what only
happens when p is i. This calls for placing p in the generated model, too. Such side-effects
have to be reflected in the model generation algorithm. �

In importing truth values from an interpretation I to the set of hypotheses H we deal
with the situation when the imported truth values are not u. Therefore, we are on the grounds
of P+

3 and can use the following rules:13

if ` ∈ I then add ∼`� f toH. (25)

13The rule (25) applies to ` being either positive or negative.
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Of course, when ` is i in I, `,¬` ∈ I so the rule (25), applied twice, results in adding toH
both ∼`� f and ∼¬`� f.

Conversely,

if {∼`� f,∼`� t} ⊆ H then add `,¬` to I; (26)

else if ∼`� f ∈ H then add ` to I. (27)

Definition 6.8 (Semantics of 4SP). Given an 4SP program Π, by a well-supported model
of Π we mean any well-supported model for ‘Π withH’ where H is an arbitrary set of
hypotheses for Π. �

For computing well-supported models of 4SP programs we still need the following def-
inition.

Definition 6.9 (Interlace). Let I be an interpretation andH be a set of hypotheses for a 4SP

program. By an interlace of I and H, denoted by interlace(I,H), we mean a minimal
interpretation J such that I ⊆ J and J is closed under application of rules (25)–(27). �

Algorithm 11 computes the well-supported model for a 4SP program Π when a set of
hypotheses H is given. The function ‘generateWsmAux’ is obtained from Algorithm 8 by
addingH as a parameter and replacing Line 5 by:

5’ set I = interlace(Inc ∪ {` | ` ∈ PTrue},H). (28)

Algorithm 11: function generateWsm4sp(Π,H)
1 /* returns the well-supported model I for ‘Π withH’ */
2 return generateWsmAux(Π,H).

In the light of Theorem 8.2, the intended use of Algorithm 11 instantiates the method-
ology outlined in Section 2.1, where model generation depends on assigning truth values to
hypotheses.

Remark 6.10. Algorithm 11 substantially differs from the algorithms for generating well-
supported models for 4QL programs due to the use of interlace() in (28). �

It is also important to notice that whenever we deal with 4SP programs stratifiable with
respect to D, the well supported model (in the sense of Theorem 5.11) contains a minimal
(wrt ⊆) set of inconsistent literals. In such cases it is then worth to first generate this well-
supported model rather than start from arbitrary sets of hypotheses (se also Section 7).
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Theorem 6.11. If a 4SP program is stratifiable with respect to D then its well supported
model I (in the sense of Theorem 5.11) is minimally inconsistent, that is for every set H,
the set of inconsistent literals in I is included in (or equal to) the set of inconsistent literals
in the model for Π withH.

PROOF To compute I one can apply Algorithm 8 stratum by stratum. Now minimality
follows from the fact that, in each iteration, Algorithm 8 uses DATALOG-based computation
(Algorithm 3) generating the least models, thus makes inconsistent those and only literals
that have to be inconsistent. �

7 A Case Study

To illustrate the use of 4SP, consider Program 12, modifying Program 1 where loc(P,L)
stands for “person P is in location L” and path(X,L) stands for “there is a path between
locations X and L”.

Program 12: Sample rules of the modified rescue scenario.
1 willSave(resc, P ) :– ∼willSave(P, P ), evacuable(P ).
2 ¬willSave(resc, P ) :– willSave(P, P ).
3 evacuable(P ) :– ∼¬reachable(base, P ).
4 reachable(X, P ) :– path(X, L), loc(P, L).
5 path(X, L) :– path(X, Y ), path(Y, L).
6 path(base, l1). ¬path(base, l1). path(base, l2). path(l1, l3). path(l2, l3).
7 loc(resc, base). loc(eve, l1). loc(jack, l3).
8 willSave(resc, resc).

First observe that Program 12 has no answer sets. Indeed the rule in Line 2 together
with the fact in Line 8 make the literal willSave(resc, resc) inconsistent. Therefore, in the
rest of this section we deal with 4SP.

The graph specified by path() in Program 12 is shown in Figure 2.

Figure 2: The graph specified by path() in Program 12.
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According to the 4QL convention, variables occurring in premises of a rule and not
occurring in its conclusion are existentially quantified in premises [51]. Therefore, the rule
in Line 5 is to be understood as implicitly quantified with ∃Y :

path(X,L) :– “∃Y path(X,Y ), path(Y,L)”. (29)

Since we deal with finite domains, existential quantifiers abbreviate disjunctions:

∃Y (A(Y )
) def=

(
A(a1) ∨ . . . ∨ A(an)

)
, (30)

where a1, . . . , an are the domain elements. For example, when X = base, L = l3, (29) is
equivalent to:14

path(base, l3) :– path(base, l1)︸ ︷︷ ︸
i

, path(l1, l3)︸ ︷︷ ︸
t

; path(base, l2)︸ ︷︷ ︸
t

, path(l2, l3)︸ ︷︷ ︸
t

. (31)

Thus, the truth value of path(base, l3) is
(
(i ∧ t) ∨ (t ∧ t)) =

(
i ∨ t) = t.

To eliminate first-order variables in rules other than in Line 3 we use grounding. E.g.,
Line 1 of Program 12 represents three rules:

willSave(resc, eve) :– ∼willSave(eve, eve), evacuable(eve). (32)

willSave(resc, jack) :– ∼willSave(jack, jack), evacuable(jack). (33)

willSave(resc, resc) :– ∼willSave(resc, resc), evacuable(resc). (34)

Program 12 is stratifiable with respect to ∼ so, according to Theorem 6.11, let us first
analyze its outcomes without using hypotheses and trial expressions.

According to the rule in Line 4, reachable(base, eve) is i, reachable(base, jack) is t
and reachable(base, resc) is u. Thus the rule in Line 3 results in evacuable(eve) being i,
evacuable(jack) being t and evacuable(resc) being t.15. As noticed earlier, the truth value
of willSave(resc, resc) is i. Using (32) and (33), we infer that willSave(resc, eve) is i and
willSave(resc, jack) is t.

According to our definition of semantics, the model sketched above is obtained using
the set of hypotheses compatible with assumptions made in nonmonotonic rules (using ∼ ).
For example,H would in this case contain:

∼¬reachable(base, eve) � t, ∼¬willSave(eve, eve) � t,
∼¬reachable(base, jack) � t, ∼¬willSave(jack, jack) � t,
∼¬reachable(base, resc) � t, ∼¬willSave(resc, resc) � t.

14Without violating the result, we only list literals with truth value different from u.
15Notice the nonmonotonic nature of rule in Line 3: due to the use of ∼ we deduced the truth of

evacuable(resc) on the basis of the unknown value of literal ¬reachable(base, resc) in the rule’s premise.
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Of course, other sets of hypotheses are also allowed and can result in different outcomes.
For example, replacing ∼¬reachable(base, jack) � t by ∼¬reachable(base, jack) � f
would make the conclusions evacuable(jack) and willSave(resc, jack) inconsistent.

8 Properties of 4SP

Let us now focus on the most important properties of 4SP.

Theorem 8.1. For every 4SP program Π and every set of hypotheses H for Π provided
as an input to Algorithm 11, the unique well-supported model is computed in deterministic
polynomial time in the number of propositional variables in Π and the size ofH.

PROOF Note that interlace, in total, can add at most a linear (w.r.t. the number of proposi-
tional variables in Π) number of new literals to the well-supported model. It now suffices
to use the corresponding complexity result of [51] where computing well-supported models
for 4QL is proved tractable. �

To generate all well-supported models for a given 4SP program Π it suffices to iterate
Algorithm 11 with setsH reflecting different choices of truth values t, f assigned to default
literals in Π. Therefore we have the following proposition.

Proposition 8.2. For every 4SP program there is at most an exponential number of well-
supported models with respect to the number of default literals occurring in Π. �

The following theorem shows that classical answer sets are preserved.

Theorem 8.3. For every ASP program Π, the set of all well-supported models of Π (being
a 4SP program) contains all answer sets of Π.

PROOF If there are no answer sets for Π then the conclusion is obvious. Otherwise, let I be
an answer set for Π. To obtain I as a 4SP model it suffices to assume the set of hypotheses
reflecting the contents of I, i.e., to consider Π withH, where:16

H def= {∼`� f | ` ∈ I,∼` occurs in Π} ∪ {∼`� t | `,¬` 6∈ I,∼` occurs in Π}. (35)

Indeed:

• when ` ∈ I, we have that I(∼`) = f;

• when `,¬` 6∈ I, we have that I(∼`) = t.

16Note that ` in (35) can be a positive or a negative literal.
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Thus,H defined in (35) forces the correct truth values of expressions involving ∼. �

Let 4SPI denotes an extension of 4SP obtained by allowing inspection operators I to
occur in premises of rules. We have the following theorem.

Theorem 8.4.

1. Model generation for 4SPI programs stratifiable with respect to I is tractable.

2. Model generation for 4SPI programs without the stratifiability requirement is NP-
complete.

PROOF

1. When a 4SPI program is stratifiable with respect to I it suffices to compute the well-
supported model stratum by stratum, starting from the stratum not containing inspection
operator. In this case, when an inspection operator ` ∈̇T is being evaluated, the truth value
of ` is computed in an earlier stratum so verifying ` ∈̇T becomes trivial.
2. In order to show NP-completeness of model generation for 4SPI it suffices to show a 4SPI

implementation of three-colorability of a graph (a well-known NP-complete problem). Let
e(X,Y ) denotes edges, v(X) denotes vertices and c(X,Z) stands for “the vertex X has
color Z”. Then Program 13 contains a 4SPI program whose models, if exist, are all color-
ings of the graph using the colors r, g, b.

Program 13: An implementation of three-colorability of a graph in 4SPI.
1 v(X, Y ) :– v(Y, X). % the graph is undirected
2 v(X) :– e(X, Y ).
3 v(Y ) :– e(X, Y ).
4 c(X, r) :– c(X, g) ∈̇ {f, u}, c(X, b) ∈̇ {f, u}.
5 c(X, g) :– c(X, r) ∈̇ {f, u}, c(X, b) ∈̇ {f, u}.
6 c(X, b) :– c(X, r) ∈̇ {f, u}, c(X, g) ∈̇ {f, u}.
7 e(. . .). % edges of the graph
8 . . .
9 e(. . .). % edges of the graph

First, note that Program 13 has only consistent models (contains neither negation ¬
nor ∼ ). Second, we used first-order variables X,Y, Z as means to concisely represent
propositional rules. Grounding of the program contains at most quadratic number of rules
with respect to the number of constants occurring in facts e(. . .). Therefore, the conclusion
of the theorem is true. �

Let 4SPF O denotes 4SP where one is allowed to use first-order representation of rules
Then we have the following theorem.
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Theorem 8.5. 4SPF O captures deterministic polynomial time over linearly ordered do-
mains.

PROOF Stratified DATALOG¬ captures deterministic polynomial time over linearly ordered
domains (see, e.g., [2]). Stratified DATALOG¬ programs can be reduced to 4SP programs
by grounding. Well-supported 4SP models of such programs are just the standard models
of stratified DATALOG¬ programs.

Given a problem π computable in deterministic polynomial time and a linear ordering
on the domain, there is a DATALOG¬ program Π capturing π. The rules in the program are
fixed, so the size of grounding of Π is at most polynomially larger than Π. Therefore, the
grounding of Π, being a 4SP program, captures π, too. The set of hypotheses is empty so,
according to Theorem 8.1, computing models of grounding of Π is tractable with respect to
the number of propositional variables (grounded literals) which proves the result. �

We then have the following obvious corollary.

Corollary 8.6. 4SP captures deterministic polynomial time over linearly ordered domains.
�

9 Related Work and Conclusions

The paper combines two threads: ASP [5, 7, 17, 39, 40, 41, 47, 48, 62] and 4QL [49, 50, 51,
63]. A detailed comparison of the selected features of ASP, 4QL and 4SP as well as models
used in these languages is provided in Tables 3 and 4.

Language Number of models Finding a model Stratification Consistency
ASP ≤ Exp NP No Yes
4QL = 1 P Yes No
4SP ≥ 1, ≤ Exp P No No

Table 3: A comparison of ASP, 4QL and 4SP features.

Models Truth Consistency Minimality Supportedness
Stable models t, f Yes Yes Yes
Answer Sets t, f, u Yes Yes Yes

Well-supported t, f, u, i No No Yes

Table 4: A comparison of the discussed models.

In [54] the logic of here-and-there (HT ) is used to define a direct declarative semantics
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for ASP. HT can be defined by means of a five-valued logic. However, none of these values
represents inconsistency.

Paraconsistent logic programming has been studied in [16] where Kripke-Kleene se-
mantics investigated in [33] has been extended to a four-valued framework founded on Bel-
nap logic B4. The first paraconsistent approach to ASP has been proposed in [58], where
a B+

4 -based framework is used and extended to six- and nine-valued frameworks for rea-
soning with inconsistency. Unlike [58], we use L+

4 together with trial/inspection operators
as uniform means for disambiguating inconsistencies and completing missing knowledge in
a nonmonotonic manner. For a survey of paraconsistent approaches to logic programming
see also [21].

Paracoherent ASP [29] aims at reasoning from ASP programs lacking answer sets due
to cyclic dependencies of atoms and their default negations. Program 9 with Line 1 sub-
stituted by the equivalent (with respect to K+

3 ) ASP rule ‘p:– ∼q.’ is an example of such
a dependence. For paracoherent reasoning [29] consider semi-stable models of [58] and
semi-equilibrium models. In 4SP, Program 9 has a single model with both p and q inconsis-
tent, {p,¬p, q,¬q}, the same no matter whether ∼q is assumed t or f. Both, for semi-stable
and semi-equilibrium semantics, model generation is proved intractable.

A hierarchy of tractable classes of stable models (over K+
3 ) has been reported in [9].

It reflects programs distance from their stratifiability. However, one of complexity factors
considered there is, in the worst case, exponential with respect to number of propositional
variables, what makes it intractable in the framework we consider.

Sufficient conditions for ASP guaranteeing tractability of answer set generation have
been identified in the literature [31, 32]. Also, tractable default reasoning subsystems that
can be translated into ASP have been considered in many sources, including [10, 30, 38, 60].
However, these approaches cover substantial subclasses of the general problem for which
we have achieved tractability.

In summary, we have defined the 4SP language combining the ASP and 4QL ideas.
We have gained tractability of model generation by relaxing the consistency requirement.
That way, a prevalent use of paraconsistency allowed us to achieve tractability of model
generation for an ASP-like language which, to our best knowledge, has not been achieved
before. 4SP is intended to serve as a tool complementary/parallel to ASP, being useful for
querying potentially inconsistent knowledge bases and providing models when ASP model
generation fails due to complexity reasons or inconsistencies involved.
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[15] Ł Białek, B. Dunin-Kȩplicz, and A. Szałas. A paraconsistent approach to actions in informa-
tionally complex environments. Ann. Math. Artif. Intell., 86(4):231–255, 2019.

[16] H.A. Blair and V.S. Subrahmanian. Paraconsistent logic programming. Theor. Comput. Sci.,
68(2):135–154, 1989.

[17] G. Brewka, T. Eiter, and M. Truszczynski. Answer set programming at a glance. Comm. ACM,
54(12):92–103, 2011.

[18] K.L. Clark. Negation as failure. In J. Minker, editor, Logic and Data Bases, volume 1, pages
293–322. Plenum Press, 1978.

[19] M. D’Agostino. Analytic inference and the informational meaning of the logical operators.
Logique & Analyse, 227:407–437, 2014.

[20] M. D’Agostino. An informational view of classical logic. Theor. Comput. Sci., 606:79–97,
2015.

[21] C.V. Damásio and L.M. Pereira. A survey of paraconsistent semantics for logic programs.
In D. M. Gabbay and P. Smets, editors, Handbook of Defeasible Reasoning and Uncertainty
Management Systems, volume 2, pages 241–320. Kluwer, 1998.

386



A PARACONSISTENT ASP-LIKE LANGUAGE WITH TRACTABLE MODEL GENERATION

[22] G. De Bona and A. Hunter. Localising iceberg inconsistencies. Artif. Intell., 246:118–151,
2017.

[23] F.R. de Carvalho and J.M. Abe, editors. A Paraconsistent Decision-Making Method, volume 87
of SIST. Springer, 2018.

[24] O. de Moor, G. Gottlob, T. Furche, and A.J. Sellers, editors. Datalog Reloaded, volume 6702
of LNCS. Springer, 2011.

[25] P. Doherty and Szałas. Stability, supportedness, minimality and Kleene Answer Set Programs.
In T. Eiter, H. Strass, M. Truszczyński, and S. Woltran, editors, Advances in KR, LP, and
Abstract Argumentation - Essays Dedicated to G. Brewka, volume 9060 of LNCS, pages 125–
140. Springer, 2015.
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